xref: /linux/drivers/net/ethernet/intel/ice/ice_switch.c (revision f58f45c1e5b92975e91754f5407250085a6ae7cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_lib.h"
5 #include "ice_switch.h"
6 
7 #define ICE_ETH_DA_OFFSET		0
8 #define ICE_ETH_ETHTYPE_OFFSET		12
9 #define ICE_ETH_VLAN_TCI_OFFSET		14
10 #define ICE_MAX_VLAN_ID			0xFFF
11 #define ICE_IPV6_ETHER_ID		0x86DD
12 
13 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
14  * struct to configure any switch filter rules.
15  * {DA (6 bytes), SA(6 bytes),
16  * Ether type (2 bytes for header without VLAN tag) OR
17  * VLAN tag (4 bytes for header with VLAN tag) }
18  *
19  * Word on Hardcoded values
20  * byte 0 = 0x2: to identify it as locally administered DA MAC
21  * byte 6 = 0x2: to identify it as locally administered SA MAC
22  * byte 12 = 0x81 & byte 13 = 0x00:
23  *      In case of VLAN filter first two bytes defines ether type (0x8100)
24  *      and remaining two bytes are placeholder for programming a given VLAN ID
25  *      In case of Ether type filter it is treated as header without VLAN tag
26  *      and byte 12 and 13 is used to program a given Ether type instead
27  */
28 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
29 							0x2, 0, 0, 0, 0, 0,
30 							0x81, 0, 0, 0};
31 
32 enum {
33 	ICE_PKT_OUTER_IPV6	= BIT(0),
34 	ICE_PKT_TUN_GTPC	= BIT(1),
35 	ICE_PKT_TUN_GTPU	= BIT(2),
36 	ICE_PKT_TUN_NVGRE	= BIT(3),
37 	ICE_PKT_TUN_UDP		= BIT(4),
38 	ICE_PKT_INNER_IPV6	= BIT(5),
39 	ICE_PKT_INNER_TCP	= BIT(6),
40 	ICE_PKT_INNER_UDP	= BIT(7),
41 	ICE_PKT_GTP_NOPAY	= BIT(8),
42 	ICE_PKT_KMALLOC		= BIT(9),
43 	ICE_PKT_PPPOE		= BIT(10),
44 	ICE_PKT_L2TPV3		= BIT(11),
45 };
46 
47 struct ice_dummy_pkt_offsets {
48 	enum ice_protocol_type type;
49 	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
50 };
51 
52 struct ice_dummy_pkt_profile {
53 	const struct ice_dummy_pkt_offsets *offsets;
54 	const u8 *pkt;
55 	u32 match;
56 	u16 pkt_len;
57 	u16 offsets_len;
58 };
59 
60 #define ICE_DECLARE_PKT_OFFSETS(type)					\
61 	static const struct ice_dummy_pkt_offsets			\
62 	ice_dummy_##type##_packet_offsets[]
63 
64 #define ICE_DECLARE_PKT_TEMPLATE(type)					\
65 	static const u8 ice_dummy_##type##_packet[]
66 
67 #define ICE_PKT_PROFILE(type, m) {					\
68 	.match		= (m),						\
69 	.pkt		= ice_dummy_##type##_packet,			\
70 	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
71 	.offsets	= ice_dummy_##type##_packet_offsets,		\
72 	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
73 }
74 
75 ICE_DECLARE_PKT_OFFSETS(vlan) = {
76 	{ ICE_VLAN_OFOS,        12 },
77 };
78 
79 ICE_DECLARE_PKT_TEMPLATE(vlan) = {
80 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
81 };
82 
83 ICE_DECLARE_PKT_OFFSETS(qinq) = {
84 	{ ICE_VLAN_EX,          12 },
85 	{ ICE_VLAN_IN,          16 },
86 };
87 
88 ICE_DECLARE_PKT_TEMPLATE(qinq) = {
89 	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
90 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
91 };
92 
93 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
94 	{ ICE_MAC_OFOS,		0 },
95 	{ ICE_ETYPE_OL,		12 },
96 	{ ICE_IPV4_OFOS,	14 },
97 	{ ICE_NVGRE,		34 },
98 	{ ICE_MAC_IL,		42 },
99 	{ ICE_ETYPE_IL,		54 },
100 	{ ICE_IPV4_IL,		56 },
101 	{ ICE_TCP_IL,		76 },
102 	{ ICE_PROTOCOL_LAST,	0 },
103 };
104 
105 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
106 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
107 	0x00, 0x00, 0x00, 0x00,
108 	0x00, 0x00, 0x00, 0x00,
109 
110 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
111 
112 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
113 	0x00, 0x00, 0x00, 0x00,
114 	0x00, 0x2F, 0x00, 0x00,
115 	0x00, 0x00, 0x00, 0x00,
116 	0x00, 0x00, 0x00, 0x00,
117 
118 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
119 	0x00, 0x00, 0x00, 0x00,
120 
121 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
122 	0x00, 0x00, 0x00, 0x00,
123 	0x00, 0x00, 0x00, 0x00,
124 
125 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
126 
127 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
128 	0x00, 0x00, 0x00, 0x00,
129 	0x00, 0x06, 0x00, 0x00,
130 	0x00, 0x00, 0x00, 0x00,
131 	0x00, 0x00, 0x00, 0x00,
132 
133 	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
134 	0x00, 0x00, 0x00, 0x00,
135 	0x00, 0x00, 0x00, 0x00,
136 	0x50, 0x02, 0x20, 0x00,
137 	0x00, 0x00, 0x00, 0x00
138 };
139 
140 ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
141 	{ ICE_MAC_OFOS,		0 },
142 	{ ICE_ETYPE_OL,		12 },
143 	{ ICE_IPV4_OFOS,	14 },
144 	{ ICE_NVGRE,		34 },
145 	{ ICE_MAC_IL,		42 },
146 	{ ICE_ETYPE_IL,		54 },
147 	{ ICE_IPV4_IL,		56 },
148 	{ ICE_UDP_ILOS,		76 },
149 	{ ICE_PROTOCOL_LAST,	0 },
150 };
151 
152 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
153 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
154 	0x00, 0x00, 0x00, 0x00,
155 	0x00, 0x00, 0x00, 0x00,
156 
157 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
158 
159 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
160 	0x00, 0x00, 0x00, 0x00,
161 	0x00, 0x2F, 0x00, 0x00,
162 	0x00, 0x00, 0x00, 0x00,
163 	0x00, 0x00, 0x00, 0x00,
164 
165 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
166 	0x00, 0x00, 0x00, 0x00,
167 
168 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
169 	0x00, 0x00, 0x00, 0x00,
170 	0x00, 0x00, 0x00, 0x00,
171 
172 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
173 
174 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
175 	0x00, 0x00, 0x00, 0x00,
176 	0x00, 0x11, 0x00, 0x00,
177 	0x00, 0x00, 0x00, 0x00,
178 	0x00, 0x00, 0x00, 0x00,
179 
180 	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
181 	0x00, 0x08, 0x00, 0x00,
182 };
183 
184 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
185 	{ ICE_MAC_OFOS,		0 },
186 	{ ICE_ETYPE_OL,		12 },
187 	{ ICE_IPV4_OFOS,	14 },
188 	{ ICE_UDP_OF,		34 },
189 	{ ICE_VXLAN,		42 },
190 	{ ICE_GENEVE,		42 },
191 	{ ICE_VXLAN_GPE,	42 },
192 	{ ICE_MAC_IL,		50 },
193 	{ ICE_ETYPE_IL,		62 },
194 	{ ICE_IPV4_IL,		64 },
195 	{ ICE_TCP_IL,		84 },
196 	{ ICE_PROTOCOL_LAST,	0 },
197 };
198 
199 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
200 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
201 	0x00, 0x00, 0x00, 0x00,
202 	0x00, 0x00, 0x00, 0x00,
203 
204 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
205 
206 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
207 	0x00, 0x01, 0x00, 0x00,
208 	0x40, 0x11, 0x00, 0x00,
209 	0x00, 0x00, 0x00, 0x00,
210 	0x00, 0x00, 0x00, 0x00,
211 
212 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
213 	0x00, 0x46, 0x00, 0x00,
214 
215 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
216 	0x00, 0x00, 0x00, 0x00,
217 
218 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
219 	0x00, 0x00, 0x00, 0x00,
220 	0x00, 0x00, 0x00, 0x00,
221 
222 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
223 
224 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
225 	0x00, 0x01, 0x00, 0x00,
226 	0x40, 0x06, 0x00, 0x00,
227 	0x00, 0x00, 0x00, 0x00,
228 	0x00, 0x00, 0x00, 0x00,
229 
230 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
231 	0x00, 0x00, 0x00, 0x00,
232 	0x00, 0x00, 0x00, 0x00,
233 	0x50, 0x02, 0x20, 0x00,
234 	0x00, 0x00, 0x00, 0x00
235 };
236 
237 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
238 	{ ICE_MAC_OFOS,		0 },
239 	{ ICE_ETYPE_OL,		12 },
240 	{ ICE_IPV4_OFOS,	14 },
241 	{ ICE_UDP_OF,		34 },
242 	{ ICE_VXLAN,		42 },
243 	{ ICE_GENEVE,		42 },
244 	{ ICE_VXLAN_GPE,	42 },
245 	{ ICE_MAC_IL,		50 },
246 	{ ICE_ETYPE_IL,		62 },
247 	{ ICE_IPV4_IL,		64 },
248 	{ ICE_UDP_ILOS,		84 },
249 	{ ICE_PROTOCOL_LAST,	0 },
250 };
251 
252 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
253 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
254 	0x00, 0x00, 0x00, 0x00,
255 	0x00, 0x00, 0x00, 0x00,
256 
257 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
258 
259 	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
260 	0x00, 0x01, 0x00, 0x00,
261 	0x00, 0x11, 0x00, 0x00,
262 	0x00, 0x00, 0x00, 0x00,
263 	0x00, 0x00, 0x00, 0x00,
264 
265 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
266 	0x00, 0x3a, 0x00, 0x00,
267 
268 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
269 	0x00, 0x00, 0x00, 0x00,
270 
271 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
272 	0x00, 0x00, 0x00, 0x00,
273 	0x00, 0x00, 0x00, 0x00,
274 
275 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
276 
277 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
278 	0x00, 0x01, 0x00, 0x00,
279 	0x00, 0x11, 0x00, 0x00,
280 	0x00, 0x00, 0x00, 0x00,
281 	0x00, 0x00, 0x00, 0x00,
282 
283 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
284 	0x00, 0x08, 0x00, 0x00,
285 };
286 
287 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
288 	{ ICE_MAC_OFOS,		0 },
289 	{ ICE_ETYPE_OL,		12 },
290 	{ ICE_IPV4_OFOS,	14 },
291 	{ ICE_NVGRE,		34 },
292 	{ ICE_MAC_IL,		42 },
293 	{ ICE_ETYPE_IL,		54 },
294 	{ ICE_IPV6_IL,		56 },
295 	{ ICE_TCP_IL,		96 },
296 	{ ICE_PROTOCOL_LAST,	0 },
297 };
298 
299 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
300 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
301 	0x00, 0x00, 0x00, 0x00,
302 	0x00, 0x00, 0x00, 0x00,
303 
304 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
305 
306 	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
307 	0x00, 0x00, 0x00, 0x00,
308 	0x00, 0x2F, 0x00, 0x00,
309 	0x00, 0x00, 0x00, 0x00,
310 	0x00, 0x00, 0x00, 0x00,
311 
312 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
313 	0x00, 0x00, 0x00, 0x00,
314 
315 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
316 	0x00, 0x00, 0x00, 0x00,
317 	0x00, 0x00, 0x00, 0x00,
318 
319 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
320 
321 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
322 	0x00, 0x08, 0x06, 0x40,
323 	0x00, 0x00, 0x00, 0x00,
324 	0x00, 0x00, 0x00, 0x00,
325 	0x00, 0x00, 0x00, 0x00,
326 	0x00, 0x00, 0x00, 0x00,
327 	0x00, 0x00, 0x00, 0x00,
328 	0x00, 0x00, 0x00, 0x00,
329 	0x00, 0x00, 0x00, 0x00,
330 	0x00, 0x00, 0x00, 0x00,
331 
332 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
333 	0x00, 0x00, 0x00, 0x00,
334 	0x00, 0x00, 0x00, 0x00,
335 	0x50, 0x02, 0x20, 0x00,
336 	0x00, 0x00, 0x00, 0x00
337 };
338 
339 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
340 	{ ICE_MAC_OFOS,		0 },
341 	{ ICE_ETYPE_OL,		12 },
342 	{ ICE_IPV4_OFOS,	14 },
343 	{ ICE_NVGRE,		34 },
344 	{ ICE_MAC_IL,		42 },
345 	{ ICE_ETYPE_IL,		54 },
346 	{ ICE_IPV6_IL,		56 },
347 	{ ICE_UDP_ILOS,		96 },
348 	{ ICE_PROTOCOL_LAST,	0 },
349 };
350 
351 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
352 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
353 	0x00, 0x00, 0x00, 0x00,
354 	0x00, 0x00, 0x00, 0x00,
355 
356 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
357 
358 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
359 	0x00, 0x00, 0x00, 0x00,
360 	0x00, 0x2F, 0x00, 0x00,
361 	0x00, 0x00, 0x00, 0x00,
362 	0x00, 0x00, 0x00, 0x00,
363 
364 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
365 	0x00, 0x00, 0x00, 0x00,
366 
367 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
368 	0x00, 0x00, 0x00, 0x00,
369 	0x00, 0x00, 0x00, 0x00,
370 
371 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
372 
373 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
374 	0x00, 0x08, 0x11, 0x40,
375 	0x00, 0x00, 0x00, 0x00,
376 	0x00, 0x00, 0x00, 0x00,
377 	0x00, 0x00, 0x00, 0x00,
378 	0x00, 0x00, 0x00, 0x00,
379 	0x00, 0x00, 0x00, 0x00,
380 	0x00, 0x00, 0x00, 0x00,
381 	0x00, 0x00, 0x00, 0x00,
382 	0x00, 0x00, 0x00, 0x00,
383 
384 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
385 	0x00, 0x08, 0x00, 0x00,
386 };
387 
388 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
389 	{ ICE_MAC_OFOS,		0 },
390 	{ ICE_ETYPE_OL,		12 },
391 	{ ICE_IPV4_OFOS,	14 },
392 	{ ICE_UDP_OF,		34 },
393 	{ ICE_VXLAN,		42 },
394 	{ ICE_GENEVE,		42 },
395 	{ ICE_VXLAN_GPE,	42 },
396 	{ ICE_MAC_IL,		50 },
397 	{ ICE_ETYPE_IL,		62 },
398 	{ ICE_IPV6_IL,		64 },
399 	{ ICE_TCP_IL,		104 },
400 	{ ICE_PROTOCOL_LAST,	0 },
401 };
402 
403 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
404 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
405 	0x00, 0x00, 0x00, 0x00,
406 	0x00, 0x00, 0x00, 0x00,
407 
408 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
409 
410 	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
411 	0x00, 0x01, 0x00, 0x00,
412 	0x40, 0x11, 0x00, 0x00,
413 	0x00, 0x00, 0x00, 0x00,
414 	0x00, 0x00, 0x00, 0x00,
415 
416 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
417 	0x00, 0x5a, 0x00, 0x00,
418 
419 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
420 	0x00, 0x00, 0x00, 0x00,
421 
422 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
423 	0x00, 0x00, 0x00, 0x00,
424 	0x00, 0x00, 0x00, 0x00,
425 
426 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
427 
428 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
429 	0x00, 0x08, 0x06, 0x40,
430 	0x00, 0x00, 0x00, 0x00,
431 	0x00, 0x00, 0x00, 0x00,
432 	0x00, 0x00, 0x00, 0x00,
433 	0x00, 0x00, 0x00, 0x00,
434 	0x00, 0x00, 0x00, 0x00,
435 	0x00, 0x00, 0x00, 0x00,
436 	0x00, 0x00, 0x00, 0x00,
437 	0x00, 0x00, 0x00, 0x00,
438 
439 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
440 	0x00, 0x00, 0x00, 0x00,
441 	0x00, 0x00, 0x00, 0x00,
442 	0x50, 0x02, 0x20, 0x00,
443 	0x00, 0x00, 0x00, 0x00
444 };
445 
446 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
447 	{ ICE_MAC_OFOS,		0 },
448 	{ ICE_ETYPE_OL,		12 },
449 	{ ICE_IPV4_OFOS,	14 },
450 	{ ICE_UDP_OF,		34 },
451 	{ ICE_VXLAN,		42 },
452 	{ ICE_GENEVE,		42 },
453 	{ ICE_VXLAN_GPE,	42 },
454 	{ ICE_MAC_IL,		50 },
455 	{ ICE_ETYPE_IL,		62 },
456 	{ ICE_IPV6_IL,		64 },
457 	{ ICE_UDP_ILOS,		104 },
458 	{ ICE_PROTOCOL_LAST,	0 },
459 };
460 
461 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
462 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
463 	0x00, 0x00, 0x00, 0x00,
464 	0x00, 0x00, 0x00, 0x00,
465 
466 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
467 
468 	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
469 	0x00, 0x01, 0x00, 0x00,
470 	0x00, 0x11, 0x00, 0x00,
471 	0x00, 0x00, 0x00, 0x00,
472 	0x00, 0x00, 0x00, 0x00,
473 
474 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
475 	0x00, 0x4e, 0x00, 0x00,
476 
477 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
478 	0x00, 0x00, 0x00, 0x00,
479 
480 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
481 	0x00, 0x00, 0x00, 0x00,
482 	0x00, 0x00, 0x00, 0x00,
483 
484 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
485 
486 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
487 	0x00, 0x08, 0x11, 0x40,
488 	0x00, 0x00, 0x00, 0x00,
489 	0x00, 0x00, 0x00, 0x00,
490 	0x00, 0x00, 0x00, 0x00,
491 	0x00, 0x00, 0x00, 0x00,
492 	0x00, 0x00, 0x00, 0x00,
493 	0x00, 0x00, 0x00, 0x00,
494 	0x00, 0x00, 0x00, 0x00,
495 	0x00, 0x00, 0x00, 0x00,
496 
497 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
498 	0x00, 0x08, 0x00, 0x00,
499 };
500 
501 /* offset info for MAC + IPv4 + UDP dummy packet */
502 ICE_DECLARE_PKT_OFFSETS(udp) = {
503 	{ ICE_MAC_OFOS,		0 },
504 	{ ICE_ETYPE_OL,		12 },
505 	{ ICE_IPV4_OFOS,	14 },
506 	{ ICE_UDP_ILOS,		34 },
507 	{ ICE_PROTOCOL_LAST,	0 },
508 };
509 
510 /* Dummy packet for MAC + IPv4 + UDP */
511 ICE_DECLARE_PKT_TEMPLATE(udp) = {
512 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
513 	0x00, 0x00, 0x00, 0x00,
514 	0x00, 0x00, 0x00, 0x00,
515 
516 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
517 
518 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
519 	0x00, 0x01, 0x00, 0x00,
520 	0x00, 0x11, 0x00, 0x00,
521 	0x00, 0x00, 0x00, 0x00,
522 	0x00, 0x00, 0x00, 0x00,
523 
524 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
525 	0x00, 0x08, 0x00, 0x00,
526 
527 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
528 };
529 
530 /* offset info for MAC + IPv4 + TCP dummy packet */
531 ICE_DECLARE_PKT_OFFSETS(tcp) = {
532 	{ ICE_MAC_OFOS,		0 },
533 	{ ICE_ETYPE_OL,		12 },
534 	{ ICE_IPV4_OFOS,	14 },
535 	{ ICE_TCP_IL,		34 },
536 	{ ICE_PROTOCOL_LAST,	0 },
537 };
538 
539 /* Dummy packet for MAC + IPv4 + TCP */
540 ICE_DECLARE_PKT_TEMPLATE(tcp) = {
541 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
542 	0x00, 0x00, 0x00, 0x00,
543 	0x00, 0x00, 0x00, 0x00,
544 
545 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
546 
547 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
548 	0x00, 0x01, 0x00, 0x00,
549 	0x00, 0x06, 0x00, 0x00,
550 	0x00, 0x00, 0x00, 0x00,
551 	0x00, 0x00, 0x00, 0x00,
552 
553 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
554 	0x00, 0x00, 0x00, 0x00,
555 	0x00, 0x00, 0x00, 0x00,
556 	0x50, 0x00, 0x00, 0x00,
557 	0x00, 0x00, 0x00, 0x00,
558 
559 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
560 };
561 
562 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
563 	{ ICE_MAC_OFOS,		0 },
564 	{ ICE_ETYPE_OL,		12 },
565 	{ ICE_IPV6_OFOS,	14 },
566 	{ ICE_TCP_IL,		54 },
567 	{ ICE_PROTOCOL_LAST,	0 },
568 };
569 
570 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
571 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
572 	0x00, 0x00, 0x00, 0x00,
573 	0x00, 0x00, 0x00, 0x00,
574 
575 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
576 
577 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
578 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
579 	0x00, 0x00, 0x00, 0x00,
580 	0x00, 0x00, 0x00, 0x00,
581 	0x00, 0x00, 0x00, 0x00,
582 	0x00, 0x00, 0x00, 0x00,
583 	0x00, 0x00, 0x00, 0x00,
584 	0x00, 0x00, 0x00, 0x00,
585 	0x00, 0x00, 0x00, 0x00,
586 	0x00, 0x00, 0x00, 0x00,
587 
588 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
589 	0x00, 0x00, 0x00, 0x00,
590 	0x00, 0x00, 0x00, 0x00,
591 	0x50, 0x00, 0x00, 0x00,
592 	0x00, 0x00, 0x00, 0x00,
593 
594 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
595 };
596 
597 /* IPv6 + UDP */
598 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
599 	{ ICE_MAC_OFOS,		0 },
600 	{ ICE_ETYPE_OL,		12 },
601 	{ ICE_IPV6_OFOS,	14 },
602 	{ ICE_UDP_ILOS,		54 },
603 	{ ICE_PROTOCOL_LAST,	0 },
604 };
605 
606 /* IPv6 + UDP dummy packet */
607 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
608 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
609 	0x00, 0x00, 0x00, 0x00,
610 	0x00, 0x00, 0x00, 0x00,
611 
612 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
613 
614 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
615 	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
616 	0x00, 0x00, 0x00, 0x00,
617 	0x00, 0x00, 0x00, 0x00,
618 	0x00, 0x00, 0x00, 0x00,
619 	0x00, 0x00, 0x00, 0x00,
620 	0x00, 0x00, 0x00, 0x00,
621 	0x00, 0x00, 0x00, 0x00,
622 	0x00, 0x00, 0x00, 0x00,
623 	0x00, 0x00, 0x00, 0x00,
624 
625 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
626 	0x00, 0x10, 0x00, 0x00,
627 
628 	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
629 	0x00, 0x00, 0x00, 0x00,
630 
631 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
632 };
633 
634 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
635 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
636 	{ ICE_MAC_OFOS,		0 },
637 	{ ICE_IPV4_OFOS,	14 },
638 	{ ICE_UDP_OF,		34 },
639 	{ ICE_GTP,		42 },
640 	{ ICE_IPV4_IL,		62 },
641 	{ ICE_TCP_IL,		82 },
642 	{ ICE_PROTOCOL_LAST,	0 },
643 };
644 
645 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
646 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
647 	0x00, 0x00, 0x00, 0x00,
648 	0x00, 0x00, 0x00, 0x00,
649 	0x08, 0x00,
650 
651 	0x45, 0x00, 0x00, 0x58, /* IP 14 */
652 	0x00, 0x00, 0x00, 0x00,
653 	0x00, 0x11, 0x00, 0x00,
654 	0x00, 0x00, 0x00, 0x00,
655 	0x00, 0x00, 0x00, 0x00,
656 
657 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
658 	0x00, 0x44, 0x00, 0x00,
659 
660 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
661 	0x00, 0x00, 0x00, 0x00,
662 	0x00, 0x00, 0x00, 0x85,
663 
664 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
665 	0x00, 0x00, 0x00, 0x00,
666 
667 	0x45, 0x00, 0x00, 0x28, /* IP 62 */
668 	0x00, 0x00, 0x00, 0x00,
669 	0x00, 0x06, 0x00, 0x00,
670 	0x00, 0x00, 0x00, 0x00,
671 	0x00, 0x00, 0x00, 0x00,
672 
673 	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
674 	0x00, 0x00, 0x00, 0x00,
675 	0x00, 0x00, 0x00, 0x00,
676 	0x50, 0x00, 0x00, 0x00,
677 	0x00, 0x00, 0x00, 0x00,
678 
679 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
680 };
681 
682 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
683 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
684 	{ ICE_MAC_OFOS,		0 },
685 	{ ICE_IPV4_OFOS,	14 },
686 	{ ICE_UDP_OF,		34 },
687 	{ ICE_GTP,		42 },
688 	{ ICE_IPV4_IL,		62 },
689 	{ ICE_UDP_ILOS,		82 },
690 	{ ICE_PROTOCOL_LAST,	0 },
691 };
692 
693 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
694 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
695 	0x00, 0x00, 0x00, 0x00,
696 	0x00, 0x00, 0x00, 0x00,
697 	0x08, 0x00,
698 
699 	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
700 	0x00, 0x00, 0x00, 0x00,
701 	0x00, 0x11, 0x00, 0x00,
702 	0x00, 0x00, 0x00, 0x00,
703 	0x00, 0x00, 0x00, 0x00,
704 
705 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
706 	0x00, 0x38, 0x00, 0x00,
707 
708 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
709 	0x00, 0x00, 0x00, 0x00,
710 	0x00, 0x00, 0x00, 0x85,
711 
712 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
713 	0x00, 0x00, 0x00, 0x00,
714 
715 	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
716 	0x00, 0x00, 0x00, 0x00,
717 	0x00, 0x11, 0x00, 0x00,
718 	0x00, 0x00, 0x00, 0x00,
719 	0x00, 0x00, 0x00, 0x00,
720 
721 	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
722 	0x00, 0x08, 0x00, 0x00,
723 
724 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
725 };
726 
727 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
728 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
729 	{ ICE_MAC_OFOS,		0 },
730 	{ ICE_IPV4_OFOS,	14 },
731 	{ ICE_UDP_OF,		34 },
732 	{ ICE_GTP,		42 },
733 	{ ICE_IPV6_IL,		62 },
734 	{ ICE_TCP_IL,		102 },
735 	{ ICE_PROTOCOL_LAST,	0 },
736 };
737 
738 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
739 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
740 	0x00, 0x00, 0x00, 0x00,
741 	0x00, 0x00, 0x00, 0x00,
742 	0x08, 0x00,
743 
744 	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
745 	0x00, 0x00, 0x00, 0x00,
746 	0x00, 0x11, 0x00, 0x00,
747 	0x00, 0x00, 0x00, 0x00,
748 	0x00, 0x00, 0x00, 0x00,
749 
750 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
751 	0x00, 0x58, 0x00, 0x00,
752 
753 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
754 	0x00, 0x00, 0x00, 0x00,
755 	0x00, 0x00, 0x00, 0x85,
756 
757 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
758 	0x00, 0x00, 0x00, 0x00,
759 
760 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
761 	0x00, 0x14, 0x06, 0x00,
762 	0x00, 0x00, 0x00, 0x00,
763 	0x00, 0x00, 0x00, 0x00,
764 	0x00, 0x00, 0x00, 0x00,
765 	0x00, 0x00, 0x00, 0x00,
766 	0x00, 0x00, 0x00, 0x00,
767 	0x00, 0x00, 0x00, 0x00,
768 	0x00, 0x00, 0x00, 0x00,
769 	0x00, 0x00, 0x00, 0x00,
770 
771 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
772 	0x00, 0x00, 0x00, 0x00,
773 	0x00, 0x00, 0x00, 0x00,
774 	0x50, 0x00, 0x00, 0x00,
775 	0x00, 0x00, 0x00, 0x00,
776 
777 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
778 };
779 
780 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
781 	{ ICE_MAC_OFOS,		0 },
782 	{ ICE_IPV4_OFOS,	14 },
783 	{ ICE_UDP_OF,		34 },
784 	{ ICE_GTP,		42 },
785 	{ ICE_IPV6_IL,		62 },
786 	{ ICE_UDP_ILOS,		102 },
787 	{ ICE_PROTOCOL_LAST,	0 },
788 };
789 
790 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
791 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
792 	0x00, 0x00, 0x00, 0x00,
793 	0x00, 0x00, 0x00, 0x00,
794 	0x08, 0x00,
795 
796 	0x45, 0x00, 0x00, 0x60, /* IP 14 */
797 	0x00, 0x00, 0x00, 0x00,
798 	0x00, 0x11, 0x00, 0x00,
799 	0x00, 0x00, 0x00, 0x00,
800 	0x00, 0x00, 0x00, 0x00,
801 
802 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
803 	0x00, 0x4c, 0x00, 0x00,
804 
805 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
806 	0x00, 0x00, 0x00, 0x00,
807 	0x00, 0x00, 0x00, 0x85,
808 
809 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
810 	0x00, 0x00, 0x00, 0x00,
811 
812 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
813 	0x00, 0x08, 0x11, 0x00,
814 	0x00, 0x00, 0x00, 0x00,
815 	0x00, 0x00, 0x00, 0x00,
816 	0x00, 0x00, 0x00, 0x00,
817 	0x00, 0x00, 0x00, 0x00,
818 	0x00, 0x00, 0x00, 0x00,
819 	0x00, 0x00, 0x00, 0x00,
820 	0x00, 0x00, 0x00, 0x00,
821 	0x00, 0x00, 0x00, 0x00,
822 
823 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
824 	0x00, 0x08, 0x00, 0x00,
825 
826 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
827 };
828 
829 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
830 	{ ICE_MAC_OFOS,		0 },
831 	{ ICE_IPV6_OFOS,	14 },
832 	{ ICE_UDP_OF,		54 },
833 	{ ICE_GTP,		62 },
834 	{ ICE_IPV4_IL,		82 },
835 	{ ICE_TCP_IL,		102 },
836 	{ ICE_PROTOCOL_LAST,	0 },
837 };
838 
839 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
840 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
841 	0x00, 0x00, 0x00, 0x00,
842 	0x00, 0x00, 0x00, 0x00,
843 	0x86, 0xdd,
844 
845 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
846 	0x00, 0x44, 0x11, 0x00,
847 	0x00, 0x00, 0x00, 0x00,
848 	0x00, 0x00, 0x00, 0x00,
849 	0x00, 0x00, 0x00, 0x00,
850 	0x00, 0x00, 0x00, 0x00,
851 	0x00, 0x00, 0x00, 0x00,
852 	0x00, 0x00, 0x00, 0x00,
853 	0x00, 0x00, 0x00, 0x00,
854 	0x00, 0x00, 0x00, 0x00,
855 
856 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
857 	0x00, 0x44, 0x00, 0x00,
858 
859 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
860 	0x00, 0x00, 0x00, 0x00,
861 	0x00, 0x00, 0x00, 0x85,
862 
863 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
864 	0x00, 0x00, 0x00, 0x00,
865 
866 	0x45, 0x00, 0x00, 0x28, /* IP 82 */
867 	0x00, 0x00, 0x00, 0x00,
868 	0x00, 0x06, 0x00, 0x00,
869 	0x00, 0x00, 0x00, 0x00,
870 	0x00, 0x00, 0x00, 0x00,
871 
872 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
873 	0x00, 0x00, 0x00, 0x00,
874 	0x00, 0x00, 0x00, 0x00,
875 	0x50, 0x00, 0x00, 0x00,
876 	0x00, 0x00, 0x00, 0x00,
877 
878 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
879 };
880 
881 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
882 	{ ICE_MAC_OFOS,		0 },
883 	{ ICE_IPV6_OFOS,	14 },
884 	{ ICE_UDP_OF,		54 },
885 	{ ICE_GTP,		62 },
886 	{ ICE_IPV4_IL,		82 },
887 	{ ICE_UDP_ILOS,		102 },
888 	{ ICE_PROTOCOL_LAST,	0 },
889 };
890 
891 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
892 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
893 	0x00, 0x00, 0x00, 0x00,
894 	0x00, 0x00, 0x00, 0x00,
895 	0x86, 0xdd,
896 
897 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
898 	0x00, 0x38, 0x11, 0x00,
899 	0x00, 0x00, 0x00, 0x00,
900 	0x00, 0x00, 0x00, 0x00,
901 	0x00, 0x00, 0x00, 0x00,
902 	0x00, 0x00, 0x00, 0x00,
903 	0x00, 0x00, 0x00, 0x00,
904 	0x00, 0x00, 0x00, 0x00,
905 	0x00, 0x00, 0x00, 0x00,
906 	0x00, 0x00, 0x00, 0x00,
907 
908 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
909 	0x00, 0x38, 0x00, 0x00,
910 
911 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
912 	0x00, 0x00, 0x00, 0x00,
913 	0x00, 0x00, 0x00, 0x85,
914 
915 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
916 	0x00, 0x00, 0x00, 0x00,
917 
918 	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
919 	0x00, 0x00, 0x00, 0x00,
920 	0x00, 0x11, 0x00, 0x00,
921 	0x00, 0x00, 0x00, 0x00,
922 	0x00, 0x00, 0x00, 0x00,
923 
924 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
925 	0x00, 0x08, 0x00, 0x00,
926 
927 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
928 };
929 
930 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
931 	{ ICE_MAC_OFOS,		0 },
932 	{ ICE_IPV6_OFOS,	14 },
933 	{ ICE_UDP_OF,		54 },
934 	{ ICE_GTP,		62 },
935 	{ ICE_IPV6_IL,		82 },
936 	{ ICE_TCP_IL,		122 },
937 	{ ICE_PROTOCOL_LAST,	0 },
938 };
939 
940 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
941 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
942 	0x00, 0x00, 0x00, 0x00,
943 	0x00, 0x00, 0x00, 0x00,
944 	0x86, 0xdd,
945 
946 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
947 	0x00, 0x58, 0x11, 0x00,
948 	0x00, 0x00, 0x00, 0x00,
949 	0x00, 0x00, 0x00, 0x00,
950 	0x00, 0x00, 0x00, 0x00,
951 	0x00, 0x00, 0x00, 0x00,
952 	0x00, 0x00, 0x00, 0x00,
953 	0x00, 0x00, 0x00, 0x00,
954 	0x00, 0x00, 0x00, 0x00,
955 	0x00, 0x00, 0x00, 0x00,
956 
957 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
958 	0x00, 0x58, 0x00, 0x00,
959 
960 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
961 	0x00, 0x00, 0x00, 0x00,
962 	0x00, 0x00, 0x00, 0x85,
963 
964 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
965 	0x00, 0x00, 0x00, 0x00,
966 
967 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
968 	0x00, 0x14, 0x06, 0x00,
969 	0x00, 0x00, 0x00, 0x00,
970 	0x00, 0x00, 0x00, 0x00,
971 	0x00, 0x00, 0x00, 0x00,
972 	0x00, 0x00, 0x00, 0x00,
973 	0x00, 0x00, 0x00, 0x00,
974 	0x00, 0x00, 0x00, 0x00,
975 	0x00, 0x00, 0x00, 0x00,
976 	0x00, 0x00, 0x00, 0x00,
977 
978 	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
979 	0x00, 0x00, 0x00, 0x00,
980 	0x00, 0x00, 0x00, 0x00,
981 	0x50, 0x00, 0x00, 0x00,
982 	0x00, 0x00, 0x00, 0x00,
983 
984 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
985 };
986 
987 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
988 	{ ICE_MAC_OFOS,		0 },
989 	{ ICE_IPV6_OFOS,	14 },
990 	{ ICE_UDP_OF,		54 },
991 	{ ICE_GTP,		62 },
992 	{ ICE_IPV6_IL,		82 },
993 	{ ICE_UDP_ILOS,		122 },
994 	{ ICE_PROTOCOL_LAST,	0 },
995 };
996 
997 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
998 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
999 	0x00, 0x00, 0x00, 0x00,
1000 	0x00, 0x00, 0x00, 0x00,
1001 	0x86, 0xdd,
1002 
1003 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1004 	0x00, 0x4c, 0x11, 0x00,
1005 	0x00, 0x00, 0x00, 0x00,
1006 	0x00, 0x00, 0x00, 0x00,
1007 	0x00, 0x00, 0x00, 0x00,
1008 	0x00, 0x00, 0x00, 0x00,
1009 	0x00, 0x00, 0x00, 0x00,
1010 	0x00, 0x00, 0x00, 0x00,
1011 	0x00, 0x00, 0x00, 0x00,
1012 	0x00, 0x00, 0x00, 0x00,
1013 
1014 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1015 	0x00, 0x4c, 0x00, 0x00,
1016 
1017 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1018 	0x00, 0x00, 0x00, 0x00,
1019 	0x00, 0x00, 0x00, 0x85,
1020 
1021 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1022 	0x00, 0x00, 0x00, 0x00,
1023 
1024 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1025 	0x00, 0x08, 0x11, 0x00,
1026 	0x00, 0x00, 0x00, 0x00,
1027 	0x00, 0x00, 0x00, 0x00,
1028 	0x00, 0x00, 0x00, 0x00,
1029 	0x00, 0x00, 0x00, 0x00,
1030 	0x00, 0x00, 0x00, 0x00,
1031 	0x00, 0x00, 0x00, 0x00,
1032 	0x00, 0x00, 0x00, 0x00,
1033 	0x00, 0x00, 0x00, 0x00,
1034 
1035 	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1036 	0x00, 0x08, 0x00, 0x00,
1037 
1038 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1039 };
1040 
1041 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1042 	{ ICE_MAC_OFOS,		0 },
1043 	{ ICE_IPV4_OFOS,	14 },
1044 	{ ICE_UDP_OF,		34 },
1045 	{ ICE_GTP_NO_PAY,	42 },
1046 	{ ICE_PROTOCOL_LAST,	0 },
1047 };
1048 
1049 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1050 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1051 	0x00, 0x00, 0x00, 0x00,
1052 	0x00, 0x00, 0x00, 0x00,
1053 	0x08, 0x00,
1054 
1055 	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1056 	0x00, 0x00, 0x40, 0x00,
1057 	0x40, 0x11, 0x00, 0x00,
1058 	0x00, 0x00, 0x00, 0x00,
1059 	0x00, 0x00, 0x00, 0x00,
1060 
1061 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1062 	0x00, 0x00, 0x00, 0x00,
1063 
1064 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1065 	0x00, 0x00, 0x00, 0x00,
1066 	0x00, 0x00, 0x00, 0x85,
1067 
1068 	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1069 	0x00, 0x00, 0x00, 0x00,
1070 
1071 	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1072 	0x00, 0x00, 0x40, 0x00,
1073 	0x40, 0x00, 0x00, 0x00,
1074 	0x00, 0x00, 0x00, 0x00,
1075 	0x00, 0x00, 0x00, 0x00,
1076 	0x00, 0x00,
1077 };
1078 
1079 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1080 	{ ICE_MAC_OFOS,		0 },
1081 	{ ICE_IPV6_OFOS,	14 },
1082 	{ ICE_UDP_OF,		54 },
1083 	{ ICE_GTP_NO_PAY,	62 },
1084 	{ ICE_PROTOCOL_LAST,	0 },
1085 };
1086 
1087 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1088 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1089 	0x00, 0x00, 0x00, 0x00,
1090 	0x00, 0x00, 0x00, 0x00,
1091 	0x86, 0xdd,
1092 
1093 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1094 	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1095 	0x00, 0x00, 0x00, 0x00,
1096 	0x00, 0x00, 0x00, 0x00,
1097 	0x00, 0x00, 0x00, 0x00,
1098 	0x00, 0x00, 0x00, 0x00,
1099 	0x00, 0x00, 0x00, 0x00,
1100 	0x00, 0x00, 0x00, 0x00,
1101 	0x00, 0x00, 0x00, 0x00,
1102 	0x00, 0x00, 0x00, 0x00,
1103 
1104 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1105 	0x00, 0x00, 0x00, 0x00,
1106 
1107 	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1108 	0x00, 0x00, 0x00, 0x00,
1109 
1110 	0x00, 0x00,
1111 };
1112 
1113 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1114 	{ ICE_MAC_OFOS,		0 },
1115 	{ ICE_ETYPE_OL,		12 },
1116 	{ ICE_PPPOE,		14 },
1117 	{ ICE_IPV4_OFOS,	22 },
1118 	{ ICE_TCP_IL,		42 },
1119 	{ ICE_PROTOCOL_LAST,	0 },
1120 };
1121 
1122 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1123 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1124 	0x00, 0x00, 0x00, 0x00,
1125 	0x00, 0x00, 0x00, 0x00,
1126 
1127 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1128 
1129 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1130 	0x00, 0x16,
1131 
1132 	0x00, 0x21,		/* PPP Link Layer 20 */
1133 
1134 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1135 	0x00, 0x01, 0x00, 0x00,
1136 	0x00, 0x06, 0x00, 0x00,
1137 	0x00, 0x00, 0x00, 0x00,
1138 	0x00, 0x00, 0x00, 0x00,
1139 
1140 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1141 	0x00, 0x00, 0x00, 0x00,
1142 	0x00, 0x00, 0x00, 0x00,
1143 	0x50, 0x00, 0x00, 0x00,
1144 	0x00, 0x00, 0x00, 0x00,
1145 
1146 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1147 };
1148 
1149 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1150 	{ ICE_MAC_OFOS,		0 },
1151 	{ ICE_ETYPE_OL,		12 },
1152 	{ ICE_PPPOE,		14 },
1153 	{ ICE_IPV4_OFOS,	22 },
1154 	{ ICE_UDP_ILOS,		42 },
1155 	{ ICE_PROTOCOL_LAST,	0 },
1156 };
1157 
1158 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1159 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1160 	0x00, 0x00, 0x00, 0x00,
1161 	0x00, 0x00, 0x00, 0x00,
1162 
1163 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1164 
1165 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1166 	0x00, 0x16,
1167 
1168 	0x00, 0x21,		/* PPP Link Layer 20 */
1169 
1170 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1171 	0x00, 0x01, 0x00, 0x00,
1172 	0x00, 0x11, 0x00, 0x00,
1173 	0x00, 0x00, 0x00, 0x00,
1174 	0x00, 0x00, 0x00, 0x00,
1175 
1176 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1177 	0x00, 0x08, 0x00, 0x00,
1178 
1179 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1180 };
1181 
1182 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1183 	{ ICE_MAC_OFOS,		0 },
1184 	{ ICE_ETYPE_OL,		12 },
1185 	{ ICE_PPPOE,		14 },
1186 	{ ICE_IPV6_OFOS,	22 },
1187 	{ ICE_TCP_IL,		62 },
1188 	{ ICE_PROTOCOL_LAST,	0 },
1189 };
1190 
1191 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1192 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1193 	0x00, 0x00, 0x00, 0x00,
1194 	0x00, 0x00, 0x00, 0x00,
1195 
1196 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1197 
1198 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1199 	0x00, 0x2a,
1200 
1201 	0x00, 0x57,		/* PPP Link Layer 20 */
1202 
1203 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1204 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1205 	0x00, 0x00, 0x00, 0x00,
1206 	0x00, 0x00, 0x00, 0x00,
1207 	0x00, 0x00, 0x00, 0x00,
1208 	0x00, 0x00, 0x00, 0x00,
1209 	0x00, 0x00, 0x00, 0x00,
1210 	0x00, 0x00, 0x00, 0x00,
1211 	0x00, 0x00, 0x00, 0x00,
1212 	0x00, 0x00, 0x00, 0x00,
1213 
1214 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1215 	0x00, 0x00, 0x00, 0x00,
1216 	0x00, 0x00, 0x00, 0x00,
1217 	0x50, 0x00, 0x00, 0x00,
1218 	0x00, 0x00, 0x00, 0x00,
1219 
1220 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1221 };
1222 
1223 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1224 	{ ICE_MAC_OFOS,		0 },
1225 	{ ICE_ETYPE_OL,		12 },
1226 	{ ICE_PPPOE,		14 },
1227 	{ ICE_IPV6_OFOS,	22 },
1228 	{ ICE_UDP_ILOS,		62 },
1229 	{ ICE_PROTOCOL_LAST,	0 },
1230 };
1231 
1232 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1233 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1234 	0x00, 0x00, 0x00, 0x00,
1235 	0x00, 0x00, 0x00, 0x00,
1236 
1237 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1238 
1239 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1240 	0x00, 0x2a,
1241 
1242 	0x00, 0x57,		/* PPP Link Layer 20 */
1243 
1244 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1245 	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1246 	0x00, 0x00, 0x00, 0x00,
1247 	0x00, 0x00, 0x00, 0x00,
1248 	0x00, 0x00, 0x00, 0x00,
1249 	0x00, 0x00, 0x00, 0x00,
1250 	0x00, 0x00, 0x00, 0x00,
1251 	0x00, 0x00, 0x00, 0x00,
1252 	0x00, 0x00, 0x00, 0x00,
1253 	0x00, 0x00, 0x00, 0x00,
1254 
1255 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1256 	0x00, 0x08, 0x00, 0x00,
1257 
1258 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1259 };
1260 
1261 ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1262 	{ ICE_MAC_OFOS,		0 },
1263 	{ ICE_ETYPE_OL,		12 },
1264 	{ ICE_IPV4_OFOS,	14 },
1265 	{ ICE_L2TPV3,		34 },
1266 	{ ICE_PROTOCOL_LAST,	0 },
1267 };
1268 
1269 ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1270 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1271 	0x00, 0x00, 0x00, 0x00,
1272 	0x00, 0x00, 0x00, 0x00,
1273 
1274 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1275 
1276 	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1277 	0x00, 0x00, 0x40, 0x00,
1278 	0x40, 0x73, 0x00, 0x00,
1279 	0x00, 0x00, 0x00, 0x00,
1280 	0x00, 0x00, 0x00, 0x00,
1281 
1282 	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1283 	0x00, 0x00, 0x00, 0x00,
1284 	0x00, 0x00, 0x00, 0x00,
1285 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1286 };
1287 
1288 ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1289 	{ ICE_MAC_OFOS,		0 },
1290 	{ ICE_ETYPE_OL,		12 },
1291 	{ ICE_IPV6_OFOS,	14 },
1292 	{ ICE_L2TPV3,		54 },
1293 	{ ICE_PROTOCOL_LAST,	0 },
1294 };
1295 
1296 ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1297 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1298 	0x00, 0x00, 0x00, 0x00,
1299 	0x00, 0x00, 0x00, 0x00,
1300 
1301 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1302 
1303 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1304 	0x00, 0x0c, 0x73, 0x40,
1305 	0x00, 0x00, 0x00, 0x00,
1306 	0x00, 0x00, 0x00, 0x00,
1307 	0x00, 0x00, 0x00, 0x00,
1308 	0x00, 0x00, 0x00, 0x00,
1309 	0x00, 0x00, 0x00, 0x00,
1310 	0x00, 0x00, 0x00, 0x00,
1311 	0x00, 0x00, 0x00, 0x00,
1312 	0x00, 0x00, 0x00, 0x00,
1313 
1314 	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1315 	0x00, 0x00, 0x00, 0x00,
1316 	0x00, 0x00, 0x00, 0x00,
1317 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1318 };
1319 
1320 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1321 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1322 				  ICE_PKT_GTP_NOPAY),
1323 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1324 					    ICE_PKT_OUTER_IPV6 |
1325 					    ICE_PKT_INNER_IPV6 |
1326 					    ICE_PKT_INNER_UDP),
1327 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1328 					    ICE_PKT_OUTER_IPV6 |
1329 					    ICE_PKT_INNER_IPV6),
1330 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1331 					    ICE_PKT_OUTER_IPV6 |
1332 					    ICE_PKT_INNER_UDP),
1333 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1334 					    ICE_PKT_OUTER_IPV6),
1335 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1336 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1337 					    ICE_PKT_INNER_IPV6 |
1338 					    ICE_PKT_INNER_UDP),
1339 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1340 					    ICE_PKT_INNER_IPV6),
1341 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1342 					    ICE_PKT_INNER_UDP),
1343 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1344 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1345 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1346 	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1347 					ICE_PKT_INNER_UDP),
1348 	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1349 	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1350 	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1351 	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1352 				      ICE_PKT_INNER_TCP),
1353 	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1354 	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1355 	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1356 	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1357 					  ICE_PKT_INNER_IPV6 |
1358 					  ICE_PKT_INNER_TCP),
1359 	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1360 	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1361 	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1362 	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1363 					  ICE_PKT_INNER_IPV6),
1364 	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1365 	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1366 	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1367 	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1368 	ICE_PKT_PROFILE(tcp, 0),
1369 };
1370 
1371 /* this is a recipe to profile association bitmap */
1372 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1373 			  ICE_MAX_NUM_PROFILES);
1374 
1375 /* this is a profile to recipe association bitmap */
1376 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1377 			  ICE_MAX_NUM_RECIPES);
1378 
1379 /**
1380  * ice_init_def_sw_recp - initialize the recipe book keeping tables
1381  * @hw: pointer to the HW struct
1382  *
1383  * Allocate memory for the entire recipe table and initialize the structures/
1384  * entries corresponding to basic recipes.
1385  */
1386 int ice_init_def_sw_recp(struct ice_hw *hw)
1387 {
1388 	struct ice_sw_recipe *recps;
1389 	u8 i;
1390 
1391 	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1392 			     sizeof(*recps), GFP_KERNEL);
1393 	if (!recps)
1394 		return -ENOMEM;
1395 
1396 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1397 		recps[i].root_rid = i;
1398 		INIT_LIST_HEAD(&recps[i].filt_rules);
1399 		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1400 		INIT_LIST_HEAD(&recps[i].rg_list);
1401 		mutex_init(&recps[i].filt_rule_lock);
1402 	}
1403 
1404 	hw->switch_info->recp_list = recps;
1405 
1406 	return 0;
1407 }
1408 
1409 /**
1410  * ice_aq_get_sw_cfg - get switch configuration
1411  * @hw: pointer to the hardware structure
1412  * @buf: pointer to the result buffer
1413  * @buf_size: length of the buffer available for response
1414  * @req_desc: pointer to requested descriptor
1415  * @num_elems: pointer to number of elements
1416  * @cd: pointer to command details structure or NULL
1417  *
1418  * Get switch configuration (0x0200) to be placed in buf.
1419  * This admin command returns information such as initial VSI/port number
1420  * and switch ID it belongs to.
1421  *
1422  * NOTE: *req_desc is both an input/output parameter.
1423  * The caller of this function first calls this function with *request_desc set
1424  * to 0. If the response from f/w has *req_desc set to 0, all the switch
1425  * configuration information has been returned; if non-zero (meaning not all
1426  * the information was returned), the caller should call this function again
1427  * with *req_desc set to the previous value returned by f/w to get the
1428  * next block of switch configuration information.
1429  *
1430  * *num_elems is output only parameter. This reflects the number of elements
1431  * in response buffer. The caller of this function to use *num_elems while
1432  * parsing the response buffer.
1433  */
1434 static int
1435 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1436 		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1437 		  struct ice_sq_cd *cd)
1438 {
1439 	struct ice_aqc_get_sw_cfg *cmd;
1440 	struct ice_aq_desc desc;
1441 	int status;
1442 
1443 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1444 	cmd = &desc.params.get_sw_conf;
1445 	cmd->element = cpu_to_le16(*req_desc);
1446 
1447 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1448 	if (!status) {
1449 		*req_desc = le16_to_cpu(cmd->element);
1450 		*num_elems = le16_to_cpu(cmd->num_elems);
1451 	}
1452 
1453 	return status;
1454 }
1455 
1456 /**
1457  * ice_aq_add_vsi
1458  * @hw: pointer to the HW struct
1459  * @vsi_ctx: pointer to a VSI context struct
1460  * @cd: pointer to command details structure or NULL
1461  *
1462  * Add a VSI context to the hardware (0x0210)
1463  */
1464 static int
1465 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1466 	       struct ice_sq_cd *cd)
1467 {
1468 	struct ice_aqc_add_update_free_vsi_resp *res;
1469 	struct ice_aqc_add_get_update_free_vsi *cmd;
1470 	struct ice_aq_desc desc;
1471 	int status;
1472 
1473 	cmd = &desc.params.vsi_cmd;
1474 	res = &desc.params.add_update_free_vsi_res;
1475 
1476 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1477 
1478 	if (!vsi_ctx->alloc_from_pool)
1479 		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1480 					   ICE_AQ_VSI_IS_VALID);
1481 	cmd->vf_id = vsi_ctx->vf_num;
1482 
1483 	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1484 
1485 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1486 
1487 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1488 				 sizeof(vsi_ctx->info), cd);
1489 
1490 	if (!status) {
1491 		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1492 		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1493 		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1494 	}
1495 
1496 	return status;
1497 }
1498 
1499 /**
1500  * ice_aq_free_vsi
1501  * @hw: pointer to the HW struct
1502  * @vsi_ctx: pointer to a VSI context struct
1503  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1504  * @cd: pointer to command details structure or NULL
1505  *
1506  * Free VSI context info from hardware (0x0213)
1507  */
1508 static int
1509 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1510 		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1511 {
1512 	struct ice_aqc_add_update_free_vsi_resp *resp;
1513 	struct ice_aqc_add_get_update_free_vsi *cmd;
1514 	struct ice_aq_desc desc;
1515 	int status;
1516 
1517 	cmd = &desc.params.vsi_cmd;
1518 	resp = &desc.params.add_update_free_vsi_res;
1519 
1520 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1521 
1522 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1523 	if (keep_vsi_alloc)
1524 		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1525 
1526 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1527 	if (!status) {
1528 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1529 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1530 	}
1531 
1532 	return status;
1533 }
1534 
1535 /**
1536  * ice_aq_update_vsi
1537  * @hw: pointer to the HW struct
1538  * @vsi_ctx: pointer to a VSI context struct
1539  * @cd: pointer to command details structure or NULL
1540  *
1541  * Update VSI context in the hardware (0x0211)
1542  */
1543 static int
1544 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1545 		  struct ice_sq_cd *cd)
1546 {
1547 	struct ice_aqc_add_update_free_vsi_resp *resp;
1548 	struct ice_aqc_add_get_update_free_vsi *cmd;
1549 	struct ice_aq_desc desc;
1550 	int status;
1551 
1552 	cmd = &desc.params.vsi_cmd;
1553 	resp = &desc.params.add_update_free_vsi_res;
1554 
1555 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1556 
1557 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1558 
1559 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560 
1561 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562 				 sizeof(vsi_ctx->info), cd);
1563 
1564 	if (!status) {
1565 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1566 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1567 	}
1568 
1569 	return status;
1570 }
1571 
1572 /**
1573  * ice_is_vsi_valid - check whether the VSI is valid or not
1574  * @hw: pointer to the HW struct
1575  * @vsi_handle: VSI handle
1576  *
1577  * check whether the VSI is valid or not
1578  */
1579 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1580 {
1581 	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1582 }
1583 
1584 /**
1585  * ice_get_hw_vsi_num - return the HW VSI number
1586  * @hw: pointer to the HW struct
1587  * @vsi_handle: VSI handle
1588  *
1589  * return the HW VSI number
1590  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1591  */
1592 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1593 {
1594 	return hw->vsi_ctx[vsi_handle]->vsi_num;
1595 }
1596 
1597 /**
1598  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1599  * @hw: pointer to the HW struct
1600  * @vsi_handle: VSI handle
1601  *
1602  * return the VSI context entry for a given VSI handle
1603  */
1604 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1605 {
1606 	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1607 }
1608 
1609 /**
1610  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1611  * @hw: pointer to the HW struct
1612  * @vsi_handle: VSI handle
1613  * @vsi: VSI context pointer
1614  *
1615  * save the VSI context entry for a given VSI handle
1616  */
1617 static void
1618 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1619 {
1620 	hw->vsi_ctx[vsi_handle] = vsi;
1621 }
1622 
1623 /**
1624  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1625  * @hw: pointer to the HW struct
1626  * @vsi_handle: VSI handle
1627  */
1628 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1629 {
1630 	struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1631 	u8 i;
1632 
1633 	if (!vsi)
1634 		return;
1635 	ice_for_each_traffic_class(i) {
1636 		devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1637 		vsi->lan_q_ctx[i] = NULL;
1638 		devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1639 		vsi->rdma_q_ctx[i] = NULL;
1640 	}
1641 }
1642 
1643 /**
1644  * ice_clear_vsi_ctx - clear the VSI context entry
1645  * @hw: pointer to the HW struct
1646  * @vsi_handle: VSI handle
1647  *
1648  * clear the VSI context entry
1649  */
1650 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1651 {
1652 	struct ice_vsi_ctx *vsi;
1653 
1654 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1655 	if (vsi) {
1656 		ice_clear_vsi_q_ctx(hw, vsi_handle);
1657 		devm_kfree(ice_hw_to_dev(hw), vsi);
1658 		hw->vsi_ctx[vsi_handle] = NULL;
1659 	}
1660 }
1661 
1662 /**
1663  * ice_clear_all_vsi_ctx - clear all the VSI context entries
1664  * @hw: pointer to the HW struct
1665  */
1666 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1667 {
1668 	u16 i;
1669 
1670 	for (i = 0; i < ICE_MAX_VSI; i++)
1671 		ice_clear_vsi_ctx(hw, i);
1672 }
1673 
1674 /**
1675  * ice_add_vsi - add VSI context to the hardware and VSI handle list
1676  * @hw: pointer to the HW struct
1677  * @vsi_handle: unique VSI handle provided by drivers
1678  * @vsi_ctx: pointer to a VSI context struct
1679  * @cd: pointer to command details structure or NULL
1680  *
1681  * Add a VSI context to the hardware also add it into the VSI handle list.
1682  * If this function gets called after reset for existing VSIs then update
1683  * with the new HW VSI number in the corresponding VSI handle list entry.
1684  */
1685 int
1686 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1687 	    struct ice_sq_cd *cd)
1688 {
1689 	struct ice_vsi_ctx *tmp_vsi_ctx;
1690 	int status;
1691 
1692 	if (vsi_handle >= ICE_MAX_VSI)
1693 		return -EINVAL;
1694 	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1695 	if (status)
1696 		return status;
1697 	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1698 	if (!tmp_vsi_ctx) {
1699 		/* Create a new VSI context */
1700 		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1701 					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1702 		if (!tmp_vsi_ctx) {
1703 			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1704 			return -ENOMEM;
1705 		}
1706 		*tmp_vsi_ctx = *vsi_ctx;
1707 		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1708 	} else {
1709 		/* update with new HW VSI num */
1710 		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1711 	}
1712 
1713 	return 0;
1714 }
1715 
1716 /**
1717  * ice_free_vsi- free VSI context from hardware and VSI handle list
1718  * @hw: pointer to the HW struct
1719  * @vsi_handle: unique VSI handle
1720  * @vsi_ctx: pointer to a VSI context struct
1721  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1722  * @cd: pointer to command details structure or NULL
1723  *
1724  * Free VSI context info from hardware as well as from VSI handle list
1725  */
1726 int
1727 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1728 	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1729 {
1730 	int status;
1731 
1732 	if (!ice_is_vsi_valid(hw, vsi_handle))
1733 		return -EINVAL;
1734 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1735 	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1736 	if (!status)
1737 		ice_clear_vsi_ctx(hw, vsi_handle);
1738 	return status;
1739 }
1740 
1741 /**
1742  * ice_update_vsi
1743  * @hw: pointer to the HW struct
1744  * @vsi_handle: unique VSI handle
1745  * @vsi_ctx: pointer to a VSI context struct
1746  * @cd: pointer to command details structure or NULL
1747  *
1748  * Update VSI context in the hardware
1749  */
1750 int
1751 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1752 	       struct ice_sq_cd *cd)
1753 {
1754 	if (!ice_is_vsi_valid(hw, vsi_handle))
1755 		return -EINVAL;
1756 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1757 	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1758 }
1759 
1760 /**
1761  * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1762  * @hw: pointer to HW struct
1763  * @vsi_handle: VSI SW index
1764  * @enable: boolean for enable/disable
1765  */
1766 int
1767 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1768 {
1769 	struct ice_vsi_ctx *ctx, *cached_ctx;
1770 	int status;
1771 
1772 	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1773 	if (!cached_ctx)
1774 		return -ENOENT;
1775 
1776 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1777 	if (!ctx)
1778 		return -ENOMEM;
1779 
1780 	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1781 	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1782 	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1783 
1784 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1785 
1786 	if (enable)
1787 		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1788 	else
1789 		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1790 
1791 	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1792 	if (!status) {
1793 		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1794 		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1795 	}
1796 
1797 	kfree(ctx);
1798 	return status;
1799 }
1800 
1801 /**
1802  * ice_aq_alloc_free_vsi_list
1803  * @hw: pointer to the HW struct
1804  * @vsi_list_id: VSI list ID returned or used for lookup
1805  * @lkup_type: switch rule filter lookup type
1806  * @opc: switch rules population command type - pass in the command opcode
1807  *
1808  * allocates or free a VSI list resource
1809  */
1810 static int
1811 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1812 			   enum ice_sw_lkup_type lkup_type,
1813 			   enum ice_adminq_opc opc)
1814 {
1815 	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1816 	u16 buf_len = __struct_size(sw_buf);
1817 	struct ice_aqc_res_elem *vsi_ele;
1818 	int status;
1819 
1820 	sw_buf->num_elems = cpu_to_le16(1);
1821 
1822 	if (lkup_type == ICE_SW_LKUP_MAC ||
1823 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1824 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1825 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1826 	    lkup_type == ICE_SW_LKUP_PROMISC ||
1827 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1828 	    lkup_type == ICE_SW_LKUP_DFLT) {
1829 		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1830 	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1831 		if (opc == ice_aqc_opc_alloc_res)
1832 			sw_buf->res_type =
1833 				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1834 					    ICE_AQC_RES_TYPE_FLAG_SHARED);
1835 		else
1836 			sw_buf->res_type =
1837 				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1838 	} else {
1839 		return -EINVAL;
1840 	}
1841 
1842 	if (opc == ice_aqc_opc_free_res)
1843 		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1844 
1845 	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1846 	if (status)
1847 		return status;
1848 
1849 	if (opc == ice_aqc_opc_alloc_res) {
1850 		vsi_ele = &sw_buf->elem[0];
1851 		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 /**
1858  * ice_aq_sw_rules - add/update/remove switch rules
1859  * @hw: pointer to the HW struct
1860  * @rule_list: pointer to switch rule population list
1861  * @rule_list_sz: total size of the rule list in bytes
1862  * @num_rules: number of switch rules in the rule_list
1863  * @opc: switch rules population command type - pass in the command opcode
1864  * @cd: pointer to command details structure or NULL
1865  *
1866  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1867  */
1868 int
1869 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1870 		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1871 {
1872 	struct ice_aq_desc desc;
1873 	int status;
1874 
1875 	if (opc != ice_aqc_opc_add_sw_rules &&
1876 	    opc != ice_aqc_opc_update_sw_rules &&
1877 	    opc != ice_aqc_opc_remove_sw_rules)
1878 		return -EINVAL;
1879 
1880 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1881 
1882 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1883 	desc.params.sw_rules.num_rules_fltr_entry_index =
1884 		cpu_to_le16(num_rules);
1885 	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1886 	if (opc != ice_aqc_opc_add_sw_rules &&
1887 	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1888 		status = -ENOENT;
1889 
1890 	return status;
1891 }
1892 
1893 /**
1894  * ice_aq_add_recipe - add switch recipe
1895  * @hw: pointer to the HW struct
1896  * @s_recipe_list: pointer to switch rule population list
1897  * @num_recipes: number of switch recipes in the list
1898  * @cd: pointer to command details structure or NULL
1899  *
1900  * Add(0x0290)
1901  */
1902 int
1903 ice_aq_add_recipe(struct ice_hw *hw,
1904 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1905 		  u16 num_recipes, struct ice_sq_cd *cd)
1906 {
1907 	struct ice_aqc_add_get_recipe *cmd;
1908 	struct ice_aq_desc desc;
1909 	u16 buf_size;
1910 
1911 	cmd = &desc.params.add_get_recipe;
1912 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1913 
1914 	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1915 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1916 
1917 	buf_size = num_recipes * sizeof(*s_recipe_list);
1918 
1919 	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1920 }
1921 
1922 /**
1923  * ice_aq_get_recipe - get switch recipe
1924  * @hw: pointer to the HW struct
1925  * @s_recipe_list: pointer to switch rule population list
1926  * @num_recipes: pointer to the number of recipes (input and output)
1927  * @recipe_root: root recipe number of recipe(s) to retrieve
1928  * @cd: pointer to command details structure or NULL
1929  *
1930  * Get(0x0292)
1931  *
1932  * On input, *num_recipes should equal the number of entries in s_recipe_list.
1933  * On output, *num_recipes will equal the number of entries returned in
1934  * s_recipe_list.
1935  *
1936  * The caller must supply enough space in s_recipe_list to hold all possible
1937  * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1938  */
1939 int
1940 ice_aq_get_recipe(struct ice_hw *hw,
1941 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1942 		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1943 {
1944 	struct ice_aqc_add_get_recipe *cmd;
1945 	struct ice_aq_desc desc;
1946 	u16 buf_size;
1947 	int status;
1948 
1949 	if (*num_recipes != ICE_MAX_NUM_RECIPES)
1950 		return -EINVAL;
1951 
1952 	cmd = &desc.params.add_get_recipe;
1953 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1954 
1955 	cmd->return_index = cpu_to_le16(recipe_root);
1956 	cmd->num_sub_recipes = 0;
1957 
1958 	buf_size = *num_recipes * sizeof(*s_recipe_list);
1959 
1960 	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1961 	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1962 
1963 	return status;
1964 }
1965 
1966 /**
1967  * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1968  * @hw: pointer to the HW struct
1969  * @params: parameters used to update the default recipe
1970  *
1971  * This function only supports updating default recipes and it only supports
1972  * updating a single recipe based on the lkup_idx at a time.
1973  *
1974  * This is done as a read-modify-write operation. First, get the current recipe
1975  * contents based on the recipe's ID. Then modify the field vector index and
1976  * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1977  * the pre-existing recipe with the modifications.
1978  */
1979 int
1980 ice_update_recipe_lkup_idx(struct ice_hw *hw,
1981 			   struct ice_update_recipe_lkup_idx_params *params)
1982 {
1983 	struct ice_aqc_recipe_data_elem *rcp_list;
1984 	u16 num_recps = ICE_MAX_NUM_RECIPES;
1985 	int status;
1986 
1987 	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1988 	if (!rcp_list)
1989 		return -ENOMEM;
1990 
1991 	/* read current recipe list from firmware */
1992 	rcp_list->recipe_indx = params->rid;
1993 	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1994 	if (status) {
1995 		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1996 			  params->rid, status);
1997 		goto error_out;
1998 	}
1999 
2000 	/* only modify existing recipe's lkup_idx and mask if valid, while
2001 	 * leaving all other fields the same, then update the recipe firmware
2002 	 */
2003 	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2004 	if (params->mask_valid)
2005 		rcp_list->content.mask[params->lkup_idx] =
2006 			cpu_to_le16(params->mask);
2007 
2008 	if (params->ignore_valid)
2009 		rcp_list->content.lkup_indx[params->lkup_idx] |=
2010 			ICE_AQ_RECIPE_LKUP_IGNORE;
2011 
2012 	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2013 	if (status)
2014 		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2015 			  params->rid, params->lkup_idx, params->fv_idx,
2016 			  params->mask, params->mask_valid ? "true" : "false",
2017 			  status);
2018 
2019 error_out:
2020 	kfree(rcp_list);
2021 	return status;
2022 }
2023 
2024 /**
2025  * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2026  * @hw: pointer to the HW struct
2027  * @profile_id: package profile ID to associate the recipe with
2028  * @r_assoc: Recipe bitmap filled in and need to be returned as response
2029  * @cd: pointer to command details structure or NULL
2030  * Recipe to profile association (0x0291)
2031  */
2032 int
2033 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc,
2034 			     struct ice_sq_cd *cd)
2035 {
2036 	struct ice_aqc_recipe_to_profile *cmd;
2037 	struct ice_aq_desc desc;
2038 
2039 	cmd = &desc.params.recipe_to_profile;
2040 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2041 	cmd->profile_id = cpu_to_le16(profile_id);
2042 	/* Set the recipe ID bit in the bitmask to let the device know which
2043 	 * profile we are associating the recipe to
2044 	 */
2045 	cmd->recipe_assoc = cpu_to_le64(r_assoc);
2046 
2047 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2048 }
2049 
2050 /**
2051  * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2052  * @hw: pointer to the HW struct
2053  * @profile_id: package profile ID to associate the recipe with
2054  * @r_assoc: Recipe bitmap filled in and need to be returned as response
2055  * @cd: pointer to command details structure or NULL
2056  * Associate profile ID with given recipe (0x0293)
2057  */
2058 int
2059 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc,
2060 			     struct ice_sq_cd *cd)
2061 {
2062 	struct ice_aqc_recipe_to_profile *cmd;
2063 	struct ice_aq_desc desc;
2064 	int status;
2065 
2066 	cmd = &desc.params.recipe_to_profile;
2067 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2068 	cmd->profile_id = cpu_to_le16(profile_id);
2069 
2070 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2071 	if (!status)
2072 		*r_assoc = le64_to_cpu(cmd->recipe_assoc);
2073 
2074 	return status;
2075 }
2076 
2077 /**
2078  * ice_alloc_recipe - add recipe resource
2079  * @hw: pointer to the hardware structure
2080  * @rid: recipe ID returned as response to AQ call
2081  */
2082 int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2083 {
2084 	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2085 	u16 buf_len = __struct_size(sw_buf);
2086 	int status;
2087 
2088 	sw_buf->num_elems = cpu_to_le16(1);
2089 	sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2090 					ICE_AQC_RES_TYPE_S) |
2091 					ICE_AQC_RES_TYPE_FLAG_SHARED);
2092 	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2093 				       ice_aqc_opc_alloc_res);
2094 	if (!status)
2095 		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2096 
2097 	return status;
2098 }
2099 
2100 /**
2101  * ice_get_recp_to_prof_map - updates recipe to profile mapping
2102  * @hw: pointer to hardware structure
2103  *
2104  * This function is used to populate recipe_to_profile matrix where index to
2105  * this array is the recipe ID and the element is the mapping of which profiles
2106  * is this recipe mapped to.
2107  */
2108 static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2109 {
2110 	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2111 	u64 recp_assoc;
2112 	u16 i;
2113 
2114 	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2115 		u16 j;
2116 
2117 		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2118 		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2119 		if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL))
2120 			continue;
2121 		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
2122 		bitmap_copy(profile_to_recipe[i], r_bitmap,
2123 			    ICE_MAX_NUM_RECIPES);
2124 		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2125 			set_bit(i, recipe_to_profile[j]);
2126 	}
2127 }
2128 
2129 /**
2130  * ice_collect_result_idx - copy result index values
2131  * @buf: buffer that contains the result index
2132  * @recp: the recipe struct to copy data into
2133  */
2134 static void
2135 ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2136 		       struct ice_sw_recipe *recp)
2137 {
2138 	if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2139 		set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2140 			recp->res_idxs);
2141 }
2142 
2143 /**
2144  * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2145  * @hw: pointer to hardware structure
2146  * @recps: struct that we need to populate
2147  * @rid: recipe ID that we are populating
2148  * @refresh_required: true if we should get recipe to profile mapping from FW
2149  *
2150  * This function is used to populate all the necessary entries into our
2151  * bookkeeping so that we have a current list of all the recipes that are
2152  * programmed in the firmware.
2153  */
2154 static int
2155 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2156 		    bool *refresh_required)
2157 {
2158 	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2159 	struct ice_aqc_recipe_data_elem *tmp;
2160 	u16 num_recps = ICE_MAX_NUM_RECIPES;
2161 	struct ice_prot_lkup_ext *lkup_exts;
2162 	u8 fv_word_idx = 0;
2163 	u16 sub_recps;
2164 	int status;
2165 
2166 	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2167 
2168 	/* we need a buffer big enough to accommodate all the recipes */
2169 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2170 	if (!tmp)
2171 		return -ENOMEM;
2172 
2173 	tmp[0].recipe_indx = rid;
2174 	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2175 	/* non-zero status meaning recipe doesn't exist */
2176 	if (status)
2177 		goto err_unroll;
2178 
2179 	/* Get recipe to profile map so that we can get the fv from lkups that
2180 	 * we read for a recipe from FW. Since we want to minimize the number of
2181 	 * times we make this FW call, just make one call and cache the copy
2182 	 * until a new recipe is added. This operation is only required the
2183 	 * first time to get the changes from FW. Then to search existing
2184 	 * entries we don't need to update the cache again until another recipe
2185 	 * gets added.
2186 	 */
2187 	if (*refresh_required) {
2188 		ice_get_recp_to_prof_map(hw);
2189 		*refresh_required = false;
2190 	}
2191 
2192 	/* Start populating all the entries for recps[rid] based on lkups from
2193 	 * firmware. Note that we are only creating the root recipe in our
2194 	 * database.
2195 	 */
2196 	lkup_exts = &recps[rid].lkup_exts;
2197 
2198 	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2199 		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2200 		struct ice_recp_grp_entry *rg_entry;
2201 		u8 i, prof, idx, prot = 0;
2202 		bool is_root;
2203 		u16 off = 0;
2204 
2205 		rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2206 					GFP_KERNEL);
2207 		if (!rg_entry) {
2208 			status = -ENOMEM;
2209 			goto err_unroll;
2210 		}
2211 
2212 		idx = root_bufs.recipe_indx;
2213 		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2214 
2215 		/* Mark all result indices in this chain */
2216 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2217 			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2218 				result_bm);
2219 
2220 		/* get the first profile that is associated with rid */
2221 		prof = find_first_bit(recipe_to_profile[idx],
2222 				      ICE_MAX_NUM_PROFILES);
2223 		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2224 			u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2225 
2226 			rg_entry->fv_idx[i] = lkup_indx;
2227 			rg_entry->fv_mask[i] =
2228 				le16_to_cpu(root_bufs.content.mask[i + 1]);
2229 
2230 			/* If the recipe is a chained recipe then all its
2231 			 * child recipe's result will have a result index.
2232 			 * To fill fv_words we should not use those result
2233 			 * index, we only need the protocol ids and offsets.
2234 			 * We will skip all the fv_idx which stores result
2235 			 * index in them. We also need to skip any fv_idx which
2236 			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2237 			 * valid offset value.
2238 			 */
2239 			if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2240 			    rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2241 			    rg_entry->fv_idx[i] == 0)
2242 				continue;
2243 
2244 			ice_find_prot_off(hw, ICE_BLK_SW, prof,
2245 					  rg_entry->fv_idx[i], &prot, &off);
2246 			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2247 			lkup_exts->fv_words[fv_word_idx].off = off;
2248 			lkup_exts->field_mask[fv_word_idx] =
2249 				rg_entry->fv_mask[i];
2250 			fv_word_idx++;
2251 		}
2252 		/* populate rg_list with the data from the child entry of this
2253 		 * recipe
2254 		 */
2255 		list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2256 
2257 		/* Propagate some data to the recipe database */
2258 		recps[idx].is_root = !!is_root;
2259 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2260 		recps[idx].need_pass_l2 = root_bufs.content.act_ctrl &
2261 					  ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
2262 		recps[idx].allow_pass_l2 = root_bufs.content.act_ctrl &
2263 					   ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
2264 		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2265 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2266 			recps[idx].chain_idx = root_bufs.content.result_indx &
2267 				~ICE_AQ_RECIPE_RESULT_EN;
2268 			set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2269 		} else {
2270 			recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2271 		}
2272 
2273 		if (!is_root)
2274 			continue;
2275 
2276 		/* Only do the following for root recipes entries */
2277 		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2278 		       sizeof(recps[idx].r_bitmap));
2279 		recps[idx].root_rid = root_bufs.content.rid &
2280 			~ICE_AQ_RECIPE_ID_IS_ROOT;
2281 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2282 	}
2283 
2284 	/* Complete initialization of the root recipe entry */
2285 	lkup_exts->n_val_words = fv_word_idx;
2286 	recps[rid].big_recp = (num_recps > 1);
2287 	recps[rid].n_grp_count = (u8)num_recps;
2288 	recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2289 					   recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2290 					   GFP_KERNEL);
2291 	if (!recps[rid].root_buf) {
2292 		status = -ENOMEM;
2293 		goto err_unroll;
2294 	}
2295 
2296 	/* Copy result indexes */
2297 	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2298 	recps[rid].recp_created = true;
2299 
2300 err_unroll:
2301 	kfree(tmp);
2302 	return status;
2303 }
2304 
2305 /* ice_init_port_info - Initialize port_info with switch configuration data
2306  * @pi: pointer to port_info
2307  * @vsi_port_num: VSI number or port number
2308  * @type: Type of switch element (port or VSI)
2309  * @swid: switch ID of the switch the element is attached to
2310  * @pf_vf_num: PF or VF number
2311  * @is_vf: true if the element is a VF, false otherwise
2312  */
2313 static void
2314 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2315 		   u16 swid, u16 pf_vf_num, bool is_vf)
2316 {
2317 	switch (type) {
2318 	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2319 		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2320 		pi->sw_id = swid;
2321 		pi->pf_vf_num = pf_vf_num;
2322 		pi->is_vf = is_vf;
2323 		break;
2324 	default:
2325 		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2326 		break;
2327 	}
2328 }
2329 
2330 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
2331  * @hw: pointer to the hardware structure
2332  */
2333 int ice_get_initial_sw_cfg(struct ice_hw *hw)
2334 {
2335 	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2336 	u16 req_desc = 0;
2337 	u16 num_elems;
2338 	int status;
2339 	u16 i;
2340 
2341 	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2342 	if (!rbuf)
2343 		return -ENOMEM;
2344 
2345 	/* Multiple calls to ice_aq_get_sw_cfg may be required
2346 	 * to get all the switch configuration information. The need
2347 	 * for additional calls is indicated by ice_aq_get_sw_cfg
2348 	 * writing a non-zero value in req_desc
2349 	 */
2350 	do {
2351 		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2352 
2353 		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2354 					   &req_desc, &num_elems, NULL);
2355 
2356 		if (status)
2357 			break;
2358 
2359 		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2360 			u16 pf_vf_num, swid, vsi_port_num;
2361 			bool is_vf = false;
2362 			u8 res_type;
2363 
2364 			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2365 				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2366 
2367 			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2368 				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2369 
2370 			swid = le16_to_cpu(ele->swid);
2371 
2372 			if (le16_to_cpu(ele->pf_vf_num) &
2373 			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2374 				is_vf = true;
2375 
2376 			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2377 					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2378 
2379 			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2380 				/* FW VSI is not needed. Just continue. */
2381 				continue;
2382 			}
2383 
2384 			ice_init_port_info(hw->port_info, vsi_port_num,
2385 					   res_type, swid, pf_vf_num, is_vf);
2386 		}
2387 	} while (req_desc && !status);
2388 
2389 	kfree(rbuf);
2390 	return status;
2391 }
2392 
2393 /**
2394  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2395  * @hw: pointer to the hardware structure
2396  * @fi: filter info structure to fill/update
2397  *
2398  * This helper function populates the lb_en and lan_en elements of the provided
2399  * ice_fltr_info struct using the switch's type and characteristics of the
2400  * switch rule being configured.
2401  */
2402 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2403 {
2404 	fi->lb_en = false;
2405 	fi->lan_en = false;
2406 	if ((fi->flag & ICE_FLTR_TX) &&
2407 	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2408 	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2409 	     fi->fltr_act == ICE_FWD_TO_Q ||
2410 	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2411 		/* Setting LB for prune actions will result in replicated
2412 		 * packets to the internal switch that will be dropped.
2413 		 */
2414 		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2415 			fi->lb_en = true;
2416 
2417 		/* Set lan_en to TRUE if
2418 		 * 1. The switch is a VEB AND
2419 		 * 2
2420 		 * 2.1 The lookup is a directional lookup like ethertype,
2421 		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2422 		 * and default-port OR
2423 		 * 2.2 The lookup is VLAN, OR
2424 		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2425 		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2426 		 *
2427 		 * OR
2428 		 *
2429 		 * The switch is a VEPA.
2430 		 *
2431 		 * In all other cases, the LAN enable has to be set to false.
2432 		 */
2433 		if (hw->evb_veb) {
2434 			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2435 			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2436 			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2437 			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2438 			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2439 			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2440 			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2441 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2442 			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2443 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2444 				fi->lan_en = true;
2445 		} else {
2446 			fi->lan_en = true;
2447 		}
2448 	}
2449 }
2450 
2451 /**
2452  * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2453  * @eth_hdr: pointer to buffer to populate
2454  */
2455 void ice_fill_eth_hdr(u8 *eth_hdr)
2456 {
2457 	memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2458 }
2459 
2460 /**
2461  * ice_fill_sw_rule - Helper function to fill switch rule structure
2462  * @hw: pointer to the hardware structure
2463  * @f_info: entry containing packet forwarding information
2464  * @s_rule: switch rule structure to be filled in based on mac_entry
2465  * @opc: switch rules population command type - pass in the command opcode
2466  */
2467 static void
2468 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2469 		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2470 		 enum ice_adminq_opc opc)
2471 {
2472 	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2473 	u16 vlan_tpid = ETH_P_8021Q;
2474 	void *daddr = NULL;
2475 	u16 eth_hdr_sz;
2476 	u8 *eth_hdr;
2477 	u32 act = 0;
2478 	__be16 *off;
2479 	u8 q_rgn;
2480 
2481 	if (opc == ice_aqc_opc_remove_sw_rules) {
2482 		s_rule->act = 0;
2483 		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2484 		s_rule->hdr_len = 0;
2485 		return;
2486 	}
2487 
2488 	eth_hdr_sz = sizeof(dummy_eth_header);
2489 	eth_hdr = s_rule->hdr_data;
2490 
2491 	/* initialize the ether header with a dummy header */
2492 	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2493 	ice_fill_sw_info(hw, f_info);
2494 
2495 	switch (f_info->fltr_act) {
2496 	case ICE_FWD_TO_VSI:
2497 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2498 				  f_info->fwd_id.hw_vsi_id);
2499 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2500 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2501 				ICE_SINGLE_ACT_VALID_BIT;
2502 		break;
2503 	case ICE_FWD_TO_VSI_LIST:
2504 		act |= ICE_SINGLE_ACT_VSI_LIST;
2505 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2506 				  f_info->fwd_id.vsi_list_id);
2507 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2508 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2509 				ICE_SINGLE_ACT_VALID_BIT;
2510 		break;
2511 	case ICE_FWD_TO_Q:
2512 		act |= ICE_SINGLE_ACT_TO_Q;
2513 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2514 				  f_info->fwd_id.q_id);
2515 		break;
2516 	case ICE_DROP_PACKET:
2517 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2518 			ICE_SINGLE_ACT_VALID_BIT;
2519 		break;
2520 	case ICE_FWD_TO_QGRP:
2521 		q_rgn = f_info->qgrp_size > 0 ?
2522 			(u8)ilog2(f_info->qgrp_size) : 0;
2523 		act |= ICE_SINGLE_ACT_TO_Q;
2524 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2525 				  f_info->fwd_id.q_id);
2526 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
2527 		break;
2528 	default:
2529 		return;
2530 	}
2531 
2532 	if (f_info->lb_en)
2533 		act |= ICE_SINGLE_ACT_LB_ENABLE;
2534 	if (f_info->lan_en)
2535 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2536 
2537 	switch (f_info->lkup_type) {
2538 	case ICE_SW_LKUP_MAC:
2539 		daddr = f_info->l_data.mac.mac_addr;
2540 		break;
2541 	case ICE_SW_LKUP_VLAN:
2542 		vlan_id = f_info->l_data.vlan.vlan_id;
2543 		if (f_info->l_data.vlan.tpid_valid)
2544 			vlan_tpid = f_info->l_data.vlan.tpid;
2545 		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2546 		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2547 			act |= ICE_SINGLE_ACT_PRUNE;
2548 			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2549 		}
2550 		break;
2551 	case ICE_SW_LKUP_ETHERTYPE_MAC:
2552 		daddr = f_info->l_data.ethertype_mac.mac_addr;
2553 		fallthrough;
2554 	case ICE_SW_LKUP_ETHERTYPE:
2555 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2556 		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2557 		break;
2558 	case ICE_SW_LKUP_MAC_VLAN:
2559 		daddr = f_info->l_data.mac_vlan.mac_addr;
2560 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2561 		break;
2562 	case ICE_SW_LKUP_PROMISC_VLAN:
2563 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2564 		fallthrough;
2565 	case ICE_SW_LKUP_PROMISC:
2566 		daddr = f_info->l_data.mac_vlan.mac_addr;
2567 		break;
2568 	default:
2569 		break;
2570 	}
2571 
2572 	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2573 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2574 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2575 
2576 	/* Recipe set depending on lookup type */
2577 	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2578 	s_rule->src = cpu_to_le16(f_info->src);
2579 	s_rule->act = cpu_to_le32(act);
2580 
2581 	if (daddr)
2582 		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2583 
2584 	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2585 		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2586 		*off = cpu_to_be16(vlan_id);
2587 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2588 		*off = cpu_to_be16(vlan_tpid);
2589 	}
2590 
2591 	/* Create the switch rule with the final dummy Ethernet header */
2592 	if (opc != ice_aqc_opc_update_sw_rules)
2593 		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2594 }
2595 
2596 /**
2597  * ice_add_marker_act
2598  * @hw: pointer to the hardware structure
2599  * @m_ent: the management entry for which sw marker needs to be added
2600  * @sw_marker: sw marker to tag the Rx descriptor with
2601  * @l_id: large action resource ID
2602  *
2603  * Create a large action to hold software marker and update the switch rule
2604  * entry pointed by m_ent with newly created large action
2605  */
2606 static int
2607 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2608 		   u16 sw_marker, u16 l_id)
2609 {
2610 	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2611 	struct ice_sw_rule_lg_act *lg_act;
2612 	/* For software marker we need 3 large actions
2613 	 * 1. FWD action: FWD TO VSI or VSI LIST
2614 	 * 2. GENERIC VALUE action to hold the profile ID
2615 	 * 3. GENERIC VALUE action to hold the software marker ID
2616 	 */
2617 	const u16 num_lg_acts = 3;
2618 	u16 lg_act_size;
2619 	u16 rules_size;
2620 	int status;
2621 	u32 act;
2622 	u16 id;
2623 
2624 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2625 		return -EINVAL;
2626 
2627 	/* Create two back-to-back switch rules and submit them to the HW using
2628 	 * one memory buffer:
2629 	 *    1. Large Action
2630 	 *    2. Look up Tx Rx
2631 	 */
2632 	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2633 	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2634 	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2635 	if (!lg_act)
2636 		return -ENOMEM;
2637 
2638 	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2639 
2640 	/* Fill in the first switch rule i.e. large action */
2641 	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2642 	lg_act->index = cpu_to_le16(l_id);
2643 	lg_act->size = cpu_to_le16(num_lg_acts);
2644 
2645 	/* First action VSI forwarding or VSI list forwarding depending on how
2646 	 * many VSIs
2647 	 */
2648 	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2649 		m_ent->fltr_info.fwd_id.hw_vsi_id;
2650 
2651 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2652 	act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2653 	if (m_ent->vsi_count > 1)
2654 		act |= ICE_LG_ACT_VSI_LIST;
2655 	lg_act->act[0] = cpu_to_le32(act);
2656 
2657 	/* Second action descriptor type */
2658 	act = ICE_LG_ACT_GENERIC;
2659 
2660 	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2661 	lg_act->act[1] = cpu_to_le32(act);
2662 
2663 	act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2664 			 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2665 
2666 	/* Third action Marker value */
2667 	act |= ICE_LG_ACT_GENERIC;
2668 	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
2669 
2670 	lg_act->act[2] = cpu_to_le32(act);
2671 
2672 	/* call the fill switch rule to fill the lookup Tx Rx structure */
2673 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2674 			 ice_aqc_opc_update_sw_rules);
2675 
2676 	/* Update the action to point to the large action ID */
2677 	act = ICE_SINGLE_ACT_PTR;
2678 	act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2679 	rx_tx->act = cpu_to_le32(act);
2680 
2681 	/* Use the filter rule ID of the previously created rule with single
2682 	 * act. Once the update happens, hardware will treat this as large
2683 	 * action
2684 	 */
2685 	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2686 
2687 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2688 				 ice_aqc_opc_update_sw_rules, NULL);
2689 	if (!status) {
2690 		m_ent->lg_act_idx = l_id;
2691 		m_ent->sw_marker_id = sw_marker;
2692 	}
2693 
2694 	devm_kfree(ice_hw_to_dev(hw), lg_act);
2695 	return status;
2696 }
2697 
2698 /**
2699  * ice_create_vsi_list_map
2700  * @hw: pointer to the hardware structure
2701  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2702  * @num_vsi: number of VSI handles in the array
2703  * @vsi_list_id: VSI list ID generated as part of allocate resource
2704  *
2705  * Helper function to create a new entry of VSI list ID to VSI mapping
2706  * using the given VSI list ID
2707  */
2708 static struct ice_vsi_list_map_info *
2709 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2710 			u16 vsi_list_id)
2711 {
2712 	struct ice_switch_info *sw = hw->switch_info;
2713 	struct ice_vsi_list_map_info *v_map;
2714 	int i;
2715 
2716 	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2717 	if (!v_map)
2718 		return NULL;
2719 
2720 	v_map->vsi_list_id = vsi_list_id;
2721 	v_map->ref_cnt = 1;
2722 	for (i = 0; i < num_vsi; i++)
2723 		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2724 
2725 	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2726 	return v_map;
2727 }
2728 
2729 /**
2730  * ice_update_vsi_list_rule
2731  * @hw: pointer to the hardware structure
2732  * @vsi_handle_arr: array of VSI handles to form a VSI list
2733  * @num_vsi: number of VSI handles in the array
2734  * @vsi_list_id: VSI list ID generated as part of allocate resource
2735  * @remove: Boolean value to indicate if this is a remove action
2736  * @opc: switch rules population command type - pass in the command opcode
2737  * @lkup_type: lookup type of the filter
2738  *
2739  * Call AQ command to add a new switch rule or update existing switch rule
2740  * using the given VSI list ID
2741  */
2742 static int
2743 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2744 			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2745 			 enum ice_sw_lkup_type lkup_type)
2746 {
2747 	struct ice_sw_rule_vsi_list *s_rule;
2748 	u16 s_rule_size;
2749 	u16 rule_type;
2750 	int status;
2751 	int i;
2752 
2753 	if (!num_vsi)
2754 		return -EINVAL;
2755 
2756 	if (lkup_type == ICE_SW_LKUP_MAC ||
2757 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2758 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2759 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2760 	    lkup_type == ICE_SW_LKUP_PROMISC ||
2761 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2762 	    lkup_type == ICE_SW_LKUP_DFLT)
2763 		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2764 			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2765 	else if (lkup_type == ICE_SW_LKUP_VLAN)
2766 		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2767 			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2768 	else
2769 		return -EINVAL;
2770 
2771 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2772 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2773 	if (!s_rule)
2774 		return -ENOMEM;
2775 	for (i = 0; i < num_vsi; i++) {
2776 		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2777 			status = -EINVAL;
2778 			goto exit;
2779 		}
2780 		/* AQ call requires hw_vsi_id(s) */
2781 		s_rule->vsi[i] =
2782 			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2783 	}
2784 
2785 	s_rule->hdr.type = cpu_to_le16(rule_type);
2786 	s_rule->number_vsi = cpu_to_le16(num_vsi);
2787 	s_rule->index = cpu_to_le16(vsi_list_id);
2788 
2789 	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2790 
2791 exit:
2792 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2793 	return status;
2794 }
2795 
2796 /**
2797  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2798  * @hw: pointer to the HW struct
2799  * @vsi_handle_arr: array of VSI handles to form a VSI list
2800  * @num_vsi: number of VSI handles in the array
2801  * @vsi_list_id: stores the ID of the VSI list to be created
2802  * @lkup_type: switch rule filter's lookup type
2803  */
2804 static int
2805 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2806 			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2807 {
2808 	int status;
2809 
2810 	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2811 					    ice_aqc_opc_alloc_res);
2812 	if (status)
2813 		return status;
2814 
2815 	/* Update the newly created VSI list to include the specified VSIs */
2816 	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2817 					*vsi_list_id, false,
2818 					ice_aqc_opc_add_sw_rules, lkup_type);
2819 }
2820 
2821 /**
2822  * ice_create_pkt_fwd_rule
2823  * @hw: pointer to the hardware structure
2824  * @f_entry: entry containing packet forwarding information
2825  *
2826  * Create switch rule with given filter information and add an entry
2827  * to the corresponding filter management list to track this switch rule
2828  * and VSI mapping
2829  */
2830 static int
2831 ice_create_pkt_fwd_rule(struct ice_hw *hw,
2832 			struct ice_fltr_list_entry *f_entry)
2833 {
2834 	struct ice_fltr_mgmt_list_entry *fm_entry;
2835 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2836 	enum ice_sw_lkup_type l_type;
2837 	struct ice_sw_recipe *recp;
2838 	int status;
2839 
2840 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2841 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2842 			      GFP_KERNEL);
2843 	if (!s_rule)
2844 		return -ENOMEM;
2845 	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2846 				GFP_KERNEL);
2847 	if (!fm_entry) {
2848 		status = -ENOMEM;
2849 		goto ice_create_pkt_fwd_rule_exit;
2850 	}
2851 
2852 	fm_entry->fltr_info = f_entry->fltr_info;
2853 
2854 	/* Initialize all the fields for the management entry */
2855 	fm_entry->vsi_count = 1;
2856 	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2857 	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2858 	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2859 
2860 	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2861 			 ice_aqc_opc_add_sw_rules);
2862 
2863 	status = ice_aq_sw_rules(hw, s_rule,
2864 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2865 				 ice_aqc_opc_add_sw_rules, NULL);
2866 	if (status) {
2867 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
2868 		goto ice_create_pkt_fwd_rule_exit;
2869 	}
2870 
2871 	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2872 	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2873 
2874 	/* The book keeping entries will get removed when base driver
2875 	 * calls remove filter AQ command
2876 	 */
2877 	l_type = fm_entry->fltr_info.lkup_type;
2878 	recp = &hw->switch_info->recp_list[l_type];
2879 	list_add(&fm_entry->list_entry, &recp->filt_rules);
2880 
2881 ice_create_pkt_fwd_rule_exit:
2882 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2883 	return status;
2884 }
2885 
2886 /**
2887  * ice_update_pkt_fwd_rule
2888  * @hw: pointer to the hardware structure
2889  * @f_info: filter information for switch rule
2890  *
2891  * Call AQ command to update a previously created switch rule with a
2892  * VSI list ID
2893  */
2894 static int
2895 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2896 {
2897 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2898 	int status;
2899 
2900 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2901 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2902 			      GFP_KERNEL);
2903 	if (!s_rule)
2904 		return -ENOMEM;
2905 
2906 	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2907 
2908 	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2909 
2910 	/* Update switch rule with new rule set to forward VSI list */
2911 	status = ice_aq_sw_rules(hw, s_rule,
2912 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2913 				 ice_aqc_opc_update_sw_rules, NULL);
2914 
2915 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2916 	return status;
2917 }
2918 
2919 /**
2920  * ice_update_sw_rule_bridge_mode
2921  * @hw: pointer to the HW struct
2922  *
2923  * Updates unicast switch filter rules based on VEB/VEPA mode
2924  */
2925 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2926 {
2927 	struct ice_switch_info *sw = hw->switch_info;
2928 	struct ice_fltr_mgmt_list_entry *fm_entry;
2929 	struct list_head *rule_head;
2930 	struct mutex *rule_lock; /* Lock to protect filter rule list */
2931 	int status = 0;
2932 
2933 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2934 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2935 
2936 	mutex_lock(rule_lock);
2937 	list_for_each_entry(fm_entry, rule_head, list_entry) {
2938 		struct ice_fltr_info *fi = &fm_entry->fltr_info;
2939 		u8 *addr = fi->l_data.mac.mac_addr;
2940 
2941 		/* Update unicast Tx rules to reflect the selected
2942 		 * VEB/VEPA mode
2943 		 */
2944 		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2945 		    (fi->fltr_act == ICE_FWD_TO_VSI ||
2946 		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2947 		     fi->fltr_act == ICE_FWD_TO_Q ||
2948 		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2949 			status = ice_update_pkt_fwd_rule(hw, fi);
2950 			if (status)
2951 				break;
2952 		}
2953 	}
2954 
2955 	mutex_unlock(rule_lock);
2956 
2957 	return status;
2958 }
2959 
2960 /**
2961  * ice_add_update_vsi_list
2962  * @hw: pointer to the hardware structure
2963  * @m_entry: pointer to current filter management list entry
2964  * @cur_fltr: filter information from the book keeping entry
2965  * @new_fltr: filter information with the new VSI to be added
2966  *
2967  * Call AQ command to add or update previously created VSI list with new VSI.
2968  *
2969  * Helper function to do book keeping associated with adding filter information
2970  * The algorithm to do the book keeping is described below :
2971  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2972  *	if only one VSI has been added till now
2973  *		Allocate a new VSI list and add two VSIs
2974  *		to this list using switch rule command
2975  *		Update the previously created switch rule with the
2976  *		newly created VSI list ID
2977  *	if a VSI list was previously created
2978  *		Add the new VSI to the previously created VSI list set
2979  *		using the update switch rule command
2980  */
2981 static int
2982 ice_add_update_vsi_list(struct ice_hw *hw,
2983 			struct ice_fltr_mgmt_list_entry *m_entry,
2984 			struct ice_fltr_info *cur_fltr,
2985 			struct ice_fltr_info *new_fltr)
2986 {
2987 	u16 vsi_list_id = 0;
2988 	int status = 0;
2989 
2990 	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2991 	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2992 		return -EOPNOTSUPP;
2993 
2994 	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2995 	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2996 	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2997 	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2998 		return -EOPNOTSUPP;
2999 
3000 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3001 		/* Only one entry existed in the mapping and it was not already
3002 		 * a part of a VSI list. So, create a VSI list with the old and
3003 		 * new VSIs.
3004 		 */
3005 		struct ice_fltr_info tmp_fltr;
3006 		u16 vsi_handle_arr[2];
3007 
3008 		/* A rule already exists with the new VSI being added */
3009 		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3010 			return -EEXIST;
3011 
3012 		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3013 		vsi_handle_arr[1] = new_fltr->vsi_handle;
3014 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3015 						  &vsi_list_id,
3016 						  new_fltr->lkup_type);
3017 		if (status)
3018 			return status;
3019 
3020 		tmp_fltr = *new_fltr;
3021 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3022 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3023 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3024 		/* Update the previous switch rule of "MAC forward to VSI" to
3025 		 * "MAC fwd to VSI list"
3026 		 */
3027 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3028 		if (status)
3029 			return status;
3030 
3031 		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3032 		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3033 		m_entry->vsi_list_info =
3034 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3035 						vsi_list_id);
3036 
3037 		if (!m_entry->vsi_list_info)
3038 			return -ENOMEM;
3039 
3040 		/* If this entry was large action then the large action needs
3041 		 * to be updated to point to FWD to VSI list
3042 		 */
3043 		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3044 			status =
3045 			    ice_add_marker_act(hw, m_entry,
3046 					       m_entry->sw_marker_id,
3047 					       m_entry->lg_act_idx);
3048 	} else {
3049 		u16 vsi_handle = new_fltr->vsi_handle;
3050 		enum ice_adminq_opc opcode;
3051 
3052 		if (!m_entry->vsi_list_info)
3053 			return -EIO;
3054 
3055 		/* A rule already exists with the new VSI being added */
3056 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3057 			return 0;
3058 
3059 		/* Update the previously created VSI list set with
3060 		 * the new VSI ID passed in
3061 		 */
3062 		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3063 		opcode = ice_aqc_opc_update_sw_rules;
3064 
3065 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3066 						  vsi_list_id, false, opcode,
3067 						  new_fltr->lkup_type);
3068 		/* update VSI list mapping info with new VSI ID */
3069 		if (!status)
3070 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3071 	}
3072 	if (!status)
3073 		m_entry->vsi_count++;
3074 	return status;
3075 }
3076 
3077 /**
3078  * ice_find_rule_entry - Search a rule entry
3079  * @hw: pointer to the hardware structure
3080  * @recp_id: lookup type for which the specified rule needs to be searched
3081  * @f_info: rule information
3082  *
3083  * Helper function to search for a given rule entry
3084  * Returns pointer to entry storing the rule if found
3085  */
3086 static struct ice_fltr_mgmt_list_entry *
3087 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3088 {
3089 	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3090 	struct ice_switch_info *sw = hw->switch_info;
3091 	struct list_head *list_head;
3092 
3093 	list_head = &sw->recp_list[recp_id].filt_rules;
3094 	list_for_each_entry(list_itr, list_head, list_entry) {
3095 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3096 			    sizeof(f_info->l_data)) &&
3097 		    f_info->flag == list_itr->fltr_info.flag) {
3098 			ret = list_itr;
3099 			break;
3100 		}
3101 	}
3102 	return ret;
3103 }
3104 
3105 /**
3106  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3107  * @hw: pointer to the hardware structure
3108  * @recp_id: lookup type for which VSI lists needs to be searched
3109  * @vsi_handle: VSI handle to be found in VSI list
3110  * @vsi_list_id: VSI list ID found containing vsi_handle
3111  *
3112  * Helper function to search a VSI list with single entry containing given VSI
3113  * handle element. This can be extended further to search VSI list with more
3114  * than 1 vsi_count. Returns pointer to VSI list entry if found.
3115  */
3116 struct ice_vsi_list_map_info *
3117 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3118 			u16 *vsi_list_id)
3119 {
3120 	struct ice_vsi_list_map_info *map_info = NULL;
3121 	struct ice_switch_info *sw = hw->switch_info;
3122 	struct ice_fltr_mgmt_list_entry *list_itr;
3123 	struct list_head *list_head;
3124 
3125 	list_head = &sw->recp_list[recp_id].filt_rules;
3126 	list_for_each_entry(list_itr, list_head, list_entry) {
3127 		if (list_itr->vsi_list_info) {
3128 			map_info = list_itr->vsi_list_info;
3129 			if (test_bit(vsi_handle, map_info->vsi_map)) {
3130 				*vsi_list_id = map_info->vsi_list_id;
3131 				return map_info;
3132 			}
3133 		}
3134 	}
3135 	return NULL;
3136 }
3137 
3138 /**
3139  * ice_add_rule_internal - add rule for a given lookup type
3140  * @hw: pointer to the hardware structure
3141  * @recp_id: lookup type (recipe ID) for which rule has to be added
3142  * @f_entry: structure containing MAC forwarding information
3143  *
3144  * Adds or updates the rule lists for a given recipe
3145  */
3146 static int
3147 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3148 		      struct ice_fltr_list_entry *f_entry)
3149 {
3150 	struct ice_switch_info *sw = hw->switch_info;
3151 	struct ice_fltr_info *new_fltr, *cur_fltr;
3152 	struct ice_fltr_mgmt_list_entry *m_entry;
3153 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3154 	int status = 0;
3155 
3156 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3157 		return -EINVAL;
3158 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3159 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3160 
3161 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3162 
3163 	mutex_lock(rule_lock);
3164 	new_fltr = &f_entry->fltr_info;
3165 	if (new_fltr->flag & ICE_FLTR_RX)
3166 		new_fltr->src = hw->port_info->lport;
3167 	else if (new_fltr->flag & ICE_FLTR_TX)
3168 		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3169 
3170 	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3171 	if (!m_entry) {
3172 		mutex_unlock(rule_lock);
3173 		return ice_create_pkt_fwd_rule(hw, f_entry);
3174 	}
3175 
3176 	cur_fltr = &m_entry->fltr_info;
3177 	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3178 	mutex_unlock(rule_lock);
3179 
3180 	return status;
3181 }
3182 
3183 /**
3184  * ice_remove_vsi_list_rule
3185  * @hw: pointer to the hardware structure
3186  * @vsi_list_id: VSI list ID generated as part of allocate resource
3187  * @lkup_type: switch rule filter lookup type
3188  *
3189  * The VSI list should be emptied before this function is called to remove the
3190  * VSI list.
3191  */
3192 static int
3193 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3194 			 enum ice_sw_lkup_type lkup_type)
3195 {
3196 	struct ice_sw_rule_vsi_list *s_rule;
3197 	u16 s_rule_size;
3198 	int status;
3199 
3200 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3201 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3202 	if (!s_rule)
3203 		return -ENOMEM;
3204 
3205 	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3206 	s_rule->index = cpu_to_le16(vsi_list_id);
3207 
3208 	/* Free the vsi_list resource that we allocated. It is assumed that the
3209 	 * list is empty at this point.
3210 	 */
3211 	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3212 					    ice_aqc_opc_free_res);
3213 
3214 	devm_kfree(ice_hw_to_dev(hw), s_rule);
3215 	return status;
3216 }
3217 
3218 /**
3219  * ice_rem_update_vsi_list
3220  * @hw: pointer to the hardware structure
3221  * @vsi_handle: VSI handle of the VSI to remove
3222  * @fm_list: filter management entry for which the VSI list management needs to
3223  *           be done
3224  */
3225 static int
3226 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3227 			struct ice_fltr_mgmt_list_entry *fm_list)
3228 {
3229 	enum ice_sw_lkup_type lkup_type;
3230 	u16 vsi_list_id;
3231 	int status = 0;
3232 
3233 	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3234 	    fm_list->vsi_count == 0)
3235 		return -EINVAL;
3236 
3237 	/* A rule with the VSI being removed does not exist */
3238 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3239 		return -ENOENT;
3240 
3241 	lkup_type = fm_list->fltr_info.lkup_type;
3242 	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3243 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3244 					  ice_aqc_opc_update_sw_rules,
3245 					  lkup_type);
3246 	if (status)
3247 		return status;
3248 
3249 	fm_list->vsi_count--;
3250 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3251 
3252 	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3253 		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3254 		struct ice_vsi_list_map_info *vsi_list_info =
3255 			fm_list->vsi_list_info;
3256 		u16 rem_vsi_handle;
3257 
3258 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3259 						ICE_MAX_VSI);
3260 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3261 			return -EIO;
3262 
3263 		/* Make sure VSI list is empty before removing it below */
3264 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3265 						  vsi_list_id, true,
3266 						  ice_aqc_opc_update_sw_rules,
3267 						  lkup_type);
3268 		if (status)
3269 			return status;
3270 
3271 		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3272 		tmp_fltr_info.fwd_id.hw_vsi_id =
3273 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3274 		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3275 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3276 		if (status) {
3277 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3278 				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3279 			return status;
3280 		}
3281 
3282 		fm_list->fltr_info = tmp_fltr_info;
3283 	}
3284 
3285 	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3286 	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3287 		struct ice_vsi_list_map_info *vsi_list_info =
3288 			fm_list->vsi_list_info;
3289 
3290 		/* Remove the VSI list since it is no longer used */
3291 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3292 		if (status) {
3293 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3294 				  vsi_list_id, status);
3295 			return status;
3296 		}
3297 
3298 		list_del(&vsi_list_info->list_entry);
3299 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3300 		fm_list->vsi_list_info = NULL;
3301 	}
3302 
3303 	return status;
3304 }
3305 
3306 /**
3307  * ice_remove_rule_internal - Remove a filter rule of a given type
3308  * @hw: pointer to the hardware structure
3309  * @recp_id: recipe ID for which the rule needs to removed
3310  * @f_entry: rule entry containing filter information
3311  */
3312 static int
3313 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3314 			 struct ice_fltr_list_entry *f_entry)
3315 {
3316 	struct ice_switch_info *sw = hw->switch_info;
3317 	struct ice_fltr_mgmt_list_entry *list_elem;
3318 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3319 	bool remove_rule = false;
3320 	u16 vsi_handle;
3321 	int status = 0;
3322 
3323 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3324 		return -EINVAL;
3325 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3326 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3327 
3328 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3329 	mutex_lock(rule_lock);
3330 	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3331 	if (!list_elem) {
3332 		status = -ENOENT;
3333 		goto exit;
3334 	}
3335 
3336 	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3337 		remove_rule = true;
3338 	} else if (!list_elem->vsi_list_info) {
3339 		status = -ENOENT;
3340 		goto exit;
3341 	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3342 		/* a ref_cnt > 1 indicates that the vsi_list is being
3343 		 * shared by multiple rules. Decrement the ref_cnt and
3344 		 * remove this rule, but do not modify the list, as it
3345 		 * is in-use by other rules.
3346 		 */
3347 		list_elem->vsi_list_info->ref_cnt--;
3348 		remove_rule = true;
3349 	} else {
3350 		/* a ref_cnt of 1 indicates the vsi_list is only used
3351 		 * by one rule. However, the original removal request is only
3352 		 * for a single VSI. Update the vsi_list first, and only
3353 		 * remove the rule if there are no further VSIs in this list.
3354 		 */
3355 		vsi_handle = f_entry->fltr_info.vsi_handle;
3356 		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3357 		if (status)
3358 			goto exit;
3359 		/* if VSI count goes to zero after updating the VSI list */
3360 		if (list_elem->vsi_count == 0)
3361 			remove_rule = true;
3362 	}
3363 
3364 	if (remove_rule) {
3365 		/* Remove the lookup rule */
3366 		struct ice_sw_rule_lkup_rx_tx *s_rule;
3367 
3368 		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3369 				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3370 				      GFP_KERNEL);
3371 		if (!s_rule) {
3372 			status = -ENOMEM;
3373 			goto exit;
3374 		}
3375 
3376 		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3377 				 ice_aqc_opc_remove_sw_rules);
3378 
3379 		status = ice_aq_sw_rules(hw, s_rule,
3380 					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3381 					 1, ice_aqc_opc_remove_sw_rules, NULL);
3382 
3383 		/* Remove a book keeping from the list */
3384 		devm_kfree(ice_hw_to_dev(hw), s_rule);
3385 
3386 		if (status)
3387 			goto exit;
3388 
3389 		list_del(&list_elem->list_entry);
3390 		devm_kfree(ice_hw_to_dev(hw), list_elem);
3391 	}
3392 exit:
3393 	mutex_unlock(rule_lock);
3394 	return status;
3395 }
3396 
3397 /**
3398  * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3399  * @hw: pointer to the hardware structure
3400  * @vlan_id: VLAN ID
3401  * @vsi_handle: check MAC filter for this VSI
3402  */
3403 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3404 {
3405 	struct ice_fltr_mgmt_list_entry *entry;
3406 	struct list_head *rule_head;
3407 	struct ice_switch_info *sw;
3408 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3409 	u16 hw_vsi_id;
3410 
3411 	if (vlan_id > ICE_MAX_VLAN_ID)
3412 		return false;
3413 
3414 	if (!ice_is_vsi_valid(hw, vsi_handle))
3415 		return false;
3416 
3417 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3418 	sw = hw->switch_info;
3419 	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3420 	if (!rule_head)
3421 		return false;
3422 
3423 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3424 	mutex_lock(rule_lock);
3425 	list_for_each_entry(entry, rule_head, list_entry) {
3426 		struct ice_fltr_info *f_info = &entry->fltr_info;
3427 		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3428 		struct ice_vsi_list_map_info *map_info;
3429 
3430 		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3431 			continue;
3432 
3433 		if (f_info->flag != ICE_FLTR_TX ||
3434 		    f_info->src_id != ICE_SRC_ID_VSI ||
3435 		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3436 			continue;
3437 
3438 		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3439 		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3440 		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3441 			continue;
3442 
3443 		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3444 			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3445 				continue;
3446 		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3447 			/* If filter_action is FWD_TO_VSI_LIST, make sure
3448 			 * that VSI being checked is part of VSI list
3449 			 */
3450 			if (entry->vsi_count == 1 &&
3451 			    entry->vsi_list_info) {
3452 				map_info = entry->vsi_list_info;
3453 				if (!test_bit(vsi_handle, map_info->vsi_map))
3454 					continue;
3455 			}
3456 		}
3457 
3458 		if (vlan_id == entry_vlan_id) {
3459 			mutex_unlock(rule_lock);
3460 			return true;
3461 		}
3462 	}
3463 	mutex_unlock(rule_lock);
3464 
3465 	return false;
3466 }
3467 
3468 /**
3469  * ice_add_mac - Add a MAC address based filter rule
3470  * @hw: pointer to the hardware structure
3471  * @m_list: list of MAC addresses and forwarding information
3472  */
3473 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3474 {
3475 	struct ice_fltr_list_entry *m_list_itr;
3476 	int status = 0;
3477 
3478 	if (!m_list || !hw)
3479 		return -EINVAL;
3480 
3481 	list_for_each_entry(m_list_itr, m_list, list_entry) {
3482 		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3483 		u16 vsi_handle;
3484 		u16 hw_vsi_id;
3485 
3486 		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3487 		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3488 		if (!ice_is_vsi_valid(hw, vsi_handle))
3489 			return -EINVAL;
3490 		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3491 		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3492 		/* update the src in case it is VSI num */
3493 		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3494 			return -EINVAL;
3495 		m_list_itr->fltr_info.src = hw_vsi_id;
3496 		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3497 		    is_zero_ether_addr(add))
3498 			return -EINVAL;
3499 
3500 		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3501 							   m_list_itr);
3502 		if (m_list_itr->status)
3503 			return m_list_itr->status;
3504 	}
3505 
3506 	return status;
3507 }
3508 
3509 /**
3510  * ice_add_vlan_internal - Add one VLAN based filter rule
3511  * @hw: pointer to the hardware structure
3512  * @f_entry: filter entry containing one VLAN information
3513  */
3514 static int
3515 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3516 {
3517 	struct ice_switch_info *sw = hw->switch_info;
3518 	struct ice_fltr_mgmt_list_entry *v_list_itr;
3519 	struct ice_fltr_info *new_fltr, *cur_fltr;
3520 	enum ice_sw_lkup_type lkup_type;
3521 	u16 vsi_list_id = 0, vsi_handle;
3522 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3523 	int status = 0;
3524 
3525 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3526 		return -EINVAL;
3527 
3528 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3529 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3530 	new_fltr = &f_entry->fltr_info;
3531 
3532 	/* VLAN ID should only be 12 bits */
3533 	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3534 		return -EINVAL;
3535 
3536 	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3537 		return -EINVAL;
3538 
3539 	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3540 	lkup_type = new_fltr->lkup_type;
3541 	vsi_handle = new_fltr->vsi_handle;
3542 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3543 	mutex_lock(rule_lock);
3544 	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3545 	if (!v_list_itr) {
3546 		struct ice_vsi_list_map_info *map_info = NULL;
3547 
3548 		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3549 			/* All VLAN pruning rules use a VSI list. Check if
3550 			 * there is already a VSI list containing VSI that we
3551 			 * want to add. If found, use the same vsi_list_id for
3552 			 * this new VLAN rule or else create a new list.
3553 			 */
3554 			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3555 							   vsi_handle,
3556 							   &vsi_list_id);
3557 			if (!map_info) {
3558 				status = ice_create_vsi_list_rule(hw,
3559 								  &vsi_handle,
3560 								  1,
3561 								  &vsi_list_id,
3562 								  lkup_type);
3563 				if (status)
3564 					goto exit;
3565 			}
3566 			/* Convert the action to forwarding to a VSI list. */
3567 			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3568 			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3569 		}
3570 
3571 		status = ice_create_pkt_fwd_rule(hw, f_entry);
3572 		if (!status) {
3573 			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3574 							 new_fltr);
3575 			if (!v_list_itr) {
3576 				status = -ENOENT;
3577 				goto exit;
3578 			}
3579 			/* reuse VSI list for new rule and increment ref_cnt */
3580 			if (map_info) {
3581 				v_list_itr->vsi_list_info = map_info;
3582 				map_info->ref_cnt++;
3583 			} else {
3584 				v_list_itr->vsi_list_info =
3585 					ice_create_vsi_list_map(hw, &vsi_handle,
3586 								1, vsi_list_id);
3587 			}
3588 		}
3589 	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3590 		/* Update existing VSI list to add new VSI ID only if it used
3591 		 * by one VLAN rule.
3592 		 */
3593 		cur_fltr = &v_list_itr->fltr_info;
3594 		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3595 						 new_fltr);
3596 	} else {
3597 		/* If VLAN rule exists and VSI list being used by this rule is
3598 		 * referenced by more than 1 VLAN rule. Then create a new VSI
3599 		 * list appending previous VSI with new VSI and update existing
3600 		 * VLAN rule to point to new VSI list ID
3601 		 */
3602 		struct ice_fltr_info tmp_fltr;
3603 		u16 vsi_handle_arr[2];
3604 		u16 cur_handle;
3605 
3606 		/* Current implementation only supports reusing VSI list with
3607 		 * one VSI count. We should never hit below condition
3608 		 */
3609 		if (v_list_itr->vsi_count > 1 &&
3610 		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3611 			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3612 			status = -EIO;
3613 			goto exit;
3614 		}
3615 
3616 		cur_handle =
3617 			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3618 				       ICE_MAX_VSI);
3619 
3620 		/* A rule already exists with the new VSI being added */
3621 		if (cur_handle == vsi_handle) {
3622 			status = -EEXIST;
3623 			goto exit;
3624 		}
3625 
3626 		vsi_handle_arr[0] = cur_handle;
3627 		vsi_handle_arr[1] = vsi_handle;
3628 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3629 						  &vsi_list_id, lkup_type);
3630 		if (status)
3631 			goto exit;
3632 
3633 		tmp_fltr = v_list_itr->fltr_info;
3634 		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3635 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3636 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3637 		/* Update the previous switch rule to a new VSI list which
3638 		 * includes current VSI that is requested
3639 		 */
3640 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3641 		if (status)
3642 			goto exit;
3643 
3644 		/* before overriding VSI list map info. decrement ref_cnt of
3645 		 * previous VSI list
3646 		 */
3647 		v_list_itr->vsi_list_info->ref_cnt--;
3648 
3649 		/* now update to newly created list */
3650 		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3651 		v_list_itr->vsi_list_info =
3652 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3653 						vsi_list_id);
3654 		v_list_itr->vsi_count++;
3655 	}
3656 
3657 exit:
3658 	mutex_unlock(rule_lock);
3659 	return status;
3660 }
3661 
3662 /**
3663  * ice_add_vlan - Add VLAN based filter rule
3664  * @hw: pointer to the hardware structure
3665  * @v_list: list of VLAN entries and forwarding information
3666  */
3667 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3668 {
3669 	struct ice_fltr_list_entry *v_list_itr;
3670 
3671 	if (!v_list || !hw)
3672 		return -EINVAL;
3673 
3674 	list_for_each_entry(v_list_itr, v_list, list_entry) {
3675 		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3676 			return -EINVAL;
3677 		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3678 		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3679 		if (v_list_itr->status)
3680 			return v_list_itr->status;
3681 	}
3682 	return 0;
3683 }
3684 
3685 /**
3686  * ice_add_eth_mac - Add ethertype and MAC based filter rule
3687  * @hw: pointer to the hardware structure
3688  * @em_list: list of ether type MAC filter, MAC is optional
3689  *
3690  * This function requires the caller to populate the entries in
3691  * the filter list with the necessary fields (including flags to
3692  * indicate Tx or Rx rules).
3693  */
3694 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3695 {
3696 	struct ice_fltr_list_entry *em_list_itr;
3697 
3698 	if (!em_list || !hw)
3699 		return -EINVAL;
3700 
3701 	list_for_each_entry(em_list_itr, em_list, list_entry) {
3702 		enum ice_sw_lkup_type l_type =
3703 			em_list_itr->fltr_info.lkup_type;
3704 
3705 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3706 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3707 			return -EINVAL;
3708 
3709 		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3710 							    em_list_itr);
3711 		if (em_list_itr->status)
3712 			return em_list_itr->status;
3713 	}
3714 	return 0;
3715 }
3716 
3717 /**
3718  * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3719  * @hw: pointer to the hardware structure
3720  * @em_list: list of ethertype or ethertype MAC entries
3721  */
3722 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3723 {
3724 	struct ice_fltr_list_entry *em_list_itr, *tmp;
3725 
3726 	if (!em_list || !hw)
3727 		return -EINVAL;
3728 
3729 	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3730 		enum ice_sw_lkup_type l_type =
3731 			em_list_itr->fltr_info.lkup_type;
3732 
3733 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3734 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3735 			return -EINVAL;
3736 
3737 		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3738 							       em_list_itr);
3739 		if (em_list_itr->status)
3740 			return em_list_itr->status;
3741 	}
3742 	return 0;
3743 }
3744 
3745 /**
3746  * ice_rem_sw_rule_info
3747  * @hw: pointer to the hardware structure
3748  * @rule_head: pointer to the switch list structure that we want to delete
3749  */
3750 static void
3751 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3752 {
3753 	if (!list_empty(rule_head)) {
3754 		struct ice_fltr_mgmt_list_entry *entry;
3755 		struct ice_fltr_mgmt_list_entry *tmp;
3756 
3757 		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3758 			list_del(&entry->list_entry);
3759 			devm_kfree(ice_hw_to_dev(hw), entry);
3760 		}
3761 	}
3762 }
3763 
3764 /**
3765  * ice_rem_adv_rule_info
3766  * @hw: pointer to the hardware structure
3767  * @rule_head: pointer to the switch list structure that we want to delete
3768  */
3769 static void
3770 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3771 {
3772 	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3773 	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3774 
3775 	if (list_empty(rule_head))
3776 		return;
3777 
3778 	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3779 		list_del(&lst_itr->list_entry);
3780 		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3781 		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3782 	}
3783 }
3784 
3785 /**
3786  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3787  * @pi: pointer to the port_info structure
3788  * @vsi_handle: VSI handle to set as default
3789  * @set: true to add the above mentioned switch rule, false to remove it
3790  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3791  *
3792  * add filter rule to set/unset given VSI as default VSI for the switch
3793  * (represented by swid)
3794  */
3795 int
3796 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3797 		 u8 direction)
3798 {
3799 	struct ice_fltr_list_entry f_list_entry;
3800 	struct ice_fltr_info f_info;
3801 	struct ice_hw *hw = pi->hw;
3802 	u16 hw_vsi_id;
3803 	int status;
3804 
3805 	if (!ice_is_vsi_valid(hw, vsi_handle))
3806 		return -EINVAL;
3807 
3808 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3809 
3810 	memset(&f_info, 0, sizeof(f_info));
3811 
3812 	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3813 	f_info.flag = direction;
3814 	f_info.fltr_act = ICE_FWD_TO_VSI;
3815 	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3816 	f_info.vsi_handle = vsi_handle;
3817 
3818 	if (f_info.flag & ICE_FLTR_RX) {
3819 		f_info.src = hw->port_info->lport;
3820 		f_info.src_id = ICE_SRC_ID_LPORT;
3821 	} else if (f_info.flag & ICE_FLTR_TX) {
3822 		f_info.src_id = ICE_SRC_ID_VSI;
3823 		f_info.src = hw_vsi_id;
3824 	}
3825 	f_list_entry.fltr_info = f_info;
3826 
3827 	if (set)
3828 		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3829 					       &f_list_entry);
3830 	else
3831 		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3832 						  &f_list_entry);
3833 
3834 	return status;
3835 }
3836 
3837 /**
3838  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3839  * @fm_entry: filter entry to inspect
3840  * @vsi_handle: VSI handle to compare with filter info
3841  */
3842 static bool
3843 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3844 {
3845 	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3846 		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3847 		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3848 		 fm_entry->vsi_list_info &&
3849 		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3850 }
3851 
3852 /**
3853  * ice_check_if_dflt_vsi - check if VSI is default VSI
3854  * @pi: pointer to the port_info structure
3855  * @vsi_handle: vsi handle to check for in filter list
3856  * @rule_exists: indicates if there are any VSI's in the rule list
3857  *
3858  * checks if the VSI is in a default VSI list, and also indicates
3859  * if the default VSI list is empty
3860  */
3861 bool
3862 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3863 		      bool *rule_exists)
3864 {
3865 	struct ice_fltr_mgmt_list_entry *fm_entry;
3866 	struct ice_sw_recipe *recp_list;
3867 	struct list_head *rule_head;
3868 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3869 	bool ret = false;
3870 
3871 	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3872 	rule_lock = &recp_list->filt_rule_lock;
3873 	rule_head = &recp_list->filt_rules;
3874 
3875 	mutex_lock(rule_lock);
3876 
3877 	if (rule_exists && !list_empty(rule_head))
3878 		*rule_exists = true;
3879 
3880 	list_for_each_entry(fm_entry, rule_head, list_entry) {
3881 		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3882 			ret = true;
3883 			break;
3884 		}
3885 	}
3886 
3887 	mutex_unlock(rule_lock);
3888 
3889 	return ret;
3890 }
3891 
3892 /**
3893  * ice_remove_mac - remove a MAC address based filter rule
3894  * @hw: pointer to the hardware structure
3895  * @m_list: list of MAC addresses and forwarding information
3896  *
3897  * This function removes either a MAC filter rule or a specific VSI from a
3898  * VSI list for a multicast MAC address.
3899  *
3900  * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3901  * be aware that this call will only work if all the entries passed into m_list
3902  * were added previously. It will not attempt to do a partial remove of entries
3903  * that were found.
3904  */
3905 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3906 {
3907 	struct ice_fltr_list_entry *list_itr, *tmp;
3908 
3909 	if (!m_list)
3910 		return -EINVAL;
3911 
3912 	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3913 		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3914 		u16 vsi_handle;
3915 
3916 		if (l_type != ICE_SW_LKUP_MAC)
3917 			return -EINVAL;
3918 
3919 		vsi_handle = list_itr->fltr_info.vsi_handle;
3920 		if (!ice_is_vsi_valid(hw, vsi_handle))
3921 			return -EINVAL;
3922 
3923 		list_itr->fltr_info.fwd_id.hw_vsi_id =
3924 					ice_get_hw_vsi_num(hw, vsi_handle);
3925 
3926 		list_itr->status = ice_remove_rule_internal(hw,
3927 							    ICE_SW_LKUP_MAC,
3928 							    list_itr);
3929 		if (list_itr->status)
3930 			return list_itr->status;
3931 	}
3932 	return 0;
3933 }
3934 
3935 /**
3936  * ice_remove_vlan - Remove VLAN based filter rule
3937  * @hw: pointer to the hardware structure
3938  * @v_list: list of VLAN entries and forwarding information
3939  */
3940 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3941 {
3942 	struct ice_fltr_list_entry *v_list_itr, *tmp;
3943 
3944 	if (!v_list || !hw)
3945 		return -EINVAL;
3946 
3947 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3948 		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3949 
3950 		if (l_type != ICE_SW_LKUP_VLAN)
3951 			return -EINVAL;
3952 		v_list_itr->status = ice_remove_rule_internal(hw,
3953 							      ICE_SW_LKUP_VLAN,
3954 							      v_list_itr);
3955 		if (v_list_itr->status)
3956 			return v_list_itr->status;
3957 	}
3958 	return 0;
3959 }
3960 
3961 /**
3962  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3963  * @hw: pointer to the hardware structure
3964  * @vsi_handle: VSI handle to remove filters from
3965  * @vsi_list_head: pointer to the list to add entry to
3966  * @fi: pointer to fltr_info of filter entry to copy & add
3967  *
3968  * Helper function, used when creating a list of filters to remove from
3969  * a specific VSI. The entry added to vsi_list_head is a COPY of the
3970  * original filter entry, with the exception of fltr_info.fltr_act and
3971  * fltr_info.fwd_id fields. These are set such that later logic can
3972  * extract which VSI to remove the fltr from, and pass on that information.
3973  */
3974 static int
3975 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3976 			       struct list_head *vsi_list_head,
3977 			       struct ice_fltr_info *fi)
3978 {
3979 	struct ice_fltr_list_entry *tmp;
3980 
3981 	/* this memory is freed up in the caller function
3982 	 * once filters for this VSI are removed
3983 	 */
3984 	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
3985 	if (!tmp)
3986 		return -ENOMEM;
3987 
3988 	tmp->fltr_info = *fi;
3989 
3990 	/* Overwrite these fields to indicate which VSI to remove filter from,
3991 	 * so find and remove logic can extract the information from the
3992 	 * list entries. Note that original entries will still have proper
3993 	 * values.
3994 	 */
3995 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3996 	tmp->fltr_info.vsi_handle = vsi_handle;
3997 	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3998 
3999 	list_add(&tmp->list_entry, vsi_list_head);
4000 
4001 	return 0;
4002 }
4003 
4004 /**
4005  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4006  * @hw: pointer to the hardware structure
4007  * @vsi_handle: VSI handle to remove filters from
4008  * @lkup_list_head: pointer to the list that has certain lookup type filters
4009  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4010  *
4011  * Locates all filters in lkup_list_head that are used by the given VSI,
4012  * and adds COPIES of those entries to vsi_list_head (intended to be used
4013  * to remove the listed filters).
4014  * Note that this means all entries in vsi_list_head must be explicitly
4015  * deallocated by the caller when done with list.
4016  */
4017 static int
4018 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4019 			 struct list_head *lkup_list_head,
4020 			 struct list_head *vsi_list_head)
4021 {
4022 	struct ice_fltr_mgmt_list_entry *fm_entry;
4023 	int status = 0;
4024 
4025 	/* check to make sure VSI ID is valid and within boundary */
4026 	if (!ice_is_vsi_valid(hw, vsi_handle))
4027 		return -EINVAL;
4028 
4029 	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4030 		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4031 			continue;
4032 
4033 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4034 							vsi_list_head,
4035 							&fm_entry->fltr_info);
4036 		if (status)
4037 			return status;
4038 	}
4039 	return status;
4040 }
4041 
4042 /**
4043  * ice_determine_promisc_mask
4044  * @fi: filter info to parse
4045  *
4046  * Helper function to determine which ICE_PROMISC_ mask corresponds
4047  * to given filter into.
4048  */
4049 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4050 {
4051 	u16 vid = fi->l_data.mac_vlan.vlan_id;
4052 	u8 *macaddr = fi->l_data.mac.mac_addr;
4053 	bool is_tx_fltr = false;
4054 	u8 promisc_mask = 0;
4055 
4056 	if (fi->flag == ICE_FLTR_TX)
4057 		is_tx_fltr = true;
4058 
4059 	if (is_broadcast_ether_addr(macaddr))
4060 		promisc_mask |= is_tx_fltr ?
4061 			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4062 	else if (is_multicast_ether_addr(macaddr))
4063 		promisc_mask |= is_tx_fltr ?
4064 			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4065 	else if (is_unicast_ether_addr(macaddr))
4066 		promisc_mask |= is_tx_fltr ?
4067 			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4068 	if (vid)
4069 		promisc_mask |= is_tx_fltr ?
4070 			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4071 
4072 	return promisc_mask;
4073 }
4074 
4075 /**
4076  * ice_remove_promisc - Remove promisc based filter rules
4077  * @hw: pointer to the hardware structure
4078  * @recp_id: recipe ID for which the rule needs to removed
4079  * @v_list: list of promisc entries
4080  */
4081 static int
4082 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4083 {
4084 	struct ice_fltr_list_entry *v_list_itr, *tmp;
4085 
4086 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4087 		v_list_itr->status =
4088 			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4089 		if (v_list_itr->status)
4090 			return v_list_itr->status;
4091 	}
4092 	return 0;
4093 }
4094 
4095 /**
4096  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4097  * @hw: pointer to the hardware structure
4098  * @vsi_handle: VSI handle to clear mode
4099  * @promisc_mask: mask of promiscuous config bits to clear
4100  * @vid: VLAN ID to clear VLAN promiscuous
4101  */
4102 int
4103 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4104 		      u16 vid)
4105 {
4106 	struct ice_switch_info *sw = hw->switch_info;
4107 	struct ice_fltr_list_entry *fm_entry, *tmp;
4108 	struct list_head remove_list_head;
4109 	struct ice_fltr_mgmt_list_entry *itr;
4110 	struct list_head *rule_head;
4111 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4112 	int status = 0;
4113 	u8 recipe_id;
4114 
4115 	if (!ice_is_vsi_valid(hw, vsi_handle))
4116 		return -EINVAL;
4117 
4118 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4119 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4120 	else
4121 		recipe_id = ICE_SW_LKUP_PROMISC;
4122 
4123 	rule_head = &sw->recp_list[recipe_id].filt_rules;
4124 	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4125 
4126 	INIT_LIST_HEAD(&remove_list_head);
4127 
4128 	mutex_lock(rule_lock);
4129 	list_for_each_entry(itr, rule_head, list_entry) {
4130 		struct ice_fltr_info *fltr_info;
4131 		u8 fltr_promisc_mask = 0;
4132 
4133 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4134 			continue;
4135 		fltr_info = &itr->fltr_info;
4136 
4137 		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4138 		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4139 			continue;
4140 
4141 		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4142 
4143 		/* Skip if filter is not completely specified by given mask */
4144 		if (fltr_promisc_mask & ~promisc_mask)
4145 			continue;
4146 
4147 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4148 							&remove_list_head,
4149 							fltr_info);
4150 		if (status) {
4151 			mutex_unlock(rule_lock);
4152 			goto free_fltr_list;
4153 		}
4154 	}
4155 	mutex_unlock(rule_lock);
4156 
4157 	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4158 
4159 free_fltr_list:
4160 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4161 		list_del(&fm_entry->list_entry);
4162 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4163 	}
4164 
4165 	return status;
4166 }
4167 
4168 /**
4169  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4170  * @hw: pointer to the hardware structure
4171  * @vsi_handle: VSI handle to configure
4172  * @promisc_mask: mask of promiscuous config bits
4173  * @vid: VLAN ID to set VLAN promiscuous
4174  */
4175 int
4176 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4177 {
4178 	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4179 	struct ice_fltr_list_entry f_list_entry;
4180 	struct ice_fltr_info new_fltr;
4181 	bool is_tx_fltr;
4182 	int status = 0;
4183 	u16 hw_vsi_id;
4184 	int pkt_type;
4185 	u8 recipe_id;
4186 
4187 	if (!ice_is_vsi_valid(hw, vsi_handle))
4188 		return -EINVAL;
4189 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4190 
4191 	memset(&new_fltr, 0, sizeof(new_fltr));
4192 
4193 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4194 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4195 		new_fltr.l_data.mac_vlan.vlan_id = vid;
4196 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4197 	} else {
4198 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4199 		recipe_id = ICE_SW_LKUP_PROMISC;
4200 	}
4201 
4202 	/* Separate filters must be set for each direction/packet type
4203 	 * combination, so we will loop over the mask value, store the
4204 	 * individual type, and clear it out in the input mask as it
4205 	 * is found.
4206 	 */
4207 	while (promisc_mask) {
4208 		u8 *mac_addr;
4209 
4210 		pkt_type = 0;
4211 		is_tx_fltr = false;
4212 
4213 		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4214 			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4215 			pkt_type = UCAST_FLTR;
4216 		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4217 			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4218 			pkt_type = UCAST_FLTR;
4219 			is_tx_fltr = true;
4220 		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4221 			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4222 			pkt_type = MCAST_FLTR;
4223 		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4224 			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4225 			pkt_type = MCAST_FLTR;
4226 			is_tx_fltr = true;
4227 		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4228 			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4229 			pkt_type = BCAST_FLTR;
4230 		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4231 			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4232 			pkt_type = BCAST_FLTR;
4233 			is_tx_fltr = true;
4234 		}
4235 
4236 		/* Check for VLAN promiscuous flag */
4237 		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4238 			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4239 		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4240 			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4241 			is_tx_fltr = true;
4242 		}
4243 
4244 		/* Set filter DA based on packet type */
4245 		mac_addr = new_fltr.l_data.mac.mac_addr;
4246 		if (pkt_type == BCAST_FLTR) {
4247 			eth_broadcast_addr(mac_addr);
4248 		} else if (pkt_type == MCAST_FLTR ||
4249 			   pkt_type == UCAST_FLTR) {
4250 			/* Use the dummy ether header DA */
4251 			ether_addr_copy(mac_addr, dummy_eth_header);
4252 			if (pkt_type == MCAST_FLTR)
4253 				mac_addr[0] |= 0x1;	/* Set multicast bit */
4254 		}
4255 
4256 		/* Need to reset this to zero for all iterations */
4257 		new_fltr.flag = 0;
4258 		if (is_tx_fltr) {
4259 			new_fltr.flag |= ICE_FLTR_TX;
4260 			new_fltr.src = hw_vsi_id;
4261 		} else {
4262 			new_fltr.flag |= ICE_FLTR_RX;
4263 			new_fltr.src = hw->port_info->lport;
4264 		}
4265 
4266 		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4267 		new_fltr.vsi_handle = vsi_handle;
4268 		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4269 		f_list_entry.fltr_info = new_fltr;
4270 
4271 		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4272 		if (status)
4273 			goto set_promisc_exit;
4274 	}
4275 
4276 set_promisc_exit:
4277 	return status;
4278 }
4279 
4280 /**
4281  * ice_set_vlan_vsi_promisc
4282  * @hw: pointer to the hardware structure
4283  * @vsi_handle: VSI handle to configure
4284  * @promisc_mask: mask of promiscuous config bits
4285  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4286  *
4287  * Configure VSI with all associated VLANs to given promiscuous mode(s)
4288  */
4289 int
4290 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4291 			 bool rm_vlan_promisc)
4292 {
4293 	struct ice_switch_info *sw = hw->switch_info;
4294 	struct ice_fltr_list_entry *list_itr, *tmp;
4295 	struct list_head vsi_list_head;
4296 	struct list_head *vlan_head;
4297 	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4298 	u16 vlan_id;
4299 	int status;
4300 
4301 	INIT_LIST_HEAD(&vsi_list_head);
4302 	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4303 	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4304 	mutex_lock(vlan_lock);
4305 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4306 					  &vsi_list_head);
4307 	mutex_unlock(vlan_lock);
4308 	if (status)
4309 		goto free_fltr_list;
4310 
4311 	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4312 		/* Avoid enabling or disabling VLAN zero twice when in double
4313 		 * VLAN mode
4314 		 */
4315 		if (ice_is_dvm_ena(hw) &&
4316 		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4317 			continue;
4318 
4319 		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4320 		if (rm_vlan_promisc)
4321 			status = ice_clear_vsi_promisc(hw, vsi_handle,
4322 						       promisc_mask, vlan_id);
4323 		else
4324 			status = ice_set_vsi_promisc(hw, vsi_handle,
4325 						     promisc_mask, vlan_id);
4326 		if (status && status != -EEXIST)
4327 			break;
4328 	}
4329 
4330 free_fltr_list:
4331 	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4332 		list_del(&list_itr->list_entry);
4333 		devm_kfree(ice_hw_to_dev(hw), list_itr);
4334 	}
4335 	return status;
4336 }
4337 
4338 /**
4339  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4340  * @hw: pointer to the hardware structure
4341  * @vsi_handle: VSI handle to remove filters from
4342  * @lkup: switch rule filter lookup type
4343  */
4344 static void
4345 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4346 			 enum ice_sw_lkup_type lkup)
4347 {
4348 	struct ice_switch_info *sw = hw->switch_info;
4349 	struct ice_fltr_list_entry *fm_entry;
4350 	struct list_head remove_list_head;
4351 	struct list_head *rule_head;
4352 	struct ice_fltr_list_entry *tmp;
4353 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4354 	int status;
4355 
4356 	INIT_LIST_HEAD(&remove_list_head);
4357 	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4358 	rule_head = &sw->recp_list[lkup].filt_rules;
4359 	mutex_lock(rule_lock);
4360 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4361 					  &remove_list_head);
4362 	mutex_unlock(rule_lock);
4363 	if (status)
4364 		goto free_fltr_list;
4365 
4366 	switch (lkup) {
4367 	case ICE_SW_LKUP_MAC:
4368 		ice_remove_mac(hw, &remove_list_head);
4369 		break;
4370 	case ICE_SW_LKUP_VLAN:
4371 		ice_remove_vlan(hw, &remove_list_head);
4372 		break;
4373 	case ICE_SW_LKUP_PROMISC:
4374 	case ICE_SW_LKUP_PROMISC_VLAN:
4375 		ice_remove_promisc(hw, lkup, &remove_list_head);
4376 		break;
4377 	case ICE_SW_LKUP_MAC_VLAN:
4378 	case ICE_SW_LKUP_ETHERTYPE:
4379 	case ICE_SW_LKUP_ETHERTYPE_MAC:
4380 	case ICE_SW_LKUP_DFLT:
4381 	case ICE_SW_LKUP_LAST:
4382 	default:
4383 		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4384 		break;
4385 	}
4386 
4387 free_fltr_list:
4388 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4389 		list_del(&fm_entry->list_entry);
4390 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4391 	}
4392 }
4393 
4394 /**
4395  * ice_remove_vsi_fltr - Remove all filters for a VSI
4396  * @hw: pointer to the hardware structure
4397  * @vsi_handle: VSI handle to remove filters from
4398  */
4399 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4400 {
4401 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4402 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4403 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4404 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4405 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4406 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4407 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4408 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4409 }
4410 
4411 /**
4412  * ice_alloc_res_cntr - allocating resource counter
4413  * @hw: pointer to the hardware structure
4414  * @type: type of resource
4415  * @alloc_shared: if set it is shared else dedicated
4416  * @num_items: number of entries requested for FD resource type
4417  * @counter_id: counter index returned by AQ call
4418  */
4419 int
4420 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4421 		   u16 *counter_id)
4422 {
4423 	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4424 	u16 buf_len = __struct_size(buf);
4425 	int status;
4426 
4427 	buf->num_elems = cpu_to_le16(num_items);
4428 	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4429 				    alloc_shared);
4430 
4431 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4432 	if (status)
4433 		return status;
4434 
4435 	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4436 	return status;
4437 }
4438 
4439 /**
4440  * ice_free_res_cntr - free resource counter
4441  * @hw: pointer to the hardware structure
4442  * @type: type of resource
4443  * @alloc_shared: if set it is shared else dedicated
4444  * @num_items: number of entries to be freed for FD resource type
4445  * @counter_id: counter ID resource which needs to be freed
4446  */
4447 int
4448 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4449 		  u16 counter_id)
4450 {
4451 	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4452 	u16 buf_len = __struct_size(buf);
4453 	int status;
4454 
4455 	buf->num_elems = cpu_to_le16(num_items);
4456 	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4457 				    alloc_shared);
4458 	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4459 
4460 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4461 	if (status)
4462 		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4463 
4464 	return status;
4465 }
4466 
4467 #define ICE_PROTOCOL_ENTRY(id, ...) {		\
4468 	.prot_type	= id,			\
4469 	.offs		= {__VA_ARGS__},	\
4470 }
4471 
4472 /**
4473  * ice_share_res - set a resource as shared or dedicated
4474  * @hw: hw struct of original owner of resource
4475  * @type: resource type
4476  * @shared: is the resource being set to shared
4477  * @res_id: resource id (descriptor)
4478  */
4479 int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4480 {
4481 	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4482 	u16 buf_len = __struct_size(buf);
4483 	u16 res_type;
4484 	int status;
4485 
4486 	buf->num_elems = cpu_to_le16(1);
4487 	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4488 	if (shared)
4489 		res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4490 
4491 	buf->res_type = cpu_to_le16(res_type);
4492 	buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4493 	status = ice_aq_alloc_free_res(hw, buf, buf_len,
4494 				       ice_aqc_opc_share_res);
4495 	if (status)
4496 		ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4497 			  type, res_id, shared ? "SHARED" : "DEDICATED");
4498 
4499 	return status;
4500 }
4501 
4502 /* This is mapping table entry that maps every word within a given protocol
4503  * structure to the real byte offset as per the specification of that
4504  * protocol header.
4505  * for example dst address is 3 words in ethertype header and corresponding
4506  * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4507  * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4508  * matching entry describing its field. This needs to be updated if new
4509  * structure is added to that union.
4510  */
4511 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4512 	ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4513 	ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4514 	ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4515 	ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4516 	ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4517 	ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4518 	ICE_PROTOCOL_ENTRY(ICE_IPV4_IL,	0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4519 	ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4520 			   20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4521 	ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4522 			   22, 24, 26, 28, 30, 32, 34, 36, 38),
4523 	ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4524 	ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4525 	ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4526 	ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4527 	ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4528 	ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4529 	ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4530 	ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4531 	ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4532 	ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4533 	ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4534 	ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4535 	ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4536 			   ICE_SOURCE_PORT_MDID_OFFSET,
4537 			   ICE_PTYPE_MDID_OFFSET,
4538 			   ICE_PACKET_LENGTH_MDID_OFFSET,
4539 			   ICE_SOURCE_VSI_MDID_OFFSET,
4540 			   ICE_PKT_VLAN_MDID_OFFSET,
4541 			   ICE_PKT_TUNNEL_MDID_OFFSET,
4542 			   ICE_PKT_TCP_MDID_OFFSET,
4543 			   ICE_PKT_ERROR_MDID_OFFSET),
4544 };
4545 
4546 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4547 	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4548 	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4549 	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4550 	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4551 	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4552 	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4553 	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4554 	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4555 	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4556 	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4557 	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4558 	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4559 	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4560 	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4561 	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4562 	{ ICE_GTP,		ICE_UDP_OF_HW },
4563 	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4564 	{ ICE_PPPOE,		ICE_PPPOE_HW },
4565 	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4566 	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4567 	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4568 	{ ICE_HW_METADATA,      ICE_META_DATA_ID_HW },
4569 };
4570 
4571 /**
4572  * ice_find_recp - find a recipe
4573  * @hw: pointer to the hardware structure
4574  * @lkup_exts: extension sequence to match
4575  * @rinfo: information regarding the rule e.g. priority and action info
4576  *
4577  * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4578  */
4579 static u16
4580 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4581 	      const struct ice_adv_rule_info *rinfo)
4582 {
4583 	bool refresh_required = true;
4584 	struct ice_sw_recipe *recp;
4585 	u8 i;
4586 
4587 	/* Walk through existing recipes to find a match */
4588 	recp = hw->switch_info->recp_list;
4589 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4590 		/* If recipe was not created for this ID, in SW bookkeeping,
4591 		 * check if FW has an entry for this recipe. If the FW has an
4592 		 * entry update it in our SW bookkeeping and continue with the
4593 		 * matching.
4594 		 */
4595 		if (!recp[i].recp_created)
4596 			if (ice_get_recp_frm_fw(hw,
4597 						hw->switch_info->recp_list, i,
4598 						&refresh_required))
4599 				continue;
4600 
4601 		/* Skip inverse action recipes */
4602 		if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4603 		    ICE_AQ_RECIPE_ACT_INV_ACT)
4604 			continue;
4605 
4606 		/* if number of words we are looking for match */
4607 		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4608 			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4609 			struct ice_fv_word *be = lkup_exts->fv_words;
4610 			u16 *cr = recp[i].lkup_exts.field_mask;
4611 			u16 *de = lkup_exts->field_mask;
4612 			bool found = true;
4613 			u8 pe, qr;
4614 
4615 			/* ar, cr, and qr are related to the recipe words, while
4616 			 * be, de, and pe are related to the lookup words
4617 			 */
4618 			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4619 				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4620 				     qr++) {
4621 					if (ar[qr].off == be[pe].off &&
4622 					    ar[qr].prot_id == be[pe].prot_id &&
4623 					    cr[qr] == de[pe])
4624 						/* Found the "pe"th word in the
4625 						 * given recipe
4626 						 */
4627 						break;
4628 				}
4629 				/* After walking through all the words in the
4630 				 * "i"th recipe if "p"th word was not found then
4631 				 * this recipe is not what we are looking for.
4632 				 * So break out from this loop and try the next
4633 				 * recipe
4634 				 */
4635 				if (qr >= recp[i].lkup_exts.n_val_words) {
4636 					found = false;
4637 					break;
4638 				}
4639 			}
4640 			/* If for "i"th recipe the found was never set to false
4641 			 * then it means we found our match
4642 			 * Also tun type and *_pass_l2 of recipe needs to be
4643 			 * checked
4644 			 */
4645 			if (found && recp[i].tun_type == rinfo->tun_type &&
4646 			    recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4647 			    recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4648 				return i; /* Return the recipe ID */
4649 		}
4650 	}
4651 	return ICE_MAX_NUM_RECIPES;
4652 }
4653 
4654 /**
4655  * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4656  *
4657  * As protocol id for outer vlan is different in dvm and svm, if dvm is
4658  * supported protocol array record for outer vlan has to be modified to
4659  * reflect the value proper for DVM.
4660  */
4661 void ice_change_proto_id_to_dvm(void)
4662 {
4663 	u8 i;
4664 
4665 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4666 		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4667 		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4668 			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4669 }
4670 
4671 /**
4672  * ice_prot_type_to_id - get protocol ID from protocol type
4673  * @type: protocol type
4674  * @id: pointer to variable that will receive the ID
4675  *
4676  * Returns true if found, false otherwise
4677  */
4678 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4679 {
4680 	u8 i;
4681 
4682 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4683 		if (ice_prot_id_tbl[i].type == type) {
4684 			*id = ice_prot_id_tbl[i].protocol_id;
4685 			return true;
4686 		}
4687 	return false;
4688 }
4689 
4690 /**
4691  * ice_fill_valid_words - count valid words
4692  * @rule: advanced rule with lookup information
4693  * @lkup_exts: byte offset extractions of the words that are valid
4694  *
4695  * calculate valid words in a lookup rule using mask value
4696  */
4697 static u8
4698 ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4699 		     struct ice_prot_lkup_ext *lkup_exts)
4700 {
4701 	u8 j, word, prot_id, ret_val;
4702 
4703 	if (!ice_prot_type_to_id(rule->type, &prot_id))
4704 		return 0;
4705 
4706 	word = lkup_exts->n_val_words;
4707 
4708 	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4709 		if (((u16 *)&rule->m_u)[j] &&
4710 		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4711 			/* No more space to accommodate */
4712 			if (word >= ICE_MAX_CHAIN_WORDS)
4713 				return 0;
4714 			lkup_exts->fv_words[word].off =
4715 				ice_prot_ext[rule->type].offs[j];
4716 			lkup_exts->fv_words[word].prot_id =
4717 				ice_prot_id_tbl[rule->type].protocol_id;
4718 			lkup_exts->field_mask[word] =
4719 				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4720 			word++;
4721 		}
4722 
4723 	ret_val = word - lkup_exts->n_val_words;
4724 	lkup_exts->n_val_words = word;
4725 
4726 	return ret_val;
4727 }
4728 
4729 /**
4730  * ice_create_first_fit_recp_def - Create a recipe grouping
4731  * @hw: pointer to the hardware structure
4732  * @lkup_exts: an array of protocol header extractions
4733  * @rg_list: pointer to a list that stores new recipe groups
4734  * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4735  *
4736  * Using first fit algorithm, take all the words that are still not done
4737  * and start grouping them in 4-word groups. Each group makes up one
4738  * recipe.
4739  */
4740 static int
4741 ice_create_first_fit_recp_def(struct ice_hw *hw,
4742 			      struct ice_prot_lkup_ext *lkup_exts,
4743 			      struct list_head *rg_list,
4744 			      u8 *recp_cnt)
4745 {
4746 	struct ice_pref_recipe_group *grp = NULL;
4747 	u8 j;
4748 
4749 	*recp_cnt = 0;
4750 
4751 	/* Walk through every word in the rule to check if it is not done. If so
4752 	 * then this word needs to be part of a new recipe.
4753 	 */
4754 	for (j = 0; j < lkup_exts->n_val_words; j++)
4755 		if (!test_bit(j, lkup_exts->done)) {
4756 			if (!grp ||
4757 			    grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4758 				struct ice_recp_grp_entry *entry;
4759 
4760 				entry = devm_kzalloc(ice_hw_to_dev(hw),
4761 						     sizeof(*entry),
4762 						     GFP_KERNEL);
4763 				if (!entry)
4764 					return -ENOMEM;
4765 				list_add(&entry->l_entry, rg_list);
4766 				grp = &entry->r_group;
4767 				(*recp_cnt)++;
4768 			}
4769 
4770 			grp->pairs[grp->n_val_pairs].prot_id =
4771 				lkup_exts->fv_words[j].prot_id;
4772 			grp->pairs[grp->n_val_pairs].off =
4773 				lkup_exts->fv_words[j].off;
4774 			grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4775 			grp->n_val_pairs++;
4776 		}
4777 
4778 	return 0;
4779 }
4780 
4781 /**
4782  * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4783  * @hw: pointer to the hardware structure
4784  * @fv_list: field vector with the extraction sequence information
4785  * @rg_list: recipe groupings with protocol-offset pairs
4786  *
4787  * Helper function to fill in the field vector indices for protocol-offset
4788  * pairs. These indexes are then ultimately programmed into a recipe.
4789  */
4790 static int
4791 ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4792 		       struct list_head *rg_list)
4793 {
4794 	struct ice_sw_fv_list_entry *fv;
4795 	struct ice_recp_grp_entry *rg;
4796 	struct ice_fv_word *fv_ext;
4797 
4798 	if (list_empty(fv_list))
4799 		return 0;
4800 
4801 	fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4802 			      list_entry);
4803 	fv_ext = fv->fv_ptr->ew;
4804 
4805 	list_for_each_entry(rg, rg_list, l_entry) {
4806 		u8 i;
4807 
4808 		for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4809 			struct ice_fv_word *pr;
4810 			bool found = false;
4811 			u16 mask;
4812 			u8 j;
4813 
4814 			pr = &rg->r_group.pairs[i];
4815 			mask = rg->r_group.mask[i];
4816 
4817 			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4818 				if (fv_ext[j].prot_id == pr->prot_id &&
4819 				    fv_ext[j].off == pr->off) {
4820 					found = true;
4821 
4822 					/* Store index of field vector */
4823 					rg->fv_idx[i] = j;
4824 					rg->fv_mask[i] = mask;
4825 					break;
4826 				}
4827 
4828 			/* Protocol/offset could not be found, caller gave an
4829 			 * invalid pair
4830 			 */
4831 			if (!found)
4832 				return -EINVAL;
4833 		}
4834 	}
4835 
4836 	return 0;
4837 }
4838 
4839 /**
4840  * ice_find_free_recp_res_idx - find free result indexes for recipe
4841  * @hw: pointer to hardware structure
4842  * @profiles: bitmap of profiles that will be associated with the new recipe
4843  * @free_idx: pointer to variable to receive the free index bitmap
4844  *
4845  * The algorithm used here is:
4846  *	1. When creating a new recipe, create a set P which contains all
4847  *	   Profiles that will be associated with our new recipe
4848  *
4849  *	2. For each Profile p in set P:
4850  *	    a. Add all recipes associated with Profile p into set R
4851  *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4852  *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4853  *		i. Or just assume they all have the same possible indexes:
4854  *			44, 45, 46, 47
4855  *			i.e., PossibleIndexes = 0x0000F00000000000
4856  *
4857  *	3. For each Recipe r in set R:
4858  *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4859  *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4860  *
4861  *	FreeIndexes will contain the bits indicating the indexes free for use,
4862  *      then the code needs to update the recipe[r].used_result_idx_bits to
4863  *      indicate which indexes were selected for use by this recipe.
4864  */
4865 static u16
4866 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4867 			   unsigned long *free_idx)
4868 {
4869 	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4870 	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4871 	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4872 	u16 bit;
4873 
4874 	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4875 	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4876 
4877 	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4878 
4879 	/* For each profile we are going to associate the recipe with, add the
4880 	 * recipes that are associated with that profile. This will give us
4881 	 * the set of recipes that our recipe may collide with. Also, determine
4882 	 * what possible result indexes are usable given this set of profiles.
4883 	 */
4884 	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4885 		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4886 			  ICE_MAX_NUM_RECIPES);
4887 		bitmap_and(possible_idx, possible_idx,
4888 			   hw->switch_info->prof_res_bm[bit],
4889 			   ICE_MAX_FV_WORDS);
4890 	}
4891 
4892 	/* For each recipe that our new recipe may collide with, determine
4893 	 * which indexes have been used.
4894 	 */
4895 	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4896 		bitmap_or(used_idx, used_idx,
4897 			  hw->switch_info->recp_list[bit].res_idxs,
4898 			  ICE_MAX_FV_WORDS);
4899 
4900 	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4901 
4902 	/* return number of free indexes */
4903 	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4904 }
4905 
4906 /**
4907  * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4908  * @hw: pointer to hardware structure
4909  * @rm: recipe management list entry
4910  * @profiles: bitmap of profiles that will be associated.
4911  */
4912 static int
4913 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4914 		  unsigned long *profiles)
4915 {
4916 	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
4917 	struct ice_aqc_recipe_content *content;
4918 	struct ice_aqc_recipe_data_elem *tmp;
4919 	struct ice_aqc_recipe_data_elem *buf;
4920 	struct ice_recp_grp_entry *entry;
4921 	u16 free_res_idx;
4922 	u16 recipe_count;
4923 	u8 chain_idx;
4924 	u8 recps = 0;
4925 	int status;
4926 
4927 	/* When more than one recipe are required, another recipe is needed to
4928 	 * chain them together. Matching a tunnel metadata ID takes up one of
4929 	 * the match fields in the chaining recipe reducing the number of
4930 	 * chained recipes by one.
4931 	 */
4932 	 /* check number of free result indices */
4933 	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
4934 	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4935 
4936 	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4937 		  free_res_idx, rm->n_grp_count);
4938 
4939 	if (rm->n_grp_count > 1) {
4940 		if (rm->n_grp_count > free_res_idx)
4941 			return -ENOSPC;
4942 
4943 		rm->n_grp_count++;
4944 	}
4945 
4946 	if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4947 		return -ENOSPC;
4948 
4949 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4950 	if (!tmp)
4951 		return -ENOMEM;
4952 
4953 	buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4954 			   GFP_KERNEL);
4955 	if (!buf) {
4956 		status = -ENOMEM;
4957 		goto err_mem;
4958 	}
4959 
4960 	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4961 	recipe_count = ICE_MAX_NUM_RECIPES;
4962 	status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4963 				   NULL);
4964 	if (status || recipe_count == 0)
4965 		goto err_unroll;
4966 
4967 	/* Allocate the recipe resources, and configure them according to the
4968 	 * match fields from protocol headers and extracted field vectors.
4969 	 */
4970 	chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
4971 	list_for_each_entry(entry, &rm->rg_list, l_entry) {
4972 		u8 i;
4973 
4974 		status = ice_alloc_recipe(hw, &entry->rid);
4975 		if (status)
4976 			goto err_unroll;
4977 
4978 		content = &buf[recps].content;
4979 
4980 		/* Clear the result index of the located recipe, as this will be
4981 		 * updated, if needed, later in the recipe creation process.
4982 		 */
4983 		tmp[0].content.result_indx = 0;
4984 
4985 		buf[recps] = tmp[0];
4986 		buf[recps].recipe_indx = (u8)entry->rid;
4987 		/* if the recipe is a non-root recipe RID should be programmed
4988 		 * as 0 for the rules to be applied correctly.
4989 		 */
4990 		content->rid = 0;
4991 		memset(&content->lkup_indx, 0,
4992 		       sizeof(content->lkup_indx));
4993 
4994 		/* All recipes use look-up index 0 to match switch ID. */
4995 		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4996 		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
4997 		/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
4998 		 * to be 0
4999 		 */
5000 		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5001 			content->lkup_indx[i] = 0x80;
5002 			content->mask[i] = 0;
5003 		}
5004 
5005 		for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5006 			content->lkup_indx[i + 1] = entry->fv_idx[i];
5007 			content->mask[i + 1] = cpu_to_le16(entry->fv_mask[i]);
5008 		}
5009 
5010 		if (rm->n_grp_count > 1) {
5011 			/* Checks to see if there really is a valid result index
5012 			 * that can be used.
5013 			 */
5014 			if (chain_idx >= ICE_MAX_FV_WORDS) {
5015 				ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5016 				status = -ENOSPC;
5017 				goto err_unroll;
5018 			}
5019 
5020 			entry->chain_idx = chain_idx;
5021 			content->result_indx =
5022 				ICE_AQ_RECIPE_RESULT_EN |
5023 				FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5024 					   chain_idx);
5025 			clear_bit(chain_idx, result_idx_bm);
5026 			chain_idx = find_first_bit(result_idx_bm,
5027 						   ICE_MAX_FV_WORDS);
5028 		}
5029 
5030 		/* fill recipe dependencies */
5031 		bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5032 			    ICE_MAX_NUM_RECIPES);
5033 		set_bit(buf[recps].recipe_indx,
5034 			(unsigned long *)buf[recps].recipe_bitmap);
5035 		content->act_ctrl_fwd_priority = rm->priority;
5036 
5037 		if (rm->need_pass_l2)
5038 			content->act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5039 
5040 		if (rm->allow_pass_l2)
5041 			content->act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5042 		recps++;
5043 	}
5044 
5045 	if (rm->n_grp_count == 1) {
5046 		rm->root_rid = buf[0].recipe_indx;
5047 		set_bit(buf[0].recipe_indx, rm->r_bitmap);
5048 		buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5049 		if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5050 			memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5051 			       sizeof(buf[0].recipe_bitmap));
5052 		} else {
5053 			status = -EINVAL;
5054 			goto err_unroll;
5055 		}
5056 		/* Applicable only for ROOT_RECIPE, set the fwd_priority for
5057 		 * the recipe which is getting created if specified
5058 		 * by user. Usually any advanced switch filter, which results
5059 		 * into new extraction sequence, ended up creating a new recipe
5060 		 * of type ROOT and usually recipes are associated with profiles
5061 		 * Switch rule referreing newly created recipe, needs to have
5062 		 * either/or 'fwd' or 'join' priority, otherwise switch rule
5063 		 * evaluation will not happen correctly. In other words, if
5064 		 * switch rule to be evaluated on priority basis, then recipe
5065 		 * needs to have priority, otherwise it will be evaluated last.
5066 		 */
5067 		buf[0].content.act_ctrl_fwd_priority = rm->priority;
5068 	} else {
5069 		struct ice_recp_grp_entry *last_chain_entry;
5070 		u16 rid, i;
5071 
5072 		/* Allocate the last recipe that will chain the outcomes of the
5073 		 * other recipes together
5074 		 */
5075 		status = ice_alloc_recipe(hw, &rid);
5076 		if (status)
5077 			goto err_unroll;
5078 
5079 		content = &buf[recps].content;
5080 
5081 		buf[recps].recipe_indx = (u8)rid;
5082 		content->rid = (u8)rid;
5083 		content->rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5084 		/* the new entry created should also be part of rg_list to
5085 		 * make sure we have complete recipe
5086 		 */
5087 		last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5088 						sizeof(*last_chain_entry),
5089 						GFP_KERNEL);
5090 		if (!last_chain_entry) {
5091 			status = -ENOMEM;
5092 			goto err_unroll;
5093 		}
5094 		last_chain_entry->rid = rid;
5095 		memset(&content->lkup_indx, 0, sizeof(content->lkup_indx));
5096 		/* All recipes use look-up index 0 to match switch ID. */
5097 		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5098 		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5099 		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5100 			content->lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5101 			content->mask[i] = 0;
5102 		}
5103 
5104 		i = 1;
5105 		/* update r_bitmap with the recp that is used for chaining */
5106 		set_bit(rid, rm->r_bitmap);
5107 		/* this is the recipe that chains all the other recipes so it
5108 		 * should not have a chaining ID to indicate the same
5109 		 */
5110 		last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5111 		list_for_each_entry(entry, &rm->rg_list, l_entry) {
5112 			last_chain_entry->fv_idx[i] = entry->chain_idx;
5113 			content->lkup_indx[i] = entry->chain_idx;
5114 			content->mask[i++] = cpu_to_le16(0xFFFF);
5115 			set_bit(entry->rid, rm->r_bitmap);
5116 		}
5117 		list_add(&last_chain_entry->l_entry, &rm->rg_list);
5118 		if (sizeof(buf[recps].recipe_bitmap) >=
5119 		    sizeof(rm->r_bitmap)) {
5120 			memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5121 			       sizeof(buf[recps].recipe_bitmap));
5122 		} else {
5123 			status = -EINVAL;
5124 			goto err_unroll;
5125 		}
5126 		content->act_ctrl_fwd_priority = rm->priority;
5127 
5128 		recps++;
5129 		rm->root_rid = (u8)rid;
5130 	}
5131 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5132 	if (status)
5133 		goto err_unroll;
5134 
5135 	status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5136 	ice_release_change_lock(hw);
5137 	if (status)
5138 		goto err_unroll;
5139 
5140 	/* Every recipe that just got created add it to the recipe
5141 	 * book keeping list
5142 	 */
5143 	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5144 		struct ice_switch_info *sw = hw->switch_info;
5145 		bool is_root, idx_found = false;
5146 		struct ice_sw_recipe *recp;
5147 		u16 idx, buf_idx = 0;
5148 
5149 		/* find buffer index for copying some data */
5150 		for (idx = 0; idx < rm->n_grp_count; idx++)
5151 			if (buf[idx].recipe_indx == entry->rid) {
5152 				buf_idx = idx;
5153 				idx_found = true;
5154 			}
5155 
5156 		if (!idx_found) {
5157 			status = -EIO;
5158 			goto err_unroll;
5159 		}
5160 
5161 		recp = &sw->recp_list[entry->rid];
5162 		is_root = (rm->root_rid == entry->rid);
5163 		recp->is_root = is_root;
5164 
5165 		recp->root_rid = entry->rid;
5166 		recp->big_recp = (is_root && rm->n_grp_count > 1);
5167 
5168 		memcpy(&recp->ext_words, entry->r_group.pairs,
5169 		       entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5170 
5171 		memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5172 		       sizeof(recp->r_bitmap));
5173 
5174 		/* Copy non-result fv index values and masks to recipe. This
5175 		 * call will also update the result recipe bitmask.
5176 		 */
5177 		ice_collect_result_idx(&buf[buf_idx], recp);
5178 
5179 		/* for non-root recipes, also copy to the root, this allows
5180 		 * easier matching of a complete chained recipe
5181 		 */
5182 		if (!is_root)
5183 			ice_collect_result_idx(&buf[buf_idx],
5184 					       &sw->recp_list[rm->root_rid]);
5185 
5186 		recp->n_ext_words = entry->r_group.n_val_pairs;
5187 		recp->chain_idx = entry->chain_idx;
5188 		recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5189 		recp->n_grp_count = rm->n_grp_count;
5190 		recp->tun_type = rm->tun_type;
5191 		recp->need_pass_l2 = rm->need_pass_l2;
5192 		recp->allow_pass_l2 = rm->allow_pass_l2;
5193 		recp->recp_created = true;
5194 	}
5195 	rm->root_buf = buf;
5196 	kfree(tmp);
5197 	return status;
5198 
5199 err_unroll:
5200 err_mem:
5201 	kfree(tmp);
5202 	devm_kfree(ice_hw_to_dev(hw), buf);
5203 	return status;
5204 }
5205 
5206 /**
5207  * ice_create_recipe_group - creates recipe group
5208  * @hw: pointer to hardware structure
5209  * @rm: recipe management list entry
5210  * @lkup_exts: lookup elements
5211  */
5212 static int
5213 ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5214 			struct ice_prot_lkup_ext *lkup_exts)
5215 {
5216 	u8 recp_count = 0;
5217 	int status;
5218 
5219 	rm->n_grp_count = 0;
5220 
5221 	/* Create recipes for words that are marked not done by packing them
5222 	 * as best fit.
5223 	 */
5224 	status = ice_create_first_fit_recp_def(hw, lkup_exts,
5225 					       &rm->rg_list, &recp_count);
5226 	if (!status) {
5227 		rm->n_grp_count += recp_count;
5228 		rm->n_ext_words = lkup_exts->n_val_words;
5229 		memcpy(&rm->ext_words, lkup_exts->fv_words,
5230 		       sizeof(rm->ext_words));
5231 		memcpy(rm->word_masks, lkup_exts->field_mask,
5232 		       sizeof(rm->word_masks));
5233 	}
5234 
5235 	return status;
5236 }
5237 
5238 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5239  * @hw: pointer to hardware structure
5240  * @rinfo: other information regarding the rule e.g. priority and action info
5241  * @bm: pointer to memory for returning the bitmap of field vectors
5242  */
5243 static void
5244 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5245 			 unsigned long *bm)
5246 {
5247 	enum ice_prof_type prof_type;
5248 
5249 	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5250 
5251 	switch (rinfo->tun_type) {
5252 	case ICE_NON_TUN:
5253 		prof_type = ICE_PROF_NON_TUN;
5254 		break;
5255 	case ICE_ALL_TUNNELS:
5256 		prof_type = ICE_PROF_TUN_ALL;
5257 		break;
5258 	case ICE_SW_TUN_GENEVE:
5259 	case ICE_SW_TUN_VXLAN:
5260 		prof_type = ICE_PROF_TUN_UDP;
5261 		break;
5262 	case ICE_SW_TUN_NVGRE:
5263 		prof_type = ICE_PROF_TUN_GRE;
5264 		break;
5265 	case ICE_SW_TUN_GTPU:
5266 		prof_type = ICE_PROF_TUN_GTPU;
5267 		break;
5268 	case ICE_SW_TUN_GTPC:
5269 		prof_type = ICE_PROF_TUN_GTPC;
5270 		break;
5271 	case ICE_SW_TUN_AND_NON_TUN:
5272 	default:
5273 		prof_type = ICE_PROF_ALL;
5274 		break;
5275 	}
5276 
5277 	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5278 }
5279 
5280 /**
5281  * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5282  * @hw: pointer to hardware structure
5283  * @lkups: lookup elements or match criteria for the advanced recipe, one
5284  *  structure per protocol header
5285  * @lkups_cnt: number of protocols
5286  * @rinfo: other information regarding the rule e.g. priority and action info
5287  * @rid: return the recipe ID of the recipe created
5288  */
5289 static int
5290 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5291 		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5292 {
5293 	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5294 	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5295 	struct ice_prot_lkup_ext *lkup_exts;
5296 	struct ice_recp_grp_entry *r_entry;
5297 	struct ice_sw_fv_list_entry *fvit;
5298 	struct ice_recp_grp_entry *r_tmp;
5299 	struct ice_sw_fv_list_entry *tmp;
5300 	struct ice_sw_recipe *rm;
5301 	int status = 0;
5302 	u8 i;
5303 
5304 	if (!lkups_cnt)
5305 		return -EINVAL;
5306 
5307 	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5308 	if (!lkup_exts)
5309 		return -ENOMEM;
5310 
5311 	/* Determine the number of words to be matched and if it exceeds a
5312 	 * recipe's restrictions
5313 	 */
5314 	for (i = 0; i < lkups_cnt; i++) {
5315 		u16 count;
5316 
5317 		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5318 			status = -EIO;
5319 			goto err_free_lkup_exts;
5320 		}
5321 
5322 		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5323 		if (!count) {
5324 			status = -EIO;
5325 			goto err_free_lkup_exts;
5326 		}
5327 	}
5328 
5329 	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5330 	if (!rm) {
5331 		status = -ENOMEM;
5332 		goto err_free_lkup_exts;
5333 	}
5334 
5335 	/* Get field vectors that contain fields extracted from all the protocol
5336 	 * headers being programmed.
5337 	 */
5338 	INIT_LIST_HEAD(&rm->fv_list);
5339 	INIT_LIST_HEAD(&rm->rg_list);
5340 
5341 	/* Get bitmap of field vectors (profiles) that are compatible with the
5342 	 * rule request; only these will be searched in the subsequent call to
5343 	 * ice_get_sw_fv_list.
5344 	 */
5345 	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5346 
5347 	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5348 	if (status)
5349 		goto err_unroll;
5350 
5351 	/* Group match words into recipes using preferred recipe grouping
5352 	 * criteria.
5353 	 */
5354 	status = ice_create_recipe_group(hw, rm, lkup_exts);
5355 	if (status)
5356 		goto err_unroll;
5357 
5358 	/* set the recipe priority if specified */
5359 	rm->priority = (u8)rinfo->priority;
5360 
5361 	rm->need_pass_l2 = rinfo->need_pass_l2;
5362 	rm->allow_pass_l2 = rinfo->allow_pass_l2;
5363 
5364 	/* Find offsets from the field vector. Pick the first one for all the
5365 	 * recipes.
5366 	 */
5367 	status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5368 	if (status)
5369 		goto err_unroll;
5370 
5371 	/* get bitmap of all profiles the recipe will be associated with */
5372 	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5373 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5374 		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5375 		set_bit((u16)fvit->profile_id, profiles);
5376 	}
5377 
5378 	/* Look for a recipe which matches our requested fv / mask list */
5379 	*rid = ice_find_recp(hw, lkup_exts, rinfo);
5380 	if (*rid < ICE_MAX_NUM_RECIPES)
5381 		/* Success if found a recipe that match the existing criteria */
5382 		goto err_unroll;
5383 
5384 	rm->tun_type = rinfo->tun_type;
5385 	/* Recipe we need does not exist, add a recipe */
5386 	status = ice_add_sw_recipe(hw, rm, profiles);
5387 	if (status)
5388 		goto err_unroll;
5389 
5390 	/* Associate all the recipes created with all the profiles in the
5391 	 * common field vector.
5392 	 */
5393 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5394 		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5395 		u64 recp_assoc;
5396 		u16 j;
5397 
5398 		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5399 						      &recp_assoc, NULL);
5400 		if (status)
5401 			goto err_unroll;
5402 
5403 		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
5404 		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5405 			  ICE_MAX_NUM_RECIPES);
5406 		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5407 		if (status)
5408 			goto err_unroll;
5409 
5410 		bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES);
5411 		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5412 						      recp_assoc, NULL);
5413 		ice_release_change_lock(hw);
5414 
5415 		if (status)
5416 			goto err_unroll;
5417 
5418 		/* Update profile to recipe bitmap array */
5419 		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5420 			    ICE_MAX_NUM_RECIPES);
5421 
5422 		/* Update recipe to profile bitmap array */
5423 		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5424 			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5425 	}
5426 
5427 	*rid = rm->root_rid;
5428 	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5429 	       sizeof(*lkup_exts));
5430 err_unroll:
5431 	list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5432 		list_del(&r_entry->l_entry);
5433 		devm_kfree(ice_hw_to_dev(hw), r_entry);
5434 	}
5435 
5436 	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5437 		list_del(&fvit->list_entry);
5438 		devm_kfree(ice_hw_to_dev(hw), fvit);
5439 	}
5440 
5441 	devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5442 	kfree(rm);
5443 
5444 err_free_lkup_exts:
5445 	kfree(lkup_exts);
5446 
5447 	return status;
5448 }
5449 
5450 /**
5451  * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5452  *
5453  * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5454  * @num_vlan: number of VLAN tags
5455  */
5456 static struct ice_dummy_pkt_profile *
5457 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5458 			  u32 num_vlan)
5459 {
5460 	struct ice_dummy_pkt_profile *profile;
5461 	struct ice_dummy_pkt_offsets *offsets;
5462 	u32 buf_len, off, etype_off, i;
5463 	u8 *pkt;
5464 
5465 	if (num_vlan < 1 || num_vlan > 2)
5466 		return ERR_PTR(-EINVAL);
5467 
5468 	off = num_vlan * VLAN_HLEN;
5469 
5470 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5471 		  dummy_pkt->offsets_len;
5472 	offsets = kzalloc(buf_len, GFP_KERNEL);
5473 	if (!offsets)
5474 		return ERR_PTR(-ENOMEM);
5475 
5476 	offsets[0] = dummy_pkt->offsets[0];
5477 	if (num_vlan == 2) {
5478 		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5479 		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5480 	} else if (num_vlan == 1) {
5481 		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5482 	}
5483 
5484 	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5485 		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5486 		offsets[i + num_vlan].offset =
5487 			dummy_pkt->offsets[i].offset + off;
5488 	}
5489 	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5490 
5491 	etype_off = dummy_pkt->offsets[1].offset;
5492 
5493 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5494 		  dummy_pkt->pkt_len;
5495 	pkt = kzalloc(buf_len, GFP_KERNEL);
5496 	if (!pkt) {
5497 		kfree(offsets);
5498 		return ERR_PTR(-ENOMEM);
5499 	}
5500 
5501 	memcpy(pkt, dummy_pkt->pkt, etype_off);
5502 	memcpy(pkt + etype_off,
5503 	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5504 	       off);
5505 	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5506 	       dummy_pkt->pkt_len - etype_off);
5507 
5508 	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5509 	if (!profile) {
5510 		kfree(offsets);
5511 		kfree(pkt);
5512 		return ERR_PTR(-ENOMEM);
5513 	}
5514 
5515 	profile->offsets = offsets;
5516 	profile->pkt = pkt;
5517 	profile->pkt_len = buf_len;
5518 	profile->match |= ICE_PKT_KMALLOC;
5519 
5520 	return profile;
5521 }
5522 
5523 /**
5524  * ice_find_dummy_packet - find dummy packet
5525  *
5526  * @lkups: lookup elements or match criteria for the advanced recipe, one
5527  *	   structure per protocol header
5528  * @lkups_cnt: number of protocols
5529  * @tun_type: tunnel type
5530  *
5531  * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5532  */
5533 static const struct ice_dummy_pkt_profile *
5534 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5535 		      enum ice_sw_tunnel_type tun_type)
5536 {
5537 	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5538 	u32 match = 0, vlan_count = 0;
5539 	u16 i;
5540 
5541 	switch (tun_type) {
5542 	case ICE_SW_TUN_GTPC:
5543 		match |= ICE_PKT_TUN_GTPC;
5544 		break;
5545 	case ICE_SW_TUN_GTPU:
5546 		match |= ICE_PKT_TUN_GTPU;
5547 		break;
5548 	case ICE_SW_TUN_NVGRE:
5549 		match |= ICE_PKT_TUN_NVGRE;
5550 		break;
5551 	case ICE_SW_TUN_GENEVE:
5552 	case ICE_SW_TUN_VXLAN:
5553 		match |= ICE_PKT_TUN_UDP;
5554 		break;
5555 	default:
5556 		break;
5557 	}
5558 
5559 	for (i = 0; i < lkups_cnt; i++) {
5560 		if (lkups[i].type == ICE_UDP_ILOS)
5561 			match |= ICE_PKT_INNER_UDP;
5562 		else if (lkups[i].type == ICE_TCP_IL)
5563 			match |= ICE_PKT_INNER_TCP;
5564 		else if (lkups[i].type == ICE_IPV6_OFOS)
5565 			match |= ICE_PKT_OUTER_IPV6;
5566 		else if (lkups[i].type == ICE_VLAN_OFOS ||
5567 			 lkups[i].type == ICE_VLAN_EX)
5568 			vlan_count++;
5569 		else if (lkups[i].type == ICE_VLAN_IN)
5570 			vlan_count++;
5571 		else if (lkups[i].type == ICE_ETYPE_OL &&
5572 			 lkups[i].h_u.ethertype.ethtype_id ==
5573 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5574 			 lkups[i].m_u.ethertype.ethtype_id ==
5575 				cpu_to_be16(0xFFFF))
5576 			match |= ICE_PKT_OUTER_IPV6;
5577 		else if (lkups[i].type == ICE_ETYPE_IL &&
5578 			 lkups[i].h_u.ethertype.ethtype_id ==
5579 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5580 			 lkups[i].m_u.ethertype.ethtype_id ==
5581 				cpu_to_be16(0xFFFF))
5582 			match |= ICE_PKT_INNER_IPV6;
5583 		else if (lkups[i].type == ICE_IPV6_IL)
5584 			match |= ICE_PKT_INNER_IPV6;
5585 		else if (lkups[i].type == ICE_GTP_NO_PAY)
5586 			match |= ICE_PKT_GTP_NOPAY;
5587 		else if (lkups[i].type == ICE_PPPOE) {
5588 			match |= ICE_PKT_PPPOE;
5589 			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5590 			    htons(PPP_IPV6))
5591 				match |= ICE_PKT_OUTER_IPV6;
5592 		} else if (lkups[i].type == ICE_L2TPV3)
5593 			match |= ICE_PKT_L2TPV3;
5594 	}
5595 
5596 	while (ret->match && (match & ret->match) != ret->match)
5597 		ret++;
5598 
5599 	if (vlan_count != 0)
5600 		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5601 
5602 	return ret;
5603 }
5604 
5605 /**
5606  * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5607  *
5608  * @lkups: lookup elements or match criteria for the advanced recipe, one
5609  *	   structure per protocol header
5610  * @lkups_cnt: number of protocols
5611  * @s_rule: stores rule information from the match criteria
5612  * @profile: dummy packet profile (the template, its size and header offsets)
5613  */
5614 static int
5615 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5616 			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5617 			  const struct ice_dummy_pkt_profile *profile)
5618 {
5619 	u8 *pkt;
5620 	u16 i;
5621 
5622 	/* Start with a packet with a pre-defined/dummy content. Then, fill
5623 	 * in the header values to be looked up or matched.
5624 	 */
5625 	pkt = s_rule->hdr_data;
5626 
5627 	memcpy(pkt, profile->pkt, profile->pkt_len);
5628 
5629 	for (i = 0; i < lkups_cnt; i++) {
5630 		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5631 		enum ice_protocol_type type;
5632 		u16 offset = 0, len = 0, j;
5633 		bool found = false;
5634 
5635 		/* find the start of this layer; it should be found since this
5636 		 * was already checked when search for the dummy packet
5637 		 */
5638 		type = lkups[i].type;
5639 		/* metadata isn't present in the packet */
5640 		if (type == ICE_HW_METADATA)
5641 			continue;
5642 
5643 		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5644 			if (type == offsets[j].type) {
5645 				offset = offsets[j].offset;
5646 				found = true;
5647 				break;
5648 			}
5649 		}
5650 		/* this should never happen in a correct calling sequence */
5651 		if (!found)
5652 			return -EINVAL;
5653 
5654 		switch (lkups[i].type) {
5655 		case ICE_MAC_OFOS:
5656 		case ICE_MAC_IL:
5657 			len = sizeof(struct ice_ether_hdr);
5658 			break;
5659 		case ICE_ETYPE_OL:
5660 		case ICE_ETYPE_IL:
5661 			len = sizeof(struct ice_ethtype_hdr);
5662 			break;
5663 		case ICE_VLAN_OFOS:
5664 		case ICE_VLAN_EX:
5665 		case ICE_VLAN_IN:
5666 			len = sizeof(struct ice_vlan_hdr);
5667 			break;
5668 		case ICE_IPV4_OFOS:
5669 		case ICE_IPV4_IL:
5670 			len = sizeof(struct ice_ipv4_hdr);
5671 			break;
5672 		case ICE_IPV6_OFOS:
5673 		case ICE_IPV6_IL:
5674 			len = sizeof(struct ice_ipv6_hdr);
5675 			break;
5676 		case ICE_TCP_IL:
5677 		case ICE_UDP_OF:
5678 		case ICE_UDP_ILOS:
5679 			len = sizeof(struct ice_l4_hdr);
5680 			break;
5681 		case ICE_SCTP_IL:
5682 			len = sizeof(struct ice_sctp_hdr);
5683 			break;
5684 		case ICE_NVGRE:
5685 			len = sizeof(struct ice_nvgre_hdr);
5686 			break;
5687 		case ICE_VXLAN:
5688 		case ICE_GENEVE:
5689 			len = sizeof(struct ice_udp_tnl_hdr);
5690 			break;
5691 		case ICE_GTP_NO_PAY:
5692 		case ICE_GTP:
5693 			len = sizeof(struct ice_udp_gtp_hdr);
5694 			break;
5695 		case ICE_PPPOE:
5696 			len = sizeof(struct ice_pppoe_hdr);
5697 			break;
5698 		case ICE_L2TPV3:
5699 			len = sizeof(struct ice_l2tpv3_sess_hdr);
5700 			break;
5701 		default:
5702 			return -EINVAL;
5703 		}
5704 
5705 		/* the length should be a word multiple */
5706 		if (len % ICE_BYTES_PER_WORD)
5707 			return -EIO;
5708 
5709 		/* We have the offset to the header start, the length, the
5710 		 * caller's header values and mask. Use this information to
5711 		 * copy the data into the dummy packet appropriately based on
5712 		 * the mask. Note that we need to only write the bits as
5713 		 * indicated by the mask to make sure we don't improperly write
5714 		 * over any significant packet data.
5715 		 */
5716 		for (j = 0; j < len / sizeof(u16); j++) {
5717 			u16 *ptr = (u16 *)(pkt + offset);
5718 			u16 mask = lkups[i].m_raw[j];
5719 
5720 			if (!mask)
5721 				continue;
5722 
5723 			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5724 		}
5725 	}
5726 
5727 	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5728 
5729 	return 0;
5730 }
5731 
5732 /**
5733  * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5734  * @hw: pointer to the hardware structure
5735  * @tun_type: tunnel type
5736  * @pkt: dummy packet to fill in
5737  * @offsets: offset info for the dummy packet
5738  */
5739 static int
5740 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5741 			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5742 {
5743 	u16 open_port, i;
5744 
5745 	switch (tun_type) {
5746 	case ICE_SW_TUN_VXLAN:
5747 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5748 			return -EIO;
5749 		break;
5750 	case ICE_SW_TUN_GENEVE:
5751 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5752 			return -EIO;
5753 		break;
5754 	default:
5755 		/* Nothing needs to be done for this tunnel type */
5756 		return 0;
5757 	}
5758 
5759 	/* Find the outer UDP protocol header and insert the port number */
5760 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5761 		if (offsets[i].type == ICE_UDP_OF) {
5762 			struct ice_l4_hdr *hdr;
5763 			u16 offset;
5764 
5765 			offset = offsets[i].offset;
5766 			hdr = (struct ice_l4_hdr *)&pkt[offset];
5767 			hdr->dst_port = cpu_to_be16(open_port);
5768 
5769 			return 0;
5770 		}
5771 	}
5772 
5773 	return -EIO;
5774 }
5775 
5776 /**
5777  * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5778  * @hw: pointer to hw structure
5779  * @vlan_type: VLAN tag type
5780  * @pkt: dummy packet to fill in
5781  * @offsets: offset info for the dummy packet
5782  */
5783 static int
5784 ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5785 			 const struct ice_dummy_pkt_offsets *offsets)
5786 {
5787 	u16 i;
5788 
5789 	/* Check if there is something to do */
5790 	if (!vlan_type || !ice_is_dvm_ena(hw))
5791 		return 0;
5792 
5793 	/* Find VLAN header and insert VLAN TPID */
5794 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5795 		if (offsets[i].type == ICE_VLAN_OFOS ||
5796 		    offsets[i].type == ICE_VLAN_EX) {
5797 			struct ice_vlan_hdr *hdr;
5798 			u16 offset;
5799 
5800 			offset = offsets[i].offset;
5801 			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5802 			hdr->type = cpu_to_be16(vlan_type);
5803 
5804 			return 0;
5805 		}
5806 	}
5807 
5808 	return -EIO;
5809 }
5810 
5811 static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5812 			    const struct ice_adv_rule_info *second)
5813 {
5814 	return first->sw_act.flag == second->sw_act.flag &&
5815 	       first->tun_type == second->tun_type &&
5816 	       first->vlan_type == second->vlan_type &&
5817 	       first->src_vsi == second->src_vsi &&
5818 	       first->need_pass_l2 == second->need_pass_l2 &&
5819 	       first->allow_pass_l2 == second->allow_pass_l2;
5820 }
5821 
5822 /**
5823  * ice_find_adv_rule_entry - Search a rule entry
5824  * @hw: pointer to the hardware structure
5825  * @lkups: lookup elements or match criteria for the advanced recipe, one
5826  *	   structure per protocol header
5827  * @lkups_cnt: number of protocols
5828  * @recp_id: recipe ID for which we are finding the rule
5829  * @rinfo: other information regarding the rule e.g. priority and action info
5830  *
5831  * Helper function to search for a given advance rule entry
5832  * Returns pointer to entry storing the rule if found
5833  */
5834 static struct ice_adv_fltr_mgmt_list_entry *
5835 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5836 			u16 lkups_cnt, u16 recp_id,
5837 			struct ice_adv_rule_info *rinfo)
5838 {
5839 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5840 	struct ice_switch_info *sw = hw->switch_info;
5841 	int i;
5842 
5843 	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5844 			    list_entry) {
5845 		bool lkups_matched = true;
5846 
5847 		if (lkups_cnt != list_itr->lkups_cnt)
5848 			continue;
5849 		for (i = 0; i < list_itr->lkups_cnt; i++)
5850 			if (memcmp(&list_itr->lkups[i], &lkups[i],
5851 				   sizeof(*lkups))) {
5852 				lkups_matched = false;
5853 				break;
5854 			}
5855 		if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5856 		    lkups_matched)
5857 			return list_itr;
5858 	}
5859 	return NULL;
5860 }
5861 
5862 /**
5863  * ice_adv_add_update_vsi_list
5864  * @hw: pointer to the hardware structure
5865  * @m_entry: pointer to current adv filter management list entry
5866  * @cur_fltr: filter information from the book keeping entry
5867  * @new_fltr: filter information with the new VSI to be added
5868  *
5869  * Call AQ command to add or update previously created VSI list with new VSI.
5870  *
5871  * Helper function to do book keeping associated with adding filter information
5872  * The algorithm to do the booking keeping is described below :
5873  * When a VSI needs to subscribe to a given advanced filter
5874  *	if only one VSI has been added till now
5875  *		Allocate a new VSI list and add two VSIs
5876  *		to this list using switch rule command
5877  *		Update the previously created switch rule with the
5878  *		newly created VSI list ID
5879  *	if a VSI list was previously created
5880  *		Add the new VSI to the previously created VSI list set
5881  *		using the update switch rule command
5882  */
5883 static int
5884 ice_adv_add_update_vsi_list(struct ice_hw *hw,
5885 			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5886 			    struct ice_adv_rule_info *cur_fltr,
5887 			    struct ice_adv_rule_info *new_fltr)
5888 {
5889 	u16 vsi_list_id = 0;
5890 	int status;
5891 
5892 	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5893 	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5894 	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5895 		return -EOPNOTSUPP;
5896 
5897 	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5898 	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5899 	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5900 	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5901 		return -EOPNOTSUPP;
5902 
5903 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5904 		 /* Only one entry existed in the mapping and it was not already
5905 		  * a part of a VSI list. So, create a VSI list with the old and
5906 		  * new VSIs.
5907 		  */
5908 		struct ice_fltr_info tmp_fltr;
5909 		u16 vsi_handle_arr[2];
5910 
5911 		/* A rule already exists with the new VSI being added */
5912 		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5913 		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5914 			return -EEXIST;
5915 
5916 		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5917 		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5918 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5919 						  &vsi_list_id,
5920 						  ICE_SW_LKUP_LAST);
5921 		if (status)
5922 			return status;
5923 
5924 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5925 		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5926 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5927 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5928 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5929 		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5930 
5931 		/* Update the previous switch rule of "forward to VSI" to
5932 		 * "fwd to VSI list"
5933 		 */
5934 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5935 		if (status)
5936 			return status;
5937 
5938 		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5939 		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5940 		m_entry->vsi_list_info =
5941 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5942 						vsi_list_id);
5943 	} else {
5944 		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5945 
5946 		if (!m_entry->vsi_list_info)
5947 			return -EIO;
5948 
5949 		/* A rule already exists with the new VSI being added */
5950 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5951 			return 0;
5952 
5953 		/* Update the previously created VSI list set with
5954 		 * the new VSI ID passed in
5955 		 */
5956 		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5957 
5958 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5959 						  vsi_list_id, false,
5960 						  ice_aqc_opc_update_sw_rules,
5961 						  ICE_SW_LKUP_LAST);
5962 		/* update VSI list mapping info with new VSI ID */
5963 		if (!status)
5964 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5965 	}
5966 	if (!status)
5967 		m_entry->vsi_count++;
5968 	return status;
5969 }
5970 
5971 void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
5972 {
5973 	lkup->type = ICE_HW_METADATA;
5974 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
5975 		cpu_to_be16(ICE_PKT_TUNNEL_MASK);
5976 }
5977 
5978 void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
5979 {
5980 	lkup->type = ICE_HW_METADATA;
5981 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5982 		cpu_to_be16(ICE_PKT_FROM_NETWORK);
5983 }
5984 
5985 void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
5986 {
5987 	lkup->type = ICE_HW_METADATA;
5988 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5989 		cpu_to_be16(ICE_PKT_VLAN_MASK);
5990 }
5991 
5992 void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
5993 {
5994 	lkup->type = ICE_HW_METADATA;
5995 	lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
5996 }
5997 
5998 /**
5999  * ice_add_adv_rule - helper function to create an advanced switch rule
6000  * @hw: pointer to the hardware structure
6001  * @lkups: information on the words that needs to be looked up. All words
6002  * together makes one recipe
6003  * @lkups_cnt: num of entries in the lkups array
6004  * @rinfo: other information related to the rule that needs to be programmed
6005  * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6006  *               ignored is case of error.
6007  *
6008  * This function can program only 1 rule at a time. The lkups is used to
6009  * describe the all the words that forms the "lookup" portion of the recipe.
6010  * These words can span multiple protocols. Callers to this function need to
6011  * pass in a list of protocol headers with lookup information along and mask
6012  * that determines which words are valid from the given protocol header.
6013  * rinfo describes other information related to this rule such as forwarding
6014  * IDs, priority of this rule, etc.
6015  */
6016 int
6017 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6018 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6019 		 struct ice_rule_query_data *added_entry)
6020 {
6021 	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6022 	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6023 	const struct ice_dummy_pkt_profile *profile;
6024 	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6025 	struct list_head *rule_head;
6026 	struct ice_switch_info *sw;
6027 	u16 word_cnt;
6028 	u32 act = 0;
6029 	int status;
6030 	u8 q_rgn;
6031 
6032 	/* Initialize profile to result index bitmap */
6033 	if (!hw->switch_info->prof_res_bm_init) {
6034 		hw->switch_info->prof_res_bm_init = 1;
6035 		ice_init_prof_result_bm(hw);
6036 	}
6037 
6038 	if (!lkups_cnt)
6039 		return -EINVAL;
6040 
6041 	/* get # of words we need to match */
6042 	word_cnt = 0;
6043 	for (i = 0; i < lkups_cnt; i++) {
6044 		u16 j;
6045 
6046 		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6047 			if (lkups[i].m_raw[j])
6048 				word_cnt++;
6049 	}
6050 
6051 	if (!word_cnt)
6052 		return -EINVAL;
6053 
6054 	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6055 		return -ENOSPC;
6056 
6057 	/* locate a dummy packet */
6058 	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6059 	if (IS_ERR(profile))
6060 		return PTR_ERR(profile);
6061 
6062 	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6063 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6064 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6065 	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6066 	      rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6067 	      rinfo->sw_act.fltr_act == ICE_NOP)) {
6068 		status = -EIO;
6069 		goto free_pkt_profile;
6070 	}
6071 
6072 	vsi_handle = rinfo->sw_act.vsi_handle;
6073 	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6074 		status =  -EINVAL;
6075 		goto free_pkt_profile;
6076 	}
6077 
6078 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6079 	    rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6080 	    rinfo->sw_act.fltr_act == ICE_NOP) {
6081 		rinfo->sw_act.fwd_id.hw_vsi_id =
6082 			ice_get_hw_vsi_num(hw, vsi_handle);
6083 	}
6084 
6085 	if (rinfo->src_vsi)
6086 		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6087 	else
6088 		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6089 
6090 	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6091 	if (status)
6092 		goto free_pkt_profile;
6093 	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6094 	if (m_entry) {
6095 		/* we have to add VSI to VSI_LIST and increment vsi_count.
6096 		 * Also Update VSI list so that we can change forwarding rule
6097 		 * if the rule already exists, we will check if it exists with
6098 		 * same vsi_id, if not then add it to the VSI list if it already
6099 		 * exists if not then create a VSI list and add the existing VSI
6100 		 * ID and the new VSI ID to the list
6101 		 * We will add that VSI to the list
6102 		 */
6103 		status = ice_adv_add_update_vsi_list(hw, m_entry,
6104 						     &m_entry->rule_info,
6105 						     rinfo);
6106 		if (added_entry) {
6107 			added_entry->rid = rid;
6108 			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6109 			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6110 		}
6111 		goto free_pkt_profile;
6112 	}
6113 	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6114 	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6115 	if (!s_rule) {
6116 		status = -ENOMEM;
6117 		goto free_pkt_profile;
6118 	}
6119 
6120 	if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6121 		if (!rinfo->flags_info.act_valid) {
6122 			act |= ICE_SINGLE_ACT_LAN_ENABLE;
6123 			act |= ICE_SINGLE_ACT_LB_ENABLE;
6124 		} else {
6125 			act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6126 							ICE_SINGLE_ACT_LB_ENABLE);
6127 		}
6128 	}
6129 
6130 	switch (rinfo->sw_act.fltr_act) {
6131 	case ICE_FWD_TO_VSI:
6132 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6133 				  rinfo->sw_act.fwd_id.hw_vsi_id);
6134 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6135 		break;
6136 	case ICE_FWD_TO_Q:
6137 		act |= ICE_SINGLE_ACT_TO_Q;
6138 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6139 				  rinfo->sw_act.fwd_id.q_id);
6140 		break;
6141 	case ICE_FWD_TO_QGRP:
6142 		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6143 			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6144 		act |= ICE_SINGLE_ACT_TO_Q;
6145 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6146 				  rinfo->sw_act.fwd_id.q_id);
6147 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
6148 		break;
6149 	case ICE_DROP_PACKET:
6150 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6151 		       ICE_SINGLE_ACT_VALID_BIT;
6152 		break;
6153 	case ICE_MIRROR_PACKET:
6154 		act |= ICE_SINGLE_ACT_OTHER_ACTS;
6155 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6156 				  rinfo->sw_act.fwd_id.hw_vsi_id);
6157 		break;
6158 	case ICE_NOP:
6159 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6160 				  rinfo->sw_act.fwd_id.hw_vsi_id);
6161 		act &= ~ICE_SINGLE_ACT_VALID_BIT;
6162 		break;
6163 	default:
6164 		status = -EIO;
6165 		goto err_ice_add_adv_rule;
6166 	}
6167 
6168 	/* If there is no matching criteria for direction there
6169 	 * is only one difference between Rx and Tx:
6170 	 * - get switch id base on VSI number from source field (Tx)
6171 	 * - get switch id base on port number (Rx)
6172 	 *
6173 	 * If matching on direction metadata is chose rule direction is
6174 	 * extracted from type value set here.
6175 	 */
6176 	if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6177 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6178 		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6179 	} else {
6180 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6181 		s_rule->src = cpu_to_le16(hw->port_info->lport);
6182 	}
6183 
6184 	s_rule->recipe_id = cpu_to_le16(rid);
6185 	s_rule->act = cpu_to_le32(act);
6186 
6187 	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6188 	if (status)
6189 		goto err_ice_add_adv_rule;
6190 
6191 	status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6192 					 profile->offsets);
6193 	if (status)
6194 		goto err_ice_add_adv_rule;
6195 
6196 	status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6197 					  s_rule->hdr_data,
6198 					  profile->offsets);
6199 	if (status)
6200 		goto err_ice_add_adv_rule;
6201 
6202 	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6203 				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6204 				 NULL);
6205 	if (status)
6206 		goto err_ice_add_adv_rule;
6207 	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6208 				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6209 				GFP_KERNEL);
6210 	if (!adv_fltr) {
6211 		status = -ENOMEM;
6212 		goto err_ice_add_adv_rule;
6213 	}
6214 
6215 	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6216 				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6217 	if (!adv_fltr->lkups) {
6218 		status = -ENOMEM;
6219 		goto err_ice_add_adv_rule;
6220 	}
6221 
6222 	adv_fltr->lkups_cnt = lkups_cnt;
6223 	adv_fltr->rule_info = *rinfo;
6224 	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6225 	sw = hw->switch_info;
6226 	sw->recp_list[rid].adv_rule = true;
6227 	rule_head = &sw->recp_list[rid].filt_rules;
6228 
6229 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6230 		adv_fltr->vsi_count = 1;
6231 
6232 	/* Add rule entry to book keeping list */
6233 	list_add(&adv_fltr->list_entry, rule_head);
6234 	if (added_entry) {
6235 		added_entry->rid = rid;
6236 		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6237 		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6238 	}
6239 err_ice_add_adv_rule:
6240 	if (status && adv_fltr) {
6241 		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6242 		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6243 	}
6244 
6245 	kfree(s_rule);
6246 
6247 free_pkt_profile:
6248 	if (profile->match & ICE_PKT_KMALLOC) {
6249 		kfree(profile->offsets);
6250 		kfree(profile->pkt);
6251 		kfree(profile);
6252 	}
6253 
6254 	return status;
6255 }
6256 
6257 /**
6258  * ice_replay_vsi_fltr - Replay filters for requested VSI
6259  * @hw: pointer to the hardware structure
6260  * @vsi_handle: driver VSI handle
6261  * @recp_id: Recipe ID for which rules need to be replayed
6262  * @list_head: list for which filters need to be replayed
6263  *
6264  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6265  * It is required to pass valid VSI handle.
6266  */
6267 static int
6268 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6269 		    struct list_head *list_head)
6270 {
6271 	struct ice_fltr_mgmt_list_entry *itr;
6272 	int status = 0;
6273 	u16 hw_vsi_id;
6274 
6275 	if (list_empty(list_head))
6276 		return status;
6277 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6278 
6279 	list_for_each_entry(itr, list_head, list_entry) {
6280 		struct ice_fltr_list_entry f_entry;
6281 
6282 		f_entry.fltr_info = itr->fltr_info;
6283 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6284 		    itr->fltr_info.vsi_handle == vsi_handle) {
6285 			/* update the src in case it is VSI num */
6286 			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6287 				f_entry.fltr_info.src = hw_vsi_id;
6288 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6289 			if (status)
6290 				goto end;
6291 			continue;
6292 		}
6293 		if (!itr->vsi_list_info ||
6294 		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6295 			continue;
6296 		/* Clearing it so that the logic can add it back */
6297 		clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6298 		f_entry.fltr_info.vsi_handle = vsi_handle;
6299 		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6300 		/* update the src in case it is VSI num */
6301 		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6302 			f_entry.fltr_info.src = hw_vsi_id;
6303 		if (recp_id == ICE_SW_LKUP_VLAN)
6304 			status = ice_add_vlan_internal(hw, &f_entry);
6305 		else
6306 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6307 		if (status)
6308 			goto end;
6309 	}
6310 end:
6311 	return status;
6312 }
6313 
6314 /**
6315  * ice_adv_rem_update_vsi_list
6316  * @hw: pointer to the hardware structure
6317  * @vsi_handle: VSI handle of the VSI to remove
6318  * @fm_list: filter management entry for which the VSI list management needs to
6319  *	     be done
6320  */
6321 static int
6322 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6323 			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6324 {
6325 	struct ice_vsi_list_map_info *vsi_list_info;
6326 	enum ice_sw_lkup_type lkup_type;
6327 	u16 vsi_list_id;
6328 	int status;
6329 
6330 	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6331 	    fm_list->vsi_count == 0)
6332 		return -EINVAL;
6333 
6334 	/* A rule with the VSI being removed does not exist */
6335 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6336 		return -ENOENT;
6337 
6338 	lkup_type = ICE_SW_LKUP_LAST;
6339 	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6340 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6341 					  ice_aqc_opc_update_sw_rules,
6342 					  lkup_type);
6343 	if (status)
6344 		return status;
6345 
6346 	fm_list->vsi_count--;
6347 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6348 	vsi_list_info = fm_list->vsi_list_info;
6349 	if (fm_list->vsi_count == 1) {
6350 		struct ice_fltr_info tmp_fltr;
6351 		u16 rem_vsi_handle;
6352 
6353 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6354 						ICE_MAX_VSI);
6355 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6356 			return -EIO;
6357 
6358 		/* Make sure VSI list is empty before removing it below */
6359 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6360 						  vsi_list_id, true,
6361 						  ice_aqc_opc_update_sw_rules,
6362 						  lkup_type);
6363 		if (status)
6364 			return status;
6365 
6366 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6367 		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6368 		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6369 		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6370 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6371 		tmp_fltr.fwd_id.hw_vsi_id =
6372 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6373 		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6374 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6375 		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6376 
6377 		/* Update the previous switch rule of "MAC forward to VSI" to
6378 		 * "MAC fwd to VSI list"
6379 		 */
6380 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6381 		if (status) {
6382 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6383 				  tmp_fltr.fwd_id.hw_vsi_id, status);
6384 			return status;
6385 		}
6386 		fm_list->vsi_list_info->ref_cnt--;
6387 
6388 		/* Remove the VSI list since it is no longer used */
6389 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6390 		if (status) {
6391 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6392 				  vsi_list_id, status);
6393 			return status;
6394 		}
6395 
6396 		list_del(&vsi_list_info->list_entry);
6397 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6398 		fm_list->vsi_list_info = NULL;
6399 	}
6400 
6401 	return status;
6402 }
6403 
6404 /**
6405  * ice_rem_adv_rule - removes existing advanced switch rule
6406  * @hw: pointer to the hardware structure
6407  * @lkups: information on the words that needs to be looked up. All words
6408  *         together makes one recipe
6409  * @lkups_cnt: num of entries in the lkups array
6410  * @rinfo: Its the pointer to the rule information for the rule
6411  *
6412  * This function can be used to remove 1 rule at a time. The lkups is
6413  * used to describe all the words that forms the "lookup" portion of the
6414  * rule. These words can span multiple protocols. Callers to this function
6415  * need to pass in a list of protocol headers with lookup information along
6416  * and mask that determines which words are valid from the given protocol
6417  * header. rinfo describes other information related to this rule such as
6418  * forwarding IDs, priority of this rule, etc.
6419  */
6420 static int
6421 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6422 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6423 {
6424 	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6425 	struct ice_prot_lkup_ext lkup_exts;
6426 	bool remove_rule = false;
6427 	struct mutex *rule_lock; /* Lock to protect filter rule list */
6428 	u16 i, rid, vsi_handle;
6429 	int status = 0;
6430 
6431 	memset(&lkup_exts, 0, sizeof(lkup_exts));
6432 	for (i = 0; i < lkups_cnt; i++) {
6433 		u16 count;
6434 
6435 		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6436 			return -EIO;
6437 
6438 		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6439 		if (!count)
6440 			return -EIO;
6441 	}
6442 
6443 	rid = ice_find_recp(hw, &lkup_exts, rinfo);
6444 	/* If did not find a recipe that match the existing criteria */
6445 	if (rid == ICE_MAX_NUM_RECIPES)
6446 		return -EINVAL;
6447 
6448 	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6449 	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6450 	/* the rule is already removed */
6451 	if (!list_elem)
6452 		return 0;
6453 	mutex_lock(rule_lock);
6454 	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6455 		remove_rule = true;
6456 	} else if (list_elem->vsi_count > 1) {
6457 		remove_rule = false;
6458 		vsi_handle = rinfo->sw_act.vsi_handle;
6459 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6460 	} else {
6461 		vsi_handle = rinfo->sw_act.vsi_handle;
6462 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6463 		if (status) {
6464 			mutex_unlock(rule_lock);
6465 			return status;
6466 		}
6467 		if (list_elem->vsi_count == 0)
6468 			remove_rule = true;
6469 	}
6470 	mutex_unlock(rule_lock);
6471 	if (remove_rule) {
6472 		struct ice_sw_rule_lkup_rx_tx *s_rule;
6473 		u16 rule_buf_sz;
6474 
6475 		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6476 		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6477 		if (!s_rule)
6478 			return -ENOMEM;
6479 		s_rule->act = 0;
6480 		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6481 		s_rule->hdr_len = 0;
6482 		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6483 					 rule_buf_sz, 1,
6484 					 ice_aqc_opc_remove_sw_rules, NULL);
6485 		if (!status || status == -ENOENT) {
6486 			struct ice_switch_info *sw = hw->switch_info;
6487 
6488 			mutex_lock(rule_lock);
6489 			list_del(&list_elem->list_entry);
6490 			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6491 			devm_kfree(ice_hw_to_dev(hw), list_elem);
6492 			mutex_unlock(rule_lock);
6493 			if (list_empty(&sw->recp_list[rid].filt_rules))
6494 				sw->recp_list[rid].adv_rule = false;
6495 		}
6496 		kfree(s_rule);
6497 	}
6498 	return status;
6499 }
6500 
6501 /**
6502  * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6503  * @hw: pointer to the hardware structure
6504  * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6505  *
6506  * This function is used to remove 1 rule at a time. The removal is based on
6507  * the remove_entry parameter. This function will remove rule for a given
6508  * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6509  */
6510 int
6511 ice_rem_adv_rule_by_id(struct ice_hw *hw,
6512 		       struct ice_rule_query_data *remove_entry)
6513 {
6514 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6515 	struct list_head *list_head;
6516 	struct ice_adv_rule_info rinfo;
6517 	struct ice_switch_info *sw;
6518 
6519 	sw = hw->switch_info;
6520 	if (!sw->recp_list[remove_entry->rid].recp_created)
6521 		return -EINVAL;
6522 	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6523 	list_for_each_entry(list_itr, list_head, list_entry) {
6524 		if (list_itr->rule_info.fltr_rule_id ==
6525 		    remove_entry->rule_id) {
6526 			rinfo = list_itr->rule_info;
6527 			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6528 			return ice_rem_adv_rule(hw, list_itr->lkups,
6529 						list_itr->lkups_cnt, &rinfo);
6530 		}
6531 	}
6532 	/* either list is empty or unable to find rule */
6533 	return -ENOENT;
6534 }
6535 
6536 /**
6537  * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6538  * @hw: pointer to the hardware structure
6539  * @vsi_handle: driver VSI handle
6540  * @list_head: list for which filters need to be replayed
6541  *
6542  * Replay the advanced rule for the given VSI.
6543  */
6544 static int
6545 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6546 			struct list_head *list_head)
6547 {
6548 	struct ice_rule_query_data added_entry = { 0 };
6549 	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6550 	int status = 0;
6551 
6552 	if (list_empty(list_head))
6553 		return status;
6554 	list_for_each_entry(adv_fltr, list_head, list_entry) {
6555 		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6556 		u16 lk_cnt = adv_fltr->lkups_cnt;
6557 
6558 		if (vsi_handle != rinfo->sw_act.vsi_handle)
6559 			continue;
6560 		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6561 					  &added_entry);
6562 		if (status)
6563 			break;
6564 	}
6565 	return status;
6566 }
6567 
6568 /**
6569  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6570  * @hw: pointer to the hardware structure
6571  * @vsi_handle: driver VSI handle
6572  *
6573  * Replays filters for requested VSI via vsi_handle.
6574  */
6575 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6576 {
6577 	struct ice_switch_info *sw = hw->switch_info;
6578 	int status;
6579 	u8 i;
6580 
6581 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6582 		struct list_head *head;
6583 
6584 		head = &sw->recp_list[i].filt_replay_rules;
6585 		if (!sw->recp_list[i].adv_rule)
6586 			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6587 		else
6588 			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6589 		if (status)
6590 			return status;
6591 	}
6592 	return status;
6593 }
6594 
6595 /**
6596  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6597  * @hw: pointer to the HW struct
6598  *
6599  * Deletes the filter replay rules.
6600  */
6601 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6602 {
6603 	struct ice_switch_info *sw = hw->switch_info;
6604 	u8 i;
6605 
6606 	if (!sw)
6607 		return;
6608 
6609 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6610 		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6611 			struct list_head *l_head;
6612 
6613 			l_head = &sw->recp_list[i].filt_replay_rules;
6614 			if (!sw->recp_list[i].adv_rule)
6615 				ice_rem_sw_rule_info(hw, l_head);
6616 			else
6617 				ice_rem_adv_rule_info(hw, l_head);
6618 		}
6619 	}
6620 }
6621