xref: /linux/drivers/net/ethernet/intel/ice/ice_switch.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_lib.h"
5 #include "ice_switch.h"
6 
7 #define ICE_ETH_DA_OFFSET		0
8 #define ICE_ETH_ETHTYPE_OFFSET		12
9 #define ICE_ETH_VLAN_TCI_OFFSET		14
10 #define ICE_MAX_VLAN_ID			0xFFF
11 #define ICE_IPV6_ETHER_ID		0x86DD
12 
13 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
14  * struct to configure any switch filter rules.
15  * {DA (6 bytes), SA(6 bytes),
16  * Ether type (2 bytes for header without VLAN tag) OR
17  * VLAN tag (4 bytes for header with VLAN tag) }
18  *
19  * Word on Hardcoded values
20  * byte 0 = 0x2: to identify it as locally administered DA MAC
21  * byte 6 = 0x2: to identify it as locally administered SA MAC
22  * byte 12 = 0x81 & byte 13 = 0x00:
23  *      In case of VLAN filter first two bytes defines ether type (0x8100)
24  *      and remaining two bytes are placeholder for programming a given VLAN ID
25  *      In case of Ether type filter it is treated as header without VLAN tag
26  *      and byte 12 and 13 is used to program a given Ether type instead
27  */
28 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
29 							0x2, 0, 0, 0, 0, 0,
30 							0x81, 0, 0, 0};
31 
32 enum {
33 	ICE_PKT_OUTER_IPV6	= BIT(0),
34 	ICE_PKT_TUN_GTPC	= BIT(1),
35 	ICE_PKT_TUN_GTPU	= BIT(2),
36 	ICE_PKT_TUN_NVGRE	= BIT(3),
37 	ICE_PKT_TUN_UDP		= BIT(4),
38 	ICE_PKT_INNER_IPV6	= BIT(5),
39 	ICE_PKT_INNER_TCP	= BIT(6),
40 	ICE_PKT_INNER_UDP	= BIT(7),
41 	ICE_PKT_GTP_NOPAY	= BIT(8),
42 	ICE_PKT_KMALLOC		= BIT(9),
43 	ICE_PKT_PPPOE		= BIT(10),
44 	ICE_PKT_L2TPV3		= BIT(11),
45 };
46 
47 struct ice_dummy_pkt_offsets {
48 	enum ice_protocol_type type;
49 	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
50 };
51 
52 struct ice_dummy_pkt_profile {
53 	const struct ice_dummy_pkt_offsets *offsets;
54 	const u8 *pkt;
55 	u32 match;
56 	u16 pkt_len;
57 	u16 offsets_len;
58 };
59 
60 #define ICE_DECLARE_PKT_OFFSETS(type)					\
61 	static const struct ice_dummy_pkt_offsets			\
62 	ice_dummy_##type##_packet_offsets[]
63 
64 #define ICE_DECLARE_PKT_TEMPLATE(type)					\
65 	static const u8 ice_dummy_##type##_packet[]
66 
67 #define ICE_PKT_PROFILE(type, m) {					\
68 	.match		= (m),						\
69 	.pkt		= ice_dummy_##type##_packet,			\
70 	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
71 	.offsets	= ice_dummy_##type##_packet_offsets,		\
72 	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
73 }
74 
75 ICE_DECLARE_PKT_OFFSETS(vlan) = {
76 	{ ICE_VLAN_OFOS,        12 },
77 };
78 
79 ICE_DECLARE_PKT_TEMPLATE(vlan) = {
80 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
81 };
82 
83 ICE_DECLARE_PKT_OFFSETS(qinq) = {
84 	{ ICE_VLAN_EX,          12 },
85 	{ ICE_VLAN_IN,          16 },
86 };
87 
88 ICE_DECLARE_PKT_TEMPLATE(qinq) = {
89 	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
90 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
91 };
92 
93 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
94 	{ ICE_MAC_OFOS,		0 },
95 	{ ICE_ETYPE_OL,		12 },
96 	{ ICE_IPV4_OFOS,	14 },
97 	{ ICE_NVGRE,		34 },
98 	{ ICE_MAC_IL,		42 },
99 	{ ICE_ETYPE_IL,		54 },
100 	{ ICE_IPV4_IL,		56 },
101 	{ ICE_TCP_IL,		76 },
102 	{ ICE_PROTOCOL_LAST,	0 },
103 };
104 
105 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
106 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
107 	0x00, 0x00, 0x00, 0x00,
108 	0x00, 0x00, 0x00, 0x00,
109 
110 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
111 
112 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
113 	0x00, 0x00, 0x00, 0x00,
114 	0x00, 0x2F, 0x00, 0x00,
115 	0x00, 0x00, 0x00, 0x00,
116 	0x00, 0x00, 0x00, 0x00,
117 
118 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
119 	0x00, 0x00, 0x00, 0x00,
120 
121 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
122 	0x00, 0x00, 0x00, 0x00,
123 	0x00, 0x00, 0x00, 0x00,
124 
125 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
126 
127 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
128 	0x00, 0x00, 0x00, 0x00,
129 	0x00, 0x06, 0x00, 0x00,
130 	0x00, 0x00, 0x00, 0x00,
131 	0x00, 0x00, 0x00, 0x00,
132 
133 	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
134 	0x00, 0x00, 0x00, 0x00,
135 	0x00, 0x00, 0x00, 0x00,
136 	0x50, 0x02, 0x20, 0x00,
137 	0x00, 0x00, 0x00, 0x00
138 };
139 
140 ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
141 	{ ICE_MAC_OFOS,		0 },
142 	{ ICE_ETYPE_OL,		12 },
143 	{ ICE_IPV4_OFOS,	14 },
144 	{ ICE_NVGRE,		34 },
145 	{ ICE_MAC_IL,		42 },
146 	{ ICE_ETYPE_IL,		54 },
147 	{ ICE_IPV4_IL,		56 },
148 	{ ICE_UDP_ILOS,		76 },
149 	{ ICE_PROTOCOL_LAST,	0 },
150 };
151 
152 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
153 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
154 	0x00, 0x00, 0x00, 0x00,
155 	0x00, 0x00, 0x00, 0x00,
156 
157 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
158 
159 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
160 	0x00, 0x00, 0x00, 0x00,
161 	0x00, 0x2F, 0x00, 0x00,
162 	0x00, 0x00, 0x00, 0x00,
163 	0x00, 0x00, 0x00, 0x00,
164 
165 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
166 	0x00, 0x00, 0x00, 0x00,
167 
168 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
169 	0x00, 0x00, 0x00, 0x00,
170 	0x00, 0x00, 0x00, 0x00,
171 
172 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
173 
174 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
175 	0x00, 0x00, 0x00, 0x00,
176 	0x00, 0x11, 0x00, 0x00,
177 	0x00, 0x00, 0x00, 0x00,
178 	0x00, 0x00, 0x00, 0x00,
179 
180 	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
181 	0x00, 0x08, 0x00, 0x00,
182 };
183 
184 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
185 	{ ICE_MAC_OFOS,		0 },
186 	{ ICE_ETYPE_OL,		12 },
187 	{ ICE_IPV4_OFOS,	14 },
188 	{ ICE_UDP_OF,		34 },
189 	{ ICE_VXLAN,		42 },
190 	{ ICE_GENEVE,		42 },
191 	{ ICE_VXLAN_GPE,	42 },
192 	{ ICE_MAC_IL,		50 },
193 	{ ICE_ETYPE_IL,		62 },
194 	{ ICE_IPV4_IL,		64 },
195 	{ ICE_TCP_IL,		84 },
196 	{ ICE_PROTOCOL_LAST,	0 },
197 };
198 
199 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
200 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
201 	0x00, 0x00, 0x00, 0x00,
202 	0x00, 0x00, 0x00, 0x00,
203 
204 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
205 
206 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
207 	0x00, 0x01, 0x00, 0x00,
208 	0x40, 0x11, 0x00, 0x00,
209 	0x00, 0x00, 0x00, 0x00,
210 	0x00, 0x00, 0x00, 0x00,
211 
212 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
213 	0x00, 0x46, 0x00, 0x00,
214 
215 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
216 	0x00, 0x00, 0x00, 0x00,
217 
218 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
219 	0x00, 0x00, 0x00, 0x00,
220 	0x00, 0x00, 0x00, 0x00,
221 
222 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
223 
224 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
225 	0x00, 0x01, 0x00, 0x00,
226 	0x40, 0x06, 0x00, 0x00,
227 	0x00, 0x00, 0x00, 0x00,
228 	0x00, 0x00, 0x00, 0x00,
229 
230 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
231 	0x00, 0x00, 0x00, 0x00,
232 	0x00, 0x00, 0x00, 0x00,
233 	0x50, 0x02, 0x20, 0x00,
234 	0x00, 0x00, 0x00, 0x00
235 };
236 
237 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
238 	{ ICE_MAC_OFOS,		0 },
239 	{ ICE_ETYPE_OL,		12 },
240 	{ ICE_IPV4_OFOS,	14 },
241 	{ ICE_UDP_OF,		34 },
242 	{ ICE_VXLAN,		42 },
243 	{ ICE_GENEVE,		42 },
244 	{ ICE_VXLAN_GPE,	42 },
245 	{ ICE_MAC_IL,		50 },
246 	{ ICE_ETYPE_IL,		62 },
247 	{ ICE_IPV4_IL,		64 },
248 	{ ICE_UDP_ILOS,		84 },
249 	{ ICE_PROTOCOL_LAST,	0 },
250 };
251 
252 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
253 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
254 	0x00, 0x00, 0x00, 0x00,
255 	0x00, 0x00, 0x00, 0x00,
256 
257 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
258 
259 	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
260 	0x00, 0x01, 0x00, 0x00,
261 	0x00, 0x11, 0x00, 0x00,
262 	0x00, 0x00, 0x00, 0x00,
263 	0x00, 0x00, 0x00, 0x00,
264 
265 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
266 	0x00, 0x3a, 0x00, 0x00,
267 
268 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
269 	0x00, 0x00, 0x00, 0x00,
270 
271 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
272 	0x00, 0x00, 0x00, 0x00,
273 	0x00, 0x00, 0x00, 0x00,
274 
275 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
276 
277 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
278 	0x00, 0x01, 0x00, 0x00,
279 	0x00, 0x11, 0x00, 0x00,
280 	0x00, 0x00, 0x00, 0x00,
281 	0x00, 0x00, 0x00, 0x00,
282 
283 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
284 	0x00, 0x08, 0x00, 0x00,
285 };
286 
287 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
288 	{ ICE_MAC_OFOS,		0 },
289 	{ ICE_ETYPE_OL,		12 },
290 	{ ICE_IPV4_OFOS,	14 },
291 	{ ICE_NVGRE,		34 },
292 	{ ICE_MAC_IL,		42 },
293 	{ ICE_ETYPE_IL,		54 },
294 	{ ICE_IPV6_IL,		56 },
295 	{ ICE_TCP_IL,		96 },
296 	{ ICE_PROTOCOL_LAST,	0 },
297 };
298 
299 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
300 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
301 	0x00, 0x00, 0x00, 0x00,
302 	0x00, 0x00, 0x00, 0x00,
303 
304 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
305 
306 	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
307 	0x00, 0x00, 0x00, 0x00,
308 	0x00, 0x2F, 0x00, 0x00,
309 	0x00, 0x00, 0x00, 0x00,
310 	0x00, 0x00, 0x00, 0x00,
311 
312 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
313 	0x00, 0x00, 0x00, 0x00,
314 
315 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
316 	0x00, 0x00, 0x00, 0x00,
317 	0x00, 0x00, 0x00, 0x00,
318 
319 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
320 
321 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
322 	0x00, 0x08, 0x06, 0x40,
323 	0x00, 0x00, 0x00, 0x00,
324 	0x00, 0x00, 0x00, 0x00,
325 	0x00, 0x00, 0x00, 0x00,
326 	0x00, 0x00, 0x00, 0x00,
327 	0x00, 0x00, 0x00, 0x00,
328 	0x00, 0x00, 0x00, 0x00,
329 	0x00, 0x00, 0x00, 0x00,
330 	0x00, 0x00, 0x00, 0x00,
331 
332 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
333 	0x00, 0x00, 0x00, 0x00,
334 	0x00, 0x00, 0x00, 0x00,
335 	0x50, 0x02, 0x20, 0x00,
336 	0x00, 0x00, 0x00, 0x00
337 };
338 
339 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
340 	{ ICE_MAC_OFOS,		0 },
341 	{ ICE_ETYPE_OL,		12 },
342 	{ ICE_IPV4_OFOS,	14 },
343 	{ ICE_NVGRE,		34 },
344 	{ ICE_MAC_IL,		42 },
345 	{ ICE_ETYPE_IL,		54 },
346 	{ ICE_IPV6_IL,		56 },
347 	{ ICE_UDP_ILOS,		96 },
348 	{ ICE_PROTOCOL_LAST,	0 },
349 };
350 
351 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
352 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
353 	0x00, 0x00, 0x00, 0x00,
354 	0x00, 0x00, 0x00, 0x00,
355 
356 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
357 
358 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
359 	0x00, 0x00, 0x00, 0x00,
360 	0x00, 0x2F, 0x00, 0x00,
361 	0x00, 0x00, 0x00, 0x00,
362 	0x00, 0x00, 0x00, 0x00,
363 
364 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
365 	0x00, 0x00, 0x00, 0x00,
366 
367 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
368 	0x00, 0x00, 0x00, 0x00,
369 	0x00, 0x00, 0x00, 0x00,
370 
371 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
372 
373 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
374 	0x00, 0x08, 0x11, 0x40,
375 	0x00, 0x00, 0x00, 0x00,
376 	0x00, 0x00, 0x00, 0x00,
377 	0x00, 0x00, 0x00, 0x00,
378 	0x00, 0x00, 0x00, 0x00,
379 	0x00, 0x00, 0x00, 0x00,
380 	0x00, 0x00, 0x00, 0x00,
381 	0x00, 0x00, 0x00, 0x00,
382 	0x00, 0x00, 0x00, 0x00,
383 
384 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
385 	0x00, 0x08, 0x00, 0x00,
386 };
387 
388 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
389 	{ ICE_MAC_OFOS,		0 },
390 	{ ICE_ETYPE_OL,		12 },
391 	{ ICE_IPV4_OFOS,	14 },
392 	{ ICE_UDP_OF,		34 },
393 	{ ICE_VXLAN,		42 },
394 	{ ICE_GENEVE,		42 },
395 	{ ICE_VXLAN_GPE,	42 },
396 	{ ICE_MAC_IL,		50 },
397 	{ ICE_ETYPE_IL,		62 },
398 	{ ICE_IPV6_IL,		64 },
399 	{ ICE_TCP_IL,		104 },
400 	{ ICE_PROTOCOL_LAST,	0 },
401 };
402 
403 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
404 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
405 	0x00, 0x00, 0x00, 0x00,
406 	0x00, 0x00, 0x00, 0x00,
407 
408 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
409 
410 	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
411 	0x00, 0x01, 0x00, 0x00,
412 	0x40, 0x11, 0x00, 0x00,
413 	0x00, 0x00, 0x00, 0x00,
414 	0x00, 0x00, 0x00, 0x00,
415 
416 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
417 	0x00, 0x5a, 0x00, 0x00,
418 
419 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
420 	0x00, 0x00, 0x00, 0x00,
421 
422 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
423 	0x00, 0x00, 0x00, 0x00,
424 	0x00, 0x00, 0x00, 0x00,
425 
426 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
427 
428 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
429 	0x00, 0x08, 0x06, 0x40,
430 	0x00, 0x00, 0x00, 0x00,
431 	0x00, 0x00, 0x00, 0x00,
432 	0x00, 0x00, 0x00, 0x00,
433 	0x00, 0x00, 0x00, 0x00,
434 	0x00, 0x00, 0x00, 0x00,
435 	0x00, 0x00, 0x00, 0x00,
436 	0x00, 0x00, 0x00, 0x00,
437 	0x00, 0x00, 0x00, 0x00,
438 
439 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
440 	0x00, 0x00, 0x00, 0x00,
441 	0x00, 0x00, 0x00, 0x00,
442 	0x50, 0x02, 0x20, 0x00,
443 	0x00, 0x00, 0x00, 0x00
444 };
445 
446 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
447 	{ ICE_MAC_OFOS,		0 },
448 	{ ICE_ETYPE_OL,		12 },
449 	{ ICE_IPV4_OFOS,	14 },
450 	{ ICE_UDP_OF,		34 },
451 	{ ICE_VXLAN,		42 },
452 	{ ICE_GENEVE,		42 },
453 	{ ICE_VXLAN_GPE,	42 },
454 	{ ICE_MAC_IL,		50 },
455 	{ ICE_ETYPE_IL,		62 },
456 	{ ICE_IPV6_IL,		64 },
457 	{ ICE_UDP_ILOS,		104 },
458 	{ ICE_PROTOCOL_LAST,	0 },
459 };
460 
461 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
462 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
463 	0x00, 0x00, 0x00, 0x00,
464 	0x00, 0x00, 0x00, 0x00,
465 
466 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
467 
468 	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
469 	0x00, 0x01, 0x00, 0x00,
470 	0x00, 0x11, 0x00, 0x00,
471 	0x00, 0x00, 0x00, 0x00,
472 	0x00, 0x00, 0x00, 0x00,
473 
474 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
475 	0x00, 0x4e, 0x00, 0x00,
476 
477 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
478 	0x00, 0x00, 0x00, 0x00,
479 
480 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
481 	0x00, 0x00, 0x00, 0x00,
482 	0x00, 0x00, 0x00, 0x00,
483 
484 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
485 
486 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
487 	0x00, 0x08, 0x11, 0x40,
488 	0x00, 0x00, 0x00, 0x00,
489 	0x00, 0x00, 0x00, 0x00,
490 	0x00, 0x00, 0x00, 0x00,
491 	0x00, 0x00, 0x00, 0x00,
492 	0x00, 0x00, 0x00, 0x00,
493 	0x00, 0x00, 0x00, 0x00,
494 	0x00, 0x00, 0x00, 0x00,
495 	0x00, 0x00, 0x00, 0x00,
496 
497 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
498 	0x00, 0x08, 0x00, 0x00,
499 };
500 
501 /* offset info for MAC + IPv4 + UDP dummy packet */
502 ICE_DECLARE_PKT_OFFSETS(udp) = {
503 	{ ICE_MAC_OFOS,		0 },
504 	{ ICE_ETYPE_OL,		12 },
505 	{ ICE_IPV4_OFOS,	14 },
506 	{ ICE_UDP_ILOS,		34 },
507 	{ ICE_PROTOCOL_LAST,	0 },
508 };
509 
510 /* Dummy packet for MAC + IPv4 + UDP */
511 ICE_DECLARE_PKT_TEMPLATE(udp) = {
512 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
513 	0x00, 0x00, 0x00, 0x00,
514 	0x00, 0x00, 0x00, 0x00,
515 
516 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
517 
518 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
519 	0x00, 0x01, 0x00, 0x00,
520 	0x00, 0x11, 0x00, 0x00,
521 	0x00, 0x00, 0x00, 0x00,
522 	0x00, 0x00, 0x00, 0x00,
523 
524 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
525 	0x00, 0x08, 0x00, 0x00,
526 
527 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
528 };
529 
530 /* offset info for MAC + IPv4 + TCP dummy packet */
531 ICE_DECLARE_PKT_OFFSETS(tcp) = {
532 	{ ICE_MAC_OFOS,		0 },
533 	{ ICE_ETYPE_OL,		12 },
534 	{ ICE_IPV4_OFOS,	14 },
535 	{ ICE_TCP_IL,		34 },
536 	{ ICE_PROTOCOL_LAST,	0 },
537 };
538 
539 /* Dummy packet for MAC + IPv4 + TCP */
540 ICE_DECLARE_PKT_TEMPLATE(tcp) = {
541 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
542 	0x00, 0x00, 0x00, 0x00,
543 	0x00, 0x00, 0x00, 0x00,
544 
545 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
546 
547 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
548 	0x00, 0x01, 0x00, 0x00,
549 	0x00, 0x06, 0x00, 0x00,
550 	0x00, 0x00, 0x00, 0x00,
551 	0x00, 0x00, 0x00, 0x00,
552 
553 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
554 	0x00, 0x00, 0x00, 0x00,
555 	0x00, 0x00, 0x00, 0x00,
556 	0x50, 0x00, 0x00, 0x00,
557 	0x00, 0x00, 0x00, 0x00,
558 
559 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
560 };
561 
562 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
563 	{ ICE_MAC_OFOS,		0 },
564 	{ ICE_ETYPE_OL,		12 },
565 	{ ICE_IPV6_OFOS,	14 },
566 	{ ICE_TCP_IL,		54 },
567 	{ ICE_PROTOCOL_LAST,	0 },
568 };
569 
570 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
571 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
572 	0x00, 0x00, 0x00, 0x00,
573 	0x00, 0x00, 0x00, 0x00,
574 
575 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
576 
577 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
578 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
579 	0x00, 0x00, 0x00, 0x00,
580 	0x00, 0x00, 0x00, 0x00,
581 	0x00, 0x00, 0x00, 0x00,
582 	0x00, 0x00, 0x00, 0x00,
583 	0x00, 0x00, 0x00, 0x00,
584 	0x00, 0x00, 0x00, 0x00,
585 	0x00, 0x00, 0x00, 0x00,
586 	0x00, 0x00, 0x00, 0x00,
587 
588 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
589 	0x00, 0x00, 0x00, 0x00,
590 	0x00, 0x00, 0x00, 0x00,
591 	0x50, 0x00, 0x00, 0x00,
592 	0x00, 0x00, 0x00, 0x00,
593 
594 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
595 };
596 
597 /* IPv6 + UDP */
598 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
599 	{ ICE_MAC_OFOS,		0 },
600 	{ ICE_ETYPE_OL,		12 },
601 	{ ICE_IPV6_OFOS,	14 },
602 	{ ICE_UDP_ILOS,		54 },
603 	{ ICE_PROTOCOL_LAST,	0 },
604 };
605 
606 /* IPv6 + UDP dummy packet */
607 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
608 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
609 	0x00, 0x00, 0x00, 0x00,
610 	0x00, 0x00, 0x00, 0x00,
611 
612 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
613 
614 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
615 	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
616 	0x00, 0x00, 0x00, 0x00,
617 	0x00, 0x00, 0x00, 0x00,
618 	0x00, 0x00, 0x00, 0x00,
619 	0x00, 0x00, 0x00, 0x00,
620 	0x00, 0x00, 0x00, 0x00,
621 	0x00, 0x00, 0x00, 0x00,
622 	0x00, 0x00, 0x00, 0x00,
623 	0x00, 0x00, 0x00, 0x00,
624 
625 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
626 	0x00, 0x10, 0x00, 0x00,
627 
628 	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
629 	0x00, 0x00, 0x00, 0x00,
630 
631 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
632 };
633 
634 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
635 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
636 	{ ICE_MAC_OFOS,		0 },
637 	{ ICE_IPV4_OFOS,	14 },
638 	{ ICE_UDP_OF,		34 },
639 	{ ICE_GTP,		42 },
640 	{ ICE_IPV4_IL,		62 },
641 	{ ICE_TCP_IL,		82 },
642 	{ ICE_PROTOCOL_LAST,	0 },
643 };
644 
645 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
646 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
647 	0x00, 0x00, 0x00, 0x00,
648 	0x00, 0x00, 0x00, 0x00,
649 	0x08, 0x00,
650 
651 	0x45, 0x00, 0x00, 0x58, /* IP 14 */
652 	0x00, 0x00, 0x00, 0x00,
653 	0x00, 0x11, 0x00, 0x00,
654 	0x00, 0x00, 0x00, 0x00,
655 	0x00, 0x00, 0x00, 0x00,
656 
657 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
658 	0x00, 0x44, 0x00, 0x00,
659 
660 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
661 	0x00, 0x00, 0x00, 0x00,
662 	0x00, 0x00, 0x00, 0x85,
663 
664 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
665 	0x00, 0x00, 0x00, 0x00,
666 
667 	0x45, 0x00, 0x00, 0x28, /* IP 62 */
668 	0x00, 0x00, 0x00, 0x00,
669 	0x00, 0x06, 0x00, 0x00,
670 	0x00, 0x00, 0x00, 0x00,
671 	0x00, 0x00, 0x00, 0x00,
672 
673 	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
674 	0x00, 0x00, 0x00, 0x00,
675 	0x00, 0x00, 0x00, 0x00,
676 	0x50, 0x00, 0x00, 0x00,
677 	0x00, 0x00, 0x00, 0x00,
678 
679 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
680 };
681 
682 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
683 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
684 	{ ICE_MAC_OFOS,		0 },
685 	{ ICE_IPV4_OFOS,	14 },
686 	{ ICE_UDP_OF,		34 },
687 	{ ICE_GTP,		42 },
688 	{ ICE_IPV4_IL,		62 },
689 	{ ICE_UDP_ILOS,		82 },
690 	{ ICE_PROTOCOL_LAST,	0 },
691 };
692 
693 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
694 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
695 	0x00, 0x00, 0x00, 0x00,
696 	0x00, 0x00, 0x00, 0x00,
697 	0x08, 0x00,
698 
699 	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
700 	0x00, 0x00, 0x00, 0x00,
701 	0x00, 0x11, 0x00, 0x00,
702 	0x00, 0x00, 0x00, 0x00,
703 	0x00, 0x00, 0x00, 0x00,
704 
705 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
706 	0x00, 0x38, 0x00, 0x00,
707 
708 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
709 	0x00, 0x00, 0x00, 0x00,
710 	0x00, 0x00, 0x00, 0x85,
711 
712 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
713 	0x00, 0x00, 0x00, 0x00,
714 
715 	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
716 	0x00, 0x00, 0x00, 0x00,
717 	0x00, 0x11, 0x00, 0x00,
718 	0x00, 0x00, 0x00, 0x00,
719 	0x00, 0x00, 0x00, 0x00,
720 
721 	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
722 	0x00, 0x08, 0x00, 0x00,
723 
724 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
725 };
726 
727 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
728 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
729 	{ ICE_MAC_OFOS,		0 },
730 	{ ICE_IPV4_OFOS,	14 },
731 	{ ICE_UDP_OF,		34 },
732 	{ ICE_GTP,		42 },
733 	{ ICE_IPV6_IL,		62 },
734 	{ ICE_TCP_IL,		102 },
735 	{ ICE_PROTOCOL_LAST,	0 },
736 };
737 
738 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
739 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
740 	0x00, 0x00, 0x00, 0x00,
741 	0x00, 0x00, 0x00, 0x00,
742 	0x08, 0x00,
743 
744 	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
745 	0x00, 0x00, 0x00, 0x00,
746 	0x00, 0x11, 0x00, 0x00,
747 	0x00, 0x00, 0x00, 0x00,
748 	0x00, 0x00, 0x00, 0x00,
749 
750 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
751 	0x00, 0x58, 0x00, 0x00,
752 
753 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
754 	0x00, 0x00, 0x00, 0x00,
755 	0x00, 0x00, 0x00, 0x85,
756 
757 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
758 	0x00, 0x00, 0x00, 0x00,
759 
760 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
761 	0x00, 0x14, 0x06, 0x00,
762 	0x00, 0x00, 0x00, 0x00,
763 	0x00, 0x00, 0x00, 0x00,
764 	0x00, 0x00, 0x00, 0x00,
765 	0x00, 0x00, 0x00, 0x00,
766 	0x00, 0x00, 0x00, 0x00,
767 	0x00, 0x00, 0x00, 0x00,
768 	0x00, 0x00, 0x00, 0x00,
769 	0x00, 0x00, 0x00, 0x00,
770 
771 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
772 	0x00, 0x00, 0x00, 0x00,
773 	0x00, 0x00, 0x00, 0x00,
774 	0x50, 0x00, 0x00, 0x00,
775 	0x00, 0x00, 0x00, 0x00,
776 
777 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
778 };
779 
780 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
781 	{ ICE_MAC_OFOS,		0 },
782 	{ ICE_IPV4_OFOS,	14 },
783 	{ ICE_UDP_OF,		34 },
784 	{ ICE_GTP,		42 },
785 	{ ICE_IPV6_IL,		62 },
786 	{ ICE_UDP_ILOS,		102 },
787 	{ ICE_PROTOCOL_LAST,	0 },
788 };
789 
790 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
791 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
792 	0x00, 0x00, 0x00, 0x00,
793 	0x00, 0x00, 0x00, 0x00,
794 	0x08, 0x00,
795 
796 	0x45, 0x00, 0x00, 0x60, /* IP 14 */
797 	0x00, 0x00, 0x00, 0x00,
798 	0x00, 0x11, 0x00, 0x00,
799 	0x00, 0x00, 0x00, 0x00,
800 	0x00, 0x00, 0x00, 0x00,
801 
802 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
803 	0x00, 0x4c, 0x00, 0x00,
804 
805 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
806 	0x00, 0x00, 0x00, 0x00,
807 	0x00, 0x00, 0x00, 0x85,
808 
809 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
810 	0x00, 0x00, 0x00, 0x00,
811 
812 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
813 	0x00, 0x08, 0x11, 0x00,
814 	0x00, 0x00, 0x00, 0x00,
815 	0x00, 0x00, 0x00, 0x00,
816 	0x00, 0x00, 0x00, 0x00,
817 	0x00, 0x00, 0x00, 0x00,
818 	0x00, 0x00, 0x00, 0x00,
819 	0x00, 0x00, 0x00, 0x00,
820 	0x00, 0x00, 0x00, 0x00,
821 	0x00, 0x00, 0x00, 0x00,
822 
823 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
824 	0x00, 0x08, 0x00, 0x00,
825 
826 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
827 };
828 
829 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
830 	{ ICE_MAC_OFOS,		0 },
831 	{ ICE_IPV6_OFOS,	14 },
832 	{ ICE_UDP_OF,		54 },
833 	{ ICE_GTP,		62 },
834 	{ ICE_IPV4_IL,		82 },
835 	{ ICE_TCP_IL,		102 },
836 	{ ICE_PROTOCOL_LAST,	0 },
837 };
838 
839 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
840 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
841 	0x00, 0x00, 0x00, 0x00,
842 	0x00, 0x00, 0x00, 0x00,
843 	0x86, 0xdd,
844 
845 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
846 	0x00, 0x44, 0x11, 0x00,
847 	0x00, 0x00, 0x00, 0x00,
848 	0x00, 0x00, 0x00, 0x00,
849 	0x00, 0x00, 0x00, 0x00,
850 	0x00, 0x00, 0x00, 0x00,
851 	0x00, 0x00, 0x00, 0x00,
852 	0x00, 0x00, 0x00, 0x00,
853 	0x00, 0x00, 0x00, 0x00,
854 	0x00, 0x00, 0x00, 0x00,
855 
856 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
857 	0x00, 0x44, 0x00, 0x00,
858 
859 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
860 	0x00, 0x00, 0x00, 0x00,
861 	0x00, 0x00, 0x00, 0x85,
862 
863 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
864 	0x00, 0x00, 0x00, 0x00,
865 
866 	0x45, 0x00, 0x00, 0x28, /* IP 82 */
867 	0x00, 0x00, 0x00, 0x00,
868 	0x00, 0x06, 0x00, 0x00,
869 	0x00, 0x00, 0x00, 0x00,
870 	0x00, 0x00, 0x00, 0x00,
871 
872 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
873 	0x00, 0x00, 0x00, 0x00,
874 	0x00, 0x00, 0x00, 0x00,
875 	0x50, 0x00, 0x00, 0x00,
876 	0x00, 0x00, 0x00, 0x00,
877 
878 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
879 };
880 
881 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
882 	{ ICE_MAC_OFOS,		0 },
883 	{ ICE_IPV6_OFOS,	14 },
884 	{ ICE_UDP_OF,		54 },
885 	{ ICE_GTP,		62 },
886 	{ ICE_IPV4_IL,		82 },
887 	{ ICE_UDP_ILOS,		102 },
888 	{ ICE_PROTOCOL_LAST,	0 },
889 };
890 
891 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
892 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
893 	0x00, 0x00, 0x00, 0x00,
894 	0x00, 0x00, 0x00, 0x00,
895 	0x86, 0xdd,
896 
897 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
898 	0x00, 0x38, 0x11, 0x00,
899 	0x00, 0x00, 0x00, 0x00,
900 	0x00, 0x00, 0x00, 0x00,
901 	0x00, 0x00, 0x00, 0x00,
902 	0x00, 0x00, 0x00, 0x00,
903 	0x00, 0x00, 0x00, 0x00,
904 	0x00, 0x00, 0x00, 0x00,
905 	0x00, 0x00, 0x00, 0x00,
906 	0x00, 0x00, 0x00, 0x00,
907 
908 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
909 	0x00, 0x38, 0x00, 0x00,
910 
911 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
912 	0x00, 0x00, 0x00, 0x00,
913 	0x00, 0x00, 0x00, 0x85,
914 
915 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
916 	0x00, 0x00, 0x00, 0x00,
917 
918 	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
919 	0x00, 0x00, 0x00, 0x00,
920 	0x00, 0x11, 0x00, 0x00,
921 	0x00, 0x00, 0x00, 0x00,
922 	0x00, 0x00, 0x00, 0x00,
923 
924 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
925 	0x00, 0x08, 0x00, 0x00,
926 
927 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
928 };
929 
930 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
931 	{ ICE_MAC_OFOS,		0 },
932 	{ ICE_IPV6_OFOS,	14 },
933 	{ ICE_UDP_OF,		54 },
934 	{ ICE_GTP,		62 },
935 	{ ICE_IPV6_IL,		82 },
936 	{ ICE_TCP_IL,		122 },
937 	{ ICE_PROTOCOL_LAST,	0 },
938 };
939 
940 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
941 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
942 	0x00, 0x00, 0x00, 0x00,
943 	0x00, 0x00, 0x00, 0x00,
944 	0x86, 0xdd,
945 
946 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
947 	0x00, 0x58, 0x11, 0x00,
948 	0x00, 0x00, 0x00, 0x00,
949 	0x00, 0x00, 0x00, 0x00,
950 	0x00, 0x00, 0x00, 0x00,
951 	0x00, 0x00, 0x00, 0x00,
952 	0x00, 0x00, 0x00, 0x00,
953 	0x00, 0x00, 0x00, 0x00,
954 	0x00, 0x00, 0x00, 0x00,
955 	0x00, 0x00, 0x00, 0x00,
956 
957 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
958 	0x00, 0x58, 0x00, 0x00,
959 
960 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
961 	0x00, 0x00, 0x00, 0x00,
962 	0x00, 0x00, 0x00, 0x85,
963 
964 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
965 	0x00, 0x00, 0x00, 0x00,
966 
967 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
968 	0x00, 0x14, 0x06, 0x00,
969 	0x00, 0x00, 0x00, 0x00,
970 	0x00, 0x00, 0x00, 0x00,
971 	0x00, 0x00, 0x00, 0x00,
972 	0x00, 0x00, 0x00, 0x00,
973 	0x00, 0x00, 0x00, 0x00,
974 	0x00, 0x00, 0x00, 0x00,
975 	0x00, 0x00, 0x00, 0x00,
976 	0x00, 0x00, 0x00, 0x00,
977 
978 	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
979 	0x00, 0x00, 0x00, 0x00,
980 	0x00, 0x00, 0x00, 0x00,
981 	0x50, 0x00, 0x00, 0x00,
982 	0x00, 0x00, 0x00, 0x00,
983 
984 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
985 };
986 
987 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
988 	{ ICE_MAC_OFOS,		0 },
989 	{ ICE_IPV6_OFOS,	14 },
990 	{ ICE_UDP_OF,		54 },
991 	{ ICE_GTP,		62 },
992 	{ ICE_IPV6_IL,		82 },
993 	{ ICE_UDP_ILOS,		122 },
994 	{ ICE_PROTOCOL_LAST,	0 },
995 };
996 
997 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
998 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
999 	0x00, 0x00, 0x00, 0x00,
1000 	0x00, 0x00, 0x00, 0x00,
1001 	0x86, 0xdd,
1002 
1003 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1004 	0x00, 0x4c, 0x11, 0x00,
1005 	0x00, 0x00, 0x00, 0x00,
1006 	0x00, 0x00, 0x00, 0x00,
1007 	0x00, 0x00, 0x00, 0x00,
1008 	0x00, 0x00, 0x00, 0x00,
1009 	0x00, 0x00, 0x00, 0x00,
1010 	0x00, 0x00, 0x00, 0x00,
1011 	0x00, 0x00, 0x00, 0x00,
1012 	0x00, 0x00, 0x00, 0x00,
1013 
1014 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1015 	0x00, 0x4c, 0x00, 0x00,
1016 
1017 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1018 	0x00, 0x00, 0x00, 0x00,
1019 	0x00, 0x00, 0x00, 0x85,
1020 
1021 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1022 	0x00, 0x00, 0x00, 0x00,
1023 
1024 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1025 	0x00, 0x08, 0x11, 0x00,
1026 	0x00, 0x00, 0x00, 0x00,
1027 	0x00, 0x00, 0x00, 0x00,
1028 	0x00, 0x00, 0x00, 0x00,
1029 	0x00, 0x00, 0x00, 0x00,
1030 	0x00, 0x00, 0x00, 0x00,
1031 	0x00, 0x00, 0x00, 0x00,
1032 	0x00, 0x00, 0x00, 0x00,
1033 	0x00, 0x00, 0x00, 0x00,
1034 
1035 	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1036 	0x00, 0x08, 0x00, 0x00,
1037 
1038 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1039 };
1040 
1041 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1042 	{ ICE_MAC_OFOS,		0 },
1043 	{ ICE_IPV4_OFOS,	14 },
1044 	{ ICE_UDP_OF,		34 },
1045 	{ ICE_GTP_NO_PAY,	42 },
1046 	{ ICE_PROTOCOL_LAST,	0 },
1047 };
1048 
1049 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1050 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1051 	0x00, 0x00, 0x00, 0x00,
1052 	0x00, 0x00, 0x00, 0x00,
1053 	0x08, 0x00,
1054 
1055 	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1056 	0x00, 0x00, 0x40, 0x00,
1057 	0x40, 0x11, 0x00, 0x00,
1058 	0x00, 0x00, 0x00, 0x00,
1059 	0x00, 0x00, 0x00, 0x00,
1060 
1061 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1062 	0x00, 0x00, 0x00, 0x00,
1063 
1064 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1065 	0x00, 0x00, 0x00, 0x00,
1066 	0x00, 0x00, 0x00, 0x85,
1067 
1068 	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1069 	0x00, 0x00, 0x00, 0x00,
1070 
1071 	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1072 	0x00, 0x00, 0x40, 0x00,
1073 	0x40, 0x00, 0x00, 0x00,
1074 	0x00, 0x00, 0x00, 0x00,
1075 	0x00, 0x00, 0x00, 0x00,
1076 	0x00, 0x00,
1077 };
1078 
1079 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1080 	{ ICE_MAC_OFOS,		0 },
1081 	{ ICE_IPV6_OFOS,	14 },
1082 	{ ICE_UDP_OF,		54 },
1083 	{ ICE_GTP_NO_PAY,	62 },
1084 	{ ICE_PROTOCOL_LAST,	0 },
1085 };
1086 
1087 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1088 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1089 	0x00, 0x00, 0x00, 0x00,
1090 	0x00, 0x00, 0x00, 0x00,
1091 	0x86, 0xdd,
1092 
1093 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1094 	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1095 	0x00, 0x00, 0x00, 0x00,
1096 	0x00, 0x00, 0x00, 0x00,
1097 	0x00, 0x00, 0x00, 0x00,
1098 	0x00, 0x00, 0x00, 0x00,
1099 	0x00, 0x00, 0x00, 0x00,
1100 	0x00, 0x00, 0x00, 0x00,
1101 	0x00, 0x00, 0x00, 0x00,
1102 	0x00, 0x00, 0x00, 0x00,
1103 
1104 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1105 	0x00, 0x00, 0x00, 0x00,
1106 
1107 	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1108 	0x00, 0x00, 0x00, 0x00,
1109 
1110 	0x00, 0x00,
1111 };
1112 
1113 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1114 	{ ICE_MAC_OFOS,		0 },
1115 	{ ICE_ETYPE_OL,		12 },
1116 	{ ICE_PPPOE,		14 },
1117 	{ ICE_IPV4_OFOS,	22 },
1118 	{ ICE_TCP_IL,		42 },
1119 	{ ICE_PROTOCOL_LAST,	0 },
1120 };
1121 
1122 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1123 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1124 	0x00, 0x00, 0x00, 0x00,
1125 	0x00, 0x00, 0x00, 0x00,
1126 
1127 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1128 
1129 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1130 	0x00, 0x16,
1131 
1132 	0x00, 0x21,		/* PPP Link Layer 20 */
1133 
1134 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1135 	0x00, 0x01, 0x00, 0x00,
1136 	0x00, 0x06, 0x00, 0x00,
1137 	0x00, 0x00, 0x00, 0x00,
1138 	0x00, 0x00, 0x00, 0x00,
1139 
1140 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1141 	0x00, 0x00, 0x00, 0x00,
1142 	0x00, 0x00, 0x00, 0x00,
1143 	0x50, 0x00, 0x00, 0x00,
1144 	0x00, 0x00, 0x00, 0x00,
1145 
1146 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1147 };
1148 
1149 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1150 	{ ICE_MAC_OFOS,		0 },
1151 	{ ICE_ETYPE_OL,		12 },
1152 	{ ICE_PPPOE,		14 },
1153 	{ ICE_IPV4_OFOS,	22 },
1154 	{ ICE_UDP_ILOS,		42 },
1155 	{ ICE_PROTOCOL_LAST,	0 },
1156 };
1157 
1158 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1159 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1160 	0x00, 0x00, 0x00, 0x00,
1161 	0x00, 0x00, 0x00, 0x00,
1162 
1163 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1164 
1165 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1166 	0x00, 0x16,
1167 
1168 	0x00, 0x21,		/* PPP Link Layer 20 */
1169 
1170 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1171 	0x00, 0x01, 0x00, 0x00,
1172 	0x00, 0x11, 0x00, 0x00,
1173 	0x00, 0x00, 0x00, 0x00,
1174 	0x00, 0x00, 0x00, 0x00,
1175 
1176 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1177 	0x00, 0x08, 0x00, 0x00,
1178 
1179 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1180 };
1181 
1182 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1183 	{ ICE_MAC_OFOS,		0 },
1184 	{ ICE_ETYPE_OL,		12 },
1185 	{ ICE_PPPOE,		14 },
1186 	{ ICE_IPV6_OFOS,	22 },
1187 	{ ICE_TCP_IL,		62 },
1188 	{ ICE_PROTOCOL_LAST,	0 },
1189 };
1190 
1191 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1192 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1193 	0x00, 0x00, 0x00, 0x00,
1194 	0x00, 0x00, 0x00, 0x00,
1195 
1196 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1197 
1198 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1199 	0x00, 0x2a,
1200 
1201 	0x00, 0x57,		/* PPP Link Layer 20 */
1202 
1203 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1204 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1205 	0x00, 0x00, 0x00, 0x00,
1206 	0x00, 0x00, 0x00, 0x00,
1207 	0x00, 0x00, 0x00, 0x00,
1208 	0x00, 0x00, 0x00, 0x00,
1209 	0x00, 0x00, 0x00, 0x00,
1210 	0x00, 0x00, 0x00, 0x00,
1211 	0x00, 0x00, 0x00, 0x00,
1212 	0x00, 0x00, 0x00, 0x00,
1213 
1214 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1215 	0x00, 0x00, 0x00, 0x00,
1216 	0x00, 0x00, 0x00, 0x00,
1217 	0x50, 0x00, 0x00, 0x00,
1218 	0x00, 0x00, 0x00, 0x00,
1219 
1220 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1221 };
1222 
1223 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1224 	{ ICE_MAC_OFOS,		0 },
1225 	{ ICE_ETYPE_OL,		12 },
1226 	{ ICE_PPPOE,		14 },
1227 	{ ICE_IPV6_OFOS,	22 },
1228 	{ ICE_UDP_ILOS,		62 },
1229 	{ ICE_PROTOCOL_LAST,	0 },
1230 };
1231 
1232 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1233 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1234 	0x00, 0x00, 0x00, 0x00,
1235 	0x00, 0x00, 0x00, 0x00,
1236 
1237 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1238 
1239 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1240 	0x00, 0x2a,
1241 
1242 	0x00, 0x57,		/* PPP Link Layer 20 */
1243 
1244 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1245 	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1246 	0x00, 0x00, 0x00, 0x00,
1247 	0x00, 0x00, 0x00, 0x00,
1248 	0x00, 0x00, 0x00, 0x00,
1249 	0x00, 0x00, 0x00, 0x00,
1250 	0x00, 0x00, 0x00, 0x00,
1251 	0x00, 0x00, 0x00, 0x00,
1252 	0x00, 0x00, 0x00, 0x00,
1253 	0x00, 0x00, 0x00, 0x00,
1254 
1255 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1256 	0x00, 0x08, 0x00, 0x00,
1257 
1258 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1259 };
1260 
1261 ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1262 	{ ICE_MAC_OFOS,		0 },
1263 	{ ICE_ETYPE_OL,		12 },
1264 	{ ICE_IPV4_OFOS,	14 },
1265 	{ ICE_L2TPV3,		34 },
1266 	{ ICE_PROTOCOL_LAST,	0 },
1267 };
1268 
1269 ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1270 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1271 	0x00, 0x00, 0x00, 0x00,
1272 	0x00, 0x00, 0x00, 0x00,
1273 
1274 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1275 
1276 	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1277 	0x00, 0x00, 0x40, 0x00,
1278 	0x40, 0x73, 0x00, 0x00,
1279 	0x00, 0x00, 0x00, 0x00,
1280 	0x00, 0x00, 0x00, 0x00,
1281 
1282 	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1283 	0x00, 0x00, 0x00, 0x00,
1284 	0x00, 0x00, 0x00, 0x00,
1285 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1286 };
1287 
1288 ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1289 	{ ICE_MAC_OFOS,		0 },
1290 	{ ICE_ETYPE_OL,		12 },
1291 	{ ICE_IPV6_OFOS,	14 },
1292 	{ ICE_L2TPV3,		54 },
1293 	{ ICE_PROTOCOL_LAST,	0 },
1294 };
1295 
1296 ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1297 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1298 	0x00, 0x00, 0x00, 0x00,
1299 	0x00, 0x00, 0x00, 0x00,
1300 
1301 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1302 
1303 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1304 	0x00, 0x0c, 0x73, 0x40,
1305 	0x00, 0x00, 0x00, 0x00,
1306 	0x00, 0x00, 0x00, 0x00,
1307 	0x00, 0x00, 0x00, 0x00,
1308 	0x00, 0x00, 0x00, 0x00,
1309 	0x00, 0x00, 0x00, 0x00,
1310 	0x00, 0x00, 0x00, 0x00,
1311 	0x00, 0x00, 0x00, 0x00,
1312 	0x00, 0x00, 0x00, 0x00,
1313 
1314 	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1315 	0x00, 0x00, 0x00, 0x00,
1316 	0x00, 0x00, 0x00, 0x00,
1317 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1318 };
1319 
1320 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1321 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1322 				  ICE_PKT_GTP_NOPAY),
1323 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1324 					    ICE_PKT_OUTER_IPV6 |
1325 					    ICE_PKT_INNER_IPV6 |
1326 					    ICE_PKT_INNER_UDP),
1327 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1328 					    ICE_PKT_OUTER_IPV6 |
1329 					    ICE_PKT_INNER_IPV6),
1330 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1331 					    ICE_PKT_OUTER_IPV6 |
1332 					    ICE_PKT_INNER_UDP),
1333 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1334 					    ICE_PKT_OUTER_IPV6),
1335 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1336 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1337 					    ICE_PKT_INNER_IPV6 |
1338 					    ICE_PKT_INNER_UDP),
1339 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1340 					    ICE_PKT_INNER_IPV6),
1341 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1342 					    ICE_PKT_INNER_UDP),
1343 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1344 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1345 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1346 	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1347 					ICE_PKT_INNER_UDP),
1348 	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1349 	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1350 	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1351 	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1352 				      ICE_PKT_INNER_TCP),
1353 	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1354 	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1355 	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1356 	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1357 					  ICE_PKT_INNER_IPV6 |
1358 					  ICE_PKT_INNER_TCP),
1359 	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1360 	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1361 	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1362 	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1363 					  ICE_PKT_INNER_IPV6),
1364 	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1365 	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1366 	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1367 	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1368 	ICE_PKT_PROFILE(tcp, 0),
1369 };
1370 
1371 /* this is a recipe to profile association bitmap */
1372 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1373 			  ICE_MAX_NUM_PROFILES);
1374 
1375 /* this is a profile to recipe association bitmap */
1376 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1377 			  ICE_MAX_NUM_RECIPES);
1378 
1379 /**
1380  * ice_init_def_sw_recp - initialize the recipe book keeping tables
1381  * @hw: pointer to the HW struct
1382  *
1383  * Allocate memory for the entire recipe table and initialize the structures/
1384  * entries corresponding to basic recipes.
1385  */
1386 int ice_init_def_sw_recp(struct ice_hw *hw)
1387 {
1388 	struct ice_sw_recipe *recps;
1389 	u8 i;
1390 
1391 	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1392 			     sizeof(*recps), GFP_KERNEL);
1393 	if (!recps)
1394 		return -ENOMEM;
1395 
1396 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1397 		recps[i].root_rid = i;
1398 		INIT_LIST_HEAD(&recps[i].filt_rules);
1399 		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1400 		INIT_LIST_HEAD(&recps[i].rg_list);
1401 		mutex_init(&recps[i].filt_rule_lock);
1402 	}
1403 
1404 	hw->switch_info->recp_list = recps;
1405 
1406 	return 0;
1407 }
1408 
1409 /**
1410  * ice_aq_get_sw_cfg - get switch configuration
1411  * @hw: pointer to the hardware structure
1412  * @buf: pointer to the result buffer
1413  * @buf_size: length of the buffer available for response
1414  * @req_desc: pointer to requested descriptor
1415  * @num_elems: pointer to number of elements
1416  * @cd: pointer to command details structure or NULL
1417  *
1418  * Get switch configuration (0x0200) to be placed in buf.
1419  * This admin command returns information such as initial VSI/port number
1420  * and switch ID it belongs to.
1421  *
1422  * NOTE: *req_desc is both an input/output parameter.
1423  * The caller of this function first calls this function with *request_desc set
1424  * to 0. If the response from f/w has *req_desc set to 0, all the switch
1425  * configuration information has been returned; if non-zero (meaning not all
1426  * the information was returned), the caller should call this function again
1427  * with *req_desc set to the previous value returned by f/w to get the
1428  * next block of switch configuration information.
1429  *
1430  * *num_elems is output only parameter. This reflects the number of elements
1431  * in response buffer. The caller of this function to use *num_elems while
1432  * parsing the response buffer.
1433  */
1434 static int
1435 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1436 		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1437 		  struct ice_sq_cd *cd)
1438 {
1439 	struct ice_aqc_get_sw_cfg *cmd;
1440 	struct ice_aq_desc desc;
1441 	int status;
1442 
1443 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1444 	cmd = &desc.params.get_sw_conf;
1445 	cmd->element = cpu_to_le16(*req_desc);
1446 
1447 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1448 	if (!status) {
1449 		*req_desc = le16_to_cpu(cmd->element);
1450 		*num_elems = le16_to_cpu(cmd->num_elems);
1451 	}
1452 
1453 	return status;
1454 }
1455 
1456 /**
1457  * ice_aq_add_vsi
1458  * @hw: pointer to the HW struct
1459  * @vsi_ctx: pointer to a VSI context struct
1460  * @cd: pointer to command details structure or NULL
1461  *
1462  * Add a VSI context to the hardware (0x0210)
1463  */
1464 static int
1465 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1466 	       struct ice_sq_cd *cd)
1467 {
1468 	struct ice_aqc_add_update_free_vsi_resp *res;
1469 	struct ice_aqc_add_get_update_free_vsi *cmd;
1470 	struct ice_aq_desc desc;
1471 	int status;
1472 
1473 	cmd = &desc.params.vsi_cmd;
1474 	res = &desc.params.add_update_free_vsi_res;
1475 
1476 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1477 
1478 	if (!vsi_ctx->alloc_from_pool)
1479 		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1480 					   ICE_AQ_VSI_IS_VALID);
1481 	cmd->vf_id = vsi_ctx->vf_num;
1482 
1483 	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1484 
1485 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1486 
1487 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1488 				 sizeof(vsi_ctx->info), cd);
1489 
1490 	if (!status) {
1491 		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1492 		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1493 		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1494 	}
1495 
1496 	return status;
1497 }
1498 
1499 /**
1500  * ice_aq_free_vsi
1501  * @hw: pointer to the HW struct
1502  * @vsi_ctx: pointer to a VSI context struct
1503  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1504  * @cd: pointer to command details structure or NULL
1505  *
1506  * Free VSI context info from hardware (0x0213)
1507  */
1508 static int
1509 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1510 		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1511 {
1512 	struct ice_aqc_add_update_free_vsi_resp *resp;
1513 	struct ice_aqc_add_get_update_free_vsi *cmd;
1514 	struct ice_aq_desc desc;
1515 	int status;
1516 
1517 	cmd = &desc.params.vsi_cmd;
1518 	resp = &desc.params.add_update_free_vsi_res;
1519 
1520 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1521 
1522 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1523 	if (keep_vsi_alloc)
1524 		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1525 
1526 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1527 	if (!status) {
1528 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1529 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1530 	}
1531 
1532 	return status;
1533 }
1534 
1535 /**
1536  * ice_aq_update_vsi
1537  * @hw: pointer to the HW struct
1538  * @vsi_ctx: pointer to a VSI context struct
1539  * @cd: pointer to command details structure or NULL
1540  *
1541  * Update VSI context in the hardware (0x0211)
1542  */
1543 static int
1544 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1545 		  struct ice_sq_cd *cd)
1546 {
1547 	struct ice_aqc_add_update_free_vsi_resp *resp;
1548 	struct ice_aqc_add_get_update_free_vsi *cmd;
1549 	struct ice_aq_desc desc;
1550 	int status;
1551 
1552 	cmd = &desc.params.vsi_cmd;
1553 	resp = &desc.params.add_update_free_vsi_res;
1554 
1555 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1556 
1557 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1558 
1559 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560 
1561 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562 				 sizeof(vsi_ctx->info), cd);
1563 
1564 	if (!status) {
1565 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1566 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1567 	}
1568 
1569 	return status;
1570 }
1571 
1572 /**
1573  * ice_is_vsi_valid - check whether the VSI is valid or not
1574  * @hw: pointer to the HW struct
1575  * @vsi_handle: VSI handle
1576  *
1577  * check whether the VSI is valid or not
1578  */
1579 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1580 {
1581 	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1582 }
1583 
1584 /**
1585  * ice_get_hw_vsi_num - return the HW VSI number
1586  * @hw: pointer to the HW struct
1587  * @vsi_handle: VSI handle
1588  *
1589  * return the HW VSI number
1590  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1591  */
1592 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1593 {
1594 	return hw->vsi_ctx[vsi_handle]->vsi_num;
1595 }
1596 
1597 /**
1598  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1599  * @hw: pointer to the HW struct
1600  * @vsi_handle: VSI handle
1601  *
1602  * return the VSI context entry for a given VSI handle
1603  */
1604 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1605 {
1606 	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1607 }
1608 
1609 /**
1610  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1611  * @hw: pointer to the HW struct
1612  * @vsi_handle: VSI handle
1613  * @vsi: VSI context pointer
1614  *
1615  * save the VSI context entry for a given VSI handle
1616  */
1617 static void
1618 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1619 {
1620 	hw->vsi_ctx[vsi_handle] = vsi;
1621 }
1622 
1623 /**
1624  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1625  * @hw: pointer to the HW struct
1626  * @vsi_handle: VSI handle
1627  */
1628 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1629 {
1630 	struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1631 	u8 i;
1632 
1633 	if (!vsi)
1634 		return;
1635 	ice_for_each_traffic_class(i) {
1636 		devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1637 		vsi->lan_q_ctx[i] = NULL;
1638 		devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1639 		vsi->rdma_q_ctx[i] = NULL;
1640 	}
1641 }
1642 
1643 /**
1644  * ice_clear_vsi_ctx - clear the VSI context entry
1645  * @hw: pointer to the HW struct
1646  * @vsi_handle: VSI handle
1647  *
1648  * clear the VSI context entry
1649  */
1650 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1651 {
1652 	struct ice_vsi_ctx *vsi;
1653 
1654 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1655 	if (vsi) {
1656 		ice_clear_vsi_q_ctx(hw, vsi_handle);
1657 		devm_kfree(ice_hw_to_dev(hw), vsi);
1658 		hw->vsi_ctx[vsi_handle] = NULL;
1659 	}
1660 }
1661 
1662 /**
1663  * ice_clear_all_vsi_ctx - clear all the VSI context entries
1664  * @hw: pointer to the HW struct
1665  */
1666 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1667 {
1668 	u16 i;
1669 
1670 	for (i = 0; i < ICE_MAX_VSI; i++)
1671 		ice_clear_vsi_ctx(hw, i);
1672 }
1673 
1674 /**
1675  * ice_add_vsi - add VSI context to the hardware and VSI handle list
1676  * @hw: pointer to the HW struct
1677  * @vsi_handle: unique VSI handle provided by drivers
1678  * @vsi_ctx: pointer to a VSI context struct
1679  * @cd: pointer to command details structure or NULL
1680  *
1681  * Add a VSI context to the hardware also add it into the VSI handle list.
1682  * If this function gets called after reset for existing VSIs then update
1683  * with the new HW VSI number in the corresponding VSI handle list entry.
1684  */
1685 int
1686 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1687 	    struct ice_sq_cd *cd)
1688 {
1689 	struct ice_vsi_ctx *tmp_vsi_ctx;
1690 	int status;
1691 
1692 	if (vsi_handle >= ICE_MAX_VSI)
1693 		return -EINVAL;
1694 	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1695 	if (status)
1696 		return status;
1697 	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1698 	if (!tmp_vsi_ctx) {
1699 		/* Create a new VSI context */
1700 		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1701 					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1702 		if (!tmp_vsi_ctx) {
1703 			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1704 			return -ENOMEM;
1705 		}
1706 		*tmp_vsi_ctx = *vsi_ctx;
1707 		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1708 	} else {
1709 		/* update with new HW VSI num */
1710 		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1711 	}
1712 
1713 	return 0;
1714 }
1715 
1716 /**
1717  * ice_free_vsi- free VSI context from hardware and VSI handle list
1718  * @hw: pointer to the HW struct
1719  * @vsi_handle: unique VSI handle
1720  * @vsi_ctx: pointer to a VSI context struct
1721  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1722  * @cd: pointer to command details structure or NULL
1723  *
1724  * Free VSI context info from hardware as well as from VSI handle list
1725  */
1726 int
1727 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1728 	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1729 {
1730 	int status;
1731 
1732 	if (!ice_is_vsi_valid(hw, vsi_handle))
1733 		return -EINVAL;
1734 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1735 	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1736 	if (!status)
1737 		ice_clear_vsi_ctx(hw, vsi_handle);
1738 	return status;
1739 }
1740 
1741 /**
1742  * ice_update_vsi
1743  * @hw: pointer to the HW struct
1744  * @vsi_handle: unique VSI handle
1745  * @vsi_ctx: pointer to a VSI context struct
1746  * @cd: pointer to command details structure or NULL
1747  *
1748  * Update VSI context in the hardware
1749  */
1750 int
1751 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1752 	       struct ice_sq_cd *cd)
1753 {
1754 	if (!ice_is_vsi_valid(hw, vsi_handle))
1755 		return -EINVAL;
1756 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1757 	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1758 }
1759 
1760 /**
1761  * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1762  * @hw: pointer to HW struct
1763  * @vsi_handle: VSI SW index
1764  * @enable: boolean for enable/disable
1765  */
1766 int
1767 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1768 {
1769 	struct ice_vsi_ctx *ctx, *cached_ctx;
1770 	int status;
1771 
1772 	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1773 	if (!cached_ctx)
1774 		return -ENOENT;
1775 
1776 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1777 	if (!ctx)
1778 		return -ENOMEM;
1779 
1780 	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1781 	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1782 	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1783 
1784 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1785 
1786 	if (enable)
1787 		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1788 	else
1789 		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1790 
1791 	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1792 	if (!status) {
1793 		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1794 		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1795 	}
1796 
1797 	kfree(ctx);
1798 	return status;
1799 }
1800 
1801 /**
1802  * ice_aq_alloc_free_vsi_list
1803  * @hw: pointer to the HW struct
1804  * @vsi_list_id: VSI list ID returned or used for lookup
1805  * @lkup_type: switch rule filter lookup type
1806  * @opc: switch rules population command type - pass in the command opcode
1807  *
1808  * allocates or free a VSI list resource
1809  */
1810 static int
1811 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1812 			   enum ice_sw_lkup_type lkup_type,
1813 			   enum ice_adminq_opc opc)
1814 {
1815 	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1816 	u16 buf_len = __struct_size(sw_buf);
1817 	struct ice_aqc_res_elem *vsi_ele;
1818 	int status;
1819 
1820 	sw_buf->num_elems = cpu_to_le16(1);
1821 
1822 	if (lkup_type == ICE_SW_LKUP_MAC ||
1823 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1824 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1825 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1826 	    lkup_type == ICE_SW_LKUP_PROMISC ||
1827 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1828 	    lkup_type == ICE_SW_LKUP_DFLT) {
1829 		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1830 	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1831 		if (opc == ice_aqc_opc_alloc_res)
1832 			sw_buf->res_type =
1833 				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1834 					    ICE_AQC_RES_TYPE_FLAG_SHARED);
1835 		else
1836 			sw_buf->res_type =
1837 				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1838 	} else {
1839 		return -EINVAL;
1840 	}
1841 
1842 	if (opc == ice_aqc_opc_free_res)
1843 		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1844 
1845 	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1846 	if (status)
1847 		return status;
1848 
1849 	if (opc == ice_aqc_opc_alloc_res) {
1850 		vsi_ele = &sw_buf->elem[0];
1851 		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 /**
1858  * ice_aq_sw_rules - add/update/remove switch rules
1859  * @hw: pointer to the HW struct
1860  * @rule_list: pointer to switch rule population list
1861  * @rule_list_sz: total size of the rule list in bytes
1862  * @num_rules: number of switch rules in the rule_list
1863  * @opc: switch rules population command type - pass in the command opcode
1864  * @cd: pointer to command details structure or NULL
1865  *
1866  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1867  */
1868 int
1869 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1870 		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1871 {
1872 	struct ice_aq_desc desc;
1873 	int status;
1874 
1875 	if (opc != ice_aqc_opc_add_sw_rules &&
1876 	    opc != ice_aqc_opc_update_sw_rules &&
1877 	    opc != ice_aqc_opc_remove_sw_rules)
1878 		return -EINVAL;
1879 
1880 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1881 
1882 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1883 	desc.params.sw_rules.num_rules_fltr_entry_index =
1884 		cpu_to_le16(num_rules);
1885 	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1886 	if (opc != ice_aqc_opc_add_sw_rules &&
1887 	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1888 		status = -ENOENT;
1889 
1890 	return status;
1891 }
1892 
1893 /**
1894  * ice_aq_add_recipe - add switch recipe
1895  * @hw: pointer to the HW struct
1896  * @s_recipe_list: pointer to switch rule population list
1897  * @num_recipes: number of switch recipes in the list
1898  * @cd: pointer to command details structure or NULL
1899  *
1900  * Add(0x0290)
1901  */
1902 int
1903 ice_aq_add_recipe(struct ice_hw *hw,
1904 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1905 		  u16 num_recipes, struct ice_sq_cd *cd)
1906 {
1907 	struct ice_aqc_add_get_recipe *cmd;
1908 	struct ice_aq_desc desc;
1909 	u16 buf_size;
1910 
1911 	cmd = &desc.params.add_get_recipe;
1912 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1913 
1914 	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1915 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1916 
1917 	buf_size = num_recipes * sizeof(*s_recipe_list);
1918 
1919 	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1920 }
1921 
1922 /**
1923  * ice_aq_get_recipe - get switch recipe
1924  * @hw: pointer to the HW struct
1925  * @s_recipe_list: pointer to switch rule population list
1926  * @num_recipes: pointer to the number of recipes (input and output)
1927  * @recipe_root: root recipe number of recipe(s) to retrieve
1928  * @cd: pointer to command details structure or NULL
1929  *
1930  * Get(0x0292)
1931  *
1932  * On input, *num_recipes should equal the number of entries in s_recipe_list.
1933  * On output, *num_recipes will equal the number of entries returned in
1934  * s_recipe_list.
1935  *
1936  * The caller must supply enough space in s_recipe_list to hold all possible
1937  * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1938  */
1939 int
1940 ice_aq_get_recipe(struct ice_hw *hw,
1941 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1942 		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1943 {
1944 	struct ice_aqc_add_get_recipe *cmd;
1945 	struct ice_aq_desc desc;
1946 	u16 buf_size;
1947 	int status;
1948 
1949 	if (*num_recipes != ICE_MAX_NUM_RECIPES)
1950 		return -EINVAL;
1951 
1952 	cmd = &desc.params.add_get_recipe;
1953 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1954 
1955 	cmd->return_index = cpu_to_le16(recipe_root);
1956 	cmd->num_sub_recipes = 0;
1957 
1958 	buf_size = *num_recipes * sizeof(*s_recipe_list);
1959 
1960 	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1961 	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1962 
1963 	return status;
1964 }
1965 
1966 /**
1967  * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1968  * @hw: pointer to the HW struct
1969  * @params: parameters used to update the default recipe
1970  *
1971  * This function only supports updating default recipes and it only supports
1972  * updating a single recipe based on the lkup_idx at a time.
1973  *
1974  * This is done as a read-modify-write operation. First, get the current recipe
1975  * contents based on the recipe's ID. Then modify the field vector index and
1976  * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1977  * the pre-existing recipe with the modifications.
1978  */
1979 int
1980 ice_update_recipe_lkup_idx(struct ice_hw *hw,
1981 			   struct ice_update_recipe_lkup_idx_params *params)
1982 {
1983 	struct ice_aqc_recipe_data_elem *rcp_list;
1984 	u16 num_recps = ICE_MAX_NUM_RECIPES;
1985 	int status;
1986 
1987 	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1988 	if (!rcp_list)
1989 		return -ENOMEM;
1990 
1991 	/* read current recipe list from firmware */
1992 	rcp_list->recipe_indx = params->rid;
1993 	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1994 	if (status) {
1995 		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1996 			  params->rid, status);
1997 		goto error_out;
1998 	}
1999 
2000 	/* only modify existing recipe's lkup_idx and mask if valid, while
2001 	 * leaving all other fields the same, then update the recipe firmware
2002 	 */
2003 	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2004 	if (params->mask_valid)
2005 		rcp_list->content.mask[params->lkup_idx] =
2006 			cpu_to_le16(params->mask);
2007 
2008 	if (params->ignore_valid)
2009 		rcp_list->content.lkup_indx[params->lkup_idx] |=
2010 			ICE_AQ_RECIPE_LKUP_IGNORE;
2011 
2012 	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2013 	if (status)
2014 		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2015 			  params->rid, params->lkup_idx, params->fv_idx,
2016 			  params->mask, params->mask_valid ? "true" : "false",
2017 			  status);
2018 
2019 error_out:
2020 	kfree(rcp_list);
2021 	return status;
2022 }
2023 
2024 /**
2025  * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2026  * @hw: pointer to the HW struct
2027  * @profile_id: package profile ID to associate the recipe with
2028  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2029  * @cd: pointer to command details structure or NULL
2030  * Recipe to profile association (0x0291)
2031  */
2032 int
2033 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2034 			     struct ice_sq_cd *cd)
2035 {
2036 	struct ice_aqc_recipe_to_profile *cmd;
2037 	struct ice_aq_desc desc;
2038 
2039 	cmd = &desc.params.recipe_to_profile;
2040 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2041 	cmd->profile_id = cpu_to_le16(profile_id);
2042 	/* Set the recipe ID bit in the bitmask to let the device know which
2043 	 * profile we are associating the recipe to
2044 	 */
2045 	memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc));
2046 
2047 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2048 }
2049 
2050 /**
2051  * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2052  * @hw: pointer to the HW struct
2053  * @profile_id: package profile ID to associate the recipe with
2054  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2055  * @cd: pointer to command details structure or NULL
2056  * Associate profile ID with given recipe (0x0293)
2057  */
2058 int
2059 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2060 			     struct ice_sq_cd *cd)
2061 {
2062 	struct ice_aqc_recipe_to_profile *cmd;
2063 	struct ice_aq_desc desc;
2064 	int status;
2065 
2066 	cmd = &desc.params.recipe_to_profile;
2067 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2068 	cmd->profile_id = cpu_to_le16(profile_id);
2069 
2070 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2071 	if (!status)
2072 		memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc));
2073 
2074 	return status;
2075 }
2076 
2077 /**
2078  * ice_alloc_recipe - add recipe resource
2079  * @hw: pointer to the hardware structure
2080  * @rid: recipe ID returned as response to AQ call
2081  */
2082 int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2083 {
2084 	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2085 	u16 buf_len = __struct_size(sw_buf);
2086 	int status;
2087 
2088 	sw_buf->num_elems = cpu_to_le16(1);
2089 	sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2090 					ICE_AQC_RES_TYPE_S) |
2091 					ICE_AQC_RES_TYPE_FLAG_SHARED);
2092 	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2093 				       ice_aqc_opc_alloc_res);
2094 	if (!status)
2095 		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2096 
2097 	return status;
2098 }
2099 
2100 /**
2101  * ice_get_recp_to_prof_map - updates recipe to profile mapping
2102  * @hw: pointer to hardware structure
2103  *
2104  * This function is used to populate recipe_to_profile matrix where index to
2105  * this array is the recipe ID and the element is the mapping of which profiles
2106  * is this recipe mapped to.
2107  */
2108 static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2109 {
2110 	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2111 	u16 i;
2112 
2113 	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2114 		u16 j;
2115 
2116 		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2117 		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2118 		if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
2119 			continue;
2120 		bitmap_copy(profile_to_recipe[i], r_bitmap,
2121 			    ICE_MAX_NUM_RECIPES);
2122 		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2123 			set_bit(i, recipe_to_profile[j]);
2124 	}
2125 }
2126 
2127 /**
2128  * ice_collect_result_idx - copy result index values
2129  * @buf: buffer that contains the result index
2130  * @recp: the recipe struct to copy data into
2131  */
2132 static void
2133 ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2134 		       struct ice_sw_recipe *recp)
2135 {
2136 	if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2137 		set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2138 			recp->res_idxs);
2139 }
2140 
2141 /**
2142  * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2143  * @hw: pointer to hardware structure
2144  * @recps: struct that we need to populate
2145  * @rid: recipe ID that we are populating
2146  * @refresh_required: true if we should get recipe to profile mapping from FW
2147  *
2148  * This function is used to populate all the necessary entries into our
2149  * bookkeeping so that we have a current list of all the recipes that are
2150  * programmed in the firmware.
2151  */
2152 static int
2153 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2154 		    bool *refresh_required)
2155 {
2156 	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2157 	struct ice_aqc_recipe_data_elem *tmp;
2158 	u16 num_recps = ICE_MAX_NUM_RECIPES;
2159 	struct ice_prot_lkup_ext *lkup_exts;
2160 	u8 fv_word_idx = 0;
2161 	u16 sub_recps;
2162 	int status;
2163 
2164 	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2165 
2166 	/* we need a buffer big enough to accommodate all the recipes */
2167 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2168 	if (!tmp)
2169 		return -ENOMEM;
2170 
2171 	tmp[0].recipe_indx = rid;
2172 	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2173 	/* non-zero status meaning recipe doesn't exist */
2174 	if (status)
2175 		goto err_unroll;
2176 
2177 	/* Get recipe to profile map so that we can get the fv from lkups that
2178 	 * we read for a recipe from FW. Since we want to minimize the number of
2179 	 * times we make this FW call, just make one call and cache the copy
2180 	 * until a new recipe is added. This operation is only required the
2181 	 * first time to get the changes from FW. Then to search existing
2182 	 * entries we don't need to update the cache again until another recipe
2183 	 * gets added.
2184 	 */
2185 	if (*refresh_required) {
2186 		ice_get_recp_to_prof_map(hw);
2187 		*refresh_required = false;
2188 	}
2189 
2190 	/* Start populating all the entries for recps[rid] based on lkups from
2191 	 * firmware. Note that we are only creating the root recipe in our
2192 	 * database.
2193 	 */
2194 	lkup_exts = &recps[rid].lkup_exts;
2195 
2196 	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2197 		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2198 		struct ice_recp_grp_entry *rg_entry;
2199 		u8 i, prof, idx, prot = 0;
2200 		bool is_root;
2201 		u16 off = 0;
2202 
2203 		rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2204 					GFP_KERNEL);
2205 		if (!rg_entry) {
2206 			status = -ENOMEM;
2207 			goto err_unroll;
2208 		}
2209 
2210 		idx = root_bufs.recipe_indx;
2211 		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2212 
2213 		/* Mark all result indices in this chain */
2214 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2215 			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2216 				result_bm);
2217 
2218 		/* get the first profile that is associated with rid */
2219 		prof = find_first_bit(recipe_to_profile[idx],
2220 				      ICE_MAX_NUM_PROFILES);
2221 		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2222 			u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2223 
2224 			rg_entry->fv_idx[i] = lkup_indx;
2225 			rg_entry->fv_mask[i] =
2226 				le16_to_cpu(root_bufs.content.mask[i + 1]);
2227 
2228 			/* If the recipe is a chained recipe then all its
2229 			 * child recipe's result will have a result index.
2230 			 * To fill fv_words we should not use those result
2231 			 * index, we only need the protocol ids and offsets.
2232 			 * We will skip all the fv_idx which stores result
2233 			 * index in them. We also need to skip any fv_idx which
2234 			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2235 			 * valid offset value.
2236 			 */
2237 			if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2238 			    rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2239 			    rg_entry->fv_idx[i] == 0)
2240 				continue;
2241 
2242 			ice_find_prot_off(hw, ICE_BLK_SW, prof,
2243 					  rg_entry->fv_idx[i], &prot, &off);
2244 			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2245 			lkup_exts->fv_words[fv_word_idx].off = off;
2246 			lkup_exts->field_mask[fv_word_idx] =
2247 				rg_entry->fv_mask[i];
2248 			fv_word_idx++;
2249 		}
2250 		/* populate rg_list with the data from the child entry of this
2251 		 * recipe
2252 		 */
2253 		list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2254 
2255 		/* Propagate some data to the recipe database */
2256 		recps[idx].is_root = !!is_root;
2257 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2258 		recps[idx].need_pass_l2 = root_bufs.content.act_ctrl &
2259 					  ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
2260 		recps[idx].allow_pass_l2 = root_bufs.content.act_ctrl &
2261 					   ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
2262 		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2263 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2264 			recps[idx].chain_idx = root_bufs.content.result_indx &
2265 				~ICE_AQ_RECIPE_RESULT_EN;
2266 			set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2267 		} else {
2268 			recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2269 		}
2270 
2271 		if (!is_root)
2272 			continue;
2273 
2274 		/* Only do the following for root recipes entries */
2275 		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2276 		       sizeof(recps[idx].r_bitmap));
2277 		recps[idx].root_rid = root_bufs.content.rid &
2278 			~ICE_AQ_RECIPE_ID_IS_ROOT;
2279 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2280 	}
2281 
2282 	/* Complete initialization of the root recipe entry */
2283 	lkup_exts->n_val_words = fv_word_idx;
2284 	recps[rid].big_recp = (num_recps > 1);
2285 	recps[rid].n_grp_count = (u8)num_recps;
2286 	recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2287 					   recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2288 					   GFP_KERNEL);
2289 	if (!recps[rid].root_buf) {
2290 		status = -ENOMEM;
2291 		goto err_unroll;
2292 	}
2293 
2294 	/* Copy result indexes */
2295 	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2296 	recps[rid].recp_created = true;
2297 
2298 err_unroll:
2299 	kfree(tmp);
2300 	return status;
2301 }
2302 
2303 /* ice_init_port_info - Initialize port_info with switch configuration data
2304  * @pi: pointer to port_info
2305  * @vsi_port_num: VSI number or port number
2306  * @type: Type of switch element (port or VSI)
2307  * @swid: switch ID of the switch the element is attached to
2308  * @pf_vf_num: PF or VF number
2309  * @is_vf: true if the element is a VF, false otherwise
2310  */
2311 static void
2312 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2313 		   u16 swid, u16 pf_vf_num, bool is_vf)
2314 {
2315 	switch (type) {
2316 	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2317 		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2318 		pi->sw_id = swid;
2319 		pi->pf_vf_num = pf_vf_num;
2320 		pi->is_vf = is_vf;
2321 		break;
2322 	default:
2323 		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2324 		break;
2325 	}
2326 }
2327 
2328 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
2329  * @hw: pointer to the hardware structure
2330  */
2331 int ice_get_initial_sw_cfg(struct ice_hw *hw)
2332 {
2333 	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2334 	u16 req_desc = 0;
2335 	u16 num_elems;
2336 	int status;
2337 	u16 i;
2338 
2339 	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2340 	if (!rbuf)
2341 		return -ENOMEM;
2342 
2343 	/* Multiple calls to ice_aq_get_sw_cfg may be required
2344 	 * to get all the switch configuration information. The need
2345 	 * for additional calls is indicated by ice_aq_get_sw_cfg
2346 	 * writing a non-zero value in req_desc
2347 	 */
2348 	do {
2349 		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2350 
2351 		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2352 					   &req_desc, &num_elems, NULL);
2353 
2354 		if (status)
2355 			break;
2356 
2357 		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2358 			u16 pf_vf_num, swid, vsi_port_num;
2359 			bool is_vf = false;
2360 			u8 res_type;
2361 
2362 			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2363 				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2364 
2365 			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2366 				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2367 
2368 			swid = le16_to_cpu(ele->swid);
2369 
2370 			if (le16_to_cpu(ele->pf_vf_num) &
2371 			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2372 				is_vf = true;
2373 
2374 			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2375 					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2376 
2377 			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2378 				/* FW VSI is not needed. Just continue. */
2379 				continue;
2380 			}
2381 
2382 			ice_init_port_info(hw->port_info, vsi_port_num,
2383 					   res_type, swid, pf_vf_num, is_vf);
2384 		}
2385 	} while (req_desc && !status);
2386 
2387 	kfree(rbuf);
2388 	return status;
2389 }
2390 
2391 /**
2392  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2393  * @hw: pointer to the hardware structure
2394  * @fi: filter info structure to fill/update
2395  *
2396  * This helper function populates the lb_en and lan_en elements of the provided
2397  * ice_fltr_info struct using the switch's type and characteristics of the
2398  * switch rule being configured.
2399  */
2400 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2401 {
2402 	fi->lb_en = false;
2403 	fi->lan_en = false;
2404 	if ((fi->flag & ICE_FLTR_TX) &&
2405 	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2406 	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2407 	     fi->fltr_act == ICE_FWD_TO_Q ||
2408 	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2409 		/* Setting LB for prune actions will result in replicated
2410 		 * packets to the internal switch that will be dropped.
2411 		 */
2412 		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2413 			fi->lb_en = true;
2414 
2415 		/* Set lan_en to TRUE if
2416 		 * 1. The switch is a VEB AND
2417 		 * 2
2418 		 * 2.1 The lookup is a directional lookup like ethertype,
2419 		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2420 		 * and default-port OR
2421 		 * 2.2 The lookup is VLAN, OR
2422 		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2423 		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2424 		 *
2425 		 * OR
2426 		 *
2427 		 * The switch is a VEPA.
2428 		 *
2429 		 * In all other cases, the LAN enable has to be set to false.
2430 		 */
2431 		if (hw->evb_veb) {
2432 			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2433 			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2434 			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2435 			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2436 			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2437 			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2438 			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2439 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2440 			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2441 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2442 				fi->lan_en = true;
2443 		} else {
2444 			fi->lan_en = true;
2445 		}
2446 	}
2447 }
2448 
2449 /**
2450  * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2451  * @eth_hdr: pointer to buffer to populate
2452  */
2453 void ice_fill_eth_hdr(u8 *eth_hdr)
2454 {
2455 	memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2456 }
2457 
2458 /**
2459  * ice_fill_sw_rule - Helper function to fill switch rule structure
2460  * @hw: pointer to the hardware structure
2461  * @f_info: entry containing packet forwarding information
2462  * @s_rule: switch rule structure to be filled in based on mac_entry
2463  * @opc: switch rules population command type - pass in the command opcode
2464  */
2465 static void
2466 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2467 		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2468 		 enum ice_adminq_opc opc)
2469 {
2470 	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2471 	u16 vlan_tpid = ETH_P_8021Q;
2472 	void *daddr = NULL;
2473 	u16 eth_hdr_sz;
2474 	u8 *eth_hdr;
2475 	u32 act = 0;
2476 	__be16 *off;
2477 	u8 q_rgn;
2478 
2479 	if (opc == ice_aqc_opc_remove_sw_rules) {
2480 		s_rule->act = 0;
2481 		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2482 		s_rule->hdr_len = 0;
2483 		return;
2484 	}
2485 
2486 	eth_hdr_sz = sizeof(dummy_eth_header);
2487 	eth_hdr = s_rule->hdr_data;
2488 
2489 	/* initialize the ether header with a dummy header */
2490 	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2491 	ice_fill_sw_info(hw, f_info);
2492 
2493 	switch (f_info->fltr_act) {
2494 	case ICE_FWD_TO_VSI:
2495 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2496 				  f_info->fwd_id.hw_vsi_id);
2497 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2498 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2499 				ICE_SINGLE_ACT_VALID_BIT;
2500 		break;
2501 	case ICE_FWD_TO_VSI_LIST:
2502 		act |= ICE_SINGLE_ACT_VSI_LIST;
2503 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2504 				  f_info->fwd_id.vsi_list_id);
2505 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2506 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2507 				ICE_SINGLE_ACT_VALID_BIT;
2508 		break;
2509 	case ICE_FWD_TO_Q:
2510 		act |= ICE_SINGLE_ACT_TO_Q;
2511 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2512 				  f_info->fwd_id.q_id);
2513 		break;
2514 	case ICE_DROP_PACKET:
2515 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2516 			ICE_SINGLE_ACT_VALID_BIT;
2517 		break;
2518 	case ICE_FWD_TO_QGRP:
2519 		q_rgn = f_info->qgrp_size > 0 ?
2520 			(u8)ilog2(f_info->qgrp_size) : 0;
2521 		act |= ICE_SINGLE_ACT_TO_Q;
2522 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2523 				  f_info->fwd_id.q_id);
2524 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
2525 		break;
2526 	default:
2527 		return;
2528 	}
2529 
2530 	if (f_info->lb_en)
2531 		act |= ICE_SINGLE_ACT_LB_ENABLE;
2532 	if (f_info->lan_en)
2533 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2534 
2535 	switch (f_info->lkup_type) {
2536 	case ICE_SW_LKUP_MAC:
2537 		daddr = f_info->l_data.mac.mac_addr;
2538 		break;
2539 	case ICE_SW_LKUP_VLAN:
2540 		vlan_id = f_info->l_data.vlan.vlan_id;
2541 		if (f_info->l_data.vlan.tpid_valid)
2542 			vlan_tpid = f_info->l_data.vlan.tpid;
2543 		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2544 		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2545 			act |= ICE_SINGLE_ACT_PRUNE;
2546 			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2547 		}
2548 		break;
2549 	case ICE_SW_LKUP_ETHERTYPE_MAC:
2550 		daddr = f_info->l_data.ethertype_mac.mac_addr;
2551 		fallthrough;
2552 	case ICE_SW_LKUP_ETHERTYPE:
2553 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2554 		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2555 		break;
2556 	case ICE_SW_LKUP_MAC_VLAN:
2557 		daddr = f_info->l_data.mac_vlan.mac_addr;
2558 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2559 		break;
2560 	case ICE_SW_LKUP_PROMISC_VLAN:
2561 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2562 		fallthrough;
2563 	case ICE_SW_LKUP_PROMISC:
2564 		daddr = f_info->l_data.mac_vlan.mac_addr;
2565 		break;
2566 	default:
2567 		break;
2568 	}
2569 
2570 	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2571 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2572 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2573 
2574 	/* Recipe set depending on lookup type */
2575 	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2576 	s_rule->src = cpu_to_le16(f_info->src);
2577 	s_rule->act = cpu_to_le32(act);
2578 
2579 	if (daddr)
2580 		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2581 
2582 	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2583 		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2584 		*off = cpu_to_be16(vlan_id);
2585 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2586 		*off = cpu_to_be16(vlan_tpid);
2587 	}
2588 
2589 	/* Create the switch rule with the final dummy Ethernet header */
2590 	if (opc != ice_aqc_opc_update_sw_rules)
2591 		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2592 }
2593 
2594 /**
2595  * ice_add_marker_act
2596  * @hw: pointer to the hardware structure
2597  * @m_ent: the management entry for which sw marker needs to be added
2598  * @sw_marker: sw marker to tag the Rx descriptor with
2599  * @l_id: large action resource ID
2600  *
2601  * Create a large action to hold software marker and update the switch rule
2602  * entry pointed by m_ent with newly created large action
2603  */
2604 static int
2605 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2606 		   u16 sw_marker, u16 l_id)
2607 {
2608 	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2609 	struct ice_sw_rule_lg_act *lg_act;
2610 	/* For software marker we need 3 large actions
2611 	 * 1. FWD action: FWD TO VSI or VSI LIST
2612 	 * 2. GENERIC VALUE action to hold the profile ID
2613 	 * 3. GENERIC VALUE action to hold the software marker ID
2614 	 */
2615 	const u16 num_lg_acts = 3;
2616 	u16 lg_act_size;
2617 	u16 rules_size;
2618 	int status;
2619 	u32 act;
2620 	u16 id;
2621 
2622 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2623 		return -EINVAL;
2624 
2625 	/* Create two back-to-back switch rules and submit them to the HW using
2626 	 * one memory buffer:
2627 	 *    1. Large Action
2628 	 *    2. Look up Tx Rx
2629 	 */
2630 	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2631 	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2632 	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2633 	if (!lg_act)
2634 		return -ENOMEM;
2635 
2636 	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2637 
2638 	/* Fill in the first switch rule i.e. large action */
2639 	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2640 	lg_act->index = cpu_to_le16(l_id);
2641 	lg_act->size = cpu_to_le16(num_lg_acts);
2642 
2643 	/* First action VSI forwarding or VSI list forwarding depending on how
2644 	 * many VSIs
2645 	 */
2646 	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2647 		m_ent->fltr_info.fwd_id.hw_vsi_id;
2648 
2649 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2650 	act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2651 	if (m_ent->vsi_count > 1)
2652 		act |= ICE_LG_ACT_VSI_LIST;
2653 	lg_act->act[0] = cpu_to_le32(act);
2654 
2655 	/* Second action descriptor type */
2656 	act = ICE_LG_ACT_GENERIC;
2657 
2658 	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2659 	lg_act->act[1] = cpu_to_le32(act);
2660 
2661 	act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2662 			 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2663 
2664 	/* Third action Marker value */
2665 	act |= ICE_LG_ACT_GENERIC;
2666 	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
2667 
2668 	lg_act->act[2] = cpu_to_le32(act);
2669 
2670 	/* call the fill switch rule to fill the lookup Tx Rx structure */
2671 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2672 			 ice_aqc_opc_update_sw_rules);
2673 
2674 	/* Update the action to point to the large action ID */
2675 	act = ICE_SINGLE_ACT_PTR;
2676 	act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2677 	rx_tx->act = cpu_to_le32(act);
2678 
2679 	/* Use the filter rule ID of the previously created rule with single
2680 	 * act. Once the update happens, hardware will treat this as large
2681 	 * action
2682 	 */
2683 	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2684 
2685 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2686 				 ice_aqc_opc_update_sw_rules, NULL);
2687 	if (!status) {
2688 		m_ent->lg_act_idx = l_id;
2689 		m_ent->sw_marker_id = sw_marker;
2690 	}
2691 
2692 	devm_kfree(ice_hw_to_dev(hw), lg_act);
2693 	return status;
2694 }
2695 
2696 /**
2697  * ice_create_vsi_list_map
2698  * @hw: pointer to the hardware structure
2699  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2700  * @num_vsi: number of VSI handles in the array
2701  * @vsi_list_id: VSI list ID generated as part of allocate resource
2702  *
2703  * Helper function to create a new entry of VSI list ID to VSI mapping
2704  * using the given VSI list ID
2705  */
2706 static struct ice_vsi_list_map_info *
2707 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2708 			u16 vsi_list_id)
2709 {
2710 	struct ice_switch_info *sw = hw->switch_info;
2711 	struct ice_vsi_list_map_info *v_map;
2712 	int i;
2713 
2714 	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2715 	if (!v_map)
2716 		return NULL;
2717 
2718 	v_map->vsi_list_id = vsi_list_id;
2719 	v_map->ref_cnt = 1;
2720 	for (i = 0; i < num_vsi; i++)
2721 		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2722 
2723 	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2724 	return v_map;
2725 }
2726 
2727 /**
2728  * ice_update_vsi_list_rule
2729  * @hw: pointer to the hardware structure
2730  * @vsi_handle_arr: array of VSI handles to form a VSI list
2731  * @num_vsi: number of VSI handles in the array
2732  * @vsi_list_id: VSI list ID generated as part of allocate resource
2733  * @remove: Boolean value to indicate if this is a remove action
2734  * @opc: switch rules population command type - pass in the command opcode
2735  * @lkup_type: lookup type of the filter
2736  *
2737  * Call AQ command to add a new switch rule or update existing switch rule
2738  * using the given VSI list ID
2739  */
2740 static int
2741 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2742 			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2743 			 enum ice_sw_lkup_type lkup_type)
2744 {
2745 	struct ice_sw_rule_vsi_list *s_rule;
2746 	u16 s_rule_size;
2747 	u16 rule_type;
2748 	int status;
2749 	int i;
2750 
2751 	if (!num_vsi)
2752 		return -EINVAL;
2753 
2754 	if (lkup_type == ICE_SW_LKUP_MAC ||
2755 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2756 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2757 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2758 	    lkup_type == ICE_SW_LKUP_PROMISC ||
2759 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2760 	    lkup_type == ICE_SW_LKUP_DFLT)
2761 		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2762 			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2763 	else if (lkup_type == ICE_SW_LKUP_VLAN)
2764 		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2765 			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2766 	else
2767 		return -EINVAL;
2768 
2769 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2770 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2771 	if (!s_rule)
2772 		return -ENOMEM;
2773 	for (i = 0; i < num_vsi; i++) {
2774 		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2775 			status = -EINVAL;
2776 			goto exit;
2777 		}
2778 		/* AQ call requires hw_vsi_id(s) */
2779 		s_rule->vsi[i] =
2780 			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2781 	}
2782 
2783 	s_rule->hdr.type = cpu_to_le16(rule_type);
2784 	s_rule->number_vsi = cpu_to_le16(num_vsi);
2785 	s_rule->index = cpu_to_le16(vsi_list_id);
2786 
2787 	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2788 
2789 exit:
2790 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2791 	return status;
2792 }
2793 
2794 /**
2795  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2796  * @hw: pointer to the HW struct
2797  * @vsi_handle_arr: array of VSI handles to form a VSI list
2798  * @num_vsi: number of VSI handles in the array
2799  * @vsi_list_id: stores the ID of the VSI list to be created
2800  * @lkup_type: switch rule filter's lookup type
2801  */
2802 static int
2803 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2804 			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2805 {
2806 	int status;
2807 
2808 	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2809 					    ice_aqc_opc_alloc_res);
2810 	if (status)
2811 		return status;
2812 
2813 	/* Update the newly created VSI list to include the specified VSIs */
2814 	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2815 					*vsi_list_id, false,
2816 					ice_aqc_opc_add_sw_rules, lkup_type);
2817 }
2818 
2819 /**
2820  * ice_create_pkt_fwd_rule
2821  * @hw: pointer to the hardware structure
2822  * @f_entry: entry containing packet forwarding information
2823  *
2824  * Create switch rule with given filter information and add an entry
2825  * to the corresponding filter management list to track this switch rule
2826  * and VSI mapping
2827  */
2828 static int
2829 ice_create_pkt_fwd_rule(struct ice_hw *hw,
2830 			struct ice_fltr_list_entry *f_entry)
2831 {
2832 	struct ice_fltr_mgmt_list_entry *fm_entry;
2833 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2834 	enum ice_sw_lkup_type l_type;
2835 	struct ice_sw_recipe *recp;
2836 	int status;
2837 
2838 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2839 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2840 			      GFP_KERNEL);
2841 	if (!s_rule)
2842 		return -ENOMEM;
2843 	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2844 				GFP_KERNEL);
2845 	if (!fm_entry) {
2846 		status = -ENOMEM;
2847 		goto ice_create_pkt_fwd_rule_exit;
2848 	}
2849 
2850 	fm_entry->fltr_info = f_entry->fltr_info;
2851 
2852 	/* Initialize all the fields for the management entry */
2853 	fm_entry->vsi_count = 1;
2854 	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2855 	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2856 	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2857 
2858 	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2859 			 ice_aqc_opc_add_sw_rules);
2860 
2861 	status = ice_aq_sw_rules(hw, s_rule,
2862 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2863 				 ice_aqc_opc_add_sw_rules, NULL);
2864 	if (status) {
2865 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
2866 		goto ice_create_pkt_fwd_rule_exit;
2867 	}
2868 
2869 	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2870 	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2871 
2872 	/* The book keeping entries will get removed when base driver
2873 	 * calls remove filter AQ command
2874 	 */
2875 	l_type = fm_entry->fltr_info.lkup_type;
2876 	recp = &hw->switch_info->recp_list[l_type];
2877 	list_add(&fm_entry->list_entry, &recp->filt_rules);
2878 
2879 ice_create_pkt_fwd_rule_exit:
2880 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2881 	return status;
2882 }
2883 
2884 /**
2885  * ice_update_pkt_fwd_rule
2886  * @hw: pointer to the hardware structure
2887  * @f_info: filter information for switch rule
2888  *
2889  * Call AQ command to update a previously created switch rule with a
2890  * VSI list ID
2891  */
2892 static int
2893 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2894 {
2895 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2896 	int status;
2897 
2898 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2899 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2900 			      GFP_KERNEL);
2901 	if (!s_rule)
2902 		return -ENOMEM;
2903 
2904 	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2905 
2906 	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2907 
2908 	/* Update switch rule with new rule set to forward VSI list */
2909 	status = ice_aq_sw_rules(hw, s_rule,
2910 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2911 				 ice_aqc_opc_update_sw_rules, NULL);
2912 
2913 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2914 	return status;
2915 }
2916 
2917 /**
2918  * ice_update_sw_rule_bridge_mode
2919  * @hw: pointer to the HW struct
2920  *
2921  * Updates unicast switch filter rules based on VEB/VEPA mode
2922  */
2923 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2924 {
2925 	struct ice_switch_info *sw = hw->switch_info;
2926 	struct ice_fltr_mgmt_list_entry *fm_entry;
2927 	struct list_head *rule_head;
2928 	struct mutex *rule_lock; /* Lock to protect filter rule list */
2929 	int status = 0;
2930 
2931 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2932 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2933 
2934 	mutex_lock(rule_lock);
2935 	list_for_each_entry(fm_entry, rule_head, list_entry) {
2936 		struct ice_fltr_info *fi = &fm_entry->fltr_info;
2937 		u8 *addr = fi->l_data.mac.mac_addr;
2938 
2939 		/* Update unicast Tx rules to reflect the selected
2940 		 * VEB/VEPA mode
2941 		 */
2942 		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2943 		    (fi->fltr_act == ICE_FWD_TO_VSI ||
2944 		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2945 		     fi->fltr_act == ICE_FWD_TO_Q ||
2946 		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2947 			status = ice_update_pkt_fwd_rule(hw, fi);
2948 			if (status)
2949 				break;
2950 		}
2951 	}
2952 
2953 	mutex_unlock(rule_lock);
2954 
2955 	return status;
2956 }
2957 
2958 /**
2959  * ice_add_update_vsi_list
2960  * @hw: pointer to the hardware structure
2961  * @m_entry: pointer to current filter management list entry
2962  * @cur_fltr: filter information from the book keeping entry
2963  * @new_fltr: filter information with the new VSI to be added
2964  *
2965  * Call AQ command to add or update previously created VSI list with new VSI.
2966  *
2967  * Helper function to do book keeping associated with adding filter information
2968  * The algorithm to do the book keeping is described below :
2969  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2970  *	if only one VSI has been added till now
2971  *		Allocate a new VSI list and add two VSIs
2972  *		to this list using switch rule command
2973  *		Update the previously created switch rule with the
2974  *		newly created VSI list ID
2975  *	if a VSI list was previously created
2976  *		Add the new VSI to the previously created VSI list set
2977  *		using the update switch rule command
2978  */
2979 static int
2980 ice_add_update_vsi_list(struct ice_hw *hw,
2981 			struct ice_fltr_mgmt_list_entry *m_entry,
2982 			struct ice_fltr_info *cur_fltr,
2983 			struct ice_fltr_info *new_fltr)
2984 {
2985 	u16 vsi_list_id = 0;
2986 	int status = 0;
2987 
2988 	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2989 	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2990 		return -EOPNOTSUPP;
2991 
2992 	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2993 	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2994 	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2995 	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2996 		return -EOPNOTSUPP;
2997 
2998 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
2999 		/* Only one entry existed in the mapping and it was not already
3000 		 * a part of a VSI list. So, create a VSI list with the old and
3001 		 * new VSIs.
3002 		 */
3003 		struct ice_fltr_info tmp_fltr;
3004 		u16 vsi_handle_arr[2];
3005 
3006 		/* A rule already exists with the new VSI being added */
3007 		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3008 			return -EEXIST;
3009 
3010 		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3011 		vsi_handle_arr[1] = new_fltr->vsi_handle;
3012 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3013 						  &vsi_list_id,
3014 						  new_fltr->lkup_type);
3015 		if (status)
3016 			return status;
3017 
3018 		tmp_fltr = *new_fltr;
3019 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3020 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3021 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3022 		/* Update the previous switch rule of "MAC forward to VSI" to
3023 		 * "MAC fwd to VSI list"
3024 		 */
3025 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3026 		if (status)
3027 			return status;
3028 
3029 		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3030 		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3031 		m_entry->vsi_list_info =
3032 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3033 						vsi_list_id);
3034 
3035 		if (!m_entry->vsi_list_info)
3036 			return -ENOMEM;
3037 
3038 		/* If this entry was large action then the large action needs
3039 		 * to be updated to point to FWD to VSI list
3040 		 */
3041 		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3042 			status =
3043 			    ice_add_marker_act(hw, m_entry,
3044 					       m_entry->sw_marker_id,
3045 					       m_entry->lg_act_idx);
3046 	} else {
3047 		u16 vsi_handle = new_fltr->vsi_handle;
3048 		enum ice_adminq_opc opcode;
3049 
3050 		if (!m_entry->vsi_list_info)
3051 			return -EIO;
3052 
3053 		/* A rule already exists with the new VSI being added */
3054 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3055 			return 0;
3056 
3057 		/* Update the previously created VSI list set with
3058 		 * the new VSI ID passed in
3059 		 */
3060 		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3061 		opcode = ice_aqc_opc_update_sw_rules;
3062 
3063 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3064 						  vsi_list_id, false, opcode,
3065 						  new_fltr->lkup_type);
3066 		/* update VSI list mapping info with new VSI ID */
3067 		if (!status)
3068 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3069 	}
3070 	if (!status)
3071 		m_entry->vsi_count++;
3072 	return status;
3073 }
3074 
3075 /**
3076  * ice_find_rule_entry - Search a rule entry
3077  * @hw: pointer to the hardware structure
3078  * @recp_id: lookup type for which the specified rule needs to be searched
3079  * @f_info: rule information
3080  *
3081  * Helper function to search for a given rule entry
3082  * Returns pointer to entry storing the rule if found
3083  */
3084 static struct ice_fltr_mgmt_list_entry *
3085 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3086 {
3087 	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3088 	struct ice_switch_info *sw = hw->switch_info;
3089 	struct list_head *list_head;
3090 
3091 	list_head = &sw->recp_list[recp_id].filt_rules;
3092 	list_for_each_entry(list_itr, list_head, list_entry) {
3093 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3094 			    sizeof(f_info->l_data)) &&
3095 		    f_info->flag == list_itr->fltr_info.flag) {
3096 			ret = list_itr;
3097 			break;
3098 		}
3099 	}
3100 	return ret;
3101 }
3102 
3103 /**
3104  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3105  * @hw: pointer to the hardware structure
3106  * @recp_id: lookup type for which VSI lists needs to be searched
3107  * @vsi_handle: VSI handle to be found in VSI list
3108  * @vsi_list_id: VSI list ID found containing vsi_handle
3109  *
3110  * Helper function to search a VSI list with single entry containing given VSI
3111  * handle element. This can be extended further to search VSI list with more
3112  * than 1 vsi_count. Returns pointer to VSI list entry if found.
3113  */
3114 struct ice_vsi_list_map_info *
3115 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3116 			u16 *vsi_list_id)
3117 {
3118 	struct ice_vsi_list_map_info *map_info = NULL;
3119 	struct ice_switch_info *sw = hw->switch_info;
3120 	struct ice_fltr_mgmt_list_entry *list_itr;
3121 	struct list_head *list_head;
3122 
3123 	list_head = &sw->recp_list[recp_id].filt_rules;
3124 	list_for_each_entry(list_itr, list_head, list_entry) {
3125 		if (list_itr->vsi_list_info) {
3126 			map_info = list_itr->vsi_list_info;
3127 			if (test_bit(vsi_handle, map_info->vsi_map)) {
3128 				*vsi_list_id = map_info->vsi_list_id;
3129 				return map_info;
3130 			}
3131 		}
3132 	}
3133 	return NULL;
3134 }
3135 
3136 /**
3137  * ice_add_rule_internal - add rule for a given lookup type
3138  * @hw: pointer to the hardware structure
3139  * @recp_id: lookup type (recipe ID) for which rule has to be added
3140  * @f_entry: structure containing MAC forwarding information
3141  *
3142  * Adds or updates the rule lists for a given recipe
3143  */
3144 static int
3145 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3146 		      struct ice_fltr_list_entry *f_entry)
3147 {
3148 	struct ice_switch_info *sw = hw->switch_info;
3149 	struct ice_fltr_info *new_fltr, *cur_fltr;
3150 	struct ice_fltr_mgmt_list_entry *m_entry;
3151 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3152 	int status = 0;
3153 
3154 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3155 		return -EINVAL;
3156 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3157 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3158 
3159 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3160 
3161 	mutex_lock(rule_lock);
3162 	new_fltr = &f_entry->fltr_info;
3163 	if (new_fltr->flag & ICE_FLTR_RX)
3164 		new_fltr->src = hw->port_info->lport;
3165 	else if (new_fltr->flag & ICE_FLTR_TX)
3166 		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3167 
3168 	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3169 	if (!m_entry) {
3170 		mutex_unlock(rule_lock);
3171 		return ice_create_pkt_fwd_rule(hw, f_entry);
3172 	}
3173 
3174 	cur_fltr = &m_entry->fltr_info;
3175 	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3176 	mutex_unlock(rule_lock);
3177 
3178 	return status;
3179 }
3180 
3181 /**
3182  * ice_remove_vsi_list_rule
3183  * @hw: pointer to the hardware structure
3184  * @vsi_list_id: VSI list ID generated as part of allocate resource
3185  * @lkup_type: switch rule filter lookup type
3186  *
3187  * The VSI list should be emptied before this function is called to remove the
3188  * VSI list.
3189  */
3190 static int
3191 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3192 			 enum ice_sw_lkup_type lkup_type)
3193 {
3194 	struct ice_sw_rule_vsi_list *s_rule;
3195 	u16 s_rule_size;
3196 	int status;
3197 
3198 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3199 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3200 	if (!s_rule)
3201 		return -ENOMEM;
3202 
3203 	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3204 	s_rule->index = cpu_to_le16(vsi_list_id);
3205 
3206 	/* Free the vsi_list resource that we allocated. It is assumed that the
3207 	 * list is empty at this point.
3208 	 */
3209 	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3210 					    ice_aqc_opc_free_res);
3211 
3212 	devm_kfree(ice_hw_to_dev(hw), s_rule);
3213 	return status;
3214 }
3215 
3216 /**
3217  * ice_rem_update_vsi_list
3218  * @hw: pointer to the hardware structure
3219  * @vsi_handle: VSI handle of the VSI to remove
3220  * @fm_list: filter management entry for which the VSI list management needs to
3221  *           be done
3222  */
3223 static int
3224 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3225 			struct ice_fltr_mgmt_list_entry *fm_list)
3226 {
3227 	enum ice_sw_lkup_type lkup_type;
3228 	u16 vsi_list_id;
3229 	int status = 0;
3230 
3231 	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3232 	    fm_list->vsi_count == 0)
3233 		return -EINVAL;
3234 
3235 	/* A rule with the VSI being removed does not exist */
3236 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3237 		return -ENOENT;
3238 
3239 	lkup_type = fm_list->fltr_info.lkup_type;
3240 	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3241 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3242 					  ice_aqc_opc_update_sw_rules,
3243 					  lkup_type);
3244 	if (status)
3245 		return status;
3246 
3247 	fm_list->vsi_count--;
3248 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3249 
3250 	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3251 		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3252 		struct ice_vsi_list_map_info *vsi_list_info =
3253 			fm_list->vsi_list_info;
3254 		u16 rem_vsi_handle;
3255 
3256 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3257 						ICE_MAX_VSI);
3258 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3259 			return -EIO;
3260 
3261 		/* Make sure VSI list is empty before removing it below */
3262 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3263 						  vsi_list_id, true,
3264 						  ice_aqc_opc_update_sw_rules,
3265 						  lkup_type);
3266 		if (status)
3267 			return status;
3268 
3269 		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3270 		tmp_fltr_info.fwd_id.hw_vsi_id =
3271 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3272 		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3273 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3274 		if (status) {
3275 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3276 				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3277 			return status;
3278 		}
3279 
3280 		fm_list->fltr_info = tmp_fltr_info;
3281 	}
3282 
3283 	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3284 	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3285 		struct ice_vsi_list_map_info *vsi_list_info =
3286 			fm_list->vsi_list_info;
3287 
3288 		/* Remove the VSI list since it is no longer used */
3289 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3290 		if (status) {
3291 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3292 				  vsi_list_id, status);
3293 			return status;
3294 		}
3295 
3296 		list_del(&vsi_list_info->list_entry);
3297 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3298 		fm_list->vsi_list_info = NULL;
3299 	}
3300 
3301 	return status;
3302 }
3303 
3304 /**
3305  * ice_remove_rule_internal - Remove a filter rule of a given type
3306  * @hw: pointer to the hardware structure
3307  * @recp_id: recipe ID for which the rule needs to removed
3308  * @f_entry: rule entry containing filter information
3309  */
3310 static int
3311 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3312 			 struct ice_fltr_list_entry *f_entry)
3313 {
3314 	struct ice_switch_info *sw = hw->switch_info;
3315 	struct ice_fltr_mgmt_list_entry *list_elem;
3316 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3317 	bool remove_rule = false;
3318 	u16 vsi_handle;
3319 	int status = 0;
3320 
3321 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3322 		return -EINVAL;
3323 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3324 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3325 
3326 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3327 	mutex_lock(rule_lock);
3328 	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3329 	if (!list_elem) {
3330 		status = -ENOENT;
3331 		goto exit;
3332 	}
3333 
3334 	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3335 		remove_rule = true;
3336 	} else if (!list_elem->vsi_list_info) {
3337 		status = -ENOENT;
3338 		goto exit;
3339 	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3340 		/* a ref_cnt > 1 indicates that the vsi_list is being
3341 		 * shared by multiple rules. Decrement the ref_cnt and
3342 		 * remove this rule, but do not modify the list, as it
3343 		 * is in-use by other rules.
3344 		 */
3345 		list_elem->vsi_list_info->ref_cnt--;
3346 		remove_rule = true;
3347 	} else {
3348 		/* a ref_cnt of 1 indicates the vsi_list is only used
3349 		 * by one rule. However, the original removal request is only
3350 		 * for a single VSI. Update the vsi_list first, and only
3351 		 * remove the rule if there are no further VSIs in this list.
3352 		 */
3353 		vsi_handle = f_entry->fltr_info.vsi_handle;
3354 		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3355 		if (status)
3356 			goto exit;
3357 		/* if VSI count goes to zero after updating the VSI list */
3358 		if (list_elem->vsi_count == 0)
3359 			remove_rule = true;
3360 	}
3361 
3362 	if (remove_rule) {
3363 		/* Remove the lookup rule */
3364 		struct ice_sw_rule_lkup_rx_tx *s_rule;
3365 
3366 		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3367 				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3368 				      GFP_KERNEL);
3369 		if (!s_rule) {
3370 			status = -ENOMEM;
3371 			goto exit;
3372 		}
3373 
3374 		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3375 				 ice_aqc_opc_remove_sw_rules);
3376 
3377 		status = ice_aq_sw_rules(hw, s_rule,
3378 					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3379 					 1, ice_aqc_opc_remove_sw_rules, NULL);
3380 
3381 		/* Remove a book keeping from the list */
3382 		devm_kfree(ice_hw_to_dev(hw), s_rule);
3383 
3384 		if (status)
3385 			goto exit;
3386 
3387 		list_del(&list_elem->list_entry);
3388 		devm_kfree(ice_hw_to_dev(hw), list_elem);
3389 	}
3390 exit:
3391 	mutex_unlock(rule_lock);
3392 	return status;
3393 }
3394 
3395 /**
3396  * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3397  * @hw: pointer to the hardware structure
3398  * @vlan_id: VLAN ID
3399  * @vsi_handle: check MAC filter for this VSI
3400  */
3401 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3402 {
3403 	struct ice_fltr_mgmt_list_entry *entry;
3404 	struct list_head *rule_head;
3405 	struct ice_switch_info *sw;
3406 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3407 	u16 hw_vsi_id;
3408 
3409 	if (vlan_id > ICE_MAX_VLAN_ID)
3410 		return false;
3411 
3412 	if (!ice_is_vsi_valid(hw, vsi_handle))
3413 		return false;
3414 
3415 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3416 	sw = hw->switch_info;
3417 	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3418 	if (!rule_head)
3419 		return false;
3420 
3421 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3422 	mutex_lock(rule_lock);
3423 	list_for_each_entry(entry, rule_head, list_entry) {
3424 		struct ice_fltr_info *f_info = &entry->fltr_info;
3425 		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3426 		struct ice_vsi_list_map_info *map_info;
3427 
3428 		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3429 			continue;
3430 
3431 		if (f_info->flag != ICE_FLTR_TX ||
3432 		    f_info->src_id != ICE_SRC_ID_VSI ||
3433 		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3434 			continue;
3435 
3436 		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3437 		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3438 		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3439 			continue;
3440 
3441 		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3442 			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3443 				continue;
3444 		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3445 			/* If filter_action is FWD_TO_VSI_LIST, make sure
3446 			 * that VSI being checked is part of VSI list
3447 			 */
3448 			if (entry->vsi_count == 1 &&
3449 			    entry->vsi_list_info) {
3450 				map_info = entry->vsi_list_info;
3451 				if (!test_bit(vsi_handle, map_info->vsi_map))
3452 					continue;
3453 			}
3454 		}
3455 
3456 		if (vlan_id == entry_vlan_id) {
3457 			mutex_unlock(rule_lock);
3458 			return true;
3459 		}
3460 	}
3461 	mutex_unlock(rule_lock);
3462 
3463 	return false;
3464 }
3465 
3466 /**
3467  * ice_add_mac - Add a MAC address based filter rule
3468  * @hw: pointer to the hardware structure
3469  * @m_list: list of MAC addresses and forwarding information
3470  */
3471 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3472 {
3473 	struct ice_fltr_list_entry *m_list_itr;
3474 	int status = 0;
3475 
3476 	if (!m_list || !hw)
3477 		return -EINVAL;
3478 
3479 	list_for_each_entry(m_list_itr, m_list, list_entry) {
3480 		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3481 		u16 vsi_handle;
3482 		u16 hw_vsi_id;
3483 
3484 		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3485 		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3486 		if (!ice_is_vsi_valid(hw, vsi_handle))
3487 			return -EINVAL;
3488 		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3489 		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3490 		/* update the src in case it is VSI num */
3491 		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3492 			return -EINVAL;
3493 		m_list_itr->fltr_info.src = hw_vsi_id;
3494 		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3495 		    is_zero_ether_addr(add))
3496 			return -EINVAL;
3497 
3498 		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3499 							   m_list_itr);
3500 		if (m_list_itr->status)
3501 			return m_list_itr->status;
3502 	}
3503 
3504 	return status;
3505 }
3506 
3507 /**
3508  * ice_add_vlan_internal - Add one VLAN based filter rule
3509  * @hw: pointer to the hardware structure
3510  * @f_entry: filter entry containing one VLAN information
3511  */
3512 static int
3513 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3514 {
3515 	struct ice_switch_info *sw = hw->switch_info;
3516 	struct ice_fltr_mgmt_list_entry *v_list_itr;
3517 	struct ice_fltr_info *new_fltr, *cur_fltr;
3518 	enum ice_sw_lkup_type lkup_type;
3519 	u16 vsi_list_id = 0, vsi_handle;
3520 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3521 	int status = 0;
3522 
3523 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3524 		return -EINVAL;
3525 
3526 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3527 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3528 	new_fltr = &f_entry->fltr_info;
3529 
3530 	/* VLAN ID should only be 12 bits */
3531 	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3532 		return -EINVAL;
3533 
3534 	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3535 		return -EINVAL;
3536 
3537 	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3538 	lkup_type = new_fltr->lkup_type;
3539 	vsi_handle = new_fltr->vsi_handle;
3540 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3541 	mutex_lock(rule_lock);
3542 	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3543 	if (!v_list_itr) {
3544 		struct ice_vsi_list_map_info *map_info = NULL;
3545 
3546 		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3547 			/* All VLAN pruning rules use a VSI list. Check if
3548 			 * there is already a VSI list containing VSI that we
3549 			 * want to add. If found, use the same vsi_list_id for
3550 			 * this new VLAN rule or else create a new list.
3551 			 */
3552 			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3553 							   vsi_handle,
3554 							   &vsi_list_id);
3555 			if (!map_info) {
3556 				status = ice_create_vsi_list_rule(hw,
3557 								  &vsi_handle,
3558 								  1,
3559 								  &vsi_list_id,
3560 								  lkup_type);
3561 				if (status)
3562 					goto exit;
3563 			}
3564 			/* Convert the action to forwarding to a VSI list. */
3565 			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3566 			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3567 		}
3568 
3569 		status = ice_create_pkt_fwd_rule(hw, f_entry);
3570 		if (!status) {
3571 			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3572 							 new_fltr);
3573 			if (!v_list_itr) {
3574 				status = -ENOENT;
3575 				goto exit;
3576 			}
3577 			/* reuse VSI list for new rule and increment ref_cnt */
3578 			if (map_info) {
3579 				v_list_itr->vsi_list_info = map_info;
3580 				map_info->ref_cnt++;
3581 			} else {
3582 				v_list_itr->vsi_list_info =
3583 					ice_create_vsi_list_map(hw, &vsi_handle,
3584 								1, vsi_list_id);
3585 			}
3586 		}
3587 	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3588 		/* Update existing VSI list to add new VSI ID only if it used
3589 		 * by one VLAN rule.
3590 		 */
3591 		cur_fltr = &v_list_itr->fltr_info;
3592 		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3593 						 new_fltr);
3594 	} else {
3595 		/* If VLAN rule exists and VSI list being used by this rule is
3596 		 * referenced by more than 1 VLAN rule. Then create a new VSI
3597 		 * list appending previous VSI with new VSI and update existing
3598 		 * VLAN rule to point to new VSI list ID
3599 		 */
3600 		struct ice_fltr_info tmp_fltr;
3601 		u16 vsi_handle_arr[2];
3602 		u16 cur_handle;
3603 
3604 		/* Current implementation only supports reusing VSI list with
3605 		 * one VSI count. We should never hit below condition
3606 		 */
3607 		if (v_list_itr->vsi_count > 1 &&
3608 		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3609 			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3610 			status = -EIO;
3611 			goto exit;
3612 		}
3613 
3614 		cur_handle =
3615 			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3616 				       ICE_MAX_VSI);
3617 
3618 		/* A rule already exists with the new VSI being added */
3619 		if (cur_handle == vsi_handle) {
3620 			status = -EEXIST;
3621 			goto exit;
3622 		}
3623 
3624 		vsi_handle_arr[0] = cur_handle;
3625 		vsi_handle_arr[1] = vsi_handle;
3626 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3627 						  &vsi_list_id, lkup_type);
3628 		if (status)
3629 			goto exit;
3630 
3631 		tmp_fltr = v_list_itr->fltr_info;
3632 		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3633 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3634 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3635 		/* Update the previous switch rule to a new VSI list which
3636 		 * includes current VSI that is requested
3637 		 */
3638 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3639 		if (status)
3640 			goto exit;
3641 
3642 		/* before overriding VSI list map info. decrement ref_cnt of
3643 		 * previous VSI list
3644 		 */
3645 		v_list_itr->vsi_list_info->ref_cnt--;
3646 
3647 		/* now update to newly created list */
3648 		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3649 		v_list_itr->vsi_list_info =
3650 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3651 						vsi_list_id);
3652 		v_list_itr->vsi_count++;
3653 	}
3654 
3655 exit:
3656 	mutex_unlock(rule_lock);
3657 	return status;
3658 }
3659 
3660 /**
3661  * ice_add_vlan - Add VLAN based filter rule
3662  * @hw: pointer to the hardware structure
3663  * @v_list: list of VLAN entries and forwarding information
3664  */
3665 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3666 {
3667 	struct ice_fltr_list_entry *v_list_itr;
3668 
3669 	if (!v_list || !hw)
3670 		return -EINVAL;
3671 
3672 	list_for_each_entry(v_list_itr, v_list, list_entry) {
3673 		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3674 			return -EINVAL;
3675 		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3676 		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3677 		if (v_list_itr->status)
3678 			return v_list_itr->status;
3679 	}
3680 	return 0;
3681 }
3682 
3683 /**
3684  * ice_add_eth_mac - Add ethertype and MAC based filter rule
3685  * @hw: pointer to the hardware structure
3686  * @em_list: list of ether type MAC filter, MAC is optional
3687  *
3688  * This function requires the caller to populate the entries in
3689  * the filter list with the necessary fields (including flags to
3690  * indicate Tx or Rx rules).
3691  */
3692 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3693 {
3694 	struct ice_fltr_list_entry *em_list_itr;
3695 
3696 	if (!em_list || !hw)
3697 		return -EINVAL;
3698 
3699 	list_for_each_entry(em_list_itr, em_list, list_entry) {
3700 		enum ice_sw_lkup_type l_type =
3701 			em_list_itr->fltr_info.lkup_type;
3702 
3703 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3704 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3705 			return -EINVAL;
3706 
3707 		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3708 							    em_list_itr);
3709 		if (em_list_itr->status)
3710 			return em_list_itr->status;
3711 	}
3712 	return 0;
3713 }
3714 
3715 /**
3716  * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3717  * @hw: pointer to the hardware structure
3718  * @em_list: list of ethertype or ethertype MAC entries
3719  */
3720 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3721 {
3722 	struct ice_fltr_list_entry *em_list_itr, *tmp;
3723 
3724 	if (!em_list || !hw)
3725 		return -EINVAL;
3726 
3727 	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3728 		enum ice_sw_lkup_type l_type =
3729 			em_list_itr->fltr_info.lkup_type;
3730 
3731 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3732 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3733 			return -EINVAL;
3734 
3735 		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3736 							       em_list_itr);
3737 		if (em_list_itr->status)
3738 			return em_list_itr->status;
3739 	}
3740 	return 0;
3741 }
3742 
3743 /**
3744  * ice_rem_sw_rule_info
3745  * @hw: pointer to the hardware structure
3746  * @rule_head: pointer to the switch list structure that we want to delete
3747  */
3748 static void
3749 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3750 {
3751 	if (!list_empty(rule_head)) {
3752 		struct ice_fltr_mgmt_list_entry *entry;
3753 		struct ice_fltr_mgmt_list_entry *tmp;
3754 
3755 		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3756 			list_del(&entry->list_entry);
3757 			devm_kfree(ice_hw_to_dev(hw), entry);
3758 		}
3759 	}
3760 }
3761 
3762 /**
3763  * ice_rem_adv_rule_info
3764  * @hw: pointer to the hardware structure
3765  * @rule_head: pointer to the switch list structure that we want to delete
3766  */
3767 static void
3768 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3769 {
3770 	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3771 	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3772 
3773 	if (list_empty(rule_head))
3774 		return;
3775 
3776 	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3777 		list_del(&lst_itr->list_entry);
3778 		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3779 		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3780 	}
3781 }
3782 
3783 /**
3784  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3785  * @pi: pointer to the port_info structure
3786  * @vsi_handle: VSI handle to set as default
3787  * @set: true to add the above mentioned switch rule, false to remove it
3788  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3789  *
3790  * add filter rule to set/unset given VSI as default VSI for the switch
3791  * (represented by swid)
3792  */
3793 int
3794 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3795 		 u8 direction)
3796 {
3797 	struct ice_fltr_list_entry f_list_entry;
3798 	struct ice_fltr_info f_info;
3799 	struct ice_hw *hw = pi->hw;
3800 	u16 hw_vsi_id;
3801 	int status;
3802 
3803 	if (!ice_is_vsi_valid(hw, vsi_handle))
3804 		return -EINVAL;
3805 
3806 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3807 
3808 	memset(&f_info, 0, sizeof(f_info));
3809 
3810 	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3811 	f_info.flag = direction;
3812 	f_info.fltr_act = ICE_FWD_TO_VSI;
3813 	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3814 	f_info.vsi_handle = vsi_handle;
3815 
3816 	if (f_info.flag & ICE_FLTR_RX) {
3817 		f_info.src = hw->port_info->lport;
3818 		f_info.src_id = ICE_SRC_ID_LPORT;
3819 	} else if (f_info.flag & ICE_FLTR_TX) {
3820 		f_info.src_id = ICE_SRC_ID_VSI;
3821 		f_info.src = hw_vsi_id;
3822 	}
3823 	f_list_entry.fltr_info = f_info;
3824 
3825 	if (set)
3826 		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3827 					       &f_list_entry);
3828 	else
3829 		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3830 						  &f_list_entry);
3831 
3832 	return status;
3833 }
3834 
3835 /**
3836  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3837  * @fm_entry: filter entry to inspect
3838  * @vsi_handle: VSI handle to compare with filter info
3839  */
3840 static bool
3841 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3842 {
3843 	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3844 		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3845 		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3846 		 fm_entry->vsi_list_info &&
3847 		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3848 }
3849 
3850 /**
3851  * ice_check_if_dflt_vsi - check if VSI is default VSI
3852  * @pi: pointer to the port_info structure
3853  * @vsi_handle: vsi handle to check for in filter list
3854  * @rule_exists: indicates if there are any VSI's in the rule list
3855  *
3856  * checks if the VSI is in a default VSI list, and also indicates
3857  * if the default VSI list is empty
3858  */
3859 bool
3860 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3861 		      bool *rule_exists)
3862 {
3863 	struct ice_fltr_mgmt_list_entry *fm_entry;
3864 	struct ice_sw_recipe *recp_list;
3865 	struct list_head *rule_head;
3866 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3867 	bool ret = false;
3868 
3869 	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3870 	rule_lock = &recp_list->filt_rule_lock;
3871 	rule_head = &recp_list->filt_rules;
3872 
3873 	mutex_lock(rule_lock);
3874 
3875 	if (rule_exists && !list_empty(rule_head))
3876 		*rule_exists = true;
3877 
3878 	list_for_each_entry(fm_entry, rule_head, list_entry) {
3879 		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3880 			ret = true;
3881 			break;
3882 		}
3883 	}
3884 
3885 	mutex_unlock(rule_lock);
3886 
3887 	return ret;
3888 }
3889 
3890 /**
3891  * ice_remove_mac - remove a MAC address based filter rule
3892  * @hw: pointer to the hardware structure
3893  * @m_list: list of MAC addresses and forwarding information
3894  *
3895  * This function removes either a MAC filter rule or a specific VSI from a
3896  * VSI list for a multicast MAC address.
3897  *
3898  * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3899  * be aware that this call will only work if all the entries passed into m_list
3900  * were added previously. It will not attempt to do a partial remove of entries
3901  * that were found.
3902  */
3903 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3904 {
3905 	struct ice_fltr_list_entry *list_itr, *tmp;
3906 
3907 	if (!m_list)
3908 		return -EINVAL;
3909 
3910 	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3911 		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3912 		u16 vsi_handle;
3913 
3914 		if (l_type != ICE_SW_LKUP_MAC)
3915 			return -EINVAL;
3916 
3917 		vsi_handle = list_itr->fltr_info.vsi_handle;
3918 		if (!ice_is_vsi_valid(hw, vsi_handle))
3919 			return -EINVAL;
3920 
3921 		list_itr->fltr_info.fwd_id.hw_vsi_id =
3922 					ice_get_hw_vsi_num(hw, vsi_handle);
3923 
3924 		list_itr->status = ice_remove_rule_internal(hw,
3925 							    ICE_SW_LKUP_MAC,
3926 							    list_itr);
3927 		if (list_itr->status)
3928 			return list_itr->status;
3929 	}
3930 	return 0;
3931 }
3932 
3933 /**
3934  * ice_remove_vlan - Remove VLAN based filter rule
3935  * @hw: pointer to the hardware structure
3936  * @v_list: list of VLAN entries and forwarding information
3937  */
3938 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3939 {
3940 	struct ice_fltr_list_entry *v_list_itr, *tmp;
3941 
3942 	if (!v_list || !hw)
3943 		return -EINVAL;
3944 
3945 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3946 		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3947 
3948 		if (l_type != ICE_SW_LKUP_VLAN)
3949 			return -EINVAL;
3950 		v_list_itr->status = ice_remove_rule_internal(hw,
3951 							      ICE_SW_LKUP_VLAN,
3952 							      v_list_itr);
3953 		if (v_list_itr->status)
3954 			return v_list_itr->status;
3955 	}
3956 	return 0;
3957 }
3958 
3959 /**
3960  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3961  * @hw: pointer to the hardware structure
3962  * @vsi_handle: VSI handle to remove filters from
3963  * @vsi_list_head: pointer to the list to add entry to
3964  * @fi: pointer to fltr_info of filter entry to copy & add
3965  *
3966  * Helper function, used when creating a list of filters to remove from
3967  * a specific VSI. The entry added to vsi_list_head is a COPY of the
3968  * original filter entry, with the exception of fltr_info.fltr_act and
3969  * fltr_info.fwd_id fields. These are set such that later logic can
3970  * extract which VSI to remove the fltr from, and pass on that information.
3971  */
3972 static int
3973 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3974 			       struct list_head *vsi_list_head,
3975 			       struct ice_fltr_info *fi)
3976 {
3977 	struct ice_fltr_list_entry *tmp;
3978 
3979 	/* this memory is freed up in the caller function
3980 	 * once filters for this VSI are removed
3981 	 */
3982 	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
3983 	if (!tmp)
3984 		return -ENOMEM;
3985 
3986 	tmp->fltr_info = *fi;
3987 
3988 	/* Overwrite these fields to indicate which VSI to remove filter from,
3989 	 * so find and remove logic can extract the information from the
3990 	 * list entries. Note that original entries will still have proper
3991 	 * values.
3992 	 */
3993 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3994 	tmp->fltr_info.vsi_handle = vsi_handle;
3995 	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3996 
3997 	list_add(&tmp->list_entry, vsi_list_head);
3998 
3999 	return 0;
4000 }
4001 
4002 /**
4003  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4004  * @hw: pointer to the hardware structure
4005  * @vsi_handle: VSI handle to remove filters from
4006  * @lkup_list_head: pointer to the list that has certain lookup type filters
4007  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4008  *
4009  * Locates all filters in lkup_list_head that are used by the given VSI,
4010  * and adds COPIES of those entries to vsi_list_head (intended to be used
4011  * to remove the listed filters).
4012  * Note that this means all entries in vsi_list_head must be explicitly
4013  * deallocated by the caller when done with list.
4014  */
4015 static int
4016 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4017 			 struct list_head *lkup_list_head,
4018 			 struct list_head *vsi_list_head)
4019 {
4020 	struct ice_fltr_mgmt_list_entry *fm_entry;
4021 	int status = 0;
4022 
4023 	/* check to make sure VSI ID is valid and within boundary */
4024 	if (!ice_is_vsi_valid(hw, vsi_handle))
4025 		return -EINVAL;
4026 
4027 	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4028 		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4029 			continue;
4030 
4031 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4032 							vsi_list_head,
4033 							&fm_entry->fltr_info);
4034 		if (status)
4035 			return status;
4036 	}
4037 	return status;
4038 }
4039 
4040 /**
4041  * ice_determine_promisc_mask
4042  * @fi: filter info to parse
4043  *
4044  * Helper function to determine which ICE_PROMISC_ mask corresponds
4045  * to given filter into.
4046  */
4047 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4048 {
4049 	u16 vid = fi->l_data.mac_vlan.vlan_id;
4050 	u8 *macaddr = fi->l_data.mac.mac_addr;
4051 	bool is_tx_fltr = false;
4052 	u8 promisc_mask = 0;
4053 
4054 	if (fi->flag == ICE_FLTR_TX)
4055 		is_tx_fltr = true;
4056 
4057 	if (is_broadcast_ether_addr(macaddr))
4058 		promisc_mask |= is_tx_fltr ?
4059 			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4060 	else if (is_multicast_ether_addr(macaddr))
4061 		promisc_mask |= is_tx_fltr ?
4062 			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4063 	else if (is_unicast_ether_addr(macaddr))
4064 		promisc_mask |= is_tx_fltr ?
4065 			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4066 	if (vid)
4067 		promisc_mask |= is_tx_fltr ?
4068 			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4069 
4070 	return promisc_mask;
4071 }
4072 
4073 /**
4074  * ice_remove_promisc - Remove promisc based filter rules
4075  * @hw: pointer to the hardware structure
4076  * @recp_id: recipe ID for which the rule needs to removed
4077  * @v_list: list of promisc entries
4078  */
4079 static int
4080 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4081 {
4082 	struct ice_fltr_list_entry *v_list_itr, *tmp;
4083 
4084 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4085 		v_list_itr->status =
4086 			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4087 		if (v_list_itr->status)
4088 			return v_list_itr->status;
4089 	}
4090 	return 0;
4091 }
4092 
4093 /**
4094  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4095  * @hw: pointer to the hardware structure
4096  * @vsi_handle: VSI handle to clear mode
4097  * @promisc_mask: mask of promiscuous config bits to clear
4098  * @vid: VLAN ID to clear VLAN promiscuous
4099  */
4100 int
4101 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4102 		      u16 vid)
4103 {
4104 	struct ice_switch_info *sw = hw->switch_info;
4105 	struct ice_fltr_list_entry *fm_entry, *tmp;
4106 	struct list_head remove_list_head;
4107 	struct ice_fltr_mgmt_list_entry *itr;
4108 	struct list_head *rule_head;
4109 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4110 	int status = 0;
4111 	u8 recipe_id;
4112 
4113 	if (!ice_is_vsi_valid(hw, vsi_handle))
4114 		return -EINVAL;
4115 
4116 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4117 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4118 	else
4119 		recipe_id = ICE_SW_LKUP_PROMISC;
4120 
4121 	rule_head = &sw->recp_list[recipe_id].filt_rules;
4122 	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4123 
4124 	INIT_LIST_HEAD(&remove_list_head);
4125 
4126 	mutex_lock(rule_lock);
4127 	list_for_each_entry(itr, rule_head, list_entry) {
4128 		struct ice_fltr_info *fltr_info;
4129 		u8 fltr_promisc_mask = 0;
4130 
4131 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4132 			continue;
4133 		fltr_info = &itr->fltr_info;
4134 
4135 		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4136 		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4137 			continue;
4138 
4139 		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4140 
4141 		/* Skip if filter is not completely specified by given mask */
4142 		if (fltr_promisc_mask & ~promisc_mask)
4143 			continue;
4144 
4145 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4146 							&remove_list_head,
4147 							fltr_info);
4148 		if (status) {
4149 			mutex_unlock(rule_lock);
4150 			goto free_fltr_list;
4151 		}
4152 	}
4153 	mutex_unlock(rule_lock);
4154 
4155 	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4156 
4157 free_fltr_list:
4158 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4159 		list_del(&fm_entry->list_entry);
4160 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4161 	}
4162 
4163 	return status;
4164 }
4165 
4166 /**
4167  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4168  * @hw: pointer to the hardware structure
4169  * @vsi_handle: VSI handle to configure
4170  * @promisc_mask: mask of promiscuous config bits
4171  * @vid: VLAN ID to set VLAN promiscuous
4172  */
4173 int
4174 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4175 {
4176 	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4177 	struct ice_fltr_list_entry f_list_entry;
4178 	struct ice_fltr_info new_fltr;
4179 	bool is_tx_fltr;
4180 	int status = 0;
4181 	u16 hw_vsi_id;
4182 	int pkt_type;
4183 	u8 recipe_id;
4184 
4185 	if (!ice_is_vsi_valid(hw, vsi_handle))
4186 		return -EINVAL;
4187 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4188 
4189 	memset(&new_fltr, 0, sizeof(new_fltr));
4190 
4191 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4192 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4193 		new_fltr.l_data.mac_vlan.vlan_id = vid;
4194 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4195 	} else {
4196 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4197 		recipe_id = ICE_SW_LKUP_PROMISC;
4198 	}
4199 
4200 	/* Separate filters must be set for each direction/packet type
4201 	 * combination, so we will loop over the mask value, store the
4202 	 * individual type, and clear it out in the input mask as it
4203 	 * is found.
4204 	 */
4205 	while (promisc_mask) {
4206 		u8 *mac_addr;
4207 
4208 		pkt_type = 0;
4209 		is_tx_fltr = false;
4210 
4211 		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4212 			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4213 			pkt_type = UCAST_FLTR;
4214 		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4215 			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4216 			pkt_type = UCAST_FLTR;
4217 			is_tx_fltr = true;
4218 		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4219 			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4220 			pkt_type = MCAST_FLTR;
4221 		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4222 			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4223 			pkt_type = MCAST_FLTR;
4224 			is_tx_fltr = true;
4225 		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4226 			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4227 			pkt_type = BCAST_FLTR;
4228 		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4229 			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4230 			pkt_type = BCAST_FLTR;
4231 			is_tx_fltr = true;
4232 		}
4233 
4234 		/* Check for VLAN promiscuous flag */
4235 		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4236 			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4237 		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4238 			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4239 			is_tx_fltr = true;
4240 		}
4241 
4242 		/* Set filter DA based on packet type */
4243 		mac_addr = new_fltr.l_data.mac.mac_addr;
4244 		if (pkt_type == BCAST_FLTR) {
4245 			eth_broadcast_addr(mac_addr);
4246 		} else if (pkt_type == MCAST_FLTR ||
4247 			   pkt_type == UCAST_FLTR) {
4248 			/* Use the dummy ether header DA */
4249 			ether_addr_copy(mac_addr, dummy_eth_header);
4250 			if (pkt_type == MCAST_FLTR)
4251 				mac_addr[0] |= 0x1;	/* Set multicast bit */
4252 		}
4253 
4254 		/* Need to reset this to zero for all iterations */
4255 		new_fltr.flag = 0;
4256 		if (is_tx_fltr) {
4257 			new_fltr.flag |= ICE_FLTR_TX;
4258 			new_fltr.src = hw_vsi_id;
4259 		} else {
4260 			new_fltr.flag |= ICE_FLTR_RX;
4261 			new_fltr.src = hw->port_info->lport;
4262 		}
4263 
4264 		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4265 		new_fltr.vsi_handle = vsi_handle;
4266 		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4267 		f_list_entry.fltr_info = new_fltr;
4268 
4269 		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4270 		if (status)
4271 			goto set_promisc_exit;
4272 	}
4273 
4274 set_promisc_exit:
4275 	return status;
4276 }
4277 
4278 /**
4279  * ice_set_vlan_vsi_promisc
4280  * @hw: pointer to the hardware structure
4281  * @vsi_handle: VSI handle to configure
4282  * @promisc_mask: mask of promiscuous config bits
4283  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4284  *
4285  * Configure VSI with all associated VLANs to given promiscuous mode(s)
4286  */
4287 int
4288 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4289 			 bool rm_vlan_promisc)
4290 {
4291 	struct ice_switch_info *sw = hw->switch_info;
4292 	struct ice_fltr_list_entry *list_itr, *tmp;
4293 	struct list_head vsi_list_head;
4294 	struct list_head *vlan_head;
4295 	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4296 	u16 vlan_id;
4297 	int status;
4298 
4299 	INIT_LIST_HEAD(&vsi_list_head);
4300 	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4301 	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4302 	mutex_lock(vlan_lock);
4303 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4304 					  &vsi_list_head);
4305 	mutex_unlock(vlan_lock);
4306 	if (status)
4307 		goto free_fltr_list;
4308 
4309 	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4310 		/* Avoid enabling or disabling VLAN zero twice when in double
4311 		 * VLAN mode
4312 		 */
4313 		if (ice_is_dvm_ena(hw) &&
4314 		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4315 			continue;
4316 
4317 		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4318 		if (rm_vlan_promisc)
4319 			status = ice_clear_vsi_promisc(hw, vsi_handle,
4320 						       promisc_mask, vlan_id);
4321 		else
4322 			status = ice_set_vsi_promisc(hw, vsi_handle,
4323 						     promisc_mask, vlan_id);
4324 		if (status && status != -EEXIST)
4325 			break;
4326 	}
4327 
4328 free_fltr_list:
4329 	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4330 		list_del(&list_itr->list_entry);
4331 		devm_kfree(ice_hw_to_dev(hw), list_itr);
4332 	}
4333 	return status;
4334 }
4335 
4336 /**
4337  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4338  * @hw: pointer to the hardware structure
4339  * @vsi_handle: VSI handle to remove filters from
4340  * @lkup: switch rule filter lookup type
4341  */
4342 static void
4343 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4344 			 enum ice_sw_lkup_type lkup)
4345 {
4346 	struct ice_switch_info *sw = hw->switch_info;
4347 	struct ice_fltr_list_entry *fm_entry;
4348 	struct list_head remove_list_head;
4349 	struct list_head *rule_head;
4350 	struct ice_fltr_list_entry *tmp;
4351 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4352 	int status;
4353 
4354 	INIT_LIST_HEAD(&remove_list_head);
4355 	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4356 	rule_head = &sw->recp_list[lkup].filt_rules;
4357 	mutex_lock(rule_lock);
4358 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4359 					  &remove_list_head);
4360 	mutex_unlock(rule_lock);
4361 	if (status)
4362 		goto free_fltr_list;
4363 
4364 	switch (lkup) {
4365 	case ICE_SW_LKUP_MAC:
4366 		ice_remove_mac(hw, &remove_list_head);
4367 		break;
4368 	case ICE_SW_LKUP_VLAN:
4369 		ice_remove_vlan(hw, &remove_list_head);
4370 		break;
4371 	case ICE_SW_LKUP_PROMISC:
4372 	case ICE_SW_LKUP_PROMISC_VLAN:
4373 		ice_remove_promisc(hw, lkup, &remove_list_head);
4374 		break;
4375 	case ICE_SW_LKUP_MAC_VLAN:
4376 	case ICE_SW_LKUP_ETHERTYPE:
4377 	case ICE_SW_LKUP_ETHERTYPE_MAC:
4378 	case ICE_SW_LKUP_DFLT:
4379 	case ICE_SW_LKUP_LAST:
4380 	default:
4381 		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4382 		break;
4383 	}
4384 
4385 free_fltr_list:
4386 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4387 		list_del(&fm_entry->list_entry);
4388 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4389 	}
4390 }
4391 
4392 /**
4393  * ice_remove_vsi_fltr - Remove all filters for a VSI
4394  * @hw: pointer to the hardware structure
4395  * @vsi_handle: VSI handle to remove filters from
4396  */
4397 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4398 {
4399 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4400 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4401 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4402 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4403 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4404 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4405 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4406 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4407 }
4408 
4409 /**
4410  * ice_alloc_res_cntr - allocating resource counter
4411  * @hw: pointer to the hardware structure
4412  * @type: type of resource
4413  * @alloc_shared: if set it is shared else dedicated
4414  * @num_items: number of entries requested for FD resource type
4415  * @counter_id: counter index returned by AQ call
4416  */
4417 int
4418 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4419 		   u16 *counter_id)
4420 {
4421 	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4422 	u16 buf_len = __struct_size(buf);
4423 	int status;
4424 
4425 	buf->num_elems = cpu_to_le16(num_items);
4426 	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4427 				    alloc_shared);
4428 
4429 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4430 	if (status)
4431 		return status;
4432 
4433 	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4434 	return status;
4435 }
4436 
4437 /**
4438  * ice_free_res_cntr - free resource counter
4439  * @hw: pointer to the hardware structure
4440  * @type: type of resource
4441  * @alloc_shared: if set it is shared else dedicated
4442  * @num_items: number of entries to be freed for FD resource type
4443  * @counter_id: counter ID resource which needs to be freed
4444  */
4445 int
4446 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4447 		  u16 counter_id)
4448 {
4449 	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4450 	u16 buf_len = __struct_size(buf);
4451 	int status;
4452 
4453 	buf->num_elems = cpu_to_le16(num_items);
4454 	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4455 				    alloc_shared);
4456 	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4457 
4458 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4459 	if (status)
4460 		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4461 
4462 	return status;
4463 }
4464 
4465 #define ICE_PROTOCOL_ENTRY(id, ...) {		\
4466 	.prot_type	= id,			\
4467 	.offs		= {__VA_ARGS__},	\
4468 }
4469 
4470 /**
4471  * ice_share_res - set a resource as shared or dedicated
4472  * @hw: hw struct of original owner of resource
4473  * @type: resource type
4474  * @shared: is the resource being set to shared
4475  * @res_id: resource id (descriptor)
4476  */
4477 int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4478 {
4479 	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4480 	u16 buf_len = __struct_size(buf);
4481 	u16 res_type;
4482 	int status;
4483 
4484 	buf->num_elems = cpu_to_le16(1);
4485 	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4486 	if (shared)
4487 		res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4488 
4489 	buf->res_type = cpu_to_le16(res_type);
4490 	buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4491 	status = ice_aq_alloc_free_res(hw, buf, buf_len,
4492 				       ice_aqc_opc_share_res);
4493 	if (status)
4494 		ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4495 			  type, res_id, shared ? "SHARED" : "DEDICATED");
4496 
4497 	return status;
4498 }
4499 
4500 /* This is mapping table entry that maps every word within a given protocol
4501  * structure to the real byte offset as per the specification of that
4502  * protocol header.
4503  * for example dst address is 3 words in ethertype header and corresponding
4504  * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4505  * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4506  * matching entry describing its field. This needs to be updated if new
4507  * structure is added to that union.
4508  */
4509 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4510 	ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4511 	ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4512 	ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4513 	ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4514 	ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4515 	ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4516 	ICE_PROTOCOL_ENTRY(ICE_IPV4_IL,	0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4517 	ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4518 			   20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4519 	ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4520 			   22, 24, 26, 28, 30, 32, 34, 36, 38),
4521 	ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4522 	ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4523 	ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4524 	ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4525 	ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4526 	ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4527 	ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4528 	ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4529 	ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4530 	ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4531 	ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4532 	ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4533 	ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4534 			   ICE_SOURCE_PORT_MDID_OFFSET,
4535 			   ICE_PTYPE_MDID_OFFSET,
4536 			   ICE_PACKET_LENGTH_MDID_OFFSET,
4537 			   ICE_SOURCE_VSI_MDID_OFFSET,
4538 			   ICE_PKT_VLAN_MDID_OFFSET,
4539 			   ICE_PKT_TUNNEL_MDID_OFFSET,
4540 			   ICE_PKT_TCP_MDID_OFFSET,
4541 			   ICE_PKT_ERROR_MDID_OFFSET),
4542 };
4543 
4544 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4545 	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4546 	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4547 	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4548 	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4549 	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4550 	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4551 	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4552 	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4553 	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4554 	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4555 	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4556 	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4557 	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4558 	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4559 	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4560 	{ ICE_GTP,		ICE_UDP_OF_HW },
4561 	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4562 	{ ICE_PPPOE,		ICE_PPPOE_HW },
4563 	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4564 	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4565 	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4566 	{ ICE_HW_METADATA,      ICE_META_DATA_ID_HW },
4567 };
4568 
4569 /**
4570  * ice_find_recp - find a recipe
4571  * @hw: pointer to the hardware structure
4572  * @lkup_exts: extension sequence to match
4573  * @rinfo: information regarding the rule e.g. priority and action info
4574  *
4575  * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4576  */
4577 static u16
4578 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4579 	      const struct ice_adv_rule_info *rinfo)
4580 {
4581 	bool refresh_required = true;
4582 	struct ice_sw_recipe *recp;
4583 	u8 i;
4584 
4585 	/* Walk through existing recipes to find a match */
4586 	recp = hw->switch_info->recp_list;
4587 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4588 		/* If recipe was not created for this ID, in SW bookkeeping,
4589 		 * check if FW has an entry for this recipe. If the FW has an
4590 		 * entry update it in our SW bookkeeping and continue with the
4591 		 * matching.
4592 		 */
4593 		if (!recp[i].recp_created)
4594 			if (ice_get_recp_frm_fw(hw,
4595 						hw->switch_info->recp_list, i,
4596 						&refresh_required))
4597 				continue;
4598 
4599 		/* Skip inverse action recipes */
4600 		if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4601 		    ICE_AQ_RECIPE_ACT_INV_ACT)
4602 			continue;
4603 
4604 		/* if number of words we are looking for match */
4605 		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4606 			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4607 			struct ice_fv_word *be = lkup_exts->fv_words;
4608 			u16 *cr = recp[i].lkup_exts.field_mask;
4609 			u16 *de = lkup_exts->field_mask;
4610 			bool found = true;
4611 			u8 pe, qr;
4612 
4613 			/* ar, cr, and qr are related to the recipe words, while
4614 			 * be, de, and pe are related to the lookup words
4615 			 */
4616 			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4617 				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4618 				     qr++) {
4619 					if (ar[qr].off == be[pe].off &&
4620 					    ar[qr].prot_id == be[pe].prot_id &&
4621 					    cr[qr] == de[pe])
4622 						/* Found the "pe"th word in the
4623 						 * given recipe
4624 						 */
4625 						break;
4626 				}
4627 				/* After walking through all the words in the
4628 				 * "i"th recipe if "p"th word was not found then
4629 				 * this recipe is not what we are looking for.
4630 				 * So break out from this loop and try the next
4631 				 * recipe
4632 				 */
4633 				if (qr >= recp[i].lkup_exts.n_val_words) {
4634 					found = false;
4635 					break;
4636 				}
4637 			}
4638 			/* If for "i"th recipe the found was never set to false
4639 			 * then it means we found our match
4640 			 * Also tun type and *_pass_l2 of recipe needs to be
4641 			 * checked
4642 			 */
4643 			if (found && recp[i].tun_type == rinfo->tun_type &&
4644 			    recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4645 			    recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4646 				return i; /* Return the recipe ID */
4647 		}
4648 	}
4649 	return ICE_MAX_NUM_RECIPES;
4650 }
4651 
4652 /**
4653  * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4654  *
4655  * As protocol id for outer vlan is different in dvm and svm, if dvm is
4656  * supported protocol array record for outer vlan has to be modified to
4657  * reflect the value proper for DVM.
4658  */
4659 void ice_change_proto_id_to_dvm(void)
4660 {
4661 	u8 i;
4662 
4663 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4664 		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4665 		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4666 			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4667 }
4668 
4669 /**
4670  * ice_prot_type_to_id - get protocol ID from protocol type
4671  * @type: protocol type
4672  * @id: pointer to variable that will receive the ID
4673  *
4674  * Returns true if found, false otherwise
4675  */
4676 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4677 {
4678 	u8 i;
4679 
4680 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4681 		if (ice_prot_id_tbl[i].type == type) {
4682 			*id = ice_prot_id_tbl[i].protocol_id;
4683 			return true;
4684 		}
4685 	return false;
4686 }
4687 
4688 /**
4689  * ice_fill_valid_words - count valid words
4690  * @rule: advanced rule with lookup information
4691  * @lkup_exts: byte offset extractions of the words that are valid
4692  *
4693  * calculate valid words in a lookup rule using mask value
4694  */
4695 static u8
4696 ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4697 		     struct ice_prot_lkup_ext *lkup_exts)
4698 {
4699 	u8 j, word, prot_id, ret_val;
4700 
4701 	if (!ice_prot_type_to_id(rule->type, &prot_id))
4702 		return 0;
4703 
4704 	word = lkup_exts->n_val_words;
4705 
4706 	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4707 		if (((u16 *)&rule->m_u)[j] &&
4708 		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4709 			/* No more space to accommodate */
4710 			if (word >= ICE_MAX_CHAIN_WORDS)
4711 				return 0;
4712 			lkup_exts->fv_words[word].off =
4713 				ice_prot_ext[rule->type].offs[j];
4714 			lkup_exts->fv_words[word].prot_id =
4715 				ice_prot_id_tbl[rule->type].protocol_id;
4716 			lkup_exts->field_mask[word] =
4717 				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4718 			word++;
4719 		}
4720 
4721 	ret_val = word - lkup_exts->n_val_words;
4722 	lkup_exts->n_val_words = word;
4723 
4724 	return ret_val;
4725 }
4726 
4727 /**
4728  * ice_create_first_fit_recp_def - Create a recipe grouping
4729  * @hw: pointer to the hardware structure
4730  * @lkup_exts: an array of protocol header extractions
4731  * @rg_list: pointer to a list that stores new recipe groups
4732  * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4733  *
4734  * Using first fit algorithm, take all the words that are still not done
4735  * and start grouping them in 4-word groups. Each group makes up one
4736  * recipe.
4737  */
4738 static int
4739 ice_create_first_fit_recp_def(struct ice_hw *hw,
4740 			      struct ice_prot_lkup_ext *lkup_exts,
4741 			      struct list_head *rg_list,
4742 			      u8 *recp_cnt)
4743 {
4744 	struct ice_pref_recipe_group *grp = NULL;
4745 	u8 j;
4746 
4747 	*recp_cnt = 0;
4748 
4749 	/* Walk through every word in the rule to check if it is not done. If so
4750 	 * then this word needs to be part of a new recipe.
4751 	 */
4752 	for (j = 0; j < lkup_exts->n_val_words; j++)
4753 		if (!test_bit(j, lkup_exts->done)) {
4754 			if (!grp ||
4755 			    grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4756 				struct ice_recp_grp_entry *entry;
4757 
4758 				entry = devm_kzalloc(ice_hw_to_dev(hw),
4759 						     sizeof(*entry),
4760 						     GFP_KERNEL);
4761 				if (!entry)
4762 					return -ENOMEM;
4763 				list_add(&entry->l_entry, rg_list);
4764 				grp = &entry->r_group;
4765 				(*recp_cnt)++;
4766 			}
4767 
4768 			grp->pairs[grp->n_val_pairs].prot_id =
4769 				lkup_exts->fv_words[j].prot_id;
4770 			grp->pairs[grp->n_val_pairs].off =
4771 				lkup_exts->fv_words[j].off;
4772 			grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4773 			grp->n_val_pairs++;
4774 		}
4775 
4776 	return 0;
4777 }
4778 
4779 /**
4780  * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4781  * @hw: pointer to the hardware structure
4782  * @fv_list: field vector with the extraction sequence information
4783  * @rg_list: recipe groupings with protocol-offset pairs
4784  *
4785  * Helper function to fill in the field vector indices for protocol-offset
4786  * pairs. These indexes are then ultimately programmed into a recipe.
4787  */
4788 static int
4789 ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4790 		       struct list_head *rg_list)
4791 {
4792 	struct ice_sw_fv_list_entry *fv;
4793 	struct ice_recp_grp_entry *rg;
4794 	struct ice_fv_word *fv_ext;
4795 
4796 	if (list_empty(fv_list))
4797 		return 0;
4798 
4799 	fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4800 			      list_entry);
4801 	fv_ext = fv->fv_ptr->ew;
4802 
4803 	list_for_each_entry(rg, rg_list, l_entry) {
4804 		u8 i;
4805 
4806 		for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4807 			struct ice_fv_word *pr;
4808 			bool found = false;
4809 			u16 mask;
4810 			u8 j;
4811 
4812 			pr = &rg->r_group.pairs[i];
4813 			mask = rg->r_group.mask[i];
4814 
4815 			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4816 				if (fv_ext[j].prot_id == pr->prot_id &&
4817 				    fv_ext[j].off == pr->off) {
4818 					found = true;
4819 
4820 					/* Store index of field vector */
4821 					rg->fv_idx[i] = j;
4822 					rg->fv_mask[i] = mask;
4823 					break;
4824 				}
4825 
4826 			/* Protocol/offset could not be found, caller gave an
4827 			 * invalid pair
4828 			 */
4829 			if (!found)
4830 				return -EINVAL;
4831 		}
4832 	}
4833 
4834 	return 0;
4835 }
4836 
4837 /**
4838  * ice_find_free_recp_res_idx - find free result indexes for recipe
4839  * @hw: pointer to hardware structure
4840  * @profiles: bitmap of profiles that will be associated with the new recipe
4841  * @free_idx: pointer to variable to receive the free index bitmap
4842  *
4843  * The algorithm used here is:
4844  *	1. When creating a new recipe, create a set P which contains all
4845  *	   Profiles that will be associated with our new recipe
4846  *
4847  *	2. For each Profile p in set P:
4848  *	    a. Add all recipes associated with Profile p into set R
4849  *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4850  *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4851  *		i. Or just assume they all have the same possible indexes:
4852  *			44, 45, 46, 47
4853  *			i.e., PossibleIndexes = 0x0000F00000000000
4854  *
4855  *	3. For each Recipe r in set R:
4856  *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4857  *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4858  *
4859  *	FreeIndexes will contain the bits indicating the indexes free for use,
4860  *      then the code needs to update the recipe[r].used_result_idx_bits to
4861  *      indicate which indexes were selected for use by this recipe.
4862  */
4863 static u16
4864 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4865 			   unsigned long *free_idx)
4866 {
4867 	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4868 	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4869 	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4870 	u16 bit;
4871 
4872 	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4873 	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4874 
4875 	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4876 
4877 	/* For each profile we are going to associate the recipe with, add the
4878 	 * recipes that are associated with that profile. This will give us
4879 	 * the set of recipes that our recipe may collide with. Also, determine
4880 	 * what possible result indexes are usable given this set of profiles.
4881 	 */
4882 	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4883 		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4884 			  ICE_MAX_NUM_RECIPES);
4885 		bitmap_and(possible_idx, possible_idx,
4886 			   hw->switch_info->prof_res_bm[bit],
4887 			   ICE_MAX_FV_WORDS);
4888 	}
4889 
4890 	/* For each recipe that our new recipe may collide with, determine
4891 	 * which indexes have been used.
4892 	 */
4893 	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4894 		bitmap_or(used_idx, used_idx,
4895 			  hw->switch_info->recp_list[bit].res_idxs,
4896 			  ICE_MAX_FV_WORDS);
4897 
4898 	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4899 
4900 	/* return number of free indexes */
4901 	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4902 }
4903 
4904 /**
4905  * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4906  * @hw: pointer to hardware structure
4907  * @rm: recipe management list entry
4908  * @profiles: bitmap of profiles that will be associated.
4909  */
4910 static int
4911 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4912 		  unsigned long *profiles)
4913 {
4914 	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
4915 	struct ice_aqc_recipe_content *content;
4916 	struct ice_aqc_recipe_data_elem *tmp;
4917 	struct ice_aqc_recipe_data_elem *buf;
4918 	struct ice_recp_grp_entry *entry;
4919 	u16 free_res_idx;
4920 	u16 recipe_count;
4921 	u8 chain_idx;
4922 	u8 recps = 0;
4923 	int status;
4924 
4925 	/* When more than one recipe are required, another recipe is needed to
4926 	 * chain them together. Matching a tunnel metadata ID takes up one of
4927 	 * the match fields in the chaining recipe reducing the number of
4928 	 * chained recipes by one.
4929 	 */
4930 	 /* check number of free result indices */
4931 	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
4932 	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4933 
4934 	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4935 		  free_res_idx, rm->n_grp_count);
4936 
4937 	if (rm->n_grp_count > 1) {
4938 		if (rm->n_grp_count > free_res_idx)
4939 			return -ENOSPC;
4940 
4941 		rm->n_grp_count++;
4942 	}
4943 
4944 	if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4945 		return -ENOSPC;
4946 
4947 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4948 	if (!tmp)
4949 		return -ENOMEM;
4950 
4951 	buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4952 			   GFP_KERNEL);
4953 	if (!buf) {
4954 		status = -ENOMEM;
4955 		goto err_mem;
4956 	}
4957 
4958 	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4959 	recipe_count = ICE_MAX_NUM_RECIPES;
4960 	status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4961 				   NULL);
4962 	if (status || recipe_count == 0)
4963 		goto err_unroll;
4964 
4965 	/* Allocate the recipe resources, and configure them according to the
4966 	 * match fields from protocol headers and extracted field vectors.
4967 	 */
4968 	chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
4969 	list_for_each_entry(entry, &rm->rg_list, l_entry) {
4970 		u8 i;
4971 
4972 		status = ice_alloc_recipe(hw, &entry->rid);
4973 		if (status)
4974 			goto err_unroll;
4975 
4976 		content = &buf[recps].content;
4977 
4978 		/* Clear the result index of the located recipe, as this will be
4979 		 * updated, if needed, later in the recipe creation process.
4980 		 */
4981 		tmp[0].content.result_indx = 0;
4982 
4983 		buf[recps] = tmp[0];
4984 		buf[recps].recipe_indx = (u8)entry->rid;
4985 		/* if the recipe is a non-root recipe RID should be programmed
4986 		 * as 0 for the rules to be applied correctly.
4987 		 */
4988 		content->rid = 0;
4989 		memset(&content->lkup_indx, 0,
4990 		       sizeof(content->lkup_indx));
4991 
4992 		/* All recipes use look-up index 0 to match switch ID. */
4993 		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4994 		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
4995 		/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
4996 		 * to be 0
4997 		 */
4998 		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
4999 			content->lkup_indx[i] = 0x80;
5000 			content->mask[i] = 0;
5001 		}
5002 
5003 		for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5004 			content->lkup_indx[i + 1] = entry->fv_idx[i];
5005 			content->mask[i + 1] = cpu_to_le16(entry->fv_mask[i]);
5006 		}
5007 
5008 		if (rm->n_grp_count > 1) {
5009 			/* Checks to see if there really is a valid result index
5010 			 * that can be used.
5011 			 */
5012 			if (chain_idx >= ICE_MAX_FV_WORDS) {
5013 				ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5014 				status = -ENOSPC;
5015 				goto err_unroll;
5016 			}
5017 
5018 			entry->chain_idx = chain_idx;
5019 			content->result_indx =
5020 				ICE_AQ_RECIPE_RESULT_EN |
5021 				FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5022 					   chain_idx);
5023 			clear_bit(chain_idx, result_idx_bm);
5024 			chain_idx = find_first_bit(result_idx_bm,
5025 						   ICE_MAX_FV_WORDS);
5026 		}
5027 
5028 		/* fill recipe dependencies */
5029 		bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5030 			    ICE_MAX_NUM_RECIPES);
5031 		set_bit(buf[recps].recipe_indx,
5032 			(unsigned long *)buf[recps].recipe_bitmap);
5033 		content->act_ctrl_fwd_priority = rm->priority;
5034 
5035 		if (rm->need_pass_l2)
5036 			content->act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5037 
5038 		if (rm->allow_pass_l2)
5039 			content->act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5040 		recps++;
5041 	}
5042 
5043 	if (rm->n_grp_count == 1) {
5044 		rm->root_rid = buf[0].recipe_indx;
5045 		set_bit(buf[0].recipe_indx, rm->r_bitmap);
5046 		buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5047 		if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5048 			memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5049 			       sizeof(buf[0].recipe_bitmap));
5050 		} else {
5051 			status = -EINVAL;
5052 			goto err_unroll;
5053 		}
5054 		/* Applicable only for ROOT_RECIPE, set the fwd_priority for
5055 		 * the recipe which is getting created if specified
5056 		 * by user. Usually any advanced switch filter, which results
5057 		 * into new extraction sequence, ended up creating a new recipe
5058 		 * of type ROOT and usually recipes are associated with profiles
5059 		 * Switch rule referreing newly created recipe, needs to have
5060 		 * either/or 'fwd' or 'join' priority, otherwise switch rule
5061 		 * evaluation will not happen correctly. In other words, if
5062 		 * switch rule to be evaluated on priority basis, then recipe
5063 		 * needs to have priority, otherwise it will be evaluated last.
5064 		 */
5065 		buf[0].content.act_ctrl_fwd_priority = rm->priority;
5066 	} else {
5067 		struct ice_recp_grp_entry *last_chain_entry;
5068 		u16 rid, i;
5069 
5070 		/* Allocate the last recipe that will chain the outcomes of the
5071 		 * other recipes together
5072 		 */
5073 		status = ice_alloc_recipe(hw, &rid);
5074 		if (status)
5075 			goto err_unroll;
5076 
5077 		content = &buf[recps].content;
5078 
5079 		buf[recps].recipe_indx = (u8)rid;
5080 		content->rid = (u8)rid;
5081 		content->rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5082 		/* the new entry created should also be part of rg_list to
5083 		 * make sure we have complete recipe
5084 		 */
5085 		last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5086 						sizeof(*last_chain_entry),
5087 						GFP_KERNEL);
5088 		if (!last_chain_entry) {
5089 			status = -ENOMEM;
5090 			goto err_unroll;
5091 		}
5092 		last_chain_entry->rid = rid;
5093 		memset(&content->lkup_indx, 0, sizeof(content->lkup_indx));
5094 		/* All recipes use look-up index 0 to match switch ID. */
5095 		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5096 		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5097 		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5098 			content->lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5099 			content->mask[i] = 0;
5100 		}
5101 
5102 		i = 1;
5103 		/* update r_bitmap with the recp that is used for chaining */
5104 		set_bit(rid, rm->r_bitmap);
5105 		/* this is the recipe that chains all the other recipes so it
5106 		 * should not have a chaining ID to indicate the same
5107 		 */
5108 		last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5109 		list_for_each_entry(entry, &rm->rg_list, l_entry) {
5110 			last_chain_entry->fv_idx[i] = entry->chain_idx;
5111 			content->lkup_indx[i] = entry->chain_idx;
5112 			content->mask[i++] = cpu_to_le16(0xFFFF);
5113 			set_bit(entry->rid, rm->r_bitmap);
5114 		}
5115 		list_add(&last_chain_entry->l_entry, &rm->rg_list);
5116 		if (sizeof(buf[recps].recipe_bitmap) >=
5117 		    sizeof(rm->r_bitmap)) {
5118 			memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5119 			       sizeof(buf[recps].recipe_bitmap));
5120 		} else {
5121 			status = -EINVAL;
5122 			goto err_unroll;
5123 		}
5124 		content->act_ctrl_fwd_priority = rm->priority;
5125 
5126 		recps++;
5127 		rm->root_rid = (u8)rid;
5128 	}
5129 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5130 	if (status)
5131 		goto err_unroll;
5132 
5133 	status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5134 	ice_release_change_lock(hw);
5135 	if (status)
5136 		goto err_unroll;
5137 
5138 	/* Every recipe that just got created add it to the recipe
5139 	 * book keeping list
5140 	 */
5141 	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5142 		struct ice_switch_info *sw = hw->switch_info;
5143 		bool is_root, idx_found = false;
5144 		struct ice_sw_recipe *recp;
5145 		u16 idx, buf_idx = 0;
5146 
5147 		/* find buffer index for copying some data */
5148 		for (idx = 0; idx < rm->n_grp_count; idx++)
5149 			if (buf[idx].recipe_indx == entry->rid) {
5150 				buf_idx = idx;
5151 				idx_found = true;
5152 			}
5153 
5154 		if (!idx_found) {
5155 			status = -EIO;
5156 			goto err_unroll;
5157 		}
5158 
5159 		recp = &sw->recp_list[entry->rid];
5160 		is_root = (rm->root_rid == entry->rid);
5161 		recp->is_root = is_root;
5162 
5163 		recp->root_rid = entry->rid;
5164 		recp->big_recp = (is_root && rm->n_grp_count > 1);
5165 
5166 		memcpy(&recp->ext_words, entry->r_group.pairs,
5167 		       entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5168 
5169 		memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5170 		       sizeof(recp->r_bitmap));
5171 
5172 		/* Copy non-result fv index values and masks to recipe. This
5173 		 * call will also update the result recipe bitmask.
5174 		 */
5175 		ice_collect_result_idx(&buf[buf_idx], recp);
5176 
5177 		/* for non-root recipes, also copy to the root, this allows
5178 		 * easier matching of a complete chained recipe
5179 		 */
5180 		if (!is_root)
5181 			ice_collect_result_idx(&buf[buf_idx],
5182 					       &sw->recp_list[rm->root_rid]);
5183 
5184 		recp->n_ext_words = entry->r_group.n_val_pairs;
5185 		recp->chain_idx = entry->chain_idx;
5186 		recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5187 		recp->n_grp_count = rm->n_grp_count;
5188 		recp->tun_type = rm->tun_type;
5189 		recp->need_pass_l2 = rm->need_pass_l2;
5190 		recp->allow_pass_l2 = rm->allow_pass_l2;
5191 		recp->recp_created = true;
5192 	}
5193 	rm->root_buf = buf;
5194 	kfree(tmp);
5195 	return status;
5196 
5197 err_unroll:
5198 err_mem:
5199 	kfree(tmp);
5200 	devm_kfree(ice_hw_to_dev(hw), buf);
5201 	return status;
5202 }
5203 
5204 /**
5205  * ice_create_recipe_group - creates recipe group
5206  * @hw: pointer to hardware structure
5207  * @rm: recipe management list entry
5208  * @lkup_exts: lookup elements
5209  */
5210 static int
5211 ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5212 			struct ice_prot_lkup_ext *lkup_exts)
5213 {
5214 	u8 recp_count = 0;
5215 	int status;
5216 
5217 	rm->n_grp_count = 0;
5218 
5219 	/* Create recipes for words that are marked not done by packing them
5220 	 * as best fit.
5221 	 */
5222 	status = ice_create_first_fit_recp_def(hw, lkup_exts,
5223 					       &rm->rg_list, &recp_count);
5224 	if (!status) {
5225 		rm->n_grp_count += recp_count;
5226 		rm->n_ext_words = lkup_exts->n_val_words;
5227 		memcpy(&rm->ext_words, lkup_exts->fv_words,
5228 		       sizeof(rm->ext_words));
5229 		memcpy(rm->word_masks, lkup_exts->field_mask,
5230 		       sizeof(rm->word_masks));
5231 	}
5232 
5233 	return status;
5234 }
5235 
5236 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5237  * @hw: pointer to hardware structure
5238  * @rinfo: other information regarding the rule e.g. priority and action info
5239  * @bm: pointer to memory for returning the bitmap of field vectors
5240  */
5241 static void
5242 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5243 			 unsigned long *bm)
5244 {
5245 	enum ice_prof_type prof_type;
5246 
5247 	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5248 
5249 	switch (rinfo->tun_type) {
5250 	case ICE_NON_TUN:
5251 		prof_type = ICE_PROF_NON_TUN;
5252 		break;
5253 	case ICE_ALL_TUNNELS:
5254 		prof_type = ICE_PROF_TUN_ALL;
5255 		break;
5256 	case ICE_SW_TUN_GENEVE:
5257 	case ICE_SW_TUN_VXLAN:
5258 		prof_type = ICE_PROF_TUN_UDP;
5259 		break;
5260 	case ICE_SW_TUN_NVGRE:
5261 		prof_type = ICE_PROF_TUN_GRE;
5262 		break;
5263 	case ICE_SW_TUN_GTPU:
5264 		prof_type = ICE_PROF_TUN_GTPU;
5265 		break;
5266 	case ICE_SW_TUN_GTPC:
5267 		prof_type = ICE_PROF_TUN_GTPC;
5268 		break;
5269 	case ICE_SW_TUN_AND_NON_TUN:
5270 	default:
5271 		prof_type = ICE_PROF_ALL;
5272 		break;
5273 	}
5274 
5275 	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5276 }
5277 
5278 /**
5279  * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5280  * @hw: pointer to hardware structure
5281  * @lkups: lookup elements or match criteria for the advanced recipe, one
5282  *  structure per protocol header
5283  * @lkups_cnt: number of protocols
5284  * @rinfo: other information regarding the rule e.g. priority and action info
5285  * @rid: return the recipe ID of the recipe created
5286  */
5287 static int
5288 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5289 		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5290 {
5291 	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5292 	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5293 	struct ice_prot_lkup_ext *lkup_exts;
5294 	struct ice_recp_grp_entry *r_entry;
5295 	struct ice_sw_fv_list_entry *fvit;
5296 	struct ice_recp_grp_entry *r_tmp;
5297 	struct ice_sw_fv_list_entry *tmp;
5298 	struct ice_sw_recipe *rm;
5299 	int status = 0;
5300 	u8 i;
5301 
5302 	if (!lkups_cnt)
5303 		return -EINVAL;
5304 
5305 	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5306 	if (!lkup_exts)
5307 		return -ENOMEM;
5308 
5309 	/* Determine the number of words to be matched and if it exceeds a
5310 	 * recipe's restrictions
5311 	 */
5312 	for (i = 0; i < lkups_cnt; i++) {
5313 		u16 count;
5314 
5315 		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5316 			status = -EIO;
5317 			goto err_free_lkup_exts;
5318 		}
5319 
5320 		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5321 		if (!count) {
5322 			status = -EIO;
5323 			goto err_free_lkup_exts;
5324 		}
5325 	}
5326 
5327 	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5328 	if (!rm) {
5329 		status = -ENOMEM;
5330 		goto err_free_lkup_exts;
5331 	}
5332 
5333 	/* Get field vectors that contain fields extracted from all the protocol
5334 	 * headers being programmed.
5335 	 */
5336 	INIT_LIST_HEAD(&rm->fv_list);
5337 	INIT_LIST_HEAD(&rm->rg_list);
5338 
5339 	/* Get bitmap of field vectors (profiles) that are compatible with the
5340 	 * rule request; only these will be searched in the subsequent call to
5341 	 * ice_get_sw_fv_list.
5342 	 */
5343 	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5344 
5345 	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5346 	if (status)
5347 		goto err_unroll;
5348 
5349 	/* Group match words into recipes using preferred recipe grouping
5350 	 * criteria.
5351 	 */
5352 	status = ice_create_recipe_group(hw, rm, lkup_exts);
5353 	if (status)
5354 		goto err_unroll;
5355 
5356 	/* set the recipe priority if specified */
5357 	rm->priority = (u8)rinfo->priority;
5358 
5359 	rm->need_pass_l2 = rinfo->need_pass_l2;
5360 	rm->allow_pass_l2 = rinfo->allow_pass_l2;
5361 
5362 	/* Find offsets from the field vector. Pick the first one for all the
5363 	 * recipes.
5364 	 */
5365 	status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5366 	if (status)
5367 		goto err_unroll;
5368 
5369 	/* get bitmap of all profiles the recipe will be associated with */
5370 	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5371 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5372 		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5373 		set_bit((u16)fvit->profile_id, profiles);
5374 	}
5375 
5376 	/* Look for a recipe which matches our requested fv / mask list */
5377 	*rid = ice_find_recp(hw, lkup_exts, rinfo);
5378 	if (*rid < ICE_MAX_NUM_RECIPES)
5379 		/* Success if found a recipe that match the existing criteria */
5380 		goto err_unroll;
5381 
5382 	rm->tun_type = rinfo->tun_type;
5383 	/* Recipe we need does not exist, add a recipe */
5384 	status = ice_add_sw_recipe(hw, rm, profiles);
5385 	if (status)
5386 		goto err_unroll;
5387 
5388 	/* Associate all the recipes created with all the profiles in the
5389 	 * common field vector.
5390 	 */
5391 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5392 		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5393 		u16 j;
5394 
5395 		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5396 						      (u8 *)r_bitmap, NULL);
5397 		if (status)
5398 			goto err_unroll;
5399 
5400 		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5401 			  ICE_MAX_NUM_RECIPES);
5402 		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5403 		if (status)
5404 			goto err_unroll;
5405 
5406 		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5407 						      (u8 *)r_bitmap,
5408 						      NULL);
5409 		ice_release_change_lock(hw);
5410 
5411 		if (status)
5412 			goto err_unroll;
5413 
5414 		/* Update profile to recipe bitmap array */
5415 		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5416 			    ICE_MAX_NUM_RECIPES);
5417 
5418 		/* Update recipe to profile bitmap array */
5419 		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5420 			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5421 	}
5422 
5423 	*rid = rm->root_rid;
5424 	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5425 	       sizeof(*lkup_exts));
5426 err_unroll:
5427 	list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5428 		list_del(&r_entry->l_entry);
5429 		devm_kfree(ice_hw_to_dev(hw), r_entry);
5430 	}
5431 
5432 	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5433 		list_del(&fvit->list_entry);
5434 		devm_kfree(ice_hw_to_dev(hw), fvit);
5435 	}
5436 
5437 	devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5438 	kfree(rm);
5439 
5440 err_free_lkup_exts:
5441 	kfree(lkup_exts);
5442 
5443 	return status;
5444 }
5445 
5446 /**
5447  * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5448  *
5449  * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5450  * @num_vlan: number of VLAN tags
5451  */
5452 static struct ice_dummy_pkt_profile *
5453 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5454 			  u32 num_vlan)
5455 {
5456 	struct ice_dummy_pkt_profile *profile;
5457 	struct ice_dummy_pkt_offsets *offsets;
5458 	u32 buf_len, off, etype_off, i;
5459 	u8 *pkt;
5460 
5461 	if (num_vlan < 1 || num_vlan > 2)
5462 		return ERR_PTR(-EINVAL);
5463 
5464 	off = num_vlan * VLAN_HLEN;
5465 
5466 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5467 		  dummy_pkt->offsets_len;
5468 	offsets = kzalloc(buf_len, GFP_KERNEL);
5469 	if (!offsets)
5470 		return ERR_PTR(-ENOMEM);
5471 
5472 	offsets[0] = dummy_pkt->offsets[0];
5473 	if (num_vlan == 2) {
5474 		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5475 		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5476 	} else if (num_vlan == 1) {
5477 		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5478 	}
5479 
5480 	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5481 		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5482 		offsets[i + num_vlan].offset =
5483 			dummy_pkt->offsets[i].offset + off;
5484 	}
5485 	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5486 
5487 	etype_off = dummy_pkt->offsets[1].offset;
5488 
5489 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5490 		  dummy_pkt->pkt_len;
5491 	pkt = kzalloc(buf_len, GFP_KERNEL);
5492 	if (!pkt) {
5493 		kfree(offsets);
5494 		return ERR_PTR(-ENOMEM);
5495 	}
5496 
5497 	memcpy(pkt, dummy_pkt->pkt, etype_off);
5498 	memcpy(pkt + etype_off,
5499 	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5500 	       off);
5501 	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5502 	       dummy_pkt->pkt_len - etype_off);
5503 
5504 	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5505 	if (!profile) {
5506 		kfree(offsets);
5507 		kfree(pkt);
5508 		return ERR_PTR(-ENOMEM);
5509 	}
5510 
5511 	profile->offsets = offsets;
5512 	profile->pkt = pkt;
5513 	profile->pkt_len = buf_len;
5514 	profile->match |= ICE_PKT_KMALLOC;
5515 
5516 	return profile;
5517 }
5518 
5519 /**
5520  * ice_find_dummy_packet - find dummy packet
5521  *
5522  * @lkups: lookup elements or match criteria for the advanced recipe, one
5523  *	   structure per protocol header
5524  * @lkups_cnt: number of protocols
5525  * @tun_type: tunnel type
5526  *
5527  * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5528  */
5529 static const struct ice_dummy_pkt_profile *
5530 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5531 		      enum ice_sw_tunnel_type tun_type)
5532 {
5533 	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5534 	u32 match = 0, vlan_count = 0;
5535 	u16 i;
5536 
5537 	switch (tun_type) {
5538 	case ICE_SW_TUN_GTPC:
5539 		match |= ICE_PKT_TUN_GTPC;
5540 		break;
5541 	case ICE_SW_TUN_GTPU:
5542 		match |= ICE_PKT_TUN_GTPU;
5543 		break;
5544 	case ICE_SW_TUN_NVGRE:
5545 		match |= ICE_PKT_TUN_NVGRE;
5546 		break;
5547 	case ICE_SW_TUN_GENEVE:
5548 	case ICE_SW_TUN_VXLAN:
5549 		match |= ICE_PKT_TUN_UDP;
5550 		break;
5551 	default:
5552 		break;
5553 	}
5554 
5555 	for (i = 0; i < lkups_cnt; i++) {
5556 		if (lkups[i].type == ICE_UDP_ILOS)
5557 			match |= ICE_PKT_INNER_UDP;
5558 		else if (lkups[i].type == ICE_TCP_IL)
5559 			match |= ICE_PKT_INNER_TCP;
5560 		else if (lkups[i].type == ICE_IPV6_OFOS)
5561 			match |= ICE_PKT_OUTER_IPV6;
5562 		else if (lkups[i].type == ICE_VLAN_OFOS ||
5563 			 lkups[i].type == ICE_VLAN_EX)
5564 			vlan_count++;
5565 		else if (lkups[i].type == ICE_VLAN_IN)
5566 			vlan_count++;
5567 		else if (lkups[i].type == ICE_ETYPE_OL &&
5568 			 lkups[i].h_u.ethertype.ethtype_id ==
5569 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5570 			 lkups[i].m_u.ethertype.ethtype_id ==
5571 				cpu_to_be16(0xFFFF))
5572 			match |= ICE_PKT_OUTER_IPV6;
5573 		else if (lkups[i].type == ICE_ETYPE_IL &&
5574 			 lkups[i].h_u.ethertype.ethtype_id ==
5575 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5576 			 lkups[i].m_u.ethertype.ethtype_id ==
5577 				cpu_to_be16(0xFFFF))
5578 			match |= ICE_PKT_INNER_IPV6;
5579 		else if (lkups[i].type == ICE_IPV6_IL)
5580 			match |= ICE_PKT_INNER_IPV6;
5581 		else if (lkups[i].type == ICE_GTP_NO_PAY)
5582 			match |= ICE_PKT_GTP_NOPAY;
5583 		else if (lkups[i].type == ICE_PPPOE) {
5584 			match |= ICE_PKT_PPPOE;
5585 			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5586 			    htons(PPP_IPV6))
5587 				match |= ICE_PKT_OUTER_IPV6;
5588 		} else if (lkups[i].type == ICE_L2TPV3)
5589 			match |= ICE_PKT_L2TPV3;
5590 	}
5591 
5592 	while (ret->match && (match & ret->match) != ret->match)
5593 		ret++;
5594 
5595 	if (vlan_count != 0)
5596 		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5597 
5598 	return ret;
5599 }
5600 
5601 /**
5602  * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5603  *
5604  * @lkups: lookup elements or match criteria for the advanced recipe, one
5605  *	   structure per protocol header
5606  * @lkups_cnt: number of protocols
5607  * @s_rule: stores rule information from the match criteria
5608  * @profile: dummy packet profile (the template, its size and header offsets)
5609  */
5610 static int
5611 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5612 			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5613 			  const struct ice_dummy_pkt_profile *profile)
5614 {
5615 	u8 *pkt;
5616 	u16 i;
5617 
5618 	/* Start with a packet with a pre-defined/dummy content. Then, fill
5619 	 * in the header values to be looked up or matched.
5620 	 */
5621 	pkt = s_rule->hdr_data;
5622 
5623 	memcpy(pkt, profile->pkt, profile->pkt_len);
5624 
5625 	for (i = 0; i < lkups_cnt; i++) {
5626 		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5627 		enum ice_protocol_type type;
5628 		u16 offset = 0, len = 0, j;
5629 		bool found = false;
5630 
5631 		/* find the start of this layer; it should be found since this
5632 		 * was already checked when search for the dummy packet
5633 		 */
5634 		type = lkups[i].type;
5635 		/* metadata isn't present in the packet */
5636 		if (type == ICE_HW_METADATA)
5637 			continue;
5638 
5639 		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5640 			if (type == offsets[j].type) {
5641 				offset = offsets[j].offset;
5642 				found = true;
5643 				break;
5644 			}
5645 		}
5646 		/* this should never happen in a correct calling sequence */
5647 		if (!found)
5648 			return -EINVAL;
5649 
5650 		switch (lkups[i].type) {
5651 		case ICE_MAC_OFOS:
5652 		case ICE_MAC_IL:
5653 			len = sizeof(struct ice_ether_hdr);
5654 			break;
5655 		case ICE_ETYPE_OL:
5656 		case ICE_ETYPE_IL:
5657 			len = sizeof(struct ice_ethtype_hdr);
5658 			break;
5659 		case ICE_VLAN_OFOS:
5660 		case ICE_VLAN_EX:
5661 		case ICE_VLAN_IN:
5662 			len = sizeof(struct ice_vlan_hdr);
5663 			break;
5664 		case ICE_IPV4_OFOS:
5665 		case ICE_IPV4_IL:
5666 			len = sizeof(struct ice_ipv4_hdr);
5667 			break;
5668 		case ICE_IPV6_OFOS:
5669 		case ICE_IPV6_IL:
5670 			len = sizeof(struct ice_ipv6_hdr);
5671 			break;
5672 		case ICE_TCP_IL:
5673 		case ICE_UDP_OF:
5674 		case ICE_UDP_ILOS:
5675 			len = sizeof(struct ice_l4_hdr);
5676 			break;
5677 		case ICE_SCTP_IL:
5678 			len = sizeof(struct ice_sctp_hdr);
5679 			break;
5680 		case ICE_NVGRE:
5681 			len = sizeof(struct ice_nvgre_hdr);
5682 			break;
5683 		case ICE_VXLAN:
5684 		case ICE_GENEVE:
5685 			len = sizeof(struct ice_udp_tnl_hdr);
5686 			break;
5687 		case ICE_GTP_NO_PAY:
5688 		case ICE_GTP:
5689 			len = sizeof(struct ice_udp_gtp_hdr);
5690 			break;
5691 		case ICE_PPPOE:
5692 			len = sizeof(struct ice_pppoe_hdr);
5693 			break;
5694 		case ICE_L2TPV3:
5695 			len = sizeof(struct ice_l2tpv3_sess_hdr);
5696 			break;
5697 		default:
5698 			return -EINVAL;
5699 		}
5700 
5701 		/* the length should be a word multiple */
5702 		if (len % ICE_BYTES_PER_WORD)
5703 			return -EIO;
5704 
5705 		/* We have the offset to the header start, the length, the
5706 		 * caller's header values and mask. Use this information to
5707 		 * copy the data into the dummy packet appropriately based on
5708 		 * the mask. Note that we need to only write the bits as
5709 		 * indicated by the mask to make sure we don't improperly write
5710 		 * over any significant packet data.
5711 		 */
5712 		for (j = 0; j < len / sizeof(u16); j++) {
5713 			u16 *ptr = (u16 *)(pkt + offset);
5714 			u16 mask = lkups[i].m_raw[j];
5715 
5716 			if (!mask)
5717 				continue;
5718 
5719 			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5720 		}
5721 	}
5722 
5723 	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5724 
5725 	return 0;
5726 }
5727 
5728 /**
5729  * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5730  * @hw: pointer to the hardware structure
5731  * @tun_type: tunnel type
5732  * @pkt: dummy packet to fill in
5733  * @offsets: offset info for the dummy packet
5734  */
5735 static int
5736 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5737 			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5738 {
5739 	u16 open_port, i;
5740 
5741 	switch (tun_type) {
5742 	case ICE_SW_TUN_VXLAN:
5743 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5744 			return -EIO;
5745 		break;
5746 	case ICE_SW_TUN_GENEVE:
5747 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5748 			return -EIO;
5749 		break;
5750 	default:
5751 		/* Nothing needs to be done for this tunnel type */
5752 		return 0;
5753 	}
5754 
5755 	/* Find the outer UDP protocol header and insert the port number */
5756 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5757 		if (offsets[i].type == ICE_UDP_OF) {
5758 			struct ice_l4_hdr *hdr;
5759 			u16 offset;
5760 
5761 			offset = offsets[i].offset;
5762 			hdr = (struct ice_l4_hdr *)&pkt[offset];
5763 			hdr->dst_port = cpu_to_be16(open_port);
5764 
5765 			return 0;
5766 		}
5767 	}
5768 
5769 	return -EIO;
5770 }
5771 
5772 /**
5773  * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5774  * @hw: pointer to hw structure
5775  * @vlan_type: VLAN tag type
5776  * @pkt: dummy packet to fill in
5777  * @offsets: offset info for the dummy packet
5778  */
5779 static int
5780 ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5781 			 const struct ice_dummy_pkt_offsets *offsets)
5782 {
5783 	u16 i;
5784 
5785 	/* Check if there is something to do */
5786 	if (!vlan_type || !ice_is_dvm_ena(hw))
5787 		return 0;
5788 
5789 	/* Find VLAN header and insert VLAN TPID */
5790 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5791 		if (offsets[i].type == ICE_VLAN_OFOS ||
5792 		    offsets[i].type == ICE_VLAN_EX) {
5793 			struct ice_vlan_hdr *hdr;
5794 			u16 offset;
5795 
5796 			offset = offsets[i].offset;
5797 			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5798 			hdr->type = cpu_to_be16(vlan_type);
5799 
5800 			return 0;
5801 		}
5802 	}
5803 
5804 	return -EIO;
5805 }
5806 
5807 static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5808 			    const struct ice_adv_rule_info *second)
5809 {
5810 	return first->sw_act.flag == second->sw_act.flag &&
5811 	       first->tun_type == second->tun_type &&
5812 	       first->vlan_type == second->vlan_type &&
5813 	       first->src_vsi == second->src_vsi &&
5814 	       first->need_pass_l2 == second->need_pass_l2 &&
5815 	       first->allow_pass_l2 == second->allow_pass_l2;
5816 }
5817 
5818 /**
5819  * ice_find_adv_rule_entry - Search a rule entry
5820  * @hw: pointer to the hardware structure
5821  * @lkups: lookup elements or match criteria for the advanced recipe, one
5822  *	   structure per protocol header
5823  * @lkups_cnt: number of protocols
5824  * @recp_id: recipe ID for which we are finding the rule
5825  * @rinfo: other information regarding the rule e.g. priority and action info
5826  *
5827  * Helper function to search for a given advance rule entry
5828  * Returns pointer to entry storing the rule if found
5829  */
5830 static struct ice_adv_fltr_mgmt_list_entry *
5831 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5832 			u16 lkups_cnt, u16 recp_id,
5833 			struct ice_adv_rule_info *rinfo)
5834 {
5835 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5836 	struct ice_switch_info *sw = hw->switch_info;
5837 	int i;
5838 
5839 	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5840 			    list_entry) {
5841 		bool lkups_matched = true;
5842 
5843 		if (lkups_cnt != list_itr->lkups_cnt)
5844 			continue;
5845 		for (i = 0; i < list_itr->lkups_cnt; i++)
5846 			if (memcmp(&list_itr->lkups[i], &lkups[i],
5847 				   sizeof(*lkups))) {
5848 				lkups_matched = false;
5849 				break;
5850 			}
5851 		if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5852 		    lkups_matched)
5853 			return list_itr;
5854 	}
5855 	return NULL;
5856 }
5857 
5858 /**
5859  * ice_adv_add_update_vsi_list
5860  * @hw: pointer to the hardware structure
5861  * @m_entry: pointer to current adv filter management list entry
5862  * @cur_fltr: filter information from the book keeping entry
5863  * @new_fltr: filter information with the new VSI to be added
5864  *
5865  * Call AQ command to add or update previously created VSI list with new VSI.
5866  *
5867  * Helper function to do book keeping associated with adding filter information
5868  * The algorithm to do the booking keeping is described below :
5869  * When a VSI needs to subscribe to a given advanced filter
5870  *	if only one VSI has been added till now
5871  *		Allocate a new VSI list and add two VSIs
5872  *		to this list using switch rule command
5873  *		Update the previously created switch rule with the
5874  *		newly created VSI list ID
5875  *	if a VSI list was previously created
5876  *		Add the new VSI to the previously created VSI list set
5877  *		using the update switch rule command
5878  */
5879 static int
5880 ice_adv_add_update_vsi_list(struct ice_hw *hw,
5881 			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5882 			    struct ice_adv_rule_info *cur_fltr,
5883 			    struct ice_adv_rule_info *new_fltr)
5884 {
5885 	u16 vsi_list_id = 0;
5886 	int status;
5887 
5888 	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5889 	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5890 	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5891 		return -EOPNOTSUPP;
5892 
5893 	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5894 	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5895 	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5896 	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5897 		return -EOPNOTSUPP;
5898 
5899 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5900 		 /* Only one entry existed in the mapping and it was not already
5901 		  * a part of a VSI list. So, create a VSI list with the old and
5902 		  * new VSIs.
5903 		  */
5904 		struct ice_fltr_info tmp_fltr;
5905 		u16 vsi_handle_arr[2];
5906 
5907 		/* A rule already exists with the new VSI being added */
5908 		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5909 		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5910 			return -EEXIST;
5911 
5912 		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5913 		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5914 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5915 						  &vsi_list_id,
5916 						  ICE_SW_LKUP_LAST);
5917 		if (status)
5918 			return status;
5919 
5920 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5921 		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5922 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5923 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5924 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5925 		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5926 
5927 		/* Update the previous switch rule of "forward to VSI" to
5928 		 * "fwd to VSI list"
5929 		 */
5930 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5931 		if (status)
5932 			return status;
5933 
5934 		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5935 		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5936 		m_entry->vsi_list_info =
5937 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5938 						vsi_list_id);
5939 	} else {
5940 		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5941 
5942 		if (!m_entry->vsi_list_info)
5943 			return -EIO;
5944 
5945 		/* A rule already exists with the new VSI being added */
5946 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5947 			return 0;
5948 
5949 		/* Update the previously created VSI list set with
5950 		 * the new VSI ID passed in
5951 		 */
5952 		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5953 
5954 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5955 						  vsi_list_id, false,
5956 						  ice_aqc_opc_update_sw_rules,
5957 						  ICE_SW_LKUP_LAST);
5958 		/* update VSI list mapping info with new VSI ID */
5959 		if (!status)
5960 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5961 	}
5962 	if (!status)
5963 		m_entry->vsi_count++;
5964 	return status;
5965 }
5966 
5967 void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
5968 {
5969 	lkup->type = ICE_HW_METADATA;
5970 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
5971 		cpu_to_be16(ICE_PKT_TUNNEL_MASK);
5972 }
5973 
5974 void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
5975 {
5976 	lkup->type = ICE_HW_METADATA;
5977 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5978 		cpu_to_be16(ICE_PKT_FROM_NETWORK);
5979 }
5980 
5981 void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
5982 {
5983 	lkup->type = ICE_HW_METADATA;
5984 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5985 		cpu_to_be16(ICE_PKT_VLAN_MASK);
5986 }
5987 
5988 void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
5989 {
5990 	lkup->type = ICE_HW_METADATA;
5991 	lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
5992 }
5993 
5994 /**
5995  * ice_add_adv_rule - helper function to create an advanced switch rule
5996  * @hw: pointer to the hardware structure
5997  * @lkups: information on the words that needs to be looked up. All words
5998  * together makes one recipe
5999  * @lkups_cnt: num of entries in the lkups array
6000  * @rinfo: other information related to the rule that needs to be programmed
6001  * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6002  *               ignored is case of error.
6003  *
6004  * This function can program only 1 rule at a time. The lkups is used to
6005  * describe the all the words that forms the "lookup" portion of the recipe.
6006  * These words can span multiple protocols. Callers to this function need to
6007  * pass in a list of protocol headers with lookup information along and mask
6008  * that determines which words are valid from the given protocol header.
6009  * rinfo describes other information related to this rule such as forwarding
6010  * IDs, priority of this rule, etc.
6011  */
6012 int
6013 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6014 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6015 		 struct ice_rule_query_data *added_entry)
6016 {
6017 	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6018 	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6019 	const struct ice_dummy_pkt_profile *profile;
6020 	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6021 	struct list_head *rule_head;
6022 	struct ice_switch_info *sw;
6023 	u16 word_cnt;
6024 	u32 act = 0;
6025 	int status;
6026 	u8 q_rgn;
6027 
6028 	/* Initialize profile to result index bitmap */
6029 	if (!hw->switch_info->prof_res_bm_init) {
6030 		hw->switch_info->prof_res_bm_init = 1;
6031 		ice_init_prof_result_bm(hw);
6032 	}
6033 
6034 	if (!lkups_cnt)
6035 		return -EINVAL;
6036 
6037 	/* get # of words we need to match */
6038 	word_cnt = 0;
6039 	for (i = 0; i < lkups_cnt; i++) {
6040 		u16 j;
6041 
6042 		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6043 			if (lkups[i].m_raw[j])
6044 				word_cnt++;
6045 	}
6046 
6047 	if (!word_cnt)
6048 		return -EINVAL;
6049 
6050 	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6051 		return -ENOSPC;
6052 
6053 	/* locate a dummy packet */
6054 	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6055 	if (IS_ERR(profile))
6056 		return PTR_ERR(profile);
6057 
6058 	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6059 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6060 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6061 	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6062 	      rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6063 	      rinfo->sw_act.fltr_act == ICE_NOP)) {
6064 		status = -EIO;
6065 		goto free_pkt_profile;
6066 	}
6067 
6068 	vsi_handle = rinfo->sw_act.vsi_handle;
6069 	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6070 		status =  -EINVAL;
6071 		goto free_pkt_profile;
6072 	}
6073 
6074 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6075 	    rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6076 	    rinfo->sw_act.fltr_act == ICE_NOP) {
6077 		rinfo->sw_act.fwd_id.hw_vsi_id =
6078 			ice_get_hw_vsi_num(hw, vsi_handle);
6079 	}
6080 
6081 	if (rinfo->src_vsi)
6082 		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6083 	else
6084 		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6085 
6086 	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6087 	if (status)
6088 		goto free_pkt_profile;
6089 	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6090 	if (m_entry) {
6091 		/* we have to add VSI to VSI_LIST and increment vsi_count.
6092 		 * Also Update VSI list so that we can change forwarding rule
6093 		 * if the rule already exists, we will check if it exists with
6094 		 * same vsi_id, if not then add it to the VSI list if it already
6095 		 * exists if not then create a VSI list and add the existing VSI
6096 		 * ID and the new VSI ID to the list
6097 		 * We will add that VSI to the list
6098 		 */
6099 		status = ice_adv_add_update_vsi_list(hw, m_entry,
6100 						     &m_entry->rule_info,
6101 						     rinfo);
6102 		if (added_entry) {
6103 			added_entry->rid = rid;
6104 			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6105 			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6106 		}
6107 		goto free_pkt_profile;
6108 	}
6109 	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6110 	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6111 	if (!s_rule) {
6112 		status = -ENOMEM;
6113 		goto free_pkt_profile;
6114 	}
6115 
6116 	if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6117 		if (!rinfo->flags_info.act_valid) {
6118 			act |= ICE_SINGLE_ACT_LAN_ENABLE;
6119 			act |= ICE_SINGLE_ACT_LB_ENABLE;
6120 		} else {
6121 			act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6122 							ICE_SINGLE_ACT_LB_ENABLE);
6123 		}
6124 	}
6125 
6126 	switch (rinfo->sw_act.fltr_act) {
6127 	case ICE_FWD_TO_VSI:
6128 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6129 				  rinfo->sw_act.fwd_id.hw_vsi_id);
6130 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6131 		break;
6132 	case ICE_FWD_TO_Q:
6133 		act |= ICE_SINGLE_ACT_TO_Q;
6134 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6135 				  rinfo->sw_act.fwd_id.q_id);
6136 		break;
6137 	case ICE_FWD_TO_QGRP:
6138 		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6139 			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6140 		act |= ICE_SINGLE_ACT_TO_Q;
6141 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6142 				  rinfo->sw_act.fwd_id.q_id);
6143 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
6144 		break;
6145 	case ICE_DROP_PACKET:
6146 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6147 		       ICE_SINGLE_ACT_VALID_BIT;
6148 		break;
6149 	case ICE_MIRROR_PACKET:
6150 		act |= ICE_SINGLE_ACT_OTHER_ACTS;
6151 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6152 				  rinfo->sw_act.fwd_id.hw_vsi_id);
6153 		break;
6154 	case ICE_NOP:
6155 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6156 				  rinfo->sw_act.fwd_id.hw_vsi_id);
6157 		act &= ~ICE_SINGLE_ACT_VALID_BIT;
6158 		break;
6159 	default:
6160 		status = -EIO;
6161 		goto err_ice_add_adv_rule;
6162 	}
6163 
6164 	/* If there is no matching criteria for direction there
6165 	 * is only one difference between Rx and Tx:
6166 	 * - get switch id base on VSI number from source field (Tx)
6167 	 * - get switch id base on port number (Rx)
6168 	 *
6169 	 * If matching on direction metadata is chose rule direction is
6170 	 * extracted from type value set here.
6171 	 */
6172 	if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6173 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6174 		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6175 	} else {
6176 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6177 		s_rule->src = cpu_to_le16(hw->port_info->lport);
6178 	}
6179 
6180 	s_rule->recipe_id = cpu_to_le16(rid);
6181 	s_rule->act = cpu_to_le32(act);
6182 
6183 	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6184 	if (status)
6185 		goto err_ice_add_adv_rule;
6186 
6187 	status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6188 					 profile->offsets);
6189 	if (status)
6190 		goto err_ice_add_adv_rule;
6191 
6192 	status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6193 					  s_rule->hdr_data,
6194 					  profile->offsets);
6195 	if (status)
6196 		goto err_ice_add_adv_rule;
6197 
6198 	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6199 				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6200 				 NULL);
6201 	if (status)
6202 		goto err_ice_add_adv_rule;
6203 	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6204 				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6205 				GFP_KERNEL);
6206 	if (!adv_fltr) {
6207 		status = -ENOMEM;
6208 		goto err_ice_add_adv_rule;
6209 	}
6210 
6211 	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6212 				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6213 	if (!adv_fltr->lkups) {
6214 		status = -ENOMEM;
6215 		goto err_ice_add_adv_rule;
6216 	}
6217 
6218 	adv_fltr->lkups_cnt = lkups_cnt;
6219 	adv_fltr->rule_info = *rinfo;
6220 	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6221 	sw = hw->switch_info;
6222 	sw->recp_list[rid].adv_rule = true;
6223 	rule_head = &sw->recp_list[rid].filt_rules;
6224 
6225 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6226 		adv_fltr->vsi_count = 1;
6227 
6228 	/* Add rule entry to book keeping list */
6229 	list_add(&adv_fltr->list_entry, rule_head);
6230 	if (added_entry) {
6231 		added_entry->rid = rid;
6232 		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6233 		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6234 	}
6235 err_ice_add_adv_rule:
6236 	if (status && adv_fltr) {
6237 		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6238 		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6239 	}
6240 
6241 	kfree(s_rule);
6242 
6243 free_pkt_profile:
6244 	if (profile->match & ICE_PKT_KMALLOC) {
6245 		kfree(profile->offsets);
6246 		kfree(profile->pkt);
6247 		kfree(profile);
6248 	}
6249 
6250 	return status;
6251 }
6252 
6253 /**
6254  * ice_replay_vsi_fltr - Replay filters for requested VSI
6255  * @hw: pointer to the hardware structure
6256  * @vsi_handle: driver VSI handle
6257  * @recp_id: Recipe ID for which rules need to be replayed
6258  * @list_head: list for which filters need to be replayed
6259  *
6260  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6261  * It is required to pass valid VSI handle.
6262  */
6263 static int
6264 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6265 		    struct list_head *list_head)
6266 {
6267 	struct ice_fltr_mgmt_list_entry *itr;
6268 	int status = 0;
6269 	u16 hw_vsi_id;
6270 
6271 	if (list_empty(list_head))
6272 		return status;
6273 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6274 
6275 	list_for_each_entry(itr, list_head, list_entry) {
6276 		struct ice_fltr_list_entry f_entry;
6277 
6278 		f_entry.fltr_info = itr->fltr_info;
6279 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6280 		    itr->fltr_info.vsi_handle == vsi_handle) {
6281 			/* update the src in case it is VSI num */
6282 			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6283 				f_entry.fltr_info.src = hw_vsi_id;
6284 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6285 			if (status)
6286 				goto end;
6287 			continue;
6288 		}
6289 		if (!itr->vsi_list_info ||
6290 		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6291 			continue;
6292 		/* Clearing it so that the logic can add it back */
6293 		clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6294 		f_entry.fltr_info.vsi_handle = vsi_handle;
6295 		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6296 		/* update the src in case it is VSI num */
6297 		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6298 			f_entry.fltr_info.src = hw_vsi_id;
6299 		if (recp_id == ICE_SW_LKUP_VLAN)
6300 			status = ice_add_vlan_internal(hw, &f_entry);
6301 		else
6302 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6303 		if (status)
6304 			goto end;
6305 	}
6306 end:
6307 	return status;
6308 }
6309 
6310 /**
6311  * ice_adv_rem_update_vsi_list
6312  * @hw: pointer to the hardware structure
6313  * @vsi_handle: VSI handle of the VSI to remove
6314  * @fm_list: filter management entry for which the VSI list management needs to
6315  *	     be done
6316  */
6317 static int
6318 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6319 			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6320 {
6321 	struct ice_vsi_list_map_info *vsi_list_info;
6322 	enum ice_sw_lkup_type lkup_type;
6323 	u16 vsi_list_id;
6324 	int status;
6325 
6326 	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6327 	    fm_list->vsi_count == 0)
6328 		return -EINVAL;
6329 
6330 	/* A rule with the VSI being removed does not exist */
6331 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6332 		return -ENOENT;
6333 
6334 	lkup_type = ICE_SW_LKUP_LAST;
6335 	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6336 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6337 					  ice_aqc_opc_update_sw_rules,
6338 					  lkup_type);
6339 	if (status)
6340 		return status;
6341 
6342 	fm_list->vsi_count--;
6343 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6344 	vsi_list_info = fm_list->vsi_list_info;
6345 	if (fm_list->vsi_count == 1) {
6346 		struct ice_fltr_info tmp_fltr;
6347 		u16 rem_vsi_handle;
6348 
6349 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6350 						ICE_MAX_VSI);
6351 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6352 			return -EIO;
6353 
6354 		/* Make sure VSI list is empty before removing it below */
6355 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6356 						  vsi_list_id, true,
6357 						  ice_aqc_opc_update_sw_rules,
6358 						  lkup_type);
6359 		if (status)
6360 			return status;
6361 
6362 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6363 		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6364 		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6365 		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6366 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6367 		tmp_fltr.fwd_id.hw_vsi_id =
6368 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6369 		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6370 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6371 		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6372 
6373 		/* Update the previous switch rule of "MAC forward to VSI" to
6374 		 * "MAC fwd to VSI list"
6375 		 */
6376 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6377 		if (status) {
6378 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6379 				  tmp_fltr.fwd_id.hw_vsi_id, status);
6380 			return status;
6381 		}
6382 		fm_list->vsi_list_info->ref_cnt--;
6383 
6384 		/* Remove the VSI list since it is no longer used */
6385 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6386 		if (status) {
6387 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6388 				  vsi_list_id, status);
6389 			return status;
6390 		}
6391 
6392 		list_del(&vsi_list_info->list_entry);
6393 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6394 		fm_list->vsi_list_info = NULL;
6395 	}
6396 
6397 	return status;
6398 }
6399 
6400 /**
6401  * ice_rem_adv_rule - removes existing advanced switch rule
6402  * @hw: pointer to the hardware structure
6403  * @lkups: information on the words that needs to be looked up. All words
6404  *         together makes one recipe
6405  * @lkups_cnt: num of entries in the lkups array
6406  * @rinfo: Its the pointer to the rule information for the rule
6407  *
6408  * This function can be used to remove 1 rule at a time. The lkups is
6409  * used to describe all the words that forms the "lookup" portion of the
6410  * rule. These words can span multiple protocols. Callers to this function
6411  * need to pass in a list of protocol headers with lookup information along
6412  * and mask that determines which words are valid from the given protocol
6413  * header. rinfo describes other information related to this rule such as
6414  * forwarding IDs, priority of this rule, etc.
6415  */
6416 static int
6417 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6418 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6419 {
6420 	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6421 	struct ice_prot_lkup_ext lkup_exts;
6422 	bool remove_rule = false;
6423 	struct mutex *rule_lock; /* Lock to protect filter rule list */
6424 	u16 i, rid, vsi_handle;
6425 	int status = 0;
6426 
6427 	memset(&lkup_exts, 0, sizeof(lkup_exts));
6428 	for (i = 0; i < lkups_cnt; i++) {
6429 		u16 count;
6430 
6431 		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6432 			return -EIO;
6433 
6434 		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6435 		if (!count)
6436 			return -EIO;
6437 	}
6438 
6439 	rid = ice_find_recp(hw, &lkup_exts, rinfo);
6440 	/* If did not find a recipe that match the existing criteria */
6441 	if (rid == ICE_MAX_NUM_RECIPES)
6442 		return -EINVAL;
6443 
6444 	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6445 	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6446 	/* the rule is already removed */
6447 	if (!list_elem)
6448 		return 0;
6449 	mutex_lock(rule_lock);
6450 	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6451 		remove_rule = true;
6452 	} else if (list_elem->vsi_count > 1) {
6453 		remove_rule = false;
6454 		vsi_handle = rinfo->sw_act.vsi_handle;
6455 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6456 	} else {
6457 		vsi_handle = rinfo->sw_act.vsi_handle;
6458 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6459 		if (status) {
6460 			mutex_unlock(rule_lock);
6461 			return status;
6462 		}
6463 		if (list_elem->vsi_count == 0)
6464 			remove_rule = true;
6465 	}
6466 	mutex_unlock(rule_lock);
6467 	if (remove_rule) {
6468 		struct ice_sw_rule_lkup_rx_tx *s_rule;
6469 		u16 rule_buf_sz;
6470 
6471 		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6472 		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6473 		if (!s_rule)
6474 			return -ENOMEM;
6475 		s_rule->act = 0;
6476 		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6477 		s_rule->hdr_len = 0;
6478 		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6479 					 rule_buf_sz, 1,
6480 					 ice_aqc_opc_remove_sw_rules, NULL);
6481 		if (!status || status == -ENOENT) {
6482 			struct ice_switch_info *sw = hw->switch_info;
6483 
6484 			mutex_lock(rule_lock);
6485 			list_del(&list_elem->list_entry);
6486 			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6487 			devm_kfree(ice_hw_to_dev(hw), list_elem);
6488 			mutex_unlock(rule_lock);
6489 			if (list_empty(&sw->recp_list[rid].filt_rules))
6490 				sw->recp_list[rid].adv_rule = false;
6491 		}
6492 		kfree(s_rule);
6493 	}
6494 	return status;
6495 }
6496 
6497 /**
6498  * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6499  * @hw: pointer to the hardware structure
6500  * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6501  *
6502  * This function is used to remove 1 rule at a time. The removal is based on
6503  * the remove_entry parameter. This function will remove rule for a given
6504  * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6505  */
6506 int
6507 ice_rem_adv_rule_by_id(struct ice_hw *hw,
6508 		       struct ice_rule_query_data *remove_entry)
6509 {
6510 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6511 	struct list_head *list_head;
6512 	struct ice_adv_rule_info rinfo;
6513 	struct ice_switch_info *sw;
6514 
6515 	sw = hw->switch_info;
6516 	if (!sw->recp_list[remove_entry->rid].recp_created)
6517 		return -EINVAL;
6518 	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6519 	list_for_each_entry(list_itr, list_head, list_entry) {
6520 		if (list_itr->rule_info.fltr_rule_id ==
6521 		    remove_entry->rule_id) {
6522 			rinfo = list_itr->rule_info;
6523 			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6524 			return ice_rem_adv_rule(hw, list_itr->lkups,
6525 						list_itr->lkups_cnt, &rinfo);
6526 		}
6527 	}
6528 	/* either list is empty or unable to find rule */
6529 	return -ENOENT;
6530 }
6531 
6532 /**
6533  * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6534  * @hw: pointer to the hardware structure
6535  * @vsi_handle: driver VSI handle
6536  * @list_head: list for which filters need to be replayed
6537  *
6538  * Replay the advanced rule for the given VSI.
6539  */
6540 static int
6541 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6542 			struct list_head *list_head)
6543 {
6544 	struct ice_rule_query_data added_entry = { 0 };
6545 	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6546 	int status = 0;
6547 
6548 	if (list_empty(list_head))
6549 		return status;
6550 	list_for_each_entry(adv_fltr, list_head, list_entry) {
6551 		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6552 		u16 lk_cnt = adv_fltr->lkups_cnt;
6553 
6554 		if (vsi_handle != rinfo->sw_act.vsi_handle)
6555 			continue;
6556 		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6557 					  &added_entry);
6558 		if (status)
6559 			break;
6560 	}
6561 	return status;
6562 }
6563 
6564 /**
6565  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6566  * @hw: pointer to the hardware structure
6567  * @vsi_handle: driver VSI handle
6568  *
6569  * Replays filters for requested VSI via vsi_handle.
6570  */
6571 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6572 {
6573 	struct ice_switch_info *sw = hw->switch_info;
6574 	int status;
6575 	u8 i;
6576 
6577 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6578 		struct list_head *head;
6579 
6580 		head = &sw->recp_list[i].filt_replay_rules;
6581 		if (!sw->recp_list[i].adv_rule)
6582 			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6583 		else
6584 			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6585 		if (status)
6586 			return status;
6587 	}
6588 	return status;
6589 }
6590 
6591 /**
6592  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6593  * @hw: pointer to the HW struct
6594  *
6595  * Deletes the filter replay rules.
6596  */
6597 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6598 {
6599 	struct ice_switch_info *sw = hw->switch_info;
6600 	u8 i;
6601 
6602 	if (!sw)
6603 		return;
6604 
6605 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6606 		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6607 			struct list_head *l_head;
6608 
6609 			l_head = &sw->recp_list[i].filt_replay_rules;
6610 			if (!sw->recp_list[i].adv_rule)
6611 				ice_rem_sw_rule_info(hw, l_head);
6612 			else
6613 				ice_rem_adv_rule_info(hw, l_head);
6614 		}
6615 	}
6616 }
6617