1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_lib.h" 5 #include "ice_switch.h" 6 7 #define ICE_ETH_DA_OFFSET 0 8 #define ICE_ETH_ETHTYPE_OFFSET 12 9 #define ICE_ETH_VLAN_TCI_OFFSET 14 10 #define ICE_MAX_VLAN_ID 0xFFF 11 #define ICE_IPV6_ETHER_ID 0x86DD 12 13 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem 14 * struct to configure any switch filter rules. 15 * {DA (6 bytes), SA(6 bytes), 16 * Ether type (2 bytes for header without VLAN tag) OR 17 * VLAN tag (4 bytes for header with VLAN tag) } 18 * 19 * Word on Hardcoded values 20 * byte 0 = 0x2: to identify it as locally administered DA MAC 21 * byte 6 = 0x2: to identify it as locally administered SA MAC 22 * byte 12 = 0x81 & byte 13 = 0x00: 23 * In case of VLAN filter first two bytes defines ether type (0x8100) 24 * and remaining two bytes are placeholder for programming a given VLAN ID 25 * In case of Ether type filter it is treated as header without VLAN tag 26 * and byte 12 and 13 is used to program a given Ether type instead 27 */ 28 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0, 29 0x2, 0, 0, 0, 0, 0, 30 0x81, 0, 0, 0}; 31 32 enum { 33 ICE_PKT_OUTER_IPV6 = BIT(0), 34 ICE_PKT_TUN_GTPC = BIT(1), 35 ICE_PKT_TUN_GTPU = BIT(2), 36 ICE_PKT_TUN_NVGRE = BIT(3), 37 ICE_PKT_TUN_UDP = BIT(4), 38 ICE_PKT_INNER_IPV6 = BIT(5), 39 ICE_PKT_INNER_TCP = BIT(6), 40 ICE_PKT_INNER_UDP = BIT(7), 41 ICE_PKT_GTP_NOPAY = BIT(8), 42 ICE_PKT_KMALLOC = BIT(9), 43 ICE_PKT_PPPOE = BIT(10), 44 ICE_PKT_L2TPV3 = BIT(11), 45 }; 46 47 struct ice_dummy_pkt_offsets { 48 enum ice_protocol_type type; 49 u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */ 50 }; 51 52 struct ice_dummy_pkt_profile { 53 const struct ice_dummy_pkt_offsets *offsets; 54 const u8 *pkt; 55 u32 match; 56 u16 pkt_len; 57 u16 offsets_len; 58 }; 59 60 #define ICE_DECLARE_PKT_OFFSETS(type) \ 61 static const struct ice_dummy_pkt_offsets \ 62 ice_dummy_##type##_packet_offsets[] 63 64 #define ICE_DECLARE_PKT_TEMPLATE(type) \ 65 static const u8 ice_dummy_##type##_packet[] 66 67 #define ICE_PKT_PROFILE(type, m) { \ 68 .match = (m), \ 69 .pkt = ice_dummy_##type##_packet, \ 70 .pkt_len = sizeof(ice_dummy_##type##_packet), \ 71 .offsets = ice_dummy_##type##_packet_offsets, \ 72 .offsets_len = sizeof(ice_dummy_##type##_packet_offsets), \ 73 } 74 75 ICE_DECLARE_PKT_OFFSETS(vlan) = { 76 { ICE_VLAN_OFOS, 12 }, 77 }; 78 79 ICE_DECLARE_PKT_TEMPLATE(vlan) = { 80 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */ 81 }; 82 83 ICE_DECLARE_PKT_OFFSETS(qinq) = { 84 { ICE_VLAN_EX, 12 }, 85 { ICE_VLAN_IN, 16 }, 86 }; 87 88 ICE_DECLARE_PKT_TEMPLATE(qinq) = { 89 0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */ 90 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */ 91 }; 92 93 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = { 94 { ICE_MAC_OFOS, 0 }, 95 { ICE_ETYPE_OL, 12 }, 96 { ICE_IPV4_OFOS, 14 }, 97 { ICE_NVGRE, 34 }, 98 { ICE_MAC_IL, 42 }, 99 { ICE_ETYPE_IL, 54 }, 100 { ICE_IPV4_IL, 56 }, 101 { ICE_TCP_IL, 76 }, 102 { ICE_PROTOCOL_LAST, 0 }, 103 }; 104 105 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = { 106 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 107 0x00, 0x00, 0x00, 0x00, 108 0x00, 0x00, 0x00, 0x00, 109 110 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 111 112 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */ 113 0x00, 0x00, 0x00, 0x00, 114 0x00, 0x2F, 0x00, 0x00, 115 0x00, 0x00, 0x00, 0x00, 116 0x00, 0x00, 0x00, 0x00, 117 118 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 119 0x00, 0x00, 0x00, 0x00, 120 121 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 122 0x00, 0x00, 0x00, 0x00, 123 0x00, 0x00, 0x00, 0x00, 124 125 0x08, 0x00, /* ICE_ETYPE_IL 54 */ 126 127 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */ 128 0x00, 0x00, 0x00, 0x00, 129 0x00, 0x06, 0x00, 0x00, 130 0x00, 0x00, 0x00, 0x00, 131 0x00, 0x00, 0x00, 0x00, 132 133 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */ 134 0x00, 0x00, 0x00, 0x00, 135 0x00, 0x00, 0x00, 0x00, 136 0x50, 0x02, 0x20, 0x00, 137 0x00, 0x00, 0x00, 0x00 138 }; 139 140 ICE_DECLARE_PKT_OFFSETS(gre_udp) = { 141 { ICE_MAC_OFOS, 0 }, 142 { ICE_ETYPE_OL, 12 }, 143 { ICE_IPV4_OFOS, 14 }, 144 { ICE_NVGRE, 34 }, 145 { ICE_MAC_IL, 42 }, 146 { ICE_ETYPE_IL, 54 }, 147 { ICE_IPV4_IL, 56 }, 148 { ICE_UDP_ILOS, 76 }, 149 { ICE_PROTOCOL_LAST, 0 }, 150 }; 151 152 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = { 153 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 154 0x00, 0x00, 0x00, 0x00, 155 0x00, 0x00, 0x00, 0x00, 156 157 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 158 159 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */ 160 0x00, 0x00, 0x00, 0x00, 161 0x00, 0x2F, 0x00, 0x00, 162 0x00, 0x00, 0x00, 0x00, 163 0x00, 0x00, 0x00, 0x00, 164 165 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 166 0x00, 0x00, 0x00, 0x00, 167 168 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 169 0x00, 0x00, 0x00, 0x00, 170 0x00, 0x00, 0x00, 0x00, 171 172 0x08, 0x00, /* ICE_ETYPE_IL 54 */ 173 174 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */ 175 0x00, 0x00, 0x00, 0x00, 176 0x00, 0x11, 0x00, 0x00, 177 0x00, 0x00, 0x00, 0x00, 178 0x00, 0x00, 0x00, 0x00, 179 180 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */ 181 0x00, 0x08, 0x00, 0x00, 182 }; 183 184 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = { 185 { ICE_MAC_OFOS, 0 }, 186 { ICE_ETYPE_OL, 12 }, 187 { ICE_IPV4_OFOS, 14 }, 188 { ICE_UDP_OF, 34 }, 189 { ICE_VXLAN, 42 }, 190 { ICE_GENEVE, 42 }, 191 { ICE_VXLAN_GPE, 42 }, 192 { ICE_MAC_IL, 50 }, 193 { ICE_ETYPE_IL, 62 }, 194 { ICE_IPV4_IL, 64 }, 195 { ICE_TCP_IL, 84 }, 196 { ICE_PROTOCOL_LAST, 0 }, 197 }; 198 199 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = { 200 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 201 0x00, 0x00, 0x00, 0x00, 202 0x00, 0x00, 0x00, 0x00, 203 204 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 205 206 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */ 207 0x00, 0x01, 0x00, 0x00, 208 0x40, 0x11, 0x00, 0x00, 209 0x00, 0x00, 0x00, 0x00, 210 0x00, 0x00, 0x00, 0x00, 211 212 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 213 0x00, 0x46, 0x00, 0x00, 214 215 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 216 0x00, 0x00, 0x00, 0x00, 217 218 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 219 0x00, 0x00, 0x00, 0x00, 220 0x00, 0x00, 0x00, 0x00, 221 222 0x08, 0x00, /* ICE_ETYPE_IL 62 */ 223 224 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */ 225 0x00, 0x01, 0x00, 0x00, 226 0x40, 0x06, 0x00, 0x00, 227 0x00, 0x00, 0x00, 0x00, 228 0x00, 0x00, 0x00, 0x00, 229 230 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */ 231 0x00, 0x00, 0x00, 0x00, 232 0x00, 0x00, 0x00, 0x00, 233 0x50, 0x02, 0x20, 0x00, 234 0x00, 0x00, 0x00, 0x00 235 }; 236 237 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = { 238 { ICE_MAC_OFOS, 0 }, 239 { ICE_ETYPE_OL, 12 }, 240 { ICE_IPV4_OFOS, 14 }, 241 { ICE_UDP_OF, 34 }, 242 { ICE_VXLAN, 42 }, 243 { ICE_GENEVE, 42 }, 244 { ICE_VXLAN_GPE, 42 }, 245 { ICE_MAC_IL, 50 }, 246 { ICE_ETYPE_IL, 62 }, 247 { ICE_IPV4_IL, 64 }, 248 { ICE_UDP_ILOS, 84 }, 249 { ICE_PROTOCOL_LAST, 0 }, 250 }; 251 252 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = { 253 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 254 0x00, 0x00, 0x00, 0x00, 255 0x00, 0x00, 0x00, 0x00, 256 257 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 258 259 0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */ 260 0x00, 0x01, 0x00, 0x00, 261 0x00, 0x11, 0x00, 0x00, 262 0x00, 0x00, 0x00, 0x00, 263 0x00, 0x00, 0x00, 0x00, 264 265 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 266 0x00, 0x3a, 0x00, 0x00, 267 268 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 269 0x00, 0x00, 0x00, 0x00, 270 271 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 272 0x00, 0x00, 0x00, 0x00, 273 0x00, 0x00, 0x00, 0x00, 274 275 0x08, 0x00, /* ICE_ETYPE_IL 62 */ 276 277 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */ 278 0x00, 0x01, 0x00, 0x00, 279 0x00, 0x11, 0x00, 0x00, 280 0x00, 0x00, 0x00, 0x00, 281 0x00, 0x00, 0x00, 0x00, 282 283 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */ 284 0x00, 0x08, 0x00, 0x00, 285 }; 286 287 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = { 288 { ICE_MAC_OFOS, 0 }, 289 { ICE_ETYPE_OL, 12 }, 290 { ICE_IPV4_OFOS, 14 }, 291 { ICE_NVGRE, 34 }, 292 { ICE_MAC_IL, 42 }, 293 { ICE_ETYPE_IL, 54 }, 294 { ICE_IPV6_IL, 56 }, 295 { ICE_TCP_IL, 96 }, 296 { ICE_PROTOCOL_LAST, 0 }, 297 }; 298 299 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = { 300 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 301 0x00, 0x00, 0x00, 0x00, 302 0x00, 0x00, 0x00, 0x00, 303 304 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 305 306 0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */ 307 0x00, 0x00, 0x00, 0x00, 308 0x00, 0x2F, 0x00, 0x00, 309 0x00, 0x00, 0x00, 0x00, 310 0x00, 0x00, 0x00, 0x00, 311 312 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 313 0x00, 0x00, 0x00, 0x00, 314 315 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 316 0x00, 0x00, 0x00, 0x00, 317 0x00, 0x00, 0x00, 0x00, 318 319 0x86, 0xdd, /* ICE_ETYPE_IL 54 */ 320 321 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */ 322 0x00, 0x08, 0x06, 0x40, 323 0x00, 0x00, 0x00, 0x00, 324 0x00, 0x00, 0x00, 0x00, 325 0x00, 0x00, 0x00, 0x00, 326 0x00, 0x00, 0x00, 0x00, 327 0x00, 0x00, 0x00, 0x00, 328 0x00, 0x00, 0x00, 0x00, 329 0x00, 0x00, 0x00, 0x00, 330 0x00, 0x00, 0x00, 0x00, 331 332 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */ 333 0x00, 0x00, 0x00, 0x00, 334 0x00, 0x00, 0x00, 0x00, 335 0x50, 0x02, 0x20, 0x00, 336 0x00, 0x00, 0x00, 0x00 337 }; 338 339 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = { 340 { ICE_MAC_OFOS, 0 }, 341 { ICE_ETYPE_OL, 12 }, 342 { ICE_IPV4_OFOS, 14 }, 343 { ICE_NVGRE, 34 }, 344 { ICE_MAC_IL, 42 }, 345 { ICE_ETYPE_IL, 54 }, 346 { ICE_IPV6_IL, 56 }, 347 { ICE_UDP_ILOS, 96 }, 348 { ICE_PROTOCOL_LAST, 0 }, 349 }; 350 351 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = { 352 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 353 0x00, 0x00, 0x00, 0x00, 354 0x00, 0x00, 0x00, 0x00, 355 356 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 357 358 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */ 359 0x00, 0x00, 0x00, 0x00, 360 0x00, 0x2F, 0x00, 0x00, 361 0x00, 0x00, 0x00, 0x00, 362 0x00, 0x00, 0x00, 0x00, 363 364 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 365 0x00, 0x00, 0x00, 0x00, 366 367 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 368 0x00, 0x00, 0x00, 0x00, 369 0x00, 0x00, 0x00, 0x00, 370 371 0x86, 0xdd, /* ICE_ETYPE_IL 54 */ 372 373 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */ 374 0x00, 0x08, 0x11, 0x40, 375 0x00, 0x00, 0x00, 0x00, 376 0x00, 0x00, 0x00, 0x00, 377 0x00, 0x00, 0x00, 0x00, 378 0x00, 0x00, 0x00, 0x00, 379 0x00, 0x00, 0x00, 0x00, 380 0x00, 0x00, 0x00, 0x00, 381 0x00, 0x00, 0x00, 0x00, 382 0x00, 0x00, 0x00, 0x00, 383 384 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */ 385 0x00, 0x08, 0x00, 0x00, 386 }; 387 388 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = { 389 { ICE_MAC_OFOS, 0 }, 390 { ICE_ETYPE_OL, 12 }, 391 { ICE_IPV4_OFOS, 14 }, 392 { ICE_UDP_OF, 34 }, 393 { ICE_VXLAN, 42 }, 394 { ICE_GENEVE, 42 }, 395 { ICE_VXLAN_GPE, 42 }, 396 { ICE_MAC_IL, 50 }, 397 { ICE_ETYPE_IL, 62 }, 398 { ICE_IPV6_IL, 64 }, 399 { ICE_TCP_IL, 104 }, 400 { ICE_PROTOCOL_LAST, 0 }, 401 }; 402 403 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = { 404 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 405 0x00, 0x00, 0x00, 0x00, 406 0x00, 0x00, 0x00, 0x00, 407 408 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 409 410 0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */ 411 0x00, 0x01, 0x00, 0x00, 412 0x40, 0x11, 0x00, 0x00, 413 0x00, 0x00, 0x00, 0x00, 414 0x00, 0x00, 0x00, 0x00, 415 416 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 417 0x00, 0x5a, 0x00, 0x00, 418 419 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 420 0x00, 0x00, 0x00, 0x00, 421 422 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 423 0x00, 0x00, 0x00, 0x00, 424 0x00, 0x00, 0x00, 0x00, 425 426 0x86, 0xdd, /* ICE_ETYPE_IL 62 */ 427 428 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */ 429 0x00, 0x08, 0x06, 0x40, 430 0x00, 0x00, 0x00, 0x00, 431 0x00, 0x00, 0x00, 0x00, 432 0x00, 0x00, 0x00, 0x00, 433 0x00, 0x00, 0x00, 0x00, 434 0x00, 0x00, 0x00, 0x00, 435 0x00, 0x00, 0x00, 0x00, 436 0x00, 0x00, 0x00, 0x00, 437 0x00, 0x00, 0x00, 0x00, 438 439 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */ 440 0x00, 0x00, 0x00, 0x00, 441 0x00, 0x00, 0x00, 0x00, 442 0x50, 0x02, 0x20, 0x00, 443 0x00, 0x00, 0x00, 0x00 444 }; 445 446 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = { 447 { ICE_MAC_OFOS, 0 }, 448 { ICE_ETYPE_OL, 12 }, 449 { ICE_IPV4_OFOS, 14 }, 450 { ICE_UDP_OF, 34 }, 451 { ICE_VXLAN, 42 }, 452 { ICE_GENEVE, 42 }, 453 { ICE_VXLAN_GPE, 42 }, 454 { ICE_MAC_IL, 50 }, 455 { ICE_ETYPE_IL, 62 }, 456 { ICE_IPV6_IL, 64 }, 457 { ICE_UDP_ILOS, 104 }, 458 { ICE_PROTOCOL_LAST, 0 }, 459 }; 460 461 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = { 462 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 463 0x00, 0x00, 0x00, 0x00, 464 0x00, 0x00, 0x00, 0x00, 465 466 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 467 468 0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */ 469 0x00, 0x01, 0x00, 0x00, 470 0x00, 0x11, 0x00, 0x00, 471 0x00, 0x00, 0x00, 0x00, 472 0x00, 0x00, 0x00, 0x00, 473 474 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 475 0x00, 0x4e, 0x00, 0x00, 476 477 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 478 0x00, 0x00, 0x00, 0x00, 479 480 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 481 0x00, 0x00, 0x00, 0x00, 482 0x00, 0x00, 0x00, 0x00, 483 484 0x86, 0xdd, /* ICE_ETYPE_IL 62 */ 485 486 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */ 487 0x00, 0x08, 0x11, 0x40, 488 0x00, 0x00, 0x00, 0x00, 489 0x00, 0x00, 0x00, 0x00, 490 0x00, 0x00, 0x00, 0x00, 491 0x00, 0x00, 0x00, 0x00, 492 0x00, 0x00, 0x00, 0x00, 493 0x00, 0x00, 0x00, 0x00, 494 0x00, 0x00, 0x00, 0x00, 495 0x00, 0x00, 0x00, 0x00, 496 497 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */ 498 0x00, 0x08, 0x00, 0x00, 499 }; 500 501 /* offset info for MAC + IPv4 + UDP dummy packet */ 502 ICE_DECLARE_PKT_OFFSETS(udp) = { 503 { ICE_MAC_OFOS, 0 }, 504 { ICE_ETYPE_OL, 12 }, 505 { ICE_IPV4_OFOS, 14 }, 506 { ICE_UDP_ILOS, 34 }, 507 { ICE_PROTOCOL_LAST, 0 }, 508 }; 509 510 /* Dummy packet for MAC + IPv4 + UDP */ 511 ICE_DECLARE_PKT_TEMPLATE(udp) = { 512 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 513 0x00, 0x00, 0x00, 0x00, 514 0x00, 0x00, 0x00, 0x00, 515 516 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 517 518 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */ 519 0x00, 0x01, 0x00, 0x00, 520 0x00, 0x11, 0x00, 0x00, 521 0x00, 0x00, 0x00, 0x00, 522 0x00, 0x00, 0x00, 0x00, 523 524 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */ 525 0x00, 0x08, 0x00, 0x00, 526 527 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 528 }; 529 530 /* offset info for MAC + IPv4 + TCP dummy packet */ 531 ICE_DECLARE_PKT_OFFSETS(tcp) = { 532 { ICE_MAC_OFOS, 0 }, 533 { ICE_ETYPE_OL, 12 }, 534 { ICE_IPV4_OFOS, 14 }, 535 { ICE_TCP_IL, 34 }, 536 { ICE_PROTOCOL_LAST, 0 }, 537 }; 538 539 /* Dummy packet for MAC + IPv4 + TCP */ 540 ICE_DECLARE_PKT_TEMPLATE(tcp) = { 541 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 542 0x00, 0x00, 0x00, 0x00, 543 0x00, 0x00, 0x00, 0x00, 544 545 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 546 547 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */ 548 0x00, 0x01, 0x00, 0x00, 549 0x00, 0x06, 0x00, 0x00, 550 0x00, 0x00, 0x00, 0x00, 551 0x00, 0x00, 0x00, 0x00, 552 553 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */ 554 0x00, 0x00, 0x00, 0x00, 555 0x00, 0x00, 0x00, 0x00, 556 0x50, 0x00, 0x00, 0x00, 557 0x00, 0x00, 0x00, 0x00, 558 559 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 560 }; 561 562 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = { 563 { ICE_MAC_OFOS, 0 }, 564 { ICE_ETYPE_OL, 12 }, 565 { ICE_IPV6_OFOS, 14 }, 566 { ICE_TCP_IL, 54 }, 567 { ICE_PROTOCOL_LAST, 0 }, 568 }; 569 570 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = { 571 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 572 0x00, 0x00, 0x00, 0x00, 573 0x00, 0x00, 0x00, 0x00, 574 575 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ 576 577 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */ 578 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */ 579 0x00, 0x00, 0x00, 0x00, 580 0x00, 0x00, 0x00, 0x00, 581 0x00, 0x00, 0x00, 0x00, 582 0x00, 0x00, 0x00, 0x00, 583 0x00, 0x00, 0x00, 0x00, 584 0x00, 0x00, 0x00, 0x00, 585 0x00, 0x00, 0x00, 0x00, 586 0x00, 0x00, 0x00, 0x00, 587 588 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */ 589 0x00, 0x00, 0x00, 0x00, 590 0x00, 0x00, 0x00, 0x00, 591 0x50, 0x00, 0x00, 0x00, 592 0x00, 0x00, 0x00, 0x00, 593 594 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 595 }; 596 597 /* IPv6 + UDP */ 598 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = { 599 { ICE_MAC_OFOS, 0 }, 600 { ICE_ETYPE_OL, 12 }, 601 { ICE_IPV6_OFOS, 14 }, 602 { ICE_UDP_ILOS, 54 }, 603 { ICE_PROTOCOL_LAST, 0 }, 604 }; 605 606 /* IPv6 + UDP dummy packet */ 607 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = { 608 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 609 0x00, 0x00, 0x00, 0x00, 610 0x00, 0x00, 0x00, 0x00, 611 612 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ 613 614 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */ 615 0x00, 0x10, 0x11, 0x00, /* Next header UDP */ 616 0x00, 0x00, 0x00, 0x00, 617 0x00, 0x00, 0x00, 0x00, 618 0x00, 0x00, 0x00, 0x00, 619 0x00, 0x00, 0x00, 0x00, 620 0x00, 0x00, 0x00, 0x00, 621 0x00, 0x00, 0x00, 0x00, 622 0x00, 0x00, 0x00, 0x00, 623 0x00, 0x00, 0x00, 0x00, 624 625 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */ 626 0x00, 0x10, 0x00, 0x00, 627 628 0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */ 629 0x00, 0x00, 0x00, 0x00, 630 631 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 632 }; 633 634 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */ 635 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = { 636 { ICE_MAC_OFOS, 0 }, 637 { ICE_IPV4_OFOS, 14 }, 638 { ICE_UDP_OF, 34 }, 639 { ICE_GTP, 42 }, 640 { ICE_IPV4_IL, 62 }, 641 { ICE_TCP_IL, 82 }, 642 { ICE_PROTOCOL_LAST, 0 }, 643 }; 644 645 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = { 646 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 647 0x00, 0x00, 0x00, 0x00, 648 0x00, 0x00, 0x00, 0x00, 649 0x08, 0x00, 650 651 0x45, 0x00, 0x00, 0x58, /* IP 14 */ 652 0x00, 0x00, 0x00, 0x00, 653 0x00, 0x11, 0x00, 0x00, 654 0x00, 0x00, 0x00, 0x00, 655 0x00, 0x00, 0x00, 0x00, 656 657 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 658 0x00, 0x44, 0x00, 0x00, 659 660 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */ 661 0x00, 0x00, 0x00, 0x00, 662 0x00, 0x00, 0x00, 0x85, 663 664 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 665 0x00, 0x00, 0x00, 0x00, 666 667 0x45, 0x00, 0x00, 0x28, /* IP 62 */ 668 0x00, 0x00, 0x00, 0x00, 669 0x00, 0x06, 0x00, 0x00, 670 0x00, 0x00, 0x00, 0x00, 671 0x00, 0x00, 0x00, 0x00, 672 673 0x00, 0x00, 0x00, 0x00, /* TCP 82 */ 674 0x00, 0x00, 0x00, 0x00, 675 0x00, 0x00, 0x00, 0x00, 676 0x50, 0x00, 0x00, 0x00, 677 0x00, 0x00, 0x00, 0x00, 678 679 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 680 }; 681 682 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */ 683 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = { 684 { ICE_MAC_OFOS, 0 }, 685 { ICE_IPV4_OFOS, 14 }, 686 { ICE_UDP_OF, 34 }, 687 { ICE_GTP, 42 }, 688 { ICE_IPV4_IL, 62 }, 689 { ICE_UDP_ILOS, 82 }, 690 { ICE_PROTOCOL_LAST, 0 }, 691 }; 692 693 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = { 694 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 695 0x00, 0x00, 0x00, 0x00, 696 0x00, 0x00, 0x00, 0x00, 697 0x08, 0x00, 698 699 0x45, 0x00, 0x00, 0x4c, /* IP 14 */ 700 0x00, 0x00, 0x00, 0x00, 701 0x00, 0x11, 0x00, 0x00, 702 0x00, 0x00, 0x00, 0x00, 703 0x00, 0x00, 0x00, 0x00, 704 705 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 706 0x00, 0x38, 0x00, 0x00, 707 708 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */ 709 0x00, 0x00, 0x00, 0x00, 710 0x00, 0x00, 0x00, 0x85, 711 712 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 713 0x00, 0x00, 0x00, 0x00, 714 715 0x45, 0x00, 0x00, 0x1c, /* IP 62 */ 716 0x00, 0x00, 0x00, 0x00, 717 0x00, 0x11, 0x00, 0x00, 718 0x00, 0x00, 0x00, 0x00, 719 0x00, 0x00, 0x00, 0x00, 720 721 0x00, 0x00, 0x00, 0x00, /* UDP 82 */ 722 0x00, 0x08, 0x00, 0x00, 723 724 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 725 }; 726 727 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */ 728 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = { 729 { ICE_MAC_OFOS, 0 }, 730 { ICE_IPV4_OFOS, 14 }, 731 { ICE_UDP_OF, 34 }, 732 { ICE_GTP, 42 }, 733 { ICE_IPV6_IL, 62 }, 734 { ICE_TCP_IL, 102 }, 735 { ICE_PROTOCOL_LAST, 0 }, 736 }; 737 738 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = { 739 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 740 0x00, 0x00, 0x00, 0x00, 741 0x00, 0x00, 0x00, 0x00, 742 0x08, 0x00, 743 744 0x45, 0x00, 0x00, 0x6c, /* IP 14 */ 745 0x00, 0x00, 0x00, 0x00, 746 0x00, 0x11, 0x00, 0x00, 747 0x00, 0x00, 0x00, 0x00, 748 0x00, 0x00, 0x00, 0x00, 749 750 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 751 0x00, 0x58, 0x00, 0x00, 752 753 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */ 754 0x00, 0x00, 0x00, 0x00, 755 0x00, 0x00, 0x00, 0x85, 756 757 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 758 0x00, 0x00, 0x00, 0x00, 759 760 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */ 761 0x00, 0x14, 0x06, 0x00, 762 0x00, 0x00, 0x00, 0x00, 763 0x00, 0x00, 0x00, 0x00, 764 0x00, 0x00, 0x00, 0x00, 765 0x00, 0x00, 0x00, 0x00, 766 0x00, 0x00, 0x00, 0x00, 767 0x00, 0x00, 0x00, 0x00, 768 0x00, 0x00, 0x00, 0x00, 769 0x00, 0x00, 0x00, 0x00, 770 771 0x00, 0x00, 0x00, 0x00, /* TCP 102 */ 772 0x00, 0x00, 0x00, 0x00, 773 0x00, 0x00, 0x00, 0x00, 774 0x50, 0x00, 0x00, 0x00, 775 0x00, 0x00, 0x00, 0x00, 776 777 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 778 }; 779 780 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = { 781 { ICE_MAC_OFOS, 0 }, 782 { ICE_IPV4_OFOS, 14 }, 783 { ICE_UDP_OF, 34 }, 784 { ICE_GTP, 42 }, 785 { ICE_IPV6_IL, 62 }, 786 { ICE_UDP_ILOS, 102 }, 787 { ICE_PROTOCOL_LAST, 0 }, 788 }; 789 790 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = { 791 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 792 0x00, 0x00, 0x00, 0x00, 793 0x00, 0x00, 0x00, 0x00, 794 0x08, 0x00, 795 796 0x45, 0x00, 0x00, 0x60, /* IP 14 */ 797 0x00, 0x00, 0x00, 0x00, 798 0x00, 0x11, 0x00, 0x00, 799 0x00, 0x00, 0x00, 0x00, 800 0x00, 0x00, 0x00, 0x00, 801 802 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 803 0x00, 0x4c, 0x00, 0x00, 804 805 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */ 806 0x00, 0x00, 0x00, 0x00, 807 0x00, 0x00, 0x00, 0x85, 808 809 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 810 0x00, 0x00, 0x00, 0x00, 811 812 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */ 813 0x00, 0x08, 0x11, 0x00, 814 0x00, 0x00, 0x00, 0x00, 815 0x00, 0x00, 0x00, 0x00, 816 0x00, 0x00, 0x00, 0x00, 817 0x00, 0x00, 0x00, 0x00, 818 0x00, 0x00, 0x00, 0x00, 819 0x00, 0x00, 0x00, 0x00, 820 0x00, 0x00, 0x00, 0x00, 821 0x00, 0x00, 0x00, 0x00, 822 823 0x00, 0x00, 0x00, 0x00, /* UDP 102 */ 824 0x00, 0x08, 0x00, 0x00, 825 826 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 827 }; 828 829 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = { 830 { ICE_MAC_OFOS, 0 }, 831 { ICE_IPV6_OFOS, 14 }, 832 { ICE_UDP_OF, 54 }, 833 { ICE_GTP, 62 }, 834 { ICE_IPV4_IL, 82 }, 835 { ICE_TCP_IL, 102 }, 836 { ICE_PROTOCOL_LAST, 0 }, 837 }; 838 839 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = { 840 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 841 0x00, 0x00, 0x00, 0x00, 842 0x00, 0x00, 0x00, 0x00, 843 0x86, 0xdd, 844 845 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 846 0x00, 0x44, 0x11, 0x00, 847 0x00, 0x00, 0x00, 0x00, 848 0x00, 0x00, 0x00, 0x00, 849 0x00, 0x00, 0x00, 0x00, 850 0x00, 0x00, 0x00, 0x00, 851 0x00, 0x00, 0x00, 0x00, 852 0x00, 0x00, 0x00, 0x00, 853 0x00, 0x00, 0x00, 0x00, 854 0x00, 0x00, 0x00, 0x00, 855 856 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 857 0x00, 0x44, 0x00, 0x00, 858 859 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */ 860 0x00, 0x00, 0x00, 0x00, 861 0x00, 0x00, 0x00, 0x85, 862 863 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 864 0x00, 0x00, 0x00, 0x00, 865 866 0x45, 0x00, 0x00, 0x28, /* IP 82 */ 867 0x00, 0x00, 0x00, 0x00, 868 0x00, 0x06, 0x00, 0x00, 869 0x00, 0x00, 0x00, 0x00, 870 0x00, 0x00, 0x00, 0x00, 871 872 0x00, 0x00, 0x00, 0x00, /* TCP 102 */ 873 0x00, 0x00, 0x00, 0x00, 874 0x00, 0x00, 0x00, 0x00, 875 0x50, 0x00, 0x00, 0x00, 876 0x00, 0x00, 0x00, 0x00, 877 878 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 879 }; 880 881 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = { 882 { ICE_MAC_OFOS, 0 }, 883 { ICE_IPV6_OFOS, 14 }, 884 { ICE_UDP_OF, 54 }, 885 { ICE_GTP, 62 }, 886 { ICE_IPV4_IL, 82 }, 887 { ICE_UDP_ILOS, 102 }, 888 { ICE_PROTOCOL_LAST, 0 }, 889 }; 890 891 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = { 892 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 893 0x00, 0x00, 0x00, 0x00, 894 0x00, 0x00, 0x00, 0x00, 895 0x86, 0xdd, 896 897 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 898 0x00, 0x38, 0x11, 0x00, 899 0x00, 0x00, 0x00, 0x00, 900 0x00, 0x00, 0x00, 0x00, 901 0x00, 0x00, 0x00, 0x00, 902 0x00, 0x00, 0x00, 0x00, 903 0x00, 0x00, 0x00, 0x00, 904 0x00, 0x00, 0x00, 0x00, 905 0x00, 0x00, 0x00, 0x00, 906 0x00, 0x00, 0x00, 0x00, 907 908 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 909 0x00, 0x38, 0x00, 0x00, 910 911 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */ 912 0x00, 0x00, 0x00, 0x00, 913 0x00, 0x00, 0x00, 0x85, 914 915 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 916 0x00, 0x00, 0x00, 0x00, 917 918 0x45, 0x00, 0x00, 0x1c, /* IP 82 */ 919 0x00, 0x00, 0x00, 0x00, 920 0x00, 0x11, 0x00, 0x00, 921 0x00, 0x00, 0x00, 0x00, 922 0x00, 0x00, 0x00, 0x00, 923 924 0x00, 0x00, 0x00, 0x00, /* UDP 102 */ 925 0x00, 0x08, 0x00, 0x00, 926 927 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 928 }; 929 930 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = { 931 { ICE_MAC_OFOS, 0 }, 932 { ICE_IPV6_OFOS, 14 }, 933 { ICE_UDP_OF, 54 }, 934 { ICE_GTP, 62 }, 935 { ICE_IPV6_IL, 82 }, 936 { ICE_TCP_IL, 122 }, 937 { ICE_PROTOCOL_LAST, 0 }, 938 }; 939 940 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = { 941 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 942 0x00, 0x00, 0x00, 0x00, 943 0x00, 0x00, 0x00, 0x00, 944 0x86, 0xdd, 945 946 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 947 0x00, 0x58, 0x11, 0x00, 948 0x00, 0x00, 0x00, 0x00, 949 0x00, 0x00, 0x00, 0x00, 950 0x00, 0x00, 0x00, 0x00, 951 0x00, 0x00, 0x00, 0x00, 952 0x00, 0x00, 0x00, 0x00, 953 0x00, 0x00, 0x00, 0x00, 954 0x00, 0x00, 0x00, 0x00, 955 0x00, 0x00, 0x00, 0x00, 956 957 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 958 0x00, 0x58, 0x00, 0x00, 959 960 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */ 961 0x00, 0x00, 0x00, 0x00, 962 0x00, 0x00, 0x00, 0x85, 963 964 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 965 0x00, 0x00, 0x00, 0x00, 966 967 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */ 968 0x00, 0x14, 0x06, 0x00, 969 0x00, 0x00, 0x00, 0x00, 970 0x00, 0x00, 0x00, 0x00, 971 0x00, 0x00, 0x00, 0x00, 972 0x00, 0x00, 0x00, 0x00, 973 0x00, 0x00, 0x00, 0x00, 974 0x00, 0x00, 0x00, 0x00, 975 0x00, 0x00, 0x00, 0x00, 976 0x00, 0x00, 0x00, 0x00, 977 978 0x00, 0x00, 0x00, 0x00, /* TCP 122 */ 979 0x00, 0x00, 0x00, 0x00, 980 0x00, 0x00, 0x00, 0x00, 981 0x50, 0x00, 0x00, 0x00, 982 0x00, 0x00, 0x00, 0x00, 983 984 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 985 }; 986 987 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = { 988 { ICE_MAC_OFOS, 0 }, 989 { ICE_IPV6_OFOS, 14 }, 990 { ICE_UDP_OF, 54 }, 991 { ICE_GTP, 62 }, 992 { ICE_IPV6_IL, 82 }, 993 { ICE_UDP_ILOS, 122 }, 994 { ICE_PROTOCOL_LAST, 0 }, 995 }; 996 997 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = { 998 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 999 0x00, 0x00, 0x00, 0x00, 1000 0x00, 0x00, 0x00, 0x00, 1001 0x86, 0xdd, 1002 1003 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 1004 0x00, 0x4c, 0x11, 0x00, 1005 0x00, 0x00, 0x00, 0x00, 1006 0x00, 0x00, 0x00, 0x00, 1007 0x00, 0x00, 0x00, 0x00, 1008 0x00, 0x00, 0x00, 0x00, 1009 0x00, 0x00, 0x00, 0x00, 1010 0x00, 0x00, 0x00, 0x00, 1011 0x00, 0x00, 0x00, 0x00, 1012 0x00, 0x00, 0x00, 0x00, 1013 1014 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 1015 0x00, 0x4c, 0x00, 0x00, 1016 1017 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */ 1018 0x00, 0x00, 0x00, 0x00, 1019 0x00, 0x00, 0x00, 0x85, 1020 1021 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 1022 0x00, 0x00, 0x00, 0x00, 1023 1024 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */ 1025 0x00, 0x08, 0x11, 0x00, 1026 0x00, 0x00, 0x00, 0x00, 1027 0x00, 0x00, 0x00, 0x00, 1028 0x00, 0x00, 0x00, 0x00, 1029 0x00, 0x00, 0x00, 0x00, 1030 0x00, 0x00, 0x00, 0x00, 1031 0x00, 0x00, 0x00, 0x00, 1032 0x00, 0x00, 0x00, 0x00, 1033 0x00, 0x00, 0x00, 0x00, 1034 1035 0x00, 0x00, 0x00, 0x00, /* UDP 122 */ 1036 0x00, 0x08, 0x00, 0x00, 1037 1038 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 1039 }; 1040 1041 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = { 1042 { ICE_MAC_OFOS, 0 }, 1043 { ICE_IPV4_OFOS, 14 }, 1044 { ICE_UDP_OF, 34 }, 1045 { ICE_GTP_NO_PAY, 42 }, 1046 { ICE_PROTOCOL_LAST, 0 }, 1047 }; 1048 1049 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = { 1050 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1051 0x00, 0x00, 0x00, 0x00, 1052 0x00, 0x00, 0x00, 0x00, 1053 0x08, 0x00, 1054 1055 0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */ 1056 0x00, 0x00, 0x40, 0x00, 1057 0x40, 0x11, 0x00, 0x00, 1058 0x00, 0x00, 0x00, 0x00, 1059 0x00, 0x00, 0x00, 0x00, 1060 1061 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */ 1062 0x00, 0x00, 0x00, 0x00, 1063 1064 0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */ 1065 0x00, 0x00, 0x00, 0x00, 1066 0x00, 0x00, 0x00, 0x85, 1067 1068 0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */ 1069 0x00, 0x00, 0x00, 0x00, 1070 1071 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */ 1072 0x00, 0x00, 0x40, 0x00, 1073 0x40, 0x00, 0x00, 0x00, 1074 0x00, 0x00, 0x00, 0x00, 1075 0x00, 0x00, 0x00, 0x00, 1076 0x00, 0x00, 1077 }; 1078 1079 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = { 1080 { ICE_MAC_OFOS, 0 }, 1081 { ICE_IPV6_OFOS, 14 }, 1082 { ICE_UDP_OF, 54 }, 1083 { ICE_GTP_NO_PAY, 62 }, 1084 { ICE_PROTOCOL_LAST, 0 }, 1085 }; 1086 1087 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = { 1088 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1089 0x00, 0x00, 0x00, 0x00, 1090 0x00, 0x00, 0x00, 0x00, 1091 0x86, 0xdd, 1092 1093 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */ 1094 0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/ 1095 0x00, 0x00, 0x00, 0x00, 1096 0x00, 0x00, 0x00, 0x00, 1097 0x00, 0x00, 0x00, 0x00, 1098 0x00, 0x00, 0x00, 0x00, 1099 0x00, 0x00, 0x00, 0x00, 1100 0x00, 0x00, 0x00, 0x00, 1101 0x00, 0x00, 0x00, 0x00, 1102 0x00, 0x00, 0x00, 0x00, 1103 1104 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */ 1105 0x00, 0x00, 0x00, 0x00, 1106 1107 0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */ 1108 0x00, 0x00, 0x00, 0x00, 1109 1110 0x00, 0x00, 1111 }; 1112 1113 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = { 1114 { ICE_MAC_OFOS, 0 }, 1115 { ICE_ETYPE_OL, 12 }, 1116 { ICE_PPPOE, 14 }, 1117 { ICE_IPV4_OFOS, 22 }, 1118 { ICE_TCP_IL, 42 }, 1119 { ICE_PROTOCOL_LAST, 0 }, 1120 }; 1121 1122 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = { 1123 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1124 0x00, 0x00, 0x00, 0x00, 1125 0x00, 0x00, 0x00, 0x00, 1126 1127 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1128 1129 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1130 0x00, 0x16, 1131 1132 0x00, 0x21, /* PPP Link Layer 20 */ 1133 1134 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */ 1135 0x00, 0x01, 0x00, 0x00, 1136 0x00, 0x06, 0x00, 0x00, 1137 0x00, 0x00, 0x00, 0x00, 1138 0x00, 0x00, 0x00, 0x00, 1139 1140 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */ 1141 0x00, 0x00, 0x00, 0x00, 1142 0x00, 0x00, 0x00, 0x00, 1143 0x50, 0x00, 0x00, 0x00, 1144 0x00, 0x00, 0x00, 0x00, 1145 1146 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1147 }; 1148 1149 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = { 1150 { ICE_MAC_OFOS, 0 }, 1151 { ICE_ETYPE_OL, 12 }, 1152 { ICE_PPPOE, 14 }, 1153 { ICE_IPV4_OFOS, 22 }, 1154 { ICE_UDP_ILOS, 42 }, 1155 { ICE_PROTOCOL_LAST, 0 }, 1156 }; 1157 1158 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = { 1159 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1160 0x00, 0x00, 0x00, 0x00, 1161 0x00, 0x00, 0x00, 0x00, 1162 1163 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1164 1165 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1166 0x00, 0x16, 1167 1168 0x00, 0x21, /* PPP Link Layer 20 */ 1169 1170 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */ 1171 0x00, 0x01, 0x00, 0x00, 1172 0x00, 0x11, 0x00, 0x00, 1173 0x00, 0x00, 0x00, 0x00, 1174 0x00, 0x00, 0x00, 0x00, 1175 1176 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */ 1177 0x00, 0x08, 0x00, 0x00, 1178 1179 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1180 }; 1181 1182 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = { 1183 { ICE_MAC_OFOS, 0 }, 1184 { ICE_ETYPE_OL, 12 }, 1185 { ICE_PPPOE, 14 }, 1186 { ICE_IPV6_OFOS, 22 }, 1187 { ICE_TCP_IL, 62 }, 1188 { ICE_PROTOCOL_LAST, 0 }, 1189 }; 1190 1191 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = { 1192 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1193 0x00, 0x00, 0x00, 0x00, 1194 0x00, 0x00, 0x00, 0x00, 1195 1196 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1197 1198 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1199 0x00, 0x2a, 1200 1201 0x00, 0x57, /* PPP Link Layer 20 */ 1202 1203 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */ 1204 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */ 1205 0x00, 0x00, 0x00, 0x00, 1206 0x00, 0x00, 0x00, 0x00, 1207 0x00, 0x00, 0x00, 0x00, 1208 0x00, 0x00, 0x00, 0x00, 1209 0x00, 0x00, 0x00, 0x00, 1210 0x00, 0x00, 0x00, 0x00, 1211 0x00, 0x00, 0x00, 0x00, 1212 0x00, 0x00, 0x00, 0x00, 1213 1214 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */ 1215 0x00, 0x00, 0x00, 0x00, 1216 0x00, 0x00, 0x00, 0x00, 1217 0x50, 0x00, 0x00, 0x00, 1218 0x00, 0x00, 0x00, 0x00, 1219 1220 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1221 }; 1222 1223 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = { 1224 { ICE_MAC_OFOS, 0 }, 1225 { ICE_ETYPE_OL, 12 }, 1226 { ICE_PPPOE, 14 }, 1227 { ICE_IPV6_OFOS, 22 }, 1228 { ICE_UDP_ILOS, 62 }, 1229 { ICE_PROTOCOL_LAST, 0 }, 1230 }; 1231 1232 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = { 1233 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1234 0x00, 0x00, 0x00, 0x00, 1235 0x00, 0x00, 0x00, 0x00, 1236 1237 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1238 1239 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1240 0x00, 0x2a, 1241 1242 0x00, 0x57, /* PPP Link Layer 20 */ 1243 1244 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */ 1245 0x00, 0x08, 0x11, 0x00, /* Next header UDP*/ 1246 0x00, 0x00, 0x00, 0x00, 1247 0x00, 0x00, 0x00, 0x00, 1248 0x00, 0x00, 0x00, 0x00, 1249 0x00, 0x00, 0x00, 0x00, 1250 0x00, 0x00, 0x00, 0x00, 1251 0x00, 0x00, 0x00, 0x00, 1252 0x00, 0x00, 0x00, 0x00, 1253 0x00, 0x00, 0x00, 0x00, 1254 1255 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */ 1256 0x00, 0x08, 0x00, 0x00, 1257 1258 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1259 }; 1260 1261 ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = { 1262 { ICE_MAC_OFOS, 0 }, 1263 { ICE_ETYPE_OL, 12 }, 1264 { ICE_IPV4_OFOS, 14 }, 1265 { ICE_L2TPV3, 34 }, 1266 { ICE_PROTOCOL_LAST, 0 }, 1267 }; 1268 1269 ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = { 1270 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1271 0x00, 0x00, 0x00, 0x00, 1272 0x00, 0x00, 0x00, 0x00, 1273 1274 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 1275 1276 0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */ 1277 0x00, 0x00, 0x40, 0x00, 1278 0x40, 0x73, 0x00, 0x00, 1279 0x00, 0x00, 0x00, 0x00, 1280 0x00, 0x00, 0x00, 0x00, 1281 1282 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */ 1283 0x00, 0x00, 0x00, 0x00, 1284 0x00, 0x00, 0x00, 0x00, 1285 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1286 }; 1287 1288 ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = { 1289 { ICE_MAC_OFOS, 0 }, 1290 { ICE_ETYPE_OL, 12 }, 1291 { ICE_IPV6_OFOS, 14 }, 1292 { ICE_L2TPV3, 54 }, 1293 { ICE_PROTOCOL_LAST, 0 }, 1294 }; 1295 1296 ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = { 1297 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1298 0x00, 0x00, 0x00, 0x00, 1299 0x00, 0x00, 0x00, 0x00, 1300 1301 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ 1302 1303 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */ 1304 0x00, 0x0c, 0x73, 0x40, 1305 0x00, 0x00, 0x00, 0x00, 1306 0x00, 0x00, 0x00, 0x00, 1307 0x00, 0x00, 0x00, 0x00, 1308 0x00, 0x00, 0x00, 0x00, 1309 0x00, 0x00, 0x00, 0x00, 1310 0x00, 0x00, 0x00, 0x00, 1311 0x00, 0x00, 0x00, 0x00, 1312 0x00, 0x00, 0x00, 0x00, 1313 1314 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */ 1315 0x00, 0x00, 0x00, 0x00, 1316 0x00, 0x00, 0x00, 0x00, 1317 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1318 }; 1319 1320 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = { 1321 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 | 1322 ICE_PKT_GTP_NOPAY), 1323 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU | 1324 ICE_PKT_OUTER_IPV6 | 1325 ICE_PKT_INNER_IPV6 | 1326 ICE_PKT_INNER_UDP), 1327 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU | 1328 ICE_PKT_OUTER_IPV6 | 1329 ICE_PKT_INNER_IPV6), 1330 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU | 1331 ICE_PKT_OUTER_IPV6 | 1332 ICE_PKT_INNER_UDP), 1333 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU | 1334 ICE_PKT_OUTER_IPV6), 1335 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY), 1336 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU | 1337 ICE_PKT_INNER_IPV6 | 1338 ICE_PKT_INNER_UDP), 1339 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU | 1340 ICE_PKT_INNER_IPV6), 1341 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU | 1342 ICE_PKT_INNER_UDP), 1343 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU), 1344 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6), 1345 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC), 1346 ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 | 1347 ICE_PKT_INNER_UDP), 1348 ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6), 1349 ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP), 1350 ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE), 1351 ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 | 1352 ICE_PKT_INNER_TCP), 1353 ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP), 1354 ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6), 1355 ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE), 1356 ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP | 1357 ICE_PKT_INNER_IPV6 | 1358 ICE_PKT_INNER_TCP), 1359 ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6), 1360 ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3), 1361 ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP), 1362 ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP | 1363 ICE_PKT_INNER_IPV6), 1364 ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP), 1365 ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP), 1366 ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP), 1367 ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6), 1368 ICE_PKT_PROFILE(tcp, 0), 1369 }; 1370 1371 /* this is a recipe to profile association bitmap */ 1372 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES], 1373 ICE_MAX_NUM_PROFILES); 1374 1375 /* this is a profile to recipe association bitmap */ 1376 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES], 1377 ICE_MAX_NUM_RECIPES); 1378 1379 /** 1380 * ice_init_def_sw_recp - initialize the recipe book keeping tables 1381 * @hw: pointer to the HW struct 1382 * 1383 * Allocate memory for the entire recipe table and initialize the structures/ 1384 * entries corresponding to basic recipes. 1385 */ 1386 int ice_init_def_sw_recp(struct ice_hw *hw) 1387 { 1388 struct ice_sw_recipe *recps; 1389 u8 i; 1390 1391 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES, 1392 sizeof(*recps), GFP_KERNEL); 1393 if (!recps) 1394 return -ENOMEM; 1395 1396 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 1397 recps[i].root_rid = i; 1398 INIT_LIST_HEAD(&recps[i].filt_rules); 1399 INIT_LIST_HEAD(&recps[i].filt_replay_rules); 1400 INIT_LIST_HEAD(&recps[i].rg_list); 1401 mutex_init(&recps[i].filt_rule_lock); 1402 } 1403 1404 hw->switch_info->recp_list = recps; 1405 1406 return 0; 1407 } 1408 1409 /** 1410 * ice_aq_get_sw_cfg - get switch configuration 1411 * @hw: pointer to the hardware structure 1412 * @buf: pointer to the result buffer 1413 * @buf_size: length of the buffer available for response 1414 * @req_desc: pointer to requested descriptor 1415 * @num_elems: pointer to number of elements 1416 * @cd: pointer to command details structure or NULL 1417 * 1418 * Get switch configuration (0x0200) to be placed in buf. 1419 * This admin command returns information such as initial VSI/port number 1420 * and switch ID it belongs to. 1421 * 1422 * NOTE: *req_desc is both an input/output parameter. 1423 * The caller of this function first calls this function with *request_desc set 1424 * to 0. If the response from f/w has *req_desc set to 0, all the switch 1425 * configuration information has been returned; if non-zero (meaning not all 1426 * the information was returned), the caller should call this function again 1427 * with *req_desc set to the previous value returned by f/w to get the 1428 * next block of switch configuration information. 1429 * 1430 * *num_elems is output only parameter. This reflects the number of elements 1431 * in response buffer. The caller of this function to use *num_elems while 1432 * parsing the response buffer. 1433 */ 1434 static int 1435 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf, 1436 u16 buf_size, u16 *req_desc, u16 *num_elems, 1437 struct ice_sq_cd *cd) 1438 { 1439 struct ice_aqc_get_sw_cfg *cmd; 1440 struct ice_aq_desc desc; 1441 int status; 1442 1443 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg); 1444 cmd = &desc.params.get_sw_conf; 1445 cmd->element = cpu_to_le16(*req_desc); 1446 1447 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 1448 if (!status) { 1449 *req_desc = le16_to_cpu(cmd->element); 1450 *num_elems = le16_to_cpu(cmd->num_elems); 1451 } 1452 1453 return status; 1454 } 1455 1456 /** 1457 * ice_aq_add_vsi 1458 * @hw: pointer to the HW struct 1459 * @vsi_ctx: pointer to a VSI context struct 1460 * @cd: pointer to command details structure or NULL 1461 * 1462 * Add a VSI context to the hardware (0x0210) 1463 */ 1464 static int 1465 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 1466 struct ice_sq_cd *cd) 1467 { 1468 struct ice_aqc_add_update_free_vsi_resp *res; 1469 struct ice_aqc_add_get_update_free_vsi *cmd; 1470 struct ice_aq_desc desc; 1471 int status; 1472 1473 cmd = &desc.params.vsi_cmd; 1474 res = &desc.params.add_update_free_vsi_res; 1475 1476 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi); 1477 1478 if (!vsi_ctx->alloc_from_pool) 1479 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | 1480 ICE_AQ_VSI_IS_VALID); 1481 cmd->vf_id = vsi_ctx->vf_num; 1482 1483 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags); 1484 1485 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1486 1487 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 1488 sizeof(vsi_ctx->info), cd); 1489 1490 if (!status) { 1491 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M; 1492 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used); 1493 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free); 1494 } 1495 1496 return status; 1497 } 1498 1499 /** 1500 * ice_aq_free_vsi 1501 * @hw: pointer to the HW struct 1502 * @vsi_ctx: pointer to a VSI context struct 1503 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 1504 * @cd: pointer to command details structure or NULL 1505 * 1506 * Free VSI context info from hardware (0x0213) 1507 */ 1508 static int 1509 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 1510 bool keep_vsi_alloc, struct ice_sq_cd *cd) 1511 { 1512 struct ice_aqc_add_update_free_vsi_resp *resp; 1513 struct ice_aqc_add_get_update_free_vsi *cmd; 1514 struct ice_aq_desc desc; 1515 int status; 1516 1517 cmd = &desc.params.vsi_cmd; 1518 resp = &desc.params.add_update_free_vsi_res; 1519 1520 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi); 1521 1522 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 1523 if (keep_vsi_alloc) 1524 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC); 1525 1526 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1527 if (!status) { 1528 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 1529 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 1530 } 1531 1532 return status; 1533 } 1534 1535 /** 1536 * ice_aq_update_vsi 1537 * @hw: pointer to the HW struct 1538 * @vsi_ctx: pointer to a VSI context struct 1539 * @cd: pointer to command details structure or NULL 1540 * 1541 * Update VSI context in the hardware (0x0211) 1542 */ 1543 static int 1544 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 1545 struct ice_sq_cd *cd) 1546 { 1547 struct ice_aqc_add_update_free_vsi_resp *resp; 1548 struct ice_aqc_add_get_update_free_vsi *cmd; 1549 struct ice_aq_desc desc; 1550 int status; 1551 1552 cmd = &desc.params.vsi_cmd; 1553 resp = &desc.params.add_update_free_vsi_res; 1554 1555 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi); 1556 1557 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 1558 1559 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1560 1561 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 1562 sizeof(vsi_ctx->info), cd); 1563 1564 if (!status) { 1565 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 1566 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 1567 } 1568 1569 return status; 1570 } 1571 1572 /** 1573 * ice_is_vsi_valid - check whether the VSI is valid or not 1574 * @hw: pointer to the HW struct 1575 * @vsi_handle: VSI handle 1576 * 1577 * check whether the VSI is valid or not 1578 */ 1579 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle) 1580 { 1581 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle]; 1582 } 1583 1584 /** 1585 * ice_get_hw_vsi_num - return the HW VSI number 1586 * @hw: pointer to the HW struct 1587 * @vsi_handle: VSI handle 1588 * 1589 * return the HW VSI number 1590 * Caution: call this function only if VSI is valid (ice_is_vsi_valid) 1591 */ 1592 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle) 1593 { 1594 return hw->vsi_ctx[vsi_handle]->vsi_num; 1595 } 1596 1597 /** 1598 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle 1599 * @hw: pointer to the HW struct 1600 * @vsi_handle: VSI handle 1601 * 1602 * return the VSI context entry for a given VSI handle 1603 */ 1604 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 1605 { 1606 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle]; 1607 } 1608 1609 /** 1610 * ice_save_vsi_ctx - save the VSI context for a given VSI handle 1611 * @hw: pointer to the HW struct 1612 * @vsi_handle: VSI handle 1613 * @vsi: VSI context pointer 1614 * 1615 * save the VSI context entry for a given VSI handle 1616 */ 1617 static void 1618 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi) 1619 { 1620 hw->vsi_ctx[vsi_handle] = vsi; 1621 } 1622 1623 /** 1624 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs 1625 * @hw: pointer to the HW struct 1626 * @vsi_handle: VSI handle 1627 */ 1628 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle) 1629 { 1630 struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle); 1631 u8 i; 1632 1633 if (!vsi) 1634 return; 1635 ice_for_each_traffic_class(i) { 1636 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]); 1637 vsi->lan_q_ctx[i] = NULL; 1638 devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]); 1639 vsi->rdma_q_ctx[i] = NULL; 1640 } 1641 } 1642 1643 /** 1644 * ice_clear_vsi_ctx - clear the VSI context entry 1645 * @hw: pointer to the HW struct 1646 * @vsi_handle: VSI handle 1647 * 1648 * clear the VSI context entry 1649 */ 1650 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 1651 { 1652 struct ice_vsi_ctx *vsi; 1653 1654 vsi = ice_get_vsi_ctx(hw, vsi_handle); 1655 if (vsi) { 1656 ice_clear_vsi_q_ctx(hw, vsi_handle); 1657 devm_kfree(ice_hw_to_dev(hw), vsi); 1658 hw->vsi_ctx[vsi_handle] = NULL; 1659 } 1660 } 1661 1662 /** 1663 * ice_clear_all_vsi_ctx - clear all the VSI context entries 1664 * @hw: pointer to the HW struct 1665 */ 1666 void ice_clear_all_vsi_ctx(struct ice_hw *hw) 1667 { 1668 u16 i; 1669 1670 for (i = 0; i < ICE_MAX_VSI; i++) 1671 ice_clear_vsi_ctx(hw, i); 1672 } 1673 1674 /** 1675 * ice_add_vsi - add VSI context to the hardware and VSI handle list 1676 * @hw: pointer to the HW struct 1677 * @vsi_handle: unique VSI handle provided by drivers 1678 * @vsi_ctx: pointer to a VSI context struct 1679 * @cd: pointer to command details structure or NULL 1680 * 1681 * Add a VSI context to the hardware also add it into the VSI handle list. 1682 * If this function gets called after reset for existing VSIs then update 1683 * with the new HW VSI number in the corresponding VSI handle list entry. 1684 */ 1685 int 1686 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 1687 struct ice_sq_cd *cd) 1688 { 1689 struct ice_vsi_ctx *tmp_vsi_ctx; 1690 int status; 1691 1692 if (vsi_handle >= ICE_MAX_VSI) 1693 return -EINVAL; 1694 status = ice_aq_add_vsi(hw, vsi_ctx, cd); 1695 if (status) 1696 return status; 1697 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1698 if (!tmp_vsi_ctx) { 1699 /* Create a new VSI context */ 1700 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw), 1701 sizeof(*tmp_vsi_ctx), GFP_KERNEL); 1702 if (!tmp_vsi_ctx) { 1703 ice_aq_free_vsi(hw, vsi_ctx, false, cd); 1704 return -ENOMEM; 1705 } 1706 *tmp_vsi_ctx = *vsi_ctx; 1707 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx); 1708 } else { 1709 /* update with new HW VSI num */ 1710 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num; 1711 } 1712 1713 return 0; 1714 } 1715 1716 /** 1717 * ice_free_vsi- free VSI context from hardware and VSI handle list 1718 * @hw: pointer to the HW struct 1719 * @vsi_handle: unique VSI handle 1720 * @vsi_ctx: pointer to a VSI context struct 1721 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 1722 * @cd: pointer to command details structure or NULL 1723 * 1724 * Free VSI context info from hardware as well as from VSI handle list 1725 */ 1726 int 1727 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 1728 bool keep_vsi_alloc, struct ice_sq_cd *cd) 1729 { 1730 int status; 1731 1732 if (!ice_is_vsi_valid(hw, vsi_handle)) 1733 return -EINVAL; 1734 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 1735 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd); 1736 if (!status) 1737 ice_clear_vsi_ctx(hw, vsi_handle); 1738 return status; 1739 } 1740 1741 /** 1742 * ice_update_vsi 1743 * @hw: pointer to the HW struct 1744 * @vsi_handle: unique VSI handle 1745 * @vsi_ctx: pointer to a VSI context struct 1746 * @cd: pointer to command details structure or NULL 1747 * 1748 * Update VSI context in the hardware 1749 */ 1750 int 1751 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 1752 struct ice_sq_cd *cd) 1753 { 1754 if (!ice_is_vsi_valid(hw, vsi_handle)) 1755 return -EINVAL; 1756 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 1757 return ice_aq_update_vsi(hw, vsi_ctx, cd); 1758 } 1759 1760 /** 1761 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI 1762 * @hw: pointer to HW struct 1763 * @vsi_handle: VSI SW index 1764 * @enable: boolean for enable/disable 1765 */ 1766 int 1767 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable) 1768 { 1769 struct ice_vsi_ctx *ctx, *cached_ctx; 1770 int status; 1771 1772 cached_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1773 if (!cached_ctx) 1774 return -ENOENT; 1775 1776 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1777 if (!ctx) 1778 return -ENOMEM; 1779 1780 ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss; 1781 ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc; 1782 ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags; 1783 1784 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1785 1786 if (enable) 1787 ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN; 1788 else 1789 ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN; 1790 1791 status = ice_update_vsi(hw, vsi_handle, ctx, NULL); 1792 if (!status) { 1793 cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags; 1794 cached_ctx->info.valid_sections |= ctx->info.valid_sections; 1795 } 1796 1797 kfree(ctx); 1798 return status; 1799 } 1800 1801 /** 1802 * ice_aq_alloc_free_vsi_list 1803 * @hw: pointer to the HW struct 1804 * @vsi_list_id: VSI list ID returned or used for lookup 1805 * @lkup_type: switch rule filter lookup type 1806 * @opc: switch rules population command type - pass in the command opcode 1807 * 1808 * allocates or free a VSI list resource 1809 */ 1810 static int 1811 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id, 1812 enum ice_sw_lkup_type lkup_type, 1813 enum ice_adminq_opc opc) 1814 { 1815 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1); 1816 u16 buf_len = __struct_size(sw_buf); 1817 struct ice_aqc_res_elem *vsi_ele; 1818 int status; 1819 1820 sw_buf->num_elems = cpu_to_le16(1); 1821 1822 if (lkup_type == ICE_SW_LKUP_MAC || 1823 lkup_type == ICE_SW_LKUP_MAC_VLAN || 1824 lkup_type == ICE_SW_LKUP_ETHERTYPE || 1825 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 1826 lkup_type == ICE_SW_LKUP_PROMISC || 1827 lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 1828 lkup_type == ICE_SW_LKUP_DFLT) { 1829 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP); 1830 } else if (lkup_type == ICE_SW_LKUP_VLAN) { 1831 if (opc == ice_aqc_opc_alloc_res) 1832 sw_buf->res_type = 1833 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE | 1834 ICE_AQC_RES_TYPE_FLAG_SHARED); 1835 else 1836 sw_buf->res_type = 1837 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE); 1838 } else { 1839 return -EINVAL; 1840 } 1841 1842 if (opc == ice_aqc_opc_free_res) 1843 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id); 1844 1845 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc); 1846 if (status) 1847 return status; 1848 1849 if (opc == ice_aqc_opc_alloc_res) { 1850 vsi_ele = &sw_buf->elem[0]; 1851 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp); 1852 } 1853 1854 return 0; 1855 } 1856 1857 /** 1858 * ice_aq_sw_rules - add/update/remove switch rules 1859 * @hw: pointer to the HW struct 1860 * @rule_list: pointer to switch rule population list 1861 * @rule_list_sz: total size of the rule list in bytes 1862 * @num_rules: number of switch rules in the rule_list 1863 * @opc: switch rules population command type - pass in the command opcode 1864 * @cd: pointer to command details structure or NULL 1865 * 1866 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware 1867 */ 1868 int 1869 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz, 1870 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd) 1871 { 1872 struct ice_aq_desc desc; 1873 int status; 1874 1875 if (opc != ice_aqc_opc_add_sw_rules && 1876 opc != ice_aqc_opc_update_sw_rules && 1877 opc != ice_aqc_opc_remove_sw_rules) 1878 return -EINVAL; 1879 1880 ice_fill_dflt_direct_cmd_desc(&desc, opc); 1881 1882 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1883 desc.params.sw_rules.num_rules_fltr_entry_index = 1884 cpu_to_le16(num_rules); 1885 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd); 1886 if (opc != ice_aqc_opc_add_sw_rules && 1887 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT) 1888 status = -ENOENT; 1889 1890 return status; 1891 } 1892 1893 /** 1894 * ice_aq_add_recipe - add switch recipe 1895 * @hw: pointer to the HW struct 1896 * @s_recipe_list: pointer to switch rule population list 1897 * @num_recipes: number of switch recipes in the list 1898 * @cd: pointer to command details structure or NULL 1899 * 1900 * Add(0x0290) 1901 */ 1902 int 1903 ice_aq_add_recipe(struct ice_hw *hw, 1904 struct ice_aqc_recipe_data_elem *s_recipe_list, 1905 u16 num_recipes, struct ice_sq_cd *cd) 1906 { 1907 struct ice_aqc_add_get_recipe *cmd; 1908 struct ice_aq_desc desc; 1909 u16 buf_size; 1910 1911 cmd = &desc.params.add_get_recipe; 1912 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe); 1913 1914 cmd->num_sub_recipes = cpu_to_le16(num_recipes); 1915 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1916 1917 buf_size = num_recipes * sizeof(*s_recipe_list); 1918 1919 return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd); 1920 } 1921 1922 /** 1923 * ice_aq_get_recipe - get switch recipe 1924 * @hw: pointer to the HW struct 1925 * @s_recipe_list: pointer to switch rule population list 1926 * @num_recipes: pointer to the number of recipes (input and output) 1927 * @recipe_root: root recipe number of recipe(s) to retrieve 1928 * @cd: pointer to command details structure or NULL 1929 * 1930 * Get(0x0292) 1931 * 1932 * On input, *num_recipes should equal the number of entries in s_recipe_list. 1933 * On output, *num_recipes will equal the number of entries returned in 1934 * s_recipe_list. 1935 * 1936 * The caller must supply enough space in s_recipe_list to hold all possible 1937 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES. 1938 */ 1939 int 1940 ice_aq_get_recipe(struct ice_hw *hw, 1941 struct ice_aqc_recipe_data_elem *s_recipe_list, 1942 u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd) 1943 { 1944 struct ice_aqc_add_get_recipe *cmd; 1945 struct ice_aq_desc desc; 1946 u16 buf_size; 1947 int status; 1948 1949 if (*num_recipes != ICE_MAX_NUM_RECIPES) 1950 return -EINVAL; 1951 1952 cmd = &desc.params.add_get_recipe; 1953 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe); 1954 1955 cmd->return_index = cpu_to_le16(recipe_root); 1956 cmd->num_sub_recipes = 0; 1957 1958 buf_size = *num_recipes * sizeof(*s_recipe_list); 1959 1960 status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd); 1961 *num_recipes = le16_to_cpu(cmd->num_sub_recipes); 1962 1963 return status; 1964 } 1965 1966 /** 1967 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx 1968 * @hw: pointer to the HW struct 1969 * @params: parameters used to update the default recipe 1970 * 1971 * This function only supports updating default recipes and it only supports 1972 * updating a single recipe based on the lkup_idx at a time. 1973 * 1974 * This is done as a read-modify-write operation. First, get the current recipe 1975 * contents based on the recipe's ID. Then modify the field vector index and 1976 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update 1977 * the pre-existing recipe with the modifications. 1978 */ 1979 int 1980 ice_update_recipe_lkup_idx(struct ice_hw *hw, 1981 struct ice_update_recipe_lkup_idx_params *params) 1982 { 1983 struct ice_aqc_recipe_data_elem *rcp_list; 1984 u16 num_recps = ICE_MAX_NUM_RECIPES; 1985 int status; 1986 1987 rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL); 1988 if (!rcp_list) 1989 return -ENOMEM; 1990 1991 /* read current recipe list from firmware */ 1992 rcp_list->recipe_indx = params->rid; 1993 status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL); 1994 if (status) { 1995 ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n", 1996 params->rid, status); 1997 goto error_out; 1998 } 1999 2000 /* only modify existing recipe's lkup_idx and mask if valid, while 2001 * leaving all other fields the same, then update the recipe firmware 2002 */ 2003 rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx; 2004 if (params->mask_valid) 2005 rcp_list->content.mask[params->lkup_idx] = 2006 cpu_to_le16(params->mask); 2007 2008 if (params->ignore_valid) 2009 rcp_list->content.lkup_indx[params->lkup_idx] |= 2010 ICE_AQ_RECIPE_LKUP_IGNORE; 2011 2012 status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL); 2013 if (status) 2014 ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n", 2015 params->rid, params->lkup_idx, params->fv_idx, 2016 params->mask, params->mask_valid ? "true" : "false", 2017 status); 2018 2019 error_out: 2020 kfree(rcp_list); 2021 return status; 2022 } 2023 2024 /** 2025 * ice_aq_map_recipe_to_profile - Map recipe to packet profile 2026 * @hw: pointer to the HW struct 2027 * @profile_id: package profile ID to associate the recipe with 2028 * @r_bitmap: Recipe bitmap filled in and need to be returned as response 2029 * @cd: pointer to command details structure or NULL 2030 * Recipe to profile association (0x0291) 2031 */ 2032 int 2033 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap, 2034 struct ice_sq_cd *cd) 2035 { 2036 struct ice_aqc_recipe_to_profile *cmd; 2037 struct ice_aq_desc desc; 2038 2039 cmd = &desc.params.recipe_to_profile; 2040 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile); 2041 cmd->profile_id = cpu_to_le16(profile_id); 2042 /* Set the recipe ID bit in the bitmask to let the device know which 2043 * profile we are associating the recipe to 2044 */ 2045 memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc)); 2046 2047 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2048 } 2049 2050 /** 2051 * ice_aq_get_recipe_to_profile - Map recipe to packet profile 2052 * @hw: pointer to the HW struct 2053 * @profile_id: package profile ID to associate the recipe with 2054 * @r_bitmap: Recipe bitmap filled in and need to be returned as response 2055 * @cd: pointer to command details structure or NULL 2056 * Associate profile ID with given recipe (0x0293) 2057 */ 2058 int 2059 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap, 2060 struct ice_sq_cd *cd) 2061 { 2062 struct ice_aqc_recipe_to_profile *cmd; 2063 struct ice_aq_desc desc; 2064 int status; 2065 2066 cmd = &desc.params.recipe_to_profile; 2067 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile); 2068 cmd->profile_id = cpu_to_le16(profile_id); 2069 2070 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2071 if (!status) 2072 memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc)); 2073 2074 return status; 2075 } 2076 2077 /** 2078 * ice_alloc_recipe - add recipe resource 2079 * @hw: pointer to the hardware structure 2080 * @rid: recipe ID returned as response to AQ call 2081 */ 2082 int ice_alloc_recipe(struct ice_hw *hw, u16 *rid) 2083 { 2084 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1); 2085 u16 buf_len = __struct_size(sw_buf); 2086 int status; 2087 2088 sw_buf->num_elems = cpu_to_le16(1); 2089 sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE << 2090 ICE_AQC_RES_TYPE_S) | 2091 ICE_AQC_RES_TYPE_FLAG_SHARED); 2092 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, 2093 ice_aqc_opc_alloc_res); 2094 if (!status) 2095 *rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp); 2096 2097 return status; 2098 } 2099 2100 /** 2101 * ice_get_recp_to_prof_map - updates recipe to profile mapping 2102 * @hw: pointer to hardware structure 2103 * 2104 * This function is used to populate recipe_to_profile matrix where index to 2105 * this array is the recipe ID and the element is the mapping of which profiles 2106 * is this recipe mapped to. 2107 */ 2108 static void ice_get_recp_to_prof_map(struct ice_hw *hw) 2109 { 2110 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES); 2111 u16 i; 2112 2113 for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) { 2114 u16 j; 2115 2116 bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES); 2117 bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES); 2118 if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL)) 2119 continue; 2120 bitmap_copy(profile_to_recipe[i], r_bitmap, 2121 ICE_MAX_NUM_RECIPES); 2122 for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES) 2123 set_bit(i, recipe_to_profile[j]); 2124 } 2125 } 2126 2127 /** 2128 * ice_collect_result_idx - copy result index values 2129 * @buf: buffer that contains the result index 2130 * @recp: the recipe struct to copy data into 2131 */ 2132 static void 2133 ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf, 2134 struct ice_sw_recipe *recp) 2135 { 2136 if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN) 2137 set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN, 2138 recp->res_idxs); 2139 } 2140 2141 /** 2142 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries 2143 * @hw: pointer to hardware structure 2144 * @recps: struct that we need to populate 2145 * @rid: recipe ID that we are populating 2146 * @refresh_required: true if we should get recipe to profile mapping from FW 2147 * 2148 * This function is used to populate all the necessary entries into our 2149 * bookkeeping so that we have a current list of all the recipes that are 2150 * programmed in the firmware. 2151 */ 2152 static int 2153 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid, 2154 bool *refresh_required) 2155 { 2156 DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS); 2157 struct ice_aqc_recipe_data_elem *tmp; 2158 u16 num_recps = ICE_MAX_NUM_RECIPES; 2159 struct ice_prot_lkup_ext *lkup_exts; 2160 u8 fv_word_idx = 0; 2161 u16 sub_recps; 2162 int status; 2163 2164 bitmap_zero(result_bm, ICE_MAX_FV_WORDS); 2165 2166 /* we need a buffer big enough to accommodate all the recipes */ 2167 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL); 2168 if (!tmp) 2169 return -ENOMEM; 2170 2171 tmp[0].recipe_indx = rid; 2172 status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL); 2173 /* non-zero status meaning recipe doesn't exist */ 2174 if (status) 2175 goto err_unroll; 2176 2177 /* Get recipe to profile map so that we can get the fv from lkups that 2178 * we read for a recipe from FW. Since we want to minimize the number of 2179 * times we make this FW call, just make one call and cache the copy 2180 * until a new recipe is added. This operation is only required the 2181 * first time to get the changes from FW. Then to search existing 2182 * entries we don't need to update the cache again until another recipe 2183 * gets added. 2184 */ 2185 if (*refresh_required) { 2186 ice_get_recp_to_prof_map(hw); 2187 *refresh_required = false; 2188 } 2189 2190 /* Start populating all the entries for recps[rid] based on lkups from 2191 * firmware. Note that we are only creating the root recipe in our 2192 * database. 2193 */ 2194 lkup_exts = &recps[rid].lkup_exts; 2195 2196 for (sub_recps = 0; sub_recps < num_recps; sub_recps++) { 2197 struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps]; 2198 struct ice_recp_grp_entry *rg_entry; 2199 u8 i, prof, idx, prot = 0; 2200 bool is_root; 2201 u16 off = 0; 2202 2203 rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry), 2204 GFP_KERNEL); 2205 if (!rg_entry) { 2206 status = -ENOMEM; 2207 goto err_unroll; 2208 } 2209 2210 idx = root_bufs.recipe_indx; 2211 is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT; 2212 2213 /* Mark all result indices in this chain */ 2214 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) 2215 set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN, 2216 result_bm); 2217 2218 /* get the first profile that is associated with rid */ 2219 prof = find_first_bit(recipe_to_profile[idx], 2220 ICE_MAX_NUM_PROFILES); 2221 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) { 2222 u8 lkup_indx = root_bufs.content.lkup_indx[i + 1]; 2223 2224 rg_entry->fv_idx[i] = lkup_indx; 2225 rg_entry->fv_mask[i] = 2226 le16_to_cpu(root_bufs.content.mask[i + 1]); 2227 2228 /* If the recipe is a chained recipe then all its 2229 * child recipe's result will have a result index. 2230 * To fill fv_words we should not use those result 2231 * index, we only need the protocol ids and offsets. 2232 * We will skip all the fv_idx which stores result 2233 * index in them. We also need to skip any fv_idx which 2234 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a 2235 * valid offset value. 2236 */ 2237 if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) || 2238 rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE || 2239 rg_entry->fv_idx[i] == 0) 2240 continue; 2241 2242 ice_find_prot_off(hw, ICE_BLK_SW, prof, 2243 rg_entry->fv_idx[i], &prot, &off); 2244 lkup_exts->fv_words[fv_word_idx].prot_id = prot; 2245 lkup_exts->fv_words[fv_word_idx].off = off; 2246 lkup_exts->field_mask[fv_word_idx] = 2247 rg_entry->fv_mask[i]; 2248 fv_word_idx++; 2249 } 2250 /* populate rg_list with the data from the child entry of this 2251 * recipe 2252 */ 2253 list_add(&rg_entry->l_entry, &recps[rid].rg_list); 2254 2255 /* Propagate some data to the recipe database */ 2256 recps[idx].is_root = !!is_root; 2257 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority; 2258 recps[idx].need_pass_l2 = root_bufs.content.act_ctrl & 2259 ICE_AQ_RECIPE_ACT_NEED_PASS_L2; 2260 recps[idx].allow_pass_l2 = root_bufs.content.act_ctrl & 2261 ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2; 2262 bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS); 2263 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) { 2264 recps[idx].chain_idx = root_bufs.content.result_indx & 2265 ~ICE_AQ_RECIPE_RESULT_EN; 2266 set_bit(recps[idx].chain_idx, recps[idx].res_idxs); 2267 } else { 2268 recps[idx].chain_idx = ICE_INVAL_CHAIN_IND; 2269 } 2270 2271 if (!is_root) 2272 continue; 2273 2274 /* Only do the following for root recipes entries */ 2275 memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap, 2276 sizeof(recps[idx].r_bitmap)); 2277 recps[idx].root_rid = root_bufs.content.rid & 2278 ~ICE_AQ_RECIPE_ID_IS_ROOT; 2279 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority; 2280 } 2281 2282 /* Complete initialization of the root recipe entry */ 2283 lkup_exts->n_val_words = fv_word_idx; 2284 recps[rid].big_recp = (num_recps > 1); 2285 recps[rid].n_grp_count = (u8)num_recps; 2286 recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp, 2287 recps[rid].n_grp_count * sizeof(*recps[rid].root_buf), 2288 GFP_KERNEL); 2289 if (!recps[rid].root_buf) { 2290 status = -ENOMEM; 2291 goto err_unroll; 2292 } 2293 2294 /* Copy result indexes */ 2295 bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS); 2296 recps[rid].recp_created = true; 2297 2298 err_unroll: 2299 kfree(tmp); 2300 return status; 2301 } 2302 2303 /* ice_init_port_info - Initialize port_info with switch configuration data 2304 * @pi: pointer to port_info 2305 * @vsi_port_num: VSI number or port number 2306 * @type: Type of switch element (port or VSI) 2307 * @swid: switch ID of the switch the element is attached to 2308 * @pf_vf_num: PF or VF number 2309 * @is_vf: true if the element is a VF, false otherwise 2310 */ 2311 static void 2312 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type, 2313 u16 swid, u16 pf_vf_num, bool is_vf) 2314 { 2315 switch (type) { 2316 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: 2317 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK); 2318 pi->sw_id = swid; 2319 pi->pf_vf_num = pf_vf_num; 2320 pi->is_vf = is_vf; 2321 break; 2322 default: 2323 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n"); 2324 break; 2325 } 2326 } 2327 2328 /* ice_get_initial_sw_cfg - Get initial port and default VSI data 2329 * @hw: pointer to the hardware structure 2330 */ 2331 int ice_get_initial_sw_cfg(struct ice_hw *hw) 2332 { 2333 struct ice_aqc_get_sw_cfg_resp_elem *rbuf; 2334 u16 req_desc = 0; 2335 u16 num_elems; 2336 int status; 2337 u16 i; 2338 2339 rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL); 2340 if (!rbuf) 2341 return -ENOMEM; 2342 2343 /* Multiple calls to ice_aq_get_sw_cfg may be required 2344 * to get all the switch configuration information. The need 2345 * for additional calls is indicated by ice_aq_get_sw_cfg 2346 * writing a non-zero value in req_desc 2347 */ 2348 do { 2349 struct ice_aqc_get_sw_cfg_resp_elem *ele; 2350 2351 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN, 2352 &req_desc, &num_elems, NULL); 2353 2354 if (status) 2355 break; 2356 2357 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) { 2358 u16 pf_vf_num, swid, vsi_port_num; 2359 bool is_vf = false; 2360 u8 res_type; 2361 2362 vsi_port_num = le16_to_cpu(ele->vsi_port_num) & 2363 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M; 2364 2365 pf_vf_num = le16_to_cpu(ele->pf_vf_num) & 2366 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M; 2367 2368 swid = le16_to_cpu(ele->swid); 2369 2370 if (le16_to_cpu(ele->pf_vf_num) & 2371 ICE_AQC_GET_SW_CONF_RESP_IS_VF) 2372 is_vf = true; 2373 2374 res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >> 2375 ICE_AQC_GET_SW_CONF_RESP_TYPE_S); 2376 2377 if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) { 2378 /* FW VSI is not needed. Just continue. */ 2379 continue; 2380 } 2381 2382 ice_init_port_info(hw->port_info, vsi_port_num, 2383 res_type, swid, pf_vf_num, is_vf); 2384 } 2385 } while (req_desc && !status); 2386 2387 kfree(rbuf); 2388 return status; 2389 } 2390 2391 /** 2392 * ice_fill_sw_info - Helper function to populate lb_en and lan_en 2393 * @hw: pointer to the hardware structure 2394 * @fi: filter info structure to fill/update 2395 * 2396 * This helper function populates the lb_en and lan_en elements of the provided 2397 * ice_fltr_info struct using the switch's type and characteristics of the 2398 * switch rule being configured. 2399 */ 2400 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi) 2401 { 2402 fi->lb_en = false; 2403 fi->lan_en = false; 2404 if ((fi->flag & ICE_FLTR_TX) && 2405 (fi->fltr_act == ICE_FWD_TO_VSI || 2406 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 2407 fi->fltr_act == ICE_FWD_TO_Q || 2408 fi->fltr_act == ICE_FWD_TO_QGRP)) { 2409 /* Setting LB for prune actions will result in replicated 2410 * packets to the internal switch that will be dropped. 2411 */ 2412 if (fi->lkup_type != ICE_SW_LKUP_VLAN) 2413 fi->lb_en = true; 2414 2415 /* Set lan_en to TRUE if 2416 * 1. The switch is a VEB AND 2417 * 2 2418 * 2.1 The lookup is a directional lookup like ethertype, 2419 * promiscuous, ethertype-MAC, promiscuous-VLAN 2420 * and default-port OR 2421 * 2.2 The lookup is VLAN, OR 2422 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR 2423 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC. 2424 * 2425 * OR 2426 * 2427 * The switch is a VEPA. 2428 * 2429 * In all other cases, the LAN enable has to be set to false. 2430 */ 2431 if (hw->evb_veb) { 2432 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE || 2433 fi->lkup_type == ICE_SW_LKUP_PROMISC || 2434 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 2435 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 2436 fi->lkup_type == ICE_SW_LKUP_DFLT || 2437 fi->lkup_type == ICE_SW_LKUP_VLAN || 2438 (fi->lkup_type == ICE_SW_LKUP_MAC && 2439 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) || 2440 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN && 2441 !is_unicast_ether_addr(fi->l_data.mac.mac_addr))) 2442 fi->lan_en = true; 2443 } else { 2444 fi->lan_en = true; 2445 } 2446 } 2447 } 2448 2449 /** 2450 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer 2451 * @eth_hdr: pointer to buffer to populate 2452 */ 2453 void ice_fill_eth_hdr(u8 *eth_hdr) 2454 { 2455 memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN); 2456 } 2457 2458 /** 2459 * ice_fill_sw_rule - Helper function to fill switch rule structure 2460 * @hw: pointer to the hardware structure 2461 * @f_info: entry containing packet forwarding information 2462 * @s_rule: switch rule structure to be filled in based on mac_entry 2463 * @opc: switch rules population command type - pass in the command opcode 2464 */ 2465 static void 2466 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info, 2467 struct ice_sw_rule_lkup_rx_tx *s_rule, 2468 enum ice_adminq_opc opc) 2469 { 2470 u16 vlan_id = ICE_MAX_VLAN_ID + 1; 2471 u16 vlan_tpid = ETH_P_8021Q; 2472 void *daddr = NULL; 2473 u16 eth_hdr_sz; 2474 u8 *eth_hdr; 2475 u32 act = 0; 2476 __be16 *off; 2477 u8 q_rgn; 2478 2479 if (opc == ice_aqc_opc_remove_sw_rules) { 2480 s_rule->act = 0; 2481 s_rule->index = cpu_to_le16(f_info->fltr_rule_id); 2482 s_rule->hdr_len = 0; 2483 return; 2484 } 2485 2486 eth_hdr_sz = sizeof(dummy_eth_header); 2487 eth_hdr = s_rule->hdr_data; 2488 2489 /* initialize the ether header with a dummy header */ 2490 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz); 2491 ice_fill_sw_info(hw, f_info); 2492 2493 switch (f_info->fltr_act) { 2494 case ICE_FWD_TO_VSI: 2495 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M, 2496 f_info->fwd_id.hw_vsi_id); 2497 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 2498 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 2499 ICE_SINGLE_ACT_VALID_BIT; 2500 break; 2501 case ICE_FWD_TO_VSI_LIST: 2502 act |= ICE_SINGLE_ACT_VSI_LIST; 2503 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M, 2504 f_info->fwd_id.vsi_list_id); 2505 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 2506 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 2507 ICE_SINGLE_ACT_VALID_BIT; 2508 break; 2509 case ICE_FWD_TO_Q: 2510 act |= ICE_SINGLE_ACT_TO_Q; 2511 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M, 2512 f_info->fwd_id.q_id); 2513 break; 2514 case ICE_DROP_PACKET: 2515 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 2516 ICE_SINGLE_ACT_VALID_BIT; 2517 break; 2518 case ICE_FWD_TO_QGRP: 2519 q_rgn = f_info->qgrp_size > 0 ? 2520 (u8)ilog2(f_info->qgrp_size) : 0; 2521 act |= ICE_SINGLE_ACT_TO_Q; 2522 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M, 2523 f_info->fwd_id.q_id); 2524 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn); 2525 break; 2526 default: 2527 return; 2528 } 2529 2530 if (f_info->lb_en) 2531 act |= ICE_SINGLE_ACT_LB_ENABLE; 2532 if (f_info->lan_en) 2533 act |= ICE_SINGLE_ACT_LAN_ENABLE; 2534 2535 switch (f_info->lkup_type) { 2536 case ICE_SW_LKUP_MAC: 2537 daddr = f_info->l_data.mac.mac_addr; 2538 break; 2539 case ICE_SW_LKUP_VLAN: 2540 vlan_id = f_info->l_data.vlan.vlan_id; 2541 if (f_info->l_data.vlan.tpid_valid) 2542 vlan_tpid = f_info->l_data.vlan.tpid; 2543 if (f_info->fltr_act == ICE_FWD_TO_VSI || 2544 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 2545 act |= ICE_SINGLE_ACT_PRUNE; 2546 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS; 2547 } 2548 break; 2549 case ICE_SW_LKUP_ETHERTYPE_MAC: 2550 daddr = f_info->l_data.ethertype_mac.mac_addr; 2551 fallthrough; 2552 case ICE_SW_LKUP_ETHERTYPE: 2553 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 2554 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype); 2555 break; 2556 case ICE_SW_LKUP_MAC_VLAN: 2557 daddr = f_info->l_data.mac_vlan.mac_addr; 2558 vlan_id = f_info->l_data.mac_vlan.vlan_id; 2559 break; 2560 case ICE_SW_LKUP_PROMISC_VLAN: 2561 vlan_id = f_info->l_data.mac_vlan.vlan_id; 2562 fallthrough; 2563 case ICE_SW_LKUP_PROMISC: 2564 daddr = f_info->l_data.mac_vlan.mac_addr; 2565 break; 2566 default: 2567 break; 2568 } 2569 2570 s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ? 2571 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) : 2572 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); 2573 2574 /* Recipe set depending on lookup type */ 2575 s_rule->recipe_id = cpu_to_le16(f_info->lkup_type); 2576 s_rule->src = cpu_to_le16(f_info->src); 2577 s_rule->act = cpu_to_le32(act); 2578 2579 if (daddr) 2580 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr); 2581 2582 if (!(vlan_id > ICE_MAX_VLAN_ID)) { 2583 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET); 2584 *off = cpu_to_be16(vlan_id); 2585 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 2586 *off = cpu_to_be16(vlan_tpid); 2587 } 2588 2589 /* Create the switch rule with the final dummy Ethernet header */ 2590 if (opc != ice_aqc_opc_update_sw_rules) 2591 s_rule->hdr_len = cpu_to_le16(eth_hdr_sz); 2592 } 2593 2594 /** 2595 * ice_add_marker_act 2596 * @hw: pointer to the hardware structure 2597 * @m_ent: the management entry for which sw marker needs to be added 2598 * @sw_marker: sw marker to tag the Rx descriptor with 2599 * @l_id: large action resource ID 2600 * 2601 * Create a large action to hold software marker and update the switch rule 2602 * entry pointed by m_ent with newly created large action 2603 */ 2604 static int 2605 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, 2606 u16 sw_marker, u16 l_id) 2607 { 2608 struct ice_sw_rule_lkup_rx_tx *rx_tx; 2609 struct ice_sw_rule_lg_act *lg_act; 2610 /* For software marker we need 3 large actions 2611 * 1. FWD action: FWD TO VSI or VSI LIST 2612 * 2. GENERIC VALUE action to hold the profile ID 2613 * 3. GENERIC VALUE action to hold the software marker ID 2614 */ 2615 const u16 num_lg_acts = 3; 2616 u16 lg_act_size; 2617 u16 rules_size; 2618 int status; 2619 u32 act; 2620 u16 id; 2621 2622 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) 2623 return -EINVAL; 2624 2625 /* Create two back-to-back switch rules and submit them to the HW using 2626 * one memory buffer: 2627 * 1. Large Action 2628 * 2. Look up Tx Rx 2629 */ 2630 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts); 2631 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx); 2632 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL); 2633 if (!lg_act) 2634 return -ENOMEM; 2635 2636 rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size); 2637 2638 /* Fill in the first switch rule i.e. large action */ 2639 lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT); 2640 lg_act->index = cpu_to_le16(l_id); 2641 lg_act->size = cpu_to_le16(num_lg_acts); 2642 2643 /* First action VSI forwarding or VSI list forwarding depending on how 2644 * many VSIs 2645 */ 2646 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : 2647 m_ent->fltr_info.fwd_id.hw_vsi_id; 2648 2649 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; 2650 act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id); 2651 if (m_ent->vsi_count > 1) 2652 act |= ICE_LG_ACT_VSI_LIST; 2653 lg_act->act[0] = cpu_to_le32(act); 2654 2655 /* Second action descriptor type */ 2656 act = ICE_LG_ACT_GENERIC; 2657 2658 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1); 2659 lg_act->act[1] = cpu_to_le32(act); 2660 2661 act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M, 2662 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX); 2663 2664 /* Third action Marker value */ 2665 act |= ICE_LG_ACT_GENERIC; 2666 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker); 2667 2668 lg_act->act[2] = cpu_to_le32(act); 2669 2670 /* call the fill switch rule to fill the lookup Tx Rx structure */ 2671 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, 2672 ice_aqc_opc_update_sw_rules); 2673 2674 /* Update the action to point to the large action ID */ 2675 act = ICE_SINGLE_ACT_PTR; 2676 act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id); 2677 rx_tx->act = cpu_to_le32(act); 2678 2679 /* Use the filter rule ID of the previously created rule with single 2680 * act. Once the update happens, hardware will treat this as large 2681 * action 2682 */ 2683 rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id); 2684 2685 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, 2686 ice_aqc_opc_update_sw_rules, NULL); 2687 if (!status) { 2688 m_ent->lg_act_idx = l_id; 2689 m_ent->sw_marker_id = sw_marker; 2690 } 2691 2692 devm_kfree(ice_hw_to_dev(hw), lg_act); 2693 return status; 2694 } 2695 2696 /** 2697 * ice_create_vsi_list_map 2698 * @hw: pointer to the hardware structure 2699 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping 2700 * @num_vsi: number of VSI handles in the array 2701 * @vsi_list_id: VSI list ID generated as part of allocate resource 2702 * 2703 * Helper function to create a new entry of VSI list ID to VSI mapping 2704 * using the given VSI list ID 2705 */ 2706 static struct ice_vsi_list_map_info * 2707 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 2708 u16 vsi_list_id) 2709 { 2710 struct ice_switch_info *sw = hw->switch_info; 2711 struct ice_vsi_list_map_info *v_map; 2712 int i; 2713 2714 v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL); 2715 if (!v_map) 2716 return NULL; 2717 2718 v_map->vsi_list_id = vsi_list_id; 2719 v_map->ref_cnt = 1; 2720 for (i = 0; i < num_vsi; i++) 2721 set_bit(vsi_handle_arr[i], v_map->vsi_map); 2722 2723 list_add(&v_map->list_entry, &sw->vsi_list_map_head); 2724 return v_map; 2725 } 2726 2727 /** 2728 * ice_update_vsi_list_rule 2729 * @hw: pointer to the hardware structure 2730 * @vsi_handle_arr: array of VSI handles to form a VSI list 2731 * @num_vsi: number of VSI handles in the array 2732 * @vsi_list_id: VSI list ID generated as part of allocate resource 2733 * @remove: Boolean value to indicate if this is a remove action 2734 * @opc: switch rules population command type - pass in the command opcode 2735 * @lkup_type: lookup type of the filter 2736 * 2737 * Call AQ command to add a new switch rule or update existing switch rule 2738 * using the given VSI list ID 2739 */ 2740 static int 2741 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 2742 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc, 2743 enum ice_sw_lkup_type lkup_type) 2744 { 2745 struct ice_sw_rule_vsi_list *s_rule; 2746 u16 s_rule_size; 2747 u16 rule_type; 2748 int status; 2749 int i; 2750 2751 if (!num_vsi) 2752 return -EINVAL; 2753 2754 if (lkup_type == ICE_SW_LKUP_MAC || 2755 lkup_type == ICE_SW_LKUP_MAC_VLAN || 2756 lkup_type == ICE_SW_LKUP_ETHERTYPE || 2757 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 2758 lkup_type == ICE_SW_LKUP_PROMISC || 2759 lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 2760 lkup_type == ICE_SW_LKUP_DFLT) 2761 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR : 2762 ICE_AQC_SW_RULES_T_VSI_LIST_SET; 2763 else if (lkup_type == ICE_SW_LKUP_VLAN) 2764 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR : 2765 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET; 2766 else 2767 return -EINVAL; 2768 2769 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi); 2770 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 2771 if (!s_rule) 2772 return -ENOMEM; 2773 for (i = 0; i < num_vsi; i++) { 2774 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) { 2775 status = -EINVAL; 2776 goto exit; 2777 } 2778 /* AQ call requires hw_vsi_id(s) */ 2779 s_rule->vsi[i] = 2780 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i])); 2781 } 2782 2783 s_rule->hdr.type = cpu_to_le16(rule_type); 2784 s_rule->number_vsi = cpu_to_le16(num_vsi); 2785 s_rule->index = cpu_to_le16(vsi_list_id); 2786 2787 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL); 2788 2789 exit: 2790 devm_kfree(ice_hw_to_dev(hw), s_rule); 2791 return status; 2792 } 2793 2794 /** 2795 * ice_create_vsi_list_rule - Creates and populates a VSI list rule 2796 * @hw: pointer to the HW struct 2797 * @vsi_handle_arr: array of VSI handles to form a VSI list 2798 * @num_vsi: number of VSI handles in the array 2799 * @vsi_list_id: stores the ID of the VSI list to be created 2800 * @lkup_type: switch rule filter's lookup type 2801 */ 2802 static int 2803 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 2804 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type) 2805 { 2806 int status; 2807 2808 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type, 2809 ice_aqc_opc_alloc_res); 2810 if (status) 2811 return status; 2812 2813 /* Update the newly created VSI list to include the specified VSIs */ 2814 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi, 2815 *vsi_list_id, false, 2816 ice_aqc_opc_add_sw_rules, lkup_type); 2817 } 2818 2819 /** 2820 * ice_create_pkt_fwd_rule 2821 * @hw: pointer to the hardware structure 2822 * @f_entry: entry containing packet forwarding information 2823 * 2824 * Create switch rule with given filter information and add an entry 2825 * to the corresponding filter management list to track this switch rule 2826 * and VSI mapping 2827 */ 2828 static int 2829 ice_create_pkt_fwd_rule(struct ice_hw *hw, 2830 struct ice_fltr_list_entry *f_entry) 2831 { 2832 struct ice_fltr_mgmt_list_entry *fm_entry; 2833 struct ice_sw_rule_lkup_rx_tx *s_rule; 2834 enum ice_sw_lkup_type l_type; 2835 struct ice_sw_recipe *recp; 2836 int status; 2837 2838 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 2839 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 2840 GFP_KERNEL); 2841 if (!s_rule) 2842 return -ENOMEM; 2843 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry), 2844 GFP_KERNEL); 2845 if (!fm_entry) { 2846 status = -ENOMEM; 2847 goto ice_create_pkt_fwd_rule_exit; 2848 } 2849 2850 fm_entry->fltr_info = f_entry->fltr_info; 2851 2852 /* Initialize all the fields for the management entry */ 2853 fm_entry->vsi_count = 1; 2854 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX; 2855 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID; 2856 fm_entry->counter_index = ICE_INVAL_COUNTER_ID; 2857 2858 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule, 2859 ice_aqc_opc_add_sw_rules); 2860 2861 status = ice_aq_sw_rules(hw, s_rule, 2862 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1, 2863 ice_aqc_opc_add_sw_rules, NULL); 2864 if (status) { 2865 devm_kfree(ice_hw_to_dev(hw), fm_entry); 2866 goto ice_create_pkt_fwd_rule_exit; 2867 } 2868 2869 f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index); 2870 fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index); 2871 2872 /* The book keeping entries will get removed when base driver 2873 * calls remove filter AQ command 2874 */ 2875 l_type = fm_entry->fltr_info.lkup_type; 2876 recp = &hw->switch_info->recp_list[l_type]; 2877 list_add(&fm_entry->list_entry, &recp->filt_rules); 2878 2879 ice_create_pkt_fwd_rule_exit: 2880 devm_kfree(ice_hw_to_dev(hw), s_rule); 2881 return status; 2882 } 2883 2884 /** 2885 * ice_update_pkt_fwd_rule 2886 * @hw: pointer to the hardware structure 2887 * @f_info: filter information for switch rule 2888 * 2889 * Call AQ command to update a previously created switch rule with a 2890 * VSI list ID 2891 */ 2892 static int 2893 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info) 2894 { 2895 struct ice_sw_rule_lkup_rx_tx *s_rule; 2896 int status; 2897 2898 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 2899 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 2900 GFP_KERNEL); 2901 if (!s_rule) 2902 return -ENOMEM; 2903 2904 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules); 2905 2906 s_rule->index = cpu_to_le16(f_info->fltr_rule_id); 2907 2908 /* Update switch rule with new rule set to forward VSI list */ 2909 status = ice_aq_sw_rules(hw, s_rule, 2910 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1, 2911 ice_aqc_opc_update_sw_rules, NULL); 2912 2913 devm_kfree(ice_hw_to_dev(hw), s_rule); 2914 return status; 2915 } 2916 2917 /** 2918 * ice_update_sw_rule_bridge_mode 2919 * @hw: pointer to the HW struct 2920 * 2921 * Updates unicast switch filter rules based on VEB/VEPA mode 2922 */ 2923 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw) 2924 { 2925 struct ice_switch_info *sw = hw->switch_info; 2926 struct ice_fltr_mgmt_list_entry *fm_entry; 2927 struct list_head *rule_head; 2928 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2929 int status = 0; 2930 2931 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 2932 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 2933 2934 mutex_lock(rule_lock); 2935 list_for_each_entry(fm_entry, rule_head, list_entry) { 2936 struct ice_fltr_info *fi = &fm_entry->fltr_info; 2937 u8 *addr = fi->l_data.mac.mac_addr; 2938 2939 /* Update unicast Tx rules to reflect the selected 2940 * VEB/VEPA mode 2941 */ 2942 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) && 2943 (fi->fltr_act == ICE_FWD_TO_VSI || 2944 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 2945 fi->fltr_act == ICE_FWD_TO_Q || 2946 fi->fltr_act == ICE_FWD_TO_QGRP)) { 2947 status = ice_update_pkt_fwd_rule(hw, fi); 2948 if (status) 2949 break; 2950 } 2951 } 2952 2953 mutex_unlock(rule_lock); 2954 2955 return status; 2956 } 2957 2958 /** 2959 * ice_add_update_vsi_list 2960 * @hw: pointer to the hardware structure 2961 * @m_entry: pointer to current filter management list entry 2962 * @cur_fltr: filter information from the book keeping entry 2963 * @new_fltr: filter information with the new VSI to be added 2964 * 2965 * Call AQ command to add or update previously created VSI list with new VSI. 2966 * 2967 * Helper function to do book keeping associated with adding filter information 2968 * The algorithm to do the book keeping is described below : 2969 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.) 2970 * if only one VSI has been added till now 2971 * Allocate a new VSI list and add two VSIs 2972 * to this list using switch rule command 2973 * Update the previously created switch rule with the 2974 * newly created VSI list ID 2975 * if a VSI list was previously created 2976 * Add the new VSI to the previously created VSI list set 2977 * using the update switch rule command 2978 */ 2979 static int 2980 ice_add_update_vsi_list(struct ice_hw *hw, 2981 struct ice_fltr_mgmt_list_entry *m_entry, 2982 struct ice_fltr_info *cur_fltr, 2983 struct ice_fltr_info *new_fltr) 2984 { 2985 u16 vsi_list_id = 0; 2986 int status = 0; 2987 2988 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q || 2989 cur_fltr->fltr_act == ICE_FWD_TO_QGRP)) 2990 return -EOPNOTSUPP; 2991 2992 if ((new_fltr->fltr_act == ICE_FWD_TO_Q || 2993 new_fltr->fltr_act == ICE_FWD_TO_QGRP) && 2994 (cur_fltr->fltr_act == ICE_FWD_TO_VSI || 2995 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST)) 2996 return -EOPNOTSUPP; 2997 2998 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 2999 /* Only one entry existed in the mapping and it was not already 3000 * a part of a VSI list. So, create a VSI list with the old and 3001 * new VSIs. 3002 */ 3003 struct ice_fltr_info tmp_fltr; 3004 u16 vsi_handle_arr[2]; 3005 3006 /* A rule already exists with the new VSI being added */ 3007 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id) 3008 return -EEXIST; 3009 3010 vsi_handle_arr[0] = cur_fltr->vsi_handle; 3011 vsi_handle_arr[1] = new_fltr->vsi_handle; 3012 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 3013 &vsi_list_id, 3014 new_fltr->lkup_type); 3015 if (status) 3016 return status; 3017 3018 tmp_fltr = *new_fltr; 3019 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 3020 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 3021 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 3022 /* Update the previous switch rule of "MAC forward to VSI" to 3023 * "MAC fwd to VSI list" 3024 */ 3025 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 3026 if (status) 3027 return status; 3028 3029 cur_fltr->fwd_id.vsi_list_id = vsi_list_id; 3030 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 3031 m_entry->vsi_list_info = 3032 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 3033 vsi_list_id); 3034 3035 if (!m_entry->vsi_list_info) 3036 return -ENOMEM; 3037 3038 /* If this entry was large action then the large action needs 3039 * to be updated to point to FWD to VSI list 3040 */ 3041 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) 3042 status = 3043 ice_add_marker_act(hw, m_entry, 3044 m_entry->sw_marker_id, 3045 m_entry->lg_act_idx); 3046 } else { 3047 u16 vsi_handle = new_fltr->vsi_handle; 3048 enum ice_adminq_opc opcode; 3049 3050 if (!m_entry->vsi_list_info) 3051 return -EIO; 3052 3053 /* A rule already exists with the new VSI being added */ 3054 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) 3055 return 0; 3056 3057 /* Update the previously created VSI list set with 3058 * the new VSI ID passed in 3059 */ 3060 vsi_list_id = cur_fltr->fwd_id.vsi_list_id; 3061 opcode = ice_aqc_opc_update_sw_rules; 3062 3063 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 3064 vsi_list_id, false, opcode, 3065 new_fltr->lkup_type); 3066 /* update VSI list mapping info with new VSI ID */ 3067 if (!status) 3068 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); 3069 } 3070 if (!status) 3071 m_entry->vsi_count++; 3072 return status; 3073 } 3074 3075 /** 3076 * ice_find_rule_entry - Search a rule entry 3077 * @hw: pointer to the hardware structure 3078 * @recp_id: lookup type for which the specified rule needs to be searched 3079 * @f_info: rule information 3080 * 3081 * Helper function to search for a given rule entry 3082 * Returns pointer to entry storing the rule if found 3083 */ 3084 static struct ice_fltr_mgmt_list_entry * 3085 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info) 3086 { 3087 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL; 3088 struct ice_switch_info *sw = hw->switch_info; 3089 struct list_head *list_head; 3090 3091 list_head = &sw->recp_list[recp_id].filt_rules; 3092 list_for_each_entry(list_itr, list_head, list_entry) { 3093 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 3094 sizeof(f_info->l_data)) && 3095 f_info->flag == list_itr->fltr_info.flag) { 3096 ret = list_itr; 3097 break; 3098 } 3099 } 3100 return ret; 3101 } 3102 3103 /** 3104 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1 3105 * @hw: pointer to the hardware structure 3106 * @recp_id: lookup type for which VSI lists needs to be searched 3107 * @vsi_handle: VSI handle to be found in VSI list 3108 * @vsi_list_id: VSI list ID found containing vsi_handle 3109 * 3110 * Helper function to search a VSI list with single entry containing given VSI 3111 * handle element. This can be extended further to search VSI list with more 3112 * than 1 vsi_count. Returns pointer to VSI list entry if found. 3113 */ 3114 struct ice_vsi_list_map_info * 3115 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle, 3116 u16 *vsi_list_id) 3117 { 3118 struct ice_vsi_list_map_info *map_info = NULL; 3119 struct ice_switch_info *sw = hw->switch_info; 3120 struct ice_fltr_mgmt_list_entry *list_itr; 3121 struct list_head *list_head; 3122 3123 list_head = &sw->recp_list[recp_id].filt_rules; 3124 list_for_each_entry(list_itr, list_head, list_entry) { 3125 if (list_itr->vsi_list_info) { 3126 map_info = list_itr->vsi_list_info; 3127 if (test_bit(vsi_handle, map_info->vsi_map)) { 3128 *vsi_list_id = map_info->vsi_list_id; 3129 return map_info; 3130 } 3131 } 3132 } 3133 return NULL; 3134 } 3135 3136 /** 3137 * ice_add_rule_internal - add rule for a given lookup type 3138 * @hw: pointer to the hardware structure 3139 * @recp_id: lookup type (recipe ID) for which rule has to be added 3140 * @f_entry: structure containing MAC forwarding information 3141 * 3142 * Adds or updates the rule lists for a given recipe 3143 */ 3144 static int 3145 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id, 3146 struct ice_fltr_list_entry *f_entry) 3147 { 3148 struct ice_switch_info *sw = hw->switch_info; 3149 struct ice_fltr_info *new_fltr, *cur_fltr; 3150 struct ice_fltr_mgmt_list_entry *m_entry; 3151 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3152 int status = 0; 3153 3154 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 3155 return -EINVAL; 3156 f_entry->fltr_info.fwd_id.hw_vsi_id = 3157 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 3158 3159 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 3160 3161 mutex_lock(rule_lock); 3162 new_fltr = &f_entry->fltr_info; 3163 if (new_fltr->flag & ICE_FLTR_RX) 3164 new_fltr->src = hw->port_info->lport; 3165 else if (new_fltr->flag & ICE_FLTR_TX) 3166 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id; 3167 3168 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr); 3169 if (!m_entry) { 3170 mutex_unlock(rule_lock); 3171 return ice_create_pkt_fwd_rule(hw, f_entry); 3172 } 3173 3174 cur_fltr = &m_entry->fltr_info; 3175 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr); 3176 mutex_unlock(rule_lock); 3177 3178 return status; 3179 } 3180 3181 /** 3182 * ice_remove_vsi_list_rule 3183 * @hw: pointer to the hardware structure 3184 * @vsi_list_id: VSI list ID generated as part of allocate resource 3185 * @lkup_type: switch rule filter lookup type 3186 * 3187 * The VSI list should be emptied before this function is called to remove the 3188 * VSI list. 3189 */ 3190 static int 3191 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id, 3192 enum ice_sw_lkup_type lkup_type) 3193 { 3194 struct ice_sw_rule_vsi_list *s_rule; 3195 u16 s_rule_size; 3196 int status; 3197 3198 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0); 3199 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 3200 if (!s_rule) 3201 return -ENOMEM; 3202 3203 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR); 3204 s_rule->index = cpu_to_le16(vsi_list_id); 3205 3206 /* Free the vsi_list resource that we allocated. It is assumed that the 3207 * list is empty at this point. 3208 */ 3209 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type, 3210 ice_aqc_opc_free_res); 3211 3212 devm_kfree(ice_hw_to_dev(hw), s_rule); 3213 return status; 3214 } 3215 3216 /** 3217 * ice_rem_update_vsi_list 3218 * @hw: pointer to the hardware structure 3219 * @vsi_handle: VSI handle of the VSI to remove 3220 * @fm_list: filter management entry for which the VSI list management needs to 3221 * be done 3222 */ 3223 static int 3224 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 3225 struct ice_fltr_mgmt_list_entry *fm_list) 3226 { 3227 enum ice_sw_lkup_type lkup_type; 3228 u16 vsi_list_id; 3229 int status = 0; 3230 3231 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST || 3232 fm_list->vsi_count == 0) 3233 return -EINVAL; 3234 3235 /* A rule with the VSI being removed does not exist */ 3236 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) 3237 return -ENOENT; 3238 3239 lkup_type = fm_list->fltr_info.lkup_type; 3240 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id; 3241 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 3242 ice_aqc_opc_update_sw_rules, 3243 lkup_type); 3244 if (status) 3245 return status; 3246 3247 fm_list->vsi_count--; 3248 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 3249 3250 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) { 3251 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info; 3252 struct ice_vsi_list_map_info *vsi_list_info = 3253 fm_list->vsi_list_info; 3254 u16 rem_vsi_handle; 3255 3256 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, 3257 ICE_MAX_VSI); 3258 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 3259 return -EIO; 3260 3261 /* Make sure VSI list is empty before removing it below */ 3262 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 3263 vsi_list_id, true, 3264 ice_aqc_opc_update_sw_rules, 3265 lkup_type); 3266 if (status) 3267 return status; 3268 3269 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI; 3270 tmp_fltr_info.fwd_id.hw_vsi_id = 3271 ice_get_hw_vsi_num(hw, rem_vsi_handle); 3272 tmp_fltr_info.vsi_handle = rem_vsi_handle; 3273 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info); 3274 if (status) { 3275 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 3276 tmp_fltr_info.fwd_id.hw_vsi_id, status); 3277 return status; 3278 } 3279 3280 fm_list->fltr_info = tmp_fltr_info; 3281 } 3282 3283 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) || 3284 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) { 3285 struct ice_vsi_list_map_info *vsi_list_info = 3286 fm_list->vsi_list_info; 3287 3288 /* Remove the VSI list since it is no longer used */ 3289 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 3290 if (status) { 3291 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n", 3292 vsi_list_id, status); 3293 return status; 3294 } 3295 3296 list_del(&vsi_list_info->list_entry); 3297 devm_kfree(ice_hw_to_dev(hw), vsi_list_info); 3298 fm_list->vsi_list_info = NULL; 3299 } 3300 3301 return status; 3302 } 3303 3304 /** 3305 * ice_remove_rule_internal - Remove a filter rule of a given type 3306 * @hw: pointer to the hardware structure 3307 * @recp_id: recipe ID for which the rule needs to removed 3308 * @f_entry: rule entry containing filter information 3309 */ 3310 static int 3311 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id, 3312 struct ice_fltr_list_entry *f_entry) 3313 { 3314 struct ice_switch_info *sw = hw->switch_info; 3315 struct ice_fltr_mgmt_list_entry *list_elem; 3316 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3317 bool remove_rule = false; 3318 u16 vsi_handle; 3319 int status = 0; 3320 3321 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 3322 return -EINVAL; 3323 f_entry->fltr_info.fwd_id.hw_vsi_id = 3324 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 3325 3326 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 3327 mutex_lock(rule_lock); 3328 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info); 3329 if (!list_elem) { 3330 status = -ENOENT; 3331 goto exit; 3332 } 3333 3334 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) { 3335 remove_rule = true; 3336 } else if (!list_elem->vsi_list_info) { 3337 status = -ENOENT; 3338 goto exit; 3339 } else if (list_elem->vsi_list_info->ref_cnt > 1) { 3340 /* a ref_cnt > 1 indicates that the vsi_list is being 3341 * shared by multiple rules. Decrement the ref_cnt and 3342 * remove this rule, but do not modify the list, as it 3343 * is in-use by other rules. 3344 */ 3345 list_elem->vsi_list_info->ref_cnt--; 3346 remove_rule = true; 3347 } else { 3348 /* a ref_cnt of 1 indicates the vsi_list is only used 3349 * by one rule. However, the original removal request is only 3350 * for a single VSI. Update the vsi_list first, and only 3351 * remove the rule if there are no further VSIs in this list. 3352 */ 3353 vsi_handle = f_entry->fltr_info.vsi_handle; 3354 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem); 3355 if (status) 3356 goto exit; 3357 /* if VSI count goes to zero after updating the VSI list */ 3358 if (list_elem->vsi_count == 0) 3359 remove_rule = true; 3360 } 3361 3362 if (remove_rule) { 3363 /* Remove the lookup rule */ 3364 struct ice_sw_rule_lkup_rx_tx *s_rule; 3365 3366 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 3367 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule), 3368 GFP_KERNEL); 3369 if (!s_rule) { 3370 status = -ENOMEM; 3371 goto exit; 3372 } 3373 3374 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule, 3375 ice_aqc_opc_remove_sw_rules); 3376 3377 status = ice_aq_sw_rules(hw, s_rule, 3378 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule), 3379 1, ice_aqc_opc_remove_sw_rules, NULL); 3380 3381 /* Remove a book keeping from the list */ 3382 devm_kfree(ice_hw_to_dev(hw), s_rule); 3383 3384 if (status) 3385 goto exit; 3386 3387 list_del(&list_elem->list_entry); 3388 devm_kfree(ice_hw_to_dev(hw), list_elem); 3389 } 3390 exit: 3391 mutex_unlock(rule_lock); 3392 return status; 3393 } 3394 3395 /** 3396 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI 3397 * @hw: pointer to the hardware structure 3398 * @vlan_id: VLAN ID 3399 * @vsi_handle: check MAC filter for this VSI 3400 */ 3401 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle) 3402 { 3403 struct ice_fltr_mgmt_list_entry *entry; 3404 struct list_head *rule_head; 3405 struct ice_switch_info *sw; 3406 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3407 u16 hw_vsi_id; 3408 3409 if (vlan_id > ICE_MAX_VLAN_ID) 3410 return false; 3411 3412 if (!ice_is_vsi_valid(hw, vsi_handle)) 3413 return false; 3414 3415 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3416 sw = hw->switch_info; 3417 rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 3418 if (!rule_head) 3419 return false; 3420 3421 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 3422 mutex_lock(rule_lock); 3423 list_for_each_entry(entry, rule_head, list_entry) { 3424 struct ice_fltr_info *f_info = &entry->fltr_info; 3425 u16 entry_vlan_id = f_info->l_data.vlan.vlan_id; 3426 struct ice_vsi_list_map_info *map_info; 3427 3428 if (entry_vlan_id > ICE_MAX_VLAN_ID) 3429 continue; 3430 3431 if (f_info->flag != ICE_FLTR_TX || 3432 f_info->src_id != ICE_SRC_ID_VSI || 3433 f_info->lkup_type != ICE_SW_LKUP_VLAN) 3434 continue; 3435 3436 /* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */ 3437 if (f_info->fltr_act != ICE_FWD_TO_VSI && 3438 f_info->fltr_act != ICE_FWD_TO_VSI_LIST) 3439 continue; 3440 3441 if (f_info->fltr_act == ICE_FWD_TO_VSI) { 3442 if (hw_vsi_id != f_info->fwd_id.hw_vsi_id) 3443 continue; 3444 } else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 3445 /* If filter_action is FWD_TO_VSI_LIST, make sure 3446 * that VSI being checked is part of VSI list 3447 */ 3448 if (entry->vsi_count == 1 && 3449 entry->vsi_list_info) { 3450 map_info = entry->vsi_list_info; 3451 if (!test_bit(vsi_handle, map_info->vsi_map)) 3452 continue; 3453 } 3454 } 3455 3456 if (vlan_id == entry_vlan_id) { 3457 mutex_unlock(rule_lock); 3458 return true; 3459 } 3460 } 3461 mutex_unlock(rule_lock); 3462 3463 return false; 3464 } 3465 3466 /** 3467 * ice_add_mac - Add a MAC address based filter rule 3468 * @hw: pointer to the hardware structure 3469 * @m_list: list of MAC addresses and forwarding information 3470 */ 3471 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list) 3472 { 3473 struct ice_fltr_list_entry *m_list_itr; 3474 int status = 0; 3475 3476 if (!m_list || !hw) 3477 return -EINVAL; 3478 3479 list_for_each_entry(m_list_itr, m_list, list_entry) { 3480 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; 3481 u16 vsi_handle; 3482 u16 hw_vsi_id; 3483 3484 m_list_itr->fltr_info.flag = ICE_FLTR_TX; 3485 vsi_handle = m_list_itr->fltr_info.vsi_handle; 3486 if (!ice_is_vsi_valid(hw, vsi_handle)) 3487 return -EINVAL; 3488 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3489 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id; 3490 /* update the src in case it is VSI num */ 3491 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI) 3492 return -EINVAL; 3493 m_list_itr->fltr_info.src = hw_vsi_id; 3494 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC || 3495 is_zero_ether_addr(add)) 3496 return -EINVAL; 3497 3498 m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC, 3499 m_list_itr); 3500 if (m_list_itr->status) 3501 return m_list_itr->status; 3502 } 3503 3504 return status; 3505 } 3506 3507 /** 3508 * ice_add_vlan_internal - Add one VLAN based filter rule 3509 * @hw: pointer to the hardware structure 3510 * @f_entry: filter entry containing one VLAN information 3511 */ 3512 static int 3513 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) 3514 { 3515 struct ice_switch_info *sw = hw->switch_info; 3516 struct ice_fltr_mgmt_list_entry *v_list_itr; 3517 struct ice_fltr_info *new_fltr, *cur_fltr; 3518 enum ice_sw_lkup_type lkup_type; 3519 u16 vsi_list_id = 0, vsi_handle; 3520 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3521 int status = 0; 3522 3523 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 3524 return -EINVAL; 3525 3526 f_entry->fltr_info.fwd_id.hw_vsi_id = 3527 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 3528 new_fltr = &f_entry->fltr_info; 3529 3530 /* VLAN ID should only be 12 bits */ 3531 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID) 3532 return -EINVAL; 3533 3534 if (new_fltr->src_id != ICE_SRC_ID_VSI) 3535 return -EINVAL; 3536 3537 new_fltr->src = new_fltr->fwd_id.hw_vsi_id; 3538 lkup_type = new_fltr->lkup_type; 3539 vsi_handle = new_fltr->vsi_handle; 3540 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 3541 mutex_lock(rule_lock); 3542 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr); 3543 if (!v_list_itr) { 3544 struct ice_vsi_list_map_info *map_info = NULL; 3545 3546 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) { 3547 /* All VLAN pruning rules use a VSI list. Check if 3548 * there is already a VSI list containing VSI that we 3549 * want to add. If found, use the same vsi_list_id for 3550 * this new VLAN rule or else create a new list. 3551 */ 3552 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN, 3553 vsi_handle, 3554 &vsi_list_id); 3555 if (!map_info) { 3556 status = ice_create_vsi_list_rule(hw, 3557 &vsi_handle, 3558 1, 3559 &vsi_list_id, 3560 lkup_type); 3561 if (status) 3562 goto exit; 3563 } 3564 /* Convert the action to forwarding to a VSI list. */ 3565 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 3566 new_fltr->fwd_id.vsi_list_id = vsi_list_id; 3567 } 3568 3569 status = ice_create_pkt_fwd_rule(hw, f_entry); 3570 if (!status) { 3571 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, 3572 new_fltr); 3573 if (!v_list_itr) { 3574 status = -ENOENT; 3575 goto exit; 3576 } 3577 /* reuse VSI list for new rule and increment ref_cnt */ 3578 if (map_info) { 3579 v_list_itr->vsi_list_info = map_info; 3580 map_info->ref_cnt++; 3581 } else { 3582 v_list_itr->vsi_list_info = 3583 ice_create_vsi_list_map(hw, &vsi_handle, 3584 1, vsi_list_id); 3585 } 3586 } 3587 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) { 3588 /* Update existing VSI list to add new VSI ID only if it used 3589 * by one VLAN rule. 3590 */ 3591 cur_fltr = &v_list_itr->fltr_info; 3592 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr, 3593 new_fltr); 3594 } else { 3595 /* If VLAN rule exists and VSI list being used by this rule is 3596 * referenced by more than 1 VLAN rule. Then create a new VSI 3597 * list appending previous VSI with new VSI and update existing 3598 * VLAN rule to point to new VSI list ID 3599 */ 3600 struct ice_fltr_info tmp_fltr; 3601 u16 vsi_handle_arr[2]; 3602 u16 cur_handle; 3603 3604 /* Current implementation only supports reusing VSI list with 3605 * one VSI count. We should never hit below condition 3606 */ 3607 if (v_list_itr->vsi_count > 1 && 3608 v_list_itr->vsi_list_info->ref_cnt > 1) { 3609 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n"); 3610 status = -EIO; 3611 goto exit; 3612 } 3613 3614 cur_handle = 3615 find_first_bit(v_list_itr->vsi_list_info->vsi_map, 3616 ICE_MAX_VSI); 3617 3618 /* A rule already exists with the new VSI being added */ 3619 if (cur_handle == vsi_handle) { 3620 status = -EEXIST; 3621 goto exit; 3622 } 3623 3624 vsi_handle_arr[0] = cur_handle; 3625 vsi_handle_arr[1] = vsi_handle; 3626 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 3627 &vsi_list_id, lkup_type); 3628 if (status) 3629 goto exit; 3630 3631 tmp_fltr = v_list_itr->fltr_info; 3632 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id; 3633 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 3634 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 3635 /* Update the previous switch rule to a new VSI list which 3636 * includes current VSI that is requested 3637 */ 3638 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 3639 if (status) 3640 goto exit; 3641 3642 /* before overriding VSI list map info. decrement ref_cnt of 3643 * previous VSI list 3644 */ 3645 v_list_itr->vsi_list_info->ref_cnt--; 3646 3647 /* now update to newly created list */ 3648 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id; 3649 v_list_itr->vsi_list_info = 3650 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 3651 vsi_list_id); 3652 v_list_itr->vsi_count++; 3653 } 3654 3655 exit: 3656 mutex_unlock(rule_lock); 3657 return status; 3658 } 3659 3660 /** 3661 * ice_add_vlan - Add VLAN based filter rule 3662 * @hw: pointer to the hardware structure 3663 * @v_list: list of VLAN entries and forwarding information 3664 */ 3665 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list) 3666 { 3667 struct ice_fltr_list_entry *v_list_itr; 3668 3669 if (!v_list || !hw) 3670 return -EINVAL; 3671 3672 list_for_each_entry(v_list_itr, v_list, list_entry) { 3673 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN) 3674 return -EINVAL; 3675 v_list_itr->fltr_info.flag = ICE_FLTR_TX; 3676 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr); 3677 if (v_list_itr->status) 3678 return v_list_itr->status; 3679 } 3680 return 0; 3681 } 3682 3683 /** 3684 * ice_add_eth_mac - Add ethertype and MAC based filter rule 3685 * @hw: pointer to the hardware structure 3686 * @em_list: list of ether type MAC filter, MAC is optional 3687 * 3688 * This function requires the caller to populate the entries in 3689 * the filter list with the necessary fields (including flags to 3690 * indicate Tx or Rx rules). 3691 */ 3692 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list) 3693 { 3694 struct ice_fltr_list_entry *em_list_itr; 3695 3696 if (!em_list || !hw) 3697 return -EINVAL; 3698 3699 list_for_each_entry(em_list_itr, em_list, list_entry) { 3700 enum ice_sw_lkup_type l_type = 3701 em_list_itr->fltr_info.lkup_type; 3702 3703 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 3704 l_type != ICE_SW_LKUP_ETHERTYPE) 3705 return -EINVAL; 3706 3707 em_list_itr->status = ice_add_rule_internal(hw, l_type, 3708 em_list_itr); 3709 if (em_list_itr->status) 3710 return em_list_itr->status; 3711 } 3712 return 0; 3713 } 3714 3715 /** 3716 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule 3717 * @hw: pointer to the hardware structure 3718 * @em_list: list of ethertype or ethertype MAC entries 3719 */ 3720 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list) 3721 { 3722 struct ice_fltr_list_entry *em_list_itr, *tmp; 3723 3724 if (!em_list || !hw) 3725 return -EINVAL; 3726 3727 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) { 3728 enum ice_sw_lkup_type l_type = 3729 em_list_itr->fltr_info.lkup_type; 3730 3731 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 3732 l_type != ICE_SW_LKUP_ETHERTYPE) 3733 return -EINVAL; 3734 3735 em_list_itr->status = ice_remove_rule_internal(hw, l_type, 3736 em_list_itr); 3737 if (em_list_itr->status) 3738 return em_list_itr->status; 3739 } 3740 return 0; 3741 } 3742 3743 /** 3744 * ice_rem_sw_rule_info 3745 * @hw: pointer to the hardware structure 3746 * @rule_head: pointer to the switch list structure that we want to delete 3747 */ 3748 static void 3749 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head) 3750 { 3751 if (!list_empty(rule_head)) { 3752 struct ice_fltr_mgmt_list_entry *entry; 3753 struct ice_fltr_mgmt_list_entry *tmp; 3754 3755 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) { 3756 list_del(&entry->list_entry); 3757 devm_kfree(ice_hw_to_dev(hw), entry); 3758 } 3759 } 3760 } 3761 3762 /** 3763 * ice_rem_adv_rule_info 3764 * @hw: pointer to the hardware structure 3765 * @rule_head: pointer to the switch list structure that we want to delete 3766 */ 3767 static void 3768 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head) 3769 { 3770 struct ice_adv_fltr_mgmt_list_entry *tmp_entry; 3771 struct ice_adv_fltr_mgmt_list_entry *lst_itr; 3772 3773 if (list_empty(rule_head)) 3774 return; 3775 3776 list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) { 3777 list_del(&lst_itr->list_entry); 3778 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups); 3779 devm_kfree(ice_hw_to_dev(hw), lst_itr); 3780 } 3781 } 3782 3783 /** 3784 * ice_cfg_dflt_vsi - change state of VSI to set/clear default 3785 * @pi: pointer to the port_info structure 3786 * @vsi_handle: VSI handle to set as default 3787 * @set: true to add the above mentioned switch rule, false to remove it 3788 * @direction: ICE_FLTR_RX or ICE_FLTR_TX 3789 * 3790 * add filter rule to set/unset given VSI as default VSI for the switch 3791 * (represented by swid) 3792 */ 3793 int 3794 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set, 3795 u8 direction) 3796 { 3797 struct ice_fltr_list_entry f_list_entry; 3798 struct ice_fltr_info f_info; 3799 struct ice_hw *hw = pi->hw; 3800 u16 hw_vsi_id; 3801 int status; 3802 3803 if (!ice_is_vsi_valid(hw, vsi_handle)) 3804 return -EINVAL; 3805 3806 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3807 3808 memset(&f_info, 0, sizeof(f_info)); 3809 3810 f_info.lkup_type = ICE_SW_LKUP_DFLT; 3811 f_info.flag = direction; 3812 f_info.fltr_act = ICE_FWD_TO_VSI; 3813 f_info.fwd_id.hw_vsi_id = hw_vsi_id; 3814 f_info.vsi_handle = vsi_handle; 3815 3816 if (f_info.flag & ICE_FLTR_RX) { 3817 f_info.src = hw->port_info->lport; 3818 f_info.src_id = ICE_SRC_ID_LPORT; 3819 } else if (f_info.flag & ICE_FLTR_TX) { 3820 f_info.src_id = ICE_SRC_ID_VSI; 3821 f_info.src = hw_vsi_id; 3822 } 3823 f_list_entry.fltr_info = f_info; 3824 3825 if (set) 3826 status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT, 3827 &f_list_entry); 3828 else 3829 status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT, 3830 &f_list_entry); 3831 3832 return status; 3833 } 3834 3835 /** 3836 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter 3837 * @fm_entry: filter entry to inspect 3838 * @vsi_handle: VSI handle to compare with filter info 3839 */ 3840 static bool 3841 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle) 3842 { 3843 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI && 3844 fm_entry->fltr_info.vsi_handle == vsi_handle) || 3845 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST && 3846 fm_entry->vsi_list_info && 3847 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map)))); 3848 } 3849 3850 /** 3851 * ice_check_if_dflt_vsi - check if VSI is default VSI 3852 * @pi: pointer to the port_info structure 3853 * @vsi_handle: vsi handle to check for in filter list 3854 * @rule_exists: indicates if there are any VSI's in the rule list 3855 * 3856 * checks if the VSI is in a default VSI list, and also indicates 3857 * if the default VSI list is empty 3858 */ 3859 bool 3860 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, 3861 bool *rule_exists) 3862 { 3863 struct ice_fltr_mgmt_list_entry *fm_entry; 3864 struct ice_sw_recipe *recp_list; 3865 struct list_head *rule_head; 3866 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3867 bool ret = false; 3868 3869 recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT]; 3870 rule_lock = &recp_list->filt_rule_lock; 3871 rule_head = &recp_list->filt_rules; 3872 3873 mutex_lock(rule_lock); 3874 3875 if (rule_exists && !list_empty(rule_head)) 3876 *rule_exists = true; 3877 3878 list_for_each_entry(fm_entry, rule_head, list_entry) { 3879 if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) { 3880 ret = true; 3881 break; 3882 } 3883 } 3884 3885 mutex_unlock(rule_lock); 3886 3887 return ret; 3888 } 3889 3890 /** 3891 * ice_remove_mac - remove a MAC address based filter rule 3892 * @hw: pointer to the hardware structure 3893 * @m_list: list of MAC addresses and forwarding information 3894 * 3895 * This function removes either a MAC filter rule or a specific VSI from a 3896 * VSI list for a multicast MAC address. 3897 * 3898 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should 3899 * be aware that this call will only work if all the entries passed into m_list 3900 * were added previously. It will not attempt to do a partial remove of entries 3901 * that were found. 3902 */ 3903 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list) 3904 { 3905 struct ice_fltr_list_entry *list_itr, *tmp; 3906 3907 if (!m_list) 3908 return -EINVAL; 3909 3910 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) { 3911 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type; 3912 u16 vsi_handle; 3913 3914 if (l_type != ICE_SW_LKUP_MAC) 3915 return -EINVAL; 3916 3917 vsi_handle = list_itr->fltr_info.vsi_handle; 3918 if (!ice_is_vsi_valid(hw, vsi_handle)) 3919 return -EINVAL; 3920 3921 list_itr->fltr_info.fwd_id.hw_vsi_id = 3922 ice_get_hw_vsi_num(hw, vsi_handle); 3923 3924 list_itr->status = ice_remove_rule_internal(hw, 3925 ICE_SW_LKUP_MAC, 3926 list_itr); 3927 if (list_itr->status) 3928 return list_itr->status; 3929 } 3930 return 0; 3931 } 3932 3933 /** 3934 * ice_remove_vlan - Remove VLAN based filter rule 3935 * @hw: pointer to the hardware structure 3936 * @v_list: list of VLAN entries and forwarding information 3937 */ 3938 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list) 3939 { 3940 struct ice_fltr_list_entry *v_list_itr, *tmp; 3941 3942 if (!v_list || !hw) 3943 return -EINVAL; 3944 3945 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 3946 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type; 3947 3948 if (l_type != ICE_SW_LKUP_VLAN) 3949 return -EINVAL; 3950 v_list_itr->status = ice_remove_rule_internal(hw, 3951 ICE_SW_LKUP_VLAN, 3952 v_list_itr); 3953 if (v_list_itr->status) 3954 return v_list_itr->status; 3955 } 3956 return 0; 3957 } 3958 3959 /** 3960 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list 3961 * @hw: pointer to the hardware structure 3962 * @vsi_handle: VSI handle to remove filters from 3963 * @vsi_list_head: pointer to the list to add entry to 3964 * @fi: pointer to fltr_info of filter entry to copy & add 3965 * 3966 * Helper function, used when creating a list of filters to remove from 3967 * a specific VSI. The entry added to vsi_list_head is a COPY of the 3968 * original filter entry, with the exception of fltr_info.fltr_act and 3969 * fltr_info.fwd_id fields. These are set such that later logic can 3970 * extract which VSI to remove the fltr from, and pass on that information. 3971 */ 3972 static int 3973 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 3974 struct list_head *vsi_list_head, 3975 struct ice_fltr_info *fi) 3976 { 3977 struct ice_fltr_list_entry *tmp; 3978 3979 /* this memory is freed up in the caller function 3980 * once filters for this VSI are removed 3981 */ 3982 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL); 3983 if (!tmp) 3984 return -ENOMEM; 3985 3986 tmp->fltr_info = *fi; 3987 3988 /* Overwrite these fields to indicate which VSI to remove filter from, 3989 * so find and remove logic can extract the information from the 3990 * list entries. Note that original entries will still have proper 3991 * values. 3992 */ 3993 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 3994 tmp->fltr_info.vsi_handle = vsi_handle; 3995 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3996 3997 list_add(&tmp->list_entry, vsi_list_head); 3998 3999 return 0; 4000 } 4001 4002 /** 4003 * ice_add_to_vsi_fltr_list - Add VSI filters to the list 4004 * @hw: pointer to the hardware structure 4005 * @vsi_handle: VSI handle to remove filters from 4006 * @lkup_list_head: pointer to the list that has certain lookup type filters 4007 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle 4008 * 4009 * Locates all filters in lkup_list_head that are used by the given VSI, 4010 * and adds COPIES of those entries to vsi_list_head (intended to be used 4011 * to remove the listed filters). 4012 * Note that this means all entries in vsi_list_head must be explicitly 4013 * deallocated by the caller when done with list. 4014 */ 4015 static int 4016 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 4017 struct list_head *lkup_list_head, 4018 struct list_head *vsi_list_head) 4019 { 4020 struct ice_fltr_mgmt_list_entry *fm_entry; 4021 int status = 0; 4022 4023 /* check to make sure VSI ID is valid and within boundary */ 4024 if (!ice_is_vsi_valid(hw, vsi_handle)) 4025 return -EINVAL; 4026 4027 list_for_each_entry(fm_entry, lkup_list_head, list_entry) { 4028 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle)) 4029 continue; 4030 4031 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 4032 vsi_list_head, 4033 &fm_entry->fltr_info); 4034 if (status) 4035 return status; 4036 } 4037 return status; 4038 } 4039 4040 /** 4041 * ice_determine_promisc_mask 4042 * @fi: filter info to parse 4043 * 4044 * Helper function to determine which ICE_PROMISC_ mask corresponds 4045 * to given filter into. 4046 */ 4047 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi) 4048 { 4049 u16 vid = fi->l_data.mac_vlan.vlan_id; 4050 u8 *macaddr = fi->l_data.mac.mac_addr; 4051 bool is_tx_fltr = false; 4052 u8 promisc_mask = 0; 4053 4054 if (fi->flag == ICE_FLTR_TX) 4055 is_tx_fltr = true; 4056 4057 if (is_broadcast_ether_addr(macaddr)) 4058 promisc_mask |= is_tx_fltr ? 4059 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX; 4060 else if (is_multicast_ether_addr(macaddr)) 4061 promisc_mask |= is_tx_fltr ? 4062 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX; 4063 else if (is_unicast_ether_addr(macaddr)) 4064 promisc_mask |= is_tx_fltr ? 4065 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX; 4066 if (vid) 4067 promisc_mask |= is_tx_fltr ? 4068 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX; 4069 4070 return promisc_mask; 4071 } 4072 4073 /** 4074 * ice_remove_promisc - Remove promisc based filter rules 4075 * @hw: pointer to the hardware structure 4076 * @recp_id: recipe ID for which the rule needs to removed 4077 * @v_list: list of promisc entries 4078 */ 4079 static int 4080 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list) 4081 { 4082 struct ice_fltr_list_entry *v_list_itr, *tmp; 4083 4084 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 4085 v_list_itr->status = 4086 ice_remove_rule_internal(hw, recp_id, v_list_itr); 4087 if (v_list_itr->status) 4088 return v_list_itr->status; 4089 } 4090 return 0; 4091 } 4092 4093 /** 4094 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI 4095 * @hw: pointer to the hardware structure 4096 * @vsi_handle: VSI handle to clear mode 4097 * @promisc_mask: mask of promiscuous config bits to clear 4098 * @vid: VLAN ID to clear VLAN promiscuous 4099 */ 4100 int 4101 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 4102 u16 vid) 4103 { 4104 struct ice_switch_info *sw = hw->switch_info; 4105 struct ice_fltr_list_entry *fm_entry, *tmp; 4106 struct list_head remove_list_head; 4107 struct ice_fltr_mgmt_list_entry *itr; 4108 struct list_head *rule_head; 4109 struct mutex *rule_lock; /* Lock to protect filter rule list */ 4110 int status = 0; 4111 u8 recipe_id; 4112 4113 if (!ice_is_vsi_valid(hw, vsi_handle)) 4114 return -EINVAL; 4115 4116 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) 4117 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 4118 else 4119 recipe_id = ICE_SW_LKUP_PROMISC; 4120 4121 rule_head = &sw->recp_list[recipe_id].filt_rules; 4122 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock; 4123 4124 INIT_LIST_HEAD(&remove_list_head); 4125 4126 mutex_lock(rule_lock); 4127 list_for_each_entry(itr, rule_head, list_entry) { 4128 struct ice_fltr_info *fltr_info; 4129 u8 fltr_promisc_mask = 0; 4130 4131 if (!ice_vsi_uses_fltr(itr, vsi_handle)) 4132 continue; 4133 fltr_info = &itr->fltr_info; 4134 4135 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN && 4136 vid != fltr_info->l_data.mac_vlan.vlan_id) 4137 continue; 4138 4139 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info); 4140 4141 /* Skip if filter is not completely specified by given mask */ 4142 if (fltr_promisc_mask & ~promisc_mask) 4143 continue; 4144 4145 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 4146 &remove_list_head, 4147 fltr_info); 4148 if (status) { 4149 mutex_unlock(rule_lock); 4150 goto free_fltr_list; 4151 } 4152 } 4153 mutex_unlock(rule_lock); 4154 4155 status = ice_remove_promisc(hw, recipe_id, &remove_list_head); 4156 4157 free_fltr_list: 4158 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 4159 list_del(&fm_entry->list_entry); 4160 devm_kfree(ice_hw_to_dev(hw), fm_entry); 4161 } 4162 4163 return status; 4164 } 4165 4166 /** 4167 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) 4168 * @hw: pointer to the hardware structure 4169 * @vsi_handle: VSI handle to configure 4170 * @promisc_mask: mask of promiscuous config bits 4171 * @vid: VLAN ID to set VLAN promiscuous 4172 */ 4173 int 4174 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid) 4175 { 4176 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR }; 4177 struct ice_fltr_list_entry f_list_entry; 4178 struct ice_fltr_info new_fltr; 4179 bool is_tx_fltr; 4180 int status = 0; 4181 u16 hw_vsi_id; 4182 int pkt_type; 4183 u8 recipe_id; 4184 4185 if (!ice_is_vsi_valid(hw, vsi_handle)) 4186 return -EINVAL; 4187 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 4188 4189 memset(&new_fltr, 0, sizeof(new_fltr)); 4190 4191 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) { 4192 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN; 4193 new_fltr.l_data.mac_vlan.vlan_id = vid; 4194 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 4195 } else { 4196 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC; 4197 recipe_id = ICE_SW_LKUP_PROMISC; 4198 } 4199 4200 /* Separate filters must be set for each direction/packet type 4201 * combination, so we will loop over the mask value, store the 4202 * individual type, and clear it out in the input mask as it 4203 * is found. 4204 */ 4205 while (promisc_mask) { 4206 u8 *mac_addr; 4207 4208 pkt_type = 0; 4209 is_tx_fltr = false; 4210 4211 if (promisc_mask & ICE_PROMISC_UCAST_RX) { 4212 promisc_mask &= ~ICE_PROMISC_UCAST_RX; 4213 pkt_type = UCAST_FLTR; 4214 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) { 4215 promisc_mask &= ~ICE_PROMISC_UCAST_TX; 4216 pkt_type = UCAST_FLTR; 4217 is_tx_fltr = true; 4218 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) { 4219 promisc_mask &= ~ICE_PROMISC_MCAST_RX; 4220 pkt_type = MCAST_FLTR; 4221 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) { 4222 promisc_mask &= ~ICE_PROMISC_MCAST_TX; 4223 pkt_type = MCAST_FLTR; 4224 is_tx_fltr = true; 4225 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) { 4226 promisc_mask &= ~ICE_PROMISC_BCAST_RX; 4227 pkt_type = BCAST_FLTR; 4228 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) { 4229 promisc_mask &= ~ICE_PROMISC_BCAST_TX; 4230 pkt_type = BCAST_FLTR; 4231 is_tx_fltr = true; 4232 } 4233 4234 /* Check for VLAN promiscuous flag */ 4235 if (promisc_mask & ICE_PROMISC_VLAN_RX) { 4236 promisc_mask &= ~ICE_PROMISC_VLAN_RX; 4237 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) { 4238 promisc_mask &= ~ICE_PROMISC_VLAN_TX; 4239 is_tx_fltr = true; 4240 } 4241 4242 /* Set filter DA based on packet type */ 4243 mac_addr = new_fltr.l_data.mac.mac_addr; 4244 if (pkt_type == BCAST_FLTR) { 4245 eth_broadcast_addr(mac_addr); 4246 } else if (pkt_type == MCAST_FLTR || 4247 pkt_type == UCAST_FLTR) { 4248 /* Use the dummy ether header DA */ 4249 ether_addr_copy(mac_addr, dummy_eth_header); 4250 if (pkt_type == MCAST_FLTR) 4251 mac_addr[0] |= 0x1; /* Set multicast bit */ 4252 } 4253 4254 /* Need to reset this to zero for all iterations */ 4255 new_fltr.flag = 0; 4256 if (is_tx_fltr) { 4257 new_fltr.flag |= ICE_FLTR_TX; 4258 new_fltr.src = hw_vsi_id; 4259 } else { 4260 new_fltr.flag |= ICE_FLTR_RX; 4261 new_fltr.src = hw->port_info->lport; 4262 } 4263 4264 new_fltr.fltr_act = ICE_FWD_TO_VSI; 4265 new_fltr.vsi_handle = vsi_handle; 4266 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id; 4267 f_list_entry.fltr_info = new_fltr; 4268 4269 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry); 4270 if (status) 4271 goto set_promisc_exit; 4272 } 4273 4274 set_promisc_exit: 4275 return status; 4276 } 4277 4278 /** 4279 * ice_set_vlan_vsi_promisc 4280 * @hw: pointer to the hardware structure 4281 * @vsi_handle: VSI handle to configure 4282 * @promisc_mask: mask of promiscuous config bits 4283 * @rm_vlan_promisc: Clear VLANs VSI promisc mode 4284 * 4285 * Configure VSI with all associated VLANs to given promiscuous mode(s) 4286 */ 4287 int 4288 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 4289 bool rm_vlan_promisc) 4290 { 4291 struct ice_switch_info *sw = hw->switch_info; 4292 struct ice_fltr_list_entry *list_itr, *tmp; 4293 struct list_head vsi_list_head; 4294 struct list_head *vlan_head; 4295 struct mutex *vlan_lock; /* Lock to protect filter rule list */ 4296 u16 vlan_id; 4297 int status; 4298 4299 INIT_LIST_HEAD(&vsi_list_head); 4300 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 4301 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 4302 mutex_lock(vlan_lock); 4303 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head, 4304 &vsi_list_head); 4305 mutex_unlock(vlan_lock); 4306 if (status) 4307 goto free_fltr_list; 4308 4309 list_for_each_entry(list_itr, &vsi_list_head, list_entry) { 4310 /* Avoid enabling or disabling VLAN zero twice when in double 4311 * VLAN mode 4312 */ 4313 if (ice_is_dvm_ena(hw) && 4314 list_itr->fltr_info.l_data.vlan.tpid == 0) 4315 continue; 4316 4317 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id; 4318 if (rm_vlan_promisc) 4319 status = ice_clear_vsi_promisc(hw, vsi_handle, 4320 promisc_mask, vlan_id); 4321 else 4322 status = ice_set_vsi_promisc(hw, vsi_handle, 4323 promisc_mask, vlan_id); 4324 if (status && status != -EEXIST) 4325 break; 4326 } 4327 4328 free_fltr_list: 4329 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) { 4330 list_del(&list_itr->list_entry); 4331 devm_kfree(ice_hw_to_dev(hw), list_itr); 4332 } 4333 return status; 4334 } 4335 4336 /** 4337 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI 4338 * @hw: pointer to the hardware structure 4339 * @vsi_handle: VSI handle to remove filters from 4340 * @lkup: switch rule filter lookup type 4341 */ 4342 static void 4343 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle, 4344 enum ice_sw_lkup_type lkup) 4345 { 4346 struct ice_switch_info *sw = hw->switch_info; 4347 struct ice_fltr_list_entry *fm_entry; 4348 struct list_head remove_list_head; 4349 struct list_head *rule_head; 4350 struct ice_fltr_list_entry *tmp; 4351 struct mutex *rule_lock; /* Lock to protect filter rule list */ 4352 int status; 4353 4354 INIT_LIST_HEAD(&remove_list_head); 4355 rule_lock = &sw->recp_list[lkup].filt_rule_lock; 4356 rule_head = &sw->recp_list[lkup].filt_rules; 4357 mutex_lock(rule_lock); 4358 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head, 4359 &remove_list_head); 4360 mutex_unlock(rule_lock); 4361 if (status) 4362 goto free_fltr_list; 4363 4364 switch (lkup) { 4365 case ICE_SW_LKUP_MAC: 4366 ice_remove_mac(hw, &remove_list_head); 4367 break; 4368 case ICE_SW_LKUP_VLAN: 4369 ice_remove_vlan(hw, &remove_list_head); 4370 break; 4371 case ICE_SW_LKUP_PROMISC: 4372 case ICE_SW_LKUP_PROMISC_VLAN: 4373 ice_remove_promisc(hw, lkup, &remove_list_head); 4374 break; 4375 case ICE_SW_LKUP_MAC_VLAN: 4376 case ICE_SW_LKUP_ETHERTYPE: 4377 case ICE_SW_LKUP_ETHERTYPE_MAC: 4378 case ICE_SW_LKUP_DFLT: 4379 case ICE_SW_LKUP_LAST: 4380 default: 4381 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup); 4382 break; 4383 } 4384 4385 free_fltr_list: 4386 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 4387 list_del(&fm_entry->list_entry); 4388 devm_kfree(ice_hw_to_dev(hw), fm_entry); 4389 } 4390 } 4391 4392 /** 4393 * ice_remove_vsi_fltr - Remove all filters for a VSI 4394 * @hw: pointer to the hardware structure 4395 * @vsi_handle: VSI handle to remove filters from 4396 */ 4397 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle) 4398 { 4399 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC); 4400 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN); 4401 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC); 4402 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN); 4403 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT); 4404 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE); 4405 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC); 4406 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN); 4407 } 4408 4409 /** 4410 * ice_alloc_res_cntr - allocating resource counter 4411 * @hw: pointer to the hardware structure 4412 * @type: type of resource 4413 * @alloc_shared: if set it is shared else dedicated 4414 * @num_items: number of entries requested for FD resource type 4415 * @counter_id: counter index returned by AQ call 4416 */ 4417 int 4418 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 4419 u16 *counter_id) 4420 { 4421 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1); 4422 u16 buf_len = __struct_size(buf); 4423 int status; 4424 4425 buf->num_elems = cpu_to_le16(num_items); 4426 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) | 4427 alloc_shared); 4428 4429 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res); 4430 if (status) 4431 return status; 4432 4433 *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp); 4434 return status; 4435 } 4436 4437 /** 4438 * ice_free_res_cntr - free resource counter 4439 * @hw: pointer to the hardware structure 4440 * @type: type of resource 4441 * @alloc_shared: if set it is shared else dedicated 4442 * @num_items: number of entries to be freed for FD resource type 4443 * @counter_id: counter ID resource which needs to be freed 4444 */ 4445 int 4446 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 4447 u16 counter_id) 4448 { 4449 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1); 4450 u16 buf_len = __struct_size(buf); 4451 int status; 4452 4453 buf->num_elems = cpu_to_le16(num_items); 4454 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) | 4455 alloc_shared); 4456 buf->elem[0].e.sw_resp = cpu_to_le16(counter_id); 4457 4458 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res); 4459 if (status) 4460 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n"); 4461 4462 return status; 4463 } 4464 4465 #define ICE_PROTOCOL_ENTRY(id, ...) { \ 4466 .prot_type = id, \ 4467 .offs = {__VA_ARGS__}, \ 4468 } 4469 4470 /** 4471 * ice_share_res - set a resource as shared or dedicated 4472 * @hw: hw struct of original owner of resource 4473 * @type: resource type 4474 * @shared: is the resource being set to shared 4475 * @res_id: resource id (descriptor) 4476 */ 4477 int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id) 4478 { 4479 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1); 4480 u16 buf_len = __struct_size(buf); 4481 u16 res_type; 4482 int status; 4483 4484 buf->num_elems = cpu_to_le16(1); 4485 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type); 4486 if (shared) 4487 res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED; 4488 4489 buf->res_type = cpu_to_le16(res_type); 4490 buf->elem[0].e.sw_resp = cpu_to_le16(res_id); 4491 status = ice_aq_alloc_free_res(hw, buf, buf_len, 4492 ice_aqc_opc_share_res); 4493 if (status) 4494 ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n", 4495 type, res_id, shared ? "SHARED" : "DEDICATED"); 4496 4497 return status; 4498 } 4499 4500 /* This is mapping table entry that maps every word within a given protocol 4501 * structure to the real byte offset as per the specification of that 4502 * protocol header. 4503 * for example dst address is 3 words in ethertype header and corresponding 4504 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8 4505 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a 4506 * matching entry describing its field. This needs to be updated if new 4507 * structure is added to that union. 4508 */ 4509 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = { 4510 ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12), 4511 ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12), 4512 ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0), 4513 ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0), 4514 ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0), 4515 ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18), 4516 ICE_PROTOCOL_ENTRY(ICE_IPV4_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18), 4517 ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 4518 20, 22, 24, 26, 28, 30, 32, 34, 36, 38), 4519 ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 4520 22, 24, 26, 28, 30, 32, 34, 36, 38), 4521 ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2), 4522 ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2), 4523 ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2), 4524 ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14), 4525 ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14), 4526 ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6), 4527 ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22), 4528 ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14), 4529 ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6), 4530 ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10), 4531 ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0), 4532 ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0), 4533 ICE_PROTOCOL_ENTRY(ICE_HW_METADATA, 4534 ICE_SOURCE_PORT_MDID_OFFSET, 4535 ICE_PTYPE_MDID_OFFSET, 4536 ICE_PACKET_LENGTH_MDID_OFFSET, 4537 ICE_SOURCE_VSI_MDID_OFFSET, 4538 ICE_PKT_VLAN_MDID_OFFSET, 4539 ICE_PKT_TUNNEL_MDID_OFFSET, 4540 ICE_PKT_TCP_MDID_OFFSET, 4541 ICE_PKT_ERROR_MDID_OFFSET), 4542 }; 4543 4544 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = { 4545 { ICE_MAC_OFOS, ICE_MAC_OFOS_HW }, 4546 { ICE_MAC_IL, ICE_MAC_IL_HW }, 4547 { ICE_ETYPE_OL, ICE_ETYPE_OL_HW }, 4548 { ICE_ETYPE_IL, ICE_ETYPE_IL_HW }, 4549 { ICE_VLAN_OFOS, ICE_VLAN_OL_HW }, 4550 { ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW }, 4551 { ICE_IPV4_IL, ICE_IPV4_IL_HW }, 4552 { ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW }, 4553 { ICE_IPV6_IL, ICE_IPV6_IL_HW }, 4554 { ICE_TCP_IL, ICE_TCP_IL_HW }, 4555 { ICE_UDP_OF, ICE_UDP_OF_HW }, 4556 { ICE_UDP_ILOS, ICE_UDP_ILOS_HW }, 4557 { ICE_VXLAN, ICE_UDP_OF_HW }, 4558 { ICE_GENEVE, ICE_UDP_OF_HW }, 4559 { ICE_NVGRE, ICE_GRE_OF_HW }, 4560 { ICE_GTP, ICE_UDP_OF_HW }, 4561 { ICE_GTP_NO_PAY, ICE_UDP_ILOS_HW }, 4562 { ICE_PPPOE, ICE_PPPOE_HW }, 4563 { ICE_L2TPV3, ICE_L2TPV3_HW }, 4564 { ICE_VLAN_EX, ICE_VLAN_OF_HW }, 4565 { ICE_VLAN_IN, ICE_VLAN_OL_HW }, 4566 { ICE_HW_METADATA, ICE_META_DATA_ID_HW }, 4567 }; 4568 4569 /** 4570 * ice_find_recp - find a recipe 4571 * @hw: pointer to the hardware structure 4572 * @lkup_exts: extension sequence to match 4573 * @rinfo: information regarding the rule e.g. priority and action info 4574 * 4575 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found. 4576 */ 4577 static u16 4578 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts, 4579 const struct ice_adv_rule_info *rinfo) 4580 { 4581 bool refresh_required = true; 4582 struct ice_sw_recipe *recp; 4583 u8 i; 4584 4585 /* Walk through existing recipes to find a match */ 4586 recp = hw->switch_info->recp_list; 4587 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 4588 /* If recipe was not created for this ID, in SW bookkeeping, 4589 * check if FW has an entry for this recipe. If the FW has an 4590 * entry update it in our SW bookkeeping and continue with the 4591 * matching. 4592 */ 4593 if (!recp[i].recp_created) 4594 if (ice_get_recp_frm_fw(hw, 4595 hw->switch_info->recp_list, i, 4596 &refresh_required)) 4597 continue; 4598 4599 /* Skip inverse action recipes */ 4600 if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl & 4601 ICE_AQ_RECIPE_ACT_INV_ACT) 4602 continue; 4603 4604 /* if number of words we are looking for match */ 4605 if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) { 4606 struct ice_fv_word *ar = recp[i].lkup_exts.fv_words; 4607 struct ice_fv_word *be = lkup_exts->fv_words; 4608 u16 *cr = recp[i].lkup_exts.field_mask; 4609 u16 *de = lkup_exts->field_mask; 4610 bool found = true; 4611 u8 pe, qr; 4612 4613 /* ar, cr, and qr are related to the recipe words, while 4614 * be, de, and pe are related to the lookup words 4615 */ 4616 for (pe = 0; pe < lkup_exts->n_val_words; pe++) { 4617 for (qr = 0; qr < recp[i].lkup_exts.n_val_words; 4618 qr++) { 4619 if (ar[qr].off == be[pe].off && 4620 ar[qr].prot_id == be[pe].prot_id && 4621 cr[qr] == de[pe]) 4622 /* Found the "pe"th word in the 4623 * given recipe 4624 */ 4625 break; 4626 } 4627 /* After walking through all the words in the 4628 * "i"th recipe if "p"th word was not found then 4629 * this recipe is not what we are looking for. 4630 * So break out from this loop and try the next 4631 * recipe 4632 */ 4633 if (qr >= recp[i].lkup_exts.n_val_words) { 4634 found = false; 4635 break; 4636 } 4637 } 4638 /* If for "i"th recipe the found was never set to false 4639 * then it means we found our match 4640 * Also tun type and *_pass_l2 of recipe needs to be 4641 * checked 4642 */ 4643 if (found && recp[i].tun_type == rinfo->tun_type && 4644 recp[i].need_pass_l2 == rinfo->need_pass_l2 && 4645 recp[i].allow_pass_l2 == rinfo->allow_pass_l2) 4646 return i; /* Return the recipe ID */ 4647 } 4648 } 4649 return ICE_MAX_NUM_RECIPES; 4650 } 4651 4652 /** 4653 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl 4654 * 4655 * As protocol id for outer vlan is different in dvm and svm, if dvm is 4656 * supported protocol array record for outer vlan has to be modified to 4657 * reflect the value proper for DVM. 4658 */ 4659 void ice_change_proto_id_to_dvm(void) 4660 { 4661 u8 i; 4662 4663 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++) 4664 if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS && 4665 ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW) 4666 ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW; 4667 } 4668 4669 /** 4670 * ice_prot_type_to_id - get protocol ID from protocol type 4671 * @type: protocol type 4672 * @id: pointer to variable that will receive the ID 4673 * 4674 * Returns true if found, false otherwise 4675 */ 4676 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id) 4677 { 4678 u8 i; 4679 4680 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++) 4681 if (ice_prot_id_tbl[i].type == type) { 4682 *id = ice_prot_id_tbl[i].protocol_id; 4683 return true; 4684 } 4685 return false; 4686 } 4687 4688 /** 4689 * ice_fill_valid_words - count valid words 4690 * @rule: advanced rule with lookup information 4691 * @lkup_exts: byte offset extractions of the words that are valid 4692 * 4693 * calculate valid words in a lookup rule using mask value 4694 */ 4695 static u8 4696 ice_fill_valid_words(struct ice_adv_lkup_elem *rule, 4697 struct ice_prot_lkup_ext *lkup_exts) 4698 { 4699 u8 j, word, prot_id, ret_val; 4700 4701 if (!ice_prot_type_to_id(rule->type, &prot_id)) 4702 return 0; 4703 4704 word = lkup_exts->n_val_words; 4705 4706 for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++) 4707 if (((u16 *)&rule->m_u)[j] && 4708 rule->type < ARRAY_SIZE(ice_prot_ext)) { 4709 /* No more space to accommodate */ 4710 if (word >= ICE_MAX_CHAIN_WORDS) 4711 return 0; 4712 lkup_exts->fv_words[word].off = 4713 ice_prot_ext[rule->type].offs[j]; 4714 lkup_exts->fv_words[word].prot_id = 4715 ice_prot_id_tbl[rule->type].protocol_id; 4716 lkup_exts->field_mask[word] = 4717 be16_to_cpu(((__force __be16 *)&rule->m_u)[j]); 4718 word++; 4719 } 4720 4721 ret_val = word - lkup_exts->n_val_words; 4722 lkup_exts->n_val_words = word; 4723 4724 return ret_val; 4725 } 4726 4727 /** 4728 * ice_create_first_fit_recp_def - Create a recipe grouping 4729 * @hw: pointer to the hardware structure 4730 * @lkup_exts: an array of protocol header extractions 4731 * @rg_list: pointer to a list that stores new recipe groups 4732 * @recp_cnt: pointer to a variable that stores returned number of recipe groups 4733 * 4734 * Using first fit algorithm, take all the words that are still not done 4735 * and start grouping them in 4-word groups. Each group makes up one 4736 * recipe. 4737 */ 4738 static int 4739 ice_create_first_fit_recp_def(struct ice_hw *hw, 4740 struct ice_prot_lkup_ext *lkup_exts, 4741 struct list_head *rg_list, 4742 u8 *recp_cnt) 4743 { 4744 struct ice_pref_recipe_group *grp = NULL; 4745 u8 j; 4746 4747 *recp_cnt = 0; 4748 4749 /* Walk through every word in the rule to check if it is not done. If so 4750 * then this word needs to be part of a new recipe. 4751 */ 4752 for (j = 0; j < lkup_exts->n_val_words; j++) 4753 if (!test_bit(j, lkup_exts->done)) { 4754 if (!grp || 4755 grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) { 4756 struct ice_recp_grp_entry *entry; 4757 4758 entry = devm_kzalloc(ice_hw_to_dev(hw), 4759 sizeof(*entry), 4760 GFP_KERNEL); 4761 if (!entry) 4762 return -ENOMEM; 4763 list_add(&entry->l_entry, rg_list); 4764 grp = &entry->r_group; 4765 (*recp_cnt)++; 4766 } 4767 4768 grp->pairs[grp->n_val_pairs].prot_id = 4769 lkup_exts->fv_words[j].prot_id; 4770 grp->pairs[grp->n_val_pairs].off = 4771 lkup_exts->fv_words[j].off; 4772 grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j]; 4773 grp->n_val_pairs++; 4774 } 4775 4776 return 0; 4777 } 4778 4779 /** 4780 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group 4781 * @hw: pointer to the hardware structure 4782 * @fv_list: field vector with the extraction sequence information 4783 * @rg_list: recipe groupings with protocol-offset pairs 4784 * 4785 * Helper function to fill in the field vector indices for protocol-offset 4786 * pairs. These indexes are then ultimately programmed into a recipe. 4787 */ 4788 static int 4789 ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list, 4790 struct list_head *rg_list) 4791 { 4792 struct ice_sw_fv_list_entry *fv; 4793 struct ice_recp_grp_entry *rg; 4794 struct ice_fv_word *fv_ext; 4795 4796 if (list_empty(fv_list)) 4797 return 0; 4798 4799 fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry, 4800 list_entry); 4801 fv_ext = fv->fv_ptr->ew; 4802 4803 list_for_each_entry(rg, rg_list, l_entry) { 4804 u8 i; 4805 4806 for (i = 0; i < rg->r_group.n_val_pairs; i++) { 4807 struct ice_fv_word *pr; 4808 bool found = false; 4809 u16 mask; 4810 u8 j; 4811 4812 pr = &rg->r_group.pairs[i]; 4813 mask = rg->r_group.mask[i]; 4814 4815 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 4816 if (fv_ext[j].prot_id == pr->prot_id && 4817 fv_ext[j].off == pr->off) { 4818 found = true; 4819 4820 /* Store index of field vector */ 4821 rg->fv_idx[i] = j; 4822 rg->fv_mask[i] = mask; 4823 break; 4824 } 4825 4826 /* Protocol/offset could not be found, caller gave an 4827 * invalid pair 4828 */ 4829 if (!found) 4830 return -EINVAL; 4831 } 4832 } 4833 4834 return 0; 4835 } 4836 4837 /** 4838 * ice_find_free_recp_res_idx - find free result indexes for recipe 4839 * @hw: pointer to hardware structure 4840 * @profiles: bitmap of profiles that will be associated with the new recipe 4841 * @free_idx: pointer to variable to receive the free index bitmap 4842 * 4843 * The algorithm used here is: 4844 * 1. When creating a new recipe, create a set P which contains all 4845 * Profiles that will be associated with our new recipe 4846 * 4847 * 2. For each Profile p in set P: 4848 * a. Add all recipes associated with Profile p into set R 4849 * b. Optional : PossibleIndexes &= profile[p].possibleIndexes 4850 * [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF] 4851 * i. Or just assume they all have the same possible indexes: 4852 * 44, 45, 46, 47 4853 * i.e., PossibleIndexes = 0x0000F00000000000 4854 * 4855 * 3. For each Recipe r in set R: 4856 * a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes 4857 * b. FreeIndexes = UsedIndexes ^ PossibleIndexes 4858 * 4859 * FreeIndexes will contain the bits indicating the indexes free for use, 4860 * then the code needs to update the recipe[r].used_result_idx_bits to 4861 * indicate which indexes were selected for use by this recipe. 4862 */ 4863 static u16 4864 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles, 4865 unsigned long *free_idx) 4866 { 4867 DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS); 4868 DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES); 4869 DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS); 4870 u16 bit; 4871 4872 bitmap_zero(recipes, ICE_MAX_NUM_RECIPES); 4873 bitmap_zero(used_idx, ICE_MAX_FV_WORDS); 4874 4875 bitmap_fill(possible_idx, ICE_MAX_FV_WORDS); 4876 4877 /* For each profile we are going to associate the recipe with, add the 4878 * recipes that are associated with that profile. This will give us 4879 * the set of recipes that our recipe may collide with. Also, determine 4880 * what possible result indexes are usable given this set of profiles. 4881 */ 4882 for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) { 4883 bitmap_or(recipes, recipes, profile_to_recipe[bit], 4884 ICE_MAX_NUM_RECIPES); 4885 bitmap_and(possible_idx, possible_idx, 4886 hw->switch_info->prof_res_bm[bit], 4887 ICE_MAX_FV_WORDS); 4888 } 4889 4890 /* For each recipe that our new recipe may collide with, determine 4891 * which indexes have been used. 4892 */ 4893 for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES) 4894 bitmap_or(used_idx, used_idx, 4895 hw->switch_info->recp_list[bit].res_idxs, 4896 ICE_MAX_FV_WORDS); 4897 4898 bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS); 4899 4900 /* return number of free indexes */ 4901 return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS); 4902 } 4903 4904 /** 4905 * ice_add_sw_recipe - function to call AQ calls to create switch recipe 4906 * @hw: pointer to hardware structure 4907 * @rm: recipe management list entry 4908 * @profiles: bitmap of profiles that will be associated. 4909 */ 4910 static int 4911 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm, 4912 unsigned long *profiles) 4913 { 4914 DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS); 4915 struct ice_aqc_recipe_content *content; 4916 struct ice_aqc_recipe_data_elem *tmp; 4917 struct ice_aqc_recipe_data_elem *buf; 4918 struct ice_recp_grp_entry *entry; 4919 u16 free_res_idx; 4920 u16 recipe_count; 4921 u8 chain_idx; 4922 u8 recps = 0; 4923 int status; 4924 4925 /* When more than one recipe are required, another recipe is needed to 4926 * chain them together. Matching a tunnel metadata ID takes up one of 4927 * the match fields in the chaining recipe reducing the number of 4928 * chained recipes by one. 4929 */ 4930 /* check number of free result indices */ 4931 bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS); 4932 free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm); 4933 4934 ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n", 4935 free_res_idx, rm->n_grp_count); 4936 4937 if (rm->n_grp_count > 1) { 4938 if (rm->n_grp_count > free_res_idx) 4939 return -ENOSPC; 4940 4941 rm->n_grp_count++; 4942 } 4943 4944 if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE) 4945 return -ENOSPC; 4946 4947 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL); 4948 if (!tmp) 4949 return -ENOMEM; 4950 4951 buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf), 4952 GFP_KERNEL); 4953 if (!buf) { 4954 status = -ENOMEM; 4955 goto err_mem; 4956 } 4957 4958 bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES); 4959 recipe_count = ICE_MAX_NUM_RECIPES; 4960 status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC, 4961 NULL); 4962 if (status || recipe_count == 0) 4963 goto err_unroll; 4964 4965 /* Allocate the recipe resources, and configure them according to the 4966 * match fields from protocol headers and extracted field vectors. 4967 */ 4968 chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS); 4969 list_for_each_entry(entry, &rm->rg_list, l_entry) { 4970 u8 i; 4971 4972 status = ice_alloc_recipe(hw, &entry->rid); 4973 if (status) 4974 goto err_unroll; 4975 4976 content = &buf[recps].content; 4977 4978 /* Clear the result index of the located recipe, as this will be 4979 * updated, if needed, later in the recipe creation process. 4980 */ 4981 tmp[0].content.result_indx = 0; 4982 4983 buf[recps] = tmp[0]; 4984 buf[recps].recipe_indx = (u8)entry->rid; 4985 /* if the recipe is a non-root recipe RID should be programmed 4986 * as 0 for the rules to be applied correctly. 4987 */ 4988 content->rid = 0; 4989 memset(&content->lkup_indx, 0, 4990 sizeof(content->lkup_indx)); 4991 4992 /* All recipes use look-up index 0 to match switch ID. */ 4993 content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX; 4994 content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK); 4995 /* Setup lkup_indx 1..4 to INVALID/ignore and set the mask 4996 * to be 0 4997 */ 4998 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) { 4999 content->lkup_indx[i] = 0x80; 5000 content->mask[i] = 0; 5001 } 5002 5003 for (i = 0; i < entry->r_group.n_val_pairs; i++) { 5004 content->lkup_indx[i + 1] = entry->fv_idx[i]; 5005 content->mask[i + 1] = cpu_to_le16(entry->fv_mask[i]); 5006 } 5007 5008 if (rm->n_grp_count > 1) { 5009 /* Checks to see if there really is a valid result index 5010 * that can be used. 5011 */ 5012 if (chain_idx >= ICE_MAX_FV_WORDS) { 5013 ice_debug(hw, ICE_DBG_SW, "No chain index available\n"); 5014 status = -ENOSPC; 5015 goto err_unroll; 5016 } 5017 5018 entry->chain_idx = chain_idx; 5019 content->result_indx = 5020 ICE_AQ_RECIPE_RESULT_EN | 5021 FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M, 5022 chain_idx); 5023 clear_bit(chain_idx, result_idx_bm); 5024 chain_idx = find_first_bit(result_idx_bm, 5025 ICE_MAX_FV_WORDS); 5026 } 5027 5028 /* fill recipe dependencies */ 5029 bitmap_zero((unsigned long *)buf[recps].recipe_bitmap, 5030 ICE_MAX_NUM_RECIPES); 5031 set_bit(buf[recps].recipe_indx, 5032 (unsigned long *)buf[recps].recipe_bitmap); 5033 content->act_ctrl_fwd_priority = rm->priority; 5034 5035 if (rm->need_pass_l2) 5036 content->act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2; 5037 5038 if (rm->allow_pass_l2) 5039 content->act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2; 5040 recps++; 5041 } 5042 5043 if (rm->n_grp_count == 1) { 5044 rm->root_rid = buf[0].recipe_indx; 5045 set_bit(buf[0].recipe_indx, rm->r_bitmap); 5046 buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT; 5047 if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) { 5048 memcpy(buf[0].recipe_bitmap, rm->r_bitmap, 5049 sizeof(buf[0].recipe_bitmap)); 5050 } else { 5051 status = -EINVAL; 5052 goto err_unroll; 5053 } 5054 /* Applicable only for ROOT_RECIPE, set the fwd_priority for 5055 * the recipe which is getting created if specified 5056 * by user. Usually any advanced switch filter, which results 5057 * into new extraction sequence, ended up creating a new recipe 5058 * of type ROOT and usually recipes are associated with profiles 5059 * Switch rule referreing newly created recipe, needs to have 5060 * either/or 'fwd' or 'join' priority, otherwise switch rule 5061 * evaluation will not happen correctly. In other words, if 5062 * switch rule to be evaluated on priority basis, then recipe 5063 * needs to have priority, otherwise it will be evaluated last. 5064 */ 5065 buf[0].content.act_ctrl_fwd_priority = rm->priority; 5066 } else { 5067 struct ice_recp_grp_entry *last_chain_entry; 5068 u16 rid, i; 5069 5070 /* Allocate the last recipe that will chain the outcomes of the 5071 * other recipes together 5072 */ 5073 status = ice_alloc_recipe(hw, &rid); 5074 if (status) 5075 goto err_unroll; 5076 5077 content = &buf[recps].content; 5078 5079 buf[recps].recipe_indx = (u8)rid; 5080 content->rid = (u8)rid; 5081 content->rid |= ICE_AQ_RECIPE_ID_IS_ROOT; 5082 /* the new entry created should also be part of rg_list to 5083 * make sure we have complete recipe 5084 */ 5085 last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw), 5086 sizeof(*last_chain_entry), 5087 GFP_KERNEL); 5088 if (!last_chain_entry) { 5089 status = -ENOMEM; 5090 goto err_unroll; 5091 } 5092 last_chain_entry->rid = rid; 5093 memset(&content->lkup_indx, 0, sizeof(content->lkup_indx)); 5094 /* All recipes use look-up index 0 to match switch ID. */ 5095 content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX; 5096 content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK); 5097 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) { 5098 content->lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE; 5099 content->mask[i] = 0; 5100 } 5101 5102 i = 1; 5103 /* update r_bitmap with the recp that is used for chaining */ 5104 set_bit(rid, rm->r_bitmap); 5105 /* this is the recipe that chains all the other recipes so it 5106 * should not have a chaining ID to indicate the same 5107 */ 5108 last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND; 5109 list_for_each_entry(entry, &rm->rg_list, l_entry) { 5110 last_chain_entry->fv_idx[i] = entry->chain_idx; 5111 content->lkup_indx[i] = entry->chain_idx; 5112 content->mask[i++] = cpu_to_le16(0xFFFF); 5113 set_bit(entry->rid, rm->r_bitmap); 5114 } 5115 list_add(&last_chain_entry->l_entry, &rm->rg_list); 5116 if (sizeof(buf[recps].recipe_bitmap) >= 5117 sizeof(rm->r_bitmap)) { 5118 memcpy(buf[recps].recipe_bitmap, rm->r_bitmap, 5119 sizeof(buf[recps].recipe_bitmap)); 5120 } else { 5121 status = -EINVAL; 5122 goto err_unroll; 5123 } 5124 content->act_ctrl_fwd_priority = rm->priority; 5125 5126 recps++; 5127 rm->root_rid = (u8)rid; 5128 } 5129 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 5130 if (status) 5131 goto err_unroll; 5132 5133 status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL); 5134 ice_release_change_lock(hw); 5135 if (status) 5136 goto err_unroll; 5137 5138 /* Every recipe that just got created add it to the recipe 5139 * book keeping list 5140 */ 5141 list_for_each_entry(entry, &rm->rg_list, l_entry) { 5142 struct ice_switch_info *sw = hw->switch_info; 5143 bool is_root, idx_found = false; 5144 struct ice_sw_recipe *recp; 5145 u16 idx, buf_idx = 0; 5146 5147 /* find buffer index for copying some data */ 5148 for (idx = 0; idx < rm->n_grp_count; idx++) 5149 if (buf[idx].recipe_indx == entry->rid) { 5150 buf_idx = idx; 5151 idx_found = true; 5152 } 5153 5154 if (!idx_found) { 5155 status = -EIO; 5156 goto err_unroll; 5157 } 5158 5159 recp = &sw->recp_list[entry->rid]; 5160 is_root = (rm->root_rid == entry->rid); 5161 recp->is_root = is_root; 5162 5163 recp->root_rid = entry->rid; 5164 recp->big_recp = (is_root && rm->n_grp_count > 1); 5165 5166 memcpy(&recp->ext_words, entry->r_group.pairs, 5167 entry->r_group.n_val_pairs * sizeof(struct ice_fv_word)); 5168 5169 memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap, 5170 sizeof(recp->r_bitmap)); 5171 5172 /* Copy non-result fv index values and masks to recipe. This 5173 * call will also update the result recipe bitmask. 5174 */ 5175 ice_collect_result_idx(&buf[buf_idx], recp); 5176 5177 /* for non-root recipes, also copy to the root, this allows 5178 * easier matching of a complete chained recipe 5179 */ 5180 if (!is_root) 5181 ice_collect_result_idx(&buf[buf_idx], 5182 &sw->recp_list[rm->root_rid]); 5183 5184 recp->n_ext_words = entry->r_group.n_val_pairs; 5185 recp->chain_idx = entry->chain_idx; 5186 recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority; 5187 recp->n_grp_count = rm->n_grp_count; 5188 recp->tun_type = rm->tun_type; 5189 recp->need_pass_l2 = rm->need_pass_l2; 5190 recp->allow_pass_l2 = rm->allow_pass_l2; 5191 recp->recp_created = true; 5192 } 5193 rm->root_buf = buf; 5194 kfree(tmp); 5195 return status; 5196 5197 err_unroll: 5198 err_mem: 5199 kfree(tmp); 5200 devm_kfree(ice_hw_to_dev(hw), buf); 5201 return status; 5202 } 5203 5204 /** 5205 * ice_create_recipe_group - creates recipe group 5206 * @hw: pointer to hardware structure 5207 * @rm: recipe management list entry 5208 * @lkup_exts: lookup elements 5209 */ 5210 static int 5211 ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm, 5212 struct ice_prot_lkup_ext *lkup_exts) 5213 { 5214 u8 recp_count = 0; 5215 int status; 5216 5217 rm->n_grp_count = 0; 5218 5219 /* Create recipes for words that are marked not done by packing them 5220 * as best fit. 5221 */ 5222 status = ice_create_first_fit_recp_def(hw, lkup_exts, 5223 &rm->rg_list, &recp_count); 5224 if (!status) { 5225 rm->n_grp_count += recp_count; 5226 rm->n_ext_words = lkup_exts->n_val_words; 5227 memcpy(&rm->ext_words, lkup_exts->fv_words, 5228 sizeof(rm->ext_words)); 5229 memcpy(rm->word_masks, lkup_exts->field_mask, 5230 sizeof(rm->word_masks)); 5231 } 5232 5233 return status; 5234 } 5235 5236 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule 5237 * @hw: pointer to hardware structure 5238 * @rinfo: other information regarding the rule e.g. priority and action info 5239 * @bm: pointer to memory for returning the bitmap of field vectors 5240 */ 5241 static void 5242 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo, 5243 unsigned long *bm) 5244 { 5245 enum ice_prof_type prof_type; 5246 5247 bitmap_zero(bm, ICE_MAX_NUM_PROFILES); 5248 5249 switch (rinfo->tun_type) { 5250 case ICE_NON_TUN: 5251 prof_type = ICE_PROF_NON_TUN; 5252 break; 5253 case ICE_ALL_TUNNELS: 5254 prof_type = ICE_PROF_TUN_ALL; 5255 break; 5256 case ICE_SW_TUN_GENEVE: 5257 case ICE_SW_TUN_VXLAN: 5258 prof_type = ICE_PROF_TUN_UDP; 5259 break; 5260 case ICE_SW_TUN_NVGRE: 5261 prof_type = ICE_PROF_TUN_GRE; 5262 break; 5263 case ICE_SW_TUN_GTPU: 5264 prof_type = ICE_PROF_TUN_GTPU; 5265 break; 5266 case ICE_SW_TUN_GTPC: 5267 prof_type = ICE_PROF_TUN_GTPC; 5268 break; 5269 case ICE_SW_TUN_AND_NON_TUN: 5270 default: 5271 prof_type = ICE_PROF_ALL; 5272 break; 5273 } 5274 5275 ice_get_sw_fv_bitmap(hw, prof_type, bm); 5276 } 5277 5278 /** 5279 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default 5280 * @hw: pointer to hardware structure 5281 * @lkups: lookup elements or match criteria for the advanced recipe, one 5282 * structure per protocol header 5283 * @lkups_cnt: number of protocols 5284 * @rinfo: other information regarding the rule e.g. priority and action info 5285 * @rid: return the recipe ID of the recipe created 5286 */ 5287 static int 5288 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 5289 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid) 5290 { 5291 DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES); 5292 DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES); 5293 struct ice_prot_lkup_ext *lkup_exts; 5294 struct ice_recp_grp_entry *r_entry; 5295 struct ice_sw_fv_list_entry *fvit; 5296 struct ice_recp_grp_entry *r_tmp; 5297 struct ice_sw_fv_list_entry *tmp; 5298 struct ice_sw_recipe *rm; 5299 int status = 0; 5300 u8 i; 5301 5302 if (!lkups_cnt) 5303 return -EINVAL; 5304 5305 lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL); 5306 if (!lkup_exts) 5307 return -ENOMEM; 5308 5309 /* Determine the number of words to be matched and if it exceeds a 5310 * recipe's restrictions 5311 */ 5312 for (i = 0; i < lkups_cnt; i++) { 5313 u16 count; 5314 5315 if (lkups[i].type >= ICE_PROTOCOL_LAST) { 5316 status = -EIO; 5317 goto err_free_lkup_exts; 5318 } 5319 5320 count = ice_fill_valid_words(&lkups[i], lkup_exts); 5321 if (!count) { 5322 status = -EIO; 5323 goto err_free_lkup_exts; 5324 } 5325 } 5326 5327 rm = kzalloc(sizeof(*rm), GFP_KERNEL); 5328 if (!rm) { 5329 status = -ENOMEM; 5330 goto err_free_lkup_exts; 5331 } 5332 5333 /* Get field vectors that contain fields extracted from all the protocol 5334 * headers being programmed. 5335 */ 5336 INIT_LIST_HEAD(&rm->fv_list); 5337 INIT_LIST_HEAD(&rm->rg_list); 5338 5339 /* Get bitmap of field vectors (profiles) that are compatible with the 5340 * rule request; only these will be searched in the subsequent call to 5341 * ice_get_sw_fv_list. 5342 */ 5343 ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap); 5344 5345 status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list); 5346 if (status) 5347 goto err_unroll; 5348 5349 /* Group match words into recipes using preferred recipe grouping 5350 * criteria. 5351 */ 5352 status = ice_create_recipe_group(hw, rm, lkup_exts); 5353 if (status) 5354 goto err_unroll; 5355 5356 /* set the recipe priority if specified */ 5357 rm->priority = (u8)rinfo->priority; 5358 5359 rm->need_pass_l2 = rinfo->need_pass_l2; 5360 rm->allow_pass_l2 = rinfo->allow_pass_l2; 5361 5362 /* Find offsets from the field vector. Pick the first one for all the 5363 * recipes. 5364 */ 5365 status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list); 5366 if (status) 5367 goto err_unroll; 5368 5369 /* get bitmap of all profiles the recipe will be associated with */ 5370 bitmap_zero(profiles, ICE_MAX_NUM_PROFILES); 5371 list_for_each_entry(fvit, &rm->fv_list, list_entry) { 5372 ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id); 5373 set_bit((u16)fvit->profile_id, profiles); 5374 } 5375 5376 /* Look for a recipe which matches our requested fv / mask list */ 5377 *rid = ice_find_recp(hw, lkup_exts, rinfo); 5378 if (*rid < ICE_MAX_NUM_RECIPES) 5379 /* Success if found a recipe that match the existing criteria */ 5380 goto err_unroll; 5381 5382 rm->tun_type = rinfo->tun_type; 5383 /* Recipe we need does not exist, add a recipe */ 5384 status = ice_add_sw_recipe(hw, rm, profiles); 5385 if (status) 5386 goto err_unroll; 5387 5388 /* Associate all the recipes created with all the profiles in the 5389 * common field vector. 5390 */ 5391 list_for_each_entry(fvit, &rm->fv_list, list_entry) { 5392 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES); 5393 u16 j; 5394 5395 status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id, 5396 (u8 *)r_bitmap, NULL); 5397 if (status) 5398 goto err_unroll; 5399 5400 bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap, 5401 ICE_MAX_NUM_RECIPES); 5402 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 5403 if (status) 5404 goto err_unroll; 5405 5406 status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id, 5407 (u8 *)r_bitmap, 5408 NULL); 5409 ice_release_change_lock(hw); 5410 5411 if (status) 5412 goto err_unroll; 5413 5414 /* Update profile to recipe bitmap array */ 5415 bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap, 5416 ICE_MAX_NUM_RECIPES); 5417 5418 /* Update recipe to profile bitmap array */ 5419 for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES) 5420 set_bit((u16)fvit->profile_id, recipe_to_profile[j]); 5421 } 5422 5423 *rid = rm->root_rid; 5424 memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts, 5425 sizeof(*lkup_exts)); 5426 err_unroll: 5427 list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) { 5428 list_del(&r_entry->l_entry); 5429 devm_kfree(ice_hw_to_dev(hw), r_entry); 5430 } 5431 5432 list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) { 5433 list_del(&fvit->list_entry); 5434 devm_kfree(ice_hw_to_dev(hw), fvit); 5435 } 5436 5437 devm_kfree(ice_hw_to_dev(hw), rm->root_buf); 5438 kfree(rm); 5439 5440 err_free_lkup_exts: 5441 kfree(lkup_exts); 5442 5443 return status; 5444 } 5445 5446 /** 5447 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt 5448 * 5449 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added 5450 * @num_vlan: number of VLAN tags 5451 */ 5452 static struct ice_dummy_pkt_profile * 5453 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt, 5454 u32 num_vlan) 5455 { 5456 struct ice_dummy_pkt_profile *profile; 5457 struct ice_dummy_pkt_offsets *offsets; 5458 u32 buf_len, off, etype_off, i; 5459 u8 *pkt; 5460 5461 if (num_vlan < 1 || num_vlan > 2) 5462 return ERR_PTR(-EINVAL); 5463 5464 off = num_vlan * VLAN_HLEN; 5465 5466 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) + 5467 dummy_pkt->offsets_len; 5468 offsets = kzalloc(buf_len, GFP_KERNEL); 5469 if (!offsets) 5470 return ERR_PTR(-ENOMEM); 5471 5472 offsets[0] = dummy_pkt->offsets[0]; 5473 if (num_vlan == 2) { 5474 offsets[1] = ice_dummy_qinq_packet_offsets[0]; 5475 offsets[2] = ice_dummy_qinq_packet_offsets[1]; 5476 } else if (num_vlan == 1) { 5477 offsets[1] = ice_dummy_vlan_packet_offsets[0]; 5478 } 5479 5480 for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) { 5481 offsets[i + num_vlan].type = dummy_pkt->offsets[i].type; 5482 offsets[i + num_vlan].offset = 5483 dummy_pkt->offsets[i].offset + off; 5484 } 5485 offsets[i + num_vlan] = dummy_pkt->offsets[i]; 5486 5487 etype_off = dummy_pkt->offsets[1].offset; 5488 5489 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) + 5490 dummy_pkt->pkt_len; 5491 pkt = kzalloc(buf_len, GFP_KERNEL); 5492 if (!pkt) { 5493 kfree(offsets); 5494 return ERR_PTR(-ENOMEM); 5495 } 5496 5497 memcpy(pkt, dummy_pkt->pkt, etype_off); 5498 memcpy(pkt + etype_off, 5499 num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet, 5500 off); 5501 memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off, 5502 dummy_pkt->pkt_len - etype_off); 5503 5504 profile = kzalloc(sizeof(*profile), GFP_KERNEL); 5505 if (!profile) { 5506 kfree(offsets); 5507 kfree(pkt); 5508 return ERR_PTR(-ENOMEM); 5509 } 5510 5511 profile->offsets = offsets; 5512 profile->pkt = pkt; 5513 profile->pkt_len = buf_len; 5514 profile->match |= ICE_PKT_KMALLOC; 5515 5516 return profile; 5517 } 5518 5519 /** 5520 * ice_find_dummy_packet - find dummy packet 5521 * 5522 * @lkups: lookup elements or match criteria for the advanced recipe, one 5523 * structure per protocol header 5524 * @lkups_cnt: number of protocols 5525 * @tun_type: tunnel type 5526 * 5527 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params. 5528 */ 5529 static const struct ice_dummy_pkt_profile * 5530 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt, 5531 enum ice_sw_tunnel_type tun_type) 5532 { 5533 const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles; 5534 u32 match = 0, vlan_count = 0; 5535 u16 i; 5536 5537 switch (tun_type) { 5538 case ICE_SW_TUN_GTPC: 5539 match |= ICE_PKT_TUN_GTPC; 5540 break; 5541 case ICE_SW_TUN_GTPU: 5542 match |= ICE_PKT_TUN_GTPU; 5543 break; 5544 case ICE_SW_TUN_NVGRE: 5545 match |= ICE_PKT_TUN_NVGRE; 5546 break; 5547 case ICE_SW_TUN_GENEVE: 5548 case ICE_SW_TUN_VXLAN: 5549 match |= ICE_PKT_TUN_UDP; 5550 break; 5551 default: 5552 break; 5553 } 5554 5555 for (i = 0; i < lkups_cnt; i++) { 5556 if (lkups[i].type == ICE_UDP_ILOS) 5557 match |= ICE_PKT_INNER_UDP; 5558 else if (lkups[i].type == ICE_TCP_IL) 5559 match |= ICE_PKT_INNER_TCP; 5560 else if (lkups[i].type == ICE_IPV6_OFOS) 5561 match |= ICE_PKT_OUTER_IPV6; 5562 else if (lkups[i].type == ICE_VLAN_OFOS || 5563 lkups[i].type == ICE_VLAN_EX) 5564 vlan_count++; 5565 else if (lkups[i].type == ICE_VLAN_IN) 5566 vlan_count++; 5567 else if (lkups[i].type == ICE_ETYPE_OL && 5568 lkups[i].h_u.ethertype.ethtype_id == 5569 cpu_to_be16(ICE_IPV6_ETHER_ID) && 5570 lkups[i].m_u.ethertype.ethtype_id == 5571 cpu_to_be16(0xFFFF)) 5572 match |= ICE_PKT_OUTER_IPV6; 5573 else if (lkups[i].type == ICE_ETYPE_IL && 5574 lkups[i].h_u.ethertype.ethtype_id == 5575 cpu_to_be16(ICE_IPV6_ETHER_ID) && 5576 lkups[i].m_u.ethertype.ethtype_id == 5577 cpu_to_be16(0xFFFF)) 5578 match |= ICE_PKT_INNER_IPV6; 5579 else if (lkups[i].type == ICE_IPV6_IL) 5580 match |= ICE_PKT_INNER_IPV6; 5581 else if (lkups[i].type == ICE_GTP_NO_PAY) 5582 match |= ICE_PKT_GTP_NOPAY; 5583 else if (lkups[i].type == ICE_PPPOE) { 5584 match |= ICE_PKT_PPPOE; 5585 if (lkups[i].h_u.pppoe_hdr.ppp_prot_id == 5586 htons(PPP_IPV6)) 5587 match |= ICE_PKT_OUTER_IPV6; 5588 } else if (lkups[i].type == ICE_L2TPV3) 5589 match |= ICE_PKT_L2TPV3; 5590 } 5591 5592 while (ret->match && (match & ret->match) != ret->match) 5593 ret++; 5594 5595 if (vlan_count != 0) 5596 ret = ice_dummy_packet_add_vlan(ret, vlan_count); 5597 5598 return ret; 5599 } 5600 5601 /** 5602 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria 5603 * 5604 * @lkups: lookup elements or match criteria for the advanced recipe, one 5605 * structure per protocol header 5606 * @lkups_cnt: number of protocols 5607 * @s_rule: stores rule information from the match criteria 5608 * @profile: dummy packet profile (the template, its size and header offsets) 5609 */ 5610 static int 5611 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt, 5612 struct ice_sw_rule_lkup_rx_tx *s_rule, 5613 const struct ice_dummy_pkt_profile *profile) 5614 { 5615 u8 *pkt; 5616 u16 i; 5617 5618 /* Start with a packet with a pre-defined/dummy content. Then, fill 5619 * in the header values to be looked up or matched. 5620 */ 5621 pkt = s_rule->hdr_data; 5622 5623 memcpy(pkt, profile->pkt, profile->pkt_len); 5624 5625 for (i = 0; i < lkups_cnt; i++) { 5626 const struct ice_dummy_pkt_offsets *offsets = profile->offsets; 5627 enum ice_protocol_type type; 5628 u16 offset = 0, len = 0, j; 5629 bool found = false; 5630 5631 /* find the start of this layer; it should be found since this 5632 * was already checked when search for the dummy packet 5633 */ 5634 type = lkups[i].type; 5635 /* metadata isn't present in the packet */ 5636 if (type == ICE_HW_METADATA) 5637 continue; 5638 5639 for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) { 5640 if (type == offsets[j].type) { 5641 offset = offsets[j].offset; 5642 found = true; 5643 break; 5644 } 5645 } 5646 /* this should never happen in a correct calling sequence */ 5647 if (!found) 5648 return -EINVAL; 5649 5650 switch (lkups[i].type) { 5651 case ICE_MAC_OFOS: 5652 case ICE_MAC_IL: 5653 len = sizeof(struct ice_ether_hdr); 5654 break; 5655 case ICE_ETYPE_OL: 5656 case ICE_ETYPE_IL: 5657 len = sizeof(struct ice_ethtype_hdr); 5658 break; 5659 case ICE_VLAN_OFOS: 5660 case ICE_VLAN_EX: 5661 case ICE_VLAN_IN: 5662 len = sizeof(struct ice_vlan_hdr); 5663 break; 5664 case ICE_IPV4_OFOS: 5665 case ICE_IPV4_IL: 5666 len = sizeof(struct ice_ipv4_hdr); 5667 break; 5668 case ICE_IPV6_OFOS: 5669 case ICE_IPV6_IL: 5670 len = sizeof(struct ice_ipv6_hdr); 5671 break; 5672 case ICE_TCP_IL: 5673 case ICE_UDP_OF: 5674 case ICE_UDP_ILOS: 5675 len = sizeof(struct ice_l4_hdr); 5676 break; 5677 case ICE_SCTP_IL: 5678 len = sizeof(struct ice_sctp_hdr); 5679 break; 5680 case ICE_NVGRE: 5681 len = sizeof(struct ice_nvgre_hdr); 5682 break; 5683 case ICE_VXLAN: 5684 case ICE_GENEVE: 5685 len = sizeof(struct ice_udp_tnl_hdr); 5686 break; 5687 case ICE_GTP_NO_PAY: 5688 case ICE_GTP: 5689 len = sizeof(struct ice_udp_gtp_hdr); 5690 break; 5691 case ICE_PPPOE: 5692 len = sizeof(struct ice_pppoe_hdr); 5693 break; 5694 case ICE_L2TPV3: 5695 len = sizeof(struct ice_l2tpv3_sess_hdr); 5696 break; 5697 default: 5698 return -EINVAL; 5699 } 5700 5701 /* the length should be a word multiple */ 5702 if (len % ICE_BYTES_PER_WORD) 5703 return -EIO; 5704 5705 /* We have the offset to the header start, the length, the 5706 * caller's header values and mask. Use this information to 5707 * copy the data into the dummy packet appropriately based on 5708 * the mask. Note that we need to only write the bits as 5709 * indicated by the mask to make sure we don't improperly write 5710 * over any significant packet data. 5711 */ 5712 for (j = 0; j < len / sizeof(u16); j++) { 5713 u16 *ptr = (u16 *)(pkt + offset); 5714 u16 mask = lkups[i].m_raw[j]; 5715 5716 if (!mask) 5717 continue; 5718 5719 ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask); 5720 } 5721 } 5722 5723 s_rule->hdr_len = cpu_to_le16(profile->pkt_len); 5724 5725 return 0; 5726 } 5727 5728 /** 5729 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port 5730 * @hw: pointer to the hardware structure 5731 * @tun_type: tunnel type 5732 * @pkt: dummy packet to fill in 5733 * @offsets: offset info for the dummy packet 5734 */ 5735 static int 5736 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type, 5737 u8 *pkt, const struct ice_dummy_pkt_offsets *offsets) 5738 { 5739 u16 open_port, i; 5740 5741 switch (tun_type) { 5742 case ICE_SW_TUN_VXLAN: 5743 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN)) 5744 return -EIO; 5745 break; 5746 case ICE_SW_TUN_GENEVE: 5747 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE)) 5748 return -EIO; 5749 break; 5750 default: 5751 /* Nothing needs to be done for this tunnel type */ 5752 return 0; 5753 } 5754 5755 /* Find the outer UDP protocol header and insert the port number */ 5756 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) { 5757 if (offsets[i].type == ICE_UDP_OF) { 5758 struct ice_l4_hdr *hdr; 5759 u16 offset; 5760 5761 offset = offsets[i].offset; 5762 hdr = (struct ice_l4_hdr *)&pkt[offset]; 5763 hdr->dst_port = cpu_to_be16(open_port); 5764 5765 return 0; 5766 } 5767 } 5768 5769 return -EIO; 5770 } 5771 5772 /** 5773 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type 5774 * @hw: pointer to hw structure 5775 * @vlan_type: VLAN tag type 5776 * @pkt: dummy packet to fill in 5777 * @offsets: offset info for the dummy packet 5778 */ 5779 static int 5780 ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt, 5781 const struct ice_dummy_pkt_offsets *offsets) 5782 { 5783 u16 i; 5784 5785 /* Check if there is something to do */ 5786 if (!vlan_type || !ice_is_dvm_ena(hw)) 5787 return 0; 5788 5789 /* Find VLAN header and insert VLAN TPID */ 5790 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) { 5791 if (offsets[i].type == ICE_VLAN_OFOS || 5792 offsets[i].type == ICE_VLAN_EX) { 5793 struct ice_vlan_hdr *hdr; 5794 u16 offset; 5795 5796 offset = offsets[i].offset; 5797 hdr = (struct ice_vlan_hdr *)&pkt[offset]; 5798 hdr->type = cpu_to_be16(vlan_type); 5799 5800 return 0; 5801 } 5802 } 5803 5804 return -EIO; 5805 } 5806 5807 static bool ice_rules_equal(const struct ice_adv_rule_info *first, 5808 const struct ice_adv_rule_info *second) 5809 { 5810 return first->sw_act.flag == second->sw_act.flag && 5811 first->tun_type == second->tun_type && 5812 first->vlan_type == second->vlan_type && 5813 first->src_vsi == second->src_vsi && 5814 first->need_pass_l2 == second->need_pass_l2 && 5815 first->allow_pass_l2 == second->allow_pass_l2; 5816 } 5817 5818 /** 5819 * ice_find_adv_rule_entry - Search a rule entry 5820 * @hw: pointer to the hardware structure 5821 * @lkups: lookup elements or match criteria for the advanced recipe, one 5822 * structure per protocol header 5823 * @lkups_cnt: number of protocols 5824 * @recp_id: recipe ID for which we are finding the rule 5825 * @rinfo: other information regarding the rule e.g. priority and action info 5826 * 5827 * Helper function to search for a given advance rule entry 5828 * Returns pointer to entry storing the rule if found 5829 */ 5830 static struct ice_adv_fltr_mgmt_list_entry * 5831 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 5832 u16 lkups_cnt, u16 recp_id, 5833 struct ice_adv_rule_info *rinfo) 5834 { 5835 struct ice_adv_fltr_mgmt_list_entry *list_itr; 5836 struct ice_switch_info *sw = hw->switch_info; 5837 int i; 5838 5839 list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules, 5840 list_entry) { 5841 bool lkups_matched = true; 5842 5843 if (lkups_cnt != list_itr->lkups_cnt) 5844 continue; 5845 for (i = 0; i < list_itr->lkups_cnt; i++) 5846 if (memcmp(&list_itr->lkups[i], &lkups[i], 5847 sizeof(*lkups))) { 5848 lkups_matched = false; 5849 break; 5850 } 5851 if (ice_rules_equal(rinfo, &list_itr->rule_info) && 5852 lkups_matched) 5853 return list_itr; 5854 } 5855 return NULL; 5856 } 5857 5858 /** 5859 * ice_adv_add_update_vsi_list 5860 * @hw: pointer to the hardware structure 5861 * @m_entry: pointer to current adv filter management list entry 5862 * @cur_fltr: filter information from the book keeping entry 5863 * @new_fltr: filter information with the new VSI to be added 5864 * 5865 * Call AQ command to add or update previously created VSI list with new VSI. 5866 * 5867 * Helper function to do book keeping associated with adding filter information 5868 * The algorithm to do the booking keeping is described below : 5869 * When a VSI needs to subscribe to a given advanced filter 5870 * if only one VSI has been added till now 5871 * Allocate a new VSI list and add two VSIs 5872 * to this list using switch rule command 5873 * Update the previously created switch rule with the 5874 * newly created VSI list ID 5875 * if a VSI list was previously created 5876 * Add the new VSI to the previously created VSI list set 5877 * using the update switch rule command 5878 */ 5879 static int 5880 ice_adv_add_update_vsi_list(struct ice_hw *hw, 5881 struct ice_adv_fltr_mgmt_list_entry *m_entry, 5882 struct ice_adv_rule_info *cur_fltr, 5883 struct ice_adv_rule_info *new_fltr) 5884 { 5885 u16 vsi_list_id = 0; 5886 int status; 5887 5888 if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q || 5889 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP || 5890 cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET) 5891 return -EOPNOTSUPP; 5892 5893 if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q || 5894 new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) && 5895 (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI || 5896 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST)) 5897 return -EOPNOTSUPP; 5898 5899 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 5900 /* Only one entry existed in the mapping and it was not already 5901 * a part of a VSI list. So, create a VSI list with the old and 5902 * new VSIs. 5903 */ 5904 struct ice_fltr_info tmp_fltr; 5905 u16 vsi_handle_arr[2]; 5906 5907 /* A rule already exists with the new VSI being added */ 5908 if (cur_fltr->sw_act.fwd_id.hw_vsi_id == 5909 new_fltr->sw_act.fwd_id.hw_vsi_id) 5910 return -EEXIST; 5911 5912 vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle; 5913 vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle; 5914 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 5915 &vsi_list_id, 5916 ICE_SW_LKUP_LAST); 5917 if (status) 5918 return status; 5919 5920 memset(&tmp_fltr, 0, sizeof(tmp_fltr)); 5921 tmp_fltr.flag = m_entry->rule_info.sw_act.flag; 5922 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 5923 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 5924 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 5925 tmp_fltr.lkup_type = ICE_SW_LKUP_LAST; 5926 5927 /* Update the previous switch rule of "forward to VSI" to 5928 * "fwd to VSI list" 5929 */ 5930 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 5931 if (status) 5932 return status; 5933 5934 cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id; 5935 cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST; 5936 m_entry->vsi_list_info = 5937 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 5938 vsi_list_id); 5939 } else { 5940 u16 vsi_handle = new_fltr->sw_act.vsi_handle; 5941 5942 if (!m_entry->vsi_list_info) 5943 return -EIO; 5944 5945 /* A rule already exists with the new VSI being added */ 5946 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) 5947 return 0; 5948 5949 /* Update the previously created VSI list set with 5950 * the new VSI ID passed in 5951 */ 5952 vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id; 5953 5954 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 5955 vsi_list_id, false, 5956 ice_aqc_opc_update_sw_rules, 5957 ICE_SW_LKUP_LAST); 5958 /* update VSI list mapping info with new VSI ID */ 5959 if (!status) 5960 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); 5961 } 5962 if (!status) 5963 m_entry->vsi_count++; 5964 return status; 5965 } 5966 5967 void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup) 5968 { 5969 lkup->type = ICE_HW_METADATA; 5970 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |= 5971 cpu_to_be16(ICE_PKT_TUNNEL_MASK); 5972 } 5973 5974 void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup) 5975 { 5976 lkup->type = ICE_HW_METADATA; 5977 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |= 5978 cpu_to_be16(ICE_PKT_FROM_NETWORK); 5979 } 5980 5981 void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup) 5982 { 5983 lkup->type = ICE_HW_METADATA; 5984 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |= 5985 cpu_to_be16(ICE_PKT_VLAN_MASK); 5986 } 5987 5988 void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup) 5989 { 5990 lkup->type = ICE_HW_METADATA; 5991 lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK); 5992 } 5993 5994 /** 5995 * ice_add_adv_rule - helper function to create an advanced switch rule 5996 * @hw: pointer to the hardware structure 5997 * @lkups: information on the words that needs to be looked up. All words 5998 * together makes one recipe 5999 * @lkups_cnt: num of entries in the lkups array 6000 * @rinfo: other information related to the rule that needs to be programmed 6001 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be 6002 * ignored is case of error. 6003 * 6004 * This function can program only 1 rule at a time. The lkups is used to 6005 * describe the all the words that forms the "lookup" portion of the recipe. 6006 * These words can span multiple protocols. Callers to this function need to 6007 * pass in a list of protocol headers with lookup information along and mask 6008 * that determines which words are valid from the given protocol header. 6009 * rinfo describes other information related to this rule such as forwarding 6010 * IDs, priority of this rule, etc. 6011 */ 6012 int 6013 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 6014 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, 6015 struct ice_rule_query_data *added_entry) 6016 { 6017 struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL; 6018 struct ice_sw_rule_lkup_rx_tx *s_rule = NULL; 6019 const struct ice_dummy_pkt_profile *profile; 6020 u16 rid = 0, i, rule_buf_sz, vsi_handle; 6021 struct list_head *rule_head; 6022 struct ice_switch_info *sw; 6023 u16 word_cnt; 6024 u32 act = 0; 6025 int status; 6026 u8 q_rgn; 6027 6028 /* Initialize profile to result index bitmap */ 6029 if (!hw->switch_info->prof_res_bm_init) { 6030 hw->switch_info->prof_res_bm_init = 1; 6031 ice_init_prof_result_bm(hw); 6032 } 6033 6034 if (!lkups_cnt) 6035 return -EINVAL; 6036 6037 /* get # of words we need to match */ 6038 word_cnt = 0; 6039 for (i = 0; i < lkups_cnt; i++) { 6040 u16 j; 6041 6042 for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++) 6043 if (lkups[i].m_raw[j]) 6044 word_cnt++; 6045 } 6046 6047 if (!word_cnt) 6048 return -EINVAL; 6049 6050 if (word_cnt > ICE_MAX_CHAIN_WORDS) 6051 return -ENOSPC; 6052 6053 /* locate a dummy packet */ 6054 profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type); 6055 if (IS_ERR(profile)) 6056 return PTR_ERR(profile); 6057 6058 if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI || 6059 rinfo->sw_act.fltr_act == ICE_FWD_TO_Q || 6060 rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP || 6061 rinfo->sw_act.fltr_act == ICE_DROP_PACKET || 6062 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET || 6063 rinfo->sw_act.fltr_act == ICE_NOP)) { 6064 status = -EIO; 6065 goto free_pkt_profile; 6066 } 6067 6068 vsi_handle = rinfo->sw_act.vsi_handle; 6069 if (!ice_is_vsi_valid(hw, vsi_handle)) { 6070 status = -EINVAL; 6071 goto free_pkt_profile; 6072 } 6073 6074 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI || 6075 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET || 6076 rinfo->sw_act.fltr_act == ICE_NOP) { 6077 rinfo->sw_act.fwd_id.hw_vsi_id = 6078 ice_get_hw_vsi_num(hw, vsi_handle); 6079 } 6080 6081 if (rinfo->src_vsi) 6082 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi); 6083 else 6084 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle); 6085 6086 status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid); 6087 if (status) 6088 goto free_pkt_profile; 6089 m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo); 6090 if (m_entry) { 6091 /* we have to add VSI to VSI_LIST and increment vsi_count. 6092 * Also Update VSI list so that we can change forwarding rule 6093 * if the rule already exists, we will check if it exists with 6094 * same vsi_id, if not then add it to the VSI list if it already 6095 * exists if not then create a VSI list and add the existing VSI 6096 * ID and the new VSI ID to the list 6097 * We will add that VSI to the list 6098 */ 6099 status = ice_adv_add_update_vsi_list(hw, m_entry, 6100 &m_entry->rule_info, 6101 rinfo); 6102 if (added_entry) { 6103 added_entry->rid = rid; 6104 added_entry->rule_id = m_entry->rule_info.fltr_rule_id; 6105 added_entry->vsi_handle = rinfo->sw_act.vsi_handle; 6106 } 6107 goto free_pkt_profile; 6108 } 6109 rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len); 6110 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL); 6111 if (!s_rule) { 6112 status = -ENOMEM; 6113 goto free_pkt_profile; 6114 } 6115 6116 if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) { 6117 if (!rinfo->flags_info.act_valid) { 6118 act |= ICE_SINGLE_ACT_LAN_ENABLE; 6119 act |= ICE_SINGLE_ACT_LB_ENABLE; 6120 } else { 6121 act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE | 6122 ICE_SINGLE_ACT_LB_ENABLE); 6123 } 6124 } 6125 6126 switch (rinfo->sw_act.fltr_act) { 6127 case ICE_FWD_TO_VSI: 6128 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M, 6129 rinfo->sw_act.fwd_id.hw_vsi_id); 6130 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT; 6131 break; 6132 case ICE_FWD_TO_Q: 6133 act |= ICE_SINGLE_ACT_TO_Q; 6134 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M, 6135 rinfo->sw_act.fwd_id.q_id); 6136 break; 6137 case ICE_FWD_TO_QGRP: 6138 q_rgn = rinfo->sw_act.qgrp_size > 0 ? 6139 (u8)ilog2(rinfo->sw_act.qgrp_size) : 0; 6140 act |= ICE_SINGLE_ACT_TO_Q; 6141 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M, 6142 rinfo->sw_act.fwd_id.q_id); 6143 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn); 6144 break; 6145 case ICE_DROP_PACKET: 6146 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 6147 ICE_SINGLE_ACT_VALID_BIT; 6148 break; 6149 case ICE_MIRROR_PACKET: 6150 act |= ICE_SINGLE_ACT_OTHER_ACTS; 6151 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M, 6152 rinfo->sw_act.fwd_id.hw_vsi_id); 6153 break; 6154 case ICE_NOP: 6155 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M, 6156 rinfo->sw_act.fwd_id.hw_vsi_id); 6157 act &= ~ICE_SINGLE_ACT_VALID_BIT; 6158 break; 6159 default: 6160 status = -EIO; 6161 goto err_ice_add_adv_rule; 6162 } 6163 6164 /* If there is no matching criteria for direction there 6165 * is only one difference between Rx and Tx: 6166 * - get switch id base on VSI number from source field (Tx) 6167 * - get switch id base on port number (Rx) 6168 * 6169 * If matching on direction metadata is chose rule direction is 6170 * extracted from type value set here. 6171 */ 6172 if (rinfo->sw_act.flag & ICE_FLTR_TX) { 6173 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); 6174 s_rule->src = cpu_to_le16(rinfo->sw_act.src); 6175 } else { 6176 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX); 6177 s_rule->src = cpu_to_le16(hw->port_info->lport); 6178 } 6179 6180 s_rule->recipe_id = cpu_to_le16(rid); 6181 s_rule->act = cpu_to_le32(act); 6182 6183 status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile); 6184 if (status) 6185 goto err_ice_add_adv_rule; 6186 6187 status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data, 6188 profile->offsets); 6189 if (status) 6190 goto err_ice_add_adv_rule; 6191 6192 status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type, 6193 s_rule->hdr_data, 6194 profile->offsets); 6195 if (status) 6196 goto err_ice_add_adv_rule; 6197 6198 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule, 6199 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules, 6200 NULL); 6201 if (status) 6202 goto err_ice_add_adv_rule; 6203 adv_fltr = devm_kzalloc(ice_hw_to_dev(hw), 6204 sizeof(struct ice_adv_fltr_mgmt_list_entry), 6205 GFP_KERNEL); 6206 if (!adv_fltr) { 6207 status = -ENOMEM; 6208 goto err_ice_add_adv_rule; 6209 } 6210 6211 adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups, 6212 lkups_cnt * sizeof(*lkups), GFP_KERNEL); 6213 if (!adv_fltr->lkups) { 6214 status = -ENOMEM; 6215 goto err_ice_add_adv_rule; 6216 } 6217 6218 adv_fltr->lkups_cnt = lkups_cnt; 6219 adv_fltr->rule_info = *rinfo; 6220 adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index); 6221 sw = hw->switch_info; 6222 sw->recp_list[rid].adv_rule = true; 6223 rule_head = &sw->recp_list[rid].filt_rules; 6224 6225 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI) 6226 adv_fltr->vsi_count = 1; 6227 6228 /* Add rule entry to book keeping list */ 6229 list_add(&adv_fltr->list_entry, rule_head); 6230 if (added_entry) { 6231 added_entry->rid = rid; 6232 added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id; 6233 added_entry->vsi_handle = rinfo->sw_act.vsi_handle; 6234 } 6235 err_ice_add_adv_rule: 6236 if (status && adv_fltr) { 6237 devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups); 6238 devm_kfree(ice_hw_to_dev(hw), adv_fltr); 6239 } 6240 6241 kfree(s_rule); 6242 6243 free_pkt_profile: 6244 if (profile->match & ICE_PKT_KMALLOC) { 6245 kfree(profile->offsets); 6246 kfree(profile->pkt); 6247 kfree(profile); 6248 } 6249 6250 return status; 6251 } 6252 6253 /** 6254 * ice_replay_vsi_fltr - Replay filters for requested VSI 6255 * @hw: pointer to the hardware structure 6256 * @vsi_handle: driver VSI handle 6257 * @recp_id: Recipe ID for which rules need to be replayed 6258 * @list_head: list for which filters need to be replayed 6259 * 6260 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle. 6261 * It is required to pass valid VSI handle. 6262 */ 6263 static int 6264 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id, 6265 struct list_head *list_head) 6266 { 6267 struct ice_fltr_mgmt_list_entry *itr; 6268 int status = 0; 6269 u16 hw_vsi_id; 6270 6271 if (list_empty(list_head)) 6272 return status; 6273 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 6274 6275 list_for_each_entry(itr, list_head, list_entry) { 6276 struct ice_fltr_list_entry f_entry; 6277 6278 f_entry.fltr_info = itr->fltr_info; 6279 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN && 6280 itr->fltr_info.vsi_handle == vsi_handle) { 6281 /* update the src in case it is VSI num */ 6282 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 6283 f_entry.fltr_info.src = hw_vsi_id; 6284 status = ice_add_rule_internal(hw, recp_id, &f_entry); 6285 if (status) 6286 goto end; 6287 continue; 6288 } 6289 if (!itr->vsi_list_info || 6290 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map)) 6291 continue; 6292 /* Clearing it so that the logic can add it back */ 6293 clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); 6294 f_entry.fltr_info.vsi_handle = vsi_handle; 6295 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; 6296 /* update the src in case it is VSI num */ 6297 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 6298 f_entry.fltr_info.src = hw_vsi_id; 6299 if (recp_id == ICE_SW_LKUP_VLAN) 6300 status = ice_add_vlan_internal(hw, &f_entry); 6301 else 6302 status = ice_add_rule_internal(hw, recp_id, &f_entry); 6303 if (status) 6304 goto end; 6305 } 6306 end: 6307 return status; 6308 } 6309 6310 /** 6311 * ice_adv_rem_update_vsi_list 6312 * @hw: pointer to the hardware structure 6313 * @vsi_handle: VSI handle of the VSI to remove 6314 * @fm_list: filter management entry for which the VSI list management needs to 6315 * be done 6316 */ 6317 static int 6318 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 6319 struct ice_adv_fltr_mgmt_list_entry *fm_list) 6320 { 6321 struct ice_vsi_list_map_info *vsi_list_info; 6322 enum ice_sw_lkup_type lkup_type; 6323 u16 vsi_list_id; 6324 int status; 6325 6326 if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST || 6327 fm_list->vsi_count == 0) 6328 return -EINVAL; 6329 6330 /* A rule with the VSI being removed does not exist */ 6331 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) 6332 return -ENOENT; 6333 6334 lkup_type = ICE_SW_LKUP_LAST; 6335 vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id; 6336 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 6337 ice_aqc_opc_update_sw_rules, 6338 lkup_type); 6339 if (status) 6340 return status; 6341 6342 fm_list->vsi_count--; 6343 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 6344 vsi_list_info = fm_list->vsi_list_info; 6345 if (fm_list->vsi_count == 1) { 6346 struct ice_fltr_info tmp_fltr; 6347 u16 rem_vsi_handle; 6348 6349 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, 6350 ICE_MAX_VSI); 6351 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 6352 return -EIO; 6353 6354 /* Make sure VSI list is empty before removing it below */ 6355 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 6356 vsi_list_id, true, 6357 ice_aqc_opc_update_sw_rules, 6358 lkup_type); 6359 if (status) 6360 return status; 6361 6362 memset(&tmp_fltr, 0, sizeof(tmp_fltr)); 6363 tmp_fltr.flag = fm_list->rule_info.sw_act.flag; 6364 tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id; 6365 fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI; 6366 tmp_fltr.fltr_act = ICE_FWD_TO_VSI; 6367 tmp_fltr.fwd_id.hw_vsi_id = 6368 ice_get_hw_vsi_num(hw, rem_vsi_handle); 6369 fm_list->rule_info.sw_act.fwd_id.hw_vsi_id = 6370 ice_get_hw_vsi_num(hw, rem_vsi_handle); 6371 fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle; 6372 6373 /* Update the previous switch rule of "MAC forward to VSI" to 6374 * "MAC fwd to VSI list" 6375 */ 6376 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 6377 if (status) { 6378 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 6379 tmp_fltr.fwd_id.hw_vsi_id, status); 6380 return status; 6381 } 6382 fm_list->vsi_list_info->ref_cnt--; 6383 6384 /* Remove the VSI list since it is no longer used */ 6385 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 6386 if (status) { 6387 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n", 6388 vsi_list_id, status); 6389 return status; 6390 } 6391 6392 list_del(&vsi_list_info->list_entry); 6393 devm_kfree(ice_hw_to_dev(hw), vsi_list_info); 6394 fm_list->vsi_list_info = NULL; 6395 } 6396 6397 return status; 6398 } 6399 6400 /** 6401 * ice_rem_adv_rule - removes existing advanced switch rule 6402 * @hw: pointer to the hardware structure 6403 * @lkups: information on the words that needs to be looked up. All words 6404 * together makes one recipe 6405 * @lkups_cnt: num of entries in the lkups array 6406 * @rinfo: Its the pointer to the rule information for the rule 6407 * 6408 * This function can be used to remove 1 rule at a time. The lkups is 6409 * used to describe all the words that forms the "lookup" portion of the 6410 * rule. These words can span multiple protocols. Callers to this function 6411 * need to pass in a list of protocol headers with lookup information along 6412 * and mask that determines which words are valid from the given protocol 6413 * header. rinfo describes other information related to this rule such as 6414 * forwarding IDs, priority of this rule, etc. 6415 */ 6416 static int 6417 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 6418 u16 lkups_cnt, struct ice_adv_rule_info *rinfo) 6419 { 6420 struct ice_adv_fltr_mgmt_list_entry *list_elem; 6421 struct ice_prot_lkup_ext lkup_exts; 6422 bool remove_rule = false; 6423 struct mutex *rule_lock; /* Lock to protect filter rule list */ 6424 u16 i, rid, vsi_handle; 6425 int status = 0; 6426 6427 memset(&lkup_exts, 0, sizeof(lkup_exts)); 6428 for (i = 0; i < lkups_cnt; i++) { 6429 u16 count; 6430 6431 if (lkups[i].type >= ICE_PROTOCOL_LAST) 6432 return -EIO; 6433 6434 count = ice_fill_valid_words(&lkups[i], &lkup_exts); 6435 if (!count) 6436 return -EIO; 6437 } 6438 6439 rid = ice_find_recp(hw, &lkup_exts, rinfo); 6440 /* If did not find a recipe that match the existing criteria */ 6441 if (rid == ICE_MAX_NUM_RECIPES) 6442 return -EINVAL; 6443 6444 rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock; 6445 list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo); 6446 /* the rule is already removed */ 6447 if (!list_elem) 6448 return 0; 6449 mutex_lock(rule_lock); 6450 if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) { 6451 remove_rule = true; 6452 } else if (list_elem->vsi_count > 1) { 6453 remove_rule = false; 6454 vsi_handle = rinfo->sw_act.vsi_handle; 6455 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem); 6456 } else { 6457 vsi_handle = rinfo->sw_act.vsi_handle; 6458 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem); 6459 if (status) { 6460 mutex_unlock(rule_lock); 6461 return status; 6462 } 6463 if (list_elem->vsi_count == 0) 6464 remove_rule = true; 6465 } 6466 mutex_unlock(rule_lock); 6467 if (remove_rule) { 6468 struct ice_sw_rule_lkup_rx_tx *s_rule; 6469 u16 rule_buf_sz; 6470 6471 rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule); 6472 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL); 6473 if (!s_rule) 6474 return -ENOMEM; 6475 s_rule->act = 0; 6476 s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id); 6477 s_rule->hdr_len = 0; 6478 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule, 6479 rule_buf_sz, 1, 6480 ice_aqc_opc_remove_sw_rules, NULL); 6481 if (!status || status == -ENOENT) { 6482 struct ice_switch_info *sw = hw->switch_info; 6483 6484 mutex_lock(rule_lock); 6485 list_del(&list_elem->list_entry); 6486 devm_kfree(ice_hw_to_dev(hw), list_elem->lkups); 6487 devm_kfree(ice_hw_to_dev(hw), list_elem); 6488 mutex_unlock(rule_lock); 6489 if (list_empty(&sw->recp_list[rid].filt_rules)) 6490 sw->recp_list[rid].adv_rule = false; 6491 } 6492 kfree(s_rule); 6493 } 6494 return status; 6495 } 6496 6497 /** 6498 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID 6499 * @hw: pointer to the hardware structure 6500 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID 6501 * 6502 * This function is used to remove 1 rule at a time. The removal is based on 6503 * the remove_entry parameter. This function will remove rule for a given 6504 * vsi_handle with a given rule_id which is passed as parameter in remove_entry 6505 */ 6506 int 6507 ice_rem_adv_rule_by_id(struct ice_hw *hw, 6508 struct ice_rule_query_data *remove_entry) 6509 { 6510 struct ice_adv_fltr_mgmt_list_entry *list_itr; 6511 struct list_head *list_head; 6512 struct ice_adv_rule_info rinfo; 6513 struct ice_switch_info *sw; 6514 6515 sw = hw->switch_info; 6516 if (!sw->recp_list[remove_entry->rid].recp_created) 6517 return -EINVAL; 6518 list_head = &sw->recp_list[remove_entry->rid].filt_rules; 6519 list_for_each_entry(list_itr, list_head, list_entry) { 6520 if (list_itr->rule_info.fltr_rule_id == 6521 remove_entry->rule_id) { 6522 rinfo = list_itr->rule_info; 6523 rinfo.sw_act.vsi_handle = remove_entry->vsi_handle; 6524 return ice_rem_adv_rule(hw, list_itr->lkups, 6525 list_itr->lkups_cnt, &rinfo); 6526 } 6527 } 6528 /* either list is empty or unable to find rule */ 6529 return -ENOENT; 6530 } 6531 6532 /** 6533 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI 6534 * @hw: pointer to the hardware structure 6535 * @vsi_handle: driver VSI handle 6536 * @list_head: list for which filters need to be replayed 6537 * 6538 * Replay the advanced rule for the given VSI. 6539 */ 6540 static int 6541 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle, 6542 struct list_head *list_head) 6543 { 6544 struct ice_rule_query_data added_entry = { 0 }; 6545 struct ice_adv_fltr_mgmt_list_entry *adv_fltr; 6546 int status = 0; 6547 6548 if (list_empty(list_head)) 6549 return status; 6550 list_for_each_entry(adv_fltr, list_head, list_entry) { 6551 struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info; 6552 u16 lk_cnt = adv_fltr->lkups_cnt; 6553 6554 if (vsi_handle != rinfo->sw_act.vsi_handle) 6555 continue; 6556 status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo, 6557 &added_entry); 6558 if (status) 6559 break; 6560 } 6561 return status; 6562 } 6563 6564 /** 6565 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists 6566 * @hw: pointer to the hardware structure 6567 * @vsi_handle: driver VSI handle 6568 * 6569 * Replays filters for requested VSI via vsi_handle. 6570 */ 6571 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle) 6572 { 6573 struct ice_switch_info *sw = hw->switch_info; 6574 int status; 6575 u8 i; 6576 6577 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 6578 struct list_head *head; 6579 6580 head = &sw->recp_list[i].filt_replay_rules; 6581 if (!sw->recp_list[i].adv_rule) 6582 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head); 6583 else 6584 status = ice_replay_vsi_adv_rule(hw, vsi_handle, head); 6585 if (status) 6586 return status; 6587 } 6588 return status; 6589 } 6590 6591 /** 6592 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules 6593 * @hw: pointer to the HW struct 6594 * 6595 * Deletes the filter replay rules. 6596 */ 6597 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw) 6598 { 6599 struct ice_switch_info *sw = hw->switch_info; 6600 u8 i; 6601 6602 if (!sw) 6603 return; 6604 6605 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 6606 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) { 6607 struct list_head *l_head; 6608 6609 l_head = &sw->recp_list[i].filt_replay_rules; 6610 if (!sw->recp_list[i].adv_rule) 6611 ice_rem_sw_rule_info(hw, l_head); 6612 else 6613 ice_rem_adv_rule_info(hw, l_head); 6614 } 6615 } 6616 } 6617