xref: /linux/drivers/net/ethernet/intel/ice/ice_switch.c (revision 6a128cdf1926b20a94d6af7d7d03b76ba19a4f8b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_lib.h"
5 #include "ice_switch.h"
6 #include "ice_trace.h"
7 
8 #define ICE_ETH_DA_OFFSET		0
9 #define ICE_ETH_ETHTYPE_OFFSET		12
10 #define ICE_ETH_VLAN_TCI_OFFSET		14
11 #define ICE_MAX_VLAN_ID			0xFFF
12 #define ICE_IPV6_ETHER_ID		0x86DD
13 
14 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
15  * struct to configure any switch filter rules.
16  * {DA (6 bytes), SA(6 bytes),
17  * Ether type (2 bytes for header without VLAN tag) OR
18  * VLAN tag (4 bytes for header with VLAN tag) }
19  *
20  * Word on Hardcoded values
21  * byte 0 = 0x2: to identify it as locally administered DA MAC
22  * byte 6 = 0x2: to identify it as locally administered SA MAC
23  * byte 12 = 0x81 & byte 13 = 0x00:
24  *      In case of VLAN filter first two bytes defines ether type (0x8100)
25  *      and remaining two bytes are placeholder for programming a given VLAN ID
26  *      In case of Ether type filter it is treated as header without VLAN tag
27  *      and byte 12 and 13 is used to program a given Ether type instead
28  */
29 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
30 							0x2, 0, 0, 0, 0, 0,
31 							0x81, 0, 0, 0};
32 
33 enum {
34 	ICE_PKT_OUTER_IPV6	= BIT(0),
35 	ICE_PKT_TUN_GTPC	= BIT(1),
36 	ICE_PKT_TUN_GTPU	= BIT(2),
37 	ICE_PKT_TUN_NVGRE	= BIT(3),
38 	ICE_PKT_TUN_UDP		= BIT(4),
39 	ICE_PKT_INNER_IPV6	= BIT(5),
40 	ICE_PKT_INNER_TCP	= BIT(6),
41 	ICE_PKT_INNER_UDP	= BIT(7),
42 	ICE_PKT_GTP_NOPAY	= BIT(8),
43 	ICE_PKT_KMALLOC		= BIT(9),
44 	ICE_PKT_PPPOE		= BIT(10),
45 	ICE_PKT_L2TPV3		= BIT(11),
46 	ICE_PKT_PFCP		= BIT(12),
47 };
48 
49 struct ice_dummy_pkt_offsets {
50 	enum ice_protocol_type type;
51 	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
52 };
53 
54 struct ice_dummy_pkt_profile {
55 	const struct ice_dummy_pkt_offsets *offsets;
56 	const u8 *pkt;
57 	u32 match;
58 	u16 pkt_len;
59 	u16 offsets_len;
60 };
61 
62 #define ICE_DECLARE_PKT_OFFSETS(type)					\
63 	static const struct ice_dummy_pkt_offsets			\
64 	ice_dummy_##type##_packet_offsets[]
65 
66 #define ICE_DECLARE_PKT_TEMPLATE(type)					\
67 	static const u8 ice_dummy_##type##_packet[]
68 
69 #define ICE_PKT_PROFILE(type, m) {					\
70 	.match		= (m),						\
71 	.pkt		= ice_dummy_##type##_packet,			\
72 	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
73 	.offsets	= ice_dummy_##type##_packet_offsets,		\
74 	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
75 }
76 
77 ICE_DECLARE_PKT_OFFSETS(vlan) = {
78 	{ ICE_VLAN_OFOS,        12 },
79 };
80 
81 ICE_DECLARE_PKT_TEMPLATE(vlan) = {
82 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
83 };
84 
85 ICE_DECLARE_PKT_OFFSETS(qinq) = {
86 	{ ICE_VLAN_EX,          12 },
87 	{ ICE_VLAN_IN,          16 },
88 };
89 
90 ICE_DECLARE_PKT_TEMPLATE(qinq) = {
91 	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
92 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
93 };
94 
95 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
96 	{ ICE_MAC_OFOS,		0 },
97 	{ ICE_ETYPE_OL,		12 },
98 	{ ICE_IPV4_OFOS,	14 },
99 	{ ICE_NVGRE,		34 },
100 	{ ICE_MAC_IL,		42 },
101 	{ ICE_ETYPE_IL,		54 },
102 	{ ICE_IPV4_IL,		56 },
103 	{ ICE_TCP_IL,		76 },
104 	{ ICE_PROTOCOL_LAST,	0 },
105 };
106 
107 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
108 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
109 	0x00, 0x00, 0x00, 0x00,
110 	0x00, 0x00, 0x00, 0x00,
111 
112 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
113 
114 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
115 	0x00, 0x00, 0x00, 0x00,
116 	0x00, 0x2F, 0x00, 0x00,
117 	0x00, 0x00, 0x00, 0x00,
118 	0x00, 0x00, 0x00, 0x00,
119 
120 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
121 	0x00, 0x00, 0x00, 0x00,
122 
123 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
124 	0x00, 0x00, 0x00, 0x00,
125 	0x00, 0x00, 0x00, 0x00,
126 
127 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
128 
129 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
130 	0x00, 0x00, 0x00, 0x00,
131 	0x00, 0x06, 0x00, 0x00,
132 	0x00, 0x00, 0x00, 0x00,
133 	0x00, 0x00, 0x00, 0x00,
134 
135 	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
136 	0x00, 0x00, 0x00, 0x00,
137 	0x00, 0x00, 0x00, 0x00,
138 	0x50, 0x02, 0x20, 0x00,
139 	0x00, 0x00, 0x00, 0x00
140 };
141 
142 ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
143 	{ ICE_MAC_OFOS,		0 },
144 	{ ICE_ETYPE_OL,		12 },
145 	{ ICE_IPV4_OFOS,	14 },
146 	{ ICE_NVGRE,		34 },
147 	{ ICE_MAC_IL,		42 },
148 	{ ICE_ETYPE_IL,		54 },
149 	{ ICE_IPV4_IL,		56 },
150 	{ ICE_UDP_ILOS,		76 },
151 	{ ICE_PROTOCOL_LAST,	0 },
152 };
153 
154 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
155 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
156 	0x00, 0x00, 0x00, 0x00,
157 	0x00, 0x00, 0x00, 0x00,
158 
159 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
160 
161 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
162 	0x00, 0x00, 0x00, 0x00,
163 	0x00, 0x2F, 0x00, 0x00,
164 	0x00, 0x00, 0x00, 0x00,
165 	0x00, 0x00, 0x00, 0x00,
166 
167 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
168 	0x00, 0x00, 0x00, 0x00,
169 
170 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
171 	0x00, 0x00, 0x00, 0x00,
172 	0x00, 0x00, 0x00, 0x00,
173 
174 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
175 
176 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
177 	0x00, 0x00, 0x00, 0x00,
178 	0x00, 0x11, 0x00, 0x00,
179 	0x00, 0x00, 0x00, 0x00,
180 	0x00, 0x00, 0x00, 0x00,
181 
182 	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
183 	0x00, 0x08, 0x00, 0x00,
184 };
185 
186 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
187 	{ ICE_MAC_OFOS,		0 },
188 	{ ICE_ETYPE_OL,		12 },
189 	{ ICE_IPV4_OFOS,	14 },
190 	{ ICE_UDP_OF,		34 },
191 	{ ICE_VXLAN,		42 },
192 	{ ICE_GENEVE,		42 },
193 	{ ICE_VXLAN_GPE,	42 },
194 	{ ICE_MAC_IL,		50 },
195 	{ ICE_ETYPE_IL,		62 },
196 	{ ICE_IPV4_IL,		64 },
197 	{ ICE_TCP_IL,		84 },
198 	{ ICE_PROTOCOL_LAST,	0 },
199 };
200 
201 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
202 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
203 	0x00, 0x00, 0x00, 0x00,
204 	0x00, 0x00, 0x00, 0x00,
205 
206 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
207 
208 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
209 	0x00, 0x01, 0x00, 0x00,
210 	0x40, 0x11, 0x00, 0x00,
211 	0x00, 0x00, 0x00, 0x00,
212 	0x00, 0x00, 0x00, 0x00,
213 
214 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
215 	0x00, 0x46, 0x00, 0x00,
216 
217 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
218 	0x00, 0x00, 0x00, 0x00,
219 
220 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
221 	0x00, 0x00, 0x00, 0x00,
222 	0x00, 0x00, 0x00, 0x00,
223 
224 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
225 
226 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
227 	0x00, 0x01, 0x00, 0x00,
228 	0x40, 0x06, 0x00, 0x00,
229 	0x00, 0x00, 0x00, 0x00,
230 	0x00, 0x00, 0x00, 0x00,
231 
232 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
233 	0x00, 0x00, 0x00, 0x00,
234 	0x00, 0x00, 0x00, 0x00,
235 	0x50, 0x02, 0x20, 0x00,
236 	0x00, 0x00, 0x00, 0x00
237 };
238 
239 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
240 	{ ICE_MAC_OFOS,		0 },
241 	{ ICE_ETYPE_OL,		12 },
242 	{ ICE_IPV4_OFOS,	14 },
243 	{ ICE_UDP_OF,		34 },
244 	{ ICE_VXLAN,		42 },
245 	{ ICE_GENEVE,		42 },
246 	{ ICE_VXLAN_GPE,	42 },
247 	{ ICE_MAC_IL,		50 },
248 	{ ICE_ETYPE_IL,		62 },
249 	{ ICE_IPV4_IL,		64 },
250 	{ ICE_UDP_ILOS,		84 },
251 	{ ICE_PROTOCOL_LAST,	0 },
252 };
253 
254 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
255 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
256 	0x00, 0x00, 0x00, 0x00,
257 	0x00, 0x00, 0x00, 0x00,
258 
259 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
260 
261 	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
262 	0x00, 0x01, 0x00, 0x00,
263 	0x00, 0x11, 0x00, 0x00,
264 	0x00, 0x00, 0x00, 0x00,
265 	0x00, 0x00, 0x00, 0x00,
266 
267 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
268 	0x00, 0x3a, 0x00, 0x00,
269 
270 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
271 	0x00, 0x00, 0x00, 0x00,
272 
273 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
274 	0x00, 0x00, 0x00, 0x00,
275 	0x00, 0x00, 0x00, 0x00,
276 
277 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
278 
279 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
280 	0x00, 0x01, 0x00, 0x00,
281 	0x00, 0x11, 0x00, 0x00,
282 	0x00, 0x00, 0x00, 0x00,
283 	0x00, 0x00, 0x00, 0x00,
284 
285 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
286 	0x00, 0x08, 0x00, 0x00,
287 };
288 
289 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
290 	{ ICE_MAC_OFOS,		0 },
291 	{ ICE_ETYPE_OL,		12 },
292 	{ ICE_IPV4_OFOS,	14 },
293 	{ ICE_NVGRE,		34 },
294 	{ ICE_MAC_IL,		42 },
295 	{ ICE_ETYPE_IL,		54 },
296 	{ ICE_IPV6_IL,		56 },
297 	{ ICE_TCP_IL,		96 },
298 	{ ICE_PROTOCOL_LAST,	0 },
299 };
300 
301 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
302 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
303 	0x00, 0x00, 0x00, 0x00,
304 	0x00, 0x00, 0x00, 0x00,
305 
306 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
307 
308 	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
309 	0x00, 0x00, 0x00, 0x00,
310 	0x00, 0x2F, 0x00, 0x00,
311 	0x00, 0x00, 0x00, 0x00,
312 	0x00, 0x00, 0x00, 0x00,
313 
314 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
315 	0x00, 0x00, 0x00, 0x00,
316 
317 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
318 	0x00, 0x00, 0x00, 0x00,
319 	0x00, 0x00, 0x00, 0x00,
320 
321 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
322 
323 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
324 	0x00, 0x08, 0x06, 0x40,
325 	0x00, 0x00, 0x00, 0x00,
326 	0x00, 0x00, 0x00, 0x00,
327 	0x00, 0x00, 0x00, 0x00,
328 	0x00, 0x00, 0x00, 0x00,
329 	0x00, 0x00, 0x00, 0x00,
330 	0x00, 0x00, 0x00, 0x00,
331 	0x00, 0x00, 0x00, 0x00,
332 	0x00, 0x00, 0x00, 0x00,
333 
334 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
335 	0x00, 0x00, 0x00, 0x00,
336 	0x00, 0x00, 0x00, 0x00,
337 	0x50, 0x02, 0x20, 0x00,
338 	0x00, 0x00, 0x00, 0x00
339 };
340 
341 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
342 	{ ICE_MAC_OFOS,		0 },
343 	{ ICE_ETYPE_OL,		12 },
344 	{ ICE_IPV4_OFOS,	14 },
345 	{ ICE_NVGRE,		34 },
346 	{ ICE_MAC_IL,		42 },
347 	{ ICE_ETYPE_IL,		54 },
348 	{ ICE_IPV6_IL,		56 },
349 	{ ICE_UDP_ILOS,		96 },
350 	{ ICE_PROTOCOL_LAST,	0 },
351 };
352 
353 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
354 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
355 	0x00, 0x00, 0x00, 0x00,
356 	0x00, 0x00, 0x00, 0x00,
357 
358 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
359 
360 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
361 	0x00, 0x00, 0x00, 0x00,
362 	0x00, 0x2F, 0x00, 0x00,
363 	0x00, 0x00, 0x00, 0x00,
364 	0x00, 0x00, 0x00, 0x00,
365 
366 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
367 	0x00, 0x00, 0x00, 0x00,
368 
369 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
370 	0x00, 0x00, 0x00, 0x00,
371 	0x00, 0x00, 0x00, 0x00,
372 
373 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
374 
375 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
376 	0x00, 0x08, 0x11, 0x40,
377 	0x00, 0x00, 0x00, 0x00,
378 	0x00, 0x00, 0x00, 0x00,
379 	0x00, 0x00, 0x00, 0x00,
380 	0x00, 0x00, 0x00, 0x00,
381 	0x00, 0x00, 0x00, 0x00,
382 	0x00, 0x00, 0x00, 0x00,
383 	0x00, 0x00, 0x00, 0x00,
384 	0x00, 0x00, 0x00, 0x00,
385 
386 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
387 	0x00, 0x08, 0x00, 0x00,
388 };
389 
390 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
391 	{ ICE_MAC_OFOS,		0 },
392 	{ ICE_ETYPE_OL,		12 },
393 	{ ICE_IPV4_OFOS,	14 },
394 	{ ICE_UDP_OF,		34 },
395 	{ ICE_VXLAN,		42 },
396 	{ ICE_GENEVE,		42 },
397 	{ ICE_VXLAN_GPE,	42 },
398 	{ ICE_MAC_IL,		50 },
399 	{ ICE_ETYPE_IL,		62 },
400 	{ ICE_IPV6_IL,		64 },
401 	{ ICE_TCP_IL,		104 },
402 	{ ICE_PROTOCOL_LAST,	0 },
403 };
404 
405 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
406 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
407 	0x00, 0x00, 0x00, 0x00,
408 	0x00, 0x00, 0x00, 0x00,
409 
410 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
411 
412 	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
413 	0x00, 0x01, 0x00, 0x00,
414 	0x40, 0x11, 0x00, 0x00,
415 	0x00, 0x00, 0x00, 0x00,
416 	0x00, 0x00, 0x00, 0x00,
417 
418 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
419 	0x00, 0x5a, 0x00, 0x00,
420 
421 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
422 	0x00, 0x00, 0x00, 0x00,
423 
424 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
425 	0x00, 0x00, 0x00, 0x00,
426 	0x00, 0x00, 0x00, 0x00,
427 
428 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
429 
430 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
431 	0x00, 0x08, 0x06, 0x40,
432 	0x00, 0x00, 0x00, 0x00,
433 	0x00, 0x00, 0x00, 0x00,
434 	0x00, 0x00, 0x00, 0x00,
435 	0x00, 0x00, 0x00, 0x00,
436 	0x00, 0x00, 0x00, 0x00,
437 	0x00, 0x00, 0x00, 0x00,
438 	0x00, 0x00, 0x00, 0x00,
439 	0x00, 0x00, 0x00, 0x00,
440 
441 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
442 	0x00, 0x00, 0x00, 0x00,
443 	0x00, 0x00, 0x00, 0x00,
444 	0x50, 0x02, 0x20, 0x00,
445 	0x00, 0x00, 0x00, 0x00
446 };
447 
448 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
449 	{ ICE_MAC_OFOS,		0 },
450 	{ ICE_ETYPE_OL,		12 },
451 	{ ICE_IPV4_OFOS,	14 },
452 	{ ICE_UDP_OF,		34 },
453 	{ ICE_VXLAN,		42 },
454 	{ ICE_GENEVE,		42 },
455 	{ ICE_VXLAN_GPE,	42 },
456 	{ ICE_MAC_IL,		50 },
457 	{ ICE_ETYPE_IL,		62 },
458 	{ ICE_IPV6_IL,		64 },
459 	{ ICE_UDP_ILOS,		104 },
460 	{ ICE_PROTOCOL_LAST,	0 },
461 };
462 
463 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
464 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
465 	0x00, 0x00, 0x00, 0x00,
466 	0x00, 0x00, 0x00, 0x00,
467 
468 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
469 
470 	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
471 	0x00, 0x01, 0x00, 0x00,
472 	0x00, 0x11, 0x00, 0x00,
473 	0x00, 0x00, 0x00, 0x00,
474 	0x00, 0x00, 0x00, 0x00,
475 
476 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
477 	0x00, 0x4e, 0x00, 0x00,
478 
479 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
480 	0x00, 0x00, 0x00, 0x00,
481 
482 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
483 	0x00, 0x00, 0x00, 0x00,
484 	0x00, 0x00, 0x00, 0x00,
485 
486 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
487 
488 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
489 	0x00, 0x08, 0x11, 0x40,
490 	0x00, 0x00, 0x00, 0x00,
491 	0x00, 0x00, 0x00, 0x00,
492 	0x00, 0x00, 0x00, 0x00,
493 	0x00, 0x00, 0x00, 0x00,
494 	0x00, 0x00, 0x00, 0x00,
495 	0x00, 0x00, 0x00, 0x00,
496 	0x00, 0x00, 0x00, 0x00,
497 	0x00, 0x00, 0x00, 0x00,
498 
499 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
500 	0x00, 0x08, 0x00, 0x00,
501 };
502 
503 /* offset info for MAC + IPv4 + UDP dummy packet */
504 ICE_DECLARE_PKT_OFFSETS(udp) = {
505 	{ ICE_MAC_OFOS,		0 },
506 	{ ICE_ETYPE_OL,		12 },
507 	{ ICE_IPV4_OFOS,	14 },
508 	{ ICE_UDP_ILOS,		34 },
509 	{ ICE_PROTOCOL_LAST,	0 },
510 };
511 
512 /* Dummy packet for MAC + IPv4 + UDP */
513 ICE_DECLARE_PKT_TEMPLATE(udp) = {
514 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
515 	0x00, 0x00, 0x00, 0x00,
516 	0x00, 0x00, 0x00, 0x00,
517 
518 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
519 
520 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
521 	0x00, 0x01, 0x00, 0x00,
522 	0x00, 0x11, 0x00, 0x00,
523 	0x00, 0x00, 0x00, 0x00,
524 	0x00, 0x00, 0x00, 0x00,
525 
526 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
527 	0x00, 0x08, 0x00, 0x00,
528 
529 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
530 };
531 
532 /* offset info for MAC + IPv4 + TCP dummy packet */
533 ICE_DECLARE_PKT_OFFSETS(tcp) = {
534 	{ ICE_MAC_OFOS,		0 },
535 	{ ICE_ETYPE_OL,		12 },
536 	{ ICE_IPV4_OFOS,	14 },
537 	{ ICE_TCP_IL,		34 },
538 	{ ICE_PROTOCOL_LAST,	0 },
539 };
540 
541 /* Dummy packet for MAC + IPv4 + TCP */
542 ICE_DECLARE_PKT_TEMPLATE(tcp) = {
543 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
544 	0x00, 0x00, 0x00, 0x00,
545 	0x00, 0x00, 0x00, 0x00,
546 
547 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
548 
549 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
550 	0x00, 0x01, 0x00, 0x00,
551 	0x00, 0x06, 0x00, 0x00,
552 	0x00, 0x00, 0x00, 0x00,
553 	0x00, 0x00, 0x00, 0x00,
554 
555 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
556 	0x00, 0x00, 0x00, 0x00,
557 	0x00, 0x00, 0x00, 0x00,
558 	0x50, 0x00, 0x00, 0x00,
559 	0x00, 0x00, 0x00, 0x00,
560 
561 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
562 };
563 
564 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
565 	{ ICE_MAC_OFOS,		0 },
566 	{ ICE_ETYPE_OL,		12 },
567 	{ ICE_IPV6_OFOS,	14 },
568 	{ ICE_TCP_IL,		54 },
569 	{ ICE_PROTOCOL_LAST,	0 },
570 };
571 
572 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
573 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
574 	0x00, 0x00, 0x00, 0x00,
575 	0x00, 0x00, 0x00, 0x00,
576 
577 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
578 
579 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
580 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
581 	0x00, 0x00, 0x00, 0x00,
582 	0x00, 0x00, 0x00, 0x00,
583 	0x00, 0x00, 0x00, 0x00,
584 	0x00, 0x00, 0x00, 0x00,
585 	0x00, 0x00, 0x00, 0x00,
586 	0x00, 0x00, 0x00, 0x00,
587 	0x00, 0x00, 0x00, 0x00,
588 	0x00, 0x00, 0x00, 0x00,
589 
590 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
591 	0x00, 0x00, 0x00, 0x00,
592 	0x00, 0x00, 0x00, 0x00,
593 	0x50, 0x00, 0x00, 0x00,
594 	0x00, 0x00, 0x00, 0x00,
595 
596 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
597 };
598 
599 /* IPv6 + UDP */
600 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
601 	{ ICE_MAC_OFOS,		0 },
602 	{ ICE_ETYPE_OL,		12 },
603 	{ ICE_IPV6_OFOS,	14 },
604 	{ ICE_UDP_ILOS,		54 },
605 	{ ICE_PROTOCOL_LAST,	0 },
606 };
607 
608 /* IPv6 + UDP dummy packet */
609 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
610 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
611 	0x00, 0x00, 0x00, 0x00,
612 	0x00, 0x00, 0x00, 0x00,
613 
614 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
615 
616 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
617 	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
618 	0x00, 0x00, 0x00, 0x00,
619 	0x00, 0x00, 0x00, 0x00,
620 	0x00, 0x00, 0x00, 0x00,
621 	0x00, 0x00, 0x00, 0x00,
622 	0x00, 0x00, 0x00, 0x00,
623 	0x00, 0x00, 0x00, 0x00,
624 	0x00, 0x00, 0x00, 0x00,
625 	0x00, 0x00, 0x00, 0x00,
626 
627 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
628 	0x00, 0x10, 0x00, 0x00,
629 
630 	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
631 	0x00, 0x00, 0x00, 0x00,
632 
633 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
634 };
635 
636 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
637 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
638 	{ ICE_MAC_OFOS,		0 },
639 	{ ICE_IPV4_OFOS,	14 },
640 	{ ICE_UDP_OF,		34 },
641 	{ ICE_GTP,		42 },
642 	{ ICE_IPV4_IL,		62 },
643 	{ ICE_TCP_IL,		82 },
644 	{ ICE_PROTOCOL_LAST,	0 },
645 };
646 
647 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
648 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
649 	0x00, 0x00, 0x00, 0x00,
650 	0x00, 0x00, 0x00, 0x00,
651 	0x08, 0x00,
652 
653 	0x45, 0x00, 0x00, 0x58, /* IP 14 */
654 	0x00, 0x00, 0x00, 0x00,
655 	0x00, 0x11, 0x00, 0x00,
656 	0x00, 0x00, 0x00, 0x00,
657 	0x00, 0x00, 0x00, 0x00,
658 
659 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
660 	0x00, 0x44, 0x00, 0x00,
661 
662 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
663 	0x00, 0x00, 0x00, 0x00,
664 	0x00, 0x00, 0x00, 0x85,
665 
666 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
667 	0x00, 0x00, 0x00, 0x00,
668 
669 	0x45, 0x00, 0x00, 0x28, /* IP 62 */
670 	0x00, 0x00, 0x00, 0x00,
671 	0x00, 0x06, 0x00, 0x00,
672 	0x00, 0x00, 0x00, 0x00,
673 	0x00, 0x00, 0x00, 0x00,
674 
675 	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
676 	0x00, 0x00, 0x00, 0x00,
677 	0x00, 0x00, 0x00, 0x00,
678 	0x50, 0x00, 0x00, 0x00,
679 	0x00, 0x00, 0x00, 0x00,
680 
681 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
682 };
683 
684 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
685 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
686 	{ ICE_MAC_OFOS,		0 },
687 	{ ICE_IPV4_OFOS,	14 },
688 	{ ICE_UDP_OF,		34 },
689 	{ ICE_GTP,		42 },
690 	{ ICE_IPV4_IL,		62 },
691 	{ ICE_UDP_ILOS,		82 },
692 	{ ICE_PROTOCOL_LAST,	0 },
693 };
694 
695 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
696 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
697 	0x00, 0x00, 0x00, 0x00,
698 	0x00, 0x00, 0x00, 0x00,
699 	0x08, 0x00,
700 
701 	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
702 	0x00, 0x00, 0x00, 0x00,
703 	0x00, 0x11, 0x00, 0x00,
704 	0x00, 0x00, 0x00, 0x00,
705 	0x00, 0x00, 0x00, 0x00,
706 
707 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
708 	0x00, 0x38, 0x00, 0x00,
709 
710 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
711 	0x00, 0x00, 0x00, 0x00,
712 	0x00, 0x00, 0x00, 0x85,
713 
714 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
715 	0x00, 0x00, 0x00, 0x00,
716 
717 	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
718 	0x00, 0x00, 0x00, 0x00,
719 	0x00, 0x11, 0x00, 0x00,
720 	0x00, 0x00, 0x00, 0x00,
721 	0x00, 0x00, 0x00, 0x00,
722 
723 	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
724 	0x00, 0x08, 0x00, 0x00,
725 
726 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
727 };
728 
729 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
730 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
731 	{ ICE_MAC_OFOS,		0 },
732 	{ ICE_IPV4_OFOS,	14 },
733 	{ ICE_UDP_OF,		34 },
734 	{ ICE_GTP,		42 },
735 	{ ICE_IPV6_IL,		62 },
736 	{ ICE_TCP_IL,		102 },
737 	{ ICE_PROTOCOL_LAST,	0 },
738 };
739 
740 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
741 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
742 	0x00, 0x00, 0x00, 0x00,
743 	0x00, 0x00, 0x00, 0x00,
744 	0x08, 0x00,
745 
746 	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
747 	0x00, 0x00, 0x00, 0x00,
748 	0x00, 0x11, 0x00, 0x00,
749 	0x00, 0x00, 0x00, 0x00,
750 	0x00, 0x00, 0x00, 0x00,
751 
752 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
753 	0x00, 0x58, 0x00, 0x00,
754 
755 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
756 	0x00, 0x00, 0x00, 0x00,
757 	0x00, 0x00, 0x00, 0x85,
758 
759 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
760 	0x00, 0x00, 0x00, 0x00,
761 
762 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
763 	0x00, 0x14, 0x06, 0x00,
764 	0x00, 0x00, 0x00, 0x00,
765 	0x00, 0x00, 0x00, 0x00,
766 	0x00, 0x00, 0x00, 0x00,
767 	0x00, 0x00, 0x00, 0x00,
768 	0x00, 0x00, 0x00, 0x00,
769 	0x00, 0x00, 0x00, 0x00,
770 	0x00, 0x00, 0x00, 0x00,
771 	0x00, 0x00, 0x00, 0x00,
772 
773 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
774 	0x00, 0x00, 0x00, 0x00,
775 	0x00, 0x00, 0x00, 0x00,
776 	0x50, 0x00, 0x00, 0x00,
777 	0x00, 0x00, 0x00, 0x00,
778 
779 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
780 };
781 
782 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
783 	{ ICE_MAC_OFOS,		0 },
784 	{ ICE_IPV4_OFOS,	14 },
785 	{ ICE_UDP_OF,		34 },
786 	{ ICE_GTP,		42 },
787 	{ ICE_IPV6_IL,		62 },
788 	{ ICE_UDP_ILOS,		102 },
789 	{ ICE_PROTOCOL_LAST,	0 },
790 };
791 
792 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
793 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
794 	0x00, 0x00, 0x00, 0x00,
795 	0x00, 0x00, 0x00, 0x00,
796 	0x08, 0x00,
797 
798 	0x45, 0x00, 0x00, 0x60, /* IP 14 */
799 	0x00, 0x00, 0x00, 0x00,
800 	0x00, 0x11, 0x00, 0x00,
801 	0x00, 0x00, 0x00, 0x00,
802 	0x00, 0x00, 0x00, 0x00,
803 
804 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
805 	0x00, 0x4c, 0x00, 0x00,
806 
807 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
808 	0x00, 0x00, 0x00, 0x00,
809 	0x00, 0x00, 0x00, 0x85,
810 
811 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
812 	0x00, 0x00, 0x00, 0x00,
813 
814 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
815 	0x00, 0x08, 0x11, 0x00,
816 	0x00, 0x00, 0x00, 0x00,
817 	0x00, 0x00, 0x00, 0x00,
818 	0x00, 0x00, 0x00, 0x00,
819 	0x00, 0x00, 0x00, 0x00,
820 	0x00, 0x00, 0x00, 0x00,
821 	0x00, 0x00, 0x00, 0x00,
822 	0x00, 0x00, 0x00, 0x00,
823 	0x00, 0x00, 0x00, 0x00,
824 
825 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
826 	0x00, 0x08, 0x00, 0x00,
827 
828 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
829 };
830 
831 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
832 	{ ICE_MAC_OFOS,		0 },
833 	{ ICE_IPV6_OFOS,	14 },
834 	{ ICE_UDP_OF,		54 },
835 	{ ICE_GTP,		62 },
836 	{ ICE_IPV4_IL,		82 },
837 	{ ICE_TCP_IL,		102 },
838 	{ ICE_PROTOCOL_LAST,	0 },
839 };
840 
841 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
842 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
843 	0x00, 0x00, 0x00, 0x00,
844 	0x00, 0x00, 0x00, 0x00,
845 	0x86, 0xdd,
846 
847 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
848 	0x00, 0x44, 0x11, 0x00,
849 	0x00, 0x00, 0x00, 0x00,
850 	0x00, 0x00, 0x00, 0x00,
851 	0x00, 0x00, 0x00, 0x00,
852 	0x00, 0x00, 0x00, 0x00,
853 	0x00, 0x00, 0x00, 0x00,
854 	0x00, 0x00, 0x00, 0x00,
855 	0x00, 0x00, 0x00, 0x00,
856 	0x00, 0x00, 0x00, 0x00,
857 
858 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
859 	0x00, 0x44, 0x00, 0x00,
860 
861 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
862 	0x00, 0x00, 0x00, 0x00,
863 	0x00, 0x00, 0x00, 0x85,
864 
865 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
866 	0x00, 0x00, 0x00, 0x00,
867 
868 	0x45, 0x00, 0x00, 0x28, /* IP 82 */
869 	0x00, 0x00, 0x00, 0x00,
870 	0x00, 0x06, 0x00, 0x00,
871 	0x00, 0x00, 0x00, 0x00,
872 	0x00, 0x00, 0x00, 0x00,
873 
874 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
875 	0x00, 0x00, 0x00, 0x00,
876 	0x00, 0x00, 0x00, 0x00,
877 	0x50, 0x00, 0x00, 0x00,
878 	0x00, 0x00, 0x00, 0x00,
879 
880 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
881 };
882 
883 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
884 	{ ICE_MAC_OFOS,		0 },
885 	{ ICE_IPV6_OFOS,	14 },
886 	{ ICE_UDP_OF,		54 },
887 	{ ICE_GTP,		62 },
888 	{ ICE_IPV4_IL,		82 },
889 	{ ICE_UDP_ILOS,		102 },
890 	{ ICE_PROTOCOL_LAST,	0 },
891 };
892 
893 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
894 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
895 	0x00, 0x00, 0x00, 0x00,
896 	0x00, 0x00, 0x00, 0x00,
897 	0x86, 0xdd,
898 
899 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
900 	0x00, 0x38, 0x11, 0x00,
901 	0x00, 0x00, 0x00, 0x00,
902 	0x00, 0x00, 0x00, 0x00,
903 	0x00, 0x00, 0x00, 0x00,
904 	0x00, 0x00, 0x00, 0x00,
905 	0x00, 0x00, 0x00, 0x00,
906 	0x00, 0x00, 0x00, 0x00,
907 	0x00, 0x00, 0x00, 0x00,
908 	0x00, 0x00, 0x00, 0x00,
909 
910 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
911 	0x00, 0x38, 0x00, 0x00,
912 
913 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
914 	0x00, 0x00, 0x00, 0x00,
915 	0x00, 0x00, 0x00, 0x85,
916 
917 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
918 	0x00, 0x00, 0x00, 0x00,
919 
920 	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
921 	0x00, 0x00, 0x00, 0x00,
922 	0x00, 0x11, 0x00, 0x00,
923 	0x00, 0x00, 0x00, 0x00,
924 	0x00, 0x00, 0x00, 0x00,
925 
926 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
927 	0x00, 0x08, 0x00, 0x00,
928 
929 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
930 };
931 
932 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
933 	{ ICE_MAC_OFOS,		0 },
934 	{ ICE_IPV6_OFOS,	14 },
935 	{ ICE_UDP_OF,		54 },
936 	{ ICE_GTP,		62 },
937 	{ ICE_IPV6_IL,		82 },
938 	{ ICE_TCP_IL,		122 },
939 	{ ICE_PROTOCOL_LAST,	0 },
940 };
941 
942 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
943 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
944 	0x00, 0x00, 0x00, 0x00,
945 	0x00, 0x00, 0x00, 0x00,
946 	0x86, 0xdd,
947 
948 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
949 	0x00, 0x58, 0x11, 0x00,
950 	0x00, 0x00, 0x00, 0x00,
951 	0x00, 0x00, 0x00, 0x00,
952 	0x00, 0x00, 0x00, 0x00,
953 	0x00, 0x00, 0x00, 0x00,
954 	0x00, 0x00, 0x00, 0x00,
955 	0x00, 0x00, 0x00, 0x00,
956 	0x00, 0x00, 0x00, 0x00,
957 	0x00, 0x00, 0x00, 0x00,
958 
959 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
960 	0x00, 0x58, 0x00, 0x00,
961 
962 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
963 	0x00, 0x00, 0x00, 0x00,
964 	0x00, 0x00, 0x00, 0x85,
965 
966 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
967 	0x00, 0x00, 0x00, 0x00,
968 
969 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
970 	0x00, 0x14, 0x06, 0x00,
971 	0x00, 0x00, 0x00, 0x00,
972 	0x00, 0x00, 0x00, 0x00,
973 	0x00, 0x00, 0x00, 0x00,
974 	0x00, 0x00, 0x00, 0x00,
975 	0x00, 0x00, 0x00, 0x00,
976 	0x00, 0x00, 0x00, 0x00,
977 	0x00, 0x00, 0x00, 0x00,
978 	0x00, 0x00, 0x00, 0x00,
979 
980 	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
981 	0x00, 0x00, 0x00, 0x00,
982 	0x00, 0x00, 0x00, 0x00,
983 	0x50, 0x00, 0x00, 0x00,
984 	0x00, 0x00, 0x00, 0x00,
985 
986 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
987 };
988 
989 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
990 	{ ICE_MAC_OFOS,		0 },
991 	{ ICE_IPV6_OFOS,	14 },
992 	{ ICE_UDP_OF,		54 },
993 	{ ICE_GTP,		62 },
994 	{ ICE_IPV6_IL,		82 },
995 	{ ICE_UDP_ILOS,		122 },
996 	{ ICE_PROTOCOL_LAST,	0 },
997 };
998 
999 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
1000 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
1001 	0x00, 0x00, 0x00, 0x00,
1002 	0x00, 0x00, 0x00, 0x00,
1003 	0x86, 0xdd,
1004 
1005 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1006 	0x00, 0x4c, 0x11, 0x00,
1007 	0x00, 0x00, 0x00, 0x00,
1008 	0x00, 0x00, 0x00, 0x00,
1009 	0x00, 0x00, 0x00, 0x00,
1010 	0x00, 0x00, 0x00, 0x00,
1011 	0x00, 0x00, 0x00, 0x00,
1012 	0x00, 0x00, 0x00, 0x00,
1013 	0x00, 0x00, 0x00, 0x00,
1014 	0x00, 0x00, 0x00, 0x00,
1015 
1016 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1017 	0x00, 0x4c, 0x00, 0x00,
1018 
1019 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1020 	0x00, 0x00, 0x00, 0x00,
1021 	0x00, 0x00, 0x00, 0x85,
1022 
1023 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1024 	0x00, 0x00, 0x00, 0x00,
1025 
1026 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1027 	0x00, 0x08, 0x11, 0x00,
1028 	0x00, 0x00, 0x00, 0x00,
1029 	0x00, 0x00, 0x00, 0x00,
1030 	0x00, 0x00, 0x00, 0x00,
1031 	0x00, 0x00, 0x00, 0x00,
1032 	0x00, 0x00, 0x00, 0x00,
1033 	0x00, 0x00, 0x00, 0x00,
1034 	0x00, 0x00, 0x00, 0x00,
1035 	0x00, 0x00, 0x00, 0x00,
1036 
1037 	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1038 	0x00, 0x08, 0x00, 0x00,
1039 
1040 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1041 };
1042 
1043 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1044 	{ ICE_MAC_OFOS,		0 },
1045 	{ ICE_IPV4_OFOS,	14 },
1046 	{ ICE_UDP_OF,		34 },
1047 	{ ICE_GTP_NO_PAY,	42 },
1048 	{ ICE_PROTOCOL_LAST,	0 },
1049 };
1050 
1051 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1052 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1053 	0x00, 0x00, 0x00, 0x00,
1054 	0x00, 0x00, 0x00, 0x00,
1055 	0x08, 0x00,
1056 
1057 	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1058 	0x00, 0x00, 0x40, 0x00,
1059 	0x40, 0x11, 0x00, 0x00,
1060 	0x00, 0x00, 0x00, 0x00,
1061 	0x00, 0x00, 0x00, 0x00,
1062 
1063 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1064 	0x00, 0x00, 0x00, 0x00,
1065 
1066 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1067 	0x00, 0x00, 0x00, 0x00,
1068 	0x00, 0x00, 0x00, 0x85,
1069 
1070 	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1071 	0x00, 0x00, 0x00, 0x00,
1072 
1073 	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1074 	0x00, 0x00, 0x40, 0x00,
1075 	0x40, 0x00, 0x00, 0x00,
1076 	0x00, 0x00, 0x00, 0x00,
1077 	0x00, 0x00, 0x00, 0x00,
1078 	0x00, 0x00,
1079 };
1080 
1081 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1082 	{ ICE_MAC_OFOS,		0 },
1083 	{ ICE_IPV6_OFOS,	14 },
1084 	{ ICE_UDP_OF,		54 },
1085 	{ ICE_GTP_NO_PAY,	62 },
1086 	{ ICE_PROTOCOL_LAST,	0 },
1087 };
1088 
1089 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1090 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1091 	0x00, 0x00, 0x00, 0x00,
1092 	0x00, 0x00, 0x00, 0x00,
1093 	0x86, 0xdd,
1094 
1095 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1096 	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1097 	0x00, 0x00, 0x00, 0x00,
1098 	0x00, 0x00, 0x00, 0x00,
1099 	0x00, 0x00, 0x00, 0x00,
1100 	0x00, 0x00, 0x00, 0x00,
1101 	0x00, 0x00, 0x00, 0x00,
1102 	0x00, 0x00, 0x00, 0x00,
1103 	0x00, 0x00, 0x00, 0x00,
1104 	0x00, 0x00, 0x00, 0x00,
1105 
1106 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1107 	0x00, 0x00, 0x00, 0x00,
1108 
1109 	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1110 	0x00, 0x00, 0x00, 0x00,
1111 
1112 	0x00, 0x00,
1113 };
1114 
1115 ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv4) = {
1116 	{ ICE_MAC_OFOS,		0 },
1117 	{ ICE_ETYPE_OL,		12 },
1118 	{ ICE_IPV4_OFOS,	14 },
1119 	{ ICE_UDP_ILOS,		34 },
1120 	{ ICE_PFCP,		42 },
1121 	{ ICE_PROTOCOL_LAST,	0 },
1122 };
1123 
1124 ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv4) = {
1125 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1126 	0x00, 0x00, 0x00, 0x00,
1127 	0x00, 0x00, 0x00, 0x00,
1128 
1129 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1130 
1131 	0x45, 0x00, 0x00, 0x2c, /* ICE_IPV4_OFOS 14 */
1132 	0x00, 0x01, 0x00, 0x00,
1133 	0x00, 0x11, 0x00, 0x00,
1134 	0x00, 0x00, 0x00, 0x00,
1135 	0x00, 0x00, 0x00, 0x00,
1136 
1137 	0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 34 */
1138 	0x00, 0x18, 0x00, 0x00,
1139 
1140 	0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 42 */
1141 	0x00, 0x00, 0x00, 0x00,
1142 	0x00, 0x00, 0x00, 0x00,
1143 	0x00, 0x00, 0x00, 0x00,
1144 
1145 	0x00, 0x00,		/* 2 bytes for 4 byte alignment */
1146 };
1147 
1148 ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv6) = {
1149 	{ ICE_MAC_OFOS,		0 },
1150 	{ ICE_ETYPE_OL,		12 },
1151 	{ ICE_IPV6_OFOS,	14 },
1152 	{ ICE_UDP_ILOS,		54 },
1153 	{ ICE_PFCP,		62 },
1154 	{ ICE_PROTOCOL_LAST,	0 },
1155 };
1156 
1157 ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv6) = {
1158 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1159 	0x00, 0x00, 0x00, 0x00,
1160 	0x00, 0x00, 0x00, 0x00,
1161 
1162 	0x86, 0xdd,		/* ICE_ETYPE_OL 12 */
1163 
1164 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1165 	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
1166 	0x00, 0x00, 0x00, 0x00,
1167 	0x00, 0x00, 0x00, 0x00,
1168 	0x00, 0x00, 0x00, 0x00,
1169 	0x00, 0x00, 0x00, 0x00,
1170 	0x00, 0x00, 0x00, 0x00,
1171 	0x00, 0x00, 0x00, 0x00,
1172 	0x00, 0x00, 0x00, 0x00,
1173 	0x00, 0x00, 0x00, 0x00,
1174 
1175 	0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 54 */
1176 	0x00, 0x18, 0x00, 0x00,
1177 
1178 	0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 62 */
1179 	0x00, 0x00, 0x00, 0x00,
1180 	0x00, 0x00, 0x00, 0x00,
1181 	0x00, 0x00, 0x00, 0x00,
1182 
1183 	0x00, 0x00,		/* 2 bytes for 4 byte alignment */
1184 };
1185 
1186 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1187 	{ ICE_MAC_OFOS,		0 },
1188 	{ ICE_ETYPE_OL,		12 },
1189 	{ ICE_PPPOE,		14 },
1190 	{ ICE_IPV4_OFOS,	22 },
1191 	{ ICE_TCP_IL,		42 },
1192 	{ ICE_PROTOCOL_LAST,	0 },
1193 };
1194 
1195 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1196 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1197 	0x00, 0x00, 0x00, 0x00,
1198 	0x00, 0x00, 0x00, 0x00,
1199 
1200 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1201 
1202 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1203 	0x00, 0x16,
1204 
1205 	0x00, 0x21,		/* PPP Link Layer 20 */
1206 
1207 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1208 	0x00, 0x01, 0x00, 0x00,
1209 	0x00, 0x06, 0x00, 0x00,
1210 	0x00, 0x00, 0x00, 0x00,
1211 	0x00, 0x00, 0x00, 0x00,
1212 
1213 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1214 	0x00, 0x00, 0x00, 0x00,
1215 	0x00, 0x00, 0x00, 0x00,
1216 	0x50, 0x00, 0x00, 0x00,
1217 	0x00, 0x00, 0x00, 0x00,
1218 
1219 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1220 };
1221 
1222 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1223 	{ ICE_MAC_OFOS,		0 },
1224 	{ ICE_ETYPE_OL,		12 },
1225 	{ ICE_PPPOE,		14 },
1226 	{ ICE_IPV4_OFOS,	22 },
1227 	{ ICE_UDP_ILOS,		42 },
1228 	{ ICE_PROTOCOL_LAST,	0 },
1229 };
1230 
1231 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1232 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1233 	0x00, 0x00, 0x00, 0x00,
1234 	0x00, 0x00, 0x00, 0x00,
1235 
1236 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1237 
1238 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1239 	0x00, 0x16,
1240 
1241 	0x00, 0x21,		/* PPP Link Layer 20 */
1242 
1243 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1244 	0x00, 0x01, 0x00, 0x00,
1245 	0x00, 0x11, 0x00, 0x00,
1246 	0x00, 0x00, 0x00, 0x00,
1247 	0x00, 0x00, 0x00, 0x00,
1248 
1249 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1250 	0x00, 0x08, 0x00, 0x00,
1251 
1252 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1253 };
1254 
1255 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1256 	{ ICE_MAC_OFOS,		0 },
1257 	{ ICE_ETYPE_OL,		12 },
1258 	{ ICE_PPPOE,		14 },
1259 	{ ICE_IPV6_OFOS,	22 },
1260 	{ ICE_TCP_IL,		62 },
1261 	{ ICE_PROTOCOL_LAST,	0 },
1262 };
1263 
1264 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1265 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1266 	0x00, 0x00, 0x00, 0x00,
1267 	0x00, 0x00, 0x00, 0x00,
1268 
1269 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1270 
1271 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1272 	0x00, 0x2a,
1273 
1274 	0x00, 0x57,		/* PPP Link Layer 20 */
1275 
1276 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1277 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1278 	0x00, 0x00, 0x00, 0x00,
1279 	0x00, 0x00, 0x00, 0x00,
1280 	0x00, 0x00, 0x00, 0x00,
1281 	0x00, 0x00, 0x00, 0x00,
1282 	0x00, 0x00, 0x00, 0x00,
1283 	0x00, 0x00, 0x00, 0x00,
1284 	0x00, 0x00, 0x00, 0x00,
1285 	0x00, 0x00, 0x00, 0x00,
1286 
1287 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1288 	0x00, 0x00, 0x00, 0x00,
1289 	0x00, 0x00, 0x00, 0x00,
1290 	0x50, 0x00, 0x00, 0x00,
1291 	0x00, 0x00, 0x00, 0x00,
1292 
1293 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1294 };
1295 
1296 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1297 	{ ICE_MAC_OFOS,		0 },
1298 	{ ICE_ETYPE_OL,		12 },
1299 	{ ICE_PPPOE,		14 },
1300 	{ ICE_IPV6_OFOS,	22 },
1301 	{ ICE_UDP_ILOS,		62 },
1302 	{ ICE_PROTOCOL_LAST,	0 },
1303 };
1304 
1305 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1306 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1307 	0x00, 0x00, 0x00, 0x00,
1308 	0x00, 0x00, 0x00, 0x00,
1309 
1310 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1311 
1312 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1313 	0x00, 0x2a,
1314 
1315 	0x00, 0x57,		/* PPP Link Layer 20 */
1316 
1317 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1318 	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1319 	0x00, 0x00, 0x00, 0x00,
1320 	0x00, 0x00, 0x00, 0x00,
1321 	0x00, 0x00, 0x00, 0x00,
1322 	0x00, 0x00, 0x00, 0x00,
1323 	0x00, 0x00, 0x00, 0x00,
1324 	0x00, 0x00, 0x00, 0x00,
1325 	0x00, 0x00, 0x00, 0x00,
1326 	0x00, 0x00, 0x00, 0x00,
1327 
1328 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1329 	0x00, 0x08, 0x00, 0x00,
1330 
1331 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1332 };
1333 
1334 ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1335 	{ ICE_MAC_OFOS,		0 },
1336 	{ ICE_ETYPE_OL,		12 },
1337 	{ ICE_IPV4_OFOS,	14 },
1338 	{ ICE_L2TPV3,		34 },
1339 	{ ICE_PROTOCOL_LAST,	0 },
1340 };
1341 
1342 ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1343 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1344 	0x00, 0x00, 0x00, 0x00,
1345 	0x00, 0x00, 0x00, 0x00,
1346 
1347 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1348 
1349 	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1350 	0x00, 0x00, 0x40, 0x00,
1351 	0x40, 0x73, 0x00, 0x00,
1352 	0x00, 0x00, 0x00, 0x00,
1353 	0x00, 0x00, 0x00, 0x00,
1354 
1355 	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1356 	0x00, 0x00, 0x00, 0x00,
1357 	0x00, 0x00, 0x00, 0x00,
1358 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1359 };
1360 
1361 ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1362 	{ ICE_MAC_OFOS,		0 },
1363 	{ ICE_ETYPE_OL,		12 },
1364 	{ ICE_IPV6_OFOS,	14 },
1365 	{ ICE_L2TPV3,		54 },
1366 	{ ICE_PROTOCOL_LAST,	0 },
1367 };
1368 
1369 ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1370 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1371 	0x00, 0x00, 0x00, 0x00,
1372 	0x00, 0x00, 0x00, 0x00,
1373 
1374 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1375 
1376 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1377 	0x00, 0x0c, 0x73, 0x40,
1378 	0x00, 0x00, 0x00, 0x00,
1379 	0x00, 0x00, 0x00, 0x00,
1380 	0x00, 0x00, 0x00, 0x00,
1381 	0x00, 0x00, 0x00, 0x00,
1382 	0x00, 0x00, 0x00, 0x00,
1383 	0x00, 0x00, 0x00, 0x00,
1384 	0x00, 0x00, 0x00, 0x00,
1385 	0x00, 0x00, 0x00, 0x00,
1386 
1387 	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1388 	0x00, 0x00, 0x00, 0x00,
1389 	0x00, 0x00, 0x00, 0x00,
1390 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1391 };
1392 
1393 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1394 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1395 				  ICE_PKT_GTP_NOPAY),
1396 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1397 					    ICE_PKT_OUTER_IPV6 |
1398 					    ICE_PKT_INNER_IPV6 |
1399 					    ICE_PKT_INNER_UDP),
1400 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1401 					    ICE_PKT_OUTER_IPV6 |
1402 					    ICE_PKT_INNER_IPV6),
1403 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1404 					    ICE_PKT_OUTER_IPV6 |
1405 					    ICE_PKT_INNER_UDP),
1406 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1407 					    ICE_PKT_OUTER_IPV6),
1408 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1409 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1410 					    ICE_PKT_INNER_IPV6 |
1411 					    ICE_PKT_INNER_UDP),
1412 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1413 					    ICE_PKT_INNER_IPV6),
1414 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1415 					    ICE_PKT_INNER_UDP),
1416 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1417 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1418 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1419 	ICE_PKT_PROFILE(pfcp_session_ipv6, ICE_PKT_PFCP | ICE_PKT_OUTER_IPV6),
1420 	ICE_PKT_PROFILE(pfcp_session_ipv4, ICE_PKT_PFCP),
1421 	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1422 					ICE_PKT_INNER_UDP),
1423 	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1424 	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1425 	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1426 	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1427 				      ICE_PKT_INNER_TCP),
1428 	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1429 	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1430 	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1431 	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1432 					  ICE_PKT_INNER_IPV6 |
1433 					  ICE_PKT_INNER_TCP),
1434 	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1435 	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1436 	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1437 	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1438 					  ICE_PKT_INNER_IPV6),
1439 	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1440 	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1441 	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1442 	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1443 	ICE_PKT_PROFILE(tcp, 0),
1444 };
1445 
1446 /* this is a recipe to profile association bitmap */
1447 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1448 			  ICE_MAX_NUM_PROFILES);
1449 
1450 /* this is a profile to recipe association bitmap */
1451 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1452 			  ICE_MAX_NUM_RECIPES);
1453 
1454 /**
1455  * ice_init_def_sw_recp - initialize the recipe book keeping tables
1456  * @hw: pointer to the HW struct
1457  *
1458  * Allocate memory for the entire recipe table and initialize the structures/
1459  * entries corresponding to basic recipes.
1460  */
1461 int ice_init_def_sw_recp(struct ice_hw *hw)
1462 {
1463 	struct ice_sw_recipe *recps;
1464 	u8 i;
1465 
1466 	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1467 			     sizeof(*recps), GFP_KERNEL);
1468 	if (!recps)
1469 		return -ENOMEM;
1470 
1471 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1472 		recps[i].root_rid = i;
1473 		INIT_LIST_HEAD(&recps[i].filt_rules);
1474 		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1475 		mutex_init(&recps[i].filt_rule_lock);
1476 	}
1477 
1478 	hw->switch_info->recp_list = recps;
1479 
1480 	return 0;
1481 }
1482 
1483 /**
1484  * ice_aq_get_sw_cfg - get switch configuration
1485  * @hw: pointer to the hardware structure
1486  * @buf: pointer to the result buffer
1487  * @buf_size: length of the buffer available for response
1488  * @req_desc: pointer to requested descriptor
1489  * @num_elems: pointer to number of elements
1490  * @cd: pointer to command details structure or NULL
1491  *
1492  * Get switch configuration (0x0200) to be placed in buf.
1493  * This admin command returns information such as initial VSI/port number
1494  * and switch ID it belongs to.
1495  *
1496  * NOTE: *req_desc is both an input/output parameter.
1497  * The caller of this function first calls this function with *request_desc set
1498  * to 0. If the response from f/w has *req_desc set to 0, all the switch
1499  * configuration information has been returned; if non-zero (meaning not all
1500  * the information was returned), the caller should call this function again
1501  * with *req_desc set to the previous value returned by f/w to get the
1502  * next block of switch configuration information.
1503  *
1504  * *num_elems is output only parameter. This reflects the number of elements
1505  * in response buffer. The caller of this function to use *num_elems while
1506  * parsing the response buffer.
1507  */
1508 static int
1509 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1510 		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1511 		  struct ice_sq_cd *cd)
1512 {
1513 	struct ice_aqc_get_sw_cfg *cmd;
1514 	struct ice_aq_desc desc;
1515 	int status;
1516 
1517 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1518 	cmd = &desc.params.get_sw_conf;
1519 	cmd->element = cpu_to_le16(*req_desc);
1520 
1521 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1522 	if (!status) {
1523 		*req_desc = le16_to_cpu(cmd->element);
1524 		*num_elems = le16_to_cpu(cmd->num_elems);
1525 	}
1526 
1527 	return status;
1528 }
1529 
1530 /**
1531  * ice_aq_add_vsi
1532  * @hw: pointer to the HW struct
1533  * @vsi_ctx: pointer to a VSI context struct
1534  * @cd: pointer to command details structure or NULL
1535  *
1536  * Add a VSI context to the hardware (0x0210)
1537  */
1538 static int
1539 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1540 	       struct ice_sq_cd *cd)
1541 {
1542 	struct ice_aqc_add_update_free_vsi_resp *res;
1543 	struct ice_aqc_add_get_update_free_vsi *cmd;
1544 	struct ice_aq_desc desc;
1545 	int status;
1546 
1547 	cmd = &desc.params.vsi_cmd;
1548 	res = &desc.params.add_update_free_vsi_res;
1549 
1550 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1551 
1552 	if (!vsi_ctx->alloc_from_pool)
1553 		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1554 					   ICE_AQ_VSI_IS_VALID);
1555 	cmd->vf_id = vsi_ctx->vf_num;
1556 
1557 	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1558 
1559 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560 
1561 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562 				 sizeof(vsi_ctx->info), cd);
1563 
1564 	if (!status) {
1565 		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1566 		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1567 		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1568 	}
1569 
1570 	return status;
1571 }
1572 
1573 /**
1574  * ice_aq_free_vsi
1575  * @hw: pointer to the HW struct
1576  * @vsi_ctx: pointer to a VSI context struct
1577  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1578  * @cd: pointer to command details structure or NULL
1579  *
1580  * Free VSI context info from hardware (0x0213)
1581  */
1582 static int
1583 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1584 		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1585 {
1586 	struct ice_aqc_add_update_free_vsi_resp *resp;
1587 	struct ice_aqc_add_get_update_free_vsi *cmd;
1588 	struct ice_aq_desc desc;
1589 	int status;
1590 
1591 	cmd = &desc.params.vsi_cmd;
1592 	resp = &desc.params.add_update_free_vsi_res;
1593 
1594 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1595 
1596 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1597 	if (keep_vsi_alloc)
1598 		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1599 
1600 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1601 	if (!status) {
1602 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1603 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1604 	}
1605 
1606 	return status;
1607 }
1608 
1609 /**
1610  * ice_aq_update_vsi
1611  * @hw: pointer to the HW struct
1612  * @vsi_ctx: pointer to a VSI context struct
1613  * @cd: pointer to command details structure or NULL
1614  *
1615  * Update VSI context in the hardware (0x0211)
1616  */
1617 static int
1618 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1619 		  struct ice_sq_cd *cd)
1620 {
1621 	struct ice_aqc_add_update_free_vsi_resp *resp;
1622 	struct ice_aqc_add_get_update_free_vsi *cmd;
1623 	struct ice_aq_desc desc;
1624 	int status;
1625 
1626 	cmd = &desc.params.vsi_cmd;
1627 	resp = &desc.params.add_update_free_vsi_res;
1628 
1629 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1630 
1631 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1632 
1633 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1634 
1635 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1636 				 sizeof(vsi_ctx->info), cd);
1637 
1638 	if (!status) {
1639 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1640 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1641 	}
1642 
1643 	return status;
1644 }
1645 
1646 /**
1647  * ice_is_vsi_valid - check whether the VSI is valid or not
1648  * @hw: pointer to the HW struct
1649  * @vsi_handle: VSI handle
1650  *
1651  * check whether the VSI is valid or not
1652  */
1653 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1654 {
1655 	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1656 }
1657 
1658 /**
1659  * ice_get_hw_vsi_num - return the HW VSI number
1660  * @hw: pointer to the HW struct
1661  * @vsi_handle: VSI handle
1662  *
1663  * return the HW VSI number
1664  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1665  */
1666 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1667 {
1668 	return hw->vsi_ctx[vsi_handle]->vsi_num;
1669 }
1670 
1671 /**
1672  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1673  * @hw: pointer to the HW struct
1674  * @vsi_handle: VSI handle
1675  *
1676  * return the VSI context entry for a given VSI handle
1677  */
1678 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1679 {
1680 	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1681 }
1682 
1683 /**
1684  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1685  * @hw: pointer to the HW struct
1686  * @vsi_handle: VSI handle
1687  * @vsi: VSI context pointer
1688  *
1689  * save the VSI context entry for a given VSI handle
1690  */
1691 static void
1692 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1693 {
1694 	hw->vsi_ctx[vsi_handle] = vsi;
1695 }
1696 
1697 /**
1698  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1699  * @hw: pointer to the HW struct
1700  * @vsi_handle: VSI handle
1701  */
1702 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1703 {
1704 	struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1705 	u8 i;
1706 
1707 	if (!vsi)
1708 		return;
1709 	ice_for_each_traffic_class(i) {
1710 		devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1711 		vsi->lan_q_ctx[i] = NULL;
1712 		devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1713 		vsi->rdma_q_ctx[i] = NULL;
1714 	}
1715 }
1716 
1717 /**
1718  * ice_clear_vsi_ctx - clear the VSI context entry
1719  * @hw: pointer to the HW struct
1720  * @vsi_handle: VSI handle
1721  *
1722  * clear the VSI context entry
1723  */
1724 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1725 {
1726 	struct ice_vsi_ctx *vsi;
1727 
1728 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1729 	if (vsi) {
1730 		ice_clear_vsi_q_ctx(hw, vsi_handle);
1731 		devm_kfree(ice_hw_to_dev(hw), vsi);
1732 		hw->vsi_ctx[vsi_handle] = NULL;
1733 	}
1734 }
1735 
1736 /**
1737  * ice_clear_all_vsi_ctx - clear all the VSI context entries
1738  * @hw: pointer to the HW struct
1739  */
1740 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1741 {
1742 	u16 i;
1743 
1744 	for (i = 0; i < ICE_MAX_VSI; i++)
1745 		ice_clear_vsi_ctx(hw, i);
1746 }
1747 
1748 /**
1749  * ice_add_vsi - add VSI context to the hardware and VSI handle list
1750  * @hw: pointer to the HW struct
1751  * @vsi_handle: unique VSI handle provided by drivers
1752  * @vsi_ctx: pointer to a VSI context struct
1753  * @cd: pointer to command details structure or NULL
1754  *
1755  * Add a VSI context to the hardware also add it into the VSI handle list.
1756  * If this function gets called after reset for existing VSIs then update
1757  * with the new HW VSI number in the corresponding VSI handle list entry.
1758  */
1759 int
1760 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1761 	    struct ice_sq_cd *cd)
1762 {
1763 	struct ice_vsi_ctx *tmp_vsi_ctx;
1764 	int status;
1765 
1766 	if (vsi_handle >= ICE_MAX_VSI)
1767 		return -EINVAL;
1768 	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1769 	if (status)
1770 		return status;
1771 	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1772 	if (!tmp_vsi_ctx) {
1773 		/* Create a new VSI context */
1774 		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1775 					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1776 		if (!tmp_vsi_ctx) {
1777 			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1778 			return -ENOMEM;
1779 		}
1780 		*tmp_vsi_ctx = *vsi_ctx;
1781 		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1782 	} else {
1783 		/* update with new HW VSI num */
1784 		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 /**
1791  * ice_free_vsi- free VSI context from hardware and VSI handle list
1792  * @hw: pointer to the HW struct
1793  * @vsi_handle: unique VSI handle
1794  * @vsi_ctx: pointer to a VSI context struct
1795  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1796  * @cd: pointer to command details structure or NULL
1797  *
1798  * Free VSI context info from hardware as well as from VSI handle list
1799  */
1800 int
1801 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1802 	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1803 {
1804 	int status;
1805 
1806 	if (!ice_is_vsi_valid(hw, vsi_handle))
1807 		return -EINVAL;
1808 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1809 	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1810 	if (!status)
1811 		ice_clear_vsi_ctx(hw, vsi_handle);
1812 	return status;
1813 }
1814 
1815 /**
1816  * ice_update_vsi
1817  * @hw: pointer to the HW struct
1818  * @vsi_handle: unique VSI handle
1819  * @vsi_ctx: pointer to a VSI context struct
1820  * @cd: pointer to command details structure or NULL
1821  *
1822  * Update VSI context in the hardware
1823  */
1824 int
1825 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1826 	       struct ice_sq_cd *cd)
1827 {
1828 	if (!ice_is_vsi_valid(hw, vsi_handle))
1829 		return -EINVAL;
1830 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1831 	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1832 }
1833 
1834 /**
1835  * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1836  * @hw: pointer to HW struct
1837  * @vsi_handle: VSI SW index
1838  * @enable: boolean for enable/disable
1839  */
1840 int
1841 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1842 {
1843 	struct ice_vsi_ctx *ctx, *cached_ctx;
1844 	int status;
1845 
1846 	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1847 	if (!cached_ctx)
1848 		return -ENOENT;
1849 
1850 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1851 	if (!ctx)
1852 		return -ENOMEM;
1853 
1854 	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1855 	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1856 	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1857 
1858 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1859 
1860 	if (enable)
1861 		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1862 	else
1863 		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1864 
1865 	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1866 	if (!status) {
1867 		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1868 		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1869 	}
1870 
1871 	kfree(ctx);
1872 	return status;
1873 }
1874 
1875 /**
1876  * ice_aq_alloc_free_vsi_list
1877  * @hw: pointer to the HW struct
1878  * @vsi_list_id: VSI list ID returned or used for lookup
1879  * @lkup_type: switch rule filter lookup type
1880  * @opc: switch rules population command type - pass in the command opcode
1881  *
1882  * allocates or free a VSI list resource
1883  */
1884 static int
1885 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1886 			   enum ice_sw_lkup_type lkup_type,
1887 			   enum ice_adminq_opc opc)
1888 {
1889 	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1890 	u16 buf_len = __struct_size(sw_buf);
1891 	struct ice_aqc_res_elem *vsi_ele;
1892 	int status;
1893 
1894 	sw_buf->num_elems = cpu_to_le16(1);
1895 
1896 	if (lkup_type == ICE_SW_LKUP_MAC ||
1897 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1898 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1899 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1900 	    lkup_type == ICE_SW_LKUP_PROMISC ||
1901 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1902 	    lkup_type == ICE_SW_LKUP_DFLT ||
1903 	    lkup_type == ICE_SW_LKUP_LAST) {
1904 		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1905 	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1906 		if (opc == ice_aqc_opc_alloc_res)
1907 			sw_buf->res_type =
1908 				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1909 					    ICE_AQC_RES_TYPE_FLAG_SHARED);
1910 		else
1911 			sw_buf->res_type =
1912 				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1913 	} else {
1914 		return -EINVAL;
1915 	}
1916 
1917 	if (opc == ice_aqc_opc_free_res)
1918 		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1919 
1920 	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1921 	if (status)
1922 		return status;
1923 
1924 	if (opc == ice_aqc_opc_alloc_res) {
1925 		vsi_ele = &sw_buf->elem[0];
1926 		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1927 	}
1928 
1929 	return 0;
1930 }
1931 
1932 /**
1933  * ice_aq_sw_rules - add/update/remove switch rules
1934  * @hw: pointer to the HW struct
1935  * @rule_list: pointer to switch rule population list
1936  * @rule_list_sz: total size of the rule list in bytes
1937  * @num_rules: number of switch rules in the rule_list
1938  * @opc: switch rules population command type - pass in the command opcode
1939  * @cd: pointer to command details structure or NULL
1940  *
1941  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1942  */
1943 int
1944 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1945 		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1946 {
1947 	struct ice_aq_desc desc;
1948 	int status;
1949 
1950 	if (opc != ice_aqc_opc_add_sw_rules &&
1951 	    opc != ice_aqc_opc_update_sw_rules &&
1952 	    opc != ice_aqc_opc_remove_sw_rules)
1953 		return -EINVAL;
1954 
1955 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1956 
1957 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1958 	desc.params.sw_rules.num_rules_fltr_entry_index =
1959 		cpu_to_le16(num_rules);
1960 	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1961 	if (opc != ice_aqc_opc_add_sw_rules &&
1962 	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1963 		status = -ENOENT;
1964 
1965 	if (!status) {
1966 		if (opc == ice_aqc_opc_add_sw_rules)
1967 			hw->switch_info->rule_cnt += num_rules;
1968 		else if (opc == ice_aqc_opc_remove_sw_rules)
1969 			hw->switch_info->rule_cnt -= num_rules;
1970 	}
1971 
1972 	trace_ice_aq_sw_rules(hw->switch_info);
1973 
1974 	return status;
1975 }
1976 
1977 /**
1978  * ice_aq_add_recipe - add switch recipe
1979  * @hw: pointer to the HW struct
1980  * @s_recipe_list: pointer to switch rule population list
1981  * @num_recipes: number of switch recipes in the list
1982  * @cd: pointer to command details structure or NULL
1983  *
1984  * Add(0x0290)
1985  */
1986 int
1987 ice_aq_add_recipe(struct ice_hw *hw,
1988 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1989 		  u16 num_recipes, struct ice_sq_cd *cd)
1990 {
1991 	struct ice_aqc_add_get_recipe *cmd;
1992 	struct ice_aq_desc desc;
1993 	u16 buf_size;
1994 
1995 	cmd = &desc.params.add_get_recipe;
1996 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1997 
1998 	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1999 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2000 
2001 	buf_size = num_recipes * sizeof(*s_recipe_list);
2002 
2003 	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2004 }
2005 
2006 /**
2007  * ice_aq_get_recipe - get switch recipe
2008  * @hw: pointer to the HW struct
2009  * @s_recipe_list: pointer to switch rule population list
2010  * @num_recipes: pointer to the number of recipes (input and output)
2011  * @recipe_root: root recipe number of recipe(s) to retrieve
2012  * @cd: pointer to command details structure or NULL
2013  *
2014  * Get(0x0292)
2015  *
2016  * On input, *num_recipes should equal the number of entries in s_recipe_list.
2017  * On output, *num_recipes will equal the number of entries returned in
2018  * s_recipe_list.
2019  *
2020  * The caller must supply enough space in s_recipe_list to hold all possible
2021  * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
2022  */
2023 int
2024 ice_aq_get_recipe(struct ice_hw *hw,
2025 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
2026 		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
2027 {
2028 	struct ice_aqc_add_get_recipe *cmd;
2029 	struct ice_aq_desc desc;
2030 	u16 buf_size;
2031 	int status;
2032 
2033 	if (*num_recipes != ICE_MAX_NUM_RECIPES)
2034 		return -EINVAL;
2035 
2036 	cmd = &desc.params.add_get_recipe;
2037 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
2038 
2039 	cmd->return_index = cpu_to_le16(recipe_root);
2040 	cmd->num_sub_recipes = 0;
2041 
2042 	buf_size = *num_recipes * sizeof(*s_recipe_list);
2043 
2044 	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2045 	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
2046 
2047 	return status;
2048 }
2049 
2050 /**
2051  * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
2052  * @hw: pointer to the HW struct
2053  * @params: parameters used to update the default recipe
2054  *
2055  * This function only supports updating default recipes and it only supports
2056  * updating a single recipe based on the lkup_idx at a time.
2057  *
2058  * This is done as a read-modify-write operation. First, get the current recipe
2059  * contents based on the recipe's ID. Then modify the field vector index and
2060  * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
2061  * the pre-existing recipe with the modifications.
2062  */
2063 int
2064 ice_update_recipe_lkup_idx(struct ice_hw *hw,
2065 			   struct ice_update_recipe_lkup_idx_params *params)
2066 {
2067 	struct ice_aqc_recipe_data_elem *rcp_list;
2068 	u16 num_recps = ICE_MAX_NUM_RECIPES;
2069 	int status;
2070 
2071 	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
2072 	if (!rcp_list)
2073 		return -ENOMEM;
2074 
2075 	/* read current recipe list from firmware */
2076 	rcp_list->recipe_indx = params->rid;
2077 	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
2078 	if (status) {
2079 		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
2080 			  params->rid, status);
2081 		goto error_out;
2082 	}
2083 
2084 	/* only modify existing recipe's lkup_idx and mask if valid, while
2085 	 * leaving all other fields the same, then update the recipe firmware
2086 	 */
2087 	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2088 	if (params->mask_valid)
2089 		rcp_list->content.mask[params->lkup_idx] =
2090 			cpu_to_le16(params->mask);
2091 
2092 	if (params->ignore_valid)
2093 		rcp_list->content.lkup_indx[params->lkup_idx] |=
2094 			ICE_AQ_RECIPE_LKUP_IGNORE;
2095 
2096 	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2097 	if (status)
2098 		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2099 			  params->rid, params->lkup_idx, params->fv_idx,
2100 			  params->mask, params->mask_valid ? "true" : "false",
2101 			  status);
2102 
2103 error_out:
2104 	kfree(rcp_list);
2105 	return status;
2106 }
2107 
2108 /**
2109  * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2110  * @hw: pointer to the HW struct
2111  * @profile_id: package profile ID to associate the recipe with
2112  * @r_assoc: Recipe bitmap filled in and need to be returned as response
2113  * @cd: pointer to command details structure or NULL
2114  * Recipe to profile association (0x0291)
2115  */
2116 int
2117 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc,
2118 			     struct ice_sq_cd *cd)
2119 {
2120 	struct ice_aqc_recipe_to_profile *cmd;
2121 	struct ice_aq_desc desc;
2122 
2123 	cmd = &desc.params.recipe_to_profile;
2124 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2125 	cmd->profile_id = cpu_to_le16(profile_id);
2126 	/* Set the recipe ID bit in the bitmask to let the device know which
2127 	 * profile we are associating the recipe to
2128 	 */
2129 	cmd->recipe_assoc = cpu_to_le64(r_assoc);
2130 
2131 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2132 }
2133 
2134 /**
2135  * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2136  * @hw: pointer to the HW struct
2137  * @profile_id: package profile ID to associate the recipe with
2138  * @r_assoc: Recipe bitmap filled in and need to be returned as response
2139  * @cd: pointer to command details structure or NULL
2140  * Associate profile ID with given recipe (0x0293)
2141  */
2142 int
2143 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc,
2144 			     struct ice_sq_cd *cd)
2145 {
2146 	struct ice_aqc_recipe_to_profile *cmd;
2147 	struct ice_aq_desc desc;
2148 	int status;
2149 
2150 	cmd = &desc.params.recipe_to_profile;
2151 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2152 	cmd->profile_id = cpu_to_le16(profile_id);
2153 
2154 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2155 	if (!status)
2156 		*r_assoc = le64_to_cpu(cmd->recipe_assoc);
2157 
2158 	return status;
2159 }
2160 
2161 /**
2162  * ice_init_chk_recipe_reuse_support - check if recipe reuse is supported
2163  * @hw: pointer to the hardware structure
2164  */
2165 void ice_init_chk_recipe_reuse_support(struct ice_hw *hw)
2166 {
2167 	struct ice_nvm_info *nvm = &hw->flash.nvm;
2168 
2169 	hw->recp_reuse = (nvm->major == 0x4 && nvm->minor >= 0x30) ||
2170 			 nvm->major > 0x4;
2171 }
2172 
2173 /**
2174  * ice_alloc_recipe - add recipe resource
2175  * @hw: pointer to the hardware structure
2176  * @rid: recipe ID returned as response to AQ call
2177  */
2178 int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2179 {
2180 	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2181 	u16 buf_len = __struct_size(sw_buf);
2182 	u16 res_type;
2183 	int status;
2184 
2185 	sw_buf->num_elems = cpu_to_le16(1);
2186 	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE);
2187 	if (hw->recp_reuse)
2188 		res_type |= ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED;
2189 	else
2190 		res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
2191 	sw_buf->res_type = cpu_to_le16(res_type);
2192 	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2193 				       ice_aqc_opc_alloc_res);
2194 	if (!status) {
2195 		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2196 		hw->switch_info->recp_cnt++;
2197 	}
2198 
2199 	return status;
2200 }
2201 
2202 /**
2203  * ice_free_recipe_res - free recipe resource
2204  * @hw: pointer to the hardware structure
2205  * @rid: recipe ID to free
2206  *
2207  * Return: 0 on success, and others on error
2208  */
2209 static int ice_free_recipe_res(struct ice_hw *hw, u16 rid)
2210 {
2211 	int status;
2212 
2213 	status = ice_free_hw_res(hw, ICE_AQC_RES_TYPE_RECIPE, 1, &rid);
2214 	if (!status)
2215 		hw->switch_info->recp_cnt--;
2216 
2217 	return status;
2218 }
2219 
2220 /**
2221  * ice_release_recipe_res - disassociate and free recipe resource
2222  * @hw: pointer to the hardware structure
2223  * @recp: the recipe struct resource to unassociate and free
2224  *
2225  * Return: 0 on success, and others on error
2226  */
2227 static int ice_release_recipe_res(struct ice_hw *hw,
2228 				  struct ice_sw_recipe *recp)
2229 {
2230 	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2231 	struct ice_switch_info *sw = hw->switch_info;
2232 	u64 recp_assoc;
2233 	u32 rid, prof;
2234 	int status;
2235 
2236 	for_each_set_bit(rid, recp->r_bitmap, ICE_MAX_NUM_RECIPES) {
2237 		for_each_set_bit(prof, recipe_to_profile[rid],
2238 				 ICE_MAX_NUM_PROFILES) {
2239 			status = ice_aq_get_recipe_to_profile(hw, prof,
2240 							      &recp_assoc,
2241 							      NULL);
2242 			if (status)
2243 				return status;
2244 
2245 			bitmap_from_arr64(r_bitmap, &recp_assoc,
2246 					  ICE_MAX_NUM_RECIPES);
2247 			bitmap_andnot(r_bitmap, r_bitmap, recp->r_bitmap,
2248 				      ICE_MAX_NUM_RECIPES);
2249 			bitmap_to_arr64(&recp_assoc, r_bitmap,
2250 					ICE_MAX_NUM_RECIPES);
2251 			ice_aq_map_recipe_to_profile(hw, prof,
2252 						     recp_assoc, NULL);
2253 
2254 			clear_bit(rid, profile_to_recipe[prof]);
2255 			clear_bit(prof, recipe_to_profile[rid]);
2256 		}
2257 
2258 		status = ice_free_recipe_res(hw, rid);
2259 		if (status)
2260 			return status;
2261 
2262 		sw->recp_list[rid].recp_created = false;
2263 		sw->recp_list[rid].adv_rule = false;
2264 		memset(&sw->recp_list[rid].lkup_exts, 0,
2265 		       sizeof(sw->recp_list[rid].lkup_exts));
2266 		clear_bit(rid, recp->r_bitmap);
2267 	}
2268 
2269 	return 0;
2270 }
2271 
2272 /**
2273  * ice_get_recp_to_prof_map - updates recipe to profile mapping
2274  * @hw: pointer to hardware structure
2275  *
2276  * This function is used to populate recipe_to_profile matrix where index to
2277  * this array is the recipe ID and the element is the mapping of which profiles
2278  * is this recipe mapped to.
2279  */
2280 static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2281 {
2282 	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2283 	u64 recp_assoc;
2284 	u16 i;
2285 
2286 	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2287 		u16 j;
2288 
2289 		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2290 		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2291 		if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL))
2292 			continue;
2293 		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
2294 		bitmap_copy(profile_to_recipe[i], r_bitmap,
2295 			    ICE_MAX_NUM_RECIPES);
2296 		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2297 			set_bit(i, recipe_to_profile[j]);
2298 	}
2299 }
2300 
2301 /**
2302  * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2303  * @hw: pointer to hardware structure
2304  * @recps: struct that we need to populate
2305  * @rid: recipe ID that we are populating
2306  * @refresh_required: true if we should get recipe to profile mapping from FW
2307  * @is_add: flag of adding recipe
2308  *
2309  * This function is used to populate all the necessary entries into our
2310  * bookkeeping so that we have a current list of all the recipes that are
2311  * programmed in the firmware.
2312  */
2313 static int
2314 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2315 		    bool *refresh_required, bool is_add)
2316 {
2317 	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2318 	struct ice_aqc_recipe_data_elem *tmp;
2319 	u16 num_recps = ICE_MAX_NUM_RECIPES;
2320 	struct ice_prot_lkup_ext *lkup_exts;
2321 	u8 fv_word_idx = 0;
2322 	u16 sub_recps;
2323 	int status;
2324 
2325 	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2326 
2327 	/* we need a buffer big enough to accommodate all the recipes */
2328 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2329 	if (!tmp)
2330 		return -ENOMEM;
2331 
2332 	tmp[0].recipe_indx = rid;
2333 	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2334 	/* non-zero status meaning recipe doesn't exist */
2335 	if (status)
2336 		goto err_unroll;
2337 
2338 	/* Get recipe to profile map so that we can get the fv from lkups that
2339 	 * we read for a recipe from FW. Since we want to minimize the number of
2340 	 * times we make this FW call, just make one call and cache the copy
2341 	 * until a new recipe is added. This operation is only required the
2342 	 * first time to get the changes from FW. Then to search existing
2343 	 * entries we don't need to update the cache again until another recipe
2344 	 * gets added.
2345 	 */
2346 	if (*refresh_required) {
2347 		ice_get_recp_to_prof_map(hw);
2348 		*refresh_required = false;
2349 	}
2350 
2351 	/* Start populating all the entries for recps[rid] based on lkups from
2352 	 * firmware. Note that we are only creating the root recipe in our
2353 	 * database.
2354 	 */
2355 	lkup_exts = &recps[rid].lkup_exts;
2356 
2357 	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2358 		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2359 		u8 i, prof, idx, prot = 0;
2360 		bool is_root;
2361 		u16 off = 0;
2362 
2363 		idx = root_bufs.recipe_indx;
2364 		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2365 
2366 		/* Mark all result indices in this chain */
2367 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2368 			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2369 				result_bm);
2370 
2371 		/* get the first profile that is associated with rid */
2372 		prof = find_first_bit(recipe_to_profile[idx],
2373 				      ICE_MAX_NUM_PROFILES);
2374 		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2375 			u8 lkup_indx = root_bufs.content.lkup_indx[i];
2376 			u16 lkup_mask = le16_to_cpu(root_bufs.content.mask[i]);
2377 
2378 			/* If the recipe is a chained recipe then all its
2379 			 * child recipe's result will have a result index.
2380 			 * To fill fv_words we should not use those result
2381 			 * index, we only need the protocol ids and offsets.
2382 			 * We will skip all the fv_idx which stores result
2383 			 * index in them. We also need to skip any fv_idx which
2384 			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2385 			 * valid offset value.
2386 			 */
2387 			if (!lkup_indx ||
2388 			    (lkup_indx & ICE_AQ_RECIPE_LKUP_IGNORE) ||
2389 			    test_bit(lkup_indx,
2390 				     hw->switch_info->prof_res_bm[prof]))
2391 				continue;
2392 
2393 			ice_find_prot_off(hw, ICE_BLK_SW, prof, lkup_indx,
2394 					  &prot, &off);
2395 			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2396 			lkup_exts->fv_words[fv_word_idx].off = off;
2397 			lkup_exts->field_mask[fv_word_idx] = lkup_mask;
2398 			fv_word_idx++;
2399 		}
2400 
2401 		/* Propagate some data to the recipe database */
2402 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2403 		recps[idx].need_pass_l2 = !!(root_bufs.content.act_ctrl &
2404 					     ICE_AQ_RECIPE_ACT_NEED_PASS_L2);
2405 		recps[idx].allow_pass_l2 = !!(root_bufs.content.act_ctrl &
2406 					      ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2);
2407 		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2408 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2409 			set_bit(root_bufs.content.result_indx &
2410 				~ICE_AQ_RECIPE_RESULT_EN, recps[idx].res_idxs);
2411 		}
2412 
2413 		if (!is_root) {
2414 			if (hw->recp_reuse && is_add)
2415 				recps[idx].recp_created = true;
2416 
2417 			continue;
2418 		}
2419 
2420 		/* Only do the following for root recipes entries */
2421 		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2422 		       sizeof(recps[idx].r_bitmap));
2423 		recps[idx].root_rid = root_bufs.content.rid &
2424 			~ICE_AQ_RECIPE_ID_IS_ROOT;
2425 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2426 	}
2427 
2428 	/* Complete initialization of the root recipe entry */
2429 	lkup_exts->n_val_words = fv_word_idx;
2430 
2431 	/* Copy result indexes */
2432 	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2433 	if (is_add)
2434 		recps[rid].recp_created = true;
2435 
2436 err_unroll:
2437 	kfree(tmp);
2438 	return status;
2439 }
2440 
2441 /* ice_init_port_info - Initialize port_info with switch configuration data
2442  * @pi: pointer to port_info
2443  * @vsi_port_num: VSI number or port number
2444  * @type: Type of switch element (port or VSI)
2445  * @swid: switch ID of the switch the element is attached to
2446  * @pf_vf_num: PF or VF number
2447  * @is_vf: true if the element is a VF, false otherwise
2448  */
2449 static void
2450 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2451 		   u16 swid, u16 pf_vf_num, bool is_vf)
2452 {
2453 	switch (type) {
2454 	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2455 		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2456 		pi->sw_id = swid;
2457 		pi->pf_vf_num = pf_vf_num;
2458 		pi->is_vf = is_vf;
2459 		break;
2460 	default:
2461 		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2462 		break;
2463 	}
2464 }
2465 
2466 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
2467  * @hw: pointer to the hardware structure
2468  */
2469 int ice_get_initial_sw_cfg(struct ice_hw *hw)
2470 {
2471 	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2472 	u16 req_desc = 0;
2473 	u16 num_elems;
2474 	int status;
2475 	u16 i;
2476 
2477 	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2478 	if (!rbuf)
2479 		return -ENOMEM;
2480 
2481 	/* Multiple calls to ice_aq_get_sw_cfg may be required
2482 	 * to get all the switch configuration information. The need
2483 	 * for additional calls is indicated by ice_aq_get_sw_cfg
2484 	 * writing a non-zero value in req_desc
2485 	 */
2486 	do {
2487 		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2488 
2489 		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2490 					   &req_desc, &num_elems, NULL);
2491 
2492 		if (status)
2493 			break;
2494 
2495 		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2496 			u16 pf_vf_num, swid, vsi_port_num;
2497 			bool is_vf = false;
2498 			u8 res_type;
2499 
2500 			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2501 				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2502 
2503 			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2504 				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2505 
2506 			swid = le16_to_cpu(ele->swid);
2507 
2508 			if (le16_to_cpu(ele->pf_vf_num) &
2509 			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2510 				is_vf = true;
2511 
2512 			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2513 					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2514 
2515 			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2516 				/* FW VSI is not needed. Just continue. */
2517 				continue;
2518 			}
2519 
2520 			ice_init_port_info(hw->port_info, vsi_port_num,
2521 					   res_type, swid, pf_vf_num, is_vf);
2522 		}
2523 	} while (req_desc && !status);
2524 
2525 	kfree(rbuf);
2526 	return status;
2527 }
2528 
2529 /**
2530  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2531  * @hw: pointer to the hardware structure
2532  * @fi: filter info structure to fill/update
2533  *
2534  * This helper function populates the lb_en and lan_en elements of the provided
2535  * ice_fltr_info struct using the switch's type and characteristics of the
2536  * switch rule being configured.
2537  */
2538 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2539 {
2540 	fi->lb_en = false;
2541 	fi->lan_en = false;
2542 	if ((fi->flag & ICE_FLTR_TX) &&
2543 	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2544 	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2545 	     fi->fltr_act == ICE_FWD_TO_Q ||
2546 	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2547 		/* Setting LB for prune actions will result in replicated
2548 		 * packets to the internal switch that will be dropped.
2549 		 */
2550 		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2551 			fi->lb_en = true;
2552 
2553 		/* Set lan_en to TRUE if
2554 		 * 1. The switch is a VEB AND
2555 		 * 2
2556 		 * 2.1 The lookup is a directional lookup like ethertype,
2557 		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2558 		 * and default-port OR
2559 		 * 2.2 The lookup is VLAN, OR
2560 		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2561 		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2562 		 *
2563 		 * OR
2564 		 *
2565 		 * The switch is a VEPA.
2566 		 *
2567 		 * In all other cases, the LAN enable has to be set to false.
2568 		 */
2569 		if (hw->evb_veb) {
2570 			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2571 			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2572 			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2573 			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2574 			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2575 			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2576 			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2577 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2578 			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2579 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2580 				fi->lan_en = true;
2581 		} else {
2582 			fi->lan_en = true;
2583 		}
2584 	}
2585 
2586 	if (fi->flag & ICE_FLTR_TX_ONLY)
2587 		fi->lan_en = false;
2588 }
2589 
2590 /**
2591  * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2592  * @eth_hdr: pointer to buffer to populate
2593  */
2594 void ice_fill_eth_hdr(u8 *eth_hdr)
2595 {
2596 	memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2597 }
2598 
2599 /**
2600  * ice_fill_sw_rule - Helper function to fill switch rule structure
2601  * @hw: pointer to the hardware structure
2602  * @f_info: entry containing packet forwarding information
2603  * @s_rule: switch rule structure to be filled in based on mac_entry
2604  * @opc: switch rules population command type - pass in the command opcode
2605  */
2606 static void
2607 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2608 		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2609 		 enum ice_adminq_opc opc)
2610 {
2611 	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2612 	u16 vlan_tpid = ETH_P_8021Q;
2613 	void *daddr = NULL;
2614 	u16 eth_hdr_sz;
2615 	u8 *eth_hdr;
2616 	u32 act = 0;
2617 	__be16 *off;
2618 	u8 q_rgn;
2619 
2620 	if (opc == ice_aqc_opc_remove_sw_rules) {
2621 		s_rule->act = 0;
2622 		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2623 		s_rule->hdr_len = 0;
2624 		return;
2625 	}
2626 
2627 	eth_hdr_sz = sizeof(dummy_eth_header);
2628 	eth_hdr = s_rule->hdr_data;
2629 
2630 	/* initialize the ether header with a dummy header */
2631 	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2632 	ice_fill_sw_info(hw, f_info);
2633 
2634 	switch (f_info->fltr_act) {
2635 	case ICE_FWD_TO_VSI:
2636 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2637 				  f_info->fwd_id.hw_vsi_id);
2638 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2639 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2640 				ICE_SINGLE_ACT_VALID_BIT;
2641 		break;
2642 	case ICE_FWD_TO_VSI_LIST:
2643 		act |= ICE_SINGLE_ACT_VSI_LIST;
2644 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2645 				  f_info->fwd_id.vsi_list_id);
2646 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2647 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2648 				ICE_SINGLE_ACT_VALID_BIT;
2649 		break;
2650 	case ICE_FWD_TO_Q:
2651 		act |= ICE_SINGLE_ACT_TO_Q;
2652 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2653 				  f_info->fwd_id.q_id);
2654 		break;
2655 	case ICE_DROP_PACKET:
2656 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2657 			ICE_SINGLE_ACT_VALID_BIT;
2658 		break;
2659 	case ICE_FWD_TO_QGRP:
2660 		q_rgn = f_info->qgrp_size > 0 ?
2661 			(u8)ilog2(f_info->qgrp_size) : 0;
2662 		act |= ICE_SINGLE_ACT_TO_Q;
2663 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2664 				  f_info->fwd_id.q_id);
2665 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
2666 		break;
2667 	default:
2668 		return;
2669 	}
2670 
2671 	if (f_info->lb_en)
2672 		act |= ICE_SINGLE_ACT_LB_ENABLE;
2673 	if (f_info->lan_en)
2674 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2675 
2676 	switch (f_info->lkup_type) {
2677 	case ICE_SW_LKUP_MAC:
2678 		daddr = f_info->l_data.mac.mac_addr;
2679 		break;
2680 	case ICE_SW_LKUP_VLAN:
2681 		vlan_id = f_info->l_data.vlan.vlan_id;
2682 		if (f_info->l_data.vlan.tpid_valid)
2683 			vlan_tpid = f_info->l_data.vlan.tpid;
2684 		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2685 		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2686 			act |= ICE_SINGLE_ACT_PRUNE;
2687 			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2688 		}
2689 		break;
2690 	case ICE_SW_LKUP_ETHERTYPE_MAC:
2691 		daddr = f_info->l_data.ethertype_mac.mac_addr;
2692 		fallthrough;
2693 	case ICE_SW_LKUP_ETHERTYPE:
2694 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2695 		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2696 		break;
2697 	case ICE_SW_LKUP_MAC_VLAN:
2698 		daddr = f_info->l_data.mac_vlan.mac_addr;
2699 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2700 		break;
2701 	case ICE_SW_LKUP_PROMISC_VLAN:
2702 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2703 		fallthrough;
2704 	case ICE_SW_LKUP_PROMISC:
2705 		daddr = f_info->l_data.mac_vlan.mac_addr;
2706 		break;
2707 	default:
2708 		break;
2709 	}
2710 
2711 	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2712 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2713 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2714 
2715 	/* Recipe set depending on lookup type */
2716 	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2717 	s_rule->src = cpu_to_le16(f_info->src);
2718 	s_rule->act = cpu_to_le32(act);
2719 
2720 	if (daddr)
2721 		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2722 
2723 	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2724 		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2725 		*off = cpu_to_be16(vlan_id);
2726 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2727 		*off = cpu_to_be16(vlan_tpid);
2728 	}
2729 
2730 	/* Create the switch rule with the final dummy Ethernet header */
2731 	if (opc != ice_aqc_opc_update_sw_rules)
2732 		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2733 }
2734 
2735 /**
2736  * ice_add_marker_act
2737  * @hw: pointer to the hardware structure
2738  * @m_ent: the management entry for which sw marker needs to be added
2739  * @sw_marker: sw marker to tag the Rx descriptor with
2740  * @l_id: large action resource ID
2741  *
2742  * Create a large action to hold software marker and update the switch rule
2743  * entry pointed by m_ent with newly created large action
2744  */
2745 static int
2746 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2747 		   u16 sw_marker, u16 l_id)
2748 {
2749 	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2750 	struct ice_sw_rule_lg_act *lg_act;
2751 	/* For software marker we need 3 large actions
2752 	 * 1. FWD action: FWD TO VSI or VSI LIST
2753 	 * 2. GENERIC VALUE action to hold the profile ID
2754 	 * 3. GENERIC VALUE action to hold the software marker ID
2755 	 */
2756 	const u16 num_lg_acts = 3;
2757 	u16 lg_act_size;
2758 	u16 rules_size;
2759 	int status;
2760 	u32 act;
2761 	u16 id;
2762 
2763 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2764 		return -EINVAL;
2765 
2766 	/* Create two back-to-back switch rules and submit them to the HW using
2767 	 * one memory buffer:
2768 	 *    1. Large Action
2769 	 *    2. Look up Tx Rx
2770 	 */
2771 	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2772 	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2773 	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2774 	if (!lg_act)
2775 		return -ENOMEM;
2776 
2777 	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2778 
2779 	/* Fill in the first switch rule i.e. large action */
2780 	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2781 	lg_act->index = cpu_to_le16(l_id);
2782 	lg_act->size = cpu_to_le16(num_lg_acts);
2783 
2784 	/* First action VSI forwarding or VSI list forwarding depending on how
2785 	 * many VSIs
2786 	 */
2787 	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2788 		m_ent->fltr_info.fwd_id.hw_vsi_id;
2789 
2790 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2791 	act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2792 	if (m_ent->vsi_count > 1)
2793 		act |= ICE_LG_ACT_VSI_LIST;
2794 	lg_act->act[0] = cpu_to_le32(act);
2795 
2796 	/* Second action descriptor type */
2797 	act = ICE_LG_ACT_GENERIC;
2798 
2799 	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2800 	lg_act->act[1] = cpu_to_le32(act);
2801 
2802 	act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2803 			 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2804 
2805 	/* Third action Marker value */
2806 	act |= ICE_LG_ACT_GENERIC;
2807 	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
2808 
2809 	lg_act->act[2] = cpu_to_le32(act);
2810 
2811 	/* call the fill switch rule to fill the lookup Tx Rx structure */
2812 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2813 			 ice_aqc_opc_update_sw_rules);
2814 
2815 	/* Update the action to point to the large action ID */
2816 	act = ICE_SINGLE_ACT_PTR;
2817 	act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2818 	rx_tx->act = cpu_to_le32(act);
2819 
2820 	/* Use the filter rule ID of the previously created rule with single
2821 	 * act. Once the update happens, hardware will treat this as large
2822 	 * action
2823 	 */
2824 	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2825 
2826 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2827 				 ice_aqc_opc_update_sw_rules, NULL);
2828 	if (!status) {
2829 		m_ent->lg_act_idx = l_id;
2830 		m_ent->sw_marker_id = sw_marker;
2831 	}
2832 
2833 	devm_kfree(ice_hw_to_dev(hw), lg_act);
2834 	return status;
2835 }
2836 
2837 /**
2838  * ice_create_vsi_list_map
2839  * @hw: pointer to the hardware structure
2840  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2841  * @num_vsi: number of VSI handles in the array
2842  * @vsi_list_id: VSI list ID generated as part of allocate resource
2843  *
2844  * Helper function to create a new entry of VSI list ID to VSI mapping
2845  * using the given VSI list ID
2846  */
2847 static struct ice_vsi_list_map_info *
2848 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2849 			u16 vsi_list_id)
2850 {
2851 	struct ice_switch_info *sw = hw->switch_info;
2852 	struct ice_vsi_list_map_info *v_map;
2853 	int i;
2854 
2855 	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2856 	if (!v_map)
2857 		return NULL;
2858 
2859 	v_map->vsi_list_id = vsi_list_id;
2860 	v_map->ref_cnt = 1;
2861 	for (i = 0; i < num_vsi; i++)
2862 		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2863 
2864 	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2865 	return v_map;
2866 }
2867 
2868 /**
2869  * ice_update_vsi_list_rule
2870  * @hw: pointer to the hardware structure
2871  * @vsi_handle_arr: array of VSI handles to form a VSI list
2872  * @num_vsi: number of VSI handles in the array
2873  * @vsi_list_id: VSI list ID generated as part of allocate resource
2874  * @remove: Boolean value to indicate if this is a remove action
2875  * @opc: switch rules population command type - pass in the command opcode
2876  * @lkup_type: lookup type of the filter
2877  *
2878  * Call AQ command to add a new switch rule or update existing switch rule
2879  * using the given VSI list ID
2880  */
2881 static int
2882 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2883 			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2884 			 enum ice_sw_lkup_type lkup_type)
2885 {
2886 	struct ice_sw_rule_vsi_list *s_rule;
2887 	u16 s_rule_size;
2888 	u16 rule_type;
2889 	int status;
2890 	int i;
2891 
2892 	if (!num_vsi)
2893 		return -EINVAL;
2894 
2895 	if (lkup_type == ICE_SW_LKUP_MAC ||
2896 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2897 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2898 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2899 	    lkup_type == ICE_SW_LKUP_PROMISC ||
2900 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2901 	    lkup_type == ICE_SW_LKUP_DFLT ||
2902 	    lkup_type == ICE_SW_LKUP_LAST)
2903 		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2904 			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2905 	else if (lkup_type == ICE_SW_LKUP_VLAN)
2906 		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2907 			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2908 	else
2909 		return -EINVAL;
2910 
2911 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2912 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2913 	if (!s_rule)
2914 		return -ENOMEM;
2915 	for (i = 0; i < num_vsi; i++) {
2916 		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2917 			status = -EINVAL;
2918 			goto exit;
2919 		}
2920 		/* AQ call requires hw_vsi_id(s) */
2921 		s_rule->vsi[i] =
2922 			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2923 	}
2924 
2925 	s_rule->hdr.type = cpu_to_le16(rule_type);
2926 	s_rule->number_vsi = cpu_to_le16(num_vsi);
2927 	s_rule->index = cpu_to_le16(vsi_list_id);
2928 
2929 	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2930 
2931 exit:
2932 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2933 	return status;
2934 }
2935 
2936 /**
2937  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2938  * @hw: pointer to the HW struct
2939  * @vsi_handle_arr: array of VSI handles to form a VSI list
2940  * @num_vsi: number of VSI handles in the array
2941  * @vsi_list_id: stores the ID of the VSI list to be created
2942  * @lkup_type: switch rule filter's lookup type
2943  */
2944 static int
2945 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2946 			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2947 {
2948 	int status;
2949 
2950 	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2951 					    ice_aqc_opc_alloc_res);
2952 	if (status)
2953 		return status;
2954 
2955 	/* Update the newly created VSI list to include the specified VSIs */
2956 	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2957 					*vsi_list_id, false,
2958 					ice_aqc_opc_add_sw_rules, lkup_type);
2959 }
2960 
2961 /**
2962  * ice_create_pkt_fwd_rule
2963  * @hw: pointer to the hardware structure
2964  * @f_entry: entry containing packet forwarding information
2965  *
2966  * Create switch rule with given filter information and add an entry
2967  * to the corresponding filter management list to track this switch rule
2968  * and VSI mapping
2969  */
2970 static int
2971 ice_create_pkt_fwd_rule(struct ice_hw *hw,
2972 			struct ice_fltr_list_entry *f_entry)
2973 {
2974 	struct ice_fltr_mgmt_list_entry *fm_entry;
2975 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2976 	enum ice_sw_lkup_type l_type;
2977 	struct ice_sw_recipe *recp;
2978 	int status;
2979 
2980 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2981 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2982 			      GFP_KERNEL);
2983 	if (!s_rule)
2984 		return -ENOMEM;
2985 	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2986 				GFP_KERNEL);
2987 	if (!fm_entry) {
2988 		status = -ENOMEM;
2989 		goto ice_create_pkt_fwd_rule_exit;
2990 	}
2991 
2992 	fm_entry->fltr_info = f_entry->fltr_info;
2993 
2994 	/* Initialize all the fields for the management entry */
2995 	fm_entry->vsi_count = 1;
2996 	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2997 	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2998 	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2999 
3000 	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
3001 			 ice_aqc_opc_add_sw_rules);
3002 
3003 	status = ice_aq_sw_rules(hw, s_rule,
3004 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3005 				 ice_aqc_opc_add_sw_rules, NULL);
3006 	if (status) {
3007 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
3008 		goto ice_create_pkt_fwd_rule_exit;
3009 	}
3010 
3011 	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3012 	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3013 
3014 	/* The book keeping entries will get removed when base driver
3015 	 * calls remove filter AQ command
3016 	 */
3017 	l_type = fm_entry->fltr_info.lkup_type;
3018 	recp = &hw->switch_info->recp_list[l_type];
3019 	list_add(&fm_entry->list_entry, &recp->filt_rules);
3020 
3021 ice_create_pkt_fwd_rule_exit:
3022 	devm_kfree(ice_hw_to_dev(hw), s_rule);
3023 	return status;
3024 }
3025 
3026 /**
3027  * ice_update_pkt_fwd_rule
3028  * @hw: pointer to the hardware structure
3029  * @f_info: filter information for switch rule
3030  *
3031  * Call AQ command to update a previously created switch rule with a
3032  * VSI list ID
3033  */
3034 static int
3035 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
3036 {
3037 	struct ice_sw_rule_lkup_rx_tx *s_rule;
3038 	int status;
3039 
3040 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3041 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
3042 			      GFP_KERNEL);
3043 	if (!s_rule)
3044 		return -ENOMEM;
3045 
3046 	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
3047 
3048 	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
3049 
3050 	/* Update switch rule with new rule set to forward VSI list */
3051 	status = ice_aq_sw_rules(hw, s_rule,
3052 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3053 				 ice_aqc_opc_update_sw_rules, NULL);
3054 
3055 	devm_kfree(ice_hw_to_dev(hw), s_rule);
3056 	return status;
3057 }
3058 
3059 /**
3060  * ice_update_sw_rule_bridge_mode
3061  * @hw: pointer to the HW struct
3062  *
3063  * Updates unicast switch filter rules based on VEB/VEPA mode
3064  */
3065 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
3066 {
3067 	struct ice_switch_info *sw = hw->switch_info;
3068 	struct ice_fltr_mgmt_list_entry *fm_entry;
3069 	struct list_head *rule_head;
3070 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3071 	int status = 0;
3072 
3073 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3074 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3075 
3076 	mutex_lock(rule_lock);
3077 	list_for_each_entry(fm_entry, rule_head, list_entry) {
3078 		struct ice_fltr_info *fi = &fm_entry->fltr_info;
3079 		u8 *addr = fi->l_data.mac.mac_addr;
3080 
3081 		/* Update unicast Tx rules to reflect the selected
3082 		 * VEB/VEPA mode
3083 		 */
3084 		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
3085 		    (fi->fltr_act == ICE_FWD_TO_VSI ||
3086 		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
3087 		     fi->fltr_act == ICE_FWD_TO_Q ||
3088 		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
3089 			status = ice_update_pkt_fwd_rule(hw, fi);
3090 			if (status)
3091 				break;
3092 		}
3093 	}
3094 
3095 	mutex_unlock(rule_lock);
3096 
3097 	return status;
3098 }
3099 
3100 /**
3101  * ice_add_update_vsi_list
3102  * @hw: pointer to the hardware structure
3103  * @m_entry: pointer to current filter management list entry
3104  * @cur_fltr: filter information from the book keeping entry
3105  * @new_fltr: filter information with the new VSI to be added
3106  *
3107  * Call AQ command to add or update previously created VSI list with new VSI.
3108  *
3109  * Helper function to do book keeping associated with adding filter information
3110  * The algorithm to do the book keeping is described below :
3111  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
3112  *	if only one VSI has been added till now
3113  *		Allocate a new VSI list and add two VSIs
3114  *		to this list using switch rule command
3115  *		Update the previously created switch rule with the
3116  *		newly created VSI list ID
3117  *	if a VSI list was previously created
3118  *		Add the new VSI to the previously created VSI list set
3119  *		using the update switch rule command
3120  */
3121 static int
3122 ice_add_update_vsi_list(struct ice_hw *hw,
3123 			struct ice_fltr_mgmt_list_entry *m_entry,
3124 			struct ice_fltr_info *cur_fltr,
3125 			struct ice_fltr_info *new_fltr)
3126 {
3127 	u16 vsi_list_id = 0;
3128 	int status = 0;
3129 
3130 	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
3131 	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
3132 		return -EOPNOTSUPP;
3133 
3134 	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
3135 	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
3136 	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
3137 	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
3138 		return -EOPNOTSUPP;
3139 
3140 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3141 		/* Only one entry existed in the mapping and it was not already
3142 		 * a part of a VSI list. So, create a VSI list with the old and
3143 		 * new VSIs.
3144 		 */
3145 		struct ice_fltr_info tmp_fltr;
3146 		u16 vsi_handle_arr[2];
3147 
3148 		/* A rule already exists with the new VSI being added */
3149 		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3150 			return -EEXIST;
3151 
3152 		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3153 		vsi_handle_arr[1] = new_fltr->vsi_handle;
3154 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3155 						  &vsi_list_id,
3156 						  new_fltr->lkup_type);
3157 		if (status)
3158 			return status;
3159 
3160 		tmp_fltr = *new_fltr;
3161 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3162 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3163 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3164 		/* Update the previous switch rule of "MAC forward to VSI" to
3165 		 * "MAC fwd to VSI list"
3166 		 */
3167 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3168 		if (status)
3169 			return status;
3170 
3171 		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3172 		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3173 		m_entry->vsi_list_info =
3174 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3175 						vsi_list_id);
3176 
3177 		if (!m_entry->vsi_list_info)
3178 			return -ENOMEM;
3179 
3180 		/* If this entry was large action then the large action needs
3181 		 * to be updated to point to FWD to VSI list
3182 		 */
3183 		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3184 			status =
3185 			    ice_add_marker_act(hw, m_entry,
3186 					       m_entry->sw_marker_id,
3187 					       m_entry->lg_act_idx);
3188 	} else {
3189 		u16 vsi_handle = new_fltr->vsi_handle;
3190 		enum ice_adminq_opc opcode;
3191 
3192 		if (!m_entry->vsi_list_info)
3193 			return -EIO;
3194 
3195 		/* A rule already exists with the new VSI being added */
3196 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3197 			return -EEXIST;
3198 
3199 		/* Update the previously created VSI list set with
3200 		 * the new VSI ID passed in
3201 		 */
3202 		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3203 		opcode = ice_aqc_opc_update_sw_rules;
3204 
3205 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3206 						  vsi_list_id, false, opcode,
3207 						  new_fltr->lkup_type);
3208 		/* update VSI list mapping info with new VSI ID */
3209 		if (!status)
3210 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3211 	}
3212 	if (!status)
3213 		m_entry->vsi_count++;
3214 	return status;
3215 }
3216 
3217 /**
3218  * ice_find_rule_entry - Search a rule entry
3219  * @hw: pointer to the hardware structure
3220  * @recp_id: lookup type for which the specified rule needs to be searched
3221  * @f_info: rule information
3222  *
3223  * Helper function to search for a given rule entry
3224  * Returns pointer to entry storing the rule if found
3225  */
3226 static struct ice_fltr_mgmt_list_entry *
3227 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3228 {
3229 	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3230 	struct ice_switch_info *sw = hw->switch_info;
3231 	struct list_head *list_head;
3232 
3233 	list_head = &sw->recp_list[recp_id].filt_rules;
3234 	list_for_each_entry(list_itr, list_head, list_entry) {
3235 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3236 			    sizeof(f_info->l_data)) &&
3237 		    f_info->flag == list_itr->fltr_info.flag) {
3238 			ret = list_itr;
3239 			break;
3240 		}
3241 	}
3242 	return ret;
3243 }
3244 
3245 /**
3246  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3247  * @hw: pointer to the hardware structure
3248  * @recp_id: lookup type for which VSI lists needs to be searched
3249  * @vsi_handle: VSI handle to be found in VSI list
3250  * @vsi_list_id: VSI list ID found containing vsi_handle
3251  *
3252  * Helper function to search a VSI list with single entry containing given VSI
3253  * handle element. This can be extended further to search VSI list with more
3254  * than 1 vsi_count. Returns pointer to VSI list entry if found.
3255  */
3256 struct ice_vsi_list_map_info *
3257 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3258 			u16 *vsi_list_id)
3259 {
3260 	struct ice_vsi_list_map_info *map_info = NULL;
3261 	struct ice_switch_info *sw = hw->switch_info;
3262 	struct ice_fltr_mgmt_list_entry *list_itr;
3263 	struct list_head *list_head;
3264 
3265 	list_head = &sw->recp_list[recp_id].filt_rules;
3266 	list_for_each_entry(list_itr, list_head, list_entry) {
3267 		if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3268 			map_info = list_itr->vsi_list_info;
3269 			if (test_bit(vsi_handle, map_info->vsi_map)) {
3270 				*vsi_list_id = map_info->vsi_list_id;
3271 				return map_info;
3272 			}
3273 		}
3274 	}
3275 	return NULL;
3276 }
3277 
3278 /**
3279  * ice_add_rule_internal - add rule for a given lookup type
3280  * @hw: pointer to the hardware structure
3281  * @recp_id: lookup type (recipe ID) for which rule has to be added
3282  * @f_entry: structure containing MAC forwarding information
3283  *
3284  * Adds or updates the rule lists for a given recipe
3285  */
3286 static int
3287 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3288 		      struct ice_fltr_list_entry *f_entry)
3289 {
3290 	struct ice_switch_info *sw = hw->switch_info;
3291 	struct ice_fltr_info *new_fltr, *cur_fltr;
3292 	struct ice_fltr_mgmt_list_entry *m_entry;
3293 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3294 	int status = 0;
3295 
3296 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3297 		return -EINVAL;
3298 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3299 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3300 
3301 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3302 
3303 	mutex_lock(rule_lock);
3304 	new_fltr = &f_entry->fltr_info;
3305 	if (new_fltr->flag & ICE_FLTR_RX)
3306 		new_fltr->src = hw->port_info->lport;
3307 	else if (new_fltr->flag & ICE_FLTR_TX)
3308 		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3309 
3310 	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3311 	if (!m_entry) {
3312 		mutex_unlock(rule_lock);
3313 		return ice_create_pkt_fwd_rule(hw, f_entry);
3314 	}
3315 
3316 	cur_fltr = &m_entry->fltr_info;
3317 	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3318 	mutex_unlock(rule_lock);
3319 
3320 	return status;
3321 }
3322 
3323 /**
3324  * ice_remove_vsi_list_rule
3325  * @hw: pointer to the hardware structure
3326  * @vsi_list_id: VSI list ID generated as part of allocate resource
3327  * @lkup_type: switch rule filter lookup type
3328  *
3329  * The VSI list should be emptied before this function is called to remove the
3330  * VSI list.
3331  */
3332 static int
3333 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3334 			 enum ice_sw_lkup_type lkup_type)
3335 {
3336 	struct ice_sw_rule_vsi_list *s_rule;
3337 	u16 s_rule_size;
3338 	int status;
3339 
3340 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3341 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3342 	if (!s_rule)
3343 		return -ENOMEM;
3344 
3345 	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3346 	s_rule->index = cpu_to_le16(vsi_list_id);
3347 
3348 	/* Free the vsi_list resource that we allocated. It is assumed that the
3349 	 * list is empty at this point.
3350 	 */
3351 	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3352 					    ice_aqc_opc_free_res);
3353 
3354 	devm_kfree(ice_hw_to_dev(hw), s_rule);
3355 	return status;
3356 }
3357 
3358 /**
3359  * ice_rem_update_vsi_list
3360  * @hw: pointer to the hardware structure
3361  * @vsi_handle: VSI handle of the VSI to remove
3362  * @fm_list: filter management entry for which the VSI list management needs to
3363  *           be done
3364  */
3365 static int
3366 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3367 			struct ice_fltr_mgmt_list_entry *fm_list)
3368 {
3369 	enum ice_sw_lkup_type lkup_type;
3370 	u16 vsi_list_id;
3371 	int status = 0;
3372 
3373 	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3374 	    fm_list->vsi_count == 0)
3375 		return -EINVAL;
3376 
3377 	/* A rule with the VSI being removed does not exist */
3378 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3379 		return -ENOENT;
3380 
3381 	lkup_type = fm_list->fltr_info.lkup_type;
3382 	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3383 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3384 					  ice_aqc_opc_update_sw_rules,
3385 					  lkup_type);
3386 	if (status)
3387 		return status;
3388 
3389 	fm_list->vsi_count--;
3390 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3391 
3392 	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3393 		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3394 		struct ice_vsi_list_map_info *vsi_list_info =
3395 			fm_list->vsi_list_info;
3396 		u16 rem_vsi_handle;
3397 
3398 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3399 						ICE_MAX_VSI);
3400 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3401 			return -EIO;
3402 
3403 		/* Make sure VSI list is empty before removing it below */
3404 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3405 						  vsi_list_id, true,
3406 						  ice_aqc_opc_update_sw_rules,
3407 						  lkup_type);
3408 		if (status)
3409 			return status;
3410 
3411 		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3412 		tmp_fltr_info.fwd_id.hw_vsi_id =
3413 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3414 		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3415 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3416 		if (status) {
3417 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3418 				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3419 			return status;
3420 		}
3421 
3422 		fm_list->fltr_info = tmp_fltr_info;
3423 	}
3424 
3425 	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3426 	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3427 		struct ice_vsi_list_map_info *vsi_list_info =
3428 			fm_list->vsi_list_info;
3429 
3430 		/* Remove the VSI list since it is no longer used */
3431 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3432 		if (status) {
3433 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3434 				  vsi_list_id, status);
3435 			return status;
3436 		}
3437 
3438 		list_del(&vsi_list_info->list_entry);
3439 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3440 		fm_list->vsi_list_info = NULL;
3441 	}
3442 
3443 	return status;
3444 }
3445 
3446 /**
3447  * ice_remove_rule_internal - Remove a filter rule of a given type
3448  * @hw: pointer to the hardware structure
3449  * @recp_id: recipe ID for which the rule needs to removed
3450  * @f_entry: rule entry containing filter information
3451  */
3452 static int
3453 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3454 			 struct ice_fltr_list_entry *f_entry)
3455 {
3456 	struct ice_switch_info *sw = hw->switch_info;
3457 	struct ice_fltr_mgmt_list_entry *list_elem;
3458 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3459 	bool remove_rule = false;
3460 	u16 vsi_handle;
3461 	int status = 0;
3462 
3463 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3464 		return -EINVAL;
3465 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3466 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3467 
3468 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3469 	mutex_lock(rule_lock);
3470 	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3471 	if (!list_elem) {
3472 		status = -ENOENT;
3473 		goto exit;
3474 	}
3475 
3476 	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3477 		remove_rule = true;
3478 	} else if (!list_elem->vsi_list_info) {
3479 		status = -ENOENT;
3480 		goto exit;
3481 	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3482 		/* a ref_cnt > 1 indicates that the vsi_list is being
3483 		 * shared by multiple rules. Decrement the ref_cnt and
3484 		 * remove this rule, but do not modify the list, as it
3485 		 * is in-use by other rules.
3486 		 */
3487 		list_elem->vsi_list_info->ref_cnt--;
3488 		remove_rule = true;
3489 	} else {
3490 		/* a ref_cnt of 1 indicates the vsi_list is only used
3491 		 * by one rule. However, the original removal request is only
3492 		 * for a single VSI. Update the vsi_list first, and only
3493 		 * remove the rule if there are no further VSIs in this list.
3494 		 */
3495 		vsi_handle = f_entry->fltr_info.vsi_handle;
3496 		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3497 		if (status)
3498 			goto exit;
3499 		/* if VSI count goes to zero after updating the VSI list */
3500 		if (list_elem->vsi_count == 0)
3501 			remove_rule = true;
3502 	}
3503 
3504 	if (remove_rule) {
3505 		/* Remove the lookup rule */
3506 		struct ice_sw_rule_lkup_rx_tx *s_rule;
3507 
3508 		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3509 				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3510 				      GFP_KERNEL);
3511 		if (!s_rule) {
3512 			status = -ENOMEM;
3513 			goto exit;
3514 		}
3515 
3516 		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3517 				 ice_aqc_opc_remove_sw_rules);
3518 
3519 		status = ice_aq_sw_rules(hw, s_rule,
3520 					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3521 					 1, ice_aqc_opc_remove_sw_rules, NULL);
3522 
3523 		/* Remove a book keeping from the list */
3524 		devm_kfree(ice_hw_to_dev(hw), s_rule);
3525 
3526 		if (status)
3527 			goto exit;
3528 
3529 		list_del(&list_elem->list_entry);
3530 		devm_kfree(ice_hw_to_dev(hw), list_elem);
3531 	}
3532 exit:
3533 	mutex_unlock(rule_lock);
3534 	return status;
3535 }
3536 
3537 /**
3538  * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3539  * @hw: pointer to the hardware structure
3540  * @vlan_id: VLAN ID
3541  * @vsi_handle: check MAC filter for this VSI
3542  */
3543 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3544 {
3545 	struct ice_fltr_mgmt_list_entry *entry;
3546 	struct list_head *rule_head;
3547 	struct ice_switch_info *sw;
3548 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3549 	u16 hw_vsi_id;
3550 
3551 	if (vlan_id > ICE_MAX_VLAN_ID)
3552 		return false;
3553 
3554 	if (!ice_is_vsi_valid(hw, vsi_handle))
3555 		return false;
3556 
3557 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3558 	sw = hw->switch_info;
3559 	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3560 	if (!rule_head)
3561 		return false;
3562 
3563 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3564 	mutex_lock(rule_lock);
3565 	list_for_each_entry(entry, rule_head, list_entry) {
3566 		struct ice_fltr_info *f_info = &entry->fltr_info;
3567 		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3568 		struct ice_vsi_list_map_info *map_info;
3569 
3570 		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3571 			continue;
3572 
3573 		if (f_info->flag != ICE_FLTR_TX ||
3574 		    f_info->src_id != ICE_SRC_ID_VSI ||
3575 		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3576 			continue;
3577 
3578 		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3579 		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3580 		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3581 			continue;
3582 
3583 		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3584 			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3585 				continue;
3586 		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3587 			/* If filter_action is FWD_TO_VSI_LIST, make sure
3588 			 * that VSI being checked is part of VSI list
3589 			 */
3590 			if (entry->vsi_count == 1 &&
3591 			    entry->vsi_list_info) {
3592 				map_info = entry->vsi_list_info;
3593 				if (!test_bit(vsi_handle, map_info->vsi_map))
3594 					continue;
3595 			}
3596 		}
3597 
3598 		if (vlan_id == entry_vlan_id) {
3599 			mutex_unlock(rule_lock);
3600 			return true;
3601 		}
3602 	}
3603 	mutex_unlock(rule_lock);
3604 
3605 	return false;
3606 }
3607 
3608 /**
3609  * ice_add_mac - Add a MAC address based filter rule
3610  * @hw: pointer to the hardware structure
3611  * @m_list: list of MAC addresses and forwarding information
3612  */
3613 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3614 {
3615 	struct ice_fltr_list_entry *m_list_itr;
3616 	int status = 0;
3617 
3618 	if (!m_list || !hw)
3619 		return -EINVAL;
3620 
3621 	list_for_each_entry(m_list_itr, m_list, list_entry) {
3622 		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3623 		u16 vsi_handle;
3624 		u16 hw_vsi_id;
3625 
3626 		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3627 		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3628 		if (!ice_is_vsi_valid(hw, vsi_handle))
3629 			return -EINVAL;
3630 		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3631 		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3632 		/* update the src in case it is VSI num */
3633 		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3634 			return -EINVAL;
3635 		m_list_itr->fltr_info.src = hw_vsi_id;
3636 		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3637 		    is_zero_ether_addr(add))
3638 			return -EINVAL;
3639 
3640 		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3641 							   m_list_itr);
3642 		if (m_list_itr->status)
3643 			return m_list_itr->status;
3644 	}
3645 
3646 	return status;
3647 }
3648 
3649 /**
3650  * ice_add_vlan_internal - Add one VLAN based filter rule
3651  * @hw: pointer to the hardware structure
3652  * @f_entry: filter entry containing one VLAN information
3653  */
3654 static int
3655 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3656 {
3657 	struct ice_switch_info *sw = hw->switch_info;
3658 	struct ice_fltr_mgmt_list_entry *v_list_itr;
3659 	struct ice_fltr_info *new_fltr, *cur_fltr;
3660 	enum ice_sw_lkup_type lkup_type;
3661 	u16 vsi_list_id = 0, vsi_handle;
3662 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3663 	int status = 0;
3664 
3665 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3666 		return -EINVAL;
3667 
3668 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3669 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3670 	new_fltr = &f_entry->fltr_info;
3671 
3672 	/* VLAN ID should only be 12 bits */
3673 	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3674 		return -EINVAL;
3675 
3676 	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3677 		return -EINVAL;
3678 
3679 	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3680 	lkup_type = new_fltr->lkup_type;
3681 	vsi_handle = new_fltr->vsi_handle;
3682 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3683 	mutex_lock(rule_lock);
3684 	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3685 	if (!v_list_itr) {
3686 		struct ice_vsi_list_map_info *map_info = NULL;
3687 
3688 		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3689 			/* All VLAN pruning rules use a VSI list. Check if
3690 			 * there is already a VSI list containing VSI that we
3691 			 * want to add. If found, use the same vsi_list_id for
3692 			 * this new VLAN rule or else create a new list.
3693 			 */
3694 			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3695 							   vsi_handle,
3696 							   &vsi_list_id);
3697 			if (!map_info) {
3698 				status = ice_create_vsi_list_rule(hw,
3699 								  &vsi_handle,
3700 								  1,
3701 								  &vsi_list_id,
3702 								  lkup_type);
3703 				if (status)
3704 					goto exit;
3705 			}
3706 			/* Convert the action to forwarding to a VSI list. */
3707 			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3708 			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3709 		}
3710 
3711 		status = ice_create_pkt_fwd_rule(hw, f_entry);
3712 		if (!status) {
3713 			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3714 							 new_fltr);
3715 			if (!v_list_itr) {
3716 				status = -ENOENT;
3717 				goto exit;
3718 			}
3719 			/* reuse VSI list for new rule and increment ref_cnt */
3720 			if (map_info) {
3721 				v_list_itr->vsi_list_info = map_info;
3722 				map_info->ref_cnt++;
3723 			} else {
3724 				v_list_itr->vsi_list_info =
3725 					ice_create_vsi_list_map(hw, &vsi_handle,
3726 								1, vsi_list_id);
3727 			}
3728 		}
3729 	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3730 		/* Update existing VSI list to add new VSI ID only if it used
3731 		 * by one VLAN rule.
3732 		 */
3733 		cur_fltr = &v_list_itr->fltr_info;
3734 		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3735 						 new_fltr);
3736 	} else {
3737 		/* If VLAN rule exists and VSI list being used by this rule is
3738 		 * referenced by more than 1 VLAN rule. Then create a new VSI
3739 		 * list appending previous VSI with new VSI and update existing
3740 		 * VLAN rule to point to new VSI list ID
3741 		 */
3742 		struct ice_fltr_info tmp_fltr;
3743 		u16 vsi_handle_arr[2];
3744 		u16 cur_handle;
3745 
3746 		/* Current implementation only supports reusing VSI list with
3747 		 * one VSI count. We should never hit below condition
3748 		 */
3749 		if (v_list_itr->vsi_count > 1 &&
3750 		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3751 			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3752 			status = -EIO;
3753 			goto exit;
3754 		}
3755 
3756 		cur_handle =
3757 			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3758 				       ICE_MAX_VSI);
3759 
3760 		/* A rule already exists with the new VSI being added */
3761 		if (cur_handle == vsi_handle) {
3762 			status = -EEXIST;
3763 			goto exit;
3764 		}
3765 
3766 		vsi_handle_arr[0] = cur_handle;
3767 		vsi_handle_arr[1] = vsi_handle;
3768 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3769 						  &vsi_list_id, lkup_type);
3770 		if (status)
3771 			goto exit;
3772 
3773 		tmp_fltr = v_list_itr->fltr_info;
3774 		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3775 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3776 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3777 		/* Update the previous switch rule to a new VSI list which
3778 		 * includes current VSI that is requested
3779 		 */
3780 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3781 		if (status)
3782 			goto exit;
3783 
3784 		/* before overriding VSI list map info. decrement ref_cnt of
3785 		 * previous VSI list
3786 		 */
3787 		v_list_itr->vsi_list_info->ref_cnt--;
3788 
3789 		/* now update to newly created list */
3790 		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3791 		v_list_itr->vsi_list_info =
3792 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3793 						vsi_list_id);
3794 		v_list_itr->vsi_count++;
3795 	}
3796 
3797 exit:
3798 	mutex_unlock(rule_lock);
3799 	return status;
3800 }
3801 
3802 /**
3803  * ice_add_vlan - Add VLAN based filter rule
3804  * @hw: pointer to the hardware structure
3805  * @v_list: list of VLAN entries and forwarding information
3806  */
3807 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3808 {
3809 	struct ice_fltr_list_entry *v_list_itr;
3810 
3811 	if (!v_list || !hw)
3812 		return -EINVAL;
3813 
3814 	list_for_each_entry(v_list_itr, v_list, list_entry) {
3815 		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3816 			return -EINVAL;
3817 		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3818 		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3819 		if (v_list_itr->status)
3820 			return v_list_itr->status;
3821 	}
3822 	return 0;
3823 }
3824 
3825 /**
3826  * ice_add_eth_mac - Add ethertype and MAC based filter rule
3827  * @hw: pointer to the hardware structure
3828  * @em_list: list of ether type MAC filter, MAC is optional
3829  *
3830  * This function requires the caller to populate the entries in
3831  * the filter list with the necessary fields (including flags to
3832  * indicate Tx or Rx rules).
3833  */
3834 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3835 {
3836 	struct ice_fltr_list_entry *em_list_itr;
3837 
3838 	if (!em_list || !hw)
3839 		return -EINVAL;
3840 
3841 	list_for_each_entry(em_list_itr, em_list, list_entry) {
3842 		enum ice_sw_lkup_type l_type =
3843 			em_list_itr->fltr_info.lkup_type;
3844 
3845 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3846 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3847 			return -EINVAL;
3848 
3849 		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3850 							    em_list_itr);
3851 		if (em_list_itr->status)
3852 			return em_list_itr->status;
3853 	}
3854 	return 0;
3855 }
3856 
3857 /**
3858  * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3859  * @hw: pointer to the hardware structure
3860  * @em_list: list of ethertype or ethertype MAC entries
3861  */
3862 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3863 {
3864 	struct ice_fltr_list_entry *em_list_itr, *tmp;
3865 
3866 	if (!em_list || !hw)
3867 		return -EINVAL;
3868 
3869 	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3870 		enum ice_sw_lkup_type l_type =
3871 			em_list_itr->fltr_info.lkup_type;
3872 
3873 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3874 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3875 			return -EINVAL;
3876 
3877 		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3878 							       em_list_itr);
3879 		if (em_list_itr->status)
3880 			return em_list_itr->status;
3881 	}
3882 	return 0;
3883 }
3884 
3885 /**
3886  * ice_rem_sw_rule_info
3887  * @hw: pointer to the hardware structure
3888  * @rule_head: pointer to the switch list structure that we want to delete
3889  */
3890 static void
3891 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3892 {
3893 	if (!list_empty(rule_head)) {
3894 		struct ice_fltr_mgmt_list_entry *entry;
3895 		struct ice_fltr_mgmt_list_entry *tmp;
3896 
3897 		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3898 			list_del(&entry->list_entry);
3899 			devm_kfree(ice_hw_to_dev(hw), entry);
3900 		}
3901 	}
3902 }
3903 
3904 /**
3905  * ice_rem_adv_rule_info
3906  * @hw: pointer to the hardware structure
3907  * @rule_head: pointer to the switch list structure that we want to delete
3908  */
3909 static void
3910 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3911 {
3912 	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3913 	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3914 
3915 	if (list_empty(rule_head))
3916 		return;
3917 
3918 	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3919 		list_del(&lst_itr->list_entry);
3920 		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3921 		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3922 	}
3923 }
3924 
3925 /**
3926  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3927  * @pi: pointer to the port_info structure
3928  * @vsi_handle: VSI handle to set as default
3929  * @set: true to add the above mentioned switch rule, false to remove it
3930  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3931  *
3932  * add filter rule to set/unset given VSI as default VSI for the switch
3933  * (represented by swid)
3934  */
3935 int
3936 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3937 		 u8 direction)
3938 {
3939 	struct ice_fltr_list_entry f_list_entry;
3940 	struct ice_fltr_info f_info;
3941 	struct ice_hw *hw = pi->hw;
3942 	u16 hw_vsi_id;
3943 	int status;
3944 
3945 	if (!ice_is_vsi_valid(hw, vsi_handle))
3946 		return -EINVAL;
3947 
3948 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3949 
3950 	memset(&f_info, 0, sizeof(f_info));
3951 
3952 	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3953 	f_info.flag = direction;
3954 	f_info.fltr_act = ICE_FWD_TO_VSI;
3955 	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3956 	f_info.vsi_handle = vsi_handle;
3957 
3958 	if (f_info.flag & ICE_FLTR_RX) {
3959 		f_info.src = hw->port_info->lport;
3960 		f_info.src_id = ICE_SRC_ID_LPORT;
3961 	} else if (f_info.flag & ICE_FLTR_TX) {
3962 		f_info.src_id = ICE_SRC_ID_VSI;
3963 		f_info.src = hw_vsi_id;
3964 		f_info.flag |= ICE_FLTR_TX_ONLY;
3965 	}
3966 	f_list_entry.fltr_info = f_info;
3967 
3968 	if (set)
3969 		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3970 					       &f_list_entry);
3971 	else
3972 		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3973 						  &f_list_entry);
3974 
3975 	return status;
3976 }
3977 
3978 /**
3979  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3980  * @fm_entry: filter entry to inspect
3981  * @vsi_handle: VSI handle to compare with filter info
3982  */
3983 static bool
3984 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3985 {
3986 	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3987 		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3988 		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3989 		 fm_entry->vsi_list_info &&
3990 		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3991 }
3992 
3993 /**
3994  * ice_check_if_dflt_vsi - check if VSI is default VSI
3995  * @pi: pointer to the port_info structure
3996  * @vsi_handle: vsi handle to check for in filter list
3997  * @rule_exists: indicates if there are any VSI's in the rule list
3998  *
3999  * checks if the VSI is in a default VSI list, and also indicates
4000  * if the default VSI list is empty
4001  */
4002 bool
4003 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
4004 		      bool *rule_exists)
4005 {
4006 	struct ice_fltr_mgmt_list_entry *fm_entry;
4007 	struct ice_sw_recipe *recp_list;
4008 	struct list_head *rule_head;
4009 	struct mutex *rule_lock; /* Lock to protect filter rule list */
4010 	bool ret = false;
4011 
4012 	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
4013 	rule_lock = &recp_list->filt_rule_lock;
4014 	rule_head = &recp_list->filt_rules;
4015 
4016 	mutex_lock(rule_lock);
4017 
4018 	if (rule_exists && !list_empty(rule_head))
4019 		*rule_exists = true;
4020 
4021 	list_for_each_entry(fm_entry, rule_head, list_entry) {
4022 		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
4023 			ret = true;
4024 			break;
4025 		}
4026 	}
4027 
4028 	mutex_unlock(rule_lock);
4029 
4030 	return ret;
4031 }
4032 
4033 /**
4034  * ice_remove_mac - remove a MAC address based filter rule
4035  * @hw: pointer to the hardware structure
4036  * @m_list: list of MAC addresses and forwarding information
4037  *
4038  * This function removes either a MAC filter rule or a specific VSI from a
4039  * VSI list for a multicast MAC address.
4040  *
4041  * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
4042  * be aware that this call will only work if all the entries passed into m_list
4043  * were added previously. It will not attempt to do a partial remove of entries
4044  * that were found.
4045  */
4046 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
4047 {
4048 	struct ice_fltr_list_entry *list_itr, *tmp;
4049 
4050 	if (!m_list)
4051 		return -EINVAL;
4052 
4053 	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
4054 		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
4055 		u16 vsi_handle;
4056 
4057 		if (l_type != ICE_SW_LKUP_MAC)
4058 			return -EINVAL;
4059 
4060 		vsi_handle = list_itr->fltr_info.vsi_handle;
4061 		if (!ice_is_vsi_valid(hw, vsi_handle))
4062 			return -EINVAL;
4063 
4064 		list_itr->fltr_info.fwd_id.hw_vsi_id =
4065 					ice_get_hw_vsi_num(hw, vsi_handle);
4066 
4067 		list_itr->status = ice_remove_rule_internal(hw,
4068 							    ICE_SW_LKUP_MAC,
4069 							    list_itr);
4070 		if (list_itr->status)
4071 			return list_itr->status;
4072 	}
4073 	return 0;
4074 }
4075 
4076 /**
4077  * ice_remove_vlan - Remove VLAN based filter rule
4078  * @hw: pointer to the hardware structure
4079  * @v_list: list of VLAN entries and forwarding information
4080  */
4081 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
4082 {
4083 	struct ice_fltr_list_entry *v_list_itr, *tmp;
4084 
4085 	if (!v_list || !hw)
4086 		return -EINVAL;
4087 
4088 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4089 		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
4090 
4091 		if (l_type != ICE_SW_LKUP_VLAN)
4092 			return -EINVAL;
4093 		v_list_itr->status = ice_remove_rule_internal(hw,
4094 							      ICE_SW_LKUP_VLAN,
4095 							      v_list_itr);
4096 		if (v_list_itr->status)
4097 			return v_list_itr->status;
4098 	}
4099 	return 0;
4100 }
4101 
4102 /**
4103  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
4104  * @hw: pointer to the hardware structure
4105  * @vsi_handle: VSI handle to remove filters from
4106  * @vsi_list_head: pointer to the list to add entry to
4107  * @fi: pointer to fltr_info of filter entry to copy & add
4108  *
4109  * Helper function, used when creating a list of filters to remove from
4110  * a specific VSI. The entry added to vsi_list_head is a COPY of the
4111  * original filter entry, with the exception of fltr_info.fltr_act and
4112  * fltr_info.fwd_id fields. These are set such that later logic can
4113  * extract which VSI to remove the fltr from, and pass on that information.
4114  */
4115 static int
4116 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4117 			       struct list_head *vsi_list_head,
4118 			       struct ice_fltr_info *fi)
4119 {
4120 	struct ice_fltr_list_entry *tmp;
4121 
4122 	/* this memory is freed up in the caller function
4123 	 * once filters for this VSI are removed
4124 	 */
4125 	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4126 	if (!tmp)
4127 		return -ENOMEM;
4128 
4129 	tmp->fltr_info = *fi;
4130 
4131 	/* Overwrite these fields to indicate which VSI to remove filter from,
4132 	 * so find and remove logic can extract the information from the
4133 	 * list entries. Note that original entries will still have proper
4134 	 * values.
4135 	 */
4136 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4137 	tmp->fltr_info.vsi_handle = vsi_handle;
4138 	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4139 
4140 	list_add(&tmp->list_entry, vsi_list_head);
4141 
4142 	return 0;
4143 }
4144 
4145 /**
4146  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4147  * @hw: pointer to the hardware structure
4148  * @vsi_handle: VSI handle to remove filters from
4149  * @lkup_list_head: pointer to the list that has certain lookup type filters
4150  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4151  *
4152  * Locates all filters in lkup_list_head that are used by the given VSI,
4153  * and adds COPIES of those entries to vsi_list_head (intended to be used
4154  * to remove the listed filters).
4155  * Note that this means all entries in vsi_list_head must be explicitly
4156  * deallocated by the caller when done with list.
4157  */
4158 static int
4159 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4160 			 struct list_head *lkup_list_head,
4161 			 struct list_head *vsi_list_head)
4162 {
4163 	struct ice_fltr_mgmt_list_entry *fm_entry;
4164 	int status = 0;
4165 
4166 	/* check to make sure VSI ID is valid and within boundary */
4167 	if (!ice_is_vsi_valid(hw, vsi_handle))
4168 		return -EINVAL;
4169 
4170 	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4171 		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4172 			continue;
4173 
4174 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4175 							vsi_list_head,
4176 							&fm_entry->fltr_info);
4177 		if (status)
4178 			return status;
4179 	}
4180 	return status;
4181 }
4182 
4183 /**
4184  * ice_determine_promisc_mask
4185  * @fi: filter info to parse
4186  *
4187  * Helper function to determine which ICE_PROMISC_ mask corresponds
4188  * to given filter into.
4189  */
4190 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4191 {
4192 	u16 vid = fi->l_data.mac_vlan.vlan_id;
4193 	u8 *macaddr = fi->l_data.mac.mac_addr;
4194 	bool is_tx_fltr = false;
4195 	u8 promisc_mask = 0;
4196 
4197 	if (fi->flag == ICE_FLTR_TX)
4198 		is_tx_fltr = true;
4199 
4200 	if (is_broadcast_ether_addr(macaddr))
4201 		promisc_mask |= is_tx_fltr ?
4202 			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4203 	else if (is_multicast_ether_addr(macaddr))
4204 		promisc_mask |= is_tx_fltr ?
4205 			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4206 	else if (is_unicast_ether_addr(macaddr))
4207 		promisc_mask |= is_tx_fltr ?
4208 			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4209 	if (vid)
4210 		promisc_mask |= is_tx_fltr ?
4211 			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4212 
4213 	return promisc_mask;
4214 }
4215 
4216 /**
4217  * ice_remove_promisc - Remove promisc based filter rules
4218  * @hw: pointer to the hardware structure
4219  * @recp_id: recipe ID for which the rule needs to removed
4220  * @v_list: list of promisc entries
4221  */
4222 static int
4223 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4224 {
4225 	struct ice_fltr_list_entry *v_list_itr, *tmp;
4226 
4227 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4228 		v_list_itr->status =
4229 			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4230 		if (v_list_itr->status)
4231 			return v_list_itr->status;
4232 	}
4233 	return 0;
4234 }
4235 
4236 /**
4237  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4238  * @hw: pointer to the hardware structure
4239  * @vsi_handle: VSI handle to clear mode
4240  * @promisc_mask: mask of promiscuous config bits to clear
4241  * @vid: VLAN ID to clear VLAN promiscuous
4242  */
4243 int
4244 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4245 		      u16 vid)
4246 {
4247 	struct ice_switch_info *sw = hw->switch_info;
4248 	struct ice_fltr_list_entry *fm_entry, *tmp;
4249 	struct list_head remove_list_head;
4250 	struct ice_fltr_mgmt_list_entry *itr;
4251 	struct list_head *rule_head;
4252 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4253 	int status = 0;
4254 	u8 recipe_id;
4255 
4256 	if (!ice_is_vsi_valid(hw, vsi_handle))
4257 		return -EINVAL;
4258 
4259 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4260 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4261 	else
4262 		recipe_id = ICE_SW_LKUP_PROMISC;
4263 
4264 	rule_head = &sw->recp_list[recipe_id].filt_rules;
4265 	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4266 
4267 	INIT_LIST_HEAD(&remove_list_head);
4268 
4269 	mutex_lock(rule_lock);
4270 	list_for_each_entry(itr, rule_head, list_entry) {
4271 		struct ice_fltr_info *fltr_info;
4272 		u8 fltr_promisc_mask = 0;
4273 
4274 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4275 			continue;
4276 		fltr_info = &itr->fltr_info;
4277 
4278 		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4279 		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4280 			continue;
4281 
4282 		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4283 
4284 		/* Skip if filter is not completely specified by given mask */
4285 		if (fltr_promisc_mask & ~promisc_mask)
4286 			continue;
4287 
4288 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4289 							&remove_list_head,
4290 							fltr_info);
4291 		if (status) {
4292 			mutex_unlock(rule_lock);
4293 			goto free_fltr_list;
4294 		}
4295 	}
4296 	mutex_unlock(rule_lock);
4297 
4298 	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4299 
4300 free_fltr_list:
4301 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4302 		list_del(&fm_entry->list_entry);
4303 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4304 	}
4305 
4306 	return status;
4307 }
4308 
4309 /**
4310  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4311  * @hw: pointer to the hardware structure
4312  * @vsi_handle: VSI handle to configure
4313  * @promisc_mask: mask of promiscuous config bits
4314  * @vid: VLAN ID to set VLAN promiscuous
4315  */
4316 int
4317 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4318 {
4319 	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4320 	struct ice_fltr_list_entry f_list_entry;
4321 	struct ice_fltr_info new_fltr;
4322 	bool is_tx_fltr;
4323 	int status = 0;
4324 	u16 hw_vsi_id;
4325 	int pkt_type;
4326 	u8 recipe_id;
4327 
4328 	if (!ice_is_vsi_valid(hw, vsi_handle))
4329 		return -EINVAL;
4330 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4331 
4332 	memset(&new_fltr, 0, sizeof(new_fltr));
4333 
4334 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4335 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4336 		new_fltr.l_data.mac_vlan.vlan_id = vid;
4337 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4338 	} else {
4339 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4340 		recipe_id = ICE_SW_LKUP_PROMISC;
4341 	}
4342 
4343 	/* Separate filters must be set for each direction/packet type
4344 	 * combination, so we will loop over the mask value, store the
4345 	 * individual type, and clear it out in the input mask as it
4346 	 * is found.
4347 	 */
4348 	while (promisc_mask) {
4349 		u8 *mac_addr;
4350 
4351 		pkt_type = 0;
4352 		is_tx_fltr = false;
4353 
4354 		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4355 			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4356 			pkt_type = UCAST_FLTR;
4357 		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4358 			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4359 			pkt_type = UCAST_FLTR;
4360 			is_tx_fltr = true;
4361 		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4362 			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4363 			pkt_type = MCAST_FLTR;
4364 		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4365 			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4366 			pkt_type = MCAST_FLTR;
4367 			is_tx_fltr = true;
4368 		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4369 			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4370 			pkt_type = BCAST_FLTR;
4371 		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4372 			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4373 			pkt_type = BCAST_FLTR;
4374 			is_tx_fltr = true;
4375 		}
4376 
4377 		/* Check for VLAN promiscuous flag */
4378 		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4379 			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4380 		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4381 			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4382 			is_tx_fltr = true;
4383 		}
4384 
4385 		/* Set filter DA based on packet type */
4386 		mac_addr = new_fltr.l_data.mac.mac_addr;
4387 		if (pkt_type == BCAST_FLTR) {
4388 			eth_broadcast_addr(mac_addr);
4389 		} else if (pkt_type == MCAST_FLTR ||
4390 			   pkt_type == UCAST_FLTR) {
4391 			/* Use the dummy ether header DA */
4392 			ether_addr_copy(mac_addr, dummy_eth_header);
4393 			if (pkt_type == MCAST_FLTR)
4394 				mac_addr[0] |= 0x1;	/* Set multicast bit */
4395 		}
4396 
4397 		/* Need to reset this to zero for all iterations */
4398 		new_fltr.flag = 0;
4399 		if (is_tx_fltr) {
4400 			new_fltr.flag |= ICE_FLTR_TX;
4401 			new_fltr.src = hw_vsi_id;
4402 		} else {
4403 			new_fltr.flag |= ICE_FLTR_RX;
4404 			new_fltr.src = hw->port_info->lport;
4405 		}
4406 
4407 		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4408 		new_fltr.vsi_handle = vsi_handle;
4409 		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4410 		f_list_entry.fltr_info = new_fltr;
4411 
4412 		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4413 		if (status)
4414 			goto set_promisc_exit;
4415 	}
4416 
4417 set_promisc_exit:
4418 	return status;
4419 }
4420 
4421 /**
4422  * ice_set_vlan_vsi_promisc
4423  * @hw: pointer to the hardware structure
4424  * @vsi_handle: VSI handle to configure
4425  * @promisc_mask: mask of promiscuous config bits
4426  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4427  *
4428  * Configure VSI with all associated VLANs to given promiscuous mode(s)
4429  */
4430 int
4431 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4432 			 bool rm_vlan_promisc)
4433 {
4434 	struct ice_switch_info *sw = hw->switch_info;
4435 	struct ice_fltr_list_entry *list_itr, *tmp;
4436 	struct list_head vsi_list_head;
4437 	struct list_head *vlan_head;
4438 	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4439 	u16 vlan_id;
4440 	int status;
4441 
4442 	INIT_LIST_HEAD(&vsi_list_head);
4443 	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4444 	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4445 	mutex_lock(vlan_lock);
4446 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4447 					  &vsi_list_head);
4448 	mutex_unlock(vlan_lock);
4449 	if (status)
4450 		goto free_fltr_list;
4451 
4452 	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4453 		/* Avoid enabling or disabling VLAN zero twice when in double
4454 		 * VLAN mode
4455 		 */
4456 		if (ice_is_dvm_ena(hw) &&
4457 		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4458 			continue;
4459 
4460 		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4461 		if (rm_vlan_promisc)
4462 			status = ice_clear_vsi_promisc(hw, vsi_handle,
4463 						       promisc_mask, vlan_id);
4464 		else
4465 			status = ice_set_vsi_promisc(hw, vsi_handle,
4466 						     promisc_mask, vlan_id);
4467 		if (status && status != -EEXIST)
4468 			break;
4469 	}
4470 
4471 free_fltr_list:
4472 	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4473 		list_del(&list_itr->list_entry);
4474 		devm_kfree(ice_hw_to_dev(hw), list_itr);
4475 	}
4476 	return status;
4477 }
4478 
4479 /**
4480  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4481  * @hw: pointer to the hardware structure
4482  * @vsi_handle: VSI handle to remove filters from
4483  * @lkup: switch rule filter lookup type
4484  */
4485 static void
4486 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4487 			 enum ice_sw_lkup_type lkup)
4488 {
4489 	struct ice_switch_info *sw = hw->switch_info;
4490 	struct ice_fltr_list_entry *fm_entry;
4491 	struct list_head remove_list_head;
4492 	struct list_head *rule_head;
4493 	struct ice_fltr_list_entry *tmp;
4494 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4495 	int status;
4496 
4497 	INIT_LIST_HEAD(&remove_list_head);
4498 	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4499 	rule_head = &sw->recp_list[lkup].filt_rules;
4500 	mutex_lock(rule_lock);
4501 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4502 					  &remove_list_head);
4503 	mutex_unlock(rule_lock);
4504 	if (status)
4505 		goto free_fltr_list;
4506 
4507 	switch (lkup) {
4508 	case ICE_SW_LKUP_MAC:
4509 		ice_remove_mac(hw, &remove_list_head);
4510 		break;
4511 	case ICE_SW_LKUP_VLAN:
4512 		ice_remove_vlan(hw, &remove_list_head);
4513 		break;
4514 	case ICE_SW_LKUP_PROMISC:
4515 	case ICE_SW_LKUP_PROMISC_VLAN:
4516 		ice_remove_promisc(hw, lkup, &remove_list_head);
4517 		break;
4518 	case ICE_SW_LKUP_MAC_VLAN:
4519 	case ICE_SW_LKUP_ETHERTYPE:
4520 	case ICE_SW_LKUP_ETHERTYPE_MAC:
4521 	case ICE_SW_LKUP_DFLT:
4522 	case ICE_SW_LKUP_LAST:
4523 	default:
4524 		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4525 		break;
4526 	}
4527 
4528 free_fltr_list:
4529 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4530 		list_del(&fm_entry->list_entry);
4531 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4532 	}
4533 }
4534 
4535 /**
4536  * ice_remove_vsi_fltr - Remove all filters for a VSI
4537  * @hw: pointer to the hardware structure
4538  * @vsi_handle: VSI handle to remove filters from
4539  */
4540 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4541 {
4542 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4543 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4544 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4545 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4546 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4547 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4548 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4549 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4550 }
4551 
4552 /**
4553  * ice_alloc_res_cntr - allocating resource counter
4554  * @hw: pointer to the hardware structure
4555  * @type: type of resource
4556  * @alloc_shared: if set it is shared else dedicated
4557  * @num_items: number of entries requested for FD resource type
4558  * @counter_id: counter index returned by AQ call
4559  */
4560 int
4561 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4562 		   u16 *counter_id)
4563 {
4564 	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4565 	u16 buf_len = __struct_size(buf);
4566 	int status;
4567 
4568 	buf->num_elems = cpu_to_le16(num_items);
4569 	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4570 				    alloc_shared);
4571 
4572 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4573 	if (status)
4574 		return status;
4575 
4576 	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4577 	return status;
4578 }
4579 
4580 /**
4581  * ice_free_res_cntr - free resource counter
4582  * @hw: pointer to the hardware structure
4583  * @type: type of resource
4584  * @alloc_shared: if set it is shared else dedicated
4585  * @num_items: number of entries to be freed for FD resource type
4586  * @counter_id: counter ID resource which needs to be freed
4587  */
4588 int
4589 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4590 		  u16 counter_id)
4591 {
4592 	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4593 	u16 buf_len = __struct_size(buf);
4594 	int status;
4595 
4596 	buf->num_elems = cpu_to_le16(num_items);
4597 	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4598 				    alloc_shared);
4599 	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4600 
4601 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4602 	if (status)
4603 		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4604 
4605 	return status;
4606 }
4607 
4608 #define ICE_PROTOCOL_ENTRY(id, ...) {		\
4609 	.prot_type	= id,			\
4610 	.offs		= {__VA_ARGS__},	\
4611 }
4612 
4613 /**
4614  * ice_share_res - set a resource as shared or dedicated
4615  * @hw: hw struct of original owner of resource
4616  * @type: resource type
4617  * @shared: is the resource being set to shared
4618  * @res_id: resource id (descriptor)
4619  */
4620 int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4621 {
4622 	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4623 	u16 buf_len = __struct_size(buf);
4624 	u16 res_type;
4625 	int status;
4626 
4627 	buf->num_elems = cpu_to_le16(1);
4628 	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4629 	if (shared)
4630 		res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4631 
4632 	buf->res_type = cpu_to_le16(res_type);
4633 	buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4634 	status = ice_aq_alloc_free_res(hw, buf, buf_len,
4635 				       ice_aqc_opc_share_res);
4636 	if (status)
4637 		ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4638 			  type, res_id, shared ? "SHARED" : "DEDICATED");
4639 
4640 	return status;
4641 }
4642 
4643 /* This is mapping table entry that maps every word within a given protocol
4644  * structure to the real byte offset as per the specification of that
4645  * protocol header.
4646  * for example dst address is 3 words in ethertype header and corresponding
4647  * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4648  * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4649  * matching entry describing its field. This needs to be updated if new
4650  * structure is added to that union.
4651  */
4652 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4653 	ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4654 	ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4655 	ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4656 	ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4657 	ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4658 	ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4659 	ICE_PROTOCOL_ENTRY(ICE_IPV4_IL,	0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4660 	ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4661 			   20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4662 	ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4663 			   22, 24, 26, 28, 30, 32, 34, 36, 38),
4664 	ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4665 	ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4666 	ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4667 	ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4668 	ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4669 	ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4670 	ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4671 	ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4672 	ICE_PROTOCOL_ENTRY(ICE_PFCP, 8, 10, 12, 14, 16, 18, 20, 22),
4673 	ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4674 	ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4675 	ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4676 	ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4677 	ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4678 			   ICE_SOURCE_PORT_MDID_OFFSET,
4679 			   ICE_PTYPE_MDID_OFFSET,
4680 			   ICE_PACKET_LENGTH_MDID_OFFSET,
4681 			   ICE_SOURCE_VSI_MDID_OFFSET,
4682 			   ICE_PKT_VLAN_MDID_OFFSET,
4683 			   ICE_PKT_TUNNEL_MDID_OFFSET,
4684 			   ICE_PKT_TCP_MDID_OFFSET,
4685 			   ICE_PKT_ERROR_MDID_OFFSET),
4686 };
4687 
4688 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4689 	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4690 	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4691 	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4692 	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4693 	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4694 	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4695 	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4696 	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4697 	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4698 	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4699 	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4700 	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4701 	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4702 	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4703 	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4704 	{ ICE_GTP,		ICE_UDP_OF_HW },
4705 	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4706 	{ ICE_PFCP,		ICE_UDP_ILOS_HW },
4707 	{ ICE_PPPOE,		ICE_PPPOE_HW },
4708 	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4709 	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4710 	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4711 	{ ICE_HW_METADATA,      ICE_META_DATA_ID_HW },
4712 };
4713 
4714 /**
4715  * ice_find_recp - find a recipe
4716  * @hw: pointer to the hardware structure
4717  * @lkup_exts: extension sequence to match
4718  * @rinfo: information regarding the rule e.g. priority and action info
4719  * @is_add: flag of adding recipe
4720  *
4721  * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4722  */
4723 static u16
4724 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4725 	      const struct ice_adv_rule_info *rinfo, bool is_add)
4726 {
4727 	bool refresh_required = true;
4728 	struct ice_sw_recipe *recp;
4729 	u8 i;
4730 
4731 	/* Walk through existing recipes to find a match */
4732 	recp = hw->switch_info->recp_list;
4733 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4734 		/* If recipe was not created for this ID, in SW bookkeeping,
4735 		 * check if FW has an entry for this recipe. If the FW has an
4736 		 * entry update it in our SW bookkeeping and continue with the
4737 		 * matching.
4738 		 */
4739 		if (hw->recp_reuse) {
4740 			if (ice_get_recp_frm_fw(hw,
4741 						hw->switch_info->recp_list, i,
4742 						&refresh_required, is_add))
4743 				continue;
4744 		}
4745 
4746 		/* if number of words we are looking for match */
4747 		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4748 			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4749 			struct ice_fv_word *be = lkup_exts->fv_words;
4750 			u16 *cr = recp[i].lkup_exts.field_mask;
4751 			u16 *de = lkup_exts->field_mask;
4752 			bool found = true;
4753 			u8 pe, qr;
4754 
4755 			/* ar, cr, and qr are related to the recipe words, while
4756 			 * be, de, and pe are related to the lookup words
4757 			 */
4758 			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4759 				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4760 				     qr++) {
4761 					if (ar[qr].off == be[pe].off &&
4762 					    ar[qr].prot_id == be[pe].prot_id &&
4763 					    cr[qr] == de[pe])
4764 						/* Found the "pe"th word in the
4765 						 * given recipe
4766 						 */
4767 						break;
4768 				}
4769 				/* After walking through all the words in the
4770 				 * "i"th recipe if "p"th word was not found then
4771 				 * this recipe is not what we are looking for.
4772 				 * So break out from this loop and try the next
4773 				 * recipe
4774 				 */
4775 				if (qr >= recp[i].lkup_exts.n_val_words) {
4776 					found = false;
4777 					break;
4778 				}
4779 			}
4780 			/* If for "i"th recipe the found was never set to false
4781 			 * then it means we found our match
4782 			 * Also tun type and *_pass_l2 of recipe needs to be
4783 			 * checked
4784 			 */
4785 			if (found && recp[i].tun_type == rinfo->tun_type &&
4786 			    recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4787 			    recp[i].allow_pass_l2 == rinfo->allow_pass_l2 &&
4788 			    recp[i].priority == rinfo->priority)
4789 				return i; /* Return the recipe ID */
4790 		}
4791 	}
4792 	return ICE_MAX_NUM_RECIPES;
4793 }
4794 
4795 /**
4796  * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4797  *
4798  * As protocol id for outer vlan is different in dvm and svm, if dvm is
4799  * supported protocol array record for outer vlan has to be modified to
4800  * reflect the value proper for DVM.
4801  */
4802 void ice_change_proto_id_to_dvm(void)
4803 {
4804 	u8 i;
4805 
4806 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4807 		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4808 		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4809 			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4810 }
4811 
4812 /**
4813  * ice_prot_type_to_id - get protocol ID from protocol type
4814  * @type: protocol type
4815  * @id: pointer to variable that will receive the ID
4816  *
4817  * Returns true if found, false otherwise
4818  */
4819 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4820 {
4821 	u8 i;
4822 
4823 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4824 		if (ice_prot_id_tbl[i].type == type) {
4825 			*id = ice_prot_id_tbl[i].protocol_id;
4826 			return true;
4827 		}
4828 	return false;
4829 }
4830 
4831 /**
4832  * ice_fill_valid_words - count valid words
4833  * @rule: advanced rule with lookup information
4834  * @lkup_exts: byte offset extractions of the words that are valid
4835  *
4836  * calculate valid words in a lookup rule using mask value
4837  */
4838 static u8
4839 ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4840 		     struct ice_prot_lkup_ext *lkup_exts)
4841 {
4842 	u8 j, word, prot_id, ret_val;
4843 
4844 	if (!ice_prot_type_to_id(rule->type, &prot_id))
4845 		return 0;
4846 
4847 	word = lkup_exts->n_val_words;
4848 
4849 	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4850 		if (((u16 *)&rule->m_u)[j] &&
4851 		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4852 			/* No more space to accommodate */
4853 			if (word >= ICE_MAX_CHAIN_WORDS)
4854 				return 0;
4855 			lkup_exts->fv_words[word].off =
4856 				ice_prot_ext[rule->type].offs[j];
4857 			lkup_exts->fv_words[word].prot_id =
4858 				ice_prot_id_tbl[rule->type].protocol_id;
4859 			lkup_exts->field_mask[word] =
4860 				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4861 			word++;
4862 		}
4863 
4864 	ret_val = word - lkup_exts->n_val_words;
4865 	lkup_exts->n_val_words = word;
4866 
4867 	return ret_val;
4868 }
4869 
4870 /**
4871  * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4872  * @hw: pointer to the hardware structure
4873  * @rm: recipe management list entry
4874  *
4875  * Helper function to fill in the field vector indices for protocol-offset
4876  * pairs. These indexes are then ultimately programmed into a recipe.
4877  */
4878 static int
4879 ice_fill_fv_word_index(struct ice_hw *hw, struct ice_sw_recipe *rm)
4880 {
4881 	struct ice_sw_fv_list_entry *fv;
4882 	struct ice_fv_word *fv_ext;
4883 	u8 i;
4884 
4885 	if (list_empty(&rm->fv_list))
4886 		return -EINVAL;
4887 
4888 	fv = list_first_entry(&rm->fv_list, struct ice_sw_fv_list_entry,
4889 			      list_entry);
4890 	fv_ext = fv->fv_ptr->ew;
4891 
4892 	/* Add switch id as the first word. */
4893 	rm->fv_idx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4894 	rm->fv_mask[0] = ICE_AQ_SW_ID_LKUP_MASK;
4895 	rm->n_ext_words++;
4896 
4897 	for (i = 1; i < rm->n_ext_words; i++) {
4898 		struct ice_fv_word *fv_word = &rm->ext_words[i - 1];
4899 		u16 fv_mask = rm->word_masks[i - 1];
4900 		bool found = false;
4901 		u8 j;
4902 
4903 		for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) {
4904 			if (fv_ext[j].prot_id == fv_word->prot_id &&
4905 			    fv_ext[j].off == fv_word->off) {
4906 				found = true;
4907 
4908 				/* Store index of field vector */
4909 				rm->fv_idx[i] = j;
4910 				rm->fv_mask[i] = fv_mask;
4911 				break;
4912 			}
4913 		}
4914 
4915 		/* Protocol/offset could not be found, caller gave an invalid
4916 		 * pair.
4917 		 */
4918 		if (!found)
4919 			return -EINVAL;
4920 	}
4921 
4922 	return 0;
4923 }
4924 
4925 /**
4926  * ice_find_free_recp_res_idx - find free result indexes for recipe
4927  * @hw: pointer to hardware structure
4928  * @profiles: bitmap of profiles that will be associated with the new recipe
4929  * @free_idx: pointer to variable to receive the free index bitmap
4930  *
4931  * The algorithm used here is:
4932  *	1. When creating a new recipe, create a set P which contains all
4933  *	   Profiles that will be associated with our new recipe
4934  *
4935  *	2. For each Profile p in set P:
4936  *	    a. Add all recipes associated with Profile p into set R
4937  *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4938  *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4939  *		i. Or just assume they all have the same possible indexes:
4940  *			44, 45, 46, 47
4941  *			i.e., PossibleIndexes = 0x0000F00000000000
4942  *
4943  *	3. For each Recipe r in set R:
4944  *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4945  *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4946  *
4947  *	FreeIndexes will contain the bits indicating the indexes free for use,
4948  *      then the code needs to update the recipe[r].used_result_idx_bits to
4949  *      indicate which indexes were selected for use by this recipe.
4950  */
4951 static u16
4952 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4953 			   unsigned long *free_idx)
4954 {
4955 	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4956 	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4957 	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4958 	u16 bit;
4959 
4960 	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4961 	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4962 
4963 	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4964 
4965 	/* For each profile we are going to associate the recipe with, add the
4966 	 * recipes that are associated with that profile. This will give us
4967 	 * the set of recipes that our recipe may collide with. Also, determine
4968 	 * what possible result indexes are usable given this set of profiles.
4969 	 */
4970 	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4971 		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4972 			  ICE_MAX_NUM_RECIPES);
4973 		bitmap_and(possible_idx, possible_idx,
4974 			   hw->switch_info->prof_res_bm[bit],
4975 			   ICE_MAX_FV_WORDS);
4976 	}
4977 
4978 	/* For each recipe that our new recipe may collide with, determine
4979 	 * which indexes have been used.
4980 	 */
4981 	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4982 		bitmap_or(used_idx, used_idx,
4983 			  hw->switch_info->recp_list[bit].res_idxs,
4984 			  ICE_MAX_FV_WORDS);
4985 
4986 	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4987 
4988 	/* return number of free indexes */
4989 	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4990 }
4991 
4992 /**
4993  * ice_calc_recp_cnt - calculate number of recipes based on word count
4994  * @word_cnt: number of lookup words
4995  *
4996  * Word count should include switch ID word and regular lookup words.
4997  * Returns: number of recipes required to fit @word_cnt, including extra recipes
4998  * needed for recipe chaining (if needed).
4999  */
5000 static int ice_calc_recp_cnt(u8 word_cnt)
5001 {
5002 	/* All words fit in a single recipe, no need for chaining. */
5003 	if (word_cnt <= ICE_NUM_WORDS_RECIPE)
5004 		return 1;
5005 
5006 	/* Recipe chaining required. Result indexes are fitted right after
5007 	 * regular lookup words. In some cases a new recipe must be added in
5008 	 * order to fit result indexes.
5009 	 *
5010 	 * While the word count increases, every 5 words an extra recipe needs
5011 	 * to be added. However, by adding a recipe, one word for its result
5012 	 * index must also be added, therefore every 4 words recipe count
5013 	 * increases by 1. This calculation does not apply to word count == 1,
5014 	 * which is handled above.
5015 	 */
5016 	return (word_cnt + 2) / (ICE_NUM_WORDS_RECIPE - 1);
5017 }
5018 
5019 static void fill_recipe_template(struct ice_aqc_recipe_data_elem *recp, u16 rid,
5020 				 const struct ice_sw_recipe *rm)
5021 {
5022 	int i;
5023 
5024 	recp->recipe_indx = rid;
5025 	recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_PRUNE_INDX_M;
5026 
5027 	for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
5028 		recp->content.lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5029 		recp->content.mask[i] = cpu_to_le16(0);
5030 	}
5031 
5032 	set_bit(rid, (unsigned long *)recp->recipe_bitmap);
5033 	recp->content.act_ctrl_fwd_priority = rm->priority;
5034 
5035 	if (rm->need_pass_l2)
5036 		recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5037 
5038 	if (rm->allow_pass_l2)
5039 		recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5040 }
5041 
5042 static void bookkeep_recipe(struct ice_sw_recipe *recipe,
5043 			    struct ice_aqc_recipe_data_elem *r,
5044 			    const struct ice_sw_recipe *rm)
5045 {
5046 	memcpy(recipe->r_bitmap, r->recipe_bitmap, sizeof(recipe->r_bitmap));
5047 
5048 	recipe->priority = r->content.act_ctrl_fwd_priority;
5049 	recipe->tun_type = rm->tun_type;
5050 	recipe->need_pass_l2 = rm->need_pass_l2;
5051 	recipe->allow_pass_l2 = rm->allow_pass_l2;
5052 	recipe->recp_created = true;
5053 }
5054 
5055 /* For memcpy in ice_add_sw_recipe. */
5056 static_assert(sizeof_field(struct ice_aqc_recipe_data_elem, recipe_bitmap) ==
5057 	      sizeof_field(struct ice_sw_recipe, r_bitmap));
5058 
5059 /**
5060  * ice_add_sw_recipe - function to call AQ calls to create switch recipe
5061  * @hw: pointer to hardware structure
5062  * @rm: recipe management list entry
5063  * @profiles: bitmap of profiles that will be associated.
5064  */
5065 static int
5066 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
5067 		  unsigned long *profiles)
5068 {
5069 	struct ice_aqc_recipe_data_elem *buf __free(kfree) = NULL;
5070 	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
5071 	struct ice_aqc_recipe_data_elem *root;
5072 	struct ice_sw_recipe *recipe;
5073 	u16 free_res_idx, rid;
5074 	int lookup = 0;
5075 	int recp_cnt;
5076 	int status;
5077 	int word;
5078 	int i;
5079 
5080 	recp_cnt = ice_calc_recp_cnt(rm->n_ext_words);
5081 
5082 	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
5083 	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
5084 
5085 	/* Check number of free result indices */
5086 	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
5087 
5088 	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
5089 		  free_res_idx, recp_cnt);
5090 
5091 	/* Last recipe doesn't need result index */
5092 	if (recp_cnt - 1 > free_res_idx)
5093 		return -ENOSPC;
5094 
5095 	if (recp_cnt > ICE_MAX_CHAIN_RECIPE_RES)
5096 		return -E2BIG;
5097 
5098 	buf = kcalloc(recp_cnt, sizeof(*buf), GFP_KERNEL);
5099 	if (!buf)
5100 		return -ENOMEM;
5101 
5102 	/* Setup the non-root subrecipes. These do not contain lookups for other
5103 	 * subrecipes results. Set associated recipe only to own recipe index.
5104 	 * Each non-root subrecipe needs a free result index from FV.
5105 	 *
5106 	 * Note: only done if there is more than one recipe.
5107 	 */
5108 	for (i = 0; i < recp_cnt - 1; i++) {
5109 		struct ice_aqc_recipe_content *content;
5110 		u8 result_idx;
5111 
5112 		status = ice_alloc_recipe(hw, &rid);
5113 		if (status)
5114 			return status;
5115 
5116 		fill_recipe_template(&buf[i], rid, rm);
5117 
5118 		result_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
5119 		/* Check if there really is a valid result index that can be
5120 		 * used.
5121 		 */
5122 		if (result_idx >= ICE_MAX_FV_WORDS) {
5123 			ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5124 			return -ENOSPC;
5125 		}
5126 		clear_bit(result_idx, result_idx_bm);
5127 
5128 		content = &buf[i].content;
5129 		content->result_indx = ICE_AQ_RECIPE_RESULT_EN |
5130 				       FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5131 						  result_idx);
5132 
5133 		/* Set recipe association to be used for root recipe */
5134 		set_bit(rid, rm->r_bitmap);
5135 
5136 		word = 0;
5137 		while (lookup < rm->n_ext_words &&
5138 		       word < ICE_NUM_WORDS_RECIPE) {
5139 			content->lkup_indx[word] = rm->fv_idx[lookup];
5140 			content->mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
5141 
5142 			lookup++;
5143 			word++;
5144 		}
5145 
5146 		recipe = &hw->switch_info->recp_list[rid];
5147 		set_bit(result_idx, recipe->res_idxs);
5148 		bookkeep_recipe(recipe, &buf[i], rm);
5149 	}
5150 
5151 	/* Setup the root recipe */
5152 	status = ice_alloc_recipe(hw, &rid);
5153 	if (status)
5154 		return status;
5155 
5156 	recipe = &hw->switch_info->recp_list[rid];
5157 	root = &buf[recp_cnt - 1];
5158 	fill_recipe_template(root, rid, rm);
5159 
5160 	/* Set recipe association, use previously set bitmap and own rid */
5161 	set_bit(rid, rm->r_bitmap);
5162 	memcpy(root->recipe_bitmap, rm->r_bitmap, sizeof(root->recipe_bitmap));
5163 
5164 	/* For non-root recipes rid should be 0, for root it should be correct
5165 	 * rid value ored with 0x80 (is root bit).
5166 	 */
5167 	root->content.rid = rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5168 
5169 	/* Fill remaining lookups in root recipe */
5170 	word = 0;
5171 	while (lookup < rm->n_ext_words &&
5172 	       word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5173 		root->content.lkup_indx[word] = rm->fv_idx[lookup];
5174 		root->content.mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
5175 
5176 		lookup++;
5177 		word++;
5178 	}
5179 
5180 	/* Fill result indexes as lookups */
5181 	i = 0;
5182 	while (i < recp_cnt - 1 &&
5183 	       word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5184 		root->content.lkup_indx[word] = buf[i].content.result_indx &
5185 						~ICE_AQ_RECIPE_RESULT_EN;
5186 		root->content.mask[word] = cpu_to_le16(0xffff);
5187 		/* For bookkeeping, it is needed to mark FV index as used for
5188 		 * intermediate result.
5189 		 */
5190 		set_bit(root->content.lkup_indx[word], recipe->res_idxs);
5191 
5192 		i++;
5193 		word++;
5194 	}
5195 
5196 	rm->root_rid = rid;
5197 	bookkeep_recipe(&hw->switch_info->recp_list[rid], root, rm);
5198 
5199 	/* Program the recipe */
5200 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5201 	if (status)
5202 		return status;
5203 
5204 	status = ice_aq_add_recipe(hw, buf, recp_cnt, NULL);
5205 	ice_release_change_lock(hw);
5206 	if (status)
5207 		return status;
5208 
5209 	return 0;
5210 }
5211 
5212 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5213  * @hw: pointer to hardware structure
5214  * @rinfo: other information regarding the rule e.g. priority and action info
5215  * @bm: pointer to memory for returning the bitmap of field vectors
5216  */
5217 static void
5218 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5219 			 unsigned long *bm)
5220 {
5221 	enum ice_prof_type prof_type;
5222 
5223 	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5224 
5225 	switch (rinfo->tun_type) {
5226 	case ICE_NON_TUN:
5227 		prof_type = ICE_PROF_NON_TUN;
5228 		break;
5229 	case ICE_ALL_TUNNELS:
5230 		prof_type = ICE_PROF_TUN_ALL;
5231 		break;
5232 	case ICE_SW_TUN_GENEVE:
5233 	case ICE_SW_TUN_VXLAN:
5234 		prof_type = ICE_PROF_TUN_UDP;
5235 		break;
5236 	case ICE_SW_TUN_NVGRE:
5237 		prof_type = ICE_PROF_TUN_GRE;
5238 		break;
5239 	case ICE_SW_TUN_GTPU:
5240 		prof_type = ICE_PROF_TUN_GTPU;
5241 		break;
5242 	case ICE_SW_TUN_GTPC:
5243 		prof_type = ICE_PROF_TUN_GTPC;
5244 		break;
5245 	case ICE_SW_TUN_PFCP:
5246 		prof_type = ICE_PROF_TUN_PFCP;
5247 		break;
5248 	case ICE_SW_TUN_AND_NON_TUN:
5249 	default:
5250 		prof_type = ICE_PROF_ALL;
5251 		break;
5252 	}
5253 
5254 	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5255 }
5256 
5257 /**
5258  * ice_subscribe_recipe - subscribe to an existing recipe
5259  * @hw: pointer to the hardware structure
5260  * @rid: recipe ID to subscribe to
5261  *
5262  * Return: 0 on success, and others on error
5263  */
5264 static int ice_subscribe_recipe(struct ice_hw *hw, u16 rid)
5265 {
5266 	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
5267 	u16 buf_len = __struct_size(sw_buf);
5268 	u16 res_type;
5269 	int status;
5270 
5271 	/* Prepare buffer to allocate resource */
5272 	sw_buf->num_elems = cpu_to_le16(1);
5273 	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE) |
5274 		   ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED |
5275 		   ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_CTL;
5276 	sw_buf->res_type = cpu_to_le16(res_type);
5277 
5278 	sw_buf->elem[0].e.sw_resp = cpu_to_le16(rid);
5279 
5280 	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
5281 				       ice_aqc_opc_alloc_res);
5282 
5283 	return status;
5284 }
5285 
5286 /**
5287  * ice_subscribable_recp_shared - share an existing subscribable recipe
5288  * @hw: pointer to the hardware structure
5289  * @rid: recipe ID to subscribe to
5290  */
5291 static void ice_subscribable_recp_shared(struct ice_hw *hw, u16 rid)
5292 {
5293 	struct ice_sw_recipe *recps = hw->switch_info->recp_list;
5294 	u16 sub_rid;
5295 
5296 	for_each_set_bit(sub_rid, recps[rid].r_bitmap, ICE_MAX_NUM_RECIPES)
5297 		ice_subscribe_recipe(hw, sub_rid);
5298 }
5299 
5300 /**
5301  * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5302  * @hw: pointer to hardware structure
5303  * @lkups: lookup elements or match criteria for the advanced recipe, one
5304  *  structure per protocol header
5305  * @lkups_cnt: number of protocols
5306  * @rinfo: other information regarding the rule e.g. priority and action info
5307  * @rid: return the recipe ID of the recipe created
5308  */
5309 static int
5310 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5311 		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5312 {
5313 	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5314 	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5315 	struct ice_prot_lkup_ext *lkup_exts;
5316 	struct ice_sw_fv_list_entry *fvit;
5317 	struct ice_sw_fv_list_entry *tmp;
5318 	struct ice_sw_recipe *rm;
5319 	int status = 0;
5320 	u16 rid_tmp;
5321 	u8 i;
5322 
5323 	if (!lkups_cnt)
5324 		return -EINVAL;
5325 
5326 	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5327 	if (!lkup_exts)
5328 		return -ENOMEM;
5329 
5330 	/* Determine the number of words to be matched and if it exceeds a
5331 	 * recipe's restrictions
5332 	 */
5333 	for (i = 0; i < lkups_cnt; i++) {
5334 		u16 count;
5335 
5336 		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5337 			status = -EIO;
5338 			goto err_free_lkup_exts;
5339 		}
5340 
5341 		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5342 		if (!count) {
5343 			status = -EIO;
5344 			goto err_free_lkup_exts;
5345 		}
5346 	}
5347 
5348 	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5349 	if (!rm) {
5350 		status = -ENOMEM;
5351 		goto err_free_lkup_exts;
5352 	}
5353 
5354 	/* Get field vectors that contain fields extracted from all the protocol
5355 	 * headers being programmed.
5356 	 */
5357 	INIT_LIST_HEAD(&rm->fv_list);
5358 
5359 	/* Get bitmap of field vectors (profiles) that are compatible with the
5360 	 * rule request; only these will be searched in the subsequent call to
5361 	 * ice_get_sw_fv_list.
5362 	 */
5363 	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5364 
5365 	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5366 	if (status)
5367 		goto err_unroll;
5368 
5369 	/* Copy FV words and masks from lkup_exts to recipe struct. */
5370 	rm->n_ext_words = lkup_exts->n_val_words;
5371 	memcpy(rm->ext_words, lkup_exts->fv_words, sizeof(rm->ext_words));
5372 	memcpy(rm->word_masks, lkup_exts->field_mask, sizeof(rm->word_masks));
5373 
5374 	/* set the recipe priority if specified */
5375 	rm->priority = (u8)rinfo->priority;
5376 
5377 	rm->need_pass_l2 = rinfo->need_pass_l2;
5378 	rm->allow_pass_l2 = rinfo->allow_pass_l2;
5379 
5380 	/* Find offsets from the field vector. Pick the first one for all the
5381 	 * recipes.
5382 	 */
5383 	status = ice_fill_fv_word_index(hw, rm);
5384 	if (status)
5385 		goto err_unroll;
5386 
5387 	/* get bitmap of all profiles the recipe will be associated with */
5388 	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5389 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5390 		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5391 		set_bit((u16)fvit->profile_id, profiles);
5392 	}
5393 
5394 	/* Look for a recipe which matches our requested fv / mask list */
5395 	*rid = ice_find_recp(hw, lkup_exts, rinfo, true);
5396 	if (*rid < ICE_MAX_NUM_RECIPES) {
5397 		/* Success if found a recipe that match the existing criteria */
5398 		if (hw->recp_reuse)
5399 			ice_subscribable_recp_shared(hw, *rid);
5400 
5401 		goto err_unroll;
5402 	}
5403 
5404 	rm->tun_type = rinfo->tun_type;
5405 	/* Recipe we need does not exist, add a recipe */
5406 	status = ice_add_sw_recipe(hw, rm, profiles);
5407 	if (status)
5408 		goto err_unroll;
5409 
5410 	/* Associate all the recipes created with all the profiles in the
5411 	 * common field vector.
5412 	 */
5413 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5414 		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5415 		u64 recp_assoc;
5416 		u16 j;
5417 
5418 		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5419 						      &recp_assoc, NULL);
5420 		if (status)
5421 			goto err_free_recipe;
5422 
5423 		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
5424 		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5425 			  ICE_MAX_NUM_RECIPES);
5426 		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5427 		if (status)
5428 			goto err_free_recipe;
5429 
5430 		bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES);
5431 		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5432 						      recp_assoc, NULL);
5433 		ice_release_change_lock(hw);
5434 
5435 		if (status)
5436 			goto err_free_recipe;
5437 
5438 		/* Update profile to recipe bitmap array */
5439 		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5440 			    ICE_MAX_NUM_RECIPES);
5441 
5442 		/* Update recipe to profile bitmap array */
5443 		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5444 			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5445 	}
5446 
5447 	*rid = rm->root_rid;
5448 	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5449 	       sizeof(*lkup_exts));
5450 	goto err_unroll;
5451 
5452 err_free_recipe:
5453 	if (hw->recp_reuse) {
5454 		for_each_set_bit(rid_tmp, rm->r_bitmap, ICE_MAX_NUM_RECIPES) {
5455 			if (!ice_free_recipe_res(hw, rid_tmp))
5456 				clear_bit(rid_tmp, rm->r_bitmap);
5457 		}
5458 	}
5459 
5460 err_unroll:
5461 	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5462 		list_del(&fvit->list_entry);
5463 		devm_kfree(ice_hw_to_dev(hw), fvit);
5464 	}
5465 
5466 	kfree(rm);
5467 
5468 err_free_lkup_exts:
5469 	kfree(lkup_exts);
5470 
5471 	return status;
5472 }
5473 
5474 /**
5475  * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5476  *
5477  * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5478  * @num_vlan: number of VLAN tags
5479  */
5480 static struct ice_dummy_pkt_profile *
5481 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5482 			  u32 num_vlan)
5483 {
5484 	struct ice_dummy_pkt_profile *profile;
5485 	struct ice_dummy_pkt_offsets *offsets;
5486 	u32 buf_len, off, etype_off, i;
5487 	u8 *pkt;
5488 
5489 	if (num_vlan < 1 || num_vlan > 2)
5490 		return ERR_PTR(-EINVAL);
5491 
5492 	off = num_vlan * VLAN_HLEN;
5493 
5494 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5495 		  dummy_pkt->offsets_len;
5496 	offsets = kzalloc(buf_len, GFP_KERNEL);
5497 	if (!offsets)
5498 		return ERR_PTR(-ENOMEM);
5499 
5500 	offsets[0] = dummy_pkt->offsets[0];
5501 	if (num_vlan == 2) {
5502 		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5503 		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5504 	} else if (num_vlan == 1) {
5505 		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5506 	}
5507 
5508 	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5509 		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5510 		offsets[i + num_vlan].offset =
5511 			dummy_pkt->offsets[i].offset + off;
5512 	}
5513 	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5514 
5515 	etype_off = dummy_pkt->offsets[1].offset;
5516 
5517 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5518 		  dummy_pkt->pkt_len;
5519 	pkt = kzalloc(buf_len, GFP_KERNEL);
5520 	if (!pkt) {
5521 		kfree(offsets);
5522 		return ERR_PTR(-ENOMEM);
5523 	}
5524 
5525 	memcpy(pkt, dummy_pkt->pkt, etype_off);
5526 	memcpy(pkt + etype_off,
5527 	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5528 	       off);
5529 	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5530 	       dummy_pkt->pkt_len - etype_off);
5531 
5532 	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5533 	if (!profile) {
5534 		kfree(offsets);
5535 		kfree(pkt);
5536 		return ERR_PTR(-ENOMEM);
5537 	}
5538 
5539 	profile->offsets = offsets;
5540 	profile->pkt = pkt;
5541 	profile->pkt_len = buf_len;
5542 	profile->match |= ICE_PKT_KMALLOC;
5543 
5544 	return profile;
5545 }
5546 
5547 /**
5548  * ice_find_dummy_packet - find dummy packet
5549  *
5550  * @lkups: lookup elements or match criteria for the advanced recipe, one
5551  *	   structure per protocol header
5552  * @lkups_cnt: number of protocols
5553  * @tun_type: tunnel type
5554  *
5555  * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5556  */
5557 static const struct ice_dummy_pkt_profile *
5558 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5559 		      enum ice_sw_tunnel_type tun_type)
5560 {
5561 	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5562 	u32 match = 0, vlan_count = 0;
5563 	u16 i;
5564 
5565 	switch (tun_type) {
5566 	case ICE_SW_TUN_GTPC:
5567 		match |= ICE_PKT_TUN_GTPC;
5568 		break;
5569 	case ICE_SW_TUN_GTPU:
5570 		match |= ICE_PKT_TUN_GTPU;
5571 		break;
5572 	case ICE_SW_TUN_NVGRE:
5573 		match |= ICE_PKT_TUN_NVGRE;
5574 		break;
5575 	case ICE_SW_TUN_GENEVE:
5576 	case ICE_SW_TUN_VXLAN:
5577 		match |= ICE_PKT_TUN_UDP;
5578 		break;
5579 	case ICE_SW_TUN_PFCP:
5580 		match |= ICE_PKT_PFCP;
5581 		break;
5582 	default:
5583 		break;
5584 	}
5585 
5586 	for (i = 0; i < lkups_cnt; i++) {
5587 		if (lkups[i].type == ICE_UDP_ILOS)
5588 			match |= ICE_PKT_INNER_UDP;
5589 		else if (lkups[i].type == ICE_TCP_IL)
5590 			match |= ICE_PKT_INNER_TCP;
5591 		else if (lkups[i].type == ICE_IPV6_OFOS)
5592 			match |= ICE_PKT_OUTER_IPV6;
5593 		else if (lkups[i].type == ICE_VLAN_OFOS ||
5594 			 lkups[i].type == ICE_VLAN_EX)
5595 			vlan_count++;
5596 		else if (lkups[i].type == ICE_VLAN_IN)
5597 			vlan_count++;
5598 		else if (lkups[i].type == ICE_ETYPE_OL &&
5599 			 lkups[i].h_u.ethertype.ethtype_id ==
5600 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5601 			 lkups[i].m_u.ethertype.ethtype_id ==
5602 				cpu_to_be16(0xFFFF))
5603 			match |= ICE_PKT_OUTER_IPV6;
5604 		else if (lkups[i].type == ICE_ETYPE_IL &&
5605 			 lkups[i].h_u.ethertype.ethtype_id ==
5606 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5607 			 lkups[i].m_u.ethertype.ethtype_id ==
5608 				cpu_to_be16(0xFFFF))
5609 			match |= ICE_PKT_INNER_IPV6;
5610 		else if (lkups[i].type == ICE_IPV6_IL)
5611 			match |= ICE_PKT_INNER_IPV6;
5612 		else if (lkups[i].type == ICE_GTP_NO_PAY)
5613 			match |= ICE_PKT_GTP_NOPAY;
5614 		else if (lkups[i].type == ICE_PPPOE) {
5615 			match |= ICE_PKT_PPPOE;
5616 			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5617 			    htons(PPP_IPV6))
5618 				match |= ICE_PKT_OUTER_IPV6;
5619 		} else if (lkups[i].type == ICE_L2TPV3)
5620 			match |= ICE_PKT_L2TPV3;
5621 	}
5622 
5623 	while (ret->match && (match & ret->match) != ret->match)
5624 		ret++;
5625 
5626 	if (vlan_count != 0)
5627 		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5628 
5629 	return ret;
5630 }
5631 
5632 /**
5633  * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5634  *
5635  * @lkups: lookup elements or match criteria for the advanced recipe, one
5636  *	   structure per protocol header
5637  * @lkups_cnt: number of protocols
5638  * @s_rule: stores rule information from the match criteria
5639  * @profile: dummy packet profile (the template, its size and header offsets)
5640  */
5641 static int
5642 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5643 			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5644 			  const struct ice_dummy_pkt_profile *profile)
5645 {
5646 	u8 *pkt;
5647 	u16 i;
5648 
5649 	/* Start with a packet with a pre-defined/dummy content. Then, fill
5650 	 * in the header values to be looked up or matched.
5651 	 */
5652 	pkt = s_rule->hdr_data;
5653 
5654 	memcpy(pkt, profile->pkt, profile->pkt_len);
5655 
5656 	for (i = 0; i < lkups_cnt; i++) {
5657 		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5658 		enum ice_protocol_type type;
5659 		u16 offset = 0, len = 0, j;
5660 		bool found = false;
5661 
5662 		/* find the start of this layer; it should be found since this
5663 		 * was already checked when search for the dummy packet
5664 		 */
5665 		type = lkups[i].type;
5666 		/* metadata isn't present in the packet */
5667 		if (type == ICE_HW_METADATA)
5668 			continue;
5669 
5670 		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5671 			if (type == offsets[j].type) {
5672 				offset = offsets[j].offset;
5673 				found = true;
5674 				break;
5675 			}
5676 		}
5677 		/* this should never happen in a correct calling sequence */
5678 		if (!found)
5679 			return -EINVAL;
5680 
5681 		switch (lkups[i].type) {
5682 		case ICE_MAC_OFOS:
5683 		case ICE_MAC_IL:
5684 			len = sizeof(struct ice_ether_hdr);
5685 			break;
5686 		case ICE_ETYPE_OL:
5687 		case ICE_ETYPE_IL:
5688 			len = sizeof(struct ice_ethtype_hdr);
5689 			break;
5690 		case ICE_VLAN_OFOS:
5691 		case ICE_VLAN_EX:
5692 		case ICE_VLAN_IN:
5693 			len = sizeof(struct ice_vlan_hdr);
5694 			break;
5695 		case ICE_IPV4_OFOS:
5696 		case ICE_IPV4_IL:
5697 			len = sizeof(struct ice_ipv4_hdr);
5698 			break;
5699 		case ICE_IPV6_OFOS:
5700 		case ICE_IPV6_IL:
5701 			len = sizeof(struct ice_ipv6_hdr);
5702 			break;
5703 		case ICE_TCP_IL:
5704 		case ICE_UDP_OF:
5705 		case ICE_UDP_ILOS:
5706 			len = sizeof(struct ice_l4_hdr);
5707 			break;
5708 		case ICE_SCTP_IL:
5709 			len = sizeof(struct ice_sctp_hdr);
5710 			break;
5711 		case ICE_NVGRE:
5712 			len = sizeof(struct ice_nvgre_hdr);
5713 			break;
5714 		case ICE_VXLAN:
5715 		case ICE_GENEVE:
5716 			len = sizeof(struct ice_udp_tnl_hdr);
5717 			break;
5718 		case ICE_GTP_NO_PAY:
5719 		case ICE_GTP:
5720 			len = sizeof(struct ice_udp_gtp_hdr);
5721 			break;
5722 		case ICE_PFCP:
5723 			len = sizeof(struct ice_pfcp_hdr);
5724 			break;
5725 		case ICE_PPPOE:
5726 			len = sizeof(struct ice_pppoe_hdr);
5727 			break;
5728 		case ICE_L2TPV3:
5729 			len = sizeof(struct ice_l2tpv3_sess_hdr);
5730 			break;
5731 		default:
5732 			return -EINVAL;
5733 		}
5734 
5735 		/* the length should be a word multiple */
5736 		if (len % ICE_BYTES_PER_WORD)
5737 			return -EIO;
5738 
5739 		/* We have the offset to the header start, the length, the
5740 		 * caller's header values and mask. Use this information to
5741 		 * copy the data into the dummy packet appropriately based on
5742 		 * the mask. Note that we need to only write the bits as
5743 		 * indicated by the mask to make sure we don't improperly write
5744 		 * over any significant packet data.
5745 		 */
5746 		for (j = 0; j < len / sizeof(u16); j++) {
5747 			u16 *ptr = (u16 *)(pkt + offset);
5748 			u16 mask = lkups[i].m_raw[j];
5749 
5750 			if (!mask)
5751 				continue;
5752 
5753 			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5754 		}
5755 	}
5756 
5757 	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5758 
5759 	return 0;
5760 }
5761 
5762 /**
5763  * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5764  * @hw: pointer to the hardware structure
5765  * @tun_type: tunnel type
5766  * @pkt: dummy packet to fill in
5767  * @offsets: offset info for the dummy packet
5768  */
5769 static int
5770 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5771 			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5772 {
5773 	u16 open_port, i;
5774 
5775 	switch (tun_type) {
5776 	case ICE_SW_TUN_VXLAN:
5777 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5778 			return -EIO;
5779 		break;
5780 	case ICE_SW_TUN_GENEVE:
5781 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5782 			return -EIO;
5783 		break;
5784 	default:
5785 		/* Nothing needs to be done for this tunnel type */
5786 		return 0;
5787 	}
5788 
5789 	/* Find the outer UDP protocol header and insert the port number */
5790 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5791 		if (offsets[i].type == ICE_UDP_OF) {
5792 			struct ice_l4_hdr *hdr;
5793 			u16 offset;
5794 
5795 			offset = offsets[i].offset;
5796 			hdr = (struct ice_l4_hdr *)&pkt[offset];
5797 			hdr->dst_port = cpu_to_be16(open_port);
5798 
5799 			return 0;
5800 		}
5801 	}
5802 
5803 	return -EIO;
5804 }
5805 
5806 /**
5807  * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5808  * @hw: pointer to hw structure
5809  * @vlan_type: VLAN tag type
5810  * @pkt: dummy packet to fill in
5811  * @offsets: offset info for the dummy packet
5812  */
5813 static int
5814 ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5815 			 const struct ice_dummy_pkt_offsets *offsets)
5816 {
5817 	u16 i;
5818 
5819 	/* Check if there is something to do */
5820 	if (!vlan_type || !ice_is_dvm_ena(hw))
5821 		return 0;
5822 
5823 	/* Find VLAN header and insert VLAN TPID */
5824 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5825 		if (offsets[i].type == ICE_VLAN_OFOS ||
5826 		    offsets[i].type == ICE_VLAN_EX) {
5827 			struct ice_vlan_hdr *hdr;
5828 			u16 offset;
5829 
5830 			offset = offsets[i].offset;
5831 			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5832 			hdr->type = cpu_to_be16(vlan_type);
5833 
5834 			return 0;
5835 		}
5836 	}
5837 
5838 	return -EIO;
5839 }
5840 
5841 static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5842 			    const struct ice_adv_rule_info *second)
5843 {
5844 	return first->sw_act.flag == second->sw_act.flag &&
5845 	       first->tun_type == second->tun_type &&
5846 	       first->vlan_type == second->vlan_type &&
5847 	       first->src_vsi == second->src_vsi &&
5848 	       first->need_pass_l2 == second->need_pass_l2 &&
5849 	       first->allow_pass_l2 == second->allow_pass_l2;
5850 }
5851 
5852 /**
5853  * ice_find_adv_rule_entry - Search a rule entry
5854  * @hw: pointer to the hardware structure
5855  * @lkups: lookup elements or match criteria for the advanced recipe, one
5856  *	   structure per protocol header
5857  * @lkups_cnt: number of protocols
5858  * @recp_id: recipe ID for which we are finding the rule
5859  * @rinfo: other information regarding the rule e.g. priority and action info
5860  *
5861  * Helper function to search for a given advance rule entry
5862  * Returns pointer to entry storing the rule if found
5863  */
5864 static struct ice_adv_fltr_mgmt_list_entry *
5865 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5866 			u16 lkups_cnt, u16 recp_id,
5867 			struct ice_adv_rule_info *rinfo)
5868 {
5869 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5870 	struct ice_switch_info *sw = hw->switch_info;
5871 	int i;
5872 
5873 	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5874 			    list_entry) {
5875 		bool lkups_matched = true;
5876 
5877 		if (lkups_cnt != list_itr->lkups_cnt)
5878 			continue;
5879 		for (i = 0; i < list_itr->lkups_cnt; i++)
5880 			if (memcmp(&list_itr->lkups[i], &lkups[i],
5881 				   sizeof(*lkups))) {
5882 				lkups_matched = false;
5883 				break;
5884 			}
5885 		if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5886 		    lkups_matched)
5887 			return list_itr;
5888 	}
5889 	return NULL;
5890 }
5891 
5892 /**
5893  * ice_adv_add_update_vsi_list
5894  * @hw: pointer to the hardware structure
5895  * @m_entry: pointer to current adv filter management list entry
5896  * @cur_fltr: filter information from the book keeping entry
5897  * @new_fltr: filter information with the new VSI to be added
5898  *
5899  * Call AQ command to add or update previously created VSI list with new VSI.
5900  *
5901  * Helper function to do book keeping associated with adding filter information
5902  * The algorithm to do the booking keeping is described below :
5903  * When a VSI needs to subscribe to a given advanced filter
5904  *	if only one VSI has been added till now
5905  *		Allocate a new VSI list and add two VSIs
5906  *		to this list using switch rule command
5907  *		Update the previously created switch rule with the
5908  *		newly created VSI list ID
5909  *	if a VSI list was previously created
5910  *		Add the new VSI to the previously created VSI list set
5911  *		using the update switch rule command
5912  */
5913 static int
5914 ice_adv_add_update_vsi_list(struct ice_hw *hw,
5915 			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5916 			    struct ice_adv_rule_info *cur_fltr,
5917 			    struct ice_adv_rule_info *new_fltr)
5918 {
5919 	u16 vsi_list_id = 0;
5920 	int status;
5921 
5922 	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5923 	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5924 	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5925 		return -EOPNOTSUPP;
5926 
5927 	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5928 	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5929 	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5930 	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5931 		return -EOPNOTSUPP;
5932 
5933 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5934 		 /* Only one entry existed in the mapping and it was not already
5935 		  * a part of a VSI list. So, create a VSI list with the old and
5936 		  * new VSIs.
5937 		  */
5938 		struct ice_fltr_info tmp_fltr;
5939 		u16 vsi_handle_arr[2];
5940 
5941 		/* A rule already exists with the new VSI being added */
5942 		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5943 		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5944 			return -EEXIST;
5945 
5946 		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5947 		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5948 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5949 						  &vsi_list_id,
5950 						  ICE_SW_LKUP_LAST);
5951 		if (status)
5952 			return status;
5953 
5954 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5955 		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5956 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5957 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5958 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5959 		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5960 
5961 		/* Update the previous switch rule of "forward to VSI" to
5962 		 * "fwd to VSI list"
5963 		 */
5964 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5965 		if (status)
5966 			return status;
5967 
5968 		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5969 		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5970 		m_entry->vsi_list_info =
5971 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5972 						vsi_list_id);
5973 	} else {
5974 		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5975 
5976 		if (!m_entry->vsi_list_info)
5977 			return -EIO;
5978 
5979 		/* A rule already exists with the new VSI being added */
5980 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5981 			return 0;
5982 
5983 		/* Update the previously created VSI list set with
5984 		 * the new VSI ID passed in
5985 		 */
5986 		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5987 
5988 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5989 						  vsi_list_id, false,
5990 						  ice_aqc_opc_update_sw_rules,
5991 						  ICE_SW_LKUP_LAST);
5992 		/* update VSI list mapping info with new VSI ID */
5993 		if (!status)
5994 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5995 	}
5996 	if (!status)
5997 		m_entry->vsi_count++;
5998 	return status;
5999 }
6000 
6001 void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
6002 {
6003 	lkup->type = ICE_HW_METADATA;
6004 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
6005 		cpu_to_be16(ICE_PKT_TUNNEL_MASK);
6006 }
6007 
6008 void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
6009 {
6010 	lkup->type = ICE_HW_METADATA;
6011 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6012 		cpu_to_be16(ICE_PKT_FROM_NETWORK);
6013 }
6014 
6015 void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
6016 {
6017 	lkup->type = ICE_HW_METADATA;
6018 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6019 		cpu_to_be16(ICE_PKT_VLAN_MASK);
6020 }
6021 
6022 void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
6023 {
6024 	lkup->type = ICE_HW_METADATA;
6025 	lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
6026 }
6027 
6028 /**
6029  * ice_add_adv_rule - helper function to create an advanced switch rule
6030  * @hw: pointer to the hardware structure
6031  * @lkups: information on the words that needs to be looked up. All words
6032  * together makes one recipe
6033  * @lkups_cnt: num of entries in the lkups array
6034  * @rinfo: other information related to the rule that needs to be programmed
6035  * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6036  *               ignored is case of error.
6037  *
6038  * This function can program only 1 rule at a time. The lkups is used to
6039  * describe the all the words that forms the "lookup" portion of the recipe.
6040  * These words can span multiple protocols. Callers to this function need to
6041  * pass in a list of protocol headers with lookup information along and mask
6042  * that determines which words are valid from the given protocol header.
6043  * rinfo describes other information related to this rule such as forwarding
6044  * IDs, priority of this rule, etc.
6045  */
6046 int
6047 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6048 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6049 		 struct ice_rule_query_data *added_entry)
6050 {
6051 	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6052 	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6053 	const struct ice_dummy_pkt_profile *profile;
6054 	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6055 	struct list_head *rule_head;
6056 	struct ice_switch_info *sw;
6057 	u16 word_cnt;
6058 	u32 act = 0;
6059 	int status;
6060 	u8 q_rgn;
6061 
6062 	/* Initialize profile to result index bitmap */
6063 	if (!hw->switch_info->prof_res_bm_init) {
6064 		hw->switch_info->prof_res_bm_init = 1;
6065 		ice_init_prof_result_bm(hw);
6066 	}
6067 
6068 	if (!lkups_cnt)
6069 		return -EINVAL;
6070 
6071 	/* get # of words we need to match */
6072 	word_cnt = 0;
6073 	for (i = 0; i < lkups_cnt; i++) {
6074 		u16 j;
6075 
6076 		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6077 			if (lkups[i].m_raw[j])
6078 				word_cnt++;
6079 	}
6080 
6081 	if (!word_cnt)
6082 		return -EINVAL;
6083 
6084 	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6085 		return -ENOSPC;
6086 
6087 	/* locate a dummy packet */
6088 	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6089 	if (IS_ERR(profile))
6090 		return PTR_ERR(profile);
6091 
6092 	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6093 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6094 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6095 	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6096 	      rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6097 	      rinfo->sw_act.fltr_act == ICE_NOP)) {
6098 		status = -EIO;
6099 		goto free_pkt_profile;
6100 	}
6101 
6102 	vsi_handle = rinfo->sw_act.vsi_handle;
6103 	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6104 		status =  -EINVAL;
6105 		goto free_pkt_profile;
6106 	}
6107 
6108 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6109 	    rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6110 	    rinfo->sw_act.fltr_act == ICE_NOP) {
6111 		rinfo->sw_act.fwd_id.hw_vsi_id =
6112 			ice_get_hw_vsi_num(hw, vsi_handle);
6113 	}
6114 
6115 	if (rinfo->src_vsi)
6116 		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6117 	else
6118 		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6119 
6120 	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6121 	if (status)
6122 		goto free_pkt_profile;
6123 	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6124 	if (m_entry) {
6125 		/* we have to add VSI to VSI_LIST and increment vsi_count.
6126 		 * Also Update VSI list so that we can change forwarding rule
6127 		 * if the rule already exists, we will check if it exists with
6128 		 * same vsi_id, if not then add it to the VSI list if it already
6129 		 * exists if not then create a VSI list and add the existing VSI
6130 		 * ID and the new VSI ID to the list
6131 		 * We will add that VSI to the list
6132 		 */
6133 		status = ice_adv_add_update_vsi_list(hw, m_entry,
6134 						     &m_entry->rule_info,
6135 						     rinfo);
6136 		if (added_entry) {
6137 			added_entry->rid = rid;
6138 			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6139 			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6140 		}
6141 		goto free_pkt_profile;
6142 	}
6143 	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6144 	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6145 	if (!s_rule) {
6146 		status = -ENOMEM;
6147 		goto free_pkt_profile;
6148 	}
6149 
6150 	if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6151 		if (!rinfo->flags_info.act_valid) {
6152 			act |= ICE_SINGLE_ACT_LAN_ENABLE;
6153 			act |= ICE_SINGLE_ACT_LB_ENABLE;
6154 		} else {
6155 			act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6156 							ICE_SINGLE_ACT_LB_ENABLE);
6157 		}
6158 	}
6159 
6160 	switch (rinfo->sw_act.fltr_act) {
6161 	case ICE_FWD_TO_VSI:
6162 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6163 				  rinfo->sw_act.fwd_id.hw_vsi_id);
6164 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6165 		break;
6166 	case ICE_FWD_TO_Q:
6167 		act |= ICE_SINGLE_ACT_TO_Q;
6168 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6169 				  rinfo->sw_act.fwd_id.q_id);
6170 		break;
6171 	case ICE_FWD_TO_QGRP:
6172 		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6173 			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6174 		act |= ICE_SINGLE_ACT_TO_Q;
6175 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6176 				  rinfo->sw_act.fwd_id.q_id);
6177 		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
6178 		break;
6179 	case ICE_DROP_PACKET:
6180 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6181 		       ICE_SINGLE_ACT_VALID_BIT;
6182 		break;
6183 	case ICE_MIRROR_PACKET:
6184 		act |= ICE_SINGLE_ACT_OTHER_ACTS;
6185 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6186 				  rinfo->sw_act.fwd_id.hw_vsi_id);
6187 		break;
6188 	case ICE_NOP:
6189 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6190 				  rinfo->sw_act.fwd_id.hw_vsi_id);
6191 		act &= ~ICE_SINGLE_ACT_VALID_BIT;
6192 		break;
6193 	default:
6194 		status = -EIO;
6195 		goto err_ice_add_adv_rule;
6196 	}
6197 
6198 	/* If there is no matching criteria for direction there
6199 	 * is only one difference between Rx and Tx:
6200 	 * - get switch id base on VSI number from source field (Tx)
6201 	 * - get switch id base on port number (Rx)
6202 	 *
6203 	 * If matching on direction metadata is chose rule direction is
6204 	 * extracted from type value set here.
6205 	 */
6206 	if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6207 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6208 		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6209 	} else {
6210 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6211 		s_rule->src = cpu_to_le16(hw->port_info->lport);
6212 	}
6213 
6214 	s_rule->recipe_id = cpu_to_le16(rid);
6215 	s_rule->act = cpu_to_le32(act);
6216 
6217 	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6218 	if (status)
6219 		goto err_ice_add_adv_rule;
6220 
6221 	status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6222 					 profile->offsets);
6223 	if (status)
6224 		goto err_ice_add_adv_rule;
6225 
6226 	status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6227 					  s_rule->hdr_data,
6228 					  profile->offsets);
6229 	if (status)
6230 		goto err_ice_add_adv_rule;
6231 
6232 	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6233 				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6234 				 NULL);
6235 	if (status)
6236 		goto err_ice_add_adv_rule;
6237 	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6238 				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6239 				GFP_KERNEL);
6240 	if (!adv_fltr) {
6241 		status = -ENOMEM;
6242 		goto err_ice_add_adv_rule;
6243 	}
6244 
6245 	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6246 				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6247 	if (!adv_fltr->lkups) {
6248 		status = -ENOMEM;
6249 		goto err_ice_add_adv_rule;
6250 	}
6251 
6252 	adv_fltr->lkups_cnt = lkups_cnt;
6253 	adv_fltr->rule_info = *rinfo;
6254 	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6255 	sw = hw->switch_info;
6256 	sw->recp_list[rid].adv_rule = true;
6257 	rule_head = &sw->recp_list[rid].filt_rules;
6258 
6259 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6260 		adv_fltr->vsi_count = 1;
6261 
6262 	/* Add rule entry to book keeping list */
6263 	list_add(&adv_fltr->list_entry, rule_head);
6264 	if (added_entry) {
6265 		added_entry->rid = rid;
6266 		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6267 		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6268 	}
6269 err_ice_add_adv_rule:
6270 	if (status && adv_fltr) {
6271 		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6272 		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6273 	}
6274 
6275 	kfree(s_rule);
6276 
6277 free_pkt_profile:
6278 	if (profile->match & ICE_PKT_KMALLOC) {
6279 		kfree(profile->offsets);
6280 		kfree(profile->pkt);
6281 		kfree(profile);
6282 	}
6283 
6284 	return status;
6285 }
6286 
6287 /**
6288  * ice_replay_vsi_fltr - Replay filters for requested VSI
6289  * @hw: pointer to the hardware structure
6290  * @vsi_handle: driver VSI handle
6291  * @recp_id: Recipe ID for which rules need to be replayed
6292  * @list_head: list for which filters need to be replayed
6293  *
6294  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6295  * It is required to pass valid VSI handle.
6296  */
6297 static int
6298 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6299 		    struct list_head *list_head)
6300 {
6301 	struct ice_fltr_mgmt_list_entry *itr;
6302 	int status = 0;
6303 	u16 hw_vsi_id;
6304 
6305 	if (list_empty(list_head))
6306 		return status;
6307 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6308 
6309 	list_for_each_entry(itr, list_head, list_entry) {
6310 		struct ice_fltr_list_entry f_entry;
6311 
6312 		f_entry.fltr_info = itr->fltr_info;
6313 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6314 		    itr->fltr_info.vsi_handle == vsi_handle) {
6315 			/* update the src in case it is VSI num */
6316 			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6317 				f_entry.fltr_info.src = hw_vsi_id;
6318 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6319 			if (status)
6320 				goto end;
6321 			continue;
6322 		}
6323 		if (!itr->vsi_list_info ||
6324 		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6325 			continue;
6326 		f_entry.fltr_info.vsi_handle = vsi_handle;
6327 		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6328 		/* update the src in case it is VSI num */
6329 		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6330 			f_entry.fltr_info.src = hw_vsi_id;
6331 		if (recp_id == ICE_SW_LKUP_VLAN)
6332 			status = ice_add_vlan_internal(hw, &f_entry);
6333 		else
6334 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6335 		if (status)
6336 			goto end;
6337 	}
6338 end:
6339 	return status;
6340 }
6341 
6342 /**
6343  * ice_adv_rem_update_vsi_list
6344  * @hw: pointer to the hardware structure
6345  * @vsi_handle: VSI handle of the VSI to remove
6346  * @fm_list: filter management entry for which the VSI list management needs to
6347  *	     be done
6348  */
6349 static int
6350 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6351 			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6352 {
6353 	struct ice_vsi_list_map_info *vsi_list_info;
6354 	enum ice_sw_lkup_type lkup_type;
6355 	u16 vsi_list_id;
6356 	int status;
6357 
6358 	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6359 	    fm_list->vsi_count == 0)
6360 		return -EINVAL;
6361 
6362 	/* A rule with the VSI being removed does not exist */
6363 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6364 		return -ENOENT;
6365 
6366 	lkup_type = ICE_SW_LKUP_LAST;
6367 	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6368 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6369 					  ice_aqc_opc_update_sw_rules,
6370 					  lkup_type);
6371 	if (status)
6372 		return status;
6373 
6374 	fm_list->vsi_count--;
6375 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6376 	vsi_list_info = fm_list->vsi_list_info;
6377 	if (fm_list->vsi_count == 1) {
6378 		struct ice_fltr_info tmp_fltr;
6379 		u16 rem_vsi_handle;
6380 
6381 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6382 						ICE_MAX_VSI);
6383 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6384 			return -EIO;
6385 
6386 		/* Make sure VSI list is empty before removing it below */
6387 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6388 						  vsi_list_id, true,
6389 						  ice_aqc_opc_update_sw_rules,
6390 						  lkup_type);
6391 		if (status)
6392 			return status;
6393 
6394 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6395 		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6396 		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6397 		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6398 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6399 		tmp_fltr.fwd_id.hw_vsi_id =
6400 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6401 		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6402 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6403 		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6404 
6405 		/* Update the previous switch rule of "MAC forward to VSI" to
6406 		 * "MAC fwd to VSI list"
6407 		 */
6408 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6409 		if (status) {
6410 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6411 				  tmp_fltr.fwd_id.hw_vsi_id, status);
6412 			return status;
6413 		}
6414 		fm_list->vsi_list_info->ref_cnt--;
6415 
6416 		/* Remove the VSI list since it is no longer used */
6417 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6418 		if (status) {
6419 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6420 				  vsi_list_id, status);
6421 			return status;
6422 		}
6423 
6424 		list_del(&vsi_list_info->list_entry);
6425 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6426 		fm_list->vsi_list_info = NULL;
6427 	}
6428 
6429 	return status;
6430 }
6431 
6432 /**
6433  * ice_rem_adv_rule - removes existing advanced switch rule
6434  * @hw: pointer to the hardware structure
6435  * @lkups: information on the words that needs to be looked up. All words
6436  *         together makes one recipe
6437  * @lkups_cnt: num of entries in the lkups array
6438  * @rinfo: Its the pointer to the rule information for the rule
6439  *
6440  * This function can be used to remove 1 rule at a time. The lkups is
6441  * used to describe all the words that forms the "lookup" portion of the
6442  * rule. These words can span multiple protocols. Callers to this function
6443  * need to pass in a list of protocol headers with lookup information along
6444  * and mask that determines which words are valid from the given protocol
6445  * header. rinfo describes other information related to this rule such as
6446  * forwarding IDs, priority of this rule, etc.
6447  */
6448 static int
6449 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6450 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6451 {
6452 	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6453 	struct ice_prot_lkup_ext lkup_exts;
6454 	bool remove_rule = false;
6455 	struct mutex *rule_lock; /* Lock to protect filter rule list */
6456 	u16 i, rid, vsi_handle;
6457 	int status = 0;
6458 
6459 	memset(&lkup_exts, 0, sizeof(lkup_exts));
6460 	for (i = 0; i < lkups_cnt; i++) {
6461 		u16 count;
6462 
6463 		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6464 			return -EIO;
6465 
6466 		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6467 		if (!count)
6468 			return -EIO;
6469 	}
6470 
6471 	rid = ice_find_recp(hw, &lkup_exts, rinfo, false);
6472 	/* If did not find a recipe that match the existing criteria */
6473 	if (rid == ICE_MAX_NUM_RECIPES)
6474 		return -EINVAL;
6475 
6476 	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6477 	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6478 	/* the rule is already removed */
6479 	if (!list_elem)
6480 		return 0;
6481 	mutex_lock(rule_lock);
6482 	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6483 		remove_rule = true;
6484 	} else if (list_elem->vsi_count > 1) {
6485 		remove_rule = false;
6486 		vsi_handle = rinfo->sw_act.vsi_handle;
6487 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6488 	} else {
6489 		vsi_handle = rinfo->sw_act.vsi_handle;
6490 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6491 		if (status) {
6492 			mutex_unlock(rule_lock);
6493 			return status;
6494 		}
6495 		if (list_elem->vsi_count == 0)
6496 			remove_rule = true;
6497 	}
6498 	mutex_unlock(rule_lock);
6499 	if (remove_rule) {
6500 		struct ice_sw_rule_lkup_rx_tx *s_rule;
6501 		u16 rule_buf_sz;
6502 
6503 		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6504 		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6505 		if (!s_rule)
6506 			return -ENOMEM;
6507 		s_rule->act = 0;
6508 		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6509 		s_rule->hdr_len = 0;
6510 		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6511 					 rule_buf_sz, 1,
6512 					 ice_aqc_opc_remove_sw_rules, NULL);
6513 		if (!status || status == -ENOENT) {
6514 			struct ice_switch_info *sw = hw->switch_info;
6515 			struct ice_sw_recipe *r_list = sw->recp_list;
6516 
6517 			mutex_lock(rule_lock);
6518 			list_del(&list_elem->list_entry);
6519 			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6520 			devm_kfree(ice_hw_to_dev(hw), list_elem);
6521 			mutex_unlock(rule_lock);
6522 			if (list_empty(&r_list[rid].filt_rules)) {
6523 				r_list[rid].adv_rule = false;
6524 
6525 				/* All rules for this recipe are now removed */
6526 				if (hw->recp_reuse)
6527 					ice_release_recipe_res(hw,
6528 							       &r_list[rid]);
6529 			}
6530 		}
6531 		kfree(s_rule);
6532 	}
6533 	return status;
6534 }
6535 
6536 /**
6537  * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6538  * @hw: pointer to the hardware structure
6539  * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6540  *
6541  * This function is used to remove 1 rule at a time. The removal is based on
6542  * the remove_entry parameter. This function will remove rule for a given
6543  * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6544  */
6545 int
6546 ice_rem_adv_rule_by_id(struct ice_hw *hw,
6547 		       struct ice_rule_query_data *remove_entry)
6548 {
6549 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6550 	struct list_head *list_head;
6551 	struct ice_adv_rule_info rinfo;
6552 	struct ice_switch_info *sw;
6553 
6554 	sw = hw->switch_info;
6555 	if (!sw->recp_list[remove_entry->rid].recp_created)
6556 		return -EINVAL;
6557 	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6558 	list_for_each_entry(list_itr, list_head, list_entry) {
6559 		if (list_itr->rule_info.fltr_rule_id ==
6560 		    remove_entry->rule_id) {
6561 			rinfo = list_itr->rule_info;
6562 			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6563 			return ice_rem_adv_rule(hw, list_itr->lkups,
6564 						list_itr->lkups_cnt, &rinfo);
6565 		}
6566 	}
6567 	/* either list is empty or unable to find rule */
6568 	return -ENOENT;
6569 }
6570 
6571 /**
6572  * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6573  * @hw: pointer to the hardware structure
6574  * @vsi_handle: driver VSI handle
6575  * @list_head: list for which filters need to be replayed
6576  *
6577  * Replay the advanced rule for the given VSI.
6578  */
6579 static int
6580 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6581 			struct list_head *list_head)
6582 {
6583 	struct ice_rule_query_data added_entry = { 0 };
6584 	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6585 	int status = 0;
6586 
6587 	if (list_empty(list_head))
6588 		return status;
6589 	list_for_each_entry(adv_fltr, list_head, list_entry) {
6590 		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6591 		u16 lk_cnt = adv_fltr->lkups_cnt;
6592 
6593 		if (vsi_handle != rinfo->sw_act.vsi_handle)
6594 			continue;
6595 		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6596 					  &added_entry);
6597 		if (status)
6598 			break;
6599 	}
6600 	return status;
6601 }
6602 
6603 /**
6604  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6605  * @hw: pointer to the hardware structure
6606  * @vsi_handle: driver VSI handle
6607  *
6608  * Replays filters for requested VSI via vsi_handle.
6609  */
6610 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6611 {
6612 	struct ice_switch_info *sw = hw->switch_info;
6613 	int status;
6614 	u8 i;
6615 
6616 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6617 		struct list_head *head;
6618 
6619 		head = &sw->recp_list[i].filt_replay_rules;
6620 		if (!sw->recp_list[i].adv_rule)
6621 			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6622 		else
6623 			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6624 		if (status)
6625 			return status;
6626 	}
6627 	return status;
6628 }
6629 
6630 /**
6631  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6632  * @hw: pointer to the HW struct
6633  *
6634  * Deletes the filter replay rules.
6635  */
6636 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6637 {
6638 	struct ice_switch_info *sw = hw->switch_info;
6639 	u8 i;
6640 
6641 	if (!sw)
6642 		return;
6643 
6644 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6645 		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6646 			struct list_head *l_head;
6647 
6648 			l_head = &sw->recp_list[i].filt_replay_rules;
6649 			if (!sw->recp_list[i].adv_rule)
6650 				ice_rem_sw_rule_info(hw, l_head);
6651 			else
6652 				ice_rem_adv_rule_info(hw, l_head);
6653 		}
6654 	}
6655 }
6656