1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_lib.h" 5 #include "ice_switch.h" 6 #include "ice_trace.h" 7 8 #define ICE_ETH_DA_OFFSET 0 9 #define ICE_ETH_ETHTYPE_OFFSET 12 10 #define ICE_ETH_VLAN_TCI_OFFSET 14 11 #define ICE_MAX_VLAN_ID 0xFFF 12 #define ICE_IPV6_ETHER_ID 0x86DD 13 14 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem 15 * struct to configure any switch filter rules. 16 * {DA (6 bytes), SA(6 bytes), 17 * Ether type (2 bytes for header without VLAN tag) OR 18 * VLAN tag (4 bytes for header with VLAN tag) } 19 * 20 * Word on Hardcoded values 21 * byte 0 = 0x2: to identify it as locally administered DA MAC 22 * byte 6 = 0x2: to identify it as locally administered SA MAC 23 * byte 12 = 0x81 & byte 13 = 0x00: 24 * In case of VLAN filter first two bytes defines ether type (0x8100) 25 * and remaining two bytes are placeholder for programming a given VLAN ID 26 * In case of Ether type filter it is treated as header without VLAN tag 27 * and byte 12 and 13 is used to program a given Ether type instead 28 */ 29 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0, 30 0x2, 0, 0, 0, 0, 0, 31 0x81, 0, 0, 0}; 32 33 enum { 34 ICE_PKT_OUTER_IPV6 = BIT(0), 35 ICE_PKT_TUN_GTPC = BIT(1), 36 ICE_PKT_TUN_GTPU = BIT(2), 37 ICE_PKT_TUN_NVGRE = BIT(3), 38 ICE_PKT_TUN_UDP = BIT(4), 39 ICE_PKT_INNER_IPV6 = BIT(5), 40 ICE_PKT_INNER_TCP = BIT(6), 41 ICE_PKT_INNER_UDP = BIT(7), 42 ICE_PKT_GTP_NOPAY = BIT(8), 43 ICE_PKT_KMALLOC = BIT(9), 44 ICE_PKT_PPPOE = BIT(10), 45 ICE_PKT_L2TPV3 = BIT(11), 46 ICE_PKT_PFCP = BIT(12), 47 }; 48 49 struct ice_dummy_pkt_offsets { 50 enum ice_protocol_type type; 51 u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */ 52 }; 53 54 struct ice_dummy_pkt_profile { 55 const struct ice_dummy_pkt_offsets *offsets; 56 const u8 *pkt; 57 u32 match; 58 u16 pkt_len; 59 u16 offsets_len; 60 }; 61 62 #define ICE_DECLARE_PKT_OFFSETS(type) \ 63 static const struct ice_dummy_pkt_offsets \ 64 ice_dummy_##type##_packet_offsets[] 65 66 #define ICE_DECLARE_PKT_TEMPLATE(type) \ 67 static const u8 ice_dummy_##type##_packet[] 68 69 #define ICE_PKT_PROFILE(type, m) { \ 70 .match = (m), \ 71 .pkt = ice_dummy_##type##_packet, \ 72 .pkt_len = sizeof(ice_dummy_##type##_packet), \ 73 .offsets = ice_dummy_##type##_packet_offsets, \ 74 .offsets_len = sizeof(ice_dummy_##type##_packet_offsets), \ 75 } 76 77 ICE_DECLARE_PKT_OFFSETS(vlan) = { 78 { ICE_VLAN_OFOS, 12 }, 79 }; 80 81 ICE_DECLARE_PKT_TEMPLATE(vlan) = { 82 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */ 83 }; 84 85 ICE_DECLARE_PKT_OFFSETS(qinq) = { 86 { ICE_VLAN_EX, 12 }, 87 { ICE_VLAN_IN, 16 }, 88 }; 89 90 ICE_DECLARE_PKT_TEMPLATE(qinq) = { 91 0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */ 92 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */ 93 }; 94 95 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = { 96 { ICE_MAC_OFOS, 0 }, 97 { ICE_ETYPE_OL, 12 }, 98 { ICE_IPV4_OFOS, 14 }, 99 { ICE_NVGRE, 34 }, 100 { ICE_MAC_IL, 42 }, 101 { ICE_ETYPE_IL, 54 }, 102 { ICE_IPV4_IL, 56 }, 103 { ICE_TCP_IL, 76 }, 104 { ICE_PROTOCOL_LAST, 0 }, 105 }; 106 107 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = { 108 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 109 0x00, 0x00, 0x00, 0x00, 110 0x00, 0x00, 0x00, 0x00, 111 112 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 113 114 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */ 115 0x00, 0x00, 0x00, 0x00, 116 0x00, 0x2F, 0x00, 0x00, 117 0x00, 0x00, 0x00, 0x00, 118 0x00, 0x00, 0x00, 0x00, 119 120 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 121 0x00, 0x00, 0x00, 0x00, 122 123 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 124 0x00, 0x00, 0x00, 0x00, 125 0x00, 0x00, 0x00, 0x00, 126 127 0x08, 0x00, /* ICE_ETYPE_IL 54 */ 128 129 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */ 130 0x00, 0x00, 0x00, 0x00, 131 0x00, 0x06, 0x00, 0x00, 132 0x00, 0x00, 0x00, 0x00, 133 0x00, 0x00, 0x00, 0x00, 134 135 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */ 136 0x00, 0x00, 0x00, 0x00, 137 0x00, 0x00, 0x00, 0x00, 138 0x50, 0x02, 0x20, 0x00, 139 0x00, 0x00, 0x00, 0x00 140 }; 141 142 ICE_DECLARE_PKT_OFFSETS(gre_udp) = { 143 { ICE_MAC_OFOS, 0 }, 144 { ICE_ETYPE_OL, 12 }, 145 { ICE_IPV4_OFOS, 14 }, 146 { ICE_NVGRE, 34 }, 147 { ICE_MAC_IL, 42 }, 148 { ICE_ETYPE_IL, 54 }, 149 { ICE_IPV4_IL, 56 }, 150 { ICE_UDP_ILOS, 76 }, 151 { ICE_PROTOCOL_LAST, 0 }, 152 }; 153 154 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = { 155 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 156 0x00, 0x00, 0x00, 0x00, 157 0x00, 0x00, 0x00, 0x00, 158 159 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 160 161 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */ 162 0x00, 0x00, 0x00, 0x00, 163 0x00, 0x2F, 0x00, 0x00, 164 0x00, 0x00, 0x00, 0x00, 165 0x00, 0x00, 0x00, 0x00, 166 167 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 168 0x00, 0x00, 0x00, 0x00, 169 170 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 171 0x00, 0x00, 0x00, 0x00, 172 0x00, 0x00, 0x00, 0x00, 173 174 0x08, 0x00, /* ICE_ETYPE_IL 54 */ 175 176 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */ 177 0x00, 0x00, 0x00, 0x00, 178 0x00, 0x11, 0x00, 0x00, 179 0x00, 0x00, 0x00, 0x00, 180 0x00, 0x00, 0x00, 0x00, 181 182 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */ 183 0x00, 0x08, 0x00, 0x00, 184 }; 185 186 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = { 187 { ICE_MAC_OFOS, 0 }, 188 { ICE_ETYPE_OL, 12 }, 189 { ICE_IPV4_OFOS, 14 }, 190 { ICE_UDP_OF, 34 }, 191 { ICE_VXLAN, 42 }, 192 { ICE_GENEVE, 42 }, 193 { ICE_VXLAN_GPE, 42 }, 194 { ICE_MAC_IL, 50 }, 195 { ICE_ETYPE_IL, 62 }, 196 { ICE_IPV4_IL, 64 }, 197 { ICE_TCP_IL, 84 }, 198 { ICE_PROTOCOL_LAST, 0 }, 199 }; 200 201 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = { 202 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 203 0x00, 0x00, 0x00, 0x00, 204 0x00, 0x00, 0x00, 0x00, 205 206 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 207 208 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */ 209 0x00, 0x01, 0x00, 0x00, 210 0x40, 0x11, 0x00, 0x00, 211 0x00, 0x00, 0x00, 0x00, 212 0x00, 0x00, 0x00, 0x00, 213 214 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 215 0x00, 0x46, 0x00, 0x00, 216 217 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 218 0x00, 0x00, 0x00, 0x00, 219 220 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 221 0x00, 0x00, 0x00, 0x00, 222 0x00, 0x00, 0x00, 0x00, 223 224 0x08, 0x00, /* ICE_ETYPE_IL 62 */ 225 226 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */ 227 0x00, 0x01, 0x00, 0x00, 228 0x40, 0x06, 0x00, 0x00, 229 0x00, 0x00, 0x00, 0x00, 230 0x00, 0x00, 0x00, 0x00, 231 232 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */ 233 0x00, 0x00, 0x00, 0x00, 234 0x00, 0x00, 0x00, 0x00, 235 0x50, 0x02, 0x20, 0x00, 236 0x00, 0x00, 0x00, 0x00 237 }; 238 239 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = { 240 { ICE_MAC_OFOS, 0 }, 241 { ICE_ETYPE_OL, 12 }, 242 { ICE_IPV4_OFOS, 14 }, 243 { ICE_UDP_OF, 34 }, 244 { ICE_VXLAN, 42 }, 245 { ICE_GENEVE, 42 }, 246 { ICE_VXLAN_GPE, 42 }, 247 { ICE_MAC_IL, 50 }, 248 { ICE_ETYPE_IL, 62 }, 249 { ICE_IPV4_IL, 64 }, 250 { ICE_UDP_ILOS, 84 }, 251 { ICE_PROTOCOL_LAST, 0 }, 252 }; 253 254 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = { 255 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 256 0x00, 0x00, 0x00, 0x00, 257 0x00, 0x00, 0x00, 0x00, 258 259 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 260 261 0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */ 262 0x00, 0x01, 0x00, 0x00, 263 0x00, 0x11, 0x00, 0x00, 264 0x00, 0x00, 0x00, 0x00, 265 0x00, 0x00, 0x00, 0x00, 266 267 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 268 0x00, 0x3a, 0x00, 0x00, 269 270 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 271 0x00, 0x00, 0x00, 0x00, 272 273 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 274 0x00, 0x00, 0x00, 0x00, 275 0x00, 0x00, 0x00, 0x00, 276 277 0x08, 0x00, /* ICE_ETYPE_IL 62 */ 278 279 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */ 280 0x00, 0x01, 0x00, 0x00, 281 0x00, 0x11, 0x00, 0x00, 282 0x00, 0x00, 0x00, 0x00, 283 0x00, 0x00, 0x00, 0x00, 284 285 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */ 286 0x00, 0x08, 0x00, 0x00, 287 }; 288 289 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = { 290 { ICE_MAC_OFOS, 0 }, 291 { ICE_ETYPE_OL, 12 }, 292 { ICE_IPV4_OFOS, 14 }, 293 { ICE_NVGRE, 34 }, 294 { ICE_MAC_IL, 42 }, 295 { ICE_ETYPE_IL, 54 }, 296 { ICE_IPV6_IL, 56 }, 297 { ICE_TCP_IL, 96 }, 298 { ICE_PROTOCOL_LAST, 0 }, 299 }; 300 301 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = { 302 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 303 0x00, 0x00, 0x00, 0x00, 304 0x00, 0x00, 0x00, 0x00, 305 306 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 307 308 0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */ 309 0x00, 0x00, 0x00, 0x00, 310 0x00, 0x2F, 0x00, 0x00, 311 0x00, 0x00, 0x00, 0x00, 312 0x00, 0x00, 0x00, 0x00, 313 314 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 315 0x00, 0x00, 0x00, 0x00, 316 317 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 318 0x00, 0x00, 0x00, 0x00, 319 0x00, 0x00, 0x00, 0x00, 320 321 0x86, 0xdd, /* ICE_ETYPE_IL 54 */ 322 323 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */ 324 0x00, 0x08, 0x06, 0x40, 325 0x00, 0x00, 0x00, 0x00, 326 0x00, 0x00, 0x00, 0x00, 327 0x00, 0x00, 0x00, 0x00, 328 0x00, 0x00, 0x00, 0x00, 329 0x00, 0x00, 0x00, 0x00, 330 0x00, 0x00, 0x00, 0x00, 331 0x00, 0x00, 0x00, 0x00, 332 0x00, 0x00, 0x00, 0x00, 333 334 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */ 335 0x00, 0x00, 0x00, 0x00, 336 0x00, 0x00, 0x00, 0x00, 337 0x50, 0x02, 0x20, 0x00, 338 0x00, 0x00, 0x00, 0x00 339 }; 340 341 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = { 342 { ICE_MAC_OFOS, 0 }, 343 { ICE_ETYPE_OL, 12 }, 344 { ICE_IPV4_OFOS, 14 }, 345 { ICE_NVGRE, 34 }, 346 { ICE_MAC_IL, 42 }, 347 { ICE_ETYPE_IL, 54 }, 348 { ICE_IPV6_IL, 56 }, 349 { ICE_UDP_ILOS, 96 }, 350 { ICE_PROTOCOL_LAST, 0 }, 351 }; 352 353 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = { 354 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 355 0x00, 0x00, 0x00, 0x00, 356 0x00, 0x00, 0x00, 0x00, 357 358 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 359 360 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */ 361 0x00, 0x00, 0x00, 0x00, 362 0x00, 0x2F, 0x00, 0x00, 363 0x00, 0x00, 0x00, 0x00, 364 0x00, 0x00, 0x00, 0x00, 365 366 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 367 0x00, 0x00, 0x00, 0x00, 368 369 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 370 0x00, 0x00, 0x00, 0x00, 371 0x00, 0x00, 0x00, 0x00, 372 373 0x86, 0xdd, /* ICE_ETYPE_IL 54 */ 374 375 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */ 376 0x00, 0x08, 0x11, 0x40, 377 0x00, 0x00, 0x00, 0x00, 378 0x00, 0x00, 0x00, 0x00, 379 0x00, 0x00, 0x00, 0x00, 380 0x00, 0x00, 0x00, 0x00, 381 0x00, 0x00, 0x00, 0x00, 382 0x00, 0x00, 0x00, 0x00, 383 0x00, 0x00, 0x00, 0x00, 384 0x00, 0x00, 0x00, 0x00, 385 386 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */ 387 0x00, 0x08, 0x00, 0x00, 388 }; 389 390 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = { 391 { ICE_MAC_OFOS, 0 }, 392 { ICE_ETYPE_OL, 12 }, 393 { ICE_IPV4_OFOS, 14 }, 394 { ICE_UDP_OF, 34 }, 395 { ICE_VXLAN, 42 }, 396 { ICE_GENEVE, 42 }, 397 { ICE_VXLAN_GPE, 42 }, 398 { ICE_MAC_IL, 50 }, 399 { ICE_ETYPE_IL, 62 }, 400 { ICE_IPV6_IL, 64 }, 401 { ICE_TCP_IL, 104 }, 402 { ICE_PROTOCOL_LAST, 0 }, 403 }; 404 405 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = { 406 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 407 0x00, 0x00, 0x00, 0x00, 408 0x00, 0x00, 0x00, 0x00, 409 410 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 411 412 0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */ 413 0x00, 0x01, 0x00, 0x00, 414 0x40, 0x11, 0x00, 0x00, 415 0x00, 0x00, 0x00, 0x00, 416 0x00, 0x00, 0x00, 0x00, 417 418 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 419 0x00, 0x5a, 0x00, 0x00, 420 421 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 422 0x00, 0x00, 0x00, 0x00, 423 424 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 425 0x00, 0x00, 0x00, 0x00, 426 0x00, 0x00, 0x00, 0x00, 427 428 0x86, 0xdd, /* ICE_ETYPE_IL 62 */ 429 430 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */ 431 0x00, 0x08, 0x06, 0x40, 432 0x00, 0x00, 0x00, 0x00, 433 0x00, 0x00, 0x00, 0x00, 434 0x00, 0x00, 0x00, 0x00, 435 0x00, 0x00, 0x00, 0x00, 436 0x00, 0x00, 0x00, 0x00, 437 0x00, 0x00, 0x00, 0x00, 438 0x00, 0x00, 0x00, 0x00, 439 0x00, 0x00, 0x00, 0x00, 440 441 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */ 442 0x00, 0x00, 0x00, 0x00, 443 0x00, 0x00, 0x00, 0x00, 444 0x50, 0x02, 0x20, 0x00, 445 0x00, 0x00, 0x00, 0x00 446 }; 447 448 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = { 449 { ICE_MAC_OFOS, 0 }, 450 { ICE_ETYPE_OL, 12 }, 451 { ICE_IPV4_OFOS, 14 }, 452 { ICE_UDP_OF, 34 }, 453 { ICE_VXLAN, 42 }, 454 { ICE_GENEVE, 42 }, 455 { ICE_VXLAN_GPE, 42 }, 456 { ICE_MAC_IL, 50 }, 457 { ICE_ETYPE_IL, 62 }, 458 { ICE_IPV6_IL, 64 }, 459 { ICE_UDP_ILOS, 104 }, 460 { ICE_PROTOCOL_LAST, 0 }, 461 }; 462 463 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = { 464 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 465 0x00, 0x00, 0x00, 0x00, 466 0x00, 0x00, 0x00, 0x00, 467 468 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 469 470 0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */ 471 0x00, 0x01, 0x00, 0x00, 472 0x00, 0x11, 0x00, 0x00, 473 0x00, 0x00, 0x00, 0x00, 474 0x00, 0x00, 0x00, 0x00, 475 476 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 477 0x00, 0x4e, 0x00, 0x00, 478 479 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 480 0x00, 0x00, 0x00, 0x00, 481 482 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 483 0x00, 0x00, 0x00, 0x00, 484 0x00, 0x00, 0x00, 0x00, 485 486 0x86, 0xdd, /* ICE_ETYPE_IL 62 */ 487 488 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */ 489 0x00, 0x08, 0x11, 0x40, 490 0x00, 0x00, 0x00, 0x00, 491 0x00, 0x00, 0x00, 0x00, 492 0x00, 0x00, 0x00, 0x00, 493 0x00, 0x00, 0x00, 0x00, 494 0x00, 0x00, 0x00, 0x00, 495 0x00, 0x00, 0x00, 0x00, 496 0x00, 0x00, 0x00, 0x00, 497 0x00, 0x00, 0x00, 0x00, 498 499 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */ 500 0x00, 0x08, 0x00, 0x00, 501 }; 502 503 /* offset info for MAC + IPv4 + UDP dummy packet */ 504 ICE_DECLARE_PKT_OFFSETS(udp) = { 505 { ICE_MAC_OFOS, 0 }, 506 { ICE_ETYPE_OL, 12 }, 507 { ICE_IPV4_OFOS, 14 }, 508 { ICE_UDP_ILOS, 34 }, 509 { ICE_PROTOCOL_LAST, 0 }, 510 }; 511 512 /* Dummy packet for MAC + IPv4 + UDP */ 513 ICE_DECLARE_PKT_TEMPLATE(udp) = { 514 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 515 0x00, 0x00, 0x00, 0x00, 516 0x00, 0x00, 0x00, 0x00, 517 518 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 519 520 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */ 521 0x00, 0x01, 0x00, 0x00, 522 0x00, 0x11, 0x00, 0x00, 523 0x00, 0x00, 0x00, 0x00, 524 0x00, 0x00, 0x00, 0x00, 525 526 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */ 527 0x00, 0x08, 0x00, 0x00, 528 529 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 530 }; 531 532 /* offset info for MAC + IPv4 + TCP dummy packet */ 533 ICE_DECLARE_PKT_OFFSETS(tcp) = { 534 { ICE_MAC_OFOS, 0 }, 535 { ICE_ETYPE_OL, 12 }, 536 { ICE_IPV4_OFOS, 14 }, 537 { ICE_TCP_IL, 34 }, 538 { ICE_PROTOCOL_LAST, 0 }, 539 }; 540 541 /* Dummy packet for MAC + IPv4 + TCP */ 542 ICE_DECLARE_PKT_TEMPLATE(tcp) = { 543 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 544 0x00, 0x00, 0x00, 0x00, 545 0x00, 0x00, 0x00, 0x00, 546 547 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 548 549 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */ 550 0x00, 0x01, 0x00, 0x00, 551 0x00, 0x06, 0x00, 0x00, 552 0x00, 0x00, 0x00, 0x00, 553 0x00, 0x00, 0x00, 0x00, 554 555 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */ 556 0x00, 0x00, 0x00, 0x00, 557 0x00, 0x00, 0x00, 0x00, 558 0x50, 0x00, 0x00, 0x00, 559 0x00, 0x00, 0x00, 0x00, 560 561 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 562 }; 563 564 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = { 565 { ICE_MAC_OFOS, 0 }, 566 { ICE_ETYPE_OL, 12 }, 567 { ICE_IPV6_OFOS, 14 }, 568 { ICE_TCP_IL, 54 }, 569 { ICE_PROTOCOL_LAST, 0 }, 570 }; 571 572 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = { 573 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 574 0x00, 0x00, 0x00, 0x00, 575 0x00, 0x00, 0x00, 0x00, 576 577 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ 578 579 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */ 580 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */ 581 0x00, 0x00, 0x00, 0x00, 582 0x00, 0x00, 0x00, 0x00, 583 0x00, 0x00, 0x00, 0x00, 584 0x00, 0x00, 0x00, 0x00, 585 0x00, 0x00, 0x00, 0x00, 586 0x00, 0x00, 0x00, 0x00, 587 0x00, 0x00, 0x00, 0x00, 588 0x00, 0x00, 0x00, 0x00, 589 590 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */ 591 0x00, 0x00, 0x00, 0x00, 592 0x00, 0x00, 0x00, 0x00, 593 0x50, 0x00, 0x00, 0x00, 594 0x00, 0x00, 0x00, 0x00, 595 596 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 597 }; 598 599 /* IPv6 + UDP */ 600 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = { 601 { ICE_MAC_OFOS, 0 }, 602 { ICE_ETYPE_OL, 12 }, 603 { ICE_IPV6_OFOS, 14 }, 604 { ICE_UDP_ILOS, 54 }, 605 { ICE_PROTOCOL_LAST, 0 }, 606 }; 607 608 /* IPv6 + UDP dummy packet */ 609 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = { 610 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 611 0x00, 0x00, 0x00, 0x00, 612 0x00, 0x00, 0x00, 0x00, 613 614 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ 615 616 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */ 617 0x00, 0x10, 0x11, 0x00, /* Next header UDP */ 618 0x00, 0x00, 0x00, 0x00, 619 0x00, 0x00, 0x00, 0x00, 620 0x00, 0x00, 0x00, 0x00, 621 0x00, 0x00, 0x00, 0x00, 622 0x00, 0x00, 0x00, 0x00, 623 0x00, 0x00, 0x00, 0x00, 624 0x00, 0x00, 0x00, 0x00, 625 0x00, 0x00, 0x00, 0x00, 626 627 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */ 628 0x00, 0x10, 0x00, 0x00, 629 630 0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */ 631 0x00, 0x00, 0x00, 0x00, 632 633 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 634 }; 635 636 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */ 637 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = { 638 { ICE_MAC_OFOS, 0 }, 639 { ICE_IPV4_OFOS, 14 }, 640 { ICE_UDP_OF, 34 }, 641 { ICE_GTP, 42 }, 642 { ICE_IPV4_IL, 62 }, 643 { ICE_TCP_IL, 82 }, 644 { ICE_PROTOCOL_LAST, 0 }, 645 }; 646 647 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = { 648 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 649 0x00, 0x00, 0x00, 0x00, 650 0x00, 0x00, 0x00, 0x00, 651 0x08, 0x00, 652 653 0x45, 0x00, 0x00, 0x58, /* IP 14 */ 654 0x00, 0x00, 0x00, 0x00, 655 0x00, 0x11, 0x00, 0x00, 656 0x00, 0x00, 0x00, 0x00, 657 0x00, 0x00, 0x00, 0x00, 658 659 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 660 0x00, 0x44, 0x00, 0x00, 661 662 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */ 663 0x00, 0x00, 0x00, 0x00, 664 0x00, 0x00, 0x00, 0x85, 665 666 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 667 0x00, 0x00, 0x00, 0x00, 668 669 0x45, 0x00, 0x00, 0x28, /* IP 62 */ 670 0x00, 0x00, 0x00, 0x00, 671 0x00, 0x06, 0x00, 0x00, 672 0x00, 0x00, 0x00, 0x00, 673 0x00, 0x00, 0x00, 0x00, 674 675 0x00, 0x00, 0x00, 0x00, /* TCP 82 */ 676 0x00, 0x00, 0x00, 0x00, 677 0x00, 0x00, 0x00, 0x00, 678 0x50, 0x00, 0x00, 0x00, 679 0x00, 0x00, 0x00, 0x00, 680 681 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 682 }; 683 684 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */ 685 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = { 686 { ICE_MAC_OFOS, 0 }, 687 { ICE_IPV4_OFOS, 14 }, 688 { ICE_UDP_OF, 34 }, 689 { ICE_GTP, 42 }, 690 { ICE_IPV4_IL, 62 }, 691 { ICE_UDP_ILOS, 82 }, 692 { ICE_PROTOCOL_LAST, 0 }, 693 }; 694 695 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = { 696 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 697 0x00, 0x00, 0x00, 0x00, 698 0x00, 0x00, 0x00, 0x00, 699 0x08, 0x00, 700 701 0x45, 0x00, 0x00, 0x4c, /* IP 14 */ 702 0x00, 0x00, 0x00, 0x00, 703 0x00, 0x11, 0x00, 0x00, 704 0x00, 0x00, 0x00, 0x00, 705 0x00, 0x00, 0x00, 0x00, 706 707 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 708 0x00, 0x38, 0x00, 0x00, 709 710 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */ 711 0x00, 0x00, 0x00, 0x00, 712 0x00, 0x00, 0x00, 0x85, 713 714 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 715 0x00, 0x00, 0x00, 0x00, 716 717 0x45, 0x00, 0x00, 0x1c, /* IP 62 */ 718 0x00, 0x00, 0x00, 0x00, 719 0x00, 0x11, 0x00, 0x00, 720 0x00, 0x00, 0x00, 0x00, 721 0x00, 0x00, 0x00, 0x00, 722 723 0x00, 0x00, 0x00, 0x00, /* UDP 82 */ 724 0x00, 0x08, 0x00, 0x00, 725 726 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 727 }; 728 729 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */ 730 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = { 731 { ICE_MAC_OFOS, 0 }, 732 { ICE_IPV4_OFOS, 14 }, 733 { ICE_UDP_OF, 34 }, 734 { ICE_GTP, 42 }, 735 { ICE_IPV6_IL, 62 }, 736 { ICE_TCP_IL, 102 }, 737 { ICE_PROTOCOL_LAST, 0 }, 738 }; 739 740 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = { 741 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 742 0x00, 0x00, 0x00, 0x00, 743 0x00, 0x00, 0x00, 0x00, 744 0x08, 0x00, 745 746 0x45, 0x00, 0x00, 0x6c, /* IP 14 */ 747 0x00, 0x00, 0x00, 0x00, 748 0x00, 0x11, 0x00, 0x00, 749 0x00, 0x00, 0x00, 0x00, 750 0x00, 0x00, 0x00, 0x00, 751 752 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 753 0x00, 0x58, 0x00, 0x00, 754 755 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */ 756 0x00, 0x00, 0x00, 0x00, 757 0x00, 0x00, 0x00, 0x85, 758 759 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 760 0x00, 0x00, 0x00, 0x00, 761 762 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */ 763 0x00, 0x14, 0x06, 0x00, 764 0x00, 0x00, 0x00, 0x00, 765 0x00, 0x00, 0x00, 0x00, 766 0x00, 0x00, 0x00, 0x00, 767 0x00, 0x00, 0x00, 0x00, 768 0x00, 0x00, 0x00, 0x00, 769 0x00, 0x00, 0x00, 0x00, 770 0x00, 0x00, 0x00, 0x00, 771 0x00, 0x00, 0x00, 0x00, 772 773 0x00, 0x00, 0x00, 0x00, /* TCP 102 */ 774 0x00, 0x00, 0x00, 0x00, 775 0x00, 0x00, 0x00, 0x00, 776 0x50, 0x00, 0x00, 0x00, 777 0x00, 0x00, 0x00, 0x00, 778 779 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 780 }; 781 782 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = { 783 { ICE_MAC_OFOS, 0 }, 784 { ICE_IPV4_OFOS, 14 }, 785 { ICE_UDP_OF, 34 }, 786 { ICE_GTP, 42 }, 787 { ICE_IPV6_IL, 62 }, 788 { ICE_UDP_ILOS, 102 }, 789 { ICE_PROTOCOL_LAST, 0 }, 790 }; 791 792 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = { 793 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 794 0x00, 0x00, 0x00, 0x00, 795 0x00, 0x00, 0x00, 0x00, 796 0x08, 0x00, 797 798 0x45, 0x00, 0x00, 0x60, /* IP 14 */ 799 0x00, 0x00, 0x00, 0x00, 800 0x00, 0x11, 0x00, 0x00, 801 0x00, 0x00, 0x00, 0x00, 802 0x00, 0x00, 0x00, 0x00, 803 804 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 805 0x00, 0x4c, 0x00, 0x00, 806 807 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */ 808 0x00, 0x00, 0x00, 0x00, 809 0x00, 0x00, 0x00, 0x85, 810 811 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 812 0x00, 0x00, 0x00, 0x00, 813 814 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */ 815 0x00, 0x08, 0x11, 0x00, 816 0x00, 0x00, 0x00, 0x00, 817 0x00, 0x00, 0x00, 0x00, 818 0x00, 0x00, 0x00, 0x00, 819 0x00, 0x00, 0x00, 0x00, 820 0x00, 0x00, 0x00, 0x00, 821 0x00, 0x00, 0x00, 0x00, 822 0x00, 0x00, 0x00, 0x00, 823 0x00, 0x00, 0x00, 0x00, 824 825 0x00, 0x00, 0x00, 0x00, /* UDP 102 */ 826 0x00, 0x08, 0x00, 0x00, 827 828 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 829 }; 830 831 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = { 832 { ICE_MAC_OFOS, 0 }, 833 { ICE_IPV6_OFOS, 14 }, 834 { ICE_UDP_OF, 54 }, 835 { ICE_GTP, 62 }, 836 { ICE_IPV4_IL, 82 }, 837 { ICE_TCP_IL, 102 }, 838 { ICE_PROTOCOL_LAST, 0 }, 839 }; 840 841 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = { 842 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 843 0x00, 0x00, 0x00, 0x00, 844 0x00, 0x00, 0x00, 0x00, 845 0x86, 0xdd, 846 847 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 848 0x00, 0x44, 0x11, 0x00, 849 0x00, 0x00, 0x00, 0x00, 850 0x00, 0x00, 0x00, 0x00, 851 0x00, 0x00, 0x00, 0x00, 852 0x00, 0x00, 0x00, 0x00, 853 0x00, 0x00, 0x00, 0x00, 854 0x00, 0x00, 0x00, 0x00, 855 0x00, 0x00, 0x00, 0x00, 856 0x00, 0x00, 0x00, 0x00, 857 858 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 859 0x00, 0x44, 0x00, 0x00, 860 861 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */ 862 0x00, 0x00, 0x00, 0x00, 863 0x00, 0x00, 0x00, 0x85, 864 865 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 866 0x00, 0x00, 0x00, 0x00, 867 868 0x45, 0x00, 0x00, 0x28, /* IP 82 */ 869 0x00, 0x00, 0x00, 0x00, 870 0x00, 0x06, 0x00, 0x00, 871 0x00, 0x00, 0x00, 0x00, 872 0x00, 0x00, 0x00, 0x00, 873 874 0x00, 0x00, 0x00, 0x00, /* TCP 102 */ 875 0x00, 0x00, 0x00, 0x00, 876 0x00, 0x00, 0x00, 0x00, 877 0x50, 0x00, 0x00, 0x00, 878 0x00, 0x00, 0x00, 0x00, 879 880 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 881 }; 882 883 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = { 884 { ICE_MAC_OFOS, 0 }, 885 { ICE_IPV6_OFOS, 14 }, 886 { ICE_UDP_OF, 54 }, 887 { ICE_GTP, 62 }, 888 { ICE_IPV4_IL, 82 }, 889 { ICE_UDP_ILOS, 102 }, 890 { ICE_PROTOCOL_LAST, 0 }, 891 }; 892 893 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = { 894 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 895 0x00, 0x00, 0x00, 0x00, 896 0x00, 0x00, 0x00, 0x00, 897 0x86, 0xdd, 898 899 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 900 0x00, 0x38, 0x11, 0x00, 901 0x00, 0x00, 0x00, 0x00, 902 0x00, 0x00, 0x00, 0x00, 903 0x00, 0x00, 0x00, 0x00, 904 0x00, 0x00, 0x00, 0x00, 905 0x00, 0x00, 0x00, 0x00, 906 0x00, 0x00, 0x00, 0x00, 907 0x00, 0x00, 0x00, 0x00, 908 0x00, 0x00, 0x00, 0x00, 909 910 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 911 0x00, 0x38, 0x00, 0x00, 912 913 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */ 914 0x00, 0x00, 0x00, 0x00, 915 0x00, 0x00, 0x00, 0x85, 916 917 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 918 0x00, 0x00, 0x00, 0x00, 919 920 0x45, 0x00, 0x00, 0x1c, /* IP 82 */ 921 0x00, 0x00, 0x00, 0x00, 922 0x00, 0x11, 0x00, 0x00, 923 0x00, 0x00, 0x00, 0x00, 924 0x00, 0x00, 0x00, 0x00, 925 926 0x00, 0x00, 0x00, 0x00, /* UDP 102 */ 927 0x00, 0x08, 0x00, 0x00, 928 929 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 930 }; 931 932 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = { 933 { ICE_MAC_OFOS, 0 }, 934 { ICE_IPV6_OFOS, 14 }, 935 { ICE_UDP_OF, 54 }, 936 { ICE_GTP, 62 }, 937 { ICE_IPV6_IL, 82 }, 938 { ICE_TCP_IL, 122 }, 939 { ICE_PROTOCOL_LAST, 0 }, 940 }; 941 942 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = { 943 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 944 0x00, 0x00, 0x00, 0x00, 945 0x00, 0x00, 0x00, 0x00, 946 0x86, 0xdd, 947 948 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 949 0x00, 0x58, 0x11, 0x00, 950 0x00, 0x00, 0x00, 0x00, 951 0x00, 0x00, 0x00, 0x00, 952 0x00, 0x00, 0x00, 0x00, 953 0x00, 0x00, 0x00, 0x00, 954 0x00, 0x00, 0x00, 0x00, 955 0x00, 0x00, 0x00, 0x00, 956 0x00, 0x00, 0x00, 0x00, 957 0x00, 0x00, 0x00, 0x00, 958 959 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 960 0x00, 0x58, 0x00, 0x00, 961 962 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */ 963 0x00, 0x00, 0x00, 0x00, 964 0x00, 0x00, 0x00, 0x85, 965 966 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 967 0x00, 0x00, 0x00, 0x00, 968 969 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */ 970 0x00, 0x14, 0x06, 0x00, 971 0x00, 0x00, 0x00, 0x00, 972 0x00, 0x00, 0x00, 0x00, 973 0x00, 0x00, 0x00, 0x00, 974 0x00, 0x00, 0x00, 0x00, 975 0x00, 0x00, 0x00, 0x00, 976 0x00, 0x00, 0x00, 0x00, 977 0x00, 0x00, 0x00, 0x00, 978 0x00, 0x00, 0x00, 0x00, 979 980 0x00, 0x00, 0x00, 0x00, /* TCP 122 */ 981 0x00, 0x00, 0x00, 0x00, 982 0x00, 0x00, 0x00, 0x00, 983 0x50, 0x00, 0x00, 0x00, 984 0x00, 0x00, 0x00, 0x00, 985 986 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 987 }; 988 989 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = { 990 { ICE_MAC_OFOS, 0 }, 991 { ICE_IPV6_OFOS, 14 }, 992 { ICE_UDP_OF, 54 }, 993 { ICE_GTP, 62 }, 994 { ICE_IPV6_IL, 82 }, 995 { ICE_UDP_ILOS, 122 }, 996 { ICE_PROTOCOL_LAST, 0 }, 997 }; 998 999 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = { 1000 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 1001 0x00, 0x00, 0x00, 0x00, 1002 0x00, 0x00, 0x00, 0x00, 1003 0x86, 0xdd, 1004 1005 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 1006 0x00, 0x4c, 0x11, 0x00, 1007 0x00, 0x00, 0x00, 0x00, 1008 0x00, 0x00, 0x00, 0x00, 1009 0x00, 0x00, 0x00, 0x00, 1010 0x00, 0x00, 0x00, 0x00, 1011 0x00, 0x00, 0x00, 0x00, 1012 0x00, 0x00, 0x00, 0x00, 1013 0x00, 0x00, 0x00, 0x00, 1014 0x00, 0x00, 0x00, 0x00, 1015 1016 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 1017 0x00, 0x4c, 0x00, 0x00, 1018 1019 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */ 1020 0x00, 0x00, 0x00, 0x00, 1021 0x00, 0x00, 0x00, 0x85, 1022 1023 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 1024 0x00, 0x00, 0x00, 0x00, 1025 1026 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */ 1027 0x00, 0x08, 0x11, 0x00, 1028 0x00, 0x00, 0x00, 0x00, 1029 0x00, 0x00, 0x00, 0x00, 1030 0x00, 0x00, 0x00, 0x00, 1031 0x00, 0x00, 0x00, 0x00, 1032 0x00, 0x00, 0x00, 0x00, 1033 0x00, 0x00, 0x00, 0x00, 1034 0x00, 0x00, 0x00, 0x00, 1035 0x00, 0x00, 0x00, 0x00, 1036 1037 0x00, 0x00, 0x00, 0x00, /* UDP 122 */ 1038 0x00, 0x08, 0x00, 0x00, 1039 1040 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 1041 }; 1042 1043 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = { 1044 { ICE_MAC_OFOS, 0 }, 1045 { ICE_IPV4_OFOS, 14 }, 1046 { ICE_UDP_OF, 34 }, 1047 { ICE_GTP_NO_PAY, 42 }, 1048 { ICE_PROTOCOL_LAST, 0 }, 1049 }; 1050 1051 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = { 1052 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1053 0x00, 0x00, 0x00, 0x00, 1054 0x00, 0x00, 0x00, 0x00, 1055 0x08, 0x00, 1056 1057 0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */ 1058 0x00, 0x00, 0x40, 0x00, 1059 0x40, 0x11, 0x00, 0x00, 1060 0x00, 0x00, 0x00, 0x00, 1061 0x00, 0x00, 0x00, 0x00, 1062 1063 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */ 1064 0x00, 0x00, 0x00, 0x00, 1065 1066 0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */ 1067 0x00, 0x00, 0x00, 0x00, 1068 0x00, 0x00, 0x00, 0x85, 1069 1070 0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */ 1071 0x00, 0x00, 0x00, 0x00, 1072 1073 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */ 1074 0x00, 0x00, 0x40, 0x00, 1075 0x40, 0x00, 0x00, 0x00, 1076 0x00, 0x00, 0x00, 0x00, 1077 0x00, 0x00, 0x00, 0x00, 1078 0x00, 0x00, 1079 }; 1080 1081 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = { 1082 { ICE_MAC_OFOS, 0 }, 1083 { ICE_IPV6_OFOS, 14 }, 1084 { ICE_UDP_OF, 54 }, 1085 { ICE_GTP_NO_PAY, 62 }, 1086 { ICE_PROTOCOL_LAST, 0 }, 1087 }; 1088 1089 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = { 1090 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1091 0x00, 0x00, 0x00, 0x00, 1092 0x00, 0x00, 0x00, 0x00, 1093 0x86, 0xdd, 1094 1095 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */ 1096 0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/ 1097 0x00, 0x00, 0x00, 0x00, 1098 0x00, 0x00, 0x00, 0x00, 1099 0x00, 0x00, 0x00, 0x00, 1100 0x00, 0x00, 0x00, 0x00, 1101 0x00, 0x00, 0x00, 0x00, 1102 0x00, 0x00, 0x00, 0x00, 1103 0x00, 0x00, 0x00, 0x00, 1104 0x00, 0x00, 0x00, 0x00, 1105 1106 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */ 1107 0x00, 0x00, 0x00, 0x00, 1108 1109 0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */ 1110 0x00, 0x00, 0x00, 0x00, 1111 1112 0x00, 0x00, 1113 }; 1114 1115 ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv4) = { 1116 { ICE_MAC_OFOS, 0 }, 1117 { ICE_ETYPE_OL, 12 }, 1118 { ICE_IPV4_OFOS, 14 }, 1119 { ICE_UDP_ILOS, 34 }, 1120 { ICE_PFCP, 42 }, 1121 { ICE_PROTOCOL_LAST, 0 }, 1122 }; 1123 1124 ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv4) = { 1125 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1126 0x00, 0x00, 0x00, 0x00, 1127 0x00, 0x00, 0x00, 0x00, 1128 1129 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 1130 1131 0x45, 0x00, 0x00, 0x2c, /* ICE_IPV4_OFOS 14 */ 1132 0x00, 0x01, 0x00, 0x00, 1133 0x00, 0x11, 0x00, 0x00, 1134 0x00, 0x00, 0x00, 0x00, 1135 0x00, 0x00, 0x00, 0x00, 1136 1137 0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 34 */ 1138 0x00, 0x18, 0x00, 0x00, 1139 1140 0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 42 */ 1141 0x00, 0x00, 0x00, 0x00, 1142 0x00, 0x00, 0x00, 0x00, 1143 0x00, 0x00, 0x00, 0x00, 1144 1145 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 1146 }; 1147 1148 ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv6) = { 1149 { ICE_MAC_OFOS, 0 }, 1150 { ICE_ETYPE_OL, 12 }, 1151 { ICE_IPV6_OFOS, 14 }, 1152 { ICE_UDP_ILOS, 54 }, 1153 { ICE_PFCP, 62 }, 1154 { ICE_PROTOCOL_LAST, 0 }, 1155 }; 1156 1157 ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv6) = { 1158 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1159 0x00, 0x00, 0x00, 0x00, 1160 0x00, 0x00, 0x00, 0x00, 1161 1162 0x86, 0xdd, /* ICE_ETYPE_OL 12 */ 1163 1164 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */ 1165 0x00, 0x10, 0x11, 0x00, /* Next header UDP */ 1166 0x00, 0x00, 0x00, 0x00, 1167 0x00, 0x00, 0x00, 0x00, 1168 0x00, 0x00, 0x00, 0x00, 1169 0x00, 0x00, 0x00, 0x00, 1170 0x00, 0x00, 0x00, 0x00, 1171 0x00, 0x00, 0x00, 0x00, 1172 0x00, 0x00, 0x00, 0x00, 1173 0x00, 0x00, 0x00, 0x00, 1174 1175 0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 54 */ 1176 0x00, 0x18, 0x00, 0x00, 1177 1178 0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 62 */ 1179 0x00, 0x00, 0x00, 0x00, 1180 0x00, 0x00, 0x00, 0x00, 1181 0x00, 0x00, 0x00, 0x00, 1182 1183 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 1184 }; 1185 1186 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = { 1187 { ICE_MAC_OFOS, 0 }, 1188 { ICE_ETYPE_OL, 12 }, 1189 { ICE_PPPOE, 14 }, 1190 { ICE_IPV4_OFOS, 22 }, 1191 { ICE_TCP_IL, 42 }, 1192 { ICE_PROTOCOL_LAST, 0 }, 1193 }; 1194 1195 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = { 1196 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1197 0x00, 0x00, 0x00, 0x00, 1198 0x00, 0x00, 0x00, 0x00, 1199 1200 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1201 1202 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1203 0x00, 0x16, 1204 1205 0x00, 0x21, /* PPP Link Layer 20 */ 1206 1207 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */ 1208 0x00, 0x01, 0x00, 0x00, 1209 0x00, 0x06, 0x00, 0x00, 1210 0x00, 0x00, 0x00, 0x00, 1211 0x00, 0x00, 0x00, 0x00, 1212 1213 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */ 1214 0x00, 0x00, 0x00, 0x00, 1215 0x00, 0x00, 0x00, 0x00, 1216 0x50, 0x00, 0x00, 0x00, 1217 0x00, 0x00, 0x00, 0x00, 1218 1219 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1220 }; 1221 1222 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = { 1223 { ICE_MAC_OFOS, 0 }, 1224 { ICE_ETYPE_OL, 12 }, 1225 { ICE_PPPOE, 14 }, 1226 { ICE_IPV4_OFOS, 22 }, 1227 { ICE_UDP_ILOS, 42 }, 1228 { ICE_PROTOCOL_LAST, 0 }, 1229 }; 1230 1231 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = { 1232 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1233 0x00, 0x00, 0x00, 0x00, 1234 0x00, 0x00, 0x00, 0x00, 1235 1236 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1237 1238 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1239 0x00, 0x16, 1240 1241 0x00, 0x21, /* PPP Link Layer 20 */ 1242 1243 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */ 1244 0x00, 0x01, 0x00, 0x00, 1245 0x00, 0x11, 0x00, 0x00, 1246 0x00, 0x00, 0x00, 0x00, 1247 0x00, 0x00, 0x00, 0x00, 1248 1249 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */ 1250 0x00, 0x08, 0x00, 0x00, 1251 1252 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1253 }; 1254 1255 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = { 1256 { ICE_MAC_OFOS, 0 }, 1257 { ICE_ETYPE_OL, 12 }, 1258 { ICE_PPPOE, 14 }, 1259 { ICE_IPV6_OFOS, 22 }, 1260 { ICE_TCP_IL, 62 }, 1261 { ICE_PROTOCOL_LAST, 0 }, 1262 }; 1263 1264 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = { 1265 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1266 0x00, 0x00, 0x00, 0x00, 1267 0x00, 0x00, 0x00, 0x00, 1268 1269 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1270 1271 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1272 0x00, 0x2a, 1273 1274 0x00, 0x57, /* PPP Link Layer 20 */ 1275 1276 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */ 1277 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */ 1278 0x00, 0x00, 0x00, 0x00, 1279 0x00, 0x00, 0x00, 0x00, 1280 0x00, 0x00, 0x00, 0x00, 1281 0x00, 0x00, 0x00, 0x00, 1282 0x00, 0x00, 0x00, 0x00, 1283 0x00, 0x00, 0x00, 0x00, 1284 0x00, 0x00, 0x00, 0x00, 1285 0x00, 0x00, 0x00, 0x00, 1286 1287 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */ 1288 0x00, 0x00, 0x00, 0x00, 1289 0x00, 0x00, 0x00, 0x00, 1290 0x50, 0x00, 0x00, 0x00, 1291 0x00, 0x00, 0x00, 0x00, 1292 1293 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1294 }; 1295 1296 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = { 1297 { ICE_MAC_OFOS, 0 }, 1298 { ICE_ETYPE_OL, 12 }, 1299 { ICE_PPPOE, 14 }, 1300 { ICE_IPV6_OFOS, 22 }, 1301 { ICE_UDP_ILOS, 62 }, 1302 { ICE_PROTOCOL_LAST, 0 }, 1303 }; 1304 1305 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = { 1306 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1307 0x00, 0x00, 0x00, 0x00, 1308 0x00, 0x00, 0x00, 0x00, 1309 1310 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1311 1312 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1313 0x00, 0x2a, 1314 1315 0x00, 0x57, /* PPP Link Layer 20 */ 1316 1317 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */ 1318 0x00, 0x08, 0x11, 0x00, /* Next header UDP*/ 1319 0x00, 0x00, 0x00, 0x00, 1320 0x00, 0x00, 0x00, 0x00, 1321 0x00, 0x00, 0x00, 0x00, 1322 0x00, 0x00, 0x00, 0x00, 1323 0x00, 0x00, 0x00, 0x00, 1324 0x00, 0x00, 0x00, 0x00, 1325 0x00, 0x00, 0x00, 0x00, 1326 0x00, 0x00, 0x00, 0x00, 1327 1328 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */ 1329 0x00, 0x08, 0x00, 0x00, 1330 1331 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1332 }; 1333 1334 ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = { 1335 { ICE_MAC_OFOS, 0 }, 1336 { ICE_ETYPE_OL, 12 }, 1337 { ICE_IPV4_OFOS, 14 }, 1338 { ICE_L2TPV3, 34 }, 1339 { ICE_PROTOCOL_LAST, 0 }, 1340 }; 1341 1342 ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = { 1343 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1344 0x00, 0x00, 0x00, 0x00, 1345 0x00, 0x00, 0x00, 0x00, 1346 1347 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 1348 1349 0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */ 1350 0x00, 0x00, 0x40, 0x00, 1351 0x40, 0x73, 0x00, 0x00, 1352 0x00, 0x00, 0x00, 0x00, 1353 0x00, 0x00, 0x00, 0x00, 1354 1355 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */ 1356 0x00, 0x00, 0x00, 0x00, 1357 0x00, 0x00, 0x00, 0x00, 1358 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1359 }; 1360 1361 ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = { 1362 { ICE_MAC_OFOS, 0 }, 1363 { ICE_ETYPE_OL, 12 }, 1364 { ICE_IPV6_OFOS, 14 }, 1365 { ICE_L2TPV3, 54 }, 1366 { ICE_PROTOCOL_LAST, 0 }, 1367 }; 1368 1369 ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = { 1370 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1371 0x00, 0x00, 0x00, 0x00, 1372 0x00, 0x00, 0x00, 0x00, 1373 1374 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ 1375 1376 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */ 1377 0x00, 0x0c, 0x73, 0x40, 1378 0x00, 0x00, 0x00, 0x00, 1379 0x00, 0x00, 0x00, 0x00, 1380 0x00, 0x00, 0x00, 0x00, 1381 0x00, 0x00, 0x00, 0x00, 1382 0x00, 0x00, 0x00, 0x00, 1383 0x00, 0x00, 0x00, 0x00, 1384 0x00, 0x00, 0x00, 0x00, 1385 0x00, 0x00, 0x00, 0x00, 1386 1387 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */ 1388 0x00, 0x00, 0x00, 0x00, 1389 0x00, 0x00, 0x00, 0x00, 1390 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1391 }; 1392 1393 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = { 1394 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 | 1395 ICE_PKT_GTP_NOPAY), 1396 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU | 1397 ICE_PKT_OUTER_IPV6 | 1398 ICE_PKT_INNER_IPV6 | 1399 ICE_PKT_INNER_UDP), 1400 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU | 1401 ICE_PKT_OUTER_IPV6 | 1402 ICE_PKT_INNER_IPV6), 1403 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU | 1404 ICE_PKT_OUTER_IPV6 | 1405 ICE_PKT_INNER_UDP), 1406 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU | 1407 ICE_PKT_OUTER_IPV6), 1408 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY), 1409 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU | 1410 ICE_PKT_INNER_IPV6 | 1411 ICE_PKT_INNER_UDP), 1412 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU | 1413 ICE_PKT_INNER_IPV6), 1414 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU | 1415 ICE_PKT_INNER_UDP), 1416 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU), 1417 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6), 1418 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC), 1419 ICE_PKT_PROFILE(pfcp_session_ipv6, ICE_PKT_PFCP | ICE_PKT_OUTER_IPV6), 1420 ICE_PKT_PROFILE(pfcp_session_ipv4, ICE_PKT_PFCP), 1421 ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 | 1422 ICE_PKT_INNER_UDP), 1423 ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6), 1424 ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP), 1425 ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE), 1426 ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 | 1427 ICE_PKT_INNER_TCP), 1428 ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP), 1429 ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6), 1430 ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE), 1431 ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP | 1432 ICE_PKT_INNER_IPV6 | 1433 ICE_PKT_INNER_TCP), 1434 ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6), 1435 ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3), 1436 ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP), 1437 ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP | 1438 ICE_PKT_INNER_IPV6), 1439 ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP), 1440 ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP), 1441 ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP), 1442 ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6), 1443 ICE_PKT_PROFILE(tcp, 0), 1444 }; 1445 1446 /* this is a recipe to profile association bitmap */ 1447 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES], 1448 ICE_MAX_NUM_PROFILES); 1449 1450 /* this is a profile to recipe association bitmap */ 1451 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES], 1452 ICE_MAX_NUM_RECIPES); 1453 1454 /** 1455 * ice_init_def_sw_recp - initialize the recipe book keeping tables 1456 * @hw: pointer to the HW struct 1457 * 1458 * Allocate memory for the entire recipe table and initialize the structures/ 1459 * entries corresponding to basic recipes. 1460 */ 1461 int ice_init_def_sw_recp(struct ice_hw *hw) 1462 { 1463 struct ice_sw_recipe *recps; 1464 u8 i; 1465 1466 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES, 1467 sizeof(*recps), GFP_KERNEL); 1468 if (!recps) 1469 return -ENOMEM; 1470 1471 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 1472 recps[i].root_rid = i; 1473 INIT_LIST_HEAD(&recps[i].filt_rules); 1474 INIT_LIST_HEAD(&recps[i].filt_replay_rules); 1475 mutex_init(&recps[i].filt_rule_lock); 1476 } 1477 1478 hw->switch_info->recp_list = recps; 1479 1480 return 0; 1481 } 1482 1483 /** 1484 * ice_aq_get_sw_cfg - get switch configuration 1485 * @hw: pointer to the hardware structure 1486 * @buf: pointer to the result buffer 1487 * @buf_size: length of the buffer available for response 1488 * @req_desc: pointer to requested descriptor 1489 * @num_elems: pointer to number of elements 1490 * @cd: pointer to command details structure or NULL 1491 * 1492 * Get switch configuration (0x0200) to be placed in buf. 1493 * This admin command returns information such as initial VSI/port number 1494 * and switch ID it belongs to. 1495 * 1496 * NOTE: *req_desc is both an input/output parameter. 1497 * The caller of this function first calls this function with *request_desc set 1498 * to 0. If the response from f/w has *req_desc set to 0, all the switch 1499 * configuration information has been returned; if non-zero (meaning not all 1500 * the information was returned), the caller should call this function again 1501 * with *req_desc set to the previous value returned by f/w to get the 1502 * next block of switch configuration information. 1503 * 1504 * *num_elems is output only parameter. This reflects the number of elements 1505 * in response buffer. The caller of this function to use *num_elems while 1506 * parsing the response buffer. 1507 */ 1508 static int 1509 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf, 1510 u16 buf_size, u16 *req_desc, u16 *num_elems, 1511 struct ice_sq_cd *cd) 1512 { 1513 struct ice_aqc_get_sw_cfg *cmd; 1514 struct ice_aq_desc desc; 1515 int status; 1516 1517 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg); 1518 cmd = &desc.params.get_sw_conf; 1519 cmd->element = cpu_to_le16(*req_desc); 1520 1521 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 1522 if (!status) { 1523 *req_desc = le16_to_cpu(cmd->element); 1524 *num_elems = le16_to_cpu(cmd->num_elems); 1525 } 1526 1527 return status; 1528 } 1529 1530 /** 1531 * ice_aq_add_vsi 1532 * @hw: pointer to the HW struct 1533 * @vsi_ctx: pointer to a VSI context struct 1534 * @cd: pointer to command details structure or NULL 1535 * 1536 * Add a VSI context to the hardware (0x0210) 1537 */ 1538 static int 1539 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 1540 struct ice_sq_cd *cd) 1541 { 1542 struct ice_aqc_add_update_free_vsi_resp *res; 1543 struct ice_aqc_add_get_update_free_vsi *cmd; 1544 struct ice_aq_desc desc; 1545 int status; 1546 1547 cmd = &desc.params.vsi_cmd; 1548 res = &desc.params.add_update_free_vsi_res; 1549 1550 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi); 1551 1552 if (!vsi_ctx->alloc_from_pool) 1553 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | 1554 ICE_AQ_VSI_IS_VALID); 1555 cmd->vf_id = vsi_ctx->vf_num; 1556 1557 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags); 1558 1559 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1560 1561 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 1562 sizeof(vsi_ctx->info), cd); 1563 1564 if (!status) { 1565 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M; 1566 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used); 1567 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free); 1568 } 1569 1570 return status; 1571 } 1572 1573 /** 1574 * ice_aq_free_vsi 1575 * @hw: pointer to the HW struct 1576 * @vsi_ctx: pointer to a VSI context struct 1577 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 1578 * @cd: pointer to command details structure or NULL 1579 * 1580 * Free VSI context info from hardware (0x0213) 1581 */ 1582 static int 1583 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 1584 bool keep_vsi_alloc, struct ice_sq_cd *cd) 1585 { 1586 struct ice_aqc_add_update_free_vsi_resp *resp; 1587 struct ice_aqc_add_get_update_free_vsi *cmd; 1588 struct ice_aq_desc desc; 1589 int status; 1590 1591 cmd = &desc.params.vsi_cmd; 1592 resp = &desc.params.add_update_free_vsi_res; 1593 1594 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi); 1595 1596 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 1597 if (keep_vsi_alloc) 1598 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC); 1599 1600 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1601 if (!status) { 1602 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 1603 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 1604 } 1605 1606 return status; 1607 } 1608 1609 /** 1610 * ice_aq_update_vsi 1611 * @hw: pointer to the HW struct 1612 * @vsi_ctx: pointer to a VSI context struct 1613 * @cd: pointer to command details structure or NULL 1614 * 1615 * Update VSI context in the hardware (0x0211) 1616 */ 1617 static int 1618 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 1619 struct ice_sq_cd *cd) 1620 { 1621 struct ice_aqc_add_update_free_vsi_resp *resp; 1622 struct ice_aqc_add_get_update_free_vsi *cmd; 1623 struct ice_aq_desc desc; 1624 int status; 1625 1626 cmd = &desc.params.vsi_cmd; 1627 resp = &desc.params.add_update_free_vsi_res; 1628 1629 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi); 1630 1631 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 1632 1633 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1634 1635 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 1636 sizeof(vsi_ctx->info), cd); 1637 1638 if (!status) { 1639 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 1640 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 1641 } 1642 1643 return status; 1644 } 1645 1646 /** 1647 * ice_is_vsi_valid - check whether the VSI is valid or not 1648 * @hw: pointer to the HW struct 1649 * @vsi_handle: VSI handle 1650 * 1651 * check whether the VSI is valid or not 1652 */ 1653 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle) 1654 { 1655 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle]; 1656 } 1657 1658 /** 1659 * ice_get_hw_vsi_num - return the HW VSI number 1660 * @hw: pointer to the HW struct 1661 * @vsi_handle: VSI handle 1662 * 1663 * return the HW VSI number 1664 * Caution: call this function only if VSI is valid (ice_is_vsi_valid) 1665 */ 1666 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle) 1667 { 1668 return hw->vsi_ctx[vsi_handle]->vsi_num; 1669 } 1670 1671 /** 1672 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle 1673 * @hw: pointer to the HW struct 1674 * @vsi_handle: VSI handle 1675 * 1676 * return the VSI context entry for a given VSI handle 1677 */ 1678 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 1679 { 1680 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle]; 1681 } 1682 1683 /** 1684 * ice_save_vsi_ctx - save the VSI context for a given VSI handle 1685 * @hw: pointer to the HW struct 1686 * @vsi_handle: VSI handle 1687 * @vsi: VSI context pointer 1688 * 1689 * save the VSI context entry for a given VSI handle 1690 */ 1691 static void 1692 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi) 1693 { 1694 hw->vsi_ctx[vsi_handle] = vsi; 1695 } 1696 1697 /** 1698 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs 1699 * @hw: pointer to the HW struct 1700 * @vsi_handle: VSI handle 1701 */ 1702 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle) 1703 { 1704 struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle); 1705 u8 i; 1706 1707 if (!vsi) 1708 return; 1709 ice_for_each_traffic_class(i) { 1710 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]); 1711 vsi->lan_q_ctx[i] = NULL; 1712 devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]); 1713 vsi->rdma_q_ctx[i] = NULL; 1714 } 1715 } 1716 1717 /** 1718 * ice_clear_vsi_ctx - clear the VSI context entry 1719 * @hw: pointer to the HW struct 1720 * @vsi_handle: VSI handle 1721 * 1722 * clear the VSI context entry 1723 */ 1724 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 1725 { 1726 struct ice_vsi_ctx *vsi; 1727 1728 vsi = ice_get_vsi_ctx(hw, vsi_handle); 1729 if (vsi) { 1730 ice_clear_vsi_q_ctx(hw, vsi_handle); 1731 devm_kfree(ice_hw_to_dev(hw), vsi); 1732 hw->vsi_ctx[vsi_handle] = NULL; 1733 } 1734 } 1735 1736 /** 1737 * ice_clear_all_vsi_ctx - clear all the VSI context entries 1738 * @hw: pointer to the HW struct 1739 */ 1740 void ice_clear_all_vsi_ctx(struct ice_hw *hw) 1741 { 1742 u16 i; 1743 1744 for (i = 0; i < ICE_MAX_VSI; i++) 1745 ice_clear_vsi_ctx(hw, i); 1746 } 1747 1748 /** 1749 * ice_add_vsi - add VSI context to the hardware and VSI handle list 1750 * @hw: pointer to the HW struct 1751 * @vsi_handle: unique VSI handle provided by drivers 1752 * @vsi_ctx: pointer to a VSI context struct 1753 * @cd: pointer to command details structure or NULL 1754 * 1755 * Add a VSI context to the hardware also add it into the VSI handle list. 1756 * If this function gets called after reset for existing VSIs then update 1757 * with the new HW VSI number in the corresponding VSI handle list entry. 1758 */ 1759 int 1760 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 1761 struct ice_sq_cd *cd) 1762 { 1763 struct ice_vsi_ctx *tmp_vsi_ctx; 1764 int status; 1765 1766 if (vsi_handle >= ICE_MAX_VSI) 1767 return -EINVAL; 1768 status = ice_aq_add_vsi(hw, vsi_ctx, cd); 1769 if (status) 1770 return status; 1771 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1772 if (!tmp_vsi_ctx) { 1773 /* Create a new VSI context */ 1774 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw), 1775 sizeof(*tmp_vsi_ctx), GFP_KERNEL); 1776 if (!tmp_vsi_ctx) { 1777 ice_aq_free_vsi(hw, vsi_ctx, false, cd); 1778 return -ENOMEM; 1779 } 1780 *tmp_vsi_ctx = *vsi_ctx; 1781 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx); 1782 } else { 1783 /* update with new HW VSI num */ 1784 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num; 1785 } 1786 1787 return 0; 1788 } 1789 1790 /** 1791 * ice_free_vsi- free VSI context from hardware and VSI handle list 1792 * @hw: pointer to the HW struct 1793 * @vsi_handle: unique VSI handle 1794 * @vsi_ctx: pointer to a VSI context struct 1795 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 1796 * @cd: pointer to command details structure or NULL 1797 * 1798 * Free VSI context info from hardware as well as from VSI handle list 1799 */ 1800 int 1801 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 1802 bool keep_vsi_alloc, struct ice_sq_cd *cd) 1803 { 1804 int status; 1805 1806 if (!ice_is_vsi_valid(hw, vsi_handle)) 1807 return -EINVAL; 1808 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 1809 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd); 1810 if (!status) 1811 ice_clear_vsi_ctx(hw, vsi_handle); 1812 return status; 1813 } 1814 1815 /** 1816 * ice_update_vsi 1817 * @hw: pointer to the HW struct 1818 * @vsi_handle: unique VSI handle 1819 * @vsi_ctx: pointer to a VSI context struct 1820 * @cd: pointer to command details structure or NULL 1821 * 1822 * Update VSI context in the hardware 1823 */ 1824 int 1825 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 1826 struct ice_sq_cd *cd) 1827 { 1828 if (!ice_is_vsi_valid(hw, vsi_handle)) 1829 return -EINVAL; 1830 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 1831 return ice_aq_update_vsi(hw, vsi_ctx, cd); 1832 } 1833 1834 /** 1835 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI 1836 * @hw: pointer to HW struct 1837 * @vsi_handle: VSI SW index 1838 * @enable: boolean for enable/disable 1839 */ 1840 int 1841 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable) 1842 { 1843 struct ice_vsi_ctx *ctx, *cached_ctx; 1844 int status; 1845 1846 cached_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1847 if (!cached_ctx) 1848 return -ENOENT; 1849 1850 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1851 if (!ctx) 1852 return -ENOMEM; 1853 1854 ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss; 1855 ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc; 1856 ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags; 1857 1858 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1859 1860 if (enable) 1861 ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN; 1862 else 1863 ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN; 1864 1865 status = ice_update_vsi(hw, vsi_handle, ctx, NULL); 1866 if (!status) { 1867 cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags; 1868 cached_ctx->info.valid_sections |= ctx->info.valid_sections; 1869 } 1870 1871 kfree(ctx); 1872 return status; 1873 } 1874 1875 /** 1876 * ice_aq_alloc_free_vsi_list 1877 * @hw: pointer to the HW struct 1878 * @vsi_list_id: VSI list ID returned or used for lookup 1879 * @lkup_type: switch rule filter lookup type 1880 * @opc: switch rules population command type - pass in the command opcode 1881 * 1882 * allocates or free a VSI list resource 1883 */ 1884 static int 1885 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id, 1886 enum ice_sw_lkup_type lkup_type, 1887 enum ice_adminq_opc opc) 1888 { 1889 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1); 1890 u16 buf_len = __struct_size(sw_buf); 1891 struct ice_aqc_res_elem *vsi_ele; 1892 int status; 1893 1894 sw_buf->num_elems = cpu_to_le16(1); 1895 1896 if (lkup_type == ICE_SW_LKUP_MAC || 1897 lkup_type == ICE_SW_LKUP_MAC_VLAN || 1898 lkup_type == ICE_SW_LKUP_ETHERTYPE || 1899 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 1900 lkup_type == ICE_SW_LKUP_PROMISC || 1901 lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 1902 lkup_type == ICE_SW_LKUP_DFLT || 1903 lkup_type == ICE_SW_LKUP_LAST) { 1904 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP); 1905 } else if (lkup_type == ICE_SW_LKUP_VLAN) { 1906 if (opc == ice_aqc_opc_alloc_res) 1907 sw_buf->res_type = 1908 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE | 1909 ICE_AQC_RES_TYPE_FLAG_SHARED); 1910 else 1911 sw_buf->res_type = 1912 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE); 1913 } else { 1914 return -EINVAL; 1915 } 1916 1917 if (opc == ice_aqc_opc_free_res) 1918 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id); 1919 1920 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc); 1921 if (status) 1922 return status; 1923 1924 if (opc == ice_aqc_opc_alloc_res) { 1925 vsi_ele = &sw_buf->elem[0]; 1926 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp); 1927 } 1928 1929 return 0; 1930 } 1931 1932 /** 1933 * ice_aq_sw_rules - add/update/remove switch rules 1934 * @hw: pointer to the HW struct 1935 * @rule_list: pointer to switch rule population list 1936 * @rule_list_sz: total size of the rule list in bytes 1937 * @num_rules: number of switch rules in the rule_list 1938 * @opc: switch rules population command type - pass in the command opcode 1939 * @cd: pointer to command details structure or NULL 1940 * 1941 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware 1942 */ 1943 int 1944 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz, 1945 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd) 1946 { 1947 struct ice_aq_desc desc; 1948 int status; 1949 1950 if (opc != ice_aqc_opc_add_sw_rules && 1951 opc != ice_aqc_opc_update_sw_rules && 1952 opc != ice_aqc_opc_remove_sw_rules) 1953 return -EINVAL; 1954 1955 ice_fill_dflt_direct_cmd_desc(&desc, opc); 1956 1957 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1958 desc.params.sw_rules.num_rules_fltr_entry_index = 1959 cpu_to_le16(num_rules); 1960 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd); 1961 if (opc != ice_aqc_opc_add_sw_rules && 1962 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT) 1963 status = -ENOENT; 1964 1965 if (!status) { 1966 if (opc == ice_aqc_opc_add_sw_rules) 1967 hw->switch_info->rule_cnt += num_rules; 1968 else if (opc == ice_aqc_opc_remove_sw_rules) 1969 hw->switch_info->rule_cnt -= num_rules; 1970 } 1971 1972 trace_ice_aq_sw_rules(hw->switch_info); 1973 1974 return status; 1975 } 1976 1977 /** 1978 * ice_aq_add_recipe - add switch recipe 1979 * @hw: pointer to the HW struct 1980 * @s_recipe_list: pointer to switch rule population list 1981 * @num_recipes: number of switch recipes in the list 1982 * @cd: pointer to command details structure or NULL 1983 * 1984 * Add(0x0290) 1985 */ 1986 int 1987 ice_aq_add_recipe(struct ice_hw *hw, 1988 struct ice_aqc_recipe_data_elem *s_recipe_list, 1989 u16 num_recipes, struct ice_sq_cd *cd) 1990 { 1991 struct ice_aqc_add_get_recipe *cmd; 1992 struct ice_aq_desc desc; 1993 u16 buf_size; 1994 1995 cmd = &desc.params.add_get_recipe; 1996 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe); 1997 1998 cmd->num_sub_recipes = cpu_to_le16(num_recipes); 1999 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 2000 2001 buf_size = num_recipes * sizeof(*s_recipe_list); 2002 2003 return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd); 2004 } 2005 2006 /** 2007 * ice_aq_get_recipe - get switch recipe 2008 * @hw: pointer to the HW struct 2009 * @s_recipe_list: pointer to switch rule population list 2010 * @num_recipes: pointer to the number of recipes (input and output) 2011 * @recipe_root: root recipe number of recipe(s) to retrieve 2012 * @cd: pointer to command details structure or NULL 2013 * 2014 * Get(0x0292) 2015 * 2016 * On input, *num_recipes should equal the number of entries in s_recipe_list. 2017 * On output, *num_recipes will equal the number of entries returned in 2018 * s_recipe_list. 2019 * 2020 * The caller must supply enough space in s_recipe_list to hold all possible 2021 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES. 2022 */ 2023 int 2024 ice_aq_get_recipe(struct ice_hw *hw, 2025 struct ice_aqc_recipe_data_elem *s_recipe_list, 2026 u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd) 2027 { 2028 struct ice_aqc_add_get_recipe *cmd; 2029 struct ice_aq_desc desc; 2030 u16 buf_size; 2031 int status; 2032 2033 if (*num_recipes != ICE_MAX_NUM_RECIPES) 2034 return -EINVAL; 2035 2036 cmd = &desc.params.add_get_recipe; 2037 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe); 2038 2039 cmd->return_index = cpu_to_le16(recipe_root); 2040 cmd->num_sub_recipes = 0; 2041 2042 buf_size = *num_recipes * sizeof(*s_recipe_list); 2043 2044 status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd); 2045 *num_recipes = le16_to_cpu(cmd->num_sub_recipes); 2046 2047 return status; 2048 } 2049 2050 /** 2051 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx 2052 * @hw: pointer to the HW struct 2053 * @params: parameters used to update the default recipe 2054 * 2055 * This function only supports updating default recipes and it only supports 2056 * updating a single recipe based on the lkup_idx at a time. 2057 * 2058 * This is done as a read-modify-write operation. First, get the current recipe 2059 * contents based on the recipe's ID. Then modify the field vector index and 2060 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update 2061 * the pre-existing recipe with the modifications. 2062 */ 2063 int 2064 ice_update_recipe_lkup_idx(struct ice_hw *hw, 2065 struct ice_update_recipe_lkup_idx_params *params) 2066 { 2067 struct ice_aqc_recipe_data_elem *rcp_list; 2068 u16 num_recps = ICE_MAX_NUM_RECIPES; 2069 int status; 2070 2071 rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL); 2072 if (!rcp_list) 2073 return -ENOMEM; 2074 2075 /* read current recipe list from firmware */ 2076 rcp_list->recipe_indx = params->rid; 2077 status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL); 2078 if (status) { 2079 ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n", 2080 params->rid, status); 2081 goto error_out; 2082 } 2083 2084 /* only modify existing recipe's lkup_idx and mask if valid, while 2085 * leaving all other fields the same, then update the recipe firmware 2086 */ 2087 rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx; 2088 if (params->mask_valid) 2089 rcp_list->content.mask[params->lkup_idx] = 2090 cpu_to_le16(params->mask); 2091 2092 if (params->ignore_valid) 2093 rcp_list->content.lkup_indx[params->lkup_idx] |= 2094 ICE_AQ_RECIPE_LKUP_IGNORE; 2095 2096 status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL); 2097 if (status) 2098 ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n", 2099 params->rid, params->lkup_idx, params->fv_idx, 2100 params->mask, params->mask_valid ? "true" : "false", 2101 status); 2102 2103 error_out: 2104 kfree(rcp_list); 2105 return status; 2106 } 2107 2108 /** 2109 * ice_aq_map_recipe_to_profile - Map recipe to packet profile 2110 * @hw: pointer to the HW struct 2111 * @profile_id: package profile ID to associate the recipe with 2112 * @r_assoc: Recipe bitmap filled in and need to be returned as response 2113 * @cd: pointer to command details structure or NULL 2114 * Recipe to profile association (0x0291) 2115 */ 2116 int 2117 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc, 2118 struct ice_sq_cd *cd) 2119 { 2120 struct ice_aqc_recipe_to_profile *cmd; 2121 struct ice_aq_desc desc; 2122 2123 cmd = &desc.params.recipe_to_profile; 2124 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile); 2125 cmd->profile_id = cpu_to_le16(profile_id); 2126 /* Set the recipe ID bit in the bitmask to let the device know which 2127 * profile we are associating the recipe to 2128 */ 2129 cmd->recipe_assoc = cpu_to_le64(r_assoc); 2130 2131 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2132 } 2133 2134 /** 2135 * ice_aq_get_recipe_to_profile - Map recipe to packet profile 2136 * @hw: pointer to the HW struct 2137 * @profile_id: package profile ID to associate the recipe with 2138 * @r_assoc: Recipe bitmap filled in and need to be returned as response 2139 * @cd: pointer to command details structure or NULL 2140 * Associate profile ID with given recipe (0x0293) 2141 */ 2142 int 2143 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc, 2144 struct ice_sq_cd *cd) 2145 { 2146 struct ice_aqc_recipe_to_profile *cmd; 2147 struct ice_aq_desc desc; 2148 int status; 2149 2150 cmd = &desc.params.recipe_to_profile; 2151 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile); 2152 cmd->profile_id = cpu_to_le16(profile_id); 2153 2154 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2155 if (!status) 2156 *r_assoc = le64_to_cpu(cmd->recipe_assoc); 2157 2158 return status; 2159 } 2160 2161 /** 2162 * ice_init_chk_recipe_reuse_support - check if recipe reuse is supported 2163 * @hw: pointer to the hardware structure 2164 */ 2165 void ice_init_chk_recipe_reuse_support(struct ice_hw *hw) 2166 { 2167 struct ice_nvm_info *nvm = &hw->flash.nvm; 2168 2169 hw->recp_reuse = (nvm->major == 0x4 && nvm->minor >= 0x30) || 2170 nvm->major > 0x4; 2171 } 2172 2173 /** 2174 * ice_alloc_recipe - add recipe resource 2175 * @hw: pointer to the hardware structure 2176 * @rid: recipe ID returned as response to AQ call 2177 */ 2178 int ice_alloc_recipe(struct ice_hw *hw, u16 *rid) 2179 { 2180 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1); 2181 u16 buf_len = __struct_size(sw_buf); 2182 u16 res_type; 2183 int status; 2184 2185 sw_buf->num_elems = cpu_to_le16(1); 2186 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE); 2187 if (hw->recp_reuse) 2188 res_type |= ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED; 2189 else 2190 res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED; 2191 sw_buf->res_type = cpu_to_le16(res_type); 2192 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, 2193 ice_aqc_opc_alloc_res); 2194 if (!status) { 2195 *rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp); 2196 hw->switch_info->recp_cnt++; 2197 } 2198 2199 return status; 2200 } 2201 2202 /** 2203 * ice_free_recipe_res - free recipe resource 2204 * @hw: pointer to the hardware structure 2205 * @rid: recipe ID to free 2206 * 2207 * Return: 0 on success, and others on error 2208 */ 2209 static int ice_free_recipe_res(struct ice_hw *hw, u16 rid) 2210 { 2211 int status; 2212 2213 status = ice_free_hw_res(hw, ICE_AQC_RES_TYPE_RECIPE, 1, &rid); 2214 if (!status) 2215 hw->switch_info->recp_cnt--; 2216 2217 return status; 2218 } 2219 2220 /** 2221 * ice_release_recipe_res - disassociate and free recipe resource 2222 * @hw: pointer to the hardware structure 2223 * @recp: the recipe struct resource to unassociate and free 2224 * 2225 * Return: 0 on success, and others on error 2226 */ 2227 static int ice_release_recipe_res(struct ice_hw *hw, 2228 struct ice_sw_recipe *recp) 2229 { 2230 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES); 2231 struct ice_switch_info *sw = hw->switch_info; 2232 u64 recp_assoc; 2233 u32 rid, prof; 2234 int status; 2235 2236 for_each_set_bit(rid, recp->r_bitmap, ICE_MAX_NUM_RECIPES) { 2237 for_each_set_bit(prof, recipe_to_profile[rid], 2238 ICE_MAX_NUM_PROFILES) { 2239 status = ice_aq_get_recipe_to_profile(hw, prof, 2240 &recp_assoc, 2241 NULL); 2242 if (status) 2243 return status; 2244 2245 bitmap_from_arr64(r_bitmap, &recp_assoc, 2246 ICE_MAX_NUM_RECIPES); 2247 bitmap_andnot(r_bitmap, r_bitmap, recp->r_bitmap, 2248 ICE_MAX_NUM_RECIPES); 2249 bitmap_to_arr64(&recp_assoc, r_bitmap, 2250 ICE_MAX_NUM_RECIPES); 2251 ice_aq_map_recipe_to_profile(hw, prof, 2252 recp_assoc, NULL); 2253 2254 clear_bit(rid, profile_to_recipe[prof]); 2255 clear_bit(prof, recipe_to_profile[rid]); 2256 } 2257 2258 status = ice_free_recipe_res(hw, rid); 2259 if (status) 2260 return status; 2261 2262 sw->recp_list[rid].recp_created = false; 2263 sw->recp_list[rid].adv_rule = false; 2264 memset(&sw->recp_list[rid].lkup_exts, 0, 2265 sizeof(sw->recp_list[rid].lkup_exts)); 2266 clear_bit(rid, recp->r_bitmap); 2267 } 2268 2269 return 0; 2270 } 2271 2272 /** 2273 * ice_get_recp_to_prof_map - updates recipe to profile mapping 2274 * @hw: pointer to hardware structure 2275 * 2276 * This function is used to populate recipe_to_profile matrix where index to 2277 * this array is the recipe ID and the element is the mapping of which profiles 2278 * is this recipe mapped to. 2279 */ 2280 static void ice_get_recp_to_prof_map(struct ice_hw *hw) 2281 { 2282 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES); 2283 u64 recp_assoc; 2284 u16 i; 2285 2286 for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) { 2287 u16 j; 2288 2289 bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES); 2290 bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES); 2291 if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL)) 2292 continue; 2293 bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES); 2294 bitmap_copy(profile_to_recipe[i], r_bitmap, 2295 ICE_MAX_NUM_RECIPES); 2296 for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES) 2297 set_bit(i, recipe_to_profile[j]); 2298 } 2299 } 2300 2301 /** 2302 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries 2303 * @hw: pointer to hardware structure 2304 * @recps: struct that we need to populate 2305 * @rid: recipe ID that we are populating 2306 * @refresh_required: true if we should get recipe to profile mapping from FW 2307 * @is_add: flag of adding recipe 2308 * 2309 * This function is used to populate all the necessary entries into our 2310 * bookkeeping so that we have a current list of all the recipes that are 2311 * programmed in the firmware. 2312 */ 2313 static int 2314 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid, 2315 bool *refresh_required, bool is_add) 2316 { 2317 DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS); 2318 struct ice_aqc_recipe_data_elem *tmp; 2319 u16 num_recps = ICE_MAX_NUM_RECIPES; 2320 struct ice_prot_lkup_ext *lkup_exts; 2321 u8 fv_word_idx = 0; 2322 u16 sub_recps; 2323 int status; 2324 2325 bitmap_zero(result_bm, ICE_MAX_FV_WORDS); 2326 2327 /* we need a buffer big enough to accommodate all the recipes */ 2328 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL); 2329 if (!tmp) 2330 return -ENOMEM; 2331 2332 tmp[0].recipe_indx = rid; 2333 status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL); 2334 /* non-zero status meaning recipe doesn't exist */ 2335 if (status) 2336 goto err_unroll; 2337 2338 /* Get recipe to profile map so that we can get the fv from lkups that 2339 * we read for a recipe from FW. Since we want to minimize the number of 2340 * times we make this FW call, just make one call and cache the copy 2341 * until a new recipe is added. This operation is only required the 2342 * first time to get the changes from FW. Then to search existing 2343 * entries we don't need to update the cache again until another recipe 2344 * gets added. 2345 */ 2346 if (*refresh_required) { 2347 ice_get_recp_to_prof_map(hw); 2348 *refresh_required = false; 2349 } 2350 2351 /* Start populating all the entries for recps[rid] based on lkups from 2352 * firmware. Note that we are only creating the root recipe in our 2353 * database. 2354 */ 2355 lkup_exts = &recps[rid].lkup_exts; 2356 2357 for (sub_recps = 0; sub_recps < num_recps; sub_recps++) { 2358 struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps]; 2359 u8 i, prof, idx, prot = 0; 2360 bool is_root; 2361 u16 off = 0; 2362 2363 idx = root_bufs.recipe_indx; 2364 is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT; 2365 2366 /* Mark all result indices in this chain */ 2367 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) 2368 set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN, 2369 result_bm); 2370 2371 /* get the first profile that is associated with rid */ 2372 prof = find_first_bit(recipe_to_profile[idx], 2373 ICE_MAX_NUM_PROFILES); 2374 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) { 2375 u8 lkup_indx = root_bufs.content.lkup_indx[i]; 2376 u16 lkup_mask = le16_to_cpu(root_bufs.content.mask[i]); 2377 2378 /* If the recipe is a chained recipe then all its 2379 * child recipe's result will have a result index. 2380 * To fill fv_words we should not use those result 2381 * index, we only need the protocol ids and offsets. 2382 * We will skip all the fv_idx which stores result 2383 * index in them. We also need to skip any fv_idx which 2384 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a 2385 * valid offset value. 2386 */ 2387 if (!lkup_indx || 2388 (lkup_indx & ICE_AQ_RECIPE_LKUP_IGNORE) || 2389 test_bit(lkup_indx, 2390 hw->switch_info->prof_res_bm[prof])) 2391 continue; 2392 2393 ice_find_prot_off(hw, ICE_BLK_SW, prof, lkup_indx, 2394 &prot, &off); 2395 lkup_exts->fv_words[fv_word_idx].prot_id = prot; 2396 lkup_exts->fv_words[fv_word_idx].off = off; 2397 lkup_exts->field_mask[fv_word_idx] = lkup_mask; 2398 fv_word_idx++; 2399 } 2400 2401 /* Propagate some data to the recipe database */ 2402 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority; 2403 recps[idx].need_pass_l2 = !!(root_bufs.content.act_ctrl & 2404 ICE_AQ_RECIPE_ACT_NEED_PASS_L2); 2405 recps[idx].allow_pass_l2 = !!(root_bufs.content.act_ctrl & 2406 ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2); 2407 bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS); 2408 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) { 2409 set_bit(root_bufs.content.result_indx & 2410 ~ICE_AQ_RECIPE_RESULT_EN, recps[idx].res_idxs); 2411 } 2412 2413 if (!is_root) { 2414 if (hw->recp_reuse && is_add) 2415 recps[idx].recp_created = true; 2416 2417 continue; 2418 } 2419 2420 /* Only do the following for root recipes entries */ 2421 memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap, 2422 sizeof(recps[idx].r_bitmap)); 2423 recps[idx].root_rid = root_bufs.content.rid & 2424 ~ICE_AQ_RECIPE_ID_IS_ROOT; 2425 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority; 2426 } 2427 2428 /* Complete initialization of the root recipe entry */ 2429 lkup_exts->n_val_words = fv_word_idx; 2430 2431 /* Copy result indexes */ 2432 bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS); 2433 if (is_add) 2434 recps[rid].recp_created = true; 2435 2436 err_unroll: 2437 kfree(tmp); 2438 return status; 2439 } 2440 2441 /* ice_init_port_info - Initialize port_info with switch configuration data 2442 * @pi: pointer to port_info 2443 * @vsi_port_num: VSI number or port number 2444 * @type: Type of switch element (port or VSI) 2445 * @swid: switch ID of the switch the element is attached to 2446 * @pf_vf_num: PF or VF number 2447 * @is_vf: true if the element is a VF, false otherwise 2448 */ 2449 static void 2450 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type, 2451 u16 swid, u16 pf_vf_num, bool is_vf) 2452 { 2453 switch (type) { 2454 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: 2455 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK); 2456 pi->sw_id = swid; 2457 pi->pf_vf_num = pf_vf_num; 2458 pi->is_vf = is_vf; 2459 break; 2460 default: 2461 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n"); 2462 break; 2463 } 2464 } 2465 2466 /* ice_get_initial_sw_cfg - Get initial port and default VSI data 2467 * @hw: pointer to the hardware structure 2468 */ 2469 int ice_get_initial_sw_cfg(struct ice_hw *hw) 2470 { 2471 struct ice_aqc_get_sw_cfg_resp_elem *rbuf; 2472 u16 req_desc = 0; 2473 u16 num_elems; 2474 int status; 2475 u16 i; 2476 2477 rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL); 2478 if (!rbuf) 2479 return -ENOMEM; 2480 2481 /* Multiple calls to ice_aq_get_sw_cfg may be required 2482 * to get all the switch configuration information. The need 2483 * for additional calls is indicated by ice_aq_get_sw_cfg 2484 * writing a non-zero value in req_desc 2485 */ 2486 do { 2487 struct ice_aqc_get_sw_cfg_resp_elem *ele; 2488 2489 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN, 2490 &req_desc, &num_elems, NULL); 2491 2492 if (status) 2493 break; 2494 2495 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) { 2496 u16 pf_vf_num, swid, vsi_port_num; 2497 bool is_vf = false; 2498 u8 res_type; 2499 2500 vsi_port_num = le16_to_cpu(ele->vsi_port_num) & 2501 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M; 2502 2503 pf_vf_num = le16_to_cpu(ele->pf_vf_num) & 2504 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M; 2505 2506 swid = le16_to_cpu(ele->swid); 2507 2508 if (le16_to_cpu(ele->pf_vf_num) & 2509 ICE_AQC_GET_SW_CONF_RESP_IS_VF) 2510 is_vf = true; 2511 2512 res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >> 2513 ICE_AQC_GET_SW_CONF_RESP_TYPE_S); 2514 2515 if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) { 2516 /* FW VSI is not needed. Just continue. */ 2517 continue; 2518 } 2519 2520 ice_init_port_info(hw->port_info, vsi_port_num, 2521 res_type, swid, pf_vf_num, is_vf); 2522 } 2523 } while (req_desc && !status); 2524 2525 kfree(rbuf); 2526 return status; 2527 } 2528 2529 /** 2530 * ice_fill_sw_info - Helper function to populate lb_en and lan_en 2531 * @hw: pointer to the hardware structure 2532 * @fi: filter info structure to fill/update 2533 * 2534 * This helper function populates the lb_en and lan_en elements of the provided 2535 * ice_fltr_info struct using the switch's type and characteristics of the 2536 * switch rule being configured. 2537 */ 2538 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi) 2539 { 2540 fi->lb_en = false; 2541 fi->lan_en = false; 2542 if ((fi->flag & ICE_FLTR_TX) && 2543 (fi->fltr_act == ICE_FWD_TO_VSI || 2544 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 2545 fi->fltr_act == ICE_FWD_TO_Q || 2546 fi->fltr_act == ICE_FWD_TO_QGRP)) { 2547 /* Setting LB for prune actions will result in replicated 2548 * packets to the internal switch that will be dropped. 2549 */ 2550 if (fi->lkup_type != ICE_SW_LKUP_VLAN) 2551 fi->lb_en = true; 2552 2553 /* Set lan_en to TRUE if 2554 * 1. The switch is a VEB AND 2555 * 2 2556 * 2.1 The lookup is a directional lookup like ethertype, 2557 * promiscuous, ethertype-MAC, promiscuous-VLAN 2558 * and default-port OR 2559 * 2.2 The lookup is VLAN, OR 2560 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR 2561 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC. 2562 * 2563 * OR 2564 * 2565 * The switch is a VEPA. 2566 * 2567 * In all other cases, the LAN enable has to be set to false. 2568 */ 2569 if (hw->evb_veb) { 2570 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE || 2571 fi->lkup_type == ICE_SW_LKUP_PROMISC || 2572 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 2573 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 2574 fi->lkup_type == ICE_SW_LKUP_DFLT || 2575 fi->lkup_type == ICE_SW_LKUP_VLAN || 2576 (fi->lkup_type == ICE_SW_LKUP_MAC && 2577 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) || 2578 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN && 2579 !is_unicast_ether_addr(fi->l_data.mac.mac_addr))) 2580 fi->lan_en = true; 2581 } else { 2582 fi->lan_en = true; 2583 } 2584 } 2585 2586 if (fi->flag & ICE_FLTR_TX_ONLY) 2587 fi->lan_en = false; 2588 } 2589 2590 /** 2591 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer 2592 * @eth_hdr: pointer to buffer to populate 2593 */ 2594 void ice_fill_eth_hdr(u8 *eth_hdr) 2595 { 2596 memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN); 2597 } 2598 2599 /** 2600 * ice_fill_sw_rule - Helper function to fill switch rule structure 2601 * @hw: pointer to the hardware structure 2602 * @f_info: entry containing packet forwarding information 2603 * @s_rule: switch rule structure to be filled in based on mac_entry 2604 * @opc: switch rules population command type - pass in the command opcode 2605 */ 2606 static void 2607 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info, 2608 struct ice_sw_rule_lkup_rx_tx *s_rule, 2609 enum ice_adminq_opc opc) 2610 { 2611 u16 vlan_id = ICE_MAX_VLAN_ID + 1; 2612 u16 vlan_tpid = ETH_P_8021Q; 2613 void *daddr = NULL; 2614 u16 eth_hdr_sz; 2615 u8 *eth_hdr; 2616 u32 act = 0; 2617 __be16 *off; 2618 u8 q_rgn; 2619 2620 if (opc == ice_aqc_opc_remove_sw_rules) { 2621 s_rule->act = 0; 2622 s_rule->index = cpu_to_le16(f_info->fltr_rule_id); 2623 s_rule->hdr_len = 0; 2624 return; 2625 } 2626 2627 eth_hdr_sz = sizeof(dummy_eth_header); 2628 eth_hdr = s_rule->hdr_data; 2629 2630 /* initialize the ether header with a dummy header */ 2631 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz); 2632 ice_fill_sw_info(hw, f_info); 2633 2634 switch (f_info->fltr_act) { 2635 case ICE_FWD_TO_VSI: 2636 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M, 2637 f_info->fwd_id.hw_vsi_id); 2638 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 2639 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 2640 ICE_SINGLE_ACT_VALID_BIT; 2641 break; 2642 case ICE_FWD_TO_VSI_LIST: 2643 act |= ICE_SINGLE_ACT_VSI_LIST; 2644 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M, 2645 f_info->fwd_id.vsi_list_id); 2646 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 2647 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 2648 ICE_SINGLE_ACT_VALID_BIT; 2649 break; 2650 case ICE_FWD_TO_Q: 2651 act |= ICE_SINGLE_ACT_TO_Q; 2652 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M, 2653 f_info->fwd_id.q_id); 2654 break; 2655 case ICE_DROP_PACKET: 2656 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 2657 ICE_SINGLE_ACT_VALID_BIT; 2658 break; 2659 case ICE_FWD_TO_QGRP: 2660 q_rgn = f_info->qgrp_size > 0 ? 2661 (u8)ilog2(f_info->qgrp_size) : 0; 2662 act |= ICE_SINGLE_ACT_TO_Q; 2663 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M, 2664 f_info->fwd_id.q_id); 2665 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn); 2666 break; 2667 default: 2668 return; 2669 } 2670 2671 if (f_info->lb_en) 2672 act |= ICE_SINGLE_ACT_LB_ENABLE; 2673 if (f_info->lan_en) 2674 act |= ICE_SINGLE_ACT_LAN_ENABLE; 2675 2676 switch (f_info->lkup_type) { 2677 case ICE_SW_LKUP_MAC: 2678 daddr = f_info->l_data.mac.mac_addr; 2679 break; 2680 case ICE_SW_LKUP_VLAN: 2681 vlan_id = f_info->l_data.vlan.vlan_id; 2682 if (f_info->l_data.vlan.tpid_valid) 2683 vlan_tpid = f_info->l_data.vlan.tpid; 2684 if (f_info->fltr_act == ICE_FWD_TO_VSI || 2685 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 2686 act |= ICE_SINGLE_ACT_PRUNE; 2687 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS; 2688 } 2689 break; 2690 case ICE_SW_LKUP_ETHERTYPE_MAC: 2691 daddr = f_info->l_data.ethertype_mac.mac_addr; 2692 fallthrough; 2693 case ICE_SW_LKUP_ETHERTYPE: 2694 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 2695 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype); 2696 break; 2697 case ICE_SW_LKUP_MAC_VLAN: 2698 daddr = f_info->l_data.mac_vlan.mac_addr; 2699 vlan_id = f_info->l_data.mac_vlan.vlan_id; 2700 break; 2701 case ICE_SW_LKUP_PROMISC_VLAN: 2702 vlan_id = f_info->l_data.mac_vlan.vlan_id; 2703 fallthrough; 2704 case ICE_SW_LKUP_PROMISC: 2705 daddr = f_info->l_data.mac_vlan.mac_addr; 2706 break; 2707 default: 2708 break; 2709 } 2710 2711 s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ? 2712 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) : 2713 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); 2714 2715 /* Recipe set depending on lookup type */ 2716 s_rule->recipe_id = cpu_to_le16(f_info->lkup_type); 2717 s_rule->src = cpu_to_le16(f_info->src); 2718 s_rule->act = cpu_to_le32(act); 2719 2720 if (daddr) 2721 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr); 2722 2723 if (!(vlan_id > ICE_MAX_VLAN_ID)) { 2724 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET); 2725 *off = cpu_to_be16(vlan_id); 2726 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 2727 *off = cpu_to_be16(vlan_tpid); 2728 } 2729 2730 /* Create the switch rule with the final dummy Ethernet header */ 2731 if (opc != ice_aqc_opc_update_sw_rules) 2732 s_rule->hdr_len = cpu_to_le16(eth_hdr_sz); 2733 } 2734 2735 /** 2736 * ice_add_marker_act 2737 * @hw: pointer to the hardware structure 2738 * @m_ent: the management entry for which sw marker needs to be added 2739 * @sw_marker: sw marker to tag the Rx descriptor with 2740 * @l_id: large action resource ID 2741 * 2742 * Create a large action to hold software marker and update the switch rule 2743 * entry pointed by m_ent with newly created large action 2744 */ 2745 static int 2746 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, 2747 u16 sw_marker, u16 l_id) 2748 { 2749 struct ice_sw_rule_lkup_rx_tx *rx_tx; 2750 struct ice_sw_rule_lg_act *lg_act; 2751 /* For software marker we need 3 large actions 2752 * 1. FWD action: FWD TO VSI or VSI LIST 2753 * 2. GENERIC VALUE action to hold the profile ID 2754 * 3. GENERIC VALUE action to hold the software marker ID 2755 */ 2756 const u16 num_lg_acts = 3; 2757 u16 lg_act_size; 2758 u16 rules_size; 2759 int status; 2760 u32 act; 2761 u16 id; 2762 2763 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) 2764 return -EINVAL; 2765 2766 /* Create two back-to-back switch rules and submit them to the HW using 2767 * one memory buffer: 2768 * 1. Large Action 2769 * 2. Look up Tx Rx 2770 */ 2771 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts); 2772 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx); 2773 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL); 2774 if (!lg_act) 2775 return -ENOMEM; 2776 2777 rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size); 2778 2779 /* Fill in the first switch rule i.e. large action */ 2780 lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT); 2781 lg_act->index = cpu_to_le16(l_id); 2782 lg_act->size = cpu_to_le16(num_lg_acts); 2783 2784 /* First action VSI forwarding or VSI list forwarding depending on how 2785 * many VSIs 2786 */ 2787 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : 2788 m_ent->fltr_info.fwd_id.hw_vsi_id; 2789 2790 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; 2791 act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id); 2792 if (m_ent->vsi_count > 1) 2793 act |= ICE_LG_ACT_VSI_LIST; 2794 lg_act->act[0] = cpu_to_le32(act); 2795 2796 /* Second action descriptor type */ 2797 act = ICE_LG_ACT_GENERIC; 2798 2799 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1); 2800 lg_act->act[1] = cpu_to_le32(act); 2801 2802 act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M, 2803 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX); 2804 2805 /* Third action Marker value */ 2806 act |= ICE_LG_ACT_GENERIC; 2807 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker); 2808 2809 lg_act->act[2] = cpu_to_le32(act); 2810 2811 /* call the fill switch rule to fill the lookup Tx Rx structure */ 2812 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, 2813 ice_aqc_opc_update_sw_rules); 2814 2815 /* Update the action to point to the large action ID */ 2816 act = ICE_SINGLE_ACT_PTR; 2817 act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id); 2818 rx_tx->act = cpu_to_le32(act); 2819 2820 /* Use the filter rule ID of the previously created rule with single 2821 * act. Once the update happens, hardware will treat this as large 2822 * action 2823 */ 2824 rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id); 2825 2826 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, 2827 ice_aqc_opc_update_sw_rules, NULL); 2828 if (!status) { 2829 m_ent->lg_act_idx = l_id; 2830 m_ent->sw_marker_id = sw_marker; 2831 } 2832 2833 devm_kfree(ice_hw_to_dev(hw), lg_act); 2834 return status; 2835 } 2836 2837 /** 2838 * ice_create_vsi_list_map 2839 * @hw: pointer to the hardware structure 2840 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping 2841 * @num_vsi: number of VSI handles in the array 2842 * @vsi_list_id: VSI list ID generated as part of allocate resource 2843 * 2844 * Helper function to create a new entry of VSI list ID to VSI mapping 2845 * using the given VSI list ID 2846 */ 2847 static struct ice_vsi_list_map_info * 2848 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 2849 u16 vsi_list_id) 2850 { 2851 struct ice_switch_info *sw = hw->switch_info; 2852 struct ice_vsi_list_map_info *v_map; 2853 int i; 2854 2855 v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL); 2856 if (!v_map) 2857 return NULL; 2858 2859 v_map->vsi_list_id = vsi_list_id; 2860 v_map->ref_cnt = 1; 2861 for (i = 0; i < num_vsi; i++) 2862 set_bit(vsi_handle_arr[i], v_map->vsi_map); 2863 2864 list_add(&v_map->list_entry, &sw->vsi_list_map_head); 2865 return v_map; 2866 } 2867 2868 /** 2869 * ice_update_vsi_list_rule 2870 * @hw: pointer to the hardware structure 2871 * @vsi_handle_arr: array of VSI handles to form a VSI list 2872 * @num_vsi: number of VSI handles in the array 2873 * @vsi_list_id: VSI list ID generated as part of allocate resource 2874 * @remove: Boolean value to indicate if this is a remove action 2875 * @opc: switch rules population command type - pass in the command opcode 2876 * @lkup_type: lookup type of the filter 2877 * 2878 * Call AQ command to add a new switch rule or update existing switch rule 2879 * using the given VSI list ID 2880 */ 2881 static int 2882 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 2883 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc, 2884 enum ice_sw_lkup_type lkup_type) 2885 { 2886 struct ice_sw_rule_vsi_list *s_rule; 2887 u16 s_rule_size; 2888 u16 rule_type; 2889 int status; 2890 int i; 2891 2892 if (!num_vsi) 2893 return -EINVAL; 2894 2895 if (lkup_type == ICE_SW_LKUP_MAC || 2896 lkup_type == ICE_SW_LKUP_MAC_VLAN || 2897 lkup_type == ICE_SW_LKUP_ETHERTYPE || 2898 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 2899 lkup_type == ICE_SW_LKUP_PROMISC || 2900 lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 2901 lkup_type == ICE_SW_LKUP_DFLT || 2902 lkup_type == ICE_SW_LKUP_LAST) 2903 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR : 2904 ICE_AQC_SW_RULES_T_VSI_LIST_SET; 2905 else if (lkup_type == ICE_SW_LKUP_VLAN) 2906 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR : 2907 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET; 2908 else 2909 return -EINVAL; 2910 2911 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi); 2912 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 2913 if (!s_rule) 2914 return -ENOMEM; 2915 for (i = 0; i < num_vsi; i++) { 2916 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) { 2917 status = -EINVAL; 2918 goto exit; 2919 } 2920 /* AQ call requires hw_vsi_id(s) */ 2921 s_rule->vsi[i] = 2922 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i])); 2923 } 2924 2925 s_rule->hdr.type = cpu_to_le16(rule_type); 2926 s_rule->number_vsi = cpu_to_le16(num_vsi); 2927 s_rule->index = cpu_to_le16(vsi_list_id); 2928 2929 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL); 2930 2931 exit: 2932 devm_kfree(ice_hw_to_dev(hw), s_rule); 2933 return status; 2934 } 2935 2936 /** 2937 * ice_create_vsi_list_rule - Creates and populates a VSI list rule 2938 * @hw: pointer to the HW struct 2939 * @vsi_handle_arr: array of VSI handles to form a VSI list 2940 * @num_vsi: number of VSI handles in the array 2941 * @vsi_list_id: stores the ID of the VSI list to be created 2942 * @lkup_type: switch rule filter's lookup type 2943 */ 2944 static int 2945 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 2946 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type) 2947 { 2948 int status; 2949 2950 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type, 2951 ice_aqc_opc_alloc_res); 2952 if (status) 2953 return status; 2954 2955 /* Update the newly created VSI list to include the specified VSIs */ 2956 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi, 2957 *vsi_list_id, false, 2958 ice_aqc_opc_add_sw_rules, lkup_type); 2959 } 2960 2961 /** 2962 * ice_create_pkt_fwd_rule 2963 * @hw: pointer to the hardware structure 2964 * @f_entry: entry containing packet forwarding information 2965 * 2966 * Create switch rule with given filter information and add an entry 2967 * to the corresponding filter management list to track this switch rule 2968 * and VSI mapping 2969 */ 2970 static int 2971 ice_create_pkt_fwd_rule(struct ice_hw *hw, 2972 struct ice_fltr_list_entry *f_entry) 2973 { 2974 struct ice_fltr_mgmt_list_entry *fm_entry; 2975 struct ice_sw_rule_lkup_rx_tx *s_rule; 2976 enum ice_sw_lkup_type l_type; 2977 struct ice_sw_recipe *recp; 2978 int status; 2979 2980 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 2981 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 2982 GFP_KERNEL); 2983 if (!s_rule) 2984 return -ENOMEM; 2985 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry), 2986 GFP_KERNEL); 2987 if (!fm_entry) { 2988 status = -ENOMEM; 2989 goto ice_create_pkt_fwd_rule_exit; 2990 } 2991 2992 fm_entry->fltr_info = f_entry->fltr_info; 2993 2994 /* Initialize all the fields for the management entry */ 2995 fm_entry->vsi_count = 1; 2996 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX; 2997 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID; 2998 fm_entry->counter_index = ICE_INVAL_COUNTER_ID; 2999 3000 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule, 3001 ice_aqc_opc_add_sw_rules); 3002 3003 status = ice_aq_sw_rules(hw, s_rule, 3004 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1, 3005 ice_aqc_opc_add_sw_rules, NULL); 3006 if (status) { 3007 devm_kfree(ice_hw_to_dev(hw), fm_entry); 3008 goto ice_create_pkt_fwd_rule_exit; 3009 } 3010 3011 f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index); 3012 fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index); 3013 3014 /* The book keeping entries will get removed when base driver 3015 * calls remove filter AQ command 3016 */ 3017 l_type = fm_entry->fltr_info.lkup_type; 3018 recp = &hw->switch_info->recp_list[l_type]; 3019 list_add(&fm_entry->list_entry, &recp->filt_rules); 3020 3021 ice_create_pkt_fwd_rule_exit: 3022 devm_kfree(ice_hw_to_dev(hw), s_rule); 3023 return status; 3024 } 3025 3026 /** 3027 * ice_update_pkt_fwd_rule 3028 * @hw: pointer to the hardware structure 3029 * @f_info: filter information for switch rule 3030 * 3031 * Call AQ command to update a previously created switch rule with a 3032 * VSI list ID 3033 */ 3034 static int 3035 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info) 3036 { 3037 struct ice_sw_rule_lkup_rx_tx *s_rule; 3038 int status; 3039 3040 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 3041 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 3042 GFP_KERNEL); 3043 if (!s_rule) 3044 return -ENOMEM; 3045 3046 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules); 3047 3048 s_rule->index = cpu_to_le16(f_info->fltr_rule_id); 3049 3050 /* Update switch rule with new rule set to forward VSI list */ 3051 status = ice_aq_sw_rules(hw, s_rule, 3052 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1, 3053 ice_aqc_opc_update_sw_rules, NULL); 3054 3055 devm_kfree(ice_hw_to_dev(hw), s_rule); 3056 return status; 3057 } 3058 3059 /** 3060 * ice_update_sw_rule_bridge_mode 3061 * @hw: pointer to the HW struct 3062 * 3063 * Updates unicast switch filter rules based on VEB/VEPA mode 3064 */ 3065 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw) 3066 { 3067 struct ice_switch_info *sw = hw->switch_info; 3068 struct ice_fltr_mgmt_list_entry *fm_entry; 3069 struct list_head *rule_head; 3070 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3071 int status = 0; 3072 3073 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 3074 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 3075 3076 mutex_lock(rule_lock); 3077 list_for_each_entry(fm_entry, rule_head, list_entry) { 3078 struct ice_fltr_info *fi = &fm_entry->fltr_info; 3079 u8 *addr = fi->l_data.mac.mac_addr; 3080 3081 /* Update unicast Tx rules to reflect the selected 3082 * VEB/VEPA mode 3083 */ 3084 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) && 3085 (fi->fltr_act == ICE_FWD_TO_VSI || 3086 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 3087 fi->fltr_act == ICE_FWD_TO_Q || 3088 fi->fltr_act == ICE_FWD_TO_QGRP)) { 3089 status = ice_update_pkt_fwd_rule(hw, fi); 3090 if (status) 3091 break; 3092 } 3093 } 3094 3095 mutex_unlock(rule_lock); 3096 3097 return status; 3098 } 3099 3100 /** 3101 * ice_add_update_vsi_list 3102 * @hw: pointer to the hardware structure 3103 * @m_entry: pointer to current filter management list entry 3104 * @cur_fltr: filter information from the book keeping entry 3105 * @new_fltr: filter information with the new VSI to be added 3106 * 3107 * Call AQ command to add or update previously created VSI list with new VSI. 3108 * 3109 * Helper function to do book keeping associated with adding filter information 3110 * The algorithm to do the book keeping is described below : 3111 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.) 3112 * if only one VSI has been added till now 3113 * Allocate a new VSI list and add two VSIs 3114 * to this list using switch rule command 3115 * Update the previously created switch rule with the 3116 * newly created VSI list ID 3117 * if a VSI list was previously created 3118 * Add the new VSI to the previously created VSI list set 3119 * using the update switch rule command 3120 */ 3121 static int 3122 ice_add_update_vsi_list(struct ice_hw *hw, 3123 struct ice_fltr_mgmt_list_entry *m_entry, 3124 struct ice_fltr_info *cur_fltr, 3125 struct ice_fltr_info *new_fltr) 3126 { 3127 u16 vsi_list_id = 0; 3128 int status = 0; 3129 3130 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q || 3131 cur_fltr->fltr_act == ICE_FWD_TO_QGRP)) 3132 return -EOPNOTSUPP; 3133 3134 if ((new_fltr->fltr_act == ICE_FWD_TO_Q || 3135 new_fltr->fltr_act == ICE_FWD_TO_QGRP) && 3136 (cur_fltr->fltr_act == ICE_FWD_TO_VSI || 3137 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST)) 3138 return -EOPNOTSUPP; 3139 3140 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 3141 /* Only one entry existed in the mapping and it was not already 3142 * a part of a VSI list. So, create a VSI list with the old and 3143 * new VSIs. 3144 */ 3145 struct ice_fltr_info tmp_fltr; 3146 u16 vsi_handle_arr[2]; 3147 3148 /* A rule already exists with the new VSI being added */ 3149 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id) 3150 return -EEXIST; 3151 3152 vsi_handle_arr[0] = cur_fltr->vsi_handle; 3153 vsi_handle_arr[1] = new_fltr->vsi_handle; 3154 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 3155 &vsi_list_id, 3156 new_fltr->lkup_type); 3157 if (status) 3158 return status; 3159 3160 tmp_fltr = *new_fltr; 3161 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 3162 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 3163 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 3164 /* Update the previous switch rule of "MAC forward to VSI" to 3165 * "MAC fwd to VSI list" 3166 */ 3167 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 3168 if (status) 3169 return status; 3170 3171 cur_fltr->fwd_id.vsi_list_id = vsi_list_id; 3172 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 3173 m_entry->vsi_list_info = 3174 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 3175 vsi_list_id); 3176 3177 if (!m_entry->vsi_list_info) 3178 return -ENOMEM; 3179 3180 /* If this entry was large action then the large action needs 3181 * to be updated to point to FWD to VSI list 3182 */ 3183 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) 3184 status = 3185 ice_add_marker_act(hw, m_entry, 3186 m_entry->sw_marker_id, 3187 m_entry->lg_act_idx); 3188 } else { 3189 u16 vsi_handle = new_fltr->vsi_handle; 3190 enum ice_adminq_opc opcode; 3191 3192 if (!m_entry->vsi_list_info) 3193 return -EIO; 3194 3195 /* A rule already exists with the new VSI being added */ 3196 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) 3197 return -EEXIST; 3198 3199 /* Update the previously created VSI list set with 3200 * the new VSI ID passed in 3201 */ 3202 vsi_list_id = cur_fltr->fwd_id.vsi_list_id; 3203 opcode = ice_aqc_opc_update_sw_rules; 3204 3205 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 3206 vsi_list_id, false, opcode, 3207 new_fltr->lkup_type); 3208 /* update VSI list mapping info with new VSI ID */ 3209 if (!status) 3210 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); 3211 } 3212 if (!status) 3213 m_entry->vsi_count++; 3214 return status; 3215 } 3216 3217 /** 3218 * ice_find_rule_entry - Search a rule entry 3219 * @hw: pointer to the hardware structure 3220 * @recp_id: lookup type for which the specified rule needs to be searched 3221 * @f_info: rule information 3222 * 3223 * Helper function to search for a given rule entry 3224 * Returns pointer to entry storing the rule if found 3225 */ 3226 static struct ice_fltr_mgmt_list_entry * 3227 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info) 3228 { 3229 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL; 3230 struct ice_switch_info *sw = hw->switch_info; 3231 struct list_head *list_head; 3232 3233 list_head = &sw->recp_list[recp_id].filt_rules; 3234 list_for_each_entry(list_itr, list_head, list_entry) { 3235 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 3236 sizeof(f_info->l_data)) && 3237 f_info->flag == list_itr->fltr_info.flag) { 3238 ret = list_itr; 3239 break; 3240 } 3241 } 3242 return ret; 3243 } 3244 3245 /** 3246 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1 3247 * @hw: pointer to the hardware structure 3248 * @recp_id: lookup type for which VSI lists needs to be searched 3249 * @vsi_handle: VSI handle to be found in VSI list 3250 * @vsi_list_id: VSI list ID found containing vsi_handle 3251 * 3252 * Helper function to search a VSI list with single entry containing given VSI 3253 * handle element. This can be extended further to search VSI list with more 3254 * than 1 vsi_count. Returns pointer to VSI list entry if found. 3255 */ 3256 struct ice_vsi_list_map_info * 3257 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle, 3258 u16 *vsi_list_id) 3259 { 3260 struct ice_vsi_list_map_info *map_info = NULL; 3261 struct ice_switch_info *sw = hw->switch_info; 3262 struct ice_fltr_mgmt_list_entry *list_itr; 3263 struct list_head *list_head; 3264 3265 list_head = &sw->recp_list[recp_id].filt_rules; 3266 list_for_each_entry(list_itr, list_head, list_entry) { 3267 if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) { 3268 map_info = list_itr->vsi_list_info; 3269 if (test_bit(vsi_handle, map_info->vsi_map)) { 3270 *vsi_list_id = map_info->vsi_list_id; 3271 return map_info; 3272 } 3273 } 3274 } 3275 return NULL; 3276 } 3277 3278 /** 3279 * ice_add_rule_internal - add rule for a given lookup type 3280 * @hw: pointer to the hardware structure 3281 * @recp_id: lookup type (recipe ID) for which rule has to be added 3282 * @f_entry: structure containing MAC forwarding information 3283 * 3284 * Adds or updates the rule lists for a given recipe 3285 */ 3286 static int 3287 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id, 3288 struct ice_fltr_list_entry *f_entry) 3289 { 3290 struct ice_switch_info *sw = hw->switch_info; 3291 struct ice_fltr_info *new_fltr, *cur_fltr; 3292 struct ice_fltr_mgmt_list_entry *m_entry; 3293 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3294 int status = 0; 3295 3296 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 3297 return -EINVAL; 3298 f_entry->fltr_info.fwd_id.hw_vsi_id = 3299 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 3300 3301 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 3302 3303 mutex_lock(rule_lock); 3304 new_fltr = &f_entry->fltr_info; 3305 if (new_fltr->flag & ICE_FLTR_RX) 3306 new_fltr->src = hw->port_info->lport; 3307 else if (new_fltr->flag & ICE_FLTR_TX) 3308 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id; 3309 3310 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr); 3311 if (!m_entry) { 3312 mutex_unlock(rule_lock); 3313 return ice_create_pkt_fwd_rule(hw, f_entry); 3314 } 3315 3316 cur_fltr = &m_entry->fltr_info; 3317 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr); 3318 mutex_unlock(rule_lock); 3319 3320 return status; 3321 } 3322 3323 /** 3324 * ice_remove_vsi_list_rule 3325 * @hw: pointer to the hardware structure 3326 * @vsi_list_id: VSI list ID generated as part of allocate resource 3327 * @lkup_type: switch rule filter lookup type 3328 * 3329 * The VSI list should be emptied before this function is called to remove the 3330 * VSI list. 3331 */ 3332 static int 3333 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id, 3334 enum ice_sw_lkup_type lkup_type) 3335 { 3336 struct ice_sw_rule_vsi_list *s_rule; 3337 u16 s_rule_size; 3338 int status; 3339 3340 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0); 3341 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 3342 if (!s_rule) 3343 return -ENOMEM; 3344 3345 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR); 3346 s_rule->index = cpu_to_le16(vsi_list_id); 3347 3348 /* Free the vsi_list resource that we allocated. It is assumed that the 3349 * list is empty at this point. 3350 */ 3351 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type, 3352 ice_aqc_opc_free_res); 3353 3354 devm_kfree(ice_hw_to_dev(hw), s_rule); 3355 return status; 3356 } 3357 3358 /** 3359 * ice_rem_update_vsi_list 3360 * @hw: pointer to the hardware structure 3361 * @vsi_handle: VSI handle of the VSI to remove 3362 * @fm_list: filter management entry for which the VSI list management needs to 3363 * be done 3364 */ 3365 static int 3366 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 3367 struct ice_fltr_mgmt_list_entry *fm_list) 3368 { 3369 enum ice_sw_lkup_type lkup_type; 3370 u16 vsi_list_id; 3371 int status = 0; 3372 3373 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST || 3374 fm_list->vsi_count == 0) 3375 return -EINVAL; 3376 3377 /* A rule with the VSI being removed does not exist */ 3378 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) 3379 return -ENOENT; 3380 3381 lkup_type = fm_list->fltr_info.lkup_type; 3382 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id; 3383 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 3384 ice_aqc_opc_update_sw_rules, 3385 lkup_type); 3386 if (status) 3387 return status; 3388 3389 fm_list->vsi_count--; 3390 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 3391 3392 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) { 3393 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info; 3394 struct ice_vsi_list_map_info *vsi_list_info = 3395 fm_list->vsi_list_info; 3396 u16 rem_vsi_handle; 3397 3398 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, 3399 ICE_MAX_VSI); 3400 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 3401 return -EIO; 3402 3403 /* Make sure VSI list is empty before removing it below */ 3404 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 3405 vsi_list_id, true, 3406 ice_aqc_opc_update_sw_rules, 3407 lkup_type); 3408 if (status) 3409 return status; 3410 3411 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI; 3412 tmp_fltr_info.fwd_id.hw_vsi_id = 3413 ice_get_hw_vsi_num(hw, rem_vsi_handle); 3414 tmp_fltr_info.vsi_handle = rem_vsi_handle; 3415 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info); 3416 if (status) { 3417 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 3418 tmp_fltr_info.fwd_id.hw_vsi_id, status); 3419 return status; 3420 } 3421 3422 fm_list->fltr_info = tmp_fltr_info; 3423 } 3424 3425 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) || 3426 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) { 3427 struct ice_vsi_list_map_info *vsi_list_info = 3428 fm_list->vsi_list_info; 3429 3430 /* Remove the VSI list since it is no longer used */ 3431 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 3432 if (status) { 3433 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n", 3434 vsi_list_id, status); 3435 return status; 3436 } 3437 3438 list_del(&vsi_list_info->list_entry); 3439 devm_kfree(ice_hw_to_dev(hw), vsi_list_info); 3440 fm_list->vsi_list_info = NULL; 3441 } 3442 3443 return status; 3444 } 3445 3446 /** 3447 * ice_remove_rule_internal - Remove a filter rule of a given type 3448 * @hw: pointer to the hardware structure 3449 * @recp_id: recipe ID for which the rule needs to removed 3450 * @f_entry: rule entry containing filter information 3451 */ 3452 static int 3453 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id, 3454 struct ice_fltr_list_entry *f_entry) 3455 { 3456 struct ice_switch_info *sw = hw->switch_info; 3457 struct ice_fltr_mgmt_list_entry *list_elem; 3458 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3459 bool remove_rule = false; 3460 u16 vsi_handle; 3461 int status = 0; 3462 3463 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 3464 return -EINVAL; 3465 f_entry->fltr_info.fwd_id.hw_vsi_id = 3466 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 3467 3468 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 3469 mutex_lock(rule_lock); 3470 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info); 3471 if (!list_elem) { 3472 status = -ENOENT; 3473 goto exit; 3474 } 3475 3476 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) { 3477 remove_rule = true; 3478 } else if (!list_elem->vsi_list_info) { 3479 status = -ENOENT; 3480 goto exit; 3481 } else if (list_elem->vsi_list_info->ref_cnt > 1) { 3482 /* a ref_cnt > 1 indicates that the vsi_list is being 3483 * shared by multiple rules. Decrement the ref_cnt and 3484 * remove this rule, but do not modify the list, as it 3485 * is in-use by other rules. 3486 */ 3487 list_elem->vsi_list_info->ref_cnt--; 3488 remove_rule = true; 3489 } else { 3490 /* a ref_cnt of 1 indicates the vsi_list is only used 3491 * by one rule. However, the original removal request is only 3492 * for a single VSI. Update the vsi_list first, and only 3493 * remove the rule if there are no further VSIs in this list. 3494 */ 3495 vsi_handle = f_entry->fltr_info.vsi_handle; 3496 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem); 3497 if (status) 3498 goto exit; 3499 /* if VSI count goes to zero after updating the VSI list */ 3500 if (list_elem->vsi_count == 0) 3501 remove_rule = true; 3502 } 3503 3504 if (remove_rule) { 3505 /* Remove the lookup rule */ 3506 struct ice_sw_rule_lkup_rx_tx *s_rule; 3507 3508 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 3509 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule), 3510 GFP_KERNEL); 3511 if (!s_rule) { 3512 status = -ENOMEM; 3513 goto exit; 3514 } 3515 3516 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule, 3517 ice_aqc_opc_remove_sw_rules); 3518 3519 status = ice_aq_sw_rules(hw, s_rule, 3520 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule), 3521 1, ice_aqc_opc_remove_sw_rules, NULL); 3522 3523 /* Remove a book keeping from the list */ 3524 devm_kfree(ice_hw_to_dev(hw), s_rule); 3525 3526 if (status) 3527 goto exit; 3528 3529 list_del(&list_elem->list_entry); 3530 devm_kfree(ice_hw_to_dev(hw), list_elem); 3531 } 3532 exit: 3533 mutex_unlock(rule_lock); 3534 return status; 3535 } 3536 3537 /** 3538 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI 3539 * @hw: pointer to the hardware structure 3540 * @vlan_id: VLAN ID 3541 * @vsi_handle: check MAC filter for this VSI 3542 */ 3543 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle) 3544 { 3545 struct ice_fltr_mgmt_list_entry *entry; 3546 struct list_head *rule_head; 3547 struct ice_switch_info *sw; 3548 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3549 u16 hw_vsi_id; 3550 3551 if (vlan_id > ICE_MAX_VLAN_ID) 3552 return false; 3553 3554 if (!ice_is_vsi_valid(hw, vsi_handle)) 3555 return false; 3556 3557 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3558 sw = hw->switch_info; 3559 rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 3560 if (!rule_head) 3561 return false; 3562 3563 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 3564 mutex_lock(rule_lock); 3565 list_for_each_entry(entry, rule_head, list_entry) { 3566 struct ice_fltr_info *f_info = &entry->fltr_info; 3567 u16 entry_vlan_id = f_info->l_data.vlan.vlan_id; 3568 struct ice_vsi_list_map_info *map_info; 3569 3570 if (entry_vlan_id > ICE_MAX_VLAN_ID) 3571 continue; 3572 3573 if (f_info->flag != ICE_FLTR_TX || 3574 f_info->src_id != ICE_SRC_ID_VSI || 3575 f_info->lkup_type != ICE_SW_LKUP_VLAN) 3576 continue; 3577 3578 /* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */ 3579 if (f_info->fltr_act != ICE_FWD_TO_VSI && 3580 f_info->fltr_act != ICE_FWD_TO_VSI_LIST) 3581 continue; 3582 3583 if (f_info->fltr_act == ICE_FWD_TO_VSI) { 3584 if (hw_vsi_id != f_info->fwd_id.hw_vsi_id) 3585 continue; 3586 } else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 3587 /* If filter_action is FWD_TO_VSI_LIST, make sure 3588 * that VSI being checked is part of VSI list 3589 */ 3590 if (entry->vsi_count == 1 && 3591 entry->vsi_list_info) { 3592 map_info = entry->vsi_list_info; 3593 if (!test_bit(vsi_handle, map_info->vsi_map)) 3594 continue; 3595 } 3596 } 3597 3598 if (vlan_id == entry_vlan_id) { 3599 mutex_unlock(rule_lock); 3600 return true; 3601 } 3602 } 3603 mutex_unlock(rule_lock); 3604 3605 return false; 3606 } 3607 3608 /** 3609 * ice_add_mac - Add a MAC address based filter rule 3610 * @hw: pointer to the hardware structure 3611 * @m_list: list of MAC addresses and forwarding information 3612 */ 3613 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list) 3614 { 3615 struct ice_fltr_list_entry *m_list_itr; 3616 int status = 0; 3617 3618 if (!m_list || !hw) 3619 return -EINVAL; 3620 3621 list_for_each_entry(m_list_itr, m_list, list_entry) { 3622 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; 3623 u16 vsi_handle; 3624 u16 hw_vsi_id; 3625 3626 m_list_itr->fltr_info.flag = ICE_FLTR_TX; 3627 vsi_handle = m_list_itr->fltr_info.vsi_handle; 3628 if (!ice_is_vsi_valid(hw, vsi_handle)) 3629 return -EINVAL; 3630 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3631 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id; 3632 /* update the src in case it is VSI num */ 3633 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI) 3634 return -EINVAL; 3635 m_list_itr->fltr_info.src = hw_vsi_id; 3636 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC || 3637 is_zero_ether_addr(add)) 3638 return -EINVAL; 3639 3640 m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC, 3641 m_list_itr); 3642 if (m_list_itr->status) 3643 return m_list_itr->status; 3644 } 3645 3646 return status; 3647 } 3648 3649 /** 3650 * ice_add_vlan_internal - Add one VLAN based filter rule 3651 * @hw: pointer to the hardware structure 3652 * @f_entry: filter entry containing one VLAN information 3653 */ 3654 static int 3655 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) 3656 { 3657 struct ice_switch_info *sw = hw->switch_info; 3658 struct ice_fltr_mgmt_list_entry *v_list_itr; 3659 struct ice_fltr_info *new_fltr, *cur_fltr; 3660 enum ice_sw_lkup_type lkup_type; 3661 u16 vsi_list_id = 0, vsi_handle; 3662 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3663 int status = 0; 3664 3665 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 3666 return -EINVAL; 3667 3668 f_entry->fltr_info.fwd_id.hw_vsi_id = 3669 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 3670 new_fltr = &f_entry->fltr_info; 3671 3672 /* VLAN ID should only be 12 bits */ 3673 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID) 3674 return -EINVAL; 3675 3676 if (new_fltr->src_id != ICE_SRC_ID_VSI) 3677 return -EINVAL; 3678 3679 new_fltr->src = new_fltr->fwd_id.hw_vsi_id; 3680 lkup_type = new_fltr->lkup_type; 3681 vsi_handle = new_fltr->vsi_handle; 3682 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 3683 mutex_lock(rule_lock); 3684 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr); 3685 if (!v_list_itr) { 3686 struct ice_vsi_list_map_info *map_info = NULL; 3687 3688 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) { 3689 /* All VLAN pruning rules use a VSI list. Check if 3690 * there is already a VSI list containing VSI that we 3691 * want to add. If found, use the same vsi_list_id for 3692 * this new VLAN rule or else create a new list. 3693 */ 3694 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN, 3695 vsi_handle, 3696 &vsi_list_id); 3697 if (!map_info) { 3698 status = ice_create_vsi_list_rule(hw, 3699 &vsi_handle, 3700 1, 3701 &vsi_list_id, 3702 lkup_type); 3703 if (status) 3704 goto exit; 3705 } 3706 /* Convert the action to forwarding to a VSI list. */ 3707 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 3708 new_fltr->fwd_id.vsi_list_id = vsi_list_id; 3709 } 3710 3711 status = ice_create_pkt_fwd_rule(hw, f_entry); 3712 if (!status) { 3713 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, 3714 new_fltr); 3715 if (!v_list_itr) { 3716 status = -ENOENT; 3717 goto exit; 3718 } 3719 /* reuse VSI list for new rule and increment ref_cnt */ 3720 if (map_info) { 3721 v_list_itr->vsi_list_info = map_info; 3722 map_info->ref_cnt++; 3723 } else { 3724 v_list_itr->vsi_list_info = 3725 ice_create_vsi_list_map(hw, &vsi_handle, 3726 1, vsi_list_id); 3727 } 3728 } 3729 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) { 3730 /* Update existing VSI list to add new VSI ID only if it used 3731 * by one VLAN rule. 3732 */ 3733 cur_fltr = &v_list_itr->fltr_info; 3734 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr, 3735 new_fltr); 3736 } else { 3737 /* If VLAN rule exists and VSI list being used by this rule is 3738 * referenced by more than 1 VLAN rule. Then create a new VSI 3739 * list appending previous VSI with new VSI and update existing 3740 * VLAN rule to point to new VSI list ID 3741 */ 3742 struct ice_fltr_info tmp_fltr; 3743 u16 vsi_handle_arr[2]; 3744 u16 cur_handle; 3745 3746 /* Current implementation only supports reusing VSI list with 3747 * one VSI count. We should never hit below condition 3748 */ 3749 if (v_list_itr->vsi_count > 1 && 3750 v_list_itr->vsi_list_info->ref_cnt > 1) { 3751 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n"); 3752 status = -EIO; 3753 goto exit; 3754 } 3755 3756 cur_handle = 3757 find_first_bit(v_list_itr->vsi_list_info->vsi_map, 3758 ICE_MAX_VSI); 3759 3760 /* A rule already exists with the new VSI being added */ 3761 if (cur_handle == vsi_handle) { 3762 status = -EEXIST; 3763 goto exit; 3764 } 3765 3766 vsi_handle_arr[0] = cur_handle; 3767 vsi_handle_arr[1] = vsi_handle; 3768 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 3769 &vsi_list_id, lkup_type); 3770 if (status) 3771 goto exit; 3772 3773 tmp_fltr = v_list_itr->fltr_info; 3774 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id; 3775 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 3776 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 3777 /* Update the previous switch rule to a new VSI list which 3778 * includes current VSI that is requested 3779 */ 3780 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 3781 if (status) 3782 goto exit; 3783 3784 /* before overriding VSI list map info. decrement ref_cnt of 3785 * previous VSI list 3786 */ 3787 v_list_itr->vsi_list_info->ref_cnt--; 3788 3789 /* now update to newly created list */ 3790 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id; 3791 v_list_itr->vsi_list_info = 3792 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 3793 vsi_list_id); 3794 v_list_itr->vsi_count++; 3795 } 3796 3797 exit: 3798 mutex_unlock(rule_lock); 3799 return status; 3800 } 3801 3802 /** 3803 * ice_add_vlan - Add VLAN based filter rule 3804 * @hw: pointer to the hardware structure 3805 * @v_list: list of VLAN entries and forwarding information 3806 */ 3807 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list) 3808 { 3809 struct ice_fltr_list_entry *v_list_itr; 3810 3811 if (!v_list || !hw) 3812 return -EINVAL; 3813 3814 list_for_each_entry(v_list_itr, v_list, list_entry) { 3815 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN) 3816 return -EINVAL; 3817 v_list_itr->fltr_info.flag = ICE_FLTR_TX; 3818 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr); 3819 if (v_list_itr->status) 3820 return v_list_itr->status; 3821 } 3822 return 0; 3823 } 3824 3825 /** 3826 * ice_add_eth_mac - Add ethertype and MAC based filter rule 3827 * @hw: pointer to the hardware structure 3828 * @em_list: list of ether type MAC filter, MAC is optional 3829 * 3830 * This function requires the caller to populate the entries in 3831 * the filter list with the necessary fields (including flags to 3832 * indicate Tx or Rx rules). 3833 */ 3834 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list) 3835 { 3836 struct ice_fltr_list_entry *em_list_itr; 3837 3838 if (!em_list || !hw) 3839 return -EINVAL; 3840 3841 list_for_each_entry(em_list_itr, em_list, list_entry) { 3842 enum ice_sw_lkup_type l_type = 3843 em_list_itr->fltr_info.lkup_type; 3844 3845 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 3846 l_type != ICE_SW_LKUP_ETHERTYPE) 3847 return -EINVAL; 3848 3849 em_list_itr->status = ice_add_rule_internal(hw, l_type, 3850 em_list_itr); 3851 if (em_list_itr->status) 3852 return em_list_itr->status; 3853 } 3854 return 0; 3855 } 3856 3857 /** 3858 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule 3859 * @hw: pointer to the hardware structure 3860 * @em_list: list of ethertype or ethertype MAC entries 3861 */ 3862 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list) 3863 { 3864 struct ice_fltr_list_entry *em_list_itr, *tmp; 3865 3866 if (!em_list || !hw) 3867 return -EINVAL; 3868 3869 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) { 3870 enum ice_sw_lkup_type l_type = 3871 em_list_itr->fltr_info.lkup_type; 3872 3873 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 3874 l_type != ICE_SW_LKUP_ETHERTYPE) 3875 return -EINVAL; 3876 3877 em_list_itr->status = ice_remove_rule_internal(hw, l_type, 3878 em_list_itr); 3879 if (em_list_itr->status) 3880 return em_list_itr->status; 3881 } 3882 return 0; 3883 } 3884 3885 /** 3886 * ice_rem_sw_rule_info 3887 * @hw: pointer to the hardware structure 3888 * @rule_head: pointer to the switch list structure that we want to delete 3889 */ 3890 static void 3891 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head) 3892 { 3893 if (!list_empty(rule_head)) { 3894 struct ice_fltr_mgmt_list_entry *entry; 3895 struct ice_fltr_mgmt_list_entry *tmp; 3896 3897 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) { 3898 list_del(&entry->list_entry); 3899 devm_kfree(ice_hw_to_dev(hw), entry); 3900 } 3901 } 3902 } 3903 3904 /** 3905 * ice_rem_adv_rule_info 3906 * @hw: pointer to the hardware structure 3907 * @rule_head: pointer to the switch list structure that we want to delete 3908 */ 3909 static void 3910 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head) 3911 { 3912 struct ice_adv_fltr_mgmt_list_entry *tmp_entry; 3913 struct ice_adv_fltr_mgmt_list_entry *lst_itr; 3914 3915 if (list_empty(rule_head)) 3916 return; 3917 3918 list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) { 3919 list_del(&lst_itr->list_entry); 3920 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups); 3921 devm_kfree(ice_hw_to_dev(hw), lst_itr); 3922 } 3923 } 3924 3925 /** 3926 * ice_cfg_dflt_vsi - change state of VSI to set/clear default 3927 * @pi: pointer to the port_info structure 3928 * @vsi_handle: VSI handle to set as default 3929 * @set: true to add the above mentioned switch rule, false to remove it 3930 * @direction: ICE_FLTR_RX or ICE_FLTR_TX 3931 * 3932 * add filter rule to set/unset given VSI as default VSI for the switch 3933 * (represented by swid) 3934 */ 3935 int 3936 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set, 3937 u8 direction) 3938 { 3939 struct ice_fltr_list_entry f_list_entry; 3940 struct ice_fltr_info f_info; 3941 struct ice_hw *hw = pi->hw; 3942 u16 hw_vsi_id; 3943 int status; 3944 3945 if (!ice_is_vsi_valid(hw, vsi_handle)) 3946 return -EINVAL; 3947 3948 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3949 3950 memset(&f_info, 0, sizeof(f_info)); 3951 3952 f_info.lkup_type = ICE_SW_LKUP_DFLT; 3953 f_info.flag = direction; 3954 f_info.fltr_act = ICE_FWD_TO_VSI; 3955 f_info.fwd_id.hw_vsi_id = hw_vsi_id; 3956 f_info.vsi_handle = vsi_handle; 3957 3958 if (f_info.flag & ICE_FLTR_RX) { 3959 f_info.src = hw->port_info->lport; 3960 f_info.src_id = ICE_SRC_ID_LPORT; 3961 } else if (f_info.flag & ICE_FLTR_TX) { 3962 f_info.src_id = ICE_SRC_ID_VSI; 3963 f_info.src = hw_vsi_id; 3964 f_info.flag |= ICE_FLTR_TX_ONLY; 3965 } 3966 f_list_entry.fltr_info = f_info; 3967 3968 if (set) 3969 status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT, 3970 &f_list_entry); 3971 else 3972 status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT, 3973 &f_list_entry); 3974 3975 return status; 3976 } 3977 3978 /** 3979 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter 3980 * @fm_entry: filter entry to inspect 3981 * @vsi_handle: VSI handle to compare with filter info 3982 */ 3983 static bool 3984 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle) 3985 { 3986 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI && 3987 fm_entry->fltr_info.vsi_handle == vsi_handle) || 3988 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST && 3989 fm_entry->vsi_list_info && 3990 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map)))); 3991 } 3992 3993 /** 3994 * ice_check_if_dflt_vsi - check if VSI is default VSI 3995 * @pi: pointer to the port_info structure 3996 * @vsi_handle: vsi handle to check for in filter list 3997 * @rule_exists: indicates if there are any VSI's in the rule list 3998 * 3999 * checks if the VSI is in a default VSI list, and also indicates 4000 * if the default VSI list is empty 4001 */ 4002 bool 4003 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, 4004 bool *rule_exists) 4005 { 4006 struct ice_fltr_mgmt_list_entry *fm_entry; 4007 struct ice_sw_recipe *recp_list; 4008 struct list_head *rule_head; 4009 struct mutex *rule_lock; /* Lock to protect filter rule list */ 4010 bool ret = false; 4011 4012 recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT]; 4013 rule_lock = &recp_list->filt_rule_lock; 4014 rule_head = &recp_list->filt_rules; 4015 4016 mutex_lock(rule_lock); 4017 4018 if (rule_exists && !list_empty(rule_head)) 4019 *rule_exists = true; 4020 4021 list_for_each_entry(fm_entry, rule_head, list_entry) { 4022 if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) { 4023 ret = true; 4024 break; 4025 } 4026 } 4027 4028 mutex_unlock(rule_lock); 4029 4030 return ret; 4031 } 4032 4033 /** 4034 * ice_remove_mac - remove a MAC address based filter rule 4035 * @hw: pointer to the hardware structure 4036 * @m_list: list of MAC addresses and forwarding information 4037 * 4038 * This function removes either a MAC filter rule or a specific VSI from a 4039 * VSI list for a multicast MAC address. 4040 * 4041 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should 4042 * be aware that this call will only work if all the entries passed into m_list 4043 * were added previously. It will not attempt to do a partial remove of entries 4044 * that were found. 4045 */ 4046 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list) 4047 { 4048 struct ice_fltr_list_entry *list_itr, *tmp; 4049 4050 if (!m_list) 4051 return -EINVAL; 4052 4053 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) { 4054 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type; 4055 u16 vsi_handle; 4056 4057 if (l_type != ICE_SW_LKUP_MAC) 4058 return -EINVAL; 4059 4060 vsi_handle = list_itr->fltr_info.vsi_handle; 4061 if (!ice_is_vsi_valid(hw, vsi_handle)) 4062 return -EINVAL; 4063 4064 list_itr->fltr_info.fwd_id.hw_vsi_id = 4065 ice_get_hw_vsi_num(hw, vsi_handle); 4066 4067 list_itr->status = ice_remove_rule_internal(hw, 4068 ICE_SW_LKUP_MAC, 4069 list_itr); 4070 if (list_itr->status) 4071 return list_itr->status; 4072 } 4073 return 0; 4074 } 4075 4076 /** 4077 * ice_remove_vlan - Remove VLAN based filter rule 4078 * @hw: pointer to the hardware structure 4079 * @v_list: list of VLAN entries and forwarding information 4080 */ 4081 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list) 4082 { 4083 struct ice_fltr_list_entry *v_list_itr, *tmp; 4084 4085 if (!v_list || !hw) 4086 return -EINVAL; 4087 4088 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 4089 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type; 4090 4091 if (l_type != ICE_SW_LKUP_VLAN) 4092 return -EINVAL; 4093 v_list_itr->status = ice_remove_rule_internal(hw, 4094 ICE_SW_LKUP_VLAN, 4095 v_list_itr); 4096 if (v_list_itr->status) 4097 return v_list_itr->status; 4098 } 4099 return 0; 4100 } 4101 4102 /** 4103 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list 4104 * @hw: pointer to the hardware structure 4105 * @vsi_handle: VSI handle to remove filters from 4106 * @vsi_list_head: pointer to the list to add entry to 4107 * @fi: pointer to fltr_info of filter entry to copy & add 4108 * 4109 * Helper function, used when creating a list of filters to remove from 4110 * a specific VSI. The entry added to vsi_list_head is a COPY of the 4111 * original filter entry, with the exception of fltr_info.fltr_act and 4112 * fltr_info.fwd_id fields. These are set such that later logic can 4113 * extract which VSI to remove the fltr from, and pass on that information. 4114 */ 4115 static int 4116 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 4117 struct list_head *vsi_list_head, 4118 struct ice_fltr_info *fi) 4119 { 4120 struct ice_fltr_list_entry *tmp; 4121 4122 /* this memory is freed up in the caller function 4123 * once filters for this VSI are removed 4124 */ 4125 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL); 4126 if (!tmp) 4127 return -ENOMEM; 4128 4129 tmp->fltr_info = *fi; 4130 4131 /* Overwrite these fields to indicate which VSI to remove filter from, 4132 * so find and remove logic can extract the information from the 4133 * list entries. Note that original entries will still have proper 4134 * values. 4135 */ 4136 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 4137 tmp->fltr_info.vsi_handle = vsi_handle; 4138 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 4139 4140 list_add(&tmp->list_entry, vsi_list_head); 4141 4142 return 0; 4143 } 4144 4145 /** 4146 * ice_add_to_vsi_fltr_list - Add VSI filters to the list 4147 * @hw: pointer to the hardware structure 4148 * @vsi_handle: VSI handle to remove filters from 4149 * @lkup_list_head: pointer to the list that has certain lookup type filters 4150 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle 4151 * 4152 * Locates all filters in lkup_list_head that are used by the given VSI, 4153 * and adds COPIES of those entries to vsi_list_head (intended to be used 4154 * to remove the listed filters). 4155 * Note that this means all entries in vsi_list_head must be explicitly 4156 * deallocated by the caller when done with list. 4157 */ 4158 static int 4159 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 4160 struct list_head *lkup_list_head, 4161 struct list_head *vsi_list_head) 4162 { 4163 struct ice_fltr_mgmt_list_entry *fm_entry; 4164 int status = 0; 4165 4166 /* check to make sure VSI ID is valid and within boundary */ 4167 if (!ice_is_vsi_valid(hw, vsi_handle)) 4168 return -EINVAL; 4169 4170 list_for_each_entry(fm_entry, lkup_list_head, list_entry) { 4171 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle)) 4172 continue; 4173 4174 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 4175 vsi_list_head, 4176 &fm_entry->fltr_info); 4177 if (status) 4178 return status; 4179 } 4180 return status; 4181 } 4182 4183 /** 4184 * ice_determine_promisc_mask 4185 * @fi: filter info to parse 4186 * 4187 * Helper function to determine which ICE_PROMISC_ mask corresponds 4188 * to given filter into. 4189 */ 4190 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi) 4191 { 4192 u16 vid = fi->l_data.mac_vlan.vlan_id; 4193 u8 *macaddr = fi->l_data.mac.mac_addr; 4194 bool is_tx_fltr = false; 4195 u8 promisc_mask = 0; 4196 4197 if (fi->flag == ICE_FLTR_TX) 4198 is_tx_fltr = true; 4199 4200 if (is_broadcast_ether_addr(macaddr)) 4201 promisc_mask |= is_tx_fltr ? 4202 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX; 4203 else if (is_multicast_ether_addr(macaddr)) 4204 promisc_mask |= is_tx_fltr ? 4205 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX; 4206 else if (is_unicast_ether_addr(macaddr)) 4207 promisc_mask |= is_tx_fltr ? 4208 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX; 4209 if (vid) 4210 promisc_mask |= is_tx_fltr ? 4211 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX; 4212 4213 return promisc_mask; 4214 } 4215 4216 /** 4217 * ice_remove_promisc - Remove promisc based filter rules 4218 * @hw: pointer to the hardware structure 4219 * @recp_id: recipe ID for which the rule needs to removed 4220 * @v_list: list of promisc entries 4221 */ 4222 static int 4223 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list) 4224 { 4225 struct ice_fltr_list_entry *v_list_itr, *tmp; 4226 4227 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 4228 v_list_itr->status = 4229 ice_remove_rule_internal(hw, recp_id, v_list_itr); 4230 if (v_list_itr->status) 4231 return v_list_itr->status; 4232 } 4233 return 0; 4234 } 4235 4236 /** 4237 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI 4238 * @hw: pointer to the hardware structure 4239 * @vsi_handle: VSI handle to clear mode 4240 * @promisc_mask: mask of promiscuous config bits to clear 4241 * @vid: VLAN ID to clear VLAN promiscuous 4242 */ 4243 int 4244 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 4245 u16 vid) 4246 { 4247 struct ice_switch_info *sw = hw->switch_info; 4248 struct ice_fltr_list_entry *fm_entry, *tmp; 4249 struct list_head remove_list_head; 4250 struct ice_fltr_mgmt_list_entry *itr; 4251 struct list_head *rule_head; 4252 struct mutex *rule_lock; /* Lock to protect filter rule list */ 4253 int status = 0; 4254 u8 recipe_id; 4255 4256 if (!ice_is_vsi_valid(hw, vsi_handle)) 4257 return -EINVAL; 4258 4259 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) 4260 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 4261 else 4262 recipe_id = ICE_SW_LKUP_PROMISC; 4263 4264 rule_head = &sw->recp_list[recipe_id].filt_rules; 4265 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock; 4266 4267 INIT_LIST_HEAD(&remove_list_head); 4268 4269 mutex_lock(rule_lock); 4270 list_for_each_entry(itr, rule_head, list_entry) { 4271 struct ice_fltr_info *fltr_info; 4272 u8 fltr_promisc_mask = 0; 4273 4274 if (!ice_vsi_uses_fltr(itr, vsi_handle)) 4275 continue; 4276 fltr_info = &itr->fltr_info; 4277 4278 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN && 4279 vid != fltr_info->l_data.mac_vlan.vlan_id) 4280 continue; 4281 4282 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info); 4283 4284 /* Skip if filter is not completely specified by given mask */ 4285 if (fltr_promisc_mask & ~promisc_mask) 4286 continue; 4287 4288 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 4289 &remove_list_head, 4290 fltr_info); 4291 if (status) { 4292 mutex_unlock(rule_lock); 4293 goto free_fltr_list; 4294 } 4295 } 4296 mutex_unlock(rule_lock); 4297 4298 status = ice_remove_promisc(hw, recipe_id, &remove_list_head); 4299 4300 free_fltr_list: 4301 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 4302 list_del(&fm_entry->list_entry); 4303 devm_kfree(ice_hw_to_dev(hw), fm_entry); 4304 } 4305 4306 return status; 4307 } 4308 4309 /** 4310 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) 4311 * @hw: pointer to the hardware structure 4312 * @vsi_handle: VSI handle to configure 4313 * @promisc_mask: mask of promiscuous config bits 4314 * @vid: VLAN ID to set VLAN promiscuous 4315 */ 4316 int 4317 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid) 4318 { 4319 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR }; 4320 struct ice_fltr_list_entry f_list_entry; 4321 struct ice_fltr_info new_fltr; 4322 bool is_tx_fltr; 4323 int status = 0; 4324 u16 hw_vsi_id; 4325 int pkt_type; 4326 u8 recipe_id; 4327 4328 if (!ice_is_vsi_valid(hw, vsi_handle)) 4329 return -EINVAL; 4330 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 4331 4332 memset(&new_fltr, 0, sizeof(new_fltr)); 4333 4334 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) { 4335 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN; 4336 new_fltr.l_data.mac_vlan.vlan_id = vid; 4337 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 4338 } else { 4339 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC; 4340 recipe_id = ICE_SW_LKUP_PROMISC; 4341 } 4342 4343 /* Separate filters must be set for each direction/packet type 4344 * combination, so we will loop over the mask value, store the 4345 * individual type, and clear it out in the input mask as it 4346 * is found. 4347 */ 4348 while (promisc_mask) { 4349 u8 *mac_addr; 4350 4351 pkt_type = 0; 4352 is_tx_fltr = false; 4353 4354 if (promisc_mask & ICE_PROMISC_UCAST_RX) { 4355 promisc_mask &= ~ICE_PROMISC_UCAST_RX; 4356 pkt_type = UCAST_FLTR; 4357 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) { 4358 promisc_mask &= ~ICE_PROMISC_UCAST_TX; 4359 pkt_type = UCAST_FLTR; 4360 is_tx_fltr = true; 4361 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) { 4362 promisc_mask &= ~ICE_PROMISC_MCAST_RX; 4363 pkt_type = MCAST_FLTR; 4364 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) { 4365 promisc_mask &= ~ICE_PROMISC_MCAST_TX; 4366 pkt_type = MCAST_FLTR; 4367 is_tx_fltr = true; 4368 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) { 4369 promisc_mask &= ~ICE_PROMISC_BCAST_RX; 4370 pkt_type = BCAST_FLTR; 4371 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) { 4372 promisc_mask &= ~ICE_PROMISC_BCAST_TX; 4373 pkt_type = BCAST_FLTR; 4374 is_tx_fltr = true; 4375 } 4376 4377 /* Check for VLAN promiscuous flag */ 4378 if (promisc_mask & ICE_PROMISC_VLAN_RX) { 4379 promisc_mask &= ~ICE_PROMISC_VLAN_RX; 4380 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) { 4381 promisc_mask &= ~ICE_PROMISC_VLAN_TX; 4382 is_tx_fltr = true; 4383 } 4384 4385 /* Set filter DA based on packet type */ 4386 mac_addr = new_fltr.l_data.mac.mac_addr; 4387 if (pkt_type == BCAST_FLTR) { 4388 eth_broadcast_addr(mac_addr); 4389 } else if (pkt_type == MCAST_FLTR || 4390 pkt_type == UCAST_FLTR) { 4391 /* Use the dummy ether header DA */ 4392 ether_addr_copy(mac_addr, dummy_eth_header); 4393 if (pkt_type == MCAST_FLTR) 4394 mac_addr[0] |= 0x1; /* Set multicast bit */ 4395 } 4396 4397 /* Need to reset this to zero for all iterations */ 4398 new_fltr.flag = 0; 4399 if (is_tx_fltr) { 4400 new_fltr.flag |= ICE_FLTR_TX; 4401 new_fltr.src = hw_vsi_id; 4402 } else { 4403 new_fltr.flag |= ICE_FLTR_RX; 4404 new_fltr.src = hw->port_info->lport; 4405 } 4406 4407 new_fltr.fltr_act = ICE_FWD_TO_VSI; 4408 new_fltr.vsi_handle = vsi_handle; 4409 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id; 4410 f_list_entry.fltr_info = new_fltr; 4411 4412 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry); 4413 if (status) 4414 goto set_promisc_exit; 4415 } 4416 4417 set_promisc_exit: 4418 return status; 4419 } 4420 4421 /** 4422 * ice_set_vlan_vsi_promisc 4423 * @hw: pointer to the hardware structure 4424 * @vsi_handle: VSI handle to configure 4425 * @promisc_mask: mask of promiscuous config bits 4426 * @rm_vlan_promisc: Clear VLANs VSI promisc mode 4427 * 4428 * Configure VSI with all associated VLANs to given promiscuous mode(s) 4429 */ 4430 int 4431 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 4432 bool rm_vlan_promisc) 4433 { 4434 struct ice_switch_info *sw = hw->switch_info; 4435 struct ice_fltr_list_entry *list_itr, *tmp; 4436 struct list_head vsi_list_head; 4437 struct list_head *vlan_head; 4438 struct mutex *vlan_lock; /* Lock to protect filter rule list */ 4439 u16 vlan_id; 4440 int status; 4441 4442 INIT_LIST_HEAD(&vsi_list_head); 4443 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 4444 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 4445 mutex_lock(vlan_lock); 4446 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head, 4447 &vsi_list_head); 4448 mutex_unlock(vlan_lock); 4449 if (status) 4450 goto free_fltr_list; 4451 4452 list_for_each_entry(list_itr, &vsi_list_head, list_entry) { 4453 /* Avoid enabling or disabling VLAN zero twice when in double 4454 * VLAN mode 4455 */ 4456 if (ice_is_dvm_ena(hw) && 4457 list_itr->fltr_info.l_data.vlan.tpid == 0) 4458 continue; 4459 4460 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id; 4461 if (rm_vlan_promisc) 4462 status = ice_clear_vsi_promisc(hw, vsi_handle, 4463 promisc_mask, vlan_id); 4464 else 4465 status = ice_set_vsi_promisc(hw, vsi_handle, 4466 promisc_mask, vlan_id); 4467 if (status && status != -EEXIST) 4468 break; 4469 } 4470 4471 free_fltr_list: 4472 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) { 4473 list_del(&list_itr->list_entry); 4474 devm_kfree(ice_hw_to_dev(hw), list_itr); 4475 } 4476 return status; 4477 } 4478 4479 /** 4480 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI 4481 * @hw: pointer to the hardware structure 4482 * @vsi_handle: VSI handle to remove filters from 4483 * @lkup: switch rule filter lookup type 4484 */ 4485 static void 4486 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle, 4487 enum ice_sw_lkup_type lkup) 4488 { 4489 struct ice_switch_info *sw = hw->switch_info; 4490 struct ice_fltr_list_entry *fm_entry; 4491 struct list_head remove_list_head; 4492 struct list_head *rule_head; 4493 struct ice_fltr_list_entry *tmp; 4494 struct mutex *rule_lock; /* Lock to protect filter rule list */ 4495 int status; 4496 4497 INIT_LIST_HEAD(&remove_list_head); 4498 rule_lock = &sw->recp_list[lkup].filt_rule_lock; 4499 rule_head = &sw->recp_list[lkup].filt_rules; 4500 mutex_lock(rule_lock); 4501 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head, 4502 &remove_list_head); 4503 mutex_unlock(rule_lock); 4504 if (status) 4505 goto free_fltr_list; 4506 4507 switch (lkup) { 4508 case ICE_SW_LKUP_MAC: 4509 ice_remove_mac(hw, &remove_list_head); 4510 break; 4511 case ICE_SW_LKUP_VLAN: 4512 ice_remove_vlan(hw, &remove_list_head); 4513 break; 4514 case ICE_SW_LKUP_PROMISC: 4515 case ICE_SW_LKUP_PROMISC_VLAN: 4516 ice_remove_promisc(hw, lkup, &remove_list_head); 4517 break; 4518 case ICE_SW_LKUP_MAC_VLAN: 4519 case ICE_SW_LKUP_ETHERTYPE: 4520 case ICE_SW_LKUP_ETHERTYPE_MAC: 4521 case ICE_SW_LKUP_DFLT: 4522 case ICE_SW_LKUP_LAST: 4523 default: 4524 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup); 4525 break; 4526 } 4527 4528 free_fltr_list: 4529 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 4530 list_del(&fm_entry->list_entry); 4531 devm_kfree(ice_hw_to_dev(hw), fm_entry); 4532 } 4533 } 4534 4535 /** 4536 * ice_remove_vsi_fltr - Remove all filters for a VSI 4537 * @hw: pointer to the hardware structure 4538 * @vsi_handle: VSI handle to remove filters from 4539 */ 4540 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle) 4541 { 4542 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC); 4543 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN); 4544 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC); 4545 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN); 4546 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT); 4547 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE); 4548 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC); 4549 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN); 4550 } 4551 4552 /** 4553 * ice_alloc_res_cntr - allocating resource counter 4554 * @hw: pointer to the hardware structure 4555 * @type: type of resource 4556 * @alloc_shared: if set it is shared else dedicated 4557 * @num_items: number of entries requested for FD resource type 4558 * @counter_id: counter index returned by AQ call 4559 */ 4560 int 4561 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 4562 u16 *counter_id) 4563 { 4564 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1); 4565 u16 buf_len = __struct_size(buf); 4566 int status; 4567 4568 buf->num_elems = cpu_to_le16(num_items); 4569 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) | 4570 alloc_shared); 4571 4572 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res); 4573 if (status) 4574 return status; 4575 4576 *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp); 4577 return status; 4578 } 4579 4580 /** 4581 * ice_free_res_cntr - free resource counter 4582 * @hw: pointer to the hardware structure 4583 * @type: type of resource 4584 * @alloc_shared: if set it is shared else dedicated 4585 * @num_items: number of entries to be freed for FD resource type 4586 * @counter_id: counter ID resource which needs to be freed 4587 */ 4588 int 4589 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 4590 u16 counter_id) 4591 { 4592 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1); 4593 u16 buf_len = __struct_size(buf); 4594 int status; 4595 4596 buf->num_elems = cpu_to_le16(num_items); 4597 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) | 4598 alloc_shared); 4599 buf->elem[0].e.sw_resp = cpu_to_le16(counter_id); 4600 4601 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res); 4602 if (status) 4603 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n"); 4604 4605 return status; 4606 } 4607 4608 #define ICE_PROTOCOL_ENTRY(id, ...) { \ 4609 .prot_type = id, \ 4610 .offs = {__VA_ARGS__}, \ 4611 } 4612 4613 /** 4614 * ice_share_res - set a resource as shared or dedicated 4615 * @hw: hw struct of original owner of resource 4616 * @type: resource type 4617 * @shared: is the resource being set to shared 4618 * @res_id: resource id (descriptor) 4619 */ 4620 int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id) 4621 { 4622 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1); 4623 u16 buf_len = __struct_size(buf); 4624 u16 res_type; 4625 int status; 4626 4627 buf->num_elems = cpu_to_le16(1); 4628 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type); 4629 if (shared) 4630 res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED; 4631 4632 buf->res_type = cpu_to_le16(res_type); 4633 buf->elem[0].e.sw_resp = cpu_to_le16(res_id); 4634 status = ice_aq_alloc_free_res(hw, buf, buf_len, 4635 ice_aqc_opc_share_res); 4636 if (status) 4637 ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n", 4638 type, res_id, shared ? "SHARED" : "DEDICATED"); 4639 4640 return status; 4641 } 4642 4643 /* This is mapping table entry that maps every word within a given protocol 4644 * structure to the real byte offset as per the specification of that 4645 * protocol header. 4646 * for example dst address is 3 words in ethertype header and corresponding 4647 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8 4648 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a 4649 * matching entry describing its field. This needs to be updated if new 4650 * structure is added to that union. 4651 */ 4652 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = { 4653 ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12), 4654 ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12), 4655 ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0), 4656 ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0), 4657 ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0), 4658 ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18), 4659 ICE_PROTOCOL_ENTRY(ICE_IPV4_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18), 4660 ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 4661 20, 22, 24, 26, 28, 30, 32, 34, 36, 38), 4662 ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 4663 22, 24, 26, 28, 30, 32, 34, 36, 38), 4664 ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2), 4665 ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2), 4666 ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2), 4667 ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14), 4668 ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14), 4669 ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6), 4670 ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22), 4671 ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14), 4672 ICE_PROTOCOL_ENTRY(ICE_PFCP, 8, 10, 12, 14, 16, 18, 20, 22), 4673 ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6), 4674 ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10), 4675 ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0), 4676 ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0), 4677 ICE_PROTOCOL_ENTRY(ICE_HW_METADATA, 4678 ICE_SOURCE_PORT_MDID_OFFSET, 4679 ICE_PTYPE_MDID_OFFSET, 4680 ICE_PACKET_LENGTH_MDID_OFFSET, 4681 ICE_SOURCE_VSI_MDID_OFFSET, 4682 ICE_PKT_VLAN_MDID_OFFSET, 4683 ICE_PKT_TUNNEL_MDID_OFFSET, 4684 ICE_PKT_TCP_MDID_OFFSET, 4685 ICE_PKT_ERROR_MDID_OFFSET), 4686 }; 4687 4688 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = { 4689 { ICE_MAC_OFOS, ICE_MAC_OFOS_HW }, 4690 { ICE_MAC_IL, ICE_MAC_IL_HW }, 4691 { ICE_ETYPE_OL, ICE_ETYPE_OL_HW }, 4692 { ICE_ETYPE_IL, ICE_ETYPE_IL_HW }, 4693 { ICE_VLAN_OFOS, ICE_VLAN_OL_HW }, 4694 { ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW }, 4695 { ICE_IPV4_IL, ICE_IPV4_IL_HW }, 4696 { ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW }, 4697 { ICE_IPV6_IL, ICE_IPV6_IL_HW }, 4698 { ICE_TCP_IL, ICE_TCP_IL_HW }, 4699 { ICE_UDP_OF, ICE_UDP_OF_HW }, 4700 { ICE_UDP_ILOS, ICE_UDP_ILOS_HW }, 4701 { ICE_VXLAN, ICE_UDP_OF_HW }, 4702 { ICE_GENEVE, ICE_UDP_OF_HW }, 4703 { ICE_NVGRE, ICE_GRE_OF_HW }, 4704 { ICE_GTP, ICE_UDP_OF_HW }, 4705 { ICE_GTP_NO_PAY, ICE_UDP_ILOS_HW }, 4706 { ICE_PFCP, ICE_UDP_ILOS_HW }, 4707 { ICE_PPPOE, ICE_PPPOE_HW }, 4708 { ICE_L2TPV3, ICE_L2TPV3_HW }, 4709 { ICE_VLAN_EX, ICE_VLAN_OF_HW }, 4710 { ICE_VLAN_IN, ICE_VLAN_OL_HW }, 4711 { ICE_HW_METADATA, ICE_META_DATA_ID_HW }, 4712 }; 4713 4714 /** 4715 * ice_find_recp - find a recipe 4716 * @hw: pointer to the hardware structure 4717 * @lkup_exts: extension sequence to match 4718 * @rinfo: information regarding the rule e.g. priority and action info 4719 * @is_add: flag of adding recipe 4720 * 4721 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found. 4722 */ 4723 static u16 4724 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts, 4725 const struct ice_adv_rule_info *rinfo, bool is_add) 4726 { 4727 bool refresh_required = true; 4728 struct ice_sw_recipe *recp; 4729 u8 i; 4730 4731 /* Walk through existing recipes to find a match */ 4732 recp = hw->switch_info->recp_list; 4733 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 4734 /* If recipe was not created for this ID, in SW bookkeeping, 4735 * check if FW has an entry for this recipe. If the FW has an 4736 * entry update it in our SW bookkeeping and continue with the 4737 * matching. 4738 */ 4739 if (hw->recp_reuse) { 4740 if (ice_get_recp_frm_fw(hw, 4741 hw->switch_info->recp_list, i, 4742 &refresh_required, is_add)) 4743 continue; 4744 } 4745 4746 /* if number of words we are looking for match */ 4747 if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) { 4748 struct ice_fv_word *ar = recp[i].lkup_exts.fv_words; 4749 struct ice_fv_word *be = lkup_exts->fv_words; 4750 u16 *cr = recp[i].lkup_exts.field_mask; 4751 u16 *de = lkup_exts->field_mask; 4752 bool found = true; 4753 u8 pe, qr; 4754 4755 /* ar, cr, and qr are related to the recipe words, while 4756 * be, de, and pe are related to the lookup words 4757 */ 4758 for (pe = 0; pe < lkup_exts->n_val_words; pe++) { 4759 for (qr = 0; qr < recp[i].lkup_exts.n_val_words; 4760 qr++) { 4761 if (ar[qr].off == be[pe].off && 4762 ar[qr].prot_id == be[pe].prot_id && 4763 cr[qr] == de[pe]) 4764 /* Found the "pe"th word in the 4765 * given recipe 4766 */ 4767 break; 4768 } 4769 /* After walking through all the words in the 4770 * "i"th recipe if "p"th word was not found then 4771 * this recipe is not what we are looking for. 4772 * So break out from this loop and try the next 4773 * recipe 4774 */ 4775 if (qr >= recp[i].lkup_exts.n_val_words) { 4776 found = false; 4777 break; 4778 } 4779 } 4780 /* If for "i"th recipe the found was never set to false 4781 * then it means we found our match 4782 * Also tun type and *_pass_l2 of recipe needs to be 4783 * checked 4784 */ 4785 if (found && recp[i].tun_type == rinfo->tun_type && 4786 recp[i].need_pass_l2 == rinfo->need_pass_l2 && 4787 recp[i].allow_pass_l2 == rinfo->allow_pass_l2) 4788 return i; /* Return the recipe ID */ 4789 } 4790 } 4791 return ICE_MAX_NUM_RECIPES; 4792 } 4793 4794 /** 4795 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl 4796 * 4797 * As protocol id for outer vlan is different in dvm and svm, if dvm is 4798 * supported protocol array record for outer vlan has to be modified to 4799 * reflect the value proper for DVM. 4800 */ 4801 void ice_change_proto_id_to_dvm(void) 4802 { 4803 u8 i; 4804 4805 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++) 4806 if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS && 4807 ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW) 4808 ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW; 4809 } 4810 4811 /** 4812 * ice_prot_type_to_id - get protocol ID from protocol type 4813 * @type: protocol type 4814 * @id: pointer to variable that will receive the ID 4815 * 4816 * Returns true if found, false otherwise 4817 */ 4818 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id) 4819 { 4820 u8 i; 4821 4822 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++) 4823 if (ice_prot_id_tbl[i].type == type) { 4824 *id = ice_prot_id_tbl[i].protocol_id; 4825 return true; 4826 } 4827 return false; 4828 } 4829 4830 /** 4831 * ice_fill_valid_words - count valid words 4832 * @rule: advanced rule with lookup information 4833 * @lkup_exts: byte offset extractions of the words that are valid 4834 * 4835 * calculate valid words in a lookup rule using mask value 4836 */ 4837 static u8 4838 ice_fill_valid_words(struct ice_adv_lkup_elem *rule, 4839 struct ice_prot_lkup_ext *lkup_exts) 4840 { 4841 u8 j, word, prot_id, ret_val; 4842 4843 if (!ice_prot_type_to_id(rule->type, &prot_id)) 4844 return 0; 4845 4846 word = lkup_exts->n_val_words; 4847 4848 for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++) 4849 if (((u16 *)&rule->m_u)[j] && 4850 rule->type < ARRAY_SIZE(ice_prot_ext)) { 4851 /* No more space to accommodate */ 4852 if (word >= ICE_MAX_CHAIN_WORDS) 4853 return 0; 4854 lkup_exts->fv_words[word].off = 4855 ice_prot_ext[rule->type].offs[j]; 4856 lkup_exts->fv_words[word].prot_id = 4857 ice_prot_id_tbl[rule->type].protocol_id; 4858 lkup_exts->field_mask[word] = 4859 be16_to_cpu(((__force __be16 *)&rule->m_u)[j]); 4860 word++; 4861 } 4862 4863 ret_val = word - lkup_exts->n_val_words; 4864 lkup_exts->n_val_words = word; 4865 4866 return ret_val; 4867 } 4868 4869 /** 4870 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group 4871 * @hw: pointer to the hardware structure 4872 * @rm: recipe management list entry 4873 * 4874 * Helper function to fill in the field vector indices for protocol-offset 4875 * pairs. These indexes are then ultimately programmed into a recipe. 4876 */ 4877 static int 4878 ice_fill_fv_word_index(struct ice_hw *hw, struct ice_sw_recipe *rm) 4879 { 4880 struct ice_sw_fv_list_entry *fv; 4881 struct ice_fv_word *fv_ext; 4882 u8 i; 4883 4884 if (list_empty(&rm->fv_list)) 4885 return -EINVAL; 4886 4887 fv = list_first_entry(&rm->fv_list, struct ice_sw_fv_list_entry, 4888 list_entry); 4889 fv_ext = fv->fv_ptr->ew; 4890 4891 /* Add switch id as the first word. */ 4892 rm->fv_idx[0] = ICE_AQ_SW_ID_LKUP_IDX; 4893 rm->fv_mask[0] = ICE_AQ_SW_ID_LKUP_MASK; 4894 rm->n_ext_words++; 4895 4896 for (i = 1; i < rm->n_ext_words; i++) { 4897 struct ice_fv_word *fv_word = &rm->ext_words[i - 1]; 4898 u16 fv_mask = rm->word_masks[i - 1]; 4899 bool found = false; 4900 u8 j; 4901 4902 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) { 4903 if (fv_ext[j].prot_id == fv_word->prot_id && 4904 fv_ext[j].off == fv_word->off) { 4905 found = true; 4906 4907 /* Store index of field vector */ 4908 rm->fv_idx[i] = j; 4909 rm->fv_mask[i] = fv_mask; 4910 break; 4911 } 4912 } 4913 4914 /* Protocol/offset could not be found, caller gave an invalid 4915 * pair. 4916 */ 4917 if (!found) 4918 return -EINVAL; 4919 } 4920 4921 return 0; 4922 } 4923 4924 /** 4925 * ice_find_free_recp_res_idx - find free result indexes for recipe 4926 * @hw: pointer to hardware structure 4927 * @profiles: bitmap of profiles that will be associated with the new recipe 4928 * @free_idx: pointer to variable to receive the free index bitmap 4929 * 4930 * The algorithm used here is: 4931 * 1. When creating a new recipe, create a set P which contains all 4932 * Profiles that will be associated with our new recipe 4933 * 4934 * 2. For each Profile p in set P: 4935 * a. Add all recipes associated with Profile p into set R 4936 * b. Optional : PossibleIndexes &= profile[p].possibleIndexes 4937 * [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF] 4938 * i. Or just assume they all have the same possible indexes: 4939 * 44, 45, 46, 47 4940 * i.e., PossibleIndexes = 0x0000F00000000000 4941 * 4942 * 3. For each Recipe r in set R: 4943 * a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes 4944 * b. FreeIndexes = UsedIndexes ^ PossibleIndexes 4945 * 4946 * FreeIndexes will contain the bits indicating the indexes free for use, 4947 * then the code needs to update the recipe[r].used_result_idx_bits to 4948 * indicate which indexes were selected for use by this recipe. 4949 */ 4950 static u16 4951 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles, 4952 unsigned long *free_idx) 4953 { 4954 DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS); 4955 DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES); 4956 DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS); 4957 u16 bit; 4958 4959 bitmap_zero(recipes, ICE_MAX_NUM_RECIPES); 4960 bitmap_zero(used_idx, ICE_MAX_FV_WORDS); 4961 4962 bitmap_fill(possible_idx, ICE_MAX_FV_WORDS); 4963 4964 /* For each profile we are going to associate the recipe with, add the 4965 * recipes that are associated with that profile. This will give us 4966 * the set of recipes that our recipe may collide with. Also, determine 4967 * what possible result indexes are usable given this set of profiles. 4968 */ 4969 for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) { 4970 bitmap_or(recipes, recipes, profile_to_recipe[bit], 4971 ICE_MAX_NUM_RECIPES); 4972 bitmap_and(possible_idx, possible_idx, 4973 hw->switch_info->prof_res_bm[bit], 4974 ICE_MAX_FV_WORDS); 4975 } 4976 4977 /* For each recipe that our new recipe may collide with, determine 4978 * which indexes have been used. 4979 */ 4980 for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES) 4981 bitmap_or(used_idx, used_idx, 4982 hw->switch_info->recp_list[bit].res_idxs, 4983 ICE_MAX_FV_WORDS); 4984 4985 bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS); 4986 4987 /* return number of free indexes */ 4988 return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS); 4989 } 4990 4991 /** 4992 * ice_calc_recp_cnt - calculate number of recipes based on word count 4993 * @word_cnt: number of lookup words 4994 * 4995 * Word count should include switch ID word and regular lookup words. 4996 * Returns: number of recipes required to fit @word_cnt, including extra recipes 4997 * needed for recipe chaining (if needed). 4998 */ 4999 static int ice_calc_recp_cnt(u8 word_cnt) 5000 { 5001 /* All words fit in a single recipe, no need for chaining. */ 5002 if (word_cnt <= ICE_NUM_WORDS_RECIPE) 5003 return 1; 5004 5005 /* Recipe chaining required. Result indexes are fitted right after 5006 * regular lookup words. In some cases a new recipe must be added in 5007 * order to fit result indexes. 5008 * 5009 * While the word count increases, every 5 words an extra recipe needs 5010 * to be added. However, by adding a recipe, one word for its result 5011 * index must also be added, therefore every 4 words recipe count 5012 * increases by 1. This calculation does not apply to word count == 1, 5013 * which is handled above. 5014 */ 5015 return (word_cnt + 2) / (ICE_NUM_WORDS_RECIPE - 1); 5016 } 5017 5018 static void fill_recipe_template(struct ice_aqc_recipe_data_elem *recp, u16 rid, 5019 const struct ice_sw_recipe *rm) 5020 { 5021 int i; 5022 5023 recp->recipe_indx = rid; 5024 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_PRUNE_INDX_M; 5025 5026 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) { 5027 recp->content.lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE; 5028 recp->content.mask[i] = cpu_to_le16(0); 5029 } 5030 5031 set_bit(rid, (unsigned long *)recp->recipe_bitmap); 5032 recp->content.act_ctrl_fwd_priority = rm->priority; 5033 5034 if (rm->need_pass_l2) 5035 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2; 5036 5037 if (rm->allow_pass_l2) 5038 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2; 5039 } 5040 5041 static void bookkeep_recipe(struct ice_sw_recipe *recipe, 5042 struct ice_aqc_recipe_data_elem *r, 5043 const struct ice_sw_recipe *rm) 5044 { 5045 memcpy(recipe->r_bitmap, r->recipe_bitmap, sizeof(recipe->r_bitmap)); 5046 5047 recipe->priority = r->content.act_ctrl_fwd_priority; 5048 recipe->tun_type = rm->tun_type; 5049 recipe->need_pass_l2 = rm->need_pass_l2; 5050 recipe->allow_pass_l2 = rm->allow_pass_l2; 5051 recipe->recp_created = true; 5052 } 5053 5054 /* For memcpy in ice_add_sw_recipe. */ 5055 static_assert(sizeof_field(struct ice_aqc_recipe_data_elem, recipe_bitmap) == 5056 sizeof_field(struct ice_sw_recipe, r_bitmap)); 5057 5058 /** 5059 * ice_add_sw_recipe - function to call AQ calls to create switch recipe 5060 * @hw: pointer to hardware structure 5061 * @rm: recipe management list entry 5062 * @profiles: bitmap of profiles that will be associated. 5063 */ 5064 static int 5065 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm, 5066 unsigned long *profiles) 5067 { 5068 struct ice_aqc_recipe_data_elem *buf __free(kfree) = NULL; 5069 DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS); 5070 struct ice_aqc_recipe_data_elem *root; 5071 struct ice_sw_recipe *recipe; 5072 u16 free_res_idx, rid; 5073 int lookup = 0; 5074 int recp_cnt; 5075 int status; 5076 int word; 5077 int i; 5078 5079 recp_cnt = ice_calc_recp_cnt(rm->n_ext_words); 5080 5081 bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS); 5082 bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES); 5083 5084 /* Check number of free result indices */ 5085 free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm); 5086 5087 ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n", 5088 free_res_idx, recp_cnt); 5089 5090 /* Last recipe doesn't need result index */ 5091 if (recp_cnt - 1 > free_res_idx) 5092 return -ENOSPC; 5093 5094 if (recp_cnt > ICE_MAX_CHAIN_RECIPE_RES) 5095 return -E2BIG; 5096 5097 buf = kcalloc(recp_cnt, sizeof(*buf), GFP_KERNEL); 5098 if (!buf) 5099 return -ENOMEM; 5100 5101 /* Setup the non-root subrecipes. These do not contain lookups for other 5102 * subrecipes results. Set associated recipe only to own recipe index. 5103 * Each non-root subrecipe needs a free result index from FV. 5104 * 5105 * Note: only done if there is more than one recipe. 5106 */ 5107 for (i = 0; i < recp_cnt - 1; i++) { 5108 struct ice_aqc_recipe_content *content; 5109 u8 result_idx; 5110 5111 status = ice_alloc_recipe(hw, &rid); 5112 if (status) 5113 return status; 5114 5115 fill_recipe_template(&buf[i], rid, rm); 5116 5117 result_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS); 5118 /* Check if there really is a valid result index that can be 5119 * used. 5120 */ 5121 if (result_idx >= ICE_MAX_FV_WORDS) { 5122 ice_debug(hw, ICE_DBG_SW, "No chain index available\n"); 5123 return -ENOSPC; 5124 } 5125 clear_bit(result_idx, result_idx_bm); 5126 5127 content = &buf[i].content; 5128 content->result_indx = ICE_AQ_RECIPE_RESULT_EN | 5129 FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M, 5130 result_idx); 5131 5132 /* Set recipe association to be used for root recipe */ 5133 set_bit(rid, rm->r_bitmap); 5134 5135 word = 0; 5136 while (lookup < rm->n_ext_words && 5137 word < ICE_NUM_WORDS_RECIPE) { 5138 content->lkup_indx[word] = rm->fv_idx[lookup]; 5139 content->mask[word] = cpu_to_le16(rm->fv_mask[lookup]); 5140 5141 lookup++; 5142 word++; 5143 } 5144 5145 recipe = &hw->switch_info->recp_list[rid]; 5146 set_bit(result_idx, recipe->res_idxs); 5147 bookkeep_recipe(recipe, &buf[i], rm); 5148 } 5149 5150 /* Setup the root recipe */ 5151 status = ice_alloc_recipe(hw, &rid); 5152 if (status) 5153 return status; 5154 5155 recipe = &hw->switch_info->recp_list[rid]; 5156 root = &buf[recp_cnt - 1]; 5157 fill_recipe_template(root, rid, rm); 5158 5159 /* Set recipe association, use previously set bitmap and own rid */ 5160 set_bit(rid, rm->r_bitmap); 5161 memcpy(root->recipe_bitmap, rm->r_bitmap, sizeof(root->recipe_bitmap)); 5162 5163 /* For non-root recipes rid should be 0, for root it should be correct 5164 * rid value ored with 0x80 (is root bit). 5165 */ 5166 root->content.rid = rid | ICE_AQ_RECIPE_ID_IS_ROOT; 5167 5168 /* Fill remaining lookups in root recipe */ 5169 word = 0; 5170 while (lookup < rm->n_ext_words && 5171 word < ICE_NUM_WORDS_RECIPE /* should always be true */) { 5172 root->content.lkup_indx[word] = rm->fv_idx[lookup]; 5173 root->content.mask[word] = cpu_to_le16(rm->fv_mask[lookup]); 5174 5175 lookup++; 5176 word++; 5177 } 5178 5179 /* Fill result indexes as lookups */ 5180 i = 0; 5181 while (i < recp_cnt - 1 && 5182 word < ICE_NUM_WORDS_RECIPE /* should always be true */) { 5183 root->content.lkup_indx[word] = buf[i].content.result_indx & 5184 ~ICE_AQ_RECIPE_RESULT_EN; 5185 root->content.mask[word] = cpu_to_le16(0xffff); 5186 /* For bookkeeping, it is needed to mark FV index as used for 5187 * intermediate result. 5188 */ 5189 set_bit(root->content.lkup_indx[word], recipe->res_idxs); 5190 5191 i++; 5192 word++; 5193 } 5194 5195 rm->root_rid = rid; 5196 bookkeep_recipe(&hw->switch_info->recp_list[rid], root, rm); 5197 5198 /* Program the recipe */ 5199 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 5200 if (status) 5201 return status; 5202 5203 status = ice_aq_add_recipe(hw, buf, recp_cnt, NULL); 5204 ice_release_change_lock(hw); 5205 if (status) 5206 return status; 5207 5208 return 0; 5209 } 5210 5211 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule 5212 * @hw: pointer to hardware structure 5213 * @rinfo: other information regarding the rule e.g. priority and action info 5214 * @bm: pointer to memory for returning the bitmap of field vectors 5215 */ 5216 static void 5217 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo, 5218 unsigned long *bm) 5219 { 5220 enum ice_prof_type prof_type; 5221 5222 bitmap_zero(bm, ICE_MAX_NUM_PROFILES); 5223 5224 switch (rinfo->tun_type) { 5225 case ICE_NON_TUN: 5226 prof_type = ICE_PROF_NON_TUN; 5227 break; 5228 case ICE_ALL_TUNNELS: 5229 prof_type = ICE_PROF_TUN_ALL; 5230 break; 5231 case ICE_SW_TUN_GENEVE: 5232 case ICE_SW_TUN_VXLAN: 5233 prof_type = ICE_PROF_TUN_UDP; 5234 break; 5235 case ICE_SW_TUN_NVGRE: 5236 prof_type = ICE_PROF_TUN_GRE; 5237 break; 5238 case ICE_SW_TUN_GTPU: 5239 prof_type = ICE_PROF_TUN_GTPU; 5240 break; 5241 case ICE_SW_TUN_GTPC: 5242 prof_type = ICE_PROF_TUN_GTPC; 5243 break; 5244 case ICE_SW_TUN_PFCP: 5245 prof_type = ICE_PROF_TUN_PFCP; 5246 break; 5247 case ICE_SW_TUN_AND_NON_TUN: 5248 default: 5249 prof_type = ICE_PROF_ALL; 5250 break; 5251 } 5252 5253 ice_get_sw_fv_bitmap(hw, prof_type, bm); 5254 } 5255 5256 /** 5257 * ice_subscribe_recipe - subscribe to an existing recipe 5258 * @hw: pointer to the hardware structure 5259 * @rid: recipe ID to subscribe to 5260 * 5261 * Return: 0 on success, and others on error 5262 */ 5263 static int ice_subscribe_recipe(struct ice_hw *hw, u16 rid) 5264 { 5265 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1); 5266 u16 buf_len = __struct_size(sw_buf); 5267 u16 res_type; 5268 int status; 5269 5270 /* Prepare buffer to allocate resource */ 5271 sw_buf->num_elems = cpu_to_le16(1); 5272 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE) | 5273 ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED | 5274 ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_CTL; 5275 sw_buf->res_type = cpu_to_le16(res_type); 5276 5277 sw_buf->elem[0].e.sw_resp = cpu_to_le16(rid); 5278 5279 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, 5280 ice_aqc_opc_alloc_res); 5281 5282 return status; 5283 } 5284 5285 /** 5286 * ice_subscribable_recp_shared - share an existing subscribable recipe 5287 * @hw: pointer to the hardware structure 5288 * @rid: recipe ID to subscribe to 5289 */ 5290 static void ice_subscribable_recp_shared(struct ice_hw *hw, u16 rid) 5291 { 5292 struct ice_sw_recipe *recps = hw->switch_info->recp_list; 5293 u16 sub_rid; 5294 5295 for_each_set_bit(sub_rid, recps[rid].r_bitmap, ICE_MAX_NUM_RECIPES) 5296 ice_subscribe_recipe(hw, sub_rid); 5297 } 5298 5299 /** 5300 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default 5301 * @hw: pointer to hardware structure 5302 * @lkups: lookup elements or match criteria for the advanced recipe, one 5303 * structure per protocol header 5304 * @lkups_cnt: number of protocols 5305 * @rinfo: other information regarding the rule e.g. priority and action info 5306 * @rid: return the recipe ID of the recipe created 5307 */ 5308 static int 5309 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 5310 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid) 5311 { 5312 DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES); 5313 DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES); 5314 struct ice_prot_lkup_ext *lkup_exts; 5315 struct ice_sw_fv_list_entry *fvit; 5316 struct ice_sw_fv_list_entry *tmp; 5317 struct ice_sw_recipe *rm; 5318 int status = 0; 5319 u16 rid_tmp; 5320 u8 i; 5321 5322 if (!lkups_cnt) 5323 return -EINVAL; 5324 5325 lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL); 5326 if (!lkup_exts) 5327 return -ENOMEM; 5328 5329 /* Determine the number of words to be matched and if it exceeds a 5330 * recipe's restrictions 5331 */ 5332 for (i = 0; i < lkups_cnt; i++) { 5333 u16 count; 5334 5335 if (lkups[i].type >= ICE_PROTOCOL_LAST) { 5336 status = -EIO; 5337 goto err_free_lkup_exts; 5338 } 5339 5340 count = ice_fill_valid_words(&lkups[i], lkup_exts); 5341 if (!count) { 5342 status = -EIO; 5343 goto err_free_lkup_exts; 5344 } 5345 } 5346 5347 rm = kzalloc(sizeof(*rm), GFP_KERNEL); 5348 if (!rm) { 5349 status = -ENOMEM; 5350 goto err_free_lkup_exts; 5351 } 5352 5353 /* Get field vectors that contain fields extracted from all the protocol 5354 * headers being programmed. 5355 */ 5356 INIT_LIST_HEAD(&rm->fv_list); 5357 5358 /* Get bitmap of field vectors (profiles) that are compatible with the 5359 * rule request; only these will be searched in the subsequent call to 5360 * ice_get_sw_fv_list. 5361 */ 5362 ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap); 5363 5364 status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list); 5365 if (status) 5366 goto err_unroll; 5367 5368 /* Copy FV words and masks from lkup_exts to recipe struct. */ 5369 rm->n_ext_words = lkup_exts->n_val_words; 5370 memcpy(rm->ext_words, lkup_exts->fv_words, sizeof(rm->ext_words)); 5371 memcpy(rm->word_masks, lkup_exts->field_mask, sizeof(rm->word_masks)); 5372 5373 /* set the recipe priority if specified */ 5374 rm->priority = (u8)rinfo->priority; 5375 5376 rm->need_pass_l2 = rinfo->need_pass_l2; 5377 rm->allow_pass_l2 = rinfo->allow_pass_l2; 5378 5379 /* Find offsets from the field vector. Pick the first one for all the 5380 * recipes. 5381 */ 5382 status = ice_fill_fv_word_index(hw, rm); 5383 if (status) 5384 goto err_unroll; 5385 5386 /* get bitmap of all profiles the recipe will be associated with */ 5387 bitmap_zero(profiles, ICE_MAX_NUM_PROFILES); 5388 list_for_each_entry(fvit, &rm->fv_list, list_entry) { 5389 ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id); 5390 set_bit((u16)fvit->profile_id, profiles); 5391 } 5392 5393 /* Look for a recipe which matches our requested fv / mask list */ 5394 *rid = ice_find_recp(hw, lkup_exts, rinfo, true); 5395 if (*rid < ICE_MAX_NUM_RECIPES) { 5396 /* Success if found a recipe that match the existing criteria */ 5397 if (hw->recp_reuse) 5398 ice_subscribable_recp_shared(hw, *rid); 5399 5400 goto err_unroll; 5401 } 5402 5403 rm->tun_type = rinfo->tun_type; 5404 /* Recipe we need does not exist, add a recipe */ 5405 status = ice_add_sw_recipe(hw, rm, profiles); 5406 if (status) 5407 goto err_unroll; 5408 5409 /* Associate all the recipes created with all the profiles in the 5410 * common field vector. 5411 */ 5412 list_for_each_entry(fvit, &rm->fv_list, list_entry) { 5413 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES); 5414 u64 recp_assoc; 5415 u16 j; 5416 5417 status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id, 5418 &recp_assoc, NULL); 5419 if (status) 5420 goto err_free_recipe; 5421 5422 bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES); 5423 bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap, 5424 ICE_MAX_NUM_RECIPES); 5425 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 5426 if (status) 5427 goto err_free_recipe; 5428 5429 bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES); 5430 status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id, 5431 recp_assoc, NULL); 5432 ice_release_change_lock(hw); 5433 5434 if (status) 5435 goto err_free_recipe; 5436 5437 /* Update profile to recipe bitmap array */ 5438 bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap, 5439 ICE_MAX_NUM_RECIPES); 5440 5441 /* Update recipe to profile bitmap array */ 5442 for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES) 5443 set_bit((u16)fvit->profile_id, recipe_to_profile[j]); 5444 } 5445 5446 *rid = rm->root_rid; 5447 memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts, 5448 sizeof(*lkup_exts)); 5449 goto err_unroll; 5450 5451 err_free_recipe: 5452 if (hw->recp_reuse) { 5453 for_each_set_bit(rid_tmp, rm->r_bitmap, ICE_MAX_NUM_RECIPES) { 5454 if (!ice_free_recipe_res(hw, rid_tmp)) 5455 clear_bit(rid_tmp, rm->r_bitmap); 5456 } 5457 } 5458 5459 err_unroll: 5460 list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) { 5461 list_del(&fvit->list_entry); 5462 devm_kfree(ice_hw_to_dev(hw), fvit); 5463 } 5464 5465 kfree(rm); 5466 5467 err_free_lkup_exts: 5468 kfree(lkup_exts); 5469 5470 return status; 5471 } 5472 5473 /** 5474 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt 5475 * 5476 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added 5477 * @num_vlan: number of VLAN tags 5478 */ 5479 static struct ice_dummy_pkt_profile * 5480 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt, 5481 u32 num_vlan) 5482 { 5483 struct ice_dummy_pkt_profile *profile; 5484 struct ice_dummy_pkt_offsets *offsets; 5485 u32 buf_len, off, etype_off, i; 5486 u8 *pkt; 5487 5488 if (num_vlan < 1 || num_vlan > 2) 5489 return ERR_PTR(-EINVAL); 5490 5491 off = num_vlan * VLAN_HLEN; 5492 5493 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) + 5494 dummy_pkt->offsets_len; 5495 offsets = kzalloc(buf_len, GFP_KERNEL); 5496 if (!offsets) 5497 return ERR_PTR(-ENOMEM); 5498 5499 offsets[0] = dummy_pkt->offsets[0]; 5500 if (num_vlan == 2) { 5501 offsets[1] = ice_dummy_qinq_packet_offsets[0]; 5502 offsets[2] = ice_dummy_qinq_packet_offsets[1]; 5503 } else if (num_vlan == 1) { 5504 offsets[1] = ice_dummy_vlan_packet_offsets[0]; 5505 } 5506 5507 for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) { 5508 offsets[i + num_vlan].type = dummy_pkt->offsets[i].type; 5509 offsets[i + num_vlan].offset = 5510 dummy_pkt->offsets[i].offset + off; 5511 } 5512 offsets[i + num_vlan] = dummy_pkt->offsets[i]; 5513 5514 etype_off = dummy_pkt->offsets[1].offset; 5515 5516 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) + 5517 dummy_pkt->pkt_len; 5518 pkt = kzalloc(buf_len, GFP_KERNEL); 5519 if (!pkt) { 5520 kfree(offsets); 5521 return ERR_PTR(-ENOMEM); 5522 } 5523 5524 memcpy(pkt, dummy_pkt->pkt, etype_off); 5525 memcpy(pkt + etype_off, 5526 num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet, 5527 off); 5528 memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off, 5529 dummy_pkt->pkt_len - etype_off); 5530 5531 profile = kzalloc(sizeof(*profile), GFP_KERNEL); 5532 if (!profile) { 5533 kfree(offsets); 5534 kfree(pkt); 5535 return ERR_PTR(-ENOMEM); 5536 } 5537 5538 profile->offsets = offsets; 5539 profile->pkt = pkt; 5540 profile->pkt_len = buf_len; 5541 profile->match |= ICE_PKT_KMALLOC; 5542 5543 return profile; 5544 } 5545 5546 /** 5547 * ice_find_dummy_packet - find dummy packet 5548 * 5549 * @lkups: lookup elements or match criteria for the advanced recipe, one 5550 * structure per protocol header 5551 * @lkups_cnt: number of protocols 5552 * @tun_type: tunnel type 5553 * 5554 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params. 5555 */ 5556 static const struct ice_dummy_pkt_profile * 5557 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt, 5558 enum ice_sw_tunnel_type tun_type) 5559 { 5560 const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles; 5561 u32 match = 0, vlan_count = 0; 5562 u16 i; 5563 5564 switch (tun_type) { 5565 case ICE_SW_TUN_GTPC: 5566 match |= ICE_PKT_TUN_GTPC; 5567 break; 5568 case ICE_SW_TUN_GTPU: 5569 match |= ICE_PKT_TUN_GTPU; 5570 break; 5571 case ICE_SW_TUN_NVGRE: 5572 match |= ICE_PKT_TUN_NVGRE; 5573 break; 5574 case ICE_SW_TUN_GENEVE: 5575 case ICE_SW_TUN_VXLAN: 5576 match |= ICE_PKT_TUN_UDP; 5577 break; 5578 case ICE_SW_TUN_PFCP: 5579 match |= ICE_PKT_PFCP; 5580 break; 5581 default: 5582 break; 5583 } 5584 5585 for (i = 0; i < lkups_cnt; i++) { 5586 if (lkups[i].type == ICE_UDP_ILOS) 5587 match |= ICE_PKT_INNER_UDP; 5588 else if (lkups[i].type == ICE_TCP_IL) 5589 match |= ICE_PKT_INNER_TCP; 5590 else if (lkups[i].type == ICE_IPV6_OFOS) 5591 match |= ICE_PKT_OUTER_IPV6; 5592 else if (lkups[i].type == ICE_VLAN_OFOS || 5593 lkups[i].type == ICE_VLAN_EX) 5594 vlan_count++; 5595 else if (lkups[i].type == ICE_VLAN_IN) 5596 vlan_count++; 5597 else if (lkups[i].type == ICE_ETYPE_OL && 5598 lkups[i].h_u.ethertype.ethtype_id == 5599 cpu_to_be16(ICE_IPV6_ETHER_ID) && 5600 lkups[i].m_u.ethertype.ethtype_id == 5601 cpu_to_be16(0xFFFF)) 5602 match |= ICE_PKT_OUTER_IPV6; 5603 else if (lkups[i].type == ICE_ETYPE_IL && 5604 lkups[i].h_u.ethertype.ethtype_id == 5605 cpu_to_be16(ICE_IPV6_ETHER_ID) && 5606 lkups[i].m_u.ethertype.ethtype_id == 5607 cpu_to_be16(0xFFFF)) 5608 match |= ICE_PKT_INNER_IPV6; 5609 else if (lkups[i].type == ICE_IPV6_IL) 5610 match |= ICE_PKT_INNER_IPV6; 5611 else if (lkups[i].type == ICE_GTP_NO_PAY) 5612 match |= ICE_PKT_GTP_NOPAY; 5613 else if (lkups[i].type == ICE_PPPOE) { 5614 match |= ICE_PKT_PPPOE; 5615 if (lkups[i].h_u.pppoe_hdr.ppp_prot_id == 5616 htons(PPP_IPV6)) 5617 match |= ICE_PKT_OUTER_IPV6; 5618 } else if (lkups[i].type == ICE_L2TPV3) 5619 match |= ICE_PKT_L2TPV3; 5620 } 5621 5622 while (ret->match && (match & ret->match) != ret->match) 5623 ret++; 5624 5625 if (vlan_count != 0) 5626 ret = ice_dummy_packet_add_vlan(ret, vlan_count); 5627 5628 return ret; 5629 } 5630 5631 /** 5632 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria 5633 * 5634 * @lkups: lookup elements or match criteria for the advanced recipe, one 5635 * structure per protocol header 5636 * @lkups_cnt: number of protocols 5637 * @s_rule: stores rule information from the match criteria 5638 * @profile: dummy packet profile (the template, its size and header offsets) 5639 */ 5640 static int 5641 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt, 5642 struct ice_sw_rule_lkup_rx_tx *s_rule, 5643 const struct ice_dummy_pkt_profile *profile) 5644 { 5645 u8 *pkt; 5646 u16 i; 5647 5648 /* Start with a packet with a pre-defined/dummy content. Then, fill 5649 * in the header values to be looked up or matched. 5650 */ 5651 pkt = s_rule->hdr_data; 5652 5653 memcpy(pkt, profile->pkt, profile->pkt_len); 5654 5655 for (i = 0; i < lkups_cnt; i++) { 5656 const struct ice_dummy_pkt_offsets *offsets = profile->offsets; 5657 enum ice_protocol_type type; 5658 u16 offset = 0, len = 0, j; 5659 bool found = false; 5660 5661 /* find the start of this layer; it should be found since this 5662 * was already checked when search for the dummy packet 5663 */ 5664 type = lkups[i].type; 5665 /* metadata isn't present in the packet */ 5666 if (type == ICE_HW_METADATA) 5667 continue; 5668 5669 for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) { 5670 if (type == offsets[j].type) { 5671 offset = offsets[j].offset; 5672 found = true; 5673 break; 5674 } 5675 } 5676 /* this should never happen in a correct calling sequence */ 5677 if (!found) 5678 return -EINVAL; 5679 5680 switch (lkups[i].type) { 5681 case ICE_MAC_OFOS: 5682 case ICE_MAC_IL: 5683 len = sizeof(struct ice_ether_hdr); 5684 break; 5685 case ICE_ETYPE_OL: 5686 case ICE_ETYPE_IL: 5687 len = sizeof(struct ice_ethtype_hdr); 5688 break; 5689 case ICE_VLAN_OFOS: 5690 case ICE_VLAN_EX: 5691 case ICE_VLAN_IN: 5692 len = sizeof(struct ice_vlan_hdr); 5693 break; 5694 case ICE_IPV4_OFOS: 5695 case ICE_IPV4_IL: 5696 len = sizeof(struct ice_ipv4_hdr); 5697 break; 5698 case ICE_IPV6_OFOS: 5699 case ICE_IPV6_IL: 5700 len = sizeof(struct ice_ipv6_hdr); 5701 break; 5702 case ICE_TCP_IL: 5703 case ICE_UDP_OF: 5704 case ICE_UDP_ILOS: 5705 len = sizeof(struct ice_l4_hdr); 5706 break; 5707 case ICE_SCTP_IL: 5708 len = sizeof(struct ice_sctp_hdr); 5709 break; 5710 case ICE_NVGRE: 5711 len = sizeof(struct ice_nvgre_hdr); 5712 break; 5713 case ICE_VXLAN: 5714 case ICE_GENEVE: 5715 len = sizeof(struct ice_udp_tnl_hdr); 5716 break; 5717 case ICE_GTP_NO_PAY: 5718 case ICE_GTP: 5719 len = sizeof(struct ice_udp_gtp_hdr); 5720 break; 5721 case ICE_PFCP: 5722 len = sizeof(struct ice_pfcp_hdr); 5723 break; 5724 case ICE_PPPOE: 5725 len = sizeof(struct ice_pppoe_hdr); 5726 break; 5727 case ICE_L2TPV3: 5728 len = sizeof(struct ice_l2tpv3_sess_hdr); 5729 break; 5730 default: 5731 return -EINVAL; 5732 } 5733 5734 /* the length should be a word multiple */ 5735 if (len % ICE_BYTES_PER_WORD) 5736 return -EIO; 5737 5738 /* We have the offset to the header start, the length, the 5739 * caller's header values and mask. Use this information to 5740 * copy the data into the dummy packet appropriately based on 5741 * the mask. Note that we need to only write the bits as 5742 * indicated by the mask to make sure we don't improperly write 5743 * over any significant packet data. 5744 */ 5745 for (j = 0; j < len / sizeof(u16); j++) { 5746 u16 *ptr = (u16 *)(pkt + offset); 5747 u16 mask = lkups[i].m_raw[j]; 5748 5749 if (!mask) 5750 continue; 5751 5752 ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask); 5753 } 5754 } 5755 5756 s_rule->hdr_len = cpu_to_le16(profile->pkt_len); 5757 5758 return 0; 5759 } 5760 5761 /** 5762 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port 5763 * @hw: pointer to the hardware structure 5764 * @tun_type: tunnel type 5765 * @pkt: dummy packet to fill in 5766 * @offsets: offset info for the dummy packet 5767 */ 5768 static int 5769 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type, 5770 u8 *pkt, const struct ice_dummy_pkt_offsets *offsets) 5771 { 5772 u16 open_port, i; 5773 5774 switch (tun_type) { 5775 case ICE_SW_TUN_VXLAN: 5776 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN)) 5777 return -EIO; 5778 break; 5779 case ICE_SW_TUN_GENEVE: 5780 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE)) 5781 return -EIO; 5782 break; 5783 default: 5784 /* Nothing needs to be done for this tunnel type */ 5785 return 0; 5786 } 5787 5788 /* Find the outer UDP protocol header and insert the port number */ 5789 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) { 5790 if (offsets[i].type == ICE_UDP_OF) { 5791 struct ice_l4_hdr *hdr; 5792 u16 offset; 5793 5794 offset = offsets[i].offset; 5795 hdr = (struct ice_l4_hdr *)&pkt[offset]; 5796 hdr->dst_port = cpu_to_be16(open_port); 5797 5798 return 0; 5799 } 5800 } 5801 5802 return -EIO; 5803 } 5804 5805 /** 5806 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type 5807 * @hw: pointer to hw structure 5808 * @vlan_type: VLAN tag type 5809 * @pkt: dummy packet to fill in 5810 * @offsets: offset info for the dummy packet 5811 */ 5812 static int 5813 ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt, 5814 const struct ice_dummy_pkt_offsets *offsets) 5815 { 5816 u16 i; 5817 5818 /* Check if there is something to do */ 5819 if (!vlan_type || !ice_is_dvm_ena(hw)) 5820 return 0; 5821 5822 /* Find VLAN header and insert VLAN TPID */ 5823 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) { 5824 if (offsets[i].type == ICE_VLAN_OFOS || 5825 offsets[i].type == ICE_VLAN_EX) { 5826 struct ice_vlan_hdr *hdr; 5827 u16 offset; 5828 5829 offset = offsets[i].offset; 5830 hdr = (struct ice_vlan_hdr *)&pkt[offset]; 5831 hdr->type = cpu_to_be16(vlan_type); 5832 5833 return 0; 5834 } 5835 } 5836 5837 return -EIO; 5838 } 5839 5840 static bool ice_rules_equal(const struct ice_adv_rule_info *first, 5841 const struct ice_adv_rule_info *second) 5842 { 5843 return first->sw_act.flag == second->sw_act.flag && 5844 first->tun_type == second->tun_type && 5845 first->vlan_type == second->vlan_type && 5846 first->src_vsi == second->src_vsi && 5847 first->need_pass_l2 == second->need_pass_l2 && 5848 first->allow_pass_l2 == second->allow_pass_l2; 5849 } 5850 5851 /** 5852 * ice_find_adv_rule_entry - Search a rule entry 5853 * @hw: pointer to the hardware structure 5854 * @lkups: lookup elements or match criteria for the advanced recipe, one 5855 * structure per protocol header 5856 * @lkups_cnt: number of protocols 5857 * @recp_id: recipe ID for which we are finding the rule 5858 * @rinfo: other information regarding the rule e.g. priority and action info 5859 * 5860 * Helper function to search for a given advance rule entry 5861 * Returns pointer to entry storing the rule if found 5862 */ 5863 static struct ice_adv_fltr_mgmt_list_entry * 5864 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 5865 u16 lkups_cnt, u16 recp_id, 5866 struct ice_adv_rule_info *rinfo) 5867 { 5868 struct ice_adv_fltr_mgmt_list_entry *list_itr; 5869 struct ice_switch_info *sw = hw->switch_info; 5870 int i; 5871 5872 list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules, 5873 list_entry) { 5874 bool lkups_matched = true; 5875 5876 if (lkups_cnt != list_itr->lkups_cnt) 5877 continue; 5878 for (i = 0; i < list_itr->lkups_cnt; i++) 5879 if (memcmp(&list_itr->lkups[i], &lkups[i], 5880 sizeof(*lkups))) { 5881 lkups_matched = false; 5882 break; 5883 } 5884 if (ice_rules_equal(rinfo, &list_itr->rule_info) && 5885 lkups_matched) 5886 return list_itr; 5887 } 5888 return NULL; 5889 } 5890 5891 /** 5892 * ice_adv_add_update_vsi_list 5893 * @hw: pointer to the hardware structure 5894 * @m_entry: pointer to current adv filter management list entry 5895 * @cur_fltr: filter information from the book keeping entry 5896 * @new_fltr: filter information with the new VSI to be added 5897 * 5898 * Call AQ command to add or update previously created VSI list with new VSI. 5899 * 5900 * Helper function to do book keeping associated with adding filter information 5901 * The algorithm to do the booking keeping is described below : 5902 * When a VSI needs to subscribe to a given advanced filter 5903 * if only one VSI has been added till now 5904 * Allocate a new VSI list and add two VSIs 5905 * to this list using switch rule command 5906 * Update the previously created switch rule with the 5907 * newly created VSI list ID 5908 * if a VSI list was previously created 5909 * Add the new VSI to the previously created VSI list set 5910 * using the update switch rule command 5911 */ 5912 static int 5913 ice_adv_add_update_vsi_list(struct ice_hw *hw, 5914 struct ice_adv_fltr_mgmt_list_entry *m_entry, 5915 struct ice_adv_rule_info *cur_fltr, 5916 struct ice_adv_rule_info *new_fltr) 5917 { 5918 u16 vsi_list_id = 0; 5919 int status; 5920 5921 if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q || 5922 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP || 5923 cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET) 5924 return -EOPNOTSUPP; 5925 5926 if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q || 5927 new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) && 5928 (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI || 5929 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST)) 5930 return -EOPNOTSUPP; 5931 5932 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 5933 /* Only one entry existed in the mapping and it was not already 5934 * a part of a VSI list. So, create a VSI list with the old and 5935 * new VSIs. 5936 */ 5937 struct ice_fltr_info tmp_fltr; 5938 u16 vsi_handle_arr[2]; 5939 5940 /* A rule already exists with the new VSI being added */ 5941 if (cur_fltr->sw_act.fwd_id.hw_vsi_id == 5942 new_fltr->sw_act.fwd_id.hw_vsi_id) 5943 return -EEXIST; 5944 5945 vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle; 5946 vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle; 5947 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 5948 &vsi_list_id, 5949 ICE_SW_LKUP_LAST); 5950 if (status) 5951 return status; 5952 5953 memset(&tmp_fltr, 0, sizeof(tmp_fltr)); 5954 tmp_fltr.flag = m_entry->rule_info.sw_act.flag; 5955 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 5956 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 5957 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 5958 tmp_fltr.lkup_type = ICE_SW_LKUP_LAST; 5959 5960 /* Update the previous switch rule of "forward to VSI" to 5961 * "fwd to VSI list" 5962 */ 5963 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 5964 if (status) 5965 return status; 5966 5967 cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id; 5968 cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST; 5969 m_entry->vsi_list_info = 5970 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 5971 vsi_list_id); 5972 } else { 5973 u16 vsi_handle = new_fltr->sw_act.vsi_handle; 5974 5975 if (!m_entry->vsi_list_info) 5976 return -EIO; 5977 5978 /* A rule already exists with the new VSI being added */ 5979 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) 5980 return 0; 5981 5982 /* Update the previously created VSI list set with 5983 * the new VSI ID passed in 5984 */ 5985 vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id; 5986 5987 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 5988 vsi_list_id, false, 5989 ice_aqc_opc_update_sw_rules, 5990 ICE_SW_LKUP_LAST); 5991 /* update VSI list mapping info with new VSI ID */ 5992 if (!status) 5993 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); 5994 } 5995 if (!status) 5996 m_entry->vsi_count++; 5997 return status; 5998 } 5999 6000 void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup) 6001 { 6002 lkup->type = ICE_HW_METADATA; 6003 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |= 6004 cpu_to_be16(ICE_PKT_TUNNEL_MASK); 6005 } 6006 6007 void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup) 6008 { 6009 lkup->type = ICE_HW_METADATA; 6010 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |= 6011 cpu_to_be16(ICE_PKT_FROM_NETWORK); 6012 } 6013 6014 void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup) 6015 { 6016 lkup->type = ICE_HW_METADATA; 6017 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |= 6018 cpu_to_be16(ICE_PKT_VLAN_MASK); 6019 } 6020 6021 void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup) 6022 { 6023 lkup->type = ICE_HW_METADATA; 6024 lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK); 6025 } 6026 6027 /** 6028 * ice_add_adv_rule - helper function to create an advanced switch rule 6029 * @hw: pointer to the hardware structure 6030 * @lkups: information on the words that needs to be looked up. All words 6031 * together makes one recipe 6032 * @lkups_cnt: num of entries in the lkups array 6033 * @rinfo: other information related to the rule that needs to be programmed 6034 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be 6035 * ignored is case of error. 6036 * 6037 * This function can program only 1 rule at a time. The lkups is used to 6038 * describe the all the words that forms the "lookup" portion of the recipe. 6039 * These words can span multiple protocols. Callers to this function need to 6040 * pass in a list of protocol headers with lookup information along and mask 6041 * that determines which words are valid from the given protocol header. 6042 * rinfo describes other information related to this rule such as forwarding 6043 * IDs, priority of this rule, etc. 6044 */ 6045 int 6046 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 6047 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, 6048 struct ice_rule_query_data *added_entry) 6049 { 6050 struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL; 6051 struct ice_sw_rule_lkup_rx_tx *s_rule = NULL; 6052 const struct ice_dummy_pkt_profile *profile; 6053 u16 rid = 0, i, rule_buf_sz, vsi_handle; 6054 struct list_head *rule_head; 6055 struct ice_switch_info *sw; 6056 u16 word_cnt; 6057 u32 act = 0; 6058 int status; 6059 u8 q_rgn; 6060 6061 /* Initialize profile to result index bitmap */ 6062 if (!hw->switch_info->prof_res_bm_init) { 6063 hw->switch_info->prof_res_bm_init = 1; 6064 ice_init_prof_result_bm(hw); 6065 } 6066 6067 if (!lkups_cnt) 6068 return -EINVAL; 6069 6070 /* get # of words we need to match */ 6071 word_cnt = 0; 6072 for (i = 0; i < lkups_cnt; i++) { 6073 u16 j; 6074 6075 for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++) 6076 if (lkups[i].m_raw[j]) 6077 word_cnt++; 6078 } 6079 6080 if (!word_cnt) 6081 return -EINVAL; 6082 6083 if (word_cnt > ICE_MAX_CHAIN_WORDS) 6084 return -ENOSPC; 6085 6086 /* locate a dummy packet */ 6087 profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type); 6088 if (IS_ERR(profile)) 6089 return PTR_ERR(profile); 6090 6091 if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI || 6092 rinfo->sw_act.fltr_act == ICE_FWD_TO_Q || 6093 rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP || 6094 rinfo->sw_act.fltr_act == ICE_DROP_PACKET || 6095 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET || 6096 rinfo->sw_act.fltr_act == ICE_NOP)) { 6097 status = -EIO; 6098 goto free_pkt_profile; 6099 } 6100 6101 vsi_handle = rinfo->sw_act.vsi_handle; 6102 if (!ice_is_vsi_valid(hw, vsi_handle)) { 6103 status = -EINVAL; 6104 goto free_pkt_profile; 6105 } 6106 6107 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI || 6108 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET || 6109 rinfo->sw_act.fltr_act == ICE_NOP) { 6110 rinfo->sw_act.fwd_id.hw_vsi_id = 6111 ice_get_hw_vsi_num(hw, vsi_handle); 6112 } 6113 6114 if (rinfo->src_vsi) 6115 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi); 6116 else 6117 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle); 6118 6119 status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid); 6120 if (status) 6121 goto free_pkt_profile; 6122 m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo); 6123 if (m_entry) { 6124 /* we have to add VSI to VSI_LIST and increment vsi_count. 6125 * Also Update VSI list so that we can change forwarding rule 6126 * if the rule already exists, we will check if it exists with 6127 * same vsi_id, if not then add it to the VSI list if it already 6128 * exists if not then create a VSI list and add the existing VSI 6129 * ID and the new VSI ID to the list 6130 * We will add that VSI to the list 6131 */ 6132 status = ice_adv_add_update_vsi_list(hw, m_entry, 6133 &m_entry->rule_info, 6134 rinfo); 6135 if (added_entry) { 6136 added_entry->rid = rid; 6137 added_entry->rule_id = m_entry->rule_info.fltr_rule_id; 6138 added_entry->vsi_handle = rinfo->sw_act.vsi_handle; 6139 } 6140 goto free_pkt_profile; 6141 } 6142 rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len); 6143 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL); 6144 if (!s_rule) { 6145 status = -ENOMEM; 6146 goto free_pkt_profile; 6147 } 6148 6149 if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) { 6150 if (!rinfo->flags_info.act_valid) { 6151 act |= ICE_SINGLE_ACT_LAN_ENABLE; 6152 act |= ICE_SINGLE_ACT_LB_ENABLE; 6153 } else { 6154 act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE | 6155 ICE_SINGLE_ACT_LB_ENABLE); 6156 } 6157 } 6158 6159 switch (rinfo->sw_act.fltr_act) { 6160 case ICE_FWD_TO_VSI: 6161 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M, 6162 rinfo->sw_act.fwd_id.hw_vsi_id); 6163 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT; 6164 break; 6165 case ICE_FWD_TO_Q: 6166 act |= ICE_SINGLE_ACT_TO_Q; 6167 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M, 6168 rinfo->sw_act.fwd_id.q_id); 6169 break; 6170 case ICE_FWD_TO_QGRP: 6171 q_rgn = rinfo->sw_act.qgrp_size > 0 ? 6172 (u8)ilog2(rinfo->sw_act.qgrp_size) : 0; 6173 act |= ICE_SINGLE_ACT_TO_Q; 6174 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M, 6175 rinfo->sw_act.fwd_id.q_id); 6176 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn); 6177 break; 6178 case ICE_DROP_PACKET: 6179 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 6180 ICE_SINGLE_ACT_VALID_BIT; 6181 break; 6182 case ICE_MIRROR_PACKET: 6183 act |= ICE_SINGLE_ACT_OTHER_ACTS; 6184 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M, 6185 rinfo->sw_act.fwd_id.hw_vsi_id); 6186 break; 6187 case ICE_NOP: 6188 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M, 6189 rinfo->sw_act.fwd_id.hw_vsi_id); 6190 act &= ~ICE_SINGLE_ACT_VALID_BIT; 6191 break; 6192 default: 6193 status = -EIO; 6194 goto err_ice_add_adv_rule; 6195 } 6196 6197 /* If there is no matching criteria for direction there 6198 * is only one difference between Rx and Tx: 6199 * - get switch id base on VSI number from source field (Tx) 6200 * - get switch id base on port number (Rx) 6201 * 6202 * If matching on direction metadata is chose rule direction is 6203 * extracted from type value set here. 6204 */ 6205 if (rinfo->sw_act.flag & ICE_FLTR_TX) { 6206 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); 6207 s_rule->src = cpu_to_le16(rinfo->sw_act.src); 6208 } else { 6209 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX); 6210 s_rule->src = cpu_to_le16(hw->port_info->lport); 6211 } 6212 6213 s_rule->recipe_id = cpu_to_le16(rid); 6214 s_rule->act = cpu_to_le32(act); 6215 6216 status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile); 6217 if (status) 6218 goto err_ice_add_adv_rule; 6219 6220 status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data, 6221 profile->offsets); 6222 if (status) 6223 goto err_ice_add_adv_rule; 6224 6225 status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type, 6226 s_rule->hdr_data, 6227 profile->offsets); 6228 if (status) 6229 goto err_ice_add_adv_rule; 6230 6231 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule, 6232 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules, 6233 NULL); 6234 if (status) 6235 goto err_ice_add_adv_rule; 6236 adv_fltr = devm_kzalloc(ice_hw_to_dev(hw), 6237 sizeof(struct ice_adv_fltr_mgmt_list_entry), 6238 GFP_KERNEL); 6239 if (!adv_fltr) { 6240 status = -ENOMEM; 6241 goto err_ice_add_adv_rule; 6242 } 6243 6244 adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups, 6245 lkups_cnt * sizeof(*lkups), GFP_KERNEL); 6246 if (!adv_fltr->lkups) { 6247 status = -ENOMEM; 6248 goto err_ice_add_adv_rule; 6249 } 6250 6251 adv_fltr->lkups_cnt = lkups_cnt; 6252 adv_fltr->rule_info = *rinfo; 6253 adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index); 6254 sw = hw->switch_info; 6255 sw->recp_list[rid].adv_rule = true; 6256 rule_head = &sw->recp_list[rid].filt_rules; 6257 6258 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI) 6259 adv_fltr->vsi_count = 1; 6260 6261 /* Add rule entry to book keeping list */ 6262 list_add(&adv_fltr->list_entry, rule_head); 6263 if (added_entry) { 6264 added_entry->rid = rid; 6265 added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id; 6266 added_entry->vsi_handle = rinfo->sw_act.vsi_handle; 6267 } 6268 err_ice_add_adv_rule: 6269 if (status && adv_fltr) { 6270 devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups); 6271 devm_kfree(ice_hw_to_dev(hw), adv_fltr); 6272 } 6273 6274 kfree(s_rule); 6275 6276 free_pkt_profile: 6277 if (profile->match & ICE_PKT_KMALLOC) { 6278 kfree(profile->offsets); 6279 kfree(profile->pkt); 6280 kfree(profile); 6281 } 6282 6283 return status; 6284 } 6285 6286 /** 6287 * ice_replay_vsi_fltr - Replay filters for requested VSI 6288 * @hw: pointer to the hardware structure 6289 * @vsi_handle: driver VSI handle 6290 * @recp_id: Recipe ID for which rules need to be replayed 6291 * @list_head: list for which filters need to be replayed 6292 * 6293 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle. 6294 * It is required to pass valid VSI handle. 6295 */ 6296 static int 6297 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id, 6298 struct list_head *list_head) 6299 { 6300 struct ice_fltr_mgmt_list_entry *itr; 6301 int status = 0; 6302 u16 hw_vsi_id; 6303 6304 if (list_empty(list_head)) 6305 return status; 6306 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 6307 6308 list_for_each_entry(itr, list_head, list_entry) { 6309 struct ice_fltr_list_entry f_entry; 6310 6311 f_entry.fltr_info = itr->fltr_info; 6312 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN && 6313 itr->fltr_info.vsi_handle == vsi_handle) { 6314 /* update the src in case it is VSI num */ 6315 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 6316 f_entry.fltr_info.src = hw_vsi_id; 6317 status = ice_add_rule_internal(hw, recp_id, &f_entry); 6318 if (status) 6319 goto end; 6320 continue; 6321 } 6322 if (!itr->vsi_list_info || 6323 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map)) 6324 continue; 6325 /* Clearing it so that the logic can add it back */ 6326 clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); 6327 f_entry.fltr_info.vsi_handle = vsi_handle; 6328 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; 6329 /* update the src in case it is VSI num */ 6330 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 6331 f_entry.fltr_info.src = hw_vsi_id; 6332 if (recp_id == ICE_SW_LKUP_VLAN) 6333 status = ice_add_vlan_internal(hw, &f_entry); 6334 else 6335 status = ice_add_rule_internal(hw, recp_id, &f_entry); 6336 if (status) 6337 goto end; 6338 } 6339 end: 6340 return status; 6341 } 6342 6343 /** 6344 * ice_adv_rem_update_vsi_list 6345 * @hw: pointer to the hardware structure 6346 * @vsi_handle: VSI handle of the VSI to remove 6347 * @fm_list: filter management entry for which the VSI list management needs to 6348 * be done 6349 */ 6350 static int 6351 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 6352 struct ice_adv_fltr_mgmt_list_entry *fm_list) 6353 { 6354 struct ice_vsi_list_map_info *vsi_list_info; 6355 enum ice_sw_lkup_type lkup_type; 6356 u16 vsi_list_id; 6357 int status; 6358 6359 if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST || 6360 fm_list->vsi_count == 0) 6361 return -EINVAL; 6362 6363 /* A rule with the VSI being removed does not exist */ 6364 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) 6365 return -ENOENT; 6366 6367 lkup_type = ICE_SW_LKUP_LAST; 6368 vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id; 6369 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 6370 ice_aqc_opc_update_sw_rules, 6371 lkup_type); 6372 if (status) 6373 return status; 6374 6375 fm_list->vsi_count--; 6376 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 6377 vsi_list_info = fm_list->vsi_list_info; 6378 if (fm_list->vsi_count == 1) { 6379 struct ice_fltr_info tmp_fltr; 6380 u16 rem_vsi_handle; 6381 6382 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, 6383 ICE_MAX_VSI); 6384 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 6385 return -EIO; 6386 6387 /* Make sure VSI list is empty before removing it below */ 6388 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 6389 vsi_list_id, true, 6390 ice_aqc_opc_update_sw_rules, 6391 lkup_type); 6392 if (status) 6393 return status; 6394 6395 memset(&tmp_fltr, 0, sizeof(tmp_fltr)); 6396 tmp_fltr.flag = fm_list->rule_info.sw_act.flag; 6397 tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id; 6398 fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI; 6399 tmp_fltr.fltr_act = ICE_FWD_TO_VSI; 6400 tmp_fltr.fwd_id.hw_vsi_id = 6401 ice_get_hw_vsi_num(hw, rem_vsi_handle); 6402 fm_list->rule_info.sw_act.fwd_id.hw_vsi_id = 6403 ice_get_hw_vsi_num(hw, rem_vsi_handle); 6404 fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle; 6405 6406 /* Update the previous switch rule of "MAC forward to VSI" to 6407 * "MAC fwd to VSI list" 6408 */ 6409 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 6410 if (status) { 6411 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 6412 tmp_fltr.fwd_id.hw_vsi_id, status); 6413 return status; 6414 } 6415 fm_list->vsi_list_info->ref_cnt--; 6416 6417 /* Remove the VSI list since it is no longer used */ 6418 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 6419 if (status) { 6420 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n", 6421 vsi_list_id, status); 6422 return status; 6423 } 6424 6425 list_del(&vsi_list_info->list_entry); 6426 devm_kfree(ice_hw_to_dev(hw), vsi_list_info); 6427 fm_list->vsi_list_info = NULL; 6428 } 6429 6430 return status; 6431 } 6432 6433 /** 6434 * ice_rem_adv_rule - removes existing advanced switch rule 6435 * @hw: pointer to the hardware structure 6436 * @lkups: information on the words that needs to be looked up. All words 6437 * together makes one recipe 6438 * @lkups_cnt: num of entries in the lkups array 6439 * @rinfo: Its the pointer to the rule information for the rule 6440 * 6441 * This function can be used to remove 1 rule at a time. The lkups is 6442 * used to describe all the words that forms the "lookup" portion of the 6443 * rule. These words can span multiple protocols. Callers to this function 6444 * need to pass in a list of protocol headers with lookup information along 6445 * and mask that determines which words are valid from the given protocol 6446 * header. rinfo describes other information related to this rule such as 6447 * forwarding IDs, priority of this rule, etc. 6448 */ 6449 static int 6450 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 6451 u16 lkups_cnt, struct ice_adv_rule_info *rinfo) 6452 { 6453 struct ice_adv_fltr_mgmt_list_entry *list_elem; 6454 struct ice_prot_lkup_ext lkup_exts; 6455 bool remove_rule = false; 6456 struct mutex *rule_lock; /* Lock to protect filter rule list */ 6457 u16 i, rid, vsi_handle; 6458 int status = 0; 6459 6460 memset(&lkup_exts, 0, sizeof(lkup_exts)); 6461 for (i = 0; i < lkups_cnt; i++) { 6462 u16 count; 6463 6464 if (lkups[i].type >= ICE_PROTOCOL_LAST) 6465 return -EIO; 6466 6467 count = ice_fill_valid_words(&lkups[i], &lkup_exts); 6468 if (!count) 6469 return -EIO; 6470 } 6471 6472 rid = ice_find_recp(hw, &lkup_exts, rinfo, false); 6473 /* If did not find a recipe that match the existing criteria */ 6474 if (rid == ICE_MAX_NUM_RECIPES) 6475 return -EINVAL; 6476 6477 rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock; 6478 list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo); 6479 /* the rule is already removed */ 6480 if (!list_elem) 6481 return 0; 6482 mutex_lock(rule_lock); 6483 if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) { 6484 remove_rule = true; 6485 } else if (list_elem->vsi_count > 1) { 6486 remove_rule = false; 6487 vsi_handle = rinfo->sw_act.vsi_handle; 6488 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem); 6489 } else { 6490 vsi_handle = rinfo->sw_act.vsi_handle; 6491 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem); 6492 if (status) { 6493 mutex_unlock(rule_lock); 6494 return status; 6495 } 6496 if (list_elem->vsi_count == 0) 6497 remove_rule = true; 6498 } 6499 mutex_unlock(rule_lock); 6500 if (remove_rule) { 6501 struct ice_sw_rule_lkup_rx_tx *s_rule; 6502 u16 rule_buf_sz; 6503 6504 rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule); 6505 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL); 6506 if (!s_rule) 6507 return -ENOMEM; 6508 s_rule->act = 0; 6509 s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id); 6510 s_rule->hdr_len = 0; 6511 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule, 6512 rule_buf_sz, 1, 6513 ice_aqc_opc_remove_sw_rules, NULL); 6514 if (!status || status == -ENOENT) { 6515 struct ice_switch_info *sw = hw->switch_info; 6516 struct ice_sw_recipe *r_list = sw->recp_list; 6517 6518 mutex_lock(rule_lock); 6519 list_del(&list_elem->list_entry); 6520 devm_kfree(ice_hw_to_dev(hw), list_elem->lkups); 6521 devm_kfree(ice_hw_to_dev(hw), list_elem); 6522 mutex_unlock(rule_lock); 6523 if (list_empty(&r_list[rid].filt_rules)) { 6524 r_list[rid].adv_rule = false; 6525 6526 /* All rules for this recipe are now removed */ 6527 if (hw->recp_reuse) 6528 ice_release_recipe_res(hw, 6529 &r_list[rid]); 6530 } 6531 } 6532 kfree(s_rule); 6533 } 6534 return status; 6535 } 6536 6537 /** 6538 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID 6539 * @hw: pointer to the hardware structure 6540 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID 6541 * 6542 * This function is used to remove 1 rule at a time. The removal is based on 6543 * the remove_entry parameter. This function will remove rule for a given 6544 * vsi_handle with a given rule_id which is passed as parameter in remove_entry 6545 */ 6546 int 6547 ice_rem_adv_rule_by_id(struct ice_hw *hw, 6548 struct ice_rule_query_data *remove_entry) 6549 { 6550 struct ice_adv_fltr_mgmt_list_entry *list_itr; 6551 struct list_head *list_head; 6552 struct ice_adv_rule_info rinfo; 6553 struct ice_switch_info *sw; 6554 6555 sw = hw->switch_info; 6556 if (!sw->recp_list[remove_entry->rid].recp_created) 6557 return -EINVAL; 6558 list_head = &sw->recp_list[remove_entry->rid].filt_rules; 6559 list_for_each_entry(list_itr, list_head, list_entry) { 6560 if (list_itr->rule_info.fltr_rule_id == 6561 remove_entry->rule_id) { 6562 rinfo = list_itr->rule_info; 6563 rinfo.sw_act.vsi_handle = remove_entry->vsi_handle; 6564 return ice_rem_adv_rule(hw, list_itr->lkups, 6565 list_itr->lkups_cnt, &rinfo); 6566 } 6567 } 6568 /* either list is empty or unable to find rule */ 6569 return -ENOENT; 6570 } 6571 6572 /** 6573 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI 6574 * @hw: pointer to the hardware structure 6575 * @vsi_handle: driver VSI handle 6576 * @list_head: list for which filters need to be replayed 6577 * 6578 * Replay the advanced rule for the given VSI. 6579 */ 6580 static int 6581 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle, 6582 struct list_head *list_head) 6583 { 6584 struct ice_rule_query_data added_entry = { 0 }; 6585 struct ice_adv_fltr_mgmt_list_entry *adv_fltr; 6586 int status = 0; 6587 6588 if (list_empty(list_head)) 6589 return status; 6590 list_for_each_entry(adv_fltr, list_head, list_entry) { 6591 struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info; 6592 u16 lk_cnt = adv_fltr->lkups_cnt; 6593 6594 if (vsi_handle != rinfo->sw_act.vsi_handle) 6595 continue; 6596 status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo, 6597 &added_entry); 6598 if (status) 6599 break; 6600 } 6601 return status; 6602 } 6603 6604 /** 6605 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists 6606 * @hw: pointer to the hardware structure 6607 * @vsi_handle: driver VSI handle 6608 * 6609 * Replays filters for requested VSI via vsi_handle. 6610 */ 6611 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle) 6612 { 6613 struct ice_switch_info *sw = hw->switch_info; 6614 int status; 6615 u8 i; 6616 6617 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 6618 struct list_head *head; 6619 6620 head = &sw->recp_list[i].filt_replay_rules; 6621 if (!sw->recp_list[i].adv_rule) 6622 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head); 6623 else 6624 status = ice_replay_vsi_adv_rule(hw, vsi_handle, head); 6625 if (status) 6626 return status; 6627 } 6628 return status; 6629 } 6630 6631 /** 6632 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules 6633 * @hw: pointer to the HW struct 6634 * 6635 * Deletes the filter replay rules. 6636 */ 6637 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw) 6638 { 6639 struct ice_switch_info *sw = hw->switch_info; 6640 u8 i; 6641 6642 if (!sw) 6643 return; 6644 6645 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 6646 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) { 6647 struct list_head *l_head; 6648 6649 l_head = &sw->recp_list[i].filt_replay_rules; 6650 if (!sw->recp_list[i].adv_rule) 6651 ice_rem_sw_rule_info(hw, l_head); 6652 else 6653 ice_rem_adv_rule_info(hw, l_head); 6654 } 6655 } 6656 } 6657