1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_lib.h" 5 #include "ice_switch.h" 6 7 #define ICE_ETH_DA_OFFSET 0 8 #define ICE_ETH_ETHTYPE_OFFSET 12 9 #define ICE_ETH_VLAN_TCI_OFFSET 14 10 #define ICE_MAX_VLAN_ID 0xFFF 11 #define ICE_IPV6_ETHER_ID 0x86DD 12 13 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem 14 * struct to configure any switch filter rules. 15 * {DA (6 bytes), SA(6 bytes), 16 * Ether type (2 bytes for header without VLAN tag) OR 17 * VLAN tag (4 bytes for header with VLAN tag) } 18 * 19 * Word on Hardcoded values 20 * byte 0 = 0x2: to identify it as locally administered DA MAC 21 * byte 6 = 0x2: to identify it as locally administered SA MAC 22 * byte 12 = 0x81 & byte 13 = 0x00: 23 * In case of VLAN filter first two bytes defines ether type (0x8100) 24 * and remaining two bytes are placeholder for programming a given VLAN ID 25 * In case of Ether type filter it is treated as header without VLAN tag 26 * and byte 12 and 13 is used to program a given Ether type instead 27 */ 28 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0, 29 0x2, 0, 0, 0, 0, 0, 30 0x81, 0, 0, 0}; 31 32 enum { 33 ICE_PKT_OUTER_IPV6 = BIT(0), 34 ICE_PKT_TUN_GTPC = BIT(1), 35 ICE_PKT_TUN_GTPU = BIT(2), 36 ICE_PKT_TUN_NVGRE = BIT(3), 37 ICE_PKT_TUN_UDP = BIT(4), 38 ICE_PKT_INNER_IPV6 = BIT(5), 39 ICE_PKT_INNER_TCP = BIT(6), 40 ICE_PKT_INNER_UDP = BIT(7), 41 ICE_PKT_GTP_NOPAY = BIT(8), 42 ICE_PKT_KMALLOC = BIT(9), 43 ICE_PKT_PPPOE = BIT(10), 44 ICE_PKT_L2TPV3 = BIT(11), 45 }; 46 47 struct ice_dummy_pkt_offsets { 48 enum ice_protocol_type type; 49 u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */ 50 }; 51 52 struct ice_dummy_pkt_profile { 53 const struct ice_dummy_pkt_offsets *offsets; 54 const u8 *pkt; 55 u32 match; 56 u16 pkt_len; 57 u16 offsets_len; 58 }; 59 60 #define ICE_DECLARE_PKT_OFFSETS(type) \ 61 static const struct ice_dummy_pkt_offsets \ 62 ice_dummy_##type##_packet_offsets[] 63 64 #define ICE_DECLARE_PKT_TEMPLATE(type) \ 65 static const u8 ice_dummy_##type##_packet[] 66 67 #define ICE_PKT_PROFILE(type, m) { \ 68 .match = (m), \ 69 .pkt = ice_dummy_##type##_packet, \ 70 .pkt_len = sizeof(ice_dummy_##type##_packet), \ 71 .offsets = ice_dummy_##type##_packet_offsets, \ 72 .offsets_len = sizeof(ice_dummy_##type##_packet_offsets), \ 73 } 74 75 ICE_DECLARE_PKT_OFFSETS(vlan) = { 76 { ICE_VLAN_OFOS, 12 }, 77 }; 78 79 ICE_DECLARE_PKT_TEMPLATE(vlan) = { 80 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */ 81 }; 82 83 ICE_DECLARE_PKT_OFFSETS(qinq) = { 84 { ICE_VLAN_EX, 12 }, 85 { ICE_VLAN_IN, 16 }, 86 }; 87 88 ICE_DECLARE_PKT_TEMPLATE(qinq) = { 89 0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */ 90 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */ 91 }; 92 93 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = { 94 { ICE_MAC_OFOS, 0 }, 95 { ICE_ETYPE_OL, 12 }, 96 { ICE_IPV4_OFOS, 14 }, 97 { ICE_NVGRE, 34 }, 98 { ICE_MAC_IL, 42 }, 99 { ICE_ETYPE_IL, 54 }, 100 { ICE_IPV4_IL, 56 }, 101 { ICE_TCP_IL, 76 }, 102 { ICE_PROTOCOL_LAST, 0 }, 103 }; 104 105 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = { 106 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 107 0x00, 0x00, 0x00, 0x00, 108 0x00, 0x00, 0x00, 0x00, 109 110 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 111 112 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */ 113 0x00, 0x00, 0x00, 0x00, 114 0x00, 0x2F, 0x00, 0x00, 115 0x00, 0x00, 0x00, 0x00, 116 0x00, 0x00, 0x00, 0x00, 117 118 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 119 0x00, 0x00, 0x00, 0x00, 120 121 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 122 0x00, 0x00, 0x00, 0x00, 123 0x00, 0x00, 0x00, 0x00, 124 125 0x08, 0x00, /* ICE_ETYPE_IL 54 */ 126 127 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */ 128 0x00, 0x00, 0x00, 0x00, 129 0x00, 0x06, 0x00, 0x00, 130 0x00, 0x00, 0x00, 0x00, 131 0x00, 0x00, 0x00, 0x00, 132 133 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */ 134 0x00, 0x00, 0x00, 0x00, 135 0x00, 0x00, 0x00, 0x00, 136 0x50, 0x02, 0x20, 0x00, 137 0x00, 0x00, 0x00, 0x00 138 }; 139 140 ICE_DECLARE_PKT_OFFSETS(gre_udp) = { 141 { ICE_MAC_OFOS, 0 }, 142 { ICE_ETYPE_OL, 12 }, 143 { ICE_IPV4_OFOS, 14 }, 144 { ICE_NVGRE, 34 }, 145 { ICE_MAC_IL, 42 }, 146 { ICE_ETYPE_IL, 54 }, 147 { ICE_IPV4_IL, 56 }, 148 { ICE_UDP_ILOS, 76 }, 149 { ICE_PROTOCOL_LAST, 0 }, 150 }; 151 152 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = { 153 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 154 0x00, 0x00, 0x00, 0x00, 155 0x00, 0x00, 0x00, 0x00, 156 157 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 158 159 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */ 160 0x00, 0x00, 0x00, 0x00, 161 0x00, 0x2F, 0x00, 0x00, 162 0x00, 0x00, 0x00, 0x00, 163 0x00, 0x00, 0x00, 0x00, 164 165 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 166 0x00, 0x00, 0x00, 0x00, 167 168 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 169 0x00, 0x00, 0x00, 0x00, 170 0x00, 0x00, 0x00, 0x00, 171 172 0x08, 0x00, /* ICE_ETYPE_IL 54 */ 173 174 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */ 175 0x00, 0x00, 0x00, 0x00, 176 0x00, 0x11, 0x00, 0x00, 177 0x00, 0x00, 0x00, 0x00, 178 0x00, 0x00, 0x00, 0x00, 179 180 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */ 181 0x00, 0x08, 0x00, 0x00, 182 }; 183 184 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = { 185 { ICE_MAC_OFOS, 0 }, 186 { ICE_ETYPE_OL, 12 }, 187 { ICE_IPV4_OFOS, 14 }, 188 { ICE_UDP_OF, 34 }, 189 { ICE_VXLAN, 42 }, 190 { ICE_GENEVE, 42 }, 191 { ICE_VXLAN_GPE, 42 }, 192 { ICE_MAC_IL, 50 }, 193 { ICE_ETYPE_IL, 62 }, 194 { ICE_IPV4_IL, 64 }, 195 { ICE_TCP_IL, 84 }, 196 { ICE_PROTOCOL_LAST, 0 }, 197 }; 198 199 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = { 200 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 201 0x00, 0x00, 0x00, 0x00, 202 0x00, 0x00, 0x00, 0x00, 203 204 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 205 206 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */ 207 0x00, 0x01, 0x00, 0x00, 208 0x40, 0x11, 0x00, 0x00, 209 0x00, 0x00, 0x00, 0x00, 210 0x00, 0x00, 0x00, 0x00, 211 212 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 213 0x00, 0x46, 0x00, 0x00, 214 215 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 216 0x00, 0x00, 0x00, 0x00, 217 218 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 219 0x00, 0x00, 0x00, 0x00, 220 0x00, 0x00, 0x00, 0x00, 221 222 0x08, 0x00, /* ICE_ETYPE_IL 62 */ 223 224 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */ 225 0x00, 0x01, 0x00, 0x00, 226 0x40, 0x06, 0x00, 0x00, 227 0x00, 0x00, 0x00, 0x00, 228 0x00, 0x00, 0x00, 0x00, 229 230 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */ 231 0x00, 0x00, 0x00, 0x00, 232 0x00, 0x00, 0x00, 0x00, 233 0x50, 0x02, 0x20, 0x00, 234 0x00, 0x00, 0x00, 0x00 235 }; 236 237 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = { 238 { ICE_MAC_OFOS, 0 }, 239 { ICE_ETYPE_OL, 12 }, 240 { ICE_IPV4_OFOS, 14 }, 241 { ICE_UDP_OF, 34 }, 242 { ICE_VXLAN, 42 }, 243 { ICE_GENEVE, 42 }, 244 { ICE_VXLAN_GPE, 42 }, 245 { ICE_MAC_IL, 50 }, 246 { ICE_ETYPE_IL, 62 }, 247 { ICE_IPV4_IL, 64 }, 248 { ICE_UDP_ILOS, 84 }, 249 { ICE_PROTOCOL_LAST, 0 }, 250 }; 251 252 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = { 253 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 254 0x00, 0x00, 0x00, 0x00, 255 0x00, 0x00, 0x00, 0x00, 256 257 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 258 259 0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */ 260 0x00, 0x01, 0x00, 0x00, 261 0x00, 0x11, 0x00, 0x00, 262 0x00, 0x00, 0x00, 0x00, 263 0x00, 0x00, 0x00, 0x00, 264 265 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 266 0x00, 0x3a, 0x00, 0x00, 267 268 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 269 0x00, 0x00, 0x00, 0x00, 270 271 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 272 0x00, 0x00, 0x00, 0x00, 273 0x00, 0x00, 0x00, 0x00, 274 275 0x08, 0x00, /* ICE_ETYPE_IL 62 */ 276 277 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */ 278 0x00, 0x01, 0x00, 0x00, 279 0x00, 0x11, 0x00, 0x00, 280 0x00, 0x00, 0x00, 0x00, 281 0x00, 0x00, 0x00, 0x00, 282 283 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */ 284 0x00, 0x08, 0x00, 0x00, 285 }; 286 287 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = { 288 { ICE_MAC_OFOS, 0 }, 289 { ICE_ETYPE_OL, 12 }, 290 { ICE_IPV4_OFOS, 14 }, 291 { ICE_NVGRE, 34 }, 292 { ICE_MAC_IL, 42 }, 293 { ICE_ETYPE_IL, 54 }, 294 { ICE_IPV6_IL, 56 }, 295 { ICE_TCP_IL, 96 }, 296 { ICE_PROTOCOL_LAST, 0 }, 297 }; 298 299 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = { 300 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 301 0x00, 0x00, 0x00, 0x00, 302 0x00, 0x00, 0x00, 0x00, 303 304 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 305 306 0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */ 307 0x00, 0x00, 0x00, 0x00, 308 0x00, 0x2F, 0x00, 0x00, 309 0x00, 0x00, 0x00, 0x00, 310 0x00, 0x00, 0x00, 0x00, 311 312 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 313 0x00, 0x00, 0x00, 0x00, 314 315 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 316 0x00, 0x00, 0x00, 0x00, 317 0x00, 0x00, 0x00, 0x00, 318 319 0x86, 0xdd, /* ICE_ETYPE_IL 54 */ 320 321 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */ 322 0x00, 0x08, 0x06, 0x40, 323 0x00, 0x00, 0x00, 0x00, 324 0x00, 0x00, 0x00, 0x00, 325 0x00, 0x00, 0x00, 0x00, 326 0x00, 0x00, 0x00, 0x00, 327 0x00, 0x00, 0x00, 0x00, 328 0x00, 0x00, 0x00, 0x00, 329 0x00, 0x00, 0x00, 0x00, 330 0x00, 0x00, 0x00, 0x00, 331 332 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */ 333 0x00, 0x00, 0x00, 0x00, 334 0x00, 0x00, 0x00, 0x00, 335 0x50, 0x02, 0x20, 0x00, 336 0x00, 0x00, 0x00, 0x00 337 }; 338 339 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = { 340 { ICE_MAC_OFOS, 0 }, 341 { ICE_ETYPE_OL, 12 }, 342 { ICE_IPV4_OFOS, 14 }, 343 { ICE_NVGRE, 34 }, 344 { ICE_MAC_IL, 42 }, 345 { ICE_ETYPE_IL, 54 }, 346 { ICE_IPV6_IL, 56 }, 347 { ICE_UDP_ILOS, 96 }, 348 { ICE_PROTOCOL_LAST, 0 }, 349 }; 350 351 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = { 352 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 353 0x00, 0x00, 0x00, 0x00, 354 0x00, 0x00, 0x00, 0x00, 355 356 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 357 358 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */ 359 0x00, 0x00, 0x00, 0x00, 360 0x00, 0x2F, 0x00, 0x00, 361 0x00, 0x00, 0x00, 0x00, 362 0x00, 0x00, 0x00, 0x00, 363 364 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ 365 0x00, 0x00, 0x00, 0x00, 366 367 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ 368 0x00, 0x00, 0x00, 0x00, 369 0x00, 0x00, 0x00, 0x00, 370 371 0x86, 0xdd, /* ICE_ETYPE_IL 54 */ 372 373 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */ 374 0x00, 0x08, 0x11, 0x40, 375 0x00, 0x00, 0x00, 0x00, 376 0x00, 0x00, 0x00, 0x00, 377 0x00, 0x00, 0x00, 0x00, 378 0x00, 0x00, 0x00, 0x00, 379 0x00, 0x00, 0x00, 0x00, 380 0x00, 0x00, 0x00, 0x00, 381 0x00, 0x00, 0x00, 0x00, 382 0x00, 0x00, 0x00, 0x00, 383 384 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */ 385 0x00, 0x08, 0x00, 0x00, 386 }; 387 388 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = { 389 { ICE_MAC_OFOS, 0 }, 390 { ICE_ETYPE_OL, 12 }, 391 { ICE_IPV4_OFOS, 14 }, 392 { ICE_UDP_OF, 34 }, 393 { ICE_VXLAN, 42 }, 394 { ICE_GENEVE, 42 }, 395 { ICE_VXLAN_GPE, 42 }, 396 { ICE_MAC_IL, 50 }, 397 { ICE_ETYPE_IL, 62 }, 398 { ICE_IPV6_IL, 64 }, 399 { ICE_TCP_IL, 104 }, 400 { ICE_PROTOCOL_LAST, 0 }, 401 }; 402 403 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = { 404 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 405 0x00, 0x00, 0x00, 0x00, 406 0x00, 0x00, 0x00, 0x00, 407 408 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 409 410 0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */ 411 0x00, 0x01, 0x00, 0x00, 412 0x40, 0x11, 0x00, 0x00, 413 0x00, 0x00, 0x00, 0x00, 414 0x00, 0x00, 0x00, 0x00, 415 416 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 417 0x00, 0x5a, 0x00, 0x00, 418 419 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 420 0x00, 0x00, 0x00, 0x00, 421 422 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 423 0x00, 0x00, 0x00, 0x00, 424 0x00, 0x00, 0x00, 0x00, 425 426 0x86, 0xdd, /* ICE_ETYPE_IL 62 */ 427 428 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */ 429 0x00, 0x08, 0x06, 0x40, 430 0x00, 0x00, 0x00, 0x00, 431 0x00, 0x00, 0x00, 0x00, 432 0x00, 0x00, 0x00, 0x00, 433 0x00, 0x00, 0x00, 0x00, 434 0x00, 0x00, 0x00, 0x00, 435 0x00, 0x00, 0x00, 0x00, 436 0x00, 0x00, 0x00, 0x00, 437 0x00, 0x00, 0x00, 0x00, 438 439 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */ 440 0x00, 0x00, 0x00, 0x00, 441 0x00, 0x00, 0x00, 0x00, 442 0x50, 0x02, 0x20, 0x00, 443 0x00, 0x00, 0x00, 0x00 444 }; 445 446 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = { 447 { ICE_MAC_OFOS, 0 }, 448 { ICE_ETYPE_OL, 12 }, 449 { ICE_IPV4_OFOS, 14 }, 450 { ICE_UDP_OF, 34 }, 451 { ICE_VXLAN, 42 }, 452 { ICE_GENEVE, 42 }, 453 { ICE_VXLAN_GPE, 42 }, 454 { ICE_MAC_IL, 50 }, 455 { ICE_ETYPE_IL, 62 }, 456 { ICE_IPV6_IL, 64 }, 457 { ICE_UDP_ILOS, 104 }, 458 { ICE_PROTOCOL_LAST, 0 }, 459 }; 460 461 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = { 462 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 463 0x00, 0x00, 0x00, 0x00, 464 0x00, 0x00, 0x00, 0x00, 465 466 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 467 468 0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */ 469 0x00, 0x01, 0x00, 0x00, 470 0x00, 0x11, 0x00, 0x00, 471 0x00, 0x00, 0x00, 0x00, 472 0x00, 0x00, 0x00, 0x00, 473 474 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ 475 0x00, 0x4e, 0x00, 0x00, 476 477 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ 478 0x00, 0x00, 0x00, 0x00, 479 480 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ 481 0x00, 0x00, 0x00, 0x00, 482 0x00, 0x00, 0x00, 0x00, 483 484 0x86, 0xdd, /* ICE_ETYPE_IL 62 */ 485 486 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */ 487 0x00, 0x08, 0x11, 0x40, 488 0x00, 0x00, 0x00, 0x00, 489 0x00, 0x00, 0x00, 0x00, 490 0x00, 0x00, 0x00, 0x00, 491 0x00, 0x00, 0x00, 0x00, 492 0x00, 0x00, 0x00, 0x00, 493 0x00, 0x00, 0x00, 0x00, 494 0x00, 0x00, 0x00, 0x00, 495 0x00, 0x00, 0x00, 0x00, 496 497 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */ 498 0x00, 0x08, 0x00, 0x00, 499 }; 500 501 /* offset info for MAC + IPv4 + UDP dummy packet */ 502 ICE_DECLARE_PKT_OFFSETS(udp) = { 503 { ICE_MAC_OFOS, 0 }, 504 { ICE_ETYPE_OL, 12 }, 505 { ICE_IPV4_OFOS, 14 }, 506 { ICE_UDP_ILOS, 34 }, 507 { ICE_PROTOCOL_LAST, 0 }, 508 }; 509 510 /* Dummy packet for MAC + IPv4 + UDP */ 511 ICE_DECLARE_PKT_TEMPLATE(udp) = { 512 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 513 0x00, 0x00, 0x00, 0x00, 514 0x00, 0x00, 0x00, 0x00, 515 516 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 517 518 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */ 519 0x00, 0x01, 0x00, 0x00, 520 0x00, 0x11, 0x00, 0x00, 521 0x00, 0x00, 0x00, 0x00, 522 0x00, 0x00, 0x00, 0x00, 523 524 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */ 525 0x00, 0x08, 0x00, 0x00, 526 527 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 528 }; 529 530 /* offset info for MAC + IPv4 + TCP dummy packet */ 531 ICE_DECLARE_PKT_OFFSETS(tcp) = { 532 { ICE_MAC_OFOS, 0 }, 533 { ICE_ETYPE_OL, 12 }, 534 { ICE_IPV4_OFOS, 14 }, 535 { ICE_TCP_IL, 34 }, 536 { ICE_PROTOCOL_LAST, 0 }, 537 }; 538 539 /* Dummy packet for MAC + IPv4 + TCP */ 540 ICE_DECLARE_PKT_TEMPLATE(tcp) = { 541 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 542 0x00, 0x00, 0x00, 0x00, 543 0x00, 0x00, 0x00, 0x00, 544 545 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 546 547 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */ 548 0x00, 0x01, 0x00, 0x00, 549 0x00, 0x06, 0x00, 0x00, 550 0x00, 0x00, 0x00, 0x00, 551 0x00, 0x00, 0x00, 0x00, 552 553 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */ 554 0x00, 0x00, 0x00, 0x00, 555 0x00, 0x00, 0x00, 0x00, 556 0x50, 0x00, 0x00, 0x00, 557 0x00, 0x00, 0x00, 0x00, 558 559 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 560 }; 561 562 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = { 563 { ICE_MAC_OFOS, 0 }, 564 { ICE_ETYPE_OL, 12 }, 565 { ICE_IPV6_OFOS, 14 }, 566 { ICE_TCP_IL, 54 }, 567 { ICE_PROTOCOL_LAST, 0 }, 568 }; 569 570 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = { 571 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 572 0x00, 0x00, 0x00, 0x00, 573 0x00, 0x00, 0x00, 0x00, 574 575 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ 576 577 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */ 578 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */ 579 0x00, 0x00, 0x00, 0x00, 580 0x00, 0x00, 0x00, 0x00, 581 0x00, 0x00, 0x00, 0x00, 582 0x00, 0x00, 0x00, 0x00, 583 0x00, 0x00, 0x00, 0x00, 584 0x00, 0x00, 0x00, 0x00, 585 0x00, 0x00, 0x00, 0x00, 586 0x00, 0x00, 0x00, 0x00, 587 588 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */ 589 0x00, 0x00, 0x00, 0x00, 590 0x00, 0x00, 0x00, 0x00, 591 0x50, 0x00, 0x00, 0x00, 592 0x00, 0x00, 0x00, 0x00, 593 594 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 595 }; 596 597 /* IPv6 + UDP */ 598 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = { 599 { ICE_MAC_OFOS, 0 }, 600 { ICE_ETYPE_OL, 12 }, 601 { ICE_IPV6_OFOS, 14 }, 602 { ICE_UDP_ILOS, 54 }, 603 { ICE_PROTOCOL_LAST, 0 }, 604 }; 605 606 /* IPv6 + UDP dummy packet */ 607 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = { 608 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 609 0x00, 0x00, 0x00, 0x00, 610 0x00, 0x00, 0x00, 0x00, 611 612 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ 613 614 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */ 615 0x00, 0x10, 0x11, 0x00, /* Next header UDP */ 616 0x00, 0x00, 0x00, 0x00, 617 0x00, 0x00, 0x00, 0x00, 618 0x00, 0x00, 0x00, 0x00, 619 0x00, 0x00, 0x00, 0x00, 620 0x00, 0x00, 0x00, 0x00, 621 0x00, 0x00, 0x00, 0x00, 622 0x00, 0x00, 0x00, 0x00, 623 0x00, 0x00, 0x00, 0x00, 624 625 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */ 626 0x00, 0x10, 0x00, 0x00, 627 628 0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */ 629 0x00, 0x00, 0x00, 0x00, 630 631 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 632 }; 633 634 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */ 635 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = { 636 { ICE_MAC_OFOS, 0 }, 637 { ICE_IPV4_OFOS, 14 }, 638 { ICE_UDP_OF, 34 }, 639 { ICE_GTP, 42 }, 640 { ICE_IPV4_IL, 62 }, 641 { ICE_TCP_IL, 82 }, 642 { ICE_PROTOCOL_LAST, 0 }, 643 }; 644 645 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = { 646 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 647 0x00, 0x00, 0x00, 0x00, 648 0x00, 0x00, 0x00, 0x00, 649 0x08, 0x00, 650 651 0x45, 0x00, 0x00, 0x58, /* IP 14 */ 652 0x00, 0x00, 0x00, 0x00, 653 0x00, 0x11, 0x00, 0x00, 654 0x00, 0x00, 0x00, 0x00, 655 0x00, 0x00, 0x00, 0x00, 656 657 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 658 0x00, 0x44, 0x00, 0x00, 659 660 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */ 661 0x00, 0x00, 0x00, 0x00, 662 0x00, 0x00, 0x00, 0x85, 663 664 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 665 0x00, 0x00, 0x00, 0x00, 666 667 0x45, 0x00, 0x00, 0x28, /* IP 62 */ 668 0x00, 0x00, 0x00, 0x00, 669 0x00, 0x06, 0x00, 0x00, 670 0x00, 0x00, 0x00, 0x00, 671 0x00, 0x00, 0x00, 0x00, 672 673 0x00, 0x00, 0x00, 0x00, /* TCP 82 */ 674 0x00, 0x00, 0x00, 0x00, 675 0x00, 0x00, 0x00, 0x00, 676 0x50, 0x00, 0x00, 0x00, 677 0x00, 0x00, 0x00, 0x00, 678 679 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 680 }; 681 682 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */ 683 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = { 684 { ICE_MAC_OFOS, 0 }, 685 { ICE_IPV4_OFOS, 14 }, 686 { ICE_UDP_OF, 34 }, 687 { ICE_GTP, 42 }, 688 { ICE_IPV4_IL, 62 }, 689 { ICE_UDP_ILOS, 82 }, 690 { ICE_PROTOCOL_LAST, 0 }, 691 }; 692 693 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = { 694 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 695 0x00, 0x00, 0x00, 0x00, 696 0x00, 0x00, 0x00, 0x00, 697 0x08, 0x00, 698 699 0x45, 0x00, 0x00, 0x4c, /* IP 14 */ 700 0x00, 0x00, 0x00, 0x00, 701 0x00, 0x11, 0x00, 0x00, 702 0x00, 0x00, 0x00, 0x00, 703 0x00, 0x00, 0x00, 0x00, 704 705 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 706 0x00, 0x38, 0x00, 0x00, 707 708 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */ 709 0x00, 0x00, 0x00, 0x00, 710 0x00, 0x00, 0x00, 0x85, 711 712 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 713 0x00, 0x00, 0x00, 0x00, 714 715 0x45, 0x00, 0x00, 0x1c, /* IP 62 */ 716 0x00, 0x00, 0x00, 0x00, 717 0x00, 0x11, 0x00, 0x00, 718 0x00, 0x00, 0x00, 0x00, 719 0x00, 0x00, 0x00, 0x00, 720 721 0x00, 0x00, 0x00, 0x00, /* UDP 82 */ 722 0x00, 0x08, 0x00, 0x00, 723 724 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 725 }; 726 727 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */ 728 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = { 729 { ICE_MAC_OFOS, 0 }, 730 { ICE_IPV4_OFOS, 14 }, 731 { ICE_UDP_OF, 34 }, 732 { ICE_GTP, 42 }, 733 { ICE_IPV6_IL, 62 }, 734 { ICE_TCP_IL, 102 }, 735 { ICE_PROTOCOL_LAST, 0 }, 736 }; 737 738 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = { 739 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 740 0x00, 0x00, 0x00, 0x00, 741 0x00, 0x00, 0x00, 0x00, 742 0x08, 0x00, 743 744 0x45, 0x00, 0x00, 0x6c, /* IP 14 */ 745 0x00, 0x00, 0x00, 0x00, 746 0x00, 0x11, 0x00, 0x00, 747 0x00, 0x00, 0x00, 0x00, 748 0x00, 0x00, 0x00, 0x00, 749 750 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 751 0x00, 0x58, 0x00, 0x00, 752 753 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */ 754 0x00, 0x00, 0x00, 0x00, 755 0x00, 0x00, 0x00, 0x85, 756 757 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 758 0x00, 0x00, 0x00, 0x00, 759 760 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */ 761 0x00, 0x14, 0x06, 0x00, 762 0x00, 0x00, 0x00, 0x00, 763 0x00, 0x00, 0x00, 0x00, 764 0x00, 0x00, 0x00, 0x00, 765 0x00, 0x00, 0x00, 0x00, 766 0x00, 0x00, 0x00, 0x00, 767 0x00, 0x00, 0x00, 0x00, 768 0x00, 0x00, 0x00, 0x00, 769 0x00, 0x00, 0x00, 0x00, 770 771 0x00, 0x00, 0x00, 0x00, /* TCP 102 */ 772 0x00, 0x00, 0x00, 0x00, 773 0x00, 0x00, 0x00, 0x00, 774 0x50, 0x00, 0x00, 0x00, 775 0x00, 0x00, 0x00, 0x00, 776 777 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 778 }; 779 780 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = { 781 { ICE_MAC_OFOS, 0 }, 782 { ICE_IPV4_OFOS, 14 }, 783 { ICE_UDP_OF, 34 }, 784 { ICE_GTP, 42 }, 785 { ICE_IPV6_IL, 62 }, 786 { ICE_UDP_ILOS, 102 }, 787 { ICE_PROTOCOL_LAST, 0 }, 788 }; 789 790 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = { 791 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 792 0x00, 0x00, 0x00, 0x00, 793 0x00, 0x00, 0x00, 0x00, 794 0x08, 0x00, 795 796 0x45, 0x00, 0x00, 0x60, /* IP 14 */ 797 0x00, 0x00, 0x00, 0x00, 798 0x00, 0x11, 0x00, 0x00, 799 0x00, 0x00, 0x00, 0x00, 800 0x00, 0x00, 0x00, 0x00, 801 802 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ 803 0x00, 0x4c, 0x00, 0x00, 804 805 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */ 806 0x00, 0x00, 0x00, 0x00, 807 0x00, 0x00, 0x00, 0x85, 808 809 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ 810 0x00, 0x00, 0x00, 0x00, 811 812 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */ 813 0x00, 0x08, 0x11, 0x00, 814 0x00, 0x00, 0x00, 0x00, 815 0x00, 0x00, 0x00, 0x00, 816 0x00, 0x00, 0x00, 0x00, 817 0x00, 0x00, 0x00, 0x00, 818 0x00, 0x00, 0x00, 0x00, 819 0x00, 0x00, 0x00, 0x00, 820 0x00, 0x00, 0x00, 0x00, 821 0x00, 0x00, 0x00, 0x00, 822 823 0x00, 0x00, 0x00, 0x00, /* UDP 102 */ 824 0x00, 0x08, 0x00, 0x00, 825 826 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 827 }; 828 829 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = { 830 { ICE_MAC_OFOS, 0 }, 831 { ICE_IPV6_OFOS, 14 }, 832 { ICE_UDP_OF, 54 }, 833 { ICE_GTP, 62 }, 834 { ICE_IPV4_IL, 82 }, 835 { ICE_TCP_IL, 102 }, 836 { ICE_PROTOCOL_LAST, 0 }, 837 }; 838 839 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = { 840 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 841 0x00, 0x00, 0x00, 0x00, 842 0x00, 0x00, 0x00, 0x00, 843 0x86, 0xdd, 844 845 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 846 0x00, 0x44, 0x11, 0x00, 847 0x00, 0x00, 0x00, 0x00, 848 0x00, 0x00, 0x00, 0x00, 849 0x00, 0x00, 0x00, 0x00, 850 0x00, 0x00, 0x00, 0x00, 851 0x00, 0x00, 0x00, 0x00, 852 0x00, 0x00, 0x00, 0x00, 853 0x00, 0x00, 0x00, 0x00, 854 0x00, 0x00, 0x00, 0x00, 855 856 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 857 0x00, 0x44, 0x00, 0x00, 858 859 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */ 860 0x00, 0x00, 0x00, 0x00, 861 0x00, 0x00, 0x00, 0x85, 862 863 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 864 0x00, 0x00, 0x00, 0x00, 865 866 0x45, 0x00, 0x00, 0x28, /* IP 82 */ 867 0x00, 0x00, 0x00, 0x00, 868 0x00, 0x06, 0x00, 0x00, 869 0x00, 0x00, 0x00, 0x00, 870 0x00, 0x00, 0x00, 0x00, 871 872 0x00, 0x00, 0x00, 0x00, /* TCP 102 */ 873 0x00, 0x00, 0x00, 0x00, 874 0x00, 0x00, 0x00, 0x00, 875 0x50, 0x00, 0x00, 0x00, 876 0x00, 0x00, 0x00, 0x00, 877 878 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 879 }; 880 881 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = { 882 { ICE_MAC_OFOS, 0 }, 883 { ICE_IPV6_OFOS, 14 }, 884 { ICE_UDP_OF, 54 }, 885 { ICE_GTP, 62 }, 886 { ICE_IPV4_IL, 82 }, 887 { ICE_UDP_ILOS, 102 }, 888 { ICE_PROTOCOL_LAST, 0 }, 889 }; 890 891 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = { 892 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 893 0x00, 0x00, 0x00, 0x00, 894 0x00, 0x00, 0x00, 0x00, 895 0x86, 0xdd, 896 897 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 898 0x00, 0x38, 0x11, 0x00, 899 0x00, 0x00, 0x00, 0x00, 900 0x00, 0x00, 0x00, 0x00, 901 0x00, 0x00, 0x00, 0x00, 902 0x00, 0x00, 0x00, 0x00, 903 0x00, 0x00, 0x00, 0x00, 904 0x00, 0x00, 0x00, 0x00, 905 0x00, 0x00, 0x00, 0x00, 906 0x00, 0x00, 0x00, 0x00, 907 908 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 909 0x00, 0x38, 0x00, 0x00, 910 911 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */ 912 0x00, 0x00, 0x00, 0x00, 913 0x00, 0x00, 0x00, 0x85, 914 915 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 916 0x00, 0x00, 0x00, 0x00, 917 918 0x45, 0x00, 0x00, 0x1c, /* IP 82 */ 919 0x00, 0x00, 0x00, 0x00, 920 0x00, 0x11, 0x00, 0x00, 921 0x00, 0x00, 0x00, 0x00, 922 0x00, 0x00, 0x00, 0x00, 923 924 0x00, 0x00, 0x00, 0x00, /* UDP 102 */ 925 0x00, 0x08, 0x00, 0x00, 926 927 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 928 }; 929 930 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = { 931 { ICE_MAC_OFOS, 0 }, 932 { ICE_IPV6_OFOS, 14 }, 933 { ICE_UDP_OF, 54 }, 934 { ICE_GTP, 62 }, 935 { ICE_IPV6_IL, 82 }, 936 { ICE_TCP_IL, 122 }, 937 { ICE_PROTOCOL_LAST, 0 }, 938 }; 939 940 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = { 941 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 942 0x00, 0x00, 0x00, 0x00, 943 0x00, 0x00, 0x00, 0x00, 944 0x86, 0xdd, 945 946 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 947 0x00, 0x58, 0x11, 0x00, 948 0x00, 0x00, 0x00, 0x00, 949 0x00, 0x00, 0x00, 0x00, 950 0x00, 0x00, 0x00, 0x00, 951 0x00, 0x00, 0x00, 0x00, 952 0x00, 0x00, 0x00, 0x00, 953 0x00, 0x00, 0x00, 0x00, 954 0x00, 0x00, 0x00, 0x00, 955 0x00, 0x00, 0x00, 0x00, 956 957 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 958 0x00, 0x58, 0x00, 0x00, 959 960 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */ 961 0x00, 0x00, 0x00, 0x00, 962 0x00, 0x00, 0x00, 0x85, 963 964 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 965 0x00, 0x00, 0x00, 0x00, 966 967 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */ 968 0x00, 0x14, 0x06, 0x00, 969 0x00, 0x00, 0x00, 0x00, 970 0x00, 0x00, 0x00, 0x00, 971 0x00, 0x00, 0x00, 0x00, 972 0x00, 0x00, 0x00, 0x00, 973 0x00, 0x00, 0x00, 0x00, 974 0x00, 0x00, 0x00, 0x00, 975 0x00, 0x00, 0x00, 0x00, 976 0x00, 0x00, 0x00, 0x00, 977 978 0x00, 0x00, 0x00, 0x00, /* TCP 122 */ 979 0x00, 0x00, 0x00, 0x00, 980 0x00, 0x00, 0x00, 0x00, 981 0x50, 0x00, 0x00, 0x00, 982 0x00, 0x00, 0x00, 0x00, 983 984 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 985 }; 986 987 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = { 988 { ICE_MAC_OFOS, 0 }, 989 { ICE_IPV6_OFOS, 14 }, 990 { ICE_UDP_OF, 54 }, 991 { ICE_GTP, 62 }, 992 { ICE_IPV6_IL, 82 }, 993 { ICE_UDP_ILOS, 122 }, 994 { ICE_PROTOCOL_LAST, 0 }, 995 }; 996 997 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = { 998 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ 999 0x00, 0x00, 0x00, 0x00, 1000 0x00, 0x00, 0x00, 0x00, 1001 0x86, 0xdd, 1002 1003 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ 1004 0x00, 0x4c, 0x11, 0x00, 1005 0x00, 0x00, 0x00, 0x00, 1006 0x00, 0x00, 0x00, 0x00, 1007 0x00, 0x00, 0x00, 0x00, 1008 0x00, 0x00, 0x00, 0x00, 1009 0x00, 0x00, 0x00, 0x00, 1010 0x00, 0x00, 0x00, 0x00, 1011 0x00, 0x00, 0x00, 0x00, 1012 0x00, 0x00, 0x00, 0x00, 1013 1014 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ 1015 0x00, 0x4c, 0x00, 0x00, 1016 1017 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */ 1018 0x00, 0x00, 0x00, 0x00, 1019 0x00, 0x00, 0x00, 0x85, 1020 1021 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ 1022 0x00, 0x00, 0x00, 0x00, 1023 1024 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */ 1025 0x00, 0x08, 0x11, 0x00, 1026 0x00, 0x00, 0x00, 0x00, 1027 0x00, 0x00, 0x00, 0x00, 1028 0x00, 0x00, 0x00, 0x00, 1029 0x00, 0x00, 0x00, 0x00, 1030 0x00, 0x00, 0x00, 0x00, 1031 0x00, 0x00, 0x00, 0x00, 1032 0x00, 0x00, 0x00, 0x00, 1033 0x00, 0x00, 0x00, 0x00, 1034 1035 0x00, 0x00, 0x00, 0x00, /* UDP 122 */ 1036 0x00, 0x08, 0x00, 0x00, 1037 1038 0x00, 0x00, /* 2 bytes for 4 byte alignment */ 1039 }; 1040 1041 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = { 1042 { ICE_MAC_OFOS, 0 }, 1043 { ICE_IPV4_OFOS, 14 }, 1044 { ICE_UDP_OF, 34 }, 1045 { ICE_GTP_NO_PAY, 42 }, 1046 { ICE_PROTOCOL_LAST, 0 }, 1047 }; 1048 1049 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = { 1050 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1051 0x00, 0x00, 0x00, 0x00, 1052 0x00, 0x00, 0x00, 0x00, 1053 0x08, 0x00, 1054 1055 0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */ 1056 0x00, 0x00, 0x40, 0x00, 1057 0x40, 0x11, 0x00, 0x00, 1058 0x00, 0x00, 0x00, 0x00, 1059 0x00, 0x00, 0x00, 0x00, 1060 1061 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */ 1062 0x00, 0x00, 0x00, 0x00, 1063 1064 0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */ 1065 0x00, 0x00, 0x00, 0x00, 1066 0x00, 0x00, 0x00, 0x85, 1067 1068 0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */ 1069 0x00, 0x00, 0x00, 0x00, 1070 1071 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */ 1072 0x00, 0x00, 0x40, 0x00, 1073 0x40, 0x00, 0x00, 0x00, 1074 0x00, 0x00, 0x00, 0x00, 1075 0x00, 0x00, 0x00, 0x00, 1076 0x00, 0x00, 1077 }; 1078 1079 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = { 1080 { ICE_MAC_OFOS, 0 }, 1081 { ICE_IPV6_OFOS, 14 }, 1082 { ICE_UDP_OF, 54 }, 1083 { ICE_GTP_NO_PAY, 62 }, 1084 { ICE_PROTOCOL_LAST, 0 }, 1085 }; 1086 1087 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = { 1088 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1089 0x00, 0x00, 0x00, 0x00, 1090 0x00, 0x00, 0x00, 0x00, 1091 0x86, 0xdd, 1092 1093 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */ 1094 0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/ 1095 0x00, 0x00, 0x00, 0x00, 1096 0x00, 0x00, 0x00, 0x00, 1097 0x00, 0x00, 0x00, 0x00, 1098 0x00, 0x00, 0x00, 0x00, 1099 0x00, 0x00, 0x00, 0x00, 1100 0x00, 0x00, 0x00, 0x00, 1101 0x00, 0x00, 0x00, 0x00, 1102 0x00, 0x00, 0x00, 0x00, 1103 1104 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */ 1105 0x00, 0x00, 0x00, 0x00, 1106 1107 0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */ 1108 0x00, 0x00, 0x00, 0x00, 1109 1110 0x00, 0x00, 1111 }; 1112 1113 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = { 1114 { ICE_MAC_OFOS, 0 }, 1115 { ICE_ETYPE_OL, 12 }, 1116 { ICE_PPPOE, 14 }, 1117 { ICE_IPV4_OFOS, 22 }, 1118 { ICE_TCP_IL, 42 }, 1119 { ICE_PROTOCOL_LAST, 0 }, 1120 }; 1121 1122 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = { 1123 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1124 0x00, 0x00, 0x00, 0x00, 1125 0x00, 0x00, 0x00, 0x00, 1126 1127 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1128 1129 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1130 0x00, 0x16, 1131 1132 0x00, 0x21, /* PPP Link Layer 20 */ 1133 1134 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */ 1135 0x00, 0x01, 0x00, 0x00, 1136 0x00, 0x06, 0x00, 0x00, 1137 0x00, 0x00, 0x00, 0x00, 1138 0x00, 0x00, 0x00, 0x00, 1139 1140 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */ 1141 0x00, 0x00, 0x00, 0x00, 1142 0x00, 0x00, 0x00, 0x00, 1143 0x50, 0x00, 0x00, 0x00, 1144 0x00, 0x00, 0x00, 0x00, 1145 1146 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1147 }; 1148 1149 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = { 1150 { ICE_MAC_OFOS, 0 }, 1151 { ICE_ETYPE_OL, 12 }, 1152 { ICE_PPPOE, 14 }, 1153 { ICE_IPV4_OFOS, 22 }, 1154 { ICE_UDP_ILOS, 42 }, 1155 { ICE_PROTOCOL_LAST, 0 }, 1156 }; 1157 1158 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = { 1159 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1160 0x00, 0x00, 0x00, 0x00, 1161 0x00, 0x00, 0x00, 0x00, 1162 1163 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1164 1165 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1166 0x00, 0x16, 1167 1168 0x00, 0x21, /* PPP Link Layer 20 */ 1169 1170 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */ 1171 0x00, 0x01, 0x00, 0x00, 1172 0x00, 0x11, 0x00, 0x00, 1173 0x00, 0x00, 0x00, 0x00, 1174 0x00, 0x00, 0x00, 0x00, 1175 1176 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */ 1177 0x00, 0x08, 0x00, 0x00, 1178 1179 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1180 }; 1181 1182 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = { 1183 { ICE_MAC_OFOS, 0 }, 1184 { ICE_ETYPE_OL, 12 }, 1185 { ICE_PPPOE, 14 }, 1186 { ICE_IPV6_OFOS, 22 }, 1187 { ICE_TCP_IL, 62 }, 1188 { ICE_PROTOCOL_LAST, 0 }, 1189 }; 1190 1191 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = { 1192 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1193 0x00, 0x00, 0x00, 0x00, 1194 0x00, 0x00, 0x00, 0x00, 1195 1196 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1197 1198 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1199 0x00, 0x2a, 1200 1201 0x00, 0x57, /* PPP Link Layer 20 */ 1202 1203 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */ 1204 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */ 1205 0x00, 0x00, 0x00, 0x00, 1206 0x00, 0x00, 0x00, 0x00, 1207 0x00, 0x00, 0x00, 0x00, 1208 0x00, 0x00, 0x00, 0x00, 1209 0x00, 0x00, 0x00, 0x00, 1210 0x00, 0x00, 0x00, 0x00, 1211 0x00, 0x00, 0x00, 0x00, 1212 0x00, 0x00, 0x00, 0x00, 1213 1214 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */ 1215 0x00, 0x00, 0x00, 0x00, 1216 0x00, 0x00, 0x00, 0x00, 1217 0x50, 0x00, 0x00, 0x00, 1218 0x00, 0x00, 0x00, 0x00, 1219 1220 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1221 }; 1222 1223 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = { 1224 { ICE_MAC_OFOS, 0 }, 1225 { ICE_ETYPE_OL, 12 }, 1226 { ICE_PPPOE, 14 }, 1227 { ICE_IPV6_OFOS, 22 }, 1228 { ICE_UDP_ILOS, 62 }, 1229 { ICE_PROTOCOL_LAST, 0 }, 1230 }; 1231 1232 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = { 1233 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1234 0x00, 0x00, 0x00, 0x00, 1235 0x00, 0x00, 0x00, 0x00, 1236 1237 0x88, 0x64, /* ICE_ETYPE_OL 12 */ 1238 1239 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ 1240 0x00, 0x2a, 1241 1242 0x00, 0x57, /* PPP Link Layer 20 */ 1243 1244 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */ 1245 0x00, 0x08, 0x11, 0x00, /* Next header UDP*/ 1246 0x00, 0x00, 0x00, 0x00, 1247 0x00, 0x00, 0x00, 0x00, 1248 0x00, 0x00, 0x00, 0x00, 1249 0x00, 0x00, 0x00, 0x00, 1250 0x00, 0x00, 0x00, 0x00, 1251 0x00, 0x00, 0x00, 0x00, 1252 0x00, 0x00, 0x00, 0x00, 1253 0x00, 0x00, 0x00, 0x00, 1254 1255 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */ 1256 0x00, 0x08, 0x00, 0x00, 1257 1258 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1259 }; 1260 1261 ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = { 1262 { ICE_MAC_OFOS, 0 }, 1263 { ICE_ETYPE_OL, 12 }, 1264 { ICE_IPV4_OFOS, 14 }, 1265 { ICE_L2TPV3, 34 }, 1266 { ICE_PROTOCOL_LAST, 0 }, 1267 }; 1268 1269 ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = { 1270 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1271 0x00, 0x00, 0x00, 0x00, 1272 0x00, 0x00, 0x00, 0x00, 1273 1274 0x08, 0x00, /* ICE_ETYPE_OL 12 */ 1275 1276 0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */ 1277 0x00, 0x00, 0x40, 0x00, 1278 0x40, 0x73, 0x00, 0x00, 1279 0x00, 0x00, 0x00, 0x00, 1280 0x00, 0x00, 0x00, 0x00, 1281 1282 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */ 1283 0x00, 0x00, 0x00, 0x00, 1284 0x00, 0x00, 0x00, 0x00, 1285 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1286 }; 1287 1288 ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = { 1289 { ICE_MAC_OFOS, 0 }, 1290 { ICE_ETYPE_OL, 12 }, 1291 { ICE_IPV6_OFOS, 14 }, 1292 { ICE_L2TPV3, 54 }, 1293 { ICE_PROTOCOL_LAST, 0 }, 1294 }; 1295 1296 ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = { 1297 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ 1298 0x00, 0x00, 0x00, 0x00, 1299 0x00, 0x00, 0x00, 0x00, 1300 1301 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ 1302 1303 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */ 1304 0x00, 0x0c, 0x73, 0x40, 1305 0x00, 0x00, 0x00, 0x00, 1306 0x00, 0x00, 0x00, 0x00, 1307 0x00, 0x00, 0x00, 0x00, 1308 0x00, 0x00, 0x00, 0x00, 1309 0x00, 0x00, 0x00, 0x00, 1310 0x00, 0x00, 0x00, 0x00, 1311 0x00, 0x00, 0x00, 0x00, 1312 0x00, 0x00, 0x00, 0x00, 1313 1314 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */ 1315 0x00, 0x00, 0x00, 0x00, 1316 0x00, 0x00, 0x00, 0x00, 1317 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ 1318 }; 1319 1320 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = { 1321 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 | 1322 ICE_PKT_GTP_NOPAY), 1323 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU | 1324 ICE_PKT_OUTER_IPV6 | 1325 ICE_PKT_INNER_IPV6 | 1326 ICE_PKT_INNER_UDP), 1327 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU | 1328 ICE_PKT_OUTER_IPV6 | 1329 ICE_PKT_INNER_IPV6), 1330 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU | 1331 ICE_PKT_OUTER_IPV6 | 1332 ICE_PKT_INNER_UDP), 1333 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU | 1334 ICE_PKT_OUTER_IPV6), 1335 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY), 1336 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU | 1337 ICE_PKT_INNER_IPV6 | 1338 ICE_PKT_INNER_UDP), 1339 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU | 1340 ICE_PKT_INNER_IPV6), 1341 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU | 1342 ICE_PKT_INNER_UDP), 1343 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU), 1344 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6), 1345 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC), 1346 ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 | 1347 ICE_PKT_INNER_UDP), 1348 ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6), 1349 ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP), 1350 ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE), 1351 ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 | 1352 ICE_PKT_INNER_TCP), 1353 ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP), 1354 ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6), 1355 ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE), 1356 ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP | 1357 ICE_PKT_INNER_IPV6 | 1358 ICE_PKT_INNER_TCP), 1359 ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6), 1360 ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3), 1361 ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP), 1362 ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP | 1363 ICE_PKT_INNER_IPV6), 1364 ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP), 1365 ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP), 1366 ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP), 1367 ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6), 1368 ICE_PKT_PROFILE(tcp, 0), 1369 }; 1370 1371 /* this is a recipe to profile association bitmap */ 1372 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES], 1373 ICE_MAX_NUM_PROFILES); 1374 1375 /* this is a profile to recipe association bitmap */ 1376 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES], 1377 ICE_MAX_NUM_RECIPES); 1378 1379 /** 1380 * ice_init_def_sw_recp - initialize the recipe book keeping tables 1381 * @hw: pointer to the HW struct 1382 * 1383 * Allocate memory for the entire recipe table and initialize the structures/ 1384 * entries corresponding to basic recipes. 1385 */ 1386 int ice_init_def_sw_recp(struct ice_hw *hw) 1387 { 1388 struct ice_sw_recipe *recps; 1389 u8 i; 1390 1391 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES, 1392 sizeof(*recps), GFP_KERNEL); 1393 if (!recps) 1394 return -ENOMEM; 1395 1396 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 1397 recps[i].root_rid = i; 1398 INIT_LIST_HEAD(&recps[i].filt_rules); 1399 INIT_LIST_HEAD(&recps[i].filt_replay_rules); 1400 INIT_LIST_HEAD(&recps[i].rg_list); 1401 mutex_init(&recps[i].filt_rule_lock); 1402 } 1403 1404 hw->switch_info->recp_list = recps; 1405 1406 return 0; 1407 } 1408 1409 /** 1410 * ice_aq_get_sw_cfg - get switch configuration 1411 * @hw: pointer to the hardware structure 1412 * @buf: pointer to the result buffer 1413 * @buf_size: length of the buffer available for response 1414 * @req_desc: pointer to requested descriptor 1415 * @num_elems: pointer to number of elements 1416 * @cd: pointer to command details structure or NULL 1417 * 1418 * Get switch configuration (0x0200) to be placed in buf. 1419 * This admin command returns information such as initial VSI/port number 1420 * and switch ID it belongs to. 1421 * 1422 * NOTE: *req_desc is both an input/output parameter. 1423 * The caller of this function first calls this function with *request_desc set 1424 * to 0. If the response from f/w has *req_desc set to 0, all the switch 1425 * configuration information has been returned; if non-zero (meaning not all 1426 * the information was returned), the caller should call this function again 1427 * with *req_desc set to the previous value returned by f/w to get the 1428 * next block of switch configuration information. 1429 * 1430 * *num_elems is output only parameter. This reflects the number of elements 1431 * in response buffer. The caller of this function to use *num_elems while 1432 * parsing the response buffer. 1433 */ 1434 static int 1435 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf, 1436 u16 buf_size, u16 *req_desc, u16 *num_elems, 1437 struct ice_sq_cd *cd) 1438 { 1439 struct ice_aqc_get_sw_cfg *cmd; 1440 struct ice_aq_desc desc; 1441 int status; 1442 1443 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg); 1444 cmd = &desc.params.get_sw_conf; 1445 cmd->element = cpu_to_le16(*req_desc); 1446 1447 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 1448 if (!status) { 1449 *req_desc = le16_to_cpu(cmd->element); 1450 *num_elems = le16_to_cpu(cmd->num_elems); 1451 } 1452 1453 return status; 1454 } 1455 1456 /** 1457 * ice_aq_add_vsi 1458 * @hw: pointer to the HW struct 1459 * @vsi_ctx: pointer to a VSI context struct 1460 * @cd: pointer to command details structure or NULL 1461 * 1462 * Add a VSI context to the hardware (0x0210) 1463 */ 1464 static int 1465 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 1466 struct ice_sq_cd *cd) 1467 { 1468 struct ice_aqc_add_update_free_vsi_resp *res; 1469 struct ice_aqc_add_get_update_free_vsi *cmd; 1470 struct ice_aq_desc desc; 1471 int status; 1472 1473 cmd = &desc.params.vsi_cmd; 1474 res = &desc.params.add_update_free_vsi_res; 1475 1476 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi); 1477 1478 if (!vsi_ctx->alloc_from_pool) 1479 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | 1480 ICE_AQ_VSI_IS_VALID); 1481 cmd->vf_id = vsi_ctx->vf_num; 1482 1483 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags); 1484 1485 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1486 1487 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 1488 sizeof(vsi_ctx->info), cd); 1489 1490 if (!status) { 1491 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M; 1492 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used); 1493 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free); 1494 } 1495 1496 return status; 1497 } 1498 1499 /** 1500 * ice_aq_free_vsi 1501 * @hw: pointer to the HW struct 1502 * @vsi_ctx: pointer to a VSI context struct 1503 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 1504 * @cd: pointer to command details structure or NULL 1505 * 1506 * Free VSI context info from hardware (0x0213) 1507 */ 1508 static int 1509 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 1510 bool keep_vsi_alloc, struct ice_sq_cd *cd) 1511 { 1512 struct ice_aqc_add_update_free_vsi_resp *resp; 1513 struct ice_aqc_add_get_update_free_vsi *cmd; 1514 struct ice_aq_desc desc; 1515 int status; 1516 1517 cmd = &desc.params.vsi_cmd; 1518 resp = &desc.params.add_update_free_vsi_res; 1519 1520 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi); 1521 1522 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 1523 if (keep_vsi_alloc) 1524 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC); 1525 1526 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1527 if (!status) { 1528 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 1529 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 1530 } 1531 1532 return status; 1533 } 1534 1535 /** 1536 * ice_aq_update_vsi 1537 * @hw: pointer to the HW struct 1538 * @vsi_ctx: pointer to a VSI context struct 1539 * @cd: pointer to command details structure or NULL 1540 * 1541 * Update VSI context in the hardware (0x0211) 1542 */ 1543 static int 1544 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, 1545 struct ice_sq_cd *cd) 1546 { 1547 struct ice_aqc_add_update_free_vsi_resp *resp; 1548 struct ice_aqc_add_get_update_free_vsi *cmd; 1549 struct ice_aq_desc desc; 1550 int status; 1551 1552 cmd = &desc.params.vsi_cmd; 1553 resp = &desc.params.add_update_free_vsi_res; 1554 1555 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi); 1556 1557 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); 1558 1559 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1560 1561 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, 1562 sizeof(vsi_ctx->info), cd); 1563 1564 if (!status) { 1565 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); 1566 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); 1567 } 1568 1569 return status; 1570 } 1571 1572 /** 1573 * ice_is_vsi_valid - check whether the VSI is valid or not 1574 * @hw: pointer to the HW struct 1575 * @vsi_handle: VSI handle 1576 * 1577 * check whether the VSI is valid or not 1578 */ 1579 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle) 1580 { 1581 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle]; 1582 } 1583 1584 /** 1585 * ice_get_hw_vsi_num - return the HW VSI number 1586 * @hw: pointer to the HW struct 1587 * @vsi_handle: VSI handle 1588 * 1589 * return the HW VSI number 1590 * Caution: call this function only if VSI is valid (ice_is_vsi_valid) 1591 */ 1592 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle) 1593 { 1594 return hw->vsi_ctx[vsi_handle]->vsi_num; 1595 } 1596 1597 /** 1598 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle 1599 * @hw: pointer to the HW struct 1600 * @vsi_handle: VSI handle 1601 * 1602 * return the VSI context entry for a given VSI handle 1603 */ 1604 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 1605 { 1606 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle]; 1607 } 1608 1609 /** 1610 * ice_save_vsi_ctx - save the VSI context for a given VSI handle 1611 * @hw: pointer to the HW struct 1612 * @vsi_handle: VSI handle 1613 * @vsi: VSI context pointer 1614 * 1615 * save the VSI context entry for a given VSI handle 1616 */ 1617 static void 1618 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi) 1619 { 1620 hw->vsi_ctx[vsi_handle] = vsi; 1621 } 1622 1623 /** 1624 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs 1625 * @hw: pointer to the HW struct 1626 * @vsi_handle: VSI handle 1627 */ 1628 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle) 1629 { 1630 struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle); 1631 u8 i; 1632 1633 if (!vsi) 1634 return; 1635 ice_for_each_traffic_class(i) { 1636 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]); 1637 vsi->lan_q_ctx[i] = NULL; 1638 devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]); 1639 vsi->rdma_q_ctx[i] = NULL; 1640 } 1641 } 1642 1643 /** 1644 * ice_clear_vsi_ctx - clear the VSI context entry 1645 * @hw: pointer to the HW struct 1646 * @vsi_handle: VSI handle 1647 * 1648 * clear the VSI context entry 1649 */ 1650 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) 1651 { 1652 struct ice_vsi_ctx *vsi; 1653 1654 vsi = ice_get_vsi_ctx(hw, vsi_handle); 1655 if (vsi) { 1656 ice_clear_vsi_q_ctx(hw, vsi_handle); 1657 devm_kfree(ice_hw_to_dev(hw), vsi); 1658 hw->vsi_ctx[vsi_handle] = NULL; 1659 } 1660 } 1661 1662 /** 1663 * ice_clear_all_vsi_ctx - clear all the VSI context entries 1664 * @hw: pointer to the HW struct 1665 */ 1666 void ice_clear_all_vsi_ctx(struct ice_hw *hw) 1667 { 1668 u16 i; 1669 1670 for (i = 0; i < ICE_MAX_VSI; i++) 1671 ice_clear_vsi_ctx(hw, i); 1672 } 1673 1674 /** 1675 * ice_add_vsi - add VSI context to the hardware and VSI handle list 1676 * @hw: pointer to the HW struct 1677 * @vsi_handle: unique VSI handle provided by drivers 1678 * @vsi_ctx: pointer to a VSI context struct 1679 * @cd: pointer to command details structure or NULL 1680 * 1681 * Add a VSI context to the hardware also add it into the VSI handle list. 1682 * If this function gets called after reset for existing VSIs then update 1683 * with the new HW VSI number in the corresponding VSI handle list entry. 1684 */ 1685 int 1686 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 1687 struct ice_sq_cd *cd) 1688 { 1689 struct ice_vsi_ctx *tmp_vsi_ctx; 1690 int status; 1691 1692 if (vsi_handle >= ICE_MAX_VSI) 1693 return -EINVAL; 1694 status = ice_aq_add_vsi(hw, vsi_ctx, cd); 1695 if (status) 1696 return status; 1697 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1698 if (!tmp_vsi_ctx) { 1699 /* Create a new VSI context */ 1700 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw), 1701 sizeof(*tmp_vsi_ctx), GFP_KERNEL); 1702 if (!tmp_vsi_ctx) { 1703 ice_aq_free_vsi(hw, vsi_ctx, false, cd); 1704 return -ENOMEM; 1705 } 1706 *tmp_vsi_ctx = *vsi_ctx; 1707 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx); 1708 } else { 1709 /* update with new HW VSI num */ 1710 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num; 1711 } 1712 1713 return 0; 1714 } 1715 1716 /** 1717 * ice_free_vsi- free VSI context from hardware and VSI handle list 1718 * @hw: pointer to the HW struct 1719 * @vsi_handle: unique VSI handle 1720 * @vsi_ctx: pointer to a VSI context struct 1721 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources 1722 * @cd: pointer to command details structure or NULL 1723 * 1724 * Free VSI context info from hardware as well as from VSI handle list 1725 */ 1726 int 1727 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 1728 bool keep_vsi_alloc, struct ice_sq_cd *cd) 1729 { 1730 int status; 1731 1732 if (!ice_is_vsi_valid(hw, vsi_handle)) 1733 return -EINVAL; 1734 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 1735 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd); 1736 if (!status) 1737 ice_clear_vsi_ctx(hw, vsi_handle); 1738 return status; 1739 } 1740 1741 /** 1742 * ice_update_vsi 1743 * @hw: pointer to the HW struct 1744 * @vsi_handle: unique VSI handle 1745 * @vsi_ctx: pointer to a VSI context struct 1746 * @cd: pointer to command details structure or NULL 1747 * 1748 * Update VSI context in the hardware 1749 */ 1750 int 1751 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, 1752 struct ice_sq_cd *cd) 1753 { 1754 if (!ice_is_vsi_valid(hw, vsi_handle)) 1755 return -EINVAL; 1756 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); 1757 return ice_aq_update_vsi(hw, vsi_ctx, cd); 1758 } 1759 1760 /** 1761 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI 1762 * @hw: pointer to HW struct 1763 * @vsi_handle: VSI SW index 1764 * @enable: boolean for enable/disable 1765 */ 1766 int 1767 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable) 1768 { 1769 struct ice_vsi_ctx *ctx, *cached_ctx; 1770 int status; 1771 1772 cached_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1773 if (!cached_ctx) 1774 return -ENOENT; 1775 1776 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1777 if (!ctx) 1778 return -ENOMEM; 1779 1780 ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss; 1781 ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc; 1782 ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags; 1783 1784 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1785 1786 if (enable) 1787 ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN; 1788 else 1789 ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN; 1790 1791 status = ice_update_vsi(hw, vsi_handle, ctx, NULL); 1792 if (!status) { 1793 cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags; 1794 cached_ctx->info.valid_sections |= ctx->info.valid_sections; 1795 } 1796 1797 kfree(ctx); 1798 return status; 1799 } 1800 1801 /** 1802 * ice_aq_alloc_free_vsi_list 1803 * @hw: pointer to the HW struct 1804 * @vsi_list_id: VSI list ID returned or used for lookup 1805 * @lkup_type: switch rule filter lookup type 1806 * @opc: switch rules population command type - pass in the command opcode 1807 * 1808 * allocates or free a VSI list resource 1809 */ 1810 static int 1811 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id, 1812 enum ice_sw_lkup_type lkup_type, 1813 enum ice_adminq_opc opc) 1814 { 1815 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1); 1816 u16 buf_len = __struct_size(sw_buf); 1817 struct ice_aqc_res_elem *vsi_ele; 1818 int status; 1819 1820 sw_buf->num_elems = cpu_to_le16(1); 1821 1822 if (lkup_type == ICE_SW_LKUP_MAC || 1823 lkup_type == ICE_SW_LKUP_MAC_VLAN || 1824 lkup_type == ICE_SW_LKUP_ETHERTYPE || 1825 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 1826 lkup_type == ICE_SW_LKUP_PROMISC || 1827 lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 1828 lkup_type == ICE_SW_LKUP_DFLT) { 1829 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP); 1830 } else if (lkup_type == ICE_SW_LKUP_VLAN) { 1831 if (opc == ice_aqc_opc_alloc_res) 1832 sw_buf->res_type = 1833 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE | 1834 ICE_AQC_RES_TYPE_FLAG_SHARED); 1835 else 1836 sw_buf->res_type = 1837 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE); 1838 } else { 1839 return -EINVAL; 1840 } 1841 1842 if (opc == ice_aqc_opc_free_res) 1843 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id); 1844 1845 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc); 1846 if (status) 1847 return status; 1848 1849 if (opc == ice_aqc_opc_alloc_res) { 1850 vsi_ele = &sw_buf->elem[0]; 1851 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp); 1852 } 1853 1854 return 0; 1855 } 1856 1857 /** 1858 * ice_aq_sw_rules - add/update/remove switch rules 1859 * @hw: pointer to the HW struct 1860 * @rule_list: pointer to switch rule population list 1861 * @rule_list_sz: total size of the rule list in bytes 1862 * @num_rules: number of switch rules in the rule_list 1863 * @opc: switch rules population command type - pass in the command opcode 1864 * @cd: pointer to command details structure or NULL 1865 * 1866 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware 1867 */ 1868 int 1869 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz, 1870 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd) 1871 { 1872 struct ice_aq_desc desc; 1873 int status; 1874 1875 if (opc != ice_aqc_opc_add_sw_rules && 1876 opc != ice_aqc_opc_update_sw_rules && 1877 opc != ice_aqc_opc_remove_sw_rules) 1878 return -EINVAL; 1879 1880 ice_fill_dflt_direct_cmd_desc(&desc, opc); 1881 1882 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1883 desc.params.sw_rules.num_rules_fltr_entry_index = 1884 cpu_to_le16(num_rules); 1885 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd); 1886 if (opc != ice_aqc_opc_add_sw_rules && 1887 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT) 1888 status = -ENOENT; 1889 1890 return status; 1891 } 1892 1893 /** 1894 * ice_aq_add_recipe - add switch recipe 1895 * @hw: pointer to the HW struct 1896 * @s_recipe_list: pointer to switch rule population list 1897 * @num_recipes: number of switch recipes in the list 1898 * @cd: pointer to command details structure or NULL 1899 * 1900 * Add(0x0290) 1901 */ 1902 int 1903 ice_aq_add_recipe(struct ice_hw *hw, 1904 struct ice_aqc_recipe_data_elem *s_recipe_list, 1905 u16 num_recipes, struct ice_sq_cd *cd) 1906 { 1907 struct ice_aqc_add_get_recipe *cmd; 1908 struct ice_aq_desc desc; 1909 u16 buf_size; 1910 1911 cmd = &desc.params.add_get_recipe; 1912 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe); 1913 1914 cmd->num_sub_recipes = cpu_to_le16(num_recipes); 1915 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1916 1917 buf_size = num_recipes * sizeof(*s_recipe_list); 1918 1919 return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd); 1920 } 1921 1922 /** 1923 * ice_aq_get_recipe - get switch recipe 1924 * @hw: pointer to the HW struct 1925 * @s_recipe_list: pointer to switch rule population list 1926 * @num_recipes: pointer to the number of recipes (input and output) 1927 * @recipe_root: root recipe number of recipe(s) to retrieve 1928 * @cd: pointer to command details structure or NULL 1929 * 1930 * Get(0x0292) 1931 * 1932 * On input, *num_recipes should equal the number of entries in s_recipe_list. 1933 * On output, *num_recipes will equal the number of entries returned in 1934 * s_recipe_list. 1935 * 1936 * The caller must supply enough space in s_recipe_list to hold all possible 1937 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES. 1938 */ 1939 int 1940 ice_aq_get_recipe(struct ice_hw *hw, 1941 struct ice_aqc_recipe_data_elem *s_recipe_list, 1942 u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd) 1943 { 1944 struct ice_aqc_add_get_recipe *cmd; 1945 struct ice_aq_desc desc; 1946 u16 buf_size; 1947 int status; 1948 1949 if (*num_recipes != ICE_MAX_NUM_RECIPES) 1950 return -EINVAL; 1951 1952 cmd = &desc.params.add_get_recipe; 1953 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe); 1954 1955 cmd->return_index = cpu_to_le16(recipe_root); 1956 cmd->num_sub_recipes = 0; 1957 1958 buf_size = *num_recipes * sizeof(*s_recipe_list); 1959 1960 status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd); 1961 *num_recipes = le16_to_cpu(cmd->num_sub_recipes); 1962 1963 return status; 1964 } 1965 1966 /** 1967 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx 1968 * @hw: pointer to the HW struct 1969 * @params: parameters used to update the default recipe 1970 * 1971 * This function only supports updating default recipes and it only supports 1972 * updating a single recipe based on the lkup_idx at a time. 1973 * 1974 * This is done as a read-modify-write operation. First, get the current recipe 1975 * contents based on the recipe's ID. Then modify the field vector index and 1976 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update 1977 * the pre-existing recipe with the modifications. 1978 */ 1979 int 1980 ice_update_recipe_lkup_idx(struct ice_hw *hw, 1981 struct ice_update_recipe_lkup_idx_params *params) 1982 { 1983 struct ice_aqc_recipe_data_elem *rcp_list; 1984 u16 num_recps = ICE_MAX_NUM_RECIPES; 1985 int status; 1986 1987 rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL); 1988 if (!rcp_list) 1989 return -ENOMEM; 1990 1991 /* read current recipe list from firmware */ 1992 rcp_list->recipe_indx = params->rid; 1993 status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL); 1994 if (status) { 1995 ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n", 1996 params->rid, status); 1997 goto error_out; 1998 } 1999 2000 /* only modify existing recipe's lkup_idx and mask if valid, while 2001 * leaving all other fields the same, then update the recipe firmware 2002 */ 2003 rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx; 2004 if (params->mask_valid) 2005 rcp_list->content.mask[params->lkup_idx] = 2006 cpu_to_le16(params->mask); 2007 2008 if (params->ignore_valid) 2009 rcp_list->content.lkup_indx[params->lkup_idx] |= 2010 ICE_AQ_RECIPE_LKUP_IGNORE; 2011 2012 status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL); 2013 if (status) 2014 ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n", 2015 params->rid, params->lkup_idx, params->fv_idx, 2016 params->mask, params->mask_valid ? "true" : "false", 2017 status); 2018 2019 error_out: 2020 kfree(rcp_list); 2021 return status; 2022 } 2023 2024 /** 2025 * ice_aq_map_recipe_to_profile - Map recipe to packet profile 2026 * @hw: pointer to the HW struct 2027 * @profile_id: package profile ID to associate the recipe with 2028 * @r_bitmap: Recipe bitmap filled in and need to be returned as response 2029 * @cd: pointer to command details structure or NULL 2030 * Recipe to profile association (0x0291) 2031 */ 2032 int 2033 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap, 2034 struct ice_sq_cd *cd) 2035 { 2036 struct ice_aqc_recipe_to_profile *cmd; 2037 struct ice_aq_desc desc; 2038 2039 cmd = &desc.params.recipe_to_profile; 2040 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile); 2041 cmd->profile_id = cpu_to_le16(profile_id); 2042 /* Set the recipe ID bit in the bitmask to let the device know which 2043 * profile we are associating the recipe to 2044 */ 2045 memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc)); 2046 2047 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2048 } 2049 2050 /** 2051 * ice_aq_get_recipe_to_profile - Map recipe to packet profile 2052 * @hw: pointer to the HW struct 2053 * @profile_id: package profile ID to associate the recipe with 2054 * @r_bitmap: Recipe bitmap filled in and need to be returned as response 2055 * @cd: pointer to command details structure or NULL 2056 * Associate profile ID with given recipe (0x0293) 2057 */ 2058 int 2059 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap, 2060 struct ice_sq_cd *cd) 2061 { 2062 struct ice_aqc_recipe_to_profile *cmd; 2063 struct ice_aq_desc desc; 2064 int status; 2065 2066 cmd = &desc.params.recipe_to_profile; 2067 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile); 2068 cmd->profile_id = cpu_to_le16(profile_id); 2069 2070 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2071 if (!status) 2072 memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc)); 2073 2074 return status; 2075 } 2076 2077 /** 2078 * ice_alloc_recipe - add recipe resource 2079 * @hw: pointer to the hardware structure 2080 * @rid: recipe ID returned as response to AQ call 2081 */ 2082 int ice_alloc_recipe(struct ice_hw *hw, u16 *rid) 2083 { 2084 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1); 2085 u16 buf_len = __struct_size(sw_buf); 2086 int status; 2087 2088 sw_buf->num_elems = cpu_to_le16(1); 2089 sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE << 2090 ICE_AQC_RES_TYPE_S) | 2091 ICE_AQC_RES_TYPE_FLAG_SHARED); 2092 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, 2093 ice_aqc_opc_alloc_res); 2094 if (!status) 2095 *rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp); 2096 2097 return status; 2098 } 2099 2100 /** 2101 * ice_get_recp_to_prof_map - updates recipe to profile mapping 2102 * @hw: pointer to hardware structure 2103 * 2104 * This function is used to populate recipe_to_profile matrix where index to 2105 * this array is the recipe ID and the element is the mapping of which profiles 2106 * is this recipe mapped to. 2107 */ 2108 static void ice_get_recp_to_prof_map(struct ice_hw *hw) 2109 { 2110 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES); 2111 u16 i; 2112 2113 for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) { 2114 u16 j; 2115 2116 bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES); 2117 bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES); 2118 if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL)) 2119 continue; 2120 bitmap_copy(profile_to_recipe[i], r_bitmap, 2121 ICE_MAX_NUM_RECIPES); 2122 for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES) 2123 set_bit(i, recipe_to_profile[j]); 2124 } 2125 } 2126 2127 /** 2128 * ice_collect_result_idx - copy result index values 2129 * @buf: buffer that contains the result index 2130 * @recp: the recipe struct to copy data into 2131 */ 2132 static void 2133 ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf, 2134 struct ice_sw_recipe *recp) 2135 { 2136 if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN) 2137 set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN, 2138 recp->res_idxs); 2139 } 2140 2141 /** 2142 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries 2143 * @hw: pointer to hardware structure 2144 * @recps: struct that we need to populate 2145 * @rid: recipe ID that we are populating 2146 * @refresh_required: true if we should get recipe to profile mapping from FW 2147 * 2148 * This function is used to populate all the necessary entries into our 2149 * bookkeeping so that we have a current list of all the recipes that are 2150 * programmed in the firmware. 2151 */ 2152 static int 2153 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid, 2154 bool *refresh_required) 2155 { 2156 DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS); 2157 struct ice_aqc_recipe_data_elem *tmp; 2158 u16 num_recps = ICE_MAX_NUM_RECIPES; 2159 struct ice_prot_lkup_ext *lkup_exts; 2160 u8 fv_word_idx = 0; 2161 u16 sub_recps; 2162 int status; 2163 2164 bitmap_zero(result_bm, ICE_MAX_FV_WORDS); 2165 2166 /* we need a buffer big enough to accommodate all the recipes */ 2167 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL); 2168 if (!tmp) 2169 return -ENOMEM; 2170 2171 tmp[0].recipe_indx = rid; 2172 status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL); 2173 /* non-zero status meaning recipe doesn't exist */ 2174 if (status) 2175 goto err_unroll; 2176 2177 /* Get recipe to profile map so that we can get the fv from lkups that 2178 * we read for a recipe from FW. Since we want to minimize the number of 2179 * times we make this FW call, just make one call and cache the copy 2180 * until a new recipe is added. This operation is only required the 2181 * first time to get the changes from FW. Then to search existing 2182 * entries we don't need to update the cache again until another recipe 2183 * gets added. 2184 */ 2185 if (*refresh_required) { 2186 ice_get_recp_to_prof_map(hw); 2187 *refresh_required = false; 2188 } 2189 2190 /* Start populating all the entries for recps[rid] based on lkups from 2191 * firmware. Note that we are only creating the root recipe in our 2192 * database. 2193 */ 2194 lkup_exts = &recps[rid].lkup_exts; 2195 2196 for (sub_recps = 0; sub_recps < num_recps; sub_recps++) { 2197 struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps]; 2198 struct ice_recp_grp_entry *rg_entry; 2199 u8 i, prof, idx, prot = 0; 2200 bool is_root; 2201 u16 off = 0; 2202 2203 rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry), 2204 GFP_KERNEL); 2205 if (!rg_entry) { 2206 status = -ENOMEM; 2207 goto err_unroll; 2208 } 2209 2210 idx = root_bufs.recipe_indx; 2211 is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT; 2212 2213 /* Mark all result indices in this chain */ 2214 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) 2215 set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN, 2216 result_bm); 2217 2218 /* get the first profile that is associated with rid */ 2219 prof = find_first_bit(recipe_to_profile[idx], 2220 ICE_MAX_NUM_PROFILES); 2221 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) { 2222 u8 lkup_indx = root_bufs.content.lkup_indx[i + 1]; 2223 2224 rg_entry->fv_idx[i] = lkup_indx; 2225 rg_entry->fv_mask[i] = 2226 le16_to_cpu(root_bufs.content.mask[i + 1]); 2227 2228 /* If the recipe is a chained recipe then all its 2229 * child recipe's result will have a result index. 2230 * To fill fv_words we should not use those result 2231 * index, we only need the protocol ids and offsets. 2232 * We will skip all the fv_idx which stores result 2233 * index in them. We also need to skip any fv_idx which 2234 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a 2235 * valid offset value. 2236 */ 2237 if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) || 2238 rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE || 2239 rg_entry->fv_idx[i] == 0) 2240 continue; 2241 2242 ice_find_prot_off(hw, ICE_BLK_SW, prof, 2243 rg_entry->fv_idx[i], &prot, &off); 2244 lkup_exts->fv_words[fv_word_idx].prot_id = prot; 2245 lkup_exts->fv_words[fv_word_idx].off = off; 2246 lkup_exts->field_mask[fv_word_idx] = 2247 rg_entry->fv_mask[i]; 2248 fv_word_idx++; 2249 } 2250 /* populate rg_list with the data from the child entry of this 2251 * recipe 2252 */ 2253 list_add(&rg_entry->l_entry, &recps[rid].rg_list); 2254 2255 /* Propagate some data to the recipe database */ 2256 recps[idx].is_root = !!is_root; 2257 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority; 2258 recps[idx].need_pass_l2 = root_bufs.content.act_ctrl & 2259 ICE_AQ_RECIPE_ACT_NEED_PASS_L2; 2260 recps[idx].allow_pass_l2 = root_bufs.content.act_ctrl & 2261 ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2; 2262 bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS); 2263 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) { 2264 recps[idx].chain_idx = root_bufs.content.result_indx & 2265 ~ICE_AQ_RECIPE_RESULT_EN; 2266 set_bit(recps[idx].chain_idx, recps[idx].res_idxs); 2267 } else { 2268 recps[idx].chain_idx = ICE_INVAL_CHAIN_IND; 2269 } 2270 2271 if (!is_root) 2272 continue; 2273 2274 /* Only do the following for root recipes entries */ 2275 memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap, 2276 sizeof(recps[idx].r_bitmap)); 2277 recps[idx].root_rid = root_bufs.content.rid & 2278 ~ICE_AQ_RECIPE_ID_IS_ROOT; 2279 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority; 2280 } 2281 2282 /* Complete initialization of the root recipe entry */ 2283 lkup_exts->n_val_words = fv_word_idx; 2284 recps[rid].big_recp = (num_recps > 1); 2285 recps[rid].n_grp_count = (u8)num_recps; 2286 recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp, 2287 recps[rid].n_grp_count * sizeof(*recps[rid].root_buf), 2288 GFP_KERNEL); 2289 if (!recps[rid].root_buf) { 2290 status = -ENOMEM; 2291 goto err_unroll; 2292 } 2293 2294 /* Copy result indexes */ 2295 bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS); 2296 recps[rid].recp_created = true; 2297 2298 err_unroll: 2299 kfree(tmp); 2300 return status; 2301 } 2302 2303 /* ice_init_port_info - Initialize port_info with switch configuration data 2304 * @pi: pointer to port_info 2305 * @vsi_port_num: VSI number or port number 2306 * @type: Type of switch element (port or VSI) 2307 * @swid: switch ID of the switch the element is attached to 2308 * @pf_vf_num: PF or VF number 2309 * @is_vf: true if the element is a VF, false otherwise 2310 */ 2311 static void 2312 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type, 2313 u16 swid, u16 pf_vf_num, bool is_vf) 2314 { 2315 switch (type) { 2316 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: 2317 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK); 2318 pi->sw_id = swid; 2319 pi->pf_vf_num = pf_vf_num; 2320 pi->is_vf = is_vf; 2321 break; 2322 default: 2323 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n"); 2324 break; 2325 } 2326 } 2327 2328 /* ice_get_initial_sw_cfg - Get initial port and default VSI data 2329 * @hw: pointer to the hardware structure 2330 */ 2331 int ice_get_initial_sw_cfg(struct ice_hw *hw) 2332 { 2333 struct ice_aqc_get_sw_cfg_resp_elem *rbuf; 2334 u16 req_desc = 0; 2335 u16 num_elems; 2336 int status; 2337 u16 i; 2338 2339 rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL); 2340 if (!rbuf) 2341 return -ENOMEM; 2342 2343 /* Multiple calls to ice_aq_get_sw_cfg may be required 2344 * to get all the switch configuration information. The need 2345 * for additional calls is indicated by ice_aq_get_sw_cfg 2346 * writing a non-zero value in req_desc 2347 */ 2348 do { 2349 struct ice_aqc_get_sw_cfg_resp_elem *ele; 2350 2351 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN, 2352 &req_desc, &num_elems, NULL); 2353 2354 if (status) 2355 break; 2356 2357 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) { 2358 u16 pf_vf_num, swid, vsi_port_num; 2359 bool is_vf = false; 2360 u8 res_type; 2361 2362 vsi_port_num = le16_to_cpu(ele->vsi_port_num) & 2363 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M; 2364 2365 pf_vf_num = le16_to_cpu(ele->pf_vf_num) & 2366 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M; 2367 2368 swid = le16_to_cpu(ele->swid); 2369 2370 if (le16_to_cpu(ele->pf_vf_num) & 2371 ICE_AQC_GET_SW_CONF_RESP_IS_VF) 2372 is_vf = true; 2373 2374 res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >> 2375 ICE_AQC_GET_SW_CONF_RESP_TYPE_S); 2376 2377 if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) { 2378 /* FW VSI is not needed. Just continue. */ 2379 continue; 2380 } 2381 2382 ice_init_port_info(hw->port_info, vsi_port_num, 2383 res_type, swid, pf_vf_num, is_vf); 2384 } 2385 } while (req_desc && !status); 2386 2387 kfree(rbuf); 2388 return status; 2389 } 2390 2391 /** 2392 * ice_fill_sw_info - Helper function to populate lb_en and lan_en 2393 * @hw: pointer to the hardware structure 2394 * @fi: filter info structure to fill/update 2395 * 2396 * This helper function populates the lb_en and lan_en elements of the provided 2397 * ice_fltr_info struct using the switch's type and characteristics of the 2398 * switch rule being configured. 2399 */ 2400 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi) 2401 { 2402 fi->lb_en = false; 2403 fi->lan_en = false; 2404 if ((fi->flag & ICE_FLTR_TX) && 2405 (fi->fltr_act == ICE_FWD_TO_VSI || 2406 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 2407 fi->fltr_act == ICE_FWD_TO_Q || 2408 fi->fltr_act == ICE_FWD_TO_QGRP)) { 2409 /* Setting LB for prune actions will result in replicated 2410 * packets to the internal switch that will be dropped. 2411 */ 2412 if (fi->lkup_type != ICE_SW_LKUP_VLAN) 2413 fi->lb_en = true; 2414 2415 /* Set lan_en to TRUE if 2416 * 1. The switch is a VEB AND 2417 * 2 2418 * 2.1 The lookup is a directional lookup like ethertype, 2419 * promiscuous, ethertype-MAC, promiscuous-VLAN 2420 * and default-port OR 2421 * 2.2 The lookup is VLAN, OR 2422 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR 2423 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC. 2424 * 2425 * OR 2426 * 2427 * The switch is a VEPA. 2428 * 2429 * In all other cases, the LAN enable has to be set to false. 2430 */ 2431 if (hw->evb_veb) { 2432 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE || 2433 fi->lkup_type == ICE_SW_LKUP_PROMISC || 2434 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 2435 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 2436 fi->lkup_type == ICE_SW_LKUP_DFLT || 2437 fi->lkup_type == ICE_SW_LKUP_VLAN || 2438 (fi->lkup_type == ICE_SW_LKUP_MAC && 2439 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) || 2440 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN && 2441 !is_unicast_ether_addr(fi->l_data.mac.mac_addr))) 2442 fi->lan_en = true; 2443 } else { 2444 fi->lan_en = true; 2445 } 2446 } 2447 } 2448 2449 /** 2450 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer 2451 * @eth_hdr: pointer to buffer to populate 2452 */ 2453 void ice_fill_eth_hdr(u8 *eth_hdr) 2454 { 2455 memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN); 2456 } 2457 2458 /** 2459 * ice_fill_sw_rule - Helper function to fill switch rule structure 2460 * @hw: pointer to the hardware structure 2461 * @f_info: entry containing packet forwarding information 2462 * @s_rule: switch rule structure to be filled in based on mac_entry 2463 * @opc: switch rules population command type - pass in the command opcode 2464 */ 2465 static void 2466 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info, 2467 struct ice_sw_rule_lkup_rx_tx *s_rule, 2468 enum ice_adminq_opc opc) 2469 { 2470 u16 vlan_id = ICE_MAX_VLAN_ID + 1; 2471 u16 vlan_tpid = ETH_P_8021Q; 2472 void *daddr = NULL; 2473 u16 eth_hdr_sz; 2474 u8 *eth_hdr; 2475 u32 act = 0; 2476 __be16 *off; 2477 u8 q_rgn; 2478 2479 if (opc == ice_aqc_opc_remove_sw_rules) { 2480 s_rule->act = 0; 2481 s_rule->index = cpu_to_le16(f_info->fltr_rule_id); 2482 s_rule->hdr_len = 0; 2483 return; 2484 } 2485 2486 eth_hdr_sz = sizeof(dummy_eth_header); 2487 eth_hdr = s_rule->hdr_data; 2488 2489 /* initialize the ether header with a dummy header */ 2490 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz); 2491 ice_fill_sw_info(hw, f_info); 2492 2493 switch (f_info->fltr_act) { 2494 case ICE_FWD_TO_VSI: 2495 act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) & 2496 ICE_SINGLE_ACT_VSI_ID_M; 2497 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 2498 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 2499 ICE_SINGLE_ACT_VALID_BIT; 2500 break; 2501 case ICE_FWD_TO_VSI_LIST: 2502 act |= ICE_SINGLE_ACT_VSI_LIST; 2503 act |= (f_info->fwd_id.vsi_list_id << 2504 ICE_SINGLE_ACT_VSI_LIST_ID_S) & 2505 ICE_SINGLE_ACT_VSI_LIST_ID_M; 2506 if (f_info->lkup_type != ICE_SW_LKUP_VLAN) 2507 act |= ICE_SINGLE_ACT_VSI_FORWARDING | 2508 ICE_SINGLE_ACT_VALID_BIT; 2509 break; 2510 case ICE_FWD_TO_Q: 2511 act |= ICE_SINGLE_ACT_TO_Q; 2512 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 2513 ICE_SINGLE_ACT_Q_INDEX_M; 2514 break; 2515 case ICE_DROP_PACKET: 2516 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 2517 ICE_SINGLE_ACT_VALID_BIT; 2518 break; 2519 case ICE_FWD_TO_QGRP: 2520 q_rgn = f_info->qgrp_size > 0 ? 2521 (u8)ilog2(f_info->qgrp_size) : 0; 2522 act |= ICE_SINGLE_ACT_TO_Q; 2523 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 2524 ICE_SINGLE_ACT_Q_INDEX_M; 2525 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) & 2526 ICE_SINGLE_ACT_Q_REGION_M; 2527 break; 2528 default: 2529 return; 2530 } 2531 2532 if (f_info->lb_en) 2533 act |= ICE_SINGLE_ACT_LB_ENABLE; 2534 if (f_info->lan_en) 2535 act |= ICE_SINGLE_ACT_LAN_ENABLE; 2536 2537 switch (f_info->lkup_type) { 2538 case ICE_SW_LKUP_MAC: 2539 daddr = f_info->l_data.mac.mac_addr; 2540 break; 2541 case ICE_SW_LKUP_VLAN: 2542 vlan_id = f_info->l_data.vlan.vlan_id; 2543 if (f_info->l_data.vlan.tpid_valid) 2544 vlan_tpid = f_info->l_data.vlan.tpid; 2545 if (f_info->fltr_act == ICE_FWD_TO_VSI || 2546 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 2547 act |= ICE_SINGLE_ACT_PRUNE; 2548 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS; 2549 } 2550 break; 2551 case ICE_SW_LKUP_ETHERTYPE_MAC: 2552 daddr = f_info->l_data.ethertype_mac.mac_addr; 2553 fallthrough; 2554 case ICE_SW_LKUP_ETHERTYPE: 2555 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 2556 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype); 2557 break; 2558 case ICE_SW_LKUP_MAC_VLAN: 2559 daddr = f_info->l_data.mac_vlan.mac_addr; 2560 vlan_id = f_info->l_data.mac_vlan.vlan_id; 2561 break; 2562 case ICE_SW_LKUP_PROMISC_VLAN: 2563 vlan_id = f_info->l_data.mac_vlan.vlan_id; 2564 fallthrough; 2565 case ICE_SW_LKUP_PROMISC: 2566 daddr = f_info->l_data.mac_vlan.mac_addr; 2567 break; 2568 default: 2569 break; 2570 } 2571 2572 s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ? 2573 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) : 2574 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); 2575 2576 /* Recipe set depending on lookup type */ 2577 s_rule->recipe_id = cpu_to_le16(f_info->lkup_type); 2578 s_rule->src = cpu_to_le16(f_info->src); 2579 s_rule->act = cpu_to_le32(act); 2580 2581 if (daddr) 2582 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr); 2583 2584 if (!(vlan_id > ICE_MAX_VLAN_ID)) { 2585 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET); 2586 *off = cpu_to_be16(vlan_id); 2587 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); 2588 *off = cpu_to_be16(vlan_tpid); 2589 } 2590 2591 /* Create the switch rule with the final dummy Ethernet header */ 2592 if (opc != ice_aqc_opc_update_sw_rules) 2593 s_rule->hdr_len = cpu_to_le16(eth_hdr_sz); 2594 } 2595 2596 /** 2597 * ice_add_marker_act 2598 * @hw: pointer to the hardware structure 2599 * @m_ent: the management entry for which sw marker needs to be added 2600 * @sw_marker: sw marker to tag the Rx descriptor with 2601 * @l_id: large action resource ID 2602 * 2603 * Create a large action to hold software marker and update the switch rule 2604 * entry pointed by m_ent with newly created large action 2605 */ 2606 static int 2607 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, 2608 u16 sw_marker, u16 l_id) 2609 { 2610 struct ice_sw_rule_lkup_rx_tx *rx_tx; 2611 struct ice_sw_rule_lg_act *lg_act; 2612 /* For software marker we need 3 large actions 2613 * 1. FWD action: FWD TO VSI or VSI LIST 2614 * 2. GENERIC VALUE action to hold the profile ID 2615 * 3. GENERIC VALUE action to hold the software marker ID 2616 */ 2617 const u16 num_lg_acts = 3; 2618 u16 lg_act_size; 2619 u16 rules_size; 2620 int status; 2621 u32 act; 2622 u16 id; 2623 2624 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) 2625 return -EINVAL; 2626 2627 /* Create two back-to-back switch rules and submit them to the HW using 2628 * one memory buffer: 2629 * 1. Large Action 2630 * 2. Look up Tx Rx 2631 */ 2632 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts); 2633 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx); 2634 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL); 2635 if (!lg_act) 2636 return -ENOMEM; 2637 2638 rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size); 2639 2640 /* Fill in the first switch rule i.e. large action */ 2641 lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT); 2642 lg_act->index = cpu_to_le16(l_id); 2643 lg_act->size = cpu_to_le16(num_lg_acts); 2644 2645 /* First action VSI forwarding or VSI list forwarding depending on how 2646 * many VSIs 2647 */ 2648 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : 2649 m_ent->fltr_info.fwd_id.hw_vsi_id; 2650 2651 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; 2652 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M; 2653 if (m_ent->vsi_count > 1) 2654 act |= ICE_LG_ACT_VSI_LIST; 2655 lg_act->act[0] = cpu_to_le32(act); 2656 2657 /* Second action descriptor type */ 2658 act = ICE_LG_ACT_GENERIC; 2659 2660 act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M; 2661 lg_act->act[1] = cpu_to_le32(act); 2662 2663 act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX << 2664 ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M; 2665 2666 /* Third action Marker value */ 2667 act |= ICE_LG_ACT_GENERIC; 2668 act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) & 2669 ICE_LG_ACT_GENERIC_VALUE_M; 2670 2671 lg_act->act[2] = cpu_to_le32(act); 2672 2673 /* call the fill switch rule to fill the lookup Tx Rx structure */ 2674 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, 2675 ice_aqc_opc_update_sw_rules); 2676 2677 /* Update the action to point to the large action ID */ 2678 rx_tx->act = cpu_to_le32(ICE_SINGLE_ACT_PTR | 2679 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) & 2680 ICE_SINGLE_ACT_PTR_VAL_M)); 2681 2682 /* Use the filter rule ID of the previously created rule with single 2683 * act. Once the update happens, hardware will treat this as large 2684 * action 2685 */ 2686 rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id); 2687 2688 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, 2689 ice_aqc_opc_update_sw_rules, NULL); 2690 if (!status) { 2691 m_ent->lg_act_idx = l_id; 2692 m_ent->sw_marker_id = sw_marker; 2693 } 2694 2695 devm_kfree(ice_hw_to_dev(hw), lg_act); 2696 return status; 2697 } 2698 2699 /** 2700 * ice_create_vsi_list_map 2701 * @hw: pointer to the hardware structure 2702 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping 2703 * @num_vsi: number of VSI handles in the array 2704 * @vsi_list_id: VSI list ID generated as part of allocate resource 2705 * 2706 * Helper function to create a new entry of VSI list ID to VSI mapping 2707 * using the given VSI list ID 2708 */ 2709 static struct ice_vsi_list_map_info * 2710 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 2711 u16 vsi_list_id) 2712 { 2713 struct ice_switch_info *sw = hw->switch_info; 2714 struct ice_vsi_list_map_info *v_map; 2715 int i; 2716 2717 v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL); 2718 if (!v_map) 2719 return NULL; 2720 2721 v_map->vsi_list_id = vsi_list_id; 2722 v_map->ref_cnt = 1; 2723 for (i = 0; i < num_vsi; i++) 2724 set_bit(vsi_handle_arr[i], v_map->vsi_map); 2725 2726 list_add(&v_map->list_entry, &sw->vsi_list_map_head); 2727 return v_map; 2728 } 2729 2730 /** 2731 * ice_update_vsi_list_rule 2732 * @hw: pointer to the hardware structure 2733 * @vsi_handle_arr: array of VSI handles to form a VSI list 2734 * @num_vsi: number of VSI handles in the array 2735 * @vsi_list_id: VSI list ID generated as part of allocate resource 2736 * @remove: Boolean value to indicate if this is a remove action 2737 * @opc: switch rules population command type - pass in the command opcode 2738 * @lkup_type: lookup type of the filter 2739 * 2740 * Call AQ command to add a new switch rule or update existing switch rule 2741 * using the given VSI list ID 2742 */ 2743 static int 2744 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 2745 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc, 2746 enum ice_sw_lkup_type lkup_type) 2747 { 2748 struct ice_sw_rule_vsi_list *s_rule; 2749 u16 s_rule_size; 2750 u16 rule_type; 2751 int status; 2752 int i; 2753 2754 if (!num_vsi) 2755 return -EINVAL; 2756 2757 if (lkup_type == ICE_SW_LKUP_MAC || 2758 lkup_type == ICE_SW_LKUP_MAC_VLAN || 2759 lkup_type == ICE_SW_LKUP_ETHERTYPE || 2760 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || 2761 lkup_type == ICE_SW_LKUP_PROMISC || 2762 lkup_type == ICE_SW_LKUP_PROMISC_VLAN || 2763 lkup_type == ICE_SW_LKUP_DFLT) 2764 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR : 2765 ICE_AQC_SW_RULES_T_VSI_LIST_SET; 2766 else if (lkup_type == ICE_SW_LKUP_VLAN) 2767 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR : 2768 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET; 2769 else 2770 return -EINVAL; 2771 2772 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi); 2773 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 2774 if (!s_rule) 2775 return -ENOMEM; 2776 for (i = 0; i < num_vsi; i++) { 2777 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) { 2778 status = -EINVAL; 2779 goto exit; 2780 } 2781 /* AQ call requires hw_vsi_id(s) */ 2782 s_rule->vsi[i] = 2783 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i])); 2784 } 2785 2786 s_rule->hdr.type = cpu_to_le16(rule_type); 2787 s_rule->number_vsi = cpu_to_le16(num_vsi); 2788 s_rule->index = cpu_to_le16(vsi_list_id); 2789 2790 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL); 2791 2792 exit: 2793 devm_kfree(ice_hw_to_dev(hw), s_rule); 2794 return status; 2795 } 2796 2797 /** 2798 * ice_create_vsi_list_rule - Creates and populates a VSI list rule 2799 * @hw: pointer to the HW struct 2800 * @vsi_handle_arr: array of VSI handles to form a VSI list 2801 * @num_vsi: number of VSI handles in the array 2802 * @vsi_list_id: stores the ID of the VSI list to be created 2803 * @lkup_type: switch rule filter's lookup type 2804 */ 2805 static int 2806 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, 2807 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type) 2808 { 2809 int status; 2810 2811 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type, 2812 ice_aqc_opc_alloc_res); 2813 if (status) 2814 return status; 2815 2816 /* Update the newly created VSI list to include the specified VSIs */ 2817 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi, 2818 *vsi_list_id, false, 2819 ice_aqc_opc_add_sw_rules, lkup_type); 2820 } 2821 2822 /** 2823 * ice_create_pkt_fwd_rule 2824 * @hw: pointer to the hardware structure 2825 * @f_entry: entry containing packet forwarding information 2826 * 2827 * Create switch rule with given filter information and add an entry 2828 * to the corresponding filter management list to track this switch rule 2829 * and VSI mapping 2830 */ 2831 static int 2832 ice_create_pkt_fwd_rule(struct ice_hw *hw, 2833 struct ice_fltr_list_entry *f_entry) 2834 { 2835 struct ice_fltr_mgmt_list_entry *fm_entry; 2836 struct ice_sw_rule_lkup_rx_tx *s_rule; 2837 enum ice_sw_lkup_type l_type; 2838 struct ice_sw_recipe *recp; 2839 int status; 2840 2841 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 2842 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 2843 GFP_KERNEL); 2844 if (!s_rule) 2845 return -ENOMEM; 2846 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry), 2847 GFP_KERNEL); 2848 if (!fm_entry) { 2849 status = -ENOMEM; 2850 goto ice_create_pkt_fwd_rule_exit; 2851 } 2852 2853 fm_entry->fltr_info = f_entry->fltr_info; 2854 2855 /* Initialize all the fields for the management entry */ 2856 fm_entry->vsi_count = 1; 2857 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX; 2858 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID; 2859 fm_entry->counter_index = ICE_INVAL_COUNTER_ID; 2860 2861 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule, 2862 ice_aqc_opc_add_sw_rules); 2863 2864 status = ice_aq_sw_rules(hw, s_rule, 2865 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1, 2866 ice_aqc_opc_add_sw_rules, NULL); 2867 if (status) { 2868 devm_kfree(ice_hw_to_dev(hw), fm_entry); 2869 goto ice_create_pkt_fwd_rule_exit; 2870 } 2871 2872 f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index); 2873 fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index); 2874 2875 /* The book keeping entries will get removed when base driver 2876 * calls remove filter AQ command 2877 */ 2878 l_type = fm_entry->fltr_info.lkup_type; 2879 recp = &hw->switch_info->recp_list[l_type]; 2880 list_add(&fm_entry->list_entry, &recp->filt_rules); 2881 2882 ice_create_pkt_fwd_rule_exit: 2883 devm_kfree(ice_hw_to_dev(hw), s_rule); 2884 return status; 2885 } 2886 2887 /** 2888 * ice_update_pkt_fwd_rule 2889 * @hw: pointer to the hardware structure 2890 * @f_info: filter information for switch rule 2891 * 2892 * Call AQ command to update a previously created switch rule with a 2893 * VSI list ID 2894 */ 2895 static int 2896 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info) 2897 { 2898 struct ice_sw_rule_lkup_rx_tx *s_rule; 2899 int status; 2900 2901 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 2902 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 2903 GFP_KERNEL); 2904 if (!s_rule) 2905 return -ENOMEM; 2906 2907 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules); 2908 2909 s_rule->index = cpu_to_le16(f_info->fltr_rule_id); 2910 2911 /* Update switch rule with new rule set to forward VSI list */ 2912 status = ice_aq_sw_rules(hw, s_rule, 2913 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1, 2914 ice_aqc_opc_update_sw_rules, NULL); 2915 2916 devm_kfree(ice_hw_to_dev(hw), s_rule); 2917 return status; 2918 } 2919 2920 /** 2921 * ice_update_sw_rule_bridge_mode 2922 * @hw: pointer to the HW struct 2923 * 2924 * Updates unicast switch filter rules based on VEB/VEPA mode 2925 */ 2926 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw) 2927 { 2928 struct ice_switch_info *sw = hw->switch_info; 2929 struct ice_fltr_mgmt_list_entry *fm_entry; 2930 struct list_head *rule_head; 2931 struct mutex *rule_lock; /* Lock to protect filter rule list */ 2932 int status = 0; 2933 2934 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; 2935 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; 2936 2937 mutex_lock(rule_lock); 2938 list_for_each_entry(fm_entry, rule_head, list_entry) { 2939 struct ice_fltr_info *fi = &fm_entry->fltr_info; 2940 u8 *addr = fi->l_data.mac.mac_addr; 2941 2942 /* Update unicast Tx rules to reflect the selected 2943 * VEB/VEPA mode 2944 */ 2945 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) && 2946 (fi->fltr_act == ICE_FWD_TO_VSI || 2947 fi->fltr_act == ICE_FWD_TO_VSI_LIST || 2948 fi->fltr_act == ICE_FWD_TO_Q || 2949 fi->fltr_act == ICE_FWD_TO_QGRP)) { 2950 status = ice_update_pkt_fwd_rule(hw, fi); 2951 if (status) 2952 break; 2953 } 2954 } 2955 2956 mutex_unlock(rule_lock); 2957 2958 return status; 2959 } 2960 2961 /** 2962 * ice_add_update_vsi_list 2963 * @hw: pointer to the hardware structure 2964 * @m_entry: pointer to current filter management list entry 2965 * @cur_fltr: filter information from the book keeping entry 2966 * @new_fltr: filter information with the new VSI to be added 2967 * 2968 * Call AQ command to add or update previously created VSI list with new VSI. 2969 * 2970 * Helper function to do book keeping associated with adding filter information 2971 * The algorithm to do the book keeping is described below : 2972 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.) 2973 * if only one VSI has been added till now 2974 * Allocate a new VSI list and add two VSIs 2975 * to this list using switch rule command 2976 * Update the previously created switch rule with the 2977 * newly created VSI list ID 2978 * if a VSI list was previously created 2979 * Add the new VSI to the previously created VSI list set 2980 * using the update switch rule command 2981 */ 2982 static int 2983 ice_add_update_vsi_list(struct ice_hw *hw, 2984 struct ice_fltr_mgmt_list_entry *m_entry, 2985 struct ice_fltr_info *cur_fltr, 2986 struct ice_fltr_info *new_fltr) 2987 { 2988 u16 vsi_list_id = 0; 2989 int status = 0; 2990 2991 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q || 2992 cur_fltr->fltr_act == ICE_FWD_TO_QGRP)) 2993 return -EOPNOTSUPP; 2994 2995 if ((new_fltr->fltr_act == ICE_FWD_TO_Q || 2996 new_fltr->fltr_act == ICE_FWD_TO_QGRP) && 2997 (cur_fltr->fltr_act == ICE_FWD_TO_VSI || 2998 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST)) 2999 return -EOPNOTSUPP; 3000 3001 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 3002 /* Only one entry existed in the mapping and it was not already 3003 * a part of a VSI list. So, create a VSI list with the old and 3004 * new VSIs. 3005 */ 3006 struct ice_fltr_info tmp_fltr; 3007 u16 vsi_handle_arr[2]; 3008 3009 /* A rule already exists with the new VSI being added */ 3010 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id) 3011 return -EEXIST; 3012 3013 vsi_handle_arr[0] = cur_fltr->vsi_handle; 3014 vsi_handle_arr[1] = new_fltr->vsi_handle; 3015 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 3016 &vsi_list_id, 3017 new_fltr->lkup_type); 3018 if (status) 3019 return status; 3020 3021 tmp_fltr = *new_fltr; 3022 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 3023 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 3024 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 3025 /* Update the previous switch rule of "MAC forward to VSI" to 3026 * "MAC fwd to VSI list" 3027 */ 3028 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 3029 if (status) 3030 return status; 3031 3032 cur_fltr->fwd_id.vsi_list_id = vsi_list_id; 3033 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 3034 m_entry->vsi_list_info = 3035 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 3036 vsi_list_id); 3037 3038 if (!m_entry->vsi_list_info) 3039 return -ENOMEM; 3040 3041 /* If this entry was large action then the large action needs 3042 * to be updated to point to FWD to VSI list 3043 */ 3044 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) 3045 status = 3046 ice_add_marker_act(hw, m_entry, 3047 m_entry->sw_marker_id, 3048 m_entry->lg_act_idx); 3049 } else { 3050 u16 vsi_handle = new_fltr->vsi_handle; 3051 enum ice_adminq_opc opcode; 3052 3053 if (!m_entry->vsi_list_info) 3054 return -EIO; 3055 3056 /* A rule already exists with the new VSI being added */ 3057 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) 3058 return 0; 3059 3060 /* Update the previously created VSI list set with 3061 * the new VSI ID passed in 3062 */ 3063 vsi_list_id = cur_fltr->fwd_id.vsi_list_id; 3064 opcode = ice_aqc_opc_update_sw_rules; 3065 3066 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 3067 vsi_list_id, false, opcode, 3068 new_fltr->lkup_type); 3069 /* update VSI list mapping info with new VSI ID */ 3070 if (!status) 3071 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); 3072 } 3073 if (!status) 3074 m_entry->vsi_count++; 3075 return status; 3076 } 3077 3078 /** 3079 * ice_find_rule_entry - Search a rule entry 3080 * @hw: pointer to the hardware structure 3081 * @recp_id: lookup type for which the specified rule needs to be searched 3082 * @f_info: rule information 3083 * 3084 * Helper function to search for a given rule entry 3085 * Returns pointer to entry storing the rule if found 3086 */ 3087 static struct ice_fltr_mgmt_list_entry * 3088 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info) 3089 { 3090 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL; 3091 struct ice_switch_info *sw = hw->switch_info; 3092 struct list_head *list_head; 3093 3094 list_head = &sw->recp_list[recp_id].filt_rules; 3095 list_for_each_entry(list_itr, list_head, list_entry) { 3096 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, 3097 sizeof(f_info->l_data)) && 3098 f_info->flag == list_itr->fltr_info.flag) { 3099 ret = list_itr; 3100 break; 3101 } 3102 } 3103 return ret; 3104 } 3105 3106 /** 3107 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1 3108 * @hw: pointer to the hardware structure 3109 * @recp_id: lookup type for which VSI lists needs to be searched 3110 * @vsi_handle: VSI handle to be found in VSI list 3111 * @vsi_list_id: VSI list ID found containing vsi_handle 3112 * 3113 * Helper function to search a VSI list with single entry containing given VSI 3114 * handle element. This can be extended further to search VSI list with more 3115 * than 1 vsi_count. Returns pointer to VSI list entry if found. 3116 */ 3117 struct ice_vsi_list_map_info * 3118 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle, 3119 u16 *vsi_list_id) 3120 { 3121 struct ice_vsi_list_map_info *map_info = NULL; 3122 struct ice_switch_info *sw = hw->switch_info; 3123 struct ice_fltr_mgmt_list_entry *list_itr; 3124 struct list_head *list_head; 3125 3126 list_head = &sw->recp_list[recp_id].filt_rules; 3127 list_for_each_entry(list_itr, list_head, list_entry) { 3128 if (list_itr->vsi_list_info) { 3129 map_info = list_itr->vsi_list_info; 3130 if (test_bit(vsi_handle, map_info->vsi_map)) { 3131 *vsi_list_id = map_info->vsi_list_id; 3132 return map_info; 3133 } 3134 } 3135 } 3136 return NULL; 3137 } 3138 3139 /** 3140 * ice_add_rule_internal - add rule for a given lookup type 3141 * @hw: pointer to the hardware structure 3142 * @recp_id: lookup type (recipe ID) for which rule has to be added 3143 * @f_entry: structure containing MAC forwarding information 3144 * 3145 * Adds or updates the rule lists for a given recipe 3146 */ 3147 static int 3148 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id, 3149 struct ice_fltr_list_entry *f_entry) 3150 { 3151 struct ice_switch_info *sw = hw->switch_info; 3152 struct ice_fltr_info *new_fltr, *cur_fltr; 3153 struct ice_fltr_mgmt_list_entry *m_entry; 3154 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3155 int status = 0; 3156 3157 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 3158 return -EINVAL; 3159 f_entry->fltr_info.fwd_id.hw_vsi_id = 3160 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 3161 3162 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 3163 3164 mutex_lock(rule_lock); 3165 new_fltr = &f_entry->fltr_info; 3166 if (new_fltr->flag & ICE_FLTR_RX) 3167 new_fltr->src = hw->port_info->lport; 3168 else if (new_fltr->flag & ICE_FLTR_TX) 3169 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id; 3170 3171 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr); 3172 if (!m_entry) { 3173 mutex_unlock(rule_lock); 3174 return ice_create_pkt_fwd_rule(hw, f_entry); 3175 } 3176 3177 cur_fltr = &m_entry->fltr_info; 3178 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr); 3179 mutex_unlock(rule_lock); 3180 3181 return status; 3182 } 3183 3184 /** 3185 * ice_remove_vsi_list_rule 3186 * @hw: pointer to the hardware structure 3187 * @vsi_list_id: VSI list ID generated as part of allocate resource 3188 * @lkup_type: switch rule filter lookup type 3189 * 3190 * The VSI list should be emptied before this function is called to remove the 3191 * VSI list. 3192 */ 3193 static int 3194 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id, 3195 enum ice_sw_lkup_type lkup_type) 3196 { 3197 struct ice_sw_rule_vsi_list *s_rule; 3198 u16 s_rule_size; 3199 int status; 3200 3201 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0); 3202 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); 3203 if (!s_rule) 3204 return -ENOMEM; 3205 3206 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR); 3207 s_rule->index = cpu_to_le16(vsi_list_id); 3208 3209 /* Free the vsi_list resource that we allocated. It is assumed that the 3210 * list is empty at this point. 3211 */ 3212 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type, 3213 ice_aqc_opc_free_res); 3214 3215 devm_kfree(ice_hw_to_dev(hw), s_rule); 3216 return status; 3217 } 3218 3219 /** 3220 * ice_rem_update_vsi_list 3221 * @hw: pointer to the hardware structure 3222 * @vsi_handle: VSI handle of the VSI to remove 3223 * @fm_list: filter management entry for which the VSI list management needs to 3224 * be done 3225 */ 3226 static int 3227 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 3228 struct ice_fltr_mgmt_list_entry *fm_list) 3229 { 3230 enum ice_sw_lkup_type lkup_type; 3231 u16 vsi_list_id; 3232 int status = 0; 3233 3234 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST || 3235 fm_list->vsi_count == 0) 3236 return -EINVAL; 3237 3238 /* A rule with the VSI being removed does not exist */ 3239 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) 3240 return -ENOENT; 3241 3242 lkup_type = fm_list->fltr_info.lkup_type; 3243 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id; 3244 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 3245 ice_aqc_opc_update_sw_rules, 3246 lkup_type); 3247 if (status) 3248 return status; 3249 3250 fm_list->vsi_count--; 3251 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 3252 3253 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) { 3254 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info; 3255 struct ice_vsi_list_map_info *vsi_list_info = 3256 fm_list->vsi_list_info; 3257 u16 rem_vsi_handle; 3258 3259 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, 3260 ICE_MAX_VSI); 3261 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 3262 return -EIO; 3263 3264 /* Make sure VSI list is empty before removing it below */ 3265 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 3266 vsi_list_id, true, 3267 ice_aqc_opc_update_sw_rules, 3268 lkup_type); 3269 if (status) 3270 return status; 3271 3272 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI; 3273 tmp_fltr_info.fwd_id.hw_vsi_id = 3274 ice_get_hw_vsi_num(hw, rem_vsi_handle); 3275 tmp_fltr_info.vsi_handle = rem_vsi_handle; 3276 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info); 3277 if (status) { 3278 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 3279 tmp_fltr_info.fwd_id.hw_vsi_id, status); 3280 return status; 3281 } 3282 3283 fm_list->fltr_info = tmp_fltr_info; 3284 } 3285 3286 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) || 3287 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) { 3288 struct ice_vsi_list_map_info *vsi_list_info = 3289 fm_list->vsi_list_info; 3290 3291 /* Remove the VSI list since it is no longer used */ 3292 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 3293 if (status) { 3294 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n", 3295 vsi_list_id, status); 3296 return status; 3297 } 3298 3299 list_del(&vsi_list_info->list_entry); 3300 devm_kfree(ice_hw_to_dev(hw), vsi_list_info); 3301 fm_list->vsi_list_info = NULL; 3302 } 3303 3304 return status; 3305 } 3306 3307 /** 3308 * ice_remove_rule_internal - Remove a filter rule of a given type 3309 * @hw: pointer to the hardware structure 3310 * @recp_id: recipe ID for which the rule needs to removed 3311 * @f_entry: rule entry containing filter information 3312 */ 3313 static int 3314 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id, 3315 struct ice_fltr_list_entry *f_entry) 3316 { 3317 struct ice_switch_info *sw = hw->switch_info; 3318 struct ice_fltr_mgmt_list_entry *list_elem; 3319 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3320 bool remove_rule = false; 3321 u16 vsi_handle; 3322 int status = 0; 3323 3324 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 3325 return -EINVAL; 3326 f_entry->fltr_info.fwd_id.hw_vsi_id = 3327 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 3328 3329 rule_lock = &sw->recp_list[recp_id].filt_rule_lock; 3330 mutex_lock(rule_lock); 3331 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info); 3332 if (!list_elem) { 3333 status = -ENOENT; 3334 goto exit; 3335 } 3336 3337 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) { 3338 remove_rule = true; 3339 } else if (!list_elem->vsi_list_info) { 3340 status = -ENOENT; 3341 goto exit; 3342 } else if (list_elem->vsi_list_info->ref_cnt > 1) { 3343 /* a ref_cnt > 1 indicates that the vsi_list is being 3344 * shared by multiple rules. Decrement the ref_cnt and 3345 * remove this rule, but do not modify the list, as it 3346 * is in-use by other rules. 3347 */ 3348 list_elem->vsi_list_info->ref_cnt--; 3349 remove_rule = true; 3350 } else { 3351 /* a ref_cnt of 1 indicates the vsi_list is only used 3352 * by one rule. However, the original removal request is only 3353 * for a single VSI. Update the vsi_list first, and only 3354 * remove the rule if there are no further VSIs in this list. 3355 */ 3356 vsi_handle = f_entry->fltr_info.vsi_handle; 3357 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem); 3358 if (status) 3359 goto exit; 3360 /* if VSI count goes to zero after updating the VSI list */ 3361 if (list_elem->vsi_count == 0) 3362 remove_rule = true; 3363 } 3364 3365 if (remove_rule) { 3366 /* Remove the lookup rule */ 3367 struct ice_sw_rule_lkup_rx_tx *s_rule; 3368 3369 s_rule = devm_kzalloc(ice_hw_to_dev(hw), 3370 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule), 3371 GFP_KERNEL); 3372 if (!s_rule) { 3373 status = -ENOMEM; 3374 goto exit; 3375 } 3376 3377 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule, 3378 ice_aqc_opc_remove_sw_rules); 3379 3380 status = ice_aq_sw_rules(hw, s_rule, 3381 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule), 3382 1, ice_aqc_opc_remove_sw_rules, NULL); 3383 3384 /* Remove a book keeping from the list */ 3385 devm_kfree(ice_hw_to_dev(hw), s_rule); 3386 3387 if (status) 3388 goto exit; 3389 3390 list_del(&list_elem->list_entry); 3391 devm_kfree(ice_hw_to_dev(hw), list_elem); 3392 } 3393 exit: 3394 mutex_unlock(rule_lock); 3395 return status; 3396 } 3397 3398 /** 3399 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI 3400 * @hw: pointer to the hardware structure 3401 * @vlan_id: VLAN ID 3402 * @vsi_handle: check MAC filter for this VSI 3403 */ 3404 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle) 3405 { 3406 struct ice_fltr_mgmt_list_entry *entry; 3407 struct list_head *rule_head; 3408 struct ice_switch_info *sw; 3409 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3410 u16 hw_vsi_id; 3411 3412 if (vlan_id > ICE_MAX_VLAN_ID) 3413 return false; 3414 3415 if (!ice_is_vsi_valid(hw, vsi_handle)) 3416 return false; 3417 3418 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3419 sw = hw->switch_info; 3420 rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 3421 if (!rule_head) 3422 return false; 3423 3424 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 3425 mutex_lock(rule_lock); 3426 list_for_each_entry(entry, rule_head, list_entry) { 3427 struct ice_fltr_info *f_info = &entry->fltr_info; 3428 u16 entry_vlan_id = f_info->l_data.vlan.vlan_id; 3429 struct ice_vsi_list_map_info *map_info; 3430 3431 if (entry_vlan_id > ICE_MAX_VLAN_ID) 3432 continue; 3433 3434 if (f_info->flag != ICE_FLTR_TX || 3435 f_info->src_id != ICE_SRC_ID_VSI || 3436 f_info->lkup_type != ICE_SW_LKUP_VLAN) 3437 continue; 3438 3439 /* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */ 3440 if (f_info->fltr_act != ICE_FWD_TO_VSI && 3441 f_info->fltr_act != ICE_FWD_TO_VSI_LIST) 3442 continue; 3443 3444 if (f_info->fltr_act == ICE_FWD_TO_VSI) { 3445 if (hw_vsi_id != f_info->fwd_id.hw_vsi_id) 3446 continue; 3447 } else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { 3448 /* If filter_action is FWD_TO_VSI_LIST, make sure 3449 * that VSI being checked is part of VSI list 3450 */ 3451 if (entry->vsi_count == 1 && 3452 entry->vsi_list_info) { 3453 map_info = entry->vsi_list_info; 3454 if (!test_bit(vsi_handle, map_info->vsi_map)) 3455 continue; 3456 } 3457 } 3458 3459 if (vlan_id == entry_vlan_id) { 3460 mutex_unlock(rule_lock); 3461 return true; 3462 } 3463 } 3464 mutex_unlock(rule_lock); 3465 3466 return false; 3467 } 3468 3469 /** 3470 * ice_add_mac - Add a MAC address based filter rule 3471 * @hw: pointer to the hardware structure 3472 * @m_list: list of MAC addresses and forwarding information 3473 */ 3474 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list) 3475 { 3476 struct ice_fltr_list_entry *m_list_itr; 3477 int status = 0; 3478 3479 if (!m_list || !hw) 3480 return -EINVAL; 3481 3482 list_for_each_entry(m_list_itr, m_list, list_entry) { 3483 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; 3484 u16 vsi_handle; 3485 u16 hw_vsi_id; 3486 3487 m_list_itr->fltr_info.flag = ICE_FLTR_TX; 3488 vsi_handle = m_list_itr->fltr_info.vsi_handle; 3489 if (!ice_is_vsi_valid(hw, vsi_handle)) 3490 return -EINVAL; 3491 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3492 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id; 3493 /* update the src in case it is VSI num */ 3494 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI) 3495 return -EINVAL; 3496 m_list_itr->fltr_info.src = hw_vsi_id; 3497 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC || 3498 is_zero_ether_addr(add)) 3499 return -EINVAL; 3500 3501 m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC, 3502 m_list_itr); 3503 if (m_list_itr->status) 3504 return m_list_itr->status; 3505 } 3506 3507 return status; 3508 } 3509 3510 /** 3511 * ice_add_vlan_internal - Add one VLAN based filter rule 3512 * @hw: pointer to the hardware structure 3513 * @f_entry: filter entry containing one VLAN information 3514 */ 3515 static int 3516 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) 3517 { 3518 struct ice_switch_info *sw = hw->switch_info; 3519 struct ice_fltr_mgmt_list_entry *v_list_itr; 3520 struct ice_fltr_info *new_fltr, *cur_fltr; 3521 enum ice_sw_lkup_type lkup_type; 3522 u16 vsi_list_id = 0, vsi_handle; 3523 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3524 int status = 0; 3525 3526 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) 3527 return -EINVAL; 3528 3529 f_entry->fltr_info.fwd_id.hw_vsi_id = 3530 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); 3531 new_fltr = &f_entry->fltr_info; 3532 3533 /* VLAN ID should only be 12 bits */ 3534 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID) 3535 return -EINVAL; 3536 3537 if (new_fltr->src_id != ICE_SRC_ID_VSI) 3538 return -EINVAL; 3539 3540 new_fltr->src = new_fltr->fwd_id.hw_vsi_id; 3541 lkup_type = new_fltr->lkup_type; 3542 vsi_handle = new_fltr->vsi_handle; 3543 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 3544 mutex_lock(rule_lock); 3545 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr); 3546 if (!v_list_itr) { 3547 struct ice_vsi_list_map_info *map_info = NULL; 3548 3549 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) { 3550 /* All VLAN pruning rules use a VSI list. Check if 3551 * there is already a VSI list containing VSI that we 3552 * want to add. If found, use the same vsi_list_id for 3553 * this new VLAN rule or else create a new list. 3554 */ 3555 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN, 3556 vsi_handle, 3557 &vsi_list_id); 3558 if (!map_info) { 3559 status = ice_create_vsi_list_rule(hw, 3560 &vsi_handle, 3561 1, 3562 &vsi_list_id, 3563 lkup_type); 3564 if (status) 3565 goto exit; 3566 } 3567 /* Convert the action to forwarding to a VSI list. */ 3568 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; 3569 new_fltr->fwd_id.vsi_list_id = vsi_list_id; 3570 } 3571 3572 status = ice_create_pkt_fwd_rule(hw, f_entry); 3573 if (!status) { 3574 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, 3575 new_fltr); 3576 if (!v_list_itr) { 3577 status = -ENOENT; 3578 goto exit; 3579 } 3580 /* reuse VSI list for new rule and increment ref_cnt */ 3581 if (map_info) { 3582 v_list_itr->vsi_list_info = map_info; 3583 map_info->ref_cnt++; 3584 } else { 3585 v_list_itr->vsi_list_info = 3586 ice_create_vsi_list_map(hw, &vsi_handle, 3587 1, vsi_list_id); 3588 } 3589 } 3590 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) { 3591 /* Update existing VSI list to add new VSI ID only if it used 3592 * by one VLAN rule. 3593 */ 3594 cur_fltr = &v_list_itr->fltr_info; 3595 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr, 3596 new_fltr); 3597 } else { 3598 /* If VLAN rule exists and VSI list being used by this rule is 3599 * referenced by more than 1 VLAN rule. Then create a new VSI 3600 * list appending previous VSI with new VSI and update existing 3601 * VLAN rule to point to new VSI list ID 3602 */ 3603 struct ice_fltr_info tmp_fltr; 3604 u16 vsi_handle_arr[2]; 3605 u16 cur_handle; 3606 3607 /* Current implementation only supports reusing VSI list with 3608 * one VSI count. We should never hit below condition 3609 */ 3610 if (v_list_itr->vsi_count > 1 && 3611 v_list_itr->vsi_list_info->ref_cnt > 1) { 3612 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n"); 3613 status = -EIO; 3614 goto exit; 3615 } 3616 3617 cur_handle = 3618 find_first_bit(v_list_itr->vsi_list_info->vsi_map, 3619 ICE_MAX_VSI); 3620 3621 /* A rule already exists with the new VSI being added */ 3622 if (cur_handle == vsi_handle) { 3623 status = -EEXIST; 3624 goto exit; 3625 } 3626 3627 vsi_handle_arr[0] = cur_handle; 3628 vsi_handle_arr[1] = vsi_handle; 3629 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 3630 &vsi_list_id, lkup_type); 3631 if (status) 3632 goto exit; 3633 3634 tmp_fltr = v_list_itr->fltr_info; 3635 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id; 3636 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 3637 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 3638 /* Update the previous switch rule to a new VSI list which 3639 * includes current VSI that is requested 3640 */ 3641 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 3642 if (status) 3643 goto exit; 3644 3645 /* before overriding VSI list map info. decrement ref_cnt of 3646 * previous VSI list 3647 */ 3648 v_list_itr->vsi_list_info->ref_cnt--; 3649 3650 /* now update to newly created list */ 3651 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id; 3652 v_list_itr->vsi_list_info = 3653 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 3654 vsi_list_id); 3655 v_list_itr->vsi_count++; 3656 } 3657 3658 exit: 3659 mutex_unlock(rule_lock); 3660 return status; 3661 } 3662 3663 /** 3664 * ice_add_vlan - Add VLAN based filter rule 3665 * @hw: pointer to the hardware structure 3666 * @v_list: list of VLAN entries and forwarding information 3667 */ 3668 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list) 3669 { 3670 struct ice_fltr_list_entry *v_list_itr; 3671 3672 if (!v_list || !hw) 3673 return -EINVAL; 3674 3675 list_for_each_entry(v_list_itr, v_list, list_entry) { 3676 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN) 3677 return -EINVAL; 3678 v_list_itr->fltr_info.flag = ICE_FLTR_TX; 3679 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr); 3680 if (v_list_itr->status) 3681 return v_list_itr->status; 3682 } 3683 return 0; 3684 } 3685 3686 /** 3687 * ice_add_eth_mac - Add ethertype and MAC based filter rule 3688 * @hw: pointer to the hardware structure 3689 * @em_list: list of ether type MAC filter, MAC is optional 3690 * 3691 * This function requires the caller to populate the entries in 3692 * the filter list with the necessary fields (including flags to 3693 * indicate Tx or Rx rules). 3694 */ 3695 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list) 3696 { 3697 struct ice_fltr_list_entry *em_list_itr; 3698 3699 if (!em_list || !hw) 3700 return -EINVAL; 3701 3702 list_for_each_entry(em_list_itr, em_list, list_entry) { 3703 enum ice_sw_lkup_type l_type = 3704 em_list_itr->fltr_info.lkup_type; 3705 3706 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 3707 l_type != ICE_SW_LKUP_ETHERTYPE) 3708 return -EINVAL; 3709 3710 em_list_itr->status = ice_add_rule_internal(hw, l_type, 3711 em_list_itr); 3712 if (em_list_itr->status) 3713 return em_list_itr->status; 3714 } 3715 return 0; 3716 } 3717 3718 /** 3719 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule 3720 * @hw: pointer to the hardware structure 3721 * @em_list: list of ethertype or ethertype MAC entries 3722 */ 3723 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list) 3724 { 3725 struct ice_fltr_list_entry *em_list_itr, *tmp; 3726 3727 if (!em_list || !hw) 3728 return -EINVAL; 3729 3730 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) { 3731 enum ice_sw_lkup_type l_type = 3732 em_list_itr->fltr_info.lkup_type; 3733 3734 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && 3735 l_type != ICE_SW_LKUP_ETHERTYPE) 3736 return -EINVAL; 3737 3738 em_list_itr->status = ice_remove_rule_internal(hw, l_type, 3739 em_list_itr); 3740 if (em_list_itr->status) 3741 return em_list_itr->status; 3742 } 3743 return 0; 3744 } 3745 3746 /** 3747 * ice_rem_sw_rule_info 3748 * @hw: pointer to the hardware structure 3749 * @rule_head: pointer to the switch list structure that we want to delete 3750 */ 3751 static void 3752 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head) 3753 { 3754 if (!list_empty(rule_head)) { 3755 struct ice_fltr_mgmt_list_entry *entry; 3756 struct ice_fltr_mgmt_list_entry *tmp; 3757 3758 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) { 3759 list_del(&entry->list_entry); 3760 devm_kfree(ice_hw_to_dev(hw), entry); 3761 } 3762 } 3763 } 3764 3765 /** 3766 * ice_rem_adv_rule_info 3767 * @hw: pointer to the hardware structure 3768 * @rule_head: pointer to the switch list structure that we want to delete 3769 */ 3770 static void 3771 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head) 3772 { 3773 struct ice_adv_fltr_mgmt_list_entry *tmp_entry; 3774 struct ice_adv_fltr_mgmt_list_entry *lst_itr; 3775 3776 if (list_empty(rule_head)) 3777 return; 3778 3779 list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) { 3780 list_del(&lst_itr->list_entry); 3781 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups); 3782 devm_kfree(ice_hw_to_dev(hw), lst_itr); 3783 } 3784 } 3785 3786 /** 3787 * ice_cfg_dflt_vsi - change state of VSI to set/clear default 3788 * @pi: pointer to the port_info structure 3789 * @vsi_handle: VSI handle to set as default 3790 * @set: true to add the above mentioned switch rule, false to remove it 3791 * @direction: ICE_FLTR_RX or ICE_FLTR_TX 3792 * 3793 * add filter rule to set/unset given VSI as default VSI for the switch 3794 * (represented by swid) 3795 */ 3796 int 3797 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set, 3798 u8 direction) 3799 { 3800 struct ice_fltr_list_entry f_list_entry; 3801 struct ice_fltr_info f_info; 3802 struct ice_hw *hw = pi->hw; 3803 u16 hw_vsi_id; 3804 int status; 3805 3806 if (!ice_is_vsi_valid(hw, vsi_handle)) 3807 return -EINVAL; 3808 3809 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3810 3811 memset(&f_info, 0, sizeof(f_info)); 3812 3813 f_info.lkup_type = ICE_SW_LKUP_DFLT; 3814 f_info.flag = direction; 3815 f_info.fltr_act = ICE_FWD_TO_VSI; 3816 f_info.fwd_id.hw_vsi_id = hw_vsi_id; 3817 f_info.vsi_handle = vsi_handle; 3818 3819 if (f_info.flag & ICE_FLTR_RX) { 3820 f_info.src = hw->port_info->lport; 3821 f_info.src_id = ICE_SRC_ID_LPORT; 3822 } else if (f_info.flag & ICE_FLTR_TX) { 3823 f_info.src_id = ICE_SRC_ID_VSI; 3824 f_info.src = hw_vsi_id; 3825 } 3826 f_list_entry.fltr_info = f_info; 3827 3828 if (set) 3829 status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT, 3830 &f_list_entry); 3831 else 3832 status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT, 3833 &f_list_entry); 3834 3835 return status; 3836 } 3837 3838 /** 3839 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter 3840 * @fm_entry: filter entry to inspect 3841 * @vsi_handle: VSI handle to compare with filter info 3842 */ 3843 static bool 3844 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle) 3845 { 3846 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI && 3847 fm_entry->fltr_info.vsi_handle == vsi_handle) || 3848 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST && 3849 fm_entry->vsi_list_info && 3850 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map)))); 3851 } 3852 3853 /** 3854 * ice_check_if_dflt_vsi - check if VSI is default VSI 3855 * @pi: pointer to the port_info structure 3856 * @vsi_handle: vsi handle to check for in filter list 3857 * @rule_exists: indicates if there are any VSI's in the rule list 3858 * 3859 * checks if the VSI is in a default VSI list, and also indicates 3860 * if the default VSI list is empty 3861 */ 3862 bool 3863 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, 3864 bool *rule_exists) 3865 { 3866 struct ice_fltr_mgmt_list_entry *fm_entry; 3867 struct ice_sw_recipe *recp_list; 3868 struct list_head *rule_head; 3869 struct mutex *rule_lock; /* Lock to protect filter rule list */ 3870 bool ret = false; 3871 3872 recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT]; 3873 rule_lock = &recp_list->filt_rule_lock; 3874 rule_head = &recp_list->filt_rules; 3875 3876 mutex_lock(rule_lock); 3877 3878 if (rule_exists && !list_empty(rule_head)) 3879 *rule_exists = true; 3880 3881 list_for_each_entry(fm_entry, rule_head, list_entry) { 3882 if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) { 3883 ret = true; 3884 break; 3885 } 3886 } 3887 3888 mutex_unlock(rule_lock); 3889 3890 return ret; 3891 } 3892 3893 /** 3894 * ice_remove_mac - remove a MAC address based filter rule 3895 * @hw: pointer to the hardware structure 3896 * @m_list: list of MAC addresses and forwarding information 3897 * 3898 * This function removes either a MAC filter rule or a specific VSI from a 3899 * VSI list for a multicast MAC address. 3900 * 3901 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should 3902 * be aware that this call will only work if all the entries passed into m_list 3903 * were added previously. It will not attempt to do a partial remove of entries 3904 * that were found. 3905 */ 3906 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list) 3907 { 3908 struct ice_fltr_list_entry *list_itr, *tmp; 3909 3910 if (!m_list) 3911 return -EINVAL; 3912 3913 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) { 3914 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type; 3915 u16 vsi_handle; 3916 3917 if (l_type != ICE_SW_LKUP_MAC) 3918 return -EINVAL; 3919 3920 vsi_handle = list_itr->fltr_info.vsi_handle; 3921 if (!ice_is_vsi_valid(hw, vsi_handle)) 3922 return -EINVAL; 3923 3924 list_itr->fltr_info.fwd_id.hw_vsi_id = 3925 ice_get_hw_vsi_num(hw, vsi_handle); 3926 3927 list_itr->status = ice_remove_rule_internal(hw, 3928 ICE_SW_LKUP_MAC, 3929 list_itr); 3930 if (list_itr->status) 3931 return list_itr->status; 3932 } 3933 return 0; 3934 } 3935 3936 /** 3937 * ice_remove_vlan - Remove VLAN based filter rule 3938 * @hw: pointer to the hardware structure 3939 * @v_list: list of VLAN entries and forwarding information 3940 */ 3941 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list) 3942 { 3943 struct ice_fltr_list_entry *v_list_itr, *tmp; 3944 3945 if (!v_list || !hw) 3946 return -EINVAL; 3947 3948 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 3949 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type; 3950 3951 if (l_type != ICE_SW_LKUP_VLAN) 3952 return -EINVAL; 3953 v_list_itr->status = ice_remove_rule_internal(hw, 3954 ICE_SW_LKUP_VLAN, 3955 v_list_itr); 3956 if (v_list_itr->status) 3957 return v_list_itr->status; 3958 } 3959 return 0; 3960 } 3961 3962 /** 3963 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list 3964 * @hw: pointer to the hardware structure 3965 * @vsi_handle: VSI handle to remove filters from 3966 * @vsi_list_head: pointer to the list to add entry to 3967 * @fi: pointer to fltr_info of filter entry to copy & add 3968 * 3969 * Helper function, used when creating a list of filters to remove from 3970 * a specific VSI. The entry added to vsi_list_head is a COPY of the 3971 * original filter entry, with the exception of fltr_info.fltr_act and 3972 * fltr_info.fwd_id fields. These are set such that later logic can 3973 * extract which VSI to remove the fltr from, and pass on that information. 3974 */ 3975 static int 3976 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 3977 struct list_head *vsi_list_head, 3978 struct ice_fltr_info *fi) 3979 { 3980 struct ice_fltr_list_entry *tmp; 3981 3982 /* this memory is freed up in the caller function 3983 * once filters for this VSI are removed 3984 */ 3985 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL); 3986 if (!tmp) 3987 return -ENOMEM; 3988 3989 tmp->fltr_info = *fi; 3990 3991 /* Overwrite these fields to indicate which VSI to remove filter from, 3992 * so find and remove logic can extract the information from the 3993 * list entries. Note that original entries will still have proper 3994 * values. 3995 */ 3996 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 3997 tmp->fltr_info.vsi_handle = vsi_handle; 3998 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3999 4000 list_add(&tmp->list_entry, vsi_list_head); 4001 4002 return 0; 4003 } 4004 4005 /** 4006 * ice_add_to_vsi_fltr_list - Add VSI filters to the list 4007 * @hw: pointer to the hardware structure 4008 * @vsi_handle: VSI handle to remove filters from 4009 * @lkup_list_head: pointer to the list that has certain lookup type filters 4010 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle 4011 * 4012 * Locates all filters in lkup_list_head that are used by the given VSI, 4013 * and adds COPIES of those entries to vsi_list_head (intended to be used 4014 * to remove the listed filters). 4015 * Note that this means all entries in vsi_list_head must be explicitly 4016 * deallocated by the caller when done with list. 4017 */ 4018 static int 4019 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, 4020 struct list_head *lkup_list_head, 4021 struct list_head *vsi_list_head) 4022 { 4023 struct ice_fltr_mgmt_list_entry *fm_entry; 4024 int status = 0; 4025 4026 /* check to make sure VSI ID is valid and within boundary */ 4027 if (!ice_is_vsi_valid(hw, vsi_handle)) 4028 return -EINVAL; 4029 4030 list_for_each_entry(fm_entry, lkup_list_head, list_entry) { 4031 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle)) 4032 continue; 4033 4034 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 4035 vsi_list_head, 4036 &fm_entry->fltr_info); 4037 if (status) 4038 return status; 4039 } 4040 return status; 4041 } 4042 4043 /** 4044 * ice_determine_promisc_mask 4045 * @fi: filter info to parse 4046 * 4047 * Helper function to determine which ICE_PROMISC_ mask corresponds 4048 * to given filter into. 4049 */ 4050 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi) 4051 { 4052 u16 vid = fi->l_data.mac_vlan.vlan_id; 4053 u8 *macaddr = fi->l_data.mac.mac_addr; 4054 bool is_tx_fltr = false; 4055 u8 promisc_mask = 0; 4056 4057 if (fi->flag == ICE_FLTR_TX) 4058 is_tx_fltr = true; 4059 4060 if (is_broadcast_ether_addr(macaddr)) 4061 promisc_mask |= is_tx_fltr ? 4062 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX; 4063 else if (is_multicast_ether_addr(macaddr)) 4064 promisc_mask |= is_tx_fltr ? 4065 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX; 4066 else if (is_unicast_ether_addr(macaddr)) 4067 promisc_mask |= is_tx_fltr ? 4068 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX; 4069 if (vid) 4070 promisc_mask |= is_tx_fltr ? 4071 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX; 4072 4073 return promisc_mask; 4074 } 4075 4076 /** 4077 * ice_remove_promisc - Remove promisc based filter rules 4078 * @hw: pointer to the hardware structure 4079 * @recp_id: recipe ID for which the rule needs to removed 4080 * @v_list: list of promisc entries 4081 */ 4082 static int 4083 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list) 4084 { 4085 struct ice_fltr_list_entry *v_list_itr, *tmp; 4086 4087 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { 4088 v_list_itr->status = 4089 ice_remove_rule_internal(hw, recp_id, v_list_itr); 4090 if (v_list_itr->status) 4091 return v_list_itr->status; 4092 } 4093 return 0; 4094 } 4095 4096 /** 4097 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI 4098 * @hw: pointer to the hardware structure 4099 * @vsi_handle: VSI handle to clear mode 4100 * @promisc_mask: mask of promiscuous config bits to clear 4101 * @vid: VLAN ID to clear VLAN promiscuous 4102 */ 4103 int 4104 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 4105 u16 vid) 4106 { 4107 struct ice_switch_info *sw = hw->switch_info; 4108 struct ice_fltr_list_entry *fm_entry, *tmp; 4109 struct list_head remove_list_head; 4110 struct ice_fltr_mgmt_list_entry *itr; 4111 struct list_head *rule_head; 4112 struct mutex *rule_lock; /* Lock to protect filter rule list */ 4113 int status = 0; 4114 u8 recipe_id; 4115 4116 if (!ice_is_vsi_valid(hw, vsi_handle)) 4117 return -EINVAL; 4118 4119 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) 4120 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 4121 else 4122 recipe_id = ICE_SW_LKUP_PROMISC; 4123 4124 rule_head = &sw->recp_list[recipe_id].filt_rules; 4125 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock; 4126 4127 INIT_LIST_HEAD(&remove_list_head); 4128 4129 mutex_lock(rule_lock); 4130 list_for_each_entry(itr, rule_head, list_entry) { 4131 struct ice_fltr_info *fltr_info; 4132 u8 fltr_promisc_mask = 0; 4133 4134 if (!ice_vsi_uses_fltr(itr, vsi_handle)) 4135 continue; 4136 fltr_info = &itr->fltr_info; 4137 4138 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN && 4139 vid != fltr_info->l_data.mac_vlan.vlan_id) 4140 continue; 4141 4142 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info); 4143 4144 /* Skip if filter is not completely specified by given mask */ 4145 if (fltr_promisc_mask & ~promisc_mask) 4146 continue; 4147 4148 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, 4149 &remove_list_head, 4150 fltr_info); 4151 if (status) { 4152 mutex_unlock(rule_lock); 4153 goto free_fltr_list; 4154 } 4155 } 4156 mutex_unlock(rule_lock); 4157 4158 status = ice_remove_promisc(hw, recipe_id, &remove_list_head); 4159 4160 free_fltr_list: 4161 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 4162 list_del(&fm_entry->list_entry); 4163 devm_kfree(ice_hw_to_dev(hw), fm_entry); 4164 } 4165 4166 return status; 4167 } 4168 4169 /** 4170 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) 4171 * @hw: pointer to the hardware structure 4172 * @vsi_handle: VSI handle to configure 4173 * @promisc_mask: mask of promiscuous config bits 4174 * @vid: VLAN ID to set VLAN promiscuous 4175 */ 4176 int 4177 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid) 4178 { 4179 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR }; 4180 struct ice_fltr_list_entry f_list_entry; 4181 struct ice_fltr_info new_fltr; 4182 bool is_tx_fltr; 4183 int status = 0; 4184 u16 hw_vsi_id; 4185 int pkt_type; 4186 u8 recipe_id; 4187 4188 if (!ice_is_vsi_valid(hw, vsi_handle)) 4189 return -EINVAL; 4190 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 4191 4192 memset(&new_fltr, 0, sizeof(new_fltr)); 4193 4194 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) { 4195 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN; 4196 new_fltr.l_data.mac_vlan.vlan_id = vid; 4197 recipe_id = ICE_SW_LKUP_PROMISC_VLAN; 4198 } else { 4199 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC; 4200 recipe_id = ICE_SW_LKUP_PROMISC; 4201 } 4202 4203 /* Separate filters must be set for each direction/packet type 4204 * combination, so we will loop over the mask value, store the 4205 * individual type, and clear it out in the input mask as it 4206 * is found. 4207 */ 4208 while (promisc_mask) { 4209 u8 *mac_addr; 4210 4211 pkt_type = 0; 4212 is_tx_fltr = false; 4213 4214 if (promisc_mask & ICE_PROMISC_UCAST_RX) { 4215 promisc_mask &= ~ICE_PROMISC_UCAST_RX; 4216 pkt_type = UCAST_FLTR; 4217 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) { 4218 promisc_mask &= ~ICE_PROMISC_UCAST_TX; 4219 pkt_type = UCAST_FLTR; 4220 is_tx_fltr = true; 4221 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) { 4222 promisc_mask &= ~ICE_PROMISC_MCAST_RX; 4223 pkt_type = MCAST_FLTR; 4224 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) { 4225 promisc_mask &= ~ICE_PROMISC_MCAST_TX; 4226 pkt_type = MCAST_FLTR; 4227 is_tx_fltr = true; 4228 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) { 4229 promisc_mask &= ~ICE_PROMISC_BCAST_RX; 4230 pkt_type = BCAST_FLTR; 4231 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) { 4232 promisc_mask &= ~ICE_PROMISC_BCAST_TX; 4233 pkt_type = BCAST_FLTR; 4234 is_tx_fltr = true; 4235 } 4236 4237 /* Check for VLAN promiscuous flag */ 4238 if (promisc_mask & ICE_PROMISC_VLAN_RX) { 4239 promisc_mask &= ~ICE_PROMISC_VLAN_RX; 4240 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) { 4241 promisc_mask &= ~ICE_PROMISC_VLAN_TX; 4242 is_tx_fltr = true; 4243 } 4244 4245 /* Set filter DA based on packet type */ 4246 mac_addr = new_fltr.l_data.mac.mac_addr; 4247 if (pkt_type == BCAST_FLTR) { 4248 eth_broadcast_addr(mac_addr); 4249 } else if (pkt_type == MCAST_FLTR || 4250 pkt_type == UCAST_FLTR) { 4251 /* Use the dummy ether header DA */ 4252 ether_addr_copy(mac_addr, dummy_eth_header); 4253 if (pkt_type == MCAST_FLTR) 4254 mac_addr[0] |= 0x1; /* Set multicast bit */ 4255 } 4256 4257 /* Need to reset this to zero for all iterations */ 4258 new_fltr.flag = 0; 4259 if (is_tx_fltr) { 4260 new_fltr.flag |= ICE_FLTR_TX; 4261 new_fltr.src = hw_vsi_id; 4262 } else { 4263 new_fltr.flag |= ICE_FLTR_RX; 4264 new_fltr.src = hw->port_info->lport; 4265 } 4266 4267 new_fltr.fltr_act = ICE_FWD_TO_VSI; 4268 new_fltr.vsi_handle = vsi_handle; 4269 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id; 4270 f_list_entry.fltr_info = new_fltr; 4271 4272 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry); 4273 if (status) 4274 goto set_promisc_exit; 4275 } 4276 4277 set_promisc_exit: 4278 return status; 4279 } 4280 4281 /** 4282 * ice_set_vlan_vsi_promisc 4283 * @hw: pointer to the hardware structure 4284 * @vsi_handle: VSI handle to configure 4285 * @promisc_mask: mask of promiscuous config bits 4286 * @rm_vlan_promisc: Clear VLANs VSI promisc mode 4287 * 4288 * Configure VSI with all associated VLANs to given promiscuous mode(s) 4289 */ 4290 int 4291 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, 4292 bool rm_vlan_promisc) 4293 { 4294 struct ice_switch_info *sw = hw->switch_info; 4295 struct ice_fltr_list_entry *list_itr, *tmp; 4296 struct list_head vsi_list_head; 4297 struct list_head *vlan_head; 4298 struct mutex *vlan_lock; /* Lock to protect filter rule list */ 4299 u16 vlan_id; 4300 int status; 4301 4302 INIT_LIST_HEAD(&vsi_list_head); 4303 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; 4304 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; 4305 mutex_lock(vlan_lock); 4306 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head, 4307 &vsi_list_head); 4308 mutex_unlock(vlan_lock); 4309 if (status) 4310 goto free_fltr_list; 4311 4312 list_for_each_entry(list_itr, &vsi_list_head, list_entry) { 4313 /* Avoid enabling or disabling VLAN zero twice when in double 4314 * VLAN mode 4315 */ 4316 if (ice_is_dvm_ena(hw) && 4317 list_itr->fltr_info.l_data.vlan.tpid == 0) 4318 continue; 4319 4320 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id; 4321 if (rm_vlan_promisc) 4322 status = ice_clear_vsi_promisc(hw, vsi_handle, 4323 promisc_mask, vlan_id); 4324 else 4325 status = ice_set_vsi_promisc(hw, vsi_handle, 4326 promisc_mask, vlan_id); 4327 if (status && status != -EEXIST) 4328 break; 4329 } 4330 4331 free_fltr_list: 4332 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) { 4333 list_del(&list_itr->list_entry); 4334 devm_kfree(ice_hw_to_dev(hw), list_itr); 4335 } 4336 return status; 4337 } 4338 4339 /** 4340 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI 4341 * @hw: pointer to the hardware structure 4342 * @vsi_handle: VSI handle to remove filters from 4343 * @lkup: switch rule filter lookup type 4344 */ 4345 static void 4346 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle, 4347 enum ice_sw_lkup_type lkup) 4348 { 4349 struct ice_switch_info *sw = hw->switch_info; 4350 struct ice_fltr_list_entry *fm_entry; 4351 struct list_head remove_list_head; 4352 struct list_head *rule_head; 4353 struct ice_fltr_list_entry *tmp; 4354 struct mutex *rule_lock; /* Lock to protect filter rule list */ 4355 int status; 4356 4357 INIT_LIST_HEAD(&remove_list_head); 4358 rule_lock = &sw->recp_list[lkup].filt_rule_lock; 4359 rule_head = &sw->recp_list[lkup].filt_rules; 4360 mutex_lock(rule_lock); 4361 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head, 4362 &remove_list_head); 4363 mutex_unlock(rule_lock); 4364 if (status) 4365 goto free_fltr_list; 4366 4367 switch (lkup) { 4368 case ICE_SW_LKUP_MAC: 4369 ice_remove_mac(hw, &remove_list_head); 4370 break; 4371 case ICE_SW_LKUP_VLAN: 4372 ice_remove_vlan(hw, &remove_list_head); 4373 break; 4374 case ICE_SW_LKUP_PROMISC: 4375 case ICE_SW_LKUP_PROMISC_VLAN: 4376 ice_remove_promisc(hw, lkup, &remove_list_head); 4377 break; 4378 case ICE_SW_LKUP_MAC_VLAN: 4379 case ICE_SW_LKUP_ETHERTYPE: 4380 case ICE_SW_LKUP_ETHERTYPE_MAC: 4381 case ICE_SW_LKUP_DFLT: 4382 case ICE_SW_LKUP_LAST: 4383 default: 4384 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup); 4385 break; 4386 } 4387 4388 free_fltr_list: 4389 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { 4390 list_del(&fm_entry->list_entry); 4391 devm_kfree(ice_hw_to_dev(hw), fm_entry); 4392 } 4393 } 4394 4395 /** 4396 * ice_remove_vsi_fltr - Remove all filters for a VSI 4397 * @hw: pointer to the hardware structure 4398 * @vsi_handle: VSI handle to remove filters from 4399 */ 4400 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle) 4401 { 4402 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC); 4403 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN); 4404 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC); 4405 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN); 4406 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT); 4407 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE); 4408 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC); 4409 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN); 4410 } 4411 4412 /** 4413 * ice_alloc_res_cntr - allocating resource counter 4414 * @hw: pointer to the hardware structure 4415 * @type: type of resource 4416 * @alloc_shared: if set it is shared else dedicated 4417 * @num_items: number of entries requested for FD resource type 4418 * @counter_id: counter index returned by AQ call 4419 */ 4420 int 4421 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 4422 u16 *counter_id) 4423 { 4424 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1); 4425 u16 buf_len = __struct_size(buf); 4426 int status; 4427 4428 buf->num_elems = cpu_to_le16(num_items); 4429 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & 4430 ICE_AQC_RES_TYPE_M) | alloc_shared); 4431 4432 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res); 4433 if (status) 4434 return status; 4435 4436 *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp); 4437 return status; 4438 } 4439 4440 /** 4441 * ice_free_res_cntr - free resource counter 4442 * @hw: pointer to the hardware structure 4443 * @type: type of resource 4444 * @alloc_shared: if set it is shared else dedicated 4445 * @num_items: number of entries to be freed for FD resource type 4446 * @counter_id: counter ID resource which needs to be freed 4447 */ 4448 int 4449 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, 4450 u16 counter_id) 4451 { 4452 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1); 4453 u16 buf_len = __struct_size(buf); 4454 int status; 4455 4456 buf->num_elems = cpu_to_le16(num_items); 4457 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & 4458 ICE_AQC_RES_TYPE_M) | alloc_shared); 4459 buf->elem[0].e.sw_resp = cpu_to_le16(counter_id); 4460 4461 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res); 4462 if (status) 4463 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n"); 4464 4465 return status; 4466 } 4467 4468 #define ICE_PROTOCOL_ENTRY(id, ...) { \ 4469 .prot_type = id, \ 4470 .offs = {__VA_ARGS__}, \ 4471 } 4472 4473 /** 4474 * ice_share_res - set a resource as shared or dedicated 4475 * @hw: hw struct of original owner of resource 4476 * @type: resource type 4477 * @shared: is the resource being set to shared 4478 * @res_id: resource id (descriptor) 4479 */ 4480 int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id) 4481 { 4482 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1); 4483 u16 buf_len = __struct_size(buf); 4484 int status; 4485 4486 buf->num_elems = cpu_to_le16(1); 4487 if (shared) 4488 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & 4489 ICE_AQC_RES_TYPE_M) | 4490 ICE_AQC_RES_TYPE_FLAG_SHARED); 4491 else 4492 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & 4493 ICE_AQC_RES_TYPE_M) & 4494 ~ICE_AQC_RES_TYPE_FLAG_SHARED); 4495 4496 buf->elem[0].e.sw_resp = cpu_to_le16(res_id); 4497 status = ice_aq_alloc_free_res(hw, buf, buf_len, 4498 ice_aqc_opc_share_res); 4499 if (status) 4500 ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n", 4501 type, res_id, shared ? "SHARED" : "DEDICATED"); 4502 4503 return status; 4504 } 4505 4506 /* This is mapping table entry that maps every word within a given protocol 4507 * structure to the real byte offset as per the specification of that 4508 * protocol header. 4509 * for example dst address is 3 words in ethertype header and corresponding 4510 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8 4511 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a 4512 * matching entry describing its field. This needs to be updated if new 4513 * structure is added to that union. 4514 */ 4515 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = { 4516 ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12), 4517 ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12), 4518 ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0), 4519 ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0), 4520 ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0), 4521 ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18), 4522 ICE_PROTOCOL_ENTRY(ICE_IPV4_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18), 4523 ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 4524 20, 22, 24, 26, 28, 30, 32, 34, 36, 38), 4525 ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 4526 22, 24, 26, 28, 30, 32, 34, 36, 38), 4527 ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2), 4528 ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2), 4529 ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2), 4530 ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14), 4531 ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14), 4532 ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6), 4533 ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22), 4534 ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14), 4535 ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6), 4536 ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10), 4537 ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0), 4538 ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0), 4539 ICE_PROTOCOL_ENTRY(ICE_HW_METADATA, 4540 ICE_SOURCE_PORT_MDID_OFFSET, 4541 ICE_PTYPE_MDID_OFFSET, 4542 ICE_PACKET_LENGTH_MDID_OFFSET, 4543 ICE_SOURCE_VSI_MDID_OFFSET, 4544 ICE_PKT_VLAN_MDID_OFFSET, 4545 ICE_PKT_TUNNEL_MDID_OFFSET, 4546 ICE_PKT_TCP_MDID_OFFSET, 4547 ICE_PKT_ERROR_MDID_OFFSET), 4548 }; 4549 4550 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = { 4551 { ICE_MAC_OFOS, ICE_MAC_OFOS_HW }, 4552 { ICE_MAC_IL, ICE_MAC_IL_HW }, 4553 { ICE_ETYPE_OL, ICE_ETYPE_OL_HW }, 4554 { ICE_ETYPE_IL, ICE_ETYPE_IL_HW }, 4555 { ICE_VLAN_OFOS, ICE_VLAN_OL_HW }, 4556 { ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW }, 4557 { ICE_IPV4_IL, ICE_IPV4_IL_HW }, 4558 { ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW }, 4559 { ICE_IPV6_IL, ICE_IPV6_IL_HW }, 4560 { ICE_TCP_IL, ICE_TCP_IL_HW }, 4561 { ICE_UDP_OF, ICE_UDP_OF_HW }, 4562 { ICE_UDP_ILOS, ICE_UDP_ILOS_HW }, 4563 { ICE_VXLAN, ICE_UDP_OF_HW }, 4564 { ICE_GENEVE, ICE_UDP_OF_HW }, 4565 { ICE_NVGRE, ICE_GRE_OF_HW }, 4566 { ICE_GTP, ICE_UDP_OF_HW }, 4567 { ICE_GTP_NO_PAY, ICE_UDP_ILOS_HW }, 4568 { ICE_PPPOE, ICE_PPPOE_HW }, 4569 { ICE_L2TPV3, ICE_L2TPV3_HW }, 4570 { ICE_VLAN_EX, ICE_VLAN_OF_HW }, 4571 { ICE_VLAN_IN, ICE_VLAN_OL_HW }, 4572 { ICE_HW_METADATA, ICE_META_DATA_ID_HW }, 4573 }; 4574 4575 /** 4576 * ice_find_recp - find a recipe 4577 * @hw: pointer to the hardware structure 4578 * @lkup_exts: extension sequence to match 4579 * @rinfo: information regarding the rule e.g. priority and action info 4580 * 4581 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found. 4582 */ 4583 static u16 4584 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts, 4585 const struct ice_adv_rule_info *rinfo) 4586 { 4587 bool refresh_required = true; 4588 struct ice_sw_recipe *recp; 4589 u8 i; 4590 4591 /* Walk through existing recipes to find a match */ 4592 recp = hw->switch_info->recp_list; 4593 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 4594 /* If recipe was not created for this ID, in SW bookkeeping, 4595 * check if FW has an entry for this recipe. If the FW has an 4596 * entry update it in our SW bookkeeping and continue with the 4597 * matching. 4598 */ 4599 if (!recp[i].recp_created) 4600 if (ice_get_recp_frm_fw(hw, 4601 hw->switch_info->recp_list, i, 4602 &refresh_required)) 4603 continue; 4604 4605 /* Skip inverse action recipes */ 4606 if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl & 4607 ICE_AQ_RECIPE_ACT_INV_ACT) 4608 continue; 4609 4610 /* if number of words we are looking for match */ 4611 if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) { 4612 struct ice_fv_word *ar = recp[i].lkup_exts.fv_words; 4613 struct ice_fv_word *be = lkup_exts->fv_words; 4614 u16 *cr = recp[i].lkup_exts.field_mask; 4615 u16 *de = lkup_exts->field_mask; 4616 bool found = true; 4617 u8 pe, qr; 4618 4619 /* ar, cr, and qr are related to the recipe words, while 4620 * be, de, and pe are related to the lookup words 4621 */ 4622 for (pe = 0; pe < lkup_exts->n_val_words; pe++) { 4623 for (qr = 0; qr < recp[i].lkup_exts.n_val_words; 4624 qr++) { 4625 if (ar[qr].off == be[pe].off && 4626 ar[qr].prot_id == be[pe].prot_id && 4627 cr[qr] == de[pe]) 4628 /* Found the "pe"th word in the 4629 * given recipe 4630 */ 4631 break; 4632 } 4633 /* After walking through all the words in the 4634 * "i"th recipe if "p"th word was not found then 4635 * this recipe is not what we are looking for. 4636 * So break out from this loop and try the next 4637 * recipe 4638 */ 4639 if (qr >= recp[i].lkup_exts.n_val_words) { 4640 found = false; 4641 break; 4642 } 4643 } 4644 /* If for "i"th recipe the found was never set to false 4645 * then it means we found our match 4646 * Also tun type and *_pass_l2 of recipe needs to be 4647 * checked 4648 */ 4649 if (found && recp[i].tun_type == rinfo->tun_type && 4650 recp[i].need_pass_l2 == rinfo->need_pass_l2 && 4651 recp[i].allow_pass_l2 == rinfo->allow_pass_l2) 4652 return i; /* Return the recipe ID */ 4653 } 4654 } 4655 return ICE_MAX_NUM_RECIPES; 4656 } 4657 4658 /** 4659 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl 4660 * 4661 * As protocol id for outer vlan is different in dvm and svm, if dvm is 4662 * supported protocol array record for outer vlan has to be modified to 4663 * reflect the value proper for DVM. 4664 */ 4665 void ice_change_proto_id_to_dvm(void) 4666 { 4667 u8 i; 4668 4669 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++) 4670 if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS && 4671 ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW) 4672 ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW; 4673 } 4674 4675 /** 4676 * ice_prot_type_to_id - get protocol ID from protocol type 4677 * @type: protocol type 4678 * @id: pointer to variable that will receive the ID 4679 * 4680 * Returns true if found, false otherwise 4681 */ 4682 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id) 4683 { 4684 u8 i; 4685 4686 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++) 4687 if (ice_prot_id_tbl[i].type == type) { 4688 *id = ice_prot_id_tbl[i].protocol_id; 4689 return true; 4690 } 4691 return false; 4692 } 4693 4694 /** 4695 * ice_fill_valid_words - count valid words 4696 * @rule: advanced rule with lookup information 4697 * @lkup_exts: byte offset extractions of the words that are valid 4698 * 4699 * calculate valid words in a lookup rule using mask value 4700 */ 4701 static u8 4702 ice_fill_valid_words(struct ice_adv_lkup_elem *rule, 4703 struct ice_prot_lkup_ext *lkup_exts) 4704 { 4705 u8 j, word, prot_id, ret_val; 4706 4707 if (!ice_prot_type_to_id(rule->type, &prot_id)) 4708 return 0; 4709 4710 word = lkup_exts->n_val_words; 4711 4712 for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++) 4713 if (((u16 *)&rule->m_u)[j] && 4714 rule->type < ARRAY_SIZE(ice_prot_ext)) { 4715 /* No more space to accommodate */ 4716 if (word >= ICE_MAX_CHAIN_WORDS) 4717 return 0; 4718 lkup_exts->fv_words[word].off = 4719 ice_prot_ext[rule->type].offs[j]; 4720 lkup_exts->fv_words[word].prot_id = 4721 ice_prot_id_tbl[rule->type].protocol_id; 4722 lkup_exts->field_mask[word] = 4723 be16_to_cpu(((__force __be16 *)&rule->m_u)[j]); 4724 word++; 4725 } 4726 4727 ret_val = word - lkup_exts->n_val_words; 4728 lkup_exts->n_val_words = word; 4729 4730 return ret_val; 4731 } 4732 4733 /** 4734 * ice_create_first_fit_recp_def - Create a recipe grouping 4735 * @hw: pointer to the hardware structure 4736 * @lkup_exts: an array of protocol header extractions 4737 * @rg_list: pointer to a list that stores new recipe groups 4738 * @recp_cnt: pointer to a variable that stores returned number of recipe groups 4739 * 4740 * Using first fit algorithm, take all the words that are still not done 4741 * and start grouping them in 4-word groups. Each group makes up one 4742 * recipe. 4743 */ 4744 static int 4745 ice_create_first_fit_recp_def(struct ice_hw *hw, 4746 struct ice_prot_lkup_ext *lkup_exts, 4747 struct list_head *rg_list, 4748 u8 *recp_cnt) 4749 { 4750 struct ice_pref_recipe_group *grp = NULL; 4751 u8 j; 4752 4753 *recp_cnt = 0; 4754 4755 /* Walk through every word in the rule to check if it is not done. If so 4756 * then this word needs to be part of a new recipe. 4757 */ 4758 for (j = 0; j < lkup_exts->n_val_words; j++) 4759 if (!test_bit(j, lkup_exts->done)) { 4760 if (!grp || 4761 grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) { 4762 struct ice_recp_grp_entry *entry; 4763 4764 entry = devm_kzalloc(ice_hw_to_dev(hw), 4765 sizeof(*entry), 4766 GFP_KERNEL); 4767 if (!entry) 4768 return -ENOMEM; 4769 list_add(&entry->l_entry, rg_list); 4770 grp = &entry->r_group; 4771 (*recp_cnt)++; 4772 } 4773 4774 grp->pairs[grp->n_val_pairs].prot_id = 4775 lkup_exts->fv_words[j].prot_id; 4776 grp->pairs[grp->n_val_pairs].off = 4777 lkup_exts->fv_words[j].off; 4778 grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j]; 4779 grp->n_val_pairs++; 4780 } 4781 4782 return 0; 4783 } 4784 4785 /** 4786 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group 4787 * @hw: pointer to the hardware structure 4788 * @fv_list: field vector with the extraction sequence information 4789 * @rg_list: recipe groupings with protocol-offset pairs 4790 * 4791 * Helper function to fill in the field vector indices for protocol-offset 4792 * pairs. These indexes are then ultimately programmed into a recipe. 4793 */ 4794 static int 4795 ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list, 4796 struct list_head *rg_list) 4797 { 4798 struct ice_sw_fv_list_entry *fv; 4799 struct ice_recp_grp_entry *rg; 4800 struct ice_fv_word *fv_ext; 4801 4802 if (list_empty(fv_list)) 4803 return 0; 4804 4805 fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry, 4806 list_entry); 4807 fv_ext = fv->fv_ptr->ew; 4808 4809 list_for_each_entry(rg, rg_list, l_entry) { 4810 u8 i; 4811 4812 for (i = 0; i < rg->r_group.n_val_pairs; i++) { 4813 struct ice_fv_word *pr; 4814 bool found = false; 4815 u16 mask; 4816 u8 j; 4817 4818 pr = &rg->r_group.pairs[i]; 4819 mask = rg->r_group.mask[i]; 4820 4821 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 4822 if (fv_ext[j].prot_id == pr->prot_id && 4823 fv_ext[j].off == pr->off) { 4824 found = true; 4825 4826 /* Store index of field vector */ 4827 rg->fv_idx[i] = j; 4828 rg->fv_mask[i] = mask; 4829 break; 4830 } 4831 4832 /* Protocol/offset could not be found, caller gave an 4833 * invalid pair 4834 */ 4835 if (!found) 4836 return -EINVAL; 4837 } 4838 } 4839 4840 return 0; 4841 } 4842 4843 /** 4844 * ice_find_free_recp_res_idx - find free result indexes for recipe 4845 * @hw: pointer to hardware structure 4846 * @profiles: bitmap of profiles that will be associated with the new recipe 4847 * @free_idx: pointer to variable to receive the free index bitmap 4848 * 4849 * The algorithm used here is: 4850 * 1. When creating a new recipe, create a set P which contains all 4851 * Profiles that will be associated with our new recipe 4852 * 4853 * 2. For each Profile p in set P: 4854 * a. Add all recipes associated with Profile p into set R 4855 * b. Optional : PossibleIndexes &= profile[p].possibleIndexes 4856 * [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF] 4857 * i. Or just assume they all have the same possible indexes: 4858 * 44, 45, 46, 47 4859 * i.e., PossibleIndexes = 0x0000F00000000000 4860 * 4861 * 3. For each Recipe r in set R: 4862 * a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes 4863 * b. FreeIndexes = UsedIndexes ^ PossibleIndexes 4864 * 4865 * FreeIndexes will contain the bits indicating the indexes free for use, 4866 * then the code needs to update the recipe[r].used_result_idx_bits to 4867 * indicate which indexes were selected for use by this recipe. 4868 */ 4869 static u16 4870 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles, 4871 unsigned long *free_idx) 4872 { 4873 DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS); 4874 DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES); 4875 DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS); 4876 u16 bit; 4877 4878 bitmap_zero(recipes, ICE_MAX_NUM_RECIPES); 4879 bitmap_zero(used_idx, ICE_MAX_FV_WORDS); 4880 4881 bitmap_fill(possible_idx, ICE_MAX_FV_WORDS); 4882 4883 /* For each profile we are going to associate the recipe with, add the 4884 * recipes that are associated with that profile. This will give us 4885 * the set of recipes that our recipe may collide with. Also, determine 4886 * what possible result indexes are usable given this set of profiles. 4887 */ 4888 for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) { 4889 bitmap_or(recipes, recipes, profile_to_recipe[bit], 4890 ICE_MAX_NUM_RECIPES); 4891 bitmap_and(possible_idx, possible_idx, 4892 hw->switch_info->prof_res_bm[bit], 4893 ICE_MAX_FV_WORDS); 4894 } 4895 4896 /* For each recipe that our new recipe may collide with, determine 4897 * which indexes have been used. 4898 */ 4899 for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES) 4900 bitmap_or(used_idx, used_idx, 4901 hw->switch_info->recp_list[bit].res_idxs, 4902 ICE_MAX_FV_WORDS); 4903 4904 bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS); 4905 4906 /* return number of free indexes */ 4907 return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS); 4908 } 4909 4910 /** 4911 * ice_add_sw_recipe - function to call AQ calls to create switch recipe 4912 * @hw: pointer to hardware structure 4913 * @rm: recipe management list entry 4914 * @profiles: bitmap of profiles that will be associated. 4915 */ 4916 static int 4917 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm, 4918 unsigned long *profiles) 4919 { 4920 DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS); 4921 struct ice_aqc_recipe_content *content; 4922 struct ice_aqc_recipe_data_elem *tmp; 4923 struct ice_aqc_recipe_data_elem *buf; 4924 struct ice_recp_grp_entry *entry; 4925 u16 free_res_idx; 4926 u16 recipe_count; 4927 u8 chain_idx; 4928 u8 recps = 0; 4929 int status; 4930 4931 /* When more than one recipe are required, another recipe is needed to 4932 * chain them together. Matching a tunnel metadata ID takes up one of 4933 * the match fields in the chaining recipe reducing the number of 4934 * chained recipes by one. 4935 */ 4936 /* check number of free result indices */ 4937 bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS); 4938 free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm); 4939 4940 ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n", 4941 free_res_idx, rm->n_grp_count); 4942 4943 if (rm->n_grp_count > 1) { 4944 if (rm->n_grp_count > free_res_idx) 4945 return -ENOSPC; 4946 4947 rm->n_grp_count++; 4948 } 4949 4950 if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE) 4951 return -ENOSPC; 4952 4953 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL); 4954 if (!tmp) 4955 return -ENOMEM; 4956 4957 buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf), 4958 GFP_KERNEL); 4959 if (!buf) { 4960 status = -ENOMEM; 4961 goto err_mem; 4962 } 4963 4964 bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES); 4965 recipe_count = ICE_MAX_NUM_RECIPES; 4966 status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC, 4967 NULL); 4968 if (status || recipe_count == 0) 4969 goto err_unroll; 4970 4971 /* Allocate the recipe resources, and configure them according to the 4972 * match fields from protocol headers and extracted field vectors. 4973 */ 4974 chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS); 4975 list_for_each_entry(entry, &rm->rg_list, l_entry) { 4976 u8 i; 4977 4978 status = ice_alloc_recipe(hw, &entry->rid); 4979 if (status) 4980 goto err_unroll; 4981 4982 content = &buf[recps].content; 4983 4984 /* Clear the result index of the located recipe, as this will be 4985 * updated, if needed, later in the recipe creation process. 4986 */ 4987 tmp[0].content.result_indx = 0; 4988 4989 buf[recps] = tmp[0]; 4990 buf[recps].recipe_indx = (u8)entry->rid; 4991 /* if the recipe is a non-root recipe RID should be programmed 4992 * as 0 for the rules to be applied correctly. 4993 */ 4994 content->rid = 0; 4995 memset(&content->lkup_indx, 0, 4996 sizeof(content->lkup_indx)); 4997 4998 /* All recipes use look-up index 0 to match switch ID. */ 4999 content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX; 5000 content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK); 5001 /* Setup lkup_indx 1..4 to INVALID/ignore and set the mask 5002 * to be 0 5003 */ 5004 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) { 5005 content->lkup_indx[i] = 0x80; 5006 content->mask[i] = 0; 5007 } 5008 5009 for (i = 0; i < entry->r_group.n_val_pairs; i++) { 5010 content->lkup_indx[i + 1] = entry->fv_idx[i]; 5011 content->mask[i + 1] = cpu_to_le16(entry->fv_mask[i]); 5012 } 5013 5014 if (rm->n_grp_count > 1) { 5015 /* Checks to see if there really is a valid result index 5016 * that can be used. 5017 */ 5018 if (chain_idx >= ICE_MAX_FV_WORDS) { 5019 ice_debug(hw, ICE_DBG_SW, "No chain index available\n"); 5020 status = -ENOSPC; 5021 goto err_unroll; 5022 } 5023 5024 entry->chain_idx = chain_idx; 5025 content->result_indx = 5026 ICE_AQ_RECIPE_RESULT_EN | 5027 ((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) & 5028 ICE_AQ_RECIPE_RESULT_DATA_M); 5029 clear_bit(chain_idx, result_idx_bm); 5030 chain_idx = find_first_bit(result_idx_bm, 5031 ICE_MAX_FV_WORDS); 5032 } 5033 5034 /* fill recipe dependencies */ 5035 bitmap_zero((unsigned long *)buf[recps].recipe_bitmap, 5036 ICE_MAX_NUM_RECIPES); 5037 set_bit(buf[recps].recipe_indx, 5038 (unsigned long *)buf[recps].recipe_bitmap); 5039 content->act_ctrl_fwd_priority = rm->priority; 5040 5041 if (rm->need_pass_l2) 5042 content->act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2; 5043 5044 if (rm->allow_pass_l2) 5045 content->act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2; 5046 recps++; 5047 } 5048 5049 if (rm->n_grp_count == 1) { 5050 rm->root_rid = buf[0].recipe_indx; 5051 set_bit(buf[0].recipe_indx, rm->r_bitmap); 5052 buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT; 5053 if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) { 5054 memcpy(buf[0].recipe_bitmap, rm->r_bitmap, 5055 sizeof(buf[0].recipe_bitmap)); 5056 } else { 5057 status = -EINVAL; 5058 goto err_unroll; 5059 } 5060 /* Applicable only for ROOT_RECIPE, set the fwd_priority for 5061 * the recipe which is getting created if specified 5062 * by user. Usually any advanced switch filter, which results 5063 * into new extraction sequence, ended up creating a new recipe 5064 * of type ROOT and usually recipes are associated with profiles 5065 * Switch rule referreing newly created recipe, needs to have 5066 * either/or 'fwd' or 'join' priority, otherwise switch rule 5067 * evaluation will not happen correctly. In other words, if 5068 * switch rule to be evaluated on priority basis, then recipe 5069 * needs to have priority, otherwise it will be evaluated last. 5070 */ 5071 buf[0].content.act_ctrl_fwd_priority = rm->priority; 5072 } else { 5073 struct ice_recp_grp_entry *last_chain_entry; 5074 u16 rid, i; 5075 5076 /* Allocate the last recipe that will chain the outcomes of the 5077 * other recipes together 5078 */ 5079 status = ice_alloc_recipe(hw, &rid); 5080 if (status) 5081 goto err_unroll; 5082 5083 content = &buf[recps].content; 5084 5085 buf[recps].recipe_indx = (u8)rid; 5086 content->rid = (u8)rid; 5087 content->rid |= ICE_AQ_RECIPE_ID_IS_ROOT; 5088 /* the new entry created should also be part of rg_list to 5089 * make sure we have complete recipe 5090 */ 5091 last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw), 5092 sizeof(*last_chain_entry), 5093 GFP_KERNEL); 5094 if (!last_chain_entry) { 5095 status = -ENOMEM; 5096 goto err_unroll; 5097 } 5098 last_chain_entry->rid = rid; 5099 memset(&content->lkup_indx, 0, sizeof(content->lkup_indx)); 5100 /* All recipes use look-up index 0 to match switch ID. */ 5101 content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX; 5102 content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK); 5103 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) { 5104 content->lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE; 5105 content->mask[i] = 0; 5106 } 5107 5108 i = 1; 5109 /* update r_bitmap with the recp that is used for chaining */ 5110 set_bit(rid, rm->r_bitmap); 5111 /* this is the recipe that chains all the other recipes so it 5112 * should not have a chaining ID to indicate the same 5113 */ 5114 last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND; 5115 list_for_each_entry(entry, &rm->rg_list, l_entry) { 5116 last_chain_entry->fv_idx[i] = entry->chain_idx; 5117 content->lkup_indx[i] = entry->chain_idx; 5118 content->mask[i++] = cpu_to_le16(0xFFFF); 5119 set_bit(entry->rid, rm->r_bitmap); 5120 } 5121 list_add(&last_chain_entry->l_entry, &rm->rg_list); 5122 if (sizeof(buf[recps].recipe_bitmap) >= 5123 sizeof(rm->r_bitmap)) { 5124 memcpy(buf[recps].recipe_bitmap, rm->r_bitmap, 5125 sizeof(buf[recps].recipe_bitmap)); 5126 } else { 5127 status = -EINVAL; 5128 goto err_unroll; 5129 } 5130 content->act_ctrl_fwd_priority = rm->priority; 5131 5132 recps++; 5133 rm->root_rid = (u8)rid; 5134 } 5135 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 5136 if (status) 5137 goto err_unroll; 5138 5139 status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL); 5140 ice_release_change_lock(hw); 5141 if (status) 5142 goto err_unroll; 5143 5144 /* Every recipe that just got created add it to the recipe 5145 * book keeping list 5146 */ 5147 list_for_each_entry(entry, &rm->rg_list, l_entry) { 5148 struct ice_switch_info *sw = hw->switch_info; 5149 bool is_root, idx_found = false; 5150 struct ice_sw_recipe *recp; 5151 u16 idx, buf_idx = 0; 5152 5153 /* find buffer index for copying some data */ 5154 for (idx = 0; idx < rm->n_grp_count; idx++) 5155 if (buf[idx].recipe_indx == entry->rid) { 5156 buf_idx = idx; 5157 idx_found = true; 5158 } 5159 5160 if (!idx_found) { 5161 status = -EIO; 5162 goto err_unroll; 5163 } 5164 5165 recp = &sw->recp_list[entry->rid]; 5166 is_root = (rm->root_rid == entry->rid); 5167 recp->is_root = is_root; 5168 5169 recp->root_rid = entry->rid; 5170 recp->big_recp = (is_root && rm->n_grp_count > 1); 5171 5172 memcpy(&recp->ext_words, entry->r_group.pairs, 5173 entry->r_group.n_val_pairs * sizeof(struct ice_fv_word)); 5174 5175 memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap, 5176 sizeof(recp->r_bitmap)); 5177 5178 /* Copy non-result fv index values and masks to recipe. This 5179 * call will also update the result recipe bitmask. 5180 */ 5181 ice_collect_result_idx(&buf[buf_idx], recp); 5182 5183 /* for non-root recipes, also copy to the root, this allows 5184 * easier matching of a complete chained recipe 5185 */ 5186 if (!is_root) 5187 ice_collect_result_idx(&buf[buf_idx], 5188 &sw->recp_list[rm->root_rid]); 5189 5190 recp->n_ext_words = entry->r_group.n_val_pairs; 5191 recp->chain_idx = entry->chain_idx; 5192 recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority; 5193 recp->n_grp_count = rm->n_grp_count; 5194 recp->tun_type = rm->tun_type; 5195 recp->need_pass_l2 = rm->need_pass_l2; 5196 recp->allow_pass_l2 = rm->allow_pass_l2; 5197 recp->recp_created = true; 5198 } 5199 rm->root_buf = buf; 5200 kfree(tmp); 5201 return status; 5202 5203 err_unroll: 5204 err_mem: 5205 kfree(tmp); 5206 devm_kfree(ice_hw_to_dev(hw), buf); 5207 return status; 5208 } 5209 5210 /** 5211 * ice_create_recipe_group - creates recipe group 5212 * @hw: pointer to hardware structure 5213 * @rm: recipe management list entry 5214 * @lkup_exts: lookup elements 5215 */ 5216 static int 5217 ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm, 5218 struct ice_prot_lkup_ext *lkup_exts) 5219 { 5220 u8 recp_count = 0; 5221 int status; 5222 5223 rm->n_grp_count = 0; 5224 5225 /* Create recipes for words that are marked not done by packing them 5226 * as best fit. 5227 */ 5228 status = ice_create_first_fit_recp_def(hw, lkup_exts, 5229 &rm->rg_list, &recp_count); 5230 if (!status) { 5231 rm->n_grp_count += recp_count; 5232 rm->n_ext_words = lkup_exts->n_val_words; 5233 memcpy(&rm->ext_words, lkup_exts->fv_words, 5234 sizeof(rm->ext_words)); 5235 memcpy(rm->word_masks, lkup_exts->field_mask, 5236 sizeof(rm->word_masks)); 5237 } 5238 5239 return status; 5240 } 5241 5242 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule 5243 * @hw: pointer to hardware structure 5244 * @rinfo: other information regarding the rule e.g. priority and action info 5245 * @bm: pointer to memory for returning the bitmap of field vectors 5246 */ 5247 static void 5248 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo, 5249 unsigned long *bm) 5250 { 5251 enum ice_prof_type prof_type; 5252 5253 bitmap_zero(bm, ICE_MAX_NUM_PROFILES); 5254 5255 switch (rinfo->tun_type) { 5256 case ICE_NON_TUN: 5257 prof_type = ICE_PROF_NON_TUN; 5258 break; 5259 case ICE_ALL_TUNNELS: 5260 prof_type = ICE_PROF_TUN_ALL; 5261 break; 5262 case ICE_SW_TUN_GENEVE: 5263 case ICE_SW_TUN_VXLAN: 5264 prof_type = ICE_PROF_TUN_UDP; 5265 break; 5266 case ICE_SW_TUN_NVGRE: 5267 prof_type = ICE_PROF_TUN_GRE; 5268 break; 5269 case ICE_SW_TUN_GTPU: 5270 prof_type = ICE_PROF_TUN_GTPU; 5271 break; 5272 case ICE_SW_TUN_GTPC: 5273 prof_type = ICE_PROF_TUN_GTPC; 5274 break; 5275 case ICE_SW_TUN_AND_NON_TUN: 5276 default: 5277 prof_type = ICE_PROF_ALL; 5278 break; 5279 } 5280 5281 ice_get_sw_fv_bitmap(hw, prof_type, bm); 5282 } 5283 5284 /** 5285 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default 5286 * @hw: pointer to hardware structure 5287 * @lkups: lookup elements or match criteria for the advanced recipe, one 5288 * structure per protocol header 5289 * @lkups_cnt: number of protocols 5290 * @rinfo: other information regarding the rule e.g. priority and action info 5291 * @rid: return the recipe ID of the recipe created 5292 */ 5293 static int 5294 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 5295 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid) 5296 { 5297 DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES); 5298 DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES); 5299 struct ice_prot_lkup_ext *lkup_exts; 5300 struct ice_recp_grp_entry *r_entry; 5301 struct ice_sw_fv_list_entry *fvit; 5302 struct ice_recp_grp_entry *r_tmp; 5303 struct ice_sw_fv_list_entry *tmp; 5304 struct ice_sw_recipe *rm; 5305 int status = 0; 5306 u8 i; 5307 5308 if (!lkups_cnt) 5309 return -EINVAL; 5310 5311 lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL); 5312 if (!lkup_exts) 5313 return -ENOMEM; 5314 5315 /* Determine the number of words to be matched and if it exceeds a 5316 * recipe's restrictions 5317 */ 5318 for (i = 0; i < lkups_cnt; i++) { 5319 u16 count; 5320 5321 if (lkups[i].type >= ICE_PROTOCOL_LAST) { 5322 status = -EIO; 5323 goto err_free_lkup_exts; 5324 } 5325 5326 count = ice_fill_valid_words(&lkups[i], lkup_exts); 5327 if (!count) { 5328 status = -EIO; 5329 goto err_free_lkup_exts; 5330 } 5331 } 5332 5333 rm = kzalloc(sizeof(*rm), GFP_KERNEL); 5334 if (!rm) { 5335 status = -ENOMEM; 5336 goto err_free_lkup_exts; 5337 } 5338 5339 /* Get field vectors that contain fields extracted from all the protocol 5340 * headers being programmed. 5341 */ 5342 INIT_LIST_HEAD(&rm->fv_list); 5343 INIT_LIST_HEAD(&rm->rg_list); 5344 5345 /* Get bitmap of field vectors (profiles) that are compatible with the 5346 * rule request; only these will be searched in the subsequent call to 5347 * ice_get_sw_fv_list. 5348 */ 5349 ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap); 5350 5351 status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list); 5352 if (status) 5353 goto err_unroll; 5354 5355 /* Group match words into recipes using preferred recipe grouping 5356 * criteria. 5357 */ 5358 status = ice_create_recipe_group(hw, rm, lkup_exts); 5359 if (status) 5360 goto err_unroll; 5361 5362 /* set the recipe priority if specified */ 5363 rm->priority = (u8)rinfo->priority; 5364 5365 rm->need_pass_l2 = rinfo->need_pass_l2; 5366 rm->allow_pass_l2 = rinfo->allow_pass_l2; 5367 5368 /* Find offsets from the field vector. Pick the first one for all the 5369 * recipes. 5370 */ 5371 status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list); 5372 if (status) 5373 goto err_unroll; 5374 5375 /* get bitmap of all profiles the recipe will be associated with */ 5376 bitmap_zero(profiles, ICE_MAX_NUM_PROFILES); 5377 list_for_each_entry(fvit, &rm->fv_list, list_entry) { 5378 ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id); 5379 set_bit((u16)fvit->profile_id, profiles); 5380 } 5381 5382 /* Look for a recipe which matches our requested fv / mask list */ 5383 *rid = ice_find_recp(hw, lkup_exts, rinfo); 5384 if (*rid < ICE_MAX_NUM_RECIPES) 5385 /* Success if found a recipe that match the existing criteria */ 5386 goto err_unroll; 5387 5388 rm->tun_type = rinfo->tun_type; 5389 /* Recipe we need does not exist, add a recipe */ 5390 status = ice_add_sw_recipe(hw, rm, profiles); 5391 if (status) 5392 goto err_unroll; 5393 5394 /* Associate all the recipes created with all the profiles in the 5395 * common field vector. 5396 */ 5397 list_for_each_entry(fvit, &rm->fv_list, list_entry) { 5398 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES); 5399 u16 j; 5400 5401 status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id, 5402 (u8 *)r_bitmap, NULL); 5403 if (status) 5404 goto err_unroll; 5405 5406 bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap, 5407 ICE_MAX_NUM_RECIPES); 5408 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 5409 if (status) 5410 goto err_unroll; 5411 5412 status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id, 5413 (u8 *)r_bitmap, 5414 NULL); 5415 ice_release_change_lock(hw); 5416 5417 if (status) 5418 goto err_unroll; 5419 5420 /* Update profile to recipe bitmap array */ 5421 bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap, 5422 ICE_MAX_NUM_RECIPES); 5423 5424 /* Update recipe to profile bitmap array */ 5425 for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES) 5426 set_bit((u16)fvit->profile_id, recipe_to_profile[j]); 5427 } 5428 5429 *rid = rm->root_rid; 5430 memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts, 5431 sizeof(*lkup_exts)); 5432 err_unroll: 5433 list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) { 5434 list_del(&r_entry->l_entry); 5435 devm_kfree(ice_hw_to_dev(hw), r_entry); 5436 } 5437 5438 list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) { 5439 list_del(&fvit->list_entry); 5440 devm_kfree(ice_hw_to_dev(hw), fvit); 5441 } 5442 5443 devm_kfree(ice_hw_to_dev(hw), rm->root_buf); 5444 kfree(rm); 5445 5446 err_free_lkup_exts: 5447 kfree(lkup_exts); 5448 5449 return status; 5450 } 5451 5452 /** 5453 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt 5454 * 5455 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added 5456 * @num_vlan: number of VLAN tags 5457 */ 5458 static struct ice_dummy_pkt_profile * 5459 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt, 5460 u32 num_vlan) 5461 { 5462 struct ice_dummy_pkt_profile *profile; 5463 struct ice_dummy_pkt_offsets *offsets; 5464 u32 buf_len, off, etype_off, i; 5465 u8 *pkt; 5466 5467 if (num_vlan < 1 || num_vlan > 2) 5468 return ERR_PTR(-EINVAL); 5469 5470 off = num_vlan * VLAN_HLEN; 5471 5472 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) + 5473 dummy_pkt->offsets_len; 5474 offsets = kzalloc(buf_len, GFP_KERNEL); 5475 if (!offsets) 5476 return ERR_PTR(-ENOMEM); 5477 5478 offsets[0] = dummy_pkt->offsets[0]; 5479 if (num_vlan == 2) { 5480 offsets[1] = ice_dummy_qinq_packet_offsets[0]; 5481 offsets[2] = ice_dummy_qinq_packet_offsets[1]; 5482 } else if (num_vlan == 1) { 5483 offsets[1] = ice_dummy_vlan_packet_offsets[0]; 5484 } 5485 5486 for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) { 5487 offsets[i + num_vlan].type = dummy_pkt->offsets[i].type; 5488 offsets[i + num_vlan].offset = 5489 dummy_pkt->offsets[i].offset + off; 5490 } 5491 offsets[i + num_vlan] = dummy_pkt->offsets[i]; 5492 5493 etype_off = dummy_pkt->offsets[1].offset; 5494 5495 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) + 5496 dummy_pkt->pkt_len; 5497 pkt = kzalloc(buf_len, GFP_KERNEL); 5498 if (!pkt) { 5499 kfree(offsets); 5500 return ERR_PTR(-ENOMEM); 5501 } 5502 5503 memcpy(pkt, dummy_pkt->pkt, etype_off); 5504 memcpy(pkt + etype_off, 5505 num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet, 5506 off); 5507 memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off, 5508 dummy_pkt->pkt_len - etype_off); 5509 5510 profile = kzalloc(sizeof(*profile), GFP_KERNEL); 5511 if (!profile) { 5512 kfree(offsets); 5513 kfree(pkt); 5514 return ERR_PTR(-ENOMEM); 5515 } 5516 5517 profile->offsets = offsets; 5518 profile->pkt = pkt; 5519 profile->pkt_len = buf_len; 5520 profile->match |= ICE_PKT_KMALLOC; 5521 5522 return profile; 5523 } 5524 5525 /** 5526 * ice_find_dummy_packet - find dummy packet 5527 * 5528 * @lkups: lookup elements or match criteria for the advanced recipe, one 5529 * structure per protocol header 5530 * @lkups_cnt: number of protocols 5531 * @tun_type: tunnel type 5532 * 5533 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params. 5534 */ 5535 static const struct ice_dummy_pkt_profile * 5536 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt, 5537 enum ice_sw_tunnel_type tun_type) 5538 { 5539 const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles; 5540 u32 match = 0, vlan_count = 0; 5541 u16 i; 5542 5543 switch (tun_type) { 5544 case ICE_SW_TUN_GTPC: 5545 match |= ICE_PKT_TUN_GTPC; 5546 break; 5547 case ICE_SW_TUN_GTPU: 5548 match |= ICE_PKT_TUN_GTPU; 5549 break; 5550 case ICE_SW_TUN_NVGRE: 5551 match |= ICE_PKT_TUN_NVGRE; 5552 break; 5553 case ICE_SW_TUN_GENEVE: 5554 case ICE_SW_TUN_VXLAN: 5555 match |= ICE_PKT_TUN_UDP; 5556 break; 5557 default: 5558 break; 5559 } 5560 5561 for (i = 0; i < lkups_cnt; i++) { 5562 if (lkups[i].type == ICE_UDP_ILOS) 5563 match |= ICE_PKT_INNER_UDP; 5564 else if (lkups[i].type == ICE_TCP_IL) 5565 match |= ICE_PKT_INNER_TCP; 5566 else if (lkups[i].type == ICE_IPV6_OFOS) 5567 match |= ICE_PKT_OUTER_IPV6; 5568 else if (lkups[i].type == ICE_VLAN_OFOS || 5569 lkups[i].type == ICE_VLAN_EX) 5570 vlan_count++; 5571 else if (lkups[i].type == ICE_VLAN_IN) 5572 vlan_count++; 5573 else if (lkups[i].type == ICE_ETYPE_OL && 5574 lkups[i].h_u.ethertype.ethtype_id == 5575 cpu_to_be16(ICE_IPV6_ETHER_ID) && 5576 lkups[i].m_u.ethertype.ethtype_id == 5577 cpu_to_be16(0xFFFF)) 5578 match |= ICE_PKT_OUTER_IPV6; 5579 else if (lkups[i].type == ICE_ETYPE_IL && 5580 lkups[i].h_u.ethertype.ethtype_id == 5581 cpu_to_be16(ICE_IPV6_ETHER_ID) && 5582 lkups[i].m_u.ethertype.ethtype_id == 5583 cpu_to_be16(0xFFFF)) 5584 match |= ICE_PKT_INNER_IPV6; 5585 else if (lkups[i].type == ICE_IPV6_IL) 5586 match |= ICE_PKT_INNER_IPV6; 5587 else if (lkups[i].type == ICE_GTP_NO_PAY) 5588 match |= ICE_PKT_GTP_NOPAY; 5589 else if (lkups[i].type == ICE_PPPOE) { 5590 match |= ICE_PKT_PPPOE; 5591 if (lkups[i].h_u.pppoe_hdr.ppp_prot_id == 5592 htons(PPP_IPV6)) 5593 match |= ICE_PKT_OUTER_IPV6; 5594 } else if (lkups[i].type == ICE_L2TPV3) 5595 match |= ICE_PKT_L2TPV3; 5596 } 5597 5598 while (ret->match && (match & ret->match) != ret->match) 5599 ret++; 5600 5601 if (vlan_count != 0) 5602 ret = ice_dummy_packet_add_vlan(ret, vlan_count); 5603 5604 return ret; 5605 } 5606 5607 /** 5608 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria 5609 * 5610 * @lkups: lookup elements or match criteria for the advanced recipe, one 5611 * structure per protocol header 5612 * @lkups_cnt: number of protocols 5613 * @s_rule: stores rule information from the match criteria 5614 * @profile: dummy packet profile (the template, its size and header offsets) 5615 */ 5616 static int 5617 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt, 5618 struct ice_sw_rule_lkup_rx_tx *s_rule, 5619 const struct ice_dummy_pkt_profile *profile) 5620 { 5621 u8 *pkt; 5622 u16 i; 5623 5624 /* Start with a packet with a pre-defined/dummy content. Then, fill 5625 * in the header values to be looked up or matched. 5626 */ 5627 pkt = s_rule->hdr_data; 5628 5629 memcpy(pkt, profile->pkt, profile->pkt_len); 5630 5631 for (i = 0; i < lkups_cnt; i++) { 5632 const struct ice_dummy_pkt_offsets *offsets = profile->offsets; 5633 enum ice_protocol_type type; 5634 u16 offset = 0, len = 0, j; 5635 bool found = false; 5636 5637 /* find the start of this layer; it should be found since this 5638 * was already checked when search for the dummy packet 5639 */ 5640 type = lkups[i].type; 5641 /* metadata isn't present in the packet */ 5642 if (type == ICE_HW_METADATA) 5643 continue; 5644 5645 for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) { 5646 if (type == offsets[j].type) { 5647 offset = offsets[j].offset; 5648 found = true; 5649 break; 5650 } 5651 } 5652 /* this should never happen in a correct calling sequence */ 5653 if (!found) 5654 return -EINVAL; 5655 5656 switch (lkups[i].type) { 5657 case ICE_MAC_OFOS: 5658 case ICE_MAC_IL: 5659 len = sizeof(struct ice_ether_hdr); 5660 break; 5661 case ICE_ETYPE_OL: 5662 case ICE_ETYPE_IL: 5663 len = sizeof(struct ice_ethtype_hdr); 5664 break; 5665 case ICE_VLAN_OFOS: 5666 case ICE_VLAN_EX: 5667 case ICE_VLAN_IN: 5668 len = sizeof(struct ice_vlan_hdr); 5669 break; 5670 case ICE_IPV4_OFOS: 5671 case ICE_IPV4_IL: 5672 len = sizeof(struct ice_ipv4_hdr); 5673 break; 5674 case ICE_IPV6_OFOS: 5675 case ICE_IPV6_IL: 5676 len = sizeof(struct ice_ipv6_hdr); 5677 break; 5678 case ICE_TCP_IL: 5679 case ICE_UDP_OF: 5680 case ICE_UDP_ILOS: 5681 len = sizeof(struct ice_l4_hdr); 5682 break; 5683 case ICE_SCTP_IL: 5684 len = sizeof(struct ice_sctp_hdr); 5685 break; 5686 case ICE_NVGRE: 5687 len = sizeof(struct ice_nvgre_hdr); 5688 break; 5689 case ICE_VXLAN: 5690 case ICE_GENEVE: 5691 len = sizeof(struct ice_udp_tnl_hdr); 5692 break; 5693 case ICE_GTP_NO_PAY: 5694 case ICE_GTP: 5695 len = sizeof(struct ice_udp_gtp_hdr); 5696 break; 5697 case ICE_PPPOE: 5698 len = sizeof(struct ice_pppoe_hdr); 5699 break; 5700 case ICE_L2TPV3: 5701 len = sizeof(struct ice_l2tpv3_sess_hdr); 5702 break; 5703 default: 5704 return -EINVAL; 5705 } 5706 5707 /* the length should be a word multiple */ 5708 if (len % ICE_BYTES_PER_WORD) 5709 return -EIO; 5710 5711 /* We have the offset to the header start, the length, the 5712 * caller's header values and mask. Use this information to 5713 * copy the data into the dummy packet appropriately based on 5714 * the mask. Note that we need to only write the bits as 5715 * indicated by the mask to make sure we don't improperly write 5716 * over any significant packet data. 5717 */ 5718 for (j = 0; j < len / sizeof(u16); j++) { 5719 u16 *ptr = (u16 *)(pkt + offset); 5720 u16 mask = lkups[i].m_raw[j]; 5721 5722 if (!mask) 5723 continue; 5724 5725 ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask); 5726 } 5727 } 5728 5729 s_rule->hdr_len = cpu_to_le16(profile->pkt_len); 5730 5731 return 0; 5732 } 5733 5734 /** 5735 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port 5736 * @hw: pointer to the hardware structure 5737 * @tun_type: tunnel type 5738 * @pkt: dummy packet to fill in 5739 * @offsets: offset info for the dummy packet 5740 */ 5741 static int 5742 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type, 5743 u8 *pkt, const struct ice_dummy_pkt_offsets *offsets) 5744 { 5745 u16 open_port, i; 5746 5747 switch (tun_type) { 5748 case ICE_SW_TUN_VXLAN: 5749 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN)) 5750 return -EIO; 5751 break; 5752 case ICE_SW_TUN_GENEVE: 5753 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE)) 5754 return -EIO; 5755 break; 5756 default: 5757 /* Nothing needs to be done for this tunnel type */ 5758 return 0; 5759 } 5760 5761 /* Find the outer UDP protocol header and insert the port number */ 5762 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) { 5763 if (offsets[i].type == ICE_UDP_OF) { 5764 struct ice_l4_hdr *hdr; 5765 u16 offset; 5766 5767 offset = offsets[i].offset; 5768 hdr = (struct ice_l4_hdr *)&pkt[offset]; 5769 hdr->dst_port = cpu_to_be16(open_port); 5770 5771 return 0; 5772 } 5773 } 5774 5775 return -EIO; 5776 } 5777 5778 /** 5779 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type 5780 * @hw: pointer to hw structure 5781 * @vlan_type: VLAN tag type 5782 * @pkt: dummy packet to fill in 5783 * @offsets: offset info for the dummy packet 5784 */ 5785 static int 5786 ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt, 5787 const struct ice_dummy_pkt_offsets *offsets) 5788 { 5789 u16 i; 5790 5791 /* Check if there is something to do */ 5792 if (!vlan_type || !ice_is_dvm_ena(hw)) 5793 return 0; 5794 5795 /* Find VLAN header and insert VLAN TPID */ 5796 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) { 5797 if (offsets[i].type == ICE_VLAN_OFOS || 5798 offsets[i].type == ICE_VLAN_EX) { 5799 struct ice_vlan_hdr *hdr; 5800 u16 offset; 5801 5802 offset = offsets[i].offset; 5803 hdr = (struct ice_vlan_hdr *)&pkt[offset]; 5804 hdr->type = cpu_to_be16(vlan_type); 5805 5806 return 0; 5807 } 5808 } 5809 5810 return -EIO; 5811 } 5812 5813 static bool ice_rules_equal(const struct ice_adv_rule_info *first, 5814 const struct ice_adv_rule_info *second) 5815 { 5816 return first->sw_act.flag == second->sw_act.flag && 5817 first->tun_type == second->tun_type && 5818 first->vlan_type == second->vlan_type && 5819 first->src_vsi == second->src_vsi && 5820 first->need_pass_l2 == second->need_pass_l2 && 5821 first->allow_pass_l2 == second->allow_pass_l2; 5822 } 5823 5824 /** 5825 * ice_find_adv_rule_entry - Search a rule entry 5826 * @hw: pointer to the hardware structure 5827 * @lkups: lookup elements or match criteria for the advanced recipe, one 5828 * structure per protocol header 5829 * @lkups_cnt: number of protocols 5830 * @recp_id: recipe ID for which we are finding the rule 5831 * @rinfo: other information regarding the rule e.g. priority and action info 5832 * 5833 * Helper function to search for a given advance rule entry 5834 * Returns pointer to entry storing the rule if found 5835 */ 5836 static struct ice_adv_fltr_mgmt_list_entry * 5837 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 5838 u16 lkups_cnt, u16 recp_id, 5839 struct ice_adv_rule_info *rinfo) 5840 { 5841 struct ice_adv_fltr_mgmt_list_entry *list_itr; 5842 struct ice_switch_info *sw = hw->switch_info; 5843 int i; 5844 5845 list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules, 5846 list_entry) { 5847 bool lkups_matched = true; 5848 5849 if (lkups_cnt != list_itr->lkups_cnt) 5850 continue; 5851 for (i = 0; i < list_itr->lkups_cnt; i++) 5852 if (memcmp(&list_itr->lkups[i], &lkups[i], 5853 sizeof(*lkups))) { 5854 lkups_matched = false; 5855 break; 5856 } 5857 if (ice_rules_equal(rinfo, &list_itr->rule_info) && 5858 lkups_matched) 5859 return list_itr; 5860 } 5861 return NULL; 5862 } 5863 5864 /** 5865 * ice_adv_add_update_vsi_list 5866 * @hw: pointer to the hardware structure 5867 * @m_entry: pointer to current adv filter management list entry 5868 * @cur_fltr: filter information from the book keeping entry 5869 * @new_fltr: filter information with the new VSI to be added 5870 * 5871 * Call AQ command to add or update previously created VSI list with new VSI. 5872 * 5873 * Helper function to do book keeping associated with adding filter information 5874 * The algorithm to do the booking keeping is described below : 5875 * When a VSI needs to subscribe to a given advanced filter 5876 * if only one VSI has been added till now 5877 * Allocate a new VSI list and add two VSIs 5878 * to this list using switch rule command 5879 * Update the previously created switch rule with the 5880 * newly created VSI list ID 5881 * if a VSI list was previously created 5882 * Add the new VSI to the previously created VSI list set 5883 * using the update switch rule command 5884 */ 5885 static int 5886 ice_adv_add_update_vsi_list(struct ice_hw *hw, 5887 struct ice_adv_fltr_mgmt_list_entry *m_entry, 5888 struct ice_adv_rule_info *cur_fltr, 5889 struct ice_adv_rule_info *new_fltr) 5890 { 5891 u16 vsi_list_id = 0; 5892 int status; 5893 5894 if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q || 5895 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP || 5896 cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET) 5897 return -EOPNOTSUPP; 5898 5899 if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q || 5900 new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) && 5901 (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI || 5902 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST)) 5903 return -EOPNOTSUPP; 5904 5905 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { 5906 /* Only one entry existed in the mapping and it was not already 5907 * a part of a VSI list. So, create a VSI list with the old and 5908 * new VSIs. 5909 */ 5910 struct ice_fltr_info tmp_fltr; 5911 u16 vsi_handle_arr[2]; 5912 5913 /* A rule already exists with the new VSI being added */ 5914 if (cur_fltr->sw_act.fwd_id.hw_vsi_id == 5915 new_fltr->sw_act.fwd_id.hw_vsi_id) 5916 return -EEXIST; 5917 5918 vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle; 5919 vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle; 5920 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, 5921 &vsi_list_id, 5922 ICE_SW_LKUP_LAST); 5923 if (status) 5924 return status; 5925 5926 memset(&tmp_fltr, 0, sizeof(tmp_fltr)); 5927 tmp_fltr.flag = m_entry->rule_info.sw_act.flag; 5928 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; 5929 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; 5930 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; 5931 tmp_fltr.lkup_type = ICE_SW_LKUP_LAST; 5932 5933 /* Update the previous switch rule of "forward to VSI" to 5934 * "fwd to VSI list" 5935 */ 5936 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 5937 if (status) 5938 return status; 5939 5940 cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id; 5941 cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST; 5942 m_entry->vsi_list_info = 5943 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, 5944 vsi_list_id); 5945 } else { 5946 u16 vsi_handle = new_fltr->sw_act.vsi_handle; 5947 5948 if (!m_entry->vsi_list_info) 5949 return -EIO; 5950 5951 /* A rule already exists with the new VSI being added */ 5952 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) 5953 return 0; 5954 5955 /* Update the previously created VSI list set with 5956 * the new VSI ID passed in 5957 */ 5958 vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id; 5959 5960 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, 5961 vsi_list_id, false, 5962 ice_aqc_opc_update_sw_rules, 5963 ICE_SW_LKUP_LAST); 5964 /* update VSI list mapping info with new VSI ID */ 5965 if (!status) 5966 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); 5967 } 5968 if (!status) 5969 m_entry->vsi_count++; 5970 return status; 5971 } 5972 5973 void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup) 5974 { 5975 lkup->type = ICE_HW_METADATA; 5976 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |= 5977 cpu_to_be16(ICE_PKT_TUNNEL_MASK); 5978 } 5979 5980 void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup) 5981 { 5982 lkup->type = ICE_HW_METADATA; 5983 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |= 5984 cpu_to_be16(ICE_PKT_FROM_NETWORK); 5985 } 5986 5987 void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup) 5988 { 5989 lkup->type = ICE_HW_METADATA; 5990 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |= 5991 cpu_to_be16(ICE_PKT_VLAN_MASK); 5992 } 5993 5994 void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup) 5995 { 5996 lkup->type = ICE_HW_METADATA; 5997 lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK); 5998 } 5999 6000 /** 6001 * ice_add_adv_rule - helper function to create an advanced switch rule 6002 * @hw: pointer to the hardware structure 6003 * @lkups: information on the words that needs to be looked up. All words 6004 * together makes one recipe 6005 * @lkups_cnt: num of entries in the lkups array 6006 * @rinfo: other information related to the rule that needs to be programmed 6007 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be 6008 * ignored is case of error. 6009 * 6010 * This function can program only 1 rule at a time. The lkups is used to 6011 * describe the all the words that forms the "lookup" portion of the recipe. 6012 * These words can span multiple protocols. Callers to this function need to 6013 * pass in a list of protocol headers with lookup information along and mask 6014 * that determines which words are valid from the given protocol header. 6015 * rinfo describes other information related to this rule such as forwarding 6016 * IDs, priority of this rule, etc. 6017 */ 6018 int 6019 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 6020 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, 6021 struct ice_rule_query_data *added_entry) 6022 { 6023 struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL; 6024 struct ice_sw_rule_lkup_rx_tx *s_rule = NULL; 6025 const struct ice_dummy_pkt_profile *profile; 6026 u16 rid = 0, i, rule_buf_sz, vsi_handle; 6027 struct list_head *rule_head; 6028 struct ice_switch_info *sw; 6029 u16 word_cnt; 6030 u32 act = 0; 6031 int status; 6032 u8 q_rgn; 6033 6034 /* Initialize profile to result index bitmap */ 6035 if (!hw->switch_info->prof_res_bm_init) { 6036 hw->switch_info->prof_res_bm_init = 1; 6037 ice_init_prof_result_bm(hw); 6038 } 6039 6040 if (!lkups_cnt) 6041 return -EINVAL; 6042 6043 /* get # of words we need to match */ 6044 word_cnt = 0; 6045 for (i = 0; i < lkups_cnt; i++) { 6046 u16 j; 6047 6048 for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++) 6049 if (lkups[i].m_raw[j]) 6050 word_cnt++; 6051 } 6052 6053 if (!word_cnt) 6054 return -EINVAL; 6055 6056 if (word_cnt > ICE_MAX_CHAIN_WORDS) 6057 return -ENOSPC; 6058 6059 /* locate a dummy packet */ 6060 profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type); 6061 if (IS_ERR(profile)) 6062 return PTR_ERR(profile); 6063 6064 if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI || 6065 rinfo->sw_act.fltr_act == ICE_FWD_TO_Q || 6066 rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP || 6067 rinfo->sw_act.fltr_act == ICE_DROP_PACKET || 6068 rinfo->sw_act.fltr_act == ICE_NOP)) { 6069 status = -EIO; 6070 goto free_pkt_profile; 6071 } 6072 6073 vsi_handle = rinfo->sw_act.vsi_handle; 6074 if (!ice_is_vsi_valid(hw, vsi_handle)) { 6075 status = -EINVAL; 6076 goto free_pkt_profile; 6077 } 6078 6079 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI || 6080 rinfo->sw_act.fltr_act == ICE_NOP) 6081 rinfo->sw_act.fwd_id.hw_vsi_id = 6082 ice_get_hw_vsi_num(hw, vsi_handle); 6083 6084 if (rinfo->src_vsi) 6085 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi); 6086 else 6087 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle); 6088 6089 status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid); 6090 if (status) 6091 goto free_pkt_profile; 6092 m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo); 6093 if (m_entry) { 6094 /* we have to add VSI to VSI_LIST and increment vsi_count. 6095 * Also Update VSI list so that we can change forwarding rule 6096 * if the rule already exists, we will check if it exists with 6097 * same vsi_id, if not then add it to the VSI list if it already 6098 * exists if not then create a VSI list and add the existing VSI 6099 * ID and the new VSI ID to the list 6100 * We will add that VSI to the list 6101 */ 6102 status = ice_adv_add_update_vsi_list(hw, m_entry, 6103 &m_entry->rule_info, 6104 rinfo); 6105 if (added_entry) { 6106 added_entry->rid = rid; 6107 added_entry->rule_id = m_entry->rule_info.fltr_rule_id; 6108 added_entry->vsi_handle = rinfo->sw_act.vsi_handle; 6109 } 6110 goto free_pkt_profile; 6111 } 6112 rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len); 6113 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL); 6114 if (!s_rule) { 6115 status = -ENOMEM; 6116 goto free_pkt_profile; 6117 } 6118 if (!rinfo->flags_info.act_valid) { 6119 act |= ICE_SINGLE_ACT_LAN_ENABLE; 6120 act |= ICE_SINGLE_ACT_LB_ENABLE; 6121 } else { 6122 act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE | 6123 ICE_SINGLE_ACT_LB_ENABLE); 6124 } 6125 6126 switch (rinfo->sw_act.fltr_act) { 6127 case ICE_FWD_TO_VSI: 6128 act |= (rinfo->sw_act.fwd_id.hw_vsi_id << 6129 ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M; 6130 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT; 6131 break; 6132 case ICE_FWD_TO_Q: 6133 act |= ICE_SINGLE_ACT_TO_Q; 6134 act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 6135 ICE_SINGLE_ACT_Q_INDEX_M; 6136 break; 6137 case ICE_FWD_TO_QGRP: 6138 q_rgn = rinfo->sw_act.qgrp_size > 0 ? 6139 (u8)ilog2(rinfo->sw_act.qgrp_size) : 0; 6140 act |= ICE_SINGLE_ACT_TO_Q; 6141 act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & 6142 ICE_SINGLE_ACT_Q_INDEX_M; 6143 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) & 6144 ICE_SINGLE_ACT_Q_REGION_M; 6145 break; 6146 case ICE_DROP_PACKET: 6147 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | 6148 ICE_SINGLE_ACT_VALID_BIT; 6149 break; 6150 case ICE_NOP: 6151 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M, 6152 rinfo->sw_act.fwd_id.hw_vsi_id); 6153 act &= ~ICE_SINGLE_ACT_VALID_BIT; 6154 break; 6155 default: 6156 status = -EIO; 6157 goto err_ice_add_adv_rule; 6158 } 6159 6160 /* If there is no matching criteria for direction there 6161 * is only one difference between Rx and Tx: 6162 * - get switch id base on VSI number from source field (Tx) 6163 * - get switch id base on port number (Rx) 6164 * 6165 * If matching on direction metadata is chose rule direction is 6166 * extracted from type value set here. 6167 */ 6168 if (rinfo->sw_act.flag & ICE_FLTR_TX) { 6169 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); 6170 s_rule->src = cpu_to_le16(rinfo->sw_act.src); 6171 } else { 6172 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX); 6173 s_rule->src = cpu_to_le16(hw->port_info->lport); 6174 } 6175 6176 s_rule->recipe_id = cpu_to_le16(rid); 6177 s_rule->act = cpu_to_le32(act); 6178 6179 status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile); 6180 if (status) 6181 goto err_ice_add_adv_rule; 6182 6183 status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data, 6184 profile->offsets); 6185 if (status) 6186 goto err_ice_add_adv_rule; 6187 6188 status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type, 6189 s_rule->hdr_data, 6190 profile->offsets); 6191 if (status) 6192 goto err_ice_add_adv_rule; 6193 6194 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule, 6195 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules, 6196 NULL); 6197 if (status) 6198 goto err_ice_add_adv_rule; 6199 adv_fltr = devm_kzalloc(ice_hw_to_dev(hw), 6200 sizeof(struct ice_adv_fltr_mgmt_list_entry), 6201 GFP_KERNEL); 6202 if (!adv_fltr) { 6203 status = -ENOMEM; 6204 goto err_ice_add_adv_rule; 6205 } 6206 6207 adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups, 6208 lkups_cnt * sizeof(*lkups), GFP_KERNEL); 6209 if (!adv_fltr->lkups) { 6210 status = -ENOMEM; 6211 goto err_ice_add_adv_rule; 6212 } 6213 6214 adv_fltr->lkups_cnt = lkups_cnt; 6215 adv_fltr->rule_info = *rinfo; 6216 adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index); 6217 sw = hw->switch_info; 6218 sw->recp_list[rid].adv_rule = true; 6219 rule_head = &sw->recp_list[rid].filt_rules; 6220 6221 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI) 6222 adv_fltr->vsi_count = 1; 6223 6224 /* Add rule entry to book keeping list */ 6225 list_add(&adv_fltr->list_entry, rule_head); 6226 if (added_entry) { 6227 added_entry->rid = rid; 6228 added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id; 6229 added_entry->vsi_handle = rinfo->sw_act.vsi_handle; 6230 } 6231 err_ice_add_adv_rule: 6232 if (status && adv_fltr) { 6233 devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups); 6234 devm_kfree(ice_hw_to_dev(hw), adv_fltr); 6235 } 6236 6237 kfree(s_rule); 6238 6239 free_pkt_profile: 6240 if (profile->match & ICE_PKT_KMALLOC) { 6241 kfree(profile->offsets); 6242 kfree(profile->pkt); 6243 kfree(profile); 6244 } 6245 6246 return status; 6247 } 6248 6249 /** 6250 * ice_replay_vsi_fltr - Replay filters for requested VSI 6251 * @hw: pointer to the hardware structure 6252 * @vsi_handle: driver VSI handle 6253 * @recp_id: Recipe ID for which rules need to be replayed 6254 * @list_head: list for which filters need to be replayed 6255 * 6256 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle. 6257 * It is required to pass valid VSI handle. 6258 */ 6259 static int 6260 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id, 6261 struct list_head *list_head) 6262 { 6263 struct ice_fltr_mgmt_list_entry *itr; 6264 int status = 0; 6265 u16 hw_vsi_id; 6266 6267 if (list_empty(list_head)) 6268 return status; 6269 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 6270 6271 list_for_each_entry(itr, list_head, list_entry) { 6272 struct ice_fltr_list_entry f_entry; 6273 6274 f_entry.fltr_info = itr->fltr_info; 6275 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN && 6276 itr->fltr_info.vsi_handle == vsi_handle) { 6277 /* update the src in case it is VSI num */ 6278 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 6279 f_entry.fltr_info.src = hw_vsi_id; 6280 status = ice_add_rule_internal(hw, recp_id, &f_entry); 6281 if (status) 6282 goto end; 6283 continue; 6284 } 6285 if (!itr->vsi_list_info || 6286 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map)) 6287 continue; 6288 /* Clearing it so that the logic can add it back */ 6289 clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); 6290 f_entry.fltr_info.vsi_handle = vsi_handle; 6291 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; 6292 /* update the src in case it is VSI num */ 6293 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) 6294 f_entry.fltr_info.src = hw_vsi_id; 6295 if (recp_id == ICE_SW_LKUP_VLAN) 6296 status = ice_add_vlan_internal(hw, &f_entry); 6297 else 6298 status = ice_add_rule_internal(hw, recp_id, &f_entry); 6299 if (status) 6300 goto end; 6301 } 6302 end: 6303 return status; 6304 } 6305 6306 /** 6307 * ice_adv_rem_update_vsi_list 6308 * @hw: pointer to the hardware structure 6309 * @vsi_handle: VSI handle of the VSI to remove 6310 * @fm_list: filter management entry for which the VSI list management needs to 6311 * be done 6312 */ 6313 static int 6314 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, 6315 struct ice_adv_fltr_mgmt_list_entry *fm_list) 6316 { 6317 struct ice_vsi_list_map_info *vsi_list_info; 6318 enum ice_sw_lkup_type lkup_type; 6319 u16 vsi_list_id; 6320 int status; 6321 6322 if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST || 6323 fm_list->vsi_count == 0) 6324 return -EINVAL; 6325 6326 /* A rule with the VSI being removed does not exist */ 6327 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) 6328 return -ENOENT; 6329 6330 lkup_type = ICE_SW_LKUP_LAST; 6331 vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id; 6332 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, 6333 ice_aqc_opc_update_sw_rules, 6334 lkup_type); 6335 if (status) 6336 return status; 6337 6338 fm_list->vsi_count--; 6339 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); 6340 vsi_list_info = fm_list->vsi_list_info; 6341 if (fm_list->vsi_count == 1) { 6342 struct ice_fltr_info tmp_fltr; 6343 u16 rem_vsi_handle; 6344 6345 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, 6346 ICE_MAX_VSI); 6347 if (!ice_is_vsi_valid(hw, rem_vsi_handle)) 6348 return -EIO; 6349 6350 /* Make sure VSI list is empty before removing it below */ 6351 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, 6352 vsi_list_id, true, 6353 ice_aqc_opc_update_sw_rules, 6354 lkup_type); 6355 if (status) 6356 return status; 6357 6358 memset(&tmp_fltr, 0, sizeof(tmp_fltr)); 6359 tmp_fltr.flag = fm_list->rule_info.sw_act.flag; 6360 tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id; 6361 fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI; 6362 tmp_fltr.fltr_act = ICE_FWD_TO_VSI; 6363 tmp_fltr.fwd_id.hw_vsi_id = 6364 ice_get_hw_vsi_num(hw, rem_vsi_handle); 6365 fm_list->rule_info.sw_act.fwd_id.hw_vsi_id = 6366 ice_get_hw_vsi_num(hw, rem_vsi_handle); 6367 fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle; 6368 6369 /* Update the previous switch rule of "MAC forward to VSI" to 6370 * "MAC fwd to VSI list" 6371 */ 6372 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); 6373 if (status) { 6374 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", 6375 tmp_fltr.fwd_id.hw_vsi_id, status); 6376 return status; 6377 } 6378 fm_list->vsi_list_info->ref_cnt--; 6379 6380 /* Remove the VSI list since it is no longer used */ 6381 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); 6382 if (status) { 6383 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n", 6384 vsi_list_id, status); 6385 return status; 6386 } 6387 6388 list_del(&vsi_list_info->list_entry); 6389 devm_kfree(ice_hw_to_dev(hw), vsi_list_info); 6390 fm_list->vsi_list_info = NULL; 6391 } 6392 6393 return status; 6394 } 6395 6396 /** 6397 * ice_rem_adv_rule - removes existing advanced switch rule 6398 * @hw: pointer to the hardware structure 6399 * @lkups: information on the words that needs to be looked up. All words 6400 * together makes one recipe 6401 * @lkups_cnt: num of entries in the lkups array 6402 * @rinfo: Its the pointer to the rule information for the rule 6403 * 6404 * This function can be used to remove 1 rule at a time. The lkups is 6405 * used to describe all the words that forms the "lookup" portion of the 6406 * rule. These words can span multiple protocols. Callers to this function 6407 * need to pass in a list of protocol headers with lookup information along 6408 * and mask that determines which words are valid from the given protocol 6409 * header. rinfo describes other information related to this rule such as 6410 * forwarding IDs, priority of this rule, etc. 6411 */ 6412 static int 6413 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, 6414 u16 lkups_cnt, struct ice_adv_rule_info *rinfo) 6415 { 6416 struct ice_adv_fltr_mgmt_list_entry *list_elem; 6417 struct ice_prot_lkup_ext lkup_exts; 6418 bool remove_rule = false; 6419 struct mutex *rule_lock; /* Lock to protect filter rule list */ 6420 u16 i, rid, vsi_handle; 6421 int status = 0; 6422 6423 memset(&lkup_exts, 0, sizeof(lkup_exts)); 6424 for (i = 0; i < lkups_cnt; i++) { 6425 u16 count; 6426 6427 if (lkups[i].type >= ICE_PROTOCOL_LAST) 6428 return -EIO; 6429 6430 count = ice_fill_valid_words(&lkups[i], &lkup_exts); 6431 if (!count) 6432 return -EIO; 6433 } 6434 6435 rid = ice_find_recp(hw, &lkup_exts, rinfo); 6436 /* If did not find a recipe that match the existing criteria */ 6437 if (rid == ICE_MAX_NUM_RECIPES) 6438 return -EINVAL; 6439 6440 rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock; 6441 list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo); 6442 /* the rule is already removed */ 6443 if (!list_elem) 6444 return 0; 6445 mutex_lock(rule_lock); 6446 if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) { 6447 remove_rule = true; 6448 } else if (list_elem->vsi_count > 1) { 6449 remove_rule = false; 6450 vsi_handle = rinfo->sw_act.vsi_handle; 6451 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem); 6452 } else { 6453 vsi_handle = rinfo->sw_act.vsi_handle; 6454 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem); 6455 if (status) { 6456 mutex_unlock(rule_lock); 6457 return status; 6458 } 6459 if (list_elem->vsi_count == 0) 6460 remove_rule = true; 6461 } 6462 mutex_unlock(rule_lock); 6463 if (remove_rule) { 6464 struct ice_sw_rule_lkup_rx_tx *s_rule; 6465 u16 rule_buf_sz; 6466 6467 rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule); 6468 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL); 6469 if (!s_rule) 6470 return -ENOMEM; 6471 s_rule->act = 0; 6472 s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id); 6473 s_rule->hdr_len = 0; 6474 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule, 6475 rule_buf_sz, 1, 6476 ice_aqc_opc_remove_sw_rules, NULL); 6477 if (!status || status == -ENOENT) { 6478 struct ice_switch_info *sw = hw->switch_info; 6479 6480 mutex_lock(rule_lock); 6481 list_del(&list_elem->list_entry); 6482 devm_kfree(ice_hw_to_dev(hw), list_elem->lkups); 6483 devm_kfree(ice_hw_to_dev(hw), list_elem); 6484 mutex_unlock(rule_lock); 6485 if (list_empty(&sw->recp_list[rid].filt_rules)) 6486 sw->recp_list[rid].adv_rule = false; 6487 } 6488 kfree(s_rule); 6489 } 6490 return status; 6491 } 6492 6493 /** 6494 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID 6495 * @hw: pointer to the hardware structure 6496 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID 6497 * 6498 * This function is used to remove 1 rule at a time. The removal is based on 6499 * the remove_entry parameter. This function will remove rule for a given 6500 * vsi_handle with a given rule_id which is passed as parameter in remove_entry 6501 */ 6502 int 6503 ice_rem_adv_rule_by_id(struct ice_hw *hw, 6504 struct ice_rule_query_data *remove_entry) 6505 { 6506 struct ice_adv_fltr_mgmt_list_entry *list_itr; 6507 struct list_head *list_head; 6508 struct ice_adv_rule_info rinfo; 6509 struct ice_switch_info *sw; 6510 6511 sw = hw->switch_info; 6512 if (!sw->recp_list[remove_entry->rid].recp_created) 6513 return -EINVAL; 6514 list_head = &sw->recp_list[remove_entry->rid].filt_rules; 6515 list_for_each_entry(list_itr, list_head, list_entry) { 6516 if (list_itr->rule_info.fltr_rule_id == 6517 remove_entry->rule_id) { 6518 rinfo = list_itr->rule_info; 6519 rinfo.sw_act.vsi_handle = remove_entry->vsi_handle; 6520 return ice_rem_adv_rule(hw, list_itr->lkups, 6521 list_itr->lkups_cnt, &rinfo); 6522 } 6523 } 6524 /* either list is empty or unable to find rule */ 6525 return -ENOENT; 6526 } 6527 6528 /** 6529 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI 6530 * @hw: pointer to the hardware structure 6531 * @vsi_handle: driver VSI handle 6532 * @list_head: list for which filters need to be replayed 6533 * 6534 * Replay the advanced rule for the given VSI. 6535 */ 6536 static int 6537 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle, 6538 struct list_head *list_head) 6539 { 6540 struct ice_rule_query_data added_entry = { 0 }; 6541 struct ice_adv_fltr_mgmt_list_entry *adv_fltr; 6542 int status = 0; 6543 6544 if (list_empty(list_head)) 6545 return status; 6546 list_for_each_entry(adv_fltr, list_head, list_entry) { 6547 struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info; 6548 u16 lk_cnt = adv_fltr->lkups_cnt; 6549 6550 if (vsi_handle != rinfo->sw_act.vsi_handle) 6551 continue; 6552 status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo, 6553 &added_entry); 6554 if (status) 6555 break; 6556 } 6557 return status; 6558 } 6559 6560 /** 6561 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists 6562 * @hw: pointer to the hardware structure 6563 * @vsi_handle: driver VSI handle 6564 * 6565 * Replays filters for requested VSI via vsi_handle. 6566 */ 6567 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle) 6568 { 6569 struct ice_switch_info *sw = hw->switch_info; 6570 int status; 6571 u8 i; 6572 6573 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 6574 struct list_head *head; 6575 6576 head = &sw->recp_list[i].filt_replay_rules; 6577 if (!sw->recp_list[i].adv_rule) 6578 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head); 6579 else 6580 status = ice_replay_vsi_adv_rule(hw, vsi_handle, head); 6581 if (status) 6582 return status; 6583 } 6584 return status; 6585 } 6586 6587 /** 6588 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules 6589 * @hw: pointer to the HW struct 6590 * 6591 * Deletes the filter replay rules. 6592 */ 6593 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw) 6594 { 6595 struct ice_switch_info *sw = hw->switch_info; 6596 u8 i; 6597 6598 if (!sw) 6599 return; 6600 6601 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 6602 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) { 6603 struct list_head *l_head; 6604 6605 l_head = &sw->recp_list[i].filt_replay_rules; 6606 if (!sw->recp_list[i].adv_rule) 6607 ice_rem_sw_rule_info(hw, l_head); 6608 else 6609 ice_rem_adv_rule_info(hw, l_head); 6610 } 6611 } 6612 } 6613