xref: /linux/drivers/net/ethernet/intel/ice/ice_switch.c (revision 1e73427f66353b7fe21c138787ff2b711ca1c0dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_lib.h"
5 #include "ice_switch.h"
6 
7 #define ICE_ETH_DA_OFFSET		0
8 #define ICE_ETH_ETHTYPE_OFFSET		12
9 #define ICE_ETH_VLAN_TCI_OFFSET		14
10 #define ICE_MAX_VLAN_ID			0xFFF
11 #define ICE_IPV6_ETHER_ID		0x86DD
12 
13 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
14  * struct to configure any switch filter rules.
15  * {DA (6 bytes), SA(6 bytes),
16  * Ether type (2 bytes for header without VLAN tag) OR
17  * VLAN tag (4 bytes for header with VLAN tag) }
18  *
19  * Word on Hardcoded values
20  * byte 0 = 0x2: to identify it as locally administered DA MAC
21  * byte 6 = 0x2: to identify it as locally administered SA MAC
22  * byte 12 = 0x81 & byte 13 = 0x00:
23  *      In case of VLAN filter first two bytes defines ether type (0x8100)
24  *      and remaining two bytes are placeholder for programming a given VLAN ID
25  *      In case of Ether type filter it is treated as header without VLAN tag
26  *      and byte 12 and 13 is used to program a given Ether type instead
27  */
28 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
29 							0x2, 0, 0, 0, 0, 0,
30 							0x81, 0, 0, 0};
31 
32 enum {
33 	ICE_PKT_OUTER_IPV6	= BIT(0),
34 	ICE_PKT_TUN_GTPC	= BIT(1),
35 	ICE_PKT_TUN_GTPU	= BIT(2),
36 	ICE_PKT_TUN_NVGRE	= BIT(3),
37 	ICE_PKT_TUN_UDP		= BIT(4),
38 	ICE_PKT_INNER_IPV6	= BIT(5),
39 	ICE_PKT_INNER_TCP	= BIT(6),
40 	ICE_PKT_INNER_UDP	= BIT(7),
41 	ICE_PKT_GTP_NOPAY	= BIT(8),
42 	ICE_PKT_KMALLOC		= BIT(9),
43 	ICE_PKT_PPPOE		= BIT(10),
44 	ICE_PKT_L2TPV3		= BIT(11),
45 };
46 
47 struct ice_dummy_pkt_offsets {
48 	enum ice_protocol_type type;
49 	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
50 };
51 
52 struct ice_dummy_pkt_profile {
53 	const struct ice_dummy_pkt_offsets *offsets;
54 	const u8 *pkt;
55 	u32 match;
56 	u16 pkt_len;
57 	u16 offsets_len;
58 };
59 
60 #define ICE_DECLARE_PKT_OFFSETS(type)					\
61 	static const struct ice_dummy_pkt_offsets			\
62 	ice_dummy_##type##_packet_offsets[]
63 
64 #define ICE_DECLARE_PKT_TEMPLATE(type)					\
65 	static const u8 ice_dummy_##type##_packet[]
66 
67 #define ICE_PKT_PROFILE(type, m) {					\
68 	.match		= (m),						\
69 	.pkt		= ice_dummy_##type##_packet,			\
70 	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
71 	.offsets	= ice_dummy_##type##_packet_offsets,		\
72 	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
73 }
74 
75 ICE_DECLARE_PKT_OFFSETS(vlan) = {
76 	{ ICE_VLAN_OFOS,        12 },
77 };
78 
79 ICE_DECLARE_PKT_TEMPLATE(vlan) = {
80 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
81 };
82 
83 ICE_DECLARE_PKT_OFFSETS(qinq) = {
84 	{ ICE_VLAN_EX,          12 },
85 	{ ICE_VLAN_IN,          16 },
86 };
87 
88 ICE_DECLARE_PKT_TEMPLATE(qinq) = {
89 	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
90 	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
91 };
92 
93 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
94 	{ ICE_MAC_OFOS,		0 },
95 	{ ICE_ETYPE_OL,		12 },
96 	{ ICE_IPV4_OFOS,	14 },
97 	{ ICE_NVGRE,		34 },
98 	{ ICE_MAC_IL,		42 },
99 	{ ICE_ETYPE_IL,		54 },
100 	{ ICE_IPV4_IL,		56 },
101 	{ ICE_TCP_IL,		76 },
102 	{ ICE_PROTOCOL_LAST,	0 },
103 };
104 
105 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
106 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
107 	0x00, 0x00, 0x00, 0x00,
108 	0x00, 0x00, 0x00, 0x00,
109 
110 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
111 
112 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
113 	0x00, 0x00, 0x00, 0x00,
114 	0x00, 0x2F, 0x00, 0x00,
115 	0x00, 0x00, 0x00, 0x00,
116 	0x00, 0x00, 0x00, 0x00,
117 
118 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
119 	0x00, 0x00, 0x00, 0x00,
120 
121 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
122 	0x00, 0x00, 0x00, 0x00,
123 	0x00, 0x00, 0x00, 0x00,
124 
125 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
126 
127 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
128 	0x00, 0x00, 0x00, 0x00,
129 	0x00, 0x06, 0x00, 0x00,
130 	0x00, 0x00, 0x00, 0x00,
131 	0x00, 0x00, 0x00, 0x00,
132 
133 	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
134 	0x00, 0x00, 0x00, 0x00,
135 	0x00, 0x00, 0x00, 0x00,
136 	0x50, 0x02, 0x20, 0x00,
137 	0x00, 0x00, 0x00, 0x00
138 };
139 
140 ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
141 	{ ICE_MAC_OFOS,		0 },
142 	{ ICE_ETYPE_OL,		12 },
143 	{ ICE_IPV4_OFOS,	14 },
144 	{ ICE_NVGRE,		34 },
145 	{ ICE_MAC_IL,		42 },
146 	{ ICE_ETYPE_IL,		54 },
147 	{ ICE_IPV4_IL,		56 },
148 	{ ICE_UDP_ILOS,		76 },
149 	{ ICE_PROTOCOL_LAST,	0 },
150 };
151 
152 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
153 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
154 	0x00, 0x00, 0x00, 0x00,
155 	0x00, 0x00, 0x00, 0x00,
156 
157 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
158 
159 	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
160 	0x00, 0x00, 0x00, 0x00,
161 	0x00, 0x2F, 0x00, 0x00,
162 	0x00, 0x00, 0x00, 0x00,
163 	0x00, 0x00, 0x00, 0x00,
164 
165 	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
166 	0x00, 0x00, 0x00, 0x00,
167 
168 	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
169 	0x00, 0x00, 0x00, 0x00,
170 	0x00, 0x00, 0x00, 0x00,
171 
172 	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
173 
174 	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
175 	0x00, 0x00, 0x00, 0x00,
176 	0x00, 0x11, 0x00, 0x00,
177 	0x00, 0x00, 0x00, 0x00,
178 	0x00, 0x00, 0x00, 0x00,
179 
180 	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
181 	0x00, 0x08, 0x00, 0x00,
182 };
183 
184 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
185 	{ ICE_MAC_OFOS,		0 },
186 	{ ICE_ETYPE_OL,		12 },
187 	{ ICE_IPV4_OFOS,	14 },
188 	{ ICE_UDP_OF,		34 },
189 	{ ICE_VXLAN,		42 },
190 	{ ICE_GENEVE,		42 },
191 	{ ICE_VXLAN_GPE,	42 },
192 	{ ICE_MAC_IL,		50 },
193 	{ ICE_ETYPE_IL,		62 },
194 	{ ICE_IPV4_IL,		64 },
195 	{ ICE_TCP_IL,		84 },
196 	{ ICE_PROTOCOL_LAST,	0 },
197 };
198 
199 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
200 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
201 	0x00, 0x00, 0x00, 0x00,
202 	0x00, 0x00, 0x00, 0x00,
203 
204 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
205 
206 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
207 	0x00, 0x01, 0x00, 0x00,
208 	0x40, 0x11, 0x00, 0x00,
209 	0x00, 0x00, 0x00, 0x00,
210 	0x00, 0x00, 0x00, 0x00,
211 
212 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
213 	0x00, 0x46, 0x00, 0x00,
214 
215 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
216 	0x00, 0x00, 0x00, 0x00,
217 
218 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
219 	0x00, 0x00, 0x00, 0x00,
220 	0x00, 0x00, 0x00, 0x00,
221 
222 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
223 
224 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
225 	0x00, 0x01, 0x00, 0x00,
226 	0x40, 0x06, 0x00, 0x00,
227 	0x00, 0x00, 0x00, 0x00,
228 	0x00, 0x00, 0x00, 0x00,
229 
230 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
231 	0x00, 0x00, 0x00, 0x00,
232 	0x00, 0x00, 0x00, 0x00,
233 	0x50, 0x02, 0x20, 0x00,
234 	0x00, 0x00, 0x00, 0x00
235 };
236 
237 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
238 	{ ICE_MAC_OFOS,		0 },
239 	{ ICE_ETYPE_OL,		12 },
240 	{ ICE_IPV4_OFOS,	14 },
241 	{ ICE_UDP_OF,		34 },
242 	{ ICE_VXLAN,		42 },
243 	{ ICE_GENEVE,		42 },
244 	{ ICE_VXLAN_GPE,	42 },
245 	{ ICE_MAC_IL,		50 },
246 	{ ICE_ETYPE_IL,		62 },
247 	{ ICE_IPV4_IL,		64 },
248 	{ ICE_UDP_ILOS,		84 },
249 	{ ICE_PROTOCOL_LAST,	0 },
250 };
251 
252 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
253 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
254 	0x00, 0x00, 0x00, 0x00,
255 	0x00, 0x00, 0x00, 0x00,
256 
257 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
258 
259 	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
260 	0x00, 0x01, 0x00, 0x00,
261 	0x00, 0x11, 0x00, 0x00,
262 	0x00, 0x00, 0x00, 0x00,
263 	0x00, 0x00, 0x00, 0x00,
264 
265 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
266 	0x00, 0x3a, 0x00, 0x00,
267 
268 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
269 	0x00, 0x00, 0x00, 0x00,
270 
271 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
272 	0x00, 0x00, 0x00, 0x00,
273 	0x00, 0x00, 0x00, 0x00,
274 
275 	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
276 
277 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
278 	0x00, 0x01, 0x00, 0x00,
279 	0x00, 0x11, 0x00, 0x00,
280 	0x00, 0x00, 0x00, 0x00,
281 	0x00, 0x00, 0x00, 0x00,
282 
283 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
284 	0x00, 0x08, 0x00, 0x00,
285 };
286 
287 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
288 	{ ICE_MAC_OFOS,		0 },
289 	{ ICE_ETYPE_OL,		12 },
290 	{ ICE_IPV4_OFOS,	14 },
291 	{ ICE_NVGRE,		34 },
292 	{ ICE_MAC_IL,		42 },
293 	{ ICE_ETYPE_IL,		54 },
294 	{ ICE_IPV6_IL,		56 },
295 	{ ICE_TCP_IL,		96 },
296 	{ ICE_PROTOCOL_LAST,	0 },
297 };
298 
299 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
300 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
301 	0x00, 0x00, 0x00, 0x00,
302 	0x00, 0x00, 0x00, 0x00,
303 
304 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
305 
306 	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
307 	0x00, 0x00, 0x00, 0x00,
308 	0x00, 0x2F, 0x00, 0x00,
309 	0x00, 0x00, 0x00, 0x00,
310 	0x00, 0x00, 0x00, 0x00,
311 
312 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
313 	0x00, 0x00, 0x00, 0x00,
314 
315 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
316 	0x00, 0x00, 0x00, 0x00,
317 	0x00, 0x00, 0x00, 0x00,
318 
319 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
320 
321 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
322 	0x00, 0x08, 0x06, 0x40,
323 	0x00, 0x00, 0x00, 0x00,
324 	0x00, 0x00, 0x00, 0x00,
325 	0x00, 0x00, 0x00, 0x00,
326 	0x00, 0x00, 0x00, 0x00,
327 	0x00, 0x00, 0x00, 0x00,
328 	0x00, 0x00, 0x00, 0x00,
329 	0x00, 0x00, 0x00, 0x00,
330 	0x00, 0x00, 0x00, 0x00,
331 
332 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
333 	0x00, 0x00, 0x00, 0x00,
334 	0x00, 0x00, 0x00, 0x00,
335 	0x50, 0x02, 0x20, 0x00,
336 	0x00, 0x00, 0x00, 0x00
337 };
338 
339 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
340 	{ ICE_MAC_OFOS,		0 },
341 	{ ICE_ETYPE_OL,		12 },
342 	{ ICE_IPV4_OFOS,	14 },
343 	{ ICE_NVGRE,		34 },
344 	{ ICE_MAC_IL,		42 },
345 	{ ICE_ETYPE_IL,		54 },
346 	{ ICE_IPV6_IL,		56 },
347 	{ ICE_UDP_ILOS,		96 },
348 	{ ICE_PROTOCOL_LAST,	0 },
349 };
350 
351 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
352 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
353 	0x00, 0x00, 0x00, 0x00,
354 	0x00, 0x00, 0x00, 0x00,
355 
356 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
357 
358 	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
359 	0x00, 0x00, 0x00, 0x00,
360 	0x00, 0x2F, 0x00, 0x00,
361 	0x00, 0x00, 0x00, 0x00,
362 	0x00, 0x00, 0x00, 0x00,
363 
364 	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
365 	0x00, 0x00, 0x00, 0x00,
366 
367 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
368 	0x00, 0x00, 0x00, 0x00,
369 	0x00, 0x00, 0x00, 0x00,
370 
371 	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
372 
373 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
374 	0x00, 0x08, 0x11, 0x40,
375 	0x00, 0x00, 0x00, 0x00,
376 	0x00, 0x00, 0x00, 0x00,
377 	0x00, 0x00, 0x00, 0x00,
378 	0x00, 0x00, 0x00, 0x00,
379 	0x00, 0x00, 0x00, 0x00,
380 	0x00, 0x00, 0x00, 0x00,
381 	0x00, 0x00, 0x00, 0x00,
382 	0x00, 0x00, 0x00, 0x00,
383 
384 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
385 	0x00, 0x08, 0x00, 0x00,
386 };
387 
388 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
389 	{ ICE_MAC_OFOS,		0 },
390 	{ ICE_ETYPE_OL,		12 },
391 	{ ICE_IPV4_OFOS,	14 },
392 	{ ICE_UDP_OF,		34 },
393 	{ ICE_VXLAN,		42 },
394 	{ ICE_GENEVE,		42 },
395 	{ ICE_VXLAN_GPE,	42 },
396 	{ ICE_MAC_IL,		50 },
397 	{ ICE_ETYPE_IL,		62 },
398 	{ ICE_IPV6_IL,		64 },
399 	{ ICE_TCP_IL,		104 },
400 	{ ICE_PROTOCOL_LAST,	0 },
401 };
402 
403 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
404 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
405 	0x00, 0x00, 0x00, 0x00,
406 	0x00, 0x00, 0x00, 0x00,
407 
408 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
409 
410 	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
411 	0x00, 0x01, 0x00, 0x00,
412 	0x40, 0x11, 0x00, 0x00,
413 	0x00, 0x00, 0x00, 0x00,
414 	0x00, 0x00, 0x00, 0x00,
415 
416 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
417 	0x00, 0x5a, 0x00, 0x00,
418 
419 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
420 	0x00, 0x00, 0x00, 0x00,
421 
422 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
423 	0x00, 0x00, 0x00, 0x00,
424 	0x00, 0x00, 0x00, 0x00,
425 
426 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
427 
428 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
429 	0x00, 0x08, 0x06, 0x40,
430 	0x00, 0x00, 0x00, 0x00,
431 	0x00, 0x00, 0x00, 0x00,
432 	0x00, 0x00, 0x00, 0x00,
433 	0x00, 0x00, 0x00, 0x00,
434 	0x00, 0x00, 0x00, 0x00,
435 	0x00, 0x00, 0x00, 0x00,
436 	0x00, 0x00, 0x00, 0x00,
437 	0x00, 0x00, 0x00, 0x00,
438 
439 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
440 	0x00, 0x00, 0x00, 0x00,
441 	0x00, 0x00, 0x00, 0x00,
442 	0x50, 0x02, 0x20, 0x00,
443 	0x00, 0x00, 0x00, 0x00
444 };
445 
446 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
447 	{ ICE_MAC_OFOS,		0 },
448 	{ ICE_ETYPE_OL,		12 },
449 	{ ICE_IPV4_OFOS,	14 },
450 	{ ICE_UDP_OF,		34 },
451 	{ ICE_VXLAN,		42 },
452 	{ ICE_GENEVE,		42 },
453 	{ ICE_VXLAN_GPE,	42 },
454 	{ ICE_MAC_IL,		50 },
455 	{ ICE_ETYPE_IL,		62 },
456 	{ ICE_IPV6_IL,		64 },
457 	{ ICE_UDP_ILOS,		104 },
458 	{ ICE_PROTOCOL_LAST,	0 },
459 };
460 
461 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
462 	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
463 	0x00, 0x00, 0x00, 0x00,
464 	0x00, 0x00, 0x00, 0x00,
465 
466 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
467 
468 	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
469 	0x00, 0x01, 0x00, 0x00,
470 	0x00, 0x11, 0x00, 0x00,
471 	0x00, 0x00, 0x00, 0x00,
472 	0x00, 0x00, 0x00, 0x00,
473 
474 	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
475 	0x00, 0x4e, 0x00, 0x00,
476 
477 	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
478 	0x00, 0x00, 0x00, 0x00,
479 
480 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
481 	0x00, 0x00, 0x00, 0x00,
482 	0x00, 0x00, 0x00, 0x00,
483 
484 	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
485 
486 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
487 	0x00, 0x08, 0x11, 0x40,
488 	0x00, 0x00, 0x00, 0x00,
489 	0x00, 0x00, 0x00, 0x00,
490 	0x00, 0x00, 0x00, 0x00,
491 	0x00, 0x00, 0x00, 0x00,
492 	0x00, 0x00, 0x00, 0x00,
493 	0x00, 0x00, 0x00, 0x00,
494 	0x00, 0x00, 0x00, 0x00,
495 	0x00, 0x00, 0x00, 0x00,
496 
497 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
498 	0x00, 0x08, 0x00, 0x00,
499 };
500 
501 /* offset info for MAC + IPv4 + UDP dummy packet */
502 ICE_DECLARE_PKT_OFFSETS(udp) = {
503 	{ ICE_MAC_OFOS,		0 },
504 	{ ICE_ETYPE_OL,		12 },
505 	{ ICE_IPV4_OFOS,	14 },
506 	{ ICE_UDP_ILOS,		34 },
507 	{ ICE_PROTOCOL_LAST,	0 },
508 };
509 
510 /* Dummy packet for MAC + IPv4 + UDP */
511 ICE_DECLARE_PKT_TEMPLATE(udp) = {
512 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
513 	0x00, 0x00, 0x00, 0x00,
514 	0x00, 0x00, 0x00, 0x00,
515 
516 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
517 
518 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
519 	0x00, 0x01, 0x00, 0x00,
520 	0x00, 0x11, 0x00, 0x00,
521 	0x00, 0x00, 0x00, 0x00,
522 	0x00, 0x00, 0x00, 0x00,
523 
524 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
525 	0x00, 0x08, 0x00, 0x00,
526 
527 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
528 };
529 
530 /* offset info for MAC + IPv4 + TCP dummy packet */
531 ICE_DECLARE_PKT_OFFSETS(tcp) = {
532 	{ ICE_MAC_OFOS,		0 },
533 	{ ICE_ETYPE_OL,		12 },
534 	{ ICE_IPV4_OFOS,	14 },
535 	{ ICE_TCP_IL,		34 },
536 	{ ICE_PROTOCOL_LAST,	0 },
537 };
538 
539 /* Dummy packet for MAC + IPv4 + TCP */
540 ICE_DECLARE_PKT_TEMPLATE(tcp) = {
541 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
542 	0x00, 0x00, 0x00, 0x00,
543 	0x00, 0x00, 0x00, 0x00,
544 
545 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
546 
547 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
548 	0x00, 0x01, 0x00, 0x00,
549 	0x00, 0x06, 0x00, 0x00,
550 	0x00, 0x00, 0x00, 0x00,
551 	0x00, 0x00, 0x00, 0x00,
552 
553 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
554 	0x00, 0x00, 0x00, 0x00,
555 	0x00, 0x00, 0x00, 0x00,
556 	0x50, 0x00, 0x00, 0x00,
557 	0x00, 0x00, 0x00, 0x00,
558 
559 	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
560 };
561 
562 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
563 	{ ICE_MAC_OFOS,		0 },
564 	{ ICE_ETYPE_OL,		12 },
565 	{ ICE_IPV6_OFOS,	14 },
566 	{ ICE_TCP_IL,		54 },
567 	{ ICE_PROTOCOL_LAST,	0 },
568 };
569 
570 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
571 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
572 	0x00, 0x00, 0x00, 0x00,
573 	0x00, 0x00, 0x00, 0x00,
574 
575 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
576 
577 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
578 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
579 	0x00, 0x00, 0x00, 0x00,
580 	0x00, 0x00, 0x00, 0x00,
581 	0x00, 0x00, 0x00, 0x00,
582 	0x00, 0x00, 0x00, 0x00,
583 	0x00, 0x00, 0x00, 0x00,
584 	0x00, 0x00, 0x00, 0x00,
585 	0x00, 0x00, 0x00, 0x00,
586 	0x00, 0x00, 0x00, 0x00,
587 
588 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
589 	0x00, 0x00, 0x00, 0x00,
590 	0x00, 0x00, 0x00, 0x00,
591 	0x50, 0x00, 0x00, 0x00,
592 	0x00, 0x00, 0x00, 0x00,
593 
594 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
595 };
596 
597 /* IPv6 + UDP */
598 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
599 	{ ICE_MAC_OFOS,		0 },
600 	{ ICE_ETYPE_OL,		12 },
601 	{ ICE_IPV6_OFOS,	14 },
602 	{ ICE_UDP_ILOS,		54 },
603 	{ ICE_PROTOCOL_LAST,	0 },
604 };
605 
606 /* IPv6 + UDP dummy packet */
607 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
608 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
609 	0x00, 0x00, 0x00, 0x00,
610 	0x00, 0x00, 0x00, 0x00,
611 
612 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
613 
614 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
615 	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
616 	0x00, 0x00, 0x00, 0x00,
617 	0x00, 0x00, 0x00, 0x00,
618 	0x00, 0x00, 0x00, 0x00,
619 	0x00, 0x00, 0x00, 0x00,
620 	0x00, 0x00, 0x00, 0x00,
621 	0x00, 0x00, 0x00, 0x00,
622 	0x00, 0x00, 0x00, 0x00,
623 	0x00, 0x00, 0x00, 0x00,
624 
625 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
626 	0x00, 0x10, 0x00, 0x00,
627 
628 	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
629 	0x00, 0x00, 0x00, 0x00,
630 
631 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
632 };
633 
634 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
635 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
636 	{ ICE_MAC_OFOS,		0 },
637 	{ ICE_IPV4_OFOS,	14 },
638 	{ ICE_UDP_OF,		34 },
639 	{ ICE_GTP,		42 },
640 	{ ICE_IPV4_IL,		62 },
641 	{ ICE_TCP_IL,		82 },
642 	{ ICE_PROTOCOL_LAST,	0 },
643 };
644 
645 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
646 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
647 	0x00, 0x00, 0x00, 0x00,
648 	0x00, 0x00, 0x00, 0x00,
649 	0x08, 0x00,
650 
651 	0x45, 0x00, 0x00, 0x58, /* IP 14 */
652 	0x00, 0x00, 0x00, 0x00,
653 	0x00, 0x11, 0x00, 0x00,
654 	0x00, 0x00, 0x00, 0x00,
655 	0x00, 0x00, 0x00, 0x00,
656 
657 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
658 	0x00, 0x44, 0x00, 0x00,
659 
660 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
661 	0x00, 0x00, 0x00, 0x00,
662 	0x00, 0x00, 0x00, 0x85,
663 
664 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
665 	0x00, 0x00, 0x00, 0x00,
666 
667 	0x45, 0x00, 0x00, 0x28, /* IP 62 */
668 	0x00, 0x00, 0x00, 0x00,
669 	0x00, 0x06, 0x00, 0x00,
670 	0x00, 0x00, 0x00, 0x00,
671 	0x00, 0x00, 0x00, 0x00,
672 
673 	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
674 	0x00, 0x00, 0x00, 0x00,
675 	0x00, 0x00, 0x00, 0x00,
676 	0x50, 0x00, 0x00, 0x00,
677 	0x00, 0x00, 0x00, 0x00,
678 
679 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
680 };
681 
682 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
683 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
684 	{ ICE_MAC_OFOS,		0 },
685 	{ ICE_IPV4_OFOS,	14 },
686 	{ ICE_UDP_OF,		34 },
687 	{ ICE_GTP,		42 },
688 	{ ICE_IPV4_IL,		62 },
689 	{ ICE_UDP_ILOS,		82 },
690 	{ ICE_PROTOCOL_LAST,	0 },
691 };
692 
693 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
694 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
695 	0x00, 0x00, 0x00, 0x00,
696 	0x00, 0x00, 0x00, 0x00,
697 	0x08, 0x00,
698 
699 	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
700 	0x00, 0x00, 0x00, 0x00,
701 	0x00, 0x11, 0x00, 0x00,
702 	0x00, 0x00, 0x00, 0x00,
703 	0x00, 0x00, 0x00, 0x00,
704 
705 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
706 	0x00, 0x38, 0x00, 0x00,
707 
708 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
709 	0x00, 0x00, 0x00, 0x00,
710 	0x00, 0x00, 0x00, 0x85,
711 
712 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
713 	0x00, 0x00, 0x00, 0x00,
714 
715 	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
716 	0x00, 0x00, 0x00, 0x00,
717 	0x00, 0x11, 0x00, 0x00,
718 	0x00, 0x00, 0x00, 0x00,
719 	0x00, 0x00, 0x00, 0x00,
720 
721 	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
722 	0x00, 0x08, 0x00, 0x00,
723 
724 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
725 };
726 
727 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
728 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
729 	{ ICE_MAC_OFOS,		0 },
730 	{ ICE_IPV4_OFOS,	14 },
731 	{ ICE_UDP_OF,		34 },
732 	{ ICE_GTP,		42 },
733 	{ ICE_IPV6_IL,		62 },
734 	{ ICE_TCP_IL,		102 },
735 	{ ICE_PROTOCOL_LAST,	0 },
736 };
737 
738 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
739 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
740 	0x00, 0x00, 0x00, 0x00,
741 	0x00, 0x00, 0x00, 0x00,
742 	0x08, 0x00,
743 
744 	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
745 	0x00, 0x00, 0x00, 0x00,
746 	0x00, 0x11, 0x00, 0x00,
747 	0x00, 0x00, 0x00, 0x00,
748 	0x00, 0x00, 0x00, 0x00,
749 
750 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
751 	0x00, 0x58, 0x00, 0x00,
752 
753 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
754 	0x00, 0x00, 0x00, 0x00,
755 	0x00, 0x00, 0x00, 0x85,
756 
757 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
758 	0x00, 0x00, 0x00, 0x00,
759 
760 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
761 	0x00, 0x14, 0x06, 0x00,
762 	0x00, 0x00, 0x00, 0x00,
763 	0x00, 0x00, 0x00, 0x00,
764 	0x00, 0x00, 0x00, 0x00,
765 	0x00, 0x00, 0x00, 0x00,
766 	0x00, 0x00, 0x00, 0x00,
767 	0x00, 0x00, 0x00, 0x00,
768 	0x00, 0x00, 0x00, 0x00,
769 	0x00, 0x00, 0x00, 0x00,
770 
771 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
772 	0x00, 0x00, 0x00, 0x00,
773 	0x00, 0x00, 0x00, 0x00,
774 	0x50, 0x00, 0x00, 0x00,
775 	0x00, 0x00, 0x00, 0x00,
776 
777 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
778 };
779 
780 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
781 	{ ICE_MAC_OFOS,		0 },
782 	{ ICE_IPV4_OFOS,	14 },
783 	{ ICE_UDP_OF,		34 },
784 	{ ICE_GTP,		42 },
785 	{ ICE_IPV6_IL,		62 },
786 	{ ICE_UDP_ILOS,		102 },
787 	{ ICE_PROTOCOL_LAST,	0 },
788 };
789 
790 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
791 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
792 	0x00, 0x00, 0x00, 0x00,
793 	0x00, 0x00, 0x00, 0x00,
794 	0x08, 0x00,
795 
796 	0x45, 0x00, 0x00, 0x60, /* IP 14 */
797 	0x00, 0x00, 0x00, 0x00,
798 	0x00, 0x11, 0x00, 0x00,
799 	0x00, 0x00, 0x00, 0x00,
800 	0x00, 0x00, 0x00, 0x00,
801 
802 	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
803 	0x00, 0x4c, 0x00, 0x00,
804 
805 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
806 	0x00, 0x00, 0x00, 0x00,
807 	0x00, 0x00, 0x00, 0x85,
808 
809 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
810 	0x00, 0x00, 0x00, 0x00,
811 
812 	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
813 	0x00, 0x08, 0x11, 0x00,
814 	0x00, 0x00, 0x00, 0x00,
815 	0x00, 0x00, 0x00, 0x00,
816 	0x00, 0x00, 0x00, 0x00,
817 	0x00, 0x00, 0x00, 0x00,
818 	0x00, 0x00, 0x00, 0x00,
819 	0x00, 0x00, 0x00, 0x00,
820 	0x00, 0x00, 0x00, 0x00,
821 	0x00, 0x00, 0x00, 0x00,
822 
823 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
824 	0x00, 0x08, 0x00, 0x00,
825 
826 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
827 };
828 
829 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
830 	{ ICE_MAC_OFOS,		0 },
831 	{ ICE_IPV6_OFOS,	14 },
832 	{ ICE_UDP_OF,		54 },
833 	{ ICE_GTP,		62 },
834 	{ ICE_IPV4_IL,		82 },
835 	{ ICE_TCP_IL,		102 },
836 	{ ICE_PROTOCOL_LAST,	0 },
837 };
838 
839 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
840 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
841 	0x00, 0x00, 0x00, 0x00,
842 	0x00, 0x00, 0x00, 0x00,
843 	0x86, 0xdd,
844 
845 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
846 	0x00, 0x44, 0x11, 0x00,
847 	0x00, 0x00, 0x00, 0x00,
848 	0x00, 0x00, 0x00, 0x00,
849 	0x00, 0x00, 0x00, 0x00,
850 	0x00, 0x00, 0x00, 0x00,
851 	0x00, 0x00, 0x00, 0x00,
852 	0x00, 0x00, 0x00, 0x00,
853 	0x00, 0x00, 0x00, 0x00,
854 	0x00, 0x00, 0x00, 0x00,
855 
856 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
857 	0x00, 0x44, 0x00, 0x00,
858 
859 	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
860 	0x00, 0x00, 0x00, 0x00,
861 	0x00, 0x00, 0x00, 0x85,
862 
863 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
864 	0x00, 0x00, 0x00, 0x00,
865 
866 	0x45, 0x00, 0x00, 0x28, /* IP 82 */
867 	0x00, 0x00, 0x00, 0x00,
868 	0x00, 0x06, 0x00, 0x00,
869 	0x00, 0x00, 0x00, 0x00,
870 	0x00, 0x00, 0x00, 0x00,
871 
872 	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
873 	0x00, 0x00, 0x00, 0x00,
874 	0x00, 0x00, 0x00, 0x00,
875 	0x50, 0x00, 0x00, 0x00,
876 	0x00, 0x00, 0x00, 0x00,
877 
878 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
879 };
880 
881 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
882 	{ ICE_MAC_OFOS,		0 },
883 	{ ICE_IPV6_OFOS,	14 },
884 	{ ICE_UDP_OF,		54 },
885 	{ ICE_GTP,		62 },
886 	{ ICE_IPV4_IL,		82 },
887 	{ ICE_UDP_ILOS,		102 },
888 	{ ICE_PROTOCOL_LAST,	0 },
889 };
890 
891 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
892 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
893 	0x00, 0x00, 0x00, 0x00,
894 	0x00, 0x00, 0x00, 0x00,
895 	0x86, 0xdd,
896 
897 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
898 	0x00, 0x38, 0x11, 0x00,
899 	0x00, 0x00, 0x00, 0x00,
900 	0x00, 0x00, 0x00, 0x00,
901 	0x00, 0x00, 0x00, 0x00,
902 	0x00, 0x00, 0x00, 0x00,
903 	0x00, 0x00, 0x00, 0x00,
904 	0x00, 0x00, 0x00, 0x00,
905 	0x00, 0x00, 0x00, 0x00,
906 	0x00, 0x00, 0x00, 0x00,
907 
908 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
909 	0x00, 0x38, 0x00, 0x00,
910 
911 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
912 	0x00, 0x00, 0x00, 0x00,
913 	0x00, 0x00, 0x00, 0x85,
914 
915 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
916 	0x00, 0x00, 0x00, 0x00,
917 
918 	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
919 	0x00, 0x00, 0x00, 0x00,
920 	0x00, 0x11, 0x00, 0x00,
921 	0x00, 0x00, 0x00, 0x00,
922 	0x00, 0x00, 0x00, 0x00,
923 
924 	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
925 	0x00, 0x08, 0x00, 0x00,
926 
927 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
928 };
929 
930 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
931 	{ ICE_MAC_OFOS,		0 },
932 	{ ICE_IPV6_OFOS,	14 },
933 	{ ICE_UDP_OF,		54 },
934 	{ ICE_GTP,		62 },
935 	{ ICE_IPV6_IL,		82 },
936 	{ ICE_TCP_IL,		122 },
937 	{ ICE_PROTOCOL_LAST,	0 },
938 };
939 
940 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
941 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
942 	0x00, 0x00, 0x00, 0x00,
943 	0x00, 0x00, 0x00, 0x00,
944 	0x86, 0xdd,
945 
946 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
947 	0x00, 0x58, 0x11, 0x00,
948 	0x00, 0x00, 0x00, 0x00,
949 	0x00, 0x00, 0x00, 0x00,
950 	0x00, 0x00, 0x00, 0x00,
951 	0x00, 0x00, 0x00, 0x00,
952 	0x00, 0x00, 0x00, 0x00,
953 	0x00, 0x00, 0x00, 0x00,
954 	0x00, 0x00, 0x00, 0x00,
955 	0x00, 0x00, 0x00, 0x00,
956 
957 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
958 	0x00, 0x58, 0x00, 0x00,
959 
960 	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
961 	0x00, 0x00, 0x00, 0x00,
962 	0x00, 0x00, 0x00, 0x85,
963 
964 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
965 	0x00, 0x00, 0x00, 0x00,
966 
967 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
968 	0x00, 0x14, 0x06, 0x00,
969 	0x00, 0x00, 0x00, 0x00,
970 	0x00, 0x00, 0x00, 0x00,
971 	0x00, 0x00, 0x00, 0x00,
972 	0x00, 0x00, 0x00, 0x00,
973 	0x00, 0x00, 0x00, 0x00,
974 	0x00, 0x00, 0x00, 0x00,
975 	0x00, 0x00, 0x00, 0x00,
976 	0x00, 0x00, 0x00, 0x00,
977 
978 	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
979 	0x00, 0x00, 0x00, 0x00,
980 	0x00, 0x00, 0x00, 0x00,
981 	0x50, 0x00, 0x00, 0x00,
982 	0x00, 0x00, 0x00, 0x00,
983 
984 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
985 };
986 
987 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
988 	{ ICE_MAC_OFOS,		0 },
989 	{ ICE_IPV6_OFOS,	14 },
990 	{ ICE_UDP_OF,		54 },
991 	{ ICE_GTP,		62 },
992 	{ ICE_IPV6_IL,		82 },
993 	{ ICE_UDP_ILOS,		122 },
994 	{ ICE_PROTOCOL_LAST,	0 },
995 };
996 
997 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
998 	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
999 	0x00, 0x00, 0x00, 0x00,
1000 	0x00, 0x00, 0x00, 0x00,
1001 	0x86, 0xdd,
1002 
1003 	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1004 	0x00, 0x4c, 0x11, 0x00,
1005 	0x00, 0x00, 0x00, 0x00,
1006 	0x00, 0x00, 0x00, 0x00,
1007 	0x00, 0x00, 0x00, 0x00,
1008 	0x00, 0x00, 0x00, 0x00,
1009 	0x00, 0x00, 0x00, 0x00,
1010 	0x00, 0x00, 0x00, 0x00,
1011 	0x00, 0x00, 0x00, 0x00,
1012 	0x00, 0x00, 0x00, 0x00,
1013 
1014 	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1015 	0x00, 0x4c, 0x00, 0x00,
1016 
1017 	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1018 	0x00, 0x00, 0x00, 0x00,
1019 	0x00, 0x00, 0x00, 0x85,
1020 
1021 	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1022 	0x00, 0x00, 0x00, 0x00,
1023 
1024 	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1025 	0x00, 0x08, 0x11, 0x00,
1026 	0x00, 0x00, 0x00, 0x00,
1027 	0x00, 0x00, 0x00, 0x00,
1028 	0x00, 0x00, 0x00, 0x00,
1029 	0x00, 0x00, 0x00, 0x00,
1030 	0x00, 0x00, 0x00, 0x00,
1031 	0x00, 0x00, 0x00, 0x00,
1032 	0x00, 0x00, 0x00, 0x00,
1033 	0x00, 0x00, 0x00, 0x00,
1034 
1035 	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1036 	0x00, 0x08, 0x00, 0x00,
1037 
1038 	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1039 };
1040 
1041 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1042 	{ ICE_MAC_OFOS,		0 },
1043 	{ ICE_IPV4_OFOS,	14 },
1044 	{ ICE_UDP_OF,		34 },
1045 	{ ICE_GTP_NO_PAY,	42 },
1046 	{ ICE_PROTOCOL_LAST,	0 },
1047 };
1048 
1049 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1050 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1051 	0x00, 0x00, 0x00, 0x00,
1052 	0x00, 0x00, 0x00, 0x00,
1053 	0x08, 0x00,
1054 
1055 	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1056 	0x00, 0x00, 0x40, 0x00,
1057 	0x40, 0x11, 0x00, 0x00,
1058 	0x00, 0x00, 0x00, 0x00,
1059 	0x00, 0x00, 0x00, 0x00,
1060 
1061 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1062 	0x00, 0x00, 0x00, 0x00,
1063 
1064 	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1065 	0x00, 0x00, 0x00, 0x00,
1066 	0x00, 0x00, 0x00, 0x85,
1067 
1068 	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1069 	0x00, 0x00, 0x00, 0x00,
1070 
1071 	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1072 	0x00, 0x00, 0x40, 0x00,
1073 	0x40, 0x00, 0x00, 0x00,
1074 	0x00, 0x00, 0x00, 0x00,
1075 	0x00, 0x00, 0x00, 0x00,
1076 	0x00, 0x00,
1077 };
1078 
1079 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1080 	{ ICE_MAC_OFOS,		0 },
1081 	{ ICE_IPV6_OFOS,	14 },
1082 	{ ICE_UDP_OF,		54 },
1083 	{ ICE_GTP_NO_PAY,	62 },
1084 	{ ICE_PROTOCOL_LAST,	0 },
1085 };
1086 
1087 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1088 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1089 	0x00, 0x00, 0x00, 0x00,
1090 	0x00, 0x00, 0x00, 0x00,
1091 	0x86, 0xdd,
1092 
1093 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1094 	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1095 	0x00, 0x00, 0x00, 0x00,
1096 	0x00, 0x00, 0x00, 0x00,
1097 	0x00, 0x00, 0x00, 0x00,
1098 	0x00, 0x00, 0x00, 0x00,
1099 	0x00, 0x00, 0x00, 0x00,
1100 	0x00, 0x00, 0x00, 0x00,
1101 	0x00, 0x00, 0x00, 0x00,
1102 	0x00, 0x00, 0x00, 0x00,
1103 
1104 	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1105 	0x00, 0x00, 0x00, 0x00,
1106 
1107 	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1108 	0x00, 0x00, 0x00, 0x00,
1109 
1110 	0x00, 0x00,
1111 };
1112 
1113 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1114 	{ ICE_MAC_OFOS,		0 },
1115 	{ ICE_ETYPE_OL,		12 },
1116 	{ ICE_PPPOE,		14 },
1117 	{ ICE_IPV4_OFOS,	22 },
1118 	{ ICE_TCP_IL,		42 },
1119 	{ ICE_PROTOCOL_LAST,	0 },
1120 };
1121 
1122 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1123 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1124 	0x00, 0x00, 0x00, 0x00,
1125 	0x00, 0x00, 0x00, 0x00,
1126 
1127 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1128 
1129 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1130 	0x00, 0x16,
1131 
1132 	0x00, 0x21,		/* PPP Link Layer 20 */
1133 
1134 	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1135 	0x00, 0x01, 0x00, 0x00,
1136 	0x00, 0x06, 0x00, 0x00,
1137 	0x00, 0x00, 0x00, 0x00,
1138 	0x00, 0x00, 0x00, 0x00,
1139 
1140 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1141 	0x00, 0x00, 0x00, 0x00,
1142 	0x00, 0x00, 0x00, 0x00,
1143 	0x50, 0x00, 0x00, 0x00,
1144 	0x00, 0x00, 0x00, 0x00,
1145 
1146 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1147 };
1148 
1149 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1150 	{ ICE_MAC_OFOS,		0 },
1151 	{ ICE_ETYPE_OL,		12 },
1152 	{ ICE_PPPOE,		14 },
1153 	{ ICE_IPV4_OFOS,	22 },
1154 	{ ICE_UDP_ILOS,		42 },
1155 	{ ICE_PROTOCOL_LAST,	0 },
1156 };
1157 
1158 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1159 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1160 	0x00, 0x00, 0x00, 0x00,
1161 	0x00, 0x00, 0x00, 0x00,
1162 
1163 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1164 
1165 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1166 	0x00, 0x16,
1167 
1168 	0x00, 0x21,		/* PPP Link Layer 20 */
1169 
1170 	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1171 	0x00, 0x01, 0x00, 0x00,
1172 	0x00, 0x11, 0x00, 0x00,
1173 	0x00, 0x00, 0x00, 0x00,
1174 	0x00, 0x00, 0x00, 0x00,
1175 
1176 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1177 	0x00, 0x08, 0x00, 0x00,
1178 
1179 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1180 };
1181 
1182 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1183 	{ ICE_MAC_OFOS,		0 },
1184 	{ ICE_ETYPE_OL,		12 },
1185 	{ ICE_PPPOE,		14 },
1186 	{ ICE_IPV6_OFOS,	22 },
1187 	{ ICE_TCP_IL,		62 },
1188 	{ ICE_PROTOCOL_LAST,	0 },
1189 };
1190 
1191 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1192 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1193 	0x00, 0x00, 0x00, 0x00,
1194 	0x00, 0x00, 0x00, 0x00,
1195 
1196 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1197 
1198 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1199 	0x00, 0x2a,
1200 
1201 	0x00, 0x57,		/* PPP Link Layer 20 */
1202 
1203 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1204 	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1205 	0x00, 0x00, 0x00, 0x00,
1206 	0x00, 0x00, 0x00, 0x00,
1207 	0x00, 0x00, 0x00, 0x00,
1208 	0x00, 0x00, 0x00, 0x00,
1209 	0x00, 0x00, 0x00, 0x00,
1210 	0x00, 0x00, 0x00, 0x00,
1211 	0x00, 0x00, 0x00, 0x00,
1212 	0x00, 0x00, 0x00, 0x00,
1213 
1214 	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1215 	0x00, 0x00, 0x00, 0x00,
1216 	0x00, 0x00, 0x00, 0x00,
1217 	0x50, 0x00, 0x00, 0x00,
1218 	0x00, 0x00, 0x00, 0x00,
1219 
1220 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1221 };
1222 
1223 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1224 	{ ICE_MAC_OFOS,		0 },
1225 	{ ICE_ETYPE_OL,		12 },
1226 	{ ICE_PPPOE,		14 },
1227 	{ ICE_IPV6_OFOS,	22 },
1228 	{ ICE_UDP_ILOS,		62 },
1229 	{ ICE_PROTOCOL_LAST,	0 },
1230 };
1231 
1232 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1233 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1234 	0x00, 0x00, 0x00, 0x00,
1235 	0x00, 0x00, 0x00, 0x00,
1236 
1237 	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1238 
1239 	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1240 	0x00, 0x2a,
1241 
1242 	0x00, 0x57,		/* PPP Link Layer 20 */
1243 
1244 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1245 	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1246 	0x00, 0x00, 0x00, 0x00,
1247 	0x00, 0x00, 0x00, 0x00,
1248 	0x00, 0x00, 0x00, 0x00,
1249 	0x00, 0x00, 0x00, 0x00,
1250 	0x00, 0x00, 0x00, 0x00,
1251 	0x00, 0x00, 0x00, 0x00,
1252 	0x00, 0x00, 0x00, 0x00,
1253 	0x00, 0x00, 0x00, 0x00,
1254 
1255 	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1256 	0x00, 0x08, 0x00, 0x00,
1257 
1258 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1259 };
1260 
1261 ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1262 	{ ICE_MAC_OFOS,		0 },
1263 	{ ICE_ETYPE_OL,		12 },
1264 	{ ICE_IPV4_OFOS,	14 },
1265 	{ ICE_L2TPV3,		34 },
1266 	{ ICE_PROTOCOL_LAST,	0 },
1267 };
1268 
1269 ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1270 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1271 	0x00, 0x00, 0x00, 0x00,
1272 	0x00, 0x00, 0x00, 0x00,
1273 
1274 	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1275 
1276 	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1277 	0x00, 0x00, 0x40, 0x00,
1278 	0x40, 0x73, 0x00, 0x00,
1279 	0x00, 0x00, 0x00, 0x00,
1280 	0x00, 0x00, 0x00, 0x00,
1281 
1282 	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1283 	0x00, 0x00, 0x00, 0x00,
1284 	0x00, 0x00, 0x00, 0x00,
1285 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1286 };
1287 
1288 ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1289 	{ ICE_MAC_OFOS,		0 },
1290 	{ ICE_ETYPE_OL,		12 },
1291 	{ ICE_IPV6_OFOS,	14 },
1292 	{ ICE_L2TPV3,		54 },
1293 	{ ICE_PROTOCOL_LAST,	0 },
1294 };
1295 
1296 ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1297 	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1298 	0x00, 0x00, 0x00, 0x00,
1299 	0x00, 0x00, 0x00, 0x00,
1300 
1301 	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1302 
1303 	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1304 	0x00, 0x0c, 0x73, 0x40,
1305 	0x00, 0x00, 0x00, 0x00,
1306 	0x00, 0x00, 0x00, 0x00,
1307 	0x00, 0x00, 0x00, 0x00,
1308 	0x00, 0x00, 0x00, 0x00,
1309 	0x00, 0x00, 0x00, 0x00,
1310 	0x00, 0x00, 0x00, 0x00,
1311 	0x00, 0x00, 0x00, 0x00,
1312 	0x00, 0x00, 0x00, 0x00,
1313 
1314 	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1315 	0x00, 0x00, 0x00, 0x00,
1316 	0x00, 0x00, 0x00, 0x00,
1317 	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1318 };
1319 
1320 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1321 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1322 				  ICE_PKT_GTP_NOPAY),
1323 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1324 					    ICE_PKT_OUTER_IPV6 |
1325 					    ICE_PKT_INNER_IPV6 |
1326 					    ICE_PKT_INNER_UDP),
1327 	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1328 					    ICE_PKT_OUTER_IPV6 |
1329 					    ICE_PKT_INNER_IPV6),
1330 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1331 					    ICE_PKT_OUTER_IPV6 |
1332 					    ICE_PKT_INNER_UDP),
1333 	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1334 					    ICE_PKT_OUTER_IPV6),
1335 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1336 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1337 					    ICE_PKT_INNER_IPV6 |
1338 					    ICE_PKT_INNER_UDP),
1339 	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1340 					    ICE_PKT_INNER_IPV6),
1341 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1342 					    ICE_PKT_INNER_UDP),
1343 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1344 	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1345 	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1346 	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1347 					ICE_PKT_INNER_UDP),
1348 	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1349 	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1350 	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1351 	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1352 				      ICE_PKT_INNER_TCP),
1353 	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1354 	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1355 	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1356 	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1357 					  ICE_PKT_INNER_IPV6 |
1358 					  ICE_PKT_INNER_TCP),
1359 	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1360 	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1361 	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1362 	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1363 					  ICE_PKT_INNER_IPV6),
1364 	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1365 	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1366 	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1367 	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1368 	ICE_PKT_PROFILE(tcp, 0),
1369 };
1370 
1371 /* this is a recipe to profile association bitmap */
1372 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1373 			  ICE_MAX_NUM_PROFILES);
1374 
1375 /* this is a profile to recipe association bitmap */
1376 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1377 			  ICE_MAX_NUM_RECIPES);
1378 
1379 /**
1380  * ice_init_def_sw_recp - initialize the recipe book keeping tables
1381  * @hw: pointer to the HW struct
1382  *
1383  * Allocate memory for the entire recipe table and initialize the structures/
1384  * entries corresponding to basic recipes.
1385  */
1386 int ice_init_def_sw_recp(struct ice_hw *hw)
1387 {
1388 	struct ice_sw_recipe *recps;
1389 	u8 i;
1390 
1391 	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1392 			     sizeof(*recps), GFP_KERNEL);
1393 	if (!recps)
1394 		return -ENOMEM;
1395 
1396 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1397 		recps[i].root_rid = i;
1398 		INIT_LIST_HEAD(&recps[i].filt_rules);
1399 		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1400 		INIT_LIST_HEAD(&recps[i].rg_list);
1401 		mutex_init(&recps[i].filt_rule_lock);
1402 	}
1403 
1404 	hw->switch_info->recp_list = recps;
1405 
1406 	return 0;
1407 }
1408 
1409 /**
1410  * ice_aq_get_sw_cfg - get switch configuration
1411  * @hw: pointer to the hardware structure
1412  * @buf: pointer to the result buffer
1413  * @buf_size: length of the buffer available for response
1414  * @req_desc: pointer to requested descriptor
1415  * @num_elems: pointer to number of elements
1416  * @cd: pointer to command details structure or NULL
1417  *
1418  * Get switch configuration (0x0200) to be placed in buf.
1419  * This admin command returns information such as initial VSI/port number
1420  * and switch ID it belongs to.
1421  *
1422  * NOTE: *req_desc is both an input/output parameter.
1423  * The caller of this function first calls this function with *request_desc set
1424  * to 0. If the response from f/w has *req_desc set to 0, all the switch
1425  * configuration information has been returned; if non-zero (meaning not all
1426  * the information was returned), the caller should call this function again
1427  * with *req_desc set to the previous value returned by f/w to get the
1428  * next block of switch configuration information.
1429  *
1430  * *num_elems is output only parameter. This reflects the number of elements
1431  * in response buffer. The caller of this function to use *num_elems while
1432  * parsing the response buffer.
1433  */
1434 static int
1435 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1436 		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1437 		  struct ice_sq_cd *cd)
1438 {
1439 	struct ice_aqc_get_sw_cfg *cmd;
1440 	struct ice_aq_desc desc;
1441 	int status;
1442 
1443 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1444 	cmd = &desc.params.get_sw_conf;
1445 	cmd->element = cpu_to_le16(*req_desc);
1446 
1447 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1448 	if (!status) {
1449 		*req_desc = le16_to_cpu(cmd->element);
1450 		*num_elems = le16_to_cpu(cmd->num_elems);
1451 	}
1452 
1453 	return status;
1454 }
1455 
1456 /**
1457  * ice_aq_add_vsi
1458  * @hw: pointer to the HW struct
1459  * @vsi_ctx: pointer to a VSI context struct
1460  * @cd: pointer to command details structure or NULL
1461  *
1462  * Add a VSI context to the hardware (0x0210)
1463  */
1464 static int
1465 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1466 	       struct ice_sq_cd *cd)
1467 {
1468 	struct ice_aqc_add_update_free_vsi_resp *res;
1469 	struct ice_aqc_add_get_update_free_vsi *cmd;
1470 	struct ice_aq_desc desc;
1471 	int status;
1472 
1473 	cmd = &desc.params.vsi_cmd;
1474 	res = &desc.params.add_update_free_vsi_res;
1475 
1476 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1477 
1478 	if (!vsi_ctx->alloc_from_pool)
1479 		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1480 					   ICE_AQ_VSI_IS_VALID);
1481 	cmd->vf_id = vsi_ctx->vf_num;
1482 
1483 	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1484 
1485 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1486 
1487 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1488 				 sizeof(vsi_ctx->info), cd);
1489 
1490 	if (!status) {
1491 		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1492 		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1493 		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1494 	}
1495 
1496 	return status;
1497 }
1498 
1499 /**
1500  * ice_aq_free_vsi
1501  * @hw: pointer to the HW struct
1502  * @vsi_ctx: pointer to a VSI context struct
1503  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1504  * @cd: pointer to command details structure or NULL
1505  *
1506  * Free VSI context info from hardware (0x0213)
1507  */
1508 static int
1509 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1510 		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1511 {
1512 	struct ice_aqc_add_update_free_vsi_resp *resp;
1513 	struct ice_aqc_add_get_update_free_vsi *cmd;
1514 	struct ice_aq_desc desc;
1515 	int status;
1516 
1517 	cmd = &desc.params.vsi_cmd;
1518 	resp = &desc.params.add_update_free_vsi_res;
1519 
1520 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1521 
1522 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1523 	if (keep_vsi_alloc)
1524 		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1525 
1526 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1527 	if (!status) {
1528 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1529 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1530 	}
1531 
1532 	return status;
1533 }
1534 
1535 /**
1536  * ice_aq_update_vsi
1537  * @hw: pointer to the HW struct
1538  * @vsi_ctx: pointer to a VSI context struct
1539  * @cd: pointer to command details structure or NULL
1540  *
1541  * Update VSI context in the hardware (0x0211)
1542  */
1543 static int
1544 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1545 		  struct ice_sq_cd *cd)
1546 {
1547 	struct ice_aqc_add_update_free_vsi_resp *resp;
1548 	struct ice_aqc_add_get_update_free_vsi *cmd;
1549 	struct ice_aq_desc desc;
1550 	int status;
1551 
1552 	cmd = &desc.params.vsi_cmd;
1553 	resp = &desc.params.add_update_free_vsi_res;
1554 
1555 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1556 
1557 	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1558 
1559 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560 
1561 	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562 				 sizeof(vsi_ctx->info), cd);
1563 
1564 	if (!status) {
1565 		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1566 		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1567 	}
1568 
1569 	return status;
1570 }
1571 
1572 /**
1573  * ice_is_vsi_valid - check whether the VSI is valid or not
1574  * @hw: pointer to the HW struct
1575  * @vsi_handle: VSI handle
1576  *
1577  * check whether the VSI is valid or not
1578  */
1579 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1580 {
1581 	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1582 }
1583 
1584 /**
1585  * ice_get_hw_vsi_num - return the HW VSI number
1586  * @hw: pointer to the HW struct
1587  * @vsi_handle: VSI handle
1588  *
1589  * return the HW VSI number
1590  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1591  */
1592 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1593 {
1594 	return hw->vsi_ctx[vsi_handle]->vsi_num;
1595 }
1596 
1597 /**
1598  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1599  * @hw: pointer to the HW struct
1600  * @vsi_handle: VSI handle
1601  *
1602  * return the VSI context entry for a given VSI handle
1603  */
1604 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1605 {
1606 	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1607 }
1608 
1609 /**
1610  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1611  * @hw: pointer to the HW struct
1612  * @vsi_handle: VSI handle
1613  * @vsi: VSI context pointer
1614  *
1615  * save the VSI context entry for a given VSI handle
1616  */
1617 static void
1618 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1619 {
1620 	hw->vsi_ctx[vsi_handle] = vsi;
1621 }
1622 
1623 /**
1624  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1625  * @hw: pointer to the HW struct
1626  * @vsi_handle: VSI handle
1627  */
1628 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1629 {
1630 	struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1631 	u8 i;
1632 
1633 	if (!vsi)
1634 		return;
1635 	ice_for_each_traffic_class(i) {
1636 		devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1637 		vsi->lan_q_ctx[i] = NULL;
1638 		devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1639 		vsi->rdma_q_ctx[i] = NULL;
1640 	}
1641 }
1642 
1643 /**
1644  * ice_clear_vsi_ctx - clear the VSI context entry
1645  * @hw: pointer to the HW struct
1646  * @vsi_handle: VSI handle
1647  *
1648  * clear the VSI context entry
1649  */
1650 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1651 {
1652 	struct ice_vsi_ctx *vsi;
1653 
1654 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1655 	if (vsi) {
1656 		ice_clear_vsi_q_ctx(hw, vsi_handle);
1657 		devm_kfree(ice_hw_to_dev(hw), vsi);
1658 		hw->vsi_ctx[vsi_handle] = NULL;
1659 	}
1660 }
1661 
1662 /**
1663  * ice_clear_all_vsi_ctx - clear all the VSI context entries
1664  * @hw: pointer to the HW struct
1665  */
1666 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1667 {
1668 	u16 i;
1669 
1670 	for (i = 0; i < ICE_MAX_VSI; i++)
1671 		ice_clear_vsi_ctx(hw, i);
1672 }
1673 
1674 /**
1675  * ice_add_vsi - add VSI context to the hardware and VSI handle list
1676  * @hw: pointer to the HW struct
1677  * @vsi_handle: unique VSI handle provided by drivers
1678  * @vsi_ctx: pointer to a VSI context struct
1679  * @cd: pointer to command details structure or NULL
1680  *
1681  * Add a VSI context to the hardware also add it into the VSI handle list.
1682  * If this function gets called after reset for existing VSIs then update
1683  * with the new HW VSI number in the corresponding VSI handle list entry.
1684  */
1685 int
1686 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1687 	    struct ice_sq_cd *cd)
1688 {
1689 	struct ice_vsi_ctx *tmp_vsi_ctx;
1690 	int status;
1691 
1692 	if (vsi_handle >= ICE_MAX_VSI)
1693 		return -EINVAL;
1694 	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1695 	if (status)
1696 		return status;
1697 	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1698 	if (!tmp_vsi_ctx) {
1699 		/* Create a new VSI context */
1700 		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1701 					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1702 		if (!tmp_vsi_ctx) {
1703 			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1704 			return -ENOMEM;
1705 		}
1706 		*tmp_vsi_ctx = *vsi_ctx;
1707 		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1708 	} else {
1709 		/* update with new HW VSI num */
1710 		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1711 	}
1712 
1713 	return 0;
1714 }
1715 
1716 /**
1717  * ice_free_vsi- free VSI context from hardware and VSI handle list
1718  * @hw: pointer to the HW struct
1719  * @vsi_handle: unique VSI handle
1720  * @vsi_ctx: pointer to a VSI context struct
1721  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1722  * @cd: pointer to command details structure or NULL
1723  *
1724  * Free VSI context info from hardware as well as from VSI handle list
1725  */
1726 int
1727 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1728 	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1729 {
1730 	int status;
1731 
1732 	if (!ice_is_vsi_valid(hw, vsi_handle))
1733 		return -EINVAL;
1734 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1735 	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1736 	if (!status)
1737 		ice_clear_vsi_ctx(hw, vsi_handle);
1738 	return status;
1739 }
1740 
1741 /**
1742  * ice_update_vsi
1743  * @hw: pointer to the HW struct
1744  * @vsi_handle: unique VSI handle
1745  * @vsi_ctx: pointer to a VSI context struct
1746  * @cd: pointer to command details structure or NULL
1747  *
1748  * Update VSI context in the hardware
1749  */
1750 int
1751 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1752 	       struct ice_sq_cd *cd)
1753 {
1754 	if (!ice_is_vsi_valid(hw, vsi_handle))
1755 		return -EINVAL;
1756 	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1757 	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1758 }
1759 
1760 /**
1761  * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1762  * @hw: pointer to HW struct
1763  * @vsi_handle: VSI SW index
1764  * @enable: boolean for enable/disable
1765  */
1766 int
1767 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1768 {
1769 	struct ice_vsi_ctx *ctx, *cached_ctx;
1770 	int status;
1771 
1772 	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1773 	if (!cached_ctx)
1774 		return -ENOENT;
1775 
1776 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1777 	if (!ctx)
1778 		return -ENOMEM;
1779 
1780 	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1781 	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1782 	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1783 
1784 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1785 
1786 	if (enable)
1787 		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1788 	else
1789 		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1790 
1791 	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1792 	if (!status) {
1793 		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1794 		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1795 	}
1796 
1797 	kfree(ctx);
1798 	return status;
1799 }
1800 
1801 /**
1802  * ice_aq_alloc_free_vsi_list
1803  * @hw: pointer to the HW struct
1804  * @vsi_list_id: VSI list ID returned or used for lookup
1805  * @lkup_type: switch rule filter lookup type
1806  * @opc: switch rules population command type - pass in the command opcode
1807  *
1808  * allocates or free a VSI list resource
1809  */
1810 static int
1811 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1812 			   enum ice_sw_lkup_type lkup_type,
1813 			   enum ice_adminq_opc opc)
1814 {
1815 	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1816 	u16 buf_len = __struct_size(sw_buf);
1817 	struct ice_aqc_res_elem *vsi_ele;
1818 	int status;
1819 
1820 	sw_buf->num_elems = cpu_to_le16(1);
1821 
1822 	if (lkup_type == ICE_SW_LKUP_MAC ||
1823 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1824 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1825 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1826 	    lkup_type == ICE_SW_LKUP_PROMISC ||
1827 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1828 	    lkup_type == ICE_SW_LKUP_DFLT) {
1829 		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1830 	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1831 		if (opc == ice_aqc_opc_alloc_res)
1832 			sw_buf->res_type =
1833 				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1834 					    ICE_AQC_RES_TYPE_FLAG_SHARED);
1835 		else
1836 			sw_buf->res_type =
1837 				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1838 	} else {
1839 		return -EINVAL;
1840 	}
1841 
1842 	if (opc == ice_aqc_opc_free_res)
1843 		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1844 
1845 	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1846 	if (status)
1847 		return status;
1848 
1849 	if (opc == ice_aqc_opc_alloc_res) {
1850 		vsi_ele = &sw_buf->elem[0];
1851 		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 /**
1858  * ice_aq_sw_rules - add/update/remove switch rules
1859  * @hw: pointer to the HW struct
1860  * @rule_list: pointer to switch rule population list
1861  * @rule_list_sz: total size of the rule list in bytes
1862  * @num_rules: number of switch rules in the rule_list
1863  * @opc: switch rules population command type - pass in the command opcode
1864  * @cd: pointer to command details structure or NULL
1865  *
1866  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1867  */
1868 int
1869 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1870 		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1871 {
1872 	struct ice_aq_desc desc;
1873 	int status;
1874 
1875 	if (opc != ice_aqc_opc_add_sw_rules &&
1876 	    opc != ice_aqc_opc_update_sw_rules &&
1877 	    opc != ice_aqc_opc_remove_sw_rules)
1878 		return -EINVAL;
1879 
1880 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1881 
1882 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1883 	desc.params.sw_rules.num_rules_fltr_entry_index =
1884 		cpu_to_le16(num_rules);
1885 	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1886 	if (opc != ice_aqc_opc_add_sw_rules &&
1887 	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1888 		status = -ENOENT;
1889 
1890 	return status;
1891 }
1892 
1893 /**
1894  * ice_aq_add_recipe - add switch recipe
1895  * @hw: pointer to the HW struct
1896  * @s_recipe_list: pointer to switch rule population list
1897  * @num_recipes: number of switch recipes in the list
1898  * @cd: pointer to command details structure or NULL
1899  *
1900  * Add(0x0290)
1901  */
1902 int
1903 ice_aq_add_recipe(struct ice_hw *hw,
1904 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1905 		  u16 num_recipes, struct ice_sq_cd *cd)
1906 {
1907 	struct ice_aqc_add_get_recipe *cmd;
1908 	struct ice_aq_desc desc;
1909 	u16 buf_size;
1910 
1911 	cmd = &desc.params.add_get_recipe;
1912 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1913 
1914 	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1915 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1916 
1917 	buf_size = num_recipes * sizeof(*s_recipe_list);
1918 
1919 	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1920 }
1921 
1922 /**
1923  * ice_aq_get_recipe - get switch recipe
1924  * @hw: pointer to the HW struct
1925  * @s_recipe_list: pointer to switch rule population list
1926  * @num_recipes: pointer to the number of recipes (input and output)
1927  * @recipe_root: root recipe number of recipe(s) to retrieve
1928  * @cd: pointer to command details structure or NULL
1929  *
1930  * Get(0x0292)
1931  *
1932  * On input, *num_recipes should equal the number of entries in s_recipe_list.
1933  * On output, *num_recipes will equal the number of entries returned in
1934  * s_recipe_list.
1935  *
1936  * The caller must supply enough space in s_recipe_list to hold all possible
1937  * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1938  */
1939 int
1940 ice_aq_get_recipe(struct ice_hw *hw,
1941 		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1942 		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1943 {
1944 	struct ice_aqc_add_get_recipe *cmd;
1945 	struct ice_aq_desc desc;
1946 	u16 buf_size;
1947 	int status;
1948 
1949 	if (*num_recipes != ICE_MAX_NUM_RECIPES)
1950 		return -EINVAL;
1951 
1952 	cmd = &desc.params.add_get_recipe;
1953 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1954 
1955 	cmd->return_index = cpu_to_le16(recipe_root);
1956 	cmd->num_sub_recipes = 0;
1957 
1958 	buf_size = *num_recipes * sizeof(*s_recipe_list);
1959 
1960 	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1961 	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1962 
1963 	return status;
1964 }
1965 
1966 /**
1967  * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1968  * @hw: pointer to the HW struct
1969  * @params: parameters used to update the default recipe
1970  *
1971  * This function only supports updating default recipes and it only supports
1972  * updating a single recipe based on the lkup_idx at a time.
1973  *
1974  * This is done as a read-modify-write operation. First, get the current recipe
1975  * contents based on the recipe's ID. Then modify the field vector index and
1976  * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1977  * the pre-existing recipe with the modifications.
1978  */
1979 int
1980 ice_update_recipe_lkup_idx(struct ice_hw *hw,
1981 			   struct ice_update_recipe_lkup_idx_params *params)
1982 {
1983 	struct ice_aqc_recipe_data_elem *rcp_list;
1984 	u16 num_recps = ICE_MAX_NUM_RECIPES;
1985 	int status;
1986 
1987 	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1988 	if (!rcp_list)
1989 		return -ENOMEM;
1990 
1991 	/* read current recipe list from firmware */
1992 	rcp_list->recipe_indx = params->rid;
1993 	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1994 	if (status) {
1995 		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1996 			  params->rid, status);
1997 		goto error_out;
1998 	}
1999 
2000 	/* only modify existing recipe's lkup_idx and mask if valid, while
2001 	 * leaving all other fields the same, then update the recipe firmware
2002 	 */
2003 	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2004 	if (params->mask_valid)
2005 		rcp_list->content.mask[params->lkup_idx] =
2006 			cpu_to_le16(params->mask);
2007 
2008 	if (params->ignore_valid)
2009 		rcp_list->content.lkup_indx[params->lkup_idx] |=
2010 			ICE_AQ_RECIPE_LKUP_IGNORE;
2011 
2012 	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2013 	if (status)
2014 		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2015 			  params->rid, params->lkup_idx, params->fv_idx,
2016 			  params->mask, params->mask_valid ? "true" : "false",
2017 			  status);
2018 
2019 error_out:
2020 	kfree(rcp_list);
2021 	return status;
2022 }
2023 
2024 /**
2025  * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2026  * @hw: pointer to the HW struct
2027  * @profile_id: package profile ID to associate the recipe with
2028  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2029  * @cd: pointer to command details structure or NULL
2030  * Recipe to profile association (0x0291)
2031  */
2032 int
2033 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2034 			     struct ice_sq_cd *cd)
2035 {
2036 	struct ice_aqc_recipe_to_profile *cmd;
2037 	struct ice_aq_desc desc;
2038 
2039 	cmd = &desc.params.recipe_to_profile;
2040 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2041 	cmd->profile_id = cpu_to_le16(profile_id);
2042 	/* Set the recipe ID bit in the bitmask to let the device know which
2043 	 * profile we are associating the recipe to
2044 	 */
2045 	memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc));
2046 
2047 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2048 }
2049 
2050 /**
2051  * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2052  * @hw: pointer to the HW struct
2053  * @profile_id: package profile ID to associate the recipe with
2054  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2055  * @cd: pointer to command details structure or NULL
2056  * Associate profile ID with given recipe (0x0293)
2057  */
2058 int
2059 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2060 			     struct ice_sq_cd *cd)
2061 {
2062 	struct ice_aqc_recipe_to_profile *cmd;
2063 	struct ice_aq_desc desc;
2064 	int status;
2065 
2066 	cmd = &desc.params.recipe_to_profile;
2067 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2068 	cmd->profile_id = cpu_to_le16(profile_id);
2069 
2070 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2071 	if (!status)
2072 		memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc));
2073 
2074 	return status;
2075 }
2076 
2077 /**
2078  * ice_alloc_recipe - add recipe resource
2079  * @hw: pointer to the hardware structure
2080  * @rid: recipe ID returned as response to AQ call
2081  */
2082 int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2083 {
2084 	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2085 	u16 buf_len = __struct_size(sw_buf);
2086 	int status;
2087 
2088 	sw_buf->num_elems = cpu_to_le16(1);
2089 	sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2090 					ICE_AQC_RES_TYPE_S) |
2091 					ICE_AQC_RES_TYPE_FLAG_SHARED);
2092 	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2093 				       ice_aqc_opc_alloc_res);
2094 	if (!status)
2095 		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2096 
2097 	return status;
2098 }
2099 
2100 /**
2101  * ice_get_recp_to_prof_map - updates recipe to profile mapping
2102  * @hw: pointer to hardware structure
2103  *
2104  * This function is used to populate recipe_to_profile matrix where index to
2105  * this array is the recipe ID and the element is the mapping of which profiles
2106  * is this recipe mapped to.
2107  */
2108 static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2109 {
2110 	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2111 	u16 i;
2112 
2113 	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2114 		u16 j;
2115 
2116 		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2117 		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2118 		if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
2119 			continue;
2120 		bitmap_copy(profile_to_recipe[i], r_bitmap,
2121 			    ICE_MAX_NUM_RECIPES);
2122 		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2123 			set_bit(i, recipe_to_profile[j]);
2124 	}
2125 }
2126 
2127 /**
2128  * ice_collect_result_idx - copy result index values
2129  * @buf: buffer that contains the result index
2130  * @recp: the recipe struct to copy data into
2131  */
2132 static void
2133 ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2134 		       struct ice_sw_recipe *recp)
2135 {
2136 	if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2137 		set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2138 			recp->res_idxs);
2139 }
2140 
2141 /**
2142  * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2143  * @hw: pointer to hardware structure
2144  * @recps: struct that we need to populate
2145  * @rid: recipe ID that we are populating
2146  * @refresh_required: true if we should get recipe to profile mapping from FW
2147  *
2148  * This function is used to populate all the necessary entries into our
2149  * bookkeeping so that we have a current list of all the recipes that are
2150  * programmed in the firmware.
2151  */
2152 static int
2153 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2154 		    bool *refresh_required)
2155 {
2156 	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2157 	struct ice_aqc_recipe_data_elem *tmp;
2158 	u16 num_recps = ICE_MAX_NUM_RECIPES;
2159 	struct ice_prot_lkup_ext *lkup_exts;
2160 	u8 fv_word_idx = 0;
2161 	u16 sub_recps;
2162 	int status;
2163 
2164 	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2165 
2166 	/* we need a buffer big enough to accommodate all the recipes */
2167 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2168 	if (!tmp)
2169 		return -ENOMEM;
2170 
2171 	tmp[0].recipe_indx = rid;
2172 	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2173 	/* non-zero status meaning recipe doesn't exist */
2174 	if (status)
2175 		goto err_unroll;
2176 
2177 	/* Get recipe to profile map so that we can get the fv from lkups that
2178 	 * we read for a recipe from FW. Since we want to minimize the number of
2179 	 * times we make this FW call, just make one call and cache the copy
2180 	 * until a new recipe is added. This operation is only required the
2181 	 * first time to get the changes from FW. Then to search existing
2182 	 * entries we don't need to update the cache again until another recipe
2183 	 * gets added.
2184 	 */
2185 	if (*refresh_required) {
2186 		ice_get_recp_to_prof_map(hw);
2187 		*refresh_required = false;
2188 	}
2189 
2190 	/* Start populating all the entries for recps[rid] based on lkups from
2191 	 * firmware. Note that we are only creating the root recipe in our
2192 	 * database.
2193 	 */
2194 	lkup_exts = &recps[rid].lkup_exts;
2195 
2196 	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2197 		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2198 		struct ice_recp_grp_entry *rg_entry;
2199 		u8 i, prof, idx, prot = 0;
2200 		bool is_root;
2201 		u16 off = 0;
2202 
2203 		rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2204 					GFP_KERNEL);
2205 		if (!rg_entry) {
2206 			status = -ENOMEM;
2207 			goto err_unroll;
2208 		}
2209 
2210 		idx = root_bufs.recipe_indx;
2211 		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2212 
2213 		/* Mark all result indices in this chain */
2214 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2215 			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2216 				result_bm);
2217 
2218 		/* get the first profile that is associated with rid */
2219 		prof = find_first_bit(recipe_to_profile[idx],
2220 				      ICE_MAX_NUM_PROFILES);
2221 		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2222 			u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2223 
2224 			rg_entry->fv_idx[i] = lkup_indx;
2225 			rg_entry->fv_mask[i] =
2226 				le16_to_cpu(root_bufs.content.mask[i + 1]);
2227 
2228 			/* If the recipe is a chained recipe then all its
2229 			 * child recipe's result will have a result index.
2230 			 * To fill fv_words we should not use those result
2231 			 * index, we only need the protocol ids and offsets.
2232 			 * We will skip all the fv_idx which stores result
2233 			 * index in them. We also need to skip any fv_idx which
2234 			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2235 			 * valid offset value.
2236 			 */
2237 			if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2238 			    rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2239 			    rg_entry->fv_idx[i] == 0)
2240 				continue;
2241 
2242 			ice_find_prot_off(hw, ICE_BLK_SW, prof,
2243 					  rg_entry->fv_idx[i], &prot, &off);
2244 			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2245 			lkup_exts->fv_words[fv_word_idx].off = off;
2246 			lkup_exts->field_mask[fv_word_idx] =
2247 				rg_entry->fv_mask[i];
2248 			fv_word_idx++;
2249 		}
2250 		/* populate rg_list with the data from the child entry of this
2251 		 * recipe
2252 		 */
2253 		list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2254 
2255 		/* Propagate some data to the recipe database */
2256 		recps[idx].is_root = !!is_root;
2257 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2258 		recps[idx].need_pass_l2 = root_bufs.content.act_ctrl &
2259 					  ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
2260 		recps[idx].allow_pass_l2 = root_bufs.content.act_ctrl &
2261 					   ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
2262 		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2263 		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2264 			recps[idx].chain_idx = root_bufs.content.result_indx &
2265 				~ICE_AQ_RECIPE_RESULT_EN;
2266 			set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2267 		} else {
2268 			recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2269 		}
2270 
2271 		if (!is_root)
2272 			continue;
2273 
2274 		/* Only do the following for root recipes entries */
2275 		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2276 		       sizeof(recps[idx].r_bitmap));
2277 		recps[idx].root_rid = root_bufs.content.rid &
2278 			~ICE_AQ_RECIPE_ID_IS_ROOT;
2279 		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2280 	}
2281 
2282 	/* Complete initialization of the root recipe entry */
2283 	lkup_exts->n_val_words = fv_word_idx;
2284 	recps[rid].big_recp = (num_recps > 1);
2285 	recps[rid].n_grp_count = (u8)num_recps;
2286 	recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2287 					   recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2288 					   GFP_KERNEL);
2289 	if (!recps[rid].root_buf) {
2290 		status = -ENOMEM;
2291 		goto err_unroll;
2292 	}
2293 
2294 	/* Copy result indexes */
2295 	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2296 	recps[rid].recp_created = true;
2297 
2298 err_unroll:
2299 	kfree(tmp);
2300 	return status;
2301 }
2302 
2303 /* ice_init_port_info - Initialize port_info with switch configuration data
2304  * @pi: pointer to port_info
2305  * @vsi_port_num: VSI number or port number
2306  * @type: Type of switch element (port or VSI)
2307  * @swid: switch ID of the switch the element is attached to
2308  * @pf_vf_num: PF or VF number
2309  * @is_vf: true if the element is a VF, false otherwise
2310  */
2311 static void
2312 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2313 		   u16 swid, u16 pf_vf_num, bool is_vf)
2314 {
2315 	switch (type) {
2316 	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2317 		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2318 		pi->sw_id = swid;
2319 		pi->pf_vf_num = pf_vf_num;
2320 		pi->is_vf = is_vf;
2321 		break;
2322 	default:
2323 		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2324 		break;
2325 	}
2326 }
2327 
2328 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
2329  * @hw: pointer to the hardware structure
2330  */
2331 int ice_get_initial_sw_cfg(struct ice_hw *hw)
2332 {
2333 	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2334 	u16 req_desc = 0;
2335 	u16 num_elems;
2336 	int status;
2337 	u16 i;
2338 
2339 	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2340 	if (!rbuf)
2341 		return -ENOMEM;
2342 
2343 	/* Multiple calls to ice_aq_get_sw_cfg may be required
2344 	 * to get all the switch configuration information. The need
2345 	 * for additional calls is indicated by ice_aq_get_sw_cfg
2346 	 * writing a non-zero value in req_desc
2347 	 */
2348 	do {
2349 		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2350 
2351 		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2352 					   &req_desc, &num_elems, NULL);
2353 
2354 		if (status)
2355 			break;
2356 
2357 		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2358 			u16 pf_vf_num, swid, vsi_port_num;
2359 			bool is_vf = false;
2360 			u8 res_type;
2361 
2362 			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2363 				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2364 
2365 			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2366 				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2367 
2368 			swid = le16_to_cpu(ele->swid);
2369 
2370 			if (le16_to_cpu(ele->pf_vf_num) &
2371 			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2372 				is_vf = true;
2373 
2374 			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2375 					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2376 
2377 			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2378 				/* FW VSI is not needed. Just continue. */
2379 				continue;
2380 			}
2381 
2382 			ice_init_port_info(hw->port_info, vsi_port_num,
2383 					   res_type, swid, pf_vf_num, is_vf);
2384 		}
2385 	} while (req_desc && !status);
2386 
2387 	kfree(rbuf);
2388 	return status;
2389 }
2390 
2391 /**
2392  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2393  * @hw: pointer to the hardware structure
2394  * @fi: filter info structure to fill/update
2395  *
2396  * This helper function populates the lb_en and lan_en elements of the provided
2397  * ice_fltr_info struct using the switch's type and characteristics of the
2398  * switch rule being configured.
2399  */
2400 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2401 {
2402 	fi->lb_en = false;
2403 	fi->lan_en = false;
2404 	if ((fi->flag & ICE_FLTR_TX) &&
2405 	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2406 	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2407 	     fi->fltr_act == ICE_FWD_TO_Q ||
2408 	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2409 		/* Setting LB for prune actions will result in replicated
2410 		 * packets to the internal switch that will be dropped.
2411 		 */
2412 		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2413 			fi->lb_en = true;
2414 
2415 		/* Set lan_en to TRUE if
2416 		 * 1. The switch is a VEB AND
2417 		 * 2
2418 		 * 2.1 The lookup is a directional lookup like ethertype,
2419 		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2420 		 * and default-port OR
2421 		 * 2.2 The lookup is VLAN, OR
2422 		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2423 		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2424 		 *
2425 		 * OR
2426 		 *
2427 		 * The switch is a VEPA.
2428 		 *
2429 		 * In all other cases, the LAN enable has to be set to false.
2430 		 */
2431 		if (hw->evb_veb) {
2432 			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2433 			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2434 			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2435 			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2436 			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2437 			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2438 			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2439 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2440 			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2441 			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2442 				fi->lan_en = true;
2443 		} else {
2444 			fi->lan_en = true;
2445 		}
2446 	}
2447 }
2448 
2449 /**
2450  * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2451  * @eth_hdr: pointer to buffer to populate
2452  */
2453 void ice_fill_eth_hdr(u8 *eth_hdr)
2454 {
2455 	memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2456 }
2457 
2458 /**
2459  * ice_fill_sw_rule - Helper function to fill switch rule structure
2460  * @hw: pointer to the hardware structure
2461  * @f_info: entry containing packet forwarding information
2462  * @s_rule: switch rule structure to be filled in based on mac_entry
2463  * @opc: switch rules population command type - pass in the command opcode
2464  */
2465 static void
2466 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2467 		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2468 		 enum ice_adminq_opc opc)
2469 {
2470 	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2471 	u16 vlan_tpid = ETH_P_8021Q;
2472 	void *daddr = NULL;
2473 	u16 eth_hdr_sz;
2474 	u8 *eth_hdr;
2475 	u32 act = 0;
2476 	__be16 *off;
2477 	u8 q_rgn;
2478 
2479 	if (opc == ice_aqc_opc_remove_sw_rules) {
2480 		s_rule->act = 0;
2481 		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2482 		s_rule->hdr_len = 0;
2483 		return;
2484 	}
2485 
2486 	eth_hdr_sz = sizeof(dummy_eth_header);
2487 	eth_hdr = s_rule->hdr_data;
2488 
2489 	/* initialize the ether header with a dummy header */
2490 	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2491 	ice_fill_sw_info(hw, f_info);
2492 
2493 	switch (f_info->fltr_act) {
2494 	case ICE_FWD_TO_VSI:
2495 		act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
2496 			ICE_SINGLE_ACT_VSI_ID_M;
2497 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2498 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2499 				ICE_SINGLE_ACT_VALID_BIT;
2500 		break;
2501 	case ICE_FWD_TO_VSI_LIST:
2502 		act |= ICE_SINGLE_ACT_VSI_LIST;
2503 		act |= (f_info->fwd_id.vsi_list_id <<
2504 			ICE_SINGLE_ACT_VSI_LIST_ID_S) &
2505 			ICE_SINGLE_ACT_VSI_LIST_ID_M;
2506 		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2507 			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2508 				ICE_SINGLE_ACT_VALID_BIT;
2509 		break;
2510 	case ICE_FWD_TO_Q:
2511 		act |= ICE_SINGLE_ACT_TO_Q;
2512 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2513 			ICE_SINGLE_ACT_Q_INDEX_M;
2514 		break;
2515 	case ICE_DROP_PACKET:
2516 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2517 			ICE_SINGLE_ACT_VALID_BIT;
2518 		break;
2519 	case ICE_FWD_TO_QGRP:
2520 		q_rgn = f_info->qgrp_size > 0 ?
2521 			(u8)ilog2(f_info->qgrp_size) : 0;
2522 		act |= ICE_SINGLE_ACT_TO_Q;
2523 		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2524 			ICE_SINGLE_ACT_Q_INDEX_M;
2525 		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
2526 			ICE_SINGLE_ACT_Q_REGION_M;
2527 		break;
2528 	default:
2529 		return;
2530 	}
2531 
2532 	if (f_info->lb_en)
2533 		act |= ICE_SINGLE_ACT_LB_ENABLE;
2534 	if (f_info->lan_en)
2535 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2536 
2537 	switch (f_info->lkup_type) {
2538 	case ICE_SW_LKUP_MAC:
2539 		daddr = f_info->l_data.mac.mac_addr;
2540 		break;
2541 	case ICE_SW_LKUP_VLAN:
2542 		vlan_id = f_info->l_data.vlan.vlan_id;
2543 		if (f_info->l_data.vlan.tpid_valid)
2544 			vlan_tpid = f_info->l_data.vlan.tpid;
2545 		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2546 		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2547 			act |= ICE_SINGLE_ACT_PRUNE;
2548 			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2549 		}
2550 		break;
2551 	case ICE_SW_LKUP_ETHERTYPE_MAC:
2552 		daddr = f_info->l_data.ethertype_mac.mac_addr;
2553 		fallthrough;
2554 	case ICE_SW_LKUP_ETHERTYPE:
2555 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2556 		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2557 		break;
2558 	case ICE_SW_LKUP_MAC_VLAN:
2559 		daddr = f_info->l_data.mac_vlan.mac_addr;
2560 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2561 		break;
2562 	case ICE_SW_LKUP_PROMISC_VLAN:
2563 		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2564 		fallthrough;
2565 	case ICE_SW_LKUP_PROMISC:
2566 		daddr = f_info->l_data.mac_vlan.mac_addr;
2567 		break;
2568 	default:
2569 		break;
2570 	}
2571 
2572 	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2573 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2574 		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2575 
2576 	/* Recipe set depending on lookup type */
2577 	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2578 	s_rule->src = cpu_to_le16(f_info->src);
2579 	s_rule->act = cpu_to_le32(act);
2580 
2581 	if (daddr)
2582 		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2583 
2584 	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2585 		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2586 		*off = cpu_to_be16(vlan_id);
2587 		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2588 		*off = cpu_to_be16(vlan_tpid);
2589 	}
2590 
2591 	/* Create the switch rule with the final dummy Ethernet header */
2592 	if (opc != ice_aqc_opc_update_sw_rules)
2593 		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2594 }
2595 
2596 /**
2597  * ice_add_marker_act
2598  * @hw: pointer to the hardware structure
2599  * @m_ent: the management entry for which sw marker needs to be added
2600  * @sw_marker: sw marker to tag the Rx descriptor with
2601  * @l_id: large action resource ID
2602  *
2603  * Create a large action to hold software marker and update the switch rule
2604  * entry pointed by m_ent with newly created large action
2605  */
2606 static int
2607 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2608 		   u16 sw_marker, u16 l_id)
2609 {
2610 	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2611 	struct ice_sw_rule_lg_act *lg_act;
2612 	/* For software marker we need 3 large actions
2613 	 * 1. FWD action: FWD TO VSI or VSI LIST
2614 	 * 2. GENERIC VALUE action to hold the profile ID
2615 	 * 3. GENERIC VALUE action to hold the software marker ID
2616 	 */
2617 	const u16 num_lg_acts = 3;
2618 	u16 lg_act_size;
2619 	u16 rules_size;
2620 	int status;
2621 	u32 act;
2622 	u16 id;
2623 
2624 	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2625 		return -EINVAL;
2626 
2627 	/* Create two back-to-back switch rules and submit them to the HW using
2628 	 * one memory buffer:
2629 	 *    1. Large Action
2630 	 *    2. Look up Tx Rx
2631 	 */
2632 	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2633 	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2634 	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2635 	if (!lg_act)
2636 		return -ENOMEM;
2637 
2638 	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2639 
2640 	/* Fill in the first switch rule i.e. large action */
2641 	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2642 	lg_act->index = cpu_to_le16(l_id);
2643 	lg_act->size = cpu_to_le16(num_lg_acts);
2644 
2645 	/* First action VSI forwarding or VSI list forwarding depending on how
2646 	 * many VSIs
2647 	 */
2648 	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2649 		m_ent->fltr_info.fwd_id.hw_vsi_id;
2650 
2651 	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2652 	act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
2653 	if (m_ent->vsi_count > 1)
2654 		act |= ICE_LG_ACT_VSI_LIST;
2655 	lg_act->act[0] = cpu_to_le32(act);
2656 
2657 	/* Second action descriptor type */
2658 	act = ICE_LG_ACT_GENERIC;
2659 
2660 	act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
2661 	lg_act->act[1] = cpu_to_le32(act);
2662 
2663 	act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
2664 	       ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
2665 
2666 	/* Third action Marker value */
2667 	act |= ICE_LG_ACT_GENERIC;
2668 	act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
2669 		ICE_LG_ACT_GENERIC_VALUE_M;
2670 
2671 	lg_act->act[2] = cpu_to_le32(act);
2672 
2673 	/* call the fill switch rule to fill the lookup Tx Rx structure */
2674 	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2675 			 ice_aqc_opc_update_sw_rules);
2676 
2677 	/* Update the action to point to the large action ID */
2678 	rx_tx->act = cpu_to_le32(ICE_SINGLE_ACT_PTR |
2679 				 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
2680 				  ICE_SINGLE_ACT_PTR_VAL_M));
2681 
2682 	/* Use the filter rule ID of the previously created rule with single
2683 	 * act. Once the update happens, hardware will treat this as large
2684 	 * action
2685 	 */
2686 	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2687 
2688 	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2689 				 ice_aqc_opc_update_sw_rules, NULL);
2690 	if (!status) {
2691 		m_ent->lg_act_idx = l_id;
2692 		m_ent->sw_marker_id = sw_marker;
2693 	}
2694 
2695 	devm_kfree(ice_hw_to_dev(hw), lg_act);
2696 	return status;
2697 }
2698 
2699 /**
2700  * ice_create_vsi_list_map
2701  * @hw: pointer to the hardware structure
2702  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2703  * @num_vsi: number of VSI handles in the array
2704  * @vsi_list_id: VSI list ID generated as part of allocate resource
2705  *
2706  * Helper function to create a new entry of VSI list ID to VSI mapping
2707  * using the given VSI list ID
2708  */
2709 static struct ice_vsi_list_map_info *
2710 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2711 			u16 vsi_list_id)
2712 {
2713 	struct ice_switch_info *sw = hw->switch_info;
2714 	struct ice_vsi_list_map_info *v_map;
2715 	int i;
2716 
2717 	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2718 	if (!v_map)
2719 		return NULL;
2720 
2721 	v_map->vsi_list_id = vsi_list_id;
2722 	v_map->ref_cnt = 1;
2723 	for (i = 0; i < num_vsi; i++)
2724 		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2725 
2726 	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2727 	return v_map;
2728 }
2729 
2730 /**
2731  * ice_update_vsi_list_rule
2732  * @hw: pointer to the hardware structure
2733  * @vsi_handle_arr: array of VSI handles to form a VSI list
2734  * @num_vsi: number of VSI handles in the array
2735  * @vsi_list_id: VSI list ID generated as part of allocate resource
2736  * @remove: Boolean value to indicate if this is a remove action
2737  * @opc: switch rules population command type - pass in the command opcode
2738  * @lkup_type: lookup type of the filter
2739  *
2740  * Call AQ command to add a new switch rule or update existing switch rule
2741  * using the given VSI list ID
2742  */
2743 static int
2744 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2745 			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2746 			 enum ice_sw_lkup_type lkup_type)
2747 {
2748 	struct ice_sw_rule_vsi_list *s_rule;
2749 	u16 s_rule_size;
2750 	u16 rule_type;
2751 	int status;
2752 	int i;
2753 
2754 	if (!num_vsi)
2755 		return -EINVAL;
2756 
2757 	if (lkup_type == ICE_SW_LKUP_MAC ||
2758 	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2759 	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2760 	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2761 	    lkup_type == ICE_SW_LKUP_PROMISC ||
2762 	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2763 	    lkup_type == ICE_SW_LKUP_DFLT)
2764 		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2765 			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2766 	else if (lkup_type == ICE_SW_LKUP_VLAN)
2767 		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2768 			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2769 	else
2770 		return -EINVAL;
2771 
2772 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2773 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2774 	if (!s_rule)
2775 		return -ENOMEM;
2776 	for (i = 0; i < num_vsi; i++) {
2777 		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2778 			status = -EINVAL;
2779 			goto exit;
2780 		}
2781 		/* AQ call requires hw_vsi_id(s) */
2782 		s_rule->vsi[i] =
2783 			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2784 	}
2785 
2786 	s_rule->hdr.type = cpu_to_le16(rule_type);
2787 	s_rule->number_vsi = cpu_to_le16(num_vsi);
2788 	s_rule->index = cpu_to_le16(vsi_list_id);
2789 
2790 	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2791 
2792 exit:
2793 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2794 	return status;
2795 }
2796 
2797 /**
2798  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2799  * @hw: pointer to the HW struct
2800  * @vsi_handle_arr: array of VSI handles to form a VSI list
2801  * @num_vsi: number of VSI handles in the array
2802  * @vsi_list_id: stores the ID of the VSI list to be created
2803  * @lkup_type: switch rule filter's lookup type
2804  */
2805 static int
2806 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2807 			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2808 {
2809 	int status;
2810 
2811 	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2812 					    ice_aqc_opc_alloc_res);
2813 	if (status)
2814 		return status;
2815 
2816 	/* Update the newly created VSI list to include the specified VSIs */
2817 	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2818 					*vsi_list_id, false,
2819 					ice_aqc_opc_add_sw_rules, lkup_type);
2820 }
2821 
2822 /**
2823  * ice_create_pkt_fwd_rule
2824  * @hw: pointer to the hardware structure
2825  * @f_entry: entry containing packet forwarding information
2826  *
2827  * Create switch rule with given filter information and add an entry
2828  * to the corresponding filter management list to track this switch rule
2829  * and VSI mapping
2830  */
2831 static int
2832 ice_create_pkt_fwd_rule(struct ice_hw *hw,
2833 			struct ice_fltr_list_entry *f_entry)
2834 {
2835 	struct ice_fltr_mgmt_list_entry *fm_entry;
2836 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2837 	enum ice_sw_lkup_type l_type;
2838 	struct ice_sw_recipe *recp;
2839 	int status;
2840 
2841 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2842 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2843 			      GFP_KERNEL);
2844 	if (!s_rule)
2845 		return -ENOMEM;
2846 	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2847 				GFP_KERNEL);
2848 	if (!fm_entry) {
2849 		status = -ENOMEM;
2850 		goto ice_create_pkt_fwd_rule_exit;
2851 	}
2852 
2853 	fm_entry->fltr_info = f_entry->fltr_info;
2854 
2855 	/* Initialize all the fields for the management entry */
2856 	fm_entry->vsi_count = 1;
2857 	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2858 	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2859 	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2860 
2861 	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2862 			 ice_aqc_opc_add_sw_rules);
2863 
2864 	status = ice_aq_sw_rules(hw, s_rule,
2865 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2866 				 ice_aqc_opc_add_sw_rules, NULL);
2867 	if (status) {
2868 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
2869 		goto ice_create_pkt_fwd_rule_exit;
2870 	}
2871 
2872 	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2873 	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2874 
2875 	/* The book keeping entries will get removed when base driver
2876 	 * calls remove filter AQ command
2877 	 */
2878 	l_type = fm_entry->fltr_info.lkup_type;
2879 	recp = &hw->switch_info->recp_list[l_type];
2880 	list_add(&fm_entry->list_entry, &recp->filt_rules);
2881 
2882 ice_create_pkt_fwd_rule_exit:
2883 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2884 	return status;
2885 }
2886 
2887 /**
2888  * ice_update_pkt_fwd_rule
2889  * @hw: pointer to the hardware structure
2890  * @f_info: filter information for switch rule
2891  *
2892  * Call AQ command to update a previously created switch rule with a
2893  * VSI list ID
2894  */
2895 static int
2896 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2897 {
2898 	struct ice_sw_rule_lkup_rx_tx *s_rule;
2899 	int status;
2900 
2901 	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2902 			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2903 			      GFP_KERNEL);
2904 	if (!s_rule)
2905 		return -ENOMEM;
2906 
2907 	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2908 
2909 	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2910 
2911 	/* Update switch rule with new rule set to forward VSI list */
2912 	status = ice_aq_sw_rules(hw, s_rule,
2913 				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2914 				 ice_aqc_opc_update_sw_rules, NULL);
2915 
2916 	devm_kfree(ice_hw_to_dev(hw), s_rule);
2917 	return status;
2918 }
2919 
2920 /**
2921  * ice_update_sw_rule_bridge_mode
2922  * @hw: pointer to the HW struct
2923  *
2924  * Updates unicast switch filter rules based on VEB/VEPA mode
2925  */
2926 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2927 {
2928 	struct ice_switch_info *sw = hw->switch_info;
2929 	struct ice_fltr_mgmt_list_entry *fm_entry;
2930 	struct list_head *rule_head;
2931 	struct mutex *rule_lock; /* Lock to protect filter rule list */
2932 	int status = 0;
2933 
2934 	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2935 	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2936 
2937 	mutex_lock(rule_lock);
2938 	list_for_each_entry(fm_entry, rule_head, list_entry) {
2939 		struct ice_fltr_info *fi = &fm_entry->fltr_info;
2940 		u8 *addr = fi->l_data.mac.mac_addr;
2941 
2942 		/* Update unicast Tx rules to reflect the selected
2943 		 * VEB/VEPA mode
2944 		 */
2945 		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2946 		    (fi->fltr_act == ICE_FWD_TO_VSI ||
2947 		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2948 		     fi->fltr_act == ICE_FWD_TO_Q ||
2949 		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2950 			status = ice_update_pkt_fwd_rule(hw, fi);
2951 			if (status)
2952 				break;
2953 		}
2954 	}
2955 
2956 	mutex_unlock(rule_lock);
2957 
2958 	return status;
2959 }
2960 
2961 /**
2962  * ice_add_update_vsi_list
2963  * @hw: pointer to the hardware structure
2964  * @m_entry: pointer to current filter management list entry
2965  * @cur_fltr: filter information from the book keeping entry
2966  * @new_fltr: filter information with the new VSI to be added
2967  *
2968  * Call AQ command to add or update previously created VSI list with new VSI.
2969  *
2970  * Helper function to do book keeping associated with adding filter information
2971  * The algorithm to do the book keeping is described below :
2972  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2973  *	if only one VSI has been added till now
2974  *		Allocate a new VSI list and add two VSIs
2975  *		to this list using switch rule command
2976  *		Update the previously created switch rule with the
2977  *		newly created VSI list ID
2978  *	if a VSI list was previously created
2979  *		Add the new VSI to the previously created VSI list set
2980  *		using the update switch rule command
2981  */
2982 static int
2983 ice_add_update_vsi_list(struct ice_hw *hw,
2984 			struct ice_fltr_mgmt_list_entry *m_entry,
2985 			struct ice_fltr_info *cur_fltr,
2986 			struct ice_fltr_info *new_fltr)
2987 {
2988 	u16 vsi_list_id = 0;
2989 	int status = 0;
2990 
2991 	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2992 	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2993 		return -EOPNOTSUPP;
2994 
2995 	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2996 	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2997 	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2998 	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2999 		return -EOPNOTSUPP;
3000 
3001 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3002 		/* Only one entry existed in the mapping and it was not already
3003 		 * a part of a VSI list. So, create a VSI list with the old and
3004 		 * new VSIs.
3005 		 */
3006 		struct ice_fltr_info tmp_fltr;
3007 		u16 vsi_handle_arr[2];
3008 
3009 		/* A rule already exists with the new VSI being added */
3010 		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3011 			return -EEXIST;
3012 
3013 		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3014 		vsi_handle_arr[1] = new_fltr->vsi_handle;
3015 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3016 						  &vsi_list_id,
3017 						  new_fltr->lkup_type);
3018 		if (status)
3019 			return status;
3020 
3021 		tmp_fltr = *new_fltr;
3022 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3023 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3024 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3025 		/* Update the previous switch rule of "MAC forward to VSI" to
3026 		 * "MAC fwd to VSI list"
3027 		 */
3028 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3029 		if (status)
3030 			return status;
3031 
3032 		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3033 		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3034 		m_entry->vsi_list_info =
3035 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3036 						vsi_list_id);
3037 
3038 		if (!m_entry->vsi_list_info)
3039 			return -ENOMEM;
3040 
3041 		/* If this entry was large action then the large action needs
3042 		 * to be updated to point to FWD to VSI list
3043 		 */
3044 		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3045 			status =
3046 			    ice_add_marker_act(hw, m_entry,
3047 					       m_entry->sw_marker_id,
3048 					       m_entry->lg_act_idx);
3049 	} else {
3050 		u16 vsi_handle = new_fltr->vsi_handle;
3051 		enum ice_adminq_opc opcode;
3052 
3053 		if (!m_entry->vsi_list_info)
3054 			return -EIO;
3055 
3056 		/* A rule already exists with the new VSI being added */
3057 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3058 			return 0;
3059 
3060 		/* Update the previously created VSI list set with
3061 		 * the new VSI ID passed in
3062 		 */
3063 		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3064 		opcode = ice_aqc_opc_update_sw_rules;
3065 
3066 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3067 						  vsi_list_id, false, opcode,
3068 						  new_fltr->lkup_type);
3069 		/* update VSI list mapping info with new VSI ID */
3070 		if (!status)
3071 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3072 	}
3073 	if (!status)
3074 		m_entry->vsi_count++;
3075 	return status;
3076 }
3077 
3078 /**
3079  * ice_find_rule_entry - Search a rule entry
3080  * @hw: pointer to the hardware structure
3081  * @recp_id: lookup type for which the specified rule needs to be searched
3082  * @f_info: rule information
3083  *
3084  * Helper function to search for a given rule entry
3085  * Returns pointer to entry storing the rule if found
3086  */
3087 static struct ice_fltr_mgmt_list_entry *
3088 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3089 {
3090 	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3091 	struct ice_switch_info *sw = hw->switch_info;
3092 	struct list_head *list_head;
3093 
3094 	list_head = &sw->recp_list[recp_id].filt_rules;
3095 	list_for_each_entry(list_itr, list_head, list_entry) {
3096 		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3097 			    sizeof(f_info->l_data)) &&
3098 		    f_info->flag == list_itr->fltr_info.flag) {
3099 			ret = list_itr;
3100 			break;
3101 		}
3102 	}
3103 	return ret;
3104 }
3105 
3106 /**
3107  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3108  * @hw: pointer to the hardware structure
3109  * @recp_id: lookup type for which VSI lists needs to be searched
3110  * @vsi_handle: VSI handle to be found in VSI list
3111  * @vsi_list_id: VSI list ID found containing vsi_handle
3112  *
3113  * Helper function to search a VSI list with single entry containing given VSI
3114  * handle element. This can be extended further to search VSI list with more
3115  * than 1 vsi_count. Returns pointer to VSI list entry if found.
3116  */
3117 struct ice_vsi_list_map_info *
3118 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3119 			u16 *vsi_list_id)
3120 {
3121 	struct ice_vsi_list_map_info *map_info = NULL;
3122 	struct ice_switch_info *sw = hw->switch_info;
3123 	struct ice_fltr_mgmt_list_entry *list_itr;
3124 	struct list_head *list_head;
3125 
3126 	list_head = &sw->recp_list[recp_id].filt_rules;
3127 	list_for_each_entry(list_itr, list_head, list_entry) {
3128 		if (list_itr->vsi_list_info) {
3129 			map_info = list_itr->vsi_list_info;
3130 			if (test_bit(vsi_handle, map_info->vsi_map)) {
3131 				*vsi_list_id = map_info->vsi_list_id;
3132 				return map_info;
3133 			}
3134 		}
3135 	}
3136 	return NULL;
3137 }
3138 
3139 /**
3140  * ice_add_rule_internal - add rule for a given lookup type
3141  * @hw: pointer to the hardware structure
3142  * @recp_id: lookup type (recipe ID) for which rule has to be added
3143  * @f_entry: structure containing MAC forwarding information
3144  *
3145  * Adds or updates the rule lists for a given recipe
3146  */
3147 static int
3148 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3149 		      struct ice_fltr_list_entry *f_entry)
3150 {
3151 	struct ice_switch_info *sw = hw->switch_info;
3152 	struct ice_fltr_info *new_fltr, *cur_fltr;
3153 	struct ice_fltr_mgmt_list_entry *m_entry;
3154 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3155 	int status = 0;
3156 
3157 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3158 		return -EINVAL;
3159 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3160 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3161 
3162 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3163 
3164 	mutex_lock(rule_lock);
3165 	new_fltr = &f_entry->fltr_info;
3166 	if (new_fltr->flag & ICE_FLTR_RX)
3167 		new_fltr->src = hw->port_info->lport;
3168 	else if (new_fltr->flag & ICE_FLTR_TX)
3169 		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3170 
3171 	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3172 	if (!m_entry) {
3173 		mutex_unlock(rule_lock);
3174 		return ice_create_pkt_fwd_rule(hw, f_entry);
3175 	}
3176 
3177 	cur_fltr = &m_entry->fltr_info;
3178 	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3179 	mutex_unlock(rule_lock);
3180 
3181 	return status;
3182 }
3183 
3184 /**
3185  * ice_remove_vsi_list_rule
3186  * @hw: pointer to the hardware structure
3187  * @vsi_list_id: VSI list ID generated as part of allocate resource
3188  * @lkup_type: switch rule filter lookup type
3189  *
3190  * The VSI list should be emptied before this function is called to remove the
3191  * VSI list.
3192  */
3193 static int
3194 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3195 			 enum ice_sw_lkup_type lkup_type)
3196 {
3197 	struct ice_sw_rule_vsi_list *s_rule;
3198 	u16 s_rule_size;
3199 	int status;
3200 
3201 	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3202 	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3203 	if (!s_rule)
3204 		return -ENOMEM;
3205 
3206 	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3207 	s_rule->index = cpu_to_le16(vsi_list_id);
3208 
3209 	/* Free the vsi_list resource that we allocated. It is assumed that the
3210 	 * list is empty at this point.
3211 	 */
3212 	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3213 					    ice_aqc_opc_free_res);
3214 
3215 	devm_kfree(ice_hw_to_dev(hw), s_rule);
3216 	return status;
3217 }
3218 
3219 /**
3220  * ice_rem_update_vsi_list
3221  * @hw: pointer to the hardware structure
3222  * @vsi_handle: VSI handle of the VSI to remove
3223  * @fm_list: filter management entry for which the VSI list management needs to
3224  *           be done
3225  */
3226 static int
3227 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3228 			struct ice_fltr_mgmt_list_entry *fm_list)
3229 {
3230 	enum ice_sw_lkup_type lkup_type;
3231 	u16 vsi_list_id;
3232 	int status = 0;
3233 
3234 	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3235 	    fm_list->vsi_count == 0)
3236 		return -EINVAL;
3237 
3238 	/* A rule with the VSI being removed does not exist */
3239 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3240 		return -ENOENT;
3241 
3242 	lkup_type = fm_list->fltr_info.lkup_type;
3243 	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3244 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3245 					  ice_aqc_opc_update_sw_rules,
3246 					  lkup_type);
3247 	if (status)
3248 		return status;
3249 
3250 	fm_list->vsi_count--;
3251 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3252 
3253 	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3254 		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3255 		struct ice_vsi_list_map_info *vsi_list_info =
3256 			fm_list->vsi_list_info;
3257 		u16 rem_vsi_handle;
3258 
3259 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3260 						ICE_MAX_VSI);
3261 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3262 			return -EIO;
3263 
3264 		/* Make sure VSI list is empty before removing it below */
3265 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3266 						  vsi_list_id, true,
3267 						  ice_aqc_opc_update_sw_rules,
3268 						  lkup_type);
3269 		if (status)
3270 			return status;
3271 
3272 		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3273 		tmp_fltr_info.fwd_id.hw_vsi_id =
3274 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3275 		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3276 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3277 		if (status) {
3278 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3279 				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3280 			return status;
3281 		}
3282 
3283 		fm_list->fltr_info = tmp_fltr_info;
3284 	}
3285 
3286 	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3287 	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3288 		struct ice_vsi_list_map_info *vsi_list_info =
3289 			fm_list->vsi_list_info;
3290 
3291 		/* Remove the VSI list since it is no longer used */
3292 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3293 		if (status) {
3294 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3295 				  vsi_list_id, status);
3296 			return status;
3297 		}
3298 
3299 		list_del(&vsi_list_info->list_entry);
3300 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3301 		fm_list->vsi_list_info = NULL;
3302 	}
3303 
3304 	return status;
3305 }
3306 
3307 /**
3308  * ice_remove_rule_internal - Remove a filter rule of a given type
3309  * @hw: pointer to the hardware structure
3310  * @recp_id: recipe ID for which the rule needs to removed
3311  * @f_entry: rule entry containing filter information
3312  */
3313 static int
3314 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3315 			 struct ice_fltr_list_entry *f_entry)
3316 {
3317 	struct ice_switch_info *sw = hw->switch_info;
3318 	struct ice_fltr_mgmt_list_entry *list_elem;
3319 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3320 	bool remove_rule = false;
3321 	u16 vsi_handle;
3322 	int status = 0;
3323 
3324 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3325 		return -EINVAL;
3326 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3327 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3328 
3329 	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3330 	mutex_lock(rule_lock);
3331 	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3332 	if (!list_elem) {
3333 		status = -ENOENT;
3334 		goto exit;
3335 	}
3336 
3337 	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3338 		remove_rule = true;
3339 	} else if (!list_elem->vsi_list_info) {
3340 		status = -ENOENT;
3341 		goto exit;
3342 	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3343 		/* a ref_cnt > 1 indicates that the vsi_list is being
3344 		 * shared by multiple rules. Decrement the ref_cnt and
3345 		 * remove this rule, but do not modify the list, as it
3346 		 * is in-use by other rules.
3347 		 */
3348 		list_elem->vsi_list_info->ref_cnt--;
3349 		remove_rule = true;
3350 	} else {
3351 		/* a ref_cnt of 1 indicates the vsi_list is only used
3352 		 * by one rule. However, the original removal request is only
3353 		 * for a single VSI. Update the vsi_list first, and only
3354 		 * remove the rule if there are no further VSIs in this list.
3355 		 */
3356 		vsi_handle = f_entry->fltr_info.vsi_handle;
3357 		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3358 		if (status)
3359 			goto exit;
3360 		/* if VSI count goes to zero after updating the VSI list */
3361 		if (list_elem->vsi_count == 0)
3362 			remove_rule = true;
3363 	}
3364 
3365 	if (remove_rule) {
3366 		/* Remove the lookup rule */
3367 		struct ice_sw_rule_lkup_rx_tx *s_rule;
3368 
3369 		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3370 				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3371 				      GFP_KERNEL);
3372 		if (!s_rule) {
3373 			status = -ENOMEM;
3374 			goto exit;
3375 		}
3376 
3377 		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3378 				 ice_aqc_opc_remove_sw_rules);
3379 
3380 		status = ice_aq_sw_rules(hw, s_rule,
3381 					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3382 					 1, ice_aqc_opc_remove_sw_rules, NULL);
3383 
3384 		/* Remove a book keeping from the list */
3385 		devm_kfree(ice_hw_to_dev(hw), s_rule);
3386 
3387 		if (status)
3388 			goto exit;
3389 
3390 		list_del(&list_elem->list_entry);
3391 		devm_kfree(ice_hw_to_dev(hw), list_elem);
3392 	}
3393 exit:
3394 	mutex_unlock(rule_lock);
3395 	return status;
3396 }
3397 
3398 /**
3399  * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3400  * @hw: pointer to the hardware structure
3401  * @vlan_id: VLAN ID
3402  * @vsi_handle: check MAC filter for this VSI
3403  */
3404 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3405 {
3406 	struct ice_fltr_mgmt_list_entry *entry;
3407 	struct list_head *rule_head;
3408 	struct ice_switch_info *sw;
3409 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3410 	u16 hw_vsi_id;
3411 
3412 	if (vlan_id > ICE_MAX_VLAN_ID)
3413 		return false;
3414 
3415 	if (!ice_is_vsi_valid(hw, vsi_handle))
3416 		return false;
3417 
3418 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3419 	sw = hw->switch_info;
3420 	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3421 	if (!rule_head)
3422 		return false;
3423 
3424 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3425 	mutex_lock(rule_lock);
3426 	list_for_each_entry(entry, rule_head, list_entry) {
3427 		struct ice_fltr_info *f_info = &entry->fltr_info;
3428 		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3429 		struct ice_vsi_list_map_info *map_info;
3430 
3431 		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3432 			continue;
3433 
3434 		if (f_info->flag != ICE_FLTR_TX ||
3435 		    f_info->src_id != ICE_SRC_ID_VSI ||
3436 		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3437 			continue;
3438 
3439 		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3440 		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3441 		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3442 			continue;
3443 
3444 		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3445 			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3446 				continue;
3447 		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3448 			/* If filter_action is FWD_TO_VSI_LIST, make sure
3449 			 * that VSI being checked is part of VSI list
3450 			 */
3451 			if (entry->vsi_count == 1 &&
3452 			    entry->vsi_list_info) {
3453 				map_info = entry->vsi_list_info;
3454 				if (!test_bit(vsi_handle, map_info->vsi_map))
3455 					continue;
3456 			}
3457 		}
3458 
3459 		if (vlan_id == entry_vlan_id) {
3460 			mutex_unlock(rule_lock);
3461 			return true;
3462 		}
3463 	}
3464 	mutex_unlock(rule_lock);
3465 
3466 	return false;
3467 }
3468 
3469 /**
3470  * ice_add_mac - Add a MAC address based filter rule
3471  * @hw: pointer to the hardware structure
3472  * @m_list: list of MAC addresses and forwarding information
3473  */
3474 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3475 {
3476 	struct ice_fltr_list_entry *m_list_itr;
3477 	int status = 0;
3478 
3479 	if (!m_list || !hw)
3480 		return -EINVAL;
3481 
3482 	list_for_each_entry(m_list_itr, m_list, list_entry) {
3483 		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3484 		u16 vsi_handle;
3485 		u16 hw_vsi_id;
3486 
3487 		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3488 		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3489 		if (!ice_is_vsi_valid(hw, vsi_handle))
3490 			return -EINVAL;
3491 		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3492 		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3493 		/* update the src in case it is VSI num */
3494 		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3495 			return -EINVAL;
3496 		m_list_itr->fltr_info.src = hw_vsi_id;
3497 		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3498 		    is_zero_ether_addr(add))
3499 			return -EINVAL;
3500 
3501 		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3502 							   m_list_itr);
3503 		if (m_list_itr->status)
3504 			return m_list_itr->status;
3505 	}
3506 
3507 	return status;
3508 }
3509 
3510 /**
3511  * ice_add_vlan_internal - Add one VLAN based filter rule
3512  * @hw: pointer to the hardware structure
3513  * @f_entry: filter entry containing one VLAN information
3514  */
3515 static int
3516 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3517 {
3518 	struct ice_switch_info *sw = hw->switch_info;
3519 	struct ice_fltr_mgmt_list_entry *v_list_itr;
3520 	struct ice_fltr_info *new_fltr, *cur_fltr;
3521 	enum ice_sw_lkup_type lkup_type;
3522 	u16 vsi_list_id = 0, vsi_handle;
3523 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3524 	int status = 0;
3525 
3526 	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3527 		return -EINVAL;
3528 
3529 	f_entry->fltr_info.fwd_id.hw_vsi_id =
3530 		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3531 	new_fltr = &f_entry->fltr_info;
3532 
3533 	/* VLAN ID should only be 12 bits */
3534 	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3535 		return -EINVAL;
3536 
3537 	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3538 		return -EINVAL;
3539 
3540 	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3541 	lkup_type = new_fltr->lkup_type;
3542 	vsi_handle = new_fltr->vsi_handle;
3543 	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3544 	mutex_lock(rule_lock);
3545 	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3546 	if (!v_list_itr) {
3547 		struct ice_vsi_list_map_info *map_info = NULL;
3548 
3549 		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3550 			/* All VLAN pruning rules use a VSI list. Check if
3551 			 * there is already a VSI list containing VSI that we
3552 			 * want to add. If found, use the same vsi_list_id for
3553 			 * this new VLAN rule or else create a new list.
3554 			 */
3555 			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3556 							   vsi_handle,
3557 							   &vsi_list_id);
3558 			if (!map_info) {
3559 				status = ice_create_vsi_list_rule(hw,
3560 								  &vsi_handle,
3561 								  1,
3562 								  &vsi_list_id,
3563 								  lkup_type);
3564 				if (status)
3565 					goto exit;
3566 			}
3567 			/* Convert the action to forwarding to a VSI list. */
3568 			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3569 			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3570 		}
3571 
3572 		status = ice_create_pkt_fwd_rule(hw, f_entry);
3573 		if (!status) {
3574 			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3575 							 new_fltr);
3576 			if (!v_list_itr) {
3577 				status = -ENOENT;
3578 				goto exit;
3579 			}
3580 			/* reuse VSI list for new rule and increment ref_cnt */
3581 			if (map_info) {
3582 				v_list_itr->vsi_list_info = map_info;
3583 				map_info->ref_cnt++;
3584 			} else {
3585 				v_list_itr->vsi_list_info =
3586 					ice_create_vsi_list_map(hw, &vsi_handle,
3587 								1, vsi_list_id);
3588 			}
3589 		}
3590 	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3591 		/* Update existing VSI list to add new VSI ID only if it used
3592 		 * by one VLAN rule.
3593 		 */
3594 		cur_fltr = &v_list_itr->fltr_info;
3595 		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3596 						 new_fltr);
3597 	} else {
3598 		/* If VLAN rule exists and VSI list being used by this rule is
3599 		 * referenced by more than 1 VLAN rule. Then create a new VSI
3600 		 * list appending previous VSI with new VSI and update existing
3601 		 * VLAN rule to point to new VSI list ID
3602 		 */
3603 		struct ice_fltr_info tmp_fltr;
3604 		u16 vsi_handle_arr[2];
3605 		u16 cur_handle;
3606 
3607 		/* Current implementation only supports reusing VSI list with
3608 		 * one VSI count. We should never hit below condition
3609 		 */
3610 		if (v_list_itr->vsi_count > 1 &&
3611 		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3612 			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3613 			status = -EIO;
3614 			goto exit;
3615 		}
3616 
3617 		cur_handle =
3618 			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3619 				       ICE_MAX_VSI);
3620 
3621 		/* A rule already exists with the new VSI being added */
3622 		if (cur_handle == vsi_handle) {
3623 			status = -EEXIST;
3624 			goto exit;
3625 		}
3626 
3627 		vsi_handle_arr[0] = cur_handle;
3628 		vsi_handle_arr[1] = vsi_handle;
3629 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3630 						  &vsi_list_id, lkup_type);
3631 		if (status)
3632 			goto exit;
3633 
3634 		tmp_fltr = v_list_itr->fltr_info;
3635 		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3636 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3637 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3638 		/* Update the previous switch rule to a new VSI list which
3639 		 * includes current VSI that is requested
3640 		 */
3641 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3642 		if (status)
3643 			goto exit;
3644 
3645 		/* before overriding VSI list map info. decrement ref_cnt of
3646 		 * previous VSI list
3647 		 */
3648 		v_list_itr->vsi_list_info->ref_cnt--;
3649 
3650 		/* now update to newly created list */
3651 		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3652 		v_list_itr->vsi_list_info =
3653 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3654 						vsi_list_id);
3655 		v_list_itr->vsi_count++;
3656 	}
3657 
3658 exit:
3659 	mutex_unlock(rule_lock);
3660 	return status;
3661 }
3662 
3663 /**
3664  * ice_add_vlan - Add VLAN based filter rule
3665  * @hw: pointer to the hardware structure
3666  * @v_list: list of VLAN entries and forwarding information
3667  */
3668 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3669 {
3670 	struct ice_fltr_list_entry *v_list_itr;
3671 
3672 	if (!v_list || !hw)
3673 		return -EINVAL;
3674 
3675 	list_for_each_entry(v_list_itr, v_list, list_entry) {
3676 		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3677 			return -EINVAL;
3678 		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3679 		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3680 		if (v_list_itr->status)
3681 			return v_list_itr->status;
3682 	}
3683 	return 0;
3684 }
3685 
3686 /**
3687  * ice_add_eth_mac - Add ethertype and MAC based filter rule
3688  * @hw: pointer to the hardware structure
3689  * @em_list: list of ether type MAC filter, MAC is optional
3690  *
3691  * This function requires the caller to populate the entries in
3692  * the filter list with the necessary fields (including flags to
3693  * indicate Tx or Rx rules).
3694  */
3695 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3696 {
3697 	struct ice_fltr_list_entry *em_list_itr;
3698 
3699 	if (!em_list || !hw)
3700 		return -EINVAL;
3701 
3702 	list_for_each_entry(em_list_itr, em_list, list_entry) {
3703 		enum ice_sw_lkup_type l_type =
3704 			em_list_itr->fltr_info.lkup_type;
3705 
3706 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3707 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3708 			return -EINVAL;
3709 
3710 		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3711 							    em_list_itr);
3712 		if (em_list_itr->status)
3713 			return em_list_itr->status;
3714 	}
3715 	return 0;
3716 }
3717 
3718 /**
3719  * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3720  * @hw: pointer to the hardware structure
3721  * @em_list: list of ethertype or ethertype MAC entries
3722  */
3723 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3724 {
3725 	struct ice_fltr_list_entry *em_list_itr, *tmp;
3726 
3727 	if (!em_list || !hw)
3728 		return -EINVAL;
3729 
3730 	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3731 		enum ice_sw_lkup_type l_type =
3732 			em_list_itr->fltr_info.lkup_type;
3733 
3734 		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3735 		    l_type != ICE_SW_LKUP_ETHERTYPE)
3736 			return -EINVAL;
3737 
3738 		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3739 							       em_list_itr);
3740 		if (em_list_itr->status)
3741 			return em_list_itr->status;
3742 	}
3743 	return 0;
3744 }
3745 
3746 /**
3747  * ice_rem_sw_rule_info
3748  * @hw: pointer to the hardware structure
3749  * @rule_head: pointer to the switch list structure that we want to delete
3750  */
3751 static void
3752 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3753 {
3754 	if (!list_empty(rule_head)) {
3755 		struct ice_fltr_mgmt_list_entry *entry;
3756 		struct ice_fltr_mgmt_list_entry *tmp;
3757 
3758 		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3759 			list_del(&entry->list_entry);
3760 			devm_kfree(ice_hw_to_dev(hw), entry);
3761 		}
3762 	}
3763 }
3764 
3765 /**
3766  * ice_rem_adv_rule_info
3767  * @hw: pointer to the hardware structure
3768  * @rule_head: pointer to the switch list structure that we want to delete
3769  */
3770 static void
3771 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3772 {
3773 	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3774 	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3775 
3776 	if (list_empty(rule_head))
3777 		return;
3778 
3779 	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3780 		list_del(&lst_itr->list_entry);
3781 		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3782 		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3783 	}
3784 }
3785 
3786 /**
3787  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3788  * @pi: pointer to the port_info structure
3789  * @vsi_handle: VSI handle to set as default
3790  * @set: true to add the above mentioned switch rule, false to remove it
3791  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3792  *
3793  * add filter rule to set/unset given VSI as default VSI for the switch
3794  * (represented by swid)
3795  */
3796 int
3797 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3798 		 u8 direction)
3799 {
3800 	struct ice_fltr_list_entry f_list_entry;
3801 	struct ice_fltr_info f_info;
3802 	struct ice_hw *hw = pi->hw;
3803 	u16 hw_vsi_id;
3804 	int status;
3805 
3806 	if (!ice_is_vsi_valid(hw, vsi_handle))
3807 		return -EINVAL;
3808 
3809 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3810 
3811 	memset(&f_info, 0, sizeof(f_info));
3812 
3813 	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3814 	f_info.flag = direction;
3815 	f_info.fltr_act = ICE_FWD_TO_VSI;
3816 	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3817 	f_info.vsi_handle = vsi_handle;
3818 
3819 	if (f_info.flag & ICE_FLTR_RX) {
3820 		f_info.src = hw->port_info->lport;
3821 		f_info.src_id = ICE_SRC_ID_LPORT;
3822 	} else if (f_info.flag & ICE_FLTR_TX) {
3823 		f_info.src_id = ICE_SRC_ID_VSI;
3824 		f_info.src = hw_vsi_id;
3825 	}
3826 	f_list_entry.fltr_info = f_info;
3827 
3828 	if (set)
3829 		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3830 					       &f_list_entry);
3831 	else
3832 		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3833 						  &f_list_entry);
3834 
3835 	return status;
3836 }
3837 
3838 /**
3839  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3840  * @fm_entry: filter entry to inspect
3841  * @vsi_handle: VSI handle to compare with filter info
3842  */
3843 static bool
3844 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3845 {
3846 	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3847 		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3848 		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3849 		 fm_entry->vsi_list_info &&
3850 		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3851 }
3852 
3853 /**
3854  * ice_check_if_dflt_vsi - check if VSI is default VSI
3855  * @pi: pointer to the port_info structure
3856  * @vsi_handle: vsi handle to check for in filter list
3857  * @rule_exists: indicates if there are any VSI's in the rule list
3858  *
3859  * checks if the VSI is in a default VSI list, and also indicates
3860  * if the default VSI list is empty
3861  */
3862 bool
3863 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3864 		      bool *rule_exists)
3865 {
3866 	struct ice_fltr_mgmt_list_entry *fm_entry;
3867 	struct ice_sw_recipe *recp_list;
3868 	struct list_head *rule_head;
3869 	struct mutex *rule_lock; /* Lock to protect filter rule list */
3870 	bool ret = false;
3871 
3872 	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3873 	rule_lock = &recp_list->filt_rule_lock;
3874 	rule_head = &recp_list->filt_rules;
3875 
3876 	mutex_lock(rule_lock);
3877 
3878 	if (rule_exists && !list_empty(rule_head))
3879 		*rule_exists = true;
3880 
3881 	list_for_each_entry(fm_entry, rule_head, list_entry) {
3882 		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3883 			ret = true;
3884 			break;
3885 		}
3886 	}
3887 
3888 	mutex_unlock(rule_lock);
3889 
3890 	return ret;
3891 }
3892 
3893 /**
3894  * ice_remove_mac - remove a MAC address based filter rule
3895  * @hw: pointer to the hardware structure
3896  * @m_list: list of MAC addresses and forwarding information
3897  *
3898  * This function removes either a MAC filter rule or a specific VSI from a
3899  * VSI list for a multicast MAC address.
3900  *
3901  * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3902  * be aware that this call will only work if all the entries passed into m_list
3903  * were added previously. It will not attempt to do a partial remove of entries
3904  * that were found.
3905  */
3906 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3907 {
3908 	struct ice_fltr_list_entry *list_itr, *tmp;
3909 
3910 	if (!m_list)
3911 		return -EINVAL;
3912 
3913 	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3914 		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3915 		u16 vsi_handle;
3916 
3917 		if (l_type != ICE_SW_LKUP_MAC)
3918 			return -EINVAL;
3919 
3920 		vsi_handle = list_itr->fltr_info.vsi_handle;
3921 		if (!ice_is_vsi_valid(hw, vsi_handle))
3922 			return -EINVAL;
3923 
3924 		list_itr->fltr_info.fwd_id.hw_vsi_id =
3925 					ice_get_hw_vsi_num(hw, vsi_handle);
3926 
3927 		list_itr->status = ice_remove_rule_internal(hw,
3928 							    ICE_SW_LKUP_MAC,
3929 							    list_itr);
3930 		if (list_itr->status)
3931 			return list_itr->status;
3932 	}
3933 	return 0;
3934 }
3935 
3936 /**
3937  * ice_remove_vlan - Remove VLAN based filter rule
3938  * @hw: pointer to the hardware structure
3939  * @v_list: list of VLAN entries and forwarding information
3940  */
3941 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3942 {
3943 	struct ice_fltr_list_entry *v_list_itr, *tmp;
3944 
3945 	if (!v_list || !hw)
3946 		return -EINVAL;
3947 
3948 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3949 		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3950 
3951 		if (l_type != ICE_SW_LKUP_VLAN)
3952 			return -EINVAL;
3953 		v_list_itr->status = ice_remove_rule_internal(hw,
3954 							      ICE_SW_LKUP_VLAN,
3955 							      v_list_itr);
3956 		if (v_list_itr->status)
3957 			return v_list_itr->status;
3958 	}
3959 	return 0;
3960 }
3961 
3962 /**
3963  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3964  * @hw: pointer to the hardware structure
3965  * @vsi_handle: VSI handle to remove filters from
3966  * @vsi_list_head: pointer to the list to add entry to
3967  * @fi: pointer to fltr_info of filter entry to copy & add
3968  *
3969  * Helper function, used when creating a list of filters to remove from
3970  * a specific VSI. The entry added to vsi_list_head is a COPY of the
3971  * original filter entry, with the exception of fltr_info.fltr_act and
3972  * fltr_info.fwd_id fields. These are set such that later logic can
3973  * extract which VSI to remove the fltr from, and pass on that information.
3974  */
3975 static int
3976 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3977 			       struct list_head *vsi_list_head,
3978 			       struct ice_fltr_info *fi)
3979 {
3980 	struct ice_fltr_list_entry *tmp;
3981 
3982 	/* this memory is freed up in the caller function
3983 	 * once filters for this VSI are removed
3984 	 */
3985 	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
3986 	if (!tmp)
3987 		return -ENOMEM;
3988 
3989 	tmp->fltr_info = *fi;
3990 
3991 	/* Overwrite these fields to indicate which VSI to remove filter from,
3992 	 * so find and remove logic can extract the information from the
3993 	 * list entries. Note that original entries will still have proper
3994 	 * values.
3995 	 */
3996 	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3997 	tmp->fltr_info.vsi_handle = vsi_handle;
3998 	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3999 
4000 	list_add(&tmp->list_entry, vsi_list_head);
4001 
4002 	return 0;
4003 }
4004 
4005 /**
4006  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4007  * @hw: pointer to the hardware structure
4008  * @vsi_handle: VSI handle to remove filters from
4009  * @lkup_list_head: pointer to the list that has certain lookup type filters
4010  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4011  *
4012  * Locates all filters in lkup_list_head that are used by the given VSI,
4013  * and adds COPIES of those entries to vsi_list_head (intended to be used
4014  * to remove the listed filters).
4015  * Note that this means all entries in vsi_list_head must be explicitly
4016  * deallocated by the caller when done with list.
4017  */
4018 static int
4019 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4020 			 struct list_head *lkup_list_head,
4021 			 struct list_head *vsi_list_head)
4022 {
4023 	struct ice_fltr_mgmt_list_entry *fm_entry;
4024 	int status = 0;
4025 
4026 	/* check to make sure VSI ID is valid and within boundary */
4027 	if (!ice_is_vsi_valid(hw, vsi_handle))
4028 		return -EINVAL;
4029 
4030 	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4031 		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4032 			continue;
4033 
4034 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4035 							vsi_list_head,
4036 							&fm_entry->fltr_info);
4037 		if (status)
4038 			return status;
4039 	}
4040 	return status;
4041 }
4042 
4043 /**
4044  * ice_determine_promisc_mask
4045  * @fi: filter info to parse
4046  *
4047  * Helper function to determine which ICE_PROMISC_ mask corresponds
4048  * to given filter into.
4049  */
4050 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4051 {
4052 	u16 vid = fi->l_data.mac_vlan.vlan_id;
4053 	u8 *macaddr = fi->l_data.mac.mac_addr;
4054 	bool is_tx_fltr = false;
4055 	u8 promisc_mask = 0;
4056 
4057 	if (fi->flag == ICE_FLTR_TX)
4058 		is_tx_fltr = true;
4059 
4060 	if (is_broadcast_ether_addr(macaddr))
4061 		promisc_mask |= is_tx_fltr ?
4062 			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4063 	else if (is_multicast_ether_addr(macaddr))
4064 		promisc_mask |= is_tx_fltr ?
4065 			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4066 	else if (is_unicast_ether_addr(macaddr))
4067 		promisc_mask |= is_tx_fltr ?
4068 			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4069 	if (vid)
4070 		promisc_mask |= is_tx_fltr ?
4071 			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4072 
4073 	return promisc_mask;
4074 }
4075 
4076 /**
4077  * ice_remove_promisc - Remove promisc based filter rules
4078  * @hw: pointer to the hardware structure
4079  * @recp_id: recipe ID for which the rule needs to removed
4080  * @v_list: list of promisc entries
4081  */
4082 static int
4083 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4084 {
4085 	struct ice_fltr_list_entry *v_list_itr, *tmp;
4086 
4087 	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4088 		v_list_itr->status =
4089 			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4090 		if (v_list_itr->status)
4091 			return v_list_itr->status;
4092 	}
4093 	return 0;
4094 }
4095 
4096 /**
4097  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4098  * @hw: pointer to the hardware structure
4099  * @vsi_handle: VSI handle to clear mode
4100  * @promisc_mask: mask of promiscuous config bits to clear
4101  * @vid: VLAN ID to clear VLAN promiscuous
4102  */
4103 int
4104 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4105 		      u16 vid)
4106 {
4107 	struct ice_switch_info *sw = hw->switch_info;
4108 	struct ice_fltr_list_entry *fm_entry, *tmp;
4109 	struct list_head remove_list_head;
4110 	struct ice_fltr_mgmt_list_entry *itr;
4111 	struct list_head *rule_head;
4112 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4113 	int status = 0;
4114 	u8 recipe_id;
4115 
4116 	if (!ice_is_vsi_valid(hw, vsi_handle))
4117 		return -EINVAL;
4118 
4119 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4120 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4121 	else
4122 		recipe_id = ICE_SW_LKUP_PROMISC;
4123 
4124 	rule_head = &sw->recp_list[recipe_id].filt_rules;
4125 	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4126 
4127 	INIT_LIST_HEAD(&remove_list_head);
4128 
4129 	mutex_lock(rule_lock);
4130 	list_for_each_entry(itr, rule_head, list_entry) {
4131 		struct ice_fltr_info *fltr_info;
4132 		u8 fltr_promisc_mask = 0;
4133 
4134 		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4135 			continue;
4136 		fltr_info = &itr->fltr_info;
4137 
4138 		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4139 		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4140 			continue;
4141 
4142 		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4143 
4144 		/* Skip if filter is not completely specified by given mask */
4145 		if (fltr_promisc_mask & ~promisc_mask)
4146 			continue;
4147 
4148 		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4149 							&remove_list_head,
4150 							fltr_info);
4151 		if (status) {
4152 			mutex_unlock(rule_lock);
4153 			goto free_fltr_list;
4154 		}
4155 	}
4156 	mutex_unlock(rule_lock);
4157 
4158 	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4159 
4160 free_fltr_list:
4161 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4162 		list_del(&fm_entry->list_entry);
4163 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4164 	}
4165 
4166 	return status;
4167 }
4168 
4169 /**
4170  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4171  * @hw: pointer to the hardware structure
4172  * @vsi_handle: VSI handle to configure
4173  * @promisc_mask: mask of promiscuous config bits
4174  * @vid: VLAN ID to set VLAN promiscuous
4175  */
4176 int
4177 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4178 {
4179 	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4180 	struct ice_fltr_list_entry f_list_entry;
4181 	struct ice_fltr_info new_fltr;
4182 	bool is_tx_fltr;
4183 	int status = 0;
4184 	u16 hw_vsi_id;
4185 	int pkt_type;
4186 	u8 recipe_id;
4187 
4188 	if (!ice_is_vsi_valid(hw, vsi_handle))
4189 		return -EINVAL;
4190 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4191 
4192 	memset(&new_fltr, 0, sizeof(new_fltr));
4193 
4194 	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4195 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4196 		new_fltr.l_data.mac_vlan.vlan_id = vid;
4197 		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4198 	} else {
4199 		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4200 		recipe_id = ICE_SW_LKUP_PROMISC;
4201 	}
4202 
4203 	/* Separate filters must be set for each direction/packet type
4204 	 * combination, so we will loop over the mask value, store the
4205 	 * individual type, and clear it out in the input mask as it
4206 	 * is found.
4207 	 */
4208 	while (promisc_mask) {
4209 		u8 *mac_addr;
4210 
4211 		pkt_type = 0;
4212 		is_tx_fltr = false;
4213 
4214 		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4215 			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4216 			pkt_type = UCAST_FLTR;
4217 		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4218 			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4219 			pkt_type = UCAST_FLTR;
4220 			is_tx_fltr = true;
4221 		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4222 			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4223 			pkt_type = MCAST_FLTR;
4224 		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4225 			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4226 			pkt_type = MCAST_FLTR;
4227 			is_tx_fltr = true;
4228 		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4229 			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4230 			pkt_type = BCAST_FLTR;
4231 		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4232 			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4233 			pkt_type = BCAST_FLTR;
4234 			is_tx_fltr = true;
4235 		}
4236 
4237 		/* Check for VLAN promiscuous flag */
4238 		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4239 			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4240 		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4241 			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4242 			is_tx_fltr = true;
4243 		}
4244 
4245 		/* Set filter DA based on packet type */
4246 		mac_addr = new_fltr.l_data.mac.mac_addr;
4247 		if (pkt_type == BCAST_FLTR) {
4248 			eth_broadcast_addr(mac_addr);
4249 		} else if (pkt_type == MCAST_FLTR ||
4250 			   pkt_type == UCAST_FLTR) {
4251 			/* Use the dummy ether header DA */
4252 			ether_addr_copy(mac_addr, dummy_eth_header);
4253 			if (pkt_type == MCAST_FLTR)
4254 				mac_addr[0] |= 0x1;	/* Set multicast bit */
4255 		}
4256 
4257 		/* Need to reset this to zero for all iterations */
4258 		new_fltr.flag = 0;
4259 		if (is_tx_fltr) {
4260 			new_fltr.flag |= ICE_FLTR_TX;
4261 			new_fltr.src = hw_vsi_id;
4262 		} else {
4263 			new_fltr.flag |= ICE_FLTR_RX;
4264 			new_fltr.src = hw->port_info->lport;
4265 		}
4266 
4267 		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4268 		new_fltr.vsi_handle = vsi_handle;
4269 		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4270 		f_list_entry.fltr_info = new_fltr;
4271 
4272 		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4273 		if (status)
4274 			goto set_promisc_exit;
4275 	}
4276 
4277 set_promisc_exit:
4278 	return status;
4279 }
4280 
4281 /**
4282  * ice_set_vlan_vsi_promisc
4283  * @hw: pointer to the hardware structure
4284  * @vsi_handle: VSI handle to configure
4285  * @promisc_mask: mask of promiscuous config bits
4286  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4287  *
4288  * Configure VSI with all associated VLANs to given promiscuous mode(s)
4289  */
4290 int
4291 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4292 			 bool rm_vlan_promisc)
4293 {
4294 	struct ice_switch_info *sw = hw->switch_info;
4295 	struct ice_fltr_list_entry *list_itr, *tmp;
4296 	struct list_head vsi_list_head;
4297 	struct list_head *vlan_head;
4298 	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4299 	u16 vlan_id;
4300 	int status;
4301 
4302 	INIT_LIST_HEAD(&vsi_list_head);
4303 	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4304 	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4305 	mutex_lock(vlan_lock);
4306 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4307 					  &vsi_list_head);
4308 	mutex_unlock(vlan_lock);
4309 	if (status)
4310 		goto free_fltr_list;
4311 
4312 	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4313 		/* Avoid enabling or disabling VLAN zero twice when in double
4314 		 * VLAN mode
4315 		 */
4316 		if (ice_is_dvm_ena(hw) &&
4317 		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4318 			continue;
4319 
4320 		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4321 		if (rm_vlan_promisc)
4322 			status = ice_clear_vsi_promisc(hw, vsi_handle,
4323 						       promisc_mask, vlan_id);
4324 		else
4325 			status = ice_set_vsi_promisc(hw, vsi_handle,
4326 						     promisc_mask, vlan_id);
4327 		if (status && status != -EEXIST)
4328 			break;
4329 	}
4330 
4331 free_fltr_list:
4332 	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4333 		list_del(&list_itr->list_entry);
4334 		devm_kfree(ice_hw_to_dev(hw), list_itr);
4335 	}
4336 	return status;
4337 }
4338 
4339 /**
4340  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4341  * @hw: pointer to the hardware structure
4342  * @vsi_handle: VSI handle to remove filters from
4343  * @lkup: switch rule filter lookup type
4344  */
4345 static void
4346 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4347 			 enum ice_sw_lkup_type lkup)
4348 {
4349 	struct ice_switch_info *sw = hw->switch_info;
4350 	struct ice_fltr_list_entry *fm_entry;
4351 	struct list_head remove_list_head;
4352 	struct list_head *rule_head;
4353 	struct ice_fltr_list_entry *tmp;
4354 	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4355 	int status;
4356 
4357 	INIT_LIST_HEAD(&remove_list_head);
4358 	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4359 	rule_head = &sw->recp_list[lkup].filt_rules;
4360 	mutex_lock(rule_lock);
4361 	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4362 					  &remove_list_head);
4363 	mutex_unlock(rule_lock);
4364 	if (status)
4365 		goto free_fltr_list;
4366 
4367 	switch (lkup) {
4368 	case ICE_SW_LKUP_MAC:
4369 		ice_remove_mac(hw, &remove_list_head);
4370 		break;
4371 	case ICE_SW_LKUP_VLAN:
4372 		ice_remove_vlan(hw, &remove_list_head);
4373 		break;
4374 	case ICE_SW_LKUP_PROMISC:
4375 	case ICE_SW_LKUP_PROMISC_VLAN:
4376 		ice_remove_promisc(hw, lkup, &remove_list_head);
4377 		break;
4378 	case ICE_SW_LKUP_MAC_VLAN:
4379 	case ICE_SW_LKUP_ETHERTYPE:
4380 	case ICE_SW_LKUP_ETHERTYPE_MAC:
4381 	case ICE_SW_LKUP_DFLT:
4382 	case ICE_SW_LKUP_LAST:
4383 	default:
4384 		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4385 		break;
4386 	}
4387 
4388 free_fltr_list:
4389 	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4390 		list_del(&fm_entry->list_entry);
4391 		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4392 	}
4393 }
4394 
4395 /**
4396  * ice_remove_vsi_fltr - Remove all filters for a VSI
4397  * @hw: pointer to the hardware structure
4398  * @vsi_handle: VSI handle to remove filters from
4399  */
4400 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4401 {
4402 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4403 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4404 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4405 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4406 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4407 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4408 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4409 	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4410 }
4411 
4412 /**
4413  * ice_alloc_res_cntr - allocating resource counter
4414  * @hw: pointer to the hardware structure
4415  * @type: type of resource
4416  * @alloc_shared: if set it is shared else dedicated
4417  * @num_items: number of entries requested for FD resource type
4418  * @counter_id: counter index returned by AQ call
4419  */
4420 int
4421 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4422 		   u16 *counter_id)
4423 {
4424 	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4425 	u16 buf_len = __struct_size(buf);
4426 	int status;
4427 
4428 	buf->num_elems = cpu_to_le16(num_items);
4429 	buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4430 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
4431 
4432 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4433 	if (status)
4434 		return status;
4435 
4436 	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4437 	return status;
4438 }
4439 
4440 /**
4441  * ice_free_res_cntr - free resource counter
4442  * @hw: pointer to the hardware structure
4443  * @type: type of resource
4444  * @alloc_shared: if set it is shared else dedicated
4445  * @num_items: number of entries to be freed for FD resource type
4446  * @counter_id: counter ID resource which needs to be freed
4447  */
4448 int
4449 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4450 		  u16 counter_id)
4451 {
4452 	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4453 	u16 buf_len = __struct_size(buf);
4454 	int status;
4455 
4456 	buf->num_elems = cpu_to_le16(num_items);
4457 	buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4458 				      ICE_AQC_RES_TYPE_M) | alloc_shared);
4459 	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4460 
4461 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4462 	if (status)
4463 		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4464 
4465 	return status;
4466 }
4467 
4468 #define ICE_PROTOCOL_ENTRY(id, ...) {		\
4469 	.prot_type	= id,			\
4470 	.offs		= {__VA_ARGS__},	\
4471 }
4472 
4473 /**
4474  * ice_share_res - set a resource as shared or dedicated
4475  * @hw: hw struct of original owner of resource
4476  * @type: resource type
4477  * @shared: is the resource being set to shared
4478  * @res_id: resource id (descriptor)
4479  */
4480 int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4481 {
4482 	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4483 	u16 buf_len = __struct_size(buf);
4484 	int status;
4485 
4486 	buf->num_elems = cpu_to_le16(1);
4487 	if (shared)
4488 		buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4489 					     ICE_AQC_RES_TYPE_M) |
4490 					    ICE_AQC_RES_TYPE_FLAG_SHARED);
4491 	else
4492 		buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4493 					     ICE_AQC_RES_TYPE_M) &
4494 					    ~ICE_AQC_RES_TYPE_FLAG_SHARED);
4495 
4496 	buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4497 	status = ice_aq_alloc_free_res(hw, buf, buf_len,
4498 				       ice_aqc_opc_share_res);
4499 	if (status)
4500 		ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4501 			  type, res_id, shared ? "SHARED" : "DEDICATED");
4502 
4503 	return status;
4504 }
4505 
4506 /* This is mapping table entry that maps every word within a given protocol
4507  * structure to the real byte offset as per the specification of that
4508  * protocol header.
4509  * for example dst address is 3 words in ethertype header and corresponding
4510  * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4511  * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4512  * matching entry describing its field. This needs to be updated if new
4513  * structure is added to that union.
4514  */
4515 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4516 	ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4517 	ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4518 	ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4519 	ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4520 	ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4521 	ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4522 	ICE_PROTOCOL_ENTRY(ICE_IPV4_IL,	0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4523 	ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4524 			   20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4525 	ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4526 			   22, 24, 26, 28, 30, 32, 34, 36, 38),
4527 	ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4528 	ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4529 	ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4530 	ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4531 	ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4532 	ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4533 	ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4534 	ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4535 	ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4536 	ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4537 	ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4538 	ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4539 	ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4540 			   ICE_SOURCE_PORT_MDID_OFFSET,
4541 			   ICE_PTYPE_MDID_OFFSET,
4542 			   ICE_PACKET_LENGTH_MDID_OFFSET,
4543 			   ICE_SOURCE_VSI_MDID_OFFSET,
4544 			   ICE_PKT_VLAN_MDID_OFFSET,
4545 			   ICE_PKT_TUNNEL_MDID_OFFSET,
4546 			   ICE_PKT_TCP_MDID_OFFSET,
4547 			   ICE_PKT_ERROR_MDID_OFFSET),
4548 };
4549 
4550 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4551 	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4552 	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4553 	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4554 	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4555 	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4556 	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4557 	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4558 	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4559 	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4560 	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4561 	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4562 	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4563 	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4564 	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4565 	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4566 	{ ICE_GTP,		ICE_UDP_OF_HW },
4567 	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4568 	{ ICE_PPPOE,		ICE_PPPOE_HW },
4569 	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4570 	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4571 	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4572 	{ ICE_HW_METADATA,      ICE_META_DATA_ID_HW },
4573 };
4574 
4575 /**
4576  * ice_find_recp - find a recipe
4577  * @hw: pointer to the hardware structure
4578  * @lkup_exts: extension sequence to match
4579  * @rinfo: information regarding the rule e.g. priority and action info
4580  *
4581  * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4582  */
4583 static u16
4584 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4585 	      const struct ice_adv_rule_info *rinfo)
4586 {
4587 	bool refresh_required = true;
4588 	struct ice_sw_recipe *recp;
4589 	u8 i;
4590 
4591 	/* Walk through existing recipes to find a match */
4592 	recp = hw->switch_info->recp_list;
4593 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4594 		/* If recipe was not created for this ID, in SW bookkeeping,
4595 		 * check if FW has an entry for this recipe. If the FW has an
4596 		 * entry update it in our SW bookkeeping and continue with the
4597 		 * matching.
4598 		 */
4599 		if (!recp[i].recp_created)
4600 			if (ice_get_recp_frm_fw(hw,
4601 						hw->switch_info->recp_list, i,
4602 						&refresh_required))
4603 				continue;
4604 
4605 		/* Skip inverse action recipes */
4606 		if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4607 		    ICE_AQ_RECIPE_ACT_INV_ACT)
4608 			continue;
4609 
4610 		/* if number of words we are looking for match */
4611 		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4612 			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4613 			struct ice_fv_word *be = lkup_exts->fv_words;
4614 			u16 *cr = recp[i].lkup_exts.field_mask;
4615 			u16 *de = lkup_exts->field_mask;
4616 			bool found = true;
4617 			u8 pe, qr;
4618 
4619 			/* ar, cr, and qr are related to the recipe words, while
4620 			 * be, de, and pe are related to the lookup words
4621 			 */
4622 			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4623 				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4624 				     qr++) {
4625 					if (ar[qr].off == be[pe].off &&
4626 					    ar[qr].prot_id == be[pe].prot_id &&
4627 					    cr[qr] == de[pe])
4628 						/* Found the "pe"th word in the
4629 						 * given recipe
4630 						 */
4631 						break;
4632 				}
4633 				/* After walking through all the words in the
4634 				 * "i"th recipe if "p"th word was not found then
4635 				 * this recipe is not what we are looking for.
4636 				 * So break out from this loop and try the next
4637 				 * recipe
4638 				 */
4639 				if (qr >= recp[i].lkup_exts.n_val_words) {
4640 					found = false;
4641 					break;
4642 				}
4643 			}
4644 			/* If for "i"th recipe the found was never set to false
4645 			 * then it means we found our match
4646 			 * Also tun type and *_pass_l2 of recipe needs to be
4647 			 * checked
4648 			 */
4649 			if (found && recp[i].tun_type == rinfo->tun_type &&
4650 			    recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4651 			    recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4652 				return i; /* Return the recipe ID */
4653 		}
4654 	}
4655 	return ICE_MAX_NUM_RECIPES;
4656 }
4657 
4658 /**
4659  * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4660  *
4661  * As protocol id for outer vlan is different in dvm and svm, if dvm is
4662  * supported protocol array record for outer vlan has to be modified to
4663  * reflect the value proper for DVM.
4664  */
4665 void ice_change_proto_id_to_dvm(void)
4666 {
4667 	u8 i;
4668 
4669 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4670 		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4671 		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4672 			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4673 }
4674 
4675 /**
4676  * ice_prot_type_to_id - get protocol ID from protocol type
4677  * @type: protocol type
4678  * @id: pointer to variable that will receive the ID
4679  *
4680  * Returns true if found, false otherwise
4681  */
4682 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4683 {
4684 	u8 i;
4685 
4686 	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4687 		if (ice_prot_id_tbl[i].type == type) {
4688 			*id = ice_prot_id_tbl[i].protocol_id;
4689 			return true;
4690 		}
4691 	return false;
4692 }
4693 
4694 /**
4695  * ice_fill_valid_words - count valid words
4696  * @rule: advanced rule with lookup information
4697  * @lkup_exts: byte offset extractions of the words that are valid
4698  *
4699  * calculate valid words in a lookup rule using mask value
4700  */
4701 static u8
4702 ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4703 		     struct ice_prot_lkup_ext *lkup_exts)
4704 {
4705 	u8 j, word, prot_id, ret_val;
4706 
4707 	if (!ice_prot_type_to_id(rule->type, &prot_id))
4708 		return 0;
4709 
4710 	word = lkup_exts->n_val_words;
4711 
4712 	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4713 		if (((u16 *)&rule->m_u)[j] &&
4714 		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4715 			/* No more space to accommodate */
4716 			if (word >= ICE_MAX_CHAIN_WORDS)
4717 				return 0;
4718 			lkup_exts->fv_words[word].off =
4719 				ice_prot_ext[rule->type].offs[j];
4720 			lkup_exts->fv_words[word].prot_id =
4721 				ice_prot_id_tbl[rule->type].protocol_id;
4722 			lkup_exts->field_mask[word] =
4723 				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4724 			word++;
4725 		}
4726 
4727 	ret_val = word - lkup_exts->n_val_words;
4728 	lkup_exts->n_val_words = word;
4729 
4730 	return ret_val;
4731 }
4732 
4733 /**
4734  * ice_create_first_fit_recp_def - Create a recipe grouping
4735  * @hw: pointer to the hardware structure
4736  * @lkup_exts: an array of protocol header extractions
4737  * @rg_list: pointer to a list that stores new recipe groups
4738  * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4739  *
4740  * Using first fit algorithm, take all the words that are still not done
4741  * and start grouping them in 4-word groups. Each group makes up one
4742  * recipe.
4743  */
4744 static int
4745 ice_create_first_fit_recp_def(struct ice_hw *hw,
4746 			      struct ice_prot_lkup_ext *lkup_exts,
4747 			      struct list_head *rg_list,
4748 			      u8 *recp_cnt)
4749 {
4750 	struct ice_pref_recipe_group *grp = NULL;
4751 	u8 j;
4752 
4753 	*recp_cnt = 0;
4754 
4755 	/* Walk through every word in the rule to check if it is not done. If so
4756 	 * then this word needs to be part of a new recipe.
4757 	 */
4758 	for (j = 0; j < lkup_exts->n_val_words; j++)
4759 		if (!test_bit(j, lkup_exts->done)) {
4760 			if (!grp ||
4761 			    grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4762 				struct ice_recp_grp_entry *entry;
4763 
4764 				entry = devm_kzalloc(ice_hw_to_dev(hw),
4765 						     sizeof(*entry),
4766 						     GFP_KERNEL);
4767 				if (!entry)
4768 					return -ENOMEM;
4769 				list_add(&entry->l_entry, rg_list);
4770 				grp = &entry->r_group;
4771 				(*recp_cnt)++;
4772 			}
4773 
4774 			grp->pairs[grp->n_val_pairs].prot_id =
4775 				lkup_exts->fv_words[j].prot_id;
4776 			grp->pairs[grp->n_val_pairs].off =
4777 				lkup_exts->fv_words[j].off;
4778 			grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4779 			grp->n_val_pairs++;
4780 		}
4781 
4782 	return 0;
4783 }
4784 
4785 /**
4786  * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4787  * @hw: pointer to the hardware structure
4788  * @fv_list: field vector with the extraction sequence information
4789  * @rg_list: recipe groupings with protocol-offset pairs
4790  *
4791  * Helper function to fill in the field vector indices for protocol-offset
4792  * pairs. These indexes are then ultimately programmed into a recipe.
4793  */
4794 static int
4795 ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4796 		       struct list_head *rg_list)
4797 {
4798 	struct ice_sw_fv_list_entry *fv;
4799 	struct ice_recp_grp_entry *rg;
4800 	struct ice_fv_word *fv_ext;
4801 
4802 	if (list_empty(fv_list))
4803 		return 0;
4804 
4805 	fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4806 			      list_entry);
4807 	fv_ext = fv->fv_ptr->ew;
4808 
4809 	list_for_each_entry(rg, rg_list, l_entry) {
4810 		u8 i;
4811 
4812 		for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4813 			struct ice_fv_word *pr;
4814 			bool found = false;
4815 			u16 mask;
4816 			u8 j;
4817 
4818 			pr = &rg->r_group.pairs[i];
4819 			mask = rg->r_group.mask[i];
4820 
4821 			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4822 				if (fv_ext[j].prot_id == pr->prot_id &&
4823 				    fv_ext[j].off == pr->off) {
4824 					found = true;
4825 
4826 					/* Store index of field vector */
4827 					rg->fv_idx[i] = j;
4828 					rg->fv_mask[i] = mask;
4829 					break;
4830 				}
4831 
4832 			/* Protocol/offset could not be found, caller gave an
4833 			 * invalid pair
4834 			 */
4835 			if (!found)
4836 				return -EINVAL;
4837 		}
4838 	}
4839 
4840 	return 0;
4841 }
4842 
4843 /**
4844  * ice_find_free_recp_res_idx - find free result indexes for recipe
4845  * @hw: pointer to hardware structure
4846  * @profiles: bitmap of profiles that will be associated with the new recipe
4847  * @free_idx: pointer to variable to receive the free index bitmap
4848  *
4849  * The algorithm used here is:
4850  *	1. When creating a new recipe, create a set P which contains all
4851  *	   Profiles that will be associated with our new recipe
4852  *
4853  *	2. For each Profile p in set P:
4854  *	    a. Add all recipes associated with Profile p into set R
4855  *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4856  *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4857  *		i. Or just assume they all have the same possible indexes:
4858  *			44, 45, 46, 47
4859  *			i.e., PossibleIndexes = 0x0000F00000000000
4860  *
4861  *	3. For each Recipe r in set R:
4862  *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4863  *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4864  *
4865  *	FreeIndexes will contain the bits indicating the indexes free for use,
4866  *      then the code needs to update the recipe[r].used_result_idx_bits to
4867  *      indicate which indexes were selected for use by this recipe.
4868  */
4869 static u16
4870 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4871 			   unsigned long *free_idx)
4872 {
4873 	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4874 	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4875 	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4876 	u16 bit;
4877 
4878 	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4879 	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4880 
4881 	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4882 
4883 	/* For each profile we are going to associate the recipe with, add the
4884 	 * recipes that are associated with that profile. This will give us
4885 	 * the set of recipes that our recipe may collide with. Also, determine
4886 	 * what possible result indexes are usable given this set of profiles.
4887 	 */
4888 	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4889 		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4890 			  ICE_MAX_NUM_RECIPES);
4891 		bitmap_and(possible_idx, possible_idx,
4892 			   hw->switch_info->prof_res_bm[bit],
4893 			   ICE_MAX_FV_WORDS);
4894 	}
4895 
4896 	/* For each recipe that our new recipe may collide with, determine
4897 	 * which indexes have been used.
4898 	 */
4899 	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4900 		bitmap_or(used_idx, used_idx,
4901 			  hw->switch_info->recp_list[bit].res_idxs,
4902 			  ICE_MAX_FV_WORDS);
4903 
4904 	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4905 
4906 	/* return number of free indexes */
4907 	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4908 }
4909 
4910 /**
4911  * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4912  * @hw: pointer to hardware structure
4913  * @rm: recipe management list entry
4914  * @profiles: bitmap of profiles that will be associated.
4915  */
4916 static int
4917 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4918 		  unsigned long *profiles)
4919 {
4920 	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
4921 	struct ice_aqc_recipe_content *content;
4922 	struct ice_aqc_recipe_data_elem *tmp;
4923 	struct ice_aqc_recipe_data_elem *buf;
4924 	struct ice_recp_grp_entry *entry;
4925 	u16 free_res_idx;
4926 	u16 recipe_count;
4927 	u8 chain_idx;
4928 	u8 recps = 0;
4929 	int status;
4930 
4931 	/* When more than one recipe are required, another recipe is needed to
4932 	 * chain them together. Matching a tunnel metadata ID takes up one of
4933 	 * the match fields in the chaining recipe reducing the number of
4934 	 * chained recipes by one.
4935 	 */
4936 	 /* check number of free result indices */
4937 	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
4938 	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4939 
4940 	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4941 		  free_res_idx, rm->n_grp_count);
4942 
4943 	if (rm->n_grp_count > 1) {
4944 		if (rm->n_grp_count > free_res_idx)
4945 			return -ENOSPC;
4946 
4947 		rm->n_grp_count++;
4948 	}
4949 
4950 	if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4951 		return -ENOSPC;
4952 
4953 	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4954 	if (!tmp)
4955 		return -ENOMEM;
4956 
4957 	buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4958 			   GFP_KERNEL);
4959 	if (!buf) {
4960 		status = -ENOMEM;
4961 		goto err_mem;
4962 	}
4963 
4964 	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4965 	recipe_count = ICE_MAX_NUM_RECIPES;
4966 	status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4967 				   NULL);
4968 	if (status || recipe_count == 0)
4969 		goto err_unroll;
4970 
4971 	/* Allocate the recipe resources, and configure them according to the
4972 	 * match fields from protocol headers and extracted field vectors.
4973 	 */
4974 	chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
4975 	list_for_each_entry(entry, &rm->rg_list, l_entry) {
4976 		u8 i;
4977 
4978 		status = ice_alloc_recipe(hw, &entry->rid);
4979 		if (status)
4980 			goto err_unroll;
4981 
4982 		content = &buf[recps].content;
4983 
4984 		/* Clear the result index of the located recipe, as this will be
4985 		 * updated, if needed, later in the recipe creation process.
4986 		 */
4987 		tmp[0].content.result_indx = 0;
4988 
4989 		buf[recps] = tmp[0];
4990 		buf[recps].recipe_indx = (u8)entry->rid;
4991 		/* if the recipe is a non-root recipe RID should be programmed
4992 		 * as 0 for the rules to be applied correctly.
4993 		 */
4994 		content->rid = 0;
4995 		memset(&content->lkup_indx, 0,
4996 		       sizeof(content->lkup_indx));
4997 
4998 		/* All recipes use look-up index 0 to match switch ID. */
4999 		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5000 		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5001 		/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
5002 		 * to be 0
5003 		 */
5004 		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5005 			content->lkup_indx[i] = 0x80;
5006 			content->mask[i] = 0;
5007 		}
5008 
5009 		for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5010 			content->lkup_indx[i + 1] = entry->fv_idx[i];
5011 			content->mask[i + 1] = cpu_to_le16(entry->fv_mask[i]);
5012 		}
5013 
5014 		if (rm->n_grp_count > 1) {
5015 			/* Checks to see if there really is a valid result index
5016 			 * that can be used.
5017 			 */
5018 			if (chain_idx >= ICE_MAX_FV_WORDS) {
5019 				ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5020 				status = -ENOSPC;
5021 				goto err_unroll;
5022 			}
5023 
5024 			entry->chain_idx = chain_idx;
5025 			content->result_indx =
5026 				ICE_AQ_RECIPE_RESULT_EN |
5027 				((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) &
5028 				 ICE_AQ_RECIPE_RESULT_DATA_M);
5029 			clear_bit(chain_idx, result_idx_bm);
5030 			chain_idx = find_first_bit(result_idx_bm,
5031 						   ICE_MAX_FV_WORDS);
5032 		}
5033 
5034 		/* fill recipe dependencies */
5035 		bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5036 			    ICE_MAX_NUM_RECIPES);
5037 		set_bit(buf[recps].recipe_indx,
5038 			(unsigned long *)buf[recps].recipe_bitmap);
5039 		content->act_ctrl_fwd_priority = rm->priority;
5040 
5041 		if (rm->need_pass_l2)
5042 			content->act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5043 
5044 		if (rm->allow_pass_l2)
5045 			content->act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5046 		recps++;
5047 	}
5048 
5049 	if (rm->n_grp_count == 1) {
5050 		rm->root_rid = buf[0].recipe_indx;
5051 		set_bit(buf[0].recipe_indx, rm->r_bitmap);
5052 		buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5053 		if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5054 			memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5055 			       sizeof(buf[0].recipe_bitmap));
5056 		} else {
5057 			status = -EINVAL;
5058 			goto err_unroll;
5059 		}
5060 		/* Applicable only for ROOT_RECIPE, set the fwd_priority for
5061 		 * the recipe which is getting created if specified
5062 		 * by user. Usually any advanced switch filter, which results
5063 		 * into new extraction sequence, ended up creating a new recipe
5064 		 * of type ROOT and usually recipes are associated with profiles
5065 		 * Switch rule referreing newly created recipe, needs to have
5066 		 * either/or 'fwd' or 'join' priority, otherwise switch rule
5067 		 * evaluation will not happen correctly. In other words, if
5068 		 * switch rule to be evaluated on priority basis, then recipe
5069 		 * needs to have priority, otherwise it will be evaluated last.
5070 		 */
5071 		buf[0].content.act_ctrl_fwd_priority = rm->priority;
5072 	} else {
5073 		struct ice_recp_grp_entry *last_chain_entry;
5074 		u16 rid, i;
5075 
5076 		/* Allocate the last recipe that will chain the outcomes of the
5077 		 * other recipes together
5078 		 */
5079 		status = ice_alloc_recipe(hw, &rid);
5080 		if (status)
5081 			goto err_unroll;
5082 
5083 		content = &buf[recps].content;
5084 
5085 		buf[recps].recipe_indx = (u8)rid;
5086 		content->rid = (u8)rid;
5087 		content->rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5088 		/* the new entry created should also be part of rg_list to
5089 		 * make sure we have complete recipe
5090 		 */
5091 		last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5092 						sizeof(*last_chain_entry),
5093 						GFP_KERNEL);
5094 		if (!last_chain_entry) {
5095 			status = -ENOMEM;
5096 			goto err_unroll;
5097 		}
5098 		last_chain_entry->rid = rid;
5099 		memset(&content->lkup_indx, 0, sizeof(content->lkup_indx));
5100 		/* All recipes use look-up index 0 to match switch ID. */
5101 		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5102 		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5103 		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5104 			content->lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5105 			content->mask[i] = 0;
5106 		}
5107 
5108 		i = 1;
5109 		/* update r_bitmap with the recp that is used for chaining */
5110 		set_bit(rid, rm->r_bitmap);
5111 		/* this is the recipe that chains all the other recipes so it
5112 		 * should not have a chaining ID to indicate the same
5113 		 */
5114 		last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5115 		list_for_each_entry(entry, &rm->rg_list, l_entry) {
5116 			last_chain_entry->fv_idx[i] = entry->chain_idx;
5117 			content->lkup_indx[i] = entry->chain_idx;
5118 			content->mask[i++] = cpu_to_le16(0xFFFF);
5119 			set_bit(entry->rid, rm->r_bitmap);
5120 		}
5121 		list_add(&last_chain_entry->l_entry, &rm->rg_list);
5122 		if (sizeof(buf[recps].recipe_bitmap) >=
5123 		    sizeof(rm->r_bitmap)) {
5124 			memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5125 			       sizeof(buf[recps].recipe_bitmap));
5126 		} else {
5127 			status = -EINVAL;
5128 			goto err_unroll;
5129 		}
5130 		content->act_ctrl_fwd_priority = rm->priority;
5131 
5132 		recps++;
5133 		rm->root_rid = (u8)rid;
5134 	}
5135 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5136 	if (status)
5137 		goto err_unroll;
5138 
5139 	status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5140 	ice_release_change_lock(hw);
5141 	if (status)
5142 		goto err_unroll;
5143 
5144 	/* Every recipe that just got created add it to the recipe
5145 	 * book keeping list
5146 	 */
5147 	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5148 		struct ice_switch_info *sw = hw->switch_info;
5149 		bool is_root, idx_found = false;
5150 		struct ice_sw_recipe *recp;
5151 		u16 idx, buf_idx = 0;
5152 
5153 		/* find buffer index for copying some data */
5154 		for (idx = 0; idx < rm->n_grp_count; idx++)
5155 			if (buf[idx].recipe_indx == entry->rid) {
5156 				buf_idx = idx;
5157 				idx_found = true;
5158 			}
5159 
5160 		if (!idx_found) {
5161 			status = -EIO;
5162 			goto err_unroll;
5163 		}
5164 
5165 		recp = &sw->recp_list[entry->rid];
5166 		is_root = (rm->root_rid == entry->rid);
5167 		recp->is_root = is_root;
5168 
5169 		recp->root_rid = entry->rid;
5170 		recp->big_recp = (is_root && rm->n_grp_count > 1);
5171 
5172 		memcpy(&recp->ext_words, entry->r_group.pairs,
5173 		       entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5174 
5175 		memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5176 		       sizeof(recp->r_bitmap));
5177 
5178 		/* Copy non-result fv index values and masks to recipe. This
5179 		 * call will also update the result recipe bitmask.
5180 		 */
5181 		ice_collect_result_idx(&buf[buf_idx], recp);
5182 
5183 		/* for non-root recipes, also copy to the root, this allows
5184 		 * easier matching of a complete chained recipe
5185 		 */
5186 		if (!is_root)
5187 			ice_collect_result_idx(&buf[buf_idx],
5188 					       &sw->recp_list[rm->root_rid]);
5189 
5190 		recp->n_ext_words = entry->r_group.n_val_pairs;
5191 		recp->chain_idx = entry->chain_idx;
5192 		recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5193 		recp->n_grp_count = rm->n_grp_count;
5194 		recp->tun_type = rm->tun_type;
5195 		recp->need_pass_l2 = rm->need_pass_l2;
5196 		recp->allow_pass_l2 = rm->allow_pass_l2;
5197 		recp->recp_created = true;
5198 	}
5199 	rm->root_buf = buf;
5200 	kfree(tmp);
5201 	return status;
5202 
5203 err_unroll:
5204 err_mem:
5205 	kfree(tmp);
5206 	devm_kfree(ice_hw_to_dev(hw), buf);
5207 	return status;
5208 }
5209 
5210 /**
5211  * ice_create_recipe_group - creates recipe group
5212  * @hw: pointer to hardware structure
5213  * @rm: recipe management list entry
5214  * @lkup_exts: lookup elements
5215  */
5216 static int
5217 ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5218 			struct ice_prot_lkup_ext *lkup_exts)
5219 {
5220 	u8 recp_count = 0;
5221 	int status;
5222 
5223 	rm->n_grp_count = 0;
5224 
5225 	/* Create recipes for words that are marked not done by packing them
5226 	 * as best fit.
5227 	 */
5228 	status = ice_create_first_fit_recp_def(hw, lkup_exts,
5229 					       &rm->rg_list, &recp_count);
5230 	if (!status) {
5231 		rm->n_grp_count += recp_count;
5232 		rm->n_ext_words = lkup_exts->n_val_words;
5233 		memcpy(&rm->ext_words, lkup_exts->fv_words,
5234 		       sizeof(rm->ext_words));
5235 		memcpy(rm->word_masks, lkup_exts->field_mask,
5236 		       sizeof(rm->word_masks));
5237 	}
5238 
5239 	return status;
5240 }
5241 
5242 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5243  * @hw: pointer to hardware structure
5244  * @rinfo: other information regarding the rule e.g. priority and action info
5245  * @bm: pointer to memory for returning the bitmap of field vectors
5246  */
5247 static void
5248 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5249 			 unsigned long *bm)
5250 {
5251 	enum ice_prof_type prof_type;
5252 
5253 	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5254 
5255 	switch (rinfo->tun_type) {
5256 	case ICE_NON_TUN:
5257 		prof_type = ICE_PROF_NON_TUN;
5258 		break;
5259 	case ICE_ALL_TUNNELS:
5260 		prof_type = ICE_PROF_TUN_ALL;
5261 		break;
5262 	case ICE_SW_TUN_GENEVE:
5263 	case ICE_SW_TUN_VXLAN:
5264 		prof_type = ICE_PROF_TUN_UDP;
5265 		break;
5266 	case ICE_SW_TUN_NVGRE:
5267 		prof_type = ICE_PROF_TUN_GRE;
5268 		break;
5269 	case ICE_SW_TUN_GTPU:
5270 		prof_type = ICE_PROF_TUN_GTPU;
5271 		break;
5272 	case ICE_SW_TUN_GTPC:
5273 		prof_type = ICE_PROF_TUN_GTPC;
5274 		break;
5275 	case ICE_SW_TUN_AND_NON_TUN:
5276 	default:
5277 		prof_type = ICE_PROF_ALL;
5278 		break;
5279 	}
5280 
5281 	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5282 }
5283 
5284 /**
5285  * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5286  * @hw: pointer to hardware structure
5287  * @lkups: lookup elements or match criteria for the advanced recipe, one
5288  *  structure per protocol header
5289  * @lkups_cnt: number of protocols
5290  * @rinfo: other information regarding the rule e.g. priority and action info
5291  * @rid: return the recipe ID of the recipe created
5292  */
5293 static int
5294 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5295 		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5296 {
5297 	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5298 	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5299 	struct ice_prot_lkup_ext *lkup_exts;
5300 	struct ice_recp_grp_entry *r_entry;
5301 	struct ice_sw_fv_list_entry *fvit;
5302 	struct ice_recp_grp_entry *r_tmp;
5303 	struct ice_sw_fv_list_entry *tmp;
5304 	struct ice_sw_recipe *rm;
5305 	int status = 0;
5306 	u8 i;
5307 
5308 	if (!lkups_cnt)
5309 		return -EINVAL;
5310 
5311 	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5312 	if (!lkup_exts)
5313 		return -ENOMEM;
5314 
5315 	/* Determine the number of words to be matched and if it exceeds a
5316 	 * recipe's restrictions
5317 	 */
5318 	for (i = 0; i < lkups_cnt; i++) {
5319 		u16 count;
5320 
5321 		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5322 			status = -EIO;
5323 			goto err_free_lkup_exts;
5324 		}
5325 
5326 		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5327 		if (!count) {
5328 			status = -EIO;
5329 			goto err_free_lkup_exts;
5330 		}
5331 	}
5332 
5333 	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5334 	if (!rm) {
5335 		status = -ENOMEM;
5336 		goto err_free_lkup_exts;
5337 	}
5338 
5339 	/* Get field vectors that contain fields extracted from all the protocol
5340 	 * headers being programmed.
5341 	 */
5342 	INIT_LIST_HEAD(&rm->fv_list);
5343 	INIT_LIST_HEAD(&rm->rg_list);
5344 
5345 	/* Get bitmap of field vectors (profiles) that are compatible with the
5346 	 * rule request; only these will be searched in the subsequent call to
5347 	 * ice_get_sw_fv_list.
5348 	 */
5349 	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5350 
5351 	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5352 	if (status)
5353 		goto err_unroll;
5354 
5355 	/* Group match words into recipes using preferred recipe grouping
5356 	 * criteria.
5357 	 */
5358 	status = ice_create_recipe_group(hw, rm, lkup_exts);
5359 	if (status)
5360 		goto err_unroll;
5361 
5362 	/* set the recipe priority if specified */
5363 	rm->priority = (u8)rinfo->priority;
5364 
5365 	rm->need_pass_l2 = rinfo->need_pass_l2;
5366 	rm->allow_pass_l2 = rinfo->allow_pass_l2;
5367 
5368 	/* Find offsets from the field vector. Pick the first one for all the
5369 	 * recipes.
5370 	 */
5371 	status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5372 	if (status)
5373 		goto err_unroll;
5374 
5375 	/* get bitmap of all profiles the recipe will be associated with */
5376 	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5377 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5378 		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5379 		set_bit((u16)fvit->profile_id, profiles);
5380 	}
5381 
5382 	/* Look for a recipe which matches our requested fv / mask list */
5383 	*rid = ice_find_recp(hw, lkup_exts, rinfo);
5384 	if (*rid < ICE_MAX_NUM_RECIPES)
5385 		/* Success if found a recipe that match the existing criteria */
5386 		goto err_unroll;
5387 
5388 	rm->tun_type = rinfo->tun_type;
5389 	/* Recipe we need does not exist, add a recipe */
5390 	status = ice_add_sw_recipe(hw, rm, profiles);
5391 	if (status)
5392 		goto err_unroll;
5393 
5394 	/* Associate all the recipes created with all the profiles in the
5395 	 * common field vector.
5396 	 */
5397 	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5398 		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5399 		u16 j;
5400 
5401 		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5402 						      (u8 *)r_bitmap, NULL);
5403 		if (status)
5404 			goto err_unroll;
5405 
5406 		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5407 			  ICE_MAX_NUM_RECIPES);
5408 		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5409 		if (status)
5410 			goto err_unroll;
5411 
5412 		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5413 						      (u8 *)r_bitmap,
5414 						      NULL);
5415 		ice_release_change_lock(hw);
5416 
5417 		if (status)
5418 			goto err_unroll;
5419 
5420 		/* Update profile to recipe bitmap array */
5421 		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5422 			    ICE_MAX_NUM_RECIPES);
5423 
5424 		/* Update recipe to profile bitmap array */
5425 		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5426 			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5427 	}
5428 
5429 	*rid = rm->root_rid;
5430 	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5431 	       sizeof(*lkup_exts));
5432 err_unroll:
5433 	list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5434 		list_del(&r_entry->l_entry);
5435 		devm_kfree(ice_hw_to_dev(hw), r_entry);
5436 	}
5437 
5438 	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5439 		list_del(&fvit->list_entry);
5440 		devm_kfree(ice_hw_to_dev(hw), fvit);
5441 	}
5442 
5443 	devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5444 	kfree(rm);
5445 
5446 err_free_lkup_exts:
5447 	kfree(lkup_exts);
5448 
5449 	return status;
5450 }
5451 
5452 /**
5453  * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5454  *
5455  * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5456  * @num_vlan: number of VLAN tags
5457  */
5458 static struct ice_dummy_pkt_profile *
5459 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5460 			  u32 num_vlan)
5461 {
5462 	struct ice_dummy_pkt_profile *profile;
5463 	struct ice_dummy_pkt_offsets *offsets;
5464 	u32 buf_len, off, etype_off, i;
5465 	u8 *pkt;
5466 
5467 	if (num_vlan < 1 || num_vlan > 2)
5468 		return ERR_PTR(-EINVAL);
5469 
5470 	off = num_vlan * VLAN_HLEN;
5471 
5472 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5473 		  dummy_pkt->offsets_len;
5474 	offsets = kzalloc(buf_len, GFP_KERNEL);
5475 	if (!offsets)
5476 		return ERR_PTR(-ENOMEM);
5477 
5478 	offsets[0] = dummy_pkt->offsets[0];
5479 	if (num_vlan == 2) {
5480 		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5481 		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5482 	} else if (num_vlan == 1) {
5483 		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5484 	}
5485 
5486 	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5487 		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5488 		offsets[i + num_vlan].offset =
5489 			dummy_pkt->offsets[i].offset + off;
5490 	}
5491 	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5492 
5493 	etype_off = dummy_pkt->offsets[1].offset;
5494 
5495 	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5496 		  dummy_pkt->pkt_len;
5497 	pkt = kzalloc(buf_len, GFP_KERNEL);
5498 	if (!pkt) {
5499 		kfree(offsets);
5500 		return ERR_PTR(-ENOMEM);
5501 	}
5502 
5503 	memcpy(pkt, dummy_pkt->pkt, etype_off);
5504 	memcpy(pkt + etype_off,
5505 	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5506 	       off);
5507 	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5508 	       dummy_pkt->pkt_len - etype_off);
5509 
5510 	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5511 	if (!profile) {
5512 		kfree(offsets);
5513 		kfree(pkt);
5514 		return ERR_PTR(-ENOMEM);
5515 	}
5516 
5517 	profile->offsets = offsets;
5518 	profile->pkt = pkt;
5519 	profile->pkt_len = buf_len;
5520 	profile->match |= ICE_PKT_KMALLOC;
5521 
5522 	return profile;
5523 }
5524 
5525 /**
5526  * ice_find_dummy_packet - find dummy packet
5527  *
5528  * @lkups: lookup elements or match criteria for the advanced recipe, one
5529  *	   structure per protocol header
5530  * @lkups_cnt: number of protocols
5531  * @tun_type: tunnel type
5532  *
5533  * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5534  */
5535 static const struct ice_dummy_pkt_profile *
5536 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5537 		      enum ice_sw_tunnel_type tun_type)
5538 {
5539 	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5540 	u32 match = 0, vlan_count = 0;
5541 	u16 i;
5542 
5543 	switch (tun_type) {
5544 	case ICE_SW_TUN_GTPC:
5545 		match |= ICE_PKT_TUN_GTPC;
5546 		break;
5547 	case ICE_SW_TUN_GTPU:
5548 		match |= ICE_PKT_TUN_GTPU;
5549 		break;
5550 	case ICE_SW_TUN_NVGRE:
5551 		match |= ICE_PKT_TUN_NVGRE;
5552 		break;
5553 	case ICE_SW_TUN_GENEVE:
5554 	case ICE_SW_TUN_VXLAN:
5555 		match |= ICE_PKT_TUN_UDP;
5556 		break;
5557 	default:
5558 		break;
5559 	}
5560 
5561 	for (i = 0; i < lkups_cnt; i++) {
5562 		if (lkups[i].type == ICE_UDP_ILOS)
5563 			match |= ICE_PKT_INNER_UDP;
5564 		else if (lkups[i].type == ICE_TCP_IL)
5565 			match |= ICE_PKT_INNER_TCP;
5566 		else if (lkups[i].type == ICE_IPV6_OFOS)
5567 			match |= ICE_PKT_OUTER_IPV6;
5568 		else if (lkups[i].type == ICE_VLAN_OFOS ||
5569 			 lkups[i].type == ICE_VLAN_EX)
5570 			vlan_count++;
5571 		else if (lkups[i].type == ICE_VLAN_IN)
5572 			vlan_count++;
5573 		else if (lkups[i].type == ICE_ETYPE_OL &&
5574 			 lkups[i].h_u.ethertype.ethtype_id ==
5575 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5576 			 lkups[i].m_u.ethertype.ethtype_id ==
5577 				cpu_to_be16(0xFFFF))
5578 			match |= ICE_PKT_OUTER_IPV6;
5579 		else if (lkups[i].type == ICE_ETYPE_IL &&
5580 			 lkups[i].h_u.ethertype.ethtype_id ==
5581 				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5582 			 lkups[i].m_u.ethertype.ethtype_id ==
5583 				cpu_to_be16(0xFFFF))
5584 			match |= ICE_PKT_INNER_IPV6;
5585 		else if (lkups[i].type == ICE_IPV6_IL)
5586 			match |= ICE_PKT_INNER_IPV6;
5587 		else if (lkups[i].type == ICE_GTP_NO_PAY)
5588 			match |= ICE_PKT_GTP_NOPAY;
5589 		else if (lkups[i].type == ICE_PPPOE) {
5590 			match |= ICE_PKT_PPPOE;
5591 			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5592 			    htons(PPP_IPV6))
5593 				match |= ICE_PKT_OUTER_IPV6;
5594 		} else if (lkups[i].type == ICE_L2TPV3)
5595 			match |= ICE_PKT_L2TPV3;
5596 	}
5597 
5598 	while (ret->match && (match & ret->match) != ret->match)
5599 		ret++;
5600 
5601 	if (vlan_count != 0)
5602 		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5603 
5604 	return ret;
5605 }
5606 
5607 /**
5608  * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5609  *
5610  * @lkups: lookup elements or match criteria for the advanced recipe, one
5611  *	   structure per protocol header
5612  * @lkups_cnt: number of protocols
5613  * @s_rule: stores rule information from the match criteria
5614  * @profile: dummy packet profile (the template, its size and header offsets)
5615  */
5616 static int
5617 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5618 			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5619 			  const struct ice_dummy_pkt_profile *profile)
5620 {
5621 	u8 *pkt;
5622 	u16 i;
5623 
5624 	/* Start with a packet with a pre-defined/dummy content. Then, fill
5625 	 * in the header values to be looked up or matched.
5626 	 */
5627 	pkt = s_rule->hdr_data;
5628 
5629 	memcpy(pkt, profile->pkt, profile->pkt_len);
5630 
5631 	for (i = 0; i < lkups_cnt; i++) {
5632 		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5633 		enum ice_protocol_type type;
5634 		u16 offset = 0, len = 0, j;
5635 		bool found = false;
5636 
5637 		/* find the start of this layer; it should be found since this
5638 		 * was already checked when search for the dummy packet
5639 		 */
5640 		type = lkups[i].type;
5641 		/* metadata isn't present in the packet */
5642 		if (type == ICE_HW_METADATA)
5643 			continue;
5644 
5645 		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5646 			if (type == offsets[j].type) {
5647 				offset = offsets[j].offset;
5648 				found = true;
5649 				break;
5650 			}
5651 		}
5652 		/* this should never happen in a correct calling sequence */
5653 		if (!found)
5654 			return -EINVAL;
5655 
5656 		switch (lkups[i].type) {
5657 		case ICE_MAC_OFOS:
5658 		case ICE_MAC_IL:
5659 			len = sizeof(struct ice_ether_hdr);
5660 			break;
5661 		case ICE_ETYPE_OL:
5662 		case ICE_ETYPE_IL:
5663 			len = sizeof(struct ice_ethtype_hdr);
5664 			break;
5665 		case ICE_VLAN_OFOS:
5666 		case ICE_VLAN_EX:
5667 		case ICE_VLAN_IN:
5668 			len = sizeof(struct ice_vlan_hdr);
5669 			break;
5670 		case ICE_IPV4_OFOS:
5671 		case ICE_IPV4_IL:
5672 			len = sizeof(struct ice_ipv4_hdr);
5673 			break;
5674 		case ICE_IPV6_OFOS:
5675 		case ICE_IPV6_IL:
5676 			len = sizeof(struct ice_ipv6_hdr);
5677 			break;
5678 		case ICE_TCP_IL:
5679 		case ICE_UDP_OF:
5680 		case ICE_UDP_ILOS:
5681 			len = sizeof(struct ice_l4_hdr);
5682 			break;
5683 		case ICE_SCTP_IL:
5684 			len = sizeof(struct ice_sctp_hdr);
5685 			break;
5686 		case ICE_NVGRE:
5687 			len = sizeof(struct ice_nvgre_hdr);
5688 			break;
5689 		case ICE_VXLAN:
5690 		case ICE_GENEVE:
5691 			len = sizeof(struct ice_udp_tnl_hdr);
5692 			break;
5693 		case ICE_GTP_NO_PAY:
5694 		case ICE_GTP:
5695 			len = sizeof(struct ice_udp_gtp_hdr);
5696 			break;
5697 		case ICE_PPPOE:
5698 			len = sizeof(struct ice_pppoe_hdr);
5699 			break;
5700 		case ICE_L2TPV3:
5701 			len = sizeof(struct ice_l2tpv3_sess_hdr);
5702 			break;
5703 		default:
5704 			return -EINVAL;
5705 		}
5706 
5707 		/* the length should be a word multiple */
5708 		if (len % ICE_BYTES_PER_WORD)
5709 			return -EIO;
5710 
5711 		/* We have the offset to the header start, the length, the
5712 		 * caller's header values and mask. Use this information to
5713 		 * copy the data into the dummy packet appropriately based on
5714 		 * the mask. Note that we need to only write the bits as
5715 		 * indicated by the mask to make sure we don't improperly write
5716 		 * over any significant packet data.
5717 		 */
5718 		for (j = 0; j < len / sizeof(u16); j++) {
5719 			u16 *ptr = (u16 *)(pkt + offset);
5720 			u16 mask = lkups[i].m_raw[j];
5721 
5722 			if (!mask)
5723 				continue;
5724 
5725 			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5726 		}
5727 	}
5728 
5729 	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5730 
5731 	return 0;
5732 }
5733 
5734 /**
5735  * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5736  * @hw: pointer to the hardware structure
5737  * @tun_type: tunnel type
5738  * @pkt: dummy packet to fill in
5739  * @offsets: offset info for the dummy packet
5740  */
5741 static int
5742 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5743 			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5744 {
5745 	u16 open_port, i;
5746 
5747 	switch (tun_type) {
5748 	case ICE_SW_TUN_VXLAN:
5749 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5750 			return -EIO;
5751 		break;
5752 	case ICE_SW_TUN_GENEVE:
5753 		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5754 			return -EIO;
5755 		break;
5756 	default:
5757 		/* Nothing needs to be done for this tunnel type */
5758 		return 0;
5759 	}
5760 
5761 	/* Find the outer UDP protocol header and insert the port number */
5762 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5763 		if (offsets[i].type == ICE_UDP_OF) {
5764 			struct ice_l4_hdr *hdr;
5765 			u16 offset;
5766 
5767 			offset = offsets[i].offset;
5768 			hdr = (struct ice_l4_hdr *)&pkt[offset];
5769 			hdr->dst_port = cpu_to_be16(open_port);
5770 
5771 			return 0;
5772 		}
5773 	}
5774 
5775 	return -EIO;
5776 }
5777 
5778 /**
5779  * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5780  * @hw: pointer to hw structure
5781  * @vlan_type: VLAN tag type
5782  * @pkt: dummy packet to fill in
5783  * @offsets: offset info for the dummy packet
5784  */
5785 static int
5786 ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5787 			 const struct ice_dummy_pkt_offsets *offsets)
5788 {
5789 	u16 i;
5790 
5791 	/* Check if there is something to do */
5792 	if (!vlan_type || !ice_is_dvm_ena(hw))
5793 		return 0;
5794 
5795 	/* Find VLAN header and insert VLAN TPID */
5796 	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5797 		if (offsets[i].type == ICE_VLAN_OFOS ||
5798 		    offsets[i].type == ICE_VLAN_EX) {
5799 			struct ice_vlan_hdr *hdr;
5800 			u16 offset;
5801 
5802 			offset = offsets[i].offset;
5803 			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5804 			hdr->type = cpu_to_be16(vlan_type);
5805 
5806 			return 0;
5807 		}
5808 	}
5809 
5810 	return -EIO;
5811 }
5812 
5813 static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5814 			    const struct ice_adv_rule_info *second)
5815 {
5816 	return first->sw_act.flag == second->sw_act.flag &&
5817 	       first->tun_type == second->tun_type &&
5818 	       first->vlan_type == second->vlan_type &&
5819 	       first->src_vsi == second->src_vsi &&
5820 	       first->need_pass_l2 == second->need_pass_l2 &&
5821 	       first->allow_pass_l2 == second->allow_pass_l2;
5822 }
5823 
5824 /**
5825  * ice_find_adv_rule_entry - Search a rule entry
5826  * @hw: pointer to the hardware structure
5827  * @lkups: lookup elements or match criteria for the advanced recipe, one
5828  *	   structure per protocol header
5829  * @lkups_cnt: number of protocols
5830  * @recp_id: recipe ID for which we are finding the rule
5831  * @rinfo: other information regarding the rule e.g. priority and action info
5832  *
5833  * Helper function to search for a given advance rule entry
5834  * Returns pointer to entry storing the rule if found
5835  */
5836 static struct ice_adv_fltr_mgmt_list_entry *
5837 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5838 			u16 lkups_cnt, u16 recp_id,
5839 			struct ice_adv_rule_info *rinfo)
5840 {
5841 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5842 	struct ice_switch_info *sw = hw->switch_info;
5843 	int i;
5844 
5845 	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5846 			    list_entry) {
5847 		bool lkups_matched = true;
5848 
5849 		if (lkups_cnt != list_itr->lkups_cnt)
5850 			continue;
5851 		for (i = 0; i < list_itr->lkups_cnt; i++)
5852 			if (memcmp(&list_itr->lkups[i], &lkups[i],
5853 				   sizeof(*lkups))) {
5854 				lkups_matched = false;
5855 				break;
5856 			}
5857 		if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5858 		    lkups_matched)
5859 			return list_itr;
5860 	}
5861 	return NULL;
5862 }
5863 
5864 /**
5865  * ice_adv_add_update_vsi_list
5866  * @hw: pointer to the hardware structure
5867  * @m_entry: pointer to current adv filter management list entry
5868  * @cur_fltr: filter information from the book keeping entry
5869  * @new_fltr: filter information with the new VSI to be added
5870  *
5871  * Call AQ command to add or update previously created VSI list with new VSI.
5872  *
5873  * Helper function to do book keeping associated with adding filter information
5874  * The algorithm to do the booking keeping is described below :
5875  * When a VSI needs to subscribe to a given advanced filter
5876  *	if only one VSI has been added till now
5877  *		Allocate a new VSI list and add two VSIs
5878  *		to this list using switch rule command
5879  *		Update the previously created switch rule with the
5880  *		newly created VSI list ID
5881  *	if a VSI list was previously created
5882  *		Add the new VSI to the previously created VSI list set
5883  *		using the update switch rule command
5884  */
5885 static int
5886 ice_adv_add_update_vsi_list(struct ice_hw *hw,
5887 			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5888 			    struct ice_adv_rule_info *cur_fltr,
5889 			    struct ice_adv_rule_info *new_fltr)
5890 {
5891 	u16 vsi_list_id = 0;
5892 	int status;
5893 
5894 	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5895 	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5896 	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5897 		return -EOPNOTSUPP;
5898 
5899 	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5900 	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5901 	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5902 	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5903 		return -EOPNOTSUPP;
5904 
5905 	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5906 		 /* Only one entry existed in the mapping and it was not already
5907 		  * a part of a VSI list. So, create a VSI list with the old and
5908 		  * new VSIs.
5909 		  */
5910 		struct ice_fltr_info tmp_fltr;
5911 		u16 vsi_handle_arr[2];
5912 
5913 		/* A rule already exists with the new VSI being added */
5914 		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5915 		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5916 			return -EEXIST;
5917 
5918 		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5919 		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5920 		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5921 						  &vsi_list_id,
5922 						  ICE_SW_LKUP_LAST);
5923 		if (status)
5924 			return status;
5925 
5926 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5927 		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5928 		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5929 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5930 		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5931 		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5932 
5933 		/* Update the previous switch rule of "forward to VSI" to
5934 		 * "fwd to VSI list"
5935 		 */
5936 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5937 		if (status)
5938 			return status;
5939 
5940 		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5941 		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5942 		m_entry->vsi_list_info =
5943 			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5944 						vsi_list_id);
5945 	} else {
5946 		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5947 
5948 		if (!m_entry->vsi_list_info)
5949 			return -EIO;
5950 
5951 		/* A rule already exists with the new VSI being added */
5952 		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5953 			return 0;
5954 
5955 		/* Update the previously created VSI list set with
5956 		 * the new VSI ID passed in
5957 		 */
5958 		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5959 
5960 		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5961 						  vsi_list_id, false,
5962 						  ice_aqc_opc_update_sw_rules,
5963 						  ICE_SW_LKUP_LAST);
5964 		/* update VSI list mapping info with new VSI ID */
5965 		if (!status)
5966 			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5967 	}
5968 	if (!status)
5969 		m_entry->vsi_count++;
5970 	return status;
5971 }
5972 
5973 void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
5974 {
5975 	lkup->type = ICE_HW_METADATA;
5976 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
5977 		cpu_to_be16(ICE_PKT_TUNNEL_MASK);
5978 }
5979 
5980 void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
5981 {
5982 	lkup->type = ICE_HW_METADATA;
5983 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5984 		cpu_to_be16(ICE_PKT_FROM_NETWORK);
5985 }
5986 
5987 void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
5988 {
5989 	lkup->type = ICE_HW_METADATA;
5990 	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5991 		cpu_to_be16(ICE_PKT_VLAN_MASK);
5992 }
5993 
5994 void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
5995 {
5996 	lkup->type = ICE_HW_METADATA;
5997 	lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
5998 }
5999 
6000 /**
6001  * ice_add_adv_rule - helper function to create an advanced switch rule
6002  * @hw: pointer to the hardware structure
6003  * @lkups: information on the words that needs to be looked up. All words
6004  * together makes one recipe
6005  * @lkups_cnt: num of entries in the lkups array
6006  * @rinfo: other information related to the rule that needs to be programmed
6007  * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6008  *               ignored is case of error.
6009  *
6010  * This function can program only 1 rule at a time. The lkups is used to
6011  * describe the all the words that forms the "lookup" portion of the recipe.
6012  * These words can span multiple protocols. Callers to this function need to
6013  * pass in a list of protocol headers with lookup information along and mask
6014  * that determines which words are valid from the given protocol header.
6015  * rinfo describes other information related to this rule such as forwarding
6016  * IDs, priority of this rule, etc.
6017  */
6018 int
6019 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6020 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6021 		 struct ice_rule_query_data *added_entry)
6022 {
6023 	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6024 	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6025 	const struct ice_dummy_pkt_profile *profile;
6026 	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6027 	struct list_head *rule_head;
6028 	struct ice_switch_info *sw;
6029 	u16 word_cnt;
6030 	u32 act = 0;
6031 	int status;
6032 	u8 q_rgn;
6033 
6034 	/* Initialize profile to result index bitmap */
6035 	if (!hw->switch_info->prof_res_bm_init) {
6036 		hw->switch_info->prof_res_bm_init = 1;
6037 		ice_init_prof_result_bm(hw);
6038 	}
6039 
6040 	if (!lkups_cnt)
6041 		return -EINVAL;
6042 
6043 	/* get # of words we need to match */
6044 	word_cnt = 0;
6045 	for (i = 0; i < lkups_cnt; i++) {
6046 		u16 j;
6047 
6048 		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6049 			if (lkups[i].m_raw[j])
6050 				word_cnt++;
6051 	}
6052 
6053 	if (!word_cnt)
6054 		return -EINVAL;
6055 
6056 	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6057 		return -ENOSPC;
6058 
6059 	/* locate a dummy packet */
6060 	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6061 	if (IS_ERR(profile))
6062 		return PTR_ERR(profile);
6063 
6064 	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6065 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6066 	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6067 	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6068 	      rinfo->sw_act.fltr_act == ICE_NOP)) {
6069 		status = -EIO;
6070 		goto free_pkt_profile;
6071 	}
6072 
6073 	vsi_handle = rinfo->sw_act.vsi_handle;
6074 	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6075 		status =  -EINVAL;
6076 		goto free_pkt_profile;
6077 	}
6078 
6079 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6080 	    rinfo->sw_act.fltr_act == ICE_NOP)
6081 		rinfo->sw_act.fwd_id.hw_vsi_id =
6082 			ice_get_hw_vsi_num(hw, vsi_handle);
6083 
6084 	if (rinfo->src_vsi)
6085 		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6086 	else
6087 		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6088 
6089 	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6090 	if (status)
6091 		goto free_pkt_profile;
6092 	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6093 	if (m_entry) {
6094 		/* we have to add VSI to VSI_LIST and increment vsi_count.
6095 		 * Also Update VSI list so that we can change forwarding rule
6096 		 * if the rule already exists, we will check if it exists with
6097 		 * same vsi_id, if not then add it to the VSI list if it already
6098 		 * exists if not then create a VSI list and add the existing VSI
6099 		 * ID and the new VSI ID to the list
6100 		 * We will add that VSI to the list
6101 		 */
6102 		status = ice_adv_add_update_vsi_list(hw, m_entry,
6103 						     &m_entry->rule_info,
6104 						     rinfo);
6105 		if (added_entry) {
6106 			added_entry->rid = rid;
6107 			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6108 			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6109 		}
6110 		goto free_pkt_profile;
6111 	}
6112 	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6113 	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6114 	if (!s_rule) {
6115 		status = -ENOMEM;
6116 		goto free_pkt_profile;
6117 	}
6118 	if (!rinfo->flags_info.act_valid) {
6119 		act |= ICE_SINGLE_ACT_LAN_ENABLE;
6120 		act |= ICE_SINGLE_ACT_LB_ENABLE;
6121 	} else {
6122 		act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6123 						ICE_SINGLE_ACT_LB_ENABLE);
6124 	}
6125 
6126 	switch (rinfo->sw_act.fltr_act) {
6127 	case ICE_FWD_TO_VSI:
6128 		act |= (rinfo->sw_act.fwd_id.hw_vsi_id <<
6129 			ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M;
6130 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6131 		break;
6132 	case ICE_FWD_TO_Q:
6133 		act |= ICE_SINGLE_ACT_TO_Q;
6134 		act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6135 		       ICE_SINGLE_ACT_Q_INDEX_M;
6136 		break;
6137 	case ICE_FWD_TO_QGRP:
6138 		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6139 			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6140 		act |= ICE_SINGLE_ACT_TO_Q;
6141 		act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6142 		       ICE_SINGLE_ACT_Q_INDEX_M;
6143 		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
6144 		       ICE_SINGLE_ACT_Q_REGION_M;
6145 		break;
6146 	case ICE_DROP_PACKET:
6147 		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6148 		       ICE_SINGLE_ACT_VALID_BIT;
6149 		break;
6150 	case ICE_NOP:
6151 		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6152 				  rinfo->sw_act.fwd_id.hw_vsi_id);
6153 		act &= ~ICE_SINGLE_ACT_VALID_BIT;
6154 		break;
6155 	default:
6156 		status = -EIO;
6157 		goto err_ice_add_adv_rule;
6158 	}
6159 
6160 	/* If there is no matching criteria for direction there
6161 	 * is only one difference between Rx and Tx:
6162 	 * - get switch id base on VSI number from source field (Tx)
6163 	 * - get switch id base on port number (Rx)
6164 	 *
6165 	 * If matching on direction metadata is chose rule direction is
6166 	 * extracted from type value set here.
6167 	 */
6168 	if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6169 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6170 		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6171 	} else {
6172 		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6173 		s_rule->src = cpu_to_le16(hw->port_info->lport);
6174 	}
6175 
6176 	s_rule->recipe_id = cpu_to_le16(rid);
6177 	s_rule->act = cpu_to_le32(act);
6178 
6179 	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6180 	if (status)
6181 		goto err_ice_add_adv_rule;
6182 
6183 	status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6184 					 profile->offsets);
6185 	if (status)
6186 		goto err_ice_add_adv_rule;
6187 
6188 	status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6189 					  s_rule->hdr_data,
6190 					  profile->offsets);
6191 	if (status)
6192 		goto err_ice_add_adv_rule;
6193 
6194 	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6195 				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6196 				 NULL);
6197 	if (status)
6198 		goto err_ice_add_adv_rule;
6199 	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6200 				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6201 				GFP_KERNEL);
6202 	if (!adv_fltr) {
6203 		status = -ENOMEM;
6204 		goto err_ice_add_adv_rule;
6205 	}
6206 
6207 	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6208 				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6209 	if (!adv_fltr->lkups) {
6210 		status = -ENOMEM;
6211 		goto err_ice_add_adv_rule;
6212 	}
6213 
6214 	adv_fltr->lkups_cnt = lkups_cnt;
6215 	adv_fltr->rule_info = *rinfo;
6216 	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6217 	sw = hw->switch_info;
6218 	sw->recp_list[rid].adv_rule = true;
6219 	rule_head = &sw->recp_list[rid].filt_rules;
6220 
6221 	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6222 		adv_fltr->vsi_count = 1;
6223 
6224 	/* Add rule entry to book keeping list */
6225 	list_add(&adv_fltr->list_entry, rule_head);
6226 	if (added_entry) {
6227 		added_entry->rid = rid;
6228 		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6229 		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6230 	}
6231 err_ice_add_adv_rule:
6232 	if (status && adv_fltr) {
6233 		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6234 		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6235 	}
6236 
6237 	kfree(s_rule);
6238 
6239 free_pkt_profile:
6240 	if (profile->match & ICE_PKT_KMALLOC) {
6241 		kfree(profile->offsets);
6242 		kfree(profile->pkt);
6243 		kfree(profile);
6244 	}
6245 
6246 	return status;
6247 }
6248 
6249 /**
6250  * ice_replay_vsi_fltr - Replay filters for requested VSI
6251  * @hw: pointer to the hardware structure
6252  * @vsi_handle: driver VSI handle
6253  * @recp_id: Recipe ID for which rules need to be replayed
6254  * @list_head: list for which filters need to be replayed
6255  *
6256  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6257  * It is required to pass valid VSI handle.
6258  */
6259 static int
6260 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6261 		    struct list_head *list_head)
6262 {
6263 	struct ice_fltr_mgmt_list_entry *itr;
6264 	int status = 0;
6265 	u16 hw_vsi_id;
6266 
6267 	if (list_empty(list_head))
6268 		return status;
6269 	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6270 
6271 	list_for_each_entry(itr, list_head, list_entry) {
6272 		struct ice_fltr_list_entry f_entry;
6273 
6274 		f_entry.fltr_info = itr->fltr_info;
6275 		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6276 		    itr->fltr_info.vsi_handle == vsi_handle) {
6277 			/* update the src in case it is VSI num */
6278 			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6279 				f_entry.fltr_info.src = hw_vsi_id;
6280 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6281 			if (status)
6282 				goto end;
6283 			continue;
6284 		}
6285 		if (!itr->vsi_list_info ||
6286 		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6287 			continue;
6288 		/* Clearing it so that the logic can add it back */
6289 		clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6290 		f_entry.fltr_info.vsi_handle = vsi_handle;
6291 		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6292 		/* update the src in case it is VSI num */
6293 		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6294 			f_entry.fltr_info.src = hw_vsi_id;
6295 		if (recp_id == ICE_SW_LKUP_VLAN)
6296 			status = ice_add_vlan_internal(hw, &f_entry);
6297 		else
6298 			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6299 		if (status)
6300 			goto end;
6301 	}
6302 end:
6303 	return status;
6304 }
6305 
6306 /**
6307  * ice_adv_rem_update_vsi_list
6308  * @hw: pointer to the hardware structure
6309  * @vsi_handle: VSI handle of the VSI to remove
6310  * @fm_list: filter management entry for which the VSI list management needs to
6311  *	     be done
6312  */
6313 static int
6314 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6315 			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6316 {
6317 	struct ice_vsi_list_map_info *vsi_list_info;
6318 	enum ice_sw_lkup_type lkup_type;
6319 	u16 vsi_list_id;
6320 	int status;
6321 
6322 	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6323 	    fm_list->vsi_count == 0)
6324 		return -EINVAL;
6325 
6326 	/* A rule with the VSI being removed does not exist */
6327 	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6328 		return -ENOENT;
6329 
6330 	lkup_type = ICE_SW_LKUP_LAST;
6331 	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6332 	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6333 					  ice_aqc_opc_update_sw_rules,
6334 					  lkup_type);
6335 	if (status)
6336 		return status;
6337 
6338 	fm_list->vsi_count--;
6339 	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6340 	vsi_list_info = fm_list->vsi_list_info;
6341 	if (fm_list->vsi_count == 1) {
6342 		struct ice_fltr_info tmp_fltr;
6343 		u16 rem_vsi_handle;
6344 
6345 		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6346 						ICE_MAX_VSI);
6347 		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6348 			return -EIO;
6349 
6350 		/* Make sure VSI list is empty before removing it below */
6351 		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6352 						  vsi_list_id, true,
6353 						  ice_aqc_opc_update_sw_rules,
6354 						  lkup_type);
6355 		if (status)
6356 			return status;
6357 
6358 		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6359 		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6360 		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6361 		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6362 		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6363 		tmp_fltr.fwd_id.hw_vsi_id =
6364 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6365 		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6366 			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6367 		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6368 
6369 		/* Update the previous switch rule of "MAC forward to VSI" to
6370 		 * "MAC fwd to VSI list"
6371 		 */
6372 		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6373 		if (status) {
6374 			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6375 				  tmp_fltr.fwd_id.hw_vsi_id, status);
6376 			return status;
6377 		}
6378 		fm_list->vsi_list_info->ref_cnt--;
6379 
6380 		/* Remove the VSI list since it is no longer used */
6381 		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6382 		if (status) {
6383 			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6384 				  vsi_list_id, status);
6385 			return status;
6386 		}
6387 
6388 		list_del(&vsi_list_info->list_entry);
6389 		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6390 		fm_list->vsi_list_info = NULL;
6391 	}
6392 
6393 	return status;
6394 }
6395 
6396 /**
6397  * ice_rem_adv_rule - removes existing advanced switch rule
6398  * @hw: pointer to the hardware structure
6399  * @lkups: information on the words that needs to be looked up. All words
6400  *         together makes one recipe
6401  * @lkups_cnt: num of entries in the lkups array
6402  * @rinfo: Its the pointer to the rule information for the rule
6403  *
6404  * This function can be used to remove 1 rule at a time. The lkups is
6405  * used to describe all the words that forms the "lookup" portion of the
6406  * rule. These words can span multiple protocols. Callers to this function
6407  * need to pass in a list of protocol headers with lookup information along
6408  * and mask that determines which words are valid from the given protocol
6409  * header. rinfo describes other information related to this rule such as
6410  * forwarding IDs, priority of this rule, etc.
6411  */
6412 static int
6413 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6414 		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6415 {
6416 	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6417 	struct ice_prot_lkup_ext lkup_exts;
6418 	bool remove_rule = false;
6419 	struct mutex *rule_lock; /* Lock to protect filter rule list */
6420 	u16 i, rid, vsi_handle;
6421 	int status = 0;
6422 
6423 	memset(&lkup_exts, 0, sizeof(lkup_exts));
6424 	for (i = 0; i < lkups_cnt; i++) {
6425 		u16 count;
6426 
6427 		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6428 			return -EIO;
6429 
6430 		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6431 		if (!count)
6432 			return -EIO;
6433 	}
6434 
6435 	rid = ice_find_recp(hw, &lkup_exts, rinfo);
6436 	/* If did not find a recipe that match the existing criteria */
6437 	if (rid == ICE_MAX_NUM_RECIPES)
6438 		return -EINVAL;
6439 
6440 	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6441 	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6442 	/* the rule is already removed */
6443 	if (!list_elem)
6444 		return 0;
6445 	mutex_lock(rule_lock);
6446 	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6447 		remove_rule = true;
6448 	} else if (list_elem->vsi_count > 1) {
6449 		remove_rule = false;
6450 		vsi_handle = rinfo->sw_act.vsi_handle;
6451 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6452 	} else {
6453 		vsi_handle = rinfo->sw_act.vsi_handle;
6454 		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6455 		if (status) {
6456 			mutex_unlock(rule_lock);
6457 			return status;
6458 		}
6459 		if (list_elem->vsi_count == 0)
6460 			remove_rule = true;
6461 	}
6462 	mutex_unlock(rule_lock);
6463 	if (remove_rule) {
6464 		struct ice_sw_rule_lkup_rx_tx *s_rule;
6465 		u16 rule_buf_sz;
6466 
6467 		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6468 		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6469 		if (!s_rule)
6470 			return -ENOMEM;
6471 		s_rule->act = 0;
6472 		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6473 		s_rule->hdr_len = 0;
6474 		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6475 					 rule_buf_sz, 1,
6476 					 ice_aqc_opc_remove_sw_rules, NULL);
6477 		if (!status || status == -ENOENT) {
6478 			struct ice_switch_info *sw = hw->switch_info;
6479 
6480 			mutex_lock(rule_lock);
6481 			list_del(&list_elem->list_entry);
6482 			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6483 			devm_kfree(ice_hw_to_dev(hw), list_elem);
6484 			mutex_unlock(rule_lock);
6485 			if (list_empty(&sw->recp_list[rid].filt_rules))
6486 				sw->recp_list[rid].adv_rule = false;
6487 		}
6488 		kfree(s_rule);
6489 	}
6490 	return status;
6491 }
6492 
6493 /**
6494  * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6495  * @hw: pointer to the hardware structure
6496  * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6497  *
6498  * This function is used to remove 1 rule at a time. The removal is based on
6499  * the remove_entry parameter. This function will remove rule for a given
6500  * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6501  */
6502 int
6503 ice_rem_adv_rule_by_id(struct ice_hw *hw,
6504 		       struct ice_rule_query_data *remove_entry)
6505 {
6506 	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6507 	struct list_head *list_head;
6508 	struct ice_adv_rule_info rinfo;
6509 	struct ice_switch_info *sw;
6510 
6511 	sw = hw->switch_info;
6512 	if (!sw->recp_list[remove_entry->rid].recp_created)
6513 		return -EINVAL;
6514 	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6515 	list_for_each_entry(list_itr, list_head, list_entry) {
6516 		if (list_itr->rule_info.fltr_rule_id ==
6517 		    remove_entry->rule_id) {
6518 			rinfo = list_itr->rule_info;
6519 			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6520 			return ice_rem_adv_rule(hw, list_itr->lkups,
6521 						list_itr->lkups_cnt, &rinfo);
6522 		}
6523 	}
6524 	/* either list is empty or unable to find rule */
6525 	return -ENOENT;
6526 }
6527 
6528 /**
6529  * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6530  * @hw: pointer to the hardware structure
6531  * @vsi_handle: driver VSI handle
6532  * @list_head: list for which filters need to be replayed
6533  *
6534  * Replay the advanced rule for the given VSI.
6535  */
6536 static int
6537 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6538 			struct list_head *list_head)
6539 {
6540 	struct ice_rule_query_data added_entry = { 0 };
6541 	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6542 	int status = 0;
6543 
6544 	if (list_empty(list_head))
6545 		return status;
6546 	list_for_each_entry(adv_fltr, list_head, list_entry) {
6547 		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6548 		u16 lk_cnt = adv_fltr->lkups_cnt;
6549 
6550 		if (vsi_handle != rinfo->sw_act.vsi_handle)
6551 			continue;
6552 		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6553 					  &added_entry);
6554 		if (status)
6555 			break;
6556 	}
6557 	return status;
6558 }
6559 
6560 /**
6561  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6562  * @hw: pointer to the hardware structure
6563  * @vsi_handle: driver VSI handle
6564  *
6565  * Replays filters for requested VSI via vsi_handle.
6566  */
6567 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6568 {
6569 	struct ice_switch_info *sw = hw->switch_info;
6570 	int status;
6571 	u8 i;
6572 
6573 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6574 		struct list_head *head;
6575 
6576 		head = &sw->recp_list[i].filt_replay_rules;
6577 		if (!sw->recp_list[i].adv_rule)
6578 			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6579 		else
6580 			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6581 		if (status)
6582 			return status;
6583 	}
6584 	return status;
6585 }
6586 
6587 /**
6588  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6589  * @hw: pointer to the HW struct
6590  *
6591  * Deletes the filter replay rules.
6592  */
6593 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6594 {
6595 	struct ice_switch_info *sw = hw->switch_info;
6596 	u8 i;
6597 
6598 	if (!sw)
6599 		return;
6600 
6601 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6602 		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6603 			struct list_head *l_head;
6604 
6605 			l_head = &sw->recp_list[i].filt_replay_rules;
6606 			if (!sw->recp_list[i].adv_rule)
6607 				ice_rem_sw_rule_info(hw, l_head);
6608 			else
6609 				ice_rem_adv_rule_info(hw, l_head);
6610 		}
6611 	}
6612 }
6613