xref: /linux/drivers/net/ethernet/intel/ice/ice_sched.c (revision f5db8841ebe59dbdf07fda797c88ccb51e0c893d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include <net/devlink.h>
5 #include "ice_sched.h"
6 
7 /**
8  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
9  * @pi: port information structure
10  * @info: Scheduler element information from firmware
11  *
12  * This function inserts the root node of the scheduling tree topology
13  * to the SW DB.
14  */
15 static int
16 ice_sched_add_root_node(struct ice_port_info *pi,
17 			struct ice_aqc_txsched_elem_data *info)
18 {
19 	struct ice_sched_node *root;
20 	struct ice_hw *hw;
21 
22 	if (!pi)
23 		return -EINVAL;
24 
25 	hw = pi->hw;
26 
27 	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
28 	if (!root)
29 		return -ENOMEM;
30 
31 	/* coverity[suspicious_sizeof] */
32 	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
33 				      sizeof(*root), GFP_KERNEL);
34 	if (!root->children) {
35 		devm_kfree(ice_hw_to_dev(hw), root);
36 		return -ENOMEM;
37 	}
38 
39 	memcpy(&root->info, info, sizeof(*info));
40 	pi->root = root;
41 	return 0;
42 }
43 
44 /**
45  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
46  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
47  * @teid: node TEID to search
48  *
49  * This function searches for a node matching the TEID in the scheduling tree
50  * from the SW DB. The search is recursive and is restricted by the number of
51  * layers it has searched through; stopping at the max supported layer.
52  *
53  * This function needs to be called when holding the port_info->sched_lock
54  */
55 struct ice_sched_node *
56 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
57 {
58 	u16 i;
59 
60 	/* The TEID is same as that of the start_node */
61 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
62 		return start_node;
63 
64 	/* The node has no children or is at the max layer */
65 	if (!start_node->num_children ||
66 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
67 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
68 		return NULL;
69 
70 	/* Check if TEID matches to any of the children nodes */
71 	for (i = 0; i < start_node->num_children; i++)
72 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
73 			return start_node->children[i];
74 
75 	/* Search within each child's sub-tree */
76 	for (i = 0; i < start_node->num_children; i++) {
77 		struct ice_sched_node *tmp;
78 
79 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
80 						  teid);
81 		if (tmp)
82 			return tmp;
83 	}
84 
85 	return NULL;
86 }
87 
88 /**
89  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
90  * @hw: pointer to the HW struct
91  * @cmd_opc: cmd opcode
92  * @elems_req: number of elements to request
93  * @buf: pointer to buffer
94  * @buf_size: buffer size in bytes
95  * @elems_resp: returns total number of elements response
96  * @cd: pointer to command details structure or NULL
97  *
98  * This function sends a scheduling elements cmd (cmd_opc)
99  */
100 static int
101 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
102 			    u16 elems_req, void *buf, u16 buf_size,
103 			    u16 *elems_resp, struct ice_sq_cd *cd)
104 {
105 	struct ice_aqc_sched_elem_cmd *cmd;
106 	struct ice_aq_desc desc;
107 	int status;
108 
109 	cmd = &desc.params.sched_elem_cmd;
110 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
111 	cmd->num_elem_req = cpu_to_le16(elems_req);
112 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
113 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
114 	if (!status && elems_resp)
115 		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
116 
117 	return status;
118 }
119 
120 /**
121  * ice_aq_query_sched_elems - query scheduler elements
122  * @hw: pointer to the HW struct
123  * @elems_req: number of elements to query
124  * @buf: pointer to buffer
125  * @buf_size: buffer size in bytes
126  * @elems_ret: returns total number of elements returned
127  * @cd: pointer to command details structure or NULL
128  *
129  * Query scheduling elements (0x0404)
130  */
131 int
132 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
133 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
134 			 u16 *elems_ret, struct ice_sq_cd *cd)
135 {
136 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
137 					   elems_req, (void *)buf, buf_size,
138 					   elems_ret, cd);
139 }
140 
141 /**
142  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
143  * @pi: port information structure
144  * @layer: Scheduler layer of the node
145  * @info: Scheduler element information from firmware
146  * @prealloc_node: preallocated ice_sched_node struct for SW DB
147  *
148  * This function inserts a scheduler node to the SW DB.
149  */
150 int
151 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
152 		   struct ice_aqc_txsched_elem_data *info,
153 		   struct ice_sched_node *prealloc_node)
154 {
155 	struct ice_aqc_txsched_elem_data elem;
156 	struct ice_sched_node *parent;
157 	struct ice_sched_node *node;
158 	struct ice_hw *hw;
159 	int status;
160 
161 	if (!pi)
162 		return -EINVAL;
163 
164 	hw = pi->hw;
165 
166 	/* A valid parent node should be there */
167 	parent = ice_sched_find_node_by_teid(pi->root,
168 					     le32_to_cpu(info->parent_teid));
169 	if (!parent) {
170 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
171 			  le32_to_cpu(info->parent_teid));
172 		return -EINVAL;
173 	}
174 
175 	/* query the current node information from FW before adding it
176 	 * to the SW DB
177 	 */
178 	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
179 	if (status)
180 		return status;
181 
182 	if (prealloc_node)
183 		node = prealloc_node;
184 	else
185 		node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
186 	if (!node)
187 		return -ENOMEM;
188 	if (hw->max_children[layer]) {
189 		/* coverity[suspicious_sizeof] */
190 		node->children = devm_kcalloc(ice_hw_to_dev(hw),
191 					      hw->max_children[layer],
192 					      sizeof(*node), GFP_KERNEL);
193 		if (!node->children) {
194 			devm_kfree(ice_hw_to_dev(hw), node);
195 			return -ENOMEM;
196 		}
197 	}
198 
199 	node->in_use = true;
200 	node->parent = parent;
201 	node->tx_sched_layer = layer;
202 	parent->children[parent->num_children++] = node;
203 	node->info = elem;
204 	return 0;
205 }
206 
207 /**
208  * ice_aq_delete_sched_elems - delete scheduler elements
209  * @hw: pointer to the HW struct
210  * @grps_req: number of groups to delete
211  * @buf: pointer to buffer
212  * @buf_size: buffer size in bytes
213  * @grps_del: returns total number of elements deleted
214  * @cd: pointer to command details structure or NULL
215  *
216  * Delete scheduling elements (0x040F)
217  */
218 static int
219 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
220 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
221 			  u16 *grps_del, struct ice_sq_cd *cd)
222 {
223 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
224 					   grps_req, (void *)buf, buf_size,
225 					   grps_del, cd);
226 }
227 
228 /**
229  * ice_sched_remove_elems - remove nodes from HW
230  * @hw: pointer to the HW struct
231  * @parent: pointer to the parent node
232  * @node_teid: node teid to be deleted
233  *
234  * This function remove nodes from HW
235  */
236 static int
237 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
238 		       u32 node_teid)
239 {
240 	DEFINE_FLEX(struct ice_aqc_delete_elem, buf, teid, 1);
241 	u16 buf_size = __struct_size(buf);
242 	u16 num_groups_removed = 0;
243 	int status;
244 
245 	buf->hdr.parent_teid = parent->info.node_teid;
246 	buf->hdr.num_elems = cpu_to_le16(1);
247 	buf->teid[0] = cpu_to_le32(node_teid);
248 
249 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
250 					   &num_groups_removed, NULL);
251 	if (status || num_groups_removed != 1)
252 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
253 			  hw->adminq.sq_last_status);
254 
255 	return status;
256 }
257 
258 /**
259  * ice_sched_get_first_node - get the first node of the given layer
260  * @pi: port information structure
261  * @parent: pointer the base node of the subtree
262  * @layer: layer number
263  *
264  * This function retrieves the first node of the given layer from the subtree
265  */
266 static struct ice_sched_node *
267 ice_sched_get_first_node(struct ice_port_info *pi,
268 			 struct ice_sched_node *parent, u8 layer)
269 {
270 	return pi->sib_head[parent->tc_num][layer];
271 }
272 
273 /**
274  * ice_sched_get_tc_node - get pointer to TC node
275  * @pi: port information structure
276  * @tc: TC number
277  *
278  * This function returns the TC node pointer
279  */
280 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
281 {
282 	u8 i;
283 
284 	if (!pi || !pi->root)
285 		return NULL;
286 	for (i = 0; i < pi->root->num_children; i++)
287 		if (pi->root->children[i]->tc_num == tc)
288 			return pi->root->children[i];
289 	return NULL;
290 }
291 
292 /**
293  * ice_free_sched_node - Free a Tx scheduler node from SW DB
294  * @pi: port information structure
295  * @node: pointer to the ice_sched_node struct
296  *
297  * This function frees up a node from SW DB as well as from HW
298  *
299  * This function needs to be called with the port_info->sched_lock held
300  */
301 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
302 {
303 	struct ice_sched_node *parent;
304 	struct ice_hw *hw = pi->hw;
305 	u8 i, j;
306 
307 	/* Free the children before freeing up the parent node
308 	 * The parent array is updated below and that shifts the nodes
309 	 * in the array. So always pick the first child if num children > 0
310 	 */
311 	while (node->num_children)
312 		ice_free_sched_node(pi, node->children[0]);
313 
314 	/* Leaf, TC and root nodes can't be deleted by SW */
315 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
316 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
317 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
318 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
319 		u32 teid = le32_to_cpu(node->info.node_teid);
320 
321 		ice_sched_remove_elems(hw, node->parent, teid);
322 	}
323 	parent = node->parent;
324 	/* root has no parent */
325 	if (parent) {
326 		struct ice_sched_node *p;
327 
328 		/* update the parent */
329 		for (i = 0; i < parent->num_children; i++)
330 			if (parent->children[i] == node) {
331 				for (j = i + 1; j < parent->num_children; j++)
332 					parent->children[j - 1] =
333 						parent->children[j];
334 				parent->num_children--;
335 				break;
336 			}
337 
338 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
339 		while (p) {
340 			if (p->sibling == node) {
341 				p->sibling = node->sibling;
342 				break;
343 			}
344 			p = p->sibling;
345 		}
346 
347 		/* update the sibling head if head is getting removed */
348 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
349 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
350 				node->sibling;
351 	}
352 
353 	devm_kfree(ice_hw_to_dev(hw), node->children);
354 	kfree(node->name);
355 	xa_erase(&pi->sched_node_ids, node->id);
356 	devm_kfree(ice_hw_to_dev(hw), node);
357 }
358 
359 /**
360  * ice_aq_get_dflt_topo - gets default scheduler topology
361  * @hw: pointer to the HW struct
362  * @lport: logical port number
363  * @buf: pointer to buffer
364  * @buf_size: buffer size in bytes
365  * @num_branches: returns total number of queue to port branches
366  * @cd: pointer to command details structure or NULL
367  *
368  * Get default scheduler topology (0x400)
369  */
370 static int
371 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
372 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
373 		     u8 *num_branches, struct ice_sq_cd *cd)
374 {
375 	struct ice_aqc_get_topo *cmd;
376 	struct ice_aq_desc desc;
377 	int status;
378 
379 	cmd = &desc.params.get_topo;
380 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
381 	cmd->port_num = lport;
382 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
383 	if (!status && num_branches)
384 		*num_branches = cmd->num_branches;
385 
386 	return status;
387 }
388 
389 /**
390  * ice_aq_add_sched_elems - adds scheduling element
391  * @hw: pointer to the HW struct
392  * @grps_req: the number of groups that are requested to be added
393  * @buf: pointer to buffer
394  * @buf_size: buffer size in bytes
395  * @grps_added: returns total number of groups added
396  * @cd: pointer to command details structure or NULL
397  *
398  * Add scheduling elements (0x0401)
399  */
400 static int
401 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
402 		       struct ice_aqc_add_elem *buf, u16 buf_size,
403 		       u16 *grps_added, struct ice_sq_cd *cd)
404 {
405 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
406 					   grps_req, (void *)buf, buf_size,
407 					   grps_added, cd);
408 }
409 
410 /**
411  * ice_aq_cfg_sched_elems - configures scheduler elements
412  * @hw: pointer to the HW struct
413  * @elems_req: number of elements to configure
414  * @buf: pointer to buffer
415  * @buf_size: buffer size in bytes
416  * @elems_cfgd: returns total number of elements configured
417  * @cd: pointer to command details structure or NULL
418  *
419  * Configure scheduling elements (0x0403)
420  */
421 static int
422 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
423 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
424 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
425 {
426 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
427 					   elems_req, (void *)buf, buf_size,
428 					   elems_cfgd, cd);
429 }
430 
431 /**
432  * ice_aq_move_sched_elems - move scheduler element (just 1 group)
433  * @hw: pointer to the HW struct
434  * @buf: pointer to buffer
435  * @buf_size: buffer size in bytes
436  * @grps_movd: returns total number of groups moved
437  *
438  * Move scheduling elements (0x0408)
439  */
440 int
441 ice_aq_move_sched_elems(struct ice_hw *hw, struct ice_aqc_move_elem *buf,
442 			u16 buf_size, u16 *grps_movd)
443 {
444 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
445 					   1, buf, buf_size, grps_movd, NULL);
446 }
447 
448 /**
449  * ice_aq_suspend_sched_elems - suspend scheduler elements
450  * @hw: pointer to the HW struct
451  * @elems_req: number of elements to suspend
452  * @buf: pointer to buffer
453  * @buf_size: buffer size in bytes
454  * @elems_ret: returns total number of elements suspended
455  * @cd: pointer to command details structure or NULL
456  *
457  * Suspend scheduling elements (0x0409)
458  */
459 static int
460 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
461 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
462 {
463 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
464 					   elems_req, (void *)buf, buf_size,
465 					   elems_ret, cd);
466 }
467 
468 /**
469  * ice_aq_resume_sched_elems - resume scheduler elements
470  * @hw: pointer to the HW struct
471  * @elems_req: number of elements to resume
472  * @buf: pointer to buffer
473  * @buf_size: buffer size in bytes
474  * @elems_ret: returns total number of elements resumed
475  * @cd: pointer to command details structure or NULL
476  *
477  * resume scheduling elements (0x040A)
478  */
479 static int
480 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
481 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
482 {
483 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
484 					   elems_req, (void *)buf, buf_size,
485 					   elems_ret, cd);
486 }
487 
488 /**
489  * ice_aq_query_sched_res - query scheduler resource
490  * @hw: pointer to the HW struct
491  * @buf_size: buffer size in bytes
492  * @buf: pointer to buffer
493  * @cd: pointer to command details structure or NULL
494  *
495  * Query scheduler resource allocation (0x0412)
496  */
497 static int
498 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
499 		       struct ice_aqc_query_txsched_res_resp *buf,
500 		       struct ice_sq_cd *cd)
501 {
502 	struct ice_aq_desc desc;
503 
504 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
505 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
506 }
507 
508 /**
509  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
510  * @hw: pointer to the HW struct
511  * @num_nodes: number of nodes
512  * @node_teids: array of node teids to be suspended or resumed
513  * @suspend: true means suspend / false means resume
514  *
515  * This function suspends or resumes HW nodes
516  */
517 int
518 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
519 			       bool suspend)
520 {
521 	u16 i, buf_size, num_elem_ret = 0;
522 	__le32 *buf;
523 	int status;
524 
525 	buf_size = sizeof(*buf) * num_nodes;
526 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
527 	if (!buf)
528 		return -ENOMEM;
529 
530 	for (i = 0; i < num_nodes; i++)
531 		buf[i] = cpu_to_le32(node_teids[i]);
532 
533 	if (suspend)
534 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
535 						    buf_size, &num_elem_ret,
536 						    NULL);
537 	else
538 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
539 						   buf_size, &num_elem_ret,
540 						   NULL);
541 	if (status || num_elem_ret != num_nodes)
542 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
543 
544 	devm_kfree(ice_hw_to_dev(hw), buf);
545 	return status;
546 }
547 
548 /**
549  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
550  * @hw: pointer to the HW struct
551  * @vsi_handle: VSI handle
552  * @tc: TC number
553  * @new_numqs: number of queues
554  */
555 static int
556 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
557 {
558 	struct ice_vsi_ctx *vsi_ctx;
559 	struct ice_q_ctx *q_ctx;
560 	u16 idx;
561 
562 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
563 	if (!vsi_ctx)
564 		return -EINVAL;
565 	/* allocate LAN queue contexts */
566 	if (!vsi_ctx->lan_q_ctx[tc]) {
567 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
568 				     sizeof(*q_ctx), GFP_KERNEL);
569 		if (!q_ctx)
570 			return -ENOMEM;
571 
572 		for (idx = 0; idx < new_numqs; idx++) {
573 			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
574 			q_ctx[idx].q_teid = ICE_INVAL_TEID;
575 		}
576 
577 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
578 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
579 		return 0;
580 	}
581 	/* num queues are increased, update the queue contexts */
582 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
583 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
584 
585 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
586 				     sizeof(*q_ctx), GFP_KERNEL);
587 		if (!q_ctx)
588 			return -ENOMEM;
589 
590 		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
591 		       prev_num * sizeof(*q_ctx));
592 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
593 
594 		for (idx = prev_num; idx < new_numqs; idx++) {
595 			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
596 			q_ctx[idx].q_teid = ICE_INVAL_TEID;
597 		}
598 
599 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
600 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
601 	}
602 	return 0;
603 }
604 
605 /**
606  * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
607  * @hw: pointer to the HW struct
608  * @vsi_handle: VSI handle
609  * @tc: TC number
610  * @new_numqs: number of queues
611  */
612 static int
613 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
614 {
615 	struct ice_vsi_ctx *vsi_ctx;
616 	struct ice_q_ctx *q_ctx;
617 
618 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
619 	if (!vsi_ctx)
620 		return -EINVAL;
621 	/* allocate RDMA queue contexts */
622 	if (!vsi_ctx->rdma_q_ctx[tc]) {
623 		vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
624 						       new_numqs,
625 						       sizeof(*q_ctx),
626 						       GFP_KERNEL);
627 		if (!vsi_ctx->rdma_q_ctx[tc])
628 			return -ENOMEM;
629 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
630 		return 0;
631 	}
632 	/* num queues are increased, update the queue contexts */
633 	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
634 		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
635 
636 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
637 				     sizeof(*q_ctx), GFP_KERNEL);
638 		if (!q_ctx)
639 			return -ENOMEM;
640 		memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
641 		       prev_num * sizeof(*q_ctx));
642 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
643 		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
644 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
645 	}
646 	return 0;
647 }
648 
649 /**
650  * ice_aq_rl_profile - performs a rate limiting task
651  * @hw: pointer to the HW struct
652  * @opcode: opcode for add, query, or remove profile(s)
653  * @num_profiles: the number of profiles
654  * @buf: pointer to buffer
655  * @buf_size: buffer size in bytes
656  * @num_processed: number of processed add or remove profile(s) to return
657  * @cd: pointer to command details structure
658  *
659  * RL profile function to add, query, or remove profile(s)
660  */
661 static int
662 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
663 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
664 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
665 {
666 	struct ice_aqc_rl_profile *cmd;
667 	struct ice_aq_desc desc;
668 	int status;
669 
670 	cmd = &desc.params.rl_profile;
671 
672 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
673 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
674 	cmd->num_profiles = cpu_to_le16(num_profiles);
675 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
676 	if (!status && num_processed)
677 		*num_processed = le16_to_cpu(cmd->num_processed);
678 	return status;
679 }
680 
681 /**
682  * ice_aq_add_rl_profile - adds rate limiting profile(s)
683  * @hw: pointer to the HW struct
684  * @num_profiles: the number of profile(s) to be add
685  * @buf: pointer to buffer
686  * @buf_size: buffer size in bytes
687  * @num_profiles_added: total number of profiles added to return
688  * @cd: pointer to command details structure
689  *
690  * Add RL profile (0x0410)
691  */
692 static int
693 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
694 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
695 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
696 {
697 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
698 				 buf, buf_size, num_profiles_added, cd);
699 }
700 
701 /**
702  * ice_aq_remove_rl_profile - removes RL profile(s)
703  * @hw: pointer to the HW struct
704  * @num_profiles: the number of profile(s) to remove
705  * @buf: pointer to buffer
706  * @buf_size: buffer size in bytes
707  * @num_profiles_removed: total number of profiles removed to return
708  * @cd: pointer to command details structure or NULL
709  *
710  * Remove RL profile (0x0415)
711  */
712 static int
713 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
714 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
715 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
716 {
717 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
718 				 num_profiles, buf, buf_size,
719 				 num_profiles_removed, cd);
720 }
721 
722 /**
723  * ice_sched_del_rl_profile - remove RL profile
724  * @hw: pointer to the HW struct
725  * @rl_info: rate limit profile information
726  *
727  * If the profile ID is not referenced anymore, it removes profile ID with
728  * its associated parameters from HW DB,and locally. The caller needs to
729  * hold scheduler lock.
730  */
731 static int
732 ice_sched_del_rl_profile(struct ice_hw *hw,
733 			 struct ice_aqc_rl_profile_info *rl_info)
734 {
735 	struct ice_aqc_rl_profile_elem *buf;
736 	u16 num_profiles_removed;
737 	u16 num_profiles = 1;
738 	int status;
739 
740 	if (rl_info->prof_id_ref != 0)
741 		return -EBUSY;
742 
743 	/* Safe to remove profile ID */
744 	buf = &rl_info->profile;
745 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
746 					  &num_profiles_removed, NULL);
747 	if (status || num_profiles_removed != num_profiles)
748 		return -EIO;
749 
750 	/* Delete stale entry now */
751 	list_del(&rl_info->list_entry);
752 	devm_kfree(ice_hw_to_dev(hw), rl_info);
753 	return status;
754 }
755 
756 /**
757  * ice_sched_clear_rl_prof - clears RL prof entries
758  * @pi: port information structure
759  *
760  * This function removes all RL profile from HW as well as from SW DB.
761  */
762 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
763 {
764 	u16 ln;
765 
766 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
767 		struct ice_aqc_rl_profile_info *rl_prof_elem;
768 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
769 
770 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
771 					 &pi->rl_prof_list[ln], list_entry) {
772 			struct ice_hw *hw = pi->hw;
773 			int status;
774 
775 			rl_prof_elem->prof_id_ref = 0;
776 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
777 			if (status) {
778 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
779 				/* On error, free mem required */
780 				list_del(&rl_prof_elem->list_entry);
781 				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
782 			}
783 		}
784 	}
785 }
786 
787 /**
788  * ice_sched_clear_agg - clears the aggregator related information
789  * @hw: pointer to the hardware structure
790  *
791  * This function removes aggregator list and free up aggregator related memory
792  * previously allocated.
793  */
794 void ice_sched_clear_agg(struct ice_hw *hw)
795 {
796 	struct ice_sched_agg_info *agg_info;
797 	struct ice_sched_agg_info *atmp;
798 
799 	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
800 		struct ice_sched_agg_vsi_info *agg_vsi_info;
801 		struct ice_sched_agg_vsi_info *vtmp;
802 
803 		list_for_each_entry_safe(agg_vsi_info, vtmp,
804 					 &agg_info->agg_vsi_list, list_entry) {
805 			list_del(&agg_vsi_info->list_entry);
806 			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
807 		}
808 		list_del(&agg_info->list_entry);
809 		devm_kfree(ice_hw_to_dev(hw), agg_info);
810 	}
811 }
812 
813 /**
814  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
815  * @pi: port information structure
816  *
817  * This function removes all the nodes from HW as well as from SW DB.
818  */
819 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
820 {
821 	if (!pi)
822 		return;
823 	/* remove RL profiles related lists */
824 	ice_sched_clear_rl_prof(pi);
825 	if (pi->root) {
826 		ice_free_sched_node(pi, pi->root);
827 		pi->root = NULL;
828 	}
829 }
830 
831 /**
832  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
833  * @pi: port information structure
834  *
835  * Cleanup scheduling elements from SW DB
836  */
837 void ice_sched_clear_port(struct ice_port_info *pi)
838 {
839 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
840 		return;
841 
842 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
843 	mutex_lock(&pi->sched_lock);
844 	ice_sched_clear_tx_topo(pi);
845 	mutex_unlock(&pi->sched_lock);
846 	mutex_destroy(&pi->sched_lock);
847 }
848 
849 /**
850  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
851  * @hw: pointer to the HW struct
852  *
853  * Cleanup scheduling elements from SW DB for all the ports
854  */
855 void ice_sched_cleanup_all(struct ice_hw *hw)
856 {
857 	if (!hw)
858 		return;
859 
860 	devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
861 	hw->layer_info = NULL;
862 
863 	ice_sched_clear_port(hw->port_info);
864 
865 	hw->num_tx_sched_layers = 0;
866 	hw->num_tx_sched_phys_layers = 0;
867 	hw->flattened_layers = 0;
868 	hw->max_cgds = 0;
869 }
870 
871 /**
872  * ice_sched_add_elems - add nodes to HW and SW DB
873  * @pi: port information structure
874  * @tc_node: pointer to the branch node
875  * @parent: pointer to the parent node
876  * @layer: layer number to add nodes
877  * @num_nodes: number of nodes
878  * @num_nodes_added: pointer to num nodes added
879  * @first_node_teid: if new nodes are added then return the TEID of first node
880  * @prealloc_nodes: preallocated nodes struct for software DB
881  *
882  * This function add nodes to HW as well as to SW DB for a given layer
883  */
884 int
885 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
886 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
887 		    u16 *num_nodes_added, u32 *first_node_teid,
888 		    struct ice_sched_node **prealloc_nodes)
889 {
890 	struct ice_sched_node *prev, *new_node;
891 	struct ice_aqc_add_elem *buf;
892 	u16 i, num_groups_added = 0;
893 	struct ice_hw *hw = pi->hw;
894 	size_t buf_size;
895 	int status = 0;
896 	u32 teid;
897 
898 	buf_size = struct_size(buf, generic, num_nodes);
899 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
900 	if (!buf)
901 		return -ENOMEM;
902 
903 	buf->hdr.parent_teid = parent->info.node_teid;
904 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
905 	for (i = 0; i < num_nodes; i++) {
906 		buf->generic[i].parent_teid = parent->info.node_teid;
907 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
908 		buf->generic[i].data.valid_sections =
909 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
910 			ICE_AQC_ELEM_VALID_EIR;
911 		buf->generic[i].data.generic = 0;
912 		buf->generic[i].data.cir_bw.bw_profile_idx =
913 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
914 		buf->generic[i].data.cir_bw.bw_alloc =
915 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
916 		buf->generic[i].data.eir_bw.bw_profile_idx =
917 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
918 		buf->generic[i].data.eir_bw.bw_alloc =
919 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
920 	}
921 
922 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
923 					&num_groups_added, NULL);
924 	if (status || num_groups_added != 1) {
925 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
926 			  hw->adminq.sq_last_status);
927 		devm_kfree(ice_hw_to_dev(hw), buf);
928 		return -EIO;
929 	}
930 
931 	*num_nodes_added = num_nodes;
932 	/* add nodes to the SW DB */
933 	for (i = 0; i < num_nodes; i++) {
934 		if (prealloc_nodes)
935 			status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
936 		else
937 			status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
938 
939 		if (status) {
940 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
941 				  status);
942 			break;
943 		}
944 
945 		teid = le32_to_cpu(buf->generic[i].node_teid);
946 		new_node = ice_sched_find_node_by_teid(parent, teid);
947 		if (!new_node) {
948 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
949 			break;
950 		}
951 
952 		new_node->sibling = NULL;
953 		new_node->tc_num = tc_node->tc_num;
954 		new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
955 		new_node->tx_share = ICE_SCHED_DFLT_BW;
956 		new_node->tx_max = ICE_SCHED_DFLT_BW;
957 		new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
958 		if (!new_node->name)
959 			return -ENOMEM;
960 
961 		status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
962 				  GFP_KERNEL);
963 		if (status) {
964 			ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
965 				  status);
966 			break;
967 		}
968 
969 		snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
970 
971 		/* add it to previous node sibling pointer */
972 		/* Note: siblings are not linked across branches */
973 		prev = ice_sched_get_first_node(pi, tc_node, layer);
974 		if (prev && prev != new_node) {
975 			while (prev->sibling)
976 				prev = prev->sibling;
977 			prev->sibling = new_node;
978 		}
979 
980 		/* initialize the sibling head */
981 		if (!pi->sib_head[tc_node->tc_num][layer])
982 			pi->sib_head[tc_node->tc_num][layer] = new_node;
983 
984 		if (i == 0)
985 			*first_node_teid = teid;
986 	}
987 
988 	devm_kfree(ice_hw_to_dev(hw), buf);
989 	return status;
990 }
991 
992 /**
993  * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
994  * @pi: port information structure
995  * @tc_node: pointer to TC node
996  * @parent: pointer to parent node
997  * @layer: layer number to add nodes
998  * @num_nodes: number of nodes to be added
999  * @first_node_teid: pointer to the first node TEID
1000  * @num_nodes_added: pointer to number of nodes added
1001  *
1002  * Add nodes into specific HW layer.
1003  */
1004 static int
1005 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1006 				struct ice_sched_node *tc_node,
1007 				struct ice_sched_node *parent, u8 layer,
1008 				u16 num_nodes, u32 *first_node_teid,
1009 				u16 *num_nodes_added)
1010 {
1011 	u16 max_child_nodes;
1012 
1013 	*num_nodes_added = 0;
1014 
1015 	if (!num_nodes)
1016 		return 0;
1017 
1018 	if (!parent || layer < pi->hw->sw_entry_point_layer)
1019 		return -EINVAL;
1020 
1021 	/* max children per node per layer */
1022 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1023 
1024 	/* current number of children + required nodes exceed max children */
1025 	if ((parent->num_children + num_nodes) > max_child_nodes) {
1026 		/* Fail if the parent is a TC node */
1027 		if (parent == tc_node)
1028 			return -EIO;
1029 		return -ENOSPC;
1030 	}
1031 
1032 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1033 				   num_nodes_added, first_node_teid, NULL);
1034 }
1035 
1036 /**
1037  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1038  * @pi: port information structure
1039  * @tc_node: pointer to TC node
1040  * @parent: pointer to parent node
1041  * @layer: layer number to add nodes
1042  * @num_nodes: number of nodes to be added
1043  * @first_node_teid: pointer to the first node TEID
1044  * @num_nodes_added: pointer to number of nodes added
1045  *
1046  * This function add nodes to a given layer.
1047  */
1048 int
1049 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1050 			     struct ice_sched_node *tc_node,
1051 			     struct ice_sched_node *parent, u8 layer,
1052 			     u16 num_nodes, u32 *first_node_teid,
1053 			     u16 *num_nodes_added)
1054 {
1055 	u32 *first_teid_ptr = first_node_teid;
1056 	u16 new_num_nodes = num_nodes;
1057 	int status = 0;
1058 
1059 	*num_nodes_added = 0;
1060 	while (*num_nodes_added < num_nodes) {
1061 		u16 max_child_nodes, num_added = 0;
1062 		u32 temp;
1063 
1064 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1065 							 layer,	new_num_nodes,
1066 							 first_teid_ptr,
1067 							 &num_added);
1068 		if (!status)
1069 			*num_nodes_added += num_added;
1070 		/* added more nodes than requested ? */
1071 		if (*num_nodes_added > num_nodes) {
1072 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1073 				  *num_nodes_added);
1074 			status = -EIO;
1075 			break;
1076 		}
1077 		/* break if all the nodes are added successfully */
1078 		if (!status && (*num_nodes_added == num_nodes))
1079 			break;
1080 		/* break if the error is not max limit */
1081 		if (status && status != -ENOSPC)
1082 			break;
1083 		/* Exceeded the max children */
1084 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1085 		/* utilize all the spaces if the parent is not full */
1086 		if (parent->num_children < max_child_nodes) {
1087 			new_num_nodes = max_child_nodes - parent->num_children;
1088 		} else {
1089 			/* This parent is full, try the next sibling */
1090 			parent = parent->sibling;
1091 			/* Don't modify the first node TEID memory if the
1092 			 * first node was added already in the above call.
1093 			 * Instead send some temp memory for all other
1094 			 * recursive calls.
1095 			 */
1096 			if (num_added)
1097 				first_teid_ptr = &temp;
1098 
1099 			new_num_nodes = num_nodes - *num_nodes_added;
1100 		}
1101 	}
1102 	return status;
1103 }
1104 
1105 /**
1106  * ice_sched_get_qgrp_layer - get the current queue group layer number
1107  * @hw: pointer to the HW struct
1108  *
1109  * This function returns the current queue group layer number
1110  */
1111 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1112 {
1113 	/* It's always total layers - 1, the array is 0 relative so -2 */
1114 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1115 }
1116 
1117 /**
1118  * ice_sched_get_vsi_layer - get the current VSI layer number
1119  * @hw: pointer to the HW struct
1120  *
1121  * This function returns the current VSI layer number
1122  */
1123 u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1124 {
1125 	/* Num Layers       VSI layer
1126 	 *     9               6
1127 	 *     7               4
1128 	 *     5 or less       sw_entry_point_layer
1129 	 */
1130 	/* calculate the VSI layer based on number of layers. */
1131 	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1132 		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1133 
1134 		if (layer > hw->sw_entry_point_layer)
1135 			return layer;
1136 	}
1137 	return hw->sw_entry_point_layer;
1138 }
1139 
1140 /**
1141  * ice_sched_get_agg_layer - get the current aggregator layer number
1142  * @hw: pointer to the HW struct
1143  *
1144  * This function returns the current aggregator layer number
1145  */
1146 u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1147 {
1148 	/* Num Layers       aggregator layer
1149 	 *     9               4
1150 	 *     7 or less       sw_entry_point_layer
1151 	 */
1152 	/* calculate the aggregator layer based on number of layers. */
1153 	if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1154 		u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1155 
1156 		if (layer > hw->sw_entry_point_layer)
1157 			return layer;
1158 	}
1159 	return hw->sw_entry_point_layer;
1160 }
1161 
1162 /**
1163  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1164  * @pi: port information structure
1165  *
1166  * This function removes the leaf node that was created by the FW
1167  * during initialization
1168  */
1169 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1170 {
1171 	struct ice_sched_node *node;
1172 
1173 	node = pi->root;
1174 	while (node) {
1175 		if (!node->num_children)
1176 			break;
1177 		node = node->children[0];
1178 	}
1179 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1180 		u32 teid = le32_to_cpu(node->info.node_teid);
1181 		int status;
1182 
1183 		/* remove the default leaf node */
1184 		status = ice_sched_remove_elems(pi->hw, node->parent, teid);
1185 		if (!status)
1186 			ice_free_sched_node(pi, node);
1187 	}
1188 }
1189 
1190 /**
1191  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1192  * @pi: port information structure
1193  *
1194  * This function frees all the nodes except root and TC that were created by
1195  * the FW during initialization
1196  */
1197 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1198 {
1199 	struct ice_sched_node *node;
1200 
1201 	ice_rm_dflt_leaf_node(pi);
1202 
1203 	/* remove the default nodes except TC and root nodes */
1204 	node = pi->root;
1205 	while (node) {
1206 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1207 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1208 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1209 			ice_free_sched_node(pi, node);
1210 			break;
1211 		}
1212 
1213 		if (!node->num_children)
1214 			break;
1215 		node = node->children[0];
1216 	}
1217 }
1218 
1219 /**
1220  * ice_sched_init_port - Initialize scheduler by querying information from FW
1221  * @pi: port info structure for the tree to cleanup
1222  *
1223  * This function is the initial call to find the total number of Tx scheduler
1224  * resources, default topology created by firmware and storing the information
1225  * in SW DB.
1226  */
1227 int ice_sched_init_port(struct ice_port_info *pi)
1228 {
1229 	struct ice_aqc_get_topo_elem *buf;
1230 	struct ice_hw *hw;
1231 	u8 num_branches;
1232 	u16 num_elems;
1233 	int status;
1234 	u8 i, j;
1235 
1236 	if (!pi)
1237 		return -EINVAL;
1238 	hw = pi->hw;
1239 
1240 	/* Query the Default Topology from FW */
1241 	buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1242 	if (!buf)
1243 		return -ENOMEM;
1244 
1245 	/* Query default scheduling tree topology */
1246 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1247 				      &num_branches, NULL);
1248 	if (status)
1249 		goto err_init_port;
1250 
1251 	/* num_branches should be between 1-8 */
1252 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1253 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1254 			  num_branches);
1255 		status = -EINVAL;
1256 		goto err_init_port;
1257 	}
1258 
1259 	/* get the number of elements on the default/first branch */
1260 	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1261 
1262 	/* num_elems should always be between 1-9 */
1263 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1264 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1265 			  num_elems);
1266 		status = -EINVAL;
1267 		goto err_init_port;
1268 	}
1269 
1270 	/* If the last node is a leaf node then the index of the queue group
1271 	 * layer is two less than the number of elements.
1272 	 */
1273 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1274 	    ICE_AQC_ELEM_TYPE_LEAF)
1275 		pi->last_node_teid =
1276 			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1277 	else
1278 		pi->last_node_teid =
1279 			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1280 
1281 	/* Insert the Tx Sched root node */
1282 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1283 	if (status)
1284 		goto err_init_port;
1285 
1286 	/* Parse the default tree and cache the information */
1287 	for (i = 0; i < num_branches; i++) {
1288 		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1289 
1290 		/* Skip root element as already inserted */
1291 		for (j = 1; j < num_elems; j++) {
1292 			/* update the sw entry point */
1293 			if (buf[0].generic[j].data.elem_type ==
1294 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1295 				hw->sw_entry_point_layer = j;
1296 
1297 			status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1298 			if (status)
1299 				goto err_init_port;
1300 		}
1301 	}
1302 
1303 	/* Remove the default nodes. */
1304 	if (pi->root)
1305 		ice_sched_rm_dflt_nodes(pi);
1306 
1307 	/* initialize the port for handling the scheduler tree */
1308 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1309 	mutex_init(&pi->sched_lock);
1310 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1311 		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1312 
1313 err_init_port:
1314 	if (status && pi->root) {
1315 		ice_free_sched_node(pi, pi->root);
1316 		pi->root = NULL;
1317 	}
1318 
1319 	kfree(buf);
1320 	return status;
1321 }
1322 
1323 /**
1324  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1325  * @hw: pointer to the HW struct
1326  *
1327  * query FW for allocated scheduler resources and store in HW struct
1328  */
1329 int ice_sched_query_res_alloc(struct ice_hw *hw)
1330 {
1331 	struct ice_aqc_query_txsched_res_resp *buf;
1332 	__le16 max_sibl;
1333 	int status = 0;
1334 	u16 i;
1335 
1336 	if (hw->layer_info)
1337 		return status;
1338 
1339 	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1340 	if (!buf)
1341 		return -ENOMEM;
1342 
1343 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1344 	if (status)
1345 		goto sched_query_out;
1346 
1347 	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1348 	hw->num_tx_sched_phys_layers =
1349 		le16_to_cpu(buf->sched_props.phys_levels);
1350 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1351 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1352 
1353 	/* max sibling group size of current layer refers to the max children
1354 	 * of the below layer node.
1355 	 * layer 1 node max children will be layer 2 max sibling group size
1356 	 * layer 2 node max children will be layer 3 max sibling group size
1357 	 * and so on. This array will be populated from root (index 0) to
1358 	 * qgroup layer 7. Leaf node has no children.
1359 	 */
1360 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1361 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1362 		hw->max_children[i] = le16_to_cpu(max_sibl);
1363 	}
1364 
1365 	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1366 				      (hw->num_tx_sched_layers *
1367 				       sizeof(*hw->layer_info)),
1368 				      GFP_KERNEL);
1369 	if (!hw->layer_info) {
1370 		status = -ENOMEM;
1371 		goto sched_query_out;
1372 	}
1373 
1374 sched_query_out:
1375 	devm_kfree(ice_hw_to_dev(hw), buf);
1376 	return status;
1377 }
1378 
1379 /**
1380  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1381  * @hw: pointer to the HW struct
1382  *
1383  * Determine the PSM clock frequency and store in HW struct
1384  */
1385 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1386 {
1387 	u32 val, clk_src;
1388 
1389 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1390 	clk_src = FIELD_GET(GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M, val);
1391 
1392 #define PSM_CLK_SRC_367_MHZ 0x0
1393 #define PSM_CLK_SRC_416_MHZ 0x1
1394 #define PSM_CLK_SRC_446_MHZ 0x2
1395 #define PSM_CLK_SRC_390_MHZ 0x3
1396 
1397 	switch (clk_src) {
1398 	case PSM_CLK_SRC_367_MHZ:
1399 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1400 		break;
1401 	case PSM_CLK_SRC_416_MHZ:
1402 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1403 		break;
1404 	case PSM_CLK_SRC_446_MHZ:
1405 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1406 		break;
1407 	case PSM_CLK_SRC_390_MHZ:
1408 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1409 		break;
1410 	default:
1411 		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1412 			  clk_src);
1413 		/* fall back to a safe default */
1414 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1415 	}
1416 }
1417 
1418 /**
1419  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1420  * @hw: pointer to the HW struct
1421  * @base: pointer to the base node
1422  * @node: pointer to the node to search
1423  *
1424  * This function checks whether a given node is part of the base node
1425  * subtree or not
1426  */
1427 static bool
1428 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1429 			       struct ice_sched_node *node)
1430 {
1431 	u8 i;
1432 
1433 	for (i = 0; i < base->num_children; i++) {
1434 		struct ice_sched_node *child = base->children[i];
1435 
1436 		if (node == child)
1437 			return true;
1438 
1439 		if (child->tx_sched_layer > node->tx_sched_layer)
1440 			return false;
1441 
1442 		/* this recursion is intentional, and wouldn't
1443 		 * go more than 8 calls
1444 		 */
1445 		if (ice_sched_find_node_in_subtree(hw, child, node))
1446 			return true;
1447 	}
1448 	return false;
1449 }
1450 
1451 /**
1452  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1453  * @pi: port information structure
1454  * @vsi_node: software VSI handle
1455  * @qgrp_node: first queue group node identified for scanning
1456  * @owner: LAN or RDMA
1457  *
1458  * This function retrieves a free LAN or RDMA queue group node by scanning
1459  * qgrp_node and its siblings for the queue group with the fewest number
1460  * of queues currently assigned.
1461  */
1462 static struct ice_sched_node *
1463 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1464 			struct ice_sched_node *vsi_node,
1465 			struct ice_sched_node *qgrp_node, u8 owner)
1466 {
1467 	struct ice_sched_node *min_qgrp;
1468 	u8 min_children;
1469 
1470 	if (!qgrp_node)
1471 		return qgrp_node;
1472 	min_children = qgrp_node->num_children;
1473 	if (!min_children)
1474 		return qgrp_node;
1475 	min_qgrp = qgrp_node;
1476 	/* scan all queue groups until find a node which has less than the
1477 	 * minimum number of children. This way all queue group nodes get
1478 	 * equal number of shares and active. The bandwidth will be equally
1479 	 * distributed across all queues.
1480 	 */
1481 	while (qgrp_node) {
1482 		/* make sure the qgroup node is part of the VSI subtree */
1483 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1484 			if (qgrp_node->num_children < min_children &&
1485 			    qgrp_node->owner == owner) {
1486 				/* replace the new min queue group node */
1487 				min_qgrp = qgrp_node;
1488 				min_children = min_qgrp->num_children;
1489 				/* break if it has no children, */
1490 				if (!min_children)
1491 					break;
1492 			}
1493 		qgrp_node = qgrp_node->sibling;
1494 	}
1495 	return min_qgrp;
1496 }
1497 
1498 /**
1499  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1500  * @pi: port information structure
1501  * @vsi_handle: software VSI handle
1502  * @tc: branch number
1503  * @owner: LAN or RDMA
1504  *
1505  * This function retrieves a free LAN or RDMA queue group node
1506  */
1507 struct ice_sched_node *
1508 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1509 			   u8 owner)
1510 {
1511 	struct ice_sched_node *vsi_node, *qgrp_node;
1512 	struct ice_vsi_ctx *vsi_ctx;
1513 	u16 max_children;
1514 	u8 qgrp_layer;
1515 
1516 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1517 	max_children = pi->hw->max_children[qgrp_layer];
1518 
1519 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1520 	if (!vsi_ctx)
1521 		return NULL;
1522 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1523 	/* validate invalid VSI ID */
1524 	if (!vsi_node)
1525 		return NULL;
1526 
1527 	/* get the first queue group node from VSI sub-tree */
1528 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1529 	while (qgrp_node) {
1530 		/* make sure the qgroup node is part of the VSI subtree */
1531 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1532 			if (qgrp_node->num_children < max_children &&
1533 			    qgrp_node->owner == owner)
1534 				break;
1535 		qgrp_node = qgrp_node->sibling;
1536 	}
1537 
1538 	/* Select the best queue group */
1539 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1540 }
1541 
1542 /**
1543  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1544  * @pi: pointer to the port information structure
1545  * @tc_node: pointer to the TC node
1546  * @vsi_handle: software VSI handle
1547  *
1548  * This function retrieves a VSI node for a given VSI ID from a given
1549  * TC branch
1550  */
1551 static struct ice_sched_node *
1552 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1553 		       u16 vsi_handle)
1554 {
1555 	struct ice_sched_node *node;
1556 	u8 vsi_layer;
1557 
1558 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1559 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1560 
1561 	/* Check whether it already exists */
1562 	while (node) {
1563 		if (node->vsi_handle == vsi_handle)
1564 			return node;
1565 		node = node->sibling;
1566 	}
1567 
1568 	return node;
1569 }
1570 
1571 /**
1572  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1573  * @pi: pointer to the port information structure
1574  * @tc_node: pointer to the TC node
1575  * @agg_id: aggregator ID
1576  *
1577  * This function retrieves an aggregator node for a given aggregator ID from
1578  * a given TC branch
1579  */
1580 struct ice_sched_node *
1581 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1582 		       u32 agg_id)
1583 {
1584 	struct ice_sched_node *node;
1585 	struct ice_hw *hw = pi->hw;
1586 	u8 agg_layer;
1587 
1588 	if (!hw)
1589 		return NULL;
1590 	agg_layer = ice_sched_get_agg_layer(hw);
1591 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1592 
1593 	/* Check whether it already exists */
1594 	while (node) {
1595 		if (node->agg_id == agg_id)
1596 			return node;
1597 		node = node->sibling;
1598 	}
1599 
1600 	return node;
1601 }
1602 
1603 /**
1604  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1605  * @hw: pointer to the HW struct
1606  * @num_qs: number of queues
1607  * @num_nodes: num nodes array
1608  *
1609  * This function calculates the number of VSI child nodes based on the
1610  * number of queues.
1611  */
1612 static void
1613 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1614 {
1615 	u16 num = num_qs;
1616 	u8 i, qgl, vsil;
1617 
1618 	qgl = ice_sched_get_qgrp_layer(hw);
1619 	vsil = ice_sched_get_vsi_layer(hw);
1620 
1621 	/* calculate num nodes from queue group to VSI layer */
1622 	for (i = qgl; i > vsil; i--) {
1623 		/* round to the next integer if there is a remainder */
1624 		num = DIV_ROUND_UP(num, hw->max_children[i]);
1625 
1626 		/* need at least one node */
1627 		num_nodes[i] = num ? num : 1;
1628 	}
1629 }
1630 
1631 /**
1632  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1633  * @pi: port information structure
1634  * @vsi_handle: software VSI handle
1635  * @tc_node: pointer to the TC node
1636  * @num_nodes: pointer to the num nodes that needs to be added per layer
1637  * @owner: node owner (LAN or RDMA)
1638  *
1639  * This function adds the VSI child nodes to tree. It gets called for
1640  * LAN and RDMA separately.
1641  */
1642 static int
1643 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1644 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1645 			      u8 owner)
1646 {
1647 	struct ice_sched_node *parent, *node;
1648 	struct ice_hw *hw = pi->hw;
1649 	u32 first_node_teid;
1650 	u16 num_added = 0;
1651 	u8 i, qgl, vsil;
1652 
1653 	qgl = ice_sched_get_qgrp_layer(hw);
1654 	vsil = ice_sched_get_vsi_layer(hw);
1655 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1656 	for (i = vsil + 1; i <= qgl; i++) {
1657 		int status;
1658 
1659 		if (!parent)
1660 			return -EIO;
1661 
1662 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1663 						      num_nodes[i],
1664 						      &first_node_teid,
1665 						      &num_added);
1666 		if (status || num_nodes[i] != num_added)
1667 			return -EIO;
1668 
1669 		/* The newly added node can be a new parent for the next
1670 		 * layer nodes
1671 		 */
1672 		if (num_added) {
1673 			parent = ice_sched_find_node_by_teid(tc_node,
1674 							     first_node_teid);
1675 			node = parent;
1676 			while (node) {
1677 				node->owner = owner;
1678 				node = node->sibling;
1679 			}
1680 		} else {
1681 			parent = parent->children[0];
1682 		}
1683 	}
1684 
1685 	return 0;
1686 }
1687 
1688 /**
1689  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1690  * @pi: pointer to the port info structure
1691  * @tc_node: pointer to TC node
1692  * @num_nodes: pointer to num nodes array
1693  *
1694  * This function calculates the number of supported nodes needed to add this
1695  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1696  * layers
1697  */
1698 static void
1699 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1700 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1701 {
1702 	struct ice_sched_node *node;
1703 	u8 vsil;
1704 	int i;
1705 
1706 	vsil = ice_sched_get_vsi_layer(pi->hw);
1707 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1708 		/* Add intermediate nodes if TC has no children and
1709 		 * need at least one node for VSI
1710 		 */
1711 		if (!tc_node->num_children || i == vsil) {
1712 			num_nodes[i]++;
1713 		} else {
1714 			/* If intermediate nodes are reached max children
1715 			 * then add a new one.
1716 			 */
1717 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1718 			/* scan all the siblings */
1719 			while (node) {
1720 				if (node->num_children < pi->hw->max_children[i])
1721 					break;
1722 				node = node->sibling;
1723 			}
1724 
1725 			/* tree has one intermediate node to add this new VSI.
1726 			 * So no need to calculate supported nodes for below
1727 			 * layers.
1728 			 */
1729 			if (node)
1730 				break;
1731 			/* all the nodes are full, allocate a new one */
1732 			num_nodes[i]++;
1733 		}
1734 }
1735 
1736 /**
1737  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1738  * @pi: port information structure
1739  * @vsi_handle: software VSI handle
1740  * @tc_node: pointer to TC node
1741  * @num_nodes: pointer to num nodes array
1742  *
1743  * This function adds the VSI supported nodes into Tx tree including the
1744  * VSI, its parent and intermediate nodes in below layers
1745  */
1746 static int
1747 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1748 				struct ice_sched_node *tc_node, u16 *num_nodes)
1749 {
1750 	struct ice_sched_node *parent = tc_node;
1751 	u32 first_node_teid;
1752 	u16 num_added = 0;
1753 	u8 i, vsil;
1754 
1755 	if (!pi)
1756 		return -EINVAL;
1757 
1758 	vsil = ice_sched_get_vsi_layer(pi->hw);
1759 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1760 		int status;
1761 
1762 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1763 						      i, num_nodes[i],
1764 						      &first_node_teid,
1765 						      &num_added);
1766 		if (status || num_nodes[i] != num_added)
1767 			return -EIO;
1768 
1769 		/* The newly added node can be a new parent for the next
1770 		 * layer nodes
1771 		 */
1772 		if (num_added)
1773 			parent = ice_sched_find_node_by_teid(tc_node,
1774 							     first_node_teid);
1775 		else
1776 			parent = parent->children[0];
1777 
1778 		if (!parent)
1779 			return -EIO;
1780 
1781 		if (i == vsil)
1782 			parent->vsi_handle = vsi_handle;
1783 	}
1784 
1785 	return 0;
1786 }
1787 
1788 /**
1789  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1790  * @pi: port information structure
1791  * @vsi_handle: software VSI handle
1792  * @tc: TC number
1793  *
1794  * This function adds a new VSI into scheduler tree
1795  */
1796 static int
1797 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1798 {
1799 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1800 	struct ice_sched_node *tc_node;
1801 
1802 	tc_node = ice_sched_get_tc_node(pi, tc);
1803 	if (!tc_node)
1804 		return -EINVAL;
1805 
1806 	/* calculate number of supported nodes needed for this VSI */
1807 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1808 
1809 	/* add VSI supported nodes to TC subtree */
1810 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1811 					       num_nodes);
1812 }
1813 
1814 /**
1815  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1816  * @pi: port information structure
1817  * @vsi_handle: software VSI handle
1818  * @tc: TC number
1819  * @new_numqs: new number of max queues
1820  * @owner: owner of this subtree
1821  *
1822  * This function updates the VSI child nodes based on the number of queues
1823  */
1824 static int
1825 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1826 				 u8 tc, u16 new_numqs, u8 owner)
1827 {
1828 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1829 	struct ice_sched_node *vsi_node;
1830 	struct ice_sched_node *tc_node;
1831 	struct ice_vsi_ctx *vsi_ctx;
1832 	struct ice_hw *hw = pi->hw;
1833 	u16 prev_numqs;
1834 	int status = 0;
1835 
1836 	tc_node = ice_sched_get_tc_node(pi, tc);
1837 	if (!tc_node)
1838 		return -EIO;
1839 
1840 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1841 	if (!vsi_node)
1842 		return -EIO;
1843 
1844 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1845 	if (!vsi_ctx)
1846 		return -EINVAL;
1847 
1848 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1849 		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1850 	else
1851 		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1852 	/* num queues are not changed or less than the previous number */
1853 	if (new_numqs <= prev_numqs)
1854 		return status;
1855 	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1856 		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1857 		if (status)
1858 			return status;
1859 	} else {
1860 		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1861 		if (status)
1862 			return status;
1863 	}
1864 
1865 	if (new_numqs)
1866 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1867 	/* Keep the max number of queue configuration all the time. Update the
1868 	 * tree only if number of queues > previous number of queues. This may
1869 	 * leave some extra nodes in the tree if number of queues < previous
1870 	 * number but that wouldn't harm anything. Removing those extra nodes
1871 	 * may complicate the code if those nodes are part of SRL or
1872 	 * individually rate limited.
1873 	 */
1874 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1875 					       new_num_nodes, owner);
1876 	if (status)
1877 		return status;
1878 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1879 		vsi_ctx->sched.max_lanq[tc] = new_numqs;
1880 	else
1881 		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1882 
1883 	return 0;
1884 }
1885 
1886 /**
1887  * ice_sched_cfg_vsi - configure the new/existing VSI
1888  * @pi: port information structure
1889  * @vsi_handle: software VSI handle
1890  * @tc: TC number
1891  * @maxqs: max number of queues
1892  * @owner: LAN or RDMA
1893  * @enable: TC enabled or disabled
1894  *
1895  * This function adds/updates VSI nodes based on the number of queues. If TC is
1896  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1897  * disabled then suspend the VSI if it is not already.
1898  */
1899 int
1900 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1901 		  u8 owner, bool enable)
1902 {
1903 	struct ice_sched_node *vsi_node, *tc_node;
1904 	struct ice_vsi_ctx *vsi_ctx;
1905 	struct ice_hw *hw = pi->hw;
1906 	int status = 0;
1907 
1908 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1909 	tc_node = ice_sched_get_tc_node(pi, tc);
1910 	if (!tc_node)
1911 		return -EINVAL;
1912 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1913 	if (!vsi_ctx)
1914 		return -EINVAL;
1915 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1916 
1917 	/* suspend the VSI if TC is not enabled */
1918 	if (!enable) {
1919 		if (vsi_node && vsi_node->in_use) {
1920 			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1921 
1922 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1923 								true);
1924 			if (!status)
1925 				vsi_node->in_use = false;
1926 		}
1927 		return status;
1928 	}
1929 
1930 	/* TC is enabled, if it is a new VSI then add it to the tree */
1931 	if (!vsi_node) {
1932 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1933 		if (status)
1934 			return status;
1935 
1936 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1937 		if (!vsi_node)
1938 			return -EIO;
1939 
1940 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1941 		vsi_node->in_use = true;
1942 		/* invalidate the max queues whenever VSI gets added first time
1943 		 * into the scheduler tree (boot or after reset). We need to
1944 		 * recreate the child nodes all the time in these cases.
1945 		 */
1946 		vsi_ctx->sched.max_lanq[tc] = 0;
1947 		vsi_ctx->sched.max_rdmaq[tc] = 0;
1948 	}
1949 
1950 	/* update the VSI child nodes */
1951 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1952 						  owner);
1953 	if (status)
1954 		return status;
1955 
1956 	/* TC is enabled, resume the VSI if it is in the suspend state */
1957 	if (!vsi_node->in_use) {
1958 		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1959 
1960 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1961 		if (!status)
1962 			vsi_node->in_use = true;
1963 	}
1964 
1965 	return status;
1966 }
1967 
1968 /**
1969  * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1970  * @pi: port information structure
1971  * @vsi_handle: software VSI handle
1972  *
1973  * This function removes single aggregator VSI info entry from
1974  * aggregator list.
1975  */
1976 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1977 {
1978 	struct ice_sched_agg_info *agg_info;
1979 	struct ice_sched_agg_info *atmp;
1980 
1981 	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1982 				 list_entry) {
1983 		struct ice_sched_agg_vsi_info *agg_vsi_info;
1984 		struct ice_sched_agg_vsi_info *vtmp;
1985 
1986 		list_for_each_entry_safe(agg_vsi_info, vtmp,
1987 					 &agg_info->agg_vsi_list, list_entry)
1988 			if (agg_vsi_info->vsi_handle == vsi_handle) {
1989 				list_del(&agg_vsi_info->list_entry);
1990 				devm_kfree(ice_hw_to_dev(pi->hw),
1991 					   agg_vsi_info);
1992 				return;
1993 			}
1994 	}
1995 }
1996 
1997 /**
1998  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
1999  * @node: pointer to the sub-tree node
2000  *
2001  * This function checks for a leaf node presence in a given sub-tree node.
2002  */
2003 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2004 {
2005 	u8 i;
2006 
2007 	for (i = 0; i < node->num_children; i++)
2008 		if (ice_sched_is_leaf_node_present(node->children[i]))
2009 			return true;
2010 	/* check for a leaf node */
2011 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2012 }
2013 
2014 /**
2015  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2016  * @pi: port information structure
2017  * @vsi_handle: software VSI handle
2018  * @owner: LAN or RDMA
2019  *
2020  * This function removes the VSI and its LAN or RDMA children nodes from the
2021  * scheduler tree.
2022  */
2023 static int
2024 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2025 {
2026 	struct ice_vsi_ctx *vsi_ctx;
2027 	int status = -EINVAL;
2028 	u8 i;
2029 
2030 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2031 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2032 		return status;
2033 	mutex_lock(&pi->sched_lock);
2034 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2035 	if (!vsi_ctx)
2036 		goto exit_sched_rm_vsi_cfg;
2037 
2038 	ice_for_each_traffic_class(i) {
2039 		struct ice_sched_node *vsi_node, *tc_node;
2040 		u8 j = 0;
2041 
2042 		tc_node = ice_sched_get_tc_node(pi, i);
2043 		if (!tc_node)
2044 			continue;
2045 
2046 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2047 		if (!vsi_node)
2048 			continue;
2049 
2050 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2051 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2052 			status = -EBUSY;
2053 			goto exit_sched_rm_vsi_cfg;
2054 		}
2055 		while (j < vsi_node->num_children) {
2056 			if (vsi_node->children[j]->owner == owner) {
2057 				ice_free_sched_node(pi, vsi_node->children[j]);
2058 
2059 				/* reset the counter again since the num
2060 				 * children will be updated after node removal
2061 				 */
2062 				j = 0;
2063 			} else {
2064 				j++;
2065 			}
2066 		}
2067 		/* remove the VSI if it has no children */
2068 		if (!vsi_node->num_children) {
2069 			ice_free_sched_node(pi, vsi_node);
2070 			vsi_ctx->sched.vsi_node[i] = NULL;
2071 
2072 			/* clean up aggregator related VSI info if any */
2073 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2074 		}
2075 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2076 			vsi_ctx->sched.max_lanq[i] = 0;
2077 		else
2078 			vsi_ctx->sched.max_rdmaq[i] = 0;
2079 	}
2080 	status = 0;
2081 
2082 exit_sched_rm_vsi_cfg:
2083 	mutex_unlock(&pi->sched_lock);
2084 	return status;
2085 }
2086 
2087 /**
2088  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2089  * @pi: port information structure
2090  * @vsi_handle: software VSI handle
2091  *
2092  * This function clears the VSI and its LAN children nodes from scheduler tree
2093  * for all TCs.
2094  */
2095 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2096 {
2097 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2098 }
2099 
2100 /**
2101  * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2102  * @pi: port information structure
2103  * @vsi_handle: software VSI handle
2104  *
2105  * This function clears the VSI and its RDMA children nodes from scheduler tree
2106  * for all TCs.
2107  */
2108 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2109 {
2110 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2111 }
2112 
2113 /**
2114  * ice_get_agg_info - get the aggregator ID
2115  * @hw: pointer to the hardware structure
2116  * @agg_id: aggregator ID
2117  *
2118  * This function validates aggregator ID. The function returns info if
2119  * aggregator ID is present in list otherwise it returns null.
2120  */
2121 static struct ice_sched_agg_info *
2122 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2123 {
2124 	struct ice_sched_agg_info *agg_info;
2125 
2126 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2127 		if (agg_info->agg_id == agg_id)
2128 			return agg_info;
2129 
2130 	return NULL;
2131 }
2132 
2133 /**
2134  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2135  * @hw: pointer to the HW struct
2136  * @node: pointer to a child node
2137  * @num_nodes: num nodes count array
2138  *
2139  * This function walks through the aggregator subtree to find a free parent
2140  * node
2141  */
2142 struct ice_sched_node *
2143 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2144 			      u16 *num_nodes)
2145 {
2146 	u8 l = node->tx_sched_layer;
2147 	u8 vsil, i;
2148 
2149 	vsil = ice_sched_get_vsi_layer(hw);
2150 
2151 	/* Is it VSI parent layer ? */
2152 	if (l == vsil - 1)
2153 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2154 
2155 	/* We have intermediate nodes. Let's walk through the subtree. If the
2156 	 * intermediate node has space to add a new node then clear the count
2157 	 */
2158 	if (node->num_children < hw->max_children[l])
2159 		num_nodes[l] = 0;
2160 	/* The below recursive call is intentional and wouldn't go more than
2161 	 * 2 or 3 iterations.
2162 	 */
2163 
2164 	for (i = 0; i < node->num_children; i++) {
2165 		struct ice_sched_node *parent;
2166 
2167 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2168 						       num_nodes);
2169 		if (parent)
2170 			return parent;
2171 	}
2172 
2173 	return NULL;
2174 }
2175 
2176 /**
2177  * ice_sched_update_parent - update the new parent in SW DB
2178  * @new_parent: pointer to a new parent node
2179  * @node: pointer to a child node
2180  *
2181  * This function removes the child from the old parent and adds it to a new
2182  * parent
2183  */
2184 void
2185 ice_sched_update_parent(struct ice_sched_node *new_parent,
2186 			struct ice_sched_node *node)
2187 {
2188 	struct ice_sched_node *old_parent;
2189 	u8 i, j;
2190 
2191 	old_parent = node->parent;
2192 
2193 	/* update the old parent children */
2194 	for (i = 0; i < old_parent->num_children; i++)
2195 		if (old_parent->children[i] == node) {
2196 			for (j = i + 1; j < old_parent->num_children; j++)
2197 				old_parent->children[j - 1] =
2198 					old_parent->children[j];
2199 			old_parent->num_children--;
2200 			break;
2201 		}
2202 
2203 	/* now move the node to a new parent */
2204 	new_parent->children[new_parent->num_children++] = node;
2205 	node->parent = new_parent;
2206 	node->info.parent_teid = new_parent->info.node_teid;
2207 }
2208 
2209 /**
2210  * ice_sched_move_nodes - move child nodes to a given parent
2211  * @pi: port information structure
2212  * @parent: pointer to parent node
2213  * @num_items: number of child nodes to be moved
2214  * @list: pointer to child node teids
2215  *
2216  * This function move the child nodes to a given parent.
2217  */
2218 int
2219 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2220 		     u16 num_items, u32 *list)
2221 {
2222 	DEFINE_FLEX(struct ice_aqc_move_elem, buf, teid, 1);
2223 	u16 buf_len = __struct_size(buf);
2224 	struct ice_sched_node *node;
2225 	u16 i, grps_movd = 0;
2226 	struct ice_hw *hw;
2227 	int status = 0;
2228 
2229 	hw = pi->hw;
2230 
2231 	if (!parent || !num_items)
2232 		return -EINVAL;
2233 
2234 	/* Does parent have enough space */
2235 	if (parent->num_children + num_items >
2236 	    hw->max_children[parent->tx_sched_layer])
2237 		return -ENOSPC;
2238 
2239 	for (i = 0; i < num_items; i++) {
2240 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2241 		if (!node) {
2242 			status = -EINVAL;
2243 			break;
2244 		}
2245 
2246 		buf->hdr.src_parent_teid = node->info.parent_teid;
2247 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2248 		buf->teid[0] = node->info.node_teid;
2249 		buf->hdr.num_elems = cpu_to_le16(1);
2250 		status = ice_aq_move_sched_elems(hw, buf, buf_len, &grps_movd);
2251 		if (status && grps_movd != 1) {
2252 			status = -EIO;
2253 			break;
2254 		}
2255 
2256 		/* update the SW DB */
2257 		ice_sched_update_parent(parent, node);
2258 	}
2259 
2260 	return status;
2261 }
2262 
2263 /**
2264  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2265  * @pi: port information structure
2266  * @vsi_handle: software VSI handle
2267  * @agg_id: aggregator ID
2268  * @tc: TC number
2269  *
2270  * This function moves a VSI to an aggregator node or its subtree.
2271  * Intermediate nodes may be created if required.
2272  */
2273 static int
2274 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2275 			  u8 tc)
2276 {
2277 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2278 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2279 	u32 first_node_teid, vsi_teid;
2280 	u16 num_nodes_added;
2281 	u8 aggl, vsil, i;
2282 	int status;
2283 
2284 	tc_node = ice_sched_get_tc_node(pi, tc);
2285 	if (!tc_node)
2286 		return -EIO;
2287 
2288 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2289 	if (!agg_node)
2290 		return -ENOENT;
2291 
2292 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2293 	if (!vsi_node)
2294 		return -ENOENT;
2295 
2296 	/* Is this VSI already part of given aggregator? */
2297 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2298 		return 0;
2299 
2300 	aggl = ice_sched_get_agg_layer(pi->hw);
2301 	vsil = ice_sched_get_vsi_layer(pi->hw);
2302 
2303 	/* set intermediate node count to 1 between aggregator and VSI layers */
2304 	for (i = aggl + 1; i < vsil; i++)
2305 		num_nodes[i] = 1;
2306 
2307 	/* Check if the aggregator subtree has any free node to add the VSI */
2308 	for (i = 0; i < agg_node->num_children; i++) {
2309 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2310 						       agg_node->children[i],
2311 						       num_nodes);
2312 		if (parent)
2313 			goto move_nodes;
2314 	}
2315 
2316 	/* add new nodes */
2317 	parent = agg_node;
2318 	for (i = aggl + 1; i < vsil; i++) {
2319 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2320 						      num_nodes[i],
2321 						      &first_node_teid,
2322 						      &num_nodes_added);
2323 		if (status || num_nodes[i] != num_nodes_added)
2324 			return -EIO;
2325 
2326 		/* The newly added node can be a new parent for the next
2327 		 * layer nodes
2328 		 */
2329 		if (num_nodes_added)
2330 			parent = ice_sched_find_node_by_teid(tc_node,
2331 							     first_node_teid);
2332 		else
2333 			parent = parent->children[0];
2334 
2335 		if (!parent)
2336 			return -EIO;
2337 	}
2338 
2339 move_nodes:
2340 	vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2341 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2342 }
2343 
2344 /**
2345  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2346  * @pi: port information structure
2347  * @agg_info: aggregator info
2348  * @tc: traffic class number
2349  * @rm_vsi_info: true or false
2350  *
2351  * This function move all the VSI(s) to the default aggregator and delete
2352  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2353  * caller holds the scheduler lock.
2354  */
2355 static int
2356 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2357 			     struct ice_sched_agg_info *agg_info, u8 tc,
2358 			     bool rm_vsi_info)
2359 {
2360 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2361 	struct ice_sched_agg_vsi_info *tmp;
2362 	int status = 0;
2363 
2364 	list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2365 				 list_entry) {
2366 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2367 
2368 		/* Move VSI to default aggregator */
2369 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2370 			continue;
2371 
2372 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2373 						   ICE_DFLT_AGG_ID, tc);
2374 		if (status)
2375 			break;
2376 
2377 		clear_bit(tc, agg_vsi_info->tc_bitmap);
2378 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2379 			list_del(&agg_vsi_info->list_entry);
2380 			devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2381 		}
2382 	}
2383 
2384 	return status;
2385 }
2386 
2387 /**
2388  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2389  * @pi: port information structure
2390  * @node: node pointer
2391  *
2392  * This function checks whether the aggregator is attached with any VSI or not.
2393  */
2394 static bool
2395 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2396 {
2397 	u8 vsil, i;
2398 
2399 	vsil = ice_sched_get_vsi_layer(pi->hw);
2400 	if (node->tx_sched_layer < vsil - 1) {
2401 		for (i = 0; i < node->num_children; i++)
2402 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2403 				return true;
2404 		return false;
2405 	} else {
2406 		return node->num_children ? true : false;
2407 	}
2408 }
2409 
2410 /**
2411  * ice_sched_rm_agg_cfg - remove the aggregator node
2412  * @pi: port information structure
2413  * @agg_id: aggregator ID
2414  * @tc: TC number
2415  *
2416  * This function removes the aggregator node and intermediate nodes if any
2417  * from the given TC
2418  */
2419 static int
2420 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2421 {
2422 	struct ice_sched_node *tc_node, *agg_node;
2423 	struct ice_hw *hw = pi->hw;
2424 
2425 	tc_node = ice_sched_get_tc_node(pi, tc);
2426 	if (!tc_node)
2427 		return -EIO;
2428 
2429 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2430 	if (!agg_node)
2431 		return -ENOENT;
2432 
2433 	/* Can't remove the aggregator node if it has children */
2434 	if (ice_sched_is_agg_inuse(pi, agg_node))
2435 		return -EBUSY;
2436 
2437 	/* need to remove the whole subtree if aggregator node is the
2438 	 * only child.
2439 	 */
2440 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2441 		struct ice_sched_node *parent = agg_node->parent;
2442 
2443 		if (!parent)
2444 			return -EIO;
2445 
2446 		if (parent->num_children > 1)
2447 			break;
2448 
2449 		agg_node = parent;
2450 	}
2451 
2452 	ice_free_sched_node(pi, agg_node);
2453 	return 0;
2454 }
2455 
2456 /**
2457  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2458  * @pi: port information structure
2459  * @agg_info: aggregator ID
2460  * @tc: TC number
2461  * @rm_vsi_info: bool value true or false
2462  *
2463  * This function removes aggregator reference to VSI of given TC. It removes
2464  * the aggregator configuration completely for requested TC. The caller needs
2465  * to hold the scheduler lock.
2466  */
2467 static int
2468 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2469 		  u8 tc, bool rm_vsi_info)
2470 {
2471 	int status = 0;
2472 
2473 	/* If nothing to remove - return success */
2474 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2475 		goto exit_rm_agg_cfg_tc;
2476 
2477 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2478 	if (status)
2479 		goto exit_rm_agg_cfg_tc;
2480 
2481 	/* Delete aggregator node(s) */
2482 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2483 	if (status)
2484 		goto exit_rm_agg_cfg_tc;
2485 
2486 	clear_bit(tc, agg_info->tc_bitmap);
2487 exit_rm_agg_cfg_tc:
2488 	return status;
2489 }
2490 
2491 /**
2492  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2493  * @pi: port information structure
2494  * @agg_id: aggregator ID
2495  * @tc_bitmap: 8 bits TC bitmap
2496  *
2497  * Save aggregator TC bitmap. This function needs to be called with scheduler
2498  * lock held.
2499  */
2500 static int
2501 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2502 		       unsigned long *tc_bitmap)
2503 {
2504 	struct ice_sched_agg_info *agg_info;
2505 
2506 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2507 	if (!agg_info)
2508 		return -EINVAL;
2509 	bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2510 		    ICE_MAX_TRAFFIC_CLASS);
2511 	return 0;
2512 }
2513 
2514 /**
2515  * ice_sched_add_agg_cfg - create an aggregator node
2516  * @pi: port information structure
2517  * @agg_id: aggregator ID
2518  * @tc: TC number
2519  *
2520  * This function creates an aggregator node and intermediate nodes if required
2521  * for the given TC
2522  */
2523 static int
2524 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2525 {
2526 	struct ice_sched_node *parent, *agg_node, *tc_node;
2527 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2528 	struct ice_hw *hw = pi->hw;
2529 	u32 first_node_teid;
2530 	u16 num_nodes_added;
2531 	int status = 0;
2532 	u8 i, aggl;
2533 
2534 	tc_node = ice_sched_get_tc_node(pi, tc);
2535 	if (!tc_node)
2536 		return -EIO;
2537 
2538 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2539 	/* Does Agg node already exist ? */
2540 	if (agg_node)
2541 		return status;
2542 
2543 	aggl = ice_sched_get_agg_layer(hw);
2544 
2545 	/* need one node in Agg layer */
2546 	num_nodes[aggl] = 1;
2547 
2548 	/* Check whether the intermediate nodes have space to add the
2549 	 * new aggregator. If they are full, then SW needs to allocate a new
2550 	 * intermediate node on those layers
2551 	 */
2552 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2553 		parent = ice_sched_get_first_node(pi, tc_node, i);
2554 
2555 		/* scan all the siblings */
2556 		while (parent) {
2557 			if (parent->num_children < hw->max_children[i])
2558 				break;
2559 			parent = parent->sibling;
2560 		}
2561 
2562 		/* all the nodes are full, reserve one for this layer */
2563 		if (!parent)
2564 			num_nodes[i]++;
2565 	}
2566 
2567 	/* add the aggregator node */
2568 	parent = tc_node;
2569 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2570 		if (!parent)
2571 			return -EIO;
2572 
2573 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2574 						      num_nodes[i],
2575 						      &first_node_teid,
2576 						      &num_nodes_added);
2577 		if (status || num_nodes[i] != num_nodes_added)
2578 			return -EIO;
2579 
2580 		/* The newly added node can be a new parent for the next
2581 		 * layer nodes
2582 		 */
2583 		if (num_nodes_added) {
2584 			parent = ice_sched_find_node_by_teid(tc_node,
2585 							     first_node_teid);
2586 			/* register aggregator ID with the aggregator node */
2587 			if (parent && i == aggl)
2588 				parent->agg_id = agg_id;
2589 		} else {
2590 			parent = parent->children[0];
2591 		}
2592 	}
2593 
2594 	return 0;
2595 }
2596 
2597 /**
2598  * ice_sched_cfg_agg - configure aggregator node
2599  * @pi: port information structure
2600  * @agg_id: aggregator ID
2601  * @agg_type: aggregator type queue, VSI, or aggregator group
2602  * @tc_bitmap: bits TC bitmap
2603  *
2604  * It registers a unique aggregator node into scheduler services. It
2605  * allows a user to register with a unique ID to track it's resources.
2606  * The aggregator type determines if this is a queue group, VSI group
2607  * or aggregator group. It then creates the aggregator node(s) for requested
2608  * TC(s) or removes an existing aggregator node including its configuration
2609  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2610  * resources and remove aggregator ID.
2611  * This function needs to be called with scheduler lock held.
2612  */
2613 static int
2614 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2615 		  enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2616 {
2617 	struct ice_sched_agg_info *agg_info;
2618 	struct ice_hw *hw = pi->hw;
2619 	int status = 0;
2620 	u8 tc;
2621 
2622 	agg_info = ice_get_agg_info(hw, agg_id);
2623 	if (!agg_info) {
2624 		/* Create new entry for new aggregator ID */
2625 		agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2626 					GFP_KERNEL);
2627 		if (!agg_info)
2628 			return -ENOMEM;
2629 
2630 		agg_info->agg_id = agg_id;
2631 		agg_info->agg_type = agg_type;
2632 		agg_info->tc_bitmap[0] = 0;
2633 
2634 		/* Initialize the aggregator VSI list head */
2635 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2636 
2637 		/* Add new entry in aggregator list */
2638 		list_add(&agg_info->list_entry, &hw->agg_list);
2639 	}
2640 	/* Create aggregator node(s) for requested TC(s) */
2641 	ice_for_each_traffic_class(tc) {
2642 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2643 			/* Delete aggregator cfg TC if it exists previously */
2644 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2645 			if (status)
2646 				break;
2647 			continue;
2648 		}
2649 
2650 		/* Check if aggregator node for TC already exists */
2651 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2652 			continue;
2653 
2654 		/* Create new aggregator node for TC */
2655 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2656 		if (status)
2657 			break;
2658 
2659 		/* Save aggregator node's TC information */
2660 		set_bit(tc, agg_info->tc_bitmap);
2661 	}
2662 
2663 	return status;
2664 }
2665 
2666 /**
2667  * ice_cfg_agg - config aggregator node
2668  * @pi: port information structure
2669  * @agg_id: aggregator ID
2670  * @agg_type: aggregator type queue, VSI, or aggregator group
2671  * @tc_bitmap: bits TC bitmap
2672  *
2673  * This function configures aggregator node(s).
2674  */
2675 int
2676 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2677 	    u8 tc_bitmap)
2678 {
2679 	unsigned long bitmap = tc_bitmap;
2680 	int status;
2681 
2682 	mutex_lock(&pi->sched_lock);
2683 	status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2684 	if (!status)
2685 		status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2686 	mutex_unlock(&pi->sched_lock);
2687 	return status;
2688 }
2689 
2690 /**
2691  * ice_get_agg_vsi_info - get the aggregator ID
2692  * @agg_info: aggregator info
2693  * @vsi_handle: software VSI handle
2694  *
2695  * The function returns aggregator VSI info based on VSI handle. This function
2696  * needs to be called with scheduler lock held.
2697  */
2698 static struct ice_sched_agg_vsi_info *
2699 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2700 {
2701 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2702 
2703 	list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2704 		if (agg_vsi_info->vsi_handle == vsi_handle)
2705 			return agg_vsi_info;
2706 
2707 	return NULL;
2708 }
2709 
2710 /**
2711  * ice_get_vsi_agg_info - get the aggregator info of VSI
2712  * @hw: pointer to the hardware structure
2713  * @vsi_handle: Sw VSI handle
2714  *
2715  * The function returns aggregator info of VSI represented via vsi_handle. The
2716  * VSI has in this case a different aggregator than the default one. This
2717  * function needs to be called with scheduler lock held.
2718  */
2719 static struct ice_sched_agg_info *
2720 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2721 {
2722 	struct ice_sched_agg_info *agg_info;
2723 
2724 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2725 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2726 
2727 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2728 		if (agg_vsi_info)
2729 			return agg_info;
2730 	}
2731 	return NULL;
2732 }
2733 
2734 /**
2735  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2736  * @pi: port information structure
2737  * @agg_id: aggregator ID
2738  * @vsi_handle: software VSI handle
2739  * @tc_bitmap: TC bitmap of enabled TC(s)
2740  *
2741  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2742  * lock held.
2743  */
2744 static int
2745 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2746 			   unsigned long *tc_bitmap)
2747 {
2748 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2749 	struct ice_sched_agg_info *agg_info;
2750 
2751 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2752 	if (!agg_info)
2753 		return -EINVAL;
2754 	/* check if entry already exist */
2755 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2756 	if (!agg_vsi_info)
2757 		return -EINVAL;
2758 	bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2759 		    ICE_MAX_TRAFFIC_CLASS);
2760 	return 0;
2761 }
2762 
2763 /**
2764  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2765  * @pi: port information structure
2766  * @agg_id: aggregator ID
2767  * @vsi_handle: software VSI handle
2768  * @tc_bitmap: TC bitmap of enabled TC(s)
2769  *
2770  * This function moves VSI to a new or default aggregator node. If VSI is
2771  * already associated to the aggregator node then no operation is performed on
2772  * the tree. This function needs to be called with scheduler lock held.
2773  */
2774 static int
2775 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2776 			   u16 vsi_handle, unsigned long *tc_bitmap)
2777 {
2778 	struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
2779 	struct ice_sched_agg_info *agg_info, *old_agg_info;
2780 	struct ice_hw *hw = pi->hw;
2781 	int status = 0;
2782 	u8 tc;
2783 
2784 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2785 		return -EINVAL;
2786 	agg_info = ice_get_agg_info(hw, agg_id);
2787 	if (!agg_info)
2788 		return -EINVAL;
2789 	/* If the VSI is already part of another aggregator then update
2790 	 * its VSI info list
2791 	 */
2792 	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2793 	if (old_agg_info && old_agg_info != agg_info) {
2794 		struct ice_sched_agg_vsi_info *vtmp;
2795 
2796 		list_for_each_entry_safe(iter, vtmp,
2797 					 &old_agg_info->agg_vsi_list,
2798 					 list_entry)
2799 			if (iter->vsi_handle == vsi_handle) {
2800 				old_agg_vsi_info = iter;
2801 				break;
2802 			}
2803 	}
2804 
2805 	/* check if entry already exist */
2806 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2807 	if (!agg_vsi_info) {
2808 		/* Create new entry for VSI under aggregator list */
2809 		agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2810 					    sizeof(*agg_vsi_info), GFP_KERNEL);
2811 		if (!agg_vsi_info)
2812 			return -EINVAL;
2813 
2814 		/* add VSI ID into the aggregator list */
2815 		agg_vsi_info->vsi_handle = vsi_handle;
2816 		list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2817 	}
2818 	/* Move VSI node to new aggregator node for requested TC(s) */
2819 	ice_for_each_traffic_class(tc) {
2820 		if (!ice_is_tc_ena(*tc_bitmap, tc))
2821 			continue;
2822 
2823 		/* Move VSI to new aggregator */
2824 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2825 		if (status)
2826 			break;
2827 
2828 		set_bit(tc, agg_vsi_info->tc_bitmap);
2829 		if (old_agg_vsi_info)
2830 			clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2831 	}
2832 	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2833 		list_del(&old_agg_vsi_info->list_entry);
2834 		devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2835 	}
2836 	return status;
2837 }
2838 
2839 /**
2840  * ice_sched_rm_unused_rl_prof - remove unused RL profile
2841  * @pi: port information structure
2842  *
2843  * This function removes unused rate limit profiles from the HW and
2844  * SW DB. The caller needs to hold scheduler lock.
2845  */
2846 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2847 {
2848 	u16 ln;
2849 
2850 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2851 		struct ice_aqc_rl_profile_info *rl_prof_elem;
2852 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2853 
2854 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2855 					 &pi->rl_prof_list[ln], list_entry) {
2856 			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2857 				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2858 		}
2859 	}
2860 }
2861 
2862 /**
2863  * ice_sched_update_elem - update element
2864  * @hw: pointer to the HW struct
2865  * @node: pointer to node
2866  * @info: node info to update
2867  *
2868  * Update the HW DB, and local SW DB of node. Update the scheduling
2869  * parameters of node from argument info data buffer (Info->data buf) and
2870  * returns success or error on config sched element failure. The caller
2871  * needs to hold scheduler lock.
2872  */
2873 static int
2874 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2875 		      struct ice_aqc_txsched_elem_data *info)
2876 {
2877 	struct ice_aqc_txsched_elem_data buf;
2878 	u16 elem_cfgd = 0;
2879 	u16 num_elems = 1;
2880 	int status;
2881 
2882 	buf = *info;
2883 	/* Parent TEID is reserved field in this aq call */
2884 	buf.parent_teid = 0;
2885 	/* Element type is reserved field in this aq call */
2886 	buf.data.elem_type = 0;
2887 	/* Flags is reserved field in this aq call */
2888 	buf.data.flags = 0;
2889 
2890 	/* Update HW DB */
2891 	/* Configure element node */
2892 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2893 					&elem_cfgd, NULL);
2894 	if (status || elem_cfgd != num_elems) {
2895 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2896 		return -EIO;
2897 	}
2898 
2899 	/* Config success case */
2900 	/* Now update local SW DB */
2901 	/* Only copy the data portion of info buffer */
2902 	node->info.data = info->data;
2903 	return status;
2904 }
2905 
2906 /**
2907  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2908  * @hw: pointer to the HW struct
2909  * @node: sched node to configure
2910  * @rl_type: rate limit type CIR, EIR, or shared
2911  * @bw_alloc: BW weight/allocation
2912  *
2913  * This function configures node element's BW allocation.
2914  */
2915 static int
2916 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2917 			    enum ice_rl_type rl_type, u16 bw_alloc)
2918 {
2919 	struct ice_aqc_txsched_elem_data buf;
2920 	struct ice_aqc_txsched_elem *data;
2921 
2922 	buf = node->info;
2923 	data = &buf.data;
2924 	if (rl_type == ICE_MIN_BW) {
2925 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2926 		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2927 	} else if (rl_type == ICE_MAX_BW) {
2928 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2929 		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2930 	} else {
2931 		return -EINVAL;
2932 	}
2933 
2934 	/* Configure element */
2935 	return ice_sched_update_elem(hw, node, &buf);
2936 }
2937 
2938 /**
2939  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2940  * @pi: port information structure
2941  * @agg_id: aggregator ID
2942  * @vsi_handle: software VSI handle
2943  * @tc_bitmap: TC bitmap of enabled TC(s)
2944  *
2945  * Move or associate VSI to a new or default aggregator node.
2946  */
2947 int
2948 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2949 		    u8 tc_bitmap)
2950 {
2951 	unsigned long bitmap = tc_bitmap;
2952 	int status;
2953 
2954 	mutex_lock(&pi->sched_lock);
2955 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2956 					    (unsigned long *)&bitmap);
2957 	if (!status)
2958 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2959 						    (unsigned long *)&bitmap);
2960 	mutex_unlock(&pi->sched_lock);
2961 	return status;
2962 }
2963 
2964 /**
2965  * ice_set_clear_cir_bw - set or clear CIR BW
2966  * @bw_t_info: bandwidth type information structure
2967  * @bw: bandwidth in Kbps - Kilo bits per sec
2968  *
2969  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2970  */
2971 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2972 {
2973 	if (bw == ICE_SCHED_DFLT_BW) {
2974 		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2975 		bw_t_info->cir_bw.bw = 0;
2976 	} else {
2977 		/* Save type of BW information */
2978 		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2979 		bw_t_info->cir_bw.bw = bw;
2980 	}
2981 }
2982 
2983 /**
2984  * ice_set_clear_eir_bw - set or clear EIR BW
2985  * @bw_t_info: bandwidth type information structure
2986  * @bw: bandwidth in Kbps - Kilo bits per sec
2987  *
2988  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2989  */
2990 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2991 {
2992 	if (bw == ICE_SCHED_DFLT_BW) {
2993 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2994 		bw_t_info->eir_bw.bw = 0;
2995 	} else {
2996 		/* EIR BW and Shared BW profiles are mutually exclusive and
2997 		 * hence only one of them may be set for any given element.
2998 		 * First clear earlier saved shared BW information.
2999 		 */
3000 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3001 		bw_t_info->shared_bw = 0;
3002 		/* save EIR BW information */
3003 		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3004 		bw_t_info->eir_bw.bw = bw;
3005 	}
3006 }
3007 
3008 /**
3009  * ice_set_clear_shared_bw - set or clear shared BW
3010  * @bw_t_info: bandwidth type information structure
3011  * @bw: bandwidth in Kbps - Kilo bits per sec
3012  *
3013  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3014  */
3015 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3016 {
3017 	if (bw == ICE_SCHED_DFLT_BW) {
3018 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3019 		bw_t_info->shared_bw = 0;
3020 	} else {
3021 		/* EIR BW and Shared BW profiles are mutually exclusive and
3022 		 * hence only one of them may be set for any given element.
3023 		 * First clear earlier saved EIR BW information.
3024 		 */
3025 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3026 		bw_t_info->eir_bw.bw = 0;
3027 		/* save shared BW information */
3028 		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3029 		bw_t_info->shared_bw = bw;
3030 	}
3031 }
3032 
3033 /**
3034  * ice_sched_save_vsi_bw - save VSI node's BW information
3035  * @pi: port information structure
3036  * @vsi_handle: sw VSI handle
3037  * @tc: traffic class
3038  * @rl_type: rate limit type min, max, or shared
3039  * @bw: bandwidth in Kbps - Kilo bits per sec
3040  *
3041  * Save BW information of VSI type node for post replay use.
3042  */
3043 static int
3044 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3045 		      enum ice_rl_type rl_type, u32 bw)
3046 {
3047 	struct ice_vsi_ctx *vsi_ctx;
3048 
3049 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3050 		return -EINVAL;
3051 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3052 	if (!vsi_ctx)
3053 		return -EINVAL;
3054 	switch (rl_type) {
3055 	case ICE_MIN_BW:
3056 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3057 		break;
3058 	case ICE_MAX_BW:
3059 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3060 		break;
3061 	case ICE_SHARED_BW:
3062 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3063 		break;
3064 	default:
3065 		return -EINVAL;
3066 	}
3067 	return 0;
3068 }
3069 
3070 /**
3071  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3072  * @hw: pointer to the HW struct
3073  * @bw: bandwidth in Kbps
3074  *
3075  * This function calculates the wakeup parameter of RL profile.
3076  */
3077 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3078 {
3079 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3080 	s32 wakeup_f_int;
3081 	u16 wakeup = 0;
3082 
3083 	/* Get the wakeup integer value */
3084 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3085 	wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3086 	if (wakeup_int > 63) {
3087 		wakeup = (u16)((1 << 15) | wakeup_int);
3088 	} else {
3089 		/* Calculate fraction value up to 4 decimals
3090 		 * Convert Integer value to a constant multiplier
3091 		 */
3092 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3093 		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3094 					   hw->psm_clk_freq, bytes_per_sec);
3095 
3096 		/* Get Fraction value */
3097 		wakeup_f = wakeup_a - wakeup_b;
3098 
3099 		/* Round up the Fractional value via Ceil(Fractional value) */
3100 		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3101 			wakeup_f += 1;
3102 
3103 		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3104 					       ICE_RL_PROF_MULTIPLIER);
3105 		wakeup |= (u16)(wakeup_int << 9);
3106 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3107 	}
3108 
3109 	return wakeup;
3110 }
3111 
3112 /**
3113  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3114  * @hw: pointer to the HW struct
3115  * @bw: bandwidth in Kbps
3116  * @profile: profile parameters to return
3117  *
3118  * This function converts the BW to profile structure format.
3119  */
3120 static int
3121 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3122 			   struct ice_aqc_rl_profile_elem *profile)
3123 {
3124 	s64 bytes_per_sec, ts_rate, mv_tmp;
3125 	int status = -EINVAL;
3126 	bool found = false;
3127 	s32 encode = 0;
3128 	s64 mv = 0;
3129 	s32 i;
3130 
3131 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3132 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3133 		return status;
3134 
3135 	/* Bytes per second from Kbps */
3136 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3137 
3138 	/* encode is 6 bits but really useful are 5 bits */
3139 	for (i = 0; i < 64; i++) {
3140 		u64 pow_result = BIT_ULL(i);
3141 
3142 		ts_rate = div64_long((s64)hw->psm_clk_freq,
3143 				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3144 		if (ts_rate <= 0)
3145 			continue;
3146 
3147 		/* Multiplier value */
3148 		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3149 				    ts_rate);
3150 
3151 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3152 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3153 
3154 		/* First multiplier value greater than the given
3155 		 * accuracy bytes
3156 		 */
3157 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3158 			encode = i;
3159 			found = true;
3160 			break;
3161 		}
3162 	}
3163 	if (found) {
3164 		u16 wm;
3165 
3166 		wm = ice_sched_calc_wakeup(hw, bw);
3167 		profile->rl_multiply = cpu_to_le16(mv);
3168 		profile->wake_up_calc = cpu_to_le16(wm);
3169 		profile->rl_encode = cpu_to_le16(encode);
3170 		status = 0;
3171 	} else {
3172 		status = -ENOENT;
3173 	}
3174 
3175 	return status;
3176 }
3177 
3178 /**
3179  * ice_sched_add_rl_profile - add RL profile
3180  * @pi: port information structure
3181  * @rl_type: type of rate limit BW - min, max, or shared
3182  * @bw: bandwidth in Kbps - Kilo bits per sec
3183  * @layer_num: specifies in which layer to create profile
3184  *
3185  * This function first checks the existing list for corresponding BW
3186  * parameter. If it exists, it returns the associated profile otherwise
3187  * it creates a new rate limit profile for requested BW, and adds it to
3188  * the HW DB and local list. It returns the new profile or null on error.
3189  * The caller needs to hold the scheduler lock.
3190  */
3191 static struct ice_aqc_rl_profile_info *
3192 ice_sched_add_rl_profile(struct ice_port_info *pi,
3193 			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3194 {
3195 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3196 	u16 profiles_added = 0, num_profiles = 1;
3197 	struct ice_aqc_rl_profile_elem *buf;
3198 	struct ice_hw *hw;
3199 	u8 profile_type;
3200 	int status;
3201 
3202 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3203 		return NULL;
3204 	switch (rl_type) {
3205 	case ICE_MIN_BW:
3206 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3207 		break;
3208 	case ICE_MAX_BW:
3209 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3210 		break;
3211 	case ICE_SHARED_BW:
3212 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3213 		break;
3214 	default:
3215 		return NULL;
3216 	}
3217 
3218 	if (!pi)
3219 		return NULL;
3220 	hw = pi->hw;
3221 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3222 			    list_entry)
3223 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3224 		    profile_type && rl_prof_elem->bw == bw)
3225 			/* Return existing profile ID info */
3226 			return rl_prof_elem;
3227 
3228 	/* Create new profile ID */
3229 	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3230 				    GFP_KERNEL);
3231 
3232 	if (!rl_prof_elem)
3233 		return NULL;
3234 
3235 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3236 	if (status)
3237 		goto exit_add_rl_prof;
3238 
3239 	rl_prof_elem->bw = bw;
3240 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3241 	rl_prof_elem->profile.level = layer_num + 1;
3242 	rl_prof_elem->profile.flags = profile_type;
3243 	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3244 
3245 	/* Create new entry in HW DB */
3246 	buf = &rl_prof_elem->profile;
3247 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3248 				       &profiles_added, NULL);
3249 	if (status || profiles_added != num_profiles)
3250 		goto exit_add_rl_prof;
3251 
3252 	/* Good entry - add in the list */
3253 	rl_prof_elem->prof_id_ref = 0;
3254 	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3255 	return rl_prof_elem;
3256 
3257 exit_add_rl_prof:
3258 	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3259 	return NULL;
3260 }
3261 
3262 /**
3263  * ice_sched_cfg_node_bw_lmt - configure node sched params
3264  * @hw: pointer to the HW struct
3265  * @node: sched node to configure
3266  * @rl_type: rate limit type CIR, EIR, or shared
3267  * @rl_prof_id: rate limit profile ID
3268  *
3269  * This function configures node element's BW limit.
3270  */
3271 static int
3272 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3273 			  enum ice_rl_type rl_type, u16 rl_prof_id)
3274 {
3275 	struct ice_aqc_txsched_elem_data buf;
3276 	struct ice_aqc_txsched_elem *data;
3277 
3278 	buf = node->info;
3279 	data = &buf.data;
3280 	switch (rl_type) {
3281 	case ICE_MIN_BW:
3282 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3283 		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3284 		break;
3285 	case ICE_MAX_BW:
3286 		/* EIR BW and Shared BW profiles are mutually exclusive and
3287 		 * hence only one of them may be set for any given element
3288 		 */
3289 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3290 			return -EIO;
3291 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3292 		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3293 		break;
3294 	case ICE_SHARED_BW:
3295 		/* Check for removing shared BW */
3296 		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3297 			/* remove shared profile */
3298 			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3299 			data->srl_id = 0; /* clear SRL field */
3300 
3301 			/* enable back EIR to default profile */
3302 			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3303 			data->eir_bw.bw_profile_idx =
3304 				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3305 			break;
3306 		}
3307 		/* EIR BW and Shared BW profiles are mutually exclusive and
3308 		 * hence only one of them may be set for any given element
3309 		 */
3310 		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3311 		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3312 			    ICE_SCHED_DFLT_RL_PROF_ID))
3313 			return -EIO;
3314 		/* EIR BW is set to default, disable it */
3315 		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3316 		/* Okay to enable shared BW now */
3317 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3318 		data->srl_id = cpu_to_le16(rl_prof_id);
3319 		break;
3320 	default:
3321 		/* Unknown rate limit type */
3322 		return -EINVAL;
3323 	}
3324 
3325 	/* Configure element */
3326 	return ice_sched_update_elem(hw, node, &buf);
3327 }
3328 
3329 /**
3330  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3331  * @node: sched node
3332  * @rl_type: rate limit type
3333  *
3334  * If existing profile matches, it returns the corresponding rate
3335  * limit profile ID, otherwise it returns an invalid ID as error.
3336  */
3337 static u16
3338 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3339 			      enum ice_rl_type rl_type)
3340 {
3341 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3342 	struct ice_aqc_txsched_elem *data;
3343 
3344 	data = &node->info.data;
3345 	switch (rl_type) {
3346 	case ICE_MIN_BW:
3347 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3348 			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3349 		break;
3350 	case ICE_MAX_BW:
3351 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3352 			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3353 		break;
3354 	case ICE_SHARED_BW:
3355 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3356 			rl_prof_id = le16_to_cpu(data->srl_id);
3357 		break;
3358 	default:
3359 		break;
3360 	}
3361 
3362 	return rl_prof_id;
3363 }
3364 
3365 /**
3366  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3367  * @pi: port information structure
3368  * @rl_type: type of rate limit BW - min, max, or shared
3369  * @layer_index: layer index
3370  *
3371  * This function returns requested profile creation layer.
3372  */
3373 static u8
3374 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3375 			    u8 layer_index)
3376 {
3377 	struct ice_hw *hw = pi->hw;
3378 
3379 	if (layer_index >= hw->num_tx_sched_layers)
3380 		return ICE_SCHED_INVAL_LAYER_NUM;
3381 	switch (rl_type) {
3382 	case ICE_MIN_BW:
3383 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
3384 			return layer_index;
3385 		break;
3386 	case ICE_MAX_BW:
3387 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
3388 			return layer_index;
3389 		break;
3390 	case ICE_SHARED_BW:
3391 		/* if current layer doesn't support SRL profile creation
3392 		 * then try a layer up or down.
3393 		 */
3394 		if (hw->layer_info[layer_index].max_srl_profiles)
3395 			return layer_index;
3396 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
3397 			 hw->layer_info[layer_index + 1].max_srl_profiles)
3398 			return layer_index + 1;
3399 		else if (layer_index > 0 &&
3400 			 hw->layer_info[layer_index - 1].max_srl_profiles)
3401 			return layer_index - 1;
3402 		break;
3403 	default:
3404 		break;
3405 	}
3406 	return ICE_SCHED_INVAL_LAYER_NUM;
3407 }
3408 
3409 /**
3410  * ice_sched_get_srl_node - get shared rate limit node
3411  * @node: tree node
3412  * @srl_layer: shared rate limit layer
3413  *
3414  * This function returns SRL node to be used for shared rate limit purpose.
3415  * The caller needs to hold scheduler lock.
3416  */
3417 static struct ice_sched_node *
3418 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3419 {
3420 	if (srl_layer > node->tx_sched_layer)
3421 		return node->children[0];
3422 	else if (srl_layer < node->tx_sched_layer)
3423 		/* Node can't be created without a parent. It will always
3424 		 * have a valid parent except root node.
3425 		 */
3426 		return node->parent;
3427 	else
3428 		return node;
3429 }
3430 
3431 /**
3432  * ice_sched_rm_rl_profile - remove RL profile ID
3433  * @pi: port information structure
3434  * @layer_num: layer number where profiles are saved
3435  * @profile_type: profile type like EIR, CIR, or SRL
3436  * @profile_id: profile ID to remove
3437  *
3438  * This function removes rate limit profile from layer 'layer_num' of type
3439  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3440  * scheduler lock.
3441  */
3442 static int
3443 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3444 			u16 profile_id)
3445 {
3446 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3447 	int status = 0;
3448 
3449 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3450 		return -EINVAL;
3451 	/* Check the existing list for RL profile */
3452 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3453 			    list_entry)
3454 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3455 		    profile_type &&
3456 		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3457 		    profile_id) {
3458 			if (rl_prof_elem->prof_id_ref)
3459 				rl_prof_elem->prof_id_ref--;
3460 
3461 			/* Remove old profile ID from database */
3462 			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3463 			if (status && status != -EBUSY)
3464 				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3465 			break;
3466 		}
3467 	if (status == -EBUSY)
3468 		status = 0;
3469 	return status;
3470 }
3471 
3472 /**
3473  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3474  * @pi: port information structure
3475  * @node: pointer to node structure
3476  * @rl_type: rate limit type min, max, or shared
3477  * @layer_num: layer number where RL profiles are saved
3478  *
3479  * This function configures node element's BW rate limit profile ID of
3480  * type CIR, EIR, or SRL to default. This function needs to be called
3481  * with the scheduler lock held.
3482  */
3483 static int
3484 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3485 			   struct ice_sched_node *node,
3486 			   enum ice_rl_type rl_type, u8 layer_num)
3487 {
3488 	struct ice_hw *hw;
3489 	u8 profile_type;
3490 	u16 rl_prof_id;
3491 	u16 old_id;
3492 	int status;
3493 
3494 	hw = pi->hw;
3495 	switch (rl_type) {
3496 	case ICE_MIN_BW:
3497 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3498 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3499 		break;
3500 	case ICE_MAX_BW:
3501 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3502 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3503 		break;
3504 	case ICE_SHARED_BW:
3505 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3506 		/* No SRL is configured for default case */
3507 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3508 		break;
3509 	default:
3510 		return -EINVAL;
3511 	}
3512 	/* Save existing RL prof ID for later clean up */
3513 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3514 	/* Configure BW scheduling parameters */
3515 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3516 	if (status)
3517 		return status;
3518 
3519 	/* Remove stale RL profile ID */
3520 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3521 	    old_id == ICE_SCHED_INVAL_PROF_ID)
3522 		return 0;
3523 
3524 	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3525 }
3526 
3527 /**
3528  * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3529  * @pi: port information structure
3530  * @node: pointer to node structure
3531  * @layer_num: layer number where rate limit profiles are saved
3532  * @rl_type: rate limit type min, max, or shared
3533  * @bw: bandwidth value
3534  *
3535  * This function prepares node element's bandwidth to SRL or EIR exclusively.
3536  * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3537  * them may be set for any given element. This function needs to be called
3538  * with the scheduler lock held.
3539  */
3540 static int
3541 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3542 			   struct ice_sched_node *node,
3543 			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3544 {
3545 	if (rl_type == ICE_SHARED_BW) {
3546 		/* SRL node passed in this case, it may be different node */
3547 		if (bw == ICE_SCHED_DFLT_BW)
3548 			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
3549 			 * enables EIR to default. EIR is not set in this
3550 			 * case, so no additional action is required.
3551 			 */
3552 			return 0;
3553 
3554 		/* SRL being configured, set EIR to default here.
3555 		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3556 		 * configures SRL
3557 		 */
3558 		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3559 						  layer_num);
3560 	} else if (rl_type == ICE_MAX_BW &&
3561 		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3562 		/* Remove Shared profile. Set default shared BW call
3563 		 * removes shared profile for a node.
3564 		 */
3565 		return ice_sched_set_node_bw_dflt(pi, node,
3566 						  ICE_SHARED_BW,
3567 						  layer_num);
3568 	}
3569 	return 0;
3570 }
3571 
3572 /**
3573  * ice_sched_set_node_bw - set node's bandwidth
3574  * @pi: port information structure
3575  * @node: tree node
3576  * @rl_type: rate limit type min, max, or shared
3577  * @bw: bandwidth in Kbps - Kilo bits per sec
3578  * @layer_num: layer number
3579  *
3580  * This function adds new profile corresponding to requested BW, configures
3581  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3582  * ID from local database. The caller needs to hold scheduler lock.
3583  */
3584 int
3585 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3586 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3587 {
3588 	struct ice_aqc_rl_profile_info *rl_prof_info;
3589 	struct ice_hw *hw = pi->hw;
3590 	u16 old_id, rl_prof_id;
3591 	int status = -EINVAL;
3592 
3593 	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3594 	if (!rl_prof_info)
3595 		return status;
3596 
3597 	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3598 
3599 	/* Save existing RL prof ID for later clean up */
3600 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3601 	/* Configure BW scheduling parameters */
3602 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3603 	if (status)
3604 		return status;
3605 
3606 	/* New changes has been applied */
3607 	/* Increment the profile ID reference count */
3608 	rl_prof_info->prof_id_ref++;
3609 
3610 	/* Check for old ID removal */
3611 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3612 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3613 		return 0;
3614 
3615 	return ice_sched_rm_rl_profile(pi, layer_num,
3616 				       rl_prof_info->profile.flags &
3617 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3618 }
3619 
3620 /**
3621  * ice_sched_set_node_priority - set node's priority
3622  * @pi: port information structure
3623  * @node: tree node
3624  * @priority: number 0-7 representing priority among siblings
3625  *
3626  * This function sets priority of a node among it's siblings.
3627  */
3628 int
3629 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3630 			    u16 priority)
3631 {
3632 	struct ice_aqc_txsched_elem_data buf;
3633 	struct ice_aqc_txsched_elem *data;
3634 
3635 	buf = node->info;
3636 	data = &buf.data;
3637 
3638 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3639 	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3640 
3641 	return ice_sched_update_elem(pi->hw, node, &buf);
3642 }
3643 
3644 /**
3645  * ice_sched_set_node_weight - set node's weight
3646  * @pi: port information structure
3647  * @node: tree node
3648  * @weight: number 1-200 representing weight for WFQ
3649  *
3650  * This function sets weight of the node for WFQ algorithm.
3651  */
3652 int
3653 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3654 {
3655 	struct ice_aqc_txsched_elem_data buf;
3656 	struct ice_aqc_txsched_elem *data;
3657 
3658 	buf = node->info;
3659 	data = &buf.data;
3660 
3661 	data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3662 			       ICE_AQC_ELEM_VALID_GENERIC;
3663 	data->cir_bw.bw_alloc = cpu_to_le16(weight);
3664 	data->eir_bw.bw_alloc = cpu_to_le16(weight);
3665 
3666 	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3667 
3668 	return ice_sched_update_elem(pi->hw, node, &buf);
3669 }
3670 
3671 /**
3672  * ice_sched_set_node_bw_lmt - set node's BW limit
3673  * @pi: port information structure
3674  * @node: tree node
3675  * @rl_type: rate limit type min, max, or shared
3676  * @bw: bandwidth in Kbps - Kilo bits per sec
3677  *
3678  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3679  * EIR, or SRL. The caller needs to hold scheduler lock.
3680  */
3681 int
3682 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3683 			  enum ice_rl_type rl_type, u32 bw)
3684 {
3685 	struct ice_sched_node *cfg_node = node;
3686 	int status;
3687 
3688 	struct ice_hw *hw;
3689 	u8 layer_num;
3690 
3691 	if (!pi)
3692 		return -EINVAL;
3693 	hw = pi->hw;
3694 	/* Remove unused RL profile IDs from HW and SW DB */
3695 	ice_sched_rm_unused_rl_prof(pi);
3696 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3697 						node->tx_sched_layer);
3698 	if (layer_num >= hw->num_tx_sched_layers)
3699 		return -EINVAL;
3700 
3701 	if (rl_type == ICE_SHARED_BW) {
3702 		/* SRL node may be different */
3703 		cfg_node = ice_sched_get_srl_node(node, layer_num);
3704 		if (!cfg_node)
3705 			return -EIO;
3706 	}
3707 	/* EIR BW and Shared BW profiles are mutually exclusive and
3708 	 * hence only one of them may be set for any given element
3709 	 */
3710 	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3711 					    bw);
3712 	if (status)
3713 		return status;
3714 	if (bw == ICE_SCHED_DFLT_BW)
3715 		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3716 						  layer_num);
3717 	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3718 }
3719 
3720 /**
3721  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3722  * @pi: port information structure
3723  * @node: pointer to node structure
3724  * @rl_type: rate limit type min, max, or shared
3725  *
3726  * This function configures node element's BW rate limit profile ID of
3727  * type CIR, EIR, or SRL to default. This function needs to be called
3728  * with the scheduler lock held.
3729  */
3730 static int
3731 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3732 			       struct ice_sched_node *node,
3733 			       enum ice_rl_type rl_type)
3734 {
3735 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3736 					 ICE_SCHED_DFLT_BW);
3737 }
3738 
3739 /**
3740  * ice_sched_validate_srl_node - Check node for SRL applicability
3741  * @node: sched node to configure
3742  * @sel_layer: selected SRL layer
3743  *
3744  * This function checks if the SRL can be applied to a selected layer node on
3745  * behalf of the requested node (first argument). This function needs to be
3746  * called with scheduler lock held.
3747  */
3748 static int
3749 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3750 {
3751 	/* SRL profiles are not available on all layers. Check if the
3752 	 * SRL profile can be applied to a node above or below the
3753 	 * requested node. SRL configuration is possible only if the
3754 	 * selected layer's node has single child.
3755 	 */
3756 	if (sel_layer == node->tx_sched_layer ||
3757 	    ((sel_layer == node->tx_sched_layer + 1) &&
3758 	    node->num_children == 1) ||
3759 	    ((sel_layer == node->tx_sched_layer - 1) &&
3760 	    (node->parent && node->parent->num_children == 1)))
3761 		return 0;
3762 
3763 	return -EIO;
3764 }
3765 
3766 /**
3767  * ice_sched_save_q_bw - save queue node's BW information
3768  * @q_ctx: queue context structure
3769  * @rl_type: rate limit type min, max, or shared
3770  * @bw: bandwidth in Kbps - Kilo bits per sec
3771  *
3772  * Save BW information of queue type node for post replay use.
3773  */
3774 static int
3775 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3776 {
3777 	switch (rl_type) {
3778 	case ICE_MIN_BW:
3779 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3780 		break;
3781 	case ICE_MAX_BW:
3782 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3783 		break;
3784 	case ICE_SHARED_BW:
3785 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3786 		break;
3787 	default:
3788 		return -EINVAL;
3789 	}
3790 	return 0;
3791 }
3792 
3793 /**
3794  * ice_sched_set_q_bw_lmt - sets queue BW limit
3795  * @pi: port information structure
3796  * @vsi_handle: sw VSI handle
3797  * @tc: traffic class
3798  * @q_handle: software queue handle
3799  * @rl_type: min, max, or shared
3800  * @bw: bandwidth in Kbps
3801  *
3802  * This function sets BW limit of queue scheduling node.
3803  */
3804 static int
3805 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3806 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3807 {
3808 	struct ice_sched_node *node;
3809 	struct ice_q_ctx *q_ctx;
3810 	int status = -EINVAL;
3811 
3812 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3813 		return -EINVAL;
3814 	mutex_lock(&pi->sched_lock);
3815 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3816 	if (!q_ctx)
3817 		goto exit_q_bw_lmt;
3818 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3819 	if (!node) {
3820 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3821 		goto exit_q_bw_lmt;
3822 	}
3823 
3824 	/* Return error if it is not a leaf node */
3825 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3826 		goto exit_q_bw_lmt;
3827 
3828 	/* SRL bandwidth layer selection */
3829 	if (rl_type == ICE_SHARED_BW) {
3830 		u8 sel_layer; /* selected layer */
3831 
3832 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3833 							node->tx_sched_layer);
3834 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
3835 			status = -EINVAL;
3836 			goto exit_q_bw_lmt;
3837 		}
3838 		status = ice_sched_validate_srl_node(node, sel_layer);
3839 		if (status)
3840 			goto exit_q_bw_lmt;
3841 	}
3842 
3843 	if (bw == ICE_SCHED_DFLT_BW)
3844 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3845 	else
3846 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3847 
3848 	if (!status)
3849 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3850 
3851 exit_q_bw_lmt:
3852 	mutex_unlock(&pi->sched_lock);
3853 	return status;
3854 }
3855 
3856 /**
3857  * ice_cfg_q_bw_lmt - configure queue BW limit
3858  * @pi: port information structure
3859  * @vsi_handle: sw VSI handle
3860  * @tc: traffic class
3861  * @q_handle: software queue handle
3862  * @rl_type: min, max, or shared
3863  * @bw: bandwidth in Kbps
3864  *
3865  * This function configures BW limit of queue scheduling node.
3866  */
3867 int
3868 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3869 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3870 {
3871 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3872 				      bw);
3873 }
3874 
3875 /**
3876  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3877  * @pi: port information structure
3878  * @vsi_handle: sw VSI handle
3879  * @tc: traffic class
3880  * @q_handle: software queue handle
3881  * @rl_type: min, max, or shared
3882  *
3883  * This function configures BW default limit of queue scheduling node.
3884  */
3885 int
3886 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3887 		      u16 q_handle, enum ice_rl_type rl_type)
3888 {
3889 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3890 				      ICE_SCHED_DFLT_BW);
3891 }
3892 
3893 /**
3894  * ice_sched_get_node_by_id_type - get node from ID type
3895  * @pi: port information structure
3896  * @id: identifier
3897  * @agg_type: type of aggregator
3898  * @tc: traffic class
3899  *
3900  * This function returns node identified by ID of type aggregator, and
3901  * based on traffic class (TC). This function needs to be called with
3902  * the scheduler lock held.
3903  */
3904 static struct ice_sched_node *
3905 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3906 			      enum ice_agg_type agg_type, u8 tc)
3907 {
3908 	struct ice_sched_node *node = NULL;
3909 
3910 	switch (agg_type) {
3911 	case ICE_AGG_TYPE_VSI: {
3912 		struct ice_vsi_ctx *vsi_ctx;
3913 		u16 vsi_handle = (u16)id;
3914 
3915 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3916 			break;
3917 		/* Get sched_vsi_info */
3918 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3919 		if (!vsi_ctx)
3920 			break;
3921 		node = vsi_ctx->sched.vsi_node[tc];
3922 		break;
3923 	}
3924 
3925 	case ICE_AGG_TYPE_AGG: {
3926 		struct ice_sched_node *tc_node;
3927 
3928 		tc_node = ice_sched_get_tc_node(pi, tc);
3929 		if (tc_node)
3930 			node = ice_sched_get_agg_node(pi, tc_node, id);
3931 		break;
3932 	}
3933 
3934 	default:
3935 		break;
3936 	}
3937 
3938 	return node;
3939 }
3940 
3941 /**
3942  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3943  * @pi: port information structure
3944  * @id: ID (software VSI handle or AGG ID)
3945  * @agg_type: aggregator type (VSI or AGG type node)
3946  * @tc: traffic class
3947  * @rl_type: min or max
3948  * @bw: bandwidth in Kbps
3949  *
3950  * This function sets BW limit of VSI or Aggregator scheduling node
3951  * based on TC information from passed in argument BW.
3952  */
3953 static int
3954 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3955 				 enum ice_agg_type agg_type, u8 tc,
3956 				 enum ice_rl_type rl_type, u32 bw)
3957 {
3958 	struct ice_sched_node *node;
3959 	int status = -EINVAL;
3960 
3961 	if (!pi)
3962 		return status;
3963 
3964 	if (rl_type == ICE_UNKNOWN_BW)
3965 		return status;
3966 
3967 	mutex_lock(&pi->sched_lock);
3968 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3969 	if (!node) {
3970 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3971 		goto exit_set_node_bw_lmt_per_tc;
3972 	}
3973 	if (bw == ICE_SCHED_DFLT_BW)
3974 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3975 	else
3976 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3977 
3978 exit_set_node_bw_lmt_per_tc:
3979 	mutex_unlock(&pi->sched_lock);
3980 	return status;
3981 }
3982 
3983 /**
3984  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3985  * @pi: port information structure
3986  * @vsi_handle: software VSI handle
3987  * @tc: traffic class
3988  * @rl_type: min or max
3989  * @bw: bandwidth in Kbps
3990  *
3991  * This function configures BW limit of VSI scheduling node based on TC
3992  * information.
3993  */
3994 int
3995 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3996 			  enum ice_rl_type rl_type, u32 bw)
3997 {
3998 	int status;
3999 
4000 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4001 						  ICE_AGG_TYPE_VSI,
4002 						  tc, rl_type, bw);
4003 	if (!status) {
4004 		mutex_lock(&pi->sched_lock);
4005 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4006 		mutex_unlock(&pi->sched_lock);
4007 	}
4008 	return status;
4009 }
4010 
4011 /**
4012  * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4013  * @pi: port information structure
4014  * @vsi_handle: software VSI handle
4015  * @tc: traffic class
4016  * @rl_type: min or max
4017  *
4018  * This function configures default BW limit of VSI scheduling node based on TC
4019  * information.
4020  */
4021 int
4022 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4023 			       enum ice_rl_type rl_type)
4024 {
4025 	int status;
4026 
4027 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4028 						  ICE_AGG_TYPE_VSI,
4029 						  tc, rl_type,
4030 						  ICE_SCHED_DFLT_BW);
4031 	if (!status) {
4032 		mutex_lock(&pi->sched_lock);
4033 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4034 					       ICE_SCHED_DFLT_BW);
4035 		mutex_unlock(&pi->sched_lock);
4036 	}
4037 	return status;
4038 }
4039 
4040 /**
4041  * ice_cfg_rl_burst_size - Set burst size value
4042  * @hw: pointer to the HW struct
4043  * @bytes: burst size in bytes
4044  *
4045  * This function configures/set the burst size to requested new value. The new
4046  * burst size value is used for future rate limit calls. It doesn't change the
4047  * existing or previously created RL profiles.
4048  */
4049 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4050 {
4051 	u16 burst_size_to_prog;
4052 
4053 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4054 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4055 		return -EINVAL;
4056 	if (ice_round_to_num(bytes, 64) <=
4057 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4058 		/* 64 byte granularity case */
4059 		/* Disable MSB granularity bit */
4060 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4061 		/* round number to nearest 64 byte granularity */
4062 		bytes = ice_round_to_num(bytes, 64);
4063 		/* The value is in 64 byte chunks */
4064 		burst_size_to_prog |= (u16)(bytes / 64);
4065 	} else {
4066 		/* k bytes granularity case */
4067 		/* Enable MSB granularity bit */
4068 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4069 		/* round number to nearest 1024 granularity */
4070 		bytes = ice_round_to_num(bytes, 1024);
4071 		/* check rounding doesn't go beyond allowed */
4072 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4073 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4074 		/* The value is in k bytes */
4075 		burst_size_to_prog |= (u16)(bytes / 1024);
4076 	}
4077 	hw->max_burst_size = burst_size_to_prog;
4078 	return 0;
4079 }
4080 
4081 /**
4082  * ice_sched_replay_node_prio - re-configure node priority
4083  * @hw: pointer to the HW struct
4084  * @node: sched node to configure
4085  * @priority: priority value
4086  *
4087  * This function configures node element's priority value. It
4088  * needs to be called with scheduler lock held.
4089  */
4090 static int
4091 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4092 			   u8 priority)
4093 {
4094 	struct ice_aqc_txsched_elem_data buf;
4095 	struct ice_aqc_txsched_elem *data;
4096 	int status;
4097 
4098 	buf = node->info;
4099 	data = &buf.data;
4100 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4101 	data->generic = priority;
4102 
4103 	/* Configure element */
4104 	status = ice_sched_update_elem(hw, node, &buf);
4105 	return status;
4106 }
4107 
4108 /**
4109  * ice_sched_replay_node_bw - replay node(s) BW
4110  * @hw: pointer to the HW struct
4111  * @node: sched node to configure
4112  * @bw_t_info: BW type information
4113  *
4114  * This function restores node's BW from bw_t_info. The caller needs
4115  * to hold the scheduler lock.
4116  */
4117 static int
4118 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4119 			 struct ice_bw_type_info *bw_t_info)
4120 {
4121 	struct ice_port_info *pi = hw->port_info;
4122 	int status = -EINVAL;
4123 	u16 bw_alloc;
4124 
4125 	if (!node)
4126 		return status;
4127 	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4128 		return 0;
4129 	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4130 		status = ice_sched_replay_node_prio(hw, node,
4131 						    bw_t_info->generic);
4132 		if (status)
4133 			return status;
4134 	}
4135 	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4136 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4137 						   bw_t_info->cir_bw.bw);
4138 		if (status)
4139 			return status;
4140 	}
4141 	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4142 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
4143 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4144 						     bw_alloc);
4145 		if (status)
4146 			return status;
4147 	}
4148 	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4149 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4150 						   bw_t_info->eir_bw.bw);
4151 		if (status)
4152 			return status;
4153 	}
4154 	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4155 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
4156 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4157 						     bw_alloc);
4158 		if (status)
4159 			return status;
4160 	}
4161 	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4162 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4163 						   bw_t_info->shared_bw);
4164 	return status;
4165 }
4166 
4167 /**
4168  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4169  * @pi: port info struct
4170  * @tc_bitmap: 8 bits TC bitmap to check
4171  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4172  *
4173  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4174  * may be missing, it returns enabled TCs. This function needs to be called with
4175  * scheduler lock held.
4176  */
4177 static void
4178 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4179 			    unsigned long *tc_bitmap,
4180 			    unsigned long *ena_tc_bitmap)
4181 {
4182 	u8 tc;
4183 
4184 	/* Some TC(s) may be missing after reset, adjust for replay */
4185 	ice_for_each_traffic_class(tc)
4186 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
4187 		    (ice_sched_get_tc_node(pi, tc)))
4188 			set_bit(tc, ena_tc_bitmap);
4189 }
4190 
4191 /**
4192  * ice_sched_replay_agg - recreate aggregator node(s)
4193  * @hw: pointer to the HW struct
4194  *
4195  * This function recreate aggregator type nodes which are not replayed earlier.
4196  * It also replay aggregator BW information. These aggregator nodes are not
4197  * associated with VSI type node yet.
4198  */
4199 void ice_sched_replay_agg(struct ice_hw *hw)
4200 {
4201 	struct ice_port_info *pi = hw->port_info;
4202 	struct ice_sched_agg_info *agg_info;
4203 
4204 	mutex_lock(&pi->sched_lock);
4205 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4206 		/* replay aggregator (re-create aggregator node) */
4207 		if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4208 				  ICE_MAX_TRAFFIC_CLASS)) {
4209 			DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4210 			int status;
4211 
4212 			bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4213 			ice_sched_get_ena_tc_bitmap(pi,
4214 						    agg_info->replay_tc_bitmap,
4215 						    replay_bitmap);
4216 			status = ice_sched_cfg_agg(hw->port_info,
4217 						   agg_info->agg_id,
4218 						   ICE_AGG_TYPE_AGG,
4219 						   replay_bitmap);
4220 			if (status) {
4221 				dev_info(ice_hw_to_dev(hw),
4222 					 "Replay agg id[%d] failed\n",
4223 					 agg_info->agg_id);
4224 				/* Move on to next one */
4225 				continue;
4226 			}
4227 		}
4228 	mutex_unlock(&pi->sched_lock);
4229 }
4230 
4231 /**
4232  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4233  * @hw: pointer to the HW struct
4234  *
4235  * This function initialize aggregator(s) TC bitmap to zero. A required
4236  * preinit step for replaying aggregators.
4237  */
4238 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4239 {
4240 	struct ice_port_info *pi = hw->port_info;
4241 	struct ice_sched_agg_info *agg_info;
4242 
4243 	mutex_lock(&pi->sched_lock);
4244 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4245 		struct ice_sched_agg_vsi_info *agg_vsi_info;
4246 
4247 		agg_info->tc_bitmap[0] = 0;
4248 		list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4249 				    list_entry)
4250 			agg_vsi_info->tc_bitmap[0] = 0;
4251 	}
4252 	mutex_unlock(&pi->sched_lock);
4253 }
4254 
4255 /**
4256  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4257  * @hw: pointer to the HW struct
4258  * @vsi_handle: software VSI handle
4259  *
4260  * This function replays aggregator node, VSI to aggregator type nodes, and
4261  * their node bandwidth information. This function needs to be called with
4262  * scheduler lock held.
4263  */
4264 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4265 {
4266 	DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4267 	struct ice_sched_agg_vsi_info *agg_vsi_info;
4268 	struct ice_port_info *pi = hw->port_info;
4269 	struct ice_sched_agg_info *agg_info;
4270 	int status;
4271 
4272 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4273 	if (!ice_is_vsi_valid(hw, vsi_handle))
4274 		return -EINVAL;
4275 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4276 	if (!agg_info)
4277 		return 0; /* Not present in list - default Agg case */
4278 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4279 	if (!agg_vsi_info)
4280 		return 0; /* Not present in list - default Agg case */
4281 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4282 				    replay_bitmap);
4283 	/* Replay aggregator node associated to vsi_handle */
4284 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4285 				   ICE_AGG_TYPE_AGG, replay_bitmap);
4286 	if (status)
4287 		return status;
4288 
4289 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4290 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4291 				    replay_bitmap);
4292 	/* Move this VSI (vsi_handle) to above aggregator */
4293 	return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4294 					  replay_bitmap);
4295 }
4296 
4297 /**
4298  * ice_replay_vsi_agg - replay VSI to aggregator node
4299  * @hw: pointer to the HW struct
4300  * @vsi_handle: software VSI handle
4301  *
4302  * This function replays association of VSI to aggregator type nodes, and
4303  * node bandwidth information.
4304  */
4305 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4306 {
4307 	struct ice_port_info *pi = hw->port_info;
4308 	int status;
4309 
4310 	mutex_lock(&pi->sched_lock);
4311 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4312 	mutex_unlock(&pi->sched_lock);
4313 	return status;
4314 }
4315 
4316 /**
4317  * ice_sched_replay_q_bw - replay queue type node BW
4318  * @pi: port information structure
4319  * @q_ctx: queue context structure
4320  *
4321  * This function replays queue type node bandwidth. This function needs to be
4322  * called with scheduler lock held.
4323  */
4324 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4325 {
4326 	struct ice_sched_node *q_node;
4327 
4328 	/* Following also checks the presence of node in tree */
4329 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4330 	if (!q_node)
4331 		return -EINVAL;
4332 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4333 }
4334