1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include <net/devlink.h> 5 #include "ice_sched.h" 6 7 /** 8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 9 * @pi: port information structure 10 * @info: Scheduler element information from firmware 11 * 12 * This function inserts the root node of the scheduling tree topology 13 * to the SW DB. 14 */ 15 static int 16 ice_sched_add_root_node(struct ice_port_info *pi, 17 struct ice_aqc_txsched_elem_data *info) 18 { 19 struct ice_sched_node *root; 20 struct ice_hw *hw; 21 22 if (!pi) 23 return -EINVAL; 24 25 hw = pi->hw; 26 27 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 28 if (!root) 29 return -ENOMEM; 30 31 /* coverity[suspicious_sizeof] */ 32 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 33 sizeof(*root), GFP_KERNEL); 34 if (!root->children) { 35 devm_kfree(ice_hw_to_dev(hw), root); 36 return -ENOMEM; 37 } 38 39 memcpy(&root->info, info, sizeof(*info)); 40 pi->root = root; 41 return 0; 42 } 43 44 /** 45 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 46 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 47 * @teid: node TEID to search 48 * 49 * This function searches for a node matching the TEID in the scheduling tree 50 * from the SW DB. The search is recursive and is restricted by the number of 51 * layers it has searched through; stopping at the max supported layer. 52 * 53 * This function needs to be called when holding the port_info->sched_lock 54 */ 55 struct ice_sched_node * 56 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 57 { 58 u16 i; 59 60 /* The TEID is same as that of the start_node */ 61 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 62 return start_node; 63 64 /* The node has no children or is at the max layer */ 65 if (!start_node->num_children || 66 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 67 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 68 return NULL; 69 70 /* Check if TEID matches to any of the children nodes */ 71 for (i = 0; i < start_node->num_children; i++) 72 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 73 return start_node->children[i]; 74 75 /* Search within each child's sub-tree */ 76 for (i = 0; i < start_node->num_children; i++) { 77 struct ice_sched_node *tmp; 78 79 tmp = ice_sched_find_node_by_teid(start_node->children[i], 80 teid); 81 if (tmp) 82 return tmp; 83 } 84 85 return NULL; 86 } 87 88 /** 89 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 90 * @hw: pointer to the HW struct 91 * @cmd_opc: cmd opcode 92 * @elems_req: number of elements to request 93 * @buf: pointer to buffer 94 * @buf_size: buffer size in bytes 95 * @elems_resp: returns total number of elements response 96 * @cd: pointer to command details structure or NULL 97 * 98 * This function sends a scheduling elements cmd (cmd_opc) 99 */ 100 static int 101 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 102 u16 elems_req, void *buf, u16 buf_size, 103 u16 *elems_resp, struct ice_sq_cd *cd) 104 { 105 struct ice_aqc_sched_elem_cmd *cmd; 106 struct ice_aq_desc desc; 107 int status; 108 109 cmd = &desc.params.sched_elem_cmd; 110 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 111 cmd->num_elem_req = cpu_to_le16(elems_req); 112 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 113 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 114 if (!status && elems_resp) 115 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 116 117 return status; 118 } 119 120 /** 121 * ice_aq_query_sched_elems - query scheduler elements 122 * @hw: pointer to the HW struct 123 * @elems_req: number of elements to query 124 * @buf: pointer to buffer 125 * @buf_size: buffer size in bytes 126 * @elems_ret: returns total number of elements returned 127 * @cd: pointer to command details structure or NULL 128 * 129 * Query scheduling elements (0x0404) 130 */ 131 int 132 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 133 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 134 u16 *elems_ret, struct ice_sq_cd *cd) 135 { 136 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 137 elems_req, (void *)buf, buf_size, 138 elems_ret, cd); 139 } 140 141 /** 142 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 143 * @pi: port information structure 144 * @layer: Scheduler layer of the node 145 * @info: Scheduler element information from firmware 146 * @prealloc_node: preallocated ice_sched_node struct for SW DB 147 * 148 * This function inserts a scheduler node to the SW DB. 149 */ 150 int 151 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 152 struct ice_aqc_txsched_elem_data *info, 153 struct ice_sched_node *prealloc_node) 154 { 155 struct ice_aqc_txsched_elem_data elem; 156 struct ice_sched_node *parent; 157 struct ice_sched_node *node; 158 struct ice_hw *hw; 159 int status; 160 161 if (!pi) 162 return -EINVAL; 163 164 hw = pi->hw; 165 166 /* A valid parent node should be there */ 167 parent = ice_sched_find_node_by_teid(pi->root, 168 le32_to_cpu(info->parent_teid)); 169 if (!parent) { 170 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n", 171 le32_to_cpu(info->parent_teid)); 172 return -EINVAL; 173 } 174 175 /* query the current node information from FW before adding it 176 * to the SW DB 177 */ 178 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 179 if (status) 180 return status; 181 182 if (prealloc_node) 183 node = prealloc_node; 184 else 185 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 186 if (!node) 187 return -ENOMEM; 188 if (hw->max_children[layer]) { 189 /* coverity[suspicious_sizeof] */ 190 node->children = devm_kcalloc(ice_hw_to_dev(hw), 191 hw->max_children[layer], 192 sizeof(*node), GFP_KERNEL); 193 if (!node->children) { 194 devm_kfree(ice_hw_to_dev(hw), node); 195 return -ENOMEM; 196 } 197 } 198 199 node->in_use = true; 200 node->parent = parent; 201 node->tx_sched_layer = layer; 202 parent->children[parent->num_children++] = node; 203 node->info = elem; 204 return 0; 205 } 206 207 /** 208 * ice_aq_delete_sched_elems - delete scheduler elements 209 * @hw: pointer to the HW struct 210 * @grps_req: number of groups to delete 211 * @buf: pointer to buffer 212 * @buf_size: buffer size in bytes 213 * @grps_del: returns total number of elements deleted 214 * @cd: pointer to command details structure or NULL 215 * 216 * Delete scheduling elements (0x040F) 217 */ 218 static int 219 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 220 struct ice_aqc_delete_elem *buf, u16 buf_size, 221 u16 *grps_del, struct ice_sq_cd *cd) 222 { 223 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 224 grps_req, (void *)buf, buf_size, 225 grps_del, cd); 226 } 227 228 /** 229 * ice_sched_remove_elems - remove nodes from HW 230 * @hw: pointer to the HW struct 231 * @parent: pointer to the parent node 232 * @node_teid: node teid to be deleted 233 * 234 * This function remove nodes from HW 235 */ 236 static int 237 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 238 u32 node_teid) 239 { 240 DEFINE_FLEX(struct ice_aqc_delete_elem, buf, teid, 1); 241 u16 buf_size = __struct_size(buf); 242 u16 num_groups_removed = 0; 243 int status; 244 245 buf->hdr.parent_teid = parent->info.node_teid; 246 buf->hdr.num_elems = cpu_to_le16(1); 247 buf->teid[0] = cpu_to_le32(node_teid); 248 249 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 250 &num_groups_removed, NULL); 251 if (status || num_groups_removed != 1) 252 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 253 hw->adminq.sq_last_status); 254 255 return status; 256 } 257 258 /** 259 * ice_sched_get_first_node - get the first node of the given layer 260 * @pi: port information structure 261 * @parent: pointer the base node of the subtree 262 * @layer: layer number 263 * 264 * This function retrieves the first node of the given layer from the subtree 265 */ 266 static struct ice_sched_node * 267 ice_sched_get_first_node(struct ice_port_info *pi, 268 struct ice_sched_node *parent, u8 layer) 269 { 270 return pi->sib_head[parent->tc_num][layer]; 271 } 272 273 /** 274 * ice_sched_get_tc_node - get pointer to TC node 275 * @pi: port information structure 276 * @tc: TC number 277 * 278 * This function returns the TC node pointer 279 */ 280 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 281 { 282 u8 i; 283 284 if (!pi || !pi->root) 285 return NULL; 286 for (i = 0; i < pi->root->num_children; i++) 287 if (pi->root->children[i]->tc_num == tc) 288 return pi->root->children[i]; 289 return NULL; 290 } 291 292 /** 293 * ice_free_sched_node - Free a Tx scheduler node from SW DB 294 * @pi: port information structure 295 * @node: pointer to the ice_sched_node struct 296 * 297 * This function frees up a node from SW DB as well as from HW 298 * 299 * This function needs to be called with the port_info->sched_lock held 300 */ 301 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 302 { 303 struct ice_sched_node *parent; 304 struct ice_hw *hw = pi->hw; 305 u8 i, j; 306 307 /* Free the children before freeing up the parent node 308 * The parent array is updated below and that shifts the nodes 309 * in the array. So always pick the first child if num children > 0 310 */ 311 while (node->num_children) 312 ice_free_sched_node(pi, node->children[0]); 313 314 /* Leaf, TC and root nodes can't be deleted by SW */ 315 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 316 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 317 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 318 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 319 u32 teid = le32_to_cpu(node->info.node_teid); 320 321 ice_sched_remove_elems(hw, node->parent, teid); 322 } 323 parent = node->parent; 324 /* root has no parent */ 325 if (parent) { 326 struct ice_sched_node *p; 327 328 /* update the parent */ 329 for (i = 0; i < parent->num_children; i++) 330 if (parent->children[i] == node) { 331 for (j = i + 1; j < parent->num_children; j++) 332 parent->children[j - 1] = 333 parent->children[j]; 334 parent->num_children--; 335 break; 336 } 337 338 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 339 while (p) { 340 if (p->sibling == node) { 341 p->sibling = node->sibling; 342 break; 343 } 344 p = p->sibling; 345 } 346 347 /* update the sibling head if head is getting removed */ 348 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 349 pi->sib_head[node->tc_num][node->tx_sched_layer] = 350 node->sibling; 351 } 352 353 devm_kfree(ice_hw_to_dev(hw), node->children); 354 kfree(node->name); 355 xa_erase(&pi->sched_node_ids, node->id); 356 devm_kfree(ice_hw_to_dev(hw), node); 357 } 358 359 /** 360 * ice_aq_get_dflt_topo - gets default scheduler topology 361 * @hw: pointer to the HW struct 362 * @lport: logical port number 363 * @buf: pointer to buffer 364 * @buf_size: buffer size in bytes 365 * @num_branches: returns total number of queue to port branches 366 * @cd: pointer to command details structure or NULL 367 * 368 * Get default scheduler topology (0x400) 369 */ 370 static int 371 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 372 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 373 u8 *num_branches, struct ice_sq_cd *cd) 374 { 375 struct ice_aqc_get_topo *cmd; 376 struct ice_aq_desc desc; 377 int status; 378 379 cmd = &desc.params.get_topo; 380 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 381 cmd->port_num = lport; 382 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 383 if (!status && num_branches) 384 *num_branches = cmd->num_branches; 385 386 return status; 387 } 388 389 /** 390 * ice_aq_add_sched_elems - adds scheduling element 391 * @hw: pointer to the HW struct 392 * @grps_req: the number of groups that are requested to be added 393 * @buf: pointer to buffer 394 * @buf_size: buffer size in bytes 395 * @grps_added: returns total number of groups added 396 * @cd: pointer to command details structure or NULL 397 * 398 * Add scheduling elements (0x0401) 399 */ 400 static int 401 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 402 struct ice_aqc_add_elem *buf, u16 buf_size, 403 u16 *grps_added, struct ice_sq_cd *cd) 404 { 405 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 406 grps_req, (void *)buf, buf_size, 407 grps_added, cd); 408 } 409 410 /** 411 * ice_aq_cfg_sched_elems - configures scheduler elements 412 * @hw: pointer to the HW struct 413 * @elems_req: number of elements to configure 414 * @buf: pointer to buffer 415 * @buf_size: buffer size in bytes 416 * @elems_cfgd: returns total number of elements configured 417 * @cd: pointer to command details structure or NULL 418 * 419 * Configure scheduling elements (0x0403) 420 */ 421 static int 422 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, 423 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 424 u16 *elems_cfgd, struct ice_sq_cd *cd) 425 { 426 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, 427 elems_req, (void *)buf, buf_size, 428 elems_cfgd, cd); 429 } 430 431 /** 432 * ice_aq_move_sched_elems - move scheduler element (just 1 group) 433 * @hw: pointer to the HW struct 434 * @buf: pointer to buffer 435 * @buf_size: buffer size in bytes 436 * @grps_movd: returns total number of groups moved 437 * 438 * Move scheduling elements (0x0408) 439 */ 440 int 441 ice_aq_move_sched_elems(struct ice_hw *hw, struct ice_aqc_move_elem *buf, 442 u16 buf_size, u16 *grps_movd) 443 { 444 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems, 445 1, buf, buf_size, grps_movd, NULL); 446 } 447 448 /** 449 * ice_aq_suspend_sched_elems - suspend scheduler elements 450 * @hw: pointer to the HW struct 451 * @elems_req: number of elements to suspend 452 * @buf: pointer to buffer 453 * @buf_size: buffer size in bytes 454 * @elems_ret: returns total number of elements suspended 455 * @cd: pointer to command details structure or NULL 456 * 457 * Suspend scheduling elements (0x0409) 458 */ 459 static int 460 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 461 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 462 { 463 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 464 elems_req, (void *)buf, buf_size, 465 elems_ret, cd); 466 } 467 468 /** 469 * ice_aq_resume_sched_elems - resume scheduler elements 470 * @hw: pointer to the HW struct 471 * @elems_req: number of elements to resume 472 * @buf: pointer to buffer 473 * @buf_size: buffer size in bytes 474 * @elems_ret: returns total number of elements resumed 475 * @cd: pointer to command details structure or NULL 476 * 477 * resume scheduling elements (0x040A) 478 */ 479 static int 480 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 481 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 482 { 483 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 484 elems_req, (void *)buf, buf_size, 485 elems_ret, cd); 486 } 487 488 /** 489 * ice_aq_query_sched_res - query scheduler resource 490 * @hw: pointer to the HW struct 491 * @buf_size: buffer size in bytes 492 * @buf: pointer to buffer 493 * @cd: pointer to command details structure or NULL 494 * 495 * Query scheduler resource allocation (0x0412) 496 */ 497 static int 498 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 499 struct ice_aqc_query_txsched_res_resp *buf, 500 struct ice_sq_cd *cd) 501 { 502 struct ice_aq_desc desc; 503 504 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 505 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 506 } 507 508 /** 509 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 510 * @hw: pointer to the HW struct 511 * @num_nodes: number of nodes 512 * @node_teids: array of node teids to be suspended or resumed 513 * @suspend: true means suspend / false means resume 514 * 515 * This function suspends or resumes HW nodes 516 */ 517 int 518 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 519 bool suspend) 520 { 521 u16 i, buf_size, num_elem_ret = 0; 522 __le32 *buf; 523 int status; 524 525 buf_size = sizeof(*buf) * num_nodes; 526 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 527 if (!buf) 528 return -ENOMEM; 529 530 for (i = 0; i < num_nodes; i++) 531 buf[i] = cpu_to_le32(node_teids[i]); 532 533 if (suspend) 534 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 535 buf_size, &num_elem_ret, 536 NULL); 537 else 538 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 539 buf_size, &num_elem_ret, 540 NULL); 541 if (status || num_elem_ret != num_nodes) 542 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 543 544 devm_kfree(ice_hw_to_dev(hw), buf); 545 return status; 546 } 547 548 /** 549 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 550 * @hw: pointer to the HW struct 551 * @vsi_handle: VSI handle 552 * @tc: TC number 553 * @new_numqs: number of queues 554 */ 555 static int 556 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 557 { 558 struct ice_vsi_ctx *vsi_ctx; 559 struct ice_q_ctx *q_ctx; 560 u16 idx; 561 562 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 563 if (!vsi_ctx) 564 return -EINVAL; 565 /* allocate LAN queue contexts */ 566 if (!vsi_ctx->lan_q_ctx[tc]) { 567 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 568 sizeof(*q_ctx), GFP_KERNEL); 569 if (!q_ctx) 570 return -ENOMEM; 571 572 for (idx = 0; idx < new_numqs; idx++) { 573 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE; 574 q_ctx[idx].q_teid = ICE_INVAL_TEID; 575 } 576 577 vsi_ctx->lan_q_ctx[tc] = q_ctx; 578 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 579 return 0; 580 } 581 /* num queues are increased, update the queue contexts */ 582 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 583 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 584 585 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 586 sizeof(*q_ctx), GFP_KERNEL); 587 if (!q_ctx) 588 return -ENOMEM; 589 590 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 591 prev_num * sizeof(*q_ctx)); 592 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 593 594 for (idx = prev_num; idx < new_numqs; idx++) { 595 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE; 596 q_ctx[idx].q_teid = ICE_INVAL_TEID; 597 } 598 599 vsi_ctx->lan_q_ctx[tc] = q_ctx; 600 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 601 } 602 return 0; 603 } 604 605 /** 606 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC 607 * @hw: pointer to the HW struct 608 * @vsi_handle: VSI handle 609 * @tc: TC number 610 * @new_numqs: number of queues 611 */ 612 static int 613 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 614 { 615 struct ice_vsi_ctx *vsi_ctx; 616 struct ice_q_ctx *q_ctx; 617 618 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 619 if (!vsi_ctx) 620 return -EINVAL; 621 /* allocate RDMA queue contexts */ 622 if (!vsi_ctx->rdma_q_ctx[tc]) { 623 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 624 new_numqs, 625 sizeof(*q_ctx), 626 GFP_KERNEL); 627 if (!vsi_ctx->rdma_q_ctx[tc]) 628 return -ENOMEM; 629 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 630 return 0; 631 } 632 /* num queues are increased, update the queue contexts */ 633 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) { 634 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc]; 635 636 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 637 sizeof(*q_ctx), GFP_KERNEL); 638 if (!q_ctx) 639 return -ENOMEM; 640 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc], 641 prev_num * sizeof(*q_ctx)); 642 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]); 643 vsi_ctx->rdma_q_ctx[tc] = q_ctx; 644 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 645 } 646 return 0; 647 } 648 649 /** 650 * ice_aq_rl_profile - performs a rate limiting task 651 * @hw: pointer to the HW struct 652 * @opcode: opcode for add, query, or remove profile(s) 653 * @num_profiles: the number of profiles 654 * @buf: pointer to buffer 655 * @buf_size: buffer size in bytes 656 * @num_processed: number of processed add or remove profile(s) to return 657 * @cd: pointer to command details structure 658 * 659 * RL profile function to add, query, or remove profile(s) 660 */ 661 static int 662 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, 663 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, 664 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) 665 { 666 struct ice_aqc_rl_profile *cmd; 667 struct ice_aq_desc desc; 668 int status; 669 670 cmd = &desc.params.rl_profile; 671 672 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 673 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 674 cmd->num_profiles = cpu_to_le16(num_profiles); 675 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 676 if (!status && num_processed) 677 *num_processed = le16_to_cpu(cmd->num_processed); 678 return status; 679 } 680 681 /** 682 * ice_aq_add_rl_profile - adds rate limiting profile(s) 683 * @hw: pointer to the HW struct 684 * @num_profiles: the number of profile(s) to be add 685 * @buf: pointer to buffer 686 * @buf_size: buffer size in bytes 687 * @num_profiles_added: total number of profiles added to return 688 * @cd: pointer to command details structure 689 * 690 * Add RL profile (0x0410) 691 */ 692 static int 693 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, 694 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 695 u16 *num_profiles_added, struct ice_sq_cd *cd) 696 { 697 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, 698 buf, buf_size, num_profiles_added, cd); 699 } 700 701 /** 702 * ice_aq_remove_rl_profile - removes RL profile(s) 703 * @hw: pointer to the HW struct 704 * @num_profiles: the number of profile(s) to remove 705 * @buf: pointer to buffer 706 * @buf_size: buffer size in bytes 707 * @num_profiles_removed: total number of profiles removed to return 708 * @cd: pointer to command details structure or NULL 709 * 710 * Remove RL profile (0x0415) 711 */ 712 static int 713 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, 714 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 715 u16 *num_profiles_removed, struct ice_sq_cd *cd) 716 { 717 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, 718 num_profiles, buf, buf_size, 719 num_profiles_removed, cd); 720 } 721 722 /** 723 * ice_sched_del_rl_profile - remove RL profile 724 * @hw: pointer to the HW struct 725 * @rl_info: rate limit profile information 726 * 727 * If the profile ID is not referenced anymore, it removes profile ID with 728 * its associated parameters from HW DB,and locally. The caller needs to 729 * hold scheduler lock. 730 */ 731 static int 732 ice_sched_del_rl_profile(struct ice_hw *hw, 733 struct ice_aqc_rl_profile_info *rl_info) 734 { 735 struct ice_aqc_rl_profile_elem *buf; 736 u16 num_profiles_removed; 737 u16 num_profiles = 1; 738 int status; 739 740 if (rl_info->prof_id_ref != 0) 741 return -EBUSY; 742 743 /* Safe to remove profile ID */ 744 buf = &rl_info->profile; 745 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), 746 &num_profiles_removed, NULL); 747 if (status || num_profiles_removed != num_profiles) 748 return -EIO; 749 750 /* Delete stale entry now */ 751 list_del(&rl_info->list_entry); 752 devm_kfree(ice_hw_to_dev(hw), rl_info); 753 return status; 754 } 755 756 /** 757 * ice_sched_clear_rl_prof - clears RL prof entries 758 * @pi: port information structure 759 * 760 * This function removes all RL profile from HW as well as from SW DB. 761 */ 762 static void ice_sched_clear_rl_prof(struct ice_port_info *pi) 763 { 764 u16 ln; 765 766 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 767 struct ice_aqc_rl_profile_info *rl_prof_elem; 768 struct ice_aqc_rl_profile_info *rl_prof_tmp; 769 770 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 771 &pi->rl_prof_list[ln], list_entry) { 772 struct ice_hw *hw = pi->hw; 773 int status; 774 775 rl_prof_elem->prof_id_ref = 0; 776 status = ice_sched_del_rl_profile(hw, rl_prof_elem); 777 if (status) { 778 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 779 /* On error, free mem required */ 780 list_del(&rl_prof_elem->list_entry); 781 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 782 } 783 } 784 } 785 } 786 787 /** 788 * ice_sched_clear_agg - clears the aggregator related information 789 * @hw: pointer to the hardware structure 790 * 791 * This function removes aggregator list and free up aggregator related memory 792 * previously allocated. 793 */ 794 void ice_sched_clear_agg(struct ice_hw *hw) 795 { 796 struct ice_sched_agg_info *agg_info; 797 struct ice_sched_agg_info *atmp; 798 799 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 800 struct ice_sched_agg_vsi_info *agg_vsi_info; 801 struct ice_sched_agg_vsi_info *vtmp; 802 803 list_for_each_entry_safe(agg_vsi_info, vtmp, 804 &agg_info->agg_vsi_list, list_entry) { 805 list_del(&agg_vsi_info->list_entry); 806 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 807 } 808 list_del(&agg_info->list_entry); 809 devm_kfree(ice_hw_to_dev(hw), agg_info); 810 } 811 } 812 813 /** 814 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 815 * @pi: port information structure 816 * 817 * This function removes all the nodes from HW as well as from SW DB. 818 */ 819 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 820 { 821 if (!pi) 822 return; 823 /* remove RL profiles related lists */ 824 ice_sched_clear_rl_prof(pi); 825 if (pi->root) { 826 ice_free_sched_node(pi, pi->root); 827 pi->root = NULL; 828 } 829 } 830 831 /** 832 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 833 * @pi: port information structure 834 * 835 * Cleanup scheduling elements from SW DB 836 */ 837 void ice_sched_clear_port(struct ice_port_info *pi) 838 { 839 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 840 return; 841 842 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 843 mutex_lock(&pi->sched_lock); 844 ice_sched_clear_tx_topo(pi); 845 mutex_unlock(&pi->sched_lock); 846 mutex_destroy(&pi->sched_lock); 847 } 848 849 /** 850 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 851 * @hw: pointer to the HW struct 852 * 853 * Cleanup scheduling elements from SW DB for all the ports 854 */ 855 void ice_sched_cleanup_all(struct ice_hw *hw) 856 { 857 if (!hw) 858 return; 859 860 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 861 hw->layer_info = NULL; 862 863 ice_sched_clear_port(hw->port_info); 864 865 hw->num_tx_sched_layers = 0; 866 hw->num_tx_sched_phys_layers = 0; 867 hw->flattened_layers = 0; 868 hw->max_cgds = 0; 869 } 870 871 /** 872 * ice_sched_add_elems - add nodes to HW and SW DB 873 * @pi: port information structure 874 * @tc_node: pointer to the branch node 875 * @parent: pointer to the parent node 876 * @layer: layer number to add nodes 877 * @num_nodes: number of nodes 878 * @num_nodes_added: pointer to num nodes added 879 * @first_node_teid: if new nodes are added then return the TEID of first node 880 * @prealloc_nodes: preallocated nodes struct for software DB 881 * 882 * This function add nodes to HW as well as to SW DB for a given layer 883 */ 884 int 885 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 886 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 887 u16 *num_nodes_added, u32 *first_node_teid, 888 struct ice_sched_node **prealloc_nodes) 889 { 890 struct ice_sched_node *prev, *new_node; 891 struct ice_aqc_add_elem *buf; 892 u16 i, num_groups_added = 0; 893 struct ice_hw *hw = pi->hw; 894 size_t buf_size; 895 int status = 0; 896 u32 teid; 897 898 buf_size = struct_size(buf, generic, num_nodes); 899 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 900 if (!buf) 901 return -ENOMEM; 902 903 buf->hdr.parent_teid = parent->info.node_teid; 904 buf->hdr.num_elems = cpu_to_le16(num_nodes); 905 for (i = 0; i < num_nodes; i++) { 906 buf->generic[i].parent_teid = parent->info.node_teid; 907 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 908 buf->generic[i].data.valid_sections = 909 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 910 ICE_AQC_ELEM_VALID_EIR; 911 buf->generic[i].data.generic = 0; 912 buf->generic[i].data.cir_bw.bw_profile_idx = 913 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 914 buf->generic[i].data.cir_bw.bw_alloc = 915 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 916 buf->generic[i].data.eir_bw.bw_profile_idx = 917 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 918 buf->generic[i].data.eir_bw.bw_alloc = 919 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 920 } 921 922 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 923 &num_groups_added, NULL); 924 if (status || num_groups_added != 1) { 925 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 926 hw->adminq.sq_last_status); 927 devm_kfree(ice_hw_to_dev(hw), buf); 928 return -EIO; 929 } 930 931 *num_nodes_added = num_nodes; 932 /* add nodes to the SW DB */ 933 for (i = 0; i < num_nodes; i++) { 934 if (prealloc_nodes) 935 status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]); 936 else 937 status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL); 938 939 if (status) { 940 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n", 941 status); 942 break; 943 } 944 945 teid = le32_to_cpu(buf->generic[i].node_teid); 946 new_node = ice_sched_find_node_by_teid(parent, teid); 947 if (!new_node) { 948 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid); 949 break; 950 } 951 952 new_node->sibling = NULL; 953 new_node->tc_num = tc_node->tc_num; 954 new_node->tx_weight = ICE_SCHED_DFLT_BW_WT; 955 new_node->tx_share = ICE_SCHED_DFLT_BW; 956 new_node->tx_max = ICE_SCHED_DFLT_BW; 957 new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL); 958 if (!new_node->name) 959 return -ENOMEM; 960 961 status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX), 962 GFP_KERNEL); 963 if (status) { 964 ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n", 965 status); 966 break; 967 } 968 969 snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id); 970 971 /* add it to previous node sibling pointer */ 972 /* Note: siblings are not linked across branches */ 973 prev = ice_sched_get_first_node(pi, tc_node, layer); 974 if (prev && prev != new_node) { 975 while (prev->sibling) 976 prev = prev->sibling; 977 prev->sibling = new_node; 978 } 979 980 /* initialize the sibling head */ 981 if (!pi->sib_head[tc_node->tc_num][layer]) 982 pi->sib_head[tc_node->tc_num][layer] = new_node; 983 984 if (i == 0) 985 *first_node_teid = teid; 986 } 987 988 devm_kfree(ice_hw_to_dev(hw), buf); 989 return status; 990 } 991 992 /** 993 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer 994 * @pi: port information structure 995 * @tc_node: pointer to TC node 996 * @parent: pointer to parent node 997 * @layer: layer number to add nodes 998 * @num_nodes: number of nodes to be added 999 * @first_node_teid: pointer to the first node TEID 1000 * @num_nodes_added: pointer to number of nodes added 1001 * 1002 * Add nodes into specific HW layer. 1003 */ 1004 static int 1005 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi, 1006 struct ice_sched_node *tc_node, 1007 struct ice_sched_node *parent, u8 layer, 1008 u16 num_nodes, u32 *first_node_teid, 1009 u16 *num_nodes_added) 1010 { 1011 u16 max_child_nodes; 1012 1013 *num_nodes_added = 0; 1014 1015 if (!num_nodes) 1016 return 0; 1017 1018 if (!parent || layer < pi->hw->sw_entry_point_layer) 1019 return -EINVAL; 1020 1021 /* max children per node per layer */ 1022 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1023 1024 /* current number of children + required nodes exceed max children */ 1025 if ((parent->num_children + num_nodes) > max_child_nodes) { 1026 /* Fail if the parent is a TC node */ 1027 if (parent == tc_node) 1028 return -EIO; 1029 return -ENOSPC; 1030 } 1031 1032 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 1033 num_nodes_added, first_node_teid, NULL); 1034 } 1035 1036 /** 1037 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 1038 * @pi: port information structure 1039 * @tc_node: pointer to TC node 1040 * @parent: pointer to parent node 1041 * @layer: layer number to add nodes 1042 * @num_nodes: number of nodes to be added 1043 * @first_node_teid: pointer to the first node TEID 1044 * @num_nodes_added: pointer to number of nodes added 1045 * 1046 * This function add nodes to a given layer. 1047 */ 1048 int 1049 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 1050 struct ice_sched_node *tc_node, 1051 struct ice_sched_node *parent, u8 layer, 1052 u16 num_nodes, u32 *first_node_teid, 1053 u16 *num_nodes_added) 1054 { 1055 u32 *first_teid_ptr = first_node_teid; 1056 u16 new_num_nodes = num_nodes; 1057 int status = 0; 1058 1059 *num_nodes_added = 0; 1060 while (*num_nodes_added < num_nodes) { 1061 u16 max_child_nodes, num_added = 0; 1062 u32 temp; 1063 1064 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent, 1065 layer, new_num_nodes, 1066 first_teid_ptr, 1067 &num_added); 1068 if (!status) 1069 *num_nodes_added += num_added; 1070 /* added more nodes than requested ? */ 1071 if (*num_nodes_added > num_nodes) { 1072 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes, 1073 *num_nodes_added); 1074 status = -EIO; 1075 break; 1076 } 1077 /* break if all the nodes are added successfully */ 1078 if (!status && (*num_nodes_added == num_nodes)) 1079 break; 1080 /* break if the error is not max limit */ 1081 if (status && status != -ENOSPC) 1082 break; 1083 /* Exceeded the max children */ 1084 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1085 /* utilize all the spaces if the parent is not full */ 1086 if (parent->num_children < max_child_nodes) { 1087 new_num_nodes = max_child_nodes - parent->num_children; 1088 } else { 1089 /* This parent is full, try the next sibling */ 1090 parent = parent->sibling; 1091 /* Don't modify the first node TEID memory if the 1092 * first node was added already in the above call. 1093 * Instead send some temp memory for all other 1094 * recursive calls. 1095 */ 1096 if (num_added) 1097 first_teid_ptr = &temp; 1098 1099 new_num_nodes = num_nodes - *num_nodes_added; 1100 } 1101 } 1102 return status; 1103 } 1104 1105 /** 1106 * ice_sched_get_qgrp_layer - get the current queue group layer number 1107 * @hw: pointer to the HW struct 1108 * 1109 * This function returns the current queue group layer number 1110 */ 1111 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 1112 { 1113 /* It's always total layers - 1, the array is 0 relative so -2 */ 1114 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1115 } 1116 1117 /** 1118 * ice_sched_get_vsi_layer - get the current VSI layer number 1119 * @hw: pointer to the HW struct 1120 * 1121 * This function returns the current VSI layer number 1122 */ 1123 u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 1124 { 1125 /* Num Layers VSI layer 1126 * 9 6 1127 * 7 4 1128 * 5 or less sw_entry_point_layer 1129 */ 1130 /* calculate the VSI layer based on number of layers. */ 1131 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 1132 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 1133 1134 if (layer > hw->sw_entry_point_layer) 1135 return layer; 1136 } 1137 return hw->sw_entry_point_layer; 1138 } 1139 1140 /** 1141 * ice_sched_get_agg_layer - get the current aggregator layer number 1142 * @hw: pointer to the HW struct 1143 * 1144 * This function returns the current aggregator layer number 1145 */ 1146 u8 ice_sched_get_agg_layer(struct ice_hw *hw) 1147 { 1148 /* Num Layers aggregator layer 1149 * 9 4 1150 * 7 or less sw_entry_point_layer 1151 */ 1152 /* calculate the aggregator layer based on number of layers. */ 1153 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) { 1154 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET; 1155 1156 if (layer > hw->sw_entry_point_layer) 1157 return layer; 1158 } 1159 return hw->sw_entry_point_layer; 1160 } 1161 1162 /** 1163 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 1164 * @pi: port information structure 1165 * 1166 * This function removes the leaf node that was created by the FW 1167 * during initialization 1168 */ 1169 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 1170 { 1171 struct ice_sched_node *node; 1172 1173 node = pi->root; 1174 while (node) { 1175 if (!node->num_children) 1176 break; 1177 node = node->children[0]; 1178 } 1179 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 1180 u32 teid = le32_to_cpu(node->info.node_teid); 1181 int status; 1182 1183 /* remove the default leaf node */ 1184 status = ice_sched_remove_elems(pi->hw, node->parent, teid); 1185 if (!status) 1186 ice_free_sched_node(pi, node); 1187 } 1188 } 1189 1190 /** 1191 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 1192 * @pi: port information structure 1193 * 1194 * This function frees all the nodes except root and TC that were created by 1195 * the FW during initialization 1196 */ 1197 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 1198 { 1199 struct ice_sched_node *node; 1200 1201 ice_rm_dflt_leaf_node(pi); 1202 1203 /* remove the default nodes except TC and root nodes */ 1204 node = pi->root; 1205 while (node) { 1206 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 1207 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 1208 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 1209 ice_free_sched_node(pi, node); 1210 break; 1211 } 1212 1213 if (!node->num_children) 1214 break; 1215 node = node->children[0]; 1216 } 1217 } 1218 1219 /** 1220 * ice_sched_init_port - Initialize scheduler by querying information from FW 1221 * @pi: port info structure for the tree to cleanup 1222 * 1223 * This function is the initial call to find the total number of Tx scheduler 1224 * resources, default topology created by firmware and storing the information 1225 * in SW DB. 1226 */ 1227 int ice_sched_init_port(struct ice_port_info *pi) 1228 { 1229 struct ice_aqc_get_topo_elem *buf; 1230 struct ice_hw *hw; 1231 u8 num_branches; 1232 u16 num_elems; 1233 int status; 1234 u8 i, j; 1235 1236 if (!pi) 1237 return -EINVAL; 1238 hw = pi->hw; 1239 1240 /* Query the Default Topology from FW */ 1241 buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 1242 if (!buf) 1243 return -ENOMEM; 1244 1245 /* Query default scheduling tree topology */ 1246 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 1247 &num_branches, NULL); 1248 if (status) 1249 goto err_init_port; 1250 1251 /* num_branches should be between 1-8 */ 1252 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 1253 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 1254 num_branches); 1255 status = -EINVAL; 1256 goto err_init_port; 1257 } 1258 1259 /* get the number of elements on the default/first branch */ 1260 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 1261 1262 /* num_elems should always be between 1-9 */ 1263 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 1264 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 1265 num_elems); 1266 status = -EINVAL; 1267 goto err_init_port; 1268 } 1269 1270 /* If the last node is a leaf node then the index of the queue group 1271 * layer is two less than the number of elements. 1272 */ 1273 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1274 ICE_AQC_ELEM_TYPE_LEAF) 1275 pi->last_node_teid = 1276 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1277 else 1278 pi->last_node_teid = 1279 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1280 1281 /* Insert the Tx Sched root node */ 1282 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1283 if (status) 1284 goto err_init_port; 1285 1286 /* Parse the default tree and cache the information */ 1287 for (i = 0; i < num_branches; i++) { 1288 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1289 1290 /* Skip root element as already inserted */ 1291 for (j = 1; j < num_elems; j++) { 1292 /* update the sw entry point */ 1293 if (buf[0].generic[j].data.elem_type == 1294 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1295 hw->sw_entry_point_layer = j; 1296 1297 status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL); 1298 if (status) 1299 goto err_init_port; 1300 } 1301 } 1302 1303 /* Remove the default nodes. */ 1304 if (pi->root) 1305 ice_sched_rm_dflt_nodes(pi); 1306 1307 /* initialize the port for handling the scheduler tree */ 1308 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1309 mutex_init(&pi->sched_lock); 1310 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1311 INIT_LIST_HEAD(&pi->rl_prof_list[i]); 1312 1313 err_init_port: 1314 if (status && pi->root) { 1315 ice_free_sched_node(pi, pi->root); 1316 pi->root = NULL; 1317 } 1318 1319 kfree(buf); 1320 return status; 1321 } 1322 1323 /** 1324 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1325 * @hw: pointer to the HW struct 1326 * 1327 * query FW for allocated scheduler resources and store in HW struct 1328 */ 1329 int ice_sched_query_res_alloc(struct ice_hw *hw) 1330 { 1331 struct ice_aqc_query_txsched_res_resp *buf; 1332 __le16 max_sibl; 1333 int status = 0; 1334 u16 i; 1335 1336 if (hw->layer_info) 1337 return status; 1338 1339 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1340 if (!buf) 1341 return -ENOMEM; 1342 1343 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1344 if (status) 1345 goto sched_query_out; 1346 1347 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1348 hw->num_tx_sched_phys_layers = 1349 le16_to_cpu(buf->sched_props.phys_levels); 1350 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1351 hw->max_cgds = buf->sched_props.max_pf_cgds; 1352 1353 /* max sibling group size of current layer refers to the max children 1354 * of the below layer node. 1355 * layer 1 node max children will be layer 2 max sibling group size 1356 * layer 2 node max children will be layer 3 max sibling group size 1357 * and so on. This array will be populated from root (index 0) to 1358 * qgroup layer 7. Leaf node has no children. 1359 */ 1360 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { 1361 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; 1362 hw->max_children[i] = le16_to_cpu(max_sibl); 1363 } 1364 1365 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1366 (hw->num_tx_sched_layers * 1367 sizeof(*hw->layer_info)), 1368 GFP_KERNEL); 1369 if (!hw->layer_info) { 1370 status = -ENOMEM; 1371 goto sched_query_out; 1372 } 1373 1374 sched_query_out: 1375 devm_kfree(ice_hw_to_dev(hw), buf); 1376 return status; 1377 } 1378 1379 /** 1380 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency 1381 * @hw: pointer to the HW struct 1382 * 1383 * Determine the PSM clock frequency and store in HW struct 1384 */ 1385 void ice_sched_get_psm_clk_freq(struct ice_hw *hw) 1386 { 1387 u32 val, clk_src; 1388 1389 val = rd32(hw, GLGEN_CLKSTAT_SRC); 1390 clk_src = FIELD_GET(GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M, val); 1391 1392 #define PSM_CLK_SRC_367_MHZ 0x0 1393 #define PSM_CLK_SRC_416_MHZ 0x1 1394 #define PSM_CLK_SRC_446_MHZ 0x2 1395 #define PSM_CLK_SRC_390_MHZ 0x3 1396 1397 switch (clk_src) { 1398 case PSM_CLK_SRC_367_MHZ: 1399 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ; 1400 break; 1401 case PSM_CLK_SRC_416_MHZ: 1402 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ; 1403 break; 1404 case PSM_CLK_SRC_446_MHZ: 1405 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1406 break; 1407 case PSM_CLK_SRC_390_MHZ: 1408 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ; 1409 break; 1410 default: 1411 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n", 1412 clk_src); 1413 /* fall back to a safe default */ 1414 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1415 } 1416 } 1417 1418 /** 1419 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1420 * @hw: pointer to the HW struct 1421 * @base: pointer to the base node 1422 * @node: pointer to the node to search 1423 * 1424 * This function checks whether a given node is part of the base node 1425 * subtree or not 1426 */ 1427 static bool 1428 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1429 struct ice_sched_node *node) 1430 { 1431 u8 i; 1432 1433 for (i = 0; i < base->num_children; i++) { 1434 struct ice_sched_node *child = base->children[i]; 1435 1436 if (node == child) 1437 return true; 1438 1439 if (child->tx_sched_layer > node->tx_sched_layer) 1440 return false; 1441 1442 /* this recursion is intentional, and wouldn't 1443 * go more than 8 calls 1444 */ 1445 if (ice_sched_find_node_in_subtree(hw, child, node)) 1446 return true; 1447 } 1448 return false; 1449 } 1450 1451 /** 1452 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node 1453 * @pi: port information structure 1454 * @vsi_node: software VSI handle 1455 * @qgrp_node: first queue group node identified for scanning 1456 * @owner: LAN or RDMA 1457 * 1458 * This function retrieves a free LAN or RDMA queue group node by scanning 1459 * qgrp_node and its siblings for the queue group with the fewest number 1460 * of queues currently assigned. 1461 */ 1462 static struct ice_sched_node * 1463 ice_sched_get_free_qgrp(struct ice_port_info *pi, 1464 struct ice_sched_node *vsi_node, 1465 struct ice_sched_node *qgrp_node, u8 owner) 1466 { 1467 struct ice_sched_node *min_qgrp; 1468 u8 min_children; 1469 1470 if (!qgrp_node) 1471 return qgrp_node; 1472 min_children = qgrp_node->num_children; 1473 if (!min_children) 1474 return qgrp_node; 1475 min_qgrp = qgrp_node; 1476 /* scan all queue groups until find a node which has less than the 1477 * minimum number of children. This way all queue group nodes get 1478 * equal number of shares and active. The bandwidth will be equally 1479 * distributed across all queues. 1480 */ 1481 while (qgrp_node) { 1482 /* make sure the qgroup node is part of the VSI subtree */ 1483 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1484 if (qgrp_node->num_children < min_children && 1485 qgrp_node->owner == owner) { 1486 /* replace the new min queue group node */ 1487 min_qgrp = qgrp_node; 1488 min_children = min_qgrp->num_children; 1489 /* break if it has no children, */ 1490 if (!min_children) 1491 break; 1492 } 1493 qgrp_node = qgrp_node->sibling; 1494 } 1495 return min_qgrp; 1496 } 1497 1498 /** 1499 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1500 * @pi: port information structure 1501 * @vsi_handle: software VSI handle 1502 * @tc: branch number 1503 * @owner: LAN or RDMA 1504 * 1505 * This function retrieves a free LAN or RDMA queue group node 1506 */ 1507 struct ice_sched_node * 1508 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1509 u8 owner) 1510 { 1511 struct ice_sched_node *vsi_node, *qgrp_node; 1512 struct ice_vsi_ctx *vsi_ctx; 1513 u16 max_children; 1514 u8 qgrp_layer; 1515 1516 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1517 max_children = pi->hw->max_children[qgrp_layer]; 1518 1519 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1520 if (!vsi_ctx) 1521 return NULL; 1522 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1523 /* validate invalid VSI ID */ 1524 if (!vsi_node) 1525 return NULL; 1526 1527 /* get the first queue group node from VSI sub-tree */ 1528 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1529 while (qgrp_node) { 1530 /* make sure the qgroup node is part of the VSI subtree */ 1531 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1532 if (qgrp_node->num_children < max_children && 1533 qgrp_node->owner == owner) 1534 break; 1535 qgrp_node = qgrp_node->sibling; 1536 } 1537 1538 /* Select the best queue group */ 1539 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); 1540 } 1541 1542 /** 1543 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1544 * @pi: pointer to the port information structure 1545 * @tc_node: pointer to the TC node 1546 * @vsi_handle: software VSI handle 1547 * 1548 * This function retrieves a VSI node for a given VSI ID from a given 1549 * TC branch 1550 */ 1551 static struct ice_sched_node * 1552 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1553 u16 vsi_handle) 1554 { 1555 struct ice_sched_node *node; 1556 u8 vsi_layer; 1557 1558 vsi_layer = ice_sched_get_vsi_layer(pi->hw); 1559 node = ice_sched_get_first_node(pi, tc_node, vsi_layer); 1560 1561 /* Check whether it already exists */ 1562 while (node) { 1563 if (node->vsi_handle == vsi_handle) 1564 return node; 1565 node = node->sibling; 1566 } 1567 1568 return node; 1569 } 1570 1571 /** 1572 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID 1573 * @pi: pointer to the port information structure 1574 * @tc_node: pointer to the TC node 1575 * @agg_id: aggregator ID 1576 * 1577 * This function retrieves an aggregator node for a given aggregator ID from 1578 * a given TC branch 1579 */ 1580 struct ice_sched_node * 1581 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1582 u32 agg_id) 1583 { 1584 struct ice_sched_node *node; 1585 struct ice_hw *hw = pi->hw; 1586 u8 agg_layer; 1587 1588 if (!hw) 1589 return NULL; 1590 agg_layer = ice_sched_get_agg_layer(hw); 1591 node = ice_sched_get_first_node(pi, tc_node, agg_layer); 1592 1593 /* Check whether it already exists */ 1594 while (node) { 1595 if (node->agg_id == agg_id) 1596 return node; 1597 node = node->sibling; 1598 } 1599 1600 return node; 1601 } 1602 1603 /** 1604 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1605 * @hw: pointer to the HW struct 1606 * @num_qs: number of queues 1607 * @num_nodes: num nodes array 1608 * 1609 * This function calculates the number of VSI child nodes based on the 1610 * number of queues. 1611 */ 1612 static void 1613 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1614 { 1615 u16 num = num_qs; 1616 u8 i, qgl, vsil; 1617 1618 qgl = ice_sched_get_qgrp_layer(hw); 1619 vsil = ice_sched_get_vsi_layer(hw); 1620 1621 /* calculate num nodes from queue group to VSI layer */ 1622 for (i = qgl; i > vsil; i--) { 1623 /* round to the next integer if there is a remainder */ 1624 num = DIV_ROUND_UP(num, hw->max_children[i]); 1625 1626 /* need at least one node */ 1627 num_nodes[i] = num ? num : 1; 1628 } 1629 } 1630 1631 /** 1632 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1633 * @pi: port information structure 1634 * @vsi_handle: software VSI handle 1635 * @tc_node: pointer to the TC node 1636 * @num_nodes: pointer to the num nodes that needs to be added per layer 1637 * @owner: node owner (LAN or RDMA) 1638 * 1639 * This function adds the VSI child nodes to tree. It gets called for 1640 * LAN and RDMA separately. 1641 */ 1642 static int 1643 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1644 struct ice_sched_node *tc_node, u16 *num_nodes, 1645 u8 owner) 1646 { 1647 struct ice_sched_node *parent, *node; 1648 struct ice_hw *hw = pi->hw; 1649 u32 first_node_teid; 1650 u16 num_added = 0; 1651 u8 i, qgl, vsil; 1652 1653 qgl = ice_sched_get_qgrp_layer(hw); 1654 vsil = ice_sched_get_vsi_layer(hw); 1655 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1656 for (i = vsil + 1; i <= qgl; i++) { 1657 int status; 1658 1659 if (!parent) 1660 return -EIO; 1661 1662 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1663 num_nodes[i], 1664 &first_node_teid, 1665 &num_added); 1666 if (status || num_nodes[i] != num_added) 1667 return -EIO; 1668 1669 /* The newly added node can be a new parent for the next 1670 * layer nodes 1671 */ 1672 if (num_added) { 1673 parent = ice_sched_find_node_by_teid(tc_node, 1674 first_node_teid); 1675 node = parent; 1676 while (node) { 1677 node->owner = owner; 1678 node = node->sibling; 1679 } 1680 } else { 1681 parent = parent->children[0]; 1682 } 1683 } 1684 1685 return 0; 1686 } 1687 1688 /** 1689 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1690 * @pi: pointer to the port info structure 1691 * @tc_node: pointer to TC node 1692 * @num_nodes: pointer to num nodes array 1693 * 1694 * This function calculates the number of supported nodes needed to add this 1695 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1696 * layers 1697 */ 1698 static void 1699 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi, 1700 struct ice_sched_node *tc_node, u16 *num_nodes) 1701 { 1702 struct ice_sched_node *node; 1703 u8 vsil; 1704 int i; 1705 1706 vsil = ice_sched_get_vsi_layer(pi->hw); 1707 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) 1708 /* Add intermediate nodes if TC has no children and 1709 * need at least one node for VSI 1710 */ 1711 if (!tc_node->num_children || i == vsil) { 1712 num_nodes[i]++; 1713 } else { 1714 /* If intermediate nodes are reached max children 1715 * then add a new one. 1716 */ 1717 node = ice_sched_get_first_node(pi, tc_node, (u8)i); 1718 /* scan all the siblings */ 1719 while (node) { 1720 if (node->num_children < pi->hw->max_children[i]) 1721 break; 1722 node = node->sibling; 1723 } 1724 1725 /* tree has one intermediate node to add this new VSI. 1726 * So no need to calculate supported nodes for below 1727 * layers. 1728 */ 1729 if (node) 1730 break; 1731 /* all the nodes are full, allocate a new one */ 1732 num_nodes[i]++; 1733 } 1734 } 1735 1736 /** 1737 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1738 * @pi: port information structure 1739 * @vsi_handle: software VSI handle 1740 * @tc_node: pointer to TC node 1741 * @num_nodes: pointer to num nodes array 1742 * 1743 * This function adds the VSI supported nodes into Tx tree including the 1744 * VSI, its parent and intermediate nodes in below layers 1745 */ 1746 static int 1747 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1748 struct ice_sched_node *tc_node, u16 *num_nodes) 1749 { 1750 struct ice_sched_node *parent = tc_node; 1751 u32 first_node_teid; 1752 u16 num_added = 0; 1753 u8 i, vsil; 1754 1755 if (!pi) 1756 return -EINVAL; 1757 1758 vsil = ice_sched_get_vsi_layer(pi->hw); 1759 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1760 int status; 1761 1762 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1763 i, num_nodes[i], 1764 &first_node_teid, 1765 &num_added); 1766 if (status || num_nodes[i] != num_added) 1767 return -EIO; 1768 1769 /* The newly added node can be a new parent for the next 1770 * layer nodes 1771 */ 1772 if (num_added) 1773 parent = ice_sched_find_node_by_teid(tc_node, 1774 first_node_teid); 1775 else 1776 parent = parent->children[0]; 1777 1778 if (!parent) 1779 return -EIO; 1780 1781 if (i == vsil) 1782 parent->vsi_handle = vsi_handle; 1783 } 1784 1785 return 0; 1786 } 1787 1788 /** 1789 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1790 * @pi: port information structure 1791 * @vsi_handle: software VSI handle 1792 * @tc: TC number 1793 * 1794 * This function adds a new VSI into scheduler tree 1795 */ 1796 static int 1797 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1798 { 1799 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1800 struct ice_sched_node *tc_node; 1801 1802 tc_node = ice_sched_get_tc_node(pi, tc); 1803 if (!tc_node) 1804 return -EINVAL; 1805 1806 /* calculate number of supported nodes needed for this VSI */ 1807 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes); 1808 1809 /* add VSI supported nodes to TC subtree */ 1810 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1811 num_nodes); 1812 } 1813 1814 /** 1815 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1816 * @pi: port information structure 1817 * @vsi_handle: software VSI handle 1818 * @tc: TC number 1819 * @new_numqs: new number of max queues 1820 * @owner: owner of this subtree 1821 * 1822 * This function updates the VSI child nodes based on the number of queues 1823 */ 1824 static int 1825 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1826 u8 tc, u16 new_numqs, u8 owner) 1827 { 1828 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1829 struct ice_sched_node *vsi_node; 1830 struct ice_sched_node *tc_node; 1831 struct ice_vsi_ctx *vsi_ctx; 1832 struct ice_hw *hw = pi->hw; 1833 u16 prev_numqs; 1834 int status = 0; 1835 1836 tc_node = ice_sched_get_tc_node(pi, tc); 1837 if (!tc_node) 1838 return -EIO; 1839 1840 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1841 if (!vsi_node) 1842 return -EIO; 1843 1844 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1845 if (!vsi_ctx) 1846 return -EINVAL; 1847 1848 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1849 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1850 else 1851 prev_numqs = vsi_ctx->sched.max_rdmaq[tc]; 1852 /* num queues are not changed or less than the previous number */ 1853 if (new_numqs <= prev_numqs) 1854 return status; 1855 if (owner == ICE_SCHED_NODE_OWNER_LAN) { 1856 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1857 if (status) 1858 return status; 1859 } else { 1860 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs); 1861 if (status) 1862 return status; 1863 } 1864 1865 if (new_numqs) 1866 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1867 /* Keep the max number of queue configuration all the time. Update the 1868 * tree only if number of queues > previous number of queues. This may 1869 * leave some extra nodes in the tree if number of queues < previous 1870 * number but that wouldn't harm anything. Removing those extra nodes 1871 * may complicate the code if those nodes are part of SRL or 1872 * individually rate limited. 1873 */ 1874 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1875 new_num_nodes, owner); 1876 if (status) 1877 return status; 1878 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1879 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1880 else 1881 vsi_ctx->sched.max_rdmaq[tc] = new_numqs; 1882 1883 return 0; 1884 } 1885 1886 /** 1887 * ice_sched_cfg_vsi - configure the new/existing VSI 1888 * @pi: port information structure 1889 * @vsi_handle: software VSI handle 1890 * @tc: TC number 1891 * @maxqs: max number of queues 1892 * @owner: LAN or RDMA 1893 * @enable: TC enabled or disabled 1894 * 1895 * This function adds/updates VSI nodes based on the number of queues. If TC is 1896 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1897 * disabled then suspend the VSI if it is not already. 1898 */ 1899 int 1900 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1901 u8 owner, bool enable) 1902 { 1903 struct ice_sched_node *vsi_node, *tc_node; 1904 struct ice_vsi_ctx *vsi_ctx; 1905 struct ice_hw *hw = pi->hw; 1906 int status = 0; 1907 1908 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1909 tc_node = ice_sched_get_tc_node(pi, tc); 1910 if (!tc_node) 1911 return -EINVAL; 1912 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1913 if (!vsi_ctx) 1914 return -EINVAL; 1915 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1916 1917 /* suspend the VSI if TC is not enabled */ 1918 if (!enable) { 1919 if (vsi_node && vsi_node->in_use) { 1920 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1921 1922 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1923 true); 1924 if (!status) 1925 vsi_node->in_use = false; 1926 } 1927 return status; 1928 } 1929 1930 /* TC is enabled, if it is a new VSI then add it to the tree */ 1931 if (!vsi_node) { 1932 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1933 if (status) 1934 return status; 1935 1936 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1937 if (!vsi_node) 1938 return -EIO; 1939 1940 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1941 vsi_node->in_use = true; 1942 /* invalidate the max queues whenever VSI gets added first time 1943 * into the scheduler tree (boot or after reset). We need to 1944 * recreate the child nodes all the time in these cases. 1945 */ 1946 vsi_ctx->sched.max_lanq[tc] = 0; 1947 vsi_ctx->sched.max_rdmaq[tc] = 0; 1948 } 1949 1950 /* update the VSI child nodes */ 1951 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1952 owner); 1953 if (status) 1954 return status; 1955 1956 /* TC is enabled, resume the VSI if it is in the suspend state */ 1957 if (!vsi_node->in_use) { 1958 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1959 1960 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1961 if (!status) 1962 vsi_node->in_use = true; 1963 } 1964 1965 return status; 1966 } 1967 1968 /** 1969 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry 1970 * @pi: port information structure 1971 * @vsi_handle: software VSI handle 1972 * 1973 * This function removes single aggregator VSI info entry from 1974 * aggregator list. 1975 */ 1976 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1977 { 1978 struct ice_sched_agg_info *agg_info; 1979 struct ice_sched_agg_info *atmp; 1980 1981 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1982 list_entry) { 1983 struct ice_sched_agg_vsi_info *agg_vsi_info; 1984 struct ice_sched_agg_vsi_info *vtmp; 1985 1986 list_for_each_entry_safe(agg_vsi_info, vtmp, 1987 &agg_info->agg_vsi_list, list_entry) 1988 if (agg_vsi_info->vsi_handle == vsi_handle) { 1989 list_del(&agg_vsi_info->list_entry); 1990 devm_kfree(ice_hw_to_dev(pi->hw), 1991 agg_vsi_info); 1992 return; 1993 } 1994 } 1995 } 1996 1997 /** 1998 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 1999 * @node: pointer to the sub-tree node 2000 * 2001 * This function checks for a leaf node presence in a given sub-tree node. 2002 */ 2003 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 2004 { 2005 u8 i; 2006 2007 for (i = 0; i < node->num_children; i++) 2008 if (ice_sched_is_leaf_node_present(node->children[i])) 2009 return true; 2010 /* check for a leaf node */ 2011 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 2012 } 2013 2014 /** 2015 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 2016 * @pi: port information structure 2017 * @vsi_handle: software VSI handle 2018 * @owner: LAN or RDMA 2019 * 2020 * This function removes the VSI and its LAN or RDMA children nodes from the 2021 * scheduler tree. 2022 */ 2023 static int 2024 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 2025 { 2026 struct ice_vsi_ctx *vsi_ctx; 2027 int status = -EINVAL; 2028 u8 i; 2029 2030 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 2031 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2032 return status; 2033 mutex_lock(&pi->sched_lock); 2034 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 2035 if (!vsi_ctx) 2036 goto exit_sched_rm_vsi_cfg; 2037 2038 ice_for_each_traffic_class(i) { 2039 struct ice_sched_node *vsi_node, *tc_node; 2040 u8 j = 0; 2041 2042 tc_node = ice_sched_get_tc_node(pi, i); 2043 if (!tc_node) 2044 continue; 2045 2046 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2047 if (!vsi_node) 2048 continue; 2049 2050 if (ice_sched_is_leaf_node_present(vsi_node)) { 2051 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i); 2052 status = -EBUSY; 2053 goto exit_sched_rm_vsi_cfg; 2054 } 2055 while (j < vsi_node->num_children) { 2056 if (vsi_node->children[j]->owner == owner) { 2057 ice_free_sched_node(pi, vsi_node->children[j]); 2058 2059 /* reset the counter again since the num 2060 * children will be updated after node removal 2061 */ 2062 j = 0; 2063 } else { 2064 j++; 2065 } 2066 } 2067 /* remove the VSI if it has no children */ 2068 if (!vsi_node->num_children) { 2069 ice_free_sched_node(pi, vsi_node); 2070 vsi_ctx->sched.vsi_node[i] = NULL; 2071 2072 /* clean up aggregator related VSI info if any */ 2073 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 2074 } 2075 if (owner == ICE_SCHED_NODE_OWNER_LAN) 2076 vsi_ctx->sched.max_lanq[i] = 0; 2077 else 2078 vsi_ctx->sched.max_rdmaq[i] = 0; 2079 } 2080 status = 0; 2081 2082 exit_sched_rm_vsi_cfg: 2083 mutex_unlock(&pi->sched_lock); 2084 return status; 2085 } 2086 2087 /** 2088 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 2089 * @pi: port information structure 2090 * @vsi_handle: software VSI handle 2091 * 2092 * This function clears the VSI and its LAN children nodes from scheduler tree 2093 * for all TCs. 2094 */ 2095 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 2096 { 2097 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 2098 } 2099 2100 /** 2101 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes 2102 * @pi: port information structure 2103 * @vsi_handle: software VSI handle 2104 * 2105 * This function clears the VSI and its RDMA children nodes from scheduler tree 2106 * for all TCs. 2107 */ 2108 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle) 2109 { 2110 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA); 2111 } 2112 2113 /** 2114 * ice_get_agg_info - get the aggregator ID 2115 * @hw: pointer to the hardware structure 2116 * @agg_id: aggregator ID 2117 * 2118 * This function validates aggregator ID. The function returns info if 2119 * aggregator ID is present in list otherwise it returns null. 2120 */ 2121 static struct ice_sched_agg_info * 2122 ice_get_agg_info(struct ice_hw *hw, u32 agg_id) 2123 { 2124 struct ice_sched_agg_info *agg_info; 2125 2126 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 2127 if (agg_info->agg_id == agg_id) 2128 return agg_info; 2129 2130 return NULL; 2131 } 2132 2133 /** 2134 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree 2135 * @hw: pointer to the HW struct 2136 * @node: pointer to a child node 2137 * @num_nodes: num nodes count array 2138 * 2139 * This function walks through the aggregator subtree to find a free parent 2140 * node 2141 */ 2142 struct ice_sched_node * 2143 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node, 2144 u16 *num_nodes) 2145 { 2146 u8 l = node->tx_sched_layer; 2147 u8 vsil, i; 2148 2149 vsil = ice_sched_get_vsi_layer(hw); 2150 2151 /* Is it VSI parent layer ? */ 2152 if (l == vsil - 1) 2153 return (node->num_children < hw->max_children[l]) ? node : NULL; 2154 2155 /* We have intermediate nodes. Let's walk through the subtree. If the 2156 * intermediate node has space to add a new node then clear the count 2157 */ 2158 if (node->num_children < hw->max_children[l]) 2159 num_nodes[l] = 0; 2160 /* The below recursive call is intentional and wouldn't go more than 2161 * 2 or 3 iterations. 2162 */ 2163 2164 for (i = 0; i < node->num_children; i++) { 2165 struct ice_sched_node *parent; 2166 2167 parent = ice_sched_get_free_vsi_parent(hw, node->children[i], 2168 num_nodes); 2169 if (parent) 2170 return parent; 2171 } 2172 2173 return NULL; 2174 } 2175 2176 /** 2177 * ice_sched_update_parent - update the new parent in SW DB 2178 * @new_parent: pointer to a new parent node 2179 * @node: pointer to a child node 2180 * 2181 * This function removes the child from the old parent and adds it to a new 2182 * parent 2183 */ 2184 void 2185 ice_sched_update_parent(struct ice_sched_node *new_parent, 2186 struct ice_sched_node *node) 2187 { 2188 struct ice_sched_node *old_parent; 2189 u8 i, j; 2190 2191 old_parent = node->parent; 2192 2193 /* update the old parent children */ 2194 for (i = 0; i < old_parent->num_children; i++) 2195 if (old_parent->children[i] == node) { 2196 for (j = i + 1; j < old_parent->num_children; j++) 2197 old_parent->children[j - 1] = 2198 old_parent->children[j]; 2199 old_parent->num_children--; 2200 break; 2201 } 2202 2203 /* now move the node to a new parent */ 2204 new_parent->children[new_parent->num_children++] = node; 2205 node->parent = new_parent; 2206 node->info.parent_teid = new_parent->info.node_teid; 2207 } 2208 2209 /** 2210 * ice_sched_move_nodes - move child nodes to a given parent 2211 * @pi: port information structure 2212 * @parent: pointer to parent node 2213 * @num_items: number of child nodes to be moved 2214 * @list: pointer to child node teids 2215 * 2216 * This function move the child nodes to a given parent. 2217 */ 2218 int 2219 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent, 2220 u16 num_items, u32 *list) 2221 { 2222 DEFINE_FLEX(struct ice_aqc_move_elem, buf, teid, 1); 2223 u16 buf_len = __struct_size(buf); 2224 struct ice_sched_node *node; 2225 u16 i, grps_movd = 0; 2226 struct ice_hw *hw; 2227 int status = 0; 2228 2229 hw = pi->hw; 2230 2231 if (!parent || !num_items) 2232 return -EINVAL; 2233 2234 /* Does parent have enough space */ 2235 if (parent->num_children + num_items > 2236 hw->max_children[parent->tx_sched_layer]) 2237 return -ENOSPC; 2238 2239 for (i = 0; i < num_items; i++) { 2240 node = ice_sched_find_node_by_teid(pi->root, list[i]); 2241 if (!node) { 2242 status = -EINVAL; 2243 break; 2244 } 2245 2246 buf->hdr.src_parent_teid = node->info.parent_teid; 2247 buf->hdr.dest_parent_teid = parent->info.node_teid; 2248 buf->teid[0] = node->info.node_teid; 2249 buf->hdr.num_elems = cpu_to_le16(1); 2250 status = ice_aq_move_sched_elems(hw, buf, buf_len, &grps_movd); 2251 if (status && grps_movd != 1) { 2252 status = -EIO; 2253 break; 2254 } 2255 2256 /* update the SW DB */ 2257 ice_sched_update_parent(parent, node); 2258 } 2259 2260 return status; 2261 } 2262 2263 /** 2264 * ice_sched_move_vsi_to_agg - move VSI to aggregator node 2265 * @pi: port information structure 2266 * @vsi_handle: software VSI handle 2267 * @agg_id: aggregator ID 2268 * @tc: TC number 2269 * 2270 * This function moves a VSI to an aggregator node or its subtree. 2271 * Intermediate nodes may be created if required. 2272 */ 2273 static int 2274 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id, 2275 u8 tc) 2276 { 2277 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent; 2278 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2279 u32 first_node_teid, vsi_teid; 2280 u16 num_nodes_added; 2281 u8 aggl, vsil, i; 2282 int status; 2283 2284 tc_node = ice_sched_get_tc_node(pi, tc); 2285 if (!tc_node) 2286 return -EIO; 2287 2288 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2289 if (!agg_node) 2290 return -ENOENT; 2291 2292 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2293 if (!vsi_node) 2294 return -ENOENT; 2295 2296 /* Is this VSI already part of given aggregator? */ 2297 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node)) 2298 return 0; 2299 2300 aggl = ice_sched_get_agg_layer(pi->hw); 2301 vsil = ice_sched_get_vsi_layer(pi->hw); 2302 2303 /* set intermediate node count to 1 between aggregator and VSI layers */ 2304 for (i = aggl + 1; i < vsil; i++) 2305 num_nodes[i] = 1; 2306 2307 /* Check if the aggregator subtree has any free node to add the VSI */ 2308 for (i = 0; i < agg_node->num_children; i++) { 2309 parent = ice_sched_get_free_vsi_parent(pi->hw, 2310 agg_node->children[i], 2311 num_nodes); 2312 if (parent) 2313 goto move_nodes; 2314 } 2315 2316 /* add new nodes */ 2317 parent = agg_node; 2318 for (i = aggl + 1; i < vsil; i++) { 2319 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2320 num_nodes[i], 2321 &first_node_teid, 2322 &num_nodes_added); 2323 if (status || num_nodes[i] != num_nodes_added) 2324 return -EIO; 2325 2326 /* The newly added node can be a new parent for the next 2327 * layer nodes 2328 */ 2329 if (num_nodes_added) 2330 parent = ice_sched_find_node_by_teid(tc_node, 2331 first_node_teid); 2332 else 2333 parent = parent->children[0]; 2334 2335 if (!parent) 2336 return -EIO; 2337 } 2338 2339 move_nodes: 2340 vsi_teid = le32_to_cpu(vsi_node->info.node_teid); 2341 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid); 2342 } 2343 2344 /** 2345 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator 2346 * @pi: port information structure 2347 * @agg_info: aggregator info 2348 * @tc: traffic class number 2349 * @rm_vsi_info: true or false 2350 * 2351 * This function move all the VSI(s) to the default aggregator and delete 2352 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The 2353 * caller holds the scheduler lock. 2354 */ 2355 static int 2356 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi, 2357 struct ice_sched_agg_info *agg_info, u8 tc, 2358 bool rm_vsi_info) 2359 { 2360 struct ice_sched_agg_vsi_info *agg_vsi_info; 2361 struct ice_sched_agg_vsi_info *tmp; 2362 int status = 0; 2363 2364 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list, 2365 list_entry) { 2366 u16 vsi_handle = agg_vsi_info->vsi_handle; 2367 2368 /* Move VSI to default aggregator */ 2369 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc)) 2370 continue; 2371 2372 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, 2373 ICE_DFLT_AGG_ID, tc); 2374 if (status) 2375 break; 2376 2377 clear_bit(tc, agg_vsi_info->tc_bitmap); 2378 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) { 2379 list_del(&agg_vsi_info->list_entry); 2380 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); 2381 } 2382 } 2383 2384 return status; 2385 } 2386 2387 /** 2388 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not 2389 * @pi: port information structure 2390 * @node: node pointer 2391 * 2392 * This function checks whether the aggregator is attached with any VSI or not. 2393 */ 2394 static bool 2395 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node) 2396 { 2397 u8 vsil, i; 2398 2399 vsil = ice_sched_get_vsi_layer(pi->hw); 2400 if (node->tx_sched_layer < vsil - 1) { 2401 for (i = 0; i < node->num_children; i++) 2402 if (ice_sched_is_agg_inuse(pi, node->children[i])) 2403 return true; 2404 return false; 2405 } else { 2406 return node->num_children ? true : false; 2407 } 2408 } 2409 2410 /** 2411 * ice_sched_rm_agg_cfg - remove the aggregator node 2412 * @pi: port information structure 2413 * @agg_id: aggregator ID 2414 * @tc: TC number 2415 * 2416 * This function removes the aggregator node and intermediate nodes if any 2417 * from the given TC 2418 */ 2419 static int 2420 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2421 { 2422 struct ice_sched_node *tc_node, *agg_node; 2423 struct ice_hw *hw = pi->hw; 2424 2425 tc_node = ice_sched_get_tc_node(pi, tc); 2426 if (!tc_node) 2427 return -EIO; 2428 2429 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2430 if (!agg_node) 2431 return -ENOENT; 2432 2433 /* Can't remove the aggregator node if it has children */ 2434 if (ice_sched_is_agg_inuse(pi, agg_node)) 2435 return -EBUSY; 2436 2437 /* need to remove the whole subtree if aggregator node is the 2438 * only child. 2439 */ 2440 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) { 2441 struct ice_sched_node *parent = agg_node->parent; 2442 2443 if (!parent) 2444 return -EIO; 2445 2446 if (parent->num_children > 1) 2447 break; 2448 2449 agg_node = parent; 2450 } 2451 2452 ice_free_sched_node(pi, agg_node); 2453 return 0; 2454 } 2455 2456 /** 2457 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC 2458 * @pi: port information structure 2459 * @agg_info: aggregator ID 2460 * @tc: TC number 2461 * @rm_vsi_info: bool value true or false 2462 * 2463 * This function removes aggregator reference to VSI of given TC. It removes 2464 * the aggregator configuration completely for requested TC. The caller needs 2465 * to hold the scheduler lock. 2466 */ 2467 static int 2468 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, 2469 u8 tc, bool rm_vsi_info) 2470 { 2471 int status = 0; 2472 2473 /* If nothing to remove - return success */ 2474 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2475 goto exit_rm_agg_cfg_tc; 2476 2477 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info); 2478 if (status) 2479 goto exit_rm_agg_cfg_tc; 2480 2481 /* Delete aggregator node(s) */ 2482 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc); 2483 if (status) 2484 goto exit_rm_agg_cfg_tc; 2485 2486 clear_bit(tc, agg_info->tc_bitmap); 2487 exit_rm_agg_cfg_tc: 2488 return status; 2489 } 2490 2491 /** 2492 * ice_save_agg_tc_bitmap - save aggregator TC bitmap 2493 * @pi: port information structure 2494 * @agg_id: aggregator ID 2495 * @tc_bitmap: 8 bits TC bitmap 2496 * 2497 * Save aggregator TC bitmap. This function needs to be called with scheduler 2498 * lock held. 2499 */ 2500 static int 2501 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id, 2502 unsigned long *tc_bitmap) 2503 { 2504 struct ice_sched_agg_info *agg_info; 2505 2506 agg_info = ice_get_agg_info(pi->hw, agg_id); 2507 if (!agg_info) 2508 return -EINVAL; 2509 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap, 2510 ICE_MAX_TRAFFIC_CLASS); 2511 return 0; 2512 } 2513 2514 /** 2515 * ice_sched_add_agg_cfg - create an aggregator node 2516 * @pi: port information structure 2517 * @agg_id: aggregator ID 2518 * @tc: TC number 2519 * 2520 * This function creates an aggregator node and intermediate nodes if required 2521 * for the given TC 2522 */ 2523 static int 2524 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2525 { 2526 struct ice_sched_node *parent, *agg_node, *tc_node; 2527 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2528 struct ice_hw *hw = pi->hw; 2529 u32 first_node_teid; 2530 u16 num_nodes_added; 2531 int status = 0; 2532 u8 i, aggl; 2533 2534 tc_node = ice_sched_get_tc_node(pi, tc); 2535 if (!tc_node) 2536 return -EIO; 2537 2538 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2539 /* Does Agg node already exist ? */ 2540 if (agg_node) 2541 return status; 2542 2543 aggl = ice_sched_get_agg_layer(hw); 2544 2545 /* need one node in Agg layer */ 2546 num_nodes[aggl] = 1; 2547 2548 /* Check whether the intermediate nodes have space to add the 2549 * new aggregator. If they are full, then SW needs to allocate a new 2550 * intermediate node on those layers 2551 */ 2552 for (i = hw->sw_entry_point_layer; i < aggl; i++) { 2553 parent = ice_sched_get_first_node(pi, tc_node, i); 2554 2555 /* scan all the siblings */ 2556 while (parent) { 2557 if (parent->num_children < hw->max_children[i]) 2558 break; 2559 parent = parent->sibling; 2560 } 2561 2562 /* all the nodes are full, reserve one for this layer */ 2563 if (!parent) 2564 num_nodes[i]++; 2565 } 2566 2567 /* add the aggregator node */ 2568 parent = tc_node; 2569 for (i = hw->sw_entry_point_layer; i <= aggl; i++) { 2570 if (!parent) 2571 return -EIO; 2572 2573 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2574 num_nodes[i], 2575 &first_node_teid, 2576 &num_nodes_added); 2577 if (status || num_nodes[i] != num_nodes_added) 2578 return -EIO; 2579 2580 /* The newly added node can be a new parent for the next 2581 * layer nodes 2582 */ 2583 if (num_nodes_added) { 2584 parent = ice_sched_find_node_by_teid(tc_node, 2585 first_node_teid); 2586 /* register aggregator ID with the aggregator node */ 2587 if (parent && i == aggl) 2588 parent->agg_id = agg_id; 2589 } else { 2590 parent = parent->children[0]; 2591 } 2592 } 2593 2594 return 0; 2595 } 2596 2597 /** 2598 * ice_sched_cfg_agg - configure aggregator node 2599 * @pi: port information structure 2600 * @agg_id: aggregator ID 2601 * @agg_type: aggregator type queue, VSI, or aggregator group 2602 * @tc_bitmap: bits TC bitmap 2603 * 2604 * It registers a unique aggregator node into scheduler services. It 2605 * allows a user to register with a unique ID to track it's resources. 2606 * The aggregator type determines if this is a queue group, VSI group 2607 * or aggregator group. It then creates the aggregator node(s) for requested 2608 * TC(s) or removes an existing aggregator node including its configuration 2609 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator 2610 * resources and remove aggregator ID. 2611 * This function needs to be called with scheduler lock held. 2612 */ 2613 static int 2614 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id, 2615 enum ice_agg_type agg_type, unsigned long *tc_bitmap) 2616 { 2617 struct ice_sched_agg_info *agg_info; 2618 struct ice_hw *hw = pi->hw; 2619 int status = 0; 2620 u8 tc; 2621 2622 agg_info = ice_get_agg_info(hw, agg_id); 2623 if (!agg_info) { 2624 /* Create new entry for new aggregator ID */ 2625 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info), 2626 GFP_KERNEL); 2627 if (!agg_info) 2628 return -ENOMEM; 2629 2630 agg_info->agg_id = agg_id; 2631 agg_info->agg_type = agg_type; 2632 agg_info->tc_bitmap[0] = 0; 2633 2634 /* Initialize the aggregator VSI list head */ 2635 INIT_LIST_HEAD(&agg_info->agg_vsi_list); 2636 2637 /* Add new entry in aggregator list */ 2638 list_add(&agg_info->list_entry, &hw->agg_list); 2639 } 2640 /* Create aggregator node(s) for requested TC(s) */ 2641 ice_for_each_traffic_class(tc) { 2642 if (!ice_is_tc_ena(*tc_bitmap, tc)) { 2643 /* Delete aggregator cfg TC if it exists previously */ 2644 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false); 2645 if (status) 2646 break; 2647 continue; 2648 } 2649 2650 /* Check if aggregator node for TC already exists */ 2651 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2652 continue; 2653 2654 /* Create new aggregator node for TC */ 2655 status = ice_sched_add_agg_cfg(pi, agg_id, tc); 2656 if (status) 2657 break; 2658 2659 /* Save aggregator node's TC information */ 2660 set_bit(tc, agg_info->tc_bitmap); 2661 } 2662 2663 return status; 2664 } 2665 2666 /** 2667 * ice_cfg_agg - config aggregator node 2668 * @pi: port information structure 2669 * @agg_id: aggregator ID 2670 * @agg_type: aggregator type queue, VSI, or aggregator group 2671 * @tc_bitmap: bits TC bitmap 2672 * 2673 * This function configures aggregator node(s). 2674 */ 2675 int 2676 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, 2677 u8 tc_bitmap) 2678 { 2679 unsigned long bitmap = tc_bitmap; 2680 int status; 2681 2682 mutex_lock(&pi->sched_lock); 2683 status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap); 2684 if (!status) 2685 status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap); 2686 mutex_unlock(&pi->sched_lock); 2687 return status; 2688 } 2689 2690 /** 2691 * ice_get_agg_vsi_info - get the aggregator ID 2692 * @agg_info: aggregator info 2693 * @vsi_handle: software VSI handle 2694 * 2695 * The function returns aggregator VSI info based on VSI handle. This function 2696 * needs to be called with scheduler lock held. 2697 */ 2698 static struct ice_sched_agg_vsi_info * 2699 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle) 2700 { 2701 struct ice_sched_agg_vsi_info *agg_vsi_info; 2702 2703 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) 2704 if (agg_vsi_info->vsi_handle == vsi_handle) 2705 return agg_vsi_info; 2706 2707 return NULL; 2708 } 2709 2710 /** 2711 * ice_get_vsi_agg_info - get the aggregator info of VSI 2712 * @hw: pointer to the hardware structure 2713 * @vsi_handle: Sw VSI handle 2714 * 2715 * The function returns aggregator info of VSI represented via vsi_handle. The 2716 * VSI has in this case a different aggregator than the default one. This 2717 * function needs to be called with scheduler lock held. 2718 */ 2719 static struct ice_sched_agg_info * 2720 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle) 2721 { 2722 struct ice_sched_agg_info *agg_info; 2723 2724 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 2725 struct ice_sched_agg_vsi_info *agg_vsi_info; 2726 2727 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2728 if (agg_vsi_info) 2729 return agg_info; 2730 } 2731 return NULL; 2732 } 2733 2734 /** 2735 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap 2736 * @pi: port information structure 2737 * @agg_id: aggregator ID 2738 * @vsi_handle: software VSI handle 2739 * @tc_bitmap: TC bitmap of enabled TC(s) 2740 * 2741 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler 2742 * lock held. 2743 */ 2744 static int 2745 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2746 unsigned long *tc_bitmap) 2747 { 2748 struct ice_sched_agg_vsi_info *agg_vsi_info; 2749 struct ice_sched_agg_info *agg_info; 2750 2751 agg_info = ice_get_agg_info(pi->hw, agg_id); 2752 if (!agg_info) 2753 return -EINVAL; 2754 /* check if entry already exist */ 2755 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2756 if (!agg_vsi_info) 2757 return -EINVAL; 2758 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap, 2759 ICE_MAX_TRAFFIC_CLASS); 2760 return 0; 2761 } 2762 2763 /** 2764 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator 2765 * @pi: port information structure 2766 * @agg_id: aggregator ID 2767 * @vsi_handle: software VSI handle 2768 * @tc_bitmap: TC bitmap of enabled TC(s) 2769 * 2770 * This function moves VSI to a new or default aggregator node. If VSI is 2771 * already associated to the aggregator node then no operation is performed on 2772 * the tree. This function needs to be called with scheduler lock held. 2773 */ 2774 static int 2775 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, 2776 u16 vsi_handle, unsigned long *tc_bitmap) 2777 { 2778 struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL; 2779 struct ice_sched_agg_info *agg_info, *old_agg_info; 2780 struct ice_hw *hw = pi->hw; 2781 int status = 0; 2782 u8 tc; 2783 2784 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2785 return -EINVAL; 2786 agg_info = ice_get_agg_info(hw, agg_id); 2787 if (!agg_info) 2788 return -EINVAL; 2789 /* If the VSI is already part of another aggregator then update 2790 * its VSI info list 2791 */ 2792 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 2793 if (old_agg_info && old_agg_info != agg_info) { 2794 struct ice_sched_agg_vsi_info *vtmp; 2795 2796 list_for_each_entry_safe(iter, vtmp, 2797 &old_agg_info->agg_vsi_list, 2798 list_entry) 2799 if (iter->vsi_handle == vsi_handle) { 2800 old_agg_vsi_info = iter; 2801 break; 2802 } 2803 } 2804 2805 /* check if entry already exist */ 2806 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2807 if (!agg_vsi_info) { 2808 /* Create new entry for VSI under aggregator list */ 2809 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw), 2810 sizeof(*agg_vsi_info), GFP_KERNEL); 2811 if (!agg_vsi_info) 2812 return -EINVAL; 2813 2814 /* add VSI ID into the aggregator list */ 2815 agg_vsi_info->vsi_handle = vsi_handle; 2816 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list); 2817 } 2818 /* Move VSI node to new aggregator node for requested TC(s) */ 2819 ice_for_each_traffic_class(tc) { 2820 if (!ice_is_tc_ena(*tc_bitmap, tc)) 2821 continue; 2822 2823 /* Move VSI to new aggregator */ 2824 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc); 2825 if (status) 2826 break; 2827 2828 set_bit(tc, agg_vsi_info->tc_bitmap); 2829 if (old_agg_vsi_info) 2830 clear_bit(tc, old_agg_vsi_info->tc_bitmap); 2831 } 2832 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) { 2833 list_del(&old_agg_vsi_info->list_entry); 2834 devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info); 2835 } 2836 return status; 2837 } 2838 2839 /** 2840 * ice_sched_rm_unused_rl_prof - remove unused RL profile 2841 * @pi: port information structure 2842 * 2843 * This function removes unused rate limit profiles from the HW and 2844 * SW DB. The caller needs to hold scheduler lock. 2845 */ 2846 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) 2847 { 2848 u16 ln; 2849 2850 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 2851 struct ice_aqc_rl_profile_info *rl_prof_elem; 2852 struct ice_aqc_rl_profile_info *rl_prof_tmp; 2853 2854 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 2855 &pi->rl_prof_list[ln], list_entry) { 2856 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) 2857 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n"); 2858 } 2859 } 2860 } 2861 2862 /** 2863 * ice_sched_update_elem - update element 2864 * @hw: pointer to the HW struct 2865 * @node: pointer to node 2866 * @info: node info to update 2867 * 2868 * Update the HW DB, and local SW DB of node. Update the scheduling 2869 * parameters of node from argument info data buffer (Info->data buf) and 2870 * returns success or error on config sched element failure. The caller 2871 * needs to hold scheduler lock. 2872 */ 2873 static int 2874 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, 2875 struct ice_aqc_txsched_elem_data *info) 2876 { 2877 struct ice_aqc_txsched_elem_data buf; 2878 u16 elem_cfgd = 0; 2879 u16 num_elems = 1; 2880 int status; 2881 2882 buf = *info; 2883 /* Parent TEID is reserved field in this aq call */ 2884 buf.parent_teid = 0; 2885 /* Element type is reserved field in this aq call */ 2886 buf.data.elem_type = 0; 2887 /* Flags is reserved field in this aq call */ 2888 buf.data.flags = 0; 2889 2890 /* Update HW DB */ 2891 /* Configure element node */ 2892 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), 2893 &elem_cfgd, NULL); 2894 if (status || elem_cfgd != num_elems) { 2895 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); 2896 return -EIO; 2897 } 2898 2899 /* Config success case */ 2900 /* Now update local SW DB */ 2901 /* Only copy the data portion of info buffer */ 2902 node->info.data = info->data; 2903 return status; 2904 } 2905 2906 /** 2907 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params 2908 * @hw: pointer to the HW struct 2909 * @node: sched node to configure 2910 * @rl_type: rate limit type CIR, EIR, or shared 2911 * @bw_alloc: BW weight/allocation 2912 * 2913 * This function configures node element's BW allocation. 2914 */ 2915 static int 2916 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, 2917 enum ice_rl_type rl_type, u16 bw_alloc) 2918 { 2919 struct ice_aqc_txsched_elem_data buf; 2920 struct ice_aqc_txsched_elem *data; 2921 2922 buf = node->info; 2923 data = &buf.data; 2924 if (rl_type == ICE_MIN_BW) { 2925 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 2926 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2927 } else if (rl_type == ICE_MAX_BW) { 2928 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2929 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2930 } else { 2931 return -EINVAL; 2932 } 2933 2934 /* Configure element */ 2935 return ice_sched_update_elem(hw, node, &buf); 2936 } 2937 2938 /** 2939 * ice_move_vsi_to_agg - moves VSI to new or default aggregator 2940 * @pi: port information structure 2941 * @agg_id: aggregator ID 2942 * @vsi_handle: software VSI handle 2943 * @tc_bitmap: TC bitmap of enabled TC(s) 2944 * 2945 * Move or associate VSI to a new or default aggregator node. 2946 */ 2947 int 2948 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2949 u8 tc_bitmap) 2950 { 2951 unsigned long bitmap = tc_bitmap; 2952 int status; 2953 2954 mutex_lock(&pi->sched_lock); 2955 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle, 2956 (unsigned long *)&bitmap); 2957 if (!status) 2958 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle, 2959 (unsigned long *)&bitmap); 2960 mutex_unlock(&pi->sched_lock); 2961 return status; 2962 } 2963 2964 /** 2965 * ice_set_clear_cir_bw - set or clear CIR BW 2966 * @bw_t_info: bandwidth type information structure 2967 * @bw: bandwidth in Kbps - Kilo bits per sec 2968 * 2969 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. 2970 */ 2971 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2972 { 2973 if (bw == ICE_SCHED_DFLT_BW) { 2974 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2975 bw_t_info->cir_bw.bw = 0; 2976 } else { 2977 /* Save type of BW information */ 2978 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2979 bw_t_info->cir_bw.bw = bw; 2980 } 2981 } 2982 2983 /** 2984 * ice_set_clear_eir_bw - set or clear EIR BW 2985 * @bw_t_info: bandwidth type information structure 2986 * @bw: bandwidth in Kbps - Kilo bits per sec 2987 * 2988 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. 2989 */ 2990 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2991 { 2992 if (bw == ICE_SCHED_DFLT_BW) { 2993 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2994 bw_t_info->eir_bw.bw = 0; 2995 } else { 2996 /* EIR BW and Shared BW profiles are mutually exclusive and 2997 * hence only one of them may be set for any given element. 2998 * First clear earlier saved shared BW information. 2999 */ 3000 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3001 bw_t_info->shared_bw = 0; 3002 /* save EIR BW information */ 3003 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3004 bw_t_info->eir_bw.bw = bw; 3005 } 3006 } 3007 3008 /** 3009 * ice_set_clear_shared_bw - set or clear shared BW 3010 * @bw_t_info: bandwidth type information structure 3011 * @bw: bandwidth in Kbps - Kilo bits per sec 3012 * 3013 * Save or clear shared bandwidth (BW) in the passed param bw_t_info. 3014 */ 3015 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 3016 { 3017 if (bw == ICE_SCHED_DFLT_BW) { 3018 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3019 bw_t_info->shared_bw = 0; 3020 } else { 3021 /* EIR BW and Shared BW profiles are mutually exclusive and 3022 * hence only one of them may be set for any given element. 3023 * First clear earlier saved EIR BW information. 3024 */ 3025 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3026 bw_t_info->eir_bw.bw = 0; 3027 /* save shared BW information */ 3028 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3029 bw_t_info->shared_bw = bw; 3030 } 3031 } 3032 3033 /** 3034 * ice_sched_save_vsi_bw - save VSI node's BW information 3035 * @pi: port information structure 3036 * @vsi_handle: sw VSI handle 3037 * @tc: traffic class 3038 * @rl_type: rate limit type min, max, or shared 3039 * @bw: bandwidth in Kbps - Kilo bits per sec 3040 * 3041 * Save BW information of VSI type node for post replay use. 3042 */ 3043 static int 3044 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3045 enum ice_rl_type rl_type, u32 bw) 3046 { 3047 struct ice_vsi_ctx *vsi_ctx; 3048 3049 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3050 return -EINVAL; 3051 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3052 if (!vsi_ctx) 3053 return -EINVAL; 3054 switch (rl_type) { 3055 case ICE_MIN_BW: 3056 ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3057 break; 3058 case ICE_MAX_BW: 3059 ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3060 break; 3061 case ICE_SHARED_BW: 3062 ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3063 break; 3064 default: 3065 return -EINVAL; 3066 } 3067 return 0; 3068 } 3069 3070 /** 3071 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter 3072 * @hw: pointer to the HW struct 3073 * @bw: bandwidth in Kbps 3074 * 3075 * This function calculates the wakeup parameter of RL profile. 3076 */ 3077 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw) 3078 { 3079 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; 3080 s32 wakeup_f_int; 3081 u16 wakeup = 0; 3082 3083 /* Get the wakeup integer value */ 3084 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3085 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec); 3086 if (wakeup_int > 63) { 3087 wakeup = (u16)((1 << 15) | wakeup_int); 3088 } else { 3089 /* Calculate fraction value up to 4 decimals 3090 * Convert Integer value to a constant multiplier 3091 */ 3092 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; 3093 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * 3094 hw->psm_clk_freq, bytes_per_sec); 3095 3096 /* Get Fraction value */ 3097 wakeup_f = wakeup_a - wakeup_b; 3098 3099 /* Round up the Fractional value via Ceil(Fractional value) */ 3100 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) 3101 wakeup_f += 1; 3102 3103 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, 3104 ICE_RL_PROF_MULTIPLIER); 3105 wakeup |= (u16)(wakeup_int << 9); 3106 wakeup |= (u16)(0x1ff & wakeup_f_int); 3107 } 3108 3109 return wakeup; 3110 } 3111 3112 /** 3113 * ice_sched_bw_to_rl_profile - convert BW to profile parameters 3114 * @hw: pointer to the HW struct 3115 * @bw: bandwidth in Kbps 3116 * @profile: profile parameters to return 3117 * 3118 * This function converts the BW to profile structure format. 3119 */ 3120 static int 3121 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw, 3122 struct ice_aqc_rl_profile_elem *profile) 3123 { 3124 s64 bytes_per_sec, ts_rate, mv_tmp; 3125 int status = -EINVAL; 3126 bool found = false; 3127 s32 encode = 0; 3128 s64 mv = 0; 3129 s32 i; 3130 3131 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ 3132 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) 3133 return status; 3134 3135 /* Bytes per second from Kbps */ 3136 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3137 3138 /* encode is 6 bits but really useful are 5 bits */ 3139 for (i = 0; i < 64; i++) { 3140 u64 pow_result = BIT_ULL(i); 3141 3142 ts_rate = div64_long((s64)hw->psm_clk_freq, 3143 pow_result * ICE_RL_PROF_TS_MULTIPLIER); 3144 if (ts_rate <= 0) 3145 continue; 3146 3147 /* Multiplier value */ 3148 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, 3149 ts_rate); 3150 3151 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ 3152 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); 3153 3154 /* First multiplier value greater than the given 3155 * accuracy bytes 3156 */ 3157 if (mv > ICE_RL_PROF_ACCURACY_BYTES) { 3158 encode = i; 3159 found = true; 3160 break; 3161 } 3162 } 3163 if (found) { 3164 u16 wm; 3165 3166 wm = ice_sched_calc_wakeup(hw, bw); 3167 profile->rl_multiply = cpu_to_le16(mv); 3168 profile->wake_up_calc = cpu_to_le16(wm); 3169 profile->rl_encode = cpu_to_le16(encode); 3170 status = 0; 3171 } else { 3172 status = -ENOENT; 3173 } 3174 3175 return status; 3176 } 3177 3178 /** 3179 * ice_sched_add_rl_profile - add RL profile 3180 * @pi: port information structure 3181 * @rl_type: type of rate limit BW - min, max, or shared 3182 * @bw: bandwidth in Kbps - Kilo bits per sec 3183 * @layer_num: specifies in which layer to create profile 3184 * 3185 * This function first checks the existing list for corresponding BW 3186 * parameter. If it exists, it returns the associated profile otherwise 3187 * it creates a new rate limit profile for requested BW, and adds it to 3188 * the HW DB and local list. It returns the new profile or null on error. 3189 * The caller needs to hold the scheduler lock. 3190 */ 3191 static struct ice_aqc_rl_profile_info * 3192 ice_sched_add_rl_profile(struct ice_port_info *pi, 3193 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3194 { 3195 struct ice_aqc_rl_profile_info *rl_prof_elem; 3196 u16 profiles_added = 0, num_profiles = 1; 3197 struct ice_aqc_rl_profile_elem *buf; 3198 struct ice_hw *hw; 3199 u8 profile_type; 3200 int status; 3201 3202 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3203 return NULL; 3204 switch (rl_type) { 3205 case ICE_MIN_BW: 3206 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3207 break; 3208 case ICE_MAX_BW: 3209 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3210 break; 3211 case ICE_SHARED_BW: 3212 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3213 break; 3214 default: 3215 return NULL; 3216 } 3217 3218 if (!pi) 3219 return NULL; 3220 hw = pi->hw; 3221 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3222 list_entry) 3223 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3224 profile_type && rl_prof_elem->bw == bw) 3225 /* Return existing profile ID info */ 3226 return rl_prof_elem; 3227 3228 /* Create new profile ID */ 3229 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), 3230 GFP_KERNEL); 3231 3232 if (!rl_prof_elem) 3233 return NULL; 3234 3235 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile); 3236 if (status) 3237 goto exit_add_rl_prof; 3238 3239 rl_prof_elem->bw = bw; 3240 /* layer_num is zero relative, and fw expects level from 1 to 9 */ 3241 rl_prof_elem->profile.level = layer_num + 1; 3242 rl_prof_elem->profile.flags = profile_type; 3243 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); 3244 3245 /* Create new entry in HW DB */ 3246 buf = &rl_prof_elem->profile; 3247 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), 3248 &profiles_added, NULL); 3249 if (status || profiles_added != num_profiles) 3250 goto exit_add_rl_prof; 3251 3252 /* Good entry - add in the list */ 3253 rl_prof_elem->prof_id_ref = 0; 3254 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); 3255 return rl_prof_elem; 3256 3257 exit_add_rl_prof: 3258 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 3259 return NULL; 3260 } 3261 3262 /** 3263 * ice_sched_cfg_node_bw_lmt - configure node sched params 3264 * @hw: pointer to the HW struct 3265 * @node: sched node to configure 3266 * @rl_type: rate limit type CIR, EIR, or shared 3267 * @rl_prof_id: rate limit profile ID 3268 * 3269 * This function configures node element's BW limit. 3270 */ 3271 static int 3272 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, 3273 enum ice_rl_type rl_type, u16 rl_prof_id) 3274 { 3275 struct ice_aqc_txsched_elem_data buf; 3276 struct ice_aqc_txsched_elem *data; 3277 3278 buf = node->info; 3279 data = &buf.data; 3280 switch (rl_type) { 3281 case ICE_MIN_BW: 3282 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 3283 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3284 break; 3285 case ICE_MAX_BW: 3286 /* EIR BW and Shared BW profiles are mutually exclusive and 3287 * hence only one of them may be set for any given element 3288 */ 3289 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3290 return -EIO; 3291 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3292 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3293 break; 3294 case ICE_SHARED_BW: 3295 /* Check for removing shared BW */ 3296 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { 3297 /* remove shared profile */ 3298 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; 3299 data->srl_id = 0; /* clear SRL field */ 3300 3301 /* enable back EIR to default profile */ 3302 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3303 data->eir_bw.bw_profile_idx = 3304 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 3305 break; 3306 } 3307 /* EIR BW and Shared BW profiles are mutually exclusive and 3308 * hence only one of them may be set for any given element 3309 */ 3310 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && 3311 (le16_to_cpu(data->eir_bw.bw_profile_idx) != 3312 ICE_SCHED_DFLT_RL_PROF_ID)) 3313 return -EIO; 3314 /* EIR BW is set to default, disable it */ 3315 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; 3316 /* Okay to enable shared BW now */ 3317 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; 3318 data->srl_id = cpu_to_le16(rl_prof_id); 3319 break; 3320 default: 3321 /* Unknown rate limit type */ 3322 return -EINVAL; 3323 } 3324 3325 /* Configure element */ 3326 return ice_sched_update_elem(hw, node, &buf); 3327 } 3328 3329 /** 3330 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID 3331 * @node: sched node 3332 * @rl_type: rate limit type 3333 * 3334 * If existing profile matches, it returns the corresponding rate 3335 * limit profile ID, otherwise it returns an invalid ID as error. 3336 */ 3337 static u16 3338 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, 3339 enum ice_rl_type rl_type) 3340 { 3341 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; 3342 struct ice_aqc_txsched_elem *data; 3343 3344 data = &node->info.data; 3345 switch (rl_type) { 3346 case ICE_MIN_BW: 3347 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) 3348 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); 3349 break; 3350 case ICE_MAX_BW: 3351 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) 3352 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); 3353 break; 3354 case ICE_SHARED_BW: 3355 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3356 rl_prof_id = le16_to_cpu(data->srl_id); 3357 break; 3358 default: 3359 break; 3360 } 3361 3362 return rl_prof_id; 3363 } 3364 3365 /** 3366 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer 3367 * @pi: port information structure 3368 * @rl_type: type of rate limit BW - min, max, or shared 3369 * @layer_index: layer index 3370 * 3371 * This function returns requested profile creation layer. 3372 */ 3373 static u8 3374 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, 3375 u8 layer_index) 3376 { 3377 struct ice_hw *hw = pi->hw; 3378 3379 if (layer_index >= hw->num_tx_sched_layers) 3380 return ICE_SCHED_INVAL_LAYER_NUM; 3381 switch (rl_type) { 3382 case ICE_MIN_BW: 3383 if (hw->layer_info[layer_index].max_cir_rl_profiles) 3384 return layer_index; 3385 break; 3386 case ICE_MAX_BW: 3387 if (hw->layer_info[layer_index].max_eir_rl_profiles) 3388 return layer_index; 3389 break; 3390 case ICE_SHARED_BW: 3391 /* if current layer doesn't support SRL profile creation 3392 * then try a layer up or down. 3393 */ 3394 if (hw->layer_info[layer_index].max_srl_profiles) 3395 return layer_index; 3396 else if (layer_index < hw->num_tx_sched_layers - 1 && 3397 hw->layer_info[layer_index + 1].max_srl_profiles) 3398 return layer_index + 1; 3399 else if (layer_index > 0 && 3400 hw->layer_info[layer_index - 1].max_srl_profiles) 3401 return layer_index - 1; 3402 break; 3403 default: 3404 break; 3405 } 3406 return ICE_SCHED_INVAL_LAYER_NUM; 3407 } 3408 3409 /** 3410 * ice_sched_get_srl_node - get shared rate limit node 3411 * @node: tree node 3412 * @srl_layer: shared rate limit layer 3413 * 3414 * This function returns SRL node to be used for shared rate limit purpose. 3415 * The caller needs to hold scheduler lock. 3416 */ 3417 static struct ice_sched_node * 3418 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) 3419 { 3420 if (srl_layer > node->tx_sched_layer) 3421 return node->children[0]; 3422 else if (srl_layer < node->tx_sched_layer) 3423 /* Node can't be created without a parent. It will always 3424 * have a valid parent except root node. 3425 */ 3426 return node->parent; 3427 else 3428 return node; 3429 } 3430 3431 /** 3432 * ice_sched_rm_rl_profile - remove RL profile ID 3433 * @pi: port information structure 3434 * @layer_num: layer number where profiles are saved 3435 * @profile_type: profile type like EIR, CIR, or SRL 3436 * @profile_id: profile ID to remove 3437 * 3438 * This function removes rate limit profile from layer 'layer_num' of type 3439 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold 3440 * scheduler lock. 3441 */ 3442 static int 3443 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, 3444 u16 profile_id) 3445 { 3446 struct ice_aqc_rl_profile_info *rl_prof_elem; 3447 int status = 0; 3448 3449 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3450 return -EINVAL; 3451 /* Check the existing list for RL profile */ 3452 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3453 list_entry) 3454 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3455 profile_type && 3456 le16_to_cpu(rl_prof_elem->profile.profile_id) == 3457 profile_id) { 3458 if (rl_prof_elem->prof_id_ref) 3459 rl_prof_elem->prof_id_ref--; 3460 3461 /* Remove old profile ID from database */ 3462 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); 3463 if (status && status != -EBUSY) 3464 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 3465 break; 3466 } 3467 if (status == -EBUSY) 3468 status = 0; 3469 return status; 3470 } 3471 3472 /** 3473 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default 3474 * @pi: port information structure 3475 * @node: pointer to node structure 3476 * @rl_type: rate limit type min, max, or shared 3477 * @layer_num: layer number where RL profiles are saved 3478 * 3479 * This function configures node element's BW rate limit profile ID of 3480 * type CIR, EIR, or SRL to default. This function needs to be called 3481 * with the scheduler lock held. 3482 */ 3483 static int 3484 ice_sched_set_node_bw_dflt(struct ice_port_info *pi, 3485 struct ice_sched_node *node, 3486 enum ice_rl_type rl_type, u8 layer_num) 3487 { 3488 struct ice_hw *hw; 3489 u8 profile_type; 3490 u16 rl_prof_id; 3491 u16 old_id; 3492 int status; 3493 3494 hw = pi->hw; 3495 switch (rl_type) { 3496 case ICE_MIN_BW: 3497 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3498 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3499 break; 3500 case ICE_MAX_BW: 3501 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3502 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3503 break; 3504 case ICE_SHARED_BW: 3505 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3506 /* No SRL is configured for default case */ 3507 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; 3508 break; 3509 default: 3510 return -EINVAL; 3511 } 3512 /* Save existing RL prof ID for later clean up */ 3513 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3514 /* Configure BW scheduling parameters */ 3515 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3516 if (status) 3517 return status; 3518 3519 /* Remove stale RL profile ID */ 3520 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || 3521 old_id == ICE_SCHED_INVAL_PROF_ID) 3522 return 0; 3523 3524 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); 3525 } 3526 3527 /** 3528 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness 3529 * @pi: port information structure 3530 * @node: pointer to node structure 3531 * @layer_num: layer number where rate limit profiles are saved 3532 * @rl_type: rate limit type min, max, or shared 3533 * @bw: bandwidth value 3534 * 3535 * This function prepares node element's bandwidth to SRL or EIR exclusively. 3536 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of 3537 * them may be set for any given element. This function needs to be called 3538 * with the scheduler lock held. 3539 */ 3540 static int 3541 ice_sched_set_eir_srl_excl(struct ice_port_info *pi, 3542 struct ice_sched_node *node, 3543 u8 layer_num, enum ice_rl_type rl_type, u32 bw) 3544 { 3545 if (rl_type == ICE_SHARED_BW) { 3546 /* SRL node passed in this case, it may be different node */ 3547 if (bw == ICE_SCHED_DFLT_BW) 3548 /* SRL being removed, ice_sched_cfg_node_bw_lmt() 3549 * enables EIR to default. EIR is not set in this 3550 * case, so no additional action is required. 3551 */ 3552 return 0; 3553 3554 /* SRL being configured, set EIR to default here. 3555 * ice_sched_cfg_node_bw_lmt() disables EIR when it 3556 * configures SRL 3557 */ 3558 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, 3559 layer_num); 3560 } else if (rl_type == ICE_MAX_BW && 3561 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { 3562 /* Remove Shared profile. Set default shared BW call 3563 * removes shared profile for a node. 3564 */ 3565 return ice_sched_set_node_bw_dflt(pi, node, 3566 ICE_SHARED_BW, 3567 layer_num); 3568 } 3569 return 0; 3570 } 3571 3572 /** 3573 * ice_sched_set_node_bw - set node's bandwidth 3574 * @pi: port information structure 3575 * @node: tree node 3576 * @rl_type: rate limit type min, max, or shared 3577 * @bw: bandwidth in Kbps - Kilo bits per sec 3578 * @layer_num: layer number 3579 * 3580 * This function adds new profile corresponding to requested BW, configures 3581 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile 3582 * ID from local database. The caller needs to hold scheduler lock. 3583 */ 3584 int 3585 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, 3586 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3587 { 3588 struct ice_aqc_rl_profile_info *rl_prof_info; 3589 struct ice_hw *hw = pi->hw; 3590 u16 old_id, rl_prof_id; 3591 int status = -EINVAL; 3592 3593 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); 3594 if (!rl_prof_info) 3595 return status; 3596 3597 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); 3598 3599 /* Save existing RL prof ID for later clean up */ 3600 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3601 /* Configure BW scheduling parameters */ 3602 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3603 if (status) 3604 return status; 3605 3606 /* New changes has been applied */ 3607 /* Increment the profile ID reference count */ 3608 rl_prof_info->prof_id_ref++; 3609 3610 /* Check for old ID removal */ 3611 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || 3612 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) 3613 return 0; 3614 3615 return ice_sched_rm_rl_profile(pi, layer_num, 3616 rl_prof_info->profile.flags & 3617 ICE_AQC_RL_PROFILE_TYPE_M, old_id); 3618 } 3619 3620 /** 3621 * ice_sched_set_node_priority - set node's priority 3622 * @pi: port information structure 3623 * @node: tree node 3624 * @priority: number 0-7 representing priority among siblings 3625 * 3626 * This function sets priority of a node among it's siblings. 3627 */ 3628 int 3629 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node, 3630 u16 priority) 3631 { 3632 struct ice_aqc_txsched_elem_data buf; 3633 struct ice_aqc_txsched_elem *data; 3634 3635 buf = node->info; 3636 data = &buf.data; 3637 3638 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 3639 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority); 3640 3641 return ice_sched_update_elem(pi->hw, node, &buf); 3642 } 3643 3644 /** 3645 * ice_sched_set_node_weight - set node's weight 3646 * @pi: port information structure 3647 * @node: tree node 3648 * @weight: number 1-200 representing weight for WFQ 3649 * 3650 * This function sets weight of the node for WFQ algorithm. 3651 */ 3652 int 3653 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight) 3654 { 3655 struct ice_aqc_txsched_elem_data buf; 3656 struct ice_aqc_txsched_elem *data; 3657 3658 buf = node->info; 3659 data = &buf.data; 3660 3661 data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR | 3662 ICE_AQC_ELEM_VALID_GENERIC; 3663 data->cir_bw.bw_alloc = cpu_to_le16(weight); 3664 data->eir_bw.bw_alloc = cpu_to_le16(weight); 3665 3666 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0); 3667 3668 return ice_sched_update_elem(pi->hw, node, &buf); 3669 } 3670 3671 /** 3672 * ice_sched_set_node_bw_lmt - set node's BW limit 3673 * @pi: port information structure 3674 * @node: tree node 3675 * @rl_type: rate limit type min, max, or shared 3676 * @bw: bandwidth in Kbps - Kilo bits per sec 3677 * 3678 * It updates node's BW limit parameters like BW RL profile ID of type CIR, 3679 * EIR, or SRL. The caller needs to hold scheduler lock. 3680 */ 3681 int 3682 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, 3683 enum ice_rl_type rl_type, u32 bw) 3684 { 3685 struct ice_sched_node *cfg_node = node; 3686 int status; 3687 3688 struct ice_hw *hw; 3689 u8 layer_num; 3690 3691 if (!pi) 3692 return -EINVAL; 3693 hw = pi->hw; 3694 /* Remove unused RL profile IDs from HW and SW DB */ 3695 ice_sched_rm_unused_rl_prof(pi); 3696 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, 3697 node->tx_sched_layer); 3698 if (layer_num >= hw->num_tx_sched_layers) 3699 return -EINVAL; 3700 3701 if (rl_type == ICE_SHARED_BW) { 3702 /* SRL node may be different */ 3703 cfg_node = ice_sched_get_srl_node(node, layer_num); 3704 if (!cfg_node) 3705 return -EIO; 3706 } 3707 /* EIR BW and Shared BW profiles are mutually exclusive and 3708 * hence only one of them may be set for any given element 3709 */ 3710 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, 3711 bw); 3712 if (status) 3713 return status; 3714 if (bw == ICE_SCHED_DFLT_BW) 3715 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, 3716 layer_num); 3717 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); 3718 } 3719 3720 /** 3721 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default 3722 * @pi: port information structure 3723 * @node: pointer to node structure 3724 * @rl_type: rate limit type min, max, or shared 3725 * 3726 * This function configures node element's BW rate limit profile ID of 3727 * type CIR, EIR, or SRL to default. This function needs to be called 3728 * with the scheduler lock held. 3729 */ 3730 static int 3731 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, 3732 struct ice_sched_node *node, 3733 enum ice_rl_type rl_type) 3734 { 3735 return ice_sched_set_node_bw_lmt(pi, node, rl_type, 3736 ICE_SCHED_DFLT_BW); 3737 } 3738 3739 /** 3740 * ice_sched_validate_srl_node - Check node for SRL applicability 3741 * @node: sched node to configure 3742 * @sel_layer: selected SRL layer 3743 * 3744 * This function checks if the SRL can be applied to a selected layer node on 3745 * behalf of the requested node (first argument). This function needs to be 3746 * called with scheduler lock held. 3747 */ 3748 static int 3749 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) 3750 { 3751 /* SRL profiles are not available on all layers. Check if the 3752 * SRL profile can be applied to a node above or below the 3753 * requested node. SRL configuration is possible only if the 3754 * selected layer's node has single child. 3755 */ 3756 if (sel_layer == node->tx_sched_layer || 3757 ((sel_layer == node->tx_sched_layer + 1) && 3758 node->num_children == 1) || 3759 ((sel_layer == node->tx_sched_layer - 1) && 3760 (node->parent && node->parent->num_children == 1))) 3761 return 0; 3762 3763 return -EIO; 3764 } 3765 3766 /** 3767 * ice_sched_save_q_bw - save queue node's BW information 3768 * @q_ctx: queue context structure 3769 * @rl_type: rate limit type min, max, or shared 3770 * @bw: bandwidth in Kbps - Kilo bits per sec 3771 * 3772 * Save BW information of queue type node for post replay use. 3773 */ 3774 static int 3775 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) 3776 { 3777 switch (rl_type) { 3778 case ICE_MIN_BW: 3779 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); 3780 break; 3781 case ICE_MAX_BW: 3782 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); 3783 break; 3784 case ICE_SHARED_BW: 3785 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); 3786 break; 3787 default: 3788 return -EINVAL; 3789 } 3790 return 0; 3791 } 3792 3793 /** 3794 * ice_sched_set_q_bw_lmt - sets queue BW limit 3795 * @pi: port information structure 3796 * @vsi_handle: sw VSI handle 3797 * @tc: traffic class 3798 * @q_handle: software queue handle 3799 * @rl_type: min, max, or shared 3800 * @bw: bandwidth in Kbps 3801 * 3802 * This function sets BW limit of queue scheduling node. 3803 */ 3804 static int 3805 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3806 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3807 { 3808 struct ice_sched_node *node; 3809 struct ice_q_ctx *q_ctx; 3810 int status = -EINVAL; 3811 3812 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3813 return -EINVAL; 3814 mutex_lock(&pi->sched_lock); 3815 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); 3816 if (!q_ctx) 3817 goto exit_q_bw_lmt; 3818 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 3819 if (!node) { 3820 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); 3821 goto exit_q_bw_lmt; 3822 } 3823 3824 /* Return error if it is not a leaf node */ 3825 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) 3826 goto exit_q_bw_lmt; 3827 3828 /* SRL bandwidth layer selection */ 3829 if (rl_type == ICE_SHARED_BW) { 3830 u8 sel_layer; /* selected layer */ 3831 3832 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, 3833 node->tx_sched_layer); 3834 if (sel_layer >= pi->hw->num_tx_sched_layers) { 3835 status = -EINVAL; 3836 goto exit_q_bw_lmt; 3837 } 3838 status = ice_sched_validate_srl_node(node, sel_layer); 3839 if (status) 3840 goto exit_q_bw_lmt; 3841 } 3842 3843 if (bw == ICE_SCHED_DFLT_BW) 3844 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3845 else 3846 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3847 3848 if (!status) 3849 status = ice_sched_save_q_bw(q_ctx, rl_type, bw); 3850 3851 exit_q_bw_lmt: 3852 mutex_unlock(&pi->sched_lock); 3853 return status; 3854 } 3855 3856 /** 3857 * ice_cfg_q_bw_lmt - configure queue BW limit 3858 * @pi: port information structure 3859 * @vsi_handle: sw VSI handle 3860 * @tc: traffic class 3861 * @q_handle: software queue handle 3862 * @rl_type: min, max, or shared 3863 * @bw: bandwidth in Kbps 3864 * 3865 * This function configures BW limit of queue scheduling node. 3866 */ 3867 int 3868 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3869 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3870 { 3871 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3872 bw); 3873 } 3874 3875 /** 3876 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit 3877 * @pi: port information structure 3878 * @vsi_handle: sw VSI handle 3879 * @tc: traffic class 3880 * @q_handle: software queue handle 3881 * @rl_type: min, max, or shared 3882 * 3883 * This function configures BW default limit of queue scheduling node. 3884 */ 3885 int 3886 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3887 u16 q_handle, enum ice_rl_type rl_type) 3888 { 3889 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3890 ICE_SCHED_DFLT_BW); 3891 } 3892 3893 /** 3894 * ice_sched_get_node_by_id_type - get node from ID type 3895 * @pi: port information structure 3896 * @id: identifier 3897 * @agg_type: type of aggregator 3898 * @tc: traffic class 3899 * 3900 * This function returns node identified by ID of type aggregator, and 3901 * based on traffic class (TC). This function needs to be called with 3902 * the scheduler lock held. 3903 */ 3904 static struct ice_sched_node * 3905 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id, 3906 enum ice_agg_type agg_type, u8 tc) 3907 { 3908 struct ice_sched_node *node = NULL; 3909 3910 switch (agg_type) { 3911 case ICE_AGG_TYPE_VSI: { 3912 struct ice_vsi_ctx *vsi_ctx; 3913 u16 vsi_handle = (u16)id; 3914 3915 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3916 break; 3917 /* Get sched_vsi_info */ 3918 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3919 if (!vsi_ctx) 3920 break; 3921 node = vsi_ctx->sched.vsi_node[tc]; 3922 break; 3923 } 3924 3925 case ICE_AGG_TYPE_AGG: { 3926 struct ice_sched_node *tc_node; 3927 3928 tc_node = ice_sched_get_tc_node(pi, tc); 3929 if (tc_node) 3930 node = ice_sched_get_agg_node(pi, tc_node, id); 3931 break; 3932 } 3933 3934 default: 3935 break; 3936 } 3937 3938 return node; 3939 } 3940 3941 /** 3942 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC 3943 * @pi: port information structure 3944 * @id: ID (software VSI handle or AGG ID) 3945 * @agg_type: aggregator type (VSI or AGG type node) 3946 * @tc: traffic class 3947 * @rl_type: min or max 3948 * @bw: bandwidth in Kbps 3949 * 3950 * This function sets BW limit of VSI or Aggregator scheduling node 3951 * based on TC information from passed in argument BW. 3952 */ 3953 static int 3954 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id, 3955 enum ice_agg_type agg_type, u8 tc, 3956 enum ice_rl_type rl_type, u32 bw) 3957 { 3958 struct ice_sched_node *node; 3959 int status = -EINVAL; 3960 3961 if (!pi) 3962 return status; 3963 3964 if (rl_type == ICE_UNKNOWN_BW) 3965 return status; 3966 3967 mutex_lock(&pi->sched_lock); 3968 node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc); 3969 if (!node) { 3970 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n"); 3971 goto exit_set_node_bw_lmt_per_tc; 3972 } 3973 if (bw == ICE_SCHED_DFLT_BW) 3974 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3975 else 3976 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3977 3978 exit_set_node_bw_lmt_per_tc: 3979 mutex_unlock(&pi->sched_lock); 3980 return status; 3981 } 3982 3983 /** 3984 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC 3985 * @pi: port information structure 3986 * @vsi_handle: software VSI handle 3987 * @tc: traffic class 3988 * @rl_type: min or max 3989 * @bw: bandwidth in Kbps 3990 * 3991 * This function configures BW limit of VSI scheduling node based on TC 3992 * information. 3993 */ 3994 int 3995 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3996 enum ice_rl_type rl_type, u32 bw) 3997 { 3998 int status; 3999 4000 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4001 ICE_AGG_TYPE_VSI, 4002 tc, rl_type, bw); 4003 if (!status) { 4004 mutex_lock(&pi->sched_lock); 4005 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw); 4006 mutex_unlock(&pi->sched_lock); 4007 } 4008 return status; 4009 } 4010 4011 /** 4012 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC 4013 * @pi: port information structure 4014 * @vsi_handle: software VSI handle 4015 * @tc: traffic class 4016 * @rl_type: min or max 4017 * 4018 * This function configures default BW limit of VSI scheduling node based on TC 4019 * information. 4020 */ 4021 int 4022 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4023 enum ice_rl_type rl_type) 4024 { 4025 int status; 4026 4027 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4028 ICE_AGG_TYPE_VSI, 4029 tc, rl_type, 4030 ICE_SCHED_DFLT_BW); 4031 if (!status) { 4032 mutex_lock(&pi->sched_lock); 4033 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, 4034 ICE_SCHED_DFLT_BW); 4035 mutex_unlock(&pi->sched_lock); 4036 } 4037 return status; 4038 } 4039 4040 /** 4041 * ice_cfg_rl_burst_size - Set burst size value 4042 * @hw: pointer to the HW struct 4043 * @bytes: burst size in bytes 4044 * 4045 * This function configures/set the burst size to requested new value. The new 4046 * burst size value is used for future rate limit calls. It doesn't change the 4047 * existing or previously created RL profiles. 4048 */ 4049 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) 4050 { 4051 u16 burst_size_to_prog; 4052 4053 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || 4054 bytes > ICE_MAX_BURST_SIZE_ALLOWED) 4055 return -EINVAL; 4056 if (ice_round_to_num(bytes, 64) <= 4057 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { 4058 /* 64 byte granularity case */ 4059 /* Disable MSB granularity bit */ 4060 burst_size_to_prog = ICE_64_BYTE_GRANULARITY; 4061 /* round number to nearest 64 byte granularity */ 4062 bytes = ice_round_to_num(bytes, 64); 4063 /* The value is in 64 byte chunks */ 4064 burst_size_to_prog |= (u16)(bytes / 64); 4065 } else { 4066 /* k bytes granularity case */ 4067 /* Enable MSB granularity bit */ 4068 burst_size_to_prog = ICE_KBYTE_GRANULARITY; 4069 /* round number to nearest 1024 granularity */ 4070 bytes = ice_round_to_num(bytes, 1024); 4071 /* check rounding doesn't go beyond allowed */ 4072 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) 4073 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; 4074 /* The value is in k bytes */ 4075 burst_size_to_prog |= (u16)(bytes / 1024); 4076 } 4077 hw->max_burst_size = burst_size_to_prog; 4078 return 0; 4079 } 4080 4081 /** 4082 * ice_sched_replay_node_prio - re-configure node priority 4083 * @hw: pointer to the HW struct 4084 * @node: sched node to configure 4085 * @priority: priority value 4086 * 4087 * This function configures node element's priority value. It 4088 * needs to be called with scheduler lock held. 4089 */ 4090 static int 4091 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, 4092 u8 priority) 4093 { 4094 struct ice_aqc_txsched_elem_data buf; 4095 struct ice_aqc_txsched_elem *data; 4096 int status; 4097 4098 buf = node->info; 4099 data = &buf.data; 4100 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 4101 data->generic = priority; 4102 4103 /* Configure element */ 4104 status = ice_sched_update_elem(hw, node, &buf); 4105 return status; 4106 } 4107 4108 /** 4109 * ice_sched_replay_node_bw - replay node(s) BW 4110 * @hw: pointer to the HW struct 4111 * @node: sched node to configure 4112 * @bw_t_info: BW type information 4113 * 4114 * This function restores node's BW from bw_t_info. The caller needs 4115 * to hold the scheduler lock. 4116 */ 4117 static int 4118 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, 4119 struct ice_bw_type_info *bw_t_info) 4120 { 4121 struct ice_port_info *pi = hw->port_info; 4122 int status = -EINVAL; 4123 u16 bw_alloc; 4124 4125 if (!node) 4126 return status; 4127 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) 4128 return 0; 4129 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { 4130 status = ice_sched_replay_node_prio(hw, node, 4131 bw_t_info->generic); 4132 if (status) 4133 return status; 4134 } 4135 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { 4136 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, 4137 bw_t_info->cir_bw.bw); 4138 if (status) 4139 return status; 4140 } 4141 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { 4142 bw_alloc = bw_t_info->cir_bw.bw_alloc; 4143 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, 4144 bw_alloc); 4145 if (status) 4146 return status; 4147 } 4148 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { 4149 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, 4150 bw_t_info->eir_bw.bw); 4151 if (status) 4152 return status; 4153 } 4154 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { 4155 bw_alloc = bw_t_info->eir_bw.bw_alloc; 4156 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, 4157 bw_alloc); 4158 if (status) 4159 return status; 4160 } 4161 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) 4162 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, 4163 bw_t_info->shared_bw); 4164 return status; 4165 } 4166 4167 /** 4168 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap 4169 * @pi: port info struct 4170 * @tc_bitmap: 8 bits TC bitmap to check 4171 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return 4172 * 4173 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs 4174 * may be missing, it returns enabled TCs. This function needs to be called with 4175 * scheduler lock held. 4176 */ 4177 static void 4178 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, 4179 unsigned long *tc_bitmap, 4180 unsigned long *ena_tc_bitmap) 4181 { 4182 u8 tc; 4183 4184 /* Some TC(s) may be missing after reset, adjust for replay */ 4185 ice_for_each_traffic_class(tc) 4186 if (ice_is_tc_ena(*tc_bitmap, tc) && 4187 (ice_sched_get_tc_node(pi, tc))) 4188 set_bit(tc, ena_tc_bitmap); 4189 } 4190 4191 /** 4192 * ice_sched_replay_agg - recreate aggregator node(s) 4193 * @hw: pointer to the HW struct 4194 * 4195 * This function recreate aggregator type nodes which are not replayed earlier. 4196 * It also replay aggregator BW information. These aggregator nodes are not 4197 * associated with VSI type node yet. 4198 */ 4199 void ice_sched_replay_agg(struct ice_hw *hw) 4200 { 4201 struct ice_port_info *pi = hw->port_info; 4202 struct ice_sched_agg_info *agg_info; 4203 4204 mutex_lock(&pi->sched_lock); 4205 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 4206 /* replay aggregator (re-create aggregator node) */ 4207 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap, 4208 ICE_MAX_TRAFFIC_CLASS)) { 4209 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4210 int status; 4211 4212 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4213 ice_sched_get_ena_tc_bitmap(pi, 4214 agg_info->replay_tc_bitmap, 4215 replay_bitmap); 4216 status = ice_sched_cfg_agg(hw->port_info, 4217 agg_info->agg_id, 4218 ICE_AGG_TYPE_AGG, 4219 replay_bitmap); 4220 if (status) { 4221 dev_info(ice_hw_to_dev(hw), 4222 "Replay agg id[%d] failed\n", 4223 agg_info->agg_id); 4224 /* Move on to next one */ 4225 continue; 4226 } 4227 } 4228 mutex_unlock(&pi->sched_lock); 4229 } 4230 4231 /** 4232 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization 4233 * @hw: pointer to the HW struct 4234 * 4235 * This function initialize aggregator(s) TC bitmap to zero. A required 4236 * preinit step for replaying aggregators. 4237 */ 4238 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw) 4239 { 4240 struct ice_port_info *pi = hw->port_info; 4241 struct ice_sched_agg_info *agg_info; 4242 4243 mutex_lock(&pi->sched_lock); 4244 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 4245 struct ice_sched_agg_vsi_info *agg_vsi_info; 4246 4247 agg_info->tc_bitmap[0] = 0; 4248 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, 4249 list_entry) 4250 agg_vsi_info->tc_bitmap[0] = 0; 4251 } 4252 mutex_unlock(&pi->sched_lock); 4253 } 4254 4255 /** 4256 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s) 4257 * @hw: pointer to the HW struct 4258 * @vsi_handle: software VSI handle 4259 * 4260 * This function replays aggregator node, VSI to aggregator type nodes, and 4261 * their node bandwidth information. This function needs to be called with 4262 * scheduler lock held. 4263 */ 4264 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4265 { 4266 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4267 struct ice_sched_agg_vsi_info *agg_vsi_info; 4268 struct ice_port_info *pi = hw->port_info; 4269 struct ice_sched_agg_info *agg_info; 4270 int status; 4271 4272 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4273 if (!ice_is_vsi_valid(hw, vsi_handle)) 4274 return -EINVAL; 4275 agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 4276 if (!agg_info) 4277 return 0; /* Not present in list - default Agg case */ 4278 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 4279 if (!agg_vsi_info) 4280 return 0; /* Not present in list - default Agg case */ 4281 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, 4282 replay_bitmap); 4283 /* Replay aggregator node associated to vsi_handle */ 4284 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, 4285 ICE_AGG_TYPE_AGG, replay_bitmap); 4286 if (status) 4287 return status; 4288 4289 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4290 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap, 4291 replay_bitmap); 4292 /* Move this VSI (vsi_handle) to above aggregator */ 4293 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle, 4294 replay_bitmap); 4295 } 4296 4297 /** 4298 * ice_replay_vsi_agg - replay VSI to aggregator node 4299 * @hw: pointer to the HW struct 4300 * @vsi_handle: software VSI handle 4301 * 4302 * This function replays association of VSI to aggregator type nodes, and 4303 * node bandwidth information. 4304 */ 4305 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4306 { 4307 struct ice_port_info *pi = hw->port_info; 4308 int status; 4309 4310 mutex_lock(&pi->sched_lock); 4311 status = ice_sched_replay_vsi_agg(hw, vsi_handle); 4312 mutex_unlock(&pi->sched_lock); 4313 return status; 4314 } 4315 4316 /** 4317 * ice_sched_replay_q_bw - replay queue type node BW 4318 * @pi: port information structure 4319 * @q_ctx: queue context structure 4320 * 4321 * This function replays queue type node bandwidth. This function needs to be 4322 * called with scheduler lock held. 4323 */ 4324 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) 4325 { 4326 struct ice_sched_node *q_node; 4327 4328 /* Following also checks the presence of node in tree */ 4329 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 4330 if (!q_node) 4331 return -EINVAL; 4332 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); 4333 } 4334