xref: /linux/drivers/net/ethernet/intel/ice/ice_sched.c (revision e3fc2fd77c63cd2e37ebd33a336602a68650f22b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include <net/devlink.h>
5 #include "ice_sched.h"
6 
7 /**
8  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
9  * @pi: port information structure
10  * @info: Scheduler element information from firmware
11  *
12  * This function inserts the root node of the scheduling tree topology
13  * to the SW DB.
14  */
15 static int
16 ice_sched_add_root_node(struct ice_port_info *pi,
17 			struct ice_aqc_txsched_elem_data *info)
18 {
19 	struct ice_sched_node *root;
20 	struct ice_hw *hw;
21 
22 	if (!pi)
23 		return -EINVAL;
24 
25 	hw = pi->hw;
26 
27 	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
28 	if (!root)
29 		return -ENOMEM;
30 
31 	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
32 				      sizeof(*root->children), GFP_KERNEL);
33 	if (!root->children) {
34 		devm_kfree(ice_hw_to_dev(hw), root);
35 		return -ENOMEM;
36 	}
37 
38 	memcpy(&root->info, info, sizeof(*info));
39 	pi->root = root;
40 	return 0;
41 }
42 
43 /**
44  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
45  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
46  * @teid: node TEID to search
47  *
48  * This function searches for a node matching the TEID in the scheduling tree
49  * from the SW DB. The search is recursive and is restricted by the number of
50  * layers it has searched through; stopping at the max supported layer.
51  *
52  * This function needs to be called when holding the port_info->sched_lock
53  */
54 struct ice_sched_node *
55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
56 {
57 	u16 i;
58 
59 	/* The TEID is same as that of the start_node */
60 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
61 		return start_node;
62 
63 	/* The node has no children or is at the max layer */
64 	if (!start_node->num_children ||
65 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
66 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
67 		return NULL;
68 
69 	/* Check if TEID matches to any of the children nodes */
70 	for (i = 0; i < start_node->num_children; i++)
71 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
72 			return start_node->children[i];
73 
74 	/* Search within each child's sub-tree */
75 	for (i = 0; i < start_node->num_children; i++) {
76 		struct ice_sched_node *tmp;
77 
78 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
79 						  teid);
80 		if (tmp)
81 			return tmp;
82 	}
83 
84 	return NULL;
85 }
86 
87 /**
88  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
89  * @hw: pointer to the HW struct
90  * @cmd_opc: cmd opcode
91  * @elems_req: number of elements to request
92  * @buf: pointer to buffer
93  * @buf_size: buffer size in bytes
94  * @elems_resp: returns total number of elements response
95  * @cd: pointer to command details structure or NULL
96  *
97  * This function sends a scheduling elements cmd (cmd_opc)
98  */
99 static int
100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
101 			    u16 elems_req, void *buf, u16 buf_size,
102 			    u16 *elems_resp, struct ice_sq_cd *cd)
103 {
104 	struct ice_aqc_sched_elem_cmd *cmd;
105 	struct ice_aq_desc desc;
106 	int status;
107 
108 	cmd = &desc.params.sched_elem_cmd;
109 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
110 	cmd->num_elem_req = cpu_to_le16(elems_req);
111 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
112 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
113 	if (!status && elems_resp)
114 		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
115 
116 	return status;
117 }
118 
119 /**
120  * ice_aq_query_sched_elems - query scheduler elements
121  * @hw: pointer to the HW struct
122  * @elems_req: number of elements to query
123  * @buf: pointer to buffer
124  * @buf_size: buffer size in bytes
125  * @elems_ret: returns total number of elements returned
126  * @cd: pointer to command details structure or NULL
127  *
128  * Query scheduling elements (0x0404)
129  */
130 int
131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
132 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
133 			 u16 *elems_ret, struct ice_sq_cd *cd)
134 {
135 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
136 					   elems_req, (void *)buf, buf_size,
137 					   elems_ret, cd);
138 }
139 
140 /**
141  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
142  * @pi: port information structure
143  * @layer: Scheduler layer of the node
144  * @info: Scheduler element information from firmware
145  * @prealloc_node: preallocated ice_sched_node struct for SW DB
146  *
147  * This function inserts a scheduler node to the SW DB.
148  */
149 int
150 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
151 		   struct ice_aqc_txsched_elem_data *info,
152 		   struct ice_sched_node *prealloc_node)
153 {
154 	struct ice_aqc_txsched_elem_data elem;
155 	struct ice_sched_node *parent;
156 	struct ice_sched_node *node;
157 	struct ice_hw *hw;
158 	int status;
159 
160 	if (!pi)
161 		return -EINVAL;
162 
163 	hw = pi->hw;
164 
165 	/* A valid parent node should be there */
166 	parent = ice_sched_find_node_by_teid(pi->root,
167 					     le32_to_cpu(info->parent_teid));
168 	if (!parent) {
169 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
170 			  le32_to_cpu(info->parent_teid));
171 		return -EINVAL;
172 	}
173 
174 	/* query the current node information from FW before adding it
175 	 * to the SW DB
176 	 */
177 	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
178 	if (status)
179 		return status;
180 
181 	if (prealloc_node)
182 		node = prealloc_node;
183 	else
184 		node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
185 	if (!node)
186 		return -ENOMEM;
187 	if (hw->max_children[layer]) {
188 		node->children = devm_kcalloc(ice_hw_to_dev(hw),
189 					      hw->max_children[layer],
190 					      sizeof(*node->children), GFP_KERNEL);
191 		if (!node->children) {
192 			devm_kfree(ice_hw_to_dev(hw), node);
193 			return -ENOMEM;
194 		}
195 	}
196 
197 	node->in_use = true;
198 	node->parent = parent;
199 	node->tx_sched_layer = layer;
200 	parent->children[parent->num_children++] = node;
201 	node->info = elem;
202 	return 0;
203 }
204 
205 /**
206  * ice_aq_delete_sched_elems - delete scheduler elements
207  * @hw: pointer to the HW struct
208  * @grps_req: number of groups to delete
209  * @buf: pointer to buffer
210  * @buf_size: buffer size in bytes
211  * @grps_del: returns total number of elements deleted
212  * @cd: pointer to command details structure or NULL
213  *
214  * Delete scheduling elements (0x040F)
215  */
216 static int
217 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
218 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
219 			  u16 *grps_del, struct ice_sq_cd *cd)
220 {
221 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
222 					   grps_req, (void *)buf, buf_size,
223 					   grps_del, cd);
224 }
225 
226 /**
227  * ice_sched_remove_elems - remove nodes from HW
228  * @hw: pointer to the HW struct
229  * @parent: pointer to the parent node
230  * @node_teid: node teid to be deleted
231  *
232  * This function remove nodes from HW
233  */
234 static int
235 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
236 		       u32 node_teid)
237 {
238 	DEFINE_RAW_FLEX(struct ice_aqc_delete_elem, buf, teid, 1);
239 	u16 buf_size = __struct_size(buf);
240 	u16 num_groups_removed = 0;
241 	int status;
242 
243 	buf->hdr.parent_teid = parent->info.node_teid;
244 	buf->hdr.num_elems = cpu_to_le16(1);
245 	buf->teid[0] = cpu_to_le32(node_teid);
246 
247 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
248 					   &num_groups_removed, NULL);
249 	if (status || num_groups_removed != 1)
250 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
251 			  hw->adminq.sq_last_status);
252 
253 	return status;
254 }
255 
256 /**
257  * ice_sched_get_first_node - get the first node of the given layer
258  * @pi: port information structure
259  * @parent: pointer the base node of the subtree
260  * @layer: layer number
261  *
262  * This function retrieves the first node of the given layer from the subtree
263  */
264 static struct ice_sched_node *
265 ice_sched_get_first_node(struct ice_port_info *pi,
266 			 struct ice_sched_node *parent, u8 layer)
267 {
268 	return pi->sib_head[parent->tc_num][layer];
269 }
270 
271 /**
272  * ice_sched_get_tc_node - get pointer to TC node
273  * @pi: port information structure
274  * @tc: TC number
275  *
276  * This function returns the TC node pointer
277  */
278 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
279 {
280 	u8 i;
281 
282 	if (!pi || !pi->root)
283 		return NULL;
284 	for (i = 0; i < pi->root->num_children; i++)
285 		if (pi->root->children[i]->tc_num == tc)
286 			return pi->root->children[i];
287 	return NULL;
288 }
289 
290 /**
291  * ice_free_sched_node - Free a Tx scheduler node from SW DB
292  * @pi: port information structure
293  * @node: pointer to the ice_sched_node struct
294  *
295  * This function frees up a node from SW DB as well as from HW
296  *
297  * This function needs to be called with the port_info->sched_lock held
298  */
299 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
300 {
301 	struct ice_sched_node *parent;
302 	struct ice_hw *hw = pi->hw;
303 	u8 i, j;
304 
305 	/* Free the children before freeing up the parent node
306 	 * The parent array is updated below and that shifts the nodes
307 	 * in the array. So always pick the first child if num children > 0
308 	 */
309 	while (node->num_children)
310 		ice_free_sched_node(pi, node->children[0]);
311 
312 	/* Leaf, TC and root nodes can't be deleted by SW */
313 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
314 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
315 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
316 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
317 		u32 teid = le32_to_cpu(node->info.node_teid);
318 
319 		ice_sched_remove_elems(hw, node->parent, teid);
320 	}
321 	parent = node->parent;
322 	/* root has no parent */
323 	if (parent) {
324 		struct ice_sched_node *p;
325 
326 		/* update the parent */
327 		for (i = 0; i < parent->num_children; i++)
328 			if (parent->children[i] == node) {
329 				for (j = i + 1; j < parent->num_children; j++)
330 					parent->children[j - 1] =
331 						parent->children[j];
332 				parent->num_children--;
333 				break;
334 			}
335 
336 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
337 		while (p) {
338 			if (p->sibling == node) {
339 				p->sibling = node->sibling;
340 				break;
341 			}
342 			p = p->sibling;
343 		}
344 
345 		/* update the sibling head if head is getting removed */
346 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
347 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
348 				node->sibling;
349 	}
350 
351 	devm_kfree(ice_hw_to_dev(hw), node->children);
352 	kfree(node->name);
353 	xa_erase(&pi->sched_node_ids, node->id);
354 	devm_kfree(ice_hw_to_dev(hw), node);
355 }
356 
357 /**
358  * ice_aq_get_dflt_topo - gets default scheduler topology
359  * @hw: pointer to the HW struct
360  * @lport: logical port number
361  * @buf: pointer to buffer
362  * @buf_size: buffer size in bytes
363  * @num_branches: returns total number of queue to port branches
364  * @cd: pointer to command details structure or NULL
365  *
366  * Get default scheduler topology (0x400)
367  */
368 static int
369 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
370 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
371 		     u8 *num_branches, struct ice_sq_cd *cd)
372 {
373 	struct ice_aqc_get_topo *cmd;
374 	struct ice_aq_desc desc;
375 	int status;
376 
377 	cmd = &desc.params.get_topo;
378 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
379 	cmd->port_num = lport;
380 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
381 	if (!status && num_branches)
382 		*num_branches = cmd->num_branches;
383 
384 	return status;
385 }
386 
387 /**
388  * ice_aq_add_sched_elems - adds scheduling element
389  * @hw: pointer to the HW struct
390  * @grps_req: the number of groups that are requested to be added
391  * @buf: pointer to buffer
392  * @buf_size: buffer size in bytes
393  * @grps_added: returns total number of groups added
394  * @cd: pointer to command details structure or NULL
395  *
396  * Add scheduling elements (0x0401)
397  */
398 static int
399 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
400 		       struct ice_aqc_add_elem *buf, u16 buf_size,
401 		       u16 *grps_added, struct ice_sq_cd *cd)
402 {
403 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
404 					   grps_req, (void *)buf, buf_size,
405 					   grps_added, cd);
406 }
407 
408 /**
409  * ice_aq_cfg_sched_elems - configures scheduler elements
410  * @hw: pointer to the HW struct
411  * @elems_req: number of elements to configure
412  * @buf: pointer to buffer
413  * @buf_size: buffer size in bytes
414  * @elems_cfgd: returns total number of elements configured
415  * @cd: pointer to command details structure or NULL
416  *
417  * Configure scheduling elements (0x0403)
418  */
419 static int
420 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
421 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
422 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
423 {
424 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
425 					   elems_req, (void *)buf, buf_size,
426 					   elems_cfgd, cd);
427 }
428 
429 /**
430  * ice_aq_move_sched_elems - move scheduler element (just 1 group)
431  * @hw: pointer to the HW struct
432  * @buf: pointer to buffer
433  * @buf_size: buffer size in bytes
434  * @grps_movd: returns total number of groups moved
435  *
436  * Move scheduling elements (0x0408)
437  */
438 int
439 ice_aq_move_sched_elems(struct ice_hw *hw, struct ice_aqc_move_elem *buf,
440 			u16 buf_size, u16 *grps_movd)
441 {
442 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
443 					   1, buf, buf_size, grps_movd, NULL);
444 }
445 
446 /**
447  * ice_aq_suspend_sched_elems - suspend scheduler elements
448  * @hw: pointer to the HW struct
449  * @elems_req: number of elements to suspend
450  * @buf: pointer to buffer
451  * @buf_size: buffer size in bytes
452  * @elems_ret: returns total number of elements suspended
453  * @cd: pointer to command details structure or NULL
454  *
455  * Suspend scheduling elements (0x0409)
456  */
457 static int
458 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
459 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
460 {
461 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
462 					   elems_req, (void *)buf, buf_size,
463 					   elems_ret, cd);
464 }
465 
466 /**
467  * ice_aq_resume_sched_elems - resume scheduler elements
468  * @hw: pointer to the HW struct
469  * @elems_req: number of elements to resume
470  * @buf: pointer to buffer
471  * @buf_size: buffer size in bytes
472  * @elems_ret: returns total number of elements resumed
473  * @cd: pointer to command details structure or NULL
474  *
475  * resume scheduling elements (0x040A)
476  */
477 static int
478 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
479 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
480 {
481 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
482 					   elems_req, (void *)buf, buf_size,
483 					   elems_ret, cd);
484 }
485 
486 /**
487  * ice_aq_query_sched_res - query scheduler resource
488  * @hw: pointer to the HW struct
489  * @buf_size: buffer size in bytes
490  * @buf: pointer to buffer
491  * @cd: pointer to command details structure or NULL
492  *
493  * Query scheduler resource allocation (0x0412)
494  */
495 static int
496 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
497 		       struct ice_aqc_query_txsched_res_resp *buf,
498 		       struct ice_sq_cd *cd)
499 {
500 	struct ice_aq_desc desc;
501 
502 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
503 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
504 }
505 
506 /**
507  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
508  * @hw: pointer to the HW struct
509  * @num_nodes: number of nodes
510  * @node_teids: array of node teids to be suspended or resumed
511  * @suspend: true means suspend / false means resume
512  *
513  * This function suspends or resumes HW nodes
514  */
515 int
516 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
517 			       bool suspend)
518 {
519 	u16 i, buf_size, num_elem_ret = 0;
520 	__le32 *buf;
521 	int status;
522 
523 	buf_size = sizeof(*buf) * num_nodes;
524 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
525 	if (!buf)
526 		return -ENOMEM;
527 
528 	for (i = 0; i < num_nodes; i++)
529 		buf[i] = cpu_to_le32(node_teids[i]);
530 
531 	if (suspend)
532 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
533 						    buf_size, &num_elem_ret,
534 						    NULL);
535 	else
536 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
537 						   buf_size, &num_elem_ret,
538 						   NULL);
539 	if (status || num_elem_ret != num_nodes)
540 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
541 
542 	devm_kfree(ice_hw_to_dev(hw), buf);
543 	return status;
544 }
545 
546 /**
547  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
548  * @hw: pointer to the HW struct
549  * @vsi_handle: VSI handle
550  * @tc: TC number
551  * @new_numqs: number of queues
552  */
553 static int
554 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
555 {
556 	struct ice_vsi_ctx *vsi_ctx;
557 	struct ice_q_ctx *q_ctx;
558 	u16 idx;
559 
560 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
561 	if (!vsi_ctx)
562 		return -EINVAL;
563 	/* allocate LAN queue contexts */
564 	if (!vsi_ctx->lan_q_ctx[tc]) {
565 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
566 				     sizeof(*q_ctx), GFP_KERNEL);
567 		if (!q_ctx)
568 			return -ENOMEM;
569 
570 		for (idx = 0; idx < new_numqs; idx++) {
571 			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
572 			q_ctx[idx].q_teid = ICE_INVAL_TEID;
573 		}
574 
575 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
576 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
577 		return 0;
578 	}
579 	/* num queues are increased, update the queue contexts */
580 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
581 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
582 
583 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
584 				     sizeof(*q_ctx), GFP_KERNEL);
585 		if (!q_ctx)
586 			return -ENOMEM;
587 
588 		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
589 		       prev_num * sizeof(*q_ctx));
590 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
591 
592 		for (idx = prev_num; idx < new_numqs; idx++) {
593 			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
594 			q_ctx[idx].q_teid = ICE_INVAL_TEID;
595 		}
596 
597 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
598 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
599 	}
600 	return 0;
601 }
602 
603 /**
604  * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
605  * @hw: pointer to the HW struct
606  * @vsi_handle: VSI handle
607  * @tc: TC number
608  * @new_numqs: number of queues
609  */
610 static int
611 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
612 {
613 	struct ice_vsi_ctx *vsi_ctx;
614 	struct ice_q_ctx *q_ctx;
615 
616 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
617 	if (!vsi_ctx)
618 		return -EINVAL;
619 	/* allocate RDMA queue contexts */
620 	if (!vsi_ctx->rdma_q_ctx[tc]) {
621 		vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
622 						       new_numqs,
623 						       sizeof(*q_ctx),
624 						       GFP_KERNEL);
625 		if (!vsi_ctx->rdma_q_ctx[tc])
626 			return -ENOMEM;
627 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
628 		return 0;
629 	}
630 	/* num queues are increased, update the queue contexts */
631 	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
632 		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
633 
634 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
635 				     sizeof(*q_ctx), GFP_KERNEL);
636 		if (!q_ctx)
637 			return -ENOMEM;
638 		memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
639 		       prev_num * sizeof(*q_ctx));
640 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
641 		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
642 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
643 	}
644 	return 0;
645 }
646 
647 /**
648  * ice_aq_rl_profile - performs a rate limiting task
649  * @hw: pointer to the HW struct
650  * @opcode: opcode for add, query, or remove profile(s)
651  * @num_profiles: the number of profiles
652  * @buf: pointer to buffer
653  * @buf_size: buffer size in bytes
654  * @num_processed: number of processed add or remove profile(s) to return
655  * @cd: pointer to command details structure
656  *
657  * RL profile function to add, query, or remove profile(s)
658  */
659 static int
660 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
661 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
662 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
663 {
664 	struct ice_aqc_rl_profile *cmd;
665 	struct ice_aq_desc desc;
666 	int status;
667 
668 	cmd = &desc.params.rl_profile;
669 
670 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
671 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
672 	cmd->num_profiles = cpu_to_le16(num_profiles);
673 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
674 	if (!status && num_processed)
675 		*num_processed = le16_to_cpu(cmd->num_processed);
676 	return status;
677 }
678 
679 /**
680  * ice_aq_add_rl_profile - adds rate limiting profile(s)
681  * @hw: pointer to the HW struct
682  * @num_profiles: the number of profile(s) to be add
683  * @buf: pointer to buffer
684  * @buf_size: buffer size in bytes
685  * @num_profiles_added: total number of profiles added to return
686  * @cd: pointer to command details structure
687  *
688  * Add RL profile (0x0410)
689  */
690 static int
691 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
692 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
693 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
694 {
695 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
696 				 buf, buf_size, num_profiles_added, cd);
697 }
698 
699 /**
700  * ice_aq_remove_rl_profile - removes RL profile(s)
701  * @hw: pointer to the HW struct
702  * @num_profiles: the number of profile(s) to remove
703  * @buf: pointer to buffer
704  * @buf_size: buffer size in bytes
705  * @num_profiles_removed: total number of profiles removed to return
706  * @cd: pointer to command details structure or NULL
707  *
708  * Remove RL profile (0x0415)
709  */
710 static int
711 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
712 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
713 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
714 {
715 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
716 				 num_profiles, buf, buf_size,
717 				 num_profiles_removed, cd);
718 }
719 
720 /**
721  * ice_sched_del_rl_profile - remove RL profile
722  * @hw: pointer to the HW struct
723  * @rl_info: rate limit profile information
724  *
725  * If the profile ID is not referenced anymore, it removes profile ID with
726  * its associated parameters from HW DB,and locally. The caller needs to
727  * hold scheduler lock.
728  */
729 static int
730 ice_sched_del_rl_profile(struct ice_hw *hw,
731 			 struct ice_aqc_rl_profile_info *rl_info)
732 {
733 	struct ice_aqc_rl_profile_elem *buf;
734 	u16 num_profiles_removed;
735 	u16 num_profiles = 1;
736 	int status;
737 
738 	if (rl_info->prof_id_ref != 0)
739 		return -EBUSY;
740 
741 	/* Safe to remove profile ID */
742 	buf = &rl_info->profile;
743 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
744 					  &num_profiles_removed, NULL);
745 	if (status || num_profiles_removed != num_profiles)
746 		return -EIO;
747 
748 	/* Delete stale entry now */
749 	list_del(&rl_info->list_entry);
750 	devm_kfree(ice_hw_to_dev(hw), rl_info);
751 	return status;
752 }
753 
754 /**
755  * ice_sched_clear_rl_prof - clears RL prof entries
756  * @pi: port information structure
757  *
758  * This function removes all RL profile from HW as well as from SW DB.
759  */
760 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
761 {
762 	u16 ln;
763 
764 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
765 		struct ice_aqc_rl_profile_info *rl_prof_elem;
766 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
767 
768 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
769 					 &pi->rl_prof_list[ln], list_entry) {
770 			struct ice_hw *hw = pi->hw;
771 			int status;
772 
773 			rl_prof_elem->prof_id_ref = 0;
774 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
775 			if (status) {
776 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
777 				/* On error, free mem required */
778 				list_del(&rl_prof_elem->list_entry);
779 				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
780 			}
781 		}
782 	}
783 }
784 
785 /**
786  * ice_sched_clear_agg - clears the aggregator related information
787  * @hw: pointer to the hardware structure
788  *
789  * This function removes aggregator list and free up aggregator related memory
790  * previously allocated.
791  */
792 void ice_sched_clear_agg(struct ice_hw *hw)
793 {
794 	struct ice_sched_agg_info *agg_info;
795 	struct ice_sched_agg_info *atmp;
796 
797 	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
798 		struct ice_sched_agg_vsi_info *agg_vsi_info;
799 		struct ice_sched_agg_vsi_info *vtmp;
800 
801 		list_for_each_entry_safe(agg_vsi_info, vtmp,
802 					 &agg_info->agg_vsi_list, list_entry) {
803 			list_del(&agg_vsi_info->list_entry);
804 			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
805 		}
806 		list_del(&agg_info->list_entry);
807 		devm_kfree(ice_hw_to_dev(hw), agg_info);
808 	}
809 }
810 
811 /**
812  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
813  * @pi: port information structure
814  *
815  * This function removes all the nodes from HW as well as from SW DB.
816  */
817 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
818 {
819 	if (!pi)
820 		return;
821 	/* remove RL profiles related lists */
822 	ice_sched_clear_rl_prof(pi);
823 	if (pi->root) {
824 		ice_free_sched_node(pi, pi->root);
825 		pi->root = NULL;
826 	}
827 }
828 
829 /**
830  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
831  * @pi: port information structure
832  *
833  * Cleanup scheduling elements from SW DB
834  */
835 void ice_sched_clear_port(struct ice_port_info *pi)
836 {
837 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
838 		return;
839 
840 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
841 	mutex_lock(&pi->sched_lock);
842 	ice_sched_clear_tx_topo(pi);
843 	mutex_unlock(&pi->sched_lock);
844 	mutex_destroy(&pi->sched_lock);
845 }
846 
847 /**
848  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
849  * @hw: pointer to the HW struct
850  *
851  * Cleanup scheduling elements from SW DB for all the ports
852  */
853 void ice_sched_cleanup_all(struct ice_hw *hw)
854 {
855 	if (!hw)
856 		return;
857 
858 	devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
859 	hw->layer_info = NULL;
860 
861 	ice_sched_clear_port(hw->port_info);
862 
863 	hw->num_tx_sched_layers = 0;
864 	hw->num_tx_sched_phys_layers = 0;
865 	hw->flattened_layers = 0;
866 	hw->max_cgds = 0;
867 }
868 
869 /**
870  * ice_sched_add_elems - add nodes to HW and SW DB
871  * @pi: port information structure
872  * @tc_node: pointer to the branch node
873  * @parent: pointer to the parent node
874  * @layer: layer number to add nodes
875  * @num_nodes: number of nodes
876  * @num_nodes_added: pointer to num nodes added
877  * @first_node_teid: if new nodes are added then return the TEID of first node
878  * @prealloc_nodes: preallocated nodes struct for software DB
879  *
880  * This function add nodes to HW as well as to SW DB for a given layer
881  */
882 int
883 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
884 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
885 		    u16 *num_nodes_added, u32 *first_node_teid,
886 		    struct ice_sched_node **prealloc_nodes)
887 {
888 	struct ice_sched_node *prev, *new_node;
889 	struct ice_aqc_add_elem *buf;
890 	u16 i, num_groups_added = 0;
891 	struct ice_hw *hw = pi->hw;
892 	size_t buf_size;
893 	int status = 0;
894 	u32 teid;
895 
896 	buf_size = struct_size(buf, generic, num_nodes);
897 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
898 	if (!buf)
899 		return -ENOMEM;
900 
901 	buf->hdr.parent_teid = parent->info.node_teid;
902 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
903 	for (i = 0; i < num_nodes; i++) {
904 		buf->generic[i].parent_teid = parent->info.node_teid;
905 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
906 		buf->generic[i].data.valid_sections =
907 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
908 			ICE_AQC_ELEM_VALID_EIR;
909 		buf->generic[i].data.generic = 0;
910 		buf->generic[i].data.cir_bw.bw_profile_idx =
911 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
912 		buf->generic[i].data.cir_bw.bw_alloc =
913 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
914 		buf->generic[i].data.eir_bw.bw_profile_idx =
915 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
916 		buf->generic[i].data.eir_bw.bw_alloc =
917 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
918 	}
919 
920 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
921 					&num_groups_added, NULL);
922 	if (status || num_groups_added != 1) {
923 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
924 			  hw->adminq.sq_last_status);
925 		devm_kfree(ice_hw_to_dev(hw), buf);
926 		return -EIO;
927 	}
928 
929 	*num_nodes_added = num_nodes;
930 	/* add nodes to the SW DB */
931 	for (i = 0; i < num_nodes; i++) {
932 		if (prealloc_nodes)
933 			status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
934 		else
935 			status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
936 
937 		if (status) {
938 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
939 				  status);
940 			break;
941 		}
942 
943 		teid = le32_to_cpu(buf->generic[i].node_teid);
944 		new_node = ice_sched_find_node_by_teid(parent, teid);
945 		if (!new_node) {
946 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
947 			break;
948 		}
949 
950 		new_node->sibling = NULL;
951 		new_node->tc_num = tc_node->tc_num;
952 		new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
953 		new_node->tx_share = ICE_SCHED_DFLT_BW;
954 		new_node->tx_max = ICE_SCHED_DFLT_BW;
955 		new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
956 		if (!new_node->name)
957 			return -ENOMEM;
958 
959 		status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
960 				  GFP_KERNEL);
961 		if (status) {
962 			ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
963 				  status);
964 			break;
965 		}
966 
967 		snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
968 
969 		/* add it to previous node sibling pointer */
970 		/* Note: siblings are not linked across branches */
971 		prev = ice_sched_get_first_node(pi, tc_node, layer);
972 		if (prev && prev != new_node) {
973 			while (prev->sibling)
974 				prev = prev->sibling;
975 			prev->sibling = new_node;
976 		}
977 
978 		/* initialize the sibling head */
979 		if (!pi->sib_head[tc_node->tc_num][layer])
980 			pi->sib_head[tc_node->tc_num][layer] = new_node;
981 
982 		if (i == 0)
983 			*first_node_teid = teid;
984 	}
985 
986 	devm_kfree(ice_hw_to_dev(hw), buf);
987 	return status;
988 }
989 
990 /**
991  * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
992  * @pi: port information structure
993  * @tc_node: pointer to TC node
994  * @parent: pointer to parent node
995  * @layer: layer number to add nodes
996  * @num_nodes: number of nodes to be added
997  * @first_node_teid: pointer to the first node TEID
998  * @num_nodes_added: pointer to number of nodes added
999  *
1000  * Add nodes into specific HW layer.
1001  */
1002 static int
1003 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1004 				struct ice_sched_node *tc_node,
1005 				struct ice_sched_node *parent, u8 layer,
1006 				u16 num_nodes, u32 *first_node_teid,
1007 				u16 *num_nodes_added)
1008 {
1009 	u16 max_child_nodes;
1010 
1011 	*num_nodes_added = 0;
1012 
1013 	if (!num_nodes)
1014 		return 0;
1015 
1016 	if (!parent || layer < pi->hw->sw_entry_point_layer)
1017 		return -EINVAL;
1018 
1019 	/* max children per node per layer */
1020 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1021 
1022 	/* current number of children + required nodes exceed max children */
1023 	if ((parent->num_children + num_nodes) > max_child_nodes) {
1024 		/* Fail if the parent is a TC node */
1025 		if (parent == tc_node)
1026 			return -EIO;
1027 		return -ENOSPC;
1028 	}
1029 
1030 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1031 				   num_nodes_added, first_node_teid, NULL);
1032 }
1033 
1034 /**
1035  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1036  * @pi: port information structure
1037  * @tc_node: pointer to TC node
1038  * @parent: pointer to parent node
1039  * @layer: layer number to add nodes
1040  * @num_nodes: number of nodes to be added
1041  * @first_node_teid: pointer to the first node TEID
1042  * @num_nodes_added: pointer to number of nodes added
1043  *
1044  * This function add nodes to a given layer.
1045  */
1046 int
1047 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1048 			     struct ice_sched_node *tc_node,
1049 			     struct ice_sched_node *parent, u8 layer,
1050 			     u16 num_nodes, u32 *first_node_teid,
1051 			     u16 *num_nodes_added)
1052 {
1053 	u32 *first_teid_ptr = first_node_teid;
1054 	u16 new_num_nodes = num_nodes;
1055 	int status = 0;
1056 
1057 	*num_nodes_added = 0;
1058 	while (*num_nodes_added < num_nodes) {
1059 		u16 max_child_nodes, num_added = 0;
1060 		u32 temp;
1061 
1062 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1063 							 layer,	new_num_nodes,
1064 							 first_teid_ptr,
1065 							 &num_added);
1066 		if (!status)
1067 			*num_nodes_added += num_added;
1068 		/* added more nodes than requested ? */
1069 		if (*num_nodes_added > num_nodes) {
1070 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1071 				  *num_nodes_added);
1072 			status = -EIO;
1073 			break;
1074 		}
1075 		/* break if all the nodes are added successfully */
1076 		if (!status && (*num_nodes_added == num_nodes))
1077 			break;
1078 		/* break if the error is not max limit */
1079 		if (status && status != -ENOSPC)
1080 			break;
1081 		/* Exceeded the max children */
1082 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1083 		/* utilize all the spaces if the parent is not full */
1084 		if (parent->num_children < max_child_nodes) {
1085 			new_num_nodes = max_child_nodes - parent->num_children;
1086 		} else {
1087 			/* This parent is full, try the next sibling */
1088 			parent = parent->sibling;
1089 			/* Don't modify the first node TEID memory if the
1090 			 * first node was added already in the above call.
1091 			 * Instead send some temp memory for all other
1092 			 * recursive calls.
1093 			 */
1094 			if (num_added)
1095 				first_teid_ptr = &temp;
1096 
1097 			new_num_nodes = num_nodes - *num_nodes_added;
1098 		}
1099 	}
1100 	return status;
1101 }
1102 
1103 /**
1104  * ice_sched_get_qgrp_layer - get the current queue group layer number
1105  * @hw: pointer to the HW struct
1106  *
1107  * This function returns the current queue group layer number
1108  */
1109 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1110 {
1111 	/* It's always total layers - 1, the array is 0 relative so -2 */
1112 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1113 }
1114 
1115 /**
1116  * ice_sched_get_vsi_layer - get the current VSI layer number
1117  * @hw: pointer to the HW struct
1118  *
1119  * This function returns the current VSI layer number
1120  */
1121 u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1122 {
1123 	/* Num Layers       VSI layer
1124 	 *     9               6
1125 	 *     7               4
1126 	 *     5 or less       sw_entry_point_layer
1127 	 */
1128 	/* calculate the VSI layer based on number of layers. */
1129 	if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1130 		return hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1131 	else if (hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS)
1132 		/* qgroup and VSI layers are same */
1133 		return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1134 	return hw->sw_entry_point_layer;
1135 }
1136 
1137 /**
1138  * ice_sched_get_agg_layer - get the current aggregator layer number
1139  * @hw: pointer to the HW struct
1140  *
1141  * This function returns the current aggregator layer number
1142  */
1143 u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1144 {
1145 	/* Num Layers       aggregator layer
1146 	 *     9               4
1147 	 *     7 or less       sw_entry_point_layer
1148 	 */
1149 	/* calculate the aggregator layer based on number of layers. */
1150 	if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1151 		return hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1152 	else
1153 		return hw->sw_entry_point_layer;
1154 }
1155 
1156 /**
1157  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1158  * @pi: port information structure
1159  *
1160  * This function removes the leaf node that was created by the FW
1161  * during initialization
1162  */
1163 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1164 {
1165 	struct ice_sched_node *node;
1166 
1167 	node = pi->root;
1168 	while (node) {
1169 		if (!node->num_children)
1170 			break;
1171 		node = node->children[0];
1172 	}
1173 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1174 		u32 teid = le32_to_cpu(node->info.node_teid);
1175 		int status;
1176 
1177 		/* remove the default leaf node */
1178 		status = ice_sched_remove_elems(pi->hw, node->parent, teid);
1179 		if (!status)
1180 			ice_free_sched_node(pi, node);
1181 	}
1182 }
1183 
1184 /**
1185  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1186  * @pi: port information structure
1187  *
1188  * This function frees all the nodes except root and TC that were created by
1189  * the FW during initialization
1190  */
1191 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1192 {
1193 	struct ice_sched_node *node;
1194 
1195 	ice_rm_dflt_leaf_node(pi);
1196 
1197 	/* remove the default nodes except TC and root nodes */
1198 	node = pi->root;
1199 	while (node) {
1200 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1201 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1202 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1203 			ice_free_sched_node(pi, node);
1204 			break;
1205 		}
1206 
1207 		if (!node->num_children)
1208 			break;
1209 		node = node->children[0];
1210 	}
1211 }
1212 
1213 /**
1214  * ice_sched_init_port - Initialize scheduler by querying information from FW
1215  * @pi: port info structure for the tree to cleanup
1216  *
1217  * This function is the initial call to find the total number of Tx scheduler
1218  * resources, default topology created by firmware and storing the information
1219  * in SW DB.
1220  */
1221 int ice_sched_init_port(struct ice_port_info *pi)
1222 {
1223 	struct ice_aqc_get_topo_elem *buf;
1224 	struct ice_hw *hw;
1225 	u8 num_branches;
1226 	u16 num_elems;
1227 	int status;
1228 	u8 i, j;
1229 
1230 	if (!pi)
1231 		return -EINVAL;
1232 	hw = pi->hw;
1233 
1234 	/* Query the Default Topology from FW */
1235 	buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1236 	if (!buf)
1237 		return -ENOMEM;
1238 
1239 	/* Query default scheduling tree topology */
1240 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1241 				      &num_branches, NULL);
1242 	if (status)
1243 		goto err_init_port;
1244 
1245 	/* num_branches should be between 1-8 */
1246 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1247 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1248 			  num_branches);
1249 		status = -EINVAL;
1250 		goto err_init_port;
1251 	}
1252 
1253 	/* get the number of elements on the default/first branch */
1254 	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1255 
1256 	/* num_elems should always be between 1-9 */
1257 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1258 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1259 			  num_elems);
1260 		status = -EINVAL;
1261 		goto err_init_port;
1262 	}
1263 
1264 	/* If the last node is a leaf node then the index of the queue group
1265 	 * layer is two less than the number of elements.
1266 	 */
1267 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1268 	    ICE_AQC_ELEM_TYPE_LEAF)
1269 		pi->last_node_teid =
1270 			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1271 	else
1272 		pi->last_node_teid =
1273 			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1274 
1275 	/* Insert the Tx Sched root node */
1276 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1277 	if (status)
1278 		goto err_init_port;
1279 
1280 	/* Parse the default tree and cache the information */
1281 	for (i = 0; i < num_branches; i++) {
1282 		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1283 
1284 		/* Skip root element as already inserted */
1285 		for (j = 1; j < num_elems; j++) {
1286 			/* update the sw entry point */
1287 			if (buf[0].generic[j].data.elem_type ==
1288 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1289 				hw->sw_entry_point_layer = j;
1290 
1291 			status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1292 			if (status)
1293 				goto err_init_port;
1294 		}
1295 	}
1296 
1297 	/* Remove the default nodes. */
1298 	if (pi->root)
1299 		ice_sched_rm_dflt_nodes(pi);
1300 
1301 	/* initialize the port for handling the scheduler tree */
1302 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1303 	mutex_init(&pi->sched_lock);
1304 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1305 		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1306 
1307 err_init_port:
1308 	if (status && pi->root) {
1309 		ice_free_sched_node(pi, pi->root);
1310 		pi->root = NULL;
1311 	}
1312 
1313 	kfree(buf);
1314 	return status;
1315 }
1316 
1317 /**
1318  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1319  * @hw: pointer to the HW struct
1320  *
1321  * query FW for allocated scheduler resources and store in HW struct
1322  */
1323 int ice_sched_query_res_alloc(struct ice_hw *hw)
1324 {
1325 	struct ice_aqc_query_txsched_res_resp *buf;
1326 	__le16 max_sibl;
1327 	int status = 0;
1328 	u16 i;
1329 
1330 	if (hw->layer_info)
1331 		return status;
1332 
1333 	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1334 	if (!buf)
1335 		return -ENOMEM;
1336 
1337 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1338 	if (status)
1339 		goto sched_query_out;
1340 
1341 	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1342 	hw->num_tx_sched_phys_layers =
1343 		le16_to_cpu(buf->sched_props.phys_levels);
1344 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1345 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1346 
1347 	/* max sibling group size of current layer refers to the max children
1348 	 * of the below layer node.
1349 	 * layer 1 node max children will be layer 2 max sibling group size
1350 	 * layer 2 node max children will be layer 3 max sibling group size
1351 	 * and so on. This array will be populated from root (index 0) to
1352 	 * qgroup layer 7. Leaf node has no children.
1353 	 */
1354 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1355 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1356 		hw->max_children[i] = le16_to_cpu(max_sibl);
1357 	}
1358 
1359 	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1360 				      (hw->num_tx_sched_layers *
1361 				       sizeof(*hw->layer_info)),
1362 				      GFP_KERNEL);
1363 	if (!hw->layer_info) {
1364 		status = -ENOMEM;
1365 		goto sched_query_out;
1366 	}
1367 
1368 sched_query_out:
1369 	devm_kfree(ice_hw_to_dev(hw), buf);
1370 	return status;
1371 }
1372 
1373 /**
1374  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1375  * @hw: pointer to the HW struct
1376  *
1377  * Determine the PSM clock frequency and store in HW struct
1378  */
1379 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1380 {
1381 	u32 val, clk_src;
1382 
1383 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1384 	clk_src = FIELD_GET(GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M, val);
1385 
1386 #define PSM_CLK_SRC_367_MHZ 0x0
1387 #define PSM_CLK_SRC_416_MHZ 0x1
1388 #define PSM_CLK_SRC_446_MHZ 0x2
1389 #define PSM_CLK_SRC_390_MHZ 0x3
1390 
1391 	switch (clk_src) {
1392 	case PSM_CLK_SRC_367_MHZ:
1393 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1394 		break;
1395 	case PSM_CLK_SRC_416_MHZ:
1396 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1397 		break;
1398 	case PSM_CLK_SRC_446_MHZ:
1399 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1400 		break;
1401 	case PSM_CLK_SRC_390_MHZ:
1402 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1403 		break;
1404 	default:
1405 		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1406 			  clk_src);
1407 		/* fall back to a safe default */
1408 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1409 	}
1410 }
1411 
1412 /**
1413  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1414  * @hw: pointer to the HW struct
1415  * @base: pointer to the base node
1416  * @node: pointer to the node to search
1417  *
1418  * This function checks whether a given node is part of the base node
1419  * subtree or not
1420  */
1421 static bool
1422 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1423 			       struct ice_sched_node *node)
1424 {
1425 	u8 i;
1426 
1427 	for (i = 0; i < base->num_children; i++) {
1428 		struct ice_sched_node *child = base->children[i];
1429 
1430 		if (node == child)
1431 			return true;
1432 
1433 		if (child->tx_sched_layer > node->tx_sched_layer)
1434 			return false;
1435 
1436 		/* this recursion is intentional, and wouldn't
1437 		 * go more than 8 calls
1438 		 */
1439 		if (ice_sched_find_node_in_subtree(hw, child, node))
1440 			return true;
1441 	}
1442 	return false;
1443 }
1444 
1445 /**
1446  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1447  * @pi: port information structure
1448  * @vsi_node: software VSI handle
1449  * @qgrp_node: first queue group node identified for scanning
1450  * @owner: LAN or RDMA
1451  *
1452  * This function retrieves a free LAN or RDMA queue group node by scanning
1453  * qgrp_node and its siblings for the queue group with the fewest number
1454  * of queues currently assigned.
1455  */
1456 static struct ice_sched_node *
1457 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1458 			struct ice_sched_node *vsi_node,
1459 			struct ice_sched_node *qgrp_node, u8 owner)
1460 {
1461 	struct ice_sched_node *min_qgrp;
1462 	u8 min_children;
1463 
1464 	if (!qgrp_node)
1465 		return qgrp_node;
1466 	min_children = qgrp_node->num_children;
1467 	if (!min_children)
1468 		return qgrp_node;
1469 	min_qgrp = qgrp_node;
1470 	/* scan all queue groups until find a node which has less than the
1471 	 * minimum number of children. This way all queue group nodes get
1472 	 * equal number of shares and active. The bandwidth will be equally
1473 	 * distributed across all queues.
1474 	 */
1475 	while (qgrp_node) {
1476 		/* make sure the qgroup node is part of the VSI subtree */
1477 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1478 			if (qgrp_node->num_children < min_children &&
1479 			    qgrp_node->owner == owner) {
1480 				/* replace the new min queue group node */
1481 				min_qgrp = qgrp_node;
1482 				min_children = min_qgrp->num_children;
1483 				/* break if it has no children, */
1484 				if (!min_children)
1485 					break;
1486 			}
1487 		qgrp_node = qgrp_node->sibling;
1488 	}
1489 	return min_qgrp;
1490 }
1491 
1492 /**
1493  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1494  * @pi: port information structure
1495  * @vsi_handle: software VSI handle
1496  * @tc: branch number
1497  * @owner: LAN or RDMA
1498  *
1499  * This function retrieves a free LAN or RDMA queue group node
1500  */
1501 struct ice_sched_node *
1502 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1503 			   u8 owner)
1504 {
1505 	struct ice_sched_node *vsi_node, *qgrp_node;
1506 	struct ice_vsi_ctx *vsi_ctx;
1507 	u8 qgrp_layer, vsi_layer;
1508 	u16 max_children;
1509 
1510 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1511 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1512 	max_children = pi->hw->max_children[qgrp_layer];
1513 
1514 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1515 	if (!vsi_ctx)
1516 		return NULL;
1517 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1518 	/* validate invalid VSI ID */
1519 	if (!vsi_node)
1520 		return NULL;
1521 
1522 	/* If the queue group and VSI layer are same then queues
1523 	 * are all attached directly to VSI
1524 	 */
1525 	if (qgrp_layer == vsi_layer)
1526 		return vsi_node;
1527 
1528 	/* get the first queue group node from VSI sub-tree */
1529 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1530 	while (qgrp_node) {
1531 		/* make sure the qgroup node is part of the VSI subtree */
1532 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1533 			if (qgrp_node->num_children < max_children &&
1534 			    qgrp_node->owner == owner)
1535 				break;
1536 		qgrp_node = qgrp_node->sibling;
1537 	}
1538 
1539 	/* Select the best queue group */
1540 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1541 }
1542 
1543 /**
1544  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1545  * @pi: pointer to the port information structure
1546  * @tc_node: pointer to the TC node
1547  * @vsi_handle: software VSI handle
1548  *
1549  * This function retrieves a VSI node for a given VSI ID from a given
1550  * TC branch
1551  */
1552 static struct ice_sched_node *
1553 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1554 		       u16 vsi_handle)
1555 {
1556 	struct ice_sched_node *node;
1557 	u8 vsi_layer;
1558 
1559 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1560 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1561 
1562 	/* Check whether it already exists */
1563 	while (node) {
1564 		if (node->vsi_handle == vsi_handle)
1565 			return node;
1566 		node = node->sibling;
1567 	}
1568 
1569 	return node;
1570 }
1571 
1572 /**
1573  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1574  * @pi: pointer to the port information structure
1575  * @tc_node: pointer to the TC node
1576  * @agg_id: aggregator ID
1577  *
1578  * This function retrieves an aggregator node for a given aggregator ID from
1579  * a given TC branch
1580  */
1581 struct ice_sched_node *
1582 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1583 		       u32 agg_id)
1584 {
1585 	struct ice_sched_node *node;
1586 	struct ice_hw *hw = pi->hw;
1587 	u8 agg_layer;
1588 
1589 	if (!hw)
1590 		return NULL;
1591 	agg_layer = ice_sched_get_agg_layer(hw);
1592 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1593 
1594 	/* Check whether it already exists */
1595 	while (node) {
1596 		if (node->agg_id == agg_id)
1597 			return node;
1598 		node = node->sibling;
1599 	}
1600 
1601 	return node;
1602 }
1603 
1604 /**
1605  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1606  * @hw: pointer to the HW struct
1607  * @num_qs: number of queues
1608  * @num_nodes: num nodes array
1609  *
1610  * This function calculates the number of VSI child nodes based on the
1611  * number of queues.
1612  */
1613 static void
1614 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1615 {
1616 	u16 num = num_qs;
1617 	u8 i, qgl, vsil;
1618 
1619 	qgl = ice_sched_get_qgrp_layer(hw);
1620 	vsil = ice_sched_get_vsi_layer(hw);
1621 
1622 	/* calculate num nodes from queue group to VSI layer */
1623 	for (i = qgl; i > vsil; i--) {
1624 		/* round to the next integer if there is a remainder */
1625 		num = DIV_ROUND_UP(num, hw->max_children[i]);
1626 
1627 		/* need at least one node */
1628 		num_nodes[i] = num ? num : 1;
1629 	}
1630 }
1631 
1632 /**
1633  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1634  * @pi: port information structure
1635  * @vsi_handle: software VSI handle
1636  * @tc_node: pointer to the TC node
1637  * @num_nodes: pointer to the num nodes that needs to be added per layer
1638  * @owner: node owner (LAN or RDMA)
1639  *
1640  * This function adds the VSI child nodes to tree. It gets called for
1641  * LAN and RDMA separately.
1642  */
1643 static int
1644 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1645 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1646 			      u8 owner)
1647 {
1648 	struct ice_sched_node *parent, *node;
1649 	struct ice_hw *hw = pi->hw;
1650 	u32 first_node_teid;
1651 	u16 num_added = 0;
1652 	u8 i, qgl, vsil;
1653 
1654 	qgl = ice_sched_get_qgrp_layer(hw);
1655 	vsil = ice_sched_get_vsi_layer(hw);
1656 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1657 	for (i = vsil + 1; i <= qgl; i++) {
1658 		int status;
1659 
1660 		if (!parent)
1661 			return -EIO;
1662 
1663 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1664 						      num_nodes[i],
1665 						      &first_node_teid,
1666 						      &num_added);
1667 		if (status || num_nodes[i] != num_added)
1668 			return -EIO;
1669 
1670 		/* The newly added node can be a new parent for the next
1671 		 * layer nodes
1672 		 */
1673 		if (num_added) {
1674 			parent = ice_sched_find_node_by_teid(tc_node,
1675 							     first_node_teid);
1676 			node = parent;
1677 			while (node) {
1678 				node->owner = owner;
1679 				node = node->sibling;
1680 			}
1681 		} else {
1682 			parent = parent->children[0];
1683 		}
1684 	}
1685 
1686 	return 0;
1687 }
1688 
1689 /**
1690  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1691  * @pi: pointer to the port info structure
1692  * @tc_node: pointer to TC node
1693  * @num_nodes: pointer to num nodes array
1694  *
1695  * This function calculates the number of supported nodes needed to add this
1696  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1697  * layers
1698  */
1699 static void
1700 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1701 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1702 {
1703 	struct ice_sched_node *node;
1704 	u8 vsil;
1705 	int i;
1706 
1707 	vsil = ice_sched_get_vsi_layer(pi->hw);
1708 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1709 		/* Add intermediate nodes if TC has no children and
1710 		 * need at least one node for VSI
1711 		 */
1712 		if (!tc_node->num_children || i == vsil) {
1713 			num_nodes[i]++;
1714 		} else {
1715 			/* If intermediate nodes are reached max children
1716 			 * then add a new one.
1717 			 */
1718 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1719 			/* scan all the siblings */
1720 			while (node) {
1721 				if (node->num_children < pi->hw->max_children[i])
1722 					break;
1723 				node = node->sibling;
1724 			}
1725 
1726 			/* tree has one intermediate node to add this new VSI.
1727 			 * So no need to calculate supported nodes for below
1728 			 * layers.
1729 			 */
1730 			if (node)
1731 				break;
1732 			/* all the nodes are full, allocate a new one */
1733 			num_nodes[i]++;
1734 		}
1735 }
1736 
1737 /**
1738  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1739  * @pi: port information structure
1740  * @vsi_handle: software VSI handle
1741  * @tc_node: pointer to TC node
1742  * @num_nodes: pointer to num nodes array
1743  *
1744  * This function adds the VSI supported nodes into Tx tree including the
1745  * VSI, its parent and intermediate nodes in below layers
1746  */
1747 static int
1748 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1749 				struct ice_sched_node *tc_node, u16 *num_nodes)
1750 {
1751 	struct ice_sched_node *parent = tc_node;
1752 	u32 first_node_teid;
1753 	u16 num_added = 0;
1754 	u8 i, vsil;
1755 
1756 	if (!pi)
1757 		return -EINVAL;
1758 
1759 	vsil = ice_sched_get_vsi_layer(pi->hw);
1760 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1761 		int status;
1762 
1763 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1764 						      i, num_nodes[i],
1765 						      &first_node_teid,
1766 						      &num_added);
1767 		if (status || num_nodes[i] != num_added)
1768 			return -EIO;
1769 
1770 		/* The newly added node can be a new parent for the next
1771 		 * layer nodes
1772 		 */
1773 		if (num_added)
1774 			parent = ice_sched_find_node_by_teid(tc_node,
1775 							     first_node_teid);
1776 		else
1777 			parent = parent->children[0];
1778 
1779 		if (!parent)
1780 			return -EIO;
1781 
1782 		if (i == vsil)
1783 			parent->vsi_handle = vsi_handle;
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 /**
1790  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1791  * @pi: port information structure
1792  * @vsi_handle: software VSI handle
1793  * @tc: TC number
1794  *
1795  * This function adds a new VSI into scheduler tree
1796  */
1797 static int
1798 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1799 {
1800 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1801 	struct ice_sched_node *tc_node;
1802 
1803 	tc_node = ice_sched_get_tc_node(pi, tc);
1804 	if (!tc_node)
1805 		return -EINVAL;
1806 
1807 	/* calculate number of supported nodes needed for this VSI */
1808 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1809 
1810 	/* add VSI supported nodes to TC subtree */
1811 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1812 					       num_nodes);
1813 }
1814 
1815 /**
1816  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1817  * @pi: port information structure
1818  * @vsi_handle: software VSI handle
1819  * @tc: TC number
1820  * @new_numqs: new number of max queues
1821  * @owner: owner of this subtree
1822  *
1823  * This function updates the VSI child nodes based on the number of queues
1824  */
1825 static int
1826 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1827 				 u8 tc, u16 new_numqs, u8 owner)
1828 {
1829 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1830 	struct ice_sched_node *vsi_node;
1831 	struct ice_sched_node *tc_node;
1832 	struct ice_vsi_ctx *vsi_ctx;
1833 	struct ice_hw *hw = pi->hw;
1834 	u16 prev_numqs;
1835 	int status = 0;
1836 
1837 	tc_node = ice_sched_get_tc_node(pi, tc);
1838 	if (!tc_node)
1839 		return -EIO;
1840 
1841 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1842 	if (!vsi_node)
1843 		return -EIO;
1844 
1845 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1846 	if (!vsi_ctx)
1847 		return -EINVAL;
1848 
1849 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1850 		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1851 	else
1852 		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1853 	/* num queues are not changed or less than the previous number */
1854 	if (new_numqs <= prev_numqs)
1855 		return status;
1856 	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1857 		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1858 		if (status)
1859 			return status;
1860 	} else {
1861 		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1862 		if (status)
1863 			return status;
1864 	}
1865 
1866 	if (new_numqs)
1867 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1868 	/* Keep the max number of queue configuration all the time. Update the
1869 	 * tree only if number of queues > previous number of queues. This may
1870 	 * leave some extra nodes in the tree if number of queues < previous
1871 	 * number but that wouldn't harm anything. Removing those extra nodes
1872 	 * may complicate the code if those nodes are part of SRL or
1873 	 * individually rate limited.
1874 	 */
1875 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1876 					       new_num_nodes, owner);
1877 	if (status)
1878 		return status;
1879 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1880 		vsi_ctx->sched.max_lanq[tc] = new_numqs;
1881 	else
1882 		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1883 
1884 	return 0;
1885 }
1886 
1887 /**
1888  * ice_sched_cfg_vsi - configure the new/existing VSI
1889  * @pi: port information structure
1890  * @vsi_handle: software VSI handle
1891  * @tc: TC number
1892  * @maxqs: max number of queues
1893  * @owner: LAN or RDMA
1894  * @enable: TC enabled or disabled
1895  *
1896  * This function adds/updates VSI nodes based on the number of queues. If TC is
1897  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1898  * disabled then suspend the VSI if it is not already.
1899  */
1900 int
1901 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1902 		  u8 owner, bool enable)
1903 {
1904 	struct ice_sched_node *vsi_node, *tc_node;
1905 	struct ice_vsi_ctx *vsi_ctx;
1906 	struct ice_hw *hw = pi->hw;
1907 	int status = 0;
1908 
1909 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1910 	tc_node = ice_sched_get_tc_node(pi, tc);
1911 	if (!tc_node)
1912 		return -EINVAL;
1913 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1914 	if (!vsi_ctx)
1915 		return -EINVAL;
1916 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1917 
1918 	/* suspend the VSI if TC is not enabled */
1919 	if (!enable) {
1920 		if (vsi_node && vsi_node->in_use) {
1921 			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1922 
1923 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1924 								true);
1925 			if (!status)
1926 				vsi_node->in_use = false;
1927 		}
1928 		return status;
1929 	}
1930 
1931 	/* TC is enabled, if it is a new VSI then add it to the tree */
1932 	if (!vsi_node) {
1933 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1934 		if (status)
1935 			return status;
1936 
1937 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1938 		if (!vsi_node)
1939 			return -EIO;
1940 
1941 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1942 		vsi_node->in_use = true;
1943 		/* invalidate the max queues whenever VSI gets added first time
1944 		 * into the scheduler tree (boot or after reset). We need to
1945 		 * recreate the child nodes all the time in these cases.
1946 		 */
1947 		vsi_ctx->sched.max_lanq[tc] = 0;
1948 		vsi_ctx->sched.max_rdmaq[tc] = 0;
1949 	}
1950 
1951 	/* update the VSI child nodes */
1952 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1953 						  owner);
1954 	if (status)
1955 		return status;
1956 
1957 	/* TC is enabled, resume the VSI if it is in the suspend state */
1958 	if (!vsi_node->in_use) {
1959 		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1960 
1961 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1962 		if (!status)
1963 			vsi_node->in_use = true;
1964 	}
1965 
1966 	return status;
1967 }
1968 
1969 /**
1970  * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1971  * @pi: port information structure
1972  * @vsi_handle: software VSI handle
1973  *
1974  * This function removes single aggregator VSI info entry from
1975  * aggregator list.
1976  */
1977 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1978 {
1979 	struct ice_sched_agg_info *agg_info;
1980 	struct ice_sched_agg_info *atmp;
1981 
1982 	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1983 				 list_entry) {
1984 		struct ice_sched_agg_vsi_info *agg_vsi_info;
1985 		struct ice_sched_agg_vsi_info *vtmp;
1986 
1987 		list_for_each_entry_safe(agg_vsi_info, vtmp,
1988 					 &agg_info->agg_vsi_list, list_entry)
1989 			if (agg_vsi_info->vsi_handle == vsi_handle) {
1990 				list_del(&agg_vsi_info->list_entry);
1991 				devm_kfree(ice_hw_to_dev(pi->hw),
1992 					   agg_vsi_info);
1993 				return;
1994 			}
1995 	}
1996 }
1997 
1998 /**
1999  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2000  * @node: pointer to the sub-tree node
2001  *
2002  * This function checks for a leaf node presence in a given sub-tree node.
2003  */
2004 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2005 {
2006 	u8 i;
2007 
2008 	for (i = 0; i < node->num_children; i++)
2009 		if (ice_sched_is_leaf_node_present(node->children[i]))
2010 			return true;
2011 	/* check for a leaf node */
2012 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2013 }
2014 
2015 /**
2016  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2017  * @pi: port information structure
2018  * @vsi_handle: software VSI handle
2019  * @owner: LAN or RDMA
2020  *
2021  * This function removes the VSI and its LAN or RDMA children nodes from the
2022  * scheduler tree.
2023  */
2024 static int
2025 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2026 {
2027 	struct ice_vsi_ctx *vsi_ctx;
2028 	int status = -EINVAL;
2029 	u8 i;
2030 
2031 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2032 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2033 		return status;
2034 	mutex_lock(&pi->sched_lock);
2035 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2036 	if (!vsi_ctx)
2037 		goto exit_sched_rm_vsi_cfg;
2038 
2039 	ice_for_each_traffic_class(i) {
2040 		struct ice_sched_node *vsi_node, *tc_node;
2041 		u8 j = 0;
2042 
2043 		tc_node = ice_sched_get_tc_node(pi, i);
2044 		if (!tc_node)
2045 			continue;
2046 
2047 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2048 		if (!vsi_node)
2049 			continue;
2050 
2051 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2052 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2053 			status = -EBUSY;
2054 			goto exit_sched_rm_vsi_cfg;
2055 		}
2056 		while (j < vsi_node->num_children) {
2057 			if (vsi_node->children[j]->owner == owner) {
2058 				ice_free_sched_node(pi, vsi_node->children[j]);
2059 
2060 				/* reset the counter again since the num
2061 				 * children will be updated after node removal
2062 				 */
2063 				j = 0;
2064 			} else {
2065 				j++;
2066 			}
2067 		}
2068 		/* remove the VSI if it has no children */
2069 		if (!vsi_node->num_children) {
2070 			ice_free_sched_node(pi, vsi_node);
2071 			vsi_ctx->sched.vsi_node[i] = NULL;
2072 
2073 			/* clean up aggregator related VSI info if any */
2074 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2075 		}
2076 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2077 			vsi_ctx->sched.max_lanq[i] = 0;
2078 		else
2079 			vsi_ctx->sched.max_rdmaq[i] = 0;
2080 	}
2081 	status = 0;
2082 
2083 exit_sched_rm_vsi_cfg:
2084 	mutex_unlock(&pi->sched_lock);
2085 	return status;
2086 }
2087 
2088 /**
2089  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2090  * @pi: port information structure
2091  * @vsi_handle: software VSI handle
2092  *
2093  * This function clears the VSI and its LAN children nodes from scheduler tree
2094  * for all TCs.
2095  */
2096 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2097 {
2098 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2099 }
2100 
2101 /**
2102  * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2103  * @pi: port information structure
2104  * @vsi_handle: software VSI handle
2105  *
2106  * This function clears the VSI and its RDMA children nodes from scheduler tree
2107  * for all TCs.
2108  */
2109 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2110 {
2111 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2112 }
2113 
2114 /**
2115  * ice_get_agg_info - get the aggregator ID
2116  * @hw: pointer to the hardware structure
2117  * @agg_id: aggregator ID
2118  *
2119  * This function validates aggregator ID. The function returns info if
2120  * aggregator ID is present in list otherwise it returns null.
2121  */
2122 static struct ice_sched_agg_info *
2123 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2124 {
2125 	struct ice_sched_agg_info *agg_info;
2126 
2127 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2128 		if (agg_info->agg_id == agg_id)
2129 			return agg_info;
2130 
2131 	return NULL;
2132 }
2133 
2134 /**
2135  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2136  * @hw: pointer to the HW struct
2137  * @node: pointer to a child node
2138  * @num_nodes: num nodes count array
2139  *
2140  * This function walks through the aggregator subtree to find a free parent
2141  * node
2142  */
2143 struct ice_sched_node *
2144 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2145 			      u16 *num_nodes)
2146 {
2147 	u8 l = node->tx_sched_layer;
2148 	u8 vsil, i;
2149 
2150 	vsil = ice_sched_get_vsi_layer(hw);
2151 
2152 	/* Is it VSI parent layer ? */
2153 	if (l == vsil - 1)
2154 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2155 
2156 	/* We have intermediate nodes. Let's walk through the subtree. If the
2157 	 * intermediate node has space to add a new node then clear the count
2158 	 */
2159 	if (node->num_children < hw->max_children[l])
2160 		num_nodes[l] = 0;
2161 	/* The below recursive call is intentional and wouldn't go more than
2162 	 * 2 or 3 iterations.
2163 	 */
2164 
2165 	for (i = 0; i < node->num_children; i++) {
2166 		struct ice_sched_node *parent;
2167 
2168 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2169 						       num_nodes);
2170 		if (parent)
2171 			return parent;
2172 	}
2173 
2174 	return NULL;
2175 }
2176 
2177 /**
2178  * ice_sched_update_parent - update the new parent in SW DB
2179  * @new_parent: pointer to a new parent node
2180  * @node: pointer to a child node
2181  *
2182  * This function removes the child from the old parent and adds it to a new
2183  * parent
2184  */
2185 void
2186 ice_sched_update_parent(struct ice_sched_node *new_parent,
2187 			struct ice_sched_node *node)
2188 {
2189 	struct ice_sched_node *old_parent;
2190 	u8 i, j;
2191 
2192 	old_parent = node->parent;
2193 
2194 	/* update the old parent children */
2195 	for (i = 0; i < old_parent->num_children; i++)
2196 		if (old_parent->children[i] == node) {
2197 			for (j = i + 1; j < old_parent->num_children; j++)
2198 				old_parent->children[j - 1] =
2199 					old_parent->children[j];
2200 			old_parent->num_children--;
2201 			break;
2202 		}
2203 
2204 	/* now move the node to a new parent */
2205 	new_parent->children[new_parent->num_children++] = node;
2206 	node->parent = new_parent;
2207 	node->info.parent_teid = new_parent->info.node_teid;
2208 }
2209 
2210 /**
2211  * ice_sched_move_nodes - move child nodes to a given parent
2212  * @pi: port information structure
2213  * @parent: pointer to parent node
2214  * @num_items: number of child nodes to be moved
2215  * @list: pointer to child node teids
2216  *
2217  * This function move the child nodes to a given parent.
2218  */
2219 int
2220 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2221 		     u16 num_items, u32 *list)
2222 {
2223 	DEFINE_RAW_FLEX(struct ice_aqc_move_elem, buf, teid, 1);
2224 	u16 buf_len = __struct_size(buf);
2225 	struct ice_sched_node *node;
2226 	u16 i, grps_movd = 0;
2227 	struct ice_hw *hw;
2228 	int status = 0;
2229 
2230 	hw = pi->hw;
2231 
2232 	if (!parent || !num_items)
2233 		return -EINVAL;
2234 
2235 	/* Does parent have enough space */
2236 	if (parent->num_children + num_items >
2237 	    hw->max_children[parent->tx_sched_layer])
2238 		return -ENOSPC;
2239 
2240 	for (i = 0; i < num_items; i++) {
2241 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2242 		if (!node) {
2243 			status = -EINVAL;
2244 			break;
2245 		}
2246 
2247 		buf->hdr.src_parent_teid = node->info.parent_teid;
2248 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2249 		buf->teid[0] = node->info.node_teid;
2250 		buf->hdr.num_elems = cpu_to_le16(1);
2251 		status = ice_aq_move_sched_elems(hw, buf, buf_len, &grps_movd);
2252 		if (status && grps_movd != 1) {
2253 			status = -EIO;
2254 			break;
2255 		}
2256 
2257 		/* update the SW DB */
2258 		ice_sched_update_parent(parent, node);
2259 	}
2260 
2261 	return status;
2262 }
2263 
2264 /**
2265  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2266  * @pi: port information structure
2267  * @vsi_handle: software VSI handle
2268  * @agg_id: aggregator ID
2269  * @tc: TC number
2270  *
2271  * This function moves a VSI to an aggregator node or its subtree.
2272  * Intermediate nodes may be created if required.
2273  */
2274 static int
2275 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2276 			  u8 tc)
2277 {
2278 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2279 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2280 	u32 first_node_teid, vsi_teid;
2281 	u16 num_nodes_added;
2282 	u8 aggl, vsil, i;
2283 	int status;
2284 
2285 	tc_node = ice_sched_get_tc_node(pi, tc);
2286 	if (!tc_node)
2287 		return -EIO;
2288 
2289 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2290 	if (!agg_node)
2291 		return -ENOENT;
2292 
2293 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2294 	if (!vsi_node)
2295 		return -ENOENT;
2296 
2297 	/* Is this VSI already part of given aggregator? */
2298 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2299 		return 0;
2300 
2301 	aggl = ice_sched_get_agg_layer(pi->hw);
2302 	vsil = ice_sched_get_vsi_layer(pi->hw);
2303 
2304 	/* set intermediate node count to 1 between aggregator and VSI layers */
2305 	for (i = aggl + 1; i < vsil; i++)
2306 		num_nodes[i] = 1;
2307 
2308 	/* Check if the aggregator subtree has any free node to add the VSI */
2309 	for (i = 0; i < agg_node->num_children; i++) {
2310 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2311 						       agg_node->children[i],
2312 						       num_nodes);
2313 		if (parent)
2314 			goto move_nodes;
2315 	}
2316 
2317 	/* add new nodes */
2318 	parent = agg_node;
2319 	for (i = aggl + 1; i < vsil; i++) {
2320 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2321 						      num_nodes[i],
2322 						      &first_node_teid,
2323 						      &num_nodes_added);
2324 		if (status || num_nodes[i] != num_nodes_added)
2325 			return -EIO;
2326 
2327 		/* The newly added node can be a new parent for the next
2328 		 * layer nodes
2329 		 */
2330 		if (num_nodes_added)
2331 			parent = ice_sched_find_node_by_teid(tc_node,
2332 							     first_node_teid);
2333 		else
2334 			parent = parent->children[0];
2335 
2336 		if (!parent)
2337 			return -EIO;
2338 	}
2339 
2340 move_nodes:
2341 	vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2342 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2343 }
2344 
2345 /**
2346  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2347  * @pi: port information structure
2348  * @agg_info: aggregator info
2349  * @tc: traffic class number
2350  * @rm_vsi_info: true or false
2351  *
2352  * This function move all the VSI(s) to the default aggregator and delete
2353  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2354  * caller holds the scheduler lock.
2355  */
2356 static int
2357 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2358 			     struct ice_sched_agg_info *agg_info, u8 tc,
2359 			     bool rm_vsi_info)
2360 {
2361 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2362 	struct ice_sched_agg_vsi_info *tmp;
2363 	int status = 0;
2364 
2365 	list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2366 				 list_entry) {
2367 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2368 
2369 		/* Move VSI to default aggregator */
2370 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2371 			continue;
2372 
2373 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2374 						   ICE_DFLT_AGG_ID, tc);
2375 		if (status)
2376 			break;
2377 
2378 		clear_bit(tc, agg_vsi_info->tc_bitmap);
2379 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2380 			list_del(&agg_vsi_info->list_entry);
2381 			devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2382 		}
2383 	}
2384 
2385 	return status;
2386 }
2387 
2388 /**
2389  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2390  * @pi: port information structure
2391  * @node: node pointer
2392  *
2393  * This function checks whether the aggregator is attached with any VSI or not.
2394  */
2395 static bool
2396 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2397 {
2398 	u8 vsil, i;
2399 
2400 	vsil = ice_sched_get_vsi_layer(pi->hw);
2401 	if (node->tx_sched_layer < vsil - 1) {
2402 		for (i = 0; i < node->num_children; i++)
2403 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2404 				return true;
2405 		return false;
2406 	} else {
2407 		return node->num_children ? true : false;
2408 	}
2409 }
2410 
2411 /**
2412  * ice_sched_rm_agg_cfg - remove the aggregator node
2413  * @pi: port information structure
2414  * @agg_id: aggregator ID
2415  * @tc: TC number
2416  *
2417  * This function removes the aggregator node and intermediate nodes if any
2418  * from the given TC
2419  */
2420 static int
2421 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2422 {
2423 	struct ice_sched_node *tc_node, *agg_node;
2424 	struct ice_hw *hw = pi->hw;
2425 
2426 	tc_node = ice_sched_get_tc_node(pi, tc);
2427 	if (!tc_node)
2428 		return -EIO;
2429 
2430 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2431 	if (!agg_node)
2432 		return -ENOENT;
2433 
2434 	/* Can't remove the aggregator node if it has children */
2435 	if (ice_sched_is_agg_inuse(pi, agg_node))
2436 		return -EBUSY;
2437 
2438 	/* need to remove the whole subtree if aggregator node is the
2439 	 * only child.
2440 	 */
2441 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2442 		struct ice_sched_node *parent = agg_node->parent;
2443 
2444 		if (!parent)
2445 			return -EIO;
2446 
2447 		if (parent->num_children > 1)
2448 			break;
2449 
2450 		agg_node = parent;
2451 	}
2452 
2453 	ice_free_sched_node(pi, agg_node);
2454 	return 0;
2455 }
2456 
2457 /**
2458  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2459  * @pi: port information structure
2460  * @agg_info: aggregator ID
2461  * @tc: TC number
2462  * @rm_vsi_info: bool value true or false
2463  *
2464  * This function removes aggregator reference to VSI of given TC. It removes
2465  * the aggregator configuration completely for requested TC. The caller needs
2466  * to hold the scheduler lock.
2467  */
2468 static int
2469 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2470 		  u8 tc, bool rm_vsi_info)
2471 {
2472 	int status = 0;
2473 
2474 	/* If nothing to remove - return success */
2475 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2476 		goto exit_rm_agg_cfg_tc;
2477 
2478 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2479 	if (status)
2480 		goto exit_rm_agg_cfg_tc;
2481 
2482 	/* Delete aggregator node(s) */
2483 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2484 	if (status)
2485 		goto exit_rm_agg_cfg_tc;
2486 
2487 	clear_bit(tc, agg_info->tc_bitmap);
2488 exit_rm_agg_cfg_tc:
2489 	return status;
2490 }
2491 
2492 /**
2493  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2494  * @pi: port information structure
2495  * @agg_id: aggregator ID
2496  * @tc_bitmap: 8 bits TC bitmap
2497  *
2498  * Save aggregator TC bitmap. This function needs to be called with scheduler
2499  * lock held.
2500  */
2501 static int
2502 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2503 		       unsigned long *tc_bitmap)
2504 {
2505 	struct ice_sched_agg_info *agg_info;
2506 
2507 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2508 	if (!agg_info)
2509 		return -EINVAL;
2510 	bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2511 		    ICE_MAX_TRAFFIC_CLASS);
2512 	return 0;
2513 }
2514 
2515 /**
2516  * ice_sched_add_agg_cfg - create an aggregator node
2517  * @pi: port information structure
2518  * @agg_id: aggregator ID
2519  * @tc: TC number
2520  *
2521  * This function creates an aggregator node and intermediate nodes if required
2522  * for the given TC
2523  */
2524 static int
2525 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2526 {
2527 	struct ice_sched_node *parent, *agg_node, *tc_node;
2528 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2529 	struct ice_hw *hw = pi->hw;
2530 	u32 first_node_teid;
2531 	u16 num_nodes_added;
2532 	int status = 0;
2533 	u8 i, aggl;
2534 
2535 	tc_node = ice_sched_get_tc_node(pi, tc);
2536 	if (!tc_node)
2537 		return -EIO;
2538 
2539 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2540 	/* Does Agg node already exist ? */
2541 	if (agg_node)
2542 		return status;
2543 
2544 	aggl = ice_sched_get_agg_layer(hw);
2545 
2546 	/* need one node in Agg layer */
2547 	num_nodes[aggl] = 1;
2548 
2549 	/* Check whether the intermediate nodes have space to add the
2550 	 * new aggregator. If they are full, then SW needs to allocate a new
2551 	 * intermediate node on those layers
2552 	 */
2553 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2554 		parent = ice_sched_get_first_node(pi, tc_node, i);
2555 
2556 		/* scan all the siblings */
2557 		while (parent) {
2558 			if (parent->num_children < hw->max_children[i])
2559 				break;
2560 			parent = parent->sibling;
2561 		}
2562 
2563 		/* all the nodes are full, reserve one for this layer */
2564 		if (!parent)
2565 			num_nodes[i]++;
2566 	}
2567 
2568 	/* add the aggregator node */
2569 	parent = tc_node;
2570 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2571 		if (!parent)
2572 			return -EIO;
2573 
2574 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2575 						      num_nodes[i],
2576 						      &first_node_teid,
2577 						      &num_nodes_added);
2578 		if (status || num_nodes[i] != num_nodes_added)
2579 			return -EIO;
2580 
2581 		/* The newly added node can be a new parent for the next
2582 		 * layer nodes
2583 		 */
2584 		if (num_nodes_added) {
2585 			parent = ice_sched_find_node_by_teid(tc_node,
2586 							     first_node_teid);
2587 			/* register aggregator ID with the aggregator node */
2588 			if (parent && i == aggl)
2589 				parent->agg_id = agg_id;
2590 		} else {
2591 			parent = parent->children[0];
2592 		}
2593 	}
2594 
2595 	return 0;
2596 }
2597 
2598 /**
2599  * ice_sched_cfg_agg - configure aggregator node
2600  * @pi: port information structure
2601  * @agg_id: aggregator ID
2602  * @agg_type: aggregator type queue, VSI, or aggregator group
2603  * @tc_bitmap: bits TC bitmap
2604  *
2605  * It registers a unique aggregator node into scheduler services. It
2606  * allows a user to register with a unique ID to track it's resources.
2607  * The aggregator type determines if this is a queue group, VSI group
2608  * or aggregator group. It then creates the aggregator node(s) for requested
2609  * TC(s) or removes an existing aggregator node including its configuration
2610  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2611  * resources and remove aggregator ID.
2612  * This function needs to be called with scheduler lock held.
2613  */
2614 static int
2615 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2616 		  enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2617 {
2618 	struct ice_sched_agg_info *agg_info;
2619 	struct ice_hw *hw = pi->hw;
2620 	int status = 0;
2621 	u8 tc;
2622 
2623 	agg_info = ice_get_agg_info(hw, agg_id);
2624 	if (!agg_info) {
2625 		/* Create new entry for new aggregator ID */
2626 		agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2627 					GFP_KERNEL);
2628 		if (!agg_info)
2629 			return -ENOMEM;
2630 
2631 		agg_info->agg_id = agg_id;
2632 		agg_info->agg_type = agg_type;
2633 		agg_info->tc_bitmap[0] = 0;
2634 
2635 		/* Initialize the aggregator VSI list head */
2636 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2637 
2638 		/* Add new entry in aggregator list */
2639 		list_add(&agg_info->list_entry, &hw->agg_list);
2640 	}
2641 	/* Create aggregator node(s) for requested TC(s) */
2642 	ice_for_each_traffic_class(tc) {
2643 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2644 			/* Delete aggregator cfg TC if it exists previously */
2645 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2646 			if (status)
2647 				break;
2648 			continue;
2649 		}
2650 
2651 		/* Check if aggregator node for TC already exists */
2652 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2653 			continue;
2654 
2655 		/* Create new aggregator node for TC */
2656 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2657 		if (status)
2658 			break;
2659 
2660 		/* Save aggregator node's TC information */
2661 		set_bit(tc, agg_info->tc_bitmap);
2662 	}
2663 
2664 	return status;
2665 }
2666 
2667 /**
2668  * ice_cfg_agg - config aggregator node
2669  * @pi: port information structure
2670  * @agg_id: aggregator ID
2671  * @agg_type: aggregator type queue, VSI, or aggregator group
2672  * @tc_bitmap: bits TC bitmap
2673  *
2674  * This function configures aggregator node(s).
2675  */
2676 int
2677 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2678 	    u8 tc_bitmap)
2679 {
2680 	unsigned long bitmap = tc_bitmap;
2681 	int status;
2682 
2683 	mutex_lock(&pi->sched_lock);
2684 	status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2685 	if (!status)
2686 		status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2687 	mutex_unlock(&pi->sched_lock);
2688 	return status;
2689 }
2690 
2691 /**
2692  * ice_get_agg_vsi_info - get the aggregator ID
2693  * @agg_info: aggregator info
2694  * @vsi_handle: software VSI handle
2695  *
2696  * The function returns aggregator VSI info based on VSI handle. This function
2697  * needs to be called with scheduler lock held.
2698  */
2699 static struct ice_sched_agg_vsi_info *
2700 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2701 {
2702 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2703 
2704 	list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2705 		if (agg_vsi_info->vsi_handle == vsi_handle)
2706 			return agg_vsi_info;
2707 
2708 	return NULL;
2709 }
2710 
2711 /**
2712  * ice_get_vsi_agg_info - get the aggregator info of VSI
2713  * @hw: pointer to the hardware structure
2714  * @vsi_handle: Sw VSI handle
2715  *
2716  * The function returns aggregator info of VSI represented via vsi_handle. The
2717  * VSI has in this case a different aggregator than the default one. This
2718  * function needs to be called with scheduler lock held.
2719  */
2720 static struct ice_sched_agg_info *
2721 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2722 {
2723 	struct ice_sched_agg_info *agg_info;
2724 
2725 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2726 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2727 
2728 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2729 		if (agg_vsi_info)
2730 			return agg_info;
2731 	}
2732 	return NULL;
2733 }
2734 
2735 /**
2736  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2737  * @pi: port information structure
2738  * @agg_id: aggregator ID
2739  * @vsi_handle: software VSI handle
2740  * @tc_bitmap: TC bitmap of enabled TC(s)
2741  *
2742  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2743  * lock held.
2744  */
2745 static int
2746 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2747 			   unsigned long *tc_bitmap)
2748 {
2749 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2750 	struct ice_sched_agg_info *agg_info;
2751 
2752 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2753 	if (!agg_info)
2754 		return -EINVAL;
2755 	/* check if entry already exist */
2756 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2757 	if (!agg_vsi_info)
2758 		return -EINVAL;
2759 	bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2760 		    ICE_MAX_TRAFFIC_CLASS);
2761 	return 0;
2762 }
2763 
2764 /**
2765  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2766  * @pi: port information structure
2767  * @agg_id: aggregator ID
2768  * @vsi_handle: software VSI handle
2769  * @tc_bitmap: TC bitmap of enabled TC(s)
2770  *
2771  * This function moves VSI to a new or default aggregator node. If VSI is
2772  * already associated to the aggregator node then no operation is performed on
2773  * the tree. This function needs to be called with scheduler lock held.
2774  */
2775 static int
2776 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2777 			   u16 vsi_handle, unsigned long *tc_bitmap)
2778 {
2779 	struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
2780 	struct ice_sched_agg_info *agg_info, *old_agg_info;
2781 	struct ice_hw *hw = pi->hw;
2782 	int status = 0;
2783 	u8 tc;
2784 
2785 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2786 		return -EINVAL;
2787 	agg_info = ice_get_agg_info(hw, agg_id);
2788 	if (!agg_info)
2789 		return -EINVAL;
2790 	/* If the VSI is already part of another aggregator then update
2791 	 * its VSI info list
2792 	 */
2793 	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2794 	if (old_agg_info && old_agg_info != agg_info) {
2795 		struct ice_sched_agg_vsi_info *vtmp;
2796 
2797 		list_for_each_entry_safe(iter, vtmp,
2798 					 &old_agg_info->agg_vsi_list,
2799 					 list_entry)
2800 			if (iter->vsi_handle == vsi_handle) {
2801 				old_agg_vsi_info = iter;
2802 				break;
2803 			}
2804 	}
2805 
2806 	/* check if entry already exist */
2807 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2808 	if (!agg_vsi_info) {
2809 		/* Create new entry for VSI under aggregator list */
2810 		agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2811 					    sizeof(*agg_vsi_info), GFP_KERNEL);
2812 		if (!agg_vsi_info)
2813 			return -EINVAL;
2814 
2815 		/* add VSI ID into the aggregator list */
2816 		agg_vsi_info->vsi_handle = vsi_handle;
2817 		list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2818 	}
2819 	/* Move VSI node to new aggregator node for requested TC(s) */
2820 	ice_for_each_traffic_class(tc) {
2821 		if (!ice_is_tc_ena(*tc_bitmap, tc))
2822 			continue;
2823 
2824 		/* Move VSI to new aggregator */
2825 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2826 		if (status)
2827 			break;
2828 
2829 		set_bit(tc, agg_vsi_info->tc_bitmap);
2830 		if (old_agg_vsi_info)
2831 			clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2832 	}
2833 	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2834 		list_del(&old_agg_vsi_info->list_entry);
2835 		devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2836 	}
2837 	return status;
2838 }
2839 
2840 /**
2841  * ice_sched_rm_unused_rl_prof - remove unused RL profile
2842  * @pi: port information structure
2843  *
2844  * This function removes unused rate limit profiles from the HW and
2845  * SW DB. The caller needs to hold scheduler lock.
2846  */
2847 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2848 {
2849 	u16 ln;
2850 
2851 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2852 		struct ice_aqc_rl_profile_info *rl_prof_elem;
2853 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2854 
2855 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2856 					 &pi->rl_prof_list[ln], list_entry) {
2857 			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2858 				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2859 		}
2860 	}
2861 }
2862 
2863 /**
2864  * ice_sched_update_elem - update element
2865  * @hw: pointer to the HW struct
2866  * @node: pointer to node
2867  * @info: node info to update
2868  *
2869  * Update the HW DB, and local SW DB of node. Update the scheduling
2870  * parameters of node from argument info data buffer (Info->data buf) and
2871  * returns success or error on config sched element failure. The caller
2872  * needs to hold scheduler lock.
2873  */
2874 static int
2875 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2876 		      struct ice_aqc_txsched_elem_data *info)
2877 {
2878 	struct ice_aqc_txsched_elem_data buf;
2879 	u16 elem_cfgd = 0;
2880 	u16 num_elems = 1;
2881 	int status;
2882 
2883 	buf = *info;
2884 	/* Parent TEID is reserved field in this aq call */
2885 	buf.parent_teid = 0;
2886 	/* Element type is reserved field in this aq call */
2887 	buf.data.elem_type = 0;
2888 	/* Flags is reserved field in this aq call */
2889 	buf.data.flags = 0;
2890 
2891 	/* Update HW DB */
2892 	/* Configure element node */
2893 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2894 					&elem_cfgd, NULL);
2895 	if (status || elem_cfgd != num_elems) {
2896 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2897 		return -EIO;
2898 	}
2899 
2900 	/* Config success case */
2901 	/* Now update local SW DB */
2902 	/* Only copy the data portion of info buffer */
2903 	node->info.data = info->data;
2904 	return status;
2905 }
2906 
2907 /**
2908  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2909  * @hw: pointer to the HW struct
2910  * @node: sched node to configure
2911  * @rl_type: rate limit type CIR, EIR, or shared
2912  * @bw_alloc: BW weight/allocation
2913  *
2914  * This function configures node element's BW allocation.
2915  */
2916 static int
2917 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2918 			    enum ice_rl_type rl_type, u16 bw_alloc)
2919 {
2920 	struct ice_aqc_txsched_elem_data buf;
2921 	struct ice_aqc_txsched_elem *data;
2922 
2923 	buf = node->info;
2924 	data = &buf.data;
2925 	if (rl_type == ICE_MIN_BW) {
2926 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2927 		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2928 	} else if (rl_type == ICE_MAX_BW) {
2929 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2930 		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2931 	} else {
2932 		return -EINVAL;
2933 	}
2934 
2935 	/* Configure element */
2936 	return ice_sched_update_elem(hw, node, &buf);
2937 }
2938 
2939 /**
2940  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2941  * @pi: port information structure
2942  * @agg_id: aggregator ID
2943  * @vsi_handle: software VSI handle
2944  * @tc_bitmap: TC bitmap of enabled TC(s)
2945  *
2946  * Move or associate VSI to a new or default aggregator node.
2947  */
2948 int
2949 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2950 		    u8 tc_bitmap)
2951 {
2952 	unsigned long bitmap = tc_bitmap;
2953 	int status;
2954 
2955 	mutex_lock(&pi->sched_lock);
2956 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2957 					    (unsigned long *)&bitmap);
2958 	if (!status)
2959 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2960 						    (unsigned long *)&bitmap);
2961 	mutex_unlock(&pi->sched_lock);
2962 	return status;
2963 }
2964 
2965 /**
2966  * ice_set_clear_cir_bw - set or clear CIR BW
2967  * @bw_t_info: bandwidth type information structure
2968  * @bw: bandwidth in Kbps - Kilo bits per sec
2969  *
2970  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2971  */
2972 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2973 {
2974 	if (bw == ICE_SCHED_DFLT_BW) {
2975 		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2976 		bw_t_info->cir_bw.bw = 0;
2977 	} else {
2978 		/* Save type of BW information */
2979 		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2980 		bw_t_info->cir_bw.bw = bw;
2981 	}
2982 }
2983 
2984 /**
2985  * ice_set_clear_eir_bw - set or clear EIR BW
2986  * @bw_t_info: bandwidth type information structure
2987  * @bw: bandwidth in Kbps - Kilo bits per sec
2988  *
2989  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2990  */
2991 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2992 {
2993 	if (bw == ICE_SCHED_DFLT_BW) {
2994 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2995 		bw_t_info->eir_bw.bw = 0;
2996 	} else {
2997 		/* EIR BW and Shared BW profiles are mutually exclusive and
2998 		 * hence only one of them may be set for any given element.
2999 		 * First clear earlier saved shared BW information.
3000 		 */
3001 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3002 		bw_t_info->shared_bw = 0;
3003 		/* save EIR BW information */
3004 		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3005 		bw_t_info->eir_bw.bw = bw;
3006 	}
3007 }
3008 
3009 /**
3010  * ice_set_clear_shared_bw - set or clear shared BW
3011  * @bw_t_info: bandwidth type information structure
3012  * @bw: bandwidth in Kbps - Kilo bits per sec
3013  *
3014  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3015  */
3016 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3017 {
3018 	if (bw == ICE_SCHED_DFLT_BW) {
3019 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3020 		bw_t_info->shared_bw = 0;
3021 	} else {
3022 		/* EIR BW and Shared BW profiles are mutually exclusive and
3023 		 * hence only one of them may be set for any given element.
3024 		 * First clear earlier saved EIR BW information.
3025 		 */
3026 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3027 		bw_t_info->eir_bw.bw = 0;
3028 		/* save shared BW information */
3029 		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3030 		bw_t_info->shared_bw = bw;
3031 	}
3032 }
3033 
3034 /**
3035  * ice_sched_save_vsi_bw - save VSI node's BW information
3036  * @pi: port information structure
3037  * @vsi_handle: sw VSI handle
3038  * @tc: traffic class
3039  * @rl_type: rate limit type min, max, or shared
3040  * @bw: bandwidth in Kbps - Kilo bits per sec
3041  *
3042  * Save BW information of VSI type node for post replay use.
3043  */
3044 static int
3045 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3046 		      enum ice_rl_type rl_type, u32 bw)
3047 {
3048 	struct ice_vsi_ctx *vsi_ctx;
3049 
3050 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3051 		return -EINVAL;
3052 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3053 	if (!vsi_ctx)
3054 		return -EINVAL;
3055 	switch (rl_type) {
3056 	case ICE_MIN_BW:
3057 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3058 		break;
3059 	case ICE_MAX_BW:
3060 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3061 		break;
3062 	case ICE_SHARED_BW:
3063 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3064 		break;
3065 	default:
3066 		return -EINVAL;
3067 	}
3068 	return 0;
3069 }
3070 
3071 /**
3072  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3073  * @hw: pointer to the HW struct
3074  * @bw: bandwidth in Kbps
3075  *
3076  * This function calculates the wakeup parameter of RL profile.
3077  */
3078 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3079 {
3080 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3081 	s32 wakeup_f_int;
3082 	u16 wakeup = 0;
3083 
3084 	/* Get the wakeup integer value */
3085 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3086 	wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3087 	if (wakeup_int > 63) {
3088 		wakeup = (u16)((1 << 15) | wakeup_int);
3089 	} else {
3090 		/* Calculate fraction value up to 4 decimals
3091 		 * Convert Integer value to a constant multiplier
3092 		 */
3093 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3094 		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3095 					   hw->psm_clk_freq, bytes_per_sec);
3096 
3097 		/* Get Fraction value */
3098 		wakeup_f = wakeup_a - wakeup_b;
3099 
3100 		/* Round up the Fractional value via Ceil(Fractional value) */
3101 		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3102 			wakeup_f += 1;
3103 
3104 		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3105 					       ICE_RL_PROF_MULTIPLIER);
3106 		wakeup |= (u16)(wakeup_int << 9);
3107 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3108 	}
3109 
3110 	return wakeup;
3111 }
3112 
3113 /**
3114  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3115  * @hw: pointer to the HW struct
3116  * @bw: bandwidth in Kbps
3117  * @profile: profile parameters to return
3118  *
3119  * This function converts the BW to profile structure format.
3120  */
3121 static int
3122 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3123 			   struct ice_aqc_rl_profile_elem *profile)
3124 {
3125 	s64 bytes_per_sec, ts_rate, mv_tmp;
3126 	int status = -EINVAL;
3127 	bool found = false;
3128 	s32 encode = 0;
3129 	s64 mv = 0;
3130 	s32 i;
3131 
3132 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3133 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3134 		return status;
3135 
3136 	/* Bytes per second from Kbps */
3137 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3138 
3139 	/* encode is 6 bits but really useful are 5 bits */
3140 	for (i = 0; i < 64; i++) {
3141 		u64 pow_result = BIT_ULL(i);
3142 
3143 		ts_rate = div64_long((s64)hw->psm_clk_freq,
3144 				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3145 		if (ts_rate <= 0)
3146 			continue;
3147 
3148 		/* Multiplier value */
3149 		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3150 				    ts_rate);
3151 
3152 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3153 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3154 
3155 		/* First multiplier value greater than the given
3156 		 * accuracy bytes
3157 		 */
3158 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3159 			encode = i;
3160 			found = true;
3161 			break;
3162 		}
3163 	}
3164 	if (found) {
3165 		u16 wm;
3166 
3167 		wm = ice_sched_calc_wakeup(hw, bw);
3168 		profile->rl_multiply = cpu_to_le16(mv);
3169 		profile->wake_up_calc = cpu_to_le16(wm);
3170 		profile->rl_encode = cpu_to_le16(encode);
3171 		status = 0;
3172 	} else {
3173 		status = -ENOENT;
3174 	}
3175 
3176 	return status;
3177 }
3178 
3179 /**
3180  * ice_sched_add_rl_profile - add RL profile
3181  * @pi: port information structure
3182  * @rl_type: type of rate limit BW - min, max, or shared
3183  * @bw: bandwidth in Kbps - Kilo bits per sec
3184  * @layer_num: specifies in which layer to create profile
3185  *
3186  * This function first checks the existing list for corresponding BW
3187  * parameter. If it exists, it returns the associated profile otherwise
3188  * it creates a new rate limit profile for requested BW, and adds it to
3189  * the HW DB and local list. It returns the new profile or null on error.
3190  * The caller needs to hold the scheduler lock.
3191  */
3192 static struct ice_aqc_rl_profile_info *
3193 ice_sched_add_rl_profile(struct ice_port_info *pi,
3194 			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3195 {
3196 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3197 	u16 profiles_added = 0, num_profiles = 1;
3198 	struct ice_aqc_rl_profile_elem *buf;
3199 	struct ice_hw *hw;
3200 	u8 profile_type;
3201 	int status;
3202 
3203 	if (!pi || layer_num >= pi->hw->num_tx_sched_layers)
3204 		return NULL;
3205 	switch (rl_type) {
3206 	case ICE_MIN_BW:
3207 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3208 		break;
3209 	case ICE_MAX_BW:
3210 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3211 		break;
3212 	case ICE_SHARED_BW:
3213 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3214 		break;
3215 	default:
3216 		return NULL;
3217 	}
3218 
3219 	hw = pi->hw;
3220 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3221 			    list_entry)
3222 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3223 		    profile_type && rl_prof_elem->bw == bw)
3224 			/* Return existing profile ID info */
3225 			return rl_prof_elem;
3226 
3227 	/* Create new profile ID */
3228 	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3229 				    GFP_KERNEL);
3230 
3231 	if (!rl_prof_elem)
3232 		return NULL;
3233 
3234 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3235 	if (status)
3236 		goto exit_add_rl_prof;
3237 
3238 	rl_prof_elem->bw = bw;
3239 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3240 	rl_prof_elem->profile.level = layer_num + 1;
3241 	rl_prof_elem->profile.flags = profile_type;
3242 	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3243 
3244 	/* Create new entry in HW DB */
3245 	buf = &rl_prof_elem->profile;
3246 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3247 				       &profiles_added, NULL);
3248 	if (status || profiles_added != num_profiles)
3249 		goto exit_add_rl_prof;
3250 
3251 	/* Good entry - add in the list */
3252 	rl_prof_elem->prof_id_ref = 0;
3253 	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3254 	return rl_prof_elem;
3255 
3256 exit_add_rl_prof:
3257 	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3258 	return NULL;
3259 }
3260 
3261 /**
3262  * ice_sched_cfg_node_bw_lmt - configure node sched params
3263  * @hw: pointer to the HW struct
3264  * @node: sched node to configure
3265  * @rl_type: rate limit type CIR, EIR, or shared
3266  * @rl_prof_id: rate limit profile ID
3267  *
3268  * This function configures node element's BW limit.
3269  */
3270 static int
3271 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3272 			  enum ice_rl_type rl_type, u16 rl_prof_id)
3273 {
3274 	struct ice_aqc_txsched_elem_data buf;
3275 	struct ice_aqc_txsched_elem *data;
3276 
3277 	buf = node->info;
3278 	data = &buf.data;
3279 	switch (rl_type) {
3280 	case ICE_MIN_BW:
3281 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3282 		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3283 		break;
3284 	case ICE_MAX_BW:
3285 		/* EIR BW and Shared BW profiles are mutually exclusive and
3286 		 * hence only one of them may be set for any given element
3287 		 */
3288 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3289 			return -EIO;
3290 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3291 		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3292 		break;
3293 	case ICE_SHARED_BW:
3294 		/* Check for removing shared BW */
3295 		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3296 			/* remove shared profile */
3297 			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3298 			data->srl_id = 0; /* clear SRL field */
3299 
3300 			/* enable back EIR to default profile */
3301 			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3302 			data->eir_bw.bw_profile_idx =
3303 				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3304 			break;
3305 		}
3306 		/* EIR BW and Shared BW profiles are mutually exclusive and
3307 		 * hence only one of them may be set for any given element
3308 		 */
3309 		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3310 		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3311 			    ICE_SCHED_DFLT_RL_PROF_ID))
3312 			return -EIO;
3313 		/* EIR BW is set to default, disable it */
3314 		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3315 		/* Okay to enable shared BW now */
3316 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3317 		data->srl_id = cpu_to_le16(rl_prof_id);
3318 		break;
3319 	default:
3320 		/* Unknown rate limit type */
3321 		return -EINVAL;
3322 	}
3323 
3324 	/* Configure element */
3325 	return ice_sched_update_elem(hw, node, &buf);
3326 }
3327 
3328 /**
3329  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3330  * @node: sched node
3331  * @rl_type: rate limit type
3332  *
3333  * If existing profile matches, it returns the corresponding rate
3334  * limit profile ID, otherwise it returns an invalid ID as error.
3335  */
3336 static u16
3337 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3338 			      enum ice_rl_type rl_type)
3339 {
3340 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3341 	struct ice_aqc_txsched_elem *data;
3342 
3343 	data = &node->info.data;
3344 	switch (rl_type) {
3345 	case ICE_MIN_BW:
3346 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3347 			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3348 		break;
3349 	case ICE_MAX_BW:
3350 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3351 			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3352 		break;
3353 	case ICE_SHARED_BW:
3354 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3355 			rl_prof_id = le16_to_cpu(data->srl_id);
3356 		break;
3357 	default:
3358 		break;
3359 	}
3360 
3361 	return rl_prof_id;
3362 }
3363 
3364 /**
3365  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3366  * @pi: port information structure
3367  * @rl_type: type of rate limit BW - min, max, or shared
3368  * @layer_index: layer index
3369  *
3370  * This function returns requested profile creation layer.
3371  */
3372 static u8
3373 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3374 			    u8 layer_index)
3375 {
3376 	struct ice_hw *hw = pi->hw;
3377 
3378 	if (layer_index >= hw->num_tx_sched_layers)
3379 		return ICE_SCHED_INVAL_LAYER_NUM;
3380 	switch (rl_type) {
3381 	case ICE_MIN_BW:
3382 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
3383 			return layer_index;
3384 		break;
3385 	case ICE_MAX_BW:
3386 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
3387 			return layer_index;
3388 		break;
3389 	case ICE_SHARED_BW:
3390 		/* if current layer doesn't support SRL profile creation
3391 		 * then try a layer up or down.
3392 		 */
3393 		if (hw->layer_info[layer_index].max_srl_profiles)
3394 			return layer_index;
3395 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
3396 			 hw->layer_info[layer_index + 1].max_srl_profiles)
3397 			return layer_index + 1;
3398 		else if (layer_index > 0 &&
3399 			 hw->layer_info[layer_index - 1].max_srl_profiles)
3400 			return layer_index - 1;
3401 		break;
3402 	default:
3403 		break;
3404 	}
3405 	return ICE_SCHED_INVAL_LAYER_NUM;
3406 }
3407 
3408 /**
3409  * ice_sched_get_srl_node - get shared rate limit node
3410  * @node: tree node
3411  * @srl_layer: shared rate limit layer
3412  *
3413  * This function returns SRL node to be used for shared rate limit purpose.
3414  * The caller needs to hold scheduler lock.
3415  */
3416 static struct ice_sched_node *
3417 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3418 {
3419 	if (srl_layer > node->tx_sched_layer)
3420 		return node->children[0];
3421 	else if (srl_layer < node->tx_sched_layer)
3422 		/* Node can't be created without a parent. It will always
3423 		 * have a valid parent except root node.
3424 		 */
3425 		return node->parent;
3426 	else
3427 		return node;
3428 }
3429 
3430 /**
3431  * ice_sched_rm_rl_profile - remove RL profile ID
3432  * @pi: port information structure
3433  * @layer_num: layer number where profiles are saved
3434  * @profile_type: profile type like EIR, CIR, or SRL
3435  * @profile_id: profile ID to remove
3436  *
3437  * This function removes rate limit profile from layer 'layer_num' of type
3438  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3439  * scheduler lock.
3440  */
3441 static int
3442 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3443 			u16 profile_id)
3444 {
3445 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3446 	int status = 0;
3447 
3448 	if (layer_num >= pi->hw->num_tx_sched_layers)
3449 		return -EINVAL;
3450 	/* Check the existing list for RL profile */
3451 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3452 			    list_entry)
3453 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3454 		    profile_type &&
3455 		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3456 		    profile_id) {
3457 			if (rl_prof_elem->prof_id_ref)
3458 				rl_prof_elem->prof_id_ref--;
3459 
3460 			/* Remove old profile ID from database */
3461 			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3462 			if (status && status != -EBUSY)
3463 				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3464 			break;
3465 		}
3466 	if (status == -EBUSY)
3467 		status = 0;
3468 	return status;
3469 }
3470 
3471 /**
3472  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3473  * @pi: port information structure
3474  * @node: pointer to node structure
3475  * @rl_type: rate limit type min, max, or shared
3476  * @layer_num: layer number where RL profiles are saved
3477  *
3478  * This function configures node element's BW rate limit profile ID of
3479  * type CIR, EIR, or SRL to default. This function needs to be called
3480  * with the scheduler lock held.
3481  */
3482 static int
3483 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3484 			   struct ice_sched_node *node,
3485 			   enum ice_rl_type rl_type, u8 layer_num)
3486 {
3487 	struct ice_hw *hw;
3488 	u8 profile_type;
3489 	u16 rl_prof_id;
3490 	u16 old_id;
3491 	int status;
3492 
3493 	hw = pi->hw;
3494 	switch (rl_type) {
3495 	case ICE_MIN_BW:
3496 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3497 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3498 		break;
3499 	case ICE_MAX_BW:
3500 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3501 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3502 		break;
3503 	case ICE_SHARED_BW:
3504 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3505 		/* No SRL is configured for default case */
3506 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3507 		break;
3508 	default:
3509 		return -EINVAL;
3510 	}
3511 	/* Save existing RL prof ID for later clean up */
3512 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3513 	/* Configure BW scheduling parameters */
3514 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3515 	if (status)
3516 		return status;
3517 
3518 	/* Remove stale RL profile ID */
3519 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3520 	    old_id == ICE_SCHED_INVAL_PROF_ID)
3521 		return 0;
3522 
3523 	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3524 }
3525 
3526 /**
3527  * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3528  * @pi: port information structure
3529  * @node: pointer to node structure
3530  * @layer_num: layer number where rate limit profiles are saved
3531  * @rl_type: rate limit type min, max, or shared
3532  * @bw: bandwidth value
3533  *
3534  * This function prepares node element's bandwidth to SRL or EIR exclusively.
3535  * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3536  * them may be set for any given element. This function needs to be called
3537  * with the scheduler lock held.
3538  */
3539 static int
3540 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3541 			   struct ice_sched_node *node,
3542 			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3543 {
3544 	if (rl_type == ICE_SHARED_BW) {
3545 		/* SRL node passed in this case, it may be different node */
3546 		if (bw == ICE_SCHED_DFLT_BW)
3547 			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
3548 			 * enables EIR to default. EIR is not set in this
3549 			 * case, so no additional action is required.
3550 			 */
3551 			return 0;
3552 
3553 		/* SRL being configured, set EIR to default here.
3554 		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3555 		 * configures SRL
3556 		 */
3557 		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3558 						  layer_num);
3559 	} else if (rl_type == ICE_MAX_BW &&
3560 		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3561 		/* Remove Shared profile. Set default shared BW call
3562 		 * removes shared profile for a node.
3563 		 */
3564 		return ice_sched_set_node_bw_dflt(pi, node,
3565 						  ICE_SHARED_BW,
3566 						  layer_num);
3567 	}
3568 	return 0;
3569 }
3570 
3571 /**
3572  * ice_sched_set_node_bw - set node's bandwidth
3573  * @pi: port information structure
3574  * @node: tree node
3575  * @rl_type: rate limit type min, max, or shared
3576  * @bw: bandwidth in Kbps - Kilo bits per sec
3577  * @layer_num: layer number
3578  *
3579  * This function adds new profile corresponding to requested BW, configures
3580  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3581  * ID from local database. The caller needs to hold scheduler lock.
3582  */
3583 int
3584 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3585 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3586 {
3587 	struct ice_aqc_rl_profile_info *rl_prof_info;
3588 	struct ice_hw *hw = pi->hw;
3589 	u16 old_id, rl_prof_id;
3590 	int status = -EINVAL;
3591 
3592 	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3593 	if (!rl_prof_info)
3594 		return status;
3595 
3596 	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3597 
3598 	/* Save existing RL prof ID for later clean up */
3599 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3600 	/* Configure BW scheduling parameters */
3601 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3602 	if (status)
3603 		return status;
3604 
3605 	/* New changes has been applied */
3606 	/* Increment the profile ID reference count */
3607 	rl_prof_info->prof_id_ref++;
3608 
3609 	/* Check for old ID removal */
3610 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3611 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3612 		return 0;
3613 
3614 	return ice_sched_rm_rl_profile(pi, layer_num,
3615 				       rl_prof_info->profile.flags &
3616 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3617 }
3618 
3619 /**
3620  * ice_sched_set_node_priority - set node's priority
3621  * @pi: port information structure
3622  * @node: tree node
3623  * @priority: number 0-7 representing priority among siblings
3624  *
3625  * This function sets priority of a node among it's siblings.
3626  */
3627 int
3628 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3629 			    u16 priority)
3630 {
3631 	struct ice_aqc_txsched_elem_data buf;
3632 	struct ice_aqc_txsched_elem *data;
3633 
3634 	buf = node->info;
3635 	data = &buf.data;
3636 
3637 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3638 	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3639 
3640 	return ice_sched_update_elem(pi->hw, node, &buf);
3641 }
3642 
3643 /**
3644  * ice_sched_set_node_weight - set node's weight
3645  * @pi: port information structure
3646  * @node: tree node
3647  * @weight: number 1-200 representing weight for WFQ
3648  *
3649  * This function sets weight of the node for WFQ algorithm.
3650  */
3651 int
3652 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3653 {
3654 	struct ice_aqc_txsched_elem_data buf;
3655 	struct ice_aqc_txsched_elem *data;
3656 
3657 	buf = node->info;
3658 	data = &buf.data;
3659 
3660 	data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3661 			       ICE_AQC_ELEM_VALID_GENERIC;
3662 	data->cir_bw.bw_alloc = cpu_to_le16(weight);
3663 	data->eir_bw.bw_alloc = cpu_to_le16(weight);
3664 
3665 	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3666 
3667 	return ice_sched_update_elem(pi->hw, node, &buf);
3668 }
3669 
3670 /**
3671  * ice_sched_set_node_bw_lmt - set node's BW limit
3672  * @pi: port information structure
3673  * @node: tree node
3674  * @rl_type: rate limit type min, max, or shared
3675  * @bw: bandwidth in Kbps - Kilo bits per sec
3676  *
3677  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3678  * EIR, or SRL. The caller needs to hold scheduler lock.
3679  */
3680 int
3681 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3682 			  enum ice_rl_type rl_type, u32 bw)
3683 {
3684 	struct ice_sched_node *cfg_node = node;
3685 	int status;
3686 
3687 	struct ice_hw *hw;
3688 	u8 layer_num;
3689 
3690 	if (!pi)
3691 		return -EINVAL;
3692 	hw = pi->hw;
3693 	/* Remove unused RL profile IDs from HW and SW DB */
3694 	ice_sched_rm_unused_rl_prof(pi);
3695 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3696 						node->tx_sched_layer);
3697 	if (layer_num >= hw->num_tx_sched_layers)
3698 		return -EINVAL;
3699 
3700 	if (rl_type == ICE_SHARED_BW) {
3701 		/* SRL node may be different */
3702 		cfg_node = ice_sched_get_srl_node(node, layer_num);
3703 		if (!cfg_node)
3704 			return -EIO;
3705 	}
3706 	/* EIR BW and Shared BW profiles are mutually exclusive and
3707 	 * hence only one of them may be set for any given element
3708 	 */
3709 	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3710 					    bw);
3711 	if (status)
3712 		return status;
3713 	if (bw == ICE_SCHED_DFLT_BW)
3714 		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3715 						  layer_num);
3716 	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3717 }
3718 
3719 /**
3720  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3721  * @pi: port information structure
3722  * @node: pointer to node structure
3723  * @rl_type: rate limit type min, max, or shared
3724  *
3725  * This function configures node element's BW rate limit profile ID of
3726  * type CIR, EIR, or SRL to default. This function needs to be called
3727  * with the scheduler lock held.
3728  */
3729 static int
3730 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3731 			       struct ice_sched_node *node,
3732 			       enum ice_rl_type rl_type)
3733 {
3734 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3735 					 ICE_SCHED_DFLT_BW);
3736 }
3737 
3738 /**
3739  * ice_sched_validate_srl_node - Check node for SRL applicability
3740  * @node: sched node to configure
3741  * @sel_layer: selected SRL layer
3742  *
3743  * This function checks if the SRL can be applied to a selected layer node on
3744  * behalf of the requested node (first argument). This function needs to be
3745  * called with scheduler lock held.
3746  */
3747 static int
3748 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3749 {
3750 	/* SRL profiles are not available on all layers. Check if the
3751 	 * SRL profile can be applied to a node above or below the
3752 	 * requested node. SRL configuration is possible only if the
3753 	 * selected layer's node has single child.
3754 	 */
3755 	if (sel_layer == node->tx_sched_layer ||
3756 	    ((sel_layer == node->tx_sched_layer + 1) &&
3757 	    node->num_children == 1) ||
3758 	    ((sel_layer == node->tx_sched_layer - 1) &&
3759 	    (node->parent && node->parent->num_children == 1)))
3760 		return 0;
3761 
3762 	return -EIO;
3763 }
3764 
3765 /**
3766  * ice_sched_save_q_bw - save queue node's BW information
3767  * @q_ctx: queue context structure
3768  * @rl_type: rate limit type min, max, or shared
3769  * @bw: bandwidth in Kbps - Kilo bits per sec
3770  *
3771  * Save BW information of queue type node for post replay use.
3772  */
3773 static int
3774 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3775 {
3776 	switch (rl_type) {
3777 	case ICE_MIN_BW:
3778 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3779 		break;
3780 	case ICE_MAX_BW:
3781 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3782 		break;
3783 	case ICE_SHARED_BW:
3784 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3785 		break;
3786 	default:
3787 		return -EINVAL;
3788 	}
3789 	return 0;
3790 }
3791 
3792 /**
3793  * ice_sched_set_q_bw_lmt - sets queue BW limit
3794  * @pi: port information structure
3795  * @vsi_handle: sw VSI handle
3796  * @tc: traffic class
3797  * @q_handle: software queue handle
3798  * @rl_type: min, max, or shared
3799  * @bw: bandwidth in Kbps
3800  *
3801  * This function sets BW limit of queue scheduling node.
3802  */
3803 static int
3804 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3805 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3806 {
3807 	struct ice_sched_node *node;
3808 	struct ice_q_ctx *q_ctx;
3809 	int status = -EINVAL;
3810 
3811 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3812 		return -EINVAL;
3813 	mutex_lock(&pi->sched_lock);
3814 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3815 	if (!q_ctx)
3816 		goto exit_q_bw_lmt;
3817 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3818 	if (!node) {
3819 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3820 		goto exit_q_bw_lmt;
3821 	}
3822 
3823 	/* Return error if it is not a leaf node */
3824 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3825 		goto exit_q_bw_lmt;
3826 
3827 	/* SRL bandwidth layer selection */
3828 	if (rl_type == ICE_SHARED_BW) {
3829 		u8 sel_layer; /* selected layer */
3830 
3831 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3832 							node->tx_sched_layer);
3833 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
3834 			status = -EINVAL;
3835 			goto exit_q_bw_lmt;
3836 		}
3837 		status = ice_sched_validate_srl_node(node, sel_layer);
3838 		if (status)
3839 			goto exit_q_bw_lmt;
3840 	}
3841 
3842 	if (bw == ICE_SCHED_DFLT_BW)
3843 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3844 	else
3845 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3846 
3847 	if (!status)
3848 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3849 
3850 exit_q_bw_lmt:
3851 	mutex_unlock(&pi->sched_lock);
3852 	return status;
3853 }
3854 
3855 /**
3856  * ice_cfg_q_bw_lmt - configure queue BW limit
3857  * @pi: port information structure
3858  * @vsi_handle: sw VSI handle
3859  * @tc: traffic class
3860  * @q_handle: software queue handle
3861  * @rl_type: min, max, or shared
3862  * @bw: bandwidth in Kbps
3863  *
3864  * This function configures BW limit of queue scheduling node.
3865  */
3866 int
3867 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3868 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3869 {
3870 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3871 				      bw);
3872 }
3873 
3874 /**
3875  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3876  * @pi: port information structure
3877  * @vsi_handle: sw VSI handle
3878  * @tc: traffic class
3879  * @q_handle: software queue handle
3880  * @rl_type: min, max, or shared
3881  *
3882  * This function configures BW default limit of queue scheduling node.
3883  */
3884 int
3885 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3886 		      u16 q_handle, enum ice_rl_type rl_type)
3887 {
3888 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3889 				      ICE_SCHED_DFLT_BW);
3890 }
3891 
3892 /**
3893  * ice_sched_get_node_by_id_type - get node from ID type
3894  * @pi: port information structure
3895  * @id: identifier
3896  * @agg_type: type of aggregator
3897  * @tc: traffic class
3898  *
3899  * This function returns node identified by ID of type aggregator, and
3900  * based on traffic class (TC). This function needs to be called with
3901  * the scheduler lock held.
3902  */
3903 static struct ice_sched_node *
3904 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3905 			      enum ice_agg_type agg_type, u8 tc)
3906 {
3907 	struct ice_sched_node *node = NULL;
3908 
3909 	switch (agg_type) {
3910 	case ICE_AGG_TYPE_VSI: {
3911 		struct ice_vsi_ctx *vsi_ctx;
3912 		u16 vsi_handle = (u16)id;
3913 
3914 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3915 			break;
3916 		/* Get sched_vsi_info */
3917 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3918 		if (!vsi_ctx)
3919 			break;
3920 		node = vsi_ctx->sched.vsi_node[tc];
3921 		break;
3922 	}
3923 
3924 	case ICE_AGG_TYPE_AGG: {
3925 		struct ice_sched_node *tc_node;
3926 
3927 		tc_node = ice_sched_get_tc_node(pi, tc);
3928 		if (tc_node)
3929 			node = ice_sched_get_agg_node(pi, tc_node, id);
3930 		break;
3931 	}
3932 
3933 	default:
3934 		break;
3935 	}
3936 
3937 	return node;
3938 }
3939 
3940 /**
3941  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3942  * @pi: port information structure
3943  * @id: ID (software VSI handle or AGG ID)
3944  * @agg_type: aggregator type (VSI or AGG type node)
3945  * @tc: traffic class
3946  * @rl_type: min or max
3947  * @bw: bandwidth in Kbps
3948  *
3949  * This function sets BW limit of VSI or Aggregator scheduling node
3950  * based on TC information from passed in argument BW.
3951  */
3952 static int
3953 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3954 				 enum ice_agg_type agg_type, u8 tc,
3955 				 enum ice_rl_type rl_type, u32 bw)
3956 {
3957 	struct ice_sched_node *node;
3958 	int status = -EINVAL;
3959 
3960 	if (!pi)
3961 		return status;
3962 
3963 	if (rl_type == ICE_UNKNOWN_BW)
3964 		return status;
3965 
3966 	mutex_lock(&pi->sched_lock);
3967 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3968 	if (!node) {
3969 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3970 		goto exit_set_node_bw_lmt_per_tc;
3971 	}
3972 	if (bw == ICE_SCHED_DFLT_BW)
3973 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3974 	else
3975 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3976 
3977 exit_set_node_bw_lmt_per_tc:
3978 	mutex_unlock(&pi->sched_lock);
3979 	return status;
3980 }
3981 
3982 /**
3983  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3984  * @pi: port information structure
3985  * @vsi_handle: software VSI handle
3986  * @tc: traffic class
3987  * @rl_type: min or max
3988  * @bw: bandwidth in Kbps
3989  *
3990  * This function configures BW limit of VSI scheduling node based on TC
3991  * information.
3992  */
3993 int
3994 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3995 			  enum ice_rl_type rl_type, u32 bw)
3996 {
3997 	int status;
3998 
3999 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4000 						  ICE_AGG_TYPE_VSI,
4001 						  tc, rl_type, bw);
4002 	if (!status) {
4003 		mutex_lock(&pi->sched_lock);
4004 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4005 		mutex_unlock(&pi->sched_lock);
4006 	}
4007 	return status;
4008 }
4009 
4010 /**
4011  * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4012  * @pi: port information structure
4013  * @vsi_handle: software VSI handle
4014  * @tc: traffic class
4015  * @rl_type: min or max
4016  *
4017  * This function configures default BW limit of VSI scheduling node based on TC
4018  * information.
4019  */
4020 int
4021 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4022 			       enum ice_rl_type rl_type)
4023 {
4024 	int status;
4025 
4026 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4027 						  ICE_AGG_TYPE_VSI,
4028 						  tc, rl_type,
4029 						  ICE_SCHED_DFLT_BW);
4030 	if (!status) {
4031 		mutex_lock(&pi->sched_lock);
4032 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4033 					       ICE_SCHED_DFLT_BW);
4034 		mutex_unlock(&pi->sched_lock);
4035 	}
4036 	return status;
4037 }
4038 
4039 /**
4040  * ice_cfg_rl_burst_size - Set burst size value
4041  * @hw: pointer to the HW struct
4042  * @bytes: burst size in bytes
4043  *
4044  * This function configures/set the burst size to requested new value. The new
4045  * burst size value is used for future rate limit calls. It doesn't change the
4046  * existing or previously created RL profiles.
4047  */
4048 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4049 {
4050 	u16 burst_size_to_prog;
4051 
4052 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4053 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4054 		return -EINVAL;
4055 	if (ice_round_to_num(bytes, 64) <=
4056 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4057 		/* 64 byte granularity case */
4058 		/* Disable MSB granularity bit */
4059 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4060 		/* round number to nearest 64 byte granularity */
4061 		bytes = ice_round_to_num(bytes, 64);
4062 		/* The value is in 64 byte chunks */
4063 		burst_size_to_prog |= (u16)(bytes / 64);
4064 	} else {
4065 		/* k bytes granularity case */
4066 		/* Enable MSB granularity bit */
4067 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4068 		/* round number to nearest 1024 granularity */
4069 		bytes = ice_round_to_num(bytes, 1024);
4070 		/* check rounding doesn't go beyond allowed */
4071 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4072 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4073 		/* The value is in k bytes */
4074 		burst_size_to_prog |= (u16)(bytes / 1024);
4075 	}
4076 	hw->max_burst_size = burst_size_to_prog;
4077 	return 0;
4078 }
4079 
4080 /**
4081  * ice_sched_replay_node_prio - re-configure node priority
4082  * @hw: pointer to the HW struct
4083  * @node: sched node to configure
4084  * @priority: priority value
4085  *
4086  * This function configures node element's priority value. It
4087  * needs to be called with scheduler lock held.
4088  */
4089 static int
4090 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4091 			   u8 priority)
4092 {
4093 	struct ice_aqc_txsched_elem_data buf;
4094 	struct ice_aqc_txsched_elem *data;
4095 	int status;
4096 
4097 	buf = node->info;
4098 	data = &buf.data;
4099 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4100 	data->generic = priority;
4101 
4102 	/* Configure element */
4103 	status = ice_sched_update_elem(hw, node, &buf);
4104 	return status;
4105 }
4106 
4107 /**
4108  * ice_sched_replay_node_bw - replay node(s) BW
4109  * @hw: pointer to the HW struct
4110  * @node: sched node to configure
4111  * @bw_t_info: BW type information
4112  *
4113  * This function restores node's BW from bw_t_info. The caller needs
4114  * to hold the scheduler lock.
4115  */
4116 static int
4117 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4118 			 struct ice_bw_type_info *bw_t_info)
4119 {
4120 	struct ice_port_info *pi = hw->port_info;
4121 	int status = -EINVAL;
4122 	u16 bw_alloc;
4123 
4124 	if (!node)
4125 		return status;
4126 	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4127 		return 0;
4128 	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4129 		status = ice_sched_replay_node_prio(hw, node,
4130 						    bw_t_info->generic);
4131 		if (status)
4132 			return status;
4133 	}
4134 	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4135 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4136 						   bw_t_info->cir_bw.bw);
4137 		if (status)
4138 			return status;
4139 	}
4140 	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4141 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
4142 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4143 						     bw_alloc);
4144 		if (status)
4145 			return status;
4146 	}
4147 	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4148 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4149 						   bw_t_info->eir_bw.bw);
4150 		if (status)
4151 			return status;
4152 	}
4153 	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4154 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
4155 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4156 						     bw_alloc);
4157 		if (status)
4158 			return status;
4159 	}
4160 	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4161 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4162 						   bw_t_info->shared_bw);
4163 	return status;
4164 }
4165 
4166 /**
4167  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4168  * @pi: port info struct
4169  * @tc_bitmap: 8 bits TC bitmap to check
4170  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4171  *
4172  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4173  * may be missing, it returns enabled TCs. This function needs to be called with
4174  * scheduler lock held.
4175  */
4176 static void
4177 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4178 			    unsigned long *tc_bitmap,
4179 			    unsigned long *ena_tc_bitmap)
4180 {
4181 	u8 tc;
4182 
4183 	/* Some TC(s) may be missing after reset, adjust for replay */
4184 	ice_for_each_traffic_class(tc)
4185 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
4186 		    (ice_sched_get_tc_node(pi, tc)))
4187 			set_bit(tc, ena_tc_bitmap);
4188 }
4189 
4190 /**
4191  * ice_sched_replay_agg - recreate aggregator node(s)
4192  * @hw: pointer to the HW struct
4193  *
4194  * This function recreate aggregator type nodes which are not replayed earlier.
4195  * It also replay aggregator BW information. These aggregator nodes are not
4196  * associated with VSI type node yet.
4197  */
4198 void ice_sched_replay_agg(struct ice_hw *hw)
4199 {
4200 	struct ice_port_info *pi = hw->port_info;
4201 	struct ice_sched_agg_info *agg_info;
4202 
4203 	mutex_lock(&pi->sched_lock);
4204 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4205 		/* replay aggregator (re-create aggregator node) */
4206 		if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4207 				  ICE_MAX_TRAFFIC_CLASS)) {
4208 			DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4209 			int status;
4210 
4211 			bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4212 			ice_sched_get_ena_tc_bitmap(pi,
4213 						    agg_info->replay_tc_bitmap,
4214 						    replay_bitmap);
4215 			status = ice_sched_cfg_agg(hw->port_info,
4216 						   agg_info->agg_id,
4217 						   ICE_AGG_TYPE_AGG,
4218 						   replay_bitmap);
4219 			if (status) {
4220 				dev_info(ice_hw_to_dev(hw),
4221 					 "Replay agg id[%d] failed\n",
4222 					 agg_info->agg_id);
4223 				/* Move on to next one */
4224 				continue;
4225 			}
4226 		}
4227 	mutex_unlock(&pi->sched_lock);
4228 }
4229 
4230 /**
4231  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4232  * @hw: pointer to the HW struct
4233  *
4234  * This function initialize aggregator(s) TC bitmap to zero. A required
4235  * preinit step for replaying aggregators.
4236  */
4237 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4238 {
4239 	struct ice_port_info *pi = hw->port_info;
4240 	struct ice_sched_agg_info *agg_info;
4241 
4242 	mutex_lock(&pi->sched_lock);
4243 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4244 		struct ice_sched_agg_vsi_info *agg_vsi_info;
4245 
4246 		agg_info->tc_bitmap[0] = 0;
4247 		list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4248 				    list_entry)
4249 			agg_vsi_info->tc_bitmap[0] = 0;
4250 	}
4251 	mutex_unlock(&pi->sched_lock);
4252 }
4253 
4254 /**
4255  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4256  * @hw: pointer to the HW struct
4257  * @vsi_handle: software VSI handle
4258  *
4259  * This function replays aggregator node, VSI to aggregator type nodes, and
4260  * their node bandwidth information. This function needs to be called with
4261  * scheduler lock held.
4262  */
4263 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4264 {
4265 	DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4266 	struct ice_sched_agg_vsi_info *agg_vsi_info;
4267 	struct ice_port_info *pi = hw->port_info;
4268 	struct ice_sched_agg_info *agg_info;
4269 	int status;
4270 
4271 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4272 	if (!ice_is_vsi_valid(hw, vsi_handle))
4273 		return -EINVAL;
4274 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4275 	if (!agg_info)
4276 		return 0; /* Not present in list - default Agg case */
4277 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4278 	if (!agg_vsi_info)
4279 		return 0; /* Not present in list - default Agg case */
4280 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4281 				    replay_bitmap);
4282 	/* Replay aggregator node associated to vsi_handle */
4283 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4284 				   ICE_AGG_TYPE_AGG, replay_bitmap);
4285 	if (status)
4286 		return status;
4287 
4288 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4289 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4290 				    replay_bitmap);
4291 	/* Move this VSI (vsi_handle) to above aggregator */
4292 	return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4293 					  replay_bitmap);
4294 }
4295 
4296 /**
4297  * ice_replay_vsi_agg - replay VSI to aggregator node
4298  * @hw: pointer to the HW struct
4299  * @vsi_handle: software VSI handle
4300  *
4301  * This function replays association of VSI to aggregator type nodes, and
4302  * node bandwidth information.
4303  */
4304 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4305 {
4306 	struct ice_port_info *pi = hw->port_info;
4307 	int status;
4308 
4309 	mutex_lock(&pi->sched_lock);
4310 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4311 	mutex_unlock(&pi->sched_lock);
4312 	return status;
4313 }
4314 
4315 /**
4316  * ice_sched_replay_q_bw - replay queue type node BW
4317  * @pi: port information structure
4318  * @q_ctx: queue context structure
4319  *
4320  * This function replays queue type node bandwidth. This function needs to be
4321  * called with scheduler lock held.
4322  */
4323 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4324 {
4325 	struct ice_sched_node *q_node;
4326 
4327 	/* Following also checks the presence of node in tree */
4328 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4329 	if (!q_node)
4330 		return -EINVAL;
4331 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4332 }
4333