1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_sched.h" 5 6 /** 7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 8 * @pi: port information structure 9 * @info: Scheduler element information from firmware 10 * 11 * This function inserts the root node of the scheduling tree topology 12 * to the SW DB. 13 */ 14 static enum ice_status 15 ice_sched_add_root_node(struct ice_port_info *pi, 16 struct ice_aqc_txsched_elem_data *info) 17 { 18 struct ice_sched_node *root; 19 struct ice_hw *hw; 20 21 if (!pi) 22 return ICE_ERR_PARAM; 23 24 hw = pi->hw; 25 26 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 27 if (!root) 28 return ICE_ERR_NO_MEMORY; 29 30 /* coverity[suspicious_sizeof] */ 31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 32 sizeof(*root), GFP_KERNEL); 33 if (!root->children) { 34 devm_kfree(ice_hw_to_dev(hw), root); 35 return ICE_ERR_NO_MEMORY; 36 } 37 38 memcpy(&root->info, info, sizeof(*info)); 39 pi->root = root; 40 return 0; 41 } 42 43 /** 44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 46 * @teid: node TEID to search 47 * 48 * This function searches for a node matching the TEID in the scheduling tree 49 * from the SW DB. The search is recursive and is restricted by the number of 50 * layers it has searched through; stopping at the max supported layer. 51 * 52 * This function needs to be called when holding the port_info->sched_lock 53 */ 54 struct ice_sched_node * 55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 56 { 57 u16 i; 58 59 /* The TEID is same as that of the start_node */ 60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 61 return start_node; 62 63 /* The node has no children or is at the max layer */ 64 if (!start_node->num_children || 65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 67 return NULL; 68 69 /* Check if TEID matches to any of the children nodes */ 70 for (i = 0; i < start_node->num_children; i++) 71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 72 return start_node->children[i]; 73 74 /* Search within each child's sub-tree */ 75 for (i = 0; i < start_node->num_children; i++) { 76 struct ice_sched_node *tmp; 77 78 tmp = ice_sched_find_node_by_teid(start_node->children[i], 79 teid); 80 if (tmp) 81 return tmp; 82 } 83 84 return NULL; 85 } 86 87 /** 88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 89 * @hw: pointer to the HW struct 90 * @cmd_opc: cmd opcode 91 * @elems_req: number of elements to request 92 * @buf: pointer to buffer 93 * @buf_size: buffer size in bytes 94 * @elems_resp: returns total number of elements response 95 * @cd: pointer to command details structure or NULL 96 * 97 * This function sends a scheduling elements cmd (cmd_opc) 98 */ 99 static enum ice_status 100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 101 u16 elems_req, void *buf, u16 buf_size, 102 u16 *elems_resp, struct ice_sq_cd *cd) 103 { 104 struct ice_aqc_sched_elem_cmd *cmd; 105 struct ice_aq_desc desc; 106 enum ice_status status; 107 108 cmd = &desc.params.sched_elem_cmd; 109 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 110 cmd->num_elem_req = cpu_to_le16(elems_req); 111 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 112 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 113 if (!status && elems_resp) 114 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 115 116 return status; 117 } 118 119 /** 120 * ice_aq_query_sched_elems - query scheduler elements 121 * @hw: pointer to the HW struct 122 * @elems_req: number of elements to query 123 * @buf: pointer to buffer 124 * @buf_size: buffer size in bytes 125 * @elems_ret: returns total number of elements returned 126 * @cd: pointer to command details structure or NULL 127 * 128 * Query scheduling elements (0x0404) 129 */ 130 enum ice_status 131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 132 struct ice_aqc_get_elem *buf, u16 buf_size, 133 u16 *elems_ret, struct ice_sq_cd *cd) 134 { 135 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 136 elems_req, (void *)buf, buf_size, 137 elems_ret, cd); 138 } 139 140 /** 141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 142 * @pi: port information structure 143 * @layer: Scheduler layer of the node 144 * @info: Scheduler element information from firmware 145 * 146 * This function inserts a scheduler node to the SW DB. 147 */ 148 enum ice_status 149 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 150 struct ice_aqc_txsched_elem_data *info) 151 { 152 struct ice_sched_node *parent; 153 struct ice_aqc_get_elem elem; 154 struct ice_sched_node *node; 155 enum ice_status status; 156 struct ice_hw *hw; 157 158 if (!pi) 159 return ICE_ERR_PARAM; 160 161 hw = pi->hw; 162 163 /* A valid parent node should be there */ 164 parent = ice_sched_find_node_by_teid(pi->root, 165 le32_to_cpu(info->parent_teid)); 166 if (!parent) { 167 ice_debug(hw, ICE_DBG_SCHED, 168 "Parent Node not found for parent_teid=0x%x\n", 169 le32_to_cpu(info->parent_teid)); 170 return ICE_ERR_PARAM; 171 } 172 173 /* query the current node information from FW before additing it 174 * to the SW DB 175 */ 176 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 177 if (status) 178 return status; 179 180 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 181 if (!node) 182 return ICE_ERR_NO_MEMORY; 183 if (hw->max_children[layer]) { 184 /* coverity[suspicious_sizeof] */ 185 node->children = devm_kcalloc(ice_hw_to_dev(hw), 186 hw->max_children[layer], 187 sizeof(*node), GFP_KERNEL); 188 if (!node->children) { 189 devm_kfree(ice_hw_to_dev(hw), node); 190 return ICE_ERR_NO_MEMORY; 191 } 192 } 193 194 node->in_use = true; 195 node->parent = parent; 196 node->tx_sched_layer = layer; 197 parent->children[parent->num_children++] = node; 198 memcpy(&node->info, &elem.generic[0], sizeof(node->info)); 199 return 0; 200 } 201 202 /** 203 * ice_aq_delete_sched_elems - delete scheduler elements 204 * @hw: pointer to the HW struct 205 * @grps_req: number of groups to delete 206 * @buf: pointer to buffer 207 * @buf_size: buffer size in bytes 208 * @grps_del: returns total number of elements deleted 209 * @cd: pointer to command details structure or NULL 210 * 211 * Delete scheduling elements (0x040F) 212 */ 213 static enum ice_status 214 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 215 struct ice_aqc_delete_elem *buf, u16 buf_size, 216 u16 *grps_del, struct ice_sq_cd *cd) 217 { 218 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 219 grps_req, (void *)buf, buf_size, 220 grps_del, cd); 221 } 222 223 /** 224 * ice_sched_remove_elems - remove nodes from HW 225 * @hw: pointer to the HW struct 226 * @parent: pointer to the parent node 227 * @num_nodes: number of nodes 228 * @node_teids: array of node teids to be deleted 229 * 230 * This function remove nodes from HW 231 */ 232 static enum ice_status 233 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 234 u16 num_nodes, u32 *node_teids) 235 { 236 struct ice_aqc_delete_elem *buf; 237 u16 i, num_groups_removed = 0; 238 enum ice_status status; 239 u16 buf_size; 240 241 buf_size = sizeof(*buf) + sizeof(u32) * (num_nodes - 1); 242 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 243 if (!buf) 244 return ICE_ERR_NO_MEMORY; 245 246 buf->hdr.parent_teid = parent->info.node_teid; 247 buf->hdr.num_elems = cpu_to_le16(num_nodes); 248 for (i = 0; i < num_nodes; i++) 249 buf->teid[i] = cpu_to_le32(node_teids[i]); 250 251 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 252 &num_groups_removed, NULL); 253 if (status || num_groups_removed != 1) 254 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 255 hw->adminq.sq_last_status); 256 257 devm_kfree(ice_hw_to_dev(hw), buf); 258 return status; 259 } 260 261 /** 262 * ice_sched_get_first_node - get the first node of the given layer 263 * @pi: port information structure 264 * @parent: pointer the base node of the subtree 265 * @layer: layer number 266 * 267 * This function retrieves the first node of the given layer from the subtree 268 */ 269 static struct ice_sched_node * 270 ice_sched_get_first_node(struct ice_port_info *pi, 271 struct ice_sched_node *parent, u8 layer) 272 { 273 return pi->sib_head[parent->tc_num][layer]; 274 } 275 276 /** 277 * ice_sched_get_tc_node - get pointer to TC node 278 * @pi: port information structure 279 * @tc: TC number 280 * 281 * This function returns the TC node pointer 282 */ 283 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 284 { 285 u8 i; 286 287 if (!pi || !pi->root) 288 return NULL; 289 for (i = 0; i < pi->root->num_children; i++) 290 if (pi->root->children[i]->tc_num == tc) 291 return pi->root->children[i]; 292 return NULL; 293 } 294 295 /** 296 * ice_free_sched_node - Free a Tx scheduler node from SW DB 297 * @pi: port information structure 298 * @node: pointer to the ice_sched_node struct 299 * 300 * This function frees up a node from SW DB as well as from HW 301 * 302 * This function needs to be called with the port_info->sched_lock held 303 */ 304 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 305 { 306 struct ice_sched_node *parent; 307 struct ice_hw *hw = pi->hw; 308 u8 i, j; 309 310 /* Free the children before freeing up the parent node 311 * The parent array is updated below and that shifts the nodes 312 * in the array. So always pick the first child if num children > 0 313 */ 314 while (node->num_children) 315 ice_free_sched_node(pi, node->children[0]); 316 317 /* Leaf, TC and root nodes can't be deleted by SW */ 318 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 319 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 320 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 321 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 322 u32 teid = le32_to_cpu(node->info.node_teid); 323 324 ice_sched_remove_elems(hw, node->parent, 1, &teid); 325 } 326 parent = node->parent; 327 /* root has no parent */ 328 if (parent) { 329 struct ice_sched_node *p; 330 331 /* update the parent */ 332 for (i = 0; i < parent->num_children; i++) 333 if (parent->children[i] == node) { 334 for (j = i + 1; j < parent->num_children; j++) 335 parent->children[j - 1] = 336 parent->children[j]; 337 parent->num_children--; 338 break; 339 } 340 341 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 342 while (p) { 343 if (p->sibling == node) { 344 p->sibling = node->sibling; 345 break; 346 } 347 p = p->sibling; 348 } 349 350 /* update the sibling head if head is getting removed */ 351 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 352 pi->sib_head[node->tc_num][node->tx_sched_layer] = 353 node->sibling; 354 } 355 356 /* leaf nodes have no children */ 357 if (node->children) 358 devm_kfree(ice_hw_to_dev(hw), node->children); 359 devm_kfree(ice_hw_to_dev(hw), node); 360 } 361 362 /** 363 * ice_aq_get_dflt_topo - gets default scheduler topology 364 * @hw: pointer to the HW struct 365 * @lport: logical port number 366 * @buf: pointer to buffer 367 * @buf_size: buffer size in bytes 368 * @num_branches: returns total number of queue to port branches 369 * @cd: pointer to command details structure or NULL 370 * 371 * Get default scheduler topology (0x400) 372 */ 373 static enum ice_status 374 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 375 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 376 u8 *num_branches, struct ice_sq_cd *cd) 377 { 378 struct ice_aqc_get_topo *cmd; 379 struct ice_aq_desc desc; 380 enum ice_status status; 381 382 cmd = &desc.params.get_topo; 383 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 384 cmd->port_num = lport; 385 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 386 if (!status && num_branches) 387 *num_branches = cmd->num_branches; 388 389 return status; 390 } 391 392 /** 393 * ice_aq_add_sched_elems - adds scheduling element 394 * @hw: pointer to the HW struct 395 * @grps_req: the number of groups that are requested to be added 396 * @buf: pointer to buffer 397 * @buf_size: buffer size in bytes 398 * @grps_added: returns total number of groups added 399 * @cd: pointer to command details structure or NULL 400 * 401 * Add scheduling elements (0x0401) 402 */ 403 static enum ice_status 404 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 405 struct ice_aqc_add_elem *buf, u16 buf_size, 406 u16 *grps_added, struct ice_sq_cd *cd) 407 { 408 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 409 grps_req, (void *)buf, buf_size, 410 grps_added, cd); 411 } 412 413 /** 414 * ice_aq_suspend_sched_elems - suspend scheduler elements 415 * @hw: pointer to the HW struct 416 * @elems_req: number of elements to suspend 417 * @buf: pointer to buffer 418 * @buf_size: buffer size in bytes 419 * @elems_ret: returns total number of elements suspended 420 * @cd: pointer to command details structure or NULL 421 * 422 * Suspend scheduling elements (0x0409) 423 */ 424 static enum ice_status 425 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, 426 struct ice_aqc_suspend_resume_elem *buf, 427 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 428 { 429 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 430 elems_req, (void *)buf, buf_size, 431 elems_ret, cd); 432 } 433 434 /** 435 * ice_aq_resume_sched_elems - resume scheduler elements 436 * @hw: pointer to the HW struct 437 * @elems_req: number of elements to resume 438 * @buf: pointer to buffer 439 * @buf_size: buffer size in bytes 440 * @elems_ret: returns total number of elements resumed 441 * @cd: pointer to command details structure or NULL 442 * 443 * resume scheduling elements (0x040A) 444 */ 445 static enum ice_status 446 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, 447 struct ice_aqc_suspend_resume_elem *buf, 448 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 449 { 450 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 451 elems_req, (void *)buf, buf_size, 452 elems_ret, cd); 453 } 454 455 /** 456 * ice_aq_query_sched_res - query scheduler resource 457 * @hw: pointer to the HW struct 458 * @buf_size: buffer size in bytes 459 * @buf: pointer to buffer 460 * @cd: pointer to command details structure or NULL 461 * 462 * Query scheduler resource allocation (0x0412) 463 */ 464 static enum ice_status 465 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 466 struct ice_aqc_query_txsched_res_resp *buf, 467 struct ice_sq_cd *cd) 468 { 469 struct ice_aq_desc desc; 470 471 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 472 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 473 } 474 475 /** 476 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 477 * @hw: pointer to the HW struct 478 * @num_nodes: number of nodes 479 * @node_teids: array of node teids to be suspended or resumed 480 * @suspend: true means suspend / false means resume 481 * 482 * This function suspends or resumes HW nodes 483 */ 484 static enum ice_status 485 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 486 bool suspend) 487 { 488 struct ice_aqc_suspend_resume_elem *buf; 489 u16 i, buf_size, num_elem_ret = 0; 490 enum ice_status status; 491 492 buf_size = sizeof(*buf) * num_nodes; 493 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 494 if (!buf) 495 return ICE_ERR_NO_MEMORY; 496 497 for (i = 0; i < num_nodes; i++) 498 buf->teid[i] = cpu_to_le32(node_teids[i]); 499 500 if (suspend) 501 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 502 buf_size, &num_elem_ret, 503 NULL); 504 else 505 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 506 buf_size, &num_elem_ret, 507 NULL); 508 if (status || num_elem_ret != num_nodes) 509 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 510 511 devm_kfree(ice_hw_to_dev(hw), buf); 512 return status; 513 } 514 515 /** 516 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 517 * @hw: pointer to the HW struct 518 * @vsi_handle: VSI handle 519 * @tc: TC number 520 * @new_numqs: number of queues 521 */ 522 static enum ice_status 523 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 524 { 525 struct ice_vsi_ctx *vsi_ctx; 526 struct ice_q_ctx *q_ctx; 527 528 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 529 if (!vsi_ctx) 530 return ICE_ERR_PARAM; 531 /* allocate LAN queue contexts */ 532 if (!vsi_ctx->lan_q_ctx[tc]) { 533 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 534 new_numqs, 535 sizeof(*q_ctx), 536 GFP_KERNEL); 537 if (!vsi_ctx->lan_q_ctx[tc]) 538 return ICE_ERR_NO_MEMORY; 539 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 540 return 0; 541 } 542 /* num queues are increased, update the queue contexts */ 543 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 544 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 545 546 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 547 sizeof(*q_ctx), GFP_KERNEL); 548 if (!q_ctx) 549 return ICE_ERR_NO_MEMORY; 550 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 551 prev_num * sizeof(*q_ctx)); 552 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 553 vsi_ctx->lan_q_ctx[tc] = q_ctx; 554 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 555 } 556 return 0; 557 } 558 559 /** 560 * ice_sched_clear_agg - clears the aggregator related information 561 * @hw: pointer to the hardware structure 562 * 563 * This function removes aggregator list and free up aggregator related memory 564 * previously allocated. 565 */ 566 void ice_sched_clear_agg(struct ice_hw *hw) 567 { 568 struct ice_sched_agg_info *agg_info; 569 struct ice_sched_agg_info *atmp; 570 571 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 572 struct ice_sched_agg_vsi_info *agg_vsi_info; 573 struct ice_sched_agg_vsi_info *vtmp; 574 575 list_for_each_entry_safe(agg_vsi_info, vtmp, 576 &agg_info->agg_vsi_list, list_entry) { 577 list_del(&agg_vsi_info->list_entry); 578 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 579 } 580 list_del(&agg_info->list_entry); 581 devm_kfree(ice_hw_to_dev(hw), agg_info); 582 } 583 } 584 585 /** 586 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 587 * @pi: port information structure 588 * 589 * This function removes all the nodes from HW as well as from SW DB. 590 */ 591 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 592 { 593 if (!pi) 594 return; 595 if (pi->root) { 596 ice_free_sched_node(pi, pi->root); 597 pi->root = NULL; 598 } 599 } 600 601 /** 602 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 603 * @pi: port information structure 604 * 605 * Cleanup scheduling elements from SW DB 606 */ 607 void ice_sched_clear_port(struct ice_port_info *pi) 608 { 609 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 610 return; 611 612 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 613 mutex_lock(&pi->sched_lock); 614 ice_sched_clear_tx_topo(pi); 615 mutex_unlock(&pi->sched_lock); 616 mutex_destroy(&pi->sched_lock); 617 } 618 619 /** 620 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 621 * @hw: pointer to the HW struct 622 * 623 * Cleanup scheduling elements from SW DB for all the ports 624 */ 625 void ice_sched_cleanup_all(struct ice_hw *hw) 626 { 627 if (!hw) 628 return; 629 630 if (hw->layer_info) { 631 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 632 hw->layer_info = NULL; 633 } 634 635 if (hw->port_info) 636 ice_sched_clear_port(hw->port_info); 637 638 hw->num_tx_sched_layers = 0; 639 hw->num_tx_sched_phys_layers = 0; 640 hw->flattened_layers = 0; 641 hw->max_cgds = 0; 642 } 643 644 /** 645 * ice_sched_add_elems - add nodes to HW and SW DB 646 * @pi: port information structure 647 * @tc_node: pointer to the branch node 648 * @parent: pointer to the parent node 649 * @layer: layer number to add nodes 650 * @num_nodes: number of nodes 651 * @num_nodes_added: pointer to num nodes added 652 * @first_node_teid: if new nodes are added then return the TEID of first node 653 * 654 * This function add nodes to HW as well as to SW DB for a given layer 655 */ 656 static enum ice_status 657 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 658 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 659 u16 *num_nodes_added, u32 *first_node_teid) 660 { 661 struct ice_sched_node *prev, *new_node; 662 struct ice_aqc_add_elem *buf; 663 u16 i, num_groups_added = 0; 664 enum ice_status status = 0; 665 struct ice_hw *hw = pi->hw; 666 size_t buf_size; 667 u32 teid; 668 669 buf_size = struct_size(buf, generic, num_nodes - 1); 670 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 671 if (!buf) 672 return ICE_ERR_NO_MEMORY; 673 674 buf->hdr.parent_teid = parent->info.node_teid; 675 buf->hdr.num_elems = cpu_to_le16(num_nodes); 676 for (i = 0; i < num_nodes; i++) { 677 buf->generic[i].parent_teid = parent->info.node_teid; 678 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 679 buf->generic[i].data.valid_sections = 680 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 681 ICE_AQC_ELEM_VALID_EIR; 682 buf->generic[i].data.generic = 0; 683 buf->generic[i].data.cir_bw.bw_profile_idx = 684 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 685 buf->generic[i].data.cir_bw.bw_alloc = 686 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 687 buf->generic[i].data.eir_bw.bw_profile_idx = 688 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 689 buf->generic[i].data.eir_bw.bw_alloc = 690 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 691 } 692 693 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 694 &num_groups_added, NULL); 695 if (status || num_groups_added != 1) { 696 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 697 hw->adminq.sq_last_status); 698 devm_kfree(ice_hw_to_dev(hw), buf); 699 return ICE_ERR_CFG; 700 } 701 702 *num_nodes_added = num_nodes; 703 /* add nodes to the SW DB */ 704 for (i = 0; i < num_nodes; i++) { 705 status = ice_sched_add_node(pi, layer, &buf->generic[i]); 706 if (status) { 707 ice_debug(hw, ICE_DBG_SCHED, 708 "add nodes in SW DB failed status =%d\n", 709 status); 710 break; 711 } 712 713 teid = le32_to_cpu(buf->generic[i].node_teid); 714 new_node = ice_sched_find_node_by_teid(parent, teid); 715 if (!new_node) { 716 ice_debug(hw, ICE_DBG_SCHED, 717 "Node is missing for teid =%d\n", teid); 718 break; 719 } 720 721 new_node->sibling = NULL; 722 new_node->tc_num = tc_node->tc_num; 723 724 /* add it to previous node sibling pointer */ 725 /* Note: siblings are not linked across branches */ 726 prev = ice_sched_get_first_node(pi, tc_node, layer); 727 if (prev && prev != new_node) { 728 while (prev->sibling) 729 prev = prev->sibling; 730 prev->sibling = new_node; 731 } 732 733 /* initialize the sibling head */ 734 if (!pi->sib_head[tc_node->tc_num][layer]) 735 pi->sib_head[tc_node->tc_num][layer] = new_node; 736 737 if (i == 0) 738 *first_node_teid = teid; 739 } 740 741 devm_kfree(ice_hw_to_dev(hw), buf); 742 return status; 743 } 744 745 /** 746 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 747 * @pi: port information structure 748 * @tc_node: pointer to TC node 749 * @parent: pointer to parent node 750 * @layer: layer number to add nodes 751 * @num_nodes: number of nodes to be added 752 * @first_node_teid: pointer to the first node TEID 753 * @num_nodes_added: pointer to number of nodes added 754 * 755 * This function add nodes to a given layer. 756 */ 757 static enum ice_status 758 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 759 struct ice_sched_node *tc_node, 760 struct ice_sched_node *parent, u8 layer, 761 u16 num_nodes, u32 *first_node_teid, 762 u16 *num_nodes_added) 763 { 764 u32 *first_teid_ptr = first_node_teid; 765 u16 new_num_nodes, max_child_nodes; 766 enum ice_status status = 0; 767 struct ice_hw *hw = pi->hw; 768 u16 num_added = 0; 769 u32 temp; 770 771 *num_nodes_added = 0; 772 773 if (!num_nodes) 774 return status; 775 776 if (!parent || layer < hw->sw_entry_point_layer) 777 return ICE_ERR_PARAM; 778 779 /* max children per node per layer */ 780 max_child_nodes = hw->max_children[parent->tx_sched_layer]; 781 782 /* current number of children + required nodes exceed max children ? */ 783 if ((parent->num_children + num_nodes) > max_child_nodes) { 784 /* Fail if the parent is a TC node */ 785 if (parent == tc_node) 786 return ICE_ERR_CFG; 787 788 /* utilize all the spaces if the parent is not full */ 789 if (parent->num_children < max_child_nodes) { 790 new_num_nodes = max_child_nodes - parent->num_children; 791 /* this recursion is intentional, and wouldn't 792 * go more than 2 calls 793 */ 794 status = ice_sched_add_nodes_to_layer(pi, tc_node, 795 parent, layer, 796 new_num_nodes, 797 first_node_teid, 798 &num_added); 799 if (status) 800 return status; 801 802 *num_nodes_added += num_added; 803 } 804 /* Don't modify the first node TEID memory if the first node was 805 * added already in the above call. Instead send some temp 806 * memory for all other recursive calls. 807 */ 808 if (num_added) 809 first_teid_ptr = &temp; 810 811 new_num_nodes = num_nodes - num_added; 812 813 /* This parent is full, try the next sibling */ 814 parent = parent->sibling; 815 816 /* this recursion is intentional, for 1024 queues 817 * per VSI, it goes max of 16 iterations. 818 * 1024 / 8 = 128 layer 8 nodes 819 * 128 /8 = 16 (add 8 nodes per iteration) 820 */ 821 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 822 layer, new_num_nodes, 823 first_teid_ptr, 824 &num_added); 825 *num_nodes_added += num_added; 826 return status; 827 } 828 829 status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 830 num_nodes_added, first_node_teid); 831 return status; 832 } 833 834 /** 835 * ice_sched_get_qgrp_layer - get the current queue group layer number 836 * @hw: pointer to the HW struct 837 * 838 * This function returns the current queue group layer number 839 */ 840 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 841 { 842 /* It's always total layers - 1, the array is 0 relative so -2 */ 843 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 844 } 845 846 /** 847 * ice_sched_get_vsi_layer - get the current VSI layer number 848 * @hw: pointer to the HW struct 849 * 850 * This function returns the current VSI layer number 851 */ 852 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 853 { 854 /* Num Layers VSI layer 855 * 9 6 856 * 7 4 857 * 5 or less sw_entry_point_layer 858 */ 859 /* calculate the VSI layer based on number of layers. */ 860 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 861 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 862 863 if (layer > hw->sw_entry_point_layer) 864 return layer; 865 } 866 return hw->sw_entry_point_layer; 867 } 868 869 /** 870 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 871 * @pi: port information structure 872 * 873 * This function removes the leaf node that was created by the FW 874 * during initialization 875 */ 876 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 877 { 878 struct ice_sched_node *node; 879 880 node = pi->root; 881 while (node) { 882 if (!node->num_children) 883 break; 884 node = node->children[0]; 885 } 886 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 887 u32 teid = le32_to_cpu(node->info.node_teid); 888 enum ice_status status; 889 890 /* remove the default leaf node */ 891 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 892 if (!status) 893 ice_free_sched_node(pi, node); 894 } 895 } 896 897 /** 898 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 899 * @pi: port information structure 900 * 901 * This function frees all the nodes except root and TC that were created by 902 * the FW during initialization 903 */ 904 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 905 { 906 struct ice_sched_node *node; 907 908 ice_rm_dflt_leaf_node(pi); 909 910 /* remove the default nodes except TC and root nodes */ 911 node = pi->root; 912 while (node) { 913 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 914 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 915 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 916 ice_free_sched_node(pi, node); 917 break; 918 } 919 920 if (!node->num_children) 921 break; 922 node = node->children[0]; 923 } 924 } 925 926 /** 927 * ice_sched_init_port - Initialize scheduler by querying information from FW 928 * @pi: port info structure for the tree to cleanup 929 * 930 * This function is the initial call to find the total number of Tx scheduler 931 * resources, default topology created by firmware and storing the information 932 * in SW DB. 933 */ 934 enum ice_status ice_sched_init_port(struct ice_port_info *pi) 935 { 936 struct ice_aqc_get_topo_elem *buf; 937 enum ice_status status; 938 struct ice_hw *hw; 939 u8 num_branches; 940 u16 num_elems; 941 u8 i, j; 942 943 if (!pi) 944 return ICE_ERR_PARAM; 945 hw = pi->hw; 946 947 /* Query the Default Topology from FW */ 948 buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 949 if (!buf) 950 return ICE_ERR_NO_MEMORY; 951 952 /* Query default scheduling tree topology */ 953 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 954 &num_branches, NULL); 955 if (status) 956 goto err_init_port; 957 958 /* num_branches should be between 1-8 */ 959 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 960 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 961 num_branches); 962 status = ICE_ERR_PARAM; 963 goto err_init_port; 964 } 965 966 /* get the number of elements on the default/first branch */ 967 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 968 969 /* num_elems should always be between 1-9 */ 970 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 971 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 972 num_elems); 973 status = ICE_ERR_PARAM; 974 goto err_init_port; 975 } 976 977 /* If the last node is a leaf node then the index of the queue group 978 * layer is two less than the number of elements. 979 */ 980 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 981 ICE_AQC_ELEM_TYPE_LEAF) 982 pi->last_node_teid = 983 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 984 else 985 pi->last_node_teid = 986 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 987 988 /* Insert the Tx Sched root node */ 989 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 990 if (status) 991 goto err_init_port; 992 993 /* Parse the default tree and cache the information */ 994 for (i = 0; i < num_branches; i++) { 995 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 996 997 /* Skip root element as already inserted */ 998 for (j = 1; j < num_elems; j++) { 999 /* update the sw entry point */ 1000 if (buf[0].generic[j].data.elem_type == 1001 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1002 hw->sw_entry_point_layer = j; 1003 1004 status = ice_sched_add_node(pi, j, &buf[i].generic[j]); 1005 if (status) 1006 goto err_init_port; 1007 } 1008 } 1009 1010 /* Remove the default nodes. */ 1011 if (pi->root) 1012 ice_sched_rm_dflt_nodes(pi); 1013 1014 /* initialize the port for handling the scheduler tree */ 1015 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1016 mutex_init(&pi->sched_lock); 1017 1018 err_init_port: 1019 if (status && pi->root) { 1020 ice_free_sched_node(pi, pi->root); 1021 pi->root = NULL; 1022 } 1023 1024 devm_kfree(ice_hw_to_dev(hw), buf); 1025 return status; 1026 } 1027 1028 /** 1029 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1030 * @hw: pointer to the HW struct 1031 * 1032 * query FW for allocated scheduler resources and store in HW struct 1033 */ 1034 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw) 1035 { 1036 struct ice_aqc_query_txsched_res_resp *buf; 1037 enum ice_status status = 0; 1038 __le16 max_sibl; 1039 u16 i; 1040 1041 if (hw->layer_info) 1042 return status; 1043 1044 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1045 if (!buf) 1046 return ICE_ERR_NO_MEMORY; 1047 1048 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1049 if (status) 1050 goto sched_query_out; 1051 1052 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1053 hw->num_tx_sched_phys_layers = 1054 le16_to_cpu(buf->sched_props.phys_levels); 1055 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1056 hw->max_cgds = buf->sched_props.max_pf_cgds; 1057 1058 /* max sibling group size of current layer refers to the max children 1059 * of the below layer node. 1060 * layer 1 node max children will be layer 2 max sibling group size 1061 * layer 2 node max children will be layer 3 max sibling group size 1062 * and so on. This array will be populated from root (index 0) to 1063 * qgroup layer 7. Leaf node has no children. 1064 */ 1065 for (i = 0; i < hw->num_tx_sched_layers; i++) { 1066 max_sibl = buf->layer_props[i].max_sibl_grp_sz; 1067 hw->max_children[i] = le16_to_cpu(max_sibl); 1068 } 1069 1070 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1071 (hw->num_tx_sched_layers * 1072 sizeof(*hw->layer_info)), 1073 GFP_KERNEL); 1074 if (!hw->layer_info) { 1075 status = ICE_ERR_NO_MEMORY; 1076 goto sched_query_out; 1077 } 1078 1079 sched_query_out: 1080 devm_kfree(ice_hw_to_dev(hw), buf); 1081 return status; 1082 } 1083 1084 /** 1085 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1086 * @hw: pointer to the HW struct 1087 * @base: pointer to the base node 1088 * @node: pointer to the node to search 1089 * 1090 * This function checks whether a given node is part of the base node 1091 * subtree or not 1092 */ 1093 static bool 1094 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1095 struct ice_sched_node *node) 1096 { 1097 u8 i; 1098 1099 for (i = 0; i < base->num_children; i++) { 1100 struct ice_sched_node *child = base->children[i]; 1101 1102 if (node == child) 1103 return true; 1104 1105 if (child->tx_sched_layer > node->tx_sched_layer) 1106 return false; 1107 1108 /* this recursion is intentional, and wouldn't 1109 * go more than 8 calls 1110 */ 1111 if (ice_sched_find_node_in_subtree(hw, child, node)) 1112 return true; 1113 } 1114 return false; 1115 } 1116 1117 /** 1118 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1119 * @pi: port information structure 1120 * @vsi_handle: software VSI handle 1121 * @tc: branch number 1122 * @owner: LAN or RDMA 1123 * 1124 * This function retrieves a free LAN or RDMA queue group node 1125 */ 1126 struct ice_sched_node * 1127 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1128 u8 owner) 1129 { 1130 struct ice_sched_node *vsi_node, *qgrp_node = NULL; 1131 struct ice_vsi_ctx *vsi_ctx; 1132 u16 max_children; 1133 u8 qgrp_layer; 1134 1135 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1136 max_children = pi->hw->max_children[qgrp_layer]; 1137 1138 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1139 if (!vsi_ctx) 1140 return NULL; 1141 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1142 /* validate invalid VSI ID */ 1143 if (!vsi_node) 1144 goto lan_q_exit; 1145 1146 /* get the first queue group node from VSI sub-tree */ 1147 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1148 while (qgrp_node) { 1149 /* make sure the qgroup node is part of the VSI subtree */ 1150 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1151 if (qgrp_node->num_children < max_children && 1152 qgrp_node->owner == owner) 1153 break; 1154 qgrp_node = qgrp_node->sibling; 1155 } 1156 1157 lan_q_exit: 1158 return qgrp_node; 1159 } 1160 1161 /** 1162 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1163 * @hw: pointer to the HW struct 1164 * @tc_node: pointer to the TC node 1165 * @vsi_handle: software VSI handle 1166 * 1167 * This function retrieves a VSI node for a given VSI ID from a given 1168 * TC branch 1169 */ 1170 static struct ice_sched_node * 1171 ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node, 1172 u16 vsi_handle) 1173 { 1174 struct ice_sched_node *node; 1175 u8 vsi_layer; 1176 1177 vsi_layer = ice_sched_get_vsi_layer(hw); 1178 node = ice_sched_get_first_node(hw->port_info, tc_node, vsi_layer); 1179 1180 /* Check whether it already exists */ 1181 while (node) { 1182 if (node->vsi_handle == vsi_handle) 1183 return node; 1184 node = node->sibling; 1185 } 1186 1187 return node; 1188 } 1189 1190 /** 1191 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1192 * @hw: pointer to the HW struct 1193 * @num_qs: number of queues 1194 * @num_nodes: num nodes array 1195 * 1196 * This function calculates the number of VSI child nodes based on the 1197 * number of queues. 1198 */ 1199 static void 1200 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1201 { 1202 u16 num = num_qs; 1203 u8 i, qgl, vsil; 1204 1205 qgl = ice_sched_get_qgrp_layer(hw); 1206 vsil = ice_sched_get_vsi_layer(hw); 1207 1208 /* calculate num nodes from queue group to VSI layer */ 1209 for (i = qgl; i > vsil; i--) { 1210 /* round to the next integer if there is a remainder */ 1211 num = DIV_ROUND_UP(num, hw->max_children[i]); 1212 1213 /* need at least one node */ 1214 num_nodes[i] = num ? num : 1; 1215 } 1216 } 1217 1218 /** 1219 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1220 * @pi: port information structure 1221 * @vsi_handle: software VSI handle 1222 * @tc_node: pointer to the TC node 1223 * @num_nodes: pointer to the num nodes that needs to be added per layer 1224 * @owner: node owner (LAN or RDMA) 1225 * 1226 * This function adds the VSI child nodes to tree. It gets called for 1227 * LAN and RDMA separately. 1228 */ 1229 static enum ice_status 1230 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1231 struct ice_sched_node *tc_node, u16 *num_nodes, 1232 u8 owner) 1233 { 1234 struct ice_sched_node *parent, *node; 1235 struct ice_hw *hw = pi->hw; 1236 enum ice_status status; 1237 u32 first_node_teid; 1238 u16 num_added = 0; 1239 u8 i, qgl, vsil; 1240 1241 qgl = ice_sched_get_qgrp_layer(hw); 1242 vsil = ice_sched_get_vsi_layer(hw); 1243 parent = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1244 for (i = vsil + 1; i <= qgl; i++) { 1245 if (!parent) 1246 return ICE_ERR_CFG; 1247 1248 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1249 num_nodes[i], 1250 &first_node_teid, 1251 &num_added); 1252 if (status || num_nodes[i] != num_added) 1253 return ICE_ERR_CFG; 1254 1255 /* The newly added node can be a new parent for the next 1256 * layer nodes 1257 */ 1258 if (num_added) { 1259 parent = ice_sched_find_node_by_teid(tc_node, 1260 first_node_teid); 1261 node = parent; 1262 while (node) { 1263 node->owner = owner; 1264 node = node->sibling; 1265 } 1266 } else { 1267 parent = parent->children[0]; 1268 } 1269 } 1270 1271 return 0; 1272 } 1273 1274 /** 1275 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1276 * @hw: pointer to the HW struct 1277 * @tc_node: pointer to TC node 1278 * @num_nodes: pointer to num nodes array 1279 * 1280 * This function calculates the number of supported nodes needed to add this 1281 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1282 * layers 1283 */ 1284 static void 1285 ice_sched_calc_vsi_support_nodes(struct ice_hw *hw, 1286 struct ice_sched_node *tc_node, u16 *num_nodes) 1287 { 1288 struct ice_sched_node *node; 1289 u8 vsil; 1290 int i; 1291 1292 vsil = ice_sched_get_vsi_layer(hw); 1293 for (i = vsil; i >= hw->sw_entry_point_layer; i--) 1294 /* Add intermediate nodes if TC has no children and 1295 * need at least one node for VSI 1296 */ 1297 if (!tc_node->num_children || i == vsil) { 1298 num_nodes[i]++; 1299 } else { 1300 /* If intermediate nodes are reached max children 1301 * then add a new one. 1302 */ 1303 node = ice_sched_get_first_node(hw->port_info, tc_node, 1304 (u8)i); 1305 /* scan all the siblings */ 1306 while (node) { 1307 if (node->num_children < hw->max_children[i]) 1308 break; 1309 node = node->sibling; 1310 } 1311 1312 /* tree has one intermediate node to add this new VSI. 1313 * So no need to calculate supported nodes for below 1314 * layers. 1315 */ 1316 if (node) 1317 break; 1318 /* all the nodes are full, allocate a new one */ 1319 num_nodes[i]++; 1320 } 1321 } 1322 1323 /** 1324 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1325 * @pi: port information structure 1326 * @vsi_handle: software VSI handle 1327 * @tc_node: pointer to TC node 1328 * @num_nodes: pointer to num nodes array 1329 * 1330 * This function adds the VSI supported nodes into Tx tree including the 1331 * VSI, its parent and intermediate nodes in below layers 1332 */ 1333 static enum ice_status 1334 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1335 struct ice_sched_node *tc_node, u16 *num_nodes) 1336 { 1337 struct ice_sched_node *parent = tc_node; 1338 enum ice_status status; 1339 u32 first_node_teid; 1340 u16 num_added = 0; 1341 u8 i, vsil; 1342 1343 if (!pi) 1344 return ICE_ERR_PARAM; 1345 1346 vsil = ice_sched_get_vsi_layer(pi->hw); 1347 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1348 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1349 i, num_nodes[i], 1350 &first_node_teid, 1351 &num_added); 1352 if (status || num_nodes[i] != num_added) 1353 return ICE_ERR_CFG; 1354 1355 /* The newly added node can be a new parent for the next 1356 * layer nodes 1357 */ 1358 if (num_added) 1359 parent = ice_sched_find_node_by_teid(tc_node, 1360 first_node_teid); 1361 else 1362 parent = parent->children[0]; 1363 1364 if (!parent) 1365 return ICE_ERR_CFG; 1366 1367 if (i == vsil) 1368 parent->vsi_handle = vsi_handle; 1369 } 1370 1371 return 0; 1372 } 1373 1374 /** 1375 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1376 * @pi: port information structure 1377 * @vsi_handle: software VSI handle 1378 * @tc: TC number 1379 * 1380 * This function adds a new VSI into scheduler tree 1381 */ 1382 static enum ice_status 1383 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1384 { 1385 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1386 struct ice_sched_node *tc_node; 1387 struct ice_hw *hw = pi->hw; 1388 1389 tc_node = ice_sched_get_tc_node(pi, tc); 1390 if (!tc_node) 1391 return ICE_ERR_PARAM; 1392 1393 /* calculate number of supported nodes needed for this VSI */ 1394 ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes); 1395 1396 /* add VSI supported nodes to TC subtree */ 1397 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1398 num_nodes); 1399 } 1400 1401 /** 1402 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1403 * @pi: port information structure 1404 * @vsi_handle: software VSI handle 1405 * @tc: TC number 1406 * @new_numqs: new number of max queues 1407 * @owner: owner of this subtree 1408 * 1409 * This function updates the VSI child nodes based on the number of queues 1410 */ 1411 static enum ice_status 1412 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1413 u8 tc, u16 new_numqs, u8 owner) 1414 { 1415 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1416 struct ice_sched_node *vsi_node; 1417 struct ice_sched_node *tc_node; 1418 struct ice_vsi_ctx *vsi_ctx; 1419 enum ice_status status = 0; 1420 struct ice_hw *hw = pi->hw; 1421 u16 prev_numqs; 1422 1423 tc_node = ice_sched_get_tc_node(pi, tc); 1424 if (!tc_node) 1425 return ICE_ERR_CFG; 1426 1427 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1428 if (!vsi_node) 1429 return ICE_ERR_CFG; 1430 1431 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1432 if (!vsi_ctx) 1433 return ICE_ERR_PARAM; 1434 1435 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1436 /* num queues are not changed or less than the previous number */ 1437 if (new_numqs <= prev_numqs) 1438 return status; 1439 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1440 if (status) 1441 return status; 1442 1443 if (new_numqs) 1444 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1445 /* Keep the max number of queue configuration all the time. Update the 1446 * tree only if number of queues > previous number of queues. This may 1447 * leave some extra nodes in the tree if number of queues < previous 1448 * number but that wouldn't harm anything. Removing those extra nodes 1449 * may complicate the code if those nodes are part of SRL or 1450 * individually rate limited. 1451 */ 1452 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1453 new_num_nodes, owner); 1454 if (status) 1455 return status; 1456 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1457 1458 return 0; 1459 } 1460 1461 /** 1462 * ice_sched_cfg_vsi - configure the new/existing VSI 1463 * @pi: port information structure 1464 * @vsi_handle: software VSI handle 1465 * @tc: TC number 1466 * @maxqs: max number of queues 1467 * @owner: LAN or RDMA 1468 * @enable: TC enabled or disabled 1469 * 1470 * This function adds/updates VSI nodes based on the number of queues. If TC is 1471 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1472 * disabled then suspend the VSI if it is not already. 1473 */ 1474 enum ice_status 1475 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1476 u8 owner, bool enable) 1477 { 1478 struct ice_sched_node *vsi_node, *tc_node; 1479 struct ice_vsi_ctx *vsi_ctx; 1480 enum ice_status status = 0; 1481 struct ice_hw *hw = pi->hw; 1482 1483 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1484 tc_node = ice_sched_get_tc_node(pi, tc); 1485 if (!tc_node) 1486 return ICE_ERR_PARAM; 1487 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1488 if (!vsi_ctx) 1489 return ICE_ERR_PARAM; 1490 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1491 1492 /* suspend the VSI if TC is not enabled */ 1493 if (!enable) { 1494 if (vsi_node && vsi_node->in_use) { 1495 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1496 1497 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1498 true); 1499 if (!status) 1500 vsi_node->in_use = false; 1501 } 1502 return status; 1503 } 1504 1505 /* TC is enabled, if it is a new VSI then add it to the tree */ 1506 if (!vsi_node) { 1507 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1508 if (status) 1509 return status; 1510 1511 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle); 1512 if (!vsi_node) 1513 return ICE_ERR_CFG; 1514 1515 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1516 vsi_node->in_use = true; 1517 /* invalidate the max queues whenever VSI gets added first time 1518 * into the scheduler tree (boot or after reset). We need to 1519 * recreate the child nodes all the time in these cases. 1520 */ 1521 vsi_ctx->sched.max_lanq[tc] = 0; 1522 } 1523 1524 /* update the VSI child nodes */ 1525 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1526 owner); 1527 if (status) 1528 return status; 1529 1530 /* TC is enabled, resume the VSI if it is in the suspend state */ 1531 if (!vsi_node->in_use) { 1532 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1533 1534 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1535 if (!status) 1536 vsi_node->in_use = true; 1537 } 1538 1539 return status; 1540 } 1541 1542 /** 1543 * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry 1544 * @pi: port information structure 1545 * @vsi_handle: software VSI handle 1546 * 1547 * This function removes single aggregator VSI info entry from 1548 * aggregator list. 1549 */ 1550 static void 1551 ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1552 { 1553 struct ice_sched_agg_info *agg_info; 1554 struct ice_sched_agg_info *atmp; 1555 1556 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1557 list_entry) { 1558 struct ice_sched_agg_vsi_info *agg_vsi_info; 1559 struct ice_sched_agg_vsi_info *vtmp; 1560 1561 list_for_each_entry_safe(agg_vsi_info, vtmp, 1562 &agg_info->agg_vsi_list, list_entry) 1563 if (agg_vsi_info->vsi_handle == vsi_handle) { 1564 list_del(&agg_vsi_info->list_entry); 1565 devm_kfree(ice_hw_to_dev(pi->hw), 1566 agg_vsi_info); 1567 return; 1568 } 1569 } 1570 } 1571 1572 /** 1573 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 1574 * @node: pointer to the sub-tree node 1575 * 1576 * This function checks for a leaf node presence in a given sub-tree node. 1577 */ 1578 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 1579 { 1580 u8 i; 1581 1582 for (i = 0; i < node->num_children; i++) 1583 if (ice_sched_is_leaf_node_present(node->children[i])) 1584 return true; 1585 /* check for a leaf node */ 1586 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 1587 } 1588 1589 /** 1590 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 1591 * @pi: port information structure 1592 * @vsi_handle: software VSI handle 1593 * @owner: LAN or RDMA 1594 * 1595 * This function removes the VSI and its LAN or RDMA children nodes from the 1596 * scheduler tree. 1597 */ 1598 static enum ice_status 1599 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 1600 { 1601 enum ice_status status = ICE_ERR_PARAM; 1602 struct ice_vsi_ctx *vsi_ctx; 1603 u8 i; 1604 1605 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 1606 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 1607 return status; 1608 mutex_lock(&pi->sched_lock); 1609 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1610 if (!vsi_ctx) 1611 goto exit_sched_rm_vsi_cfg; 1612 1613 ice_for_each_traffic_class(i) { 1614 struct ice_sched_node *vsi_node, *tc_node; 1615 u8 j = 0; 1616 1617 tc_node = ice_sched_get_tc_node(pi, i); 1618 if (!tc_node) 1619 continue; 1620 1621 vsi_node = ice_sched_get_vsi_node(pi->hw, tc_node, vsi_handle); 1622 if (!vsi_node) 1623 continue; 1624 1625 if (ice_sched_is_leaf_node_present(vsi_node)) { 1626 ice_debug(pi->hw, ICE_DBG_SCHED, 1627 "VSI has leaf nodes in TC %d\n", i); 1628 status = ICE_ERR_IN_USE; 1629 goto exit_sched_rm_vsi_cfg; 1630 } 1631 while (j < vsi_node->num_children) { 1632 if (vsi_node->children[j]->owner == owner) { 1633 ice_free_sched_node(pi, vsi_node->children[j]); 1634 1635 /* reset the counter again since the num 1636 * children will be updated after node removal 1637 */ 1638 j = 0; 1639 } else { 1640 j++; 1641 } 1642 } 1643 /* remove the VSI if it has no children */ 1644 if (!vsi_node->num_children) { 1645 ice_free_sched_node(pi, vsi_node); 1646 vsi_ctx->sched.vsi_node[i] = NULL; 1647 1648 /* clean up aggregator related VSI info if any */ 1649 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 1650 } 1651 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1652 vsi_ctx->sched.max_lanq[i] = 0; 1653 } 1654 status = 0; 1655 1656 exit_sched_rm_vsi_cfg: 1657 mutex_unlock(&pi->sched_lock); 1658 return status; 1659 } 1660 1661 /** 1662 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 1663 * @pi: port information structure 1664 * @vsi_handle: software VSI handle 1665 * 1666 * This function clears the VSI and its LAN children nodes from scheduler tree 1667 * for all TCs. 1668 */ 1669 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 1670 { 1671 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 1672 } 1673