1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_sched.h" 5 6 /** 7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 8 * @pi: port information structure 9 * @info: Scheduler element information from firmware 10 * 11 * This function inserts the root node of the scheduling tree topology 12 * to the SW DB. 13 */ 14 static enum ice_status 15 ice_sched_add_root_node(struct ice_port_info *pi, 16 struct ice_aqc_txsched_elem_data *info) 17 { 18 struct ice_sched_node *root; 19 struct ice_hw *hw; 20 21 if (!pi) 22 return ICE_ERR_PARAM; 23 24 hw = pi->hw; 25 26 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 27 if (!root) 28 return ICE_ERR_NO_MEMORY; 29 30 /* coverity[suspicious_sizeof] */ 31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 32 sizeof(*root), GFP_KERNEL); 33 if (!root->children) { 34 devm_kfree(ice_hw_to_dev(hw), root); 35 return ICE_ERR_NO_MEMORY; 36 } 37 38 memcpy(&root->info, info, sizeof(*info)); 39 pi->root = root; 40 return 0; 41 } 42 43 /** 44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 46 * @teid: node TEID to search 47 * 48 * This function searches for a node matching the TEID in the scheduling tree 49 * from the SW DB. The search is recursive and is restricted by the number of 50 * layers it has searched through; stopping at the max supported layer. 51 * 52 * This function needs to be called when holding the port_info->sched_lock 53 */ 54 struct ice_sched_node * 55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 56 { 57 u16 i; 58 59 /* The TEID is same as that of the start_node */ 60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 61 return start_node; 62 63 /* The node has no children or is at the max layer */ 64 if (!start_node->num_children || 65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 67 return NULL; 68 69 /* Check if TEID matches to any of the children nodes */ 70 for (i = 0; i < start_node->num_children; i++) 71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 72 return start_node->children[i]; 73 74 /* Search within each child's sub-tree */ 75 for (i = 0; i < start_node->num_children; i++) { 76 struct ice_sched_node *tmp; 77 78 tmp = ice_sched_find_node_by_teid(start_node->children[i], 79 teid); 80 if (tmp) 81 return tmp; 82 } 83 84 return NULL; 85 } 86 87 /** 88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 89 * @hw: pointer to the HW struct 90 * @cmd_opc: cmd opcode 91 * @elems_req: number of elements to request 92 * @buf: pointer to buffer 93 * @buf_size: buffer size in bytes 94 * @elems_resp: returns total number of elements response 95 * @cd: pointer to command details structure or NULL 96 * 97 * This function sends a scheduling elements cmd (cmd_opc) 98 */ 99 static enum ice_status 100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 101 u16 elems_req, void *buf, u16 buf_size, 102 u16 *elems_resp, struct ice_sq_cd *cd) 103 { 104 struct ice_aqc_sched_elem_cmd *cmd; 105 struct ice_aq_desc desc; 106 enum ice_status status; 107 108 cmd = &desc.params.sched_elem_cmd; 109 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 110 cmd->num_elem_req = cpu_to_le16(elems_req); 111 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 112 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 113 if (!status && elems_resp) 114 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 115 116 return status; 117 } 118 119 /** 120 * ice_aq_query_sched_elems - query scheduler elements 121 * @hw: pointer to the HW struct 122 * @elems_req: number of elements to query 123 * @buf: pointer to buffer 124 * @buf_size: buffer size in bytes 125 * @elems_ret: returns total number of elements returned 126 * @cd: pointer to command details structure or NULL 127 * 128 * Query scheduling elements (0x0404) 129 */ 130 enum ice_status 131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 132 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 133 u16 *elems_ret, struct ice_sq_cd *cd) 134 { 135 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 136 elems_req, (void *)buf, buf_size, 137 elems_ret, cd); 138 } 139 140 /** 141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 142 * @pi: port information structure 143 * @layer: Scheduler layer of the node 144 * @info: Scheduler element information from firmware 145 * 146 * This function inserts a scheduler node to the SW DB. 147 */ 148 enum ice_status 149 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 150 struct ice_aqc_txsched_elem_data *info) 151 { 152 struct ice_aqc_txsched_elem_data elem; 153 struct ice_sched_node *parent; 154 struct ice_sched_node *node; 155 enum ice_status status; 156 struct ice_hw *hw; 157 158 if (!pi) 159 return ICE_ERR_PARAM; 160 161 hw = pi->hw; 162 163 /* A valid parent node should be there */ 164 parent = ice_sched_find_node_by_teid(pi->root, 165 le32_to_cpu(info->parent_teid)); 166 if (!parent) { 167 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n", 168 le32_to_cpu(info->parent_teid)); 169 return ICE_ERR_PARAM; 170 } 171 172 /* query the current node information from FW before adding it 173 * to the SW DB 174 */ 175 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 176 if (status) 177 return status; 178 179 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 180 if (!node) 181 return ICE_ERR_NO_MEMORY; 182 if (hw->max_children[layer]) { 183 /* coverity[suspicious_sizeof] */ 184 node->children = devm_kcalloc(ice_hw_to_dev(hw), 185 hw->max_children[layer], 186 sizeof(*node), GFP_KERNEL); 187 if (!node->children) { 188 devm_kfree(ice_hw_to_dev(hw), node); 189 return ICE_ERR_NO_MEMORY; 190 } 191 } 192 193 node->in_use = true; 194 node->parent = parent; 195 node->tx_sched_layer = layer; 196 parent->children[parent->num_children++] = node; 197 node->info = elem; 198 return 0; 199 } 200 201 /** 202 * ice_aq_delete_sched_elems - delete scheduler elements 203 * @hw: pointer to the HW struct 204 * @grps_req: number of groups to delete 205 * @buf: pointer to buffer 206 * @buf_size: buffer size in bytes 207 * @grps_del: returns total number of elements deleted 208 * @cd: pointer to command details structure or NULL 209 * 210 * Delete scheduling elements (0x040F) 211 */ 212 static enum ice_status 213 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 214 struct ice_aqc_delete_elem *buf, u16 buf_size, 215 u16 *grps_del, struct ice_sq_cd *cd) 216 { 217 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 218 grps_req, (void *)buf, buf_size, 219 grps_del, cd); 220 } 221 222 /** 223 * ice_sched_remove_elems - remove nodes from HW 224 * @hw: pointer to the HW struct 225 * @parent: pointer to the parent node 226 * @num_nodes: number of nodes 227 * @node_teids: array of node teids to be deleted 228 * 229 * This function remove nodes from HW 230 */ 231 static enum ice_status 232 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 233 u16 num_nodes, u32 *node_teids) 234 { 235 struct ice_aqc_delete_elem *buf; 236 u16 i, num_groups_removed = 0; 237 enum ice_status status; 238 u16 buf_size; 239 240 buf_size = struct_size(buf, teid, num_nodes); 241 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 242 if (!buf) 243 return ICE_ERR_NO_MEMORY; 244 245 buf->hdr.parent_teid = parent->info.node_teid; 246 buf->hdr.num_elems = cpu_to_le16(num_nodes); 247 for (i = 0; i < num_nodes; i++) 248 buf->teid[i] = cpu_to_le32(node_teids[i]); 249 250 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 251 &num_groups_removed, NULL); 252 if (status || num_groups_removed != 1) 253 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 254 hw->adminq.sq_last_status); 255 256 devm_kfree(ice_hw_to_dev(hw), buf); 257 return status; 258 } 259 260 /** 261 * ice_sched_get_first_node - get the first node of the given layer 262 * @pi: port information structure 263 * @parent: pointer the base node of the subtree 264 * @layer: layer number 265 * 266 * This function retrieves the first node of the given layer from the subtree 267 */ 268 static struct ice_sched_node * 269 ice_sched_get_first_node(struct ice_port_info *pi, 270 struct ice_sched_node *parent, u8 layer) 271 { 272 return pi->sib_head[parent->tc_num][layer]; 273 } 274 275 /** 276 * ice_sched_get_tc_node - get pointer to TC node 277 * @pi: port information structure 278 * @tc: TC number 279 * 280 * This function returns the TC node pointer 281 */ 282 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 283 { 284 u8 i; 285 286 if (!pi || !pi->root) 287 return NULL; 288 for (i = 0; i < pi->root->num_children; i++) 289 if (pi->root->children[i]->tc_num == tc) 290 return pi->root->children[i]; 291 return NULL; 292 } 293 294 /** 295 * ice_free_sched_node - Free a Tx scheduler node from SW DB 296 * @pi: port information structure 297 * @node: pointer to the ice_sched_node struct 298 * 299 * This function frees up a node from SW DB as well as from HW 300 * 301 * This function needs to be called with the port_info->sched_lock held 302 */ 303 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 304 { 305 struct ice_sched_node *parent; 306 struct ice_hw *hw = pi->hw; 307 u8 i, j; 308 309 /* Free the children before freeing up the parent node 310 * The parent array is updated below and that shifts the nodes 311 * in the array. So always pick the first child if num children > 0 312 */ 313 while (node->num_children) 314 ice_free_sched_node(pi, node->children[0]); 315 316 /* Leaf, TC and root nodes can't be deleted by SW */ 317 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 318 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 319 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 320 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 321 u32 teid = le32_to_cpu(node->info.node_teid); 322 323 ice_sched_remove_elems(hw, node->parent, 1, &teid); 324 } 325 parent = node->parent; 326 /* root has no parent */ 327 if (parent) { 328 struct ice_sched_node *p; 329 330 /* update the parent */ 331 for (i = 0; i < parent->num_children; i++) 332 if (parent->children[i] == node) { 333 for (j = i + 1; j < parent->num_children; j++) 334 parent->children[j - 1] = 335 parent->children[j]; 336 parent->num_children--; 337 break; 338 } 339 340 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 341 while (p) { 342 if (p->sibling == node) { 343 p->sibling = node->sibling; 344 break; 345 } 346 p = p->sibling; 347 } 348 349 /* update the sibling head if head is getting removed */ 350 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 351 pi->sib_head[node->tc_num][node->tx_sched_layer] = 352 node->sibling; 353 } 354 355 /* leaf nodes have no children */ 356 if (node->children) 357 devm_kfree(ice_hw_to_dev(hw), node->children); 358 devm_kfree(ice_hw_to_dev(hw), node); 359 } 360 361 /** 362 * ice_aq_get_dflt_topo - gets default scheduler topology 363 * @hw: pointer to the HW struct 364 * @lport: logical port number 365 * @buf: pointer to buffer 366 * @buf_size: buffer size in bytes 367 * @num_branches: returns total number of queue to port branches 368 * @cd: pointer to command details structure or NULL 369 * 370 * Get default scheduler topology (0x400) 371 */ 372 static enum ice_status 373 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 374 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 375 u8 *num_branches, struct ice_sq_cd *cd) 376 { 377 struct ice_aqc_get_topo *cmd; 378 struct ice_aq_desc desc; 379 enum ice_status status; 380 381 cmd = &desc.params.get_topo; 382 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 383 cmd->port_num = lport; 384 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 385 if (!status && num_branches) 386 *num_branches = cmd->num_branches; 387 388 return status; 389 } 390 391 /** 392 * ice_aq_add_sched_elems - adds scheduling element 393 * @hw: pointer to the HW struct 394 * @grps_req: the number of groups that are requested to be added 395 * @buf: pointer to buffer 396 * @buf_size: buffer size in bytes 397 * @grps_added: returns total number of groups added 398 * @cd: pointer to command details structure or NULL 399 * 400 * Add scheduling elements (0x0401) 401 */ 402 static enum ice_status 403 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 404 struct ice_aqc_add_elem *buf, u16 buf_size, 405 u16 *grps_added, struct ice_sq_cd *cd) 406 { 407 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 408 grps_req, (void *)buf, buf_size, 409 grps_added, cd); 410 } 411 412 /** 413 * ice_aq_cfg_sched_elems - configures scheduler elements 414 * @hw: pointer to the HW struct 415 * @elems_req: number of elements to configure 416 * @buf: pointer to buffer 417 * @buf_size: buffer size in bytes 418 * @elems_cfgd: returns total number of elements configured 419 * @cd: pointer to command details structure or NULL 420 * 421 * Configure scheduling elements (0x0403) 422 */ 423 static enum ice_status 424 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, 425 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 426 u16 *elems_cfgd, struct ice_sq_cd *cd) 427 { 428 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, 429 elems_req, (void *)buf, buf_size, 430 elems_cfgd, cd); 431 } 432 433 /** 434 * ice_aq_move_sched_elems - move scheduler elements 435 * @hw: pointer to the HW struct 436 * @grps_req: number of groups to move 437 * @buf: pointer to buffer 438 * @buf_size: buffer size in bytes 439 * @grps_movd: returns total number of groups moved 440 * @cd: pointer to command details structure or NULL 441 * 442 * Move scheduling elements (0x0408) 443 */ 444 static enum ice_status 445 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req, 446 struct ice_aqc_move_elem *buf, u16 buf_size, 447 u16 *grps_movd, struct ice_sq_cd *cd) 448 { 449 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems, 450 grps_req, (void *)buf, buf_size, 451 grps_movd, cd); 452 } 453 454 /** 455 * ice_aq_suspend_sched_elems - suspend scheduler elements 456 * @hw: pointer to the HW struct 457 * @elems_req: number of elements to suspend 458 * @buf: pointer to buffer 459 * @buf_size: buffer size in bytes 460 * @elems_ret: returns total number of elements suspended 461 * @cd: pointer to command details structure or NULL 462 * 463 * Suspend scheduling elements (0x0409) 464 */ 465 static enum ice_status 466 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 467 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 468 { 469 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 470 elems_req, (void *)buf, buf_size, 471 elems_ret, cd); 472 } 473 474 /** 475 * ice_aq_resume_sched_elems - resume scheduler elements 476 * @hw: pointer to the HW struct 477 * @elems_req: number of elements to resume 478 * @buf: pointer to buffer 479 * @buf_size: buffer size in bytes 480 * @elems_ret: returns total number of elements resumed 481 * @cd: pointer to command details structure or NULL 482 * 483 * resume scheduling elements (0x040A) 484 */ 485 static enum ice_status 486 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 487 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 488 { 489 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 490 elems_req, (void *)buf, buf_size, 491 elems_ret, cd); 492 } 493 494 /** 495 * ice_aq_query_sched_res - query scheduler resource 496 * @hw: pointer to the HW struct 497 * @buf_size: buffer size in bytes 498 * @buf: pointer to buffer 499 * @cd: pointer to command details structure or NULL 500 * 501 * Query scheduler resource allocation (0x0412) 502 */ 503 static enum ice_status 504 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 505 struct ice_aqc_query_txsched_res_resp *buf, 506 struct ice_sq_cd *cd) 507 { 508 struct ice_aq_desc desc; 509 510 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 511 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 512 } 513 514 /** 515 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 516 * @hw: pointer to the HW struct 517 * @num_nodes: number of nodes 518 * @node_teids: array of node teids to be suspended or resumed 519 * @suspend: true means suspend / false means resume 520 * 521 * This function suspends or resumes HW nodes 522 */ 523 static enum ice_status 524 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 525 bool suspend) 526 { 527 u16 i, buf_size, num_elem_ret = 0; 528 enum ice_status status; 529 __le32 *buf; 530 531 buf_size = sizeof(*buf) * num_nodes; 532 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 533 if (!buf) 534 return ICE_ERR_NO_MEMORY; 535 536 for (i = 0; i < num_nodes; i++) 537 buf[i] = cpu_to_le32(node_teids[i]); 538 539 if (suspend) 540 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 541 buf_size, &num_elem_ret, 542 NULL); 543 else 544 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 545 buf_size, &num_elem_ret, 546 NULL); 547 if (status || num_elem_ret != num_nodes) 548 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 549 550 devm_kfree(ice_hw_to_dev(hw), buf); 551 return status; 552 } 553 554 /** 555 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 556 * @hw: pointer to the HW struct 557 * @vsi_handle: VSI handle 558 * @tc: TC number 559 * @new_numqs: number of queues 560 */ 561 static enum ice_status 562 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 563 { 564 struct ice_vsi_ctx *vsi_ctx; 565 struct ice_q_ctx *q_ctx; 566 567 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 568 if (!vsi_ctx) 569 return ICE_ERR_PARAM; 570 /* allocate LAN queue contexts */ 571 if (!vsi_ctx->lan_q_ctx[tc]) { 572 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 573 new_numqs, 574 sizeof(*q_ctx), 575 GFP_KERNEL); 576 if (!vsi_ctx->lan_q_ctx[tc]) 577 return ICE_ERR_NO_MEMORY; 578 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 579 return 0; 580 } 581 /* num queues are increased, update the queue contexts */ 582 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 583 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 584 585 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 586 sizeof(*q_ctx), GFP_KERNEL); 587 if (!q_ctx) 588 return ICE_ERR_NO_MEMORY; 589 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 590 prev_num * sizeof(*q_ctx)); 591 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 592 vsi_ctx->lan_q_ctx[tc] = q_ctx; 593 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 594 } 595 return 0; 596 } 597 598 /** 599 * ice_aq_rl_profile - performs a rate limiting task 600 * @hw: pointer to the HW struct 601 * @opcode: opcode for add, query, or remove profile(s) 602 * @num_profiles: the number of profiles 603 * @buf: pointer to buffer 604 * @buf_size: buffer size in bytes 605 * @num_processed: number of processed add or remove profile(s) to return 606 * @cd: pointer to command details structure 607 * 608 * RL profile function to add, query, or remove profile(s) 609 */ 610 static enum ice_status 611 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, 612 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, 613 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) 614 { 615 struct ice_aqc_rl_profile *cmd; 616 struct ice_aq_desc desc; 617 enum ice_status status; 618 619 cmd = &desc.params.rl_profile; 620 621 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 622 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 623 cmd->num_profiles = cpu_to_le16(num_profiles); 624 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 625 if (!status && num_processed) 626 *num_processed = le16_to_cpu(cmd->num_processed); 627 return status; 628 } 629 630 /** 631 * ice_aq_add_rl_profile - adds rate limiting profile(s) 632 * @hw: pointer to the HW struct 633 * @num_profiles: the number of profile(s) to be add 634 * @buf: pointer to buffer 635 * @buf_size: buffer size in bytes 636 * @num_profiles_added: total number of profiles added to return 637 * @cd: pointer to command details structure 638 * 639 * Add RL profile (0x0410) 640 */ 641 static enum ice_status 642 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, 643 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 644 u16 *num_profiles_added, struct ice_sq_cd *cd) 645 { 646 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, 647 buf, buf_size, num_profiles_added, cd); 648 } 649 650 /** 651 * ice_aq_remove_rl_profile - removes RL profile(s) 652 * @hw: pointer to the HW struct 653 * @num_profiles: the number of profile(s) to remove 654 * @buf: pointer to buffer 655 * @buf_size: buffer size in bytes 656 * @num_profiles_removed: total number of profiles removed to return 657 * @cd: pointer to command details structure or NULL 658 * 659 * Remove RL profile (0x0415) 660 */ 661 static enum ice_status 662 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, 663 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 664 u16 *num_profiles_removed, struct ice_sq_cd *cd) 665 { 666 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, 667 num_profiles, buf, buf_size, 668 num_profiles_removed, cd); 669 } 670 671 /** 672 * ice_sched_del_rl_profile - remove RL profile 673 * @hw: pointer to the HW struct 674 * @rl_info: rate limit profile information 675 * 676 * If the profile ID is not referenced anymore, it removes profile ID with 677 * its associated parameters from HW DB,and locally. The caller needs to 678 * hold scheduler lock. 679 */ 680 static enum ice_status 681 ice_sched_del_rl_profile(struct ice_hw *hw, 682 struct ice_aqc_rl_profile_info *rl_info) 683 { 684 struct ice_aqc_rl_profile_elem *buf; 685 u16 num_profiles_removed; 686 enum ice_status status; 687 u16 num_profiles = 1; 688 689 if (rl_info->prof_id_ref != 0) 690 return ICE_ERR_IN_USE; 691 692 /* Safe to remove profile ID */ 693 buf = &rl_info->profile; 694 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), 695 &num_profiles_removed, NULL); 696 if (status || num_profiles_removed != num_profiles) 697 return ICE_ERR_CFG; 698 699 /* Delete stale entry now */ 700 list_del(&rl_info->list_entry); 701 devm_kfree(ice_hw_to_dev(hw), rl_info); 702 return status; 703 } 704 705 /** 706 * ice_sched_clear_rl_prof - clears RL prof entries 707 * @pi: port information structure 708 * 709 * This function removes all RL profile from HW as well as from SW DB. 710 */ 711 static void ice_sched_clear_rl_prof(struct ice_port_info *pi) 712 { 713 u16 ln; 714 715 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 716 struct ice_aqc_rl_profile_info *rl_prof_elem; 717 struct ice_aqc_rl_profile_info *rl_prof_tmp; 718 719 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 720 &pi->rl_prof_list[ln], list_entry) { 721 struct ice_hw *hw = pi->hw; 722 enum ice_status status; 723 724 rl_prof_elem->prof_id_ref = 0; 725 status = ice_sched_del_rl_profile(hw, rl_prof_elem); 726 if (status) { 727 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 728 /* On error, free mem required */ 729 list_del(&rl_prof_elem->list_entry); 730 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 731 } 732 } 733 } 734 } 735 736 /** 737 * ice_sched_clear_agg - clears the aggregator related information 738 * @hw: pointer to the hardware structure 739 * 740 * This function removes aggregator list and free up aggregator related memory 741 * previously allocated. 742 */ 743 void ice_sched_clear_agg(struct ice_hw *hw) 744 { 745 struct ice_sched_agg_info *agg_info; 746 struct ice_sched_agg_info *atmp; 747 748 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 749 struct ice_sched_agg_vsi_info *agg_vsi_info; 750 struct ice_sched_agg_vsi_info *vtmp; 751 752 list_for_each_entry_safe(agg_vsi_info, vtmp, 753 &agg_info->agg_vsi_list, list_entry) { 754 list_del(&agg_vsi_info->list_entry); 755 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 756 } 757 list_del(&agg_info->list_entry); 758 devm_kfree(ice_hw_to_dev(hw), agg_info); 759 } 760 } 761 762 /** 763 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 764 * @pi: port information structure 765 * 766 * This function removes all the nodes from HW as well as from SW DB. 767 */ 768 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 769 { 770 if (!pi) 771 return; 772 /* remove RL profiles related lists */ 773 ice_sched_clear_rl_prof(pi); 774 if (pi->root) { 775 ice_free_sched_node(pi, pi->root); 776 pi->root = NULL; 777 } 778 } 779 780 /** 781 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 782 * @pi: port information structure 783 * 784 * Cleanup scheduling elements from SW DB 785 */ 786 void ice_sched_clear_port(struct ice_port_info *pi) 787 { 788 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 789 return; 790 791 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 792 mutex_lock(&pi->sched_lock); 793 ice_sched_clear_tx_topo(pi); 794 mutex_unlock(&pi->sched_lock); 795 mutex_destroy(&pi->sched_lock); 796 } 797 798 /** 799 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 800 * @hw: pointer to the HW struct 801 * 802 * Cleanup scheduling elements from SW DB for all the ports 803 */ 804 void ice_sched_cleanup_all(struct ice_hw *hw) 805 { 806 if (!hw) 807 return; 808 809 if (hw->layer_info) { 810 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 811 hw->layer_info = NULL; 812 } 813 814 ice_sched_clear_port(hw->port_info); 815 816 hw->num_tx_sched_layers = 0; 817 hw->num_tx_sched_phys_layers = 0; 818 hw->flattened_layers = 0; 819 hw->max_cgds = 0; 820 } 821 822 /** 823 * ice_sched_add_elems - add nodes to HW and SW DB 824 * @pi: port information structure 825 * @tc_node: pointer to the branch node 826 * @parent: pointer to the parent node 827 * @layer: layer number to add nodes 828 * @num_nodes: number of nodes 829 * @num_nodes_added: pointer to num nodes added 830 * @first_node_teid: if new nodes are added then return the TEID of first node 831 * 832 * This function add nodes to HW as well as to SW DB for a given layer 833 */ 834 static enum ice_status 835 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 836 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 837 u16 *num_nodes_added, u32 *first_node_teid) 838 { 839 struct ice_sched_node *prev, *new_node; 840 struct ice_aqc_add_elem *buf; 841 u16 i, num_groups_added = 0; 842 enum ice_status status = 0; 843 struct ice_hw *hw = pi->hw; 844 size_t buf_size; 845 u32 teid; 846 847 buf_size = struct_size(buf, generic, num_nodes); 848 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 849 if (!buf) 850 return ICE_ERR_NO_MEMORY; 851 852 buf->hdr.parent_teid = parent->info.node_teid; 853 buf->hdr.num_elems = cpu_to_le16(num_nodes); 854 for (i = 0; i < num_nodes; i++) { 855 buf->generic[i].parent_teid = parent->info.node_teid; 856 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 857 buf->generic[i].data.valid_sections = 858 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 859 ICE_AQC_ELEM_VALID_EIR; 860 buf->generic[i].data.generic = 0; 861 buf->generic[i].data.cir_bw.bw_profile_idx = 862 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 863 buf->generic[i].data.cir_bw.bw_alloc = 864 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 865 buf->generic[i].data.eir_bw.bw_profile_idx = 866 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 867 buf->generic[i].data.eir_bw.bw_alloc = 868 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 869 } 870 871 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 872 &num_groups_added, NULL); 873 if (status || num_groups_added != 1) { 874 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 875 hw->adminq.sq_last_status); 876 devm_kfree(ice_hw_to_dev(hw), buf); 877 return ICE_ERR_CFG; 878 } 879 880 *num_nodes_added = num_nodes; 881 /* add nodes to the SW DB */ 882 for (i = 0; i < num_nodes; i++) { 883 status = ice_sched_add_node(pi, layer, &buf->generic[i]); 884 if (status) { 885 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n", 886 status); 887 break; 888 } 889 890 teid = le32_to_cpu(buf->generic[i].node_teid); 891 new_node = ice_sched_find_node_by_teid(parent, teid); 892 if (!new_node) { 893 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid); 894 break; 895 } 896 897 new_node->sibling = NULL; 898 new_node->tc_num = tc_node->tc_num; 899 900 /* add it to previous node sibling pointer */ 901 /* Note: siblings are not linked across branches */ 902 prev = ice_sched_get_first_node(pi, tc_node, layer); 903 if (prev && prev != new_node) { 904 while (prev->sibling) 905 prev = prev->sibling; 906 prev->sibling = new_node; 907 } 908 909 /* initialize the sibling head */ 910 if (!pi->sib_head[tc_node->tc_num][layer]) 911 pi->sib_head[tc_node->tc_num][layer] = new_node; 912 913 if (i == 0) 914 *first_node_teid = teid; 915 } 916 917 devm_kfree(ice_hw_to_dev(hw), buf); 918 return status; 919 } 920 921 /** 922 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 923 * @pi: port information structure 924 * @tc_node: pointer to TC node 925 * @parent: pointer to parent node 926 * @layer: layer number to add nodes 927 * @num_nodes: number of nodes to be added 928 * @first_node_teid: pointer to the first node TEID 929 * @num_nodes_added: pointer to number of nodes added 930 * 931 * This function add nodes to a given layer. 932 */ 933 static enum ice_status 934 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 935 struct ice_sched_node *tc_node, 936 struct ice_sched_node *parent, u8 layer, 937 u16 num_nodes, u32 *first_node_teid, 938 u16 *num_nodes_added) 939 { 940 u32 *first_teid_ptr = first_node_teid; 941 u16 new_num_nodes, max_child_nodes; 942 enum ice_status status = 0; 943 struct ice_hw *hw = pi->hw; 944 u16 num_added = 0; 945 u32 temp; 946 947 *num_nodes_added = 0; 948 949 if (!num_nodes) 950 return status; 951 952 if (!parent || layer < hw->sw_entry_point_layer) 953 return ICE_ERR_PARAM; 954 955 /* max children per node per layer */ 956 max_child_nodes = hw->max_children[parent->tx_sched_layer]; 957 958 /* current number of children + required nodes exceed max children ? */ 959 if ((parent->num_children + num_nodes) > max_child_nodes) { 960 /* Fail if the parent is a TC node */ 961 if (parent == tc_node) 962 return ICE_ERR_CFG; 963 964 /* utilize all the spaces if the parent is not full */ 965 if (parent->num_children < max_child_nodes) { 966 new_num_nodes = max_child_nodes - parent->num_children; 967 /* this recursion is intentional, and wouldn't 968 * go more than 2 calls 969 */ 970 status = ice_sched_add_nodes_to_layer(pi, tc_node, 971 parent, layer, 972 new_num_nodes, 973 first_node_teid, 974 &num_added); 975 if (status) 976 return status; 977 978 *num_nodes_added += num_added; 979 } 980 /* Don't modify the first node TEID memory if the first node was 981 * added already in the above call. Instead send some temp 982 * memory for all other recursive calls. 983 */ 984 if (num_added) 985 first_teid_ptr = &temp; 986 987 new_num_nodes = num_nodes - num_added; 988 989 /* This parent is full, try the next sibling */ 990 parent = parent->sibling; 991 992 /* this recursion is intentional, for 1024 queues 993 * per VSI, it goes max of 16 iterations. 994 * 1024 / 8 = 128 layer 8 nodes 995 * 128 /8 = 16 (add 8 nodes per iteration) 996 */ 997 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 998 layer, new_num_nodes, 999 first_teid_ptr, 1000 &num_added); 1001 *num_nodes_added += num_added; 1002 return status; 1003 } 1004 1005 status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 1006 num_nodes_added, first_node_teid); 1007 return status; 1008 } 1009 1010 /** 1011 * ice_sched_get_qgrp_layer - get the current queue group layer number 1012 * @hw: pointer to the HW struct 1013 * 1014 * This function returns the current queue group layer number 1015 */ 1016 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 1017 { 1018 /* It's always total layers - 1, the array is 0 relative so -2 */ 1019 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1020 } 1021 1022 /** 1023 * ice_sched_get_vsi_layer - get the current VSI layer number 1024 * @hw: pointer to the HW struct 1025 * 1026 * This function returns the current VSI layer number 1027 */ 1028 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 1029 { 1030 /* Num Layers VSI layer 1031 * 9 6 1032 * 7 4 1033 * 5 or less sw_entry_point_layer 1034 */ 1035 /* calculate the VSI layer based on number of layers. */ 1036 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) { 1037 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 1038 1039 if (layer > hw->sw_entry_point_layer) 1040 return layer; 1041 } 1042 return hw->sw_entry_point_layer; 1043 } 1044 1045 /** 1046 * ice_sched_get_agg_layer - get the current aggregator layer number 1047 * @hw: pointer to the HW struct 1048 * 1049 * This function returns the current aggregator layer number 1050 */ 1051 static u8 ice_sched_get_agg_layer(struct ice_hw *hw) 1052 { 1053 /* Num Layers aggregator layer 1054 * 9 4 1055 * 7 or less sw_entry_point_layer 1056 */ 1057 /* calculate the aggregator layer based on number of layers. */ 1058 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) { 1059 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET; 1060 1061 if (layer > hw->sw_entry_point_layer) 1062 return layer; 1063 } 1064 return hw->sw_entry_point_layer; 1065 } 1066 1067 /** 1068 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 1069 * @pi: port information structure 1070 * 1071 * This function removes the leaf node that was created by the FW 1072 * during initialization 1073 */ 1074 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 1075 { 1076 struct ice_sched_node *node; 1077 1078 node = pi->root; 1079 while (node) { 1080 if (!node->num_children) 1081 break; 1082 node = node->children[0]; 1083 } 1084 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 1085 u32 teid = le32_to_cpu(node->info.node_teid); 1086 enum ice_status status; 1087 1088 /* remove the default leaf node */ 1089 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid); 1090 if (!status) 1091 ice_free_sched_node(pi, node); 1092 } 1093 } 1094 1095 /** 1096 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 1097 * @pi: port information structure 1098 * 1099 * This function frees all the nodes except root and TC that were created by 1100 * the FW during initialization 1101 */ 1102 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 1103 { 1104 struct ice_sched_node *node; 1105 1106 ice_rm_dflt_leaf_node(pi); 1107 1108 /* remove the default nodes except TC and root nodes */ 1109 node = pi->root; 1110 while (node) { 1111 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 1112 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 1113 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 1114 ice_free_sched_node(pi, node); 1115 break; 1116 } 1117 1118 if (!node->num_children) 1119 break; 1120 node = node->children[0]; 1121 } 1122 } 1123 1124 /** 1125 * ice_sched_init_port - Initialize scheduler by querying information from FW 1126 * @pi: port info structure for the tree to cleanup 1127 * 1128 * This function is the initial call to find the total number of Tx scheduler 1129 * resources, default topology created by firmware and storing the information 1130 * in SW DB. 1131 */ 1132 enum ice_status ice_sched_init_port(struct ice_port_info *pi) 1133 { 1134 struct ice_aqc_get_topo_elem *buf; 1135 enum ice_status status; 1136 struct ice_hw *hw; 1137 u8 num_branches; 1138 u16 num_elems; 1139 u8 i, j; 1140 1141 if (!pi) 1142 return ICE_ERR_PARAM; 1143 hw = pi->hw; 1144 1145 /* Query the Default Topology from FW */ 1146 buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 1147 if (!buf) 1148 return ICE_ERR_NO_MEMORY; 1149 1150 /* Query default scheduling tree topology */ 1151 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 1152 &num_branches, NULL); 1153 if (status) 1154 goto err_init_port; 1155 1156 /* num_branches should be between 1-8 */ 1157 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 1158 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 1159 num_branches); 1160 status = ICE_ERR_PARAM; 1161 goto err_init_port; 1162 } 1163 1164 /* get the number of elements on the default/first branch */ 1165 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 1166 1167 /* num_elems should always be between 1-9 */ 1168 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 1169 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 1170 num_elems); 1171 status = ICE_ERR_PARAM; 1172 goto err_init_port; 1173 } 1174 1175 /* If the last node is a leaf node then the index of the queue group 1176 * layer is two less than the number of elements. 1177 */ 1178 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1179 ICE_AQC_ELEM_TYPE_LEAF) 1180 pi->last_node_teid = 1181 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1182 else 1183 pi->last_node_teid = 1184 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1185 1186 /* Insert the Tx Sched root node */ 1187 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1188 if (status) 1189 goto err_init_port; 1190 1191 /* Parse the default tree and cache the information */ 1192 for (i = 0; i < num_branches; i++) { 1193 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1194 1195 /* Skip root element as already inserted */ 1196 for (j = 1; j < num_elems; j++) { 1197 /* update the sw entry point */ 1198 if (buf[0].generic[j].data.elem_type == 1199 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1200 hw->sw_entry_point_layer = j; 1201 1202 status = ice_sched_add_node(pi, j, &buf[i].generic[j]); 1203 if (status) 1204 goto err_init_port; 1205 } 1206 } 1207 1208 /* Remove the default nodes. */ 1209 if (pi->root) 1210 ice_sched_rm_dflt_nodes(pi); 1211 1212 /* initialize the port for handling the scheduler tree */ 1213 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1214 mutex_init(&pi->sched_lock); 1215 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1216 INIT_LIST_HEAD(&pi->rl_prof_list[i]); 1217 1218 err_init_port: 1219 if (status && pi->root) { 1220 ice_free_sched_node(pi, pi->root); 1221 pi->root = NULL; 1222 } 1223 1224 devm_kfree(ice_hw_to_dev(hw), buf); 1225 return status; 1226 } 1227 1228 /** 1229 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1230 * @hw: pointer to the HW struct 1231 * 1232 * query FW for allocated scheduler resources and store in HW struct 1233 */ 1234 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw) 1235 { 1236 struct ice_aqc_query_txsched_res_resp *buf; 1237 enum ice_status status = 0; 1238 __le16 max_sibl; 1239 u16 i; 1240 1241 if (hw->layer_info) 1242 return status; 1243 1244 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1245 if (!buf) 1246 return ICE_ERR_NO_MEMORY; 1247 1248 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1249 if (status) 1250 goto sched_query_out; 1251 1252 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1253 hw->num_tx_sched_phys_layers = 1254 le16_to_cpu(buf->sched_props.phys_levels); 1255 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1256 hw->max_cgds = buf->sched_props.max_pf_cgds; 1257 1258 /* max sibling group size of current layer refers to the max children 1259 * of the below layer node. 1260 * layer 1 node max children will be layer 2 max sibling group size 1261 * layer 2 node max children will be layer 3 max sibling group size 1262 * and so on. This array will be populated from root (index 0) to 1263 * qgroup layer 7. Leaf node has no children. 1264 */ 1265 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { 1266 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; 1267 hw->max_children[i] = le16_to_cpu(max_sibl); 1268 } 1269 1270 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1271 (hw->num_tx_sched_layers * 1272 sizeof(*hw->layer_info)), 1273 GFP_KERNEL); 1274 if (!hw->layer_info) { 1275 status = ICE_ERR_NO_MEMORY; 1276 goto sched_query_out; 1277 } 1278 1279 sched_query_out: 1280 devm_kfree(ice_hw_to_dev(hw), buf); 1281 return status; 1282 } 1283 1284 /** 1285 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency 1286 * @hw: pointer to the HW struct 1287 * 1288 * Determine the PSM clock frequency and store in HW struct 1289 */ 1290 void ice_sched_get_psm_clk_freq(struct ice_hw *hw) 1291 { 1292 u32 val, clk_src; 1293 1294 val = rd32(hw, GLGEN_CLKSTAT_SRC); 1295 clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >> 1296 GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S; 1297 1298 #define PSM_CLK_SRC_367_MHZ 0x0 1299 #define PSM_CLK_SRC_416_MHZ 0x1 1300 #define PSM_CLK_SRC_446_MHZ 0x2 1301 #define PSM_CLK_SRC_390_MHZ 0x3 1302 1303 switch (clk_src) { 1304 case PSM_CLK_SRC_367_MHZ: 1305 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ; 1306 break; 1307 case PSM_CLK_SRC_416_MHZ: 1308 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ; 1309 break; 1310 case PSM_CLK_SRC_446_MHZ: 1311 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1312 break; 1313 case PSM_CLK_SRC_390_MHZ: 1314 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ; 1315 break; 1316 default: 1317 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n", 1318 clk_src); 1319 /* fall back to a safe default */ 1320 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1321 } 1322 } 1323 1324 /** 1325 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1326 * @hw: pointer to the HW struct 1327 * @base: pointer to the base node 1328 * @node: pointer to the node to search 1329 * 1330 * This function checks whether a given node is part of the base node 1331 * subtree or not 1332 */ 1333 static bool 1334 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1335 struct ice_sched_node *node) 1336 { 1337 u8 i; 1338 1339 for (i = 0; i < base->num_children; i++) { 1340 struct ice_sched_node *child = base->children[i]; 1341 1342 if (node == child) 1343 return true; 1344 1345 if (child->tx_sched_layer > node->tx_sched_layer) 1346 return false; 1347 1348 /* this recursion is intentional, and wouldn't 1349 * go more than 8 calls 1350 */ 1351 if (ice_sched_find_node_in_subtree(hw, child, node)) 1352 return true; 1353 } 1354 return false; 1355 } 1356 1357 /** 1358 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node 1359 * @pi: port information structure 1360 * @vsi_node: software VSI handle 1361 * @qgrp_node: first queue group node identified for scanning 1362 * @owner: LAN or RDMA 1363 * 1364 * This function retrieves a free LAN or RDMA queue group node by scanning 1365 * qgrp_node and its siblings for the queue group with the fewest number 1366 * of queues currently assigned. 1367 */ 1368 static struct ice_sched_node * 1369 ice_sched_get_free_qgrp(struct ice_port_info *pi, 1370 struct ice_sched_node *vsi_node, 1371 struct ice_sched_node *qgrp_node, u8 owner) 1372 { 1373 struct ice_sched_node *min_qgrp; 1374 u8 min_children; 1375 1376 if (!qgrp_node) 1377 return qgrp_node; 1378 min_children = qgrp_node->num_children; 1379 if (!min_children) 1380 return qgrp_node; 1381 min_qgrp = qgrp_node; 1382 /* scan all queue groups until find a node which has less than the 1383 * minimum number of children. This way all queue group nodes get 1384 * equal number of shares and active. The bandwidth will be equally 1385 * distributed across all queues. 1386 */ 1387 while (qgrp_node) { 1388 /* make sure the qgroup node is part of the VSI subtree */ 1389 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1390 if (qgrp_node->num_children < min_children && 1391 qgrp_node->owner == owner) { 1392 /* replace the new min queue group node */ 1393 min_qgrp = qgrp_node; 1394 min_children = min_qgrp->num_children; 1395 /* break if it has no children, */ 1396 if (!min_children) 1397 break; 1398 } 1399 qgrp_node = qgrp_node->sibling; 1400 } 1401 return min_qgrp; 1402 } 1403 1404 /** 1405 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1406 * @pi: port information structure 1407 * @vsi_handle: software VSI handle 1408 * @tc: branch number 1409 * @owner: LAN or RDMA 1410 * 1411 * This function retrieves a free LAN or RDMA queue group node 1412 */ 1413 struct ice_sched_node * 1414 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1415 u8 owner) 1416 { 1417 struct ice_sched_node *vsi_node, *qgrp_node; 1418 struct ice_vsi_ctx *vsi_ctx; 1419 u16 max_children; 1420 u8 qgrp_layer; 1421 1422 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1423 max_children = pi->hw->max_children[qgrp_layer]; 1424 1425 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1426 if (!vsi_ctx) 1427 return NULL; 1428 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1429 /* validate invalid VSI ID */ 1430 if (!vsi_node) 1431 return NULL; 1432 1433 /* get the first queue group node from VSI sub-tree */ 1434 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1435 while (qgrp_node) { 1436 /* make sure the qgroup node is part of the VSI subtree */ 1437 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1438 if (qgrp_node->num_children < max_children && 1439 qgrp_node->owner == owner) 1440 break; 1441 qgrp_node = qgrp_node->sibling; 1442 } 1443 1444 /* Select the best queue group */ 1445 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); 1446 } 1447 1448 /** 1449 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1450 * @pi: pointer to the port information structure 1451 * @tc_node: pointer to the TC node 1452 * @vsi_handle: software VSI handle 1453 * 1454 * This function retrieves a VSI node for a given VSI ID from a given 1455 * TC branch 1456 */ 1457 static struct ice_sched_node * 1458 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1459 u16 vsi_handle) 1460 { 1461 struct ice_sched_node *node; 1462 u8 vsi_layer; 1463 1464 vsi_layer = ice_sched_get_vsi_layer(pi->hw); 1465 node = ice_sched_get_first_node(pi, tc_node, vsi_layer); 1466 1467 /* Check whether it already exists */ 1468 while (node) { 1469 if (node->vsi_handle == vsi_handle) 1470 return node; 1471 node = node->sibling; 1472 } 1473 1474 return node; 1475 } 1476 1477 /** 1478 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID 1479 * @pi: pointer to the port information structure 1480 * @tc_node: pointer to the TC node 1481 * @agg_id: aggregator ID 1482 * 1483 * This function retrieves an aggregator node for a given aggregator ID from 1484 * a given TC branch 1485 */ 1486 static struct ice_sched_node * 1487 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1488 u32 agg_id) 1489 { 1490 struct ice_sched_node *node; 1491 struct ice_hw *hw = pi->hw; 1492 u8 agg_layer; 1493 1494 if (!hw) 1495 return NULL; 1496 agg_layer = ice_sched_get_agg_layer(hw); 1497 node = ice_sched_get_first_node(pi, tc_node, agg_layer); 1498 1499 /* Check whether it already exists */ 1500 while (node) { 1501 if (node->agg_id == agg_id) 1502 return node; 1503 node = node->sibling; 1504 } 1505 1506 return node; 1507 } 1508 1509 /** 1510 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1511 * @hw: pointer to the HW struct 1512 * @num_qs: number of queues 1513 * @num_nodes: num nodes array 1514 * 1515 * This function calculates the number of VSI child nodes based on the 1516 * number of queues. 1517 */ 1518 static void 1519 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1520 { 1521 u16 num = num_qs; 1522 u8 i, qgl, vsil; 1523 1524 qgl = ice_sched_get_qgrp_layer(hw); 1525 vsil = ice_sched_get_vsi_layer(hw); 1526 1527 /* calculate num nodes from queue group to VSI layer */ 1528 for (i = qgl; i > vsil; i--) { 1529 /* round to the next integer if there is a remainder */ 1530 num = DIV_ROUND_UP(num, hw->max_children[i]); 1531 1532 /* need at least one node */ 1533 num_nodes[i] = num ? num : 1; 1534 } 1535 } 1536 1537 /** 1538 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1539 * @pi: port information structure 1540 * @vsi_handle: software VSI handle 1541 * @tc_node: pointer to the TC node 1542 * @num_nodes: pointer to the num nodes that needs to be added per layer 1543 * @owner: node owner (LAN or RDMA) 1544 * 1545 * This function adds the VSI child nodes to tree. It gets called for 1546 * LAN and RDMA separately. 1547 */ 1548 static enum ice_status 1549 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1550 struct ice_sched_node *tc_node, u16 *num_nodes, 1551 u8 owner) 1552 { 1553 struct ice_sched_node *parent, *node; 1554 struct ice_hw *hw = pi->hw; 1555 enum ice_status status; 1556 u32 first_node_teid; 1557 u16 num_added = 0; 1558 u8 i, qgl, vsil; 1559 1560 qgl = ice_sched_get_qgrp_layer(hw); 1561 vsil = ice_sched_get_vsi_layer(hw); 1562 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1563 for (i = vsil + 1; i <= qgl; i++) { 1564 if (!parent) 1565 return ICE_ERR_CFG; 1566 1567 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1568 num_nodes[i], 1569 &first_node_teid, 1570 &num_added); 1571 if (status || num_nodes[i] != num_added) 1572 return ICE_ERR_CFG; 1573 1574 /* The newly added node can be a new parent for the next 1575 * layer nodes 1576 */ 1577 if (num_added) { 1578 parent = ice_sched_find_node_by_teid(tc_node, 1579 first_node_teid); 1580 node = parent; 1581 while (node) { 1582 node->owner = owner; 1583 node = node->sibling; 1584 } 1585 } else { 1586 parent = parent->children[0]; 1587 } 1588 } 1589 1590 return 0; 1591 } 1592 1593 /** 1594 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1595 * @pi: pointer to the port info structure 1596 * @tc_node: pointer to TC node 1597 * @num_nodes: pointer to num nodes array 1598 * 1599 * This function calculates the number of supported nodes needed to add this 1600 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1601 * layers 1602 */ 1603 static void 1604 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi, 1605 struct ice_sched_node *tc_node, u16 *num_nodes) 1606 { 1607 struct ice_sched_node *node; 1608 u8 vsil; 1609 int i; 1610 1611 vsil = ice_sched_get_vsi_layer(pi->hw); 1612 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) 1613 /* Add intermediate nodes if TC has no children and 1614 * need at least one node for VSI 1615 */ 1616 if (!tc_node->num_children || i == vsil) { 1617 num_nodes[i]++; 1618 } else { 1619 /* If intermediate nodes are reached max children 1620 * then add a new one. 1621 */ 1622 node = ice_sched_get_first_node(pi, tc_node, (u8)i); 1623 /* scan all the siblings */ 1624 while (node) { 1625 if (node->num_children < pi->hw->max_children[i]) 1626 break; 1627 node = node->sibling; 1628 } 1629 1630 /* tree has one intermediate node to add this new VSI. 1631 * So no need to calculate supported nodes for below 1632 * layers. 1633 */ 1634 if (node) 1635 break; 1636 /* all the nodes are full, allocate a new one */ 1637 num_nodes[i]++; 1638 } 1639 } 1640 1641 /** 1642 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1643 * @pi: port information structure 1644 * @vsi_handle: software VSI handle 1645 * @tc_node: pointer to TC node 1646 * @num_nodes: pointer to num nodes array 1647 * 1648 * This function adds the VSI supported nodes into Tx tree including the 1649 * VSI, its parent and intermediate nodes in below layers 1650 */ 1651 static enum ice_status 1652 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1653 struct ice_sched_node *tc_node, u16 *num_nodes) 1654 { 1655 struct ice_sched_node *parent = tc_node; 1656 enum ice_status status; 1657 u32 first_node_teid; 1658 u16 num_added = 0; 1659 u8 i, vsil; 1660 1661 if (!pi) 1662 return ICE_ERR_PARAM; 1663 1664 vsil = ice_sched_get_vsi_layer(pi->hw); 1665 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1666 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1667 i, num_nodes[i], 1668 &first_node_teid, 1669 &num_added); 1670 if (status || num_nodes[i] != num_added) 1671 return ICE_ERR_CFG; 1672 1673 /* The newly added node can be a new parent for the next 1674 * layer nodes 1675 */ 1676 if (num_added) 1677 parent = ice_sched_find_node_by_teid(tc_node, 1678 first_node_teid); 1679 else 1680 parent = parent->children[0]; 1681 1682 if (!parent) 1683 return ICE_ERR_CFG; 1684 1685 if (i == vsil) 1686 parent->vsi_handle = vsi_handle; 1687 } 1688 1689 return 0; 1690 } 1691 1692 /** 1693 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1694 * @pi: port information structure 1695 * @vsi_handle: software VSI handle 1696 * @tc: TC number 1697 * 1698 * This function adds a new VSI into scheduler tree 1699 */ 1700 static enum ice_status 1701 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1702 { 1703 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1704 struct ice_sched_node *tc_node; 1705 1706 tc_node = ice_sched_get_tc_node(pi, tc); 1707 if (!tc_node) 1708 return ICE_ERR_PARAM; 1709 1710 /* calculate number of supported nodes needed for this VSI */ 1711 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes); 1712 1713 /* add VSI supported nodes to TC subtree */ 1714 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1715 num_nodes); 1716 } 1717 1718 /** 1719 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1720 * @pi: port information structure 1721 * @vsi_handle: software VSI handle 1722 * @tc: TC number 1723 * @new_numqs: new number of max queues 1724 * @owner: owner of this subtree 1725 * 1726 * This function updates the VSI child nodes based on the number of queues 1727 */ 1728 static enum ice_status 1729 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1730 u8 tc, u16 new_numqs, u8 owner) 1731 { 1732 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1733 struct ice_sched_node *vsi_node; 1734 struct ice_sched_node *tc_node; 1735 struct ice_vsi_ctx *vsi_ctx; 1736 enum ice_status status = 0; 1737 struct ice_hw *hw = pi->hw; 1738 u16 prev_numqs; 1739 1740 tc_node = ice_sched_get_tc_node(pi, tc); 1741 if (!tc_node) 1742 return ICE_ERR_CFG; 1743 1744 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1745 if (!vsi_node) 1746 return ICE_ERR_CFG; 1747 1748 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1749 if (!vsi_ctx) 1750 return ICE_ERR_PARAM; 1751 1752 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1753 /* num queues are not changed or less than the previous number */ 1754 if (new_numqs <= prev_numqs) 1755 return status; 1756 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1757 if (status) 1758 return status; 1759 1760 if (new_numqs) 1761 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1762 /* Keep the max number of queue configuration all the time. Update the 1763 * tree only if number of queues > previous number of queues. This may 1764 * leave some extra nodes in the tree if number of queues < previous 1765 * number but that wouldn't harm anything. Removing those extra nodes 1766 * may complicate the code if those nodes are part of SRL or 1767 * individually rate limited. 1768 */ 1769 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1770 new_num_nodes, owner); 1771 if (status) 1772 return status; 1773 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1774 1775 return 0; 1776 } 1777 1778 /** 1779 * ice_sched_cfg_vsi - configure the new/existing VSI 1780 * @pi: port information structure 1781 * @vsi_handle: software VSI handle 1782 * @tc: TC number 1783 * @maxqs: max number of queues 1784 * @owner: LAN or RDMA 1785 * @enable: TC enabled or disabled 1786 * 1787 * This function adds/updates VSI nodes based on the number of queues. If TC is 1788 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1789 * disabled then suspend the VSI if it is not already. 1790 */ 1791 enum ice_status 1792 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1793 u8 owner, bool enable) 1794 { 1795 struct ice_sched_node *vsi_node, *tc_node; 1796 struct ice_vsi_ctx *vsi_ctx; 1797 enum ice_status status = 0; 1798 struct ice_hw *hw = pi->hw; 1799 1800 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1801 tc_node = ice_sched_get_tc_node(pi, tc); 1802 if (!tc_node) 1803 return ICE_ERR_PARAM; 1804 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1805 if (!vsi_ctx) 1806 return ICE_ERR_PARAM; 1807 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1808 1809 /* suspend the VSI if TC is not enabled */ 1810 if (!enable) { 1811 if (vsi_node && vsi_node->in_use) { 1812 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1813 1814 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1815 true); 1816 if (!status) 1817 vsi_node->in_use = false; 1818 } 1819 return status; 1820 } 1821 1822 /* TC is enabled, if it is a new VSI then add it to the tree */ 1823 if (!vsi_node) { 1824 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1825 if (status) 1826 return status; 1827 1828 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1829 if (!vsi_node) 1830 return ICE_ERR_CFG; 1831 1832 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1833 vsi_node->in_use = true; 1834 /* invalidate the max queues whenever VSI gets added first time 1835 * into the scheduler tree (boot or after reset). We need to 1836 * recreate the child nodes all the time in these cases. 1837 */ 1838 vsi_ctx->sched.max_lanq[tc] = 0; 1839 } 1840 1841 /* update the VSI child nodes */ 1842 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1843 owner); 1844 if (status) 1845 return status; 1846 1847 /* TC is enabled, resume the VSI if it is in the suspend state */ 1848 if (!vsi_node->in_use) { 1849 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1850 1851 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1852 if (!status) 1853 vsi_node->in_use = true; 1854 } 1855 1856 return status; 1857 } 1858 1859 /** 1860 * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry 1861 * @pi: port information structure 1862 * @vsi_handle: software VSI handle 1863 * 1864 * This function removes single aggregator VSI info entry from 1865 * aggregator list. 1866 */ 1867 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1868 { 1869 struct ice_sched_agg_info *agg_info; 1870 struct ice_sched_agg_info *atmp; 1871 1872 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1873 list_entry) { 1874 struct ice_sched_agg_vsi_info *agg_vsi_info; 1875 struct ice_sched_agg_vsi_info *vtmp; 1876 1877 list_for_each_entry_safe(agg_vsi_info, vtmp, 1878 &agg_info->agg_vsi_list, list_entry) 1879 if (agg_vsi_info->vsi_handle == vsi_handle) { 1880 list_del(&agg_vsi_info->list_entry); 1881 devm_kfree(ice_hw_to_dev(pi->hw), 1882 agg_vsi_info); 1883 return; 1884 } 1885 } 1886 } 1887 1888 /** 1889 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 1890 * @node: pointer to the sub-tree node 1891 * 1892 * This function checks for a leaf node presence in a given sub-tree node. 1893 */ 1894 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 1895 { 1896 u8 i; 1897 1898 for (i = 0; i < node->num_children; i++) 1899 if (ice_sched_is_leaf_node_present(node->children[i])) 1900 return true; 1901 /* check for a leaf node */ 1902 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 1903 } 1904 1905 /** 1906 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 1907 * @pi: port information structure 1908 * @vsi_handle: software VSI handle 1909 * @owner: LAN or RDMA 1910 * 1911 * This function removes the VSI and its LAN or RDMA children nodes from the 1912 * scheduler tree. 1913 */ 1914 static enum ice_status 1915 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 1916 { 1917 enum ice_status status = ICE_ERR_PARAM; 1918 struct ice_vsi_ctx *vsi_ctx; 1919 u8 i; 1920 1921 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 1922 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 1923 return status; 1924 mutex_lock(&pi->sched_lock); 1925 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1926 if (!vsi_ctx) 1927 goto exit_sched_rm_vsi_cfg; 1928 1929 ice_for_each_traffic_class(i) { 1930 struct ice_sched_node *vsi_node, *tc_node; 1931 u8 j = 0; 1932 1933 tc_node = ice_sched_get_tc_node(pi, i); 1934 if (!tc_node) 1935 continue; 1936 1937 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1938 if (!vsi_node) 1939 continue; 1940 1941 if (ice_sched_is_leaf_node_present(vsi_node)) { 1942 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i); 1943 status = ICE_ERR_IN_USE; 1944 goto exit_sched_rm_vsi_cfg; 1945 } 1946 while (j < vsi_node->num_children) { 1947 if (vsi_node->children[j]->owner == owner) { 1948 ice_free_sched_node(pi, vsi_node->children[j]); 1949 1950 /* reset the counter again since the num 1951 * children will be updated after node removal 1952 */ 1953 j = 0; 1954 } else { 1955 j++; 1956 } 1957 } 1958 /* remove the VSI if it has no children */ 1959 if (!vsi_node->num_children) { 1960 ice_free_sched_node(pi, vsi_node); 1961 vsi_ctx->sched.vsi_node[i] = NULL; 1962 1963 /* clean up aggregator related VSI info if any */ 1964 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 1965 } 1966 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1967 vsi_ctx->sched.max_lanq[i] = 0; 1968 } 1969 status = 0; 1970 1971 exit_sched_rm_vsi_cfg: 1972 mutex_unlock(&pi->sched_lock); 1973 return status; 1974 } 1975 1976 /** 1977 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 1978 * @pi: port information structure 1979 * @vsi_handle: software VSI handle 1980 * 1981 * This function clears the VSI and its LAN children nodes from scheduler tree 1982 * for all TCs. 1983 */ 1984 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 1985 { 1986 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 1987 } 1988 1989 /** 1990 * ice_get_agg_info - get the aggregator ID 1991 * @hw: pointer to the hardware structure 1992 * @agg_id: aggregator ID 1993 * 1994 * This function validates aggregator ID. The function returns info if 1995 * aggregator ID is present in list otherwise it returns null. 1996 */ 1997 static struct ice_sched_agg_info * 1998 ice_get_agg_info(struct ice_hw *hw, u32 agg_id) 1999 { 2000 struct ice_sched_agg_info *agg_info; 2001 2002 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 2003 if (agg_info->agg_id == agg_id) 2004 return agg_info; 2005 2006 return NULL; 2007 } 2008 2009 /** 2010 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree 2011 * @hw: pointer to the HW struct 2012 * @node: pointer to a child node 2013 * @num_nodes: num nodes count array 2014 * 2015 * This function walks through the aggregator subtree to find a free parent 2016 * node 2017 */ 2018 static struct ice_sched_node * 2019 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node, 2020 u16 *num_nodes) 2021 { 2022 u8 l = node->tx_sched_layer; 2023 u8 vsil, i; 2024 2025 vsil = ice_sched_get_vsi_layer(hw); 2026 2027 /* Is it VSI parent layer ? */ 2028 if (l == vsil - 1) 2029 return (node->num_children < hw->max_children[l]) ? node : NULL; 2030 2031 /* We have intermediate nodes. Let's walk through the subtree. If the 2032 * intermediate node has space to add a new node then clear the count 2033 */ 2034 if (node->num_children < hw->max_children[l]) 2035 num_nodes[l] = 0; 2036 /* The below recursive call is intentional and wouldn't go more than 2037 * 2 or 3 iterations. 2038 */ 2039 2040 for (i = 0; i < node->num_children; i++) { 2041 struct ice_sched_node *parent; 2042 2043 parent = ice_sched_get_free_vsi_parent(hw, node->children[i], 2044 num_nodes); 2045 if (parent) 2046 return parent; 2047 } 2048 2049 return NULL; 2050 } 2051 2052 /** 2053 * ice_sched_update_parent - update the new parent in SW DB 2054 * @new_parent: pointer to a new parent node 2055 * @node: pointer to a child node 2056 * 2057 * This function removes the child from the old parent and adds it to a new 2058 * parent 2059 */ 2060 static void 2061 ice_sched_update_parent(struct ice_sched_node *new_parent, 2062 struct ice_sched_node *node) 2063 { 2064 struct ice_sched_node *old_parent; 2065 u8 i, j; 2066 2067 old_parent = node->parent; 2068 2069 /* update the old parent children */ 2070 for (i = 0; i < old_parent->num_children; i++) 2071 if (old_parent->children[i] == node) { 2072 for (j = i + 1; j < old_parent->num_children; j++) 2073 old_parent->children[j - 1] = 2074 old_parent->children[j]; 2075 old_parent->num_children--; 2076 break; 2077 } 2078 2079 /* now move the node to a new parent */ 2080 new_parent->children[new_parent->num_children++] = node; 2081 node->parent = new_parent; 2082 node->info.parent_teid = new_parent->info.node_teid; 2083 } 2084 2085 /** 2086 * ice_sched_move_nodes - move child nodes to a given parent 2087 * @pi: port information structure 2088 * @parent: pointer to parent node 2089 * @num_items: number of child nodes to be moved 2090 * @list: pointer to child node teids 2091 * 2092 * This function move the child nodes to a given parent. 2093 */ 2094 static enum ice_status 2095 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent, 2096 u16 num_items, u32 *list) 2097 { 2098 struct ice_aqc_move_elem *buf; 2099 struct ice_sched_node *node; 2100 enum ice_status status = 0; 2101 u16 i, grps_movd = 0; 2102 struct ice_hw *hw; 2103 u16 buf_len; 2104 2105 hw = pi->hw; 2106 2107 if (!parent || !num_items) 2108 return ICE_ERR_PARAM; 2109 2110 /* Does parent have enough space */ 2111 if (parent->num_children + num_items > 2112 hw->max_children[parent->tx_sched_layer]) 2113 return ICE_ERR_AQ_FULL; 2114 2115 buf_len = struct_size(buf, teid, 1); 2116 buf = kzalloc(buf_len, GFP_KERNEL); 2117 if (!buf) 2118 return ICE_ERR_NO_MEMORY; 2119 2120 for (i = 0; i < num_items; i++) { 2121 node = ice_sched_find_node_by_teid(pi->root, list[i]); 2122 if (!node) { 2123 status = ICE_ERR_PARAM; 2124 goto move_err_exit; 2125 } 2126 2127 buf->hdr.src_parent_teid = node->info.parent_teid; 2128 buf->hdr.dest_parent_teid = parent->info.node_teid; 2129 buf->teid[0] = node->info.node_teid; 2130 buf->hdr.num_elems = cpu_to_le16(1); 2131 status = ice_aq_move_sched_elems(hw, 1, buf, buf_len, 2132 &grps_movd, NULL); 2133 if (status && grps_movd != 1) { 2134 status = ICE_ERR_CFG; 2135 goto move_err_exit; 2136 } 2137 2138 /* update the SW DB */ 2139 ice_sched_update_parent(parent, node); 2140 } 2141 2142 move_err_exit: 2143 kfree(buf); 2144 return status; 2145 } 2146 2147 /** 2148 * ice_sched_move_vsi_to_agg - move VSI to aggregator node 2149 * @pi: port information structure 2150 * @vsi_handle: software VSI handle 2151 * @agg_id: aggregator ID 2152 * @tc: TC number 2153 * 2154 * This function moves a VSI to an aggregator node or its subtree. 2155 * Intermediate nodes may be created if required. 2156 */ 2157 static enum ice_status 2158 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id, 2159 u8 tc) 2160 { 2161 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent; 2162 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2163 u32 first_node_teid, vsi_teid; 2164 enum ice_status status; 2165 u16 num_nodes_added; 2166 u8 aggl, vsil, i; 2167 2168 tc_node = ice_sched_get_tc_node(pi, tc); 2169 if (!tc_node) 2170 return ICE_ERR_CFG; 2171 2172 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2173 if (!agg_node) 2174 return ICE_ERR_DOES_NOT_EXIST; 2175 2176 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2177 if (!vsi_node) 2178 return ICE_ERR_DOES_NOT_EXIST; 2179 2180 /* Is this VSI already part of given aggregator? */ 2181 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node)) 2182 return 0; 2183 2184 aggl = ice_sched_get_agg_layer(pi->hw); 2185 vsil = ice_sched_get_vsi_layer(pi->hw); 2186 2187 /* set intermediate node count to 1 between aggregator and VSI layers */ 2188 for (i = aggl + 1; i < vsil; i++) 2189 num_nodes[i] = 1; 2190 2191 /* Check if the aggregator subtree has any free node to add the VSI */ 2192 for (i = 0; i < agg_node->num_children; i++) { 2193 parent = ice_sched_get_free_vsi_parent(pi->hw, 2194 agg_node->children[i], 2195 num_nodes); 2196 if (parent) 2197 goto move_nodes; 2198 } 2199 2200 /* add new nodes */ 2201 parent = agg_node; 2202 for (i = aggl + 1; i < vsil; i++) { 2203 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2204 num_nodes[i], 2205 &first_node_teid, 2206 &num_nodes_added); 2207 if (status || num_nodes[i] != num_nodes_added) 2208 return ICE_ERR_CFG; 2209 2210 /* The newly added node can be a new parent for the next 2211 * layer nodes 2212 */ 2213 if (num_nodes_added) 2214 parent = ice_sched_find_node_by_teid(tc_node, 2215 first_node_teid); 2216 else 2217 parent = parent->children[0]; 2218 2219 if (!parent) 2220 return ICE_ERR_CFG; 2221 } 2222 2223 move_nodes: 2224 vsi_teid = le32_to_cpu(vsi_node->info.node_teid); 2225 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid); 2226 } 2227 2228 /** 2229 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator 2230 * @pi: port information structure 2231 * @agg_info: aggregator info 2232 * @tc: traffic class number 2233 * @rm_vsi_info: true or false 2234 * 2235 * This function move all the VSI(s) to the default aggregator and delete 2236 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The 2237 * caller holds the scheduler lock. 2238 */ 2239 static enum ice_status 2240 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi, 2241 struct ice_sched_agg_info *agg_info, u8 tc, 2242 bool rm_vsi_info) 2243 { 2244 struct ice_sched_agg_vsi_info *agg_vsi_info; 2245 struct ice_sched_agg_vsi_info *tmp; 2246 enum ice_status status = 0; 2247 2248 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list, 2249 list_entry) { 2250 u16 vsi_handle = agg_vsi_info->vsi_handle; 2251 2252 /* Move VSI to default aggregator */ 2253 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc)) 2254 continue; 2255 2256 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, 2257 ICE_DFLT_AGG_ID, tc); 2258 if (status) 2259 break; 2260 2261 clear_bit(tc, agg_vsi_info->tc_bitmap); 2262 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) { 2263 list_del(&agg_vsi_info->list_entry); 2264 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); 2265 } 2266 } 2267 2268 return status; 2269 } 2270 2271 /** 2272 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not 2273 * @pi: port information structure 2274 * @node: node pointer 2275 * 2276 * This function checks whether the aggregator is attached with any VSI or not. 2277 */ 2278 static bool 2279 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node) 2280 { 2281 u8 vsil, i; 2282 2283 vsil = ice_sched_get_vsi_layer(pi->hw); 2284 if (node->tx_sched_layer < vsil - 1) { 2285 for (i = 0; i < node->num_children; i++) 2286 if (ice_sched_is_agg_inuse(pi, node->children[i])) 2287 return true; 2288 return false; 2289 } else { 2290 return node->num_children ? true : false; 2291 } 2292 } 2293 2294 /** 2295 * ice_sched_rm_agg_cfg - remove the aggregator node 2296 * @pi: port information structure 2297 * @agg_id: aggregator ID 2298 * @tc: TC number 2299 * 2300 * This function removes the aggregator node and intermediate nodes if any 2301 * from the given TC 2302 */ 2303 static enum ice_status 2304 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2305 { 2306 struct ice_sched_node *tc_node, *agg_node; 2307 struct ice_hw *hw = pi->hw; 2308 2309 tc_node = ice_sched_get_tc_node(pi, tc); 2310 if (!tc_node) 2311 return ICE_ERR_CFG; 2312 2313 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2314 if (!agg_node) 2315 return ICE_ERR_DOES_NOT_EXIST; 2316 2317 /* Can't remove the aggregator node if it has children */ 2318 if (ice_sched_is_agg_inuse(pi, agg_node)) 2319 return ICE_ERR_IN_USE; 2320 2321 /* need to remove the whole subtree if aggregator node is the 2322 * only child. 2323 */ 2324 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) { 2325 struct ice_sched_node *parent = agg_node->parent; 2326 2327 if (!parent) 2328 return ICE_ERR_CFG; 2329 2330 if (parent->num_children > 1) 2331 break; 2332 2333 agg_node = parent; 2334 } 2335 2336 ice_free_sched_node(pi, agg_node); 2337 return 0; 2338 } 2339 2340 /** 2341 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC 2342 * @pi: port information structure 2343 * @agg_info: aggregator ID 2344 * @tc: TC number 2345 * @rm_vsi_info: bool value true or false 2346 * 2347 * This function removes aggregator reference to VSI of given TC. It removes 2348 * the aggregator configuration completely for requested TC. The caller needs 2349 * to hold the scheduler lock. 2350 */ 2351 static enum ice_status 2352 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, 2353 u8 tc, bool rm_vsi_info) 2354 { 2355 enum ice_status status = 0; 2356 2357 /* If nothing to remove - return success */ 2358 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2359 goto exit_rm_agg_cfg_tc; 2360 2361 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info); 2362 if (status) 2363 goto exit_rm_agg_cfg_tc; 2364 2365 /* Delete aggregator node(s) */ 2366 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc); 2367 if (status) 2368 goto exit_rm_agg_cfg_tc; 2369 2370 clear_bit(tc, agg_info->tc_bitmap); 2371 exit_rm_agg_cfg_tc: 2372 return status; 2373 } 2374 2375 /** 2376 * ice_save_agg_tc_bitmap - save aggregator TC bitmap 2377 * @pi: port information structure 2378 * @agg_id: aggregator ID 2379 * @tc_bitmap: 8 bits TC bitmap 2380 * 2381 * Save aggregator TC bitmap. This function needs to be called with scheduler 2382 * lock held. 2383 */ 2384 static enum ice_status 2385 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id, 2386 unsigned long *tc_bitmap) 2387 { 2388 struct ice_sched_agg_info *agg_info; 2389 2390 agg_info = ice_get_agg_info(pi->hw, agg_id); 2391 if (!agg_info) 2392 return ICE_ERR_PARAM; 2393 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap, 2394 ICE_MAX_TRAFFIC_CLASS); 2395 return 0; 2396 } 2397 2398 /** 2399 * ice_sched_add_agg_cfg - create an aggregator node 2400 * @pi: port information structure 2401 * @agg_id: aggregator ID 2402 * @tc: TC number 2403 * 2404 * This function creates an aggregator node and intermediate nodes if required 2405 * for the given TC 2406 */ 2407 static enum ice_status 2408 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2409 { 2410 struct ice_sched_node *parent, *agg_node, *tc_node; 2411 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2412 enum ice_status status = 0; 2413 struct ice_hw *hw = pi->hw; 2414 u32 first_node_teid; 2415 u16 num_nodes_added; 2416 u8 i, aggl; 2417 2418 tc_node = ice_sched_get_tc_node(pi, tc); 2419 if (!tc_node) 2420 return ICE_ERR_CFG; 2421 2422 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2423 /* Does Agg node already exist ? */ 2424 if (agg_node) 2425 return status; 2426 2427 aggl = ice_sched_get_agg_layer(hw); 2428 2429 /* need one node in Agg layer */ 2430 num_nodes[aggl] = 1; 2431 2432 /* Check whether the intermediate nodes have space to add the 2433 * new aggregator. If they are full, then SW needs to allocate a new 2434 * intermediate node on those layers 2435 */ 2436 for (i = hw->sw_entry_point_layer; i < aggl; i++) { 2437 parent = ice_sched_get_first_node(pi, tc_node, i); 2438 2439 /* scan all the siblings */ 2440 while (parent) { 2441 if (parent->num_children < hw->max_children[i]) 2442 break; 2443 parent = parent->sibling; 2444 } 2445 2446 /* all the nodes are full, reserve one for this layer */ 2447 if (!parent) 2448 num_nodes[i]++; 2449 } 2450 2451 /* add the aggregator node */ 2452 parent = tc_node; 2453 for (i = hw->sw_entry_point_layer; i <= aggl; i++) { 2454 if (!parent) 2455 return ICE_ERR_CFG; 2456 2457 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2458 num_nodes[i], 2459 &first_node_teid, 2460 &num_nodes_added); 2461 if (status || num_nodes[i] != num_nodes_added) 2462 return ICE_ERR_CFG; 2463 2464 /* The newly added node can be a new parent for the next 2465 * layer nodes 2466 */ 2467 if (num_nodes_added) { 2468 parent = ice_sched_find_node_by_teid(tc_node, 2469 first_node_teid); 2470 /* register aggregator ID with the aggregator node */ 2471 if (parent && i == aggl) 2472 parent->agg_id = agg_id; 2473 } else { 2474 parent = parent->children[0]; 2475 } 2476 } 2477 2478 return 0; 2479 } 2480 2481 /** 2482 * ice_sched_cfg_agg - configure aggregator node 2483 * @pi: port information structure 2484 * @agg_id: aggregator ID 2485 * @agg_type: aggregator type queue, VSI, or aggregator group 2486 * @tc_bitmap: bits TC bitmap 2487 * 2488 * It registers a unique aggregator node into scheduler services. It 2489 * allows a user to register with a unique ID to track it's resources. 2490 * The aggregator type determines if this is a queue group, VSI group 2491 * or aggregator group. It then creates the aggregator node(s) for requested 2492 * TC(s) or removes an existing aggregator node including its configuration 2493 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator 2494 * resources and remove aggregator ID. 2495 * This function needs to be called with scheduler lock held. 2496 */ 2497 static enum ice_status 2498 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id, 2499 enum ice_agg_type agg_type, unsigned long *tc_bitmap) 2500 { 2501 struct ice_sched_agg_info *agg_info; 2502 enum ice_status status = 0; 2503 struct ice_hw *hw = pi->hw; 2504 u8 tc; 2505 2506 agg_info = ice_get_agg_info(hw, agg_id); 2507 if (!agg_info) { 2508 /* Create new entry for new aggregator ID */ 2509 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info), 2510 GFP_KERNEL); 2511 if (!agg_info) 2512 return ICE_ERR_NO_MEMORY; 2513 2514 agg_info->agg_id = agg_id; 2515 agg_info->agg_type = agg_type; 2516 agg_info->tc_bitmap[0] = 0; 2517 2518 /* Initialize the aggregator VSI list head */ 2519 INIT_LIST_HEAD(&agg_info->agg_vsi_list); 2520 2521 /* Add new entry in aggregator list */ 2522 list_add(&agg_info->list_entry, &hw->agg_list); 2523 } 2524 /* Create aggregator node(s) for requested TC(s) */ 2525 ice_for_each_traffic_class(tc) { 2526 if (!ice_is_tc_ena(*tc_bitmap, tc)) { 2527 /* Delete aggregator cfg TC if it exists previously */ 2528 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false); 2529 if (status) 2530 break; 2531 continue; 2532 } 2533 2534 /* Check if aggregator node for TC already exists */ 2535 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2536 continue; 2537 2538 /* Create new aggregator node for TC */ 2539 status = ice_sched_add_agg_cfg(pi, agg_id, tc); 2540 if (status) 2541 break; 2542 2543 /* Save aggregator node's TC information */ 2544 set_bit(tc, agg_info->tc_bitmap); 2545 } 2546 2547 return status; 2548 } 2549 2550 /** 2551 * ice_cfg_agg - config aggregator node 2552 * @pi: port information structure 2553 * @agg_id: aggregator ID 2554 * @agg_type: aggregator type queue, VSI, or aggregator group 2555 * @tc_bitmap: bits TC bitmap 2556 * 2557 * This function configures aggregator node(s). 2558 */ 2559 enum ice_status 2560 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, 2561 u8 tc_bitmap) 2562 { 2563 unsigned long bitmap = tc_bitmap; 2564 enum ice_status status; 2565 2566 mutex_lock(&pi->sched_lock); 2567 status = ice_sched_cfg_agg(pi, agg_id, agg_type, 2568 (unsigned long *)&bitmap); 2569 if (!status) 2570 status = ice_save_agg_tc_bitmap(pi, agg_id, 2571 (unsigned long *)&bitmap); 2572 mutex_unlock(&pi->sched_lock); 2573 return status; 2574 } 2575 2576 /** 2577 * ice_get_agg_vsi_info - get the aggregator ID 2578 * @agg_info: aggregator info 2579 * @vsi_handle: software VSI handle 2580 * 2581 * The function returns aggregator VSI info based on VSI handle. This function 2582 * needs to be called with scheduler lock held. 2583 */ 2584 static struct ice_sched_agg_vsi_info * 2585 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle) 2586 { 2587 struct ice_sched_agg_vsi_info *agg_vsi_info; 2588 2589 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) 2590 if (agg_vsi_info->vsi_handle == vsi_handle) 2591 return agg_vsi_info; 2592 2593 return NULL; 2594 } 2595 2596 /** 2597 * ice_get_vsi_agg_info - get the aggregator info of VSI 2598 * @hw: pointer to the hardware structure 2599 * @vsi_handle: Sw VSI handle 2600 * 2601 * The function returns aggregator info of VSI represented via vsi_handle. The 2602 * VSI has in this case a different aggregator than the default one. This 2603 * function needs to be called with scheduler lock held. 2604 */ 2605 static struct ice_sched_agg_info * 2606 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle) 2607 { 2608 struct ice_sched_agg_info *agg_info; 2609 2610 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 2611 struct ice_sched_agg_vsi_info *agg_vsi_info; 2612 2613 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2614 if (agg_vsi_info) 2615 return agg_info; 2616 } 2617 return NULL; 2618 } 2619 2620 /** 2621 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap 2622 * @pi: port information structure 2623 * @agg_id: aggregator ID 2624 * @vsi_handle: software VSI handle 2625 * @tc_bitmap: TC bitmap of enabled TC(s) 2626 * 2627 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler 2628 * lock held. 2629 */ 2630 static enum ice_status 2631 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2632 unsigned long *tc_bitmap) 2633 { 2634 struct ice_sched_agg_vsi_info *agg_vsi_info; 2635 struct ice_sched_agg_info *agg_info; 2636 2637 agg_info = ice_get_agg_info(pi->hw, agg_id); 2638 if (!agg_info) 2639 return ICE_ERR_PARAM; 2640 /* check if entry already exist */ 2641 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2642 if (!agg_vsi_info) 2643 return ICE_ERR_PARAM; 2644 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap, 2645 ICE_MAX_TRAFFIC_CLASS); 2646 return 0; 2647 } 2648 2649 /** 2650 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator 2651 * @pi: port information structure 2652 * @agg_id: aggregator ID 2653 * @vsi_handle: software VSI handle 2654 * @tc_bitmap: TC bitmap of enabled TC(s) 2655 * 2656 * This function moves VSI to a new or default aggregator node. If VSI is 2657 * already associated to the aggregator node then no operation is performed on 2658 * the tree. This function needs to be called with scheduler lock held. 2659 */ 2660 static enum ice_status 2661 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, 2662 u16 vsi_handle, unsigned long *tc_bitmap) 2663 { 2664 struct ice_sched_agg_vsi_info *agg_vsi_info; 2665 struct ice_sched_agg_info *agg_info; 2666 enum ice_status status = 0; 2667 struct ice_hw *hw = pi->hw; 2668 u8 tc; 2669 2670 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2671 return ICE_ERR_PARAM; 2672 agg_info = ice_get_agg_info(hw, agg_id); 2673 if (!agg_info) 2674 return ICE_ERR_PARAM; 2675 /* check if entry already exist */ 2676 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2677 if (!agg_vsi_info) { 2678 /* Create new entry for VSI under aggregator list */ 2679 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw), 2680 sizeof(*agg_vsi_info), GFP_KERNEL); 2681 if (!agg_vsi_info) 2682 return ICE_ERR_PARAM; 2683 2684 /* add VSI ID into the aggregator list */ 2685 agg_vsi_info->vsi_handle = vsi_handle; 2686 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list); 2687 } 2688 /* Move VSI node to new aggregator node for requested TC(s) */ 2689 ice_for_each_traffic_class(tc) { 2690 if (!ice_is_tc_ena(*tc_bitmap, tc)) 2691 continue; 2692 2693 /* Move VSI to new aggregator */ 2694 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc); 2695 if (status) 2696 break; 2697 2698 set_bit(tc, agg_vsi_info->tc_bitmap); 2699 } 2700 return status; 2701 } 2702 2703 /** 2704 * ice_sched_rm_unused_rl_prof - remove unused RL profile 2705 * @pi: port information structure 2706 * 2707 * This function removes unused rate limit profiles from the HW and 2708 * SW DB. The caller needs to hold scheduler lock. 2709 */ 2710 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) 2711 { 2712 u16 ln; 2713 2714 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 2715 struct ice_aqc_rl_profile_info *rl_prof_elem; 2716 struct ice_aqc_rl_profile_info *rl_prof_tmp; 2717 2718 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 2719 &pi->rl_prof_list[ln], list_entry) { 2720 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) 2721 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n"); 2722 } 2723 } 2724 } 2725 2726 /** 2727 * ice_sched_update_elem - update element 2728 * @hw: pointer to the HW struct 2729 * @node: pointer to node 2730 * @info: node info to update 2731 * 2732 * Update the HW DB, and local SW DB of node. Update the scheduling 2733 * parameters of node from argument info data buffer (Info->data buf) and 2734 * returns success or error on config sched element failure. The caller 2735 * needs to hold scheduler lock. 2736 */ 2737 static enum ice_status 2738 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, 2739 struct ice_aqc_txsched_elem_data *info) 2740 { 2741 struct ice_aqc_txsched_elem_data buf; 2742 enum ice_status status; 2743 u16 elem_cfgd = 0; 2744 u16 num_elems = 1; 2745 2746 buf = *info; 2747 /* Parent TEID is reserved field in this aq call */ 2748 buf.parent_teid = 0; 2749 /* Element type is reserved field in this aq call */ 2750 buf.data.elem_type = 0; 2751 /* Flags is reserved field in this aq call */ 2752 buf.data.flags = 0; 2753 2754 /* Update HW DB */ 2755 /* Configure element node */ 2756 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), 2757 &elem_cfgd, NULL); 2758 if (status || elem_cfgd != num_elems) { 2759 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); 2760 return ICE_ERR_CFG; 2761 } 2762 2763 /* Config success case */ 2764 /* Now update local SW DB */ 2765 /* Only copy the data portion of info buffer */ 2766 node->info.data = info->data; 2767 return status; 2768 } 2769 2770 /** 2771 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params 2772 * @hw: pointer to the HW struct 2773 * @node: sched node to configure 2774 * @rl_type: rate limit type CIR, EIR, or shared 2775 * @bw_alloc: BW weight/allocation 2776 * 2777 * This function configures node element's BW allocation. 2778 */ 2779 static enum ice_status 2780 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, 2781 enum ice_rl_type rl_type, u16 bw_alloc) 2782 { 2783 struct ice_aqc_txsched_elem_data buf; 2784 struct ice_aqc_txsched_elem *data; 2785 2786 buf = node->info; 2787 data = &buf.data; 2788 if (rl_type == ICE_MIN_BW) { 2789 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 2790 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2791 } else if (rl_type == ICE_MAX_BW) { 2792 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2793 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2794 } else { 2795 return ICE_ERR_PARAM; 2796 } 2797 2798 /* Configure element */ 2799 return ice_sched_update_elem(hw, node, &buf); 2800 } 2801 2802 /** 2803 * ice_move_vsi_to_agg - moves VSI to new or default aggregator 2804 * @pi: port information structure 2805 * @agg_id: aggregator ID 2806 * @vsi_handle: software VSI handle 2807 * @tc_bitmap: TC bitmap of enabled TC(s) 2808 * 2809 * Move or associate VSI to a new or default aggregator node. 2810 */ 2811 enum ice_status 2812 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2813 u8 tc_bitmap) 2814 { 2815 unsigned long bitmap = tc_bitmap; 2816 enum ice_status status; 2817 2818 mutex_lock(&pi->sched_lock); 2819 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle, 2820 (unsigned long *)&bitmap); 2821 if (!status) 2822 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle, 2823 (unsigned long *)&bitmap); 2824 mutex_unlock(&pi->sched_lock); 2825 return status; 2826 } 2827 2828 /** 2829 * ice_set_clear_cir_bw - set or clear CIR BW 2830 * @bw_t_info: bandwidth type information structure 2831 * @bw: bandwidth in Kbps - Kilo bits per sec 2832 * 2833 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. 2834 */ 2835 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2836 { 2837 if (bw == ICE_SCHED_DFLT_BW) { 2838 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2839 bw_t_info->cir_bw.bw = 0; 2840 } else { 2841 /* Save type of BW information */ 2842 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2843 bw_t_info->cir_bw.bw = bw; 2844 } 2845 } 2846 2847 /** 2848 * ice_set_clear_eir_bw - set or clear EIR BW 2849 * @bw_t_info: bandwidth type information structure 2850 * @bw: bandwidth in Kbps - Kilo bits per sec 2851 * 2852 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. 2853 */ 2854 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2855 { 2856 if (bw == ICE_SCHED_DFLT_BW) { 2857 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2858 bw_t_info->eir_bw.bw = 0; 2859 } else { 2860 /* EIR BW and Shared BW profiles are mutually exclusive and 2861 * hence only one of them may be set for any given element. 2862 * First clear earlier saved shared BW information. 2863 */ 2864 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 2865 bw_t_info->shared_bw = 0; 2866 /* save EIR BW information */ 2867 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2868 bw_t_info->eir_bw.bw = bw; 2869 } 2870 } 2871 2872 /** 2873 * ice_set_clear_shared_bw - set or clear shared BW 2874 * @bw_t_info: bandwidth type information structure 2875 * @bw: bandwidth in Kbps - Kilo bits per sec 2876 * 2877 * Save or clear shared bandwidth (BW) in the passed param bw_t_info. 2878 */ 2879 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2880 { 2881 if (bw == ICE_SCHED_DFLT_BW) { 2882 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 2883 bw_t_info->shared_bw = 0; 2884 } else { 2885 /* EIR BW and Shared BW profiles are mutually exclusive and 2886 * hence only one of them may be set for any given element. 2887 * First clear earlier saved EIR BW information. 2888 */ 2889 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2890 bw_t_info->eir_bw.bw = 0; 2891 /* save shared BW information */ 2892 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 2893 bw_t_info->shared_bw = bw; 2894 } 2895 } 2896 2897 /** 2898 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter 2899 * @hw: pointer to the HW struct 2900 * @bw: bandwidth in Kbps 2901 * 2902 * This function calculates the wakeup parameter of RL profile. 2903 */ 2904 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw) 2905 { 2906 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; 2907 s32 wakeup_f_int; 2908 u16 wakeup = 0; 2909 2910 /* Get the wakeup integer value */ 2911 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 2912 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec); 2913 if (wakeup_int > 63) { 2914 wakeup = (u16)((1 << 15) | wakeup_int); 2915 } else { 2916 /* Calculate fraction value up to 4 decimals 2917 * Convert Integer value to a constant multiplier 2918 */ 2919 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; 2920 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * 2921 hw->psm_clk_freq, bytes_per_sec); 2922 2923 /* Get Fraction value */ 2924 wakeup_f = wakeup_a - wakeup_b; 2925 2926 /* Round up the Fractional value via Ceil(Fractional value) */ 2927 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) 2928 wakeup_f += 1; 2929 2930 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, 2931 ICE_RL_PROF_MULTIPLIER); 2932 wakeup |= (u16)(wakeup_int << 9); 2933 wakeup |= (u16)(0x1ff & wakeup_f_int); 2934 } 2935 2936 return wakeup; 2937 } 2938 2939 /** 2940 * ice_sched_bw_to_rl_profile - convert BW to profile parameters 2941 * @hw: pointer to the HW struct 2942 * @bw: bandwidth in Kbps 2943 * @profile: profile parameters to return 2944 * 2945 * This function converts the BW to profile structure format. 2946 */ 2947 static enum ice_status 2948 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw, 2949 struct ice_aqc_rl_profile_elem *profile) 2950 { 2951 enum ice_status status = ICE_ERR_PARAM; 2952 s64 bytes_per_sec, ts_rate, mv_tmp; 2953 bool found = false; 2954 s32 encode = 0; 2955 s64 mv = 0; 2956 s32 i; 2957 2958 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ 2959 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) 2960 return status; 2961 2962 /* Bytes per second from Kbps */ 2963 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 2964 2965 /* encode is 6 bits but really useful are 5 bits */ 2966 for (i = 0; i < 64; i++) { 2967 u64 pow_result = BIT_ULL(i); 2968 2969 ts_rate = div64_long((s64)hw->psm_clk_freq, 2970 pow_result * ICE_RL_PROF_TS_MULTIPLIER); 2971 if (ts_rate <= 0) 2972 continue; 2973 2974 /* Multiplier value */ 2975 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, 2976 ts_rate); 2977 2978 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ 2979 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); 2980 2981 /* First multiplier value greater than the given 2982 * accuracy bytes 2983 */ 2984 if (mv > ICE_RL_PROF_ACCURACY_BYTES) { 2985 encode = i; 2986 found = true; 2987 break; 2988 } 2989 } 2990 if (found) { 2991 u16 wm; 2992 2993 wm = ice_sched_calc_wakeup(hw, bw); 2994 profile->rl_multiply = cpu_to_le16(mv); 2995 profile->wake_up_calc = cpu_to_le16(wm); 2996 profile->rl_encode = cpu_to_le16(encode); 2997 status = 0; 2998 } else { 2999 status = ICE_ERR_DOES_NOT_EXIST; 3000 } 3001 3002 return status; 3003 } 3004 3005 /** 3006 * ice_sched_add_rl_profile - add RL profile 3007 * @pi: port information structure 3008 * @rl_type: type of rate limit BW - min, max, or shared 3009 * @bw: bandwidth in Kbps - Kilo bits per sec 3010 * @layer_num: specifies in which layer to create profile 3011 * 3012 * This function first checks the existing list for corresponding BW 3013 * parameter. If it exists, it returns the associated profile otherwise 3014 * it creates a new rate limit profile for requested BW, and adds it to 3015 * the HW DB and local list. It returns the new profile or null on error. 3016 * The caller needs to hold the scheduler lock. 3017 */ 3018 static struct ice_aqc_rl_profile_info * 3019 ice_sched_add_rl_profile(struct ice_port_info *pi, 3020 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3021 { 3022 struct ice_aqc_rl_profile_info *rl_prof_elem; 3023 u16 profiles_added = 0, num_profiles = 1; 3024 struct ice_aqc_rl_profile_elem *buf; 3025 enum ice_status status; 3026 struct ice_hw *hw; 3027 u8 profile_type; 3028 3029 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3030 return NULL; 3031 switch (rl_type) { 3032 case ICE_MIN_BW: 3033 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3034 break; 3035 case ICE_MAX_BW: 3036 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3037 break; 3038 case ICE_SHARED_BW: 3039 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3040 break; 3041 default: 3042 return NULL; 3043 } 3044 3045 if (!pi) 3046 return NULL; 3047 hw = pi->hw; 3048 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3049 list_entry) 3050 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3051 profile_type && rl_prof_elem->bw == bw) 3052 /* Return existing profile ID info */ 3053 return rl_prof_elem; 3054 3055 /* Create new profile ID */ 3056 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), 3057 GFP_KERNEL); 3058 3059 if (!rl_prof_elem) 3060 return NULL; 3061 3062 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile); 3063 if (status) 3064 goto exit_add_rl_prof; 3065 3066 rl_prof_elem->bw = bw; 3067 /* layer_num is zero relative, and fw expects level from 1 to 9 */ 3068 rl_prof_elem->profile.level = layer_num + 1; 3069 rl_prof_elem->profile.flags = profile_type; 3070 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); 3071 3072 /* Create new entry in HW DB */ 3073 buf = &rl_prof_elem->profile; 3074 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), 3075 &profiles_added, NULL); 3076 if (status || profiles_added != num_profiles) 3077 goto exit_add_rl_prof; 3078 3079 /* Good entry - add in the list */ 3080 rl_prof_elem->prof_id_ref = 0; 3081 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); 3082 return rl_prof_elem; 3083 3084 exit_add_rl_prof: 3085 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 3086 return NULL; 3087 } 3088 3089 /** 3090 * ice_sched_cfg_node_bw_lmt - configure node sched params 3091 * @hw: pointer to the HW struct 3092 * @node: sched node to configure 3093 * @rl_type: rate limit type CIR, EIR, or shared 3094 * @rl_prof_id: rate limit profile ID 3095 * 3096 * This function configures node element's BW limit. 3097 */ 3098 static enum ice_status 3099 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, 3100 enum ice_rl_type rl_type, u16 rl_prof_id) 3101 { 3102 struct ice_aqc_txsched_elem_data buf; 3103 struct ice_aqc_txsched_elem *data; 3104 3105 buf = node->info; 3106 data = &buf.data; 3107 switch (rl_type) { 3108 case ICE_MIN_BW: 3109 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 3110 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3111 break; 3112 case ICE_MAX_BW: 3113 /* EIR BW and Shared BW profiles are mutually exclusive and 3114 * hence only one of them may be set for any given element 3115 */ 3116 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3117 return ICE_ERR_CFG; 3118 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3119 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3120 break; 3121 case ICE_SHARED_BW: 3122 /* Check for removing shared BW */ 3123 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { 3124 /* remove shared profile */ 3125 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; 3126 data->srl_id = 0; /* clear SRL field */ 3127 3128 /* enable back EIR to default profile */ 3129 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3130 data->eir_bw.bw_profile_idx = 3131 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 3132 break; 3133 } 3134 /* EIR BW and Shared BW profiles are mutually exclusive and 3135 * hence only one of them may be set for any given element 3136 */ 3137 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && 3138 (le16_to_cpu(data->eir_bw.bw_profile_idx) != 3139 ICE_SCHED_DFLT_RL_PROF_ID)) 3140 return ICE_ERR_CFG; 3141 /* EIR BW is set to default, disable it */ 3142 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; 3143 /* Okay to enable shared BW now */ 3144 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; 3145 data->srl_id = cpu_to_le16(rl_prof_id); 3146 break; 3147 default: 3148 /* Unknown rate limit type */ 3149 return ICE_ERR_PARAM; 3150 } 3151 3152 /* Configure element */ 3153 return ice_sched_update_elem(hw, node, &buf); 3154 } 3155 3156 /** 3157 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID 3158 * @node: sched node 3159 * @rl_type: rate limit type 3160 * 3161 * If existing profile matches, it returns the corresponding rate 3162 * limit profile ID, otherwise it returns an invalid ID as error. 3163 */ 3164 static u16 3165 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, 3166 enum ice_rl_type rl_type) 3167 { 3168 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; 3169 struct ice_aqc_txsched_elem *data; 3170 3171 data = &node->info.data; 3172 switch (rl_type) { 3173 case ICE_MIN_BW: 3174 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) 3175 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); 3176 break; 3177 case ICE_MAX_BW: 3178 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) 3179 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); 3180 break; 3181 case ICE_SHARED_BW: 3182 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3183 rl_prof_id = le16_to_cpu(data->srl_id); 3184 break; 3185 default: 3186 break; 3187 } 3188 3189 return rl_prof_id; 3190 } 3191 3192 /** 3193 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer 3194 * @pi: port information structure 3195 * @rl_type: type of rate limit BW - min, max, or shared 3196 * @layer_index: layer index 3197 * 3198 * This function returns requested profile creation layer. 3199 */ 3200 static u8 3201 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, 3202 u8 layer_index) 3203 { 3204 struct ice_hw *hw = pi->hw; 3205 3206 if (layer_index >= hw->num_tx_sched_layers) 3207 return ICE_SCHED_INVAL_LAYER_NUM; 3208 switch (rl_type) { 3209 case ICE_MIN_BW: 3210 if (hw->layer_info[layer_index].max_cir_rl_profiles) 3211 return layer_index; 3212 break; 3213 case ICE_MAX_BW: 3214 if (hw->layer_info[layer_index].max_eir_rl_profiles) 3215 return layer_index; 3216 break; 3217 case ICE_SHARED_BW: 3218 /* if current layer doesn't support SRL profile creation 3219 * then try a layer up or down. 3220 */ 3221 if (hw->layer_info[layer_index].max_srl_profiles) 3222 return layer_index; 3223 else if (layer_index < hw->num_tx_sched_layers - 1 && 3224 hw->layer_info[layer_index + 1].max_srl_profiles) 3225 return layer_index + 1; 3226 else if (layer_index > 0 && 3227 hw->layer_info[layer_index - 1].max_srl_profiles) 3228 return layer_index - 1; 3229 break; 3230 default: 3231 break; 3232 } 3233 return ICE_SCHED_INVAL_LAYER_NUM; 3234 } 3235 3236 /** 3237 * ice_sched_get_srl_node - get shared rate limit node 3238 * @node: tree node 3239 * @srl_layer: shared rate limit layer 3240 * 3241 * This function returns SRL node to be used for shared rate limit purpose. 3242 * The caller needs to hold scheduler lock. 3243 */ 3244 static struct ice_sched_node * 3245 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) 3246 { 3247 if (srl_layer > node->tx_sched_layer) 3248 return node->children[0]; 3249 else if (srl_layer < node->tx_sched_layer) 3250 /* Node can't be created without a parent. It will always 3251 * have a valid parent except root node. 3252 */ 3253 return node->parent; 3254 else 3255 return node; 3256 } 3257 3258 /** 3259 * ice_sched_rm_rl_profile - remove RL profile ID 3260 * @pi: port information structure 3261 * @layer_num: layer number where profiles are saved 3262 * @profile_type: profile type like EIR, CIR, or SRL 3263 * @profile_id: profile ID to remove 3264 * 3265 * This function removes rate limit profile from layer 'layer_num' of type 3266 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold 3267 * scheduler lock. 3268 */ 3269 static enum ice_status 3270 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, 3271 u16 profile_id) 3272 { 3273 struct ice_aqc_rl_profile_info *rl_prof_elem; 3274 enum ice_status status = 0; 3275 3276 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM) 3277 return ICE_ERR_PARAM; 3278 /* Check the existing list for RL profile */ 3279 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3280 list_entry) 3281 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3282 profile_type && 3283 le16_to_cpu(rl_prof_elem->profile.profile_id) == 3284 profile_id) { 3285 if (rl_prof_elem->prof_id_ref) 3286 rl_prof_elem->prof_id_ref--; 3287 3288 /* Remove old profile ID from database */ 3289 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); 3290 if (status && status != ICE_ERR_IN_USE) 3291 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 3292 break; 3293 } 3294 if (status == ICE_ERR_IN_USE) 3295 status = 0; 3296 return status; 3297 } 3298 3299 /** 3300 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default 3301 * @pi: port information structure 3302 * @node: pointer to node structure 3303 * @rl_type: rate limit type min, max, or shared 3304 * @layer_num: layer number where RL profiles are saved 3305 * 3306 * This function configures node element's BW rate limit profile ID of 3307 * type CIR, EIR, or SRL to default. This function needs to be called 3308 * with the scheduler lock held. 3309 */ 3310 static enum ice_status 3311 ice_sched_set_node_bw_dflt(struct ice_port_info *pi, 3312 struct ice_sched_node *node, 3313 enum ice_rl_type rl_type, u8 layer_num) 3314 { 3315 enum ice_status status; 3316 struct ice_hw *hw; 3317 u8 profile_type; 3318 u16 rl_prof_id; 3319 u16 old_id; 3320 3321 hw = pi->hw; 3322 switch (rl_type) { 3323 case ICE_MIN_BW: 3324 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3325 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3326 break; 3327 case ICE_MAX_BW: 3328 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3329 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3330 break; 3331 case ICE_SHARED_BW: 3332 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3333 /* No SRL is configured for default case */ 3334 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; 3335 break; 3336 default: 3337 return ICE_ERR_PARAM; 3338 } 3339 /* Save existing RL prof ID for later clean up */ 3340 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3341 /* Configure BW scheduling parameters */ 3342 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3343 if (status) 3344 return status; 3345 3346 /* Remove stale RL profile ID */ 3347 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || 3348 old_id == ICE_SCHED_INVAL_PROF_ID) 3349 return 0; 3350 3351 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); 3352 } 3353 3354 /** 3355 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness 3356 * @pi: port information structure 3357 * @node: pointer to node structure 3358 * @layer_num: layer number where rate limit profiles are saved 3359 * @rl_type: rate limit type min, max, or shared 3360 * @bw: bandwidth value 3361 * 3362 * This function prepares node element's bandwidth to SRL or EIR exclusively. 3363 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of 3364 * them may be set for any given element. This function needs to be called 3365 * with the scheduler lock held. 3366 */ 3367 static enum ice_status 3368 ice_sched_set_eir_srl_excl(struct ice_port_info *pi, 3369 struct ice_sched_node *node, 3370 u8 layer_num, enum ice_rl_type rl_type, u32 bw) 3371 { 3372 if (rl_type == ICE_SHARED_BW) { 3373 /* SRL node passed in this case, it may be different node */ 3374 if (bw == ICE_SCHED_DFLT_BW) 3375 /* SRL being removed, ice_sched_cfg_node_bw_lmt() 3376 * enables EIR to default. EIR is not set in this 3377 * case, so no additional action is required. 3378 */ 3379 return 0; 3380 3381 /* SRL being configured, set EIR to default here. 3382 * ice_sched_cfg_node_bw_lmt() disables EIR when it 3383 * configures SRL 3384 */ 3385 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, 3386 layer_num); 3387 } else if (rl_type == ICE_MAX_BW && 3388 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { 3389 /* Remove Shared profile. Set default shared BW call 3390 * removes shared profile for a node. 3391 */ 3392 return ice_sched_set_node_bw_dflt(pi, node, 3393 ICE_SHARED_BW, 3394 layer_num); 3395 } 3396 return 0; 3397 } 3398 3399 /** 3400 * ice_sched_set_node_bw - set node's bandwidth 3401 * @pi: port information structure 3402 * @node: tree node 3403 * @rl_type: rate limit type min, max, or shared 3404 * @bw: bandwidth in Kbps - Kilo bits per sec 3405 * @layer_num: layer number 3406 * 3407 * This function adds new profile corresponding to requested BW, configures 3408 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile 3409 * ID from local database. The caller needs to hold scheduler lock. 3410 */ 3411 static enum ice_status 3412 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, 3413 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3414 { 3415 struct ice_aqc_rl_profile_info *rl_prof_info; 3416 enum ice_status status = ICE_ERR_PARAM; 3417 struct ice_hw *hw = pi->hw; 3418 u16 old_id, rl_prof_id; 3419 3420 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); 3421 if (!rl_prof_info) 3422 return status; 3423 3424 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); 3425 3426 /* Save existing RL prof ID for later clean up */ 3427 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3428 /* Configure BW scheduling parameters */ 3429 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3430 if (status) 3431 return status; 3432 3433 /* New changes has been applied */ 3434 /* Increment the profile ID reference count */ 3435 rl_prof_info->prof_id_ref++; 3436 3437 /* Check for old ID removal */ 3438 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || 3439 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) 3440 return 0; 3441 3442 return ice_sched_rm_rl_profile(pi, layer_num, 3443 rl_prof_info->profile.flags & 3444 ICE_AQC_RL_PROFILE_TYPE_M, old_id); 3445 } 3446 3447 /** 3448 * ice_sched_set_node_bw_lmt - set node's BW limit 3449 * @pi: port information structure 3450 * @node: tree node 3451 * @rl_type: rate limit type min, max, or shared 3452 * @bw: bandwidth in Kbps - Kilo bits per sec 3453 * 3454 * It updates node's BW limit parameters like BW RL profile ID of type CIR, 3455 * EIR, or SRL. The caller needs to hold scheduler lock. 3456 */ 3457 static enum ice_status 3458 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, 3459 enum ice_rl_type rl_type, u32 bw) 3460 { 3461 struct ice_sched_node *cfg_node = node; 3462 enum ice_status status; 3463 3464 struct ice_hw *hw; 3465 u8 layer_num; 3466 3467 if (!pi) 3468 return ICE_ERR_PARAM; 3469 hw = pi->hw; 3470 /* Remove unused RL profile IDs from HW and SW DB */ 3471 ice_sched_rm_unused_rl_prof(pi); 3472 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, 3473 node->tx_sched_layer); 3474 if (layer_num >= hw->num_tx_sched_layers) 3475 return ICE_ERR_PARAM; 3476 3477 if (rl_type == ICE_SHARED_BW) { 3478 /* SRL node may be different */ 3479 cfg_node = ice_sched_get_srl_node(node, layer_num); 3480 if (!cfg_node) 3481 return ICE_ERR_CFG; 3482 } 3483 /* EIR BW and Shared BW profiles are mutually exclusive and 3484 * hence only one of them may be set for any given element 3485 */ 3486 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, 3487 bw); 3488 if (status) 3489 return status; 3490 if (bw == ICE_SCHED_DFLT_BW) 3491 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, 3492 layer_num); 3493 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); 3494 } 3495 3496 /** 3497 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default 3498 * @pi: port information structure 3499 * @node: pointer to node structure 3500 * @rl_type: rate limit type min, max, or shared 3501 * 3502 * This function configures node element's BW rate limit profile ID of 3503 * type CIR, EIR, or SRL to default. This function needs to be called 3504 * with the scheduler lock held. 3505 */ 3506 static enum ice_status 3507 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, 3508 struct ice_sched_node *node, 3509 enum ice_rl_type rl_type) 3510 { 3511 return ice_sched_set_node_bw_lmt(pi, node, rl_type, 3512 ICE_SCHED_DFLT_BW); 3513 } 3514 3515 /** 3516 * ice_sched_validate_srl_node - Check node for SRL applicability 3517 * @node: sched node to configure 3518 * @sel_layer: selected SRL layer 3519 * 3520 * This function checks if the SRL can be applied to a selected layer node on 3521 * behalf of the requested node (first argument). This function needs to be 3522 * called with scheduler lock held. 3523 */ 3524 static enum ice_status 3525 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) 3526 { 3527 /* SRL profiles are not available on all layers. Check if the 3528 * SRL profile can be applied to a node above or below the 3529 * requested node. SRL configuration is possible only if the 3530 * selected layer's node has single child. 3531 */ 3532 if (sel_layer == node->tx_sched_layer || 3533 ((sel_layer == node->tx_sched_layer + 1) && 3534 node->num_children == 1) || 3535 ((sel_layer == node->tx_sched_layer - 1) && 3536 (node->parent && node->parent->num_children == 1))) 3537 return 0; 3538 3539 return ICE_ERR_CFG; 3540 } 3541 3542 /** 3543 * ice_sched_save_q_bw - save queue node's BW information 3544 * @q_ctx: queue context structure 3545 * @rl_type: rate limit type min, max, or shared 3546 * @bw: bandwidth in Kbps - Kilo bits per sec 3547 * 3548 * Save BW information of queue type node for post replay use. 3549 */ 3550 static enum ice_status 3551 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) 3552 { 3553 switch (rl_type) { 3554 case ICE_MIN_BW: 3555 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); 3556 break; 3557 case ICE_MAX_BW: 3558 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); 3559 break; 3560 case ICE_SHARED_BW: 3561 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); 3562 break; 3563 default: 3564 return ICE_ERR_PARAM; 3565 } 3566 return 0; 3567 } 3568 3569 /** 3570 * ice_sched_set_q_bw_lmt - sets queue BW limit 3571 * @pi: port information structure 3572 * @vsi_handle: sw VSI handle 3573 * @tc: traffic class 3574 * @q_handle: software queue handle 3575 * @rl_type: min, max, or shared 3576 * @bw: bandwidth in Kbps 3577 * 3578 * This function sets BW limit of queue scheduling node. 3579 */ 3580 static enum ice_status 3581 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3582 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3583 { 3584 enum ice_status status = ICE_ERR_PARAM; 3585 struct ice_sched_node *node; 3586 struct ice_q_ctx *q_ctx; 3587 3588 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3589 return ICE_ERR_PARAM; 3590 mutex_lock(&pi->sched_lock); 3591 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); 3592 if (!q_ctx) 3593 goto exit_q_bw_lmt; 3594 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 3595 if (!node) { 3596 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); 3597 goto exit_q_bw_lmt; 3598 } 3599 3600 /* Return error if it is not a leaf node */ 3601 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) 3602 goto exit_q_bw_lmt; 3603 3604 /* SRL bandwidth layer selection */ 3605 if (rl_type == ICE_SHARED_BW) { 3606 u8 sel_layer; /* selected layer */ 3607 3608 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, 3609 node->tx_sched_layer); 3610 if (sel_layer >= pi->hw->num_tx_sched_layers) { 3611 status = ICE_ERR_PARAM; 3612 goto exit_q_bw_lmt; 3613 } 3614 status = ice_sched_validate_srl_node(node, sel_layer); 3615 if (status) 3616 goto exit_q_bw_lmt; 3617 } 3618 3619 if (bw == ICE_SCHED_DFLT_BW) 3620 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3621 else 3622 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3623 3624 if (!status) 3625 status = ice_sched_save_q_bw(q_ctx, rl_type, bw); 3626 3627 exit_q_bw_lmt: 3628 mutex_unlock(&pi->sched_lock); 3629 return status; 3630 } 3631 3632 /** 3633 * ice_cfg_q_bw_lmt - configure queue BW limit 3634 * @pi: port information structure 3635 * @vsi_handle: sw VSI handle 3636 * @tc: traffic class 3637 * @q_handle: software queue handle 3638 * @rl_type: min, max, or shared 3639 * @bw: bandwidth in Kbps 3640 * 3641 * This function configures BW limit of queue scheduling node. 3642 */ 3643 enum ice_status 3644 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3645 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3646 { 3647 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3648 bw); 3649 } 3650 3651 /** 3652 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit 3653 * @pi: port information structure 3654 * @vsi_handle: sw VSI handle 3655 * @tc: traffic class 3656 * @q_handle: software queue handle 3657 * @rl_type: min, max, or shared 3658 * 3659 * This function configures BW default limit of queue scheduling node. 3660 */ 3661 enum ice_status 3662 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3663 u16 q_handle, enum ice_rl_type rl_type) 3664 { 3665 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3666 ICE_SCHED_DFLT_BW); 3667 } 3668 3669 /** 3670 * ice_cfg_rl_burst_size - Set burst size value 3671 * @hw: pointer to the HW struct 3672 * @bytes: burst size in bytes 3673 * 3674 * This function configures/set the burst size to requested new value. The new 3675 * burst size value is used for future rate limit calls. It doesn't change the 3676 * existing or previously created RL profiles. 3677 */ 3678 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) 3679 { 3680 u16 burst_size_to_prog; 3681 3682 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || 3683 bytes > ICE_MAX_BURST_SIZE_ALLOWED) 3684 return ICE_ERR_PARAM; 3685 if (ice_round_to_num(bytes, 64) <= 3686 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { 3687 /* 64 byte granularity case */ 3688 /* Disable MSB granularity bit */ 3689 burst_size_to_prog = ICE_64_BYTE_GRANULARITY; 3690 /* round number to nearest 64 byte granularity */ 3691 bytes = ice_round_to_num(bytes, 64); 3692 /* The value is in 64 byte chunks */ 3693 burst_size_to_prog |= (u16)(bytes / 64); 3694 } else { 3695 /* k bytes granularity case */ 3696 /* Enable MSB granularity bit */ 3697 burst_size_to_prog = ICE_KBYTE_GRANULARITY; 3698 /* round number to nearest 1024 granularity */ 3699 bytes = ice_round_to_num(bytes, 1024); 3700 /* check rounding doesn't go beyond allowed */ 3701 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) 3702 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; 3703 /* The value is in k bytes */ 3704 burst_size_to_prog |= (u16)(bytes / 1024); 3705 } 3706 hw->max_burst_size = burst_size_to_prog; 3707 return 0; 3708 } 3709 3710 /** 3711 * ice_sched_replay_node_prio - re-configure node priority 3712 * @hw: pointer to the HW struct 3713 * @node: sched node to configure 3714 * @priority: priority value 3715 * 3716 * This function configures node element's priority value. It 3717 * needs to be called with scheduler lock held. 3718 */ 3719 static enum ice_status 3720 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, 3721 u8 priority) 3722 { 3723 struct ice_aqc_txsched_elem_data buf; 3724 struct ice_aqc_txsched_elem *data; 3725 enum ice_status status; 3726 3727 buf = node->info; 3728 data = &buf.data; 3729 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 3730 data->generic = priority; 3731 3732 /* Configure element */ 3733 status = ice_sched_update_elem(hw, node, &buf); 3734 return status; 3735 } 3736 3737 /** 3738 * ice_sched_replay_node_bw - replay node(s) BW 3739 * @hw: pointer to the HW struct 3740 * @node: sched node to configure 3741 * @bw_t_info: BW type information 3742 * 3743 * This function restores node's BW from bw_t_info. The caller needs 3744 * to hold the scheduler lock. 3745 */ 3746 static enum ice_status 3747 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, 3748 struct ice_bw_type_info *bw_t_info) 3749 { 3750 struct ice_port_info *pi = hw->port_info; 3751 enum ice_status status = ICE_ERR_PARAM; 3752 u16 bw_alloc; 3753 3754 if (!node) 3755 return status; 3756 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) 3757 return 0; 3758 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { 3759 status = ice_sched_replay_node_prio(hw, node, 3760 bw_t_info->generic); 3761 if (status) 3762 return status; 3763 } 3764 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { 3765 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, 3766 bw_t_info->cir_bw.bw); 3767 if (status) 3768 return status; 3769 } 3770 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { 3771 bw_alloc = bw_t_info->cir_bw.bw_alloc; 3772 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, 3773 bw_alloc); 3774 if (status) 3775 return status; 3776 } 3777 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { 3778 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, 3779 bw_t_info->eir_bw.bw); 3780 if (status) 3781 return status; 3782 } 3783 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { 3784 bw_alloc = bw_t_info->eir_bw.bw_alloc; 3785 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, 3786 bw_alloc); 3787 if (status) 3788 return status; 3789 } 3790 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) 3791 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, 3792 bw_t_info->shared_bw); 3793 return status; 3794 } 3795 3796 /** 3797 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap 3798 * @pi: port info struct 3799 * @tc_bitmap: 8 bits TC bitmap to check 3800 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return 3801 * 3802 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs 3803 * may be missing, it returns enabled TCs. This function needs to be called with 3804 * scheduler lock held. 3805 */ 3806 static void 3807 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, 3808 unsigned long *tc_bitmap, 3809 unsigned long *ena_tc_bitmap) 3810 { 3811 u8 tc; 3812 3813 /* Some TC(s) may be missing after reset, adjust for replay */ 3814 ice_for_each_traffic_class(tc) 3815 if (ice_is_tc_ena(*tc_bitmap, tc) && 3816 (ice_sched_get_tc_node(pi, tc))) 3817 set_bit(tc, ena_tc_bitmap); 3818 } 3819 3820 /** 3821 * ice_sched_replay_agg - recreate aggregator node(s) 3822 * @hw: pointer to the HW struct 3823 * 3824 * This function recreate aggregator type nodes which are not replayed earlier. 3825 * It also replay aggregator BW information. These aggregator nodes are not 3826 * associated with VSI type node yet. 3827 */ 3828 void ice_sched_replay_agg(struct ice_hw *hw) 3829 { 3830 struct ice_port_info *pi = hw->port_info; 3831 struct ice_sched_agg_info *agg_info; 3832 3833 mutex_lock(&pi->sched_lock); 3834 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 3835 /* replay aggregator (re-create aggregator node) */ 3836 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap, 3837 ICE_MAX_TRAFFIC_CLASS)) { 3838 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 3839 enum ice_status status; 3840 3841 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 3842 ice_sched_get_ena_tc_bitmap(pi, 3843 agg_info->replay_tc_bitmap, 3844 replay_bitmap); 3845 status = ice_sched_cfg_agg(hw->port_info, 3846 agg_info->agg_id, 3847 ICE_AGG_TYPE_AGG, 3848 replay_bitmap); 3849 if (status) { 3850 dev_info(ice_hw_to_dev(hw), 3851 "Replay agg id[%d] failed\n", 3852 agg_info->agg_id); 3853 /* Move on to next one */ 3854 continue; 3855 } 3856 } 3857 mutex_unlock(&pi->sched_lock); 3858 } 3859 3860 /** 3861 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization 3862 * @hw: pointer to the HW struct 3863 * 3864 * This function initialize aggregator(s) TC bitmap to zero. A required 3865 * preinit step for replaying aggregators. 3866 */ 3867 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw) 3868 { 3869 struct ice_port_info *pi = hw->port_info; 3870 struct ice_sched_agg_info *agg_info; 3871 3872 mutex_lock(&pi->sched_lock); 3873 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 3874 struct ice_sched_agg_vsi_info *agg_vsi_info; 3875 3876 agg_info->tc_bitmap[0] = 0; 3877 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, 3878 list_entry) 3879 agg_vsi_info->tc_bitmap[0] = 0; 3880 } 3881 mutex_unlock(&pi->sched_lock); 3882 } 3883 3884 /** 3885 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s) 3886 * @hw: pointer to the HW struct 3887 * @vsi_handle: software VSI handle 3888 * 3889 * This function replays aggregator node, VSI to aggregator type nodes, and 3890 * their node bandwidth information. This function needs to be called with 3891 * scheduler lock held. 3892 */ 3893 static enum ice_status 3894 ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 3895 { 3896 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 3897 struct ice_sched_agg_vsi_info *agg_vsi_info; 3898 struct ice_port_info *pi = hw->port_info; 3899 struct ice_sched_agg_info *agg_info; 3900 enum ice_status status; 3901 3902 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 3903 if (!ice_is_vsi_valid(hw, vsi_handle)) 3904 return ICE_ERR_PARAM; 3905 agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 3906 if (!agg_info) 3907 return 0; /* Not present in list - default Agg case */ 3908 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 3909 if (!agg_vsi_info) 3910 return 0; /* Not present in list - default Agg case */ 3911 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, 3912 replay_bitmap); 3913 /* Replay aggregator node associated to vsi_handle */ 3914 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, 3915 ICE_AGG_TYPE_AGG, replay_bitmap); 3916 if (status) 3917 return status; 3918 3919 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 3920 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap, 3921 replay_bitmap); 3922 /* Move this VSI (vsi_handle) to above aggregator */ 3923 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle, 3924 replay_bitmap); 3925 } 3926 3927 /** 3928 * ice_replay_vsi_agg - replay VSI to aggregator node 3929 * @hw: pointer to the HW struct 3930 * @vsi_handle: software VSI handle 3931 * 3932 * This function replays association of VSI to aggregator type nodes, and 3933 * node bandwidth information. 3934 */ 3935 enum ice_status ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 3936 { 3937 struct ice_port_info *pi = hw->port_info; 3938 enum ice_status status; 3939 3940 mutex_lock(&pi->sched_lock); 3941 status = ice_sched_replay_vsi_agg(hw, vsi_handle); 3942 mutex_unlock(&pi->sched_lock); 3943 return status; 3944 } 3945 3946 /** 3947 * ice_sched_replay_q_bw - replay queue type node BW 3948 * @pi: port information structure 3949 * @q_ctx: queue context structure 3950 * 3951 * This function replays queue type node bandwidth. This function needs to be 3952 * called with scheduler lock held. 3953 */ 3954 enum ice_status 3955 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) 3956 { 3957 struct ice_sched_node *q_node; 3958 3959 /* Following also checks the presence of node in tree */ 3960 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 3961 if (!q_node) 3962 return ICE_ERR_PARAM; 3963 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); 3964 } 3965