xref: /linux/drivers/net/ethernet/intel/ice/ice_sched.c (revision 97ef3b7f4fdf8ad6818aa2c8201c3b72cc635e16)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_sched.h"
5 
6 /**
7  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
8  * @pi: port information structure
9  * @info: Scheduler element information from firmware
10  *
11  * This function inserts the root node of the scheduling tree topology
12  * to the SW DB.
13  */
14 static enum ice_status
15 ice_sched_add_root_node(struct ice_port_info *pi,
16 			struct ice_aqc_txsched_elem_data *info)
17 {
18 	struct ice_sched_node *root;
19 	struct ice_hw *hw;
20 
21 	if (!pi)
22 		return ICE_ERR_PARAM;
23 
24 	hw = pi->hw;
25 
26 	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
27 	if (!root)
28 		return ICE_ERR_NO_MEMORY;
29 
30 	/* coverity[suspicious_sizeof] */
31 	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
32 				      sizeof(*root), GFP_KERNEL);
33 	if (!root->children) {
34 		devm_kfree(ice_hw_to_dev(hw), root);
35 		return ICE_ERR_NO_MEMORY;
36 	}
37 
38 	memcpy(&root->info, info, sizeof(*info));
39 	pi->root = root;
40 	return 0;
41 }
42 
43 /**
44  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
45  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
46  * @teid: node TEID to search
47  *
48  * This function searches for a node matching the TEID in the scheduling tree
49  * from the SW DB. The search is recursive and is restricted by the number of
50  * layers it has searched through; stopping at the max supported layer.
51  *
52  * This function needs to be called when holding the port_info->sched_lock
53  */
54 struct ice_sched_node *
55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
56 {
57 	u16 i;
58 
59 	/* The TEID is same as that of the start_node */
60 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
61 		return start_node;
62 
63 	/* The node has no children or is at the max layer */
64 	if (!start_node->num_children ||
65 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
66 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
67 		return NULL;
68 
69 	/* Check if TEID matches to any of the children nodes */
70 	for (i = 0; i < start_node->num_children; i++)
71 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
72 			return start_node->children[i];
73 
74 	/* Search within each child's sub-tree */
75 	for (i = 0; i < start_node->num_children; i++) {
76 		struct ice_sched_node *tmp;
77 
78 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
79 						  teid);
80 		if (tmp)
81 			return tmp;
82 	}
83 
84 	return NULL;
85 }
86 
87 /**
88  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
89  * @hw: pointer to the HW struct
90  * @cmd_opc: cmd opcode
91  * @elems_req: number of elements to request
92  * @buf: pointer to buffer
93  * @buf_size: buffer size in bytes
94  * @elems_resp: returns total number of elements response
95  * @cd: pointer to command details structure or NULL
96  *
97  * This function sends a scheduling elements cmd (cmd_opc)
98  */
99 static enum ice_status
100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
101 			    u16 elems_req, void *buf, u16 buf_size,
102 			    u16 *elems_resp, struct ice_sq_cd *cd)
103 {
104 	struct ice_aqc_sched_elem_cmd *cmd;
105 	struct ice_aq_desc desc;
106 	enum ice_status status;
107 
108 	cmd = &desc.params.sched_elem_cmd;
109 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
110 	cmd->num_elem_req = cpu_to_le16(elems_req);
111 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
112 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
113 	if (!status && elems_resp)
114 		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
115 
116 	return status;
117 }
118 
119 /**
120  * ice_aq_query_sched_elems - query scheduler elements
121  * @hw: pointer to the HW struct
122  * @elems_req: number of elements to query
123  * @buf: pointer to buffer
124  * @buf_size: buffer size in bytes
125  * @elems_ret: returns total number of elements returned
126  * @cd: pointer to command details structure or NULL
127  *
128  * Query scheduling elements (0x0404)
129  */
130 enum ice_status
131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
132 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
133 			 u16 *elems_ret, struct ice_sq_cd *cd)
134 {
135 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
136 					   elems_req, (void *)buf, buf_size,
137 					   elems_ret, cd);
138 }
139 
140 /**
141  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
142  * @pi: port information structure
143  * @layer: Scheduler layer of the node
144  * @info: Scheduler element information from firmware
145  *
146  * This function inserts a scheduler node to the SW DB.
147  */
148 enum ice_status
149 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
150 		   struct ice_aqc_txsched_elem_data *info)
151 {
152 	struct ice_aqc_txsched_elem_data elem;
153 	struct ice_sched_node *parent;
154 	struct ice_sched_node *node;
155 	enum ice_status status;
156 	struct ice_hw *hw;
157 
158 	if (!pi)
159 		return ICE_ERR_PARAM;
160 
161 	hw = pi->hw;
162 
163 	/* A valid parent node should be there */
164 	parent = ice_sched_find_node_by_teid(pi->root,
165 					     le32_to_cpu(info->parent_teid));
166 	if (!parent) {
167 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
168 			  le32_to_cpu(info->parent_teid));
169 		return ICE_ERR_PARAM;
170 	}
171 
172 	/* query the current node information from FW before adding it
173 	 * to the SW DB
174 	 */
175 	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
176 	if (status)
177 		return status;
178 
179 	node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
180 	if (!node)
181 		return ICE_ERR_NO_MEMORY;
182 	if (hw->max_children[layer]) {
183 		/* coverity[suspicious_sizeof] */
184 		node->children = devm_kcalloc(ice_hw_to_dev(hw),
185 					      hw->max_children[layer],
186 					      sizeof(*node), GFP_KERNEL);
187 		if (!node->children) {
188 			devm_kfree(ice_hw_to_dev(hw), node);
189 			return ICE_ERR_NO_MEMORY;
190 		}
191 	}
192 
193 	node->in_use = true;
194 	node->parent = parent;
195 	node->tx_sched_layer = layer;
196 	parent->children[parent->num_children++] = node;
197 	node->info = elem;
198 	return 0;
199 }
200 
201 /**
202  * ice_aq_delete_sched_elems - delete scheduler elements
203  * @hw: pointer to the HW struct
204  * @grps_req: number of groups to delete
205  * @buf: pointer to buffer
206  * @buf_size: buffer size in bytes
207  * @grps_del: returns total number of elements deleted
208  * @cd: pointer to command details structure or NULL
209  *
210  * Delete scheduling elements (0x040F)
211  */
212 static enum ice_status
213 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
214 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
215 			  u16 *grps_del, struct ice_sq_cd *cd)
216 {
217 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
218 					   grps_req, (void *)buf, buf_size,
219 					   grps_del, cd);
220 }
221 
222 /**
223  * ice_sched_remove_elems - remove nodes from HW
224  * @hw: pointer to the HW struct
225  * @parent: pointer to the parent node
226  * @num_nodes: number of nodes
227  * @node_teids: array of node teids to be deleted
228  *
229  * This function remove nodes from HW
230  */
231 static enum ice_status
232 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
233 		       u16 num_nodes, u32 *node_teids)
234 {
235 	struct ice_aqc_delete_elem *buf;
236 	u16 i, num_groups_removed = 0;
237 	enum ice_status status;
238 	u16 buf_size;
239 
240 	buf_size = struct_size(buf, teid, num_nodes);
241 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
242 	if (!buf)
243 		return ICE_ERR_NO_MEMORY;
244 
245 	buf->hdr.parent_teid = parent->info.node_teid;
246 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
247 	for (i = 0; i < num_nodes; i++)
248 		buf->teid[i] = cpu_to_le32(node_teids[i]);
249 
250 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
251 					   &num_groups_removed, NULL);
252 	if (status || num_groups_removed != 1)
253 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
254 			  hw->adminq.sq_last_status);
255 
256 	devm_kfree(ice_hw_to_dev(hw), buf);
257 	return status;
258 }
259 
260 /**
261  * ice_sched_get_first_node - get the first node of the given layer
262  * @pi: port information structure
263  * @parent: pointer the base node of the subtree
264  * @layer: layer number
265  *
266  * This function retrieves the first node of the given layer from the subtree
267  */
268 static struct ice_sched_node *
269 ice_sched_get_first_node(struct ice_port_info *pi,
270 			 struct ice_sched_node *parent, u8 layer)
271 {
272 	return pi->sib_head[parent->tc_num][layer];
273 }
274 
275 /**
276  * ice_sched_get_tc_node - get pointer to TC node
277  * @pi: port information structure
278  * @tc: TC number
279  *
280  * This function returns the TC node pointer
281  */
282 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
283 {
284 	u8 i;
285 
286 	if (!pi || !pi->root)
287 		return NULL;
288 	for (i = 0; i < pi->root->num_children; i++)
289 		if (pi->root->children[i]->tc_num == tc)
290 			return pi->root->children[i];
291 	return NULL;
292 }
293 
294 /**
295  * ice_free_sched_node - Free a Tx scheduler node from SW DB
296  * @pi: port information structure
297  * @node: pointer to the ice_sched_node struct
298  *
299  * This function frees up a node from SW DB as well as from HW
300  *
301  * This function needs to be called with the port_info->sched_lock held
302  */
303 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
304 {
305 	struct ice_sched_node *parent;
306 	struct ice_hw *hw = pi->hw;
307 	u8 i, j;
308 
309 	/* Free the children before freeing up the parent node
310 	 * The parent array is updated below and that shifts the nodes
311 	 * in the array. So always pick the first child if num children > 0
312 	 */
313 	while (node->num_children)
314 		ice_free_sched_node(pi, node->children[0]);
315 
316 	/* Leaf, TC and root nodes can't be deleted by SW */
317 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
318 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
319 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
320 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
321 		u32 teid = le32_to_cpu(node->info.node_teid);
322 
323 		ice_sched_remove_elems(hw, node->parent, 1, &teid);
324 	}
325 	parent = node->parent;
326 	/* root has no parent */
327 	if (parent) {
328 		struct ice_sched_node *p;
329 
330 		/* update the parent */
331 		for (i = 0; i < parent->num_children; i++)
332 			if (parent->children[i] == node) {
333 				for (j = i + 1; j < parent->num_children; j++)
334 					parent->children[j - 1] =
335 						parent->children[j];
336 				parent->num_children--;
337 				break;
338 			}
339 
340 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
341 		while (p) {
342 			if (p->sibling == node) {
343 				p->sibling = node->sibling;
344 				break;
345 			}
346 			p = p->sibling;
347 		}
348 
349 		/* update the sibling head if head is getting removed */
350 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
351 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
352 				node->sibling;
353 	}
354 
355 	/* leaf nodes have no children */
356 	if (node->children)
357 		devm_kfree(ice_hw_to_dev(hw), node->children);
358 	devm_kfree(ice_hw_to_dev(hw), node);
359 }
360 
361 /**
362  * ice_aq_get_dflt_topo - gets default scheduler topology
363  * @hw: pointer to the HW struct
364  * @lport: logical port number
365  * @buf: pointer to buffer
366  * @buf_size: buffer size in bytes
367  * @num_branches: returns total number of queue to port branches
368  * @cd: pointer to command details structure or NULL
369  *
370  * Get default scheduler topology (0x400)
371  */
372 static enum ice_status
373 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
374 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
375 		     u8 *num_branches, struct ice_sq_cd *cd)
376 {
377 	struct ice_aqc_get_topo *cmd;
378 	struct ice_aq_desc desc;
379 	enum ice_status status;
380 
381 	cmd = &desc.params.get_topo;
382 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
383 	cmd->port_num = lport;
384 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
385 	if (!status && num_branches)
386 		*num_branches = cmd->num_branches;
387 
388 	return status;
389 }
390 
391 /**
392  * ice_aq_add_sched_elems - adds scheduling element
393  * @hw: pointer to the HW struct
394  * @grps_req: the number of groups that are requested to be added
395  * @buf: pointer to buffer
396  * @buf_size: buffer size in bytes
397  * @grps_added: returns total number of groups added
398  * @cd: pointer to command details structure or NULL
399  *
400  * Add scheduling elements (0x0401)
401  */
402 static enum ice_status
403 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
404 		       struct ice_aqc_add_elem *buf, u16 buf_size,
405 		       u16 *grps_added, struct ice_sq_cd *cd)
406 {
407 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
408 					   grps_req, (void *)buf, buf_size,
409 					   grps_added, cd);
410 }
411 
412 /**
413  * ice_aq_cfg_sched_elems - configures scheduler elements
414  * @hw: pointer to the HW struct
415  * @elems_req: number of elements to configure
416  * @buf: pointer to buffer
417  * @buf_size: buffer size in bytes
418  * @elems_cfgd: returns total number of elements configured
419  * @cd: pointer to command details structure or NULL
420  *
421  * Configure scheduling elements (0x0403)
422  */
423 static enum ice_status
424 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
425 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
426 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
427 {
428 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
429 					   elems_req, (void *)buf, buf_size,
430 					   elems_cfgd, cd);
431 }
432 
433 /**
434  * ice_aq_move_sched_elems - move scheduler elements
435  * @hw: pointer to the HW struct
436  * @grps_req: number of groups to move
437  * @buf: pointer to buffer
438  * @buf_size: buffer size in bytes
439  * @grps_movd: returns total number of groups moved
440  * @cd: pointer to command details structure or NULL
441  *
442  * Move scheduling elements (0x0408)
443  */
444 static enum ice_status
445 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
446 			struct ice_aqc_move_elem *buf, u16 buf_size,
447 			u16 *grps_movd, struct ice_sq_cd *cd)
448 {
449 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
450 					   grps_req, (void *)buf, buf_size,
451 					   grps_movd, cd);
452 }
453 
454 /**
455  * ice_aq_suspend_sched_elems - suspend scheduler elements
456  * @hw: pointer to the HW struct
457  * @elems_req: number of elements to suspend
458  * @buf: pointer to buffer
459  * @buf_size: buffer size in bytes
460  * @elems_ret: returns total number of elements suspended
461  * @cd: pointer to command details structure or NULL
462  *
463  * Suspend scheduling elements (0x0409)
464  */
465 static enum ice_status
466 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
467 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
468 {
469 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
470 					   elems_req, (void *)buf, buf_size,
471 					   elems_ret, cd);
472 }
473 
474 /**
475  * ice_aq_resume_sched_elems - resume scheduler elements
476  * @hw: pointer to the HW struct
477  * @elems_req: number of elements to resume
478  * @buf: pointer to buffer
479  * @buf_size: buffer size in bytes
480  * @elems_ret: returns total number of elements resumed
481  * @cd: pointer to command details structure or NULL
482  *
483  * resume scheduling elements (0x040A)
484  */
485 static enum ice_status
486 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
487 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
488 {
489 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
490 					   elems_req, (void *)buf, buf_size,
491 					   elems_ret, cd);
492 }
493 
494 /**
495  * ice_aq_query_sched_res - query scheduler resource
496  * @hw: pointer to the HW struct
497  * @buf_size: buffer size in bytes
498  * @buf: pointer to buffer
499  * @cd: pointer to command details structure or NULL
500  *
501  * Query scheduler resource allocation (0x0412)
502  */
503 static enum ice_status
504 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
505 		       struct ice_aqc_query_txsched_res_resp *buf,
506 		       struct ice_sq_cd *cd)
507 {
508 	struct ice_aq_desc desc;
509 
510 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
511 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
512 }
513 
514 /**
515  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
516  * @hw: pointer to the HW struct
517  * @num_nodes: number of nodes
518  * @node_teids: array of node teids to be suspended or resumed
519  * @suspend: true means suspend / false means resume
520  *
521  * This function suspends or resumes HW nodes
522  */
523 static enum ice_status
524 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
525 			       bool suspend)
526 {
527 	u16 i, buf_size, num_elem_ret = 0;
528 	enum ice_status status;
529 	__le32 *buf;
530 
531 	buf_size = sizeof(*buf) * num_nodes;
532 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
533 	if (!buf)
534 		return ICE_ERR_NO_MEMORY;
535 
536 	for (i = 0; i < num_nodes; i++)
537 		buf[i] = cpu_to_le32(node_teids[i]);
538 
539 	if (suspend)
540 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
541 						    buf_size, &num_elem_ret,
542 						    NULL);
543 	else
544 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
545 						   buf_size, &num_elem_ret,
546 						   NULL);
547 	if (status || num_elem_ret != num_nodes)
548 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
549 
550 	devm_kfree(ice_hw_to_dev(hw), buf);
551 	return status;
552 }
553 
554 /**
555  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
556  * @hw: pointer to the HW struct
557  * @vsi_handle: VSI handle
558  * @tc: TC number
559  * @new_numqs: number of queues
560  */
561 static enum ice_status
562 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
563 {
564 	struct ice_vsi_ctx *vsi_ctx;
565 	struct ice_q_ctx *q_ctx;
566 
567 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
568 	if (!vsi_ctx)
569 		return ICE_ERR_PARAM;
570 	/* allocate LAN queue contexts */
571 	if (!vsi_ctx->lan_q_ctx[tc]) {
572 		vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
573 						      new_numqs,
574 						      sizeof(*q_ctx),
575 						      GFP_KERNEL);
576 		if (!vsi_ctx->lan_q_ctx[tc])
577 			return ICE_ERR_NO_MEMORY;
578 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
579 		return 0;
580 	}
581 	/* num queues are increased, update the queue contexts */
582 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
583 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
584 
585 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
586 				     sizeof(*q_ctx), GFP_KERNEL);
587 		if (!q_ctx)
588 			return ICE_ERR_NO_MEMORY;
589 		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
590 		       prev_num * sizeof(*q_ctx));
591 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
592 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
593 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
594 	}
595 	return 0;
596 }
597 
598 /**
599  * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
600  * @hw: pointer to the HW struct
601  * @vsi_handle: VSI handle
602  * @tc: TC number
603  * @new_numqs: number of queues
604  */
605 static enum ice_status
606 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
607 {
608 	struct ice_vsi_ctx *vsi_ctx;
609 	struct ice_q_ctx *q_ctx;
610 
611 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
612 	if (!vsi_ctx)
613 		return ICE_ERR_PARAM;
614 	/* allocate RDMA queue contexts */
615 	if (!vsi_ctx->rdma_q_ctx[tc]) {
616 		vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
617 						       new_numqs,
618 						       sizeof(*q_ctx),
619 						       GFP_KERNEL);
620 		if (!vsi_ctx->rdma_q_ctx[tc])
621 			return ICE_ERR_NO_MEMORY;
622 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
623 		return 0;
624 	}
625 	/* num queues are increased, update the queue contexts */
626 	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
627 		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
628 
629 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
630 				     sizeof(*q_ctx), GFP_KERNEL);
631 		if (!q_ctx)
632 			return ICE_ERR_NO_MEMORY;
633 		memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
634 		       prev_num * sizeof(*q_ctx));
635 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
636 		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
637 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
638 	}
639 	return 0;
640 }
641 
642 /**
643  * ice_aq_rl_profile - performs a rate limiting task
644  * @hw: pointer to the HW struct
645  * @opcode: opcode for add, query, or remove profile(s)
646  * @num_profiles: the number of profiles
647  * @buf: pointer to buffer
648  * @buf_size: buffer size in bytes
649  * @num_processed: number of processed add or remove profile(s) to return
650  * @cd: pointer to command details structure
651  *
652  * RL profile function to add, query, or remove profile(s)
653  */
654 static enum ice_status
655 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
656 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
657 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
658 {
659 	struct ice_aqc_rl_profile *cmd;
660 	struct ice_aq_desc desc;
661 	enum ice_status status;
662 
663 	cmd = &desc.params.rl_profile;
664 
665 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
666 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
667 	cmd->num_profiles = cpu_to_le16(num_profiles);
668 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
669 	if (!status && num_processed)
670 		*num_processed = le16_to_cpu(cmd->num_processed);
671 	return status;
672 }
673 
674 /**
675  * ice_aq_add_rl_profile - adds rate limiting profile(s)
676  * @hw: pointer to the HW struct
677  * @num_profiles: the number of profile(s) to be add
678  * @buf: pointer to buffer
679  * @buf_size: buffer size in bytes
680  * @num_profiles_added: total number of profiles added to return
681  * @cd: pointer to command details structure
682  *
683  * Add RL profile (0x0410)
684  */
685 static enum ice_status
686 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
687 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
688 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
689 {
690 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
691 				 buf, buf_size, num_profiles_added, cd);
692 }
693 
694 /**
695  * ice_aq_remove_rl_profile - removes RL profile(s)
696  * @hw: pointer to the HW struct
697  * @num_profiles: the number of profile(s) to remove
698  * @buf: pointer to buffer
699  * @buf_size: buffer size in bytes
700  * @num_profiles_removed: total number of profiles removed to return
701  * @cd: pointer to command details structure or NULL
702  *
703  * Remove RL profile (0x0415)
704  */
705 static enum ice_status
706 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
707 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
708 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
709 {
710 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
711 				 num_profiles, buf, buf_size,
712 				 num_profiles_removed, cd);
713 }
714 
715 /**
716  * ice_sched_del_rl_profile - remove RL profile
717  * @hw: pointer to the HW struct
718  * @rl_info: rate limit profile information
719  *
720  * If the profile ID is not referenced anymore, it removes profile ID with
721  * its associated parameters from HW DB,and locally. The caller needs to
722  * hold scheduler lock.
723  */
724 static enum ice_status
725 ice_sched_del_rl_profile(struct ice_hw *hw,
726 			 struct ice_aqc_rl_profile_info *rl_info)
727 {
728 	struct ice_aqc_rl_profile_elem *buf;
729 	u16 num_profiles_removed;
730 	enum ice_status status;
731 	u16 num_profiles = 1;
732 
733 	if (rl_info->prof_id_ref != 0)
734 		return ICE_ERR_IN_USE;
735 
736 	/* Safe to remove profile ID */
737 	buf = &rl_info->profile;
738 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
739 					  &num_profiles_removed, NULL);
740 	if (status || num_profiles_removed != num_profiles)
741 		return ICE_ERR_CFG;
742 
743 	/* Delete stale entry now */
744 	list_del(&rl_info->list_entry);
745 	devm_kfree(ice_hw_to_dev(hw), rl_info);
746 	return status;
747 }
748 
749 /**
750  * ice_sched_clear_rl_prof - clears RL prof entries
751  * @pi: port information structure
752  *
753  * This function removes all RL profile from HW as well as from SW DB.
754  */
755 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
756 {
757 	u16 ln;
758 
759 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
760 		struct ice_aqc_rl_profile_info *rl_prof_elem;
761 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
762 
763 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
764 					 &pi->rl_prof_list[ln], list_entry) {
765 			struct ice_hw *hw = pi->hw;
766 			enum ice_status status;
767 
768 			rl_prof_elem->prof_id_ref = 0;
769 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
770 			if (status) {
771 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
772 				/* On error, free mem required */
773 				list_del(&rl_prof_elem->list_entry);
774 				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
775 			}
776 		}
777 	}
778 }
779 
780 /**
781  * ice_sched_clear_agg - clears the aggregator related information
782  * @hw: pointer to the hardware structure
783  *
784  * This function removes aggregator list and free up aggregator related memory
785  * previously allocated.
786  */
787 void ice_sched_clear_agg(struct ice_hw *hw)
788 {
789 	struct ice_sched_agg_info *agg_info;
790 	struct ice_sched_agg_info *atmp;
791 
792 	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
793 		struct ice_sched_agg_vsi_info *agg_vsi_info;
794 		struct ice_sched_agg_vsi_info *vtmp;
795 
796 		list_for_each_entry_safe(agg_vsi_info, vtmp,
797 					 &agg_info->agg_vsi_list, list_entry) {
798 			list_del(&agg_vsi_info->list_entry);
799 			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
800 		}
801 		list_del(&agg_info->list_entry);
802 		devm_kfree(ice_hw_to_dev(hw), agg_info);
803 	}
804 }
805 
806 /**
807  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
808  * @pi: port information structure
809  *
810  * This function removes all the nodes from HW as well as from SW DB.
811  */
812 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
813 {
814 	if (!pi)
815 		return;
816 	/* remove RL profiles related lists */
817 	ice_sched_clear_rl_prof(pi);
818 	if (pi->root) {
819 		ice_free_sched_node(pi, pi->root);
820 		pi->root = NULL;
821 	}
822 }
823 
824 /**
825  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
826  * @pi: port information structure
827  *
828  * Cleanup scheduling elements from SW DB
829  */
830 void ice_sched_clear_port(struct ice_port_info *pi)
831 {
832 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
833 		return;
834 
835 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
836 	mutex_lock(&pi->sched_lock);
837 	ice_sched_clear_tx_topo(pi);
838 	mutex_unlock(&pi->sched_lock);
839 	mutex_destroy(&pi->sched_lock);
840 }
841 
842 /**
843  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
844  * @hw: pointer to the HW struct
845  *
846  * Cleanup scheduling elements from SW DB for all the ports
847  */
848 void ice_sched_cleanup_all(struct ice_hw *hw)
849 {
850 	if (!hw)
851 		return;
852 
853 	if (hw->layer_info) {
854 		devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
855 		hw->layer_info = NULL;
856 	}
857 
858 	ice_sched_clear_port(hw->port_info);
859 
860 	hw->num_tx_sched_layers = 0;
861 	hw->num_tx_sched_phys_layers = 0;
862 	hw->flattened_layers = 0;
863 	hw->max_cgds = 0;
864 }
865 
866 /**
867  * ice_sched_add_elems - add nodes to HW and SW DB
868  * @pi: port information structure
869  * @tc_node: pointer to the branch node
870  * @parent: pointer to the parent node
871  * @layer: layer number to add nodes
872  * @num_nodes: number of nodes
873  * @num_nodes_added: pointer to num nodes added
874  * @first_node_teid: if new nodes are added then return the TEID of first node
875  *
876  * This function add nodes to HW as well as to SW DB for a given layer
877  */
878 static enum ice_status
879 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
880 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
881 		    u16 *num_nodes_added, u32 *first_node_teid)
882 {
883 	struct ice_sched_node *prev, *new_node;
884 	struct ice_aqc_add_elem *buf;
885 	u16 i, num_groups_added = 0;
886 	enum ice_status status = 0;
887 	struct ice_hw *hw = pi->hw;
888 	size_t buf_size;
889 	u32 teid;
890 
891 	buf_size = struct_size(buf, generic, num_nodes);
892 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
893 	if (!buf)
894 		return ICE_ERR_NO_MEMORY;
895 
896 	buf->hdr.parent_teid = parent->info.node_teid;
897 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
898 	for (i = 0; i < num_nodes; i++) {
899 		buf->generic[i].parent_teid = parent->info.node_teid;
900 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
901 		buf->generic[i].data.valid_sections =
902 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
903 			ICE_AQC_ELEM_VALID_EIR;
904 		buf->generic[i].data.generic = 0;
905 		buf->generic[i].data.cir_bw.bw_profile_idx =
906 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
907 		buf->generic[i].data.cir_bw.bw_alloc =
908 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
909 		buf->generic[i].data.eir_bw.bw_profile_idx =
910 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
911 		buf->generic[i].data.eir_bw.bw_alloc =
912 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
913 	}
914 
915 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
916 					&num_groups_added, NULL);
917 	if (status || num_groups_added != 1) {
918 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
919 			  hw->adminq.sq_last_status);
920 		devm_kfree(ice_hw_to_dev(hw), buf);
921 		return ICE_ERR_CFG;
922 	}
923 
924 	*num_nodes_added = num_nodes;
925 	/* add nodes to the SW DB */
926 	for (i = 0; i < num_nodes; i++) {
927 		status = ice_sched_add_node(pi, layer, &buf->generic[i]);
928 		if (status) {
929 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
930 				  status);
931 			break;
932 		}
933 
934 		teid = le32_to_cpu(buf->generic[i].node_teid);
935 		new_node = ice_sched_find_node_by_teid(parent, teid);
936 		if (!new_node) {
937 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
938 			break;
939 		}
940 
941 		new_node->sibling = NULL;
942 		new_node->tc_num = tc_node->tc_num;
943 
944 		/* add it to previous node sibling pointer */
945 		/* Note: siblings are not linked across branches */
946 		prev = ice_sched_get_first_node(pi, tc_node, layer);
947 		if (prev && prev != new_node) {
948 			while (prev->sibling)
949 				prev = prev->sibling;
950 			prev->sibling = new_node;
951 		}
952 
953 		/* initialize the sibling head */
954 		if (!pi->sib_head[tc_node->tc_num][layer])
955 			pi->sib_head[tc_node->tc_num][layer] = new_node;
956 
957 		if (i == 0)
958 			*first_node_teid = teid;
959 	}
960 
961 	devm_kfree(ice_hw_to_dev(hw), buf);
962 	return status;
963 }
964 
965 /**
966  * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
967  * @pi: port information structure
968  * @tc_node: pointer to TC node
969  * @parent: pointer to parent node
970  * @layer: layer number to add nodes
971  * @num_nodes: number of nodes to be added
972  * @first_node_teid: pointer to the first node TEID
973  * @num_nodes_added: pointer to number of nodes added
974  *
975  * Add nodes into specific HW layer.
976  */
977 static enum ice_status
978 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
979 				struct ice_sched_node *tc_node,
980 				struct ice_sched_node *parent, u8 layer,
981 				u16 num_nodes, u32 *first_node_teid,
982 				u16 *num_nodes_added)
983 {
984 	u16 max_child_nodes;
985 
986 	*num_nodes_added = 0;
987 
988 	if (!num_nodes)
989 		return 0;
990 
991 	if (!parent || layer < pi->hw->sw_entry_point_layer)
992 		return ICE_ERR_PARAM;
993 
994 	/* max children per node per layer */
995 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
996 
997 	/* current number of children + required nodes exceed max children */
998 	if ((parent->num_children + num_nodes) > max_child_nodes) {
999 		/* Fail if the parent is a TC node */
1000 		if (parent == tc_node)
1001 			return ICE_ERR_CFG;
1002 		return ICE_ERR_MAX_LIMIT;
1003 	}
1004 
1005 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1006 				   num_nodes_added, first_node_teid);
1007 }
1008 
1009 /**
1010  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1011  * @pi: port information structure
1012  * @tc_node: pointer to TC node
1013  * @parent: pointer to parent node
1014  * @layer: layer number to add nodes
1015  * @num_nodes: number of nodes to be added
1016  * @first_node_teid: pointer to the first node TEID
1017  * @num_nodes_added: pointer to number of nodes added
1018  *
1019  * This function add nodes to a given layer.
1020  */
1021 static enum ice_status
1022 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1023 			     struct ice_sched_node *tc_node,
1024 			     struct ice_sched_node *parent, u8 layer,
1025 			     u16 num_nodes, u32 *first_node_teid,
1026 			     u16 *num_nodes_added)
1027 {
1028 	u32 *first_teid_ptr = first_node_teid;
1029 	u16 new_num_nodes = num_nodes;
1030 	enum ice_status status = 0;
1031 
1032 	*num_nodes_added = 0;
1033 	while (*num_nodes_added < num_nodes) {
1034 		u16 max_child_nodes, num_added = 0;
1035 		/* cppcheck-suppress unusedVariable */
1036 		u32 temp;
1037 
1038 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1039 							 layer,	new_num_nodes,
1040 							 first_teid_ptr,
1041 							 &num_added);
1042 		if (!status)
1043 			*num_nodes_added += num_added;
1044 		/* added more nodes than requested ? */
1045 		if (*num_nodes_added > num_nodes) {
1046 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1047 				  *num_nodes_added);
1048 			status = ICE_ERR_CFG;
1049 			break;
1050 		}
1051 		/* break if all the nodes are added successfully */
1052 		if (!status && (*num_nodes_added == num_nodes))
1053 			break;
1054 		/* break if the error is not max limit */
1055 		if (status && status != ICE_ERR_MAX_LIMIT)
1056 			break;
1057 		/* Exceeded the max children */
1058 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1059 		/* utilize all the spaces if the parent is not full */
1060 		if (parent->num_children < max_child_nodes) {
1061 			new_num_nodes = max_child_nodes - parent->num_children;
1062 		} else {
1063 			/* This parent is full, try the next sibling */
1064 			parent = parent->sibling;
1065 			/* Don't modify the first node TEID memory if the
1066 			 * first node was added already in the above call.
1067 			 * Instead send some temp memory for all other
1068 			 * recursive calls.
1069 			 */
1070 			if (num_added)
1071 				first_teid_ptr = &temp;
1072 
1073 			new_num_nodes = num_nodes - *num_nodes_added;
1074 		}
1075 	}
1076 	return status;
1077 }
1078 
1079 /**
1080  * ice_sched_get_qgrp_layer - get the current queue group layer number
1081  * @hw: pointer to the HW struct
1082  *
1083  * This function returns the current queue group layer number
1084  */
1085 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1086 {
1087 	/* It's always total layers - 1, the array is 0 relative so -2 */
1088 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1089 }
1090 
1091 /**
1092  * ice_sched_get_vsi_layer - get the current VSI layer number
1093  * @hw: pointer to the HW struct
1094  *
1095  * This function returns the current VSI layer number
1096  */
1097 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1098 {
1099 	/* Num Layers       VSI layer
1100 	 *     9               6
1101 	 *     7               4
1102 	 *     5 or less       sw_entry_point_layer
1103 	 */
1104 	/* calculate the VSI layer based on number of layers. */
1105 	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1106 		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1107 
1108 		if (layer > hw->sw_entry_point_layer)
1109 			return layer;
1110 	}
1111 	return hw->sw_entry_point_layer;
1112 }
1113 
1114 /**
1115  * ice_sched_get_agg_layer - get the current aggregator layer number
1116  * @hw: pointer to the HW struct
1117  *
1118  * This function returns the current aggregator layer number
1119  */
1120 static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1121 {
1122 	/* Num Layers       aggregator layer
1123 	 *     9               4
1124 	 *     7 or less       sw_entry_point_layer
1125 	 */
1126 	/* calculate the aggregator layer based on number of layers. */
1127 	if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1128 		u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1129 
1130 		if (layer > hw->sw_entry_point_layer)
1131 			return layer;
1132 	}
1133 	return hw->sw_entry_point_layer;
1134 }
1135 
1136 /**
1137  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1138  * @pi: port information structure
1139  *
1140  * This function removes the leaf node that was created by the FW
1141  * during initialization
1142  */
1143 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1144 {
1145 	struct ice_sched_node *node;
1146 
1147 	node = pi->root;
1148 	while (node) {
1149 		if (!node->num_children)
1150 			break;
1151 		node = node->children[0];
1152 	}
1153 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1154 		u32 teid = le32_to_cpu(node->info.node_teid);
1155 		enum ice_status status;
1156 
1157 		/* remove the default leaf node */
1158 		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1159 		if (!status)
1160 			ice_free_sched_node(pi, node);
1161 	}
1162 }
1163 
1164 /**
1165  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1166  * @pi: port information structure
1167  *
1168  * This function frees all the nodes except root and TC that were created by
1169  * the FW during initialization
1170  */
1171 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1172 {
1173 	struct ice_sched_node *node;
1174 
1175 	ice_rm_dflt_leaf_node(pi);
1176 
1177 	/* remove the default nodes except TC and root nodes */
1178 	node = pi->root;
1179 	while (node) {
1180 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1181 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1182 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1183 			ice_free_sched_node(pi, node);
1184 			break;
1185 		}
1186 
1187 		if (!node->num_children)
1188 			break;
1189 		node = node->children[0];
1190 	}
1191 }
1192 
1193 /**
1194  * ice_sched_init_port - Initialize scheduler by querying information from FW
1195  * @pi: port info structure for the tree to cleanup
1196  *
1197  * This function is the initial call to find the total number of Tx scheduler
1198  * resources, default topology created by firmware and storing the information
1199  * in SW DB.
1200  */
1201 enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1202 {
1203 	struct ice_aqc_get_topo_elem *buf;
1204 	enum ice_status status;
1205 	struct ice_hw *hw;
1206 	u8 num_branches;
1207 	u16 num_elems;
1208 	u8 i, j;
1209 
1210 	if (!pi)
1211 		return ICE_ERR_PARAM;
1212 	hw = pi->hw;
1213 
1214 	/* Query the Default Topology from FW */
1215 	buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1216 	if (!buf)
1217 		return ICE_ERR_NO_MEMORY;
1218 
1219 	/* Query default scheduling tree topology */
1220 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1221 				      &num_branches, NULL);
1222 	if (status)
1223 		goto err_init_port;
1224 
1225 	/* num_branches should be between 1-8 */
1226 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1227 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1228 			  num_branches);
1229 		status = ICE_ERR_PARAM;
1230 		goto err_init_port;
1231 	}
1232 
1233 	/* get the number of elements on the default/first branch */
1234 	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1235 
1236 	/* num_elems should always be between 1-9 */
1237 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1238 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1239 			  num_elems);
1240 		status = ICE_ERR_PARAM;
1241 		goto err_init_port;
1242 	}
1243 
1244 	/* If the last node is a leaf node then the index of the queue group
1245 	 * layer is two less than the number of elements.
1246 	 */
1247 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1248 	    ICE_AQC_ELEM_TYPE_LEAF)
1249 		pi->last_node_teid =
1250 			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1251 	else
1252 		pi->last_node_teid =
1253 			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1254 
1255 	/* Insert the Tx Sched root node */
1256 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1257 	if (status)
1258 		goto err_init_port;
1259 
1260 	/* Parse the default tree and cache the information */
1261 	for (i = 0; i < num_branches; i++) {
1262 		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1263 
1264 		/* Skip root element as already inserted */
1265 		for (j = 1; j < num_elems; j++) {
1266 			/* update the sw entry point */
1267 			if (buf[0].generic[j].data.elem_type ==
1268 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1269 				hw->sw_entry_point_layer = j;
1270 
1271 			status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1272 			if (status)
1273 				goto err_init_port;
1274 		}
1275 	}
1276 
1277 	/* Remove the default nodes. */
1278 	if (pi->root)
1279 		ice_sched_rm_dflt_nodes(pi);
1280 
1281 	/* initialize the port for handling the scheduler tree */
1282 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1283 	mutex_init(&pi->sched_lock);
1284 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1285 		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1286 
1287 err_init_port:
1288 	if (status && pi->root) {
1289 		ice_free_sched_node(pi, pi->root);
1290 		pi->root = NULL;
1291 	}
1292 
1293 	devm_kfree(ice_hw_to_dev(hw), buf);
1294 	return status;
1295 }
1296 
1297 /**
1298  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1299  * @hw: pointer to the HW struct
1300  *
1301  * query FW for allocated scheduler resources and store in HW struct
1302  */
1303 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1304 {
1305 	struct ice_aqc_query_txsched_res_resp *buf;
1306 	enum ice_status status = 0;
1307 	__le16 max_sibl;
1308 	u16 i;
1309 
1310 	if (hw->layer_info)
1311 		return status;
1312 
1313 	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1314 	if (!buf)
1315 		return ICE_ERR_NO_MEMORY;
1316 
1317 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1318 	if (status)
1319 		goto sched_query_out;
1320 
1321 	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1322 	hw->num_tx_sched_phys_layers =
1323 		le16_to_cpu(buf->sched_props.phys_levels);
1324 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1325 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1326 
1327 	/* max sibling group size of current layer refers to the max children
1328 	 * of the below layer node.
1329 	 * layer 1 node max children will be layer 2 max sibling group size
1330 	 * layer 2 node max children will be layer 3 max sibling group size
1331 	 * and so on. This array will be populated from root (index 0) to
1332 	 * qgroup layer 7. Leaf node has no children.
1333 	 */
1334 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1335 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1336 		hw->max_children[i] = le16_to_cpu(max_sibl);
1337 	}
1338 
1339 	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1340 				      (hw->num_tx_sched_layers *
1341 				       sizeof(*hw->layer_info)),
1342 				      GFP_KERNEL);
1343 	if (!hw->layer_info) {
1344 		status = ICE_ERR_NO_MEMORY;
1345 		goto sched_query_out;
1346 	}
1347 
1348 sched_query_out:
1349 	devm_kfree(ice_hw_to_dev(hw), buf);
1350 	return status;
1351 }
1352 
1353 /**
1354  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1355  * @hw: pointer to the HW struct
1356  *
1357  * Determine the PSM clock frequency and store in HW struct
1358  */
1359 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1360 {
1361 	u32 val, clk_src;
1362 
1363 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1364 	clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1365 		GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1366 
1367 #define PSM_CLK_SRC_367_MHZ 0x0
1368 #define PSM_CLK_SRC_416_MHZ 0x1
1369 #define PSM_CLK_SRC_446_MHZ 0x2
1370 #define PSM_CLK_SRC_390_MHZ 0x3
1371 
1372 	switch (clk_src) {
1373 	case PSM_CLK_SRC_367_MHZ:
1374 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1375 		break;
1376 	case PSM_CLK_SRC_416_MHZ:
1377 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1378 		break;
1379 	case PSM_CLK_SRC_446_MHZ:
1380 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1381 		break;
1382 	case PSM_CLK_SRC_390_MHZ:
1383 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1384 		break;
1385 	default:
1386 		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1387 			  clk_src);
1388 		/* fall back to a safe default */
1389 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1390 	}
1391 }
1392 
1393 /**
1394  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1395  * @hw: pointer to the HW struct
1396  * @base: pointer to the base node
1397  * @node: pointer to the node to search
1398  *
1399  * This function checks whether a given node is part of the base node
1400  * subtree or not
1401  */
1402 static bool
1403 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1404 			       struct ice_sched_node *node)
1405 {
1406 	u8 i;
1407 
1408 	for (i = 0; i < base->num_children; i++) {
1409 		struct ice_sched_node *child = base->children[i];
1410 
1411 		if (node == child)
1412 			return true;
1413 
1414 		if (child->tx_sched_layer > node->tx_sched_layer)
1415 			return false;
1416 
1417 		/* this recursion is intentional, and wouldn't
1418 		 * go more than 8 calls
1419 		 */
1420 		if (ice_sched_find_node_in_subtree(hw, child, node))
1421 			return true;
1422 	}
1423 	return false;
1424 }
1425 
1426 /**
1427  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1428  * @pi: port information structure
1429  * @vsi_node: software VSI handle
1430  * @qgrp_node: first queue group node identified for scanning
1431  * @owner: LAN or RDMA
1432  *
1433  * This function retrieves a free LAN or RDMA queue group node by scanning
1434  * qgrp_node and its siblings for the queue group with the fewest number
1435  * of queues currently assigned.
1436  */
1437 static struct ice_sched_node *
1438 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1439 			struct ice_sched_node *vsi_node,
1440 			struct ice_sched_node *qgrp_node, u8 owner)
1441 {
1442 	struct ice_sched_node *min_qgrp;
1443 	u8 min_children;
1444 
1445 	if (!qgrp_node)
1446 		return qgrp_node;
1447 	min_children = qgrp_node->num_children;
1448 	if (!min_children)
1449 		return qgrp_node;
1450 	min_qgrp = qgrp_node;
1451 	/* scan all queue groups until find a node which has less than the
1452 	 * minimum number of children. This way all queue group nodes get
1453 	 * equal number of shares and active. The bandwidth will be equally
1454 	 * distributed across all queues.
1455 	 */
1456 	while (qgrp_node) {
1457 		/* make sure the qgroup node is part of the VSI subtree */
1458 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1459 			if (qgrp_node->num_children < min_children &&
1460 			    qgrp_node->owner == owner) {
1461 				/* replace the new min queue group node */
1462 				min_qgrp = qgrp_node;
1463 				min_children = min_qgrp->num_children;
1464 				/* break if it has no children, */
1465 				if (!min_children)
1466 					break;
1467 			}
1468 		qgrp_node = qgrp_node->sibling;
1469 	}
1470 	return min_qgrp;
1471 }
1472 
1473 /**
1474  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1475  * @pi: port information structure
1476  * @vsi_handle: software VSI handle
1477  * @tc: branch number
1478  * @owner: LAN or RDMA
1479  *
1480  * This function retrieves a free LAN or RDMA queue group node
1481  */
1482 struct ice_sched_node *
1483 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1484 			   u8 owner)
1485 {
1486 	struct ice_sched_node *vsi_node, *qgrp_node;
1487 	struct ice_vsi_ctx *vsi_ctx;
1488 	u16 max_children;
1489 	u8 qgrp_layer;
1490 
1491 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1492 	max_children = pi->hw->max_children[qgrp_layer];
1493 
1494 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1495 	if (!vsi_ctx)
1496 		return NULL;
1497 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1498 	/* validate invalid VSI ID */
1499 	if (!vsi_node)
1500 		return NULL;
1501 
1502 	/* get the first queue group node from VSI sub-tree */
1503 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1504 	while (qgrp_node) {
1505 		/* make sure the qgroup node is part of the VSI subtree */
1506 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1507 			if (qgrp_node->num_children < max_children &&
1508 			    qgrp_node->owner == owner)
1509 				break;
1510 		qgrp_node = qgrp_node->sibling;
1511 	}
1512 
1513 	/* Select the best queue group */
1514 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1515 }
1516 
1517 /**
1518  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1519  * @pi: pointer to the port information structure
1520  * @tc_node: pointer to the TC node
1521  * @vsi_handle: software VSI handle
1522  *
1523  * This function retrieves a VSI node for a given VSI ID from a given
1524  * TC branch
1525  */
1526 static struct ice_sched_node *
1527 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1528 		       u16 vsi_handle)
1529 {
1530 	struct ice_sched_node *node;
1531 	u8 vsi_layer;
1532 
1533 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1534 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1535 
1536 	/* Check whether it already exists */
1537 	while (node) {
1538 		if (node->vsi_handle == vsi_handle)
1539 			return node;
1540 		node = node->sibling;
1541 	}
1542 
1543 	return node;
1544 }
1545 
1546 /**
1547  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1548  * @pi: pointer to the port information structure
1549  * @tc_node: pointer to the TC node
1550  * @agg_id: aggregator ID
1551  *
1552  * This function retrieves an aggregator node for a given aggregator ID from
1553  * a given TC branch
1554  */
1555 static struct ice_sched_node *
1556 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1557 		       u32 agg_id)
1558 {
1559 	struct ice_sched_node *node;
1560 	struct ice_hw *hw = pi->hw;
1561 	u8 agg_layer;
1562 
1563 	if (!hw)
1564 		return NULL;
1565 	agg_layer = ice_sched_get_agg_layer(hw);
1566 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1567 
1568 	/* Check whether it already exists */
1569 	while (node) {
1570 		if (node->agg_id == agg_id)
1571 			return node;
1572 		node = node->sibling;
1573 	}
1574 
1575 	return node;
1576 }
1577 
1578 /**
1579  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1580  * @hw: pointer to the HW struct
1581  * @num_qs: number of queues
1582  * @num_nodes: num nodes array
1583  *
1584  * This function calculates the number of VSI child nodes based on the
1585  * number of queues.
1586  */
1587 static void
1588 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1589 {
1590 	u16 num = num_qs;
1591 	u8 i, qgl, vsil;
1592 
1593 	qgl = ice_sched_get_qgrp_layer(hw);
1594 	vsil = ice_sched_get_vsi_layer(hw);
1595 
1596 	/* calculate num nodes from queue group to VSI layer */
1597 	for (i = qgl; i > vsil; i--) {
1598 		/* round to the next integer if there is a remainder */
1599 		num = DIV_ROUND_UP(num, hw->max_children[i]);
1600 
1601 		/* need at least one node */
1602 		num_nodes[i] = num ? num : 1;
1603 	}
1604 }
1605 
1606 /**
1607  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1608  * @pi: port information structure
1609  * @vsi_handle: software VSI handle
1610  * @tc_node: pointer to the TC node
1611  * @num_nodes: pointer to the num nodes that needs to be added per layer
1612  * @owner: node owner (LAN or RDMA)
1613  *
1614  * This function adds the VSI child nodes to tree. It gets called for
1615  * LAN and RDMA separately.
1616  */
1617 static enum ice_status
1618 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1619 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1620 			      u8 owner)
1621 {
1622 	struct ice_sched_node *parent, *node;
1623 	struct ice_hw *hw = pi->hw;
1624 	enum ice_status status;
1625 	u32 first_node_teid;
1626 	u16 num_added = 0;
1627 	u8 i, qgl, vsil;
1628 
1629 	qgl = ice_sched_get_qgrp_layer(hw);
1630 	vsil = ice_sched_get_vsi_layer(hw);
1631 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1632 	for (i = vsil + 1; i <= qgl; i++) {
1633 		if (!parent)
1634 			return ICE_ERR_CFG;
1635 
1636 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1637 						      num_nodes[i],
1638 						      &first_node_teid,
1639 						      &num_added);
1640 		if (status || num_nodes[i] != num_added)
1641 			return ICE_ERR_CFG;
1642 
1643 		/* The newly added node can be a new parent for the next
1644 		 * layer nodes
1645 		 */
1646 		if (num_added) {
1647 			parent = ice_sched_find_node_by_teid(tc_node,
1648 							     first_node_teid);
1649 			node = parent;
1650 			while (node) {
1651 				node->owner = owner;
1652 				node = node->sibling;
1653 			}
1654 		} else {
1655 			parent = parent->children[0];
1656 		}
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 /**
1663  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1664  * @pi: pointer to the port info structure
1665  * @tc_node: pointer to TC node
1666  * @num_nodes: pointer to num nodes array
1667  *
1668  * This function calculates the number of supported nodes needed to add this
1669  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1670  * layers
1671  */
1672 static void
1673 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1674 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1675 {
1676 	struct ice_sched_node *node;
1677 	u8 vsil;
1678 	int i;
1679 
1680 	vsil = ice_sched_get_vsi_layer(pi->hw);
1681 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1682 		/* Add intermediate nodes if TC has no children and
1683 		 * need at least one node for VSI
1684 		 */
1685 		if (!tc_node->num_children || i == vsil) {
1686 			num_nodes[i]++;
1687 		} else {
1688 			/* If intermediate nodes are reached max children
1689 			 * then add a new one.
1690 			 */
1691 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1692 			/* scan all the siblings */
1693 			while (node) {
1694 				if (node->num_children < pi->hw->max_children[i])
1695 					break;
1696 				node = node->sibling;
1697 			}
1698 
1699 			/* tree has one intermediate node to add this new VSI.
1700 			 * So no need to calculate supported nodes for below
1701 			 * layers.
1702 			 */
1703 			if (node)
1704 				break;
1705 			/* all the nodes are full, allocate a new one */
1706 			num_nodes[i]++;
1707 		}
1708 }
1709 
1710 /**
1711  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1712  * @pi: port information structure
1713  * @vsi_handle: software VSI handle
1714  * @tc_node: pointer to TC node
1715  * @num_nodes: pointer to num nodes array
1716  *
1717  * This function adds the VSI supported nodes into Tx tree including the
1718  * VSI, its parent and intermediate nodes in below layers
1719  */
1720 static enum ice_status
1721 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1722 				struct ice_sched_node *tc_node, u16 *num_nodes)
1723 {
1724 	struct ice_sched_node *parent = tc_node;
1725 	enum ice_status status;
1726 	u32 first_node_teid;
1727 	u16 num_added = 0;
1728 	u8 i, vsil;
1729 
1730 	if (!pi)
1731 		return ICE_ERR_PARAM;
1732 
1733 	vsil = ice_sched_get_vsi_layer(pi->hw);
1734 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1735 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1736 						      i, num_nodes[i],
1737 						      &first_node_teid,
1738 						      &num_added);
1739 		if (status || num_nodes[i] != num_added)
1740 			return ICE_ERR_CFG;
1741 
1742 		/* The newly added node can be a new parent for the next
1743 		 * layer nodes
1744 		 */
1745 		if (num_added)
1746 			parent = ice_sched_find_node_by_teid(tc_node,
1747 							     first_node_teid);
1748 		else
1749 			parent = parent->children[0];
1750 
1751 		if (!parent)
1752 			return ICE_ERR_CFG;
1753 
1754 		if (i == vsil)
1755 			parent->vsi_handle = vsi_handle;
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 /**
1762  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1763  * @pi: port information structure
1764  * @vsi_handle: software VSI handle
1765  * @tc: TC number
1766  *
1767  * This function adds a new VSI into scheduler tree
1768  */
1769 static enum ice_status
1770 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1771 {
1772 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1773 	struct ice_sched_node *tc_node;
1774 
1775 	tc_node = ice_sched_get_tc_node(pi, tc);
1776 	if (!tc_node)
1777 		return ICE_ERR_PARAM;
1778 
1779 	/* calculate number of supported nodes needed for this VSI */
1780 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1781 
1782 	/* add VSI supported nodes to TC subtree */
1783 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1784 					       num_nodes);
1785 }
1786 
1787 /**
1788  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1789  * @pi: port information structure
1790  * @vsi_handle: software VSI handle
1791  * @tc: TC number
1792  * @new_numqs: new number of max queues
1793  * @owner: owner of this subtree
1794  *
1795  * This function updates the VSI child nodes based on the number of queues
1796  */
1797 static enum ice_status
1798 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1799 				 u8 tc, u16 new_numqs, u8 owner)
1800 {
1801 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1802 	struct ice_sched_node *vsi_node;
1803 	struct ice_sched_node *tc_node;
1804 	struct ice_vsi_ctx *vsi_ctx;
1805 	enum ice_status status = 0;
1806 	struct ice_hw *hw = pi->hw;
1807 	u16 prev_numqs;
1808 
1809 	tc_node = ice_sched_get_tc_node(pi, tc);
1810 	if (!tc_node)
1811 		return ICE_ERR_CFG;
1812 
1813 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1814 	if (!vsi_node)
1815 		return ICE_ERR_CFG;
1816 
1817 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1818 	if (!vsi_ctx)
1819 		return ICE_ERR_PARAM;
1820 
1821 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1822 		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1823 	else
1824 		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1825 	/* num queues are not changed or less than the previous number */
1826 	if (new_numqs <= prev_numqs)
1827 		return status;
1828 	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1829 		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1830 		if (status)
1831 			return status;
1832 	} else {
1833 		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1834 		if (status)
1835 			return status;
1836 	}
1837 
1838 	if (new_numqs)
1839 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1840 	/* Keep the max number of queue configuration all the time. Update the
1841 	 * tree only if number of queues > previous number of queues. This may
1842 	 * leave some extra nodes in the tree if number of queues < previous
1843 	 * number but that wouldn't harm anything. Removing those extra nodes
1844 	 * may complicate the code if those nodes are part of SRL or
1845 	 * individually rate limited.
1846 	 */
1847 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1848 					       new_num_nodes, owner);
1849 	if (status)
1850 		return status;
1851 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1852 		vsi_ctx->sched.max_lanq[tc] = new_numqs;
1853 	else
1854 		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1855 
1856 	return 0;
1857 }
1858 
1859 /**
1860  * ice_sched_cfg_vsi - configure the new/existing VSI
1861  * @pi: port information structure
1862  * @vsi_handle: software VSI handle
1863  * @tc: TC number
1864  * @maxqs: max number of queues
1865  * @owner: LAN or RDMA
1866  * @enable: TC enabled or disabled
1867  *
1868  * This function adds/updates VSI nodes based on the number of queues. If TC is
1869  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1870  * disabled then suspend the VSI if it is not already.
1871  */
1872 enum ice_status
1873 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1874 		  u8 owner, bool enable)
1875 {
1876 	struct ice_sched_node *vsi_node, *tc_node;
1877 	struct ice_vsi_ctx *vsi_ctx;
1878 	enum ice_status status = 0;
1879 	struct ice_hw *hw = pi->hw;
1880 
1881 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1882 	tc_node = ice_sched_get_tc_node(pi, tc);
1883 	if (!tc_node)
1884 		return ICE_ERR_PARAM;
1885 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1886 	if (!vsi_ctx)
1887 		return ICE_ERR_PARAM;
1888 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1889 
1890 	/* suspend the VSI if TC is not enabled */
1891 	if (!enable) {
1892 		if (vsi_node && vsi_node->in_use) {
1893 			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1894 
1895 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1896 								true);
1897 			if (!status)
1898 				vsi_node->in_use = false;
1899 		}
1900 		return status;
1901 	}
1902 
1903 	/* TC is enabled, if it is a new VSI then add it to the tree */
1904 	if (!vsi_node) {
1905 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1906 		if (status)
1907 			return status;
1908 
1909 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1910 		if (!vsi_node)
1911 			return ICE_ERR_CFG;
1912 
1913 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1914 		vsi_node->in_use = true;
1915 		/* invalidate the max queues whenever VSI gets added first time
1916 		 * into the scheduler tree (boot or after reset). We need to
1917 		 * recreate the child nodes all the time in these cases.
1918 		 */
1919 		vsi_ctx->sched.max_lanq[tc] = 0;
1920 		vsi_ctx->sched.max_rdmaq[tc] = 0;
1921 	}
1922 
1923 	/* update the VSI child nodes */
1924 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1925 						  owner);
1926 	if (status)
1927 		return status;
1928 
1929 	/* TC is enabled, resume the VSI if it is in the suspend state */
1930 	if (!vsi_node->in_use) {
1931 		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1932 
1933 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1934 		if (!status)
1935 			vsi_node->in_use = true;
1936 	}
1937 
1938 	return status;
1939 }
1940 
1941 /**
1942  * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1943  * @pi: port information structure
1944  * @vsi_handle: software VSI handle
1945  *
1946  * This function removes single aggregator VSI info entry from
1947  * aggregator list.
1948  */
1949 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1950 {
1951 	struct ice_sched_agg_info *agg_info;
1952 	struct ice_sched_agg_info *atmp;
1953 
1954 	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1955 				 list_entry) {
1956 		struct ice_sched_agg_vsi_info *agg_vsi_info;
1957 		struct ice_sched_agg_vsi_info *vtmp;
1958 
1959 		list_for_each_entry_safe(agg_vsi_info, vtmp,
1960 					 &agg_info->agg_vsi_list, list_entry)
1961 			if (agg_vsi_info->vsi_handle == vsi_handle) {
1962 				list_del(&agg_vsi_info->list_entry);
1963 				devm_kfree(ice_hw_to_dev(pi->hw),
1964 					   agg_vsi_info);
1965 				return;
1966 			}
1967 	}
1968 }
1969 
1970 /**
1971  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
1972  * @node: pointer to the sub-tree node
1973  *
1974  * This function checks for a leaf node presence in a given sub-tree node.
1975  */
1976 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
1977 {
1978 	u8 i;
1979 
1980 	for (i = 0; i < node->num_children; i++)
1981 		if (ice_sched_is_leaf_node_present(node->children[i]))
1982 			return true;
1983 	/* check for a leaf node */
1984 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
1985 }
1986 
1987 /**
1988  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
1989  * @pi: port information structure
1990  * @vsi_handle: software VSI handle
1991  * @owner: LAN or RDMA
1992  *
1993  * This function removes the VSI and its LAN or RDMA children nodes from the
1994  * scheduler tree.
1995  */
1996 static enum ice_status
1997 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
1998 {
1999 	enum ice_status status = ICE_ERR_PARAM;
2000 	struct ice_vsi_ctx *vsi_ctx;
2001 	u8 i;
2002 
2003 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2004 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2005 		return status;
2006 	mutex_lock(&pi->sched_lock);
2007 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2008 	if (!vsi_ctx)
2009 		goto exit_sched_rm_vsi_cfg;
2010 
2011 	ice_for_each_traffic_class(i) {
2012 		struct ice_sched_node *vsi_node, *tc_node;
2013 		u8 j = 0;
2014 
2015 		tc_node = ice_sched_get_tc_node(pi, i);
2016 		if (!tc_node)
2017 			continue;
2018 
2019 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2020 		if (!vsi_node)
2021 			continue;
2022 
2023 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2024 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2025 			status = ICE_ERR_IN_USE;
2026 			goto exit_sched_rm_vsi_cfg;
2027 		}
2028 		while (j < vsi_node->num_children) {
2029 			if (vsi_node->children[j]->owner == owner) {
2030 				ice_free_sched_node(pi, vsi_node->children[j]);
2031 
2032 				/* reset the counter again since the num
2033 				 * children will be updated after node removal
2034 				 */
2035 				j = 0;
2036 			} else {
2037 				j++;
2038 			}
2039 		}
2040 		/* remove the VSI if it has no children */
2041 		if (!vsi_node->num_children) {
2042 			ice_free_sched_node(pi, vsi_node);
2043 			vsi_ctx->sched.vsi_node[i] = NULL;
2044 
2045 			/* clean up aggregator related VSI info if any */
2046 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2047 		}
2048 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2049 			vsi_ctx->sched.max_lanq[i] = 0;
2050 		else
2051 			vsi_ctx->sched.max_rdmaq[i] = 0;
2052 	}
2053 	status = 0;
2054 
2055 exit_sched_rm_vsi_cfg:
2056 	mutex_unlock(&pi->sched_lock);
2057 	return status;
2058 }
2059 
2060 /**
2061  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2062  * @pi: port information structure
2063  * @vsi_handle: software VSI handle
2064  *
2065  * This function clears the VSI and its LAN children nodes from scheduler tree
2066  * for all TCs.
2067  */
2068 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2069 {
2070 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2071 }
2072 
2073 /**
2074  * ice_get_agg_info - get the aggregator ID
2075  * @hw: pointer to the hardware structure
2076  * @agg_id: aggregator ID
2077  *
2078  * This function validates aggregator ID. The function returns info if
2079  * aggregator ID is present in list otherwise it returns null.
2080  */
2081 static struct ice_sched_agg_info *
2082 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2083 {
2084 	struct ice_sched_agg_info *agg_info;
2085 
2086 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2087 		if (agg_info->agg_id == agg_id)
2088 			return agg_info;
2089 
2090 	return NULL;
2091 }
2092 
2093 /**
2094  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2095  * @hw: pointer to the HW struct
2096  * @node: pointer to a child node
2097  * @num_nodes: num nodes count array
2098  *
2099  * This function walks through the aggregator subtree to find a free parent
2100  * node
2101  */
2102 static struct ice_sched_node *
2103 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2104 			      u16 *num_nodes)
2105 {
2106 	u8 l = node->tx_sched_layer;
2107 	u8 vsil, i;
2108 
2109 	vsil = ice_sched_get_vsi_layer(hw);
2110 
2111 	/* Is it VSI parent layer ? */
2112 	if (l == vsil - 1)
2113 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2114 
2115 	/* We have intermediate nodes. Let's walk through the subtree. If the
2116 	 * intermediate node has space to add a new node then clear the count
2117 	 */
2118 	if (node->num_children < hw->max_children[l])
2119 		num_nodes[l] = 0;
2120 	/* The below recursive call is intentional and wouldn't go more than
2121 	 * 2 or 3 iterations.
2122 	 */
2123 
2124 	for (i = 0; i < node->num_children; i++) {
2125 		struct ice_sched_node *parent;
2126 
2127 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2128 						       num_nodes);
2129 		if (parent)
2130 			return parent;
2131 	}
2132 
2133 	return NULL;
2134 }
2135 
2136 /**
2137  * ice_sched_update_parent - update the new parent in SW DB
2138  * @new_parent: pointer to a new parent node
2139  * @node: pointer to a child node
2140  *
2141  * This function removes the child from the old parent and adds it to a new
2142  * parent
2143  */
2144 static void
2145 ice_sched_update_parent(struct ice_sched_node *new_parent,
2146 			struct ice_sched_node *node)
2147 {
2148 	struct ice_sched_node *old_parent;
2149 	u8 i, j;
2150 
2151 	old_parent = node->parent;
2152 
2153 	/* update the old parent children */
2154 	for (i = 0; i < old_parent->num_children; i++)
2155 		if (old_parent->children[i] == node) {
2156 			for (j = i + 1; j < old_parent->num_children; j++)
2157 				old_parent->children[j - 1] =
2158 					old_parent->children[j];
2159 			old_parent->num_children--;
2160 			break;
2161 		}
2162 
2163 	/* now move the node to a new parent */
2164 	new_parent->children[new_parent->num_children++] = node;
2165 	node->parent = new_parent;
2166 	node->info.parent_teid = new_parent->info.node_teid;
2167 }
2168 
2169 /**
2170  * ice_sched_move_nodes - move child nodes to a given parent
2171  * @pi: port information structure
2172  * @parent: pointer to parent node
2173  * @num_items: number of child nodes to be moved
2174  * @list: pointer to child node teids
2175  *
2176  * This function move the child nodes to a given parent.
2177  */
2178 static enum ice_status
2179 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2180 		     u16 num_items, u32 *list)
2181 {
2182 	struct ice_aqc_move_elem *buf;
2183 	struct ice_sched_node *node;
2184 	enum ice_status status = 0;
2185 	u16 i, grps_movd = 0;
2186 	struct ice_hw *hw;
2187 	u16 buf_len;
2188 
2189 	hw = pi->hw;
2190 
2191 	if (!parent || !num_items)
2192 		return ICE_ERR_PARAM;
2193 
2194 	/* Does parent have enough space */
2195 	if (parent->num_children + num_items >
2196 	    hw->max_children[parent->tx_sched_layer])
2197 		return ICE_ERR_AQ_FULL;
2198 
2199 	buf_len = struct_size(buf, teid, 1);
2200 	buf = kzalloc(buf_len, GFP_KERNEL);
2201 	if (!buf)
2202 		return ICE_ERR_NO_MEMORY;
2203 
2204 	for (i = 0; i < num_items; i++) {
2205 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2206 		if (!node) {
2207 			status = ICE_ERR_PARAM;
2208 			goto move_err_exit;
2209 		}
2210 
2211 		buf->hdr.src_parent_teid = node->info.parent_teid;
2212 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2213 		buf->teid[0] = node->info.node_teid;
2214 		buf->hdr.num_elems = cpu_to_le16(1);
2215 		status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2216 						 &grps_movd, NULL);
2217 		if (status && grps_movd != 1) {
2218 			status = ICE_ERR_CFG;
2219 			goto move_err_exit;
2220 		}
2221 
2222 		/* update the SW DB */
2223 		ice_sched_update_parent(parent, node);
2224 	}
2225 
2226 move_err_exit:
2227 	kfree(buf);
2228 	return status;
2229 }
2230 
2231 /**
2232  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2233  * @pi: port information structure
2234  * @vsi_handle: software VSI handle
2235  * @agg_id: aggregator ID
2236  * @tc: TC number
2237  *
2238  * This function moves a VSI to an aggregator node or its subtree.
2239  * Intermediate nodes may be created if required.
2240  */
2241 static enum ice_status
2242 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2243 			  u8 tc)
2244 {
2245 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2246 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2247 	u32 first_node_teid, vsi_teid;
2248 	enum ice_status status;
2249 	u16 num_nodes_added;
2250 	u8 aggl, vsil, i;
2251 
2252 	tc_node = ice_sched_get_tc_node(pi, tc);
2253 	if (!tc_node)
2254 		return ICE_ERR_CFG;
2255 
2256 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2257 	if (!agg_node)
2258 		return ICE_ERR_DOES_NOT_EXIST;
2259 
2260 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2261 	if (!vsi_node)
2262 		return ICE_ERR_DOES_NOT_EXIST;
2263 
2264 	/* Is this VSI already part of given aggregator? */
2265 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2266 		return 0;
2267 
2268 	aggl = ice_sched_get_agg_layer(pi->hw);
2269 	vsil = ice_sched_get_vsi_layer(pi->hw);
2270 
2271 	/* set intermediate node count to 1 between aggregator and VSI layers */
2272 	for (i = aggl + 1; i < vsil; i++)
2273 		num_nodes[i] = 1;
2274 
2275 	/* Check if the aggregator subtree has any free node to add the VSI */
2276 	for (i = 0; i < agg_node->num_children; i++) {
2277 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2278 						       agg_node->children[i],
2279 						       num_nodes);
2280 		if (parent)
2281 			goto move_nodes;
2282 	}
2283 
2284 	/* add new nodes */
2285 	parent = agg_node;
2286 	for (i = aggl + 1; i < vsil; i++) {
2287 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2288 						      num_nodes[i],
2289 						      &first_node_teid,
2290 						      &num_nodes_added);
2291 		if (status || num_nodes[i] != num_nodes_added)
2292 			return ICE_ERR_CFG;
2293 
2294 		/* The newly added node can be a new parent for the next
2295 		 * layer nodes
2296 		 */
2297 		if (num_nodes_added)
2298 			parent = ice_sched_find_node_by_teid(tc_node,
2299 							     first_node_teid);
2300 		else
2301 			parent = parent->children[0];
2302 
2303 		if (!parent)
2304 			return ICE_ERR_CFG;
2305 	}
2306 
2307 move_nodes:
2308 	vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2309 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2310 }
2311 
2312 /**
2313  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2314  * @pi: port information structure
2315  * @agg_info: aggregator info
2316  * @tc: traffic class number
2317  * @rm_vsi_info: true or false
2318  *
2319  * This function move all the VSI(s) to the default aggregator and delete
2320  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2321  * caller holds the scheduler lock.
2322  */
2323 static enum ice_status
2324 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2325 			     struct ice_sched_agg_info *agg_info, u8 tc,
2326 			     bool rm_vsi_info)
2327 {
2328 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2329 	struct ice_sched_agg_vsi_info *tmp;
2330 	enum ice_status status = 0;
2331 
2332 	list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2333 				 list_entry) {
2334 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2335 
2336 		/* Move VSI to default aggregator */
2337 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2338 			continue;
2339 
2340 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2341 						   ICE_DFLT_AGG_ID, tc);
2342 		if (status)
2343 			break;
2344 
2345 		clear_bit(tc, agg_vsi_info->tc_bitmap);
2346 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2347 			list_del(&agg_vsi_info->list_entry);
2348 			devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2349 		}
2350 	}
2351 
2352 	return status;
2353 }
2354 
2355 /**
2356  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2357  * @pi: port information structure
2358  * @node: node pointer
2359  *
2360  * This function checks whether the aggregator is attached with any VSI or not.
2361  */
2362 static bool
2363 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2364 {
2365 	u8 vsil, i;
2366 
2367 	vsil = ice_sched_get_vsi_layer(pi->hw);
2368 	if (node->tx_sched_layer < vsil - 1) {
2369 		for (i = 0; i < node->num_children; i++)
2370 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2371 				return true;
2372 		return false;
2373 	} else {
2374 		return node->num_children ? true : false;
2375 	}
2376 }
2377 
2378 /**
2379  * ice_sched_rm_agg_cfg - remove the aggregator node
2380  * @pi: port information structure
2381  * @agg_id: aggregator ID
2382  * @tc: TC number
2383  *
2384  * This function removes the aggregator node and intermediate nodes if any
2385  * from the given TC
2386  */
2387 static enum ice_status
2388 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2389 {
2390 	struct ice_sched_node *tc_node, *agg_node;
2391 	struct ice_hw *hw = pi->hw;
2392 
2393 	tc_node = ice_sched_get_tc_node(pi, tc);
2394 	if (!tc_node)
2395 		return ICE_ERR_CFG;
2396 
2397 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2398 	if (!agg_node)
2399 		return ICE_ERR_DOES_NOT_EXIST;
2400 
2401 	/* Can't remove the aggregator node if it has children */
2402 	if (ice_sched_is_agg_inuse(pi, agg_node))
2403 		return ICE_ERR_IN_USE;
2404 
2405 	/* need to remove the whole subtree if aggregator node is the
2406 	 * only child.
2407 	 */
2408 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2409 		struct ice_sched_node *parent = agg_node->parent;
2410 
2411 		if (!parent)
2412 			return ICE_ERR_CFG;
2413 
2414 		if (parent->num_children > 1)
2415 			break;
2416 
2417 		agg_node = parent;
2418 	}
2419 
2420 	ice_free_sched_node(pi, agg_node);
2421 	return 0;
2422 }
2423 
2424 /**
2425  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2426  * @pi: port information structure
2427  * @agg_info: aggregator ID
2428  * @tc: TC number
2429  * @rm_vsi_info: bool value true or false
2430  *
2431  * This function removes aggregator reference to VSI of given TC. It removes
2432  * the aggregator configuration completely for requested TC. The caller needs
2433  * to hold the scheduler lock.
2434  */
2435 static enum ice_status
2436 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2437 		  u8 tc, bool rm_vsi_info)
2438 {
2439 	enum ice_status status = 0;
2440 
2441 	/* If nothing to remove - return success */
2442 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2443 		goto exit_rm_agg_cfg_tc;
2444 
2445 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2446 	if (status)
2447 		goto exit_rm_agg_cfg_tc;
2448 
2449 	/* Delete aggregator node(s) */
2450 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2451 	if (status)
2452 		goto exit_rm_agg_cfg_tc;
2453 
2454 	clear_bit(tc, agg_info->tc_bitmap);
2455 exit_rm_agg_cfg_tc:
2456 	return status;
2457 }
2458 
2459 /**
2460  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2461  * @pi: port information structure
2462  * @agg_id: aggregator ID
2463  * @tc_bitmap: 8 bits TC bitmap
2464  *
2465  * Save aggregator TC bitmap. This function needs to be called with scheduler
2466  * lock held.
2467  */
2468 static enum ice_status
2469 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2470 		       unsigned long *tc_bitmap)
2471 {
2472 	struct ice_sched_agg_info *agg_info;
2473 
2474 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2475 	if (!agg_info)
2476 		return ICE_ERR_PARAM;
2477 	bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2478 		    ICE_MAX_TRAFFIC_CLASS);
2479 	return 0;
2480 }
2481 
2482 /**
2483  * ice_sched_add_agg_cfg - create an aggregator node
2484  * @pi: port information structure
2485  * @agg_id: aggregator ID
2486  * @tc: TC number
2487  *
2488  * This function creates an aggregator node and intermediate nodes if required
2489  * for the given TC
2490  */
2491 static enum ice_status
2492 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2493 {
2494 	struct ice_sched_node *parent, *agg_node, *tc_node;
2495 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2496 	enum ice_status status = 0;
2497 	struct ice_hw *hw = pi->hw;
2498 	u32 first_node_teid;
2499 	u16 num_nodes_added;
2500 	u8 i, aggl;
2501 
2502 	tc_node = ice_sched_get_tc_node(pi, tc);
2503 	if (!tc_node)
2504 		return ICE_ERR_CFG;
2505 
2506 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2507 	/* Does Agg node already exist ? */
2508 	if (agg_node)
2509 		return status;
2510 
2511 	aggl = ice_sched_get_agg_layer(hw);
2512 
2513 	/* need one node in Agg layer */
2514 	num_nodes[aggl] = 1;
2515 
2516 	/* Check whether the intermediate nodes have space to add the
2517 	 * new aggregator. If they are full, then SW needs to allocate a new
2518 	 * intermediate node on those layers
2519 	 */
2520 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2521 		parent = ice_sched_get_first_node(pi, tc_node, i);
2522 
2523 		/* scan all the siblings */
2524 		while (parent) {
2525 			if (parent->num_children < hw->max_children[i])
2526 				break;
2527 			parent = parent->sibling;
2528 		}
2529 
2530 		/* all the nodes are full, reserve one for this layer */
2531 		if (!parent)
2532 			num_nodes[i]++;
2533 	}
2534 
2535 	/* add the aggregator node */
2536 	parent = tc_node;
2537 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2538 		if (!parent)
2539 			return ICE_ERR_CFG;
2540 
2541 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2542 						      num_nodes[i],
2543 						      &first_node_teid,
2544 						      &num_nodes_added);
2545 		if (status || num_nodes[i] != num_nodes_added)
2546 			return ICE_ERR_CFG;
2547 
2548 		/* The newly added node can be a new parent for the next
2549 		 * layer nodes
2550 		 */
2551 		if (num_nodes_added) {
2552 			parent = ice_sched_find_node_by_teid(tc_node,
2553 							     first_node_teid);
2554 			/* register aggregator ID with the aggregator node */
2555 			if (parent && i == aggl)
2556 				parent->agg_id = agg_id;
2557 		} else {
2558 			parent = parent->children[0];
2559 		}
2560 	}
2561 
2562 	return 0;
2563 }
2564 
2565 /**
2566  * ice_sched_cfg_agg - configure aggregator node
2567  * @pi: port information structure
2568  * @agg_id: aggregator ID
2569  * @agg_type: aggregator type queue, VSI, or aggregator group
2570  * @tc_bitmap: bits TC bitmap
2571  *
2572  * It registers a unique aggregator node into scheduler services. It
2573  * allows a user to register with a unique ID to track it's resources.
2574  * The aggregator type determines if this is a queue group, VSI group
2575  * or aggregator group. It then creates the aggregator node(s) for requested
2576  * TC(s) or removes an existing aggregator node including its configuration
2577  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2578  * resources and remove aggregator ID.
2579  * This function needs to be called with scheduler lock held.
2580  */
2581 static enum ice_status
2582 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2583 		  enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2584 {
2585 	struct ice_sched_agg_info *agg_info;
2586 	enum ice_status status = 0;
2587 	struct ice_hw *hw = pi->hw;
2588 	u8 tc;
2589 
2590 	agg_info = ice_get_agg_info(hw, agg_id);
2591 	if (!agg_info) {
2592 		/* Create new entry for new aggregator ID */
2593 		agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2594 					GFP_KERNEL);
2595 		if (!agg_info)
2596 			return ICE_ERR_NO_MEMORY;
2597 
2598 		agg_info->agg_id = agg_id;
2599 		agg_info->agg_type = agg_type;
2600 		agg_info->tc_bitmap[0] = 0;
2601 
2602 		/* Initialize the aggregator VSI list head */
2603 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2604 
2605 		/* Add new entry in aggregator list */
2606 		list_add(&agg_info->list_entry, &hw->agg_list);
2607 	}
2608 	/* Create aggregator node(s) for requested TC(s) */
2609 	ice_for_each_traffic_class(tc) {
2610 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2611 			/* Delete aggregator cfg TC if it exists previously */
2612 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2613 			if (status)
2614 				break;
2615 			continue;
2616 		}
2617 
2618 		/* Check if aggregator node for TC already exists */
2619 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2620 			continue;
2621 
2622 		/* Create new aggregator node for TC */
2623 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2624 		if (status)
2625 			break;
2626 
2627 		/* Save aggregator node's TC information */
2628 		set_bit(tc, agg_info->tc_bitmap);
2629 	}
2630 
2631 	return status;
2632 }
2633 
2634 /**
2635  * ice_cfg_agg - config aggregator node
2636  * @pi: port information structure
2637  * @agg_id: aggregator ID
2638  * @agg_type: aggregator type queue, VSI, or aggregator group
2639  * @tc_bitmap: bits TC bitmap
2640  *
2641  * This function configures aggregator node(s).
2642  */
2643 enum ice_status
2644 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2645 	    u8 tc_bitmap)
2646 {
2647 	unsigned long bitmap = tc_bitmap;
2648 	enum ice_status status;
2649 
2650 	mutex_lock(&pi->sched_lock);
2651 	status = ice_sched_cfg_agg(pi, agg_id, agg_type,
2652 				   (unsigned long *)&bitmap);
2653 	if (!status)
2654 		status = ice_save_agg_tc_bitmap(pi, agg_id,
2655 						(unsigned long *)&bitmap);
2656 	mutex_unlock(&pi->sched_lock);
2657 	return status;
2658 }
2659 
2660 /**
2661  * ice_get_agg_vsi_info - get the aggregator ID
2662  * @agg_info: aggregator info
2663  * @vsi_handle: software VSI handle
2664  *
2665  * The function returns aggregator VSI info based on VSI handle. This function
2666  * needs to be called with scheduler lock held.
2667  */
2668 static struct ice_sched_agg_vsi_info *
2669 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2670 {
2671 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2672 
2673 	list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2674 		if (agg_vsi_info->vsi_handle == vsi_handle)
2675 			return agg_vsi_info;
2676 
2677 	return NULL;
2678 }
2679 
2680 /**
2681  * ice_get_vsi_agg_info - get the aggregator info of VSI
2682  * @hw: pointer to the hardware structure
2683  * @vsi_handle: Sw VSI handle
2684  *
2685  * The function returns aggregator info of VSI represented via vsi_handle. The
2686  * VSI has in this case a different aggregator than the default one. This
2687  * function needs to be called with scheduler lock held.
2688  */
2689 static struct ice_sched_agg_info *
2690 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2691 {
2692 	struct ice_sched_agg_info *agg_info;
2693 
2694 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2695 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2696 
2697 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2698 		if (agg_vsi_info)
2699 			return agg_info;
2700 	}
2701 	return NULL;
2702 }
2703 
2704 /**
2705  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2706  * @pi: port information structure
2707  * @agg_id: aggregator ID
2708  * @vsi_handle: software VSI handle
2709  * @tc_bitmap: TC bitmap of enabled TC(s)
2710  *
2711  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2712  * lock held.
2713  */
2714 static enum ice_status
2715 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2716 			   unsigned long *tc_bitmap)
2717 {
2718 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2719 	struct ice_sched_agg_info *agg_info;
2720 
2721 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2722 	if (!agg_info)
2723 		return ICE_ERR_PARAM;
2724 	/* check if entry already exist */
2725 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2726 	if (!agg_vsi_info)
2727 		return ICE_ERR_PARAM;
2728 	bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2729 		    ICE_MAX_TRAFFIC_CLASS);
2730 	return 0;
2731 }
2732 
2733 /**
2734  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2735  * @pi: port information structure
2736  * @agg_id: aggregator ID
2737  * @vsi_handle: software VSI handle
2738  * @tc_bitmap: TC bitmap of enabled TC(s)
2739  *
2740  * This function moves VSI to a new or default aggregator node. If VSI is
2741  * already associated to the aggregator node then no operation is performed on
2742  * the tree. This function needs to be called with scheduler lock held.
2743  */
2744 static enum ice_status
2745 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2746 			   u16 vsi_handle, unsigned long *tc_bitmap)
2747 {
2748 	struct ice_sched_agg_vsi_info *agg_vsi_info, *old_agg_vsi_info = NULL;
2749 	struct ice_sched_agg_info *agg_info, *old_agg_info;
2750 	enum ice_status status = 0;
2751 	struct ice_hw *hw = pi->hw;
2752 	u8 tc;
2753 
2754 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2755 		return ICE_ERR_PARAM;
2756 	agg_info = ice_get_agg_info(hw, agg_id);
2757 	if (!agg_info)
2758 		return ICE_ERR_PARAM;
2759 	/* If the VSI is already part of another aggregator then update
2760 	 * its VSI info list
2761 	 */
2762 	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2763 	if (old_agg_info && old_agg_info != agg_info) {
2764 		struct ice_sched_agg_vsi_info *vtmp;
2765 
2766 		list_for_each_entry_safe(old_agg_vsi_info, vtmp,
2767 					 &old_agg_info->agg_vsi_list,
2768 					 list_entry)
2769 			if (old_agg_vsi_info->vsi_handle == vsi_handle)
2770 				break;
2771 	}
2772 
2773 	/* check if entry already exist */
2774 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2775 	if (!agg_vsi_info) {
2776 		/* Create new entry for VSI under aggregator list */
2777 		agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2778 					    sizeof(*agg_vsi_info), GFP_KERNEL);
2779 		if (!agg_vsi_info)
2780 			return ICE_ERR_PARAM;
2781 
2782 		/* add VSI ID into the aggregator list */
2783 		agg_vsi_info->vsi_handle = vsi_handle;
2784 		list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2785 	}
2786 	/* Move VSI node to new aggregator node for requested TC(s) */
2787 	ice_for_each_traffic_class(tc) {
2788 		if (!ice_is_tc_ena(*tc_bitmap, tc))
2789 			continue;
2790 
2791 		/* Move VSI to new aggregator */
2792 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2793 		if (status)
2794 			break;
2795 
2796 		set_bit(tc, agg_vsi_info->tc_bitmap);
2797 		if (old_agg_vsi_info)
2798 			clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2799 	}
2800 	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2801 		list_del(&old_agg_vsi_info->list_entry);
2802 		devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2803 	}
2804 	return status;
2805 }
2806 
2807 /**
2808  * ice_sched_rm_unused_rl_prof - remove unused RL profile
2809  * @pi: port information structure
2810  *
2811  * This function removes unused rate limit profiles from the HW and
2812  * SW DB. The caller needs to hold scheduler lock.
2813  */
2814 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2815 {
2816 	u16 ln;
2817 
2818 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2819 		struct ice_aqc_rl_profile_info *rl_prof_elem;
2820 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2821 
2822 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2823 					 &pi->rl_prof_list[ln], list_entry) {
2824 			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2825 				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2826 		}
2827 	}
2828 }
2829 
2830 /**
2831  * ice_sched_update_elem - update element
2832  * @hw: pointer to the HW struct
2833  * @node: pointer to node
2834  * @info: node info to update
2835  *
2836  * Update the HW DB, and local SW DB of node. Update the scheduling
2837  * parameters of node from argument info data buffer (Info->data buf) and
2838  * returns success or error on config sched element failure. The caller
2839  * needs to hold scheduler lock.
2840  */
2841 static enum ice_status
2842 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2843 		      struct ice_aqc_txsched_elem_data *info)
2844 {
2845 	struct ice_aqc_txsched_elem_data buf;
2846 	enum ice_status status;
2847 	u16 elem_cfgd = 0;
2848 	u16 num_elems = 1;
2849 
2850 	buf = *info;
2851 	/* Parent TEID is reserved field in this aq call */
2852 	buf.parent_teid = 0;
2853 	/* Element type is reserved field in this aq call */
2854 	buf.data.elem_type = 0;
2855 	/* Flags is reserved field in this aq call */
2856 	buf.data.flags = 0;
2857 
2858 	/* Update HW DB */
2859 	/* Configure element node */
2860 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2861 					&elem_cfgd, NULL);
2862 	if (status || elem_cfgd != num_elems) {
2863 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2864 		return ICE_ERR_CFG;
2865 	}
2866 
2867 	/* Config success case */
2868 	/* Now update local SW DB */
2869 	/* Only copy the data portion of info buffer */
2870 	node->info.data = info->data;
2871 	return status;
2872 }
2873 
2874 /**
2875  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2876  * @hw: pointer to the HW struct
2877  * @node: sched node to configure
2878  * @rl_type: rate limit type CIR, EIR, or shared
2879  * @bw_alloc: BW weight/allocation
2880  *
2881  * This function configures node element's BW allocation.
2882  */
2883 static enum ice_status
2884 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2885 			    enum ice_rl_type rl_type, u16 bw_alloc)
2886 {
2887 	struct ice_aqc_txsched_elem_data buf;
2888 	struct ice_aqc_txsched_elem *data;
2889 
2890 	buf = node->info;
2891 	data = &buf.data;
2892 	if (rl_type == ICE_MIN_BW) {
2893 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2894 		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2895 	} else if (rl_type == ICE_MAX_BW) {
2896 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2897 		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2898 	} else {
2899 		return ICE_ERR_PARAM;
2900 	}
2901 
2902 	/* Configure element */
2903 	return ice_sched_update_elem(hw, node, &buf);
2904 }
2905 
2906 /**
2907  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2908  * @pi: port information structure
2909  * @agg_id: aggregator ID
2910  * @vsi_handle: software VSI handle
2911  * @tc_bitmap: TC bitmap of enabled TC(s)
2912  *
2913  * Move or associate VSI to a new or default aggregator node.
2914  */
2915 enum ice_status
2916 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2917 		    u8 tc_bitmap)
2918 {
2919 	unsigned long bitmap = tc_bitmap;
2920 	enum ice_status status;
2921 
2922 	mutex_lock(&pi->sched_lock);
2923 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2924 					    (unsigned long *)&bitmap);
2925 	if (!status)
2926 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2927 						    (unsigned long *)&bitmap);
2928 	mutex_unlock(&pi->sched_lock);
2929 	return status;
2930 }
2931 
2932 /**
2933  * ice_set_clear_cir_bw - set or clear CIR BW
2934  * @bw_t_info: bandwidth type information structure
2935  * @bw: bandwidth in Kbps - Kilo bits per sec
2936  *
2937  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2938  */
2939 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2940 {
2941 	if (bw == ICE_SCHED_DFLT_BW) {
2942 		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2943 		bw_t_info->cir_bw.bw = 0;
2944 	} else {
2945 		/* Save type of BW information */
2946 		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2947 		bw_t_info->cir_bw.bw = bw;
2948 	}
2949 }
2950 
2951 /**
2952  * ice_set_clear_eir_bw - set or clear EIR BW
2953  * @bw_t_info: bandwidth type information structure
2954  * @bw: bandwidth in Kbps - Kilo bits per sec
2955  *
2956  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2957  */
2958 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2959 {
2960 	if (bw == ICE_SCHED_DFLT_BW) {
2961 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2962 		bw_t_info->eir_bw.bw = 0;
2963 	} else {
2964 		/* EIR BW and Shared BW profiles are mutually exclusive and
2965 		 * hence only one of them may be set for any given element.
2966 		 * First clear earlier saved shared BW information.
2967 		 */
2968 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2969 		bw_t_info->shared_bw = 0;
2970 		/* save EIR BW information */
2971 		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2972 		bw_t_info->eir_bw.bw = bw;
2973 	}
2974 }
2975 
2976 /**
2977  * ice_set_clear_shared_bw - set or clear shared BW
2978  * @bw_t_info: bandwidth type information structure
2979  * @bw: bandwidth in Kbps - Kilo bits per sec
2980  *
2981  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
2982  */
2983 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2984 {
2985 	if (bw == ICE_SCHED_DFLT_BW) {
2986 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2987 		bw_t_info->shared_bw = 0;
2988 	} else {
2989 		/* EIR BW and Shared BW profiles are mutually exclusive and
2990 		 * hence only one of them may be set for any given element.
2991 		 * First clear earlier saved EIR BW information.
2992 		 */
2993 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2994 		bw_t_info->eir_bw.bw = 0;
2995 		/* save shared BW information */
2996 		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2997 		bw_t_info->shared_bw = bw;
2998 	}
2999 }
3000 
3001 /**
3002  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3003  * @hw: pointer to the HW struct
3004  * @bw: bandwidth in Kbps
3005  *
3006  * This function calculates the wakeup parameter of RL profile.
3007  */
3008 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3009 {
3010 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3011 	s32 wakeup_f_int;
3012 	u16 wakeup = 0;
3013 
3014 	/* Get the wakeup integer value */
3015 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3016 	wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3017 	if (wakeup_int > 63) {
3018 		wakeup = (u16)((1 << 15) | wakeup_int);
3019 	} else {
3020 		/* Calculate fraction value up to 4 decimals
3021 		 * Convert Integer value to a constant multiplier
3022 		 */
3023 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3024 		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3025 					   hw->psm_clk_freq, bytes_per_sec);
3026 
3027 		/* Get Fraction value */
3028 		wakeup_f = wakeup_a - wakeup_b;
3029 
3030 		/* Round up the Fractional value via Ceil(Fractional value) */
3031 		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3032 			wakeup_f += 1;
3033 
3034 		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3035 					       ICE_RL_PROF_MULTIPLIER);
3036 		wakeup |= (u16)(wakeup_int << 9);
3037 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3038 	}
3039 
3040 	return wakeup;
3041 }
3042 
3043 /**
3044  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3045  * @hw: pointer to the HW struct
3046  * @bw: bandwidth in Kbps
3047  * @profile: profile parameters to return
3048  *
3049  * This function converts the BW to profile structure format.
3050  */
3051 static enum ice_status
3052 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3053 			   struct ice_aqc_rl_profile_elem *profile)
3054 {
3055 	enum ice_status status = ICE_ERR_PARAM;
3056 	s64 bytes_per_sec, ts_rate, mv_tmp;
3057 	bool found = false;
3058 	s32 encode = 0;
3059 	s64 mv = 0;
3060 	s32 i;
3061 
3062 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3063 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3064 		return status;
3065 
3066 	/* Bytes per second from Kbps */
3067 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3068 
3069 	/* encode is 6 bits but really useful are 5 bits */
3070 	for (i = 0; i < 64; i++) {
3071 		u64 pow_result = BIT_ULL(i);
3072 
3073 		ts_rate = div64_long((s64)hw->psm_clk_freq,
3074 				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3075 		if (ts_rate <= 0)
3076 			continue;
3077 
3078 		/* Multiplier value */
3079 		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3080 				    ts_rate);
3081 
3082 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3083 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3084 
3085 		/* First multiplier value greater than the given
3086 		 * accuracy bytes
3087 		 */
3088 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3089 			encode = i;
3090 			found = true;
3091 			break;
3092 		}
3093 	}
3094 	if (found) {
3095 		u16 wm;
3096 
3097 		wm = ice_sched_calc_wakeup(hw, bw);
3098 		profile->rl_multiply = cpu_to_le16(mv);
3099 		profile->wake_up_calc = cpu_to_le16(wm);
3100 		profile->rl_encode = cpu_to_le16(encode);
3101 		status = 0;
3102 	} else {
3103 		status = ICE_ERR_DOES_NOT_EXIST;
3104 	}
3105 
3106 	return status;
3107 }
3108 
3109 /**
3110  * ice_sched_add_rl_profile - add RL profile
3111  * @pi: port information structure
3112  * @rl_type: type of rate limit BW - min, max, or shared
3113  * @bw: bandwidth in Kbps - Kilo bits per sec
3114  * @layer_num: specifies in which layer to create profile
3115  *
3116  * This function first checks the existing list for corresponding BW
3117  * parameter. If it exists, it returns the associated profile otherwise
3118  * it creates a new rate limit profile for requested BW, and adds it to
3119  * the HW DB and local list. It returns the new profile or null on error.
3120  * The caller needs to hold the scheduler lock.
3121  */
3122 static struct ice_aqc_rl_profile_info *
3123 ice_sched_add_rl_profile(struct ice_port_info *pi,
3124 			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3125 {
3126 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3127 	u16 profiles_added = 0, num_profiles = 1;
3128 	struct ice_aqc_rl_profile_elem *buf;
3129 	enum ice_status status;
3130 	struct ice_hw *hw;
3131 	u8 profile_type;
3132 
3133 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3134 		return NULL;
3135 	switch (rl_type) {
3136 	case ICE_MIN_BW:
3137 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3138 		break;
3139 	case ICE_MAX_BW:
3140 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3141 		break;
3142 	case ICE_SHARED_BW:
3143 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3144 		break;
3145 	default:
3146 		return NULL;
3147 	}
3148 
3149 	if (!pi)
3150 		return NULL;
3151 	hw = pi->hw;
3152 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3153 			    list_entry)
3154 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3155 		    profile_type && rl_prof_elem->bw == bw)
3156 			/* Return existing profile ID info */
3157 			return rl_prof_elem;
3158 
3159 	/* Create new profile ID */
3160 	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3161 				    GFP_KERNEL);
3162 
3163 	if (!rl_prof_elem)
3164 		return NULL;
3165 
3166 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3167 	if (status)
3168 		goto exit_add_rl_prof;
3169 
3170 	rl_prof_elem->bw = bw;
3171 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3172 	rl_prof_elem->profile.level = layer_num + 1;
3173 	rl_prof_elem->profile.flags = profile_type;
3174 	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3175 
3176 	/* Create new entry in HW DB */
3177 	buf = &rl_prof_elem->profile;
3178 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3179 				       &profiles_added, NULL);
3180 	if (status || profiles_added != num_profiles)
3181 		goto exit_add_rl_prof;
3182 
3183 	/* Good entry - add in the list */
3184 	rl_prof_elem->prof_id_ref = 0;
3185 	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3186 	return rl_prof_elem;
3187 
3188 exit_add_rl_prof:
3189 	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3190 	return NULL;
3191 }
3192 
3193 /**
3194  * ice_sched_cfg_node_bw_lmt - configure node sched params
3195  * @hw: pointer to the HW struct
3196  * @node: sched node to configure
3197  * @rl_type: rate limit type CIR, EIR, or shared
3198  * @rl_prof_id: rate limit profile ID
3199  *
3200  * This function configures node element's BW limit.
3201  */
3202 static enum ice_status
3203 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3204 			  enum ice_rl_type rl_type, u16 rl_prof_id)
3205 {
3206 	struct ice_aqc_txsched_elem_data buf;
3207 	struct ice_aqc_txsched_elem *data;
3208 
3209 	buf = node->info;
3210 	data = &buf.data;
3211 	switch (rl_type) {
3212 	case ICE_MIN_BW:
3213 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3214 		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3215 		break;
3216 	case ICE_MAX_BW:
3217 		/* EIR BW and Shared BW profiles are mutually exclusive and
3218 		 * hence only one of them may be set for any given element
3219 		 */
3220 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3221 			return ICE_ERR_CFG;
3222 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3223 		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3224 		break;
3225 	case ICE_SHARED_BW:
3226 		/* Check for removing shared BW */
3227 		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3228 			/* remove shared profile */
3229 			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3230 			data->srl_id = 0; /* clear SRL field */
3231 
3232 			/* enable back EIR to default profile */
3233 			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3234 			data->eir_bw.bw_profile_idx =
3235 				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3236 			break;
3237 		}
3238 		/* EIR BW and Shared BW profiles are mutually exclusive and
3239 		 * hence only one of them may be set for any given element
3240 		 */
3241 		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3242 		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3243 			    ICE_SCHED_DFLT_RL_PROF_ID))
3244 			return ICE_ERR_CFG;
3245 		/* EIR BW is set to default, disable it */
3246 		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3247 		/* Okay to enable shared BW now */
3248 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3249 		data->srl_id = cpu_to_le16(rl_prof_id);
3250 		break;
3251 	default:
3252 		/* Unknown rate limit type */
3253 		return ICE_ERR_PARAM;
3254 	}
3255 
3256 	/* Configure element */
3257 	return ice_sched_update_elem(hw, node, &buf);
3258 }
3259 
3260 /**
3261  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3262  * @node: sched node
3263  * @rl_type: rate limit type
3264  *
3265  * If existing profile matches, it returns the corresponding rate
3266  * limit profile ID, otherwise it returns an invalid ID as error.
3267  */
3268 static u16
3269 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3270 			      enum ice_rl_type rl_type)
3271 {
3272 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3273 	struct ice_aqc_txsched_elem *data;
3274 
3275 	data = &node->info.data;
3276 	switch (rl_type) {
3277 	case ICE_MIN_BW:
3278 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3279 			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3280 		break;
3281 	case ICE_MAX_BW:
3282 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3283 			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3284 		break;
3285 	case ICE_SHARED_BW:
3286 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3287 			rl_prof_id = le16_to_cpu(data->srl_id);
3288 		break;
3289 	default:
3290 		break;
3291 	}
3292 
3293 	return rl_prof_id;
3294 }
3295 
3296 /**
3297  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3298  * @pi: port information structure
3299  * @rl_type: type of rate limit BW - min, max, or shared
3300  * @layer_index: layer index
3301  *
3302  * This function returns requested profile creation layer.
3303  */
3304 static u8
3305 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3306 			    u8 layer_index)
3307 {
3308 	struct ice_hw *hw = pi->hw;
3309 
3310 	if (layer_index >= hw->num_tx_sched_layers)
3311 		return ICE_SCHED_INVAL_LAYER_NUM;
3312 	switch (rl_type) {
3313 	case ICE_MIN_BW:
3314 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
3315 			return layer_index;
3316 		break;
3317 	case ICE_MAX_BW:
3318 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
3319 			return layer_index;
3320 		break;
3321 	case ICE_SHARED_BW:
3322 		/* if current layer doesn't support SRL profile creation
3323 		 * then try a layer up or down.
3324 		 */
3325 		if (hw->layer_info[layer_index].max_srl_profiles)
3326 			return layer_index;
3327 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
3328 			 hw->layer_info[layer_index + 1].max_srl_profiles)
3329 			return layer_index + 1;
3330 		else if (layer_index > 0 &&
3331 			 hw->layer_info[layer_index - 1].max_srl_profiles)
3332 			return layer_index - 1;
3333 		break;
3334 	default:
3335 		break;
3336 	}
3337 	return ICE_SCHED_INVAL_LAYER_NUM;
3338 }
3339 
3340 /**
3341  * ice_sched_get_srl_node - get shared rate limit node
3342  * @node: tree node
3343  * @srl_layer: shared rate limit layer
3344  *
3345  * This function returns SRL node to be used for shared rate limit purpose.
3346  * The caller needs to hold scheduler lock.
3347  */
3348 static struct ice_sched_node *
3349 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3350 {
3351 	if (srl_layer > node->tx_sched_layer)
3352 		return node->children[0];
3353 	else if (srl_layer < node->tx_sched_layer)
3354 		/* Node can't be created without a parent. It will always
3355 		 * have a valid parent except root node.
3356 		 */
3357 		return node->parent;
3358 	else
3359 		return node;
3360 }
3361 
3362 /**
3363  * ice_sched_rm_rl_profile - remove RL profile ID
3364  * @pi: port information structure
3365  * @layer_num: layer number where profiles are saved
3366  * @profile_type: profile type like EIR, CIR, or SRL
3367  * @profile_id: profile ID to remove
3368  *
3369  * This function removes rate limit profile from layer 'layer_num' of type
3370  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3371  * scheduler lock.
3372  */
3373 static enum ice_status
3374 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3375 			u16 profile_id)
3376 {
3377 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3378 	enum ice_status status = 0;
3379 
3380 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3381 		return ICE_ERR_PARAM;
3382 	/* Check the existing list for RL profile */
3383 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3384 			    list_entry)
3385 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3386 		    profile_type &&
3387 		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3388 		    profile_id) {
3389 			if (rl_prof_elem->prof_id_ref)
3390 				rl_prof_elem->prof_id_ref--;
3391 
3392 			/* Remove old profile ID from database */
3393 			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3394 			if (status && status != ICE_ERR_IN_USE)
3395 				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3396 			break;
3397 		}
3398 	if (status == ICE_ERR_IN_USE)
3399 		status = 0;
3400 	return status;
3401 }
3402 
3403 /**
3404  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3405  * @pi: port information structure
3406  * @node: pointer to node structure
3407  * @rl_type: rate limit type min, max, or shared
3408  * @layer_num: layer number where RL profiles are saved
3409  *
3410  * This function configures node element's BW rate limit profile ID of
3411  * type CIR, EIR, or SRL to default. This function needs to be called
3412  * with the scheduler lock held.
3413  */
3414 static enum ice_status
3415 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3416 			   struct ice_sched_node *node,
3417 			   enum ice_rl_type rl_type, u8 layer_num)
3418 {
3419 	enum ice_status status;
3420 	struct ice_hw *hw;
3421 	u8 profile_type;
3422 	u16 rl_prof_id;
3423 	u16 old_id;
3424 
3425 	hw = pi->hw;
3426 	switch (rl_type) {
3427 	case ICE_MIN_BW:
3428 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3429 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3430 		break;
3431 	case ICE_MAX_BW:
3432 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3433 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3434 		break;
3435 	case ICE_SHARED_BW:
3436 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3437 		/* No SRL is configured for default case */
3438 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3439 		break;
3440 	default:
3441 		return ICE_ERR_PARAM;
3442 	}
3443 	/* Save existing RL prof ID for later clean up */
3444 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3445 	/* Configure BW scheduling parameters */
3446 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3447 	if (status)
3448 		return status;
3449 
3450 	/* Remove stale RL profile ID */
3451 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3452 	    old_id == ICE_SCHED_INVAL_PROF_ID)
3453 		return 0;
3454 
3455 	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3456 }
3457 
3458 /**
3459  * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3460  * @pi: port information structure
3461  * @node: pointer to node structure
3462  * @layer_num: layer number where rate limit profiles are saved
3463  * @rl_type: rate limit type min, max, or shared
3464  * @bw: bandwidth value
3465  *
3466  * This function prepares node element's bandwidth to SRL or EIR exclusively.
3467  * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3468  * them may be set for any given element. This function needs to be called
3469  * with the scheduler lock held.
3470  */
3471 static enum ice_status
3472 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3473 			   struct ice_sched_node *node,
3474 			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3475 {
3476 	if (rl_type == ICE_SHARED_BW) {
3477 		/* SRL node passed in this case, it may be different node */
3478 		if (bw == ICE_SCHED_DFLT_BW)
3479 			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
3480 			 * enables EIR to default. EIR is not set in this
3481 			 * case, so no additional action is required.
3482 			 */
3483 			return 0;
3484 
3485 		/* SRL being configured, set EIR to default here.
3486 		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3487 		 * configures SRL
3488 		 */
3489 		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3490 						  layer_num);
3491 	} else if (rl_type == ICE_MAX_BW &&
3492 		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3493 		/* Remove Shared profile. Set default shared BW call
3494 		 * removes shared profile for a node.
3495 		 */
3496 		return ice_sched_set_node_bw_dflt(pi, node,
3497 						  ICE_SHARED_BW,
3498 						  layer_num);
3499 	}
3500 	return 0;
3501 }
3502 
3503 /**
3504  * ice_sched_set_node_bw - set node's bandwidth
3505  * @pi: port information structure
3506  * @node: tree node
3507  * @rl_type: rate limit type min, max, or shared
3508  * @bw: bandwidth in Kbps - Kilo bits per sec
3509  * @layer_num: layer number
3510  *
3511  * This function adds new profile corresponding to requested BW, configures
3512  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3513  * ID from local database. The caller needs to hold scheduler lock.
3514  */
3515 static enum ice_status
3516 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3517 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3518 {
3519 	struct ice_aqc_rl_profile_info *rl_prof_info;
3520 	enum ice_status status = ICE_ERR_PARAM;
3521 	struct ice_hw *hw = pi->hw;
3522 	u16 old_id, rl_prof_id;
3523 
3524 	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3525 	if (!rl_prof_info)
3526 		return status;
3527 
3528 	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3529 
3530 	/* Save existing RL prof ID for later clean up */
3531 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3532 	/* Configure BW scheduling parameters */
3533 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3534 	if (status)
3535 		return status;
3536 
3537 	/* New changes has been applied */
3538 	/* Increment the profile ID reference count */
3539 	rl_prof_info->prof_id_ref++;
3540 
3541 	/* Check for old ID removal */
3542 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3543 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3544 		return 0;
3545 
3546 	return ice_sched_rm_rl_profile(pi, layer_num,
3547 				       rl_prof_info->profile.flags &
3548 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3549 }
3550 
3551 /**
3552  * ice_sched_set_node_bw_lmt - set node's BW limit
3553  * @pi: port information structure
3554  * @node: tree node
3555  * @rl_type: rate limit type min, max, or shared
3556  * @bw: bandwidth in Kbps - Kilo bits per sec
3557  *
3558  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3559  * EIR, or SRL. The caller needs to hold scheduler lock.
3560  */
3561 static enum ice_status
3562 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3563 			  enum ice_rl_type rl_type, u32 bw)
3564 {
3565 	struct ice_sched_node *cfg_node = node;
3566 	enum ice_status status;
3567 
3568 	struct ice_hw *hw;
3569 	u8 layer_num;
3570 
3571 	if (!pi)
3572 		return ICE_ERR_PARAM;
3573 	hw = pi->hw;
3574 	/* Remove unused RL profile IDs from HW and SW DB */
3575 	ice_sched_rm_unused_rl_prof(pi);
3576 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3577 						node->tx_sched_layer);
3578 	if (layer_num >= hw->num_tx_sched_layers)
3579 		return ICE_ERR_PARAM;
3580 
3581 	if (rl_type == ICE_SHARED_BW) {
3582 		/* SRL node may be different */
3583 		cfg_node = ice_sched_get_srl_node(node, layer_num);
3584 		if (!cfg_node)
3585 			return ICE_ERR_CFG;
3586 	}
3587 	/* EIR BW and Shared BW profiles are mutually exclusive and
3588 	 * hence only one of them may be set for any given element
3589 	 */
3590 	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3591 					    bw);
3592 	if (status)
3593 		return status;
3594 	if (bw == ICE_SCHED_DFLT_BW)
3595 		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3596 						  layer_num);
3597 	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3598 }
3599 
3600 /**
3601  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3602  * @pi: port information structure
3603  * @node: pointer to node structure
3604  * @rl_type: rate limit type min, max, or shared
3605  *
3606  * This function configures node element's BW rate limit profile ID of
3607  * type CIR, EIR, or SRL to default. This function needs to be called
3608  * with the scheduler lock held.
3609  */
3610 static enum ice_status
3611 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3612 			       struct ice_sched_node *node,
3613 			       enum ice_rl_type rl_type)
3614 {
3615 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3616 					 ICE_SCHED_DFLT_BW);
3617 }
3618 
3619 /**
3620  * ice_sched_validate_srl_node - Check node for SRL applicability
3621  * @node: sched node to configure
3622  * @sel_layer: selected SRL layer
3623  *
3624  * This function checks if the SRL can be applied to a selected layer node on
3625  * behalf of the requested node (first argument). This function needs to be
3626  * called with scheduler lock held.
3627  */
3628 static enum ice_status
3629 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3630 {
3631 	/* SRL profiles are not available on all layers. Check if the
3632 	 * SRL profile can be applied to a node above or below the
3633 	 * requested node. SRL configuration is possible only if the
3634 	 * selected layer's node has single child.
3635 	 */
3636 	if (sel_layer == node->tx_sched_layer ||
3637 	    ((sel_layer == node->tx_sched_layer + 1) &&
3638 	    node->num_children == 1) ||
3639 	    ((sel_layer == node->tx_sched_layer - 1) &&
3640 	    (node->parent && node->parent->num_children == 1)))
3641 		return 0;
3642 
3643 	return ICE_ERR_CFG;
3644 }
3645 
3646 /**
3647  * ice_sched_save_q_bw - save queue node's BW information
3648  * @q_ctx: queue context structure
3649  * @rl_type: rate limit type min, max, or shared
3650  * @bw: bandwidth in Kbps - Kilo bits per sec
3651  *
3652  * Save BW information of queue type node for post replay use.
3653  */
3654 static enum ice_status
3655 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3656 {
3657 	switch (rl_type) {
3658 	case ICE_MIN_BW:
3659 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3660 		break;
3661 	case ICE_MAX_BW:
3662 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3663 		break;
3664 	case ICE_SHARED_BW:
3665 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3666 		break;
3667 	default:
3668 		return ICE_ERR_PARAM;
3669 	}
3670 	return 0;
3671 }
3672 
3673 /**
3674  * ice_sched_set_q_bw_lmt - sets queue BW limit
3675  * @pi: port information structure
3676  * @vsi_handle: sw VSI handle
3677  * @tc: traffic class
3678  * @q_handle: software queue handle
3679  * @rl_type: min, max, or shared
3680  * @bw: bandwidth in Kbps
3681  *
3682  * This function sets BW limit of queue scheduling node.
3683  */
3684 static enum ice_status
3685 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3686 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3687 {
3688 	enum ice_status status = ICE_ERR_PARAM;
3689 	struct ice_sched_node *node;
3690 	struct ice_q_ctx *q_ctx;
3691 
3692 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3693 		return ICE_ERR_PARAM;
3694 	mutex_lock(&pi->sched_lock);
3695 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3696 	if (!q_ctx)
3697 		goto exit_q_bw_lmt;
3698 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3699 	if (!node) {
3700 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3701 		goto exit_q_bw_lmt;
3702 	}
3703 
3704 	/* Return error if it is not a leaf node */
3705 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3706 		goto exit_q_bw_lmt;
3707 
3708 	/* SRL bandwidth layer selection */
3709 	if (rl_type == ICE_SHARED_BW) {
3710 		u8 sel_layer; /* selected layer */
3711 
3712 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3713 							node->tx_sched_layer);
3714 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
3715 			status = ICE_ERR_PARAM;
3716 			goto exit_q_bw_lmt;
3717 		}
3718 		status = ice_sched_validate_srl_node(node, sel_layer);
3719 		if (status)
3720 			goto exit_q_bw_lmt;
3721 	}
3722 
3723 	if (bw == ICE_SCHED_DFLT_BW)
3724 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3725 	else
3726 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3727 
3728 	if (!status)
3729 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3730 
3731 exit_q_bw_lmt:
3732 	mutex_unlock(&pi->sched_lock);
3733 	return status;
3734 }
3735 
3736 /**
3737  * ice_cfg_q_bw_lmt - configure queue BW limit
3738  * @pi: port information structure
3739  * @vsi_handle: sw VSI handle
3740  * @tc: traffic class
3741  * @q_handle: software queue handle
3742  * @rl_type: min, max, or shared
3743  * @bw: bandwidth in Kbps
3744  *
3745  * This function configures BW limit of queue scheduling node.
3746  */
3747 enum ice_status
3748 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3749 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3750 {
3751 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3752 				      bw);
3753 }
3754 
3755 /**
3756  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3757  * @pi: port information structure
3758  * @vsi_handle: sw VSI handle
3759  * @tc: traffic class
3760  * @q_handle: software queue handle
3761  * @rl_type: min, max, or shared
3762  *
3763  * This function configures BW default limit of queue scheduling node.
3764  */
3765 enum ice_status
3766 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3767 		      u16 q_handle, enum ice_rl_type rl_type)
3768 {
3769 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3770 				      ICE_SCHED_DFLT_BW);
3771 }
3772 
3773 /**
3774  * ice_cfg_rl_burst_size - Set burst size value
3775  * @hw: pointer to the HW struct
3776  * @bytes: burst size in bytes
3777  *
3778  * This function configures/set the burst size to requested new value. The new
3779  * burst size value is used for future rate limit calls. It doesn't change the
3780  * existing or previously created RL profiles.
3781  */
3782 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
3783 {
3784 	u16 burst_size_to_prog;
3785 
3786 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
3787 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
3788 		return ICE_ERR_PARAM;
3789 	if (ice_round_to_num(bytes, 64) <=
3790 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
3791 		/* 64 byte granularity case */
3792 		/* Disable MSB granularity bit */
3793 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
3794 		/* round number to nearest 64 byte granularity */
3795 		bytes = ice_round_to_num(bytes, 64);
3796 		/* The value is in 64 byte chunks */
3797 		burst_size_to_prog |= (u16)(bytes / 64);
3798 	} else {
3799 		/* k bytes granularity case */
3800 		/* Enable MSB granularity bit */
3801 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
3802 		/* round number to nearest 1024 granularity */
3803 		bytes = ice_round_to_num(bytes, 1024);
3804 		/* check rounding doesn't go beyond allowed */
3805 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
3806 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
3807 		/* The value is in k bytes */
3808 		burst_size_to_prog |= (u16)(bytes / 1024);
3809 	}
3810 	hw->max_burst_size = burst_size_to_prog;
3811 	return 0;
3812 }
3813 
3814 /**
3815  * ice_sched_replay_node_prio - re-configure node priority
3816  * @hw: pointer to the HW struct
3817  * @node: sched node to configure
3818  * @priority: priority value
3819  *
3820  * This function configures node element's priority value. It
3821  * needs to be called with scheduler lock held.
3822  */
3823 static enum ice_status
3824 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
3825 			   u8 priority)
3826 {
3827 	struct ice_aqc_txsched_elem_data buf;
3828 	struct ice_aqc_txsched_elem *data;
3829 	enum ice_status status;
3830 
3831 	buf = node->info;
3832 	data = &buf.data;
3833 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3834 	data->generic = priority;
3835 
3836 	/* Configure element */
3837 	status = ice_sched_update_elem(hw, node, &buf);
3838 	return status;
3839 }
3840 
3841 /**
3842  * ice_sched_replay_node_bw - replay node(s) BW
3843  * @hw: pointer to the HW struct
3844  * @node: sched node to configure
3845  * @bw_t_info: BW type information
3846  *
3847  * This function restores node's BW from bw_t_info. The caller needs
3848  * to hold the scheduler lock.
3849  */
3850 static enum ice_status
3851 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
3852 			 struct ice_bw_type_info *bw_t_info)
3853 {
3854 	struct ice_port_info *pi = hw->port_info;
3855 	enum ice_status status = ICE_ERR_PARAM;
3856 	u16 bw_alloc;
3857 
3858 	if (!node)
3859 		return status;
3860 	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
3861 		return 0;
3862 	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
3863 		status = ice_sched_replay_node_prio(hw, node,
3864 						    bw_t_info->generic);
3865 		if (status)
3866 			return status;
3867 	}
3868 	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
3869 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
3870 						   bw_t_info->cir_bw.bw);
3871 		if (status)
3872 			return status;
3873 	}
3874 	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
3875 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
3876 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
3877 						     bw_alloc);
3878 		if (status)
3879 			return status;
3880 	}
3881 	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
3882 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
3883 						   bw_t_info->eir_bw.bw);
3884 		if (status)
3885 			return status;
3886 	}
3887 	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
3888 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
3889 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
3890 						     bw_alloc);
3891 		if (status)
3892 			return status;
3893 	}
3894 	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
3895 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
3896 						   bw_t_info->shared_bw);
3897 	return status;
3898 }
3899 
3900 /**
3901  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
3902  * @pi: port info struct
3903  * @tc_bitmap: 8 bits TC bitmap to check
3904  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
3905  *
3906  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
3907  * may be missing, it returns enabled TCs. This function needs to be called with
3908  * scheduler lock held.
3909  */
3910 static void
3911 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
3912 			    unsigned long *tc_bitmap,
3913 			    unsigned long *ena_tc_bitmap)
3914 {
3915 	u8 tc;
3916 
3917 	/* Some TC(s) may be missing after reset, adjust for replay */
3918 	ice_for_each_traffic_class(tc)
3919 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
3920 		    (ice_sched_get_tc_node(pi, tc)))
3921 			set_bit(tc, ena_tc_bitmap);
3922 }
3923 
3924 /**
3925  * ice_sched_replay_agg - recreate aggregator node(s)
3926  * @hw: pointer to the HW struct
3927  *
3928  * This function recreate aggregator type nodes which are not replayed earlier.
3929  * It also replay aggregator BW information. These aggregator nodes are not
3930  * associated with VSI type node yet.
3931  */
3932 void ice_sched_replay_agg(struct ice_hw *hw)
3933 {
3934 	struct ice_port_info *pi = hw->port_info;
3935 	struct ice_sched_agg_info *agg_info;
3936 
3937 	mutex_lock(&pi->sched_lock);
3938 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
3939 		/* replay aggregator (re-create aggregator node) */
3940 		if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
3941 				  ICE_MAX_TRAFFIC_CLASS)) {
3942 			DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
3943 			enum ice_status status;
3944 
3945 			bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
3946 			ice_sched_get_ena_tc_bitmap(pi,
3947 						    agg_info->replay_tc_bitmap,
3948 						    replay_bitmap);
3949 			status = ice_sched_cfg_agg(hw->port_info,
3950 						   agg_info->agg_id,
3951 						   ICE_AGG_TYPE_AGG,
3952 						   replay_bitmap);
3953 			if (status) {
3954 				dev_info(ice_hw_to_dev(hw),
3955 					 "Replay agg id[%d] failed\n",
3956 					 agg_info->agg_id);
3957 				/* Move on to next one */
3958 				continue;
3959 			}
3960 		}
3961 	mutex_unlock(&pi->sched_lock);
3962 }
3963 
3964 /**
3965  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
3966  * @hw: pointer to the HW struct
3967  *
3968  * This function initialize aggregator(s) TC bitmap to zero. A required
3969  * preinit step for replaying aggregators.
3970  */
3971 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
3972 {
3973 	struct ice_port_info *pi = hw->port_info;
3974 	struct ice_sched_agg_info *agg_info;
3975 
3976 	mutex_lock(&pi->sched_lock);
3977 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
3978 		struct ice_sched_agg_vsi_info *agg_vsi_info;
3979 
3980 		agg_info->tc_bitmap[0] = 0;
3981 		list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
3982 				    list_entry)
3983 			agg_vsi_info->tc_bitmap[0] = 0;
3984 	}
3985 	mutex_unlock(&pi->sched_lock);
3986 }
3987 
3988 /**
3989  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
3990  * @hw: pointer to the HW struct
3991  * @vsi_handle: software VSI handle
3992  *
3993  * This function replays aggregator node, VSI to aggregator type nodes, and
3994  * their node bandwidth information. This function needs to be called with
3995  * scheduler lock held.
3996  */
3997 static enum ice_status
3998 ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
3999 {
4000 	DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4001 	struct ice_sched_agg_vsi_info *agg_vsi_info;
4002 	struct ice_port_info *pi = hw->port_info;
4003 	struct ice_sched_agg_info *agg_info;
4004 	enum ice_status status;
4005 
4006 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4007 	if (!ice_is_vsi_valid(hw, vsi_handle))
4008 		return ICE_ERR_PARAM;
4009 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4010 	if (!agg_info)
4011 		return 0; /* Not present in list - default Agg case */
4012 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4013 	if (!agg_vsi_info)
4014 		return 0; /* Not present in list - default Agg case */
4015 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4016 				    replay_bitmap);
4017 	/* Replay aggregator node associated to vsi_handle */
4018 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4019 				   ICE_AGG_TYPE_AGG, replay_bitmap);
4020 	if (status)
4021 		return status;
4022 
4023 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4024 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4025 				    replay_bitmap);
4026 	/* Move this VSI (vsi_handle) to above aggregator */
4027 	return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4028 					  replay_bitmap);
4029 }
4030 
4031 /**
4032  * ice_replay_vsi_agg - replay VSI to aggregator node
4033  * @hw: pointer to the HW struct
4034  * @vsi_handle: software VSI handle
4035  *
4036  * This function replays association of VSI to aggregator type nodes, and
4037  * node bandwidth information.
4038  */
4039 enum ice_status ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4040 {
4041 	struct ice_port_info *pi = hw->port_info;
4042 	enum ice_status status;
4043 
4044 	mutex_lock(&pi->sched_lock);
4045 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4046 	mutex_unlock(&pi->sched_lock);
4047 	return status;
4048 }
4049 
4050 /**
4051  * ice_sched_replay_q_bw - replay queue type node BW
4052  * @pi: port information structure
4053  * @q_ctx: queue context structure
4054  *
4055  * This function replays queue type node bandwidth. This function needs to be
4056  * called with scheduler lock held.
4057  */
4058 enum ice_status
4059 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4060 {
4061 	struct ice_sched_node *q_node;
4062 
4063 	/* Following also checks the presence of node in tree */
4064 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4065 	if (!q_node)
4066 		return ICE_ERR_PARAM;
4067 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4068 }
4069