1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include <net/devlink.h> 5 #include "ice_sched.h" 6 7 /** 8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB 9 * @pi: port information structure 10 * @info: Scheduler element information from firmware 11 * 12 * This function inserts the root node of the scheduling tree topology 13 * to the SW DB. 14 */ 15 static int 16 ice_sched_add_root_node(struct ice_port_info *pi, 17 struct ice_aqc_txsched_elem_data *info) 18 { 19 struct ice_sched_node *root; 20 struct ice_hw *hw; 21 22 if (!pi) 23 return -EINVAL; 24 25 hw = pi->hw; 26 27 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); 28 if (!root) 29 return -ENOMEM; 30 31 /* coverity[suspicious_sizeof] */ 32 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], 33 sizeof(*root), GFP_KERNEL); 34 if (!root->children) { 35 devm_kfree(ice_hw_to_dev(hw), root); 36 return -ENOMEM; 37 } 38 39 memcpy(&root->info, info, sizeof(*info)); 40 pi->root = root; 41 return 0; 42 } 43 44 /** 45 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB 46 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree 47 * @teid: node TEID to search 48 * 49 * This function searches for a node matching the TEID in the scheduling tree 50 * from the SW DB. The search is recursive and is restricted by the number of 51 * layers it has searched through; stopping at the max supported layer. 52 * 53 * This function needs to be called when holding the port_info->sched_lock 54 */ 55 struct ice_sched_node * 56 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) 57 { 58 u16 i; 59 60 /* The TEID is same as that of the start_node */ 61 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) 62 return start_node; 63 64 /* The node has no children or is at the max layer */ 65 if (!start_node->num_children || 66 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || 67 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) 68 return NULL; 69 70 /* Check if TEID matches to any of the children nodes */ 71 for (i = 0; i < start_node->num_children; i++) 72 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) 73 return start_node->children[i]; 74 75 /* Search within each child's sub-tree */ 76 for (i = 0; i < start_node->num_children; i++) { 77 struct ice_sched_node *tmp; 78 79 tmp = ice_sched_find_node_by_teid(start_node->children[i], 80 teid); 81 if (tmp) 82 return tmp; 83 } 84 85 return NULL; 86 } 87 88 /** 89 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd 90 * @hw: pointer to the HW struct 91 * @cmd_opc: cmd opcode 92 * @elems_req: number of elements to request 93 * @buf: pointer to buffer 94 * @buf_size: buffer size in bytes 95 * @elems_resp: returns total number of elements response 96 * @cd: pointer to command details structure or NULL 97 * 98 * This function sends a scheduling elements cmd (cmd_opc) 99 */ 100 static int 101 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, 102 u16 elems_req, void *buf, u16 buf_size, 103 u16 *elems_resp, struct ice_sq_cd *cd) 104 { 105 struct ice_aqc_sched_elem_cmd *cmd; 106 struct ice_aq_desc desc; 107 int status; 108 109 cmd = &desc.params.sched_elem_cmd; 110 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); 111 cmd->num_elem_req = cpu_to_le16(elems_req); 112 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 113 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 114 if (!status && elems_resp) 115 *elems_resp = le16_to_cpu(cmd->num_elem_resp); 116 117 return status; 118 } 119 120 /** 121 * ice_aq_query_sched_elems - query scheduler elements 122 * @hw: pointer to the HW struct 123 * @elems_req: number of elements to query 124 * @buf: pointer to buffer 125 * @buf_size: buffer size in bytes 126 * @elems_ret: returns total number of elements returned 127 * @cd: pointer to command details structure or NULL 128 * 129 * Query scheduling elements (0x0404) 130 */ 131 int 132 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, 133 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 134 u16 *elems_ret, struct ice_sq_cd *cd) 135 { 136 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, 137 elems_req, (void *)buf, buf_size, 138 elems_ret, cd); 139 } 140 141 /** 142 * ice_sched_add_node - Insert the Tx scheduler node in SW DB 143 * @pi: port information structure 144 * @layer: Scheduler layer of the node 145 * @info: Scheduler element information from firmware 146 * @prealloc_node: preallocated ice_sched_node struct for SW DB 147 * 148 * This function inserts a scheduler node to the SW DB. 149 */ 150 int 151 ice_sched_add_node(struct ice_port_info *pi, u8 layer, 152 struct ice_aqc_txsched_elem_data *info, 153 struct ice_sched_node *prealloc_node) 154 { 155 struct ice_aqc_txsched_elem_data elem; 156 struct ice_sched_node *parent; 157 struct ice_sched_node *node; 158 struct ice_hw *hw; 159 int status; 160 161 if (!pi) 162 return -EINVAL; 163 164 hw = pi->hw; 165 166 /* A valid parent node should be there */ 167 parent = ice_sched_find_node_by_teid(pi->root, 168 le32_to_cpu(info->parent_teid)); 169 if (!parent) { 170 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n", 171 le32_to_cpu(info->parent_teid)); 172 return -EINVAL; 173 } 174 175 /* query the current node information from FW before adding it 176 * to the SW DB 177 */ 178 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); 179 if (status) 180 return status; 181 182 if (prealloc_node) 183 node = prealloc_node; 184 else 185 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); 186 if (!node) 187 return -ENOMEM; 188 if (hw->max_children[layer]) { 189 /* coverity[suspicious_sizeof] */ 190 node->children = devm_kcalloc(ice_hw_to_dev(hw), 191 hw->max_children[layer], 192 sizeof(*node), GFP_KERNEL); 193 if (!node->children) { 194 devm_kfree(ice_hw_to_dev(hw), node); 195 return -ENOMEM; 196 } 197 } 198 199 node->in_use = true; 200 node->parent = parent; 201 node->tx_sched_layer = layer; 202 parent->children[parent->num_children++] = node; 203 node->info = elem; 204 return 0; 205 } 206 207 /** 208 * ice_aq_delete_sched_elems - delete scheduler elements 209 * @hw: pointer to the HW struct 210 * @grps_req: number of groups to delete 211 * @buf: pointer to buffer 212 * @buf_size: buffer size in bytes 213 * @grps_del: returns total number of elements deleted 214 * @cd: pointer to command details structure or NULL 215 * 216 * Delete scheduling elements (0x040F) 217 */ 218 static int 219 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, 220 struct ice_aqc_delete_elem *buf, u16 buf_size, 221 u16 *grps_del, struct ice_sq_cd *cd) 222 { 223 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, 224 grps_req, (void *)buf, buf_size, 225 grps_del, cd); 226 } 227 228 /** 229 * ice_sched_remove_elems - remove nodes from HW 230 * @hw: pointer to the HW struct 231 * @parent: pointer to the parent node 232 * @node_teid: node teid to be deleted 233 * 234 * This function remove nodes from HW 235 */ 236 static int 237 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, 238 u32 node_teid) 239 { 240 DEFINE_RAW_FLEX(struct ice_aqc_delete_elem, buf, teid, 1); 241 u16 buf_size = __struct_size(buf); 242 u16 num_groups_removed = 0; 243 int status; 244 245 buf->hdr.parent_teid = parent->info.node_teid; 246 buf->hdr.num_elems = cpu_to_le16(1); 247 buf->teid[0] = cpu_to_le32(node_teid); 248 249 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, 250 &num_groups_removed, NULL); 251 if (status || num_groups_removed != 1) 252 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", 253 hw->adminq.sq_last_status); 254 255 return status; 256 } 257 258 /** 259 * ice_sched_get_first_node - get the first node of the given layer 260 * @pi: port information structure 261 * @parent: pointer the base node of the subtree 262 * @layer: layer number 263 * 264 * This function retrieves the first node of the given layer from the subtree 265 */ 266 static struct ice_sched_node * 267 ice_sched_get_first_node(struct ice_port_info *pi, 268 struct ice_sched_node *parent, u8 layer) 269 { 270 return pi->sib_head[parent->tc_num][layer]; 271 } 272 273 /** 274 * ice_sched_get_tc_node - get pointer to TC node 275 * @pi: port information structure 276 * @tc: TC number 277 * 278 * This function returns the TC node pointer 279 */ 280 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) 281 { 282 u8 i; 283 284 if (!pi || !pi->root) 285 return NULL; 286 for (i = 0; i < pi->root->num_children; i++) 287 if (pi->root->children[i]->tc_num == tc) 288 return pi->root->children[i]; 289 return NULL; 290 } 291 292 /** 293 * ice_free_sched_node - Free a Tx scheduler node from SW DB 294 * @pi: port information structure 295 * @node: pointer to the ice_sched_node struct 296 * 297 * This function frees up a node from SW DB as well as from HW 298 * 299 * This function needs to be called with the port_info->sched_lock held 300 */ 301 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) 302 { 303 struct ice_sched_node *parent; 304 struct ice_hw *hw = pi->hw; 305 u8 i, j; 306 307 /* Free the children before freeing up the parent node 308 * The parent array is updated below and that shifts the nodes 309 * in the array. So always pick the first child if num children > 0 310 */ 311 while (node->num_children) 312 ice_free_sched_node(pi, node->children[0]); 313 314 /* Leaf, TC and root nodes can't be deleted by SW */ 315 if (node->tx_sched_layer >= hw->sw_entry_point_layer && 316 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 317 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && 318 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { 319 u32 teid = le32_to_cpu(node->info.node_teid); 320 321 ice_sched_remove_elems(hw, node->parent, teid); 322 } 323 parent = node->parent; 324 /* root has no parent */ 325 if (parent) { 326 struct ice_sched_node *p; 327 328 /* update the parent */ 329 for (i = 0; i < parent->num_children; i++) 330 if (parent->children[i] == node) { 331 for (j = i + 1; j < parent->num_children; j++) 332 parent->children[j - 1] = 333 parent->children[j]; 334 parent->num_children--; 335 break; 336 } 337 338 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); 339 while (p) { 340 if (p->sibling == node) { 341 p->sibling = node->sibling; 342 break; 343 } 344 p = p->sibling; 345 } 346 347 /* update the sibling head if head is getting removed */ 348 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) 349 pi->sib_head[node->tc_num][node->tx_sched_layer] = 350 node->sibling; 351 } 352 353 devm_kfree(ice_hw_to_dev(hw), node->children); 354 kfree(node->name); 355 xa_erase(&pi->sched_node_ids, node->id); 356 devm_kfree(ice_hw_to_dev(hw), node); 357 } 358 359 /** 360 * ice_aq_get_dflt_topo - gets default scheduler topology 361 * @hw: pointer to the HW struct 362 * @lport: logical port number 363 * @buf: pointer to buffer 364 * @buf_size: buffer size in bytes 365 * @num_branches: returns total number of queue to port branches 366 * @cd: pointer to command details structure or NULL 367 * 368 * Get default scheduler topology (0x400) 369 */ 370 static int 371 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, 372 struct ice_aqc_get_topo_elem *buf, u16 buf_size, 373 u8 *num_branches, struct ice_sq_cd *cd) 374 { 375 struct ice_aqc_get_topo *cmd; 376 struct ice_aq_desc desc; 377 int status; 378 379 cmd = &desc.params.get_topo; 380 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); 381 cmd->port_num = lport; 382 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 383 if (!status && num_branches) 384 *num_branches = cmd->num_branches; 385 386 return status; 387 } 388 389 /** 390 * ice_aq_add_sched_elems - adds scheduling element 391 * @hw: pointer to the HW struct 392 * @grps_req: the number of groups that are requested to be added 393 * @buf: pointer to buffer 394 * @buf_size: buffer size in bytes 395 * @grps_added: returns total number of groups added 396 * @cd: pointer to command details structure or NULL 397 * 398 * Add scheduling elements (0x0401) 399 */ 400 static int 401 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, 402 struct ice_aqc_add_elem *buf, u16 buf_size, 403 u16 *grps_added, struct ice_sq_cd *cd) 404 { 405 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, 406 grps_req, (void *)buf, buf_size, 407 grps_added, cd); 408 } 409 410 /** 411 * ice_aq_cfg_sched_elems - configures scheduler elements 412 * @hw: pointer to the HW struct 413 * @elems_req: number of elements to configure 414 * @buf: pointer to buffer 415 * @buf_size: buffer size in bytes 416 * @elems_cfgd: returns total number of elements configured 417 * @cd: pointer to command details structure or NULL 418 * 419 * Configure scheduling elements (0x0403) 420 */ 421 static int 422 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, 423 struct ice_aqc_txsched_elem_data *buf, u16 buf_size, 424 u16 *elems_cfgd, struct ice_sq_cd *cd) 425 { 426 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, 427 elems_req, (void *)buf, buf_size, 428 elems_cfgd, cd); 429 } 430 431 /** 432 * ice_aq_move_sched_elems - move scheduler element (just 1 group) 433 * @hw: pointer to the HW struct 434 * @buf: pointer to buffer 435 * @buf_size: buffer size in bytes 436 * @grps_movd: returns total number of groups moved 437 * 438 * Move scheduling elements (0x0408) 439 */ 440 int 441 ice_aq_move_sched_elems(struct ice_hw *hw, struct ice_aqc_move_elem *buf, 442 u16 buf_size, u16 *grps_movd) 443 { 444 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems, 445 1, buf, buf_size, grps_movd, NULL); 446 } 447 448 /** 449 * ice_aq_suspend_sched_elems - suspend scheduler elements 450 * @hw: pointer to the HW struct 451 * @elems_req: number of elements to suspend 452 * @buf: pointer to buffer 453 * @buf_size: buffer size in bytes 454 * @elems_ret: returns total number of elements suspended 455 * @cd: pointer to command details structure or NULL 456 * 457 * Suspend scheduling elements (0x0409) 458 */ 459 static int 460 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 461 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 462 { 463 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, 464 elems_req, (void *)buf, buf_size, 465 elems_ret, cd); 466 } 467 468 /** 469 * ice_aq_resume_sched_elems - resume scheduler elements 470 * @hw: pointer to the HW struct 471 * @elems_req: number of elements to resume 472 * @buf: pointer to buffer 473 * @buf_size: buffer size in bytes 474 * @elems_ret: returns total number of elements resumed 475 * @cd: pointer to command details structure or NULL 476 * 477 * resume scheduling elements (0x040A) 478 */ 479 static int 480 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, 481 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) 482 { 483 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, 484 elems_req, (void *)buf, buf_size, 485 elems_ret, cd); 486 } 487 488 /** 489 * ice_aq_query_sched_res - query scheduler resource 490 * @hw: pointer to the HW struct 491 * @buf_size: buffer size in bytes 492 * @buf: pointer to buffer 493 * @cd: pointer to command details structure or NULL 494 * 495 * Query scheduler resource allocation (0x0412) 496 */ 497 static int 498 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, 499 struct ice_aqc_query_txsched_res_resp *buf, 500 struct ice_sq_cd *cd) 501 { 502 struct ice_aq_desc desc; 503 504 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); 505 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 506 } 507 508 /** 509 * ice_sched_suspend_resume_elems - suspend or resume HW nodes 510 * @hw: pointer to the HW struct 511 * @num_nodes: number of nodes 512 * @node_teids: array of node teids to be suspended or resumed 513 * @suspend: true means suspend / false means resume 514 * 515 * This function suspends or resumes HW nodes 516 */ 517 int 518 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, 519 bool suspend) 520 { 521 u16 i, buf_size, num_elem_ret = 0; 522 __le32 *buf; 523 int status; 524 525 buf_size = sizeof(*buf) * num_nodes; 526 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 527 if (!buf) 528 return -ENOMEM; 529 530 for (i = 0; i < num_nodes; i++) 531 buf[i] = cpu_to_le32(node_teids[i]); 532 533 if (suspend) 534 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, 535 buf_size, &num_elem_ret, 536 NULL); 537 else 538 status = ice_aq_resume_sched_elems(hw, num_nodes, buf, 539 buf_size, &num_elem_ret, 540 NULL); 541 if (status || num_elem_ret != num_nodes) 542 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); 543 544 devm_kfree(ice_hw_to_dev(hw), buf); 545 return status; 546 } 547 548 /** 549 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC 550 * @hw: pointer to the HW struct 551 * @vsi_handle: VSI handle 552 * @tc: TC number 553 * @new_numqs: number of queues 554 */ 555 static int 556 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 557 { 558 struct ice_vsi_ctx *vsi_ctx; 559 struct ice_q_ctx *q_ctx; 560 u16 idx; 561 562 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 563 if (!vsi_ctx) 564 return -EINVAL; 565 /* allocate LAN queue contexts */ 566 if (!vsi_ctx->lan_q_ctx[tc]) { 567 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 568 sizeof(*q_ctx), GFP_KERNEL); 569 if (!q_ctx) 570 return -ENOMEM; 571 572 for (idx = 0; idx < new_numqs; idx++) { 573 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE; 574 q_ctx[idx].q_teid = ICE_INVAL_TEID; 575 } 576 577 vsi_ctx->lan_q_ctx[tc] = q_ctx; 578 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 579 return 0; 580 } 581 /* num queues are increased, update the queue contexts */ 582 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { 583 u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; 584 585 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 586 sizeof(*q_ctx), GFP_KERNEL); 587 if (!q_ctx) 588 return -ENOMEM; 589 590 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], 591 prev_num * sizeof(*q_ctx)); 592 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); 593 594 for (idx = prev_num; idx < new_numqs; idx++) { 595 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE; 596 q_ctx[idx].q_teid = ICE_INVAL_TEID; 597 } 598 599 vsi_ctx->lan_q_ctx[tc] = q_ctx; 600 vsi_ctx->num_lan_q_entries[tc] = new_numqs; 601 } 602 return 0; 603 } 604 605 /** 606 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC 607 * @hw: pointer to the HW struct 608 * @vsi_handle: VSI handle 609 * @tc: TC number 610 * @new_numqs: number of queues 611 */ 612 static int 613 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) 614 { 615 struct ice_vsi_ctx *vsi_ctx; 616 struct ice_q_ctx *q_ctx; 617 618 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 619 if (!vsi_ctx) 620 return -EINVAL; 621 /* allocate RDMA queue contexts */ 622 if (!vsi_ctx->rdma_q_ctx[tc]) { 623 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), 624 new_numqs, 625 sizeof(*q_ctx), 626 GFP_KERNEL); 627 if (!vsi_ctx->rdma_q_ctx[tc]) 628 return -ENOMEM; 629 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 630 return 0; 631 } 632 /* num queues are increased, update the queue contexts */ 633 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) { 634 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc]; 635 636 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, 637 sizeof(*q_ctx), GFP_KERNEL); 638 if (!q_ctx) 639 return -ENOMEM; 640 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc], 641 prev_num * sizeof(*q_ctx)); 642 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]); 643 vsi_ctx->rdma_q_ctx[tc] = q_ctx; 644 vsi_ctx->num_rdma_q_entries[tc] = new_numqs; 645 } 646 return 0; 647 } 648 649 /** 650 * ice_aq_rl_profile - performs a rate limiting task 651 * @hw: pointer to the HW struct 652 * @opcode: opcode for add, query, or remove profile(s) 653 * @num_profiles: the number of profiles 654 * @buf: pointer to buffer 655 * @buf_size: buffer size in bytes 656 * @num_processed: number of processed add or remove profile(s) to return 657 * @cd: pointer to command details structure 658 * 659 * RL profile function to add, query, or remove profile(s) 660 */ 661 static int 662 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, 663 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, 664 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) 665 { 666 struct ice_aqc_rl_profile *cmd; 667 struct ice_aq_desc desc; 668 int status; 669 670 cmd = &desc.params.rl_profile; 671 672 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 673 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 674 cmd->num_profiles = cpu_to_le16(num_profiles); 675 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 676 if (!status && num_processed) 677 *num_processed = le16_to_cpu(cmd->num_processed); 678 return status; 679 } 680 681 /** 682 * ice_aq_add_rl_profile - adds rate limiting profile(s) 683 * @hw: pointer to the HW struct 684 * @num_profiles: the number of profile(s) to be add 685 * @buf: pointer to buffer 686 * @buf_size: buffer size in bytes 687 * @num_profiles_added: total number of profiles added to return 688 * @cd: pointer to command details structure 689 * 690 * Add RL profile (0x0410) 691 */ 692 static int 693 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, 694 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 695 u16 *num_profiles_added, struct ice_sq_cd *cd) 696 { 697 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, 698 buf, buf_size, num_profiles_added, cd); 699 } 700 701 /** 702 * ice_aq_remove_rl_profile - removes RL profile(s) 703 * @hw: pointer to the HW struct 704 * @num_profiles: the number of profile(s) to remove 705 * @buf: pointer to buffer 706 * @buf_size: buffer size in bytes 707 * @num_profiles_removed: total number of profiles removed to return 708 * @cd: pointer to command details structure or NULL 709 * 710 * Remove RL profile (0x0415) 711 */ 712 static int 713 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, 714 struct ice_aqc_rl_profile_elem *buf, u16 buf_size, 715 u16 *num_profiles_removed, struct ice_sq_cd *cd) 716 { 717 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, 718 num_profiles, buf, buf_size, 719 num_profiles_removed, cd); 720 } 721 722 /** 723 * ice_sched_del_rl_profile - remove RL profile 724 * @hw: pointer to the HW struct 725 * @rl_info: rate limit profile information 726 * 727 * If the profile ID is not referenced anymore, it removes profile ID with 728 * its associated parameters from HW DB,and locally. The caller needs to 729 * hold scheduler lock. 730 */ 731 static int 732 ice_sched_del_rl_profile(struct ice_hw *hw, 733 struct ice_aqc_rl_profile_info *rl_info) 734 { 735 struct ice_aqc_rl_profile_elem *buf; 736 u16 num_profiles_removed; 737 u16 num_profiles = 1; 738 int status; 739 740 if (rl_info->prof_id_ref != 0) 741 return -EBUSY; 742 743 /* Safe to remove profile ID */ 744 buf = &rl_info->profile; 745 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), 746 &num_profiles_removed, NULL); 747 if (status || num_profiles_removed != num_profiles) 748 return -EIO; 749 750 /* Delete stale entry now */ 751 list_del(&rl_info->list_entry); 752 devm_kfree(ice_hw_to_dev(hw), rl_info); 753 return status; 754 } 755 756 /** 757 * ice_sched_clear_rl_prof - clears RL prof entries 758 * @pi: port information structure 759 * 760 * This function removes all RL profile from HW as well as from SW DB. 761 */ 762 static void ice_sched_clear_rl_prof(struct ice_port_info *pi) 763 { 764 u16 ln; 765 766 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 767 struct ice_aqc_rl_profile_info *rl_prof_elem; 768 struct ice_aqc_rl_profile_info *rl_prof_tmp; 769 770 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 771 &pi->rl_prof_list[ln], list_entry) { 772 struct ice_hw *hw = pi->hw; 773 int status; 774 775 rl_prof_elem->prof_id_ref = 0; 776 status = ice_sched_del_rl_profile(hw, rl_prof_elem); 777 if (status) { 778 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 779 /* On error, free mem required */ 780 list_del(&rl_prof_elem->list_entry); 781 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 782 } 783 } 784 } 785 } 786 787 /** 788 * ice_sched_clear_agg - clears the aggregator related information 789 * @hw: pointer to the hardware structure 790 * 791 * This function removes aggregator list and free up aggregator related memory 792 * previously allocated. 793 */ 794 void ice_sched_clear_agg(struct ice_hw *hw) 795 { 796 struct ice_sched_agg_info *agg_info; 797 struct ice_sched_agg_info *atmp; 798 799 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { 800 struct ice_sched_agg_vsi_info *agg_vsi_info; 801 struct ice_sched_agg_vsi_info *vtmp; 802 803 list_for_each_entry_safe(agg_vsi_info, vtmp, 804 &agg_info->agg_vsi_list, list_entry) { 805 list_del(&agg_vsi_info->list_entry); 806 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); 807 } 808 list_del(&agg_info->list_entry); 809 devm_kfree(ice_hw_to_dev(hw), agg_info); 810 } 811 } 812 813 /** 814 * ice_sched_clear_tx_topo - clears the scheduler tree nodes 815 * @pi: port information structure 816 * 817 * This function removes all the nodes from HW as well as from SW DB. 818 */ 819 static void ice_sched_clear_tx_topo(struct ice_port_info *pi) 820 { 821 if (!pi) 822 return; 823 /* remove RL profiles related lists */ 824 ice_sched_clear_rl_prof(pi); 825 if (pi->root) { 826 ice_free_sched_node(pi, pi->root); 827 pi->root = NULL; 828 } 829 } 830 831 /** 832 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port 833 * @pi: port information structure 834 * 835 * Cleanup scheduling elements from SW DB 836 */ 837 void ice_sched_clear_port(struct ice_port_info *pi) 838 { 839 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 840 return; 841 842 pi->port_state = ICE_SCHED_PORT_STATE_INIT; 843 mutex_lock(&pi->sched_lock); 844 ice_sched_clear_tx_topo(pi); 845 mutex_unlock(&pi->sched_lock); 846 mutex_destroy(&pi->sched_lock); 847 } 848 849 /** 850 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports 851 * @hw: pointer to the HW struct 852 * 853 * Cleanup scheduling elements from SW DB for all the ports 854 */ 855 void ice_sched_cleanup_all(struct ice_hw *hw) 856 { 857 if (!hw) 858 return; 859 860 devm_kfree(ice_hw_to_dev(hw), hw->layer_info); 861 hw->layer_info = NULL; 862 863 ice_sched_clear_port(hw->port_info); 864 865 hw->num_tx_sched_layers = 0; 866 hw->num_tx_sched_phys_layers = 0; 867 hw->flattened_layers = 0; 868 hw->max_cgds = 0; 869 } 870 871 /** 872 * ice_sched_add_elems - add nodes to HW and SW DB 873 * @pi: port information structure 874 * @tc_node: pointer to the branch node 875 * @parent: pointer to the parent node 876 * @layer: layer number to add nodes 877 * @num_nodes: number of nodes 878 * @num_nodes_added: pointer to num nodes added 879 * @first_node_teid: if new nodes are added then return the TEID of first node 880 * @prealloc_nodes: preallocated nodes struct for software DB 881 * 882 * This function add nodes to HW as well as to SW DB for a given layer 883 */ 884 int 885 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, 886 struct ice_sched_node *parent, u8 layer, u16 num_nodes, 887 u16 *num_nodes_added, u32 *first_node_teid, 888 struct ice_sched_node **prealloc_nodes) 889 { 890 struct ice_sched_node *prev, *new_node; 891 struct ice_aqc_add_elem *buf; 892 u16 i, num_groups_added = 0; 893 struct ice_hw *hw = pi->hw; 894 size_t buf_size; 895 int status = 0; 896 u32 teid; 897 898 buf_size = struct_size(buf, generic, num_nodes); 899 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); 900 if (!buf) 901 return -ENOMEM; 902 903 buf->hdr.parent_teid = parent->info.node_teid; 904 buf->hdr.num_elems = cpu_to_le16(num_nodes); 905 for (i = 0; i < num_nodes; i++) { 906 buf->generic[i].parent_teid = parent->info.node_teid; 907 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; 908 buf->generic[i].data.valid_sections = 909 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 910 ICE_AQC_ELEM_VALID_EIR; 911 buf->generic[i].data.generic = 0; 912 buf->generic[i].data.cir_bw.bw_profile_idx = 913 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 914 buf->generic[i].data.cir_bw.bw_alloc = 915 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 916 buf->generic[i].data.eir_bw.bw_profile_idx = 917 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 918 buf->generic[i].data.eir_bw.bw_alloc = 919 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 920 } 921 922 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, 923 &num_groups_added, NULL); 924 if (status || num_groups_added != 1) { 925 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", 926 hw->adminq.sq_last_status); 927 devm_kfree(ice_hw_to_dev(hw), buf); 928 return -EIO; 929 } 930 931 *num_nodes_added = num_nodes; 932 /* add nodes to the SW DB */ 933 for (i = 0; i < num_nodes; i++) { 934 if (prealloc_nodes) 935 status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]); 936 else 937 status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL); 938 939 if (status) { 940 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n", 941 status); 942 break; 943 } 944 945 teid = le32_to_cpu(buf->generic[i].node_teid); 946 new_node = ice_sched_find_node_by_teid(parent, teid); 947 if (!new_node) { 948 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid); 949 break; 950 } 951 952 new_node->sibling = NULL; 953 new_node->tc_num = tc_node->tc_num; 954 new_node->tx_weight = ICE_SCHED_DFLT_BW_WT; 955 new_node->tx_share = ICE_SCHED_DFLT_BW; 956 new_node->tx_max = ICE_SCHED_DFLT_BW; 957 new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL); 958 if (!new_node->name) 959 return -ENOMEM; 960 961 status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX), 962 GFP_KERNEL); 963 if (status) { 964 ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n", 965 status); 966 break; 967 } 968 969 snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id); 970 971 /* add it to previous node sibling pointer */ 972 /* Note: siblings are not linked across branches */ 973 prev = ice_sched_get_first_node(pi, tc_node, layer); 974 if (prev && prev != new_node) { 975 while (prev->sibling) 976 prev = prev->sibling; 977 prev->sibling = new_node; 978 } 979 980 /* initialize the sibling head */ 981 if (!pi->sib_head[tc_node->tc_num][layer]) 982 pi->sib_head[tc_node->tc_num][layer] = new_node; 983 984 if (i == 0) 985 *first_node_teid = teid; 986 } 987 988 devm_kfree(ice_hw_to_dev(hw), buf); 989 return status; 990 } 991 992 /** 993 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer 994 * @pi: port information structure 995 * @tc_node: pointer to TC node 996 * @parent: pointer to parent node 997 * @layer: layer number to add nodes 998 * @num_nodes: number of nodes to be added 999 * @first_node_teid: pointer to the first node TEID 1000 * @num_nodes_added: pointer to number of nodes added 1001 * 1002 * Add nodes into specific HW layer. 1003 */ 1004 static int 1005 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi, 1006 struct ice_sched_node *tc_node, 1007 struct ice_sched_node *parent, u8 layer, 1008 u16 num_nodes, u32 *first_node_teid, 1009 u16 *num_nodes_added) 1010 { 1011 u16 max_child_nodes; 1012 1013 *num_nodes_added = 0; 1014 1015 if (!num_nodes) 1016 return 0; 1017 1018 if (!parent || layer < pi->hw->sw_entry_point_layer) 1019 return -EINVAL; 1020 1021 /* max children per node per layer */ 1022 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1023 1024 /* current number of children + required nodes exceed max children */ 1025 if ((parent->num_children + num_nodes) > max_child_nodes) { 1026 /* Fail if the parent is a TC node */ 1027 if (parent == tc_node) 1028 return -EIO; 1029 return -ENOSPC; 1030 } 1031 1032 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, 1033 num_nodes_added, first_node_teid, NULL); 1034 } 1035 1036 /** 1037 * ice_sched_add_nodes_to_layer - Add nodes to a given layer 1038 * @pi: port information structure 1039 * @tc_node: pointer to TC node 1040 * @parent: pointer to parent node 1041 * @layer: layer number to add nodes 1042 * @num_nodes: number of nodes to be added 1043 * @first_node_teid: pointer to the first node TEID 1044 * @num_nodes_added: pointer to number of nodes added 1045 * 1046 * This function add nodes to a given layer. 1047 */ 1048 int 1049 ice_sched_add_nodes_to_layer(struct ice_port_info *pi, 1050 struct ice_sched_node *tc_node, 1051 struct ice_sched_node *parent, u8 layer, 1052 u16 num_nodes, u32 *first_node_teid, 1053 u16 *num_nodes_added) 1054 { 1055 u32 *first_teid_ptr = first_node_teid; 1056 u16 new_num_nodes = num_nodes; 1057 int status = 0; 1058 1059 *num_nodes_added = 0; 1060 while (*num_nodes_added < num_nodes) { 1061 u16 max_child_nodes, num_added = 0; 1062 u32 temp; 1063 1064 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent, 1065 layer, new_num_nodes, 1066 first_teid_ptr, 1067 &num_added); 1068 if (!status) 1069 *num_nodes_added += num_added; 1070 /* added more nodes than requested ? */ 1071 if (*num_nodes_added > num_nodes) { 1072 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes, 1073 *num_nodes_added); 1074 status = -EIO; 1075 break; 1076 } 1077 /* break if all the nodes are added successfully */ 1078 if (!status && (*num_nodes_added == num_nodes)) 1079 break; 1080 /* break if the error is not max limit */ 1081 if (status && status != -ENOSPC) 1082 break; 1083 /* Exceeded the max children */ 1084 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; 1085 /* utilize all the spaces if the parent is not full */ 1086 if (parent->num_children < max_child_nodes) { 1087 new_num_nodes = max_child_nodes - parent->num_children; 1088 } else { 1089 /* This parent is full, try the next sibling */ 1090 parent = parent->sibling; 1091 /* Don't modify the first node TEID memory if the 1092 * first node was added already in the above call. 1093 * Instead send some temp memory for all other 1094 * recursive calls. 1095 */ 1096 if (num_added) 1097 first_teid_ptr = &temp; 1098 1099 new_num_nodes = num_nodes - *num_nodes_added; 1100 } 1101 } 1102 return status; 1103 } 1104 1105 /** 1106 * ice_sched_get_qgrp_layer - get the current queue group layer number 1107 * @hw: pointer to the HW struct 1108 * 1109 * This function returns the current queue group layer number 1110 */ 1111 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) 1112 { 1113 /* It's always total layers - 1, the array is 0 relative so -2 */ 1114 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1115 } 1116 1117 /** 1118 * ice_sched_get_vsi_layer - get the current VSI layer number 1119 * @hw: pointer to the HW struct 1120 * 1121 * This function returns the current VSI layer number 1122 */ 1123 u8 ice_sched_get_vsi_layer(struct ice_hw *hw) 1124 { 1125 /* Num Layers VSI layer 1126 * 9 6 1127 * 7 4 1128 * 5 or less sw_entry_point_layer 1129 */ 1130 /* calculate the VSI layer based on number of layers. */ 1131 if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS) 1132 return hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; 1133 else if (hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS) 1134 /* qgroup and VSI layers are same */ 1135 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; 1136 return hw->sw_entry_point_layer; 1137 } 1138 1139 /** 1140 * ice_sched_get_agg_layer - get the current aggregator layer number 1141 * @hw: pointer to the HW struct 1142 * 1143 * This function returns the current aggregator layer number 1144 */ 1145 u8 ice_sched_get_agg_layer(struct ice_hw *hw) 1146 { 1147 /* Num Layers aggregator layer 1148 * 9 4 1149 * 7 or less sw_entry_point_layer 1150 */ 1151 /* calculate the aggregator layer based on number of layers. */ 1152 if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS) 1153 return hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET; 1154 else 1155 return hw->sw_entry_point_layer; 1156 } 1157 1158 /** 1159 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree 1160 * @pi: port information structure 1161 * 1162 * This function removes the leaf node that was created by the FW 1163 * during initialization 1164 */ 1165 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) 1166 { 1167 struct ice_sched_node *node; 1168 1169 node = pi->root; 1170 while (node) { 1171 if (!node->num_children) 1172 break; 1173 node = node->children[0]; 1174 } 1175 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { 1176 u32 teid = le32_to_cpu(node->info.node_teid); 1177 int status; 1178 1179 /* remove the default leaf node */ 1180 status = ice_sched_remove_elems(pi->hw, node->parent, teid); 1181 if (!status) 1182 ice_free_sched_node(pi, node); 1183 } 1184 } 1185 1186 /** 1187 * ice_sched_rm_dflt_nodes - free the default nodes in the tree 1188 * @pi: port information structure 1189 * 1190 * This function frees all the nodes except root and TC that were created by 1191 * the FW during initialization 1192 */ 1193 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) 1194 { 1195 struct ice_sched_node *node; 1196 1197 ice_rm_dflt_leaf_node(pi); 1198 1199 /* remove the default nodes except TC and root nodes */ 1200 node = pi->root; 1201 while (node) { 1202 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && 1203 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && 1204 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { 1205 ice_free_sched_node(pi, node); 1206 break; 1207 } 1208 1209 if (!node->num_children) 1210 break; 1211 node = node->children[0]; 1212 } 1213 } 1214 1215 /** 1216 * ice_sched_init_port - Initialize scheduler by querying information from FW 1217 * @pi: port info structure for the tree to cleanup 1218 * 1219 * This function is the initial call to find the total number of Tx scheduler 1220 * resources, default topology created by firmware and storing the information 1221 * in SW DB. 1222 */ 1223 int ice_sched_init_port(struct ice_port_info *pi) 1224 { 1225 struct ice_aqc_get_topo_elem *buf; 1226 struct ice_hw *hw; 1227 u8 num_branches; 1228 u16 num_elems; 1229 int status; 1230 u8 i, j; 1231 1232 if (!pi) 1233 return -EINVAL; 1234 hw = pi->hw; 1235 1236 /* Query the Default Topology from FW */ 1237 buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 1238 if (!buf) 1239 return -ENOMEM; 1240 1241 /* Query default scheduling tree topology */ 1242 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, 1243 &num_branches, NULL); 1244 if (status) 1245 goto err_init_port; 1246 1247 /* num_branches should be between 1-8 */ 1248 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { 1249 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", 1250 num_branches); 1251 status = -EINVAL; 1252 goto err_init_port; 1253 } 1254 1255 /* get the number of elements on the default/first branch */ 1256 num_elems = le16_to_cpu(buf[0].hdr.num_elems); 1257 1258 /* num_elems should always be between 1-9 */ 1259 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { 1260 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", 1261 num_elems); 1262 status = -EINVAL; 1263 goto err_init_port; 1264 } 1265 1266 /* If the last node is a leaf node then the index of the queue group 1267 * layer is two less than the number of elements. 1268 */ 1269 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == 1270 ICE_AQC_ELEM_TYPE_LEAF) 1271 pi->last_node_teid = 1272 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); 1273 else 1274 pi->last_node_teid = 1275 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); 1276 1277 /* Insert the Tx Sched root node */ 1278 status = ice_sched_add_root_node(pi, &buf[0].generic[0]); 1279 if (status) 1280 goto err_init_port; 1281 1282 /* Parse the default tree and cache the information */ 1283 for (i = 0; i < num_branches; i++) { 1284 num_elems = le16_to_cpu(buf[i].hdr.num_elems); 1285 1286 /* Skip root element as already inserted */ 1287 for (j = 1; j < num_elems; j++) { 1288 /* update the sw entry point */ 1289 if (buf[0].generic[j].data.elem_type == 1290 ICE_AQC_ELEM_TYPE_ENTRY_POINT) 1291 hw->sw_entry_point_layer = j; 1292 1293 status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL); 1294 if (status) 1295 goto err_init_port; 1296 } 1297 } 1298 1299 /* Remove the default nodes. */ 1300 if (pi->root) 1301 ice_sched_rm_dflt_nodes(pi); 1302 1303 /* initialize the port for handling the scheduler tree */ 1304 pi->port_state = ICE_SCHED_PORT_STATE_READY; 1305 mutex_init(&pi->sched_lock); 1306 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) 1307 INIT_LIST_HEAD(&pi->rl_prof_list[i]); 1308 1309 err_init_port: 1310 if (status && pi->root) { 1311 ice_free_sched_node(pi, pi->root); 1312 pi->root = NULL; 1313 } 1314 1315 kfree(buf); 1316 return status; 1317 } 1318 1319 /** 1320 * ice_sched_query_res_alloc - query the FW for num of logical sched layers 1321 * @hw: pointer to the HW struct 1322 * 1323 * query FW for allocated scheduler resources and store in HW struct 1324 */ 1325 int ice_sched_query_res_alloc(struct ice_hw *hw) 1326 { 1327 struct ice_aqc_query_txsched_res_resp *buf; 1328 __le16 max_sibl; 1329 int status = 0; 1330 u16 i; 1331 1332 if (hw->layer_info) 1333 return status; 1334 1335 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); 1336 if (!buf) 1337 return -ENOMEM; 1338 1339 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); 1340 if (status) 1341 goto sched_query_out; 1342 1343 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); 1344 hw->num_tx_sched_phys_layers = 1345 le16_to_cpu(buf->sched_props.phys_levels); 1346 hw->flattened_layers = buf->sched_props.flattening_bitmap; 1347 hw->max_cgds = buf->sched_props.max_pf_cgds; 1348 1349 /* max sibling group size of current layer refers to the max children 1350 * of the below layer node. 1351 * layer 1 node max children will be layer 2 max sibling group size 1352 * layer 2 node max children will be layer 3 max sibling group size 1353 * and so on. This array will be populated from root (index 0) to 1354 * qgroup layer 7. Leaf node has no children. 1355 */ 1356 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { 1357 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; 1358 hw->max_children[i] = le16_to_cpu(max_sibl); 1359 } 1360 1361 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, 1362 (hw->num_tx_sched_layers * 1363 sizeof(*hw->layer_info)), 1364 GFP_KERNEL); 1365 if (!hw->layer_info) { 1366 status = -ENOMEM; 1367 goto sched_query_out; 1368 } 1369 1370 sched_query_out: 1371 devm_kfree(ice_hw_to_dev(hw), buf); 1372 return status; 1373 } 1374 1375 /** 1376 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency 1377 * @hw: pointer to the HW struct 1378 * 1379 * Determine the PSM clock frequency and store in HW struct 1380 */ 1381 void ice_sched_get_psm_clk_freq(struct ice_hw *hw) 1382 { 1383 u32 val, clk_src; 1384 1385 val = rd32(hw, GLGEN_CLKSTAT_SRC); 1386 clk_src = FIELD_GET(GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M, val); 1387 1388 #define PSM_CLK_SRC_367_MHZ 0x0 1389 #define PSM_CLK_SRC_416_MHZ 0x1 1390 #define PSM_CLK_SRC_446_MHZ 0x2 1391 #define PSM_CLK_SRC_390_MHZ 0x3 1392 1393 switch (clk_src) { 1394 case PSM_CLK_SRC_367_MHZ: 1395 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ; 1396 break; 1397 case PSM_CLK_SRC_416_MHZ: 1398 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ; 1399 break; 1400 case PSM_CLK_SRC_446_MHZ: 1401 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1402 break; 1403 case PSM_CLK_SRC_390_MHZ: 1404 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ; 1405 break; 1406 default: 1407 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n", 1408 clk_src); 1409 /* fall back to a safe default */ 1410 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; 1411 } 1412 } 1413 1414 /** 1415 * ice_sched_find_node_in_subtree - Find node in part of base node subtree 1416 * @hw: pointer to the HW struct 1417 * @base: pointer to the base node 1418 * @node: pointer to the node to search 1419 * 1420 * This function checks whether a given node is part of the base node 1421 * subtree or not 1422 */ 1423 static bool 1424 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, 1425 struct ice_sched_node *node) 1426 { 1427 u8 i; 1428 1429 for (i = 0; i < base->num_children; i++) { 1430 struct ice_sched_node *child = base->children[i]; 1431 1432 if (node == child) 1433 return true; 1434 1435 if (child->tx_sched_layer > node->tx_sched_layer) 1436 return false; 1437 1438 /* this recursion is intentional, and wouldn't 1439 * go more than 8 calls 1440 */ 1441 if (ice_sched_find_node_in_subtree(hw, child, node)) 1442 return true; 1443 } 1444 return false; 1445 } 1446 1447 /** 1448 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node 1449 * @pi: port information structure 1450 * @vsi_node: software VSI handle 1451 * @qgrp_node: first queue group node identified for scanning 1452 * @owner: LAN or RDMA 1453 * 1454 * This function retrieves a free LAN or RDMA queue group node by scanning 1455 * qgrp_node and its siblings for the queue group with the fewest number 1456 * of queues currently assigned. 1457 */ 1458 static struct ice_sched_node * 1459 ice_sched_get_free_qgrp(struct ice_port_info *pi, 1460 struct ice_sched_node *vsi_node, 1461 struct ice_sched_node *qgrp_node, u8 owner) 1462 { 1463 struct ice_sched_node *min_qgrp; 1464 u8 min_children; 1465 1466 if (!qgrp_node) 1467 return qgrp_node; 1468 min_children = qgrp_node->num_children; 1469 if (!min_children) 1470 return qgrp_node; 1471 min_qgrp = qgrp_node; 1472 /* scan all queue groups until find a node which has less than the 1473 * minimum number of children. This way all queue group nodes get 1474 * equal number of shares and active. The bandwidth will be equally 1475 * distributed across all queues. 1476 */ 1477 while (qgrp_node) { 1478 /* make sure the qgroup node is part of the VSI subtree */ 1479 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1480 if (qgrp_node->num_children < min_children && 1481 qgrp_node->owner == owner) { 1482 /* replace the new min queue group node */ 1483 min_qgrp = qgrp_node; 1484 min_children = min_qgrp->num_children; 1485 /* break if it has no children, */ 1486 if (!min_children) 1487 break; 1488 } 1489 qgrp_node = qgrp_node->sibling; 1490 } 1491 return min_qgrp; 1492 } 1493 1494 /** 1495 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node 1496 * @pi: port information structure 1497 * @vsi_handle: software VSI handle 1498 * @tc: branch number 1499 * @owner: LAN or RDMA 1500 * 1501 * This function retrieves a free LAN or RDMA queue group node 1502 */ 1503 struct ice_sched_node * 1504 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 1505 u8 owner) 1506 { 1507 struct ice_sched_node *vsi_node, *qgrp_node; 1508 struct ice_vsi_ctx *vsi_ctx; 1509 u8 qgrp_layer, vsi_layer; 1510 u16 max_children; 1511 1512 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); 1513 vsi_layer = ice_sched_get_vsi_layer(pi->hw); 1514 max_children = pi->hw->max_children[qgrp_layer]; 1515 1516 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 1517 if (!vsi_ctx) 1518 return NULL; 1519 vsi_node = vsi_ctx->sched.vsi_node[tc]; 1520 /* validate invalid VSI ID */ 1521 if (!vsi_node) 1522 return NULL; 1523 1524 /* If the queue group and VSI layer are same then queues 1525 * are all attached directly to VSI 1526 */ 1527 if (qgrp_layer == vsi_layer) 1528 return vsi_node; 1529 1530 /* get the first queue group node from VSI sub-tree */ 1531 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); 1532 while (qgrp_node) { 1533 /* make sure the qgroup node is part of the VSI subtree */ 1534 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) 1535 if (qgrp_node->num_children < max_children && 1536 qgrp_node->owner == owner) 1537 break; 1538 qgrp_node = qgrp_node->sibling; 1539 } 1540 1541 /* Select the best queue group */ 1542 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); 1543 } 1544 1545 /** 1546 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID 1547 * @pi: pointer to the port information structure 1548 * @tc_node: pointer to the TC node 1549 * @vsi_handle: software VSI handle 1550 * 1551 * This function retrieves a VSI node for a given VSI ID from a given 1552 * TC branch 1553 */ 1554 static struct ice_sched_node * 1555 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1556 u16 vsi_handle) 1557 { 1558 struct ice_sched_node *node; 1559 u8 vsi_layer; 1560 1561 vsi_layer = ice_sched_get_vsi_layer(pi->hw); 1562 node = ice_sched_get_first_node(pi, tc_node, vsi_layer); 1563 1564 /* Check whether it already exists */ 1565 while (node) { 1566 if (node->vsi_handle == vsi_handle) 1567 return node; 1568 node = node->sibling; 1569 } 1570 1571 return node; 1572 } 1573 1574 /** 1575 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID 1576 * @pi: pointer to the port information structure 1577 * @tc_node: pointer to the TC node 1578 * @agg_id: aggregator ID 1579 * 1580 * This function retrieves an aggregator node for a given aggregator ID from 1581 * a given TC branch 1582 */ 1583 struct ice_sched_node * 1584 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, 1585 u32 agg_id) 1586 { 1587 struct ice_sched_node *node; 1588 struct ice_hw *hw = pi->hw; 1589 u8 agg_layer; 1590 1591 if (!hw) 1592 return NULL; 1593 agg_layer = ice_sched_get_agg_layer(hw); 1594 node = ice_sched_get_first_node(pi, tc_node, agg_layer); 1595 1596 /* Check whether it already exists */ 1597 while (node) { 1598 if (node->agg_id == agg_id) 1599 return node; 1600 node = node->sibling; 1601 } 1602 1603 return node; 1604 } 1605 1606 /** 1607 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes 1608 * @hw: pointer to the HW struct 1609 * @num_qs: number of queues 1610 * @num_nodes: num nodes array 1611 * 1612 * This function calculates the number of VSI child nodes based on the 1613 * number of queues. 1614 */ 1615 static void 1616 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) 1617 { 1618 u16 num = num_qs; 1619 u8 i, qgl, vsil; 1620 1621 qgl = ice_sched_get_qgrp_layer(hw); 1622 vsil = ice_sched_get_vsi_layer(hw); 1623 1624 /* calculate num nodes from queue group to VSI layer */ 1625 for (i = qgl; i > vsil; i--) { 1626 /* round to the next integer if there is a remainder */ 1627 num = DIV_ROUND_UP(num, hw->max_children[i]); 1628 1629 /* need at least one node */ 1630 num_nodes[i] = num ? num : 1; 1631 } 1632 } 1633 1634 /** 1635 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree 1636 * @pi: port information structure 1637 * @vsi_handle: software VSI handle 1638 * @tc_node: pointer to the TC node 1639 * @num_nodes: pointer to the num nodes that needs to be added per layer 1640 * @owner: node owner (LAN or RDMA) 1641 * 1642 * This function adds the VSI child nodes to tree. It gets called for 1643 * LAN and RDMA separately. 1644 */ 1645 static int 1646 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1647 struct ice_sched_node *tc_node, u16 *num_nodes, 1648 u8 owner) 1649 { 1650 struct ice_sched_node *parent, *node; 1651 struct ice_hw *hw = pi->hw; 1652 u32 first_node_teid; 1653 u16 num_added = 0; 1654 u8 i, qgl, vsil; 1655 1656 qgl = ice_sched_get_qgrp_layer(hw); 1657 vsil = ice_sched_get_vsi_layer(hw); 1658 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1659 for (i = vsil + 1; i <= qgl; i++) { 1660 int status; 1661 1662 if (!parent) 1663 return -EIO; 1664 1665 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 1666 num_nodes[i], 1667 &first_node_teid, 1668 &num_added); 1669 if (status || num_nodes[i] != num_added) 1670 return -EIO; 1671 1672 /* The newly added node can be a new parent for the next 1673 * layer nodes 1674 */ 1675 if (num_added) { 1676 parent = ice_sched_find_node_by_teid(tc_node, 1677 first_node_teid); 1678 node = parent; 1679 while (node) { 1680 node->owner = owner; 1681 node = node->sibling; 1682 } 1683 } else { 1684 parent = parent->children[0]; 1685 } 1686 } 1687 1688 return 0; 1689 } 1690 1691 /** 1692 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes 1693 * @pi: pointer to the port info structure 1694 * @tc_node: pointer to TC node 1695 * @num_nodes: pointer to num nodes array 1696 * 1697 * This function calculates the number of supported nodes needed to add this 1698 * VSI into Tx tree including the VSI, parent and intermediate nodes in below 1699 * layers 1700 */ 1701 static void 1702 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi, 1703 struct ice_sched_node *tc_node, u16 *num_nodes) 1704 { 1705 struct ice_sched_node *node; 1706 u8 vsil; 1707 int i; 1708 1709 vsil = ice_sched_get_vsi_layer(pi->hw); 1710 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) 1711 /* Add intermediate nodes if TC has no children and 1712 * need at least one node for VSI 1713 */ 1714 if (!tc_node->num_children || i == vsil) { 1715 num_nodes[i]++; 1716 } else { 1717 /* If intermediate nodes are reached max children 1718 * then add a new one. 1719 */ 1720 node = ice_sched_get_first_node(pi, tc_node, (u8)i); 1721 /* scan all the siblings */ 1722 while (node) { 1723 if (node->num_children < pi->hw->max_children[i]) 1724 break; 1725 node = node->sibling; 1726 } 1727 1728 /* tree has one intermediate node to add this new VSI. 1729 * So no need to calculate supported nodes for below 1730 * layers. 1731 */ 1732 if (node) 1733 break; 1734 /* all the nodes are full, allocate a new one */ 1735 num_nodes[i]++; 1736 } 1737 } 1738 1739 /** 1740 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree 1741 * @pi: port information structure 1742 * @vsi_handle: software VSI handle 1743 * @tc_node: pointer to TC node 1744 * @num_nodes: pointer to num nodes array 1745 * 1746 * This function adds the VSI supported nodes into Tx tree including the 1747 * VSI, its parent and intermediate nodes in below layers 1748 */ 1749 static int 1750 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, 1751 struct ice_sched_node *tc_node, u16 *num_nodes) 1752 { 1753 struct ice_sched_node *parent = tc_node; 1754 u32 first_node_teid; 1755 u16 num_added = 0; 1756 u8 i, vsil; 1757 1758 if (!pi) 1759 return -EINVAL; 1760 1761 vsil = ice_sched_get_vsi_layer(pi->hw); 1762 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { 1763 int status; 1764 1765 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, 1766 i, num_nodes[i], 1767 &first_node_teid, 1768 &num_added); 1769 if (status || num_nodes[i] != num_added) 1770 return -EIO; 1771 1772 /* The newly added node can be a new parent for the next 1773 * layer nodes 1774 */ 1775 if (num_added) 1776 parent = ice_sched_find_node_by_teid(tc_node, 1777 first_node_teid); 1778 else 1779 parent = parent->children[0]; 1780 1781 if (!parent) 1782 return -EIO; 1783 1784 if (i == vsil) 1785 parent->vsi_handle = vsi_handle; 1786 } 1787 1788 return 0; 1789 } 1790 1791 /** 1792 * ice_sched_add_vsi_to_topo - add a new VSI into tree 1793 * @pi: port information structure 1794 * @vsi_handle: software VSI handle 1795 * @tc: TC number 1796 * 1797 * This function adds a new VSI into scheduler tree 1798 */ 1799 static int 1800 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) 1801 { 1802 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1803 struct ice_sched_node *tc_node; 1804 1805 tc_node = ice_sched_get_tc_node(pi, tc); 1806 if (!tc_node) 1807 return -EINVAL; 1808 1809 /* calculate number of supported nodes needed for this VSI */ 1810 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes); 1811 1812 /* add VSI supported nodes to TC subtree */ 1813 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, 1814 num_nodes); 1815 } 1816 1817 /** 1818 * ice_sched_update_vsi_child_nodes - update VSI child nodes 1819 * @pi: port information structure 1820 * @vsi_handle: software VSI handle 1821 * @tc: TC number 1822 * @new_numqs: new number of max queues 1823 * @owner: owner of this subtree 1824 * 1825 * This function updates the VSI child nodes based on the number of queues 1826 */ 1827 static int 1828 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, 1829 u8 tc, u16 new_numqs, u8 owner) 1830 { 1831 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 1832 struct ice_sched_node *vsi_node; 1833 struct ice_sched_node *tc_node; 1834 struct ice_vsi_ctx *vsi_ctx; 1835 struct ice_hw *hw = pi->hw; 1836 u16 prev_numqs; 1837 int status = 0; 1838 1839 tc_node = ice_sched_get_tc_node(pi, tc); 1840 if (!tc_node) 1841 return -EIO; 1842 1843 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1844 if (!vsi_node) 1845 return -EIO; 1846 1847 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1848 if (!vsi_ctx) 1849 return -EINVAL; 1850 1851 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1852 prev_numqs = vsi_ctx->sched.max_lanq[tc]; 1853 else 1854 prev_numqs = vsi_ctx->sched.max_rdmaq[tc]; 1855 /* num queues are not changed or less than the previous number */ 1856 if (new_numqs <= prev_numqs) 1857 return status; 1858 if (owner == ICE_SCHED_NODE_OWNER_LAN) { 1859 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); 1860 if (status) 1861 return status; 1862 } else { 1863 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs); 1864 if (status) 1865 return status; 1866 } 1867 1868 if (new_numqs) 1869 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); 1870 /* Keep the max number of queue configuration all the time. Update the 1871 * tree only if number of queues > previous number of queues. This may 1872 * leave some extra nodes in the tree if number of queues < previous 1873 * number but that wouldn't harm anything. Removing those extra nodes 1874 * may complicate the code if those nodes are part of SRL or 1875 * individually rate limited. 1876 */ 1877 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, 1878 new_num_nodes, owner); 1879 if (status) 1880 return status; 1881 if (owner == ICE_SCHED_NODE_OWNER_LAN) 1882 vsi_ctx->sched.max_lanq[tc] = new_numqs; 1883 else 1884 vsi_ctx->sched.max_rdmaq[tc] = new_numqs; 1885 1886 return 0; 1887 } 1888 1889 /** 1890 * ice_sched_cfg_vsi - configure the new/existing VSI 1891 * @pi: port information structure 1892 * @vsi_handle: software VSI handle 1893 * @tc: TC number 1894 * @maxqs: max number of queues 1895 * @owner: LAN or RDMA 1896 * @enable: TC enabled or disabled 1897 * 1898 * This function adds/updates VSI nodes based on the number of queues. If TC is 1899 * enabled and VSI is in suspended state then resume the VSI back. If TC is 1900 * disabled then suspend the VSI if it is not already. 1901 */ 1902 int 1903 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, 1904 u8 owner, bool enable) 1905 { 1906 struct ice_sched_node *vsi_node, *tc_node; 1907 struct ice_vsi_ctx *vsi_ctx; 1908 struct ice_hw *hw = pi->hw; 1909 int status = 0; 1910 1911 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); 1912 tc_node = ice_sched_get_tc_node(pi, tc); 1913 if (!tc_node) 1914 return -EINVAL; 1915 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); 1916 if (!vsi_ctx) 1917 return -EINVAL; 1918 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1919 1920 /* suspend the VSI if TC is not enabled */ 1921 if (!enable) { 1922 if (vsi_node && vsi_node->in_use) { 1923 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1924 1925 status = ice_sched_suspend_resume_elems(hw, 1, &teid, 1926 true); 1927 if (!status) 1928 vsi_node->in_use = false; 1929 } 1930 return status; 1931 } 1932 1933 /* TC is enabled, if it is a new VSI then add it to the tree */ 1934 if (!vsi_node) { 1935 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); 1936 if (status) 1937 return status; 1938 1939 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 1940 if (!vsi_node) 1941 return -EIO; 1942 1943 vsi_ctx->sched.vsi_node[tc] = vsi_node; 1944 vsi_node->in_use = true; 1945 /* invalidate the max queues whenever VSI gets added first time 1946 * into the scheduler tree (boot or after reset). We need to 1947 * recreate the child nodes all the time in these cases. 1948 */ 1949 vsi_ctx->sched.max_lanq[tc] = 0; 1950 vsi_ctx->sched.max_rdmaq[tc] = 0; 1951 } 1952 1953 /* update the VSI child nodes */ 1954 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, 1955 owner); 1956 if (status) 1957 return status; 1958 1959 /* TC is enabled, resume the VSI if it is in the suspend state */ 1960 if (!vsi_node->in_use) { 1961 u32 teid = le32_to_cpu(vsi_node->info.node_teid); 1962 1963 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); 1964 if (!status) 1965 vsi_node->in_use = true; 1966 } 1967 1968 return status; 1969 } 1970 1971 /** 1972 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry 1973 * @pi: port information structure 1974 * @vsi_handle: software VSI handle 1975 * 1976 * This function removes single aggregator VSI info entry from 1977 * aggregator list. 1978 */ 1979 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) 1980 { 1981 struct ice_sched_agg_info *agg_info; 1982 struct ice_sched_agg_info *atmp; 1983 1984 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, 1985 list_entry) { 1986 struct ice_sched_agg_vsi_info *agg_vsi_info; 1987 struct ice_sched_agg_vsi_info *vtmp; 1988 1989 list_for_each_entry_safe(agg_vsi_info, vtmp, 1990 &agg_info->agg_vsi_list, list_entry) 1991 if (agg_vsi_info->vsi_handle == vsi_handle) { 1992 list_del(&agg_vsi_info->list_entry); 1993 devm_kfree(ice_hw_to_dev(pi->hw), 1994 agg_vsi_info); 1995 return; 1996 } 1997 } 1998 } 1999 2000 /** 2001 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree 2002 * @node: pointer to the sub-tree node 2003 * 2004 * This function checks for a leaf node presence in a given sub-tree node. 2005 */ 2006 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) 2007 { 2008 u8 i; 2009 2010 for (i = 0; i < node->num_children; i++) 2011 if (ice_sched_is_leaf_node_present(node->children[i])) 2012 return true; 2013 /* check for a leaf node */ 2014 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); 2015 } 2016 2017 /** 2018 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes 2019 * @pi: port information structure 2020 * @vsi_handle: software VSI handle 2021 * @owner: LAN or RDMA 2022 * 2023 * This function removes the VSI and its LAN or RDMA children nodes from the 2024 * scheduler tree. 2025 */ 2026 static int 2027 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) 2028 { 2029 struct ice_vsi_ctx *vsi_ctx; 2030 int status = -EINVAL; 2031 u8 i; 2032 2033 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); 2034 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2035 return status; 2036 mutex_lock(&pi->sched_lock); 2037 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 2038 if (!vsi_ctx) 2039 goto exit_sched_rm_vsi_cfg; 2040 2041 ice_for_each_traffic_class(i) { 2042 struct ice_sched_node *vsi_node, *tc_node; 2043 u8 j = 0; 2044 2045 tc_node = ice_sched_get_tc_node(pi, i); 2046 if (!tc_node) 2047 continue; 2048 2049 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2050 if (!vsi_node) 2051 continue; 2052 2053 if (ice_sched_is_leaf_node_present(vsi_node)) { 2054 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i); 2055 status = -EBUSY; 2056 goto exit_sched_rm_vsi_cfg; 2057 } 2058 while (j < vsi_node->num_children) { 2059 if (vsi_node->children[j]->owner == owner) { 2060 ice_free_sched_node(pi, vsi_node->children[j]); 2061 2062 /* reset the counter again since the num 2063 * children will be updated after node removal 2064 */ 2065 j = 0; 2066 } else { 2067 j++; 2068 } 2069 } 2070 /* remove the VSI if it has no children */ 2071 if (!vsi_node->num_children) { 2072 ice_free_sched_node(pi, vsi_node); 2073 vsi_ctx->sched.vsi_node[i] = NULL; 2074 2075 /* clean up aggregator related VSI info if any */ 2076 ice_sched_rm_agg_vsi_info(pi, vsi_handle); 2077 } 2078 if (owner == ICE_SCHED_NODE_OWNER_LAN) 2079 vsi_ctx->sched.max_lanq[i] = 0; 2080 else 2081 vsi_ctx->sched.max_rdmaq[i] = 0; 2082 } 2083 status = 0; 2084 2085 exit_sched_rm_vsi_cfg: 2086 mutex_unlock(&pi->sched_lock); 2087 return status; 2088 } 2089 2090 /** 2091 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes 2092 * @pi: port information structure 2093 * @vsi_handle: software VSI handle 2094 * 2095 * This function clears the VSI and its LAN children nodes from scheduler tree 2096 * for all TCs. 2097 */ 2098 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) 2099 { 2100 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); 2101 } 2102 2103 /** 2104 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes 2105 * @pi: port information structure 2106 * @vsi_handle: software VSI handle 2107 * 2108 * This function clears the VSI and its RDMA children nodes from scheduler tree 2109 * for all TCs. 2110 */ 2111 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle) 2112 { 2113 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA); 2114 } 2115 2116 /** 2117 * ice_get_agg_info - get the aggregator ID 2118 * @hw: pointer to the hardware structure 2119 * @agg_id: aggregator ID 2120 * 2121 * This function validates aggregator ID. The function returns info if 2122 * aggregator ID is present in list otherwise it returns null. 2123 */ 2124 static struct ice_sched_agg_info * 2125 ice_get_agg_info(struct ice_hw *hw, u32 agg_id) 2126 { 2127 struct ice_sched_agg_info *agg_info; 2128 2129 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 2130 if (agg_info->agg_id == agg_id) 2131 return agg_info; 2132 2133 return NULL; 2134 } 2135 2136 /** 2137 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree 2138 * @hw: pointer to the HW struct 2139 * @node: pointer to a child node 2140 * @num_nodes: num nodes count array 2141 * 2142 * This function walks through the aggregator subtree to find a free parent 2143 * node 2144 */ 2145 struct ice_sched_node * 2146 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node, 2147 u16 *num_nodes) 2148 { 2149 u8 l = node->tx_sched_layer; 2150 u8 vsil, i; 2151 2152 vsil = ice_sched_get_vsi_layer(hw); 2153 2154 /* Is it VSI parent layer ? */ 2155 if (l == vsil - 1) 2156 return (node->num_children < hw->max_children[l]) ? node : NULL; 2157 2158 /* We have intermediate nodes. Let's walk through the subtree. If the 2159 * intermediate node has space to add a new node then clear the count 2160 */ 2161 if (node->num_children < hw->max_children[l]) 2162 num_nodes[l] = 0; 2163 /* The below recursive call is intentional and wouldn't go more than 2164 * 2 or 3 iterations. 2165 */ 2166 2167 for (i = 0; i < node->num_children; i++) { 2168 struct ice_sched_node *parent; 2169 2170 parent = ice_sched_get_free_vsi_parent(hw, node->children[i], 2171 num_nodes); 2172 if (parent) 2173 return parent; 2174 } 2175 2176 return NULL; 2177 } 2178 2179 /** 2180 * ice_sched_update_parent - update the new parent in SW DB 2181 * @new_parent: pointer to a new parent node 2182 * @node: pointer to a child node 2183 * 2184 * This function removes the child from the old parent and adds it to a new 2185 * parent 2186 */ 2187 void 2188 ice_sched_update_parent(struct ice_sched_node *new_parent, 2189 struct ice_sched_node *node) 2190 { 2191 struct ice_sched_node *old_parent; 2192 u8 i, j; 2193 2194 old_parent = node->parent; 2195 2196 /* update the old parent children */ 2197 for (i = 0; i < old_parent->num_children; i++) 2198 if (old_parent->children[i] == node) { 2199 for (j = i + 1; j < old_parent->num_children; j++) 2200 old_parent->children[j - 1] = 2201 old_parent->children[j]; 2202 old_parent->num_children--; 2203 break; 2204 } 2205 2206 /* now move the node to a new parent */ 2207 new_parent->children[new_parent->num_children++] = node; 2208 node->parent = new_parent; 2209 node->info.parent_teid = new_parent->info.node_teid; 2210 } 2211 2212 /** 2213 * ice_sched_move_nodes - move child nodes to a given parent 2214 * @pi: port information structure 2215 * @parent: pointer to parent node 2216 * @num_items: number of child nodes to be moved 2217 * @list: pointer to child node teids 2218 * 2219 * This function move the child nodes to a given parent. 2220 */ 2221 int 2222 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent, 2223 u16 num_items, u32 *list) 2224 { 2225 DEFINE_RAW_FLEX(struct ice_aqc_move_elem, buf, teid, 1); 2226 u16 buf_len = __struct_size(buf); 2227 struct ice_sched_node *node; 2228 u16 i, grps_movd = 0; 2229 struct ice_hw *hw; 2230 int status = 0; 2231 2232 hw = pi->hw; 2233 2234 if (!parent || !num_items) 2235 return -EINVAL; 2236 2237 /* Does parent have enough space */ 2238 if (parent->num_children + num_items > 2239 hw->max_children[parent->tx_sched_layer]) 2240 return -ENOSPC; 2241 2242 for (i = 0; i < num_items; i++) { 2243 node = ice_sched_find_node_by_teid(pi->root, list[i]); 2244 if (!node) { 2245 status = -EINVAL; 2246 break; 2247 } 2248 2249 buf->hdr.src_parent_teid = node->info.parent_teid; 2250 buf->hdr.dest_parent_teid = parent->info.node_teid; 2251 buf->teid[0] = node->info.node_teid; 2252 buf->hdr.num_elems = cpu_to_le16(1); 2253 status = ice_aq_move_sched_elems(hw, buf, buf_len, &grps_movd); 2254 if (status && grps_movd != 1) { 2255 status = -EIO; 2256 break; 2257 } 2258 2259 /* update the SW DB */ 2260 ice_sched_update_parent(parent, node); 2261 } 2262 2263 return status; 2264 } 2265 2266 /** 2267 * ice_sched_move_vsi_to_agg - move VSI to aggregator node 2268 * @pi: port information structure 2269 * @vsi_handle: software VSI handle 2270 * @agg_id: aggregator ID 2271 * @tc: TC number 2272 * 2273 * This function moves a VSI to an aggregator node or its subtree. 2274 * Intermediate nodes may be created if required. 2275 */ 2276 static int 2277 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id, 2278 u8 tc) 2279 { 2280 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent; 2281 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2282 u32 first_node_teid, vsi_teid; 2283 u16 num_nodes_added; 2284 u8 aggl, vsil, i; 2285 int status; 2286 2287 tc_node = ice_sched_get_tc_node(pi, tc); 2288 if (!tc_node) 2289 return -EIO; 2290 2291 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2292 if (!agg_node) 2293 return -ENOENT; 2294 2295 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); 2296 if (!vsi_node) 2297 return -ENOENT; 2298 2299 /* Is this VSI already part of given aggregator? */ 2300 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node)) 2301 return 0; 2302 2303 aggl = ice_sched_get_agg_layer(pi->hw); 2304 vsil = ice_sched_get_vsi_layer(pi->hw); 2305 2306 /* set intermediate node count to 1 between aggregator and VSI layers */ 2307 for (i = aggl + 1; i < vsil; i++) 2308 num_nodes[i] = 1; 2309 2310 /* Check if the aggregator subtree has any free node to add the VSI */ 2311 for (i = 0; i < agg_node->num_children; i++) { 2312 parent = ice_sched_get_free_vsi_parent(pi->hw, 2313 agg_node->children[i], 2314 num_nodes); 2315 if (parent) 2316 goto move_nodes; 2317 } 2318 2319 /* add new nodes */ 2320 parent = agg_node; 2321 for (i = aggl + 1; i < vsil; i++) { 2322 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2323 num_nodes[i], 2324 &first_node_teid, 2325 &num_nodes_added); 2326 if (status || num_nodes[i] != num_nodes_added) 2327 return -EIO; 2328 2329 /* The newly added node can be a new parent for the next 2330 * layer nodes 2331 */ 2332 if (num_nodes_added) 2333 parent = ice_sched_find_node_by_teid(tc_node, 2334 first_node_teid); 2335 else 2336 parent = parent->children[0]; 2337 2338 if (!parent) 2339 return -EIO; 2340 } 2341 2342 move_nodes: 2343 vsi_teid = le32_to_cpu(vsi_node->info.node_teid); 2344 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid); 2345 } 2346 2347 /** 2348 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator 2349 * @pi: port information structure 2350 * @agg_info: aggregator info 2351 * @tc: traffic class number 2352 * @rm_vsi_info: true or false 2353 * 2354 * This function move all the VSI(s) to the default aggregator and delete 2355 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The 2356 * caller holds the scheduler lock. 2357 */ 2358 static int 2359 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi, 2360 struct ice_sched_agg_info *agg_info, u8 tc, 2361 bool rm_vsi_info) 2362 { 2363 struct ice_sched_agg_vsi_info *agg_vsi_info; 2364 struct ice_sched_agg_vsi_info *tmp; 2365 int status = 0; 2366 2367 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list, 2368 list_entry) { 2369 u16 vsi_handle = agg_vsi_info->vsi_handle; 2370 2371 /* Move VSI to default aggregator */ 2372 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc)) 2373 continue; 2374 2375 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, 2376 ICE_DFLT_AGG_ID, tc); 2377 if (status) 2378 break; 2379 2380 clear_bit(tc, agg_vsi_info->tc_bitmap); 2381 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) { 2382 list_del(&agg_vsi_info->list_entry); 2383 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); 2384 } 2385 } 2386 2387 return status; 2388 } 2389 2390 /** 2391 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not 2392 * @pi: port information structure 2393 * @node: node pointer 2394 * 2395 * This function checks whether the aggregator is attached with any VSI or not. 2396 */ 2397 static bool 2398 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node) 2399 { 2400 u8 vsil, i; 2401 2402 vsil = ice_sched_get_vsi_layer(pi->hw); 2403 if (node->tx_sched_layer < vsil - 1) { 2404 for (i = 0; i < node->num_children; i++) 2405 if (ice_sched_is_agg_inuse(pi, node->children[i])) 2406 return true; 2407 return false; 2408 } else { 2409 return node->num_children ? true : false; 2410 } 2411 } 2412 2413 /** 2414 * ice_sched_rm_agg_cfg - remove the aggregator node 2415 * @pi: port information structure 2416 * @agg_id: aggregator ID 2417 * @tc: TC number 2418 * 2419 * This function removes the aggregator node and intermediate nodes if any 2420 * from the given TC 2421 */ 2422 static int 2423 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2424 { 2425 struct ice_sched_node *tc_node, *agg_node; 2426 struct ice_hw *hw = pi->hw; 2427 2428 tc_node = ice_sched_get_tc_node(pi, tc); 2429 if (!tc_node) 2430 return -EIO; 2431 2432 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2433 if (!agg_node) 2434 return -ENOENT; 2435 2436 /* Can't remove the aggregator node if it has children */ 2437 if (ice_sched_is_agg_inuse(pi, agg_node)) 2438 return -EBUSY; 2439 2440 /* need to remove the whole subtree if aggregator node is the 2441 * only child. 2442 */ 2443 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) { 2444 struct ice_sched_node *parent = agg_node->parent; 2445 2446 if (!parent) 2447 return -EIO; 2448 2449 if (parent->num_children > 1) 2450 break; 2451 2452 agg_node = parent; 2453 } 2454 2455 ice_free_sched_node(pi, agg_node); 2456 return 0; 2457 } 2458 2459 /** 2460 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC 2461 * @pi: port information structure 2462 * @agg_info: aggregator ID 2463 * @tc: TC number 2464 * @rm_vsi_info: bool value true or false 2465 * 2466 * This function removes aggregator reference to VSI of given TC. It removes 2467 * the aggregator configuration completely for requested TC. The caller needs 2468 * to hold the scheduler lock. 2469 */ 2470 static int 2471 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, 2472 u8 tc, bool rm_vsi_info) 2473 { 2474 int status = 0; 2475 2476 /* If nothing to remove - return success */ 2477 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2478 goto exit_rm_agg_cfg_tc; 2479 2480 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info); 2481 if (status) 2482 goto exit_rm_agg_cfg_tc; 2483 2484 /* Delete aggregator node(s) */ 2485 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc); 2486 if (status) 2487 goto exit_rm_agg_cfg_tc; 2488 2489 clear_bit(tc, agg_info->tc_bitmap); 2490 exit_rm_agg_cfg_tc: 2491 return status; 2492 } 2493 2494 /** 2495 * ice_save_agg_tc_bitmap - save aggregator TC bitmap 2496 * @pi: port information structure 2497 * @agg_id: aggregator ID 2498 * @tc_bitmap: 8 bits TC bitmap 2499 * 2500 * Save aggregator TC bitmap. This function needs to be called with scheduler 2501 * lock held. 2502 */ 2503 static int 2504 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id, 2505 unsigned long *tc_bitmap) 2506 { 2507 struct ice_sched_agg_info *agg_info; 2508 2509 agg_info = ice_get_agg_info(pi->hw, agg_id); 2510 if (!agg_info) 2511 return -EINVAL; 2512 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap, 2513 ICE_MAX_TRAFFIC_CLASS); 2514 return 0; 2515 } 2516 2517 /** 2518 * ice_sched_add_agg_cfg - create an aggregator node 2519 * @pi: port information structure 2520 * @agg_id: aggregator ID 2521 * @tc: TC number 2522 * 2523 * This function creates an aggregator node and intermediate nodes if required 2524 * for the given TC 2525 */ 2526 static int 2527 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) 2528 { 2529 struct ice_sched_node *parent, *agg_node, *tc_node; 2530 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; 2531 struct ice_hw *hw = pi->hw; 2532 u32 first_node_teid; 2533 u16 num_nodes_added; 2534 int status = 0; 2535 u8 i, aggl; 2536 2537 tc_node = ice_sched_get_tc_node(pi, tc); 2538 if (!tc_node) 2539 return -EIO; 2540 2541 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); 2542 /* Does Agg node already exist ? */ 2543 if (agg_node) 2544 return status; 2545 2546 aggl = ice_sched_get_agg_layer(hw); 2547 2548 /* need one node in Agg layer */ 2549 num_nodes[aggl] = 1; 2550 2551 /* Check whether the intermediate nodes have space to add the 2552 * new aggregator. If they are full, then SW needs to allocate a new 2553 * intermediate node on those layers 2554 */ 2555 for (i = hw->sw_entry_point_layer; i < aggl; i++) { 2556 parent = ice_sched_get_first_node(pi, tc_node, i); 2557 2558 /* scan all the siblings */ 2559 while (parent) { 2560 if (parent->num_children < hw->max_children[i]) 2561 break; 2562 parent = parent->sibling; 2563 } 2564 2565 /* all the nodes are full, reserve one for this layer */ 2566 if (!parent) 2567 num_nodes[i]++; 2568 } 2569 2570 /* add the aggregator node */ 2571 parent = tc_node; 2572 for (i = hw->sw_entry_point_layer; i <= aggl; i++) { 2573 if (!parent) 2574 return -EIO; 2575 2576 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, 2577 num_nodes[i], 2578 &first_node_teid, 2579 &num_nodes_added); 2580 if (status || num_nodes[i] != num_nodes_added) 2581 return -EIO; 2582 2583 /* The newly added node can be a new parent for the next 2584 * layer nodes 2585 */ 2586 if (num_nodes_added) { 2587 parent = ice_sched_find_node_by_teid(tc_node, 2588 first_node_teid); 2589 /* register aggregator ID with the aggregator node */ 2590 if (parent && i == aggl) 2591 parent->agg_id = agg_id; 2592 } else { 2593 parent = parent->children[0]; 2594 } 2595 } 2596 2597 return 0; 2598 } 2599 2600 /** 2601 * ice_sched_cfg_agg - configure aggregator node 2602 * @pi: port information structure 2603 * @agg_id: aggregator ID 2604 * @agg_type: aggregator type queue, VSI, or aggregator group 2605 * @tc_bitmap: bits TC bitmap 2606 * 2607 * It registers a unique aggregator node into scheduler services. It 2608 * allows a user to register with a unique ID to track it's resources. 2609 * The aggregator type determines if this is a queue group, VSI group 2610 * or aggregator group. It then creates the aggregator node(s) for requested 2611 * TC(s) or removes an existing aggregator node including its configuration 2612 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator 2613 * resources and remove aggregator ID. 2614 * This function needs to be called with scheduler lock held. 2615 */ 2616 static int 2617 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id, 2618 enum ice_agg_type agg_type, unsigned long *tc_bitmap) 2619 { 2620 struct ice_sched_agg_info *agg_info; 2621 struct ice_hw *hw = pi->hw; 2622 int status = 0; 2623 u8 tc; 2624 2625 agg_info = ice_get_agg_info(hw, agg_id); 2626 if (!agg_info) { 2627 /* Create new entry for new aggregator ID */ 2628 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info), 2629 GFP_KERNEL); 2630 if (!agg_info) 2631 return -ENOMEM; 2632 2633 agg_info->agg_id = agg_id; 2634 agg_info->agg_type = agg_type; 2635 agg_info->tc_bitmap[0] = 0; 2636 2637 /* Initialize the aggregator VSI list head */ 2638 INIT_LIST_HEAD(&agg_info->agg_vsi_list); 2639 2640 /* Add new entry in aggregator list */ 2641 list_add(&agg_info->list_entry, &hw->agg_list); 2642 } 2643 /* Create aggregator node(s) for requested TC(s) */ 2644 ice_for_each_traffic_class(tc) { 2645 if (!ice_is_tc_ena(*tc_bitmap, tc)) { 2646 /* Delete aggregator cfg TC if it exists previously */ 2647 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false); 2648 if (status) 2649 break; 2650 continue; 2651 } 2652 2653 /* Check if aggregator node for TC already exists */ 2654 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) 2655 continue; 2656 2657 /* Create new aggregator node for TC */ 2658 status = ice_sched_add_agg_cfg(pi, agg_id, tc); 2659 if (status) 2660 break; 2661 2662 /* Save aggregator node's TC information */ 2663 set_bit(tc, agg_info->tc_bitmap); 2664 } 2665 2666 return status; 2667 } 2668 2669 /** 2670 * ice_cfg_agg - config aggregator node 2671 * @pi: port information structure 2672 * @agg_id: aggregator ID 2673 * @agg_type: aggregator type queue, VSI, or aggregator group 2674 * @tc_bitmap: bits TC bitmap 2675 * 2676 * This function configures aggregator node(s). 2677 */ 2678 int 2679 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, 2680 u8 tc_bitmap) 2681 { 2682 unsigned long bitmap = tc_bitmap; 2683 int status; 2684 2685 mutex_lock(&pi->sched_lock); 2686 status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap); 2687 if (!status) 2688 status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap); 2689 mutex_unlock(&pi->sched_lock); 2690 return status; 2691 } 2692 2693 /** 2694 * ice_get_agg_vsi_info - get the aggregator ID 2695 * @agg_info: aggregator info 2696 * @vsi_handle: software VSI handle 2697 * 2698 * The function returns aggregator VSI info based on VSI handle. This function 2699 * needs to be called with scheduler lock held. 2700 */ 2701 static struct ice_sched_agg_vsi_info * 2702 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle) 2703 { 2704 struct ice_sched_agg_vsi_info *agg_vsi_info; 2705 2706 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) 2707 if (agg_vsi_info->vsi_handle == vsi_handle) 2708 return agg_vsi_info; 2709 2710 return NULL; 2711 } 2712 2713 /** 2714 * ice_get_vsi_agg_info - get the aggregator info of VSI 2715 * @hw: pointer to the hardware structure 2716 * @vsi_handle: Sw VSI handle 2717 * 2718 * The function returns aggregator info of VSI represented via vsi_handle. The 2719 * VSI has in this case a different aggregator than the default one. This 2720 * function needs to be called with scheduler lock held. 2721 */ 2722 static struct ice_sched_agg_info * 2723 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle) 2724 { 2725 struct ice_sched_agg_info *agg_info; 2726 2727 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 2728 struct ice_sched_agg_vsi_info *agg_vsi_info; 2729 2730 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2731 if (agg_vsi_info) 2732 return agg_info; 2733 } 2734 return NULL; 2735 } 2736 2737 /** 2738 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap 2739 * @pi: port information structure 2740 * @agg_id: aggregator ID 2741 * @vsi_handle: software VSI handle 2742 * @tc_bitmap: TC bitmap of enabled TC(s) 2743 * 2744 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler 2745 * lock held. 2746 */ 2747 static int 2748 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2749 unsigned long *tc_bitmap) 2750 { 2751 struct ice_sched_agg_vsi_info *agg_vsi_info; 2752 struct ice_sched_agg_info *agg_info; 2753 2754 agg_info = ice_get_agg_info(pi->hw, agg_id); 2755 if (!agg_info) 2756 return -EINVAL; 2757 /* check if entry already exist */ 2758 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2759 if (!agg_vsi_info) 2760 return -EINVAL; 2761 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap, 2762 ICE_MAX_TRAFFIC_CLASS); 2763 return 0; 2764 } 2765 2766 /** 2767 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator 2768 * @pi: port information structure 2769 * @agg_id: aggregator ID 2770 * @vsi_handle: software VSI handle 2771 * @tc_bitmap: TC bitmap of enabled TC(s) 2772 * 2773 * This function moves VSI to a new or default aggregator node. If VSI is 2774 * already associated to the aggregator node then no operation is performed on 2775 * the tree. This function needs to be called with scheduler lock held. 2776 */ 2777 static int 2778 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, 2779 u16 vsi_handle, unsigned long *tc_bitmap) 2780 { 2781 struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL; 2782 struct ice_sched_agg_info *agg_info, *old_agg_info; 2783 struct ice_hw *hw = pi->hw; 2784 int status = 0; 2785 u8 tc; 2786 2787 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 2788 return -EINVAL; 2789 agg_info = ice_get_agg_info(hw, agg_id); 2790 if (!agg_info) 2791 return -EINVAL; 2792 /* If the VSI is already part of another aggregator then update 2793 * its VSI info list 2794 */ 2795 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 2796 if (old_agg_info && old_agg_info != agg_info) { 2797 struct ice_sched_agg_vsi_info *vtmp; 2798 2799 list_for_each_entry_safe(iter, vtmp, 2800 &old_agg_info->agg_vsi_list, 2801 list_entry) 2802 if (iter->vsi_handle == vsi_handle) { 2803 old_agg_vsi_info = iter; 2804 break; 2805 } 2806 } 2807 2808 /* check if entry already exist */ 2809 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 2810 if (!agg_vsi_info) { 2811 /* Create new entry for VSI under aggregator list */ 2812 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw), 2813 sizeof(*agg_vsi_info), GFP_KERNEL); 2814 if (!agg_vsi_info) 2815 return -EINVAL; 2816 2817 /* add VSI ID into the aggregator list */ 2818 agg_vsi_info->vsi_handle = vsi_handle; 2819 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list); 2820 } 2821 /* Move VSI node to new aggregator node for requested TC(s) */ 2822 ice_for_each_traffic_class(tc) { 2823 if (!ice_is_tc_ena(*tc_bitmap, tc)) 2824 continue; 2825 2826 /* Move VSI to new aggregator */ 2827 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc); 2828 if (status) 2829 break; 2830 2831 set_bit(tc, agg_vsi_info->tc_bitmap); 2832 if (old_agg_vsi_info) 2833 clear_bit(tc, old_agg_vsi_info->tc_bitmap); 2834 } 2835 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) { 2836 list_del(&old_agg_vsi_info->list_entry); 2837 devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info); 2838 } 2839 return status; 2840 } 2841 2842 /** 2843 * ice_sched_rm_unused_rl_prof - remove unused RL profile 2844 * @pi: port information structure 2845 * 2846 * This function removes unused rate limit profiles from the HW and 2847 * SW DB. The caller needs to hold scheduler lock. 2848 */ 2849 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) 2850 { 2851 u16 ln; 2852 2853 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { 2854 struct ice_aqc_rl_profile_info *rl_prof_elem; 2855 struct ice_aqc_rl_profile_info *rl_prof_tmp; 2856 2857 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, 2858 &pi->rl_prof_list[ln], list_entry) { 2859 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) 2860 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n"); 2861 } 2862 } 2863 } 2864 2865 /** 2866 * ice_sched_update_elem - update element 2867 * @hw: pointer to the HW struct 2868 * @node: pointer to node 2869 * @info: node info to update 2870 * 2871 * Update the HW DB, and local SW DB of node. Update the scheduling 2872 * parameters of node from argument info data buffer (Info->data buf) and 2873 * returns success or error on config sched element failure. The caller 2874 * needs to hold scheduler lock. 2875 */ 2876 static int 2877 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, 2878 struct ice_aqc_txsched_elem_data *info) 2879 { 2880 struct ice_aqc_txsched_elem_data buf; 2881 u16 elem_cfgd = 0; 2882 u16 num_elems = 1; 2883 int status; 2884 2885 buf = *info; 2886 /* Parent TEID is reserved field in this aq call */ 2887 buf.parent_teid = 0; 2888 /* Element type is reserved field in this aq call */ 2889 buf.data.elem_type = 0; 2890 /* Flags is reserved field in this aq call */ 2891 buf.data.flags = 0; 2892 2893 /* Update HW DB */ 2894 /* Configure element node */ 2895 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), 2896 &elem_cfgd, NULL); 2897 if (status || elem_cfgd != num_elems) { 2898 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); 2899 return -EIO; 2900 } 2901 2902 /* Config success case */ 2903 /* Now update local SW DB */ 2904 /* Only copy the data portion of info buffer */ 2905 node->info.data = info->data; 2906 return status; 2907 } 2908 2909 /** 2910 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params 2911 * @hw: pointer to the HW struct 2912 * @node: sched node to configure 2913 * @rl_type: rate limit type CIR, EIR, or shared 2914 * @bw_alloc: BW weight/allocation 2915 * 2916 * This function configures node element's BW allocation. 2917 */ 2918 static int 2919 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, 2920 enum ice_rl_type rl_type, u16 bw_alloc) 2921 { 2922 struct ice_aqc_txsched_elem_data buf; 2923 struct ice_aqc_txsched_elem *data; 2924 2925 buf = node->info; 2926 data = &buf.data; 2927 if (rl_type == ICE_MIN_BW) { 2928 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 2929 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2930 } else if (rl_type == ICE_MAX_BW) { 2931 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 2932 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); 2933 } else { 2934 return -EINVAL; 2935 } 2936 2937 /* Configure element */ 2938 return ice_sched_update_elem(hw, node, &buf); 2939 } 2940 2941 /** 2942 * ice_move_vsi_to_agg - moves VSI to new or default aggregator 2943 * @pi: port information structure 2944 * @agg_id: aggregator ID 2945 * @vsi_handle: software VSI handle 2946 * @tc_bitmap: TC bitmap of enabled TC(s) 2947 * 2948 * Move or associate VSI to a new or default aggregator node. 2949 */ 2950 int 2951 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, 2952 u8 tc_bitmap) 2953 { 2954 unsigned long bitmap = tc_bitmap; 2955 int status; 2956 2957 mutex_lock(&pi->sched_lock); 2958 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle, 2959 (unsigned long *)&bitmap); 2960 if (!status) 2961 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle, 2962 (unsigned long *)&bitmap); 2963 mutex_unlock(&pi->sched_lock); 2964 return status; 2965 } 2966 2967 /** 2968 * ice_set_clear_cir_bw - set or clear CIR BW 2969 * @bw_t_info: bandwidth type information structure 2970 * @bw: bandwidth in Kbps - Kilo bits per sec 2971 * 2972 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. 2973 */ 2974 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2975 { 2976 if (bw == ICE_SCHED_DFLT_BW) { 2977 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2978 bw_t_info->cir_bw.bw = 0; 2979 } else { 2980 /* Save type of BW information */ 2981 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); 2982 bw_t_info->cir_bw.bw = bw; 2983 } 2984 } 2985 2986 /** 2987 * ice_set_clear_eir_bw - set or clear EIR BW 2988 * @bw_t_info: bandwidth type information structure 2989 * @bw: bandwidth in Kbps - Kilo bits per sec 2990 * 2991 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. 2992 */ 2993 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 2994 { 2995 if (bw == ICE_SCHED_DFLT_BW) { 2996 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 2997 bw_t_info->eir_bw.bw = 0; 2998 } else { 2999 /* EIR BW and Shared BW profiles are mutually exclusive and 3000 * hence only one of them may be set for any given element. 3001 * First clear earlier saved shared BW information. 3002 */ 3003 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3004 bw_t_info->shared_bw = 0; 3005 /* save EIR BW information */ 3006 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3007 bw_t_info->eir_bw.bw = bw; 3008 } 3009 } 3010 3011 /** 3012 * ice_set_clear_shared_bw - set or clear shared BW 3013 * @bw_t_info: bandwidth type information structure 3014 * @bw: bandwidth in Kbps - Kilo bits per sec 3015 * 3016 * Save or clear shared bandwidth (BW) in the passed param bw_t_info. 3017 */ 3018 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) 3019 { 3020 if (bw == ICE_SCHED_DFLT_BW) { 3021 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3022 bw_t_info->shared_bw = 0; 3023 } else { 3024 /* EIR BW and Shared BW profiles are mutually exclusive and 3025 * hence only one of them may be set for any given element. 3026 * First clear earlier saved EIR BW information. 3027 */ 3028 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); 3029 bw_t_info->eir_bw.bw = 0; 3030 /* save shared BW information */ 3031 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); 3032 bw_t_info->shared_bw = bw; 3033 } 3034 } 3035 3036 /** 3037 * ice_sched_save_vsi_bw - save VSI node's BW information 3038 * @pi: port information structure 3039 * @vsi_handle: sw VSI handle 3040 * @tc: traffic class 3041 * @rl_type: rate limit type min, max, or shared 3042 * @bw: bandwidth in Kbps - Kilo bits per sec 3043 * 3044 * Save BW information of VSI type node for post replay use. 3045 */ 3046 static int 3047 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3048 enum ice_rl_type rl_type, u32 bw) 3049 { 3050 struct ice_vsi_ctx *vsi_ctx; 3051 3052 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3053 return -EINVAL; 3054 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3055 if (!vsi_ctx) 3056 return -EINVAL; 3057 switch (rl_type) { 3058 case ICE_MIN_BW: 3059 ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3060 break; 3061 case ICE_MAX_BW: 3062 ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3063 break; 3064 case ICE_SHARED_BW: 3065 ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw); 3066 break; 3067 default: 3068 return -EINVAL; 3069 } 3070 return 0; 3071 } 3072 3073 /** 3074 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter 3075 * @hw: pointer to the HW struct 3076 * @bw: bandwidth in Kbps 3077 * 3078 * This function calculates the wakeup parameter of RL profile. 3079 */ 3080 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw) 3081 { 3082 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; 3083 s32 wakeup_f_int; 3084 u16 wakeup = 0; 3085 3086 /* Get the wakeup integer value */ 3087 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3088 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec); 3089 if (wakeup_int > 63) { 3090 wakeup = (u16)((1 << 15) | wakeup_int); 3091 } else { 3092 /* Calculate fraction value up to 4 decimals 3093 * Convert Integer value to a constant multiplier 3094 */ 3095 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; 3096 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * 3097 hw->psm_clk_freq, bytes_per_sec); 3098 3099 /* Get Fraction value */ 3100 wakeup_f = wakeup_a - wakeup_b; 3101 3102 /* Round up the Fractional value via Ceil(Fractional value) */ 3103 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) 3104 wakeup_f += 1; 3105 3106 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, 3107 ICE_RL_PROF_MULTIPLIER); 3108 wakeup |= (u16)(wakeup_int << 9); 3109 wakeup |= (u16)(0x1ff & wakeup_f_int); 3110 } 3111 3112 return wakeup; 3113 } 3114 3115 /** 3116 * ice_sched_bw_to_rl_profile - convert BW to profile parameters 3117 * @hw: pointer to the HW struct 3118 * @bw: bandwidth in Kbps 3119 * @profile: profile parameters to return 3120 * 3121 * This function converts the BW to profile structure format. 3122 */ 3123 static int 3124 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw, 3125 struct ice_aqc_rl_profile_elem *profile) 3126 { 3127 s64 bytes_per_sec, ts_rate, mv_tmp; 3128 int status = -EINVAL; 3129 bool found = false; 3130 s32 encode = 0; 3131 s64 mv = 0; 3132 s32 i; 3133 3134 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ 3135 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) 3136 return status; 3137 3138 /* Bytes per second from Kbps */ 3139 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); 3140 3141 /* encode is 6 bits but really useful are 5 bits */ 3142 for (i = 0; i < 64; i++) { 3143 u64 pow_result = BIT_ULL(i); 3144 3145 ts_rate = div64_long((s64)hw->psm_clk_freq, 3146 pow_result * ICE_RL_PROF_TS_MULTIPLIER); 3147 if (ts_rate <= 0) 3148 continue; 3149 3150 /* Multiplier value */ 3151 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, 3152 ts_rate); 3153 3154 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ 3155 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); 3156 3157 /* First multiplier value greater than the given 3158 * accuracy bytes 3159 */ 3160 if (mv > ICE_RL_PROF_ACCURACY_BYTES) { 3161 encode = i; 3162 found = true; 3163 break; 3164 } 3165 } 3166 if (found) { 3167 u16 wm; 3168 3169 wm = ice_sched_calc_wakeup(hw, bw); 3170 profile->rl_multiply = cpu_to_le16(mv); 3171 profile->wake_up_calc = cpu_to_le16(wm); 3172 profile->rl_encode = cpu_to_le16(encode); 3173 status = 0; 3174 } else { 3175 status = -ENOENT; 3176 } 3177 3178 return status; 3179 } 3180 3181 /** 3182 * ice_sched_add_rl_profile - add RL profile 3183 * @pi: port information structure 3184 * @rl_type: type of rate limit BW - min, max, or shared 3185 * @bw: bandwidth in Kbps - Kilo bits per sec 3186 * @layer_num: specifies in which layer to create profile 3187 * 3188 * This function first checks the existing list for corresponding BW 3189 * parameter. If it exists, it returns the associated profile otherwise 3190 * it creates a new rate limit profile for requested BW, and adds it to 3191 * the HW DB and local list. It returns the new profile or null on error. 3192 * The caller needs to hold the scheduler lock. 3193 */ 3194 static struct ice_aqc_rl_profile_info * 3195 ice_sched_add_rl_profile(struct ice_port_info *pi, 3196 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3197 { 3198 struct ice_aqc_rl_profile_info *rl_prof_elem; 3199 u16 profiles_added = 0, num_profiles = 1; 3200 struct ice_aqc_rl_profile_elem *buf; 3201 struct ice_hw *hw; 3202 u8 profile_type; 3203 int status; 3204 3205 if (!pi || layer_num >= pi->hw->num_tx_sched_layers) 3206 return NULL; 3207 switch (rl_type) { 3208 case ICE_MIN_BW: 3209 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3210 break; 3211 case ICE_MAX_BW: 3212 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3213 break; 3214 case ICE_SHARED_BW: 3215 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3216 break; 3217 default: 3218 return NULL; 3219 } 3220 3221 hw = pi->hw; 3222 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3223 list_entry) 3224 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3225 profile_type && rl_prof_elem->bw == bw) 3226 /* Return existing profile ID info */ 3227 return rl_prof_elem; 3228 3229 /* Create new profile ID */ 3230 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), 3231 GFP_KERNEL); 3232 3233 if (!rl_prof_elem) 3234 return NULL; 3235 3236 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile); 3237 if (status) 3238 goto exit_add_rl_prof; 3239 3240 rl_prof_elem->bw = bw; 3241 /* layer_num is zero relative, and fw expects level from 1 to 9 */ 3242 rl_prof_elem->profile.level = layer_num + 1; 3243 rl_prof_elem->profile.flags = profile_type; 3244 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); 3245 3246 /* Create new entry in HW DB */ 3247 buf = &rl_prof_elem->profile; 3248 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), 3249 &profiles_added, NULL); 3250 if (status || profiles_added != num_profiles) 3251 goto exit_add_rl_prof; 3252 3253 /* Good entry - add in the list */ 3254 rl_prof_elem->prof_id_ref = 0; 3255 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); 3256 return rl_prof_elem; 3257 3258 exit_add_rl_prof: 3259 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); 3260 return NULL; 3261 } 3262 3263 /** 3264 * ice_sched_cfg_node_bw_lmt - configure node sched params 3265 * @hw: pointer to the HW struct 3266 * @node: sched node to configure 3267 * @rl_type: rate limit type CIR, EIR, or shared 3268 * @rl_prof_id: rate limit profile ID 3269 * 3270 * This function configures node element's BW limit. 3271 */ 3272 static int 3273 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, 3274 enum ice_rl_type rl_type, u16 rl_prof_id) 3275 { 3276 struct ice_aqc_txsched_elem_data buf; 3277 struct ice_aqc_txsched_elem *data; 3278 3279 buf = node->info; 3280 data = &buf.data; 3281 switch (rl_type) { 3282 case ICE_MIN_BW: 3283 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; 3284 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3285 break; 3286 case ICE_MAX_BW: 3287 /* EIR BW and Shared BW profiles are mutually exclusive and 3288 * hence only one of them may be set for any given element 3289 */ 3290 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3291 return -EIO; 3292 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3293 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); 3294 break; 3295 case ICE_SHARED_BW: 3296 /* Check for removing shared BW */ 3297 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { 3298 /* remove shared profile */ 3299 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; 3300 data->srl_id = 0; /* clear SRL field */ 3301 3302 /* enable back EIR to default profile */ 3303 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; 3304 data->eir_bw.bw_profile_idx = 3305 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 3306 break; 3307 } 3308 /* EIR BW and Shared BW profiles are mutually exclusive and 3309 * hence only one of them may be set for any given element 3310 */ 3311 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && 3312 (le16_to_cpu(data->eir_bw.bw_profile_idx) != 3313 ICE_SCHED_DFLT_RL_PROF_ID)) 3314 return -EIO; 3315 /* EIR BW is set to default, disable it */ 3316 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; 3317 /* Okay to enable shared BW now */ 3318 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; 3319 data->srl_id = cpu_to_le16(rl_prof_id); 3320 break; 3321 default: 3322 /* Unknown rate limit type */ 3323 return -EINVAL; 3324 } 3325 3326 /* Configure element */ 3327 return ice_sched_update_elem(hw, node, &buf); 3328 } 3329 3330 /** 3331 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID 3332 * @node: sched node 3333 * @rl_type: rate limit type 3334 * 3335 * If existing profile matches, it returns the corresponding rate 3336 * limit profile ID, otherwise it returns an invalid ID as error. 3337 */ 3338 static u16 3339 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, 3340 enum ice_rl_type rl_type) 3341 { 3342 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; 3343 struct ice_aqc_txsched_elem *data; 3344 3345 data = &node->info.data; 3346 switch (rl_type) { 3347 case ICE_MIN_BW: 3348 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) 3349 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); 3350 break; 3351 case ICE_MAX_BW: 3352 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) 3353 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); 3354 break; 3355 case ICE_SHARED_BW: 3356 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) 3357 rl_prof_id = le16_to_cpu(data->srl_id); 3358 break; 3359 default: 3360 break; 3361 } 3362 3363 return rl_prof_id; 3364 } 3365 3366 /** 3367 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer 3368 * @pi: port information structure 3369 * @rl_type: type of rate limit BW - min, max, or shared 3370 * @layer_index: layer index 3371 * 3372 * This function returns requested profile creation layer. 3373 */ 3374 static u8 3375 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, 3376 u8 layer_index) 3377 { 3378 struct ice_hw *hw = pi->hw; 3379 3380 if (layer_index >= hw->num_tx_sched_layers) 3381 return ICE_SCHED_INVAL_LAYER_NUM; 3382 switch (rl_type) { 3383 case ICE_MIN_BW: 3384 if (hw->layer_info[layer_index].max_cir_rl_profiles) 3385 return layer_index; 3386 break; 3387 case ICE_MAX_BW: 3388 if (hw->layer_info[layer_index].max_eir_rl_profiles) 3389 return layer_index; 3390 break; 3391 case ICE_SHARED_BW: 3392 /* if current layer doesn't support SRL profile creation 3393 * then try a layer up or down. 3394 */ 3395 if (hw->layer_info[layer_index].max_srl_profiles) 3396 return layer_index; 3397 else if (layer_index < hw->num_tx_sched_layers - 1 && 3398 hw->layer_info[layer_index + 1].max_srl_profiles) 3399 return layer_index + 1; 3400 else if (layer_index > 0 && 3401 hw->layer_info[layer_index - 1].max_srl_profiles) 3402 return layer_index - 1; 3403 break; 3404 default: 3405 break; 3406 } 3407 return ICE_SCHED_INVAL_LAYER_NUM; 3408 } 3409 3410 /** 3411 * ice_sched_get_srl_node - get shared rate limit node 3412 * @node: tree node 3413 * @srl_layer: shared rate limit layer 3414 * 3415 * This function returns SRL node to be used for shared rate limit purpose. 3416 * The caller needs to hold scheduler lock. 3417 */ 3418 static struct ice_sched_node * 3419 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) 3420 { 3421 if (srl_layer > node->tx_sched_layer) 3422 return node->children[0]; 3423 else if (srl_layer < node->tx_sched_layer) 3424 /* Node can't be created without a parent. It will always 3425 * have a valid parent except root node. 3426 */ 3427 return node->parent; 3428 else 3429 return node; 3430 } 3431 3432 /** 3433 * ice_sched_rm_rl_profile - remove RL profile ID 3434 * @pi: port information structure 3435 * @layer_num: layer number where profiles are saved 3436 * @profile_type: profile type like EIR, CIR, or SRL 3437 * @profile_id: profile ID to remove 3438 * 3439 * This function removes rate limit profile from layer 'layer_num' of type 3440 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold 3441 * scheduler lock. 3442 */ 3443 static int 3444 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, 3445 u16 profile_id) 3446 { 3447 struct ice_aqc_rl_profile_info *rl_prof_elem; 3448 int status = 0; 3449 3450 if (layer_num >= pi->hw->num_tx_sched_layers) 3451 return -EINVAL; 3452 /* Check the existing list for RL profile */ 3453 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], 3454 list_entry) 3455 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == 3456 profile_type && 3457 le16_to_cpu(rl_prof_elem->profile.profile_id) == 3458 profile_id) { 3459 if (rl_prof_elem->prof_id_ref) 3460 rl_prof_elem->prof_id_ref--; 3461 3462 /* Remove old profile ID from database */ 3463 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); 3464 if (status && status != -EBUSY) 3465 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); 3466 break; 3467 } 3468 if (status == -EBUSY) 3469 status = 0; 3470 return status; 3471 } 3472 3473 /** 3474 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default 3475 * @pi: port information structure 3476 * @node: pointer to node structure 3477 * @rl_type: rate limit type min, max, or shared 3478 * @layer_num: layer number where RL profiles are saved 3479 * 3480 * This function configures node element's BW rate limit profile ID of 3481 * type CIR, EIR, or SRL to default. This function needs to be called 3482 * with the scheduler lock held. 3483 */ 3484 static int 3485 ice_sched_set_node_bw_dflt(struct ice_port_info *pi, 3486 struct ice_sched_node *node, 3487 enum ice_rl_type rl_type, u8 layer_num) 3488 { 3489 struct ice_hw *hw; 3490 u8 profile_type; 3491 u16 rl_prof_id; 3492 u16 old_id; 3493 int status; 3494 3495 hw = pi->hw; 3496 switch (rl_type) { 3497 case ICE_MIN_BW: 3498 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; 3499 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3500 break; 3501 case ICE_MAX_BW: 3502 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; 3503 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; 3504 break; 3505 case ICE_SHARED_BW: 3506 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; 3507 /* No SRL is configured for default case */ 3508 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; 3509 break; 3510 default: 3511 return -EINVAL; 3512 } 3513 /* Save existing RL prof ID for later clean up */ 3514 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3515 /* Configure BW scheduling parameters */ 3516 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3517 if (status) 3518 return status; 3519 3520 /* Remove stale RL profile ID */ 3521 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || 3522 old_id == ICE_SCHED_INVAL_PROF_ID) 3523 return 0; 3524 3525 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); 3526 } 3527 3528 /** 3529 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness 3530 * @pi: port information structure 3531 * @node: pointer to node structure 3532 * @layer_num: layer number where rate limit profiles are saved 3533 * @rl_type: rate limit type min, max, or shared 3534 * @bw: bandwidth value 3535 * 3536 * This function prepares node element's bandwidth to SRL or EIR exclusively. 3537 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of 3538 * them may be set for any given element. This function needs to be called 3539 * with the scheduler lock held. 3540 */ 3541 static int 3542 ice_sched_set_eir_srl_excl(struct ice_port_info *pi, 3543 struct ice_sched_node *node, 3544 u8 layer_num, enum ice_rl_type rl_type, u32 bw) 3545 { 3546 if (rl_type == ICE_SHARED_BW) { 3547 /* SRL node passed in this case, it may be different node */ 3548 if (bw == ICE_SCHED_DFLT_BW) 3549 /* SRL being removed, ice_sched_cfg_node_bw_lmt() 3550 * enables EIR to default. EIR is not set in this 3551 * case, so no additional action is required. 3552 */ 3553 return 0; 3554 3555 /* SRL being configured, set EIR to default here. 3556 * ice_sched_cfg_node_bw_lmt() disables EIR when it 3557 * configures SRL 3558 */ 3559 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, 3560 layer_num); 3561 } else if (rl_type == ICE_MAX_BW && 3562 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { 3563 /* Remove Shared profile. Set default shared BW call 3564 * removes shared profile for a node. 3565 */ 3566 return ice_sched_set_node_bw_dflt(pi, node, 3567 ICE_SHARED_BW, 3568 layer_num); 3569 } 3570 return 0; 3571 } 3572 3573 /** 3574 * ice_sched_set_node_bw - set node's bandwidth 3575 * @pi: port information structure 3576 * @node: tree node 3577 * @rl_type: rate limit type min, max, or shared 3578 * @bw: bandwidth in Kbps - Kilo bits per sec 3579 * @layer_num: layer number 3580 * 3581 * This function adds new profile corresponding to requested BW, configures 3582 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile 3583 * ID from local database. The caller needs to hold scheduler lock. 3584 */ 3585 int 3586 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, 3587 enum ice_rl_type rl_type, u32 bw, u8 layer_num) 3588 { 3589 struct ice_aqc_rl_profile_info *rl_prof_info; 3590 struct ice_hw *hw = pi->hw; 3591 u16 old_id, rl_prof_id; 3592 int status = -EINVAL; 3593 3594 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); 3595 if (!rl_prof_info) 3596 return status; 3597 3598 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); 3599 3600 /* Save existing RL prof ID for later clean up */ 3601 old_id = ice_sched_get_node_rl_prof_id(node, rl_type); 3602 /* Configure BW scheduling parameters */ 3603 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); 3604 if (status) 3605 return status; 3606 3607 /* New changes has been applied */ 3608 /* Increment the profile ID reference count */ 3609 rl_prof_info->prof_id_ref++; 3610 3611 /* Check for old ID removal */ 3612 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || 3613 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) 3614 return 0; 3615 3616 return ice_sched_rm_rl_profile(pi, layer_num, 3617 rl_prof_info->profile.flags & 3618 ICE_AQC_RL_PROFILE_TYPE_M, old_id); 3619 } 3620 3621 /** 3622 * ice_sched_set_node_priority - set node's priority 3623 * @pi: port information structure 3624 * @node: tree node 3625 * @priority: number 0-7 representing priority among siblings 3626 * 3627 * This function sets priority of a node among it's siblings. 3628 */ 3629 int 3630 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node, 3631 u16 priority) 3632 { 3633 struct ice_aqc_txsched_elem_data buf; 3634 struct ice_aqc_txsched_elem *data; 3635 3636 buf = node->info; 3637 data = &buf.data; 3638 3639 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 3640 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority); 3641 3642 return ice_sched_update_elem(pi->hw, node, &buf); 3643 } 3644 3645 /** 3646 * ice_sched_set_node_weight - set node's weight 3647 * @pi: port information structure 3648 * @node: tree node 3649 * @weight: number 1-200 representing weight for WFQ 3650 * 3651 * This function sets weight of the node for WFQ algorithm. 3652 */ 3653 int 3654 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight) 3655 { 3656 struct ice_aqc_txsched_elem_data buf; 3657 struct ice_aqc_txsched_elem *data; 3658 3659 buf = node->info; 3660 data = &buf.data; 3661 3662 data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR | 3663 ICE_AQC_ELEM_VALID_GENERIC; 3664 data->cir_bw.bw_alloc = cpu_to_le16(weight); 3665 data->eir_bw.bw_alloc = cpu_to_le16(weight); 3666 3667 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0); 3668 3669 return ice_sched_update_elem(pi->hw, node, &buf); 3670 } 3671 3672 /** 3673 * ice_sched_set_node_bw_lmt - set node's BW limit 3674 * @pi: port information structure 3675 * @node: tree node 3676 * @rl_type: rate limit type min, max, or shared 3677 * @bw: bandwidth in Kbps - Kilo bits per sec 3678 * 3679 * It updates node's BW limit parameters like BW RL profile ID of type CIR, 3680 * EIR, or SRL. The caller needs to hold scheduler lock. 3681 */ 3682 int 3683 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, 3684 enum ice_rl_type rl_type, u32 bw) 3685 { 3686 struct ice_sched_node *cfg_node = node; 3687 int status; 3688 3689 struct ice_hw *hw; 3690 u8 layer_num; 3691 3692 if (!pi) 3693 return -EINVAL; 3694 hw = pi->hw; 3695 /* Remove unused RL profile IDs from HW and SW DB */ 3696 ice_sched_rm_unused_rl_prof(pi); 3697 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, 3698 node->tx_sched_layer); 3699 if (layer_num >= hw->num_tx_sched_layers) 3700 return -EINVAL; 3701 3702 if (rl_type == ICE_SHARED_BW) { 3703 /* SRL node may be different */ 3704 cfg_node = ice_sched_get_srl_node(node, layer_num); 3705 if (!cfg_node) 3706 return -EIO; 3707 } 3708 /* EIR BW and Shared BW profiles are mutually exclusive and 3709 * hence only one of them may be set for any given element 3710 */ 3711 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, 3712 bw); 3713 if (status) 3714 return status; 3715 if (bw == ICE_SCHED_DFLT_BW) 3716 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, 3717 layer_num); 3718 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); 3719 } 3720 3721 /** 3722 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default 3723 * @pi: port information structure 3724 * @node: pointer to node structure 3725 * @rl_type: rate limit type min, max, or shared 3726 * 3727 * This function configures node element's BW rate limit profile ID of 3728 * type CIR, EIR, or SRL to default. This function needs to be called 3729 * with the scheduler lock held. 3730 */ 3731 static int 3732 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, 3733 struct ice_sched_node *node, 3734 enum ice_rl_type rl_type) 3735 { 3736 return ice_sched_set_node_bw_lmt(pi, node, rl_type, 3737 ICE_SCHED_DFLT_BW); 3738 } 3739 3740 /** 3741 * ice_sched_validate_srl_node - Check node for SRL applicability 3742 * @node: sched node to configure 3743 * @sel_layer: selected SRL layer 3744 * 3745 * This function checks if the SRL can be applied to a selected layer node on 3746 * behalf of the requested node (first argument). This function needs to be 3747 * called with scheduler lock held. 3748 */ 3749 static int 3750 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) 3751 { 3752 /* SRL profiles are not available on all layers. Check if the 3753 * SRL profile can be applied to a node above or below the 3754 * requested node. SRL configuration is possible only if the 3755 * selected layer's node has single child. 3756 */ 3757 if (sel_layer == node->tx_sched_layer || 3758 ((sel_layer == node->tx_sched_layer + 1) && 3759 node->num_children == 1) || 3760 ((sel_layer == node->tx_sched_layer - 1) && 3761 (node->parent && node->parent->num_children == 1))) 3762 return 0; 3763 3764 return -EIO; 3765 } 3766 3767 /** 3768 * ice_sched_save_q_bw - save queue node's BW information 3769 * @q_ctx: queue context structure 3770 * @rl_type: rate limit type min, max, or shared 3771 * @bw: bandwidth in Kbps - Kilo bits per sec 3772 * 3773 * Save BW information of queue type node for post replay use. 3774 */ 3775 static int 3776 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) 3777 { 3778 switch (rl_type) { 3779 case ICE_MIN_BW: 3780 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); 3781 break; 3782 case ICE_MAX_BW: 3783 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); 3784 break; 3785 case ICE_SHARED_BW: 3786 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); 3787 break; 3788 default: 3789 return -EINVAL; 3790 } 3791 return 0; 3792 } 3793 3794 /** 3795 * ice_sched_set_q_bw_lmt - sets queue BW limit 3796 * @pi: port information structure 3797 * @vsi_handle: sw VSI handle 3798 * @tc: traffic class 3799 * @q_handle: software queue handle 3800 * @rl_type: min, max, or shared 3801 * @bw: bandwidth in Kbps 3802 * 3803 * This function sets BW limit of queue scheduling node. 3804 */ 3805 static int 3806 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3807 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3808 { 3809 struct ice_sched_node *node; 3810 struct ice_q_ctx *q_ctx; 3811 int status = -EINVAL; 3812 3813 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3814 return -EINVAL; 3815 mutex_lock(&pi->sched_lock); 3816 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); 3817 if (!q_ctx) 3818 goto exit_q_bw_lmt; 3819 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 3820 if (!node) { 3821 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); 3822 goto exit_q_bw_lmt; 3823 } 3824 3825 /* Return error if it is not a leaf node */ 3826 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) 3827 goto exit_q_bw_lmt; 3828 3829 /* SRL bandwidth layer selection */ 3830 if (rl_type == ICE_SHARED_BW) { 3831 u8 sel_layer; /* selected layer */ 3832 3833 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, 3834 node->tx_sched_layer); 3835 if (sel_layer >= pi->hw->num_tx_sched_layers) { 3836 status = -EINVAL; 3837 goto exit_q_bw_lmt; 3838 } 3839 status = ice_sched_validate_srl_node(node, sel_layer); 3840 if (status) 3841 goto exit_q_bw_lmt; 3842 } 3843 3844 if (bw == ICE_SCHED_DFLT_BW) 3845 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3846 else 3847 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3848 3849 if (!status) 3850 status = ice_sched_save_q_bw(q_ctx, rl_type, bw); 3851 3852 exit_q_bw_lmt: 3853 mutex_unlock(&pi->sched_lock); 3854 return status; 3855 } 3856 3857 /** 3858 * ice_cfg_q_bw_lmt - configure queue BW limit 3859 * @pi: port information structure 3860 * @vsi_handle: sw VSI handle 3861 * @tc: traffic class 3862 * @q_handle: software queue handle 3863 * @rl_type: min, max, or shared 3864 * @bw: bandwidth in Kbps 3865 * 3866 * This function configures BW limit of queue scheduling node. 3867 */ 3868 int 3869 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3870 u16 q_handle, enum ice_rl_type rl_type, u32 bw) 3871 { 3872 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3873 bw); 3874 } 3875 3876 /** 3877 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit 3878 * @pi: port information structure 3879 * @vsi_handle: sw VSI handle 3880 * @tc: traffic class 3881 * @q_handle: software queue handle 3882 * @rl_type: min, max, or shared 3883 * 3884 * This function configures BW default limit of queue scheduling node. 3885 */ 3886 int 3887 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3888 u16 q_handle, enum ice_rl_type rl_type) 3889 { 3890 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, 3891 ICE_SCHED_DFLT_BW); 3892 } 3893 3894 /** 3895 * ice_sched_get_node_by_id_type - get node from ID type 3896 * @pi: port information structure 3897 * @id: identifier 3898 * @agg_type: type of aggregator 3899 * @tc: traffic class 3900 * 3901 * This function returns node identified by ID of type aggregator, and 3902 * based on traffic class (TC). This function needs to be called with 3903 * the scheduler lock held. 3904 */ 3905 static struct ice_sched_node * 3906 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id, 3907 enum ice_agg_type agg_type, u8 tc) 3908 { 3909 struct ice_sched_node *node = NULL; 3910 3911 switch (agg_type) { 3912 case ICE_AGG_TYPE_VSI: { 3913 struct ice_vsi_ctx *vsi_ctx; 3914 u16 vsi_handle = (u16)id; 3915 3916 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 3917 break; 3918 /* Get sched_vsi_info */ 3919 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); 3920 if (!vsi_ctx) 3921 break; 3922 node = vsi_ctx->sched.vsi_node[tc]; 3923 break; 3924 } 3925 3926 case ICE_AGG_TYPE_AGG: { 3927 struct ice_sched_node *tc_node; 3928 3929 tc_node = ice_sched_get_tc_node(pi, tc); 3930 if (tc_node) 3931 node = ice_sched_get_agg_node(pi, tc_node, id); 3932 break; 3933 } 3934 3935 default: 3936 break; 3937 } 3938 3939 return node; 3940 } 3941 3942 /** 3943 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC 3944 * @pi: port information structure 3945 * @id: ID (software VSI handle or AGG ID) 3946 * @agg_type: aggregator type (VSI or AGG type node) 3947 * @tc: traffic class 3948 * @rl_type: min or max 3949 * @bw: bandwidth in Kbps 3950 * 3951 * This function sets BW limit of VSI or Aggregator scheduling node 3952 * based on TC information from passed in argument BW. 3953 */ 3954 static int 3955 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id, 3956 enum ice_agg_type agg_type, u8 tc, 3957 enum ice_rl_type rl_type, u32 bw) 3958 { 3959 struct ice_sched_node *node; 3960 int status = -EINVAL; 3961 3962 if (!pi) 3963 return status; 3964 3965 if (rl_type == ICE_UNKNOWN_BW) 3966 return status; 3967 3968 mutex_lock(&pi->sched_lock); 3969 node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc); 3970 if (!node) { 3971 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n"); 3972 goto exit_set_node_bw_lmt_per_tc; 3973 } 3974 if (bw == ICE_SCHED_DFLT_BW) 3975 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); 3976 else 3977 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); 3978 3979 exit_set_node_bw_lmt_per_tc: 3980 mutex_unlock(&pi->sched_lock); 3981 return status; 3982 } 3983 3984 /** 3985 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC 3986 * @pi: port information structure 3987 * @vsi_handle: software VSI handle 3988 * @tc: traffic class 3989 * @rl_type: min or max 3990 * @bw: bandwidth in Kbps 3991 * 3992 * This function configures BW limit of VSI scheduling node based on TC 3993 * information. 3994 */ 3995 int 3996 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 3997 enum ice_rl_type rl_type, u32 bw) 3998 { 3999 int status; 4000 4001 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4002 ICE_AGG_TYPE_VSI, 4003 tc, rl_type, bw); 4004 if (!status) { 4005 mutex_lock(&pi->sched_lock); 4006 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw); 4007 mutex_unlock(&pi->sched_lock); 4008 } 4009 return status; 4010 } 4011 4012 /** 4013 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC 4014 * @pi: port information structure 4015 * @vsi_handle: software VSI handle 4016 * @tc: traffic class 4017 * @rl_type: min or max 4018 * 4019 * This function configures default BW limit of VSI scheduling node based on TC 4020 * information. 4021 */ 4022 int 4023 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4024 enum ice_rl_type rl_type) 4025 { 4026 int status; 4027 4028 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, 4029 ICE_AGG_TYPE_VSI, 4030 tc, rl_type, 4031 ICE_SCHED_DFLT_BW); 4032 if (!status) { 4033 mutex_lock(&pi->sched_lock); 4034 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, 4035 ICE_SCHED_DFLT_BW); 4036 mutex_unlock(&pi->sched_lock); 4037 } 4038 return status; 4039 } 4040 4041 /** 4042 * ice_cfg_rl_burst_size - Set burst size value 4043 * @hw: pointer to the HW struct 4044 * @bytes: burst size in bytes 4045 * 4046 * This function configures/set the burst size to requested new value. The new 4047 * burst size value is used for future rate limit calls. It doesn't change the 4048 * existing or previously created RL profiles. 4049 */ 4050 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) 4051 { 4052 u16 burst_size_to_prog; 4053 4054 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || 4055 bytes > ICE_MAX_BURST_SIZE_ALLOWED) 4056 return -EINVAL; 4057 if (ice_round_to_num(bytes, 64) <= 4058 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { 4059 /* 64 byte granularity case */ 4060 /* Disable MSB granularity bit */ 4061 burst_size_to_prog = ICE_64_BYTE_GRANULARITY; 4062 /* round number to nearest 64 byte granularity */ 4063 bytes = ice_round_to_num(bytes, 64); 4064 /* The value is in 64 byte chunks */ 4065 burst_size_to_prog |= (u16)(bytes / 64); 4066 } else { 4067 /* k bytes granularity case */ 4068 /* Enable MSB granularity bit */ 4069 burst_size_to_prog = ICE_KBYTE_GRANULARITY; 4070 /* round number to nearest 1024 granularity */ 4071 bytes = ice_round_to_num(bytes, 1024); 4072 /* check rounding doesn't go beyond allowed */ 4073 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) 4074 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; 4075 /* The value is in k bytes */ 4076 burst_size_to_prog |= (u16)(bytes / 1024); 4077 } 4078 hw->max_burst_size = burst_size_to_prog; 4079 return 0; 4080 } 4081 4082 /** 4083 * ice_sched_replay_node_prio - re-configure node priority 4084 * @hw: pointer to the HW struct 4085 * @node: sched node to configure 4086 * @priority: priority value 4087 * 4088 * This function configures node element's priority value. It 4089 * needs to be called with scheduler lock held. 4090 */ 4091 static int 4092 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, 4093 u8 priority) 4094 { 4095 struct ice_aqc_txsched_elem_data buf; 4096 struct ice_aqc_txsched_elem *data; 4097 int status; 4098 4099 buf = node->info; 4100 data = &buf.data; 4101 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; 4102 data->generic = priority; 4103 4104 /* Configure element */ 4105 status = ice_sched_update_elem(hw, node, &buf); 4106 return status; 4107 } 4108 4109 /** 4110 * ice_sched_replay_node_bw - replay node(s) BW 4111 * @hw: pointer to the HW struct 4112 * @node: sched node to configure 4113 * @bw_t_info: BW type information 4114 * 4115 * This function restores node's BW from bw_t_info. The caller needs 4116 * to hold the scheduler lock. 4117 */ 4118 static int 4119 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, 4120 struct ice_bw_type_info *bw_t_info) 4121 { 4122 struct ice_port_info *pi = hw->port_info; 4123 int status = -EINVAL; 4124 u16 bw_alloc; 4125 4126 if (!node) 4127 return status; 4128 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) 4129 return 0; 4130 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { 4131 status = ice_sched_replay_node_prio(hw, node, 4132 bw_t_info->generic); 4133 if (status) 4134 return status; 4135 } 4136 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { 4137 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, 4138 bw_t_info->cir_bw.bw); 4139 if (status) 4140 return status; 4141 } 4142 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { 4143 bw_alloc = bw_t_info->cir_bw.bw_alloc; 4144 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, 4145 bw_alloc); 4146 if (status) 4147 return status; 4148 } 4149 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { 4150 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, 4151 bw_t_info->eir_bw.bw); 4152 if (status) 4153 return status; 4154 } 4155 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { 4156 bw_alloc = bw_t_info->eir_bw.bw_alloc; 4157 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, 4158 bw_alloc); 4159 if (status) 4160 return status; 4161 } 4162 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) 4163 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, 4164 bw_t_info->shared_bw); 4165 return status; 4166 } 4167 4168 /** 4169 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap 4170 * @pi: port info struct 4171 * @tc_bitmap: 8 bits TC bitmap to check 4172 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return 4173 * 4174 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs 4175 * may be missing, it returns enabled TCs. This function needs to be called with 4176 * scheduler lock held. 4177 */ 4178 static void 4179 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, 4180 unsigned long *tc_bitmap, 4181 unsigned long *ena_tc_bitmap) 4182 { 4183 u8 tc; 4184 4185 /* Some TC(s) may be missing after reset, adjust for replay */ 4186 ice_for_each_traffic_class(tc) 4187 if (ice_is_tc_ena(*tc_bitmap, tc) && 4188 (ice_sched_get_tc_node(pi, tc))) 4189 set_bit(tc, ena_tc_bitmap); 4190 } 4191 4192 /** 4193 * ice_sched_replay_agg - recreate aggregator node(s) 4194 * @hw: pointer to the HW struct 4195 * 4196 * This function recreate aggregator type nodes which are not replayed earlier. 4197 * It also replay aggregator BW information. These aggregator nodes are not 4198 * associated with VSI type node yet. 4199 */ 4200 void ice_sched_replay_agg(struct ice_hw *hw) 4201 { 4202 struct ice_port_info *pi = hw->port_info; 4203 struct ice_sched_agg_info *agg_info; 4204 4205 mutex_lock(&pi->sched_lock); 4206 list_for_each_entry(agg_info, &hw->agg_list, list_entry) 4207 /* replay aggregator (re-create aggregator node) */ 4208 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap, 4209 ICE_MAX_TRAFFIC_CLASS)) { 4210 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4211 int status; 4212 4213 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4214 ice_sched_get_ena_tc_bitmap(pi, 4215 agg_info->replay_tc_bitmap, 4216 replay_bitmap); 4217 status = ice_sched_cfg_agg(hw->port_info, 4218 agg_info->agg_id, 4219 ICE_AGG_TYPE_AGG, 4220 replay_bitmap); 4221 if (status) { 4222 dev_info(ice_hw_to_dev(hw), 4223 "Replay agg id[%d] failed\n", 4224 agg_info->agg_id); 4225 /* Move on to next one */ 4226 continue; 4227 } 4228 } 4229 mutex_unlock(&pi->sched_lock); 4230 } 4231 4232 /** 4233 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization 4234 * @hw: pointer to the HW struct 4235 * 4236 * This function initialize aggregator(s) TC bitmap to zero. A required 4237 * preinit step for replaying aggregators. 4238 */ 4239 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw) 4240 { 4241 struct ice_port_info *pi = hw->port_info; 4242 struct ice_sched_agg_info *agg_info; 4243 4244 mutex_lock(&pi->sched_lock); 4245 list_for_each_entry(agg_info, &hw->agg_list, list_entry) { 4246 struct ice_sched_agg_vsi_info *agg_vsi_info; 4247 4248 agg_info->tc_bitmap[0] = 0; 4249 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, 4250 list_entry) 4251 agg_vsi_info->tc_bitmap[0] = 0; 4252 } 4253 mutex_unlock(&pi->sched_lock); 4254 } 4255 4256 /** 4257 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s) 4258 * @hw: pointer to the HW struct 4259 * @vsi_handle: software VSI handle 4260 * 4261 * This function replays aggregator node, VSI to aggregator type nodes, and 4262 * their node bandwidth information. This function needs to be called with 4263 * scheduler lock held. 4264 */ 4265 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4266 { 4267 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4268 struct ice_sched_agg_vsi_info *agg_vsi_info; 4269 struct ice_port_info *pi = hw->port_info; 4270 struct ice_sched_agg_info *agg_info; 4271 int status; 4272 4273 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4274 if (!ice_is_vsi_valid(hw, vsi_handle)) 4275 return -EINVAL; 4276 agg_info = ice_get_vsi_agg_info(hw, vsi_handle); 4277 if (!agg_info) 4278 return 0; /* Not present in list - default Agg case */ 4279 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); 4280 if (!agg_vsi_info) 4281 return 0; /* Not present in list - default Agg case */ 4282 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, 4283 replay_bitmap); 4284 /* Replay aggregator node associated to vsi_handle */ 4285 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, 4286 ICE_AGG_TYPE_AGG, replay_bitmap); 4287 if (status) 4288 return status; 4289 4290 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); 4291 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap, 4292 replay_bitmap); 4293 /* Move this VSI (vsi_handle) to above aggregator */ 4294 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle, 4295 replay_bitmap); 4296 } 4297 4298 /** 4299 * ice_replay_vsi_agg - replay VSI to aggregator node 4300 * @hw: pointer to the HW struct 4301 * @vsi_handle: software VSI handle 4302 * 4303 * This function replays association of VSI to aggregator type nodes, and 4304 * node bandwidth information. 4305 */ 4306 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) 4307 { 4308 struct ice_port_info *pi = hw->port_info; 4309 int status; 4310 4311 mutex_lock(&pi->sched_lock); 4312 status = ice_sched_replay_vsi_agg(hw, vsi_handle); 4313 mutex_unlock(&pi->sched_lock); 4314 return status; 4315 } 4316 4317 /** 4318 * ice_sched_replay_q_bw - replay queue type node BW 4319 * @pi: port information structure 4320 * @q_ctx: queue context structure 4321 * 4322 * This function replays queue type node bandwidth. This function needs to be 4323 * called with scheduler lock held. 4324 */ 4325 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) 4326 { 4327 struct ice_sched_node *q_node; 4328 4329 /* Following also checks the presence of node in tree */ 4330 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); 4331 if (!q_node) 4332 return -EINVAL; 4333 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); 4334 } 4335