xref: /linux/drivers/net/ethernet/intel/ice/ice_sched.c (revision 3f58ff6b53c11773b1bd564082fae37d48e0cc40)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include <net/devlink.h>
5 #include "ice_sched.h"
6 
7 /**
8  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
9  * @pi: port information structure
10  * @info: Scheduler element information from firmware
11  *
12  * This function inserts the root node of the scheduling tree topology
13  * to the SW DB.
14  */
15 static int
16 ice_sched_add_root_node(struct ice_port_info *pi,
17 			struct ice_aqc_txsched_elem_data *info)
18 {
19 	struct ice_sched_node *root;
20 	struct ice_hw *hw;
21 
22 	if (!pi)
23 		return -EINVAL;
24 
25 	hw = pi->hw;
26 
27 	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
28 	if (!root)
29 		return -ENOMEM;
30 
31 	/* coverity[suspicious_sizeof] */
32 	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
33 				      sizeof(*root), GFP_KERNEL);
34 	if (!root->children) {
35 		devm_kfree(ice_hw_to_dev(hw), root);
36 		return -ENOMEM;
37 	}
38 
39 	memcpy(&root->info, info, sizeof(*info));
40 	pi->root = root;
41 	return 0;
42 }
43 
44 /**
45  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
46  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
47  * @teid: node TEID to search
48  *
49  * This function searches for a node matching the TEID in the scheduling tree
50  * from the SW DB. The search is recursive and is restricted by the number of
51  * layers it has searched through; stopping at the max supported layer.
52  *
53  * This function needs to be called when holding the port_info->sched_lock
54  */
55 struct ice_sched_node *
56 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
57 {
58 	u16 i;
59 
60 	/* The TEID is same as that of the start_node */
61 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
62 		return start_node;
63 
64 	/* The node has no children or is at the max layer */
65 	if (!start_node->num_children ||
66 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
67 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
68 		return NULL;
69 
70 	/* Check if TEID matches to any of the children nodes */
71 	for (i = 0; i < start_node->num_children; i++)
72 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
73 			return start_node->children[i];
74 
75 	/* Search within each child's sub-tree */
76 	for (i = 0; i < start_node->num_children; i++) {
77 		struct ice_sched_node *tmp;
78 
79 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
80 						  teid);
81 		if (tmp)
82 			return tmp;
83 	}
84 
85 	return NULL;
86 }
87 
88 /**
89  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
90  * @hw: pointer to the HW struct
91  * @cmd_opc: cmd opcode
92  * @elems_req: number of elements to request
93  * @buf: pointer to buffer
94  * @buf_size: buffer size in bytes
95  * @elems_resp: returns total number of elements response
96  * @cd: pointer to command details structure or NULL
97  *
98  * This function sends a scheduling elements cmd (cmd_opc)
99  */
100 static int
101 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
102 			    u16 elems_req, void *buf, u16 buf_size,
103 			    u16 *elems_resp, struct ice_sq_cd *cd)
104 {
105 	struct ice_aqc_sched_elem_cmd *cmd;
106 	struct ice_aq_desc desc;
107 	int status;
108 
109 	cmd = &desc.params.sched_elem_cmd;
110 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
111 	cmd->num_elem_req = cpu_to_le16(elems_req);
112 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
113 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
114 	if (!status && elems_resp)
115 		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
116 
117 	return status;
118 }
119 
120 /**
121  * ice_aq_query_sched_elems - query scheduler elements
122  * @hw: pointer to the HW struct
123  * @elems_req: number of elements to query
124  * @buf: pointer to buffer
125  * @buf_size: buffer size in bytes
126  * @elems_ret: returns total number of elements returned
127  * @cd: pointer to command details structure or NULL
128  *
129  * Query scheduling elements (0x0404)
130  */
131 int
132 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
133 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
134 			 u16 *elems_ret, struct ice_sq_cd *cd)
135 {
136 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
137 					   elems_req, (void *)buf, buf_size,
138 					   elems_ret, cd);
139 }
140 
141 /**
142  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
143  * @pi: port information structure
144  * @layer: Scheduler layer of the node
145  * @info: Scheduler element information from firmware
146  * @prealloc_node: preallocated ice_sched_node struct for SW DB
147  *
148  * This function inserts a scheduler node to the SW DB.
149  */
150 int
151 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
152 		   struct ice_aqc_txsched_elem_data *info,
153 		   struct ice_sched_node *prealloc_node)
154 {
155 	struct ice_aqc_txsched_elem_data elem;
156 	struct ice_sched_node *parent;
157 	struct ice_sched_node *node;
158 	struct ice_hw *hw;
159 	int status;
160 
161 	if (!pi)
162 		return -EINVAL;
163 
164 	hw = pi->hw;
165 
166 	/* A valid parent node should be there */
167 	parent = ice_sched_find_node_by_teid(pi->root,
168 					     le32_to_cpu(info->parent_teid));
169 	if (!parent) {
170 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
171 			  le32_to_cpu(info->parent_teid));
172 		return -EINVAL;
173 	}
174 
175 	/* query the current node information from FW before adding it
176 	 * to the SW DB
177 	 */
178 	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
179 	if (status)
180 		return status;
181 
182 	if (prealloc_node)
183 		node = prealloc_node;
184 	else
185 		node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
186 	if (!node)
187 		return -ENOMEM;
188 	if (hw->max_children[layer]) {
189 		/* coverity[suspicious_sizeof] */
190 		node->children = devm_kcalloc(ice_hw_to_dev(hw),
191 					      hw->max_children[layer],
192 					      sizeof(*node), GFP_KERNEL);
193 		if (!node->children) {
194 			devm_kfree(ice_hw_to_dev(hw), node);
195 			return -ENOMEM;
196 		}
197 	}
198 
199 	node->in_use = true;
200 	node->parent = parent;
201 	node->tx_sched_layer = layer;
202 	parent->children[parent->num_children++] = node;
203 	node->info = elem;
204 	return 0;
205 }
206 
207 /**
208  * ice_aq_delete_sched_elems - delete scheduler elements
209  * @hw: pointer to the HW struct
210  * @grps_req: number of groups to delete
211  * @buf: pointer to buffer
212  * @buf_size: buffer size in bytes
213  * @grps_del: returns total number of elements deleted
214  * @cd: pointer to command details structure or NULL
215  *
216  * Delete scheduling elements (0x040F)
217  */
218 static int
219 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
220 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
221 			  u16 *grps_del, struct ice_sq_cd *cd)
222 {
223 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
224 					   grps_req, (void *)buf, buf_size,
225 					   grps_del, cd);
226 }
227 
228 /**
229  * ice_sched_remove_elems - remove nodes from HW
230  * @hw: pointer to the HW struct
231  * @parent: pointer to the parent node
232  * @num_nodes: number of nodes
233  * @node_teids: array of node teids to be deleted
234  *
235  * This function remove nodes from HW
236  */
237 static int
238 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
239 		       u16 num_nodes, u32 *node_teids)
240 {
241 	struct ice_aqc_delete_elem *buf;
242 	u16 i, num_groups_removed = 0;
243 	u16 buf_size;
244 	int status;
245 
246 	buf_size = struct_size(buf, teid, num_nodes);
247 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
248 	if (!buf)
249 		return -ENOMEM;
250 
251 	buf->hdr.parent_teid = parent->info.node_teid;
252 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
253 	for (i = 0; i < num_nodes; i++)
254 		buf->teid[i] = cpu_to_le32(node_teids[i]);
255 
256 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
257 					   &num_groups_removed, NULL);
258 	if (status || num_groups_removed != 1)
259 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
260 			  hw->adminq.sq_last_status);
261 
262 	devm_kfree(ice_hw_to_dev(hw), buf);
263 	return status;
264 }
265 
266 /**
267  * ice_sched_get_first_node - get the first node of the given layer
268  * @pi: port information structure
269  * @parent: pointer the base node of the subtree
270  * @layer: layer number
271  *
272  * This function retrieves the first node of the given layer from the subtree
273  */
274 static struct ice_sched_node *
275 ice_sched_get_first_node(struct ice_port_info *pi,
276 			 struct ice_sched_node *parent, u8 layer)
277 {
278 	return pi->sib_head[parent->tc_num][layer];
279 }
280 
281 /**
282  * ice_sched_get_tc_node - get pointer to TC node
283  * @pi: port information structure
284  * @tc: TC number
285  *
286  * This function returns the TC node pointer
287  */
288 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
289 {
290 	u8 i;
291 
292 	if (!pi || !pi->root)
293 		return NULL;
294 	for (i = 0; i < pi->root->num_children; i++)
295 		if (pi->root->children[i]->tc_num == tc)
296 			return pi->root->children[i];
297 	return NULL;
298 }
299 
300 /**
301  * ice_free_sched_node - Free a Tx scheduler node from SW DB
302  * @pi: port information structure
303  * @node: pointer to the ice_sched_node struct
304  *
305  * This function frees up a node from SW DB as well as from HW
306  *
307  * This function needs to be called with the port_info->sched_lock held
308  */
309 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
310 {
311 	struct ice_sched_node *parent;
312 	struct ice_hw *hw = pi->hw;
313 	u8 i, j;
314 
315 	/* Free the children before freeing up the parent node
316 	 * The parent array is updated below and that shifts the nodes
317 	 * in the array. So always pick the first child if num children > 0
318 	 */
319 	while (node->num_children)
320 		ice_free_sched_node(pi, node->children[0]);
321 
322 	/* Leaf, TC and root nodes can't be deleted by SW */
323 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
324 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
325 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
326 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
327 		u32 teid = le32_to_cpu(node->info.node_teid);
328 
329 		ice_sched_remove_elems(hw, node->parent, 1, &teid);
330 	}
331 	parent = node->parent;
332 	/* root has no parent */
333 	if (parent) {
334 		struct ice_sched_node *p;
335 
336 		/* update the parent */
337 		for (i = 0; i < parent->num_children; i++)
338 			if (parent->children[i] == node) {
339 				for (j = i + 1; j < parent->num_children; j++)
340 					parent->children[j - 1] =
341 						parent->children[j];
342 				parent->num_children--;
343 				break;
344 			}
345 
346 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
347 		while (p) {
348 			if (p->sibling == node) {
349 				p->sibling = node->sibling;
350 				break;
351 			}
352 			p = p->sibling;
353 		}
354 
355 		/* update the sibling head if head is getting removed */
356 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
357 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
358 				node->sibling;
359 	}
360 
361 	/* leaf nodes have no children */
362 	if (node->children)
363 		devm_kfree(ice_hw_to_dev(hw), node->children);
364 
365 	kfree(node->name);
366 	xa_erase(&pi->sched_node_ids, node->id);
367 	devm_kfree(ice_hw_to_dev(hw), node);
368 }
369 
370 /**
371  * ice_aq_get_dflt_topo - gets default scheduler topology
372  * @hw: pointer to the HW struct
373  * @lport: logical port number
374  * @buf: pointer to buffer
375  * @buf_size: buffer size in bytes
376  * @num_branches: returns total number of queue to port branches
377  * @cd: pointer to command details structure or NULL
378  *
379  * Get default scheduler topology (0x400)
380  */
381 static int
382 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
383 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
384 		     u8 *num_branches, struct ice_sq_cd *cd)
385 {
386 	struct ice_aqc_get_topo *cmd;
387 	struct ice_aq_desc desc;
388 	int status;
389 
390 	cmd = &desc.params.get_topo;
391 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
392 	cmd->port_num = lport;
393 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
394 	if (!status && num_branches)
395 		*num_branches = cmd->num_branches;
396 
397 	return status;
398 }
399 
400 /**
401  * ice_aq_add_sched_elems - adds scheduling element
402  * @hw: pointer to the HW struct
403  * @grps_req: the number of groups that are requested to be added
404  * @buf: pointer to buffer
405  * @buf_size: buffer size in bytes
406  * @grps_added: returns total number of groups added
407  * @cd: pointer to command details structure or NULL
408  *
409  * Add scheduling elements (0x0401)
410  */
411 static int
412 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
413 		       struct ice_aqc_add_elem *buf, u16 buf_size,
414 		       u16 *grps_added, struct ice_sq_cd *cd)
415 {
416 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
417 					   grps_req, (void *)buf, buf_size,
418 					   grps_added, cd);
419 }
420 
421 /**
422  * ice_aq_cfg_sched_elems - configures scheduler elements
423  * @hw: pointer to the HW struct
424  * @elems_req: number of elements to configure
425  * @buf: pointer to buffer
426  * @buf_size: buffer size in bytes
427  * @elems_cfgd: returns total number of elements configured
428  * @cd: pointer to command details structure or NULL
429  *
430  * Configure scheduling elements (0x0403)
431  */
432 static int
433 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
434 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
435 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
436 {
437 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
438 					   elems_req, (void *)buf, buf_size,
439 					   elems_cfgd, cd);
440 }
441 
442 /**
443  * ice_aq_move_sched_elems - move scheduler elements
444  * @hw: pointer to the HW struct
445  * @grps_req: number of groups to move
446  * @buf: pointer to buffer
447  * @buf_size: buffer size in bytes
448  * @grps_movd: returns total number of groups moved
449  * @cd: pointer to command details structure or NULL
450  *
451  * Move scheduling elements (0x0408)
452  */
453 static int
454 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
455 			struct ice_aqc_move_elem *buf, u16 buf_size,
456 			u16 *grps_movd, struct ice_sq_cd *cd)
457 {
458 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
459 					   grps_req, (void *)buf, buf_size,
460 					   grps_movd, cd);
461 }
462 
463 /**
464  * ice_aq_suspend_sched_elems - suspend scheduler elements
465  * @hw: pointer to the HW struct
466  * @elems_req: number of elements to suspend
467  * @buf: pointer to buffer
468  * @buf_size: buffer size in bytes
469  * @elems_ret: returns total number of elements suspended
470  * @cd: pointer to command details structure or NULL
471  *
472  * Suspend scheduling elements (0x0409)
473  */
474 static int
475 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
476 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
477 {
478 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
479 					   elems_req, (void *)buf, buf_size,
480 					   elems_ret, cd);
481 }
482 
483 /**
484  * ice_aq_resume_sched_elems - resume scheduler elements
485  * @hw: pointer to the HW struct
486  * @elems_req: number of elements to resume
487  * @buf: pointer to buffer
488  * @buf_size: buffer size in bytes
489  * @elems_ret: returns total number of elements resumed
490  * @cd: pointer to command details structure or NULL
491  *
492  * resume scheduling elements (0x040A)
493  */
494 static int
495 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
496 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
497 {
498 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
499 					   elems_req, (void *)buf, buf_size,
500 					   elems_ret, cd);
501 }
502 
503 /**
504  * ice_aq_query_sched_res - query scheduler resource
505  * @hw: pointer to the HW struct
506  * @buf_size: buffer size in bytes
507  * @buf: pointer to buffer
508  * @cd: pointer to command details structure or NULL
509  *
510  * Query scheduler resource allocation (0x0412)
511  */
512 static int
513 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
514 		       struct ice_aqc_query_txsched_res_resp *buf,
515 		       struct ice_sq_cd *cd)
516 {
517 	struct ice_aq_desc desc;
518 
519 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
520 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
521 }
522 
523 /**
524  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
525  * @hw: pointer to the HW struct
526  * @num_nodes: number of nodes
527  * @node_teids: array of node teids to be suspended or resumed
528  * @suspend: true means suspend / false means resume
529  *
530  * This function suspends or resumes HW nodes
531  */
532 static int
533 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
534 			       bool suspend)
535 {
536 	u16 i, buf_size, num_elem_ret = 0;
537 	__le32 *buf;
538 	int status;
539 
540 	buf_size = sizeof(*buf) * num_nodes;
541 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
542 	if (!buf)
543 		return -ENOMEM;
544 
545 	for (i = 0; i < num_nodes; i++)
546 		buf[i] = cpu_to_le32(node_teids[i]);
547 
548 	if (suspend)
549 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
550 						    buf_size, &num_elem_ret,
551 						    NULL);
552 	else
553 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
554 						   buf_size, &num_elem_ret,
555 						   NULL);
556 	if (status || num_elem_ret != num_nodes)
557 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
558 
559 	devm_kfree(ice_hw_to_dev(hw), buf);
560 	return status;
561 }
562 
563 /**
564  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
565  * @hw: pointer to the HW struct
566  * @vsi_handle: VSI handle
567  * @tc: TC number
568  * @new_numqs: number of queues
569  */
570 static int
571 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
572 {
573 	struct ice_vsi_ctx *vsi_ctx;
574 	struct ice_q_ctx *q_ctx;
575 
576 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
577 	if (!vsi_ctx)
578 		return -EINVAL;
579 	/* allocate LAN queue contexts */
580 	if (!vsi_ctx->lan_q_ctx[tc]) {
581 		vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
582 						      new_numqs,
583 						      sizeof(*q_ctx),
584 						      GFP_KERNEL);
585 		if (!vsi_ctx->lan_q_ctx[tc])
586 			return -ENOMEM;
587 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
588 		return 0;
589 	}
590 	/* num queues are increased, update the queue contexts */
591 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
592 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
593 
594 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
595 				     sizeof(*q_ctx), GFP_KERNEL);
596 		if (!q_ctx)
597 			return -ENOMEM;
598 		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
599 		       prev_num * sizeof(*q_ctx));
600 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
601 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
602 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
603 	}
604 	return 0;
605 }
606 
607 /**
608  * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
609  * @hw: pointer to the HW struct
610  * @vsi_handle: VSI handle
611  * @tc: TC number
612  * @new_numqs: number of queues
613  */
614 static int
615 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
616 {
617 	struct ice_vsi_ctx *vsi_ctx;
618 	struct ice_q_ctx *q_ctx;
619 
620 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
621 	if (!vsi_ctx)
622 		return -EINVAL;
623 	/* allocate RDMA queue contexts */
624 	if (!vsi_ctx->rdma_q_ctx[tc]) {
625 		vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
626 						       new_numqs,
627 						       sizeof(*q_ctx),
628 						       GFP_KERNEL);
629 		if (!vsi_ctx->rdma_q_ctx[tc])
630 			return -ENOMEM;
631 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
632 		return 0;
633 	}
634 	/* num queues are increased, update the queue contexts */
635 	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
636 		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
637 
638 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
639 				     sizeof(*q_ctx), GFP_KERNEL);
640 		if (!q_ctx)
641 			return -ENOMEM;
642 		memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
643 		       prev_num * sizeof(*q_ctx));
644 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
645 		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
646 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
647 	}
648 	return 0;
649 }
650 
651 /**
652  * ice_aq_rl_profile - performs a rate limiting task
653  * @hw: pointer to the HW struct
654  * @opcode: opcode for add, query, or remove profile(s)
655  * @num_profiles: the number of profiles
656  * @buf: pointer to buffer
657  * @buf_size: buffer size in bytes
658  * @num_processed: number of processed add or remove profile(s) to return
659  * @cd: pointer to command details structure
660  *
661  * RL profile function to add, query, or remove profile(s)
662  */
663 static int
664 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
665 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
666 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
667 {
668 	struct ice_aqc_rl_profile *cmd;
669 	struct ice_aq_desc desc;
670 	int status;
671 
672 	cmd = &desc.params.rl_profile;
673 
674 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
675 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
676 	cmd->num_profiles = cpu_to_le16(num_profiles);
677 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
678 	if (!status && num_processed)
679 		*num_processed = le16_to_cpu(cmd->num_processed);
680 	return status;
681 }
682 
683 /**
684  * ice_aq_add_rl_profile - adds rate limiting profile(s)
685  * @hw: pointer to the HW struct
686  * @num_profiles: the number of profile(s) to be add
687  * @buf: pointer to buffer
688  * @buf_size: buffer size in bytes
689  * @num_profiles_added: total number of profiles added to return
690  * @cd: pointer to command details structure
691  *
692  * Add RL profile (0x0410)
693  */
694 static int
695 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
696 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
697 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
698 {
699 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
700 				 buf, buf_size, num_profiles_added, cd);
701 }
702 
703 /**
704  * ice_aq_remove_rl_profile - removes RL profile(s)
705  * @hw: pointer to the HW struct
706  * @num_profiles: the number of profile(s) to remove
707  * @buf: pointer to buffer
708  * @buf_size: buffer size in bytes
709  * @num_profiles_removed: total number of profiles removed to return
710  * @cd: pointer to command details structure or NULL
711  *
712  * Remove RL profile (0x0415)
713  */
714 static int
715 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
716 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
717 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
718 {
719 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
720 				 num_profiles, buf, buf_size,
721 				 num_profiles_removed, cd);
722 }
723 
724 /**
725  * ice_sched_del_rl_profile - remove RL profile
726  * @hw: pointer to the HW struct
727  * @rl_info: rate limit profile information
728  *
729  * If the profile ID is not referenced anymore, it removes profile ID with
730  * its associated parameters from HW DB,and locally. The caller needs to
731  * hold scheduler lock.
732  */
733 static int
734 ice_sched_del_rl_profile(struct ice_hw *hw,
735 			 struct ice_aqc_rl_profile_info *rl_info)
736 {
737 	struct ice_aqc_rl_profile_elem *buf;
738 	u16 num_profiles_removed;
739 	u16 num_profiles = 1;
740 	int status;
741 
742 	if (rl_info->prof_id_ref != 0)
743 		return -EBUSY;
744 
745 	/* Safe to remove profile ID */
746 	buf = &rl_info->profile;
747 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
748 					  &num_profiles_removed, NULL);
749 	if (status || num_profiles_removed != num_profiles)
750 		return -EIO;
751 
752 	/* Delete stale entry now */
753 	list_del(&rl_info->list_entry);
754 	devm_kfree(ice_hw_to_dev(hw), rl_info);
755 	return status;
756 }
757 
758 /**
759  * ice_sched_clear_rl_prof - clears RL prof entries
760  * @pi: port information structure
761  *
762  * This function removes all RL profile from HW as well as from SW DB.
763  */
764 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
765 {
766 	u16 ln;
767 
768 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
769 		struct ice_aqc_rl_profile_info *rl_prof_elem;
770 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
771 
772 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
773 					 &pi->rl_prof_list[ln], list_entry) {
774 			struct ice_hw *hw = pi->hw;
775 			int status;
776 
777 			rl_prof_elem->prof_id_ref = 0;
778 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
779 			if (status) {
780 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
781 				/* On error, free mem required */
782 				list_del(&rl_prof_elem->list_entry);
783 				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
784 			}
785 		}
786 	}
787 }
788 
789 /**
790  * ice_sched_clear_agg - clears the aggregator related information
791  * @hw: pointer to the hardware structure
792  *
793  * This function removes aggregator list and free up aggregator related memory
794  * previously allocated.
795  */
796 void ice_sched_clear_agg(struct ice_hw *hw)
797 {
798 	struct ice_sched_agg_info *agg_info;
799 	struct ice_sched_agg_info *atmp;
800 
801 	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
802 		struct ice_sched_agg_vsi_info *agg_vsi_info;
803 		struct ice_sched_agg_vsi_info *vtmp;
804 
805 		list_for_each_entry_safe(agg_vsi_info, vtmp,
806 					 &agg_info->agg_vsi_list, list_entry) {
807 			list_del(&agg_vsi_info->list_entry);
808 			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
809 		}
810 		list_del(&agg_info->list_entry);
811 		devm_kfree(ice_hw_to_dev(hw), agg_info);
812 	}
813 }
814 
815 /**
816  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
817  * @pi: port information structure
818  *
819  * This function removes all the nodes from HW as well as from SW DB.
820  */
821 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
822 {
823 	if (!pi)
824 		return;
825 	/* remove RL profiles related lists */
826 	ice_sched_clear_rl_prof(pi);
827 	if (pi->root) {
828 		ice_free_sched_node(pi, pi->root);
829 		pi->root = NULL;
830 	}
831 }
832 
833 /**
834  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
835  * @pi: port information structure
836  *
837  * Cleanup scheduling elements from SW DB
838  */
839 void ice_sched_clear_port(struct ice_port_info *pi)
840 {
841 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
842 		return;
843 
844 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
845 	mutex_lock(&pi->sched_lock);
846 	ice_sched_clear_tx_topo(pi);
847 	mutex_unlock(&pi->sched_lock);
848 	mutex_destroy(&pi->sched_lock);
849 }
850 
851 /**
852  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
853  * @hw: pointer to the HW struct
854  *
855  * Cleanup scheduling elements from SW DB for all the ports
856  */
857 void ice_sched_cleanup_all(struct ice_hw *hw)
858 {
859 	if (!hw)
860 		return;
861 
862 	if (hw->layer_info) {
863 		devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
864 		hw->layer_info = NULL;
865 	}
866 
867 	ice_sched_clear_port(hw->port_info);
868 
869 	hw->num_tx_sched_layers = 0;
870 	hw->num_tx_sched_phys_layers = 0;
871 	hw->flattened_layers = 0;
872 	hw->max_cgds = 0;
873 }
874 
875 /**
876  * ice_sched_add_elems - add nodes to HW and SW DB
877  * @pi: port information structure
878  * @tc_node: pointer to the branch node
879  * @parent: pointer to the parent node
880  * @layer: layer number to add nodes
881  * @num_nodes: number of nodes
882  * @num_nodes_added: pointer to num nodes added
883  * @first_node_teid: if new nodes are added then return the TEID of first node
884  * @prealloc_nodes: preallocated nodes struct for software DB
885  *
886  * This function add nodes to HW as well as to SW DB for a given layer
887  */
888 int
889 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
890 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
891 		    u16 *num_nodes_added, u32 *first_node_teid,
892 		    struct ice_sched_node **prealloc_nodes)
893 {
894 	struct ice_sched_node *prev, *new_node;
895 	struct ice_aqc_add_elem *buf;
896 	u16 i, num_groups_added = 0;
897 	struct ice_hw *hw = pi->hw;
898 	size_t buf_size;
899 	int status = 0;
900 	u32 teid;
901 
902 	buf_size = struct_size(buf, generic, num_nodes);
903 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
904 	if (!buf)
905 		return -ENOMEM;
906 
907 	buf->hdr.parent_teid = parent->info.node_teid;
908 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
909 	for (i = 0; i < num_nodes; i++) {
910 		buf->generic[i].parent_teid = parent->info.node_teid;
911 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
912 		buf->generic[i].data.valid_sections =
913 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
914 			ICE_AQC_ELEM_VALID_EIR;
915 		buf->generic[i].data.generic = 0;
916 		buf->generic[i].data.cir_bw.bw_profile_idx =
917 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
918 		buf->generic[i].data.cir_bw.bw_alloc =
919 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
920 		buf->generic[i].data.eir_bw.bw_profile_idx =
921 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
922 		buf->generic[i].data.eir_bw.bw_alloc =
923 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
924 	}
925 
926 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
927 					&num_groups_added, NULL);
928 	if (status || num_groups_added != 1) {
929 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
930 			  hw->adminq.sq_last_status);
931 		devm_kfree(ice_hw_to_dev(hw), buf);
932 		return -EIO;
933 	}
934 
935 	*num_nodes_added = num_nodes;
936 	/* add nodes to the SW DB */
937 	for (i = 0; i < num_nodes; i++) {
938 		if (prealloc_nodes)
939 			status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
940 		else
941 			status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
942 
943 		if (status) {
944 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
945 				  status);
946 			break;
947 		}
948 
949 		teid = le32_to_cpu(buf->generic[i].node_teid);
950 		new_node = ice_sched_find_node_by_teid(parent, teid);
951 		if (!new_node) {
952 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
953 			break;
954 		}
955 
956 		new_node->sibling = NULL;
957 		new_node->tc_num = tc_node->tc_num;
958 		new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
959 		new_node->tx_share = ICE_SCHED_DFLT_BW;
960 		new_node->tx_max = ICE_SCHED_DFLT_BW;
961 		new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
962 		if (!new_node->name)
963 			return -ENOMEM;
964 
965 		status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
966 				  GFP_KERNEL);
967 		if (status) {
968 			ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
969 				  status);
970 			break;
971 		}
972 
973 		snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
974 
975 		/* add it to previous node sibling pointer */
976 		/* Note: siblings are not linked across branches */
977 		prev = ice_sched_get_first_node(pi, tc_node, layer);
978 		if (prev && prev != new_node) {
979 			while (prev->sibling)
980 				prev = prev->sibling;
981 			prev->sibling = new_node;
982 		}
983 
984 		/* initialize the sibling head */
985 		if (!pi->sib_head[tc_node->tc_num][layer])
986 			pi->sib_head[tc_node->tc_num][layer] = new_node;
987 
988 		if (i == 0)
989 			*first_node_teid = teid;
990 	}
991 
992 	devm_kfree(ice_hw_to_dev(hw), buf);
993 	return status;
994 }
995 
996 /**
997  * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
998  * @pi: port information structure
999  * @tc_node: pointer to TC node
1000  * @parent: pointer to parent node
1001  * @layer: layer number to add nodes
1002  * @num_nodes: number of nodes to be added
1003  * @first_node_teid: pointer to the first node TEID
1004  * @num_nodes_added: pointer to number of nodes added
1005  *
1006  * Add nodes into specific HW layer.
1007  */
1008 static int
1009 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1010 				struct ice_sched_node *tc_node,
1011 				struct ice_sched_node *parent, u8 layer,
1012 				u16 num_nodes, u32 *first_node_teid,
1013 				u16 *num_nodes_added)
1014 {
1015 	u16 max_child_nodes;
1016 
1017 	*num_nodes_added = 0;
1018 
1019 	if (!num_nodes)
1020 		return 0;
1021 
1022 	if (!parent || layer < pi->hw->sw_entry_point_layer)
1023 		return -EINVAL;
1024 
1025 	/* max children per node per layer */
1026 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1027 
1028 	/* current number of children + required nodes exceed max children */
1029 	if ((parent->num_children + num_nodes) > max_child_nodes) {
1030 		/* Fail if the parent is a TC node */
1031 		if (parent == tc_node)
1032 			return -EIO;
1033 		return -ENOSPC;
1034 	}
1035 
1036 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1037 				   num_nodes_added, first_node_teid, NULL);
1038 }
1039 
1040 /**
1041  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1042  * @pi: port information structure
1043  * @tc_node: pointer to TC node
1044  * @parent: pointer to parent node
1045  * @layer: layer number to add nodes
1046  * @num_nodes: number of nodes to be added
1047  * @first_node_teid: pointer to the first node TEID
1048  * @num_nodes_added: pointer to number of nodes added
1049  *
1050  * This function add nodes to a given layer.
1051  */
1052 static int
1053 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1054 			     struct ice_sched_node *tc_node,
1055 			     struct ice_sched_node *parent, u8 layer,
1056 			     u16 num_nodes, u32 *first_node_teid,
1057 			     u16 *num_nodes_added)
1058 {
1059 	u32 *first_teid_ptr = first_node_teid;
1060 	u16 new_num_nodes = num_nodes;
1061 	int status = 0;
1062 
1063 	*num_nodes_added = 0;
1064 	while (*num_nodes_added < num_nodes) {
1065 		u16 max_child_nodes, num_added = 0;
1066 		/* cppcheck-suppress unusedVariable */
1067 		u32 temp;
1068 
1069 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1070 							 layer,	new_num_nodes,
1071 							 first_teid_ptr,
1072 							 &num_added);
1073 		if (!status)
1074 			*num_nodes_added += num_added;
1075 		/* added more nodes than requested ? */
1076 		if (*num_nodes_added > num_nodes) {
1077 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1078 				  *num_nodes_added);
1079 			status = -EIO;
1080 			break;
1081 		}
1082 		/* break if all the nodes are added successfully */
1083 		if (!status && (*num_nodes_added == num_nodes))
1084 			break;
1085 		/* break if the error is not max limit */
1086 		if (status && status != -ENOSPC)
1087 			break;
1088 		/* Exceeded the max children */
1089 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1090 		/* utilize all the spaces if the parent is not full */
1091 		if (parent->num_children < max_child_nodes) {
1092 			new_num_nodes = max_child_nodes - parent->num_children;
1093 		} else {
1094 			/* This parent is full, try the next sibling */
1095 			parent = parent->sibling;
1096 			/* Don't modify the first node TEID memory if the
1097 			 * first node was added already in the above call.
1098 			 * Instead send some temp memory for all other
1099 			 * recursive calls.
1100 			 */
1101 			if (num_added)
1102 				first_teid_ptr = &temp;
1103 
1104 			new_num_nodes = num_nodes - *num_nodes_added;
1105 		}
1106 	}
1107 	return status;
1108 }
1109 
1110 /**
1111  * ice_sched_get_qgrp_layer - get the current queue group layer number
1112  * @hw: pointer to the HW struct
1113  *
1114  * This function returns the current queue group layer number
1115  */
1116 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1117 {
1118 	/* It's always total layers - 1, the array is 0 relative so -2 */
1119 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1120 }
1121 
1122 /**
1123  * ice_sched_get_vsi_layer - get the current VSI layer number
1124  * @hw: pointer to the HW struct
1125  *
1126  * This function returns the current VSI layer number
1127  */
1128 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1129 {
1130 	/* Num Layers       VSI layer
1131 	 *     9               6
1132 	 *     7               4
1133 	 *     5 or less       sw_entry_point_layer
1134 	 */
1135 	/* calculate the VSI layer based on number of layers. */
1136 	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1137 		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1138 
1139 		if (layer > hw->sw_entry_point_layer)
1140 			return layer;
1141 	}
1142 	return hw->sw_entry_point_layer;
1143 }
1144 
1145 /**
1146  * ice_sched_get_agg_layer - get the current aggregator layer number
1147  * @hw: pointer to the HW struct
1148  *
1149  * This function returns the current aggregator layer number
1150  */
1151 static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1152 {
1153 	/* Num Layers       aggregator layer
1154 	 *     9               4
1155 	 *     7 or less       sw_entry_point_layer
1156 	 */
1157 	/* calculate the aggregator layer based on number of layers. */
1158 	if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1159 		u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1160 
1161 		if (layer > hw->sw_entry_point_layer)
1162 			return layer;
1163 	}
1164 	return hw->sw_entry_point_layer;
1165 }
1166 
1167 /**
1168  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1169  * @pi: port information structure
1170  *
1171  * This function removes the leaf node that was created by the FW
1172  * during initialization
1173  */
1174 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1175 {
1176 	struct ice_sched_node *node;
1177 
1178 	node = pi->root;
1179 	while (node) {
1180 		if (!node->num_children)
1181 			break;
1182 		node = node->children[0];
1183 	}
1184 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1185 		u32 teid = le32_to_cpu(node->info.node_teid);
1186 		int status;
1187 
1188 		/* remove the default leaf node */
1189 		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1190 		if (!status)
1191 			ice_free_sched_node(pi, node);
1192 	}
1193 }
1194 
1195 /**
1196  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1197  * @pi: port information structure
1198  *
1199  * This function frees all the nodes except root and TC that were created by
1200  * the FW during initialization
1201  */
1202 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1203 {
1204 	struct ice_sched_node *node;
1205 
1206 	ice_rm_dflt_leaf_node(pi);
1207 
1208 	/* remove the default nodes except TC and root nodes */
1209 	node = pi->root;
1210 	while (node) {
1211 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1212 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1213 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1214 			ice_free_sched_node(pi, node);
1215 			break;
1216 		}
1217 
1218 		if (!node->num_children)
1219 			break;
1220 		node = node->children[0];
1221 	}
1222 }
1223 
1224 /**
1225  * ice_sched_init_port - Initialize scheduler by querying information from FW
1226  * @pi: port info structure for the tree to cleanup
1227  *
1228  * This function is the initial call to find the total number of Tx scheduler
1229  * resources, default topology created by firmware and storing the information
1230  * in SW DB.
1231  */
1232 int ice_sched_init_port(struct ice_port_info *pi)
1233 {
1234 	struct ice_aqc_get_topo_elem *buf;
1235 	struct ice_hw *hw;
1236 	u8 num_branches;
1237 	u16 num_elems;
1238 	int status;
1239 	u8 i, j;
1240 
1241 	if (!pi)
1242 		return -EINVAL;
1243 	hw = pi->hw;
1244 
1245 	/* Query the Default Topology from FW */
1246 	buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1247 	if (!buf)
1248 		return -ENOMEM;
1249 
1250 	/* Query default scheduling tree topology */
1251 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1252 				      &num_branches, NULL);
1253 	if (status)
1254 		goto err_init_port;
1255 
1256 	/* num_branches should be between 1-8 */
1257 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1258 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1259 			  num_branches);
1260 		status = -EINVAL;
1261 		goto err_init_port;
1262 	}
1263 
1264 	/* get the number of elements on the default/first branch */
1265 	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1266 
1267 	/* num_elems should always be between 1-9 */
1268 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1269 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1270 			  num_elems);
1271 		status = -EINVAL;
1272 		goto err_init_port;
1273 	}
1274 
1275 	/* If the last node is a leaf node then the index of the queue group
1276 	 * layer is two less than the number of elements.
1277 	 */
1278 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1279 	    ICE_AQC_ELEM_TYPE_LEAF)
1280 		pi->last_node_teid =
1281 			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1282 	else
1283 		pi->last_node_teid =
1284 			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1285 
1286 	/* Insert the Tx Sched root node */
1287 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1288 	if (status)
1289 		goto err_init_port;
1290 
1291 	/* Parse the default tree and cache the information */
1292 	for (i = 0; i < num_branches; i++) {
1293 		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1294 
1295 		/* Skip root element as already inserted */
1296 		for (j = 1; j < num_elems; j++) {
1297 			/* update the sw entry point */
1298 			if (buf[0].generic[j].data.elem_type ==
1299 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1300 				hw->sw_entry_point_layer = j;
1301 
1302 			status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1303 			if (status)
1304 				goto err_init_port;
1305 		}
1306 	}
1307 
1308 	/* Remove the default nodes. */
1309 	if (pi->root)
1310 		ice_sched_rm_dflt_nodes(pi);
1311 
1312 	/* initialize the port for handling the scheduler tree */
1313 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1314 	mutex_init(&pi->sched_lock);
1315 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1316 		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1317 
1318 err_init_port:
1319 	if (status && pi->root) {
1320 		ice_free_sched_node(pi, pi->root);
1321 		pi->root = NULL;
1322 	}
1323 
1324 	kfree(buf);
1325 	return status;
1326 }
1327 
1328 /**
1329  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1330  * @hw: pointer to the HW struct
1331  *
1332  * query FW for allocated scheduler resources and store in HW struct
1333  */
1334 int ice_sched_query_res_alloc(struct ice_hw *hw)
1335 {
1336 	struct ice_aqc_query_txsched_res_resp *buf;
1337 	__le16 max_sibl;
1338 	int status = 0;
1339 	u16 i;
1340 
1341 	if (hw->layer_info)
1342 		return status;
1343 
1344 	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1345 	if (!buf)
1346 		return -ENOMEM;
1347 
1348 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1349 	if (status)
1350 		goto sched_query_out;
1351 
1352 	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1353 	hw->num_tx_sched_phys_layers =
1354 		le16_to_cpu(buf->sched_props.phys_levels);
1355 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1356 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1357 
1358 	/* max sibling group size of current layer refers to the max children
1359 	 * of the below layer node.
1360 	 * layer 1 node max children will be layer 2 max sibling group size
1361 	 * layer 2 node max children will be layer 3 max sibling group size
1362 	 * and so on. This array will be populated from root (index 0) to
1363 	 * qgroup layer 7. Leaf node has no children.
1364 	 */
1365 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1366 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1367 		hw->max_children[i] = le16_to_cpu(max_sibl);
1368 	}
1369 
1370 	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1371 				      (hw->num_tx_sched_layers *
1372 				       sizeof(*hw->layer_info)),
1373 				      GFP_KERNEL);
1374 	if (!hw->layer_info) {
1375 		status = -ENOMEM;
1376 		goto sched_query_out;
1377 	}
1378 
1379 sched_query_out:
1380 	devm_kfree(ice_hw_to_dev(hw), buf);
1381 	return status;
1382 }
1383 
1384 /**
1385  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1386  * @hw: pointer to the HW struct
1387  *
1388  * Determine the PSM clock frequency and store in HW struct
1389  */
1390 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1391 {
1392 	u32 val, clk_src;
1393 
1394 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1395 	clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1396 		GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1397 
1398 #define PSM_CLK_SRC_367_MHZ 0x0
1399 #define PSM_CLK_SRC_416_MHZ 0x1
1400 #define PSM_CLK_SRC_446_MHZ 0x2
1401 #define PSM_CLK_SRC_390_MHZ 0x3
1402 
1403 	switch (clk_src) {
1404 	case PSM_CLK_SRC_367_MHZ:
1405 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1406 		break;
1407 	case PSM_CLK_SRC_416_MHZ:
1408 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1409 		break;
1410 	case PSM_CLK_SRC_446_MHZ:
1411 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1412 		break;
1413 	case PSM_CLK_SRC_390_MHZ:
1414 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1415 		break;
1416 	default:
1417 		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1418 			  clk_src);
1419 		/* fall back to a safe default */
1420 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1421 	}
1422 }
1423 
1424 /**
1425  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1426  * @hw: pointer to the HW struct
1427  * @base: pointer to the base node
1428  * @node: pointer to the node to search
1429  *
1430  * This function checks whether a given node is part of the base node
1431  * subtree or not
1432  */
1433 static bool
1434 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1435 			       struct ice_sched_node *node)
1436 {
1437 	u8 i;
1438 
1439 	for (i = 0; i < base->num_children; i++) {
1440 		struct ice_sched_node *child = base->children[i];
1441 
1442 		if (node == child)
1443 			return true;
1444 
1445 		if (child->tx_sched_layer > node->tx_sched_layer)
1446 			return false;
1447 
1448 		/* this recursion is intentional, and wouldn't
1449 		 * go more than 8 calls
1450 		 */
1451 		if (ice_sched_find_node_in_subtree(hw, child, node))
1452 			return true;
1453 	}
1454 	return false;
1455 }
1456 
1457 /**
1458  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1459  * @pi: port information structure
1460  * @vsi_node: software VSI handle
1461  * @qgrp_node: first queue group node identified for scanning
1462  * @owner: LAN or RDMA
1463  *
1464  * This function retrieves a free LAN or RDMA queue group node by scanning
1465  * qgrp_node and its siblings for the queue group with the fewest number
1466  * of queues currently assigned.
1467  */
1468 static struct ice_sched_node *
1469 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1470 			struct ice_sched_node *vsi_node,
1471 			struct ice_sched_node *qgrp_node, u8 owner)
1472 {
1473 	struct ice_sched_node *min_qgrp;
1474 	u8 min_children;
1475 
1476 	if (!qgrp_node)
1477 		return qgrp_node;
1478 	min_children = qgrp_node->num_children;
1479 	if (!min_children)
1480 		return qgrp_node;
1481 	min_qgrp = qgrp_node;
1482 	/* scan all queue groups until find a node which has less than the
1483 	 * minimum number of children. This way all queue group nodes get
1484 	 * equal number of shares and active. The bandwidth will be equally
1485 	 * distributed across all queues.
1486 	 */
1487 	while (qgrp_node) {
1488 		/* make sure the qgroup node is part of the VSI subtree */
1489 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1490 			if (qgrp_node->num_children < min_children &&
1491 			    qgrp_node->owner == owner) {
1492 				/* replace the new min queue group node */
1493 				min_qgrp = qgrp_node;
1494 				min_children = min_qgrp->num_children;
1495 				/* break if it has no children, */
1496 				if (!min_children)
1497 					break;
1498 			}
1499 		qgrp_node = qgrp_node->sibling;
1500 	}
1501 	return min_qgrp;
1502 }
1503 
1504 /**
1505  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1506  * @pi: port information structure
1507  * @vsi_handle: software VSI handle
1508  * @tc: branch number
1509  * @owner: LAN or RDMA
1510  *
1511  * This function retrieves a free LAN or RDMA queue group node
1512  */
1513 struct ice_sched_node *
1514 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1515 			   u8 owner)
1516 {
1517 	struct ice_sched_node *vsi_node, *qgrp_node;
1518 	struct ice_vsi_ctx *vsi_ctx;
1519 	u16 max_children;
1520 	u8 qgrp_layer;
1521 
1522 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1523 	max_children = pi->hw->max_children[qgrp_layer];
1524 
1525 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1526 	if (!vsi_ctx)
1527 		return NULL;
1528 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1529 	/* validate invalid VSI ID */
1530 	if (!vsi_node)
1531 		return NULL;
1532 
1533 	/* get the first queue group node from VSI sub-tree */
1534 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1535 	while (qgrp_node) {
1536 		/* make sure the qgroup node is part of the VSI subtree */
1537 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1538 			if (qgrp_node->num_children < max_children &&
1539 			    qgrp_node->owner == owner)
1540 				break;
1541 		qgrp_node = qgrp_node->sibling;
1542 	}
1543 
1544 	/* Select the best queue group */
1545 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1546 }
1547 
1548 /**
1549  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1550  * @pi: pointer to the port information structure
1551  * @tc_node: pointer to the TC node
1552  * @vsi_handle: software VSI handle
1553  *
1554  * This function retrieves a VSI node for a given VSI ID from a given
1555  * TC branch
1556  */
1557 static struct ice_sched_node *
1558 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1559 		       u16 vsi_handle)
1560 {
1561 	struct ice_sched_node *node;
1562 	u8 vsi_layer;
1563 
1564 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1565 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1566 
1567 	/* Check whether it already exists */
1568 	while (node) {
1569 		if (node->vsi_handle == vsi_handle)
1570 			return node;
1571 		node = node->sibling;
1572 	}
1573 
1574 	return node;
1575 }
1576 
1577 /**
1578  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1579  * @pi: pointer to the port information structure
1580  * @tc_node: pointer to the TC node
1581  * @agg_id: aggregator ID
1582  *
1583  * This function retrieves an aggregator node for a given aggregator ID from
1584  * a given TC branch
1585  */
1586 static struct ice_sched_node *
1587 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1588 		       u32 agg_id)
1589 {
1590 	struct ice_sched_node *node;
1591 	struct ice_hw *hw = pi->hw;
1592 	u8 agg_layer;
1593 
1594 	if (!hw)
1595 		return NULL;
1596 	agg_layer = ice_sched_get_agg_layer(hw);
1597 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1598 
1599 	/* Check whether it already exists */
1600 	while (node) {
1601 		if (node->agg_id == agg_id)
1602 			return node;
1603 		node = node->sibling;
1604 	}
1605 
1606 	return node;
1607 }
1608 
1609 /**
1610  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1611  * @hw: pointer to the HW struct
1612  * @num_qs: number of queues
1613  * @num_nodes: num nodes array
1614  *
1615  * This function calculates the number of VSI child nodes based on the
1616  * number of queues.
1617  */
1618 static void
1619 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1620 {
1621 	u16 num = num_qs;
1622 	u8 i, qgl, vsil;
1623 
1624 	qgl = ice_sched_get_qgrp_layer(hw);
1625 	vsil = ice_sched_get_vsi_layer(hw);
1626 
1627 	/* calculate num nodes from queue group to VSI layer */
1628 	for (i = qgl; i > vsil; i--) {
1629 		/* round to the next integer if there is a remainder */
1630 		num = DIV_ROUND_UP(num, hw->max_children[i]);
1631 
1632 		/* need at least one node */
1633 		num_nodes[i] = num ? num : 1;
1634 	}
1635 }
1636 
1637 /**
1638  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1639  * @pi: port information structure
1640  * @vsi_handle: software VSI handle
1641  * @tc_node: pointer to the TC node
1642  * @num_nodes: pointer to the num nodes that needs to be added per layer
1643  * @owner: node owner (LAN or RDMA)
1644  *
1645  * This function adds the VSI child nodes to tree. It gets called for
1646  * LAN and RDMA separately.
1647  */
1648 static int
1649 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1650 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1651 			      u8 owner)
1652 {
1653 	struct ice_sched_node *parent, *node;
1654 	struct ice_hw *hw = pi->hw;
1655 	u32 first_node_teid;
1656 	u16 num_added = 0;
1657 	u8 i, qgl, vsil;
1658 	int status;
1659 
1660 	qgl = ice_sched_get_qgrp_layer(hw);
1661 	vsil = ice_sched_get_vsi_layer(hw);
1662 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1663 	for (i = vsil + 1; i <= qgl; i++) {
1664 		if (!parent)
1665 			return -EIO;
1666 
1667 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1668 						      num_nodes[i],
1669 						      &first_node_teid,
1670 						      &num_added);
1671 		if (status || num_nodes[i] != num_added)
1672 			return -EIO;
1673 
1674 		/* The newly added node can be a new parent for the next
1675 		 * layer nodes
1676 		 */
1677 		if (num_added) {
1678 			parent = ice_sched_find_node_by_teid(tc_node,
1679 							     first_node_teid);
1680 			node = parent;
1681 			while (node) {
1682 				node->owner = owner;
1683 				node = node->sibling;
1684 			}
1685 		} else {
1686 			parent = parent->children[0];
1687 		}
1688 	}
1689 
1690 	return 0;
1691 }
1692 
1693 /**
1694  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1695  * @pi: pointer to the port info structure
1696  * @tc_node: pointer to TC node
1697  * @num_nodes: pointer to num nodes array
1698  *
1699  * This function calculates the number of supported nodes needed to add this
1700  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1701  * layers
1702  */
1703 static void
1704 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1705 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1706 {
1707 	struct ice_sched_node *node;
1708 	u8 vsil;
1709 	int i;
1710 
1711 	vsil = ice_sched_get_vsi_layer(pi->hw);
1712 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1713 		/* Add intermediate nodes if TC has no children and
1714 		 * need at least one node for VSI
1715 		 */
1716 		if (!tc_node->num_children || i == vsil) {
1717 			num_nodes[i]++;
1718 		} else {
1719 			/* If intermediate nodes are reached max children
1720 			 * then add a new one.
1721 			 */
1722 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1723 			/* scan all the siblings */
1724 			while (node) {
1725 				if (node->num_children < pi->hw->max_children[i])
1726 					break;
1727 				node = node->sibling;
1728 			}
1729 
1730 			/* tree has one intermediate node to add this new VSI.
1731 			 * So no need to calculate supported nodes for below
1732 			 * layers.
1733 			 */
1734 			if (node)
1735 				break;
1736 			/* all the nodes are full, allocate a new one */
1737 			num_nodes[i]++;
1738 		}
1739 }
1740 
1741 /**
1742  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1743  * @pi: port information structure
1744  * @vsi_handle: software VSI handle
1745  * @tc_node: pointer to TC node
1746  * @num_nodes: pointer to num nodes array
1747  *
1748  * This function adds the VSI supported nodes into Tx tree including the
1749  * VSI, its parent and intermediate nodes in below layers
1750  */
1751 static int
1752 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1753 				struct ice_sched_node *tc_node, u16 *num_nodes)
1754 {
1755 	struct ice_sched_node *parent = tc_node;
1756 	u32 first_node_teid;
1757 	u16 num_added = 0;
1758 	u8 i, vsil;
1759 	int status;
1760 
1761 	if (!pi)
1762 		return -EINVAL;
1763 
1764 	vsil = ice_sched_get_vsi_layer(pi->hw);
1765 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1766 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1767 						      i, num_nodes[i],
1768 						      &first_node_teid,
1769 						      &num_added);
1770 		if (status || num_nodes[i] != num_added)
1771 			return -EIO;
1772 
1773 		/* The newly added node can be a new parent for the next
1774 		 * layer nodes
1775 		 */
1776 		if (num_added)
1777 			parent = ice_sched_find_node_by_teid(tc_node,
1778 							     first_node_teid);
1779 		else
1780 			parent = parent->children[0];
1781 
1782 		if (!parent)
1783 			return -EIO;
1784 
1785 		if (i == vsil)
1786 			parent->vsi_handle = vsi_handle;
1787 	}
1788 
1789 	return 0;
1790 }
1791 
1792 /**
1793  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1794  * @pi: port information structure
1795  * @vsi_handle: software VSI handle
1796  * @tc: TC number
1797  *
1798  * This function adds a new VSI into scheduler tree
1799  */
1800 static int
1801 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1802 {
1803 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1804 	struct ice_sched_node *tc_node;
1805 
1806 	tc_node = ice_sched_get_tc_node(pi, tc);
1807 	if (!tc_node)
1808 		return -EINVAL;
1809 
1810 	/* calculate number of supported nodes needed for this VSI */
1811 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1812 
1813 	/* add VSI supported nodes to TC subtree */
1814 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1815 					       num_nodes);
1816 }
1817 
1818 /**
1819  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1820  * @pi: port information structure
1821  * @vsi_handle: software VSI handle
1822  * @tc: TC number
1823  * @new_numqs: new number of max queues
1824  * @owner: owner of this subtree
1825  *
1826  * This function updates the VSI child nodes based on the number of queues
1827  */
1828 static int
1829 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1830 				 u8 tc, u16 new_numqs, u8 owner)
1831 {
1832 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1833 	struct ice_sched_node *vsi_node;
1834 	struct ice_sched_node *tc_node;
1835 	struct ice_vsi_ctx *vsi_ctx;
1836 	struct ice_hw *hw = pi->hw;
1837 	u16 prev_numqs;
1838 	int status = 0;
1839 
1840 	tc_node = ice_sched_get_tc_node(pi, tc);
1841 	if (!tc_node)
1842 		return -EIO;
1843 
1844 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1845 	if (!vsi_node)
1846 		return -EIO;
1847 
1848 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1849 	if (!vsi_ctx)
1850 		return -EINVAL;
1851 
1852 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1853 		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1854 	else
1855 		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1856 	/* num queues are not changed or less than the previous number */
1857 	if (new_numqs <= prev_numqs)
1858 		return status;
1859 	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1860 		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1861 		if (status)
1862 			return status;
1863 	} else {
1864 		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1865 		if (status)
1866 			return status;
1867 	}
1868 
1869 	if (new_numqs)
1870 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1871 	/* Keep the max number of queue configuration all the time. Update the
1872 	 * tree only if number of queues > previous number of queues. This may
1873 	 * leave some extra nodes in the tree if number of queues < previous
1874 	 * number but that wouldn't harm anything. Removing those extra nodes
1875 	 * may complicate the code if those nodes are part of SRL or
1876 	 * individually rate limited.
1877 	 */
1878 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1879 					       new_num_nodes, owner);
1880 	if (status)
1881 		return status;
1882 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1883 		vsi_ctx->sched.max_lanq[tc] = new_numqs;
1884 	else
1885 		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1886 
1887 	return 0;
1888 }
1889 
1890 /**
1891  * ice_sched_cfg_vsi - configure the new/existing VSI
1892  * @pi: port information structure
1893  * @vsi_handle: software VSI handle
1894  * @tc: TC number
1895  * @maxqs: max number of queues
1896  * @owner: LAN or RDMA
1897  * @enable: TC enabled or disabled
1898  *
1899  * This function adds/updates VSI nodes based on the number of queues. If TC is
1900  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1901  * disabled then suspend the VSI if it is not already.
1902  */
1903 int
1904 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1905 		  u8 owner, bool enable)
1906 {
1907 	struct ice_sched_node *vsi_node, *tc_node;
1908 	struct ice_vsi_ctx *vsi_ctx;
1909 	struct ice_hw *hw = pi->hw;
1910 	int status = 0;
1911 
1912 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1913 	tc_node = ice_sched_get_tc_node(pi, tc);
1914 	if (!tc_node)
1915 		return -EINVAL;
1916 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1917 	if (!vsi_ctx)
1918 		return -EINVAL;
1919 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1920 
1921 	/* suspend the VSI if TC is not enabled */
1922 	if (!enable) {
1923 		if (vsi_node && vsi_node->in_use) {
1924 			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1925 
1926 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1927 								true);
1928 			if (!status)
1929 				vsi_node->in_use = false;
1930 		}
1931 		return status;
1932 	}
1933 
1934 	/* TC is enabled, if it is a new VSI then add it to the tree */
1935 	if (!vsi_node) {
1936 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1937 		if (status)
1938 			return status;
1939 
1940 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1941 		if (!vsi_node)
1942 			return -EIO;
1943 
1944 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1945 		vsi_node->in_use = true;
1946 		/* invalidate the max queues whenever VSI gets added first time
1947 		 * into the scheduler tree (boot or after reset). We need to
1948 		 * recreate the child nodes all the time in these cases.
1949 		 */
1950 		vsi_ctx->sched.max_lanq[tc] = 0;
1951 		vsi_ctx->sched.max_rdmaq[tc] = 0;
1952 	}
1953 
1954 	/* update the VSI child nodes */
1955 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1956 						  owner);
1957 	if (status)
1958 		return status;
1959 
1960 	/* TC is enabled, resume the VSI if it is in the suspend state */
1961 	if (!vsi_node->in_use) {
1962 		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1963 
1964 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1965 		if (!status)
1966 			vsi_node->in_use = true;
1967 	}
1968 
1969 	return status;
1970 }
1971 
1972 /**
1973  * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1974  * @pi: port information structure
1975  * @vsi_handle: software VSI handle
1976  *
1977  * This function removes single aggregator VSI info entry from
1978  * aggregator list.
1979  */
1980 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1981 {
1982 	struct ice_sched_agg_info *agg_info;
1983 	struct ice_sched_agg_info *atmp;
1984 
1985 	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1986 				 list_entry) {
1987 		struct ice_sched_agg_vsi_info *agg_vsi_info;
1988 		struct ice_sched_agg_vsi_info *vtmp;
1989 
1990 		list_for_each_entry_safe(agg_vsi_info, vtmp,
1991 					 &agg_info->agg_vsi_list, list_entry)
1992 			if (agg_vsi_info->vsi_handle == vsi_handle) {
1993 				list_del(&agg_vsi_info->list_entry);
1994 				devm_kfree(ice_hw_to_dev(pi->hw),
1995 					   agg_vsi_info);
1996 				return;
1997 			}
1998 	}
1999 }
2000 
2001 /**
2002  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2003  * @node: pointer to the sub-tree node
2004  *
2005  * This function checks for a leaf node presence in a given sub-tree node.
2006  */
2007 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2008 {
2009 	u8 i;
2010 
2011 	for (i = 0; i < node->num_children; i++)
2012 		if (ice_sched_is_leaf_node_present(node->children[i]))
2013 			return true;
2014 	/* check for a leaf node */
2015 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2016 }
2017 
2018 /**
2019  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2020  * @pi: port information structure
2021  * @vsi_handle: software VSI handle
2022  * @owner: LAN or RDMA
2023  *
2024  * This function removes the VSI and its LAN or RDMA children nodes from the
2025  * scheduler tree.
2026  */
2027 static int
2028 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2029 {
2030 	struct ice_vsi_ctx *vsi_ctx;
2031 	int status = -EINVAL;
2032 	u8 i;
2033 
2034 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2035 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2036 		return status;
2037 	mutex_lock(&pi->sched_lock);
2038 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2039 	if (!vsi_ctx)
2040 		goto exit_sched_rm_vsi_cfg;
2041 
2042 	ice_for_each_traffic_class(i) {
2043 		struct ice_sched_node *vsi_node, *tc_node;
2044 		u8 j = 0;
2045 
2046 		tc_node = ice_sched_get_tc_node(pi, i);
2047 		if (!tc_node)
2048 			continue;
2049 
2050 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2051 		if (!vsi_node)
2052 			continue;
2053 
2054 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2055 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2056 			status = -EBUSY;
2057 			goto exit_sched_rm_vsi_cfg;
2058 		}
2059 		while (j < vsi_node->num_children) {
2060 			if (vsi_node->children[j]->owner == owner) {
2061 				ice_free_sched_node(pi, vsi_node->children[j]);
2062 
2063 				/* reset the counter again since the num
2064 				 * children will be updated after node removal
2065 				 */
2066 				j = 0;
2067 			} else {
2068 				j++;
2069 			}
2070 		}
2071 		/* remove the VSI if it has no children */
2072 		if (!vsi_node->num_children) {
2073 			ice_free_sched_node(pi, vsi_node);
2074 			vsi_ctx->sched.vsi_node[i] = NULL;
2075 
2076 			/* clean up aggregator related VSI info if any */
2077 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2078 		}
2079 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2080 			vsi_ctx->sched.max_lanq[i] = 0;
2081 		else
2082 			vsi_ctx->sched.max_rdmaq[i] = 0;
2083 	}
2084 	status = 0;
2085 
2086 exit_sched_rm_vsi_cfg:
2087 	mutex_unlock(&pi->sched_lock);
2088 	return status;
2089 }
2090 
2091 /**
2092  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2093  * @pi: port information structure
2094  * @vsi_handle: software VSI handle
2095  *
2096  * This function clears the VSI and its LAN children nodes from scheduler tree
2097  * for all TCs.
2098  */
2099 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2100 {
2101 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2102 }
2103 
2104 /**
2105  * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2106  * @pi: port information structure
2107  * @vsi_handle: software VSI handle
2108  *
2109  * This function clears the VSI and its RDMA children nodes from scheduler tree
2110  * for all TCs.
2111  */
2112 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2113 {
2114 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2115 }
2116 
2117 /**
2118  * ice_get_agg_info - get the aggregator ID
2119  * @hw: pointer to the hardware structure
2120  * @agg_id: aggregator ID
2121  *
2122  * This function validates aggregator ID. The function returns info if
2123  * aggregator ID is present in list otherwise it returns null.
2124  */
2125 static struct ice_sched_agg_info *
2126 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2127 {
2128 	struct ice_sched_agg_info *agg_info;
2129 
2130 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2131 		if (agg_info->agg_id == agg_id)
2132 			return agg_info;
2133 
2134 	return NULL;
2135 }
2136 
2137 /**
2138  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2139  * @hw: pointer to the HW struct
2140  * @node: pointer to a child node
2141  * @num_nodes: num nodes count array
2142  *
2143  * This function walks through the aggregator subtree to find a free parent
2144  * node
2145  */
2146 static struct ice_sched_node *
2147 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2148 			      u16 *num_nodes)
2149 {
2150 	u8 l = node->tx_sched_layer;
2151 	u8 vsil, i;
2152 
2153 	vsil = ice_sched_get_vsi_layer(hw);
2154 
2155 	/* Is it VSI parent layer ? */
2156 	if (l == vsil - 1)
2157 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2158 
2159 	/* We have intermediate nodes. Let's walk through the subtree. If the
2160 	 * intermediate node has space to add a new node then clear the count
2161 	 */
2162 	if (node->num_children < hw->max_children[l])
2163 		num_nodes[l] = 0;
2164 	/* The below recursive call is intentional and wouldn't go more than
2165 	 * 2 or 3 iterations.
2166 	 */
2167 
2168 	for (i = 0; i < node->num_children; i++) {
2169 		struct ice_sched_node *parent;
2170 
2171 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2172 						       num_nodes);
2173 		if (parent)
2174 			return parent;
2175 	}
2176 
2177 	return NULL;
2178 }
2179 
2180 /**
2181  * ice_sched_update_parent - update the new parent in SW DB
2182  * @new_parent: pointer to a new parent node
2183  * @node: pointer to a child node
2184  *
2185  * This function removes the child from the old parent and adds it to a new
2186  * parent
2187  */
2188 void
2189 ice_sched_update_parent(struct ice_sched_node *new_parent,
2190 			struct ice_sched_node *node)
2191 {
2192 	struct ice_sched_node *old_parent;
2193 	u8 i, j;
2194 
2195 	old_parent = node->parent;
2196 
2197 	/* update the old parent children */
2198 	for (i = 0; i < old_parent->num_children; i++)
2199 		if (old_parent->children[i] == node) {
2200 			for (j = i + 1; j < old_parent->num_children; j++)
2201 				old_parent->children[j - 1] =
2202 					old_parent->children[j];
2203 			old_parent->num_children--;
2204 			break;
2205 		}
2206 
2207 	/* now move the node to a new parent */
2208 	new_parent->children[new_parent->num_children++] = node;
2209 	node->parent = new_parent;
2210 	node->info.parent_teid = new_parent->info.node_teid;
2211 }
2212 
2213 /**
2214  * ice_sched_move_nodes - move child nodes to a given parent
2215  * @pi: port information structure
2216  * @parent: pointer to parent node
2217  * @num_items: number of child nodes to be moved
2218  * @list: pointer to child node teids
2219  *
2220  * This function move the child nodes to a given parent.
2221  */
2222 int
2223 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2224 		     u16 num_items, u32 *list)
2225 {
2226 	struct ice_aqc_move_elem *buf;
2227 	struct ice_sched_node *node;
2228 	u16 i, grps_movd = 0;
2229 	struct ice_hw *hw;
2230 	int status = 0;
2231 	u16 buf_len;
2232 
2233 	hw = pi->hw;
2234 
2235 	if (!parent || !num_items)
2236 		return -EINVAL;
2237 
2238 	/* Does parent have enough space */
2239 	if (parent->num_children + num_items >
2240 	    hw->max_children[parent->tx_sched_layer])
2241 		return -ENOSPC;
2242 
2243 	buf_len = struct_size(buf, teid, 1);
2244 	buf = kzalloc(buf_len, GFP_KERNEL);
2245 	if (!buf)
2246 		return -ENOMEM;
2247 
2248 	for (i = 0; i < num_items; i++) {
2249 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2250 		if (!node) {
2251 			status = -EINVAL;
2252 			goto move_err_exit;
2253 		}
2254 
2255 		buf->hdr.src_parent_teid = node->info.parent_teid;
2256 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2257 		buf->teid[0] = node->info.node_teid;
2258 		buf->hdr.num_elems = cpu_to_le16(1);
2259 		status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2260 						 &grps_movd, NULL);
2261 		if (status && grps_movd != 1) {
2262 			status = -EIO;
2263 			goto move_err_exit;
2264 		}
2265 
2266 		/* update the SW DB */
2267 		ice_sched_update_parent(parent, node);
2268 	}
2269 
2270 move_err_exit:
2271 	kfree(buf);
2272 	return status;
2273 }
2274 
2275 /**
2276  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2277  * @pi: port information structure
2278  * @vsi_handle: software VSI handle
2279  * @agg_id: aggregator ID
2280  * @tc: TC number
2281  *
2282  * This function moves a VSI to an aggregator node or its subtree.
2283  * Intermediate nodes may be created if required.
2284  */
2285 static int
2286 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2287 			  u8 tc)
2288 {
2289 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2290 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2291 	u32 first_node_teid, vsi_teid;
2292 	u16 num_nodes_added;
2293 	u8 aggl, vsil, i;
2294 	int status;
2295 
2296 	tc_node = ice_sched_get_tc_node(pi, tc);
2297 	if (!tc_node)
2298 		return -EIO;
2299 
2300 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2301 	if (!agg_node)
2302 		return -ENOENT;
2303 
2304 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2305 	if (!vsi_node)
2306 		return -ENOENT;
2307 
2308 	/* Is this VSI already part of given aggregator? */
2309 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2310 		return 0;
2311 
2312 	aggl = ice_sched_get_agg_layer(pi->hw);
2313 	vsil = ice_sched_get_vsi_layer(pi->hw);
2314 
2315 	/* set intermediate node count to 1 between aggregator and VSI layers */
2316 	for (i = aggl + 1; i < vsil; i++)
2317 		num_nodes[i] = 1;
2318 
2319 	/* Check if the aggregator subtree has any free node to add the VSI */
2320 	for (i = 0; i < agg_node->num_children; i++) {
2321 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2322 						       agg_node->children[i],
2323 						       num_nodes);
2324 		if (parent)
2325 			goto move_nodes;
2326 	}
2327 
2328 	/* add new nodes */
2329 	parent = agg_node;
2330 	for (i = aggl + 1; i < vsil; i++) {
2331 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2332 						      num_nodes[i],
2333 						      &first_node_teid,
2334 						      &num_nodes_added);
2335 		if (status || num_nodes[i] != num_nodes_added)
2336 			return -EIO;
2337 
2338 		/* The newly added node can be a new parent for the next
2339 		 * layer nodes
2340 		 */
2341 		if (num_nodes_added)
2342 			parent = ice_sched_find_node_by_teid(tc_node,
2343 							     first_node_teid);
2344 		else
2345 			parent = parent->children[0];
2346 
2347 		if (!parent)
2348 			return -EIO;
2349 	}
2350 
2351 move_nodes:
2352 	vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2353 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2354 }
2355 
2356 /**
2357  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2358  * @pi: port information structure
2359  * @agg_info: aggregator info
2360  * @tc: traffic class number
2361  * @rm_vsi_info: true or false
2362  *
2363  * This function move all the VSI(s) to the default aggregator and delete
2364  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2365  * caller holds the scheduler lock.
2366  */
2367 static int
2368 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2369 			     struct ice_sched_agg_info *agg_info, u8 tc,
2370 			     bool rm_vsi_info)
2371 {
2372 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2373 	struct ice_sched_agg_vsi_info *tmp;
2374 	int status = 0;
2375 
2376 	list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2377 				 list_entry) {
2378 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2379 
2380 		/* Move VSI to default aggregator */
2381 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2382 			continue;
2383 
2384 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2385 						   ICE_DFLT_AGG_ID, tc);
2386 		if (status)
2387 			break;
2388 
2389 		clear_bit(tc, agg_vsi_info->tc_bitmap);
2390 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2391 			list_del(&agg_vsi_info->list_entry);
2392 			devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2393 		}
2394 	}
2395 
2396 	return status;
2397 }
2398 
2399 /**
2400  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2401  * @pi: port information structure
2402  * @node: node pointer
2403  *
2404  * This function checks whether the aggregator is attached with any VSI or not.
2405  */
2406 static bool
2407 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2408 {
2409 	u8 vsil, i;
2410 
2411 	vsil = ice_sched_get_vsi_layer(pi->hw);
2412 	if (node->tx_sched_layer < vsil - 1) {
2413 		for (i = 0; i < node->num_children; i++)
2414 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2415 				return true;
2416 		return false;
2417 	} else {
2418 		return node->num_children ? true : false;
2419 	}
2420 }
2421 
2422 /**
2423  * ice_sched_rm_agg_cfg - remove the aggregator node
2424  * @pi: port information structure
2425  * @agg_id: aggregator ID
2426  * @tc: TC number
2427  *
2428  * This function removes the aggregator node and intermediate nodes if any
2429  * from the given TC
2430  */
2431 static int
2432 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2433 {
2434 	struct ice_sched_node *tc_node, *agg_node;
2435 	struct ice_hw *hw = pi->hw;
2436 
2437 	tc_node = ice_sched_get_tc_node(pi, tc);
2438 	if (!tc_node)
2439 		return -EIO;
2440 
2441 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2442 	if (!agg_node)
2443 		return -ENOENT;
2444 
2445 	/* Can't remove the aggregator node if it has children */
2446 	if (ice_sched_is_agg_inuse(pi, agg_node))
2447 		return -EBUSY;
2448 
2449 	/* need to remove the whole subtree if aggregator node is the
2450 	 * only child.
2451 	 */
2452 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2453 		struct ice_sched_node *parent = agg_node->parent;
2454 
2455 		if (!parent)
2456 			return -EIO;
2457 
2458 		if (parent->num_children > 1)
2459 			break;
2460 
2461 		agg_node = parent;
2462 	}
2463 
2464 	ice_free_sched_node(pi, agg_node);
2465 	return 0;
2466 }
2467 
2468 /**
2469  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2470  * @pi: port information structure
2471  * @agg_info: aggregator ID
2472  * @tc: TC number
2473  * @rm_vsi_info: bool value true or false
2474  *
2475  * This function removes aggregator reference to VSI of given TC. It removes
2476  * the aggregator configuration completely for requested TC. The caller needs
2477  * to hold the scheduler lock.
2478  */
2479 static int
2480 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2481 		  u8 tc, bool rm_vsi_info)
2482 {
2483 	int status = 0;
2484 
2485 	/* If nothing to remove - return success */
2486 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2487 		goto exit_rm_agg_cfg_tc;
2488 
2489 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2490 	if (status)
2491 		goto exit_rm_agg_cfg_tc;
2492 
2493 	/* Delete aggregator node(s) */
2494 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2495 	if (status)
2496 		goto exit_rm_agg_cfg_tc;
2497 
2498 	clear_bit(tc, agg_info->tc_bitmap);
2499 exit_rm_agg_cfg_tc:
2500 	return status;
2501 }
2502 
2503 /**
2504  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2505  * @pi: port information structure
2506  * @agg_id: aggregator ID
2507  * @tc_bitmap: 8 bits TC bitmap
2508  *
2509  * Save aggregator TC bitmap. This function needs to be called with scheduler
2510  * lock held.
2511  */
2512 static int
2513 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2514 		       unsigned long *tc_bitmap)
2515 {
2516 	struct ice_sched_agg_info *agg_info;
2517 
2518 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2519 	if (!agg_info)
2520 		return -EINVAL;
2521 	bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2522 		    ICE_MAX_TRAFFIC_CLASS);
2523 	return 0;
2524 }
2525 
2526 /**
2527  * ice_sched_add_agg_cfg - create an aggregator node
2528  * @pi: port information structure
2529  * @agg_id: aggregator ID
2530  * @tc: TC number
2531  *
2532  * This function creates an aggregator node and intermediate nodes if required
2533  * for the given TC
2534  */
2535 static int
2536 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2537 {
2538 	struct ice_sched_node *parent, *agg_node, *tc_node;
2539 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2540 	struct ice_hw *hw = pi->hw;
2541 	u32 first_node_teid;
2542 	u16 num_nodes_added;
2543 	int status = 0;
2544 	u8 i, aggl;
2545 
2546 	tc_node = ice_sched_get_tc_node(pi, tc);
2547 	if (!tc_node)
2548 		return -EIO;
2549 
2550 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2551 	/* Does Agg node already exist ? */
2552 	if (agg_node)
2553 		return status;
2554 
2555 	aggl = ice_sched_get_agg_layer(hw);
2556 
2557 	/* need one node in Agg layer */
2558 	num_nodes[aggl] = 1;
2559 
2560 	/* Check whether the intermediate nodes have space to add the
2561 	 * new aggregator. If they are full, then SW needs to allocate a new
2562 	 * intermediate node on those layers
2563 	 */
2564 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2565 		parent = ice_sched_get_first_node(pi, tc_node, i);
2566 
2567 		/* scan all the siblings */
2568 		while (parent) {
2569 			if (parent->num_children < hw->max_children[i])
2570 				break;
2571 			parent = parent->sibling;
2572 		}
2573 
2574 		/* all the nodes are full, reserve one for this layer */
2575 		if (!parent)
2576 			num_nodes[i]++;
2577 	}
2578 
2579 	/* add the aggregator node */
2580 	parent = tc_node;
2581 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2582 		if (!parent)
2583 			return -EIO;
2584 
2585 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2586 						      num_nodes[i],
2587 						      &first_node_teid,
2588 						      &num_nodes_added);
2589 		if (status || num_nodes[i] != num_nodes_added)
2590 			return -EIO;
2591 
2592 		/* The newly added node can be a new parent for the next
2593 		 * layer nodes
2594 		 */
2595 		if (num_nodes_added) {
2596 			parent = ice_sched_find_node_by_teid(tc_node,
2597 							     first_node_teid);
2598 			/* register aggregator ID with the aggregator node */
2599 			if (parent && i == aggl)
2600 				parent->agg_id = agg_id;
2601 		} else {
2602 			parent = parent->children[0];
2603 		}
2604 	}
2605 
2606 	return 0;
2607 }
2608 
2609 /**
2610  * ice_sched_cfg_agg - configure aggregator node
2611  * @pi: port information structure
2612  * @agg_id: aggregator ID
2613  * @agg_type: aggregator type queue, VSI, or aggregator group
2614  * @tc_bitmap: bits TC bitmap
2615  *
2616  * It registers a unique aggregator node into scheduler services. It
2617  * allows a user to register with a unique ID to track it's resources.
2618  * The aggregator type determines if this is a queue group, VSI group
2619  * or aggregator group. It then creates the aggregator node(s) for requested
2620  * TC(s) or removes an existing aggregator node including its configuration
2621  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2622  * resources and remove aggregator ID.
2623  * This function needs to be called with scheduler lock held.
2624  */
2625 static int
2626 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2627 		  enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2628 {
2629 	struct ice_sched_agg_info *agg_info;
2630 	struct ice_hw *hw = pi->hw;
2631 	int status = 0;
2632 	u8 tc;
2633 
2634 	agg_info = ice_get_agg_info(hw, agg_id);
2635 	if (!agg_info) {
2636 		/* Create new entry for new aggregator ID */
2637 		agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2638 					GFP_KERNEL);
2639 		if (!agg_info)
2640 			return -ENOMEM;
2641 
2642 		agg_info->agg_id = agg_id;
2643 		agg_info->agg_type = agg_type;
2644 		agg_info->tc_bitmap[0] = 0;
2645 
2646 		/* Initialize the aggregator VSI list head */
2647 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2648 
2649 		/* Add new entry in aggregator list */
2650 		list_add(&agg_info->list_entry, &hw->agg_list);
2651 	}
2652 	/* Create aggregator node(s) for requested TC(s) */
2653 	ice_for_each_traffic_class(tc) {
2654 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2655 			/* Delete aggregator cfg TC if it exists previously */
2656 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2657 			if (status)
2658 				break;
2659 			continue;
2660 		}
2661 
2662 		/* Check if aggregator node for TC already exists */
2663 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2664 			continue;
2665 
2666 		/* Create new aggregator node for TC */
2667 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2668 		if (status)
2669 			break;
2670 
2671 		/* Save aggregator node's TC information */
2672 		set_bit(tc, agg_info->tc_bitmap);
2673 	}
2674 
2675 	return status;
2676 }
2677 
2678 /**
2679  * ice_cfg_agg - config aggregator node
2680  * @pi: port information structure
2681  * @agg_id: aggregator ID
2682  * @agg_type: aggregator type queue, VSI, or aggregator group
2683  * @tc_bitmap: bits TC bitmap
2684  *
2685  * This function configures aggregator node(s).
2686  */
2687 int
2688 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2689 	    u8 tc_bitmap)
2690 {
2691 	unsigned long bitmap = tc_bitmap;
2692 	int status;
2693 
2694 	mutex_lock(&pi->sched_lock);
2695 	status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2696 	if (!status)
2697 		status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2698 	mutex_unlock(&pi->sched_lock);
2699 	return status;
2700 }
2701 
2702 /**
2703  * ice_get_agg_vsi_info - get the aggregator ID
2704  * @agg_info: aggregator info
2705  * @vsi_handle: software VSI handle
2706  *
2707  * The function returns aggregator VSI info based on VSI handle. This function
2708  * needs to be called with scheduler lock held.
2709  */
2710 static struct ice_sched_agg_vsi_info *
2711 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2712 {
2713 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2714 
2715 	list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2716 		if (agg_vsi_info->vsi_handle == vsi_handle)
2717 			return agg_vsi_info;
2718 
2719 	return NULL;
2720 }
2721 
2722 /**
2723  * ice_get_vsi_agg_info - get the aggregator info of VSI
2724  * @hw: pointer to the hardware structure
2725  * @vsi_handle: Sw VSI handle
2726  *
2727  * The function returns aggregator info of VSI represented via vsi_handle. The
2728  * VSI has in this case a different aggregator than the default one. This
2729  * function needs to be called with scheduler lock held.
2730  */
2731 static struct ice_sched_agg_info *
2732 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2733 {
2734 	struct ice_sched_agg_info *agg_info;
2735 
2736 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2737 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2738 
2739 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2740 		if (agg_vsi_info)
2741 			return agg_info;
2742 	}
2743 	return NULL;
2744 }
2745 
2746 /**
2747  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2748  * @pi: port information structure
2749  * @agg_id: aggregator ID
2750  * @vsi_handle: software VSI handle
2751  * @tc_bitmap: TC bitmap of enabled TC(s)
2752  *
2753  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2754  * lock held.
2755  */
2756 static int
2757 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2758 			   unsigned long *tc_bitmap)
2759 {
2760 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2761 	struct ice_sched_agg_info *agg_info;
2762 
2763 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2764 	if (!agg_info)
2765 		return -EINVAL;
2766 	/* check if entry already exist */
2767 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2768 	if (!agg_vsi_info)
2769 		return -EINVAL;
2770 	bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2771 		    ICE_MAX_TRAFFIC_CLASS);
2772 	return 0;
2773 }
2774 
2775 /**
2776  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2777  * @pi: port information structure
2778  * @agg_id: aggregator ID
2779  * @vsi_handle: software VSI handle
2780  * @tc_bitmap: TC bitmap of enabled TC(s)
2781  *
2782  * This function moves VSI to a new or default aggregator node. If VSI is
2783  * already associated to the aggregator node then no operation is performed on
2784  * the tree. This function needs to be called with scheduler lock held.
2785  */
2786 static int
2787 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2788 			   u16 vsi_handle, unsigned long *tc_bitmap)
2789 {
2790 	struct ice_sched_agg_vsi_info *agg_vsi_info, *old_agg_vsi_info = NULL;
2791 	struct ice_sched_agg_info *agg_info, *old_agg_info;
2792 	struct ice_hw *hw = pi->hw;
2793 	int status = 0;
2794 	u8 tc;
2795 
2796 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2797 		return -EINVAL;
2798 	agg_info = ice_get_agg_info(hw, agg_id);
2799 	if (!agg_info)
2800 		return -EINVAL;
2801 	/* If the VSI is already part of another aggregator then update
2802 	 * its VSI info list
2803 	 */
2804 	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2805 	if (old_agg_info && old_agg_info != agg_info) {
2806 		struct ice_sched_agg_vsi_info *vtmp;
2807 
2808 		list_for_each_entry_safe(old_agg_vsi_info, vtmp,
2809 					 &old_agg_info->agg_vsi_list,
2810 					 list_entry)
2811 			if (old_agg_vsi_info->vsi_handle == vsi_handle)
2812 				break;
2813 	}
2814 
2815 	/* check if entry already exist */
2816 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2817 	if (!agg_vsi_info) {
2818 		/* Create new entry for VSI under aggregator list */
2819 		agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2820 					    sizeof(*agg_vsi_info), GFP_KERNEL);
2821 		if (!agg_vsi_info)
2822 			return -EINVAL;
2823 
2824 		/* add VSI ID into the aggregator list */
2825 		agg_vsi_info->vsi_handle = vsi_handle;
2826 		list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2827 	}
2828 	/* Move VSI node to new aggregator node for requested TC(s) */
2829 	ice_for_each_traffic_class(tc) {
2830 		if (!ice_is_tc_ena(*tc_bitmap, tc))
2831 			continue;
2832 
2833 		/* Move VSI to new aggregator */
2834 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2835 		if (status)
2836 			break;
2837 
2838 		set_bit(tc, agg_vsi_info->tc_bitmap);
2839 		if (old_agg_vsi_info)
2840 			clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2841 	}
2842 	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2843 		list_del(&old_agg_vsi_info->list_entry);
2844 		devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2845 	}
2846 	return status;
2847 }
2848 
2849 /**
2850  * ice_sched_rm_unused_rl_prof - remove unused RL profile
2851  * @pi: port information structure
2852  *
2853  * This function removes unused rate limit profiles from the HW and
2854  * SW DB. The caller needs to hold scheduler lock.
2855  */
2856 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2857 {
2858 	u16 ln;
2859 
2860 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2861 		struct ice_aqc_rl_profile_info *rl_prof_elem;
2862 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2863 
2864 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2865 					 &pi->rl_prof_list[ln], list_entry) {
2866 			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2867 				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2868 		}
2869 	}
2870 }
2871 
2872 /**
2873  * ice_sched_update_elem - update element
2874  * @hw: pointer to the HW struct
2875  * @node: pointer to node
2876  * @info: node info to update
2877  *
2878  * Update the HW DB, and local SW DB of node. Update the scheduling
2879  * parameters of node from argument info data buffer (Info->data buf) and
2880  * returns success or error on config sched element failure. The caller
2881  * needs to hold scheduler lock.
2882  */
2883 static int
2884 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2885 		      struct ice_aqc_txsched_elem_data *info)
2886 {
2887 	struct ice_aqc_txsched_elem_data buf;
2888 	u16 elem_cfgd = 0;
2889 	u16 num_elems = 1;
2890 	int status;
2891 
2892 	buf = *info;
2893 	/* Parent TEID is reserved field in this aq call */
2894 	buf.parent_teid = 0;
2895 	/* Element type is reserved field in this aq call */
2896 	buf.data.elem_type = 0;
2897 	/* Flags is reserved field in this aq call */
2898 	buf.data.flags = 0;
2899 
2900 	/* Update HW DB */
2901 	/* Configure element node */
2902 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2903 					&elem_cfgd, NULL);
2904 	if (status || elem_cfgd != num_elems) {
2905 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2906 		return -EIO;
2907 	}
2908 
2909 	/* Config success case */
2910 	/* Now update local SW DB */
2911 	/* Only copy the data portion of info buffer */
2912 	node->info.data = info->data;
2913 	return status;
2914 }
2915 
2916 /**
2917  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2918  * @hw: pointer to the HW struct
2919  * @node: sched node to configure
2920  * @rl_type: rate limit type CIR, EIR, or shared
2921  * @bw_alloc: BW weight/allocation
2922  *
2923  * This function configures node element's BW allocation.
2924  */
2925 static int
2926 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2927 			    enum ice_rl_type rl_type, u16 bw_alloc)
2928 {
2929 	struct ice_aqc_txsched_elem_data buf;
2930 	struct ice_aqc_txsched_elem *data;
2931 
2932 	buf = node->info;
2933 	data = &buf.data;
2934 	if (rl_type == ICE_MIN_BW) {
2935 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2936 		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2937 	} else if (rl_type == ICE_MAX_BW) {
2938 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2939 		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2940 	} else {
2941 		return -EINVAL;
2942 	}
2943 
2944 	/* Configure element */
2945 	return ice_sched_update_elem(hw, node, &buf);
2946 }
2947 
2948 /**
2949  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2950  * @pi: port information structure
2951  * @agg_id: aggregator ID
2952  * @vsi_handle: software VSI handle
2953  * @tc_bitmap: TC bitmap of enabled TC(s)
2954  *
2955  * Move or associate VSI to a new or default aggregator node.
2956  */
2957 int
2958 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2959 		    u8 tc_bitmap)
2960 {
2961 	unsigned long bitmap = tc_bitmap;
2962 	int status;
2963 
2964 	mutex_lock(&pi->sched_lock);
2965 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2966 					    (unsigned long *)&bitmap);
2967 	if (!status)
2968 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2969 						    (unsigned long *)&bitmap);
2970 	mutex_unlock(&pi->sched_lock);
2971 	return status;
2972 }
2973 
2974 /**
2975  * ice_set_clear_cir_bw - set or clear CIR BW
2976  * @bw_t_info: bandwidth type information structure
2977  * @bw: bandwidth in Kbps - Kilo bits per sec
2978  *
2979  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2980  */
2981 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2982 {
2983 	if (bw == ICE_SCHED_DFLT_BW) {
2984 		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2985 		bw_t_info->cir_bw.bw = 0;
2986 	} else {
2987 		/* Save type of BW information */
2988 		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2989 		bw_t_info->cir_bw.bw = bw;
2990 	}
2991 }
2992 
2993 /**
2994  * ice_set_clear_eir_bw - set or clear EIR BW
2995  * @bw_t_info: bandwidth type information structure
2996  * @bw: bandwidth in Kbps - Kilo bits per sec
2997  *
2998  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2999  */
3000 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3001 {
3002 	if (bw == ICE_SCHED_DFLT_BW) {
3003 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3004 		bw_t_info->eir_bw.bw = 0;
3005 	} else {
3006 		/* EIR BW and Shared BW profiles are mutually exclusive and
3007 		 * hence only one of them may be set for any given element.
3008 		 * First clear earlier saved shared BW information.
3009 		 */
3010 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3011 		bw_t_info->shared_bw = 0;
3012 		/* save EIR BW information */
3013 		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3014 		bw_t_info->eir_bw.bw = bw;
3015 	}
3016 }
3017 
3018 /**
3019  * ice_set_clear_shared_bw - set or clear shared BW
3020  * @bw_t_info: bandwidth type information structure
3021  * @bw: bandwidth in Kbps - Kilo bits per sec
3022  *
3023  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3024  */
3025 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3026 {
3027 	if (bw == ICE_SCHED_DFLT_BW) {
3028 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3029 		bw_t_info->shared_bw = 0;
3030 	} else {
3031 		/* EIR BW and Shared BW profiles are mutually exclusive and
3032 		 * hence only one of them may be set for any given element.
3033 		 * First clear earlier saved EIR BW information.
3034 		 */
3035 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3036 		bw_t_info->eir_bw.bw = 0;
3037 		/* save shared BW information */
3038 		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3039 		bw_t_info->shared_bw = bw;
3040 	}
3041 }
3042 
3043 /**
3044  * ice_sched_save_vsi_bw - save VSI node's BW information
3045  * @pi: port information structure
3046  * @vsi_handle: sw VSI handle
3047  * @tc: traffic class
3048  * @rl_type: rate limit type min, max, or shared
3049  * @bw: bandwidth in Kbps - Kilo bits per sec
3050  *
3051  * Save BW information of VSI type node for post replay use.
3052  */
3053 static int
3054 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3055 		      enum ice_rl_type rl_type, u32 bw)
3056 {
3057 	struct ice_vsi_ctx *vsi_ctx;
3058 
3059 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3060 		return -EINVAL;
3061 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3062 	if (!vsi_ctx)
3063 		return -EINVAL;
3064 	switch (rl_type) {
3065 	case ICE_MIN_BW:
3066 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3067 		break;
3068 	case ICE_MAX_BW:
3069 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3070 		break;
3071 	case ICE_SHARED_BW:
3072 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3073 		break;
3074 	default:
3075 		return -EINVAL;
3076 	}
3077 	return 0;
3078 }
3079 
3080 /**
3081  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3082  * @hw: pointer to the HW struct
3083  * @bw: bandwidth in Kbps
3084  *
3085  * This function calculates the wakeup parameter of RL profile.
3086  */
3087 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3088 {
3089 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3090 	s32 wakeup_f_int;
3091 	u16 wakeup = 0;
3092 
3093 	/* Get the wakeup integer value */
3094 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3095 	wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3096 	if (wakeup_int > 63) {
3097 		wakeup = (u16)((1 << 15) | wakeup_int);
3098 	} else {
3099 		/* Calculate fraction value up to 4 decimals
3100 		 * Convert Integer value to a constant multiplier
3101 		 */
3102 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3103 		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3104 					   hw->psm_clk_freq, bytes_per_sec);
3105 
3106 		/* Get Fraction value */
3107 		wakeup_f = wakeup_a - wakeup_b;
3108 
3109 		/* Round up the Fractional value via Ceil(Fractional value) */
3110 		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3111 			wakeup_f += 1;
3112 
3113 		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3114 					       ICE_RL_PROF_MULTIPLIER);
3115 		wakeup |= (u16)(wakeup_int << 9);
3116 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3117 	}
3118 
3119 	return wakeup;
3120 }
3121 
3122 /**
3123  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3124  * @hw: pointer to the HW struct
3125  * @bw: bandwidth in Kbps
3126  * @profile: profile parameters to return
3127  *
3128  * This function converts the BW to profile structure format.
3129  */
3130 static int
3131 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3132 			   struct ice_aqc_rl_profile_elem *profile)
3133 {
3134 	s64 bytes_per_sec, ts_rate, mv_tmp;
3135 	int status = -EINVAL;
3136 	bool found = false;
3137 	s32 encode = 0;
3138 	s64 mv = 0;
3139 	s32 i;
3140 
3141 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3142 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3143 		return status;
3144 
3145 	/* Bytes per second from Kbps */
3146 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3147 
3148 	/* encode is 6 bits but really useful are 5 bits */
3149 	for (i = 0; i < 64; i++) {
3150 		u64 pow_result = BIT_ULL(i);
3151 
3152 		ts_rate = div64_long((s64)hw->psm_clk_freq,
3153 				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3154 		if (ts_rate <= 0)
3155 			continue;
3156 
3157 		/* Multiplier value */
3158 		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3159 				    ts_rate);
3160 
3161 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3162 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3163 
3164 		/* First multiplier value greater than the given
3165 		 * accuracy bytes
3166 		 */
3167 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3168 			encode = i;
3169 			found = true;
3170 			break;
3171 		}
3172 	}
3173 	if (found) {
3174 		u16 wm;
3175 
3176 		wm = ice_sched_calc_wakeup(hw, bw);
3177 		profile->rl_multiply = cpu_to_le16(mv);
3178 		profile->wake_up_calc = cpu_to_le16(wm);
3179 		profile->rl_encode = cpu_to_le16(encode);
3180 		status = 0;
3181 	} else {
3182 		status = -ENOENT;
3183 	}
3184 
3185 	return status;
3186 }
3187 
3188 /**
3189  * ice_sched_add_rl_profile - add RL profile
3190  * @pi: port information structure
3191  * @rl_type: type of rate limit BW - min, max, or shared
3192  * @bw: bandwidth in Kbps - Kilo bits per sec
3193  * @layer_num: specifies in which layer to create profile
3194  *
3195  * This function first checks the existing list for corresponding BW
3196  * parameter. If it exists, it returns the associated profile otherwise
3197  * it creates a new rate limit profile for requested BW, and adds it to
3198  * the HW DB and local list. It returns the new profile or null on error.
3199  * The caller needs to hold the scheduler lock.
3200  */
3201 static struct ice_aqc_rl_profile_info *
3202 ice_sched_add_rl_profile(struct ice_port_info *pi,
3203 			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3204 {
3205 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3206 	u16 profiles_added = 0, num_profiles = 1;
3207 	struct ice_aqc_rl_profile_elem *buf;
3208 	struct ice_hw *hw;
3209 	u8 profile_type;
3210 	int status;
3211 
3212 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3213 		return NULL;
3214 	switch (rl_type) {
3215 	case ICE_MIN_BW:
3216 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3217 		break;
3218 	case ICE_MAX_BW:
3219 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3220 		break;
3221 	case ICE_SHARED_BW:
3222 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3223 		break;
3224 	default:
3225 		return NULL;
3226 	}
3227 
3228 	if (!pi)
3229 		return NULL;
3230 	hw = pi->hw;
3231 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3232 			    list_entry)
3233 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3234 		    profile_type && rl_prof_elem->bw == bw)
3235 			/* Return existing profile ID info */
3236 			return rl_prof_elem;
3237 
3238 	/* Create new profile ID */
3239 	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3240 				    GFP_KERNEL);
3241 
3242 	if (!rl_prof_elem)
3243 		return NULL;
3244 
3245 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3246 	if (status)
3247 		goto exit_add_rl_prof;
3248 
3249 	rl_prof_elem->bw = bw;
3250 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3251 	rl_prof_elem->profile.level = layer_num + 1;
3252 	rl_prof_elem->profile.flags = profile_type;
3253 	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3254 
3255 	/* Create new entry in HW DB */
3256 	buf = &rl_prof_elem->profile;
3257 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3258 				       &profiles_added, NULL);
3259 	if (status || profiles_added != num_profiles)
3260 		goto exit_add_rl_prof;
3261 
3262 	/* Good entry - add in the list */
3263 	rl_prof_elem->prof_id_ref = 0;
3264 	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3265 	return rl_prof_elem;
3266 
3267 exit_add_rl_prof:
3268 	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3269 	return NULL;
3270 }
3271 
3272 /**
3273  * ice_sched_cfg_node_bw_lmt - configure node sched params
3274  * @hw: pointer to the HW struct
3275  * @node: sched node to configure
3276  * @rl_type: rate limit type CIR, EIR, or shared
3277  * @rl_prof_id: rate limit profile ID
3278  *
3279  * This function configures node element's BW limit.
3280  */
3281 static int
3282 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3283 			  enum ice_rl_type rl_type, u16 rl_prof_id)
3284 {
3285 	struct ice_aqc_txsched_elem_data buf;
3286 	struct ice_aqc_txsched_elem *data;
3287 
3288 	buf = node->info;
3289 	data = &buf.data;
3290 	switch (rl_type) {
3291 	case ICE_MIN_BW:
3292 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3293 		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3294 		break;
3295 	case ICE_MAX_BW:
3296 		/* EIR BW and Shared BW profiles are mutually exclusive and
3297 		 * hence only one of them may be set for any given element
3298 		 */
3299 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3300 			return -EIO;
3301 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3302 		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3303 		break;
3304 	case ICE_SHARED_BW:
3305 		/* Check for removing shared BW */
3306 		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3307 			/* remove shared profile */
3308 			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3309 			data->srl_id = 0; /* clear SRL field */
3310 
3311 			/* enable back EIR to default profile */
3312 			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3313 			data->eir_bw.bw_profile_idx =
3314 				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3315 			break;
3316 		}
3317 		/* EIR BW and Shared BW profiles are mutually exclusive and
3318 		 * hence only one of them may be set for any given element
3319 		 */
3320 		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3321 		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3322 			    ICE_SCHED_DFLT_RL_PROF_ID))
3323 			return -EIO;
3324 		/* EIR BW is set to default, disable it */
3325 		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3326 		/* Okay to enable shared BW now */
3327 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3328 		data->srl_id = cpu_to_le16(rl_prof_id);
3329 		break;
3330 	default:
3331 		/* Unknown rate limit type */
3332 		return -EINVAL;
3333 	}
3334 
3335 	/* Configure element */
3336 	return ice_sched_update_elem(hw, node, &buf);
3337 }
3338 
3339 /**
3340  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3341  * @node: sched node
3342  * @rl_type: rate limit type
3343  *
3344  * If existing profile matches, it returns the corresponding rate
3345  * limit profile ID, otherwise it returns an invalid ID as error.
3346  */
3347 static u16
3348 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3349 			      enum ice_rl_type rl_type)
3350 {
3351 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3352 	struct ice_aqc_txsched_elem *data;
3353 
3354 	data = &node->info.data;
3355 	switch (rl_type) {
3356 	case ICE_MIN_BW:
3357 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3358 			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3359 		break;
3360 	case ICE_MAX_BW:
3361 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3362 			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3363 		break;
3364 	case ICE_SHARED_BW:
3365 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3366 			rl_prof_id = le16_to_cpu(data->srl_id);
3367 		break;
3368 	default:
3369 		break;
3370 	}
3371 
3372 	return rl_prof_id;
3373 }
3374 
3375 /**
3376  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3377  * @pi: port information structure
3378  * @rl_type: type of rate limit BW - min, max, or shared
3379  * @layer_index: layer index
3380  *
3381  * This function returns requested profile creation layer.
3382  */
3383 static u8
3384 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3385 			    u8 layer_index)
3386 {
3387 	struct ice_hw *hw = pi->hw;
3388 
3389 	if (layer_index >= hw->num_tx_sched_layers)
3390 		return ICE_SCHED_INVAL_LAYER_NUM;
3391 	switch (rl_type) {
3392 	case ICE_MIN_BW:
3393 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
3394 			return layer_index;
3395 		break;
3396 	case ICE_MAX_BW:
3397 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
3398 			return layer_index;
3399 		break;
3400 	case ICE_SHARED_BW:
3401 		/* if current layer doesn't support SRL profile creation
3402 		 * then try a layer up or down.
3403 		 */
3404 		if (hw->layer_info[layer_index].max_srl_profiles)
3405 			return layer_index;
3406 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
3407 			 hw->layer_info[layer_index + 1].max_srl_profiles)
3408 			return layer_index + 1;
3409 		else if (layer_index > 0 &&
3410 			 hw->layer_info[layer_index - 1].max_srl_profiles)
3411 			return layer_index - 1;
3412 		break;
3413 	default:
3414 		break;
3415 	}
3416 	return ICE_SCHED_INVAL_LAYER_NUM;
3417 }
3418 
3419 /**
3420  * ice_sched_get_srl_node - get shared rate limit node
3421  * @node: tree node
3422  * @srl_layer: shared rate limit layer
3423  *
3424  * This function returns SRL node to be used for shared rate limit purpose.
3425  * The caller needs to hold scheduler lock.
3426  */
3427 static struct ice_sched_node *
3428 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3429 {
3430 	if (srl_layer > node->tx_sched_layer)
3431 		return node->children[0];
3432 	else if (srl_layer < node->tx_sched_layer)
3433 		/* Node can't be created without a parent. It will always
3434 		 * have a valid parent except root node.
3435 		 */
3436 		return node->parent;
3437 	else
3438 		return node;
3439 }
3440 
3441 /**
3442  * ice_sched_rm_rl_profile - remove RL profile ID
3443  * @pi: port information structure
3444  * @layer_num: layer number where profiles are saved
3445  * @profile_type: profile type like EIR, CIR, or SRL
3446  * @profile_id: profile ID to remove
3447  *
3448  * This function removes rate limit profile from layer 'layer_num' of type
3449  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3450  * scheduler lock.
3451  */
3452 static int
3453 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3454 			u16 profile_id)
3455 {
3456 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3457 	int status = 0;
3458 
3459 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3460 		return -EINVAL;
3461 	/* Check the existing list for RL profile */
3462 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3463 			    list_entry)
3464 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3465 		    profile_type &&
3466 		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3467 		    profile_id) {
3468 			if (rl_prof_elem->prof_id_ref)
3469 				rl_prof_elem->prof_id_ref--;
3470 
3471 			/* Remove old profile ID from database */
3472 			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3473 			if (status && status != -EBUSY)
3474 				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3475 			break;
3476 		}
3477 	if (status == -EBUSY)
3478 		status = 0;
3479 	return status;
3480 }
3481 
3482 /**
3483  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3484  * @pi: port information structure
3485  * @node: pointer to node structure
3486  * @rl_type: rate limit type min, max, or shared
3487  * @layer_num: layer number where RL profiles are saved
3488  *
3489  * This function configures node element's BW rate limit profile ID of
3490  * type CIR, EIR, or SRL to default. This function needs to be called
3491  * with the scheduler lock held.
3492  */
3493 static int
3494 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3495 			   struct ice_sched_node *node,
3496 			   enum ice_rl_type rl_type, u8 layer_num)
3497 {
3498 	struct ice_hw *hw;
3499 	u8 profile_type;
3500 	u16 rl_prof_id;
3501 	u16 old_id;
3502 	int status;
3503 
3504 	hw = pi->hw;
3505 	switch (rl_type) {
3506 	case ICE_MIN_BW:
3507 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3508 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3509 		break;
3510 	case ICE_MAX_BW:
3511 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3512 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3513 		break;
3514 	case ICE_SHARED_BW:
3515 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3516 		/* No SRL is configured for default case */
3517 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3518 		break;
3519 	default:
3520 		return -EINVAL;
3521 	}
3522 	/* Save existing RL prof ID for later clean up */
3523 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3524 	/* Configure BW scheduling parameters */
3525 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3526 	if (status)
3527 		return status;
3528 
3529 	/* Remove stale RL profile ID */
3530 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3531 	    old_id == ICE_SCHED_INVAL_PROF_ID)
3532 		return 0;
3533 
3534 	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3535 }
3536 
3537 /**
3538  * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3539  * @pi: port information structure
3540  * @node: pointer to node structure
3541  * @layer_num: layer number where rate limit profiles are saved
3542  * @rl_type: rate limit type min, max, or shared
3543  * @bw: bandwidth value
3544  *
3545  * This function prepares node element's bandwidth to SRL or EIR exclusively.
3546  * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3547  * them may be set for any given element. This function needs to be called
3548  * with the scheduler lock held.
3549  */
3550 static int
3551 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3552 			   struct ice_sched_node *node,
3553 			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3554 {
3555 	if (rl_type == ICE_SHARED_BW) {
3556 		/* SRL node passed in this case, it may be different node */
3557 		if (bw == ICE_SCHED_DFLT_BW)
3558 			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
3559 			 * enables EIR to default. EIR is not set in this
3560 			 * case, so no additional action is required.
3561 			 */
3562 			return 0;
3563 
3564 		/* SRL being configured, set EIR to default here.
3565 		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3566 		 * configures SRL
3567 		 */
3568 		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3569 						  layer_num);
3570 	} else if (rl_type == ICE_MAX_BW &&
3571 		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3572 		/* Remove Shared profile. Set default shared BW call
3573 		 * removes shared profile for a node.
3574 		 */
3575 		return ice_sched_set_node_bw_dflt(pi, node,
3576 						  ICE_SHARED_BW,
3577 						  layer_num);
3578 	}
3579 	return 0;
3580 }
3581 
3582 /**
3583  * ice_sched_set_node_bw - set node's bandwidth
3584  * @pi: port information structure
3585  * @node: tree node
3586  * @rl_type: rate limit type min, max, or shared
3587  * @bw: bandwidth in Kbps - Kilo bits per sec
3588  * @layer_num: layer number
3589  *
3590  * This function adds new profile corresponding to requested BW, configures
3591  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3592  * ID from local database. The caller needs to hold scheduler lock.
3593  */
3594 int
3595 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3596 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3597 {
3598 	struct ice_aqc_rl_profile_info *rl_prof_info;
3599 	struct ice_hw *hw = pi->hw;
3600 	u16 old_id, rl_prof_id;
3601 	int status = -EINVAL;
3602 
3603 	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3604 	if (!rl_prof_info)
3605 		return status;
3606 
3607 	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3608 
3609 	/* Save existing RL prof ID for later clean up */
3610 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3611 	/* Configure BW scheduling parameters */
3612 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3613 	if (status)
3614 		return status;
3615 
3616 	/* New changes has been applied */
3617 	/* Increment the profile ID reference count */
3618 	rl_prof_info->prof_id_ref++;
3619 
3620 	/* Check for old ID removal */
3621 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3622 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3623 		return 0;
3624 
3625 	return ice_sched_rm_rl_profile(pi, layer_num,
3626 				       rl_prof_info->profile.flags &
3627 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3628 }
3629 
3630 /**
3631  * ice_sched_set_node_priority - set node's priority
3632  * @pi: port information structure
3633  * @node: tree node
3634  * @priority: number 0-7 representing priority among siblings
3635  *
3636  * This function sets priority of a node among it's siblings.
3637  */
3638 int
3639 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3640 			    u16 priority)
3641 {
3642 	struct ice_aqc_txsched_elem_data buf;
3643 	struct ice_aqc_txsched_elem *data;
3644 
3645 	buf = node->info;
3646 	data = &buf.data;
3647 
3648 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3649 	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3650 
3651 	return ice_sched_update_elem(pi->hw, node, &buf);
3652 }
3653 
3654 /**
3655  * ice_sched_set_node_weight - set node's weight
3656  * @pi: port information structure
3657  * @node: tree node
3658  * @weight: number 1-200 representing weight for WFQ
3659  *
3660  * This function sets weight of the node for WFQ algorithm.
3661  */
3662 int
3663 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3664 {
3665 	struct ice_aqc_txsched_elem_data buf;
3666 	struct ice_aqc_txsched_elem *data;
3667 
3668 	buf = node->info;
3669 	data = &buf.data;
3670 
3671 	data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3672 			       ICE_AQC_ELEM_VALID_GENERIC;
3673 	data->cir_bw.bw_alloc = cpu_to_le16(weight);
3674 	data->eir_bw.bw_alloc = cpu_to_le16(weight);
3675 
3676 	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3677 
3678 	return ice_sched_update_elem(pi->hw, node, &buf);
3679 }
3680 
3681 /**
3682  * ice_sched_set_node_bw_lmt - set node's BW limit
3683  * @pi: port information structure
3684  * @node: tree node
3685  * @rl_type: rate limit type min, max, or shared
3686  * @bw: bandwidth in Kbps - Kilo bits per sec
3687  *
3688  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3689  * EIR, or SRL. The caller needs to hold scheduler lock.
3690  */
3691 int
3692 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3693 			  enum ice_rl_type rl_type, u32 bw)
3694 {
3695 	struct ice_sched_node *cfg_node = node;
3696 	int status;
3697 
3698 	struct ice_hw *hw;
3699 	u8 layer_num;
3700 
3701 	if (!pi)
3702 		return -EINVAL;
3703 	hw = pi->hw;
3704 	/* Remove unused RL profile IDs from HW and SW DB */
3705 	ice_sched_rm_unused_rl_prof(pi);
3706 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3707 						node->tx_sched_layer);
3708 	if (layer_num >= hw->num_tx_sched_layers)
3709 		return -EINVAL;
3710 
3711 	if (rl_type == ICE_SHARED_BW) {
3712 		/* SRL node may be different */
3713 		cfg_node = ice_sched_get_srl_node(node, layer_num);
3714 		if (!cfg_node)
3715 			return -EIO;
3716 	}
3717 	/* EIR BW and Shared BW profiles are mutually exclusive and
3718 	 * hence only one of them may be set for any given element
3719 	 */
3720 	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3721 					    bw);
3722 	if (status)
3723 		return status;
3724 	if (bw == ICE_SCHED_DFLT_BW)
3725 		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3726 						  layer_num);
3727 	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3728 }
3729 
3730 /**
3731  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3732  * @pi: port information structure
3733  * @node: pointer to node structure
3734  * @rl_type: rate limit type min, max, or shared
3735  *
3736  * This function configures node element's BW rate limit profile ID of
3737  * type CIR, EIR, or SRL to default. This function needs to be called
3738  * with the scheduler lock held.
3739  */
3740 static int
3741 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3742 			       struct ice_sched_node *node,
3743 			       enum ice_rl_type rl_type)
3744 {
3745 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3746 					 ICE_SCHED_DFLT_BW);
3747 }
3748 
3749 /**
3750  * ice_sched_validate_srl_node - Check node for SRL applicability
3751  * @node: sched node to configure
3752  * @sel_layer: selected SRL layer
3753  *
3754  * This function checks if the SRL can be applied to a selected layer node on
3755  * behalf of the requested node (first argument). This function needs to be
3756  * called with scheduler lock held.
3757  */
3758 static int
3759 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3760 {
3761 	/* SRL profiles are not available on all layers. Check if the
3762 	 * SRL profile can be applied to a node above or below the
3763 	 * requested node. SRL configuration is possible only if the
3764 	 * selected layer's node has single child.
3765 	 */
3766 	if (sel_layer == node->tx_sched_layer ||
3767 	    ((sel_layer == node->tx_sched_layer + 1) &&
3768 	    node->num_children == 1) ||
3769 	    ((sel_layer == node->tx_sched_layer - 1) &&
3770 	    (node->parent && node->parent->num_children == 1)))
3771 		return 0;
3772 
3773 	return -EIO;
3774 }
3775 
3776 /**
3777  * ice_sched_save_q_bw - save queue node's BW information
3778  * @q_ctx: queue context structure
3779  * @rl_type: rate limit type min, max, or shared
3780  * @bw: bandwidth in Kbps - Kilo bits per sec
3781  *
3782  * Save BW information of queue type node for post replay use.
3783  */
3784 static int
3785 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3786 {
3787 	switch (rl_type) {
3788 	case ICE_MIN_BW:
3789 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3790 		break;
3791 	case ICE_MAX_BW:
3792 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3793 		break;
3794 	case ICE_SHARED_BW:
3795 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3796 		break;
3797 	default:
3798 		return -EINVAL;
3799 	}
3800 	return 0;
3801 }
3802 
3803 /**
3804  * ice_sched_set_q_bw_lmt - sets queue BW limit
3805  * @pi: port information structure
3806  * @vsi_handle: sw VSI handle
3807  * @tc: traffic class
3808  * @q_handle: software queue handle
3809  * @rl_type: min, max, or shared
3810  * @bw: bandwidth in Kbps
3811  *
3812  * This function sets BW limit of queue scheduling node.
3813  */
3814 static int
3815 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3816 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3817 {
3818 	struct ice_sched_node *node;
3819 	struct ice_q_ctx *q_ctx;
3820 	int status = -EINVAL;
3821 
3822 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3823 		return -EINVAL;
3824 	mutex_lock(&pi->sched_lock);
3825 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3826 	if (!q_ctx)
3827 		goto exit_q_bw_lmt;
3828 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3829 	if (!node) {
3830 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3831 		goto exit_q_bw_lmt;
3832 	}
3833 
3834 	/* Return error if it is not a leaf node */
3835 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3836 		goto exit_q_bw_lmt;
3837 
3838 	/* SRL bandwidth layer selection */
3839 	if (rl_type == ICE_SHARED_BW) {
3840 		u8 sel_layer; /* selected layer */
3841 
3842 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3843 							node->tx_sched_layer);
3844 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
3845 			status = -EINVAL;
3846 			goto exit_q_bw_lmt;
3847 		}
3848 		status = ice_sched_validate_srl_node(node, sel_layer);
3849 		if (status)
3850 			goto exit_q_bw_lmt;
3851 	}
3852 
3853 	if (bw == ICE_SCHED_DFLT_BW)
3854 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3855 	else
3856 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3857 
3858 	if (!status)
3859 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3860 
3861 exit_q_bw_lmt:
3862 	mutex_unlock(&pi->sched_lock);
3863 	return status;
3864 }
3865 
3866 /**
3867  * ice_cfg_q_bw_lmt - configure queue BW limit
3868  * @pi: port information structure
3869  * @vsi_handle: sw VSI handle
3870  * @tc: traffic class
3871  * @q_handle: software queue handle
3872  * @rl_type: min, max, or shared
3873  * @bw: bandwidth in Kbps
3874  *
3875  * This function configures BW limit of queue scheduling node.
3876  */
3877 int
3878 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3879 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3880 {
3881 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3882 				      bw);
3883 }
3884 
3885 /**
3886  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3887  * @pi: port information structure
3888  * @vsi_handle: sw VSI handle
3889  * @tc: traffic class
3890  * @q_handle: software queue handle
3891  * @rl_type: min, max, or shared
3892  *
3893  * This function configures BW default limit of queue scheduling node.
3894  */
3895 int
3896 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3897 		      u16 q_handle, enum ice_rl_type rl_type)
3898 {
3899 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3900 				      ICE_SCHED_DFLT_BW);
3901 }
3902 
3903 /**
3904  * ice_sched_get_node_by_id_type - get node from ID type
3905  * @pi: port information structure
3906  * @id: identifier
3907  * @agg_type: type of aggregator
3908  * @tc: traffic class
3909  *
3910  * This function returns node identified by ID of type aggregator, and
3911  * based on traffic class (TC). This function needs to be called with
3912  * the scheduler lock held.
3913  */
3914 static struct ice_sched_node *
3915 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3916 			      enum ice_agg_type agg_type, u8 tc)
3917 {
3918 	struct ice_sched_node *node = NULL;
3919 
3920 	switch (agg_type) {
3921 	case ICE_AGG_TYPE_VSI: {
3922 		struct ice_vsi_ctx *vsi_ctx;
3923 		u16 vsi_handle = (u16)id;
3924 
3925 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3926 			break;
3927 		/* Get sched_vsi_info */
3928 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3929 		if (!vsi_ctx)
3930 			break;
3931 		node = vsi_ctx->sched.vsi_node[tc];
3932 		break;
3933 	}
3934 
3935 	case ICE_AGG_TYPE_AGG: {
3936 		struct ice_sched_node *tc_node;
3937 
3938 		tc_node = ice_sched_get_tc_node(pi, tc);
3939 		if (tc_node)
3940 			node = ice_sched_get_agg_node(pi, tc_node, id);
3941 		break;
3942 	}
3943 
3944 	default:
3945 		break;
3946 	}
3947 
3948 	return node;
3949 }
3950 
3951 /**
3952  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3953  * @pi: port information structure
3954  * @id: ID (software VSI handle or AGG ID)
3955  * @agg_type: aggregator type (VSI or AGG type node)
3956  * @tc: traffic class
3957  * @rl_type: min or max
3958  * @bw: bandwidth in Kbps
3959  *
3960  * This function sets BW limit of VSI or Aggregator scheduling node
3961  * based on TC information from passed in argument BW.
3962  */
3963 int
3964 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3965 				 enum ice_agg_type agg_type, u8 tc,
3966 				 enum ice_rl_type rl_type, u32 bw)
3967 {
3968 	struct ice_sched_node *node;
3969 	int status = -EINVAL;
3970 
3971 	if (!pi)
3972 		return status;
3973 
3974 	if (rl_type == ICE_UNKNOWN_BW)
3975 		return status;
3976 
3977 	mutex_lock(&pi->sched_lock);
3978 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3979 	if (!node) {
3980 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3981 		goto exit_set_node_bw_lmt_per_tc;
3982 	}
3983 	if (bw == ICE_SCHED_DFLT_BW)
3984 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3985 	else
3986 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3987 
3988 exit_set_node_bw_lmt_per_tc:
3989 	mutex_unlock(&pi->sched_lock);
3990 	return status;
3991 }
3992 
3993 /**
3994  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3995  * @pi: port information structure
3996  * @vsi_handle: software VSI handle
3997  * @tc: traffic class
3998  * @rl_type: min or max
3999  * @bw: bandwidth in Kbps
4000  *
4001  * This function configures BW limit of VSI scheduling node based on TC
4002  * information.
4003  */
4004 int
4005 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4006 			  enum ice_rl_type rl_type, u32 bw)
4007 {
4008 	int status;
4009 
4010 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4011 						  ICE_AGG_TYPE_VSI,
4012 						  tc, rl_type, bw);
4013 	if (!status) {
4014 		mutex_lock(&pi->sched_lock);
4015 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4016 		mutex_unlock(&pi->sched_lock);
4017 	}
4018 	return status;
4019 }
4020 
4021 /**
4022  * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4023  * @pi: port information structure
4024  * @vsi_handle: software VSI handle
4025  * @tc: traffic class
4026  * @rl_type: min or max
4027  *
4028  * This function configures default BW limit of VSI scheduling node based on TC
4029  * information.
4030  */
4031 int
4032 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4033 			       enum ice_rl_type rl_type)
4034 {
4035 	int status;
4036 
4037 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4038 						  ICE_AGG_TYPE_VSI,
4039 						  tc, rl_type,
4040 						  ICE_SCHED_DFLT_BW);
4041 	if (!status) {
4042 		mutex_lock(&pi->sched_lock);
4043 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4044 					       ICE_SCHED_DFLT_BW);
4045 		mutex_unlock(&pi->sched_lock);
4046 	}
4047 	return status;
4048 }
4049 
4050 /**
4051  * ice_cfg_rl_burst_size - Set burst size value
4052  * @hw: pointer to the HW struct
4053  * @bytes: burst size in bytes
4054  *
4055  * This function configures/set the burst size to requested new value. The new
4056  * burst size value is used for future rate limit calls. It doesn't change the
4057  * existing or previously created RL profiles.
4058  */
4059 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4060 {
4061 	u16 burst_size_to_prog;
4062 
4063 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4064 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4065 		return -EINVAL;
4066 	if (ice_round_to_num(bytes, 64) <=
4067 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4068 		/* 64 byte granularity case */
4069 		/* Disable MSB granularity bit */
4070 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4071 		/* round number to nearest 64 byte granularity */
4072 		bytes = ice_round_to_num(bytes, 64);
4073 		/* The value is in 64 byte chunks */
4074 		burst_size_to_prog |= (u16)(bytes / 64);
4075 	} else {
4076 		/* k bytes granularity case */
4077 		/* Enable MSB granularity bit */
4078 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4079 		/* round number to nearest 1024 granularity */
4080 		bytes = ice_round_to_num(bytes, 1024);
4081 		/* check rounding doesn't go beyond allowed */
4082 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4083 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4084 		/* The value is in k bytes */
4085 		burst_size_to_prog |= (u16)(bytes / 1024);
4086 	}
4087 	hw->max_burst_size = burst_size_to_prog;
4088 	return 0;
4089 }
4090 
4091 /**
4092  * ice_sched_replay_node_prio - re-configure node priority
4093  * @hw: pointer to the HW struct
4094  * @node: sched node to configure
4095  * @priority: priority value
4096  *
4097  * This function configures node element's priority value. It
4098  * needs to be called with scheduler lock held.
4099  */
4100 static int
4101 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4102 			   u8 priority)
4103 {
4104 	struct ice_aqc_txsched_elem_data buf;
4105 	struct ice_aqc_txsched_elem *data;
4106 	int status;
4107 
4108 	buf = node->info;
4109 	data = &buf.data;
4110 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4111 	data->generic = priority;
4112 
4113 	/* Configure element */
4114 	status = ice_sched_update_elem(hw, node, &buf);
4115 	return status;
4116 }
4117 
4118 /**
4119  * ice_sched_replay_node_bw - replay node(s) BW
4120  * @hw: pointer to the HW struct
4121  * @node: sched node to configure
4122  * @bw_t_info: BW type information
4123  *
4124  * This function restores node's BW from bw_t_info. The caller needs
4125  * to hold the scheduler lock.
4126  */
4127 static int
4128 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4129 			 struct ice_bw_type_info *bw_t_info)
4130 {
4131 	struct ice_port_info *pi = hw->port_info;
4132 	int status = -EINVAL;
4133 	u16 bw_alloc;
4134 
4135 	if (!node)
4136 		return status;
4137 	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4138 		return 0;
4139 	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4140 		status = ice_sched_replay_node_prio(hw, node,
4141 						    bw_t_info->generic);
4142 		if (status)
4143 			return status;
4144 	}
4145 	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4146 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4147 						   bw_t_info->cir_bw.bw);
4148 		if (status)
4149 			return status;
4150 	}
4151 	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4152 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
4153 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4154 						     bw_alloc);
4155 		if (status)
4156 			return status;
4157 	}
4158 	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4159 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4160 						   bw_t_info->eir_bw.bw);
4161 		if (status)
4162 			return status;
4163 	}
4164 	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4165 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
4166 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4167 						     bw_alloc);
4168 		if (status)
4169 			return status;
4170 	}
4171 	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4172 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4173 						   bw_t_info->shared_bw);
4174 	return status;
4175 }
4176 
4177 /**
4178  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4179  * @pi: port info struct
4180  * @tc_bitmap: 8 bits TC bitmap to check
4181  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4182  *
4183  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4184  * may be missing, it returns enabled TCs. This function needs to be called with
4185  * scheduler lock held.
4186  */
4187 static void
4188 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4189 			    unsigned long *tc_bitmap,
4190 			    unsigned long *ena_tc_bitmap)
4191 {
4192 	u8 tc;
4193 
4194 	/* Some TC(s) may be missing after reset, adjust for replay */
4195 	ice_for_each_traffic_class(tc)
4196 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
4197 		    (ice_sched_get_tc_node(pi, tc)))
4198 			set_bit(tc, ena_tc_bitmap);
4199 }
4200 
4201 /**
4202  * ice_sched_replay_agg - recreate aggregator node(s)
4203  * @hw: pointer to the HW struct
4204  *
4205  * This function recreate aggregator type nodes which are not replayed earlier.
4206  * It also replay aggregator BW information. These aggregator nodes are not
4207  * associated with VSI type node yet.
4208  */
4209 void ice_sched_replay_agg(struct ice_hw *hw)
4210 {
4211 	struct ice_port_info *pi = hw->port_info;
4212 	struct ice_sched_agg_info *agg_info;
4213 
4214 	mutex_lock(&pi->sched_lock);
4215 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4216 		/* replay aggregator (re-create aggregator node) */
4217 		if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4218 				  ICE_MAX_TRAFFIC_CLASS)) {
4219 			DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4220 			int status;
4221 
4222 			bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4223 			ice_sched_get_ena_tc_bitmap(pi,
4224 						    agg_info->replay_tc_bitmap,
4225 						    replay_bitmap);
4226 			status = ice_sched_cfg_agg(hw->port_info,
4227 						   agg_info->agg_id,
4228 						   ICE_AGG_TYPE_AGG,
4229 						   replay_bitmap);
4230 			if (status) {
4231 				dev_info(ice_hw_to_dev(hw),
4232 					 "Replay agg id[%d] failed\n",
4233 					 agg_info->agg_id);
4234 				/* Move on to next one */
4235 				continue;
4236 			}
4237 		}
4238 	mutex_unlock(&pi->sched_lock);
4239 }
4240 
4241 /**
4242  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4243  * @hw: pointer to the HW struct
4244  *
4245  * This function initialize aggregator(s) TC bitmap to zero. A required
4246  * preinit step for replaying aggregators.
4247  */
4248 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4249 {
4250 	struct ice_port_info *pi = hw->port_info;
4251 	struct ice_sched_agg_info *agg_info;
4252 
4253 	mutex_lock(&pi->sched_lock);
4254 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4255 		struct ice_sched_agg_vsi_info *agg_vsi_info;
4256 
4257 		agg_info->tc_bitmap[0] = 0;
4258 		list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4259 				    list_entry)
4260 			agg_vsi_info->tc_bitmap[0] = 0;
4261 	}
4262 	mutex_unlock(&pi->sched_lock);
4263 }
4264 
4265 /**
4266  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4267  * @hw: pointer to the HW struct
4268  * @vsi_handle: software VSI handle
4269  *
4270  * This function replays aggregator node, VSI to aggregator type nodes, and
4271  * their node bandwidth information. This function needs to be called with
4272  * scheduler lock held.
4273  */
4274 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4275 {
4276 	DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4277 	struct ice_sched_agg_vsi_info *agg_vsi_info;
4278 	struct ice_port_info *pi = hw->port_info;
4279 	struct ice_sched_agg_info *agg_info;
4280 	int status;
4281 
4282 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4283 	if (!ice_is_vsi_valid(hw, vsi_handle))
4284 		return -EINVAL;
4285 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4286 	if (!agg_info)
4287 		return 0; /* Not present in list - default Agg case */
4288 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4289 	if (!agg_vsi_info)
4290 		return 0; /* Not present in list - default Agg case */
4291 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4292 				    replay_bitmap);
4293 	/* Replay aggregator node associated to vsi_handle */
4294 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4295 				   ICE_AGG_TYPE_AGG, replay_bitmap);
4296 	if (status)
4297 		return status;
4298 
4299 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4300 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4301 				    replay_bitmap);
4302 	/* Move this VSI (vsi_handle) to above aggregator */
4303 	return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4304 					  replay_bitmap);
4305 }
4306 
4307 /**
4308  * ice_replay_vsi_agg - replay VSI to aggregator node
4309  * @hw: pointer to the HW struct
4310  * @vsi_handle: software VSI handle
4311  *
4312  * This function replays association of VSI to aggregator type nodes, and
4313  * node bandwidth information.
4314  */
4315 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4316 {
4317 	struct ice_port_info *pi = hw->port_info;
4318 	int status;
4319 
4320 	mutex_lock(&pi->sched_lock);
4321 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4322 	mutex_unlock(&pi->sched_lock);
4323 	return status;
4324 }
4325 
4326 /**
4327  * ice_sched_replay_q_bw - replay queue type node BW
4328  * @pi: port information structure
4329  * @q_ctx: queue context structure
4330  *
4331  * This function replays queue type node bandwidth. This function needs to be
4332  * called with scheduler lock held.
4333  */
4334 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4335 {
4336 	struct ice_sched_node *q_node;
4337 
4338 	/* Following also checks the presence of node in tree */
4339 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4340 	if (!q_node)
4341 		return -EINVAL;
4342 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4343 }
4344