xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp.h (revision 73aea586d6c58f55799f6130e19321ff7b574c3d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #ifndef _ICE_PTP_H_
5 #define _ICE_PTP_H_
6 
7 #include <linux/ptp_clock_kernel.h>
8 #include <linux/kthread.h>
9 
10 #include "ice_ptp_hw.h"
11 
12 enum ice_ptp_pin_e810 {
13 	GPIO_20 = 0,
14 	GPIO_21,
15 	GPIO_22,
16 	GPIO_23,
17 	NUM_PTP_PIN_E810
18 };
19 
20 enum ice_ptp_pin_e810t {
21 	GNSS = 0,
22 	SMA1,
23 	UFL1,
24 	SMA2,
25 	UFL2,
26 	NUM_PTP_PINS_E810T
27 };
28 
29 struct ice_perout_channel {
30 	bool ena;
31 	u32 gpio_pin;
32 	u64 period;
33 	u64 start_time;
34 };
35 
36 /* The ice hardware captures Tx hardware timestamps in the PHY. The timestamp
37  * is stored in a buffer of registers. Depending on the specific hardware,
38  * this buffer might be shared across multiple PHY ports.
39  *
40  * On transmit of a packet to be timestamped, software is responsible for
41  * selecting an open index. Hardware makes no attempt to lock or prevent
42  * re-use of an index for multiple packets.
43  *
44  * To handle this, timestamp indexes must be tracked by software to ensure
45  * that an index is not re-used for multiple transmitted packets. The
46  * structures and functions declared in this file track the available Tx
47  * register indexes, as well as provide storage for the SKB pointers.
48  *
49  * To allow multiple ports to access the shared register block independently,
50  * the blocks are split up so that indexes are assigned to each port based on
51  * hardware logical port number.
52  *
53  * The timestamp blocks are handled differently for E810- and E822-based
54  * devices. In E810 devices, each port has its own block of timestamps, while in
55  * E822 there is a need to logically break the block of registers into smaller
56  * chunks based on the port number to avoid collisions.
57  *
58  * Example for port 5 in E810:
59  *  +--------+--------+--------+--------+--------+--------+--------+--------+
60  *  |register|register|register|register|register|register|register|register|
61  *  | block  | block  | block  | block  | block  | block  | block  | block  |
62  *  |  for   |  for   |  for   |  for   |  for   |  for   |  for   |  for   |
63  *  | port 0 | port 1 | port 2 | port 3 | port 4 | port 5 | port 6 | port 7 |
64  *  +--------+--------+--------+--------+--------+--------+--------+--------+
65  *                                               ^^
66  *                                               ||
67  *                                               |---  quad offset is always 0
68  *                                               ---- quad number
69  *
70  * Example for port 5 in E822:
71  * +-----------------------------+-----------------------------+
72  * |  register block for quad 0  |  register block for quad 1  |
73  * |+------+------+------+------+|+------+------+------+------+|
74  * ||port 0|port 1|port 2|port 3|||port 0|port 1|port 2|port 3||
75  * |+------+------+------+------+|+------+------+------+------+|
76  * +-----------------------------+-------^---------------------+
77  *                                ^      |
78  *                                |      --- quad offset*
79  *                                ---- quad number
80  *
81  *   * PHY port 5 is port 1 in quad 1
82  *
83  */
84 
85 /**
86  * struct ice_tx_tstamp - Tracking for a single Tx timestamp
87  * @skb: pointer to the SKB for this timestamp request
88  * @start: jiffies when the timestamp was first requested
89  * @cached_tstamp: last read timestamp
90  *
91  * This structure tracks a single timestamp request. The SKB pointer is
92  * provided when initiating a request. The start time is used to ensure that
93  * we discard old requests that were not fulfilled within a 2 second time
94  * window.
95  * Timestamp values in the PHY are read only and do not get cleared except at
96  * hardware reset or when a new timestamp value is captured.
97  *
98  * Some PHY types do not provide a "ready" bitmap indicating which timestamp
99  * indexes are valid. In these cases, we use a cached_tstamp to keep track of
100  * the last timestamp we read for a given index. If the current timestamp
101  * value is the same as the cached value, we assume a new timestamp hasn't
102  * been captured. This avoids reporting stale timestamps to the stack. This is
103  * only done if the verify_cached flag is set in ice_ptp_tx structure.
104  */
105 struct ice_tx_tstamp {
106 	struct sk_buff *skb;
107 	unsigned long start;
108 	u64 cached_tstamp;
109 };
110 
111 /**
112  * enum ice_tx_tstamp_work - Status of Tx timestamp work function
113  * @ICE_TX_TSTAMP_WORK_DONE: Tx timestamp processing is complete
114  * @ICE_TX_TSTAMP_WORK_PENDING: More Tx timestamps are pending
115  */
116 enum ice_tx_tstamp_work {
117 	ICE_TX_TSTAMP_WORK_DONE = 0,
118 	ICE_TX_TSTAMP_WORK_PENDING,
119 };
120 
121 /**
122  * struct ice_ptp_tx - Tracking structure for all Tx timestamp requests on a port
123  * @lock: lock to prevent concurrent access to fields of this struct
124  * @tstamps: array of len to store outstanding requests
125  * @in_use: bitmap of len to indicate which slots are in use
126  * @stale: bitmap of len to indicate slots which have stale timestamps
127  * @block: which memory block (quad or port) the timestamps are captured in
128  * @offset: offset into timestamp block to get the real index
129  * @len: length of the tstamps and in_use fields.
130  * @init: if true, the tracker is initialized;
131  * @calibrating: if true, the PHY is calibrating the Tx offset. During this
132  *               window, timestamps are temporarily disabled.
133  * @verify_cached: if true, verify new timestamp differs from last read value
134  */
135 struct ice_ptp_tx {
136 	spinlock_t lock; /* lock protecting in_use bitmap */
137 	struct ice_tx_tstamp *tstamps;
138 	unsigned long *in_use;
139 	unsigned long *stale;
140 	u8 block;
141 	u8 offset;
142 	u8 len;
143 	u8 init : 1;
144 	u8 calibrating : 1;
145 	u8 verify_cached : 1;
146 };
147 
148 /* Quad and port information for initializing timestamp blocks */
149 #define INDEX_PER_QUAD			64
150 #define INDEX_PER_PORT_E822		16
151 #define INDEX_PER_PORT_E810		64
152 
153 /**
154  * struct ice_ptp_port - data used to initialize an external port for PTP
155  *
156  * This structure contains data indicating whether a single external port is
157  * ready for PTP functionality. It is used to track the port initialization
158  * and determine when the port's PHY offset is valid.
159  *
160  * @list_member: list member structure of auxiliary device
161  * @tx: Tx timestamp tracking for this port
162  * @aux_dev: auxiliary device associated with this port
163  * @ov_work: delayed work task for tracking when PHY offset is valid
164  * @ps_lock: mutex used to protect the overall PTP PHY start procedure
165  * @link_up: indicates whether the link is up
166  * @tx_fifo_busy_cnt: number of times the Tx FIFO was busy
167  * @port_num: the port number this structure represents
168  */
169 struct ice_ptp_port {
170 	struct list_head list_member;
171 	struct ice_ptp_tx tx;
172 	struct auxiliary_device aux_dev;
173 	struct kthread_delayed_work ov_work;
174 	struct mutex ps_lock; /* protects overall PTP PHY start procedure */
175 	bool link_up;
176 	u8 tx_fifo_busy_cnt;
177 	u8 port_num;
178 };
179 
180 enum ice_ptp_tx_interrupt {
181 	ICE_PTP_TX_INTERRUPT_NONE = 0,
182 	ICE_PTP_TX_INTERRUPT_SELF,
183 	ICE_PTP_TX_INTERRUPT_ALL,
184 };
185 
186 /**
187  * struct ice_ptp_port_owner - data used to handle the PTP clock owner info
188  *
189  * This structure contains data necessary for the PTP clock owner to correctly
190  * handle the timestamping feature for all attached ports.
191  *
192  * @aux_driver: the structure carring the auxiliary driver information
193  * @ports: list of porst handled by this port owner
194  * @lock: protect access to ports list
195  */
196 struct ice_ptp_port_owner {
197 	struct auxiliary_driver aux_driver;
198 	struct list_head ports;
199 	struct mutex lock;
200 };
201 
202 #define GLTSYN_TGT_H_IDX_MAX		4
203 
204 /**
205  * struct ice_ptp - data used for integrating with CONFIG_PTP_1588_CLOCK
206  * @tx_interrupt_mode: the TX interrupt mode for the PTP clock
207  * @port: data for the PHY port initialization procedure
208  * @ports_owner: data for the auxiliary driver owner
209  * @work: delayed work function for periodic tasks
210  * @cached_phc_time: a cached copy of the PHC time for timestamp extension
211  * @cached_phc_jiffies: jiffies when cached_phc_time was last updated
212  * @ext_ts_chan: the external timestamp channel in use
213  * @ext_ts_irq: the external timestamp IRQ in use
214  * @kworker: kwork thread for handling periodic work
215  * @perout_channels: periodic output data
216  * @info: structure defining PTP hardware capabilities
217  * @clock: pointer to registered PTP clock device
218  * @tstamp_config: hardware timestamping configuration
219  * @reset_time: kernel time after clock stop on reset
220  * @tx_hwtstamp_skipped: number of Tx time stamp requests skipped
221  * @tx_hwtstamp_timeouts: number of Tx skbs discarded with no time stamp
222  * @tx_hwtstamp_flushed: number of Tx skbs flushed due to interface closed
223  * @tx_hwtstamp_discarded: number of Tx skbs discarded due to cached PHC time
224  *                         being too old to correctly extend timestamp
225  * @late_cached_phc_updates: number of times cached PHC update is late
226  */
227 struct ice_ptp {
228 	enum ice_ptp_tx_interrupt tx_interrupt_mode;
229 	struct ice_ptp_port port;
230 	struct ice_ptp_port_owner ports_owner;
231 	struct kthread_delayed_work work;
232 	u64 cached_phc_time;
233 	unsigned long cached_phc_jiffies;
234 	u8 ext_ts_chan;
235 	u8 ext_ts_irq;
236 	struct kthread_worker *kworker;
237 	struct ice_perout_channel perout_channels[GLTSYN_TGT_H_IDX_MAX];
238 	struct ptp_clock_info info;
239 	struct ptp_clock *clock;
240 	struct hwtstamp_config tstamp_config;
241 	u64 reset_time;
242 	u32 tx_hwtstamp_skipped;
243 	u32 tx_hwtstamp_timeouts;
244 	u32 tx_hwtstamp_flushed;
245 	u32 tx_hwtstamp_discarded;
246 	u32 late_cached_phc_updates;
247 };
248 
249 #define __ptp_port_to_ptp(p) \
250 	container_of((p), struct ice_ptp, port)
251 #define ptp_port_to_pf(p) \
252 	container_of(__ptp_port_to_ptp((p)), struct ice_pf, ptp)
253 
254 #define __ptp_info_to_ptp(i) \
255 	container_of((i), struct ice_ptp, info)
256 #define ptp_info_to_pf(i) \
257 	container_of(__ptp_info_to_ptp((i)), struct ice_pf, ptp)
258 
259 #define PFTSYN_SEM_BYTES		4
260 #define PTP_SHARED_CLK_IDX_VALID	BIT(31)
261 #define TS_CMD_MASK			0xF
262 #define SYNC_EXEC_CMD			0x3
263 #define ICE_PTP_TS_VALID		BIT(0)
264 
265 #define FIFO_EMPTY			BIT(2)
266 #define FIFO_OK				0xFF
267 #define ICE_PTP_FIFO_NUM_CHECKS		5
268 /* Per-channel register definitions */
269 #define GLTSYN_AUX_OUT(_chan, _idx)	(GLTSYN_AUX_OUT_0(_idx) + ((_chan) * 8))
270 #define GLTSYN_AUX_IN(_chan, _idx)	(GLTSYN_AUX_IN_0(_idx) + ((_chan) * 8))
271 #define GLTSYN_CLKO(_chan, _idx)	(GLTSYN_CLKO_0(_idx) + ((_chan) * 8))
272 #define GLTSYN_TGT_L(_chan, _idx)	(GLTSYN_TGT_L_0(_idx) + ((_chan) * 16))
273 #define GLTSYN_TGT_H(_chan, _idx)	(GLTSYN_TGT_H_0(_idx) + ((_chan) * 16))
274 #define GLTSYN_EVNT_L(_chan, _idx)	(GLTSYN_EVNT_L_0(_idx) + ((_chan) * 16))
275 #define GLTSYN_EVNT_H(_chan, _idx)	(GLTSYN_EVNT_H_0(_idx) + ((_chan) * 16))
276 #define GLTSYN_EVNT_H_IDX_MAX		3
277 
278 /* Pin definitions for PTP PPS out */
279 #define PPS_CLK_GEN_CHAN		3
280 #define PPS_CLK_SRC_CHAN		2
281 #define PPS_PIN_INDEX			5
282 #define TIME_SYNC_PIN_INDEX		4
283 #define N_EXT_TS_E810			3
284 #define N_PER_OUT_E810			4
285 #define N_PER_OUT_E810T			3
286 #define N_PER_OUT_NO_SMA_E810T		2
287 #define N_EXT_TS_NO_SMA_E810T		2
288 #define ETH_GLTSYN_ENA(_i)		(0x03000348 + ((_i) * 4))
289 
290 #if IS_ENABLED(CONFIG_PTP_1588_CLOCK)
291 int ice_ptp_clock_index(struct ice_pf *pf);
292 struct ice_pf;
293 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr);
294 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr);
295 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena);
296 
297 void ice_ptp_extts_event(struct ice_pf *pf);
298 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb);
299 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf);
300 
301 void
302 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
303 		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb);
304 void ice_ptp_reset(struct ice_pf *pf);
305 void ice_ptp_prepare_for_reset(struct ice_pf *pf);
306 void ice_ptp_init(struct ice_pf *pf);
307 void ice_ptp_release(struct ice_pf *pf);
308 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup);
309 #else /* IS_ENABLED(CONFIG_PTP_1588_CLOCK) */
310 static inline int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
311 {
312 	return -EOPNOTSUPP;
313 }
314 
315 static inline int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
316 {
317 	return -EOPNOTSUPP;
318 }
319 
320 static inline void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena) { }
321 
322 static inline void ice_ptp_extts_event(struct ice_pf *pf) { }
323 static inline s8
324 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
325 {
326 	return -1;
327 }
328 
329 static inline bool ice_ptp_process_ts(struct ice_pf *pf)
330 {
331 	return true;
332 }
333 static inline void
334 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
335 		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) { }
336 static inline void ice_ptp_reset(struct ice_pf *pf) { }
337 static inline void ice_ptp_prepare_for_reset(struct ice_pf *pf) { }
338 static inline void ice_ptp_init(struct ice_pf *pf) { }
339 static inline void ice_ptp_release(struct ice_pf *pf) { }
340 static inline void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
341 {
342 }
343 
344 static inline int ice_ptp_clock_index(struct ice_pf *pf)
345 {
346 	return -1;
347 }
348 #endif /* IS_ENABLED(CONFIG_PTP_1588_CLOCK) */
349 #endif /* _ICE_PTP_H_ */
350