1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (C) 2021, Intel Corporation. */ 3 4 #ifndef _ICE_PTP_H_ 5 #define _ICE_PTP_H_ 6 7 #include <linux/ptp_clock_kernel.h> 8 #include <linux/kthread.h> 9 10 #include "ice_ptp_hw.h" 11 12 enum ice_ptp_pin_e810 { 13 GPIO_20 = 0, 14 GPIO_21, 15 GPIO_22, 16 GPIO_23, 17 NUM_PTP_PIN_E810 18 }; 19 20 enum ice_ptp_pin_e810t { 21 GNSS = 0, 22 SMA1, 23 UFL1, 24 SMA2, 25 UFL2, 26 NUM_PTP_PINS_E810T 27 }; 28 29 struct ice_perout_channel { 30 bool ena; 31 u32 gpio_pin; 32 u64 period; 33 u64 start_time; 34 }; 35 36 /* The ice hardware captures Tx hardware timestamps in the PHY. The timestamp 37 * is stored in a buffer of registers. Depending on the specific hardware, 38 * this buffer might be shared across multiple PHY ports. 39 * 40 * On transmit of a packet to be timestamped, software is responsible for 41 * selecting an open index. Hardware makes no attempt to lock or prevent 42 * re-use of an index for multiple packets. 43 * 44 * To handle this, timestamp indexes must be tracked by software to ensure 45 * that an index is not re-used for multiple transmitted packets. The 46 * structures and functions declared in this file track the available Tx 47 * register indexes, as well as provide storage for the SKB pointers. 48 * 49 * To allow multiple ports to access the shared register block independently, 50 * the blocks are split up so that indexes are assigned to each port based on 51 * hardware logical port number. 52 * 53 * The timestamp blocks are handled differently for E810- and E822-based 54 * devices. In E810 devices, each port has its own block of timestamps, while in 55 * E822 there is a need to logically break the block of registers into smaller 56 * chunks based on the port number to avoid collisions. 57 * 58 * Example for port 5 in E810: 59 * +--------+--------+--------+--------+--------+--------+--------+--------+ 60 * |register|register|register|register|register|register|register|register| 61 * | block | block | block | block | block | block | block | block | 62 * | for | for | for | for | for | for | for | for | 63 * | port 0 | port 1 | port 2 | port 3 | port 4 | port 5 | port 6 | port 7 | 64 * +--------+--------+--------+--------+--------+--------+--------+--------+ 65 * ^^ 66 * || 67 * |--- quad offset is always 0 68 * ---- quad number 69 * 70 * Example for port 5 in E822: 71 * +-----------------------------+-----------------------------+ 72 * | register block for quad 0 | register block for quad 1 | 73 * |+------+------+------+------+|+------+------+------+------+| 74 * ||port 0|port 1|port 2|port 3|||port 0|port 1|port 2|port 3|| 75 * |+------+------+------+------+|+------+------+------+------+| 76 * +-----------------------------+-------^---------------------+ 77 * ^ | 78 * | --- quad offset* 79 * ---- quad number 80 * 81 * * PHY port 5 is port 1 in quad 1 82 * 83 */ 84 85 /** 86 * struct ice_tx_tstamp - Tracking for a single Tx timestamp 87 * @skb: pointer to the SKB for this timestamp request 88 * @start: jiffies when the timestamp was first requested 89 * @cached_tstamp: last read timestamp 90 * 91 * This structure tracks a single timestamp request. The SKB pointer is 92 * provided when initiating a request. The start time is used to ensure that 93 * we discard old requests that were not fulfilled within a 2 second time 94 * window. 95 * Timestamp values in the PHY are read only and do not get cleared except at 96 * hardware reset or when a new timestamp value is captured. 97 * 98 * Some PHY types do not provide a "ready" bitmap indicating which timestamp 99 * indexes are valid. In these cases, we use a cached_tstamp to keep track of 100 * the last timestamp we read for a given index. If the current timestamp 101 * value is the same as the cached value, we assume a new timestamp hasn't 102 * been captured. This avoids reporting stale timestamps to the stack. This is 103 * only done if the has_ready_bitmap flag is not set in ice_ptp_tx structure. 104 */ 105 struct ice_tx_tstamp { 106 struct sk_buff *skb; 107 unsigned long start; 108 u64 cached_tstamp; 109 }; 110 111 /** 112 * enum ice_tx_tstamp_work - Status of Tx timestamp work function 113 * @ICE_TX_TSTAMP_WORK_DONE: Tx timestamp processing is complete 114 * @ICE_TX_TSTAMP_WORK_PENDING: More Tx timestamps are pending 115 */ 116 enum ice_tx_tstamp_work { 117 ICE_TX_TSTAMP_WORK_DONE = 0, 118 ICE_TX_TSTAMP_WORK_PENDING, 119 }; 120 121 /** 122 * struct ice_ptp_tx - Tracking structure for all Tx timestamp requests on a port 123 * @lock: lock to prevent concurrent access to fields of this struct 124 * @tstamps: array of len to store outstanding requests 125 * @in_use: bitmap of len to indicate which slots are in use 126 * @stale: bitmap of len to indicate slots which have stale timestamps 127 * @block: which memory block (quad or port) the timestamps are captured in 128 * @offset: offset into timestamp block to get the real index 129 * @len: length of the tstamps and in_use fields. 130 * @init: if true, the tracker is initialized; 131 * @calibrating: if true, the PHY is calibrating the Tx offset. During this 132 * window, timestamps are temporarily disabled. 133 * @has_ready_bitmap: if true, the hardware has a valid Tx timestamp ready 134 * bitmap register. If false, fall back to verifying new 135 * timestamp values against previously cached copy. 136 * @last_ll_ts_idx_read: index of the last LL TS read by the FW 137 */ 138 struct ice_ptp_tx { 139 spinlock_t lock; /* lock protecting in_use bitmap */ 140 struct ice_tx_tstamp *tstamps; 141 unsigned long *in_use; 142 unsigned long *stale; 143 u8 block; 144 u8 offset; 145 u8 len; 146 u8 init : 1; 147 u8 calibrating : 1; 148 u8 has_ready_bitmap : 1; 149 s8 last_ll_ts_idx_read; 150 }; 151 152 /* Quad and port information for initializing timestamp blocks */ 153 #define INDEX_PER_QUAD 64 154 #define INDEX_PER_PORT_E82X 16 155 #define INDEX_PER_PORT_E810 64 156 157 /** 158 * struct ice_ptp_port - data used to initialize an external port for PTP 159 * 160 * This structure contains data indicating whether a single external port is 161 * ready for PTP functionality. It is used to track the port initialization 162 * and determine when the port's PHY offset is valid. 163 * 164 * @list_member: list member structure of auxiliary device 165 * @tx: Tx timestamp tracking for this port 166 * @aux_dev: auxiliary device associated with this port 167 * @ov_work: delayed work task for tracking when PHY offset is valid 168 * @ps_lock: mutex used to protect the overall PTP PHY start procedure 169 * @link_up: indicates whether the link is up 170 * @tx_fifo_busy_cnt: number of times the Tx FIFO was busy 171 * @port_num: the port number this structure represents 172 */ 173 struct ice_ptp_port { 174 struct list_head list_member; 175 struct ice_ptp_tx tx; 176 struct auxiliary_device aux_dev; 177 struct kthread_delayed_work ov_work; 178 struct mutex ps_lock; /* protects overall PTP PHY start procedure */ 179 bool link_up; 180 u8 tx_fifo_busy_cnt; 181 u8 port_num; 182 }; 183 184 enum ice_ptp_tx_interrupt { 185 ICE_PTP_TX_INTERRUPT_NONE = 0, 186 ICE_PTP_TX_INTERRUPT_SELF, 187 ICE_PTP_TX_INTERRUPT_ALL, 188 }; 189 190 /** 191 * struct ice_ptp_port_owner - data used to handle the PTP clock owner info 192 * 193 * This structure contains data necessary for the PTP clock owner to correctly 194 * handle the timestamping feature for all attached ports. 195 * 196 * @aux_driver: the structure carring the auxiliary driver information 197 * @ports: list of porst handled by this port owner 198 * @lock: protect access to ports list 199 */ 200 struct ice_ptp_port_owner { 201 struct auxiliary_driver aux_driver; 202 struct list_head ports; 203 struct mutex lock; 204 }; 205 206 #define GLTSYN_TGT_H_IDX_MAX 4 207 208 enum ice_ptp_state { 209 ICE_PTP_UNINIT = 0, 210 ICE_PTP_INITIALIZING, 211 ICE_PTP_READY, 212 ICE_PTP_RESETTING, 213 ICE_PTP_ERROR, 214 }; 215 216 /** 217 * struct ice_ptp - data used for integrating with CONFIG_PTP_1588_CLOCK 218 * @state: current state of PTP state machine 219 * @tx_interrupt_mode: the TX interrupt mode for the PTP clock 220 * @port: data for the PHY port initialization procedure 221 * @ports_owner: data for the auxiliary driver owner 222 * @work: delayed work function for periodic tasks 223 * @cached_phc_time: a cached copy of the PHC time for timestamp extension 224 * @cached_phc_jiffies: jiffies when cached_phc_time was last updated 225 * @ext_ts_chan: the external timestamp channel in use 226 * @ext_ts_irq: the external timestamp IRQ in use 227 * @kworker: kwork thread for handling periodic work 228 * @perout_channels: periodic output data 229 * @info: structure defining PTP hardware capabilities 230 * @clock: pointer to registered PTP clock device 231 * @tstamp_config: hardware timestamping configuration 232 * @reset_time: kernel time after clock stop on reset 233 * @tx_hwtstamp_skipped: number of Tx time stamp requests skipped 234 * @tx_hwtstamp_timeouts: number of Tx skbs discarded with no time stamp 235 * @tx_hwtstamp_flushed: number of Tx skbs flushed due to interface closed 236 * @tx_hwtstamp_discarded: number of Tx skbs discarded due to cached PHC time 237 * being too old to correctly extend timestamp 238 * @late_cached_phc_updates: number of times cached PHC update is late 239 */ 240 struct ice_ptp { 241 enum ice_ptp_state state; 242 enum ice_ptp_tx_interrupt tx_interrupt_mode; 243 struct ice_ptp_port port; 244 struct ice_ptp_port_owner ports_owner; 245 struct kthread_delayed_work work; 246 u64 cached_phc_time; 247 unsigned long cached_phc_jiffies; 248 u8 ext_ts_chan; 249 u8 ext_ts_irq; 250 struct kthread_worker *kworker; 251 struct ice_perout_channel perout_channels[GLTSYN_TGT_H_IDX_MAX]; 252 struct ptp_clock_info info; 253 struct ptp_clock *clock; 254 struct hwtstamp_config tstamp_config; 255 u64 reset_time; 256 u32 tx_hwtstamp_skipped; 257 u32 tx_hwtstamp_timeouts; 258 u32 tx_hwtstamp_flushed; 259 u32 tx_hwtstamp_discarded; 260 u32 late_cached_phc_updates; 261 }; 262 263 #define __ptp_port_to_ptp(p) \ 264 container_of((p), struct ice_ptp, port) 265 #define ptp_port_to_pf(p) \ 266 container_of(__ptp_port_to_ptp((p)), struct ice_pf, ptp) 267 268 #define __ptp_info_to_ptp(i) \ 269 container_of((i), struct ice_ptp, info) 270 #define ptp_info_to_pf(i) \ 271 container_of(__ptp_info_to_ptp((i)), struct ice_pf, ptp) 272 273 #define PFTSYN_SEM_BYTES 4 274 #define PTP_SHARED_CLK_IDX_VALID BIT(31) 275 #define TS_CMD_MASK 0xF 276 #define SYNC_EXEC_CMD 0x3 277 #define ICE_PTP_TS_VALID BIT(0) 278 279 #define FIFO_EMPTY BIT(2) 280 #define FIFO_OK 0xFF 281 #define ICE_PTP_FIFO_NUM_CHECKS 5 282 /* Per-channel register definitions */ 283 #define GLTSYN_AUX_OUT(_chan, _idx) (GLTSYN_AUX_OUT_0(_idx) + ((_chan) * 8)) 284 #define GLTSYN_AUX_IN(_chan, _idx) (GLTSYN_AUX_IN_0(_idx) + ((_chan) * 8)) 285 #define GLTSYN_CLKO(_chan, _idx) (GLTSYN_CLKO_0(_idx) + ((_chan) * 8)) 286 #define GLTSYN_TGT_L(_chan, _idx) (GLTSYN_TGT_L_0(_idx) + ((_chan) * 16)) 287 #define GLTSYN_TGT_H(_chan, _idx) (GLTSYN_TGT_H_0(_idx) + ((_chan) * 16)) 288 #define GLTSYN_EVNT_L(_chan, _idx) (GLTSYN_EVNT_L_0(_idx) + ((_chan) * 16)) 289 #define GLTSYN_EVNT_H(_chan, _idx) (GLTSYN_EVNT_H_0(_idx) + ((_chan) * 16)) 290 #define GLTSYN_EVNT_H_IDX_MAX 3 291 292 /* Pin definitions for PTP PPS out */ 293 #define PPS_CLK_GEN_CHAN 3 294 #define PPS_CLK_SRC_CHAN 2 295 #define PPS_PIN_INDEX 5 296 #define TIME_SYNC_PIN_INDEX 4 297 #define N_EXT_TS_E810 3 298 #define N_PER_OUT_E810 4 299 #define N_PER_OUT_E810T 3 300 #define N_PER_OUT_NO_SMA_E810T 2 301 #define N_EXT_TS_NO_SMA_E810T 2 302 #define ETH_GLTSYN_ENA(_i) (0x03000348 + ((_i) * 4)) 303 304 #if IS_ENABLED(CONFIG_PTP_1588_CLOCK) 305 int ice_ptp_clock_index(struct ice_pf *pf); 306 struct ice_pf; 307 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr); 308 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr); 309 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf); 310 311 void ice_ptp_extts_event(struct ice_pf *pf); 312 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb); 313 void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx); 314 void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx); 315 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf); 316 317 u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc, 318 const struct ice_pkt_ctx *pkt_ctx); 319 void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 320 void ice_ptp_prepare_for_reset(struct ice_pf *pf, 321 enum ice_reset_req reset_type); 322 void ice_ptp_init(struct ice_pf *pf); 323 void ice_ptp_release(struct ice_pf *pf); 324 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup); 325 #else /* IS_ENABLED(CONFIG_PTP_1588_CLOCK) */ 326 static inline int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) 327 { 328 return -EOPNOTSUPP; 329 } 330 331 static inline int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) 332 { 333 return -EOPNOTSUPP; 334 } 335 336 static inline void ice_ptp_restore_timestamp_mode(struct ice_pf *pf) { } 337 static inline void ice_ptp_extts_event(struct ice_pf *pf) { } 338 static inline s8 339 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) 340 { 341 return -1; 342 } 343 344 static inline void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx) 345 { } 346 347 static inline void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx) { } 348 349 static inline bool ice_ptp_process_ts(struct ice_pf *pf) 350 { 351 return true; 352 } 353 354 static inline u64 355 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc, 356 const struct ice_pkt_ctx *pkt_ctx) 357 { 358 return 0; 359 } 360 361 static inline void ice_ptp_rebuild(struct ice_pf *pf, 362 enum ice_reset_req reset_type) 363 { 364 } 365 366 static inline void ice_ptp_prepare_for_reset(struct ice_pf *pf, 367 enum ice_reset_req reset_type) 368 { 369 } 370 static inline void ice_ptp_init(struct ice_pf *pf) { } 371 static inline void ice_ptp_release(struct ice_pf *pf) { } 372 static inline void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) 373 { 374 } 375 376 static inline int ice_ptp_clock_index(struct ice_pf *pf) 377 { 378 return -1; 379 } 380 #endif /* IS_ENABLED(CONFIG_PTP_1588_CLOCK) */ 381 #endif /* _ICE_PTP_H_ */ 382