xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp.c (revision add452d09a38c7a7c44aea55c1015392cebf9fa7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7 #include "ice_cgu_regs.h"
8 
9 static const char ice_pin_names[][64] = {
10 	"SDP0",
11 	"SDP1",
12 	"SDP2",
13 	"SDP3",
14 	"TIME_SYNC",
15 	"1PPS"
16 };
17 
18 static const struct ice_ptp_pin_desc ice_pin_desc_e82x[] = {
19 	/* name,        gpio */
20 	{  TIME_SYNC, {  4, -1 }},
21 	{  ONE_PPS,   { -1,  5 }},
22 };
23 
24 static const struct ice_ptp_pin_desc ice_pin_desc_e825c[] = {
25 	/* name,        gpio */
26 	{  SDP0,      {  0,  0 }},
27 	{  SDP1,      {  1,  1 }},
28 	{  SDP2,      {  2,  2 }},
29 	{  SDP3,      {  3,  3 }},
30 	{  TIME_SYNC, {  4, -1 }},
31 	{  ONE_PPS,   { -1,  5 }},
32 };
33 
34 static const struct ice_ptp_pin_desc ice_pin_desc_e810[] = {
35 	/* name,      gpio */
36 	{  SDP0,    {  0, 0 }},
37 	{  SDP1,    {  1, 1 }},
38 	{  SDP2,    {  2, 2 }},
39 	{  SDP3,    {  3, 3 }},
40 	{  ONE_PPS, { -1, 5 }},
41 };
42 
43 static const char ice_pin_names_nvm[][64] = {
44 	"GNSS",
45 	"SMA1",
46 	"U.FL1",
47 	"SMA2",
48 	"U.FL2",
49 };
50 
51 static const struct ice_ptp_pin_desc ice_pin_desc_e810_sma[] = {
52 	/* name,   gpio */
53 	{  GNSS, {  1, -1 }},
54 	{  SMA1, {  1,  0 }},
55 	{  UFL1, { -1,  0 }},
56 	{  SMA2, {  3,  2 }},
57 	{  UFL2, {  3, -1 }},
58 };
59 
60 static struct ice_pf *ice_get_ctrl_pf(struct ice_pf *pf)
61 {
62 	return !pf->adapter ? NULL : pf->adapter->ctrl_pf;
63 }
64 
65 static struct ice_ptp *ice_get_ctrl_ptp(struct ice_pf *pf)
66 {
67 	struct ice_pf *ctrl_pf = ice_get_ctrl_pf(pf);
68 
69 	return !ctrl_pf ? NULL : &ctrl_pf->ptp;
70 }
71 
72 /**
73  * ice_ptp_find_pin_idx - Find pin index in ptp_pin_desc
74  * @pf: Board private structure
75  * @func: Pin function
76  * @chan: GPIO channel
77  *
78  * Return: positive pin number when pin is present, -1 otherwise
79  */
80 static int ice_ptp_find_pin_idx(struct ice_pf *pf, enum ptp_pin_function func,
81 				unsigned int chan)
82 {
83 	const struct ptp_clock_info *info = &pf->ptp.info;
84 	int i;
85 
86 	for (i = 0; i < info->n_pins; i++) {
87 		if (info->pin_config[i].func == func &&
88 		    info->pin_config[i].chan == chan)
89 			return i;
90 	}
91 
92 	return -1;
93 }
94 
95 /**
96  * ice_ptp_update_sma_data - update SMA pins data according to pins setup
97  * @pf: Board private structure
98  * @sma_pins: parsed SMA pins status
99  * @data: SMA data to update
100  */
101 static void ice_ptp_update_sma_data(struct ice_pf *pf, unsigned int sma_pins[],
102 				    u8 *data)
103 {
104 	const char *state1, *state2;
105 
106 	/* Set the right state based on the desired configuration.
107 	 * When bit is set, functionality is disabled.
108 	 */
109 	*data &= ~ICE_ALL_SMA_MASK;
110 	if (!sma_pins[UFL1 - 1]) {
111 		if (sma_pins[SMA1 - 1] == PTP_PF_EXTTS) {
112 			state1 = "SMA1 Rx, U.FL1 disabled";
113 			*data |= ICE_SMA1_TX_EN;
114 		} else if (sma_pins[SMA1 - 1] == PTP_PF_PEROUT) {
115 			state1 = "SMA1 Tx U.FL1 disabled";
116 			*data |= ICE_SMA1_DIR_EN;
117 		} else {
118 			state1 = "SMA1 disabled, U.FL1 disabled";
119 			*data |= ICE_SMA1_MASK;
120 		}
121 	} else {
122 		/* U.FL1 Tx will always enable SMA1 Rx */
123 		state1 = "SMA1 Rx, U.FL1 Tx";
124 	}
125 
126 	if (!sma_pins[UFL2 - 1]) {
127 		if (sma_pins[SMA2 - 1] == PTP_PF_EXTTS) {
128 			state2 = "SMA2 Rx, U.FL2 disabled";
129 			*data |= ICE_SMA2_TX_EN | ICE_SMA2_UFL2_RX_DIS;
130 		} else if (sma_pins[SMA2 - 1] == PTP_PF_PEROUT) {
131 			state2 = "SMA2 Tx, U.FL2 disabled";
132 			*data |= ICE_SMA2_DIR_EN | ICE_SMA2_UFL2_RX_DIS;
133 		} else {
134 			state2 = "SMA2 disabled, U.FL2 disabled";
135 			*data |= ICE_SMA2_MASK;
136 		}
137 	} else {
138 		if (!sma_pins[SMA2 - 1]) {
139 			state2 = "SMA2 disabled, U.FL2 Rx";
140 			*data |= ICE_SMA2_DIR_EN | ICE_SMA2_TX_EN;
141 		} else {
142 			state2 = "SMA2 Tx, U.FL2 Rx";
143 			*data |= ICE_SMA2_DIR_EN;
144 		}
145 	}
146 
147 	dev_dbg(ice_pf_to_dev(pf), "%s, %s\n", state1, state2);
148 }
149 
150 /**
151  * ice_ptp_set_sma_cfg - set the configuration of the SMA control logic
152  * @pf: Board private structure
153  *
154  * Return: 0 on success, negative error code otherwise
155  */
156 static int ice_ptp_set_sma_cfg(struct ice_pf *pf)
157 {
158 	const struct ice_ptp_pin_desc *ice_pins = pf->ptp.ice_pin_desc;
159 	struct ptp_pin_desc *pins = pf->ptp.pin_desc;
160 	unsigned int sma_pins[ICE_SMA_PINS_NUM] = {};
161 	int err;
162 	u8 data;
163 
164 	/* Read initial pin state value */
165 	err = ice_read_sma_ctrl(&pf->hw, &data);
166 	if (err)
167 		return err;
168 
169 	/* Get SMA/U.FL pins states */
170 	for (int i = 0; i < pf->ptp.info.n_pins; i++)
171 		if (pins[i].func) {
172 			int name_idx = ice_pins[i].name_idx;
173 
174 			switch (name_idx) {
175 			case SMA1:
176 			case UFL1:
177 			case SMA2:
178 			case UFL2:
179 				sma_pins[name_idx - 1] = pins[i].func;
180 				break;
181 			default:
182 				continue;
183 			}
184 		}
185 
186 	ice_ptp_update_sma_data(pf, sma_pins, &data);
187 	return ice_write_sma_ctrl(&pf->hw, data);
188 }
189 
190 /**
191  * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
192  * @pf: Board private structure
193  *
194  * Program the device to respond appropriately to the Tx timestamp interrupt
195  * cause.
196  */
197 static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
198 {
199 	struct ice_hw *hw = &pf->hw;
200 	bool enable;
201 	u32 val;
202 
203 	switch (pf->ptp.tx_interrupt_mode) {
204 	case ICE_PTP_TX_INTERRUPT_ALL:
205 		/* React to interrupts across all quads. */
206 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
207 		enable = true;
208 		break;
209 	case ICE_PTP_TX_INTERRUPT_NONE:
210 		/* Do not react to interrupts on any quad. */
211 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
212 		enable = false;
213 		break;
214 	case ICE_PTP_TX_INTERRUPT_SELF:
215 	default:
216 		enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
217 		break;
218 	}
219 
220 	/* Configure the Tx timestamp interrupt */
221 	val = rd32(hw, PFINT_OICR_ENA);
222 	if (enable)
223 		val |= PFINT_OICR_TSYN_TX_M;
224 	else
225 		val &= ~PFINT_OICR_TSYN_TX_M;
226 	wr32(hw, PFINT_OICR_ENA, val);
227 }
228 
229 /**
230  * ice_set_rx_tstamp - Enable or disable Rx timestamping
231  * @pf: The PF pointer to search in
232  * @on: bool value for whether timestamps are enabled or disabled
233  */
234 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
235 {
236 	struct ice_vsi *vsi;
237 	u16 i;
238 
239 	vsi = ice_get_main_vsi(pf);
240 	if (!vsi || !vsi->rx_rings)
241 		return;
242 
243 	/* Set the timestamp flag for all the Rx rings */
244 	ice_for_each_rxq(vsi, i) {
245 		if (!vsi->rx_rings[i])
246 			continue;
247 		vsi->rx_rings[i]->ptp_rx = on;
248 	}
249 }
250 
251 /**
252  * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
253  * @pf: Board private structure
254  *
255  * Called during preparation for reset to temporarily disable timestamping on
256  * the device. Called during remove to disable timestamping while cleaning up
257  * driver resources.
258  */
259 static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
260 {
261 	struct ice_hw *hw = &pf->hw;
262 	u32 val;
263 
264 	val = rd32(hw, PFINT_OICR_ENA);
265 	val &= ~PFINT_OICR_TSYN_TX_M;
266 	wr32(hw, PFINT_OICR_ENA, val);
267 
268 	ice_set_rx_tstamp(pf, false);
269 }
270 
271 /**
272  * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
273  * @pf: Board private structure
274  *
275  * Called at the end of rebuild to restore timestamp configuration after
276  * a device reset.
277  */
278 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
279 {
280 	struct ice_hw *hw = &pf->hw;
281 	bool enable_rx;
282 
283 	ice_ptp_cfg_tx_interrupt(pf);
284 
285 	enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
286 	ice_set_rx_tstamp(pf, enable_rx);
287 
288 	/* Trigger an immediate software interrupt to ensure that timestamps
289 	 * which occurred during reset are handled now.
290 	 */
291 	wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
292 	ice_flush(hw);
293 }
294 
295 /**
296  * ice_ptp_read_src_clk_reg - Read the source clock register
297  * @pf: Board private structure
298  * @sts: Optional parameter for holding a pair of system timestamps from
299  *       the system clock. Will be ignored if NULL is given.
300  */
301 static u64
302 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
303 {
304 	struct ice_hw *hw = &pf->hw;
305 	u32 hi, lo, lo2;
306 	u8 tmr_idx;
307 
308 	tmr_idx = ice_get_ptp_src_clock_index(hw);
309 	guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
310 	/* Read the system timestamp pre PHC read */
311 	ptp_read_system_prets(sts);
312 
313 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
314 
315 	/* Read the system timestamp post PHC read */
316 	ptp_read_system_postts(sts);
317 
318 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
319 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
320 
321 	if (lo2 < lo) {
322 		/* if TIME_L rolled over read TIME_L again and update
323 		 * system timestamps
324 		 */
325 		ptp_read_system_prets(sts);
326 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
327 		ptp_read_system_postts(sts);
328 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
329 	}
330 
331 	return ((u64)hi << 32) | lo;
332 }
333 
334 /**
335  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
336  * @cached_phc_time: recently cached copy of PHC time
337  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
338  *
339  * Hardware captures timestamps which contain only 32 bits of nominal
340  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
341  * Note that the captured timestamp values may be 40 bits, but the lower
342  * 8 bits are sub-nanoseconds and generally discarded.
343  *
344  * Extend the 32bit nanosecond timestamp using the following algorithm and
345  * assumptions:
346  *
347  * 1) have a recently cached copy of the PHC time
348  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
349  *    seconds) before or after the PHC time was captured.
350  * 3) calculate the delta between the cached time and the timestamp
351  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
352  *    captured after the PHC time. In this case, the full timestamp is just
353  *    the cached PHC time plus the delta.
354  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
355  *    timestamp was captured *before* the PHC time, i.e. because the PHC
356  *    cache was updated after the timestamp was captured by hardware. In this
357  *    case, the full timestamp is the cached time minus the inverse delta.
358  *
359  * This algorithm works even if the PHC time was updated after a Tx timestamp
360  * was requested, but before the Tx timestamp event was reported from
361  * hardware.
362  *
363  * This calculation primarily relies on keeping the cached PHC time up to
364  * date. If the timestamp was captured more than 2^31 nanoseconds after the
365  * PHC time, it is possible that the lower 32bits of PHC time have
366  * overflowed more than once, and we might generate an incorrect timestamp.
367  *
368  * This is prevented by (a) periodically updating the cached PHC time once
369  * a second, and (b) discarding any Tx timestamp packet if it has waited for
370  * a timestamp for more than one second.
371  */
372 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
373 {
374 	u32 delta, phc_time_lo;
375 	u64 ns;
376 
377 	/* Extract the lower 32 bits of the PHC time */
378 	phc_time_lo = (u32)cached_phc_time;
379 
380 	/* Calculate the delta between the lower 32bits of the cached PHC
381 	 * time and the in_tstamp value
382 	 */
383 	delta = (in_tstamp - phc_time_lo);
384 
385 	/* Do not assume that the in_tstamp is always more recent than the
386 	 * cached PHC time. If the delta is large, it indicates that the
387 	 * in_tstamp was taken in the past, and should be converted
388 	 * forward.
389 	 */
390 	if (delta > (U32_MAX / 2)) {
391 		/* reverse the delta calculation here */
392 		delta = (phc_time_lo - in_tstamp);
393 		ns = cached_phc_time - delta;
394 	} else {
395 		ns = cached_phc_time + delta;
396 	}
397 
398 	return ns;
399 }
400 
401 /**
402  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
403  * @pf: Board private structure
404  * @in_tstamp: Ingress/egress 40b timestamp value
405  *
406  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
407  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
408  *
409  *  *--------------------------------------------------------------*
410  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
411  *  *--------------------------------------------------------------*
412  *
413  * The low bit is an indicator of whether the timestamp is valid. The next
414  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
415  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
416  *
417  * It is assumed that the caller verifies the timestamp is valid prior to
418  * calling this function.
419  *
420  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
421  * time stored in the device private PTP structure as the basis for timestamp
422  * extension.
423  *
424  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
425  * algorithm.
426  */
427 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
428 {
429 	const u64 mask = GENMASK_ULL(31, 0);
430 	unsigned long discard_time;
431 
432 	/* Discard the hardware timestamp if the cached PHC time is too old */
433 	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
434 	if (time_is_before_jiffies(discard_time)) {
435 		pf->ptp.tx_hwtstamp_discarded++;
436 		return 0;
437 	}
438 
439 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
440 				     (in_tstamp >> 8) & mask);
441 }
442 
443 /**
444  * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
445  * @tx: the PTP Tx timestamp tracker to check
446  *
447  * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
448  * to accept new timestamp requests.
449  *
450  * Assumes the tx->lock spinlock is already held.
451  */
452 static bool
453 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
454 {
455 	lockdep_assert_held(&tx->lock);
456 
457 	return tx->init && !tx->calibrating;
458 }
459 
460 /**
461  * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW
462  * @tx: the PTP Tx timestamp tracker
463  * @idx: index of the timestamp to request
464  */
465 void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
466 {
467 	struct ice_ptp_port *ptp_port;
468 	struct sk_buff *skb;
469 	struct ice_pf *pf;
470 
471 	if (!tx->init)
472 		return;
473 
474 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
475 	pf = ptp_port_to_pf(ptp_port);
476 
477 	/* Drop packets which have waited for more than 2 seconds */
478 	if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
479 		/* Count the number of Tx timestamps that timed out */
480 		pf->ptp.tx_hwtstamp_timeouts++;
481 
482 		skb = tx->tstamps[idx].skb;
483 		tx->tstamps[idx].skb = NULL;
484 		clear_bit(idx, tx->in_use);
485 
486 		dev_kfree_skb_any(skb);
487 		return;
488 	}
489 
490 	ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
491 
492 	/* Write TS index to read to the PF register so the FW can read it */
493 	wr32(&pf->hw, PF_SB_ATQBAL,
494 	     TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) |
495 	     TS_LL_READ_TS);
496 	tx->last_ll_ts_idx_read = idx;
497 }
498 
499 /**
500  * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port
501  * @tx: the PTP Tx timestamp tracker
502  */
503 void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx)
504 {
505 	struct skb_shared_hwtstamps shhwtstamps = {};
506 	u8 idx = tx->last_ll_ts_idx_read;
507 	struct ice_ptp_port *ptp_port;
508 	u64 raw_tstamp, tstamp;
509 	bool drop_ts = false;
510 	struct sk_buff *skb;
511 	struct ice_pf *pf;
512 	u32 val;
513 
514 	if (!tx->init || tx->last_ll_ts_idx_read < 0)
515 		return;
516 
517 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
518 	pf = ptp_port_to_pf(ptp_port);
519 
520 	ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
521 
522 	val = rd32(&pf->hw, PF_SB_ATQBAL);
523 
524 	/* When the bit is cleared, the TS is ready in the register */
525 	if (val & TS_LL_READ_TS) {
526 		dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready");
527 		return;
528 	}
529 
530 	/* High 8 bit value of the TS is on the bits 16:23 */
531 	raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val);
532 	raw_tstamp <<= 32;
533 
534 	/* Read the low 32 bit value */
535 	raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH);
536 
537 	/* Devices using this interface always verify the timestamp differs
538 	 * relative to the last cached timestamp value.
539 	 */
540 	if (raw_tstamp == tx->tstamps[idx].cached_tstamp)
541 		return;
542 
543 	tx->tstamps[idx].cached_tstamp = raw_tstamp;
544 	clear_bit(idx, tx->in_use);
545 	skb = tx->tstamps[idx].skb;
546 	tx->tstamps[idx].skb = NULL;
547 	if (test_and_clear_bit(idx, tx->stale))
548 		drop_ts = true;
549 
550 	if (!skb)
551 		return;
552 
553 	if (drop_ts) {
554 		dev_kfree_skb_any(skb);
555 		return;
556 	}
557 
558 	/* Extend the timestamp using cached PHC time */
559 	tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
560 	if (tstamp) {
561 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
562 		ice_trace(tx_tstamp_complete, skb, idx);
563 	}
564 
565 	skb_tstamp_tx(skb, &shhwtstamps);
566 	dev_kfree_skb_any(skb);
567 }
568 
569 /**
570  * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
571  * @tx: the PTP Tx timestamp tracker
572  *
573  * Process timestamps captured by the PHY associated with this port. To do
574  * this, loop over each index with a waiting skb.
575  *
576  * If a given index has a valid timestamp, perform the following steps:
577  *
578  * 1) check that the timestamp request is not stale
579  * 2) check that a timestamp is ready and available in the PHY memory bank
580  * 3) read and copy the timestamp out of the PHY register
581  * 4) unlock the index by clearing the associated in_use bit
582  * 5) check if the timestamp is stale, and discard if so
583  * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
584  * 7) send this 64 bit timestamp to the stack
585  *
586  * Note that we do not hold the tracking lock while reading the Tx timestamp.
587  * This is because reading the timestamp requires taking a mutex that might
588  * sleep.
589  *
590  * The only place where we set in_use is when a new timestamp is initiated
591  * with a slot index. This is only called in the hard xmit routine where an
592  * SKB has a request flag set. The only places where we clear this bit is this
593  * function, or during teardown when the Tx timestamp tracker is being
594  * removed. A timestamp index will never be re-used until the in_use bit for
595  * that index is cleared.
596  *
597  * If a Tx thread starts a new timestamp, we might not begin processing it
598  * right away but we will notice it at the end when we re-queue the task.
599  *
600  * If a Tx thread starts a new timestamp just after this function exits, the
601  * interrupt for that timestamp should re-trigger this function once
602  * a timestamp is ready.
603  *
604  * In cases where the PTP hardware clock was directly adjusted, some
605  * timestamps may not be able to safely use the timestamp extension math. In
606  * this case, software will set the stale bit for any outstanding Tx
607  * timestamps when the clock is adjusted. Then this function will discard
608  * those captured timestamps instead of sending them to the stack.
609  *
610  * If a Tx packet has been waiting for more than 2 seconds, it is not possible
611  * to correctly extend the timestamp using the cached PHC time. It is
612  * extremely unlikely that a packet will ever take this long to timestamp. If
613  * we detect a Tx timestamp request that has waited for this long we assume
614  * the packet will never be sent by hardware and discard it without reading
615  * the timestamp register.
616  */
617 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
618 {
619 	struct ice_ptp_port *ptp_port;
620 	unsigned long flags;
621 	struct ice_pf *pf;
622 	struct ice_hw *hw;
623 	u64 tstamp_ready;
624 	bool link_up;
625 	int err;
626 	u8 idx;
627 
628 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
629 	pf = ptp_port_to_pf(ptp_port);
630 	hw = &pf->hw;
631 
632 	/* Read the Tx ready status first */
633 	if (tx->has_ready_bitmap) {
634 		err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
635 		if (err)
636 			return;
637 	}
638 
639 	/* Drop packets if the link went down */
640 	link_up = ptp_port->link_up;
641 
642 	for_each_set_bit(idx, tx->in_use, tx->len) {
643 		struct skb_shared_hwtstamps shhwtstamps = {};
644 		u8 phy_idx = idx + tx->offset;
645 		u64 raw_tstamp = 0, tstamp;
646 		bool drop_ts = !link_up;
647 		struct sk_buff *skb;
648 
649 		/* Drop packets which have waited for more than 2 seconds */
650 		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
651 			drop_ts = true;
652 
653 			/* Count the number of Tx timestamps that timed out */
654 			pf->ptp.tx_hwtstamp_timeouts++;
655 		}
656 
657 		/* Only read a timestamp from the PHY if its marked as ready
658 		 * by the tstamp_ready register. This avoids unnecessary
659 		 * reading of timestamps which are not yet valid. This is
660 		 * important as we must read all timestamps which are valid
661 		 * and only timestamps which are valid during each interrupt.
662 		 * If we do not, the hardware logic for generating a new
663 		 * interrupt can get stuck on some devices.
664 		 */
665 		if (tx->has_ready_bitmap &&
666 		    !(tstamp_ready & BIT_ULL(phy_idx))) {
667 			if (drop_ts)
668 				goto skip_ts_read;
669 
670 			continue;
671 		}
672 
673 		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
674 
675 		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
676 		if (err && !drop_ts)
677 			continue;
678 
679 		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
680 
681 		/* For PHYs which don't implement a proper timestamp ready
682 		 * bitmap, verify that the timestamp value is different
683 		 * from the last cached timestamp. If it is not, skip this for
684 		 * now assuming it hasn't yet been captured by hardware.
685 		 */
686 		if (!drop_ts && !tx->has_ready_bitmap &&
687 		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
688 			continue;
689 
690 		/* Discard any timestamp value without the valid bit set */
691 		if (!(raw_tstamp & ICE_PTP_TS_VALID))
692 			drop_ts = true;
693 
694 skip_ts_read:
695 		spin_lock_irqsave(&tx->lock, flags);
696 		if (!tx->has_ready_bitmap && raw_tstamp)
697 			tx->tstamps[idx].cached_tstamp = raw_tstamp;
698 		clear_bit(idx, tx->in_use);
699 		skb = tx->tstamps[idx].skb;
700 		tx->tstamps[idx].skb = NULL;
701 		if (test_and_clear_bit(idx, tx->stale))
702 			drop_ts = true;
703 		spin_unlock_irqrestore(&tx->lock, flags);
704 
705 		/* It is unlikely but possible that the SKB will have been
706 		 * flushed at this point due to link change or teardown.
707 		 */
708 		if (!skb)
709 			continue;
710 
711 		if (drop_ts) {
712 			dev_kfree_skb_any(skb);
713 			continue;
714 		}
715 
716 		/* Extend the timestamp using cached PHC time */
717 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
718 		if (tstamp) {
719 			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
720 			ice_trace(tx_tstamp_complete, skb, idx);
721 		}
722 
723 		skb_tstamp_tx(skb, &shhwtstamps);
724 		dev_kfree_skb_any(skb);
725 	}
726 }
727 
728 /**
729  * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
730  * @pf: Board private structure
731  */
732 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
733 {
734 	struct ice_ptp_port *port;
735 	unsigned int i;
736 
737 	mutex_lock(&pf->adapter->ports.lock);
738 	list_for_each_entry(port, &pf->adapter->ports.ports, list_node) {
739 		struct ice_ptp_tx *tx = &port->tx;
740 
741 		if (!tx || !tx->init)
742 			continue;
743 
744 		ice_ptp_process_tx_tstamp(tx);
745 	}
746 	mutex_unlock(&pf->adapter->ports.lock);
747 
748 	for (i = 0; i < ICE_GET_QUAD_NUM(pf->hw.ptp.num_lports); i++) {
749 		u64 tstamp_ready;
750 		int err;
751 
752 		/* Read the Tx ready status first */
753 		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
754 		if (err)
755 			break;
756 		else if (tstamp_ready)
757 			return ICE_TX_TSTAMP_WORK_PENDING;
758 	}
759 
760 	return ICE_TX_TSTAMP_WORK_DONE;
761 }
762 
763 /**
764  * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
765  * @tx: Tx tracking structure to initialize
766  *
767  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
768  * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
769  */
770 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
771 {
772 	bool more_timestamps;
773 	unsigned long flags;
774 
775 	if (!tx->init)
776 		return ICE_TX_TSTAMP_WORK_DONE;
777 
778 	/* Process the Tx timestamp tracker */
779 	ice_ptp_process_tx_tstamp(tx);
780 
781 	/* Check if there are outstanding Tx timestamps */
782 	spin_lock_irqsave(&tx->lock, flags);
783 	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
784 	spin_unlock_irqrestore(&tx->lock, flags);
785 
786 	if (more_timestamps)
787 		return ICE_TX_TSTAMP_WORK_PENDING;
788 
789 	return ICE_TX_TSTAMP_WORK_DONE;
790 }
791 
792 /**
793  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
794  * @tx: Tx tracking structure to initialize
795  *
796  * Assumes that the length has already been initialized. Do not call directly,
797  * use the ice_ptp_init_tx_* instead.
798  */
799 static int
800 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
801 {
802 	unsigned long *in_use, *stale;
803 	struct ice_tx_tstamp *tstamps;
804 
805 	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
806 	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
807 	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
808 
809 	if (!tstamps || !in_use || !stale) {
810 		kfree(tstamps);
811 		bitmap_free(in_use);
812 		bitmap_free(stale);
813 
814 		return -ENOMEM;
815 	}
816 
817 	tx->tstamps = tstamps;
818 	tx->in_use = in_use;
819 	tx->stale = stale;
820 	tx->init = 1;
821 	tx->last_ll_ts_idx_read = -1;
822 
823 	spin_lock_init(&tx->lock);
824 
825 	return 0;
826 }
827 
828 /**
829  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
830  * @pf: Board private structure
831  * @tx: the tracker to flush
832  *
833  * Called during teardown when a Tx tracker is being removed.
834  */
835 static void
836 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
837 {
838 	struct ice_hw *hw = &pf->hw;
839 	unsigned long flags;
840 	u64 tstamp_ready;
841 	int err;
842 	u8 idx;
843 
844 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
845 	if (err) {
846 		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
847 			tx->block, err);
848 
849 		/* If we fail to read the Tx timestamp ready bitmap just
850 		 * skip clearing the PHY timestamps.
851 		 */
852 		tstamp_ready = 0;
853 	}
854 
855 	for_each_set_bit(idx, tx->in_use, tx->len) {
856 		u8 phy_idx = idx + tx->offset;
857 		struct sk_buff *skb;
858 
859 		/* In case this timestamp is ready, we need to clear it. */
860 		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
861 			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
862 
863 		spin_lock_irqsave(&tx->lock, flags);
864 		skb = tx->tstamps[idx].skb;
865 		tx->tstamps[idx].skb = NULL;
866 		clear_bit(idx, tx->in_use);
867 		clear_bit(idx, tx->stale);
868 		spin_unlock_irqrestore(&tx->lock, flags);
869 
870 		/* Count the number of Tx timestamps flushed */
871 		pf->ptp.tx_hwtstamp_flushed++;
872 
873 		/* Free the SKB after we've cleared the bit */
874 		dev_kfree_skb_any(skb);
875 	}
876 }
877 
878 /**
879  * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
880  * @tx: the tracker to mark
881  *
882  * Mark currently outstanding Tx timestamps as stale. This prevents sending
883  * their timestamp value to the stack. This is required to prevent extending
884  * the 40bit hardware timestamp incorrectly.
885  *
886  * This should be called when the PTP clock is modified such as after a set
887  * time request.
888  */
889 static void
890 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
891 {
892 	unsigned long flags;
893 
894 	spin_lock_irqsave(&tx->lock, flags);
895 	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
896 	spin_unlock_irqrestore(&tx->lock, flags);
897 }
898 
899 /**
900  * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock
901  * @pf: Board private structure
902  *
903  * Called by the clock owner to flush all the Tx timestamp trackers associated
904  * with the clock.
905  */
906 static void
907 ice_ptp_flush_all_tx_tracker(struct ice_pf *pf)
908 {
909 	struct ice_ptp_port *port;
910 
911 	list_for_each_entry(port, &pf->adapter->ports.ports, list_node)
912 		ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx);
913 }
914 
915 /**
916  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
917  * @pf: Board private structure
918  * @tx: Tx tracking structure to release
919  *
920  * Free memory associated with the Tx timestamp tracker.
921  */
922 static void
923 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
924 {
925 	unsigned long flags;
926 
927 	spin_lock_irqsave(&tx->lock, flags);
928 	tx->init = 0;
929 	spin_unlock_irqrestore(&tx->lock, flags);
930 
931 	/* wait for potentially outstanding interrupt to complete */
932 	synchronize_irq(pf->oicr_irq.virq);
933 
934 	ice_ptp_flush_tx_tracker(pf, tx);
935 
936 	kfree(tx->tstamps);
937 	tx->tstamps = NULL;
938 
939 	bitmap_free(tx->in_use);
940 	tx->in_use = NULL;
941 
942 	bitmap_free(tx->stale);
943 	tx->stale = NULL;
944 
945 	tx->len = 0;
946 }
947 
948 /**
949  * ice_ptp_init_tx_eth56g - Initialize tracking for Tx timestamps
950  * @pf: Board private structure
951  * @tx: the Tx tracking structure to initialize
952  * @port: the port this structure tracks
953  *
954  * Initialize the Tx timestamp tracker for this port. ETH56G PHYs
955  * have independent memory blocks for all ports.
956  *
957  * Return: 0 for success, -ENOMEM when failed to allocate Tx tracker
958  */
959 static int ice_ptp_init_tx_eth56g(struct ice_pf *pf, struct ice_ptp_tx *tx,
960 				  u8 port)
961 {
962 	tx->block = port;
963 	tx->offset = 0;
964 	tx->len = INDEX_PER_PORT_ETH56G;
965 	tx->has_ready_bitmap = 1;
966 
967 	return ice_ptp_alloc_tx_tracker(tx);
968 }
969 
970 /**
971  * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
972  * @pf: Board private structure
973  * @tx: the Tx tracking structure to initialize
974  * @port: the port this structure tracks
975  *
976  * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
977  * the timestamp block is shared for all ports in the same quad. To avoid
978  * ports using the same timestamp index, logically break the block of
979  * registers into chunks based on the port number.
980  */
981 static int
982 ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
983 {
984 	tx->block = ICE_GET_QUAD_NUM(port);
985 	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
986 	tx->len = INDEX_PER_PORT_E82X;
987 	tx->has_ready_bitmap = 1;
988 
989 	return ice_ptp_alloc_tx_tracker(tx);
990 }
991 
992 /**
993  * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
994  * @pf: Board private structure
995  * @tx: the Tx tracking structure to initialize
996  *
997  * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
998  * port has its own block of timestamps, independent of the other ports.
999  */
1000 static int
1001 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1002 {
1003 	tx->block = pf->hw.port_info->lport;
1004 	tx->offset = 0;
1005 	tx->len = INDEX_PER_PORT_E810;
1006 	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
1007 	 * verify new timestamps against cached copy of the last read
1008 	 * timestamp.
1009 	 */
1010 	tx->has_ready_bitmap = 0;
1011 
1012 	return ice_ptp_alloc_tx_tracker(tx);
1013 }
1014 
1015 /**
1016  * ice_ptp_update_cached_phctime - Update the cached PHC time values
1017  * @pf: Board specific private structure
1018  *
1019  * This function updates the system time values which are cached in the PF
1020  * structure and the Rx rings.
1021  *
1022  * This function must be called periodically to ensure that the cached value
1023  * is never more than 2 seconds old.
1024  *
1025  * Note that the cached copy in the PF PTP structure is always updated, even
1026  * if we can't update the copy in the Rx rings.
1027  *
1028  * Return:
1029  * * 0 - OK, successfully updated
1030  * * -EAGAIN - PF was busy, need to reschedule the update
1031  */
1032 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1033 {
1034 	struct device *dev = ice_pf_to_dev(pf);
1035 	unsigned long update_before;
1036 	u64 systime;
1037 	int i;
1038 
1039 	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1040 	if (pf->ptp.cached_phc_time &&
1041 	    time_is_before_jiffies(update_before)) {
1042 		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1043 
1044 		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1045 			 jiffies_to_msecs(time_taken));
1046 		pf->ptp.late_cached_phc_updates++;
1047 	}
1048 
1049 	/* Read the current PHC time */
1050 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1051 
1052 	/* Update the cached PHC time stored in the PF structure */
1053 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1054 	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1055 
1056 	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1057 		return -EAGAIN;
1058 
1059 	ice_for_each_vsi(pf, i) {
1060 		struct ice_vsi *vsi = pf->vsi[i];
1061 		int j;
1062 
1063 		if (!vsi)
1064 			continue;
1065 
1066 		if (vsi->type != ICE_VSI_PF)
1067 			continue;
1068 
1069 		ice_for_each_rxq(vsi, j) {
1070 			if (!vsi->rx_rings[j])
1071 				continue;
1072 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1073 		}
1074 	}
1075 	clear_bit(ICE_CFG_BUSY, pf->state);
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1082  * @pf: Board specific private structure
1083  *
1084  * This function must be called when the cached PHC time is no longer valid,
1085  * such as after a time adjustment. It marks any currently outstanding Tx
1086  * timestamps as stale and updates the cached PHC time for both the PF and Rx
1087  * rings.
1088  *
1089  * If updating the PHC time cannot be done immediately, a warning message is
1090  * logged and the work item is scheduled immediately to minimize the window
1091  * with a wrong cached timestamp.
1092  */
1093 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1094 {
1095 	struct device *dev = ice_pf_to_dev(pf);
1096 	int err;
1097 
1098 	/* Update the cached PHC time immediately if possible, otherwise
1099 	 * schedule the work item to execute soon.
1100 	 */
1101 	err = ice_ptp_update_cached_phctime(pf);
1102 	if (err) {
1103 		/* If another thread is updating the Rx rings, we won't
1104 		 * properly reset them here. This could lead to reporting of
1105 		 * invalid timestamps, but there isn't much we can do.
1106 		 */
1107 		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1108 			 __func__);
1109 
1110 		/* Queue the work item to update the Rx rings when possible */
1111 		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1112 					   msecs_to_jiffies(10));
1113 	}
1114 
1115 	/* Mark any outstanding timestamps as stale, since they might have
1116 	 * been captured in hardware before the time update. This could lead
1117 	 * to us extending them with the wrong cached value resulting in
1118 	 * incorrect timestamp values.
1119 	 */
1120 	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1121 }
1122 
1123 /**
1124  * ice_ptp_write_init - Set PHC time to provided value
1125  * @pf: Board private structure
1126  * @ts: timespec structure that holds the new time value
1127  *
1128  * Set the PHC time to the specified time provided in the timespec.
1129  */
1130 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1131 {
1132 	u64 ns = timespec64_to_ns(ts);
1133 	struct ice_hw *hw = &pf->hw;
1134 
1135 	return ice_ptp_init_time(hw, ns);
1136 }
1137 
1138 /**
1139  * ice_ptp_write_adj - Adjust PHC clock time atomically
1140  * @pf: Board private structure
1141  * @adj: Adjustment in nanoseconds
1142  *
1143  * Perform an atomic adjustment of the PHC time by the specified number of
1144  * nanoseconds.
1145  */
1146 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1147 {
1148 	struct ice_hw *hw = &pf->hw;
1149 
1150 	return ice_ptp_adj_clock(hw, adj);
1151 }
1152 
1153 /**
1154  * ice_base_incval - Get base timer increment value
1155  * @pf: Board private structure
1156  *
1157  * Look up the base timer increment value for this device. The base increment
1158  * value is used to define the nominal clock tick rate. This increment value
1159  * is programmed during device initialization. It is also used as the basis
1160  * for calculating adjustments using scaled_ppm.
1161  */
1162 static u64 ice_base_incval(struct ice_pf *pf)
1163 {
1164 	struct ice_hw *hw = &pf->hw;
1165 	u64 incval;
1166 
1167 	incval = ice_get_base_incval(hw);
1168 
1169 	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1170 		incval);
1171 
1172 	return incval;
1173 }
1174 
1175 /**
1176  * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1177  * @port: PTP port for which Tx FIFO is checked
1178  */
1179 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1180 {
1181 	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1182 	int quad = ICE_GET_QUAD_NUM(port->port_num);
1183 	struct ice_pf *pf;
1184 	struct ice_hw *hw;
1185 	u32 val, phy_sts;
1186 	int err;
1187 
1188 	pf = ptp_port_to_pf(port);
1189 	hw = &pf->hw;
1190 
1191 	if (port->tx_fifo_busy_cnt == FIFO_OK)
1192 		return 0;
1193 
1194 	/* need to read FIFO state */
1195 	if (offs == 0 || offs == 1)
1196 		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
1197 					     &val);
1198 	else
1199 		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
1200 					     &val);
1201 
1202 	if (err) {
1203 		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1204 			port->port_num, err);
1205 		return err;
1206 	}
1207 
1208 	if (offs & 0x1)
1209 		phy_sts = FIELD_GET(Q_REG_FIFO13_M, val);
1210 	else
1211 		phy_sts = FIELD_GET(Q_REG_FIFO02_M, val);
1212 
1213 	if (phy_sts & FIFO_EMPTY) {
1214 		port->tx_fifo_busy_cnt = FIFO_OK;
1215 		return 0;
1216 	}
1217 
1218 	port->tx_fifo_busy_cnt++;
1219 
1220 	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1221 		port->tx_fifo_busy_cnt, port->port_num);
1222 
1223 	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1224 		dev_dbg(ice_pf_to_dev(pf),
1225 			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1226 			port->port_num, quad);
1227 		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
1228 		port->tx_fifo_busy_cnt = FIFO_OK;
1229 		return 0;
1230 	}
1231 
1232 	return -EAGAIN;
1233 }
1234 
1235 /**
1236  * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1237  * @work: Pointer to the kthread_work structure for this task
1238  *
1239  * Check whether hardware has completed measuring the Tx and Rx offset values
1240  * used to configure and enable vernier timestamp calibration.
1241  *
1242  * Once the offset in either direction is measured, configure the associated
1243  * registers with the calibrated offset values and enable timestamping. The Tx
1244  * and Rx directions are configured independently as soon as their associated
1245  * offsets are known.
1246  *
1247  * This function reschedules itself until both Tx and Rx calibration have
1248  * completed.
1249  */
1250 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1251 {
1252 	struct ice_ptp_port *port;
1253 	struct ice_pf *pf;
1254 	struct ice_hw *hw;
1255 	int tx_err;
1256 	int rx_err;
1257 
1258 	port = container_of(work, struct ice_ptp_port, ov_work.work);
1259 	pf = ptp_port_to_pf(port);
1260 	hw = &pf->hw;
1261 
1262 	if (ice_is_reset_in_progress(pf->state)) {
1263 		/* wait for device driver to complete reset */
1264 		kthread_queue_delayed_work(pf->ptp.kworker,
1265 					   &port->ov_work,
1266 					   msecs_to_jiffies(100));
1267 		return;
1268 	}
1269 
1270 	tx_err = ice_ptp_check_tx_fifo(port);
1271 	if (!tx_err)
1272 		tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
1273 	rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
1274 	if (tx_err || rx_err) {
1275 		/* Tx and/or Rx offset not yet configured, try again later */
1276 		kthread_queue_delayed_work(pf->ptp.kworker,
1277 					   &port->ov_work,
1278 					   msecs_to_jiffies(100));
1279 		return;
1280 	}
1281 }
1282 
1283 /**
1284  * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1285  * @ptp_port: PTP port to stop
1286  */
1287 static int
1288 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1289 {
1290 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1291 	u8 port = ptp_port->port_num;
1292 	struct ice_hw *hw = &pf->hw;
1293 	int err;
1294 
1295 	if (ice_is_e810(hw))
1296 		return 0;
1297 
1298 	mutex_lock(&ptp_port->ps_lock);
1299 
1300 	switch (ice_get_phy_model(hw)) {
1301 	case ICE_PHY_ETH56G:
1302 		err = ice_stop_phy_timer_eth56g(hw, port, true);
1303 		break;
1304 	case ICE_PHY_E82X:
1305 		kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1306 
1307 		err = ice_stop_phy_timer_e82x(hw, port, true);
1308 		break;
1309 	default:
1310 		err = -ENODEV;
1311 	}
1312 	if (err && err != -EBUSY)
1313 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1314 			port, err);
1315 
1316 	mutex_unlock(&ptp_port->ps_lock);
1317 
1318 	return err;
1319 }
1320 
1321 /**
1322  * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1323  * @ptp_port: PTP port for which the PHY start is set
1324  *
1325  * Start the PHY timestamping block, and initiate Vernier timestamping
1326  * calibration. If timestamping cannot be calibrated (such as if link is down)
1327  * then disable the timestamping block instead.
1328  */
1329 static int
1330 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1331 {
1332 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1333 	u8 port = ptp_port->port_num;
1334 	struct ice_hw *hw = &pf->hw;
1335 	unsigned long flags;
1336 	int err;
1337 
1338 	if (ice_is_e810(hw))
1339 		return 0;
1340 
1341 	if (!ptp_port->link_up)
1342 		return ice_ptp_port_phy_stop(ptp_port);
1343 
1344 	mutex_lock(&ptp_port->ps_lock);
1345 
1346 	switch (ice_get_phy_model(hw)) {
1347 	case ICE_PHY_ETH56G:
1348 		err = ice_start_phy_timer_eth56g(hw, port);
1349 		break;
1350 	case ICE_PHY_E82X:
1351 		/* Start the PHY timer in Vernier mode */
1352 		kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1353 
1354 		/* temporarily disable Tx timestamps while calibrating
1355 		 * PHY offset
1356 		 */
1357 		spin_lock_irqsave(&ptp_port->tx.lock, flags);
1358 		ptp_port->tx.calibrating = true;
1359 		spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1360 		ptp_port->tx_fifo_busy_cnt = 0;
1361 
1362 		/* Start the PHY timer in Vernier mode */
1363 		err = ice_start_phy_timer_e82x(hw, port);
1364 		if (err)
1365 			break;
1366 
1367 		/* Enable Tx timestamps right away */
1368 		spin_lock_irqsave(&ptp_port->tx.lock, flags);
1369 		ptp_port->tx.calibrating = false;
1370 		spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1371 
1372 		kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work,
1373 					   0);
1374 		break;
1375 	default:
1376 		err = -ENODEV;
1377 	}
1378 
1379 	if (err)
1380 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1381 			port, err);
1382 
1383 	mutex_unlock(&ptp_port->ps_lock);
1384 
1385 	return err;
1386 }
1387 
1388 /**
1389  * ice_ptp_link_change - Reconfigure PTP after link status change
1390  * @pf: Board private structure
1391  * @port: Port for which the PHY start is set
1392  * @linkup: Link is up or down
1393  */
1394 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1395 {
1396 	struct ice_ptp_port *ptp_port;
1397 	struct ice_hw *hw = &pf->hw;
1398 
1399 	if (pf->ptp.state != ICE_PTP_READY)
1400 		return;
1401 
1402 	if (WARN_ON_ONCE(port >= hw->ptp.num_lports))
1403 		return;
1404 
1405 	ptp_port = &pf->ptp.port;
1406 	if (ice_is_e825c(hw) && hw->ptp.is_2x50g_muxed_topo)
1407 		port *= 2;
1408 	if (WARN_ON_ONCE(ptp_port->port_num != port))
1409 		return;
1410 
1411 	/* Update cached link status for this port immediately */
1412 	ptp_port->link_up = linkup;
1413 
1414 	/* Skip HW writes if reset is in progress */
1415 	if (pf->hw.reset_ongoing)
1416 		return;
1417 	switch (ice_get_phy_model(hw)) {
1418 	case ICE_PHY_E810:
1419 		/* Do not reconfigure E810 PHY */
1420 		return;
1421 	case ICE_PHY_ETH56G:
1422 	case ICE_PHY_E82X:
1423 		ice_ptp_port_phy_restart(ptp_port);
1424 		return;
1425 	default:
1426 		dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1427 	}
1428 }
1429 
1430 /**
1431  * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings
1432  * @pf: PF private structure
1433  * @ena: bool value to enable or disable interrupt
1434  * @threshold: Minimum number of packets at which intr is triggered
1435  *
1436  * Utility function to configure all the PHY interrupt settings, including
1437  * whether the PHY interrupt is enabled, and what threshold to use. Also
1438  * configures The E82X timestamp owner to react to interrupts from all PHYs.
1439  *
1440  * Return: 0 on success, -EOPNOTSUPP when PHY model incorrect, other error codes
1441  * when failed to configure PHY interrupt for E82X
1442  */
1443 static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold)
1444 {
1445 	struct device *dev = ice_pf_to_dev(pf);
1446 	struct ice_hw *hw = &pf->hw;
1447 
1448 	ice_ptp_reset_ts_memory(hw);
1449 
1450 	switch (ice_get_phy_model(hw)) {
1451 	case ICE_PHY_ETH56G: {
1452 		int port;
1453 
1454 		for (port = 0; port < hw->ptp.num_lports; port++) {
1455 			int err;
1456 
1457 			err = ice_phy_cfg_intr_eth56g(hw, port, ena, threshold);
1458 			if (err) {
1459 				dev_err(dev, "Failed to configure PHY interrupt for port %d, err %d\n",
1460 					port, err);
1461 				return err;
1462 			}
1463 		}
1464 
1465 		return 0;
1466 	}
1467 	case ICE_PHY_E82X: {
1468 		int quad;
1469 
1470 		for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports);
1471 		     quad++) {
1472 			int err;
1473 
1474 			err = ice_phy_cfg_intr_e82x(hw, quad, ena, threshold);
1475 			if (err) {
1476 				dev_err(dev, "Failed to configure PHY interrupt for quad %d, err %d\n",
1477 					quad, err);
1478 				return err;
1479 			}
1480 		}
1481 
1482 		return 0;
1483 	}
1484 	case ICE_PHY_E810:
1485 		return 0;
1486 	case ICE_PHY_UNSUP:
1487 	default:
1488 		dev_warn(dev, "%s: Unexpected PHY model %d\n", __func__,
1489 			 ice_get_phy_model(hw));
1490 		return -EOPNOTSUPP;
1491 	}
1492 }
1493 
1494 /**
1495  * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1496  * @pf: Board private structure
1497  */
1498 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1499 {
1500 	ice_ptp_port_phy_restart(&pf->ptp.port);
1501 }
1502 
1503 /**
1504  * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1505  * @pf: Board private structure
1506  */
1507 static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1508 {
1509 	struct list_head *entry;
1510 
1511 	list_for_each(entry, &pf->adapter->ports.ports) {
1512 		struct ice_ptp_port *port = list_entry(entry,
1513 						       struct ice_ptp_port,
1514 						       list_node);
1515 
1516 		if (port->link_up)
1517 			ice_ptp_port_phy_restart(port);
1518 	}
1519 }
1520 
1521 /**
1522  * ice_ptp_adjfine - Adjust clock increment rate
1523  * @info: the driver's PTP info structure
1524  * @scaled_ppm: Parts per million with 16-bit fractional field
1525  *
1526  * Adjust the frequency of the clock by the indicated scaled ppm from the
1527  * base frequency.
1528  */
1529 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1530 {
1531 	struct ice_pf *pf = ptp_info_to_pf(info);
1532 	struct ice_hw *hw = &pf->hw;
1533 	u64 incval;
1534 	int err;
1535 
1536 	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1537 	err = ice_ptp_write_incval_locked(hw, incval);
1538 	if (err) {
1539 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1540 			err);
1541 		return -EIO;
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 /**
1548  * ice_ptp_extts_event - Process PTP external clock event
1549  * @pf: Board private structure
1550  */
1551 void ice_ptp_extts_event(struct ice_pf *pf)
1552 {
1553 	struct ptp_clock_event event;
1554 	struct ice_hw *hw = &pf->hw;
1555 	u8 chan, tmr_idx;
1556 	u32 hi, lo;
1557 
1558 	/* Don't process timestamp events if PTP is not ready */
1559 	if (pf->ptp.state != ICE_PTP_READY)
1560 		return;
1561 
1562 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1563 	/* Event time is captured by one of the two matched registers
1564 	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1565 	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1566 	 * Event is defined in GLTSYN_EVNT_0 register
1567 	 */
1568 	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1569 		/* Check if channel is enabled */
1570 		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1571 			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1572 			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1573 			event.timestamp = (((u64)hi) << 32) | lo;
1574 			event.type = PTP_CLOCK_EXTTS;
1575 			event.index = chan;
1576 
1577 			/* Fire event */
1578 			ptp_clock_event(pf->ptp.clock, &event);
1579 			pf->ptp.ext_ts_irq &= ~(1 << chan);
1580 		}
1581 	}
1582 }
1583 
1584 /**
1585  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1586  * @pf: Board private structure
1587  * @rq: External timestamp request
1588  * @on: Enable/disable flag
1589  *
1590  * Configure an external timestamp event on the requested channel.
1591  *
1592  * Return: 0 on success, negative error code otherwise
1593  */
1594 static int ice_ptp_cfg_extts(struct ice_pf *pf, struct ptp_extts_request *rq,
1595 			     int on)
1596 {
1597 	u32 aux_reg, gpio_reg, irq_reg;
1598 	struct ice_hw *hw = &pf->hw;
1599 	unsigned int chan, gpio_pin;
1600 	int pin_desc_idx;
1601 	u8 tmr_idx;
1602 
1603 	/* Reject requests with unsupported flags */
1604 
1605 	if (rq->flags & ~(PTP_ENABLE_FEATURE |
1606 			  PTP_RISING_EDGE |
1607 			  PTP_FALLING_EDGE |
1608 			  PTP_STRICT_FLAGS))
1609 		return -EOPNOTSUPP;
1610 
1611 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1612 	chan = rq->index;
1613 
1614 	pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan);
1615 	if (pin_desc_idx < 0)
1616 		return -EIO;
1617 
1618 	gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[0];
1619 	irq_reg = rd32(hw, PFINT_OICR_ENA);
1620 
1621 	if (on) {
1622 		/* Enable the interrupt */
1623 		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1624 		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1625 
1626 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1627 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1628 
1629 		/* set event level to requested edge */
1630 		if (rq->flags & PTP_FALLING_EDGE)
1631 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1632 		if (rq->flags & PTP_RISING_EDGE)
1633 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1634 
1635 		/* Write GPIO CTL reg.
1636 		 * 0x1 is input sampled by EVENT register(channel)
1637 		 * + num_in_channels * tmr_idx
1638 		 */
1639 		gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1640 				      1 + chan + (tmr_idx * 3));
1641 	} else {
1642 		bool last_enabled = true;
1643 
1644 		/* clear the values we set to reset defaults */
1645 		aux_reg = 0;
1646 		gpio_reg = 0;
1647 
1648 		for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts; i++)
1649 			if ((pf->ptp.extts_rqs[i].flags &
1650 			     PTP_ENABLE_FEATURE) &&
1651 			    i != chan) {
1652 				last_enabled = false;
1653 			}
1654 
1655 		if (last_enabled)
1656 			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1657 	}
1658 
1659 	wr32(hw, PFINT_OICR_ENA, irq_reg);
1660 	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1661 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1662 
1663 	return 0;
1664 }
1665 
1666 /**
1667  * ice_ptp_disable_all_extts - Disable all EXTTS channels
1668  * @pf: Board private structure
1669  */
1670 static void ice_ptp_disable_all_extts(struct ice_pf *pf)
1671 {
1672 	for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1673 		if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1674 			ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1675 					  false);
1676 
1677 	synchronize_irq(pf->oicr_irq.virq);
1678 }
1679 
1680 /**
1681  * ice_ptp_enable_all_extts - Enable all EXTTS channels
1682  * @pf: Board private structure
1683  *
1684  * Called during reset to restore user configuration.
1685  */
1686 static void ice_ptp_enable_all_extts(struct ice_pf *pf)
1687 {
1688 	for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1689 		if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1690 			ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1691 					  true);
1692 }
1693 
1694 /**
1695  * ice_ptp_write_perout - Write periodic wave parameters to HW
1696  * @hw: pointer to the HW struct
1697  * @chan: target channel
1698  * @gpio_pin: target GPIO pin
1699  * @start: target time to start periodic output
1700  * @period: target period
1701  *
1702  * Return: 0 on success, negative error code otherwise
1703  */
1704 static int ice_ptp_write_perout(struct ice_hw *hw, unsigned int chan,
1705 				unsigned int gpio_pin, u64 start, u64 period)
1706 {
1707 
1708 	u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1709 	u32 val = 0;
1710 
1711 	/* 0. Reset mode & out_en in AUX_OUT */
1712 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1713 
1714 	if (ice_is_e825c(hw)) {
1715 		int err;
1716 
1717 		/* Enable/disable CGU 1PPS output for E825C */
1718 		err = ice_cgu_cfg_pps_out(hw, !!period);
1719 		if (err)
1720 			return err;
1721 	}
1722 
1723 	/* 1. Write perout with half of required period value.
1724 	 * HW toggles output when source clock hits the TGT and then adds
1725 	 * GLTSYN_CLKO value to the target, so it ends up with 50% duty cycle.
1726 	 */
1727 	period >>= 1;
1728 
1729 	/* For proper operation, GLTSYN_CLKO must be larger than clock tick and
1730 	 * period has to fit in 32 bit register.
1731 	 */
1732 #define MIN_PULSE 3
1733 	if (!!period && (period <= MIN_PULSE || period > U32_MAX)) {
1734 		dev_err(ice_hw_to_dev(hw), "CLK period ticks must be >= %d && <= 2^32",
1735 			MIN_PULSE);
1736 		return -EIO;
1737 	}
1738 
1739 	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1740 
1741 	/* 2. Write TARGET time */
1742 	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start));
1743 	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start));
1744 
1745 	/* 3. Write AUX_OUT register */
1746 	if (!!period)
1747 		val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1748 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1749 
1750 	/* 4. write GPIO CTL reg */
1751 	val = GLGEN_GPIO_CTL_PIN_DIR_M;
1752 	if (!!period)
1753 		val |= FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1754 				  8 + chan + (tmr_idx * 4));
1755 
1756 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1757 
1758 	return 0;
1759 }
1760 
1761 /**
1762  * ice_ptp_cfg_perout - Configure clock to generate periodic wave
1763  * @pf: Board private structure
1764  * @rq: Periodic output request
1765  * @on: Enable/disable flag
1766  *
1767  * Configure the internal clock generator modules to generate the clock wave of
1768  * specified period.
1769  *
1770  * Return: 0 on success, negative error code otherwise
1771  */
1772 static int ice_ptp_cfg_perout(struct ice_pf *pf, struct ptp_perout_request *rq,
1773 			      int on)
1774 {
1775 	u64 clk, period, start, phase;
1776 	struct ice_hw *hw = &pf->hw;
1777 	unsigned int gpio_pin;
1778 	int pin_desc_idx;
1779 
1780 	if (rq->flags & ~PTP_PEROUT_PHASE)
1781 		return -EOPNOTSUPP;
1782 
1783 	pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_PEROUT, rq->index);
1784 	if (pin_desc_idx < 0)
1785 		return -EIO;
1786 
1787 	gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[1];
1788 	period = rq->period.sec * NSEC_PER_SEC + rq->period.nsec;
1789 
1790 	/* If we're disabling the output or period is 0, clear out CLKO and TGT
1791 	 * and keep output level low.
1792 	 */
1793 	if (!on || !period)
1794 		return ice_ptp_write_perout(hw, rq->index, gpio_pin, 0, 0);
1795 
1796 	if (strncmp(pf->ptp.pin_desc[pin_desc_idx].name, "1PPS", 64) == 0 &&
1797 	    period != NSEC_PER_SEC && hw->ptp.phy_model == ICE_PHY_E82X) {
1798 		dev_err(ice_pf_to_dev(pf), "1PPS pin supports only 1 s period\n");
1799 		return -EOPNOTSUPP;
1800 	}
1801 
1802 	if (period & 0x1) {
1803 		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1804 		return -EIO;
1805 	}
1806 
1807 	start = rq->start.sec * NSEC_PER_SEC + rq->start.nsec;
1808 
1809 	/* If PTP_PEROUT_PHASE is set, rq has phase instead of start time */
1810 	if (rq->flags & PTP_PEROUT_PHASE)
1811 		phase = start;
1812 	else
1813 		div64_u64_rem(start, period, &phase);
1814 
1815 	/* If we have only phase or start time is in the past, start the timer
1816 	 * at the next multiple of period, maintaining phase.
1817 	 */
1818 	clk = ice_ptp_read_src_clk_reg(pf, NULL);
1819 	if (rq->flags & PTP_PEROUT_PHASE || start <= clk - ice_prop_delay(hw))
1820 		start = div64_u64(clk + period - 1, period) * period + phase;
1821 
1822 	/* Compensate for propagation delay from the generator to the pin. */
1823 	start -= ice_prop_delay(hw);
1824 
1825 	return ice_ptp_write_perout(hw, rq->index, gpio_pin, start, period);
1826 }
1827 
1828 /**
1829  * ice_ptp_disable_all_perout - Disable all currently configured outputs
1830  * @pf: Board private structure
1831  *
1832  * Disable all currently configured clock outputs. This is necessary before
1833  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_perout to
1834  * re-enable the clocks again.
1835  */
1836 static void ice_ptp_disable_all_perout(struct ice_pf *pf)
1837 {
1838 	for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1839 		if (pf->ptp.perout_rqs[i].period.sec ||
1840 		    pf->ptp.perout_rqs[i].period.nsec)
1841 			ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1842 					   false);
1843 }
1844 
1845 /**
1846  * ice_ptp_enable_all_perout - Enable all configured periodic clock outputs
1847  * @pf: Board private structure
1848  *
1849  * Enable all currently configured clock outputs. Use this after
1850  * ice_ptp_disable_all_perout to reconfigure the output signals according to
1851  * their configuration.
1852  */
1853 static void ice_ptp_enable_all_perout(struct ice_pf *pf)
1854 {
1855 	for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1856 		if (pf->ptp.perout_rqs[i].period.sec ||
1857 		    pf->ptp.perout_rqs[i].period.nsec)
1858 			ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1859 					   true);
1860 }
1861 
1862 /**
1863  * ice_ptp_disable_shared_pin - Disable enabled pin that shares GPIO
1864  * @pf: Board private structure
1865  * @pin: Pin index
1866  * @func: Assigned function
1867  *
1868  * Return: 0 on success, negative error code otherwise
1869  */
1870 static int ice_ptp_disable_shared_pin(struct ice_pf *pf, unsigned int pin,
1871 				      enum ptp_pin_function func)
1872 {
1873 	unsigned int gpio_pin;
1874 
1875 	switch (func) {
1876 	case PTP_PF_PEROUT:
1877 		gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[1];
1878 		break;
1879 	case PTP_PF_EXTTS:
1880 		gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[0];
1881 		break;
1882 	default:
1883 		return -EOPNOTSUPP;
1884 	}
1885 
1886 	for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
1887 		struct ptp_pin_desc *pin_desc = &pf->ptp.pin_desc[i];
1888 		unsigned int chan = pin_desc->chan;
1889 
1890 		/* Skip pin idx from the request */
1891 		if (i == pin)
1892 			continue;
1893 
1894 		if (pin_desc->func == PTP_PF_PEROUT &&
1895 		    pf->ptp.ice_pin_desc[i].gpio[1] == gpio_pin) {
1896 			pf->ptp.perout_rqs[chan].period.sec = 0;
1897 			pf->ptp.perout_rqs[chan].period.nsec = 0;
1898 			pin_desc->func = PTP_PF_NONE;
1899 			pin_desc->chan = 0;
1900 			dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared output GPIO pin %u\n",
1901 				i, gpio_pin);
1902 			return ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[chan],
1903 						  false);
1904 		} else if (pf->ptp.pin_desc->func == PTP_PF_EXTTS &&
1905 			   pf->ptp.ice_pin_desc[i].gpio[0] == gpio_pin) {
1906 			pf->ptp.extts_rqs[chan].flags &= ~PTP_ENABLE_FEATURE;
1907 			pin_desc->func = PTP_PF_NONE;
1908 			pin_desc->chan = 0;
1909 			dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared input GPIO pin %u\n",
1910 				i, gpio_pin);
1911 			return ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[chan],
1912 						 false);
1913 		}
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 /**
1920  * ice_verify_pin - verify if pin supports requested pin function
1921  * @info: the driver's PTP info structure
1922  * @pin: Pin index
1923  * @func: Assigned function
1924  * @chan: Assigned channel
1925  *
1926  * Return: 0 on success, -EOPNOTSUPP when function is not supported.
1927  */
1928 static int ice_verify_pin(struct ptp_clock_info *info, unsigned int pin,
1929 			  enum ptp_pin_function func, unsigned int chan)
1930 {
1931 	struct ice_pf *pf = ptp_info_to_pf(info);
1932 	const struct ice_ptp_pin_desc *pin_desc;
1933 
1934 	pin_desc = &pf->ptp.ice_pin_desc[pin];
1935 
1936 	/* Is assigned function allowed? */
1937 	switch (func) {
1938 	case PTP_PF_EXTTS:
1939 		if (pin_desc->gpio[0] < 0)
1940 			return -EOPNOTSUPP;
1941 		break;
1942 	case PTP_PF_PEROUT:
1943 		if (pin_desc->gpio[1] < 0)
1944 			return -EOPNOTSUPP;
1945 		break;
1946 	case PTP_PF_NONE:
1947 		break;
1948 	case PTP_PF_PHYSYNC:
1949 	default:
1950 		return -EOPNOTSUPP;
1951 	}
1952 
1953 	/* On adapters with SMA_CTRL disable other pins that share same GPIO */
1954 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
1955 		ice_ptp_disable_shared_pin(pf, pin, func);
1956 		pf->ptp.pin_desc[pin].func = func;
1957 		pf->ptp.pin_desc[pin].chan = chan;
1958 		return ice_ptp_set_sma_cfg(pf);
1959 	}
1960 
1961 	return 0;
1962 }
1963 
1964 /**
1965  * ice_ptp_gpio_enable - Enable/disable ancillary features of PHC
1966  * @info: The driver's PTP info structure
1967  * @rq: The requested feature to change
1968  * @on: Enable/disable flag
1969  *
1970  * Return: 0 on success, negative error code otherwise
1971  */
1972 static int ice_ptp_gpio_enable(struct ptp_clock_info *info,
1973 			       struct ptp_clock_request *rq, int on)
1974 {
1975 	struct ice_pf *pf = ptp_info_to_pf(info);
1976 	int err;
1977 
1978 	switch (rq->type) {
1979 	case PTP_CLK_REQ_PEROUT:
1980 	{
1981 		struct ptp_perout_request *cached =
1982 			&pf->ptp.perout_rqs[rq->perout.index];
1983 
1984 		err = ice_ptp_cfg_perout(pf, &rq->perout, on);
1985 		if (!err) {
1986 			*cached = rq->perout;
1987 		} else {
1988 			cached->period.sec = 0;
1989 			cached->period.nsec = 0;
1990 		}
1991 		return err;
1992 	}
1993 	case PTP_CLK_REQ_EXTTS:
1994 	{
1995 		struct ptp_extts_request *cached =
1996 			&pf->ptp.extts_rqs[rq->extts.index];
1997 
1998 		err = ice_ptp_cfg_extts(pf, &rq->extts, on);
1999 		if (!err)
2000 			*cached = rq->extts;
2001 		else
2002 			cached->flags &= ~PTP_ENABLE_FEATURE;
2003 		return err;
2004 	}
2005 	default:
2006 		return -EOPNOTSUPP;
2007 	}
2008 }
2009 
2010 /**
2011  * ice_ptp_gettimex64 - Get the time of the clock
2012  * @info: the driver's PTP info structure
2013  * @ts: timespec64 structure to hold the current time value
2014  * @sts: Optional parameter for holding a pair of system timestamps from
2015  *       the system clock. Will be ignored if NULL is given.
2016  *
2017  * Read the device clock and return the correct value on ns, after converting it
2018  * into a timespec struct.
2019  */
2020 static int
2021 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
2022 		   struct ptp_system_timestamp *sts)
2023 {
2024 	struct ice_pf *pf = ptp_info_to_pf(info);
2025 	u64 time_ns;
2026 
2027 	time_ns = ice_ptp_read_src_clk_reg(pf, sts);
2028 	*ts = ns_to_timespec64(time_ns);
2029 	return 0;
2030 }
2031 
2032 /**
2033  * ice_ptp_settime64 - Set the time of the clock
2034  * @info: the driver's PTP info structure
2035  * @ts: timespec64 structure that holds the new time value
2036  *
2037  * Set the device clock to the user input value. The conversion from timespec
2038  * to ns happens in the write function.
2039  */
2040 static int
2041 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
2042 {
2043 	struct ice_pf *pf = ptp_info_to_pf(info);
2044 	struct timespec64 ts64 = *ts;
2045 	struct ice_hw *hw = &pf->hw;
2046 	int err;
2047 
2048 	/* For Vernier mode on E82X, we need to recalibrate after new settime.
2049 	 * Start with marking timestamps as invalid.
2050 	 */
2051 	if (ice_get_phy_model(hw) == ICE_PHY_E82X) {
2052 		err = ice_ptp_clear_phy_offset_ready_e82x(hw);
2053 		if (err)
2054 			dev_warn(ice_pf_to_dev(pf), "Failed to mark timestamps as invalid before settime\n");
2055 	}
2056 
2057 	if (!ice_ptp_lock(hw)) {
2058 		err = -EBUSY;
2059 		goto exit;
2060 	}
2061 
2062 	/* Disable periodic outputs */
2063 	ice_ptp_disable_all_perout(pf);
2064 
2065 	err = ice_ptp_write_init(pf, &ts64);
2066 	ice_ptp_unlock(hw);
2067 
2068 	if (!err)
2069 		ice_ptp_reset_cached_phctime(pf);
2070 
2071 	/* Reenable periodic outputs */
2072 	ice_ptp_enable_all_perout(pf);
2073 
2074 	/* Recalibrate and re-enable timestamp blocks for E822/E823 */
2075 	if (ice_get_phy_model(hw) == ICE_PHY_E82X)
2076 		ice_ptp_restart_all_phy(pf);
2077 exit:
2078 	if (err) {
2079 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
2080 		return err;
2081 	}
2082 
2083 	return 0;
2084 }
2085 
2086 /**
2087  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
2088  * @info: the driver's PTP info structure
2089  * @delta: Offset in nanoseconds to adjust the time by
2090  */
2091 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
2092 {
2093 	struct timespec64 now, then;
2094 	int ret;
2095 
2096 	then = ns_to_timespec64(delta);
2097 	ret = ice_ptp_gettimex64(info, &now, NULL);
2098 	if (ret)
2099 		return ret;
2100 	now = timespec64_add(now, then);
2101 
2102 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
2103 }
2104 
2105 /**
2106  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
2107  * @info: the driver's PTP info structure
2108  * @delta: Offset in nanoseconds to adjust the time by
2109  */
2110 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
2111 {
2112 	struct ice_pf *pf = ptp_info_to_pf(info);
2113 	struct ice_hw *hw = &pf->hw;
2114 	struct device *dev;
2115 	int err;
2116 
2117 	dev = ice_pf_to_dev(pf);
2118 
2119 	/* Hardware only supports atomic adjustments using signed 32-bit
2120 	 * integers. For any adjustment outside this range, perform
2121 	 * a non-atomic get->adjust->set flow.
2122 	 */
2123 	if (delta > S32_MAX || delta < S32_MIN) {
2124 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
2125 		return ice_ptp_adjtime_nonatomic(info, delta);
2126 	}
2127 
2128 	if (!ice_ptp_lock(hw)) {
2129 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
2130 		return -EBUSY;
2131 	}
2132 
2133 	/* Disable periodic outputs */
2134 	ice_ptp_disable_all_perout(pf);
2135 
2136 	err = ice_ptp_write_adj(pf, delta);
2137 
2138 	/* Reenable periodic outputs */
2139 	ice_ptp_enable_all_perout(pf);
2140 
2141 	ice_ptp_unlock(hw);
2142 
2143 	if (err) {
2144 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
2145 		return err;
2146 	}
2147 
2148 	ice_ptp_reset_cached_phctime(pf);
2149 
2150 	return 0;
2151 }
2152 
2153 #ifdef CONFIG_ICE_HWTS
2154 /**
2155  * ice_ptp_get_syncdevicetime - Get the cross time stamp info
2156  * @device: Current device time
2157  * @system: System counter value read synchronously with device time
2158  * @ctx: Context provided by timekeeping code
2159  *
2160  * Read device and system (ART) clock simultaneously and return the corrected
2161  * clock values in ns.
2162  */
2163 static int
2164 ice_ptp_get_syncdevicetime(ktime_t *device,
2165 			   struct system_counterval_t *system,
2166 			   void *ctx)
2167 {
2168 	struct ice_pf *pf = (struct ice_pf *)ctx;
2169 	struct ice_hw *hw = &pf->hw;
2170 	u32 hh_lock, hh_art_ctl;
2171 	int i;
2172 
2173 #define MAX_HH_HW_LOCK_TRIES	5
2174 #define MAX_HH_CTL_LOCK_TRIES	100
2175 
2176 	for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
2177 		/* Get the HW lock */
2178 		hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2179 		if (hh_lock & PFHH_SEM_BUSY_M) {
2180 			usleep_range(10000, 15000);
2181 			continue;
2182 		}
2183 		break;
2184 	}
2185 	if (hh_lock & PFHH_SEM_BUSY_M) {
2186 		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
2187 		return -EBUSY;
2188 	}
2189 
2190 	/* Program cmd to master timer */
2191 	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2192 
2193 	/* Start the ART and device clock sync sequence */
2194 	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2195 	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
2196 	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
2197 
2198 	for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
2199 		/* Wait for sync to complete */
2200 		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2201 		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
2202 			udelay(1);
2203 			continue;
2204 		} else {
2205 			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
2206 			u64 hh_ts;
2207 
2208 			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2209 			/* Read ART time */
2210 			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2211 			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2212 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2213 			system->cycles = hh_ts;
2214 			system->cs_id = CSID_X86_ART;
2215 			/* Read Device source clock time */
2216 			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2217 			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2218 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2219 			*device = ns_to_ktime(hh_ts);
2220 			break;
2221 		}
2222 	}
2223 
2224 	/* Clear the master timer */
2225 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2226 
2227 	/* Release HW lock */
2228 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2229 	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2230 	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2231 
2232 	if (i == MAX_HH_CTL_LOCK_TRIES)
2233 		return -ETIMEDOUT;
2234 
2235 	return 0;
2236 }
2237 
2238 /**
2239  * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
2240  * @info: the driver's PTP info structure
2241  * @cts: The memory to fill the cross timestamp info
2242  *
2243  * Capture a cross timestamp between the ART and the device PTP hardware
2244  * clock. Fill the cross timestamp information and report it back to the
2245  * caller.
2246  *
2247  * This is only valid for E822 and E823 devices which have support for
2248  * generating the cross timestamp via PCIe PTM.
2249  *
2250  * In order to correctly correlate the ART timestamp back to the TSC time, the
2251  * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2252  */
2253 static int
2254 ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
2255 			    struct system_device_crosststamp *cts)
2256 {
2257 	struct ice_pf *pf = ptp_info_to_pf(info);
2258 
2259 	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2260 					     pf, NULL, cts);
2261 }
2262 #endif /* CONFIG_ICE_HWTS */
2263 
2264 /**
2265  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2266  * @pf: Board private structure
2267  * @ifr: ioctl data
2268  *
2269  * Copy the timestamping config to user buffer
2270  */
2271 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2272 {
2273 	struct hwtstamp_config *config;
2274 
2275 	if (pf->ptp.state != ICE_PTP_READY)
2276 		return -EIO;
2277 
2278 	config = &pf->ptp.tstamp_config;
2279 
2280 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2281 		-EFAULT : 0;
2282 }
2283 
2284 /**
2285  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2286  * @pf: Board private structure
2287  * @config: hwtstamp settings requested or saved
2288  */
2289 static int
2290 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2291 {
2292 	switch (config->tx_type) {
2293 	case HWTSTAMP_TX_OFF:
2294 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2295 		break;
2296 	case HWTSTAMP_TX_ON:
2297 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2298 		break;
2299 	default:
2300 		return -ERANGE;
2301 	}
2302 
2303 	switch (config->rx_filter) {
2304 	case HWTSTAMP_FILTER_NONE:
2305 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2306 		break;
2307 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2308 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2309 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2310 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2311 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2312 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2313 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2314 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2315 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2316 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2317 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2318 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2319 	case HWTSTAMP_FILTER_NTP_ALL:
2320 	case HWTSTAMP_FILTER_ALL:
2321 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2322 		break;
2323 	default:
2324 		return -ERANGE;
2325 	}
2326 
2327 	/* Immediately update the device timestamping mode */
2328 	ice_ptp_restore_timestamp_mode(pf);
2329 
2330 	return 0;
2331 }
2332 
2333 /**
2334  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2335  * @pf: Board private structure
2336  * @ifr: ioctl data
2337  *
2338  * Get the user config and store it
2339  */
2340 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2341 {
2342 	struct hwtstamp_config config;
2343 	int err;
2344 
2345 	if (pf->ptp.state != ICE_PTP_READY)
2346 		return -EAGAIN;
2347 
2348 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2349 		return -EFAULT;
2350 
2351 	err = ice_ptp_set_timestamp_mode(pf, &config);
2352 	if (err)
2353 		return err;
2354 
2355 	/* Return the actual configuration set */
2356 	config = pf->ptp.tstamp_config;
2357 
2358 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2359 		-EFAULT : 0;
2360 }
2361 
2362 /**
2363  * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
2364  * @rx_desc: Receive descriptor
2365  * @pkt_ctx: Packet context to get the cached time
2366  *
2367  * The driver receives a notification in the receive descriptor with timestamp.
2368  */
2369 u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
2370 			const struct ice_pkt_ctx *pkt_ctx)
2371 {
2372 	u64 ts_ns, cached_time;
2373 	u32 ts_high;
2374 
2375 	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2376 		return 0;
2377 
2378 	cached_time = READ_ONCE(pkt_ctx->cached_phctime);
2379 
2380 	/* Do not report a timestamp if we don't have a cached PHC time */
2381 	if (!cached_time)
2382 		return 0;
2383 
2384 	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2385 	 * PHC value, rather than accessing the PF. This also allows us to
2386 	 * simply pass the upper 32bits of nanoseconds directly. Calling
2387 	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2388 	 * bits itself.
2389 	 */
2390 	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2391 	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2392 
2393 	return ts_ns;
2394 }
2395 
2396 /**
2397  * ice_ptp_setup_pin_cfg - setup PTP pin_config structure
2398  * @pf: Board private structure
2399  */
2400 static void ice_ptp_setup_pin_cfg(struct ice_pf *pf)
2401 {
2402 	for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
2403 		const struct ice_ptp_pin_desc *desc = &pf->ptp.ice_pin_desc[i];
2404 		struct ptp_pin_desc *pin = &pf->ptp.pin_desc[i];
2405 		const char *name = NULL;
2406 
2407 		if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2408 			name = ice_pin_names[desc->name_idx];
2409 		else if (desc->name_idx != GPIO_NA)
2410 			name = ice_pin_names_nvm[desc->name_idx];
2411 		if (name)
2412 			strscpy(pin->name, name, sizeof(pin->name));
2413 
2414 		pin->index = i;
2415 	}
2416 
2417 	pf->ptp.info.pin_config = pf->ptp.pin_desc;
2418 }
2419 
2420 /**
2421  * ice_ptp_disable_pins - Disable PTP pins
2422  * @pf: pointer to the PF structure
2423  *
2424  * Disable the OS access to the SMA pins. Called to clear out the OS
2425  * indications of pin support when we fail to setup the SMA control register.
2426  */
2427 static void ice_ptp_disable_pins(struct ice_pf *pf)
2428 {
2429 	struct ptp_clock_info *info = &pf->ptp.info;
2430 
2431 	dev_warn(ice_pf_to_dev(pf), "Failed to configure PTP pin control\n");
2432 
2433 	info->enable = NULL;
2434 	info->verify = NULL;
2435 	info->n_pins = 0;
2436 	info->n_ext_ts = 0;
2437 	info->n_per_out = 0;
2438 }
2439 
2440 /**
2441  * ice_ptp_parse_sdp_entries - update ice_ptp_pin_desc structure from NVM
2442  * @pf: pointer to the PF structure
2443  * @entries: SDP connection section from NVM
2444  * @num_entries: number of valid entries in sdp_entries
2445  * @pins: PTP pins array to update
2446  *
2447  * Return: 0 on success, negative error code otherwise.
2448  */
2449 static int ice_ptp_parse_sdp_entries(struct ice_pf *pf, __le16 *entries,
2450 				     unsigned int num_entries,
2451 				     struct ice_ptp_pin_desc *pins)
2452 {
2453 	unsigned int n_pins = 0;
2454 	unsigned int i;
2455 
2456 	/* Setup ice_pin_desc array */
2457 	for (i = 0; i < ICE_N_PINS_MAX; i++) {
2458 		pins[i].name_idx = -1;
2459 		pins[i].gpio[0] = -1;
2460 		pins[i].gpio[1] = -1;
2461 	}
2462 
2463 	for (i = 0; i < num_entries; i++) {
2464 		u16 entry = le16_to_cpu(entries[i]);
2465 		DECLARE_BITMAP(bitmap, GPIO_NA);
2466 		unsigned int bitmap_idx;
2467 		bool dir;
2468 		u16 gpio;
2469 
2470 		*bitmap = FIELD_GET(ICE_AQC_NVM_SDP_AC_PIN_M, entry);
2471 		dir = !!FIELD_GET(ICE_AQC_NVM_SDP_AC_DIR_M, entry);
2472 		gpio = FIELD_GET(ICE_AQC_NVM_SDP_AC_SDP_NUM_M, entry);
2473 		for_each_set_bit(bitmap_idx, bitmap, GPIO_NA + 1) {
2474 			unsigned int idx;
2475 
2476 			/* Check if entry's pin bit is valid */
2477 			if (bitmap_idx >= NUM_PTP_PINS_NVM &&
2478 			    bitmap_idx != GPIO_NA)
2479 				continue;
2480 
2481 			/* Check if pin already exists */
2482 			for (idx = 0; idx < ICE_N_PINS_MAX; idx++)
2483 				if (pins[idx].name_idx == bitmap_idx)
2484 					break;
2485 
2486 			if (idx == ICE_N_PINS_MAX) {
2487 				/* Pin not found, setup its entry and name */
2488 				idx = n_pins++;
2489 				pins[idx].name_idx = bitmap_idx;
2490 				if (bitmap_idx == GPIO_NA)
2491 					strscpy(pf->ptp.pin_desc[idx].name,
2492 						ice_pin_names[gpio],
2493 						sizeof(pf->ptp.pin_desc[idx]
2494 							       .name));
2495 			}
2496 
2497 			/* Setup in/out GPIO number */
2498 			pins[idx].gpio[dir] = gpio;
2499 		}
2500 	}
2501 
2502 	for (i = 0; i < n_pins; i++) {
2503 		dev_dbg(ice_pf_to_dev(pf),
2504 			"NVM pin entry[%d] : name_idx %d gpio_out %d gpio_in %d\n",
2505 			i, pins[i].name_idx, pins[i].gpio[1], pins[i].gpio[0]);
2506 	}
2507 
2508 	pf->ptp.info.n_pins = n_pins;
2509 	return 0;
2510 }
2511 
2512 /**
2513  * ice_ptp_set_funcs_e82x - Set specialized functions for E82X support
2514  * @pf: Board private structure
2515  *
2516  * Assign functions to the PTP capabilities structure for E82X devices.
2517  * Functions which operate across all device families should be set directly
2518  * in ice_ptp_set_caps. Only add functions here which are distinct for E82X
2519  * devices.
2520  */
2521 static void ice_ptp_set_funcs_e82x(struct ice_pf *pf)
2522 {
2523 #ifdef CONFIG_ICE_HWTS
2524 	if (boot_cpu_has(X86_FEATURE_ART) &&
2525 	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2526 		pf->ptp.info.getcrosststamp = ice_ptp_getcrosststamp_e82x;
2527 
2528 #endif /* CONFIG_ICE_HWTS */
2529 	if (ice_is_e825c(&pf->hw)) {
2530 		pf->ptp.ice_pin_desc = ice_pin_desc_e825c;
2531 		pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e825c);
2532 	} else {
2533 		pf->ptp.ice_pin_desc = ice_pin_desc_e82x;
2534 		pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e82x);
2535 	}
2536 	ice_ptp_setup_pin_cfg(pf);
2537 }
2538 
2539 /**
2540  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2541  * @pf: Board private structure
2542  *
2543  * Assign functions to the PTP capabiltiies structure for E810 devices.
2544  * Functions which operate across all device families should be set directly
2545  * in ice_ptp_set_caps. Only add functions here which are distinct for E810
2546  * devices.
2547  */
2548 static void ice_ptp_set_funcs_e810(struct ice_pf *pf)
2549 {
2550 	__le16 entries[ICE_AQC_NVM_SDP_AC_MAX_SIZE];
2551 	struct ice_ptp_pin_desc *desc = NULL;
2552 	struct ice_ptp *ptp = &pf->ptp;
2553 	unsigned int num_entries;
2554 	int err;
2555 
2556 	err = ice_ptp_read_sdp_ac(&pf->hw, entries, &num_entries);
2557 	if (err) {
2558 		/* SDP section does not exist in NVM or is corrupted */
2559 		if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2560 			ptp->ice_pin_desc = ice_pin_desc_e810_sma;
2561 			ptp->info.n_pins =
2562 				ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810_sma);
2563 		} else {
2564 			pf->ptp.ice_pin_desc = ice_pin_desc_e810;
2565 			pf->ptp.info.n_pins =
2566 				ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810);
2567 			err = 0;
2568 		}
2569 	} else {
2570 		desc = devm_kcalloc(ice_pf_to_dev(pf), ICE_N_PINS_MAX,
2571 				    sizeof(struct ice_ptp_pin_desc),
2572 				    GFP_KERNEL);
2573 		if (!desc)
2574 			goto err;
2575 
2576 		err = ice_ptp_parse_sdp_entries(pf, entries, num_entries, desc);
2577 		if (err)
2578 			goto err;
2579 
2580 		ptp->ice_pin_desc = (const struct ice_ptp_pin_desc *)desc;
2581 	}
2582 
2583 	ptp->info.pin_config = ptp->pin_desc;
2584 	ice_ptp_setup_pin_cfg(pf);
2585 
2586 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2587 		err = ice_ptp_set_sma_cfg(pf);
2588 err:
2589 	if (err) {
2590 		devm_kfree(ice_pf_to_dev(pf), desc);
2591 		ice_ptp_disable_pins(pf);
2592 	}
2593 }
2594 
2595 /**
2596  * ice_ptp_set_caps - Set PTP capabilities
2597  * @pf: Board private structure
2598  */
2599 static void ice_ptp_set_caps(struct ice_pf *pf)
2600 {
2601 	struct ptp_clock_info *info = &pf->ptp.info;
2602 	struct device *dev = ice_pf_to_dev(pf);
2603 
2604 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2605 		 dev_driver_string(dev), dev_name(dev));
2606 	info->owner = THIS_MODULE;
2607 	info->max_adj = 100000000;
2608 	info->adjtime = ice_ptp_adjtime;
2609 	info->adjfine = ice_ptp_adjfine;
2610 	info->gettimex64 = ice_ptp_gettimex64;
2611 	info->settime64 = ice_ptp_settime64;
2612 	info->n_per_out = GLTSYN_TGT_H_IDX_MAX;
2613 	info->n_ext_ts = GLTSYN_EVNT_H_IDX_MAX;
2614 	info->enable = ice_ptp_gpio_enable;
2615 	info->verify = ice_verify_pin;
2616 
2617 	if (ice_is_e810(&pf->hw))
2618 		ice_ptp_set_funcs_e810(pf);
2619 	else
2620 		ice_ptp_set_funcs_e82x(pf);
2621 }
2622 
2623 /**
2624  * ice_ptp_create_clock - Create PTP clock device for userspace
2625  * @pf: Board private structure
2626  *
2627  * This function creates a new PTP clock device. It only creates one if we
2628  * don't already have one. Will return error if it can't create one, but success
2629  * if we already have a device. Should be used by ice_ptp_init to create clock
2630  * initially, and prevent global resets from creating new clock devices.
2631  */
2632 static long ice_ptp_create_clock(struct ice_pf *pf)
2633 {
2634 	struct ptp_clock_info *info;
2635 	struct device *dev;
2636 
2637 	/* No need to create a clock device if we already have one */
2638 	if (pf->ptp.clock)
2639 		return 0;
2640 
2641 	ice_ptp_set_caps(pf);
2642 
2643 	info = &pf->ptp.info;
2644 	dev = ice_pf_to_dev(pf);
2645 
2646 	/* Attempt to register the clock before enabling the hardware. */
2647 	pf->ptp.clock = ptp_clock_register(info, dev);
2648 	if (IS_ERR(pf->ptp.clock)) {
2649 		dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2650 		return PTR_ERR(pf->ptp.clock);
2651 	}
2652 
2653 	return 0;
2654 }
2655 
2656 /**
2657  * ice_ptp_request_ts - Request an available Tx timestamp index
2658  * @tx: the PTP Tx timestamp tracker to request from
2659  * @skb: the SKB to associate with this timestamp request
2660  */
2661 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2662 {
2663 	unsigned long flags;
2664 	u8 idx;
2665 
2666 	spin_lock_irqsave(&tx->lock, flags);
2667 
2668 	/* Check that this tracker is accepting new timestamp requests */
2669 	if (!ice_ptp_is_tx_tracker_up(tx)) {
2670 		spin_unlock_irqrestore(&tx->lock, flags);
2671 		return -1;
2672 	}
2673 
2674 	/* Find and set the first available index */
2675 	idx = find_next_zero_bit(tx->in_use, tx->len,
2676 				 tx->last_ll_ts_idx_read + 1);
2677 	if (idx == tx->len)
2678 		idx = find_first_zero_bit(tx->in_use, tx->len);
2679 
2680 	if (idx < tx->len) {
2681 		/* We got a valid index that no other thread could have set. Store
2682 		 * a reference to the skb and the start time to allow discarding old
2683 		 * requests.
2684 		 */
2685 		set_bit(idx, tx->in_use);
2686 		clear_bit(idx, tx->stale);
2687 		tx->tstamps[idx].start = jiffies;
2688 		tx->tstamps[idx].skb = skb_get(skb);
2689 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2690 		ice_trace(tx_tstamp_request, skb, idx);
2691 	}
2692 
2693 	spin_unlock_irqrestore(&tx->lock, flags);
2694 
2695 	/* return the appropriate PHY timestamp register index, -1 if no
2696 	 * indexes were available.
2697 	 */
2698 	if (idx >= tx->len)
2699 		return -1;
2700 	else
2701 		return idx + tx->offset;
2702 }
2703 
2704 /**
2705  * ice_ptp_process_ts - Process the PTP Tx timestamps
2706  * @pf: Board private structure
2707  *
2708  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2709  * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2710  */
2711 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2712 {
2713 	switch (pf->ptp.tx_interrupt_mode) {
2714 	case ICE_PTP_TX_INTERRUPT_NONE:
2715 		/* This device has the clock owner handle timestamps for it */
2716 		return ICE_TX_TSTAMP_WORK_DONE;
2717 	case ICE_PTP_TX_INTERRUPT_SELF:
2718 		/* This device handles its own timestamps */
2719 		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2720 	case ICE_PTP_TX_INTERRUPT_ALL:
2721 		/* This device handles timestamps for all ports */
2722 		return ice_ptp_tx_tstamp_owner(pf);
2723 	default:
2724 		WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2725 			  pf->ptp.tx_interrupt_mode);
2726 		return ICE_TX_TSTAMP_WORK_DONE;
2727 	}
2728 }
2729 
2730 /**
2731  * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
2732  * @pf: Board private structure
2733  *
2734  * The device PHY issues Tx timestamp interrupts to the driver for processing
2735  * timestamp data from the PHY. It will not interrupt again until all
2736  * current timestamp data is read. In rare circumstances, it is possible that
2737  * the driver fails to read all outstanding data.
2738  *
2739  * To avoid getting permanently stuck, periodically check if the PHY has
2740  * outstanding timestamp data. If so, trigger an interrupt from software to
2741  * process this data.
2742  */
2743 static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
2744 {
2745 	struct device *dev = ice_pf_to_dev(pf);
2746 	struct ice_hw *hw = &pf->hw;
2747 	bool trigger_oicr = false;
2748 	unsigned int i;
2749 
2750 	if (ice_is_e810(hw))
2751 		return;
2752 
2753 	if (!ice_pf_src_tmr_owned(pf))
2754 		return;
2755 
2756 	for (i = 0; i < ICE_GET_QUAD_NUM(hw->ptp.num_lports); i++) {
2757 		u64 tstamp_ready;
2758 		int err;
2759 
2760 		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
2761 		if (!err && tstamp_ready) {
2762 			trigger_oicr = true;
2763 			break;
2764 		}
2765 	}
2766 
2767 	if (trigger_oicr) {
2768 		/* Trigger a software interrupt, to ensure this data
2769 		 * gets processed.
2770 		 */
2771 		dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");
2772 
2773 		wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2774 		ice_flush(hw);
2775 	}
2776 }
2777 
2778 static void ice_ptp_periodic_work(struct kthread_work *work)
2779 {
2780 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2781 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2782 	int err;
2783 
2784 	if (pf->ptp.state != ICE_PTP_READY)
2785 		return;
2786 
2787 	err = ice_ptp_update_cached_phctime(pf);
2788 
2789 	ice_ptp_maybe_trigger_tx_interrupt(pf);
2790 
2791 	/* Run twice a second or reschedule if phc update failed */
2792 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2793 				   msecs_to_jiffies(err ? 10 : 500));
2794 }
2795 
2796 /**
2797  * ice_ptp_prepare_for_reset - Prepare PTP for reset
2798  * @pf: Board private structure
2799  * @reset_type: the reset type being performed
2800  */
2801 void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
2802 {
2803 	struct ice_ptp *ptp = &pf->ptp;
2804 	u8 src_tmr;
2805 
2806 	if (ptp->state != ICE_PTP_READY)
2807 		return;
2808 
2809 	ptp->state = ICE_PTP_RESETTING;
2810 
2811 	/* Disable timestamping for both Tx and Rx */
2812 	ice_ptp_disable_timestamp_mode(pf);
2813 
2814 	kthread_cancel_delayed_work_sync(&ptp->work);
2815 
2816 	if (reset_type == ICE_RESET_PFR)
2817 		return;
2818 
2819 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2820 
2821 	/* Disable periodic outputs */
2822 	ice_ptp_disable_all_perout(pf);
2823 
2824 	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2825 
2826 	/* Disable source clock */
2827 	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2828 
2829 	/* Acquire PHC and system timer to restore after reset */
2830 	ptp->reset_time = ktime_get_real_ns();
2831 }
2832 
2833 /**
2834  * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset
2835  * @pf: Board private structure
2836  *
2837  * Companion function for ice_ptp_rebuild() which handles tasks that only the
2838  * PTP clock owner instance should perform.
2839  */
2840 static int ice_ptp_rebuild_owner(struct ice_pf *pf)
2841 {
2842 	struct ice_ptp *ptp = &pf->ptp;
2843 	struct ice_hw *hw = &pf->hw;
2844 	struct timespec64 ts;
2845 	u64 time_diff;
2846 	int err;
2847 
2848 	err = ice_ptp_init_phc(hw);
2849 	if (err)
2850 		return err;
2851 
2852 	/* Acquire the global hardware lock */
2853 	if (!ice_ptp_lock(hw)) {
2854 		err = -EBUSY;
2855 		return err;
2856 	}
2857 
2858 	/* Write the increment time value to PHY and LAN */
2859 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2860 	if (err) {
2861 		ice_ptp_unlock(hw);
2862 		return err;
2863 	}
2864 
2865 	/* Write the initial Time value to PHY and LAN using the cached PHC
2866 	 * time before the reset and time difference between stopping and
2867 	 * starting the clock.
2868 	 */
2869 	if (ptp->cached_phc_time) {
2870 		time_diff = ktime_get_real_ns() - ptp->reset_time;
2871 		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2872 	} else {
2873 		ts = ktime_to_timespec64(ktime_get_real());
2874 	}
2875 	err = ice_ptp_write_init(pf, &ts);
2876 	if (err) {
2877 		ice_ptp_unlock(hw);
2878 		return err;
2879 	}
2880 
2881 	/* Release the global hardware lock */
2882 	ice_ptp_unlock(hw);
2883 
2884 	/* Flush software tracking of any outstanding timestamps since we're
2885 	 * about to flush the PHY timestamp block.
2886 	 */
2887 	ice_ptp_flush_all_tx_tracker(pf);
2888 
2889 	if (!ice_is_e810(hw)) {
2890 		/* Enable quad interrupts */
2891 		err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
2892 		if (err)
2893 			return err;
2894 
2895 		ice_ptp_restart_all_phy(pf);
2896 	}
2897 
2898 	/* Re-enable all periodic outputs and external timestamp events */
2899 	ice_ptp_enable_all_perout(pf);
2900 	ice_ptp_enable_all_extts(pf);
2901 
2902 	return 0;
2903 }
2904 
2905 /**
2906  * ice_ptp_rebuild - Initialize PTP hardware clock support after reset
2907  * @pf: Board private structure
2908  * @reset_type: the reset type being performed
2909  */
2910 void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
2911 {
2912 	struct ice_ptp *ptp = &pf->ptp;
2913 	int err;
2914 
2915 	if (ptp->state == ICE_PTP_READY) {
2916 		ice_ptp_prepare_for_reset(pf, reset_type);
2917 	} else if (ptp->state != ICE_PTP_RESETTING) {
2918 		err = -EINVAL;
2919 		dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n");
2920 		goto err;
2921 	}
2922 
2923 	if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) {
2924 		err = ice_ptp_rebuild_owner(pf);
2925 		if (err)
2926 			goto err;
2927 	}
2928 
2929 	ptp->state = ICE_PTP_READY;
2930 
2931 	/* Start periodic work going */
2932 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2933 
2934 	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2935 	return;
2936 
2937 err:
2938 	ptp->state = ICE_PTP_ERROR;
2939 	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2940 }
2941 
2942 static bool ice_is_primary(struct ice_hw *hw)
2943 {
2944 	return ice_is_e825c(hw) && ice_is_dual(hw) ?
2945 		!!(hw->dev_caps.nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) : true;
2946 }
2947 
2948 static int ice_ptp_setup_adapter(struct ice_pf *pf)
2949 {
2950 	if (!ice_pf_src_tmr_owned(pf) || !ice_is_primary(&pf->hw))
2951 		return -EPERM;
2952 
2953 	pf->adapter->ctrl_pf = pf;
2954 
2955 	return 0;
2956 }
2957 
2958 static int ice_ptp_setup_pf(struct ice_pf *pf)
2959 {
2960 	struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
2961 	struct ice_ptp *ptp = &pf->ptp;
2962 
2963 	if (WARN_ON(!ctrl_ptp) || ice_get_phy_model(&pf->hw) == ICE_PHY_UNSUP)
2964 		return -ENODEV;
2965 
2966 	INIT_LIST_HEAD(&ptp->port.list_node);
2967 	mutex_lock(&pf->adapter->ports.lock);
2968 
2969 	list_add(&ptp->port.list_node,
2970 		 &pf->adapter->ports.ports);
2971 	mutex_unlock(&pf->adapter->ports.lock);
2972 
2973 	return 0;
2974 }
2975 
2976 static void ice_ptp_cleanup_pf(struct ice_pf *pf)
2977 {
2978 	struct ice_ptp *ptp = &pf->ptp;
2979 
2980 	if (ice_get_phy_model(&pf->hw) != ICE_PHY_UNSUP) {
2981 		mutex_lock(&pf->adapter->ports.lock);
2982 		list_del(&ptp->port.list_node);
2983 		mutex_unlock(&pf->adapter->ports.lock);
2984 	}
2985 }
2986 
2987 /**
2988  * ice_ptp_clock_index - Get the PTP clock index for this device
2989  * @pf: Board private structure
2990  *
2991  * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
2992  * is associated.
2993  */
2994 int ice_ptp_clock_index(struct ice_pf *pf)
2995 {
2996 	struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
2997 	struct ptp_clock *clock;
2998 
2999 	if (!ctrl_ptp)
3000 		return -1;
3001 	clock = ctrl_ptp->clock;
3002 
3003 	return clock ? ptp_clock_index(clock) : -1;
3004 }
3005 
3006 /**
3007  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
3008  * @pf: Board private structure
3009  *
3010  * Setup and initialize a PTP clock device that represents the device hardware
3011  * clock. Save the clock index for other functions connected to the same
3012  * hardware resource.
3013  */
3014 static int ice_ptp_init_owner(struct ice_pf *pf)
3015 {
3016 	struct ice_hw *hw = &pf->hw;
3017 	struct timespec64 ts;
3018 	int err;
3019 
3020 	err = ice_ptp_init_phc(hw);
3021 	if (err) {
3022 		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
3023 			err);
3024 		return err;
3025 	}
3026 
3027 	/* Acquire the global hardware lock */
3028 	if (!ice_ptp_lock(hw)) {
3029 		err = -EBUSY;
3030 		goto err_exit;
3031 	}
3032 
3033 	/* Write the increment time value to PHY and LAN */
3034 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
3035 	if (err) {
3036 		ice_ptp_unlock(hw);
3037 		goto err_exit;
3038 	}
3039 
3040 	ts = ktime_to_timespec64(ktime_get_real());
3041 	/* Write the initial Time value to PHY and LAN */
3042 	err = ice_ptp_write_init(pf, &ts);
3043 	if (err) {
3044 		ice_ptp_unlock(hw);
3045 		goto err_exit;
3046 	}
3047 
3048 	/* Release the global hardware lock */
3049 	ice_ptp_unlock(hw);
3050 
3051 	/* Configure PHY interrupt settings */
3052 	err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
3053 	if (err)
3054 		goto err_exit;
3055 
3056 	/* Ensure we have a clock device */
3057 	err = ice_ptp_create_clock(pf);
3058 	if (err)
3059 		goto err_clk;
3060 
3061 	return 0;
3062 err_clk:
3063 	pf->ptp.clock = NULL;
3064 err_exit:
3065 	return err;
3066 }
3067 
3068 /**
3069  * ice_ptp_init_work - Initialize PTP work threads
3070  * @pf: Board private structure
3071  * @ptp: PF PTP structure
3072  */
3073 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
3074 {
3075 	struct kthread_worker *kworker;
3076 
3077 	/* Initialize work functions */
3078 	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
3079 
3080 	/* Allocate a kworker for handling work required for the ports
3081 	 * connected to the PTP hardware clock.
3082 	 */
3083 	kworker = kthread_create_worker(0, "ice-ptp-%s",
3084 					dev_name(ice_pf_to_dev(pf)));
3085 	if (IS_ERR(kworker))
3086 		return PTR_ERR(kworker);
3087 
3088 	ptp->kworker = kworker;
3089 
3090 	/* Start periodic work going */
3091 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3092 
3093 	return 0;
3094 }
3095 
3096 /**
3097  * ice_ptp_init_port - Initialize PTP port structure
3098  * @pf: Board private structure
3099  * @ptp_port: PTP port structure
3100  */
3101 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
3102 {
3103 	struct ice_hw *hw = &pf->hw;
3104 
3105 	mutex_init(&ptp_port->ps_lock);
3106 
3107 	switch (ice_get_phy_model(hw)) {
3108 	case ICE_PHY_ETH56G:
3109 		return ice_ptp_init_tx_eth56g(pf, &ptp_port->tx,
3110 					      ptp_port->port_num);
3111 	case ICE_PHY_E810:
3112 		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
3113 	case ICE_PHY_E82X:
3114 		kthread_init_delayed_work(&ptp_port->ov_work,
3115 					  ice_ptp_wait_for_offsets);
3116 
3117 		return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
3118 					    ptp_port->port_num);
3119 	default:
3120 		return -ENODEV;
3121 	}
3122 }
3123 
3124 /**
3125  * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
3126  * @pf: Board private structure
3127  *
3128  * Initialize the Tx timestamp interrupt mode for this device. For most device
3129  * types, each PF processes the interrupt and manages its own timestamps. For
3130  * E822-based devices, only the clock owner processes the timestamps. Other
3131  * PFs disable the interrupt and do not process their own timestamps.
3132  */
3133 static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
3134 {
3135 	switch (ice_get_phy_model(&pf->hw)) {
3136 	case ICE_PHY_E82X:
3137 		/* E822 based PHY has the clock owner process the interrupt
3138 		 * for all ports.
3139 		 */
3140 		if (ice_pf_src_tmr_owned(pf))
3141 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
3142 		else
3143 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
3144 		break;
3145 	default:
3146 		/* other PHY types handle their own Tx interrupt */
3147 		pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3148 	}
3149 }
3150 
3151 /**
3152  * ice_ptp_init - Initialize PTP hardware clock support
3153  * @pf: Board private structure
3154  *
3155  * Set up the device for interacting with the PTP hardware clock for all
3156  * functions, both the function that owns the clock hardware, and the
3157  * functions connected to the clock hardware.
3158  *
3159  * The clock owner will allocate and register a ptp_clock with the
3160  * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3161  * items used for asynchronous work such as Tx timestamps and periodic work.
3162  */
3163 void ice_ptp_init(struct ice_pf *pf)
3164 {
3165 	struct ice_ptp *ptp = &pf->ptp;
3166 	struct ice_hw *hw = &pf->hw;
3167 	int err;
3168 
3169 	ptp->state = ICE_PTP_INITIALIZING;
3170 
3171 	ice_ptp_init_hw(hw);
3172 
3173 	ice_ptp_init_tx_interrupt_mode(pf);
3174 
3175 	/* If this function owns the clock hardware, it must allocate and
3176 	 * configure the PTP clock device to represent it.
3177 	 */
3178 	if (ice_pf_src_tmr_owned(pf) && ice_is_primary(hw)) {
3179 		err = ice_ptp_setup_adapter(pf);
3180 		if (err)
3181 			goto err_exit;
3182 		err = ice_ptp_init_owner(pf);
3183 		if (err)
3184 			goto err_exit;
3185 	}
3186 
3187 	err = ice_ptp_setup_pf(pf);
3188 	if (err)
3189 		goto err_exit;
3190 
3191 	ptp->port.port_num = hw->pf_id;
3192 	if (ice_is_e825c(hw) && hw->ptp.is_2x50g_muxed_topo)
3193 		ptp->port.port_num = hw->pf_id * 2;
3194 
3195 	err = ice_ptp_init_port(pf, &ptp->port);
3196 	if (err)
3197 		goto err_exit;
3198 
3199 	/* Start the PHY timestamping block */
3200 	ice_ptp_reset_phy_timestamping(pf);
3201 
3202 	/* Configure initial Tx interrupt settings */
3203 	ice_ptp_cfg_tx_interrupt(pf);
3204 
3205 	ptp->state = ICE_PTP_READY;
3206 
3207 	err = ice_ptp_init_work(pf, ptp);
3208 	if (err)
3209 		goto err_exit;
3210 
3211 	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3212 	return;
3213 
3214 err_exit:
3215 	/* If we registered a PTP clock, release it */
3216 	if (pf->ptp.clock) {
3217 		ptp_clock_unregister(ptp->clock);
3218 		pf->ptp.clock = NULL;
3219 	}
3220 	ptp->state = ICE_PTP_ERROR;
3221 	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3222 }
3223 
3224 /**
3225  * ice_ptp_release - Disable the driver/HW support and unregister the clock
3226  * @pf: Board private structure
3227  *
3228  * This function handles the cleanup work required from the initialization by
3229  * clearing out the important information and unregistering the clock
3230  */
3231 void ice_ptp_release(struct ice_pf *pf)
3232 {
3233 	if (pf->ptp.state != ICE_PTP_READY)
3234 		return;
3235 
3236 	pf->ptp.state = ICE_PTP_UNINIT;
3237 
3238 	/* Disable timestamping for both Tx and Rx */
3239 	ice_ptp_disable_timestamp_mode(pf);
3240 
3241 	ice_ptp_cleanup_pf(pf);
3242 
3243 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3244 
3245 	ice_ptp_disable_all_extts(pf);
3246 
3247 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
3248 
3249 	ice_ptp_port_phy_stop(&pf->ptp.port);
3250 	mutex_destroy(&pf->ptp.port.ps_lock);
3251 	if (pf->ptp.kworker) {
3252 		kthread_destroy_worker(pf->ptp.kworker);
3253 		pf->ptp.kworker = NULL;
3254 	}
3255 
3256 	if (!pf->ptp.clock)
3257 		return;
3258 
3259 	/* Disable periodic outputs */
3260 	ice_ptp_disable_all_perout(pf);
3261 
3262 	ptp_clock_unregister(pf->ptp.clock);
3263 	pf->ptp.clock = NULL;
3264 
3265 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3266 }
3267