xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp.c (revision ab475966455ce285c2c9978a3e3bfe97d75ff8d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7 
8 #define E810_OUT_PROP_DELAY_NS 1
9 
10 #define UNKNOWN_INCVAL_E822 0x100000000ULL
11 
12 static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
13 	/* name    idx   func         chan */
14 	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
15 	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
16 	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
17 	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
18 	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
19 };
20 
21 /**
22  * ice_get_sma_config_e810t
23  * @hw: pointer to the hw struct
24  * @ptp_pins: pointer to the ptp_pin_desc struture
25  *
26  * Read the configuration of the SMA control logic and put it into the
27  * ptp_pin_desc structure
28  */
29 static int
30 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
31 {
32 	u8 data, i;
33 	int status;
34 
35 	/* Read initial pin state */
36 	status = ice_read_sma_ctrl_e810t(hw, &data);
37 	if (status)
38 		return status;
39 
40 	/* initialize with defaults */
41 	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
42 		strscpy(ptp_pins[i].name, ice_pin_desc_e810t[i].name,
43 			sizeof(ptp_pins[i].name));
44 		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
45 		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
46 		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
47 	}
48 
49 	/* Parse SMA1/UFL1 */
50 	switch (data & ICE_SMA1_MASK_E810T) {
51 	case ICE_SMA1_MASK_E810T:
52 	default:
53 		ptp_pins[SMA1].func = PTP_PF_NONE;
54 		ptp_pins[UFL1].func = PTP_PF_NONE;
55 		break;
56 	case ICE_SMA1_DIR_EN_E810T:
57 		ptp_pins[SMA1].func = PTP_PF_PEROUT;
58 		ptp_pins[UFL1].func = PTP_PF_NONE;
59 		break;
60 	case ICE_SMA1_TX_EN_E810T:
61 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
62 		ptp_pins[UFL1].func = PTP_PF_NONE;
63 		break;
64 	case 0:
65 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
66 		ptp_pins[UFL1].func = PTP_PF_PEROUT;
67 		break;
68 	}
69 
70 	/* Parse SMA2/UFL2 */
71 	switch (data & ICE_SMA2_MASK_E810T) {
72 	case ICE_SMA2_MASK_E810T:
73 	default:
74 		ptp_pins[SMA2].func = PTP_PF_NONE;
75 		ptp_pins[UFL2].func = PTP_PF_NONE;
76 		break;
77 	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
78 		ptp_pins[SMA2].func = PTP_PF_EXTTS;
79 		ptp_pins[UFL2].func = PTP_PF_NONE;
80 		break;
81 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
82 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
83 		ptp_pins[UFL2].func = PTP_PF_NONE;
84 		break;
85 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
86 		ptp_pins[SMA2].func = PTP_PF_NONE;
87 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
88 		break;
89 	case ICE_SMA2_DIR_EN_E810T:
90 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
91 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
92 		break;
93 	}
94 
95 	return 0;
96 }
97 
98 /**
99  * ice_ptp_set_sma_config_e810t
100  * @hw: pointer to the hw struct
101  * @ptp_pins: pointer to the ptp_pin_desc struture
102  *
103  * Set the configuration of the SMA control logic based on the configuration in
104  * num_pins parameter
105  */
106 static int
107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
108 			     const struct ptp_pin_desc *ptp_pins)
109 {
110 	int status;
111 	u8 data;
112 
113 	/* SMA1 and UFL1 cannot be set to TX at the same time */
114 	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
115 	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
116 		return -EINVAL;
117 
118 	/* SMA2 and UFL2 cannot be set to RX at the same time */
119 	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
120 	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
121 		return -EINVAL;
122 
123 	/* Read initial pin state value */
124 	status = ice_read_sma_ctrl_e810t(hw, &data);
125 	if (status)
126 		return status;
127 
128 	/* Set the right sate based on the desired configuration */
129 	data &= ~ICE_SMA1_MASK_E810T;
130 	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
131 	    ptp_pins[UFL1].func == PTP_PF_NONE) {
132 		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
133 		data |= ICE_SMA1_MASK_E810T;
134 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
135 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
136 		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
137 		data |= ICE_SMA1_TX_EN_E810T;
138 	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
139 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
140 		/* U.FL 1 TX will always enable SMA 1 RX */
141 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
142 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
143 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
144 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
145 	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
146 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
147 		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
148 		data |= ICE_SMA1_DIR_EN_E810T;
149 	}
150 
151 	data &= ~ICE_SMA2_MASK_E810T;
152 	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
153 	    ptp_pins[UFL2].func == PTP_PF_NONE) {
154 		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
155 		data |= ICE_SMA2_MASK_E810T;
156 	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
157 			ptp_pins[UFL2].func == PTP_PF_NONE) {
158 		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
159 		data |= (ICE_SMA2_TX_EN_E810T |
160 			 ICE_SMA2_UFL2_RX_DIS_E810T);
161 	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
162 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
163 		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
164 		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
165 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
166 		   ptp_pins[UFL2].func == PTP_PF_NONE) {
167 		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
168 		data |= (ICE_SMA2_DIR_EN_E810T |
169 			 ICE_SMA2_UFL2_RX_DIS_E810T);
170 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
171 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
172 		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
173 		data |= ICE_SMA2_DIR_EN_E810T;
174 	}
175 
176 	return ice_write_sma_ctrl_e810t(hw, data);
177 }
178 
179 /**
180  * ice_ptp_set_sma_e810t
181  * @info: the driver's PTP info structure
182  * @pin: pin index in kernel structure
183  * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
184  *
185  * Set the configuration of a single SMA pin
186  */
187 static int
188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
189 		      enum ptp_pin_function func)
190 {
191 	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
192 	struct ice_pf *pf = ptp_info_to_pf(info);
193 	struct ice_hw *hw = &pf->hw;
194 	int err;
195 
196 	if (pin < SMA1 || func > PTP_PF_PEROUT)
197 		return -EOPNOTSUPP;
198 
199 	err = ice_get_sma_config_e810t(hw, ptp_pins);
200 	if (err)
201 		return err;
202 
203 	/* Disable the same function on the other pin sharing the channel */
204 	if (pin == SMA1 && ptp_pins[UFL1].func == func)
205 		ptp_pins[UFL1].func = PTP_PF_NONE;
206 	if (pin == UFL1 && ptp_pins[SMA1].func == func)
207 		ptp_pins[SMA1].func = PTP_PF_NONE;
208 
209 	if (pin == SMA2 && ptp_pins[UFL2].func == func)
210 		ptp_pins[UFL2].func = PTP_PF_NONE;
211 	if (pin == UFL2 && ptp_pins[SMA2].func == func)
212 		ptp_pins[SMA2].func = PTP_PF_NONE;
213 
214 	/* Set up new pin function in the temp table */
215 	ptp_pins[pin].func = func;
216 
217 	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
218 }
219 
220 /**
221  * ice_verify_pin_e810t
222  * @info: the driver's PTP info structure
223  * @pin: Pin index
224  * @func: Assigned function
225  * @chan: Assigned channel
226  *
227  * Verify if pin supports requested pin function. If the Check pins consistency.
228  * Reconfigure the SMA logic attached to the given pin to enable its
229  * desired functionality
230  */
231 static int
232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
233 		     enum ptp_pin_function func, unsigned int chan)
234 {
235 	/* Don't allow channel reassignment */
236 	if (chan != ice_pin_desc_e810t[pin].chan)
237 		return -EOPNOTSUPP;
238 
239 	/* Check if functions are properly assigned */
240 	switch (func) {
241 	case PTP_PF_NONE:
242 		break;
243 	case PTP_PF_EXTTS:
244 		if (pin == UFL1)
245 			return -EOPNOTSUPP;
246 		break;
247 	case PTP_PF_PEROUT:
248 		if (pin == UFL2 || pin == GNSS)
249 			return -EOPNOTSUPP;
250 		break;
251 	case PTP_PF_PHYSYNC:
252 		return -EOPNOTSUPP;
253 	}
254 
255 	return ice_ptp_set_sma_e810t(info, pin, func);
256 }
257 
258 /**
259  * ice_ptp_configure_tx_tstamp - Enable or disable Tx timestamp interrupt
260  * @pf: The PF pointer to search in
261  * @on: bool value for whether timestamp interrupt is enabled or disabled
262  */
263 static void ice_ptp_configure_tx_tstamp(struct ice_pf *pf, bool on)
264 {
265 	u32 val;
266 
267 	/* Configure the Tx timestamp interrupt */
268 	val = rd32(&pf->hw, PFINT_OICR_ENA);
269 	if (on)
270 		val |= PFINT_OICR_TSYN_TX_M;
271 	else
272 		val &= ~PFINT_OICR_TSYN_TX_M;
273 	wr32(&pf->hw, PFINT_OICR_ENA, val);
274 }
275 
276 /**
277  * ice_set_tx_tstamp - Enable or disable Tx timestamping
278  * @pf: The PF pointer to search in
279  * @on: bool value for whether timestamps are enabled or disabled
280  */
281 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
282 {
283 	struct ice_vsi *vsi;
284 	u16 i;
285 
286 	vsi = ice_get_main_vsi(pf);
287 	if (!vsi)
288 		return;
289 
290 	/* Set the timestamp enable flag for all the Tx rings */
291 	ice_for_each_txq(vsi, i) {
292 		if (!vsi->tx_rings[i])
293 			continue;
294 		vsi->tx_rings[i]->ptp_tx = on;
295 	}
296 
297 	if (pf->ptp.tx_interrupt_mode == ICE_PTP_TX_INTERRUPT_SELF)
298 		ice_ptp_configure_tx_tstamp(pf, on);
299 
300 	pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
301 }
302 
303 /**
304  * ice_set_rx_tstamp - Enable or disable Rx timestamping
305  * @pf: The PF pointer to search in
306  * @on: bool value for whether timestamps are enabled or disabled
307  */
308 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
309 {
310 	struct ice_vsi *vsi;
311 	u16 i;
312 
313 	vsi = ice_get_main_vsi(pf);
314 	if (!vsi)
315 		return;
316 
317 	/* Set the timestamp flag for all the Rx rings */
318 	ice_for_each_rxq(vsi, i) {
319 		if (!vsi->rx_rings[i])
320 			continue;
321 		vsi->rx_rings[i]->ptp_rx = on;
322 	}
323 
324 	pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
325 					       HWTSTAMP_FILTER_NONE;
326 }
327 
328 /**
329  * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
330  * @pf: Board private structure
331  * @ena: bool value to enable or disable time stamp
332  *
333  * This function will configure timestamping during PTP initialization
334  * and deinitialization
335  */
336 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
337 {
338 	ice_set_tx_tstamp(pf, ena);
339 	ice_set_rx_tstamp(pf, ena);
340 }
341 
342 /**
343  * ice_ptp_read_src_clk_reg - Read the source clock register
344  * @pf: Board private structure
345  * @sts: Optional parameter for holding a pair of system timestamps from
346  *       the system clock. Will be ignored if NULL is given.
347  */
348 static u64
349 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
350 {
351 	struct ice_hw *hw = &pf->hw;
352 	u32 hi, lo, lo2;
353 	u8 tmr_idx;
354 
355 	tmr_idx = ice_get_ptp_src_clock_index(hw);
356 	/* Read the system timestamp pre PHC read */
357 	ptp_read_system_prets(sts);
358 
359 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
360 
361 	/* Read the system timestamp post PHC read */
362 	ptp_read_system_postts(sts);
363 
364 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
365 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
366 
367 	if (lo2 < lo) {
368 		/* if TIME_L rolled over read TIME_L again and update
369 		 * system timestamps
370 		 */
371 		ptp_read_system_prets(sts);
372 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
373 		ptp_read_system_postts(sts);
374 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
375 	}
376 
377 	return ((u64)hi << 32) | lo;
378 }
379 
380 /**
381  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
382  * @cached_phc_time: recently cached copy of PHC time
383  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
384  *
385  * Hardware captures timestamps which contain only 32 bits of nominal
386  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
387  * Note that the captured timestamp values may be 40 bits, but the lower
388  * 8 bits are sub-nanoseconds and generally discarded.
389  *
390  * Extend the 32bit nanosecond timestamp using the following algorithm and
391  * assumptions:
392  *
393  * 1) have a recently cached copy of the PHC time
394  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
395  *    seconds) before or after the PHC time was captured.
396  * 3) calculate the delta between the cached time and the timestamp
397  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
398  *    captured after the PHC time. In this case, the full timestamp is just
399  *    the cached PHC time plus the delta.
400  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
401  *    timestamp was captured *before* the PHC time, i.e. because the PHC
402  *    cache was updated after the timestamp was captured by hardware. In this
403  *    case, the full timestamp is the cached time minus the inverse delta.
404  *
405  * This algorithm works even if the PHC time was updated after a Tx timestamp
406  * was requested, but before the Tx timestamp event was reported from
407  * hardware.
408  *
409  * This calculation primarily relies on keeping the cached PHC time up to
410  * date. If the timestamp was captured more than 2^31 nanoseconds after the
411  * PHC time, it is possible that the lower 32bits of PHC time have
412  * overflowed more than once, and we might generate an incorrect timestamp.
413  *
414  * This is prevented by (a) periodically updating the cached PHC time once
415  * a second, and (b) discarding any Tx timestamp packet if it has waited for
416  * a timestamp for more than one second.
417  */
418 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
419 {
420 	u32 delta, phc_time_lo;
421 	u64 ns;
422 
423 	/* Extract the lower 32 bits of the PHC time */
424 	phc_time_lo = (u32)cached_phc_time;
425 
426 	/* Calculate the delta between the lower 32bits of the cached PHC
427 	 * time and the in_tstamp value
428 	 */
429 	delta = (in_tstamp - phc_time_lo);
430 
431 	/* Do not assume that the in_tstamp is always more recent than the
432 	 * cached PHC time. If the delta is large, it indicates that the
433 	 * in_tstamp was taken in the past, and should be converted
434 	 * forward.
435 	 */
436 	if (delta > (U32_MAX / 2)) {
437 		/* reverse the delta calculation here */
438 		delta = (phc_time_lo - in_tstamp);
439 		ns = cached_phc_time - delta;
440 	} else {
441 		ns = cached_phc_time + delta;
442 	}
443 
444 	return ns;
445 }
446 
447 /**
448  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
449  * @pf: Board private structure
450  * @in_tstamp: Ingress/egress 40b timestamp value
451  *
452  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
453  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
454  *
455  *  *--------------------------------------------------------------*
456  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
457  *  *--------------------------------------------------------------*
458  *
459  * The low bit is an indicator of whether the timestamp is valid. The next
460  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
461  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
462  *
463  * It is assumed that the caller verifies the timestamp is valid prior to
464  * calling this function.
465  *
466  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
467  * time stored in the device private PTP structure as the basis for timestamp
468  * extension.
469  *
470  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
471  * algorithm.
472  */
473 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
474 {
475 	const u64 mask = GENMASK_ULL(31, 0);
476 	unsigned long discard_time;
477 
478 	/* Discard the hardware timestamp if the cached PHC time is too old */
479 	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
480 	if (time_is_before_jiffies(discard_time)) {
481 		pf->ptp.tx_hwtstamp_discarded++;
482 		return 0;
483 	}
484 
485 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
486 				     (in_tstamp >> 8) & mask);
487 }
488 
489 /**
490  * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
491  * @tx: the PTP Tx timestamp tracker to check
492  *
493  * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
494  * to accept new timestamp requests.
495  *
496  * Assumes the tx->lock spinlock is already held.
497  */
498 static bool
499 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
500 {
501 	lockdep_assert_held(&tx->lock);
502 
503 	return tx->init && !tx->calibrating;
504 }
505 
506 /**
507  * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
508  * @tx: the PTP Tx timestamp tracker
509  *
510  * Process timestamps captured by the PHY associated with this port. To do
511  * this, loop over each index with a waiting skb.
512  *
513  * If a given index has a valid timestamp, perform the following steps:
514  *
515  * 1) check that the timestamp request is not stale
516  * 2) check that a timestamp is ready and available in the PHY memory bank
517  * 3) read and copy the timestamp out of the PHY register
518  * 4) unlock the index by clearing the associated in_use bit
519  * 5) check if the timestamp is stale, and discard if so
520  * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
521  * 7) send this 64 bit timestamp to the stack
522  *
523  * Note that we do not hold the tracking lock while reading the Tx timestamp.
524  * This is because reading the timestamp requires taking a mutex that might
525  * sleep.
526  *
527  * The only place where we set in_use is when a new timestamp is initiated
528  * with a slot index. This is only called in the hard xmit routine where an
529  * SKB has a request flag set. The only places where we clear this bit is this
530  * function, or during teardown when the Tx timestamp tracker is being
531  * removed. A timestamp index will never be re-used until the in_use bit for
532  * that index is cleared.
533  *
534  * If a Tx thread starts a new timestamp, we might not begin processing it
535  * right away but we will notice it at the end when we re-queue the task.
536  *
537  * If a Tx thread starts a new timestamp just after this function exits, the
538  * interrupt for that timestamp should re-trigger this function once
539  * a timestamp is ready.
540  *
541  * In cases where the PTP hardware clock was directly adjusted, some
542  * timestamps may not be able to safely use the timestamp extension math. In
543  * this case, software will set the stale bit for any outstanding Tx
544  * timestamps when the clock is adjusted. Then this function will discard
545  * those captured timestamps instead of sending them to the stack.
546  *
547  * If a Tx packet has been waiting for more than 2 seconds, it is not possible
548  * to correctly extend the timestamp using the cached PHC time. It is
549  * extremely unlikely that a packet will ever take this long to timestamp. If
550  * we detect a Tx timestamp request that has waited for this long we assume
551  * the packet will never be sent by hardware and discard it without reading
552  * the timestamp register.
553  */
554 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
555 {
556 	struct ice_ptp_port *ptp_port;
557 	struct ice_pf *pf;
558 	struct ice_hw *hw;
559 	u64 tstamp_ready;
560 	bool link_up;
561 	int err;
562 	u8 idx;
563 
564 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
565 	pf = ptp_port_to_pf(ptp_port);
566 	hw = &pf->hw;
567 
568 	/* Read the Tx ready status first */
569 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
570 	if (err)
571 		return;
572 
573 	/* Drop packets if the link went down */
574 	link_up = ptp_port->link_up;
575 
576 	for_each_set_bit(idx, tx->in_use, tx->len) {
577 		struct skb_shared_hwtstamps shhwtstamps = {};
578 		u8 phy_idx = idx + tx->offset;
579 		u64 raw_tstamp = 0, tstamp;
580 		bool drop_ts = !link_up;
581 		struct sk_buff *skb;
582 
583 		/* Drop packets which have waited for more than 2 seconds */
584 		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
585 			drop_ts = true;
586 
587 			/* Count the number of Tx timestamps that timed out */
588 			pf->ptp.tx_hwtstamp_timeouts++;
589 		}
590 
591 		/* Only read a timestamp from the PHY if its marked as ready
592 		 * by the tstamp_ready register. This avoids unnecessary
593 		 * reading of timestamps which are not yet valid. This is
594 		 * important as we must read all timestamps which are valid
595 		 * and only timestamps which are valid during each interrupt.
596 		 * If we do not, the hardware logic for generating a new
597 		 * interrupt can get stuck on some devices.
598 		 */
599 		if (!(tstamp_ready & BIT_ULL(phy_idx))) {
600 			if (drop_ts)
601 				goto skip_ts_read;
602 
603 			continue;
604 		}
605 
606 		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
607 
608 		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
609 		if (err && !drop_ts)
610 			continue;
611 
612 		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
613 
614 		/* For PHYs which don't implement a proper timestamp ready
615 		 * bitmap, verify that the timestamp value is different
616 		 * from the last cached timestamp. If it is not, skip this for
617 		 * now assuming it hasn't yet been captured by hardware.
618 		 */
619 		if (!drop_ts && tx->verify_cached &&
620 		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
621 			continue;
622 
623 		/* Discard any timestamp value without the valid bit set */
624 		if (!(raw_tstamp & ICE_PTP_TS_VALID))
625 			drop_ts = true;
626 
627 skip_ts_read:
628 		spin_lock(&tx->lock);
629 		if (tx->verify_cached && raw_tstamp)
630 			tx->tstamps[idx].cached_tstamp = raw_tstamp;
631 		clear_bit(idx, tx->in_use);
632 		skb = tx->tstamps[idx].skb;
633 		tx->tstamps[idx].skb = NULL;
634 		if (test_and_clear_bit(idx, tx->stale))
635 			drop_ts = true;
636 		spin_unlock(&tx->lock);
637 
638 		/* It is unlikely but possible that the SKB will have been
639 		 * flushed at this point due to link change or teardown.
640 		 */
641 		if (!skb)
642 			continue;
643 
644 		if (drop_ts) {
645 			dev_kfree_skb_any(skb);
646 			continue;
647 		}
648 
649 		/* Extend the timestamp using cached PHC time */
650 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
651 		if (tstamp) {
652 			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
653 			ice_trace(tx_tstamp_complete, skb, idx);
654 		}
655 
656 		skb_tstamp_tx(skb, &shhwtstamps);
657 		dev_kfree_skb_any(skb);
658 	}
659 }
660 
661 /**
662  * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
663  * @pf: Board private structure
664  */
665 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
666 {
667 	struct ice_ptp_port *port;
668 	unsigned int i;
669 
670 	mutex_lock(&pf->ptp.ports_owner.lock);
671 	list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) {
672 		struct ice_ptp_tx *tx = &port->tx;
673 
674 		if (!tx || !tx->init)
675 			continue;
676 
677 		ice_ptp_process_tx_tstamp(tx);
678 	}
679 	mutex_unlock(&pf->ptp.ports_owner.lock);
680 
681 	for (i = 0; i < ICE_MAX_QUAD; i++) {
682 		u64 tstamp_ready;
683 		int err;
684 
685 		/* Read the Tx ready status first */
686 		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
687 		if (err || tstamp_ready)
688 			return ICE_TX_TSTAMP_WORK_PENDING;
689 	}
690 
691 	return ICE_TX_TSTAMP_WORK_DONE;
692 }
693 
694 /**
695  * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
696  * @tx: Tx tracking structure to initialize
697  *
698  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
699  * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
700  */
701 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
702 {
703 	bool more_timestamps;
704 
705 	if (!tx->init)
706 		return ICE_TX_TSTAMP_WORK_DONE;
707 
708 	/* Process the Tx timestamp tracker */
709 	ice_ptp_process_tx_tstamp(tx);
710 
711 	/* Check if there are outstanding Tx timestamps */
712 	spin_lock(&tx->lock);
713 	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
714 	spin_unlock(&tx->lock);
715 
716 	if (more_timestamps)
717 		return ICE_TX_TSTAMP_WORK_PENDING;
718 
719 	return ICE_TX_TSTAMP_WORK_DONE;
720 }
721 
722 /**
723  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
724  * @tx: Tx tracking structure to initialize
725  *
726  * Assumes that the length has already been initialized. Do not call directly,
727  * use the ice_ptp_init_tx_* instead.
728  */
729 static int
730 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
731 {
732 	unsigned long *in_use, *stale;
733 	struct ice_tx_tstamp *tstamps;
734 
735 	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
736 	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
737 	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
738 
739 	if (!tstamps || !in_use || !stale) {
740 		kfree(tstamps);
741 		bitmap_free(in_use);
742 		bitmap_free(stale);
743 
744 		return -ENOMEM;
745 	}
746 
747 	tx->tstamps = tstamps;
748 	tx->in_use = in_use;
749 	tx->stale = stale;
750 	tx->init = 1;
751 
752 	spin_lock_init(&tx->lock);
753 
754 	return 0;
755 }
756 
757 /**
758  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
759  * @pf: Board private structure
760  * @tx: the tracker to flush
761  *
762  * Called during teardown when a Tx tracker is being removed.
763  */
764 static void
765 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
766 {
767 	struct ice_hw *hw = &pf->hw;
768 	u64 tstamp_ready;
769 	int err;
770 	u8 idx;
771 
772 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
773 	if (err) {
774 		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
775 			tx->block, err);
776 
777 		/* If we fail to read the Tx timestamp ready bitmap just
778 		 * skip clearing the PHY timestamps.
779 		 */
780 		tstamp_ready = 0;
781 	}
782 
783 	for_each_set_bit(idx, tx->in_use, tx->len) {
784 		u8 phy_idx = idx + tx->offset;
785 		struct sk_buff *skb;
786 
787 		/* In case this timestamp is ready, we need to clear it. */
788 		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
789 			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
790 
791 		spin_lock(&tx->lock);
792 		skb = tx->tstamps[idx].skb;
793 		tx->tstamps[idx].skb = NULL;
794 		clear_bit(idx, tx->in_use);
795 		clear_bit(idx, tx->stale);
796 		spin_unlock(&tx->lock);
797 
798 		/* Count the number of Tx timestamps flushed */
799 		pf->ptp.tx_hwtstamp_flushed++;
800 
801 		/* Free the SKB after we've cleared the bit */
802 		dev_kfree_skb_any(skb);
803 	}
804 }
805 
806 /**
807  * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
808  * @tx: the tracker to mark
809  *
810  * Mark currently outstanding Tx timestamps as stale. This prevents sending
811  * their timestamp value to the stack. This is required to prevent extending
812  * the 40bit hardware timestamp incorrectly.
813  *
814  * This should be called when the PTP clock is modified such as after a set
815  * time request.
816  */
817 static void
818 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
819 {
820 	spin_lock(&tx->lock);
821 	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
822 	spin_unlock(&tx->lock);
823 }
824 
825 /**
826  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
827  * @pf: Board private structure
828  * @tx: Tx tracking structure to release
829  *
830  * Free memory associated with the Tx timestamp tracker.
831  */
832 static void
833 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
834 {
835 	spin_lock(&tx->lock);
836 	tx->init = 0;
837 	spin_unlock(&tx->lock);
838 
839 	/* wait for potentially outstanding interrupt to complete */
840 	synchronize_irq(pf->oicr_irq.virq);
841 
842 	ice_ptp_flush_tx_tracker(pf, tx);
843 
844 	kfree(tx->tstamps);
845 	tx->tstamps = NULL;
846 
847 	bitmap_free(tx->in_use);
848 	tx->in_use = NULL;
849 
850 	bitmap_free(tx->stale);
851 	tx->stale = NULL;
852 
853 	tx->len = 0;
854 }
855 
856 /**
857  * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
858  * @pf: Board private structure
859  * @tx: the Tx tracking structure to initialize
860  * @port: the port this structure tracks
861  *
862  * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
863  * the timestamp block is shared for all ports in the same quad. To avoid
864  * ports using the same timestamp index, logically break the block of
865  * registers into chunks based on the port number.
866  */
867 static int
868 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
869 {
870 	tx->block = port / ICE_PORTS_PER_QUAD;
871 	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E822;
872 	tx->len = INDEX_PER_PORT_E822;
873 	tx->verify_cached = 0;
874 
875 	return ice_ptp_alloc_tx_tracker(tx);
876 }
877 
878 /**
879  * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
880  * @pf: Board private structure
881  * @tx: the Tx tracking structure to initialize
882  *
883  * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
884  * port has its own block of timestamps, independent of the other ports.
885  */
886 static int
887 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
888 {
889 	tx->block = pf->hw.port_info->lport;
890 	tx->offset = 0;
891 	tx->len = INDEX_PER_PORT_E810;
892 	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
893 	 * verify new timestamps against cached copy of the last read
894 	 * timestamp.
895 	 */
896 	tx->verify_cached = 1;
897 
898 	return ice_ptp_alloc_tx_tracker(tx);
899 }
900 
901 /**
902  * ice_ptp_update_cached_phctime - Update the cached PHC time values
903  * @pf: Board specific private structure
904  *
905  * This function updates the system time values which are cached in the PF
906  * structure and the Rx rings.
907  *
908  * This function must be called periodically to ensure that the cached value
909  * is never more than 2 seconds old.
910  *
911  * Note that the cached copy in the PF PTP structure is always updated, even
912  * if we can't update the copy in the Rx rings.
913  *
914  * Return:
915  * * 0 - OK, successfully updated
916  * * -EAGAIN - PF was busy, need to reschedule the update
917  */
918 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
919 {
920 	struct device *dev = ice_pf_to_dev(pf);
921 	unsigned long update_before;
922 	u64 systime;
923 	int i;
924 
925 	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
926 	if (pf->ptp.cached_phc_time &&
927 	    time_is_before_jiffies(update_before)) {
928 		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
929 
930 		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
931 			 jiffies_to_msecs(time_taken));
932 		pf->ptp.late_cached_phc_updates++;
933 	}
934 
935 	/* Read the current PHC time */
936 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
937 
938 	/* Update the cached PHC time stored in the PF structure */
939 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
940 	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
941 
942 	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
943 		return -EAGAIN;
944 
945 	ice_for_each_vsi(pf, i) {
946 		struct ice_vsi *vsi = pf->vsi[i];
947 		int j;
948 
949 		if (!vsi)
950 			continue;
951 
952 		if (vsi->type != ICE_VSI_PF)
953 			continue;
954 
955 		ice_for_each_rxq(vsi, j) {
956 			if (!vsi->rx_rings[j])
957 				continue;
958 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
959 		}
960 	}
961 	clear_bit(ICE_CFG_BUSY, pf->state);
962 
963 	return 0;
964 }
965 
966 /**
967  * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
968  * @pf: Board specific private structure
969  *
970  * This function must be called when the cached PHC time is no longer valid,
971  * such as after a time adjustment. It marks any currently outstanding Tx
972  * timestamps as stale and updates the cached PHC time for both the PF and Rx
973  * rings.
974  *
975  * If updating the PHC time cannot be done immediately, a warning message is
976  * logged and the work item is scheduled immediately to minimize the window
977  * with a wrong cached timestamp.
978  */
979 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
980 {
981 	struct device *dev = ice_pf_to_dev(pf);
982 	int err;
983 
984 	/* Update the cached PHC time immediately if possible, otherwise
985 	 * schedule the work item to execute soon.
986 	 */
987 	err = ice_ptp_update_cached_phctime(pf);
988 	if (err) {
989 		/* If another thread is updating the Rx rings, we won't
990 		 * properly reset them here. This could lead to reporting of
991 		 * invalid timestamps, but there isn't much we can do.
992 		 */
993 		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
994 			 __func__);
995 
996 		/* Queue the work item to update the Rx rings when possible */
997 		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
998 					   msecs_to_jiffies(10));
999 	}
1000 
1001 	/* Mark any outstanding timestamps as stale, since they might have
1002 	 * been captured in hardware before the time update. This could lead
1003 	 * to us extending them with the wrong cached value resulting in
1004 	 * incorrect timestamp values.
1005 	 */
1006 	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1007 }
1008 
1009 /**
1010  * ice_ptp_read_time - Read the time from the device
1011  * @pf: Board private structure
1012  * @ts: timespec structure to hold the current time value
1013  * @sts: Optional parameter for holding a pair of system timestamps from
1014  *       the system clock. Will be ignored if NULL is given.
1015  *
1016  * This function reads the source clock registers and stores them in a timespec.
1017  * However, since the registers are 64 bits of nanoseconds, we must convert the
1018  * result to a timespec before we can return.
1019  */
1020 static void
1021 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1022 		  struct ptp_system_timestamp *sts)
1023 {
1024 	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1025 
1026 	*ts = ns_to_timespec64(time_ns);
1027 }
1028 
1029 /**
1030  * ice_ptp_write_init - Set PHC time to provided value
1031  * @pf: Board private structure
1032  * @ts: timespec structure that holds the new time value
1033  *
1034  * Set the PHC time to the specified time provided in the timespec.
1035  */
1036 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1037 {
1038 	u64 ns = timespec64_to_ns(ts);
1039 	struct ice_hw *hw = &pf->hw;
1040 
1041 	return ice_ptp_init_time(hw, ns);
1042 }
1043 
1044 /**
1045  * ice_ptp_write_adj - Adjust PHC clock time atomically
1046  * @pf: Board private structure
1047  * @adj: Adjustment in nanoseconds
1048  *
1049  * Perform an atomic adjustment of the PHC time by the specified number of
1050  * nanoseconds.
1051  */
1052 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1053 {
1054 	struct ice_hw *hw = &pf->hw;
1055 
1056 	return ice_ptp_adj_clock(hw, adj);
1057 }
1058 
1059 /**
1060  * ice_base_incval - Get base timer increment value
1061  * @pf: Board private structure
1062  *
1063  * Look up the base timer increment value for this device. The base increment
1064  * value is used to define the nominal clock tick rate. This increment value
1065  * is programmed during device initialization. It is also used as the basis
1066  * for calculating adjustments using scaled_ppm.
1067  */
1068 static u64 ice_base_incval(struct ice_pf *pf)
1069 {
1070 	struct ice_hw *hw = &pf->hw;
1071 	u64 incval;
1072 
1073 	if (ice_is_e810(hw))
1074 		incval = ICE_PTP_NOMINAL_INCVAL_E810;
1075 	else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1076 		incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
1077 	else
1078 		incval = UNKNOWN_INCVAL_E822;
1079 
1080 	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1081 		incval);
1082 
1083 	return incval;
1084 }
1085 
1086 /**
1087  * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1088  * @port: PTP port for which Tx FIFO is checked
1089  */
1090 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1091 {
1092 	int quad = port->port_num / ICE_PORTS_PER_QUAD;
1093 	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1094 	struct ice_pf *pf;
1095 	struct ice_hw *hw;
1096 	u32 val, phy_sts;
1097 	int err;
1098 
1099 	pf = ptp_port_to_pf(port);
1100 	hw = &pf->hw;
1101 
1102 	if (port->tx_fifo_busy_cnt == FIFO_OK)
1103 		return 0;
1104 
1105 	/* need to read FIFO state */
1106 	if (offs == 0 || offs == 1)
1107 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
1108 					     &val);
1109 	else
1110 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
1111 					     &val);
1112 
1113 	if (err) {
1114 		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1115 			port->port_num, err);
1116 		return err;
1117 	}
1118 
1119 	if (offs & 0x1)
1120 		phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
1121 	else
1122 		phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
1123 
1124 	if (phy_sts & FIFO_EMPTY) {
1125 		port->tx_fifo_busy_cnt = FIFO_OK;
1126 		return 0;
1127 	}
1128 
1129 	port->tx_fifo_busy_cnt++;
1130 
1131 	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1132 		port->tx_fifo_busy_cnt, port->port_num);
1133 
1134 	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1135 		dev_dbg(ice_pf_to_dev(pf),
1136 			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1137 			port->port_num, quad);
1138 		ice_ptp_reset_ts_memory_quad_e822(hw, quad);
1139 		port->tx_fifo_busy_cnt = FIFO_OK;
1140 		return 0;
1141 	}
1142 
1143 	return -EAGAIN;
1144 }
1145 
1146 /**
1147  * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1148  * @work: Pointer to the kthread_work structure for this task
1149  *
1150  * Check whether hardware has completed measuring the Tx and Rx offset values
1151  * used to configure and enable vernier timestamp calibration.
1152  *
1153  * Once the offset in either direction is measured, configure the associated
1154  * registers with the calibrated offset values and enable timestamping. The Tx
1155  * and Rx directions are configured independently as soon as their associated
1156  * offsets are known.
1157  *
1158  * This function reschedules itself until both Tx and Rx calibration have
1159  * completed.
1160  */
1161 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1162 {
1163 	struct ice_ptp_port *port;
1164 	struct ice_pf *pf;
1165 	struct ice_hw *hw;
1166 	int tx_err;
1167 	int rx_err;
1168 
1169 	port = container_of(work, struct ice_ptp_port, ov_work.work);
1170 	pf = ptp_port_to_pf(port);
1171 	hw = &pf->hw;
1172 
1173 	if (ice_is_reset_in_progress(pf->state)) {
1174 		/* wait for device driver to complete reset */
1175 		kthread_queue_delayed_work(pf->ptp.kworker,
1176 					   &port->ov_work,
1177 					   msecs_to_jiffies(100));
1178 		return;
1179 	}
1180 
1181 	tx_err = ice_ptp_check_tx_fifo(port);
1182 	if (!tx_err)
1183 		tx_err = ice_phy_cfg_tx_offset_e822(hw, port->port_num);
1184 	rx_err = ice_phy_cfg_rx_offset_e822(hw, port->port_num);
1185 	if (tx_err || rx_err) {
1186 		/* Tx and/or Rx offset not yet configured, try again later */
1187 		kthread_queue_delayed_work(pf->ptp.kworker,
1188 					   &port->ov_work,
1189 					   msecs_to_jiffies(100));
1190 		return;
1191 	}
1192 }
1193 
1194 /**
1195  * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1196  * @ptp_port: PTP port to stop
1197  */
1198 static int
1199 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1200 {
1201 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1202 	u8 port = ptp_port->port_num;
1203 	struct ice_hw *hw = &pf->hw;
1204 	int err;
1205 
1206 	if (ice_is_e810(hw))
1207 		return 0;
1208 
1209 	mutex_lock(&ptp_port->ps_lock);
1210 
1211 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1212 
1213 	err = ice_stop_phy_timer_e822(hw, port, true);
1214 	if (err)
1215 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1216 			port, err);
1217 
1218 	mutex_unlock(&ptp_port->ps_lock);
1219 
1220 	return err;
1221 }
1222 
1223 /**
1224  * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1225  * @ptp_port: PTP port for which the PHY start is set
1226  *
1227  * Start the PHY timestamping block, and initiate Vernier timestamping
1228  * calibration. If timestamping cannot be calibrated (such as if link is down)
1229  * then disable the timestamping block instead.
1230  */
1231 static int
1232 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1233 {
1234 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1235 	u8 port = ptp_port->port_num;
1236 	struct ice_hw *hw = &pf->hw;
1237 	int err;
1238 
1239 	if (ice_is_e810(hw))
1240 		return 0;
1241 
1242 	if (!ptp_port->link_up)
1243 		return ice_ptp_port_phy_stop(ptp_port);
1244 
1245 	mutex_lock(&ptp_port->ps_lock);
1246 
1247 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1248 
1249 	/* temporarily disable Tx timestamps while calibrating PHY offset */
1250 	spin_lock(&ptp_port->tx.lock);
1251 	ptp_port->tx.calibrating = true;
1252 	spin_unlock(&ptp_port->tx.lock);
1253 	ptp_port->tx_fifo_busy_cnt = 0;
1254 
1255 	/* Start the PHY timer in Vernier mode */
1256 	err = ice_start_phy_timer_e822(hw, port);
1257 	if (err)
1258 		goto out_unlock;
1259 
1260 	/* Enable Tx timestamps right away */
1261 	spin_lock(&ptp_port->tx.lock);
1262 	ptp_port->tx.calibrating = false;
1263 	spin_unlock(&ptp_port->tx.lock);
1264 
1265 	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1266 
1267 out_unlock:
1268 	if (err)
1269 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1270 			port, err);
1271 
1272 	mutex_unlock(&ptp_port->ps_lock);
1273 
1274 	return err;
1275 }
1276 
1277 /**
1278  * ice_ptp_link_change - Reconfigure PTP after link status change
1279  * @pf: Board private structure
1280  * @port: Port for which the PHY start is set
1281  * @linkup: Link is up or down
1282  */
1283 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1284 {
1285 	struct ice_ptp_port *ptp_port;
1286 	struct ice_hw *hw = &pf->hw;
1287 
1288 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1289 		return;
1290 
1291 	if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1292 		return;
1293 
1294 	ptp_port = &pf->ptp.port;
1295 	if (WARN_ON_ONCE(ptp_port->port_num != port))
1296 		return;
1297 
1298 	/* Update cached link status for this port immediately */
1299 	ptp_port->link_up = linkup;
1300 
1301 	switch (hw->phy_model) {
1302 	case ICE_PHY_E810:
1303 		/* Do not reconfigure E810 PHY */
1304 		return;
1305 	case ICE_PHY_E822:
1306 		ice_ptp_port_phy_restart(ptp_port);
1307 		return;
1308 	default:
1309 		dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1310 	}
1311 }
1312 
1313 /**
1314  * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1315  * @pf: PF private structure
1316  * @ena: bool value to enable or disable interrupt
1317  * @threshold: Minimum number of packets at which intr is triggered
1318  *
1319  * Utility function to enable or disable Tx timestamp interrupt and threshold
1320  */
1321 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1322 {
1323 	struct ice_hw *hw = &pf->hw;
1324 	int err = 0;
1325 	int quad;
1326 	u32 val;
1327 
1328 	ice_ptp_reset_ts_memory(hw);
1329 
1330 	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1331 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1332 					     &val);
1333 		if (err)
1334 			break;
1335 
1336 		if (ena) {
1337 			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1338 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1339 			val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1340 				Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1341 		} else {
1342 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1343 		}
1344 
1345 		err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1346 					      val);
1347 		if (err)
1348 			break;
1349 	}
1350 
1351 	if (err)
1352 		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1353 			err);
1354 	return err;
1355 }
1356 
1357 /**
1358  * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1359  * @pf: Board private structure
1360  */
1361 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1362 {
1363 	ice_ptp_port_phy_restart(&pf->ptp.port);
1364 }
1365 
1366 /**
1367  * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1368  * @pf: Board private structure
1369  */
1370 static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1371 {
1372 	struct list_head *entry;
1373 
1374 	list_for_each(entry, &pf->ptp.ports_owner.ports) {
1375 		struct ice_ptp_port *port = list_entry(entry,
1376 						       struct ice_ptp_port,
1377 						       list_member);
1378 
1379 		if (port->link_up)
1380 			ice_ptp_port_phy_restart(port);
1381 	}
1382 }
1383 
1384 /**
1385  * ice_ptp_adjfine - Adjust clock increment rate
1386  * @info: the driver's PTP info structure
1387  * @scaled_ppm: Parts per million with 16-bit fractional field
1388  *
1389  * Adjust the frequency of the clock by the indicated scaled ppm from the
1390  * base frequency.
1391  */
1392 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1393 {
1394 	struct ice_pf *pf = ptp_info_to_pf(info);
1395 	struct ice_hw *hw = &pf->hw;
1396 	u64 incval;
1397 	int err;
1398 
1399 	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1400 	err = ice_ptp_write_incval_locked(hw, incval);
1401 	if (err) {
1402 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1403 			err);
1404 		return -EIO;
1405 	}
1406 
1407 	return 0;
1408 }
1409 
1410 /**
1411  * ice_ptp_extts_event - Process PTP external clock event
1412  * @pf: Board private structure
1413  */
1414 void ice_ptp_extts_event(struct ice_pf *pf)
1415 {
1416 	struct ptp_clock_event event;
1417 	struct ice_hw *hw = &pf->hw;
1418 	u8 chan, tmr_idx;
1419 	u32 hi, lo;
1420 
1421 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1422 	/* Event time is captured by one of the two matched registers
1423 	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1424 	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1425 	 * Event is defined in GLTSYN_EVNT_0 register
1426 	 */
1427 	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1428 		/* Check if channel is enabled */
1429 		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1430 			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1431 			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1432 			event.timestamp = (((u64)hi) << 32) | lo;
1433 			event.type = PTP_CLOCK_EXTTS;
1434 			event.index = chan;
1435 
1436 			/* Fire event */
1437 			ptp_clock_event(pf->ptp.clock, &event);
1438 			pf->ptp.ext_ts_irq &= ~(1 << chan);
1439 		}
1440 	}
1441 }
1442 
1443 /**
1444  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1445  * @pf: Board private structure
1446  * @ena: true to enable; false to disable
1447  * @chan: GPIO channel (0-3)
1448  * @gpio_pin: GPIO pin
1449  * @extts_flags: request flags from the ptp_extts_request.flags
1450  */
1451 static int
1452 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1453 		  unsigned int extts_flags)
1454 {
1455 	u32 func, aux_reg, gpio_reg, irq_reg;
1456 	struct ice_hw *hw = &pf->hw;
1457 	u8 tmr_idx;
1458 
1459 	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1460 		return -EINVAL;
1461 
1462 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1463 
1464 	irq_reg = rd32(hw, PFINT_OICR_ENA);
1465 
1466 	if (ena) {
1467 		/* Enable the interrupt */
1468 		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1469 		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1470 
1471 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1472 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1473 
1474 		/* set event level to requested edge */
1475 		if (extts_flags & PTP_FALLING_EDGE)
1476 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1477 		if (extts_flags & PTP_RISING_EDGE)
1478 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1479 
1480 		/* Write GPIO CTL reg.
1481 		 * 0x1 is input sampled by EVENT register(channel)
1482 		 * + num_in_channels * tmr_idx
1483 		 */
1484 		func = 1 + chan + (tmr_idx * 3);
1485 		gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1486 			    GLGEN_GPIO_CTL_PIN_FUNC_M);
1487 		pf->ptp.ext_ts_chan |= (1 << chan);
1488 	} else {
1489 		/* clear the values we set to reset defaults */
1490 		aux_reg = 0;
1491 		gpio_reg = 0;
1492 		pf->ptp.ext_ts_chan &= ~(1 << chan);
1493 		if (!pf->ptp.ext_ts_chan)
1494 			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1495 	}
1496 
1497 	wr32(hw, PFINT_OICR_ENA, irq_reg);
1498 	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1499 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1500 
1501 	return 0;
1502 }
1503 
1504 /**
1505  * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1506  * @pf: Board private structure
1507  * @chan: GPIO channel (0-3)
1508  * @config: desired periodic clk configuration. NULL will disable channel
1509  * @store: If set to true the values will be stored
1510  *
1511  * Configure the internal clock generator modules to generate the clock wave of
1512  * specified period.
1513  */
1514 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1515 			      struct ice_perout_channel *config, bool store)
1516 {
1517 	u64 current_time, period, start_time, phase;
1518 	struct ice_hw *hw = &pf->hw;
1519 	u32 func, val, gpio_pin;
1520 	u8 tmr_idx;
1521 
1522 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1523 
1524 	/* 0. Reset mode & out_en in AUX_OUT */
1525 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1526 
1527 	/* If we're disabling the output, clear out CLKO and TGT and keep
1528 	 * output level low
1529 	 */
1530 	if (!config || !config->ena) {
1531 		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1532 		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1533 		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1534 
1535 		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1536 		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1537 		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1538 
1539 		/* Store the value if requested */
1540 		if (store)
1541 			memset(&pf->ptp.perout_channels[chan], 0,
1542 			       sizeof(struct ice_perout_channel));
1543 
1544 		return 0;
1545 	}
1546 	period = config->period;
1547 	start_time = config->start_time;
1548 	div64_u64_rem(start_time, period, &phase);
1549 	gpio_pin = config->gpio_pin;
1550 
1551 	/* 1. Write clkout with half of required period value */
1552 	if (period & 0x1) {
1553 		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1554 		goto err;
1555 	}
1556 
1557 	period >>= 1;
1558 
1559 	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1560 	 */
1561 #define MIN_PULSE 3
1562 	if (period <= MIN_PULSE || period > U32_MAX) {
1563 		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1564 			MIN_PULSE * 2);
1565 		goto err;
1566 	}
1567 
1568 	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1569 
1570 	/* Allow time for programming before start_time is hit */
1571 	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1572 
1573 	/* if start time is in the past start the timer at the nearest second
1574 	 * maintaining phase
1575 	 */
1576 	if (start_time < current_time)
1577 		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1578 				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1579 
1580 	if (ice_is_e810(hw))
1581 		start_time -= E810_OUT_PROP_DELAY_NS;
1582 	else
1583 		start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
1584 
1585 	/* 2. Write TARGET time */
1586 	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1587 	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1588 
1589 	/* 3. Write AUX_OUT register */
1590 	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1591 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1592 
1593 	/* 4. write GPIO CTL reg */
1594 	func = 8 + chan + (tmr_idx * 4);
1595 	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1596 	      ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1597 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1598 
1599 	/* Store the value if requested */
1600 	if (store) {
1601 		memcpy(&pf->ptp.perout_channels[chan], config,
1602 		       sizeof(struct ice_perout_channel));
1603 		pf->ptp.perout_channels[chan].start_time = phase;
1604 	}
1605 
1606 	return 0;
1607 err:
1608 	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1609 	return -EFAULT;
1610 }
1611 
1612 /**
1613  * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1614  * @pf: pointer to the PF structure
1615  *
1616  * Disable all currently configured clock outputs. This is necessary before
1617  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1618  * re-enable the clocks again.
1619  */
1620 static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1621 {
1622 	uint i;
1623 
1624 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1625 		if (pf->ptp.perout_channels[i].ena)
1626 			ice_ptp_cfg_clkout(pf, i, NULL, false);
1627 }
1628 
1629 /**
1630  * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1631  * @pf: pointer to the PF structure
1632  *
1633  * Enable all currently configured clock outputs. Use this after
1634  * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1635  * their configuration.
1636  */
1637 static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1638 {
1639 	uint i;
1640 
1641 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1642 		if (pf->ptp.perout_channels[i].ena)
1643 			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1644 					   false);
1645 }
1646 
1647 /**
1648  * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1649  * @info: the driver's PTP info structure
1650  * @rq: The requested feature to change
1651  * @on: Enable/disable flag
1652  */
1653 static int
1654 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1655 			 struct ptp_clock_request *rq, int on)
1656 {
1657 	struct ice_pf *pf = ptp_info_to_pf(info);
1658 	struct ice_perout_channel clk_cfg = {0};
1659 	bool sma_pres = false;
1660 	unsigned int chan;
1661 	u32 gpio_pin;
1662 	int err;
1663 
1664 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1665 		sma_pres = true;
1666 
1667 	switch (rq->type) {
1668 	case PTP_CLK_REQ_PEROUT:
1669 		chan = rq->perout.index;
1670 		if (sma_pres) {
1671 			if (chan == ice_pin_desc_e810t[SMA1].chan)
1672 				clk_cfg.gpio_pin = GPIO_20;
1673 			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1674 				clk_cfg.gpio_pin = GPIO_22;
1675 			else
1676 				return -1;
1677 		} else if (ice_is_e810t(&pf->hw)) {
1678 			if (chan == 0)
1679 				clk_cfg.gpio_pin = GPIO_20;
1680 			else
1681 				clk_cfg.gpio_pin = GPIO_22;
1682 		} else if (chan == PPS_CLK_GEN_CHAN) {
1683 			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1684 		} else {
1685 			clk_cfg.gpio_pin = chan;
1686 		}
1687 
1688 		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1689 				   rq->perout.period.nsec);
1690 		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1691 				       rq->perout.start.nsec);
1692 		clk_cfg.ena = !!on;
1693 
1694 		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1695 		break;
1696 	case PTP_CLK_REQ_EXTTS:
1697 		chan = rq->extts.index;
1698 		if (sma_pres) {
1699 			if (chan < ice_pin_desc_e810t[SMA2].chan)
1700 				gpio_pin = GPIO_21;
1701 			else
1702 				gpio_pin = GPIO_23;
1703 		} else if (ice_is_e810t(&pf->hw)) {
1704 			if (chan == 0)
1705 				gpio_pin = GPIO_21;
1706 			else
1707 				gpio_pin = GPIO_23;
1708 		} else {
1709 			gpio_pin = chan;
1710 		}
1711 
1712 		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1713 					rq->extts.flags);
1714 		break;
1715 	default:
1716 		return -EOPNOTSUPP;
1717 	}
1718 
1719 	return err;
1720 }
1721 
1722 /**
1723  * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC
1724  * @info: the driver's PTP info structure
1725  * @rq: The requested feature to change
1726  * @on: Enable/disable flag
1727  */
1728 static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info,
1729 				    struct ptp_clock_request *rq, int on)
1730 {
1731 	struct ice_pf *pf = ptp_info_to_pf(info);
1732 	struct ice_perout_channel clk_cfg = {0};
1733 	int err;
1734 
1735 	switch (rq->type) {
1736 	case PTP_CLK_REQ_PPS:
1737 		clk_cfg.gpio_pin = PPS_PIN_INDEX;
1738 		clk_cfg.period = NSEC_PER_SEC;
1739 		clk_cfg.ena = !!on;
1740 
1741 		err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true);
1742 		break;
1743 	case PTP_CLK_REQ_EXTTS:
1744 		err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index,
1745 					TIME_SYNC_PIN_INDEX, rq->extts.flags);
1746 		break;
1747 	default:
1748 		return -EOPNOTSUPP;
1749 	}
1750 
1751 	return err;
1752 }
1753 
1754 /**
1755  * ice_ptp_gettimex64 - Get the time of the clock
1756  * @info: the driver's PTP info structure
1757  * @ts: timespec64 structure to hold the current time value
1758  * @sts: Optional parameter for holding a pair of system timestamps from
1759  *       the system clock. Will be ignored if NULL is given.
1760  *
1761  * Read the device clock and return the correct value on ns, after converting it
1762  * into a timespec struct.
1763  */
1764 static int
1765 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1766 		   struct ptp_system_timestamp *sts)
1767 {
1768 	struct ice_pf *pf = ptp_info_to_pf(info);
1769 	struct ice_hw *hw = &pf->hw;
1770 
1771 	if (!ice_ptp_lock(hw)) {
1772 		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1773 		return -EBUSY;
1774 	}
1775 
1776 	ice_ptp_read_time(pf, ts, sts);
1777 	ice_ptp_unlock(hw);
1778 
1779 	return 0;
1780 }
1781 
1782 /**
1783  * ice_ptp_settime64 - Set the time of the clock
1784  * @info: the driver's PTP info structure
1785  * @ts: timespec64 structure that holds the new time value
1786  *
1787  * Set the device clock to the user input value. The conversion from timespec
1788  * to ns happens in the write function.
1789  */
1790 static int
1791 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1792 {
1793 	struct ice_pf *pf = ptp_info_to_pf(info);
1794 	struct timespec64 ts64 = *ts;
1795 	struct ice_hw *hw = &pf->hw;
1796 	int err;
1797 
1798 	/* For Vernier mode, we need to recalibrate after new settime
1799 	 * Start with disabling timestamp block
1800 	 */
1801 	if (pf->ptp.port.link_up)
1802 		ice_ptp_port_phy_stop(&pf->ptp.port);
1803 
1804 	if (!ice_ptp_lock(hw)) {
1805 		err = -EBUSY;
1806 		goto exit;
1807 	}
1808 
1809 	/* Disable periodic outputs */
1810 	ice_ptp_disable_all_clkout(pf);
1811 
1812 	err = ice_ptp_write_init(pf, &ts64);
1813 	ice_ptp_unlock(hw);
1814 
1815 	if (!err)
1816 		ice_ptp_reset_cached_phctime(pf);
1817 
1818 	/* Reenable periodic outputs */
1819 	ice_ptp_enable_all_clkout(pf);
1820 
1821 	/* Recalibrate and re-enable timestamp blocks for E822/E823 */
1822 	if (hw->phy_model == ICE_PHY_E822)
1823 		ice_ptp_restart_all_phy(pf);
1824 exit:
1825 	if (err) {
1826 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1827 		return err;
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 /**
1834  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1835  * @info: the driver's PTP info structure
1836  * @delta: Offset in nanoseconds to adjust the time by
1837  */
1838 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1839 {
1840 	struct timespec64 now, then;
1841 	int ret;
1842 
1843 	then = ns_to_timespec64(delta);
1844 	ret = ice_ptp_gettimex64(info, &now, NULL);
1845 	if (ret)
1846 		return ret;
1847 	now = timespec64_add(now, then);
1848 
1849 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1850 }
1851 
1852 /**
1853  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1854  * @info: the driver's PTP info structure
1855  * @delta: Offset in nanoseconds to adjust the time by
1856  */
1857 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1858 {
1859 	struct ice_pf *pf = ptp_info_to_pf(info);
1860 	struct ice_hw *hw = &pf->hw;
1861 	struct device *dev;
1862 	int err;
1863 
1864 	dev = ice_pf_to_dev(pf);
1865 
1866 	/* Hardware only supports atomic adjustments using signed 32-bit
1867 	 * integers. For any adjustment outside this range, perform
1868 	 * a non-atomic get->adjust->set flow.
1869 	 */
1870 	if (delta > S32_MAX || delta < S32_MIN) {
1871 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1872 		return ice_ptp_adjtime_nonatomic(info, delta);
1873 	}
1874 
1875 	if (!ice_ptp_lock(hw)) {
1876 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1877 		return -EBUSY;
1878 	}
1879 
1880 	/* Disable periodic outputs */
1881 	ice_ptp_disable_all_clkout(pf);
1882 
1883 	err = ice_ptp_write_adj(pf, delta);
1884 
1885 	/* Reenable periodic outputs */
1886 	ice_ptp_enable_all_clkout(pf);
1887 
1888 	ice_ptp_unlock(hw);
1889 
1890 	if (err) {
1891 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1892 		return err;
1893 	}
1894 
1895 	ice_ptp_reset_cached_phctime(pf);
1896 
1897 	return 0;
1898 }
1899 
1900 #ifdef CONFIG_ICE_HWTS
1901 /**
1902  * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1903  * @device: Current device time
1904  * @system: System counter value read synchronously with device time
1905  * @ctx: Context provided by timekeeping code
1906  *
1907  * Read device and system (ART) clock simultaneously and return the corrected
1908  * clock values in ns.
1909  */
1910 static int
1911 ice_ptp_get_syncdevicetime(ktime_t *device,
1912 			   struct system_counterval_t *system,
1913 			   void *ctx)
1914 {
1915 	struct ice_pf *pf = (struct ice_pf *)ctx;
1916 	struct ice_hw *hw = &pf->hw;
1917 	u32 hh_lock, hh_art_ctl;
1918 	int i;
1919 
1920 #define MAX_HH_HW_LOCK_TRIES	5
1921 #define MAX_HH_CTL_LOCK_TRIES	100
1922 
1923 	for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
1924 		/* Get the HW lock */
1925 		hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1926 		if (hh_lock & PFHH_SEM_BUSY_M) {
1927 			usleep_range(10000, 15000);
1928 			continue;
1929 		}
1930 		break;
1931 	}
1932 	if (hh_lock & PFHH_SEM_BUSY_M) {
1933 		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1934 		return -EBUSY;
1935 	}
1936 
1937 	/* Program cmd to master timer */
1938 	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
1939 
1940 	/* Start the ART and device clock sync sequence */
1941 	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1942 	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1943 	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1944 
1945 	for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
1946 		/* Wait for sync to complete */
1947 		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1948 		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1949 			udelay(1);
1950 			continue;
1951 		} else {
1952 			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
1953 			u64 hh_ts;
1954 
1955 			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
1956 			/* Read ART time */
1957 			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
1958 			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
1959 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1960 			*system = convert_art_ns_to_tsc(hh_ts);
1961 			/* Read Device source clock time */
1962 			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
1963 			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
1964 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1965 			*device = ns_to_ktime(hh_ts);
1966 			break;
1967 		}
1968 	}
1969 
1970 	/* Clear the master timer */
1971 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
1972 
1973 	/* Release HW lock */
1974 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1975 	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
1976 	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
1977 
1978 	if (i == MAX_HH_CTL_LOCK_TRIES)
1979 		return -ETIMEDOUT;
1980 
1981 	return 0;
1982 }
1983 
1984 /**
1985  * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
1986  * @info: the driver's PTP info structure
1987  * @cts: The memory to fill the cross timestamp info
1988  *
1989  * Capture a cross timestamp between the ART and the device PTP hardware
1990  * clock. Fill the cross timestamp information and report it back to the
1991  * caller.
1992  *
1993  * This is only valid for E822 and E823 devices which have support for
1994  * generating the cross timestamp via PCIe PTM.
1995  *
1996  * In order to correctly correlate the ART timestamp back to the TSC time, the
1997  * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
1998  */
1999 static int
2000 ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
2001 			    struct system_device_crosststamp *cts)
2002 {
2003 	struct ice_pf *pf = ptp_info_to_pf(info);
2004 
2005 	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2006 					     pf, NULL, cts);
2007 }
2008 #endif /* CONFIG_ICE_HWTS */
2009 
2010 /**
2011  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2012  * @pf: Board private structure
2013  * @ifr: ioctl data
2014  *
2015  * Copy the timestamping config to user buffer
2016  */
2017 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2018 {
2019 	struct hwtstamp_config *config;
2020 
2021 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2022 		return -EIO;
2023 
2024 	config = &pf->ptp.tstamp_config;
2025 
2026 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2027 		-EFAULT : 0;
2028 }
2029 
2030 /**
2031  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2032  * @pf: Board private structure
2033  * @config: hwtstamp settings requested or saved
2034  */
2035 static int
2036 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2037 {
2038 	switch (config->tx_type) {
2039 	case HWTSTAMP_TX_OFF:
2040 		ice_set_tx_tstamp(pf, false);
2041 		break;
2042 	case HWTSTAMP_TX_ON:
2043 		ice_set_tx_tstamp(pf, true);
2044 		break;
2045 	default:
2046 		return -ERANGE;
2047 	}
2048 
2049 	switch (config->rx_filter) {
2050 	case HWTSTAMP_FILTER_NONE:
2051 		ice_set_rx_tstamp(pf, false);
2052 		break;
2053 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2054 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2055 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2056 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2057 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2058 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2059 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2060 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2061 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2062 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2063 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2064 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2065 	case HWTSTAMP_FILTER_NTP_ALL:
2066 	case HWTSTAMP_FILTER_ALL:
2067 		ice_set_rx_tstamp(pf, true);
2068 		break;
2069 	default:
2070 		return -ERANGE;
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 /**
2077  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2078  * @pf: Board private structure
2079  * @ifr: ioctl data
2080  *
2081  * Get the user config and store it
2082  */
2083 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2084 {
2085 	struct hwtstamp_config config;
2086 	int err;
2087 
2088 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2089 		return -EAGAIN;
2090 
2091 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2092 		return -EFAULT;
2093 
2094 	err = ice_ptp_set_timestamp_mode(pf, &config);
2095 	if (err)
2096 		return err;
2097 
2098 	/* Return the actual configuration set */
2099 	config = pf->ptp.tstamp_config;
2100 
2101 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2102 		-EFAULT : 0;
2103 }
2104 
2105 /**
2106  * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
2107  * @rx_ring: Ring to get the VSI info
2108  * @rx_desc: Receive descriptor
2109  * @skb: Particular skb to send timestamp with
2110  *
2111  * The driver receives a notification in the receive descriptor with timestamp.
2112  * The timestamp is in ns, so we must convert the result first.
2113  */
2114 void
2115 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
2116 		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
2117 {
2118 	struct skb_shared_hwtstamps *hwtstamps;
2119 	u64 ts_ns, cached_time;
2120 	u32 ts_high;
2121 
2122 	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2123 		return;
2124 
2125 	cached_time = READ_ONCE(rx_ring->cached_phctime);
2126 
2127 	/* Do not report a timestamp if we don't have a cached PHC time */
2128 	if (!cached_time)
2129 		return;
2130 
2131 	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2132 	 * PHC value, rather than accessing the PF. This also allows us to
2133 	 * simply pass the upper 32bits of nanoseconds directly. Calling
2134 	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2135 	 * bits itself.
2136 	 */
2137 	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2138 	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2139 
2140 	hwtstamps = skb_hwtstamps(skb);
2141 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2142 	hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
2143 }
2144 
2145 /**
2146  * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2147  * @pf: pointer to the PF structure
2148  * @info: PTP clock info structure
2149  *
2150  * Disable the OS access to the SMA pins. Called to clear out the OS
2151  * indications of pin support when we fail to setup the E810-T SMA control
2152  * register.
2153  */
2154 static void
2155 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2156 {
2157 	struct device *dev = ice_pf_to_dev(pf);
2158 
2159 	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2160 
2161 	info->enable = NULL;
2162 	info->verify = NULL;
2163 	info->n_pins = 0;
2164 	info->n_ext_ts = 0;
2165 	info->n_per_out = 0;
2166 }
2167 
2168 /**
2169  * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2170  * @pf: pointer to the PF structure
2171  * @info: PTP clock info structure
2172  *
2173  * Finish setting up the SMA pins by allocating pin_config, and setting it up
2174  * according to the current status of the SMA. On failure, disable all of the
2175  * extended SMA pin support.
2176  */
2177 static void
2178 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2179 {
2180 	struct device *dev = ice_pf_to_dev(pf);
2181 	int err;
2182 
2183 	/* Allocate memory for kernel pins interface */
2184 	info->pin_config = devm_kcalloc(dev, info->n_pins,
2185 					sizeof(*info->pin_config), GFP_KERNEL);
2186 	if (!info->pin_config) {
2187 		ice_ptp_disable_sma_pins_e810t(pf, info);
2188 		return;
2189 	}
2190 
2191 	/* Read current SMA status */
2192 	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2193 	if (err)
2194 		ice_ptp_disable_sma_pins_e810t(pf, info);
2195 }
2196 
2197 /**
2198  * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2199  * @pf: pointer to the PF instance
2200  * @info: PTP clock capabilities
2201  */
2202 static void
2203 ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2204 {
2205 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2206 		info->n_ext_ts = N_EXT_TS_E810;
2207 		info->n_per_out = N_PER_OUT_E810T;
2208 		info->n_pins = NUM_PTP_PINS_E810T;
2209 		info->verify = ice_verify_pin_e810t;
2210 
2211 		/* Complete setup of the SMA pins */
2212 		ice_ptp_setup_sma_pins_e810t(pf, info);
2213 	} else if (ice_is_e810t(&pf->hw)) {
2214 		info->n_ext_ts = N_EXT_TS_NO_SMA_E810T;
2215 		info->n_per_out = N_PER_OUT_NO_SMA_E810T;
2216 	} else {
2217 		info->n_per_out = N_PER_OUT_E810;
2218 		info->n_ext_ts = N_EXT_TS_E810;
2219 	}
2220 }
2221 
2222 /**
2223  * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs
2224  * @pf: pointer to the PF instance
2225  * @info: PTP clock capabilities
2226  */
2227 static void
2228 ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2229 {
2230 	info->pps = 1;
2231 	info->n_per_out = 0;
2232 	info->n_ext_ts = 1;
2233 }
2234 
2235 /**
2236  * ice_ptp_set_funcs_e82x - Set specialized functions for E82x support
2237  * @pf: Board private structure
2238  * @info: PTP info to fill
2239  *
2240  * Assign functions to the PTP capabiltiies structure for E82x devices.
2241  * Functions which operate across all device families should be set directly
2242  * in ice_ptp_set_caps. Only add functions here which are distinct for E82x
2243  * devices.
2244  */
2245 static void
2246 ice_ptp_set_funcs_e82x(struct ice_pf *pf, struct ptp_clock_info *info)
2247 {
2248 #ifdef CONFIG_ICE_HWTS
2249 	if (boot_cpu_has(X86_FEATURE_ART) &&
2250 	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2251 		info->getcrosststamp = ice_ptp_getcrosststamp_e82x;
2252 #endif /* CONFIG_ICE_HWTS */
2253 }
2254 
2255 /**
2256  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2257  * @pf: Board private structure
2258  * @info: PTP info to fill
2259  *
2260  * Assign functions to the PTP capabiltiies structure for E810 devices.
2261  * Functions which operate across all device families should be set directly
2262  * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2263  * devices.
2264  */
2265 static void
2266 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2267 {
2268 	info->enable = ice_ptp_gpio_enable_e810;
2269 	ice_ptp_setup_pins_e810(pf, info);
2270 }
2271 
2272 /**
2273  * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support
2274  * @pf: Board private structure
2275  * @info: PTP info to fill
2276  *
2277  * Assign functions to the PTP capabiltiies structure for E823 devices.
2278  * Functions which operate across all device families should be set directly
2279  * in ice_ptp_set_caps. Only add functions here which are distinct for e823
2280  * devices.
2281  */
2282 static void
2283 ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2284 {
2285 	ice_ptp_set_funcs_e82x(pf, info);
2286 
2287 	info->enable = ice_ptp_gpio_enable_e823;
2288 	ice_ptp_setup_pins_e823(pf, info);
2289 }
2290 
2291 /**
2292  * ice_ptp_set_caps - Set PTP capabilities
2293  * @pf: Board private structure
2294  */
2295 static void ice_ptp_set_caps(struct ice_pf *pf)
2296 {
2297 	struct ptp_clock_info *info = &pf->ptp.info;
2298 	struct device *dev = ice_pf_to_dev(pf);
2299 
2300 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2301 		 dev_driver_string(dev), dev_name(dev));
2302 	info->owner = THIS_MODULE;
2303 	info->max_adj = 100000000;
2304 	info->adjtime = ice_ptp_adjtime;
2305 	info->adjfine = ice_ptp_adjfine;
2306 	info->gettimex64 = ice_ptp_gettimex64;
2307 	info->settime64 = ice_ptp_settime64;
2308 
2309 	if (ice_is_e810(&pf->hw))
2310 		ice_ptp_set_funcs_e810(pf, info);
2311 	else if (ice_is_e823(&pf->hw))
2312 		ice_ptp_set_funcs_e823(pf, info);
2313 	else
2314 		ice_ptp_set_funcs_e82x(pf, info);
2315 }
2316 
2317 /**
2318  * ice_ptp_create_clock - Create PTP clock device for userspace
2319  * @pf: Board private structure
2320  *
2321  * This function creates a new PTP clock device. It only creates one if we
2322  * don't already have one. Will return error if it can't create one, but success
2323  * if we already have a device. Should be used by ice_ptp_init to create clock
2324  * initially, and prevent global resets from creating new clock devices.
2325  */
2326 static long ice_ptp_create_clock(struct ice_pf *pf)
2327 {
2328 	struct ptp_clock_info *info;
2329 	struct device *dev;
2330 
2331 	/* No need to create a clock device if we already have one */
2332 	if (pf->ptp.clock)
2333 		return 0;
2334 
2335 	ice_ptp_set_caps(pf);
2336 
2337 	info = &pf->ptp.info;
2338 	dev = ice_pf_to_dev(pf);
2339 
2340 	/* Attempt to register the clock before enabling the hardware. */
2341 	pf->ptp.clock = ptp_clock_register(info, dev);
2342 	if (IS_ERR(pf->ptp.clock)) {
2343 		dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2344 		return PTR_ERR(pf->ptp.clock);
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 /**
2351  * ice_ptp_request_ts - Request an available Tx timestamp index
2352  * @tx: the PTP Tx timestamp tracker to request from
2353  * @skb: the SKB to associate with this timestamp request
2354  */
2355 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2356 {
2357 	u8 idx;
2358 
2359 	spin_lock(&tx->lock);
2360 
2361 	/* Check that this tracker is accepting new timestamp requests */
2362 	if (!ice_ptp_is_tx_tracker_up(tx)) {
2363 		spin_unlock(&tx->lock);
2364 		return -1;
2365 	}
2366 
2367 	/* Find and set the first available index */
2368 	idx = find_first_zero_bit(tx->in_use, tx->len);
2369 	if (idx < tx->len) {
2370 		/* We got a valid index that no other thread could have set. Store
2371 		 * a reference to the skb and the start time to allow discarding old
2372 		 * requests.
2373 		 */
2374 		set_bit(idx, tx->in_use);
2375 		clear_bit(idx, tx->stale);
2376 		tx->tstamps[idx].start = jiffies;
2377 		tx->tstamps[idx].skb = skb_get(skb);
2378 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2379 		ice_trace(tx_tstamp_request, skb, idx);
2380 	}
2381 
2382 	spin_unlock(&tx->lock);
2383 
2384 	/* return the appropriate PHY timestamp register index, -1 if no
2385 	 * indexes were available.
2386 	 */
2387 	if (idx >= tx->len)
2388 		return -1;
2389 	else
2390 		return idx + tx->offset;
2391 }
2392 
2393 /**
2394  * ice_ptp_process_ts - Process the PTP Tx timestamps
2395  * @pf: Board private structure
2396  *
2397  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2398  * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2399  */
2400 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2401 {
2402 	switch (pf->ptp.tx_interrupt_mode) {
2403 	case ICE_PTP_TX_INTERRUPT_NONE:
2404 		/* This device has the clock owner handle timestamps for it */
2405 		return ICE_TX_TSTAMP_WORK_DONE;
2406 	case ICE_PTP_TX_INTERRUPT_SELF:
2407 		/* This device handles its own timestamps */
2408 		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2409 	case ICE_PTP_TX_INTERRUPT_ALL:
2410 		/* This device handles timestamps for all ports */
2411 		return ice_ptp_tx_tstamp_owner(pf);
2412 	default:
2413 		WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2414 			  pf->ptp.tx_interrupt_mode);
2415 		return ICE_TX_TSTAMP_WORK_DONE;
2416 	}
2417 }
2418 
2419 static void ice_ptp_periodic_work(struct kthread_work *work)
2420 {
2421 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2422 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2423 	int err;
2424 
2425 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2426 		return;
2427 
2428 	err = ice_ptp_update_cached_phctime(pf);
2429 
2430 	/* Run twice a second or reschedule if phc update failed */
2431 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2432 				   msecs_to_jiffies(err ? 10 : 500));
2433 }
2434 
2435 /**
2436  * ice_ptp_reset - Initialize PTP hardware clock support after reset
2437  * @pf: Board private structure
2438  */
2439 void ice_ptp_reset(struct ice_pf *pf)
2440 {
2441 	struct ice_ptp *ptp = &pf->ptp;
2442 	struct ice_hw *hw = &pf->hw;
2443 	struct timespec64 ts;
2444 	int err, itr = 1;
2445 	u64 time_diff;
2446 
2447 	if (test_bit(ICE_PFR_REQ, pf->state))
2448 		goto pfr;
2449 
2450 	if (!ice_pf_src_tmr_owned(pf))
2451 		goto reset_ts;
2452 
2453 	err = ice_ptp_init_phc(hw);
2454 	if (err)
2455 		goto err;
2456 
2457 	/* Acquire the global hardware lock */
2458 	if (!ice_ptp_lock(hw)) {
2459 		err = -EBUSY;
2460 		goto err;
2461 	}
2462 
2463 	/* Write the increment time value to PHY and LAN */
2464 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2465 	if (err) {
2466 		ice_ptp_unlock(hw);
2467 		goto err;
2468 	}
2469 
2470 	/* Write the initial Time value to PHY and LAN using the cached PHC
2471 	 * time before the reset and time difference between stopping and
2472 	 * starting the clock.
2473 	 */
2474 	if (ptp->cached_phc_time) {
2475 		time_diff = ktime_get_real_ns() - ptp->reset_time;
2476 		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2477 	} else {
2478 		ts = ktime_to_timespec64(ktime_get_real());
2479 	}
2480 	err = ice_ptp_write_init(pf, &ts);
2481 	if (err) {
2482 		ice_ptp_unlock(hw);
2483 		goto err;
2484 	}
2485 
2486 	/* Release the global hardware lock */
2487 	ice_ptp_unlock(hw);
2488 
2489 	if (!ice_is_e810(hw)) {
2490 		/* Enable quad interrupts */
2491 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2492 		if (err)
2493 			goto err;
2494 	}
2495 
2496 reset_ts:
2497 	/* Restart the PHY timestamping block */
2498 	ice_ptp_reset_phy_timestamping(pf);
2499 
2500 pfr:
2501 	/* Init Tx structures */
2502 	if (ice_is_e810(&pf->hw)) {
2503 		err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2504 	} else {
2505 		kthread_init_delayed_work(&ptp->port.ov_work,
2506 					  ice_ptp_wait_for_offsets);
2507 		err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
2508 					   ptp->port.port_num);
2509 	}
2510 	if (err)
2511 		goto err;
2512 
2513 	set_bit(ICE_FLAG_PTP, pf->flags);
2514 
2515 	/* Start periodic work going */
2516 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2517 
2518 	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2519 	return;
2520 
2521 err:
2522 	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2523 }
2524 
2525 /**
2526  * ice_ptp_aux_dev_to_aux_pf - Get auxiliary PF handle for the auxiliary device
2527  * @aux_dev: auxiliary device to get the auxiliary PF for
2528  */
2529 static struct ice_pf *
2530 ice_ptp_aux_dev_to_aux_pf(struct auxiliary_device *aux_dev)
2531 {
2532 	struct ice_ptp_port *aux_port;
2533 	struct ice_ptp *aux_ptp;
2534 
2535 	aux_port = container_of(aux_dev, struct ice_ptp_port, aux_dev);
2536 	aux_ptp = container_of(aux_port, struct ice_ptp, port);
2537 
2538 	return container_of(aux_ptp, struct ice_pf, ptp);
2539 }
2540 
2541 /**
2542  * ice_ptp_aux_dev_to_owner_pf - Get PF handle for the auxiliary device
2543  * @aux_dev: auxiliary device to get the PF for
2544  */
2545 static struct ice_pf *
2546 ice_ptp_aux_dev_to_owner_pf(struct auxiliary_device *aux_dev)
2547 {
2548 	struct ice_ptp_port_owner *ports_owner;
2549 	struct auxiliary_driver *aux_drv;
2550 	struct ice_ptp *owner_ptp;
2551 
2552 	if (!aux_dev->dev.driver)
2553 		return NULL;
2554 
2555 	aux_drv = to_auxiliary_drv(aux_dev->dev.driver);
2556 	ports_owner = container_of(aux_drv, struct ice_ptp_port_owner,
2557 				   aux_driver);
2558 	owner_ptp = container_of(ports_owner, struct ice_ptp, ports_owner);
2559 	return container_of(owner_ptp, struct ice_pf, ptp);
2560 }
2561 
2562 /**
2563  * ice_ptp_auxbus_probe - Probe auxiliary devices
2564  * @aux_dev: PF's auxiliary device
2565  * @id: Auxiliary device ID
2566  */
2567 static int ice_ptp_auxbus_probe(struct auxiliary_device *aux_dev,
2568 				const struct auxiliary_device_id *id)
2569 {
2570 	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2571 	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2572 
2573 	if (WARN_ON(!owner_pf))
2574 		return -ENODEV;
2575 
2576 	INIT_LIST_HEAD(&aux_pf->ptp.port.list_member);
2577 	mutex_lock(&owner_pf->ptp.ports_owner.lock);
2578 	list_add(&aux_pf->ptp.port.list_member,
2579 		 &owner_pf->ptp.ports_owner.ports);
2580 	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2581 
2582 	return 0;
2583 }
2584 
2585 /**
2586  * ice_ptp_auxbus_remove - Remove auxiliary devices from the bus
2587  * @aux_dev: PF's auxiliary device
2588  */
2589 static void ice_ptp_auxbus_remove(struct auxiliary_device *aux_dev)
2590 {
2591 	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2592 	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2593 
2594 	mutex_lock(&owner_pf->ptp.ports_owner.lock);
2595 	list_del(&aux_pf->ptp.port.list_member);
2596 	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2597 }
2598 
2599 /**
2600  * ice_ptp_auxbus_shutdown
2601  * @aux_dev: PF's auxiliary device
2602  */
2603 static void ice_ptp_auxbus_shutdown(struct auxiliary_device *aux_dev)
2604 {
2605 	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2606 }
2607 
2608 /**
2609  * ice_ptp_auxbus_suspend
2610  * @aux_dev: PF's auxiliary device
2611  * @state: power management state indicator
2612  */
2613 static int
2614 ice_ptp_auxbus_suspend(struct auxiliary_device *aux_dev, pm_message_t state)
2615 {
2616 	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2617 	return 0;
2618 }
2619 
2620 /**
2621  * ice_ptp_auxbus_resume
2622  * @aux_dev: PF's auxiliary device
2623  */
2624 static int ice_ptp_auxbus_resume(struct auxiliary_device *aux_dev)
2625 {
2626 	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2627 	return 0;
2628 }
2629 
2630 /**
2631  * ice_ptp_auxbus_create_id_table - Create auxiliary device ID table
2632  * @pf: Board private structure
2633  * @name: auxiliary bus driver name
2634  */
2635 static struct auxiliary_device_id *
2636 ice_ptp_auxbus_create_id_table(struct ice_pf *pf, const char *name)
2637 {
2638 	struct auxiliary_device_id *ids;
2639 
2640 	/* Second id left empty to terminate the array */
2641 	ids = devm_kcalloc(ice_pf_to_dev(pf), 2,
2642 			   sizeof(struct auxiliary_device_id), GFP_KERNEL);
2643 	if (!ids)
2644 		return NULL;
2645 
2646 	snprintf(ids[0].name, sizeof(ids[0].name), "ice.%s", name);
2647 
2648 	return ids;
2649 }
2650 
2651 /**
2652  * ice_ptp_register_auxbus_driver - Register PTP auxiliary bus driver
2653  * @pf: Board private structure
2654  */
2655 static int ice_ptp_register_auxbus_driver(struct ice_pf *pf)
2656 {
2657 	struct auxiliary_driver *aux_driver;
2658 	struct ice_ptp *ptp;
2659 	struct device *dev;
2660 	char *name;
2661 	int err;
2662 
2663 	ptp = &pf->ptp;
2664 	dev = ice_pf_to_dev(pf);
2665 	aux_driver = &ptp->ports_owner.aux_driver;
2666 	INIT_LIST_HEAD(&ptp->ports_owner.ports);
2667 	mutex_init(&ptp->ports_owner.lock);
2668 	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
2669 			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
2670 			      ice_get_ptp_src_clock_index(&pf->hw));
2671 
2672 	aux_driver->name = name;
2673 	aux_driver->shutdown = ice_ptp_auxbus_shutdown;
2674 	aux_driver->suspend = ice_ptp_auxbus_suspend;
2675 	aux_driver->remove = ice_ptp_auxbus_remove;
2676 	aux_driver->resume = ice_ptp_auxbus_resume;
2677 	aux_driver->probe = ice_ptp_auxbus_probe;
2678 	aux_driver->id_table = ice_ptp_auxbus_create_id_table(pf, name);
2679 	if (!aux_driver->id_table)
2680 		return -ENOMEM;
2681 
2682 	err = auxiliary_driver_register(aux_driver);
2683 	if (err) {
2684 		devm_kfree(dev, aux_driver->id_table);
2685 		dev_err(dev, "Failed registering aux_driver, name <%s>\n",
2686 			name);
2687 	}
2688 
2689 	return err;
2690 }
2691 
2692 /**
2693  * ice_ptp_unregister_auxbus_driver - Unregister PTP auxiliary bus driver
2694  * @pf: Board private structure
2695  */
2696 static void ice_ptp_unregister_auxbus_driver(struct ice_pf *pf)
2697 {
2698 	struct auxiliary_driver *aux_driver = &pf->ptp.ports_owner.aux_driver;
2699 
2700 	auxiliary_driver_unregister(aux_driver);
2701 	devm_kfree(ice_pf_to_dev(pf), aux_driver->id_table);
2702 
2703 	mutex_destroy(&pf->ptp.ports_owner.lock);
2704 }
2705 
2706 /**
2707  * ice_ptp_clock_index - Get the PTP clock index for this device
2708  * @pf: Board private structure
2709  *
2710  * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
2711  * is associated.
2712  */
2713 int ice_ptp_clock_index(struct ice_pf *pf)
2714 {
2715 	struct auxiliary_device *aux_dev;
2716 	struct ice_pf *owner_pf;
2717 	struct ptp_clock *clock;
2718 
2719 	aux_dev = &pf->ptp.port.aux_dev;
2720 	owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2721 	if (!owner_pf)
2722 		return -1;
2723 	clock = owner_pf->ptp.clock;
2724 
2725 	return clock ? ptp_clock_index(clock) : -1;
2726 }
2727 
2728 /**
2729  * ice_ptp_prepare_for_reset - Prepare PTP for reset
2730  * @pf: Board private structure
2731  */
2732 void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2733 {
2734 	struct ice_ptp *ptp = &pf->ptp;
2735 	u8 src_tmr;
2736 
2737 	clear_bit(ICE_FLAG_PTP, pf->flags);
2738 
2739 	/* Disable timestamping for both Tx and Rx */
2740 	ice_ptp_cfg_timestamp(pf, false);
2741 
2742 	kthread_cancel_delayed_work_sync(&ptp->work);
2743 
2744 	if (test_bit(ICE_PFR_REQ, pf->state))
2745 		return;
2746 
2747 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2748 
2749 	/* Disable periodic outputs */
2750 	ice_ptp_disable_all_clkout(pf);
2751 
2752 	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2753 
2754 	/* Disable source clock */
2755 	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2756 
2757 	/* Acquire PHC and system timer to restore after reset */
2758 	ptp->reset_time = ktime_get_real_ns();
2759 }
2760 
2761 /**
2762  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2763  * @pf: Board private structure
2764  *
2765  * Setup and initialize a PTP clock device that represents the device hardware
2766  * clock. Save the clock index for other functions connected to the same
2767  * hardware resource.
2768  */
2769 static int ice_ptp_init_owner(struct ice_pf *pf)
2770 {
2771 	struct ice_hw *hw = &pf->hw;
2772 	struct timespec64 ts;
2773 	int err, itr = 1;
2774 
2775 	err = ice_ptp_init_phc(hw);
2776 	if (err) {
2777 		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2778 			err);
2779 		return err;
2780 	}
2781 
2782 	/* Acquire the global hardware lock */
2783 	if (!ice_ptp_lock(hw)) {
2784 		err = -EBUSY;
2785 		goto err_exit;
2786 	}
2787 
2788 	/* Write the increment time value to PHY and LAN */
2789 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2790 	if (err) {
2791 		ice_ptp_unlock(hw);
2792 		goto err_exit;
2793 	}
2794 
2795 	ts = ktime_to_timespec64(ktime_get_real());
2796 	/* Write the initial Time value to PHY and LAN */
2797 	err = ice_ptp_write_init(pf, &ts);
2798 	if (err) {
2799 		ice_ptp_unlock(hw);
2800 		goto err_exit;
2801 	}
2802 
2803 	/* Release the global hardware lock */
2804 	ice_ptp_unlock(hw);
2805 
2806 	if (pf->ptp.tx_interrupt_mode == ICE_PTP_TX_INTERRUPT_ALL) {
2807 		/* The clock owner for this device type handles the timestamp
2808 		 * interrupt for all ports.
2809 		 */
2810 		ice_ptp_configure_tx_tstamp(pf, true);
2811 
2812 		/* React on all quads interrupts for E82x */
2813 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
2814 
2815 		/* Enable quad interrupts */
2816 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2817 		if (err)
2818 			goto err_exit;
2819 	}
2820 
2821 	/* Ensure we have a clock device */
2822 	err = ice_ptp_create_clock(pf);
2823 	if (err)
2824 		goto err_clk;
2825 
2826 	err = ice_ptp_register_auxbus_driver(pf);
2827 	if (err) {
2828 		dev_err(ice_pf_to_dev(pf), "Failed to register PTP auxbus driver");
2829 		goto err_aux;
2830 	}
2831 
2832 	return 0;
2833 err_aux:
2834 	ptp_clock_unregister(pf->ptp.clock);
2835 err_clk:
2836 	pf->ptp.clock = NULL;
2837 err_exit:
2838 	return err;
2839 }
2840 
2841 /**
2842  * ice_ptp_init_work - Initialize PTP work threads
2843  * @pf: Board private structure
2844  * @ptp: PF PTP structure
2845  */
2846 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2847 {
2848 	struct kthread_worker *kworker;
2849 
2850 	/* Initialize work functions */
2851 	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2852 
2853 	/* Allocate a kworker for handling work required for the ports
2854 	 * connected to the PTP hardware clock.
2855 	 */
2856 	kworker = kthread_create_worker(0, "ice-ptp-%s",
2857 					dev_name(ice_pf_to_dev(pf)));
2858 	if (IS_ERR(kworker))
2859 		return PTR_ERR(kworker);
2860 
2861 	ptp->kworker = kworker;
2862 
2863 	/* Start periodic work going */
2864 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2865 
2866 	return 0;
2867 }
2868 
2869 /**
2870  * ice_ptp_init_port - Initialize PTP port structure
2871  * @pf: Board private structure
2872  * @ptp_port: PTP port structure
2873  */
2874 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2875 {
2876 	struct ice_hw *hw = &pf->hw;
2877 
2878 	mutex_init(&ptp_port->ps_lock);
2879 
2880 	switch (hw->phy_model) {
2881 	case ICE_PHY_E810:
2882 		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2883 	case ICE_PHY_E822:
2884 		/* Non-owner PFs don't react to any interrupts on E82x,
2885 		 * neither on own quad nor on others
2886 		 */
2887 		if (!ice_ptp_pf_handles_tx_interrupt(pf)) {
2888 			ice_ptp_configure_tx_tstamp(pf, false);
2889 			wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
2890 		}
2891 		kthread_init_delayed_work(&ptp_port->ov_work,
2892 					  ice_ptp_wait_for_offsets);
2893 
2894 		return ice_ptp_init_tx_e822(pf, &ptp_port->tx,
2895 					    ptp_port->port_num);
2896 	default:
2897 		return -ENODEV;
2898 	}
2899 }
2900 
2901 /**
2902  * ice_ptp_release_auxbus_device
2903  * @dev: device that utilizes the auxbus
2904  */
2905 static void ice_ptp_release_auxbus_device(struct device *dev)
2906 {
2907 	/* Doing nothing here, but handle to auxbux device must be satisfied */
2908 }
2909 
2910 /**
2911  * ice_ptp_create_auxbus_device - Create PTP auxiliary bus device
2912  * @pf: Board private structure
2913  */
2914 static int ice_ptp_create_auxbus_device(struct ice_pf *pf)
2915 {
2916 	struct auxiliary_device *aux_dev;
2917 	struct ice_ptp *ptp;
2918 	struct device *dev;
2919 	char *name;
2920 	int err;
2921 	u32 id;
2922 
2923 	ptp = &pf->ptp;
2924 	id = ptp->port.port_num;
2925 	dev = ice_pf_to_dev(pf);
2926 
2927 	aux_dev = &ptp->port.aux_dev;
2928 
2929 	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
2930 			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
2931 			      ice_get_ptp_src_clock_index(&pf->hw));
2932 
2933 	aux_dev->name = name;
2934 	aux_dev->id = id;
2935 	aux_dev->dev.release = ice_ptp_release_auxbus_device;
2936 	aux_dev->dev.parent = dev;
2937 
2938 	err = auxiliary_device_init(aux_dev);
2939 	if (err)
2940 		goto aux_err;
2941 
2942 	err = auxiliary_device_add(aux_dev);
2943 	if (err) {
2944 		auxiliary_device_uninit(aux_dev);
2945 		goto aux_err;
2946 	}
2947 
2948 	return 0;
2949 aux_err:
2950 	dev_err(dev, "Failed to create PTP auxiliary bus device <%s>\n", name);
2951 	devm_kfree(dev, name);
2952 	return err;
2953 }
2954 
2955 /**
2956  * ice_ptp_remove_auxbus_device - Remove PTP auxiliary bus device
2957  * @pf: Board private structure
2958  */
2959 static void ice_ptp_remove_auxbus_device(struct ice_pf *pf)
2960 {
2961 	struct auxiliary_device *aux_dev = &pf->ptp.port.aux_dev;
2962 
2963 	auxiliary_device_delete(aux_dev);
2964 	auxiliary_device_uninit(aux_dev);
2965 
2966 	memset(aux_dev, 0, sizeof(*aux_dev));
2967 }
2968 
2969 /**
2970  * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
2971  * @pf: Board private structure
2972  *
2973  * Initialize the Tx timestamp interrupt mode for this device. For most device
2974  * types, each PF processes the interrupt and manages its own timestamps. For
2975  * E822-based devices, only the clock owner processes the timestamps. Other
2976  * PFs disable the interrupt and do not process their own timestamps.
2977  */
2978 static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
2979 {
2980 	switch (pf->hw.phy_model) {
2981 	case ICE_PHY_E822:
2982 		/* E822 based PHY has the clock owner process the interrupt
2983 		 * for all ports.
2984 		 */
2985 		if (ice_pf_src_tmr_owned(pf))
2986 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
2987 		else
2988 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
2989 		break;
2990 	default:
2991 		/* other PHY types handle their own Tx interrupt */
2992 		pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
2993 	}
2994 }
2995 
2996 /**
2997  * ice_ptp_init - Initialize PTP hardware clock support
2998  * @pf: Board private structure
2999  *
3000  * Set up the device for interacting with the PTP hardware clock for all
3001  * functions, both the function that owns the clock hardware, and the
3002  * functions connected to the clock hardware.
3003  *
3004  * The clock owner will allocate and register a ptp_clock with the
3005  * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3006  * items used for asynchronous work such as Tx timestamps and periodic work.
3007  */
3008 void ice_ptp_init(struct ice_pf *pf)
3009 {
3010 	struct ice_ptp *ptp = &pf->ptp;
3011 	struct ice_hw *hw = &pf->hw;
3012 	int err;
3013 
3014 	ice_ptp_init_phy_model(hw);
3015 
3016 	ice_ptp_init_tx_interrupt_mode(pf);
3017 
3018 	/* If this function owns the clock hardware, it must allocate and
3019 	 * configure the PTP clock device to represent it.
3020 	 */
3021 	if (ice_pf_src_tmr_owned(pf)) {
3022 		err = ice_ptp_init_owner(pf);
3023 		if (err)
3024 			goto err;
3025 	}
3026 
3027 	ptp->port.port_num = hw->pf_id;
3028 	err = ice_ptp_init_port(pf, &ptp->port);
3029 	if (err)
3030 		goto err;
3031 
3032 	/* Start the PHY timestamping block */
3033 	ice_ptp_reset_phy_timestamping(pf);
3034 
3035 	set_bit(ICE_FLAG_PTP, pf->flags);
3036 	err = ice_ptp_init_work(pf, ptp);
3037 	if (err)
3038 		goto err;
3039 
3040 	err = ice_ptp_create_auxbus_device(pf);
3041 	if (err)
3042 		goto err;
3043 
3044 	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3045 	return;
3046 
3047 err:
3048 	/* If we registered a PTP clock, release it */
3049 	if (pf->ptp.clock) {
3050 		ptp_clock_unregister(ptp->clock);
3051 		pf->ptp.clock = NULL;
3052 	}
3053 	clear_bit(ICE_FLAG_PTP, pf->flags);
3054 	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3055 }
3056 
3057 /**
3058  * ice_ptp_release - Disable the driver/HW support and unregister the clock
3059  * @pf: Board private structure
3060  *
3061  * This function handles the cleanup work required from the initialization by
3062  * clearing out the important information and unregistering the clock
3063  */
3064 void ice_ptp_release(struct ice_pf *pf)
3065 {
3066 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
3067 		return;
3068 
3069 	/* Disable timestamping for both Tx and Rx */
3070 	ice_ptp_cfg_timestamp(pf, false);
3071 
3072 	ice_ptp_remove_auxbus_device(pf);
3073 
3074 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3075 
3076 	clear_bit(ICE_FLAG_PTP, pf->flags);
3077 
3078 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
3079 
3080 	ice_ptp_port_phy_stop(&pf->ptp.port);
3081 	mutex_destroy(&pf->ptp.port.ps_lock);
3082 	if (pf->ptp.kworker) {
3083 		kthread_destroy_worker(pf->ptp.kworker);
3084 		pf->ptp.kworker = NULL;
3085 	}
3086 
3087 	if (!pf->ptp.clock)
3088 		return;
3089 
3090 	/* Disable periodic outputs */
3091 	ice_ptp_disable_all_clkout(pf);
3092 
3093 	ptp_clock_unregister(pf->ptp.clock);
3094 	pf->ptp.clock = NULL;
3095 
3096 	ice_ptp_unregister_auxbus_driver(pf);
3097 
3098 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3099 }
3100