1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_lib.h" 6 #include "ice_trace.h" 7 #include "ice_cgu_regs.h" 8 9 static const char ice_pin_names[][64] = { 10 "SDP0", 11 "SDP1", 12 "SDP2", 13 "SDP3", 14 "TIME_SYNC", 15 "1PPS" 16 }; 17 18 static const struct ice_ptp_pin_desc ice_pin_desc_e82x[] = { 19 /* name, gpio */ 20 { TIME_SYNC, { 4, -1 }}, 21 { ONE_PPS, { -1, 5 }}, 22 }; 23 24 static const struct ice_ptp_pin_desc ice_pin_desc_e825c[] = { 25 /* name, gpio */ 26 { SDP0, { 0, 0 }}, 27 { SDP1, { 1, 1 }}, 28 { SDP2, { 2, 2 }}, 29 { SDP3, { 3, 3 }}, 30 { TIME_SYNC, { 4, -1 }}, 31 { ONE_PPS, { -1, 5 }}, 32 }; 33 34 static const struct ice_ptp_pin_desc ice_pin_desc_e810[] = { 35 /* name, gpio */ 36 { SDP0, { 0, 0 }}, 37 { SDP1, { 1, 1 }}, 38 { SDP2, { 2, 2 }}, 39 { SDP3, { 3, 3 }}, 40 { ONE_PPS, { -1, 5 }}, 41 }; 42 43 static const char ice_pin_names_nvm[][64] = { 44 "GNSS", 45 "SMA1", 46 "U.FL1", 47 "SMA2", 48 "U.FL2", 49 }; 50 51 static const struct ice_ptp_pin_desc ice_pin_desc_e810_sma[] = { 52 /* name, gpio */ 53 { GNSS, { 1, -1 }}, 54 { SMA1, { 1, 0 }}, 55 { UFL1, { -1, 0 }}, 56 { SMA2, { 3, 2 }}, 57 { UFL2, { 3, -1 }}, 58 }; 59 60 static struct ice_pf *ice_get_ctrl_pf(struct ice_pf *pf) 61 { 62 return !pf->adapter ? NULL : pf->adapter->ctrl_pf; 63 } 64 65 static struct ice_ptp *ice_get_ctrl_ptp(struct ice_pf *pf) 66 { 67 struct ice_pf *ctrl_pf = ice_get_ctrl_pf(pf); 68 69 return !ctrl_pf ? NULL : &ctrl_pf->ptp; 70 } 71 72 /** 73 * ice_ptp_find_pin_idx - Find pin index in ptp_pin_desc 74 * @pf: Board private structure 75 * @func: Pin function 76 * @chan: GPIO channel 77 * 78 * Return: positive pin number when pin is present, -1 otherwise 79 */ 80 static int ice_ptp_find_pin_idx(struct ice_pf *pf, enum ptp_pin_function func, 81 unsigned int chan) 82 { 83 const struct ptp_clock_info *info = &pf->ptp.info; 84 int i; 85 86 for (i = 0; i < info->n_pins; i++) { 87 if (info->pin_config[i].func == func && 88 info->pin_config[i].chan == chan) 89 return i; 90 } 91 92 return -1; 93 } 94 95 /** 96 * ice_ptp_update_sma_data - update SMA pins data according to pins setup 97 * @pf: Board private structure 98 * @sma_pins: parsed SMA pins status 99 * @data: SMA data to update 100 */ 101 static void ice_ptp_update_sma_data(struct ice_pf *pf, unsigned int sma_pins[], 102 u8 *data) 103 { 104 const char *state1, *state2; 105 106 /* Set the right state based on the desired configuration. 107 * When bit is set, functionality is disabled. 108 */ 109 *data &= ~ICE_ALL_SMA_MASK; 110 if (!sma_pins[UFL1 - 1]) { 111 if (sma_pins[SMA1 - 1] == PTP_PF_EXTTS) { 112 state1 = "SMA1 Rx, U.FL1 disabled"; 113 *data |= ICE_SMA1_TX_EN; 114 } else if (sma_pins[SMA1 - 1] == PTP_PF_PEROUT) { 115 state1 = "SMA1 Tx U.FL1 disabled"; 116 *data |= ICE_SMA1_DIR_EN; 117 } else { 118 state1 = "SMA1 disabled, U.FL1 disabled"; 119 *data |= ICE_SMA1_MASK; 120 } 121 } else { 122 /* U.FL1 Tx will always enable SMA1 Rx */ 123 state1 = "SMA1 Rx, U.FL1 Tx"; 124 } 125 126 if (!sma_pins[UFL2 - 1]) { 127 if (sma_pins[SMA2 - 1] == PTP_PF_EXTTS) { 128 state2 = "SMA2 Rx, U.FL2 disabled"; 129 *data |= ICE_SMA2_TX_EN | ICE_SMA2_UFL2_RX_DIS; 130 } else if (sma_pins[SMA2 - 1] == PTP_PF_PEROUT) { 131 state2 = "SMA2 Tx, U.FL2 disabled"; 132 *data |= ICE_SMA2_DIR_EN | ICE_SMA2_UFL2_RX_DIS; 133 } else { 134 state2 = "SMA2 disabled, U.FL2 disabled"; 135 *data |= ICE_SMA2_MASK; 136 } 137 } else { 138 if (!sma_pins[SMA2 - 1]) { 139 state2 = "SMA2 disabled, U.FL2 Rx"; 140 *data |= ICE_SMA2_DIR_EN | ICE_SMA2_TX_EN; 141 } else { 142 state2 = "SMA2 Tx, U.FL2 Rx"; 143 *data |= ICE_SMA2_DIR_EN; 144 } 145 } 146 147 dev_dbg(ice_pf_to_dev(pf), "%s, %s\n", state1, state2); 148 } 149 150 /** 151 * ice_ptp_set_sma_cfg - set the configuration of the SMA control logic 152 * @pf: Board private structure 153 * 154 * Return: 0 on success, negative error code otherwise 155 */ 156 static int ice_ptp_set_sma_cfg(struct ice_pf *pf) 157 { 158 const struct ice_ptp_pin_desc *ice_pins = pf->ptp.ice_pin_desc; 159 struct ptp_pin_desc *pins = pf->ptp.pin_desc; 160 unsigned int sma_pins[ICE_SMA_PINS_NUM] = {}; 161 int err; 162 u8 data; 163 164 /* Read initial pin state value */ 165 err = ice_read_sma_ctrl(&pf->hw, &data); 166 if (err) 167 return err; 168 169 /* Get SMA/U.FL pins states */ 170 for (int i = 0; i < pf->ptp.info.n_pins; i++) 171 if (pins[i].func) { 172 int name_idx = ice_pins[i].name_idx; 173 174 switch (name_idx) { 175 case SMA1: 176 case UFL1: 177 case SMA2: 178 case UFL2: 179 sma_pins[name_idx - 1] = pins[i].func; 180 break; 181 default: 182 continue; 183 } 184 } 185 186 ice_ptp_update_sma_data(pf, sma_pins, &data); 187 return ice_write_sma_ctrl(&pf->hw, data); 188 } 189 190 /** 191 * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device 192 * @pf: Board private structure 193 * 194 * Program the device to respond appropriately to the Tx timestamp interrupt 195 * cause. 196 */ 197 static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf) 198 { 199 struct ice_hw *hw = &pf->hw; 200 bool enable; 201 u32 val; 202 203 switch (pf->ptp.tx_interrupt_mode) { 204 case ICE_PTP_TX_INTERRUPT_ALL: 205 /* React to interrupts across all quads. */ 206 wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f); 207 enable = true; 208 break; 209 case ICE_PTP_TX_INTERRUPT_NONE: 210 /* Do not react to interrupts on any quad. */ 211 wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0); 212 enable = false; 213 break; 214 case ICE_PTP_TX_INTERRUPT_SELF: 215 default: 216 enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON; 217 break; 218 } 219 220 /* Configure the Tx timestamp interrupt */ 221 val = rd32(hw, PFINT_OICR_ENA); 222 if (enable) 223 val |= PFINT_OICR_TSYN_TX_M; 224 else 225 val &= ~PFINT_OICR_TSYN_TX_M; 226 wr32(hw, PFINT_OICR_ENA, val); 227 } 228 229 /** 230 * ice_set_rx_tstamp - Enable or disable Rx timestamping 231 * @pf: The PF pointer to search in 232 * @on: bool value for whether timestamps are enabled or disabled 233 */ 234 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) 235 { 236 struct ice_vsi *vsi; 237 u16 i; 238 239 vsi = ice_get_main_vsi(pf); 240 if (!vsi || !vsi->rx_rings) 241 return; 242 243 /* Set the timestamp flag for all the Rx rings */ 244 ice_for_each_rxq(vsi, i) { 245 if (!vsi->rx_rings[i]) 246 continue; 247 vsi->rx_rings[i]->ptp_rx = on; 248 } 249 } 250 251 /** 252 * ice_ptp_disable_timestamp_mode - Disable current timestamp mode 253 * @pf: Board private structure 254 * 255 * Called during preparation for reset to temporarily disable timestamping on 256 * the device. Called during remove to disable timestamping while cleaning up 257 * driver resources. 258 */ 259 static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf) 260 { 261 struct ice_hw *hw = &pf->hw; 262 u32 val; 263 264 val = rd32(hw, PFINT_OICR_ENA); 265 val &= ~PFINT_OICR_TSYN_TX_M; 266 wr32(hw, PFINT_OICR_ENA, val); 267 268 ice_set_rx_tstamp(pf, false); 269 } 270 271 /** 272 * ice_ptp_restore_timestamp_mode - Restore timestamp configuration 273 * @pf: Board private structure 274 * 275 * Called at the end of rebuild to restore timestamp configuration after 276 * a device reset. 277 */ 278 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf) 279 { 280 struct ice_hw *hw = &pf->hw; 281 bool enable_rx; 282 283 ice_ptp_cfg_tx_interrupt(pf); 284 285 enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL; 286 ice_set_rx_tstamp(pf, enable_rx); 287 288 /* Trigger an immediate software interrupt to ensure that timestamps 289 * which occurred during reset are handled now. 290 */ 291 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 292 ice_flush(hw); 293 } 294 295 /** 296 * ice_ptp_read_src_clk_reg - Read the source clock register 297 * @pf: Board private structure 298 * @sts: Optional parameter for holding a pair of system timestamps from 299 * the system clock. Will be ignored if NULL is given. 300 */ 301 static u64 302 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) 303 { 304 struct ice_hw *hw = &pf->hw; 305 u32 hi, lo, lo2; 306 u8 tmr_idx; 307 308 tmr_idx = ice_get_ptp_src_clock_index(hw); 309 guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock); 310 /* Read the system timestamp pre PHC read */ 311 ptp_read_system_prets(sts); 312 313 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 314 315 /* Read the system timestamp post PHC read */ 316 ptp_read_system_postts(sts); 317 318 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); 319 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 320 321 if (lo2 < lo) { 322 /* if TIME_L rolled over read TIME_L again and update 323 * system timestamps 324 */ 325 ptp_read_system_prets(sts); 326 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 327 ptp_read_system_postts(sts); 328 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); 329 } 330 331 return ((u64)hi << 32) | lo; 332 } 333 334 /** 335 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b 336 * @cached_phc_time: recently cached copy of PHC time 337 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value 338 * 339 * Hardware captures timestamps which contain only 32 bits of nominal 340 * nanoseconds, as opposed to the 64bit timestamps that the stack expects. 341 * Note that the captured timestamp values may be 40 bits, but the lower 342 * 8 bits are sub-nanoseconds and generally discarded. 343 * 344 * Extend the 32bit nanosecond timestamp using the following algorithm and 345 * assumptions: 346 * 347 * 1) have a recently cached copy of the PHC time 348 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 349 * seconds) before or after the PHC time was captured. 350 * 3) calculate the delta between the cached time and the timestamp 351 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was 352 * captured after the PHC time. In this case, the full timestamp is just 353 * the cached PHC time plus the delta. 354 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the 355 * timestamp was captured *before* the PHC time, i.e. because the PHC 356 * cache was updated after the timestamp was captured by hardware. In this 357 * case, the full timestamp is the cached time minus the inverse delta. 358 * 359 * This algorithm works even if the PHC time was updated after a Tx timestamp 360 * was requested, but before the Tx timestamp event was reported from 361 * hardware. 362 * 363 * This calculation primarily relies on keeping the cached PHC time up to 364 * date. If the timestamp was captured more than 2^31 nanoseconds after the 365 * PHC time, it is possible that the lower 32bits of PHC time have 366 * overflowed more than once, and we might generate an incorrect timestamp. 367 * 368 * This is prevented by (a) periodically updating the cached PHC time once 369 * a second, and (b) discarding any Tx timestamp packet if it has waited for 370 * a timestamp for more than one second. 371 */ 372 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) 373 { 374 u32 delta, phc_time_lo; 375 u64 ns; 376 377 /* Extract the lower 32 bits of the PHC time */ 378 phc_time_lo = (u32)cached_phc_time; 379 380 /* Calculate the delta between the lower 32bits of the cached PHC 381 * time and the in_tstamp value 382 */ 383 delta = (in_tstamp - phc_time_lo); 384 385 /* Do not assume that the in_tstamp is always more recent than the 386 * cached PHC time. If the delta is large, it indicates that the 387 * in_tstamp was taken in the past, and should be converted 388 * forward. 389 */ 390 if (delta > (U32_MAX / 2)) { 391 /* reverse the delta calculation here */ 392 delta = (phc_time_lo - in_tstamp); 393 ns = cached_phc_time - delta; 394 } else { 395 ns = cached_phc_time + delta; 396 } 397 398 return ns; 399 } 400 401 /** 402 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds 403 * @pf: Board private structure 404 * @in_tstamp: Ingress/egress 40b timestamp value 405 * 406 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal 407 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. 408 * 409 * *--------------------------------------------------------------* 410 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | 411 * *--------------------------------------------------------------* 412 * 413 * The low bit is an indicator of whether the timestamp is valid. The next 414 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, 415 * and the remaining 32 bits are the lower 32 bits of the PHC timer. 416 * 417 * It is assumed that the caller verifies the timestamp is valid prior to 418 * calling this function. 419 * 420 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC 421 * time stored in the device private PTP structure as the basis for timestamp 422 * extension. 423 * 424 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension 425 * algorithm. 426 */ 427 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) 428 { 429 const u64 mask = GENMASK_ULL(31, 0); 430 unsigned long discard_time; 431 432 /* Discard the hardware timestamp if the cached PHC time is too old */ 433 discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); 434 if (time_is_before_jiffies(discard_time)) { 435 pf->ptp.tx_hwtstamp_discarded++; 436 return 0; 437 } 438 439 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, 440 (in_tstamp >> 8) & mask); 441 } 442 443 /** 444 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps 445 * @tx: the PTP Tx timestamp tracker to check 446 * 447 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready 448 * to accept new timestamp requests. 449 * 450 * Assumes the tx->lock spinlock is already held. 451 */ 452 static bool 453 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx) 454 { 455 lockdep_assert_held(&tx->lock); 456 457 return tx->init && !tx->calibrating; 458 } 459 460 /** 461 * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW 462 * @tx: the PTP Tx timestamp tracker 463 * @idx: index of the timestamp to request 464 */ 465 void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx) 466 { 467 struct ice_ptp_port *ptp_port; 468 struct sk_buff *skb; 469 struct ice_pf *pf; 470 471 if (!tx->init) 472 return; 473 474 ptp_port = container_of(tx, struct ice_ptp_port, tx); 475 pf = ptp_port_to_pf(ptp_port); 476 477 /* Drop packets which have waited for more than 2 seconds */ 478 if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) { 479 /* Count the number of Tx timestamps that timed out */ 480 pf->ptp.tx_hwtstamp_timeouts++; 481 482 skb = tx->tstamps[idx].skb; 483 tx->tstamps[idx].skb = NULL; 484 clear_bit(idx, tx->in_use); 485 486 dev_kfree_skb_any(skb); 487 return; 488 } 489 490 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); 491 492 /* Write TS index to read to the PF register so the FW can read it */ 493 wr32(&pf->hw, PF_SB_ATQBAL, 494 TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) | 495 TS_LL_READ_TS); 496 tx->last_ll_ts_idx_read = idx; 497 } 498 499 /** 500 * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port 501 * @tx: the PTP Tx timestamp tracker 502 */ 503 void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx) 504 { 505 struct skb_shared_hwtstamps shhwtstamps = {}; 506 u8 idx = tx->last_ll_ts_idx_read; 507 struct ice_ptp_port *ptp_port; 508 u64 raw_tstamp, tstamp; 509 bool drop_ts = false; 510 struct sk_buff *skb; 511 struct ice_pf *pf; 512 u32 val; 513 514 if (!tx->init || tx->last_ll_ts_idx_read < 0) 515 return; 516 517 ptp_port = container_of(tx, struct ice_ptp_port, tx); 518 pf = ptp_port_to_pf(ptp_port); 519 520 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); 521 522 val = rd32(&pf->hw, PF_SB_ATQBAL); 523 524 /* When the bit is cleared, the TS is ready in the register */ 525 if (val & TS_LL_READ_TS) { 526 dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready"); 527 return; 528 } 529 530 /* High 8 bit value of the TS is on the bits 16:23 */ 531 raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val); 532 raw_tstamp <<= 32; 533 534 /* Read the low 32 bit value */ 535 raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH); 536 537 /* Devices using this interface always verify the timestamp differs 538 * relative to the last cached timestamp value. 539 */ 540 if (raw_tstamp == tx->tstamps[idx].cached_tstamp) 541 return; 542 543 tx->tstamps[idx].cached_tstamp = raw_tstamp; 544 clear_bit(idx, tx->in_use); 545 skb = tx->tstamps[idx].skb; 546 tx->tstamps[idx].skb = NULL; 547 if (test_and_clear_bit(idx, tx->stale)) 548 drop_ts = true; 549 550 if (!skb) 551 return; 552 553 if (drop_ts) { 554 dev_kfree_skb_any(skb); 555 return; 556 } 557 558 /* Extend the timestamp using cached PHC time */ 559 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); 560 if (tstamp) { 561 shhwtstamps.hwtstamp = ns_to_ktime(tstamp); 562 ice_trace(tx_tstamp_complete, skb, idx); 563 } 564 565 skb_tstamp_tx(skb, &shhwtstamps); 566 dev_kfree_skb_any(skb); 567 } 568 569 /** 570 * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port 571 * @tx: the PTP Tx timestamp tracker 572 * 573 * Process timestamps captured by the PHY associated with this port. To do 574 * this, loop over each index with a waiting skb. 575 * 576 * If a given index has a valid timestamp, perform the following steps: 577 * 578 * 1) check that the timestamp request is not stale 579 * 2) check that a timestamp is ready and available in the PHY memory bank 580 * 3) read and copy the timestamp out of the PHY register 581 * 4) unlock the index by clearing the associated in_use bit 582 * 5) check if the timestamp is stale, and discard if so 583 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value 584 * 7) send this 64 bit timestamp to the stack 585 * 586 * Note that we do not hold the tracking lock while reading the Tx timestamp. 587 * This is because reading the timestamp requires taking a mutex that might 588 * sleep. 589 * 590 * The only place where we set in_use is when a new timestamp is initiated 591 * with a slot index. This is only called in the hard xmit routine where an 592 * SKB has a request flag set. The only places where we clear this bit is this 593 * function, or during teardown when the Tx timestamp tracker is being 594 * removed. A timestamp index will never be re-used until the in_use bit for 595 * that index is cleared. 596 * 597 * If a Tx thread starts a new timestamp, we might not begin processing it 598 * right away but we will notice it at the end when we re-queue the task. 599 * 600 * If a Tx thread starts a new timestamp just after this function exits, the 601 * interrupt for that timestamp should re-trigger this function once 602 * a timestamp is ready. 603 * 604 * In cases where the PTP hardware clock was directly adjusted, some 605 * timestamps may not be able to safely use the timestamp extension math. In 606 * this case, software will set the stale bit for any outstanding Tx 607 * timestamps when the clock is adjusted. Then this function will discard 608 * those captured timestamps instead of sending them to the stack. 609 * 610 * If a Tx packet has been waiting for more than 2 seconds, it is not possible 611 * to correctly extend the timestamp using the cached PHC time. It is 612 * extremely unlikely that a packet will ever take this long to timestamp. If 613 * we detect a Tx timestamp request that has waited for this long we assume 614 * the packet will never be sent by hardware and discard it without reading 615 * the timestamp register. 616 */ 617 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx) 618 { 619 struct ice_ptp_port *ptp_port; 620 unsigned long flags; 621 struct ice_pf *pf; 622 struct ice_hw *hw; 623 u64 tstamp_ready; 624 bool link_up; 625 int err; 626 u8 idx; 627 628 ptp_port = container_of(tx, struct ice_ptp_port, tx); 629 pf = ptp_port_to_pf(ptp_port); 630 hw = &pf->hw; 631 632 /* Read the Tx ready status first */ 633 if (tx->has_ready_bitmap) { 634 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); 635 if (err) 636 return; 637 } 638 639 /* Drop packets if the link went down */ 640 link_up = ptp_port->link_up; 641 642 for_each_set_bit(idx, tx->in_use, tx->len) { 643 struct skb_shared_hwtstamps shhwtstamps = {}; 644 u8 phy_idx = idx + tx->offset; 645 u64 raw_tstamp = 0, tstamp; 646 bool drop_ts = !link_up; 647 struct sk_buff *skb; 648 649 /* Drop packets which have waited for more than 2 seconds */ 650 if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) { 651 drop_ts = true; 652 653 /* Count the number of Tx timestamps that timed out */ 654 pf->ptp.tx_hwtstamp_timeouts++; 655 } 656 657 /* Only read a timestamp from the PHY if its marked as ready 658 * by the tstamp_ready register. This avoids unnecessary 659 * reading of timestamps which are not yet valid. This is 660 * important as we must read all timestamps which are valid 661 * and only timestamps which are valid during each interrupt. 662 * If we do not, the hardware logic for generating a new 663 * interrupt can get stuck on some devices. 664 */ 665 if (tx->has_ready_bitmap && 666 !(tstamp_ready & BIT_ULL(phy_idx))) { 667 if (drop_ts) 668 goto skip_ts_read; 669 670 continue; 671 } 672 673 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); 674 675 err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp); 676 if (err && !drop_ts) 677 continue; 678 679 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); 680 681 /* For PHYs which don't implement a proper timestamp ready 682 * bitmap, verify that the timestamp value is different 683 * from the last cached timestamp. If it is not, skip this for 684 * now assuming it hasn't yet been captured by hardware. 685 */ 686 if (!drop_ts && !tx->has_ready_bitmap && 687 raw_tstamp == tx->tstamps[idx].cached_tstamp) 688 continue; 689 690 /* Discard any timestamp value without the valid bit set */ 691 if (!(raw_tstamp & ICE_PTP_TS_VALID)) 692 drop_ts = true; 693 694 skip_ts_read: 695 spin_lock_irqsave(&tx->lock, flags); 696 if (!tx->has_ready_bitmap && raw_tstamp) 697 tx->tstamps[idx].cached_tstamp = raw_tstamp; 698 clear_bit(idx, tx->in_use); 699 skb = tx->tstamps[idx].skb; 700 tx->tstamps[idx].skb = NULL; 701 if (test_and_clear_bit(idx, tx->stale)) 702 drop_ts = true; 703 spin_unlock_irqrestore(&tx->lock, flags); 704 705 /* It is unlikely but possible that the SKB will have been 706 * flushed at this point due to link change or teardown. 707 */ 708 if (!skb) 709 continue; 710 711 if (drop_ts) { 712 dev_kfree_skb_any(skb); 713 continue; 714 } 715 716 /* Extend the timestamp using cached PHC time */ 717 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); 718 if (tstamp) { 719 shhwtstamps.hwtstamp = ns_to_ktime(tstamp); 720 ice_trace(tx_tstamp_complete, skb, idx); 721 } 722 723 skb_tstamp_tx(skb, &shhwtstamps); 724 dev_kfree_skb_any(skb); 725 } 726 } 727 728 /** 729 * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device 730 * @pf: Board private structure 731 */ 732 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf) 733 { 734 struct ice_ptp_port *port; 735 unsigned int i; 736 737 mutex_lock(&pf->adapter->ports.lock); 738 list_for_each_entry(port, &pf->adapter->ports.ports, list_node) { 739 struct ice_ptp_tx *tx = &port->tx; 740 741 if (!tx || !tx->init) 742 continue; 743 744 ice_ptp_process_tx_tstamp(tx); 745 } 746 mutex_unlock(&pf->adapter->ports.lock); 747 748 for (i = 0; i < ICE_GET_QUAD_NUM(pf->hw.ptp.num_lports); i++) { 749 u64 tstamp_ready; 750 int err; 751 752 /* Read the Tx ready status first */ 753 err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready); 754 if (err) 755 break; 756 else if (tstamp_ready) 757 return ICE_TX_TSTAMP_WORK_PENDING; 758 } 759 760 return ICE_TX_TSTAMP_WORK_DONE; 761 } 762 763 /** 764 * ice_ptp_tx_tstamp - Process Tx timestamps for this function. 765 * @tx: Tx tracking structure to initialize 766 * 767 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete 768 * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise. 769 */ 770 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx) 771 { 772 bool more_timestamps; 773 unsigned long flags; 774 775 if (!tx->init) 776 return ICE_TX_TSTAMP_WORK_DONE; 777 778 /* Process the Tx timestamp tracker */ 779 ice_ptp_process_tx_tstamp(tx); 780 781 /* Check if there are outstanding Tx timestamps */ 782 spin_lock_irqsave(&tx->lock, flags); 783 more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len); 784 spin_unlock_irqrestore(&tx->lock, flags); 785 786 if (more_timestamps) 787 return ICE_TX_TSTAMP_WORK_PENDING; 788 789 return ICE_TX_TSTAMP_WORK_DONE; 790 } 791 792 /** 793 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps 794 * @tx: Tx tracking structure to initialize 795 * 796 * Assumes that the length has already been initialized. Do not call directly, 797 * use the ice_ptp_init_tx_* instead. 798 */ 799 static int 800 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) 801 { 802 unsigned long *in_use, *stale; 803 struct ice_tx_tstamp *tstamps; 804 805 tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL); 806 in_use = bitmap_zalloc(tx->len, GFP_KERNEL); 807 stale = bitmap_zalloc(tx->len, GFP_KERNEL); 808 809 if (!tstamps || !in_use || !stale) { 810 kfree(tstamps); 811 bitmap_free(in_use); 812 bitmap_free(stale); 813 814 return -ENOMEM; 815 } 816 817 tx->tstamps = tstamps; 818 tx->in_use = in_use; 819 tx->stale = stale; 820 tx->init = 1; 821 tx->last_ll_ts_idx_read = -1; 822 823 spin_lock_init(&tx->lock); 824 825 return 0; 826 } 827 828 /** 829 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker 830 * @pf: Board private structure 831 * @tx: the tracker to flush 832 * 833 * Called during teardown when a Tx tracker is being removed. 834 */ 835 static void 836 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) 837 { 838 struct ice_hw *hw = &pf->hw; 839 unsigned long flags; 840 u64 tstamp_ready; 841 int err; 842 u8 idx; 843 844 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); 845 if (err) { 846 dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n", 847 tx->block, err); 848 849 /* If we fail to read the Tx timestamp ready bitmap just 850 * skip clearing the PHY timestamps. 851 */ 852 tstamp_ready = 0; 853 } 854 855 for_each_set_bit(idx, tx->in_use, tx->len) { 856 u8 phy_idx = idx + tx->offset; 857 struct sk_buff *skb; 858 859 /* In case this timestamp is ready, we need to clear it. */ 860 if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx))) 861 ice_clear_phy_tstamp(hw, tx->block, phy_idx); 862 863 spin_lock_irqsave(&tx->lock, flags); 864 skb = tx->tstamps[idx].skb; 865 tx->tstamps[idx].skb = NULL; 866 clear_bit(idx, tx->in_use); 867 clear_bit(idx, tx->stale); 868 spin_unlock_irqrestore(&tx->lock, flags); 869 870 /* Count the number of Tx timestamps flushed */ 871 pf->ptp.tx_hwtstamp_flushed++; 872 873 /* Free the SKB after we've cleared the bit */ 874 dev_kfree_skb_any(skb); 875 } 876 } 877 878 /** 879 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale 880 * @tx: the tracker to mark 881 * 882 * Mark currently outstanding Tx timestamps as stale. This prevents sending 883 * their timestamp value to the stack. This is required to prevent extending 884 * the 40bit hardware timestamp incorrectly. 885 * 886 * This should be called when the PTP clock is modified such as after a set 887 * time request. 888 */ 889 static void 890 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx) 891 { 892 unsigned long flags; 893 894 spin_lock_irqsave(&tx->lock, flags); 895 bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len); 896 spin_unlock_irqrestore(&tx->lock, flags); 897 } 898 899 /** 900 * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock 901 * @pf: Board private structure 902 * 903 * Called by the clock owner to flush all the Tx timestamp trackers associated 904 * with the clock. 905 */ 906 static void 907 ice_ptp_flush_all_tx_tracker(struct ice_pf *pf) 908 { 909 struct ice_ptp_port *port; 910 911 list_for_each_entry(port, &pf->adapter->ports.ports, list_node) 912 ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx); 913 } 914 915 /** 916 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker 917 * @pf: Board private structure 918 * @tx: Tx tracking structure to release 919 * 920 * Free memory associated with the Tx timestamp tracker. 921 */ 922 static void 923 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) 924 { 925 unsigned long flags; 926 927 spin_lock_irqsave(&tx->lock, flags); 928 tx->init = 0; 929 spin_unlock_irqrestore(&tx->lock, flags); 930 931 /* wait for potentially outstanding interrupt to complete */ 932 synchronize_irq(pf->oicr_irq.virq); 933 934 ice_ptp_flush_tx_tracker(pf, tx); 935 936 kfree(tx->tstamps); 937 tx->tstamps = NULL; 938 939 bitmap_free(tx->in_use); 940 tx->in_use = NULL; 941 942 bitmap_free(tx->stale); 943 tx->stale = NULL; 944 945 tx->len = 0; 946 } 947 948 /** 949 * ice_ptp_init_tx_eth56g - Initialize tracking for Tx timestamps 950 * @pf: Board private structure 951 * @tx: the Tx tracking structure to initialize 952 * @port: the port this structure tracks 953 * 954 * Initialize the Tx timestamp tracker for this port. ETH56G PHYs 955 * have independent memory blocks for all ports. 956 * 957 * Return: 0 for success, -ENOMEM when failed to allocate Tx tracker 958 */ 959 static int ice_ptp_init_tx_eth56g(struct ice_pf *pf, struct ice_ptp_tx *tx, 960 u8 port) 961 { 962 tx->block = port; 963 tx->offset = 0; 964 tx->len = INDEX_PER_PORT_ETH56G; 965 tx->has_ready_bitmap = 1; 966 967 return ice_ptp_alloc_tx_tracker(tx); 968 } 969 970 /** 971 * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps 972 * @pf: Board private structure 973 * @tx: the Tx tracking structure to initialize 974 * @port: the port this structure tracks 975 * 976 * Initialize the Tx timestamp tracker for this port. For generic MAC devices, 977 * the timestamp block is shared for all ports in the same quad. To avoid 978 * ports using the same timestamp index, logically break the block of 979 * registers into chunks based on the port number. 980 */ 981 static int 982 ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) 983 { 984 tx->block = ICE_GET_QUAD_NUM(port); 985 tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X; 986 tx->len = INDEX_PER_PORT_E82X; 987 tx->has_ready_bitmap = 1; 988 989 return ice_ptp_alloc_tx_tracker(tx); 990 } 991 992 /** 993 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps 994 * @pf: Board private structure 995 * @tx: the Tx tracking structure to initialize 996 * 997 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each 998 * port has its own block of timestamps, independent of the other ports. 999 */ 1000 static int 1001 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) 1002 { 1003 tx->block = pf->hw.port_info->lport; 1004 tx->offset = 0; 1005 tx->len = INDEX_PER_PORT_E810; 1006 /* The E810 PHY does not provide a timestamp ready bitmap. Instead, 1007 * verify new timestamps against cached copy of the last read 1008 * timestamp. 1009 */ 1010 tx->has_ready_bitmap = 0; 1011 1012 return ice_ptp_alloc_tx_tracker(tx); 1013 } 1014 1015 /** 1016 * ice_ptp_update_cached_phctime - Update the cached PHC time values 1017 * @pf: Board specific private structure 1018 * 1019 * This function updates the system time values which are cached in the PF 1020 * structure and the Rx rings. 1021 * 1022 * This function must be called periodically to ensure that the cached value 1023 * is never more than 2 seconds old. 1024 * 1025 * Note that the cached copy in the PF PTP structure is always updated, even 1026 * if we can't update the copy in the Rx rings. 1027 * 1028 * Return: 1029 * * 0 - OK, successfully updated 1030 * * -EAGAIN - PF was busy, need to reschedule the update 1031 */ 1032 static int ice_ptp_update_cached_phctime(struct ice_pf *pf) 1033 { 1034 struct device *dev = ice_pf_to_dev(pf); 1035 unsigned long update_before; 1036 u64 systime; 1037 int i; 1038 1039 update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); 1040 if (pf->ptp.cached_phc_time && 1041 time_is_before_jiffies(update_before)) { 1042 unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies; 1043 1044 dev_warn(dev, "%u msecs passed between update to cached PHC time\n", 1045 jiffies_to_msecs(time_taken)); 1046 pf->ptp.late_cached_phc_updates++; 1047 } 1048 1049 /* Read the current PHC time */ 1050 systime = ice_ptp_read_src_clk_reg(pf, NULL); 1051 1052 /* Update the cached PHC time stored in the PF structure */ 1053 WRITE_ONCE(pf->ptp.cached_phc_time, systime); 1054 WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies); 1055 1056 if (test_and_set_bit(ICE_CFG_BUSY, pf->state)) 1057 return -EAGAIN; 1058 1059 ice_for_each_vsi(pf, i) { 1060 struct ice_vsi *vsi = pf->vsi[i]; 1061 int j; 1062 1063 if (!vsi) 1064 continue; 1065 1066 if (vsi->type != ICE_VSI_PF) 1067 continue; 1068 1069 ice_for_each_rxq(vsi, j) { 1070 if (!vsi->rx_rings[j]) 1071 continue; 1072 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); 1073 } 1074 } 1075 clear_bit(ICE_CFG_BUSY, pf->state); 1076 1077 return 0; 1078 } 1079 1080 /** 1081 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update 1082 * @pf: Board specific private structure 1083 * 1084 * This function must be called when the cached PHC time is no longer valid, 1085 * such as after a time adjustment. It marks any currently outstanding Tx 1086 * timestamps as stale and updates the cached PHC time for both the PF and Rx 1087 * rings. 1088 * 1089 * If updating the PHC time cannot be done immediately, a warning message is 1090 * logged and the work item is scheduled immediately to minimize the window 1091 * with a wrong cached timestamp. 1092 */ 1093 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf) 1094 { 1095 struct device *dev = ice_pf_to_dev(pf); 1096 int err; 1097 1098 /* Update the cached PHC time immediately if possible, otherwise 1099 * schedule the work item to execute soon. 1100 */ 1101 err = ice_ptp_update_cached_phctime(pf); 1102 if (err) { 1103 /* If another thread is updating the Rx rings, we won't 1104 * properly reset them here. This could lead to reporting of 1105 * invalid timestamps, but there isn't much we can do. 1106 */ 1107 dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n", 1108 __func__); 1109 1110 /* Queue the work item to update the Rx rings when possible */ 1111 kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, 1112 msecs_to_jiffies(10)); 1113 } 1114 1115 /* Mark any outstanding timestamps as stale, since they might have 1116 * been captured in hardware before the time update. This could lead 1117 * to us extending them with the wrong cached value resulting in 1118 * incorrect timestamp values. 1119 */ 1120 ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx); 1121 } 1122 1123 /** 1124 * ice_ptp_write_init - Set PHC time to provided value 1125 * @pf: Board private structure 1126 * @ts: timespec structure that holds the new time value 1127 * 1128 * Set the PHC time to the specified time provided in the timespec. 1129 */ 1130 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) 1131 { 1132 u64 ns = timespec64_to_ns(ts); 1133 struct ice_hw *hw = &pf->hw; 1134 1135 return ice_ptp_init_time(hw, ns); 1136 } 1137 1138 /** 1139 * ice_ptp_write_adj - Adjust PHC clock time atomically 1140 * @pf: Board private structure 1141 * @adj: Adjustment in nanoseconds 1142 * 1143 * Perform an atomic adjustment of the PHC time by the specified number of 1144 * nanoseconds. 1145 */ 1146 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) 1147 { 1148 struct ice_hw *hw = &pf->hw; 1149 1150 return ice_ptp_adj_clock(hw, adj); 1151 } 1152 1153 /** 1154 * ice_base_incval - Get base timer increment value 1155 * @pf: Board private structure 1156 * 1157 * Look up the base timer increment value for this device. The base increment 1158 * value is used to define the nominal clock tick rate. This increment value 1159 * is programmed during device initialization. It is also used as the basis 1160 * for calculating adjustments using scaled_ppm. 1161 */ 1162 static u64 ice_base_incval(struct ice_pf *pf) 1163 { 1164 struct ice_hw *hw = &pf->hw; 1165 u64 incval; 1166 1167 incval = ice_get_base_incval(hw); 1168 1169 dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n", 1170 incval); 1171 1172 return incval; 1173 } 1174 1175 /** 1176 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state 1177 * @port: PTP port for which Tx FIFO is checked 1178 */ 1179 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port) 1180 { 1181 int offs = port->port_num % ICE_PORTS_PER_QUAD; 1182 int quad = ICE_GET_QUAD_NUM(port->port_num); 1183 struct ice_pf *pf; 1184 struct ice_hw *hw; 1185 u32 val, phy_sts; 1186 int err; 1187 1188 pf = ptp_port_to_pf(port); 1189 hw = &pf->hw; 1190 1191 if (port->tx_fifo_busy_cnt == FIFO_OK) 1192 return 0; 1193 1194 /* need to read FIFO state */ 1195 if (offs == 0 || offs == 1) 1196 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS, 1197 &val); 1198 else 1199 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS, 1200 &val); 1201 1202 if (err) { 1203 dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n", 1204 port->port_num, err); 1205 return err; 1206 } 1207 1208 if (offs & 0x1) 1209 phy_sts = FIELD_GET(Q_REG_FIFO13_M, val); 1210 else 1211 phy_sts = FIELD_GET(Q_REG_FIFO02_M, val); 1212 1213 if (phy_sts & FIFO_EMPTY) { 1214 port->tx_fifo_busy_cnt = FIFO_OK; 1215 return 0; 1216 } 1217 1218 port->tx_fifo_busy_cnt++; 1219 1220 dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n", 1221 port->tx_fifo_busy_cnt, port->port_num); 1222 1223 if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) { 1224 dev_dbg(ice_pf_to_dev(pf), 1225 "Port %d Tx FIFO still not empty; resetting quad %d\n", 1226 port->port_num, quad); 1227 ice_ptp_reset_ts_memory_quad_e82x(hw, quad); 1228 port->tx_fifo_busy_cnt = FIFO_OK; 1229 return 0; 1230 } 1231 1232 return -EAGAIN; 1233 } 1234 1235 /** 1236 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets 1237 * @work: Pointer to the kthread_work structure for this task 1238 * 1239 * Check whether hardware has completed measuring the Tx and Rx offset values 1240 * used to configure and enable vernier timestamp calibration. 1241 * 1242 * Once the offset in either direction is measured, configure the associated 1243 * registers with the calibrated offset values and enable timestamping. The Tx 1244 * and Rx directions are configured independently as soon as their associated 1245 * offsets are known. 1246 * 1247 * This function reschedules itself until both Tx and Rx calibration have 1248 * completed. 1249 */ 1250 static void ice_ptp_wait_for_offsets(struct kthread_work *work) 1251 { 1252 struct ice_ptp_port *port; 1253 struct ice_pf *pf; 1254 struct ice_hw *hw; 1255 int tx_err; 1256 int rx_err; 1257 1258 port = container_of(work, struct ice_ptp_port, ov_work.work); 1259 pf = ptp_port_to_pf(port); 1260 hw = &pf->hw; 1261 1262 if (ice_is_reset_in_progress(pf->state)) { 1263 /* wait for device driver to complete reset */ 1264 kthread_queue_delayed_work(pf->ptp.kworker, 1265 &port->ov_work, 1266 msecs_to_jiffies(100)); 1267 return; 1268 } 1269 1270 tx_err = ice_ptp_check_tx_fifo(port); 1271 if (!tx_err) 1272 tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num); 1273 rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num); 1274 if (tx_err || rx_err) { 1275 /* Tx and/or Rx offset not yet configured, try again later */ 1276 kthread_queue_delayed_work(pf->ptp.kworker, 1277 &port->ov_work, 1278 msecs_to_jiffies(100)); 1279 return; 1280 } 1281 } 1282 1283 /** 1284 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port 1285 * @ptp_port: PTP port to stop 1286 */ 1287 static int 1288 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port) 1289 { 1290 struct ice_pf *pf = ptp_port_to_pf(ptp_port); 1291 u8 port = ptp_port->port_num; 1292 struct ice_hw *hw = &pf->hw; 1293 int err; 1294 1295 if (ice_is_e810(hw)) 1296 return 0; 1297 1298 mutex_lock(&ptp_port->ps_lock); 1299 1300 switch (ice_get_phy_model(hw)) { 1301 case ICE_PHY_ETH56G: 1302 err = ice_stop_phy_timer_eth56g(hw, port, true); 1303 break; 1304 case ICE_PHY_E82X: 1305 kthread_cancel_delayed_work_sync(&ptp_port->ov_work); 1306 1307 err = ice_stop_phy_timer_e82x(hw, port, true); 1308 break; 1309 default: 1310 err = -ENODEV; 1311 } 1312 if (err && err != -EBUSY) 1313 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n", 1314 port, err); 1315 1316 mutex_unlock(&ptp_port->ps_lock); 1317 1318 return err; 1319 } 1320 1321 /** 1322 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping 1323 * @ptp_port: PTP port for which the PHY start is set 1324 * 1325 * Start the PHY timestamping block, and initiate Vernier timestamping 1326 * calibration. If timestamping cannot be calibrated (such as if link is down) 1327 * then disable the timestamping block instead. 1328 */ 1329 static int 1330 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port) 1331 { 1332 struct ice_pf *pf = ptp_port_to_pf(ptp_port); 1333 u8 port = ptp_port->port_num; 1334 struct ice_hw *hw = &pf->hw; 1335 unsigned long flags; 1336 int err; 1337 1338 if (ice_is_e810(hw)) 1339 return 0; 1340 1341 if (!ptp_port->link_up) 1342 return ice_ptp_port_phy_stop(ptp_port); 1343 1344 mutex_lock(&ptp_port->ps_lock); 1345 1346 switch (ice_get_phy_model(hw)) { 1347 case ICE_PHY_ETH56G: 1348 err = ice_start_phy_timer_eth56g(hw, port); 1349 break; 1350 case ICE_PHY_E82X: 1351 /* Start the PHY timer in Vernier mode */ 1352 kthread_cancel_delayed_work_sync(&ptp_port->ov_work); 1353 1354 /* temporarily disable Tx timestamps while calibrating 1355 * PHY offset 1356 */ 1357 spin_lock_irqsave(&ptp_port->tx.lock, flags); 1358 ptp_port->tx.calibrating = true; 1359 spin_unlock_irqrestore(&ptp_port->tx.lock, flags); 1360 ptp_port->tx_fifo_busy_cnt = 0; 1361 1362 /* Start the PHY timer in Vernier mode */ 1363 err = ice_start_phy_timer_e82x(hw, port); 1364 if (err) 1365 break; 1366 1367 /* Enable Tx timestamps right away */ 1368 spin_lock_irqsave(&ptp_port->tx.lock, flags); 1369 ptp_port->tx.calibrating = false; 1370 spin_unlock_irqrestore(&ptp_port->tx.lock, flags); 1371 1372 kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 1373 0); 1374 break; 1375 default: 1376 err = -ENODEV; 1377 } 1378 1379 if (err) 1380 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n", 1381 port, err); 1382 1383 mutex_unlock(&ptp_port->ps_lock); 1384 1385 return err; 1386 } 1387 1388 /** 1389 * ice_ptp_link_change - Reconfigure PTP after link status change 1390 * @pf: Board private structure 1391 * @linkup: Link is up or down 1392 */ 1393 void ice_ptp_link_change(struct ice_pf *pf, bool linkup) 1394 { 1395 struct ice_ptp_port *ptp_port; 1396 struct ice_hw *hw = &pf->hw; 1397 1398 if (pf->ptp.state != ICE_PTP_READY) 1399 return; 1400 1401 ptp_port = &pf->ptp.port; 1402 1403 /* Update cached link status for this port immediately */ 1404 ptp_port->link_up = linkup; 1405 1406 /* Skip HW writes if reset is in progress */ 1407 if (pf->hw.reset_ongoing) 1408 return; 1409 switch (ice_get_phy_model(hw)) { 1410 case ICE_PHY_E810: 1411 /* Do not reconfigure E810 PHY */ 1412 return; 1413 case ICE_PHY_ETH56G: 1414 case ICE_PHY_E82X: 1415 ice_ptp_port_phy_restart(ptp_port); 1416 return; 1417 default: 1418 dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__); 1419 } 1420 } 1421 1422 /** 1423 * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings 1424 * @pf: PF private structure 1425 * @ena: bool value to enable or disable interrupt 1426 * @threshold: Minimum number of packets at which intr is triggered 1427 * 1428 * Utility function to configure all the PHY interrupt settings, including 1429 * whether the PHY interrupt is enabled, and what threshold to use. Also 1430 * configures The E82X timestamp owner to react to interrupts from all PHYs. 1431 * 1432 * Return: 0 on success, -EOPNOTSUPP when PHY model incorrect, other error codes 1433 * when failed to configure PHY interrupt for E82X 1434 */ 1435 static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold) 1436 { 1437 struct device *dev = ice_pf_to_dev(pf); 1438 struct ice_hw *hw = &pf->hw; 1439 1440 ice_ptp_reset_ts_memory(hw); 1441 1442 switch (ice_get_phy_model(hw)) { 1443 case ICE_PHY_ETH56G: { 1444 int port; 1445 1446 for (port = 0; port < hw->ptp.num_lports; port++) { 1447 int err; 1448 1449 err = ice_phy_cfg_intr_eth56g(hw, port, ena, threshold); 1450 if (err) { 1451 dev_err(dev, "Failed to configure PHY interrupt for port %d, err %d\n", 1452 port, err); 1453 return err; 1454 } 1455 } 1456 1457 return 0; 1458 } 1459 case ICE_PHY_E82X: { 1460 int quad; 1461 1462 for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); 1463 quad++) { 1464 int err; 1465 1466 err = ice_phy_cfg_intr_e82x(hw, quad, ena, threshold); 1467 if (err) { 1468 dev_err(dev, "Failed to configure PHY interrupt for quad %d, err %d\n", 1469 quad, err); 1470 return err; 1471 } 1472 } 1473 1474 return 0; 1475 } 1476 case ICE_PHY_E810: 1477 return 0; 1478 case ICE_PHY_UNSUP: 1479 default: 1480 dev_warn(dev, "%s: Unexpected PHY model %d\n", __func__, 1481 ice_get_phy_model(hw)); 1482 return -EOPNOTSUPP; 1483 } 1484 } 1485 1486 /** 1487 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block 1488 * @pf: Board private structure 1489 */ 1490 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf) 1491 { 1492 ice_ptp_port_phy_restart(&pf->ptp.port); 1493 } 1494 1495 /** 1496 * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping 1497 * @pf: Board private structure 1498 */ 1499 static void ice_ptp_restart_all_phy(struct ice_pf *pf) 1500 { 1501 struct list_head *entry; 1502 1503 list_for_each(entry, &pf->adapter->ports.ports) { 1504 struct ice_ptp_port *port = list_entry(entry, 1505 struct ice_ptp_port, 1506 list_node); 1507 1508 if (port->link_up) 1509 ice_ptp_port_phy_restart(port); 1510 } 1511 } 1512 1513 /** 1514 * ice_ptp_adjfine - Adjust clock increment rate 1515 * @info: the driver's PTP info structure 1516 * @scaled_ppm: Parts per million with 16-bit fractional field 1517 * 1518 * Adjust the frequency of the clock by the indicated scaled ppm from the 1519 * base frequency. 1520 */ 1521 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) 1522 { 1523 struct ice_pf *pf = ptp_info_to_pf(info); 1524 struct ice_hw *hw = &pf->hw; 1525 u64 incval; 1526 int err; 1527 1528 incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm); 1529 err = ice_ptp_write_incval_locked(hw, incval); 1530 if (err) { 1531 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", 1532 err); 1533 return -EIO; 1534 } 1535 1536 return 0; 1537 } 1538 1539 /** 1540 * ice_ptp_extts_event - Process PTP external clock event 1541 * @pf: Board private structure 1542 */ 1543 void ice_ptp_extts_event(struct ice_pf *pf) 1544 { 1545 struct ptp_clock_event event; 1546 struct ice_hw *hw = &pf->hw; 1547 u8 chan, tmr_idx; 1548 u32 hi, lo; 1549 1550 /* Don't process timestamp events if PTP is not ready */ 1551 if (pf->ptp.state != ICE_PTP_READY) 1552 return; 1553 1554 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1555 /* Event time is captured by one of the two matched registers 1556 * GLTSYN_EVNT_L: 32 LSB of sampled time event 1557 * GLTSYN_EVNT_H: 32 MSB of sampled time event 1558 * Event is defined in GLTSYN_EVNT_0 register 1559 */ 1560 for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { 1561 /* Check if channel is enabled */ 1562 if (pf->ptp.ext_ts_irq & (1 << chan)) { 1563 lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); 1564 hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); 1565 event.timestamp = (((u64)hi) << 32) | lo; 1566 event.type = PTP_CLOCK_EXTTS; 1567 event.index = chan; 1568 1569 /* Fire event */ 1570 ptp_clock_event(pf->ptp.clock, &event); 1571 pf->ptp.ext_ts_irq &= ~(1 << chan); 1572 } 1573 } 1574 } 1575 1576 /** 1577 * ice_ptp_cfg_extts - Configure EXTTS pin and channel 1578 * @pf: Board private structure 1579 * @rq: External timestamp request 1580 * @on: Enable/disable flag 1581 * 1582 * Configure an external timestamp event on the requested channel. 1583 * 1584 * Return: 0 on success, negative error code otherwise 1585 */ 1586 static int ice_ptp_cfg_extts(struct ice_pf *pf, struct ptp_extts_request *rq, 1587 int on) 1588 { 1589 u32 aux_reg, gpio_reg, irq_reg; 1590 struct ice_hw *hw = &pf->hw; 1591 unsigned int chan, gpio_pin; 1592 int pin_desc_idx; 1593 u8 tmr_idx; 1594 1595 /* Reject requests with unsupported flags */ 1596 1597 if (rq->flags & ~(PTP_ENABLE_FEATURE | 1598 PTP_RISING_EDGE | 1599 PTP_FALLING_EDGE | 1600 PTP_STRICT_FLAGS)) 1601 return -EOPNOTSUPP; 1602 1603 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1604 chan = rq->index; 1605 1606 pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan); 1607 if (pin_desc_idx < 0) 1608 return -EIO; 1609 1610 gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[0]; 1611 irq_reg = rd32(hw, PFINT_OICR_ENA); 1612 1613 if (on) { 1614 /* Enable the interrupt */ 1615 irq_reg |= PFINT_OICR_TSYN_EVNT_M; 1616 aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; 1617 1618 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) 1619 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) 1620 1621 /* set event level to requested edge */ 1622 if (rq->flags & PTP_FALLING_EDGE) 1623 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; 1624 if (rq->flags & PTP_RISING_EDGE) 1625 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; 1626 1627 /* Write GPIO CTL reg. 1628 * 0x1 is input sampled by EVENT register(channel) 1629 * + num_in_channels * tmr_idx 1630 */ 1631 gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, 1632 1 + chan + (tmr_idx * 3)); 1633 } else { 1634 bool last_enabled = true; 1635 1636 /* clear the values we set to reset defaults */ 1637 aux_reg = 0; 1638 gpio_reg = 0; 1639 1640 for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts; i++) 1641 if ((pf->ptp.extts_rqs[i].flags & 1642 PTP_ENABLE_FEATURE) && 1643 i != chan) { 1644 last_enabled = false; 1645 } 1646 1647 if (last_enabled) 1648 irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; 1649 } 1650 1651 wr32(hw, PFINT_OICR_ENA, irq_reg); 1652 wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); 1653 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg); 1654 1655 return 0; 1656 } 1657 1658 /** 1659 * ice_ptp_disable_all_extts - Disable all EXTTS channels 1660 * @pf: Board private structure 1661 */ 1662 static void ice_ptp_disable_all_extts(struct ice_pf *pf) 1663 { 1664 for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++) 1665 if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE) 1666 ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i], 1667 false); 1668 1669 synchronize_irq(pf->oicr_irq.virq); 1670 } 1671 1672 /** 1673 * ice_ptp_enable_all_extts - Enable all EXTTS channels 1674 * @pf: Board private structure 1675 * 1676 * Called during reset to restore user configuration. 1677 */ 1678 static void ice_ptp_enable_all_extts(struct ice_pf *pf) 1679 { 1680 for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++) 1681 if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE) 1682 ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i], 1683 true); 1684 } 1685 1686 /** 1687 * ice_ptp_write_perout - Write periodic wave parameters to HW 1688 * @hw: pointer to the HW struct 1689 * @chan: target channel 1690 * @gpio_pin: target GPIO pin 1691 * @start: target time to start periodic output 1692 * @period: target period 1693 * 1694 * Return: 0 on success, negative error code otherwise 1695 */ 1696 static int ice_ptp_write_perout(struct ice_hw *hw, unsigned int chan, 1697 unsigned int gpio_pin, u64 start, u64 period) 1698 { 1699 1700 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1701 u32 val = 0; 1702 1703 /* 0. Reset mode & out_en in AUX_OUT */ 1704 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); 1705 1706 if (ice_is_e825c(hw)) { 1707 int err; 1708 1709 /* Enable/disable CGU 1PPS output for E825C */ 1710 err = ice_cgu_cfg_pps_out(hw, !!period); 1711 if (err) 1712 return err; 1713 } 1714 1715 /* 1. Write perout with half of required period value. 1716 * HW toggles output when source clock hits the TGT and then adds 1717 * GLTSYN_CLKO value to the target, so it ends up with 50% duty cycle. 1718 */ 1719 period >>= 1; 1720 1721 /* For proper operation, GLTSYN_CLKO must be larger than clock tick and 1722 * period has to fit in 32 bit register. 1723 */ 1724 #define MIN_PULSE 3 1725 if (!!period && (period <= MIN_PULSE || period > U32_MAX)) { 1726 dev_err(ice_hw_to_dev(hw), "CLK period ticks must be >= %d && <= 2^32", 1727 MIN_PULSE); 1728 return -EIO; 1729 } 1730 1731 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); 1732 1733 /* 2. Write TARGET time */ 1734 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start)); 1735 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start)); 1736 1737 /* 3. Write AUX_OUT register */ 1738 if (!!period) 1739 val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; 1740 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); 1741 1742 /* 4. write GPIO CTL reg */ 1743 val = GLGEN_GPIO_CTL_PIN_DIR_M; 1744 if (!!period) 1745 val |= FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, 1746 8 + chan + (tmr_idx * 4)); 1747 1748 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); 1749 1750 return 0; 1751 } 1752 1753 /** 1754 * ice_ptp_cfg_perout - Configure clock to generate periodic wave 1755 * @pf: Board private structure 1756 * @rq: Periodic output request 1757 * @on: Enable/disable flag 1758 * 1759 * Configure the internal clock generator modules to generate the clock wave of 1760 * specified period. 1761 * 1762 * Return: 0 on success, negative error code otherwise 1763 */ 1764 static int ice_ptp_cfg_perout(struct ice_pf *pf, struct ptp_perout_request *rq, 1765 int on) 1766 { 1767 u64 clk, period, start, phase; 1768 struct ice_hw *hw = &pf->hw; 1769 unsigned int gpio_pin; 1770 int pin_desc_idx; 1771 1772 if (rq->flags & ~PTP_PEROUT_PHASE) 1773 return -EOPNOTSUPP; 1774 1775 pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_PEROUT, rq->index); 1776 if (pin_desc_idx < 0) 1777 return -EIO; 1778 1779 gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[1]; 1780 period = rq->period.sec * NSEC_PER_SEC + rq->period.nsec; 1781 1782 /* If we're disabling the output or period is 0, clear out CLKO and TGT 1783 * and keep output level low. 1784 */ 1785 if (!on || !period) 1786 return ice_ptp_write_perout(hw, rq->index, gpio_pin, 0, 0); 1787 1788 if (strncmp(pf->ptp.pin_desc[pin_desc_idx].name, "1PPS", 64) == 0 && 1789 period != NSEC_PER_SEC && hw->ptp.phy_model == ICE_PHY_E82X) { 1790 dev_err(ice_pf_to_dev(pf), "1PPS pin supports only 1 s period\n"); 1791 return -EOPNOTSUPP; 1792 } 1793 1794 if (period & 0x1) { 1795 dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); 1796 return -EIO; 1797 } 1798 1799 start = rq->start.sec * NSEC_PER_SEC + rq->start.nsec; 1800 1801 /* If PTP_PEROUT_PHASE is set, rq has phase instead of start time */ 1802 if (rq->flags & PTP_PEROUT_PHASE) 1803 phase = start; 1804 else 1805 div64_u64_rem(start, period, &phase); 1806 1807 /* If we have only phase or start time is in the past, start the timer 1808 * at the next multiple of period, maintaining phase. 1809 */ 1810 clk = ice_ptp_read_src_clk_reg(pf, NULL); 1811 if (rq->flags & PTP_PEROUT_PHASE || start <= clk - ice_prop_delay(hw)) 1812 start = div64_u64(clk + period - 1, period) * period + phase; 1813 1814 /* Compensate for propagation delay from the generator to the pin. */ 1815 start -= ice_prop_delay(hw); 1816 1817 return ice_ptp_write_perout(hw, rq->index, gpio_pin, start, period); 1818 } 1819 1820 /** 1821 * ice_ptp_disable_all_perout - Disable all currently configured outputs 1822 * @pf: Board private structure 1823 * 1824 * Disable all currently configured clock outputs. This is necessary before 1825 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_perout to 1826 * re-enable the clocks again. 1827 */ 1828 static void ice_ptp_disable_all_perout(struct ice_pf *pf) 1829 { 1830 for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++) 1831 if (pf->ptp.perout_rqs[i].period.sec || 1832 pf->ptp.perout_rqs[i].period.nsec) 1833 ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i], 1834 false); 1835 } 1836 1837 /** 1838 * ice_ptp_enable_all_perout - Enable all configured periodic clock outputs 1839 * @pf: Board private structure 1840 * 1841 * Enable all currently configured clock outputs. Use this after 1842 * ice_ptp_disable_all_perout to reconfigure the output signals according to 1843 * their configuration. 1844 */ 1845 static void ice_ptp_enable_all_perout(struct ice_pf *pf) 1846 { 1847 for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++) 1848 if (pf->ptp.perout_rqs[i].period.sec || 1849 pf->ptp.perout_rqs[i].period.nsec) 1850 ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i], 1851 true); 1852 } 1853 1854 /** 1855 * ice_ptp_disable_shared_pin - Disable enabled pin that shares GPIO 1856 * @pf: Board private structure 1857 * @pin: Pin index 1858 * @func: Assigned function 1859 * 1860 * Return: 0 on success, negative error code otherwise 1861 */ 1862 static int ice_ptp_disable_shared_pin(struct ice_pf *pf, unsigned int pin, 1863 enum ptp_pin_function func) 1864 { 1865 unsigned int gpio_pin; 1866 1867 switch (func) { 1868 case PTP_PF_PEROUT: 1869 gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[1]; 1870 break; 1871 case PTP_PF_EXTTS: 1872 gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[0]; 1873 break; 1874 default: 1875 return -EOPNOTSUPP; 1876 } 1877 1878 for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) { 1879 struct ptp_pin_desc *pin_desc = &pf->ptp.pin_desc[i]; 1880 unsigned int chan = pin_desc->chan; 1881 1882 /* Skip pin idx from the request */ 1883 if (i == pin) 1884 continue; 1885 1886 if (pin_desc->func == PTP_PF_PEROUT && 1887 pf->ptp.ice_pin_desc[i].gpio[1] == gpio_pin) { 1888 pf->ptp.perout_rqs[chan].period.sec = 0; 1889 pf->ptp.perout_rqs[chan].period.nsec = 0; 1890 pin_desc->func = PTP_PF_NONE; 1891 pin_desc->chan = 0; 1892 dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared output GPIO pin %u\n", 1893 i, gpio_pin); 1894 return ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[chan], 1895 false); 1896 } else if (pf->ptp.pin_desc->func == PTP_PF_EXTTS && 1897 pf->ptp.ice_pin_desc[i].gpio[0] == gpio_pin) { 1898 pf->ptp.extts_rqs[chan].flags &= ~PTP_ENABLE_FEATURE; 1899 pin_desc->func = PTP_PF_NONE; 1900 pin_desc->chan = 0; 1901 dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared input GPIO pin %u\n", 1902 i, gpio_pin); 1903 return ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[chan], 1904 false); 1905 } 1906 } 1907 1908 return 0; 1909 } 1910 1911 /** 1912 * ice_verify_pin - verify if pin supports requested pin function 1913 * @info: the driver's PTP info structure 1914 * @pin: Pin index 1915 * @func: Assigned function 1916 * @chan: Assigned channel 1917 * 1918 * Return: 0 on success, -EOPNOTSUPP when function is not supported. 1919 */ 1920 static int ice_verify_pin(struct ptp_clock_info *info, unsigned int pin, 1921 enum ptp_pin_function func, unsigned int chan) 1922 { 1923 struct ice_pf *pf = ptp_info_to_pf(info); 1924 const struct ice_ptp_pin_desc *pin_desc; 1925 1926 pin_desc = &pf->ptp.ice_pin_desc[pin]; 1927 1928 /* Is assigned function allowed? */ 1929 switch (func) { 1930 case PTP_PF_EXTTS: 1931 if (pin_desc->gpio[0] < 0) 1932 return -EOPNOTSUPP; 1933 break; 1934 case PTP_PF_PEROUT: 1935 if (pin_desc->gpio[1] < 0) 1936 return -EOPNOTSUPP; 1937 break; 1938 case PTP_PF_NONE: 1939 break; 1940 case PTP_PF_PHYSYNC: 1941 default: 1942 return -EOPNOTSUPP; 1943 } 1944 1945 /* On adapters with SMA_CTRL disable other pins that share same GPIO */ 1946 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { 1947 ice_ptp_disable_shared_pin(pf, pin, func); 1948 pf->ptp.pin_desc[pin].func = func; 1949 pf->ptp.pin_desc[pin].chan = chan; 1950 return ice_ptp_set_sma_cfg(pf); 1951 } 1952 1953 return 0; 1954 } 1955 1956 /** 1957 * ice_ptp_gpio_enable - Enable/disable ancillary features of PHC 1958 * @info: The driver's PTP info structure 1959 * @rq: The requested feature to change 1960 * @on: Enable/disable flag 1961 * 1962 * Return: 0 on success, negative error code otherwise 1963 */ 1964 static int ice_ptp_gpio_enable(struct ptp_clock_info *info, 1965 struct ptp_clock_request *rq, int on) 1966 { 1967 struct ice_pf *pf = ptp_info_to_pf(info); 1968 int err; 1969 1970 switch (rq->type) { 1971 case PTP_CLK_REQ_PEROUT: 1972 { 1973 struct ptp_perout_request *cached = 1974 &pf->ptp.perout_rqs[rq->perout.index]; 1975 1976 err = ice_ptp_cfg_perout(pf, &rq->perout, on); 1977 if (!err) { 1978 *cached = rq->perout; 1979 } else { 1980 cached->period.sec = 0; 1981 cached->period.nsec = 0; 1982 } 1983 return err; 1984 } 1985 case PTP_CLK_REQ_EXTTS: 1986 { 1987 struct ptp_extts_request *cached = 1988 &pf->ptp.extts_rqs[rq->extts.index]; 1989 1990 err = ice_ptp_cfg_extts(pf, &rq->extts, on); 1991 if (!err) 1992 *cached = rq->extts; 1993 else 1994 cached->flags &= ~PTP_ENABLE_FEATURE; 1995 return err; 1996 } 1997 default: 1998 return -EOPNOTSUPP; 1999 } 2000 } 2001 2002 /** 2003 * ice_ptp_gettimex64 - Get the time of the clock 2004 * @info: the driver's PTP info structure 2005 * @ts: timespec64 structure to hold the current time value 2006 * @sts: Optional parameter for holding a pair of system timestamps from 2007 * the system clock. Will be ignored if NULL is given. 2008 * 2009 * Read the device clock and return the correct value on ns, after converting it 2010 * into a timespec struct. 2011 */ 2012 static int 2013 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, 2014 struct ptp_system_timestamp *sts) 2015 { 2016 struct ice_pf *pf = ptp_info_to_pf(info); 2017 u64 time_ns; 2018 2019 time_ns = ice_ptp_read_src_clk_reg(pf, sts); 2020 *ts = ns_to_timespec64(time_ns); 2021 return 0; 2022 } 2023 2024 /** 2025 * ice_ptp_settime64 - Set the time of the clock 2026 * @info: the driver's PTP info structure 2027 * @ts: timespec64 structure that holds the new time value 2028 * 2029 * Set the device clock to the user input value. The conversion from timespec 2030 * to ns happens in the write function. 2031 */ 2032 static int 2033 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) 2034 { 2035 struct ice_pf *pf = ptp_info_to_pf(info); 2036 struct timespec64 ts64 = *ts; 2037 struct ice_hw *hw = &pf->hw; 2038 int err; 2039 2040 /* For Vernier mode on E82X, we need to recalibrate after new settime. 2041 * Start with marking timestamps as invalid. 2042 */ 2043 if (ice_get_phy_model(hw) == ICE_PHY_E82X) { 2044 err = ice_ptp_clear_phy_offset_ready_e82x(hw); 2045 if (err) 2046 dev_warn(ice_pf_to_dev(pf), "Failed to mark timestamps as invalid before settime\n"); 2047 } 2048 2049 if (!ice_ptp_lock(hw)) { 2050 err = -EBUSY; 2051 goto exit; 2052 } 2053 2054 /* Disable periodic outputs */ 2055 ice_ptp_disable_all_perout(pf); 2056 2057 err = ice_ptp_write_init(pf, &ts64); 2058 ice_ptp_unlock(hw); 2059 2060 if (!err) 2061 ice_ptp_reset_cached_phctime(pf); 2062 2063 /* Reenable periodic outputs */ 2064 ice_ptp_enable_all_perout(pf); 2065 2066 /* Recalibrate and re-enable timestamp blocks for E822/E823 */ 2067 if (ice_get_phy_model(hw) == ICE_PHY_E82X) 2068 ice_ptp_restart_all_phy(pf); 2069 exit: 2070 if (err) { 2071 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); 2072 return err; 2073 } 2074 2075 return 0; 2076 } 2077 2078 /** 2079 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment 2080 * @info: the driver's PTP info structure 2081 * @delta: Offset in nanoseconds to adjust the time by 2082 */ 2083 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) 2084 { 2085 struct timespec64 now, then; 2086 int ret; 2087 2088 then = ns_to_timespec64(delta); 2089 ret = ice_ptp_gettimex64(info, &now, NULL); 2090 if (ret) 2091 return ret; 2092 now = timespec64_add(now, then); 2093 2094 return ice_ptp_settime64(info, (const struct timespec64 *)&now); 2095 } 2096 2097 /** 2098 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta 2099 * @info: the driver's PTP info structure 2100 * @delta: Offset in nanoseconds to adjust the time by 2101 */ 2102 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) 2103 { 2104 struct ice_pf *pf = ptp_info_to_pf(info); 2105 struct ice_hw *hw = &pf->hw; 2106 struct device *dev; 2107 int err; 2108 2109 dev = ice_pf_to_dev(pf); 2110 2111 /* Hardware only supports atomic adjustments using signed 32-bit 2112 * integers. For any adjustment outside this range, perform 2113 * a non-atomic get->adjust->set flow. 2114 */ 2115 if (delta > S32_MAX || delta < S32_MIN) { 2116 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); 2117 return ice_ptp_adjtime_nonatomic(info, delta); 2118 } 2119 2120 if (!ice_ptp_lock(hw)) { 2121 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); 2122 return -EBUSY; 2123 } 2124 2125 /* Disable periodic outputs */ 2126 ice_ptp_disable_all_perout(pf); 2127 2128 err = ice_ptp_write_adj(pf, delta); 2129 2130 /* Reenable periodic outputs */ 2131 ice_ptp_enable_all_perout(pf); 2132 2133 ice_ptp_unlock(hw); 2134 2135 if (err) { 2136 dev_err(dev, "PTP failed to adjust time, err %d\n", err); 2137 return err; 2138 } 2139 2140 ice_ptp_reset_cached_phctime(pf); 2141 2142 return 0; 2143 } 2144 2145 #ifdef CONFIG_ICE_HWTS 2146 /** 2147 * ice_ptp_get_syncdevicetime - Get the cross time stamp info 2148 * @device: Current device time 2149 * @system: System counter value read synchronously with device time 2150 * @ctx: Context provided by timekeeping code 2151 * 2152 * Read device and system (ART) clock simultaneously and return the corrected 2153 * clock values in ns. 2154 */ 2155 static int 2156 ice_ptp_get_syncdevicetime(ktime_t *device, 2157 struct system_counterval_t *system, 2158 void *ctx) 2159 { 2160 struct ice_pf *pf = (struct ice_pf *)ctx; 2161 struct ice_hw *hw = &pf->hw; 2162 u32 hh_lock, hh_art_ctl; 2163 int i; 2164 2165 #define MAX_HH_HW_LOCK_TRIES 5 2166 #define MAX_HH_CTL_LOCK_TRIES 100 2167 2168 for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) { 2169 /* Get the HW lock */ 2170 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 2171 if (hh_lock & PFHH_SEM_BUSY_M) { 2172 usleep_range(10000, 15000); 2173 continue; 2174 } 2175 break; 2176 } 2177 if (hh_lock & PFHH_SEM_BUSY_M) { 2178 dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n"); 2179 return -EBUSY; 2180 } 2181 2182 /* Program cmd to master timer */ 2183 ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME); 2184 2185 /* Start the ART and device clock sync sequence */ 2186 hh_art_ctl = rd32(hw, GLHH_ART_CTL); 2187 hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M; 2188 wr32(hw, GLHH_ART_CTL, hh_art_ctl); 2189 2190 for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) { 2191 /* Wait for sync to complete */ 2192 hh_art_ctl = rd32(hw, GLHH_ART_CTL); 2193 if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) { 2194 udelay(1); 2195 continue; 2196 } else { 2197 u32 hh_ts_lo, hh_ts_hi, tmr_idx; 2198 u64 hh_ts; 2199 2200 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 2201 /* Read ART time */ 2202 hh_ts_lo = rd32(hw, GLHH_ART_TIME_L); 2203 hh_ts_hi = rd32(hw, GLHH_ART_TIME_H); 2204 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; 2205 system->cycles = hh_ts; 2206 system->cs_id = CSID_X86_ART; 2207 /* Read Device source clock time */ 2208 hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx)); 2209 hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx)); 2210 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; 2211 *device = ns_to_ktime(hh_ts); 2212 break; 2213 } 2214 } 2215 2216 /* Clear the master timer */ 2217 ice_ptp_src_cmd(hw, ICE_PTP_NOP); 2218 2219 /* Release HW lock */ 2220 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 2221 hh_lock = hh_lock & ~PFHH_SEM_BUSY_M; 2222 wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock); 2223 2224 if (i == MAX_HH_CTL_LOCK_TRIES) 2225 return -ETIMEDOUT; 2226 2227 return 0; 2228 } 2229 2230 /** 2231 * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp 2232 * @info: the driver's PTP info structure 2233 * @cts: The memory to fill the cross timestamp info 2234 * 2235 * Capture a cross timestamp between the ART and the device PTP hardware 2236 * clock. Fill the cross timestamp information and report it back to the 2237 * caller. 2238 * 2239 * This is only valid for E822 and E823 devices which have support for 2240 * generating the cross timestamp via PCIe PTM. 2241 * 2242 * In order to correctly correlate the ART timestamp back to the TSC time, the 2243 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ. 2244 */ 2245 static int 2246 ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info, 2247 struct system_device_crosststamp *cts) 2248 { 2249 struct ice_pf *pf = ptp_info_to_pf(info); 2250 2251 return get_device_system_crosststamp(ice_ptp_get_syncdevicetime, 2252 pf, NULL, cts); 2253 } 2254 #endif /* CONFIG_ICE_HWTS */ 2255 2256 /** 2257 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config 2258 * @pf: Board private structure 2259 * @ifr: ioctl data 2260 * 2261 * Copy the timestamping config to user buffer 2262 */ 2263 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) 2264 { 2265 struct hwtstamp_config *config; 2266 2267 if (pf->ptp.state != ICE_PTP_READY) 2268 return -EIO; 2269 2270 config = &pf->ptp.tstamp_config; 2271 2272 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 2273 -EFAULT : 0; 2274 } 2275 2276 /** 2277 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode 2278 * @pf: Board private structure 2279 * @config: hwtstamp settings requested or saved 2280 */ 2281 static int 2282 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) 2283 { 2284 switch (config->tx_type) { 2285 case HWTSTAMP_TX_OFF: 2286 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF; 2287 break; 2288 case HWTSTAMP_TX_ON: 2289 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON; 2290 break; 2291 default: 2292 return -ERANGE; 2293 } 2294 2295 switch (config->rx_filter) { 2296 case HWTSTAMP_FILTER_NONE: 2297 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 2298 break; 2299 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2300 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2301 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2302 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2303 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2304 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2305 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2306 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2307 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2308 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2309 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2310 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2311 case HWTSTAMP_FILTER_NTP_ALL: 2312 case HWTSTAMP_FILTER_ALL: 2313 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL; 2314 break; 2315 default: 2316 return -ERANGE; 2317 } 2318 2319 /* Immediately update the device timestamping mode */ 2320 ice_ptp_restore_timestamp_mode(pf); 2321 2322 return 0; 2323 } 2324 2325 /** 2326 * ice_ptp_set_ts_config - ioctl interface to control the timestamping 2327 * @pf: Board private structure 2328 * @ifr: ioctl data 2329 * 2330 * Get the user config and store it 2331 */ 2332 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) 2333 { 2334 struct hwtstamp_config config; 2335 int err; 2336 2337 if (pf->ptp.state != ICE_PTP_READY) 2338 return -EAGAIN; 2339 2340 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2341 return -EFAULT; 2342 2343 err = ice_ptp_set_timestamp_mode(pf, &config); 2344 if (err) 2345 return err; 2346 2347 /* Return the actual configuration set */ 2348 config = pf->ptp.tstamp_config; 2349 2350 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2351 -EFAULT : 0; 2352 } 2353 2354 /** 2355 * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns 2356 * @rx_desc: Receive descriptor 2357 * @pkt_ctx: Packet context to get the cached time 2358 * 2359 * The driver receives a notification in the receive descriptor with timestamp. 2360 */ 2361 u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc, 2362 const struct ice_pkt_ctx *pkt_ctx) 2363 { 2364 u64 ts_ns, cached_time; 2365 u32 ts_high; 2366 2367 if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID)) 2368 return 0; 2369 2370 cached_time = READ_ONCE(pkt_ctx->cached_phctime); 2371 2372 /* Do not report a timestamp if we don't have a cached PHC time */ 2373 if (!cached_time) 2374 return 0; 2375 2376 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached 2377 * PHC value, rather than accessing the PF. This also allows us to 2378 * simply pass the upper 32bits of nanoseconds directly. Calling 2379 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these 2380 * bits itself. 2381 */ 2382 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); 2383 ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high); 2384 2385 return ts_ns; 2386 } 2387 2388 /** 2389 * ice_ptp_setup_pin_cfg - setup PTP pin_config structure 2390 * @pf: Board private structure 2391 */ 2392 static void ice_ptp_setup_pin_cfg(struct ice_pf *pf) 2393 { 2394 for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) { 2395 const struct ice_ptp_pin_desc *desc = &pf->ptp.ice_pin_desc[i]; 2396 struct ptp_pin_desc *pin = &pf->ptp.pin_desc[i]; 2397 const char *name = NULL; 2398 2399 if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) 2400 name = ice_pin_names[desc->name_idx]; 2401 else if (desc->name_idx != GPIO_NA) 2402 name = ice_pin_names_nvm[desc->name_idx]; 2403 if (name) 2404 strscpy(pin->name, name, sizeof(pin->name)); 2405 2406 pin->index = i; 2407 } 2408 2409 pf->ptp.info.pin_config = pf->ptp.pin_desc; 2410 } 2411 2412 /** 2413 * ice_ptp_disable_pins - Disable PTP pins 2414 * @pf: pointer to the PF structure 2415 * 2416 * Disable the OS access to the SMA pins. Called to clear out the OS 2417 * indications of pin support when we fail to setup the SMA control register. 2418 */ 2419 static void ice_ptp_disable_pins(struct ice_pf *pf) 2420 { 2421 struct ptp_clock_info *info = &pf->ptp.info; 2422 2423 dev_warn(ice_pf_to_dev(pf), "Failed to configure PTP pin control\n"); 2424 2425 info->enable = NULL; 2426 info->verify = NULL; 2427 info->n_pins = 0; 2428 info->n_ext_ts = 0; 2429 info->n_per_out = 0; 2430 } 2431 2432 /** 2433 * ice_ptp_parse_sdp_entries - update ice_ptp_pin_desc structure from NVM 2434 * @pf: pointer to the PF structure 2435 * @entries: SDP connection section from NVM 2436 * @num_entries: number of valid entries in sdp_entries 2437 * @pins: PTP pins array to update 2438 * 2439 * Return: 0 on success, negative error code otherwise. 2440 */ 2441 static int ice_ptp_parse_sdp_entries(struct ice_pf *pf, __le16 *entries, 2442 unsigned int num_entries, 2443 struct ice_ptp_pin_desc *pins) 2444 { 2445 unsigned int n_pins = 0; 2446 unsigned int i; 2447 2448 /* Setup ice_pin_desc array */ 2449 for (i = 0; i < ICE_N_PINS_MAX; i++) { 2450 pins[i].name_idx = -1; 2451 pins[i].gpio[0] = -1; 2452 pins[i].gpio[1] = -1; 2453 } 2454 2455 for (i = 0; i < num_entries; i++) { 2456 u16 entry = le16_to_cpu(entries[i]); 2457 DECLARE_BITMAP(bitmap, GPIO_NA); 2458 unsigned int bitmap_idx; 2459 bool dir; 2460 u16 gpio; 2461 2462 *bitmap = FIELD_GET(ICE_AQC_NVM_SDP_AC_PIN_M, entry); 2463 dir = !!FIELD_GET(ICE_AQC_NVM_SDP_AC_DIR_M, entry); 2464 gpio = FIELD_GET(ICE_AQC_NVM_SDP_AC_SDP_NUM_M, entry); 2465 for_each_set_bit(bitmap_idx, bitmap, GPIO_NA + 1) { 2466 unsigned int idx; 2467 2468 /* Check if entry's pin bit is valid */ 2469 if (bitmap_idx >= NUM_PTP_PINS_NVM && 2470 bitmap_idx != GPIO_NA) 2471 continue; 2472 2473 /* Check if pin already exists */ 2474 for (idx = 0; idx < ICE_N_PINS_MAX; idx++) 2475 if (pins[idx].name_idx == bitmap_idx) 2476 break; 2477 2478 if (idx == ICE_N_PINS_MAX) { 2479 /* Pin not found, setup its entry and name */ 2480 idx = n_pins++; 2481 pins[idx].name_idx = bitmap_idx; 2482 if (bitmap_idx == GPIO_NA) 2483 strscpy(pf->ptp.pin_desc[idx].name, 2484 ice_pin_names[gpio], 2485 sizeof(pf->ptp.pin_desc[idx] 2486 .name)); 2487 } 2488 2489 /* Setup in/out GPIO number */ 2490 pins[idx].gpio[dir] = gpio; 2491 } 2492 } 2493 2494 for (i = 0; i < n_pins; i++) { 2495 dev_dbg(ice_pf_to_dev(pf), 2496 "NVM pin entry[%d] : name_idx %d gpio_out %d gpio_in %d\n", 2497 i, pins[i].name_idx, pins[i].gpio[1], pins[i].gpio[0]); 2498 } 2499 2500 pf->ptp.info.n_pins = n_pins; 2501 return 0; 2502 } 2503 2504 /** 2505 * ice_ptp_set_funcs_e82x - Set specialized functions for E82X support 2506 * @pf: Board private structure 2507 * 2508 * Assign functions to the PTP capabilities structure for E82X devices. 2509 * Functions which operate across all device families should be set directly 2510 * in ice_ptp_set_caps. Only add functions here which are distinct for E82X 2511 * devices. 2512 */ 2513 static void ice_ptp_set_funcs_e82x(struct ice_pf *pf) 2514 { 2515 #ifdef CONFIG_ICE_HWTS 2516 if (boot_cpu_has(X86_FEATURE_ART) && 2517 boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) 2518 pf->ptp.info.getcrosststamp = ice_ptp_getcrosststamp_e82x; 2519 2520 #endif /* CONFIG_ICE_HWTS */ 2521 if (ice_is_e825c(&pf->hw)) { 2522 pf->ptp.ice_pin_desc = ice_pin_desc_e825c; 2523 pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e825c); 2524 } else { 2525 pf->ptp.ice_pin_desc = ice_pin_desc_e82x; 2526 pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e82x); 2527 } 2528 ice_ptp_setup_pin_cfg(pf); 2529 } 2530 2531 /** 2532 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support 2533 * @pf: Board private structure 2534 * 2535 * Assign functions to the PTP capabiltiies structure for E810 devices. 2536 * Functions which operate across all device families should be set directly 2537 * in ice_ptp_set_caps. Only add functions here which are distinct for E810 2538 * devices. 2539 */ 2540 static void ice_ptp_set_funcs_e810(struct ice_pf *pf) 2541 { 2542 __le16 entries[ICE_AQC_NVM_SDP_AC_MAX_SIZE]; 2543 struct ice_ptp_pin_desc *desc = NULL; 2544 struct ice_ptp *ptp = &pf->ptp; 2545 unsigned int num_entries; 2546 int err; 2547 2548 err = ice_ptp_read_sdp_ac(&pf->hw, entries, &num_entries); 2549 if (err) { 2550 /* SDP section does not exist in NVM or is corrupted */ 2551 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { 2552 ptp->ice_pin_desc = ice_pin_desc_e810_sma; 2553 ptp->info.n_pins = 2554 ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810_sma); 2555 } else { 2556 pf->ptp.ice_pin_desc = ice_pin_desc_e810; 2557 pf->ptp.info.n_pins = 2558 ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810); 2559 err = 0; 2560 } 2561 } else { 2562 desc = devm_kcalloc(ice_pf_to_dev(pf), ICE_N_PINS_MAX, 2563 sizeof(struct ice_ptp_pin_desc), 2564 GFP_KERNEL); 2565 if (!desc) 2566 goto err; 2567 2568 err = ice_ptp_parse_sdp_entries(pf, entries, num_entries, desc); 2569 if (err) 2570 goto err; 2571 2572 ptp->ice_pin_desc = (const struct ice_ptp_pin_desc *)desc; 2573 } 2574 2575 ptp->info.pin_config = ptp->pin_desc; 2576 ice_ptp_setup_pin_cfg(pf); 2577 2578 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) 2579 err = ice_ptp_set_sma_cfg(pf); 2580 err: 2581 if (err) { 2582 devm_kfree(ice_pf_to_dev(pf), desc); 2583 ice_ptp_disable_pins(pf); 2584 } 2585 } 2586 2587 /** 2588 * ice_ptp_set_caps - Set PTP capabilities 2589 * @pf: Board private structure 2590 */ 2591 static void ice_ptp_set_caps(struct ice_pf *pf) 2592 { 2593 struct ptp_clock_info *info = &pf->ptp.info; 2594 struct device *dev = ice_pf_to_dev(pf); 2595 2596 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", 2597 dev_driver_string(dev), dev_name(dev)); 2598 info->owner = THIS_MODULE; 2599 info->max_adj = 100000000; 2600 info->adjtime = ice_ptp_adjtime; 2601 info->adjfine = ice_ptp_adjfine; 2602 info->gettimex64 = ice_ptp_gettimex64; 2603 info->settime64 = ice_ptp_settime64; 2604 info->n_per_out = GLTSYN_TGT_H_IDX_MAX; 2605 info->n_ext_ts = GLTSYN_EVNT_H_IDX_MAX; 2606 info->enable = ice_ptp_gpio_enable; 2607 info->verify = ice_verify_pin; 2608 2609 if (ice_is_e810(&pf->hw)) 2610 ice_ptp_set_funcs_e810(pf); 2611 else 2612 ice_ptp_set_funcs_e82x(pf); 2613 } 2614 2615 /** 2616 * ice_ptp_create_clock - Create PTP clock device for userspace 2617 * @pf: Board private structure 2618 * 2619 * This function creates a new PTP clock device. It only creates one if we 2620 * don't already have one. Will return error if it can't create one, but success 2621 * if we already have a device. Should be used by ice_ptp_init to create clock 2622 * initially, and prevent global resets from creating new clock devices. 2623 */ 2624 static long ice_ptp_create_clock(struct ice_pf *pf) 2625 { 2626 struct ptp_clock_info *info; 2627 struct device *dev; 2628 2629 /* No need to create a clock device if we already have one */ 2630 if (pf->ptp.clock) 2631 return 0; 2632 2633 ice_ptp_set_caps(pf); 2634 2635 info = &pf->ptp.info; 2636 dev = ice_pf_to_dev(pf); 2637 2638 /* Attempt to register the clock before enabling the hardware. */ 2639 pf->ptp.clock = ptp_clock_register(info, dev); 2640 if (IS_ERR(pf->ptp.clock)) { 2641 dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device"); 2642 return PTR_ERR(pf->ptp.clock); 2643 } 2644 2645 return 0; 2646 } 2647 2648 /** 2649 * ice_ptp_request_ts - Request an available Tx timestamp index 2650 * @tx: the PTP Tx timestamp tracker to request from 2651 * @skb: the SKB to associate with this timestamp request 2652 */ 2653 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) 2654 { 2655 unsigned long flags; 2656 u8 idx; 2657 2658 spin_lock_irqsave(&tx->lock, flags); 2659 2660 /* Check that this tracker is accepting new timestamp requests */ 2661 if (!ice_ptp_is_tx_tracker_up(tx)) { 2662 spin_unlock_irqrestore(&tx->lock, flags); 2663 return -1; 2664 } 2665 2666 /* Find and set the first available index */ 2667 idx = find_next_zero_bit(tx->in_use, tx->len, 2668 tx->last_ll_ts_idx_read + 1); 2669 if (idx == tx->len) 2670 idx = find_first_zero_bit(tx->in_use, tx->len); 2671 2672 if (idx < tx->len) { 2673 /* We got a valid index that no other thread could have set. Store 2674 * a reference to the skb and the start time to allow discarding old 2675 * requests. 2676 */ 2677 set_bit(idx, tx->in_use); 2678 clear_bit(idx, tx->stale); 2679 tx->tstamps[idx].start = jiffies; 2680 tx->tstamps[idx].skb = skb_get(skb); 2681 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2682 ice_trace(tx_tstamp_request, skb, idx); 2683 } 2684 2685 spin_unlock_irqrestore(&tx->lock, flags); 2686 2687 /* return the appropriate PHY timestamp register index, -1 if no 2688 * indexes were available. 2689 */ 2690 if (idx >= tx->len) 2691 return -1; 2692 else 2693 return idx + tx->offset; 2694 } 2695 2696 /** 2697 * ice_ptp_process_ts - Process the PTP Tx timestamps 2698 * @pf: Board private structure 2699 * 2700 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx 2701 * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise. 2702 */ 2703 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf) 2704 { 2705 switch (pf->ptp.tx_interrupt_mode) { 2706 case ICE_PTP_TX_INTERRUPT_NONE: 2707 /* This device has the clock owner handle timestamps for it */ 2708 return ICE_TX_TSTAMP_WORK_DONE; 2709 case ICE_PTP_TX_INTERRUPT_SELF: 2710 /* This device handles its own timestamps */ 2711 return ice_ptp_tx_tstamp(&pf->ptp.port.tx); 2712 case ICE_PTP_TX_INTERRUPT_ALL: 2713 /* This device handles timestamps for all ports */ 2714 return ice_ptp_tx_tstamp_owner(pf); 2715 default: 2716 WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n", 2717 pf->ptp.tx_interrupt_mode); 2718 return ICE_TX_TSTAMP_WORK_DONE; 2719 } 2720 } 2721 2722 /** 2723 * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt 2724 * @pf: Board private structure 2725 * 2726 * The device PHY issues Tx timestamp interrupts to the driver for processing 2727 * timestamp data from the PHY. It will not interrupt again until all 2728 * current timestamp data is read. In rare circumstances, it is possible that 2729 * the driver fails to read all outstanding data. 2730 * 2731 * To avoid getting permanently stuck, periodically check if the PHY has 2732 * outstanding timestamp data. If so, trigger an interrupt from software to 2733 * process this data. 2734 */ 2735 static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf) 2736 { 2737 struct device *dev = ice_pf_to_dev(pf); 2738 struct ice_hw *hw = &pf->hw; 2739 bool trigger_oicr = false; 2740 unsigned int i; 2741 2742 if (ice_is_e810(hw)) 2743 return; 2744 2745 if (!ice_pf_src_tmr_owned(pf)) 2746 return; 2747 2748 for (i = 0; i < ICE_GET_QUAD_NUM(hw->ptp.num_lports); i++) { 2749 u64 tstamp_ready; 2750 int err; 2751 2752 err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready); 2753 if (!err && tstamp_ready) { 2754 trigger_oicr = true; 2755 break; 2756 } 2757 } 2758 2759 if (trigger_oicr) { 2760 /* Trigger a software interrupt, to ensure this data 2761 * gets processed. 2762 */ 2763 dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n"); 2764 2765 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 2766 ice_flush(hw); 2767 } 2768 } 2769 2770 static void ice_ptp_periodic_work(struct kthread_work *work) 2771 { 2772 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); 2773 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); 2774 int err; 2775 2776 if (pf->ptp.state != ICE_PTP_READY) 2777 return; 2778 2779 err = ice_ptp_update_cached_phctime(pf); 2780 2781 ice_ptp_maybe_trigger_tx_interrupt(pf); 2782 2783 /* Run twice a second or reschedule if phc update failed */ 2784 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 2785 msecs_to_jiffies(err ? 10 : 500)); 2786 } 2787 2788 /** 2789 * ice_ptp_prepare_for_reset - Prepare PTP for reset 2790 * @pf: Board private structure 2791 * @reset_type: the reset type being performed 2792 */ 2793 void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 2794 { 2795 struct ice_ptp *ptp = &pf->ptp; 2796 u8 src_tmr; 2797 2798 if (ptp->state != ICE_PTP_READY) 2799 return; 2800 2801 ptp->state = ICE_PTP_RESETTING; 2802 2803 /* Disable timestamping for both Tx and Rx */ 2804 ice_ptp_disable_timestamp_mode(pf); 2805 2806 kthread_cancel_delayed_work_sync(&ptp->work); 2807 2808 if (reset_type == ICE_RESET_PFR) 2809 return; 2810 2811 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); 2812 2813 /* Disable periodic outputs */ 2814 ice_ptp_disable_all_perout(pf); 2815 2816 src_tmr = ice_get_ptp_src_clock_index(&pf->hw); 2817 2818 /* Disable source clock */ 2819 wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M); 2820 2821 /* Acquire PHC and system timer to restore after reset */ 2822 ptp->reset_time = ktime_get_real_ns(); 2823 } 2824 2825 /** 2826 * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset 2827 * @pf: Board private structure 2828 * 2829 * Companion function for ice_ptp_rebuild() which handles tasks that only the 2830 * PTP clock owner instance should perform. 2831 */ 2832 static int ice_ptp_rebuild_owner(struct ice_pf *pf) 2833 { 2834 struct ice_ptp *ptp = &pf->ptp; 2835 struct ice_hw *hw = &pf->hw; 2836 struct timespec64 ts; 2837 u64 time_diff; 2838 int err; 2839 2840 err = ice_ptp_init_phc(hw); 2841 if (err) 2842 return err; 2843 2844 /* Acquire the global hardware lock */ 2845 if (!ice_ptp_lock(hw)) { 2846 err = -EBUSY; 2847 return err; 2848 } 2849 2850 /* Write the increment time value to PHY and LAN */ 2851 err = ice_ptp_write_incval(hw, ice_base_incval(pf)); 2852 if (err) 2853 goto err_unlock; 2854 2855 /* Write the initial Time value to PHY and LAN using the cached PHC 2856 * time before the reset and time difference between stopping and 2857 * starting the clock. 2858 */ 2859 if (ptp->cached_phc_time) { 2860 time_diff = ktime_get_real_ns() - ptp->reset_time; 2861 ts = ns_to_timespec64(ptp->cached_phc_time + time_diff); 2862 } else { 2863 ts = ktime_to_timespec64(ktime_get_real()); 2864 } 2865 err = ice_ptp_write_init(pf, &ts); 2866 if (err) 2867 goto err_unlock; 2868 2869 /* Release the global hardware lock */ 2870 ice_ptp_unlock(hw); 2871 2872 /* Flush software tracking of any outstanding timestamps since we're 2873 * about to flush the PHY timestamp block. 2874 */ 2875 ice_ptp_flush_all_tx_tracker(pf); 2876 2877 if (!ice_is_e810(hw)) { 2878 /* Enable quad interrupts */ 2879 err = ice_ptp_cfg_phy_interrupt(pf, true, 1); 2880 if (err) 2881 return err; 2882 2883 ice_ptp_restart_all_phy(pf); 2884 } 2885 2886 /* Re-enable all periodic outputs and external timestamp events */ 2887 ice_ptp_enable_all_perout(pf); 2888 ice_ptp_enable_all_extts(pf); 2889 2890 return 0; 2891 2892 err_unlock: 2893 ice_ptp_unlock(hw); 2894 return err; 2895 } 2896 2897 /** 2898 * ice_ptp_rebuild - Initialize PTP hardware clock support after reset 2899 * @pf: Board private structure 2900 * @reset_type: the reset type being performed 2901 */ 2902 void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 2903 { 2904 struct ice_ptp *ptp = &pf->ptp; 2905 int err; 2906 2907 if (ptp->state == ICE_PTP_READY) { 2908 ice_ptp_prepare_for_reset(pf, reset_type); 2909 } else if (ptp->state != ICE_PTP_RESETTING) { 2910 err = -EINVAL; 2911 dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n"); 2912 goto err; 2913 } 2914 2915 if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) { 2916 err = ice_ptp_rebuild_owner(pf); 2917 if (err) 2918 goto err; 2919 } 2920 2921 ptp->state = ICE_PTP_READY; 2922 2923 /* Start periodic work going */ 2924 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); 2925 2926 dev_info(ice_pf_to_dev(pf), "PTP reset successful\n"); 2927 return; 2928 2929 err: 2930 ptp->state = ICE_PTP_ERROR; 2931 dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err); 2932 } 2933 2934 static bool ice_is_primary(struct ice_hw *hw) 2935 { 2936 return ice_is_e825c(hw) && ice_is_dual(hw) ? 2937 !!(hw->dev_caps.nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) : true; 2938 } 2939 2940 static int ice_ptp_setup_adapter(struct ice_pf *pf) 2941 { 2942 if (!ice_pf_src_tmr_owned(pf) || !ice_is_primary(&pf->hw)) 2943 return -EPERM; 2944 2945 pf->adapter->ctrl_pf = pf; 2946 2947 return 0; 2948 } 2949 2950 static int ice_ptp_setup_pf(struct ice_pf *pf) 2951 { 2952 struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf); 2953 struct ice_ptp *ptp = &pf->ptp; 2954 2955 if (WARN_ON(!ctrl_ptp) || ice_get_phy_model(&pf->hw) == ICE_PHY_UNSUP) 2956 return -ENODEV; 2957 2958 INIT_LIST_HEAD(&ptp->port.list_node); 2959 mutex_lock(&pf->adapter->ports.lock); 2960 2961 list_add(&ptp->port.list_node, 2962 &pf->adapter->ports.ports); 2963 mutex_unlock(&pf->adapter->ports.lock); 2964 2965 return 0; 2966 } 2967 2968 static void ice_ptp_cleanup_pf(struct ice_pf *pf) 2969 { 2970 struct ice_ptp *ptp = &pf->ptp; 2971 2972 if (ice_get_phy_model(&pf->hw) != ICE_PHY_UNSUP) { 2973 mutex_lock(&pf->adapter->ports.lock); 2974 list_del(&ptp->port.list_node); 2975 mutex_unlock(&pf->adapter->ports.lock); 2976 } 2977 } 2978 2979 /** 2980 * ice_ptp_clock_index - Get the PTP clock index for this device 2981 * @pf: Board private structure 2982 * 2983 * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock 2984 * is associated. 2985 */ 2986 int ice_ptp_clock_index(struct ice_pf *pf) 2987 { 2988 struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf); 2989 struct ptp_clock *clock; 2990 2991 if (!ctrl_ptp) 2992 return -1; 2993 clock = ctrl_ptp->clock; 2994 2995 return clock ? ptp_clock_index(clock) : -1; 2996 } 2997 2998 /** 2999 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device 3000 * @pf: Board private structure 3001 * 3002 * Setup and initialize a PTP clock device that represents the device hardware 3003 * clock. Save the clock index for other functions connected to the same 3004 * hardware resource. 3005 */ 3006 static int ice_ptp_init_owner(struct ice_pf *pf) 3007 { 3008 struct ice_hw *hw = &pf->hw; 3009 struct timespec64 ts; 3010 int err; 3011 3012 err = ice_ptp_init_phc(hw); 3013 if (err) { 3014 dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n", 3015 err); 3016 return err; 3017 } 3018 3019 /* Acquire the global hardware lock */ 3020 if (!ice_ptp_lock(hw)) { 3021 err = -EBUSY; 3022 goto err_exit; 3023 } 3024 3025 /* Write the increment time value to PHY and LAN */ 3026 err = ice_ptp_write_incval(hw, ice_base_incval(pf)); 3027 if (err) 3028 goto err_unlock; 3029 3030 ts = ktime_to_timespec64(ktime_get_real()); 3031 /* Write the initial Time value to PHY and LAN */ 3032 err = ice_ptp_write_init(pf, &ts); 3033 if (err) 3034 goto err_unlock; 3035 3036 /* Release the global hardware lock */ 3037 ice_ptp_unlock(hw); 3038 3039 /* Configure PHY interrupt settings */ 3040 err = ice_ptp_cfg_phy_interrupt(pf, true, 1); 3041 if (err) 3042 goto err_exit; 3043 3044 /* Ensure we have a clock device */ 3045 err = ice_ptp_create_clock(pf); 3046 if (err) 3047 goto err_clk; 3048 3049 return 0; 3050 err_clk: 3051 pf->ptp.clock = NULL; 3052 err_exit: 3053 return err; 3054 3055 err_unlock: 3056 ice_ptp_unlock(hw); 3057 return err; 3058 } 3059 3060 /** 3061 * ice_ptp_init_work - Initialize PTP work threads 3062 * @pf: Board private structure 3063 * @ptp: PF PTP structure 3064 */ 3065 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp) 3066 { 3067 struct kthread_worker *kworker; 3068 3069 /* Initialize work functions */ 3070 kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work); 3071 3072 /* Allocate a kworker for handling work required for the ports 3073 * connected to the PTP hardware clock. 3074 */ 3075 kworker = kthread_create_worker(0, "ice-ptp-%s", 3076 dev_name(ice_pf_to_dev(pf))); 3077 if (IS_ERR(kworker)) 3078 return PTR_ERR(kworker); 3079 3080 ptp->kworker = kworker; 3081 3082 /* Start periodic work going */ 3083 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); 3084 3085 return 0; 3086 } 3087 3088 /** 3089 * ice_ptp_init_port - Initialize PTP port structure 3090 * @pf: Board private structure 3091 * @ptp_port: PTP port structure 3092 */ 3093 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port) 3094 { 3095 struct ice_hw *hw = &pf->hw; 3096 3097 mutex_init(&ptp_port->ps_lock); 3098 3099 switch (ice_get_phy_model(hw)) { 3100 case ICE_PHY_ETH56G: 3101 return ice_ptp_init_tx_eth56g(pf, &ptp_port->tx, 3102 ptp_port->port_num); 3103 case ICE_PHY_E810: 3104 return ice_ptp_init_tx_e810(pf, &ptp_port->tx); 3105 case ICE_PHY_E82X: 3106 kthread_init_delayed_work(&ptp_port->ov_work, 3107 ice_ptp_wait_for_offsets); 3108 3109 return ice_ptp_init_tx_e82x(pf, &ptp_port->tx, 3110 ptp_port->port_num); 3111 default: 3112 return -ENODEV; 3113 } 3114 } 3115 3116 /** 3117 * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode 3118 * @pf: Board private structure 3119 * 3120 * Initialize the Tx timestamp interrupt mode for this device. For most device 3121 * types, each PF processes the interrupt and manages its own timestamps. For 3122 * E822-based devices, only the clock owner processes the timestamps. Other 3123 * PFs disable the interrupt and do not process their own timestamps. 3124 */ 3125 static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf) 3126 { 3127 switch (ice_get_phy_model(&pf->hw)) { 3128 case ICE_PHY_E82X: 3129 /* E822 based PHY has the clock owner process the interrupt 3130 * for all ports. 3131 */ 3132 if (ice_pf_src_tmr_owned(pf)) 3133 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL; 3134 else 3135 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE; 3136 break; 3137 default: 3138 /* other PHY types handle their own Tx interrupt */ 3139 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF; 3140 } 3141 } 3142 3143 /** 3144 * ice_ptp_init - Initialize PTP hardware clock support 3145 * @pf: Board private structure 3146 * 3147 * Set up the device for interacting with the PTP hardware clock for all 3148 * functions, both the function that owns the clock hardware, and the 3149 * functions connected to the clock hardware. 3150 * 3151 * The clock owner will allocate and register a ptp_clock with the 3152 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work 3153 * items used for asynchronous work such as Tx timestamps and periodic work. 3154 */ 3155 void ice_ptp_init(struct ice_pf *pf) 3156 { 3157 struct ice_ptp *ptp = &pf->ptp; 3158 struct ice_hw *hw = &pf->hw; 3159 int lane_num, err; 3160 3161 ptp->state = ICE_PTP_INITIALIZING; 3162 3163 lane_num = ice_get_phy_lane_number(hw); 3164 if (lane_num < 0) { 3165 err = lane_num; 3166 goto err_exit; 3167 } 3168 3169 ptp->port.port_num = (u8)lane_num; 3170 ice_ptp_init_hw(hw); 3171 3172 ice_ptp_init_tx_interrupt_mode(pf); 3173 3174 /* If this function owns the clock hardware, it must allocate and 3175 * configure the PTP clock device to represent it. 3176 */ 3177 if (ice_pf_src_tmr_owned(pf) && ice_is_primary(hw)) { 3178 err = ice_ptp_setup_adapter(pf); 3179 if (err) 3180 goto err_exit; 3181 err = ice_ptp_init_owner(pf); 3182 if (err) 3183 goto err_exit; 3184 } 3185 3186 err = ice_ptp_setup_pf(pf); 3187 if (err) 3188 goto err_exit; 3189 3190 err = ice_ptp_init_port(pf, &ptp->port); 3191 if (err) 3192 goto err_exit; 3193 3194 /* Start the PHY timestamping block */ 3195 ice_ptp_reset_phy_timestamping(pf); 3196 3197 /* Configure initial Tx interrupt settings */ 3198 ice_ptp_cfg_tx_interrupt(pf); 3199 3200 ptp->state = ICE_PTP_READY; 3201 3202 err = ice_ptp_init_work(pf, ptp); 3203 if (err) 3204 goto err_exit; 3205 3206 dev_info(ice_pf_to_dev(pf), "PTP init successful\n"); 3207 return; 3208 3209 err_exit: 3210 /* If we registered a PTP clock, release it */ 3211 if (pf->ptp.clock) { 3212 ptp_clock_unregister(ptp->clock); 3213 pf->ptp.clock = NULL; 3214 } 3215 ptp->state = ICE_PTP_ERROR; 3216 dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err); 3217 } 3218 3219 /** 3220 * ice_ptp_release - Disable the driver/HW support and unregister the clock 3221 * @pf: Board private structure 3222 * 3223 * This function handles the cleanup work required from the initialization by 3224 * clearing out the important information and unregistering the clock 3225 */ 3226 void ice_ptp_release(struct ice_pf *pf) 3227 { 3228 if (pf->ptp.state != ICE_PTP_READY) 3229 return; 3230 3231 pf->ptp.state = ICE_PTP_UNINIT; 3232 3233 /* Disable timestamping for both Tx and Rx */ 3234 ice_ptp_disable_timestamp_mode(pf); 3235 3236 ice_ptp_cleanup_pf(pf); 3237 3238 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); 3239 3240 ice_ptp_disable_all_extts(pf); 3241 3242 kthread_cancel_delayed_work_sync(&pf->ptp.work); 3243 3244 ice_ptp_port_phy_stop(&pf->ptp.port); 3245 mutex_destroy(&pf->ptp.port.ps_lock); 3246 if (pf->ptp.kworker) { 3247 kthread_destroy_worker(pf->ptp.kworker); 3248 pf->ptp.kworker = NULL; 3249 } 3250 3251 if (!pf->ptp.clock) 3252 return; 3253 3254 /* Disable periodic outputs */ 3255 ice_ptp_disable_all_perout(pf); 3256 3257 ptp_clock_unregister(pf->ptp.clock); 3258 pf->ptp.clock = NULL; 3259 3260 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); 3261 } 3262