xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp.c (revision 954ea91fb68b771dba6d87cfa61b68e09cc2497f)
1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright (C) 2021, Intel Corporation. */
3  
4  #include "ice.h"
5  #include "ice_lib.h"
6  #include "ice_trace.h"
7  
8  #define E810_OUT_PROP_DELAY_NS 1
9  
10  #define UNKNOWN_INCVAL_E822 0x100000000ULL
11  
12  static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
13  	/* name    idx   func         chan */
14  	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
15  	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
16  	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
17  	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
18  	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
19  };
20  
21  /**
22   * ice_get_sma_config_e810t
23   * @hw: pointer to the hw struct
24   * @ptp_pins: pointer to the ptp_pin_desc struture
25   *
26   * Read the configuration of the SMA control logic and put it into the
27   * ptp_pin_desc structure
28   */
29  static int
30  ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
31  {
32  	u8 data, i;
33  	int status;
34  
35  	/* Read initial pin state */
36  	status = ice_read_sma_ctrl_e810t(hw, &data);
37  	if (status)
38  		return status;
39  
40  	/* initialize with defaults */
41  	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
42  		snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
43  			 "%s", ice_pin_desc_e810t[i].name);
44  		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
45  		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
46  		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
47  	}
48  
49  	/* Parse SMA1/UFL1 */
50  	switch (data & ICE_SMA1_MASK_E810T) {
51  	case ICE_SMA1_MASK_E810T:
52  	default:
53  		ptp_pins[SMA1].func = PTP_PF_NONE;
54  		ptp_pins[UFL1].func = PTP_PF_NONE;
55  		break;
56  	case ICE_SMA1_DIR_EN_E810T:
57  		ptp_pins[SMA1].func = PTP_PF_PEROUT;
58  		ptp_pins[UFL1].func = PTP_PF_NONE;
59  		break;
60  	case ICE_SMA1_TX_EN_E810T:
61  		ptp_pins[SMA1].func = PTP_PF_EXTTS;
62  		ptp_pins[UFL1].func = PTP_PF_NONE;
63  		break;
64  	case 0:
65  		ptp_pins[SMA1].func = PTP_PF_EXTTS;
66  		ptp_pins[UFL1].func = PTP_PF_PEROUT;
67  		break;
68  	}
69  
70  	/* Parse SMA2/UFL2 */
71  	switch (data & ICE_SMA2_MASK_E810T) {
72  	case ICE_SMA2_MASK_E810T:
73  	default:
74  		ptp_pins[SMA2].func = PTP_PF_NONE;
75  		ptp_pins[UFL2].func = PTP_PF_NONE;
76  		break;
77  	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
78  		ptp_pins[SMA2].func = PTP_PF_EXTTS;
79  		ptp_pins[UFL2].func = PTP_PF_NONE;
80  		break;
81  	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
82  		ptp_pins[SMA2].func = PTP_PF_PEROUT;
83  		ptp_pins[UFL2].func = PTP_PF_NONE;
84  		break;
85  	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
86  		ptp_pins[SMA2].func = PTP_PF_NONE;
87  		ptp_pins[UFL2].func = PTP_PF_EXTTS;
88  		break;
89  	case ICE_SMA2_DIR_EN_E810T:
90  		ptp_pins[SMA2].func = PTP_PF_PEROUT;
91  		ptp_pins[UFL2].func = PTP_PF_EXTTS;
92  		break;
93  	}
94  
95  	return 0;
96  }
97  
98  /**
99   * ice_ptp_set_sma_config_e810t
100   * @hw: pointer to the hw struct
101   * @ptp_pins: pointer to the ptp_pin_desc struture
102   *
103   * Set the configuration of the SMA control logic based on the configuration in
104   * num_pins parameter
105   */
106  static int
107  ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
108  			     const struct ptp_pin_desc *ptp_pins)
109  {
110  	int status;
111  	u8 data;
112  
113  	/* SMA1 and UFL1 cannot be set to TX at the same time */
114  	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
115  	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
116  		return -EINVAL;
117  
118  	/* SMA2 and UFL2 cannot be set to RX at the same time */
119  	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
120  	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
121  		return -EINVAL;
122  
123  	/* Read initial pin state value */
124  	status = ice_read_sma_ctrl_e810t(hw, &data);
125  	if (status)
126  		return status;
127  
128  	/* Set the right sate based on the desired configuration */
129  	data &= ~ICE_SMA1_MASK_E810T;
130  	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
131  	    ptp_pins[UFL1].func == PTP_PF_NONE) {
132  		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
133  		data |= ICE_SMA1_MASK_E810T;
134  	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
135  		   ptp_pins[UFL1].func == PTP_PF_NONE) {
136  		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
137  		data |= ICE_SMA1_TX_EN_E810T;
138  	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
139  		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
140  		/* U.FL 1 TX will always enable SMA 1 RX */
141  		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
142  	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
143  		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
144  		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
145  	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
146  		   ptp_pins[UFL1].func == PTP_PF_NONE) {
147  		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
148  		data |= ICE_SMA1_DIR_EN_E810T;
149  	}
150  
151  	data &= ~ICE_SMA2_MASK_E810T;
152  	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
153  	    ptp_pins[UFL2].func == PTP_PF_NONE) {
154  		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
155  		data |= ICE_SMA2_MASK_E810T;
156  	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
157  			ptp_pins[UFL2].func == PTP_PF_NONE) {
158  		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
159  		data |= (ICE_SMA2_TX_EN_E810T |
160  			 ICE_SMA2_UFL2_RX_DIS_E810T);
161  	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
162  		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
163  		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
164  		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
165  	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
166  		   ptp_pins[UFL2].func == PTP_PF_NONE) {
167  		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
168  		data |= (ICE_SMA2_DIR_EN_E810T |
169  			 ICE_SMA2_UFL2_RX_DIS_E810T);
170  	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
171  		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
172  		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
173  		data |= ICE_SMA2_DIR_EN_E810T;
174  	}
175  
176  	return ice_write_sma_ctrl_e810t(hw, data);
177  }
178  
179  /**
180   * ice_ptp_set_sma_e810t
181   * @info: the driver's PTP info structure
182   * @pin: pin index in kernel structure
183   * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
184   *
185   * Set the configuration of a single SMA pin
186   */
187  static int
188  ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
189  		      enum ptp_pin_function func)
190  {
191  	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
192  	struct ice_pf *pf = ptp_info_to_pf(info);
193  	struct ice_hw *hw = &pf->hw;
194  	int err;
195  
196  	if (pin < SMA1 || func > PTP_PF_PEROUT)
197  		return -EOPNOTSUPP;
198  
199  	err = ice_get_sma_config_e810t(hw, ptp_pins);
200  	if (err)
201  		return err;
202  
203  	/* Disable the same function on the other pin sharing the channel */
204  	if (pin == SMA1 && ptp_pins[UFL1].func == func)
205  		ptp_pins[UFL1].func = PTP_PF_NONE;
206  	if (pin == UFL1 && ptp_pins[SMA1].func == func)
207  		ptp_pins[SMA1].func = PTP_PF_NONE;
208  
209  	if (pin == SMA2 && ptp_pins[UFL2].func == func)
210  		ptp_pins[UFL2].func = PTP_PF_NONE;
211  	if (pin == UFL2 && ptp_pins[SMA2].func == func)
212  		ptp_pins[SMA2].func = PTP_PF_NONE;
213  
214  	/* Set up new pin function in the temp table */
215  	ptp_pins[pin].func = func;
216  
217  	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
218  }
219  
220  /**
221   * ice_verify_pin_e810t
222   * @info: the driver's PTP info structure
223   * @pin: Pin index
224   * @func: Assigned function
225   * @chan: Assigned channel
226   *
227   * Verify if pin supports requested pin function. If the Check pins consistency.
228   * Reconfigure the SMA logic attached to the given pin to enable its
229   * desired functionality
230   */
231  static int
232  ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
233  		     enum ptp_pin_function func, unsigned int chan)
234  {
235  	/* Don't allow channel reassignment */
236  	if (chan != ice_pin_desc_e810t[pin].chan)
237  		return -EOPNOTSUPP;
238  
239  	/* Check if functions are properly assigned */
240  	switch (func) {
241  	case PTP_PF_NONE:
242  		break;
243  	case PTP_PF_EXTTS:
244  		if (pin == UFL1)
245  			return -EOPNOTSUPP;
246  		break;
247  	case PTP_PF_PEROUT:
248  		if (pin == UFL2 || pin == GNSS)
249  			return -EOPNOTSUPP;
250  		break;
251  	case PTP_PF_PHYSYNC:
252  		return -EOPNOTSUPP;
253  	}
254  
255  	return ice_ptp_set_sma_e810t(info, pin, func);
256  }
257  
258  /**
259   * ice_set_tx_tstamp - Enable or disable Tx timestamping
260   * @pf: The PF pointer to search in
261   * @on: bool value for whether timestamps are enabled or disabled
262   */
263  static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
264  {
265  	struct ice_vsi *vsi;
266  	u32 val;
267  	u16 i;
268  
269  	vsi = ice_get_main_vsi(pf);
270  	if (!vsi)
271  		return;
272  
273  	/* Set the timestamp enable flag for all the Tx rings */
274  	ice_for_each_txq(vsi, i) {
275  		if (!vsi->tx_rings[i])
276  			continue;
277  		vsi->tx_rings[i]->ptp_tx = on;
278  	}
279  
280  	/* Configure the Tx timestamp interrupt */
281  	val = rd32(&pf->hw, PFINT_OICR_ENA);
282  	if (on)
283  		val |= PFINT_OICR_TSYN_TX_M;
284  	else
285  		val &= ~PFINT_OICR_TSYN_TX_M;
286  	wr32(&pf->hw, PFINT_OICR_ENA, val);
287  
288  	pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
289  }
290  
291  /**
292   * ice_set_rx_tstamp - Enable or disable Rx timestamping
293   * @pf: The PF pointer to search in
294   * @on: bool value for whether timestamps are enabled or disabled
295   */
296  static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
297  {
298  	struct ice_vsi *vsi;
299  	u16 i;
300  
301  	vsi = ice_get_main_vsi(pf);
302  	if (!vsi)
303  		return;
304  
305  	/* Set the timestamp flag for all the Rx rings */
306  	ice_for_each_rxq(vsi, i) {
307  		if (!vsi->rx_rings[i])
308  			continue;
309  		vsi->rx_rings[i]->ptp_rx = on;
310  	}
311  
312  	pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
313  					       HWTSTAMP_FILTER_NONE;
314  }
315  
316  /**
317   * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
318   * @pf: Board private structure
319   * @ena: bool value to enable or disable time stamp
320   *
321   * This function will configure timestamping during PTP initialization
322   * and deinitialization
323   */
324  void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
325  {
326  	ice_set_tx_tstamp(pf, ena);
327  	ice_set_rx_tstamp(pf, ena);
328  }
329  
330  /**
331   * ice_get_ptp_clock_index - Get the PTP clock index
332   * @pf: the PF pointer
333   *
334   * Determine the clock index of the PTP clock associated with this device. If
335   * this is the PF controlling the clock, just use the local access to the
336   * clock device pointer.
337   *
338   * Otherwise, read from the driver shared parameters to determine the clock
339   * index value.
340   *
341   * Returns: the index of the PTP clock associated with this device, or -1 if
342   * there is no associated clock.
343   */
344  int ice_get_ptp_clock_index(struct ice_pf *pf)
345  {
346  	struct device *dev = ice_pf_to_dev(pf);
347  	enum ice_aqc_driver_params param_idx;
348  	struct ice_hw *hw = &pf->hw;
349  	u8 tmr_idx;
350  	u32 value;
351  	int err;
352  
353  	/* Use the ptp_clock structure if we're the main PF */
354  	if (pf->ptp.clock)
355  		return ptp_clock_index(pf->ptp.clock);
356  
357  	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
358  	if (!tmr_idx)
359  		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
360  	else
361  		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
362  
363  	err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
364  	if (err) {
365  		dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
366  			err, ice_aq_str(hw->adminq.sq_last_status));
367  		return -1;
368  	}
369  
370  	/* The PTP clock index is an integer, and will be between 0 and
371  	 * INT_MAX. The highest bit of the driver shared parameter is used to
372  	 * indicate whether or not the currently stored clock index is valid.
373  	 */
374  	if (!(value & PTP_SHARED_CLK_IDX_VALID))
375  		return -1;
376  
377  	return value & ~PTP_SHARED_CLK_IDX_VALID;
378  }
379  
380  /**
381   * ice_set_ptp_clock_index - Set the PTP clock index
382   * @pf: the PF pointer
383   *
384   * Set the PTP clock index for this device into the shared driver parameters,
385   * so that other PFs associated with this device can read it.
386   *
387   * If the PF is unable to store the clock index, it will log an error, but
388   * will continue operating PTP.
389   */
390  static void ice_set_ptp_clock_index(struct ice_pf *pf)
391  {
392  	struct device *dev = ice_pf_to_dev(pf);
393  	enum ice_aqc_driver_params param_idx;
394  	struct ice_hw *hw = &pf->hw;
395  	u8 tmr_idx;
396  	u32 value;
397  	int err;
398  
399  	if (!pf->ptp.clock)
400  		return;
401  
402  	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
403  	if (!tmr_idx)
404  		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
405  	else
406  		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
407  
408  	value = (u32)ptp_clock_index(pf->ptp.clock);
409  	if (value > INT_MAX) {
410  		dev_err(dev, "PTP Clock index is too large to store\n");
411  		return;
412  	}
413  	value |= PTP_SHARED_CLK_IDX_VALID;
414  
415  	err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
416  	if (err) {
417  		dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
418  			err, ice_aq_str(hw->adminq.sq_last_status));
419  	}
420  }
421  
422  /**
423   * ice_clear_ptp_clock_index - Clear the PTP clock index
424   * @pf: the PF pointer
425   *
426   * Clear the PTP clock index for this device. Must be called when
427   * unregistering the PTP clock, in order to ensure other PFs stop reporting
428   * a clock object that no longer exists.
429   */
430  static void ice_clear_ptp_clock_index(struct ice_pf *pf)
431  {
432  	struct device *dev = ice_pf_to_dev(pf);
433  	enum ice_aqc_driver_params param_idx;
434  	struct ice_hw *hw = &pf->hw;
435  	u8 tmr_idx;
436  	int err;
437  
438  	/* Do not clear the index if we don't own the timer */
439  	if (!hw->func_caps.ts_func_info.src_tmr_owned)
440  		return;
441  
442  	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
443  	if (!tmr_idx)
444  		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
445  	else
446  		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
447  
448  	err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
449  	if (err) {
450  		dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
451  			err, ice_aq_str(hw->adminq.sq_last_status));
452  	}
453  }
454  
455  /**
456   * ice_ptp_read_src_clk_reg - Read the source clock register
457   * @pf: Board private structure
458   * @sts: Optional parameter for holding a pair of system timestamps from
459   *       the system clock. Will be ignored if NULL is given.
460   */
461  static u64
462  ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
463  {
464  	struct ice_hw *hw = &pf->hw;
465  	u32 hi, lo, lo2;
466  	u8 tmr_idx;
467  
468  	tmr_idx = ice_get_ptp_src_clock_index(hw);
469  	/* Read the system timestamp pre PHC read */
470  	ptp_read_system_prets(sts);
471  
472  	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
473  
474  	/* Read the system timestamp post PHC read */
475  	ptp_read_system_postts(sts);
476  
477  	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
478  	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
479  
480  	if (lo2 < lo) {
481  		/* if TIME_L rolled over read TIME_L again and update
482  		 * system timestamps
483  		 */
484  		ptp_read_system_prets(sts);
485  		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
486  		ptp_read_system_postts(sts);
487  		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
488  	}
489  
490  	return ((u64)hi << 32) | lo;
491  }
492  
493  /**
494   * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
495   * @cached_phc_time: recently cached copy of PHC time
496   * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
497   *
498   * Hardware captures timestamps which contain only 32 bits of nominal
499   * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
500   * Note that the captured timestamp values may be 40 bits, but the lower
501   * 8 bits are sub-nanoseconds and generally discarded.
502   *
503   * Extend the 32bit nanosecond timestamp using the following algorithm and
504   * assumptions:
505   *
506   * 1) have a recently cached copy of the PHC time
507   * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
508   *    seconds) before or after the PHC time was captured.
509   * 3) calculate the delta between the cached time and the timestamp
510   * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
511   *    captured after the PHC time. In this case, the full timestamp is just
512   *    the cached PHC time plus the delta.
513   * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
514   *    timestamp was captured *before* the PHC time, i.e. because the PHC
515   *    cache was updated after the timestamp was captured by hardware. In this
516   *    case, the full timestamp is the cached time minus the inverse delta.
517   *
518   * This algorithm works even if the PHC time was updated after a Tx timestamp
519   * was requested, but before the Tx timestamp event was reported from
520   * hardware.
521   *
522   * This calculation primarily relies on keeping the cached PHC time up to
523   * date. If the timestamp was captured more than 2^31 nanoseconds after the
524   * PHC time, it is possible that the lower 32bits of PHC time have
525   * overflowed more than once, and we might generate an incorrect timestamp.
526   *
527   * This is prevented by (a) periodically updating the cached PHC time once
528   * a second, and (b) discarding any Tx timestamp packet if it has waited for
529   * a timestamp for more than one second.
530   */
531  static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
532  {
533  	u32 delta, phc_time_lo;
534  	u64 ns;
535  
536  	/* Extract the lower 32 bits of the PHC time */
537  	phc_time_lo = (u32)cached_phc_time;
538  
539  	/* Calculate the delta between the lower 32bits of the cached PHC
540  	 * time and the in_tstamp value
541  	 */
542  	delta = (in_tstamp - phc_time_lo);
543  
544  	/* Do not assume that the in_tstamp is always more recent than the
545  	 * cached PHC time. If the delta is large, it indicates that the
546  	 * in_tstamp was taken in the past, and should be converted
547  	 * forward.
548  	 */
549  	if (delta > (U32_MAX / 2)) {
550  		/* reverse the delta calculation here */
551  		delta = (phc_time_lo - in_tstamp);
552  		ns = cached_phc_time - delta;
553  	} else {
554  		ns = cached_phc_time + delta;
555  	}
556  
557  	return ns;
558  }
559  
560  /**
561   * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
562   * @pf: Board private structure
563   * @in_tstamp: Ingress/egress 40b timestamp value
564   *
565   * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
566   * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
567   *
568   *  *--------------------------------------------------------------*
569   *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
570   *  *--------------------------------------------------------------*
571   *
572   * The low bit is an indicator of whether the timestamp is valid. The next
573   * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
574   * and the remaining 32 bits are the lower 32 bits of the PHC timer.
575   *
576   * It is assumed that the caller verifies the timestamp is valid prior to
577   * calling this function.
578   *
579   * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
580   * time stored in the device private PTP structure as the basis for timestamp
581   * extension.
582   *
583   * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
584   * algorithm.
585   */
586  static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
587  {
588  	const u64 mask = GENMASK_ULL(31, 0);
589  	unsigned long discard_time;
590  
591  	/* Discard the hardware timestamp if the cached PHC time is too old */
592  	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
593  	if (time_is_before_jiffies(discard_time)) {
594  		pf->ptp.tx_hwtstamp_discarded++;
595  		return 0;
596  	}
597  
598  	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
599  				     (in_tstamp >> 8) & mask);
600  }
601  
602  /**
603   * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
604   * @tx: the PTP Tx timestamp tracker to check
605   *
606   * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
607   * to accept new timestamp requests.
608   *
609   * Assumes the tx->lock spinlock is already held.
610   */
611  static bool
612  ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
613  {
614  	lockdep_assert_held(&tx->lock);
615  
616  	return tx->init && !tx->calibrating;
617  }
618  
619  /**
620   * ice_ptp_tx_tstamp - Process Tx timestamps for a port
621   * @tx: the PTP Tx timestamp tracker
622   *
623   * Process timestamps captured by the PHY associated with this port. To do
624   * this, loop over each index with a waiting skb.
625   *
626   * If a given index has a valid timestamp, perform the following steps:
627   *
628   * 1) check that the timestamp request is not stale
629   * 2) check that a timestamp is ready and available in the PHY memory bank
630   * 3) read and copy the timestamp out of the PHY register
631   * 4) unlock the index by clearing the associated in_use bit
632   * 5) check if the timestamp is stale, and discard if so
633   * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
634   * 7) send this 64 bit timestamp to the stack
635   *
636   * Returns true if all timestamps were handled, and false if any slots remain
637   * without a timestamp.
638   *
639   * After looping, if we still have waiting SKBs, return false. This may cause
640   * us effectively poll even when not strictly necessary. We do this because
641   * it's possible a new timestamp was requested around the same time as the
642   * interrupt. In some cases hardware might not interrupt us again when the
643   * timestamp is captured.
644   *
645   * Note that we do not hold the tracking lock while reading the Tx timestamp.
646   * This is because reading the timestamp requires taking a mutex that might
647   * sleep.
648   *
649   * The only place where we set in_use is when a new timestamp is initiated
650   * with a slot index. This is only called in the hard xmit routine where an
651   * SKB has a request flag set. The only places where we clear this bit is this
652   * function, or during teardown when the Tx timestamp tracker is being
653   * removed. A timestamp index will never be re-used until the in_use bit for
654   * that index is cleared.
655   *
656   * If a Tx thread starts a new timestamp, we might not begin processing it
657   * right away but we will notice it at the end when we re-queue the task.
658   *
659   * If a Tx thread starts a new timestamp just after this function exits, the
660   * interrupt for that timestamp should re-trigger this function once
661   * a timestamp is ready.
662   *
663   * In cases where the PTP hardware clock was directly adjusted, some
664   * timestamps may not be able to safely use the timestamp extension math. In
665   * this case, software will set the stale bit for any outstanding Tx
666   * timestamps when the clock is adjusted. Then this function will discard
667   * those captured timestamps instead of sending them to the stack.
668   *
669   * If a Tx packet has been waiting for more than 2 seconds, it is not possible
670   * to correctly extend the timestamp using the cached PHC time. It is
671   * extremely unlikely that a packet will ever take this long to timestamp. If
672   * we detect a Tx timestamp request that has waited for this long we assume
673   * the packet will never be sent by hardware and discard it without reading
674   * the timestamp register.
675   */
676  static bool ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
677  {
678  	struct ice_ptp_port *ptp_port;
679  	bool more_timestamps;
680  	struct ice_pf *pf;
681  	struct ice_hw *hw;
682  	u64 tstamp_ready;
683  	bool link_up;
684  	int err;
685  	u8 idx;
686  
687  	if (!tx->init)
688  		return true;
689  
690  	ptp_port = container_of(tx, struct ice_ptp_port, tx);
691  	pf = ptp_port_to_pf(ptp_port);
692  	hw = &pf->hw;
693  
694  	/* Read the Tx ready status first */
695  	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
696  	if (err)
697  		return false;
698  
699  	/* Drop packets if the link went down */
700  	link_up = ptp_port->link_up;
701  
702  	for_each_set_bit(idx, tx->in_use, tx->len) {
703  		struct skb_shared_hwtstamps shhwtstamps = {};
704  		u8 phy_idx = idx + tx->offset;
705  		u64 raw_tstamp = 0, tstamp;
706  		bool drop_ts = !link_up;
707  		struct sk_buff *skb;
708  
709  		/* Drop packets which have waited for more than 2 seconds */
710  		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
711  			drop_ts = true;
712  
713  			/* Count the number of Tx timestamps that timed out */
714  			pf->ptp.tx_hwtstamp_timeouts++;
715  		}
716  
717  		/* Only read a timestamp from the PHY if its marked as ready
718  		 * by the tstamp_ready register. This avoids unnecessary
719  		 * reading of timestamps which are not yet valid. This is
720  		 * important as we must read all timestamps which are valid
721  		 * and only timestamps which are valid during each interrupt.
722  		 * If we do not, the hardware logic for generating a new
723  		 * interrupt can get stuck on some devices.
724  		 */
725  		if (!(tstamp_ready & BIT_ULL(phy_idx))) {
726  			if (drop_ts)
727  				goto skip_ts_read;
728  
729  			continue;
730  		}
731  
732  		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
733  
734  		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
735  		if (err && !drop_ts)
736  			continue;
737  
738  		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
739  
740  		/* For PHYs which don't implement a proper timestamp ready
741  		 * bitmap, verify that the timestamp value is different
742  		 * from the last cached timestamp. If it is not, skip this for
743  		 * now assuming it hasn't yet been captured by hardware.
744  		 */
745  		if (!drop_ts && tx->verify_cached &&
746  		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
747  			continue;
748  
749  		/* Discard any timestamp value without the valid bit set */
750  		if (!(raw_tstamp & ICE_PTP_TS_VALID))
751  			drop_ts = true;
752  
753  skip_ts_read:
754  		spin_lock(&tx->lock);
755  		if (tx->verify_cached && raw_tstamp)
756  			tx->tstamps[idx].cached_tstamp = raw_tstamp;
757  		clear_bit(idx, tx->in_use);
758  		skb = tx->tstamps[idx].skb;
759  		tx->tstamps[idx].skb = NULL;
760  		if (test_and_clear_bit(idx, tx->stale))
761  			drop_ts = true;
762  		spin_unlock(&tx->lock);
763  
764  		/* It is unlikely but possible that the SKB will have been
765  		 * flushed at this point due to link change or teardown.
766  		 */
767  		if (!skb)
768  			continue;
769  
770  		if (drop_ts) {
771  			dev_kfree_skb_any(skb);
772  			continue;
773  		}
774  
775  		/* Extend the timestamp using cached PHC time */
776  		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
777  		if (tstamp) {
778  			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
779  			ice_trace(tx_tstamp_complete, skb, idx);
780  		}
781  
782  		skb_tstamp_tx(skb, &shhwtstamps);
783  		dev_kfree_skb_any(skb);
784  	}
785  
786  	/* Check if we still have work to do. If so, re-queue this task to
787  	 * poll for remaining timestamps.
788  	 */
789  	spin_lock(&tx->lock);
790  	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
791  	spin_unlock(&tx->lock);
792  
793  	return !more_timestamps;
794  }
795  
796  /**
797   * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
798   * @tx: Tx tracking structure to initialize
799   *
800   * Assumes that the length has already been initialized. Do not call directly,
801   * use the ice_ptp_init_tx_* instead.
802   */
803  static int
804  ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
805  {
806  	unsigned long *in_use, *stale;
807  	struct ice_tx_tstamp *tstamps;
808  
809  	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
810  	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
811  	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
812  
813  	if (!tstamps || !in_use || !stale) {
814  		kfree(tstamps);
815  		bitmap_free(in_use);
816  		bitmap_free(stale);
817  
818  		return -ENOMEM;
819  	}
820  
821  	tx->tstamps = tstamps;
822  	tx->in_use = in_use;
823  	tx->stale = stale;
824  	tx->init = 1;
825  
826  	spin_lock_init(&tx->lock);
827  
828  	return 0;
829  }
830  
831  /**
832   * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
833   * @pf: Board private structure
834   * @tx: the tracker to flush
835   *
836   * Called during teardown when a Tx tracker is being removed.
837   */
838  static void
839  ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
840  {
841  	struct ice_hw *hw = &pf->hw;
842  	u64 tstamp_ready;
843  	int err;
844  	u8 idx;
845  
846  	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
847  	if (err) {
848  		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
849  			tx->block, err);
850  
851  		/* If we fail to read the Tx timestamp ready bitmap just
852  		 * skip clearing the PHY timestamps.
853  		 */
854  		tstamp_ready = 0;
855  	}
856  
857  	for_each_set_bit(idx, tx->in_use, tx->len) {
858  		u8 phy_idx = idx + tx->offset;
859  		struct sk_buff *skb;
860  
861  		/* In case this timestamp is ready, we need to clear it. */
862  		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
863  			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
864  
865  		spin_lock(&tx->lock);
866  		skb = tx->tstamps[idx].skb;
867  		tx->tstamps[idx].skb = NULL;
868  		clear_bit(idx, tx->in_use);
869  		clear_bit(idx, tx->stale);
870  		spin_unlock(&tx->lock);
871  
872  		/* Count the number of Tx timestamps flushed */
873  		pf->ptp.tx_hwtstamp_flushed++;
874  
875  		/* Free the SKB after we've cleared the bit */
876  		dev_kfree_skb_any(skb);
877  	}
878  }
879  
880  /**
881   * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
882   * @tx: the tracker to mark
883   *
884   * Mark currently outstanding Tx timestamps as stale. This prevents sending
885   * their timestamp value to the stack. This is required to prevent extending
886   * the 40bit hardware timestamp incorrectly.
887   *
888   * This should be called when the PTP clock is modified such as after a set
889   * time request.
890   */
891  static void
892  ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
893  {
894  	spin_lock(&tx->lock);
895  	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
896  	spin_unlock(&tx->lock);
897  }
898  
899  /**
900   * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
901   * @pf: Board private structure
902   * @tx: Tx tracking structure to release
903   *
904   * Free memory associated with the Tx timestamp tracker.
905   */
906  static void
907  ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
908  {
909  	spin_lock(&tx->lock);
910  	tx->init = 0;
911  	spin_unlock(&tx->lock);
912  
913  	/* wait for potentially outstanding interrupt to complete */
914  	synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
915  
916  	ice_ptp_flush_tx_tracker(pf, tx);
917  
918  	kfree(tx->tstamps);
919  	tx->tstamps = NULL;
920  
921  	bitmap_free(tx->in_use);
922  	tx->in_use = NULL;
923  
924  	bitmap_free(tx->stale);
925  	tx->stale = NULL;
926  
927  	tx->len = 0;
928  }
929  
930  /**
931   * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
932   * @pf: Board private structure
933   * @tx: the Tx tracking structure to initialize
934   * @port: the port this structure tracks
935   *
936   * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
937   * the timestamp block is shared for all ports in the same quad. To avoid
938   * ports using the same timestamp index, logically break the block of
939   * registers into chunks based on the port number.
940   */
941  static int
942  ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
943  {
944  	tx->block = port / ICE_PORTS_PER_QUAD;
945  	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E822;
946  	tx->len = INDEX_PER_PORT_E822;
947  	tx->verify_cached = 0;
948  
949  	return ice_ptp_alloc_tx_tracker(tx);
950  }
951  
952  /**
953   * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
954   * @pf: Board private structure
955   * @tx: the Tx tracking structure to initialize
956   *
957   * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
958   * port has its own block of timestamps, independent of the other ports.
959   */
960  static int
961  ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
962  {
963  	tx->block = pf->hw.port_info->lport;
964  	tx->offset = 0;
965  	tx->len = INDEX_PER_PORT_E810;
966  	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
967  	 * verify new timestamps against cached copy of the last read
968  	 * timestamp.
969  	 */
970  	tx->verify_cached = 1;
971  
972  	return ice_ptp_alloc_tx_tracker(tx);
973  }
974  
975  /**
976   * ice_ptp_update_cached_phctime - Update the cached PHC time values
977   * @pf: Board specific private structure
978   *
979   * This function updates the system time values which are cached in the PF
980   * structure and the Rx rings.
981   *
982   * This function must be called periodically to ensure that the cached value
983   * is never more than 2 seconds old.
984   *
985   * Note that the cached copy in the PF PTP structure is always updated, even
986   * if we can't update the copy in the Rx rings.
987   *
988   * Return:
989   * * 0 - OK, successfully updated
990   * * -EAGAIN - PF was busy, need to reschedule the update
991   */
992  static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
993  {
994  	struct device *dev = ice_pf_to_dev(pf);
995  	unsigned long update_before;
996  	u64 systime;
997  	int i;
998  
999  	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1000  	if (pf->ptp.cached_phc_time &&
1001  	    time_is_before_jiffies(update_before)) {
1002  		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1003  
1004  		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1005  			 jiffies_to_msecs(time_taken));
1006  		pf->ptp.late_cached_phc_updates++;
1007  	}
1008  
1009  	/* Read the current PHC time */
1010  	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1011  
1012  	/* Update the cached PHC time stored in the PF structure */
1013  	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1014  	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1015  
1016  	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1017  		return -EAGAIN;
1018  
1019  	ice_for_each_vsi(pf, i) {
1020  		struct ice_vsi *vsi = pf->vsi[i];
1021  		int j;
1022  
1023  		if (!vsi)
1024  			continue;
1025  
1026  		if (vsi->type != ICE_VSI_PF)
1027  			continue;
1028  
1029  		ice_for_each_rxq(vsi, j) {
1030  			if (!vsi->rx_rings[j])
1031  				continue;
1032  			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1033  		}
1034  	}
1035  	clear_bit(ICE_CFG_BUSY, pf->state);
1036  
1037  	return 0;
1038  }
1039  
1040  /**
1041   * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1042   * @pf: Board specific private structure
1043   *
1044   * This function must be called when the cached PHC time is no longer valid,
1045   * such as after a time adjustment. It marks any currently outstanding Tx
1046   * timestamps as stale and updates the cached PHC time for both the PF and Rx
1047   * rings.
1048   *
1049   * If updating the PHC time cannot be done immediately, a warning message is
1050   * logged and the work item is scheduled immediately to minimize the window
1051   * with a wrong cached timestamp.
1052   */
1053  static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1054  {
1055  	struct device *dev = ice_pf_to_dev(pf);
1056  	int err;
1057  
1058  	/* Update the cached PHC time immediately if possible, otherwise
1059  	 * schedule the work item to execute soon.
1060  	 */
1061  	err = ice_ptp_update_cached_phctime(pf);
1062  	if (err) {
1063  		/* If another thread is updating the Rx rings, we won't
1064  		 * properly reset them here. This could lead to reporting of
1065  		 * invalid timestamps, but there isn't much we can do.
1066  		 */
1067  		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1068  			 __func__);
1069  
1070  		/* Queue the work item to update the Rx rings when possible */
1071  		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1072  					   msecs_to_jiffies(10));
1073  	}
1074  
1075  	/* Mark any outstanding timestamps as stale, since they might have
1076  	 * been captured in hardware before the time update. This could lead
1077  	 * to us extending them with the wrong cached value resulting in
1078  	 * incorrect timestamp values.
1079  	 */
1080  	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1081  }
1082  
1083  /**
1084   * ice_ptp_read_time - Read the time from the device
1085   * @pf: Board private structure
1086   * @ts: timespec structure to hold the current time value
1087   * @sts: Optional parameter for holding a pair of system timestamps from
1088   *       the system clock. Will be ignored if NULL is given.
1089   *
1090   * This function reads the source clock registers and stores them in a timespec.
1091   * However, since the registers are 64 bits of nanoseconds, we must convert the
1092   * result to a timespec before we can return.
1093   */
1094  static void
1095  ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1096  		  struct ptp_system_timestamp *sts)
1097  {
1098  	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1099  
1100  	*ts = ns_to_timespec64(time_ns);
1101  }
1102  
1103  /**
1104   * ice_ptp_write_init - Set PHC time to provided value
1105   * @pf: Board private structure
1106   * @ts: timespec structure that holds the new time value
1107   *
1108   * Set the PHC time to the specified time provided in the timespec.
1109   */
1110  static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1111  {
1112  	u64 ns = timespec64_to_ns(ts);
1113  	struct ice_hw *hw = &pf->hw;
1114  
1115  	return ice_ptp_init_time(hw, ns);
1116  }
1117  
1118  /**
1119   * ice_ptp_write_adj - Adjust PHC clock time atomically
1120   * @pf: Board private structure
1121   * @adj: Adjustment in nanoseconds
1122   *
1123   * Perform an atomic adjustment of the PHC time by the specified number of
1124   * nanoseconds.
1125   */
1126  static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1127  {
1128  	struct ice_hw *hw = &pf->hw;
1129  
1130  	return ice_ptp_adj_clock(hw, adj);
1131  }
1132  
1133  /**
1134   * ice_base_incval - Get base timer increment value
1135   * @pf: Board private structure
1136   *
1137   * Look up the base timer increment value for this device. The base increment
1138   * value is used to define the nominal clock tick rate. This increment value
1139   * is programmed during device initialization. It is also used as the basis
1140   * for calculating adjustments using scaled_ppm.
1141   */
1142  static u64 ice_base_incval(struct ice_pf *pf)
1143  {
1144  	struct ice_hw *hw = &pf->hw;
1145  	u64 incval;
1146  
1147  	if (ice_is_e810(hw))
1148  		incval = ICE_PTP_NOMINAL_INCVAL_E810;
1149  	else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1150  		incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
1151  	else
1152  		incval = UNKNOWN_INCVAL_E822;
1153  
1154  	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1155  		incval);
1156  
1157  	return incval;
1158  }
1159  
1160  /**
1161   * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1162   * @port: PTP port for which Tx FIFO is checked
1163   */
1164  static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1165  {
1166  	int quad = port->port_num / ICE_PORTS_PER_QUAD;
1167  	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1168  	struct ice_pf *pf;
1169  	struct ice_hw *hw;
1170  	u32 val, phy_sts;
1171  	int err;
1172  
1173  	pf = ptp_port_to_pf(port);
1174  	hw = &pf->hw;
1175  
1176  	if (port->tx_fifo_busy_cnt == FIFO_OK)
1177  		return 0;
1178  
1179  	/* need to read FIFO state */
1180  	if (offs == 0 || offs == 1)
1181  		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
1182  					     &val);
1183  	else
1184  		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
1185  					     &val);
1186  
1187  	if (err) {
1188  		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1189  			port->port_num, err);
1190  		return err;
1191  	}
1192  
1193  	if (offs & 0x1)
1194  		phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
1195  	else
1196  		phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
1197  
1198  	if (phy_sts & FIFO_EMPTY) {
1199  		port->tx_fifo_busy_cnt = FIFO_OK;
1200  		return 0;
1201  	}
1202  
1203  	port->tx_fifo_busy_cnt++;
1204  
1205  	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1206  		port->tx_fifo_busy_cnt, port->port_num);
1207  
1208  	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1209  		dev_dbg(ice_pf_to_dev(pf),
1210  			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1211  			port->port_num, quad);
1212  		ice_ptp_reset_ts_memory_quad_e822(hw, quad);
1213  		port->tx_fifo_busy_cnt = FIFO_OK;
1214  		return 0;
1215  	}
1216  
1217  	return -EAGAIN;
1218  }
1219  
1220  /**
1221   * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1222   * @work: Pointer to the kthread_work structure for this task
1223   *
1224   * Check whether hardware has completed measuring the Tx and Rx offset values
1225   * used to configure and enable vernier timestamp calibration.
1226   *
1227   * Once the offset in either direction is measured, configure the associated
1228   * registers with the calibrated offset values and enable timestamping. The Tx
1229   * and Rx directions are configured independently as soon as their associated
1230   * offsets are known.
1231   *
1232   * This function reschedules itself until both Tx and Rx calibration have
1233   * completed.
1234   */
1235  static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1236  {
1237  	struct ice_ptp_port *port;
1238  	struct ice_pf *pf;
1239  	struct ice_hw *hw;
1240  	int tx_err;
1241  	int rx_err;
1242  
1243  	port = container_of(work, struct ice_ptp_port, ov_work.work);
1244  	pf = ptp_port_to_pf(port);
1245  	hw = &pf->hw;
1246  
1247  	if (ice_is_reset_in_progress(pf->state)) {
1248  		/* wait for device driver to complete reset */
1249  		kthread_queue_delayed_work(pf->ptp.kworker,
1250  					   &port->ov_work,
1251  					   msecs_to_jiffies(100));
1252  		return;
1253  	}
1254  
1255  	tx_err = ice_ptp_check_tx_fifo(port);
1256  	if (!tx_err)
1257  		tx_err = ice_phy_cfg_tx_offset_e822(hw, port->port_num);
1258  	rx_err = ice_phy_cfg_rx_offset_e822(hw, port->port_num);
1259  	if (tx_err || rx_err) {
1260  		/* Tx and/or Rx offset not yet configured, try again later */
1261  		kthread_queue_delayed_work(pf->ptp.kworker,
1262  					   &port->ov_work,
1263  					   msecs_to_jiffies(100));
1264  		return;
1265  	}
1266  }
1267  
1268  /**
1269   * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1270   * @ptp_port: PTP port to stop
1271   */
1272  static int
1273  ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1274  {
1275  	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1276  	u8 port = ptp_port->port_num;
1277  	struct ice_hw *hw = &pf->hw;
1278  	int err;
1279  
1280  	if (ice_is_e810(hw))
1281  		return 0;
1282  
1283  	mutex_lock(&ptp_port->ps_lock);
1284  
1285  	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1286  
1287  	err = ice_stop_phy_timer_e822(hw, port, true);
1288  	if (err)
1289  		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1290  			port, err);
1291  
1292  	mutex_unlock(&ptp_port->ps_lock);
1293  
1294  	return err;
1295  }
1296  
1297  /**
1298   * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1299   * @ptp_port: PTP port for which the PHY start is set
1300   *
1301   * Start the PHY timestamping block, and initiate Vernier timestamping
1302   * calibration. If timestamping cannot be calibrated (such as if link is down)
1303   * then disable the timestamping block instead.
1304   */
1305  static int
1306  ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1307  {
1308  	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1309  	u8 port = ptp_port->port_num;
1310  	struct ice_hw *hw = &pf->hw;
1311  	int err;
1312  
1313  	if (ice_is_e810(hw))
1314  		return 0;
1315  
1316  	if (!ptp_port->link_up)
1317  		return ice_ptp_port_phy_stop(ptp_port);
1318  
1319  	mutex_lock(&ptp_port->ps_lock);
1320  
1321  	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1322  
1323  	/* temporarily disable Tx timestamps while calibrating PHY offset */
1324  	spin_lock(&ptp_port->tx.lock);
1325  	ptp_port->tx.calibrating = true;
1326  	spin_unlock(&ptp_port->tx.lock);
1327  	ptp_port->tx_fifo_busy_cnt = 0;
1328  
1329  	/* Start the PHY timer in Vernier mode */
1330  	err = ice_start_phy_timer_e822(hw, port);
1331  	if (err)
1332  		goto out_unlock;
1333  
1334  	/* Enable Tx timestamps right away */
1335  	spin_lock(&ptp_port->tx.lock);
1336  	ptp_port->tx.calibrating = false;
1337  	spin_unlock(&ptp_port->tx.lock);
1338  
1339  	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1340  
1341  out_unlock:
1342  	if (err)
1343  		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1344  			port, err);
1345  
1346  	mutex_unlock(&ptp_port->ps_lock);
1347  
1348  	return err;
1349  }
1350  
1351  /**
1352   * ice_ptp_link_change - Reconfigure PTP after link status change
1353   * @pf: Board private structure
1354   * @port: Port for which the PHY start is set
1355   * @linkup: Link is up or down
1356   */
1357  void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1358  {
1359  	struct ice_ptp_port *ptp_port;
1360  
1361  	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1362  		return;
1363  
1364  	if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1365  		return;
1366  
1367  	ptp_port = &pf->ptp.port;
1368  	if (WARN_ON_ONCE(ptp_port->port_num != port))
1369  		return;
1370  
1371  	/* Update cached link status for this port immediately */
1372  	ptp_port->link_up = linkup;
1373  
1374  	/* E810 devices do not need to reconfigure the PHY */
1375  	if (ice_is_e810(&pf->hw))
1376  		return;
1377  
1378  	ice_ptp_port_phy_restart(ptp_port);
1379  }
1380  
1381  /**
1382   * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1383   * @pf: PF private structure
1384   * @ena: bool value to enable or disable interrupt
1385   * @threshold: Minimum number of packets at which intr is triggered
1386   *
1387   * Utility function to enable or disable Tx timestamp interrupt and threshold
1388   */
1389  static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1390  {
1391  	struct ice_hw *hw = &pf->hw;
1392  	int err = 0;
1393  	int quad;
1394  	u32 val;
1395  
1396  	ice_ptp_reset_ts_memory(hw);
1397  
1398  	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1399  		err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1400  					     &val);
1401  		if (err)
1402  			break;
1403  
1404  		if (ena) {
1405  			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1406  			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1407  			val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1408  				Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1409  		} else {
1410  			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1411  		}
1412  
1413  		err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1414  					      val);
1415  		if (err)
1416  			break;
1417  	}
1418  
1419  	if (err)
1420  		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1421  			err);
1422  	return err;
1423  }
1424  
1425  /**
1426   * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1427   * @pf: Board private structure
1428   */
1429  static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1430  {
1431  	ice_ptp_port_phy_restart(&pf->ptp.port);
1432  }
1433  
1434  /**
1435   * ice_ptp_adjfine - Adjust clock increment rate
1436   * @info: the driver's PTP info structure
1437   * @scaled_ppm: Parts per million with 16-bit fractional field
1438   *
1439   * Adjust the frequency of the clock by the indicated scaled ppm from the
1440   * base frequency.
1441   */
1442  static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1443  {
1444  	struct ice_pf *pf = ptp_info_to_pf(info);
1445  	struct ice_hw *hw = &pf->hw;
1446  	u64 incval;
1447  	int err;
1448  
1449  	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1450  	err = ice_ptp_write_incval_locked(hw, incval);
1451  	if (err) {
1452  		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1453  			err);
1454  		return -EIO;
1455  	}
1456  
1457  	return 0;
1458  }
1459  
1460  /**
1461   * ice_ptp_extts_work - Workqueue task function
1462   * @work: external timestamp work structure
1463   *
1464   * Service for PTP external clock event
1465   */
1466  static void ice_ptp_extts_work(struct kthread_work *work)
1467  {
1468  	struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
1469  	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1470  	struct ptp_clock_event event;
1471  	struct ice_hw *hw = &pf->hw;
1472  	u8 chan, tmr_idx;
1473  	u32 hi, lo;
1474  
1475  	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1476  	/* Event time is captured by one of the two matched registers
1477  	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1478  	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1479  	 * Event is defined in GLTSYN_EVNT_0 register
1480  	 */
1481  	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1482  		/* Check if channel is enabled */
1483  		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1484  			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1485  			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1486  			event.timestamp = (((u64)hi) << 32) | lo;
1487  			event.type = PTP_CLOCK_EXTTS;
1488  			event.index = chan;
1489  
1490  			/* Fire event */
1491  			ptp_clock_event(pf->ptp.clock, &event);
1492  			pf->ptp.ext_ts_irq &= ~(1 << chan);
1493  		}
1494  	}
1495  }
1496  
1497  /**
1498   * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1499   * @pf: Board private structure
1500   * @ena: true to enable; false to disable
1501   * @chan: GPIO channel (0-3)
1502   * @gpio_pin: GPIO pin
1503   * @extts_flags: request flags from the ptp_extts_request.flags
1504   */
1505  static int
1506  ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1507  		  unsigned int extts_flags)
1508  {
1509  	u32 func, aux_reg, gpio_reg, irq_reg;
1510  	struct ice_hw *hw = &pf->hw;
1511  	u8 tmr_idx;
1512  
1513  	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1514  		return -EINVAL;
1515  
1516  	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1517  
1518  	irq_reg = rd32(hw, PFINT_OICR_ENA);
1519  
1520  	if (ena) {
1521  		/* Enable the interrupt */
1522  		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1523  		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1524  
1525  #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1526  #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1527  
1528  		/* set event level to requested edge */
1529  		if (extts_flags & PTP_FALLING_EDGE)
1530  			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1531  		if (extts_flags & PTP_RISING_EDGE)
1532  			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1533  
1534  		/* Write GPIO CTL reg.
1535  		 * 0x1 is input sampled by EVENT register(channel)
1536  		 * + num_in_channels * tmr_idx
1537  		 */
1538  		func = 1 + chan + (tmr_idx * 3);
1539  		gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1540  			    GLGEN_GPIO_CTL_PIN_FUNC_M);
1541  		pf->ptp.ext_ts_chan |= (1 << chan);
1542  	} else {
1543  		/* clear the values we set to reset defaults */
1544  		aux_reg = 0;
1545  		gpio_reg = 0;
1546  		pf->ptp.ext_ts_chan &= ~(1 << chan);
1547  		if (!pf->ptp.ext_ts_chan)
1548  			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1549  	}
1550  
1551  	wr32(hw, PFINT_OICR_ENA, irq_reg);
1552  	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1553  	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1554  
1555  	return 0;
1556  }
1557  
1558  /**
1559   * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1560   * @pf: Board private structure
1561   * @chan: GPIO channel (0-3)
1562   * @config: desired periodic clk configuration. NULL will disable channel
1563   * @store: If set to true the values will be stored
1564   *
1565   * Configure the internal clock generator modules to generate the clock wave of
1566   * specified period.
1567   */
1568  static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1569  			      struct ice_perout_channel *config, bool store)
1570  {
1571  	u64 current_time, period, start_time, phase;
1572  	struct ice_hw *hw = &pf->hw;
1573  	u32 func, val, gpio_pin;
1574  	u8 tmr_idx;
1575  
1576  	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1577  
1578  	/* 0. Reset mode & out_en in AUX_OUT */
1579  	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1580  
1581  	/* If we're disabling the output, clear out CLKO and TGT and keep
1582  	 * output level low
1583  	 */
1584  	if (!config || !config->ena) {
1585  		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1586  		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1587  		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1588  
1589  		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1590  		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1591  		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1592  
1593  		/* Store the value if requested */
1594  		if (store)
1595  			memset(&pf->ptp.perout_channels[chan], 0,
1596  			       sizeof(struct ice_perout_channel));
1597  
1598  		return 0;
1599  	}
1600  	period = config->period;
1601  	start_time = config->start_time;
1602  	div64_u64_rem(start_time, period, &phase);
1603  	gpio_pin = config->gpio_pin;
1604  
1605  	/* 1. Write clkout with half of required period value */
1606  	if (period & 0x1) {
1607  		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1608  		goto err;
1609  	}
1610  
1611  	period >>= 1;
1612  
1613  	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1614  	 */
1615  #define MIN_PULSE 3
1616  	if (period <= MIN_PULSE || period > U32_MAX) {
1617  		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1618  			MIN_PULSE * 2);
1619  		goto err;
1620  	}
1621  
1622  	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1623  
1624  	/* Allow time for programming before start_time is hit */
1625  	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1626  
1627  	/* if start time is in the past start the timer at the nearest second
1628  	 * maintaining phase
1629  	 */
1630  	if (start_time < current_time)
1631  		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1632  				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1633  
1634  	if (ice_is_e810(hw))
1635  		start_time -= E810_OUT_PROP_DELAY_NS;
1636  	else
1637  		start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
1638  
1639  	/* 2. Write TARGET time */
1640  	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1641  	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1642  
1643  	/* 3. Write AUX_OUT register */
1644  	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1645  	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1646  
1647  	/* 4. write GPIO CTL reg */
1648  	func = 8 + chan + (tmr_idx * 4);
1649  	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1650  	      ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1651  	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1652  
1653  	/* Store the value if requested */
1654  	if (store) {
1655  		memcpy(&pf->ptp.perout_channels[chan], config,
1656  		       sizeof(struct ice_perout_channel));
1657  		pf->ptp.perout_channels[chan].start_time = phase;
1658  	}
1659  
1660  	return 0;
1661  err:
1662  	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1663  	return -EFAULT;
1664  }
1665  
1666  /**
1667   * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1668   * @pf: pointer to the PF structure
1669   *
1670   * Disable all currently configured clock outputs. This is necessary before
1671   * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1672   * re-enable the clocks again.
1673   */
1674  static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1675  {
1676  	uint i;
1677  
1678  	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1679  		if (pf->ptp.perout_channels[i].ena)
1680  			ice_ptp_cfg_clkout(pf, i, NULL, false);
1681  }
1682  
1683  /**
1684   * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1685   * @pf: pointer to the PF structure
1686   *
1687   * Enable all currently configured clock outputs. Use this after
1688   * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1689   * their configuration.
1690   */
1691  static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1692  {
1693  	uint i;
1694  
1695  	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1696  		if (pf->ptp.perout_channels[i].ena)
1697  			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1698  					   false);
1699  }
1700  
1701  /**
1702   * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1703   * @info: the driver's PTP info structure
1704   * @rq: The requested feature to change
1705   * @on: Enable/disable flag
1706   */
1707  static int
1708  ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1709  			 struct ptp_clock_request *rq, int on)
1710  {
1711  	struct ice_pf *pf = ptp_info_to_pf(info);
1712  	struct ice_perout_channel clk_cfg = {0};
1713  	bool sma_pres = false;
1714  	unsigned int chan;
1715  	u32 gpio_pin;
1716  	int err;
1717  
1718  	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1719  		sma_pres = true;
1720  
1721  	switch (rq->type) {
1722  	case PTP_CLK_REQ_PEROUT:
1723  		chan = rq->perout.index;
1724  		if (sma_pres) {
1725  			if (chan == ice_pin_desc_e810t[SMA1].chan)
1726  				clk_cfg.gpio_pin = GPIO_20;
1727  			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1728  				clk_cfg.gpio_pin = GPIO_22;
1729  			else
1730  				return -1;
1731  		} else if (ice_is_e810t(&pf->hw)) {
1732  			if (chan == 0)
1733  				clk_cfg.gpio_pin = GPIO_20;
1734  			else
1735  				clk_cfg.gpio_pin = GPIO_22;
1736  		} else if (chan == PPS_CLK_GEN_CHAN) {
1737  			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1738  		} else {
1739  			clk_cfg.gpio_pin = chan;
1740  		}
1741  
1742  		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1743  				   rq->perout.period.nsec);
1744  		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1745  				       rq->perout.start.nsec);
1746  		clk_cfg.ena = !!on;
1747  
1748  		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1749  		break;
1750  	case PTP_CLK_REQ_EXTTS:
1751  		chan = rq->extts.index;
1752  		if (sma_pres) {
1753  			if (chan < ice_pin_desc_e810t[SMA2].chan)
1754  				gpio_pin = GPIO_21;
1755  			else
1756  				gpio_pin = GPIO_23;
1757  		} else if (ice_is_e810t(&pf->hw)) {
1758  			if (chan == 0)
1759  				gpio_pin = GPIO_21;
1760  			else
1761  				gpio_pin = GPIO_23;
1762  		} else {
1763  			gpio_pin = chan;
1764  		}
1765  
1766  		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1767  					rq->extts.flags);
1768  		break;
1769  	default:
1770  		return -EOPNOTSUPP;
1771  	}
1772  
1773  	return err;
1774  }
1775  
1776  /**
1777   * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC
1778   * @info: the driver's PTP info structure
1779   * @rq: The requested feature to change
1780   * @on: Enable/disable flag
1781   */
1782  static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info,
1783  				    struct ptp_clock_request *rq, int on)
1784  {
1785  	struct ice_pf *pf = ptp_info_to_pf(info);
1786  	struct ice_perout_channel clk_cfg = {0};
1787  	int err;
1788  
1789  	switch (rq->type) {
1790  	case PTP_CLK_REQ_PPS:
1791  		clk_cfg.gpio_pin = PPS_PIN_INDEX;
1792  		clk_cfg.period = NSEC_PER_SEC;
1793  		clk_cfg.ena = !!on;
1794  
1795  		err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true);
1796  		break;
1797  	case PTP_CLK_REQ_EXTTS:
1798  		err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index,
1799  					TIME_SYNC_PIN_INDEX, rq->extts.flags);
1800  		break;
1801  	default:
1802  		return -EOPNOTSUPP;
1803  	}
1804  
1805  	return err;
1806  }
1807  
1808  /**
1809   * ice_ptp_gettimex64 - Get the time of the clock
1810   * @info: the driver's PTP info structure
1811   * @ts: timespec64 structure to hold the current time value
1812   * @sts: Optional parameter for holding a pair of system timestamps from
1813   *       the system clock. Will be ignored if NULL is given.
1814   *
1815   * Read the device clock and return the correct value on ns, after converting it
1816   * into a timespec struct.
1817   */
1818  static int
1819  ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1820  		   struct ptp_system_timestamp *sts)
1821  {
1822  	struct ice_pf *pf = ptp_info_to_pf(info);
1823  	struct ice_hw *hw = &pf->hw;
1824  
1825  	if (!ice_ptp_lock(hw)) {
1826  		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1827  		return -EBUSY;
1828  	}
1829  
1830  	ice_ptp_read_time(pf, ts, sts);
1831  	ice_ptp_unlock(hw);
1832  
1833  	return 0;
1834  }
1835  
1836  /**
1837   * ice_ptp_settime64 - Set the time of the clock
1838   * @info: the driver's PTP info structure
1839   * @ts: timespec64 structure that holds the new time value
1840   *
1841   * Set the device clock to the user input value. The conversion from timespec
1842   * to ns happens in the write function.
1843   */
1844  static int
1845  ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1846  {
1847  	struct ice_pf *pf = ptp_info_to_pf(info);
1848  	struct timespec64 ts64 = *ts;
1849  	struct ice_hw *hw = &pf->hw;
1850  	int err;
1851  
1852  	/* For Vernier mode, we need to recalibrate after new settime
1853  	 * Start with disabling timestamp block
1854  	 */
1855  	if (pf->ptp.port.link_up)
1856  		ice_ptp_port_phy_stop(&pf->ptp.port);
1857  
1858  	if (!ice_ptp_lock(hw)) {
1859  		err = -EBUSY;
1860  		goto exit;
1861  	}
1862  
1863  	/* Disable periodic outputs */
1864  	ice_ptp_disable_all_clkout(pf);
1865  
1866  	err = ice_ptp_write_init(pf, &ts64);
1867  	ice_ptp_unlock(hw);
1868  
1869  	if (!err)
1870  		ice_ptp_reset_cached_phctime(pf);
1871  
1872  	/* Reenable periodic outputs */
1873  	ice_ptp_enable_all_clkout(pf);
1874  
1875  	/* Recalibrate and re-enable timestamp block */
1876  	if (pf->ptp.port.link_up)
1877  		ice_ptp_port_phy_restart(&pf->ptp.port);
1878  exit:
1879  	if (err) {
1880  		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1881  		return err;
1882  	}
1883  
1884  	return 0;
1885  }
1886  
1887  /**
1888   * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1889   * @info: the driver's PTP info structure
1890   * @delta: Offset in nanoseconds to adjust the time by
1891   */
1892  static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1893  {
1894  	struct timespec64 now, then;
1895  	int ret;
1896  
1897  	then = ns_to_timespec64(delta);
1898  	ret = ice_ptp_gettimex64(info, &now, NULL);
1899  	if (ret)
1900  		return ret;
1901  	now = timespec64_add(now, then);
1902  
1903  	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1904  }
1905  
1906  /**
1907   * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1908   * @info: the driver's PTP info structure
1909   * @delta: Offset in nanoseconds to adjust the time by
1910   */
1911  static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1912  {
1913  	struct ice_pf *pf = ptp_info_to_pf(info);
1914  	struct ice_hw *hw = &pf->hw;
1915  	struct device *dev;
1916  	int err;
1917  
1918  	dev = ice_pf_to_dev(pf);
1919  
1920  	/* Hardware only supports atomic adjustments using signed 32-bit
1921  	 * integers. For any adjustment outside this range, perform
1922  	 * a non-atomic get->adjust->set flow.
1923  	 */
1924  	if (delta > S32_MAX || delta < S32_MIN) {
1925  		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1926  		return ice_ptp_adjtime_nonatomic(info, delta);
1927  	}
1928  
1929  	if (!ice_ptp_lock(hw)) {
1930  		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1931  		return -EBUSY;
1932  	}
1933  
1934  	/* Disable periodic outputs */
1935  	ice_ptp_disable_all_clkout(pf);
1936  
1937  	err = ice_ptp_write_adj(pf, delta);
1938  
1939  	/* Reenable periodic outputs */
1940  	ice_ptp_enable_all_clkout(pf);
1941  
1942  	ice_ptp_unlock(hw);
1943  
1944  	if (err) {
1945  		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1946  		return err;
1947  	}
1948  
1949  	ice_ptp_reset_cached_phctime(pf);
1950  
1951  	return 0;
1952  }
1953  
1954  #ifdef CONFIG_ICE_HWTS
1955  /**
1956   * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1957   * @device: Current device time
1958   * @system: System counter value read synchronously with device time
1959   * @ctx: Context provided by timekeeping code
1960   *
1961   * Read device and system (ART) clock simultaneously and return the corrected
1962   * clock values in ns.
1963   */
1964  static int
1965  ice_ptp_get_syncdevicetime(ktime_t *device,
1966  			   struct system_counterval_t *system,
1967  			   void *ctx)
1968  {
1969  	struct ice_pf *pf = (struct ice_pf *)ctx;
1970  	struct ice_hw *hw = &pf->hw;
1971  	u32 hh_lock, hh_art_ctl;
1972  	int i;
1973  
1974  	/* Get the HW lock */
1975  	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1976  	if (hh_lock & PFHH_SEM_BUSY_M) {
1977  		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1978  		return -EFAULT;
1979  	}
1980  
1981  	/* Start the ART and device clock sync sequence */
1982  	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1983  	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1984  	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1985  
1986  #define MAX_HH_LOCK_TRIES 100
1987  
1988  	for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
1989  		/* Wait for sync to complete */
1990  		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1991  		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1992  			udelay(1);
1993  			continue;
1994  		} else {
1995  			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
1996  			u64 hh_ts;
1997  
1998  			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
1999  			/* Read ART time */
2000  			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2001  			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2002  			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2003  			*system = convert_art_ns_to_tsc(hh_ts);
2004  			/* Read Device source clock time */
2005  			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2006  			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2007  			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2008  			*device = ns_to_ktime(hh_ts);
2009  			break;
2010  		}
2011  	}
2012  	/* Release HW lock */
2013  	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2014  	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2015  	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2016  
2017  	if (i == MAX_HH_LOCK_TRIES)
2018  		return -ETIMEDOUT;
2019  
2020  	return 0;
2021  }
2022  
2023  /**
2024   * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
2025   * @info: the driver's PTP info structure
2026   * @cts: The memory to fill the cross timestamp info
2027   *
2028   * Capture a cross timestamp between the ART and the device PTP hardware
2029   * clock. Fill the cross timestamp information and report it back to the
2030   * caller.
2031   *
2032   * This is only valid for E822 devices which have support for generating the
2033   * cross timestamp via PCIe PTM.
2034   *
2035   * In order to correctly correlate the ART timestamp back to the TSC time, the
2036   * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2037   */
2038  static int
2039  ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
2040  			    struct system_device_crosststamp *cts)
2041  {
2042  	struct ice_pf *pf = ptp_info_to_pf(info);
2043  
2044  	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2045  					     pf, NULL, cts);
2046  }
2047  #endif /* CONFIG_ICE_HWTS */
2048  
2049  /**
2050   * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2051   * @pf: Board private structure
2052   * @ifr: ioctl data
2053   *
2054   * Copy the timestamping config to user buffer
2055   */
2056  int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2057  {
2058  	struct hwtstamp_config *config;
2059  
2060  	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2061  		return -EIO;
2062  
2063  	config = &pf->ptp.tstamp_config;
2064  
2065  	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2066  		-EFAULT : 0;
2067  }
2068  
2069  /**
2070   * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2071   * @pf: Board private structure
2072   * @config: hwtstamp settings requested or saved
2073   */
2074  static int
2075  ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2076  {
2077  	switch (config->tx_type) {
2078  	case HWTSTAMP_TX_OFF:
2079  		ice_set_tx_tstamp(pf, false);
2080  		break;
2081  	case HWTSTAMP_TX_ON:
2082  		ice_set_tx_tstamp(pf, true);
2083  		break;
2084  	default:
2085  		return -ERANGE;
2086  	}
2087  
2088  	switch (config->rx_filter) {
2089  	case HWTSTAMP_FILTER_NONE:
2090  		ice_set_rx_tstamp(pf, false);
2091  		break;
2092  	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2093  	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2094  	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2095  	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2096  	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2097  	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2098  	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2099  	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2100  	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2101  	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2102  	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2103  	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2104  	case HWTSTAMP_FILTER_NTP_ALL:
2105  	case HWTSTAMP_FILTER_ALL:
2106  		ice_set_rx_tstamp(pf, true);
2107  		break;
2108  	default:
2109  		return -ERANGE;
2110  	}
2111  
2112  	return 0;
2113  }
2114  
2115  /**
2116   * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2117   * @pf: Board private structure
2118   * @ifr: ioctl data
2119   *
2120   * Get the user config and store it
2121   */
2122  int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2123  {
2124  	struct hwtstamp_config config;
2125  	int err;
2126  
2127  	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2128  		return -EAGAIN;
2129  
2130  	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2131  		return -EFAULT;
2132  
2133  	err = ice_ptp_set_timestamp_mode(pf, &config);
2134  	if (err)
2135  		return err;
2136  
2137  	/* Return the actual configuration set */
2138  	config = pf->ptp.tstamp_config;
2139  
2140  	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2141  		-EFAULT : 0;
2142  }
2143  
2144  /**
2145   * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
2146   * @rx_ring: Ring to get the VSI info
2147   * @rx_desc: Receive descriptor
2148   * @skb: Particular skb to send timestamp with
2149   *
2150   * The driver receives a notification in the receive descriptor with timestamp.
2151   * The timestamp is in ns, so we must convert the result first.
2152   */
2153  void
2154  ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
2155  		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
2156  {
2157  	struct skb_shared_hwtstamps *hwtstamps;
2158  	u64 ts_ns, cached_time;
2159  	u32 ts_high;
2160  
2161  	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2162  		return;
2163  
2164  	cached_time = READ_ONCE(rx_ring->cached_phctime);
2165  
2166  	/* Do not report a timestamp if we don't have a cached PHC time */
2167  	if (!cached_time)
2168  		return;
2169  
2170  	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2171  	 * PHC value, rather than accessing the PF. This also allows us to
2172  	 * simply pass the upper 32bits of nanoseconds directly. Calling
2173  	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2174  	 * bits itself.
2175  	 */
2176  	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2177  	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2178  
2179  	hwtstamps = skb_hwtstamps(skb);
2180  	memset(hwtstamps, 0, sizeof(*hwtstamps));
2181  	hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
2182  }
2183  
2184  /**
2185   * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2186   * @pf: pointer to the PF structure
2187   * @info: PTP clock info structure
2188   *
2189   * Disable the OS access to the SMA pins. Called to clear out the OS
2190   * indications of pin support when we fail to setup the E810-T SMA control
2191   * register.
2192   */
2193  static void
2194  ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2195  {
2196  	struct device *dev = ice_pf_to_dev(pf);
2197  
2198  	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2199  
2200  	info->enable = NULL;
2201  	info->verify = NULL;
2202  	info->n_pins = 0;
2203  	info->n_ext_ts = 0;
2204  	info->n_per_out = 0;
2205  }
2206  
2207  /**
2208   * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2209   * @pf: pointer to the PF structure
2210   * @info: PTP clock info structure
2211   *
2212   * Finish setting up the SMA pins by allocating pin_config, and setting it up
2213   * according to the current status of the SMA. On failure, disable all of the
2214   * extended SMA pin support.
2215   */
2216  static void
2217  ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2218  {
2219  	struct device *dev = ice_pf_to_dev(pf);
2220  	int err;
2221  
2222  	/* Allocate memory for kernel pins interface */
2223  	info->pin_config = devm_kcalloc(dev, info->n_pins,
2224  					sizeof(*info->pin_config), GFP_KERNEL);
2225  	if (!info->pin_config) {
2226  		ice_ptp_disable_sma_pins_e810t(pf, info);
2227  		return;
2228  	}
2229  
2230  	/* Read current SMA status */
2231  	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2232  	if (err)
2233  		ice_ptp_disable_sma_pins_e810t(pf, info);
2234  }
2235  
2236  /**
2237   * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2238   * @pf: pointer to the PF instance
2239   * @info: PTP clock capabilities
2240   */
2241  static void
2242  ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2243  {
2244  	info->n_per_out = N_PER_OUT_E810;
2245  
2246  	if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS))
2247  		info->n_ext_ts = N_EXT_TS_E810;
2248  
2249  	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2250  		info->n_ext_ts = N_EXT_TS_E810;
2251  		info->n_pins = NUM_PTP_PINS_E810T;
2252  		info->verify = ice_verify_pin_e810t;
2253  
2254  		/* Complete setup of the SMA pins */
2255  		ice_ptp_setup_sma_pins_e810t(pf, info);
2256  	}
2257  }
2258  
2259  /**
2260   * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs
2261   * @pf: pointer to the PF instance
2262   * @info: PTP clock capabilities
2263   */
2264  static void
2265  ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2266  {
2267  	info->pps = 1;
2268  	info->n_per_out = 0;
2269  	info->n_ext_ts = 1;
2270  }
2271  
2272  /**
2273   * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
2274   * @pf: Board private structure
2275   * @info: PTP info to fill
2276   *
2277   * Assign functions to the PTP capabiltiies structure for E822 devices.
2278   * Functions which operate across all device families should be set directly
2279   * in ice_ptp_set_caps. Only add functions here which are distinct for E822
2280   * devices.
2281   */
2282  static void
2283  ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
2284  {
2285  #ifdef CONFIG_ICE_HWTS
2286  	if (boot_cpu_has(X86_FEATURE_ART) &&
2287  	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2288  		info->getcrosststamp = ice_ptp_getcrosststamp_e822;
2289  #endif /* CONFIG_ICE_HWTS */
2290  }
2291  
2292  /**
2293   * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2294   * @pf: Board private structure
2295   * @info: PTP info to fill
2296   *
2297   * Assign functions to the PTP capabiltiies structure for E810 devices.
2298   * Functions which operate across all device families should be set directly
2299   * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2300   * devices.
2301   */
2302  static void
2303  ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2304  {
2305  	info->enable = ice_ptp_gpio_enable_e810;
2306  	ice_ptp_setup_pins_e810(pf, info);
2307  }
2308  
2309  /**
2310   * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support
2311   * @pf: Board private structure
2312   * @info: PTP info to fill
2313   *
2314   * Assign functions to the PTP capabiltiies structure for E823 devices.
2315   * Functions which operate across all device families should be set directly
2316   * in ice_ptp_set_caps. Only add functions here which are distinct for e823
2317   * devices.
2318   */
2319  static void
2320  ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2321  {
2322  	info->enable = ice_ptp_gpio_enable_e823;
2323  	ice_ptp_setup_pins_e823(pf, info);
2324  }
2325  
2326  /**
2327   * ice_ptp_set_caps - Set PTP capabilities
2328   * @pf: Board private structure
2329   */
2330  static void ice_ptp_set_caps(struct ice_pf *pf)
2331  {
2332  	struct ptp_clock_info *info = &pf->ptp.info;
2333  	struct device *dev = ice_pf_to_dev(pf);
2334  
2335  	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2336  		 dev_driver_string(dev), dev_name(dev));
2337  	info->owner = THIS_MODULE;
2338  	info->max_adj = 100000000;
2339  	info->adjtime = ice_ptp_adjtime;
2340  	info->adjfine = ice_ptp_adjfine;
2341  	info->gettimex64 = ice_ptp_gettimex64;
2342  	info->settime64 = ice_ptp_settime64;
2343  
2344  	if (ice_is_e810(&pf->hw))
2345  		ice_ptp_set_funcs_e810(pf, info);
2346  	else if (ice_is_e823(&pf->hw))
2347  		ice_ptp_set_funcs_e823(pf, info);
2348  	else
2349  		ice_ptp_set_funcs_e822(pf, info);
2350  }
2351  
2352  /**
2353   * ice_ptp_create_clock - Create PTP clock device for userspace
2354   * @pf: Board private structure
2355   *
2356   * This function creates a new PTP clock device. It only creates one if we
2357   * don't already have one. Will return error if it can't create one, but success
2358   * if we already have a device. Should be used by ice_ptp_init to create clock
2359   * initially, and prevent global resets from creating new clock devices.
2360   */
2361  static long ice_ptp_create_clock(struct ice_pf *pf)
2362  {
2363  	struct ptp_clock_info *info;
2364  	struct ptp_clock *clock;
2365  	struct device *dev;
2366  
2367  	/* No need to create a clock device if we already have one */
2368  	if (pf->ptp.clock)
2369  		return 0;
2370  
2371  	ice_ptp_set_caps(pf);
2372  
2373  	info = &pf->ptp.info;
2374  	dev = ice_pf_to_dev(pf);
2375  
2376  	/* Attempt to register the clock before enabling the hardware. */
2377  	clock = ptp_clock_register(info, dev);
2378  	if (IS_ERR(clock))
2379  		return PTR_ERR(clock);
2380  
2381  	pf->ptp.clock = clock;
2382  
2383  	return 0;
2384  }
2385  
2386  /**
2387   * ice_ptp_request_ts - Request an available Tx timestamp index
2388   * @tx: the PTP Tx timestamp tracker to request from
2389   * @skb: the SKB to associate with this timestamp request
2390   */
2391  s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2392  {
2393  	u8 idx;
2394  
2395  	spin_lock(&tx->lock);
2396  
2397  	/* Check that this tracker is accepting new timestamp requests */
2398  	if (!ice_ptp_is_tx_tracker_up(tx)) {
2399  		spin_unlock(&tx->lock);
2400  		return -1;
2401  	}
2402  
2403  	/* Find and set the first available index */
2404  	idx = find_first_zero_bit(tx->in_use, tx->len);
2405  	if (idx < tx->len) {
2406  		/* We got a valid index that no other thread could have set. Store
2407  		 * a reference to the skb and the start time to allow discarding old
2408  		 * requests.
2409  		 */
2410  		set_bit(idx, tx->in_use);
2411  		clear_bit(idx, tx->stale);
2412  		tx->tstamps[idx].start = jiffies;
2413  		tx->tstamps[idx].skb = skb_get(skb);
2414  		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2415  		ice_trace(tx_tstamp_request, skb, idx);
2416  	}
2417  
2418  	spin_unlock(&tx->lock);
2419  
2420  	/* return the appropriate PHY timestamp register index, -1 if no
2421  	 * indexes were available.
2422  	 */
2423  	if (idx >= tx->len)
2424  		return -1;
2425  	else
2426  		return idx + tx->offset;
2427  }
2428  
2429  /**
2430   * ice_ptp_process_ts - Process the PTP Tx timestamps
2431   * @pf: Board private structure
2432   *
2433   * Returns true if timestamps are processed.
2434   */
2435  bool ice_ptp_process_ts(struct ice_pf *pf)
2436  {
2437  	return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2438  }
2439  
2440  static void ice_ptp_periodic_work(struct kthread_work *work)
2441  {
2442  	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2443  	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2444  	int err;
2445  
2446  	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2447  		return;
2448  
2449  	err = ice_ptp_update_cached_phctime(pf);
2450  
2451  	/* Run twice a second or reschedule if phc update failed */
2452  	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2453  				   msecs_to_jiffies(err ? 10 : 500));
2454  }
2455  
2456  /**
2457   * ice_ptp_reset - Initialize PTP hardware clock support after reset
2458   * @pf: Board private structure
2459   */
2460  void ice_ptp_reset(struct ice_pf *pf)
2461  {
2462  	struct ice_ptp *ptp = &pf->ptp;
2463  	struct ice_hw *hw = &pf->hw;
2464  	struct timespec64 ts;
2465  	int err, itr = 1;
2466  	u64 time_diff;
2467  
2468  	if (test_bit(ICE_PFR_REQ, pf->state))
2469  		goto pfr;
2470  
2471  	if (!hw->func_caps.ts_func_info.src_tmr_owned)
2472  		goto reset_ts;
2473  
2474  	err = ice_ptp_init_phc(hw);
2475  	if (err)
2476  		goto err;
2477  
2478  	/* Acquire the global hardware lock */
2479  	if (!ice_ptp_lock(hw)) {
2480  		err = -EBUSY;
2481  		goto err;
2482  	}
2483  
2484  	/* Write the increment time value to PHY and LAN */
2485  	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2486  	if (err) {
2487  		ice_ptp_unlock(hw);
2488  		goto err;
2489  	}
2490  
2491  	/* Write the initial Time value to PHY and LAN using the cached PHC
2492  	 * time before the reset and time difference between stopping and
2493  	 * starting the clock.
2494  	 */
2495  	if (ptp->cached_phc_time) {
2496  		time_diff = ktime_get_real_ns() - ptp->reset_time;
2497  		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2498  	} else {
2499  		ts = ktime_to_timespec64(ktime_get_real());
2500  	}
2501  	err = ice_ptp_write_init(pf, &ts);
2502  	if (err) {
2503  		ice_ptp_unlock(hw);
2504  		goto err;
2505  	}
2506  
2507  	/* Release the global hardware lock */
2508  	ice_ptp_unlock(hw);
2509  
2510  	if (!ice_is_e810(hw)) {
2511  		/* Enable quad interrupts */
2512  		err = ice_ptp_tx_ena_intr(pf, true, itr);
2513  		if (err)
2514  			goto err;
2515  	}
2516  
2517  reset_ts:
2518  	/* Restart the PHY timestamping block */
2519  	ice_ptp_reset_phy_timestamping(pf);
2520  
2521  pfr:
2522  	/* Init Tx structures */
2523  	if (ice_is_e810(&pf->hw)) {
2524  		err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2525  	} else {
2526  		kthread_init_delayed_work(&ptp->port.ov_work,
2527  					  ice_ptp_wait_for_offsets);
2528  		err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
2529  					   ptp->port.port_num);
2530  	}
2531  	if (err)
2532  		goto err;
2533  
2534  	set_bit(ICE_FLAG_PTP, pf->flags);
2535  
2536  	/* Start periodic work going */
2537  	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2538  
2539  	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2540  	return;
2541  
2542  err:
2543  	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2544  }
2545  
2546  /**
2547   * ice_ptp_prepare_for_reset - Prepare PTP for reset
2548   * @pf: Board private structure
2549   */
2550  void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2551  {
2552  	struct ice_ptp *ptp = &pf->ptp;
2553  	u8 src_tmr;
2554  
2555  	clear_bit(ICE_FLAG_PTP, pf->flags);
2556  
2557  	/* Disable timestamping for both Tx and Rx */
2558  	ice_ptp_cfg_timestamp(pf, false);
2559  
2560  	kthread_cancel_delayed_work_sync(&ptp->work);
2561  	kthread_cancel_work_sync(&ptp->extts_work);
2562  
2563  	if (test_bit(ICE_PFR_REQ, pf->state))
2564  		return;
2565  
2566  	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2567  
2568  	/* Disable periodic outputs */
2569  	ice_ptp_disable_all_clkout(pf);
2570  
2571  	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2572  
2573  	/* Disable source clock */
2574  	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2575  
2576  	/* Acquire PHC and system timer to restore after reset */
2577  	ptp->reset_time = ktime_get_real_ns();
2578  }
2579  
2580  /**
2581   * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2582   * @pf: Board private structure
2583   *
2584   * Setup and initialize a PTP clock device that represents the device hardware
2585   * clock. Save the clock index for other functions connected to the same
2586   * hardware resource.
2587   */
2588  static int ice_ptp_init_owner(struct ice_pf *pf)
2589  {
2590  	struct ice_hw *hw = &pf->hw;
2591  	struct timespec64 ts;
2592  	int err, itr = 1;
2593  
2594  	err = ice_ptp_init_phc(hw);
2595  	if (err) {
2596  		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2597  			err);
2598  		return err;
2599  	}
2600  
2601  	/* Acquire the global hardware lock */
2602  	if (!ice_ptp_lock(hw)) {
2603  		err = -EBUSY;
2604  		goto err_exit;
2605  	}
2606  
2607  	/* Write the increment time value to PHY and LAN */
2608  	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2609  	if (err) {
2610  		ice_ptp_unlock(hw);
2611  		goto err_exit;
2612  	}
2613  
2614  	ts = ktime_to_timespec64(ktime_get_real());
2615  	/* Write the initial Time value to PHY and LAN */
2616  	err = ice_ptp_write_init(pf, &ts);
2617  	if (err) {
2618  		ice_ptp_unlock(hw);
2619  		goto err_exit;
2620  	}
2621  
2622  	/* Release the global hardware lock */
2623  	ice_ptp_unlock(hw);
2624  
2625  	if (!ice_is_e810(hw)) {
2626  		/* Enable quad interrupts */
2627  		err = ice_ptp_tx_ena_intr(pf, true, itr);
2628  		if (err)
2629  			goto err_exit;
2630  	}
2631  
2632  	/* Ensure we have a clock device */
2633  	err = ice_ptp_create_clock(pf);
2634  	if (err)
2635  		goto err_clk;
2636  
2637  	/* Store the PTP clock index for other PFs */
2638  	ice_set_ptp_clock_index(pf);
2639  
2640  	return 0;
2641  
2642  err_clk:
2643  	pf->ptp.clock = NULL;
2644  err_exit:
2645  	return err;
2646  }
2647  
2648  /**
2649   * ice_ptp_init_work - Initialize PTP work threads
2650   * @pf: Board private structure
2651   * @ptp: PF PTP structure
2652   */
2653  static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2654  {
2655  	struct kthread_worker *kworker;
2656  
2657  	/* Initialize work functions */
2658  	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2659  	kthread_init_work(&ptp->extts_work, ice_ptp_extts_work);
2660  
2661  	/* Allocate a kworker for handling work required for the ports
2662  	 * connected to the PTP hardware clock.
2663  	 */
2664  	kworker = kthread_create_worker(0, "ice-ptp-%s",
2665  					dev_name(ice_pf_to_dev(pf)));
2666  	if (IS_ERR(kworker))
2667  		return PTR_ERR(kworker);
2668  
2669  	ptp->kworker = kworker;
2670  
2671  	/* Start periodic work going */
2672  	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2673  
2674  	return 0;
2675  }
2676  
2677  /**
2678   * ice_ptp_init_port - Initialize PTP port structure
2679   * @pf: Board private structure
2680   * @ptp_port: PTP port structure
2681   */
2682  static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2683  {
2684  	mutex_init(&ptp_port->ps_lock);
2685  
2686  	if (ice_is_e810(&pf->hw))
2687  		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2688  
2689  	kthread_init_delayed_work(&ptp_port->ov_work,
2690  				  ice_ptp_wait_for_offsets);
2691  	return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
2692  }
2693  
2694  /**
2695   * ice_ptp_init - Initialize PTP hardware clock support
2696   * @pf: Board private structure
2697   *
2698   * Set up the device for interacting with the PTP hardware clock for all
2699   * functions, both the function that owns the clock hardware, and the
2700   * functions connected to the clock hardware.
2701   *
2702   * The clock owner will allocate and register a ptp_clock with the
2703   * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
2704   * items used for asynchronous work such as Tx timestamps and periodic work.
2705   */
2706  void ice_ptp_init(struct ice_pf *pf)
2707  {
2708  	struct ice_ptp *ptp = &pf->ptp;
2709  	struct ice_hw *hw = &pf->hw;
2710  	int err;
2711  
2712  	/* If this function owns the clock hardware, it must allocate and
2713  	 * configure the PTP clock device to represent it.
2714  	 */
2715  	if (hw->func_caps.ts_func_info.src_tmr_owned) {
2716  		err = ice_ptp_init_owner(pf);
2717  		if (err)
2718  			goto err;
2719  	}
2720  
2721  	ptp->port.port_num = hw->pf_id;
2722  	err = ice_ptp_init_port(pf, &ptp->port);
2723  	if (err)
2724  		goto err;
2725  
2726  	/* Start the PHY timestamping block */
2727  	ice_ptp_reset_phy_timestamping(pf);
2728  
2729  	set_bit(ICE_FLAG_PTP, pf->flags);
2730  	err = ice_ptp_init_work(pf, ptp);
2731  	if (err)
2732  		goto err;
2733  
2734  	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
2735  	return;
2736  
2737  err:
2738  	/* If we registered a PTP clock, release it */
2739  	if (pf->ptp.clock) {
2740  		ptp_clock_unregister(ptp->clock);
2741  		pf->ptp.clock = NULL;
2742  	}
2743  	clear_bit(ICE_FLAG_PTP, pf->flags);
2744  	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
2745  }
2746  
2747  /**
2748   * ice_ptp_release - Disable the driver/HW support and unregister the clock
2749   * @pf: Board private structure
2750   *
2751   * This function handles the cleanup work required from the initialization by
2752   * clearing out the important information and unregistering the clock
2753   */
2754  void ice_ptp_release(struct ice_pf *pf)
2755  {
2756  	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2757  		return;
2758  
2759  	/* Disable timestamping for both Tx and Rx */
2760  	ice_ptp_cfg_timestamp(pf, false);
2761  
2762  	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2763  
2764  	clear_bit(ICE_FLAG_PTP, pf->flags);
2765  
2766  	kthread_cancel_delayed_work_sync(&pf->ptp.work);
2767  
2768  	ice_ptp_port_phy_stop(&pf->ptp.port);
2769  	mutex_destroy(&pf->ptp.port.ps_lock);
2770  	if (pf->ptp.kworker) {
2771  		kthread_destroy_worker(pf->ptp.kworker);
2772  		pf->ptp.kworker = NULL;
2773  	}
2774  
2775  	if (!pf->ptp.clock)
2776  		return;
2777  
2778  	/* Disable periodic outputs */
2779  	ice_ptp_disable_all_clkout(pf);
2780  
2781  	ice_clear_ptp_clock_index(pf);
2782  	ptp_clock_unregister(pf->ptp.clock);
2783  	pf->ptp.clock = NULL;
2784  
2785  	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
2786  }
2787