1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_lib.h" 6 #include "ice_trace.h" 7 8 #define E810_OUT_PROP_DELAY_NS 1 9 10 static const struct ptp_pin_desc ice_pin_desc_e810t[] = { 11 /* name idx func chan */ 12 { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } }, 13 { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } }, 14 { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } }, 15 { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } }, 16 { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } }, 17 }; 18 19 /** 20 * ice_get_sma_config_e810t 21 * @hw: pointer to the hw struct 22 * @ptp_pins: pointer to the ptp_pin_desc struture 23 * 24 * Read the configuration of the SMA control logic and put it into the 25 * ptp_pin_desc structure 26 */ 27 static int 28 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins) 29 { 30 u8 data, i; 31 int status; 32 33 /* Read initial pin state */ 34 status = ice_read_sma_ctrl_e810t(hw, &data); 35 if (status) 36 return status; 37 38 /* initialize with defaults */ 39 for (i = 0; i < NUM_PTP_PINS_E810T; i++) { 40 strscpy(ptp_pins[i].name, ice_pin_desc_e810t[i].name, 41 sizeof(ptp_pins[i].name)); 42 ptp_pins[i].index = ice_pin_desc_e810t[i].index; 43 ptp_pins[i].func = ice_pin_desc_e810t[i].func; 44 ptp_pins[i].chan = ice_pin_desc_e810t[i].chan; 45 } 46 47 /* Parse SMA1/UFL1 */ 48 switch (data & ICE_SMA1_MASK_E810T) { 49 case ICE_SMA1_MASK_E810T: 50 default: 51 ptp_pins[SMA1].func = PTP_PF_NONE; 52 ptp_pins[UFL1].func = PTP_PF_NONE; 53 break; 54 case ICE_SMA1_DIR_EN_E810T: 55 ptp_pins[SMA1].func = PTP_PF_PEROUT; 56 ptp_pins[UFL1].func = PTP_PF_NONE; 57 break; 58 case ICE_SMA1_TX_EN_E810T: 59 ptp_pins[SMA1].func = PTP_PF_EXTTS; 60 ptp_pins[UFL1].func = PTP_PF_NONE; 61 break; 62 case 0: 63 ptp_pins[SMA1].func = PTP_PF_EXTTS; 64 ptp_pins[UFL1].func = PTP_PF_PEROUT; 65 break; 66 } 67 68 /* Parse SMA2/UFL2 */ 69 switch (data & ICE_SMA2_MASK_E810T) { 70 case ICE_SMA2_MASK_E810T: 71 default: 72 ptp_pins[SMA2].func = PTP_PF_NONE; 73 ptp_pins[UFL2].func = PTP_PF_NONE; 74 break; 75 case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): 76 ptp_pins[SMA2].func = PTP_PF_EXTTS; 77 ptp_pins[UFL2].func = PTP_PF_NONE; 78 break; 79 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): 80 ptp_pins[SMA2].func = PTP_PF_PEROUT; 81 ptp_pins[UFL2].func = PTP_PF_NONE; 82 break; 83 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T): 84 ptp_pins[SMA2].func = PTP_PF_NONE; 85 ptp_pins[UFL2].func = PTP_PF_EXTTS; 86 break; 87 case ICE_SMA2_DIR_EN_E810T: 88 ptp_pins[SMA2].func = PTP_PF_PEROUT; 89 ptp_pins[UFL2].func = PTP_PF_EXTTS; 90 break; 91 } 92 93 return 0; 94 } 95 96 /** 97 * ice_ptp_set_sma_config_e810t 98 * @hw: pointer to the hw struct 99 * @ptp_pins: pointer to the ptp_pin_desc struture 100 * 101 * Set the configuration of the SMA control logic based on the configuration in 102 * num_pins parameter 103 */ 104 static int 105 ice_ptp_set_sma_config_e810t(struct ice_hw *hw, 106 const struct ptp_pin_desc *ptp_pins) 107 { 108 int status; 109 u8 data; 110 111 /* SMA1 and UFL1 cannot be set to TX at the same time */ 112 if (ptp_pins[SMA1].func == PTP_PF_PEROUT && 113 ptp_pins[UFL1].func == PTP_PF_PEROUT) 114 return -EINVAL; 115 116 /* SMA2 and UFL2 cannot be set to RX at the same time */ 117 if (ptp_pins[SMA2].func == PTP_PF_EXTTS && 118 ptp_pins[UFL2].func == PTP_PF_EXTTS) 119 return -EINVAL; 120 121 /* Read initial pin state value */ 122 status = ice_read_sma_ctrl_e810t(hw, &data); 123 if (status) 124 return status; 125 126 /* Set the right sate based on the desired configuration */ 127 data &= ~ICE_SMA1_MASK_E810T; 128 if (ptp_pins[SMA1].func == PTP_PF_NONE && 129 ptp_pins[UFL1].func == PTP_PF_NONE) { 130 dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled"); 131 data |= ICE_SMA1_MASK_E810T; 132 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && 133 ptp_pins[UFL1].func == PTP_PF_NONE) { 134 dev_info(ice_hw_to_dev(hw), "SMA1 RX"); 135 data |= ICE_SMA1_TX_EN_E810T; 136 } else if (ptp_pins[SMA1].func == PTP_PF_NONE && 137 ptp_pins[UFL1].func == PTP_PF_PEROUT) { 138 /* U.FL 1 TX will always enable SMA 1 RX */ 139 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); 140 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && 141 ptp_pins[UFL1].func == PTP_PF_PEROUT) { 142 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); 143 } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT && 144 ptp_pins[UFL1].func == PTP_PF_NONE) { 145 dev_info(ice_hw_to_dev(hw), "SMA1 TX"); 146 data |= ICE_SMA1_DIR_EN_E810T; 147 } 148 149 data &= ~ICE_SMA2_MASK_E810T; 150 if (ptp_pins[SMA2].func == PTP_PF_NONE && 151 ptp_pins[UFL2].func == PTP_PF_NONE) { 152 dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled"); 153 data |= ICE_SMA2_MASK_E810T; 154 } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS && 155 ptp_pins[UFL2].func == PTP_PF_NONE) { 156 dev_info(ice_hw_to_dev(hw), "SMA2 RX"); 157 data |= (ICE_SMA2_TX_EN_E810T | 158 ICE_SMA2_UFL2_RX_DIS_E810T); 159 } else if (ptp_pins[SMA2].func == PTP_PF_NONE && 160 ptp_pins[UFL2].func == PTP_PF_EXTTS) { 161 dev_info(ice_hw_to_dev(hw), "UFL2 RX"); 162 data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T); 163 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && 164 ptp_pins[UFL2].func == PTP_PF_NONE) { 165 dev_info(ice_hw_to_dev(hw), "SMA2 TX"); 166 data |= (ICE_SMA2_DIR_EN_E810T | 167 ICE_SMA2_UFL2_RX_DIS_E810T); 168 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && 169 ptp_pins[UFL2].func == PTP_PF_EXTTS) { 170 dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX"); 171 data |= ICE_SMA2_DIR_EN_E810T; 172 } 173 174 return ice_write_sma_ctrl_e810t(hw, data); 175 } 176 177 /** 178 * ice_ptp_set_sma_e810t 179 * @info: the driver's PTP info structure 180 * @pin: pin index in kernel structure 181 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT) 182 * 183 * Set the configuration of a single SMA pin 184 */ 185 static int 186 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin, 187 enum ptp_pin_function func) 188 { 189 struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T]; 190 struct ice_pf *pf = ptp_info_to_pf(info); 191 struct ice_hw *hw = &pf->hw; 192 int err; 193 194 if (pin < SMA1 || func > PTP_PF_PEROUT) 195 return -EOPNOTSUPP; 196 197 err = ice_get_sma_config_e810t(hw, ptp_pins); 198 if (err) 199 return err; 200 201 /* Disable the same function on the other pin sharing the channel */ 202 if (pin == SMA1 && ptp_pins[UFL1].func == func) 203 ptp_pins[UFL1].func = PTP_PF_NONE; 204 if (pin == UFL1 && ptp_pins[SMA1].func == func) 205 ptp_pins[SMA1].func = PTP_PF_NONE; 206 207 if (pin == SMA2 && ptp_pins[UFL2].func == func) 208 ptp_pins[UFL2].func = PTP_PF_NONE; 209 if (pin == UFL2 && ptp_pins[SMA2].func == func) 210 ptp_pins[SMA2].func = PTP_PF_NONE; 211 212 /* Set up new pin function in the temp table */ 213 ptp_pins[pin].func = func; 214 215 return ice_ptp_set_sma_config_e810t(hw, ptp_pins); 216 } 217 218 /** 219 * ice_verify_pin_e810t 220 * @info: the driver's PTP info structure 221 * @pin: Pin index 222 * @func: Assigned function 223 * @chan: Assigned channel 224 * 225 * Verify if pin supports requested pin function. If the Check pins consistency. 226 * Reconfigure the SMA logic attached to the given pin to enable its 227 * desired functionality 228 */ 229 static int 230 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin, 231 enum ptp_pin_function func, unsigned int chan) 232 { 233 /* Don't allow channel reassignment */ 234 if (chan != ice_pin_desc_e810t[pin].chan) 235 return -EOPNOTSUPP; 236 237 /* Check if functions are properly assigned */ 238 switch (func) { 239 case PTP_PF_NONE: 240 break; 241 case PTP_PF_EXTTS: 242 if (pin == UFL1) 243 return -EOPNOTSUPP; 244 break; 245 case PTP_PF_PEROUT: 246 if (pin == UFL2 || pin == GNSS) 247 return -EOPNOTSUPP; 248 break; 249 case PTP_PF_PHYSYNC: 250 return -EOPNOTSUPP; 251 } 252 253 return ice_ptp_set_sma_e810t(info, pin, func); 254 } 255 256 /** 257 * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device 258 * @pf: Board private structure 259 * 260 * Program the device to respond appropriately to the Tx timestamp interrupt 261 * cause. 262 */ 263 static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf) 264 { 265 struct ice_hw *hw = &pf->hw; 266 bool enable; 267 u32 val; 268 269 switch (pf->ptp.tx_interrupt_mode) { 270 case ICE_PTP_TX_INTERRUPT_ALL: 271 /* React to interrupts across all quads. */ 272 wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f); 273 enable = true; 274 break; 275 case ICE_PTP_TX_INTERRUPT_NONE: 276 /* Do not react to interrupts on any quad. */ 277 wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0); 278 enable = false; 279 break; 280 case ICE_PTP_TX_INTERRUPT_SELF: 281 default: 282 enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON; 283 break; 284 } 285 286 /* Configure the Tx timestamp interrupt */ 287 val = rd32(hw, PFINT_OICR_ENA); 288 if (enable) 289 val |= PFINT_OICR_TSYN_TX_M; 290 else 291 val &= ~PFINT_OICR_TSYN_TX_M; 292 wr32(hw, PFINT_OICR_ENA, val); 293 } 294 295 /** 296 * ice_set_rx_tstamp - Enable or disable Rx timestamping 297 * @pf: The PF pointer to search in 298 * @on: bool value for whether timestamps are enabled or disabled 299 */ 300 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) 301 { 302 struct ice_vsi *vsi; 303 u16 i; 304 305 vsi = ice_get_main_vsi(pf); 306 if (!vsi || !vsi->rx_rings) 307 return; 308 309 /* Set the timestamp flag for all the Rx rings */ 310 ice_for_each_rxq(vsi, i) { 311 if (!vsi->rx_rings[i]) 312 continue; 313 vsi->rx_rings[i]->ptp_rx = on; 314 } 315 } 316 317 /** 318 * ice_ptp_disable_timestamp_mode - Disable current timestamp mode 319 * @pf: Board private structure 320 * 321 * Called during preparation for reset to temporarily disable timestamping on 322 * the device. Called during remove to disable timestamping while cleaning up 323 * driver resources. 324 */ 325 static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf) 326 { 327 struct ice_hw *hw = &pf->hw; 328 u32 val; 329 330 val = rd32(hw, PFINT_OICR_ENA); 331 val &= ~PFINT_OICR_TSYN_TX_M; 332 wr32(hw, PFINT_OICR_ENA, val); 333 334 ice_set_rx_tstamp(pf, false); 335 } 336 337 /** 338 * ice_ptp_restore_timestamp_mode - Restore timestamp configuration 339 * @pf: Board private structure 340 * 341 * Called at the end of rebuild to restore timestamp configuration after 342 * a device reset. 343 */ 344 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf) 345 { 346 struct ice_hw *hw = &pf->hw; 347 bool enable_rx; 348 349 ice_ptp_cfg_tx_interrupt(pf); 350 351 enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL; 352 ice_set_rx_tstamp(pf, enable_rx); 353 354 /* Trigger an immediate software interrupt to ensure that timestamps 355 * which occurred during reset are handled now. 356 */ 357 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 358 ice_flush(hw); 359 } 360 361 /** 362 * ice_ptp_read_src_clk_reg - Read the source clock register 363 * @pf: Board private structure 364 * @sts: Optional parameter for holding a pair of system timestamps from 365 * the system clock. Will be ignored if NULL is given. 366 */ 367 static u64 368 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) 369 { 370 struct ice_hw *hw = &pf->hw; 371 u32 hi, lo, lo2; 372 u8 tmr_idx; 373 374 tmr_idx = ice_get_ptp_src_clock_index(hw); 375 guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock); 376 /* Read the system timestamp pre PHC read */ 377 ptp_read_system_prets(sts); 378 379 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 380 381 /* Read the system timestamp post PHC read */ 382 ptp_read_system_postts(sts); 383 384 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); 385 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 386 387 if (lo2 < lo) { 388 /* if TIME_L rolled over read TIME_L again and update 389 * system timestamps 390 */ 391 ptp_read_system_prets(sts); 392 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); 393 ptp_read_system_postts(sts); 394 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); 395 } 396 397 return ((u64)hi << 32) | lo; 398 } 399 400 /** 401 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b 402 * @cached_phc_time: recently cached copy of PHC time 403 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value 404 * 405 * Hardware captures timestamps which contain only 32 bits of nominal 406 * nanoseconds, as opposed to the 64bit timestamps that the stack expects. 407 * Note that the captured timestamp values may be 40 bits, but the lower 408 * 8 bits are sub-nanoseconds and generally discarded. 409 * 410 * Extend the 32bit nanosecond timestamp using the following algorithm and 411 * assumptions: 412 * 413 * 1) have a recently cached copy of the PHC time 414 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 415 * seconds) before or after the PHC time was captured. 416 * 3) calculate the delta between the cached time and the timestamp 417 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was 418 * captured after the PHC time. In this case, the full timestamp is just 419 * the cached PHC time plus the delta. 420 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the 421 * timestamp was captured *before* the PHC time, i.e. because the PHC 422 * cache was updated after the timestamp was captured by hardware. In this 423 * case, the full timestamp is the cached time minus the inverse delta. 424 * 425 * This algorithm works even if the PHC time was updated after a Tx timestamp 426 * was requested, but before the Tx timestamp event was reported from 427 * hardware. 428 * 429 * This calculation primarily relies on keeping the cached PHC time up to 430 * date. If the timestamp was captured more than 2^31 nanoseconds after the 431 * PHC time, it is possible that the lower 32bits of PHC time have 432 * overflowed more than once, and we might generate an incorrect timestamp. 433 * 434 * This is prevented by (a) periodically updating the cached PHC time once 435 * a second, and (b) discarding any Tx timestamp packet if it has waited for 436 * a timestamp for more than one second. 437 */ 438 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) 439 { 440 u32 delta, phc_time_lo; 441 u64 ns; 442 443 /* Extract the lower 32 bits of the PHC time */ 444 phc_time_lo = (u32)cached_phc_time; 445 446 /* Calculate the delta between the lower 32bits of the cached PHC 447 * time and the in_tstamp value 448 */ 449 delta = (in_tstamp - phc_time_lo); 450 451 /* Do not assume that the in_tstamp is always more recent than the 452 * cached PHC time. If the delta is large, it indicates that the 453 * in_tstamp was taken in the past, and should be converted 454 * forward. 455 */ 456 if (delta > (U32_MAX / 2)) { 457 /* reverse the delta calculation here */ 458 delta = (phc_time_lo - in_tstamp); 459 ns = cached_phc_time - delta; 460 } else { 461 ns = cached_phc_time + delta; 462 } 463 464 return ns; 465 } 466 467 /** 468 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds 469 * @pf: Board private structure 470 * @in_tstamp: Ingress/egress 40b timestamp value 471 * 472 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal 473 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. 474 * 475 * *--------------------------------------------------------------* 476 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | 477 * *--------------------------------------------------------------* 478 * 479 * The low bit is an indicator of whether the timestamp is valid. The next 480 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, 481 * and the remaining 32 bits are the lower 32 bits of the PHC timer. 482 * 483 * It is assumed that the caller verifies the timestamp is valid prior to 484 * calling this function. 485 * 486 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC 487 * time stored in the device private PTP structure as the basis for timestamp 488 * extension. 489 * 490 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension 491 * algorithm. 492 */ 493 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) 494 { 495 const u64 mask = GENMASK_ULL(31, 0); 496 unsigned long discard_time; 497 498 /* Discard the hardware timestamp if the cached PHC time is too old */ 499 discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); 500 if (time_is_before_jiffies(discard_time)) { 501 pf->ptp.tx_hwtstamp_discarded++; 502 return 0; 503 } 504 505 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, 506 (in_tstamp >> 8) & mask); 507 } 508 509 /** 510 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps 511 * @tx: the PTP Tx timestamp tracker to check 512 * 513 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready 514 * to accept new timestamp requests. 515 * 516 * Assumes the tx->lock spinlock is already held. 517 */ 518 static bool 519 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx) 520 { 521 lockdep_assert_held(&tx->lock); 522 523 return tx->init && !tx->calibrating; 524 } 525 526 /** 527 * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW 528 * @tx: the PTP Tx timestamp tracker 529 * @idx: index of the timestamp to request 530 */ 531 void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx) 532 { 533 struct ice_ptp_port *ptp_port; 534 struct sk_buff *skb; 535 struct ice_pf *pf; 536 537 if (!tx->init) 538 return; 539 540 ptp_port = container_of(tx, struct ice_ptp_port, tx); 541 pf = ptp_port_to_pf(ptp_port); 542 543 /* Drop packets which have waited for more than 2 seconds */ 544 if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) { 545 /* Count the number of Tx timestamps that timed out */ 546 pf->ptp.tx_hwtstamp_timeouts++; 547 548 skb = tx->tstamps[idx].skb; 549 tx->tstamps[idx].skb = NULL; 550 clear_bit(idx, tx->in_use); 551 552 dev_kfree_skb_any(skb); 553 return; 554 } 555 556 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); 557 558 /* Write TS index to read to the PF register so the FW can read it */ 559 wr32(&pf->hw, PF_SB_ATQBAL, 560 TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) | 561 TS_LL_READ_TS); 562 tx->last_ll_ts_idx_read = idx; 563 } 564 565 /** 566 * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port 567 * @tx: the PTP Tx timestamp tracker 568 */ 569 void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx) 570 { 571 struct skb_shared_hwtstamps shhwtstamps = {}; 572 u8 idx = tx->last_ll_ts_idx_read; 573 struct ice_ptp_port *ptp_port; 574 u64 raw_tstamp, tstamp; 575 bool drop_ts = false; 576 struct sk_buff *skb; 577 struct ice_pf *pf; 578 u32 val; 579 580 if (!tx->init || tx->last_ll_ts_idx_read < 0) 581 return; 582 583 ptp_port = container_of(tx, struct ice_ptp_port, tx); 584 pf = ptp_port_to_pf(ptp_port); 585 586 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); 587 588 val = rd32(&pf->hw, PF_SB_ATQBAL); 589 590 /* When the bit is cleared, the TS is ready in the register */ 591 if (val & TS_LL_READ_TS) { 592 dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready"); 593 return; 594 } 595 596 /* High 8 bit value of the TS is on the bits 16:23 */ 597 raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val); 598 raw_tstamp <<= 32; 599 600 /* Read the low 32 bit value */ 601 raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH); 602 603 /* Devices using this interface always verify the timestamp differs 604 * relative to the last cached timestamp value. 605 */ 606 if (raw_tstamp == tx->tstamps[idx].cached_tstamp) 607 return; 608 609 tx->tstamps[idx].cached_tstamp = raw_tstamp; 610 clear_bit(idx, tx->in_use); 611 skb = tx->tstamps[idx].skb; 612 tx->tstamps[idx].skb = NULL; 613 if (test_and_clear_bit(idx, tx->stale)) 614 drop_ts = true; 615 616 if (!skb) 617 return; 618 619 if (drop_ts) { 620 dev_kfree_skb_any(skb); 621 return; 622 } 623 624 /* Extend the timestamp using cached PHC time */ 625 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); 626 if (tstamp) { 627 shhwtstamps.hwtstamp = ns_to_ktime(tstamp); 628 ice_trace(tx_tstamp_complete, skb, idx); 629 } 630 631 skb_tstamp_tx(skb, &shhwtstamps); 632 dev_kfree_skb_any(skb); 633 } 634 635 /** 636 * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port 637 * @tx: the PTP Tx timestamp tracker 638 * 639 * Process timestamps captured by the PHY associated with this port. To do 640 * this, loop over each index with a waiting skb. 641 * 642 * If a given index has a valid timestamp, perform the following steps: 643 * 644 * 1) check that the timestamp request is not stale 645 * 2) check that a timestamp is ready and available in the PHY memory bank 646 * 3) read and copy the timestamp out of the PHY register 647 * 4) unlock the index by clearing the associated in_use bit 648 * 5) check if the timestamp is stale, and discard if so 649 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value 650 * 7) send this 64 bit timestamp to the stack 651 * 652 * Note that we do not hold the tracking lock while reading the Tx timestamp. 653 * This is because reading the timestamp requires taking a mutex that might 654 * sleep. 655 * 656 * The only place where we set in_use is when a new timestamp is initiated 657 * with a slot index. This is only called in the hard xmit routine where an 658 * SKB has a request flag set. The only places where we clear this bit is this 659 * function, or during teardown when the Tx timestamp tracker is being 660 * removed. A timestamp index will never be re-used until the in_use bit for 661 * that index is cleared. 662 * 663 * If a Tx thread starts a new timestamp, we might not begin processing it 664 * right away but we will notice it at the end when we re-queue the task. 665 * 666 * If a Tx thread starts a new timestamp just after this function exits, the 667 * interrupt for that timestamp should re-trigger this function once 668 * a timestamp is ready. 669 * 670 * In cases where the PTP hardware clock was directly adjusted, some 671 * timestamps may not be able to safely use the timestamp extension math. In 672 * this case, software will set the stale bit for any outstanding Tx 673 * timestamps when the clock is adjusted. Then this function will discard 674 * those captured timestamps instead of sending them to the stack. 675 * 676 * If a Tx packet has been waiting for more than 2 seconds, it is not possible 677 * to correctly extend the timestamp using the cached PHC time. It is 678 * extremely unlikely that a packet will ever take this long to timestamp. If 679 * we detect a Tx timestamp request that has waited for this long we assume 680 * the packet will never be sent by hardware and discard it without reading 681 * the timestamp register. 682 */ 683 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx) 684 { 685 struct ice_ptp_port *ptp_port; 686 unsigned long flags; 687 struct ice_pf *pf; 688 struct ice_hw *hw; 689 u64 tstamp_ready; 690 bool link_up; 691 int err; 692 u8 idx; 693 694 ptp_port = container_of(tx, struct ice_ptp_port, tx); 695 pf = ptp_port_to_pf(ptp_port); 696 hw = &pf->hw; 697 698 /* Read the Tx ready status first */ 699 if (tx->has_ready_bitmap) { 700 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); 701 if (err) 702 return; 703 } 704 705 /* Drop packets if the link went down */ 706 link_up = ptp_port->link_up; 707 708 for_each_set_bit(idx, tx->in_use, tx->len) { 709 struct skb_shared_hwtstamps shhwtstamps = {}; 710 u8 phy_idx = idx + tx->offset; 711 u64 raw_tstamp = 0, tstamp; 712 bool drop_ts = !link_up; 713 struct sk_buff *skb; 714 715 /* Drop packets which have waited for more than 2 seconds */ 716 if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) { 717 drop_ts = true; 718 719 /* Count the number of Tx timestamps that timed out */ 720 pf->ptp.tx_hwtstamp_timeouts++; 721 } 722 723 /* Only read a timestamp from the PHY if its marked as ready 724 * by the tstamp_ready register. This avoids unnecessary 725 * reading of timestamps which are not yet valid. This is 726 * important as we must read all timestamps which are valid 727 * and only timestamps which are valid during each interrupt. 728 * If we do not, the hardware logic for generating a new 729 * interrupt can get stuck on some devices. 730 */ 731 if (tx->has_ready_bitmap && 732 !(tstamp_ready & BIT_ULL(phy_idx))) { 733 if (drop_ts) 734 goto skip_ts_read; 735 736 continue; 737 } 738 739 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); 740 741 err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp); 742 if (err && !drop_ts) 743 continue; 744 745 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); 746 747 /* For PHYs which don't implement a proper timestamp ready 748 * bitmap, verify that the timestamp value is different 749 * from the last cached timestamp. If it is not, skip this for 750 * now assuming it hasn't yet been captured by hardware. 751 */ 752 if (!drop_ts && !tx->has_ready_bitmap && 753 raw_tstamp == tx->tstamps[idx].cached_tstamp) 754 continue; 755 756 /* Discard any timestamp value without the valid bit set */ 757 if (!(raw_tstamp & ICE_PTP_TS_VALID)) 758 drop_ts = true; 759 760 skip_ts_read: 761 spin_lock_irqsave(&tx->lock, flags); 762 if (!tx->has_ready_bitmap && raw_tstamp) 763 tx->tstamps[idx].cached_tstamp = raw_tstamp; 764 clear_bit(idx, tx->in_use); 765 skb = tx->tstamps[idx].skb; 766 tx->tstamps[idx].skb = NULL; 767 if (test_and_clear_bit(idx, tx->stale)) 768 drop_ts = true; 769 spin_unlock_irqrestore(&tx->lock, flags); 770 771 /* It is unlikely but possible that the SKB will have been 772 * flushed at this point due to link change or teardown. 773 */ 774 if (!skb) 775 continue; 776 777 if (drop_ts) { 778 dev_kfree_skb_any(skb); 779 continue; 780 } 781 782 /* Extend the timestamp using cached PHC time */ 783 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); 784 if (tstamp) { 785 shhwtstamps.hwtstamp = ns_to_ktime(tstamp); 786 ice_trace(tx_tstamp_complete, skb, idx); 787 } 788 789 skb_tstamp_tx(skb, &shhwtstamps); 790 dev_kfree_skb_any(skb); 791 } 792 } 793 794 /** 795 * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device 796 * @pf: Board private structure 797 */ 798 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf) 799 { 800 struct ice_ptp_port *port; 801 unsigned int i; 802 803 mutex_lock(&pf->ptp.ports_owner.lock); 804 list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) { 805 struct ice_ptp_tx *tx = &port->tx; 806 807 if (!tx || !tx->init) 808 continue; 809 810 ice_ptp_process_tx_tstamp(tx); 811 } 812 mutex_unlock(&pf->ptp.ports_owner.lock); 813 814 for (i = 0; i < ICE_GET_QUAD_NUM(pf->hw.ptp.num_lports); i++) { 815 u64 tstamp_ready; 816 int err; 817 818 /* Read the Tx ready status first */ 819 err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready); 820 if (err) 821 break; 822 else if (tstamp_ready) 823 return ICE_TX_TSTAMP_WORK_PENDING; 824 } 825 826 return ICE_TX_TSTAMP_WORK_DONE; 827 } 828 829 /** 830 * ice_ptp_tx_tstamp - Process Tx timestamps for this function. 831 * @tx: Tx tracking structure to initialize 832 * 833 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete 834 * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise. 835 */ 836 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx) 837 { 838 bool more_timestamps; 839 unsigned long flags; 840 841 if (!tx->init) 842 return ICE_TX_TSTAMP_WORK_DONE; 843 844 /* Process the Tx timestamp tracker */ 845 ice_ptp_process_tx_tstamp(tx); 846 847 /* Check if there are outstanding Tx timestamps */ 848 spin_lock_irqsave(&tx->lock, flags); 849 more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len); 850 spin_unlock_irqrestore(&tx->lock, flags); 851 852 if (more_timestamps) 853 return ICE_TX_TSTAMP_WORK_PENDING; 854 855 return ICE_TX_TSTAMP_WORK_DONE; 856 } 857 858 /** 859 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps 860 * @tx: Tx tracking structure to initialize 861 * 862 * Assumes that the length has already been initialized. Do not call directly, 863 * use the ice_ptp_init_tx_* instead. 864 */ 865 static int 866 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) 867 { 868 unsigned long *in_use, *stale; 869 struct ice_tx_tstamp *tstamps; 870 871 tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL); 872 in_use = bitmap_zalloc(tx->len, GFP_KERNEL); 873 stale = bitmap_zalloc(tx->len, GFP_KERNEL); 874 875 if (!tstamps || !in_use || !stale) { 876 kfree(tstamps); 877 bitmap_free(in_use); 878 bitmap_free(stale); 879 880 return -ENOMEM; 881 } 882 883 tx->tstamps = tstamps; 884 tx->in_use = in_use; 885 tx->stale = stale; 886 tx->init = 1; 887 tx->last_ll_ts_idx_read = -1; 888 889 spin_lock_init(&tx->lock); 890 891 return 0; 892 } 893 894 /** 895 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker 896 * @pf: Board private structure 897 * @tx: the tracker to flush 898 * 899 * Called during teardown when a Tx tracker is being removed. 900 */ 901 static void 902 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) 903 { 904 struct ice_hw *hw = &pf->hw; 905 unsigned long flags; 906 u64 tstamp_ready; 907 int err; 908 u8 idx; 909 910 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); 911 if (err) { 912 dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n", 913 tx->block, err); 914 915 /* If we fail to read the Tx timestamp ready bitmap just 916 * skip clearing the PHY timestamps. 917 */ 918 tstamp_ready = 0; 919 } 920 921 for_each_set_bit(idx, tx->in_use, tx->len) { 922 u8 phy_idx = idx + tx->offset; 923 struct sk_buff *skb; 924 925 /* In case this timestamp is ready, we need to clear it. */ 926 if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx))) 927 ice_clear_phy_tstamp(hw, tx->block, phy_idx); 928 929 spin_lock_irqsave(&tx->lock, flags); 930 skb = tx->tstamps[idx].skb; 931 tx->tstamps[idx].skb = NULL; 932 clear_bit(idx, tx->in_use); 933 clear_bit(idx, tx->stale); 934 spin_unlock_irqrestore(&tx->lock, flags); 935 936 /* Count the number of Tx timestamps flushed */ 937 pf->ptp.tx_hwtstamp_flushed++; 938 939 /* Free the SKB after we've cleared the bit */ 940 dev_kfree_skb_any(skb); 941 } 942 } 943 944 /** 945 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale 946 * @tx: the tracker to mark 947 * 948 * Mark currently outstanding Tx timestamps as stale. This prevents sending 949 * their timestamp value to the stack. This is required to prevent extending 950 * the 40bit hardware timestamp incorrectly. 951 * 952 * This should be called when the PTP clock is modified such as after a set 953 * time request. 954 */ 955 static void 956 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx) 957 { 958 unsigned long flags; 959 960 spin_lock_irqsave(&tx->lock, flags); 961 bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len); 962 spin_unlock_irqrestore(&tx->lock, flags); 963 } 964 965 /** 966 * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock 967 * @pf: Board private structure 968 * 969 * Called by the clock owner to flush all the Tx timestamp trackers associated 970 * with the clock. 971 */ 972 static void 973 ice_ptp_flush_all_tx_tracker(struct ice_pf *pf) 974 { 975 struct ice_ptp_port *port; 976 977 list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) 978 ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx); 979 } 980 981 /** 982 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker 983 * @pf: Board private structure 984 * @tx: Tx tracking structure to release 985 * 986 * Free memory associated with the Tx timestamp tracker. 987 */ 988 static void 989 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) 990 { 991 unsigned long flags; 992 993 spin_lock_irqsave(&tx->lock, flags); 994 tx->init = 0; 995 spin_unlock_irqrestore(&tx->lock, flags); 996 997 /* wait for potentially outstanding interrupt to complete */ 998 synchronize_irq(pf->oicr_irq.virq); 999 1000 ice_ptp_flush_tx_tracker(pf, tx); 1001 1002 kfree(tx->tstamps); 1003 tx->tstamps = NULL; 1004 1005 bitmap_free(tx->in_use); 1006 tx->in_use = NULL; 1007 1008 bitmap_free(tx->stale); 1009 tx->stale = NULL; 1010 1011 tx->len = 0; 1012 } 1013 1014 /** 1015 * ice_ptp_init_tx_eth56g - Initialize tracking for Tx timestamps 1016 * @pf: Board private structure 1017 * @tx: the Tx tracking structure to initialize 1018 * @port: the port this structure tracks 1019 * 1020 * Initialize the Tx timestamp tracker for this port. ETH56G PHYs 1021 * have independent memory blocks for all ports. 1022 * 1023 * Return: 0 for success, -ENOMEM when failed to allocate Tx tracker 1024 */ 1025 static int ice_ptp_init_tx_eth56g(struct ice_pf *pf, struct ice_ptp_tx *tx, 1026 u8 port) 1027 { 1028 tx->block = port; 1029 tx->offset = 0; 1030 tx->len = INDEX_PER_PORT_ETH56G; 1031 tx->has_ready_bitmap = 1; 1032 1033 return ice_ptp_alloc_tx_tracker(tx); 1034 } 1035 1036 /** 1037 * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps 1038 * @pf: Board private structure 1039 * @tx: the Tx tracking structure to initialize 1040 * @port: the port this structure tracks 1041 * 1042 * Initialize the Tx timestamp tracker for this port. For generic MAC devices, 1043 * the timestamp block is shared for all ports in the same quad. To avoid 1044 * ports using the same timestamp index, logically break the block of 1045 * registers into chunks based on the port number. 1046 */ 1047 static int 1048 ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) 1049 { 1050 tx->block = ICE_GET_QUAD_NUM(port); 1051 tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X; 1052 tx->len = INDEX_PER_PORT_E82X; 1053 tx->has_ready_bitmap = 1; 1054 1055 return ice_ptp_alloc_tx_tracker(tx); 1056 } 1057 1058 /** 1059 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps 1060 * @pf: Board private structure 1061 * @tx: the Tx tracking structure to initialize 1062 * 1063 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each 1064 * port has its own block of timestamps, independent of the other ports. 1065 */ 1066 static int 1067 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) 1068 { 1069 tx->block = pf->hw.port_info->lport; 1070 tx->offset = 0; 1071 tx->len = INDEX_PER_PORT_E810; 1072 /* The E810 PHY does not provide a timestamp ready bitmap. Instead, 1073 * verify new timestamps against cached copy of the last read 1074 * timestamp. 1075 */ 1076 tx->has_ready_bitmap = 0; 1077 1078 return ice_ptp_alloc_tx_tracker(tx); 1079 } 1080 1081 /** 1082 * ice_ptp_update_cached_phctime - Update the cached PHC time values 1083 * @pf: Board specific private structure 1084 * 1085 * This function updates the system time values which are cached in the PF 1086 * structure and the Rx rings. 1087 * 1088 * This function must be called periodically to ensure that the cached value 1089 * is never more than 2 seconds old. 1090 * 1091 * Note that the cached copy in the PF PTP structure is always updated, even 1092 * if we can't update the copy in the Rx rings. 1093 * 1094 * Return: 1095 * * 0 - OK, successfully updated 1096 * * -EAGAIN - PF was busy, need to reschedule the update 1097 */ 1098 static int ice_ptp_update_cached_phctime(struct ice_pf *pf) 1099 { 1100 struct device *dev = ice_pf_to_dev(pf); 1101 unsigned long update_before; 1102 u64 systime; 1103 int i; 1104 1105 update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); 1106 if (pf->ptp.cached_phc_time && 1107 time_is_before_jiffies(update_before)) { 1108 unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies; 1109 1110 dev_warn(dev, "%u msecs passed between update to cached PHC time\n", 1111 jiffies_to_msecs(time_taken)); 1112 pf->ptp.late_cached_phc_updates++; 1113 } 1114 1115 /* Read the current PHC time */ 1116 systime = ice_ptp_read_src_clk_reg(pf, NULL); 1117 1118 /* Update the cached PHC time stored in the PF structure */ 1119 WRITE_ONCE(pf->ptp.cached_phc_time, systime); 1120 WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies); 1121 1122 if (test_and_set_bit(ICE_CFG_BUSY, pf->state)) 1123 return -EAGAIN; 1124 1125 ice_for_each_vsi(pf, i) { 1126 struct ice_vsi *vsi = pf->vsi[i]; 1127 int j; 1128 1129 if (!vsi) 1130 continue; 1131 1132 if (vsi->type != ICE_VSI_PF) 1133 continue; 1134 1135 ice_for_each_rxq(vsi, j) { 1136 if (!vsi->rx_rings[j]) 1137 continue; 1138 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); 1139 } 1140 } 1141 clear_bit(ICE_CFG_BUSY, pf->state); 1142 1143 return 0; 1144 } 1145 1146 /** 1147 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update 1148 * @pf: Board specific private structure 1149 * 1150 * This function must be called when the cached PHC time is no longer valid, 1151 * such as after a time adjustment. It marks any currently outstanding Tx 1152 * timestamps as stale and updates the cached PHC time for both the PF and Rx 1153 * rings. 1154 * 1155 * If updating the PHC time cannot be done immediately, a warning message is 1156 * logged and the work item is scheduled immediately to minimize the window 1157 * with a wrong cached timestamp. 1158 */ 1159 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf) 1160 { 1161 struct device *dev = ice_pf_to_dev(pf); 1162 int err; 1163 1164 /* Update the cached PHC time immediately if possible, otherwise 1165 * schedule the work item to execute soon. 1166 */ 1167 err = ice_ptp_update_cached_phctime(pf); 1168 if (err) { 1169 /* If another thread is updating the Rx rings, we won't 1170 * properly reset them here. This could lead to reporting of 1171 * invalid timestamps, but there isn't much we can do. 1172 */ 1173 dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n", 1174 __func__); 1175 1176 /* Queue the work item to update the Rx rings when possible */ 1177 kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, 1178 msecs_to_jiffies(10)); 1179 } 1180 1181 /* Mark any outstanding timestamps as stale, since they might have 1182 * been captured in hardware before the time update. This could lead 1183 * to us extending them with the wrong cached value resulting in 1184 * incorrect timestamp values. 1185 */ 1186 ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx); 1187 } 1188 1189 /** 1190 * ice_ptp_write_init - Set PHC time to provided value 1191 * @pf: Board private structure 1192 * @ts: timespec structure that holds the new time value 1193 * 1194 * Set the PHC time to the specified time provided in the timespec. 1195 */ 1196 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) 1197 { 1198 u64 ns = timespec64_to_ns(ts); 1199 struct ice_hw *hw = &pf->hw; 1200 1201 return ice_ptp_init_time(hw, ns); 1202 } 1203 1204 /** 1205 * ice_ptp_write_adj - Adjust PHC clock time atomically 1206 * @pf: Board private structure 1207 * @adj: Adjustment in nanoseconds 1208 * 1209 * Perform an atomic adjustment of the PHC time by the specified number of 1210 * nanoseconds. 1211 */ 1212 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) 1213 { 1214 struct ice_hw *hw = &pf->hw; 1215 1216 return ice_ptp_adj_clock(hw, adj); 1217 } 1218 1219 /** 1220 * ice_base_incval - Get base timer increment value 1221 * @pf: Board private structure 1222 * 1223 * Look up the base timer increment value for this device. The base increment 1224 * value is used to define the nominal clock tick rate. This increment value 1225 * is programmed during device initialization. It is also used as the basis 1226 * for calculating adjustments using scaled_ppm. 1227 */ 1228 static u64 ice_base_incval(struct ice_pf *pf) 1229 { 1230 struct ice_hw *hw = &pf->hw; 1231 u64 incval; 1232 1233 incval = ice_get_base_incval(hw); 1234 1235 dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n", 1236 incval); 1237 1238 return incval; 1239 } 1240 1241 /** 1242 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state 1243 * @port: PTP port for which Tx FIFO is checked 1244 */ 1245 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port) 1246 { 1247 int offs = port->port_num % ICE_PORTS_PER_QUAD; 1248 int quad = ICE_GET_QUAD_NUM(port->port_num); 1249 struct ice_pf *pf; 1250 struct ice_hw *hw; 1251 u32 val, phy_sts; 1252 int err; 1253 1254 pf = ptp_port_to_pf(port); 1255 hw = &pf->hw; 1256 1257 if (port->tx_fifo_busy_cnt == FIFO_OK) 1258 return 0; 1259 1260 /* need to read FIFO state */ 1261 if (offs == 0 || offs == 1) 1262 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS, 1263 &val); 1264 else 1265 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS, 1266 &val); 1267 1268 if (err) { 1269 dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n", 1270 port->port_num, err); 1271 return err; 1272 } 1273 1274 if (offs & 0x1) 1275 phy_sts = FIELD_GET(Q_REG_FIFO13_M, val); 1276 else 1277 phy_sts = FIELD_GET(Q_REG_FIFO02_M, val); 1278 1279 if (phy_sts & FIFO_EMPTY) { 1280 port->tx_fifo_busy_cnt = FIFO_OK; 1281 return 0; 1282 } 1283 1284 port->tx_fifo_busy_cnt++; 1285 1286 dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n", 1287 port->tx_fifo_busy_cnt, port->port_num); 1288 1289 if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) { 1290 dev_dbg(ice_pf_to_dev(pf), 1291 "Port %d Tx FIFO still not empty; resetting quad %d\n", 1292 port->port_num, quad); 1293 ice_ptp_reset_ts_memory_quad_e82x(hw, quad); 1294 port->tx_fifo_busy_cnt = FIFO_OK; 1295 return 0; 1296 } 1297 1298 return -EAGAIN; 1299 } 1300 1301 /** 1302 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets 1303 * @work: Pointer to the kthread_work structure for this task 1304 * 1305 * Check whether hardware has completed measuring the Tx and Rx offset values 1306 * used to configure and enable vernier timestamp calibration. 1307 * 1308 * Once the offset in either direction is measured, configure the associated 1309 * registers with the calibrated offset values and enable timestamping. The Tx 1310 * and Rx directions are configured independently as soon as their associated 1311 * offsets are known. 1312 * 1313 * This function reschedules itself until both Tx and Rx calibration have 1314 * completed. 1315 */ 1316 static void ice_ptp_wait_for_offsets(struct kthread_work *work) 1317 { 1318 struct ice_ptp_port *port; 1319 struct ice_pf *pf; 1320 struct ice_hw *hw; 1321 int tx_err; 1322 int rx_err; 1323 1324 port = container_of(work, struct ice_ptp_port, ov_work.work); 1325 pf = ptp_port_to_pf(port); 1326 hw = &pf->hw; 1327 1328 if (ice_is_reset_in_progress(pf->state)) { 1329 /* wait for device driver to complete reset */ 1330 kthread_queue_delayed_work(pf->ptp.kworker, 1331 &port->ov_work, 1332 msecs_to_jiffies(100)); 1333 return; 1334 } 1335 1336 tx_err = ice_ptp_check_tx_fifo(port); 1337 if (!tx_err) 1338 tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num); 1339 rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num); 1340 if (tx_err || rx_err) { 1341 /* Tx and/or Rx offset not yet configured, try again later */ 1342 kthread_queue_delayed_work(pf->ptp.kworker, 1343 &port->ov_work, 1344 msecs_to_jiffies(100)); 1345 return; 1346 } 1347 } 1348 1349 /** 1350 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port 1351 * @ptp_port: PTP port to stop 1352 */ 1353 static int 1354 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port) 1355 { 1356 struct ice_pf *pf = ptp_port_to_pf(ptp_port); 1357 u8 port = ptp_port->port_num; 1358 struct ice_hw *hw = &pf->hw; 1359 int err; 1360 1361 if (ice_is_e810(hw)) 1362 return 0; 1363 1364 mutex_lock(&ptp_port->ps_lock); 1365 1366 switch (hw->ptp.phy_model) { 1367 case ICE_PHY_ETH56G: 1368 err = ice_stop_phy_timer_eth56g(hw, port, true); 1369 break; 1370 case ICE_PHY_E82X: 1371 kthread_cancel_delayed_work_sync(&ptp_port->ov_work); 1372 1373 err = ice_stop_phy_timer_e82x(hw, port, true); 1374 break; 1375 default: 1376 err = -ENODEV; 1377 } 1378 if (err && err != -EBUSY) 1379 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n", 1380 port, err); 1381 1382 mutex_unlock(&ptp_port->ps_lock); 1383 1384 return err; 1385 } 1386 1387 /** 1388 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping 1389 * @ptp_port: PTP port for which the PHY start is set 1390 * 1391 * Start the PHY timestamping block, and initiate Vernier timestamping 1392 * calibration. If timestamping cannot be calibrated (such as if link is down) 1393 * then disable the timestamping block instead. 1394 */ 1395 static int 1396 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port) 1397 { 1398 struct ice_pf *pf = ptp_port_to_pf(ptp_port); 1399 u8 port = ptp_port->port_num; 1400 struct ice_hw *hw = &pf->hw; 1401 unsigned long flags; 1402 int err; 1403 1404 if (ice_is_e810(hw)) 1405 return 0; 1406 1407 if (!ptp_port->link_up) 1408 return ice_ptp_port_phy_stop(ptp_port); 1409 1410 mutex_lock(&ptp_port->ps_lock); 1411 1412 switch (hw->ptp.phy_model) { 1413 case ICE_PHY_ETH56G: 1414 err = ice_start_phy_timer_eth56g(hw, port); 1415 break; 1416 case ICE_PHY_E82X: 1417 /* Start the PHY timer in Vernier mode */ 1418 kthread_cancel_delayed_work_sync(&ptp_port->ov_work); 1419 1420 /* temporarily disable Tx timestamps while calibrating 1421 * PHY offset 1422 */ 1423 spin_lock_irqsave(&ptp_port->tx.lock, flags); 1424 ptp_port->tx.calibrating = true; 1425 spin_unlock_irqrestore(&ptp_port->tx.lock, flags); 1426 ptp_port->tx_fifo_busy_cnt = 0; 1427 1428 /* Start the PHY timer in Vernier mode */ 1429 err = ice_start_phy_timer_e82x(hw, port); 1430 if (err) 1431 break; 1432 1433 /* Enable Tx timestamps right away */ 1434 spin_lock_irqsave(&ptp_port->tx.lock, flags); 1435 ptp_port->tx.calibrating = false; 1436 spin_unlock_irqrestore(&ptp_port->tx.lock, flags); 1437 1438 kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 1439 0); 1440 break; 1441 default: 1442 err = -ENODEV; 1443 } 1444 1445 if (err) 1446 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n", 1447 port, err); 1448 1449 mutex_unlock(&ptp_port->ps_lock); 1450 1451 return err; 1452 } 1453 1454 /** 1455 * ice_ptp_link_change - Reconfigure PTP after link status change 1456 * @pf: Board private structure 1457 * @port: Port for which the PHY start is set 1458 * @linkup: Link is up or down 1459 */ 1460 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) 1461 { 1462 struct ice_ptp_port *ptp_port; 1463 struct ice_hw *hw = &pf->hw; 1464 1465 if (pf->ptp.state != ICE_PTP_READY) 1466 return; 1467 1468 if (WARN_ON_ONCE(port >= hw->ptp.num_lports)) 1469 return; 1470 1471 ptp_port = &pf->ptp.port; 1472 if (ice_is_e825c(hw) && hw->ptp.is_2x50g_muxed_topo) 1473 port *= 2; 1474 if (WARN_ON_ONCE(ptp_port->port_num != port)) 1475 return; 1476 1477 /* Update cached link status for this port immediately */ 1478 ptp_port->link_up = linkup; 1479 1480 switch (hw->ptp.phy_model) { 1481 case ICE_PHY_E810: 1482 /* Do not reconfigure E810 PHY */ 1483 return; 1484 case ICE_PHY_ETH56G: 1485 case ICE_PHY_E82X: 1486 ice_ptp_port_phy_restart(ptp_port); 1487 return; 1488 default: 1489 dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__); 1490 } 1491 } 1492 1493 /** 1494 * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings 1495 * @pf: PF private structure 1496 * @ena: bool value to enable or disable interrupt 1497 * @threshold: Minimum number of packets at which intr is triggered 1498 * 1499 * Utility function to configure all the PHY interrupt settings, including 1500 * whether the PHY interrupt is enabled, and what threshold to use. Also 1501 * configures The E82X timestamp owner to react to interrupts from all PHYs. 1502 * 1503 * Return: 0 on success, -EOPNOTSUPP when PHY model incorrect, other error codes 1504 * when failed to configure PHY interrupt for E82X 1505 */ 1506 static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold) 1507 { 1508 struct device *dev = ice_pf_to_dev(pf); 1509 struct ice_hw *hw = &pf->hw; 1510 1511 ice_ptp_reset_ts_memory(hw); 1512 1513 switch (hw->ptp.phy_model) { 1514 case ICE_PHY_ETH56G: { 1515 int port; 1516 1517 for (port = 0; port < hw->ptp.num_lports; port++) { 1518 int err; 1519 1520 err = ice_phy_cfg_intr_eth56g(hw, port, ena, threshold); 1521 if (err) { 1522 dev_err(dev, "Failed to configure PHY interrupt for port %d, err %d\n", 1523 port, err); 1524 return err; 1525 } 1526 } 1527 1528 return 0; 1529 } 1530 case ICE_PHY_E82X: { 1531 int quad; 1532 1533 for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); 1534 quad++) { 1535 int err; 1536 1537 err = ice_phy_cfg_intr_e82x(hw, quad, ena, threshold); 1538 if (err) { 1539 dev_err(dev, "Failed to configure PHY interrupt for quad %d, err %d\n", 1540 quad, err); 1541 return err; 1542 } 1543 } 1544 1545 return 0; 1546 } 1547 case ICE_PHY_E810: 1548 return 0; 1549 case ICE_PHY_UNSUP: 1550 default: 1551 dev_warn(dev, "%s: Unexpected PHY model %d\n", __func__, 1552 hw->ptp.phy_model); 1553 return -EOPNOTSUPP; 1554 } 1555 } 1556 1557 /** 1558 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block 1559 * @pf: Board private structure 1560 */ 1561 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf) 1562 { 1563 ice_ptp_port_phy_restart(&pf->ptp.port); 1564 } 1565 1566 /** 1567 * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping 1568 * @pf: Board private structure 1569 */ 1570 static void ice_ptp_restart_all_phy(struct ice_pf *pf) 1571 { 1572 struct list_head *entry; 1573 1574 list_for_each(entry, &pf->ptp.ports_owner.ports) { 1575 struct ice_ptp_port *port = list_entry(entry, 1576 struct ice_ptp_port, 1577 list_member); 1578 1579 if (port->link_up) 1580 ice_ptp_port_phy_restart(port); 1581 } 1582 } 1583 1584 /** 1585 * ice_ptp_adjfine - Adjust clock increment rate 1586 * @info: the driver's PTP info structure 1587 * @scaled_ppm: Parts per million with 16-bit fractional field 1588 * 1589 * Adjust the frequency of the clock by the indicated scaled ppm from the 1590 * base frequency. 1591 */ 1592 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) 1593 { 1594 struct ice_pf *pf = ptp_info_to_pf(info); 1595 struct ice_hw *hw = &pf->hw; 1596 u64 incval; 1597 int err; 1598 1599 incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm); 1600 err = ice_ptp_write_incval_locked(hw, incval); 1601 if (err) { 1602 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", 1603 err); 1604 return -EIO; 1605 } 1606 1607 return 0; 1608 } 1609 1610 /** 1611 * ice_ptp_extts_event - Process PTP external clock event 1612 * @pf: Board private structure 1613 */ 1614 void ice_ptp_extts_event(struct ice_pf *pf) 1615 { 1616 struct ptp_clock_event event; 1617 struct ice_hw *hw = &pf->hw; 1618 u8 chan, tmr_idx; 1619 u32 hi, lo; 1620 1621 /* Don't process timestamp events if PTP is not ready */ 1622 if (pf->ptp.state != ICE_PTP_READY) 1623 return; 1624 1625 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1626 /* Event time is captured by one of the two matched registers 1627 * GLTSYN_EVNT_L: 32 LSB of sampled time event 1628 * GLTSYN_EVNT_H: 32 MSB of sampled time event 1629 * Event is defined in GLTSYN_EVNT_0 register 1630 */ 1631 for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { 1632 /* Check if channel is enabled */ 1633 if (pf->ptp.ext_ts_irq & (1 << chan)) { 1634 lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); 1635 hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); 1636 event.timestamp = (((u64)hi) << 32) | lo; 1637 event.type = PTP_CLOCK_EXTTS; 1638 event.index = chan; 1639 1640 /* Fire event */ 1641 ptp_clock_event(pf->ptp.clock, &event); 1642 pf->ptp.ext_ts_irq &= ~(1 << chan); 1643 } 1644 } 1645 } 1646 1647 /** 1648 * ice_ptp_cfg_extts - Configure EXTTS pin and channel 1649 * @pf: Board private structure 1650 * @chan: GPIO channel (0-3) 1651 * @config: desired EXTTS configuration. 1652 * @store: If set to true, the values will be stored 1653 * 1654 * Configure an external timestamp event on the requested channel. 1655 * 1656 * Return: 0 on success, -EOPNOTUSPP on unsupported flags 1657 */ 1658 static int ice_ptp_cfg_extts(struct ice_pf *pf, unsigned int chan, 1659 struct ice_extts_channel *config, bool store) 1660 { 1661 u32 func, aux_reg, gpio_reg, irq_reg; 1662 struct ice_hw *hw = &pf->hw; 1663 u8 tmr_idx; 1664 1665 /* Reject requests with unsupported flags */ 1666 if (config->flags & ~(PTP_ENABLE_FEATURE | 1667 PTP_RISING_EDGE | 1668 PTP_FALLING_EDGE | 1669 PTP_STRICT_FLAGS)) 1670 return -EOPNOTSUPP; 1671 1672 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1673 1674 irq_reg = rd32(hw, PFINT_OICR_ENA); 1675 1676 if (config->ena) { 1677 /* Enable the interrupt */ 1678 irq_reg |= PFINT_OICR_TSYN_EVNT_M; 1679 aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; 1680 1681 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) 1682 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) 1683 1684 /* set event level to requested edge */ 1685 if (config->flags & PTP_FALLING_EDGE) 1686 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; 1687 if (config->flags & PTP_RISING_EDGE) 1688 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; 1689 1690 /* Write GPIO CTL reg. 1691 * 0x1 is input sampled by EVENT register(channel) 1692 * + num_in_channels * tmr_idx 1693 */ 1694 func = 1 + chan + (tmr_idx * 3); 1695 gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func); 1696 pf->ptp.ext_ts_chan |= (1 << chan); 1697 } else { 1698 /* clear the values we set to reset defaults */ 1699 aux_reg = 0; 1700 gpio_reg = 0; 1701 pf->ptp.ext_ts_chan &= ~(1 << chan); 1702 if (!pf->ptp.ext_ts_chan) 1703 irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; 1704 } 1705 1706 wr32(hw, PFINT_OICR_ENA, irq_reg); 1707 wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); 1708 wr32(hw, GLGEN_GPIO_CTL(config->gpio_pin), gpio_reg); 1709 1710 if (store) 1711 memcpy(&pf->ptp.extts_channels[chan], config, sizeof(*config)); 1712 1713 return 0; 1714 } 1715 1716 /** 1717 * ice_ptp_disable_all_extts - Disable all EXTTS channels 1718 * @pf: Board private structure 1719 */ 1720 static void ice_ptp_disable_all_extts(struct ice_pf *pf) 1721 { 1722 struct ice_extts_channel extts_cfg = {}; 1723 int i; 1724 1725 for (i = 0; i < pf->ptp.info.n_ext_ts; i++) { 1726 if (pf->ptp.extts_channels[i].ena) { 1727 extts_cfg.gpio_pin = pf->ptp.extts_channels[i].gpio_pin; 1728 extts_cfg.ena = false; 1729 ice_ptp_cfg_extts(pf, i, &extts_cfg, false); 1730 } 1731 } 1732 1733 synchronize_irq(pf->oicr_irq.virq); 1734 } 1735 1736 /** 1737 * ice_ptp_enable_all_extts - Enable all EXTTS channels 1738 * @pf: Board private structure 1739 * 1740 * Called during reset to restore user configuration. 1741 */ 1742 static void ice_ptp_enable_all_extts(struct ice_pf *pf) 1743 { 1744 int i; 1745 1746 for (i = 0; i < pf->ptp.info.n_ext_ts; i++) { 1747 if (pf->ptp.extts_channels[i].ena) 1748 ice_ptp_cfg_extts(pf, i, &pf->ptp.extts_channels[i], 1749 false); 1750 } 1751 } 1752 1753 /** 1754 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave 1755 * @pf: Board private structure 1756 * @chan: GPIO channel (0-3) 1757 * @config: desired periodic clk configuration. NULL will disable channel 1758 * @store: If set to true the values will be stored 1759 * 1760 * Configure the internal clock generator modules to generate the clock wave of 1761 * specified period. 1762 */ 1763 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan, 1764 struct ice_perout_channel *config, bool store) 1765 { 1766 u64 current_time, period, start_time, phase; 1767 struct ice_hw *hw = &pf->hw; 1768 u32 func, val, gpio_pin; 1769 u8 tmr_idx; 1770 1771 if (config && config->flags & ~PTP_PEROUT_PHASE) 1772 return -EOPNOTSUPP; 1773 1774 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 1775 1776 /* 0. Reset mode & out_en in AUX_OUT */ 1777 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); 1778 1779 /* If we're disabling the output, clear out CLKO and TGT and keep 1780 * output level low 1781 */ 1782 if (!config || !config->ena) { 1783 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0); 1784 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0); 1785 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0); 1786 1787 val = GLGEN_GPIO_CTL_PIN_DIR_M; 1788 gpio_pin = pf->ptp.perout_channels[chan].gpio_pin; 1789 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); 1790 1791 /* Store the value if requested */ 1792 if (store) 1793 memset(&pf->ptp.perout_channels[chan], 0, 1794 sizeof(struct ice_perout_channel)); 1795 1796 return 0; 1797 } 1798 period = config->period; 1799 start_time = config->start_time; 1800 div64_u64_rem(start_time, period, &phase); 1801 gpio_pin = config->gpio_pin; 1802 1803 /* 1. Write clkout with half of required period value */ 1804 if (period & 0x1) { 1805 dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); 1806 goto err; 1807 } 1808 1809 period >>= 1; 1810 1811 /* For proper operation, the GLTSYN_CLKO must be larger than clock tick 1812 */ 1813 #define MIN_PULSE 3 1814 if (period <= MIN_PULSE || period > U32_MAX) { 1815 dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33", 1816 MIN_PULSE * 2); 1817 goto err; 1818 } 1819 1820 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); 1821 1822 /* Allow time for programming before start_time is hit */ 1823 current_time = ice_ptp_read_src_clk_reg(pf, NULL); 1824 1825 /* if start time is in the past start the timer at the nearest second 1826 * maintaining phase 1827 */ 1828 if (start_time < current_time) 1829 start_time = roundup_u64(current_time, NSEC_PER_SEC) + phase; 1830 1831 if (ice_is_e810(hw)) 1832 start_time -= E810_OUT_PROP_DELAY_NS; 1833 else 1834 start_time -= ice_e82x_pps_delay(ice_e82x_time_ref(hw)); 1835 1836 /* 2. Write TARGET time */ 1837 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time)); 1838 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time)); 1839 1840 /* 3. Write AUX_OUT register */ 1841 val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; 1842 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); 1843 1844 /* 4. write GPIO CTL reg */ 1845 func = 8 + chan + (tmr_idx * 4); 1846 val = GLGEN_GPIO_CTL_PIN_DIR_M | 1847 FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func); 1848 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); 1849 1850 /* Store the value if requested */ 1851 if (store) { 1852 memcpy(&pf->ptp.perout_channels[chan], config, 1853 sizeof(struct ice_perout_channel)); 1854 pf->ptp.perout_channels[chan].start_time = phase; 1855 } 1856 1857 return 0; 1858 err: 1859 dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n"); 1860 return -EFAULT; 1861 } 1862 1863 /** 1864 * ice_ptp_disable_all_clkout - Disable all currently configured outputs 1865 * @pf: pointer to the PF structure 1866 * 1867 * Disable all currently configured clock outputs. This is necessary before 1868 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to 1869 * re-enable the clocks again. 1870 */ 1871 static void ice_ptp_disable_all_clkout(struct ice_pf *pf) 1872 { 1873 uint i; 1874 1875 for (i = 0; i < pf->ptp.info.n_per_out; i++) 1876 if (pf->ptp.perout_channels[i].ena) 1877 ice_ptp_cfg_clkout(pf, i, NULL, false); 1878 } 1879 1880 /** 1881 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs 1882 * @pf: pointer to the PF structure 1883 * 1884 * Enable all currently configured clock outputs. Use this after 1885 * ice_ptp_disable_all_clkout to reconfigure the output signals according to 1886 * their configuration. 1887 */ 1888 static void ice_ptp_enable_all_clkout(struct ice_pf *pf) 1889 { 1890 uint i; 1891 1892 for (i = 0; i < pf->ptp.info.n_per_out; i++) 1893 if (pf->ptp.perout_channels[i].ena) 1894 ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i], 1895 false); 1896 } 1897 1898 /** 1899 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC 1900 * @info: the driver's PTP info structure 1901 * @rq: The requested feature to change 1902 * @on: Enable/disable flag 1903 */ 1904 static int 1905 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info, 1906 struct ptp_clock_request *rq, int on) 1907 { 1908 struct ice_pf *pf = ptp_info_to_pf(info); 1909 bool sma_pres = false; 1910 unsigned int chan; 1911 u32 gpio_pin; 1912 1913 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) 1914 sma_pres = true; 1915 1916 switch (rq->type) { 1917 case PTP_CLK_REQ_PEROUT: 1918 { 1919 struct ice_perout_channel clk_cfg = {}; 1920 1921 chan = rq->perout.index; 1922 if (sma_pres) { 1923 if (chan == ice_pin_desc_e810t[SMA1].chan) 1924 clk_cfg.gpio_pin = GPIO_20; 1925 else if (chan == ice_pin_desc_e810t[SMA2].chan) 1926 clk_cfg.gpio_pin = GPIO_22; 1927 else 1928 return -1; 1929 } else if (ice_is_e810t(&pf->hw)) { 1930 if (chan == 0) 1931 clk_cfg.gpio_pin = GPIO_20; 1932 else 1933 clk_cfg.gpio_pin = GPIO_22; 1934 } else if (chan == PPS_CLK_GEN_CHAN) { 1935 clk_cfg.gpio_pin = PPS_PIN_INDEX; 1936 } else { 1937 clk_cfg.gpio_pin = chan; 1938 } 1939 1940 clk_cfg.flags = rq->perout.flags; 1941 clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) + 1942 rq->perout.period.nsec); 1943 clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) + 1944 rq->perout.start.nsec); 1945 clk_cfg.ena = !!on; 1946 1947 return ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true); 1948 } 1949 case PTP_CLK_REQ_EXTTS: 1950 { 1951 struct ice_extts_channel extts_cfg = {}; 1952 1953 chan = rq->extts.index; 1954 if (sma_pres) { 1955 if (chan < ice_pin_desc_e810t[SMA2].chan) 1956 gpio_pin = GPIO_21; 1957 else 1958 gpio_pin = GPIO_23; 1959 } else if (ice_is_e810t(&pf->hw)) { 1960 if (chan == 0) 1961 gpio_pin = GPIO_21; 1962 else 1963 gpio_pin = GPIO_23; 1964 } else { 1965 gpio_pin = chan; 1966 } 1967 1968 extts_cfg.flags = rq->extts.flags; 1969 extts_cfg.gpio_pin = gpio_pin; 1970 extts_cfg.ena = !!on; 1971 1972 return ice_ptp_cfg_extts(pf, chan, &extts_cfg, true); 1973 } 1974 default: 1975 return -EOPNOTSUPP; 1976 } 1977 } 1978 1979 /** 1980 * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC 1981 * @info: the driver's PTP info structure 1982 * @rq: The requested feature to change 1983 * @on: Enable/disable flag 1984 */ 1985 static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info, 1986 struct ptp_clock_request *rq, int on) 1987 { 1988 struct ice_pf *pf = ptp_info_to_pf(info); 1989 1990 switch (rq->type) { 1991 case PTP_CLK_REQ_PPS: 1992 { 1993 struct ice_perout_channel clk_cfg = {}; 1994 1995 clk_cfg.flags = rq->perout.flags; 1996 clk_cfg.gpio_pin = PPS_PIN_INDEX; 1997 clk_cfg.period = NSEC_PER_SEC; 1998 clk_cfg.ena = !!on; 1999 2000 return ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true); 2001 } 2002 case PTP_CLK_REQ_EXTTS: 2003 { 2004 struct ice_extts_channel extts_cfg = {}; 2005 2006 extts_cfg.flags = rq->extts.flags; 2007 extts_cfg.gpio_pin = TIME_SYNC_PIN_INDEX; 2008 extts_cfg.ena = !!on; 2009 2010 return ice_ptp_cfg_extts(pf, rq->extts.index, &extts_cfg, true); 2011 } 2012 default: 2013 return -EOPNOTSUPP; 2014 } 2015 } 2016 2017 /** 2018 * ice_ptp_gettimex64 - Get the time of the clock 2019 * @info: the driver's PTP info structure 2020 * @ts: timespec64 structure to hold the current time value 2021 * @sts: Optional parameter for holding a pair of system timestamps from 2022 * the system clock. Will be ignored if NULL is given. 2023 * 2024 * Read the device clock and return the correct value on ns, after converting it 2025 * into a timespec struct. 2026 */ 2027 static int 2028 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, 2029 struct ptp_system_timestamp *sts) 2030 { 2031 struct ice_pf *pf = ptp_info_to_pf(info); 2032 u64 time_ns; 2033 2034 time_ns = ice_ptp_read_src_clk_reg(pf, sts); 2035 *ts = ns_to_timespec64(time_ns); 2036 return 0; 2037 } 2038 2039 /** 2040 * ice_ptp_settime64 - Set the time of the clock 2041 * @info: the driver's PTP info structure 2042 * @ts: timespec64 structure that holds the new time value 2043 * 2044 * Set the device clock to the user input value. The conversion from timespec 2045 * to ns happens in the write function. 2046 */ 2047 static int 2048 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) 2049 { 2050 struct ice_pf *pf = ptp_info_to_pf(info); 2051 struct timespec64 ts64 = *ts; 2052 struct ice_hw *hw = &pf->hw; 2053 int err; 2054 2055 /* For Vernier mode on E82X, we need to recalibrate after new settime. 2056 * Start with marking timestamps as invalid. 2057 */ 2058 if (hw->ptp.phy_model == ICE_PHY_E82X) { 2059 err = ice_ptp_clear_phy_offset_ready_e82x(hw); 2060 if (err) 2061 dev_warn(ice_pf_to_dev(pf), "Failed to mark timestamps as invalid before settime\n"); 2062 } 2063 2064 if (!ice_ptp_lock(hw)) { 2065 err = -EBUSY; 2066 goto exit; 2067 } 2068 2069 /* Disable periodic outputs */ 2070 ice_ptp_disable_all_clkout(pf); 2071 2072 err = ice_ptp_write_init(pf, &ts64); 2073 ice_ptp_unlock(hw); 2074 2075 if (!err) 2076 ice_ptp_reset_cached_phctime(pf); 2077 2078 /* Reenable periodic outputs */ 2079 ice_ptp_enable_all_clkout(pf); 2080 2081 /* Recalibrate and re-enable timestamp blocks for E822/E823 */ 2082 if (hw->ptp.phy_model == ICE_PHY_E82X) 2083 ice_ptp_restart_all_phy(pf); 2084 exit: 2085 if (err) { 2086 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); 2087 return err; 2088 } 2089 2090 return 0; 2091 } 2092 2093 /** 2094 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment 2095 * @info: the driver's PTP info structure 2096 * @delta: Offset in nanoseconds to adjust the time by 2097 */ 2098 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) 2099 { 2100 struct timespec64 now, then; 2101 int ret; 2102 2103 then = ns_to_timespec64(delta); 2104 ret = ice_ptp_gettimex64(info, &now, NULL); 2105 if (ret) 2106 return ret; 2107 now = timespec64_add(now, then); 2108 2109 return ice_ptp_settime64(info, (const struct timespec64 *)&now); 2110 } 2111 2112 /** 2113 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta 2114 * @info: the driver's PTP info structure 2115 * @delta: Offset in nanoseconds to adjust the time by 2116 */ 2117 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) 2118 { 2119 struct ice_pf *pf = ptp_info_to_pf(info); 2120 struct ice_hw *hw = &pf->hw; 2121 struct device *dev; 2122 int err; 2123 2124 dev = ice_pf_to_dev(pf); 2125 2126 /* Hardware only supports atomic adjustments using signed 32-bit 2127 * integers. For any adjustment outside this range, perform 2128 * a non-atomic get->adjust->set flow. 2129 */ 2130 if (delta > S32_MAX || delta < S32_MIN) { 2131 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); 2132 return ice_ptp_adjtime_nonatomic(info, delta); 2133 } 2134 2135 if (!ice_ptp_lock(hw)) { 2136 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); 2137 return -EBUSY; 2138 } 2139 2140 /* Disable periodic outputs */ 2141 ice_ptp_disable_all_clkout(pf); 2142 2143 err = ice_ptp_write_adj(pf, delta); 2144 2145 /* Reenable periodic outputs */ 2146 ice_ptp_enable_all_clkout(pf); 2147 2148 ice_ptp_unlock(hw); 2149 2150 if (err) { 2151 dev_err(dev, "PTP failed to adjust time, err %d\n", err); 2152 return err; 2153 } 2154 2155 ice_ptp_reset_cached_phctime(pf); 2156 2157 return 0; 2158 } 2159 2160 #ifdef CONFIG_ICE_HWTS 2161 /** 2162 * ice_ptp_get_syncdevicetime - Get the cross time stamp info 2163 * @device: Current device time 2164 * @system: System counter value read synchronously with device time 2165 * @ctx: Context provided by timekeeping code 2166 * 2167 * Read device and system (ART) clock simultaneously and return the corrected 2168 * clock values in ns. 2169 */ 2170 static int 2171 ice_ptp_get_syncdevicetime(ktime_t *device, 2172 struct system_counterval_t *system, 2173 void *ctx) 2174 { 2175 struct ice_pf *pf = (struct ice_pf *)ctx; 2176 struct ice_hw *hw = &pf->hw; 2177 u32 hh_lock, hh_art_ctl; 2178 int i; 2179 2180 #define MAX_HH_HW_LOCK_TRIES 5 2181 #define MAX_HH_CTL_LOCK_TRIES 100 2182 2183 for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) { 2184 /* Get the HW lock */ 2185 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 2186 if (hh_lock & PFHH_SEM_BUSY_M) { 2187 usleep_range(10000, 15000); 2188 continue; 2189 } 2190 break; 2191 } 2192 if (hh_lock & PFHH_SEM_BUSY_M) { 2193 dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n"); 2194 return -EBUSY; 2195 } 2196 2197 /* Program cmd to master timer */ 2198 ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME); 2199 2200 /* Start the ART and device clock sync sequence */ 2201 hh_art_ctl = rd32(hw, GLHH_ART_CTL); 2202 hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M; 2203 wr32(hw, GLHH_ART_CTL, hh_art_ctl); 2204 2205 for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) { 2206 /* Wait for sync to complete */ 2207 hh_art_ctl = rd32(hw, GLHH_ART_CTL); 2208 if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) { 2209 udelay(1); 2210 continue; 2211 } else { 2212 u32 hh_ts_lo, hh_ts_hi, tmr_idx; 2213 u64 hh_ts; 2214 2215 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; 2216 /* Read ART time */ 2217 hh_ts_lo = rd32(hw, GLHH_ART_TIME_L); 2218 hh_ts_hi = rd32(hw, GLHH_ART_TIME_H); 2219 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; 2220 system->cycles = hh_ts; 2221 system->cs_id = CSID_X86_ART; 2222 /* Read Device source clock time */ 2223 hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx)); 2224 hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx)); 2225 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; 2226 *device = ns_to_ktime(hh_ts); 2227 break; 2228 } 2229 } 2230 2231 /* Clear the master timer */ 2232 ice_ptp_src_cmd(hw, ICE_PTP_NOP); 2233 2234 /* Release HW lock */ 2235 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); 2236 hh_lock = hh_lock & ~PFHH_SEM_BUSY_M; 2237 wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock); 2238 2239 if (i == MAX_HH_CTL_LOCK_TRIES) 2240 return -ETIMEDOUT; 2241 2242 return 0; 2243 } 2244 2245 /** 2246 * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp 2247 * @info: the driver's PTP info structure 2248 * @cts: The memory to fill the cross timestamp info 2249 * 2250 * Capture a cross timestamp between the ART and the device PTP hardware 2251 * clock. Fill the cross timestamp information and report it back to the 2252 * caller. 2253 * 2254 * This is only valid for E822 and E823 devices which have support for 2255 * generating the cross timestamp via PCIe PTM. 2256 * 2257 * In order to correctly correlate the ART timestamp back to the TSC time, the 2258 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ. 2259 */ 2260 static int 2261 ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info, 2262 struct system_device_crosststamp *cts) 2263 { 2264 struct ice_pf *pf = ptp_info_to_pf(info); 2265 2266 return get_device_system_crosststamp(ice_ptp_get_syncdevicetime, 2267 pf, NULL, cts); 2268 } 2269 #endif /* CONFIG_ICE_HWTS */ 2270 2271 /** 2272 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config 2273 * @pf: Board private structure 2274 * @ifr: ioctl data 2275 * 2276 * Copy the timestamping config to user buffer 2277 */ 2278 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) 2279 { 2280 struct hwtstamp_config *config; 2281 2282 if (pf->ptp.state != ICE_PTP_READY) 2283 return -EIO; 2284 2285 config = &pf->ptp.tstamp_config; 2286 2287 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 2288 -EFAULT : 0; 2289 } 2290 2291 /** 2292 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode 2293 * @pf: Board private structure 2294 * @config: hwtstamp settings requested or saved 2295 */ 2296 static int 2297 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) 2298 { 2299 switch (config->tx_type) { 2300 case HWTSTAMP_TX_OFF: 2301 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF; 2302 break; 2303 case HWTSTAMP_TX_ON: 2304 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON; 2305 break; 2306 default: 2307 return -ERANGE; 2308 } 2309 2310 switch (config->rx_filter) { 2311 case HWTSTAMP_FILTER_NONE: 2312 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 2313 break; 2314 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2315 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2316 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2317 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2318 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2319 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2320 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2321 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2322 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2323 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2324 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2325 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2326 case HWTSTAMP_FILTER_NTP_ALL: 2327 case HWTSTAMP_FILTER_ALL: 2328 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL; 2329 break; 2330 default: 2331 return -ERANGE; 2332 } 2333 2334 /* Immediately update the device timestamping mode */ 2335 ice_ptp_restore_timestamp_mode(pf); 2336 2337 return 0; 2338 } 2339 2340 /** 2341 * ice_ptp_set_ts_config - ioctl interface to control the timestamping 2342 * @pf: Board private structure 2343 * @ifr: ioctl data 2344 * 2345 * Get the user config and store it 2346 */ 2347 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) 2348 { 2349 struct hwtstamp_config config; 2350 int err; 2351 2352 if (pf->ptp.state != ICE_PTP_READY) 2353 return -EAGAIN; 2354 2355 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2356 return -EFAULT; 2357 2358 err = ice_ptp_set_timestamp_mode(pf, &config); 2359 if (err) 2360 return err; 2361 2362 /* Return the actual configuration set */ 2363 config = pf->ptp.tstamp_config; 2364 2365 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2366 -EFAULT : 0; 2367 } 2368 2369 /** 2370 * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns 2371 * @rx_desc: Receive descriptor 2372 * @pkt_ctx: Packet context to get the cached time 2373 * 2374 * The driver receives a notification in the receive descriptor with timestamp. 2375 */ 2376 u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc, 2377 const struct ice_pkt_ctx *pkt_ctx) 2378 { 2379 u64 ts_ns, cached_time; 2380 u32 ts_high; 2381 2382 if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID)) 2383 return 0; 2384 2385 cached_time = READ_ONCE(pkt_ctx->cached_phctime); 2386 2387 /* Do not report a timestamp if we don't have a cached PHC time */ 2388 if (!cached_time) 2389 return 0; 2390 2391 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached 2392 * PHC value, rather than accessing the PF. This also allows us to 2393 * simply pass the upper 32bits of nanoseconds directly. Calling 2394 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these 2395 * bits itself. 2396 */ 2397 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); 2398 ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high); 2399 2400 return ts_ns; 2401 } 2402 2403 /** 2404 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins 2405 * @pf: pointer to the PF structure 2406 * @info: PTP clock info structure 2407 * 2408 * Disable the OS access to the SMA pins. Called to clear out the OS 2409 * indications of pin support when we fail to setup the E810-T SMA control 2410 * register. 2411 */ 2412 static void 2413 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) 2414 { 2415 struct device *dev = ice_pf_to_dev(pf); 2416 2417 dev_warn(dev, "Failed to configure E810-T SMA pin control\n"); 2418 2419 info->enable = NULL; 2420 info->verify = NULL; 2421 info->n_pins = 0; 2422 info->n_ext_ts = 0; 2423 info->n_per_out = 0; 2424 } 2425 2426 /** 2427 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins 2428 * @pf: pointer to the PF structure 2429 * @info: PTP clock info structure 2430 * 2431 * Finish setting up the SMA pins by allocating pin_config, and setting it up 2432 * according to the current status of the SMA. On failure, disable all of the 2433 * extended SMA pin support. 2434 */ 2435 static void 2436 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) 2437 { 2438 struct device *dev = ice_pf_to_dev(pf); 2439 int err; 2440 2441 /* Allocate memory for kernel pins interface */ 2442 info->pin_config = devm_kcalloc(dev, info->n_pins, 2443 sizeof(*info->pin_config), GFP_KERNEL); 2444 if (!info->pin_config) { 2445 ice_ptp_disable_sma_pins_e810t(pf, info); 2446 return; 2447 } 2448 2449 /* Read current SMA status */ 2450 err = ice_get_sma_config_e810t(&pf->hw, info->pin_config); 2451 if (err) 2452 ice_ptp_disable_sma_pins_e810t(pf, info); 2453 } 2454 2455 /** 2456 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs 2457 * @pf: pointer to the PF instance 2458 * @info: PTP clock capabilities 2459 */ 2460 static void 2461 ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info) 2462 { 2463 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { 2464 info->n_ext_ts = N_EXT_TS_E810; 2465 info->n_per_out = N_PER_OUT_E810T; 2466 info->n_pins = NUM_PTP_PINS_E810T; 2467 info->verify = ice_verify_pin_e810t; 2468 2469 /* Complete setup of the SMA pins */ 2470 ice_ptp_setup_sma_pins_e810t(pf, info); 2471 } else if (ice_is_e810t(&pf->hw)) { 2472 info->n_ext_ts = N_EXT_TS_NO_SMA_E810T; 2473 info->n_per_out = N_PER_OUT_NO_SMA_E810T; 2474 } else { 2475 info->n_per_out = N_PER_OUT_E810; 2476 info->n_ext_ts = N_EXT_TS_E810; 2477 } 2478 } 2479 2480 /** 2481 * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs 2482 * @pf: pointer to the PF instance 2483 * @info: PTP clock capabilities 2484 */ 2485 static void 2486 ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info) 2487 { 2488 info->pps = 1; 2489 info->n_per_out = 0; 2490 info->n_ext_ts = 1; 2491 } 2492 2493 /** 2494 * ice_ptp_set_funcs_e82x - Set specialized functions for E82x support 2495 * @pf: Board private structure 2496 * @info: PTP info to fill 2497 * 2498 * Assign functions to the PTP capabiltiies structure for E82x devices. 2499 * Functions which operate across all device families should be set directly 2500 * in ice_ptp_set_caps. Only add functions here which are distinct for E82x 2501 * devices. 2502 */ 2503 static void 2504 ice_ptp_set_funcs_e82x(struct ice_pf *pf, struct ptp_clock_info *info) 2505 { 2506 #ifdef CONFIG_ICE_HWTS 2507 if (boot_cpu_has(X86_FEATURE_ART) && 2508 boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) 2509 info->getcrosststamp = ice_ptp_getcrosststamp_e82x; 2510 #endif /* CONFIG_ICE_HWTS */ 2511 } 2512 2513 /** 2514 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support 2515 * @pf: Board private structure 2516 * @info: PTP info to fill 2517 * 2518 * Assign functions to the PTP capabiltiies structure for E810 devices. 2519 * Functions which operate across all device families should be set directly 2520 * in ice_ptp_set_caps. Only add functions here which are distinct for e810 2521 * devices. 2522 */ 2523 static void 2524 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info) 2525 { 2526 info->enable = ice_ptp_gpio_enable_e810; 2527 ice_ptp_setup_pins_e810(pf, info); 2528 } 2529 2530 /** 2531 * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support 2532 * @pf: Board private structure 2533 * @info: PTP info to fill 2534 * 2535 * Assign functions to the PTP capabiltiies structure for E823 devices. 2536 * Functions which operate across all device families should be set directly 2537 * in ice_ptp_set_caps. Only add functions here which are distinct for e823 2538 * devices. 2539 */ 2540 static void 2541 ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info) 2542 { 2543 ice_ptp_set_funcs_e82x(pf, info); 2544 2545 info->enable = ice_ptp_gpio_enable_e823; 2546 ice_ptp_setup_pins_e823(pf, info); 2547 } 2548 2549 /** 2550 * ice_ptp_set_caps - Set PTP capabilities 2551 * @pf: Board private structure 2552 */ 2553 static void ice_ptp_set_caps(struct ice_pf *pf) 2554 { 2555 struct ptp_clock_info *info = &pf->ptp.info; 2556 struct device *dev = ice_pf_to_dev(pf); 2557 2558 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", 2559 dev_driver_string(dev), dev_name(dev)); 2560 info->owner = THIS_MODULE; 2561 info->max_adj = 100000000; 2562 info->adjtime = ice_ptp_adjtime; 2563 info->adjfine = ice_ptp_adjfine; 2564 info->gettimex64 = ice_ptp_gettimex64; 2565 info->settime64 = ice_ptp_settime64; 2566 2567 if (ice_is_e810(&pf->hw)) 2568 ice_ptp_set_funcs_e810(pf, info); 2569 else if (ice_is_e823(&pf->hw)) 2570 ice_ptp_set_funcs_e823(pf, info); 2571 else 2572 ice_ptp_set_funcs_e82x(pf, info); 2573 } 2574 2575 /** 2576 * ice_ptp_create_clock - Create PTP clock device for userspace 2577 * @pf: Board private structure 2578 * 2579 * This function creates a new PTP clock device. It only creates one if we 2580 * don't already have one. Will return error if it can't create one, but success 2581 * if we already have a device. Should be used by ice_ptp_init to create clock 2582 * initially, and prevent global resets from creating new clock devices. 2583 */ 2584 static long ice_ptp_create_clock(struct ice_pf *pf) 2585 { 2586 struct ptp_clock_info *info; 2587 struct device *dev; 2588 2589 /* No need to create a clock device if we already have one */ 2590 if (pf->ptp.clock) 2591 return 0; 2592 2593 ice_ptp_set_caps(pf); 2594 2595 info = &pf->ptp.info; 2596 dev = ice_pf_to_dev(pf); 2597 2598 /* Attempt to register the clock before enabling the hardware. */ 2599 pf->ptp.clock = ptp_clock_register(info, dev); 2600 if (IS_ERR(pf->ptp.clock)) { 2601 dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device"); 2602 return PTR_ERR(pf->ptp.clock); 2603 } 2604 2605 return 0; 2606 } 2607 2608 /** 2609 * ice_ptp_request_ts - Request an available Tx timestamp index 2610 * @tx: the PTP Tx timestamp tracker to request from 2611 * @skb: the SKB to associate with this timestamp request 2612 */ 2613 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) 2614 { 2615 unsigned long flags; 2616 u8 idx; 2617 2618 spin_lock_irqsave(&tx->lock, flags); 2619 2620 /* Check that this tracker is accepting new timestamp requests */ 2621 if (!ice_ptp_is_tx_tracker_up(tx)) { 2622 spin_unlock_irqrestore(&tx->lock, flags); 2623 return -1; 2624 } 2625 2626 /* Find and set the first available index */ 2627 idx = find_next_zero_bit(tx->in_use, tx->len, 2628 tx->last_ll_ts_idx_read + 1); 2629 if (idx == tx->len) 2630 idx = find_first_zero_bit(tx->in_use, tx->len); 2631 2632 if (idx < tx->len) { 2633 /* We got a valid index that no other thread could have set. Store 2634 * a reference to the skb and the start time to allow discarding old 2635 * requests. 2636 */ 2637 set_bit(idx, tx->in_use); 2638 clear_bit(idx, tx->stale); 2639 tx->tstamps[idx].start = jiffies; 2640 tx->tstamps[idx].skb = skb_get(skb); 2641 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2642 ice_trace(tx_tstamp_request, skb, idx); 2643 } 2644 2645 spin_unlock_irqrestore(&tx->lock, flags); 2646 2647 /* return the appropriate PHY timestamp register index, -1 if no 2648 * indexes were available. 2649 */ 2650 if (idx >= tx->len) 2651 return -1; 2652 else 2653 return idx + tx->offset; 2654 } 2655 2656 /** 2657 * ice_ptp_process_ts - Process the PTP Tx timestamps 2658 * @pf: Board private structure 2659 * 2660 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx 2661 * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise. 2662 */ 2663 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf) 2664 { 2665 switch (pf->ptp.tx_interrupt_mode) { 2666 case ICE_PTP_TX_INTERRUPT_NONE: 2667 /* This device has the clock owner handle timestamps for it */ 2668 return ICE_TX_TSTAMP_WORK_DONE; 2669 case ICE_PTP_TX_INTERRUPT_SELF: 2670 /* This device handles its own timestamps */ 2671 return ice_ptp_tx_tstamp(&pf->ptp.port.tx); 2672 case ICE_PTP_TX_INTERRUPT_ALL: 2673 /* This device handles timestamps for all ports */ 2674 return ice_ptp_tx_tstamp_owner(pf); 2675 default: 2676 WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n", 2677 pf->ptp.tx_interrupt_mode); 2678 return ICE_TX_TSTAMP_WORK_DONE; 2679 } 2680 } 2681 2682 /** 2683 * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt 2684 * @pf: Board private structure 2685 * 2686 * The device PHY issues Tx timestamp interrupts to the driver for processing 2687 * timestamp data from the PHY. It will not interrupt again until all 2688 * current timestamp data is read. In rare circumstances, it is possible that 2689 * the driver fails to read all outstanding data. 2690 * 2691 * To avoid getting permanently stuck, periodically check if the PHY has 2692 * outstanding timestamp data. If so, trigger an interrupt from software to 2693 * process this data. 2694 */ 2695 static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf) 2696 { 2697 struct device *dev = ice_pf_to_dev(pf); 2698 struct ice_hw *hw = &pf->hw; 2699 bool trigger_oicr = false; 2700 unsigned int i; 2701 2702 if (ice_is_e810(hw)) 2703 return; 2704 2705 if (!ice_pf_src_tmr_owned(pf)) 2706 return; 2707 2708 for (i = 0; i < ICE_GET_QUAD_NUM(hw->ptp.num_lports); i++) { 2709 u64 tstamp_ready; 2710 int err; 2711 2712 err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready); 2713 if (!err && tstamp_ready) { 2714 trigger_oicr = true; 2715 break; 2716 } 2717 } 2718 2719 if (trigger_oicr) { 2720 /* Trigger a software interrupt, to ensure this data 2721 * gets processed. 2722 */ 2723 dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n"); 2724 2725 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 2726 ice_flush(hw); 2727 } 2728 } 2729 2730 static void ice_ptp_periodic_work(struct kthread_work *work) 2731 { 2732 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); 2733 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); 2734 int err; 2735 2736 if (pf->ptp.state != ICE_PTP_READY) 2737 return; 2738 2739 err = ice_ptp_update_cached_phctime(pf); 2740 2741 ice_ptp_maybe_trigger_tx_interrupt(pf); 2742 2743 /* Run twice a second or reschedule if phc update failed */ 2744 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 2745 msecs_to_jiffies(err ? 10 : 500)); 2746 } 2747 2748 /** 2749 * ice_ptp_prepare_for_reset - Prepare PTP for reset 2750 * @pf: Board private structure 2751 * @reset_type: the reset type being performed 2752 */ 2753 void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 2754 { 2755 struct ice_ptp *ptp = &pf->ptp; 2756 u8 src_tmr; 2757 2758 if (ptp->state != ICE_PTP_READY) 2759 return; 2760 2761 ptp->state = ICE_PTP_RESETTING; 2762 2763 /* Disable timestamping for both Tx and Rx */ 2764 ice_ptp_disable_timestamp_mode(pf); 2765 2766 kthread_cancel_delayed_work_sync(&ptp->work); 2767 2768 if (reset_type == ICE_RESET_PFR) 2769 return; 2770 2771 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); 2772 2773 /* Disable periodic outputs */ 2774 ice_ptp_disable_all_clkout(pf); 2775 2776 src_tmr = ice_get_ptp_src_clock_index(&pf->hw); 2777 2778 /* Disable source clock */ 2779 wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M); 2780 2781 /* Acquire PHC and system timer to restore after reset */ 2782 ptp->reset_time = ktime_get_real_ns(); 2783 } 2784 2785 /** 2786 * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset 2787 * @pf: Board private structure 2788 * 2789 * Companion function for ice_ptp_rebuild() which handles tasks that only the 2790 * PTP clock owner instance should perform. 2791 */ 2792 static int ice_ptp_rebuild_owner(struct ice_pf *pf) 2793 { 2794 struct ice_ptp *ptp = &pf->ptp; 2795 struct ice_hw *hw = &pf->hw; 2796 struct timespec64 ts; 2797 u64 time_diff; 2798 int err; 2799 2800 err = ice_ptp_init_phc(hw); 2801 if (err) 2802 return err; 2803 2804 /* Acquire the global hardware lock */ 2805 if (!ice_ptp_lock(hw)) { 2806 err = -EBUSY; 2807 return err; 2808 } 2809 2810 /* Write the increment time value to PHY and LAN */ 2811 err = ice_ptp_write_incval(hw, ice_base_incval(pf)); 2812 if (err) { 2813 ice_ptp_unlock(hw); 2814 return err; 2815 } 2816 2817 /* Write the initial Time value to PHY and LAN using the cached PHC 2818 * time before the reset and time difference between stopping and 2819 * starting the clock. 2820 */ 2821 if (ptp->cached_phc_time) { 2822 time_diff = ktime_get_real_ns() - ptp->reset_time; 2823 ts = ns_to_timespec64(ptp->cached_phc_time + time_diff); 2824 } else { 2825 ts = ktime_to_timespec64(ktime_get_real()); 2826 } 2827 err = ice_ptp_write_init(pf, &ts); 2828 if (err) { 2829 ice_ptp_unlock(hw); 2830 return err; 2831 } 2832 2833 /* Release the global hardware lock */ 2834 ice_ptp_unlock(hw); 2835 2836 /* Flush software tracking of any outstanding timestamps since we're 2837 * about to flush the PHY timestamp block. 2838 */ 2839 ice_ptp_flush_all_tx_tracker(pf); 2840 2841 if (!ice_is_e810(hw)) { 2842 /* Enable quad interrupts */ 2843 err = ice_ptp_cfg_phy_interrupt(pf, true, 1); 2844 if (err) 2845 return err; 2846 2847 ice_ptp_restart_all_phy(pf); 2848 } 2849 2850 /* Re-enable all periodic outputs and external timestamp events */ 2851 ice_ptp_enable_all_clkout(pf); 2852 ice_ptp_enable_all_extts(pf); 2853 2854 return 0; 2855 } 2856 2857 /** 2858 * ice_ptp_rebuild - Initialize PTP hardware clock support after reset 2859 * @pf: Board private structure 2860 * @reset_type: the reset type being performed 2861 */ 2862 void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 2863 { 2864 struct ice_ptp *ptp = &pf->ptp; 2865 int err; 2866 2867 if (ptp->state == ICE_PTP_READY) { 2868 ice_ptp_prepare_for_reset(pf, reset_type); 2869 } else if (ptp->state != ICE_PTP_RESETTING) { 2870 err = -EINVAL; 2871 dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n"); 2872 goto err; 2873 } 2874 2875 if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) { 2876 err = ice_ptp_rebuild_owner(pf); 2877 if (err) 2878 goto err; 2879 } 2880 2881 ptp->state = ICE_PTP_READY; 2882 2883 /* Start periodic work going */ 2884 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); 2885 2886 dev_info(ice_pf_to_dev(pf), "PTP reset successful\n"); 2887 return; 2888 2889 err: 2890 ptp->state = ICE_PTP_ERROR; 2891 dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err); 2892 } 2893 2894 /** 2895 * ice_ptp_aux_dev_to_aux_pf - Get auxiliary PF handle for the auxiliary device 2896 * @aux_dev: auxiliary device to get the auxiliary PF for 2897 */ 2898 static struct ice_pf * 2899 ice_ptp_aux_dev_to_aux_pf(struct auxiliary_device *aux_dev) 2900 { 2901 struct ice_ptp_port *aux_port; 2902 struct ice_ptp *aux_ptp; 2903 2904 aux_port = container_of(aux_dev, struct ice_ptp_port, aux_dev); 2905 aux_ptp = container_of(aux_port, struct ice_ptp, port); 2906 2907 return container_of(aux_ptp, struct ice_pf, ptp); 2908 } 2909 2910 /** 2911 * ice_ptp_aux_dev_to_owner_pf - Get PF handle for the auxiliary device 2912 * @aux_dev: auxiliary device to get the PF for 2913 */ 2914 static struct ice_pf * 2915 ice_ptp_aux_dev_to_owner_pf(struct auxiliary_device *aux_dev) 2916 { 2917 struct ice_ptp_port_owner *ports_owner; 2918 const struct auxiliary_driver *aux_drv; 2919 struct ice_ptp *owner_ptp; 2920 2921 if (!aux_dev->dev.driver) 2922 return NULL; 2923 2924 aux_drv = to_auxiliary_drv(aux_dev->dev.driver); 2925 ports_owner = container_of(aux_drv, struct ice_ptp_port_owner, 2926 aux_driver); 2927 owner_ptp = container_of(ports_owner, struct ice_ptp, ports_owner); 2928 return container_of(owner_ptp, struct ice_pf, ptp); 2929 } 2930 2931 /** 2932 * ice_ptp_auxbus_probe - Probe auxiliary devices 2933 * @aux_dev: PF's auxiliary device 2934 * @id: Auxiliary device ID 2935 */ 2936 static int ice_ptp_auxbus_probe(struct auxiliary_device *aux_dev, 2937 const struct auxiliary_device_id *id) 2938 { 2939 struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev); 2940 struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev); 2941 2942 if (WARN_ON(!owner_pf)) 2943 return -ENODEV; 2944 2945 INIT_LIST_HEAD(&aux_pf->ptp.port.list_member); 2946 mutex_lock(&owner_pf->ptp.ports_owner.lock); 2947 list_add(&aux_pf->ptp.port.list_member, 2948 &owner_pf->ptp.ports_owner.ports); 2949 mutex_unlock(&owner_pf->ptp.ports_owner.lock); 2950 2951 return 0; 2952 } 2953 2954 /** 2955 * ice_ptp_auxbus_remove - Remove auxiliary devices from the bus 2956 * @aux_dev: PF's auxiliary device 2957 */ 2958 static void ice_ptp_auxbus_remove(struct auxiliary_device *aux_dev) 2959 { 2960 struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev); 2961 struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev); 2962 2963 mutex_lock(&owner_pf->ptp.ports_owner.lock); 2964 list_del(&aux_pf->ptp.port.list_member); 2965 mutex_unlock(&owner_pf->ptp.ports_owner.lock); 2966 } 2967 2968 /** 2969 * ice_ptp_auxbus_shutdown 2970 * @aux_dev: PF's auxiliary device 2971 */ 2972 static void ice_ptp_auxbus_shutdown(struct auxiliary_device *aux_dev) 2973 { 2974 /* Doing nothing here, but handle to auxbus driver must be satisfied */ 2975 } 2976 2977 /** 2978 * ice_ptp_auxbus_suspend 2979 * @aux_dev: PF's auxiliary device 2980 * @state: power management state indicator 2981 */ 2982 static int 2983 ice_ptp_auxbus_suspend(struct auxiliary_device *aux_dev, pm_message_t state) 2984 { 2985 /* Doing nothing here, but handle to auxbus driver must be satisfied */ 2986 return 0; 2987 } 2988 2989 /** 2990 * ice_ptp_auxbus_resume 2991 * @aux_dev: PF's auxiliary device 2992 */ 2993 static int ice_ptp_auxbus_resume(struct auxiliary_device *aux_dev) 2994 { 2995 /* Doing nothing here, but handle to auxbus driver must be satisfied */ 2996 return 0; 2997 } 2998 2999 /** 3000 * ice_ptp_auxbus_create_id_table - Create auxiliary device ID table 3001 * @pf: Board private structure 3002 * @name: auxiliary bus driver name 3003 */ 3004 static struct auxiliary_device_id * 3005 ice_ptp_auxbus_create_id_table(struct ice_pf *pf, const char *name) 3006 { 3007 struct auxiliary_device_id *ids; 3008 3009 /* Second id left empty to terminate the array */ 3010 ids = devm_kcalloc(ice_pf_to_dev(pf), 2, 3011 sizeof(struct auxiliary_device_id), GFP_KERNEL); 3012 if (!ids) 3013 return NULL; 3014 3015 snprintf(ids[0].name, sizeof(ids[0].name), "ice.%s", name); 3016 3017 return ids; 3018 } 3019 3020 /** 3021 * ice_ptp_register_auxbus_driver - Register PTP auxiliary bus driver 3022 * @pf: Board private structure 3023 */ 3024 static int ice_ptp_register_auxbus_driver(struct ice_pf *pf) 3025 { 3026 struct auxiliary_driver *aux_driver; 3027 struct ice_ptp *ptp; 3028 struct device *dev; 3029 char *name; 3030 int err; 3031 3032 ptp = &pf->ptp; 3033 dev = ice_pf_to_dev(pf); 3034 aux_driver = &ptp->ports_owner.aux_driver; 3035 INIT_LIST_HEAD(&ptp->ports_owner.ports); 3036 mutex_init(&ptp->ports_owner.lock); 3037 name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u", 3038 pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn), 3039 ice_get_ptp_src_clock_index(&pf->hw)); 3040 if (!name) 3041 return -ENOMEM; 3042 3043 aux_driver->name = name; 3044 aux_driver->shutdown = ice_ptp_auxbus_shutdown; 3045 aux_driver->suspend = ice_ptp_auxbus_suspend; 3046 aux_driver->remove = ice_ptp_auxbus_remove; 3047 aux_driver->resume = ice_ptp_auxbus_resume; 3048 aux_driver->probe = ice_ptp_auxbus_probe; 3049 aux_driver->id_table = ice_ptp_auxbus_create_id_table(pf, name); 3050 if (!aux_driver->id_table) 3051 return -ENOMEM; 3052 3053 err = auxiliary_driver_register(aux_driver); 3054 if (err) { 3055 devm_kfree(dev, aux_driver->id_table); 3056 dev_err(dev, "Failed registering aux_driver, name <%s>\n", 3057 name); 3058 } 3059 3060 return err; 3061 } 3062 3063 /** 3064 * ice_ptp_unregister_auxbus_driver - Unregister PTP auxiliary bus driver 3065 * @pf: Board private structure 3066 */ 3067 static void ice_ptp_unregister_auxbus_driver(struct ice_pf *pf) 3068 { 3069 struct auxiliary_driver *aux_driver = &pf->ptp.ports_owner.aux_driver; 3070 3071 auxiliary_driver_unregister(aux_driver); 3072 devm_kfree(ice_pf_to_dev(pf), aux_driver->id_table); 3073 3074 mutex_destroy(&pf->ptp.ports_owner.lock); 3075 } 3076 3077 /** 3078 * ice_ptp_clock_index - Get the PTP clock index for this device 3079 * @pf: Board private structure 3080 * 3081 * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock 3082 * is associated. 3083 */ 3084 int ice_ptp_clock_index(struct ice_pf *pf) 3085 { 3086 struct auxiliary_device *aux_dev; 3087 struct ice_pf *owner_pf; 3088 struct ptp_clock *clock; 3089 3090 aux_dev = &pf->ptp.port.aux_dev; 3091 owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev); 3092 if (!owner_pf) 3093 return -1; 3094 clock = owner_pf->ptp.clock; 3095 3096 return clock ? ptp_clock_index(clock) : -1; 3097 } 3098 3099 /** 3100 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device 3101 * @pf: Board private structure 3102 * 3103 * Setup and initialize a PTP clock device that represents the device hardware 3104 * clock. Save the clock index for other functions connected to the same 3105 * hardware resource. 3106 */ 3107 static int ice_ptp_init_owner(struct ice_pf *pf) 3108 { 3109 struct ice_hw *hw = &pf->hw; 3110 struct timespec64 ts; 3111 int err; 3112 3113 err = ice_ptp_init_phc(hw); 3114 if (err) { 3115 dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n", 3116 err); 3117 return err; 3118 } 3119 3120 /* Acquire the global hardware lock */ 3121 if (!ice_ptp_lock(hw)) { 3122 err = -EBUSY; 3123 goto err_exit; 3124 } 3125 3126 /* Write the increment time value to PHY and LAN */ 3127 err = ice_ptp_write_incval(hw, ice_base_incval(pf)); 3128 if (err) { 3129 ice_ptp_unlock(hw); 3130 goto err_exit; 3131 } 3132 3133 ts = ktime_to_timespec64(ktime_get_real()); 3134 /* Write the initial Time value to PHY and LAN */ 3135 err = ice_ptp_write_init(pf, &ts); 3136 if (err) { 3137 ice_ptp_unlock(hw); 3138 goto err_exit; 3139 } 3140 3141 /* Release the global hardware lock */ 3142 ice_ptp_unlock(hw); 3143 3144 /* Configure PHY interrupt settings */ 3145 err = ice_ptp_cfg_phy_interrupt(pf, true, 1); 3146 if (err) 3147 goto err_exit; 3148 3149 /* Ensure we have a clock device */ 3150 err = ice_ptp_create_clock(pf); 3151 if (err) 3152 goto err_clk; 3153 3154 err = ice_ptp_register_auxbus_driver(pf); 3155 if (err) { 3156 dev_err(ice_pf_to_dev(pf), "Failed to register PTP auxbus driver"); 3157 goto err_aux; 3158 } 3159 3160 return 0; 3161 err_aux: 3162 ptp_clock_unregister(pf->ptp.clock); 3163 err_clk: 3164 pf->ptp.clock = NULL; 3165 err_exit: 3166 return err; 3167 } 3168 3169 /** 3170 * ice_ptp_init_work - Initialize PTP work threads 3171 * @pf: Board private structure 3172 * @ptp: PF PTP structure 3173 */ 3174 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp) 3175 { 3176 struct kthread_worker *kworker; 3177 3178 /* Initialize work functions */ 3179 kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work); 3180 3181 /* Allocate a kworker for handling work required for the ports 3182 * connected to the PTP hardware clock. 3183 */ 3184 kworker = kthread_create_worker(0, "ice-ptp-%s", 3185 dev_name(ice_pf_to_dev(pf))); 3186 if (IS_ERR(kworker)) 3187 return PTR_ERR(kworker); 3188 3189 ptp->kworker = kworker; 3190 3191 /* Start periodic work going */ 3192 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); 3193 3194 return 0; 3195 } 3196 3197 /** 3198 * ice_ptp_init_port - Initialize PTP port structure 3199 * @pf: Board private structure 3200 * @ptp_port: PTP port structure 3201 */ 3202 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port) 3203 { 3204 struct ice_hw *hw = &pf->hw; 3205 3206 mutex_init(&ptp_port->ps_lock); 3207 3208 switch (hw->ptp.phy_model) { 3209 case ICE_PHY_ETH56G: 3210 return ice_ptp_init_tx_eth56g(pf, &ptp_port->tx, 3211 ptp_port->port_num); 3212 case ICE_PHY_E810: 3213 return ice_ptp_init_tx_e810(pf, &ptp_port->tx); 3214 case ICE_PHY_E82X: 3215 kthread_init_delayed_work(&ptp_port->ov_work, 3216 ice_ptp_wait_for_offsets); 3217 3218 return ice_ptp_init_tx_e82x(pf, &ptp_port->tx, 3219 ptp_port->port_num); 3220 default: 3221 return -ENODEV; 3222 } 3223 } 3224 3225 /** 3226 * ice_ptp_release_auxbus_device 3227 * @dev: device that utilizes the auxbus 3228 */ 3229 static void ice_ptp_release_auxbus_device(struct device *dev) 3230 { 3231 /* Doing nothing here, but handle to auxbux device must be satisfied */ 3232 } 3233 3234 /** 3235 * ice_ptp_create_auxbus_device - Create PTP auxiliary bus device 3236 * @pf: Board private structure 3237 */ 3238 static int ice_ptp_create_auxbus_device(struct ice_pf *pf) 3239 { 3240 struct auxiliary_device *aux_dev; 3241 struct ice_ptp *ptp; 3242 struct device *dev; 3243 char *name; 3244 int err; 3245 u32 id; 3246 3247 ptp = &pf->ptp; 3248 id = ptp->port.port_num; 3249 dev = ice_pf_to_dev(pf); 3250 3251 aux_dev = &ptp->port.aux_dev; 3252 3253 name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u", 3254 pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn), 3255 ice_get_ptp_src_clock_index(&pf->hw)); 3256 if (!name) 3257 return -ENOMEM; 3258 3259 aux_dev->name = name; 3260 aux_dev->id = id; 3261 aux_dev->dev.release = ice_ptp_release_auxbus_device; 3262 aux_dev->dev.parent = dev; 3263 3264 err = auxiliary_device_init(aux_dev); 3265 if (err) 3266 goto aux_err; 3267 3268 err = auxiliary_device_add(aux_dev); 3269 if (err) { 3270 auxiliary_device_uninit(aux_dev); 3271 goto aux_err; 3272 } 3273 3274 return 0; 3275 aux_err: 3276 dev_err(dev, "Failed to create PTP auxiliary bus device <%s>\n", name); 3277 devm_kfree(dev, name); 3278 return err; 3279 } 3280 3281 /** 3282 * ice_ptp_remove_auxbus_device - Remove PTP auxiliary bus device 3283 * @pf: Board private structure 3284 */ 3285 static void ice_ptp_remove_auxbus_device(struct ice_pf *pf) 3286 { 3287 struct auxiliary_device *aux_dev = &pf->ptp.port.aux_dev; 3288 3289 auxiliary_device_delete(aux_dev); 3290 auxiliary_device_uninit(aux_dev); 3291 3292 memset(aux_dev, 0, sizeof(*aux_dev)); 3293 } 3294 3295 /** 3296 * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode 3297 * @pf: Board private structure 3298 * 3299 * Initialize the Tx timestamp interrupt mode for this device. For most device 3300 * types, each PF processes the interrupt and manages its own timestamps. For 3301 * E822-based devices, only the clock owner processes the timestamps. Other 3302 * PFs disable the interrupt and do not process their own timestamps. 3303 */ 3304 static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf) 3305 { 3306 switch (pf->hw.ptp.phy_model) { 3307 case ICE_PHY_E82X: 3308 /* E822 based PHY has the clock owner process the interrupt 3309 * for all ports. 3310 */ 3311 if (ice_pf_src_tmr_owned(pf)) 3312 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL; 3313 else 3314 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE; 3315 break; 3316 default: 3317 /* other PHY types handle their own Tx interrupt */ 3318 pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF; 3319 } 3320 } 3321 3322 /** 3323 * ice_ptp_init - Initialize PTP hardware clock support 3324 * @pf: Board private structure 3325 * 3326 * Set up the device for interacting with the PTP hardware clock for all 3327 * functions, both the function that owns the clock hardware, and the 3328 * functions connected to the clock hardware. 3329 * 3330 * The clock owner will allocate and register a ptp_clock with the 3331 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work 3332 * items used for asynchronous work such as Tx timestamps and periodic work. 3333 */ 3334 void ice_ptp_init(struct ice_pf *pf) 3335 { 3336 struct ice_ptp *ptp = &pf->ptp; 3337 struct ice_hw *hw = &pf->hw; 3338 int err; 3339 3340 ptp->state = ICE_PTP_INITIALIZING; 3341 3342 ice_ptp_init_hw(hw); 3343 3344 ice_ptp_init_tx_interrupt_mode(pf); 3345 3346 /* If this function owns the clock hardware, it must allocate and 3347 * configure the PTP clock device to represent it. 3348 */ 3349 if (ice_pf_src_tmr_owned(pf)) { 3350 err = ice_ptp_init_owner(pf); 3351 if (err) 3352 goto err; 3353 } 3354 3355 ptp->port.port_num = hw->pf_id; 3356 if (ice_is_e825c(hw) && hw->ptp.is_2x50g_muxed_topo) 3357 ptp->port.port_num = hw->pf_id * 2; 3358 3359 err = ice_ptp_init_port(pf, &ptp->port); 3360 if (err) 3361 goto err; 3362 3363 /* Start the PHY timestamping block */ 3364 ice_ptp_reset_phy_timestamping(pf); 3365 3366 /* Configure initial Tx interrupt settings */ 3367 ice_ptp_cfg_tx_interrupt(pf); 3368 3369 err = ice_ptp_create_auxbus_device(pf); 3370 if (err) 3371 goto err; 3372 3373 ptp->state = ICE_PTP_READY; 3374 3375 err = ice_ptp_init_work(pf, ptp); 3376 if (err) 3377 goto err; 3378 3379 dev_info(ice_pf_to_dev(pf), "PTP init successful\n"); 3380 return; 3381 3382 err: 3383 /* If we registered a PTP clock, release it */ 3384 if (pf->ptp.clock) { 3385 ptp_clock_unregister(ptp->clock); 3386 pf->ptp.clock = NULL; 3387 } 3388 ptp->state = ICE_PTP_ERROR; 3389 dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err); 3390 } 3391 3392 /** 3393 * ice_ptp_release - Disable the driver/HW support and unregister the clock 3394 * @pf: Board private structure 3395 * 3396 * This function handles the cleanup work required from the initialization by 3397 * clearing out the important information and unregistering the clock 3398 */ 3399 void ice_ptp_release(struct ice_pf *pf) 3400 { 3401 if (pf->ptp.state != ICE_PTP_READY) 3402 return; 3403 3404 pf->ptp.state = ICE_PTP_UNINIT; 3405 3406 /* Disable timestamping for both Tx and Rx */ 3407 ice_ptp_disable_timestamp_mode(pf); 3408 3409 ice_ptp_remove_auxbus_device(pf); 3410 3411 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); 3412 3413 ice_ptp_disable_all_extts(pf); 3414 3415 kthread_cancel_delayed_work_sync(&pf->ptp.work); 3416 3417 ice_ptp_port_phy_stop(&pf->ptp.port); 3418 mutex_destroy(&pf->ptp.port.ps_lock); 3419 if (pf->ptp.kworker) { 3420 kthread_destroy_worker(pf->ptp.kworker); 3421 pf->ptp.kworker = NULL; 3422 } 3423 3424 if (ice_pf_src_tmr_owned(pf)) 3425 ice_ptp_unregister_auxbus_driver(pf); 3426 3427 if (!pf->ptp.clock) 3428 return; 3429 3430 /* Disable periodic outputs */ 3431 ice_ptp_disable_all_clkout(pf); 3432 3433 ptp_clock_unregister(pf->ptp.clock); 3434 pf->ptp.clock = NULL; 3435 3436 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); 3437 } 3438