xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp.c (revision 061834624c87282c6d9d8c5395aaff4380e5e1fc)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7 
8 #define E810_OUT_PROP_DELAY_NS 1
9 
10 #define UNKNOWN_INCVAL_E822 0x100000000ULL
11 
12 static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
13 	/* name    idx   func         chan */
14 	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
15 	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
16 	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
17 	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
18 	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
19 };
20 
21 /**
22  * ice_get_sma_config_e810t
23  * @hw: pointer to the hw struct
24  * @ptp_pins: pointer to the ptp_pin_desc struture
25  *
26  * Read the configuration of the SMA control logic and put it into the
27  * ptp_pin_desc structure
28  */
29 static int
30 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
31 {
32 	u8 data, i;
33 	int status;
34 
35 	/* Read initial pin state */
36 	status = ice_read_sma_ctrl_e810t(hw, &data);
37 	if (status)
38 		return status;
39 
40 	/* initialize with defaults */
41 	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
42 		snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
43 			 "%s", ice_pin_desc_e810t[i].name);
44 		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
45 		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
46 		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
47 	}
48 
49 	/* Parse SMA1/UFL1 */
50 	switch (data & ICE_SMA1_MASK_E810T) {
51 	case ICE_SMA1_MASK_E810T:
52 	default:
53 		ptp_pins[SMA1].func = PTP_PF_NONE;
54 		ptp_pins[UFL1].func = PTP_PF_NONE;
55 		break;
56 	case ICE_SMA1_DIR_EN_E810T:
57 		ptp_pins[SMA1].func = PTP_PF_PEROUT;
58 		ptp_pins[UFL1].func = PTP_PF_NONE;
59 		break;
60 	case ICE_SMA1_TX_EN_E810T:
61 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
62 		ptp_pins[UFL1].func = PTP_PF_NONE;
63 		break;
64 	case 0:
65 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
66 		ptp_pins[UFL1].func = PTP_PF_PEROUT;
67 		break;
68 	}
69 
70 	/* Parse SMA2/UFL2 */
71 	switch (data & ICE_SMA2_MASK_E810T) {
72 	case ICE_SMA2_MASK_E810T:
73 	default:
74 		ptp_pins[SMA2].func = PTP_PF_NONE;
75 		ptp_pins[UFL2].func = PTP_PF_NONE;
76 		break;
77 	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
78 		ptp_pins[SMA2].func = PTP_PF_EXTTS;
79 		ptp_pins[UFL2].func = PTP_PF_NONE;
80 		break;
81 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
82 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
83 		ptp_pins[UFL2].func = PTP_PF_NONE;
84 		break;
85 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
86 		ptp_pins[SMA2].func = PTP_PF_NONE;
87 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
88 		break;
89 	case ICE_SMA2_DIR_EN_E810T:
90 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
91 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
92 		break;
93 	}
94 
95 	return 0;
96 }
97 
98 /**
99  * ice_ptp_set_sma_config_e810t
100  * @hw: pointer to the hw struct
101  * @ptp_pins: pointer to the ptp_pin_desc struture
102  *
103  * Set the configuration of the SMA control logic based on the configuration in
104  * num_pins parameter
105  */
106 static int
107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
108 			     const struct ptp_pin_desc *ptp_pins)
109 {
110 	int status;
111 	u8 data;
112 
113 	/* SMA1 and UFL1 cannot be set to TX at the same time */
114 	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
115 	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
116 		return -EINVAL;
117 
118 	/* SMA2 and UFL2 cannot be set to RX at the same time */
119 	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
120 	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
121 		return -EINVAL;
122 
123 	/* Read initial pin state value */
124 	status = ice_read_sma_ctrl_e810t(hw, &data);
125 	if (status)
126 		return status;
127 
128 	/* Set the right sate based on the desired configuration */
129 	data &= ~ICE_SMA1_MASK_E810T;
130 	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
131 	    ptp_pins[UFL1].func == PTP_PF_NONE) {
132 		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
133 		data |= ICE_SMA1_MASK_E810T;
134 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
135 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
136 		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
137 		data |= ICE_SMA1_TX_EN_E810T;
138 	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
139 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
140 		/* U.FL 1 TX will always enable SMA 1 RX */
141 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
142 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
143 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
144 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
145 	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
146 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
147 		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
148 		data |= ICE_SMA1_DIR_EN_E810T;
149 	}
150 
151 	data &= ~ICE_SMA2_MASK_E810T;
152 	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
153 	    ptp_pins[UFL2].func == PTP_PF_NONE) {
154 		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
155 		data |= ICE_SMA2_MASK_E810T;
156 	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
157 			ptp_pins[UFL2].func == PTP_PF_NONE) {
158 		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
159 		data |= (ICE_SMA2_TX_EN_E810T |
160 			 ICE_SMA2_UFL2_RX_DIS_E810T);
161 	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
162 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
163 		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
164 		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
165 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
166 		   ptp_pins[UFL2].func == PTP_PF_NONE) {
167 		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
168 		data |= (ICE_SMA2_DIR_EN_E810T |
169 			 ICE_SMA2_UFL2_RX_DIS_E810T);
170 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
171 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
172 		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
173 		data |= ICE_SMA2_DIR_EN_E810T;
174 	}
175 
176 	return ice_write_sma_ctrl_e810t(hw, data);
177 }
178 
179 /**
180  * ice_ptp_set_sma_e810t
181  * @info: the driver's PTP info structure
182  * @pin: pin index in kernel structure
183  * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
184  *
185  * Set the configuration of a single SMA pin
186  */
187 static int
188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
189 		      enum ptp_pin_function func)
190 {
191 	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
192 	struct ice_pf *pf = ptp_info_to_pf(info);
193 	struct ice_hw *hw = &pf->hw;
194 	int err;
195 
196 	if (pin < SMA1 || func > PTP_PF_PEROUT)
197 		return -EOPNOTSUPP;
198 
199 	err = ice_get_sma_config_e810t(hw, ptp_pins);
200 	if (err)
201 		return err;
202 
203 	/* Disable the same function on the other pin sharing the channel */
204 	if (pin == SMA1 && ptp_pins[UFL1].func == func)
205 		ptp_pins[UFL1].func = PTP_PF_NONE;
206 	if (pin == UFL1 && ptp_pins[SMA1].func == func)
207 		ptp_pins[SMA1].func = PTP_PF_NONE;
208 
209 	if (pin == SMA2 && ptp_pins[UFL2].func == func)
210 		ptp_pins[UFL2].func = PTP_PF_NONE;
211 	if (pin == UFL2 && ptp_pins[SMA2].func == func)
212 		ptp_pins[SMA2].func = PTP_PF_NONE;
213 
214 	/* Set up new pin function in the temp table */
215 	ptp_pins[pin].func = func;
216 
217 	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
218 }
219 
220 /**
221  * ice_verify_pin_e810t
222  * @info: the driver's PTP info structure
223  * @pin: Pin index
224  * @func: Assigned function
225  * @chan: Assigned channel
226  *
227  * Verify if pin supports requested pin function. If the Check pins consistency.
228  * Reconfigure the SMA logic attached to the given pin to enable its
229  * desired functionality
230  */
231 static int
232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
233 		     enum ptp_pin_function func, unsigned int chan)
234 {
235 	/* Don't allow channel reassignment */
236 	if (chan != ice_pin_desc_e810t[pin].chan)
237 		return -EOPNOTSUPP;
238 
239 	/* Check if functions are properly assigned */
240 	switch (func) {
241 	case PTP_PF_NONE:
242 		break;
243 	case PTP_PF_EXTTS:
244 		if (pin == UFL1)
245 			return -EOPNOTSUPP;
246 		break;
247 	case PTP_PF_PEROUT:
248 		if (pin == UFL2 || pin == GNSS)
249 			return -EOPNOTSUPP;
250 		break;
251 	case PTP_PF_PHYSYNC:
252 		return -EOPNOTSUPP;
253 	}
254 
255 	return ice_ptp_set_sma_e810t(info, pin, func);
256 }
257 
258 /**
259  * ice_set_tx_tstamp - Enable or disable Tx timestamping
260  * @pf: The PF pointer to search in
261  * @on: bool value for whether timestamps are enabled or disabled
262  */
263 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
264 {
265 	struct ice_vsi *vsi;
266 	u32 val;
267 	u16 i;
268 
269 	vsi = ice_get_main_vsi(pf);
270 	if (!vsi)
271 		return;
272 
273 	/* Set the timestamp enable flag for all the Tx rings */
274 	ice_for_each_txq(vsi, i) {
275 		if (!vsi->tx_rings[i])
276 			continue;
277 		vsi->tx_rings[i]->ptp_tx = on;
278 	}
279 
280 	/* Configure the Tx timestamp interrupt */
281 	val = rd32(&pf->hw, PFINT_OICR_ENA);
282 	if (on)
283 		val |= PFINT_OICR_TSYN_TX_M;
284 	else
285 		val &= ~PFINT_OICR_TSYN_TX_M;
286 	wr32(&pf->hw, PFINT_OICR_ENA, val);
287 
288 	pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
289 }
290 
291 /**
292  * ice_set_rx_tstamp - Enable or disable Rx timestamping
293  * @pf: The PF pointer to search in
294  * @on: bool value for whether timestamps are enabled or disabled
295  */
296 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
297 {
298 	struct ice_vsi *vsi;
299 	u16 i;
300 
301 	vsi = ice_get_main_vsi(pf);
302 	if (!vsi)
303 		return;
304 
305 	/* Set the timestamp flag for all the Rx rings */
306 	ice_for_each_rxq(vsi, i) {
307 		if (!vsi->rx_rings[i])
308 			continue;
309 		vsi->rx_rings[i]->ptp_rx = on;
310 	}
311 
312 	pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
313 					       HWTSTAMP_FILTER_NONE;
314 }
315 
316 /**
317  * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
318  * @pf: Board private structure
319  * @ena: bool value to enable or disable time stamp
320  *
321  * This function will configure timestamping during PTP initialization
322  * and deinitialization
323  */
324 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
325 {
326 	ice_set_tx_tstamp(pf, ena);
327 	ice_set_rx_tstamp(pf, ena);
328 }
329 
330 /**
331  * ice_get_ptp_clock_index - Get the PTP clock index
332  * @pf: the PF pointer
333  *
334  * Determine the clock index of the PTP clock associated with this device. If
335  * this is the PF controlling the clock, just use the local access to the
336  * clock device pointer.
337  *
338  * Otherwise, read from the driver shared parameters to determine the clock
339  * index value.
340  *
341  * Returns: the index of the PTP clock associated with this device, or -1 if
342  * there is no associated clock.
343  */
344 int ice_get_ptp_clock_index(struct ice_pf *pf)
345 {
346 	struct device *dev = ice_pf_to_dev(pf);
347 	enum ice_aqc_driver_params param_idx;
348 	struct ice_hw *hw = &pf->hw;
349 	u8 tmr_idx;
350 	u32 value;
351 	int err;
352 
353 	/* Use the ptp_clock structure if we're the main PF */
354 	if (pf->ptp.clock)
355 		return ptp_clock_index(pf->ptp.clock);
356 
357 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
358 	if (!tmr_idx)
359 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
360 	else
361 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
362 
363 	err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
364 	if (err) {
365 		dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
366 			err, ice_aq_str(hw->adminq.sq_last_status));
367 		return -1;
368 	}
369 
370 	/* The PTP clock index is an integer, and will be between 0 and
371 	 * INT_MAX. The highest bit of the driver shared parameter is used to
372 	 * indicate whether or not the currently stored clock index is valid.
373 	 */
374 	if (!(value & PTP_SHARED_CLK_IDX_VALID))
375 		return -1;
376 
377 	return value & ~PTP_SHARED_CLK_IDX_VALID;
378 }
379 
380 /**
381  * ice_set_ptp_clock_index - Set the PTP clock index
382  * @pf: the PF pointer
383  *
384  * Set the PTP clock index for this device into the shared driver parameters,
385  * so that other PFs associated with this device can read it.
386  *
387  * If the PF is unable to store the clock index, it will log an error, but
388  * will continue operating PTP.
389  */
390 static void ice_set_ptp_clock_index(struct ice_pf *pf)
391 {
392 	struct device *dev = ice_pf_to_dev(pf);
393 	enum ice_aqc_driver_params param_idx;
394 	struct ice_hw *hw = &pf->hw;
395 	u8 tmr_idx;
396 	u32 value;
397 	int err;
398 
399 	if (!pf->ptp.clock)
400 		return;
401 
402 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
403 	if (!tmr_idx)
404 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
405 	else
406 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
407 
408 	value = (u32)ptp_clock_index(pf->ptp.clock);
409 	if (value > INT_MAX) {
410 		dev_err(dev, "PTP Clock index is too large to store\n");
411 		return;
412 	}
413 	value |= PTP_SHARED_CLK_IDX_VALID;
414 
415 	err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
416 	if (err) {
417 		dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
418 			err, ice_aq_str(hw->adminq.sq_last_status));
419 	}
420 }
421 
422 /**
423  * ice_clear_ptp_clock_index - Clear the PTP clock index
424  * @pf: the PF pointer
425  *
426  * Clear the PTP clock index for this device. Must be called when
427  * unregistering the PTP clock, in order to ensure other PFs stop reporting
428  * a clock object that no longer exists.
429  */
430 static void ice_clear_ptp_clock_index(struct ice_pf *pf)
431 {
432 	struct device *dev = ice_pf_to_dev(pf);
433 	enum ice_aqc_driver_params param_idx;
434 	struct ice_hw *hw = &pf->hw;
435 	u8 tmr_idx;
436 	int err;
437 
438 	/* Do not clear the index if we don't own the timer */
439 	if (!hw->func_caps.ts_func_info.src_tmr_owned)
440 		return;
441 
442 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
443 	if (!tmr_idx)
444 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
445 	else
446 		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
447 
448 	err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
449 	if (err) {
450 		dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
451 			err, ice_aq_str(hw->adminq.sq_last_status));
452 	}
453 }
454 
455 /**
456  * ice_ptp_read_src_clk_reg - Read the source clock register
457  * @pf: Board private structure
458  * @sts: Optional parameter for holding a pair of system timestamps from
459  *       the system clock. Will be ignored if NULL is given.
460  */
461 static u64
462 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
463 {
464 	struct ice_hw *hw = &pf->hw;
465 	u32 hi, lo, lo2;
466 	u8 tmr_idx;
467 
468 	tmr_idx = ice_get_ptp_src_clock_index(hw);
469 	/* Read the system timestamp pre PHC read */
470 	ptp_read_system_prets(sts);
471 
472 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
473 
474 	/* Read the system timestamp post PHC read */
475 	ptp_read_system_postts(sts);
476 
477 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
478 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
479 
480 	if (lo2 < lo) {
481 		/* if TIME_L rolled over read TIME_L again and update
482 		 * system timestamps
483 		 */
484 		ptp_read_system_prets(sts);
485 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
486 		ptp_read_system_postts(sts);
487 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
488 	}
489 
490 	return ((u64)hi << 32) | lo;
491 }
492 
493 /**
494  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
495  * @cached_phc_time: recently cached copy of PHC time
496  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
497  *
498  * Hardware captures timestamps which contain only 32 bits of nominal
499  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
500  * Note that the captured timestamp values may be 40 bits, but the lower
501  * 8 bits are sub-nanoseconds and generally discarded.
502  *
503  * Extend the 32bit nanosecond timestamp using the following algorithm and
504  * assumptions:
505  *
506  * 1) have a recently cached copy of the PHC time
507  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
508  *    seconds) before or after the PHC time was captured.
509  * 3) calculate the delta between the cached time and the timestamp
510  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
511  *    captured after the PHC time. In this case, the full timestamp is just
512  *    the cached PHC time plus the delta.
513  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
514  *    timestamp was captured *before* the PHC time, i.e. because the PHC
515  *    cache was updated after the timestamp was captured by hardware. In this
516  *    case, the full timestamp is the cached time minus the inverse delta.
517  *
518  * This algorithm works even if the PHC time was updated after a Tx timestamp
519  * was requested, but before the Tx timestamp event was reported from
520  * hardware.
521  *
522  * This calculation primarily relies on keeping the cached PHC time up to
523  * date. If the timestamp was captured more than 2^31 nanoseconds after the
524  * PHC time, it is possible that the lower 32bits of PHC time have
525  * overflowed more than once, and we might generate an incorrect timestamp.
526  *
527  * This is prevented by (a) periodically updating the cached PHC time once
528  * a second, and (b) discarding any Tx timestamp packet if it has waited for
529  * a timestamp for more than one second.
530  */
531 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
532 {
533 	u32 delta, phc_time_lo;
534 	u64 ns;
535 
536 	/* Extract the lower 32 bits of the PHC time */
537 	phc_time_lo = (u32)cached_phc_time;
538 
539 	/* Calculate the delta between the lower 32bits of the cached PHC
540 	 * time and the in_tstamp value
541 	 */
542 	delta = (in_tstamp - phc_time_lo);
543 
544 	/* Do not assume that the in_tstamp is always more recent than the
545 	 * cached PHC time. If the delta is large, it indicates that the
546 	 * in_tstamp was taken in the past, and should be converted
547 	 * forward.
548 	 */
549 	if (delta > (U32_MAX / 2)) {
550 		/* reverse the delta calculation here */
551 		delta = (phc_time_lo - in_tstamp);
552 		ns = cached_phc_time - delta;
553 	} else {
554 		ns = cached_phc_time + delta;
555 	}
556 
557 	return ns;
558 }
559 
560 /**
561  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
562  * @pf: Board private structure
563  * @in_tstamp: Ingress/egress 40b timestamp value
564  *
565  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
566  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
567  *
568  *  *--------------------------------------------------------------*
569  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
570  *  *--------------------------------------------------------------*
571  *
572  * The low bit is an indicator of whether the timestamp is valid. The next
573  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
574  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
575  *
576  * It is assumed that the caller verifies the timestamp is valid prior to
577  * calling this function.
578  *
579  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
580  * time stored in the device private PTP structure as the basis for timestamp
581  * extension.
582  *
583  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
584  * algorithm.
585  */
586 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
587 {
588 	const u64 mask = GENMASK_ULL(31, 0);
589 	unsigned long discard_time;
590 
591 	/* Discard the hardware timestamp if the cached PHC time is too old */
592 	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
593 	if (time_is_before_jiffies(discard_time)) {
594 		pf->ptp.tx_hwtstamp_discarded++;
595 		return 0;
596 	}
597 
598 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
599 				     (in_tstamp >> 8) & mask);
600 }
601 
602 /**
603  * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port
604  * @work: pointer to the kthread_work struct
605  *
606  * Process timestamps captured by the PHY associated with this port. To do
607  * this, loop over each index with a waiting skb.
608  *
609  * If a given index has a valid timestamp, perform the following steps:
610  *
611  * 1) copy the timestamp out of the PHY register
612  * 4) clear the timestamp valid bit in the PHY register
613  * 5) unlock the index by clearing the associated in_use bit.
614  * 2) extend the 40b timestamp value to get a 64bit timestamp
615  * 3) send that timestamp to the stack
616  *
617  * After looping, if we still have waiting SKBs, then re-queue the work. This
618  * may cause us effectively poll even when not strictly necessary. We do this
619  * because it's possible a new timestamp was requested around the same time as
620  * the interrupt. In some cases hardware might not interrupt us again when the
621  * timestamp is captured.
622  *
623  * Note that we only take the tracking lock when clearing the bit and when
624  * checking if we need to re-queue this task. The only place where bits can be
625  * set is the hard xmit routine where an SKB has a request flag set. The only
626  * places where we clear bits are this work function, or the periodic cleanup
627  * thread. If the cleanup thread clears a bit we're processing we catch it
628  * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
629  * starts a new timestamp, we might not begin processing it right away but we
630  * will notice it at the end when we re-queue the work item. If a Tx thread
631  * starts a new timestamp just after this function exits without re-queuing,
632  * the interrupt when the timestamp finishes should trigger. Avoiding holding
633  * the lock for the entire function is important in order to ensure that Tx
634  * threads do not get blocked while waiting for the lock.
635  */
636 static void ice_ptp_tx_tstamp_work(struct kthread_work *work)
637 {
638 	struct ice_ptp_port *ptp_port;
639 	struct ice_ptp_tx *tx;
640 	struct ice_pf *pf;
641 	struct ice_hw *hw;
642 	u8 idx;
643 
644 	tx = container_of(work, struct ice_ptp_tx, work);
645 	if (!tx->init)
646 		return;
647 
648 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
649 	pf = ptp_port_to_pf(ptp_port);
650 	hw = &pf->hw;
651 
652 	for_each_set_bit(idx, tx->in_use, tx->len) {
653 		struct skb_shared_hwtstamps shhwtstamps = {};
654 		u8 phy_idx = idx + tx->quad_offset;
655 		u64 raw_tstamp, tstamp;
656 		struct sk_buff *skb;
657 		int err;
658 
659 		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
660 
661 		err = ice_read_phy_tstamp(hw, tx->quad, phy_idx,
662 					  &raw_tstamp);
663 		if (err)
664 			continue;
665 
666 		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
667 
668 		/* Check if the timestamp is invalid or stale */
669 		if (!(raw_tstamp & ICE_PTP_TS_VALID) ||
670 		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
671 			continue;
672 
673 		/* The timestamp is valid, so we'll go ahead and clear this
674 		 * index and then send the timestamp up to the stack.
675 		 */
676 		spin_lock(&tx->lock);
677 		tx->tstamps[idx].cached_tstamp = raw_tstamp;
678 		clear_bit(idx, tx->in_use);
679 		skb = tx->tstamps[idx].skb;
680 		tx->tstamps[idx].skb = NULL;
681 		spin_unlock(&tx->lock);
682 
683 		/* it's (unlikely but) possible we raced with the cleanup
684 		 * thread for discarding old timestamp requests.
685 		 */
686 		if (!skb)
687 			continue;
688 
689 		/* Extend the timestamp using cached PHC time */
690 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
691 		if (tstamp) {
692 			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
693 			ice_trace(tx_tstamp_complete, skb, idx);
694 		}
695 
696 		skb_tstamp_tx(skb, &shhwtstamps);
697 		dev_kfree_skb_any(skb);
698 	}
699 
700 	/* Check if we still have work to do. If so, re-queue this task to
701 	 * poll for remaining timestamps.
702 	 */
703 	spin_lock(&tx->lock);
704 	if (!bitmap_empty(tx->in_use, tx->len))
705 		kthread_queue_work(pf->ptp.kworker, &tx->work);
706 	spin_unlock(&tx->lock);
707 }
708 
709 /**
710  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
711  * @tx: Tx tracking structure to initialize
712  *
713  * Assumes that the length has already been initialized. Do not call directly,
714  * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
715  */
716 static int
717 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
718 {
719 	tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
720 	if (!tx->tstamps)
721 		return -ENOMEM;
722 
723 	tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
724 	if (!tx->in_use) {
725 		kfree(tx->tstamps);
726 		tx->tstamps = NULL;
727 		return -ENOMEM;
728 	}
729 
730 	spin_lock_init(&tx->lock);
731 	kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work);
732 
733 	tx->init = 1;
734 
735 	return 0;
736 }
737 
738 /**
739  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
740  * @pf: Board private structure
741  * @tx: the tracker to flush
742  */
743 static void
744 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
745 {
746 	u8 idx;
747 
748 	for (idx = 0; idx < tx->len; idx++) {
749 		u8 phy_idx = idx + tx->quad_offset;
750 
751 		spin_lock(&tx->lock);
752 		if (tx->tstamps[idx].skb) {
753 			dev_kfree_skb_any(tx->tstamps[idx].skb);
754 			tx->tstamps[idx].skb = NULL;
755 			pf->ptp.tx_hwtstamp_flushed++;
756 		}
757 		clear_bit(idx, tx->in_use);
758 		spin_unlock(&tx->lock);
759 
760 		/* Clear any potential residual timestamp in the PHY block */
761 		if (!pf->hw.reset_ongoing)
762 			ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
763 	}
764 }
765 
766 /**
767  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
768  * @pf: Board private structure
769  * @tx: Tx tracking structure to release
770  *
771  * Free memory associated with the Tx timestamp tracker.
772  */
773 static void
774 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
775 {
776 	tx->init = 0;
777 
778 	kthread_cancel_work_sync(&tx->work);
779 
780 	ice_ptp_flush_tx_tracker(pf, tx);
781 
782 	kfree(tx->tstamps);
783 	tx->tstamps = NULL;
784 
785 	bitmap_free(tx->in_use);
786 	tx->in_use = NULL;
787 
788 	tx->len = 0;
789 }
790 
791 /**
792  * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
793  * @pf: Board private structure
794  * @tx: the Tx tracking structure to initialize
795  * @port: the port this structure tracks
796  *
797  * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
798  * the timestamp block is shared for all ports in the same quad. To avoid
799  * ports using the same timestamp index, logically break the block of
800  * registers into chunks based on the port number.
801  */
802 static int
803 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
804 {
805 	tx->quad = port / ICE_PORTS_PER_QUAD;
806 	tx->quad_offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT;
807 	tx->len = INDEX_PER_PORT;
808 
809 	return ice_ptp_alloc_tx_tracker(tx);
810 }
811 
812 /**
813  * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
814  * @pf: Board private structure
815  * @tx: the Tx tracking structure to initialize
816  *
817  * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
818  * port has its own block of timestamps, independent of the other ports.
819  */
820 static int
821 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
822 {
823 	tx->quad = pf->hw.port_info->lport;
824 	tx->quad_offset = 0;
825 	tx->len = INDEX_PER_QUAD;
826 
827 	return ice_ptp_alloc_tx_tracker(tx);
828 }
829 
830 /**
831  * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
832  * @pf: pointer to the PF struct
833  * @tx: PTP Tx tracker to clean up
834  *
835  * Loop through the Tx timestamp requests and see if any of them have been
836  * waiting for a long time. Discard any SKBs that have been waiting for more
837  * than 2 seconds. This is long enough to be reasonably sure that the
838  * timestamp will never be captured. This might happen if the packet gets
839  * discarded before it reaches the PHY timestamping block.
840  */
841 static void ice_ptp_tx_tstamp_cleanup(struct ice_pf *pf, struct ice_ptp_tx *tx)
842 {
843 	struct ice_hw *hw = &pf->hw;
844 	u8 idx;
845 
846 	if (!tx->init)
847 		return;
848 
849 	for_each_set_bit(idx, tx->in_use, tx->len) {
850 		struct sk_buff *skb;
851 		u64 raw_tstamp;
852 
853 		/* Check if this SKB has been waiting for too long */
854 		if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
855 			continue;
856 
857 		/* Read tstamp to be able to use this register again */
858 		ice_read_phy_tstamp(hw, tx->quad, idx + tx->quad_offset,
859 				    &raw_tstamp);
860 
861 		spin_lock(&tx->lock);
862 		skb = tx->tstamps[idx].skb;
863 		tx->tstamps[idx].skb = NULL;
864 		clear_bit(idx, tx->in_use);
865 		spin_unlock(&tx->lock);
866 
867 		/* Count the number of Tx timestamps which have timed out */
868 		pf->ptp.tx_hwtstamp_timeouts++;
869 
870 		/* Free the SKB after we've cleared the bit */
871 		dev_kfree_skb_any(skb);
872 	}
873 }
874 
875 /**
876  * ice_ptp_update_cached_phctime - Update the cached PHC time values
877  * @pf: Board specific private structure
878  *
879  * This function updates the system time values which are cached in the PF
880  * structure and the Rx rings.
881  *
882  * This function must be called periodically to ensure that the cached value
883  * is never more than 2 seconds old.
884  *
885  * Note that the cached copy in the PF PTP structure is always updated, even
886  * if we can't update the copy in the Rx rings.
887  *
888  * Return:
889  * * 0 - OK, successfully updated
890  * * -EAGAIN - PF was busy, need to reschedule the update
891  */
892 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
893 {
894 	struct device *dev = ice_pf_to_dev(pf);
895 	unsigned long update_before;
896 	u64 systime;
897 	int i;
898 
899 	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
900 	if (pf->ptp.cached_phc_time &&
901 	    time_is_before_jiffies(update_before)) {
902 		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
903 
904 		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
905 			 jiffies_to_msecs(time_taken));
906 		pf->ptp.late_cached_phc_updates++;
907 	}
908 
909 	/* Read the current PHC time */
910 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
911 
912 	/* Update the cached PHC time stored in the PF structure */
913 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
914 	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
915 
916 	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
917 		return -EAGAIN;
918 
919 	ice_for_each_vsi(pf, i) {
920 		struct ice_vsi *vsi = pf->vsi[i];
921 		int j;
922 
923 		if (!vsi)
924 			continue;
925 
926 		if (vsi->type != ICE_VSI_PF)
927 			continue;
928 
929 		ice_for_each_rxq(vsi, j) {
930 			if (!vsi->rx_rings[j])
931 				continue;
932 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
933 		}
934 	}
935 	clear_bit(ICE_CFG_BUSY, pf->state);
936 
937 	return 0;
938 }
939 
940 /**
941  * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
942  * @pf: Board specific private structure
943  *
944  * This function must be called when the cached PHC time is no longer valid,
945  * such as after a time adjustment. It discards any outstanding Tx timestamps,
946  * and updates the cached PHC time for both the PF and Rx rings. If updating
947  * the PHC time cannot be done immediately, a warning message is logged and
948  * the work item is scheduled.
949  *
950  * These steps are required in order to ensure that we do not accidentally
951  * report a timestamp extended by the wrong PHC cached copy. Note that we
952  * do not directly update the cached timestamp here because it is possible
953  * this might produce an error when ICE_CFG_BUSY is set. If this occurred, we
954  * would have to try again. During that time window, timestamps might be
955  * requested and returned with an invalid extension. Thus, on failure to
956  * immediately update the cached PHC time we would need to zero the value
957  * anyways. For this reason, we just zero the value immediately and queue the
958  * update work item.
959  */
960 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
961 {
962 	struct device *dev = ice_pf_to_dev(pf);
963 	int err;
964 
965 	/* Update the cached PHC time immediately if possible, otherwise
966 	 * schedule the work item to execute soon.
967 	 */
968 	err = ice_ptp_update_cached_phctime(pf);
969 	if (err) {
970 		/* If another thread is updating the Rx rings, we won't
971 		 * properly reset them here. This could lead to reporting of
972 		 * invalid timestamps, but there isn't much we can do.
973 		 */
974 		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
975 			 __func__);
976 
977 		/* Queue the work item to update the Rx rings when possible */
978 		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
979 					   msecs_to_jiffies(10));
980 	}
981 
982 	/* Flush any outstanding Tx timestamps */
983 	ice_ptp_flush_tx_tracker(pf, &pf->ptp.port.tx);
984 }
985 
986 /**
987  * ice_ptp_read_time - Read the time from the device
988  * @pf: Board private structure
989  * @ts: timespec structure to hold the current time value
990  * @sts: Optional parameter for holding a pair of system timestamps from
991  *       the system clock. Will be ignored if NULL is given.
992  *
993  * This function reads the source clock registers and stores them in a timespec.
994  * However, since the registers are 64 bits of nanoseconds, we must convert the
995  * result to a timespec before we can return.
996  */
997 static void
998 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
999 		  struct ptp_system_timestamp *sts)
1000 {
1001 	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1002 
1003 	*ts = ns_to_timespec64(time_ns);
1004 }
1005 
1006 /**
1007  * ice_ptp_write_init - Set PHC time to provided value
1008  * @pf: Board private structure
1009  * @ts: timespec structure that holds the new time value
1010  *
1011  * Set the PHC time to the specified time provided in the timespec.
1012  */
1013 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1014 {
1015 	u64 ns = timespec64_to_ns(ts);
1016 	struct ice_hw *hw = &pf->hw;
1017 
1018 	return ice_ptp_init_time(hw, ns);
1019 }
1020 
1021 /**
1022  * ice_ptp_write_adj - Adjust PHC clock time atomically
1023  * @pf: Board private structure
1024  * @adj: Adjustment in nanoseconds
1025  *
1026  * Perform an atomic adjustment of the PHC time by the specified number of
1027  * nanoseconds.
1028  */
1029 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1030 {
1031 	struct ice_hw *hw = &pf->hw;
1032 
1033 	return ice_ptp_adj_clock(hw, adj);
1034 }
1035 
1036 /**
1037  * ice_base_incval - Get base timer increment value
1038  * @pf: Board private structure
1039  *
1040  * Look up the base timer increment value for this device. The base increment
1041  * value is used to define the nominal clock tick rate. This increment value
1042  * is programmed during device initialization. It is also used as the basis
1043  * for calculating adjustments using scaled_ppm.
1044  */
1045 static u64 ice_base_incval(struct ice_pf *pf)
1046 {
1047 	struct ice_hw *hw = &pf->hw;
1048 	u64 incval;
1049 
1050 	if (ice_is_e810(hw))
1051 		incval = ICE_PTP_NOMINAL_INCVAL_E810;
1052 	else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1053 		incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
1054 	else
1055 		incval = UNKNOWN_INCVAL_E822;
1056 
1057 	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1058 		incval);
1059 
1060 	return incval;
1061 }
1062 
1063 /**
1064  * ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad
1065  * @pf: The PF private data structure
1066  * @quad: The quad (0-4)
1067  */
1068 static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad)
1069 {
1070 	struct ice_hw *hw = &pf->hw;
1071 
1072 	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
1073 	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
1074 }
1075 
1076 /**
1077  * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1078  * @port: PTP port for which Tx FIFO is checked
1079  */
1080 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1081 {
1082 	int quad = port->port_num / ICE_PORTS_PER_QUAD;
1083 	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1084 	struct ice_pf *pf;
1085 	struct ice_hw *hw;
1086 	u32 val, phy_sts;
1087 	int err;
1088 
1089 	pf = ptp_port_to_pf(port);
1090 	hw = &pf->hw;
1091 
1092 	if (port->tx_fifo_busy_cnt == FIFO_OK)
1093 		return 0;
1094 
1095 	/* need to read FIFO state */
1096 	if (offs == 0 || offs == 1)
1097 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
1098 					     &val);
1099 	else
1100 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
1101 					     &val);
1102 
1103 	if (err) {
1104 		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1105 			port->port_num, err);
1106 		return err;
1107 	}
1108 
1109 	if (offs & 0x1)
1110 		phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
1111 	else
1112 		phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
1113 
1114 	if (phy_sts & FIFO_EMPTY) {
1115 		port->tx_fifo_busy_cnt = FIFO_OK;
1116 		return 0;
1117 	}
1118 
1119 	port->tx_fifo_busy_cnt++;
1120 
1121 	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1122 		port->tx_fifo_busy_cnt, port->port_num);
1123 
1124 	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1125 		dev_dbg(ice_pf_to_dev(pf),
1126 			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1127 			port->port_num, quad);
1128 		ice_ptp_reset_ts_memory_quad(pf, quad);
1129 		port->tx_fifo_busy_cnt = FIFO_OK;
1130 		return 0;
1131 	}
1132 
1133 	return -EAGAIN;
1134 }
1135 
1136 /**
1137  * ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid
1138  * @port: the PTP port to check
1139  *
1140  * Checks whether the Tx offset for the PHY associated with this port is
1141  * valid. Returns 0 if the offset is valid, and a non-zero error code if it is
1142  * not.
1143  */
1144 static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port)
1145 {
1146 	struct ice_pf *pf = ptp_port_to_pf(port);
1147 	struct device *dev = ice_pf_to_dev(pf);
1148 	struct ice_hw *hw = &pf->hw;
1149 	u32 val;
1150 	int err;
1151 
1152 	err = ice_ptp_check_tx_fifo(port);
1153 	if (err)
1154 		return err;
1155 
1156 	err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS,
1157 				    &val);
1158 	if (err) {
1159 		dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n",
1160 			port->port_num, err);
1161 		return -EAGAIN;
1162 	}
1163 
1164 	if (!(val & P_REG_TX_OV_STATUS_OV_M))
1165 		return -EAGAIN;
1166 
1167 	return 0;
1168 }
1169 
1170 /**
1171  * ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid
1172  * @port: the PTP port to check
1173  *
1174  * Checks whether the Rx offset for the PHY associated with this port is
1175  * valid. Returns 0 if the offset is valid, and a non-zero error code if it is
1176  * not.
1177  */
1178 static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port)
1179 {
1180 	struct ice_pf *pf = ptp_port_to_pf(port);
1181 	struct device *dev = ice_pf_to_dev(pf);
1182 	struct ice_hw *hw = &pf->hw;
1183 	int err;
1184 	u32 val;
1185 
1186 	err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS,
1187 				    &val);
1188 	if (err) {
1189 		dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n",
1190 			port->port_num, err);
1191 		return err;
1192 	}
1193 
1194 	if (!(val & P_REG_RX_OV_STATUS_OV_M))
1195 		return -EAGAIN;
1196 
1197 	return 0;
1198 }
1199 
1200 /**
1201  * ice_ptp_check_offset_valid - Check port offset valid bit
1202  * @port: Port for which offset valid bit is checked
1203  *
1204  * Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the
1205  * offset is not ready.
1206  */
1207 static int ice_ptp_check_offset_valid(struct ice_ptp_port *port)
1208 {
1209 	int tx_err, rx_err;
1210 
1211 	/* always check both Tx and Rx offset validity */
1212 	tx_err = ice_ptp_check_tx_offset_valid(port);
1213 	rx_err = ice_ptp_check_rx_offset_valid(port);
1214 
1215 	if (tx_err || rx_err)
1216 		return -EAGAIN;
1217 
1218 	return 0;
1219 }
1220 
1221 /**
1222  * ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets
1223  * @work: Pointer to the kthread_work structure for this task
1224  *
1225  * Check whether both the Tx and Rx offsets are valid for enabling the vernier
1226  * calibration.
1227  *
1228  * Once we have valid offsets from hardware, update the total Tx and Rx
1229  * offsets, and exit bypass mode. This enables more precise timestamps using
1230  * the extra data measured during the vernier calibration process.
1231  */
1232 static void ice_ptp_wait_for_offset_valid(struct kthread_work *work)
1233 {
1234 	struct ice_ptp_port *port;
1235 	int err;
1236 	struct device *dev;
1237 	struct ice_pf *pf;
1238 	struct ice_hw *hw;
1239 
1240 	port = container_of(work, struct ice_ptp_port, ov_work.work);
1241 	pf = ptp_port_to_pf(port);
1242 	hw = &pf->hw;
1243 	dev = ice_pf_to_dev(pf);
1244 
1245 	if (ice_ptp_check_offset_valid(port)) {
1246 		/* Offsets not ready yet, try again later */
1247 		kthread_queue_delayed_work(pf->ptp.kworker,
1248 					   &port->ov_work,
1249 					   msecs_to_jiffies(100));
1250 		return;
1251 	}
1252 
1253 	/* Offsets are valid, so it is safe to exit bypass mode */
1254 	err = ice_phy_exit_bypass_e822(hw, port->port_num);
1255 	if (err) {
1256 		dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n",
1257 			 port->port_num, err);
1258 		return;
1259 	}
1260 }
1261 
1262 /**
1263  * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1264  * @ptp_port: PTP port to stop
1265  */
1266 static int
1267 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1268 {
1269 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1270 	u8 port = ptp_port->port_num;
1271 	struct ice_hw *hw = &pf->hw;
1272 	int err;
1273 
1274 	if (ice_is_e810(hw))
1275 		return 0;
1276 
1277 	mutex_lock(&ptp_port->ps_lock);
1278 
1279 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1280 
1281 	err = ice_stop_phy_timer_e822(hw, port, true);
1282 	if (err)
1283 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1284 			port, err);
1285 
1286 	mutex_unlock(&ptp_port->ps_lock);
1287 
1288 	return err;
1289 }
1290 
1291 /**
1292  * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1293  * @ptp_port: PTP port for which the PHY start is set
1294  *
1295  * Start the PHY timestamping block, and initiate Vernier timestamping
1296  * calibration. If timestamping cannot be calibrated (such as if link is down)
1297  * then disable the timestamping block instead.
1298  */
1299 static int
1300 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1301 {
1302 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1303 	u8 port = ptp_port->port_num;
1304 	struct ice_hw *hw = &pf->hw;
1305 	int err;
1306 
1307 	if (ice_is_e810(hw))
1308 		return 0;
1309 
1310 	if (!ptp_port->link_up)
1311 		return ice_ptp_port_phy_stop(ptp_port);
1312 
1313 	mutex_lock(&ptp_port->ps_lock);
1314 
1315 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1316 
1317 	/* temporarily disable Tx timestamps while calibrating PHY offset */
1318 	ptp_port->tx.calibrating = true;
1319 	ptp_port->tx_fifo_busy_cnt = 0;
1320 
1321 	/* Start the PHY timer in bypass mode */
1322 	err = ice_start_phy_timer_e822(hw, port, true);
1323 	if (err)
1324 		goto out_unlock;
1325 
1326 	/* Enable Tx timestamps right away */
1327 	ptp_port->tx.calibrating = false;
1328 
1329 	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1330 
1331 out_unlock:
1332 	if (err)
1333 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1334 			port, err);
1335 
1336 	mutex_unlock(&ptp_port->ps_lock);
1337 
1338 	return err;
1339 }
1340 
1341 /**
1342  * ice_ptp_link_change - Set or clear port registers for timestamping
1343  * @pf: Board private structure
1344  * @port: Port for which the PHY start is set
1345  * @linkup: Link is up or down
1346  */
1347 int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1348 {
1349 	struct ice_ptp_port *ptp_port;
1350 
1351 	if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
1352 		return 0;
1353 
1354 	if (port >= ICE_NUM_EXTERNAL_PORTS)
1355 		return -EINVAL;
1356 
1357 	ptp_port = &pf->ptp.port;
1358 	if (ptp_port->port_num != port)
1359 		return -EINVAL;
1360 
1361 	/* Update cached link err for this port immediately */
1362 	ptp_port->link_up = linkup;
1363 
1364 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1365 		/* PTP is not setup */
1366 		return -EAGAIN;
1367 
1368 	return ice_ptp_port_phy_restart(ptp_port);
1369 }
1370 
1371 /**
1372  * ice_ptp_reset_ts_memory - Reset timestamp memory for all quads
1373  * @pf: The PF private data structure
1374  */
1375 static void ice_ptp_reset_ts_memory(struct ice_pf *pf)
1376 {
1377 	int quad;
1378 
1379 	quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD;
1380 	ice_ptp_reset_ts_memory_quad(pf, quad);
1381 }
1382 
1383 /**
1384  * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1385  * @pf: PF private structure
1386  * @ena: bool value to enable or disable interrupt
1387  * @threshold: Minimum number of packets at which intr is triggered
1388  *
1389  * Utility function to enable or disable Tx timestamp interrupt and threshold
1390  */
1391 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1392 {
1393 	struct ice_hw *hw = &pf->hw;
1394 	int err = 0;
1395 	int quad;
1396 	u32 val;
1397 
1398 	ice_ptp_reset_ts_memory(pf);
1399 
1400 	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1401 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1402 					     &val);
1403 		if (err)
1404 			break;
1405 
1406 		if (ena) {
1407 			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1408 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1409 			val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1410 				Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1411 		} else {
1412 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1413 		}
1414 
1415 		err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1416 					      val);
1417 		if (err)
1418 			break;
1419 	}
1420 
1421 	if (err)
1422 		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1423 			err);
1424 	return err;
1425 }
1426 
1427 /**
1428  * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1429  * @pf: Board private structure
1430  */
1431 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1432 {
1433 	ice_ptp_port_phy_restart(&pf->ptp.port);
1434 }
1435 
1436 /**
1437  * ice_ptp_adjfine - Adjust clock increment rate
1438  * @info: the driver's PTP info structure
1439  * @scaled_ppm: Parts per million with 16-bit fractional field
1440  *
1441  * Adjust the frequency of the clock by the indicated scaled ppm from the
1442  * base frequency.
1443  */
1444 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1445 {
1446 	struct ice_pf *pf = ptp_info_to_pf(info);
1447 	struct ice_hw *hw = &pf->hw;
1448 	u64 incval, diff;
1449 	int neg_adj = 0;
1450 	int err;
1451 
1452 	incval = ice_base_incval(pf);
1453 
1454 	if (scaled_ppm < 0) {
1455 		neg_adj = 1;
1456 		scaled_ppm = -scaled_ppm;
1457 	}
1458 
1459 	diff = mul_u64_u64_div_u64(incval, (u64)scaled_ppm,
1460 				   1000000ULL << 16);
1461 	if (neg_adj)
1462 		incval -= diff;
1463 	else
1464 		incval += diff;
1465 
1466 	err = ice_ptp_write_incval_locked(hw, incval);
1467 	if (err) {
1468 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1469 			err);
1470 		return -EIO;
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 /**
1477  * ice_ptp_extts_work - Workqueue task function
1478  * @work: external timestamp work structure
1479  *
1480  * Service for PTP external clock event
1481  */
1482 static void ice_ptp_extts_work(struct kthread_work *work)
1483 {
1484 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
1485 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1486 	struct ptp_clock_event event;
1487 	struct ice_hw *hw = &pf->hw;
1488 	u8 chan, tmr_idx;
1489 	u32 hi, lo;
1490 
1491 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1492 	/* Event time is captured by one of the two matched registers
1493 	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1494 	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1495 	 * Event is defined in GLTSYN_EVNT_0 register
1496 	 */
1497 	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1498 		/* Check if channel is enabled */
1499 		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1500 			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1501 			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1502 			event.timestamp = (((u64)hi) << 32) | lo;
1503 			event.type = PTP_CLOCK_EXTTS;
1504 			event.index = chan;
1505 
1506 			/* Fire event */
1507 			ptp_clock_event(pf->ptp.clock, &event);
1508 			pf->ptp.ext_ts_irq &= ~(1 << chan);
1509 		}
1510 	}
1511 }
1512 
1513 /**
1514  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1515  * @pf: Board private structure
1516  * @ena: true to enable; false to disable
1517  * @chan: GPIO channel (0-3)
1518  * @gpio_pin: GPIO pin
1519  * @extts_flags: request flags from the ptp_extts_request.flags
1520  */
1521 static int
1522 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1523 		  unsigned int extts_flags)
1524 {
1525 	u32 func, aux_reg, gpio_reg, irq_reg;
1526 	struct ice_hw *hw = &pf->hw;
1527 	u8 tmr_idx;
1528 
1529 	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1530 		return -EINVAL;
1531 
1532 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1533 
1534 	irq_reg = rd32(hw, PFINT_OICR_ENA);
1535 
1536 	if (ena) {
1537 		/* Enable the interrupt */
1538 		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1539 		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1540 
1541 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1542 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1543 
1544 		/* set event level to requested edge */
1545 		if (extts_flags & PTP_FALLING_EDGE)
1546 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1547 		if (extts_flags & PTP_RISING_EDGE)
1548 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1549 
1550 		/* Write GPIO CTL reg.
1551 		 * 0x1 is input sampled by EVENT register(channel)
1552 		 * + num_in_channels * tmr_idx
1553 		 */
1554 		func = 1 + chan + (tmr_idx * 3);
1555 		gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1556 			    GLGEN_GPIO_CTL_PIN_FUNC_M);
1557 		pf->ptp.ext_ts_chan |= (1 << chan);
1558 	} else {
1559 		/* clear the values we set to reset defaults */
1560 		aux_reg = 0;
1561 		gpio_reg = 0;
1562 		pf->ptp.ext_ts_chan &= ~(1 << chan);
1563 		if (!pf->ptp.ext_ts_chan)
1564 			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1565 	}
1566 
1567 	wr32(hw, PFINT_OICR_ENA, irq_reg);
1568 	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1569 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1570 
1571 	return 0;
1572 }
1573 
1574 /**
1575  * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1576  * @pf: Board private structure
1577  * @chan: GPIO channel (0-3)
1578  * @config: desired periodic clk configuration. NULL will disable channel
1579  * @store: If set to true the values will be stored
1580  *
1581  * Configure the internal clock generator modules to generate the clock wave of
1582  * specified period.
1583  */
1584 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1585 			      struct ice_perout_channel *config, bool store)
1586 {
1587 	u64 current_time, period, start_time, phase;
1588 	struct ice_hw *hw = &pf->hw;
1589 	u32 func, val, gpio_pin;
1590 	u8 tmr_idx;
1591 
1592 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1593 
1594 	/* 0. Reset mode & out_en in AUX_OUT */
1595 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1596 
1597 	/* If we're disabling the output, clear out CLKO and TGT and keep
1598 	 * output level low
1599 	 */
1600 	if (!config || !config->ena) {
1601 		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1602 		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1603 		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1604 
1605 		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1606 		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1607 		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1608 
1609 		/* Store the value if requested */
1610 		if (store)
1611 			memset(&pf->ptp.perout_channels[chan], 0,
1612 			       sizeof(struct ice_perout_channel));
1613 
1614 		return 0;
1615 	}
1616 	period = config->period;
1617 	start_time = config->start_time;
1618 	div64_u64_rem(start_time, period, &phase);
1619 	gpio_pin = config->gpio_pin;
1620 
1621 	/* 1. Write clkout with half of required period value */
1622 	if (period & 0x1) {
1623 		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1624 		goto err;
1625 	}
1626 
1627 	period >>= 1;
1628 
1629 	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1630 	 */
1631 #define MIN_PULSE 3
1632 	if (period <= MIN_PULSE || period > U32_MAX) {
1633 		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1634 			MIN_PULSE * 2);
1635 		goto err;
1636 	}
1637 
1638 	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1639 
1640 	/* Allow time for programming before start_time is hit */
1641 	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1642 
1643 	/* if start time is in the past start the timer at the nearest second
1644 	 * maintaining phase
1645 	 */
1646 	if (start_time < current_time)
1647 		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1648 				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1649 
1650 	if (ice_is_e810(hw))
1651 		start_time -= E810_OUT_PROP_DELAY_NS;
1652 	else
1653 		start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
1654 
1655 	/* 2. Write TARGET time */
1656 	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1657 	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1658 
1659 	/* 3. Write AUX_OUT register */
1660 	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1661 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1662 
1663 	/* 4. write GPIO CTL reg */
1664 	func = 8 + chan + (tmr_idx * 4);
1665 	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1666 	      ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1667 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1668 
1669 	/* Store the value if requested */
1670 	if (store) {
1671 		memcpy(&pf->ptp.perout_channels[chan], config,
1672 		       sizeof(struct ice_perout_channel));
1673 		pf->ptp.perout_channels[chan].start_time = phase;
1674 	}
1675 
1676 	return 0;
1677 err:
1678 	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1679 	return -EFAULT;
1680 }
1681 
1682 /**
1683  * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1684  * @pf: pointer to the PF structure
1685  *
1686  * Disable all currently configured clock outputs. This is necessary before
1687  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1688  * re-enable the clocks again.
1689  */
1690 static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1691 {
1692 	uint i;
1693 
1694 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1695 		if (pf->ptp.perout_channels[i].ena)
1696 			ice_ptp_cfg_clkout(pf, i, NULL, false);
1697 }
1698 
1699 /**
1700  * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1701  * @pf: pointer to the PF structure
1702  *
1703  * Enable all currently configured clock outputs. Use this after
1704  * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1705  * their configuration.
1706  */
1707 static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1708 {
1709 	uint i;
1710 
1711 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1712 		if (pf->ptp.perout_channels[i].ena)
1713 			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1714 					   false);
1715 }
1716 
1717 /**
1718  * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1719  * @info: the driver's PTP info structure
1720  * @rq: The requested feature to change
1721  * @on: Enable/disable flag
1722  */
1723 static int
1724 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1725 			 struct ptp_clock_request *rq, int on)
1726 {
1727 	struct ice_pf *pf = ptp_info_to_pf(info);
1728 	struct ice_perout_channel clk_cfg = {0};
1729 	bool sma_pres = false;
1730 	unsigned int chan;
1731 	u32 gpio_pin;
1732 	int err;
1733 
1734 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1735 		sma_pres = true;
1736 
1737 	switch (rq->type) {
1738 	case PTP_CLK_REQ_PEROUT:
1739 		chan = rq->perout.index;
1740 		if (sma_pres) {
1741 			if (chan == ice_pin_desc_e810t[SMA1].chan)
1742 				clk_cfg.gpio_pin = GPIO_20;
1743 			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1744 				clk_cfg.gpio_pin = GPIO_22;
1745 			else
1746 				return -1;
1747 		} else if (ice_is_e810t(&pf->hw)) {
1748 			if (chan == 0)
1749 				clk_cfg.gpio_pin = GPIO_20;
1750 			else
1751 				clk_cfg.gpio_pin = GPIO_22;
1752 		} else if (chan == PPS_CLK_GEN_CHAN) {
1753 			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1754 		} else {
1755 			clk_cfg.gpio_pin = chan;
1756 		}
1757 
1758 		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1759 				   rq->perout.period.nsec);
1760 		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1761 				       rq->perout.start.nsec);
1762 		clk_cfg.ena = !!on;
1763 
1764 		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1765 		break;
1766 	case PTP_CLK_REQ_EXTTS:
1767 		chan = rq->extts.index;
1768 		if (sma_pres) {
1769 			if (chan < ice_pin_desc_e810t[SMA2].chan)
1770 				gpio_pin = GPIO_21;
1771 			else
1772 				gpio_pin = GPIO_23;
1773 		} else if (ice_is_e810t(&pf->hw)) {
1774 			if (chan == 0)
1775 				gpio_pin = GPIO_21;
1776 			else
1777 				gpio_pin = GPIO_23;
1778 		} else {
1779 			gpio_pin = chan;
1780 		}
1781 
1782 		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1783 					rq->extts.flags);
1784 		break;
1785 	default:
1786 		return -EOPNOTSUPP;
1787 	}
1788 
1789 	return err;
1790 }
1791 
1792 /**
1793  * ice_ptp_gettimex64 - Get the time of the clock
1794  * @info: the driver's PTP info structure
1795  * @ts: timespec64 structure to hold the current time value
1796  * @sts: Optional parameter for holding a pair of system timestamps from
1797  *       the system clock. Will be ignored if NULL is given.
1798  *
1799  * Read the device clock and return the correct value on ns, after converting it
1800  * into a timespec struct.
1801  */
1802 static int
1803 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1804 		   struct ptp_system_timestamp *sts)
1805 {
1806 	struct ice_pf *pf = ptp_info_to_pf(info);
1807 	struct ice_hw *hw = &pf->hw;
1808 
1809 	if (!ice_ptp_lock(hw)) {
1810 		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1811 		return -EBUSY;
1812 	}
1813 
1814 	ice_ptp_read_time(pf, ts, sts);
1815 	ice_ptp_unlock(hw);
1816 
1817 	return 0;
1818 }
1819 
1820 /**
1821  * ice_ptp_settime64 - Set the time of the clock
1822  * @info: the driver's PTP info structure
1823  * @ts: timespec64 structure that holds the new time value
1824  *
1825  * Set the device clock to the user input value. The conversion from timespec
1826  * to ns happens in the write function.
1827  */
1828 static int
1829 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1830 {
1831 	struct ice_pf *pf = ptp_info_to_pf(info);
1832 	struct timespec64 ts64 = *ts;
1833 	struct ice_hw *hw = &pf->hw;
1834 	int err;
1835 
1836 	/* For Vernier mode, we need to recalibrate after new settime
1837 	 * Start with disabling timestamp block
1838 	 */
1839 	if (pf->ptp.port.link_up)
1840 		ice_ptp_port_phy_stop(&pf->ptp.port);
1841 
1842 	if (!ice_ptp_lock(hw)) {
1843 		err = -EBUSY;
1844 		goto exit;
1845 	}
1846 
1847 	/* Disable periodic outputs */
1848 	ice_ptp_disable_all_clkout(pf);
1849 
1850 	err = ice_ptp_write_init(pf, &ts64);
1851 	ice_ptp_unlock(hw);
1852 
1853 	if (!err)
1854 		ice_ptp_reset_cached_phctime(pf);
1855 
1856 	/* Reenable periodic outputs */
1857 	ice_ptp_enable_all_clkout(pf);
1858 
1859 	/* Recalibrate and re-enable timestamp block */
1860 	if (pf->ptp.port.link_up)
1861 		ice_ptp_port_phy_restart(&pf->ptp.port);
1862 exit:
1863 	if (err) {
1864 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1865 		return err;
1866 	}
1867 
1868 	return 0;
1869 }
1870 
1871 /**
1872  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1873  * @info: the driver's PTP info structure
1874  * @delta: Offset in nanoseconds to adjust the time by
1875  */
1876 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1877 {
1878 	struct timespec64 now, then;
1879 	int ret;
1880 
1881 	then = ns_to_timespec64(delta);
1882 	ret = ice_ptp_gettimex64(info, &now, NULL);
1883 	if (ret)
1884 		return ret;
1885 	now = timespec64_add(now, then);
1886 
1887 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1888 }
1889 
1890 /**
1891  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1892  * @info: the driver's PTP info structure
1893  * @delta: Offset in nanoseconds to adjust the time by
1894  */
1895 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1896 {
1897 	struct ice_pf *pf = ptp_info_to_pf(info);
1898 	struct ice_hw *hw = &pf->hw;
1899 	struct device *dev;
1900 	int err;
1901 
1902 	dev = ice_pf_to_dev(pf);
1903 
1904 	/* Hardware only supports atomic adjustments using signed 32-bit
1905 	 * integers. For any adjustment outside this range, perform
1906 	 * a non-atomic get->adjust->set flow.
1907 	 */
1908 	if (delta > S32_MAX || delta < S32_MIN) {
1909 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1910 		return ice_ptp_adjtime_nonatomic(info, delta);
1911 	}
1912 
1913 	if (!ice_ptp_lock(hw)) {
1914 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1915 		return -EBUSY;
1916 	}
1917 
1918 	/* Disable periodic outputs */
1919 	ice_ptp_disable_all_clkout(pf);
1920 
1921 	err = ice_ptp_write_adj(pf, delta);
1922 
1923 	/* Reenable periodic outputs */
1924 	ice_ptp_enable_all_clkout(pf);
1925 
1926 	ice_ptp_unlock(hw);
1927 
1928 	if (err) {
1929 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1930 		return err;
1931 	}
1932 
1933 	ice_ptp_reset_cached_phctime(pf);
1934 
1935 	return 0;
1936 }
1937 
1938 #ifdef CONFIG_ICE_HWTS
1939 /**
1940  * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1941  * @device: Current device time
1942  * @system: System counter value read synchronously with device time
1943  * @ctx: Context provided by timekeeping code
1944  *
1945  * Read device and system (ART) clock simultaneously and return the corrected
1946  * clock values in ns.
1947  */
1948 static int
1949 ice_ptp_get_syncdevicetime(ktime_t *device,
1950 			   struct system_counterval_t *system,
1951 			   void *ctx)
1952 {
1953 	struct ice_pf *pf = (struct ice_pf *)ctx;
1954 	struct ice_hw *hw = &pf->hw;
1955 	u32 hh_lock, hh_art_ctl;
1956 	int i;
1957 
1958 	/* Get the HW lock */
1959 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1960 	if (hh_lock & PFHH_SEM_BUSY_M) {
1961 		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1962 		return -EFAULT;
1963 	}
1964 
1965 	/* Start the ART and device clock sync sequence */
1966 	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1967 	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1968 	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1969 
1970 #define MAX_HH_LOCK_TRIES 100
1971 
1972 	for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
1973 		/* Wait for sync to complete */
1974 		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1975 		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1976 			udelay(1);
1977 			continue;
1978 		} else {
1979 			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
1980 			u64 hh_ts;
1981 
1982 			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
1983 			/* Read ART time */
1984 			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
1985 			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
1986 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1987 			*system = convert_art_ns_to_tsc(hh_ts);
1988 			/* Read Device source clock time */
1989 			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
1990 			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
1991 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1992 			*device = ns_to_ktime(hh_ts);
1993 			break;
1994 		}
1995 	}
1996 	/* Release HW lock */
1997 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1998 	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
1999 	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2000 
2001 	if (i == MAX_HH_LOCK_TRIES)
2002 		return -ETIMEDOUT;
2003 
2004 	return 0;
2005 }
2006 
2007 /**
2008  * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
2009  * @info: the driver's PTP info structure
2010  * @cts: The memory to fill the cross timestamp info
2011  *
2012  * Capture a cross timestamp between the ART and the device PTP hardware
2013  * clock. Fill the cross timestamp information and report it back to the
2014  * caller.
2015  *
2016  * This is only valid for E822 devices which have support for generating the
2017  * cross timestamp via PCIe PTM.
2018  *
2019  * In order to correctly correlate the ART timestamp back to the TSC time, the
2020  * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2021  */
2022 static int
2023 ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
2024 			    struct system_device_crosststamp *cts)
2025 {
2026 	struct ice_pf *pf = ptp_info_to_pf(info);
2027 
2028 	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2029 					     pf, NULL, cts);
2030 }
2031 #endif /* CONFIG_ICE_HWTS */
2032 
2033 /**
2034  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2035  * @pf: Board private structure
2036  * @ifr: ioctl data
2037  *
2038  * Copy the timestamping config to user buffer
2039  */
2040 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2041 {
2042 	struct hwtstamp_config *config;
2043 
2044 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2045 		return -EIO;
2046 
2047 	config = &pf->ptp.tstamp_config;
2048 
2049 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2050 		-EFAULT : 0;
2051 }
2052 
2053 /**
2054  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2055  * @pf: Board private structure
2056  * @config: hwtstamp settings requested or saved
2057  */
2058 static int
2059 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2060 {
2061 	switch (config->tx_type) {
2062 	case HWTSTAMP_TX_OFF:
2063 		ice_set_tx_tstamp(pf, false);
2064 		break;
2065 	case HWTSTAMP_TX_ON:
2066 		ice_set_tx_tstamp(pf, true);
2067 		break;
2068 	default:
2069 		return -ERANGE;
2070 	}
2071 
2072 	switch (config->rx_filter) {
2073 	case HWTSTAMP_FILTER_NONE:
2074 		ice_set_rx_tstamp(pf, false);
2075 		break;
2076 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2077 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2078 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2079 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2080 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2081 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2082 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2083 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2084 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2085 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2086 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2087 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2088 	case HWTSTAMP_FILTER_NTP_ALL:
2089 	case HWTSTAMP_FILTER_ALL:
2090 		ice_set_rx_tstamp(pf, true);
2091 		break;
2092 	default:
2093 		return -ERANGE;
2094 	}
2095 
2096 	return 0;
2097 }
2098 
2099 /**
2100  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2101  * @pf: Board private structure
2102  * @ifr: ioctl data
2103  *
2104  * Get the user config and store it
2105  */
2106 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2107 {
2108 	struct hwtstamp_config config;
2109 	int err;
2110 
2111 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2112 		return -EAGAIN;
2113 
2114 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2115 		return -EFAULT;
2116 
2117 	err = ice_ptp_set_timestamp_mode(pf, &config);
2118 	if (err)
2119 		return err;
2120 
2121 	/* Return the actual configuration set */
2122 	config = pf->ptp.tstamp_config;
2123 
2124 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2125 		-EFAULT : 0;
2126 }
2127 
2128 /**
2129  * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
2130  * @rx_ring: Ring to get the VSI info
2131  * @rx_desc: Receive descriptor
2132  * @skb: Particular skb to send timestamp with
2133  *
2134  * The driver receives a notification in the receive descriptor with timestamp.
2135  * The timestamp is in ns, so we must convert the result first.
2136  */
2137 void
2138 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
2139 		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
2140 {
2141 	struct skb_shared_hwtstamps *hwtstamps;
2142 	u64 ts_ns, cached_time;
2143 	u32 ts_high;
2144 
2145 	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2146 		return;
2147 
2148 	cached_time = READ_ONCE(rx_ring->cached_phctime);
2149 
2150 	/* Do not report a timestamp if we don't have a cached PHC time */
2151 	if (!cached_time)
2152 		return;
2153 
2154 	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2155 	 * PHC value, rather than accessing the PF. This also allows us to
2156 	 * simply pass the upper 32bits of nanoseconds directly. Calling
2157 	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2158 	 * bits itself.
2159 	 */
2160 	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2161 	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2162 
2163 	hwtstamps = skb_hwtstamps(skb);
2164 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2165 	hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
2166 }
2167 
2168 /**
2169  * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2170  * @pf: pointer to the PF structure
2171  * @info: PTP clock info structure
2172  *
2173  * Disable the OS access to the SMA pins. Called to clear out the OS
2174  * indications of pin support when we fail to setup the E810-T SMA control
2175  * register.
2176  */
2177 static void
2178 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2179 {
2180 	struct device *dev = ice_pf_to_dev(pf);
2181 
2182 	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2183 
2184 	info->enable = NULL;
2185 	info->verify = NULL;
2186 	info->n_pins = 0;
2187 	info->n_ext_ts = 0;
2188 	info->n_per_out = 0;
2189 }
2190 
2191 /**
2192  * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2193  * @pf: pointer to the PF structure
2194  * @info: PTP clock info structure
2195  *
2196  * Finish setting up the SMA pins by allocating pin_config, and setting it up
2197  * according to the current status of the SMA. On failure, disable all of the
2198  * extended SMA pin support.
2199  */
2200 static void
2201 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2202 {
2203 	struct device *dev = ice_pf_to_dev(pf);
2204 	int err;
2205 
2206 	/* Allocate memory for kernel pins interface */
2207 	info->pin_config = devm_kcalloc(dev, info->n_pins,
2208 					sizeof(*info->pin_config), GFP_KERNEL);
2209 	if (!info->pin_config) {
2210 		ice_ptp_disable_sma_pins_e810t(pf, info);
2211 		return;
2212 	}
2213 
2214 	/* Read current SMA status */
2215 	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2216 	if (err)
2217 		ice_ptp_disable_sma_pins_e810t(pf, info);
2218 }
2219 
2220 /**
2221  * ice_ptp_setup_pins_e810t - Setup PTP pins in sysfs
2222  * @pf: pointer to the PF instance
2223  * @info: PTP clock capabilities
2224  */
2225 static void
2226 ice_ptp_setup_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2227 {
2228 	/* Check if SMA controller is in the netlist */
2229 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL) &&
2230 	    !ice_is_pca9575_present(&pf->hw))
2231 		ice_clear_feature_support(pf, ICE_F_SMA_CTRL);
2232 
2233 	if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2234 		info->n_ext_ts = N_EXT_TS_E810_NO_SMA;
2235 		info->n_per_out = N_PER_OUT_E810T_NO_SMA;
2236 		return;
2237 	}
2238 
2239 	info->n_per_out = N_PER_OUT_E810T;
2240 
2241 	if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS)) {
2242 		info->n_ext_ts = N_EXT_TS_E810;
2243 		info->n_pins = NUM_PTP_PINS_E810T;
2244 		info->verify = ice_verify_pin_e810t;
2245 	}
2246 
2247 	/* Complete setup of the SMA pins */
2248 	ice_ptp_setup_sma_pins_e810t(pf, info);
2249 }
2250 
2251 /**
2252  * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2253  * @pf: pointer to the PF instance
2254  * @info: PTP clock capabilities
2255  */
2256 static void ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2257 {
2258 	info->n_per_out = N_PER_OUT_E810;
2259 
2260 	if (!ice_is_feature_supported(pf, ICE_F_PTP_EXTTS))
2261 		return;
2262 
2263 	info->n_ext_ts = N_EXT_TS_E810;
2264 }
2265 
2266 /**
2267  * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
2268  * @pf: Board private structure
2269  * @info: PTP info to fill
2270  *
2271  * Assign functions to the PTP capabiltiies structure for E822 devices.
2272  * Functions which operate across all device families should be set directly
2273  * in ice_ptp_set_caps. Only add functions here which are distinct for E822
2274  * devices.
2275  */
2276 static void
2277 ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
2278 {
2279 #ifdef CONFIG_ICE_HWTS
2280 	if (boot_cpu_has(X86_FEATURE_ART) &&
2281 	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2282 		info->getcrosststamp = ice_ptp_getcrosststamp_e822;
2283 #endif /* CONFIG_ICE_HWTS */
2284 }
2285 
2286 /**
2287  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2288  * @pf: Board private structure
2289  * @info: PTP info to fill
2290  *
2291  * Assign functions to the PTP capabiltiies structure for E810 devices.
2292  * Functions which operate across all device families should be set directly
2293  * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2294  * devices.
2295  */
2296 static void
2297 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2298 {
2299 	info->enable = ice_ptp_gpio_enable_e810;
2300 
2301 	if (ice_is_e810t(&pf->hw))
2302 		ice_ptp_setup_pins_e810t(pf, info);
2303 	else
2304 		ice_ptp_setup_pins_e810(pf, info);
2305 }
2306 
2307 /**
2308  * ice_ptp_set_caps - Set PTP capabilities
2309  * @pf: Board private structure
2310  */
2311 static void ice_ptp_set_caps(struct ice_pf *pf)
2312 {
2313 	struct ptp_clock_info *info = &pf->ptp.info;
2314 	struct device *dev = ice_pf_to_dev(pf);
2315 
2316 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2317 		 dev_driver_string(dev), dev_name(dev));
2318 	info->owner = THIS_MODULE;
2319 	info->max_adj = 999999999;
2320 	info->adjtime = ice_ptp_adjtime;
2321 	info->adjfine = ice_ptp_adjfine;
2322 	info->gettimex64 = ice_ptp_gettimex64;
2323 	info->settime64 = ice_ptp_settime64;
2324 
2325 	if (ice_is_e810(&pf->hw))
2326 		ice_ptp_set_funcs_e810(pf, info);
2327 	else
2328 		ice_ptp_set_funcs_e822(pf, info);
2329 }
2330 
2331 /**
2332  * ice_ptp_create_clock - Create PTP clock device for userspace
2333  * @pf: Board private structure
2334  *
2335  * This function creates a new PTP clock device. It only creates one if we
2336  * don't already have one. Will return error if it can't create one, but success
2337  * if we already have a device. Should be used by ice_ptp_init to create clock
2338  * initially, and prevent global resets from creating new clock devices.
2339  */
2340 static long ice_ptp_create_clock(struct ice_pf *pf)
2341 {
2342 	struct ptp_clock_info *info;
2343 	struct ptp_clock *clock;
2344 	struct device *dev;
2345 
2346 	/* No need to create a clock device if we already have one */
2347 	if (pf->ptp.clock)
2348 		return 0;
2349 
2350 	ice_ptp_set_caps(pf);
2351 
2352 	info = &pf->ptp.info;
2353 	dev = ice_pf_to_dev(pf);
2354 
2355 	/* Attempt to register the clock before enabling the hardware. */
2356 	clock = ptp_clock_register(info, dev);
2357 	if (IS_ERR(clock))
2358 		return PTR_ERR(clock);
2359 
2360 	pf->ptp.clock = clock;
2361 
2362 	return 0;
2363 }
2364 
2365 /**
2366  * ice_ptp_request_ts - Request an available Tx timestamp index
2367  * @tx: the PTP Tx timestamp tracker to request from
2368  * @skb: the SKB to associate with this timestamp request
2369  */
2370 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2371 {
2372 	u8 idx;
2373 
2374 	/* Check if this tracker is initialized */
2375 	if (!tx->init || tx->calibrating)
2376 		return -1;
2377 
2378 	spin_lock(&tx->lock);
2379 	/* Find and set the first available index */
2380 	idx = find_first_zero_bit(tx->in_use, tx->len);
2381 	if (idx < tx->len) {
2382 		/* We got a valid index that no other thread could have set. Store
2383 		 * a reference to the skb and the start time to allow discarding old
2384 		 * requests.
2385 		 */
2386 		set_bit(idx, tx->in_use);
2387 		tx->tstamps[idx].start = jiffies;
2388 		tx->tstamps[idx].skb = skb_get(skb);
2389 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2390 		ice_trace(tx_tstamp_request, skb, idx);
2391 	}
2392 
2393 	spin_unlock(&tx->lock);
2394 
2395 	/* return the appropriate PHY timestamp register index, -1 if no
2396 	 * indexes were available.
2397 	 */
2398 	if (idx >= tx->len)
2399 		return -1;
2400 	else
2401 		return idx + tx->quad_offset;
2402 }
2403 
2404 /**
2405  * ice_ptp_process_ts - Spawn kthread work to handle timestamps
2406  * @pf: Board private structure
2407  *
2408  * Queue work required to process the PTP Tx timestamps outside of interrupt
2409  * context.
2410  */
2411 void ice_ptp_process_ts(struct ice_pf *pf)
2412 {
2413 	if (pf->ptp.port.tx.init)
2414 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work);
2415 }
2416 
2417 static void ice_ptp_periodic_work(struct kthread_work *work)
2418 {
2419 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2420 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2421 	int err;
2422 
2423 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2424 		return;
2425 
2426 	err = ice_ptp_update_cached_phctime(pf);
2427 
2428 	ice_ptp_tx_tstamp_cleanup(pf, &pf->ptp.port.tx);
2429 
2430 	/* Run twice a second or reschedule if phc update failed */
2431 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2432 				   msecs_to_jiffies(err ? 10 : 500));
2433 }
2434 
2435 /**
2436  * ice_ptp_reset - Initialize PTP hardware clock support after reset
2437  * @pf: Board private structure
2438  */
2439 void ice_ptp_reset(struct ice_pf *pf)
2440 {
2441 	struct ice_ptp *ptp = &pf->ptp;
2442 	struct ice_hw *hw = &pf->hw;
2443 	struct timespec64 ts;
2444 	int err, itr = 1;
2445 	u64 time_diff;
2446 
2447 	if (test_bit(ICE_PFR_REQ, pf->state))
2448 		goto pfr;
2449 
2450 	if (!hw->func_caps.ts_func_info.src_tmr_owned)
2451 		goto reset_ts;
2452 
2453 	err = ice_ptp_init_phc(hw);
2454 	if (err)
2455 		goto err;
2456 
2457 	/* Acquire the global hardware lock */
2458 	if (!ice_ptp_lock(hw)) {
2459 		err = -EBUSY;
2460 		goto err;
2461 	}
2462 
2463 	/* Write the increment time value to PHY and LAN */
2464 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2465 	if (err) {
2466 		ice_ptp_unlock(hw);
2467 		goto err;
2468 	}
2469 
2470 	/* Write the initial Time value to PHY and LAN using the cached PHC
2471 	 * time before the reset and time difference between stopping and
2472 	 * starting the clock.
2473 	 */
2474 	if (ptp->cached_phc_time) {
2475 		time_diff = ktime_get_real_ns() - ptp->reset_time;
2476 		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2477 	} else {
2478 		ts = ktime_to_timespec64(ktime_get_real());
2479 	}
2480 	err = ice_ptp_write_init(pf, &ts);
2481 	if (err) {
2482 		ice_ptp_unlock(hw);
2483 		goto err;
2484 	}
2485 
2486 	/* Release the global hardware lock */
2487 	ice_ptp_unlock(hw);
2488 
2489 	if (!ice_is_e810(hw)) {
2490 		/* Enable quad interrupts */
2491 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2492 		if (err)
2493 			goto err;
2494 	}
2495 
2496 reset_ts:
2497 	/* Restart the PHY timestamping block */
2498 	ice_ptp_reset_phy_timestamping(pf);
2499 
2500 pfr:
2501 	/* Init Tx structures */
2502 	if (ice_is_e810(&pf->hw)) {
2503 		err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2504 	} else {
2505 		kthread_init_delayed_work(&ptp->port.ov_work,
2506 					  ice_ptp_wait_for_offset_valid);
2507 		err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
2508 					   ptp->port.port_num);
2509 	}
2510 	if (err)
2511 		goto err;
2512 
2513 	set_bit(ICE_FLAG_PTP, pf->flags);
2514 
2515 	/* Start periodic work going */
2516 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2517 
2518 	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2519 	return;
2520 
2521 err:
2522 	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2523 }
2524 
2525 /**
2526  * ice_ptp_prepare_for_reset - Prepare PTP for reset
2527  * @pf: Board private structure
2528  */
2529 void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2530 {
2531 	struct ice_ptp *ptp = &pf->ptp;
2532 	u8 src_tmr;
2533 
2534 	clear_bit(ICE_FLAG_PTP, pf->flags);
2535 
2536 	/* Disable timestamping for both Tx and Rx */
2537 	ice_ptp_cfg_timestamp(pf, false);
2538 
2539 	kthread_cancel_delayed_work_sync(&ptp->work);
2540 	kthread_cancel_work_sync(&ptp->extts_work);
2541 
2542 	if (test_bit(ICE_PFR_REQ, pf->state))
2543 		return;
2544 
2545 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2546 
2547 	/* Disable periodic outputs */
2548 	ice_ptp_disable_all_clkout(pf);
2549 
2550 	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2551 
2552 	/* Disable source clock */
2553 	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2554 
2555 	/* Acquire PHC and system timer to restore after reset */
2556 	ptp->reset_time = ktime_get_real_ns();
2557 }
2558 
2559 /**
2560  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2561  * @pf: Board private structure
2562  *
2563  * Setup and initialize a PTP clock device that represents the device hardware
2564  * clock. Save the clock index for other functions connected to the same
2565  * hardware resource.
2566  */
2567 static int ice_ptp_init_owner(struct ice_pf *pf)
2568 {
2569 	struct ice_hw *hw = &pf->hw;
2570 	struct timespec64 ts;
2571 	int err, itr = 1;
2572 
2573 	err = ice_ptp_init_phc(hw);
2574 	if (err) {
2575 		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2576 			err);
2577 		return err;
2578 	}
2579 
2580 	/* Acquire the global hardware lock */
2581 	if (!ice_ptp_lock(hw)) {
2582 		err = -EBUSY;
2583 		goto err_exit;
2584 	}
2585 
2586 	/* Write the increment time value to PHY and LAN */
2587 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2588 	if (err) {
2589 		ice_ptp_unlock(hw);
2590 		goto err_exit;
2591 	}
2592 
2593 	ts = ktime_to_timespec64(ktime_get_real());
2594 	/* Write the initial Time value to PHY and LAN */
2595 	err = ice_ptp_write_init(pf, &ts);
2596 	if (err) {
2597 		ice_ptp_unlock(hw);
2598 		goto err_exit;
2599 	}
2600 
2601 	/* Release the global hardware lock */
2602 	ice_ptp_unlock(hw);
2603 
2604 	if (!ice_is_e810(hw)) {
2605 		/* Enable quad interrupts */
2606 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2607 		if (err)
2608 			goto err_exit;
2609 	}
2610 
2611 	/* Ensure we have a clock device */
2612 	err = ice_ptp_create_clock(pf);
2613 	if (err)
2614 		goto err_clk;
2615 
2616 	/* Store the PTP clock index for other PFs */
2617 	ice_set_ptp_clock_index(pf);
2618 
2619 	return 0;
2620 
2621 err_clk:
2622 	pf->ptp.clock = NULL;
2623 err_exit:
2624 	return err;
2625 }
2626 
2627 /**
2628  * ice_ptp_init_work - Initialize PTP work threads
2629  * @pf: Board private structure
2630  * @ptp: PF PTP structure
2631  */
2632 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2633 {
2634 	struct kthread_worker *kworker;
2635 
2636 	/* Initialize work functions */
2637 	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2638 	kthread_init_work(&ptp->extts_work, ice_ptp_extts_work);
2639 
2640 	/* Allocate a kworker for handling work required for the ports
2641 	 * connected to the PTP hardware clock.
2642 	 */
2643 	kworker = kthread_create_worker(0, "ice-ptp-%s",
2644 					dev_name(ice_pf_to_dev(pf)));
2645 	if (IS_ERR(kworker))
2646 		return PTR_ERR(kworker);
2647 
2648 	ptp->kworker = kworker;
2649 
2650 	/* Start periodic work going */
2651 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2652 
2653 	return 0;
2654 }
2655 
2656 /**
2657  * ice_ptp_init_port - Initialize PTP port structure
2658  * @pf: Board private structure
2659  * @ptp_port: PTP port structure
2660  */
2661 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2662 {
2663 	mutex_init(&ptp_port->ps_lock);
2664 
2665 	if (ice_is_e810(&pf->hw))
2666 		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2667 
2668 	kthread_init_delayed_work(&ptp_port->ov_work,
2669 				  ice_ptp_wait_for_offset_valid);
2670 	return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
2671 }
2672 
2673 /**
2674  * ice_ptp_init - Initialize PTP hardware clock support
2675  * @pf: Board private structure
2676  *
2677  * Set up the device for interacting with the PTP hardware clock for all
2678  * functions, both the function that owns the clock hardware, and the
2679  * functions connected to the clock hardware.
2680  *
2681  * The clock owner will allocate and register a ptp_clock with the
2682  * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
2683  * items used for asynchronous work such as Tx timestamps and periodic work.
2684  */
2685 void ice_ptp_init(struct ice_pf *pf)
2686 {
2687 	struct ice_ptp *ptp = &pf->ptp;
2688 	struct ice_hw *hw = &pf->hw;
2689 	int err;
2690 
2691 	/* If this function owns the clock hardware, it must allocate and
2692 	 * configure the PTP clock device to represent it.
2693 	 */
2694 	if (hw->func_caps.ts_func_info.src_tmr_owned) {
2695 		err = ice_ptp_init_owner(pf);
2696 		if (err)
2697 			goto err;
2698 	}
2699 
2700 	ptp->port.port_num = hw->pf_id;
2701 	err = ice_ptp_init_port(pf, &ptp->port);
2702 	if (err)
2703 		goto err;
2704 
2705 	/* Start the PHY timestamping block */
2706 	ice_ptp_reset_phy_timestamping(pf);
2707 
2708 	set_bit(ICE_FLAG_PTP, pf->flags);
2709 	err = ice_ptp_init_work(pf, ptp);
2710 	if (err)
2711 		goto err;
2712 
2713 	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
2714 	return;
2715 
2716 err:
2717 	/* If we registered a PTP clock, release it */
2718 	if (pf->ptp.clock) {
2719 		ptp_clock_unregister(ptp->clock);
2720 		pf->ptp.clock = NULL;
2721 	}
2722 	clear_bit(ICE_FLAG_PTP, pf->flags);
2723 	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
2724 }
2725 
2726 /**
2727  * ice_ptp_release - Disable the driver/HW support and unregister the clock
2728  * @pf: Board private structure
2729  *
2730  * This function handles the cleanup work required from the initialization by
2731  * clearing out the important information and unregistering the clock
2732  */
2733 void ice_ptp_release(struct ice_pf *pf)
2734 {
2735 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2736 		return;
2737 
2738 	/* Disable timestamping for both Tx and Rx */
2739 	ice_ptp_cfg_timestamp(pf, false);
2740 
2741 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2742 
2743 	clear_bit(ICE_FLAG_PTP, pf->flags);
2744 
2745 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
2746 
2747 	ice_ptp_port_phy_stop(&pf->ptp.port);
2748 	mutex_destroy(&pf->ptp.port.ps_lock);
2749 	if (pf->ptp.kworker) {
2750 		kthread_destroy_worker(pf->ptp.kworker);
2751 		pf->ptp.kworker = NULL;
2752 	}
2753 
2754 	if (!pf->ptp.clock)
2755 		return;
2756 
2757 	/* Disable periodic outputs */
2758 	ice_ptp_disable_all_clkout(pf);
2759 
2760 	ice_clear_ptp_clock_index(pf);
2761 	ptp_clock_unregister(pf->ptp.clock);
2762 	pf->ptp.clock = NULL;
2763 
2764 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
2765 }
2766