xref: /linux/drivers/net/ethernet/intel/ice/ice_nvm.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include <linux/vmalloc.h>
5 
6 #include "ice_common.h"
7 
8 /**
9  * ice_aq_read_nvm
10  * @hw: pointer to the HW struct
11  * @module_typeid: module pointer location in words from the NVM beginning
12  * @offset: byte offset from the module beginning
13  * @length: length of the section to be read (in bytes from the offset)
14  * @data: command buffer (size [bytes] = length)
15  * @last_command: tells if this is the last command in a series
16  * @read_shadow_ram: tell if this is a shadow RAM read
17  * @cd: pointer to command details structure or NULL
18  *
19  * Read the NVM using the admin queue commands (0x0701)
20  */
21 int ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
22 		    u16 length, void *data, bool last_command,
23 		    bool read_shadow_ram, struct ice_sq_cd *cd)
24 {
25 	struct ice_aq_desc desc;
26 	struct ice_aqc_nvm *cmd;
27 
28 	cmd = &desc.params.nvm;
29 
30 	if (offset > ICE_AQC_NVM_MAX_OFFSET)
31 		return -EINVAL;
32 
33 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
34 
35 	if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
36 		cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
37 
38 	/* If this is the last command in a series, set the proper flag. */
39 	if (last_command)
40 		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
41 	cmd->module_typeid = cpu_to_le16(module_typeid);
42 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
43 	cmd->offset_high = (offset >> 16) & 0xFF;
44 	cmd->length = cpu_to_le16(length);
45 
46 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
47 }
48 
49 /**
50  * ice_read_flat_nvm - Read portion of NVM by flat offset
51  * @hw: pointer to the HW struct
52  * @offset: offset from beginning of NVM
53  * @length: (in) number of bytes to read; (out) number of bytes actually read
54  * @data: buffer to return data in (sized to fit the specified length)
55  * @read_shadow_ram: if true, read from shadow RAM instead of NVM
56  *
57  * Reads a portion of the NVM, as a flat memory space. This function correctly
58  * breaks read requests across Shadow RAM sectors and ensures that no single
59  * read request exceeds the maximum 4KB read for a single AdminQ command.
60  *
61  * Returns a status code on failure. Note that the data pointer may be
62  * partially updated if some reads succeed before a failure.
63  */
64 int
65 ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
66 		  bool read_shadow_ram)
67 {
68 	u32 inlen = *length;
69 	u32 bytes_read = 0;
70 	bool last_cmd;
71 	int status;
72 
73 	*length = 0;
74 
75 	/* Verify the length of the read if this is for the Shadow RAM */
76 	if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) {
77 		ice_debug(hw, ICE_DBG_NVM, "NVM error: requested offset is beyond Shadow RAM limit\n");
78 		return -EINVAL;
79 	}
80 
81 	do {
82 		u32 read_size, sector_offset;
83 
84 		/* ice_aq_read_nvm cannot read more than 4KB at a time.
85 		 * Additionally, a read from the Shadow RAM may not cross over
86 		 * a sector boundary. Conveniently, the sector size is also
87 		 * 4KB.
88 		 */
89 		sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
90 		read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
91 				  inlen - bytes_read);
92 
93 		last_cmd = !(bytes_read + read_size < inlen);
94 
95 		status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
96 					 offset, read_size,
97 					 data + bytes_read, last_cmd,
98 					 read_shadow_ram, NULL);
99 		if (status)
100 			break;
101 
102 		bytes_read += read_size;
103 		offset += read_size;
104 	} while (!last_cmd);
105 
106 	*length = bytes_read;
107 	return status;
108 }
109 
110 /**
111  * ice_aq_update_nvm
112  * @hw: pointer to the HW struct
113  * @module_typeid: module pointer location in words from the NVM beginning
114  * @offset: byte offset from the module beginning
115  * @length: length of the section to be written (in bytes from the offset)
116  * @data: command buffer (size [bytes] = length)
117  * @last_command: tells if this is the last command in a series
118  * @command_flags: command parameters
119  * @cd: pointer to command details structure or NULL
120  *
121  * Update the NVM using the admin queue commands (0x0703)
122  */
123 int
124 ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
125 		  u16 length, void *data, bool last_command, u8 command_flags,
126 		  struct ice_sq_cd *cd)
127 {
128 	struct ice_aq_desc desc;
129 	struct ice_aqc_nvm *cmd;
130 
131 	cmd = &desc.params.nvm;
132 
133 	/* In offset the highest byte must be zeroed. */
134 	if (offset & 0xFF000000)
135 		return -EINVAL;
136 
137 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
138 
139 	cmd->cmd_flags |= command_flags;
140 
141 	/* If this is the last command in a series, set the proper flag. */
142 	if (last_command)
143 		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
144 	cmd->module_typeid = cpu_to_le16(module_typeid);
145 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
146 	cmd->offset_high = (offset >> 16) & 0xFF;
147 	cmd->length = cpu_to_le16(length);
148 
149 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
150 
151 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
152 }
153 
154 /**
155  * ice_aq_erase_nvm
156  * @hw: pointer to the HW struct
157  * @module_typeid: module pointer location in words from the NVM beginning
158  * @cd: pointer to command details structure or NULL
159  *
160  * Erase the NVM sector using the admin queue commands (0x0702)
161  */
162 int ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
163 {
164 	struct ice_aq_desc desc;
165 	struct ice_aqc_nvm *cmd;
166 
167 	cmd = &desc.params.nvm;
168 
169 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
170 
171 	cmd->module_typeid = cpu_to_le16(module_typeid);
172 	cmd->length = cpu_to_le16(ICE_AQC_NVM_ERASE_LEN);
173 	cmd->offset_low = 0;
174 	cmd->offset_high = 0;
175 
176 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
177 }
178 
179 /**
180  * ice_read_sr_word_aq - Reads Shadow RAM via AQ
181  * @hw: pointer to the HW structure
182  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
183  * @data: word read from the Shadow RAM
184  *
185  * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
186  */
187 static int ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
188 {
189 	u32 bytes = sizeof(u16);
190 	__le16 data_local;
191 	int status;
192 
193 	/* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and
194 	 * Shadow RAM sector restrictions necessary when reading from the NVM.
195 	 */
196 	status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
197 				   (__force u8 *)&data_local, true);
198 	if (status)
199 		return status;
200 
201 	*data = le16_to_cpu(data_local);
202 	return 0;
203 }
204 
205 /**
206  * ice_acquire_nvm - Generic request for acquiring the NVM ownership
207  * @hw: pointer to the HW structure
208  * @access: NVM access type (read or write)
209  *
210  * This function will request NVM ownership.
211  */
212 int ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
213 {
214 	if (hw->flash.blank_nvm_mode)
215 		return 0;
216 
217 	return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
218 }
219 
220 /**
221  * ice_release_nvm - Generic request for releasing the NVM ownership
222  * @hw: pointer to the HW structure
223  *
224  * This function will release NVM ownership.
225  */
226 void ice_release_nvm(struct ice_hw *hw)
227 {
228 	if (hw->flash.blank_nvm_mode)
229 		return;
230 
231 	ice_release_res(hw, ICE_NVM_RES_ID);
232 }
233 
234 /**
235  * ice_get_flash_bank_offset - Get offset into requested flash bank
236  * @hw: pointer to the HW structure
237  * @bank: whether to read from the active or inactive flash bank
238  * @module: the module to read from
239  *
240  * Based on the module, lookup the module offset from the beginning of the
241  * flash.
242  *
243  * Returns the flash offset. Note that a value of zero is invalid and must be
244  * treated as an error.
245  */
246 static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module)
247 {
248 	struct ice_bank_info *banks = &hw->flash.banks;
249 	enum ice_flash_bank active_bank;
250 	bool second_bank_active;
251 	u32 offset, size;
252 
253 	switch (module) {
254 	case ICE_SR_1ST_NVM_BANK_PTR:
255 		offset = banks->nvm_ptr;
256 		size = banks->nvm_size;
257 		active_bank = banks->nvm_bank;
258 		break;
259 	case ICE_SR_1ST_OROM_BANK_PTR:
260 		offset = banks->orom_ptr;
261 		size = banks->orom_size;
262 		active_bank = banks->orom_bank;
263 		break;
264 	case ICE_SR_NETLIST_BANK_PTR:
265 		offset = banks->netlist_ptr;
266 		size = banks->netlist_size;
267 		active_bank = banks->netlist_bank;
268 		break;
269 	default:
270 		ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module);
271 		return 0;
272 	}
273 
274 	switch (active_bank) {
275 	case ICE_1ST_FLASH_BANK:
276 		second_bank_active = false;
277 		break;
278 	case ICE_2ND_FLASH_BANK:
279 		second_bank_active = true;
280 		break;
281 	default:
282 		ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n",
283 			  active_bank);
284 		return 0;
285 	}
286 
287 	/* The second flash bank is stored immediately following the first
288 	 * bank. Based on whether the 1st or 2nd bank is active, and whether
289 	 * we want the active or inactive bank, calculate the desired offset.
290 	 */
291 	switch (bank) {
292 	case ICE_ACTIVE_FLASH_BANK:
293 		return offset + (second_bank_active ? size : 0);
294 	case ICE_INACTIVE_FLASH_BANK:
295 		return offset + (second_bank_active ? 0 : size);
296 	}
297 
298 	ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank);
299 	return 0;
300 }
301 
302 /**
303  * ice_read_flash_module - Read a word from one of the main NVM modules
304  * @hw: pointer to the HW structure
305  * @bank: which bank of the module to read
306  * @module: the module to read
307  * @offset: the offset into the module in bytes
308  * @data: storage for the word read from the flash
309  * @length: bytes of data to read
310  *
311  * Read data from the specified flash module. The bank parameter indicates
312  * whether or not to read from the active bank or the inactive bank of that
313  * module.
314  *
315  * The word will be read using flat NVM access, and relies on the
316  * hw->flash.banks data being setup by ice_determine_active_flash_banks()
317  * during initialization.
318  */
319 static int
320 ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module,
321 		      u32 offset, u8 *data, u32 length)
322 {
323 	int status;
324 	u32 start;
325 
326 	start = ice_get_flash_bank_offset(hw, bank, module);
327 	if (!start) {
328 		ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n",
329 			  module);
330 		return -EINVAL;
331 	}
332 
333 	status = ice_acquire_nvm(hw, ICE_RES_READ);
334 	if (status)
335 		return status;
336 
337 	status = ice_read_flat_nvm(hw, start + offset, &length, data, false);
338 
339 	ice_release_nvm(hw);
340 
341 	return status;
342 }
343 
344 /**
345  * ice_read_nvm_module - Read from the active main NVM module
346  * @hw: pointer to the HW structure
347  * @bank: whether to read from active or inactive NVM module
348  * @offset: offset into the NVM module to read, in words
349  * @data: storage for returned word value
350  *
351  * Read the specified word from the active NVM module. This includes the CSS
352  * header at the start of the NVM module.
353  */
354 static int
355 ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
356 {
357 	__le16 data_local;
358 	int status;
359 
360 	status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16),
361 				       (__force u8 *)&data_local, sizeof(u16));
362 	if (!status)
363 		*data = le16_to_cpu(data_local);
364 
365 	return status;
366 }
367 
368 /**
369  * ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank
370  * @hw: pointer to the HW structure
371  * @bank: whether to read from the active or inactive NVM module
372  * @offset: offset into the Shadow RAM copy to read, in words
373  * @data: storage for returned word value
374  *
375  * Read the specified word from the copy of the Shadow RAM found in the
376  * specified NVM module.
377  *
378  * Note that the Shadow RAM copy is always located after the CSS header, and
379  * is aligned to 64-byte (32-word) offsets.
380  */
381 static int
382 ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
383 {
384 	u32 sr_copy;
385 
386 	switch (bank) {
387 	case ICE_ACTIVE_FLASH_BANK:
388 		sr_copy = roundup(hw->flash.banks.active_css_hdr_len, 32);
389 		break;
390 	case ICE_INACTIVE_FLASH_BANK:
391 		sr_copy = roundup(hw->flash.banks.inactive_css_hdr_len, 32);
392 		break;
393 	}
394 
395 	return ice_read_nvm_module(hw, bank, sr_copy + offset, data);
396 }
397 
398 /**
399  * ice_read_netlist_module - Read data from the netlist module area
400  * @hw: pointer to the HW structure
401  * @bank: whether to read from the active or inactive module
402  * @offset: offset into the netlist to read from
403  * @data: storage for returned word value
404  *
405  * Read a word from the specified netlist bank.
406  */
407 static int
408 ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
409 {
410 	__le16 data_local;
411 	int status;
412 
413 	status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, offset * sizeof(u16),
414 				       (__force u8 *)&data_local, sizeof(u16));
415 	if (!status)
416 		*data = le16_to_cpu(data_local);
417 
418 	return status;
419 }
420 
421 /**
422  * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
423  * @hw: pointer to the HW structure
424  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
425  * @data: word read from the Shadow RAM
426  *
427  * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
428  */
429 int ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
430 {
431 	int status;
432 
433 	status = ice_acquire_nvm(hw, ICE_RES_READ);
434 	if (!status) {
435 		status = ice_read_sr_word_aq(hw, offset, data);
436 		ice_release_nvm(hw);
437 	}
438 
439 	return status;
440 }
441 
442 /**
443  * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
444  * @hw: pointer to hardware structure
445  * @module_tlv: pointer to module TLV to return
446  * @module_tlv_len: pointer to module TLV length to return
447  * @module_type: module type requested
448  *
449  * Finds the requested sub module TLV type from the Preserved Field
450  * Area (PFA) and returns the TLV pointer and length. The caller can
451  * use these to read the variable length TLV value.
452  */
453 int
454 ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
455 		       u16 module_type)
456 {
457 	u16 pfa_len, pfa_ptr, next_tlv, max_tlv;
458 	int status;
459 
460 	status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
461 	if (status) {
462 		ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
463 		return status;
464 	}
465 	status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
466 	if (status) {
467 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
468 		return status;
469 	}
470 
471 	/* The Preserved Fields Area contains a sequence of Type-Length-Value
472 	 * structures which define its contents. The PFA length includes all
473 	 * of the TLVs, plus the initial length word itself, *and* one final
474 	 * word at the end after all of the TLVs.
475 	 */
476 	if (check_add_overflow(pfa_ptr, pfa_len - 1, &max_tlv)) {
477 		dev_warn(ice_hw_to_dev(hw), "PFA starts at offset %u. PFA length of %u caused 16-bit arithmetic overflow.\n",
478 			 pfa_ptr, pfa_len);
479 		return -EINVAL;
480 	}
481 
482 	/* Starting with first TLV after PFA length, iterate through the list
483 	 * of TLVs to find the requested one.
484 	 */
485 	next_tlv = pfa_ptr + 1;
486 	while (next_tlv < max_tlv) {
487 		u16 tlv_sub_module_type;
488 		u16 tlv_len;
489 
490 		/* Read TLV type */
491 		status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
492 		if (status) {
493 			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
494 			break;
495 		}
496 		/* Read TLV length */
497 		status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
498 		if (status) {
499 			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
500 			break;
501 		}
502 		if (tlv_sub_module_type == module_type) {
503 			if (tlv_len) {
504 				*module_tlv = next_tlv;
505 				*module_tlv_len = tlv_len;
506 				return 0;
507 			}
508 			return -EINVAL;
509 		}
510 
511 		if (check_add_overflow(next_tlv, 2, &next_tlv) ||
512 		    check_add_overflow(next_tlv, tlv_len, &next_tlv)) {
513 			dev_warn(ice_hw_to_dev(hw), "TLV of type %u and length 0x%04x caused 16-bit arithmetic overflow. The PFA starts at 0x%04x and has length of 0x%04x\n",
514 				 tlv_sub_module_type, tlv_len, pfa_ptr, pfa_len);
515 			return -EINVAL;
516 		}
517 	}
518 	/* Module does not exist */
519 	return -ENOENT;
520 }
521 
522 /**
523  * ice_read_pba_string - Reads part number string from NVM
524  * @hw: pointer to hardware structure
525  * @pba_num: stores the part number string from the NVM
526  * @pba_num_size: part number string buffer length
527  *
528  * Reads the part number string from the NVM.
529  */
530 int ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
531 {
532 	u16 pba_tlv, pba_tlv_len;
533 	u16 pba_word, pba_size;
534 	int status;
535 	u16 i;
536 
537 	status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
538 					ICE_SR_PBA_BLOCK_PTR);
539 	if (status) {
540 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
541 		return status;
542 	}
543 
544 	/* pba_size is the next word */
545 	status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
546 	if (status) {
547 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
548 		return status;
549 	}
550 
551 	if (pba_tlv_len < pba_size) {
552 		ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
553 		return -EINVAL;
554 	}
555 
556 	/* Subtract one to get PBA word count (PBA Size word is included in
557 	 * total size)
558 	 */
559 	pba_size--;
560 	if (pba_num_size < (((u32)pba_size * 2) + 1)) {
561 		ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
562 		return -EINVAL;
563 	}
564 
565 	for (i = 0; i < pba_size; i++) {
566 		status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
567 		if (status) {
568 			ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
569 			return status;
570 		}
571 
572 		pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
573 		pba_num[(i * 2) + 1] = pba_word & 0xFF;
574 	}
575 	pba_num[(pba_size * 2)] = '\0';
576 
577 	return status;
578 }
579 
580 /**
581  * ice_get_nvm_ver_info - Read NVM version information
582  * @hw: pointer to the HW struct
583  * @bank: whether to read from the active or inactive flash bank
584  * @nvm: pointer to NVM info structure
585  *
586  * Read the NVM EETRACK ID and map version of the main NVM image bank, filling
587  * in the NVM info structure.
588  */
589 static int
590 ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm)
591 {
592 	u16 eetrack_lo, eetrack_hi, ver;
593 	int status;
594 
595 	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver);
596 	if (status) {
597 		ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n");
598 		return status;
599 	}
600 
601 	nvm->major = FIELD_GET(ICE_NVM_VER_HI_MASK, ver);
602 	nvm->minor = FIELD_GET(ICE_NVM_VER_LO_MASK, ver);
603 
604 	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
605 	if (status) {
606 		ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n");
607 		return status;
608 	}
609 	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
610 	if (status) {
611 		ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n");
612 		return status;
613 	}
614 
615 	nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
616 
617 	return 0;
618 }
619 
620 /**
621  * ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank
622  * @hw: pointer to the HW structure
623  * @nvm: storage for Option ROM version information
624  *
625  * Reads the NVM EETRACK ID, Map version, and security revision of the
626  * inactive NVM bank. Used to access version data for a pending update that
627  * has not yet been activated.
628  */
629 int ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm)
630 {
631 	return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm);
632 }
633 
634 /**
635  * ice_get_orom_civd_data - Get the combo version information from Option ROM
636  * @hw: pointer to the HW struct
637  * @bank: whether to read from the active or inactive flash module
638  * @civd: storage for the Option ROM CIVD data.
639  *
640  * Searches through the Option ROM flash contents to locate the CIVD data for
641  * the image.
642  */
643 static int
644 ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank,
645 		       struct ice_orom_civd_info *civd)
646 {
647 	u8 *orom_data;
648 	int status;
649 	u32 offset;
650 
651 	/* The CIVD section is located in the Option ROM aligned to 512 bytes.
652 	 * The first 4 bytes must contain the ASCII characters "$CIV".
653 	 * A simple modulo 256 sum of all of the bytes of the structure must
654 	 * equal 0.
655 	 *
656 	 * The exact location is unknown and varies between images but is
657 	 * usually somewhere in the middle of the bank. We need to scan the
658 	 * Option ROM bank to locate it.
659 	 *
660 	 * It's significantly faster to read the entire Option ROM up front
661 	 * using the maximum page size, than to read each possible location
662 	 * with a separate firmware command.
663 	 */
664 	orom_data = vzalloc(hw->flash.banks.orom_size);
665 	if (!orom_data)
666 		return -ENOMEM;
667 
668 	status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, 0,
669 				       orom_data, hw->flash.banks.orom_size);
670 	if (status) {
671 		vfree(orom_data);
672 		ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM data\n");
673 		return status;
674 	}
675 
676 	/* Scan the memory buffer to locate the CIVD data section */
677 	for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) {
678 		struct ice_orom_civd_info *tmp;
679 		u8 sum = 0, i;
680 
681 		tmp = (struct ice_orom_civd_info *)&orom_data[offset];
682 
683 		/* Skip forward until we find a matching signature */
684 		if (memcmp("$CIV", tmp->signature, sizeof(tmp->signature)) != 0)
685 			continue;
686 
687 		ice_debug(hw, ICE_DBG_NVM, "Found CIVD section at offset %u\n",
688 			  offset);
689 
690 		/* Verify that the simple checksum is zero */
691 		for (i = 0; i < sizeof(*tmp); i++)
692 			sum += ((u8 *)tmp)[i];
693 
694 		if (sum) {
695 			ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n",
696 				  sum);
697 			goto err_invalid_checksum;
698 		}
699 
700 		*civd = *tmp;
701 		vfree(orom_data);
702 		return 0;
703 	}
704 
705 	ice_debug(hw, ICE_DBG_NVM, "Unable to locate CIVD data within the Option ROM\n");
706 
707 err_invalid_checksum:
708 	vfree(orom_data);
709 	return -EIO;
710 }
711 
712 /**
713  * ice_get_orom_ver_info - Read Option ROM version information
714  * @hw: pointer to the HW struct
715  * @bank: whether to read from the active or inactive flash module
716  * @orom: pointer to Option ROM info structure
717  *
718  * Read Option ROM version and security revision from the Option ROM flash
719  * section.
720  */
721 static int
722 ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom)
723 {
724 	struct ice_orom_civd_info civd;
725 	u32 combo_ver;
726 	int status;
727 
728 	status = ice_get_orom_civd_data(hw, bank, &civd);
729 	if (status) {
730 		ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n");
731 		return status;
732 	}
733 
734 	combo_ver = le32_to_cpu(civd.combo_ver);
735 
736 	orom->major = FIELD_GET(ICE_OROM_VER_MASK, combo_ver);
737 	orom->patch = FIELD_GET(ICE_OROM_VER_PATCH_MASK, combo_ver);
738 	orom->build = FIELD_GET(ICE_OROM_VER_BUILD_MASK, combo_ver);
739 
740 	return 0;
741 }
742 
743 /**
744  * ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank
745  * @hw: pointer to the HW structure
746  * @orom: storage for Option ROM version information
747  *
748  * Reads the Option ROM version and security revision data for the inactive
749  * section of flash. Used to access version data for a pending update that has
750  * not yet been activated.
751  */
752 int ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom)
753 {
754 	return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom);
755 }
756 
757 /**
758  * ice_get_netlist_info
759  * @hw: pointer to the HW struct
760  * @bank: whether to read from the active or inactive flash bank
761  * @netlist: pointer to netlist version info structure
762  *
763  * Get the netlist version information from the requested bank. Reads the Link
764  * Topology section to find the Netlist ID block and extract the relevant
765  * information into the netlist version structure.
766  */
767 static int
768 ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank,
769 		     struct ice_netlist_info *netlist)
770 {
771 	u16 module_id, length, node_count, i;
772 	u16 *id_blk;
773 	int status;
774 
775 	status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET, &module_id);
776 	if (status)
777 		return status;
778 
779 	if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) {
780 		ice_debug(hw, ICE_DBG_NVM, "Expected netlist module_id ID of 0x%04x, but got 0x%04x\n",
781 			  ICE_NETLIST_LINK_TOPO_MOD_ID, module_id);
782 		return -EIO;
783 	}
784 
785 	status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN, &length);
786 	if (status)
787 		return status;
788 
789 	/* sanity check that we have at least enough words to store the netlist ID block */
790 	if (length < ICE_NETLIST_ID_BLK_SIZE) {
791 		ice_debug(hw, ICE_DBG_NVM, "Netlist Link Topology module too small. Expected at least %u words, but got %u words.\n",
792 			  ICE_NETLIST_ID_BLK_SIZE, length);
793 		return -EIO;
794 	}
795 
796 	status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT, &node_count);
797 	if (status)
798 		return status;
799 	node_count &= ICE_LINK_TOPO_NODE_COUNT_M;
800 
801 	id_blk = kcalloc(ICE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk), GFP_KERNEL);
802 	if (!id_blk)
803 		return -ENOMEM;
804 
805 	/* Read out the entire Netlist ID Block at once. */
806 	status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR,
807 				       ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(u16),
808 				       (u8 *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(u16));
809 	if (status)
810 		goto exit_error;
811 
812 	for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++)
813 		id_blk[i] = le16_to_cpu(((__force __le16 *)id_blk)[i]);
814 
815 	netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 |
816 			 id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW];
817 	netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 |
818 			 id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW];
819 	netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 |
820 			id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW];
821 	netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 |
822 		       id_blk[ICE_NETLIST_ID_BLK_REV_LOW];
823 	netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER];
824 	/* Read the left most 4 bytes of SHA */
825 	netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 |
826 			id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)];
827 
828 exit_error:
829 	kfree(id_blk);
830 
831 	return status;
832 }
833 
834 /**
835  * ice_get_inactive_netlist_ver
836  * @hw: pointer to the HW struct
837  * @netlist: pointer to netlist version info structure
838  *
839  * Read the netlist version data from the inactive netlist bank. Used to
840  * extract version data of a pending flash update in order to display the
841  * version data.
842  */
843 int ice_get_inactive_netlist_ver(struct ice_hw *hw, struct ice_netlist_info *netlist)
844 {
845 	return ice_get_netlist_info(hw, ICE_INACTIVE_FLASH_BANK, netlist);
846 }
847 
848 /**
849  * ice_discover_flash_size - Discover the available flash size.
850  * @hw: pointer to the HW struct
851  *
852  * The device flash could be up to 16MB in size. However, it is possible that
853  * the actual size is smaller. Use bisection to determine the accessible size
854  * of flash memory.
855  */
856 static int ice_discover_flash_size(struct ice_hw *hw)
857 {
858 	u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
859 	int status;
860 
861 	status = ice_acquire_nvm(hw, ICE_RES_READ);
862 	if (status)
863 		return status;
864 
865 	while ((max_size - min_size) > 1) {
866 		u32 offset = (max_size + min_size) / 2;
867 		u32 len = 1;
868 		u8 data;
869 
870 		status = ice_read_flat_nvm(hw, offset, &len, &data, false);
871 		if (status == -EIO &&
872 		    hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
873 			ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n",
874 				  __func__, offset);
875 			status = 0;
876 			max_size = offset;
877 		} else if (!status) {
878 			ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n",
879 				  __func__, offset);
880 			min_size = offset;
881 		} else {
882 			/* an unexpected error occurred */
883 			goto err_read_flat_nvm;
884 		}
885 	}
886 
887 	ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size);
888 
889 	hw->flash.flash_size = max_size;
890 
891 err_read_flat_nvm:
892 	ice_release_nvm(hw);
893 
894 	return status;
895 }
896 
897 /**
898  * ice_read_sr_pointer - Read the value of a Shadow RAM pointer word
899  * @hw: pointer to the HW structure
900  * @offset: the word offset of the Shadow RAM word to read
901  * @pointer: pointer value read from Shadow RAM
902  *
903  * Read the given Shadow RAM word, and convert it to a pointer value specified
904  * in bytes. This function assumes the specified offset is a valid pointer
905  * word.
906  *
907  * Each pointer word specifies whether it is stored in word size or 4KB
908  * sector size by using the highest bit. The reported pointer value will be in
909  * bytes, intended for flat NVM reads.
910  */
911 static int ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer)
912 {
913 	int status;
914 	u16 value;
915 
916 	status = ice_read_sr_word(hw, offset, &value);
917 	if (status)
918 		return status;
919 
920 	/* Determine if the pointer is in 4KB or word units */
921 	if (value & ICE_SR_NVM_PTR_4KB_UNITS)
922 		*pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024;
923 	else
924 		*pointer = value * 2;
925 
926 	return 0;
927 }
928 
929 /**
930  * ice_read_sr_area_size - Read an area size from a Shadow RAM word
931  * @hw: pointer to the HW structure
932  * @offset: the word offset of the Shadow RAM to read
933  * @size: size value read from the Shadow RAM
934  *
935  * Read the given Shadow RAM word, and convert it to an area size value
936  * specified in bytes. This function assumes the specified offset is a valid
937  * area size word.
938  *
939  * Each area size word is specified in 4KB sector units. This function reports
940  * the size in bytes, intended for flat NVM reads.
941  */
942 static int ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size)
943 {
944 	int status;
945 	u16 value;
946 
947 	status = ice_read_sr_word(hw, offset, &value);
948 	if (status)
949 		return status;
950 
951 	/* Area sizes are always specified in 4KB units */
952 	*size = value * 4 * 1024;
953 
954 	return 0;
955 }
956 
957 /**
958  * ice_determine_active_flash_banks - Discover active bank for each module
959  * @hw: pointer to the HW struct
960  *
961  * Read the Shadow RAM control word and determine which banks are active for
962  * the NVM, OROM, and Netlist modules. Also read and calculate the associated
963  * pointer and size. These values are then cached into the ice_flash_info
964  * structure for later use in order to calculate the correct offset to read
965  * from the active module.
966  */
967 static int ice_determine_active_flash_banks(struct ice_hw *hw)
968 {
969 	struct ice_bank_info *banks = &hw->flash.banks;
970 	u16 ctrl_word;
971 	int status;
972 
973 	status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word);
974 	if (status) {
975 		ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n");
976 		return status;
977 	}
978 
979 	/* Check that the control word indicates validity */
980 	if (FIELD_GET(ICE_SR_CTRL_WORD_1_M, ctrl_word) !=
981 	    ICE_SR_CTRL_WORD_VALID) {
982 		ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n");
983 		return -EIO;
984 	}
985 
986 	if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK))
987 		banks->nvm_bank = ICE_1ST_FLASH_BANK;
988 	else
989 		banks->nvm_bank = ICE_2ND_FLASH_BANK;
990 
991 	if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK))
992 		banks->orom_bank = ICE_1ST_FLASH_BANK;
993 	else
994 		banks->orom_bank = ICE_2ND_FLASH_BANK;
995 
996 	if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK))
997 		banks->netlist_bank = ICE_1ST_FLASH_BANK;
998 	else
999 		banks->netlist_bank = ICE_2ND_FLASH_BANK;
1000 
1001 	status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr);
1002 	if (status) {
1003 		ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n");
1004 		return status;
1005 	}
1006 
1007 	status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size);
1008 	if (status) {
1009 		ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n");
1010 		return status;
1011 	}
1012 
1013 	status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr);
1014 	if (status) {
1015 		ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n");
1016 		return status;
1017 	}
1018 
1019 	status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size);
1020 	if (status) {
1021 		ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n");
1022 		return status;
1023 	}
1024 
1025 	status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr);
1026 	if (status) {
1027 		ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n");
1028 		return status;
1029 	}
1030 
1031 	status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size);
1032 	if (status) {
1033 		ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n");
1034 		return status;
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 /**
1041  * ice_get_nvm_css_hdr_len - Read the CSS header length from the NVM CSS header
1042  * @hw: pointer to the HW struct
1043  * @bank: whether to read from the active or inactive flash bank
1044  * @hdr_len: storage for header length in words
1045  *
1046  * Read the CSS header length from the NVM CSS header and add the Authentication
1047  * header size, and then convert to words.
1048  *
1049  * Return: zero on success, or a negative error code on failure.
1050  */
1051 static int
1052 ice_get_nvm_css_hdr_len(struct ice_hw *hw, enum ice_bank_select bank,
1053 			u32 *hdr_len)
1054 {
1055 	u16 hdr_len_l, hdr_len_h;
1056 	u32 hdr_len_dword;
1057 	int status;
1058 
1059 	status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_L,
1060 				     &hdr_len_l);
1061 	if (status)
1062 		return status;
1063 
1064 	status = ice_read_nvm_module(hw, bank, ICE_NVM_CSS_HDR_LEN_H,
1065 				     &hdr_len_h);
1066 	if (status)
1067 		return status;
1068 
1069 	/* CSS header length is in DWORD, so convert to words and add
1070 	 * authentication header size
1071 	 */
1072 	hdr_len_dword = hdr_len_h << 16 | hdr_len_l;
1073 	*hdr_len = (hdr_len_dword * 2) + ICE_NVM_AUTH_HEADER_LEN;
1074 
1075 	return 0;
1076 }
1077 
1078 /**
1079  * ice_determine_css_hdr_len - Discover CSS header length for the device
1080  * @hw: pointer to the HW struct
1081  *
1082  * Determine the size of the CSS header at the start of the NVM module. This
1083  * is useful for locating the Shadow RAM copy in the NVM, as the Shadow RAM is
1084  * always located just after the CSS header.
1085  *
1086  * Return: zero on success, or a negative error code on failure.
1087  */
1088 static int ice_determine_css_hdr_len(struct ice_hw *hw)
1089 {
1090 	struct ice_bank_info *banks = &hw->flash.banks;
1091 	int status;
1092 
1093 	status = ice_get_nvm_css_hdr_len(hw, ICE_ACTIVE_FLASH_BANK,
1094 					 &banks->active_css_hdr_len);
1095 	if (status)
1096 		return status;
1097 
1098 	status = ice_get_nvm_css_hdr_len(hw, ICE_INACTIVE_FLASH_BANK,
1099 					 &banks->inactive_css_hdr_len);
1100 	if (status)
1101 		return status;
1102 
1103 	return 0;
1104 }
1105 
1106 /**
1107  * ice_init_nvm - initializes NVM setting
1108  * @hw: pointer to the HW struct
1109  *
1110  * This function reads and populates NVM settings such as Shadow RAM size,
1111  * max_timeout, and blank_nvm_mode
1112  */
1113 int ice_init_nvm(struct ice_hw *hw)
1114 {
1115 	struct ice_flash_info *flash = &hw->flash;
1116 	u32 fla, gens_stat;
1117 	u8 sr_size;
1118 	int status;
1119 
1120 	/* The SR size is stored regardless of the NVM programming mode
1121 	 * as the blank mode may be used in the factory line.
1122 	 */
1123 	gens_stat = rd32(hw, GLNVM_GENS);
1124 	sr_size = FIELD_GET(GLNVM_GENS_SR_SIZE_M, gens_stat);
1125 
1126 	/* Switching to words (sr_size contains power of 2) */
1127 	flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
1128 
1129 	/* Check if we are in the normal or blank NVM programming mode */
1130 	fla = rd32(hw, GLNVM_FLA);
1131 	if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
1132 		flash->blank_nvm_mode = false;
1133 	} else {
1134 		/* Blank programming mode */
1135 		flash->blank_nvm_mode = true;
1136 		ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n");
1137 		return -EIO;
1138 	}
1139 
1140 	status = ice_discover_flash_size(hw);
1141 	if (status) {
1142 		ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n");
1143 		return status;
1144 	}
1145 
1146 	status = ice_determine_active_flash_banks(hw);
1147 	if (status) {
1148 		ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n");
1149 		return status;
1150 	}
1151 
1152 	status = ice_determine_css_hdr_len(hw);
1153 	if (status) {
1154 		ice_debug(hw, ICE_DBG_NVM, "Failed to determine Shadow RAM copy offsets.\n");
1155 		return status;
1156 	}
1157 
1158 	status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm);
1159 	if (status) {
1160 		ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n");
1161 		return status;
1162 	}
1163 
1164 	status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom);
1165 	if (status)
1166 		ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
1167 
1168 	/* read the netlist version information */
1169 	status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->netlist);
1170 	if (status)
1171 		ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
1172 
1173 	return 0;
1174 }
1175 
1176 /**
1177  * ice_nvm_validate_checksum
1178  * @hw: pointer to the HW struct
1179  *
1180  * Verify NVM PFA checksum validity (0x0706)
1181  */
1182 int ice_nvm_validate_checksum(struct ice_hw *hw)
1183 {
1184 	struct ice_aqc_nvm_checksum *cmd;
1185 	struct ice_aq_desc desc;
1186 	int status;
1187 
1188 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1189 	if (status)
1190 		return status;
1191 
1192 	cmd = &desc.params.nvm_checksum;
1193 
1194 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
1195 	cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
1196 
1197 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1198 	ice_release_nvm(hw);
1199 
1200 	if (!status)
1201 		if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
1202 			status = -EIO;
1203 
1204 	return status;
1205 }
1206 
1207 /**
1208  * ice_nvm_write_activate
1209  * @hw: pointer to the HW struct
1210  * @cmd_flags: flags for write activate command
1211  * @response_flags: response indicators from firmware
1212  *
1213  * Update the control word with the required banks' validity bits
1214  * and dumps the Shadow RAM to flash (0x0707)
1215  *
1216  * cmd_flags controls which banks to activate, the preservation level to use
1217  * when activating the NVM bank, and whether an EMP reset is required for
1218  * activation.
1219  *
1220  * Note that the 16bit cmd_flags value is split between two separate 1 byte
1221  * flag values in the descriptor.
1222  *
1223  * On successful return of the firmware command, the response_flags variable
1224  * is updated with the flags reported by firmware indicating certain status,
1225  * such as whether EMP reset is enabled.
1226  */
1227 int ice_nvm_write_activate(struct ice_hw *hw, u16 cmd_flags, u8 *response_flags)
1228 {
1229 	struct ice_aqc_nvm *cmd;
1230 	struct ice_aq_desc desc;
1231 	int err;
1232 
1233 	cmd = &desc.params.nvm;
1234 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate);
1235 
1236 	cmd->cmd_flags = (u8)(cmd_flags & 0xFF);
1237 	cmd->offset_high = (u8)((cmd_flags >> 8) & 0xFF);
1238 
1239 	err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1240 	if (!err && response_flags)
1241 		*response_flags = cmd->cmd_flags;
1242 
1243 	return err;
1244 }
1245 
1246 /**
1247  * ice_aq_nvm_update_empr
1248  * @hw: pointer to the HW struct
1249  *
1250  * Update empr (0x0709). This command allows SW to
1251  * request an EMPR to activate new FW.
1252  */
1253 int ice_aq_nvm_update_empr(struct ice_hw *hw)
1254 {
1255 	struct ice_aq_desc desc;
1256 
1257 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_update_empr);
1258 
1259 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1260 }
1261 
1262 /* ice_nvm_set_pkg_data
1263  * @hw: pointer to the HW struct
1264  * @del_pkg_data_flag: If is set then the current pkg_data store by FW
1265  *		       is deleted.
1266  *		       If bit is set to 1, then buffer should be size 0.
1267  * @data: pointer to buffer
1268  * @length: length of the buffer
1269  * @cd: pointer to command details structure or NULL
1270  *
1271  * Set package data (0x070A). This command is equivalent to the reception
1272  * of a PLDM FW Update GetPackageData cmd. This command should be sent
1273  * as part of the NVM update as the first cmd in the flow.
1274  */
1275 
1276 int
1277 ice_nvm_set_pkg_data(struct ice_hw *hw, bool del_pkg_data_flag, u8 *data,
1278 		     u16 length, struct ice_sq_cd *cd)
1279 {
1280 	struct ice_aqc_nvm_pkg_data *cmd;
1281 	struct ice_aq_desc desc;
1282 
1283 	if (length != 0 && !data)
1284 		return -EINVAL;
1285 
1286 	cmd = &desc.params.pkg_data;
1287 
1288 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pkg_data);
1289 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1290 
1291 	if (del_pkg_data_flag)
1292 		cmd->cmd_flags |= ICE_AQC_NVM_PKG_DELETE;
1293 
1294 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
1295 }
1296 
1297 /* ice_nvm_pass_component_tbl
1298  * @hw: pointer to the HW struct
1299  * @data: pointer to buffer
1300  * @length: length of the buffer
1301  * @transfer_flag: parameter for determining stage of the update
1302  * @comp_response: a pointer to the response from the 0x070B AQC.
1303  * @comp_response_code: a pointer to the response code from the 0x070B AQC.
1304  * @cd: pointer to command details structure or NULL
1305  *
1306  * Pass component table (0x070B). This command is equivalent to the reception
1307  * of a PLDM FW Update PassComponentTable cmd. This command should be sent once
1308  * per component. It can be only sent after Set Package Data cmd and before
1309  * actual update. FW will assume these commands are going to be sent until
1310  * the TransferFlag is set to End or StartAndEnd.
1311  */
1312 
1313 int
1314 ice_nvm_pass_component_tbl(struct ice_hw *hw, u8 *data, u16 length,
1315 			   u8 transfer_flag, u8 *comp_response,
1316 			   u8 *comp_response_code, struct ice_sq_cd *cd)
1317 {
1318 	struct ice_aqc_nvm_pass_comp_tbl *cmd;
1319 	struct ice_aq_desc desc;
1320 	int status;
1321 
1322 	if (!data || !comp_response || !comp_response_code)
1323 		return -EINVAL;
1324 
1325 	cmd = &desc.params.pass_comp_tbl;
1326 
1327 	ice_fill_dflt_direct_cmd_desc(&desc,
1328 				      ice_aqc_opc_nvm_pass_component_tbl);
1329 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1330 
1331 	cmd->transfer_flag = transfer_flag;
1332 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
1333 
1334 	if (!status) {
1335 		*comp_response = cmd->component_response;
1336 		*comp_response_code = cmd->component_response_code;
1337 	}
1338 	return status;
1339 }
1340