xref: /linux/drivers/net/ethernet/intel/ice/ice_nvm.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include <linux/vmalloc.h>
5 
6 #include "ice_common.h"
7 
8 /**
9  * ice_aq_read_nvm
10  * @hw: pointer to the HW struct
11  * @module_typeid: module pointer location in words from the NVM beginning
12  * @offset: byte offset from the module beginning
13  * @length: length of the section to be read (in bytes from the offset)
14  * @data: command buffer (size [bytes] = length)
15  * @last_command: tells if this is the last command in a series
16  * @read_shadow_ram: tell if this is a shadow RAM read
17  * @cd: pointer to command details structure or NULL
18  *
19  * Read the NVM using the admin queue commands (0x0701)
20  */
21 int ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
22 		    u16 length, void *data, bool last_command,
23 		    bool read_shadow_ram, struct ice_sq_cd *cd)
24 {
25 	struct ice_aq_desc desc;
26 	struct ice_aqc_nvm *cmd;
27 
28 	cmd = &desc.params.nvm;
29 
30 	if (offset > ICE_AQC_NVM_MAX_OFFSET)
31 		return -EINVAL;
32 
33 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
34 
35 	if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
36 		cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
37 
38 	/* If this is the last command in a series, set the proper flag. */
39 	if (last_command)
40 		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
41 	cmd->module_typeid = cpu_to_le16(module_typeid);
42 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
43 	cmd->offset_high = (offset >> 16) & 0xFF;
44 	cmd->length = cpu_to_le16(length);
45 
46 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
47 }
48 
49 /**
50  * ice_read_flat_nvm - Read portion of NVM by flat offset
51  * @hw: pointer to the HW struct
52  * @offset: offset from beginning of NVM
53  * @length: (in) number of bytes to read; (out) number of bytes actually read
54  * @data: buffer to return data in (sized to fit the specified length)
55  * @read_shadow_ram: if true, read from shadow RAM instead of NVM
56  *
57  * Reads a portion of the NVM, as a flat memory space. This function correctly
58  * breaks read requests across Shadow RAM sectors and ensures that no single
59  * read request exceeds the maximum 4KB read for a single AdminQ command.
60  *
61  * Returns a status code on failure. Note that the data pointer may be
62  * partially updated if some reads succeed before a failure.
63  */
64 int
65 ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
66 		  bool read_shadow_ram)
67 {
68 	u32 inlen = *length;
69 	u32 bytes_read = 0;
70 	bool last_cmd;
71 	int status;
72 
73 	*length = 0;
74 
75 	/* Verify the length of the read if this is for the Shadow RAM */
76 	if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) {
77 		ice_debug(hw, ICE_DBG_NVM, "NVM error: requested offset is beyond Shadow RAM limit\n");
78 		return -EINVAL;
79 	}
80 
81 	do {
82 		u32 read_size, sector_offset;
83 
84 		/* ice_aq_read_nvm cannot read more than 4KB at a time.
85 		 * Additionally, a read from the Shadow RAM may not cross over
86 		 * a sector boundary. Conveniently, the sector size is also
87 		 * 4KB.
88 		 */
89 		sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
90 		read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
91 				  inlen - bytes_read);
92 
93 		last_cmd = !(bytes_read + read_size < inlen);
94 
95 		status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
96 					 offset, read_size,
97 					 data + bytes_read, last_cmd,
98 					 read_shadow_ram, NULL);
99 		if (status)
100 			break;
101 
102 		bytes_read += read_size;
103 		offset += read_size;
104 	} while (!last_cmd);
105 
106 	*length = bytes_read;
107 	return status;
108 }
109 
110 /**
111  * ice_aq_update_nvm
112  * @hw: pointer to the HW struct
113  * @module_typeid: module pointer location in words from the NVM beginning
114  * @offset: byte offset from the module beginning
115  * @length: length of the section to be written (in bytes from the offset)
116  * @data: command buffer (size [bytes] = length)
117  * @last_command: tells if this is the last command in a series
118  * @command_flags: command parameters
119  * @cd: pointer to command details structure or NULL
120  *
121  * Update the NVM using the admin queue commands (0x0703)
122  */
123 int
124 ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
125 		  u16 length, void *data, bool last_command, u8 command_flags,
126 		  struct ice_sq_cd *cd)
127 {
128 	struct ice_aq_desc desc;
129 	struct ice_aqc_nvm *cmd;
130 
131 	cmd = &desc.params.nvm;
132 
133 	/* In offset the highest byte must be zeroed. */
134 	if (offset & 0xFF000000)
135 		return -EINVAL;
136 
137 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
138 
139 	cmd->cmd_flags |= command_flags;
140 
141 	/* If this is the last command in a series, set the proper flag. */
142 	if (last_command)
143 		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
144 	cmd->module_typeid = cpu_to_le16(module_typeid);
145 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
146 	cmd->offset_high = (offset >> 16) & 0xFF;
147 	cmd->length = cpu_to_le16(length);
148 
149 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
150 
151 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
152 }
153 
154 /**
155  * ice_aq_erase_nvm
156  * @hw: pointer to the HW struct
157  * @module_typeid: module pointer location in words from the NVM beginning
158  * @cd: pointer to command details structure or NULL
159  *
160  * Erase the NVM sector using the admin queue commands (0x0702)
161  */
162 int ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
163 {
164 	struct ice_aq_desc desc;
165 	struct ice_aqc_nvm *cmd;
166 
167 	cmd = &desc.params.nvm;
168 
169 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
170 
171 	cmd->module_typeid = cpu_to_le16(module_typeid);
172 	cmd->length = cpu_to_le16(ICE_AQC_NVM_ERASE_LEN);
173 	cmd->offset_low = 0;
174 	cmd->offset_high = 0;
175 
176 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
177 }
178 
179 /**
180  * ice_read_sr_word_aq - Reads Shadow RAM via AQ
181  * @hw: pointer to the HW structure
182  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
183  * @data: word read from the Shadow RAM
184  *
185  * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
186  */
187 static int ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
188 {
189 	u32 bytes = sizeof(u16);
190 	__le16 data_local;
191 	int status;
192 
193 	/* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and
194 	 * Shadow RAM sector restrictions necessary when reading from the NVM.
195 	 */
196 	status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
197 				   (__force u8 *)&data_local, true);
198 	if (status)
199 		return status;
200 
201 	*data = le16_to_cpu(data_local);
202 	return 0;
203 }
204 
205 /**
206  * ice_acquire_nvm - Generic request for acquiring the NVM ownership
207  * @hw: pointer to the HW structure
208  * @access: NVM access type (read or write)
209  *
210  * This function will request NVM ownership.
211  */
212 int ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
213 {
214 	if (hw->flash.blank_nvm_mode)
215 		return 0;
216 
217 	return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
218 }
219 
220 /**
221  * ice_release_nvm - Generic request for releasing the NVM ownership
222  * @hw: pointer to the HW structure
223  *
224  * This function will release NVM ownership.
225  */
226 void ice_release_nvm(struct ice_hw *hw)
227 {
228 	if (hw->flash.blank_nvm_mode)
229 		return;
230 
231 	ice_release_res(hw, ICE_NVM_RES_ID);
232 }
233 
234 /**
235  * ice_get_flash_bank_offset - Get offset into requested flash bank
236  * @hw: pointer to the HW structure
237  * @bank: whether to read from the active or inactive flash bank
238  * @module: the module to read from
239  *
240  * Based on the module, lookup the module offset from the beginning of the
241  * flash.
242  *
243  * Returns the flash offset. Note that a value of zero is invalid and must be
244  * treated as an error.
245  */
246 static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module)
247 {
248 	struct ice_bank_info *banks = &hw->flash.banks;
249 	enum ice_flash_bank active_bank;
250 	bool second_bank_active;
251 	u32 offset, size;
252 
253 	switch (module) {
254 	case ICE_SR_1ST_NVM_BANK_PTR:
255 		offset = banks->nvm_ptr;
256 		size = banks->nvm_size;
257 		active_bank = banks->nvm_bank;
258 		break;
259 	case ICE_SR_1ST_OROM_BANK_PTR:
260 		offset = banks->orom_ptr;
261 		size = banks->orom_size;
262 		active_bank = banks->orom_bank;
263 		break;
264 	case ICE_SR_NETLIST_BANK_PTR:
265 		offset = banks->netlist_ptr;
266 		size = banks->netlist_size;
267 		active_bank = banks->netlist_bank;
268 		break;
269 	default:
270 		ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module);
271 		return 0;
272 	}
273 
274 	switch (active_bank) {
275 	case ICE_1ST_FLASH_BANK:
276 		second_bank_active = false;
277 		break;
278 	case ICE_2ND_FLASH_BANK:
279 		second_bank_active = true;
280 		break;
281 	default:
282 		ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n",
283 			  active_bank);
284 		return 0;
285 	}
286 
287 	/* The second flash bank is stored immediately following the first
288 	 * bank. Based on whether the 1st or 2nd bank is active, and whether
289 	 * we want the active or inactive bank, calculate the desired offset.
290 	 */
291 	switch (bank) {
292 	case ICE_ACTIVE_FLASH_BANK:
293 		return offset + (second_bank_active ? size : 0);
294 	case ICE_INACTIVE_FLASH_BANK:
295 		return offset + (second_bank_active ? 0 : size);
296 	}
297 
298 	ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank);
299 	return 0;
300 }
301 
302 /**
303  * ice_read_flash_module - Read a word from one of the main NVM modules
304  * @hw: pointer to the HW structure
305  * @bank: which bank of the module to read
306  * @module: the module to read
307  * @offset: the offset into the module in bytes
308  * @data: storage for the word read from the flash
309  * @length: bytes of data to read
310  *
311  * Read data from the specified flash module. The bank parameter indicates
312  * whether or not to read from the active bank or the inactive bank of that
313  * module.
314  *
315  * The word will be read using flat NVM access, and relies on the
316  * hw->flash.banks data being setup by ice_determine_active_flash_banks()
317  * during initialization.
318  */
319 static int
320 ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module,
321 		      u32 offset, u8 *data, u32 length)
322 {
323 	int status;
324 	u32 start;
325 
326 	start = ice_get_flash_bank_offset(hw, bank, module);
327 	if (!start) {
328 		ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n",
329 			  module);
330 		return -EINVAL;
331 	}
332 
333 	status = ice_acquire_nvm(hw, ICE_RES_READ);
334 	if (status)
335 		return status;
336 
337 	status = ice_read_flat_nvm(hw, start + offset, &length, data, false);
338 
339 	ice_release_nvm(hw);
340 
341 	return status;
342 }
343 
344 /**
345  * ice_read_nvm_module - Read from the active main NVM module
346  * @hw: pointer to the HW structure
347  * @bank: whether to read from active or inactive NVM module
348  * @offset: offset into the NVM module to read, in words
349  * @data: storage for returned word value
350  *
351  * Read the specified word from the active NVM module. This includes the CSS
352  * header at the start of the NVM module.
353  */
354 static int
355 ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
356 {
357 	__le16 data_local;
358 	int status;
359 
360 	status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16),
361 				       (__force u8 *)&data_local, sizeof(u16));
362 	if (!status)
363 		*data = le16_to_cpu(data_local);
364 
365 	return status;
366 }
367 
368 /**
369  * ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank
370  * @hw: pointer to the HW structure
371  * @bank: whether to read from the active or inactive NVM module
372  * @offset: offset into the Shadow RAM copy to read, in words
373  * @data: storage for returned word value
374  *
375  * Read the specified word from the copy of the Shadow RAM found in the
376  * specified NVM module.
377  */
378 static int
379 ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
380 {
381 	return ice_read_nvm_module(hw, bank, ICE_NVM_SR_COPY_WORD_OFFSET + offset, data);
382 }
383 
384 /**
385  * ice_read_netlist_module - Read data from the netlist module area
386  * @hw: pointer to the HW structure
387  * @bank: whether to read from the active or inactive module
388  * @offset: offset into the netlist to read from
389  * @data: storage for returned word value
390  *
391  * Read a word from the specified netlist bank.
392  */
393 static int
394 ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
395 {
396 	__le16 data_local;
397 	int status;
398 
399 	status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, offset * sizeof(u16),
400 				       (__force u8 *)&data_local, sizeof(u16));
401 	if (!status)
402 		*data = le16_to_cpu(data_local);
403 
404 	return status;
405 }
406 
407 /**
408  * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
409  * @hw: pointer to the HW structure
410  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
411  * @data: word read from the Shadow RAM
412  *
413  * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
414  */
415 int ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
416 {
417 	int status;
418 
419 	status = ice_acquire_nvm(hw, ICE_RES_READ);
420 	if (!status) {
421 		status = ice_read_sr_word_aq(hw, offset, data);
422 		ice_release_nvm(hw);
423 	}
424 
425 	return status;
426 }
427 
428 /**
429  * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
430  * @hw: pointer to hardware structure
431  * @module_tlv: pointer to module TLV to return
432  * @module_tlv_len: pointer to module TLV length to return
433  * @module_type: module type requested
434  *
435  * Finds the requested sub module TLV type from the Preserved Field
436  * Area (PFA) and returns the TLV pointer and length. The caller can
437  * use these to read the variable length TLV value.
438  */
439 int
440 ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
441 		       u16 module_type)
442 {
443 	u16 pfa_len, pfa_ptr;
444 	u16 next_tlv;
445 	int status;
446 
447 	status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
448 	if (status) {
449 		ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
450 		return status;
451 	}
452 	status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
453 	if (status) {
454 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
455 		return status;
456 	}
457 	/* Starting with first TLV after PFA length, iterate through the list
458 	 * of TLVs to find the requested one.
459 	 */
460 	next_tlv = pfa_ptr + 1;
461 	while (next_tlv < pfa_ptr + pfa_len) {
462 		u16 tlv_sub_module_type;
463 		u16 tlv_len;
464 
465 		/* Read TLV type */
466 		status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
467 		if (status) {
468 			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
469 			break;
470 		}
471 		/* Read TLV length */
472 		status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
473 		if (status) {
474 			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
475 			break;
476 		}
477 		if (tlv_sub_module_type == module_type) {
478 			if (tlv_len) {
479 				*module_tlv = next_tlv;
480 				*module_tlv_len = tlv_len;
481 				return 0;
482 			}
483 			return -EINVAL;
484 		}
485 		/* Check next TLV, i.e. current TLV pointer + length + 2 words
486 		 * (for current TLV's type and length)
487 		 */
488 		next_tlv = next_tlv + tlv_len + 2;
489 	}
490 	/* Module does not exist */
491 	return -ENOENT;
492 }
493 
494 /**
495  * ice_read_pba_string - Reads part number string from NVM
496  * @hw: pointer to hardware structure
497  * @pba_num: stores the part number string from the NVM
498  * @pba_num_size: part number string buffer length
499  *
500  * Reads the part number string from the NVM.
501  */
502 int ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
503 {
504 	u16 pba_tlv, pba_tlv_len;
505 	u16 pba_word, pba_size;
506 	int status;
507 	u16 i;
508 
509 	status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
510 					ICE_SR_PBA_BLOCK_PTR);
511 	if (status) {
512 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
513 		return status;
514 	}
515 
516 	/* pba_size is the next word */
517 	status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
518 	if (status) {
519 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
520 		return status;
521 	}
522 
523 	if (pba_tlv_len < pba_size) {
524 		ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
525 		return -EINVAL;
526 	}
527 
528 	/* Subtract one to get PBA word count (PBA Size word is included in
529 	 * total size)
530 	 */
531 	pba_size--;
532 	if (pba_num_size < (((u32)pba_size * 2) + 1)) {
533 		ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
534 		return -EINVAL;
535 	}
536 
537 	for (i = 0; i < pba_size; i++) {
538 		status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
539 		if (status) {
540 			ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
541 			return status;
542 		}
543 
544 		pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
545 		pba_num[(i * 2) + 1] = pba_word & 0xFF;
546 	}
547 	pba_num[(pba_size * 2)] = '\0';
548 
549 	return status;
550 }
551 
552 /**
553  * ice_get_nvm_ver_info - Read NVM version information
554  * @hw: pointer to the HW struct
555  * @bank: whether to read from the active or inactive flash bank
556  * @nvm: pointer to NVM info structure
557  *
558  * Read the NVM EETRACK ID and map version of the main NVM image bank, filling
559  * in the NVM info structure.
560  */
561 static int
562 ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm)
563 {
564 	u16 eetrack_lo, eetrack_hi, ver;
565 	int status;
566 
567 	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver);
568 	if (status) {
569 		ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n");
570 		return status;
571 	}
572 
573 	nvm->major = FIELD_GET(ICE_NVM_VER_HI_MASK, ver);
574 	nvm->minor = FIELD_GET(ICE_NVM_VER_LO_MASK, ver);
575 
576 	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
577 	if (status) {
578 		ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n");
579 		return status;
580 	}
581 	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
582 	if (status) {
583 		ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n");
584 		return status;
585 	}
586 
587 	nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
588 
589 	return 0;
590 }
591 
592 /**
593  * ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank
594  * @hw: pointer to the HW structure
595  * @nvm: storage for Option ROM version information
596  *
597  * Reads the NVM EETRACK ID, Map version, and security revision of the
598  * inactive NVM bank. Used to access version data for a pending update that
599  * has not yet been activated.
600  */
601 int ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm)
602 {
603 	return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm);
604 }
605 
606 /**
607  * ice_get_orom_civd_data - Get the combo version information from Option ROM
608  * @hw: pointer to the HW struct
609  * @bank: whether to read from the active or inactive flash module
610  * @civd: storage for the Option ROM CIVD data.
611  *
612  * Searches through the Option ROM flash contents to locate the CIVD data for
613  * the image.
614  */
615 static int
616 ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank,
617 		       struct ice_orom_civd_info *civd)
618 {
619 	u8 *orom_data;
620 	int status;
621 	u32 offset;
622 
623 	/* The CIVD section is located in the Option ROM aligned to 512 bytes.
624 	 * The first 4 bytes must contain the ASCII characters "$CIV".
625 	 * A simple modulo 256 sum of all of the bytes of the structure must
626 	 * equal 0.
627 	 *
628 	 * The exact location is unknown and varies between images but is
629 	 * usually somewhere in the middle of the bank. We need to scan the
630 	 * Option ROM bank to locate it.
631 	 *
632 	 * It's significantly faster to read the entire Option ROM up front
633 	 * using the maximum page size, than to read each possible location
634 	 * with a separate firmware command.
635 	 */
636 	orom_data = vzalloc(hw->flash.banks.orom_size);
637 	if (!orom_data)
638 		return -ENOMEM;
639 
640 	status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, 0,
641 				       orom_data, hw->flash.banks.orom_size);
642 	if (status) {
643 		vfree(orom_data);
644 		ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM data\n");
645 		return status;
646 	}
647 
648 	/* Scan the memory buffer to locate the CIVD data section */
649 	for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) {
650 		struct ice_orom_civd_info *tmp;
651 		u8 sum = 0, i;
652 
653 		tmp = (struct ice_orom_civd_info *)&orom_data[offset];
654 
655 		/* Skip forward until we find a matching signature */
656 		if (memcmp("$CIV", tmp->signature, sizeof(tmp->signature)) != 0)
657 			continue;
658 
659 		ice_debug(hw, ICE_DBG_NVM, "Found CIVD section at offset %u\n",
660 			  offset);
661 
662 		/* Verify that the simple checksum is zero */
663 		for (i = 0; i < sizeof(*tmp); i++)
664 			sum += ((u8 *)tmp)[i];
665 
666 		if (sum) {
667 			ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n",
668 				  sum);
669 			goto err_invalid_checksum;
670 		}
671 
672 		*civd = *tmp;
673 		vfree(orom_data);
674 		return 0;
675 	}
676 
677 	ice_debug(hw, ICE_DBG_NVM, "Unable to locate CIVD data within the Option ROM\n");
678 
679 err_invalid_checksum:
680 	vfree(orom_data);
681 	return -EIO;
682 }
683 
684 /**
685  * ice_get_orom_ver_info - Read Option ROM version information
686  * @hw: pointer to the HW struct
687  * @bank: whether to read from the active or inactive flash module
688  * @orom: pointer to Option ROM info structure
689  *
690  * Read Option ROM version and security revision from the Option ROM flash
691  * section.
692  */
693 static int
694 ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom)
695 {
696 	struct ice_orom_civd_info civd;
697 	u32 combo_ver;
698 	int status;
699 
700 	status = ice_get_orom_civd_data(hw, bank, &civd);
701 	if (status) {
702 		ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n");
703 		return status;
704 	}
705 
706 	combo_ver = le32_to_cpu(civd.combo_ver);
707 
708 	orom->major = FIELD_GET(ICE_OROM_VER_MASK, combo_ver);
709 	orom->patch = FIELD_GET(ICE_OROM_VER_PATCH_MASK, combo_ver);
710 	orom->build = FIELD_GET(ICE_OROM_VER_BUILD_MASK, combo_ver);
711 
712 	return 0;
713 }
714 
715 /**
716  * ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank
717  * @hw: pointer to the HW structure
718  * @orom: storage for Option ROM version information
719  *
720  * Reads the Option ROM version and security revision data for the inactive
721  * section of flash. Used to access version data for a pending update that has
722  * not yet been activated.
723  */
724 int ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom)
725 {
726 	return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom);
727 }
728 
729 /**
730  * ice_get_netlist_info
731  * @hw: pointer to the HW struct
732  * @bank: whether to read from the active or inactive flash bank
733  * @netlist: pointer to netlist version info structure
734  *
735  * Get the netlist version information from the requested bank. Reads the Link
736  * Topology section to find the Netlist ID block and extract the relevant
737  * information into the netlist version structure.
738  */
739 static int
740 ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank,
741 		     struct ice_netlist_info *netlist)
742 {
743 	u16 module_id, length, node_count, i;
744 	u16 *id_blk;
745 	int status;
746 
747 	status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET, &module_id);
748 	if (status)
749 		return status;
750 
751 	if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) {
752 		ice_debug(hw, ICE_DBG_NVM, "Expected netlist module_id ID of 0x%04x, but got 0x%04x\n",
753 			  ICE_NETLIST_LINK_TOPO_MOD_ID, module_id);
754 		return -EIO;
755 	}
756 
757 	status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN, &length);
758 	if (status)
759 		return status;
760 
761 	/* sanity check that we have at least enough words to store the netlist ID block */
762 	if (length < ICE_NETLIST_ID_BLK_SIZE) {
763 		ice_debug(hw, ICE_DBG_NVM, "Netlist Link Topology module too small. Expected at least %u words, but got %u words.\n",
764 			  ICE_NETLIST_ID_BLK_SIZE, length);
765 		return -EIO;
766 	}
767 
768 	status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT, &node_count);
769 	if (status)
770 		return status;
771 	node_count &= ICE_LINK_TOPO_NODE_COUNT_M;
772 
773 	id_blk = kcalloc(ICE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk), GFP_KERNEL);
774 	if (!id_blk)
775 		return -ENOMEM;
776 
777 	/* Read out the entire Netlist ID Block at once. */
778 	status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR,
779 				       ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(u16),
780 				       (u8 *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(u16));
781 	if (status)
782 		goto exit_error;
783 
784 	for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++)
785 		id_blk[i] = le16_to_cpu(((__force __le16 *)id_blk)[i]);
786 
787 	netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 |
788 			 id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW];
789 	netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 |
790 			 id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW];
791 	netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 |
792 			id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW];
793 	netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 |
794 		       id_blk[ICE_NETLIST_ID_BLK_REV_LOW];
795 	netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER];
796 	/* Read the left most 4 bytes of SHA */
797 	netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 |
798 			id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)];
799 
800 exit_error:
801 	kfree(id_blk);
802 
803 	return status;
804 }
805 
806 /**
807  * ice_get_inactive_netlist_ver
808  * @hw: pointer to the HW struct
809  * @netlist: pointer to netlist version info structure
810  *
811  * Read the netlist version data from the inactive netlist bank. Used to
812  * extract version data of a pending flash update in order to display the
813  * version data.
814  */
815 int ice_get_inactive_netlist_ver(struct ice_hw *hw, struct ice_netlist_info *netlist)
816 {
817 	return ice_get_netlist_info(hw, ICE_INACTIVE_FLASH_BANK, netlist);
818 }
819 
820 /**
821  * ice_discover_flash_size - Discover the available flash size.
822  * @hw: pointer to the HW struct
823  *
824  * The device flash could be up to 16MB in size. However, it is possible that
825  * the actual size is smaller. Use bisection to determine the accessible size
826  * of flash memory.
827  */
828 static int ice_discover_flash_size(struct ice_hw *hw)
829 {
830 	u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
831 	int status;
832 
833 	status = ice_acquire_nvm(hw, ICE_RES_READ);
834 	if (status)
835 		return status;
836 
837 	while ((max_size - min_size) > 1) {
838 		u32 offset = (max_size + min_size) / 2;
839 		u32 len = 1;
840 		u8 data;
841 
842 		status = ice_read_flat_nvm(hw, offset, &len, &data, false);
843 		if (status == -EIO &&
844 		    hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
845 			ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n",
846 				  __func__, offset);
847 			status = 0;
848 			max_size = offset;
849 		} else if (!status) {
850 			ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n",
851 				  __func__, offset);
852 			min_size = offset;
853 		} else {
854 			/* an unexpected error occurred */
855 			goto err_read_flat_nvm;
856 		}
857 	}
858 
859 	ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size);
860 
861 	hw->flash.flash_size = max_size;
862 
863 err_read_flat_nvm:
864 	ice_release_nvm(hw);
865 
866 	return status;
867 }
868 
869 /**
870  * ice_read_sr_pointer - Read the value of a Shadow RAM pointer word
871  * @hw: pointer to the HW structure
872  * @offset: the word offset of the Shadow RAM word to read
873  * @pointer: pointer value read from Shadow RAM
874  *
875  * Read the given Shadow RAM word, and convert it to a pointer value specified
876  * in bytes. This function assumes the specified offset is a valid pointer
877  * word.
878  *
879  * Each pointer word specifies whether it is stored in word size or 4KB
880  * sector size by using the highest bit. The reported pointer value will be in
881  * bytes, intended for flat NVM reads.
882  */
883 static int ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer)
884 {
885 	int status;
886 	u16 value;
887 
888 	status = ice_read_sr_word(hw, offset, &value);
889 	if (status)
890 		return status;
891 
892 	/* Determine if the pointer is in 4KB or word units */
893 	if (value & ICE_SR_NVM_PTR_4KB_UNITS)
894 		*pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024;
895 	else
896 		*pointer = value * 2;
897 
898 	return 0;
899 }
900 
901 /**
902  * ice_read_sr_area_size - Read an area size from a Shadow RAM word
903  * @hw: pointer to the HW structure
904  * @offset: the word offset of the Shadow RAM to read
905  * @size: size value read from the Shadow RAM
906  *
907  * Read the given Shadow RAM word, and convert it to an area size value
908  * specified in bytes. This function assumes the specified offset is a valid
909  * area size word.
910  *
911  * Each area size word is specified in 4KB sector units. This function reports
912  * the size in bytes, intended for flat NVM reads.
913  */
914 static int ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size)
915 {
916 	int status;
917 	u16 value;
918 
919 	status = ice_read_sr_word(hw, offset, &value);
920 	if (status)
921 		return status;
922 
923 	/* Area sizes are always specified in 4KB units */
924 	*size = value * 4 * 1024;
925 
926 	return 0;
927 }
928 
929 /**
930  * ice_determine_active_flash_banks - Discover active bank for each module
931  * @hw: pointer to the HW struct
932  *
933  * Read the Shadow RAM control word and determine which banks are active for
934  * the NVM, OROM, and Netlist modules. Also read and calculate the associated
935  * pointer and size. These values are then cached into the ice_flash_info
936  * structure for later use in order to calculate the correct offset to read
937  * from the active module.
938  */
939 static int ice_determine_active_flash_banks(struct ice_hw *hw)
940 {
941 	struct ice_bank_info *banks = &hw->flash.banks;
942 	u16 ctrl_word;
943 	int status;
944 
945 	status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word);
946 	if (status) {
947 		ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n");
948 		return status;
949 	}
950 
951 	/* Check that the control word indicates validity */
952 	if (FIELD_GET(ICE_SR_CTRL_WORD_1_M, ctrl_word) !=
953 	    ICE_SR_CTRL_WORD_VALID) {
954 		ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n");
955 		return -EIO;
956 	}
957 
958 	if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK))
959 		banks->nvm_bank = ICE_1ST_FLASH_BANK;
960 	else
961 		banks->nvm_bank = ICE_2ND_FLASH_BANK;
962 
963 	if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK))
964 		banks->orom_bank = ICE_1ST_FLASH_BANK;
965 	else
966 		banks->orom_bank = ICE_2ND_FLASH_BANK;
967 
968 	if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK))
969 		banks->netlist_bank = ICE_1ST_FLASH_BANK;
970 	else
971 		banks->netlist_bank = ICE_2ND_FLASH_BANK;
972 
973 	status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr);
974 	if (status) {
975 		ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n");
976 		return status;
977 	}
978 
979 	status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size);
980 	if (status) {
981 		ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n");
982 		return status;
983 	}
984 
985 	status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr);
986 	if (status) {
987 		ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n");
988 		return status;
989 	}
990 
991 	status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size);
992 	if (status) {
993 		ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n");
994 		return status;
995 	}
996 
997 	status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr);
998 	if (status) {
999 		ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n");
1000 		return status;
1001 	}
1002 
1003 	status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size);
1004 	if (status) {
1005 		ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n");
1006 		return status;
1007 	}
1008 
1009 	return 0;
1010 }
1011 
1012 /**
1013  * ice_init_nvm - initializes NVM setting
1014  * @hw: pointer to the HW struct
1015  *
1016  * This function reads and populates NVM settings such as Shadow RAM size,
1017  * max_timeout, and blank_nvm_mode
1018  */
1019 int ice_init_nvm(struct ice_hw *hw)
1020 {
1021 	struct ice_flash_info *flash = &hw->flash;
1022 	u32 fla, gens_stat;
1023 	u8 sr_size;
1024 	int status;
1025 
1026 	/* The SR size is stored regardless of the NVM programming mode
1027 	 * as the blank mode may be used in the factory line.
1028 	 */
1029 	gens_stat = rd32(hw, GLNVM_GENS);
1030 	sr_size = FIELD_GET(GLNVM_GENS_SR_SIZE_M, gens_stat);
1031 
1032 	/* Switching to words (sr_size contains power of 2) */
1033 	flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
1034 
1035 	/* Check if we are in the normal or blank NVM programming mode */
1036 	fla = rd32(hw, GLNVM_FLA);
1037 	if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
1038 		flash->blank_nvm_mode = false;
1039 	} else {
1040 		/* Blank programming mode */
1041 		flash->blank_nvm_mode = true;
1042 		ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n");
1043 		return -EIO;
1044 	}
1045 
1046 	status = ice_discover_flash_size(hw);
1047 	if (status) {
1048 		ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n");
1049 		return status;
1050 	}
1051 
1052 	status = ice_determine_active_flash_banks(hw);
1053 	if (status) {
1054 		ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n");
1055 		return status;
1056 	}
1057 
1058 	status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm);
1059 	if (status) {
1060 		ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n");
1061 		return status;
1062 	}
1063 
1064 	status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom);
1065 	if (status)
1066 		ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
1067 
1068 	/* read the netlist version information */
1069 	status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->netlist);
1070 	if (status)
1071 		ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
1072 
1073 	return 0;
1074 }
1075 
1076 /**
1077  * ice_nvm_validate_checksum
1078  * @hw: pointer to the HW struct
1079  *
1080  * Verify NVM PFA checksum validity (0x0706)
1081  */
1082 int ice_nvm_validate_checksum(struct ice_hw *hw)
1083 {
1084 	struct ice_aqc_nvm_checksum *cmd;
1085 	struct ice_aq_desc desc;
1086 	int status;
1087 
1088 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1089 	if (status)
1090 		return status;
1091 
1092 	cmd = &desc.params.nvm_checksum;
1093 
1094 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
1095 	cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
1096 
1097 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1098 	ice_release_nvm(hw);
1099 
1100 	if (!status)
1101 		if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
1102 			status = -EIO;
1103 
1104 	return status;
1105 }
1106 
1107 /**
1108  * ice_nvm_write_activate
1109  * @hw: pointer to the HW struct
1110  * @cmd_flags: flags for write activate command
1111  * @response_flags: response indicators from firmware
1112  *
1113  * Update the control word with the required banks' validity bits
1114  * and dumps the Shadow RAM to flash (0x0707)
1115  *
1116  * cmd_flags controls which banks to activate, the preservation level to use
1117  * when activating the NVM bank, and whether an EMP reset is required for
1118  * activation.
1119  *
1120  * Note that the 16bit cmd_flags value is split between two separate 1 byte
1121  * flag values in the descriptor.
1122  *
1123  * On successful return of the firmware command, the response_flags variable
1124  * is updated with the flags reported by firmware indicating certain status,
1125  * such as whether EMP reset is enabled.
1126  */
1127 int ice_nvm_write_activate(struct ice_hw *hw, u16 cmd_flags, u8 *response_flags)
1128 {
1129 	struct ice_aqc_nvm *cmd;
1130 	struct ice_aq_desc desc;
1131 	int err;
1132 
1133 	cmd = &desc.params.nvm;
1134 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate);
1135 
1136 	cmd->cmd_flags = (u8)(cmd_flags & 0xFF);
1137 	cmd->offset_high = (u8)((cmd_flags >> 8) & 0xFF);
1138 
1139 	err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1140 	if (!err && response_flags)
1141 		*response_flags = cmd->cmd_flags;
1142 
1143 	return err;
1144 }
1145 
1146 /**
1147  * ice_aq_nvm_update_empr
1148  * @hw: pointer to the HW struct
1149  *
1150  * Update empr (0x0709). This command allows SW to
1151  * request an EMPR to activate new FW.
1152  */
1153 int ice_aq_nvm_update_empr(struct ice_hw *hw)
1154 {
1155 	struct ice_aq_desc desc;
1156 
1157 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_update_empr);
1158 
1159 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1160 }
1161 
1162 /* ice_nvm_set_pkg_data
1163  * @hw: pointer to the HW struct
1164  * @del_pkg_data_flag: If is set then the current pkg_data store by FW
1165  *		       is deleted.
1166  *		       If bit is set to 1, then buffer should be size 0.
1167  * @data: pointer to buffer
1168  * @length: length of the buffer
1169  * @cd: pointer to command details structure or NULL
1170  *
1171  * Set package data (0x070A). This command is equivalent to the reception
1172  * of a PLDM FW Update GetPackageData cmd. This command should be sent
1173  * as part of the NVM update as the first cmd in the flow.
1174  */
1175 
1176 int
1177 ice_nvm_set_pkg_data(struct ice_hw *hw, bool del_pkg_data_flag, u8 *data,
1178 		     u16 length, struct ice_sq_cd *cd)
1179 {
1180 	struct ice_aqc_nvm_pkg_data *cmd;
1181 	struct ice_aq_desc desc;
1182 
1183 	if (length != 0 && !data)
1184 		return -EINVAL;
1185 
1186 	cmd = &desc.params.pkg_data;
1187 
1188 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pkg_data);
1189 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1190 
1191 	if (del_pkg_data_flag)
1192 		cmd->cmd_flags |= ICE_AQC_NVM_PKG_DELETE;
1193 
1194 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
1195 }
1196 
1197 /* ice_nvm_pass_component_tbl
1198  * @hw: pointer to the HW struct
1199  * @data: pointer to buffer
1200  * @length: length of the buffer
1201  * @transfer_flag: parameter for determining stage of the update
1202  * @comp_response: a pointer to the response from the 0x070B AQC.
1203  * @comp_response_code: a pointer to the response code from the 0x070B AQC.
1204  * @cd: pointer to command details structure or NULL
1205  *
1206  * Pass component table (0x070B). This command is equivalent to the reception
1207  * of a PLDM FW Update PassComponentTable cmd. This command should be sent once
1208  * per component. It can be only sent after Set Package Data cmd and before
1209  * actual update. FW will assume these commands are going to be sent until
1210  * the TransferFlag is set to End or StartAndEnd.
1211  */
1212 
1213 int
1214 ice_nvm_pass_component_tbl(struct ice_hw *hw, u8 *data, u16 length,
1215 			   u8 transfer_flag, u8 *comp_response,
1216 			   u8 *comp_response_code, struct ice_sq_cd *cd)
1217 {
1218 	struct ice_aqc_nvm_pass_comp_tbl *cmd;
1219 	struct ice_aq_desc desc;
1220 	int status;
1221 
1222 	if (!data || !comp_response || !comp_response_code)
1223 		return -EINVAL;
1224 
1225 	cmd = &desc.params.pass_comp_tbl;
1226 
1227 	ice_fill_dflt_direct_cmd_desc(&desc,
1228 				      ice_aqc_opc_nvm_pass_component_tbl);
1229 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1230 
1231 	cmd->transfer_flag = transfer_flag;
1232 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
1233 
1234 	if (!status) {
1235 		*comp_response = cmd->component_response;
1236 		*comp_response_code = cmd->component_response_code;
1237 	}
1238 	return status;
1239 }
1240