xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision ff9991499fb53575c45eb92cd064bcd7141bb572)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "ice_devlink.h"
17 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
18  * ice tracepoint functions. This must be done exactly once across the
19  * ice driver.
20  */
21 #define CREATE_TRACE_POINTS
22 #include "ice_trace.h"
23 #include "ice_eswitch.h"
24 #include "ice_tc_lib.h"
25 #include "ice_vsi_vlan_ops.h"
26 #include <net/xdp_sock_drv.h>
27 
28 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
29 static const char ice_driver_string[] = DRV_SUMMARY;
30 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
31 
32 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
33 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
34 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
35 
36 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
37 MODULE_DESCRIPTION(DRV_SUMMARY);
38 MODULE_LICENSE("GPL v2");
39 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
40 
41 static int debug = -1;
42 module_param(debug, int, 0644);
43 #ifndef CONFIG_DYNAMIC_DEBUG
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
45 #else
46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
47 #endif /* !CONFIG_DYNAMIC_DEBUG */
48 
49 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
50 EXPORT_SYMBOL(ice_xdp_locking_key);
51 
52 /**
53  * ice_hw_to_dev - Get device pointer from the hardware structure
54  * @hw: pointer to the device HW structure
55  *
56  * Used to access the device pointer from compilation units which can't easily
57  * include the definition of struct ice_pf without leading to circular header
58  * dependencies.
59  */
60 struct device *ice_hw_to_dev(struct ice_hw *hw)
61 {
62 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
63 
64 	return &pf->pdev->dev;
65 }
66 
67 static struct workqueue_struct *ice_wq;
68 struct workqueue_struct *ice_lag_wq;
69 static const struct net_device_ops ice_netdev_safe_mode_ops;
70 static const struct net_device_ops ice_netdev_ops;
71 
72 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
73 
74 static void ice_vsi_release_all(struct ice_pf *pf);
75 
76 static int ice_rebuild_channels(struct ice_pf *pf);
77 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
78 
79 static int
80 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
81 		     void *cb_priv, enum tc_setup_type type, void *type_data,
82 		     void *data,
83 		     void (*cleanup)(struct flow_block_cb *block_cb));
84 
85 bool netif_is_ice(const struct net_device *dev)
86 {
87 	return dev && (dev->netdev_ops == &ice_netdev_ops);
88 }
89 
90 /**
91  * ice_get_tx_pending - returns number of Tx descriptors not processed
92  * @ring: the ring of descriptors
93  */
94 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
95 {
96 	u16 head, tail;
97 
98 	head = ring->next_to_clean;
99 	tail = ring->next_to_use;
100 
101 	if (head != tail)
102 		return (head < tail) ?
103 			tail - head : (tail + ring->count - head);
104 	return 0;
105 }
106 
107 /**
108  * ice_check_for_hang_subtask - check for and recover hung queues
109  * @pf: pointer to PF struct
110  */
111 static void ice_check_for_hang_subtask(struct ice_pf *pf)
112 {
113 	struct ice_vsi *vsi = NULL;
114 	struct ice_hw *hw;
115 	unsigned int i;
116 	int packets;
117 	u32 v;
118 
119 	ice_for_each_vsi(pf, v)
120 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
121 			vsi = pf->vsi[v];
122 			break;
123 		}
124 
125 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
126 		return;
127 
128 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
129 		return;
130 
131 	hw = &vsi->back->hw;
132 
133 	ice_for_each_txq(vsi, i) {
134 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
135 		struct ice_ring_stats *ring_stats;
136 
137 		if (!tx_ring)
138 			continue;
139 		if (ice_ring_ch_enabled(tx_ring))
140 			continue;
141 
142 		ring_stats = tx_ring->ring_stats;
143 		if (!ring_stats)
144 			continue;
145 
146 		if (tx_ring->desc) {
147 			/* If packet counter has not changed the queue is
148 			 * likely stalled, so force an interrupt for this
149 			 * queue.
150 			 *
151 			 * prev_pkt would be negative if there was no
152 			 * pending work.
153 			 */
154 			packets = ring_stats->stats.pkts & INT_MAX;
155 			if (ring_stats->tx_stats.prev_pkt == packets) {
156 				/* Trigger sw interrupt to revive the queue */
157 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
158 				continue;
159 			}
160 
161 			/* Memory barrier between read of packet count and call
162 			 * to ice_get_tx_pending()
163 			 */
164 			smp_rmb();
165 			ring_stats->tx_stats.prev_pkt =
166 			    ice_get_tx_pending(tx_ring) ? packets : -1;
167 		}
168 	}
169 }
170 
171 /**
172  * ice_init_mac_fltr - Set initial MAC filters
173  * @pf: board private structure
174  *
175  * Set initial set of MAC filters for PF VSI; configure filters for permanent
176  * address and broadcast address. If an error is encountered, netdevice will be
177  * unregistered.
178  */
179 static int ice_init_mac_fltr(struct ice_pf *pf)
180 {
181 	struct ice_vsi *vsi;
182 	u8 *perm_addr;
183 
184 	vsi = ice_get_main_vsi(pf);
185 	if (!vsi)
186 		return -EINVAL;
187 
188 	perm_addr = vsi->port_info->mac.perm_addr;
189 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
190 }
191 
192 /**
193  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
194  * @netdev: the net device on which the sync is happening
195  * @addr: MAC address to sync
196  *
197  * This is a callback function which is called by the in kernel device sync
198  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
199  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
200  * MAC filters from the hardware.
201  */
202 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
203 {
204 	struct ice_netdev_priv *np = netdev_priv(netdev);
205 	struct ice_vsi *vsi = np->vsi;
206 
207 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
208 				     ICE_FWD_TO_VSI))
209 		return -EINVAL;
210 
211 	return 0;
212 }
213 
214 /**
215  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
216  * @netdev: the net device on which the unsync is happening
217  * @addr: MAC address to unsync
218  *
219  * This is a callback function which is called by the in kernel device unsync
220  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
221  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
222  * delete the MAC filters from the hardware.
223  */
224 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
225 {
226 	struct ice_netdev_priv *np = netdev_priv(netdev);
227 	struct ice_vsi *vsi = np->vsi;
228 
229 	/* Under some circumstances, we might receive a request to delete our
230 	 * own device address from our uc list. Because we store the device
231 	 * address in the VSI's MAC filter list, we need to ignore such
232 	 * requests and not delete our device address from this list.
233 	 */
234 	if (ether_addr_equal(addr, netdev->dev_addr))
235 		return 0;
236 
237 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
238 				     ICE_FWD_TO_VSI))
239 		return -EINVAL;
240 
241 	return 0;
242 }
243 
244 /**
245  * ice_vsi_fltr_changed - check if filter state changed
246  * @vsi: VSI to be checked
247  *
248  * returns true if filter state has changed, false otherwise.
249  */
250 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
251 {
252 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
253 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
254 }
255 
256 /**
257  * ice_set_promisc - Enable promiscuous mode for a given PF
258  * @vsi: the VSI being configured
259  * @promisc_m: mask of promiscuous config bits
260  *
261  */
262 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
263 {
264 	int status;
265 
266 	if (vsi->type != ICE_VSI_PF)
267 		return 0;
268 
269 	if (ice_vsi_has_non_zero_vlans(vsi)) {
270 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
271 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
272 						       promisc_m);
273 	} else {
274 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
275 						  promisc_m, 0);
276 	}
277 	if (status && status != -EEXIST)
278 		return status;
279 
280 	netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
281 		   vsi->vsi_num, promisc_m);
282 	return 0;
283 }
284 
285 /**
286  * ice_clear_promisc - Disable promiscuous mode for a given PF
287  * @vsi: the VSI being configured
288  * @promisc_m: mask of promiscuous config bits
289  *
290  */
291 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
292 {
293 	int status;
294 
295 	if (vsi->type != ICE_VSI_PF)
296 		return 0;
297 
298 	if (ice_vsi_has_non_zero_vlans(vsi)) {
299 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
300 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
301 							 promisc_m);
302 	} else {
303 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
304 						    promisc_m, 0);
305 	}
306 
307 	netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
308 		   vsi->vsi_num, promisc_m);
309 	return status;
310 }
311 
312 /**
313  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
314  * @vsi: ptr to the VSI
315  *
316  * Push any outstanding VSI filter changes through the AdminQ.
317  */
318 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
319 {
320 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
321 	struct device *dev = ice_pf_to_dev(vsi->back);
322 	struct net_device *netdev = vsi->netdev;
323 	bool promisc_forced_on = false;
324 	struct ice_pf *pf = vsi->back;
325 	struct ice_hw *hw = &pf->hw;
326 	u32 changed_flags = 0;
327 	int err;
328 
329 	if (!vsi->netdev)
330 		return -EINVAL;
331 
332 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
333 		usleep_range(1000, 2000);
334 
335 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
336 	vsi->current_netdev_flags = vsi->netdev->flags;
337 
338 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
339 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
340 
341 	if (ice_vsi_fltr_changed(vsi)) {
342 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
343 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
344 
345 		/* grab the netdev's addr_list_lock */
346 		netif_addr_lock_bh(netdev);
347 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
348 			      ice_add_mac_to_unsync_list);
349 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
350 			      ice_add_mac_to_unsync_list);
351 		/* our temp lists are populated. release lock */
352 		netif_addr_unlock_bh(netdev);
353 	}
354 
355 	/* Remove MAC addresses in the unsync list */
356 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
357 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
358 	if (err) {
359 		netdev_err(netdev, "Failed to delete MAC filters\n");
360 		/* if we failed because of alloc failures, just bail */
361 		if (err == -ENOMEM)
362 			goto out;
363 	}
364 
365 	/* Add MAC addresses in the sync list */
366 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
367 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
368 	/* If filter is added successfully or already exists, do not go into
369 	 * 'if' condition and report it as error. Instead continue processing
370 	 * rest of the function.
371 	 */
372 	if (err && err != -EEXIST) {
373 		netdev_err(netdev, "Failed to add MAC filters\n");
374 		/* If there is no more space for new umac filters, VSI
375 		 * should go into promiscuous mode. There should be some
376 		 * space reserved for promiscuous filters.
377 		 */
378 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
379 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
380 				      vsi->state)) {
381 			promisc_forced_on = true;
382 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
383 				    vsi->vsi_num);
384 		} else {
385 			goto out;
386 		}
387 	}
388 	err = 0;
389 	/* check for changes in promiscuous modes */
390 	if (changed_flags & IFF_ALLMULTI) {
391 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
392 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
393 			if (err) {
394 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
395 				goto out_promisc;
396 			}
397 		} else {
398 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
399 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
400 			if (err) {
401 				vsi->current_netdev_flags |= IFF_ALLMULTI;
402 				goto out_promisc;
403 			}
404 		}
405 	}
406 
407 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
408 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
409 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
410 		if (vsi->current_netdev_flags & IFF_PROMISC) {
411 			/* Apply Rx filter rule to get traffic from wire */
412 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
413 				err = ice_set_dflt_vsi(vsi);
414 				if (err && err != -EEXIST) {
415 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
416 						   err, vsi->vsi_num);
417 					vsi->current_netdev_flags &=
418 						~IFF_PROMISC;
419 					goto out_promisc;
420 				}
421 				err = 0;
422 				vlan_ops->dis_rx_filtering(vsi);
423 
424 				/* promiscuous mode implies allmulticast so
425 				 * that VSIs that are in promiscuous mode are
426 				 * subscribed to multicast packets coming to
427 				 * the port
428 				 */
429 				err = ice_set_promisc(vsi,
430 						      ICE_MCAST_PROMISC_BITS);
431 				if (err)
432 					goto out_promisc;
433 			}
434 		} else {
435 			/* Clear Rx filter to remove traffic from wire */
436 			if (ice_is_vsi_dflt_vsi(vsi)) {
437 				err = ice_clear_dflt_vsi(vsi);
438 				if (err) {
439 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
440 						   err, vsi->vsi_num);
441 					vsi->current_netdev_flags |=
442 						IFF_PROMISC;
443 					goto out_promisc;
444 				}
445 				if (vsi->netdev->features &
446 				    NETIF_F_HW_VLAN_CTAG_FILTER)
447 					vlan_ops->ena_rx_filtering(vsi);
448 			}
449 
450 			/* disable allmulti here, but only if allmulti is not
451 			 * still enabled for the netdev
452 			 */
453 			if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
454 				err = ice_clear_promisc(vsi,
455 							ICE_MCAST_PROMISC_BITS);
456 				if (err) {
457 					netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
458 						   err, vsi->vsi_num);
459 				}
460 			}
461 		}
462 	}
463 	goto exit;
464 
465 out_promisc:
466 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
467 	goto exit;
468 out:
469 	/* if something went wrong then set the changed flag so we try again */
470 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
471 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
472 exit:
473 	clear_bit(ICE_CFG_BUSY, vsi->state);
474 	return err;
475 }
476 
477 /**
478  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
479  * @pf: board private structure
480  */
481 static void ice_sync_fltr_subtask(struct ice_pf *pf)
482 {
483 	int v;
484 
485 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
486 		return;
487 
488 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
489 
490 	ice_for_each_vsi(pf, v)
491 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
492 		    ice_vsi_sync_fltr(pf->vsi[v])) {
493 			/* come back and try again later */
494 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
495 			break;
496 		}
497 }
498 
499 /**
500  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
501  * @pf: the PF
502  * @locked: is the rtnl_lock already held
503  */
504 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
505 {
506 	int node;
507 	int v;
508 
509 	ice_for_each_vsi(pf, v)
510 		if (pf->vsi[v])
511 			ice_dis_vsi(pf->vsi[v], locked);
512 
513 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
514 		pf->pf_agg_node[node].num_vsis = 0;
515 
516 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
517 		pf->vf_agg_node[node].num_vsis = 0;
518 }
519 
520 /**
521  * ice_clear_sw_switch_recipes - clear switch recipes
522  * @pf: board private structure
523  *
524  * Mark switch recipes as not created in sw structures. There are cases where
525  * rules (especially advanced rules) need to be restored, either re-read from
526  * hardware or added again. For example after the reset. 'recp_created' flag
527  * prevents from doing that and need to be cleared upfront.
528  */
529 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
530 {
531 	struct ice_sw_recipe *recp;
532 	u8 i;
533 
534 	recp = pf->hw.switch_info->recp_list;
535 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
536 		recp[i].recp_created = false;
537 }
538 
539 /**
540  * ice_prepare_for_reset - prep for reset
541  * @pf: board private structure
542  * @reset_type: reset type requested
543  *
544  * Inform or close all dependent features in prep for reset.
545  */
546 static void
547 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
548 {
549 	struct ice_hw *hw = &pf->hw;
550 	struct ice_vsi *vsi;
551 	struct ice_vf *vf;
552 	unsigned int bkt;
553 
554 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
555 
556 	/* already prepared for reset */
557 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
558 		return;
559 
560 	ice_unplug_aux_dev(pf);
561 
562 	/* Notify VFs of impending reset */
563 	if (ice_check_sq_alive(hw, &hw->mailboxq))
564 		ice_vc_notify_reset(pf);
565 
566 	/* Disable VFs until reset is completed */
567 	mutex_lock(&pf->vfs.table_lock);
568 	ice_for_each_vf(pf, bkt, vf)
569 		ice_set_vf_state_dis(vf);
570 	mutex_unlock(&pf->vfs.table_lock);
571 
572 	if (ice_is_eswitch_mode_switchdev(pf)) {
573 		if (reset_type != ICE_RESET_PFR)
574 			ice_clear_sw_switch_recipes(pf);
575 	}
576 
577 	/* release ADQ specific HW and SW resources */
578 	vsi = ice_get_main_vsi(pf);
579 	if (!vsi)
580 		goto skip;
581 
582 	/* to be on safe side, reset orig_rss_size so that normal flow
583 	 * of deciding rss_size can take precedence
584 	 */
585 	vsi->orig_rss_size = 0;
586 
587 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
588 		if (reset_type == ICE_RESET_PFR) {
589 			vsi->old_ena_tc = vsi->all_enatc;
590 			vsi->old_numtc = vsi->all_numtc;
591 		} else {
592 			ice_remove_q_channels(vsi, true);
593 
594 			/* for other reset type, do not support channel rebuild
595 			 * hence reset needed info
596 			 */
597 			vsi->old_ena_tc = 0;
598 			vsi->all_enatc = 0;
599 			vsi->old_numtc = 0;
600 			vsi->all_numtc = 0;
601 			vsi->req_txq = 0;
602 			vsi->req_rxq = 0;
603 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
604 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
605 		}
606 	}
607 skip:
608 
609 	/* clear SW filtering DB */
610 	ice_clear_hw_tbls(hw);
611 	/* disable the VSIs and their queues that are not already DOWN */
612 	ice_pf_dis_all_vsi(pf, false);
613 
614 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
615 		ice_ptp_prepare_for_reset(pf);
616 
617 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
618 		ice_gnss_exit(pf);
619 
620 	if (hw->port_info)
621 		ice_sched_clear_port(hw->port_info);
622 
623 	ice_shutdown_all_ctrlq(hw);
624 
625 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
626 }
627 
628 /**
629  * ice_do_reset - Initiate one of many types of resets
630  * @pf: board private structure
631  * @reset_type: reset type requested before this function was called.
632  */
633 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
634 {
635 	struct device *dev = ice_pf_to_dev(pf);
636 	struct ice_hw *hw = &pf->hw;
637 
638 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
639 
640 	if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
641 		dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
642 		reset_type = ICE_RESET_CORER;
643 	}
644 
645 	ice_prepare_for_reset(pf, reset_type);
646 
647 	/* trigger the reset */
648 	if (ice_reset(hw, reset_type)) {
649 		dev_err(dev, "reset %d failed\n", reset_type);
650 		set_bit(ICE_RESET_FAILED, pf->state);
651 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
652 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
653 		clear_bit(ICE_PFR_REQ, pf->state);
654 		clear_bit(ICE_CORER_REQ, pf->state);
655 		clear_bit(ICE_GLOBR_REQ, pf->state);
656 		wake_up(&pf->reset_wait_queue);
657 		return;
658 	}
659 
660 	/* PFR is a bit of a special case because it doesn't result in an OICR
661 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
662 	 * associated state bits.
663 	 */
664 	if (reset_type == ICE_RESET_PFR) {
665 		pf->pfr_count++;
666 		ice_rebuild(pf, reset_type);
667 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
668 		clear_bit(ICE_PFR_REQ, pf->state);
669 		wake_up(&pf->reset_wait_queue);
670 		ice_reset_all_vfs(pf);
671 	}
672 }
673 
674 /**
675  * ice_reset_subtask - Set up for resetting the device and driver
676  * @pf: board private structure
677  */
678 static void ice_reset_subtask(struct ice_pf *pf)
679 {
680 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
681 
682 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
683 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
684 	 * of reset is pending and sets bits in pf->state indicating the reset
685 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
686 	 * prepare for pending reset if not already (for PF software-initiated
687 	 * global resets the software should already be prepared for it as
688 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
689 	 * by firmware or software on other PFs, that bit is not set so prepare
690 	 * for the reset now), poll for reset done, rebuild and return.
691 	 */
692 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
693 		/* Perform the largest reset requested */
694 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
695 			reset_type = ICE_RESET_CORER;
696 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
697 			reset_type = ICE_RESET_GLOBR;
698 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
699 			reset_type = ICE_RESET_EMPR;
700 		/* return if no valid reset type requested */
701 		if (reset_type == ICE_RESET_INVAL)
702 			return;
703 		ice_prepare_for_reset(pf, reset_type);
704 
705 		/* make sure we are ready to rebuild */
706 		if (ice_check_reset(&pf->hw)) {
707 			set_bit(ICE_RESET_FAILED, pf->state);
708 		} else {
709 			/* done with reset. start rebuild */
710 			pf->hw.reset_ongoing = false;
711 			ice_rebuild(pf, reset_type);
712 			/* clear bit to resume normal operations, but
713 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
714 			 */
715 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
716 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
717 			clear_bit(ICE_PFR_REQ, pf->state);
718 			clear_bit(ICE_CORER_REQ, pf->state);
719 			clear_bit(ICE_GLOBR_REQ, pf->state);
720 			wake_up(&pf->reset_wait_queue);
721 			ice_reset_all_vfs(pf);
722 		}
723 
724 		return;
725 	}
726 
727 	/* No pending resets to finish processing. Check for new resets */
728 	if (test_bit(ICE_PFR_REQ, pf->state)) {
729 		reset_type = ICE_RESET_PFR;
730 		if (pf->lag && pf->lag->bonded) {
731 			dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
732 			reset_type = ICE_RESET_CORER;
733 		}
734 	}
735 	if (test_bit(ICE_CORER_REQ, pf->state))
736 		reset_type = ICE_RESET_CORER;
737 	if (test_bit(ICE_GLOBR_REQ, pf->state))
738 		reset_type = ICE_RESET_GLOBR;
739 	/* If no valid reset type requested just return */
740 	if (reset_type == ICE_RESET_INVAL)
741 		return;
742 
743 	/* reset if not already down or busy */
744 	if (!test_bit(ICE_DOWN, pf->state) &&
745 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
746 		ice_do_reset(pf, reset_type);
747 	}
748 }
749 
750 /**
751  * ice_print_topo_conflict - print topology conflict message
752  * @vsi: the VSI whose topology status is being checked
753  */
754 static void ice_print_topo_conflict(struct ice_vsi *vsi)
755 {
756 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
757 	case ICE_AQ_LINK_TOPO_CONFLICT:
758 	case ICE_AQ_LINK_MEDIA_CONFLICT:
759 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
760 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
761 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
762 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
763 		break;
764 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
765 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
766 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
767 		else
768 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
769 		break;
770 	default:
771 		break;
772 	}
773 }
774 
775 /**
776  * ice_print_link_msg - print link up or down message
777  * @vsi: the VSI whose link status is being queried
778  * @isup: boolean for if the link is now up or down
779  */
780 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
781 {
782 	struct ice_aqc_get_phy_caps_data *caps;
783 	const char *an_advertised;
784 	const char *fec_req;
785 	const char *speed;
786 	const char *fec;
787 	const char *fc;
788 	const char *an;
789 	int status;
790 
791 	if (!vsi)
792 		return;
793 
794 	if (vsi->current_isup == isup)
795 		return;
796 
797 	vsi->current_isup = isup;
798 
799 	if (!isup) {
800 		netdev_info(vsi->netdev, "NIC Link is Down\n");
801 		return;
802 	}
803 
804 	switch (vsi->port_info->phy.link_info.link_speed) {
805 	case ICE_AQ_LINK_SPEED_100GB:
806 		speed = "100 G";
807 		break;
808 	case ICE_AQ_LINK_SPEED_50GB:
809 		speed = "50 G";
810 		break;
811 	case ICE_AQ_LINK_SPEED_40GB:
812 		speed = "40 G";
813 		break;
814 	case ICE_AQ_LINK_SPEED_25GB:
815 		speed = "25 G";
816 		break;
817 	case ICE_AQ_LINK_SPEED_20GB:
818 		speed = "20 G";
819 		break;
820 	case ICE_AQ_LINK_SPEED_10GB:
821 		speed = "10 G";
822 		break;
823 	case ICE_AQ_LINK_SPEED_5GB:
824 		speed = "5 G";
825 		break;
826 	case ICE_AQ_LINK_SPEED_2500MB:
827 		speed = "2.5 G";
828 		break;
829 	case ICE_AQ_LINK_SPEED_1000MB:
830 		speed = "1 G";
831 		break;
832 	case ICE_AQ_LINK_SPEED_100MB:
833 		speed = "100 M";
834 		break;
835 	default:
836 		speed = "Unknown ";
837 		break;
838 	}
839 
840 	switch (vsi->port_info->fc.current_mode) {
841 	case ICE_FC_FULL:
842 		fc = "Rx/Tx";
843 		break;
844 	case ICE_FC_TX_PAUSE:
845 		fc = "Tx";
846 		break;
847 	case ICE_FC_RX_PAUSE:
848 		fc = "Rx";
849 		break;
850 	case ICE_FC_NONE:
851 		fc = "None";
852 		break;
853 	default:
854 		fc = "Unknown";
855 		break;
856 	}
857 
858 	/* Get FEC mode based on negotiated link info */
859 	switch (vsi->port_info->phy.link_info.fec_info) {
860 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
861 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
862 		fec = "RS-FEC";
863 		break;
864 	case ICE_AQ_LINK_25G_KR_FEC_EN:
865 		fec = "FC-FEC/BASE-R";
866 		break;
867 	default:
868 		fec = "NONE";
869 		break;
870 	}
871 
872 	/* check if autoneg completed, might be false due to not supported */
873 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
874 		an = "True";
875 	else
876 		an = "False";
877 
878 	/* Get FEC mode requested based on PHY caps last SW configuration */
879 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
880 	if (!caps) {
881 		fec_req = "Unknown";
882 		an_advertised = "Unknown";
883 		goto done;
884 	}
885 
886 	status = ice_aq_get_phy_caps(vsi->port_info, false,
887 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
888 	if (status)
889 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
890 
891 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
892 
893 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
894 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
895 		fec_req = "RS-FEC";
896 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
897 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
898 		fec_req = "FC-FEC/BASE-R";
899 	else
900 		fec_req = "NONE";
901 
902 	kfree(caps);
903 
904 done:
905 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
906 		    speed, fec_req, fec, an_advertised, an, fc);
907 	ice_print_topo_conflict(vsi);
908 }
909 
910 /**
911  * ice_vsi_link_event - update the VSI's netdev
912  * @vsi: the VSI on which the link event occurred
913  * @link_up: whether or not the VSI needs to be set up or down
914  */
915 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
916 {
917 	if (!vsi)
918 		return;
919 
920 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
921 		return;
922 
923 	if (vsi->type == ICE_VSI_PF) {
924 		if (link_up == netif_carrier_ok(vsi->netdev))
925 			return;
926 
927 		if (link_up) {
928 			netif_carrier_on(vsi->netdev);
929 			netif_tx_wake_all_queues(vsi->netdev);
930 		} else {
931 			netif_carrier_off(vsi->netdev);
932 			netif_tx_stop_all_queues(vsi->netdev);
933 		}
934 	}
935 }
936 
937 /**
938  * ice_set_dflt_mib - send a default config MIB to the FW
939  * @pf: private PF struct
940  *
941  * This function sends a default configuration MIB to the FW.
942  *
943  * If this function errors out at any point, the driver is still able to
944  * function.  The main impact is that LFC may not operate as expected.
945  * Therefore an error state in this function should be treated with a DBG
946  * message and continue on with driver rebuild/reenable.
947  */
948 static void ice_set_dflt_mib(struct ice_pf *pf)
949 {
950 	struct device *dev = ice_pf_to_dev(pf);
951 	u8 mib_type, *buf, *lldpmib = NULL;
952 	u16 len, typelen, offset = 0;
953 	struct ice_lldp_org_tlv *tlv;
954 	struct ice_hw *hw = &pf->hw;
955 	u32 ouisubtype;
956 
957 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
958 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
959 	if (!lldpmib) {
960 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
961 			__func__);
962 		return;
963 	}
964 
965 	/* Add ETS CFG TLV */
966 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
967 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
968 		   ICE_IEEE_ETS_TLV_LEN);
969 	tlv->typelen = htons(typelen);
970 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
971 		      ICE_IEEE_SUBTYPE_ETS_CFG);
972 	tlv->ouisubtype = htonl(ouisubtype);
973 
974 	buf = tlv->tlvinfo;
975 	buf[0] = 0;
976 
977 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
978 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
979 	 * Octets 13 - 20 are TSA values - leave as zeros
980 	 */
981 	buf[5] = 0x64;
982 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
983 	offset += len + 2;
984 	tlv = (struct ice_lldp_org_tlv *)
985 		((char *)tlv + sizeof(tlv->typelen) + len);
986 
987 	/* Add ETS REC TLV */
988 	buf = tlv->tlvinfo;
989 	tlv->typelen = htons(typelen);
990 
991 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
992 		      ICE_IEEE_SUBTYPE_ETS_REC);
993 	tlv->ouisubtype = htonl(ouisubtype);
994 
995 	/* First octet of buf is reserved
996 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
997 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
998 	 * Octets 13 - 20 are TSA value - leave as zeros
999 	 */
1000 	buf[5] = 0x64;
1001 	offset += len + 2;
1002 	tlv = (struct ice_lldp_org_tlv *)
1003 		((char *)tlv + sizeof(tlv->typelen) + len);
1004 
1005 	/* Add PFC CFG TLV */
1006 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1007 		   ICE_IEEE_PFC_TLV_LEN);
1008 	tlv->typelen = htons(typelen);
1009 
1010 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1011 		      ICE_IEEE_SUBTYPE_PFC_CFG);
1012 	tlv->ouisubtype = htonl(ouisubtype);
1013 
1014 	/* Octet 1 left as all zeros - PFC disabled */
1015 	buf[0] = 0x08;
1016 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
1017 	offset += len + 2;
1018 
1019 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1020 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1021 
1022 	kfree(lldpmib);
1023 }
1024 
1025 /**
1026  * ice_check_phy_fw_load - check if PHY FW load failed
1027  * @pf: pointer to PF struct
1028  * @link_cfg_err: bitmap from the link info structure
1029  *
1030  * check if external PHY FW load failed and print an error message if it did
1031  */
1032 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1033 {
1034 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1035 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1036 		return;
1037 	}
1038 
1039 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1040 		return;
1041 
1042 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1043 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1044 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1045 	}
1046 }
1047 
1048 /**
1049  * ice_check_module_power
1050  * @pf: pointer to PF struct
1051  * @link_cfg_err: bitmap from the link info structure
1052  *
1053  * check module power level returned by a previous call to aq_get_link_info
1054  * and print error messages if module power level is not supported
1055  */
1056 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1057 {
1058 	/* if module power level is supported, clear the flag */
1059 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1060 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1061 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1062 		return;
1063 	}
1064 
1065 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1066 	 * above block didn't clear this bit, there's nothing to do
1067 	 */
1068 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1069 		return;
1070 
1071 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1072 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1073 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1074 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1075 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1076 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1077 	}
1078 }
1079 
1080 /**
1081  * ice_check_link_cfg_err - check if link configuration failed
1082  * @pf: pointer to the PF struct
1083  * @link_cfg_err: bitmap from the link info structure
1084  *
1085  * print if any link configuration failure happens due to the value in the
1086  * link_cfg_err parameter in the link info structure
1087  */
1088 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1089 {
1090 	ice_check_module_power(pf, link_cfg_err);
1091 	ice_check_phy_fw_load(pf, link_cfg_err);
1092 }
1093 
1094 /**
1095  * ice_link_event - process the link event
1096  * @pf: PF that the link event is associated with
1097  * @pi: port_info for the port that the link event is associated with
1098  * @link_up: true if the physical link is up and false if it is down
1099  * @link_speed: current link speed received from the link event
1100  *
1101  * Returns 0 on success and negative on failure
1102  */
1103 static int
1104 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1105 	       u16 link_speed)
1106 {
1107 	struct device *dev = ice_pf_to_dev(pf);
1108 	struct ice_phy_info *phy_info;
1109 	struct ice_vsi *vsi;
1110 	u16 old_link_speed;
1111 	bool old_link;
1112 	int status;
1113 
1114 	phy_info = &pi->phy;
1115 	phy_info->link_info_old = phy_info->link_info;
1116 
1117 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1118 	old_link_speed = phy_info->link_info_old.link_speed;
1119 
1120 	/* update the link info structures and re-enable link events,
1121 	 * don't bail on failure due to other book keeping needed
1122 	 */
1123 	status = ice_update_link_info(pi);
1124 	if (status)
1125 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1126 			pi->lport, status,
1127 			ice_aq_str(pi->hw->adminq.sq_last_status));
1128 
1129 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1130 
1131 	/* Check if the link state is up after updating link info, and treat
1132 	 * this event as an UP event since the link is actually UP now.
1133 	 */
1134 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1135 		link_up = true;
1136 
1137 	vsi = ice_get_main_vsi(pf);
1138 	if (!vsi || !vsi->port_info)
1139 		return -EINVAL;
1140 
1141 	/* turn off PHY if media was removed */
1142 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1143 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1144 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1145 		ice_set_link(vsi, false);
1146 	}
1147 
1148 	/* if the old link up/down and speed is the same as the new */
1149 	if (link_up == old_link && link_speed == old_link_speed)
1150 		return 0;
1151 
1152 	ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1153 
1154 	if (ice_is_dcb_active(pf)) {
1155 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1156 			ice_dcb_rebuild(pf);
1157 	} else {
1158 		if (link_up)
1159 			ice_set_dflt_mib(pf);
1160 	}
1161 	ice_vsi_link_event(vsi, link_up);
1162 	ice_print_link_msg(vsi, link_up);
1163 
1164 	ice_vc_notify_link_state(pf);
1165 
1166 	return 0;
1167 }
1168 
1169 /**
1170  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1171  * @pf: board private structure
1172  */
1173 static void ice_watchdog_subtask(struct ice_pf *pf)
1174 {
1175 	int i;
1176 
1177 	/* if interface is down do nothing */
1178 	if (test_bit(ICE_DOWN, pf->state) ||
1179 	    test_bit(ICE_CFG_BUSY, pf->state))
1180 		return;
1181 
1182 	/* make sure we don't do these things too often */
1183 	if (time_before(jiffies,
1184 			pf->serv_tmr_prev + pf->serv_tmr_period))
1185 		return;
1186 
1187 	pf->serv_tmr_prev = jiffies;
1188 
1189 	/* Update the stats for active netdevs so the network stack
1190 	 * can look at updated numbers whenever it cares to
1191 	 */
1192 	ice_update_pf_stats(pf);
1193 	ice_for_each_vsi(pf, i)
1194 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1195 			ice_update_vsi_stats(pf->vsi[i]);
1196 }
1197 
1198 /**
1199  * ice_init_link_events - enable/initialize link events
1200  * @pi: pointer to the port_info instance
1201  *
1202  * Returns -EIO on failure, 0 on success
1203  */
1204 static int ice_init_link_events(struct ice_port_info *pi)
1205 {
1206 	u16 mask;
1207 
1208 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1209 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1210 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1211 
1212 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1213 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1214 			pi->lport);
1215 		return -EIO;
1216 	}
1217 
1218 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1219 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1220 			pi->lport);
1221 		return -EIO;
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 /**
1228  * ice_handle_link_event - handle link event via ARQ
1229  * @pf: PF that the link event is associated with
1230  * @event: event structure containing link status info
1231  */
1232 static int
1233 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1234 {
1235 	struct ice_aqc_get_link_status_data *link_data;
1236 	struct ice_port_info *port_info;
1237 	int status;
1238 
1239 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1240 	port_info = pf->hw.port_info;
1241 	if (!port_info)
1242 		return -EINVAL;
1243 
1244 	status = ice_link_event(pf, port_info,
1245 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1246 				le16_to_cpu(link_data->link_speed));
1247 	if (status)
1248 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1249 			status);
1250 
1251 	return status;
1252 }
1253 
1254 /**
1255  * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1256  * @pf: pointer to the PF private structure
1257  * @task: intermediate helper storage and identifier for waiting
1258  * @opcode: the opcode to wait for
1259  *
1260  * Prepares to wait for a specific AdminQ completion event on the ARQ for
1261  * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1262  *
1263  * Calls are separated to allow caller registering for event before sending
1264  * the command, which mitigates a race between registering and FW responding.
1265  *
1266  * To obtain only the descriptor contents, pass an task->event with null
1267  * msg_buf. If the complete data buffer is desired, allocate the
1268  * task->event.msg_buf with enough space ahead of time.
1269  */
1270 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1271 			   u16 opcode)
1272 {
1273 	INIT_HLIST_NODE(&task->entry);
1274 	task->opcode = opcode;
1275 	task->state = ICE_AQ_TASK_WAITING;
1276 
1277 	spin_lock_bh(&pf->aq_wait_lock);
1278 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1279 	spin_unlock_bh(&pf->aq_wait_lock);
1280 }
1281 
1282 /**
1283  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1284  * @pf: pointer to the PF private structure
1285  * @task: ptr prepared by ice_aq_prep_for_event()
1286  * @timeout: how long to wait, in jiffies
1287  *
1288  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1289  * current thread will be put to sleep until the specified event occurs or
1290  * until the given timeout is reached.
1291  *
1292  * Returns: zero on success, or a negative error code on failure.
1293  */
1294 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1295 			  unsigned long timeout)
1296 {
1297 	enum ice_aq_task_state *state = &task->state;
1298 	struct device *dev = ice_pf_to_dev(pf);
1299 	unsigned long start = jiffies;
1300 	long ret;
1301 	int err;
1302 
1303 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1304 					       *state != ICE_AQ_TASK_WAITING,
1305 					       timeout);
1306 	switch (*state) {
1307 	case ICE_AQ_TASK_NOT_PREPARED:
1308 		WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1309 		err = -EINVAL;
1310 		break;
1311 	case ICE_AQ_TASK_WAITING:
1312 		err = ret < 0 ? ret : -ETIMEDOUT;
1313 		break;
1314 	case ICE_AQ_TASK_CANCELED:
1315 		err = ret < 0 ? ret : -ECANCELED;
1316 		break;
1317 	case ICE_AQ_TASK_COMPLETE:
1318 		err = ret < 0 ? ret : 0;
1319 		break;
1320 	default:
1321 		WARN(1, "Unexpected AdminQ wait task state %u", *state);
1322 		err = -EINVAL;
1323 		break;
1324 	}
1325 
1326 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1327 		jiffies_to_msecs(jiffies - start),
1328 		jiffies_to_msecs(timeout),
1329 		task->opcode);
1330 
1331 	spin_lock_bh(&pf->aq_wait_lock);
1332 	hlist_del(&task->entry);
1333 	spin_unlock_bh(&pf->aq_wait_lock);
1334 
1335 	return err;
1336 }
1337 
1338 /**
1339  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1340  * @pf: pointer to the PF private structure
1341  * @opcode: the opcode of the event
1342  * @event: the event to check
1343  *
1344  * Loops over the current list of pending threads waiting for an AdminQ event.
1345  * For each matching task, copy the contents of the event into the task
1346  * structure and wake up the thread.
1347  *
1348  * If multiple threads wait for the same opcode, they will all be woken up.
1349  *
1350  * Note that event->msg_buf will only be duplicated if the event has a buffer
1351  * with enough space already allocated. Otherwise, only the descriptor and
1352  * message length will be copied.
1353  *
1354  * Returns: true if an event was found, false otherwise
1355  */
1356 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1357 				struct ice_rq_event_info *event)
1358 {
1359 	struct ice_rq_event_info *task_ev;
1360 	struct ice_aq_task *task;
1361 	bool found = false;
1362 
1363 	spin_lock_bh(&pf->aq_wait_lock);
1364 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1365 		if (task->state != ICE_AQ_TASK_WAITING)
1366 			continue;
1367 		if (task->opcode != opcode)
1368 			continue;
1369 
1370 		task_ev = &task->event;
1371 		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1372 		task_ev->msg_len = event->msg_len;
1373 
1374 		/* Only copy the data buffer if a destination was set */
1375 		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1376 			memcpy(task_ev->msg_buf, event->msg_buf,
1377 			       event->buf_len);
1378 			task_ev->buf_len = event->buf_len;
1379 		}
1380 
1381 		task->state = ICE_AQ_TASK_COMPLETE;
1382 		found = true;
1383 	}
1384 	spin_unlock_bh(&pf->aq_wait_lock);
1385 
1386 	if (found)
1387 		wake_up(&pf->aq_wait_queue);
1388 }
1389 
1390 /**
1391  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1392  * @pf: the PF private structure
1393  *
1394  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1395  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1396  */
1397 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1398 {
1399 	struct ice_aq_task *task;
1400 
1401 	spin_lock_bh(&pf->aq_wait_lock);
1402 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1403 		task->state = ICE_AQ_TASK_CANCELED;
1404 	spin_unlock_bh(&pf->aq_wait_lock);
1405 
1406 	wake_up(&pf->aq_wait_queue);
1407 }
1408 
1409 #define ICE_MBX_OVERFLOW_WATERMARK 64
1410 
1411 /**
1412  * __ice_clean_ctrlq - helper function to clean controlq rings
1413  * @pf: ptr to struct ice_pf
1414  * @q_type: specific Control queue type
1415  */
1416 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1417 {
1418 	struct device *dev = ice_pf_to_dev(pf);
1419 	struct ice_rq_event_info event;
1420 	struct ice_hw *hw = &pf->hw;
1421 	struct ice_ctl_q_info *cq;
1422 	u16 pending, i = 0;
1423 	const char *qtype;
1424 	u32 oldval, val;
1425 
1426 	/* Do not clean control queue if/when PF reset fails */
1427 	if (test_bit(ICE_RESET_FAILED, pf->state))
1428 		return 0;
1429 
1430 	switch (q_type) {
1431 	case ICE_CTL_Q_ADMIN:
1432 		cq = &hw->adminq;
1433 		qtype = "Admin";
1434 		break;
1435 	case ICE_CTL_Q_SB:
1436 		cq = &hw->sbq;
1437 		qtype = "Sideband";
1438 		break;
1439 	case ICE_CTL_Q_MAILBOX:
1440 		cq = &hw->mailboxq;
1441 		qtype = "Mailbox";
1442 		/* we are going to try to detect a malicious VF, so set the
1443 		 * state to begin detection
1444 		 */
1445 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1446 		break;
1447 	default:
1448 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1449 		return 0;
1450 	}
1451 
1452 	/* check for error indications - PF_xx_AxQLEN register layout for
1453 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1454 	 */
1455 	val = rd32(hw, cq->rq.len);
1456 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1457 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1458 		oldval = val;
1459 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1460 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1461 				qtype);
1462 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1463 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1464 				qtype);
1465 		}
1466 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1467 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1468 				qtype);
1469 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1470 			 PF_FW_ARQLEN_ARQCRIT_M);
1471 		if (oldval != val)
1472 			wr32(hw, cq->rq.len, val);
1473 	}
1474 
1475 	val = rd32(hw, cq->sq.len);
1476 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1477 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1478 		oldval = val;
1479 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1480 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1481 				qtype);
1482 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1483 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1484 				qtype);
1485 		}
1486 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1487 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1488 				qtype);
1489 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1490 			 PF_FW_ATQLEN_ATQCRIT_M);
1491 		if (oldval != val)
1492 			wr32(hw, cq->sq.len, val);
1493 	}
1494 
1495 	event.buf_len = cq->rq_buf_size;
1496 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1497 	if (!event.msg_buf)
1498 		return 0;
1499 
1500 	do {
1501 		struct ice_mbx_data data = {};
1502 		u16 opcode;
1503 		int ret;
1504 
1505 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1506 		if (ret == -EALREADY)
1507 			break;
1508 		if (ret) {
1509 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1510 				ret);
1511 			break;
1512 		}
1513 
1514 		opcode = le16_to_cpu(event.desc.opcode);
1515 
1516 		/* Notify any thread that might be waiting for this event */
1517 		ice_aq_check_events(pf, opcode, &event);
1518 
1519 		switch (opcode) {
1520 		case ice_aqc_opc_get_link_status:
1521 			if (ice_handle_link_event(pf, &event))
1522 				dev_err(dev, "Could not handle link event\n");
1523 			break;
1524 		case ice_aqc_opc_event_lan_overflow:
1525 			ice_vf_lan_overflow_event(pf, &event);
1526 			break;
1527 		case ice_mbx_opc_send_msg_to_pf:
1528 			data.num_msg_proc = i;
1529 			data.num_pending_arq = pending;
1530 			data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1531 			data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1532 
1533 			ice_vc_process_vf_msg(pf, &event, &data);
1534 			break;
1535 		case ice_aqc_opc_fw_logging:
1536 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1537 			break;
1538 		case ice_aqc_opc_lldp_set_mib_change:
1539 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1540 			break;
1541 		default:
1542 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1543 				qtype, opcode);
1544 			break;
1545 		}
1546 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1547 
1548 	kfree(event.msg_buf);
1549 
1550 	return pending && (i == ICE_DFLT_IRQ_WORK);
1551 }
1552 
1553 /**
1554  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1555  * @hw: pointer to hardware info
1556  * @cq: control queue information
1557  *
1558  * returns true if there are pending messages in a queue, false if there aren't
1559  */
1560 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1561 {
1562 	u16 ntu;
1563 
1564 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1565 	return cq->rq.next_to_clean != ntu;
1566 }
1567 
1568 /**
1569  * ice_clean_adminq_subtask - clean the AdminQ rings
1570  * @pf: board private structure
1571  */
1572 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1573 {
1574 	struct ice_hw *hw = &pf->hw;
1575 
1576 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1577 		return;
1578 
1579 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1580 		return;
1581 
1582 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1583 
1584 	/* There might be a situation where new messages arrive to a control
1585 	 * queue between processing the last message and clearing the
1586 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1587 	 * ice_ctrlq_pending) and process new messages if any.
1588 	 */
1589 	if (ice_ctrlq_pending(hw, &hw->adminq))
1590 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1591 
1592 	ice_flush(hw);
1593 }
1594 
1595 /**
1596  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1597  * @pf: board private structure
1598  */
1599 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1600 {
1601 	struct ice_hw *hw = &pf->hw;
1602 
1603 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1604 		return;
1605 
1606 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1607 		return;
1608 
1609 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1610 
1611 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1612 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1613 
1614 	ice_flush(hw);
1615 }
1616 
1617 /**
1618  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1619  * @pf: board private structure
1620  */
1621 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1622 {
1623 	struct ice_hw *hw = &pf->hw;
1624 
1625 	/* Nothing to do here if sideband queue is not supported */
1626 	if (!ice_is_sbq_supported(hw)) {
1627 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1628 		return;
1629 	}
1630 
1631 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1632 		return;
1633 
1634 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1635 		return;
1636 
1637 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1638 
1639 	if (ice_ctrlq_pending(hw, &hw->sbq))
1640 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1641 
1642 	ice_flush(hw);
1643 }
1644 
1645 /**
1646  * ice_service_task_schedule - schedule the service task to wake up
1647  * @pf: board private structure
1648  *
1649  * If not already scheduled, this puts the task into the work queue.
1650  */
1651 void ice_service_task_schedule(struct ice_pf *pf)
1652 {
1653 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1654 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1655 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1656 		queue_work(ice_wq, &pf->serv_task);
1657 }
1658 
1659 /**
1660  * ice_service_task_complete - finish up the service task
1661  * @pf: board private structure
1662  */
1663 static void ice_service_task_complete(struct ice_pf *pf)
1664 {
1665 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1666 
1667 	/* force memory (pf->state) to sync before next service task */
1668 	smp_mb__before_atomic();
1669 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1670 }
1671 
1672 /**
1673  * ice_service_task_stop - stop service task and cancel works
1674  * @pf: board private structure
1675  *
1676  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1677  * 1 otherwise.
1678  */
1679 static int ice_service_task_stop(struct ice_pf *pf)
1680 {
1681 	int ret;
1682 
1683 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1684 
1685 	if (pf->serv_tmr.function)
1686 		del_timer_sync(&pf->serv_tmr);
1687 	if (pf->serv_task.func)
1688 		cancel_work_sync(&pf->serv_task);
1689 
1690 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1691 	return ret;
1692 }
1693 
1694 /**
1695  * ice_service_task_restart - restart service task and schedule works
1696  * @pf: board private structure
1697  *
1698  * This function is needed for suspend and resume works (e.g WoL scenario)
1699  */
1700 static void ice_service_task_restart(struct ice_pf *pf)
1701 {
1702 	clear_bit(ICE_SERVICE_DIS, pf->state);
1703 	ice_service_task_schedule(pf);
1704 }
1705 
1706 /**
1707  * ice_service_timer - timer callback to schedule service task
1708  * @t: pointer to timer_list
1709  */
1710 static void ice_service_timer(struct timer_list *t)
1711 {
1712 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1713 
1714 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1715 	ice_service_task_schedule(pf);
1716 }
1717 
1718 /**
1719  * ice_handle_mdd_event - handle malicious driver detect event
1720  * @pf: pointer to the PF structure
1721  *
1722  * Called from service task. OICR interrupt handler indicates MDD event.
1723  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1724  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1725  * disable the queue, the PF can be configured to reset the VF using ethtool
1726  * private flag mdd-auto-reset-vf.
1727  */
1728 static void ice_handle_mdd_event(struct ice_pf *pf)
1729 {
1730 	struct device *dev = ice_pf_to_dev(pf);
1731 	struct ice_hw *hw = &pf->hw;
1732 	struct ice_vf *vf;
1733 	unsigned int bkt;
1734 	u32 reg;
1735 
1736 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1737 		/* Since the VF MDD event logging is rate limited, check if
1738 		 * there are pending MDD events.
1739 		 */
1740 		ice_print_vfs_mdd_events(pf);
1741 		return;
1742 	}
1743 
1744 	/* find what triggered an MDD event */
1745 	reg = rd32(hw, GL_MDET_TX_PQM);
1746 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1747 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1748 				GL_MDET_TX_PQM_PF_NUM_S;
1749 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1750 				GL_MDET_TX_PQM_VF_NUM_S;
1751 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1752 				GL_MDET_TX_PQM_MAL_TYPE_S;
1753 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1754 				GL_MDET_TX_PQM_QNUM_S);
1755 
1756 		if (netif_msg_tx_err(pf))
1757 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1758 				 event, queue, pf_num, vf_num);
1759 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1760 	}
1761 
1762 	reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1763 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1764 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1765 				GL_MDET_TX_TCLAN_PF_NUM_S;
1766 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1767 				GL_MDET_TX_TCLAN_VF_NUM_S;
1768 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1769 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1770 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1771 				GL_MDET_TX_TCLAN_QNUM_S);
1772 
1773 		if (netif_msg_tx_err(pf))
1774 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1775 				 event, queue, pf_num, vf_num);
1776 		wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1777 	}
1778 
1779 	reg = rd32(hw, GL_MDET_RX);
1780 	if (reg & GL_MDET_RX_VALID_M) {
1781 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1782 				GL_MDET_RX_PF_NUM_S;
1783 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1784 				GL_MDET_RX_VF_NUM_S;
1785 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1786 				GL_MDET_RX_MAL_TYPE_S;
1787 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1788 				GL_MDET_RX_QNUM_S);
1789 
1790 		if (netif_msg_rx_err(pf))
1791 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1792 				 event, queue, pf_num, vf_num);
1793 		wr32(hw, GL_MDET_RX, 0xffffffff);
1794 	}
1795 
1796 	/* check to see if this PF caused an MDD event */
1797 	reg = rd32(hw, PF_MDET_TX_PQM);
1798 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1799 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1800 		if (netif_msg_tx_err(pf))
1801 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1802 	}
1803 
1804 	reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1805 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1806 		wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1807 		if (netif_msg_tx_err(pf))
1808 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1809 	}
1810 
1811 	reg = rd32(hw, PF_MDET_RX);
1812 	if (reg & PF_MDET_RX_VALID_M) {
1813 		wr32(hw, PF_MDET_RX, 0xFFFF);
1814 		if (netif_msg_rx_err(pf))
1815 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1816 	}
1817 
1818 	/* Check to see if one of the VFs caused an MDD event, and then
1819 	 * increment counters and set print pending
1820 	 */
1821 	mutex_lock(&pf->vfs.table_lock);
1822 	ice_for_each_vf(pf, bkt, vf) {
1823 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1824 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1825 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1826 			vf->mdd_tx_events.count++;
1827 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1828 			if (netif_msg_tx_err(pf))
1829 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1830 					 vf->vf_id);
1831 		}
1832 
1833 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1834 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1835 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1836 			vf->mdd_tx_events.count++;
1837 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1838 			if (netif_msg_tx_err(pf))
1839 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1840 					 vf->vf_id);
1841 		}
1842 
1843 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1844 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1845 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1846 			vf->mdd_tx_events.count++;
1847 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1848 			if (netif_msg_tx_err(pf))
1849 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1850 					 vf->vf_id);
1851 		}
1852 
1853 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1854 		if (reg & VP_MDET_RX_VALID_M) {
1855 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1856 			vf->mdd_rx_events.count++;
1857 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1858 			if (netif_msg_rx_err(pf))
1859 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1860 					 vf->vf_id);
1861 
1862 			/* Since the queue is disabled on VF Rx MDD events, the
1863 			 * PF can be configured to reset the VF through ethtool
1864 			 * private flag mdd-auto-reset-vf.
1865 			 */
1866 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1867 				/* VF MDD event counters will be cleared by
1868 				 * reset, so print the event prior to reset.
1869 				 */
1870 				ice_print_vf_rx_mdd_event(vf);
1871 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1872 			}
1873 		}
1874 	}
1875 	mutex_unlock(&pf->vfs.table_lock);
1876 
1877 	ice_print_vfs_mdd_events(pf);
1878 }
1879 
1880 /**
1881  * ice_force_phys_link_state - Force the physical link state
1882  * @vsi: VSI to force the physical link state to up/down
1883  * @link_up: true/false indicates to set the physical link to up/down
1884  *
1885  * Force the physical link state by getting the current PHY capabilities from
1886  * hardware and setting the PHY config based on the determined capabilities. If
1887  * link changes a link event will be triggered because both the Enable Automatic
1888  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1889  *
1890  * Returns 0 on success, negative on failure
1891  */
1892 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1893 {
1894 	struct ice_aqc_get_phy_caps_data *pcaps;
1895 	struct ice_aqc_set_phy_cfg_data *cfg;
1896 	struct ice_port_info *pi;
1897 	struct device *dev;
1898 	int retcode;
1899 
1900 	if (!vsi || !vsi->port_info || !vsi->back)
1901 		return -EINVAL;
1902 	if (vsi->type != ICE_VSI_PF)
1903 		return 0;
1904 
1905 	dev = ice_pf_to_dev(vsi->back);
1906 
1907 	pi = vsi->port_info;
1908 
1909 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1910 	if (!pcaps)
1911 		return -ENOMEM;
1912 
1913 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1914 				      NULL);
1915 	if (retcode) {
1916 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1917 			vsi->vsi_num, retcode);
1918 		retcode = -EIO;
1919 		goto out;
1920 	}
1921 
1922 	/* No change in link */
1923 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1924 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1925 		goto out;
1926 
1927 	/* Use the current user PHY configuration. The current user PHY
1928 	 * configuration is initialized during probe from PHY capabilities
1929 	 * software mode, and updated on set PHY configuration.
1930 	 */
1931 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1932 	if (!cfg) {
1933 		retcode = -ENOMEM;
1934 		goto out;
1935 	}
1936 
1937 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1938 	if (link_up)
1939 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1940 	else
1941 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1942 
1943 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1944 	if (retcode) {
1945 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1946 			vsi->vsi_num, retcode);
1947 		retcode = -EIO;
1948 	}
1949 
1950 	kfree(cfg);
1951 out:
1952 	kfree(pcaps);
1953 	return retcode;
1954 }
1955 
1956 /**
1957  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1958  * @pi: port info structure
1959  *
1960  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1961  */
1962 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1963 {
1964 	struct ice_aqc_get_phy_caps_data *pcaps;
1965 	struct ice_pf *pf = pi->hw->back;
1966 	int err;
1967 
1968 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1969 	if (!pcaps)
1970 		return -ENOMEM;
1971 
1972 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1973 				  pcaps, NULL);
1974 
1975 	if (err) {
1976 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1977 		goto out;
1978 	}
1979 
1980 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1981 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1982 
1983 out:
1984 	kfree(pcaps);
1985 	return err;
1986 }
1987 
1988 /**
1989  * ice_init_link_dflt_override - Initialize link default override
1990  * @pi: port info structure
1991  *
1992  * Initialize link default override and PHY total port shutdown during probe
1993  */
1994 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1995 {
1996 	struct ice_link_default_override_tlv *ldo;
1997 	struct ice_pf *pf = pi->hw->back;
1998 
1999 	ldo = &pf->link_dflt_override;
2000 	if (ice_get_link_default_override(ldo, pi))
2001 		return;
2002 
2003 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2004 		return;
2005 
2006 	/* Enable Total Port Shutdown (override/replace link-down-on-close
2007 	 * ethtool private flag) for ports with Port Disable bit set.
2008 	 */
2009 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2010 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2011 }
2012 
2013 /**
2014  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2015  * @pi: port info structure
2016  *
2017  * If default override is enabled, initialize the user PHY cfg speed and FEC
2018  * settings using the default override mask from the NVM.
2019  *
2020  * The PHY should only be configured with the default override settings the
2021  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2022  * is used to indicate that the user PHY cfg default override is initialized
2023  * and the PHY has not been configured with the default override settings. The
2024  * state is set here, and cleared in ice_configure_phy the first time the PHY is
2025  * configured.
2026  *
2027  * This function should be called only if the FW doesn't support default
2028  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2029  */
2030 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2031 {
2032 	struct ice_link_default_override_tlv *ldo;
2033 	struct ice_aqc_set_phy_cfg_data *cfg;
2034 	struct ice_phy_info *phy = &pi->phy;
2035 	struct ice_pf *pf = pi->hw->back;
2036 
2037 	ldo = &pf->link_dflt_override;
2038 
2039 	/* If link default override is enabled, use to mask NVM PHY capabilities
2040 	 * for speed and FEC default configuration.
2041 	 */
2042 	cfg = &phy->curr_user_phy_cfg;
2043 
2044 	if (ldo->phy_type_low || ldo->phy_type_high) {
2045 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2046 				    cpu_to_le64(ldo->phy_type_low);
2047 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2048 				     cpu_to_le64(ldo->phy_type_high);
2049 	}
2050 	cfg->link_fec_opt = ldo->fec_options;
2051 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2052 
2053 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2054 }
2055 
2056 /**
2057  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2058  * @pi: port info structure
2059  *
2060  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2061  * mode to default. The PHY defaults are from get PHY capabilities topology
2062  * with media so call when media is first available. An error is returned if
2063  * called when media is not available. The PHY initialization completed state is
2064  * set here.
2065  *
2066  * These configurations are used when setting PHY
2067  * configuration. The user PHY configuration is updated on set PHY
2068  * configuration. Returns 0 on success, negative on failure
2069  */
2070 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2071 {
2072 	struct ice_aqc_get_phy_caps_data *pcaps;
2073 	struct ice_phy_info *phy = &pi->phy;
2074 	struct ice_pf *pf = pi->hw->back;
2075 	int err;
2076 
2077 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2078 		return -EIO;
2079 
2080 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2081 	if (!pcaps)
2082 		return -ENOMEM;
2083 
2084 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2085 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2086 					  pcaps, NULL);
2087 	else
2088 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2089 					  pcaps, NULL);
2090 	if (err) {
2091 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2092 		goto err_out;
2093 	}
2094 
2095 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2096 
2097 	/* check if lenient mode is supported and enabled */
2098 	if (ice_fw_supports_link_override(pi->hw) &&
2099 	    !(pcaps->module_compliance_enforcement &
2100 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2101 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2102 
2103 		/* if the FW supports default PHY configuration mode, then the driver
2104 		 * does not have to apply link override settings. If not,
2105 		 * initialize user PHY configuration with link override values
2106 		 */
2107 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2108 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2109 			ice_init_phy_cfg_dflt_override(pi);
2110 			goto out;
2111 		}
2112 	}
2113 
2114 	/* if link default override is not enabled, set user flow control and
2115 	 * FEC settings based on what get_phy_caps returned
2116 	 */
2117 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2118 						      pcaps->link_fec_options);
2119 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2120 
2121 out:
2122 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2123 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2124 err_out:
2125 	kfree(pcaps);
2126 	return err;
2127 }
2128 
2129 /**
2130  * ice_configure_phy - configure PHY
2131  * @vsi: VSI of PHY
2132  *
2133  * Set the PHY configuration. If the current PHY configuration is the same as
2134  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2135  * configure the based get PHY capabilities for topology with media.
2136  */
2137 static int ice_configure_phy(struct ice_vsi *vsi)
2138 {
2139 	struct device *dev = ice_pf_to_dev(vsi->back);
2140 	struct ice_port_info *pi = vsi->port_info;
2141 	struct ice_aqc_get_phy_caps_data *pcaps;
2142 	struct ice_aqc_set_phy_cfg_data *cfg;
2143 	struct ice_phy_info *phy = &pi->phy;
2144 	struct ice_pf *pf = vsi->back;
2145 	int err;
2146 
2147 	/* Ensure we have media as we cannot configure a medialess port */
2148 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2149 		return -EPERM;
2150 
2151 	ice_print_topo_conflict(vsi);
2152 
2153 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2154 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2155 		return -EPERM;
2156 
2157 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2158 		return ice_force_phys_link_state(vsi, true);
2159 
2160 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2161 	if (!pcaps)
2162 		return -ENOMEM;
2163 
2164 	/* Get current PHY config */
2165 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2166 				  NULL);
2167 	if (err) {
2168 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2169 			vsi->vsi_num, err);
2170 		goto done;
2171 	}
2172 
2173 	/* If PHY enable link is configured and configuration has not changed,
2174 	 * there's nothing to do
2175 	 */
2176 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2177 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2178 		goto done;
2179 
2180 	/* Use PHY topology as baseline for configuration */
2181 	memset(pcaps, 0, sizeof(*pcaps));
2182 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2183 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2184 					  pcaps, NULL);
2185 	else
2186 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2187 					  pcaps, NULL);
2188 	if (err) {
2189 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2190 			vsi->vsi_num, err);
2191 		goto done;
2192 	}
2193 
2194 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2195 	if (!cfg) {
2196 		err = -ENOMEM;
2197 		goto done;
2198 	}
2199 
2200 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2201 
2202 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2203 	 * ice_init_phy_user_cfg_ldo.
2204 	 */
2205 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2206 			       vsi->back->state)) {
2207 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2208 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2209 	} else {
2210 		u64 phy_low = 0, phy_high = 0;
2211 
2212 		ice_update_phy_type(&phy_low, &phy_high,
2213 				    pi->phy.curr_user_speed_req);
2214 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2215 		cfg->phy_type_high = pcaps->phy_type_high &
2216 				     cpu_to_le64(phy_high);
2217 	}
2218 
2219 	/* Can't provide what was requested; use PHY capabilities */
2220 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2221 		cfg->phy_type_low = pcaps->phy_type_low;
2222 		cfg->phy_type_high = pcaps->phy_type_high;
2223 	}
2224 
2225 	/* FEC */
2226 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2227 
2228 	/* Can't provide what was requested; use PHY capabilities */
2229 	if (cfg->link_fec_opt !=
2230 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2231 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2232 		cfg->link_fec_opt = pcaps->link_fec_options;
2233 	}
2234 
2235 	/* Flow Control - always supported; no need to check against
2236 	 * capabilities
2237 	 */
2238 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2239 
2240 	/* Enable link and link update */
2241 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2242 
2243 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2244 	if (err)
2245 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2246 			vsi->vsi_num, err);
2247 
2248 	kfree(cfg);
2249 done:
2250 	kfree(pcaps);
2251 	return err;
2252 }
2253 
2254 /**
2255  * ice_check_media_subtask - Check for media
2256  * @pf: pointer to PF struct
2257  *
2258  * If media is available, then initialize PHY user configuration if it is not
2259  * been, and configure the PHY if the interface is up.
2260  */
2261 static void ice_check_media_subtask(struct ice_pf *pf)
2262 {
2263 	struct ice_port_info *pi;
2264 	struct ice_vsi *vsi;
2265 	int err;
2266 
2267 	/* No need to check for media if it's already present */
2268 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2269 		return;
2270 
2271 	vsi = ice_get_main_vsi(pf);
2272 	if (!vsi)
2273 		return;
2274 
2275 	/* Refresh link info and check if media is present */
2276 	pi = vsi->port_info;
2277 	err = ice_update_link_info(pi);
2278 	if (err)
2279 		return;
2280 
2281 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2282 
2283 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2284 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2285 			ice_init_phy_user_cfg(pi);
2286 
2287 		/* PHY settings are reset on media insertion, reconfigure
2288 		 * PHY to preserve settings.
2289 		 */
2290 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2291 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2292 			return;
2293 
2294 		err = ice_configure_phy(vsi);
2295 		if (!err)
2296 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2297 
2298 		/* A Link Status Event will be generated; the event handler
2299 		 * will complete bringing the interface up
2300 		 */
2301 	}
2302 }
2303 
2304 /**
2305  * ice_service_task - manage and run subtasks
2306  * @work: pointer to work_struct contained by the PF struct
2307  */
2308 static void ice_service_task(struct work_struct *work)
2309 {
2310 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2311 	unsigned long start_time = jiffies;
2312 
2313 	/* subtasks */
2314 
2315 	/* process reset requests first */
2316 	ice_reset_subtask(pf);
2317 
2318 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2319 	if (ice_is_reset_in_progress(pf->state) ||
2320 	    test_bit(ICE_SUSPENDED, pf->state) ||
2321 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2322 		ice_service_task_complete(pf);
2323 		return;
2324 	}
2325 
2326 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2327 		struct iidc_event *event;
2328 
2329 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2330 		if (event) {
2331 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2332 			/* report the entire OICR value to AUX driver */
2333 			swap(event->reg, pf->oicr_err_reg);
2334 			ice_send_event_to_aux(pf, event);
2335 			kfree(event);
2336 		}
2337 	}
2338 
2339 	/* unplug aux dev per request, if an unplug request came in
2340 	 * while processing a plug request, this will handle it
2341 	 */
2342 	if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2343 		ice_unplug_aux_dev(pf);
2344 
2345 	/* Plug aux device per request */
2346 	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2347 		ice_plug_aux_dev(pf);
2348 
2349 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2350 		struct iidc_event *event;
2351 
2352 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2353 		if (event) {
2354 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2355 			ice_send_event_to_aux(pf, event);
2356 			kfree(event);
2357 		}
2358 	}
2359 
2360 	ice_clean_adminq_subtask(pf);
2361 	ice_check_media_subtask(pf);
2362 	ice_check_for_hang_subtask(pf);
2363 	ice_sync_fltr_subtask(pf);
2364 	ice_handle_mdd_event(pf);
2365 	ice_watchdog_subtask(pf);
2366 
2367 	if (ice_is_safe_mode(pf)) {
2368 		ice_service_task_complete(pf);
2369 		return;
2370 	}
2371 
2372 	ice_process_vflr_event(pf);
2373 	ice_clean_mailboxq_subtask(pf);
2374 	ice_clean_sbq_subtask(pf);
2375 	ice_sync_arfs_fltrs(pf);
2376 	ice_flush_fdir_ctx(pf);
2377 
2378 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2379 	ice_service_task_complete(pf);
2380 
2381 	/* If the tasks have taken longer than one service timer period
2382 	 * or there is more work to be done, reset the service timer to
2383 	 * schedule the service task now.
2384 	 */
2385 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2386 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2387 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2388 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2389 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2390 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2391 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2392 		mod_timer(&pf->serv_tmr, jiffies);
2393 }
2394 
2395 /**
2396  * ice_set_ctrlq_len - helper function to set controlq length
2397  * @hw: pointer to the HW instance
2398  */
2399 static void ice_set_ctrlq_len(struct ice_hw *hw)
2400 {
2401 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2402 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2403 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2404 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2405 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2406 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2407 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2408 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2409 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2410 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2411 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2412 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2413 }
2414 
2415 /**
2416  * ice_schedule_reset - schedule a reset
2417  * @pf: board private structure
2418  * @reset: reset being requested
2419  */
2420 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2421 {
2422 	struct device *dev = ice_pf_to_dev(pf);
2423 
2424 	/* bail out if earlier reset has failed */
2425 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2426 		dev_dbg(dev, "earlier reset has failed\n");
2427 		return -EIO;
2428 	}
2429 	/* bail if reset/recovery already in progress */
2430 	if (ice_is_reset_in_progress(pf->state)) {
2431 		dev_dbg(dev, "Reset already in progress\n");
2432 		return -EBUSY;
2433 	}
2434 
2435 	switch (reset) {
2436 	case ICE_RESET_PFR:
2437 		set_bit(ICE_PFR_REQ, pf->state);
2438 		break;
2439 	case ICE_RESET_CORER:
2440 		set_bit(ICE_CORER_REQ, pf->state);
2441 		break;
2442 	case ICE_RESET_GLOBR:
2443 		set_bit(ICE_GLOBR_REQ, pf->state);
2444 		break;
2445 	default:
2446 		return -EINVAL;
2447 	}
2448 
2449 	ice_service_task_schedule(pf);
2450 	return 0;
2451 }
2452 
2453 /**
2454  * ice_irq_affinity_notify - Callback for affinity changes
2455  * @notify: context as to what irq was changed
2456  * @mask: the new affinity mask
2457  *
2458  * This is a callback function used by the irq_set_affinity_notifier function
2459  * so that we may register to receive changes to the irq affinity masks.
2460  */
2461 static void
2462 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2463 			const cpumask_t *mask)
2464 {
2465 	struct ice_q_vector *q_vector =
2466 		container_of(notify, struct ice_q_vector, affinity_notify);
2467 
2468 	cpumask_copy(&q_vector->affinity_mask, mask);
2469 }
2470 
2471 /**
2472  * ice_irq_affinity_release - Callback for affinity notifier release
2473  * @ref: internal core kernel usage
2474  *
2475  * This is a callback function used by the irq_set_affinity_notifier function
2476  * to inform the current notification subscriber that they will no longer
2477  * receive notifications.
2478  */
2479 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2480 
2481 /**
2482  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2483  * @vsi: the VSI being configured
2484  */
2485 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2486 {
2487 	struct ice_hw *hw = &vsi->back->hw;
2488 	int i;
2489 
2490 	ice_for_each_q_vector(vsi, i)
2491 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2492 
2493 	ice_flush(hw);
2494 	return 0;
2495 }
2496 
2497 /**
2498  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2499  * @vsi: the VSI being configured
2500  * @basename: name for the vector
2501  */
2502 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2503 {
2504 	int q_vectors = vsi->num_q_vectors;
2505 	struct ice_pf *pf = vsi->back;
2506 	struct device *dev;
2507 	int rx_int_idx = 0;
2508 	int tx_int_idx = 0;
2509 	int vector, err;
2510 	int irq_num;
2511 
2512 	dev = ice_pf_to_dev(pf);
2513 	for (vector = 0; vector < q_vectors; vector++) {
2514 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2515 
2516 		irq_num = q_vector->irq.virq;
2517 
2518 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2519 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2520 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2521 			tx_int_idx++;
2522 		} else if (q_vector->rx.rx_ring) {
2523 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2524 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2525 		} else if (q_vector->tx.tx_ring) {
2526 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2527 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2528 		} else {
2529 			/* skip this unused q_vector */
2530 			continue;
2531 		}
2532 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2533 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2534 					       IRQF_SHARED, q_vector->name,
2535 					       q_vector);
2536 		else
2537 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2538 					       0, q_vector->name, q_vector);
2539 		if (err) {
2540 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2541 				   err);
2542 			goto free_q_irqs;
2543 		}
2544 
2545 		/* register for affinity change notifications */
2546 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2547 			struct irq_affinity_notify *affinity_notify;
2548 
2549 			affinity_notify = &q_vector->affinity_notify;
2550 			affinity_notify->notify = ice_irq_affinity_notify;
2551 			affinity_notify->release = ice_irq_affinity_release;
2552 			irq_set_affinity_notifier(irq_num, affinity_notify);
2553 		}
2554 
2555 		/* assign the mask for this irq */
2556 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2557 	}
2558 
2559 	err = ice_set_cpu_rx_rmap(vsi);
2560 	if (err) {
2561 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2562 			   vsi->vsi_num, ERR_PTR(err));
2563 		goto free_q_irqs;
2564 	}
2565 
2566 	vsi->irqs_ready = true;
2567 	return 0;
2568 
2569 free_q_irqs:
2570 	while (vector--) {
2571 		irq_num = vsi->q_vectors[vector]->irq.virq;
2572 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2573 			irq_set_affinity_notifier(irq_num, NULL);
2574 		irq_set_affinity_hint(irq_num, NULL);
2575 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2576 	}
2577 	return err;
2578 }
2579 
2580 /**
2581  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2582  * @vsi: VSI to setup Tx rings used by XDP
2583  *
2584  * Return 0 on success and negative value on error
2585  */
2586 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2587 {
2588 	struct device *dev = ice_pf_to_dev(vsi->back);
2589 	struct ice_tx_desc *tx_desc;
2590 	int i, j;
2591 
2592 	ice_for_each_xdp_txq(vsi, i) {
2593 		u16 xdp_q_idx = vsi->alloc_txq + i;
2594 		struct ice_ring_stats *ring_stats;
2595 		struct ice_tx_ring *xdp_ring;
2596 
2597 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2598 		if (!xdp_ring)
2599 			goto free_xdp_rings;
2600 
2601 		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2602 		if (!ring_stats) {
2603 			ice_free_tx_ring(xdp_ring);
2604 			goto free_xdp_rings;
2605 		}
2606 
2607 		xdp_ring->ring_stats = ring_stats;
2608 		xdp_ring->q_index = xdp_q_idx;
2609 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2610 		xdp_ring->vsi = vsi;
2611 		xdp_ring->netdev = NULL;
2612 		xdp_ring->dev = dev;
2613 		xdp_ring->count = vsi->num_tx_desc;
2614 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2615 		if (ice_setup_tx_ring(xdp_ring))
2616 			goto free_xdp_rings;
2617 		ice_set_ring_xdp(xdp_ring);
2618 		spin_lock_init(&xdp_ring->tx_lock);
2619 		for (j = 0; j < xdp_ring->count; j++) {
2620 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2621 			tx_desc->cmd_type_offset_bsz = 0;
2622 		}
2623 	}
2624 
2625 	return 0;
2626 
2627 free_xdp_rings:
2628 	for (; i >= 0; i--) {
2629 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2630 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2631 			vsi->xdp_rings[i]->ring_stats = NULL;
2632 			ice_free_tx_ring(vsi->xdp_rings[i]);
2633 		}
2634 	}
2635 	return -ENOMEM;
2636 }
2637 
2638 /**
2639  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2640  * @vsi: VSI to set the bpf prog on
2641  * @prog: the bpf prog pointer
2642  */
2643 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2644 {
2645 	struct bpf_prog *old_prog;
2646 	int i;
2647 
2648 	old_prog = xchg(&vsi->xdp_prog, prog);
2649 	ice_for_each_rxq(vsi, i)
2650 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2651 
2652 	if (old_prog)
2653 		bpf_prog_put(old_prog);
2654 }
2655 
2656 /**
2657  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2658  * @vsi: VSI to bring up Tx rings used by XDP
2659  * @prog: bpf program that will be assigned to VSI
2660  *
2661  * Return 0 on success and negative value on error
2662  */
2663 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2664 {
2665 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2666 	int xdp_rings_rem = vsi->num_xdp_txq;
2667 	struct ice_pf *pf = vsi->back;
2668 	struct ice_qs_cfg xdp_qs_cfg = {
2669 		.qs_mutex = &pf->avail_q_mutex,
2670 		.pf_map = pf->avail_txqs,
2671 		.pf_map_size = pf->max_pf_txqs,
2672 		.q_count = vsi->num_xdp_txq,
2673 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2674 		.vsi_map = vsi->txq_map,
2675 		.vsi_map_offset = vsi->alloc_txq,
2676 		.mapping_mode = ICE_VSI_MAP_CONTIG
2677 	};
2678 	struct device *dev;
2679 	int i, v_idx;
2680 	int status;
2681 
2682 	dev = ice_pf_to_dev(pf);
2683 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2684 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2685 	if (!vsi->xdp_rings)
2686 		return -ENOMEM;
2687 
2688 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2689 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2690 		goto err_map_xdp;
2691 
2692 	if (static_key_enabled(&ice_xdp_locking_key))
2693 		netdev_warn(vsi->netdev,
2694 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2695 
2696 	if (ice_xdp_alloc_setup_rings(vsi))
2697 		goto clear_xdp_rings;
2698 
2699 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2700 	ice_for_each_q_vector(vsi, v_idx) {
2701 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2702 		int xdp_rings_per_v, q_id, q_base;
2703 
2704 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2705 					       vsi->num_q_vectors - v_idx);
2706 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2707 
2708 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2709 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2710 
2711 			xdp_ring->q_vector = q_vector;
2712 			xdp_ring->next = q_vector->tx.tx_ring;
2713 			q_vector->tx.tx_ring = xdp_ring;
2714 		}
2715 		xdp_rings_rem -= xdp_rings_per_v;
2716 	}
2717 
2718 	ice_for_each_rxq(vsi, i) {
2719 		if (static_key_enabled(&ice_xdp_locking_key)) {
2720 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2721 		} else {
2722 			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2723 			struct ice_tx_ring *ring;
2724 
2725 			ice_for_each_tx_ring(ring, q_vector->tx) {
2726 				if (ice_ring_is_xdp(ring)) {
2727 					vsi->rx_rings[i]->xdp_ring = ring;
2728 					break;
2729 				}
2730 			}
2731 		}
2732 		ice_tx_xsk_pool(vsi, i);
2733 	}
2734 
2735 	/* omit the scheduler update if in reset path; XDP queues will be
2736 	 * taken into account at the end of ice_vsi_rebuild, where
2737 	 * ice_cfg_vsi_lan is being called
2738 	 */
2739 	if (ice_is_reset_in_progress(pf->state))
2740 		return 0;
2741 
2742 	/* tell the Tx scheduler that right now we have
2743 	 * additional queues
2744 	 */
2745 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2746 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2747 
2748 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2749 				 max_txqs);
2750 	if (status) {
2751 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2752 			status);
2753 		goto clear_xdp_rings;
2754 	}
2755 
2756 	/* assign the prog only when it's not already present on VSI;
2757 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2758 	 * VSI rebuild that happens under ethtool -L can expose us to
2759 	 * the bpf_prog refcount issues as we would be swapping same
2760 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2761 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2762 	 * this is not harmful as dev_xdp_install bumps the refcount
2763 	 * before calling the op exposed by the driver;
2764 	 */
2765 	if (!ice_is_xdp_ena_vsi(vsi))
2766 		ice_vsi_assign_bpf_prog(vsi, prog);
2767 
2768 	return 0;
2769 clear_xdp_rings:
2770 	ice_for_each_xdp_txq(vsi, i)
2771 		if (vsi->xdp_rings[i]) {
2772 			kfree_rcu(vsi->xdp_rings[i], rcu);
2773 			vsi->xdp_rings[i] = NULL;
2774 		}
2775 
2776 err_map_xdp:
2777 	mutex_lock(&pf->avail_q_mutex);
2778 	ice_for_each_xdp_txq(vsi, i) {
2779 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2780 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2781 	}
2782 	mutex_unlock(&pf->avail_q_mutex);
2783 
2784 	devm_kfree(dev, vsi->xdp_rings);
2785 	return -ENOMEM;
2786 }
2787 
2788 /**
2789  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2790  * @vsi: VSI to remove XDP rings
2791  *
2792  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2793  * resources
2794  */
2795 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2796 {
2797 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2798 	struct ice_pf *pf = vsi->back;
2799 	int i, v_idx;
2800 
2801 	/* q_vectors are freed in reset path so there's no point in detaching
2802 	 * rings; in case of rebuild being triggered not from reset bits
2803 	 * in pf->state won't be set, so additionally check first q_vector
2804 	 * against NULL
2805 	 */
2806 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2807 		goto free_qmap;
2808 
2809 	ice_for_each_q_vector(vsi, v_idx) {
2810 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2811 		struct ice_tx_ring *ring;
2812 
2813 		ice_for_each_tx_ring(ring, q_vector->tx)
2814 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2815 				break;
2816 
2817 		/* restore the value of last node prior to XDP setup */
2818 		q_vector->tx.tx_ring = ring;
2819 	}
2820 
2821 free_qmap:
2822 	mutex_lock(&pf->avail_q_mutex);
2823 	ice_for_each_xdp_txq(vsi, i) {
2824 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2825 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2826 	}
2827 	mutex_unlock(&pf->avail_q_mutex);
2828 
2829 	ice_for_each_xdp_txq(vsi, i)
2830 		if (vsi->xdp_rings[i]) {
2831 			if (vsi->xdp_rings[i]->desc) {
2832 				synchronize_rcu();
2833 				ice_free_tx_ring(vsi->xdp_rings[i]);
2834 			}
2835 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2836 			vsi->xdp_rings[i]->ring_stats = NULL;
2837 			kfree_rcu(vsi->xdp_rings[i], rcu);
2838 			vsi->xdp_rings[i] = NULL;
2839 		}
2840 
2841 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2842 	vsi->xdp_rings = NULL;
2843 
2844 	if (static_key_enabled(&ice_xdp_locking_key))
2845 		static_branch_dec(&ice_xdp_locking_key);
2846 
2847 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2848 		return 0;
2849 
2850 	ice_vsi_assign_bpf_prog(vsi, NULL);
2851 
2852 	/* notify Tx scheduler that we destroyed XDP queues and bring
2853 	 * back the old number of child nodes
2854 	 */
2855 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2856 		max_txqs[i] = vsi->num_txq;
2857 
2858 	/* change number of XDP Tx queues to 0 */
2859 	vsi->num_xdp_txq = 0;
2860 
2861 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2862 			       max_txqs);
2863 }
2864 
2865 /**
2866  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2867  * @vsi: VSI to schedule napi on
2868  */
2869 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2870 {
2871 	int i;
2872 
2873 	ice_for_each_rxq(vsi, i) {
2874 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2875 
2876 		if (rx_ring->xsk_pool)
2877 			napi_schedule(&rx_ring->q_vector->napi);
2878 	}
2879 }
2880 
2881 /**
2882  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2883  * @vsi: VSI to determine the count of XDP Tx qs
2884  *
2885  * returns 0 if Tx qs count is higher than at least half of CPU count,
2886  * -ENOMEM otherwise
2887  */
2888 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2889 {
2890 	u16 avail = ice_get_avail_txq_count(vsi->back);
2891 	u16 cpus = num_possible_cpus();
2892 
2893 	if (avail < cpus / 2)
2894 		return -ENOMEM;
2895 
2896 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2897 
2898 	if (vsi->num_xdp_txq < cpus)
2899 		static_branch_inc(&ice_xdp_locking_key);
2900 
2901 	return 0;
2902 }
2903 
2904 /**
2905  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2906  * @vsi: Pointer to VSI structure
2907  */
2908 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2909 {
2910 	if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2911 		return ICE_RXBUF_1664;
2912 	else
2913 		return ICE_RXBUF_3072;
2914 }
2915 
2916 /**
2917  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2918  * @vsi: VSI to setup XDP for
2919  * @prog: XDP program
2920  * @extack: netlink extended ack
2921  */
2922 static int
2923 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2924 		   struct netlink_ext_ack *extack)
2925 {
2926 	unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2927 	bool if_running = netif_running(vsi->netdev);
2928 	int ret = 0, xdp_ring_err = 0;
2929 
2930 	if (prog && !prog->aux->xdp_has_frags) {
2931 		if (frame_size > ice_max_xdp_frame_size(vsi)) {
2932 			NL_SET_ERR_MSG_MOD(extack,
2933 					   "MTU is too large for linear frames and XDP prog does not support frags");
2934 			return -EOPNOTSUPP;
2935 		}
2936 	}
2937 
2938 	/* hot swap progs and avoid toggling link */
2939 	if (ice_is_xdp_ena_vsi(vsi) == !!prog) {
2940 		ice_vsi_assign_bpf_prog(vsi, prog);
2941 		return 0;
2942 	}
2943 
2944 	/* need to stop netdev while setting up the program for Rx rings */
2945 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2946 		ret = ice_down(vsi);
2947 		if (ret) {
2948 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2949 			return ret;
2950 		}
2951 	}
2952 
2953 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2954 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2955 		if (xdp_ring_err) {
2956 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2957 		} else {
2958 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2959 			if (xdp_ring_err)
2960 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2961 		}
2962 		xdp_features_set_redirect_target(vsi->netdev, true);
2963 		/* reallocate Rx queues that are used for zero-copy */
2964 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2965 		if (xdp_ring_err)
2966 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2967 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2968 		xdp_features_clear_redirect_target(vsi->netdev);
2969 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2970 		if (xdp_ring_err)
2971 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2972 		/* reallocate Rx queues that were used for zero-copy */
2973 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2974 		if (xdp_ring_err)
2975 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2976 	}
2977 
2978 	if (if_running)
2979 		ret = ice_up(vsi);
2980 
2981 	if (!ret && prog)
2982 		ice_vsi_rx_napi_schedule(vsi);
2983 
2984 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2985 }
2986 
2987 /**
2988  * ice_xdp_safe_mode - XDP handler for safe mode
2989  * @dev: netdevice
2990  * @xdp: XDP command
2991  */
2992 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2993 			     struct netdev_bpf *xdp)
2994 {
2995 	NL_SET_ERR_MSG_MOD(xdp->extack,
2996 			   "Please provide working DDP firmware package in order to use XDP\n"
2997 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2998 	return -EOPNOTSUPP;
2999 }
3000 
3001 /**
3002  * ice_xdp - implements XDP handler
3003  * @dev: netdevice
3004  * @xdp: XDP command
3005  */
3006 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3007 {
3008 	struct ice_netdev_priv *np = netdev_priv(dev);
3009 	struct ice_vsi *vsi = np->vsi;
3010 
3011 	if (vsi->type != ICE_VSI_PF) {
3012 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3013 		return -EINVAL;
3014 	}
3015 
3016 	switch (xdp->command) {
3017 	case XDP_SETUP_PROG:
3018 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3019 	case XDP_SETUP_XSK_POOL:
3020 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
3021 					  xdp->xsk.queue_id);
3022 	default:
3023 		return -EINVAL;
3024 	}
3025 }
3026 
3027 /**
3028  * ice_ena_misc_vector - enable the non-queue interrupts
3029  * @pf: board private structure
3030  */
3031 static void ice_ena_misc_vector(struct ice_pf *pf)
3032 {
3033 	struct ice_hw *hw = &pf->hw;
3034 	u32 val;
3035 
3036 	/* Disable anti-spoof detection interrupt to prevent spurious event
3037 	 * interrupts during a function reset. Anti-spoof functionally is
3038 	 * still supported.
3039 	 */
3040 	val = rd32(hw, GL_MDCK_TX_TDPU);
3041 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3042 	wr32(hw, GL_MDCK_TX_TDPU, val);
3043 
3044 	/* clear things first */
3045 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
3046 	rd32(hw, PFINT_OICR);		/* read to clear */
3047 
3048 	val = (PFINT_OICR_ECC_ERR_M |
3049 	       PFINT_OICR_MAL_DETECT_M |
3050 	       PFINT_OICR_GRST_M |
3051 	       PFINT_OICR_PCI_EXCEPTION_M |
3052 	       PFINT_OICR_VFLR_M |
3053 	       PFINT_OICR_HMC_ERR_M |
3054 	       PFINT_OICR_PE_PUSH_M |
3055 	       PFINT_OICR_PE_CRITERR_M);
3056 
3057 	wr32(hw, PFINT_OICR_ENA, val);
3058 
3059 	/* SW_ITR_IDX = 0, but don't change INTENA */
3060 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3061 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3062 }
3063 
3064 /**
3065  * ice_misc_intr - misc interrupt handler
3066  * @irq: interrupt number
3067  * @data: pointer to a q_vector
3068  */
3069 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3070 {
3071 	struct ice_pf *pf = (struct ice_pf *)data;
3072 	struct ice_hw *hw = &pf->hw;
3073 	struct device *dev;
3074 	u32 oicr, ena_mask;
3075 
3076 	dev = ice_pf_to_dev(pf);
3077 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3078 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3079 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3080 
3081 	oicr = rd32(hw, PFINT_OICR);
3082 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3083 
3084 	if (oicr & PFINT_OICR_SWINT_M) {
3085 		ena_mask &= ~PFINT_OICR_SWINT_M;
3086 		pf->sw_int_count++;
3087 	}
3088 
3089 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3090 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3091 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3092 	}
3093 	if (oicr & PFINT_OICR_VFLR_M) {
3094 		/* disable any further VFLR event notifications */
3095 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3096 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3097 
3098 			reg &= ~PFINT_OICR_VFLR_M;
3099 			wr32(hw, PFINT_OICR_ENA, reg);
3100 		} else {
3101 			ena_mask &= ~PFINT_OICR_VFLR_M;
3102 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3103 		}
3104 	}
3105 
3106 	if (oicr & PFINT_OICR_GRST_M) {
3107 		u32 reset;
3108 
3109 		/* we have a reset warning */
3110 		ena_mask &= ~PFINT_OICR_GRST_M;
3111 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3112 			GLGEN_RSTAT_RESET_TYPE_S;
3113 
3114 		if (reset == ICE_RESET_CORER)
3115 			pf->corer_count++;
3116 		else if (reset == ICE_RESET_GLOBR)
3117 			pf->globr_count++;
3118 		else if (reset == ICE_RESET_EMPR)
3119 			pf->empr_count++;
3120 		else
3121 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3122 
3123 		/* If a reset cycle isn't already in progress, we set a bit in
3124 		 * pf->state so that the service task can start a reset/rebuild.
3125 		 */
3126 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3127 			if (reset == ICE_RESET_CORER)
3128 				set_bit(ICE_CORER_RECV, pf->state);
3129 			else if (reset == ICE_RESET_GLOBR)
3130 				set_bit(ICE_GLOBR_RECV, pf->state);
3131 			else
3132 				set_bit(ICE_EMPR_RECV, pf->state);
3133 
3134 			/* There are couple of different bits at play here.
3135 			 * hw->reset_ongoing indicates whether the hardware is
3136 			 * in reset. This is set to true when a reset interrupt
3137 			 * is received and set back to false after the driver
3138 			 * has determined that the hardware is out of reset.
3139 			 *
3140 			 * ICE_RESET_OICR_RECV in pf->state indicates
3141 			 * that a post reset rebuild is required before the
3142 			 * driver is operational again. This is set above.
3143 			 *
3144 			 * As this is the start of the reset/rebuild cycle, set
3145 			 * both to indicate that.
3146 			 */
3147 			hw->reset_ongoing = true;
3148 		}
3149 	}
3150 
3151 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3152 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3153 		if (!hw->reset_ongoing && ice_ptp_pf_handles_tx_interrupt(pf))
3154 			set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3155 	}
3156 
3157 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3158 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3159 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3160 
3161 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3162 
3163 		if (ice_pf_src_tmr_owned(pf)) {
3164 			/* Save EVENTs from GLTSYN register */
3165 			pf->ptp.ext_ts_irq |= gltsyn_stat &
3166 					      (GLTSYN_STAT_EVENT0_M |
3167 					       GLTSYN_STAT_EVENT1_M |
3168 					       GLTSYN_STAT_EVENT2_M);
3169 
3170 			set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread);
3171 		}
3172 	}
3173 
3174 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3175 	if (oicr & ICE_AUX_CRIT_ERR) {
3176 		pf->oicr_err_reg |= oicr;
3177 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3178 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3179 	}
3180 
3181 	/* Report any remaining unexpected interrupts */
3182 	oicr &= ena_mask;
3183 	if (oicr) {
3184 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3185 		/* If a critical error is pending there is no choice but to
3186 		 * reset the device.
3187 		 */
3188 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3189 			    PFINT_OICR_ECC_ERR_M)) {
3190 			set_bit(ICE_PFR_REQ, pf->state);
3191 		}
3192 	}
3193 
3194 	return IRQ_WAKE_THREAD;
3195 }
3196 
3197 /**
3198  * ice_misc_intr_thread_fn - misc interrupt thread function
3199  * @irq: interrupt number
3200  * @data: pointer to a q_vector
3201  */
3202 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3203 {
3204 	struct ice_pf *pf = data;
3205 	struct ice_hw *hw;
3206 
3207 	hw = &pf->hw;
3208 
3209 	if (ice_is_reset_in_progress(pf->state))
3210 		return IRQ_HANDLED;
3211 
3212 	ice_service_task_schedule(pf);
3213 
3214 	if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread))
3215 		ice_ptp_extts_event(pf);
3216 
3217 	if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3218 		/* Process outstanding Tx timestamps. If there is more work,
3219 		 * re-arm the interrupt to trigger again.
3220 		 */
3221 		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3222 			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3223 			ice_flush(hw);
3224 		}
3225 	}
3226 
3227 	ice_irq_dynamic_ena(hw, NULL, NULL);
3228 
3229 	return IRQ_HANDLED;
3230 }
3231 
3232 /**
3233  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3234  * @hw: pointer to HW structure
3235  */
3236 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3237 {
3238 	/* disable Admin queue Interrupt causes */
3239 	wr32(hw, PFINT_FW_CTL,
3240 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3241 
3242 	/* disable Mailbox queue Interrupt causes */
3243 	wr32(hw, PFINT_MBX_CTL,
3244 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3245 
3246 	wr32(hw, PFINT_SB_CTL,
3247 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3248 
3249 	/* disable Control queue Interrupt causes */
3250 	wr32(hw, PFINT_OICR_CTL,
3251 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3252 
3253 	ice_flush(hw);
3254 }
3255 
3256 /**
3257  * ice_free_irq_msix_misc - Unroll misc vector setup
3258  * @pf: board private structure
3259  */
3260 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3261 {
3262 	int misc_irq_num = pf->oicr_irq.virq;
3263 	struct ice_hw *hw = &pf->hw;
3264 
3265 	ice_dis_ctrlq_interrupts(hw);
3266 
3267 	/* disable OICR interrupt */
3268 	wr32(hw, PFINT_OICR_ENA, 0);
3269 	ice_flush(hw);
3270 
3271 	synchronize_irq(misc_irq_num);
3272 	devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3273 
3274 	ice_free_irq(pf, pf->oicr_irq);
3275 }
3276 
3277 /**
3278  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3279  * @hw: pointer to HW structure
3280  * @reg_idx: HW vector index to associate the control queue interrupts with
3281  */
3282 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3283 {
3284 	u32 val;
3285 
3286 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3287 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3288 	wr32(hw, PFINT_OICR_CTL, val);
3289 
3290 	/* enable Admin queue Interrupt causes */
3291 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3292 	       PFINT_FW_CTL_CAUSE_ENA_M);
3293 	wr32(hw, PFINT_FW_CTL, val);
3294 
3295 	/* enable Mailbox queue Interrupt causes */
3296 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3297 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3298 	wr32(hw, PFINT_MBX_CTL, val);
3299 
3300 	/* This enables Sideband queue Interrupt causes */
3301 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3302 	       PFINT_SB_CTL_CAUSE_ENA_M);
3303 	wr32(hw, PFINT_SB_CTL, val);
3304 
3305 	ice_flush(hw);
3306 }
3307 
3308 /**
3309  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3310  * @pf: board private structure
3311  *
3312  * This sets up the handler for MSIX 0, which is used to manage the
3313  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3314  * when in MSI or Legacy interrupt mode.
3315  */
3316 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3317 {
3318 	struct device *dev = ice_pf_to_dev(pf);
3319 	struct ice_hw *hw = &pf->hw;
3320 	struct msi_map oicr_irq;
3321 	int err = 0;
3322 
3323 	if (!pf->int_name[0])
3324 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3325 			 dev_driver_string(dev), dev_name(dev));
3326 
3327 	/* Do not request IRQ but do enable OICR interrupt since settings are
3328 	 * lost during reset. Note that this function is called only during
3329 	 * rebuild path and not while reset is in progress.
3330 	 */
3331 	if (ice_is_reset_in_progress(pf->state))
3332 		goto skip_req_irq;
3333 
3334 	/* reserve one vector in irq_tracker for misc interrupts */
3335 	oicr_irq = ice_alloc_irq(pf, false);
3336 	if (oicr_irq.index < 0)
3337 		return oicr_irq.index;
3338 
3339 	pf->oicr_irq = oicr_irq;
3340 	err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3341 					ice_misc_intr_thread_fn, 0,
3342 					pf->int_name, pf);
3343 	if (err) {
3344 		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3345 			pf->int_name, err);
3346 		ice_free_irq(pf, pf->oicr_irq);
3347 		return err;
3348 	}
3349 
3350 skip_req_irq:
3351 	ice_ena_misc_vector(pf);
3352 
3353 	ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3354 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3355 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3356 
3357 	ice_flush(hw);
3358 	ice_irq_dynamic_ena(hw, NULL, NULL);
3359 
3360 	return 0;
3361 }
3362 
3363 /**
3364  * ice_napi_add - register NAPI handler for the VSI
3365  * @vsi: VSI for which NAPI handler is to be registered
3366  *
3367  * This function is only called in the driver's load path. Registering the NAPI
3368  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3369  * reset/rebuild, etc.)
3370  */
3371 static void ice_napi_add(struct ice_vsi *vsi)
3372 {
3373 	int v_idx;
3374 
3375 	if (!vsi->netdev)
3376 		return;
3377 
3378 	ice_for_each_q_vector(vsi, v_idx) {
3379 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3380 			       ice_napi_poll);
3381 		ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false);
3382 	}
3383 }
3384 
3385 /**
3386  * ice_set_ops - set netdev and ethtools ops for the given netdev
3387  * @vsi: the VSI associated with the new netdev
3388  */
3389 static void ice_set_ops(struct ice_vsi *vsi)
3390 {
3391 	struct net_device *netdev = vsi->netdev;
3392 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3393 
3394 	if (ice_is_safe_mode(pf)) {
3395 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3396 		ice_set_ethtool_safe_mode_ops(netdev);
3397 		return;
3398 	}
3399 
3400 	netdev->netdev_ops = &ice_netdev_ops;
3401 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3402 	ice_set_ethtool_ops(netdev);
3403 
3404 	if (vsi->type != ICE_VSI_PF)
3405 		return;
3406 
3407 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3408 			       NETDEV_XDP_ACT_XSK_ZEROCOPY |
3409 			       NETDEV_XDP_ACT_RX_SG;
3410 	netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3411 }
3412 
3413 /**
3414  * ice_set_netdev_features - set features for the given netdev
3415  * @netdev: netdev instance
3416  */
3417 static void ice_set_netdev_features(struct net_device *netdev)
3418 {
3419 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3420 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3421 	netdev_features_t csumo_features;
3422 	netdev_features_t vlano_features;
3423 	netdev_features_t dflt_features;
3424 	netdev_features_t tso_features;
3425 
3426 	if (ice_is_safe_mode(pf)) {
3427 		/* safe mode */
3428 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3429 		netdev->hw_features = netdev->features;
3430 		return;
3431 	}
3432 
3433 	dflt_features = NETIF_F_SG	|
3434 			NETIF_F_HIGHDMA	|
3435 			NETIF_F_NTUPLE	|
3436 			NETIF_F_RXHASH;
3437 
3438 	csumo_features = NETIF_F_RXCSUM	  |
3439 			 NETIF_F_IP_CSUM  |
3440 			 NETIF_F_SCTP_CRC |
3441 			 NETIF_F_IPV6_CSUM;
3442 
3443 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3444 			 NETIF_F_HW_VLAN_CTAG_TX     |
3445 			 NETIF_F_HW_VLAN_CTAG_RX;
3446 
3447 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3448 	if (is_dvm_ena)
3449 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3450 
3451 	tso_features = NETIF_F_TSO			|
3452 		       NETIF_F_TSO_ECN			|
3453 		       NETIF_F_TSO6			|
3454 		       NETIF_F_GSO_GRE			|
3455 		       NETIF_F_GSO_UDP_TUNNEL		|
3456 		       NETIF_F_GSO_GRE_CSUM		|
3457 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3458 		       NETIF_F_GSO_PARTIAL		|
3459 		       NETIF_F_GSO_IPXIP4		|
3460 		       NETIF_F_GSO_IPXIP6		|
3461 		       NETIF_F_GSO_UDP_L4;
3462 
3463 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3464 					NETIF_F_GSO_GRE_CSUM;
3465 	/* set features that user can change */
3466 	netdev->hw_features = dflt_features | csumo_features |
3467 			      vlano_features | tso_features;
3468 
3469 	/* add support for HW_CSUM on packets with MPLS header */
3470 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3471 				 NETIF_F_TSO     |
3472 				 NETIF_F_TSO6;
3473 
3474 	/* enable features */
3475 	netdev->features |= netdev->hw_features;
3476 
3477 	netdev->hw_features |= NETIF_F_HW_TC;
3478 	netdev->hw_features |= NETIF_F_LOOPBACK;
3479 
3480 	/* encap and VLAN devices inherit default, csumo and tso features */
3481 	netdev->hw_enc_features |= dflt_features | csumo_features |
3482 				   tso_features;
3483 	netdev->vlan_features |= dflt_features | csumo_features |
3484 				 tso_features;
3485 
3486 	/* advertise support but don't enable by default since only one type of
3487 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3488 	 * type turns on the other has to be turned off. This is enforced by the
3489 	 * ice_fix_features() ndo callback.
3490 	 */
3491 	if (is_dvm_ena)
3492 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3493 			NETIF_F_HW_VLAN_STAG_TX;
3494 
3495 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3496 	 * be changed at runtime
3497 	 */
3498 	netdev->hw_features |= NETIF_F_RXFCS;
3499 
3500 	netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3501 }
3502 
3503 /**
3504  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3505  * @lut: Lookup table
3506  * @rss_table_size: Lookup table size
3507  * @rss_size: Range of queue number for hashing
3508  */
3509 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3510 {
3511 	u16 i;
3512 
3513 	for (i = 0; i < rss_table_size; i++)
3514 		lut[i] = i % rss_size;
3515 }
3516 
3517 /**
3518  * ice_pf_vsi_setup - Set up a PF VSI
3519  * @pf: board private structure
3520  * @pi: pointer to the port_info instance
3521  *
3522  * Returns pointer to the successfully allocated VSI software struct
3523  * on success, otherwise returns NULL on failure.
3524  */
3525 static struct ice_vsi *
3526 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3527 {
3528 	struct ice_vsi_cfg_params params = {};
3529 
3530 	params.type = ICE_VSI_PF;
3531 	params.pi = pi;
3532 	params.flags = ICE_VSI_FLAG_INIT;
3533 
3534 	return ice_vsi_setup(pf, &params);
3535 }
3536 
3537 static struct ice_vsi *
3538 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3539 		   struct ice_channel *ch)
3540 {
3541 	struct ice_vsi_cfg_params params = {};
3542 
3543 	params.type = ICE_VSI_CHNL;
3544 	params.pi = pi;
3545 	params.ch = ch;
3546 	params.flags = ICE_VSI_FLAG_INIT;
3547 
3548 	return ice_vsi_setup(pf, &params);
3549 }
3550 
3551 /**
3552  * ice_ctrl_vsi_setup - Set up a control VSI
3553  * @pf: board private structure
3554  * @pi: pointer to the port_info instance
3555  *
3556  * Returns pointer to the successfully allocated VSI software struct
3557  * on success, otherwise returns NULL on failure.
3558  */
3559 static struct ice_vsi *
3560 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3561 {
3562 	struct ice_vsi_cfg_params params = {};
3563 
3564 	params.type = ICE_VSI_CTRL;
3565 	params.pi = pi;
3566 	params.flags = ICE_VSI_FLAG_INIT;
3567 
3568 	return ice_vsi_setup(pf, &params);
3569 }
3570 
3571 /**
3572  * ice_lb_vsi_setup - Set up a loopback VSI
3573  * @pf: board private structure
3574  * @pi: pointer to the port_info instance
3575  *
3576  * Returns pointer to the successfully allocated VSI software struct
3577  * on success, otherwise returns NULL on failure.
3578  */
3579 struct ice_vsi *
3580 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3581 {
3582 	struct ice_vsi_cfg_params params = {};
3583 
3584 	params.type = ICE_VSI_LB;
3585 	params.pi = pi;
3586 	params.flags = ICE_VSI_FLAG_INIT;
3587 
3588 	return ice_vsi_setup(pf, &params);
3589 }
3590 
3591 /**
3592  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3593  * @netdev: network interface to be adjusted
3594  * @proto: VLAN TPID
3595  * @vid: VLAN ID to be added
3596  *
3597  * net_device_ops implementation for adding VLAN IDs
3598  */
3599 static int
3600 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3601 {
3602 	struct ice_netdev_priv *np = netdev_priv(netdev);
3603 	struct ice_vsi_vlan_ops *vlan_ops;
3604 	struct ice_vsi *vsi = np->vsi;
3605 	struct ice_vlan vlan;
3606 	int ret;
3607 
3608 	/* VLAN 0 is added by default during load/reset */
3609 	if (!vid)
3610 		return 0;
3611 
3612 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3613 		usleep_range(1000, 2000);
3614 
3615 	/* Add multicast promisc rule for the VLAN ID to be added if
3616 	 * all-multicast is currently enabled.
3617 	 */
3618 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3619 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3620 					       ICE_MCAST_VLAN_PROMISC_BITS,
3621 					       vid);
3622 		if (ret)
3623 			goto finish;
3624 	}
3625 
3626 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3627 
3628 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3629 	 * packets aren't pruned by the device's internal switch on Rx
3630 	 */
3631 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3632 	ret = vlan_ops->add_vlan(vsi, &vlan);
3633 	if (ret)
3634 		goto finish;
3635 
3636 	/* If all-multicast is currently enabled and this VLAN ID is only one
3637 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3638 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3639 	 */
3640 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3641 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3642 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3643 					   ICE_MCAST_PROMISC_BITS, 0);
3644 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3645 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3646 	}
3647 
3648 finish:
3649 	clear_bit(ICE_CFG_BUSY, vsi->state);
3650 
3651 	return ret;
3652 }
3653 
3654 /**
3655  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3656  * @netdev: network interface to be adjusted
3657  * @proto: VLAN TPID
3658  * @vid: VLAN ID to be removed
3659  *
3660  * net_device_ops implementation for removing VLAN IDs
3661  */
3662 static int
3663 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3664 {
3665 	struct ice_netdev_priv *np = netdev_priv(netdev);
3666 	struct ice_vsi_vlan_ops *vlan_ops;
3667 	struct ice_vsi *vsi = np->vsi;
3668 	struct ice_vlan vlan;
3669 	int ret;
3670 
3671 	/* don't allow removal of VLAN 0 */
3672 	if (!vid)
3673 		return 0;
3674 
3675 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3676 		usleep_range(1000, 2000);
3677 
3678 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3679 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3680 	if (ret) {
3681 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3682 			   vsi->vsi_num);
3683 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3684 	}
3685 
3686 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3687 
3688 	/* Make sure VLAN delete is successful before updating VLAN
3689 	 * information
3690 	 */
3691 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3692 	ret = vlan_ops->del_vlan(vsi, &vlan);
3693 	if (ret)
3694 		goto finish;
3695 
3696 	/* Remove multicast promisc rule for the removed VLAN ID if
3697 	 * all-multicast is enabled.
3698 	 */
3699 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3700 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3701 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3702 
3703 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3704 		/* Update look-up type of multicast promisc rule for VLAN 0
3705 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3706 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3707 		 */
3708 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3709 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3710 						   ICE_MCAST_VLAN_PROMISC_BITS,
3711 						   0);
3712 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3713 						 ICE_MCAST_PROMISC_BITS, 0);
3714 		}
3715 	}
3716 
3717 finish:
3718 	clear_bit(ICE_CFG_BUSY, vsi->state);
3719 
3720 	return ret;
3721 }
3722 
3723 /**
3724  * ice_rep_indr_tc_block_unbind
3725  * @cb_priv: indirection block private data
3726  */
3727 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3728 {
3729 	struct ice_indr_block_priv *indr_priv = cb_priv;
3730 
3731 	list_del(&indr_priv->list);
3732 	kfree(indr_priv);
3733 }
3734 
3735 /**
3736  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3737  * @vsi: VSI struct which has the netdev
3738  */
3739 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3740 {
3741 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3742 
3743 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3744 				 ice_rep_indr_tc_block_unbind);
3745 }
3746 
3747 /**
3748  * ice_tc_indir_block_register - Register TC indirect block notifications
3749  * @vsi: VSI struct which has the netdev
3750  *
3751  * Returns 0 on success, negative value on failure
3752  */
3753 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3754 {
3755 	struct ice_netdev_priv *np;
3756 
3757 	if (!vsi || !vsi->netdev)
3758 		return -EINVAL;
3759 
3760 	np = netdev_priv(vsi->netdev);
3761 
3762 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3763 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3764 }
3765 
3766 /**
3767  * ice_get_avail_q_count - Get count of queues in use
3768  * @pf_qmap: bitmap to get queue use count from
3769  * @lock: pointer to a mutex that protects access to pf_qmap
3770  * @size: size of the bitmap
3771  */
3772 static u16
3773 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3774 {
3775 	unsigned long bit;
3776 	u16 count = 0;
3777 
3778 	mutex_lock(lock);
3779 	for_each_clear_bit(bit, pf_qmap, size)
3780 		count++;
3781 	mutex_unlock(lock);
3782 
3783 	return count;
3784 }
3785 
3786 /**
3787  * ice_get_avail_txq_count - Get count of Tx queues in use
3788  * @pf: pointer to an ice_pf instance
3789  */
3790 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3791 {
3792 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3793 				     pf->max_pf_txqs);
3794 }
3795 
3796 /**
3797  * ice_get_avail_rxq_count - Get count of Rx queues in use
3798  * @pf: pointer to an ice_pf instance
3799  */
3800 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3801 {
3802 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3803 				     pf->max_pf_rxqs);
3804 }
3805 
3806 /**
3807  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3808  * @pf: board private structure to initialize
3809  */
3810 static void ice_deinit_pf(struct ice_pf *pf)
3811 {
3812 	ice_service_task_stop(pf);
3813 	mutex_destroy(&pf->lag_mutex);
3814 	mutex_destroy(&pf->adev_mutex);
3815 	mutex_destroy(&pf->sw_mutex);
3816 	mutex_destroy(&pf->tc_mutex);
3817 	mutex_destroy(&pf->avail_q_mutex);
3818 	mutex_destroy(&pf->vfs.table_lock);
3819 
3820 	if (pf->avail_txqs) {
3821 		bitmap_free(pf->avail_txqs);
3822 		pf->avail_txqs = NULL;
3823 	}
3824 
3825 	if (pf->avail_rxqs) {
3826 		bitmap_free(pf->avail_rxqs);
3827 		pf->avail_rxqs = NULL;
3828 	}
3829 
3830 	if (pf->ptp.clock)
3831 		ptp_clock_unregister(pf->ptp.clock);
3832 }
3833 
3834 /**
3835  * ice_set_pf_caps - set PFs capability flags
3836  * @pf: pointer to the PF instance
3837  */
3838 static void ice_set_pf_caps(struct ice_pf *pf)
3839 {
3840 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3841 
3842 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3843 	if (func_caps->common_cap.rdma)
3844 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3845 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3846 	if (func_caps->common_cap.dcb)
3847 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3848 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3849 	if (func_caps->common_cap.sr_iov_1_1) {
3850 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3851 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3852 					      ICE_MAX_SRIOV_VFS);
3853 	}
3854 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3855 	if (func_caps->common_cap.rss_table_size)
3856 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3857 
3858 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3859 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3860 		u16 unused;
3861 
3862 		/* ctrl_vsi_idx will be set to a valid value when flow director
3863 		 * is setup by ice_init_fdir
3864 		 */
3865 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3866 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3867 		/* force guaranteed filter pool for PF */
3868 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3869 				       func_caps->fd_fltr_guar);
3870 		/* force shared filter pool for PF */
3871 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3872 				       func_caps->fd_fltr_best_effort);
3873 	}
3874 
3875 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3876 	if (func_caps->common_cap.ieee_1588 &&
3877 	    !(pf->hw.mac_type == ICE_MAC_E830))
3878 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3879 
3880 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3881 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3882 }
3883 
3884 /**
3885  * ice_init_pf - Initialize general software structures (struct ice_pf)
3886  * @pf: board private structure to initialize
3887  */
3888 static int ice_init_pf(struct ice_pf *pf)
3889 {
3890 	ice_set_pf_caps(pf);
3891 
3892 	mutex_init(&pf->sw_mutex);
3893 	mutex_init(&pf->tc_mutex);
3894 	mutex_init(&pf->adev_mutex);
3895 	mutex_init(&pf->lag_mutex);
3896 
3897 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3898 	spin_lock_init(&pf->aq_wait_lock);
3899 	init_waitqueue_head(&pf->aq_wait_queue);
3900 
3901 	init_waitqueue_head(&pf->reset_wait_queue);
3902 
3903 	/* setup service timer and periodic service task */
3904 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3905 	pf->serv_tmr_period = HZ;
3906 	INIT_WORK(&pf->serv_task, ice_service_task);
3907 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3908 
3909 	mutex_init(&pf->avail_q_mutex);
3910 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3911 	if (!pf->avail_txqs)
3912 		return -ENOMEM;
3913 
3914 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3915 	if (!pf->avail_rxqs) {
3916 		bitmap_free(pf->avail_txqs);
3917 		pf->avail_txqs = NULL;
3918 		return -ENOMEM;
3919 	}
3920 
3921 	mutex_init(&pf->vfs.table_lock);
3922 	hash_init(pf->vfs.table);
3923 	ice_mbx_init_snapshot(&pf->hw);
3924 
3925 	return 0;
3926 }
3927 
3928 /**
3929  * ice_is_wol_supported - check if WoL is supported
3930  * @hw: pointer to hardware info
3931  *
3932  * Check if WoL is supported based on the HW configuration.
3933  * Returns true if NVM supports and enables WoL for this port, false otherwise
3934  */
3935 bool ice_is_wol_supported(struct ice_hw *hw)
3936 {
3937 	u16 wol_ctrl;
3938 
3939 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3940 	 * word) indicates WoL is not supported on the corresponding PF ID.
3941 	 */
3942 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3943 		return false;
3944 
3945 	return !(BIT(hw->port_info->lport) & wol_ctrl);
3946 }
3947 
3948 /**
3949  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3950  * @vsi: VSI being changed
3951  * @new_rx: new number of Rx queues
3952  * @new_tx: new number of Tx queues
3953  * @locked: is adev device_lock held
3954  *
3955  * Only change the number of queues if new_tx, or new_rx is non-0.
3956  *
3957  * Returns 0 on success.
3958  */
3959 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
3960 {
3961 	struct ice_pf *pf = vsi->back;
3962 	int err = 0, timeout = 50;
3963 
3964 	if (!new_rx && !new_tx)
3965 		return -EINVAL;
3966 
3967 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3968 		timeout--;
3969 		if (!timeout)
3970 			return -EBUSY;
3971 		usleep_range(1000, 2000);
3972 	}
3973 
3974 	if (new_tx)
3975 		vsi->req_txq = (u16)new_tx;
3976 	if (new_rx)
3977 		vsi->req_rxq = (u16)new_rx;
3978 
3979 	/* set for the next time the netdev is started */
3980 	if (!netif_running(vsi->netdev)) {
3981 		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
3982 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3983 		goto done;
3984 	}
3985 
3986 	ice_vsi_close(vsi);
3987 	ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
3988 	ice_pf_dcb_recfg(pf, locked);
3989 	ice_vsi_open(vsi);
3990 done:
3991 	clear_bit(ICE_CFG_BUSY, pf->state);
3992 	return err;
3993 }
3994 
3995 /**
3996  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3997  * @pf: PF to configure
3998  *
3999  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4000  * VSI can still Tx/Rx VLAN tagged packets.
4001  */
4002 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4003 {
4004 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4005 	struct ice_vsi_ctx *ctxt;
4006 	struct ice_hw *hw;
4007 	int status;
4008 
4009 	if (!vsi)
4010 		return;
4011 
4012 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4013 	if (!ctxt)
4014 		return;
4015 
4016 	hw = &pf->hw;
4017 	ctxt->info = vsi->info;
4018 
4019 	ctxt->info.valid_sections =
4020 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4021 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4022 			    ICE_AQ_VSI_PROP_SW_VALID);
4023 
4024 	/* disable VLAN anti-spoof */
4025 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4026 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4027 
4028 	/* disable VLAN pruning and keep all other settings */
4029 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4030 
4031 	/* allow all VLANs on Tx and don't strip on Rx */
4032 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4033 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4034 
4035 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4036 	if (status) {
4037 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4038 			status, ice_aq_str(hw->adminq.sq_last_status));
4039 	} else {
4040 		vsi->info.sec_flags = ctxt->info.sec_flags;
4041 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4042 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4043 	}
4044 
4045 	kfree(ctxt);
4046 }
4047 
4048 /**
4049  * ice_log_pkg_init - log result of DDP package load
4050  * @hw: pointer to hardware info
4051  * @state: state of package load
4052  */
4053 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4054 {
4055 	struct ice_pf *pf = hw->back;
4056 	struct device *dev;
4057 
4058 	dev = ice_pf_to_dev(pf);
4059 
4060 	switch (state) {
4061 	case ICE_DDP_PKG_SUCCESS:
4062 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4063 			 hw->active_pkg_name,
4064 			 hw->active_pkg_ver.major,
4065 			 hw->active_pkg_ver.minor,
4066 			 hw->active_pkg_ver.update,
4067 			 hw->active_pkg_ver.draft);
4068 		break;
4069 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4070 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4071 			 hw->active_pkg_name,
4072 			 hw->active_pkg_ver.major,
4073 			 hw->active_pkg_ver.minor,
4074 			 hw->active_pkg_ver.update,
4075 			 hw->active_pkg_ver.draft);
4076 		break;
4077 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4078 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4079 			hw->active_pkg_name,
4080 			hw->active_pkg_ver.major,
4081 			hw->active_pkg_ver.minor,
4082 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4083 		break;
4084 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4085 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4086 			 hw->active_pkg_name,
4087 			 hw->active_pkg_ver.major,
4088 			 hw->active_pkg_ver.minor,
4089 			 hw->active_pkg_ver.update,
4090 			 hw->active_pkg_ver.draft,
4091 			 hw->pkg_name,
4092 			 hw->pkg_ver.major,
4093 			 hw->pkg_ver.minor,
4094 			 hw->pkg_ver.update,
4095 			 hw->pkg_ver.draft);
4096 		break;
4097 	case ICE_DDP_PKG_FW_MISMATCH:
4098 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4099 		break;
4100 	case ICE_DDP_PKG_INVALID_FILE:
4101 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4102 		break;
4103 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4104 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4105 		break;
4106 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4107 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4108 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4109 		break;
4110 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4111 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4112 		break;
4113 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4114 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4115 		break;
4116 	case ICE_DDP_PKG_LOAD_ERROR:
4117 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4118 		/* poll for reset to complete */
4119 		if (ice_check_reset(hw))
4120 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4121 		break;
4122 	case ICE_DDP_PKG_ERR:
4123 	default:
4124 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4125 		break;
4126 	}
4127 }
4128 
4129 /**
4130  * ice_load_pkg - load/reload the DDP Package file
4131  * @firmware: firmware structure when firmware requested or NULL for reload
4132  * @pf: pointer to the PF instance
4133  *
4134  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4135  * initialize HW tables.
4136  */
4137 static void
4138 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4139 {
4140 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4141 	struct device *dev = ice_pf_to_dev(pf);
4142 	struct ice_hw *hw = &pf->hw;
4143 
4144 	/* Load DDP Package */
4145 	if (firmware && !hw->pkg_copy) {
4146 		state = ice_copy_and_init_pkg(hw, firmware->data,
4147 					      firmware->size);
4148 		ice_log_pkg_init(hw, state);
4149 	} else if (!firmware && hw->pkg_copy) {
4150 		/* Reload package during rebuild after CORER/GLOBR reset */
4151 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4152 		ice_log_pkg_init(hw, state);
4153 	} else {
4154 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4155 	}
4156 
4157 	if (!ice_is_init_pkg_successful(state)) {
4158 		/* Safe Mode */
4159 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4160 		return;
4161 	}
4162 
4163 	/* Successful download package is the precondition for advanced
4164 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4165 	 */
4166 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4167 }
4168 
4169 /**
4170  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4171  * @pf: pointer to the PF structure
4172  *
4173  * There is no error returned here because the driver should be able to handle
4174  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4175  * specifically with Tx.
4176  */
4177 static void ice_verify_cacheline_size(struct ice_pf *pf)
4178 {
4179 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4180 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4181 			 ICE_CACHE_LINE_BYTES);
4182 }
4183 
4184 /**
4185  * ice_send_version - update firmware with driver version
4186  * @pf: PF struct
4187  *
4188  * Returns 0 on success, else error code
4189  */
4190 static int ice_send_version(struct ice_pf *pf)
4191 {
4192 	struct ice_driver_ver dv;
4193 
4194 	dv.major_ver = 0xff;
4195 	dv.minor_ver = 0xff;
4196 	dv.build_ver = 0xff;
4197 	dv.subbuild_ver = 0;
4198 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4199 		sizeof(dv.driver_string));
4200 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4201 }
4202 
4203 /**
4204  * ice_init_fdir - Initialize flow director VSI and configuration
4205  * @pf: pointer to the PF instance
4206  *
4207  * returns 0 on success, negative on error
4208  */
4209 static int ice_init_fdir(struct ice_pf *pf)
4210 {
4211 	struct device *dev = ice_pf_to_dev(pf);
4212 	struct ice_vsi *ctrl_vsi;
4213 	int err;
4214 
4215 	/* Side Band Flow Director needs to have a control VSI.
4216 	 * Allocate it and store it in the PF.
4217 	 */
4218 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4219 	if (!ctrl_vsi) {
4220 		dev_dbg(dev, "could not create control VSI\n");
4221 		return -ENOMEM;
4222 	}
4223 
4224 	err = ice_vsi_open_ctrl(ctrl_vsi);
4225 	if (err) {
4226 		dev_dbg(dev, "could not open control VSI\n");
4227 		goto err_vsi_open;
4228 	}
4229 
4230 	mutex_init(&pf->hw.fdir_fltr_lock);
4231 
4232 	err = ice_fdir_create_dflt_rules(pf);
4233 	if (err)
4234 		goto err_fdir_rule;
4235 
4236 	return 0;
4237 
4238 err_fdir_rule:
4239 	ice_fdir_release_flows(&pf->hw);
4240 	ice_vsi_close(ctrl_vsi);
4241 err_vsi_open:
4242 	ice_vsi_release(ctrl_vsi);
4243 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4244 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4245 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4246 	}
4247 	return err;
4248 }
4249 
4250 static void ice_deinit_fdir(struct ice_pf *pf)
4251 {
4252 	struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4253 
4254 	if (!vsi)
4255 		return;
4256 
4257 	ice_vsi_manage_fdir(vsi, false);
4258 	ice_vsi_release(vsi);
4259 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4260 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4261 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4262 	}
4263 
4264 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4265 }
4266 
4267 /**
4268  * ice_get_opt_fw_name - return optional firmware file name or NULL
4269  * @pf: pointer to the PF instance
4270  */
4271 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4272 {
4273 	/* Optional firmware name same as default with additional dash
4274 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4275 	 */
4276 	struct pci_dev *pdev = pf->pdev;
4277 	char *opt_fw_filename;
4278 	u64 dsn;
4279 
4280 	/* Determine the name of the optional file using the DSN (two
4281 	 * dwords following the start of the DSN Capability).
4282 	 */
4283 	dsn = pci_get_dsn(pdev);
4284 	if (!dsn)
4285 		return NULL;
4286 
4287 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4288 	if (!opt_fw_filename)
4289 		return NULL;
4290 
4291 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4292 		 ICE_DDP_PKG_PATH, dsn);
4293 
4294 	return opt_fw_filename;
4295 }
4296 
4297 /**
4298  * ice_request_fw - Device initialization routine
4299  * @pf: pointer to the PF instance
4300  */
4301 static void ice_request_fw(struct ice_pf *pf)
4302 {
4303 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4304 	const struct firmware *firmware = NULL;
4305 	struct device *dev = ice_pf_to_dev(pf);
4306 	int err = 0;
4307 
4308 	/* optional device-specific DDP (if present) overrides the default DDP
4309 	 * package file. kernel logs a debug message if the file doesn't exist,
4310 	 * and warning messages for other errors.
4311 	 */
4312 	if (opt_fw_filename) {
4313 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4314 		if (err) {
4315 			kfree(opt_fw_filename);
4316 			goto dflt_pkg_load;
4317 		}
4318 
4319 		/* request for firmware was successful. Download to device */
4320 		ice_load_pkg(firmware, pf);
4321 		kfree(opt_fw_filename);
4322 		release_firmware(firmware);
4323 		return;
4324 	}
4325 
4326 dflt_pkg_load:
4327 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4328 	if (err) {
4329 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4330 		return;
4331 	}
4332 
4333 	/* request for firmware was successful. Download to device */
4334 	ice_load_pkg(firmware, pf);
4335 	release_firmware(firmware);
4336 }
4337 
4338 /**
4339  * ice_print_wake_reason - show the wake up cause in the log
4340  * @pf: pointer to the PF struct
4341  */
4342 static void ice_print_wake_reason(struct ice_pf *pf)
4343 {
4344 	u32 wus = pf->wakeup_reason;
4345 	const char *wake_str;
4346 
4347 	/* if no wake event, nothing to print */
4348 	if (!wus)
4349 		return;
4350 
4351 	if (wus & PFPM_WUS_LNKC_M)
4352 		wake_str = "Link\n";
4353 	else if (wus & PFPM_WUS_MAG_M)
4354 		wake_str = "Magic Packet\n";
4355 	else if (wus & PFPM_WUS_MNG_M)
4356 		wake_str = "Management\n";
4357 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4358 		wake_str = "Firmware Reset\n";
4359 	else
4360 		wake_str = "Unknown\n";
4361 
4362 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4363 }
4364 
4365 /**
4366  * ice_register_netdev - register netdev
4367  * @vsi: pointer to the VSI struct
4368  */
4369 static int ice_register_netdev(struct ice_vsi *vsi)
4370 {
4371 	int err;
4372 
4373 	if (!vsi || !vsi->netdev)
4374 		return -EIO;
4375 
4376 	err = register_netdev(vsi->netdev);
4377 	if (err)
4378 		return err;
4379 
4380 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4381 	netif_carrier_off(vsi->netdev);
4382 	netif_tx_stop_all_queues(vsi->netdev);
4383 
4384 	return 0;
4385 }
4386 
4387 static void ice_unregister_netdev(struct ice_vsi *vsi)
4388 {
4389 	if (!vsi || !vsi->netdev)
4390 		return;
4391 
4392 	unregister_netdev(vsi->netdev);
4393 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4394 }
4395 
4396 /**
4397  * ice_cfg_netdev - Allocate, configure and register a netdev
4398  * @vsi: the VSI associated with the new netdev
4399  *
4400  * Returns 0 on success, negative value on failure
4401  */
4402 static int ice_cfg_netdev(struct ice_vsi *vsi)
4403 {
4404 	struct ice_netdev_priv *np;
4405 	struct net_device *netdev;
4406 	u8 mac_addr[ETH_ALEN];
4407 
4408 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4409 				    vsi->alloc_rxq);
4410 	if (!netdev)
4411 		return -ENOMEM;
4412 
4413 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4414 	vsi->netdev = netdev;
4415 	np = netdev_priv(netdev);
4416 	np->vsi = vsi;
4417 
4418 	ice_set_netdev_features(netdev);
4419 	ice_set_ops(vsi);
4420 
4421 	if (vsi->type == ICE_VSI_PF) {
4422 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4423 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4424 		eth_hw_addr_set(netdev, mac_addr);
4425 	}
4426 
4427 	netdev->priv_flags |= IFF_UNICAST_FLT;
4428 
4429 	/* Setup netdev TC information */
4430 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4431 
4432 	netdev->max_mtu = ICE_MAX_MTU;
4433 
4434 	return 0;
4435 }
4436 
4437 static void ice_decfg_netdev(struct ice_vsi *vsi)
4438 {
4439 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4440 	free_netdev(vsi->netdev);
4441 	vsi->netdev = NULL;
4442 }
4443 
4444 static int ice_start_eth(struct ice_vsi *vsi)
4445 {
4446 	int err;
4447 
4448 	err = ice_init_mac_fltr(vsi->back);
4449 	if (err)
4450 		return err;
4451 
4452 	err = ice_vsi_open(vsi);
4453 	if (err)
4454 		ice_fltr_remove_all(vsi);
4455 
4456 	return err;
4457 }
4458 
4459 static void ice_stop_eth(struct ice_vsi *vsi)
4460 {
4461 	ice_fltr_remove_all(vsi);
4462 	ice_vsi_close(vsi);
4463 }
4464 
4465 static int ice_init_eth(struct ice_pf *pf)
4466 {
4467 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4468 	int err;
4469 
4470 	if (!vsi)
4471 		return -EINVAL;
4472 
4473 	/* init channel list */
4474 	INIT_LIST_HEAD(&vsi->ch_list);
4475 
4476 	err = ice_cfg_netdev(vsi);
4477 	if (err)
4478 		return err;
4479 	/* Setup DCB netlink interface */
4480 	ice_dcbnl_setup(vsi);
4481 
4482 	err = ice_init_mac_fltr(pf);
4483 	if (err)
4484 		goto err_init_mac_fltr;
4485 
4486 	err = ice_devlink_create_pf_port(pf);
4487 	if (err)
4488 		goto err_devlink_create_pf_port;
4489 
4490 	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4491 
4492 	err = ice_register_netdev(vsi);
4493 	if (err)
4494 		goto err_register_netdev;
4495 
4496 	err = ice_tc_indir_block_register(vsi);
4497 	if (err)
4498 		goto err_tc_indir_block_register;
4499 
4500 	ice_napi_add(vsi);
4501 
4502 	return 0;
4503 
4504 err_tc_indir_block_register:
4505 	ice_unregister_netdev(vsi);
4506 err_register_netdev:
4507 	ice_devlink_destroy_pf_port(pf);
4508 err_devlink_create_pf_port:
4509 err_init_mac_fltr:
4510 	ice_decfg_netdev(vsi);
4511 	return err;
4512 }
4513 
4514 static void ice_deinit_eth(struct ice_pf *pf)
4515 {
4516 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4517 
4518 	if (!vsi)
4519 		return;
4520 
4521 	ice_vsi_close(vsi);
4522 	ice_unregister_netdev(vsi);
4523 	ice_devlink_destroy_pf_port(pf);
4524 	ice_tc_indir_block_unregister(vsi);
4525 	ice_decfg_netdev(vsi);
4526 }
4527 
4528 /**
4529  * ice_wait_for_fw - wait for full FW readiness
4530  * @hw: pointer to the hardware structure
4531  * @timeout: milliseconds that can elapse before timing out
4532  */
4533 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4534 {
4535 	int fw_loading;
4536 	u32 elapsed = 0;
4537 
4538 	while (elapsed <= timeout) {
4539 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4540 
4541 		/* firmware was not yet loaded, we have to wait more */
4542 		if (fw_loading) {
4543 			elapsed += 100;
4544 			msleep(100);
4545 			continue;
4546 		}
4547 		return 0;
4548 	}
4549 
4550 	return -ETIMEDOUT;
4551 }
4552 
4553 static int ice_init_dev(struct ice_pf *pf)
4554 {
4555 	struct device *dev = ice_pf_to_dev(pf);
4556 	struct ice_hw *hw = &pf->hw;
4557 	int err;
4558 
4559 	err = ice_init_hw(hw);
4560 	if (err) {
4561 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4562 		return err;
4563 	}
4564 
4565 	/* Some cards require longer initialization times
4566 	 * due to necessity of loading FW from an external source.
4567 	 * This can take even half a minute.
4568 	 */
4569 	if (ice_is_pf_c827(hw)) {
4570 		err = ice_wait_for_fw(hw, 30000);
4571 		if (err) {
4572 			dev_err(dev, "ice_wait_for_fw timed out");
4573 			return err;
4574 		}
4575 	}
4576 
4577 	ice_init_feature_support(pf);
4578 
4579 	ice_request_fw(pf);
4580 
4581 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4582 	 * set in pf->state, which will cause ice_is_safe_mode to return
4583 	 * true
4584 	 */
4585 	if (ice_is_safe_mode(pf)) {
4586 		/* we already got function/device capabilities but these don't
4587 		 * reflect what the driver needs to do in safe mode. Instead of
4588 		 * adding conditional logic everywhere to ignore these
4589 		 * device/function capabilities, override them.
4590 		 */
4591 		ice_set_safe_mode_caps(hw);
4592 	}
4593 
4594 	err = ice_init_pf(pf);
4595 	if (err) {
4596 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4597 		goto err_init_pf;
4598 	}
4599 
4600 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4601 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4602 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4603 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4604 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4605 		pf->hw.udp_tunnel_nic.tables[0].n_entries =
4606 			pf->hw.tnl.valid_count[TNL_VXLAN];
4607 		pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4608 			UDP_TUNNEL_TYPE_VXLAN;
4609 	}
4610 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4611 		pf->hw.udp_tunnel_nic.tables[1].n_entries =
4612 			pf->hw.tnl.valid_count[TNL_GENEVE];
4613 		pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4614 			UDP_TUNNEL_TYPE_GENEVE;
4615 	}
4616 
4617 	err = ice_init_interrupt_scheme(pf);
4618 	if (err) {
4619 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4620 		err = -EIO;
4621 		goto err_init_interrupt_scheme;
4622 	}
4623 
4624 	/* In case of MSIX we are going to setup the misc vector right here
4625 	 * to handle admin queue events etc. In case of legacy and MSI
4626 	 * the misc functionality and queue processing is combined in
4627 	 * the same vector and that gets setup at open.
4628 	 */
4629 	err = ice_req_irq_msix_misc(pf);
4630 	if (err) {
4631 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4632 		goto err_req_irq_msix_misc;
4633 	}
4634 
4635 	return 0;
4636 
4637 err_req_irq_msix_misc:
4638 	ice_clear_interrupt_scheme(pf);
4639 err_init_interrupt_scheme:
4640 	ice_deinit_pf(pf);
4641 err_init_pf:
4642 	ice_deinit_hw(hw);
4643 	return err;
4644 }
4645 
4646 static void ice_deinit_dev(struct ice_pf *pf)
4647 {
4648 	ice_free_irq_msix_misc(pf);
4649 	ice_deinit_pf(pf);
4650 	ice_deinit_hw(&pf->hw);
4651 
4652 	/* Service task is already stopped, so call reset directly. */
4653 	ice_reset(&pf->hw, ICE_RESET_PFR);
4654 	pci_wait_for_pending_transaction(pf->pdev);
4655 	ice_clear_interrupt_scheme(pf);
4656 }
4657 
4658 static void ice_init_features(struct ice_pf *pf)
4659 {
4660 	struct device *dev = ice_pf_to_dev(pf);
4661 
4662 	if (ice_is_safe_mode(pf))
4663 		return;
4664 
4665 	/* initialize DDP driven features */
4666 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4667 		ice_ptp_init(pf);
4668 
4669 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4670 		ice_gnss_init(pf);
4671 
4672 	if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4673 	    ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4674 		ice_dpll_init(pf);
4675 
4676 	/* Note: Flow director init failure is non-fatal to load */
4677 	if (ice_init_fdir(pf))
4678 		dev_err(dev, "could not initialize flow director\n");
4679 
4680 	/* Note: DCB init failure is non-fatal to load */
4681 	if (ice_init_pf_dcb(pf, false)) {
4682 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4683 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4684 	} else {
4685 		ice_cfg_lldp_mib_change(&pf->hw, true);
4686 	}
4687 
4688 	if (ice_init_lag(pf))
4689 		dev_warn(dev, "Failed to init link aggregation support\n");
4690 }
4691 
4692 static void ice_deinit_features(struct ice_pf *pf)
4693 {
4694 	if (ice_is_safe_mode(pf))
4695 		return;
4696 
4697 	ice_deinit_lag(pf);
4698 	if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4699 		ice_cfg_lldp_mib_change(&pf->hw, false);
4700 	ice_deinit_fdir(pf);
4701 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4702 		ice_gnss_exit(pf);
4703 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4704 		ice_ptp_release(pf);
4705 	if (test_bit(ICE_FLAG_DPLL, pf->flags))
4706 		ice_dpll_deinit(pf);
4707 	if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4708 		xa_destroy(&pf->eswitch.reprs);
4709 }
4710 
4711 static void ice_init_wakeup(struct ice_pf *pf)
4712 {
4713 	/* Save wakeup reason register for later use */
4714 	pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4715 
4716 	/* check for a power management event */
4717 	ice_print_wake_reason(pf);
4718 
4719 	/* clear wake status, all bits */
4720 	wr32(&pf->hw, PFPM_WUS, U32_MAX);
4721 
4722 	/* Disable WoL at init, wait for user to enable */
4723 	device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4724 }
4725 
4726 static int ice_init_link(struct ice_pf *pf)
4727 {
4728 	struct device *dev = ice_pf_to_dev(pf);
4729 	int err;
4730 
4731 	err = ice_init_link_events(pf->hw.port_info);
4732 	if (err) {
4733 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4734 		return err;
4735 	}
4736 
4737 	/* not a fatal error if this fails */
4738 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4739 	if (err)
4740 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4741 
4742 	/* not a fatal error if this fails */
4743 	err = ice_update_link_info(pf->hw.port_info);
4744 	if (err)
4745 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4746 
4747 	ice_init_link_dflt_override(pf->hw.port_info);
4748 
4749 	ice_check_link_cfg_err(pf,
4750 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4751 
4752 	/* if media available, initialize PHY settings */
4753 	if (pf->hw.port_info->phy.link_info.link_info &
4754 	    ICE_AQ_MEDIA_AVAILABLE) {
4755 		/* not a fatal error if this fails */
4756 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4757 		if (err)
4758 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4759 
4760 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4761 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4762 
4763 			if (vsi)
4764 				ice_configure_phy(vsi);
4765 		}
4766 	} else {
4767 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4768 	}
4769 
4770 	return err;
4771 }
4772 
4773 static int ice_init_pf_sw(struct ice_pf *pf)
4774 {
4775 	bool dvm = ice_is_dvm_ena(&pf->hw);
4776 	struct ice_vsi *vsi;
4777 	int err;
4778 
4779 	/* create switch struct for the switch element created by FW on boot */
4780 	pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4781 	if (!pf->first_sw)
4782 		return -ENOMEM;
4783 
4784 	if (pf->hw.evb_veb)
4785 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4786 	else
4787 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4788 
4789 	pf->first_sw->pf = pf;
4790 
4791 	/* record the sw_id available for later use */
4792 	pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4793 
4794 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4795 	if (err)
4796 		goto err_aq_set_port_params;
4797 
4798 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4799 	if (!vsi) {
4800 		err = -ENOMEM;
4801 		goto err_pf_vsi_setup;
4802 	}
4803 
4804 	return 0;
4805 
4806 err_pf_vsi_setup:
4807 err_aq_set_port_params:
4808 	kfree(pf->first_sw);
4809 	return err;
4810 }
4811 
4812 static void ice_deinit_pf_sw(struct ice_pf *pf)
4813 {
4814 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4815 
4816 	if (!vsi)
4817 		return;
4818 
4819 	ice_vsi_release(vsi);
4820 	kfree(pf->first_sw);
4821 }
4822 
4823 static int ice_alloc_vsis(struct ice_pf *pf)
4824 {
4825 	struct device *dev = ice_pf_to_dev(pf);
4826 
4827 	pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4828 	if (!pf->num_alloc_vsi)
4829 		return -EIO;
4830 
4831 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4832 		dev_warn(dev,
4833 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4834 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4835 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4836 	}
4837 
4838 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4839 			       GFP_KERNEL);
4840 	if (!pf->vsi)
4841 		return -ENOMEM;
4842 
4843 	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4844 				     sizeof(*pf->vsi_stats), GFP_KERNEL);
4845 	if (!pf->vsi_stats) {
4846 		devm_kfree(dev, pf->vsi);
4847 		return -ENOMEM;
4848 	}
4849 
4850 	return 0;
4851 }
4852 
4853 static void ice_dealloc_vsis(struct ice_pf *pf)
4854 {
4855 	devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4856 	pf->vsi_stats = NULL;
4857 
4858 	pf->num_alloc_vsi = 0;
4859 	devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4860 	pf->vsi = NULL;
4861 }
4862 
4863 static int ice_init_devlink(struct ice_pf *pf)
4864 {
4865 	int err;
4866 
4867 	err = ice_devlink_register_params(pf);
4868 	if (err)
4869 		return err;
4870 
4871 	ice_devlink_init_regions(pf);
4872 	ice_devlink_register(pf);
4873 
4874 	return 0;
4875 }
4876 
4877 static void ice_deinit_devlink(struct ice_pf *pf)
4878 {
4879 	ice_devlink_unregister(pf);
4880 	ice_devlink_destroy_regions(pf);
4881 	ice_devlink_unregister_params(pf);
4882 }
4883 
4884 static int ice_init(struct ice_pf *pf)
4885 {
4886 	int err;
4887 
4888 	err = ice_init_dev(pf);
4889 	if (err)
4890 		return err;
4891 
4892 	err = ice_alloc_vsis(pf);
4893 	if (err)
4894 		goto err_alloc_vsis;
4895 
4896 	err = ice_init_pf_sw(pf);
4897 	if (err)
4898 		goto err_init_pf_sw;
4899 
4900 	ice_init_wakeup(pf);
4901 
4902 	err = ice_init_link(pf);
4903 	if (err)
4904 		goto err_init_link;
4905 
4906 	err = ice_send_version(pf);
4907 	if (err)
4908 		goto err_init_link;
4909 
4910 	ice_verify_cacheline_size(pf);
4911 
4912 	if (ice_is_safe_mode(pf))
4913 		ice_set_safe_mode_vlan_cfg(pf);
4914 	else
4915 		/* print PCI link speed and width */
4916 		pcie_print_link_status(pf->pdev);
4917 
4918 	/* ready to go, so clear down state bit */
4919 	clear_bit(ICE_DOWN, pf->state);
4920 	clear_bit(ICE_SERVICE_DIS, pf->state);
4921 
4922 	/* since everything is good, start the service timer */
4923 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4924 
4925 	return 0;
4926 
4927 err_init_link:
4928 	ice_deinit_pf_sw(pf);
4929 err_init_pf_sw:
4930 	ice_dealloc_vsis(pf);
4931 err_alloc_vsis:
4932 	ice_deinit_dev(pf);
4933 	return err;
4934 }
4935 
4936 static void ice_deinit(struct ice_pf *pf)
4937 {
4938 	set_bit(ICE_SERVICE_DIS, pf->state);
4939 	set_bit(ICE_DOWN, pf->state);
4940 
4941 	ice_deinit_pf_sw(pf);
4942 	ice_dealloc_vsis(pf);
4943 	ice_deinit_dev(pf);
4944 }
4945 
4946 /**
4947  * ice_load - load pf by init hw and starting VSI
4948  * @pf: pointer to the pf instance
4949  */
4950 int ice_load(struct ice_pf *pf)
4951 {
4952 	struct ice_vsi_cfg_params params = {};
4953 	struct ice_vsi *vsi;
4954 	int err;
4955 
4956 	err = ice_init_dev(pf);
4957 	if (err)
4958 		return err;
4959 
4960 	vsi = ice_get_main_vsi(pf);
4961 
4962 	params = ice_vsi_to_params(vsi);
4963 	params.flags = ICE_VSI_FLAG_INIT;
4964 
4965 	rtnl_lock();
4966 	err = ice_vsi_cfg(vsi, &params);
4967 	if (err)
4968 		goto err_vsi_cfg;
4969 
4970 	err = ice_start_eth(ice_get_main_vsi(pf));
4971 	if (err)
4972 		goto err_start_eth;
4973 	rtnl_unlock();
4974 
4975 	err = ice_init_rdma(pf);
4976 	if (err)
4977 		goto err_init_rdma;
4978 
4979 	ice_init_features(pf);
4980 	ice_service_task_restart(pf);
4981 
4982 	clear_bit(ICE_DOWN, pf->state);
4983 
4984 	return 0;
4985 
4986 err_init_rdma:
4987 	ice_vsi_close(ice_get_main_vsi(pf));
4988 	rtnl_lock();
4989 err_start_eth:
4990 	ice_vsi_decfg(ice_get_main_vsi(pf));
4991 err_vsi_cfg:
4992 	rtnl_unlock();
4993 	ice_deinit_dev(pf);
4994 	return err;
4995 }
4996 
4997 /**
4998  * ice_unload - unload pf by stopping VSI and deinit hw
4999  * @pf: pointer to the pf instance
5000  */
5001 void ice_unload(struct ice_pf *pf)
5002 {
5003 	ice_deinit_features(pf);
5004 	ice_deinit_rdma(pf);
5005 	rtnl_lock();
5006 	ice_stop_eth(ice_get_main_vsi(pf));
5007 	ice_vsi_decfg(ice_get_main_vsi(pf));
5008 	rtnl_unlock();
5009 	ice_deinit_dev(pf);
5010 }
5011 
5012 /**
5013  * ice_probe - Device initialization routine
5014  * @pdev: PCI device information struct
5015  * @ent: entry in ice_pci_tbl
5016  *
5017  * Returns 0 on success, negative on failure
5018  */
5019 static int
5020 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5021 {
5022 	struct device *dev = &pdev->dev;
5023 	struct ice_pf *pf;
5024 	struct ice_hw *hw;
5025 	int err;
5026 
5027 	if (pdev->is_virtfn) {
5028 		dev_err(dev, "can't probe a virtual function\n");
5029 		return -EINVAL;
5030 	}
5031 
5032 	/* when under a kdump kernel initiate a reset before enabling the
5033 	 * device in order to clear out any pending DMA transactions. These
5034 	 * transactions can cause some systems to machine check when doing
5035 	 * the pcim_enable_device() below.
5036 	 */
5037 	if (is_kdump_kernel()) {
5038 		pci_save_state(pdev);
5039 		pci_clear_master(pdev);
5040 		err = pcie_flr(pdev);
5041 		if (err)
5042 			return err;
5043 		pci_restore_state(pdev);
5044 	}
5045 
5046 	/* this driver uses devres, see
5047 	 * Documentation/driver-api/driver-model/devres.rst
5048 	 */
5049 	err = pcim_enable_device(pdev);
5050 	if (err)
5051 		return err;
5052 
5053 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5054 	if (err) {
5055 		dev_err(dev, "BAR0 I/O map error %d\n", err);
5056 		return err;
5057 	}
5058 
5059 	pf = ice_allocate_pf(dev);
5060 	if (!pf)
5061 		return -ENOMEM;
5062 
5063 	/* initialize Auxiliary index to invalid value */
5064 	pf->aux_idx = -1;
5065 
5066 	/* set up for high or low DMA */
5067 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5068 	if (err) {
5069 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5070 		return err;
5071 	}
5072 
5073 	pci_set_master(pdev);
5074 
5075 	pf->pdev = pdev;
5076 	pci_set_drvdata(pdev, pf);
5077 	set_bit(ICE_DOWN, pf->state);
5078 	/* Disable service task until DOWN bit is cleared */
5079 	set_bit(ICE_SERVICE_DIS, pf->state);
5080 
5081 	hw = &pf->hw;
5082 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5083 	pci_save_state(pdev);
5084 
5085 	hw->back = pf;
5086 	hw->port_info = NULL;
5087 	hw->vendor_id = pdev->vendor;
5088 	hw->device_id = pdev->device;
5089 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5090 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5091 	hw->subsystem_device_id = pdev->subsystem_device;
5092 	hw->bus.device = PCI_SLOT(pdev->devfn);
5093 	hw->bus.func = PCI_FUNC(pdev->devfn);
5094 	ice_set_ctrlq_len(hw);
5095 
5096 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5097 
5098 #ifndef CONFIG_DYNAMIC_DEBUG
5099 	if (debug < -1)
5100 		hw->debug_mask = debug;
5101 #endif
5102 
5103 	err = ice_init(pf);
5104 	if (err)
5105 		goto err_init;
5106 
5107 	err = ice_init_eth(pf);
5108 	if (err)
5109 		goto err_init_eth;
5110 
5111 	err = ice_init_rdma(pf);
5112 	if (err)
5113 		goto err_init_rdma;
5114 
5115 	err = ice_init_devlink(pf);
5116 	if (err)
5117 		goto err_init_devlink;
5118 
5119 	ice_init_features(pf);
5120 
5121 	return 0;
5122 
5123 err_init_devlink:
5124 	ice_deinit_rdma(pf);
5125 err_init_rdma:
5126 	ice_deinit_eth(pf);
5127 err_init_eth:
5128 	ice_deinit(pf);
5129 err_init:
5130 	pci_disable_device(pdev);
5131 	return err;
5132 }
5133 
5134 /**
5135  * ice_set_wake - enable or disable Wake on LAN
5136  * @pf: pointer to the PF struct
5137  *
5138  * Simple helper for WoL control
5139  */
5140 static void ice_set_wake(struct ice_pf *pf)
5141 {
5142 	struct ice_hw *hw = &pf->hw;
5143 	bool wol = pf->wol_ena;
5144 
5145 	/* clear wake state, otherwise new wake events won't fire */
5146 	wr32(hw, PFPM_WUS, U32_MAX);
5147 
5148 	/* enable / disable APM wake up, no RMW needed */
5149 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5150 
5151 	/* set magic packet filter enabled */
5152 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5153 }
5154 
5155 /**
5156  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5157  * @pf: pointer to the PF struct
5158  *
5159  * Issue firmware command to enable multicast magic wake, making
5160  * sure that any locally administered address (LAA) is used for
5161  * wake, and that PF reset doesn't undo the LAA.
5162  */
5163 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5164 {
5165 	struct device *dev = ice_pf_to_dev(pf);
5166 	struct ice_hw *hw = &pf->hw;
5167 	u8 mac_addr[ETH_ALEN];
5168 	struct ice_vsi *vsi;
5169 	int status;
5170 	u8 flags;
5171 
5172 	if (!pf->wol_ena)
5173 		return;
5174 
5175 	vsi = ice_get_main_vsi(pf);
5176 	if (!vsi)
5177 		return;
5178 
5179 	/* Get current MAC address in case it's an LAA */
5180 	if (vsi->netdev)
5181 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5182 	else
5183 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5184 
5185 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5186 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5187 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5188 
5189 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5190 	if (status)
5191 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5192 			status, ice_aq_str(hw->adminq.sq_last_status));
5193 }
5194 
5195 /**
5196  * ice_remove - Device removal routine
5197  * @pdev: PCI device information struct
5198  */
5199 static void ice_remove(struct pci_dev *pdev)
5200 {
5201 	struct ice_pf *pf = pci_get_drvdata(pdev);
5202 	int i;
5203 
5204 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5205 		if (!ice_is_reset_in_progress(pf->state))
5206 			break;
5207 		msleep(100);
5208 	}
5209 
5210 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5211 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5212 		ice_free_vfs(pf);
5213 	}
5214 
5215 	ice_service_task_stop(pf);
5216 	ice_aq_cancel_waiting_tasks(pf);
5217 	set_bit(ICE_DOWN, pf->state);
5218 
5219 	if (!ice_is_safe_mode(pf))
5220 		ice_remove_arfs(pf);
5221 	ice_deinit_features(pf);
5222 	ice_deinit_devlink(pf);
5223 	ice_deinit_rdma(pf);
5224 	ice_deinit_eth(pf);
5225 	ice_deinit(pf);
5226 
5227 	ice_vsi_release_all(pf);
5228 
5229 	ice_setup_mc_magic_wake(pf);
5230 	ice_set_wake(pf);
5231 
5232 	pci_disable_device(pdev);
5233 }
5234 
5235 /**
5236  * ice_shutdown - PCI callback for shutting down device
5237  * @pdev: PCI device information struct
5238  */
5239 static void ice_shutdown(struct pci_dev *pdev)
5240 {
5241 	struct ice_pf *pf = pci_get_drvdata(pdev);
5242 
5243 	ice_remove(pdev);
5244 
5245 	if (system_state == SYSTEM_POWER_OFF) {
5246 		pci_wake_from_d3(pdev, pf->wol_ena);
5247 		pci_set_power_state(pdev, PCI_D3hot);
5248 	}
5249 }
5250 
5251 #ifdef CONFIG_PM
5252 /**
5253  * ice_prepare_for_shutdown - prep for PCI shutdown
5254  * @pf: board private structure
5255  *
5256  * Inform or close all dependent features in prep for PCI device shutdown
5257  */
5258 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5259 {
5260 	struct ice_hw *hw = &pf->hw;
5261 	u32 v;
5262 
5263 	/* Notify VFs of impending reset */
5264 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5265 		ice_vc_notify_reset(pf);
5266 
5267 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5268 
5269 	/* disable the VSIs and their queues that are not already DOWN */
5270 	ice_pf_dis_all_vsi(pf, false);
5271 
5272 	ice_for_each_vsi(pf, v)
5273 		if (pf->vsi[v])
5274 			pf->vsi[v]->vsi_num = 0;
5275 
5276 	ice_shutdown_all_ctrlq(hw);
5277 }
5278 
5279 /**
5280  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5281  * @pf: board private structure to reinitialize
5282  *
5283  * This routine reinitialize interrupt scheme that was cleared during
5284  * power management suspend callback.
5285  *
5286  * This should be called during resume routine to re-allocate the q_vectors
5287  * and reacquire interrupts.
5288  */
5289 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5290 {
5291 	struct device *dev = ice_pf_to_dev(pf);
5292 	int ret, v;
5293 
5294 	/* Since we clear MSIX flag during suspend, we need to
5295 	 * set it back during resume...
5296 	 */
5297 
5298 	ret = ice_init_interrupt_scheme(pf);
5299 	if (ret) {
5300 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5301 		return ret;
5302 	}
5303 
5304 	/* Remap vectors and rings, after successful re-init interrupts */
5305 	ice_for_each_vsi(pf, v) {
5306 		if (!pf->vsi[v])
5307 			continue;
5308 
5309 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5310 		if (ret)
5311 			goto err_reinit;
5312 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5313 	}
5314 
5315 	ret = ice_req_irq_msix_misc(pf);
5316 	if (ret) {
5317 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5318 			ret);
5319 		goto err_reinit;
5320 	}
5321 
5322 	return 0;
5323 
5324 err_reinit:
5325 	while (v--)
5326 		if (pf->vsi[v])
5327 			ice_vsi_free_q_vectors(pf->vsi[v]);
5328 
5329 	return ret;
5330 }
5331 
5332 /**
5333  * ice_suspend
5334  * @dev: generic device information structure
5335  *
5336  * Power Management callback to quiesce the device and prepare
5337  * for D3 transition.
5338  */
5339 static int __maybe_unused ice_suspend(struct device *dev)
5340 {
5341 	struct pci_dev *pdev = to_pci_dev(dev);
5342 	struct ice_pf *pf;
5343 	int disabled, v;
5344 
5345 	pf = pci_get_drvdata(pdev);
5346 
5347 	if (!ice_pf_state_is_nominal(pf)) {
5348 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5349 		return -EBUSY;
5350 	}
5351 
5352 	/* Stop watchdog tasks until resume completion.
5353 	 * Even though it is most likely that the service task is
5354 	 * disabled if the device is suspended or down, the service task's
5355 	 * state is controlled by a different state bit, and we should
5356 	 * store and honor whatever state that bit is in at this point.
5357 	 */
5358 	disabled = ice_service_task_stop(pf);
5359 
5360 	ice_unplug_aux_dev(pf);
5361 
5362 	/* Already suspended?, then there is nothing to do */
5363 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5364 		if (!disabled)
5365 			ice_service_task_restart(pf);
5366 		return 0;
5367 	}
5368 
5369 	if (test_bit(ICE_DOWN, pf->state) ||
5370 	    ice_is_reset_in_progress(pf->state)) {
5371 		dev_err(dev, "can't suspend device in reset or already down\n");
5372 		if (!disabled)
5373 			ice_service_task_restart(pf);
5374 		return 0;
5375 	}
5376 
5377 	ice_setup_mc_magic_wake(pf);
5378 
5379 	ice_prepare_for_shutdown(pf);
5380 
5381 	ice_set_wake(pf);
5382 
5383 	/* Free vectors, clear the interrupt scheme and release IRQs
5384 	 * for proper hibernation, especially with large number of CPUs.
5385 	 * Otherwise hibernation might fail when mapping all the vectors back
5386 	 * to CPU0.
5387 	 */
5388 	ice_free_irq_msix_misc(pf);
5389 	ice_for_each_vsi(pf, v) {
5390 		if (!pf->vsi[v])
5391 			continue;
5392 		ice_vsi_free_q_vectors(pf->vsi[v]);
5393 	}
5394 	ice_clear_interrupt_scheme(pf);
5395 
5396 	pci_save_state(pdev);
5397 	pci_wake_from_d3(pdev, pf->wol_ena);
5398 	pci_set_power_state(pdev, PCI_D3hot);
5399 	return 0;
5400 }
5401 
5402 /**
5403  * ice_resume - PM callback for waking up from D3
5404  * @dev: generic device information structure
5405  */
5406 static int __maybe_unused ice_resume(struct device *dev)
5407 {
5408 	struct pci_dev *pdev = to_pci_dev(dev);
5409 	enum ice_reset_req reset_type;
5410 	struct ice_pf *pf;
5411 	struct ice_hw *hw;
5412 	int ret;
5413 
5414 	pci_set_power_state(pdev, PCI_D0);
5415 	pci_restore_state(pdev);
5416 	pci_save_state(pdev);
5417 
5418 	if (!pci_device_is_present(pdev))
5419 		return -ENODEV;
5420 
5421 	ret = pci_enable_device_mem(pdev);
5422 	if (ret) {
5423 		dev_err(dev, "Cannot enable device after suspend\n");
5424 		return ret;
5425 	}
5426 
5427 	pf = pci_get_drvdata(pdev);
5428 	hw = &pf->hw;
5429 
5430 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5431 	ice_print_wake_reason(pf);
5432 
5433 	/* We cleared the interrupt scheme when we suspended, so we need to
5434 	 * restore it now to resume device functionality.
5435 	 */
5436 	ret = ice_reinit_interrupt_scheme(pf);
5437 	if (ret)
5438 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5439 
5440 	clear_bit(ICE_DOWN, pf->state);
5441 	/* Now perform PF reset and rebuild */
5442 	reset_type = ICE_RESET_PFR;
5443 	/* re-enable service task for reset, but allow reset to schedule it */
5444 	clear_bit(ICE_SERVICE_DIS, pf->state);
5445 
5446 	if (ice_schedule_reset(pf, reset_type))
5447 		dev_err(dev, "Reset during resume failed.\n");
5448 
5449 	clear_bit(ICE_SUSPENDED, pf->state);
5450 	ice_service_task_restart(pf);
5451 
5452 	/* Restart the service task */
5453 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5454 
5455 	return 0;
5456 }
5457 #endif /* CONFIG_PM */
5458 
5459 /**
5460  * ice_pci_err_detected - warning that PCI error has been detected
5461  * @pdev: PCI device information struct
5462  * @err: the type of PCI error
5463  *
5464  * Called to warn that something happened on the PCI bus and the error handling
5465  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5466  */
5467 static pci_ers_result_t
5468 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5469 {
5470 	struct ice_pf *pf = pci_get_drvdata(pdev);
5471 
5472 	if (!pf) {
5473 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5474 			__func__, err);
5475 		return PCI_ERS_RESULT_DISCONNECT;
5476 	}
5477 
5478 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5479 		ice_service_task_stop(pf);
5480 
5481 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5482 			set_bit(ICE_PFR_REQ, pf->state);
5483 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5484 		}
5485 	}
5486 
5487 	return PCI_ERS_RESULT_NEED_RESET;
5488 }
5489 
5490 /**
5491  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5492  * @pdev: PCI device information struct
5493  *
5494  * Called to determine if the driver can recover from the PCI slot reset by
5495  * using a register read to determine if the device is recoverable.
5496  */
5497 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5498 {
5499 	struct ice_pf *pf = pci_get_drvdata(pdev);
5500 	pci_ers_result_t result;
5501 	int err;
5502 	u32 reg;
5503 
5504 	err = pci_enable_device_mem(pdev);
5505 	if (err) {
5506 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5507 			err);
5508 		result = PCI_ERS_RESULT_DISCONNECT;
5509 	} else {
5510 		pci_set_master(pdev);
5511 		pci_restore_state(pdev);
5512 		pci_save_state(pdev);
5513 		pci_wake_from_d3(pdev, false);
5514 
5515 		/* Check for life */
5516 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5517 		if (!reg)
5518 			result = PCI_ERS_RESULT_RECOVERED;
5519 		else
5520 			result = PCI_ERS_RESULT_DISCONNECT;
5521 	}
5522 
5523 	return result;
5524 }
5525 
5526 /**
5527  * ice_pci_err_resume - restart operations after PCI error recovery
5528  * @pdev: PCI device information struct
5529  *
5530  * Called to allow the driver to bring things back up after PCI error and/or
5531  * reset recovery have finished
5532  */
5533 static void ice_pci_err_resume(struct pci_dev *pdev)
5534 {
5535 	struct ice_pf *pf = pci_get_drvdata(pdev);
5536 
5537 	if (!pf) {
5538 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5539 			__func__);
5540 		return;
5541 	}
5542 
5543 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5544 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5545 			__func__);
5546 		return;
5547 	}
5548 
5549 	ice_restore_all_vfs_msi_state(pf);
5550 
5551 	ice_do_reset(pf, ICE_RESET_PFR);
5552 	ice_service_task_restart(pf);
5553 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5554 }
5555 
5556 /**
5557  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5558  * @pdev: PCI device information struct
5559  */
5560 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5561 {
5562 	struct ice_pf *pf = pci_get_drvdata(pdev);
5563 
5564 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5565 		ice_service_task_stop(pf);
5566 
5567 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5568 			set_bit(ICE_PFR_REQ, pf->state);
5569 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5570 		}
5571 	}
5572 }
5573 
5574 /**
5575  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5576  * @pdev: PCI device information struct
5577  */
5578 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5579 {
5580 	ice_pci_err_resume(pdev);
5581 }
5582 
5583 /* ice_pci_tbl - PCI Device ID Table
5584  *
5585  * Wildcard entries (PCI_ANY_ID) should come last
5586  * Last entry must be all 0s
5587  *
5588  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5589  *   Class, Class Mask, private data (not used) }
5590  */
5591 static const struct pci_device_id ice_pci_tbl[] = {
5592 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5593 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5594 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5595 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5596 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5597 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5598 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5599 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5600 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5601 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5602 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5603 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5604 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5605 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5606 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5607 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5608 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5609 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5610 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5611 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5612 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5613 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5614 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5615 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5616 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5617 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5618 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) },
5619 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) },
5620 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) },
5621 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) },
5622 	/* required last entry */
5623 	{}
5624 };
5625 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5626 
5627 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5628 
5629 static const struct pci_error_handlers ice_pci_err_handler = {
5630 	.error_detected = ice_pci_err_detected,
5631 	.slot_reset = ice_pci_err_slot_reset,
5632 	.reset_prepare = ice_pci_err_reset_prepare,
5633 	.reset_done = ice_pci_err_reset_done,
5634 	.resume = ice_pci_err_resume
5635 };
5636 
5637 static struct pci_driver ice_driver = {
5638 	.name = KBUILD_MODNAME,
5639 	.id_table = ice_pci_tbl,
5640 	.probe = ice_probe,
5641 	.remove = ice_remove,
5642 #ifdef CONFIG_PM
5643 	.driver.pm = &ice_pm_ops,
5644 #endif /* CONFIG_PM */
5645 	.shutdown = ice_shutdown,
5646 	.sriov_configure = ice_sriov_configure,
5647 	.sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5648 	.sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5649 	.err_handler = &ice_pci_err_handler
5650 };
5651 
5652 /**
5653  * ice_module_init - Driver registration routine
5654  *
5655  * ice_module_init is the first routine called when the driver is
5656  * loaded. All it does is register with the PCI subsystem.
5657  */
5658 static int __init ice_module_init(void)
5659 {
5660 	int status = -ENOMEM;
5661 
5662 	pr_info("%s\n", ice_driver_string);
5663 	pr_info("%s\n", ice_copyright);
5664 
5665 	ice_adv_lnk_speed_maps_init();
5666 
5667 	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5668 	if (!ice_wq) {
5669 		pr_err("Failed to create workqueue\n");
5670 		return status;
5671 	}
5672 
5673 	ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5674 	if (!ice_lag_wq) {
5675 		pr_err("Failed to create LAG workqueue\n");
5676 		goto err_dest_wq;
5677 	}
5678 
5679 	status = pci_register_driver(&ice_driver);
5680 	if (status) {
5681 		pr_err("failed to register PCI driver, err %d\n", status);
5682 		goto err_dest_lag_wq;
5683 	}
5684 
5685 	return 0;
5686 
5687 err_dest_lag_wq:
5688 	destroy_workqueue(ice_lag_wq);
5689 err_dest_wq:
5690 	destroy_workqueue(ice_wq);
5691 	return status;
5692 }
5693 module_init(ice_module_init);
5694 
5695 /**
5696  * ice_module_exit - Driver exit cleanup routine
5697  *
5698  * ice_module_exit is called just before the driver is removed
5699  * from memory.
5700  */
5701 static void __exit ice_module_exit(void)
5702 {
5703 	pci_unregister_driver(&ice_driver);
5704 	destroy_workqueue(ice_wq);
5705 	destroy_workqueue(ice_lag_wq);
5706 	pr_info("module unloaded\n");
5707 }
5708 module_exit(ice_module_exit);
5709 
5710 /**
5711  * ice_set_mac_address - NDO callback to set MAC address
5712  * @netdev: network interface device structure
5713  * @pi: pointer to an address structure
5714  *
5715  * Returns 0 on success, negative on failure
5716  */
5717 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5718 {
5719 	struct ice_netdev_priv *np = netdev_priv(netdev);
5720 	struct ice_vsi *vsi = np->vsi;
5721 	struct ice_pf *pf = vsi->back;
5722 	struct ice_hw *hw = &pf->hw;
5723 	struct sockaddr *addr = pi;
5724 	u8 old_mac[ETH_ALEN];
5725 	u8 flags = 0;
5726 	u8 *mac;
5727 	int err;
5728 
5729 	mac = (u8 *)addr->sa_data;
5730 
5731 	if (!is_valid_ether_addr(mac))
5732 		return -EADDRNOTAVAIL;
5733 
5734 	if (test_bit(ICE_DOWN, pf->state) ||
5735 	    ice_is_reset_in_progress(pf->state)) {
5736 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5737 			   mac);
5738 		return -EBUSY;
5739 	}
5740 
5741 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5742 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5743 			   mac);
5744 		return -EAGAIN;
5745 	}
5746 
5747 	netif_addr_lock_bh(netdev);
5748 	ether_addr_copy(old_mac, netdev->dev_addr);
5749 	/* change the netdev's MAC address */
5750 	eth_hw_addr_set(netdev, mac);
5751 	netif_addr_unlock_bh(netdev);
5752 
5753 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5754 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5755 	if (err && err != -ENOENT) {
5756 		err = -EADDRNOTAVAIL;
5757 		goto err_update_filters;
5758 	}
5759 
5760 	/* Add filter for new MAC. If filter exists, return success */
5761 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5762 	if (err == -EEXIST) {
5763 		/* Although this MAC filter is already present in hardware it's
5764 		 * possible in some cases (e.g. bonding) that dev_addr was
5765 		 * modified outside of the driver and needs to be restored back
5766 		 * to this value.
5767 		 */
5768 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5769 
5770 		return 0;
5771 	} else if (err) {
5772 		/* error if the new filter addition failed */
5773 		err = -EADDRNOTAVAIL;
5774 	}
5775 
5776 err_update_filters:
5777 	if (err) {
5778 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5779 			   mac);
5780 		netif_addr_lock_bh(netdev);
5781 		eth_hw_addr_set(netdev, old_mac);
5782 		netif_addr_unlock_bh(netdev);
5783 		return err;
5784 	}
5785 
5786 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5787 		   netdev->dev_addr);
5788 
5789 	/* write new MAC address to the firmware */
5790 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5791 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5792 	if (err) {
5793 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5794 			   mac, err);
5795 	}
5796 	return 0;
5797 }
5798 
5799 /**
5800  * ice_set_rx_mode - NDO callback to set the netdev filters
5801  * @netdev: network interface device structure
5802  */
5803 static void ice_set_rx_mode(struct net_device *netdev)
5804 {
5805 	struct ice_netdev_priv *np = netdev_priv(netdev);
5806 	struct ice_vsi *vsi = np->vsi;
5807 
5808 	if (!vsi || ice_is_switchdev_running(vsi->back))
5809 		return;
5810 
5811 	/* Set the flags to synchronize filters
5812 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5813 	 * flags
5814 	 */
5815 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5816 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5817 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5818 
5819 	/* schedule our worker thread which will take care of
5820 	 * applying the new filter changes
5821 	 */
5822 	ice_service_task_schedule(vsi->back);
5823 }
5824 
5825 /**
5826  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5827  * @netdev: network interface device structure
5828  * @queue_index: Queue ID
5829  * @maxrate: maximum bandwidth in Mbps
5830  */
5831 static int
5832 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5833 {
5834 	struct ice_netdev_priv *np = netdev_priv(netdev);
5835 	struct ice_vsi *vsi = np->vsi;
5836 	u16 q_handle;
5837 	int status;
5838 	u8 tc;
5839 
5840 	/* Validate maxrate requested is within permitted range */
5841 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5842 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5843 			   maxrate, queue_index);
5844 		return -EINVAL;
5845 	}
5846 
5847 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5848 	tc = ice_dcb_get_tc(vsi, queue_index);
5849 
5850 	vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5851 	if (!vsi) {
5852 		netdev_err(netdev, "Invalid VSI for given queue %d\n",
5853 			   queue_index);
5854 		return -EINVAL;
5855 	}
5856 
5857 	/* Set BW back to default, when user set maxrate to 0 */
5858 	if (!maxrate)
5859 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5860 					       q_handle, ICE_MAX_BW);
5861 	else
5862 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5863 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5864 	if (status)
5865 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5866 			   status);
5867 
5868 	return status;
5869 }
5870 
5871 /**
5872  * ice_fdb_add - add an entry to the hardware database
5873  * @ndm: the input from the stack
5874  * @tb: pointer to array of nladdr (unused)
5875  * @dev: the net device pointer
5876  * @addr: the MAC address entry being added
5877  * @vid: VLAN ID
5878  * @flags: instructions from stack about fdb operation
5879  * @extack: netlink extended ack
5880  */
5881 static int
5882 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5883 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5884 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5885 {
5886 	int err;
5887 
5888 	if (vid) {
5889 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5890 		return -EINVAL;
5891 	}
5892 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5893 		netdev_err(dev, "FDB only supports static addresses\n");
5894 		return -EINVAL;
5895 	}
5896 
5897 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5898 		err = dev_uc_add_excl(dev, addr);
5899 	else if (is_multicast_ether_addr(addr))
5900 		err = dev_mc_add_excl(dev, addr);
5901 	else
5902 		err = -EINVAL;
5903 
5904 	/* Only return duplicate errors if NLM_F_EXCL is set */
5905 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5906 		err = 0;
5907 
5908 	return err;
5909 }
5910 
5911 /**
5912  * ice_fdb_del - delete an entry from the hardware database
5913  * @ndm: the input from the stack
5914  * @tb: pointer to array of nladdr (unused)
5915  * @dev: the net device pointer
5916  * @addr: the MAC address entry being added
5917  * @vid: VLAN ID
5918  * @extack: netlink extended ack
5919  */
5920 static int
5921 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5922 	    struct net_device *dev, const unsigned char *addr,
5923 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
5924 {
5925 	int err;
5926 
5927 	if (ndm->ndm_state & NUD_PERMANENT) {
5928 		netdev_err(dev, "FDB only supports static addresses\n");
5929 		return -EINVAL;
5930 	}
5931 
5932 	if (is_unicast_ether_addr(addr))
5933 		err = dev_uc_del(dev, addr);
5934 	else if (is_multicast_ether_addr(addr))
5935 		err = dev_mc_del(dev, addr);
5936 	else
5937 		err = -EINVAL;
5938 
5939 	return err;
5940 }
5941 
5942 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5943 					 NETIF_F_HW_VLAN_CTAG_TX | \
5944 					 NETIF_F_HW_VLAN_STAG_RX | \
5945 					 NETIF_F_HW_VLAN_STAG_TX)
5946 
5947 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5948 					 NETIF_F_HW_VLAN_STAG_RX)
5949 
5950 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
5951 					 NETIF_F_HW_VLAN_STAG_FILTER)
5952 
5953 /**
5954  * ice_fix_features - fix the netdev features flags based on device limitations
5955  * @netdev: ptr to the netdev that flags are being fixed on
5956  * @features: features that need to be checked and possibly fixed
5957  *
5958  * Make sure any fixups are made to features in this callback. This enables the
5959  * driver to not have to check unsupported configurations throughout the driver
5960  * because that's the responsiblity of this callback.
5961  *
5962  * Single VLAN Mode (SVM) Supported Features:
5963  *	NETIF_F_HW_VLAN_CTAG_FILTER
5964  *	NETIF_F_HW_VLAN_CTAG_RX
5965  *	NETIF_F_HW_VLAN_CTAG_TX
5966  *
5967  * Double VLAN Mode (DVM) Supported Features:
5968  *	NETIF_F_HW_VLAN_CTAG_FILTER
5969  *	NETIF_F_HW_VLAN_CTAG_RX
5970  *	NETIF_F_HW_VLAN_CTAG_TX
5971  *
5972  *	NETIF_F_HW_VLAN_STAG_FILTER
5973  *	NETIF_HW_VLAN_STAG_RX
5974  *	NETIF_HW_VLAN_STAG_TX
5975  *
5976  * Features that need fixing:
5977  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5978  *	These are mutually exlusive as the VSI context cannot support multiple
5979  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
5980  *	is not done, then default to clearing the requested STAG offload
5981  *	settings.
5982  *
5983  *	All supported filtering has to be enabled or disabled together. For
5984  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5985  *	together. If this is not done, then default to VLAN filtering disabled.
5986  *	These are mutually exclusive as there is currently no way to
5987  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5988  *	prune rules.
5989  */
5990 static netdev_features_t
5991 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5992 {
5993 	struct ice_netdev_priv *np = netdev_priv(netdev);
5994 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5995 	bool cur_ctag, cur_stag, req_ctag, req_stag;
5996 
5997 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5998 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5999 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6000 
6001 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6002 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6003 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6004 
6005 	if (req_vlan_fltr != cur_vlan_fltr) {
6006 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6007 			if (req_ctag && req_stag) {
6008 				features |= NETIF_VLAN_FILTERING_FEATURES;
6009 			} else if (!req_ctag && !req_stag) {
6010 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6011 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
6012 				   (!cur_stag && req_stag && !cur_ctag)) {
6013 				features |= NETIF_VLAN_FILTERING_FEATURES;
6014 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6015 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
6016 				   (cur_stag && !req_stag && cur_ctag)) {
6017 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6018 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6019 			}
6020 		} else {
6021 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6022 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6023 
6024 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6025 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6026 		}
6027 	}
6028 
6029 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6030 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6031 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6032 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6033 			      NETIF_F_HW_VLAN_STAG_TX);
6034 	}
6035 
6036 	if (!(netdev->features & NETIF_F_RXFCS) &&
6037 	    (features & NETIF_F_RXFCS) &&
6038 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6039 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
6040 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6041 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6042 	}
6043 
6044 	return features;
6045 }
6046 
6047 /**
6048  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6049  * @vsi: PF's VSI
6050  * @features: features used to determine VLAN offload settings
6051  *
6052  * First, determine the vlan_ethertype based on the VLAN offload bits in
6053  * features. Then determine if stripping and insertion should be enabled or
6054  * disabled. Finally enable or disable VLAN stripping and insertion.
6055  */
6056 static int
6057 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6058 {
6059 	bool enable_stripping = true, enable_insertion = true;
6060 	struct ice_vsi_vlan_ops *vlan_ops;
6061 	int strip_err = 0, insert_err = 0;
6062 	u16 vlan_ethertype = 0;
6063 
6064 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6065 
6066 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6067 		vlan_ethertype = ETH_P_8021AD;
6068 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6069 		vlan_ethertype = ETH_P_8021Q;
6070 
6071 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6072 		enable_stripping = false;
6073 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6074 		enable_insertion = false;
6075 
6076 	if (enable_stripping)
6077 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6078 	else
6079 		strip_err = vlan_ops->dis_stripping(vsi);
6080 
6081 	if (enable_insertion)
6082 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6083 	else
6084 		insert_err = vlan_ops->dis_insertion(vsi);
6085 
6086 	if (strip_err || insert_err)
6087 		return -EIO;
6088 
6089 	return 0;
6090 }
6091 
6092 /**
6093  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6094  * @vsi: PF's VSI
6095  * @features: features used to determine VLAN filtering settings
6096  *
6097  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6098  * features.
6099  */
6100 static int
6101 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6102 {
6103 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6104 	int err = 0;
6105 
6106 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6107 	 * if either bit is set
6108 	 */
6109 	if (features &
6110 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6111 		err = vlan_ops->ena_rx_filtering(vsi);
6112 	else
6113 		err = vlan_ops->dis_rx_filtering(vsi);
6114 
6115 	return err;
6116 }
6117 
6118 /**
6119  * ice_set_vlan_features - set VLAN settings based on suggested feature set
6120  * @netdev: ptr to the netdev being adjusted
6121  * @features: the feature set that the stack is suggesting
6122  *
6123  * Only update VLAN settings if the requested_vlan_features are different than
6124  * the current_vlan_features.
6125  */
6126 static int
6127 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6128 {
6129 	netdev_features_t current_vlan_features, requested_vlan_features;
6130 	struct ice_netdev_priv *np = netdev_priv(netdev);
6131 	struct ice_vsi *vsi = np->vsi;
6132 	int err;
6133 
6134 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6135 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6136 	if (current_vlan_features ^ requested_vlan_features) {
6137 		if ((features & NETIF_F_RXFCS) &&
6138 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6139 			dev_err(ice_pf_to_dev(vsi->back),
6140 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6141 			return -EIO;
6142 		}
6143 
6144 		err = ice_set_vlan_offload_features(vsi, features);
6145 		if (err)
6146 			return err;
6147 	}
6148 
6149 	current_vlan_features = netdev->features &
6150 		NETIF_VLAN_FILTERING_FEATURES;
6151 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6152 	if (current_vlan_features ^ requested_vlan_features) {
6153 		err = ice_set_vlan_filtering_features(vsi, features);
6154 		if (err)
6155 			return err;
6156 	}
6157 
6158 	return 0;
6159 }
6160 
6161 /**
6162  * ice_set_loopback - turn on/off loopback mode on underlying PF
6163  * @vsi: ptr to VSI
6164  * @ena: flag to indicate the on/off setting
6165  */
6166 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6167 {
6168 	bool if_running = netif_running(vsi->netdev);
6169 	int ret;
6170 
6171 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6172 		ret = ice_down(vsi);
6173 		if (ret) {
6174 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6175 			return ret;
6176 		}
6177 	}
6178 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6179 	if (ret)
6180 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6181 	if (if_running)
6182 		ret = ice_up(vsi);
6183 
6184 	return ret;
6185 }
6186 
6187 /**
6188  * ice_set_features - set the netdev feature flags
6189  * @netdev: ptr to the netdev being adjusted
6190  * @features: the feature set that the stack is suggesting
6191  */
6192 static int
6193 ice_set_features(struct net_device *netdev, netdev_features_t features)
6194 {
6195 	netdev_features_t changed = netdev->features ^ features;
6196 	struct ice_netdev_priv *np = netdev_priv(netdev);
6197 	struct ice_vsi *vsi = np->vsi;
6198 	struct ice_pf *pf = vsi->back;
6199 	int ret = 0;
6200 
6201 	/* Don't set any netdev advanced features with device in Safe Mode */
6202 	if (ice_is_safe_mode(pf)) {
6203 		dev_err(ice_pf_to_dev(pf),
6204 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6205 		return ret;
6206 	}
6207 
6208 	/* Do not change setting during reset */
6209 	if (ice_is_reset_in_progress(pf->state)) {
6210 		dev_err(ice_pf_to_dev(pf),
6211 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6212 		return -EBUSY;
6213 	}
6214 
6215 	/* Multiple features can be changed in one call so keep features in
6216 	 * separate if/else statements to guarantee each feature is checked
6217 	 */
6218 	if (changed & NETIF_F_RXHASH)
6219 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6220 
6221 	ret = ice_set_vlan_features(netdev, features);
6222 	if (ret)
6223 		return ret;
6224 
6225 	/* Turn on receive of FCS aka CRC, and after setting this
6226 	 * flag the packet data will have the 4 byte CRC appended
6227 	 */
6228 	if (changed & NETIF_F_RXFCS) {
6229 		if ((features & NETIF_F_RXFCS) &&
6230 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6231 			dev_err(ice_pf_to_dev(vsi->back),
6232 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6233 			return -EIO;
6234 		}
6235 
6236 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6237 		ret = ice_down_up(vsi);
6238 		if (ret)
6239 			return ret;
6240 	}
6241 
6242 	if (changed & NETIF_F_NTUPLE) {
6243 		bool ena = !!(features & NETIF_F_NTUPLE);
6244 
6245 		ice_vsi_manage_fdir(vsi, ena);
6246 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6247 	}
6248 
6249 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6250 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6251 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6252 		return -EACCES;
6253 	}
6254 
6255 	if (changed & NETIF_F_HW_TC) {
6256 		bool ena = !!(features & NETIF_F_HW_TC);
6257 
6258 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6259 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6260 	}
6261 
6262 	if (changed & NETIF_F_LOOPBACK)
6263 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6264 
6265 	return ret;
6266 }
6267 
6268 /**
6269  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6270  * @vsi: VSI to setup VLAN properties for
6271  */
6272 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6273 {
6274 	int err;
6275 
6276 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6277 	if (err)
6278 		return err;
6279 
6280 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6281 	if (err)
6282 		return err;
6283 
6284 	return ice_vsi_add_vlan_zero(vsi);
6285 }
6286 
6287 /**
6288  * ice_vsi_cfg_lan - Setup the VSI lan related config
6289  * @vsi: the VSI being configured
6290  *
6291  * Return 0 on success and negative value on error
6292  */
6293 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6294 {
6295 	int err;
6296 
6297 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6298 		ice_set_rx_mode(vsi->netdev);
6299 
6300 		err = ice_vsi_vlan_setup(vsi);
6301 		if (err)
6302 			return err;
6303 	}
6304 	ice_vsi_cfg_dcb_rings(vsi);
6305 
6306 	err = ice_vsi_cfg_lan_txqs(vsi);
6307 	if (!err && ice_is_xdp_ena_vsi(vsi))
6308 		err = ice_vsi_cfg_xdp_txqs(vsi);
6309 	if (!err)
6310 		err = ice_vsi_cfg_rxqs(vsi);
6311 
6312 	return err;
6313 }
6314 
6315 /* THEORY OF MODERATION:
6316  * The ice driver hardware works differently than the hardware that DIMLIB was
6317  * originally made for. ice hardware doesn't have packet count limits that
6318  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6319  * which is hard-coded to a limit of 250,000 ints/second.
6320  * If not using dynamic moderation, the INTRL value can be modified
6321  * by ethtool rx-usecs-high.
6322  */
6323 struct ice_dim {
6324 	/* the throttle rate for interrupts, basically worst case delay before
6325 	 * an initial interrupt fires, value is stored in microseconds.
6326 	 */
6327 	u16 itr;
6328 };
6329 
6330 /* Make a different profile for Rx that doesn't allow quite so aggressive
6331  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6332  * second.
6333  */
6334 static const struct ice_dim rx_profile[] = {
6335 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6336 	{8},    /* 125,000 ints/s */
6337 	{16},   /*  62,500 ints/s */
6338 	{62},   /*  16,129 ints/s */
6339 	{126}   /*   7,936 ints/s */
6340 };
6341 
6342 /* The transmit profile, which has the same sorts of values
6343  * as the previous struct
6344  */
6345 static const struct ice_dim tx_profile[] = {
6346 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6347 	{8},    /* 125,000 ints/s */
6348 	{40},   /*  16,125 ints/s */
6349 	{128},  /*   7,812 ints/s */
6350 	{256}   /*   3,906 ints/s */
6351 };
6352 
6353 static void ice_tx_dim_work(struct work_struct *work)
6354 {
6355 	struct ice_ring_container *rc;
6356 	struct dim *dim;
6357 	u16 itr;
6358 
6359 	dim = container_of(work, struct dim, work);
6360 	rc = dim->priv;
6361 
6362 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6363 
6364 	/* look up the values in our local table */
6365 	itr = tx_profile[dim->profile_ix].itr;
6366 
6367 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6368 	ice_write_itr(rc, itr);
6369 
6370 	dim->state = DIM_START_MEASURE;
6371 }
6372 
6373 static void ice_rx_dim_work(struct work_struct *work)
6374 {
6375 	struct ice_ring_container *rc;
6376 	struct dim *dim;
6377 	u16 itr;
6378 
6379 	dim = container_of(work, struct dim, work);
6380 	rc = dim->priv;
6381 
6382 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6383 
6384 	/* look up the values in our local table */
6385 	itr = rx_profile[dim->profile_ix].itr;
6386 
6387 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6388 	ice_write_itr(rc, itr);
6389 
6390 	dim->state = DIM_START_MEASURE;
6391 }
6392 
6393 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6394 
6395 /**
6396  * ice_init_moderation - set up interrupt moderation
6397  * @q_vector: the vector containing rings to be configured
6398  *
6399  * Set up interrupt moderation registers, with the intent to do the right thing
6400  * when called from reset or from probe, and whether or not dynamic moderation
6401  * is enabled or not. Take special care to write all the registers in both
6402  * dynamic moderation mode or not in order to make sure hardware is in a known
6403  * state.
6404  */
6405 static void ice_init_moderation(struct ice_q_vector *q_vector)
6406 {
6407 	struct ice_ring_container *rc;
6408 	bool tx_dynamic, rx_dynamic;
6409 
6410 	rc = &q_vector->tx;
6411 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6412 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6413 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6414 	rc->dim.priv = rc;
6415 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6416 
6417 	/* set the initial TX ITR to match the above */
6418 	ice_write_itr(rc, tx_dynamic ?
6419 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6420 
6421 	rc = &q_vector->rx;
6422 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6423 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6424 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6425 	rc->dim.priv = rc;
6426 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6427 
6428 	/* set the initial RX ITR to match the above */
6429 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6430 				       rc->itr_setting);
6431 
6432 	ice_set_q_vector_intrl(q_vector);
6433 }
6434 
6435 /**
6436  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6437  * @vsi: the VSI being configured
6438  */
6439 static void ice_napi_enable_all(struct ice_vsi *vsi)
6440 {
6441 	int q_idx;
6442 
6443 	if (!vsi->netdev)
6444 		return;
6445 
6446 	ice_for_each_q_vector(vsi, q_idx) {
6447 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6448 
6449 		ice_init_moderation(q_vector);
6450 
6451 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6452 			napi_enable(&q_vector->napi);
6453 	}
6454 }
6455 
6456 /**
6457  * ice_up_complete - Finish the last steps of bringing up a connection
6458  * @vsi: The VSI being configured
6459  *
6460  * Return 0 on success and negative value on error
6461  */
6462 static int ice_up_complete(struct ice_vsi *vsi)
6463 {
6464 	struct ice_pf *pf = vsi->back;
6465 	int err;
6466 
6467 	ice_vsi_cfg_msix(vsi);
6468 
6469 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6470 	 * Tx queue group list was configured and the context bits were
6471 	 * programmed using ice_vsi_cfg_txqs
6472 	 */
6473 	err = ice_vsi_start_all_rx_rings(vsi);
6474 	if (err)
6475 		return err;
6476 
6477 	clear_bit(ICE_VSI_DOWN, vsi->state);
6478 	ice_napi_enable_all(vsi);
6479 	ice_vsi_ena_irq(vsi);
6480 
6481 	if (vsi->port_info &&
6482 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6483 	    vsi->netdev && vsi->type == ICE_VSI_PF) {
6484 		ice_print_link_msg(vsi, true);
6485 		netif_tx_start_all_queues(vsi->netdev);
6486 		netif_carrier_on(vsi->netdev);
6487 		ice_ptp_link_change(pf, pf->hw.pf_id, true);
6488 	}
6489 
6490 	/* Perform an initial read of the statistics registers now to
6491 	 * set the baseline so counters are ready when interface is up
6492 	 */
6493 	ice_update_eth_stats(vsi);
6494 
6495 	if (vsi->type == ICE_VSI_PF)
6496 		ice_service_task_schedule(pf);
6497 
6498 	return 0;
6499 }
6500 
6501 /**
6502  * ice_up - Bring the connection back up after being down
6503  * @vsi: VSI being configured
6504  */
6505 int ice_up(struct ice_vsi *vsi)
6506 {
6507 	int err;
6508 
6509 	err = ice_vsi_cfg_lan(vsi);
6510 	if (!err)
6511 		err = ice_up_complete(vsi);
6512 
6513 	return err;
6514 }
6515 
6516 /**
6517  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6518  * @syncp: pointer to u64_stats_sync
6519  * @stats: stats that pkts and bytes count will be taken from
6520  * @pkts: packets stats counter
6521  * @bytes: bytes stats counter
6522  *
6523  * This function fetches stats from the ring considering the atomic operations
6524  * that needs to be performed to read u64 values in 32 bit machine.
6525  */
6526 void
6527 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6528 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6529 {
6530 	unsigned int start;
6531 
6532 	do {
6533 		start = u64_stats_fetch_begin(syncp);
6534 		*pkts = stats.pkts;
6535 		*bytes = stats.bytes;
6536 	} while (u64_stats_fetch_retry(syncp, start));
6537 }
6538 
6539 /**
6540  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6541  * @vsi: the VSI to be updated
6542  * @vsi_stats: the stats struct to be updated
6543  * @rings: rings to work on
6544  * @count: number of rings
6545  */
6546 static void
6547 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6548 			     struct rtnl_link_stats64 *vsi_stats,
6549 			     struct ice_tx_ring **rings, u16 count)
6550 {
6551 	u16 i;
6552 
6553 	for (i = 0; i < count; i++) {
6554 		struct ice_tx_ring *ring;
6555 		u64 pkts = 0, bytes = 0;
6556 
6557 		ring = READ_ONCE(rings[i]);
6558 		if (!ring || !ring->ring_stats)
6559 			continue;
6560 		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6561 					     ring->ring_stats->stats, &pkts,
6562 					     &bytes);
6563 		vsi_stats->tx_packets += pkts;
6564 		vsi_stats->tx_bytes += bytes;
6565 		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6566 		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6567 		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6568 	}
6569 }
6570 
6571 /**
6572  * ice_update_vsi_ring_stats - Update VSI stats counters
6573  * @vsi: the VSI to be updated
6574  */
6575 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6576 {
6577 	struct rtnl_link_stats64 *net_stats, *stats_prev;
6578 	struct rtnl_link_stats64 *vsi_stats;
6579 	u64 pkts, bytes;
6580 	int i;
6581 
6582 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6583 	if (!vsi_stats)
6584 		return;
6585 
6586 	/* reset non-netdev (extended) stats */
6587 	vsi->tx_restart = 0;
6588 	vsi->tx_busy = 0;
6589 	vsi->tx_linearize = 0;
6590 	vsi->rx_buf_failed = 0;
6591 	vsi->rx_page_failed = 0;
6592 
6593 	rcu_read_lock();
6594 
6595 	/* update Tx rings counters */
6596 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6597 				     vsi->num_txq);
6598 
6599 	/* update Rx rings counters */
6600 	ice_for_each_rxq(vsi, i) {
6601 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6602 		struct ice_ring_stats *ring_stats;
6603 
6604 		ring_stats = ring->ring_stats;
6605 		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6606 					     ring_stats->stats, &pkts,
6607 					     &bytes);
6608 		vsi_stats->rx_packets += pkts;
6609 		vsi_stats->rx_bytes += bytes;
6610 		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6611 		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6612 	}
6613 
6614 	/* update XDP Tx rings counters */
6615 	if (ice_is_xdp_ena_vsi(vsi))
6616 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6617 					     vsi->num_xdp_txq);
6618 
6619 	rcu_read_unlock();
6620 
6621 	net_stats = &vsi->net_stats;
6622 	stats_prev = &vsi->net_stats_prev;
6623 
6624 	/* clear prev counters after reset */
6625 	if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6626 	    vsi_stats->rx_packets < stats_prev->rx_packets) {
6627 		stats_prev->tx_packets = 0;
6628 		stats_prev->tx_bytes = 0;
6629 		stats_prev->rx_packets = 0;
6630 		stats_prev->rx_bytes = 0;
6631 	}
6632 
6633 	/* update netdev counters */
6634 	net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6635 	net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6636 	net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6637 	net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6638 
6639 	stats_prev->tx_packets = vsi_stats->tx_packets;
6640 	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6641 	stats_prev->rx_packets = vsi_stats->rx_packets;
6642 	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6643 
6644 	kfree(vsi_stats);
6645 }
6646 
6647 /**
6648  * ice_update_vsi_stats - Update VSI stats counters
6649  * @vsi: the VSI to be updated
6650  */
6651 void ice_update_vsi_stats(struct ice_vsi *vsi)
6652 {
6653 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6654 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6655 	struct ice_pf *pf = vsi->back;
6656 
6657 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6658 	    test_bit(ICE_CFG_BUSY, pf->state))
6659 		return;
6660 
6661 	/* get stats as recorded by Tx/Rx rings */
6662 	ice_update_vsi_ring_stats(vsi);
6663 
6664 	/* get VSI stats as recorded by the hardware */
6665 	ice_update_eth_stats(vsi);
6666 
6667 	cur_ns->tx_errors = cur_es->tx_errors;
6668 	cur_ns->rx_dropped = cur_es->rx_discards;
6669 	cur_ns->tx_dropped = cur_es->tx_discards;
6670 	cur_ns->multicast = cur_es->rx_multicast;
6671 
6672 	/* update some more netdev stats if this is main VSI */
6673 	if (vsi->type == ICE_VSI_PF) {
6674 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6675 		cur_ns->rx_errors = pf->stats.crc_errors +
6676 				    pf->stats.illegal_bytes +
6677 				    pf->stats.rx_len_errors +
6678 				    pf->stats.rx_undersize +
6679 				    pf->hw_csum_rx_error +
6680 				    pf->stats.rx_jabber +
6681 				    pf->stats.rx_fragments +
6682 				    pf->stats.rx_oversize;
6683 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6684 		/* record drops from the port level */
6685 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6686 	}
6687 }
6688 
6689 /**
6690  * ice_update_pf_stats - Update PF port stats counters
6691  * @pf: PF whose stats needs to be updated
6692  */
6693 void ice_update_pf_stats(struct ice_pf *pf)
6694 {
6695 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6696 	struct ice_hw *hw = &pf->hw;
6697 	u16 fd_ctr_base;
6698 	u8 port;
6699 
6700 	port = hw->port_info->lport;
6701 	prev_ps = &pf->stats_prev;
6702 	cur_ps = &pf->stats;
6703 
6704 	if (ice_is_reset_in_progress(pf->state))
6705 		pf->stat_prev_loaded = false;
6706 
6707 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6708 			  &prev_ps->eth.rx_bytes,
6709 			  &cur_ps->eth.rx_bytes);
6710 
6711 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6712 			  &prev_ps->eth.rx_unicast,
6713 			  &cur_ps->eth.rx_unicast);
6714 
6715 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6716 			  &prev_ps->eth.rx_multicast,
6717 			  &cur_ps->eth.rx_multicast);
6718 
6719 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6720 			  &prev_ps->eth.rx_broadcast,
6721 			  &cur_ps->eth.rx_broadcast);
6722 
6723 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6724 			  &prev_ps->eth.rx_discards,
6725 			  &cur_ps->eth.rx_discards);
6726 
6727 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6728 			  &prev_ps->eth.tx_bytes,
6729 			  &cur_ps->eth.tx_bytes);
6730 
6731 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6732 			  &prev_ps->eth.tx_unicast,
6733 			  &cur_ps->eth.tx_unicast);
6734 
6735 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6736 			  &prev_ps->eth.tx_multicast,
6737 			  &cur_ps->eth.tx_multicast);
6738 
6739 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6740 			  &prev_ps->eth.tx_broadcast,
6741 			  &cur_ps->eth.tx_broadcast);
6742 
6743 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6744 			  &prev_ps->tx_dropped_link_down,
6745 			  &cur_ps->tx_dropped_link_down);
6746 
6747 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6748 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6749 
6750 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6751 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6752 
6753 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6754 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6755 
6756 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6757 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6758 
6759 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6760 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6761 
6762 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6763 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6764 
6765 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6766 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6767 
6768 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6769 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6770 
6771 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6772 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6773 
6774 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6775 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6776 
6777 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6778 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6779 
6780 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6781 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6782 
6783 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6784 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6785 
6786 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6787 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6788 
6789 	fd_ctr_base = hw->fd_ctr_base;
6790 
6791 	ice_stat_update40(hw,
6792 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6793 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6794 			  &cur_ps->fd_sb_match);
6795 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6796 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6797 
6798 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6799 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6800 
6801 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6802 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6803 
6804 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6805 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6806 
6807 	ice_update_dcb_stats(pf);
6808 
6809 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6810 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6811 
6812 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6813 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6814 
6815 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6816 			  &prev_ps->mac_local_faults,
6817 			  &cur_ps->mac_local_faults);
6818 
6819 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6820 			  &prev_ps->mac_remote_faults,
6821 			  &cur_ps->mac_remote_faults);
6822 
6823 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6824 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6825 
6826 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6827 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6828 
6829 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6830 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6831 
6832 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6833 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6834 
6835 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6836 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6837 
6838 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6839 
6840 	pf->stat_prev_loaded = true;
6841 }
6842 
6843 /**
6844  * ice_get_stats64 - get statistics for network device structure
6845  * @netdev: network interface device structure
6846  * @stats: main device statistics structure
6847  */
6848 static
6849 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6850 {
6851 	struct ice_netdev_priv *np = netdev_priv(netdev);
6852 	struct rtnl_link_stats64 *vsi_stats;
6853 	struct ice_vsi *vsi = np->vsi;
6854 
6855 	vsi_stats = &vsi->net_stats;
6856 
6857 	if (!vsi->num_txq || !vsi->num_rxq)
6858 		return;
6859 
6860 	/* netdev packet/byte stats come from ring counter. These are obtained
6861 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6862 	 * But, only call the update routine and read the registers if VSI is
6863 	 * not down.
6864 	 */
6865 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6866 		ice_update_vsi_ring_stats(vsi);
6867 	stats->tx_packets = vsi_stats->tx_packets;
6868 	stats->tx_bytes = vsi_stats->tx_bytes;
6869 	stats->rx_packets = vsi_stats->rx_packets;
6870 	stats->rx_bytes = vsi_stats->rx_bytes;
6871 
6872 	/* The rest of the stats can be read from the hardware but instead we
6873 	 * just return values that the watchdog task has already obtained from
6874 	 * the hardware.
6875 	 */
6876 	stats->multicast = vsi_stats->multicast;
6877 	stats->tx_errors = vsi_stats->tx_errors;
6878 	stats->tx_dropped = vsi_stats->tx_dropped;
6879 	stats->rx_errors = vsi_stats->rx_errors;
6880 	stats->rx_dropped = vsi_stats->rx_dropped;
6881 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6882 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6883 }
6884 
6885 /**
6886  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6887  * @vsi: VSI having NAPI disabled
6888  */
6889 static void ice_napi_disable_all(struct ice_vsi *vsi)
6890 {
6891 	int q_idx;
6892 
6893 	if (!vsi->netdev)
6894 		return;
6895 
6896 	ice_for_each_q_vector(vsi, q_idx) {
6897 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6898 
6899 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6900 			napi_disable(&q_vector->napi);
6901 
6902 		cancel_work_sync(&q_vector->tx.dim.work);
6903 		cancel_work_sync(&q_vector->rx.dim.work);
6904 	}
6905 }
6906 
6907 /**
6908  * ice_down - Shutdown the connection
6909  * @vsi: The VSI being stopped
6910  *
6911  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6912  */
6913 int ice_down(struct ice_vsi *vsi)
6914 {
6915 	int i, tx_err, rx_err, vlan_err = 0;
6916 
6917 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6918 
6919 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6920 		vlan_err = ice_vsi_del_vlan_zero(vsi);
6921 		ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6922 		netif_carrier_off(vsi->netdev);
6923 		netif_tx_disable(vsi->netdev);
6924 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6925 		ice_eswitch_stop_all_tx_queues(vsi->back);
6926 	}
6927 
6928 	ice_vsi_dis_irq(vsi);
6929 
6930 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6931 	if (tx_err)
6932 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6933 			   vsi->vsi_num, tx_err);
6934 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6935 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6936 		if (tx_err)
6937 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6938 				   vsi->vsi_num, tx_err);
6939 	}
6940 
6941 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6942 	if (rx_err)
6943 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6944 			   vsi->vsi_num, rx_err);
6945 
6946 	ice_napi_disable_all(vsi);
6947 
6948 	ice_for_each_txq(vsi, i)
6949 		ice_clean_tx_ring(vsi->tx_rings[i]);
6950 
6951 	if (ice_is_xdp_ena_vsi(vsi))
6952 		ice_for_each_xdp_txq(vsi, i)
6953 			ice_clean_tx_ring(vsi->xdp_rings[i]);
6954 
6955 	ice_for_each_rxq(vsi, i)
6956 		ice_clean_rx_ring(vsi->rx_rings[i]);
6957 
6958 	if (tx_err || rx_err || vlan_err) {
6959 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6960 			   vsi->vsi_num, vsi->vsw->sw_id);
6961 		return -EIO;
6962 	}
6963 
6964 	return 0;
6965 }
6966 
6967 /**
6968  * ice_down_up - shutdown the VSI connection and bring it up
6969  * @vsi: the VSI to be reconnected
6970  */
6971 int ice_down_up(struct ice_vsi *vsi)
6972 {
6973 	int ret;
6974 
6975 	/* if DOWN already set, nothing to do */
6976 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
6977 		return 0;
6978 
6979 	ret = ice_down(vsi);
6980 	if (ret)
6981 		return ret;
6982 
6983 	ret = ice_up(vsi);
6984 	if (ret) {
6985 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
6986 		return ret;
6987 	}
6988 
6989 	return 0;
6990 }
6991 
6992 /**
6993  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6994  * @vsi: VSI having resources allocated
6995  *
6996  * Return 0 on success, negative on failure
6997  */
6998 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6999 {
7000 	int i, err = 0;
7001 
7002 	if (!vsi->num_txq) {
7003 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7004 			vsi->vsi_num);
7005 		return -EINVAL;
7006 	}
7007 
7008 	ice_for_each_txq(vsi, i) {
7009 		struct ice_tx_ring *ring = vsi->tx_rings[i];
7010 
7011 		if (!ring)
7012 			return -EINVAL;
7013 
7014 		if (vsi->netdev)
7015 			ring->netdev = vsi->netdev;
7016 		err = ice_setup_tx_ring(ring);
7017 		if (err)
7018 			break;
7019 	}
7020 
7021 	return err;
7022 }
7023 
7024 /**
7025  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7026  * @vsi: VSI having resources allocated
7027  *
7028  * Return 0 on success, negative on failure
7029  */
7030 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7031 {
7032 	int i, err = 0;
7033 
7034 	if (!vsi->num_rxq) {
7035 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7036 			vsi->vsi_num);
7037 		return -EINVAL;
7038 	}
7039 
7040 	ice_for_each_rxq(vsi, i) {
7041 		struct ice_rx_ring *ring = vsi->rx_rings[i];
7042 
7043 		if (!ring)
7044 			return -EINVAL;
7045 
7046 		if (vsi->netdev)
7047 			ring->netdev = vsi->netdev;
7048 		err = ice_setup_rx_ring(ring);
7049 		if (err)
7050 			break;
7051 	}
7052 
7053 	return err;
7054 }
7055 
7056 /**
7057  * ice_vsi_open_ctrl - open control VSI for use
7058  * @vsi: the VSI to open
7059  *
7060  * Initialization of the Control VSI
7061  *
7062  * Returns 0 on success, negative value on error
7063  */
7064 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7065 {
7066 	char int_name[ICE_INT_NAME_STR_LEN];
7067 	struct ice_pf *pf = vsi->back;
7068 	struct device *dev;
7069 	int err;
7070 
7071 	dev = ice_pf_to_dev(pf);
7072 	/* allocate descriptors */
7073 	err = ice_vsi_setup_tx_rings(vsi);
7074 	if (err)
7075 		goto err_setup_tx;
7076 
7077 	err = ice_vsi_setup_rx_rings(vsi);
7078 	if (err)
7079 		goto err_setup_rx;
7080 
7081 	err = ice_vsi_cfg_lan(vsi);
7082 	if (err)
7083 		goto err_setup_rx;
7084 
7085 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7086 		 dev_driver_string(dev), dev_name(dev));
7087 	err = ice_vsi_req_irq_msix(vsi, int_name);
7088 	if (err)
7089 		goto err_setup_rx;
7090 
7091 	ice_vsi_cfg_msix(vsi);
7092 
7093 	err = ice_vsi_start_all_rx_rings(vsi);
7094 	if (err)
7095 		goto err_up_complete;
7096 
7097 	clear_bit(ICE_VSI_DOWN, vsi->state);
7098 	ice_vsi_ena_irq(vsi);
7099 
7100 	return 0;
7101 
7102 err_up_complete:
7103 	ice_down(vsi);
7104 err_setup_rx:
7105 	ice_vsi_free_rx_rings(vsi);
7106 err_setup_tx:
7107 	ice_vsi_free_tx_rings(vsi);
7108 
7109 	return err;
7110 }
7111 
7112 /**
7113  * ice_vsi_open - Called when a network interface is made active
7114  * @vsi: the VSI to open
7115  *
7116  * Initialization of the VSI
7117  *
7118  * Returns 0 on success, negative value on error
7119  */
7120 int ice_vsi_open(struct ice_vsi *vsi)
7121 {
7122 	char int_name[ICE_INT_NAME_STR_LEN];
7123 	struct ice_pf *pf = vsi->back;
7124 	int err;
7125 
7126 	/* allocate descriptors */
7127 	err = ice_vsi_setup_tx_rings(vsi);
7128 	if (err)
7129 		goto err_setup_tx;
7130 
7131 	err = ice_vsi_setup_rx_rings(vsi);
7132 	if (err)
7133 		goto err_setup_rx;
7134 
7135 	err = ice_vsi_cfg_lan(vsi);
7136 	if (err)
7137 		goto err_setup_rx;
7138 
7139 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7140 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7141 	err = ice_vsi_req_irq_msix(vsi, int_name);
7142 	if (err)
7143 		goto err_setup_rx;
7144 
7145 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7146 
7147 	if (vsi->type == ICE_VSI_PF) {
7148 		/* Notify the stack of the actual queue counts. */
7149 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7150 		if (err)
7151 			goto err_set_qs;
7152 
7153 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7154 		if (err)
7155 			goto err_set_qs;
7156 	}
7157 
7158 	err = ice_up_complete(vsi);
7159 	if (err)
7160 		goto err_up_complete;
7161 
7162 	return 0;
7163 
7164 err_up_complete:
7165 	ice_down(vsi);
7166 err_set_qs:
7167 	ice_vsi_free_irq(vsi);
7168 err_setup_rx:
7169 	ice_vsi_free_rx_rings(vsi);
7170 err_setup_tx:
7171 	ice_vsi_free_tx_rings(vsi);
7172 
7173 	return err;
7174 }
7175 
7176 /**
7177  * ice_vsi_release_all - Delete all VSIs
7178  * @pf: PF from which all VSIs are being removed
7179  */
7180 static void ice_vsi_release_all(struct ice_pf *pf)
7181 {
7182 	int err, i;
7183 
7184 	if (!pf->vsi)
7185 		return;
7186 
7187 	ice_for_each_vsi(pf, i) {
7188 		if (!pf->vsi[i])
7189 			continue;
7190 
7191 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7192 			continue;
7193 
7194 		err = ice_vsi_release(pf->vsi[i]);
7195 		if (err)
7196 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7197 				i, err, pf->vsi[i]->vsi_num);
7198 	}
7199 }
7200 
7201 /**
7202  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7203  * @pf: pointer to the PF instance
7204  * @type: VSI type to rebuild
7205  *
7206  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7207  */
7208 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7209 {
7210 	struct device *dev = ice_pf_to_dev(pf);
7211 	int i, err;
7212 
7213 	ice_for_each_vsi(pf, i) {
7214 		struct ice_vsi *vsi = pf->vsi[i];
7215 
7216 		if (!vsi || vsi->type != type)
7217 			continue;
7218 
7219 		/* rebuild the VSI */
7220 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7221 		if (err) {
7222 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7223 				err, vsi->idx, ice_vsi_type_str(type));
7224 			return err;
7225 		}
7226 
7227 		/* replay filters for the VSI */
7228 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7229 		if (err) {
7230 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7231 				err, vsi->idx, ice_vsi_type_str(type));
7232 			return err;
7233 		}
7234 
7235 		/* Re-map HW VSI number, using VSI handle that has been
7236 		 * previously validated in ice_replay_vsi() call above
7237 		 */
7238 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7239 
7240 		/* enable the VSI */
7241 		err = ice_ena_vsi(vsi, false);
7242 		if (err) {
7243 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7244 				err, vsi->idx, ice_vsi_type_str(type));
7245 			return err;
7246 		}
7247 
7248 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7249 			 ice_vsi_type_str(type));
7250 	}
7251 
7252 	return 0;
7253 }
7254 
7255 /**
7256  * ice_update_pf_netdev_link - Update PF netdev link status
7257  * @pf: pointer to the PF instance
7258  */
7259 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7260 {
7261 	bool link_up;
7262 	int i;
7263 
7264 	ice_for_each_vsi(pf, i) {
7265 		struct ice_vsi *vsi = pf->vsi[i];
7266 
7267 		if (!vsi || vsi->type != ICE_VSI_PF)
7268 			return;
7269 
7270 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7271 		if (link_up) {
7272 			netif_carrier_on(pf->vsi[i]->netdev);
7273 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7274 		} else {
7275 			netif_carrier_off(pf->vsi[i]->netdev);
7276 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7277 		}
7278 	}
7279 }
7280 
7281 /**
7282  * ice_rebuild - rebuild after reset
7283  * @pf: PF to rebuild
7284  * @reset_type: type of reset
7285  *
7286  * Do not rebuild VF VSI in this flow because that is already handled via
7287  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7288  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7289  * to reset/rebuild all the VF VSI twice.
7290  */
7291 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7292 {
7293 	struct device *dev = ice_pf_to_dev(pf);
7294 	struct ice_hw *hw = &pf->hw;
7295 	bool dvm;
7296 	int err;
7297 
7298 	if (test_bit(ICE_DOWN, pf->state))
7299 		goto clear_recovery;
7300 
7301 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7302 
7303 #define ICE_EMP_RESET_SLEEP_MS 5000
7304 	if (reset_type == ICE_RESET_EMPR) {
7305 		/* If an EMP reset has occurred, any previously pending flash
7306 		 * update will have completed. We no longer know whether or
7307 		 * not the NVM update EMP reset is restricted.
7308 		 */
7309 		pf->fw_emp_reset_disabled = false;
7310 
7311 		msleep(ICE_EMP_RESET_SLEEP_MS);
7312 	}
7313 
7314 	err = ice_init_all_ctrlq(hw);
7315 	if (err) {
7316 		dev_err(dev, "control queues init failed %d\n", err);
7317 		goto err_init_ctrlq;
7318 	}
7319 
7320 	/* if DDP was previously loaded successfully */
7321 	if (!ice_is_safe_mode(pf)) {
7322 		/* reload the SW DB of filter tables */
7323 		if (reset_type == ICE_RESET_PFR)
7324 			ice_fill_blk_tbls(hw);
7325 		else
7326 			/* Reload DDP Package after CORER/GLOBR reset */
7327 			ice_load_pkg(NULL, pf);
7328 	}
7329 
7330 	err = ice_clear_pf_cfg(hw);
7331 	if (err) {
7332 		dev_err(dev, "clear PF configuration failed %d\n", err);
7333 		goto err_init_ctrlq;
7334 	}
7335 
7336 	ice_clear_pxe_mode(hw);
7337 
7338 	err = ice_init_nvm(hw);
7339 	if (err) {
7340 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7341 		goto err_init_ctrlq;
7342 	}
7343 
7344 	err = ice_get_caps(hw);
7345 	if (err) {
7346 		dev_err(dev, "ice_get_caps failed %d\n", err);
7347 		goto err_init_ctrlq;
7348 	}
7349 
7350 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7351 	if (err) {
7352 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7353 		goto err_init_ctrlq;
7354 	}
7355 
7356 	dvm = ice_is_dvm_ena(hw);
7357 
7358 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7359 	if (err)
7360 		goto err_init_ctrlq;
7361 
7362 	err = ice_sched_init_port(hw->port_info);
7363 	if (err)
7364 		goto err_sched_init_port;
7365 
7366 	/* start misc vector */
7367 	err = ice_req_irq_msix_misc(pf);
7368 	if (err) {
7369 		dev_err(dev, "misc vector setup failed: %d\n", err);
7370 		goto err_sched_init_port;
7371 	}
7372 
7373 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7374 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7375 		if (!rd32(hw, PFQF_FD_SIZE)) {
7376 			u16 unused, guar, b_effort;
7377 
7378 			guar = hw->func_caps.fd_fltr_guar;
7379 			b_effort = hw->func_caps.fd_fltr_best_effort;
7380 
7381 			/* force guaranteed filter pool for PF */
7382 			ice_alloc_fd_guar_item(hw, &unused, guar);
7383 			/* force shared filter pool for PF */
7384 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7385 		}
7386 	}
7387 
7388 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7389 		ice_dcb_rebuild(pf);
7390 
7391 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7392 	 * the VSI rebuild. If not, this causes the PTP link status events to
7393 	 * fail.
7394 	 */
7395 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7396 		ice_ptp_reset(pf);
7397 
7398 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7399 		ice_gnss_init(pf);
7400 
7401 	/* rebuild PF VSI */
7402 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7403 	if (err) {
7404 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7405 		goto err_vsi_rebuild;
7406 	}
7407 
7408 	err = ice_eswitch_rebuild(pf);
7409 	if (err) {
7410 		dev_err(dev, "Switchdev rebuild failed: %d\n", err);
7411 		goto err_vsi_rebuild;
7412 	}
7413 
7414 	if (reset_type == ICE_RESET_PFR) {
7415 		err = ice_rebuild_channels(pf);
7416 		if (err) {
7417 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7418 				err);
7419 			goto err_vsi_rebuild;
7420 		}
7421 	}
7422 
7423 	/* If Flow Director is active */
7424 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7425 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7426 		if (err) {
7427 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7428 			goto err_vsi_rebuild;
7429 		}
7430 
7431 		/* replay HW Flow Director recipes */
7432 		if (hw->fdir_prof)
7433 			ice_fdir_replay_flows(hw);
7434 
7435 		/* replay Flow Director filters */
7436 		ice_fdir_replay_fltrs(pf);
7437 
7438 		ice_rebuild_arfs(pf);
7439 	}
7440 
7441 	ice_update_pf_netdev_link(pf);
7442 
7443 	/* tell the firmware we are up */
7444 	err = ice_send_version(pf);
7445 	if (err) {
7446 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7447 			err);
7448 		goto err_vsi_rebuild;
7449 	}
7450 
7451 	ice_replay_post(hw);
7452 
7453 	/* if we get here, reset flow is successful */
7454 	clear_bit(ICE_RESET_FAILED, pf->state);
7455 
7456 	ice_plug_aux_dev(pf);
7457 	if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7458 		ice_lag_rebuild(pf);
7459 
7460 	/* Restore timestamp mode settings after VSI rebuild */
7461 	ice_ptp_restore_timestamp_mode(pf);
7462 	return;
7463 
7464 err_vsi_rebuild:
7465 err_sched_init_port:
7466 	ice_sched_cleanup_all(hw);
7467 err_init_ctrlq:
7468 	ice_shutdown_all_ctrlq(hw);
7469 	set_bit(ICE_RESET_FAILED, pf->state);
7470 clear_recovery:
7471 	/* set this bit in PF state to control service task scheduling */
7472 	set_bit(ICE_NEEDS_RESTART, pf->state);
7473 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7474 }
7475 
7476 /**
7477  * ice_change_mtu - NDO callback to change the MTU
7478  * @netdev: network interface device structure
7479  * @new_mtu: new value for maximum frame size
7480  *
7481  * Returns 0 on success, negative on failure
7482  */
7483 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7484 {
7485 	struct ice_netdev_priv *np = netdev_priv(netdev);
7486 	struct ice_vsi *vsi = np->vsi;
7487 	struct ice_pf *pf = vsi->back;
7488 	struct bpf_prog *prog;
7489 	u8 count = 0;
7490 	int err = 0;
7491 
7492 	if (new_mtu == (int)netdev->mtu) {
7493 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7494 		return 0;
7495 	}
7496 
7497 	prog = vsi->xdp_prog;
7498 	if (prog && !prog->aux->xdp_has_frags) {
7499 		int frame_size = ice_max_xdp_frame_size(vsi);
7500 
7501 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7502 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7503 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7504 			return -EINVAL;
7505 		}
7506 	} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7507 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7508 			netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7509 				   ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7510 			return -EINVAL;
7511 		}
7512 	}
7513 
7514 	/* if a reset is in progress, wait for some time for it to complete */
7515 	do {
7516 		if (ice_is_reset_in_progress(pf->state)) {
7517 			count++;
7518 			usleep_range(1000, 2000);
7519 		} else {
7520 			break;
7521 		}
7522 
7523 	} while (count < 100);
7524 
7525 	if (count == 100) {
7526 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7527 		return -EBUSY;
7528 	}
7529 
7530 	netdev->mtu = (unsigned int)new_mtu;
7531 	err = ice_down_up(vsi);
7532 	if (err)
7533 		return err;
7534 
7535 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7536 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7537 
7538 	return err;
7539 }
7540 
7541 /**
7542  * ice_eth_ioctl - Access the hwtstamp interface
7543  * @netdev: network interface device structure
7544  * @ifr: interface request data
7545  * @cmd: ioctl command
7546  */
7547 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7548 {
7549 	struct ice_netdev_priv *np = netdev_priv(netdev);
7550 	struct ice_pf *pf = np->vsi->back;
7551 
7552 	switch (cmd) {
7553 	case SIOCGHWTSTAMP:
7554 		return ice_ptp_get_ts_config(pf, ifr);
7555 	case SIOCSHWTSTAMP:
7556 		return ice_ptp_set_ts_config(pf, ifr);
7557 	default:
7558 		return -EOPNOTSUPP;
7559 	}
7560 }
7561 
7562 /**
7563  * ice_aq_str - convert AQ err code to a string
7564  * @aq_err: the AQ error code to convert
7565  */
7566 const char *ice_aq_str(enum ice_aq_err aq_err)
7567 {
7568 	switch (aq_err) {
7569 	case ICE_AQ_RC_OK:
7570 		return "OK";
7571 	case ICE_AQ_RC_EPERM:
7572 		return "ICE_AQ_RC_EPERM";
7573 	case ICE_AQ_RC_ENOENT:
7574 		return "ICE_AQ_RC_ENOENT";
7575 	case ICE_AQ_RC_ENOMEM:
7576 		return "ICE_AQ_RC_ENOMEM";
7577 	case ICE_AQ_RC_EBUSY:
7578 		return "ICE_AQ_RC_EBUSY";
7579 	case ICE_AQ_RC_EEXIST:
7580 		return "ICE_AQ_RC_EEXIST";
7581 	case ICE_AQ_RC_EINVAL:
7582 		return "ICE_AQ_RC_EINVAL";
7583 	case ICE_AQ_RC_ENOSPC:
7584 		return "ICE_AQ_RC_ENOSPC";
7585 	case ICE_AQ_RC_ENOSYS:
7586 		return "ICE_AQ_RC_ENOSYS";
7587 	case ICE_AQ_RC_EMODE:
7588 		return "ICE_AQ_RC_EMODE";
7589 	case ICE_AQ_RC_ENOSEC:
7590 		return "ICE_AQ_RC_ENOSEC";
7591 	case ICE_AQ_RC_EBADSIG:
7592 		return "ICE_AQ_RC_EBADSIG";
7593 	case ICE_AQ_RC_ESVN:
7594 		return "ICE_AQ_RC_ESVN";
7595 	case ICE_AQ_RC_EBADMAN:
7596 		return "ICE_AQ_RC_EBADMAN";
7597 	case ICE_AQ_RC_EBADBUF:
7598 		return "ICE_AQ_RC_EBADBUF";
7599 	}
7600 
7601 	return "ICE_AQ_RC_UNKNOWN";
7602 }
7603 
7604 /**
7605  * ice_set_rss_lut - Set RSS LUT
7606  * @vsi: Pointer to VSI structure
7607  * @lut: Lookup table
7608  * @lut_size: Lookup table size
7609  *
7610  * Returns 0 on success, negative on failure
7611  */
7612 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7613 {
7614 	struct ice_aq_get_set_rss_lut_params params = {};
7615 	struct ice_hw *hw = &vsi->back->hw;
7616 	int status;
7617 
7618 	if (!lut)
7619 		return -EINVAL;
7620 
7621 	params.vsi_handle = vsi->idx;
7622 	params.lut_size = lut_size;
7623 	params.lut_type = vsi->rss_lut_type;
7624 	params.lut = lut;
7625 
7626 	status = ice_aq_set_rss_lut(hw, &params);
7627 	if (status)
7628 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7629 			status, ice_aq_str(hw->adminq.sq_last_status));
7630 
7631 	return status;
7632 }
7633 
7634 /**
7635  * ice_set_rss_key - Set RSS key
7636  * @vsi: Pointer to the VSI structure
7637  * @seed: RSS hash seed
7638  *
7639  * Returns 0 on success, negative on failure
7640  */
7641 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7642 {
7643 	struct ice_hw *hw = &vsi->back->hw;
7644 	int status;
7645 
7646 	if (!seed)
7647 		return -EINVAL;
7648 
7649 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7650 	if (status)
7651 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7652 			status, ice_aq_str(hw->adminq.sq_last_status));
7653 
7654 	return status;
7655 }
7656 
7657 /**
7658  * ice_get_rss_lut - Get RSS LUT
7659  * @vsi: Pointer to VSI structure
7660  * @lut: Buffer to store the lookup table entries
7661  * @lut_size: Size of buffer to store the lookup table entries
7662  *
7663  * Returns 0 on success, negative on failure
7664  */
7665 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7666 {
7667 	struct ice_aq_get_set_rss_lut_params params = {};
7668 	struct ice_hw *hw = &vsi->back->hw;
7669 	int status;
7670 
7671 	if (!lut)
7672 		return -EINVAL;
7673 
7674 	params.vsi_handle = vsi->idx;
7675 	params.lut_size = lut_size;
7676 	params.lut_type = vsi->rss_lut_type;
7677 	params.lut = lut;
7678 
7679 	status = ice_aq_get_rss_lut(hw, &params);
7680 	if (status)
7681 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7682 			status, ice_aq_str(hw->adminq.sq_last_status));
7683 
7684 	return status;
7685 }
7686 
7687 /**
7688  * ice_get_rss_key - Get RSS key
7689  * @vsi: Pointer to VSI structure
7690  * @seed: Buffer to store the key in
7691  *
7692  * Returns 0 on success, negative on failure
7693  */
7694 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7695 {
7696 	struct ice_hw *hw = &vsi->back->hw;
7697 	int status;
7698 
7699 	if (!seed)
7700 		return -EINVAL;
7701 
7702 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7703 	if (status)
7704 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7705 			status, ice_aq_str(hw->adminq.sq_last_status));
7706 
7707 	return status;
7708 }
7709 
7710 /**
7711  * ice_bridge_getlink - Get the hardware bridge mode
7712  * @skb: skb buff
7713  * @pid: process ID
7714  * @seq: RTNL message seq
7715  * @dev: the netdev being configured
7716  * @filter_mask: filter mask passed in
7717  * @nlflags: netlink flags passed in
7718  *
7719  * Return the bridge mode (VEB/VEPA)
7720  */
7721 static int
7722 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7723 		   struct net_device *dev, u32 filter_mask, int nlflags)
7724 {
7725 	struct ice_netdev_priv *np = netdev_priv(dev);
7726 	struct ice_vsi *vsi = np->vsi;
7727 	struct ice_pf *pf = vsi->back;
7728 	u16 bmode;
7729 
7730 	bmode = pf->first_sw->bridge_mode;
7731 
7732 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7733 				       filter_mask, NULL);
7734 }
7735 
7736 /**
7737  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7738  * @vsi: Pointer to VSI structure
7739  * @bmode: Hardware bridge mode (VEB/VEPA)
7740  *
7741  * Returns 0 on success, negative on failure
7742  */
7743 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7744 {
7745 	struct ice_aqc_vsi_props *vsi_props;
7746 	struct ice_hw *hw = &vsi->back->hw;
7747 	struct ice_vsi_ctx *ctxt;
7748 	int ret;
7749 
7750 	vsi_props = &vsi->info;
7751 
7752 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7753 	if (!ctxt)
7754 		return -ENOMEM;
7755 
7756 	ctxt->info = vsi->info;
7757 
7758 	if (bmode == BRIDGE_MODE_VEB)
7759 		/* change from VEPA to VEB mode */
7760 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7761 	else
7762 		/* change from VEB to VEPA mode */
7763 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7764 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7765 
7766 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7767 	if (ret) {
7768 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7769 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7770 		goto out;
7771 	}
7772 	/* Update sw flags for book keeping */
7773 	vsi_props->sw_flags = ctxt->info.sw_flags;
7774 
7775 out:
7776 	kfree(ctxt);
7777 	return ret;
7778 }
7779 
7780 /**
7781  * ice_bridge_setlink - Set the hardware bridge mode
7782  * @dev: the netdev being configured
7783  * @nlh: RTNL message
7784  * @flags: bridge setlink flags
7785  * @extack: netlink extended ack
7786  *
7787  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7788  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7789  * not already set for all VSIs connected to this switch. And also update the
7790  * unicast switch filter rules for the corresponding switch of the netdev.
7791  */
7792 static int
7793 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7794 		   u16 __always_unused flags,
7795 		   struct netlink_ext_ack __always_unused *extack)
7796 {
7797 	struct ice_netdev_priv *np = netdev_priv(dev);
7798 	struct ice_pf *pf = np->vsi->back;
7799 	struct nlattr *attr, *br_spec;
7800 	struct ice_hw *hw = &pf->hw;
7801 	struct ice_sw *pf_sw;
7802 	int rem, v, err = 0;
7803 
7804 	pf_sw = pf->first_sw;
7805 	/* find the attribute in the netlink message */
7806 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7807 
7808 	nla_for_each_nested(attr, br_spec, rem) {
7809 		__u16 mode;
7810 
7811 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7812 			continue;
7813 		mode = nla_get_u16(attr);
7814 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7815 			return -EINVAL;
7816 		/* Continue  if bridge mode is not being flipped */
7817 		if (mode == pf_sw->bridge_mode)
7818 			continue;
7819 		/* Iterates through the PF VSI list and update the loopback
7820 		 * mode of the VSI
7821 		 */
7822 		ice_for_each_vsi(pf, v) {
7823 			if (!pf->vsi[v])
7824 				continue;
7825 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7826 			if (err)
7827 				return err;
7828 		}
7829 
7830 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7831 		/* Update the unicast switch filter rules for the corresponding
7832 		 * switch of the netdev
7833 		 */
7834 		err = ice_update_sw_rule_bridge_mode(hw);
7835 		if (err) {
7836 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7837 				   mode, err,
7838 				   ice_aq_str(hw->adminq.sq_last_status));
7839 			/* revert hw->evb_veb */
7840 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7841 			return err;
7842 		}
7843 
7844 		pf_sw->bridge_mode = mode;
7845 	}
7846 
7847 	return 0;
7848 }
7849 
7850 /**
7851  * ice_tx_timeout - Respond to a Tx Hang
7852  * @netdev: network interface device structure
7853  * @txqueue: Tx queue
7854  */
7855 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7856 {
7857 	struct ice_netdev_priv *np = netdev_priv(netdev);
7858 	struct ice_tx_ring *tx_ring = NULL;
7859 	struct ice_vsi *vsi = np->vsi;
7860 	struct ice_pf *pf = vsi->back;
7861 	u32 i;
7862 
7863 	pf->tx_timeout_count++;
7864 
7865 	/* Check if PFC is enabled for the TC to which the queue belongs
7866 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7867 	 * need to reset and rebuild
7868 	 */
7869 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7870 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7871 			 txqueue);
7872 		return;
7873 	}
7874 
7875 	/* now that we have an index, find the tx_ring struct */
7876 	ice_for_each_txq(vsi, i)
7877 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7878 			if (txqueue == vsi->tx_rings[i]->q_index) {
7879 				tx_ring = vsi->tx_rings[i];
7880 				break;
7881 			}
7882 
7883 	/* Reset recovery level if enough time has elapsed after last timeout.
7884 	 * Also ensure no new reset action happens before next timeout period.
7885 	 */
7886 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7887 		pf->tx_timeout_recovery_level = 1;
7888 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7889 				       netdev->watchdog_timeo)))
7890 		return;
7891 
7892 	if (tx_ring) {
7893 		struct ice_hw *hw = &pf->hw;
7894 		u32 head, val = 0;
7895 
7896 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7897 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7898 		/* Read interrupt register */
7899 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7900 
7901 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7902 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7903 			    head, tx_ring->next_to_use, val);
7904 	}
7905 
7906 	pf->tx_timeout_last_recovery = jiffies;
7907 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7908 		    pf->tx_timeout_recovery_level, txqueue);
7909 
7910 	switch (pf->tx_timeout_recovery_level) {
7911 	case 1:
7912 		set_bit(ICE_PFR_REQ, pf->state);
7913 		break;
7914 	case 2:
7915 		set_bit(ICE_CORER_REQ, pf->state);
7916 		break;
7917 	case 3:
7918 		set_bit(ICE_GLOBR_REQ, pf->state);
7919 		break;
7920 	default:
7921 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7922 		set_bit(ICE_DOWN, pf->state);
7923 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7924 		set_bit(ICE_SERVICE_DIS, pf->state);
7925 		break;
7926 	}
7927 
7928 	ice_service_task_schedule(pf);
7929 	pf->tx_timeout_recovery_level++;
7930 }
7931 
7932 /**
7933  * ice_setup_tc_cls_flower - flower classifier offloads
7934  * @np: net device to configure
7935  * @filter_dev: device on which filter is added
7936  * @cls_flower: offload data
7937  */
7938 static int
7939 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7940 			struct net_device *filter_dev,
7941 			struct flow_cls_offload *cls_flower)
7942 {
7943 	struct ice_vsi *vsi = np->vsi;
7944 
7945 	if (cls_flower->common.chain_index)
7946 		return -EOPNOTSUPP;
7947 
7948 	switch (cls_flower->command) {
7949 	case FLOW_CLS_REPLACE:
7950 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7951 	case FLOW_CLS_DESTROY:
7952 		return ice_del_cls_flower(vsi, cls_flower);
7953 	default:
7954 		return -EINVAL;
7955 	}
7956 }
7957 
7958 /**
7959  * ice_setup_tc_block_cb - callback handler registered for TC block
7960  * @type: TC SETUP type
7961  * @type_data: TC flower offload data that contains user input
7962  * @cb_priv: netdev private data
7963  */
7964 static int
7965 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7966 {
7967 	struct ice_netdev_priv *np = cb_priv;
7968 
7969 	switch (type) {
7970 	case TC_SETUP_CLSFLOWER:
7971 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7972 					       type_data);
7973 	default:
7974 		return -EOPNOTSUPP;
7975 	}
7976 }
7977 
7978 /**
7979  * ice_validate_mqprio_qopt - Validate TCF input parameters
7980  * @vsi: Pointer to VSI
7981  * @mqprio_qopt: input parameters for mqprio queue configuration
7982  *
7983  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7984  * needed), and make sure user doesn't specify qcount and BW rate limit
7985  * for TCs, which are more than "num_tc"
7986  */
7987 static int
7988 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7989 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7990 {
7991 	int non_power_of_2_qcount = 0;
7992 	struct ice_pf *pf = vsi->back;
7993 	int max_rss_q_cnt = 0;
7994 	u64 sum_min_rate = 0;
7995 	struct device *dev;
7996 	int i, speed;
7997 	u8 num_tc;
7998 
7999 	if (vsi->type != ICE_VSI_PF)
8000 		return -EINVAL;
8001 
8002 	if (mqprio_qopt->qopt.offset[0] != 0 ||
8003 	    mqprio_qopt->qopt.num_tc < 1 ||
8004 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8005 		return -EINVAL;
8006 
8007 	dev = ice_pf_to_dev(pf);
8008 	vsi->ch_rss_size = 0;
8009 	num_tc = mqprio_qopt->qopt.num_tc;
8010 	speed = ice_get_link_speed_kbps(vsi);
8011 
8012 	for (i = 0; num_tc; i++) {
8013 		int qcount = mqprio_qopt->qopt.count[i];
8014 		u64 max_rate, min_rate, rem;
8015 
8016 		if (!qcount)
8017 			return -EINVAL;
8018 
8019 		if (is_power_of_2(qcount)) {
8020 			if (non_power_of_2_qcount &&
8021 			    qcount > non_power_of_2_qcount) {
8022 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8023 					qcount, non_power_of_2_qcount);
8024 				return -EINVAL;
8025 			}
8026 			if (qcount > max_rss_q_cnt)
8027 				max_rss_q_cnt = qcount;
8028 		} else {
8029 			if (non_power_of_2_qcount &&
8030 			    qcount != non_power_of_2_qcount) {
8031 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8032 					qcount, non_power_of_2_qcount);
8033 				return -EINVAL;
8034 			}
8035 			if (qcount < max_rss_q_cnt) {
8036 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8037 					qcount, max_rss_q_cnt);
8038 				return -EINVAL;
8039 			}
8040 			max_rss_q_cnt = qcount;
8041 			non_power_of_2_qcount = qcount;
8042 		}
8043 
8044 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8045 		 * converts the bandwidth rate limit into Bytes/s when
8046 		 * passing it down to the driver. So convert input bandwidth
8047 		 * from Bytes/s to Kbps
8048 		 */
8049 		max_rate = mqprio_qopt->max_rate[i];
8050 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8051 
8052 		/* min_rate is minimum guaranteed rate and it can't be zero */
8053 		min_rate = mqprio_qopt->min_rate[i];
8054 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8055 		sum_min_rate += min_rate;
8056 
8057 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8058 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8059 				min_rate, ICE_MIN_BW_LIMIT);
8060 			return -EINVAL;
8061 		}
8062 
8063 		if (max_rate && max_rate > speed) {
8064 			dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8065 				i, max_rate, speed);
8066 			return -EINVAL;
8067 		}
8068 
8069 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8070 		if (rem) {
8071 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8072 				i, ICE_MIN_BW_LIMIT);
8073 			return -EINVAL;
8074 		}
8075 
8076 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8077 		if (rem) {
8078 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8079 				i, ICE_MIN_BW_LIMIT);
8080 			return -EINVAL;
8081 		}
8082 
8083 		/* min_rate can't be more than max_rate, except when max_rate
8084 		 * is zero (implies max_rate sought is max line rate). In such
8085 		 * a case min_rate can be more than max.
8086 		 */
8087 		if (max_rate && min_rate > max_rate) {
8088 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8089 				min_rate, max_rate);
8090 			return -EINVAL;
8091 		}
8092 
8093 		if (i >= mqprio_qopt->qopt.num_tc - 1)
8094 			break;
8095 		if (mqprio_qopt->qopt.offset[i + 1] !=
8096 		    (mqprio_qopt->qopt.offset[i] + qcount))
8097 			return -EINVAL;
8098 	}
8099 	if (vsi->num_rxq <
8100 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8101 		return -EINVAL;
8102 	if (vsi->num_txq <
8103 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8104 		return -EINVAL;
8105 
8106 	if (sum_min_rate && sum_min_rate > (u64)speed) {
8107 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8108 			sum_min_rate, speed);
8109 		return -EINVAL;
8110 	}
8111 
8112 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8113 	vsi->ch_rss_size = max_rss_q_cnt;
8114 
8115 	return 0;
8116 }
8117 
8118 /**
8119  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8120  * @pf: ptr to PF device
8121  * @vsi: ptr to VSI
8122  */
8123 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8124 {
8125 	struct device *dev = ice_pf_to_dev(pf);
8126 	bool added = false;
8127 	struct ice_hw *hw;
8128 	int flow;
8129 
8130 	if (!(vsi->num_gfltr || vsi->num_bfltr))
8131 		return -EINVAL;
8132 
8133 	hw = &pf->hw;
8134 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8135 		struct ice_fd_hw_prof *prof;
8136 		int tun, status;
8137 		u64 entry_h;
8138 
8139 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8140 		      hw->fdir_prof[flow]->cnt))
8141 			continue;
8142 
8143 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8144 			enum ice_flow_priority prio;
8145 			u64 prof_id;
8146 
8147 			/* add this VSI to FDir profile for this flow */
8148 			prio = ICE_FLOW_PRIO_NORMAL;
8149 			prof = hw->fdir_prof[flow];
8150 			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
8151 			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
8152 						    prof->vsi_h[0], vsi->idx,
8153 						    prio, prof->fdir_seg[tun],
8154 						    &entry_h);
8155 			if (status) {
8156 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8157 					vsi->idx, flow);
8158 				continue;
8159 			}
8160 
8161 			prof->entry_h[prof->cnt][tun] = entry_h;
8162 		}
8163 
8164 		/* store VSI for filter replay and delete */
8165 		prof->vsi_h[prof->cnt] = vsi->idx;
8166 		prof->cnt++;
8167 
8168 		added = true;
8169 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8170 			flow);
8171 	}
8172 
8173 	if (!added)
8174 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8175 
8176 	return 0;
8177 }
8178 
8179 /**
8180  * ice_add_channel - add a channel by adding VSI
8181  * @pf: ptr to PF device
8182  * @sw_id: underlying HW switching element ID
8183  * @ch: ptr to channel structure
8184  *
8185  * Add a channel (VSI) using add_vsi and queue_map
8186  */
8187 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8188 {
8189 	struct device *dev = ice_pf_to_dev(pf);
8190 	struct ice_vsi *vsi;
8191 
8192 	if (ch->type != ICE_VSI_CHNL) {
8193 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8194 		return -EINVAL;
8195 	}
8196 
8197 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8198 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8199 		dev_err(dev, "create chnl VSI failure\n");
8200 		return -EINVAL;
8201 	}
8202 
8203 	ice_add_vsi_to_fdir(pf, vsi);
8204 
8205 	ch->sw_id = sw_id;
8206 	ch->vsi_num = vsi->vsi_num;
8207 	ch->info.mapping_flags = vsi->info.mapping_flags;
8208 	ch->ch_vsi = vsi;
8209 	/* set the back pointer of channel for newly created VSI */
8210 	vsi->ch = ch;
8211 
8212 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8213 	       sizeof(vsi->info.q_mapping));
8214 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8215 	       sizeof(vsi->info.tc_mapping));
8216 
8217 	return 0;
8218 }
8219 
8220 /**
8221  * ice_chnl_cfg_res
8222  * @vsi: the VSI being setup
8223  * @ch: ptr to channel structure
8224  *
8225  * Configure channel specific resources such as rings, vector.
8226  */
8227 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8228 {
8229 	int i;
8230 
8231 	for (i = 0; i < ch->num_txq; i++) {
8232 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8233 		struct ice_ring_container *rc;
8234 		struct ice_tx_ring *tx_ring;
8235 		struct ice_rx_ring *rx_ring;
8236 
8237 		tx_ring = vsi->tx_rings[ch->base_q + i];
8238 		rx_ring = vsi->rx_rings[ch->base_q + i];
8239 		if (!tx_ring || !rx_ring)
8240 			continue;
8241 
8242 		/* setup ring being channel enabled */
8243 		tx_ring->ch = ch;
8244 		rx_ring->ch = ch;
8245 
8246 		/* following code block sets up vector specific attributes */
8247 		tx_q_vector = tx_ring->q_vector;
8248 		rx_q_vector = rx_ring->q_vector;
8249 		if (!tx_q_vector && !rx_q_vector)
8250 			continue;
8251 
8252 		if (tx_q_vector) {
8253 			tx_q_vector->ch = ch;
8254 			/* setup Tx and Rx ITR setting if DIM is off */
8255 			rc = &tx_q_vector->tx;
8256 			if (!ITR_IS_DYNAMIC(rc))
8257 				ice_write_itr(rc, rc->itr_setting);
8258 		}
8259 		if (rx_q_vector) {
8260 			rx_q_vector->ch = ch;
8261 			/* setup Tx and Rx ITR setting if DIM is off */
8262 			rc = &rx_q_vector->rx;
8263 			if (!ITR_IS_DYNAMIC(rc))
8264 				ice_write_itr(rc, rc->itr_setting);
8265 		}
8266 	}
8267 
8268 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8269 	 * GLINT_ITR register would have written to perform in-context
8270 	 * update, hence perform flush
8271 	 */
8272 	if (ch->num_txq || ch->num_rxq)
8273 		ice_flush(&vsi->back->hw);
8274 }
8275 
8276 /**
8277  * ice_cfg_chnl_all_res - configure channel resources
8278  * @vsi: pte to main_vsi
8279  * @ch: ptr to channel structure
8280  *
8281  * This function configures channel specific resources such as flow-director
8282  * counter index, and other resources such as queues, vectors, ITR settings
8283  */
8284 static void
8285 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8286 {
8287 	/* configure channel (aka ADQ) resources such as queues, vectors,
8288 	 * ITR settings for channel specific vectors and anything else
8289 	 */
8290 	ice_chnl_cfg_res(vsi, ch);
8291 }
8292 
8293 /**
8294  * ice_setup_hw_channel - setup new channel
8295  * @pf: ptr to PF device
8296  * @vsi: the VSI being setup
8297  * @ch: ptr to channel structure
8298  * @sw_id: underlying HW switching element ID
8299  * @type: type of channel to be created (VMDq2/VF)
8300  *
8301  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8302  * and configures Tx rings accordingly
8303  */
8304 static int
8305 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8306 		     struct ice_channel *ch, u16 sw_id, u8 type)
8307 {
8308 	struct device *dev = ice_pf_to_dev(pf);
8309 	int ret;
8310 
8311 	ch->base_q = vsi->next_base_q;
8312 	ch->type = type;
8313 
8314 	ret = ice_add_channel(pf, sw_id, ch);
8315 	if (ret) {
8316 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8317 		return ret;
8318 	}
8319 
8320 	/* configure/setup ADQ specific resources */
8321 	ice_cfg_chnl_all_res(vsi, ch);
8322 
8323 	/* make sure to update the next_base_q so that subsequent channel's
8324 	 * (aka ADQ) VSI queue map is correct
8325 	 */
8326 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8327 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8328 		ch->num_rxq);
8329 
8330 	return 0;
8331 }
8332 
8333 /**
8334  * ice_setup_channel - setup new channel using uplink element
8335  * @pf: ptr to PF device
8336  * @vsi: the VSI being setup
8337  * @ch: ptr to channel structure
8338  *
8339  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8340  * and uplink switching element
8341  */
8342 static bool
8343 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8344 		  struct ice_channel *ch)
8345 {
8346 	struct device *dev = ice_pf_to_dev(pf);
8347 	u16 sw_id;
8348 	int ret;
8349 
8350 	if (vsi->type != ICE_VSI_PF) {
8351 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8352 		return false;
8353 	}
8354 
8355 	sw_id = pf->first_sw->sw_id;
8356 
8357 	/* create channel (VSI) */
8358 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8359 	if (ret) {
8360 		dev_err(dev, "failed to setup hw_channel\n");
8361 		return false;
8362 	}
8363 	dev_dbg(dev, "successfully created channel()\n");
8364 
8365 	return ch->ch_vsi ? true : false;
8366 }
8367 
8368 /**
8369  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8370  * @vsi: VSI to be configured
8371  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8372  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8373  */
8374 static int
8375 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8376 {
8377 	int err;
8378 
8379 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8380 	if (err)
8381 		return err;
8382 
8383 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8384 }
8385 
8386 /**
8387  * ice_create_q_channel - function to create channel
8388  * @vsi: VSI to be configured
8389  * @ch: ptr to channel (it contains channel specific params)
8390  *
8391  * This function creates channel (VSI) using num_queues specified by user,
8392  * reconfigs RSS if needed.
8393  */
8394 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8395 {
8396 	struct ice_pf *pf = vsi->back;
8397 	struct device *dev;
8398 
8399 	if (!ch)
8400 		return -EINVAL;
8401 
8402 	dev = ice_pf_to_dev(pf);
8403 	if (!ch->num_txq || !ch->num_rxq) {
8404 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8405 		return -EINVAL;
8406 	}
8407 
8408 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8409 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8410 			vsi->cnt_q_avail, ch->num_txq);
8411 		return -EINVAL;
8412 	}
8413 
8414 	if (!ice_setup_channel(pf, vsi, ch)) {
8415 		dev_info(dev, "Failed to setup channel\n");
8416 		return -EINVAL;
8417 	}
8418 	/* configure BW rate limit */
8419 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8420 		int ret;
8421 
8422 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8423 				       ch->min_tx_rate);
8424 		if (ret)
8425 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8426 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8427 		else
8428 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8429 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8430 	}
8431 
8432 	vsi->cnt_q_avail -= ch->num_txq;
8433 
8434 	return 0;
8435 }
8436 
8437 /**
8438  * ice_rem_all_chnl_fltrs - removes all channel filters
8439  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8440  *
8441  * Remove all advanced switch filters only if they are channel specific
8442  * tc-flower based filter
8443  */
8444 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8445 {
8446 	struct ice_tc_flower_fltr *fltr;
8447 	struct hlist_node *node;
8448 
8449 	/* to remove all channel filters, iterate an ordered list of filters */
8450 	hlist_for_each_entry_safe(fltr, node,
8451 				  &pf->tc_flower_fltr_list,
8452 				  tc_flower_node) {
8453 		struct ice_rule_query_data rule;
8454 		int status;
8455 
8456 		/* for now process only channel specific filters */
8457 		if (!ice_is_chnl_fltr(fltr))
8458 			continue;
8459 
8460 		rule.rid = fltr->rid;
8461 		rule.rule_id = fltr->rule_id;
8462 		rule.vsi_handle = fltr->dest_vsi_handle;
8463 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8464 		if (status) {
8465 			if (status == -ENOENT)
8466 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8467 					rule.rule_id);
8468 			else
8469 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8470 					status);
8471 		} else if (fltr->dest_vsi) {
8472 			/* update advanced switch filter count */
8473 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8474 				u32 flags = fltr->flags;
8475 
8476 				fltr->dest_vsi->num_chnl_fltr--;
8477 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8478 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8479 					pf->num_dmac_chnl_fltrs--;
8480 			}
8481 		}
8482 
8483 		hlist_del(&fltr->tc_flower_node);
8484 		kfree(fltr);
8485 	}
8486 }
8487 
8488 /**
8489  * ice_remove_q_channels - Remove queue channels for the TCs
8490  * @vsi: VSI to be configured
8491  * @rem_fltr: delete advanced switch filter or not
8492  *
8493  * Remove queue channels for the TCs
8494  */
8495 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8496 {
8497 	struct ice_channel *ch, *ch_tmp;
8498 	struct ice_pf *pf = vsi->back;
8499 	int i;
8500 
8501 	/* remove all tc-flower based filter if they are channel filters only */
8502 	if (rem_fltr)
8503 		ice_rem_all_chnl_fltrs(pf);
8504 
8505 	/* remove ntuple filters since queue configuration is being changed */
8506 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8507 		struct ice_hw *hw = &pf->hw;
8508 
8509 		mutex_lock(&hw->fdir_fltr_lock);
8510 		ice_fdir_del_all_fltrs(vsi);
8511 		mutex_unlock(&hw->fdir_fltr_lock);
8512 	}
8513 
8514 	/* perform cleanup for channels if they exist */
8515 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8516 		struct ice_vsi *ch_vsi;
8517 
8518 		list_del(&ch->list);
8519 		ch_vsi = ch->ch_vsi;
8520 		if (!ch_vsi) {
8521 			kfree(ch);
8522 			continue;
8523 		}
8524 
8525 		/* Reset queue contexts */
8526 		for (i = 0; i < ch->num_rxq; i++) {
8527 			struct ice_tx_ring *tx_ring;
8528 			struct ice_rx_ring *rx_ring;
8529 
8530 			tx_ring = vsi->tx_rings[ch->base_q + i];
8531 			rx_ring = vsi->rx_rings[ch->base_q + i];
8532 			if (tx_ring) {
8533 				tx_ring->ch = NULL;
8534 				if (tx_ring->q_vector)
8535 					tx_ring->q_vector->ch = NULL;
8536 			}
8537 			if (rx_ring) {
8538 				rx_ring->ch = NULL;
8539 				if (rx_ring->q_vector)
8540 					rx_ring->q_vector->ch = NULL;
8541 			}
8542 		}
8543 
8544 		/* Release FD resources for the channel VSI */
8545 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8546 
8547 		/* clear the VSI from scheduler tree */
8548 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8549 
8550 		/* Delete VSI from FW, PF and HW VSI arrays */
8551 		ice_vsi_delete(ch->ch_vsi);
8552 
8553 		/* free the channel */
8554 		kfree(ch);
8555 	}
8556 
8557 	/* clear the channel VSI map which is stored in main VSI */
8558 	ice_for_each_chnl_tc(i)
8559 		vsi->tc_map_vsi[i] = NULL;
8560 
8561 	/* reset main VSI's all TC information */
8562 	vsi->all_enatc = 0;
8563 	vsi->all_numtc = 0;
8564 }
8565 
8566 /**
8567  * ice_rebuild_channels - rebuild channel
8568  * @pf: ptr to PF
8569  *
8570  * Recreate channel VSIs and replay filters
8571  */
8572 static int ice_rebuild_channels(struct ice_pf *pf)
8573 {
8574 	struct device *dev = ice_pf_to_dev(pf);
8575 	struct ice_vsi *main_vsi;
8576 	bool rem_adv_fltr = true;
8577 	struct ice_channel *ch;
8578 	struct ice_vsi *vsi;
8579 	int tc_idx = 1;
8580 	int i, err;
8581 
8582 	main_vsi = ice_get_main_vsi(pf);
8583 	if (!main_vsi)
8584 		return 0;
8585 
8586 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8587 	    main_vsi->old_numtc == 1)
8588 		return 0; /* nothing to be done */
8589 
8590 	/* reconfigure main VSI based on old value of TC and cached values
8591 	 * for MQPRIO opts
8592 	 */
8593 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8594 	if (err) {
8595 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8596 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8597 		return err;
8598 	}
8599 
8600 	/* rebuild ADQ VSIs */
8601 	ice_for_each_vsi(pf, i) {
8602 		enum ice_vsi_type type;
8603 
8604 		vsi = pf->vsi[i];
8605 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8606 			continue;
8607 
8608 		type = vsi->type;
8609 
8610 		/* rebuild ADQ VSI */
8611 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8612 		if (err) {
8613 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8614 				ice_vsi_type_str(type), vsi->idx, err);
8615 			goto cleanup;
8616 		}
8617 
8618 		/* Re-map HW VSI number, using VSI handle that has been
8619 		 * previously validated in ice_replay_vsi() call above
8620 		 */
8621 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8622 
8623 		/* replay filters for the VSI */
8624 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8625 		if (err) {
8626 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8627 				ice_vsi_type_str(type), err, vsi->idx);
8628 			rem_adv_fltr = false;
8629 			goto cleanup;
8630 		}
8631 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8632 			 ice_vsi_type_str(type), vsi->idx);
8633 
8634 		/* store ADQ VSI at correct TC index in main VSI's
8635 		 * map of TC to VSI
8636 		 */
8637 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8638 	}
8639 
8640 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8641 	 * channel for main VSI's Tx and Rx rings
8642 	 */
8643 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8644 		struct ice_vsi *ch_vsi;
8645 
8646 		ch_vsi = ch->ch_vsi;
8647 		if (!ch_vsi)
8648 			continue;
8649 
8650 		/* reconfig channel resources */
8651 		ice_cfg_chnl_all_res(main_vsi, ch);
8652 
8653 		/* replay BW rate limit if it is non-zero */
8654 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8655 			continue;
8656 
8657 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8658 				       ch->min_tx_rate);
8659 		if (err)
8660 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8661 				err, ch->max_tx_rate, ch->min_tx_rate,
8662 				ch_vsi->vsi_num);
8663 		else
8664 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8665 				ch->max_tx_rate, ch->min_tx_rate,
8666 				ch_vsi->vsi_num);
8667 	}
8668 
8669 	/* reconfig RSS for main VSI */
8670 	if (main_vsi->ch_rss_size)
8671 		ice_vsi_cfg_rss_lut_key(main_vsi);
8672 
8673 	return 0;
8674 
8675 cleanup:
8676 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8677 	return err;
8678 }
8679 
8680 /**
8681  * ice_create_q_channels - Add queue channel for the given TCs
8682  * @vsi: VSI to be configured
8683  *
8684  * Configures queue channel mapping to the given TCs
8685  */
8686 static int ice_create_q_channels(struct ice_vsi *vsi)
8687 {
8688 	struct ice_pf *pf = vsi->back;
8689 	struct ice_channel *ch;
8690 	int ret = 0, i;
8691 
8692 	ice_for_each_chnl_tc(i) {
8693 		if (!(vsi->all_enatc & BIT(i)))
8694 			continue;
8695 
8696 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8697 		if (!ch) {
8698 			ret = -ENOMEM;
8699 			goto err_free;
8700 		}
8701 		INIT_LIST_HEAD(&ch->list);
8702 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8703 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8704 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8705 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8706 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8707 
8708 		/* convert to Kbits/s */
8709 		if (ch->max_tx_rate)
8710 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8711 						  ICE_BW_KBPS_DIVISOR);
8712 		if (ch->min_tx_rate)
8713 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8714 						  ICE_BW_KBPS_DIVISOR);
8715 
8716 		ret = ice_create_q_channel(vsi, ch);
8717 		if (ret) {
8718 			dev_err(ice_pf_to_dev(pf),
8719 				"failed creating channel TC:%d\n", i);
8720 			kfree(ch);
8721 			goto err_free;
8722 		}
8723 		list_add_tail(&ch->list, &vsi->ch_list);
8724 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8725 		dev_dbg(ice_pf_to_dev(pf),
8726 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8727 	}
8728 	return 0;
8729 
8730 err_free:
8731 	ice_remove_q_channels(vsi, false);
8732 
8733 	return ret;
8734 }
8735 
8736 /**
8737  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8738  * @netdev: net device to configure
8739  * @type_data: TC offload data
8740  */
8741 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8742 {
8743 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8744 	struct ice_netdev_priv *np = netdev_priv(netdev);
8745 	struct ice_vsi *vsi = np->vsi;
8746 	struct ice_pf *pf = vsi->back;
8747 	u16 mode, ena_tc_qdisc = 0;
8748 	int cur_txq, cur_rxq;
8749 	u8 hw = 0, num_tcf;
8750 	struct device *dev;
8751 	int ret, i;
8752 
8753 	dev = ice_pf_to_dev(pf);
8754 	num_tcf = mqprio_qopt->qopt.num_tc;
8755 	hw = mqprio_qopt->qopt.hw;
8756 	mode = mqprio_qopt->mode;
8757 	if (!hw) {
8758 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8759 		vsi->ch_rss_size = 0;
8760 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8761 		goto config_tcf;
8762 	}
8763 
8764 	/* Generate queue region map for number of TCF requested */
8765 	for (i = 0; i < num_tcf; i++)
8766 		ena_tc_qdisc |= BIT(i);
8767 
8768 	switch (mode) {
8769 	case TC_MQPRIO_MODE_CHANNEL:
8770 
8771 		if (pf->hw.port_info->is_custom_tx_enabled) {
8772 			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8773 			return -EBUSY;
8774 		}
8775 		ice_tear_down_devlink_rate_tree(pf);
8776 
8777 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8778 		if (ret) {
8779 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8780 				   ret);
8781 			return ret;
8782 		}
8783 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8784 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8785 		/* don't assume state of hw_tc_offload during driver load
8786 		 * and set the flag for TC flower filter if hw_tc_offload
8787 		 * already ON
8788 		 */
8789 		if (vsi->netdev->features & NETIF_F_HW_TC)
8790 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8791 		break;
8792 	default:
8793 		return -EINVAL;
8794 	}
8795 
8796 config_tcf:
8797 
8798 	/* Requesting same TCF configuration as already enabled */
8799 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8800 	    mode != TC_MQPRIO_MODE_CHANNEL)
8801 		return 0;
8802 
8803 	/* Pause VSI queues */
8804 	ice_dis_vsi(vsi, true);
8805 
8806 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8807 		ice_remove_q_channels(vsi, true);
8808 
8809 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8810 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8811 				     num_online_cpus());
8812 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8813 				     num_online_cpus());
8814 	} else {
8815 		/* logic to rebuild VSI, same like ethtool -L */
8816 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8817 
8818 		for (i = 0; i < num_tcf; i++) {
8819 			if (!(ena_tc_qdisc & BIT(i)))
8820 				continue;
8821 
8822 			offset = vsi->mqprio_qopt.qopt.offset[i];
8823 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8824 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8825 		}
8826 		vsi->req_txq = offset + qcount_tx;
8827 		vsi->req_rxq = offset + qcount_rx;
8828 
8829 		/* store away original rss_size info, so that it gets reused
8830 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8831 		 * determine, what should be the rss_sizefor main VSI
8832 		 */
8833 		vsi->orig_rss_size = vsi->rss_size;
8834 	}
8835 
8836 	/* save current values of Tx and Rx queues before calling VSI rebuild
8837 	 * for fallback option
8838 	 */
8839 	cur_txq = vsi->num_txq;
8840 	cur_rxq = vsi->num_rxq;
8841 
8842 	/* proceed with rebuild main VSI using correct number of queues */
8843 	ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
8844 	if (ret) {
8845 		/* fallback to current number of queues */
8846 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8847 		vsi->req_txq = cur_txq;
8848 		vsi->req_rxq = cur_rxq;
8849 		clear_bit(ICE_RESET_FAILED, pf->state);
8850 		if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
8851 			dev_err(dev, "Rebuild of main VSI failed again\n");
8852 			return ret;
8853 		}
8854 	}
8855 
8856 	vsi->all_numtc = num_tcf;
8857 	vsi->all_enatc = ena_tc_qdisc;
8858 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8859 	if (ret) {
8860 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8861 			   vsi->vsi_num);
8862 		goto exit;
8863 	}
8864 
8865 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8866 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8867 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8868 
8869 		/* set TC0 rate limit if specified */
8870 		if (max_tx_rate || min_tx_rate) {
8871 			/* convert to Kbits/s */
8872 			if (max_tx_rate)
8873 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8874 			if (min_tx_rate)
8875 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8876 
8877 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8878 			if (!ret) {
8879 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8880 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8881 			} else {
8882 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8883 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8884 				goto exit;
8885 			}
8886 		}
8887 		ret = ice_create_q_channels(vsi);
8888 		if (ret) {
8889 			netdev_err(netdev, "failed configuring queue channels\n");
8890 			goto exit;
8891 		} else {
8892 			netdev_dbg(netdev, "successfully configured channels\n");
8893 		}
8894 	}
8895 
8896 	if (vsi->ch_rss_size)
8897 		ice_vsi_cfg_rss_lut_key(vsi);
8898 
8899 exit:
8900 	/* if error, reset the all_numtc and all_enatc */
8901 	if (ret) {
8902 		vsi->all_numtc = 0;
8903 		vsi->all_enatc = 0;
8904 	}
8905 	/* resume VSI */
8906 	ice_ena_vsi(vsi, true);
8907 
8908 	return ret;
8909 }
8910 
8911 static LIST_HEAD(ice_block_cb_list);
8912 
8913 static int
8914 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8915 	     void *type_data)
8916 {
8917 	struct ice_netdev_priv *np = netdev_priv(netdev);
8918 	struct ice_pf *pf = np->vsi->back;
8919 	bool locked = false;
8920 	int err;
8921 
8922 	switch (type) {
8923 	case TC_SETUP_BLOCK:
8924 		return flow_block_cb_setup_simple(type_data,
8925 						  &ice_block_cb_list,
8926 						  ice_setup_tc_block_cb,
8927 						  np, np, true);
8928 	case TC_SETUP_QDISC_MQPRIO:
8929 		if (ice_is_eswitch_mode_switchdev(pf)) {
8930 			netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
8931 			return -EOPNOTSUPP;
8932 		}
8933 
8934 		if (pf->adev) {
8935 			mutex_lock(&pf->adev_mutex);
8936 			device_lock(&pf->adev->dev);
8937 			locked = true;
8938 			if (pf->adev->dev.driver) {
8939 				netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
8940 				err = -EBUSY;
8941 				goto adev_unlock;
8942 			}
8943 		}
8944 
8945 		/* setup traffic classifier for receive side */
8946 		mutex_lock(&pf->tc_mutex);
8947 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8948 		mutex_unlock(&pf->tc_mutex);
8949 
8950 adev_unlock:
8951 		if (locked) {
8952 			device_unlock(&pf->adev->dev);
8953 			mutex_unlock(&pf->adev_mutex);
8954 		}
8955 		return err;
8956 	default:
8957 		return -EOPNOTSUPP;
8958 	}
8959 	return -EOPNOTSUPP;
8960 }
8961 
8962 static struct ice_indr_block_priv *
8963 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8964 			   struct net_device *netdev)
8965 {
8966 	struct ice_indr_block_priv *cb_priv;
8967 
8968 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8969 		if (!cb_priv->netdev)
8970 			return NULL;
8971 		if (cb_priv->netdev == netdev)
8972 			return cb_priv;
8973 	}
8974 	return NULL;
8975 }
8976 
8977 static int
8978 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8979 			void *indr_priv)
8980 {
8981 	struct ice_indr_block_priv *priv = indr_priv;
8982 	struct ice_netdev_priv *np = priv->np;
8983 
8984 	switch (type) {
8985 	case TC_SETUP_CLSFLOWER:
8986 		return ice_setup_tc_cls_flower(np, priv->netdev,
8987 					       (struct flow_cls_offload *)
8988 					       type_data);
8989 	default:
8990 		return -EOPNOTSUPP;
8991 	}
8992 }
8993 
8994 static int
8995 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8996 			struct ice_netdev_priv *np,
8997 			struct flow_block_offload *f, void *data,
8998 			void (*cleanup)(struct flow_block_cb *block_cb))
8999 {
9000 	struct ice_indr_block_priv *indr_priv;
9001 	struct flow_block_cb *block_cb;
9002 
9003 	if (!ice_is_tunnel_supported(netdev) &&
9004 	    !(is_vlan_dev(netdev) &&
9005 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
9006 		return -EOPNOTSUPP;
9007 
9008 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9009 		return -EOPNOTSUPP;
9010 
9011 	switch (f->command) {
9012 	case FLOW_BLOCK_BIND:
9013 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9014 		if (indr_priv)
9015 			return -EEXIST;
9016 
9017 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9018 		if (!indr_priv)
9019 			return -ENOMEM;
9020 
9021 		indr_priv->netdev = netdev;
9022 		indr_priv->np = np;
9023 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9024 
9025 		block_cb =
9026 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9027 						 indr_priv, indr_priv,
9028 						 ice_rep_indr_tc_block_unbind,
9029 						 f, netdev, sch, data, np,
9030 						 cleanup);
9031 
9032 		if (IS_ERR(block_cb)) {
9033 			list_del(&indr_priv->list);
9034 			kfree(indr_priv);
9035 			return PTR_ERR(block_cb);
9036 		}
9037 		flow_block_cb_add(block_cb, f);
9038 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9039 		break;
9040 	case FLOW_BLOCK_UNBIND:
9041 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9042 		if (!indr_priv)
9043 			return -ENOENT;
9044 
9045 		block_cb = flow_block_cb_lookup(f->block,
9046 						ice_indr_setup_block_cb,
9047 						indr_priv);
9048 		if (!block_cb)
9049 			return -ENOENT;
9050 
9051 		flow_indr_block_cb_remove(block_cb, f);
9052 
9053 		list_del(&block_cb->driver_list);
9054 		break;
9055 	default:
9056 		return -EOPNOTSUPP;
9057 	}
9058 	return 0;
9059 }
9060 
9061 static int
9062 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9063 		     void *cb_priv, enum tc_setup_type type, void *type_data,
9064 		     void *data,
9065 		     void (*cleanup)(struct flow_block_cb *block_cb))
9066 {
9067 	switch (type) {
9068 	case TC_SETUP_BLOCK:
9069 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9070 					       data, cleanup);
9071 
9072 	default:
9073 		return -EOPNOTSUPP;
9074 	}
9075 }
9076 
9077 /**
9078  * ice_open - Called when a network interface becomes active
9079  * @netdev: network interface device structure
9080  *
9081  * The open entry point is called when a network interface is made
9082  * active by the system (IFF_UP). At this point all resources needed
9083  * for transmit and receive operations are allocated, the interrupt
9084  * handler is registered with the OS, the netdev watchdog is enabled,
9085  * and the stack is notified that the interface is ready.
9086  *
9087  * Returns 0 on success, negative value on failure
9088  */
9089 int ice_open(struct net_device *netdev)
9090 {
9091 	struct ice_netdev_priv *np = netdev_priv(netdev);
9092 	struct ice_pf *pf = np->vsi->back;
9093 
9094 	if (ice_is_reset_in_progress(pf->state)) {
9095 		netdev_err(netdev, "can't open net device while reset is in progress");
9096 		return -EBUSY;
9097 	}
9098 
9099 	return ice_open_internal(netdev);
9100 }
9101 
9102 /**
9103  * ice_open_internal - Called when a network interface becomes active
9104  * @netdev: network interface device structure
9105  *
9106  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9107  * handling routine
9108  *
9109  * Returns 0 on success, negative value on failure
9110  */
9111 int ice_open_internal(struct net_device *netdev)
9112 {
9113 	struct ice_netdev_priv *np = netdev_priv(netdev);
9114 	struct ice_vsi *vsi = np->vsi;
9115 	struct ice_pf *pf = vsi->back;
9116 	struct ice_port_info *pi;
9117 	int err;
9118 
9119 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9120 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9121 		return -EIO;
9122 	}
9123 
9124 	netif_carrier_off(netdev);
9125 
9126 	pi = vsi->port_info;
9127 	err = ice_update_link_info(pi);
9128 	if (err) {
9129 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
9130 		return err;
9131 	}
9132 
9133 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9134 
9135 	/* Set PHY if there is media, otherwise, turn off PHY */
9136 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9137 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9138 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9139 			err = ice_init_phy_user_cfg(pi);
9140 			if (err) {
9141 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9142 					   err);
9143 				return err;
9144 			}
9145 		}
9146 
9147 		err = ice_configure_phy(vsi);
9148 		if (err) {
9149 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9150 				   err);
9151 			return err;
9152 		}
9153 	} else {
9154 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9155 		ice_set_link(vsi, false);
9156 	}
9157 
9158 	err = ice_vsi_open(vsi);
9159 	if (err)
9160 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9161 			   vsi->vsi_num, vsi->vsw->sw_id);
9162 
9163 	/* Update existing tunnels information */
9164 	udp_tunnel_get_rx_info(netdev);
9165 
9166 	return err;
9167 }
9168 
9169 /**
9170  * ice_stop - Disables a network interface
9171  * @netdev: network interface device structure
9172  *
9173  * The stop entry point is called when an interface is de-activated by the OS,
9174  * and the netdevice enters the DOWN state. The hardware is still under the
9175  * driver's control, but the netdev interface is disabled.
9176  *
9177  * Returns success only - not allowed to fail
9178  */
9179 int ice_stop(struct net_device *netdev)
9180 {
9181 	struct ice_netdev_priv *np = netdev_priv(netdev);
9182 	struct ice_vsi *vsi = np->vsi;
9183 	struct ice_pf *pf = vsi->back;
9184 
9185 	if (ice_is_reset_in_progress(pf->state)) {
9186 		netdev_err(netdev, "can't stop net device while reset is in progress");
9187 		return -EBUSY;
9188 	}
9189 
9190 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9191 		int link_err = ice_force_phys_link_state(vsi, false);
9192 
9193 		if (link_err) {
9194 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9195 				   vsi->vsi_num, link_err);
9196 			return -EIO;
9197 		}
9198 	}
9199 
9200 	ice_vsi_close(vsi);
9201 
9202 	return 0;
9203 }
9204 
9205 /**
9206  * ice_features_check - Validate encapsulated packet conforms to limits
9207  * @skb: skb buffer
9208  * @netdev: This port's netdev
9209  * @features: Offload features that the stack believes apply
9210  */
9211 static netdev_features_t
9212 ice_features_check(struct sk_buff *skb,
9213 		   struct net_device __always_unused *netdev,
9214 		   netdev_features_t features)
9215 {
9216 	bool gso = skb_is_gso(skb);
9217 	size_t len;
9218 
9219 	/* No point in doing any of this if neither checksum nor GSO are
9220 	 * being requested for this frame. We can rule out both by just
9221 	 * checking for CHECKSUM_PARTIAL
9222 	 */
9223 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9224 		return features;
9225 
9226 	/* We cannot support GSO if the MSS is going to be less than
9227 	 * 64 bytes. If it is then we need to drop support for GSO.
9228 	 */
9229 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9230 		features &= ~NETIF_F_GSO_MASK;
9231 
9232 	len = skb_network_offset(skb);
9233 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9234 		goto out_rm_features;
9235 
9236 	len = skb_network_header_len(skb);
9237 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9238 		goto out_rm_features;
9239 
9240 	if (skb->encapsulation) {
9241 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9242 		 * the case of IPIP frames, the transport header pointer is
9243 		 * after the inner header! So check to make sure that this
9244 		 * is a GRE or UDP_TUNNEL frame before doing that math.
9245 		 */
9246 		if (gso && (skb_shinfo(skb)->gso_type &
9247 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9248 			len = skb_inner_network_header(skb) -
9249 			      skb_transport_header(skb);
9250 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9251 				goto out_rm_features;
9252 		}
9253 
9254 		len = skb_inner_network_header_len(skb);
9255 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9256 			goto out_rm_features;
9257 	}
9258 
9259 	return features;
9260 out_rm_features:
9261 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9262 }
9263 
9264 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9265 	.ndo_open = ice_open,
9266 	.ndo_stop = ice_stop,
9267 	.ndo_start_xmit = ice_start_xmit,
9268 	.ndo_set_mac_address = ice_set_mac_address,
9269 	.ndo_validate_addr = eth_validate_addr,
9270 	.ndo_change_mtu = ice_change_mtu,
9271 	.ndo_get_stats64 = ice_get_stats64,
9272 	.ndo_tx_timeout = ice_tx_timeout,
9273 	.ndo_bpf = ice_xdp_safe_mode,
9274 };
9275 
9276 static const struct net_device_ops ice_netdev_ops = {
9277 	.ndo_open = ice_open,
9278 	.ndo_stop = ice_stop,
9279 	.ndo_start_xmit = ice_start_xmit,
9280 	.ndo_select_queue = ice_select_queue,
9281 	.ndo_features_check = ice_features_check,
9282 	.ndo_fix_features = ice_fix_features,
9283 	.ndo_set_rx_mode = ice_set_rx_mode,
9284 	.ndo_set_mac_address = ice_set_mac_address,
9285 	.ndo_validate_addr = eth_validate_addr,
9286 	.ndo_change_mtu = ice_change_mtu,
9287 	.ndo_get_stats64 = ice_get_stats64,
9288 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9289 	.ndo_eth_ioctl = ice_eth_ioctl,
9290 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9291 	.ndo_set_vf_mac = ice_set_vf_mac,
9292 	.ndo_get_vf_config = ice_get_vf_cfg,
9293 	.ndo_set_vf_trust = ice_set_vf_trust,
9294 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9295 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9296 	.ndo_get_vf_stats = ice_get_vf_stats,
9297 	.ndo_set_vf_rate = ice_set_vf_bw,
9298 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9299 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9300 	.ndo_setup_tc = ice_setup_tc,
9301 	.ndo_set_features = ice_set_features,
9302 	.ndo_bridge_getlink = ice_bridge_getlink,
9303 	.ndo_bridge_setlink = ice_bridge_setlink,
9304 	.ndo_fdb_add = ice_fdb_add,
9305 	.ndo_fdb_del = ice_fdb_del,
9306 #ifdef CONFIG_RFS_ACCEL
9307 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9308 #endif
9309 	.ndo_tx_timeout = ice_tx_timeout,
9310 	.ndo_bpf = ice_xdp,
9311 	.ndo_xdp_xmit = ice_xdp_xmit,
9312 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9313 };
9314