1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "ice_devlink.h" 17 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 18 * ice tracepoint functions. This must be done exactly once across the 19 * ice driver. 20 */ 21 #define CREATE_TRACE_POINTS 22 #include "ice_trace.h" 23 #include "ice_eswitch.h" 24 #include "ice_tc_lib.h" 25 #include "ice_vsi_vlan_ops.h" 26 #include <net/xdp_sock_drv.h> 27 28 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 29 static const char ice_driver_string[] = DRV_SUMMARY; 30 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 31 32 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 33 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 34 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 35 36 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 37 MODULE_DESCRIPTION(DRV_SUMMARY); 38 MODULE_LICENSE("GPL v2"); 39 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 40 41 static int debug = -1; 42 module_param(debug, int, 0644); 43 #ifndef CONFIG_DYNAMIC_DEBUG 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 45 #else 46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 47 #endif /* !CONFIG_DYNAMIC_DEBUG */ 48 49 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 50 EXPORT_SYMBOL(ice_xdp_locking_key); 51 52 /** 53 * ice_hw_to_dev - Get device pointer from the hardware structure 54 * @hw: pointer to the device HW structure 55 * 56 * Used to access the device pointer from compilation units which can't easily 57 * include the definition of struct ice_pf without leading to circular header 58 * dependencies. 59 */ 60 struct device *ice_hw_to_dev(struct ice_hw *hw) 61 { 62 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 63 64 return &pf->pdev->dev; 65 } 66 67 static struct workqueue_struct *ice_wq; 68 struct workqueue_struct *ice_lag_wq; 69 static const struct net_device_ops ice_netdev_safe_mode_ops; 70 static const struct net_device_ops ice_netdev_ops; 71 72 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 73 74 static void ice_vsi_release_all(struct ice_pf *pf); 75 76 static int ice_rebuild_channels(struct ice_pf *pf); 77 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 78 79 static int 80 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 81 void *cb_priv, enum tc_setup_type type, void *type_data, 82 void *data, 83 void (*cleanup)(struct flow_block_cb *block_cb)); 84 85 bool netif_is_ice(const struct net_device *dev) 86 { 87 return dev && (dev->netdev_ops == &ice_netdev_ops); 88 } 89 90 /** 91 * ice_get_tx_pending - returns number of Tx descriptors not processed 92 * @ring: the ring of descriptors 93 */ 94 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 95 { 96 u16 head, tail; 97 98 head = ring->next_to_clean; 99 tail = ring->next_to_use; 100 101 if (head != tail) 102 return (head < tail) ? 103 tail - head : (tail + ring->count - head); 104 return 0; 105 } 106 107 /** 108 * ice_check_for_hang_subtask - check for and recover hung queues 109 * @pf: pointer to PF struct 110 */ 111 static void ice_check_for_hang_subtask(struct ice_pf *pf) 112 { 113 struct ice_vsi *vsi = NULL; 114 struct ice_hw *hw; 115 unsigned int i; 116 int packets; 117 u32 v; 118 119 ice_for_each_vsi(pf, v) 120 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 121 vsi = pf->vsi[v]; 122 break; 123 } 124 125 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 126 return; 127 128 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 129 return; 130 131 hw = &vsi->back->hw; 132 133 ice_for_each_txq(vsi, i) { 134 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 135 struct ice_ring_stats *ring_stats; 136 137 if (!tx_ring) 138 continue; 139 if (ice_ring_ch_enabled(tx_ring)) 140 continue; 141 142 ring_stats = tx_ring->ring_stats; 143 if (!ring_stats) 144 continue; 145 146 if (tx_ring->desc) { 147 /* If packet counter has not changed the queue is 148 * likely stalled, so force an interrupt for this 149 * queue. 150 * 151 * prev_pkt would be negative if there was no 152 * pending work. 153 */ 154 packets = ring_stats->stats.pkts & INT_MAX; 155 if (ring_stats->tx_stats.prev_pkt == packets) { 156 /* Trigger sw interrupt to revive the queue */ 157 ice_trigger_sw_intr(hw, tx_ring->q_vector); 158 continue; 159 } 160 161 /* Memory barrier between read of packet count and call 162 * to ice_get_tx_pending() 163 */ 164 smp_rmb(); 165 ring_stats->tx_stats.prev_pkt = 166 ice_get_tx_pending(tx_ring) ? packets : -1; 167 } 168 } 169 } 170 171 /** 172 * ice_init_mac_fltr - Set initial MAC filters 173 * @pf: board private structure 174 * 175 * Set initial set of MAC filters for PF VSI; configure filters for permanent 176 * address and broadcast address. If an error is encountered, netdevice will be 177 * unregistered. 178 */ 179 static int ice_init_mac_fltr(struct ice_pf *pf) 180 { 181 struct ice_vsi *vsi; 182 u8 *perm_addr; 183 184 vsi = ice_get_main_vsi(pf); 185 if (!vsi) 186 return -EINVAL; 187 188 perm_addr = vsi->port_info->mac.perm_addr; 189 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 190 } 191 192 /** 193 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 194 * @netdev: the net device on which the sync is happening 195 * @addr: MAC address to sync 196 * 197 * This is a callback function which is called by the in kernel device sync 198 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 199 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 200 * MAC filters from the hardware. 201 */ 202 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 203 { 204 struct ice_netdev_priv *np = netdev_priv(netdev); 205 struct ice_vsi *vsi = np->vsi; 206 207 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 208 ICE_FWD_TO_VSI)) 209 return -EINVAL; 210 211 return 0; 212 } 213 214 /** 215 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 216 * @netdev: the net device on which the unsync is happening 217 * @addr: MAC address to unsync 218 * 219 * This is a callback function which is called by the in kernel device unsync 220 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 221 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 222 * delete the MAC filters from the hardware. 223 */ 224 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 225 { 226 struct ice_netdev_priv *np = netdev_priv(netdev); 227 struct ice_vsi *vsi = np->vsi; 228 229 /* Under some circumstances, we might receive a request to delete our 230 * own device address from our uc list. Because we store the device 231 * address in the VSI's MAC filter list, we need to ignore such 232 * requests and not delete our device address from this list. 233 */ 234 if (ether_addr_equal(addr, netdev->dev_addr)) 235 return 0; 236 237 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 238 ICE_FWD_TO_VSI)) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /** 245 * ice_vsi_fltr_changed - check if filter state changed 246 * @vsi: VSI to be checked 247 * 248 * returns true if filter state has changed, false otherwise. 249 */ 250 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 251 { 252 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 253 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 254 } 255 256 /** 257 * ice_set_promisc - Enable promiscuous mode for a given PF 258 * @vsi: the VSI being configured 259 * @promisc_m: mask of promiscuous config bits 260 * 261 */ 262 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 263 { 264 int status; 265 266 if (vsi->type != ICE_VSI_PF) 267 return 0; 268 269 if (ice_vsi_has_non_zero_vlans(vsi)) { 270 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 271 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 272 promisc_m); 273 } else { 274 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 275 promisc_m, 0); 276 } 277 if (status && status != -EEXIST) 278 return status; 279 280 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 281 vsi->vsi_num, promisc_m); 282 return 0; 283 } 284 285 /** 286 * ice_clear_promisc - Disable promiscuous mode for a given PF 287 * @vsi: the VSI being configured 288 * @promisc_m: mask of promiscuous config bits 289 * 290 */ 291 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 292 { 293 int status; 294 295 if (vsi->type != ICE_VSI_PF) 296 return 0; 297 298 if (ice_vsi_has_non_zero_vlans(vsi)) { 299 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 300 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 301 promisc_m); 302 } else { 303 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 304 promisc_m, 0); 305 } 306 307 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 308 vsi->vsi_num, promisc_m); 309 return status; 310 } 311 312 /** 313 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 314 * @vsi: ptr to the VSI 315 * 316 * Push any outstanding VSI filter changes through the AdminQ. 317 */ 318 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 319 { 320 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 321 struct device *dev = ice_pf_to_dev(vsi->back); 322 struct net_device *netdev = vsi->netdev; 323 bool promisc_forced_on = false; 324 struct ice_pf *pf = vsi->back; 325 struct ice_hw *hw = &pf->hw; 326 u32 changed_flags = 0; 327 int err; 328 329 if (!vsi->netdev) 330 return -EINVAL; 331 332 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 333 usleep_range(1000, 2000); 334 335 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 336 vsi->current_netdev_flags = vsi->netdev->flags; 337 338 INIT_LIST_HEAD(&vsi->tmp_sync_list); 339 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 340 341 if (ice_vsi_fltr_changed(vsi)) { 342 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 343 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 344 345 /* grab the netdev's addr_list_lock */ 346 netif_addr_lock_bh(netdev); 347 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 348 ice_add_mac_to_unsync_list); 349 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 350 ice_add_mac_to_unsync_list); 351 /* our temp lists are populated. release lock */ 352 netif_addr_unlock_bh(netdev); 353 } 354 355 /* Remove MAC addresses in the unsync list */ 356 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 357 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 358 if (err) { 359 netdev_err(netdev, "Failed to delete MAC filters\n"); 360 /* if we failed because of alloc failures, just bail */ 361 if (err == -ENOMEM) 362 goto out; 363 } 364 365 /* Add MAC addresses in the sync list */ 366 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 367 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 368 /* If filter is added successfully or already exists, do not go into 369 * 'if' condition and report it as error. Instead continue processing 370 * rest of the function. 371 */ 372 if (err && err != -EEXIST) { 373 netdev_err(netdev, "Failed to add MAC filters\n"); 374 /* If there is no more space for new umac filters, VSI 375 * should go into promiscuous mode. There should be some 376 * space reserved for promiscuous filters. 377 */ 378 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 379 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 380 vsi->state)) { 381 promisc_forced_on = true; 382 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 383 vsi->vsi_num); 384 } else { 385 goto out; 386 } 387 } 388 err = 0; 389 /* check for changes in promiscuous modes */ 390 if (changed_flags & IFF_ALLMULTI) { 391 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 392 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 393 if (err) { 394 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 395 goto out_promisc; 396 } 397 } else { 398 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 399 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 400 if (err) { 401 vsi->current_netdev_flags |= IFF_ALLMULTI; 402 goto out_promisc; 403 } 404 } 405 } 406 407 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 408 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 409 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 410 if (vsi->current_netdev_flags & IFF_PROMISC) { 411 /* Apply Rx filter rule to get traffic from wire */ 412 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 413 err = ice_set_dflt_vsi(vsi); 414 if (err && err != -EEXIST) { 415 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 416 err, vsi->vsi_num); 417 vsi->current_netdev_flags &= 418 ~IFF_PROMISC; 419 goto out_promisc; 420 } 421 err = 0; 422 vlan_ops->dis_rx_filtering(vsi); 423 424 /* promiscuous mode implies allmulticast so 425 * that VSIs that are in promiscuous mode are 426 * subscribed to multicast packets coming to 427 * the port 428 */ 429 err = ice_set_promisc(vsi, 430 ICE_MCAST_PROMISC_BITS); 431 if (err) 432 goto out_promisc; 433 } 434 } else { 435 /* Clear Rx filter to remove traffic from wire */ 436 if (ice_is_vsi_dflt_vsi(vsi)) { 437 err = ice_clear_dflt_vsi(vsi); 438 if (err) { 439 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 440 err, vsi->vsi_num); 441 vsi->current_netdev_flags |= 442 IFF_PROMISC; 443 goto out_promisc; 444 } 445 if (vsi->netdev->features & 446 NETIF_F_HW_VLAN_CTAG_FILTER) 447 vlan_ops->ena_rx_filtering(vsi); 448 } 449 450 /* disable allmulti here, but only if allmulti is not 451 * still enabled for the netdev 452 */ 453 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 454 err = ice_clear_promisc(vsi, 455 ICE_MCAST_PROMISC_BITS); 456 if (err) { 457 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 458 err, vsi->vsi_num); 459 } 460 } 461 } 462 } 463 goto exit; 464 465 out_promisc: 466 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 467 goto exit; 468 out: 469 /* if something went wrong then set the changed flag so we try again */ 470 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 471 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 472 exit: 473 clear_bit(ICE_CFG_BUSY, vsi->state); 474 return err; 475 } 476 477 /** 478 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 479 * @pf: board private structure 480 */ 481 static void ice_sync_fltr_subtask(struct ice_pf *pf) 482 { 483 int v; 484 485 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 486 return; 487 488 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 489 490 ice_for_each_vsi(pf, v) 491 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 492 ice_vsi_sync_fltr(pf->vsi[v])) { 493 /* come back and try again later */ 494 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 495 break; 496 } 497 } 498 499 /** 500 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 501 * @pf: the PF 502 * @locked: is the rtnl_lock already held 503 */ 504 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 505 { 506 int node; 507 int v; 508 509 ice_for_each_vsi(pf, v) 510 if (pf->vsi[v]) 511 ice_dis_vsi(pf->vsi[v], locked); 512 513 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 514 pf->pf_agg_node[node].num_vsis = 0; 515 516 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 517 pf->vf_agg_node[node].num_vsis = 0; 518 } 519 520 /** 521 * ice_clear_sw_switch_recipes - clear switch recipes 522 * @pf: board private structure 523 * 524 * Mark switch recipes as not created in sw structures. There are cases where 525 * rules (especially advanced rules) need to be restored, either re-read from 526 * hardware or added again. For example after the reset. 'recp_created' flag 527 * prevents from doing that and need to be cleared upfront. 528 */ 529 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 530 { 531 struct ice_sw_recipe *recp; 532 u8 i; 533 534 recp = pf->hw.switch_info->recp_list; 535 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 536 recp[i].recp_created = false; 537 } 538 539 /** 540 * ice_prepare_for_reset - prep for reset 541 * @pf: board private structure 542 * @reset_type: reset type requested 543 * 544 * Inform or close all dependent features in prep for reset. 545 */ 546 static void 547 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 548 { 549 struct ice_hw *hw = &pf->hw; 550 struct ice_vsi *vsi; 551 struct ice_vf *vf; 552 unsigned int bkt; 553 554 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 555 556 /* already prepared for reset */ 557 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 558 return; 559 560 ice_unplug_aux_dev(pf); 561 562 /* Notify VFs of impending reset */ 563 if (ice_check_sq_alive(hw, &hw->mailboxq)) 564 ice_vc_notify_reset(pf); 565 566 /* Disable VFs until reset is completed */ 567 mutex_lock(&pf->vfs.table_lock); 568 ice_for_each_vf(pf, bkt, vf) 569 ice_set_vf_state_dis(vf); 570 mutex_unlock(&pf->vfs.table_lock); 571 572 if (ice_is_eswitch_mode_switchdev(pf)) { 573 if (reset_type != ICE_RESET_PFR) 574 ice_clear_sw_switch_recipes(pf); 575 } 576 577 /* release ADQ specific HW and SW resources */ 578 vsi = ice_get_main_vsi(pf); 579 if (!vsi) 580 goto skip; 581 582 /* to be on safe side, reset orig_rss_size so that normal flow 583 * of deciding rss_size can take precedence 584 */ 585 vsi->orig_rss_size = 0; 586 587 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 588 if (reset_type == ICE_RESET_PFR) { 589 vsi->old_ena_tc = vsi->all_enatc; 590 vsi->old_numtc = vsi->all_numtc; 591 } else { 592 ice_remove_q_channels(vsi, true); 593 594 /* for other reset type, do not support channel rebuild 595 * hence reset needed info 596 */ 597 vsi->old_ena_tc = 0; 598 vsi->all_enatc = 0; 599 vsi->old_numtc = 0; 600 vsi->all_numtc = 0; 601 vsi->req_txq = 0; 602 vsi->req_rxq = 0; 603 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 604 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 605 } 606 } 607 skip: 608 609 /* clear SW filtering DB */ 610 ice_clear_hw_tbls(hw); 611 /* disable the VSIs and their queues that are not already DOWN */ 612 ice_pf_dis_all_vsi(pf, false); 613 614 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 615 ice_ptp_prepare_for_reset(pf); 616 617 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 618 ice_gnss_exit(pf); 619 620 if (hw->port_info) 621 ice_sched_clear_port(hw->port_info); 622 623 ice_shutdown_all_ctrlq(hw); 624 625 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 626 } 627 628 /** 629 * ice_do_reset - Initiate one of many types of resets 630 * @pf: board private structure 631 * @reset_type: reset type requested before this function was called. 632 */ 633 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 634 { 635 struct device *dev = ice_pf_to_dev(pf); 636 struct ice_hw *hw = &pf->hw; 637 638 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 639 640 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 641 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 642 reset_type = ICE_RESET_CORER; 643 } 644 645 ice_prepare_for_reset(pf, reset_type); 646 647 /* trigger the reset */ 648 if (ice_reset(hw, reset_type)) { 649 dev_err(dev, "reset %d failed\n", reset_type); 650 set_bit(ICE_RESET_FAILED, pf->state); 651 clear_bit(ICE_RESET_OICR_RECV, pf->state); 652 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 653 clear_bit(ICE_PFR_REQ, pf->state); 654 clear_bit(ICE_CORER_REQ, pf->state); 655 clear_bit(ICE_GLOBR_REQ, pf->state); 656 wake_up(&pf->reset_wait_queue); 657 return; 658 } 659 660 /* PFR is a bit of a special case because it doesn't result in an OICR 661 * interrupt. So for PFR, rebuild after the reset and clear the reset- 662 * associated state bits. 663 */ 664 if (reset_type == ICE_RESET_PFR) { 665 pf->pfr_count++; 666 ice_rebuild(pf, reset_type); 667 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 668 clear_bit(ICE_PFR_REQ, pf->state); 669 wake_up(&pf->reset_wait_queue); 670 ice_reset_all_vfs(pf); 671 } 672 } 673 674 /** 675 * ice_reset_subtask - Set up for resetting the device and driver 676 * @pf: board private structure 677 */ 678 static void ice_reset_subtask(struct ice_pf *pf) 679 { 680 enum ice_reset_req reset_type = ICE_RESET_INVAL; 681 682 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 683 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 684 * of reset is pending and sets bits in pf->state indicating the reset 685 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 686 * prepare for pending reset if not already (for PF software-initiated 687 * global resets the software should already be prepared for it as 688 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 689 * by firmware or software on other PFs, that bit is not set so prepare 690 * for the reset now), poll for reset done, rebuild and return. 691 */ 692 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 693 /* Perform the largest reset requested */ 694 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 695 reset_type = ICE_RESET_CORER; 696 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 697 reset_type = ICE_RESET_GLOBR; 698 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 699 reset_type = ICE_RESET_EMPR; 700 /* return if no valid reset type requested */ 701 if (reset_type == ICE_RESET_INVAL) 702 return; 703 ice_prepare_for_reset(pf, reset_type); 704 705 /* make sure we are ready to rebuild */ 706 if (ice_check_reset(&pf->hw)) { 707 set_bit(ICE_RESET_FAILED, pf->state); 708 } else { 709 /* done with reset. start rebuild */ 710 pf->hw.reset_ongoing = false; 711 ice_rebuild(pf, reset_type); 712 /* clear bit to resume normal operations, but 713 * ICE_NEEDS_RESTART bit is set in case rebuild failed 714 */ 715 clear_bit(ICE_RESET_OICR_RECV, pf->state); 716 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 717 clear_bit(ICE_PFR_REQ, pf->state); 718 clear_bit(ICE_CORER_REQ, pf->state); 719 clear_bit(ICE_GLOBR_REQ, pf->state); 720 wake_up(&pf->reset_wait_queue); 721 ice_reset_all_vfs(pf); 722 } 723 724 return; 725 } 726 727 /* No pending resets to finish processing. Check for new resets */ 728 if (test_bit(ICE_PFR_REQ, pf->state)) { 729 reset_type = ICE_RESET_PFR; 730 if (pf->lag && pf->lag->bonded) { 731 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 732 reset_type = ICE_RESET_CORER; 733 } 734 } 735 if (test_bit(ICE_CORER_REQ, pf->state)) 736 reset_type = ICE_RESET_CORER; 737 if (test_bit(ICE_GLOBR_REQ, pf->state)) 738 reset_type = ICE_RESET_GLOBR; 739 /* If no valid reset type requested just return */ 740 if (reset_type == ICE_RESET_INVAL) 741 return; 742 743 /* reset if not already down or busy */ 744 if (!test_bit(ICE_DOWN, pf->state) && 745 !test_bit(ICE_CFG_BUSY, pf->state)) { 746 ice_do_reset(pf, reset_type); 747 } 748 } 749 750 /** 751 * ice_print_topo_conflict - print topology conflict message 752 * @vsi: the VSI whose topology status is being checked 753 */ 754 static void ice_print_topo_conflict(struct ice_vsi *vsi) 755 { 756 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 757 case ICE_AQ_LINK_TOPO_CONFLICT: 758 case ICE_AQ_LINK_MEDIA_CONFLICT: 759 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 760 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 761 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 762 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 763 break; 764 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 765 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 766 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 767 else 768 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 769 break; 770 default: 771 break; 772 } 773 } 774 775 /** 776 * ice_print_link_msg - print link up or down message 777 * @vsi: the VSI whose link status is being queried 778 * @isup: boolean for if the link is now up or down 779 */ 780 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 781 { 782 struct ice_aqc_get_phy_caps_data *caps; 783 const char *an_advertised; 784 const char *fec_req; 785 const char *speed; 786 const char *fec; 787 const char *fc; 788 const char *an; 789 int status; 790 791 if (!vsi) 792 return; 793 794 if (vsi->current_isup == isup) 795 return; 796 797 vsi->current_isup = isup; 798 799 if (!isup) { 800 netdev_info(vsi->netdev, "NIC Link is Down\n"); 801 return; 802 } 803 804 switch (vsi->port_info->phy.link_info.link_speed) { 805 case ICE_AQ_LINK_SPEED_100GB: 806 speed = "100 G"; 807 break; 808 case ICE_AQ_LINK_SPEED_50GB: 809 speed = "50 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_40GB: 812 speed = "40 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_25GB: 815 speed = "25 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_20GB: 818 speed = "20 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_10GB: 821 speed = "10 G"; 822 break; 823 case ICE_AQ_LINK_SPEED_5GB: 824 speed = "5 G"; 825 break; 826 case ICE_AQ_LINK_SPEED_2500MB: 827 speed = "2.5 G"; 828 break; 829 case ICE_AQ_LINK_SPEED_1000MB: 830 speed = "1 G"; 831 break; 832 case ICE_AQ_LINK_SPEED_100MB: 833 speed = "100 M"; 834 break; 835 default: 836 speed = "Unknown "; 837 break; 838 } 839 840 switch (vsi->port_info->fc.current_mode) { 841 case ICE_FC_FULL: 842 fc = "Rx/Tx"; 843 break; 844 case ICE_FC_TX_PAUSE: 845 fc = "Tx"; 846 break; 847 case ICE_FC_RX_PAUSE: 848 fc = "Rx"; 849 break; 850 case ICE_FC_NONE: 851 fc = "None"; 852 break; 853 default: 854 fc = "Unknown"; 855 break; 856 } 857 858 /* Get FEC mode based on negotiated link info */ 859 switch (vsi->port_info->phy.link_info.fec_info) { 860 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 861 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 862 fec = "RS-FEC"; 863 break; 864 case ICE_AQ_LINK_25G_KR_FEC_EN: 865 fec = "FC-FEC/BASE-R"; 866 break; 867 default: 868 fec = "NONE"; 869 break; 870 } 871 872 /* check if autoneg completed, might be false due to not supported */ 873 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 874 an = "True"; 875 else 876 an = "False"; 877 878 /* Get FEC mode requested based on PHY caps last SW configuration */ 879 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 880 if (!caps) { 881 fec_req = "Unknown"; 882 an_advertised = "Unknown"; 883 goto done; 884 } 885 886 status = ice_aq_get_phy_caps(vsi->port_info, false, 887 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 888 if (status) 889 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 890 891 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 892 893 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 894 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 895 fec_req = "RS-FEC"; 896 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 897 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 898 fec_req = "FC-FEC/BASE-R"; 899 else 900 fec_req = "NONE"; 901 902 kfree(caps); 903 904 done: 905 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 906 speed, fec_req, fec, an_advertised, an, fc); 907 ice_print_topo_conflict(vsi); 908 } 909 910 /** 911 * ice_vsi_link_event - update the VSI's netdev 912 * @vsi: the VSI on which the link event occurred 913 * @link_up: whether or not the VSI needs to be set up or down 914 */ 915 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 916 { 917 if (!vsi) 918 return; 919 920 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 921 return; 922 923 if (vsi->type == ICE_VSI_PF) { 924 if (link_up == netif_carrier_ok(vsi->netdev)) 925 return; 926 927 if (link_up) { 928 netif_carrier_on(vsi->netdev); 929 netif_tx_wake_all_queues(vsi->netdev); 930 } else { 931 netif_carrier_off(vsi->netdev); 932 netif_tx_stop_all_queues(vsi->netdev); 933 } 934 } 935 } 936 937 /** 938 * ice_set_dflt_mib - send a default config MIB to the FW 939 * @pf: private PF struct 940 * 941 * This function sends a default configuration MIB to the FW. 942 * 943 * If this function errors out at any point, the driver is still able to 944 * function. The main impact is that LFC may not operate as expected. 945 * Therefore an error state in this function should be treated with a DBG 946 * message and continue on with driver rebuild/reenable. 947 */ 948 static void ice_set_dflt_mib(struct ice_pf *pf) 949 { 950 struct device *dev = ice_pf_to_dev(pf); 951 u8 mib_type, *buf, *lldpmib = NULL; 952 u16 len, typelen, offset = 0; 953 struct ice_lldp_org_tlv *tlv; 954 struct ice_hw *hw = &pf->hw; 955 u32 ouisubtype; 956 957 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 958 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 959 if (!lldpmib) { 960 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 961 __func__); 962 return; 963 } 964 965 /* Add ETS CFG TLV */ 966 tlv = (struct ice_lldp_org_tlv *)lldpmib; 967 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 968 ICE_IEEE_ETS_TLV_LEN); 969 tlv->typelen = htons(typelen); 970 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 971 ICE_IEEE_SUBTYPE_ETS_CFG); 972 tlv->ouisubtype = htonl(ouisubtype); 973 974 buf = tlv->tlvinfo; 975 buf[0] = 0; 976 977 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 978 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 979 * Octets 13 - 20 are TSA values - leave as zeros 980 */ 981 buf[5] = 0x64; 982 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 983 offset += len + 2; 984 tlv = (struct ice_lldp_org_tlv *) 985 ((char *)tlv + sizeof(tlv->typelen) + len); 986 987 /* Add ETS REC TLV */ 988 buf = tlv->tlvinfo; 989 tlv->typelen = htons(typelen); 990 991 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 992 ICE_IEEE_SUBTYPE_ETS_REC); 993 tlv->ouisubtype = htonl(ouisubtype); 994 995 /* First octet of buf is reserved 996 * Octets 1 - 4 map UP to TC - all UPs map to zero 997 * Octets 5 - 12 are BW values - set TC 0 to 100%. 998 * Octets 13 - 20 are TSA value - leave as zeros 999 */ 1000 buf[5] = 0x64; 1001 offset += len + 2; 1002 tlv = (struct ice_lldp_org_tlv *) 1003 ((char *)tlv + sizeof(tlv->typelen) + len); 1004 1005 /* Add PFC CFG TLV */ 1006 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1007 ICE_IEEE_PFC_TLV_LEN); 1008 tlv->typelen = htons(typelen); 1009 1010 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1011 ICE_IEEE_SUBTYPE_PFC_CFG); 1012 tlv->ouisubtype = htonl(ouisubtype); 1013 1014 /* Octet 1 left as all zeros - PFC disabled */ 1015 buf[0] = 0x08; 1016 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1017 offset += len + 2; 1018 1019 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1020 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1021 1022 kfree(lldpmib); 1023 } 1024 1025 /** 1026 * ice_check_phy_fw_load - check if PHY FW load failed 1027 * @pf: pointer to PF struct 1028 * @link_cfg_err: bitmap from the link info structure 1029 * 1030 * check if external PHY FW load failed and print an error message if it did 1031 */ 1032 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1033 { 1034 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1035 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1036 return; 1037 } 1038 1039 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1040 return; 1041 1042 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1043 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1044 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1045 } 1046 } 1047 1048 /** 1049 * ice_check_module_power 1050 * @pf: pointer to PF struct 1051 * @link_cfg_err: bitmap from the link info structure 1052 * 1053 * check module power level returned by a previous call to aq_get_link_info 1054 * and print error messages if module power level is not supported 1055 */ 1056 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1057 { 1058 /* if module power level is supported, clear the flag */ 1059 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1060 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1061 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1062 return; 1063 } 1064 1065 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1066 * above block didn't clear this bit, there's nothing to do 1067 */ 1068 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1069 return; 1070 1071 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1072 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1073 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1074 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1075 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1076 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1077 } 1078 } 1079 1080 /** 1081 * ice_check_link_cfg_err - check if link configuration failed 1082 * @pf: pointer to the PF struct 1083 * @link_cfg_err: bitmap from the link info structure 1084 * 1085 * print if any link configuration failure happens due to the value in the 1086 * link_cfg_err parameter in the link info structure 1087 */ 1088 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1089 { 1090 ice_check_module_power(pf, link_cfg_err); 1091 ice_check_phy_fw_load(pf, link_cfg_err); 1092 } 1093 1094 /** 1095 * ice_link_event - process the link event 1096 * @pf: PF that the link event is associated with 1097 * @pi: port_info for the port that the link event is associated with 1098 * @link_up: true if the physical link is up and false if it is down 1099 * @link_speed: current link speed received from the link event 1100 * 1101 * Returns 0 on success and negative on failure 1102 */ 1103 static int 1104 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1105 u16 link_speed) 1106 { 1107 struct device *dev = ice_pf_to_dev(pf); 1108 struct ice_phy_info *phy_info; 1109 struct ice_vsi *vsi; 1110 u16 old_link_speed; 1111 bool old_link; 1112 int status; 1113 1114 phy_info = &pi->phy; 1115 phy_info->link_info_old = phy_info->link_info; 1116 1117 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1118 old_link_speed = phy_info->link_info_old.link_speed; 1119 1120 /* update the link info structures and re-enable link events, 1121 * don't bail on failure due to other book keeping needed 1122 */ 1123 status = ice_update_link_info(pi); 1124 if (status) 1125 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1126 pi->lport, status, 1127 ice_aq_str(pi->hw->adminq.sq_last_status)); 1128 1129 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1130 1131 /* Check if the link state is up after updating link info, and treat 1132 * this event as an UP event since the link is actually UP now. 1133 */ 1134 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1135 link_up = true; 1136 1137 vsi = ice_get_main_vsi(pf); 1138 if (!vsi || !vsi->port_info) 1139 return -EINVAL; 1140 1141 /* turn off PHY if media was removed */ 1142 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1143 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1144 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1145 ice_set_link(vsi, false); 1146 } 1147 1148 /* if the old link up/down and speed is the same as the new */ 1149 if (link_up == old_link && link_speed == old_link_speed) 1150 return 0; 1151 1152 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1153 1154 if (ice_is_dcb_active(pf)) { 1155 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1156 ice_dcb_rebuild(pf); 1157 } else { 1158 if (link_up) 1159 ice_set_dflt_mib(pf); 1160 } 1161 ice_vsi_link_event(vsi, link_up); 1162 ice_print_link_msg(vsi, link_up); 1163 1164 ice_vc_notify_link_state(pf); 1165 1166 return 0; 1167 } 1168 1169 /** 1170 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1171 * @pf: board private structure 1172 */ 1173 static void ice_watchdog_subtask(struct ice_pf *pf) 1174 { 1175 int i; 1176 1177 /* if interface is down do nothing */ 1178 if (test_bit(ICE_DOWN, pf->state) || 1179 test_bit(ICE_CFG_BUSY, pf->state)) 1180 return; 1181 1182 /* make sure we don't do these things too often */ 1183 if (time_before(jiffies, 1184 pf->serv_tmr_prev + pf->serv_tmr_period)) 1185 return; 1186 1187 pf->serv_tmr_prev = jiffies; 1188 1189 /* Update the stats for active netdevs so the network stack 1190 * can look at updated numbers whenever it cares to 1191 */ 1192 ice_update_pf_stats(pf); 1193 ice_for_each_vsi(pf, i) 1194 if (pf->vsi[i] && pf->vsi[i]->netdev) 1195 ice_update_vsi_stats(pf->vsi[i]); 1196 } 1197 1198 /** 1199 * ice_init_link_events - enable/initialize link events 1200 * @pi: pointer to the port_info instance 1201 * 1202 * Returns -EIO on failure, 0 on success 1203 */ 1204 static int ice_init_link_events(struct ice_port_info *pi) 1205 { 1206 u16 mask; 1207 1208 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1209 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1210 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1211 1212 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1213 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1214 pi->lport); 1215 return -EIO; 1216 } 1217 1218 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1219 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1220 pi->lport); 1221 return -EIO; 1222 } 1223 1224 return 0; 1225 } 1226 1227 /** 1228 * ice_handle_link_event - handle link event via ARQ 1229 * @pf: PF that the link event is associated with 1230 * @event: event structure containing link status info 1231 */ 1232 static int 1233 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1234 { 1235 struct ice_aqc_get_link_status_data *link_data; 1236 struct ice_port_info *port_info; 1237 int status; 1238 1239 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1240 port_info = pf->hw.port_info; 1241 if (!port_info) 1242 return -EINVAL; 1243 1244 status = ice_link_event(pf, port_info, 1245 !!(link_data->link_info & ICE_AQ_LINK_UP), 1246 le16_to_cpu(link_data->link_speed)); 1247 if (status) 1248 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1249 status); 1250 1251 return status; 1252 } 1253 1254 /** 1255 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1256 * @pf: pointer to the PF private structure 1257 * @task: intermediate helper storage and identifier for waiting 1258 * @opcode: the opcode to wait for 1259 * 1260 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1261 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1262 * 1263 * Calls are separated to allow caller registering for event before sending 1264 * the command, which mitigates a race between registering and FW responding. 1265 * 1266 * To obtain only the descriptor contents, pass an task->event with null 1267 * msg_buf. If the complete data buffer is desired, allocate the 1268 * task->event.msg_buf with enough space ahead of time. 1269 */ 1270 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1271 u16 opcode) 1272 { 1273 INIT_HLIST_NODE(&task->entry); 1274 task->opcode = opcode; 1275 task->state = ICE_AQ_TASK_WAITING; 1276 1277 spin_lock_bh(&pf->aq_wait_lock); 1278 hlist_add_head(&task->entry, &pf->aq_wait_list); 1279 spin_unlock_bh(&pf->aq_wait_lock); 1280 } 1281 1282 /** 1283 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1284 * @pf: pointer to the PF private structure 1285 * @task: ptr prepared by ice_aq_prep_for_event() 1286 * @timeout: how long to wait, in jiffies 1287 * 1288 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1289 * current thread will be put to sleep until the specified event occurs or 1290 * until the given timeout is reached. 1291 * 1292 * Returns: zero on success, or a negative error code on failure. 1293 */ 1294 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1295 unsigned long timeout) 1296 { 1297 enum ice_aq_task_state *state = &task->state; 1298 struct device *dev = ice_pf_to_dev(pf); 1299 unsigned long start = jiffies; 1300 long ret; 1301 int err; 1302 1303 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1304 *state != ICE_AQ_TASK_WAITING, 1305 timeout); 1306 switch (*state) { 1307 case ICE_AQ_TASK_NOT_PREPARED: 1308 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1309 err = -EINVAL; 1310 break; 1311 case ICE_AQ_TASK_WAITING: 1312 err = ret < 0 ? ret : -ETIMEDOUT; 1313 break; 1314 case ICE_AQ_TASK_CANCELED: 1315 err = ret < 0 ? ret : -ECANCELED; 1316 break; 1317 case ICE_AQ_TASK_COMPLETE: 1318 err = ret < 0 ? ret : 0; 1319 break; 1320 default: 1321 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1322 err = -EINVAL; 1323 break; 1324 } 1325 1326 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1327 jiffies_to_msecs(jiffies - start), 1328 jiffies_to_msecs(timeout), 1329 task->opcode); 1330 1331 spin_lock_bh(&pf->aq_wait_lock); 1332 hlist_del(&task->entry); 1333 spin_unlock_bh(&pf->aq_wait_lock); 1334 1335 return err; 1336 } 1337 1338 /** 1339 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1340 * @pf: pointer to the PF private structure 1341 * @opcode: the opcode of the event 1342 * @event: the event to check 1343 * 1344 * Loops over the current list of pending threads waiting for an AdminQ event. 1345 * For each matching task, copy the contents of the event into the task 1346 * structure and wake up the thread. 1347 * 1348 * If multiple threads wait for the same opcode, they will all be woken up. 1349 * 1350 * Note that event->msg_buf will only be duplicated if the event has a buffer 1351 * with enough space already allocated. Otherwise, only the descriptor and 1352 * message length will be copied. 1353 * 1354 * Returns: true if an event was found, false otherwise 1355 */ 1356 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1357 struct ice_rq_event_info *event) 1358 { 1359 struct ice_rq_event_info *task_ev; 1360 struct ice_aq_task *task; 1361 bool found = false; 1362 1363 spin_lock_bh(&pf->aq_wait_lock); 1364 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1365 if (task->state != ICE_AQ_TASK_WAITING) 1366 continue; 1367 if (task->opcode != opcode) 1368 continue; 1369 1370 task_ev = &task->event; 1371 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1372 task_ev->msg_len = event->msg_len; 1373 1374 /* Only copy the data buffer if a destination was set */ 1375 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1376 memcpy(task_ev->msg_buf, event->msg_buf, 1377 event->buf_len); 1378 task_ev->buf_len = event->buf_len; 1379 } 1380 1381 task->state = ICE_AQ_TASK_COMPLETE; 1382 found = true; 1383 } 1384 spin_unlock_bh(&pf->aq_wait_lock); 1385 1386 if (found) 1387 wake_up(&pf->aq_wait_queue); 1388 } 1389 1390 /** 1391 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1392 * @pf: the PF private structure 1393 * 1394 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1395 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1396 */ 1397 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1398 { 1399 struct ice_aq_task *task; 1400 1401 spin_lock_bh(&pf->aq_wait_lock); 1402 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1403 task->state = ICE_AQ_TASK_CANCELED; 1404 spin_unlock_bh(&pf->aq_wait_lock); 1405 1406 wake_up(&pf->aq_wait_queue); 1407 } 1408 1409 #define ICE_MBX_OVERFLOW_WATERMARK 64 1410 1411 /** 1412 * __ice_clean_ctrlq - helper function to clean controlq rings 1413 * @pf: ptr to struct ice_pf 1414 * @q_type: specific Control queue type 1415 */ 1416 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1417 { 1418 struct device *dev = ice_pf_to_dev(pf); 1419 struct ice_rq_event_info event; 1420 struct ice_hw *hw = &pf->hw; 1421 struct ice_ctl_q_info *cq; 1422 u16 pending, i = 0; 1423 const char *qtype; 1424 u32 oldval, val; 1425 1426 /* Do not clean control queue if/when PF reset fails */ 1427 if (test_bit(ICE_RESET_FAILED, pf->state)) 1428 return 0; 1429 1430 switch (q_type) { 1431 case ICE_CTL_Q_ADMIN: 1432 cq = &hw->adminq; 1433 qtype = "Admin"; 1434 break; 1435 case ICE_CTL_Q_SB: 1436 cq = &hw->sbq; 1437 qtype = "Sideband"; 1438 break; 1439 case ICE_CTL_Q_MAILBOX: 1440 cq = &hw->mailboxq; 1441 qtype = "Mailbox"; 1442 /* we are going to try to detect a malicious VF, so set the 1443 * state to begin detection 1444 */ 1445 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1446 break; 1447 default: 1448 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1449 return 0; 1450 } 1451 1452 /* check for error indications - PF_xx_AxQLEN register layout for 1453 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1454 */ 1455 val = rd32(hw, cq->rq.len); 1456 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1457 PF_FW_ARQLEN_ARQCRIT_M)) { 1458 oldval = val; 1459 if (val & PF_FW_ARQLEN_ARQVFE_M) 1460 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1461 qtype); 1462 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1463 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1464 qtype); 1465 } 1466 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1467 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1468 qtype); 1469 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1470 PF_FW_ARQLEN_ARQCRIT_M); 1471 if (oldval != val) 1472 wr32(hw, cq->rq.len, val); 1473 } 1474 1475 val = rd32(hw, cq->sq.len); 1476 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1477 PF_FW_ATQLEN_ATQCRIT_M)) { 1478 oldval = val; 1479 if (val & PF_FW_ATQLEN_ATQVFE_M) 1480 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1481 qtype); 1482 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1483 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1484 qtype); 1485 } 1486 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1487 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1488 qtype); 1489 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1490 PF_FW_ATQLEN_ATQCRIT_M); 1491 if (oldval != val) 1492 wr32(hw, cq->sq.len, val); 1493 } 1494 1495 event.buf_len = cq->rq_buf_size; 1496 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1497 if (!event.msg_buf) 1498 return 0; 1499 1500 do { 1501 struct ice_mbx_data data = {}; 1502 u16 opcode; 1503 int ret; 1504 1505 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1506 if (ret == -EALREADY) 1507 break; 1508 if (ret) { 1509 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1510 ret); 1511 break; 1512 } 1513 1514 opcode = le16_to_cpu(event.desc.opcode); 1515 1516 /* Notify any thread that might be waiting for this event */ 1517 ice_aq_check_events(pf, opcode, &event); 1518 1519 switch (opcode) { 1520 case ice_aqc_opc_get_link_status: 1521 if (ice_handle_link_event(pf, &event)) 1522 dev_err(dev, "Could not handle link event\n"); 1523 break; 1524 case ice_aqc_opc_event_lan_overflow: 1525 ice_vf_lan_overflow_event(pf, &event); 1526 break; 1527 case ice_mbx_opc_send_msg_to_pf: 1528 data.num_msg_proc = i; 1529 data.num_pending_arq = pending; 1530 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1531 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1532 1533 ice_vc_process_vf_msg(pf, &event, &data); 1534 break; 1535 case ice_aqc_opc_fw_logging: 1536 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1537 break; 1538 case ice_aqc_opc_lldp_set_mib_change: 1539 ice_dcb_process_lldp_set_mib_change(pf, &event); 1540 break; 1541 default: 1542 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1543 qtype, opcode); 1544 break; 1545 } 1546 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1547 1548 kfree(event.msg_buf); 1549 1550 return pending && (i == ICE_DFLT_IRQ_WORK); 1551 } 1552 1553 /** 1554 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1555 * @hw: pointer to hardware info 1556 * @cq: control queue information 1557 * 1558 * returns true if there are pending messages in a queue, false if there aren't 1559 */ 1560 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1561 { 1562 u16 ntu; 1563 1564 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1565 return cq->rq.next_to_clean != ntu; 1566 } 1567 1568 /** 1569 * ice_clean_adminq_subtask - clean the AdminQ rings 1570 * @pf: board private structure 1571 */ 1572 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1573 { 1574 struct ice_hw *hw = &pf->hw; 1575 1576 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1577 return; 1578 1579 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1580 return; 1581 1582 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1583 1584 /* There might be a situation where new messages arrive to a control 1585 * queue between processing the last message and clearing the 1586 * EVENT_PENDING bit. So before exiting, check queue head again (using 1587 * ice_ctrlq_pending) and process new messages if any. 1588 */ 1589 if (ice_ctrlq_pending(hw, &hw->adminq)) 1590 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1591 1592 ice_flush(hw); 1593 } 1594 1595 /** 1596 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1597 * @pf: board private structure 1598 */ 1599 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1600 { 1601 struct ice_hw *hw = &pf->hw; 1602 1603 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1604 return; 1605 1606 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1607 return; 1608 1609 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1610 1611 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1612 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1613 1614 ice_flush(hw); 1615 } 1616 1617 /** 1618 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1619 * @pf: board private structure 1620 */ 1621 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1622 { 1623 struct ice_hw *hw = &pf->hw; 1624 1625 /* Nothing to do here if sideband queue is not supported */ 1626 if (!ice_is_sbq_supported(hw)) { 1627 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1628 return; 1629 } 1630 1631 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1632 return; 1633 1634 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1635 return; 1636 1637 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1638 1639 if (ice_ctrlq_pending(hw, &hw->sbq)) 1640 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1641 1642 ice_flush(hw); 1643 } 1644 1645 /** 1646 * ice_service_task_schedule - schedule the service task to wake up 1647 * @pf: board private structure 1648 * 1649 * If not already scheduled, this puts the task into the work queue. 1650 */ 1651 void ice_service_task_schedule(struct ice_pf *pf) 1652 { 1653 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1654 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1655 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1656 queue_work(ice_wq, &pf->serv_task); 1657 } 1658 1659 /** 1660 * ice_service_task_complete - finish up the service task 1661 * @pf: board private structure 1662 */ 1663 static void ice_service_task_complete(struct ice_pf *pf) 1664 { 1665 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1666 1667 /* force memory (pf->state) to sync before next service task */ 1668 smp_mb__before_atomic(); 1669 clear_bit(ICE_SERVICE_SCHED, pf->state); 1670 } 1671 1672 /** 1673 * ice_service_task_stop - stop service task and cancel works 1674 * @pf: board private structure 1675 * 1676 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1677 * 1 otherwise. 1678 */ 1679 static int ice_service_task_stop(struct ice_pf *pf) 1680 { 1681 int ret; 1682 1683 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1684 1685 if (pf->serv_tmr.function) 1686 del_timer_sync(&pf->serv_tmr); 1687 if (pf->serv_task.func) 1688 cancel_work_sync(&pf->serv_task); 1689 1690 clear_bit(ICE_SERVICE_SCHED, pf->state); 1691 return ret; 1692 } 1693 1694 /** 1695 * ice_service_task_restart - restart service task and schedule works 1696 * @pf: board private structure 1697 * 1698 * This function is needed for suspend and resume works (e.g WoL scenario) 1699 */ 1700 static void ice_service_task_restart(struct ice_pf *pf) 1701 { 1702 clear_bit(ICE_SERVICE_DIS, pf->state); 1703 ice_service_task_schedule(pf); 1704 } 1705 1706 /** 1707 * ice_service_timer - timer callback to schedule service task 1708 * @t: pointer to timer_list 1709 */ 1710 static void ice_service_timer(struct timer_list *t) 1711 { 1712 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1713 1714 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1715 ice_service_task_schedule(pf); 1716 } 1717 1718 /** 1719 * ice_handle_mdd_event - handle malicious driver detect event 1720 * @pf: pointer to the PF structure 1721 * 1722 * Called from service task. OICR interrupt handler indicates MDD event. 1723 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1724 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1725 * disable the queue, the PF can be configured to reset the VF using ethtool 1726 * private flag mdd-auto-reset-vf. 1727 */ 1728 static void ice_handle_mdd_event(struct ice_pf *pf) 1729 { 1730 struct device *dev = ice_pf_to_dev(pf); 1731 struct ice_hw *hw = &pf->hw; 1732 struct ice_vf *vf; 1733 unsigned int bkt; 1734 u32 reg; 1735 1736 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1737 /* Since the VF MDD event logging is rate limited, check if 1738 * there are pending MDD events. 1739 */ 1740 ice_print_vfs_mdd_events(pf); 1741 return; 1742 } 1743 1744 /* find what triggered an MDD event */ 1745 reg = rd32(hw, GL_MDET_TX_PQM); 1746 if (reg & GL_MDET_TX_PQM_VALID_M) { 1747 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1748 GL_MDET_TX_PQM_PF_NUM_S; 1749 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1750 GL_MDET_TX_PQM_VF_NUM_S; 1751 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1752 GL_MDET_TX_PQM_MAL_TYPE_S; 1753 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1754 GL_MDET_TX_PQM_QNUM_S); 1755 1756 if (netif_msg_tx_err(pf)) 1757 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1758 event, queue, pf_num, vf_num); 1759 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1760 } 1761 1762 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1763 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1764 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1765 GL_MDET_TX_TCLAN_PF_NUM_S; 1766 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1767 GL_MDET_TX_TCLAN_VF_NUM_S; 1768 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1769 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1770 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1771 GL_MDET_TX_TCLAN_QNUM_S); 1772 1773 if (netif_msg_tx_err(pf)) 1774 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1775 event, queue, pf_num, vf_num); 1776 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1777 } 1778 1779 reg = rd32(hw, GL_MDET_RX); 1780 if (reg & GL_MDET_RX_VALID_M) { 1781 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1782 GL_MDET_RX_PF_NUM_S; 1783 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1784 GL_MDET_RX_VF_NUM_S; 1785 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1786 GL_MDET_RX_MAL_TYPE_S; 1787 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1788 GL_MDET_RX_QNUM_S); 1789 1790 if (netif_msg_rx_err(pf)) 1791 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1792 event, queue, pf_num, vf_num); 1793 wr32(hw, GL_MDET_RX, 0xffffffff); 1794 } 1795 1796 /* check to see if this PF caused an MDD event */ 1797 reg = rd32(hw, PF_MDET_TX_PQM); 1798 if (reg & PF_MDET_TX_PQM_VALID_M) { 1799 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1800 if (netif_msg_tx_err(pf)) 1801 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1802 } 1803 1804 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1805 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1806 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1807 if (netif_msg_tx_err(pf)) 1808 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1809 } 1810 1811 reg = rd32(hw, PF_MDET_RX); 1812 if (reg & PF_MDET_RX_VALID_M) { 1813 wr32(hw, PF_MDET_RX, 0xFFFF); 1814 if (netif_msg_rx_err(pf)) 1815 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1816 } 1817 1818 /* Check to see if one of the VFs caused an MDD event, and then 1819 * increment counters and set print pending 1820 */ 1821 mutex_lock(&pf->vfs.table_lock); 1822 ice_for_each_vf(pf, bkt, vf) { 1823 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1824 if (reg & VP_MDET_TX_PQM_VALID_M) { 1825 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1826 vf->mdd_tx_events.count++; 1827 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1828 if (netif_msg_tx_err(pf)) 1829 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1830 vf->vf_id); 1831 } 1832 1833 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1834 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1835 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1836 vf->mdd_tx_events.count++; 1837 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1838 if (netif_msg_tx_err(pf)) 1839 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1840 vf->vf_id); 1841 } 1842 1843 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1844 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1845 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1846 vf->mdd_tx_events.count++; 1847 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1848 if (netif_msg_tx_err(pf)) 1849 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1850 vf->vf_id); 1851 } 1852 1853 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1854 if (reg & VP_MDET_RX_VALID_M) { 1855 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1856 vf->mdd_rx_events.count++; 1857 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1858 if (netif_msg_rx_err(pf)) 1859 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1860 vf->vf_id); 1861 1862 /* Since the queue is disabled on VF Rx MDD events, the 1863 * PF can be configured to reset the VF through ethtool 1864 * private flag mdd-auto-reset-vf. 1865 */ 1866 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1867 /* VF MDD event counters will be cleared by 1868 * reset, so print the event prior to reset. 1869 */ 1870 ice_print_vf_rx_mdd_event(vf); 1871 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1872 } 1873 } 1874 } 1875 mutex_unlock(&pf->vfs.table_lock); 1876 1877 ice_print_vfs_mdd_events(pf); 1878 } 1879 1880 /** 1881 * ice_force_phys_link_state - Force the physical link state 1882 * @vsi: VSI to force the physical link state to up/down 1883 * @link_up: true/false indicates to set the physical link to up/down 1884 * 1885 * Force the physical link state by getting the current PHY capabilities from 1886 * hardware and setting the PHY config based on the determined capabilities. If 1887 * link changes a link event will be triggered because both the Enable Automatic 1888 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1889 * 1890 * Returns 0 on success, negative on failure 1891 */ 1892 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1893 { 1894 struct ice_aqc_get_phy_caps_data *pcaps; 1895 struct ice_aqc_set_phy_cfg_data *cfg; 1896 struct ice_port_info *pi; 1897 struct device *dev; 1898 int retcode; 1899 1900 if (!vsi || !vsi->port_info || !vsi->back) 1901 return -EINVAL; 1902 if (vsi->type != ICE_VSI_PF) 1903 return 0; 1904 1905 dev = ice_pf_to_dev(vsi->back); 1906 1907 pi = vsi->port_info; 1908 1909 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1910 if (!pcaps) 1911 return -ENOMEM; 1912 1913 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1914 NULL); 1915 if (retcode) { 1916 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1917 vsi->vsi_num, retcode); 1918 retcode = -EIO; 1919 goto out; 1920 } 1921 1922 /* No change in link */ 1923 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1924 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1925 goto out; 1926 1927 /* Use the current user PHY configuration. The current user PHY 1928 * configuration is initialized during probe from PHY capabilities 1929 * software mode, and updated on set PHY configuration. 1930 */ 1931 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1932 if (!cfg) { 1933 retcode = -ENOMEM; 1934 goto out; 1935 } 1936 1937 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1938 if (link_up) 1939 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1940 else 1941 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1942 1943 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1944 if (retcode) { 1945 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1946 vsi->vsi_num, retcode); 1947 retcode = -EIO; 1948 } 1949 1950 kfree(cfg); 1951 out: 1952 kfree(pcaps); 1953 return retcode; 1954 } 1955 1956 /** 1957 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1958 * @pi: port info structure 1959 * 1960 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1961 */ 1962 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1963 { 1964 struct ice_aqc_get_phy_caps_data *pcaps; 1965 struct ice_pf *pf = pi->hw->back; 1966 int err; 1967 1968 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1969 if (!pcaps) 1970 return -ENOMEM; 1971 1972 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1973 pcaps, NULL); 1974 1975 if (err) { 1976 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1977 goto out; 1978 } 1979 1980 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1981 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1982 1983 out: 1984 kfree(pcaps); 1985 return err; 1986 } 1987 1988 /** 1989 * ice_init_link_dflt_override - Initialize link default override 1990 * @pi: port info structure 1991 * 1992 * Initialize link default override and PHY total port shutdown during probe 1993 */ 1994 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1995 { 1996 struct ice_link_default_override_tlv *ldo; 1997 struct ice_pf *pf = pi->hw->back; 1998 1999 ldo = &pf->link_dflt_override; 2000 if (ice_get_link_default_override(ldo, pi)) 2001 return; 2002 2003 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2004 return; 2005 2006 /* Enable Total Port Shutdown (override/replace link-down-on-close 2007 * ethtool private flag) for ports with Port Disable bit set. 2008 */ 2009 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2010 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2011 } 2012 2013 /** 2014 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2015 * @pi: port info structure 2016 * 2017 * If default override is enabled, initialize the user PHY cfg speed and FEC 2018 * settings using the default override mask from the NVM. 2019 * 2020 * The PHY should only be configured with the default override settings the 2021 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2022 * is used to indicate that the user PHY cfg default override is initialized 2023 * and the PHY has not been configured with the default override settings. The 2024 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2025 * configured. 2026 * 2027 * This function should be called only if the FW doesn't support default 2028 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2029 */ 2030 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2031 { 2032 struct ice_link_default_override_tlv *ldo; 2033 struct ice_aqc_set_phy_cfg_data *cfg; 2034 struct ice_phy_info *phy = &pi->phy; 2035 struct ice_pf *pf = pi->hw->back; 2036 2037 ldo = &pf->link_dflt_override; 2038 2039 /* If link default override is enabled, use to mask NVM PHY capabilities 2040 * for speed and FEC default configuration. 2041 */ 2042 cfg = &phy->curr_user_phy_cfg; 2043 2044 if (ldo->phy_type_low || ldo->phy_type_high) { 2045 cfg->phy_type_low = pf->nvm_phy_type_lo & 2046 cpu_to_le64(ldo->phy_type_low); 2047 cfg->phy_type_high = pf->nvm_phy_type_hi & 2048 cpu_to_le64(ldo->phy_type_high); 2049 } 2050 cfg->link_fec_opt = ldo->fec_options; 2051 phy->curr_user_fec_req = ICE_FEC_AUTO; 2052 2053 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2054 } 2055 2056 /** 2057 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2058 * @pi: port info structure 2059 * 2060 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2061 * mode to default. The PHY defaults are from get PHY capabilities topology 2062 * with media so call when media is first available. An error is returned if 2063 * called when media is not available. The PHY initialization completed state is 2064 * set here. 2065 * 2066 * These configurations are used when setting PHY 2067 * configuration. The user PHY configuration is updated on set PHY 2068 * configuration. Returns 0 on success, negative on failure 2069 */ 2070 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2071 { 2072 struct ice_aqc_get_phy_caps_data *pcaps; 2073 struct ice_phy_info *phy = &pi->phy; 2074 struct ice_pf *pf = pi->hw->back; 2075 int err; 2076 2077 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2078 return -EIO; 2079 2080 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2081 if (!pcaps) 2082 return -ENOMEM; 2083 2084 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2085 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2086 pcaps, NULL); 2087 else 2088 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2089 pcaps, NULL); 2090 if (err) { 2091 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2092 goto err_out; 2093 } 2094 2095 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2096 2097 /* check if lenient mode is supported and enabled */ 2098 if (ice_fw_supports_link_override(pi->hw) && 2099 !(pcaps->module_compliance_enforcement & 2100 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2101 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2102 2103 /* if the FW supports default PHY configuration mode, then the driver 2104 * does not have to apply link override settings. If not, 2105 * initialize user PHY configuration with link override values 2106 */ 2107 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2108 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2109 ice_init_phy_cfg_dflt_override(pi); 2110 goto out; 2111 } 2112 } 2113 2114 /* if link default override is not enabled, set user flow control and 2115 * FEC settings based on what get_phy_caps returned 2116 */ 2117 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2118 pcaps->link_fec_options); 2119 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2120 2121 out: 2122 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2123 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2124 err_out: 2125 kfree(pcaps); 2126 return err; 2127 } 2128 2129 /** 2130 * ice_configure_phy - configure PHY 2131 * @vsi: VSI of PHY 2132 * 2133 * Set the PHY configuration. If the current PHY configuration is the same as 2134 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2135 * configure the based get PHY capabilities for topology with media. 2136 */ 2137 static int ice_configure_phy(struct ice_vsi *vsi) 2138 { 2139 struct device *dev = ice_pf_to_dev(vsi->back); 2140 struct ice_port_info *pi = vsi->port_info; 2141 struct ice_aqc_get_phy_caps_data *pcaps; 2142 struct ice_aqc_set_phy_cfg_data *cfg; 2143 struct ice_phy_info *phy = &pi->phy; 2144 struct ice_pf *pf = vsi->back; 2145 int err; 2146 2147 /* Ensure we have media as we cannot configure a medialess port */ 2148 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2149 return -EPERM; 2150 2151 ice_print_topo_conflict(vsi); 2152 2153 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2154 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2155 return -EPERM; 2156 2157 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2158 return ice_force_phys_link_state(vsi, true); 2159 2160 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2161 if (!pcaps) 2162 return -ENOMEM; 2163 2164 /* Get current PHY config */ 2165 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2166 NULL); 2167 if (err) { 2168 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2169 vsi->vsi_num, err); 2170 goto done; 2171 } 2172 2173 /* If PHY enable link is configured and configuration has not changed, 2174 * there's nothing to do 2175 */ 2176 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2177 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2178 goto done; 2179 2180 /* Use PHY topology as baseline for configuration */ 2181 memset(pcaps, 0, sizeof(*pcaps)); 2182 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2183 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2184 pcaps, NULL); 2185 else 2186 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2187 pcaps, NULL); 2188 if (err) { 2189 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2190 vsi->vsi_num, err); 2191 goto done; 2192 } 2193 2194 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2195 if (!cfg) { 2196 err = -ENOMEM; 2197 goto done; 2198 } 2199 2200 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2201 2202 /* Speed - If default override pending, use curr_user_phy_cfg set in 2203 * ice_init_phy_user_cfg_ldo. 2204 */ 2205 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2206 vsi->back->state)) { 2207 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2208 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2209 } else { 2210 u64 phy_low = 0, phy_high = 0; 2211 2212 ice_update_phy_type(&phy_low, &phy_high, 2213 pi->phy.curr_user_speed_req); 2214 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2215 cfg->phy_type_high = pcaps->phy_type_high & 2216 cpu_to_le64(phy_high); 2217 } 2218 2219 /* Can't provide what was requested; use PHY capabilities */ 2220 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2221 cfg->phy_type_low = pcaps->phy_type_low; 2222 cfg->phy_type_high = pcaps->phy_type_high; 2223 } 2224 2225 /* FEC */ 2226 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2227 2228 /* Can't provide what was requested; use PHY capabilities */ 2229 if (cfg->link_fec_opt != 2230 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2231 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2232 cfg->link_fec_opt = pcaps->link_fec_options; 2233 } 2234 2235 /* Flow Control - always supported; no need to check against 2236 * capabilities 2237 */ 2238 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2239 2240 /* Enable link and link update */ 2241 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2242 2243 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2244 if (err) 2245 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2246 vsi->vsi_num, err); 2247 2248 kfree(cfg); 2249 done: 2250 kfree(pcaps); 2251 return err; 2252 } 2253 2254 /** 2255 * ice_check_media_subtask - Check for media 2256 * @pf: pointer to PF struct 2257 * 2258 * If media is available, then initialize PHY user configuration if it is not 2259 * been, and configure the PHY if the interface is up. 2260 */ 2261 static void ice_check_media_subtask(struct ice_pf *pf) 2262 { 2263 struct ice_port_info *pi; 2264 struct ice_vsi *vsi; 2265 int err; 2266 2267 /* No need to check for media if it's already present */ 2268 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2269 return; 2270 2271 vsi = ice_get_main_vsi(pf); 2272 if (!vsi) 2273 return; 2274 2275 /* Refresh link info and check if media is present */ 2276 pi = vsi->port_info; 2277 err = ice_update_link_info(pi); 2278 if (err) 2279 return; 2280 2281 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2282 2283 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2284 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2285 ice_init_phy_user_cfg(pi); 2286 2287 /* PHY settings are reset on media insertion, reconfigure 2288 * PHY to preserve settings. 2289 */ 2290 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2291 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2292 return; 2293 2294 err = ice_configure_phy(vsi); 2295 if (!err) 2296 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2297 2298 /* A Link Status Event will be generated; the event handler 2299 * will complete bringing the interface up 2300 */ 2301 } 2302 } 2303 2304 /** 2305 * ice_service_task - manage and run subtasks 2306 * @work: pointer to work_struct contained by the PF struct 2307 */ 2308 static void ice_service_task(struct work_struct *work) 2309 { 2310 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2311 unsigned long start_time = jiffies; 2312 2313 /* subtasks */ 2314 2315 /* process reset requests first */ 2316 ice_reset_subtask(pf); 2317 2318 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2319 if (ice_is_reset_in_progress(pf->state) || 2320 test_bit(ICE_SUSPENDED, pf->state) || 2321 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2322 ice_service_task_complete(pf); 2323 return; 2324 } 2325 2326 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2327 struct iidc_event *event; 2328 2329 event = kzalloc(sizeof(*event), GFP_KERNEL); 2330 if (event) { 2331 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2332 /* report the entire OICR value to AUX driver */ 2333 swap(event->reg, pf->oicr_err_reg); 2334 ice_send_event_to_aux(pf, event); 2335 kfree(event); 2336 } 2337 } 2338 2339 /* unplug aux dev per request, if an unplug request came in 2340 * while processing a plug request, this will handle it 2341 */ 2342 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2343 ice_unplug_aux_dev(pf); 2344 2345 /* Plug aux device per request */ 2346 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2347 ice_plug_aux_dev(pf); 2348 2349 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2350 struct iidc_event *event; 2351 2352 event = kzalloc(sizeof(*event), GFP_KERNEL); 2353 if (event) { 2354 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2355 ice_send_event_to_aux(pf, event); 2356 kfree(event); 2357 } 2358 } 2359 2360 ice_clean_adminq_subtask(pf); 2361 ice_check_media_subtask(pf); 2362 ice_check_for_hang_subtask(pf); 2363 ice_sync_fltr_subtask(pf); 2364 ice_handle_mdd_event(pf); 2365 ice_watchdog_subtask(pf); 2366 2367 if (ice_is_safe_mode(pf)) { 2368 ice_service_task_complete(pf); 2369 return; 2370 } 2371 2372 ice_process_vflr_event(pf); 2373 ice_clean_mailboxq_subtask(pf); 2374 ice_clean_sbq_subtask(pf); 2375 ice_sync_arfs_fltrs(pf); 2376 ice_flush_fdir_ctx(pf); 2377 2378 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2379 ice_service_task_complete(pf); 2380 2381 /* If the tasks have taken longer than one service timer period 2382 * or there is more work to be done, reset the service timer to 2383 * schedule the service task now. 2384 */ 2385 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2386 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2387 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2388 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2389 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2390 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2391 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2392 mod_timer(&pf->serv_tmr, jiffies); 2393 } 2394 2395 /** 2396 * ice_set_ctrlq_len - helper function to set controlq length 2397 * @hw: pointer to the HW instance 2398 */ 2399 static void ice_set_ctrlq_len(struct ice_hw *hw) 2400 { 2401 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2402 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2403 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2404 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2405 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2406 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2407 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2408 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2409 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2410 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2411 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2412 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2413 } 2414 2415 /** 2416 * ice_schedule_reset - schedule a reset 2417 * @pf: board private structure 2418 * @reset: reset being requested 2419 */ 2420 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2421 { 2422 struct device *dev = ice_pf_to_dev(pf); 2423 2424 /* bail out if earlier reset has failed */ 2425 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2426 dev_dbg(dev, "earlier reset has failed\n"); 2427 return -EIO; 2428 } 2429 /* bail if reset/recovery already in progress */ 2430 if (ice_is_reset_in_progress(pf->state)) { 2431 dev_dbg(dev, "Reset already in progress\n"); 2432 return -EBUSY; 2433 } 2434 2435 switch (reset) { 2436 case ICE_RESET_PFR: 2437 set_bit(ICE_PFR_REQ, pf->state); 2438 break; 2439 case ICE_RESET_CORER: 2440 set_bit(ICE_CORER_REQ, pf->state); 2441 break; 2442 case ICE_RESET_GLOBR: 2443 set_bit(ICE_GLOBR_REQ, pf->state); 2444 break; 2445 default: 2446 return -EINVAL; 2447 } 2448 2449 ice_service_task_schedule(pf); 2450 return 0; 2451 } 2452 2453 /** 2454 * ice_irq_affinity_notify - Callback for affinity changes 2455 * @notify: context as to what irq was changed 2456 * @mask: the new affinity mask 2457 * 2458 * This is a callback function used by the irq_set_affinity_notifier function 2459 * so that we may register to receive changes to the irq affinity masks. 2460 */ 2461 static void 2462 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2463 const cpumask_t *mask) 2464 { 2465 struct ice_q_vector *q_vector = 2466 container_of(notify, struct ice_q_vector, affinity_notify); 2467 2468 cpumask_copy(&q_vector->affinity_mask, mask); 2469 } 2470 2471 /** 2472 * ice_irq_affinity_release - Callback for affinity notifier release 2473 * @ref: internal core kernel usage 2474 * 2475 * This is a callback function used by the irq_set_affinity_notifier function 2476 * to inform the current notification subscriber that they will no longer 2477 * receive notifications. 2478 */ 2479 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2480 2481 /** 2482 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2483 * @vsi: the VSI being configured 2484 */ 2485 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2486 { 2487 struct ice_hw *hw = &vsi->back->hw; 2488 int i; 2489 2490 ice_for_each_q_vector(vsi, i) 2491 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2492 2493 ice_flush(hw); 2494 return 0; 2495 } 2496 2497 /** 2498 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2499 * @vsi: the VSI being configured 2500 * @basename: name for the vector 2501 */ 2502 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2503 { 2504 int q_vectors = vsi->num_q_vectors; 2505 struct ice_pf *pf = vsi->back; 2506 struct device *dev; 2507 int rx_int_idx = 0; 2508 int tx_int_idx = 0; 2509 int vector, err; 2510 int irq_num; 2511 2512 dev = ice_pf_to_dev(pf); 2513 for (vector = 0; vector < q_vectors; vector++) { 2514 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2515 2516 irq_num = q_vector->irq.virq; 2517 2518 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2519 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2520 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2521 tx_int_idx++; 2522 } else if (q_vector->rx.rx_ring) { 2523 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2524 "%s-%s-%d", basename, "rx", rx_int_idx++); 2525 } else if (q_vector->tx.tx_ring) { 2526 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2527 "%s-%s-%d", basename, "tx", tx_int_idx++); 2528 } else { 2529 /* skip this unused q_vector */ 2530 continue; 2531 } 2532 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2533 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2534 IRQF_SHARED, q_vector->name, 2535 q_vector); 2536 else 2537 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2538 0, q_vector->name, q_vector); 2539 if (err) { 2540 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2541 err); 2542 goto free_q_irqs; 2543 } 2544 2545 /* register for affinity change notifications */ 2546 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2547 struct irq_affinity_notify *affinity_notify; 2548 2549 affinity_notify = &q_vector->affinity_notify; 2550 affinity_notify->notify = ice_irq_affinity_notify; 2551 affinity_notify->release = ice_irq_affinity_release; 2552 irq_set_affinity_notifier(irq_num, affinity_notify); 2553 } 2554 2555 /* assign the mask for this irq */ 2556 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2557 } 2558 2559 err = ice_set_cpu_rx_rmap(vsi); 2560 if (err) { 2561 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2562 vsi->vsi_num, ERR_PTR(err)); 2563 goto free_q_irqs; 2564 } 2565 2566 vsi->irqs_ready = true; 2567 return 0; 2568 2569 free_q_irqs: 2570 while (vector--) { 2571 irq_num = vsi->q_vectors[vector]->irq.virq; 2572 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2573 irq_set_affinity_notifier(irq_num, NULL); 2574 irq_set_affinity_hint(irq_num, NULL); 2575 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2576 } 2577 return err; 2578 } 2579 2580 /** 2581 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2582 * @vsi: VSI to setup Tx rings used by XDP 2583 * 2584 * Return 0 on success and negative value on error 2585 */ 2586 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2587 { 2588 struct device *dev = ice_pf_to_dev(vsi->back); 2589 struct ice_tx_desc *tx_desc; 2590 int i, j; 2591 2592 ice_for_each_xdp_txq(vsi, i) { 2593 u16 xdp_q_idx = vsi->alloc_txq + i; 2594 struct ice_ring_stats *ring_stats; 2595 struct ice_tx_ring *xdp_ring; 2596 2597 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2598 if (!xdp_ring) 2599 goto free_xdp_rings; 2600 2601 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2602 if (!ring_stats) { 2603 ice_free_tx_ring(xdp_ring); 2604 goto free_xdp_rings; 2605 } 2606 2607 xdp_ring->ring_stats = ring_stats; 2608 xdp_ring->q_index = xdp_q_idx; 2609 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2610 xdp_ring->vsi = vsi; 2611 xdp_ring->netdev = NULL; 2612 xdp_ring->dev = dev; 2613 xdp_ring->count = vsi->num_tx_desc; 2614 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2615 if (ice_setup_tx_ring(xdp_ring)) 2616 goto free_xdp_rings; 2617 ice_set_ring_xdp(xdp_ring); 2618 spin_lock_init(&xdp_ring->tx_lock); 2619 for (j = 0; j < xdp_ring->count; j++) { 2620 tx_desc = ICE_TX_DESC(xdp_ring, j); 2621 tx_desc->cmd_type_offset_bsz = 0; 2622 } 2623 } 2624 2625 return 0; 2626 2627 free_xdp_rings: 2628 for (; i >= 0; i--) { 2629 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2630 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2631 vsi->xdp_rings[i]->ring_stats = NULL; 2632 ice_free_tx_ring(vsi->xdp_rings[i]); 2633 } 2634 } 2635 return -ENOMEM; 2636 } 2637 2638 /** 2639 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2640 * @vsi: VSI to set the bpf prog on 2641 * @prog: the bpf prog pointer 2642 */ 2643 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2644 { 2645 struct bpf_prog *old_prog; 2646 int i; 2647 2648 old_prog = xchg(&vsi->xdp_prog, prog); 2649 ice_for_each_rxq(vsi, i) 2650 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2651 2652 if (old_prog) 2653 bpf_prog_put(old_prog); 2654 } 2655 2656 /** 2657 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2658 * @vsi: VSI to bring up Tx rings used by XDP 2659 * @prog: bpf program that will be assigned to VSI 2660 * 2661 * Return 0 on success and negative value on error 2662 */ 2663 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2664 { 2665 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2666 int xdp_rings_rem = vsi->num_xdp_txq; 2667 struct ice_pf *pf = vsi->back; 2668 struct ice_qs_cfg xdp_qs_cfg = { 2669 .qs_mutex = &pf->avail_q_mutex, 2670 .pf_map = pf->avail_txqs, 2671 .pf_map_size = pf->max_pf_txqs, 2672 .q_count = vsi->num_xdp_txq, 2673 .scatter_count = ICE_MAX_SCATTER_TXQS, 2674 .vsi_map = vsi->txq_map, 2675 .vsi_map_offset = vsi->alloc_txq, 2676 .mapping_mode = ICE_VSI_MAP_CONTIG 2677 }; 2678 struct device *dev; 2679 int i, v_idx; 2680 int status; 2681 2682 dev = ice_pf_to_dev(pf); 2683 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2684 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2685 if (!vsi->xdp_rings) 2686 return -ENOMEM; 2687 2688 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2689 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2690 goto err_map_xdp; 2691 2692 if (static_key_enabled(&ice_xdp_locking_key)) 2693 netdev_warn(vsi->netdev, 2694 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2695 2696 if (ice_xdp_alloc_setup_rings(vsi)) 2697 goto clear_xdp_rings; 2698 2699 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2700 ice_for_each_q_vector(vsi, v_idx) { 2701 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2702 int xdp_rings_per_v, q_id, q_base; 2703 2704 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2705 vsi->num_q_vectors - v_idx); 2706 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2707 2708 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2709 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2710 2711 xdp_ring->q_vector = q_vector; 2712 xdp_ring->next = q_vector->tx.tx_ring; 2713 q_vector->tx.tx_ring = xdp_ring; 2714 } 2715 xdp_rings_rem -= xdp_rings_per_v; 2716 } 2717 2718 ice_for_each_rxq(vsi, i) { 2719 if (static_key_enabled(&ice_xdp_locking_key)) { 2720 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2721 } else { 2722 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2723 struct ice_tx_ring *ring; 2724 2725 ice_for_each_tx_ring(ring, q_vector->tx) { 2726 if (ice_ring_is_xdp(ring)) { 2727 vsi->rx_rings[i]->xdp_ring = ring; 2728 break; 2729 } 2730 } 2731 } 2732 ice_tx_xsk_pool(vsi, i); 2733 } 2734 2735 /* omit the scheduler update if in reset path; XDP queues will be 2736 * taken into account at the end of ice_vsi_rebuild, where 2737 * ice_cfg_vsi_lan is being called 2738 */ 2739 if (ice_is_reset_in_progress(pf->state)) 2740 return 0; 2741 2742 /* tell the Tx scheduler that right now we have 2743 * additional queues 2744 */ 2745 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2746 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2747 2748 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2749 max_txqs); 2750 if (status) { 2751 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2752 status); 2753 goto clear_xdp_rings; 2754 } 2755 2756 /* assign the prog only when it's not already present on VSI; 2757 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2758 * VSI rebuild that happens under ethtool -L can expose us to 2759 * the bpf_prog refcount issues as we would be swapping same 2760 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2761 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2762 * this is not harmful as dev_xdp_install bumps the refcount 2763 * before calling the op exposed by the driver; 2764 */ 2765 if (!ice_is_xdp_ena_vsi(vsi)) 2766 ice_vsi_assign_bpf_prog(vsi, prog); 2767 2768 return 0; 2769 clear_xdp_rings: 2770 ice_for_each_xdp_txq(vsi, i) 2771 if (vsi->xdp_rings[i]) { 2772 kfree_rcu(vsi->xdp_rings[i], rcu); 2773 vsi->xdp_rings[i] = NULL; 2774 } 2775 2776 err_map_xdp: 2777 mutex_lock(&pf->avail_q_mutex); 2778 ice_for_each_xdp_txq(vsi, i) { 2779 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2780 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2781 } 2782 mutex_unlock(&pf->avail_q_mutex); 2783 2784 devm_kfree(dev, vsi->xdp_rings); 2785 return -ENOMEM; 2786 } 2787 2788 /** 2789 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2790 * @vsi: VSI to remove XDP rings 2791 * 2792 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2793 * resources 2794 */ 2795 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2796 { 2797 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2798 struct ice_pf *pf = vsi->back; 2799 int i, v_idx; 2800 2801 /* q_vectors are freed in reset path so there's no point in detaching 2802 * rings; in case of rebuild being triggered not from reset bits 2803 * in pf->state won't be set, so additionally check first q_vector 2804 * against NULL 2805 */ 2806 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2807 goto free_qmap; 2808 2809 ice_for_each_q_vector(vsi, v_idx) { 2810 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2811 struct ice_tx_ring *ring; 2812 2813 ice_for_each_tx_ring(ring, q_vector->tx) 2814 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2815 break; 2816 2817 /* restore the value of last node prior to XDP setup */ 2818 q_vector->tx.tx_ring = ring; 2819 } 2820 2821 free_qmap: 2822 mutex_lock(&pf->avail_q_mutex); 2823 ice_for_each_xdp_txq(vsi, i) { 2824 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2825 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2826 } 2827 mutex_unlock(&pf->avail_q_mutex); 2828 2829 ice_for_each_xdp_txq(vsi, i) 2830 if (vsi->xdp_rings[i]) { 2831 if (vsi->xdp_rings[i]->desc) { 2832 synchronize_rcu(); 2833 ice_free_tx_ring(vsi->xdp_rings[i]); 2834 } 2835 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2836 vsi->xdp_rings[i]->ring_stats = NULL; 2837 kfree_rcu(vsi->xdp_rings[i], rcu); 2838 vsi->xdp_rings[i] = NULL; 2839 } 2840 2841 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2842 vsi->xdp_rings = NULL; 2843 2844 if (static_key_enabled(&ice_xdp_locking_key)) 2845 static_branch_dec(&ice_xdp_locking_key); 2846 2847 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2848 return 0; 2849 2850 ice_vsi_assign_bpf_prog(vsi, NULL); 2851 2852 /* notify Tx scheduler that we destroyed XDP queues and bring 2853 * back the old number of child nodes 2854 */ 2855 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2856 max_txqs[i] = vsi->num_txq; 2857 2858 /* change number of XDP Tx queues to 0 */ 2859 vsi->num_xdp_txq = 0; 2860 2861 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2862 max_txqs); 2863 } 2864 2865 /** 2866 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2867 * @vsi: VSI to schedule napi on 2868 */ 2869 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2870 { 2871 int i; 2872 2873 ice_for_each_rxq(vsi, i) { 2874 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2875 2876 if (rx_ring->xsk_pool) 2877 napi_schedule(&rx_ring->q_vector->napi); 2878 } 2879 } 2880 2881 /** 2882 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2883 * @vsi: VSI to determine the count of XDP Tx qs 2884 * 2885 * returns 0 if Tx qs count is higher than at least half of CPU count, 2886 * -ENOMEM otherwise 2887 */ 2888 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2889 { 2890 u16 avail = ice_get_avail_txq_count(vsi->back); 2891 u16 cpus = num_possible_cpus(); 2892 2893 if (avail < cpus / 2) 2894 return -ENOMEM; 2895 2896 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2897 2898 if (vsi->num_xdp_txq < cpus) 2899 static_branch_inc(&ice_xdp_locking_key); 2900 2901 return 0; 2902 } 2903 2904 /** 2905 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2906 * @vsi: Pointer to VSI structure 2907 */ 2908 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2909 { 2910 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2911 return ICE_RXBUF_1664; 2912 else 2913 return ICE_RXBUF_3072; 2914 } 2915 2916 /** 2917 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2918 * @vsi: VSI to setup XDP for 2919 * @prog: XDP program 2920 * @extack: netlink extended ack 2921 */ 2922 static int 2923 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2924 struct netlink_ext_ack *extack) 2925 { 2926 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2927 bool if_running = netif_running(vsi->netdev); 2928 int ret = 0, xdp_ring_err = 0; 2929 2930 if (prog && !prog->aux->xdp_has_frags) { 2931 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2932 NL_SET_ERR_MSG_MOD(extack, 2933 "MTU is too large for linear frames and XDP prog does not support frags"); 2934 return -EOPNOTSUPP; 2935 } 2936 } 2937 2938 /* hot swap progs and avoid toggling link */ 2939 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2940 ice_vsi_assign_bpf_prog(vsi, prog); 2941 return 0; 2942 } 2943 2944 /* need to stop netdev while setting up the program for Rx rings */ 2945 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2946 ret = ice_down(vsi); 2947 if (ret) { 2948 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2949 return ret; 2950 } 2951 } 2952 2953 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2954 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2955 if (xdp_ring_err) { 2956 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2957 } else { 2958 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2959 if (xdp_ring_err) 2960 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2961 } 2962 xdp_features_set_redirect_target(vsi->netdev, true); 2963 /* reallocate Rx queues that are used for zero-copy */ 2964 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2965 if (xdp_ring_err) 2966 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2967 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2968 xdp_features_clear_redirect_target(vsi->netdev); 2969 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2970 if (xdp_ring_err) 2971 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2972 /* reallocate Rx queues that were used for zero-copy */ 2973 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2974 if (xdp_ring_err) 2975 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2976 } 2977 2978 if (if_running) 2979 ret = ice_up(vsi); 2980 2981 if (!ret && prog) 2982 ice_vsi_rx_napi_schedule(vsi); 2983 2984 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2985 } 2986 2987 /** 2988 * ice_xdp_safe_mode - XDP handler for safe mode 2989 * @dev: netdevice 2990 * @xdp: XDP command 2991 */ 2992 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2993 struct netdev_bpf *xdp) 2994 { 2995 NL_SET_ERR_MSG_MOD(xdp->extack, 2996 "Please provide working DDP firmware package in order to use XDP\n" 2997 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2998 return -EOPNOTSUPP; 2999 } 3000 3001 /** 3002 * ice_xdp - implements XDP handler 3003 * @dev: netdevice 3004 * @xdp: XDP command 3005 */ 3006 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3007 { 3008 struct ice_netdev_priv *np = netdev_priv(dev); 3009 struct ice_vsi *vsi = np->vsi; 3010 3011 if (vsi->type != ICE_VSI_PF) { 3012 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3013 return -EINVAL; 3014 } 3015 3016 switch (xdp->command) { 3017 case XDP_SETUP_PROG: 3018 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3019 case XDP_SETUP_XSK_POOL: 3020 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3021 xdp->xsk.queue_id); 3022 default: 3023 return -EINVAL; 3024 } 3025 } 3026 3027 /** 3028 * ice_ena_misc_vector - enable the non-queue interrupts 3029 * @pf: board private structure 3030 */ 3031 static void ice_ena_misc_vector(struct ice_pf *pf) 3032 { 3033 struct ice_hw *hw = &pf->hw; 3034 u32 val; 3035 3036 /* Disable anti-spoof detection interrupt to prevent spurious event 3037 * interrupts during a function reset. Anti-spoof functionally is 3038 * still supported. 3039 */ 3040 val = rd32(hw, GL_MDCK_TX_TDPU); 3041 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3042 wr32(hw, GL_MDCK_TX_TDPU, val); 3043 3044 /* clear things first */ 3045 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3046 rd32(hw, PFINT_OICR); /* read to clear */ 3047 3048 val = (PFINT_OICR_ECC_ERR_M | 3049 PFINT_OICR_MAL_DETECT_M | 3050 PFINT_OICR_GRST_M | 3051 PFINT_OICR_PCI_EXCEPTION_M | 3052 PFINT_OICR_VFLR_M | 3053 PFINT_OICR_HMC_ERR_M | 3054 PFINT_OICR_PE_PUSH_M | 3055 PFINT_OICR_PE_CRITERR_M); 3056 3057 wr32(hw, PFINT_OICR_ENA, val); 3058 3059 /* SW_ITR_IDX = 0, but don't change INTENA */ 3060 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3061 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3062 } 3063 3064 /** 3065 * ice_misc_intr - misc interrupt handler 3066 * @irq: interrupt number 3067 * @data: pointer to a q_vector 3068 */ 3069 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3070 { 3071 struct ice_pf *pf = (struct ice_pf *)data; 3072 struct ice_hw *hw = &pf->hw; 3073 struct device *dev; 3074 u32 oicr, ena_mask; 3075 3076 dev = ice_pf_to_dev(pf); 3077 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3078 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3079 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3080 3081 oicr = rd32(hw, PFINT_OICR); 3082 ena_mask = rd32(hw, PFINT_OICR_ENA); 3083 3084 if (oicr & PFINT_OICR_SWINT_M) { 3085 ena_mask &= ~PFINT_OICR_SWINT_M; 3086 pf->sw_int_count++; 3087 } 3088 3089 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3090 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3091 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3092 } 3093 if (oicr & PFINT_OICR_VFLR_M) { 3094 /* disable any further VFLR event notifications */ 3095 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3096 u32 reg = rd32(hw, PFINT_OICR_ENA); 3097 3098 reg &= ~PFINT_OICR_VFLR_M; 3099 wr32(hw, PFINT_OICR_ENA, reg); 3100 } else { 3101 ena_mask &= ~PFINT_OICR_VFLR_M; 3102 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3103 } 3104 } 3105 3106 if (oicr & PFINT_OICR_GRST_M) { 3107 u32 reset; 3108 3109 /* we have a reset warning */ 3110 ena_mask &= ~PFINT_OICR_GRST_M; 3111 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3112 GLGEN_RSTAT_RESET_TYPE_S; 3113 3114 if (reset == ICE_RESET_CORER) 3115 pf->corer_count++; 3116 else if (reset == ICE_RESET_GLOBR) 3117 pf->globr_count++; 3118 else if (reset == ICE_RESET_EMPR) 3119 pf->empr_count++; 3120 else 3121 dev_dbg(dev, "Invalid reset type %d\n", reset); 3122 3123 /* If a reset cycle isn't already in progress, we set a bit in 3124 * pf->state so that the service task can start a reset/rebuild. 3125 */ 3126 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3127 if (reset == ICE_RESET_CORER) 3128 set_bit(ICE_CORER_RECV, pf->state); 3129 else if (reset == ICE_RESET_GLOBR) 3130 set_bit(ICE_GLOBR_RECV, pf->state); 3131 else 3132 set_bit(ICE_EMPR_RECV, pf->state); 3133 3134 /* There are couple of different bits at play here. 3135 * hw->reset_ongoing indicates whether the hardware is 3136 * in reset. This is set to true when a reset interrupt 3137 * is received and set back to false after the driver 3138 * has determined that the hardware is out of reset. 3139 * 3140 * ICE_RESET_OICR_RECV in pf->state indicates 3141 * that a post reset rebuild is required before the 3142 * driver is operational again. This is set above. 3143 * 3144 * As this is the start of the reset/rebuild cycle, set 3145 * both to indicate that. 3146 */ 3147 hw->reset_ongoing = true; 3148 } 3149 } 3150 3151 if (oicr & PFINT_OICR_TSYN_TX_M) { 3152 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3153 if (!hw->reset_ongoing && ice_ptp_pf_handles_tx_interrupt(pf)) 3154 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3155 } 3156 3157 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3158 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3159 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3160 3161 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3162 3163 if (ice_pf_src_tmr_owned(pf)) { 3164 /* Save EVENTs from GLTSYN register */ 3165 pf->ptp.ext_ts_irq |= gltsyn_stat & 3166 (GLTSYN_STAT_EVENT0_M | 3167 GLTSYN_STAT_EVENT1_M | 3168 GLTSYN_STAT_EVENT2_M); 3169 3170 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3171 } 3172 } 3173 3174 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3175 if (oicr & ICE_AUX_CRIT_ERR) { 3176 pf->oicr_err_reg |= oicr; 3177 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3178 ena_mask &= ~ICE_AUX_CRIT_ERR; 3179 } 3180 3181 /* Report any remaining unexpected interrupts */ 3182 oicr &= ena_mask; 3183 if (oicr) { 3184 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3185 /* If a critical error is pending there is no choice but to 3186 * reset the device. 3187 */ 3188 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3189 PFINT_OICR_ECC_ERR_M)) { 3190 set_bit(ICE_PFR_REQ, pf->state); 3191 } 3192 } 3193 3194 return IRQ_WAKE_THREAD; 3195 } 3196 3197 /** 3198 * ice_misc_intr_thread_fn - misc interrupt thread function 3199 * @irq: interrupt number 3200 * @data: pointer to a q_vector 3201 */ 3202 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3203 { 3204 struct ice_pf *pf = data; 3205 struct ice_hw *hw; 3206 3207 hw = &pf->hw; 3208 3209 if (ice_is_reset_in_progress(pf->state)) 3210 return IRQ_HANDLED; 3211 3212 ice_service_task_schedule(pf); 3213 3214 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3215 ice_ptp_extts_event(pf); 3216 3217 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3218 /* Process outstanding Tx timestamps. If there is more work, 3219 * re-arm the interrupt to trigger again. 3220 */ 3221 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3222 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3223 ice_flush(hw); 3224 } 3225 } 3226 3227 ice_irq_dynamic_ena(hw, NULL, NULL); 3228 3229 return IRQ_HANDLED; 3230 } 3231 3232 /** 3233 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3234 * @hw: pointer to HW structure 3235 */ 3236 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3237 { 3238 /* disable Admin queue Interrupt causes */ 3239 wr32(hw, PFINT_FW_CTL, 3240 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3241 3242 /* disable Mailbox queue Interrupt causes */ 3243 wr32(hw, PFINT_MBX_CTL, 3244 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3245 3246 wr32(hw, PFINT_SB_CTL, 3247 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3248 3249 /* disable Control queue Interrupt causes */ 3250 wr32(hw, PFINT_OICR_CTL, 3251 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3252 3253 ice_flush(hw); 3254 } 3255 3256 /** 3257 * ice_free_irq_msix_misc - Unroll misc vector setup 3258 * @pf: board private structure 3259 */ 3260 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3261 { 3262 int misc_irq_num = pf->oicr_irq.virq; 3263 struct ice_hw *hw = &pf->hw; 3264 3265 ice_dis_ctrlq_interrupts(hw); 3266 3267 /* disable OICR interrupt */ 3268 wr32(hw, PFINT_OICR_ENA, 0); 3269 ice_flush(hw); 3270 3271 synchronize_irq(misc_irq_num); 3272 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3273 3274 ice_free_irq(pf, pf->oicr_irq); 3275 } 3276 3277 /** 3278 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3279 * @hw: pointer to HW structure 3280 * @reg_idx: HW vector index to associate the control queue interrupts with 3281 */ 3282 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3283 { 3284 u32 val; 3285 3286 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3287 PFINT_OICR_CTL_CAUSE_ENA_M); 3288 wr32(hw, PFINT_OICR_CTL, val); 3289 3290 /* enable Admin queue Interrupt causes */ 3291 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3292 PFINT_FW_CTL_CAUSE_ENA_M); 3293 wr32(hw, PFINT_FW_CTL, val); 3294 3295 /* enable Mailbox queue Interrupt causes */ 3296 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3297 PFINT_MBX_CTL_CAUSE_ENA_M); 3298 wr32(hw, PFINT_MBX_CTL, val); 3299 3300 /* This enables Sideband queue Interrupt causes */ 3301 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3302 PFINT_SB_CTL_CAUSE_ENA_M); 3303 wr32(hw, PFINT_SB_CTL, val); 3304 3305 ice_flush(hw); 3306 } 3307 3308 /** 3309 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3310 * @pf: board private structure 3311 * 3312 * This sets up the handler for MSIX 0, which is used to manage the 3313 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3314 * when in MSI or Legacy interrupt mode. 3315 */ 3316 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3317 { 3318 struct device *dev = ice_pf_to_dev(pf); 3319 struct ice_hw *hw = &pf->hw; 3320 struct msi_map oicr_irq; 3321 int err = 0; 3322 3323 if (!pf->int_name[0]) 3324 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3325 dev_driver_string(dev), dev_name(dev)); 3326 3327 /* Do not request IRQ but do enable OICR interrupt since settings are 3328 * lost during reset. Note that this function is called only during 3329 * rebuild path and not while reset is in progress. 3330 */ 3331 if (ice_is_reset_in_progress(pf->state)) 3332 goto skip_req_irq; 3333 3334 /* reserve one vector in irq_tracker for misc interrupts */ 3335 oicr_irq = ice_alloc_irq(pf, false); 3336 if (oicr_irq.index < 0) 3337 return oicr_irq.index; 3338 3339 pf->oicr_irq = oicr_irq; 3340 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3341 ice_misc_intr_thread_fn, 0, 3342 pf->int_name, pf); 3343 if (err) { 3344 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3345 pf->int_name, err); 3346 ice_free_irq(pf, pf->oicr_irq); 3347 return err; 3348 } 3349 3350 skip_req_irq: 3351 ice_ena_misc_vector(pf); 3352 3353 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3354 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3355 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3356 3357 ice_flush(hw); 3358 ice_irq_dynamic_ena(hw, NULL, NULL); 3359 3360 return 0; 3361 } 3362 3363 /** 3364 * ice_napi_add - register NAPI handler for the VSI 3365 * @vsi: VSI for which NAPI handler is to be registered 3366 * 3367 * This function is only called in the driver's load path. Registering the NAPI 3368 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3369 * reset/rebuild, etc.) 3370 */ 3371 static void ice_napi_add(struct ice_vsi *vsi) 3372 { 3373 int v_idx; 3374 3375 if (!vsi->netdev) 3376 return; 3377 3378 ice_for_each_q_vector(vsi, v_idx) 3379 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3380 ice_napi_poll); 3381 } 3382 3383 /** 3384 * ice_set_ops - set netdev and ethtools ops for the given netdev 3385 * @vsi: the VSI associated with the new netdev 3386 */ 3387 static void ice_set_ops(struct ice_vsi *vsi) 3388 { 3389 struct net_device *netdev = vsi->netdev; 3390 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3391 3392 if (ice_is_safe_mode(pf)) { 3393 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3394 ice_set_ethtool_safe_mode_ops(netdev); 3395 return; 3396 } 3397 3398 netdev->netdev_ops = &ice_netdev_ops; 3399 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3400 ice_set_ethtool_ops(netdev); 3401 3402 if (vsi->type != ICE_VSI_PF) 3403 return; 3404 3405 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3406 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3407 NETDEV_XDP_ACT_RX_SG; 3408 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3409 } 3410 3411 /** 3412 * ice_set_netdev_features - set features for the given netdev 3413 * @netdev: netdev instance 3414 */ 3415 static void ice_set_netdev_features(struct net_device *netdev) 3416 { 3417 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3418 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3419 netdev_features_t csumo_features; 3420 netdev_features_t vlano_features; 3421 netdev_features_t dflt_features; 3422 netdev_features_t tso_features; 3423 3424 if (ice_is_safe_mode(pf)) { 3425 /* safe mode */ 3426 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3427 netdev->hw_features = netdev->features; 3428 return; 3429 } 3430 3431 dflt_features = NETIF_F_SG | 3432 NETIF_F_HIGHDMA | 3433 NETIF_F_NTUPLE | 3434 NETIF_F_RXHASH; 3435 3436 csumo_features = NETIF_F_RXCSUM | 3437 NETIF_F_IP_CSUM | 3438 NETIF_F_SCTP_CRC | 3439 NETIF_F_IPV6_CSUM; 3440 3441 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3442 NETIF_F_HW_VLAN_CTAG_TX | 3443 NETIF_F_HW_VLAN_CTAG_RX; 3444 3445 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3446 if (is_dvm_ena) 3447 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3448 3449 tso_features = NETIF_F_TSO | 3450 NETIF_F_TSO_ECN | 3451 NETIF_F_TSO6 | 3452 NETIF_F_GSO_GRE | 3453 NETIF_F_GSO_UDP_TUNNEL | 3454 NETIF_F_GSO_GRE_CSUM | 3455 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3456 NETIF_F_GSO_PARTIAL | 3457 NETIF_F_GSO_IPXIP4 | 3458 NETIF_F_GSO_IPXIP6 | 3459 NETIF_F_GSO_UDP_L4; 3460 3461 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3462 NETIF_F_GSO_GRE_CSUM; 3463 /* set features that user can change */ 3464 netdev->hw_features = dflt_features | csumo_features | 3465 vlano_features | tso_features; 3466 3467 /* add support for HW_CSUM on packets with MPLS header */ 3468 netdev->mpls_features = NETIF_F_HW_CSUM | 3469 NETIF_F_TSO | 3470 NETIF_F_TSO6; 3471 3472 /* enable features */ 3473 netdev->features |= netdev->hw_features; 3474 3475 netdev->hw_features |= NETIF_F_HW_TC; 3476 netdev->hw_features |= NETIF_F_LOOPBACK; 3477 3478 /* encap and VLAN devices inherit default, csumo and tso features */ 3479 netdev->hw_enc_features |= dflt_features | csumo_features | 3480 tso_features; 3481 netdev->vlan_features |= dflt_features | csumo_features | 3482 tso_features; 3483 3484 /* advertise support but don't enable by default since only one type of 3485 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3486 * type turns on the other has to be turned off. This is enforced by the 3487 * ice_fix_features() ndo callback. 3488 */ 3489 if (is_dvm_ena) 3490 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3491 NETIF_F_HW_VLAN_STAG_TX; 3492 3493 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3494 * be changed at runtime 3495 */ 3496 netdev->hw_features |= NETIF_F_RXFCS; 3497 3498 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3499 } 3500 3501 /** 3502 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3503 * @lut: Lookup table 3504 * @rss_table_size: Lookup table size 3505 * @rss_size: Range of queue number for hashing 3506 */ 3507 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3508 { 3509 u16 i; 3510 3511 for (i = 0; i < rss_table_size; i++) 3512 lut[i] = i % rss_size; 3513 } 3514 3515 /** 3516 * ice_pf_vsi_setup - Set up a PF VSI 3517 * @pf: board private structure 3518 * @pi: pointer to the port_info instance 3519 * 3520 * Returns pointer to the successfully allocated VSI software struct 3521 * on success, otherwise returns NULL on failure. 3522 */ 3523 static struct ice_vsi * 3524 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3525 { 3526 struct ice_vsi_cfg_params params = {}; 3527 3528 params.type = ICE_VSI_PF; 3529 params.pi = pi; 3530 params.flags = ICE_VSI_FLAG_INIT; 3531 3532 return ice_vsi_setup(pf, ¶ms); 3533 } 3534 3535 static struct ice_vsi * 3536 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3537 struct ice_channel *ch) 3538 { 3539 struct ice_vsi_cfg_params params = {}; 3540 3541 params.type = ICE_VSI_CHNL; 3542 params.pi = pi; 3543 params.ch = ch; 3544 params.flags = ICE_VSI_FLAG_INIT; 3545 3546 return ice_vsi_setup(pf, ¶ms); 3547 } 3548 3549 /** 3550 * ice_ctrl_vsi_setup - Set up a control VSI 3551 * @pf: board private structure 3552 * @pi: pointer to the port_info instance 3553 * 3554 * Returns pointer to the successfully allocated VSI software struct 3555 * on success, otherwise returns NULL on failure. 3556 */ 3557 static struct ice_vsi * 3558 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3559 { 3560 struct ice_vsi_cfg_params params = {}; 3561 3562 params.type = ICE_VSI_CTRL; 3563 params.pi = pi; 3564 params.flags = ICE_VSI_FLAG_INIT; 3565 3566 return ice_vsi_setup(pf, ¶ms); 3567 } 3568 3569 /** 3570 * ice_lb_vsi_setup - Set up a loopback VSI 3571 * @pf: board private structure 3572 * @pi: pointer to the port_info instance 3573 * 3574 * Returns pointer to the successfully allocated VSI software struct 3575 * on success, otherwise returns NULL on failure. 3576 */ 3577 struct ice_vsi * 3578 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3579 { 3580 struct ice_vsi_cfg_params params = {}; 3581 3582 params.type = ICE_VSI_LB; 3583 params.pi = pi; 3584 params.flags = ICE_VSI_FLAG_INIT; 3585 3586 return ice_vsi_setup(pf, ¶ms); 3587 } 3588 3589 /** 3590 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3591 * @netdev: network interface to be adjusted 3592 * @proto: VLAN TPID 3593 * @vid: VLAN ID to be added 3594 * 3595 * net_device_ops implementation for adding VLAN IDs 3596 */ 3597 static int 3598 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3599 { 3600 struct ice_netdev_priv *np = netdev_priv(netdev); 3601 struct ice_vsi_vlan_ops *vlan_ops; 3602 struct ice_vsi *vsi = np->vsi; 3603 struct ice_vlan vlan; 3604 int ret; 3605 3606 /* VLAN 0 is added by default during load/reset */ 3607 if (!vid) 3608 return 0; 3609 3610 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3611 usleep_range(1000, 2000); 3612 3613 /* Add multicast promisc rule for the VLAN ID to be added if 3614 * all-multicast is currently enabled. 3615 */ 3616 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3617 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3618 ICE_MCAST_VLAN_PROMISC_BITS, 3619 vid); 3620 if (ret) 3621 goto finish; 3622 } 3623 3624 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3625 3626 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3627 * packets aren't pruned by the device's internal switch on Rx 3628 */ 3629 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3630 ret = vlan_ops->add_vlan(vsi, &vlan); 3631 if (ret) 3632 goto finish; 3633 3634 /* If all-multicast is currently enabled and this VLAN ID is only one 3635 * besides VLAN-0 we have to update look-up type of multicast promisc 3636 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3637 */ 3638 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3639 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3640 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3641 ICE_MCAST_PROMISC_BITS, 0); 3642 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3643 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3644 } 3645 3646 finish: 3647 clear_bit(ICE_CFG_BUSY, vsi->state); 3648 3649 return ret; 3650 } 3651 3652 /** 3653 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3654 * @netdev: network interface to be adjusted 3655 * @proto: VLAN TPID 3656 * @vid: VLAN ID to be removed 3657 * 3658 * net_device_ops implementation for removing VLAN IDs 3659 */ 3660 static int 3661 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3662 { 3663 struct ice_netdev_priv *np = netdev_priv(netdev); 3664 struct ice_vsi_vlan_ops *vlan_ops; 3665 struct ice_vsi *vsi = np->vsi; 3666 struct ice_vlan vlan; 3667 int ret; 3668 3669 /* don't allow removal of VLAN 0 */ 3670 if (!vid) 3671 return 0; 3672 3673 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3674 usleep_range(1000, 2000); 3675 3676 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3677 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3678 if (ret) { 3679 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3680 vsi->vsi_num); 3681 vsi->current_netdev_flags |= IFF_ALLMULTI; 3682 } 3683 3684 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3685 3686 /* Make sure VLAN delete is successful before updating VLAN 3687 * information 3688 */ 3689 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3690 ret = vlan_ops->del_vlan(vsi, &vlan); 3691 if (ret) 3692 goto finish; 3693 3694 /* Remove multicast promisc rule for the removed VLAN ID if 3695 * all-multicast is enabled. 3696 */ 3697 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3698 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3699 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3700 3701 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3702 /* Update look-up type of multicast promisc rule for VLAN 0 3703 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3704 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3705 */ 3706 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3707 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3708 ICE_MCAST_VLAN_PROMISC_BITS, 3709 0); 3710 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3711 ICE_MCAST_PROMISC_BITS, 0); 3712 } 3713 } 3714 3715 finish: 3716 clear_bit(ICE_CFG_BUSY, vsi->state); 3717 3718 return ret; 3719 } 3720 3721 /** 3722 * ice_rep_indr_tc_block_unbind 3723 * @cb_priv: indirection block private data 3724 */ 3725 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3726 { 3727 struct ice_indr_block_priv *indr_priv = cb_priv; 3728 3729 list_del(&indr_priv->list); 3730 kfree(indr_priv); 3731 } 3732 3733 /** 3734 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3735 * @vsi: VSI struct which has the netdev 3736 */ 3737 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3738 { 3739 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3740 3741 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3742 ice_rep_indr_tc_block_unbind); 3743 } 3744 3745 /** 3746 * ice_tc_indir_block_register - Register TC indirect block notifications 3747 * @vsi: VSI struct which has the netdev 3748 * 3749 * Returns 0 on success, negative value on failure 3750 */ 3751 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3752 { 3753 struct ice_netdev_priv *np; 3754 3755 if (!vsi || !vsi->netdev) 3756 return -EINVAL; 3757 3758 np = netdev_priv(vsi->netdev); 3759 3760 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3761 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3762 } 3763 3764 /** 3765 * ice_get_avail_q_count - Get count of queues in use 3766 * @pf_qmap: bitmap to get queue use count from 3767 * @lock: pointer to a mutex that protects access to pf_qmap 3768 * @size: size of the bitmap 3769 */ 3770 static u16 3771 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3772 { 3773 unsigned long bit; 3774 u16 count = 0; 3775 3776 mutex_lock(lock); 3777 for_each_clear_bit(bit, pf_qmap, size) 3778 count++; 3779 mutex_unlock(lock); 3780 3781 return count; 3782 } 3783 3784 /** 3785 * ice_get_avail_txq_count - Get count of Tx queues in use 3786 * @pf: pointer to an ice_pf instance 3787 */ 3788 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3789 { 3790 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3791 pf->max_pf_txqs); 3792 } 3793 3794 /** 3795 * ice_get_avail_rxq_count - Get count of Rx queues in use 3796 * @pf: pointer to an ice_pf instance 3797 */ 3798 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3799 { 3800 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3801 pf->max_pf_rxqs); 3802 } 3803 3804 /** 3805 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3806 * @pf: board private structure to initialize 3807 */ 3808 static void ice_deinit_pf(struct ice_pf *pf) 3809 { 3810 ice_service_task_stop(pf); 3811 mutex_destroy(&pf->lag_mutex); 3812 mutex_destroy(&pf->adev_mutex); 3813 mutex_destroy(&pf->sw_mutex); 3814 mutex_destroy(&pf->tc_mutex); 3815 mutex_destroy(&pf->avail_q_mutex); 3816 mutex_destroy(&pf->vfs.table_lock); 3817 3818 if (pf->avail_txqs) { 3819 bitmap_free(pf->avail_txqs); 3820 pf->avail_txqs = NULL; 3821 } 3822 3823 if (pf->avail_rxqs) { 3824 bitmap_free(pf->avail_rxqs); 3825 pf->avail_rxqs = NULL; 3826 } 3827 3828 if (pf->ptp.clock) 3829 ptp_clock_unregister(pf->ptp.clock); 3830 } 3831 3832 /** 3833 * ice_set_pf_caps - set PFs capability flags 3834 * @pf: pointer to the PF instance 3835 */ 3836 static void ice_set_pf_caps(struct ice_pf *pf) 3837 { 3838 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3839 3840 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3841 if (func_caps->common_cap.rdma) 3842 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3843 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3844 if (func_caps->common_cap.dcb) 3845 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3846 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3847 if (func_caps->common_cap.sr_iov_1_1) { 3848 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3849 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3850 ICE_MAX_SRIOV_VFS); 3851 } 3852 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3853 if (func_caps->common_cap.rss_table_size) 3854 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3855 3856 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3857 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3858 u16 unused; 3859 3860 /* ctrl_vsi_idx will be set to a valid value when flow director 3861 * is setup by ice_init_fdir 3862 */ 3863 pf->ctrl_vsi_idx = ICE_NO_VSI; 3864 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3865 /* force guaranteed filter pool for PF */ 3866 ice_alloc_fd_guar_item(&pf->hw, &unused, 3867 func_caps->fd_fltr_guar); 3868 /* force shared filter pool for PF */ 3869 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3870 func_caps->fd_fltr_best_effort); 3871 } 3872 3873 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3874 if (func_caps->common_cap.ieee_1588 && 3875 !(pf->hw.mac_type == ICE_MAC_E830)) 3876 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3877 3878 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3879 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3880 } 3881 3882 /** 3883 * ice_init_pf - Initialize general software structures (struct ice_pf) 3884 * @pf: board private structure to initialize 3885 */ 3886 static int ice_init_pf(struct ice_pf *pf) 3887 { 3888 ice_set_pf_caps(pf); 3889 3890 mutex_init(&pf->sw_mutex); 3891 mutex_init(&pf->tc_mutex); 3892 mutex_init(&pf->adev_mutex); 3893 mutex_init(&pf->lag_mutex); 3894 3895 INIT_HLIST_HEAD(&pf->aq_wait_list); 3896 spin_lock_init(&pf->aq_wait_lock); 3897 init_waitqueue_head(&pf->aq_wait_queue); 3898 3899 init_waitqueue_head(&pf->reset_wait_queue); 3900 3901 /* setup service timer and periodic service task */ 3902 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3903 pf->serv_tmr_period = HZ; 3904 INIT_WORK(&pf->serv_task, ice_service_task); 3905 clear_bit(ICE_SERVICE_SCHED, pf->state); 3906 3907 mutex_init(&pf->avail_q_mutex); 3908 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3909 if (!pf->avail_txqs) 3910 return -ENOMEM; 3911 3912 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3913 if (!pf->avail_rxqs) { 3914 bitmap_free(pf->avail_txqs); 3915 pf->avail_txqs = NULL; 3916 return -ENOMEM; 3917 } 3918 3919 mutex_init(&pf->vfs.table_lock); 3920 hash_init(pf->vfs.table); 3921 ice_mbx_init_snapshot(&pf->hw); 3922 3923 return 0; 3924 } 3925 3926 /** 3927 * ice_is_wol_supported - check if WoL is supported 3928 * @hw: pointer to hardware info 3929 * 3930 * Check if WoL is supported based on the HW configuration. 3931 * Returns true if NVM supports and enables WoL for this port, false otherwise 3932 */ 3933 bool ice_is_wol_supported(struct ice_hw *hw) 3934 { 3935 u16 wol_ctrl; 3936 3937 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3938 * word) indicates WoL is not supported on the corresponding PF ID. 3939 */ 3940 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3941 return false; 3942 3943 return !(BIT(hw->port_info->lport) & wol_ctrl); 3944 } 3945 3946 /** 3947 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3948 * @vsi: VSI being changed 3949 * @new_rx: new number of Rx queues 3950 * @new_tx: new number of Tx queues 3951 * @locked: is adev device_lock held 3952 * 3953 * Only change the number of queues if new_tx, or new_rx is non-0. 3954 * 3955 * Returns 0 on success. 3956 */ 3957 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3958 { 3959 struct ice_pf *pf = vsi->back; 3960 int err = 0, timeout = 50; 3961 3962 if (!new_rx && !new_tx) 3963 return -EINVAL; 3964 3965 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3966 timeout--; 3967 if (!timeout) 3968 return -EBUSY; 3969 usleep_range(1000, 2000); 3970 } 3971 3972 if (new_tx) 3973 vsi->req_txq = (u16)new_tx; 3974 if (new_rx) 3975 vsi->req_rxq = (u16)new_rx; 3976 3977 /* set for the next time the netdev is started */ 3978 if (!netif_running(vsi->netdev)) { 3979 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3980 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3981 goto done; 3982 } 3983 3984 ice_vsi_close(vsi); 3985 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3986 ice_pf_dcb_recfg(pf, locked); 3987 ice_vsi_open(vsi); 3988 done: 3989 clear_bit(ICE_CFG_BUSY, pf->state); 3990 return err; 3991 } 3992 3993 /** 3994 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3995 * @pf: PF to configure 3996 * 3997 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3998 * VSI can still Tx/Rx VLAN tagged packets. 3999 */ 4000 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4001 { 4002 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4003 struct ice_vsi_ctx *ctxt; 4004 struct ice_hw *hw; 4005 int status; 4006 4007 if (!vsi) 4008 return; 4009 4010 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4011 if (!ctxt) 4012 return; 4013 4014 hw = &pf->hw; 4015 ctxt->info = vsi->info; 4016 4017 ctxt->info.valid_sections = 4018 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4019 ICE_AQ_VSI_PROP_SECURITY_VALID | 4020 ICE_AQ_VSI_PROP_SW_VALID); 4021 4022 /* disable VLAN anti-spoof */ 4023 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4024 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4025 4026 /* disable VLAN pruning and keep all other settings */ 4027 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4028 4029 /* allow all VLANs on Tx and don't strip on Rx */ 4030 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4031 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4032 4033 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4034 if (status) { 4035 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4036 status, ice_aq_str(hw->adminq.sq_last_status)); 4037 } else { 4038 vsi->info.sec_flags = ctxt->info.sec_flags; 4039 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4040 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4041 } 4042 4043 kfree(ctxt); 4044 } 4045 4046 /** 4047 * ice_log_pkg_init - log result of DDP package load 4048 * @hw: pointer to hardware info 4049 * @state: state of package load 4050 */ 4051 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4052 { 4053 struct ice_pf *pf = hw->back; 4054 struct device *dev; 4055 4056 dev = ice_pf_to_dev(pf); 4057 4058 switch (state) { 4059 case ICE_DDP_PKG_SUCCESS: 4060 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4061 hw->active_pkg_name, 4062 hw->active_pkg_ver.major, 4063 hw->active_pkg_ver.minor, 4064 hw->active_pkg_ver.update, 4065 hw->active_pkg_ver.draft); 4066 break; 4067 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4068 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4069 hw->active_pkg_name, 4070 hw->active_pkg_ver.major, 4071 hw->active_pkg_ver.minor, 4072 hw->active_pkg_ver.update, 4073 hw->active_pkg_ver.draft); 4074 break; 4075 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4076 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4077 hw->active_pkg_name, 4078 hw->active_pkg_ver.major, 4079 hw->active_pkg_ver.minor, 4080 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4081 break; 4082 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4083 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4084 hw->active_pkg_name, 4085 hw->active_pkg_ver.major, 4086 hw->active_pkg_ver.minor, 4087 hw->active_pkg_ver.update, 4088 hw->active_pkg_ver.draft, 4089 hw->pkg_name, 4090 hw->pkg_ver.major, 4091 hw->pkg_ver.minor, 4092 hw->pkg_ver.update, 4093 hw->pkg_ver.draft); 4094 break; 4095 case ICE_DDP_PKG_FW_MISMATCH: 4096 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4097 break; 4098 case ICE_DDP_PKG_INVALID_FILE: 4099 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4100 break; 4101 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4102 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4103 break; 4104 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4105 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4106 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4107 break; 4108 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4109 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4110 break; 4111 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4112 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4113 break; 4114 case ICE_DDP_PKG_LOAD_ERROR: 4115 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4116 /* poll for reset to complete */ 4117 if (ice_check_reset(hw)) 4118 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4119 break; 4120 case ICE_DDP_PKG_ERR: 4121 default: 4122 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4123 break; 4124 } 4125 } 4126 4127 /** 4128 * ice_load_pkg - load/reload the DDP Package file 4129 * @firmware: firmware structure when firmware requested or NULL for reload 4130 * @pf: pointer to the PF instance 4131 * 4132 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4133 * initialize HW tables. 4134 */ 4135 static void 4136 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4137 { 4138 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4139 struct device *dev = ice_pf_to_dev(pf); 4140 struct ice_hw *hw = &pf->hw; 4141 4142 /* Load DDP Package */ 4143 if (firmware && !hw->pkg_copy) { 4144 state = ice_copy_and_init_pkg(hw, firmware->data, 4145 firmware->size); 4146 ice_log_pkg_init(hw, state); 4147 } else if (!firmware && hw->pkg_copy) { 4148 /* Reload package during rebuild after CORER/GLOBR reset */ 4149 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4150 ice_log_pkg_init(hw, state); 4151 } else { 4152 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4153 } 4154 4155 if (!ice_is_init_pkg_successful(state)) { 4156 /* Safe Mode */ 4157 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4158 return; 4159 } 4160 4161 /* Successful download package is the precondition for advanced 4162 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4163 */ 4164 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4165 } 4166 4167 /** 4168 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4169 * @pf: pointer to the PF structure 4170 * 4171 * There is no error returned here because the driver should be able to handle 4172 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4173 * specifically with Tx. 4174 */ 4175 static void ice_verify_cacheline_size(struct ice_pf *pf) 4176 { 4177 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4178 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4179 ICE_CACHE_LINE_BYTES); 4180 } 4181 4182 /** 4183 * ice_send_version - update firmware with driver version 4184 * @pf: PF struct 4185 * 4186 * Returns 0 on success, else error code 4187 */ 4188 static int ice_send_version(struct ice_pf *pf) 4189 { 4190 struct ice_driver_ver dv; 4191 4192 dv.major_ver = 0xff; 4193 dv.minor_ver = 0xff; 4194 dv.build_ver = 0xff; 4195 dv.subbuild_ver = 0; 4196 strscpy((char *)dv.driver_string, UTS_RELEASE, 4197 sizeof(dv.driver_string)); 4198 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4199 } 4200 4201 /** 4202 * ice_init_fdir - Initialize flow director VSI and configuration 4203 * @pf: pointer to the PF instance 4204 * 4205 * returns 0 on success, negative on error 4206 */ 4207 static int ice_init_fdir(struct ice_pf *pf) 4208 { 4209 struct device *dev = ice_pf_to_dev(pf); 4210 struct ice_vsi *ctrl_vsi; 4211 int err; 4212 4213 /* Side Band Flow Director needs to have a control VSI. 4214 * Allocate it and store it in the PF. 4215 */ 4216 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4217 if (!ctrl_vsi) { 4218 dev_dbg(dev, "could not create control VSI\n"); 4219 return -ENOMEM; 4220 } 4221 4222 err = ice_vsi_open_ctrl(ctrl_vsi); 4223 if (err) { 4224 dev_dbg(dev, "could not open control VSI\n"); 4225 goto err_vsi_open; 4226 } 4227 4228 mutex_init(&pf->hw.fdir_fltr_lock); 4229 4230 err = ice_fdir_create_dflt_rules(pf); 4231 if (err) 4232 goto err_fdir_rule; 4233 4234 return 0; 4235 4236 err_fdir_rule: 4237 ice_fdir_release_flows(&pf->hw); 4238 ice_vsi_close(ctrl_vsi); 4239 err_vsi_open: 4240 ice_vsi_release(ctrl_vsi); 4241 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4242 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4243 pf->ctrl_vsi_idx = ICE_NO_VSI; 4244 } 4245 return err; 4246 } 4247 4248 static void ice_deinit_fdir(struct ice_pf *pf) 4249 { 4250 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4251 4252 if (!vsi) 4253 return; 4254 4255 ice_vsi_manage_fdir(vsi, false); 4256 ice_vsi_release(vsi); 4257 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4258 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4259 pf->ctrl_vsi_idx = ICE_NO_VSI; 4260 } 4261 4262 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4263 } 4264 4265 /** 4266 * ice_get_opt_fw_name - return optional firmware file name or NULL 4267 * @pf: pointer to the PF instance 4268 */ 4269 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4270 { 4271 /* Optional firmware name same as default with additional dash 4272 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4273 */ 4274 struct pci_dev *pdev = pf->pdev; 4275 char *opt_fw_filename; 4276 u64 dsn; 4277 4278 /* Determine the name of the optional file using the DSN (two 4279 * dwords following the start of the DSN Capability). 4280 */ 4281 dsn = pci_get_dsn(pdev); 4282 if (!dsn) 4283 return NULL; 4284 4285 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4286 if (!opt_fw_filename) 4287 return NULL; 4288 4289 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4290 ICE_DDP_PKG_PATH, dsn); 4291 4292 return opt_fw_filename; 4293 } 4294 4295 /** 4296 * ice_request_fw - Device initialization routine 4297 * @pf: pointer to the PF instance 4298 */ 4299 static void ice_request_fw(struct ice_pf *pf) 4300 { 4301 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4302 const struct firmware *firmware = NULL; 4303 struct device *dev = ice_pf_to_dev(pf); 4304 int err = 0; 4305 4306 /* optional device-specific DDP (if present) overrides the default DDP 4307 * package file. kernel logs a debug message if the file doesn't exist, 4308 * and warning messages for other errors. 4309 */ 4310 if (opt_fw_filename) { 4311 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4312 if (err) { 4313 kfree(opt_fw_filename); 4314 goto dflt_pkg_load; 4315 } 4316 4317 /* request for firmware was successful. Download to device */ 4318 ice_load_pkg(firmware, pf); 4319 kfree(opt_fw_filename); 4320 release_firmware(firmware); 4321 return; 4322 } 4323 4324 dflt_pkg_load: 4325 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4326 if (err) { 4327 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4328 return; 4329 } 4330 4331 /* request for firmware was successful. Download to device */ 4332 ice_load_pkg(firmware, pf); 4333 release_firmware(firmware); 4334 } 4335 4336 /** 4337 * ice_print_wake_reason - show the wake up cause in the log 4338 * @pf: pointer to the PF struct 4339 */ 4340 static void ice_print_wake_reason(struct ice_pf *pf) 4341 { 4342 u32 wus = pf->wakeup_reason; 4343 const char *wake_str; 4344 4345 /* if no wake event, nothing to print */ 4346 if (!wus) 4347 return; 4348 4349 if (wus & PFPM_WUS_LNKC_M) 4350 wake_str = "Link\n"; 4351 else if (wus & PFPM_WUS_MAG_M) 4352 wake_str = "Magic Packet\n"; 4353 else if (wus & PFPM_WUS_MNG_M) 4354 wake_str = "Management\n"; 4355 else if (wus & PFPM_WUS_FW_RST_WK_M) 4356 wake_str = "Firmware Reset\n"; 4357 else 4358 wake_str = "Unknown\n"; 4359 4360 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4361 } 4362 4363 /** 4364 * ice_register_netdev - register netdev 4365 * @vsi: pointer to the VSI struct 4366 */ 4367 static int ice_register_netdev(struct ice_vsi *vsi) 4368 { 4369 int err; 4370 4371 if (!vsi || !vsi->netdev) 4372 return -EIO; 4373 4374 err = register_netdev(vsi->netdev); 4375 if (err) 4376 return err; 4377 4378 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4379 netif_carrier_off(vsi->netdev); 4380 netif_tx_stop_all_queues(vsi->netdev); 4381 4382 return 0; 4383 } 4384 4385 static void ice_unregister_netdev(struct ice_vsi *vsi) 4386 { 4387 if (!vsi || !vsi->netdev) 4388 return; 4389 4390 unregister_netdev(vsi->netdev); 4391 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4392 } 4393 4394 /** 4395 * ice_cfg_netdev - Allocate, configure and register a netdev 4396 * @vsi: the VSI associated with the new netdev 4397 * 4398 * Returns 0 on success, negative value on failure 4399 */ 4400 static int ice_cfg_netdev(struct ice_vsi *vsi) 4401 { 4402 struct ice_netdev_priv *np; 4403 struct net_device *netdev; 4404 u8 mac_addr[ETH_ALEN]; 4405 4406 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4407 vsi->alloc_rxq); 4408 if (!netdev) 4409 return -ENOMEM; 4410 4411 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4412 vsi->netdev = netdev; 4413 np = netdev_priv(netdev); 4414 np->vsi = vsi; 4415 4416 ice_set_netdev_features(netdev); 4417 ice_set_ops(vsi); 4418 4419 if (vsi->type == ICE_VSI_PF) { 4420 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4421 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4422 eth_hw_addr_set(netdev, mac_addr); 4423 } 4424 4425 netdev->priv_flags |= IFF_UNICAST_FLT; 4426 4427 /* Setup netdev TC information */ 4428 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4429 4430 netdev->max_mtu = ICE_MAX_MTU; 4431 4432 return 0; 4433 } 4434 4435 static void ice_decfg_netdev(struct ice_vsi *vsi) 4436 { 4437 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4438 free_netdev(vsi->netdev); 4439 vsi->netdev = NULL; 4440 } 4441 4442 static int ice_start_eth(struct ice_vsi *vsi) 4443 { 4444 int err; 4445 4446 err = ice_init_mac_fltr(vsi->back); 4447 if (err) 4448 return err; 4449 4450 err = ice_vsi_open(vsi); 4451 if (err) 4452 ice_fltr_remove_all(vsi); 4453 4454 return err; 4455 } 4456 4457 static void ice_stop_eth(struct ice_vsi *vsi) 4458 { 4459 ice_fltr_remove_all(vsi); 4460 ice_vsi_close(vsi); 4461 } 4462 4463 static int ice_init_eth(struct ice_pf *pf) 4464 { 4465 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4466 int err; 4467 4468 if (!vsi) 4469 return -EINVAL; 4470 4471 /* init channel list */ 4472 INIT_LIST_HEAD(&vsi->ch_list); 4473 4474 err = ice_cfg_netdev(vsi); 4475 if (err) 4476 return err; 4477 /* Setup DCB netlink interface */ 4478 ice_dcbnl_setup(vsi); 4479 4480 err = ice_init_mac_fltr(pf); 4481 if (err) 4482 goto err_init_mac_fltr; 4483 4484 err = ice_devlink_create_pf_port(pf); 4485 if (err) 4486 goto err_devlink_create_pf_port; 4487 4488 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4489 4490 err = ice_register_netdev(vsi); 4491 if (err) 4492 goto err_register_netdev; 4493 4494 err = ice_tc_indir_block_register(vsi); 4495 if (err) 4496 goto err_tc_indir_block_register; 4497 4498 ice_napi_add(vsi); 4499 4500 return 0; 4501 4502 err_tc_indir_block_register: 4503 ice_unregister_netdev(vsi); 4504 err_register_netdev: 4505 ice_devlink_destroy_pf_port(pf); 4506 err_devlink_create_pf_port: 4507 err_init_mac_fltr: 4508 ice_decfg_netdev(vsi); 4509 return err; 4510 } 4511 4512 static void ice_deinit_eth(struct ice_pf *pf) 4513 { 4514 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4515 4516 if (!vsi) 4517 return; 4518 4519 ice_vsi_close(vsi); 4520 ice_unregister_netdev(vsi); 4521 ice_devlink_destroy_pf_port(pf); 4522 ice_tc_indir_block_unregister(vsi); 4523 ice_decfg_netdev(vsi); 4524 } 4525 4526 /** 4527 * ice_wait_for_fw - wait for full FW readiness 4528 * @hw: pointer to the hardware structure 4529 * @timeout: milliseconds that can elapse before timing out 4530 */ 4531 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4532 { 4533 int fw_loading; 4534 u32 elapsed = 0; 4535 4536 while (elapsed <= timeout) { 4537 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4538 4539 /* firmware was not yet loaded, we have to wait more */ 4540 if (fw_loading) { 4541 elapsed += 100; 4542 msleep(100); 4543 continue; 4544 } 4545 return 0; 4546 } 4547 4548 return -ETIMEDOUT; 4549 } 4550 4551 static int ice_init_dev(struct ice_pf *pf) 4552 { 4553 struct device *dev = ice_pf_to_dev(pf); 4554 struct ice_hw *hw = &pf->hw; 4555 int err; 4556 4557 err = ice_init_hw(hw); 4558 if (err) { 4559 dev_err(dev, "ice_init_hw failed: %d\n", err); 4560 return err; 4561 } 4562 4563 /* Some cards require longer initialization times 4564 * due to necessity of loading FW from an external source. 4565 * This can take even half a minute. 4566 */ 4567 if (ice_is_pf_c827(hw)) { 4568 err = ice_wait_for_fw(hw, 30000); 4569 if (err) { 4570 dev_err(dev, "ice_wait_for_fw timed out"); 4571 return err; 4572 } 4573 } 4574 4575 ice_init_feature_support(pf); 4576 4577 ice_request_fw(pf); 4578 4579 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4580 * set in pf->state, which will cause ice_is_safe_mode to return 4581 * true 4582 */ 4583 if (ice_is_safe_mode(pf)) { 4584 /* we already got function/device capabilities but these don't 4585 * reflect what the driver needs to do in safe mode. Instead of 4586 * adding conditional logic everywhere to ignore these 4587 * device/function capabilities, override them. 4588 */ 4589 ice_set_safe_mode_caps(hw); 4590 } 4591 4592 err = ice_init_pf(pf); 4593 if (err) { 4594 dev_err(dev, "ice_init_pf failed: %d\n", err); 4595 goto err_init_pf; 4596 } 4597 4598 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4599 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4600 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4601 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4602 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4603 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4604 pf->hw.tnl.valid_count[TNL_VXLAN]; 4605 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4606 UDP_TUNNEL_TYPE_VXLAN; 4607 } 4608 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4609 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4610 pf->hw.tnl.valid_count[TNL_GENEVE]; 4611 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4612 UDP_TUNNEL_TYPE_GENEVE; 4613 } 4614 4615 err = ice_init_interrupt_scheme(pf); 4616 if (err) { 4617 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4618 err = -EIO; 4619 goto err_init_interrupt_scheme; 4620 } 4621 4622 /* In case of MSIX we are going to setup the misc vector right here 4623 * to handle admin queue events etc. In case of legacy and MSI 4624 * the misc functionality and queue processing is combined in 4625 * the same vector and that gets setup at open. 4626 */ 4627 err = ice_req_irq_msix_misc(pf); 4628 if (err) { 4629 dev_err(dev, "setup of misc vector failed: %d\n", err); 4630 goto err_req_irq_msix_misc; 4631 } 4632 4633 return 0; 4634 4635 err_req_irq_msix_misc: 4636 ice_clear_interrupt_scheme(pf); 4637 err_init_interrupt_scheme: 4638 ice_deinit_pf(pf); 4639 err_init_pf: 4640 ice_deinit_hw(hw); 4641 return err; 4642 } 4643 4644 static void ice_deinit_dev(struct ice_pf *pf) 4645 { 4646 ice_free_irq_msix_misc(pf); 4647 ice_deinit_pf(pf); 4648 ice_deinit_hw(&pf->hw); 4649 4650 /* Service task is already stopped, so call reset directly. */ 4651 ice_reset(&pf->hw, ICE_RESET_PFR); 4652 pci_wait_for_pending_transaction(pf->pdev); 4653 ice_clear_interrupt_scheme(pf); 4654 } 4655 4656 static void ice_init_features(struct ice_pf *pf) 4657 { 4658 struct device *dev = ice_pf_to_dev(pf); 4659 4660 if (ice_is_safe_mode(pf)) 4661 return; 4662 4663 /* initialize DDP driven features */ 4664 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4665 ice_ptp_init(pf); 4666 4667 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4668 ice_gnss_init(pf); 4669 4670 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4671 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4672 ice_dpll_init(pf); 4673 4674 /* Note: Flow director init failure is non-fatal to load */ 4675 if (ice_init_fdir(pf)) 4676 dev_err(dev, "could not initialize flow director\n"); 4677 4678 /* Note: DCB init failure is non-fatal to load */ 4679 if (ice_init_pf_dcb(pf, false)) { 4680 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4681 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4682 } else { 4683 ice_cfg_lldp_mib_change(&pf->hw, true); 4684 } 4685 4686 if (ice_init_lag(pf)) 4687 dev_warn(dev, "Failed to init link aggregation support\n"); 4688 } 4689 4690 static void ice_deinit_features(struct ice_pf *pf) 4691 { 4692 if (ice_is_safe_mode(pf)) 4693 return; 4694 4695 ice_deinit_lag(pf); 4696 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4697 ice_cfg_lldp_mib_change(&pf->hw, false); 4698 ice_deinit_fdir(pf); 4699 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4700 ice_gnss_exit(pf); 4701 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4702 ice_ptp_release(pf); 4703 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4704 ice_dpll_deinit(pf); 4705 } 4706 4707 static void ice_init_wakeup(struct ice_pf *pf) 4708 { 4709 /* Save wakeup reason register for later use */ 4710 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4711 4712 /* check for a power management event */ 4713 ice_print_wake_reason(pf); 4714 4715 /* clear wake status, all bits */ 4716 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4717 4718 /* Disable WoL at init, wait for user to enable */ 4719 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4720 } 4721 4722 static int ice_init_link(struct ice_pf *pf) 4723 { 4724 struct device *dev = ice_pf_to_dev(pf); 4725 int err; 4726 4727 err = ice_init_link_events(pf->hw.port_info); 4728 if (err) { 4729 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4730 return err; 4731 } 4732 4733 /* not a fatal error if this fails */ 4734 err = ice_init_nvm_phy_type(pf->hw.port_info); 4735 if (err) 4736 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4737 4738 /* not a fatal error if this fails */ 4739 err = ice_update_link_info(pf->hw.port_info); 4740 if (err) 4741 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4742 4743 ice_init_link_dflt_override(pf->hw.port_info); 4744 4745 ice_check_link_cfg_err(pf, 4746 pf->hw.port_info->phy.link_info.link_cfg_err); 4747 4748 /* if media available, initialize PHY settings */ 4749 if (pf->hw.port_info->phy.link_info.link_info & 4750 ICE_AQ_MEDIA_AVAILABLE) { 4751 /* not a fatal error if this fails */ 4752 err = ice_init_phy_user_cfg(pf->hw.port_info); 4753 if (err) 4754 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4755 4756 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4757 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4758 4759 if (vsi) 4760 ice_configure_phy(vsi); 4761 } 4762 } else { 4763 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4764 } 4765 4766 return err; 4767 } 4768 4769 static int ice_init_pf_sw(struct ice_pf *pf) 4770 { 4771 bool dvm = ice_is_dvm_ena(&pf->hw); 4772 struct ice_vsi *vsi; 4773 int err; 4774 4775 /* create switch struct for the switch element created by FW on boot */ 4776 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4777 if (!pf->first_sw) 4778 return -ENOMEM; 4779 4780 if (pf->hw.evb_veb) 4781 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4782 else 4783 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4784 4785 pf->first_sw->pf = pf; 4786 4787 /* record the sw_id available for later use */ 4788 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4789 4790 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4791 if (err) 4792 goto err_aq_set_port_params; 4793 4794 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4795 if (!vsi) { 4796 err = -ENOMEM; 4797 goto err_pf_vsi_setup; 4798 } 4799 4800 return 0; 4801 4802 err_pf_vsi_setup: 4803 err_aq_set_port_params: 4804 kfree(pf->first_sw); 4805 return err; 4806 } 4807 4808 static void ice_deinit_pf_sw(struct ice_pf *pf) 4809 { 4810 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4811 4812 if (!vsi) 4813 return; 4814 4815 ice_vsi_release(vsi); 4816 kfree(pf->first_sw); 4817 } 4818 4819 static int ice_alloc_vsis(struct ice_pf *pf) 4820 { 4821 struct device *dev = ice_pf_to_dev(pf); 4822 4823 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4824 if (!pf->num_alloc_vsi) 4825 return -EIO; 4826 4827 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4828 dev_warn(dev, 4829 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4830 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4831 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4832 } 4833 4834 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4835 GFP_KERNEL); 4836 if (!pf->vsi) 4837 return -ENOMEM; 4838 4839 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4840 sizeof(*pf->vsi_stats), GFP_KERNEL); 4841 if (!pf->vsi_stats) { 4842 devm_kfree(dev, pf->vsi); 4843 return -ENOMEM; 4844 } 4845 4846 return 0; 4847 } 4848 4849 static void ice_dealloc_vsis(struct ice_pf *pf) 4850 { 4851 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4852 pf->vsi_stats = NULL; 4853 4854 pf->num_alloc_vsi = 0; 4855 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4856 pf->vsi = NULL; 4857 } 4858 4859 static int ice_init_devlink(struct ice_pf *pf) 4860 { 4861 int err; 4862 4863 err = ice_devlink_register_params(pf); 4864 if (err) 4865 return err; 4866 4867 ice_devlink_init_regions(pf); 4868 ice_devlink_register(pf); 4869 4870 return 0; 4871 } 4872 4873 static void ice_deinit_devlink(struct ice_pf *pf) 4874 { 4875 ice_devlink_unregister(pf); 4876 ice_devlink_destroy_regions(pf); 4877 ice_devlink_unregister_params(pf); 4878 } 4879 4880 static int ice_init(struct ice_pf *pf) 4881 { 4882 int err; 4883 4884 err = ice_init_dev(pf); 4885 if (err) 4886 return err; 4887 4888 err = ice_alloc_vsis(pf); 4889 if (err) 4890 goto err_alloc_vsis; 4891 4892 err = ice_init_pf_sw(pf); 4893 if (err) 4894 goto err_init_pf_sw; 4895 4896 ice_init_wakeup(pf); 4897 4898 err = ice_init_link(pf); 4899 if (err) 4900 goto err_init_link; 4901 4902 err = ice_send_version(pf); 4903 if (err) 4904 goto err_init_link; 4905 4906 ice_verify_cacheline_size(pf); 4907 4908 if (ice_is_safe_mode(pf)) 4909 ice_set_safe_mode_vlan_cfg(pf); 4910 else 4911 /* print PCI link speed and width */ 4912 pcie_print_link_status(pf->pdev); 4913 4914 /* ready to go, so clear down state bit */ 4915 clear_bit(ICE_DOWN, pf->state); 4916 clear_bit(ICE_SERVICE_DIS, pf->state); 4917 4918 /* since everything is good, start the service timer */ 4919 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4920 4921 return 0; 4922 4923 err_init_link: 4924 ice_deinit_pf_sw(pf); 4925 err_init_pf_sw: 4926 ice_dealloc_vsis(pf); 4927 err_alloc_vsis: 4928 ice_deinit_dev(pf); 4929 return err; 4930 } 4931 4932 static void ice_deinit(struct ice_pf *pf) 4933 { 4934 set_bit(ICE_SERVICE_DIS, pf->state); 4935 set_bit(ICE_DOWN, pf->state); 4936 4937 ice_deinit_pf_sw(pf); 4938 ice_dealloc_vsis(pf); 4939 ice_deinit_dev(pf); 4940 } 4941 4942 /** 4943 * ice_load - load pf by init hw and starting VSI 4944 * @pf: pointer to the pf instance 4945 */ 4946 int ice_load(struct ice_pf *pf) 4947 { 4948 struct ice_vsi_cfg_params params = {}; 4949 struct ice_vsi *vsi; 4950 int err; 4951 4952 err = ice_init_dev(pf); 4953 if (err) 4954 return err; 4955 4956 vsi = ice_get_main_vsi(pf); 4957 4958 params = ice_vsi_to_params(vsi); 4959 params.flags = ICE_VSI_FLAG_INIT; 4960 4961 rtnl_lock(); 4962 err = ice_vsi_cfg(vsi, ¶ms); 4963 if (err) 4964 goto err_vsi_cfg; 4965 4966 err = ice_start_eth(ice_get_main_vsi(pf)); 4967 if (err) 4968 goto err_start_eth; 4969 rtnl_unlock(); 4970 4971 err = ice_init_rdma(pf); 4972 if (err) 4973 goto err_init_rdma; 4974 4975 ice_init_features(pf); 4976 ice_service_task_restart(pf); 4977 4978 clear_bit(ICE_DOWN, pf->state); 4979 4980 return 0; 4981 4982 err_init_rdma: 4983 ice_vsi_close(ice_get_main_vsi(pf)); 4984 rtnl_lock(); 4985 err_start_eth: 4986 ice_vsi_decfg(ice_get_main_vsi(pf)); 4987 err_vsi_cfg: 4988 rtnl_unlock(); 4989 ice_deinit_dev(pf); 4990 return err; 4991 } 4992 4993 /** 4994 * ice_unload - unload pf by stopping VSI and deinit hw 4995 * @pf: pointer to the pf instance 4996 */ 4997 void ice_unload(struct ice_pf *pf) 4998 { 4999 ice_deinit_features(pf); 5000 ice_deinit_rdma(pf); 5001 rtnl_lock(); 5002 ice_stop_eth(ice_get_main_vsi(pf)); 5003 ice_vsi_decfg(ice_get_main_vsi(pf)); 5004 rtnl_unlock(); 5005 ice_deinit_dev(pf); 5006 } 5007 5008 /** 5009 * ice_probe - Device initialization routine 5010 * @pdev: PCI device information struct 5011 * @ent: entry in ice_pci_tbl 5012 * 5013 * Returns 0 on success, negative on failure 5014 */ 5015 static int 5016 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5017 { 5018 struct device *dev = &pdev->dev; 5019 struct ice_pf *pf; 5020 struct ice_hw *hw; 5021 int err; 5022 5023 if (pdev->is_virtfn) { 5024 dev_err(dev, "can't probe a virtual function\n"); 5025 return -EINVAL; 5026 } 5027 5028 /* when under a kdump kernel initiate a reset before enabling the 5029 * device in order to clear out any pending DMA transactions. These 5030 * transactions can cause some systems to machine check when doing 5031 * the pcim_enable_device() below. 5032 */ 5033 if (is_kdump_kernel()) { 5034 pci_save_state(pdev); 5035 pci_clear_master(pdev); 5036 err = pcie_flr(pdev); 5037 if (err) 5038 return err; 5039 pci_restore_state(pdev); 5040 } 5041 5042 /* this driver uses devres, see 5043 * Documentation/driver-api/driver-model/devres.rst 5044 */ 5045 err = pcim_enable_device(pdev); 5046 if (err) 5047 return err; 5048 5049 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5050 if (err) { 5051 dev_err(dev, "BAR0 I/O map error %d\n", err); 5052 return err; 5053 } 5054 5055 pf = ice_allocate_pf(dev); 5056 if (!pf) 5057 return -ENOMEM; 5058 5059 /* initialize Auxiliary index to invalid value */ 5060 pf->aux_idx = -1; 5061 5062 /* set up for high or low DMA */ 5063 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5064 if (err) { 5065 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5066 return err; 5067 } 5068 5069 pci_set_master(pdev); 5070 5071 pf->pdev = pdev; 5072 pci_set_drvdata(pdev, pf); 5073 set_bit(ICE_DOWN, pf->state); 5074 /* Disable service task until DOWN bit is cleared */ 5075 set_bit(ICE_SERVICE_DIS, pf->state); 5076 5077 hw = &pf->hw; 5078 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5079 pci_save_state(pdev); 5080 5081 hw->back = pf; 5082 hw->port_info = NULL; 5083 hw->vendor_id = pdev->vendor; 5084 hw->device_id = pdev->device; 5085 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5086 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5087 hw->subsystem_device_id = pdev->subsystem_device; 5088 hw->bus.device = PCI_SLOT(pdev->devfn); 5089 hw->bus.func = PCI_FUNC(pdev->devfn); 5090 ice_set_ctrlq_len(hw); 5091 5092 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5093 5094 #ifndef CONFIG_DYNAMIC_DEBUG 5095 if (debug < -1) 5096 hw->debug_mask = debug; 5097 #endif 5098 5099 err = ice_init(pf); 5100 if (err) 5101 goto err_init; 5102 5103 err = ice_init_eth(pf); 5104 if (err) 5105 goto err_init_eth; 5106 5107 err = ice_init_rdma(pf); 5108 if (err) 5109 goto err_init_rdma; 5110 5111 err = ice_init_devlink(pf); 5112 if (err) 5113 goto err_init_devlink; 5114 5115 ice_init_features(pf); 5116 5117 return 0; 5118 5119 err_init_devlink: 5120 ice_deinit_rdma(pf); 5121 err_init_rdma: 5122 ice_deinit_eth(pf); 5123 err_init_eth: 5124 ice_deinit(pf); 5125 err_init: 5126 pci_disable_device(pdev); 5127 return err; 5128 } 5129 5130 /** 5131 * ice_set_wake - enable or disable Wake on LAN 5132 * @pf: pointer to the PF struct 5133 * 5134 * Simple helper for WoL control 5135 */ 5136 static void ice_set_wake(struct ice_pf *pf) 5137 { 5138 struct ice_hw *hw = &pf->hw; 5139 bool wol = pf->wol_ena; 5140 5141 /* clear wake state, otherwise new wake events won't fire */ 5142 wr32(hw, PFPM_WUS, U32_MAX); 5143 5144 /* enable / disable APM wake up, no RMW needed */ 5145 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5146 5147 /* set magic packet filter enabled */ 5148 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5149 } 5150 5151 /** 5152 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5153 * @pf: pointer to the PF struct 5154 * 5155 * Issue firmware command to enable multicast magic wake, making 5156 * sure that any locally administered address (LAA) is used for 5157 * wake, and that PF reset doesn't undo the LAA. 5158 */ 5159 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5160 { 5161 struct device *dev = ice_pf_to_dev(pf); 5162 struct ice_hw *hw = &pf->hw; 5163 u8 mac_addr[ETH_ALEN]; 5164 struct ice_vsi *vsi; 5165 int status; 5166 u8 flags; 5167 5168 if (!pf->wol_ena) 5169 return; 5170 5171 vsi = ice_get_main_vsi(pf); 5172 if (!vsi) 5173 return; 5174 5175 /* Get current MAC address in case it's an LAA */ 5176 if (vsi->netdev) 5177 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5178 else 5179 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5180 5181 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5182 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5183 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5184 5185 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5186 if (status) 5187 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5188 status, ice_aq_str(hw->adminq.sq_last_status)); 5189 } 5190 5191 /** 5192 * ice_remove - Device removal routine 5193 * @pdev: PCI device information struct 5194 */ 5195 static void ice_remove(struct pci_dev *pdev) 5196 { 5197 struct ice_pf *pf = pci_get_drvdata(pdev); 5198 int i; 5199 5200 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5201 if (!ice_is_reset_in_progress(pf->state)) 5202 break; 5203 msleep(100); 5204 } 5205 5206 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5207 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5208 ice_free_vfs(pf); 5209 } 5210 5211 ice_service_task_stop(pf); 5212 ice_aq_cancel_waiting_tasks(pf); 5213 set_bit(ICE_DOWN, pf->state); 5214 5215 if (!ice_is_safe_mode(pf)) 5216 ice_remove_arfs(pf); 5217 ice_deinit_features(pf); 5218 ice_deinit_devlink(pf); 5219 ice_deinit_rdma(pf); 5220 ice_deinit_eth(pf); 5221 ice_deinit(pf); 5222 5223 ice_vsi_release_all(pf); 5224 5225 ice_setup_mc_magic_wake(pf); 5226 ice_set_wake(pf); 5227 5228 pci_disable_device(pdev); 5229 } 5230 5231 /** 5232 * ice_shutdown - PCI callback for shutting down device 5233 * @pdev: PCI device information struct 5234 */ 5235 static void ice_shutdown(struct pci_dev *pdev) 5236 { 5237 struct ice_pf *pf = pci_get_drvdata(pdev); 5238 5239 ice_remove(pdev); 5240 5241 if (system_state == SYSTEM_POWER_OFF) { 5242 pci_wake_from_d3(pdev, pf->wol_ena); 5243 pci_set_power_state(pdev, PCI_D3hot); 5244 } 5245 } 5246 5247 #ifdef CONFIG_PM 5248 /** 5249 * ice_prepare_for_shutdown - prep for PCI shutdown 5250 * @pf: board private structure 5251 * 5252 * Inform or close all dependent features in prep for PCI device shutdown 5253 */ 5254 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5255 { 5256 struct ice_hw *hw = &pf->hw; 5257 u32 v; 5258 5259 /* Notify VFs of impending reset */ 5260 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5261 ice_vc_notify_reset(pf); 5262 5263 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5264 5265 /* disable the VSIs and their queues that are not already DOWN */ 5266 ice_pf_dis_all_vsi(pf, false); 5267 5268 ice_for_each_vsi(pf, v) 5269 if (pf->vsi[v]) 5270 pf->vsi[v]->vsi_num = 0; 5271 5272 ice_shutdown_all_ctrlq(hw); 5273 } 5274 5275 /** 5276 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5277 * @pf: board private structure to reinitialize 5278 * 5279 * This routine reinitialize interrupt scheme that was cleared during 5280 * power management suspend callback. 5281 * 5282 * This should be called during resume routine to re-allocate the q_vectors 5283 * and reacquire interrupts. 5284 */ 5285 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5286 { 5287 struct device *dev = ice_pf_to_dev(pf); 5288 int ret, v; 5289 5290 /* Since we clear MSIX flag during suspend, we need to 5291 * set it back during resume... 5292 */ 5293 5294 ret = ice_init_interrupt_scheme(pf); 5295 if (ret) { 5296 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5297 return ret; 5298 } 5299 5300 /* Remap vectors and rings, after successful re-init interrupts */ 5301 ice_for_each_vsi(pf, v) { 5302 if (!pf->vsi[v]) 5303 continue; 5304 5305 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5306 if (ret) 5307 goto err_reinit; 5308 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5309 } 5310 5311 ret = ice_req_irq_msix_misc(pf); 5312 if (ret) { 5313 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5314 ret); 5315 goto err_reinit; 5316 } 5317 5318 return 0; 5319 5320 err_reinit: 5321 while (v--) 5322 if (pf->vsi[v]) 5323 ice_vsi_free_q_vectors(pf->vsi[v]); 5324 5325 return ret; 5326 } 5327 5328 /** 5329 * ice_suspend 5330 * @dev: generic device information structure 5331 * 5332 * Power Management callback to quiesce the device and prepare 5333 * for D3 transition. 5334 */ 5335 static int __maybe_unused ice_suspend(struct device *dev) 5336 { 5337 struct pci_dev *pdev = to_pci_dev(dev); 5338 struct ice_pf *pf; 5339 int disabled, v; 5340 5341 pf = pci_get_drvdata(pdev); 5342 5343 if (!ice_pf_state_is_nominal(pf)) { 5344 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5345 return -EBUSY; 5346 } 5347 5348 /* Stop watchdog tasks until resume completion. 5349 * Even though it is most likely that the service task is 5350 * disabled if the device is suspended or down, the service task's 5351 * state is controlled by a different state bit, and we should 5352 * store and honor whatever state that bit is in at this point. 5353 */ 5354 disabled = ice_service_task_stop(pf); 5355 5356 ice_unplug_aux_dev(pf); 5357 5358 /* Already suspended?, then there is nothing to do */ 5359 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5360 if (!disabled) 5361 ice_service_task_restart(pf); 5362 return 0; 5363 } 5364 5365 if (test_bit(ICE_DOWN, pf->state) || 5366 ice_is_reset_in_progress(pf->state)) { 5367 dev_err(dev, "can't suspend device in reset or already down\n"); 5368 if (!disabled) 5369 ice_service_task_restart(pf); 5370 return 0; 5371 } 5372 5373 ice_setup_mc_magic_wake(pf); 5374 5375 ice_prepare_for_shutdown(pf); 5376 5377 ice_set_wake(pf); 5378 5379 /* Free vectors, clear the interrupt scheme and release IRQs 5380 * for proper hibernation, especially with large number of CPUs. 5381 * Otherwise hibernation might fail when mapping all the vectors back 5382 * to CPU0. 5383 */ 5384 ice_free_irq_msix_misc(pf); 5385 ice_for_each_vsi(pf, v) { 5386 if (!pf->vsi[v]) 5387 continue; 5388 ice_vsi_free_q_vectors(pf->vsi[v]); 5389 } 5390 ice_clear_interrupt_scheme(pf); 5391 5392 pci_save_state(pdev); 5393 pci_wake_from_d3(pdev, pf->wol_ena); 5394 pci_set_power_state(pdev, PCI_D3hot); 5395 return 0; 5396 } 5397 5398 /** 5399 * ice_resume - PM callback for waking up from D3 5400 * @dev: generic device information structure 5401 */ 5402 static int __maybe_unused ice_resume(struct device *dev) 5403 { 5404 struct pci_dev *pdev = to_pci_dev(dev); 5405 enum ice_reset_req reset_type; 5406 struct ice_pf *pf; 5407 struct ice_hw *hw; 5408 int ret; 5409 5410 pci_set_power_state(pdev, PCI_D0); 5411 pci_restore_state(pdev); 5412 pci_save_state(pdev); 5413 5414 if (!pci_device_is_present(pdev)) 5415 return -ENODEV; 5416 5417 ret = pci_enable_device_mem(pdev); 5418 if (ret) { 5419 dev_err(dev, "Cannot enable device after suspend\n"); 5420 return ret; 5421 } 5422 5423 pf = pci_get_drvdata(pdev); 5424 hw = &pf->hw; 5425 5426 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5427 ice_print_wake_reason(pf); 5428 5429 /* We cleared the interrupt scheme when we suspended, so we need to 5430 * restore it now to resume device functionality. 5431 */ 5432 ret = ice_reinit_interrupt_scheme(pf); 5433 if (ret) 5434 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5435 5436 clear_bit(ICE_DOWN, pf->state); 5437 /* Now perform PF reset and rebuild */ 5438 reset_type = ICE_RESET_PFR; 5439 /* re-enable service task for reset, but allow reset to schedule it */ 5440 clear_bit(ICE_SERVICE_DIS, pf->state); 5441 5442 if (ice_schedule_reset(pf, reset_type)) 5443 dev_err(dev, "Reset during resume failed.\n"); 5444 5445 clear_bit(ICE_SUSPENDED, pf->state); 5446 ice_service_task_restart(pf); 5447 5448 /* Restart the service task */ 5449 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5450 5451 return 0; 5452 } 5453 #endif /* CONFIG_PM */ 5454 5455 /** 5456 * ice_pci_err_detected - warning that PCI error has been detected 5457 * @pdev: PCI device information struct 5458 * @err: the type of PCI error 5459 * 5460 * Called to warn that something happened on the PCI bus and the error handling 5461 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5462 */ 5463 static pci_ers_result_t 5464 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5465 { 5466 struct ice_pf *pf = pci_get_drvdata(pdev); 5467 5468 if (!pf) { 5469 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5470 __func__, err); 5471 return PCI_ERS_RESULT_DISCONNECT; 5472 } 5473 5474 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5475 ice_service_task_stop(pf); 5476 5477 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5478 set_bit(ICE_PFR_REQ, pf->state); 5479 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5480 } 5481 } 5482 5483 return PCI_ERS_RESULT_NEED_RESET; 5484 } 5485 5486 /** 5487 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5488 * @pdev: PCI device information struct 5489 * 5490 * Called to determine if the driver can recover from the PCI slot reset by 5491 * using a register read to determine if the device is recoverable. 5492 */ 5493 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5494 { 5495 struct ice_pf *pf = pci_get_drvdata(pdev); 5496 pci_ers_result_t result; 5497 int err; 5498 u32 reg; 5499 5500 err = pci_enable_device_mem(pdev); 5501 if (err) { 5502 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5503 err); 5504 result = PCI_ERS_RESULT_DISCONNECT; 5505 } else { 5506 pci_set_master(pdev); 5507 pci_restore_state(pdev); 5508 pci_save_state(pdev); 5509 pci_wake_from_d3(pdev, false); 5510 5511 /* Check for life */ 5512 reg = rd32(&pf->hw, GLGEN_RTRIG); 5513 if (!reg) 5514 result = PCI_ERS_RESULT_RECOVERED; 5515 else 5516 result = PCI_ERS_RESULT_DISCONNECT; 5517 } 5518 5519 return result; 5520 } 5521 5522 /** 5523 * ice_pci_err_resume - restart operations after PCI error recovery 5524 * @pdev: PCI device information struct 5525 * 5526 * Called to allow the driver to bring things back up after PCI error and/or 5527 * reset recovery have finished 5528 */ 5529 static void ice_pci_err_resume(struct pci_dev *pdev) 5530 { 5531 struct ice_pf *pf = pci_get_drvdata(pdev); 5532 5533 if (!pf) { 5534 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5535 __func__); 5536 return; 5537 } 5538 5539 if (test_bit(ICE_SUSPENDED, pf->state)) { 5540 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5541 __func__); 5542 return; 5543 } 5544 5545 ice_restore_all_vfs_msi_state(pf); 5546 5547 ice_do_reset(pf, ICE_RESET_PFR); 5548 ice_service_task_restart(pf); 5549 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5550 } 5551 5552 /** 5553 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5554 * @pdev: PCI device information struct 5555 */ 5556 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5557 { 5558 struct ice_pf *pf = pci_get_drvdata(pdev); 5559 5560 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5561 ice_service_task_stop(pf); 5562 5563 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5564 set_bit(ICE_PFR_REQ, pf->state); 5565 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5566 } 5567 } 5568 } 5569 5570 /** 5571 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5572 * @pdev: PCI device information struct 5573 */ 5574 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5575 { 5576 ice_pci_err_resume(pdev); 5577 } 5578 5579 /* ice_pci_tbl - PCI Device ID Table 5580 * 5581 * Wildcard entries (PCI_ANY_ID) should come last 5582 * Last entry must be all 0s 5583 * 5584 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5585 * Class, Class Mask, private data (not used) } 5586 */ 5587 static const struct pci_device_id ice_pci_tbl[] = { 5588 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5589 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5590 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5591 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5592 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5593 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5594 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5595 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5596 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5597 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5598 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5599 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5600 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5601 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5602 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5603 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5604 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5605 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5606 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5607 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5608 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5609 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5610 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5611 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5612 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5613 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5614 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) }, 5615 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) }, 5616 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) }, 5617 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) }, 5618 /* required last entry */ 5619 {} 5620 }; 5621 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5622 5623 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5624 5625 static const struct pci_error_handlers ice_pci_err_handler = { 5626 .error_detected = ice_pci_err_detected, 5627 .slot_reset = ice_pci_err_slot_reset, 5628 .reset_prepare = ice_pci_err_reset_prepare, 5629 .reset_done = ice_pci_err_reset_done, 5630 .resume = ice_pci_err_resume 5631 }; 5632 5633 static struct pci_driver ice_driver = { 5634 .name = KBUILD_MODNAME, 5635 .id_table = ice_pci_tbl, 5636 .probe = ice_probe, 5637 .remove = ice_remove, 5638 #ifdef CONFIG_PM 5639 .driver.pm = &ice_pm_ops, 5640 #endif /* CONFIG_PM */ 5641 .shutdown = ice_shutdown, 5642 .sriov_configure = ice_sriov_configure, 5643 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5644 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5645 .err_handler = &ice_pci_err_handler 5646 }; 5647 5648 /** 5649 * ice_module_init - Driver registration routine 5650 * 5651 * ice_module_init is the first routine called when the driver is 5652 * loaded. All it does is register with the PCI subsystem. 5653 */ 5654 static int __init ice_module_init(void) 5655 { 5656 int status = -ENOMEM; 5657 5658 pr_info("%s\n", ice_driver_string); 5659 pr_info("%s\n", ice_copyright); 5660 5661 ice_adv_lnk_speed_maps_init(); 5662 5663 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5664 if (!ice_wq) { 5665 pr_err("Failed to create workqueue\n"); 5666 return status; 5667 } 5668 5669 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5670 if (!ice_lag_wq) { 5671 pr_err("Failed to create LAG workqueue\n"); 5672 goto err_dest_wq; 5673 } 5674 5675 status = pci_register_driver(&ice_driver); 5676 if (status) { 5677 pr_err("failed to register PCI driver, err %d\n", status); 5678 goto err_dest_lag_wq; 5679 } 5680 5681 return 0; 5682 5683 err_dest_lag_wq: 5684 destroy_workqueue(ice_lag_wq); 5685 err_dest_wq: 5686 destroy_workqueue(ice_wq); 5687 return status; 5688 } 5689 module_init(ice_module_init); 5690 5691 /** 5692 * ice_module_exit - Driver exit cleanup routine 5693 * 5694 * ice_module_exit is called just before the driver is removed 5695 * from memory. 5696 */ 5697 static void __exit ice_module_exit(void) 5698 { 5699 pci_unregister_driver(&ice_driver); 5700 destroy_workqueue(ice_wq); 5701 destroy_workqueue(ice_lag_wq); 5702 pr_info("module unloaded\n"); 5703 } 5704 module_exit(ice_module_exit); 5705 5706 /** 5707 * ice_set_mac_address - NDO callback to set MAC address 5708 * @netdev: network interface device structure 5709 * @pi: pointer to an address structure 5710 * 5711 * Returns 0 on success, negative on failure 5712 */ 5713 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5714 { 5715 struct ice_netdev_priv *np = netdev_priv(netdev); 5716 struct ice_vsi *vsi = np->vsi; 5717 struct ice_pf *pf = vsi->back; 5718 struct ice_hw *hw = &pf->hw; 5719 struct sockaddr *addr = pi; 5720 u8 old_mac[ETH_ALEN]; 5721 u8 flags = 0; 5722 u8 *mac; 5723 int err; 5724 5725 mac = (u8 *)addr->sa_data; 5726 5727 if (!is_valid_ether_addr(mac)) 5728 return -EADDRNOTAVAIL; 5729 5730 if (test_bit(ICE_DOWN, pf->state) || 5731 ice_is_reset_in_progress(pf->state)) { 5732 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5733 mac); 5734 return -EBUSY; 5735 } 5736 5737 if (ice_chnl_dmac_fltr_cnt(pf)) { 5738 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5739 mac); 5740 return -EAGAIN; 5741 } 5742 5743 netif_addr_lock_bh(netdev); 5744 ether_addr_copy(old_mac, netdev->dev_addr); 5745 /* change the netdev's MAC address */ 5746 eth_hw_addr_set(netdev, mac); 5747 netif_addr_unlock_bh(netdev); 5748 5749 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5750 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5751 if (err && err != -ENOENT) { 5752 err = -EADDRNOTAVAIL; 5753 goto err_update_filters; 5754 } 5755 5756 /* Add filter for new MAC. If filter exists, return success */ 5757 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5758 if (err == -EEXIST) { 5759 /* Although this MAC filter is already present in hardware it's 5760 * possible in some cases (e.g. bonding) that dev_addr was 5761 * modified outside of the driver and needs to be restored back 5762 * to this value. 5763 */ 5764 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5765 5766 return 0; 5767 } else if (err) { 5768 /* error if the new filter addition failed */ 5769 err = -EADDRNOTAVAIL; 5770 } 5771 5772 err_update_filters: 5773 if (err) { 5774 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5775 mac); 5776 netif_addr_lock_bh(netdev); 5777 eth_hw_addr_set(netdev, old_mac); 5778 netif_addr_unlock_bh(netdev); 5779 return err; 5780 } 5781 5782 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5783 netdev->dev_addr); 5784 5785 /* write new MAC address to the firmware */ 5786 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5787 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5788 if (err) { 5789 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5790 mac, err); 5791 } 5792 return 0; 5793 } 5794 5795 /** 5796 * ice_set_rx_mode - NDO callback to set the netdev filters 5797 * @netdev: network interface device structure 5798 */ 5799 static void ice_set_rx_mode(struct net_device *netdev) 5800 { 5801 struct ice_netdev_priv *np = netdev_priv(netdev); 5802 struct ice_vsi *vsi = np->vsi; 5803 5804 if (!vsi || ice_is_switchdev_running(vsi->back)) 5805 return; 5806 5807 /* Set the flags to synchronize filters 5808 * ndo_set_rx_mode may be triggered even without a change in netdev 5809 * flags 5810 */ 5811 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5812 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5813 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5814 5815 /* schedule our worker thread which will take care of 5816 * applying the new filter changes 5817 */ 5818 ice_service_task_schedule(vsi->back); 5819 } 5820 5821 /** 5822 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5823 * @netdev: network interface device structure 5824 * @queue_index: Queue ID 5825 * @maxrate: maximum bandwidth in Mbps 5826 */ 5827 static int 5828 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5829 { 5830 struct ice_netdev_priv *np = netdev_priv(netdev); 5831 struct ice_vsi *vsi = np->vsi; 5832 u16 q_handle; 5833 int status; 5834 u8 tc; 5835 5836 /* Validate maxrate requested is within permitted range */ 5837 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5838 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5839 maxrate, queue_index); 5840 return -EINVAL; 5841 } 5842 5843 q_handle = vsi->tx_rings[queue_index]->q_handle; 5844 tc = ice_dcb_get_tc(vsi, queue_index); 5845 5846 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5847 if (!vsi) { 5848 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5849 queue_index); 5850 return -EINVAL; 5851 } 5852 5853 /* Set BW back to default, when user set maxrate to 0 */ 5854 if (!maxrate) 5855 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5856 q_handle, ICE_MAX_BW); 5857 else 5858 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5859 q_handle, ICE_MAX_BW, maxrate * 1000); 5860 if (status) 5861 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5862 status); 5863 5864 return status; 5865 } 5866 5867 /** 5868 * ice_fdb_add - add an entry to the hardware database 5869 * @ndm: the input from the stack 5870 * @tb: pointer to array of nladdr (unused) 5871 * @dev: the net device pointer 5872 * @addr: the MAC address entry being added 5873 * @vid: VLAN ID 5874 * @flags: instructions from stack about fdb operation 5875 * @extack: netlink extended ack 5876 */ 5877 static int 5878 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5879 struct net_device *dev, const unsigned char *addr, u16 vid, 5880 u16 flags, struct netlink_ext_ack __always_unused *extack) 5881 { 5882 int err; 5883 5884 if (vid) { 5885 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5886 return -EINVAL; 5887 } 5888 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5889 netdev_err(dev, "FDB only supports static addresses\n"); 5890 return -EINVAL; 5891 } 5892 5893 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5894 err = dev_uc_add_excl(dev, addr); 5895 else if (is_multicast_ether_addr(addr)) 5896 err = dev_mc_add_excl(dev, addr); 5897 else 5898 err = -EINVAL; 5899 5900 /* Only return duplicate errors if NLM_F_EXCL is set */ 5901 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5902 err = 0; 5903 5904 return err; 5905 } 5906 5907 /** 5908 * ice_fdb_del - delete an entry from the hardware database 5909 * @ndm: the input from the stack 5910 * @tb: pointer to array of nladdr (unused) 5911 * @dev: the net device pointer 5912 * @addr: the MAC address entry being added 5913 * @vid: VLAN ID 5914 * @extack: netlink extended ack 5915 */ 5916 static int 5917 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5918 struct net_device *dev, const unsigned char *addr, 5919 __always_unused u16 vid, struct netlink_ext_ack *extack) 5920 { 5921 int err; 5922 5923 if (ndm->ndm_state & NUD_PERMANENT) { 5924 netdev_err(dev, "FDB only supports static addresses\n"); 5925 return -EINVAL; 5926 } 5927 5928 if (is_unicast_ether_addr(addr)) 5929 err = dev_uc_del(dev, addr); 5930 else if (is_multicast_ether_addr(addr)) 5931 err = dev_mc_del(dev, addr); 5932 else 5933 err = -EINVAL; 5934 5935 return err; 5936 } 5937 5938 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5939 NETIF_F_HW_VLAN_CTAG_TX | \ 5940 NETIF_F_HW_VLAN_STAG_RX | \ 5941 NETIF_F_HW_VLAN_STAG_TX) 5942 5943 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5944 NETIF_F_HW_VLAN_STAG_RX) 5945 5946 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5947 NETIF_F_HW_VLAN_STAG_FILTER) 5948 5949 /** 5950 * ice_fix_features - fix the netdev features flags based on device limitations 5951 * @netdev: ptr to the netdev that flags are being fixed on 5952 * @features: features that need to be checked and possibly fixed 5953 * 5954 * Make sure any fixups are made to features in this callback. This enables the 5955 * driver to not have to check unsupported configurations throughout the driver 5956 * because that's the responsiblity of this callback. 5957 * 5958 * Single VLAN Mode (SVM) Supported Features: 5959 * NETIF_F_HW_VLAN_CTAG_FILTER 5960 * NETIF_F_HW_VLAN_CTAG_RX 5961 * NETIF_F_HW_VLAN_CTAG_TX 5962 * 5963 * Double VLAN Mode (DVM) Supported Features: 5964 * NETIF_F_HW_VLAN_CTAG_FILTER 5965 * NETIF_F_HW_VLAN_CTAG_RX 5966 * NETIF_F_HW_VLAN_CTAG_TX 5967 * 5968 * NETIF_F_HW_VLAN_STAG_FILTER 5969 * NETIF_HW_VLAN_STAG_RX 5970 * NETIF_HW_VLAN_STAG_TX 5971 * 5972 * Features that need fixing: 5973 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5974 * These are mutually exlusive as the VSI context cannot support multiple 5975 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5976 * is not done, then default to clearing the requested STAG offload 5977 * settings. 5978 * 5979 * All supported filtering has to be enabled or disabled together. For 5980 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5981 * together. If this is not done, then default to VLAN filtering disabled. 5982 * These are mutually exclusive as there is currently no way to 5983 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5984 * prune rules. 5985 */ 5986 static netdev_features_t 5987 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5988 { 5989 struct ice_netdev_priv *np = netdev_priv(netdev); 5990 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5991 bool cur_ctag, cur_stag, req_ctag, req_stag; 5992 5993 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5994 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5995 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5996 5997 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5998 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5999 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6000 6001 if (req_vlan_fltr != cur_vlan_fltr) { 6002 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6003 if (req_ctag && req_stag) { 6004 features |= NETIF_VLAN_FILTERING_FEATURES; 6005 } else if (!req_ctag && !req_stag) { 6006 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6007 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6008 (!cur_stag && req_stag && !cur_ctag)) { 6009 features |= NETIF_VLAN_FILTERING_FEATURES; 6010 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6011 } else if ((cur_ctag && !req_ctag && cur_stag) || 6012 (cur_stag && !req_stag && cur_ctag)) { 6013 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6014 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6015 } 6016 } else { 6017 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6018 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6019 6020 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6021 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6022 } 6023 } 6024 6025 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6026 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6027 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6028 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6029 NETIF_F_HW_VLAN_STAG_TX); 6030 } 6031 6032 if (!(netdev->features & NETIF_F_RXFCS) && 6033 (features & NETIF_F_RXFCS) && 6034 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6035 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6036 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6037 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6038 } 6039 6040 return features; 6041 } 6042 6043 /** 6044 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6045 * @vsi: PF's VSI 6046 * @features: features used to determine VLAN offload settings 6047 * 6048 * First, determine the vlan_ethertype based on the VLAN offload bits in 6049 * features. Then determine if stripping and insertion should be enabled or 6050 * disabled. Finally enable or disable VLAN stripping and insertion. 6051 */ 6052 static int 6053 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6054 { 6055 bool enable_stripping = true, enable_insertion = true; 6056 struct ice_vsi_vlan_ops *vlan_ops; 6057 int strip_err = 0, insert_err = 0; 6058 u16 vlan_ethertype = 0; 6059 6060 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6061 6062 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6063 vlan_ethertype = ETH_P_8021AD; 6064 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6065 vlan_ethertype = ETH_P_8021Q; 6066 6067 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6068 enable_stripping = false; 6069 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6070 enable_insertion = false; 6071 6072 if (enable_stripping) 6073 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6074 else 6075 strip_err = vlan_ops->dis_stripping(vsi); 6076 6077 if (enable_insertion) 6078 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6079 else 6080 insert_err = vlan_ops->dis_insertion(vsi); 6081 6082 if (strip_err || insert_err) 6083 return -EIO; 6084 6085 return 0; 6086 } 6087 6088 /** 6089 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6090 * @vsi: PF's VSI 6091 * @features: features used to determine VLAN filtering settings 6092 * 6093 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6094 * features. 6095 */ 6096 static int 6097 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6098 { 6099 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6100 int err = 0; 6101 6102 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6103 * if either bit is set 6104 */ 6105 if (features & 6106 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6107 err = vlan_ops->ena_rx_filtering(vsi); 6108 else 6109 err = vlan_ops->dis_rx_filtering(vsi); 6110 6111 return err; 6112 } 6113 6114 /** 6115 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6116 * @netdev: ptr to the netdev being adjusted 6117 * @features: the feature set that the stack is suggesting 6118 * 6119 * Only update VLAN settings if the requested_vlan_features are different than 6120 * the current_vlan_features. 6121 */ 6122 static int 6123 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6124 { 6125 netdev_features_t current_vlan_features, requested_vlan_features; 6126 struct ice_netdev_priv *np = netdev_priv(netdev); 6127 struct ice_vsi *vsi = np->vsi; 6128 int err; 6129 6130 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6131 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6132 if (current_vlan_features ^ requested_vlan_features) { 6133 if ((features & NETIF_F_RXFCS) && 6134 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6135 dev_err(ice_pf_to_dev(vsi->back), 6136 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6137 return -EIO; 6138 } 6139 6140 err = ice_set_vlan_offload_features(vsi, features); 6141 if (err) 6142 return err; 6143 } 6144 6145 current_vlan_features = netdev->features & 6146 NETIF_VLAN_FILTERING_FEATURES; 6147 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6148 if (current_vlan_features ^ requested_vlan_features) { 6149 err = ice_set_vlan_filtering_features(vsi, features); 6150 if (err) 6151 return err; 6152 } 6153 6154 return 0; 6155 } 6156 6157 /** 6158 * ice_set_loopback - turn on/off loopback mode on underlying PF 6159 * @vsi: ptr to VSI 6160 * @ena: flag to indicate the on/off setting 6161 */ 6162 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6163 { 6164 bool if_running = netif_running(vsi->netdev); 6165 int ret; 6166 6167 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6168 ret = ice_down(vsi); 6169 if (ret) { 6170 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6171 return ret; 6172 } 6173 } 6174 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6175 if (ret) 6176 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6177 if (if_running) 6178 ret = ice_up(vsi); 6179 6180 return ret; 6181 } 6182 6183 /** 6184 * ice_set_features - set the netdev feature flags 6185 * @netdev: ptr to the netdev being adjusted 6186 * @features: the feature set that the stack is suggesting 6187 */ 6188 static int 6189 ice_set_features(struct net_device *netdev, netdev_features_t features) 6190 { 6191 netdev_features_t changed = netdev->features ^ features; 6192 struct ice_netdev_priv *np = netdev_priv(netdev); 6193 struct ice_vsi *vsi = np->vsi; 6194 struct ice_pf *pf = vsi->back; 6195 int ret = 0; 6196 6197 /* Don't set any netdev advanced features with device in Safe Mode */ 6198 if (ice_is_safe_mode(pf)) { 6199 dev_err(ice_pf_to_dev(pf), 6200 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6201 return ret; 6202 } 6203 6204 /* Do not change setting during reset */ 6205 if (ice_is_reset_in_progress(pf->state)) { 6206 dev_err(ice_pf_to_dev(pf), 6207 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6208 return -EBUSY; 6209 } 6210 6211 /* Multiple features can be changed in one call so keep features in 6212 * separate if/else statements to guarantee each feature is checked 6213 */ 6214 if (changed & NETIF_F_RXHASH) 6215 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6216 6217 ret = ice_set_vlan_features(netdev, features); 6218 if (ret) 6219 return ret; 6220 6221 /* Turn on receive of FCS aka CRC, and after setting this 6222 * flag the packet data will have the 4 byte CRC appended 6223 */ 6224 if (changed & NETIF_F_RXFCS) { 6225 if ((features & NETIF_F_RXFCS) && 6226 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6227 dev_err(ice_pf_to_dev(vsi->back), 6228 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6229 return -EIO; 6230 } 6231 6232 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6233 ret = ice_down_up(vsi); 6234 if (ret) 6235 return ret; 6236 } 6237 6238 if (changed & NETIF_F_NTUPLE) { 6239 bool ena = !!(features & NETIF_F_NTUPLE); 6240 6241 ice_vsi_manage_fdir(vsi, ena); 6242 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6243 } 6244 6245 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6246 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6247 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6248 return -EACCES; 6249 } 6250 6251 if (changed & NETIF_F_HW_TC) { 6252 bool ena = !!(features & NETIF_F_HW_TC); 6253 6254 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6255 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6256 } 6257 6258 if (changed & NETIF_F_LOOPBACK) 6259 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6260 6261 return ret; 6262 } 6263 6264 /** 6265 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6266 * @vsi: VSI to setup VLAN properties for 6267 */ 6268 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6269 { 6270 int err; 6271 6272 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6273 if (err) 6274 return err; 6275 6276 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6277 if (err) 6278 return err; 6279 6280 return ice_vsi_add_vlan_zero(vsi); 6281 } 6282 6283 /** 6284 * ice_vsi_cfg_lan - Setup the VSI lan related config 6285 * @vsi: the VSI being configured 6286 * 6287 * Return 0 on success and negative value on error 6288 */ 6289 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6290 { 6291 int err; 6292 6293 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6294 ice_set_rx_mode(vsi->netdev); 6295 6296 err = ice_vsi_vlan_setup(vsi); 6297 if (err) 6298 return err; 6299 } 6300 ice_vsi_cfg_dcb_rings(vsi); 6301 6302 err = ice_vsi_cfg_lan_txqs(vsi); 6303 if (!err && ice_is_xdp_ena_vsi(vsi)) 6304 err = ice_vsi_cfg_xdp_txqs(vsi); 6305 if (!err) 6306 err = ice_vsi_cfg_rxqs(vsi); 6307 6308 return err; 6309 } 6310 6311 /* THEORY OF MODERATION: 6312 * The ice driver hardware works differently than the hardware that DIMLIB was 6313 * originally made for. ice hardware doesn't have packet count limits that 6314 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6315 * which is hard-coded to a limit of 250,000 ints/second. 6316 * If not using dynamic moderation, the INTRL value can be modified 6317 * by ethtool rx-usecs-high. 6318 */ 6319 struct ice_dim { 6320 /* the throttle rate for interrupts, basically worst case delay before 6321 * an initial interrupt fires, value is stored in microseconds. 6322 */ 6323 u16 itr; 6324 }; 6325 6326 /* Make a different profile for Rx that doesn't allow quite so aggressive 6327 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6328 * second. 6329 */ 6330 static const struct ice_dim rx_profile[] = { 6331 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6332 {8}, /* 125,000 ints/s */ 6333 {16}, /* 62,500 ints/s */ 6334 {62}, /* 16,129 ints/s */ 6335 {126} /* 7,936 ints/s */ 6336 }; 6337 6338 /* The transmit profile, which has the same sorts of values 6339 * as the previous struct 6340 */ 6341 static const struct ice_dim tx_profile[] = { 6342 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6343 {8}, /* 125,000 ints/s */ 6344 {40}, /* 16,125 ints/s */ 6345 {128}, /* 7,812 ints/s */ 6346 {256} /* 3,906 ints/s */ 6347 }; 6348 6349 static void ice_tx_dim_work(struct work_struct *work) 6350 { 6351 struct ice_ring_container *rc; 6352 struct dim *dim; 6353 u16 itr; 6354 6355 dim = container_of(work, struct dim, work); 6356 rc = dim->priv; 6357 6358 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6359 6360 /* look up the values in our local table */ 6361 itr = tx_profile[dim->profile_ix].itr; 6362 6363 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6364 ice_write_itr(rc, itr); 6365 6366 dim->state = DIM_START_MEASURE; 6367 } 6368 6369 static void ice_rx_dim_work(struct work_struct *work) 6370 { 6371 struct ice_ring_container *rc; 6372 struct dim *dim; 6373 u16 itr; 6374 6375 dim = container_of(work, struct dim, work); 6376 rc = dim->priv; 6377 6378 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6379 6380 /* look up the values in our local table */ 6381 itr = rx_profile[dim->profile_ix].itr; 6382 6383 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6384 ice_write_itr(rc, itr); 6385 6386 dim->state = DIM_START_MEASURE; 6387 } 6388 6389 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6390 6391 /** 6392 * ice_init_moderation - set up interrupt moderation 6393 * @q_vector: the vector containing rings to be configured 6394 * 6395 * Set up interrupt moderation registers, with the intent to do the right thing 6396 * when called from reset or from probe, and whether or not dynamic moderation 6397 * is enabled or not. Take special care to write all the registers in both 6398 * dynamic moderation mode or not in order to make sure hardware is in a known 6399 * state. 6400 */ 6401 static void ice_init_moderation(struct ice_q_vector *q_vector) 6402 { 6403 struct ice_ring_container *rc; 6404 bool tx_dynamic, rx_dynamic; 6405 6406 rc = &q_vector->tx; 6407 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6408 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6409 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6410 rc->dim.priv = rc; 6411 tx_dynamic = ITR_IS_DYNAMIC(rc); 6412 6413 /* set the initial TX ITR to match the above */ 6414 ice_write_itr(rc, tx_dynamic ? 6415 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6416 6417 rc = &q_vector->rx; 6418 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6419 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6420 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6421 rc->dim.priv = rc; 6422 rx_dynamic = ITR_IS_DYNAMIC(rc); 6423 6424 /* set the initial RX ITR to match the above */ 6425 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6426 rc->itr_setting); 6427 6428 ice_set_q_vector_intrl(q_vector); 6429 } 6430 6431 /** 6432 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6433 * @vsi: the VSI being configured 6434 */ 6435 static void ice_napi_enable_all(struct ice_vsi *vsi) 6436 { 6437 int q_idx; 6438 6439 if (!vsi->netdev) 6440 return; 6441 6442 ice_for_each_q_vector(vsi, q_idx) { 6443 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6444 6445 ice_init_moderation(q_vector); 6446 6447 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6448 napi_enable(&q_vector->napi); 6449 } 6450 } 6451 6452 /** 6453 * ice_up_complete - Finish the last steps of bringing up a connection 6454 * @vsi: The VSI being configured 6455 * 6456 * Return 0 on success and negative value on error 6457 */ 6458 static int ice_up_complete(struct ice_vsi *vsi) 6459 { 6460 struct ice_pf *pf = vsi->back; 6461 int err; 6462 6463 ice_vsi_cfg_msix(vsi); 6464 6465 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6466 * Tx queue group list was configured and the context bits were 6467 * programmed using ice_vsi_cfg_txqs 6468 */ 6469 err = ice_vsi_start_all_rx_rings(vsi); 6470 if (err) 6471 return err; 6472 6473 clear_bit(ICE_VSI_DOWN, vsi->state); 6474 ice_napi_enable_all(vsi); 6475 ice_vsi_ena_irq(vsi); 6476 6477 if (vsi->port_info && 6478 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6479 vsi->netdev && vsi->type == ICE_VSI_PF) { 6480 ice_print_link_msg(vsi, true); 6481 netif_tx_start_all_queues(vsi->netdev); 6482 netif_carrier_on(vsi->netdev); 6483 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6484 } 6485 6486 /* Perform an initial read of the statistics registers now to 6487 * set the baseline so counters are ready when interface is up 6488 */ 6489 ice_update_eth_stats(vsi); 6490 6491 if (vsi->type == ICE_VSI_PF) 6492 ice_service_task_schedule(pf); 6493 6494 return 0; 6495 } 6496 6497 /** 6498 * ice_up - Bring the connection back up after being down 6499 * @vsi: VSI being configured 6500 */ 6501 int ice_up(struct ice_vsi *vsi) 6502 { 6503 int err; 6504 6505 err = ice_vsi_cfg_lan(vsi); 6506 if (!err) 6507 err = ice_up_complete(vsi); 6508 6509 return err; 6510 } 6511 6512 /** 6513 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6514 * @syncp: pointer to u64_stats_sync 6515 * @stats: stats that pkts and bytes count will be taken from 6516 * @pkts: packets stats counter 6517 * @bytes: bytes stats counter 6518 * 6519 * This function fetches stats from the ring considering the atomic operations 6520 * that needs to be performed to read u64 values in 32 bit machine. 6521 */ 6522 void 6523 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6524 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6525 { 6526 unsigned int start; 6527 6528 do { 6529 start = u64_stats_fetch_begin(syncp); 6530 *pkts = stats.pkts; 6531 *bytes = stats.bytes; 6532 } while (u64_stats_fetch_retry(syncp, start)); 6533 } 6534 6535 /** 6536 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6537 * @vsi: the VSI to be updated 6538 * @vsi_stats: the stats struct to be updated 6539 * @rings: rings to work on 6540 * @count: number of rings 6541 */ 6542 static void 6543 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6544 struct rtnl_link_stats64 *vsi_stats, 6545 struct ice_tx_ring **rings, u16 count) 6546 { 6547 u16 i; 6548 6549 for (i = 0; i < count; i++) { 6550 struct ice_tx_ring *ring; 6551 u64 pkts = 0, bytes = 0; 6552 6553 ring = READ_ONCE(rings[i]); 6554 if (!ring || !ring->ring_stats) 6555 continue; 6556 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6557 ring->ring_stats->stats, &pkts, 6558 &bytes); 6559 vsi_stats->tx_packets += pkts; 6560 vsi_stats->tx_bytes += bytes; 6561 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6562 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6563 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6564 } 6565 } 6566 6567 /** 6568 * ice_update_vsi_ring_stats - Update VSI stats counters 6569 * @vsi: the VSI to be updated 6570 */ 6571 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6572 { 6573 struct rtnl_link_stats64 *net_stats, *stats_prev; 6574 struct rtnl_link_stats64 *vsi_stats; 6575 u64 pkts, bytes; 6576 int i; 6577 6578 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6579 if (!vsi_stats) 6580 return; 6581 6582 /* reset non-netdev (extended) stats */ 6583 vsi->tx_restart = 0; 6584 vsi->tx_busy = 0; 6585 vsi->tx_linearize = 0; 6586 vsi->rx_buf_failed = 0; 6587 vsi->rx_page_failed = 0; 6588 6589 rcu_read_lock(); 6590 6591 /* update Tx rings counters */ 6592 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6593 vsi->num_txq); 6594 6595 /* update Rx rings counters */ 6596 ice_for_each_rxq(vsi, i) { 6597 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6598 struct ice_ring_stats *ring_stats; 6599 6600 ring_stats = ring->ring_stats; 6601 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6602 ring_stats->stats, &pkts, 6603 &bytes); 6604 vsi_stats->rx_packets += pkts; 6605 vsi_stats->rx_bytes += bytes; 6606 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6607 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6608 } 6609 6610 /* update XDP Tx rings counters */ 6611 if (ice_is_xdp_ena_vsi(vsi)) 6612 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6613 vsi->num_xdp_txq); 6614 6615 rcu_read_unlock(); 6616 6617 net_stats = &vsi->net_stats; 6618 stats_prev = &vsi->net_stats_prev; 6619 6620 /* clear prev counters after reset */ 6621 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6622 vsi_stats->rx_packets < stats_prev->rx_packets) { 6623 stats_prev->tx_packets = 0; 6624 stats_prev->tx_bytes = 0; 6625 stats_prev->rx_packets = 0; 6626 stats_prev->rx_bytes = 0; 6627 } 6628 6629 /* update netdev counters */ 6630 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6631 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6632 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6633 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6634 6635 stats_prev->tx_packets = vsi_stats->tx_packets; 6636 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6637 stats_prev->rx_packets = vsi_stats->rx_packets; 6638 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6639 6640 kfree(vsi_stats); 6641 } 6642 6643 /** 6644 * ice_update_vsi_stats - Update VSI stats counters 6645 * @vsi: the VSI to be updated 6646 */ 6647 void ice_update_vsi_stats(struct ice_vsi *vsi) 6648 { 6649 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6650 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6651 struct ice_pf *pf = vsi->back; 6652 6653 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6654 test_bit(ICE_CFG_BUSY, pf->state)) 6655 return; 6656 6657 /* get stats as recorded by Tx/Rx rings */ 6658 ice_update_vsi_ring_stats(vsi); 6659 6660 /* get VSI stats as recorded by the hardware */ 6661 ice_update_eth_stats(vsi); 6662 6663 cur_ns->tx_errors = cur_es->tx_errors; 6664 cur_ns->rx_dropped = cur_es->rx_discards; 6665 cur_ns->tx_dropped = cur_es->tx_discards; 6666 cur_ns->multicast = cur_es->rx_multicast; 6667 6668 /* update some more netdev stats if this is main VSI */ 6669 if (vsi->type == ICE_VSI_PF) { 6670 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6671 cur_ns->rx_errors = pf->stats.crc_errors + 6672 pf->stats.illegal_bytes + 6673 pf->stats.rx_len_errors + 6674 pf->stats.rx_undersize + 6675 pf->hw_csum_rx_error + 6676 pf->stats.rx_jabber + 6677 pf->stats.rx_fragments + 6678 pf->stats.rx_oversize; 6679 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6680 /* record drops from the port level */ 6681 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6682 } 6683 } 6684 6685 /** 6686 * ice_update_pf_stats - Update PF port stats counters 6687 * @pf: PF whose stats needs to be updated 6688 */ 6689 void ice_update_pf_stats(struct ice_pf *pf) 6690 { 6691 struct ice_hw_port_stats *prev_ps, *cur_ps; 6692 struct ice_hw *hw = &pf->hw; 6693 u16 fd_ctr_base; 6694 u8 port; 6695 6696 port = hw->port_info->lport; 6697 prev_ps = &pf->stats_prev; 6698 cur_ps = &pf->stats; 6699 6700 if (ice_is_reset_in_progress(pf->state)) 6701 pf->stat_prev_loaded = false; 6702 6703 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6704 &prev_ps->eth.rx_bytes, 6705 &cur_ps->eth.rx_bytes); 6706 6707 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6708 &prev_ps->eth.rx_unicast, 6709 &cur_ps->eth.rx_unicast); 6710 6711 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6712 &prev_ps->eth.rx_multicast, 6713 &cur_ps->eth.rx_multicast); 6714 6715 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6716 &prev_ps->eth.rx_broadcast, 6717 &cur_ps->eth.rx_broadcast); 6718 6719 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6720 &prev_ps->eth.rx_discards, 6721 &cur_ps->eth.rx_discards); 6722 6723 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6724 &prev_ps->eth.tx_bytes, 6725 &cur_ps->eth.tx_bytes); 6726 6727 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6728 &prev_ps->eth.tx_unicast, 6729 &cur_ps->eth.tx_unicast); 6730 6731 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6732 &prev_ps->eth.tx_multicast, 6733 &cur_ps->eth.tx_multicast); 6734 6735 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6736 &prev_ps->eth.tx_broadcast, 6737 &cur_ps->eth.tx_broadcast); 6738 6739 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6740 &prev_ps->tx_dropped_link_down, 6741 &cur_ps->tx_dropped_link_down); 6742 6743 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6744 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6745 6746 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6747 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6748 6749 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6750 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6751 6752 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6753 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6754 6755 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6756 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6757 6758 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6759 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6760 6761 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6762 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6763 6764 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6765 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6766 6767 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6768 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6769 6770 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6771 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6772 6773 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6774 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6775 6776 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6777 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6778 6779 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6780 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6781 6782 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6783 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6784 6785 fd_ctr_base = hw->fd_ctr_base; 6786 6787 ice_stat_update40(hw, 6788 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6789 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6790 &cur_ps->fd_sb_match); 6791 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6792 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6793 6794 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6795 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6796 6797 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6798 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6799 6800 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6801 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6802 6803 ice_update_dcb_stats(pf); 6804 6805 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6806 &prev_ps->crc_errors, &cur_ps->crc_errors); 6807 6808 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6809 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6810 6811 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6812 &prev_ps->mac_local_faults, 6813 &cur_ps->mac_local_faults); 6814 6815 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6816 &prev_ps->mac_remote_faults, 6817 &cur_ps->mac_remote_faults); 6818 6819 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6820 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6821 6822 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6823 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6824 6825 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6826 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6827 6828 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6829 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6830 6831 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6832 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6833 6834 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6835 6836 pf->stat_prev_loaded = true; 6837 } 6838 6839 /** 6840 * ice_get_stats64 - get statistics for network device structure 6841 * @netdev: network interface device structure 6842 * @stats: main device statistics structure 6843 */ 6844 static 6845 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6846 { 6847 struct ice_netdev_priv *np = netdev_priv(netdev); 6848 struct rtnl_link_stats64 *vsi_stats; 6849 struct ice_vsi *vsi = np->vsi; 6850 6851 vsi_stats = &vsi->net_stats; 6852 6853 if (!vsi->num_txq || !vsi->num_rxq) 6854 return; 6855 6856 /* netdev packet/byte stats come from ring counter. These are obtained 6857 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6858 * But, only call the update routine and read the registers if VSI is 6859 * not down. 6860 */ 6861 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6862 ice_update_vsi_ring_stats(vsi); 6863 stats->tx_packets = vsi_stats->tx_packets; 6864 stats->tx_bytes = vsi_stats->tx_bytes; 6865 stats->rx_packets = vsi_stats->rx_packets; 6866 stats->rx_bytes = vsi_stats->rx_bytes; 6867 6868 /* The rest of the stats can be read from the hardware but instead we 6869 * just return values that the watchdog task has already obtained from 6870 * the hardware. 6871 */ 6872 stats->multicast = vsi_stats->multicast; 6873 stats->tx_errors = vsi_stats->tx_errors; 6874 stats->tx_dropped = vsi_stats->tx_dropped; 6875 stats->rx_errors = vsi_stats->rx_errors; 6876 stats->rx_dropped = vsi_stats->rx_dropped; 6877 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6878 stats->rx_length_errors = vsi_stats->rx_length_errors; 6879 } 6880 6881 /** 6882 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6883 * @vsi: VSI having NAPI disabled 6884 */ 6885 static void ice_napi_disable_all(struct ice_vsi *vsi) 6886 { 6887 int q_idx; 6888 6889 if (!vsi->netdev) 6890 return; 6891 6892 ice_for_each_q_vector(vsi, q_idx) { 6893 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6894 6895 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6896 napi_disable(&q_vector->napi); 6897 6898 cancel_work_sync(&q_vector->tx.dim.work); 6899 cancel_work_sync(&q_vector->rx.dim.work); 6900 } 6901 } 6902 6903 /** 6904 * ice_down - Shutdown the connection 6905 * @vsi: The VSI being stopped 6906 * 6907 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6908 */ 6909 int ice_down(struct ice_vsi *vsi) 6910 { 6911 int i, tx_err, rx_err, vlan_err = 0; 6912 6913 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6914 6915 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6916 vlan_err = ice_vsi_del_vlan_zero(vsi); 6917 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6918 netif_carrier_off(vsi->netdev); 6919 netif_tx_disable(vsi->netdev); 6920 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6921 ice_eswitch_stop_all_tx_queues(vsi->back); 6922 } 6923 6924 ice_vsi_dis_irq(vsi); 6925 6926 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6927 if (tx_err) 6928 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6929 vsi->vsi_num, tx_err); 6930 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6931 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6932 if (tx_err) 6933 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6934 vsi->vsi_num, tx_err); 6935 } 6936 6937 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6938 if (rx_err) 6939 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6940 vsi->vsi_num, rx_err); 6941 6942 ice_napi_disable_all(vsi); 6943 6944 ice_for_each_txq(vsi, i) 6945 ice_clean_tx_ring(vsi->tx_rings[i]); 6946 6947 if (ice_is_xdp_ena_vsi(vsi)) 6948 ice_for_each_xdp_txq(vsi, i) 6949 ice_clean_tx_ring(vsi->xdp_rings[i]); 6950 6951 ice_for_each_rxq(vsi, i) 6952 ice_clean_rx_ring(vsi->rx_rings[i]); 6953 6954 if (tx_err || rx_err || vlan_err) { 6955 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6956 vsi->vsi_num, vsi->vsw->sw_id); 6957 return -EIO; 6958 } 6959 6960 return 0; 6961 } 6962 6963 /** 6964 * ice_down_up - shutdown the VSI connection and bring it up 6965 * @vsi: the VSI to be reconnected 6966 */ 6967 int ice_down_up(struct ice_vsi *vsi) 6968 { 6969 int ret; 6970 6971 /* if DOWN already set, nothing to do */ 6972 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6973 return 0; 6974 6975 ret = ice_down(vsi); 6976 if (ret) 6977 return ret; 6978 6979 ret = ice_up(vsi); 6980 if (ret) { 6981 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6982 return ret; 6983 } 6984 6985 return 0; 6986 } 6987 6988 /** 6989 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6990 * @vsi: VSI having resources allocated 6991 * 6992 * Return 0 on success, negative on failure 6993 */ 6994 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6995 { 6996 int i, err = 0; 6997 6998 if (!vsi->num_txq) { 6999 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7000 vsi->vsi_num); 7001 return -EINVAL; 7002 } 7003 7004 ice_for_each_txq(vsi, i) { 7005 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7006 7007 if (!ring) 7008 return -EINVAL; 7009 7010 if (vsi->netdev) 7011 ring->netdev = vsi->netdev; 7012 err = ice_setup_tx_ring(ring); 7013 if (err) 7014 break; 7015 } 7016 7017 return err; 7018 } 7019 7020 /** 7021 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7022 * @vsi: VSI having resources allocated 7023 * 7024 * Return 0 on success, negative on failure 7025 */ 7026 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7027 { 7028 int i, err = 0; 7029 7030 if (!vsi->num_rxq) { 7031 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7032 vsi->vsi_num); 7033 return -EINVAL; 7034 } 7035 7036 ice_for_each_rxq(vsi, i) { 7037 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7038 7039 if (!ring) 7040 return -EINVAL; 7041 7042 if (vsi->netdev) 7043 ring->netdev = vsi->netdev; 7044 err = ice_setup_rx_ring(ring); 7045 if (err) 7046 break; 7047 } 7048 7049 return err; 7050 } 7051 7052 /** 7053 * ice_vsi_open_ctrl - open control VSI for use 7054 * @vsi: the VSI to open 7055 * 7056 * Initialization of the Control VSI 7057 * 7058 * Returns 0 on success, negative value on error 7059 */ 7060 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7061 { 7062 char int_name[ICE_INT_NAME_STR_LEN]; 7063 struct ice_pf *pf = vsi->back; 7064 struct device *dev; 7065 int err; 7066 7067 dev = ice_pf_to_dev(pf); 7068 /* allocate descriptors */ 7069 err = ice_vsi_setup_tx_rings(vsi); 7070 if (err) 7071 goto err_setup_tx; 7072 7073 err = ice_vsi_setup_rx_rings(vsi); 7074 if (err) 7075 goto err_setup_rx; 7076 7077 err = ice_vsi_cfg_lan(vsi); 7078 if (err) 7079 goto err_setup_rx; 7080 7081 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7082 dev_driver_string(dev), dev_name(dev)); 7083 err = ice_vsi_req_irq_msix(vsi, int_name); 7084 if (err) 7085 goto err_setup_rx; 7086 7087 ice_vsi_cfg_msix(vsi); 7088 7089 err = ice_vsi_start_all_rx_rings(vsi); 7090 if (err) 7091 goto err_up_complete; 7092 7093 clear_bit(ICE_VSI_DOWN, vsi->state); 7094 ice_vsi_ena_irq(vsi); 7095 7096 return 0; 7097 7098 err_up_complete: 7099 ice_down(vsi); 7100 err_setup_rx: 7101 ice_vsi_free_rx_rings(vsi); 7102 err_setup_tx: 7103 ice_vsi_free_tx_rings(vsi); 7104 7105 return err; 7106 } 7107 7108 /** 7109 * ice_vsi_open - Called when a network interface is made active 7110 * @vsi: the VSI to open 7111 * 7112 * Initialization of the VSI 7113 * 7114 * Returns 0 on success, negative value on error 7115 */ 7116 int ice_vsi_open(struct ice_vsi *vsi) 7117 { 7118 char int_name[ICE_INT_NAME_STR_LEN]; 7119 struct ice_pf *pf = vsi->back; 7120 int err; 7121 7122 /* allocate descriptors */ 7123 err = ice_vsi_setup_tx_rings(vsi); 7124 if (err) 7125 goto err_setup_tx; 7126 7127 err = ice_vsi_setup_rx_rings(vsi); 7128 if (err) 7129 goto err_setup_rx; 7130 7131 err = ice_vsi_cfg_lan(vsi); 7132 if (err) 7133 goto err_setup_rx; 7134 7135 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7136 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7137 err = ice_vsi_req_irq_msix(vsi, int_name); 7138 if (err) 7139 goto err_setup_rx; 7140 7141 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7142 7143 if (vsi->type == ICE_VSI_PF) { 7144 /* Notify the stack of the actual queue counts. */ 7145 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7146 if (err) 7147 goto err_set_qs; 7148 7149 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7150 if (err) 7151 goto err_set_qs; 7152 } 7153 7154 err = ice_up_complete(vsi); 7155 if (err) 7156 goto err_up_complete; 7157 7158 return 0; 7159 7160 err_up_complete: 7161 ice_down(vsi); 7162 err_set_qs: 7163 ice_vsi_free_irq(vsi); 7164 err_setup_rx: 7165 ice_vsi_free_rx_rings(vsi); 7166 err_setup_tx: 7167 ice_vsi_free_tx_rings(vsi); 7168 7169 return err; 7170 } 7171 7172 /** 7173 * ice_vsi_release_all - Delete all VSIs 7174 * @pf: PF from which all VSIs are being removed 7175 */ 7176 static void ice_vsi_release_all(struct ice_pf *pf) 7177 { 7178 int err, i; 7179 7180 if (!pf->vsi) 7181 return; 7182 7183 ice_for_each_vsi(pf, i) { 7184 if (!pf->vsi[i]) 7185 continue; 7186 7187 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7188 continue; 7189 7190 err = ice_vsi_release(pf->vsi[i]); 7191 if (err) 7192 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7193 i, err, pf->vsi[i]->vsi_num); 7194 } 7195 } 7196 7197 /** 7198 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7199 * @pf: pointer to the PF instance 7200 * @type: VSI type to rebuild 7201 * 7202 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7203 */ 7204 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7205 { 7206 struct device *dev = ice_pf_to_dev(pf); 7207 int i, err; 7208 7209 ice_for_each_vsi(pf, i) { 7210 struct ice_vsi *vsi = pf->vsi[i]; 7211 7212 if (!vsi || vsi->type != type) 7213 continue; 7214 7215 /* rebuild the VSI */ 7216 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7217 if (err) { 7218 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7219 err, vsi->idx, ice_vsi_type_str(type)); 7220 return err; 7221 } 7222 7223 /* replay filters for the VSI */ 7224 err = ice_replay_vsi(&pf->hw, vsi->idx); 7225 if (err) { 7226 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7227 err, vsi->idx, ice_vsi_type_str(type)); 7228 return err; 7229 } 7230 7231 /* Re-map HW VSI number, using VSI handle that has been 7232 * previously validated in ice_replay_vsi() call above 7233 */ 7234 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7235 7236 /* enable the VSI */ 7237 err = ice_ena_vsi(vsi, false); 7238 if (err) { 7239 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7240 err, vsi->idx, ice_vsi_type_str(type)); 7241 return err; 7242 } 7243 7244 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7245 ice_vsi_type_str(type)); 7246 } 7247 7248 return 0; 7249 } 7250 7251 /** 7252 * ice_update_pf_netdev_link - Update PF netdev link status 7253 * @pf: pointer to the PF instance 7254 */ 7255 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7256 { 7257 bool link_up; 7258 int i; 7259 7260 ice_for_each_vsi(pf, i) { 7261 struct ice_vsi *vsi = pf->vsi[i]; 7262 7263 if (!vsi || vsi->type != ICE_VSI_PF) 7264 return; 7265 7266 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7267 if (link_up) { 7268 netif_carrier_on(pf->vsi[i]->netdev); 7269 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7270 } else { 7271 netif_carrier_off(pf->vsi[i]->netdev); 7272 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7273 } 7274 } 7275 } 7276 7277 /** 7278 * ice_rebuild - rebuild after reset 7279 * @pf: PF to rebuild 7280 * @reset_type: type of reset 7281 * 7282 * Do not rebuild VF VSI in this flow because that is already handled via 7283 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7284 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7285 * to reset/rebuild all the VF VSI twice. 7286 */ 7287 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7288 { 7289 struct device *dev = ice_pf_to_dev(pf); 7290 struct ice_hw *hw = &pf->hw; 7291 bool dvm; 7292 int err; 7293 7294 if (test_bit(ICE_DOWN, pf->state)) 7295 goto clear_recovery; 7296 7297 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7298 7299 #define ICE_EMP_RESET_SLEEP_MS 5000 7300 if (reset_type == ICE_RESET_EMPR) { 7301 /* If an EMP reset has occurred, any previously pending flash 7302 * update will have completed. We no longer know whether or 7303 * not the NVM update EMP reset is restricted. 7304 */ 7305 pf->fw_emp_reset_disabled = false; 7306 7307 msleep(ICE_EMP_RESET_SLEEP_MS); 7308 } 7309 7310 err = ice_init_all_ctrlq(hw); 7311 if (err) { 7312 dev_err(dev, "control queues init failed %d\n", err); 7313 goto err_init_ctrlq; 7314 } 7315 7316 /* if DDP was previously loaded successfully */ 7317 if (!ice_is_safe_mode(pf)) { 7318 /* reload the SW DB of filter tables */ 7319 if (reset_type == ICE_RESET_PFR) 7320 ice_fill_blk_tbls(hw); 7321 else 7322 /* Reload DDP Package after CORER/GLOBR reset */ 7323 ice_load_pkg(NULL, pf); 7324 } 7325 7326 err = ice_clear_pf_cfg(hw); 7327 if (err) { 7328 dev_err(dev, "clear PF configuration failed %d\n", err); 7329 goto err_init_ctrlq; 7330 } 7331 7332 ice_clear_pxe_mode(hw); 7333 7334 err = ice_init_nvm(hw); 7335 if (err) { 7336 dev_err(dev, "ice_init_nvm failed %d\n", err); 7337 goto err_init_ctrlq; 7338 } 7339 7340 err = ice_get_caps(hw); 7341 if (err) { 7342 dev_err(dev, "ice_get_caps failed %d\n", err); 7343 goto err_init_ctrlq; 7344 } 7345 7346 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7347 if (err) { 7348 dev_err(dev, "set_mac_cfg failed %d\n", err); 7349 goto err_init_ctrlq; 7350 } 7351 7352 dvm = ice_is_dvm_ena(hw); 7353 7354 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7355 if (err) 7356 goto err_init_ctrlq; 7357 7358 err = ice_sched_init_port(hw->port_info); 7359 if (err) 7360 goto err_sched_init_port; 7361 7362 /* start misc vector */ 7363 err = ice_req_irq_msix_misc(pf); 7364 if (err) { 7365 dev_err(dev, "misc vector setup failed: %d\n", err); 7366 goto err_sched_init_port; 7367 } 7368 7369 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7370 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7371 if (!rd32(hw, PFQF_FD_SIZE)) { 7372 u16 unused, guar, b_effort; 7373 7374 guar = hw->func_caps.fd_fltr_guar; 7375 b_effort = hw->func_caps.fd_fltr_best_effort; 7376 7377 /* force guaranteed filter pool for PF */ 7378 ice_alloc_fd_guar_item(hw, &unused, guar); 7379 /* force shared filter pool for PF */ 7380 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7381 } 7382 } 7383 7384 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7385 ice_dcb_rebuild(pf); 7386 7387 /* If the PF previously had enabled PTP, PTP init needs to happen before 7388 * the VSI rebuild. If not, this causes the PTP link status events to 7389 * fail. 7390 */ 7391 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7392 ice_ptp_reset(pf); 7393 7394 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7395 ice_gnss_init(pf); 7396 7397 /* rebuild PF VSI */ 7398 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7399 if (err) { 7400 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7401 goto err_vsi_rebuild; 7402 } 7403 7404 /* configure PTP timestamping after VSI rebuild */ 7405 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) { 7406 if (pf->ptp.tx_interrupt_mode == ICE_PTP_TX_INTERRUPT_SELF) 7407 ice_ptp_cfg_timestamp(pf, false); 7408 else if (pf->ptp.tx_interrupt_mode == ICE_PTP_TX_INTERRUPT_ALL) 7409 /* for E82x PHC owner always need to have interrupts */ 7410 ice_ptp_cfg_timestamp(pf, true); 7411 } 7412 7413 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7414 if (err) { 7415 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7416 goto err_vsi_rebuild; 7417 } 7418 7419 if (reset_type == ICE_RESET_PFR) { 7420 err = ice_rebuild_channels(pf); 7421 if (err) { 7422 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7423 err); 7424 goto err_vsi_rebuild; 7425 } 7426 } 7427 7428 /* If Flow Director is active */ 7429 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7430 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7431 if (err) { 7432 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7433 goto err_vsi_rebuild; 7434 } 7435 7436 /* replay HW Flow Director recipes */ 7437 if (hw->fdir_prof) 7438 ice_fdir_replay_flows(hw); 7439 7440 /* replay Flow Director filters */ 7441 ice_fdir_replay_fltrs(pf); 7442 7443 ice_rebuild_arfs(pf); 7444 } 7445 7446 ice_update_pf_netdev_link(pf); 7447 7448 /* tell the firmware we are up */ 7449 err = ice_send_version(pf); 7450 if (err) { 7451 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7452 err); 7453 goto err_vsi_rebuild; 7454 } 7455 7456 ice_replay_post(hw); 7457 7458 /* if we get here, reset flow is successful */ 7459 clear_bit(ICE_RESET_FAILED, pf->state); 7460 7461 ice_plug_aux_dev(pf); 7462 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7463 ice_lag_rebuild(pf); 7464 return; 7465 7466 err_vsi_rebuild: 7467 err_sched_init_port: 7468 ice_sched_cleanup_all(hw); 7469 err_init_ctrlq: 7470 ice_shutdown_all_ctrlq(hw); 7471 set_bit(ICE_RESET_FAILED, pf->state); 7472 clear_recovery: 7473 /* set this bit in PF state to control service task scheduling */ 7474 set_bit(ICE_NEEDS_RESTART, pf->state); 7475 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7476 } 7477 7478 /** 7479 * ice_change_mtu - NDO callback to change the MTU 7480 * @netdev: network interface device structure 7481 * @new_mtu: new value for maximum frame size 7482 * 7483 * Returns 0 on success, negative on failure 7484 */ 7485 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7486 { 7487 struct ice_netdev_priv *np = netdev_priv(netdev); 7488 struct ice_vsi *vsi = np->vsi; 7489 struct ice_pf *pf = vsi->back; 7490 struct bpf_prog *prog; 7491 u8 count = 0; 7492 int err = 0; 7493 7494 if (new_mtu == (int)netdev->mtu) { 7495 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7496 return 0; 7497 } 7498 7499 prog = vsi->xdp_prog; 7500 if (prog && !prog->aux->xdp_has_frags) { 7501 int frame_size = ice_max_xdp_frame_size(vsi); 7502 7503 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7504 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7505 frame_size - ICE_ETH_PKT_HDR_PAD); 7506 return -EINVAL; 7507 } 7508 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7509 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7510 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7511 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7512 return -EINVAL; 7513 } 7514 } 7515 7516 /* if a reset is in progress, wait for some time for it to complete */ 7517 do { 7518 if (ice_is_reset_in_progress(pf->state)) { 7519 count++; 7520 usleep_range(1000, 2000); 7521 } else { 7522 break; 7523 } 7524 7525 } while (count < 100); 7526 7527 if (count == 100) { 7528 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7529 return -EBUSY; 7530 } 7531 7532 netdev->mtu = (unsigned int)new_mtu; 7533 err = ice_down_up(vsi); 7534 if (err) 7535 return err; 7536 7537 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7538 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7539 7540 return err; 7541 } 7542 7543 /** 7544 * ice_eth_ioctl - Access the hwtstamp interface 7545 * @netdev: network interface device structure 7546 * @ifr: interface request data 7547 * @cmd: ioctl command 7548 */ 7549 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7550 { 7551 struct ice_netdev_priv *np = netdev_priv(netdev); 7552 struct ice_pf *pf = np->vsi->back; 7553 7554 switch (cmd) { 7555 case SIOCGHWTSTAMP: 7556 return ice_ptp_get_ts_config(pf, ifr); 7557 case SIOCSHWTSTAMP: 7558 return ice_ptp_set_ts_config(pf, ifr); 7559 default: 7560 return -EOPNOTSUPP; 7561 } 7562 } 7563 7564 /** 7565 * ice_aq_str - convert AQ err code to a string 7566 * @aq_err: the AQ error code to convert 7567 */ 7568 const char *ice_aq_str(enum ice_aq_err aq_err) 7569 { 7570 switch (aq_err) { 7571 case ICE_AQ_RC_OK: 7572 return "OK"; 7573 case ICE_AQ_RC_EPERM: 7574 return "ICE_AQ_RC_EPERM"; 7575 case ICE_AQ_RC_ENOENT: 7576 return "ICE_AQ_RC_ENOENT"; 7577 case ICE_AQ_RC_ENOMEM: 7578 return "ICE_AQ_RC_ENOMEM"; 7579 case ICE_AQ_RC_EBUSY: 7580 return "ICE_AQ_RC_EBUSY"; 7581 case ICE_AQ_RC_EEXIST: 7582 return "ICE_AQ_RC_EEXIST"; 7583 case ICE_AQ_RC_EINVAL: 7584 return "ICE_AQ_RC_EINVAL"; 7585 case ICE_AQ_RC_ENOSPC: 7586 return "ICE_AQ_RC_ENOSPC"; 7587 case ICE_AQ_RC_ENOSYS: 7588 return "ICE_AQ_RC_ENOSYS"; 7589 case ICE_AQ_RC_EMODE: 7590 return "ICE_AQ_RC_EMODE"; 7591 case ICE_AQ_RC_ENOSEC: 7592 return "ICE_AQ_RC_ENOSEC"; 7593 case ICE_AQ_RC_EBADSIG: 7594 return "ICE_AQ_RC_EBADSIG"; 7595 case ICE_AQ_RC_ESVN: 7596 return "ICE_AQ_RC_ESVN"; 7597 case ICE_AQ_RC_EBADMAN: 7598 return "ICE_AQ_RC_EBADMAN"; 7599 case ICE_AQ_RC_EBADBUF: 7600 return "ICE_AQ_RC_EBADBUF"; 7601 } 7602 7603 return "ICE_AQ_RC_UNKNOWN"; 7604 } 7605 7606 /** 7607 * ice_set_rss_lut - Set RSS LUT 7608 * @vsi: Pointer to VSI structure 7609 * @lut: Lookup table 7610 * @lut_size: Lookup table size 7611 * 7612 * Returns 0 on success, negative on failure 7613 */ 7614 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7615 { 7616 struct ice_aq_get_set_rss_lut_params params = {}; 7617 struct ice_hw *hw = &vsi->back->hw; 7618 int status; 7619 7620 if (!lut) 7621 return -EINVAL; 7622 7623 params.vsi_handle = vsi->idx; 7624 params.lut_size = lut_size; 7625 params.lut_type = vsi->rss_lut_type; 7626 params.lut = lut; 7627 7628 status = ice_aq_set_rss_lut(hw, ¶ms); 7629 if (status) 7630 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7631 status, ice_aq_str(hw->adminq.sq_last_status)); 7632 7633 return status; 7634 } 7635 7636 /** 7637 * ice_set_rss_key - Set RSS key 7638 * @vsi: Pointer to the VSI structure 7639 * @seed: RSS hash seed 7640 * 7641 * Returns 0 on success, negative on failure 7642 */ 7643 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7644 { 7645 struct ice_hw *hw = &vsi->back->hw; 7646 int status; 7647 7648 if (!seed) 7649 return -EINVAL; 7650 7651 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7652 if (status) 7653 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7654 status, ice_aq_str(hw->adminq.sq_last_status)); 7655 7656 return status; 7657 } 7658 7659 /** 7660 * ice_get_rss_lut - Get RSS LUT 7661 * @vsi: Pointer to VSI structure 7662 * @lut: Buffer to store the lookup table entries 7663 * @lut_size: Size of buffer to store the lookup table entries 7664 * 7665 * Returns 0 on success, negative on failure 7666 */ 7667 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7668 { 7669 struct ice_aq_get_set_rss_lut_params params = {}; 7670 struct ice_hw *hw = &vsi->back->hw; 7671 int status; 7672 7673 if (!lut) 7674 return -EINVAL; 7675 7676 params.vsi_handle = vsi->idx; 7677 params.lut_size = lut_size; 7678 params.lut_type = vsi->rss_lut_type; 7679 params.lut = lut; 7680 7681 status = ice_aq_get_rss_lut(hw, ¶ms); 7682 if (status) 7683 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7684 status, ice_aq_str(hw->adminq.sq_last_status)); 7685 7686 return status; 7687 } 7688 7689 /** 7690 * ice_get_rss_key - Get RSS key 7691 * @vsi: Pointer to VSI structure 7692 * @seed: Buffer to store the key in 7693 * 7694 * Returns 0 on success, negative on failure 7695 */ 7696 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7697 { 7698 struct ice_hw *hw = &vsi->back->hw; 7699 int status; 7700 7701 if (!seed) 7702 return -EINVAL; 7703 7704 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7705 if (status) 7706 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7707 status, ice_aq_str(hw->adminq.sq_last_status)); 7708 7709 return status; 7710 } 7711 7712 /** 7713 * ice_bridge_getlink - Get the hardware bridge mode 7714 * @skb: skb buff 7715 * @pid: process ID 7716 * @seq: RTNL message seq 7717 * @dev: the netdev being configured 7718 * @filter_mask: filter mask passed in 7719 * @nlflags: netlink flags passed in 7720 * 7721 * Return the bridge mode (VEB/VEPA) 7722 */ 7723 static int 7724 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7725 struct net_device *dev, u32 filter_mask, int nlflags) 7726 { 7727 struct ice_netdev_priv *np = netdev_priv(dev); 7728 struct ice_vsi *vsi = np->vsi; 7729 struct ice_pf *pf = vsi->back; 7730 u16 bmode; 7731 7732 bmode = pf->first_sw->bridge_mode; 7733 7734 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7735 filter_mask, NULL); 7736 } 7737 7738 /** 7739 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7740 * @vsi: Pointer to VSI structure 7741 * @bmode: Hardware bridge mode (VEB/VEPA) 7742 * 7743 * Returns 0 on success, negative on failure 7744 */ 7745 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7746 { 7747 struct ice_aqc_vsi_props *vsi_props; 7748 struct ice_hw *hw = &vsi->back->hw; 7749 struct ice_vsi_ctx *ctxt; 7750 int ret; 7751 7752 vsi_props = &vsi->info; 7753 7754 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7755 if (!ctxt) 7756 return -ENOMEM; 7757 7758 ctxt->info = vsi->info; 7759 7760 if (bmode == BRIDGE_MODE_VEB) 7761 /* change from VEPA to VEB mode */ 7762 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7763 else 7764 /* change from VEB to VEPA mode */ 7765 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7766 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7767 7768 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7769 if (ret) { 7770 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7771 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7772 goto out; 7773 } 7774 /* Update sw flags for book keeping */ 7775 vsi_props->sw_flags = ctxt->info.sw_flags; 7776 7777 out: 7778 kfree(ctxt); 7779 return ret; 7780 } 7781 7782 /** 7783 * ice_bridge_setlink - Set the hardware bridge mode 7784 * @dev: the netdev being configured 7785 * @nlh: RTNL message 7786 * @flags: bridge setlink flags 7787 * @extack: netlink extended ack 7788 * 7789 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7790 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7791 * not already set for all VSIs connected to this switch. And also update the 7792 * unicast switch filter rules for the corresponding switch of the netdev. 7793 */ 7794 static int 7795 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7796 u16 __always_unused flags, 7797 struct netlink_ext_ack __always_unused *extack) 7798 { 7799 struct ice_netdev_priv *np = netdev_priv(dev); 7800 struct ice_pf *pf = np->vsi->back; 7801 struct nlattr *attr, *br_spec; 7802 struct ice_hw *hw = &pf->hw; 7803 struct ice_sw *pf_sw; 7804 int rem, v, err = 0; 7805 7806 pf_sw = pf->first_sw; 7807 /* find the attribute in the netlink message */ 7808 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7809 7810 nla_for_each_nested(attr, br_spec, rem) { 7811 __u16 mode; 7812 7813 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7814 continue; 7815 mode = nla_get_u16(attr); 7816 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7817 return -EINVAL; 7818 /* Continue if bridge mode is not being flipped */ 7819 if (mode == pf_sw->bridge_mode) 7820 continue; 7821 /* Iterates through the PF VSI list and update the loopback 7822 * mode of the VSI 7823 */ 7824 ice_for_each_vsi(pf, v) { 7825 if (!pf->vsi[v]) 7826 continue; 7827 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7828 if (err) 7829 return err; 7830 } 7831 7832 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7833 /* Update the unicast switch filter rules for the corresponding 7834 * switch of the netdev 7835 */ 7836 err = ice_update_sw_rule_bridge_mode(hw); 7837 if (err) { 7838 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7839 mode, err, 7840 ice_aq_str(hw->adminq.sq_last_status)); 7841 /* revert hw->evb_veb */ 7842 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7843 return err; 7844 } 7845 7846 pf_sw->bridge_mode = mode; 7847 } 7848 7849 return 0; 7850 } 7851 7852 /** 7853 * ice_tx_timeout - Respond to a Tx Hang 7854 * @netdev: network interface device structure 7855 * @txqueue: Tx queue 7856 */ 7857 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7858 { 7859 struct ice_netdev_priv *np = netdev_priv(netdev); 7860 struct ice_tx_ring *tx_ring = NULL; 7861 struct ice_vsi *vsi = np->vsi; 7862 struct ice_pf *pf = vsi->back; 7863 u32 i; 7864 7865 pf->tx_timeout_count++; 7866 7867 /* Check if PFC is enabled for the TC to which the queue belongs 7868 * to. If yes then Tx timeout is not caused by a hung queue, no 7869 * need to reset and rebuild 7870 */ 7871 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7872 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7873 txqueue); 7874 return; 7875 } 7876 7877 /* now that we have an index, find the tx_ring struct */ 7878 ice_for_each_txq(vsi, i) 7879 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7880 if (txqueue == vsi->tx_rings[i]->q_index) { 7881 tx_ring = vsi->tx_rings[i]; 7882 break; 7883 } 7884 7885 /* Reset recovery level if enough time has elapsed after last timeout. 7886 * Also ensure no new reset action happens before next timeout period. 7887 */ 7888 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7889 pf->tx_timeout_recovery_level = 1; 7890 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7891 netdev->watchdog_timeo))) 7892 return; 7893 7894 if (tx_ring) { 7895 struct ice_hw *hw = &pf->hw; 7896 u32 head, val = 0; 7897 7898 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7899 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7900 /* Read interrupt register */ 7901 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7902 7903 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7904 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7905 head, tx_ring->next_to_use, val); 7906 } 7907 7908 pf->tx_timeout_last_recovery = jiffies; 7909 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7910 pf->tx_timeout_recovery_level, txqueue); 7911 7912 switch (pf->tx_timeout_recovery_level) { 7913 case 1: 7914 set_bit(ICE_PFR_REQ, pf->state); 7915 break; 7916 case 2: 7917 set_bit(ICE_CORER_REQ, pf->state); 7918 break; 7919 case 3: 7920 set_bit(ICE_GLOBR_REQ, pf->state); 7921 break; 7922 default: 7923 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7924 set_bit(ICE_DOWN, pf->state); 7925 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7926 set_bit(ICE_SERVICE_DIS, pf->state); 7927 break; 7928 } 7929 7930 ice_service_task_schedule(pf); 7931 pf->tx_timeout_recovery_level++; 7932 } 7933 7934 /** 7935 * ice_setup_tc_cls_flower - flower classifier offloads 7936 * @np: net device to configure 7937 * @filter_dev: device on which filter is added 7938 * @cls_flower: offload data 7939 */ 7940 static int 7941 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7942 struct net_device *filter_dev, 7943 struct flow_cls_offload *cls_flower) 7944 { 7945 struct ice_vsi *vsi = np->vsi; 7946 7947 if (cls_flower->common.chain_index) 7948 return -EOPNOTSUPP; 7949 7950 switch (cls_flower->command) { 7951 case FLOW_CLS_REPLACE: 7952 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7953 case FLOW_CLS_DESTROY: 7954 return ice_del_cls_flower(vsi, cls_flower); 7955 default: 7956 return -EINVAL; 7957 } 7958 } 7959 7960 /** 7961 * ice_setup_tc_block_cb - callback handler registered for TC block 7962 * @type: TC SETUP type 7963 * @type_data: TC flower offload data that contains user input 7964 * @cb_priv: netdev private data 7965 */ 7966 static int 7967 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7968 { 7969 struct ice_netdev_priv *np = cb_priv; 7970 7971 switch (type) { 7972 case TC_SETUP_CLSFLOWER: 7973 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7974 type_data); 7975 default: 7976 return -EOPNOTSUPP; 7977 } 7978 } 7979 7980 /** 7981 * ice_validate_mqprio_qopt - Validate TCF input parameters 7982 * @vsi: Pointer to VSI 7983 * @mqprio_qopt: input parameters for mqprio queue configuration 7984 * 7985 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7986 * needed), and make sure user doesn't specify qcount and BW rate limit 7987 * for TCs, which are more than "num_tc" 7988 */ 7989 static int 7990 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7991 struct tc_mqprio_qopt_offload *mqprio_qopt) 7992 { 7993 int non_power_of_2_qcount = 0; 7994 struct ice_pf *pf = vsi->back; 7995 int max_rss_q_cnt = 0; 7996 u64 sum_min_rate = 0; 7997 struct device *dev; 7998 int i, speed; 7999 u8 num_tc; 8000 8001 if (vsi->type != ICE_VSI_PF) 8002 return -EINVAL; 8003 8004 if (mqprio_qopt->qopt.offset[0] != 0 || 8005 mqprio_qopt->qopt.num_tc < 1 || 8006 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8007 return -EINVAL; 8008 8009 dev = ice_pf_to_dev(pf); 8010 vsi->ch_rss_size = 0; 8011 num_tc = mqprio_qopt->qopt.num_tc; 8012 speed = ice_get_link_speed_kbps(vsi); 8013 8014 for (i = 0; num_tc; i++) { 8015 int qcount = mqprio_qopt->qopt.count[i]; 8016 u64 max_rate, min_rate, rem; 8017 8018 if (!qcount) 8019 return -EINVAL; 8020 8021 if (is_power_of_2(qcount)) { 8022 if (non_power_of_2_qcount && 8023 qcount > non_power_of_2_qcount) { 8024 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8025 qcount, non_power_of_2_qcount); 8026 return -EINVAL; 8027 } 8028 if (qcount > max_rss_q_cnt) 8029 max_rss_q_cnt = qcount; 8030 } else { 8031 if (non_power_of_2_qcount && 8032 qcount != non_power_of_2_qcount) { 8033 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8034 qcount, non_power_of_2_qcount); 8035 return -EINVAL; 8036 } 8037 if (qcount < max_rss_q_cnt) { 8038 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8039 qcount, max_rss_q_cnt); 8040 return -EINVAL; 8041 } 8042 max_rss_q_cnt = qcount; 8043 non_power_of_2_qcount = qcount; 8044 } 8045 8046 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8047 * converts the bandwidth rate limit into Bytes/s when 8048 * passing it down to the driver. So convert input bandwidth 8049 * from Bytes/s to Kbps 8050 */ 8051 max_rate = mqprio_qopt->max_rate[i]; 8052 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8053 8054 /* min_rate is minimum guaranteed rate and it can't be zero */ 8055 min_rate = mqprio_qopt->min_rate[i]; 8056 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8057 sum_min_rate += min_rate; 8058 8059 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8060 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8061 min_rate, ICE_MIN_BW_LIMIT); 8062 return -EINVAL; 8063 } 8064 8065 if (max_rate && max_rate > speed) { 8066 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8067 i, max_rate, speed); 8068 return -EINVAL; 8069 } 8070 8071 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8072 if (rem) { 8073 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8074 i, ICE_MIN_BW_LIMIT); 8075 return -EINVAL; 8076 } 8077 8078 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8079 if (rem) { 8080 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8081 i, ICE_MIN_BW_LIMIT); 8082 return -EINVAL; 8083 } 8084 8085 /* min_rate can't be more than max_rate, except when max_rate 8086 * is zero (implies max_rate sought is max line rate). In such 8087 * a case min_rate can be more than max. 8088 */ 8089 if (max_rate && min_rate > max_rate) { 8090 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8091 min_rate, max_rate); 8092 return -EINVAL; 8093 } 8094 8095 if (i >= mqprio_qopt->qopt.num_tc - 1) 8096 break; 8097 if (mqprio_qopt->qopt.offset[i + 1] != 8098 (mqprio_qopt->qopt.offset[i] + qcount)) 8099 return -EINVAL; 8100 } 8101 if (vsi->num_rxq < 8102 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8103 return -EINVAL; 8104 if (vsi->num_txq < 8105 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8106 return -EINVAL; 8107 8108 if (sum_min_rate && sum_min_rate > (u64)speed) { 8109 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8110 sum_min_rate, speed); 8111 return -EINVAL; 8112 } 8113 8114 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8115 vsi->ch_rss_size = max_rss_q_cnt; 8116 8117 return 0; 8118 } 8119 8120 /** 8121 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8122 * @pf: ptr to PF device 8123 * @vsi: ptr to VSI 8124 */ 8125 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8126 { 8127 struct device *dev = ice_pf_to_dev(pf); 8128 bool added = false; 8129 struct ice_hw *hw; 8130 int flow; 8131 8132 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8133 return -EINVAL; 8134 8135 hw = &pf->hw; 8136 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8137 struct ice_fd_hw_prof *prof; 8138 int tun, status; 8139 u64 entry_h; 8140 8141 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8142 hw->fdir_prof[flow]->cnt)) 8143 continue; 8144 8145 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8146 enum ice_flow_priority prio; 8147 u64 prof_id; 8148 8149 /* add this VSI to FDir profile for this flow */ 8150 prio = ICE_FLOW_PRIO_NORMAL; 8151 prof = hw->fdir_prof[flow]; 8152 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8153 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8154 prof->vsi_h[0], vsi->idx, 8155 prio, prof->fdir_seg[tun], 8156 &entry_h); 8157 if (status) { 8158 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8159 vsi->idx, flow); 8160 continue; 8161 } 8162 8163 prof->entry_h[prof->cnt][tun] = entry_h; 8164 } 8165 8166 /* store VSI for filter replay and delete */ 8167 prof->vsi_h[prof->cnt] = vsi->idx; 8168 prof->cnt++; 8169 8170 added = true; 8171 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8172 flow); 8173 } 8174 8175 if (!added) 8176 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8177 8178 return 0; 8179 } 8180 8181 /** 8182 * ice_add_channel - add a channel by adding VSI 8183 * @pf: ptr to PF device 8184 * @sw_id: underlying HW switching element ID 8185 * @ch: ptr to channel structure 8186 * 8187 * Add a channel (VSI) using add_vsi and queue_map 8188 */ 8189 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8190 { 8191 struct device *dev = ice_pf_to_dev(pf); 8192 struct ice_vsi *vsi; 8193 8194 if (ch->type != ICE_VSI_CHNL) { 8195 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8196 return -EINVAL; 8197 } 8198 8199 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8200 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8201 dev_err(dev, "create chnl VSI failure\n"); 8202 return -EINVAL; 8203 } 8204 8205 ice_add_vsi_to_fdir(pf, vsi); 8206 8207 ch->sw_id = sw_id; 8208 ch->vsi_num = vsi->vsi_num; 8209 ch->info.mapping_flags = vsi->info.mapping_flags; 8210 ch->ch_vsi = vsi; 8211 /* set the back pointer of channel for newly created VSI */ 8212 vsi->ch = ch; 8213 8214 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8215 sizeof(vsi->info.q_mapping)); 8216 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8217 sizeof(vsi->info.tc_mapping)); 8218 8219 return 0; 8220 } 8221 8222 /** 8223 * ice_chnl_cfg_res 8224 * @vsi: the VSI being setup 8225 * @ch: ptr to channel structure 8226 * 8227 * Configure channel specific resources such as rings, vector. 8228 */ 8229 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8230 { 8231 int i; 8232 8233 for (i = 0; i < ch->num_txq; i++) { 8234 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8235 struct ice_ring_container *rc; 8236 struct ice_tx_ring *tx_ring; 8237 struct ice_rx_ring *rx_ring; 8238 8239 tx_ring = vsi->tx_rings[ch->base_q + i]; 8240 rx_ring = vsi->rx_rings[ch->base_q + i]; 8241 if (!tx_ring || !rx_ring) 8242 continue; 8243 8244 /* setup ring being channel enabled */ 8245 tx_ring->ch = ch; 8246 rx_ring->ch = ch; 8247 8248 /* following code block sets up vector specific attributes */ 8249 tx_q_vector = tx_ring->q_vector; 8250 rx_q_vector = rx_ring->q_vector; 8251 if (!tx_q_vector && !rx_q_vector) 8252 continue; 8253 8254 if (tx_q_vector) { 8255 tx_q_vector->ch = ch; 8256 /* setup Tx and Rx ITR setting if DIM is off */ 8257 rc = &tx_q_vector->tx; 8258 if (!ITR_IS_DYNAMIC(rc)) 8259 ice_write_itr(rc, rc->itr_setting); 8260 } 8261 if (rx_q_vector) { 8262 rx_q_vector->ch = ch; 8263 /* setup Tx and Rx ITR setting if DIM is off */ 8264 rc = &rx_q_vector->rx; 8265 if (!ITR_IS_DYNAMIC(rc)) 8266 ice_write_itr(rc, rc->itr_setting); 8267 } 8268 } 8269 8270 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8271 * GLINT_ITR register would have written to perform in-context 8272 * update, hence perform flush 8273 */ 8274 if (ch->num_txq || ch->num_rxq) 8275 ice_flush(&vsi->back->hw); 8276 } 8277 8278 /** 8279 * ice_cfg_chnl_all_res - configure channel resources 8280 * @vsi: pte to main_vsi 8281 * @ch: ptr to channel structure 8282 * 8283 * This function configures channel specific resources such as flow-director 8284 * counter index, and other resources such as queues, vectors, ITR settings 8285 */ 8286 static void 8287 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8288 { 8289 /* configure channel (aka ADQ) resources such as queues, vectors, 8290 * ITR settings for channel specific vectors and anything else 8291 */ 8292 ice_chnl_cfg_res(vsi, ch); 8293 } 8294 8295 /** 8296 * ice_setup_hw_channel - setup new channel 8297 * @pf: ptr to PF device 8298 * @vsi: the VSI being setup 8299 * @ch: ptr to channel structure 8300 * @sw_id: underlying HW switching element ID 8301 * @type: type of channel to be created (VMDq2/VF) 8302 * 8303 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8304 * and configures Tx rings accordingly 8305 */ 8306 static int 8307 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8308 struct ice_channel *ch, u16 sw_id, u8 type) 8309 { 8310 struct device *dev = ice_pf_to_dev(pf); 8311 int ret; 8312 8313 ch->base_q = vsi->next_base_q; 8314 ch->type = type; 8315 8316 ret = ice_add_channel(pf, sw_id, ch); 8317 if (ret) { 8318 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8319 return ret; 8320 } 8321 8322 /* configure/setup ADQ specific resources */ 8323 ice_cfg_chnl_all_res(vsi, ch); 8324 8325 /* make sure to update the next_base_q so that subsequent channel's 8326 * (aka ADQ) VSI queue map is correct 8327 */ 8328 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8329 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8330 ch->num_rxq); 8331 8332 return 0; 8333 } 8334 8335 /** 8336 * ice_setup_channel - setup new channel using uplink element 8337 * @pf: ptr to PF device 8338 * @vsi: the VSI being setup 8339 * @ch: ptr to channel structure 8340 * 8341 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8342 * and uplink switching element 8343 */ 8344 static bool 8345 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8346 struct ice_channel *ch) 8347 { 8348 struct device *dev = ice_pf_to_dev(pf); 8349 u16 sw_id; 8350 int ret; 8351 8352 if (vsi->type != ICE_VSI_PF) { 8353 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8354 return false; 8355 } 8356 8357 sw_id = pf->first_sw->sw_id; 8358 8359 /* create channel (VSI) */ 8360 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8361 if (ret) { 8362 dev_err(dev, "failed to setup hw_channel\n"); 8363 return false; 8364 } 8365 dev_dbg(dev, "successfully created channel()\n"); 8366 8367 return ch->ch_vsi ? true : false; 8368 } 8369 8370 /** 8371 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8372 * @vsi: VSI to be configured 8373 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8374 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8375 */ 8376 static int 8377 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8378 { 8379 int err; 8380 8381 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8382 if (err) 8383 return err; 8384 8385 return ice_set_max_bw_limit(vsi, max_tx_rate); 8386 } 8387 8388 /** 8389 * ice_create_q_channel - function to create channel 8390 * @vsi: VSI to be configured 8391 * @ch: ptr to channel (it contains channel specific params) 8392 * 8393 * This function creates channel (VSI) using num_queues specified by user, 8394 * reconfigs RSS if needed. 8395 */ 8396 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8397 { 8398 struct ice_pf *pf = vsi->back; 8399 struct device *dev; 8400 8401 if (!ch) 8402 return -EINVAL; 8403 8404 dev = ice_pf_to_dev(pf); 8405 if (!ch->num_txq || !ch->num_rxq) { 8406 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8407 return -EINVAL; 8408 } 8409 8410 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8411 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8412 vsi->cnt_q_avail, ch->num_txq); 8413 return -EINVAL; 8414 } 8415 8416 if (!ice_setup_channel(pf, vsi, ch)) { 8417 dev_info(dev, "Failed to setup channel\n"); 8418 return -EINVAL; 8419 } 8420 /* configure BW rate limit */ 8421 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8422 int ret; 8423 8424 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8425 ch->min_tx_rate); 8426 if (ret) 8427 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8428 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8429 else 8430 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8431 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8432 } 8433 8434 vsi->cnt_q_avail -= ch->num_txq; 8435 8436 return 0; 8437 } 8438 8439 /** 8440 * ice_rem_all_chnl_fltrs - removes all channel filters 8441 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8442 * 8443 * Remove all advanced switch filters only if they are channel specific 8444 * tc-flower based filter 8445 */ 8446 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8447 { 8448 struct ice_tc_flower_fltr *fltr; 8449 struct hlist_node *node; 8450 8451 /* to remove all channel filters, iterate an ordered list of filters */ 8452 hlist_for_each_entry_safe(fltr, node, 8453 &pf->tc_flower_fltr_list, 8454 tc_flower_node) { 8455 struct ice_rule_query_data rule; 8456 int status; 8457 8458 /* for now process only channel specific filters */ 8459 if (!ice_is_chnl_fltr(fltr)) 8460 continue; 8461 8462 rule.rid = fltr->rid; 8463 rule.rule_id = fltr->rule_id; 8464 rule.vsi_handle = fltr->dest_vsi_handle; 8465 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8466 if (status) { 8467 if (status == -ENOENT) 8468 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8469 rule.rule_id); 8470 else 8471 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8472 status); 8473 } else if (fltr->dest_vsi) { 8474 /* update advanced switch filter count */ 8475 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8476 u32 flags = fltr->flags; 8477 8478 fltr->dest_vsi->num_chnl_fltr--; 8479 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8480 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8481 pf->num_dmac_chnl_fltrs--; 8482 } 8483 } 8484 8485 hlist_del(&fltr->tc_flower_node); 8486 kfree(fltr); 8487 } 8488 } 8489 8490 /** 8491 * ice_remove_q_channels - Remove queue channels for the TCs 8492 * @vsi: VSI to be configured 8493 * @rem_fltr: delete advanced switch filter or not 8494 * 8495 * Remove queue channels for the TCs 8496 */ 8497 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8498 { 8499 struct ice_channel *ch, *ch_tmp; 8500 struct ice_pf *pf = vsi->back; 8501 int i; 8502 8503 /* remove all tc-flower based filter if they are channel filters only */ 8504 if (rem_fltr) 8505 ice_rem_all_chnl_fltrs(pf); 8506 8507 /* remove ntuple filters since queue configuration is being changed */ 8508 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8509 struct ice_hw *hw = &pf->hw; 8510 8511 mutex_lock(&hw->fdir_fltr_lock); 8512 ice_fdir_del_all_fltrs(vsi); 8513 mutex_unlock(&hw->fdir_fltr_lock); 8514 } 8515 8516 /* perform cleanup for channels if they exist */ 8517 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8518 struct ice_vsi *ch_vsi; 8519 8520 list_del(&ch->list); 8521 ch_vsi = ch->ch_vsi; 8522 if (!ch_vsi) { 8523 kfree(ch); 8524 continue; 8525 } 8526 8527 /* Reset queue contexts */ 8528 for (i = 0; i < ch->num_rxq; i++) { 8529 struct ice_tx_ring *tx_ring; 8530 struct ice_rx_ring *rx_ring; 8531 8532 tx_ring = vsi->tx_rings[ch->base_q + i]; 8533 rx_ring = vsi->rx_rings[ch->base_q + i]; 8534 if (tx_ring) { 8535 tx_ring->ch = NULL; 8536 if (tx_ring->q_vector) 8537 tx_ring->q_vector->ch = NULL; 8538 } 8539 if (rx_ring) { 8540 rx_ring->ch = NULL; 8541 if (rx_ring->q_vector) 8542 rx_ring->q_vector->ch = NULL; 8543 } 8544 } 8545 8546 /* Release FD resources for the channel VSI */ 8547 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8548 8549 /* clear the VSI from scheduler tree */ 8550 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8551 8552 /* Delete VSI from FW, PF and HW VSI arrays */ 8553 ice_vsi_delete(ch->ch_vsi); 8554 8555 /* free the channel */ 8556 kfree(ch); 8557 } 8558 8559 /* clear the channel VSI map which is stored in main VSI */ 8560 ice_for_each_chnl_tc(i) 8561 vsi->tc_map_vsi[i] = NULL; 8562 8563 /* reset main VSI's all TC information */ 8564 vsi->all_enatc = 0; 8565 vsi->all_numtc = 0; 8566 } 8567 8568 /** 8569 * ice_rebuild_channels - rebuild channel 8570 * @pf: ptr to PF 8571 * 8572 * Recreate channel VSIs and replay filters 8573 */ 8574 static int ice_rebuild_channels(struct ice_pf *pf) 8575 { 8576 struct device *dev = ice_pf_to_dev(pf); 8577 struct ice_vsi *main_vsi; 8578 bool rem_adv_fltr = true; 8579 struct ice_channel *ch; 8580 struct ice_vsi *vsi; 8581 int tc_idx = 1; 8582 int i, err; 8583 8584 main_vsi = ice_get_main_vsi(pf); 8585 if (!main_vsi) 8586 return 0; 8587 8588 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8589 main_vsi->old_numtc == 1) 8590 return 0; /* nothing to be done */ 8591 8592 /* reconfigure main VSI based on old value of TC and cached values 8593 * for MQPRIO opts 8594 */ 8595 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8596 if (err) { 8597 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8598 main_vsi->old_ena_tc, main_vsi->vsi_num); 8599 return err; 8600 } 8601 8602 /* rebuild ADQ VSIs */ 8603 ice_for_each_vsi(pf, i) { 8604 enum ice_vsi_type type; 8605 8606 vsi = pf->vsi[i]; 8607 if (!vsi || vsi->type != ICE_VSI_CHNL) 8608 continue; 8609 8610 type = vsi->type; 8611 8612 /* rebuild ADQ VSI */ 8613 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8614 if (err) { 8615 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8616 ice_vsi_type_str(type), vsi->idx, err); 8617 goto cleanup; 8618 } 8619 8620 /* Re-map HW VSI number, using VSI handle that has been 8621 * previously validated in ice_replay_vsi() call above 8622 */ 8623 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8624 8625 /* replay filters for the VSI */ 8626 err = ice_replay_vsi(&pf->hw, vsi->idx); 8627 if (err) { 8628 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8629 ice_vsi_type_str(type), err, vsi->idx); 8630 rem_adv_fltr = false; 8631 goto cleanup; 8632 } 8633 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8634 ice_vsi_type_str(type), vsi->idx); 8635 8636 /* store ADQ VSI at correct TC index in main VSI's 8637 * map of TC to VSI 8638 */ 8639 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8640 } 8641 8642 /* ADQ VSI(s) has been rebuilt successfully, so setup 8643 * channel for main VSI's Tx and Rx rings 8644 */ 8645 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8646 struct ice_vsi *ch_vsi; 8647 8648 ch_vsi = ch->ch_vsi; 8649 if (!ch_vsi) 8650 continue; 8651 8652 /* reconfig channel resources */ 8653 ice_cfg_chnl_all_res(main_vsi, ch); 8654 8655 /* replay BW rate limit if it is non-zero */ 8656 if (!ch->max_tx_rate && !ch->min_tx_rate) 8657 continue; 8658 8659 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8660 ch->min_tx_rate); 8661 if (err) 8662 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8663 err, ch->max_tx_rate, ch->min_tx_rate, 8664 ch_vsi->vsi_num); 8665 else 8666 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8667 ch->max_tx_rate, ch->min_tx_rate, 8668 ch_vsi->vsi_num); 8669 } 8670 8671 /* reconfig RSS for main VSI */ 8672 if (main_vsi->ch_rss_size) 8673 ice_vsi_cfg_rss_lut_key(main_vsi); 8674 8675 return 0; 8676 8677 cleanup: 8678 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8679 return err; 8680 } 8681 8682 /** 8683 * ice_create_q_channels - Add queue channel for the given TCs 8684 * @vsi: VSI to be configured 8685 * 8686 * Configures queue channel mapping to the given TCs 8687 */ 8688 static int ice_create_q_channels(struct ice_vsi *vsi) 8689 { 8690 struct ice_pf *pf = vsi->back; 8691 struct ice_channel *ch; 8692 int ret = 0, i; 8693 8694 ice_for_each_chnl_tc(i) { 8695 if (!(vsi->all_enatc & BIT(i))) 8696 continue; 8697 8698 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8699 if (!ch) { 8700 ret = -ENOMEM; 8701 goto err_free; 8702 } 8703 INIT_LIST_HEAD(&ch->list); 8704 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8705 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8706 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8707 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8708 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8709 8710 /* convert to Kbits/s */ 8711 if (ch->max_tx_rate) 8712 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8713 ICE_BW_KBPS_DIVISOR); 8714 if (ch->min_tx_rate) 8715 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8716 ICE_BW_KBPS_DIVISOR); 8717 8718 ret = ice_create_q_channel(vsi, ch); 8719 if (ret) { 8720 dev_err(ice_pf_to_dev(pf), 8721 "failed creating channel TC:%d\n", i); 8722 kfree(ch); 8723 goto err_free; 8724 } 8725 list_add_tail(&ch->list, &vsi->ch_list); 8726 vsi->tc_map_vsi[i] = ch->ch_vsi; 8727 dev_dbg(ice_pf_to_dev(pf), 8728 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8729 } 8730 return 0; 8731 8732 err_free: 8733 ice_remove_q_channels(vsi, false); 8734 8735 return ret; 8736 } 8737 8738 /** 8739 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8740 * @netdev: net device to configure 8741 * @type_data: TC offload data 8742 */ 8743 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8744 { 8745 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8746 struct ice_netdev_priv *np = netdev_priv(netdev); 8747 struct ice_vsi *vsi = np->vsi; 8748 struct ice_pf *pf = vsi->back; 8749 u16 mode, ena_tc_qdisc = 0; 8750 int cur_txq, cur_rxq; 8751 u8 hw = 0, num_tcf; 8752 struct device *dev; 8753 int ret, i; 8754 8755 dev = ice_pf_to_dev(pf); 8756 num_tcf = mqprio_qopt->qopt.num_tc; 8757 hw = mqprio_qopt->qopt.hw; 8758 mode = mqprio_qopt->mode; 8759 if (!hw) { 8760 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8761 vsi->ch_rss_size = 0; 8762 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8763 goto config_tcf; 8764 } 8765 8766 /* Generate queue region map for number of TCF requested */ 8767 for (i = 0; i < num_tcf; i++) 8768 ena_tc_qdisc |= BIT(i); 8769 8770 switch (mode) { 8771 case TC_MQPRIO_MODE_CHANNEL: 8772 8773 if (pf->hw.port_info->is_custom_tx_enabled) { 8774 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8775 return -EBUSY; 8776 } 8777 ice_tear_down_devlink_rate_tree(pf); 8778 8779 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8780 if (ret) { 8781 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8782 ret); 8783 return ret; 8784 } 8785 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8786 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8787 /* don't assume state of hw_tc_offload during driver load 8788 * and set the flag for TC flower filter if hw_tc_offload 8789 * already ON 8790 */ 8791 if (vsi->netdev->features & NETIF_F_HW_TC) 8792 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8793 break; 8794 default: 8795 return -EINVAL; 8796 } 8797 8798 config_tcf: 8799 8800 /* Requesting same TCF configuration as already enabled */ 8801 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8802 mode != TC_MQPRIO_MODE_CHANNEL) 8803 return 0; 8804 8805 /* Pause VSI queues */ 8806 ice_dis_vsi(vsi, true); 8807 8808 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8809 ice_remove_q_channels(vsi, true); 8810 8811 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8812 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8813 num_online_cpus()); 8814 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8815 num_online_cpus()); 8816 } else { 8817 /* logic to rebuild VSI, same like ethtool -L */ 8818 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8819 8820 for (i = 0; i < num_tcf; i++) { 8821 if (!(ena_tc_qdisc & BIT(i))) 8822 continue; 8823 8824 offset = vsi->mqprio_qopt.qopt.offset[i]; 8825 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8826 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8827 } 8828 vsi->req_txq = offset + qcount_tx; 8829 vsi->req_rxq = offset + qcount_rx; 8830 8831 /* store away original rss_size info, so that it gets reused 8832 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8833 * determine, what should be the rss_sizefor main VSI 8834 */ 8835 vsi->orig_rss_size = vsi->rss_size; 8836 } 8837 8838 /* save current values of Tx and Rx queues before calling VSI rebuild 8839 * for fallback option 8840 */ 8841 cur_txq = vsi->num_txq; 8842 cur_rxq = vsi->num_rxq; 8843 8844 /* proceed with rebuild main VSI using correct number of queues */ 8845 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8846 if (ret) { 8847 /* fallback to current number of queues */ 8848 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8849 vsi->req_txq = cur_txq; 8850 vsi->req_rxq = cur_rxq; 8851 clear_bit(ICE_RESET_FAILED, pf->state); 8852 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8853 dev_err(dev, "Rebuild of main VSI failed again\n"); 8854 return ret; 8855 } 8856 } 8857 8858 vsi->all_numtc = num_tcf; 8859 vsi->all_enatc = ena_tc_qdisc; 8860 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8861 if (ret) { 8862 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8863 vsi->vsi_num); 8864 goto exit; 8865 } 8866 8867 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8868 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8869 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8870 8871 /* set TC0 rate limit if specified */ 8872 if (max_tx_rate || min_tx_rate) { 8873 /* convert to Kbits/s */ 8874 if (max_tx_rate) 8875 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8876 if (min_tx_rate) 8877 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8878 8879 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8880 if (!ret) { 8881 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8882 max_tx_rate, min_tx_rate, vsi->vsi_num); 8883 } else { 8884 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8885 max_tx_rate, min_tx_rate, vsi->vsi_num); 8886 goto exit; 8887 } 8888 } 8889 ret = ice_create_q_channels(vsi); 8890 if (ret) { 8891 netdev_err(netdev, "failed configuring queue channels\n"); 8892 goto exit; 8893 } else { 8894 netdev_dbg(netdev, "successfully configured channels\n"); 8895 } 8896 } 8897 8898 if (vsi->ch_rss_size) 8899 ice_vsi_cfg_rss_lut_key(vsi); 8900 8901 exit: 8902 /* if error, reset the all_numtc and all_enatc */ 8903 if (ret) { 8904 vsi->all_numtc = 0; 8905 vsi->all_enatc = 0; 8906 } 8907 /* resume VSI */ 8908 ice_ena_vsi(vsi, true); 8909 8910 return ret; 8911 } 8912 8913 static LIST_HEAD(ice_block_cb_list); 8914 8915 static int 8916 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8917 void *type_data) 8918 { 8919 struct ice_netdev_priv *np = netdev_priv(netdev); 8920 struct ice_pf *pf = np->vsi->back; 8921 bool locked = false; 8922 int err; 8923 8924 switch (type) { 8925 case TC_SETUP_BLOCK: 8926 return flow_block_cb_setup_simple(type_data, 8927 &ice_block_cb_list, 8928 ice_setup_tc_block_cb, 8929 np, np, true); 8930 case TC_SETUP_QDISC_MQPRIO: 8931 if (ice_is_eswitch_mode_switchdev(pf)) { 8932 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 8933 return -EOPNOTSUPP; 8934 } 8935 8936 if (pf->adev) { 8937 mutex_lock(&pf->adev_mutex); 8938 device_lock(&pf->adev->dev); 8939 locked = true; 8940 if (pf->adev->dev.driver) { 8941 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 8942 err = -EBUSY; 8943 goto adev_unlock; 8944 } 8945 } 8946 8947 /* setup traffic classifier for receive side */ 8948 mutex_lock(&pf->tc_mutex); 8949 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8950 mutex_unlock(&pf->tc_mutex); 8951 8952 adev_unlock: 8953 if (locked) { 8954 device_unlock(&pf->adev->dev); 8955 mutex_unlock(&pf->adev_mutex); 8956 } 8957 return err; 8958 default: 8959 return -EOPNOTSUPP; 8960 } 8961 return -EOPNOTSUPP; 8962 } 8963 8964 static struct ice_indr_block_priv * 8965 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8966 struct net_device *netdev) 8967 { 8968 struct ice_indr_block_priv *cb_priv; 8969 8970 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8971 if (!cb_priv->netdev) 8972 return NULL; 8973 if (cb_priv->netdev == netdev) 8974 return cb_priv; 8975 } 8976 return NULL; 8977 } 8978 8979 static int 8980 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8981 void *indr_priv) 8982 { 8983 struct ice_indr_block_priv *priv = indr_priv; 8984 struct ice_netdev_priv *np = priv->np; 8985 8986 switch (type) { 8987 case TC_SETUP_CLSFLOWER: 8988 return ice_setup_tc_cls_flower(np, priv->netdev, 8989 (struct flow_cls_offload *) 8990 type_data); 8991 default: 8992 return -EOPNOTSUPP; 8993 } 8994 } 8995 8996 static int 8997 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8998 struct ice_netdev_priv *np, 8999 struct flow_block_offload *f, void *data, 9000 void (*cleanup)(struct flow_block_cb *block_cb)) 9001 { 9002 struct ice_indr_block_priv *indr_priv; 9003 struct flow_block_cb *block_cb; 9004 9005 if (!ice_is_tunnel_supported(netdev) && 9006 !(is_vlan_dev(netdev) && 9007 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9008 return -EOPNOTSUPP; 9009 9010 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9011 return -EOPNOTSUPP; 9012 9013 switch (f->command) { 9014 case FLOW_BLOCK_BIND: 9015 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9016 if (indr_priv) 9017 return -EEXIST; 9018 9019 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9020 if (!indr_priv) 9021 return -ENOMEM; 9022 9023 indr_priv->netdev = netdev; 9024 indr_priv->np = np; 9025 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9026 9027 block_cb = 9028 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9029 indr_priv, indr_priv, 9030 ice_rep_indr_tc_block_unbind, 9031 f, netdev, sch, data, np, 9032 cleanup); 9033 9034 if (IS_ERR(block_cb)) { 9035 list_del(&indr_priv->list); 9036 kfree(indr_priv); 9037 return PTR_ERR(block_cb); 9038 } 9039 flow_block_cb_add(block_cb, f); 9040 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9041 break; 9042 case FLOW_BLOCK_UNBIND: 9043 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9044 if (!indr_priv) 9045 return -ENOENT; 9046 9047 block_cb = flow_block_cb_lookup(f->block, 9048 ice_indr_setup_block_cb, 9049 indr_priv); 9050 if (!block_cb) 9051 return -ENOENT; 9052 9053 flow_indr_block_cb_remove(block_cb, f); 9054 9055 list_del(&block_cb->driver_list); 9056 break; 9057 default: 9058 return -EOPNOTSUPP; 9059 } 9060 return 0; 9061 } 9062 9063 static int 9064 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9065 void *cb_priv, enum tc_setup_type type, void *type_data, 9066 void *data, 9067 void (*cleanup)(struct flow_block_cb *block_cb)) 9068 { 9069 switch (type) { 9070 case TC_SETUP_BLOCK: 9071 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9072 data, cleanup); 9073 9074 default: 9075 return -EOPNOTSUPP; 9076 } 9077 } 9078 9079 /** 9080 * ice_open - Called when a network interface becomes active 9081 * @netdev: network interface device structure 9082 * 9083 * The open entry point is called when a network interface is made 9084 * active by the system (IFF_UP). At this point all resources needed 9085 * for transmit and receive operations are allocated, the interrupt 9086 * handler is registered with the OS, the netdev watchdog is enabled, 9087 * and the stack is notified that the interface is ready. 9088 * 9089 * Returns 0 on success, negative value on failure 9090 */ 9091 int ice_open(struct net_device *netdev) 9092 { 9093 struct ice_netdev_priv *np = netdev_priv(netdev); 9094 struct ice_pf *pf = np->vsi->back; 9095 9096 if (ice_is_reset_in_progress(pf->state)) { 9097 netdev_err(netdev, "can't open net device while reset is in progress"); 9098 return -EBUSY; 9099 } 9100 9101 return ice_open_internal(netdev); 9102 } 9103 9104 /** 9105 * ice_open_internal - Called when a network interface becomes active 9106 * @netdev: network interface device structure 9107 * 9108 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9109 * handling routine 9110 * 9111 * Returns 0 on success, negative value on failure 9112 */ 9113 int ice_open_internal(struct net_device *netdev) 9114 { 9115 struct ice_netdev_priv *np = netdev_priv(netdev); 9116 struct ice_vsi *vsi = np->vsi; 9117 struct ice_pf *pf = vsi->back; 9118 struct ice_port_info *pi; 9119 int err; 9120 9121 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9122 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9123 return -EIO; 9124 } 9125 9126 netif_carrier_off(netdev); 9127 9128 pi = vsi->port_info; 9129 err = ice_update_link_info(pi); 9130 if (err) { 9131 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9132 return err; 9133 } 9134 9135 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9136 9137 /* Set PHY if there is media, otherwise, turn off PHY */ 9138 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9139 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9140 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9141 err = ice_init_phy_user_cfg(pi); 9142 if (err) { 9143 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9144 err); 9145 return err; 9146 } 9147 } 9148 9149 err = ice_configure_phy(vsi); 9150 if (err) { 9151 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9152 err); 9153 return err; 9154 } 9155 } else { 9156 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9157 ice_set_link(vsi, false); 9158 } 9159 9160 err = ice_vsi_open(vsi); 9161 if (err) 9162 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9163 vsi->vsi_num, vsi->vsw->sw_id); 9164 9165 /* Update existing tunnels information */ 9166 udp_tunnel_get_rx_info(netdev); 9167 9168 return err; 9169 } 9170 9171 /** 9172 * ice_stop - Disables a network interface 9173 * @netdev: network interface device structure 9174 * 9175 * The stop entry point is called when an interface is de-activated by the OS, 9176 * and the netdevice enters the DOWN state. The hardware is still under the 9177 * driver's control, but the netdev interface is disabled. 9178 * 9179 * Returns success only - not allowed to fail 9180 */ 9181 int ice_stop(struct net_device *netdev) 9182 { 9183 struct ice_netdev_priv *np = netdev_priv(netdev); 9184 struct ice_vsi *vsi = np->vsi; 9185 struct ice_pf *pf = vsi->back; 9186 9187 if (ice_is_reset_in_progress(pf->state)) { 9188 netdev_err(netdev, "can't stop net device while reset is in progress"); 9189 return -EBUSY; 9190 } 9191 9192 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9193 int link_err = ice_force_phys_link_state(vsi, false); 9194 9195 if (link_err) { 9196 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9197 vsi->vsi_num, link_err); 9198 return -EIO; 9199 } 9200 } 9201 9202 ice_vsi_close(vsi); 9203 9204 return 0; 9205 } 9206 9207 /** 9208 * ice_features_check - Validate encapsulated packet conforms to limits 9209 * @skb: skb buffer 9210 * @netdev: This port's netdev 9211 * @features: Offload features that the stack believes apply 9212 */ 9213 static netdev_features_t 9214 ice_features_check(struct sk_buff *skb, 9215 struct net_device __always_unused *netdev, 9216 netdev_features_t features) 9217 { 9218 bool gso = skb_is_gso(skb); 9219 size_t len; 9220 9221 /* No point in doing any of this if neither checksum nor GSO are 9222 * being requested for this frame. We can rule out both by just 9223 * checking for CHECKSUM_PARTIAL 9224 */ 9225 if (skb->ip_summed != CHECKSUM_PARTIAL) 9226 return features; 9227 9228 /* We cannot support GSO if the MSS is going to be less than 9229 * 64 bytes. If it is then we need to drop support for GSO. 9230 */ 9231 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9232 features &= ~NETIF_F_GSO_MASK; 9233 9234 len = skb_network_offset(skb); 9235 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9236 goto out_rm_features; 9237 9238 len = skb_network_header_len(skb); 9239 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9240 goto out_rm_features; 9241 9242 if (skb->encapsulation) { 9243 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9244 * the case of IPIP frames, the transport header pointer is 9245 * after the inner header! So check to make sure that this 9246 * is a GRE or UDP_TUNNEL frame before doing that math. 9247 */ 9248 if (gso && (skb_shinfo(skb)->gso_type & 9249 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9250 len = skb_inner_network_header(skb) - 9251 skb_transport_header(skb); 9252 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9253 goto out_rm_features; 9254 } 9255 9256 len = skb_inner_network_header_len(skb); 9257 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9258 goto out_rm_features; 9259 } 9260 9261 return features; 9262 out_rm_features: 9263 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9264 } 9265 9266 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9267 .ndo_open = ice_open, 9268 .ndo_stop = ice_stop, 9269 .ndo_start_xmit = ice_start_xmit, 9270 .ndo_set_mac_address = ice_set_mac_address, 9271 .ndo_validate_addr = eth_validate_addr, 9272 .ndo_change_mtu = ice_change_mtu, 9273 .ndo_get_stats64 = ice_get_stats64, 9274 .ndo_tx_timeout = ice_tx_timeout, 9275 .ndo_bpf = ice_xdp_safe_mode, 9276 }; 9277 9278 static const struct net_device_ops ice_netdev_ops = { 9279 .ndo_open = ice_open, 9280 .ndo_stop = ice_stop, 9281 .ndo_start_xmit = ice_start_xmit, 9282 .ndo_select_queue = ice_select_queue, 9283 .ndo_features_check = ice_features_check, 9284 .ndo_fix_features = ice_fix_features, 9285 .ndo_set_rx_mode = ice_set_rx_mode, 9286 .ndo_set_mac_address = ice_set_mac_address, 9287 .ndo_validate_addr = eth_validate_addr, 9288 .ndo_change_mtu = ice_change_mtu, 9289 .ndo_get_stats64 = ice_get_stats64, 9290 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9291 .ndo_eth_ioctl = ice_eth_ioctl, 9292 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9293 .ndo_set_vf_mac = ice_set_vf_mac, 9294 .ndo_get_vf_config = ice_get_vf_cfg, 9295 .ndo_set_vf_trust = ice_set_vf_trust, 9296 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9297 .ndo_set_vf_link_state = ice_set_vf_link_state, 9298 .ndo_get_vf_stats = ice_get_vf_stats, 9299 .ndo_set_vf_rate = ice_set_vf_bw, 9300 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9301 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9302 .ndo_setup_tc = ice_setup_tc, 9303 .ndo_set_features = ice_set_features, 9304 .ndo_bridge_getlink = ice_bridge_getlink, 9305 .ndo_bridge_setlink = ice_bridge_setlink, 9306 .ndo_fdb_add = ice_fdb_add, 9307 .ndo_fdb_del = ice_fdb_del, 9308 #ifdef CONFIG_RFS_ACCEL 9309 .ndo_rx_flow_steer = ice_rx_flow_steer, 9310 #endif 9311 .ndo_tx_timeout = ice_tx_timeout, 9312 .ndo_bpf = ice_xdp, 9313 .ndo_xdp_xmit = ice_xdp_xmit, 9314 .ndo_xsk_wakeup = ice_xsk_wakeup, 9315 }; 9316