1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS(LIBIE); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops); 91 } 92 93 /** 94 * ice_get_tx_pending - returns number of Tx descriptors not processed 95 * @ring: the ring of descriptors 96 */ 97 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 98 { 99 u16 head, tail; 100 101 head = ring->next_to_clean; 102 tail = ring->next_to_use; 103 104 if (head != tail) 105 return (head < tail) ? 106 tail - head : (tail + ring->count - head); 107 return 0; 108 } 109 110 /** 111 * ice_check_for_hang_subtask - check for and recover hung queues 112 * @pf: pointer to PF struct 113 */ 114 static void ice_check_for_hang_subtask(struct ice_pf *pf) 115 { 116 struct ice_vsi *vsi = NULL; 117 struct ice_hw *hw; 118 unsigned int i; 119 int packets; 120 u32 v; 121 122 ice_for_each_vsi(pf, v) 123 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 124 vsi = pf->vsi[v]; 125 break; 126 } 127 128 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 129 return; 130 131 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 132 return; 133 134 hw = &vsi->back->hw; 135 136 ice_for_each_txq(vsi, i) { 137 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 138 struct ice_ring_stats *ring_stats; 139 140 if (!tx_ring) 141 continue; 142 if (ice_ring_ch_enabled(tx_ring)) 143 continue; 144 145 ring_stats = tx_ring->ring_stats; 146 if (!ring_stats) 147 continue; 148 149 if (tx_ring->desc) { 150 /* If packet counter has not changed the queue is 151 * likely stalled, so force an interrupt for this 152 * queue. 153 * 154 * prev_pkt would be negative if there was no 155 * pending work. 156 */ 157 packets = ring_stats->stats.pkts & INT_MAX; 158 if (ring_stats->tx_stats.prev_pkt == packets) { 159 /* Trigger sw interrupt to revive the queue */ 160 ice_trigger_sw_intr(hw, tx_ring->q_vector); 161 continue; 162 } 163 164 /* Memory barrier between read of packet count and call 165 * to ice_get_tx_pending() 166 */ 167 smp_rmb(); 168 ring_stats->tx_stats.prev_pkt = 169 ice_get_tx_pending(tx_ring) ? packets : -1; 170 } 171 } 172 } 173 174 /** 175 * ice_init_mac_fltr - Set initial MAC filters 176 * @pf: board private structure 177 * 178 * Set initial set of MAC filters for PF VSI; configure filters for permanent 179 * address and broadcast address. If an error is encountered, netdevice will be 180 * unregistered. 181 */ 182 static int ice_init_mac_fltr(struct ice_pf *pf) 183 { 184 struct ice_vsi *vsi; 185 u8 *perm_addr; 186 187 vsi = ice_get_main_vsi(pf); 188 if (!vsi) 189 return -EINVAL; 190 191 perm_addr = vsi->port_info->mac.perm_addr; 192 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 193 } 194 195 /** 196 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 197 * @netdev: the net device on which the sync is happening 198 * @addr: MAC address to sync 199 * 200 * This is a callback function which is called by the in kernel device sync 201 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 202 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 203 * MAC filters from the hardware. 204 */ 205 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 206 { 207 struct ice_netdev_priv *np = netdev_priv(netdev); 208 struct ice_vsi *vsi = np->vsi; 209 210 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 211 ICE_FWD_TO_VSI)) 212 return -EINVAL; 213 214 return 0; 215 } 216 217 /** 218 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 219 * @netdev: the net device on which the unsync is happening 220 * @addr: MAC address to unsync 221 * 222 * This is a callback function which is called by the in kernel device unsync 223 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 224 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 225 * delete the MAC filters from the hardware. 226 */ 227 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 228 { 229 struct ice_netdev_priv *np = netdev_priv(netdev); 230 struct ice_vsi *vsi = np->vsi; 231 232 /* Under some circumstances, we might receive a request to delete our 233 * own device address from our uc list. Because we store the device 234 * address in the VSI's MAC filter list, we need to ignore such 235 * requests and not delete our device address from this list. 236 */ 237 if (ether_addr_equal(addr, netdev->dev_addr)) 238 return 0; 239 240 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 241 ICE_FWD_TO_VSI)) 242 return -EINVAL; 243 244 return 0; 245 } 246 247 /** 248 * ice_vsi_fltr_changed - check if filter state changed 249 * @vsi: VSI to be checked 250 * 251 * returns true if filter state has changed, false otherwise. 252 */ 253 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 254 { 255 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 256 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 257 } 258 259 /** 260 * ice_set_promisc - Enable promiscuous mode for a given PF 261 * @vsi: the VSI being configured 262 * @promisc_m: mask of promiscuous config bits 263 * 264 */ 265 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 266 { 267 int status; 268 269 if (vsi->type != ICE_VSI_PF) 270 return 0; 271 272 if (ice_vsi_has_non_zero_vlans(vsi)) { 273 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 274 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 275 promisc_m); 276 } else { 277 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 278 promisc_m, 0); 279 } 280 if (status && status != -EEXIST) 281 return status; 282 283 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 284 vsi->vsi_num, promisc_m); 285 return 0; 286 } 287 288 /** 289 * ice_clear_promisc - Disable promiscuous mode for a given PF 290 * @vsi: the VSI being configured 291 * @promisc_m: mask of promiscuous config bits 292 * 293 */ 294 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 295 { 296 int status; 297 298 if (vsi->type != ICE_VSI_PF) 299 return 0; 300 301 if (ice_vsi_has_non_zero_vlans(vsi)) { 302 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 303 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 304 promisc_m); 305 } else { 306 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 307 promisc_m, 0); 308 } 309 310 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 311 vsi->vsi_num, promisc_m); 312 return status; 313 } 314 315 /** 316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 317 * @vsi: ptr to the VSI 318 * 319 * Push any outstanding VSI filter changes through the AdminQ. 320 */ 321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 322 { 323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 324 struct device *dev = ice_pf_to_dev(vsi->back); 325 struct net_device *netdev = vsi->netdev; 326 bool promisc_forced_on = false; 327 struct ice_pf *pf = vsi->back; 328 struct ice_hw *hw = &pf->hw; 329 u32 changed_flags = 0; 330 int err; 331 332 if (!vsi->netdev) 333 return -EINVAL; 334 335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 336 usleep_range(1000, 2000); 337 338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 339 vsi->current_netdev_flags = vsi->netdev->flags; 340 341 INIT_LIST_HEAD(&vsi->tmp_sync_list); 342 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 343 344 if (ice_vsi_fltr_changed(vsi)) { 345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 347 348 /* grab the netdev's addr_list_lock */ 349 netif_addr_lock_bh(netdev); 350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 /* our temp lists are populated. release lock */ 355 netif_addr_unlock_bh(netdev); 356 } 357 358 /* Remove MAC addresses in the unsync list */ 359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 361 if (err) { 362 netdev_err(netdev, "Failed to delete MAC filters\n"); 363 /* if we failed because of alloc failures, just bail */ 364 if (err == -ENOMEM) 365 goto out; 366 } 367 368 /* Add MAC addresses in the sync list */ 369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 370 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 371 /* If filter is added successfully or already exists, do not go into 372 * 'if' condition and report it as error. Instead continue processing 373 * rest of the function. 374 */ 375 if (err && err != -EEXIST) { 376 netdev_err(netdev, "Failed to add MAC filters\n"); 377 /* If there is no more space for new umac filters, VSI 378 * should go into promiscuous mode. There should be some 379 * space reserved for promiscuous filters. 380 */ 381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 383 vsi->state)) { 384 promisc_forced_on = true; 385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 386 vsi->vsi_num); 387 } else { 388 goto out; 389 } 390 } 391 err = 0; 392 /* check for changes in promiscuous modes */ 393 if (changed_flags & IFF_ALLMULTI) { 394 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 396 if (err) { 397 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 398 goto out_promisc; 399 } 400 } else { 401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 403 if (err) { 404 vsi->current_netdev_flags |= IFF_ALLMULTI; 405 goto out_promisc; 406 } 407 } 408 } 409 410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 413 if (vsi->current_netdev_flags & IFF_PROMISC) { 414 /* Apply Rx filter rule to get traffic from wire */ 415 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 416 err = ice_set_dflt_vsi(vsi); 417 if (err && err != -EEXIST) { 418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 419 err, vsi->vsi_num); 420 vsi->current_netdev_flags &= 421 ~IFF_PROMISC; 422 goto out_promisc; 423 } 424 err = 0; 425 vlan_ops->dis_rx_filtering(vsi); 426 427 /* promiscuous mode implies allmulticast so 428 * that VSIs that are in promiscuous mode are 429 * subscribed to multicast packets coming to 430 * the port 431 */ 432 err = ice_set_promisc(vsi, 433 ICE_MCAST_PROMISC_BITS); 434 if (err) 435 goto out_promisc; 436 } 437 } else { 438 /* Clear Rx filter to remove traffic from wire */ 439 if (ice_is_vsi_dflt_vsi(vsi)) { 440 err = ice_clear_dflt_vsi(vsi); 441 if (err) { 442 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 443 err, vsi->vsi_num); 444 vsi->current_netdev_flags |= 445 IFF_PROMISC; 446 goto out_promisc; 447 } 448 if (vsi->netdev->features & 449 NETIF_F_HW_VLAN_CTAG_FILTER) 450 vlan_ops->ena_rx_filtering(vsi); 451 } 452 453 /* disable allmulti here, but only if allmulti is not 454 * still enabled for the netdev 455 */ 456 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 457 err = ice_clear_promisc(vsi, 458 ICE_MCAST_PROMISC_BITS); 459 if (err) { 460 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 461 err, vsi->vsi_num); 462 } 463 } 464 } 465 } 466 goto exit; 467 468 out_promisc: 469 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 470 goto exit; 471 out: 472 /* if something went wrong then set the changed flag so we try again */ 473 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 474 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 475 exit: 476 clear_bit(ICE_CFG_BUSY, vsi->state); 477 return err; 478 } 479 480 /** 481 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 482 * @pf: board private structure 483 */ 484 static void ice_sync_fltr_subtask(struct ice_pf *pf) 485 { 486 int v; 487 488 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 489 return; 490 491 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 492 493 ice_for_each_vsi(pf, v) 494 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 495 ice_vsi_sync_fltr(pf->vsi[v])) { 496 /* come back and try again later */ 497 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 498 break; 499 } 500 } 501 502 /** 503 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 504 * @pf: the PF 505 * @locked: is the rtnl_lock already held 506 */ 507 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 508 { 509 int node; 510 int v; 511 512 ice_for_each_vsi(pf, v) 513 if (pf->vsi[v]) 514 ice_dis_vsi(pf->vsi[v], locked); 515 516 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 517 pf->pf_agg_node[node].num_vsis = 0; 518 519 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 520 pf->vf_agg_node[node].num_vsis = 0; 521 } 522 523 /** 524 * ice_clear_sw_switch_recipes - clear switch recipes 525 * @pf: board private structure 526 * 527 * Mark switch recipes as not created in sw structures. There are cases where 528 * rules (especially advanced rules) need to be restored, either re-read from 529 * hardware or added again. For example after the reset. 'recp_created' flag 530 * prevents from doing that and need to be cleared upfront. 531 */ 532 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 533 { 534 struct ice_sw_recipe *recp; 535 u8 i; 536 537 recp = pf->hw.switch_info->recp_list; 538 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 539 recp[i].recp_created = false; 540 } 541 542 /** 543 * ice_prepare_for_reset - prep for reset 544 * @pf: board private structure 545 * @reset_type: reset type requested 546 * 547 * Inform or close all dependent features in prep for reset. 548 */ 549 static void 550 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 551 { 552 struct ice_hw *hw = &pf->hw; 553 struct ice_vsi *vsi; 554 struct ice_vf *vf; 555 unsigned int bkt; 556 557 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 558 559 /* already prepared for reset */ 560 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 561 return; 562 563 synchronize_irq(pf->oicr_irq.virq); 564 565 ice_unplug_aux_dev(pf); 566 567 /* Notify VFs of impending reset */ 568 if (ice_check_sq_alive(hw, &hw->mailboxq)) 569 ice_vc_notify_reset(pf); 570 571 /* Disable VFs until reset is completed */ 572 mutex_lock(&pf->vfs.table_lock); 573 ice_for_each_vf(pf, bkt, vf) 574 ice_set_vf_state_dis(vf); 575 mutex_unlock(&pf->vfs.table_lock); 576 577 if (ice_is_eswitch_mode_switchdev(pf)) { 578 if (reset_type != ICE_RESET_PFR) 579 ice_clear_sw_switch_recipes(pf); 580 } 581 582 /* release ADQ specific HW and SW resources */ 583 vsi = ice_get_main_vsi(pf); 584 if (!vsi) 585 goto skip; 586 587 /* to be on safe side, reset orig_rss_size so that normal flow 588 * of deciding rss_size can take precedence 589 */ 590 vsi->orig_rss_size = 0; 591 592 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 593 if (reset_type == ICE_RESET_PFR) { 594 vsi->old_ena_tc = vsi->all_enatc; 595 vsi->old_numtc = vsi->all_numtc; 596 } else { 597 ice_remove_q_channels(vsi, true); 598 599 /* for other reset type, do not support channel rebuild 600 * hence reset needed info 601 */ 602 vsi->old_ena_tc = 0; 603 vsi->all_enatc = 0; 604 vsi->old_numtc = 0; 605 vsi->all_numtc = 0; 606 vsi->req_txq = 0; 607 vsi->req_rxq = 0; 608 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 609 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 610 } 611 } 612 613 if (vsi->netdev) 614 netif_device_detach(vsi->netdev); 615 skip: 616 617 /* clear SW filtering DB */ 618 ice_clear_hw_tbls(hw); 619 /* disable the VSIs and their queues that are not already DOWN */ 620 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 621 ice_pf_dis_all_vsi(pf, false); 622 623 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 624 ice_ptp_prepare_for_reset(pf, reset_type); 625 626 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 627 ice_gnss_exit(pf); 628 629 if (hw->port_info) 630 ice_sched_clear_port(hw->port_info); 631 632 ice_shutdown_all_ctrlq(hw, false); 633 634 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 635 } 636 637 /** 638 * ice_do_reset - Initiate one of many types of resets 639 * @pf: board private structure 640 * @reset_type: reset type requested before this function was called. 641 */ 642 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 643 { 644 struct device *dev = ice_pf_to_dev(pf); 645 struct ice_hw *hw = &pf->hw; 646 647 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 648 649 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 650 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 651 reset_type = ICE_RESET_CORER; 652 } 653 654 ice_prepare_for_reset(pf, reset_type); 655 656 /* trigger the reset */ 657 if (ice_reset(hw, reset_type)) { 658 dev_err(dev, "reset %d failed\n", reset_type); 659 set_bit(ICE_RESET_FAILED, pf->state); 660 clear_bit(ICE_RESET_OICR_RECV, pf->state); 661 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 662 clear_bit(ICE_PFR_REQ, pf->state); 663 clear_bit(ICE_CORER_REQ, pf->state); 664 clear_bit(ICE_GLOBR_REQ, pf->state); 665 wake_up(&pf->reset_wait_queue); 666 return; 667 } 668 669 /* PFR is a bit of a special case because it doesn't result in an OICR 670 * interrupt. So for PFR, rebuild after the reset and clear the reset- 671 * associated state bits. 672 */ 673 if (reset_type == ICE_RESET_PFR) { 674 pf->pfr_count++; 675 ice_rebuild(pf, reset_type); 676 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 677 clear_bit(ICE_PFR_REQ, pf->state); 678 wake_up(&pf->reset_wait_queue); 679 ice_reset_all_vfs(pf); 680 } 681 } 682 683 /** 684 * ice_reset_subtask - Set up for resetting the device and driver 685 * @pf: board private structure 686 */ 687 static void ice_reset_subtask(struct ice_pf *pf) 688 { 689 enum ice_reset_req reset_type = ICE_RESET_INVAL; 690 691 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 692 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 693 * of reset is pending and sets bits in pf->state indicating the reset 694 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 695 * prepare for pending reset if not already (for PF software-initiated 696 * global resets the software should already be prepared for it as 697 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 698 * by firmware or software on other PFs, that bit is not set so prepare 699 * for the reset now), poll for reset done, rebuild and return. 700 */ 701 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 702 /* Perform the largest reset requested */ 703 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 704 reset_type = ICE_RESET_CORER; 705 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 706 reset_type = ICE_RESET_GLOBR; 707 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 708 reset_type = ICE_RESET_EMPR; 709 /* return if no valid reset type requested */ 710 if (reset_type == ICE_RESET_INVAL) 711 return; 712 ice_prepare_for_reset(pf, reset_type); 713 714 /* make sure we are ready to rebuild */ 715 if (ice_check_reset(&pf->hw)) { 716 set_bit(ICE_RESET_FAILED, pf->state); 717 } else { 718 /* done with reset. start rebuild */ 719 pf->hw.reset_ongoing = false; 720 ice_rebuild(pf, reset_type); 721 /* clear bit to resume normal operations, but 722 * ICE_NEEDS_RESTART bit is set in case rebuild failed 723 */ 724 clear_bit(ICE_RESET_OICR_RECV, pf->state); 725 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 726 clear_bit(ICE_PFR_REQ, pf->state); 727 clear_bit(ICE_CORER_REQ, pf->state); 728 clear_bit(ICE_GLOBR_REQ, pf->state); 729 wake_up(&pf->reset_wait_queue); 730 ice_reset_all_vfs(pf); 731 } 732 733 return; 734 } 735 736 /* No pending resets to finish processing. Check for new resets */ 737 if (test_bit(ICE_PFR_REQ, pf->state)) { 738 reset_type = ICE_RESET_PFR; 739 if (pf->lag && pf->lag->bonded) { 740 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 741 reset_type = ICE_RESET_CORER; 742 } 743 } 744 if (test_bit(ICE_CORER_REQ, pf->state)) 745 reset_type = ICE_RESET_CORER; 746 if (test_bit(ICE_GLOBR_REQ, pf->state)) 747 reset_type = ICE_RESET_GLOBR; 748 /* If no valid reset type requested just return */ 749 if (reset_type == ICE_RESET_INVAL) 750 return; 751 752 /* reset if not already down or busy */ 753 if (!test_bit(ICE_DOWN, pf->state) && 754 !test_bit(ICE_CFG_BUSY, pf->state)) { 755 ice_do_reset(pf, reset_type); 756 } 757 } 758 759 /** 760 * ice_print_topo_conflict - print topology conflict message 761 * @vsi: the VSI whose topology status is being checked 762 */ 763 static void ice_print_topo_conflict(struct ice_vsi *vsi) 764 { 765 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 766 case ICE_AQ_LINK_TOPO_CONFLICT: 767 case ICE_AQ_LINK_MEDIA_CONFLICT: 768 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 769 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 770 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 771 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 772 break; 773 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 774 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 775 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 776 else 777 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 778 break; 779 default: 780 break; 781 } 782 } 783 784 /** 785 * ice_print_link_msg - print link up or down message 786 * @vsi: the VSI whose link status is being queried 787 * @isup: boolean for if the link is now up or down 788 */ 789 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 790 { 791 struct ice_aqc_get_phy_caps_data *caps; 792 const char *an_advertised; 793 const char *fec_req; 794 const char *speed; 795 const char *fec; 796 const char *fc; 797 const char *an; 798 int status; 799 800 if (!vsi) 801 return; 802 803 if (vsi->current_isup == isup) 804 return; 805 806 vsi->current_isup = isup; 807 808 if (!isup) { 809 netdev_info(vsi->netdev, "NIC Link is Down\n"); 810 return; 811 } 812 813 switch (vsi->port_info->phy.link_info.link_speed) { 814 case ICE_AQ_LINK_SPEED_200GB: 815 speed = "200 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_100GB: 818 speed = "100 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_50GB: 821 speed = "50 G"; 822 break; 823 case ICE_AQ_LINK_SPEED_40GB: 824 speed = "40 G"; 825 break; 826 case ICE_AQ_LINK_SPEED_25GB: 827 speed = "25 G"; 828 break; 829 case ICE_AQ_LINK_SPEED_20GB: 830 speed = "20 G"; 831 break; 832 case ICE_AQ_LINK_SPEED_10GB: 833 speed = "10 G"; 834 break; 835 case ICE_AQ_LINK_SPEED_5GB: 836 speed = "5 G"; 837 break; 838 case ICE_AQ_LINK_SPEED_2500MB: 839 speed = "2.5 G"; 840 break; 841 case ICE_AQ_LINK_SPEED_1000MB: 842 speed = "1 G"; 843 break; 844 case ICE_AQ_LINK_SPEED_100MB: 845 speed = "100 M"; 846 break; 847 default: 848 speed = "Unknown "; 849 break; 850 } 851 852 switch (vsi->port_info->fc.current_mode) { 853 case ICE_FC_FULL: 854 fc = "Rx/Tx"; 855 break; 856 case ICE_FC_TX_PAUSE: 857 fc = "Tx"; 858 break; 859 case ICE_FC_RX_PAUSE: 860 fc = "Rx"; 861 break; 862 case ICE_FC_NONE: 863 fc = "None"; 864 break; 865 default: 866 fc = "Unknown"; 867 break; 868 } 869 870 /* Get FEC mode based on negotiated link info */ 871 switch (vsi->port_info->phy.link_info.fec_info) { 872 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 873 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 874 fec = "RS-FEC"; 875 break; 876 case ICE_AQ_LINK_25G_KR_FEC_EN: 877 fec = "FC-FEC/BASE-R"; 878 break; 879 default: 880 fec = "NONE"; 881 break; 882 } 883 884 /* check if autoneg completed, might be false due to not supported */ 885 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 886 an = "True"; 887 else 888 an = "False"; 889 890 /* Get FEC mode requested based on PHY caps last SW configuration */ 891 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 892 if (!caps) { 893 fec_req = "Unknown"; 894 an_advertised = "Unknown"; 895 goto done; 896 } 897 898 status = ice_aq_get_phy_caps(vsi->port_info, false, 899 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 900 if (status) 901 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 902 903 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 904 905 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 906 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 907 fec_req = "RS-FEC"; 908 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 909 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 910 fec_req = "FC-FEC/BASE-R"; 911 else 912 fec_req = "NONE"; 913 914 kfree(caps); 915 916 done: 917 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 918 speed, fec_req, fec, an_advertised, an, fc); 919 ice_print_topo_conflict(vsi); 920 } 921 922 /** 923 * ice_vsi_link_event - update the VSI's netdev 924 * @vsi: the VSI on which the link event occurred 925 * @link_up: whether or not the VSI needs to be set up or down 926 */ 927 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 928 { 929 if (!vsi) 930 return; 931 932 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 933 return; 934 935 if (vsi->type == ICE_VSI_PF) { 936 if (link_up == netif_carrier_ok(vsi->netdev)) 937 return; 938 939 if (link_up) { 940 netif_carrier_on(vsi->netdev); 941 netif_tx_wake_all_queues(vsi->netdev); 942 } else { 943 netif_carrier_off(vsi->netdev); 944 netif_tx_stop_all_queues(vsi->netdev); 945 } 946 } 947 } 948 949 /** 950 * ice_set_dflt_mib - send a default config MIB to the FW 951 * @pf: private PF struct 952 * 953 * This function sends a default configuration MIB to the FW. 954 * 955 * If this function errors out at any point, the driver is still able to 956 * function. The main impact is that LFC may not operate as expected. 957 * Therefore an error state in this function should be treated with a DBG 958 * message and continue on with driver rebuild/reenable. 959 */ 960 static void ice_set_dflt_mib(struct ice_pf *pf) 961 { 962 struct device *dev = ice_pf_to_dev(pf); 963 u8 mib_type, *buf, *lldpmib = NULL; 964 u16 len, typelen, offset = 0; 965 struct ice_lldp_org_tlv *tlv; 966 struct ice_hw *hw = &pf->hw; 967 u32 ouisubtype; 968 969 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 970 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 971 if (!lldpmib) { 972 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 973 __func__); 974 return; 975 } 976 977 /* Add ETS CFG TLV */ 978 tlv = (struct ice_lldp_org_tlv *)lldpmib; 979 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 980 ICE_IEEE_ETS_TLV_LEN); 981 tlv->typelen = htons(typelen); 982 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 983 ICE_IEEE_SUBTYPE_ETS_CFG); 984 tlv->ouisubtype = htonl(ouisubtype); 985 986 buf = tlv->tlvinfo; 987 buf[0] = 0; 988 989 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 990 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 991 * Octets 13 - 20 are TSA values - leave as zeros 992 */ 993 buf[5] = 0x64; 994 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 995 offset += len + 2; 996 tlv = (struct ice_lldp_org_tlv *) 997 ((char *)tlv + sizeof(tlv->typelen) + len); 998 999 /* Add ETS REC TLV */ 1000 buf = tlv->tlvinfo; 1001 tlv->typelen = htons(typelen); 1002 1003 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1004 ICE_IEEE_SUBTYPE_ETS_REC); 1005 tlv->ouisubtype = htonl(ouisubtype); 1006 1007 /* First octet of buf is reserved 1008 * Octets 1 - 4 map UP to TC - all UPs map to zero 1009 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1010 * Octets 13 - 20 are TSA value - leave as zeros 1011 */ 1012 buf[5] = 0x64; 1013 offset += len + 2; 1014 tlv = (struct ice_lldp_org_tlv *) 1015 ((char *)tlv + sizeof(tlv->typelen) + len); 1016 1017 /* Add PFC CFG TLV */ 1018 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1019 ICE_IEEE_PFC_TLV_LEN); 1020 tlv->typelen = htons(typelen); 1021 1022 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1023 ICE_IEEE_SUBTYPE_PFC_CFG); 1024 tlv->ouisubtype = htonl(ouisubtype); 1025 1026 /* Octet 1 left as all zeros - PFC disabled */ 1027 buf[0] = 0x08; 1028 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1029 offset += len + 2; 1030 1031 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1032 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1033 1034 kfree(lldpmib); 1035 } 1036 1037 /** 1038 * ice_check_phy_fw_load - check if PHY FW load failed 1039 * @pf: pointer to PF struct 1040 * @link_cfg_err: bitmap from the link info structure 1041 * 1042 * check if external PHY FW load failed and print an error message if it did 1043 */ 1044 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1045 { 1046 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1047 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1048 return; 1049 } 1050 1051 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1052 return; 1053 1054 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1055 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1056 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1057 } 1058 } 1059 1060 /** 1061 * ice_check_module_power 1062 * @pf: pointer to PF struct 1063 * @link_cfg_err: bitmap from the link info structure 1064 * 1065 * check module power level returned by a previous call to aq_get_link_info 1066 * and print error messages if module power level is not supported 1067 */ 1068 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1069 { 1070 /* if module power level is supported, clear the flag */ 1071 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1072 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1073 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1074 return; 1075 } 1076 1077 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1078 * above block didn't clear this bit, there's nothing to do 1079 */ 1080 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1081 return; 1082 1083 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1084 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1085 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1086 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1087 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1088 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1089 } 1090 } 1091 1092 /** 1093 * ice_check_link_cfg_err - check if link configuration failed 1094 * @pf: pointer to the PF struct 1095 * @link_cfg_err: bitmap from the link info structure 1096 * 1097 * print if any link configuration failure happens due to the value in the 1098 * link_cfg_err parameter in the link info structure 1099 */ 1100 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1101 { 1102 ice_check_module_power(pf, link_cfg_err); 1103 ice_check_phy_fw_load(pf, link_cfg_err); 1104 } 1105 1106 /** 1107 * ice_link_event - process the link event 1108 * @pf: PF that the link event is associated with 1109 * @pi: port_info for the port that the link event is associated with 1110 * @link_up: true if the physical link is up and false if it is down 1111 * @link_speed: current link speed received from the link event 1112 * 1113 * Returns 0 on success and negative on failure 1114 */ 1115 static int 1116 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1117 u16 link_speed) 1118 { 1119 struct device *dev = ice_pf_to_dev(pf); 1120 struct ice_phy_info *phy_info; 1121 struct ice_vsi *vsi; 1122 u16 old_link_speed; 1123 bool old_link; 1124 int status; 1125 1126 phy_info = &pi->phy; 1127 phy_info->link_info_old = phy_info->link_info; 1128 1129 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1130 old_link_speed = phy_info->link_info_old.link_speed; 1131 1132 /* update the link info structures and re-enable link events, 1133 * don't bail on failure due to other book keeping needed 1134 */ 1135 status = ice_update_link_info(pi); 1136 if (status) 1137 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1138 pi->lport, status, 1139 ice_aq_str(pi->hw->adminq.sq_last_status)); 1140 1141 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1142 1143 /* Check if the link state is up after updating link info, and treat 1144 * this event as an UP event since the link is actually UP now. 1145 */ 1146 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1147 link_up = true; 1148 1149 vsi = ice_get_main_vsi(pf); 1150 if (!vsi || !vsi->port_info) 1151 return -EINVAL; 1152 1153 /* turn off PHY if media was removed */ 1154 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1155 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1156 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1157 ice_set_link(vsi, false); 1158 } 1159 1160 /* if the old link up/down and speed is the same as the new */ 1161 if (link_up == old_link && link_speed == old_link_speed) 1162 return 0; 1163 1164 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1165 1166 if (ice_is_dcb_active(pf)) { 1167 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1168 ice_dcb_rebuild(pf); 1169 } else { 1170 if (link_up) 1171 ice_set_dflt_mib(pf); 1172 } 1173 ice_vsi_link_event(vsi, link_up); 1174 ice_print_link_msg(vsi, link_up); 1175 1176 ice_vc_notify_link_state(pf); 1177 1178 return 0; 1179 } 1180 1181 /** 1182 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1183 * @pf: board private structure 1184 */ 1185 static void ice_watchdog_subtask(struct ice_pf *pf) 1186 { 1187 int i; 1188 1189 /* if interface is down do nothing */ 1190 if (test_bit(ICE_DOWN, pf->state) || 1191 test_bit(ICE_CFG_BUSY, pf->state)) 1192 return; 1193 1194 /* make sure we don't do these things too often */ 1195 if (time_before(jiffies, 1196 pf->serv_tmr_prev + pf->serv_tmr_period)) 1197 return; 1198 1199 pf->serv_tmr_prev = jiffies; 1200 1201 /* Update the stats for active netdevs so the network stack 1202 * can look at updated numbers whenever it cares to 1203 */ 1204 ice_update_pf_stats(pf); 1205 ice_for_each_vsi(pf, i) 1206 if (pf->vsi[i] && pf->vsi[i]->netdev) 1207 ice_update_vsi_stats(pf->vsi[i]); 1208 } 1209 1210 /** 1211 * ice_init_link_events - enable/initialize link events 1212 * @pi: pointer to the port_info instance 1213 * 1214 * Returns -EIO on failure, 0 on success 1215 */ 1216 static int ice_init_link_events(struct ice_port_info *pi) 1217 { 1218 u16 mask; 1219 1220 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1221 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1222 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1223 1224 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1225 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1226 pi->lport); 1227 return -EIO; 1228 } 1229 1230 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1231 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1232 pi->lport); 1233 return -EIO; 1234 } 1235 1236 return 0; 1237 } 1238 1239 /** 1240 * ice_handle_link_event - handle link event via ARQ 1241 * @pf: PF that the link event is associated with 1242 * @event: event structure containing link status info 1243 */ 1244 static int 1245 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1246 { 1247 struct ice_aqc_get_link_status_data *link_data; 1248 struct ice_port_info *port_info; 1249 int status; 1250 1251 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1252 port_info = pf->hw.port_info; 1253 if (!port_info) 1254 return -EINVAL; 1255 1256 status = ice_link_event(pf, port_info, 1257 !!(link_data->link_info & ICE_AQ_LINK_UP), 1258 le16_to_cpu(link_data->link_speed)); 1259 if (status) 1260 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1261 status); 1262 1263 return status; 1264 } 1265 1266 /** 1267 * ice_get_fwlog_data - copy the FW log data from ARQ event 1268 * @pf: PF that the FW log event is associated with 1269 * @event: event structure containing FW log data 1270 */ 1271 static void 1272 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1273 { 1274 struct ice_fwlog_data *fwlog; 1275 struct ice_hw *hw = &pf->hw; 1276 1277 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1278 1279 memset(fwlog->data, 0, PAGE_SIZE); 1280 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1281 1282 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1283 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1284 1285 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1286 /* the rings are full so bump the head to create room */ 1287 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1288 hw->fwlog_ring.size); 1289 } 1290 } 1291 1292 /** 1293 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1294 * @pf: pointer to the PF private structure 1295 * @task: intermediate helper storage and identifier for waiting 1296 * @opcode: the opcode to wait for 1297 * 1298 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1299 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1300 * 1301 * Calls are separated to allow caller registering for event before sending 1302 * the command, which mitigates a race between registering and FW responding. 1303 * 1304 * To obtain only the descriptor contents, pass an task->event with null 1305 * msg_buf. If the complete data buffer is desired, allocate the 1306 * task->event.msg_buf with enough space ahead of time. 1307 */ 1308 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1309 u16 opcode) 1310 { 1311 INIT_HLIST_NODE(&task->entry); 1312 task->opcode = opcode; 1313 task->state = ICE_AQ_TASK_WAITING; 1314 1315 spin_lock_bh(&pf->aq_wait_lock); 1316 hlist_add_head(&task->entry, &pf->aq_wait_list); 1317 spin_unlock_bh(&pf->aq_wait_lock); 1318 } 1319 1320 /** 1321 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1322 * @pf: pointer to the PF private structure 1323 * @task: ptr prepared by ice_aq_prep_for_event() 1324 * @timeout: how long to wait, in jiffies 1325 * 1326 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1327 * current thread will be put to sleep until the specified event occurs or 1328 * until the given timeout is reached. 1329 * 1330 * Returns: zero on success, or a negative error code on failure. 1331 */ 1332 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1333 unsigned long timeout) 1334 { 1335 enum ice_aq_task_state *state = &task->state; 1336 struct device *dev = ice_pf_to_dev(pf); 1337 unsigned long start = jiffies; 1338 long ret; 1339 int err; 1340 1341 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1342 *state != ICE_AQ_TASK_WAITING, 1343 timeout); 1344 switch (*state) { 1345 case ICE_AQ_TASK_NOT_PREPARED: 1346 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1347 err = -EINVAL; 1348 break; 1349 case ICE_AQ_TASK_WAITING: 1350 err = ret < 0 ? ret : -ETIMEDOUT; 1351 break; 1352 case ICE_AQ_TASK_CANCELED: 1353 err = ret < 0 ? ret : -ECANCELED; 1354 break; 1355 case ICE_AQ_TASK_COMPLETE: 1356 err = ret < 0 ? ret : 0; 1357 break; 1358 default: 1359 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1360 err = -EINVAL; 1361 break; 1362 } 1363 1364 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1365 jiffies_to_msecs(jiffies - start), 1366 jiffies_to_msecs(timeout), 1367 task->opcode); 1368 1369 spin_lock_bh(&pf->aq_wait_lock); 1370 hlist_del(&task->entry); 1371 spin_unlock_bh(&pf->aq_wait_lock); 1372 1373 return err; 1374 } 1375 1376 /** 1377 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1378 * @pf: pointer to the PF private structure 1379 * @opcode: the opcode of the event 1380 * @event: the event to check 1381 * 1382 * Loops over the current list of pending threads waiting for an AdminQ event. 1383 * For each matching task, copy the contents of the event into the task 1384 * structure and wake up the thread. 1385 * 1386 * If multiple threads wait for the same opcode, they will all be woken up. 1387 * 1388 * Note that event->msg_buf will only be duplicated if the event has a buffer 1389 * with enough space already allocated. Otherwise, only the descriptor and 1390 * message length will be copied. 1391 * 1392 * Returns: true if an event was found, false otherwise 1393 */ 1394 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1395 struct ice_rq_event_info *event) 1396 { 1397 struct ice_rq_event_info *task_ev; 1398 struct ice_aq_task *task; 1399 bool found = false; 1400 1401 spin_lock_bh(&pf->aq_wait_lock); 1402 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1403 if (task->state != ICE_AQ_TASK_WAITING) 1404 continue; 1405 if (task->opcode != opcode) 1406 continue; 1407 1408 task_ev = &task->event; 1409 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1410 task_ev->msg_len = event->msg_len; 1411 1412 /* Only copy the data buffer if a destination was set */ 1413 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1414 memcpy(task_ev->msg_buf, event->msg_buf, 1415 event->buf_len); 1416 task_ev->buf_len = event->buf_len; 1417 } 1418 1419 task->state = ICE_AQ_TASK_COMPLETE; 1420 found = true; 1421 } 1422 spin_unlock_bh(&pf->aq_wait_lock); 1423 1424 if (found) 1425 wake_up(&pf->aq_wait_queue); 1426 } 1427 1428 /** 1429 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1430 * @pf: the PF private structure 1431 * 1432 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1433 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1434 */ 1435 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1436 { 1437 struct ice_aq_task *task; 1438 1439 spin_lock_bh(&pf->aq_wait_lock); 1440 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1441 task->state = ICE_AQ_TASK_CANCELED; 1442 spin_unlock_bh(&pf->aq_wait_lock); 1443 1444 wake_up(&pf->aq_wait_queue); 1445 } 1446 1447 #define ICE_MBX_OVERFLOW_WATERMARK 64 1448 1449 /** 1450 * __ice_clean_ctrlq - helper function to clean controlq rings 1451 * @pf: ptr to struct ice_pf 1452 * @q_type: specific Control queue type 1453 */ 1454 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1455 { 1456 struct device *dev = ice_pf_to_dev(pf); 1457 struct ice_rq_event_info event; 1458 struct ice_hw *hw = &pf->hw; 1459 struct ice_ctl_q_info *cq; 1460 u16 pending, i = 0; 1461 const char *qtype; 1462 u32 oldval, val; 1463 1464 /* Do not clean control queue if/when PF reset fails */ 1465 if (test_bit(ICE_RESET_FAILED, pf->state)) 1466 return 0; 1467 1468 switch (q_type) { 1469 case ICE_CTL_Q_ADMIN: 1470 cq = &hw->adminq; 1471 qtype = "Admin"; 1472 break; 1473 case ICE_CTL_Q_SB: 1474 cq = &hw->sbq; 1475 qtype = "Sideband"; 1476 break; 1477 case ICE_CTL_Q_MAILBOX: 1478 cq = &hw->mailboxq; 1479 qtype = "Mailbox"; 1480 /* we are going to try to detect a malicious VF, so set the 1481 * state to begin detection 1482 */ 1483 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1484 break; 1485 default: 1486 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1487 return 0; 1488 } 1489 1490 /* check for error indications - PF_xx_AxQLEN register layout for 1491 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1492 */ 1493 val = rd32(hw, cq->rq.len); 1494 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1495 PF_FW_ARQLEN_ARQCRIT_M)) { 1496 oldval = val; 1497 if (val & PF_FW_ARQLEN_ARQVFE_M) 1498 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1499 qtype); 1500 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1501 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1502 qtype); 1503 } 1504 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1505 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1506 qtype); 1507 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1508 PF_FW_ARQLEN_ARQCRIT_M); 1509 if (oldval != val) 1510 wr32(hw, cq->rq.len, val); 1511 } 1512 1513 val = rd32(hw, cq->sq.len); 1514 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1515 PF_FW_ATQLEN_ATQCRIT_M)) { 1516 oldval = val; 1517 if (val & PF_FW_ATQLEN_ATQVFE_M) 1518 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1519 qtype); 1520 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1521 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1522 qtype); 1523 } 1524 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1525 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1526 qtype); 1527 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1528 PF_FW_ATQLEN_ATQCRIT_M); 1529 if (oldval != val) 1530 wr32(hw, cq->sq.len, val); 1531 } 1532 1533 event.buf_len = cq->rq_buf_size; 1534 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1535 if (!event.msg_buf) 1536 return 0; 1537 1538 do { 1539 struct ice_mbx_data data = {}; 1540 u16 opcode; 1541 int ret; 1542 1543 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1544 if (ret == -EALREADY) 1545 break; 1546 if (ret) { 1547 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1548 ret); 1549 break; 1550 } 1551 1552 opcode = le16_to_cpu(event.desc.opcode); 1553 1554 /* Notify any thread that might be waiting for this event */ 1555 ice_aq_check_events(pf, opcode, &event); 1556 1557 switch (opcode) { 1558 case ice_aqc_opc_get_link_status: 1559 if (ice_handle_link_event(pf, &event)) 1560 dev_err(dev, "Could not handle link event\n"); 1561 break; 1562 case ice_aqc_opc_event_lan_overflow: 1563 ice_vf_lan_overflow_event(pf, &event); 1564 break; 1565 case ice_mbx_opc_send_msg_to_pf: 1566 data.num_msg_proc = i; 1567 data.num_pending_arq = pending; 1568 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1569 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1570 1571 ice_vc_process_vf_msg(pf, &event, &data); 1572 break; 1573 case ice_aqc_opc_fw_logs_event: 1574 ice_get_fwlog_data(pf, &event); 1575 break; 1576 case ice_aqc_opc_lldp_set_mib_change: 1577 ice_dcb_process_lldp_set_mib_change(pf, &event); 1578 break; 1579 default: 1580 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1581 qtype, opcode); 1582 break; 1583 } 1584 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1585 1586 kfree(event.msg_buf); 1587 1588 return pending && (i == ICE_DFLT_IRQ_WORK); 1589 } 1590 1591 /** 1592 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1593 * @hw: pointer to hardware info 1594 * @cq: control queue information 1595 * 1596 * returns true if there are pending messages in a queue, false if there aren't 1597 */ 1598 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1599 { 1600 u16 ntu; 1601 1602 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1603 return cq->rq.next_to_clean != ntu; 1604 } 1605 1606 /** 1607 * ice_clean_adminq_subtask - clean the AdminQ rings 1608 * @pf: board private structure 1609 */ 1610 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1611 { 1612 struct ice_hw *hw = &pf->hw; 1613 1614 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1615 return; 1616 1617 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1618 return; 1619 1620 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1621 1622 /* There might be a situation where new messages arrive to a control 1623 * queue between processing the last message and clearing the 1624 * EVENT_PENDING bit. So before exiting, check queue head again (using 1625 * ice_ctrlq_pending) and process new messages if any. 1626 */ 1627 if (ice_ctrlq_pending(hw, &hw->adminq)) 1628 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1629 1630 ice_flush(hw); 1631 } 1632 1633 /** 1634 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1635 * @pf: board private structure 1636 */ 1637 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1638 { 1639 struct ice_hw *hw = &pf->hw; 1640 1641 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1642 return; 1643 1644 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1645 return; 1646 1647 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1648 1649 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1650 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1651 1652 ice_flush(hw); 1653 } 1654 1655 /** 1656 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1657 * @pf: board private structure 1658 */ 1659 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1660 { 1661 struct ice_hw *hw = &pf->hw; 1662 1663 /* if mac_type is not generic, sideband is not supported 1664 * and there's nothing to do here 1665 */ 1666 if (!ice_is_generic_mac(hw)) { 1667 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1668 return; 1669 } 1670 1671 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1672 return; 1673 1674 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1675 return; 1676 1677 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1678 1679 if (ice_ctrlq_pending(hw, &hw->sbq)) 1680 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1681 1682 ice_flush(hw); 1683 } 1684 1685 /** 1686 * ice_service_task_schedule - schedule the service task to wake up 1687 * @pf: board private structure 1688 * 1689 * If not already scheduled, this puts the task into the work queue. 1690 */ 1691 void ice_service_task_schedule(struct ice_pf *pf) 1692 { 1693 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1694 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1695 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1696 queue_work(ice_wq, &pf->serv_task); 1697 } 1698 1699 /** 1700 * ice_service_task_complete - finish up the service task 1701 * @pf: board private structure 1702 */ 1703 static void ice_service_task_complete(struct ice_pf *pf) 1704 { 1705 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1706 1707 /* force memory (pf->state) to sync before next service task */ 1708 smp_mb__before_atomic(); 1709 clear_bit(ICE_SERVICE_SCHED, pf->state); 1710 } 1711 1712 /** 1713 * ice_service_task_stop - stop service task and cancel works 1714 * @pf: board private structure 1715 * 1716 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1717 * 1 otherwise. 1718 */ 1719 static int ice_service_task_stop(struct ice_pf *pf) 1720 { 1721 int ret; 1722 1723 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1724 1725 if (pf->serv_tmr.function) 1726 del_timer_sync(&pf->serv_tmr); 1727 if (pf->serv_task.func) 1728 cancel_work_sync(&pf->serv_task); 1729 1730 clear_bit(ICE_SERVICE_SCHED, pf->state); 1731 return ret; 1732 } 1733 1734 /** 1735 * ice_service_task_restart - restart service task and schedule works 1736 * @pf: board private structure 1737 * 1738 * This function is needed for suspend and resume works (e.g WoL scenario) 1739 */ 1740 static void ice_service_task_restart(struct ice_pf *pf) 1741 { 1742 clear_bit(ICE_SERVICE_DIS, pf->state); 1743 ice_service_task_schedule(pf); 1744 } 1745 1746 /** 1747 * ice_service_timer - timer callback to schedule service task 1748 * @t: pointer to timer_list 1749 */ 1750 static void ice_service_timer(struct timer_list *t) 1751 { 1752 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1753 1754 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1755 ice_service_task_schedule(pf); 1756 } 1757 1758 /** 1759 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1760 * @pf: pointer to the PF structure 1761 * @vf: pointer to the VF structure 1762 * @reset_vf_tx: whether Tx MDD has occurred 1763 * @reset_vf_rx: whether Rx MDD has occurred 1764 * 1765 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1766 * automatically reset the VF by enabling the private ethtool flag 1767 * mdd-auto-reset-vf. 1768 */ 1769 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1770 bool reset_vf_tx, bool reset_vf_rx) 1771 { 1772 struct device *dev = ice_pf_to_dev(pf); 1773 1774 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1775 return; 1776 1777 /* VF MDD event counters will be cleared by reset, so print the event 1778 * prior to reset. 1779 */ 1780 if (reset_vf_tx) 1781 ice_print_vf_tx_mdd_event(vf); 1782 1783 if (reset_vf_rx) 1784 ice_print_vf_rx_mdd_event(vf); 1785 1786 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1787 pf->hw.pf_id, vf->vf_id); 1788 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1789 } 1790 1791 /** 1792 * ice_handle_mdd_event - handle malicious driver detect event 1793 * @pf: pointer to the PF structure 1794 * 1795 * Called from service task. OICR interrupt handler indicates MDD event. 1796 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1797 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1798 * disable the queue, the PF can be configured to reset the VF using ethtool 1799 * private flag mdd-auto-reset-vf. 1800 */ 1801 static void ice_handle_mdd_event(struct ice_pf *pf) 1802 { 1803 struct device *dev = ice_pf_to_dev(pf); 1804 struct ice_hw *hw = &pf->hw; 1805 struct ice_vf *vf; 1806 unsigned int bkt; 1807 u32 reg; 1808 1809 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1810 /* Since the VF MDD event logging is rate limited, check if 1811 * there are pending MDD events. 1812 */ 1813 ice_print_vfs_mdd_events(pf); 1814 return; 1815 } 1816 1817 /* find what triggered an MDD event */ 1818 reg = rd32(hw, GL_MDET_TX_PQM); 1819 if (reg & GL_MDET_TX_PQM_VALID_M) { 1820 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1821 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1822 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1823 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1824 1825 if (netif_msg_tx_err(pf)) 1826 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1827 event, queue, pf_num, vf_num); 1828 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1829 } 1830 1831 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1832 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1833 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1834 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1835 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1836 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1837 1838 if (netif_msg_tx_err(pf)) 1839 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1840 event, queue, pf_num, vf_num); 1841 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1842 } 1843 1844 reg = rd32(hw, GL_MDET_RX); 1845 if (reg & GL_MDET_RX_VALID_M) { 1846 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1847 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1848 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1849 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1850 1851 if (netif_msg_rx_err(pf)) 1852 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1853 event, queue, pf_num, vf_num); 1854 wr32(hw, GL_MDET_RX, 0xffffffff); 1855 } 1856 1857 /* check to see if this PF caused an MDD event */ 1858 reg = rd32(hw, PF_MDET_TX_PQM); 1859 if (reg & PF_MDET_TX_PQM_VALID_M) { 1860 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1861 if (netif_msg_tx_err(pf)) 1862 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1863 } 1864 1865 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1866 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1867 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1868 if (netif_msg_tx_err(pf)) 1869 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1870 } 1871 1872 reg = rd32(hw, PF_MDET_RX); 1873 if (reg & PF_MDET_RX_VALID_M) { 1874 wr32(hw, PF_MDET_RX, 0xFFFF); 1875 if (netif_msg_rx_err(pf)) 1876 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1877 } 1878 1879 /* Check to see if one of the VFs caused an MDD event, and then 1880 * increment counters and set print pending 1881 */ 1882 mutex_lock(&pf->vfs.table_lock); 1883 ice_for_each_vf(pf, bkt, vf) { 1884 bool reset_vf_tx = false, reset_vf_rx = false; 1885 1886 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1887 if (reg & VP_MDET_TX_PQM_VALID_M) { 1888 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1889 vf->mdd_tx_events.count++; 1890 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1891 if (netif_msg_tx_err(pf)) 1892 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1893 vf->vf_id); 1894 1895 reset_vf_tx = true; 1896 } 1897 1898 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1899 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1900 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1901 vf->mdd_tx_events.count++; 1902 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1903 if (netif_msg_tx_err(pf)) 1904 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1905 vf->vf_id); 1906 1907 reset_vf_tx = true; 1908 } 1909 1910 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1911 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1912 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1913 vf->mdd_tx_events.count++; 1914 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1915 if (netif_msg_tx_err(pf)) 1916 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1917 vf->vf_id); 1918 1919 reset_vf_tx = true; 1920 } 1921 1922 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1923 if (reg & VP_MDET_RX_VALID_M) { 1924 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1925 vf->mdd_rx_events.count++; 1926 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1927 if (netif_msg_rx_err(pf)) 1928 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1929 vf->vf_id); 1930 1931 reset_vf_rx = true; 1932 } 1933 1934 if (reset_vf_tx || reset_vf_rx) 1935 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1936 reset_vf_rx); 1937 } 1938 mutex_unlock(&pf->vfs.table_lock); 1939 1940 ice_print_vfs_mdd_events(pf); 1941 } 1942 1943 /** 1944 * ice_force_phys_link_state - Force the physical link state 1945 * @vsi: VSI to force the physical link state to up/down 1946 * @link_up: true/false indicates to set the physical link to up/down 1947 * 1948 * Force the physical link state by getting the current PHY capabilities from 1949 * hardware and setting the PHY config based on the determined capabilities. If 1950 * link changes a link event will be triggered because both the Enable Automatic 1951 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1952 * 1953 * Returns 0 on success, negative on failure 1954 */ 1955 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1956 { 1957 struct ice_aqc_get_phy_caps_data *pcaps; 1958 struct ice_aqc_set_phy_cfg_data *cfg; 1959 struct ice_port_info *pi; 1960 struct device *dev; 1961 int retcode; 1962 1963 if (!vsi || !vsi->port_info || !vsi->back) 1964 return -EINVAL; 1965 if (vsi->type != ICE_VSI_PF) 1966 return 0; 1967 1968 dev = ice_pf_to_dev(vsi->back); 1969 1970 pi = vsi->port_info; 1971 1972 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1973 if (!pcaps) 1974 return -ENOMEM; 1975 1976 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1977 NULL); 1978 if (retcode) { 1979 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1980 vsi->vsi_num, retcode); 1981 retcode = -EIO; 1982 goto out; 1983 } 1984 1985 /* No change in link */ 1986 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1987 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1988 goto out; 1989 1990 /* Use the current user PHY configuration. The current user PHY 1991 * configuration is initialized during probe from PHY capabilities 1992 * software mode, and updated on set PHY configuration. 1993 */ 1994 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1995 if (!cfg) { 1996 retcode = -ENOMEM; 1997 goto out; 1998 } 1999 2000 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2001 if (link_up) 2002 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 2003 else 2004 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 2005 2006 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2007 if (retcode) { 2008 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2009 vsi->vsi_num, retcode); 2010 retcode = -EIO; 2011 } 2012 2013 kfree(cfg); 2014 out: 2015 kfree(pcaps); 2016 return retcode; 2017 } 2018 2019 /** 2020 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2021 * @pi: port info structure 2022 * 2023 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2024 */ 2025 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2026 { 2027 struct ice_aqc_get_phy_caps_data *pcaps; 2028 struct ice_pf *pf = pi->hw->back; 2029 int err; 2030 2031 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2032 if (!pcaps) 2033 return -ENOMEM; 2034 2035 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2036 pcaps, NULL); 2037 2038 if (err) { 2039 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2040 goto out; 2041 } 2042 2043 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2044 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2045 2046 out: 2047 kfree(pcaps); 2048 return err; 2049 } 2050 2051 /** 2052 * ice_init_link_dflt_override - Initialize link default override 2053 * @pi: port info structure 2054 * 2055 * Initialize link default override and PHY total port shutdown during probe 2056 */ 2057 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2058 { 2059 struct ice_link_default_override_tlv *ldo; 2060 struct ice_pf *pf = pi->hw->back; 2061 2062 ldo = &pf->link_dflt_override; 2063 if (ice_get_link_default_override(ldo, pi)) 2064 return; 2065 2066 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2067 return; 2068 2069 /* Enable Total Port Shutdown (override/replace link-down-on-close 2070 * ethtool private flag) for ports with Port Disable bit set. 2071 */ 2072 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2073 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2074 } 2075 2076 /** 2077 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2078 * @pi: port info structure 2079 * 2080 * If default override is enabled, initialize the user PHY cfg speed and FEC 2081 * settings using the default override mask from the NVM. 2082 * 2083 * The PHY should only be configured with the default override settings the 2084 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2085 * is used to indicate that the user PHY cfg default override is initialized 2086 * and the PHY has not been configured with the default override settings. The 2087 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2088 * configured. 2089 * 2090 * This function should be called only if the FW doesn't support default 2091 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2092 */ 2093 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2094 { 2095 struct ice_link_default_override_tlv *ldo; 2096 struct ice_aqc_set_phy_cfg_data *cfg; 2097 struct ice_phy_info *phy = &pi->phy; 2098 struct ice_pf *pf = pi->hw->back; 2099 2100 ldo = &pf->link_dflt_override; 2101 2102 /* If link default override is enabled, use to mask NVM PHY capabilities 2103 * for speed and FEC default configuration. 2104 */ 2105 cfg = &phy->curr_user_phy_cfg; 2106 2107 if (ldo->phy_type_low || ldo->phy_type_high) { 2108 cfg->phy_type_low = pf->nvm_phy_type_lo & 2109 cpu_to_le64(ldo->phy_type_low); 2110 cfg->phy_type_high = pf->nvm_phy_type_hi & 2111 cpu_to_le64(ldo->phy_type_high); 2112 } 2113 cfg->link_fec_opt = ldo->fec_options; 2114 phy->curr_user_fec_req = ICE_FEC_AUTO; 2115 2116 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2117 } 2118 2119 /** 2120 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2121 * @pi: port info structure 2122 * 2123 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2124 * mode to default. The PHY defaults are from get PHY capabilities topology 2125 * with media so call when media is first available. An error is returned if 2126 * called when media is not available. The PHY initialization completed state is 2127 * set here. 2128 * 2129 * These configurations are used when setting PHY 2130 * configuration. The user PHY configuration is updated on set PHY 2131 * configuration. Returns 0 on success, negative on failure 2132 */ 2133 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2134 { 2135 struct ice_aqc_get_phy_caps_data *pcaps; 2136 struct ice_phy_info *phy = &pi->phy; 2137 struct ice_pf *pf = pi->hw->back; 2138 int err; 2139 2140 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2141 return -EIO; 2142 2143 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2144 if (!pcaps) 2145 return -ENOMEM; 2146 2147 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2148 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2149 pcaps, NULL); 2150 else 2151 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2152 pcaps, NULL); 2153 if (err) { 2154 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2155 goto err_out; 2156 } 2157 2158 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2159 2160 /* check if lenient mode is supported and enabled */ 2161 if (ice_fw_supports_link_override(pi->hw) && 2162 !(pcaps->module_compliance_enforcement & 2163 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2164 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2165 2166 /* if the FW supports default PHY configuration mode, then the driver 2167 * does not have to apply link override settings. If not, 2168 * initialize user PHY configuration with link override values 2169 */ 2170 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2171 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2172 ice_init_phy_cfg_dflt_override(pi); 2173 goto out; 2174 } 2175 } 2176 2177 /* if link default override is not enabled, set user flow control and 2178 * FEC settings based on what get_phy_caps returned 2179 */ 2180 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2181 pcaps->link_fec_options); 2182 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2183 2184 out: 2185 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2186 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2187 err_out: 2188 kfree(pcaps); 2189 return err; 2190 } 2191 2192 /** 2193 * ice_configure_phy - configure PHY 2194 * @vsi: VSI of PHY 2195 * 2196 * Set the PHY configuration. If the current PHY configuration is the same as 2197 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2198 * configure the based get PHY capabilities for topology with media. 2199 */ 2200 static int ice_configure_phy(struct ice_vsi *vsi) 2201 { 2202 struct device *dev = ice_pf_to_dev(vsi->back); 2203 struct ice_port_info *pi = vsi->port_info; 2204 struct ice_aqc_get_phy_caps_data *pcaps; 2205 struct ice_aqc_set_phy_cfg_data *cfg; 2206 struct ice_phy_info *phy = &pi->phy; 2207 struct ice_pf *pf = vsi->back; 2208 int err; 2209 2210 /* Ensure we have media as we cannot configure a medialess port */ 2211 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2212 return -ENOMEDIUM; 2213 2214 ice_print_topo_conflict(vsi); 2215 2216 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2217 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2218 return -EPERM; 2219 2220 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2221 return ice_force_phys_link_state(vsi, true); 2222 2223 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2224 if (!pcaps) 2225 return -ENOMEM; 2226 2227 /* Get current PHY config */ 2228 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2229 NULL); 2230 if (err) { 2231 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2232 vsi->vsi_num, err); 2233 goto done; 2234 } 2235 2236 /* If PHY enable link is configured and configuration has not changed, 2237 * there's nothing to do 2238 */ 2239 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2240 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2241 goto done; 2242 2243 /* Use PHY topology as baseline for configuration */ 2244 memset(pcaps, 0, sizeof(*pcaps)); 2245 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2246 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2247 pcaps, NULL); 2248 else 2249 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2250 pcaps, NULL); 2251 if (err) { 2252 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2253 vsi->vsi_num, err); 2254 goto done; 2255 } 2256 2257 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2258 if (!cfg) { 2259 err = -ENOMEM; 2260 goto done; 2261 } 2262 2263 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2264 2265 /* Speed - If default override pending, use curr_user_phy_cfg set in 2266 * ice_init_phy_user_cfg_ldo. 2267 */ 2268 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2269 vsi->back->state)) { 2270 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2271 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2272 } else { 2273 u64 phy_low = 0, phy_high = 0; 2274 2275 ice_update_phy_type(&phy_low, &phy_high, 2276 pi->phy.curr_user_speed_req); 2277 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2278 cfg->phy_type_high = pcaps->phy_type_high & 2279 cpu_to_le64(phy_high); 2280 } 2281 2282 /* Can't provide what was requested; use PHY capabilities */ 2283 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2284 cfg->phy_type_low = pcaps->phy_type_low; 2285 cfg->phy_type_high = pcaps->phy_type_high; 2286 } 2287 2288 /* FEC */ 2289 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2290 2291 /* Can't provide what was requested; use PHY capabilities */ 2292 if (cfg->link_fec_opt != 2293 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2294 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2295 cfg->link_fec_opt = pcaps->link_fec_options; 2296 } 2297 2298 /* Flow Control - always supported; no need to check against 2299 * capabilities 2300 */ 2301 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2302 2303 /* Enable link and link update */ 2304 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2305 2306 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2307 if (err) 2308 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2309 vsi->vsi_num, err); 2310 2311 kfree(cfg); 2312 done: 2313 kfree(pcaps); 2314 return err; 2315 } 2316 2317 /** 2318 * ice_check_media_subtask - Check for media 2319 * @pf: pointer to PF struct 2320 * 2321 * If media is available, then initialize PHY user configuration if it is not 2322 * been, and configure the PHY if the interface is up. 2323 */ 2324 static void ice_check_media_subtask(struct ice_pf *pf) 2325 { 2326 struct ice_port_info *pi; 2327 struct ice_vsi *vsi; 2328 int err; 2329 2330 /* No need to check for media if it's already present */ 2331 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2332 return; 2333 2334 vsi = ice_get_main_vsi(pf); 2335 if (!vsi) 2336 return; 2337 2338 /* Refresh link info and check if media is present */ 2339 pi = vsi->port_info; 2340 err = ice_update_link_info(pi); 2341 if (err) 2342 return; 2343 2344 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2345 2346 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2347 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2348 ice_init_phy_user_cfg(pi); 2349 2350 /* PHY settings are reset on media insertion, reconfigure 2351 * PHY to preserve settings. 2352 */ 2353 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2354 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2355 return; 2356 2357 err = ice_configure_phy(vsi); 2358 if (!err) 2359 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2360 2361 /* A Link Status Event will be generated; the event handler 2362 * will complete bringing the interface up 2363 */ 2364 } 2365 } 2366 2367 /** 2368 * ice_service_task - manage and run subtasks 2369 * @work: pointer to work_struct contained by the PF struct 2370 */ 2371 static void ice_service_task(struct work_struct *work) 2372 { 2373 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2374 unsigned long start_time = jiffies; 2375 2376 /* subtasks */ 2377 2378 /* process reset requests first */ 2379 ice_reset_subtask(pf); 2380 2381 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2382 if (ice_is_reset_in_progress(pf->state) || 2383 test_bit(ICE_SUSPENDED, pf->state) || 2384 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2385 ice_service_task_complete(pf); 2386 return; 2387 } 2388 2389 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2390 struct iidc_event *event; 2391 2392 event = kzalloc(sizeof(*event), GFP_KERNEL); 2393 if (event) { 2394 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2395 /* report the entire OICR value to AUX driver */ 2396 swap(event->reg, pf->oicr_err_reg); 2397 ice_send_event_to_aux(pf, event); 2398 kfree(event); 2399 } 2400 } 2401 2402 /* unplug aux dev per request, if an unplug request came in 2403 * while processing a plug request, this will handle it 2404 */ 2405 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2406 ice_unplug_aux_dev(pf); 2407 2408 /* Plug aux device per request */ 2409 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2410 ice_plug_aux_dev(pf); 2411 2412 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2413 struct iidc_event *event; 2414 2415 event = kzalloc(sizeof(*event), GFP_KERNEL); 2416 if (event) { 2417 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2418 ice_send_event_to_aux(pf, event); 2419 kfree(event); 2420 } 2421 } 2422 2423 ice_clean_adminq_subtask(pf); 2424 ice_check_media_subtask(pf); 2425 ice_check_for_hang_subtask(pf); 2426 ice_sync_fltr_subtask(pf); 2427 ice_handle_mdd_event(pf); 2428 ice_watchdog_subtask(pf); 2429 2430 if (ice_is_safe_mode(pf)) { 2431 ice_service_task_complete(pf); 2432 return; 2433 } 2434 2435 ice_process_vflr_event(pf); 2436 ice_clean_mailboxq_subtask(pf); 2437 ice_clean_sbq_subtask(pf); 2438 ice_sync_arfs_fltrs(pf); 2439 ice_flush_fdir_ctx(pf); 2440 2441 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2442 ice_service_task_complete(pf); 2443 2444 /* If the tasks have taken longer than one service timer period 2445 * or there is more work to be done, reset the service timer to 2446 * schedule the service task now. 2447 */ 2448 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2449 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2450 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2451 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2452 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2453 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2454 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2455 mod_timer(&pf->serv_tmr, jiffies); 2456 } 2457 2458 /** 2459 * ice_set_ctrlq_len - helper function to set controlq length 2460 * @hw: pointer to the HW instance 2461 */ 2462 static void ice_set_ctrlq_len(struct ice_hw *hw) 2463 { 2464 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2465 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2466 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2467 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2468 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2469 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2470 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2471 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2472 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2473 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2474 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2475 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2476 } 2477 2478 /** 2479 * ice_schedule_reset - schedule a reset 2480 * @pf: board private structure 2481 * @reset: reset being requested 2482 */ 2483 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2484 { 2485 struct device *dev = ice_pf_to_dev(pf); 2486 2487 /* bail out if earlier reset has failed */ 2488 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2489 dev_dbg(dev, "earlier reset has failed\n"); 2490 return -EIO; 2491 } 2492 /* bail if reset/recovery already in progress */ 2493 if (ice_is_reset_in_progress(pf->state)) { 2494 dev_dbg(dev, "Reset already in progress\n"); 2495 return -EBUSY; 2496 } 2497 2498 switch (reset) { 2499 case ICE_RESET_PFR: 2500 set_bit(ICE_PFR_REQ, pf->state); 2501 break; 2502 case ICE_RESET_CORER: 2503 set_bit(ICE_CORER_REQ, pf->state); 2504 break; 2505 case ICE_RESET_GLOBR: 2506 set_bit(ICE_GLOBR_REQ, pf->state); 2507 break; 2508 default: 2509 return -EINVAL; 2510 } 2511 2512 ice_service_task_schedule(pf); 2513 return 0; 2514 } 2515 2516 /** 2517 * ice_irq_affinity_notify - Callback for affinity changes 2518 * @notify: context as to what irq was changed 2519 * @mask: the new affinity mask 2520 * 2521 * This is a callback function used by the irq_set_affinity_notifier function 2522 * so that we may register to receive changes to the irq affinity masks. 2523 */ 2524 static void 2525 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2526 const cpumask_t *mask) 2527 { 2528 struct ice_q_vector *q_vector = 2529 container_of(notify, struct ice_q_vector, affinity_notify); 2530 2531 cpumask_copy(&q_vector->affinity_mask, mask); 2532 } 2533 2534 /** 2535 * ice_irq_affinity_release - Callback for affinity notifier release 2536 * @ref: internal core kernel usage 2537 * 2538 * This is a callback function used by the irq_set_affinity_notifier function 2539 * to inform the current notification subscriber that they will no longer 2540 * receive notifications. 2541 */ 2542 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2543 2544 /** 2545 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2546 * @vsi: the VSI being configured 2547 */ 2548 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2549 { 2550 struct ice_hw *hw = &vsi->back->hw; 2551 int i; 2552 2553 ice_for_each_q_vector(vsi, i) 2554 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2555 2556 ice_flush(hw); 2557 return 0; 2558 } 2559 2560 /** 2561 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2562 * @vsi: the VSI being configured 2563 * @basename: name for the vector 2564 */ 2565 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2566 { 2567 int q_vectors = vsi->num_q_vectors; 2568 struct ice_pf *pf = vsi->back; 2569 struct device *dev; 2570 int rx_int_idx = 0; 2571 int tx_int_idx = 0; 2572 int vector, err; 2573 int irq_num; 2574 2575 dev = ice_pf_to_dev(pf); 2576 for (vector = 0; vector < q_vectors; vector++) { 2577 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2578 2579 irq_num = q_vector->irq.virq; 2580 2581 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2582 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2583 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2584 tx_int_idx++; 2585 } else if (q_vector->rx.rx_ring) { 2586 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2587 "%s-%s-%d", basename, "rx", rx_int_idx++); 2588 } else if (q_vector->tx.tx_ring) { 2589 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2590 "%s-%s-%d", basename, "tx", tx_int_idx++); 2591 } else { 2592 /* skip this unused q_vector */ 2593 continue; 2594 } 2595 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2596 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2597 IRQF_SHARED, q_vector->name, 2598 q_vector); 2599 else 2600 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2601 0, q_vector->name, q_vector); 2602 if (err) { 2603 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2604 err); 2605 goto free_q_irqs; 2606 } 2607 2608 /* register for affinity change notifications */ 2609 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2610 struct irq_affinity_notify *affinity_notify; 2611 2612 affinity_notify = &q_vector->affinity_notify; 2613 affinity_notify->notify = ice_irq_affinity_notify; 2614 affinity_notify->release = ice_irq_affinity_release; 2615 irq_set_affinity_notifier(irq_num, affinity_notify); 2616 } 2617 2618 /* assign the mask for this irq */ 2619 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask); 2620 } 2621 2622 err = ice_set_cpu_rx_rmap(vsi); 2623 if (err) { 2624 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2625 vsi->vsi_num, ERR_PTR(err)); 2626 goto free_q_irqs; 2627 } 2628 2629 vsi->irqs_ready = true; 2630 return 0; 2631 2632 free_q_irqs: 2633 while (vector--) { 2634 irq_num = vsi->q_vectors[vector]->irq.virq; 2635 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2636 irq_set_affinity_notifier(irq_num, NULL); 2637 irq_update_affinity_hint(irq_num, NULL); 2638 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2639 } 2640 return err; 2641 } 2642 2643 /** 2644 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2645 * @vsi: VSI to setup Tx rings used by XDP 2646 * 2647 * Return 0 on success and negative value on error 2648 */ 2649 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2650 { 2651 struct device *dev = ice_pf_to_dev(vsi->back); 2652 struct ice_tx_desc *tx_desc; 2653 int i, j; 2654 2655 ice_for_each_xdp_txq(vsi, i) { 2656 u16 xdp_q_idx = vsi->alloc_txq + i; 2657 struct ice_ring_stats *ring_stats; 2658 struct ice_tx_ring *xdp_ring; 2659 2660 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2661 if (!xdp_ring) 2662 goto free_xdp_rings; 2663 2664 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2665 if (!ring_stats) { 2666 ice_free_tx_ring(xdp_ring); 2667 goto free_xdp_rings; 2668 } 2669 2670 xdp_ring->ring_stats = ring_stats; 2671 xdp_ring->q_index = xdp_q_idx; 2672 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2673 xdp_ring->vsi = vsi; 2674 xdp_ring->netdev = NULL; 2675 xdp_ring->dev = dev; 2676 xdp_ring->count = vsi->num_tx_desc; 2677 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2678 if (ice_setup_tx_ring(xdp_ring)) 2679 goto free_xdp_rings; 2680 ice_set_ring_xdp(xdp_ring); 2681 spin_lock_init(&xdp_ring->tx_lock); 2682 for (j = 0; j < xdp_ring->count; j++) { 2683 tx_desc = ICE_TX_DESC(xdp_ring, j); 2684 tx_desc->cmd_type_offset_bsz = 0; 2685 } 2686 } 2687 2688 return 0; 2689 2690 free_xdp_rings: 2691 for (; i >= 0; i--) { 2692 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2693 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2694 vsi->xdp_rings[i]->ring_stats = NULL; 2695 ice_free_tx_ring(vsi->xdp_rings[i]); 2696 } 2697 } 2698 return -ENOMEM; 2699 } 2700 2701 /** 2702 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2703 * @vsi: VSI to set the bpf prog on 2704 * @prog: the bpf prog pointer 2705 */ 2706 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2707 { 2708 struct bpf_prog *old_prog; 2709 int i; 2710 2711 old_prog = xchg(&vsi->xdp_prog, prog); 2712 ice_for_each_rxq(vsi, i) 2713 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2714 2715 if (old_prog) 2716 bpf_prog_put(old_prog); 2717 } 2718 2719 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2720 { 2721 struct ice_q_vector *q_vector; 2722 struct ice_tx_ring *ring; 2723 2724 if (static_key_enabled(&ice_xdp_locking_key)) 2725 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2726 2727 q_vector = vsi->rx_rings[qid]->q_vector; 2728 ice_for_each_tx_ring(ring, q_vector->tx) 2729 if (ice_ring_is_xdp(ring)) 2730 return ring; 2731 2732 return NULL; 2733 } 2734 2735 /** 2736 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2737 * @vsi: the VSI with XDP rings being configured 2738 * 2739 * Map XDP rings to interrupt vectors and perform the configuration steps 2740 * dependent on the mapping. 2741 */ 2742 void ice_map_xdp_rings(struct ice_vsi *vsi) 2743 { 2744 int xdp_rings_rem = vsi->num_xdp_txq; 2745 int v_idx, q_idx; 2746 2747 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2748 ice_for_each_q_vector(vsi, v_idx) { 2749 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2750 int xdp_rings_per_v, q_id, q_base; 2751 2752 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2753 vsi->num_q_vectors - v_idx); 2754 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2755 2756 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2757 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2758 2759 xdp_ring->q_vector = q_vector; 2760 xdp_ring->next = q_vector->tx.tx_ring; 2761 q_vector->tx.tx_ring = xdp_ring; 2762 } 2763 xdp_rings_rem -= xdp_rings_per_v; 2764 } 2765 2766 ice_for_each_rxq(vsi, q_idx) { 2767 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2768 q_idx); 2769 ice_tx_xsk_pool(vsi, q_idx); 2770 } 2771 } 2772 2773 /** 2774 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2775 * @vsi: VSI to bring up Tx rings used by XDP 2776 * @prog: bpf program that will be assigned to VSI 2777 * @cfg_type: create from scratch or restore the existing configuration 2778 * 2779 * Return 0 on success and negative value on error 2780 */ 2781 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2782 enum ice_xdp_cfg cfg_type) 2783 { 2784 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2785 struct ice_pf *pf = vsi->back; 2786 struct ice_qs_cfg xdp_qs_cfg = { 2787 .qs_mutex = &pf->avail_q_mutex, 2788 .pf_map = pf->avail_txqs, 2789 .pf_map_size = pf->max_pf_txqs, 2790 .q_count = vsi->num_xdp_txq, 2791 .scatter_count = ICE_MAX_SCATTER_TXQS, 2792 .vsi_map = vsi->txq_map, 2793 .vsi_map_offset = vsi->alloc_txq, 2794 .mapping_mode = ICE_VSI_MAP_CONTIG 2795 }; 2796 struct device *dev; 2797 int status, i; 2798 2799 dev = ice_pf_to_dev(pf); 2800 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2801 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2802 if (!vsi->xdp_rings) 2803 return -ENOMEM; 2804 2805 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2806 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2807 goto err_map_xdp; 2808 2809 if (static_key_enabled(&ice_xdp_locking_key)) 2810 netdev_warn(vsi->netdev, 2811 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2812 2813 if (ice_xdp_alloc_setup_rings(vsi)) 2814 goto clear_xdp_rings; 2815 2816 /* omit the scheduler update if in reset path; XDP queues will be 2817 * taken into account at the end of ice_vsi_rebuild, where 2818 * ice_cfg_vsi_lan is being called 2819 */ 2820 if (cfg_type == ICE_XDP_CFG_PART) 2821 return 0; 2822 2823 ice_map_xdp_rings(vsi); 2824 2825 /* tell the Tx scheduler that right now we have 2826 * additional queues 2827 */ 2828 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2829 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2830 2831 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2832 max_txqs); 2833 if (status) { 2834 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2835 status); 2836 goto clear_xdp_rings; 2837 } 2838 2839 /* assign the prog only when it's not already present on VSI; 2840 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2841 * VSI rebuild that happens under ethtool -L can expose us to 2842 * the bpf_prog refcount issues as we would be swapping same 2843 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2844 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2845 * this is not harmful as dev_xdp_install bumps the refcount 2846 * before calling the op exposed by the driver; 2847 */ 2848 if (!ice_is_xdp_ena_vsi(vsi)) 2849 ice_vsi_assign_bpf_prog(vsi, prog); 2850 2851 return 0; 2852 clear_xdp_rings: 2853 ice_for_each_xdp_txq(vsi, i) 2854 if (vsi->xdp_rings[i]) { 2855 kfree_rcu(vsi->xdp_rings[i], rcu); 2856 vsi->xdp_rings[i] = NULL; 2857 } 2858 2859 err_map_xdp: 2860 mutex_lock(&pf->avail_q_mutex); 2861 ice_for_each_xdp_txq(vsi, i) { 2862 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2863 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2864 } 2865 mutex_unlock(&pf->avail_q_mutex); 2866 2867 devm_kfree(dev, vsi->xdp_rings); 2868 return -ENOMEM; 2869 } 2870 2871 /** 2872 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2873 * @vsi: VSI to remove XDP rings 2874 * @cfg_type: disable XDP permanently or allow it to be restored later 2875 * 2876 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2877 * resources 2878 */ 2879 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2880 { 2881 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2882 struct ice_pf *pf = vsi->back; 2883 int i, v_idx; 2884 2885 /* q_vectors are freed in reset path so there's no point in detaching 2886 * rings 2887 */ 2888 if (cfg_type == ICE_XDP_CFG_PART) 2889 goto free_qmap; 2890 2891 ice_for_each_q_vector(vsi, v_idx) { 2892 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2893 struct ice_tx_ring *ring; 2894 2895 ice_for_each_tx_ring(ring, q_vector->tx) 2896 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2897 break; 2898 2899 /* restore the value of last node prior to XDP setup */ 2900 q_vector->tx.tx_ring = ring; 2901 } 2902 2903 free_qmap: 2904 mutex_lock(&pf->avail_q_mutex); 2905 ice_for_each_xdp_txq(vsi, i) { 2906 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2907 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2908 } 2909 mutex_unlock(&pf->avail_q_mutex); 2910 2911 ice_for_each_xdp_txq(vsi, i) 2912 if (vsi->xdp_rings[i]) { 2913 if (vsi->xdp_rings[i]->desc) { 2914 synchronize_rcu(); 2915 ice_free_tx_ring(vsi->xdp_rings[i]); 2916 } 2917 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2918 vsi->xdp_rings[i]->ring_stats = NULL; 2919 kfree_rcu(vsi->xdp_rings[i], rcu); 2920 vsi->xdp_rings[i] = NULL; 2921 } 2922 2923 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2924 vsi->xdp_rings = NULL; 2925 2926 if (static_key_enabled(&ice_xdp_locking_key)) 2927 static_branch_dec(&ice_xdp_locking_key); 2928 2929 if (cfg_type == ICE_XDP_CFG_PART) 2930 return 0; 2931 2932 ice_vsi_assign_bpf_prog(vsi, NULL); 2933 2934 /* notify Tx scheduler that we destroyed XDP queues and bring 2935 * back the old number of child nodes 2936 */ 2937 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2938 max_txqs[i] = vsi->num_txq; 2939 2940 /* change number of XDP Tx queues to 0 */ 2941 vsi->num_xdp_txq = 0; 2942 2943 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2944 max_txqs); 2945 } 2946 2947 /** 2948 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2949 * @vsi: VSI to schedule napi on 2950 */ 2951 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2952 { 2953 int i; 2954 2955 ice_for_each_rxq(vsi, i) { 2956 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2957 2958 if (READ_ONCE(rx_ring->xsk_pool)) 2959 napi_schedule(&rx_ring->q_vector->napi); 2960 } 2961 } 2962 2963 /** 2964 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2965 * @vsi: VSI to determine the count of XDP Tx qs 2966 * 2967 * returns 0 if Tx qs count is higher than at least half of CPU count, 2968 * -ENOMEM otherwise 2969 */ 2970 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2971 { 2972 u16 avail = ice_get_avail_txq_count(vsi->back); 2973 u16 cpus = num_possible_cpus(); 2974 2975 if (avail < cpus / 2) 2976 return -ENOMEM; 2977 2978 if (vsi->type == ICE_VSI_SF) 2979 avail = vsi->alloc_txq; 2980 2981 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2982 2983 if (vsi->num_xdp_txq < cpus) 2984 static_branch_inc(&ice_xdp_locking_key); 2985 2986 return 0; 2987 } 2988 2989 /** 2990 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2991 * @vsi: Pointer to VSI structure 2992 */ 2993 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2994 { 2995 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2996 return ICE_RXBUF_1664; 2997 else 2998 return ICE_RXBUF_3072; 2999 } 3000 3001 /** 3002 * ice_xdp_setup_prog - Add or remove XDP eBPF program 3003 * @vsi: VSI to setup XDP for 3004 * @prog: XDP program 3005 * @extack: netlink extended ack 3006 */ 3007 static int 3008 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 3009 struct netlink_ext_ack *extack) 3010 { 3011 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3012 int ret = 0, xdp_ring_err = 0; 3013 bool if_running; 3014 3015 if (prog && !prog->aux->xdp_has_frags) { 3016 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3017 NL_SET_ERR_MSG_MOD(extack, 3018 "MTU is too large for linear frames and XDP prog does not support frags"); 3019 return -EOPNOTSUPP; 3020 } 3021 } 3022 3023 /* hot swap progs and avoid toggling link */ 3024 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 3025 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 3026 ice_vsi_assign_bpf_prog(vsi, prog); 3027 return 0; 3028 } 3029 3030 if_running = netif_running(vsi->netdev) && 3031 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3032 3033 /* need to stop netdev while setting up the program for Rx rings */ 3034 if (if_running) { 3035 ret = ice_down(vsi); 3036 if (ret) { 3037 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3038 return ret; 3039 } 3040 } 3041 3042 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3043 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3044 if (xdp_ring_err) { 3045 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3046 } else { 3047 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3048 ICE_XDP_CFG_FULL); 3049 if (xdp_ring_err) 3050 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3051 } 3052 xdp_features_set_redirect_target(vsi->netdev, true); 3053 /* reallocate Rx queues that are used for zero-copy */ 3054 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3055 if (xdp_ring_err) 3056 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3057 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3058 xdp_features_clear_redirect_target(vsi->netdev); 3059 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3060 if (xdp_ring_err) 3061 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3062 /* reallocate Rx queues that were used for zero-copy */ 3063 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3064 if (xdp_ring_err) 3065 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3066 } 3067 3068 if (if_running) 3069 ret = ice_up(vsi); 3070 3071 if (!ret && prog) 3072 ice_vsi_rx_napi_schedule(vsi); 3073 3074 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3075 } 3076 3077 /** 3078 * ice_xdp_safe_mode - XDP handler for safe mode 3079 * @dev: netdevice 3080 * @xdp: XDP command 3081 */ 3082 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3083 struct netdev_bpf *xdp) 3084 { 3085 NL_SET_ERR_MSG_MOD(xdp->extack, 3086 "Please provide working DDP firmware package in order to use XDP\n" 3087 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3088 return -EOPNOTSUPP; 3089 } 3090 3091 /** 3092 * ice_xdp - implements XDP handler 3093 * @dev: netdevice 3094 * @xdp: XDP command 3095 */ 3096 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3097 { 3098 struct ice_netdev_priv *np = netdev_priv(dev); 3099 struct ice_vsi *vsi = np->vsi; 3100 int ret; 3101 3102 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3103 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3104 return -EINVAL; 3105 } 3106 3107 mutex_lock(&vsi->xdp_state_lock); 3108 3109 switch (xdp->command) { 3110 case XDP_SETUP_PROG: 3111 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3112 break; 3113 case XDP_SETUP_XSK_POOL: 3114 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3115 break; 3116 default: 3117 ret = -EINVAL; 3118 } 3119 3120 mutex_unlock(&vsi->xdp_state_lock); 3121 return ret; 3122 } 3123 3124 /** 3125 * ice_ena_misc_vector - enable the non-queue interrupts 3126 * @pf: board private structure 3127 */ 3128 static void ice_ena_misc_vector(struct ice_pf *pf) 3129 { 3130 struct ice_hw *hw = &pf->hw; 3131 u32 pf_intr_start_offset; 3132 u32 val; 3133 3134 /* Disable anti-spoof detection interrupt to prevent spurious event 3135 * interrupts during a function reset. Anti-spoof functionally is 3136 * still supported. 3137 */ 3138 val = rd32(hw, GL_MDCK_TX_TDPU); 3139 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3140 wr32(hw, GL_MDCK_TX_TDPU, val); 3141 3142 /* clear things first */ 3143 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3144 rd32(hw, PFINT_OICR); /* read to clear */ 3145 3146 val = (PFINT_OICR_ECC_ERR_M | 3147 PFINT_OICR_MAL_DETECT_M | 3148 PFINT_OICR_GRST_M | 3149 PFINT_OICR_PCI_EXCEPTION_M | 3150 PFINT_OICR_VFLR_M | 3151 PFINT_OICR_HMC_ERR_M | 3152 PFINT_OICR_PE_PUSH_M | 3153 PFINT_OICR_PE_CRITERR_M); 3154 3155 wr32(hw, PFINT_OICR_ENA, val); 3156 3157 /* SW_ITR_IDX = 0, but don't change INTENA */ 3158 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3159 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3160 3161 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3162 return; 3163 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3164 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3165 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3166 } 3167 3168 /** 3169 * ice_ll_ts_intr - ll_ts interrupt handler 3170 * @irq: interrupt number 3171 * @data: pointer to a q_vector 3172 */ 3173 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3174 { 3175 struct ice_pf *pf = data; 3176 u32 pf_intr_start_offset; 3177 struct ice_ptp_tx *tx; 3178 unsigned long flags; 3179 struct ice_hw *hw; 3180 u32 val; 3181 u8 idx; 3182 3183 hw = &pf->hw; 3184 tx = &pf->ptp.port.tx; 3185 spin_lock_irqsave(&tx->lock, flags); 3186 ice_ptp_complete_tx_single_tstamp(tx); 3187 3188 idx = find_next_bit_wrap(tx->in_use, tx->len, 3189 tx->last_ll_ts_idx_read + 1); 3190 if (idx != tx->len) 3191 ice_ptp_req_tx_single_tstamp(tx, idx); 3192 spin_unlock_irqrestore(&tx->lock, flags); 3193 3194 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3195 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3196 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3197 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3198 val); 3199 3200 return IRQ_HANDLED; 3201 } 3202 3203 /** 3204 * ice_misc_intr - misc interrupt handler 3205 * @irq: interrupt number 3206 * @data: pointer to a q_vector 3207 */ 3208 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3209 { 3210 struct ice_pf *pf = (struct ice_pf *)data; 3211 irqreturn_t ret = IRQ_HANDLED; 3212 struct ice_hw *hw = &pf->hw; 3213 struct device *dev; 3214 u32 oicr, ena_mask; 3215 3216 dev = ice_pf_to_dev(pf); 3217 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3218 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3219 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3220 3221 oicr = rd32(hw, PFINT_OICR); 3222 ena_mask = rd32(hw, PFINT_OICR_ENA); 3223 3224 if (oicr & PFINT_OICR_SWINT_M) { 3225 ena_mask &= ~PFINT_OICR_SWINT_M; 3226 pf->sw_int_count++; 3227 } 3228 3229 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3230 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3231 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3232 } 3233 if (oicr & PFINT_OICR_VFLR_M) { 3234 /* disable any further VFLR event notifications */ 3235 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3236 u32 reg = rd32(hw, PFINT_OICR_ENA); 3237 3238 reg &= ~PFINT_OICR_VFLR_M; 3239 wr32(hw, PFINT_OICR_ENA, reg); 3240 } else { 3241 ena_mask &= ~PFINT_OICR_VFLR_M; 3242 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3243 } 3244 } 3245 3246 if (oicr & PFINT_OICR_GRST_M) { 3247 u32 reset; 3248 3249 /* we have a reset warning */ 3250 ena_mask &= ~PFINT_OICR_GRST_M; 3251 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3252 rd32(hw, GLGEN_RSTAT)); 3253 3254 if (reset == ICE_RESET_CORER) 3255 pf->corer_count++; 3256 else if (reset == ICE_RESET_GLOBR) 3257 pf->globr_count++; 3258 else if (reset == ICE_RESET_EMPR) 3259 pf->empr_count++; 3260 else 3261 dev_dbg(dev, "Invalid reset type %d\n", reset); 3262 3263 /* If a reset cycle isn't already in progress, we set a bit in 3264 * pf->state so that the service task can start a reset/rebuild. 3265 */ 3266 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3267 if (reset == ICE_RESET_CORER) 3268 set_bit(ICE_CORER_RECV, pf->state); 3269 else if (reset == ICE_RESET_GLOBR) 3270 set_bit(ICE_GLOBR_RECV, pf->state); 3271 else 3272 set_bit(ICE_EMPR_RECV, pf->state); 3273 3274 /* There are couple of different bits at play here. 3275 * hw->reset_ongoing indicates whether the hardware is 3276 * in reset. This is set to true when a reset interrupt 3277 * is received and set back to false after the driver 3278 * has determined that the hardware is out of reset. 3279 * 3280 * ICE_RESET_OICR_RECV in pf->state indicates 3281 * that a post reset rebuild is required before the 3282 * driver is operational again. This is set above. 3283 * 3284 * As this is the start of the reset/rebuild cycle, set 3285 * both to indicate that. 3286 */ 3287 hw->reset_ongoing = true; 3288 } 3289 } 3290 3291 if (oicr & PFINT_OICR_TSYN_TX_M) { 3292 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3293 if (ice_pf_state_is_nominal(pf) && 3294 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3295 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3296 unsigned long flags; 3297 u8 idx; 3298 3299 spin_lock_irqsave(&tx->lock, flags); 3300 idx = find_next_bit_wrap(tx->in_use, tx->len, 3301 tx->last_ll_ts_idx_read + 1); 3302 if (idx != tx->len) 3303 ice_ptp_req_tx_single_tstamp(tx, idx); 3304 spin_unlock_irqrestore(&tx->lock, flags); 3305 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3306 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3307 ret = IRQ_WAKE_THREAD; 3308 } 3309 } 3310 3311 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3312 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3313 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3314 3315 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3316 3317 if (ice_pf_src_tmr_owned(pf)) { 3318 /* Save EVENTs from GLTSYN register */ 3319 pf->ptp.ext_ts_irq |= gltsyn_stat & 3320 (GLTSYN_STAT_EVENT0_M | 3321 GLTSYN_STAT_EVENT1_M | 3322 GLTSYN_STAT_EVENT2_M); 3323 3324 ice_ptp_extts_event(pf); 3325 } 3326 } 3327 3328 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3329 if (oicr & ICE_AUX_CRIT_ERR) { 3330 pf->oicr_err_reg |= oicr; 3331 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3332 ena_mask &= ~ICE_AUX_CRIT_ERR; 3333 } 3334 3335 /* Report any remaining unexpected interrupts */ 3336 oicr &= ena_mask; 3337 if (oicr) { 3338 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3339 /* If a critical error is pending there is no choice but to 3340 * reset the device. 3341 */ 3342 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3343 PFINT_OICR_ECC_ERR_M)) { 3344 set_bit(ICE_PFR_REQ, pf->state); 3345 } 3346 } 3347 ice_service_task_schedule(pf); 3348 if (ret == IRQ_HANDLED) 3349 ice_irq_dynamic_ena(hw, NULL, NULL); 3350 3351 return ret; 3352 } 3353 3354 /** 3355 * ice_misc_intr_thread_fn - misc interrupt thread function 3356 * @irq: interrupt number 3357 * @data: pointer to a q_vector 3358 */ 3359 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3360 { 3361 struct ice_pf *pf = data; 3362 struct ice_hw *hw; 3363 3364 hw = &pf->hw; 3365 3366 if (ice_is_reset_in_progress(pf->state)) 3367 goto skip_irq; 3368 3369 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3370 /* Process outstanding Tx timestamps. If there is more work, 3371 * re-arm the interrupt to trigger again. 3372 */ 3373 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3374 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3375 ice_flush(hw); 3376 } 3377 } 3378 3379 skip_irq: 3380 ice_irq_dynamic_ena(hw, NULL, NULL); 3381 3382 return IRQ_HANDLED; 3383 } 3384 3385 /** 3386 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3387 * @hw: pointer to HW structure 3388 */ 3389 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3390 { 3391 /* disable Admin queue Interrupt causes */ 3392 wr32(hw, PFINT_FW_CTL, 3393 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3394 3395 /* disable Mailbox queue Interrupt causes */ 3396 wr32(hw, PFINT_MBX_CTL, 3397 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3398 3399 wr32(hw, PFINT_SB_CTL, 3400 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3401 3402 /* disable Control queue Interrupt causes */ 3403 wr32(hw, PFINT_OICR_CTL, 3404 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3405 3406 ice_flush(hw); 3407 } 3408 3409 /** 3410 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3411 * @pf: board private structure 3412 */ 3413 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3414 { 3415 int irq_num = pf->ll_ts_irq.virq; 3416 3417 synchronize_irq(irq_num); 3418 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3419 3420 ice_free_irq(pf, pf->ll_ts_irq); 3421 } 3422 3423 /** 3424 * ice_free_irq_msix_misc - Unroll misc vector setup 3425 * @pf: board private structure 3426 */ 3427 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3428 { 3429 int misc_irq_num = pf->oicr_irq.virq; 3430 struct ice_hw *hw = &pf->hw; 3431 3432 ice_dis_ctrlq_interrupts(hw); 3433 3434 /* disable OICR interrupt */ 3435 wr32(hw, PFINT_OICR_ENA, 0); 3436 ice_flush(hw); 3437 3438 synchronize_irq(misc_irq_num); 3439 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3440 3441 ice_free_irq(pf, pf->oicr_irq); 3442 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3443 ice_free_irq_msix_ll_ts(pf); 3444 } 3445 3446 /** 3447 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3448 * @hw: pointer to HW structure 3449 * @reg_idx: HW vector index to associate the control queue interrupts with 3450 */ 3451 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3452 { 3453 u32 val; 3454 3455 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3456 PFINT_OICR_CTL_CAUSE_ENA_M); 3457 wr32(hw, PFINT_OICR_CTL, val); 3458 3459 /* enable Admin queue Interrupt causes */ 3460 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3461 PFINT_FW_CTL_CAUSE_ENA_M); 3462 wr32(hw, PFINT_FW_CTL, val); 3463 3464 /* enable Mailbox queue Interrupt causes */ 3465 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3466 PFINT_MBX_CTL_CAUSE_ENA_M); 3467 wr32(hw, PFINT_MBX_CTL, val); 3468 3469 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3470 /* enable Sideband queue Interrupt causes */ 3471 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3472 PFINT_SB_CTL_CAUSE_ENA_M); 3473 wr32(hw, PFINT_SB_CTL, val); 3474 } 3475 3476 ice_flush(hw); 3477 } 3478 3479 /** 3480 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3481 * @pf: board private structure 3482 * 3483 * This sets up the handler for MSIX 0, which is used to manage the 3484 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3485 * when in MSI or Legacy interrupt mode. 3486 */ 3487 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3488 { 3489 struct device *dev = ice_pf_to_dev(pf); 3490 struct ice_hw *hw = &pf->hw; 3491 u32 pf_intr_start_offset; 3492 struct msi_map irq; 3493 int err = 0; 3494 3495 if (!pf->int_name[0]) 3496 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3497 dev_driver_string(dev), dev_name(dev)); 3498 3499 if (!pf->int_name_ll_ts[0]) 3500 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3501 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3502 /* Do not request IRQ but do enable OICR interrupt since settings are 3503 * lost during reset. Note that this function is called only during 3504 * rebuild path and not while reset is in progress. 3505 */ 3506 if (ice_is_reset_in_progress(pf->state)) 3507 goto skip_req_irq; 3508 3509 /* reserve one vector in irq_tracker for misc interrupts */ 3510 irq = ice_alloc_irq(pf, false); 3511 if (irq.index < 0) 3512 return irq.index; 3513 3514 pf->oicr_irq = irq; 3515 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3516 ice_misc_intr_thread_fn, 0, 3517 pf->int_name, pf); 3518 if (err) { 3519 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3520 pf->int_name, err); 3521 ice_free_irq(pf, pf->oicr_irq); 3522 return err; 3523 } 3524 3525 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3526 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3527 goto skip_req_irq; 3528 3529 irq = ice_alloc_irq(pf, false); 3530 if (irq.index < 0) 3531 return irq.index; 3532 3533 pf->ll_ts_irq = irq; 3534 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3535 pf->int_name_ll_ts, pf); 3536 if (err) { 3537 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3538 pf->int_name_ll_ts, err); 3539 ice_free_irq(pf, pf->ll_ts_irq); 3540 return err; 3541 } 3542 3543 skip_req_irq: 3544 ice_ena_misc_vector(pf); 3545 3546 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3547 /* This enables LL TS interrupt */ 3548 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3549 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3550 wr32(hw, PFINT_SB_CTL, 3551 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3552 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3553 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3554 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3555 3556 ice_flush(hw); 3557 ice_irq_dynamic_ena(hw, NULL, NULL); 3558 3559 return 0; 3560 } 3561 3562 /** 3563 * ice_set_ops - set netdev and ethtools ops for the given netdev 3564 * @vsi: the VSI associated with the new netdev 3565 */ 3566 static void ice_set_ops(struct ice_vsi *vsi) 3567 { 3568 struct net_device *netdev = vsi->netdev; 3569 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3570 3571 if (ice_is_safe_mode(pf)) { 3572 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3573 ice_set_ethtool_safe_mode_ops(netdev); 3574 return; 3575 } 3576 3577 netdev->netdev_ops = &ice_netdev_ops; 3578 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3579 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3580 ice_set_ethtool_ops(netdev); 3581 3582 if (vsi->type != ICE_VSI_PF) 3583 return; 3584 3585 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3586 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3587 NETDEV_XDP_ACT_RX_SG; 3588 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3589 } 3590 3591 /** 3592 * ice_set_netdev_features - set features for the given netdev 3593 * @netdev: netdev instance 3594 */ 3595 void ice_set_netdev_features(struct net_device *netdev) 3596 { 3597 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3598 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3599 netdev_features_t csumo_features; 3600 netdev_features_t vlano_features; 3601 netdev_features_t dflt_features; 3602 netdev_features_t tso_features; 3603 3604 if (ice_is_safe_mode(pf)) { 3605 /* safe mode */ 3606 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3607 netdev->hw_features = netdev->features; 3608 return; 3609 } 3610 3611 dflt_features = NETIF_F_SG | 3612 NETIF_F_HIGHDMA | 3613 NETIF_F_NTUPLE | 3614 NETIF_F_RXHASH; 3615 3616 csumo_features = NETIF_F_RXCSUM | 3617 NETIF_F_IP_CSUM | 3618 NETIF_F_SCTP_CRC | 3619 NETIF_F_IPV6_CSUM; 3620 3621 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3622 NETIF_F_HW_VLAN_CTAG_TX | 3623 NETIF_F_HW_VLAN_CTAG_RX; 3624 3625 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3626 if (is_dvm_ena) 3627 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3628 3629 tso_features = NETIF_F_TSO | 3630 NETIF_F_TSO_ECN | 3631 NETIF_F_TSO6 | 3632 NETIF_F_GSO_GRE | 3633 NETIF_F_GSO_UDP_TUNNEL | 3634 NETIF_F_GSO_GRE_CSUM | 3635 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3636 NETIF_F_GSO_PARTIAL | 3637 NETIF_F_GSO_IPXIP4 | 3638 NETIF_F_GSO_IPXIP6 | 3639 NETIF_F_GSO_UDP_L4; 3640 3641 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3642 NETIF_F_GSO_GRE_CSUM; 3643 /* set features that user can change */ 3644 netdev->hw_features = dflt_features | csumo_features | 3645 vlano_features | tso_features; 3646 3647 /* add support for HW_CSUM on packets with MPLS header */ 3648 netdev->mpls_features = NETIF_F_HW_CSUM | 3649 NETIF_F_TSO | 3650 NETIF_F_TSO6; 3651 3652 /* enable features */ 3653 netdev->features |= netdev->hw_features; 3654 3655 netdev->hw_features |= NETIF_F_HW_TC; 3656 netdev->hw_features |= NETIF_F_LOOPBACK; 3657 3658 /* encap and VLAN devices inherit default, csumo and tso features */ 3659 netdev->hw_enc_features |= dflt_features | csumo_features | 3660 tso_features; 3661 netdev->vlan_features |= dflt_features | csumo_features | 3662 tso_features; 3663 3664 /* advertise support but don't enable by default since only one type of 3665 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3666 * type turns on the other has to be turned off. This is enforced by the 3667 * ice_fix_features() ndo callback. 3668 */ 3669 if (is_dvm_ena) 3670 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3671 NETIF_F_HW_VLAN_STAG_TX; 3672 3673 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3674 * be changed at runtime 3675 */ 3676 netdev->hw_features |= NETIF_F_RXFCS; 3677 3678 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3679 } 3680 3681 /** 3682 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3683 * @lut: Lookup table 3684 * @rss_table_size: Lookup table size 3685 * @rss_size: Range of queue number for hashing 3686 */ 3687 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3688 { 3689 u16 i; 3690 3691 for (i = 0; i < rss_table_size; i++) 3692 lut[i] = i % rss_size; 3693 } 3694 3695 /** 3696 * ice_pf_vsi_setup - Set up a PF VSI 3697 * @pf: board private structure 3698 * @pi: pointer to the port_info instance 3699 * 3700 * Returns pointer to the successfully allocated VSI software struct 3701 * on success, otherwise returns NULL on failure. 3702 */ 3703 static struct ice_vsi * 3704 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3705 { 3706 struct ice_vsi_cfg_params params = {}; 3707 3708 params.type = ICE_VSI_PF; 3709 params.port_info = pi; 3710 params.flags = ICE_VSI_FLAG_INIT; 3711 3712 return ice_vsi_setup(pf, ¶ms); 3713 } 3714 3715 static struct ice_vsi * 3716 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3717 struct ice_channel *ch) 3718 { 3719 struct ice_vsi_cfg_params params = {}; 3720 3721 params.type = ICE_VSI_CHNL; 3722 params.port_info = pi; 3723 params.ch = ch; 3724 params.flags = ICE_VSI_FLAG_INIT; 3725 3726 return ice_vsi_setup(pf, ¶ms); 3727 } 3728 3729 /** 3730 * ice_ctrl_vsi_setup - Set up a control VSI 3731 * @pf: board private structure 3732 * @pi: pointer to the port_info instance 3733 * 3734 * Returns pointer to the successfully allocated VSI software struct 3735 * on success, otherwise returns NULL on failure. 3736 */ 3737 static struct ice_vsi * 3738 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3739 { 3740 struct ice_vsi_cfg_params params = {}; 3741 3742 params.type = ICE_VSI_CTRL; 3743 params.port_info = pi; 3744 params.flags = ICE_VSI_FLAG_INIT; 3745 3746 return ice_vsi_setup(pf, ¶ms); 3747 } 3748 3749 /** 3750 * ice_lb_vsi_setup - Set up a loopback VSI 3751 * @pf: board private structure 3752 * @pi: pointer to the port_info instance 3753 * 3754 * Returns pointer to the successfully allocated VSI software struct 3755 * on success, otherwise returns NULL on failure. 3756 */ 3757 struct ice_vsi * 3758 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3759 { 3760 struct ice_vsi_cfg_params params = {}; 3761 3762 params.type = ICE_VSI_LB; 3763 params.port_info = pi; 3764 params.flags = ICE_VSI_FLAG_INIT; 3765 3766 return ice_vsi_setup(pf, ¶ms); 3767 } 3768 3769 /** 3770 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3771 * @netdev: network interface to be adjusted 3772 * @proto: VLAN TPID 3773 * @vid: VLAN ID to be added 3774 * 3775 * net_device_ops implementation for adding VLAN IDs 3776 */ 3777 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3778 { 3779 struct ice_netdev_priv *np = netdev_priv(netdev); 3780 struct ice_vsi_vlan_ops *vlan_ops; 3781 struct ice_vsi *vsi = np->vsi; 3782 struct ice_vlan vlan; 3783 int ret; 3784 3785 /* VLAN 0 is added by default during load/reset */ 3786 if (!vid) 3787 return 0; 3788 3789 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3790 usleep_range(1000, 2000); 3791 3792 /* Add multicast promisc rule for the VLAN ID to be added if 3793 * all-multicast is currently enabled. 3794 */ 3795 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3796 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3797 ICE_MCAST_VLAN_PROMISC_BITS, 3798 vid); 3799 if (ret) 3800 goto finish; 3801 } 3802 3803 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3804 3805 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3806 * packets aren't pruned by the device's internal switch on Rx 3807 */ 3808 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3809 ret = vlan_ops->add_vlan(vsi, &vlan); 3810 if (ret) 3811 goto finish; 3812 3813 /* If all-multicast is currently enabled and this VLAN ID is only one 3814 * besides VLAN-0 we have to update look-up type of multicast promisc 3815 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3816 */ 3817 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3818 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3819 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3820 ICE_MCAST_PROMISC_BITS, 0); 3821 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3822 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3823 } 3824 3825 finish: 3826 clear_bit(ICE_CFG_BUSY, vsi->state); 3827 3828 return ret; 3829 } 3830 3831 /** 3832 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3833 * @netdev: network interface to be adjusted 3834 * @proto: VLAN TPID 3835 * @vid: VLAN ID to be removed 3836 * 3837 * net_device_ops implementation for removing VLAN IDs 3838 */ 3839 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3840 { 3841 struct ice_netdev_priv *np = netdev_priv(netdev); 3842 struct ice_vsi_vlan_ops *vlan_ops; 3843 struct ice_vsi *vsi = np->vsi; 3844 struct ice_vlan vlan; 3845 int ret; 3846 3847 /* don't allow removal of VLAN 0 */ 3848 if (!vid) 3849 return 0; 3850 3851 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3852 usleep_range(1000, 2000); 3853 3854 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3855 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3856 if (ret) { 3857 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3858 vsi->vsi_num); 3859 vsi->current_netdev_flags |= IFF_ALLMULTI; 3860 } 3861 3862 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3863 3864 /* Make sure VLAN delete is successful before updating VLAN 3865 * information 3866 */ 3867 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3868 ret = vlan_ops->del_vlan(vsi, &vlan); 3869 if (ret) 3870 goto finish; 3871 3872 /* Remove multicast promisc rule for the removed VLAN ID if 3873 * all-multicast is enabled. 3874 */ 3875 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3876 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3877 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3878 3879 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3880 /* Update look-up type of multicast promisc rule for VLAN 0 3881 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3882 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3883 */ 3884 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3885 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3886 ICE_MCAST_VLAN_PROMISC_BITS, 3887 0); 3888 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3889 ICE_MCAST_PROMISC_BITS, 0); 3890 } 3891 } 3892 3893 finish: 3894 clear_bit(ICE_CFG_BUSY, vsi->state); 3895 3896 return ret; 3897 } 3898 3899 /** 3900 * ice_rep_indr_tc_block_unbind 3901 * @cb_priv: indirection block private data 3902 */ 3903 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3904 { 3905 struct ice_indr_block_priv *indr_priv = cb_priv; 3906 3907 list_del(&indr_priv->list); 3908 kfree(indr_priv); 3909 } 3910 3911 /** 3912 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3913 * @vsi: VSI struct which has the netdev 3914 */ 3915 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3916 { 3917 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3918 3919 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3920 ice_rep_indr_tc_block_unbind); 3921 } 3922 3923 /** 3924 * ice_tc_indir_block_register - Register TC indirect block notifications 3925 * @vsi: VSI struct which has the netdev 3926 * 3927 * Returns 0 on success, negative value on failure 3928 */ 3929 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3930 { 3931 struct ice_netdev_priv *np; 3932 3933 if (!vsi || !vsi->netdev) 3934 return -EINVAL; 3935 3936 np = netdev_priv(vsi->netdev); 3937 3938 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3939 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3940 } 3941 3942 /** 3943 * ice_get_avail_q_count - Get count of queues in use 3944 * @pf_qmap: bitmap to get queue use count from 3945 * @lock: pointer to a mutex that protects access to pf_qmap 3946 * @size: size of the bitmap 3947 */ 3948 static u16 3949 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3950 { 3951 unsigned long bit; 3952 u16 count = 0; 3953 3954 mutex_lock(lock); 3955 for_each_clear_bit(bit, pf_qmap, size) 3956 count++; 3957 mutex_unlock(lock); 3958 3959 return count; 3960 } 3961 3962 /** 3963 * ice_get_avail_txq_count - Get count of Tx queues in use 3964 * @pf: pointer to an ice_pf instance 3965 */ 3966 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3967 { 3968 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3969 pf->max_pf_txqs); 3970 } 3971 3972 /** 3973 * ice_get_avail_rxq_count - Get count of Rx queues in use 3974 * @pf: pointer to an ice_pf instance 3975 */ 3976 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3977 { 3978 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3979 pf->max_pf_rxqs); 3980 } 3981 3982 /** 3983 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3984 * @pf: board private structure to initialize 3985 */ 3986 static void ice_deinit_pf(struct ice_pf *pf) 3987 { 3988 ice_service_task_stop(pf); 3989 mutex_destroy(&pf->lag_mutex); 3990 mutex_destroy(&pf->adev_mutex); 3991 mutex_destroy(&pf->sw_mutex); 3992 mutex_destroy(&pf->tc_mutex); 3993 mutex_destroy(&pf->avail_q_mutex); 3994 mutex_destroy(&pf->vfs.table_lock); 3995 3996 if (pf->avail_txqs) { 3997 bitmap_free(pf->avail_txqs); 3998 pf->avail_txqs = NULL; 3999 } 4000 4001 if (pf->avail_rxqs) { 4002 bitmap_free(pf->avail_rxqs); 4003 pf->avail_rxqs = NULL; 4004 } 4005 4006 if (pf->ptp.clock) 4007 ptp_clock_unregister(pf->ptp.clock); 4008 4009 xa_destroy(&pf->dyn_ports); 4010 xa_destroy(&pf->sf_nums); 4011 } 4012 4013 /** 4014 * ice_set_pf_caps - set PFs capability flags 4015 * @pf: pointer to the PF instance 4016 */ 4017 static void ice_set_pf_caps(struct ice_pf *pf) 4018 { 4019 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4020 4021 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4022 if (func_caps->common_cap.rdma) 4023 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4024 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4025 if (func_caps->common_cap.dcb) 4026 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4027 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4028 if (func_caps->common_cap.sr_iov_1_1) { 4029 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4030 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4031 ICE_MAX_SRIOV_VFS); 4032 } 4033 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4034 if (func_caps->common_cap.rss_table_size) 4035 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4036 4037 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4038 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4039 u16 unused; 4040 4041 /* ctrl_vsi_idx will be set to a valid value when flow director 4042 * is setup by ice_init_fdir 4043 */ 4044 pf->ctrl_vsi_idx = ICE_NO_VSI; 4045 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4046 /* force guaranteed filter pool for PF */ 4047 ice_alloc_fd_guar_item(&pf->hw, &unused, 4048 func_caps->fd_fltr_guar); 4049 /* force shared filter pool for PF */ 4050 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4051 func_caps->fd_fltr_best_effort); 4052 } 4053 4054 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4055 if (func_caps->common_cap.ieee_1588 && 4056 !(pf->hw.mac_type == ICE_MAC_E830)) 4057 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4058 4059 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4060 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4061 } 4062 4063 /** 4064 * ice_init_pf - Initialize general software structures (struct ice_pf) 4065 * @pf: board private structure to initialize 4066 */ 4067 static int ice_init_pf(struct ice_pf *pf) 4068 { 4069 ice_set_pf_caps(pf); 4070 4071 mutex_init(&pf->sw_mutex); 4072 mutex_init(&pf->tc_mutex); 4073 mutex_init(&pf->adev_mutex); 4074 mutex_init(&pf->lag_mutex); 4075 4076 INIT_HLIST_HEAD(&pf->aq_wait_list); 4077 spin_lock_init(&pf->aq_wait_lock); 4078 init_waitqueue_head(&pf->aq_wait_queue); 4079 4080 init_waitqueue_head(&pf->reset_wait_queue); 4081 4082 /* setup service timer and periodic service task */ 4083 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4084 pf->serv_tmr_period = HZ; 4085 INIT_WORK(&pf->serv_task, ice_service_task); 4086 clear_bit(ICE_SERVICE_SCHED, pf->state); 4087 4088 mutex_init(&pf->avail_q_mutex); 4089 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4090 if (!pf->avail_txqs) 4091 return -ENOMEM; 4092 4093 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4094 if (!pf->avail_rxqs) { 4095 bitmap_free(pf->avail_txqs); 4096 pf->avail_txqs = NULL; 4097 return -ENOMEM; 4098 } 4099 4100 mutex_init(&pf->vfs.table_lock); 4101 hash_init(pf->vfs.table); 4102 ice_mbx_init_snapshot(&pf->hw); 4103 4104 xa_init(&pf->dyn_ports); 4105 xa_init(&pf->sf_nums); 4106 4107 return 0; 4108 } 4109 4110 /** 4111 * ice_is_wol_supported - check if WoL is supported 4112 * @hw: pointer to hardware info 4113 * 4114 * Check if WoL is supported based on the HW configuration. 4115 * Returns true if NVM supports and enables WoL for this port, false otherwise 4116 */ 4117 bool ice_is_wol_supported(struct ice_hw *hw) 4118 { 4119 u16 wol_ctrl; 4120 4121 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4122 * word) indicates WoL is not supported on the corresponding PF ID. 4123 */ 4124 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4125 return false; 4126 4127 return !(BIT(hw->port_info->lport) & wol_ctrl); 4128 } 4129 4130 /** 4131 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4132 * @vsi: VSI being changed 4133 * @new_rx: new number of Rx queues 4134 * @new_tx: new number of Tx queues 4135 * @locked: is adev device_lock held 4136 * 4137 * Only change the number of queues if new_tx, or new_rx is non-0. 4138 * 4139 * Returns 0 on success. 4140 */ 4141 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4142 { 4143 struct ice_pf *pf = vsi->back; 4144 int i, err = 0, timeout = 50; 4145 4146 if (!new_rx && !new_tx) 4147 return -EINVAL; 4148 4149 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4150 timeout--; 4151 if (!timeout) 4152 return -EBUSY; 4153 usleep_range(1000, 2000); 4154 } 4155 4156 if (new_tx) 4157 vsi->req_txq = (u16)new_tx; 4158 if (new_rx) 4159 vsi->req_rxq = (u16)new_rx; 4160 4161 /* set for the next time the netdev is started */ 4162 if (!netif_running(vsi->netdev)) { 4163 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4164 if (err) 4165 goto rebuild_err; 4166 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4167 goto done; 4168 } 4169 4170 ice_vsi_close(vsi); 4171 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4172 if (err) 4173 goto rebuild_err; 4174 4175 ice_for_each_traffic_class(i) { 4176 if (vsi->tc_cfg.ena_tc & BIT(i)) 4177 netdev_set_tc_queue(vsi->netdev, 4178 vsi->tc_cfg.tc_info[i].netdev_tc, 4179 vsi->tc_cfg.tc_info[i].qcount_tx, 4180 vsi->tc_cfg.tc_info[i].qoffset); 4181 } 4182 ice_pf_dcb_recfg(pf, locked); 4183 ice_vsi_open(vsi); 4184 goto done; 4185 4186 rebuild_err: 4187 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4188 err); 4189 done: 4190 clear_bit(ICE_CFG_BUSY, pf->state); 4191 return err; 4192 } 4193 4194 /** 4195 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4196 * @pf: PF to configure 4197 * 4198 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4199 * VSI can still Tx/Rx VLAN tagged packets. 4200 */ 4201 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4202 { 4203 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4204 struct ice_vsi_ctx *ctxt; 4205 struct ice_hw *hw; 4206 int status; 4207 4208 if (!vsi) 4209 return; 4210 4211 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4212 if (!ctxt) 4213 return; 4214 4215 hw = &pf->hw; 4216 ctxt->info = vsi->info; 4217 4218 ctxt->info.valid_sections = 4219 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4220 ICE_AQ_VSI_PROP_SECURITY_VALID | 4221 ICE_AQ_VSI_PROP_SW_VALID); 4222 4223 /* disable VLAN anti-spoof */ 4224 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4225 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4226 4227 /* disable VLAN pruning and keep all other settings */ 4228 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4229 4230 /* allow all VLANs on Tx and don't strip on Rx */ 4231 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4232 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4233 4234 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4235 if (status) { 4236 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4237 status, ice_aq_str(hw->adminq.sq_last_status)); 4238 } else { 4239 vsi->info.sec_flags = ctxt->info.sec_flags; 4240 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4241 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4242 } 4243 4244 kfree(ctxt); 4245 } 4246 4247 /** 4248 * ice_log_pkg_init - log result of DDP package load 4249 * @hw: pointer to hardware info 4250 * @state: state of package load 4251 */ 4252 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4253 { 4254 struct ice_pf *pf = hw->back; 4255 struct device *dev; 4256 4257 dev = ice_pf_to_dev(pf); 4258 4259 switch (state) { 4260 case ICE_DDP_PKG_SUCCESS: 4261 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4262 hw->active_pkg_name, 4263 hw->active_pkg_ver.major, 4264 hw->active_pkg_ver.minor, 4265 hw->active_pkg_ver.update, 4266 hw->active_pkg_ver.draft); 4267 break; 4268 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4269 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4270 hw->active_pkg_name, 4271 hw->active_pkg_ver.major, 4272 hw->active_pkg_ver.minor, 4273 hw->active_pkg_ver.update, 4274 hw->active_pkg_ver.draft); 4275 break; 4276 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4277 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4278 hw->active_pkg_name, 4279 hw->active_pkg_ver.major, 4280 hw->active_pkg_ver.minor, 4281 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4282 break; 4283 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4284 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4285 hw->active_pkg_name, 4286 hw->active_pkg_ver.major, 4287 hw->active_pkg_ver.minor, 4288 hw->active_pkg_ver.update, 4289 hw->active_pkg_ver.draft, 4290 hw->pkg_name, 4291 hw->pkg_ver.major, 4292 hw->pkg_ver.minor, 4293 hw->pkg_ver.update, 4294 hw->pkg_ver.draft); 4295 break; 4296 case ICE_DDP_PKG_FW_MISMATCH: 4297 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4298 break; 4299 case ICE_DDP_PKG_INVALID_FILE: 4300 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4301 break; 4302 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4303 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4304 break; 4305 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4306 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4307 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4308 break; 4309 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4310 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4311 break; 4312 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4313 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4314 break; 4315 case ICE_DDP_PKG_LOAD_ERROR: 4316 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4317 /* poll for reset to complete */ 4318 if (ice_check_reset(hw)) 4319 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4320 break; 4321 case ICE_DDP_PKG_ERR: 4322 default: 4323 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4324 break; 4325 } 4326 } 4327 4328 /** 4329 * ice_load_pkg - load/reload the DDP Package file 4330 * @firmware: firmware structure when firmware requested or NULL for reload 4331 * @pf: pointer to the PF instance 4332 * 4333 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4334 * initialize HW tables. 4335 */ 4336 static void 4337 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4338 { 4339 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4340 struct device *dev = ice_pf_to_dev(pf); 4341 struct ice_hw *hw = &pf->hw; 4342 4343 /* Load DDP Package */ 4344 if (firmware && !hw->pkg_copy) { 4345 state = ice_copy_and_init_pkg(hw, firmware->data, 4346 firmware->size); 4347 ice_log_pkg_init(hw, state); 4348 } else if (!firmware && hw->pkg_copy) { 4349 /* Reload package during rebuild after CORER/GLOBR reset */ 4350 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4351 ice_log_pkg_init(hw, state); 4352 } else { 4353 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4354 } 4355 4356 if (!ice_is_init_pkg_successful(state)) { 4357 /* Safe Mode */ 4358 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4359 return; 4360 } 4361 4362 /* Successful download package is the precondition for advanced 4363 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4364 */ 4365 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4366 } 4367 4368 /** 4369 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4370 * @pf: pointer to the PF structure 4371 * 4372 * There is no error returned here because the driver should be able to handle 4373 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4374 * specifically with Tx. 4375 */ 4376 static void ice_verify_cacheline_size(struct ice_pf *pf) 4377 { 4378 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4379 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4380 ICE_CACHE_LINE_BYTES); 4381 } 4382 4383 /** 4384 * ice_send_version - update firmware with driver version 4385 * @pf: PF struct 4386 * 4387 * Returns 0 on success, else error code 4388 */ 4389 static int ice_send_version(struct ice_pf *pf) 4390 { 4391 struct ice_driver_ver dv; 4392 4393 dv.major_ver = 0xff; 4394 dv.minor_ver = 0xff; 4395 dv.build_ver = 0xff; 4396 dv.subbuild_ver = 0; 4397 strscpy((char *)dv.driver_string, UTS_RELEASE, 4398 sizeof(dv.driver_string)); 4399 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4400 } 4401 4402 /** 4403 * ice_init_fdir - Initialize flow director VSI and configuration 4404 * @pf: pointer to the PF instance 4405 * 4406 * returns 0 on success, negative on error 4407 */ 4408 static int ice_init_fdir(struct ice_pf *pf) 4409 { 4410 struct device *dev = ice_pf_to_dev(pf); 4411 struct ice_vsi *ctrl_vsi; 4412 int err; 4413 4414 /* Side Band Flow Director needs to have a control VSI. 4415 * Allocate it and store it in the PF. 4416 */ 4417 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4418 if (!ctrl_vsi) { 4419 dev_dbg(dev, "could not create control VSI\n"); 4420 return -ENOMEM; 4421 } 4422 4423 err = ice_vsi_open_ctrl(ctrl_vsi); 4424 if (err) { 4425 dev_dbg(dev, "could not open control VSI\n"); 4426 goto err_vsi_open; 4427 } 4428 4429 mutex_init(&pf->hw.fdir_fltr_lock); 4430 4431 err = ice_fdir_create_dflt_rules(pf); 4432 if (err) 4433 goto err_fdir_rule; 4434 4435 return 0; 4436 4437 err_fdir_rule: 4438 ice_fdir_release_flows(&pf->hw); 4439 ice_vsi_close(ctrl_vsi); 4440 err_vsi_open: 4441 ice_vsi_release(ctrl_vsi); 4442 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4443 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4444 pf->ctrl_vsi_idx = ICE_NO_VSI; 4445 } 4446 return err; 4447 } 4448 4449 static void ice_deinit_fdir(struct ice_pf *pf) 4450 { 4451 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4452 4453 if (!vsi) 4454 return; 4455 4456 ice_vsi_manage_fdir(vsi, false); 4457 ice_vsi_release(vsi); 4458 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4459 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4460 pf->ctrl_vsi_idx = ICE_NO_VSI; 4461 } 4462 4463 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4464 } 4465 4466 /** 4467 * ice_get_opt_fw_name - return optional firmware file name or NULL 4468 * @pf: pointer to the PF instance 4469 */ 4470 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4471 { 4472 /* Optional firmware name same as default with additional dash 4473 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4474 */ 4475 struct pci_dev *pdev = pf->pdev; 4476 char *opt_fw_filename; 4477 u64 dsn; 4478 4479 /* Determine the name of the optional file using the DSN (two 4480 * dwords following the start of the DSN Capability). 4481 */ 4482 dsn = pci_get_dsn(pdev); 4483 if (!dsn) 4484 return NULL; 4485 4486 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4487 if (!opt_fw_filename) 4488 return NULL; 4489 4490 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4491 ICE_DDP_PKG_PATH, dsn); 4492 4493 return opt_fw_filename; 4494 } 4495 4496 /** 4497 * ice_request_fw - Device initialization routine 4498 * @pf: pointer to the PF instance 4499 * @firmware: double pointer to firmware struct 4500 * 4501 * Return: zero when successful, negative values otherwise. 4502 */ 4503 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4504 { 4505 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4506 struct device *dev = ice_pf_to_dev(pf); 4507 int err = 0; 4508 4509 /* optional device-specific DDP (if present) overrides the default DDP 4510 * package file. kernel logs a debug message if the file doesn't exist, 4511 * and warning messages for other errors. 4512 */ 4513 if (opt_fw_filename) { 4514 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4515 kfree(opt_fw_filename); 4516 if (!err) 4517 return err; 4518 } 4519 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4520 if (err) 4521 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4522 4523 return err; 4524 } 4525 4526 /** 4527 * ice_init_tx_topology - performs Tx topology initialization 4528 * @hw: pointer to the hardware structure 4529 * @firmware: pointer to firmware structure 4530 * 4531 * Return: zero when init was successful, negative values otherwise. 4532 */ 4533 static int 4534 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4535 { 4536 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4537 struct ice_pf *pf = hw->back; 4538 struct device *dev; 4539 int err; 4540 4541 dev = ice_pf_to_dev(pf); 4542 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4543 if (!err) { 4544 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4545 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4546 else 4547 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4548 /* if there was a change in topology ice_cfg_tx_topo triggered 4549 * a CORER and we need to re-init hw 4550 */ 4551 ice_deinit_hw(hw); 4552 err = ice_init_hw(hw); 4553 4554 return err; 4555 } else if (err == -EIO) { 4556 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4557 } 4558 4559 return 0; 4560 } 4561 4562 /** 4563 * ice_init_ddp_config - DDP related configuration 4564 * @hw: pointer to the hardware structure 4565 * @pf: pointer to pf structure 4566 * 4567 * This function loads DDP file from the disk, then initializes Tx 4568 * topology. At the end DDP package is loaded on the card. 4569 * 4570 * Return: zero when init was successful, negative values otherwise. 4571 */ 4572 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4573 { 4574 struct device *dev = ice_pf_to_dev(pf); 4575 const struct firmware *firmware = NULL; 4576 int err; 4577 4578 err = ice_request_fw(pf, &firmware); 4579 if (err) { 4580 dev_err(dev, "Fail during requesting FW: %d\n", err); 4581 return err; 4582 } 4583 4584 err = ice_init_tx_topology(hw, firmware); 4585 if (err) { 4586 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4587 err); 4588 release_firmware(firmware); 4589 return err; 4590 } 4591 4592 /* Download firmware to device */ 4593 ice_load_pkg(firmware, pf); 4594 release_firmware(firmware); 4595 4596 return 0; 4597 } 4598 4599 /** 4600 * ice_print_wake_reason - show the wake up cause in the log 4601 * @pf: pointer to the PF struct 4602 */ 4603 static void ice_print_wake_reason(struct ice_pf *pf) 4604 { 4605 u32 wus = pf->wakeup_reason; 4606 const char *wake_str; 4607 4608 /* if no wake event, nothing to print */ 4609 if (!wus) 4610 return; 4611 4612 if (wus & PFPM_WUS_LNKC_M) 4613 wake_str = "Link\n"; 4614 else if (wus & PFPM_WUS_MAG_M) 4615 wake_str = "Magic Packet\n"; 4616 else if (wus & PFPM_WUS_MNG_M) 4617 wake_str = "Management\n"; 4618 else if (wus & PFPM_WUS_FW_RST_WK_M) 4619 wake_str = "Firmware Reset\n"; 4620 else 4621 wake_str = "Unknown\n"; 4622 4623 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4624 } 4625 4626 /** 4627 * ice_pf_fwlog_update_module - update 1 module 4628 * @pf: pointer to the PF struct 4629 * @log_level: log_level to use for the @module 4630 * @module: module to update 4631 */ 4632 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4633 { 4634 struct ice_hw *hw = &pf->hw; 4635 4636 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4637 } 4638 4639 /** 4640 * ice_register_netdev - register netdev 4641 * @vsi: pointer to the VSI struct 4642 */ 4643 static int ice_register_netdev(struct ice_vsi *vsi) 4644 { 4645 int err; 4646 4647 if (!vsi || !vsi->netdev) 4648 return -EIO; 4649 4650 err = register_netdev(vsi->netdev); 4651 if (err) 4652 return err; 4653 4654 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4655 netif_carrier_off(vsi->netdev); 4656 netif_tx_stop_all_queues(vsi->netdev); 4657 4658 return 0; 4659 } 4660 4661 static void ice_unregister_netdev(struct ice_vsi *vsi) 4662 { 4663 if (!vsi || !vsi->netdev) 4664 return; 4665 4666 unregister_netdev(vsi->netdev); 4667 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4668 } 4669 4670 /** 4671 * ice_cfg_netdev - Allocate, configure and register a netdev 4672 * @vsi: the VSI associated with the new netdev 4673 * 4674 * Returns 0 on success, negative value on failure 4675 */ 4676 static int ice_cfg_netdev(struct ice_vsi *vsi) 4677 { 4678 struct ice_netdev_priv *np; 4679 struct net_device *netdev; 4680 u8 mac_addr[ETH_ALEN]; 4681 4682 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4683 vsi->alloc_rxq); 4684 if (!netdev) 4685 return -ENOMEM; 4686 4687 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4688 vsi->netdev = netdev; 4689 np = netdev_priv(netdev); 4690 np->vsi = vsi; 4691 4692 ice_set_netdev_features(netdev); 4693 ice_set_ops(vsi); 4694 4695 if (vsi->type == ICE_VSI_PF) { 4696 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4697 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4698 eth_hw_addr_set(netdev, mac_addr); 4699 } 4700 4701 netdev->priv_flags |= IFF_UNICAST_FLT; 4702 4703 /* Setup netdev TC information */ 4704 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4705 4706 netdev->max_mtu = ICE_MAX_MTU; 4707 4708 return 0; 4709 } 4710 4711 static void ice_decfg_netdev(struct ice_vsi *vsi) 4712 { 4713 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4714 free_netdev(vsi->netdev); 4715 vsi->netdev = NULL; 4716 } 4717 4718 /** 4719 * ice_wait_for_fw - wait for full FW readiness 4720 * @hw: pointer to the hardware structure 4721 * @timeout: milliseconds that can elapse before timing out 4722 */ 4723 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4724 { 4725 int fw_loading; 4726 u32 elapsed = 0; 4727 4728 while (elapsed <= timeout) { 4729 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4730 4731 /* firmware was not yet loaded, we have to wait more */ 4732 if (fw_loading) { 4733 elapsed += 100; 4734 msleep(100); 4735 continue; 4736 } 4737 return 0; 4738 } 4739 4740 return -ETIMEDOUT; 4741 } 4742 4743 int ice_init_dev(struct ice_pf *pf) 4744 { 4745 struct device *dev = ice_pf_to_dev(pf); 4746 struct ice_hw *hw = &pf->hw; 4747 int err; 4748 4749 err = ice_init_hw(hw); 4750 if (err) { 4751 dev_err(dev, "ice_init_hw failed: %d\n", err); 4752 return err; 4753 } 4754 4755 /* Some cards require longer initialization times 4756 * due to necessity of loading FW from an external source. 4757 * This can take even half a minute. 4758 */ 4759 if (ice_is_pf_c827(hw)) { 4760 err = ice_wait_for_fw(hw, 30000); 4761 if (err) { 4762 dev_err(dev, "ice_wait_for_fw timed out"); 4763 return err; 4764 } 4765 } 4766 4767 ice_init_feature_support(pf); 4768 4769 err = ice_init_ddp_config(hw, pf); 4770 if (err) 4771 return err; 4772 4773 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4774 * set in pf->state, which will cause ice_is_safe_mode to return 4775 * true 4776 */ 4777 if (ice_is_safe_mode(pf)) { 4778 /* we already got function/device capabilities but these don't 4779 * reflect what the driver needs to do in safe mode. Instead of 4780 * adding conditional logic everywhere to ignore these 4781 * device/function capabilities, override them. 4782 */ 4783 ice_set_safe_mode_caps(hw); 4784 } 4785 4786 err = ice_init_pf(pf); 4787 if (err) { 4788 dev_err(dev, "ice_init_pf failed: %d\n", err); 4789 goto err_init_pf; 4790 } 4791 4792 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4793 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4794 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4795 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4796 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4797 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4798 pf->hw.tnl.valid_count[TNL_VXLAN]; 4799 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4800 UDP_TUNNEL_TYPE_VXLAN; 4801 } 4802 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4803 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4804 pf->hw.tnl.valid_count[TNL_GENEVE]; 4805 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4806 UDP_TUNNEL_TYPE_GENEVE; 4807 } 4808 4809 err = ice_init_interrupt_scheme(pf); 4810 if (err) { 4811 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4812 err = -EIO; 4813 goto err_init_interrupt_scheme; 4814 } 4815 4816 /* In case of MSIX we are going to setup the misc vector right here 4817 * to handle admin queue events etc. In case of legacy and MSI 4818 * the misc functionality and queue processing is combined in 4819 * the same vector and that gets setup at open. 4820 */ 4821 err = ice_req_irq_msix_misc(pf); 4822 if (err) { 4823 dev_err(dev, "setup of misc vector failed: %d\n", err); 4824 goto err_req_irq_msix_misc; 4825 } 4826 4827 return 0; 4828 4829 err_req_irq_msix_misc: 4830 ice_clear_interrupt_scheme(pf); 4831 err_init_interrupt_scheme: 4832 ice_deinit_pf(pf); 4833 err_init_pf: 4834 ice_deinit_hw(hw); 4835 return err; 4836 } 4837 4838 void ice_deinit_dev(struct ice_pf *pf) 4839 { 4840 ice_free_irq_msix_misc(pf); 4841 ice_deinit_pf(pf); 4842 ice_deinit_hw(&pf->hw); 4843 4844 /* Service task is already stopped, so call reset directly. */ 4845 ice_reset(&pf->hw, ICE_RESET_PFR); 4846 pci_wait_for_pending_transaction(pf->pdev); 4847 ice_clear_interrupt_scheme(pf); 4848 } 4849 4850 static void ice_init_features(struct ice_pf *pf) 4851 { 4852 struct device *dev = ice_pf_to_dev(pf); 4853 4854 if (ice_is_safe_mode(pf)) 4855 return; 4856 4857 /* initialize DDP driven features */ 4858 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4859 ice_ptp_init(pf); 4860 4861 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4862 ice_gnss_init(pf); 4863 4864 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4865 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4866 ice_dpll_init(pf); 4867 4868 /* Note: Flow director init failure is non-fatal to load */ 4869 if (ice_init_fdir(pf)) 4870 dev_err(dev, "could not initialize flow director\n"); 4871 4872 /* Note: DCB init failure is non-fatal to load */ 4873 if (ice_init_pf_dcb(pf, false)) { 4874 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4875 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4876 } else { 4877 ice_cfg_lldp_mib_change(&pf->hw, true); 4878 } 4879 4880 if (ice_init_lag(pf)) 4881 dev_warn(dev, "Failed to init link aggregation support\n"); 4882 4883 ice_hwmon_init(pf); 4884 } 4885 4886 static void ice_deinit_features(struct ice_pf *pf) 4887 { 4888 if (ice_is_safe_mode(pf)) 4889 return; 4890 4891 ice_deinit_lag(pf); 4892 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4893 ice_cfg_lldp_mib_change(&pf->hw, false); 4894 ice_deinit_fdir(pf); 4895 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4896 ice_gnss_exit(pf); 4897 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4898 ice_ptp_release(pf); 4899 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4900 ice_dpll_deinit(pf); 4901 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4902 xa_destroy(&pf->eswitch.reprs); 4903 } 4904 4905 static void ice_init_wakeup(struct ice_pf *pf) 4906 { 4907 /* Save wakeup reason register for later use */ 4908 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4909 4910 /* check for a power management event */ 4911 ice_print_wake_reason(pf); 4912 4913 /* clear wake status, all bits */ 4914 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4915 4916 /* Disable WoL at init, wait for user to enable */ 4917 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4918 } 4919 4920 static int ice_init_link(struct ice_pf *pf) 4921 { 4922 struct device *dev = ice_pf_to_dev(pf); 4923 int err; 4924 4925 err = ice_init_link_events(pf->hw.port_info); 4926 if (err) { 4927 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4928 return err; 4929 } 4930 4931 /* not a fatal error if this fails */ 4932 err = ice_init_nvm_phy_type(pf->hw.port_info); 4933 if (err) 4934 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4935 4936 /* not a fatal error if this fails */ 4937 err = ice_update_link_info(pf->hw.port_info); 4938 if (err) 4939 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4940 4941 ice_init_link_dflt_override(pf->hw.port_info); 4942 4943 ice_check_link_cfg_err(pf, 4944 pf->hw.port_info->phy.link_info.link_cfg_err); 4945 4946 /* if media available, initialize PHY settings */ 4947 if (pf->hw.port_info->phy.link_info.link_info & 4948 ICE_AQ_MEDIA_AVAILABLE) { 4949 /* not a fatal error if this fails */ 4950 err = ice_init_phy_user_cfg(pf->hw.port_info); 4951 if (err) 4952 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4953 4954 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4955 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4956 4957 if (vsi) 4958 ice_configure_phy(vsi); 4959 } 4960 } else { 4961 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4962 } 4963 4964 return err; 4965 } 4966 4967 static int ice_init_pf_sw(struct ice_pf *pf) 4968 { 4969 bool dvm = ice_is_dvm_ena(&pf->hw); 4970 struct ice_vsi *vsi; 4971 int err; 4972 4973 /* create switch struct for the switch element created by FW on boot */ 4974 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4975 if (!pf->first_sw) 4976 return -ENOMEM; 4977 4978 if (pf->hw.evb_veb) 4979 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4980 else 4981 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4982 4983 pf->first_sw->pf = pf; 4984 4985 /* record the sw_id available for later use */ 4986 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4987 4988 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4989 if (err) 4990 goto err_aq_set_port_params; 4991 4992 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4993 if (!vsi) { 4994 err = -ENOMEM; 4995 goto err_pf_vsi_setup; 4996 } 4997 4998 return 0; 4999 5000 err_pf_vsi_setup: 5001 err_aq_set_port_params: 5002 kfree(pf->first_sw); 5003 return err; 5004 } 5005 5006 static void ice_deinit_pf_sw(struct ice_pf *pf) 5007 { 5008 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5009 5010 if (!vsi) 5011 return; 5012 5013 ice_vsi_release(vsi); 5014 kfree(pf->first_sw); 5015 } 5016 5017 static int ice_alloc_vsis(struct ice_pf *pf) 5018 { 5019 struct device *dev = ice_pf_to_dev(pf); 5020 5021 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5022 if (!pf->num_alloc_vsi) 5023 return -EIO; 5024 5025 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5026 dev_warn(dev, 5027 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5028 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5029 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5030 } 5031 5032 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5033 GFP_KERNEL); 5034 if (!pf->vsi) 5035 return -ENOMEM; 5036 5037 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5038 sizeof(*pf->vsi_stats), GFP_KERNEL); 5039 if (!pf->vsi_stats) { 5040 devm_kfree(dev, pf->vsi); 5041 return -ENOMEM; 5042 } 5043 5044 return 0; 5045 } 5046 5047 static void ice_dealloc_vsis(struct ice_pf *pf) 5048 { 5049 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5050 pf->vsi_stats = NULL; 5051 5052 pf->num_alloc_vsi = 0; 5053 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5054 pf->vsi = NULL; 5055 } 5056 5057 static int ice_init_devlink(struct ice_pf *pf) 5058 { 5059 int err; 5060 5061 err = ice_devlink_register_params(pf); 5062 if (err) 5063 return err; 5064 5065 ice_devlink_init_regions(pf); 5066 ice_devlink_register(pf); 5067 5068 return 0; 5069 } 5070 5071 static void ice_deinit_devlink(struct ice_pf *pf) 5072 { 5073 ice_devlink_unregister(pf); 5074 ice_devlink_destroy_regions(pf); 5075 ice_devlink_unregister_params(pf); 5076 } 5077 5078 static int ice_init(struct ice_pf *pf) 5079 { 5080 int err; 5081 5082 err = ice_init_dev(pf); 5083 if (err) 5084 return err; 5085 5086 err = ice_alloc_vsis(pf); 5087 if (err) 5088 goto err_alloc_vsis; 5089 5090 err = ice_init_pf_sw(pf); 5091 if (err) 5092 goto err_init_pf_sw; 5093 5094 ice_init_wakeup(pf); 5095 5096 err = ice_init_link(pf); 5097 if (err) 5098 goto err_init_link; 5099 5100 err = ice_send_version(pf); 5101 if (err) 5102 goto err_init_link; 5103 5104 ice_verify_cacheline_size(pf); 5105 5106 if (ice_is_safe_mode(pf)) 5107 ice_set_safe_mode_vlan_cfg(pf); 5108 else 5109 /* print PCI link speed and width */ 5110 pcie_print_link_status(pf->pdev); 5111 5112 /* ready to go, so clear down state bit */ 5113 clear_bit(ICE_DOWN, pf->state); 5114 clear_bit(ICE_SERVICE_DIS, pf->state); 5115 5116 /* since everything is good, start the service timer */ 5117 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5118 5119 return 0; 5120 5121 err_init_link: 5122 ice_deinit_pf_sw(pf); 5123 err_init_pf_sw: 5124 ice_dealloc_vsis(pf); 5125 err_alloc_vsis: 5126 ice_deinit_dev(pf); 5127 return err; 5128 } 5129 5130 static void ice_deinit(struct ice_pf *pf) 5131 { 5132 set_bit(ICE_SERVICE_DIS, pf->state); 5133 set_bit(ICE_DOWN, pf->state); 5134 5135 ice_deinit_pf_sw(pf); 5136 ice_dealloc_vsis(pf); 5137 ice_deinit_dev(pf); 5138 } 5139 5140 /** 5141 * ice_load - load pf by init hw and starting VSI 5142 * @pf: pointer to the pf instance 5143 * 5144 * This function has to be called under devl_lock. 5145 */ 5146 int ice_load(struct ice_pf *pf) 5147 { 5148 struct ice_vsi *vsi; 5149 int err; 5150 5151 devl_assert_locked(priv_to_devlink(pf)); 5152 5153 vsi = ice_get_main_vsi(pf); 5154 5155 /* init channel list */ 5156 INIT_LIST_HEAD(&vsi->ch_list); 5157 5158 err = ice_cfg_netdev(vsi); 5159 if (err) 5160 return err; 5161 5162 /* Setup DCB netlink interface */ 5163 ice_dcbnl_setup(vsi); 5164 5165 err = ice_init_mac_fltr(pf); 5166 if (err) 5167 goto err_init_mac_fltr; 5168 5169 err = ice_devlink_create_pf_port(pf); 5170 if (err) 5171 goto err_devlink_create_pf_port; 5172 5173 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5174 5175 err = ice_register_netdev(vsi); 5176 if (err) 5177 goto err_register_netdev; 5178 5179 err = ice_tc_indir_block_register(vsi); 5180 if (err) 5181 goto err_tc_indir_block_register; 5182 5183 ice_napi_add(vsi); 5184 5185 err = ice_init_rdma(pf); 5186 if (err) 5187 goto err_init_rdma; 5188 5189 ice_init_features(pf); 5190 ice_service_task_restart(pf); 5191 5192 clear_bit(ICE_DOWN, pf->state); 5193 5194 return 0; 5195 5196 err_init_rdma: 5197 ice_tc_indir_block_unregister(vsi); 5198 err_tc_indir_block_register: 5199 ice_unregister_netdev(vsi); 5200 err_register_netdev: 5201 ice_devlink_destroy_pf_port(pf); 5202 err_devlink_create_pf_port: 5203 err_init_mac_fltr: 5204 ice_decfg_netdev(vsi); 5205 return err; 5206 } 5207 5208 /** 5209 * ice_unload - unload pf by stopping VSI and deinit hw 5210 * @pf: pointer to the pf instance 5211 * 5212 * This function has to be called under devl_lock. 5213 */ 5214 void ice_unload(struct ice_pf *pf) 5215 { 5216 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5217 5218 devl_assert_locked(priv_to_devlink(pf)); 5219 5220 ice_deinit_features(pf); 5221 ice_deinit_rdma(pf); 5222 ice_tc_indir_block_unregister(vsi); 5223 ice_unregister_netdev(vsi); 5224 ice_devlink_destroy_pf_port(pf); 5225 ice_decfg_netdev(vsi); 5226 } 5227 5228 /** 5229 * ice_probe - Device initialization routine 5230 * @pdev: PCI device information struct 5231 * @ent: entry in ice_pci_tbl 5232 * 5233 * Returns 0 on success, negative on failure 5234 */ 5235 static int 5236 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5237 { 5238 struct device *dev = &pdev->dev; 5239 struct ice_adapter *adapter; 5240 struct ice_pf *pf; 5241 struct ice_hw *hw; 5242 int err; 5243 5244 if (pdev->is_virtfn) { 5245 dev_err(dev, "can't probe a virtual function\n"); 5246 return -EINVAL; 5247 } 5248 5249 /* when under a kdump kernel initiate a reset before enabling the 5250 * device in order to clear out any pending DMA transactions. These 5251 * transactions can cause some systems to machine check when doing 5252 * the pcim_enable_device() below. 5253 */ 5254 if (is_kdump_kernel()) { 5255 pci_save_state(pdev); 5256 pci_clear_master(pdev); 5257 err = pcie_flr(pdev); 5258 if (err) 5259 return err; 5260 pci_restore_state(pdev); 5261 } 5262 5263 /* this driver uses devres, see 5264 * Documentation/driver-api/driver-model/devres.rst 5265 */ 5266 err = pcim_enable_device(pdev); 5267 if (err) 5268 return err; 5269 5270 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5271 if (err) { 5272 dev_err(dev, "BAR0 I/O map error %d\n", err); 5273 return err; 5274 } 5275 5276 pf = ice_allocate_pf(dev); 5277 if (!pf) 5278 return -ENOMEM; 5279 5280 /* initialize Auxiliary index to invalid value */ 5281 pf->aux_idx = -1; 5282 5283 /* set up for high or low DMA */ 5284 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5285 if (err) { 5286 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5287 return err; 5288 } 5289 5290 pci_set_master(pdev); 5291 5292 adapter = ice_adapter_get(pdev); 5293 if (IS_ERR(adapter)) 5294 return PTR_ERR(adapter); 5295 5296 pf->pdev = pdev; 5297 pf->adapter = adapter; 5298 pci_set_drvdata(pdev, pf); 5299 set_bit(ICE_DOWN, pf->state); 5300 /* Disable service task until DOWN bit is cleared */ 5301 set_bit(ICE_SERVICE_DIS, pf->state); 5302 5303 hw = &pf->hw; 5304 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5305 pci_save_state(pdev); 5306 5307 hw->back = pf; 5308 hw->port_info = NULL; 5309 hw->vendor_id = pdev->vendor; 5310 hw->device_id = pdev->device; 5311 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5312 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5313 hw->subsystem_device_id = pdev->subsystem_device; 5314 hw->bus.device = PCI_SLOT(pdev->devfn); 5315 hw->bus.func = PCI_FUNC(pdev->devfn); 5316 ice_set_ctrlq_len(hw); 5317 5318 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5319 5320 #ifndef CONFIG_DYNAMIC_DEBUG 5321 if (debug < -1) 5322 hw->debug_mask = debug; 5323 #endif 5324 5325 err = ice_init(pf); 5326 if (err) 5327 goto err_init; 5328 5329 devl_lock(priv_to_devlink(pf)); 5330 err = ice_load(pf); 5331 if (err) 5332 goto err_load; 5333 5334 err = ice_init_devlink(pf); 5335 if (err) 5336 goto err_init_devlink; 5337 devl_unlock(priv_to_devlink(pf)); 5338 5339 return 0; 5340 5341 err_init_devlink: 5342 ice_unload(pf); 5343 err_load: 5344 devl_unlock(priv_to_devlink(pf)); 5345 ice_deinit(pf); 5346 err_init: 5347 ice_adapter_put(pdev); 5348 return err; 5349 } 5350 5351 /** 5352 * ice_set_wake - enable or disable Wake on LAN 5353 * @pf: pointer to the PF struct 5354 * 5355 * Simple helper for WoL control 5356 */ 5357 static void ice_set_wake(struct ice_pf *pf) 5358 { 5359 struct ice_hw *hw = &pf->hw; 5360 bool wol = pf->wol_ena; 5361 5362 /* clear wake state, otherwise new wake events won't fire */ 5363 wr32(hw, PFPM_WUS, U32_MAX); 5364 5365 /* enable / disable APM wake up, no RMW needed */ 5366 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5367 5368 /* set magic packet filter enabled */ 5369 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5370 } 5371 5372 /** 5373 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5374 * @pf: pointer to the PF struct 5375 * 5376 * Issue firmware command to enable multicast magic wake, making 5377 * sure that any locally administered address (LAA) is used for 5378 * wake, and that PF reset doesn't undo the LAA. 5379 */ 5380 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5381 { 5382 struct device *dev = ice_pf_to_dev(pf); 5383 struct ice_hw *hw = &pf->hw; 5384 u8 mac_addr[ETH_ALEN]; 5385 struct ice_vsi *vsi; 5386 int status; 5387 u8 flags; 5388 5389 if (!pf->wol_ena) 5390 return; 5391 5392 vsi = ice_get_main_vsi(pf); 5393 if (!vsi) 5394 return; 5395 5396 /* Get current MAC address in case it's an LAA */ 5397 if (vsi->netdev) 5398 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5399 else 5400 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5401 5402 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5403 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5404 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5405 5406 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5407 if (status) 5408 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5409 status, ice_aq_str(hw->adminq.sq_last_status)); 5410 } 5411 5412 /** 5413 * ice_remove - Device removal routine 5414 * @pdev: PCI device information struct 5415 */ 5416 static void ice_remove(struct pci_dev *pdev) 5417 { 5418 struct ice_pf *pf = pci_get_drvdata(pdev); 5419 int i; 5420 5421 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5422 if (!ice_is_reset_in_progress(pf->state)) 5423 break; 5424 msleep(100); 5425 } 5426 5427 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5428 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5429 ice_free_vfs(pf); 5430 } 5431 5432 ice_hwmon_exit(pf); 5433 5434 ice_service_task_stop(pf); 5435 ice_aq_cancel_waiting_tasks(pf); 5436 set_bit(ICE_DOWN, pf->state); 5437 5438 if (!ice_is_safe_mode(pf)) 5439 ice_remove_arfs(pf); 5440 5441 devl_lock(priv_to_devlink(pf)); 5442 ice_dealloc_all_dynamic_ports(pf); 5443 ice_deinit_devlink(pf); 5444 5445 ice_unload(pf); 5446 devl_unlock(priv_to_devlink(pf)); 5447 5448 ice_deinit(pf); 5449 ice_vsi_release_all(pf); 5450 5451 ice_setup_mc_magic_wake(pf); 5452 ice_set_wake(pf); 5453 5454 ice_adapter_put(pdev); 5455 } 5456 5457 /** 5458 * ice_shutdown - PCI callback for shutting down device 5459 * @pdev: PCI device information struct 5460 */ 5461 static void ice_shutdown(struct pci_dev *pdev) 5462 { 5463 struct ice_pf *pf = pci_get_drvdata(pdev); 5464 5465 ice_remove(pdev); 5466 5467 if (system_state == SYSTEM_POWER_OFF) { 5468 pci_wake_from_d3(pdev, pf->wol_ena); 5469 pci_set_power_state(pdev, PCI_D3hot); 5470 } 5471 } 5472 5473 /** 5474 * ice_prepare_for_shutdown - prep for PCI shutdown 5475 * @pf: board private structure 5476 * 5477 * Inform or close all dependent features in prep for PCI device shutdown 5478 */ 5479 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5480 { 5481 struct ice_hw *hw = &pf->hw; 5482 u32 v; 5483 5484 /* Notify VFs of impending reset */ 5485 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5486 ice_vc_notify_reset(pf); 5487 5488 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5489 5490 /* disable the VSIs and their queues that are not already DOWN */ 5491 ice_pf_dis_all_vsi(pf, false); 5492 5493 ice_for_each_vsi(pf, v) 5494 if (pf->vsi[v]) 5495 pf->vsi[v]->vsi_num = 0; 5496 5497 ice_shutdown_all_ctrlq(hw, true); 5498 } 5499 5500 /** 5501 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5502 * @pf: board private structure to reinitialize 5503 * 5504 * This routine reinitialize interrupt scheme that was cleared during 5505 * power management suspend callback. 5506 * 5507 * This should be called during resume routine to re-allocate the q_vectors 5508 * and reacquire interrupts. 5509 */ 5510 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5511 { 5512 struct device *dev = ice_pf_to_dev(pf); 5513 int ret, v; 5514 5515 /* Since we clear MSIX flag during suspend, we need to 5516 * set it back during resume... 5517 */ 5518 5519 ret = ice_init_interrupt_scheme(pf); 5520 if (ret) { 5521 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5522 return ret; 5523 } 5524 5525 /* Remap vectors and rings, after successful re-init interrupts */ 5526 ice_for_each_vsi(pf, v) { 5527 if (!pf->vsi[v]) 5528 continue; 5529 5530 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5531 if (ret) 5532 goto err_reinit; 5533 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5534 rtnl_lock(); 5535 ice_vsi_set_napi_queues(pf->vsi[v]); 5536 rtnl_unlock(); 5537 } 5538 5539 ret = ice_req_irq_msix_misc(pf); 5540 if (ret) { 5541 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5542 ret); 5543 goto err_reinit; 5544 } 5545 5546 return 0; 5547 5548 err_reinit: 5549 while (v--) 5550 if (pf->vsi[v]) { 5551 rtnl_lock(); 5552 ice_vsi_clear_napi_queues(pf->vsi[v]); 5553 rtnl_unlock(); 5554 ice_vsi_free_q_vectors(pf->vsi[v]); 5555 } 5556 5557 return ret; 5558 } 5559 5560 /** 5561 * ice_suspend 5562 * @dev: generic device information structure 5563 * 5564 * Power Management callback to quiesce the device and prepare 5565 * for D3 transition. 5566 */ 5567 static int ice_suspend(struct device *dev) 5568 { 5569 struct pci_dev *pdev = to_pci_dev(dev); 5570 struct ice_pf *pf; 5571 int disabled, v; 5572 5573 pf = pci_get_drvdata(pdev); 5574 5575 if (!ice_pf_state_is_nominal(pf)) { 5576 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5577 return -EBUSY; 5578 } 5579 5580 /* Stop watchdog tasks until resume completion. 5581 * Even though it is most likely that the service task is 5582 * disabled if the device is suspended or down, the service task's 5583 * state is controlled by a different state bit, and we should 5584 * store and honor whatever state that bit is in at this point. 5585 */ 5586 disabled = ice_service_task_stop(pf); 5587 5588 ice_deinit_rdma(pf); 5589 5590 /* Already suspended?, then there is nothing to do */ 5591 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5592 if (!disabled) 5593 ice_service_task_restart(pf); 5594 return 0; 5595 } 5596 5597 if (test_bit(ICE_DOWN, pf->state) || 5598 ice_is_reset_in_progress(pf->state)) { 5599 dev_err(dev, "can't suspend device in reset or already down\n"); 5600 if (!disabled) 5601 ice_service_task_restart(pf); 5602 return 0; 5603 } 5604 5605 ice_setup_mc_magic_wake(pf); 5606 5607 ice_prepare_for_shutdown(pf); 5608 5609 ice_set_wake(pf); 5610 5611 /* Free vectors, clear the interrupt scheme and release IRQs 5612 * for proper hibernation, especially with large number of CPUs. 5613 * Otherwise hibernation might fail when mapping all the vectors back 5614 * to CPU0. 5615 */ 5616 ice_free_irq_msix_misc(pf); 5617 ice_for_each_vsi(pf, v) { 5618 if (!pf->vsi[v]) 5619 continue; 5620 rtnl_lock(); 5621 ice_vsi_clear_napi_queues(pf->vsi[v]); 5622 rtnl_unlock(); 5623 ice_vsi_free_q_vectors(pf->vsi[v]); 5624 } 5625 ice_clear_interrupt_scheme(pf); 5626 5627 pci_save_state(pdev); 5628 pci_wake_from_d3(pdev, pf->wol_ena); 5629 pci_set_power_state(pdev, PCI_D3hot); 5630 return 0; 5631 } 5632 5633 /** 5634 * ice_resume - PM callback for waking up from D3 5635 * @dev: generic device information structure 5636 */ 5637 static int ice_resume(struct device *dev) 5638 { 5639 struct pci_dev *pdev = to_pci_dev(dev); 5640 enum ice_reset_req reset_type; 5641 struct ice_pf *pf; 5642 struct ice_hw *hw; 5643 int ret; 5644 5645 pci_set_power_state(pdev, PCI_D0); 5646 pci_restore_state(pdev); 5647 pci_save_state(pdev); 5648 5649 if (!pci_device_is_present(pdev)) 5650 return -ENODEV; 5651 5652 ret = pci_enable_device_mem(pdev); 5653 if (ret) { 5654 dev_err(dev, "Cannot enable device after suspend\n"); 5655 return ret; 5656 } 5657 5658 pf = pci_get_drvdata(pdev); 5659 hw = &pf->hw; 5660 5661 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5662 ice_print_wake_reason(pf); 5663 5664 /* We cleared the interrupt scheme when we suspended, so we need to 5665 * restore it now to resume device functionality. 5666 */ 5667 ret = ice_reinit_interrupt_scheme(pf); 5668 if (ret) 5669 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5670 5671 ret = ice_init_rdma(pf); 5672 if (ret) 5673 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5674 ret); 5675 5676 clear_bit(ICE_DOWN, pf->state); 5677 /* Now perform PF reset and rebuild */ 5678 reset_type = ICE_RESET_PFR; 5679 /* re-enable service task for reset, but allow reset to schedule it */ 5680 clear_bit(ICE_SERVICE_DIS, pf->state); 5681 5682 if (ice_schedule_reset(pf, reset_type)) 5683 dev_err(dev, "Reset during resume failed.\n"); 5684 5685 clear_bit(ICE_SUSPENDED, pf->state); 5686 ice_service_task_restart(pf); 5687 5688 /* Restart the service task */ 5689 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5690 5691 return 0; 5692 } 5693 5694 /** 5695 * ice_pci_err_detected - warning that PCI error has been detected 5696 * @pdev: PCI device information struct 5697 * @err: the type of PCI error 5698 * 5699 * Called to warn that something happened on the PCI bus and the error handling 5700 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5701 */ 5702 static pci_ers_result_t 5703 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5704 { 5705 struct ice_pf *pf = pci_get_drvdata(pdev); 5706 5707 if (!pf) { 5708 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5709 __func__, err); 5710 return PCI_ERS_RESULT_DISCONNECT; 5711 } 5712 5713 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5714 ice_service_task_stop(pf); 5715 5716 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5717 set_bit(ICE_PFR_REQ, pf->state); 5718 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5719 } 5720 } 5721 5722 return PCI_ERS_RESULT_NEED_RESET; 5723 } 5724 5725 /** 5726 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5727 * @pdev: PCI device information struct 5728 * 5729 * Called to determine if the driver can recover from the PCI slot reset by 5730 * using a register read to determine if the device is recoverable. 5731 */ 5732 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5733 { 5734 struct ice_pf *pf = pci_get_drvdata(pdev); 5735 pci_ers_result_t result; 5736 int err; 5737 u32 reg; 5738 5739 err = pci_enable_device_mem(pdev); 5740 if (err) { 5741 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5742 err); 5743 result = PCI_ERS_RESULT_DISCONNECT; 5744 } else { 5745 pci_set_master(pdev); 5746 pci_restore_state(pdev); 5747 pci_save_state(pdev); 5748 pci_wake_from_d3(pdev, false); 5749 5750 /* Check for life */ 5751 reg = rd32(&pf->hw, GLGEN_RTRIG); 5752 if (!reg) 5753 result = PCI_ERS_RESULT_RECOVERED; 5754 else 5755 result = PCI_ERS_RESULT_DISCONNECT; 5756 } 5757 5758 return result; 5759 } 5760 5761 /** 5762 * ice_pci_err_resume - restart operations after PCI error recovery 5763 * @pdev: PCI device information struct 5764 * 5765 * Called to allow the driver to bring things back up after PCI error and/or 5766 * reset recovery have finished 5767 */ 5768 static void ice_pci_err_resume(struct pci_dev *pdev) 5769 { 5770 struct ice_pf *pf = pci_get_drvdata(pdev); 5771 5772 if (!pf) { 5773 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5774 __func__); 5775 return; 5776 } 5777 5778 if (test_bit(ICE_SUSPENDED, pf->state)) { 5779 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5780 __func__); 5781 return; 5782 } 5783 5784 ice_restore_all_vfs_msi_state(pf); 5785 5786 ice_do_reset(pf, ICE_RESET_PFR); 5787 ice_service_task_restart(pf); 5788 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5789 } 5790 5791 /** 5792 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5793 * @pdev: PCI device information struct 5794 */ 5795 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5796 { 5797 struct ice_pf *pf = pci_get_drvdata(pdev); 5798 5799 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5800 ice_service_task_stop(pf); 5801 5802 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5803 set_bit(ICE_PFR_REQ, pf->state); 5804 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5805 } 5806 } 5807 } 5808 5809 /** 5810 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5811 * @pdev: PCI device information struct 5812 */ 5813 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5814 { 5815 ice_pci_err_resume(pdev); 5816 } 5817 5818 /* ice_pci_tbl - PCI Device ID Table 5819 * 5820 * Wildcard entries (PCI_ANY_ID) should come last 5821 * Last entry must be all 0s 5822 * 5823 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5824 * Class, Class Mask, private data (not used) } 5825 */ 5826 static const struct pci_device_id ice_pci_tbl[] = { 5827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5831 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5832 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5867 /* required last entry */ 5868 {} 5869 }; 5870 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5871 5872 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5873 5874 static const struct pci_error_handlers ice_pci_err_handler = { 5875 .error_detected = ice_pci_err_detected, 5876 .slot_reset = ice_pci_err_slot_reset, 5877 .reset_prepare = ice_pci_err_reset_prepare, 5878 .reset_done = ice_pci_err_reset_done, 5879 .resume = ice_pci_err_resume 5880 }; 5881 5882 static struct pci_driver ice_driver = { 5883 .name = KBUILD_MODNAME, 5884 .id_table = ice_pci_tbl, 5885 .probe = ice_probe, 5886 .remove = ice_remove, 5887 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5888 .shutdown = ice_shutdown, 5889 .sriov_configure = ice_sriov_configure, 5890 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5891 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5892 .err_handler = &ice_pci_err_handler 5893 }; 5894 5895 /** 5896 * ice_module_init - Driver registration routine 5897 * 5898 * ice_module_init is the first routine called when the driver is 5899 * loaded. All it does is register with the PCI subsystem. 5900 */ 5901 static int __init ice_module_init(void) 5902 { 5903 int status = -ENOMEM; 5904 5905 pr_info("%s\n", ice_driver_string); 5906 pr_info("%s\n", ice_copyright); 5907 5908 ice_adv_lnk_speed_maps_init(); 5909 5910 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5911 if (!ice_wq) { 5912 pr_err("Failed to create workqueue\n"); 5913 return status; 5914 } 5915 5916 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5917 if (!ice_lag_wq) { 5918 pr_err("Failed to create LAG workqueue\n"); 5919 goto err_dest_wq; 5920 } 5921 5922 ice_debugfs_init(); 5923 5924 status = pci_register_driver(&ice_driver); 5925 if (status) { 5926 pr_err("failed to register PCI driver, err %d\n", status); 5927 goto err_dest_lag_wq; 5928 } 5929 5930 status = ice_sf_driver_register(); 5931 if (status) { 5932 pr_err("Failed to register SF driver, err %d\n", status); 5933 goto err_sf_driver; 5934 } 5935 5936 return 0; 5937 5938 err_sf_driver: 5939 pci_unregister_driver(&ice_driver); 5940 err_dest_lag_wq: 5941 destroy_workqueue(ice_lag_wq); 5942 ice_debugfs_exit(); 5943 err_dest_wq: 5944 destroy_workqueue(ice_wq); 5945 return status; 5946 } 5947 module_init(ice_module_init); 5948 5949 /** 5950 * ice_module_exit - Driver exit cleanup routine 5951 * 5952 * ice_module_exit is called just before the driver is removed 5953 * from memory. 5954 */ 5955 static void __exit ice_module_exit(void) 5956 { 5957 ice_sf_driver_unregister(); 5958 pci_unregister_driver(&ice_driver); 5959 ice_debugfs_exit(); 5960 destroy_workqueue(ice_wq); 5961 destroy_workqueue(ice_lag_wq); 5962 pr_info("module unloaded\n"); 5963 } 5964 module_exit(ice_module_exit); 5965 5966 /** 5967 * ice_set_mac_address - NDO callback to set MAC address 5968 * @netdev: network interface device structure 5969 * @pi: pointer to an address structure 5970 * 5971 * Returns 0 on success, negative on failure 5972 */ 5973 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5974 { 5975 struct ice_netdev_priv *np = netdev_priv(netdev); 5976 struct ice_vsi *vsi = np->vsi; 5977 struct ice_pf *pf = vsi->back; 5978 struct ice_hw *hw = &pf->hw; 5979 struct sockaddr *addr = pi; 5980 u8 old_mac[ETH_ALEN]; 5981 u8 flags = 0; 5982 u8 *mac; 5983 int err; 5984 5985 mac = (u8 *)addr->sa_data; 5986 5987 if (!is_valid_ether_addr(mac)) 5988 return -EADDRNOTAVAIL; 5989 5990 if (test_bit(ICE_DOWN, pf->state) || 5991 ice_is_reset_in_progress(pf->state)) { 5992 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5993 mac); 5994 return -EBUSY; 5995 } 5996 5997 if (ice_chnl_dmac_fltr_cnt(pf)) { 5998 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5999 mac); 6000 return -EAGAIN; 6001 } 6002 6003 netif_addr_lock_bh(netdev); 6004 ether_addr_copy(old_mac, netdev->dev_addr); 6005 /* change the netdev's MAC address */ 6006 eth_hw_addr_set(netdev, mac); 6007 netif_addr_unlock_bh(netdev); 6008 6009 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6010 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6011 if (err && err != -ENOENT) { 6012 err = -EADDRNOTAVAIL; 6013 goto err_update_filters; 6014 } 6015 6016 /* Add filter for new MAC. If filter exists, return success */ 6017 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6018 if (err == -EEXIST) { 6019 /* Although this MAC filter is already present in hardware it's 6020 * possible in some cases (e.g. bonding) that dev_addr was 6021 * modified outside of the driver and needs to be restored back 6022 * to this value. 6023 */ 6024 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6025 6026 return 0; 6027 } else if (err) { 6028 /* error if the new filter addition failed */ 6029 err = -EADDRNOTAVAIL; 6030 } 6031 6032 err_update_filters: 6033 if (err) { 6034 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6035 mac); 6036 netif_addr_lock_bh(netdev); 6037 eth_hw_addr_set(netdev, old_mac); 6038 netif_addr_unlock_bh(netdev); 6039 return err; 6040 } 6041 6042 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6043 netdev->dev_addr); 6044 6045 /* write new MAC address to the firmware */ 6046 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6047 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6048 if (err) { 6049 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6050 mac, err); 6051 } 6052 return 0; 6053 } 6054 6055 /** 6056 * ice_set_rx_mode - NDO callback to set the netdev filters 6057 * @netdev: network interface device structure 6058 */ 6059 static void ice_set_rx_mode(struct net_device *netdev) 6060 { 6061 struct ice_netdev_priv *np = netdev_priv(netdev); 6062 struct ice_vsi *vsi = np->vsi; 6063 6064 if (!vsi || ice_is_switchdev_running(vsi->back)) 6065 return; 6066 6067 /* Set the flags to synchronize filters 6068 * ndo_set_rx_mode may be triggered even without a change in netdev 6069 * flags 6070 */ 6071 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6072 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6073 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6074 6075 /* schedule our worker thread which will take care of 6076 * applying the new filter changes 6077 */ 6078 ice_service_task_schedule(vsi->back); 6079 } 6080 6081 /** 6082 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6083 * @netdev: network interface device structure 6084 * @queue_index: Queue ID 6085 * @maxrate: maximum bandwidth in Mbps 6086 */ 6087 static int 6088 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6089 { 6090 struct ice_netdev_priv *np = netdev_priv(netdev); 6091 struct ice_vsi *vsi = np->vsi; 6092 u16 q_handle; 6093 int status; 6094 u8 tc; 6095 6096 /* Validate maxrate requested is within permitted range */ 6097 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6098 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6099 maxrate, queue_index); 6100 return -EINVAL; 6101 } 6102 6103 q_handle = vsi->tx_rings[queue_index]->q_handle; 6104 tc = ice_dcb_get_tc(vsi, queue_index); 6105 6106 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6107 if (!vsi) { 6108 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6109 queue_index); 6110 return -EINVAL; 6111 } 6112 6113 /* Set BW back to default, when user set maxrate to 0 */ 6114 if (!maxrate) 6115 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6116 q_handle, ICE_MAX_BW); 6117 else 6118 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6119 q_handle, ICE_MAX_BW, maxrate * 1000); 6120 if (status) 6121 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6122 status); 6123 6124 return status; 6125 } 6126 6127 /** 6128 * ice_fdb_add - add an entry to the hardware database 6129 * @ndm: the input from the stack 6130 * @tb: pointer to array of nladdr (unused) 6131 * @dev: the net device pointer 6132 * @addr: the MAC address entry being added 6133 * @vid: VLAN ID 6134 * @flags: instructions from stack about fdb operation 6135 * @extack: netlink extended ack 6136 */ 6137 static int 6138 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6139 struct net_device *dev, const unsigned char *addr, u16 vid, 6140 u16 flags, struct netlink_ext_ack __always_unused *extack) 6141 { 6142 int err; 6143 6144 if (vid) { 6145 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6146 return -EINVAL; 6147 } 6148 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6149 netdev_err(dev, "FDB only supports static addresses\n"); 6150 return -EINVAL; 6151 } 6152 6153 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6154 err = dev_uc_add_excl(dev, addr); 6155 else if (is_multicast_ether_addr(addr)) 6156 err = dev_mc_add_excl(dev, addr); 6157 else 6158 err = -EINVAL; 6159 6160 /* Only return duplicate errors if NLM_F_EXCL is set */ 6161 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6162 err = 0; 6163 6164 return err; 6165 } 6166 6167 /** 6168 * ice_fdb_del - delete an entry from the hardware database 6169 * @ndm: the input from the stack 6170 * @tb: pointer to array of nladdr (unused) 6171 * @dev: the net device pointer 6172 * @addr: the MAC address entry being added 6173 * @vid: VLAN ID 6174 * @extack: netlink extended ack 6175 */ 6176 static int 6177 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6178 struct net_device *dev, const unsigned char *addr, 6179 __always_unused u16 vid, struct netlink_ext_ack *extack) 6180 { 6181 int err; 6182 6183 if (ndm->ndm_state & NUD_PERMANENT) { 6184 netdev_err(dev, "FDB only supports static addresses\n"); 6185 return -EINVAL; 6186 } 6187 6188 if (is_unicast_ether_addr(addr)) 6189 err = dev_uc_del(dev, addr); 6190 else if (is_multicast_ether_addr(addr)) 6191 err = dev_mc_del(dev, addr); 6192 else 6193 err = -EINVAL; 6194 6195 return err; 6196 } 6197 6198 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6199 NETIF_F_HW_VLAN_CTAG_TX | \ 6200 NETIF_F_HW_VLAN_STAG_RX | \ 6201 NETIF_F_HW_VLAN_STAG_TX) 6202 6203 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6204 NETIF_F_HW_VLAN_STAG_RX) 6205 6206 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6207 NETIF_F_HW_VLAN_STAG_FILTER) 6208 6209 /** 6210 * ice_fix_features - fix the netdev features flags based on device limitations 6211 * @netdev: ptr to the netdev that flags are being fixed on 6212 * @features: features that need to be checked and possibly fixed 6213 * 6214 * Make sure any fixups are made to features in this callback. This enables the 6215 * driver to not have to check unsupported configurations throughout the driver 6216 * because that's the responsiblity of this callback. 6217 * 6218 * Single VLAN Mode (SVM) Supported Features: 6219 * NETIF_F_HW_VLAN_CTAG_FILTER 6220 * NETIF_F_HW_VLAN_CTAG_RX 6221 * NETIF_F_HW_VLAN_CTAG_TX 6222 * 6223 * Double VLAN Mode (DVM) Supported Features: 6224 * NETIF_F_HW_VLAN_CTAG_FILTER 6225 * NETIF_F_HW_VLAN_CTAG_RX 6226 * NETIF_F_HW_VLAN_CTAG_TX 6227 * 6228 * NETIF_F_HW_VLAN_STAG_FILTER 6229 * NETIF_HW_VLAN_STAG_RX 6230 * NETIF_HW_VLAN_STAG_TX 6231 * 6232 * Features that need fixing: 6233 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6234 * These are mutually exlusive as the VSI context cannot support multiple 6235 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6236 * is not done, then default to clearing the requested STAG offload 6237 * settings. 6238 * 6239 * All supported filtering has to be enabled or disabled together. For 6240 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6241 * together. If this is not done, then default to VLAN filtering disabled. 6242 * These are mutually exclusive as there is currently no way to 6243 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6244 * prune rules. 6245 */ 6246 static netdev_features_t 6247 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6248 { 6249 struct ice_netdev_priv *np = netdev_priv(netdev); 6250 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6251 bool cur_ctag, cur_stag, req_ctag, req_stag; 6252 6253 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6254 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6255 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6256 6257 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6258 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6259 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6260 6261 if (req_vlan_fltr != cur_vlan_fltr) { 6262 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6263 if (req_ctag && req_stag) { 6264 features |= NETIF_VLAN_FILTERING_FEATURES; 6265 } else if (!req_ctag && !req_stag) { 6266 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6267 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6268 (!cur_stag && req_stag && !cur_ctag)) { 6269 features |= NETIF_VLAN_FILTERING_FEATURES; 6270 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6271 } else if ((cur_ctag && !req_ctag && cur_stag) || 6272 (cur_stag && !req_stag && cur_ctag)) { 6273 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6274 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6275 } 6276 } else { 6277 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6278 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6279 6280 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6281 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6282 } 6283 } 6284 6285 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6286 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6287 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6288 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6289 NETIF_F_HW_VLAN_STAG_TX); 6290 } 6291 6292 if (!(netdev->features & NETIF_F_RXFCS) && 6293 (features & NETIF_F_RXFCS) && 6294 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6295 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6296 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6297 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6298 } 6299 6300 return features; 6301 } 6302 6303 /** 6304 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6305 * @vsi: PF's VSI 6306 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6307 * 6308 * Store current stripped VLAN proto in ring packet context, 6309 * so it can be accessed more efficiently by packet processing code. 6310 */ 6311 static void 6312 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6313 { 6314 u16 i; 6315 6316 ice_for_each_alloc_rxq(vsi, i) 6317 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6318 } 6319 6320 /** 6321 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6322 * @vsi: PF's VSI 6323 * @features: features used to determine VLAN offload settings 6324 * 6325 * First, determine the vlan_ethertype based on the VLAN offload bits in 6326 * features. Then determine if stripping and insertion should be enabled or 6327 * disabled. Finally enable or disable VLAN stripping and insertion. 6328 */ 6329 static int 6330 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6331 { 6332 bool enable_stripping = true, enable_insertion = true; 6333 struct ice_vsi_vlan_ops *vlan_ops; 6334 int strip_err = 0, insert_err = 0; 6335 u16 vlan_ethertype = 0; 6336 6337 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6338 6339 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6340 vlan_ethertype = ETH_P_8021AD; 6341 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6342 vlan_ethertype = ETH_P_8021Q; 6343 6344 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6345 enable_stripping = false; 6346 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6347 enable_insertion = false; 6348 6349 if (enable_stripping) 6350 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6351 else 6352 strip_err = vlan_ops->dis_stripping(vsi); 6353 6354 if (enable_insertion) 6355 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6356 else 6357 insert_err = vlan_ops->dis_insertion(vsi); 6358 6359 if (strip_err || insert_err) 6360 return -EIO; 6361 6362 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6363 htons(vlan_ethertype) : 0); 6364 6365 return 0; 6366 } 6367 6368 /** 6369 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6370 * @vsi: PF's VSI 6371 * @features: features used to determine VLAN filtering settings 6372 * 6373 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6374 * features. 6375 */ 6376 static int 6377 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6378 { 6379 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6380 int err = 0; 6381 6382 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6383 * if either bit is set 6384 */ 6385 if (features & 6386 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6387 err = vlan_ops->ena_rx_filtering(vsi); 6388 else 6389 err = vlan_ops->dis_rx_filtering(vsi); 6390 6391 return err; 6392 } 6393 6394 /** 6395 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6396 * @netdev: ptr to the netdev being adjusted 6397 * @features: the feature set that the stack is suggesting 6398 * 6399 * Only update VLAN settings if the requested_vlan_features are different than 6400 * the current_vlan_features. 6401 */ 6402 static int 6403 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6404 { 6405 netdev_features_t current_vlan_features, requested_vlan_features; 6406 struct ice_netdev_priv *np = netdev_priv(netdev); 6407 struct ice_vsi *vsi = np->vsi; 6408 int err; 6409 6410 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6411 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6412 if (current_vlan_features ^ requested_vlan_features) { 6413 if ((features & NETIF_F_RXFCS) && 6414 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6415 dev_err(ice_pf_to_dev(vsi->back), 6416 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6417 return -EIO; 6418 } 6419 6420 err = ice_set_vlan_offload_features(vsi, features); 6421 if (err) 6422 return err; 6423 } 6424 6425 current_vlan_features = netdev->features & 6426 NETIF_VLAN_FILTERING_FEATURES; 6427 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6428 if (current_vlan_features ^ requested_vlan_features) { 6429 err = ice_set_vlan_filtering_features(vsi, features); 6430 if (err) 6431 return err; 6432 } 6433 6434 return 0; 6435 } 6436 6437 /** 6438 * ice_set_loopback - turn on/off loopback mode on underlying PF 6439 * @vsi: ptr to VSI 6440 * @ena: flag to indicate the on/off setting 6441 */ 6442 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6443 { 6444 bool if_running = netif_running(vsi->netdev); 6445 int ret; 6446 6447 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6448 ret = ice_down(vsi); 6449 if (ret) { 6450 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6451 return ret; 6452 } 6453 } 6454 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6455 if (ret) 6456 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6457 if (if_running) 6458 ret = ice_up(vsi); 6459 6460 return ret; 6461 } 6462 6463 /** 6464 * ice_set_features - set the netdev feature flags 6465 * @netdev: ptr to the netdev being adjusted 6466 * @features: the feature set that the stack is suggesting 6467 */ 6468 static int 6469 ice_set_features(struct net_device *netdev, netdev_features_t features) 6470 { 6471 netdev_features_t changed = netdev->features ^ features; 6472 struct ice_netdev_priv *np = netdev_priv(netdev); 6473 struct ice_vsi *vsi = np->vsi; 6474 struct ice_pf *pf = vsi->back; 6475 int ret = 0; 6476 6477 /* Don't set any netdev advanced features with device in Safe Mode */ 6478 if (ice_is_safe_mode(pf)) { 6479 dev_err(ice_pf_to_dev(pf), 6480 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6481 return ret; 6482 } 6483 6484 /* Do not change setting during reset */ 6485 if (ice_is_reset_in_progress(pf->state)) { 6486 dev_err(ice_pf_to_dev(pf), 6487 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6488 return -EBUSY; 6489 } 6490 6491 /* Multiple features can be changed in one call so keep features in 6492 * separate if/else statements to guarantee each feature is checked 6493 */ 6494 if (changed & NETIF_F_RXHASH) 6495 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6496 6497 ret = ice_set_vlan_features(netdev, features); 6498 if (ret) 6499 return ret; 6500 6501 /* Turn on receive of FCS aka CRC, and after setting this 6502 * flag the packet data will have the 4 byte CRC appended 6503 */ 6504 if (changed & NETIF_F_RXFCS) { 6505 if ((features & NETIF_F_RXFCS) && 6506 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6507 dev_err(ice_pf_to_dev(vsi->back), 6508 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6509 return -EIO; 6510 } 6511 6512 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6513 ret = ice_down_up(vsi); 6514 if (ret) 6515 return ret; 6516 } 6517 6518 if (changed & NETIF_F_NTUPLE) { 6519 bool ena = !!(features & NETIF_F_NTUPLE); 6520 6521 ice_vsi_manage_fdir(vsi, ena); 6522 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6523 } 6524 6525 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6526 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6527 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6528 return -EACCES; 6529 } 6530 6531 if (changed & NETIF_F_HW_TC) { 6532 bool ena = !!(features & NETIF_F_HW_TC); 6533 6534 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6535 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6536 } 6537 6538 if (changed & NETIF_F_LOOPBACK) 6539 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6540 6541 return ret; 6542 } 6543 6544 /** 6545 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6546 * @vsi: VSI to setup VLAN properties for 6547 */ 6548 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6549 { 6550 int err; 6551 6552 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6553 if (err) 6554 return err; 6555 6556 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6557 if (err) 6558 return err; 6559 6560 return ice_vsi_add_vlan_zero(vsi); 6561 } 6562 6563 /** 6564 * ice_vsi_cfg_lan - Setup the VSI lan related config 6565 * @vsi: the VSI being configured 6566 * 6567 * Return 0 on success and negative value on error 6568 */ 6569 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6570 { 6571 int err; 6572 6573 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6574 ice_set_rx_mode(vsi->netdev); 6575 6576 err = ice_vsi_vlan_setup(vsi); 6577 if (err) 6578 return err; 6579 } 6580 ice_vsi_cfg_dcb_rings(vsi); 6581 6582 err = ice_vsi_cfg_lan_txqs(vsi); 6583 if (!err && ice_is_xdp_ena_vsi(vsi)) 6584 err = ice_vsi_cfg_xdp_txqs(vsi); 6585 if (!err) 6586 err = ice_vsi_cfg_rxqs(vsi); 6587 6588 return err; 6589 } 6590 6591 /* THEORY OF MODERATION: 6592 * The ice driver hardware works differently than the hardware that DIMLIB was 6593 * originally made for. ice hardware doesn't have packet count limits that 6594 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6595 * which is hard-coded to a limit of 250,000 ints/second. 6596 * If not using dynamic moderation, the INTRL value can be modified 6597 * by ethtool rx-usecs-high. 6598 */ 6599 struct ice_dim { 6600 /* the throttle rate for interrupts, basically worst case delay before 6601 * an initial interrupt fires, value is stored in microseconds. 6602 */ 6603 u16 itr; 6604 }; 6605 6606 /* Make a different profile for Rx that doesn't allow quite so aggressive 6607 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6608 * second. 6609 */ 6610 static const struct ice_dim rx_profile[] = { 6611 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6612 {8}, /* 125,000 ints/s */ 6613 {16}, /* 62,500 ints/s */ 6614 {62}, /* 16,129 ints/s */ 6615 {126} /* 7,936 ints/s */ 6616 }; 6617 6618 /* The transmit profile, which has the same sorts of values 6619 * as the previous struct 6620 */ 6621 static const struct ice_dim tx_profile[] = { 6622 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6623 {8}, /* 125,000 ints/s */ 6624 {40}, /* 16,125 ints/s */ 6625 {128}, /* 7,812 ints/s */ 6626 {256} /* 3,906 ints/s */ 6627 }; 6628 6629 static void ice_tx_dim_work(struct work_struct *work) 6630 { 6631 struct ice_ring_container *rc; 6632 struct dim *dim; 6633 u16 itr; 6634 6635 dim = container_of(work, struct dim, work); 6636 rc = dim->priv; 6637 6638 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6639 6640 /* look up the values in our local table */ 6641 itr = tx_profile[dim->profile_ix].itr; 6642 6643 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6644 ice_write_itr(rc, itr); 6645 6646 dim->state = DIM_START_MEASURE; 6647 } 6648 6649 static void ice_rx_dim_work(struct work_struct *work) 6650 { 6651 struct ice_ring_container *rc; 6652 struct dim *dim; 6653 u16 itr; 6654 6655 dim = container_of(work, struct dim, work); 6656 rc = dim->priv; 6657 6658 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6659 6660 /* look up the values in our local table */ 6661 itr = rx_profile[dim->profile_ix].itr; 6662 6663 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6664 ice_write_itr(rc, itr); 6665 6666 dim->state = DIM_START_MEASURE; 6667 } 6668 6669 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6670 6671 /** 6672 * ice_init_moderation - set up interrupt moderation 6673 * @q_vector: the vector containing rings to be configured 6674 * 6675 * Set up interrupt moderation registers, with the intent to do the right thing 6676 * when called from reset or from probe, and whether or not dynamic moderation 6677 * is enabled or not. Take special care to write all the registers in both 6678 * dynamic moderation mode or not in order to make sure hardware is in a known 6679 * state. 6680 */ 6681 static void ice_init_moderation(struct ice_q_vector *q_vector) 6682 { 6683 struct ice_ring_container *rc; 6684 bool tx_dynamic, rx_dynamic; 6685 6686 rc = &q_vector->tx; 6687 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6688 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6689 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6690 rc->dim.priv = rc; 6691 tx_dynamic = ITR_IS_DYNAMIC(rc); 6692 6693 /* set the initial TX ITR to match the above */ 6694 ice_write_itr(rc, tx_dynamic ? 6695 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6696 6697 rc = &q_vector->rx; 6698 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6699 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6700 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6701 rc->dim.priv = rc; 6702 rx_dynamic = ITR_IS_DYNAMIC(rc); 6703 6704 /* set the initial RX ITR to match the above */ 6705 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6706 rc->itr_setting); 6707 6708 ice_set_q_vector_intrl(q_vector); 6709 } 6710 6711 /** 6712 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6713 * @vsi: the VSI being configured 6714 */ 6715 static void ice_napi_enable_all(struct ice_vsi *vsi) 6716 { 6717 int q_idx; 6718 6719 if (!vsi->netdev) 6720 return; 6721 6722 ice_for_each_q_vector(vsi, q_idx) { 6723 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6724 6725 ice_init_moderation(q_vector); 6726 6727 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6728 napi_enable(&q_vector->napi); 6729 } 6730 } 6731 6732 /** 6733 * ice_up_complete - Finish the last steps of bringing up a connection 6734 * @vsi: The VSI being configured 6735 * 6736 * Return 0 on success and negative value on error 6737 */ 6738 static int ice_up_complete(struct ice_vsi *vsi) 6739 { 6740 struct ice_pf *pf = vsi->back; 6741 int err; 6742 6743 ice_vsi_cfg_msix(vsi); 6744 6745 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6746 * Tx queue group list was configured and the context bits were 6747 * programmed using ice_vsi_cfg_txqs 6748 */ 6749 err = ice_vsi_start_all_rx_rings(vsi); 6750 if (err) 6751 return err; 6752 6753 clear_bit(ICE_VSI_DOWN, vsi->state); 6754 ice_napi_enable_all(vsi); 6755 ice_vsi_ena_irq(vsi); 6756 6757 if (vsi->port_info && 6758 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6759 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6760 vsi->type == ICE_VSI_SF)))) { 6761 ice_print_link_msg(vsi, true); 6762 netif_tx_start_all_queues(vsi->netdev); 6763 netif_carrier_on(vsi->netdev); 6764 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6765 } 6766 6767 /* Perform an initial read of the statistics registers now to 6768 * set the baseline so counters are ready when interface is up 6769 */ 6770 ice_update_eth_stats(vsi); 6771 6772 if (vsi->type == ICE_VSI_PF) 6773 ice_service_task_schedule(pf); 6774 6775 return 0; 6776 } 6777 6778 /** 6779 * ice_up - Bring the connection back up after being down 6780 * @vsi: VSI being configured 6781 */ 6782 int ice_up(struct ice_vsi *vsi) 6783 { 6784 int err; 6785 6786 err = ice_vsi_cfg_lan(vsi); 6787 if (!err) 6788 err = ice_up_complete(vsi); 6789 6790 return err; 6791 } 6792 6793 /** 6794 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6795 * @syncp: pointer to u64_stats_sync 6796 * @stats: stats that pkts and bytes count will be taken from 6797 * @pkts: packets stats counter 6798 * @bytes: bytes stats counter 6799 * 6800 * This function fetches stats from the ring considering the atomic operations 6801 * that needs to be performed to read u64 values in 32 bit machine. 6802 */ 6803 void 6804 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6805 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6806 { 6807 unsigned int start; 6808 6809 do { 6810 start = u64_stats_fetch_begin(syncp); 6811 *pkts = stats.pkts; 6812 *bytes = stats.bytes; 6813 } while (u64_stats_fetch_retry(syncp, start)); 6814 } 6815 6816 /** 6817 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6818 * @vsi: the VSI to be updated 6819 * @vsi_stats: the stats struct to be updated 6820 * @rings: rings to work on 6821 * @count: number of rings 6822 */ 6823 static void 6824 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6825 struct rtnl_link_stats64 *vsi_stats, 6826 struct ice_tx_ring **rings, u16 count) 6827 { 6828 u16 i; 6829 6830 for (i = 0; i < count; i++) { 6831 struct ice_tx_ring *ring; 6832 u64 pkts = 0, bytes = 0; 6833 6834 ring = READ_ONCE(rings[i]); 6835 if (!ring || !ring->ring_stats) 6836 continue; 6837 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6838 ring->ring_stats->stats, &pkts, 6839 &bytes); 6840 vsi_stats->tx_packets += pkts; 6841 vsi_stats->tx_bytes += bytes; 6842 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6843 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6844 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6845 } 6846 } 6847 6848 /** 6849 * ice_update_vsi_ring_stats - Update VSI stats counters 6850 * @vsi: the VSI to be updated 6851 */ 6852 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6853 { 6854 struct rtnl_link_stats64 *net_stats, *stats_prev; 6855 struct rtnl_link_stats64 *vsi_stats; 6856 struct ice_pf *pf = vsi->back; 6857 u64 pkts, bytes; 6858 int i; 6859 6860 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6861 if (!vsi_stats) 6862 return; 6863 6864 /* reset non-netdev (extended) stats */ 6865 vsi->tx_restart = 0; 6866 vsi->tx_busy = 0; 6867 vsi->tx_linearize = 0; 6868 vsi->rx_buf_failed = 0; 6869 vsi->rx_page_failed = 0; 6870 6871 rcu_read_lock(); 6872 6873 /* update Tx rings counters */ 6874 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6875 vsi->num_txq); 6876 6877 /* update Rx rings counters */ 6878 ice_for_each_rxq(vsi, i) { 6879 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6880 struct ice_ring_stats *ring_stats; 6881 6882 ring_stats = ring->ring_stats; 6883 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6884 ring_stats->stats, &pkts, 6885 &bytes); 6886 vsi_stats->rx_packets += pkts; 6887 vsi_stats->rx_bytes += bytes; 6888 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6889 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6890 } 6891 6892 /* update XDP Tx rings counters */ 6893 if (ice_is_xdp_ena_vsi(vsi)) 6894 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6895 vsi->num_xdp_txq); 6896 6897 rcu_read_unlock(); 6898 6899 net_stats = &vsi->net_stats; 6900 stats_prev = &vsi->net_stats_prev; 6901 6902 /* Update netdev counters, but keep in mind that values could start at 6903 * random value after PF reset. And as we increase the reported stat by 6904 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6905 * let's skip this round. 6906 */ 6907 if (likely(pf->stat_prev_loaded)) { 6908 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6909 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6910 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6911 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6912 } 6913 6914 stats_prev->tx_packets = vsi_stats->tx_packets; 6915 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6916 stats_prev->rx_packets = vsi_stats->rx_packets; 6917 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6918 6919 kfree(vsi_stats); 6920 } 6921 6922 /** 6923 * ice_update_vsi_stats - Update VSI stats counters 6924 * @vsi: the VSI to be updated 6925 */ 6926 void ice_update_vsi_stats(struct ice_vsi *vsi) 6927 { 6928 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6929 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6930 struct ice_pf *pf = vsi->back; 6931 6932 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6933 test_bit(ICE_CFG_BUSY, pf->state)) 6934 return; 6935 6936 /* get stats as recorded by Tx/Rx rings */ 6937 ice_update_vsi_ring_stats(vsi); 6938 6939 /* get VSI stats as recorded by the hardware */ 6940 ice_update_eth_stats(vsi); 6941 6942 cur_ns->tx_errors = cur_es->tx_errors; 6943 cur_ns->rx_dropped = cur_es->rx_discards; 6944 cur_ns->tx_dropped = cur_es->tx_discards; 6945 cur_ns->multicast = cur_es->rx_multicast; 6946 6947 /* update some more netdev stats if this is main VSI */ 6948 if (vsi->type == ICE_VSI_PF) { 6949 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6950 cur_ns->rx_errors = pf->stats.crc_errors + 6951 pf->stats.illegal_bytes + 6952 pf->stats.rx_undersize + 6953 pf->hw_csum_rx_error + 6954 pf->stats.rx_jabber + 6955 pf->stats.rx_fragments + 6956 pf->stats.rx_oversize; 6957 /* record drops from the port level */ 6958 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6959 } 6960 } 6961 6962 /** 6963 * ice_update_pf_stats - Update PF port stats counters 6964 * @pf: PF whose stats needs to be updated 6965 */ 6966 void ice_update_pf_stats(struct ice_pf *pf) 6967 { 6968 struct ice_hw_port_stats *prev_ps, *cur_ps; 6969 struct ice_hw *hw = &pf->hw; 6970 u16 fd_ctr_base; 6971 u8 port; 6972 6973 port = hw->port_info->lport; 6974 prev_ps = &pf->stats_prev; 6975 cur_ps = &pf->stats; 6976 6977 if (ice_is_reset_in_progress(pf->state)) 6978 pf->stat_prev_loaded = false; 6979 6980 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6981 &prev_ps->eth.rx_bytes, 6982 &cur_ps->eth.rx_bytes); 6983 6984 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6985 &prev_ps->eth.rx_unicast, 6986 &cur_ps->eth.rx_unicast); 6987 6988 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6989 &prev_ps->eth.rx_multicast, 6990 &cur_ps->eth.rx_multicast); 6991 6992 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6993 &prev_ps->eth.rx_broadcast, 6994 &cur_ps->eth.rx_broadcast); 6995 6996 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6997 &prev_ps->eth.rx_discards, 6998 &cur_ps->eth.rx_discards); 6999 7000 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 7001 &prev_ps->eth.tx_bytes, 7002 &cur_ps->eth.tx_bytes); 7003 7004 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 7005 &prev_ps->eth.tx_unicast, 7006 &cur_ps->eth.tx_unicast); 7007 7008 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7009 &prev_ps->eth.tx_multicast, 7010 &cur_ps->eth.tx_multicast); 7011 7012 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7013 &prev_ps->eth.tx_broadcast, 7014 &cur_ps->eth.tx_broadcast); 7015 7016 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7017 &prev_ps->tx_dropped_link_down, 7018 &cur_ps->tx_dropped_link_down); 7019 7020 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7021 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7022 7023 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7024 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7025 7026 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7027 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7028 7029 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7030 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7031 7032 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7033 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7034 7035 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7036 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7037 7038 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7039 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7040 7041 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7042 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7043 7044 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7045 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7046 7047 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7048 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7049 7050 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7051 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7052 7053 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7054 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7055 7056 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7057 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7058 7059 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7060 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7061 7062 fd_ctr_base = hw->fd_ctr_base; 7063 7064 ice_stat_update40(hw, 7065 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7066 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7067 &cur_ps->fd_sb_match); 7068 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7069 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7070 7071 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7072 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7073 7074 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7075 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7076 7077 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7078 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7079 7080 ice_update_dcb_stats(pf); 7081 7082 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7083 &prev_ps->crc_errors, &cur_ps->crc_errors); 7084 7085 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7086 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7087 7088 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7089 &prev_ps->mac_local_faults, 7090 &cur_ps->mac_local_faults); 7091 7092 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7093 &prev_ps->mac_remote_faults, 7094 &cur_ps->mac_remote_faults); 7095 7096 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7097 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7098 7099 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7100 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7101 7102 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7103 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7104 7105 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7106 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7107 7108 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7109 7110 pf->stat_prev_loaded = true; 7111 } 7112 7113 /** 7114 * ice_get_stats64 - get statistics for network device structure 7115 * @netdev: network interface device structure 7116 * @stats: main device statistics structure 7117 */ 7118 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7119 { 7120 struct ice_netdev_priv *np = netdev_priv(netdev); 7121 struct rtnl_link_stats64 *vsi_stats; 7122 struct ice_vsi *vsi = np->vsi; 7123 7124 vsi_stats = &vsi->net_stats; 7125 7126 if (!vsi->num_txq || !vsi->num_rxq) 7127 return; 7128 7129 /* netdev packet/byte stats come from ring counter. These are obtained 7130 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7131 * But, only call the update routine and read the registers if VSI is 7132 * not down. 7133 */ 7134 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7135 ice_update_vsi_ring_stats(vsi); 7136 stats->tx_packets = vsi_stats->tx_packets; 7137 stats->tx_bytes = vsi_stats->tx_bytes; 7138 stats->rx_packets = vsi_stats->rx_packets; 7139 stats->rx_bytes = vsi_stats->rx_bytes; 7140 7141 /* The rest of the stats can be read from the hardware but instead we 7142 * just return values that the watchdog task has already obtained from 7143 * the hardware. 7144 */ 7145 stats->multicast = vsi_stats->multicast; 7146 stats->tx_errors = vsi_stats->tx_errors; 7147 stats->tx_dropped = vsi_stats->tx_dropped; 7148 stats->rx_errors = vsi_stats->rx_errors; 7149 stats->rx_dropped = vsi_stats->rx_dropped; 7150 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7151 stats->rx_length_errors = vsi_stats->rx_length_errors; 7152 } 7153 7154 /** 7155 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7156 * @vsi: VSI having NAPI disabled 7157 */ 7158 static void ice_napi_disable_all(struct ice_vsi *vsi) 7159 { 7160 int q_idx; 7161 7162 if (!vsi->netdev) 7163 return; 7164 7165 ice_for_each_q_vector(vsi, q_idx) { 7166 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7167 7168 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7169 napi_disable(&q_vector->napi); 7170 7171 cancel_work_sync(&q_vector->tx.dim.work); 7172 cancel_work_sync(&q_vector->rx.dim.work); 7173 } 7174 } 7175 7176 /** 7177 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7178 * @vsi: the VSI being un-configured 7179 */ 7180 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7181 { 7182 struct ice_pf *pf = vsi->back; 7183 struct ice_hw *hw = &pf->hw; 7184 u32 val; 7185 int i; 7186 7187 /* disable interrupt causation from each Rx queue; Tx queues are 7188 * handled in ice_vsi_stop_tx_ring() 7189 */ 7190 if (vsi->rx_rings) { 7191 ice_for_each_rxq(vsi, i) { 7192 if (vsi->rx_rings[i]) { 7193 u16 reg; 7194 7195 reg = vsi->rx_rings[i]->reg_idx; 7196 val = rd32(hw, QINT_RQCTL(reg)); 7197 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7198 wr32(hw, QINT_RQCTL(reg), val); 7199 } 7200 } 7201 } 7202 7203 /* disable each interrupt */ 7204 ice_for_each_q_vector(vsi, i) { 7205 if (!vsi->q_vectors[i]) 7206 continue; 7207 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7208 } 7209 7210 ice_flush(hw); 7211 7212 /* don't call synchronize_irq() for VF's from the host */ 7213 if (vsi->type == ICE_VSI_VF) 7214 return; 7215 7216 ice_for_each_q_vector(vsi, i) 7217 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7218 } 7219 7220 /** 7221 * ice_down - Shutdown the connection 7222 * @vsi: The VSI being stopped 7223 * 7224 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7225 */ 7226 int ice_down(struct ice_vsi *vsi) 7227 { 7228 int i, tx_err, rx_err, vlan_err = 0; 7229 7230 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7231 7232 if (vsi->netdev) { 7233 vlan_err = ice_vsi_del_vlan_zero(vsi); 7234 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7235 netif_carrier_off(vsi->netdev); 7236 netif_tx_disable(vsi->netdev); 7237 } 7238 7239 ice_vsi_dis_irq(vsi); 7240 7241 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7242 if (tx_err) 7243 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7244 vsi->vsi_num, tx_err); 7245 if (!tx_err && vsi->xdp_rings) { 7246 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7247 if (tx_err) 7248 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7249 vsi->vsi_num, tx_err); 7250 } 7251 7252 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7253 if (rx_err) 7254 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7255 vsi->vsi_num, rx_err); 7256 7257 ice_napi_disable_all(vsi); 7258 7259 ice_for_each_txq(vsi, i) 7260 ice_clean_tx_ring(vsi->tx_rings[i]); 7261 7262 if (vsi->xdp_rings) 7263 ice_for_each_xdp_txq(vsi, i) 7264 ice_clean_tx_ring(vsi->xdp_rings[i]); 7265 7266 ice_for_each_rxq(vsi, i) 7267 ice_clean_rx_ring(vsi->rx_rings[i]); 7268 7269 if (tx_err || rx_err || vlan_err) { 7270 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7271 vsi->vsi_num, vsi->vsw->sw_id); 7272 return -EIO; 7273 } 7274 7275 return 0; 7276 } 7277 7278 /** 7279 * ice_down_up - shutdown the VSI connection and bring it up 7280 * @vsi: the VSI to be reconnected 7281 */ 7282 int ice_down_up(struct ice_vsi *vsi) 7283 { 7284 int ret; 7285 7286 /* if DOWN already set, nothing to do */ 7287 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7288 return 0; 7289 7290 ret = ice_down(vsi); 7291 if (ret) 7292 return ret; 7293 7294 ret = ice_up(vsi); 7295 if (ret) { 7296 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7297 return ret; 7298 } 7299 7300 return 0; 7301 } 7302 7303 /** 7304 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7305 * @vsi: VSI having resources allocated 7306 * 7307 * Return 0 on success, negative on failure 7308 */ 7309 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7310 { 7311 int i, err = 0; 7312 7313 if (!vsi->num_txq) { 7314 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7315 vsi->vsi_num); 7316 return -EINVAL; 7317 } 7318 7319 ice_for_each_txq(vsi, i) { 7320 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7321 7322 if (!ring) 7323 return -EINVAL; 7324 7325 if (vsi->netdev) 7326 ring->netdev = vsi->netdev; 7327 err = ice_setup_tx_ring(ring); 7328 if (err) 7329 break; 7330 } 7331 7332 return err; 7333 } 7334 7335 /** 7336 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7337 * @vsi: VSI having resources allocated 7338 * 7339 * Return 0 on success, negative on failure 7340 */ 7341 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7342 { 7343 int i, err = 0; 7344 7345 if (!vsi->num_rxq) { 7346 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7347 vsi->vsi_num); 7348 return -EINVAL; 7349 } 7350 7351 ice_for_each_rxq(vsi, i) { 7352 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7353 7354 if (!ring) 7355 return -EINVAL; 7356 7357 if (vsi->netdev) 7358 ring->netdev = vsi->netdev; 7359 err = ice_setup_rx_ring(ring); 7360 if (err) 7361 break; 7362 } 7363 7364 return err; 7365 } 7366 7367 /** 7368 * ice_vsi_open_ctrl - open control VSI for use 7369 * @vsi: the VSI to open 7370 * 7371 * Initialization of the Control VSI 7372 * 7373 * Returns 0 on success, negative value on error 7374 */ 7375 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7376 { 7377 char int_name[ICE_INT_NAME_STR_LEN]; 7378 struct ice_pf *pf = vsi->back; 7379 struct device *dev; 7380 int err; 7381 7382 dev = ice_pf_to_dev(pf); 7383 /* allocate descriptors */ 7384 err = ice_vsi_setup_tx_rings(vsi); 7385 if (err) 7386 goto err_setup_tx; 7387 7388 err = ice_vsi_setup_rx_rings(vsi); 7389 if (err) 7390 goto err_setup_rx; 7391 7392 err = ice_vsi_cfg_lan(vsi); 7393 if (err) 7394 goto err_setup_rx; 7395 7396 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7397 dev_driver_string(dev), dev_name(dev)); 7398 err = ice_vsi_req_irq_msix(vsi, int_name); 7399 if (err) 7400 goto err_setup_rx; 7401 7402 ice_vsi_cfg_msix(vsi); 7403 7404 err = ice_vsi_start_all_rx_rings(vsi); 7405 if (err) 7406 goto err_up_complete; 7407 7408 clear_bit(ICE_VSI_DOWN, vsi->state); 7409 ice_vsi_ena_irq(vsi); 7410 7411 return 0; 7412 7413 err_up_complete: 7414 ice_down(vsi); 7415 err_setup_rx: 7416 ice_vsi_free_rx_rings(vsi); 7417 err_setup_tx: 7418 ice_vsi_free_tx_rings(vsi); 7419 7420 return err; 7421 } 7422 7423 /** 7424 * ice_vsi_open - Called when a network interface is made active 7425 * @vsi: the VSI to open 7426 * 7427 * Initialization of the VSI 7428 * 7429 * Returns 0 on success, negative value on error 7430 */ 7431 int ice_vsi_open(struct ice_vsi *vsi) 7432 { 7433 char int_name[ICE_INT_NAME_STR_LEN]; 7434 struct ice_pf *pf = vsi->back; 7435 int err; 7436 7437 /* allocate descriptors */ 7438 err = ice_vsi_setup_tx_rings(vsi); 7439 if (err) 7440 goto err_setup_tx; 7441 7442 err = ice_vsi_setup_rx_rings(vsi); 7443 if (err) 7444 goto err_setup_rx; 7445 7446 err = ice_vsi_cfg_lan(vsi); 7447 if (err) 7448 goto err_setup_rx; 7449 7450 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7451 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7452 err = ice_vsi_req_irq_msix(vsi, int_name); 7453 if (err) 7454 goto err_setup_rx; 7455 7456 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7457 7458 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7459 /* Notify the stack of the actual queue counts. */ 7460 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7461 if (err) 7462 goto err_set_qs; 7463 7464 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7465 if (err) 7466 goto err_set_qs; 7467 7468 ice_vsi_set_napi_queues(vsi); 7469 } 7470 7471 err = ice_up_complete(vsi); 7472 if (err) 7473 goto err_up_complete; 7474 7475 return 0; 7476 7477 err_up_complete: 7478 ice_down(vsi); 7479 err_set_qs: 7480 ice_vsi_free_irq(vsi); 7481 err_setup_rx: 7482 ice_vsi_free_rx_rings(vsi); 7483 err_setup_tx: 7484 ice_vsi_free_tx_rings(vsi); 7485 7486 return err; 7487 } 7488 7489 /** 7490 * ice_vsi_release_all - Delete all VSIs 7491 * @pf: PF from which all VSIs are being removed 7492 */ 7493 static void ice_vsi_release_all(struct ice_pf *pf) 7494 { 7495 int err, i; 7496 7497 if (!pf->vsi) 7498 return; 7499 7500 ice_for_each_vsi(pf, i) { 7501 if (!pf->vsi[i]) 7502 continue; 7503 7504 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7505 continue; 7506 7507 err = ice_vsi_release(pf->vsi[i]); 7508 if (err) 7509 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7510 i, err, pf->vsi[i]->vsi_num); 7511 } 7512 } 7513 7514 /** 7515 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7516 * @pf: pointer to the PF instance 7517 * @type: VSI type to rebuild 7518 * 7519 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7520 */ 7521 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7522 { 7523 struct device *dev = ice_pf_to_dev(pf); 7524 int i, err; 7525 7526 ice_for_each_vsi(pf, i) { 7527 struct ice_vsi *vsi = pf->vsi[i]; 7528 7529 if (!vsi || vsi->type != type) 7530 continue; 7531 7532 /* rebuild the VSI */ 7533 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7534 if (err) { 7535 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7536 err, vsi->idx, ice_vsi_type_str(type)); 7537 return err; 7538 } 7539 7540 /* replay filters for the VSI */ 7541 err = ice_replay_vsi(&pf->hw, vsi->idx); 7542 if (err) { 7543 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7544 err, vsi->idx, ice_vsi_type_str(type)); 7545 return err; 7546 } 7547 7548 /* Re-map HW VSI number, using VSI handle that has been 7549 * previously validated in ice_replay_vsi() call above 7550 */ 7551 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7552 7553 /* enable the VSI */ 7554 err = ice_ena_vsi(vsi, false); 7555 if (err) { 7556 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7557 err, vsi->idx, ice_vsi_type_str(type)); 7558 return err; 7559 } 7560 7561 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7562 ice_vsi_type_str(type)); 7563 } 7564 7565 return 0; 7566 } 7567 7568 /** 7569 * ice_update_pf_netdev_link - Update PF netdev link status 7570 * @pf: pointer to the PF instance 7571 */ 7572 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7573 { 7574 bool link_up; 7575 int i; 7576 7577 ice_for_each_vsi(pf, i) { 7578 struct ice_vsi *vsi = pf->vsi[i]; 7579 7580 if (!vsi || vsi->type != ICE_VSI_PF) 7581 return; 7582 7583 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7584 if (link_up) { 7585 netif_carrier_on(pf->vsi[i]->netdev); 7586 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7587 } else { 7588 netif_carrier_off(pf->vsi[i]->netdev); 7589 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7590 } 7591 } 7592 } 7593 7594 /** 7595 * ice_rebuild - rebuild after reset 7596 * @pf: PF to rebuild 7597 * @reset_type: type of reset 7598 * 7599 * Do not rebuild VF VSI in this flow because that is already handled via 7600 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7601 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7602 * to reset/rebuild all the VF VSI twice. 7603 */ 7604 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7605 { 7606 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7607 struct device *dev = ice_pf_to_dev(pf); 7608 struct ice_hw *hw = &pf->hw; 7609 bool dvm; 7610 int err; 7611 7612 if (test_bit(ICE_DOWN, pf->state)) 7613 goto clear_recovery; 7614 7615 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7616 7617 #define ICE_EMP_RESET_SLEEP_MS 5000 7618 if (reset_type == ICE_RESET_EMPR) { 7619 /* If an EMP reset has occurred, any previously pending flash 7620 * update will have completed. We no longer know whether or 7621 * not the NVM update EMP reset is restricted. 7622 */ 7623 pf->fw_emp_reset_disabled = false; 7624 7625 msleep(ICE_EMP_RESET_SLEEP_MS); 7626 } 7627 7628 err = ice_init_all_ctrlq(hw); 7629 if (err) { 7630 dev_err(dev, "control queues init failed %d\n", err); 7631 goto err_init_ctrlq; 7632 } 7633 7634 /* if DDP was previously loaded successfully */ 7635 if (!ice_is_safe_mode(pf)) { 7636 /* reload the SW DB of filter tables */ 7637 if (reset_type == ICE_RESET_PFR) 7638 ice_fill_blk_tbls(hw); 7639 else 7640 /* Reload DDP Package after CORER/GLOBR reset */ 7641 ice_load_pkg(NULL, pf); 7642 } 7643 7644 err = ice_clear_pf_cfg(hw); 7645 if (err) { 7646 dev_err(dev, "clear PF configuration failed %d\n", err); 7647 goto err_init_ctrlq; 7648 } 7649 7650 ice_clear_pxe_mode(hw); 7651 7652 err = ice_init_nvm(hw); 7653 if (err) { 7654 dev_err(dev, "ice_init_nvm failed %d\n", err); 7655 goto err_init_ctrlq; 7656 } 7657 7658 err = ice_get_caps(hw); 7659 if (err) { 7660 dev_err(dev, "ice_get_caps failed %d\n", err); 7661 goto err_init_ctrlq; 7662 } 7663 7664 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7665 if (err) { 7666 dev_err(dev, "set_mac_cfg failed %d\n", err); 7667 goto err_init_ctrlq; 7668 } 7669 7670 dvm = ice_is_dvm_ena(hw); 7671 7672 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7673 if (err) 7674 goto err_init_ctrlq; 7675 7676 err = ice_sched_init_port(hw->port_info); 7677 if (err) 7678 goto err_sched_init_port; 7679 7680 /* start misc vector */ 7681 err = ice_req_irq_msix_misc(pf); 7682 if (err) { 7683 dev_err(dev, "misc vector setup failed: %d\n", err); 7684 goto err_sched_init_port; 7685 } 7686 7687 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7688 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7689 if (!rd32(hw, PFQF_FD_SIZE)) { 7690 u16 unused, guar, b_effort; 7691 7692 guar = hw->func_caps.fd_fltr_guar; 7693 b_effort = hw->func_caps.fd_fltr_best_effort; 7694 7695 /* force guaranteed filter pool for PF */ 7696 ice_alloc_fd_guar_item(hw, &unused, guar); 7697 /* force shared filter pool for PF */ 7698 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7699 } 7700 } 7701 7702 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7703 ice_dcb_rebuild(pf); 7704 7705 /* If the PF previously had enabled PTP, PTP init needs to happen before 7706 * the VSI rebuild. If not, this causes the PTP link status events to 7707 * fail. 7708 */ 7709 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7710 ice_ptp_rebuild(pf, reset_type); 7711 7712 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7713 ice_gnss_init(pf); 7714 7715 /* rebuild PF VSI */ 7716 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7717 if (err) { 7718 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7719 goto err_vsi_rebuild; 7720 } 7721 7722 if (reset_type == ICE_RESET_PFR) { 7723 err = ice_rebuild_channels(pf); 7724 if (err) { 7725 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7726 err); 7727 goto err_vsi_rebuild; 7728 } 7729 } 7730 7731 /* If Flow Director is active */ 7732 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7733 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7734 if (err) { 7735 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7736 goto err_vsi_rebuild; 7737 } 7738 7739 /* replay HW Flow Director recipes */ 7740 if (hw->fdir_prof) 7741 ice_fdir_replay_flows(hw); 7742 7743 /* replay Flow Director filters */ 7744 ice_fdir_replay_fltrs(pf); 7745 7746 ice_rebuild_arfs(pf); 7747 } 7748 7749 if (vsi && vsi->netdev) 7750 netif_device_attach(vsi->netdev); 7751 7752 ice_update_pf_netdev_link(pf); 7753 7754 /* tell the firmware we are up */ 7755 err = ice_send_version(pf); 7756 if (err) { 7757 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7758 err); 7759 goto err_vsi_rebuild; 7760 } 7761 7762 ice_replay_post(hw); 7763 7764 /* if we get here, reset flow is successful */ 7765 clear_bit(ICE_RESET_FAILED, pf->state); 7766 7767 ice_plug_aux_dev(pf); 7768 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7769 ice_lag_rebuild(pf); 7770 7771 /* Restore timestamp mode settings after VSI rebuild */ 7772 ice_ptp_restore_timestamp_mode(pf); 7773 return; 7774 7775 err_vsi_rebuild: 7776 err_sched_init_port: 7777 ice_sched_cleanup_all(hw); 7778 err_init_ctrlq: 7779 ice_shutdown_all_ctrlq(hw, false); 7780 set_bit(ICE_RESET_FAILED, pf->state); 7781 clear_recovery: 7782 /* set this bit in PF state to control service task scheduling */ 7783 set_bit(ICE_NEEDS_RESTART, pf->state); 7784 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7785 } 7786 7787 /** 7788 * ice_change_mtu - NDO callback to change the MTU 7789 * @netdev: network interface device structure 7790 * @new_mtu: new value for maximum frame size 7791 * 7792 * Returns 0 on success, negative on failure 7793 */ 7794 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7795 { 7796 struct ice_netdev_priv *np = netdev_priv(netdev); 7797 struct ice_vsi *vsi = np->vsi; 7798 struct ice_pf *pf = vsi->back; 7799 struct bpf_prog *prog; 7800 u8 count = 0; 7801 int err = 0; 7802 7803 if (new_mtu == (int)netdev->mtu) { 7804 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7805 return 0; 7806 } 7807 7808 prog = vsi->xdp_prog; 7809 if (prog && !prog->aux->xdp_has_frags) { 7810 int frame_size = ice_max_xdp_frame_size(vsi); 7811 7812 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7813 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7814 frame_size - ICE_ETH_PKT_HDR_PAD); 7815 return -EINVAL; 7816 } 7817 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7818 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7819 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7820 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7821 return -EINVAL; 7822 } 7823 } 7824 7825 /* if a reset is in progress, wait for some time for it to complete */ 7826 do { 7827 if (ice_is_reset_in_progress(pf->state)) { 7828 count++; 7829 usleep_range(1000, 2000); 7830 } else { 7831 break; 7832 } 7833 7834 } while (count < 100); 7835 7836 if (count == 100) { 7837 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7838 return -EBUSY; 7839 } 7840 7841 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7842 err = ice_down_up(vsi); 7843 if (err) 7844 return err; 7845 7846 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7847 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7848 7849 return err; 7850 } 7851 7852 /** 7853 * ice_eth_ioctl - Access the hwtstamp interface 7854 * @netdev: network interface device structure 7855 * @ifr: interface request data 7856 * @cmd: ioctl command 7857 */ 7858 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7859 { 7860 struct ice_netdev_priv *np = netdev_priv(netdev); 7861 struct ice_pf *pf = np->vsi->back; 7862 7863 switch (cmd) { 7864 case SIOCGHWTSTAMP: 7865 return ice_ptp_get_ts_config(pf, ifr); 7866 case SIOCSHWTSTAMP: 7867 return ice_ptp_set_ts_config(pf, ifr); 7868 default: 7869 return -EOPNOTSUPP; 7870 } 7871 } 7872 7873 /** 7874 * ice_aq_str - convert AQ err code to a string 7875 * @aq_err: the AQ error code to convert 7876 */ 7877 const char *ice_aq_str(enum ice_aq_err aq_err) 7878 { 7879 switch (aq_err) { 7880 case ICE_AQ_RC_OK: 7881 return "OK"; 7882 case ICE_AQ_RC_EPERM: 7883 return "ICE_AQ_RC_EPERM"; 7884 case ICE_AQ_RC_ENOENT: 7885 return "ICE_AQ_RC_ENOENT"; 7886 case ICE_AQ_RC_ENOMEM: 7887 return "ICE_AQ_RC_ENOMEM"; 7888 case ICE_AQ_RC_EBUSY: 7889 return "ICE_AQ_RC_EBUSY"; 7890 case ICE_AQ_RC_EEXIST: 7891 return "ICE_AQ_RC_EEXIST"; 7892 case ICE_AQ_RC_EINVAL: 7893 return "ICE_AQ_RC_EINVAL"; 7894 case ICE_AQ_RC_ENOSPC: 7895 return "ICE_AQ_RC_ENOSPC"; 7896 case ICE_AQ_RC_ENOSYS: 7897 return "ICE_AQ_RC_ENOSYS"; 7898 case ICE_AQ_RC_EMODE: 7899 return "ICE_AQ_RC_EMODE"; 7900 case ICE_AQ_RC_ENOSEC: 7901 return "ICE_AQ_RC_ENOSEC"; 7902 case ICE_AQ_RC_EBADSIG: 7903 return "ICE_AQ_RC_EBADSIG"; 7904 case ICE_AQ_RC_ESVN: 7905 return "ICE_AQ_RC_ESVN"; 7906 case ICE_AQ_RC_EBADMAN: 7907 return "ICE_AQ_RC_EBADMAN"; 7908 case ICE_AQ_RC_EBADBUF: 7909 return "ICE_AQ_RC_EBADBUF"; 7910 } 7911 7912 return "ICE_AQ_RC_UNKNOWN"; 7913 } 7914 7915 /** 7916 * ice_set_rss_lut - Set RSS LUT 7917 * @vsi: Pointer to VSI structure 7918 * @lut: Lookup table 7919 * @lut_size: Lookup table size 7920 * 7921 * Returns 0 on success, negative on failure 7922 */ 7923 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7924 { 7925 struct ice_aq_get_set_rss_lut_params params = {}; 7926 struct ice_hw *hw = &vsi->back->hw; 7927 int status; 7928 7929 if (!lut) 7930 return -EINVAL; 7931 7932 params.vsi_handle = vsi->idx; 7933 params.lut_size = lut_size; 7934 params.lut_type = vsi->rss_lut_type; 7935 params.lut = lut; 7936 7937 status = ice_aq_set_rss_lut(hw, ¶ms); 7938 if (status) 7939 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7940 status, ice_aq_str(hw->adminq.sq_last_status)); 7941 7942 return status; 7943 } 7944 7945 /** 7946 * ice_set_rss_key - Set RSS key 7947 * @vsi: Pointer to the VSI structure 7948 * @seed: RSS hash seed 7949 * 7950 * Returns 0 on success, negative on failure 7951 */ 7952 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7953 { 7954 struct ice_hw *hw = &vsi->back->hw; 7955 int status; 7956 7957 if (!seed) 7958 return -EINVAL; 7959 7960 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7961 if (status) 7962 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7963 status, ice_aq_str(hw->adminq.sq_last_status)); 7964 7965 return status; 7966 } 7967 7968 /** 7969 * ice_get_rss_lut - Get RSS LUT 7970 * @vsi: Pointer to VSI structure 7971 * @lut: Buffer to store the lookup table entries 7972 * @lut_size: Size of buffer to store the lookup table entries 7973 * 7974 * Returns 0 on success, negative on failure 7975 */ 7976 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7977 { 7978 struct ice_aq_get_set_rss_lut_params params = {}; 7979 struct ice_hw *hw = &vsi->back->hw; 7980 int status; 7981 7982 if (!lut) 7983 return -EINVAL; 7984 7985 params.vsi_handle = vsi->idx; 7986 params.lut_size = lut_size; 7987 params.lut_type = vsi->rss_lut_type; 7988 params.lut = lut; 7989 7990 status = ice_aq_get_rss_lut(hw, ¶ms); 7991 if (status) 7992 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7993 status, ice_aq_str(hw->adminq.sq_last_status)); 7994 7995 return status; 7996 } 7997 7998 /** 7999 * ice_get_rss_key - Get RSS key 8000 * @vsi: Pointer to VSI structure 8001 * @seed: Buffer to store the key in 8002 * 8003 * Returns 0 on success, negative on failure 8004 */ 8005 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 8006 { 8007 struct ice_hw *hw = &vsi->back->hw; 8008 int status; 8009 8010 if (!seed) 8011 return -EINVAL; 8012 8013 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8014 if (status) 8015 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8016 status, ice_aq_str(hw->adminq.sq_last_status)); 8017 8018 return status; 8019 } 8020 8021 /** 8022 * ice_set_rss_hfunc - Set RSS HASH function 8023 * @vsi: Pointer to VSI structure 8024 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8025 * 8026 * Returns 0 on success, negative on failure 8027 */ 8028 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8029 { 8030 struct ice_hw *hw = &vsi->back->hw; 8031 struct ice_vsi_ctx *ctx; 8032 bool symm; 8033 int err; 8034 8035 if (hfunc == vsi->rss_hfunc) 8036 return 0; 8037 8038 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8039 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8040 return -EOPNOTSUPP; 8041 8042 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8043 if (!ctx) 8044 return -ENOMEM; 8045 8046 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8047 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8048 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8049 ctx->info.q_opt_rss |= 8050 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8051 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8052 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8053 8054 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8055 if (err) { 8056 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8057 vsi->vsi_num, err); 8058 } else { 8059 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8060 vsi->rss_hfunc = hfunc; 8061 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8062 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8063 "Symmetric " : ""); 8064 } 8065 kfree(ctx); 8066 if (err) 8067 return err; 8068 8069 /* Fix the symmetry setting for all existing RSS configurations */ 8070 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8071 return ice_set_rss_cfg_symm(hw, vsi, symm); 8072 } 8073 8074 /** 8075 * ice_bridge_getlink - Get the hardware bridge mode 8076 * @skb: skb buff 8077 * @pid: process ID 8078 * @seq: RTNL message seq 8079 * @dev: the netdev being configured 8080 * @filter_mask: filter mask passed in 8081 * @nlflags: netlink flags passed in 8082 * 8083 * Return the bridge mode (VEB/VEPA) 8084 */ 8085 static int 8086 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8087 struct net_device *dev, u32 filter_mask, int nlflags) 8088 { 8089 struct ice_netdev_priv *np = netdev_priv(dev); 8090 struct ice_vsi *vsi = np->vsi; 8091 struct ice_pf *pf = vsi->back; 8092 u16 bmode; 8093 8094 bmode = pf->first_sw->bridge_mode; 8095 8096 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8097 filter_mask, NULL); 8098 } 8099 8100 /** 8101 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8102 * @vsi: Pointer to VSI structure 8103 * @bmode: Hardware bridge mode (VEB/VEPA) 8104 * 8105 * Returns 0 on success, negative on failure 8106 */ 8107 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8108 { 8109 struct ice_aqc_vsi_props *vsi_props; 8110 struct ice_hw *hw = &vsi->back->hw; 8111 struct ice_vsi_ctx *ctxt; 8112 int ret; 8113 8114 vsi_props = &vsi->info; 8115 8116 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8117 if (!ctxt) 8118 return -ENOMEM; 8119 8120 ctxt->info = vsi->info; 8121 8122 if (bmode == BRIDGE_MODE_VEB) 8123 /* change from VEPA to VEB mode */ 8124 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8125 else 8126 /* change from VEB to VEPA mode */ 8127 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8128 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8129 8130 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8131 if (ret) { 8132 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8133 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8134 goto out; 8135 } 8136 /* Update sw flags for book keeping */ 8137 vsi_props->sw_flags = ctxt->info.sw_flags; 8138 8139 out: 8140 kfree(ctxt); 8141 return ret; 8142 } 8143 8144 /** 8145 * ice_bridge_setlink - Set the hardware bridge mode 8146 * @dev: the netdev being configured 8147 * @nlh: RTNL message 8148 * @flags: bridge setlink flags 8149 * @extack: netlink extended ack 8150 * 8151 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8152 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8153 * not already set for all VSIs connected to this switch. And also update the 8154 * unicast switch filter rules for the corresponding switch of the netdev. 8155 */ 8156 static int 8157 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8158 u16 __always_unused flags, 8159 struct netlink_ext_ack __always_unused *extack) 8160 { 8161 struct ice_netdev_priv *np = netdev_priv(dev); 8162 struct ice_pf *pf = np->vsi->back; 8163 struct nlattr *attr, *br_spec; 8164 struct ice_hw *hw = &pf->hw; 8165 struct ice_sw *pf_sw; 8166 int rem, v, err = 0; 8167 8168 pf_sw = pf->first_sw; 8169 /* find the attribute in the netlink message */ 8170 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8171 if (!br_spec) 8172 return -EINVAL; 8173 8174 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8175 __u16 mode = nla_get_u16(attr); 8176 8177 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8178 return -EINVAL; 8179 /* Continue if bridge mode is not being flipped */ 8180 if (mode == pf_sw->bridge_mode) 8181 continue; 8182 /* Iterates through the PF VSI list and update the loopback 8183 * mode of the VSI 8184 */ 8185 ice_for_each_vsi(pf, v) { 8186 if (!pf->vsi[v]) 8187 continue; 8188 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8189 if (err) 8190 return err; 8191 } 8192 8193 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8194 /* Update the unicast switch filter rules for the corresponding 8195 * switch of the netdev 8196 */ 8197 err = ice_update_sw_rule_bridge_mode(hw); 8198 if (err) { 8199 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8200 mode, err, 8201 ice_aq_str(hw->adminq.sq_last_status)); 8202 /* revert hw->evb_veb */ 8203 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8204 return err; 8205 } 8206 8207 pf_sw->bridge_mode = mode; 8208 } 8209 8210 return 0; 8211 } 8212 8213 /** 8214 * ice_tx_timeout - Respond to a Tx Hang 8215 * @netdev: network interface device structure 8216 * @txqueue: Tx queue 8217 */ 8218 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8219 { 8220 struct ice_netdev_priv *np = netdev_priv(netdev); 8221 struct ice_tx_ring *tx_ring = NULL; 8222 struct ice_vsi *vsi = np->vsi; 8223 struct ice_pf *pf = vsi->back; 8224 u32 i; 8225 8226 pf->tx_timeout_count++; 8227 8228 /* Check if PFC is enabled for the TC to which the queue belongs 8229 * to. If yes then Tx timeout is not caused by a hung queue, no 8230 * need to reset and rebuild 8231 */ 8232 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8233 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8234 txqueue); 8235 return; 8236 } 8237 8238 /* now that we have an index, find the tx_ring struct */ 8239 ice_for_each_txq(vsi, i) 8240 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8241 if (txqueue == vsi->tx_rings[i]->q_index) { 8242 tx_ring = vsi->tx_rings[i]; 8243 break; 8244 } 8245 8246 /* Reset recovery level if enough time has elapsed after last timeout. 8247 * Also ensure no new reset action happens before next timeout period. 8248 */ 8249 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8250 pf->tx_timeout_recovery_level = 1; 8251 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8252 netdev->watchdog_timeo))) 8253 return; 8254 8255 if (tx_ring) { 8256 struct ice_hw *hw = &pf->hw; 8257 u32 head, val = 0; 8258 8259 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8260 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8261 /* Read interrupt register */ 8262 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8263 8264 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8265 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8266 head, tx_ring->next_to_use, val); 8267 } 8268 8269 pf->tx_timeout_last_recovery = jiffies; 8270 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8271 pf->tx_timeout_recovery_level, txqueue); 8272 8273 switch (pf->tx_timeout_recovery_level) { 8274 case 1: 8275 set_bit(ICE_PFR_REQ, pf->state); 8276 break; 8277 case 2: 8278 set_bit(ICE_CORER_REQ, pf->state); 8279 break; 8280 case 3: 8281 set_bit(ICE_GLOBR_REQ, pf->state); 8282 break; 8283 default: 8284 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8285 set_bit(ICE_DOWN, pf->state); 8286 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8287 set_bit(ICE_SERVICE_DIS, pf->state); 8288 break; 8289 } 8290 8291 ice_service_task_schedule(pf); 8292 pf->tx_timeout_recovery_level++; 8293 } 8294 8295 /** 8296 * ice_setup_tc_cls_flower - flower classifier offloads 8297 * @np: net device to configure 8298 * @filter_dev: device on which filter is added 8299 * @cls_flower: offload data 8300 */ 8301 static int 8302 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8303 struct net_device *filter_dev, 8304 struct flow_cls_offload *cls_flower) 8305 { 8306 struct ice_vsi *vsi = np->vsi; 8307 8308 if (cls_flower->common.chain_index) 8309 return -EOPNOTSUPP; 8310 8311 switch (cls_flower->command) { 8312 case FLOW_CLS_REPLACE: 8313 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8314 case FLOW_CLS_DESTROY: 8315 return ice_del_cls_flower(vsi, cls_flower); 8316 default: 8317 return -EINVAL; 8318 } 8319 } 8320 8321 /** 8322 * ice_setup_tc_block_cb - callback handler registered for TC block 8323 * @type: TC SETUP type 8324 * @type_data: TC flower offload data that contains user input 8325 * @cb_priv: netdev private data 8326 */ 8327 static int 8328 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8329 { 8330 struct ice_netdev_priv *np = cb_priv; 8331 8332 switch (type) { 8333 case TC_SETUP_CLSFLOWER: 8334 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8335 type_data); 8336 default: 8337 return -EOPNOTSUPP; 8338 } 8339 } 8340 8341 /** 8342 * ice_validate_mqprio_qopt - Validate TCF input parameters 8343 * @vsi: Pointer to VSI 8344 * @mqprio_qopt: input parameters for mqprio queue configuration 8345 * 8346 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8347 * needed), and make sure user doesn't specify qcount and BW rate limit 8348 * for TCs, which are more than "num_tc" 8349 */ 8350 static int 8351 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8352 struct tc_mqprio_qopt_offload *mqprio_qopt) 8353 { 8354 int non_power_of_2_qcount = 0; 8355 struct ice_pf *pf = vsi->back; 8356 int max_rss_q_cnt = 0; 8357 u64 sum_min_rate = 0; 8358 struct device *dev; 8359 int i, speed; 8360 u8 num_tc; 8361 8362 if (vsi->type != ICE_VSI_PF) 8363 return -EINVAL; 8364 8365 if (mqprio_qopt->qopt.offset[0] != 0 || 8366 mqprio_qopt->qopt.num_tc < 1 || 8367 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8368 return -EINVAL; 8369 8370 dev = ice_pf_to_dev(pf); 8371 vsi->ch_rss_size = 0; 8372 num_tc = mqprio_qopt->qopt.num_tc; 8373 speed = ice_get_link_speed_kbps(vsi); 8374 8375 for (i = 0; num_tc; i++) { 8376 int qcount = mqprio_qopt->qopt.count[i]; 8377 u64 max_rate, min_rate, rem; 8378 8379 if (!qcount) 8380 return -EINVAL; 8381 8382 if (is_power_of_2(qcount)) { 8383 if (non_power_of_2_qcount && 8384 qcount > non_power_of_2_qcount) { 8385 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8386 qcount, non_power_of_2_qcount); 8387 return -EINVAL; 8388 } 8389 if (qcount > max_rss_q_cnt) 8390 max_rss_q_cnt = qcount; 8391 } else { 8392 if (non_power_of_2_qcount && 8393 qcount != non_power_of_2_qcount) { 8394 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8395 qcount, non_power_of_2_qcount); 8396 return -EINVAL; 8397 } 8398 if (qcount < max_rss_q_cnt) { 8399 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8400 qcount, max_rss_q_cnt); 8401 return -EINVAL; 8402 } 8403 max_rss_q_cnt = qcount; 8404 non_power_of_2_qcount = qcount; 8405 } 8406 8407 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8408 * converts the bandwidth rate limit into Bytes/s when 8409 * passing it down to the driver. So convert input bandwidth 8410 * from Bytes/s to Kbps 8411 */ 8412 max_rate = mqprio_qopt->max_rate[i]; 8413 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8414 8415 /* min_rate is minimum guaranteed rate and it can't be zero */ 8416 min_rate = mqprio_qopt->min_rate[i]; 8417 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8418 sum_min_rate += min_rate; 8419 8420 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8421 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8422 min_rate, ICE_MIN_BW_LIMIT); 8423 return -EINVAL; 8424 } 8425 8426 if (max_rate && max_rate > speed) { 8427 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8428 i, max_rate, speed); 8429 return -EINVAL; 8430 } 8431 8432 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8433 if (rem) { 8434 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8435 i, ICE_MIN_BW_LIMIT); 8436 return -EINVAL; 8437 } 8438 8439 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8440 if (rem) { 8441 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8442 i, ICE_MIN_BW_LIMIT); 8443 return -EINVAL; 8444 } 8445 8446 /* min_rate can't be more than max_rate, except when max_rate 8447 * is zero (implies max_rate sought is max line rate). In such 8448 * a case min_rate can be more than max. 8449 */ 8450 if (max_rate && min_rate > max_rate) { 8451 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8452 min_rate, max_rate); 8453 return -EINVAL; 8454 } 8455 8456 if (i >= mqprio_qopt->qopt.num_tc - 1) 8457 break; 8458 if (mqprio_qopt->qopt.offset[i + 1] != 8459 (mqprio_qopt->qopt.offset[i] + qcount)) 8460 return -EINVAL; 8461 } 8462 if (vsi->num_rxq < 8463 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8464 return -EINVAL; 8465 if (vsi->num_txq < 8466 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8467 return -EINVAL; 8468 8469 if (sum_min_rate && sum_min_rate > (u64)speed) { 8470 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8471 sum_min_rate, speed); 8472 return -EINVAL; 8473 } 8474 8475 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8476 vsi->ch_rss_size = max_rss_q_cnt; 8477 8478 return 0; 8479 } 8480 8481 /** 8482 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8483 * @pf: ptr to PF device 8484 * @vsi: ptr to VSI 8485 */ 8486 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8487 { 8488 struct device *dev = ice_pf_to_dev(pf); 8489 bool added = false; 8490 struct ice_hw *hw; 8491 int flow; 8492 8493 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8494 return -EINVAL; 8495 8496 hw = &pf->hw; 8497 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8498 struct ice_fd_hw_prof *prof; 8499 int tun, status; 8500 u64 entry_h; 8501 8502 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8503 hw->fdir_prof[flow]->cnt)) 8504 continue; 8505 8506 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8507 enum ice_flow_priority prio; 8508 8509 /* add this VSI to FDir profile for this flow */ 8510 prio = ICE_FLOW_PRIO_NORMAL; 8511 prof = hw->fdir_prof[flow]; 8512 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8513 prof->prof_id[tun], 8514 prof->vsi_h[0], vsi->idx, 8515 prio, prof->fdir_seg[tun], 8516 &entry_h); 8517 if (status) { 8518 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8519 vsi->idx, flow); 8520 continue; 8521 } 8522 8523 prof->entry_h[prof->cnt][tun] = entry_h; 8524 } 8525 8526 /* store VSI for filter replay and delete */ 8527 prof->vsi_h[prof->cnt] = vsi->idx; 8528 prof->cnt++; 8529 8530 added = true; 8531 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8532 flow); 8533 } 8534 8535 if (!added) 8536 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8537 8538 return 0; 8539 } 8540 8541 /** 8542 * ice_add_channel - add a channel by adding VSI 8543 * @pf: ptr to PF device 8544 * @sw_id: underlying HW switching element ID 8545 * @ch: ptr to channel structure 8546 * 8547 * Add a channel (VSI) using add_vsi and queue_map 8548 */ 8549 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8550 { 8551 struct device *dev = ice_pf_to_dev(pf); 8552 struct ice_vsi *vsi; 8553 8554 if (ch->type != ICE_VSI_CHNL) { 8555 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8556 return -EINVAL; 8557 } 8558 8559 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8560 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8561 dev_err(dev, "create chnl VSI failure\n"); 8562 return -EINVAL; 8563 } 8564 8565 ice_add_vsi_to_fdir(pf, vsi); 8566 8567 ch->sw_id = sw_id; 8568 ch->vsi_num = vsi->vsi_num; 8569 ch->info.mapping_flags = vsi->info.mapping_flags; 8570 ch->ch_vsi = vsi; 8571 /* set the back pointer of channel for newly created VSI */ 8572 vsi->ch = ch; 8573 8574 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8575 sizeof(vsi->info.q_mapping)); 8576 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8577 sizeof(vsi->info.tc_mapping)); 8578 8579 return 0; 8580 } 8581 8582 /** 8583 * ice_chnl_cfg_res 8584 * @vsi: the VSI being setup 8585 * @ch: ptr to channel structure 8586 * 8587 * Configure channel specific resources such as rings, vector. 8588 */ 8589 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8590 { 8591 int i; 8592 8593 for (i = 0; i < ch->num_txq; i++) { 8594 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8595 struct ice_ring_container *rc; 8596 struct ice_tx_ring *tx_ring; 8597 struct ice_rx_ring *rx_ring; 8598 8599 tx_ring = vsi->tx_rings[ch->base_q + i]; 8600 rx_ring = vsi->rx_rings[ch->base_q + i]; 8601 if (!tx_ring || !rx_ring) 8602 continue; 8603 8604 /* setup ring being channel enabled */ 8605 tx_ring->ch = ch; 8606 rx_ring->ch = ch; 8607 8608 /* following code block sets up vector specific attributes */ 8609 tx_q_vector = tx_ring->q_vector; 8610 rx_q_vector = rx_ring->q_vector; 8611 if (!tx_q_vector && !rx_q_vector) 8612 continue; 8613 8614 if (tx_q_vector) { 8615 tx_q_vector->ch = ch; 8616 /* setup Tx and Rx ITR setting if DIM is off */ 8617 rc = &tx_q_vector->tx; 8618 if (!ITR_IS_DYNAMIC(rc)) 8619 ice_write_itr(rc, rc->itr_setting); 8620 } 8621 if (rx_q_vector) { 8622 rx_q_vector->ch = ch; 8623 /* setup Tx and Rx ITR setting if DIM is off */ 8624 rc = &rx_q_vector->rx; 8625 if (!ITR_IS_DYNAMIC(rc)) 8626 ice_write_itr(rc, rc->itr_setting); 8627 } 8628 } 8629 8630 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8631 * GLINT_ITR register would have written to perform in-context 8632 * update, hence perform flush 8633 */ 8634 if (ch->num_txq || ch->num_rxq) 8635 ice_flush(&vsi->back->hw); 8636 } 8637 8638 /** 8639 * ice_cfg_chnl_all_res - configure channel resources 8640 * @vsi: pte to main_vsi 8641 * @ch: ptr to channel structure 8642 * 8643 * This function configures channel specific resources such as flow-director 8644 * counter index, and other resources such as queues, vectors, ITR settings 8645 */ 8646 static void 8647 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8648 { 8649 /* configure channel (aka ADQ) resources such as queues, vectors, 8650 * ITR settings for channel specific vectors and anything else 8651 */ 8652 ice_chnl_cfg_res(vsi, ch); 8653 } 8654 8655 /** 8656 * ice_setup_hw_channel - setup new channel 8657 * @pf: ptr to PF device 8658 * @vsi: the VSI being setup 8659 * @ch: ptr to channel structure 8660 * @sw_id: underlying HW switching element ID 8661 * @type: type of channel to be created (VMDq2/VF) 8662 * 8663 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8664 * and configures Tx rings accordingly 8665 */ 8666 static int 8667 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8668 struct ice_channel *ch, u16 sw_id, u8 type) 8669 { 8670 struct device *dev = ice_pf_to_dev(pf); 8671 int ret; 8672 8673 ch->base_q = vsi->next_base_q; 8674 ch->type = type; 8675 8676 ret = ice_add_channel(pf, sw_id, ch); 8677 if (ret) { 8678 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8679 return ret; 8680 } 8681 8682 /* configure/setup ADQ specific resources */ 8683 ice_cfg_chnl_all_res(vsi, ch); 8684 8685 /* make sure to update the next_base_q so that subsequent channel's 8686 * (aka ADQ) VSI queue map is correct 8687 */ 8688 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8689 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8690 ch->num_rxq); 8691 8692 return 0; 8693 } 8694 8695 /** 8696 * ice_setup_channel - setup new channel using uplink element 8697 * @pf: ptr to PF device 8698 * @vsi: the VSI being setup 8699 * @ch: ptr to channel structure 8700 * 8701 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8702 * and uplink switching element 8703 */ 8704 static bool 8705 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8706 struct ice_channel *ch) 8707 { 8708 struct device *dev = ice_pf_to_dev(pf); 8709 u16 sw_id; 8710 int ret; 8711 8712 if (vsi->type != ICE_VSI_PF) { 8713 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8714 return false; 8715 } 8716 8717 sw_id = pf->first_sw->sw_id; 8718 8719 /* create channel (VSI) */ 8720 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8721 if (ret) { 8722 dev_err(dev, "failed to setup hw_channel\n"); 8723 return false; 8724 } 8725 dev_dbg(dev, "successfully created channel()\n"); 8726 8727 return ch->ch_vsi ? true : false; 8728 } 8729 8730 /** 8731 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8732 * @vsi: VSI to be configured 8733 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8734 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8735 */ 8736 static int 8737 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8738 { 8739 int err; 8740 8741 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8742 if (err) 8743 return err; 8744 8745 return ice_set_max_bw_limit(vsi, max_tx_rate); 8746 } 8747 8748 /** 8749 * ice_create_q_channel - function to create channel 8750 * @vsi: VSI to be configured 8751 * @ch: ptr to channel (it contains channel specific params) 8752 * 8753 * This function creates channel (VSI) using num_queues specified by user, 8754 * reconfigs RSS if needed. 8755 */ 8756 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8757 { 8758 struct ice_pf *pf = vsi->back; 8759 struct device *dev; 8760 8761 if (!ch) 8762 return -EINVAL; 8763 8764 dev = ice_pf_to_dev(pf); 8765 if (!ch->num_txq || !ch->num_rxq) { 8766 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8767 return -EINVAL; 8768 } 8769 8770 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8771 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8772 vsi->cnt_q_avail, ch->num_txq); 8773 return -EINVAL; 8774 } 8775 8776 if (!ice_setup_channel(pf, vsi, ch)) { 8777 dev_info(dev, "Failed to setup channel\n"); 8778 return -EINVAL; 8779 } 8780 /* configure BW rate limit */ 8781 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8782 int ret; 8783 8784 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8785 ch->min_tx_rate); 8786 if (ret) 8787 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8788 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8789 else 8790 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8791 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8792 } 8793 8794 vsi->cnt_q_avail -= ch->num_txq; 8795 8796 return 0; 8797 } 8798 8799 /** 8800 * ice_rem_all_chnl_fltrs - removes all channel filters 8801 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8802 * 8803 * Remove all advanced switch filters only if they are channel specific 8804 * tc-flower based filter 8805 */ 8806 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8807 { 8808 struct ice_tc_flower_fltr *fltr; 8809 struct hlist_node *node; 8810 8811 /* to remove all channel filters, iterate an ordered list of filters */ 8812 hlist_for_each_entry_safe(fltr, node, 8813 &pf->tc_flower_fltr_list, 8814 tc_flower_node) { 8815 struct ice_rule_query_data rule; 8816 int status; 8817 8818 /* for now process only channel specific filters */ 8819 if (!ice_is_chnl_fltr(fltr)) 8820 continue; 8821 8822 rule.rid = fltr->rid; 8823 rule.rule_id = fltr->rule_id; 8824 rule.vsi_handle = fltr->dest_vsi_handle; 8825 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8826 if (status) { 8827 if (status == -ENOENT) 8828 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8829 rule.rule_id); 8830 else 8831 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8832 status); 8833 } else if (fltr->dest_vsi) { 8834 /* update advanced switch filter count */ 8835 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8836 u32 flags = fltr->flags; 8837 8838 fltr->dest_vsi->num_chnl_fltr--; 8839 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8840 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8841 pf->num_dmac_chnl_fltrs--; 8842 } 8843 } 8844 8845 hlist_del(&fltr->tc_flower_node); 8846 kfree(fltr); 8847 } 8848 } 8849 8850 /** 8851 * ice_remove_q_channels - Remove queue channels for the TCs 8852 * @vsi: VSI to be configured 8853 * @rem_fltr: delete advanced switch filter or not 8854 * 8855 * Remove queue channels for the TCs 8856 */ 8857 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8858 { 8859 struct ice_channel *ch, *ch_tmp; 8860 struct ice_pf *pf = vsi->back; 8861 int i; 8862 8863 /* remove all tc-flower based filter if they are channel filters only */ 8864 if (rem_fltr) 8865 ice_rem_all_chnl_fltrs(pf); 8866 8867 /* remove ntuple filters since queue configuration is being changed */ 8868 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8869 struct ice_hw *hw = &pf->hw; 8870 8871 mutex_lock(&hw->fdir_fltr_lock); 8872 ice_fdir_del_all_fltrs(vsi); 8873 mutex_unlock(&hw->fdir_fltr_lock); 8874 } 8875 8876 /* perform cleanup for channels if they exist */ 8877 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8878 struct ice_vsi *ch_vsi; 8879 8880 list_del(&ch->list); 8881 ch_vsi = ch->ch_vsi; 8882 if (!ch_vsi) { 8883 kfree(ch); 8884 continue; 8885 } 8886 8887 /* Reset queue contexts */ 8888 for (i = 0; i < ch->num_rxq; i++) { 8889 struct ice_tx_ring *tx_ring; 8890 struct ice_rx_ring *rx_ring; 8891 8892 tx_ring = vsi->tx_rings[ch->base_q + i]; 8893 rx_ring = vsi->rx_rings[ch->base_q + i]; 8894 if (tx_ring) { 8895 tx_ring->ch = NULL; 8896 if (tx_ring->q_vector) 8897 tx_ring->q_vector->ch = NULL; 8898 } 8899 if (rx_ring) { 8900 rx_ring->ch = NULL; 8901 if (rx_ring->q_vector) 8902 rx_ring->q_vector->ch = NULL; 8903 } 8904 } 8905 8906 /* Release FD resources for the channel VSI */ 8907 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8908 8909 /* clear the VSI from scheduler tree */ 8910 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8911 8912 /* Delete VSI from FW, PF and HW VSI arrays */ 8913 ice_vsi_delete(ch->ch_vsi); 8914 8915 /* free the channel */ 8916 kfree(ch); 8917 } 8918 8919 /* clear the channel VSI map which is stored in main VSI */ 8920 ice_for_each_chnl_tc(i) 8921 vsi->tc_map_vsi[i] = NULL; 8922 8923 /* reset main VSI's all TC information */ 8924 vsi->all_enatc = 0; 8925 vsi->all_numtc = 0; 8926 } 8927 8928 /** 8929 * ice_rebuild_channels - rebuild channel 8930 * @pf: ptr to PF 8931 * 8932 * Recreate channel VSIs and replay filters 8933 */ 8934 static int ice_rebuild_channels(struct ice_pf *pf) 8935 { 8936 struct device *dev = ice_pf_to_dev(pf); 8937 struct ice_vsi *main_vsi; 8938 bool rem_adv_fltr = true; 8939 struct ice_channel *ch; 8940 struct ice_vsi *vsi; 8941 int tc_idx = 1; 8942 int i, err; 8943 8944 main_vsi = ice_get_main_vsi(pf); 8945 if (!main_vsi) 8946 return 0; 8947 8948 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8949 main_vsi->old_numtc == 1) 8950 return 0; /* nothing to be done */ 8951 8952 /* reconfigure main VSI based on old value of TC and cached values 8953 * for MQPRIO opts 8954 */ 8955 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8956 if (err) { 8957 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8958 main_vsi->old_ena_tc, main_vsi->vsi_num); 8959 return err; 8960 } 8961 8962 /* rebuild ADQ VSIs */ 8963 ice_for_each_vsi(pf, i) { 8964 enum ice_vsi_type type; 8965 8966 vsi = pf->vsi[i]; 8967 if (!vsi || vsi->type != ICE_VSI_CHNL) 8968 continue; 8969 8970 type = vsi->type; 8971 8972 /* rebuild ADQ VSI */ 8973 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8974 if (err) { 8975 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8976 ice_vsi_type_str(type), vsi->idx, err); 8977 goto cleanup; 8978 } 8979 8980 /* Re-map HW VSI number, using VSI handle that has been 8981 * previously validated in ice_replay_vsi() call above 8982 */ 8983 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8984 8985 /* replay filters for the VSI */ 8986 err = ice_replay_vsi(&pf->hw, vsi->idx); 8987 if (err) { 8988 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8989 ice_vsi_type_str(type), err, vsi->idx); 8990 rem_adv_fltr = false; 8991 goto cleanup; 8992 } 8993 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8994 ice_vsi_type_str(type), vsi->idx); 8995 8996 /* store ADQ VSI at correct TC index in main VSI's 8997 * map of TC to VSI 8998 */ 8999 main_vsi->tc_map_vsi[tc_idx++] = vsi; 9000 } 9001 9002 /* ADQ VSI(s) has been rebuilt successfully, so setup 9003 * channel for main VSI's Tx and Rx rings 9004 */ 9005 list_for_each_entry(ch, &main_vsi->ch_list, list) { 9006 struct ice_vsi *ch_vsi; 9007 9008 ch_vsi = ch->ch_vsi; 9009 if (!ch_vsi) 9010 continue; 9011 9012 /* reconfig channel resources */ 9013 ice_cfg_chnl_all_res(main_vsi, ch); 9014 9015 /* replay BW rate limit if it is non-zero */ 9016 if (!ch->max_tx_rate && !ch->min_tx_rate) 9017 continue; 9018 9019 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9020 ch->min_tx_rate); 9021 if (err) 9022 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9023 err, ch->max_tx_rate, ch->min_tx_rate, 9024 ch_vsi->vsi_num); 9025 else 9026 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9027 ch->max_tx_rate, ch->min_tx_rate, 9028 ch_vsi->vsi_num); 9029 } 9030 9031 /* reconfig RSS for main VSI */ 9032 if (main_vsi->ch_rss_size) 9033 ice_vsi_cfg_rss_lut_key(main_vsi); 9034 9035 return 0; 9036 9037 cleanup: 9038 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9039 return err; 9040 } 9041 9042 /** 9043 * ice_create_q_channels - Add queue channel for the given TCs 9044 * @vsi: VSI to be configured 9045 * 9046 * Configures queue channel mapping to the given TCs 9047 */ 9048 static int ice_create_q_channels(struct ice_vsi *vsi) 9049 { 9050 struct ice_pf *pf = vsi->back; 9051 struct ice_channel *ch; 9052 int ret = 0, i; 9053 9054 ice_for_each_chnl_tc(i) { 9055 if (!(vsi->all_enatc & BIT(i))) 9056 continue; 9057 9058 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9059 if (!ch) { 9060 ret = -ENOMEM; 9061 goto err_free; 9062 } 9063 INIT_LIST_HEAD(&ch->list); 9064 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9065 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9066 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9067 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9068 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9069 9070 /* convert to Kbits/s */ 9071 if (ch->max_tx_rate) 9072 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9073 ICE_BW_KBPS_DIVISOR); 9074 if (ch->min_tx_rate) 9075 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9076 ICE_BW_KBPS_DIVISOR); 9077 9078 ret = ice_create_q_channel(vsi, ch); 9079 if (ret) { 9080 dev_err(ice_pf_to_dev(pf), 9081 "failed creating channel TC:%d\n", i); 9082 kfree(ch); 9083 goto err_free; 9084 } 9085 list_add_tail(&ch->list, &vsi->ch_list); 9086 vsi->tc_map_vsi[i] = ch->ch_vsi; 9087 dev_dbg(ice_pf_to_dev(pf), 9088 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9089 } 9090 return 0; 9091 9092 err_free: 9093 ice_remove_q_channels(vsi, false); 9094 9095 return ret; 9096 } 9097 9098 /** 9099 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9100 * @netdev: net device to configure 9101 * @type_data: TC offload data 9102 */ 9103 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9104 { 9105 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9106 struct ice_netdev_priv *np = netdev_priv(netdev); 9107 struct ice_vsi *vsi = np->vsi; 9108 struct ice_pf *pf = vsi->back; 9109 u16 mode, ena_tc_qdisc = 0; 9110 int cur_txq, cur_rxq; 9111 u8 hw = 0, num_tcf; 9112 struct device *dev; 9113 int ret, i; 9114 9115 dev = ice_pf_to_dev(pf); 9116 num_tcf = mqprio_qopt->qopt.num_tc; 9117 hw = mqprio_qopt->qopt.hw; 9118 mode = mqprio_qopt->mode; 9119 if (!hw) { 9120 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9121 vsi->ch_rss_size = 0; 9122 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9123 goto config_tcf; 9124 } 9125 9126 /* Generate queue region map for number of TCF requested */ 9127 for (i = 0; i < num_tcf; i++) 9128 ena_tc_qdisc |= BIT(i); 9129 9130 switch (mode) { 9131 case TC_MQPRIO_MODE_CHANNEL: 9132 9133 if (pf->hw.port_info->is_custom_tx_enabled) { 9134 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9135 return -EBUSY; 9136 } 9137 ice_tear_down_devlink_rate_tree(pf); 9138 9139 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9140 if (ret) { 9141 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9142 ret); 9143 return ret; 9144 } 9145 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9146 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9147 /* don't assume state of hw_tc_offload during driver load 9148 * and set the flag for TC flower filter if hw_tc_offload 9149 * already ON 9150 */ 9151 if (vsi->netdev->features & NETIF_F_HW_TC) 9152 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9153 break; 9154 default: 9155 return -EINVAL; 9156 } 9157 9158 config_tcf: 9159 9160 /* Requesting same TCF configuration as already enabled */ 9161 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9162 mode != TC_MQPRIO_MODE_CHANNEL) 9163 return 0; 9164 9165 /* Pause VSI queues */ 9166 ice_dis_vsi(vsi, true); 9167 9168 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9169 ice_remove_q_channels(vsi, true); 9170 9171 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9172 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9173 num_online_cpus()); 9174 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9175 num_online_cpus()); 9176 } else { 9177 /* logic to rebuild VSI, same like ethtool -L */ 9178 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9179 9180 for (i = 0; i < num_tcf; i++) { 9181 if (!(ena_tc_qdisc & BIT(i))) 9182 continue; 9183 9184 offset = vsi->mqprio_qopt.qopt.offset[i]; 9185 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9186 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9187 } 9188 vsi->req_txq = offset + qcount_tx; 9189 vsi->req_rxq = offset + qcount_rx; 9190 9191 /* store away original rss_size info, so that it gets reused 9192 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9193 * determine, what should be the rss_sizefor main VSI 9194 */ 9195 vsi->orig_rss_size = vsi->rss_size; 9196 } 9197 9198 /* save current values of Tx and Rx queues before calling VSI rebuild 9199 * for fallback option 9200 */ 9201 cur_txq = vsi->num_txq; 9202 cur_rxq = vsi->num_rxq; 9203 9204 /* proceed with rebuild main VSI using correct number of queues */ 9205 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9206 if (ret) { 9207 /* fallback to current number of queues */ 9208 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9209 vsi->req_txq = cur_txq; 9210 vsi->req_rxq = cur_rxq; 9211 clear_bit(ICE_RESET_FAILED, pf->state); 9212 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9213 dev_err(dev, "Rebuild of main VSI failed again\n"); 9214 return ret; 9215 } 9216 } 9217 9218 vsi->all_numtc = num_tcf; 9219 vsi->all_enatc = ena_tc_qdisc; 9220 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9221 if (ret) { 9222 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9223 vsi->vsi_num); 9224 goto exit; 9225 } 9226 9227 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9228 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9229 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9230 9231 /* set TC0 rate limit if specified */ 9232 if (max_tx_rate || min_tx_rate) { 9233 /* convert to Kbits/s */ 9234 if (max_tx_rate) 9235 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9236 if (min_tx_rate) 9237 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9238 9239 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9240 if (!ret) { 9241 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9242 max_tx_rate, min_tx_rate, vsi->vsi_num); 9243 } else { 9244 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9245 max_tx_rate, min_tx_rate, vsi->vsi_num); 9246 goto exit; 9247 } 9248 } 9249 ret = ice_create_q_channels(vsi); 9250 if (ret) { 9251 netdev_err(netdev, "failed configuring queue channels\n"); 9252 goto exit; 9253 } else { 9254 netdev_dbg(netdev, "successfully configured channels\n"); 9255 } 9256 } 9257 9258 if (vsi->ch_rss_size) 9259 ice_vsi_cfg_rss_lut_key(vsi); 9260 9261 exit: 9262 /* if error, reset the all_numtc and all_enatc */ 9263 if (ret) { 9264 vsi->all_numtc = 0; 9265 vsi->all_enatc = 0; 9266 } 9267 /* resume VSI */ 9268 ice_ena_vsi(vsi, true); 9269 9270 return ret; 9271 } 9272 9273 static LIST_HEAD(ice_block_cb_list); 9274 9275 static int 9276 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9277 void *type_data) 9278 { 9279 struct ice_netdev_priv *np = netdev_priv(netdev); 9280 struct ice_pf *pf = np->vsi->back; 9281 bool locked = false; 9282 int err; 9283 9284 switch (type) { 9285 case TC_SETUP_BLOCK: 9286 return flow_block_cb_setup_simple(type_data, 9287 &ice_block_cb_list, 9288 ice_setup_tc_block_cb, 9289 np, np, true); 9290 case TC_SETUP_QDISC_MQPRIO: 9291 if (ice_is_eswitch_mode_switchdev(pf)) { 9292 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9293 return -EOPNOTSUPP; 9294 } 9295 9296 if (pf->adev) { 9297 mutex_lock(&pf->adev_mutex); 9298 device_lock(&pf->adev->dev); 9299 locked = true; 9300 if (pf->adev->dev.driver) { 9301 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9302 err = -EBUSY; 9303 goto adev_unlock; 9304 } 9305 } 9306 9307 /* setup traffic classifier for receive side */ 9308 mutex_lock(&pf->tc_mutex); 9309 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9310 mutex_unlock(&pf->tc_mutex); 9311 9312 adev_unlock: 9313 if (locked) { 9314 device_unlock(&pf->adev->dev); 9315 mutex_unlock(&pf->adev_mutex); 9316 } 9317 return err; 9318 default: 9319 return -EOPNOTSUPP; 9320 } 9321 return -EOPNOTSUPP; 9322 } 9323 9324 static struct ice_indr_block_priv * 9325 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9326 struct net_device *netdev) 9327 { 9328 struct ice_indr_block_priv *cb_priv; 9329 9330 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9331 if (!cb_priv->netdev) 9332 return NULL; 9333 if (cb_priv->netdev == netdev) 9334 return cb_priv; 9335 } 9336 return NULL; 9337 } 9338 9339 static int 9340 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9341 void *indr_priv) 9342 { 9343 struct ice_indr_block_priv *priv = indr_priv; 9344 struct ice_netdev_priv *np = priv->np; 9345 9346 switch (type) { 9347 case TC_SETUP_CLSFLOWER: 9348 return ice_setup_tc_cls_flower(np, priv->netdev, 9349 (struct flow_cls_offload *) 9350 type_data); 9351 default: 9352 return -EOPNOTSUPP; 9353 } 9354 } 9355 9356 static int 9357 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9358 struct ice_netdev_priv *np, 9359 struct flow_block_offload *f, void *data, 9360 void (*cleanup)(struct flow_block_cb *block_cb)) 9361 { 9362 struct ice_indr_block_priv *indr_priv; 9363 struct flow_block_cb *block_cb; 9364 9365 if (!ice_is_tunnel_supported(netdev) && 9366 !(is_vlan_dev(netdev) && 9367 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9368 return -EOPNOTSUPP; 9369 9370 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9371 return -EOPNOTSUPP; 9372 9373 switch (f->command) { 9374 case FLOW_BLOCK_BIND: 9375 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9376 if (indr_priv) 9377 return -EEXIST; 9378 9379 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9380 if (!indr_priv) 9381 return -ENOMEM; 9382 9383 indr_priv->netdev = netdev; 9384 indr_priv->np = np; 9385 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9386 9387 block_cb = 9388 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9389 indr_priv, indr_priv, 9390 ice_rep_indr_tc_block_unbind, 9391 f, netdev, sch, data, np, 9392 cleanup); 9393 9394 if (IS_ERR(block_cb)) { 9395 list_del(&indr_priv->list); 9396 kfree(indr_priv); 9397 return PTR_ERR(block_cb); 9398 } 9399 flow_block_cb_add(block_cb, f); 9400 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9401 break; 9402 case FLOW_BLOCK_UNBIND: 9403 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9404 if (!indr_priv) 9405 return -ENOENT; 9406 9407 block_cb = flow_block_cb_lookup(f->block, 9408 ice_indr_setup_block_cb, 9409 indr_priv); 9410 if (!block_cb) 9411 return -ENOENT; 9412 9413 flow_indr_block_cb_remove(block_cb, f); 9414 9415 list_del(&block_cb->driver_list); 9416 break; 9417 default: 9418 return -EOPNOTSUPP; 9419 } 9420 return 0; 9421 } 9422 9423 static int 9424 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9425 void *cb_priv, enum tc_setup_type type, void *type_data, 9426 void *data, 9427 void (*cleanup)(struct flow_block_cb *block_cb)) 9428 { 9429 switch (type) { 9430 case TC_SETUP_BLOCK: 9431 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9432 data, cleanup); 9433 9434 default: 9435 return -EOPNOTSUPP; 9436 } 9437 } 9438 9439 /** 9440 * ice_open - Called when a network interface becomes active 9441 * @netdev: network interface device structure 9442 * 9443 * The open entry point is called when a network interface is made 9444 * active by the system (IFF_UP). At this point all resources needed 9445 * for transmit and receive operations are allocated, the interrupt 9446 * handler is registered with the OS, the netdev watchdog is enabled, 9447 * and the stack is notified that the interface is ready. 9448 * 9449 * Returns 0 on success, negative value on failure 9450 */ 9451 int ice_open(struct net_device *netdev) 9452 { 9453 struct ice_netdev_priv *np = netdev_priv(netdev); 9454 struct ice_pf *pf = np->vsi->back; 9455 9456 if (ice_is_reset_in_progress(pf->state)) { 9457 netdev_err(netdev, "can't open net device while reset is in progress"); 9458 return -EBUSY; 9459 } 9460 9461 return ice_open_internal(netdev); 9462 } 9463 9464 /** 9465 * ice_open_internal - Called when a network interface becomes active 9466 * @netdev: network interface device structure 9467 * 9468 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9469 * handling routine 9470 * 9471 * Returns 0 on success, negative value on failure 9472 */ 9473 int ice_open_internal(struct net_device *netdev) 9474 { 9475 struct ice_netdev_priv *np = netdev_priv(netdev); 9476 struct ice_vsi *vsi = np->vsi; 9477 struct ice_pf *pf = vsi->back; 9478 struct ice_port_info *pi; 9479 int err; 9480 9481 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9482 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9483 return -EIO; 9484 } 9485 9486 netif_carrier_off(netdev); 9487 9488 pi = vsi->port_info; 9489 err = ice_update_link_info(pi); 9490 if (err) { 9491 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9492 return err; 9493 } 9494 9495 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9496 9497 /* Set PHY if there is media, otherwise, turn off PHY */ 9498 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9499 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9500 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9501 err = ice_init_phy_user_cfg(pi); 9502 if (err) { 9503 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9504 err); 9505 return err; 9506 } 9507 } 9508 9509 err = ice_configure_phy(vsi); 9510 if (err) { 9511 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9512 err); 9513 return err; 9514 } 9515 } else { 9516 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9517 ice_set_link(vsi, false); 9518 } 9519 9520 err = ice_vsi_open(vsi); 9521 if (err) 9522 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9523 vsi->vsi_num, vsi->vsw->sw_id); 9524 9525 /* Update existing tunnels information */ 9526 udp_tunnel_get_rx_info(netdev); 9527 9528 return err; 9529 } 9530 9531 /** 9532 * ice_stop - Disables a network interface 9533 * @netdev: network interface device structure 9534 * 9535 * The stop entry point is called when an interface is de-activated by the OS, 9536 * and the netdevice enters the DOWN state. The hardware is still under the 9537 * driver's control, but the netdev interface is disabled. 9538 * 9539 * Returns success only - not allowed to fail 9540 */ 9541 int ice_stop(struct net_device *netdev) 9542 { 9543 struct ice_netdev_priv *np = netdev_priv(netdev); 9544 struct ice_vsi *vsi = np->vsi; 9545 struct ice_pf *pf = vsi->back; 9546 9547 if (ice_is_reset_in_progress(pf->state)) { 9548 netdev_err(netdev, "can't stop net device while reset is in progress"); 9549 return -EBUSY; 9550 } 9551 9552 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9553 int link_err = ice_force_phys_link_state(vsi, false); 9554 9555 if (link_err) { 9556 if (link_err == -ENOMEDIUM) 9557 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9558 vsi->vsi_num); 9559 else 9560 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9561 vsi->vsi_num, link_err); 9562 9563 ice_vsi_close(vsi); 9564 return -EIO; 9565 } 9566 } 9567 9568 ice_vsi_close(vsi); 9569 9570 return 0; 9571 } 9572 9573 /** 9574 * ice_features_check - Validate encapsulated packet conforms to limits 9575 * @skb: skb buffer 9576 * @netdev: This port's netdev 9577 * @features: Offload features that the stack believes apply 9578 */ 9579 static netdev_features_t 9580 ice_features_check(struct sk_buff *skb, 9581 struct net_device __always_unused *netdev, 9582 netdev_features_t features) 9583 { 9584 bool gso = skb_is_gso(skb); 9585 size_t len; 9586 9587 /* No point in doing any of this if neither checksum nor GSO are 9588 * being requested for this frame. We can rule out both by just 9589 * checking for CHECKSUM_PARTIAL 9590 */ 9591 if (skb->ip_summed != CHECKSUM_PARTIAL) 9592 return features; 9593 9594 /* We cannot support GSO if the MSS is going to be less than 9595 * 64 bytes. If it is then we need to drop support for GSO. 9596 */ 9597 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9598 features &= ~NETIF_F_GSO_MASK; 9599 9600 len = skb_network_offset(skb); 9601 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9602 goto out_rm_features; 9603 9604 len = skb_network_header_len(skb); 9605 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9606 goto out_rm_features; 9607 9608 if (skb->encapsulation) { 9609 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9610 * the case of IPIP frames, the transport header pointer is 9611 * after the inner header! So check to make sure that this 9612 * is a GRE or UDP_TUNNEL frame before doing that math. 9613 */ 9614 if (gso && (skb_shinfo(skb)->gso_type & 9615 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9616 len = skb_inner_network_header(skb) - 9617 skb_transport_header(skb); 9618 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9619 goto out_rm_features; 9620 } 9621 9622 len = skb_inner_network_header_len(skb); 9623 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9624 goto out_rm_features; 9625 } 9626 9627 return features; 9628 out_rm_features: 9629 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9630 } 9631 9632 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9633 .ndo_open = ice_open, 9634 .ndo_stop = ice_stop, 9635 .ndo_start_xmit = ice_start_xmit, 9636 .ndo_set_mac_address = ice_set_mac_address, 9637 .ndo_validate_addr = eth_validate_addr, 9638 .ndo_change_mtu = ice_change_mtu, 9639 .ndo_get_stats64 = ice_get_stats64, 9640 .ndo_tx_timeout = ice_tx_timeout, 9641 .ndo_bpf = ice_xdp_safe_mode, 9642 }; 9643 9644 static const struct net_device_ops ice_netdev_ops = { 9645 .ndo_open = ice_open, 9646 .ndo_stop = ice_stop, 9647 .ndo_start_xmit = ice_start_xmit, 9648 .ndo_select_queue = ice_select_queue, 9649 .ndo_features_check = ice_features_check, 9650 .ndo_fix_features = ice_fix_features, 9651 .ndo_set_rx_mode = ice_set_rx_mode, 9652 .ndo_set_mac_address = ice_set_mac_address, 9653 .ndo_validate_addr = eth_validate_addr, 9654 .ndo_change_mtu = ice_change_mtu, 9655 .ndo_get_stats64 = ice_get_stats64, 9656 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9657 .ndo_eth_ioctl = ice_eth_ioctl, 9658 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9659 .ndo_set_vf_mac = ice_set_vf_mac, 9660 .ndo_get_vf_config = ice_get_vf_cfg, 9661 .ndo_set_vf_trust = ice_set_vf_trust, 9662 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9663 .ndo_set_vf_link_state = ice_set_vf_link_state, 9664 .ndo_get_vf_stats = ice_get_vf_stats, 9665 .ndo_set_vf_rate = ice_set_vf_bw, 9666 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9667 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9668 .ndo_setup_tc = ice_setup_tc, 9669 .ndo_set_features = ice_set_features, 9670 .ndo_bridge_getlink = ice_bridge_getlink, 9671 .ndo_bridge_setlink = ice_bridge_setlink, 9672 .ndo_fdb_add = ice_fdb_add, 9673 .ndo_fdb_del = ice_fdb_del, 9674 #ifdef CONFIG_RFS_ACCEL 9675 .ndo_rx_flow_steer = ice_rx_flow_steer, 9676 #endif 9677 .ndo_tx_timeout = ice_tx_timeout, 9678 .ndo_bpf = ice_xdp, 9679 .ndo_xdp_xmit = ice_xdp_xmit, 9680 .ndo_xsk_wakeup = ice_xsk_wakeup, 9681 }; 9682