1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS("LIBIE"); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops || 91 dev->netdev_ops == &ice_netdev_safe_mode_ops); 92 } 93 94 /** 95 * ice_get_tx_pending - returns number of Tx descriptors not processed 96 * @ring: the ring of descriptors 97 */ 98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 99 { 100 u16 head, tail; 101 102 head = ring->next_to_clean; 103 tail = ring->next_to_use; 104 105 if (head != tail) 106 return (head < tail) ? 107 tail - head : (tail + ring->count - head); 108 return 0; 109 } 110 111 /** 112 * ice_check_for_hang_subtask - check for and recover hung queues 113 * @pf: pointer to PF struct 114 */ 115 static void ice_check_for_hang_subtask(struct ice_pf *pf) 116 { 117 struct ice_vsi *vsi = NULL; 118 struct ice_hw *hw; 119 unsigned int i; 120 int packets; 121 u32 v; 122 123 ice_for_each_vsi(pf, v) 124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 125 vsi = pf->vsi[v]; 126 break; 127 } 128 129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 130 return; 131 132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 133 return; 134 135 hw = &vsi->back->hw; 136 137 ice_for_each_txq(vsi, i) { 138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 139 struct ice_ring_stats *ring_stats; 140 141 if (!tx_ring) 142 continue; 143 if (ice_ring_ch_enabled(tx_ring)) 144 continue; 145 146 ring_stats = tx_ring->ring_stats; 147 if (!ring_stats) 148 continue; 149 150 if (tx_ring->desc) { 151 /* If packet counter has not changed the queue is 152 * likely stalled, so force an interrupt for this 153 * queue. 154 * 155 * prev_pkt would be negative if there was no 156 * pending work. 157 */ 158 packets = ring_stats->stats.pkts & INT_MAX; 159 if (ring_stats->tx_stats.prev_pkt == packets) { 160 /* Trigger sw interrupt to revive the queue */ 161 ice_trigger_sw_intr(hw, tx_ring->q_vector); 162 continue; 163 } 164 165 /* Memory barrier between read of packet count and call 166 * to ice_get_tx_pending() 167 */ 168 smp_rmb(); 169 ring_stats->tx_stats.prev_pkt = 170 ice_get_tx_pending(tx_ring) ? packets : -1; 171 } 172 } 173 } 174 175 /** 176 * ice_init_mac_fltr - Set initial MAC filters 177 * @pf: board private structure 178 * 179 * Set initial set of MAC filters for PF VSI; configure filters for permanent 180 * address and broadcast address. If an error is encountered, netdevice will be 181 * unregistered. 182 */ 183 static int ice_init_mac_fltr(struct ice_pf *pf) 184 { 185 struct ice_vsi *vsi; 186 u8 *perm_addr; 187 188 vsi = ice_get_main_vsi(pf); 189 if (!vsi) 190 return -EINVAL; 191 192 perm_addr = vsi->port_info->mac.perm_addr; 193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 194 } 195 196 /** 197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 198 * @netdev: the net device on which the sync is happening 199 * @addr: MAC address to sync 200 * 201 * This is a callback function which is called by the in kernel device sync 202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 204 * MAC filters from the hardware. 205 */ 206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 207 { 208 struct ice_netdev_priv *np = netdev_priv(netdev); 209 struct ice_vsi *vsi = np->vsi; 210 211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 212 ICE_FWD_TO_VSI)) 213 return -EINVAL; 214 215 return 0; 216 } 217 218 /** 219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 220 * @netdev: the net device on which the unsync is happening 221 * @addr: MAC address to unsync 222 * 223 * This is a callback function which is called by the in kernel device unsync 224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 226 * delete the MAC filters from the hardware. 227 */ 228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 229 { 230 struct ice_netdev_priv *np = netdev_priv(netdev); 231 struct ice_vsi *vsi = np->vsi; 232 233 /* Under some circumstances, we might receive a request to delete our 234 * own device address from our uc list. Because we store the device 235 * address in the VSI's MAC filter list, we need to ignore such 236 * requests and not delete our device address from this list. 237 */ 238 if (ether_addr_equal(addr, netdev->dev_addr)) 239 return 0; 240 241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 242 ICE_FWD_TO_VSI)) 243 return -EINVAL; 244 245 return 0; 246 } 247 248 /** 249 * ice_vsi_fltr_changed - check if filter state changed 250 * @vsi: VSI to be checked 251 * 252 * returns true if filter state has changed, false otherwise. 253 */ 254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 255 { 256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 258 } 259 260 /** 261 * ice_set_promisc - Enable promiscuous mode for a given PF 262 * @vsi: the VSI being configured 263 * @promisc_m: mask of promiscuous config bits 264 * 265 */ 266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 267 { 268 int status; 269 270 if (vsi->type != ICE_VSI_PF) 271 return 0; 272 273 if (ice_vsi_has_non_zero_vlans(vsi)) { 274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 276 promisc_m); 277 } else { 278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 279 promisc_m, 0); 280 } 281 if (status && status != -EEXIST) 282 return status; 283 284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 285 vsi->vsi_num, promisc_m); 286 return 0; 287 } 288 289 /** 290 * ice_clear_promisc - Disable promiscuous mode for a given PF 291 * @vsi: the VSI being configured 292 * @promisc_m: mask of promiscuous config bits 293 * 294 */ 295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 296 { 297 int status; 298 299 if (vsi->type != ICE_VSI_PF) 300 return 0; 301 302 if (ice_vsi_has_non_zero_vlans(vsi)) { 303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 305 promisc_m); 306 } else { 307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 308 promisc_m, 0); 309 } 310 311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 312 vsi->vsi_num, promisc_m); 313 return status; 314 } 315 316 /** 317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 318 * @vsi: ptr to the VSI 319 * 320 * Push any outstanding VSI filter changes through the AdminQ. 321 */ 322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 323 { 324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 325 struct device *dev = ice_pf_to_dev(vsi->back); 326 struct net_device *netdev = vsi->netdev; 327 bool promisc_forced_on = false; 328 struct ice_pf *pf = vsi->back; 329 struct ice_hw *hw = &pf->hw; 330 u32 changed_flags = 0; 331 int err; 332 333 if (!vsi->netdev) 334 return -EINVAL; 335 336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 337 usleep_range(1000, 2000); 338 339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 340 vsi->current_netdev_flags = vsi->netdev->flags; 341 342 INIT_LIST_HEAD(&vsi->tmp_sync_list); 343 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 344 345 if (ice_vsi_fltr_changed(vsi)) { 346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 348 349 /* grab the netdev's addr_list_lock */ 350 netif_addr_lock_bh(netdev); 351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 354 ice_add_mac_to_unsync_list); 355 /* our temp lists are populated. release lock */ 356 netif_addr_unlock_bh(netdev); 357 } 358 359 /* Remove MAC addresses in the unsync list */ 360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 362 if (err) { 363 netdev_err(netdev, "Failed to delete MAC filters\n"); 364 /* if we failed because of alloc failures, just bail */ 365 if (err == -ENOMEM) 366 goto out; 367 } 368 369 /* Add MAC addresses in the sync list */ 370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 371 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 372 /* If filter is added successfully or already exists, do not go into 373 * 'if' condition and report it as error. Instead continue processing 374 * rest of the function. 375 */ 376 if (err && err != -EEXIST) { 377 netdev_err(netdev, "Failed to add MAC filters\n"); 378 /* If there is no more space for new umac filters, VSI 379 * should go into promiscuous mode. There should be some 380 * space reserved for promiscuous filters. 381 */ 382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 384 vsi->state)) { 385 promisc_forced_on = true; 386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 387 vsi->vsi_num); 388 } else { 389 goto out; 390 } 391 } 392 err = 0; 393 /* check for changes in promiscuous modes */ 394 if (changed_flags & IFF_ALLMULTI) { 395 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 397 if (err) { 398 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 399 goto out_promisc; 400 } 401 } else { 402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 404 if (err) { 405 vsi->current_netdev_flags |= IFF_ALLMULTI; 406 goto out_promisc; 407 } 408 } 409 } 410 411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 414 if (vsi->current_netdev_flags & IFF_PROMISC) { 415 /* Apply Rx filter rule to get traffic from wire */ 416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 417 err = ice_set_dflt_vsi(vsi); 418 if (err && err != -EEXIST) { 419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 420 err, vsi->vsi_num); 421 vsi->current_netdev_flags &= 422 ~IFF_PROMISC; 423 goto out_promisc; 424 } 425 err = 0; 426 vlan_ops->dis_rx_filtering(vsi); 427 428 /* promiscuous mode implies allmulticast so 429 * that VSIs that are in promiscuous mode are 430 * subscribed to multicast packets coming to 431 * the port 432 */ 433 err = ice_set_promisc(vsi, 434 ICE_MCAST_PROMISC_BITS); 435 if (err) 436 goto out_promisc; 437 } 438 } else { 439 /* Clear Rx filter to remove traffic from wire */ 440 if (ice_is_vsi_dflt_vsi(vsi)) { 441 err = ice_clear_dflt_vsi(vsi); 442 if (err) { 443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 444 err, vsi->vsi_num); 445 vsi->current_netdev_flags |= 446 IFF_PROMISC; 447 goto out_promisc; 448 } 449 if (vsi->netdev->features & 450 NETIF_F_HW_VLAN_CTAG_FILTER) 451 vlan_ops->ena_rx_filtering(vsi); 452 } 453 454 /* disable allmulti here, but only if allmulti is not 455 * still enabled for the netdev 456 */ 457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 458 err = ice_clear_promisc(vsi, 459 ICE_MCAST_PROMISC_BITS); 460 if (err) { 461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 462 err, vsi->vsi_num); 463 } 464 } 465 } 466 } 467 goto exit; 468 469 out_promisc: 470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 471 goto exit; 472 out: 473 /* if something went wrong then set the changed flag so we try again */ 474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 476 exit: 477 clear_bit(ICE_CFG_BUSY, vsi->state); 478 return err; 479 } 480 481 /** 482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 483 * @pf: board private structure 484 */ 485 static void ice_sync_fltr_subtask(struct ice_pf *pf) 486 { 487 int v; 488 489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 490 return; 491 492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 494 ice_for_each_vsi(pf, v) 495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 496 ice_vsi_sync_fltr(pf->vsi[v])) { 497 /* come back and try again later */ 498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 499 break; 500 } 501 } 502 503 /** 504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 505 * @pf: the PF 506 * @locked: is the rtnl_lock already held 507 */ 508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 509 { 510 int node; 511 int v; 512 513 ice_for_each_vsi(pf, v) 514 if (pf->vsi[v]) 515 ice_dis_vsi(pf->vsi[v], locked); 516 517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 518 pf->pf_agg_node[node].num_vsis = 0; 519 520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 521 pf->vf_agg_node[node].num_vsis = 0; 522 } 523 524 /** 525 * ice_prepare_for_reset - prep for reset 526 * @pf: board private structure 527 * @reset_type: reset type requested 528 * 529 * Inform or close all dependent features in prep for reset. 530 */ 531 static void 532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 533 { 534 struct ice_hw *hw = &pf->hw; 535 struct ice_vsi *vsi; 536 struct ice_vf *vf; 537 unsigned int bkt; 538 539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 540 541 /* already prepared for reset */ 542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 543 return; 544 545 synchronize_irq(pf->oicr_irq.virq); 546 547 ice_unplug_aux_dev(pf); 548 549 /* Notify VFs of impending reset */ 550 if (ice_check_sq_alive(hw, &hw->mailboxq)) 551 ice_vc_notify_reset(pf); 552 553 /* Disable VFs until reset is completed */ 554 mutex_lock(&pf->vfs.table_lock); 555 ice_for_each_vf(pf, bkt, vf) 556 ice_set_vf_state_dis(vf); 557 mutex_unlock(&pf->vfs.table_lock); 558 559 if (ice_is_eswitch_mode_switchdev(pf)) { 560 rtnl_lock(); 561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 562 rtnl_unlock(); 563 } 564 565 /* release ADQ specific HW and SW resources */ 566 vsi = ice_get_main_vsi(pf); 567 if (!vsi) 568 goto skip; 569 570 /* to be on safe side, reset orig_rss_size so that normal flow 571 * of deciding rss_size can take precedence 572 */ 573 vsi->orig_rss_size = 0; 574 575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 576 if (reset_type == ICE_RESET_PFR) { 577 vsi->old_ena_tc = vsi->all_enatc; 578 vsi->old_numtc = vsi->all_numtc; 579 } else { 580 ice_remove_q_channels(vsi, true); 581 582 /* for other reset type, do not support channel rebuild 583 * hence reset needed info 584 */ 585 vsi->old_ena_tc = 0; 586 vsi->all_enatc = 0; 587 vsi->old_numtc = 0; 588 vsi->all_numtc = 0; 589 vsi->req_txq = 0; 590 vsi->req_rxq = 0; 591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 593 } 594 } 595 596 if (vsi->netdev) 597 netif_device_detach(vsi->netdev); 598 skip: 599 600 /* clear SW filtering DB */ 601 ice_clear_hw_tbls(hw); 602 /* disable the VSIs and their queues that are not already DOWN */ 603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 604 ice_pf_dis_all_vsi(pf, false); 605 606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 607 ice_ptp_prepare_for_reset(pf, reset_type); 608 609 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 610 ice_gnss_exit(pf); 611 612 if (hw->port_info) 613 ice_sched_clear_port(hw->port_info); 614 615 ice_shutdown_all_ctrlq(hw, false); 616 617 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 618 } 619 620 /** 621 * ice_do_reset - Initiate one of many types of resets 622 * @pf: board private structure 623 * @reset_type: reset type requested before this function was called. 624 */ 625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 626 { 627 struct device *dev = ice_pf_to_dev(pf); 628 struct ice_hw *hw = &pf->hw; 629 630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 631 632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 634 reset_type = ICE_RESET_CORER; 635 } 636 637 ice_prepare_for_reset(pf, reset_type); 638 639 /* trigger the reset */ 640 if (ice_reset(hw, reset_type)) { 641 dev_err(dev, "reset %d failed\n", reset_type); 642 set_bit(ICE_RESET_FAILED, pf->state); 643 clear_bit(ICE_RESET_OICR_RECV, pf->state); 644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 645 clear_bit(ICE_PFR_REQ, pf->state); 646 clear_bit(ICE_CORER_REQ, pf->state); 647 clear_bit(ICE_GLOBR_REQ, pf->state); 648 wake_up(&pf->reset_wait_queue); 649 return; 650 } 651 652 /* PFR is a bit of a special case because it doesn't result in an OICR 653 * interrupt. So for PFR, rebuild after the reset and clear the reset- 654 * associated state bits. 655 */ 656 if (reset_type == ICE_RESET_PFR) { 657 pf->pfr_count++; 658 ice_rebuild(pf, reset_type); 659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 660 clear_bit(ICE_PFR_REQ, pf->state); 661 wake_up(&pf->reset_wait_queue); 662 ice_reset_all_vfs(pf); 663 } 664 } 665 666 /** 667 * ice_reset_subtask - Set up for resetting the device and driver 668 * @pf: board private structure 669 */ 670 static void ice_reset_subtask(struct ice_pf *pf) 671 { 672 enum ice_reset_req reset_type = ICE_RESET_INVAL; 673 674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 676 * of reset is pending and sets bits in pf->state indicating the reset 677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 678 * prepare for pending reset if not already (for PF software-initiated 679 * global resets the software should already be prepared for it as 680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 681 * by firmware or software on other PFs, that bit is not set so prepare 682 * for the reset now), poll for reset done, rebuild and return. 683 */ 684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 685 /* Perform the largest reset requested */ 686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 687 reset_type = ICE_RESET_CORER; 688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 689 reset_type = ICE_RESET_GLOBR; 690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 691 reset_type = ICE_RESET_EMPR; 692 /* return if no valid reset type requested */ 693 if (reset_type == ICE_RESET_INVAL) 694 return; 695 ice_prepare_for_reset(pf, reset_type); 696 697 /* make sure we are ready to rebuild */ 698 if (ice_check_reset(&pf->hw)) { 699 set_bit(ICE_RESET_FAILED, pf->state); 700 } else { 701 /* done with reset. start rebuild */ 702 pf->hw.reset_ongoing = false; 703 ice_rebuild(pf, reset_type); 704 /* clear bit to resume normal operations, but 705 * ICE_NEEDS_RESTART bit is set in case rebuild failed 706 */ 707 clear_bit(ICE_RESET_OICR_RECV, pf->state); 708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 709 clear_bit(ICE_PFR_REQ, pf->state); 710 clear_bit(ICE_CORER_REQ, pf->state); 711 clear_bit(ICE_GLOBR_REQ, pf->state); 712 wake_up(&pf->reset_wait_queue); 713 ice_reset_all_vfs(pf); 714 } 715 716 return; 717 } 718 719 /* No pending resets to finish processing. Check for new resets */ 720 if (test_bit(ICE_PFR_REQ, pf->state)) { 721 reset_type = ICE_RESET_PFR; 722 if (pf->lag && pf->lag->bonded) { 723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 724 reset_type = ICE_RESET_CORER; 725 } 726 } 727 if (test_bit(ICE_CORER_REQ, pf->state)) 728 reset_type = ICE_RESET_CORER; 729 if (test_bit(ICE_GLOBR_REQ, pf->state)) 730 reset_type = ICE_RESET_GLOBR; 731 /* If no valid reset type requested just return */ 732 if (reset_type == ICE_RESET_INVAL) 733 return; 734 735 /* reset if not already down or busy */ 736 if (!test_bit(ICE_DOWN, pf->state) && 737 !test_bit(ICE_CFG_BUSY, pf->state)) { 738 ice_do_reset(pf, reset_type); 739 } 740 } 741 742 /** 743 * ice_print_topo_conflict - print topology conflict message 744 * @vsi: the VSI whose topology status is being checked 745 */ 746 static void ice_print_topo_conflict(struct ice_vsi *vsi) 747 { 748 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 749 case ICE_AQ_LINK_TOPO_CONFLICT: 750 case ICE_AQ_LINK_MEDIA_CONFLICT: 751 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 755 break; 756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 759 else 760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 761 break; 762 default: 763 break; 764 } 765 } 766 767 /** 768 * ice_print_link_msg - print link up or down message 769 * @vsi: the VSI whose link status is being queried 770 * @isup: boolean for if the link is now up or down 771 */ 772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 773 { 774 struct ice_aqc_get_phy_caps_data *caps; 775 const char *an_advertised; 776 const char *fec_req; 777 const char *speed; 778 const char *fec; 779 const char *fc; 780 const char *an; 781 int status; 782 783 if (!vsi) 784 return; 785 786 if (vsi->current_isup == isup) 787 return; 788 789 vsi->current_isup = isup; 790 791 if (!isup) { 792 netdev_info(vsi->netdev, "NIC Link is Down\n"); 793 return; 794 } 795 796 switch (vsi->port_info->phy.link_info.link_speed) { 797 case ICE_AQ_LINK_SPEED_200GB: 798 speed = "200 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_100GB: 801 speed = "100 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_50GB: 804 speed = "50 G"; 805 break; 806 case ICE_AQ_LINK_SPEED_40GB: 807 speed = "40 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_25GB: 810 speed = "25 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_20GB: 813 speed = "20 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_10GB: 816 speed = "10 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_5GB: 819 speed = "5 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_2500MB: 822 speed = "2.5 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_1000MB: 825 speed = "1 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_100MB: 828 speed = "100 M"; 829 break; 830 default: 831 speed = "Unknown "; 832 break; 833 } 834 835 switch (vsi->port_info->fc.current_mode) { 836 case ICE_FC_FULL: 837 fc = "Rx/Tx"; 838 break; 839 case ICE_FC_TX_PAUSE: 840 fc = "Tx"; 841 break; 842 case ICE_FC_RX_PAUSE: 843 fc = "Rx"; 844 break; 845 case ICE_FC_NONE: 846 fc = "None"; 847 break; 848 default: 849 fc = "Unknown"; 850 break; 851 } 852 853 /* Get FEC mode based on negotiated link info */ 854 switch (vsi->port_info->phy.link_info.fec_info) { 855 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 856 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 857 fec = "RS-FEC"; 858 break; 859 case ICE_AQ_LINK_25G_KR_FEC_EN: 860 fec = "FC-FEC/BASE-R"; 861 break; 862 default: 863 fec = "NONE"; 864 break; 865 } 866 867 /* check if autoneg completed, might be false due to not supported */ 868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 869 an = "True"; 870 else 871 an = "False"; 872 873 /* Get FEC mode requested based on PHY caps last SW configuration */ 874 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 875 if (!caps) { 876 fec_req = "Unknown"; 877 an_advertised = "Unknown"; 878 goto done; 879 } 880 881 status = ice_aq_get_phy_caps(vsi->port_info, false, 882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 883 if (status) 884 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 885 886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 887 888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 890 fec_req = "RS-FEC"; 891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 893 fec_req = "FC-FEC/BASE-R"; 894 else 895 fec_req = "NONE"; 896 897 kfree(caps); 898 899 done: 900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 901 speed, fec_req, fec, an_advertised, an, fc); 902 ice_print_topo_conflict(vsi); 903 } 904 905 /** 906 * ice_vsi_link_event - update the VSI's netdev 907 * @vsi: the VSI on which the link event occurred 908 * @link_up: whether or not the VSI needs to be set up or down 909 */ 910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 911 { 912 if (!vsi) 913 return; 914 915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 916 return; 917 918 if (vsi->type == ICE_VSI_PF) { 919 if (link_up == netif_carrier_ok(vsi->netdev)) 920 return; 921 922 if (link_up) { 923 netif_carrier_on(vsi->netdev); 924 netif_tx_wake_all_queues(vsi->netdev); 925 } else { 926 netif_carrier_off(vsi->netdev); 927 netif_tx_stop_all_queues(vsi->netdev); 928 } 929 } 930 } 931 932 /** 933 * ice_set_dflt_mib - send a default config MIB to the FW 934 * @pf: private PF struct 935 * 936 * This function sends a default configuration MIB to the FW. 937 * 938 * If this function errors out at any point, the driver is still able to 939 * function. The main impact is that LFC may not operate as expected. 940 * Therefore an error state in this function should be treated with a DBG 941 * message and continue on with driver rebuild/reenable. 942 */ 943 static void ice_set_dflt_mib(struct ice_pf *pf) 944 { 945 struct device *dev = ice_pf_to_dev(pf); 946 u8 mib_type, *buf, *lldpmib = NULL; 947 u16 len, typelen, offset = 0; 948 struct ice_lldp_org_tlv *tlv; 949 struct ice_hw *hw = &pf->hw; 950 u32 ouisubtype; 951 952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 954 if (!lldpmib) { 955 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 956 __func__); 957 return; 958 } 959 960 /* Add ETS CFG TLV */ 961 tlv = (struct ice_lldp_org_tlv *)lldpmib; 962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 963 ICE_IEEE_ETS_TLV_LEN); 964 tlv->typelen = htons(typelen); 965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 966 ICE_IEEE_SUBTYPE_ETS_CFG); 967 tlv->ouisubtype = htonl(ouisubtype); 968 969 buf = tlv->tlvinfo; 970 buf[0] = 0; 971 972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 974 * Octets 13 - 20 are TSA values - leave as zeros 975 */ 976 buf[5] = 0x64; 977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 978 offset += len + 2; 979 tlv = (struct ice_lldp_org_tlv *) 980 ((char *)tlv + sizeof(tlv->typelen) + len); 981 982 /* Add ETS REC TLV */ 983 buf = tlv->tlvinfo; 984 tlv->typelen = htons(typelen); 985 986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 987 ICE_IEEE_SUBTYPE_ETS_REC); 988 tlv->ouisubtype = htonl(ouisubtype); 989 990 /* First octet of buf is reserved 991 * Octets 1 - 4 map UP to TC - all UPs map to zero 992 * Octets 5 - 12 are BW values - set TC 0 to 100%. 993 * Octets 13 - 20 are TSA value - leave as zeros 994 */ 995 buf[5] = 0x64; 996 offset += len + 2; 997 tlv = (struct ice_lldp_org_tlv *) 998 ((char *)tlv + sizeof(tlv->typelen) + len); 999 1000 /* Add PFC CFG TLV */ 1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1002 ICE_IEEE_PFC_TLV_LEN); 1003 tlv->typelen = htons(typelen); 1004 1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1006 ICE_IEEE_SUBTYPE_PFC_CFG); 1007 tlv->ouisubtype = htonl(ouisubtype); 1008 1009 /* Octet 1 left as all zeros - PFC disabled */ 1010 buf[0] = 0x08; 1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1012 offset += len + 2; 1013 1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1016 1017 kfree(lldpmib); 1018 } 1019 1020 /** 1021 * ice_check_phy_fw_load - check if PHY FW load failed 1022 * @pf: pointer to PF struct 1023 * @link_cfg_err: bitmap from the link info structure 1024 * 1025 * check if external PHY FW load failed and print an error message if it did 1026 */ 1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1031 return; 1032 } 1033 1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1035 return; 1036 1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1040 } 1041 } 1042 1043 /** 1044 * ice_check_module_power 1045 * @pf: pointer to PF struct 1046 * @link_cfg_err: bitmap from the link info structure 1047 * 1048 * check module power level returned by a previous call to aq_get_link_info 1049 * and print error messages if module power level is not supported 1050 */ 1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1052 { 1053 /* if module power level is supported, clear the flag */ 1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1057 return; 1058 } 1059 1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1061 * above block didn't clear this bit, there's nothing to do 1062 */ 1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1064 return; 1065 1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1072 } 1073 } 1074 1075 /** 1076 * ice_check_link_cfg_err - check if link configuration failed 1077 * @pf: pointer to the PF struct 1078 * @link_cfg_err: bitmap from the link info structure 1079 * 1080 * print if any link configuration failure happens due to the value in the 1081 * link_cfg_err parameter in the link info structure 1082 */ 1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1084 { 1085 ice_check_module_power(pf, link_cfg_err); 1086 ice_check_phy_fw_load(pf, link_cfg_err); 1087 } 1088 1089 /** 1090 * ice_link_event - process the link event 1091 * @pf: PF that the link event is associated with 1092 * @pi: port_info for the port that the link event is associated with 1093 * @link_up: true if the physical link is up and false if it is down 1094 * @link_speed: current link speed received from the link event 1095 * 1096 * Returns 0 on success and negative on failure 1097 */ 1098 static int 1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1100 u16 link_speed) 1101 { 1102 struct device *dev = ice_pf_to_dev(pf); 1103 struct ice_phy_info *phy_info; 1104 struct ice_vsi *vsi; 1105 u16 old_link_speed; 1106 bool old_link; 1107 int status; 1108 1109 phy_info = &pi->phy; 1110 phy_info->link_info_old = phy_info->link_info; 1111 1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1113 old_link_speed = phy_info->link_info_old.link_speed; 1114 1115 /* update the link info structures and re-enable link events, 1116 * don't bail on failure due to other book keeping needed 1117 */ 1118 status = ice_update_link_info(pi); 1119 if (status) 1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1121 pi->lport, status, 1122 ice_aq_str(pi->hw->adminq.sq_last_status)); 1123 1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1125 1126 /* Check if the link state is up after updating link info, and treat 1127 * this event as an UP event since the link is actually UP now. 1128 */ 1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1130 link_up = true; 1131 1132 vsi = ice_get_main_vsi(pf); 1133 if (!vsi || !vsi->port_info) 1134 return -EINVAL; 1135 1136 /* turn off PHY if media was removed */ 1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1140 ice_set_link(vsi, false); 1141 } 1142 1143 /* if the old link up/down and speed is the same as the new */ 1144 if (link_up == old_link && link_speed == old_link_speed) 1145 return 0; 1146 1147 ice_ptp_link_change(pf, link_up); 1148 1149 if (ice_is_dcb_active(pf)) { 1150 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1151 ice_dcb_rebuild(pf); 1152 } else { 1153 if (link_up) 1154 ice_set_dflt_mib(pf); 1155 } 1156 ice_vsi_link_event(vsi, link_up); 1157 ice_print_link_msg(vsi, link_up); 1158 1159 ice_vc_notify_link_state(pf); 1160 1161 return 0; 1162 } 1163 1164 /** 1165 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1166 * @pf: board private structure 1167 */ 1168 static void ice_watchdog_subtask(struct ice_pf *pf) 1169 { 1170 int i; 1171 1172 /* if interface is down do nothing */ 1173 if (test_bit(ICE_DOWN, pf->state) || 1174 test_bit(ICE_CFG_BUSY, pf->state)) 1175 return; 1176 1177 /* make sure we don't do these things too often */ 1178 if (time_before(jiffies, 1179 pf->serv_tmr_prev + pf->serv_tmr_period)) 1180 return; 1181 1182 pf->serv_tmr_prev = jiffies; 1183 1184 /* Update the stats for active netdevs so the network stack 1185 * can look at updated numbers whenever it cares to 1186 */ 1187 ice_update_pf_stats(pf); 1188 ice_for_each_vsi(pf, i) 1189 if (pf->vsi[i] && pf->vsi[i]->netdev) 1190 ice_update_vsi_stats(pf->vsi[i]); 1191 } 1192 1193 /** 1194 * ice_init_link_events - enable/initialize link events 1195 * @pi: pointer to the port_info instance 1196 * 1197 * Returns -EIO on failure, 0 on success 1198 */ 1199 static int ice_init_link_events(struct ice_port_info *pi) 1200 { 1201 u16 mask; 1202 1203 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1204 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1205 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1206 1207 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1209 pi->lport); 1210 return -EIO; 1211 } 1212 1213 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1215 pi->lport); 1216 return -EIO; 1217 } 1218 1219 return 0; 1220 } 1221 1222 /** 1223 * ice_handle_link_event - handle link event via ARQ 1224 * @pf: PF that the link event is associated with 1225 * @event: event structure containing link status info 1226 */ 1227 static int 1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1229 { 1230 struct ice_aqc_get_link_status_data *link_data; 1231 struct ice_port_info *port_info; 1232 int status; 1233 1234 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1235 port_info = pf->hw.port_info; 1236 if (!port_info) 1237 return -EINVAL; 1238 1239 status = ice_link_event(pf, port_info, 1240 !!(link_data->link_info & ICE_AQ_LINK_UP), 1241 le16_to_cpu(link_data->link_speed)); 1242 if (status) 1243 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1244 status); 1245 1246 return status; 1247 } 1248 1249 /** 1250 * ice_get_fwlog_data - copy the FW log data from ARQ event 1251 * @pf: PF that the FW log event is associated with 1252 * @event: event structure containing FW log data 1253 */ 1254 static void 1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1256 { 1257 struct ice_fwlog_data *fwlog; 1258 struct ice_hw *hw = &pf->hw; 1259 1260 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1261 1262 memset(fwlog->data, 0, PAGE_SIZE); 1263 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1264 1265 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1266 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1267 1268 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1269 /* the rings are full so bump the head to create room */ 1270 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1271 hw->fwlog_ring.size); 1272 } 1273 } 1274 1275 /** 1276 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1277 * @pf: pointer to the PF private structure 1278 * @task: intermediate helper storage and identifier for waiting 1279 * @opcode: the opcode to wait for 1280 * 1281 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1282 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1283 * 1284 * Calls are separated to allow caller registering for event before sending 1285 * the command, which mitigates a race between registering and FW responding. 1286 * 1287 * To obtain only the descriptor contents, pass an task->event with null 1288 * msg_buf. If the complete data buffer is desired, allocate the 1289 * task->event.msg_buf with enough space ahead of time. 1290 */ 1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1292 u16 opcode) 1293 { 1294 INIT_HLIST_NODE(&task->entry); 1295 task->opcode = opcode; 1296 task->state = ICE_AQ_TASK_WAITING; 1297 1298 spin_lock_bh(&pf->aq_wait_lock); 1299 hlist_add_head(&task->entry, &pf->aq_wait_list); 1300 spin_unlock_bh(&pf->aq_wait_lock); 1301 } 1302 1303 /** 1304 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1305 * @pf: pointer to the PF private structure 1306 * @task: ptr prepared by ice_aq_prep_for_event() 1307 * @timeout: how long to wait, in jiffies 1308 * 1309 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1310 * current thread will be put to sleep until the specified event occurs or 1311 * until the given timeout is reached. 1312 * 1313 * Returns: zero on success, or a negative error code on failure. 1314 */ 1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1316 unsigned long timeout) 1317 { 1318 enum ice_aq_task_state *state = &task->state; 1319 struct device *dev = ice_pf_to_dev(pf); 1320 unsigned long start = jiffies; 1321 long ret; 1322 int err; 1323 1324 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1325 *state != ICE_AQ_TASK_WAITING, 1326 timeout); 1327 switch (*state) { 1328 case ICE_AQ_TASK_NOT_PREPARED: 1329 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1330 err = -EINVAL; 1331 break; 1332 case ICE_AQ_TASK_WAITING: 1333 err = ret < 0 ? ret : -ETIMEDOUT; 1334 break; 1335 case ICE_AQ_TASK_CANCELED: 1336 err = ret < 0 ? ret : -ECANCELED; 1337 break; 1338 case ICE_AQ_TASK_COMPLETE: 1339 err = ret < 0 ? ret : 0; 1340 break; 1341 default: 1342 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1343 err = -EINVAL; 1344 break; 1345 } 1346 1347 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1348 jiffies_to_msecs(jiffies - start), 1349 jiffies_to_msecs(timeout), 1350 task->opcode); 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_del(&task->entry); 1354 spin_unlock_bh(&pf->aq_wait_lock); 1355 1356 return err; 1357 } 1358 1359 /** 1360 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1361 * @pf: pointer to the PF private structure 1362 * @opcode: the opcode of the event 1363 * @event: the event to check 1364 * 1365 * Loops over the current list of pending threads waiting for an AdminQ event. 1366 * For each matching task, copy the contents of the event into the task 1367 * structure and wake up the thread. 1368 * 1369 * If multiple threads wait for the same opcode, they will all be woken up. 1370 * 1371 * Note that event->msg_buf will only be duplicated if the event has a buffer 1372 * with enough space already allocated. Otherwise, only the descriptor and 1373 * message length will be copied. 1374 * 1375 * Returns: true if an event was found, false otherwise 1376 */ 1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1378 struct ice_rq_event_info *event) 1379 { 1380 struct ice_rq_event_info *task_ev; 1381 struct ice_aq_task *task; 1382 bool found = false; 1383 1384 spin_lock_bh(&pf->aq_wait_lock); 1385 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1386 if (task->state != ICE_AQ_TASK_WAITING) 1387 continue; 1388 if (task->opcode != opcode) 1389 continue; 1390 1391 task_ev = &task->event; 1392 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1393 task_ev->msg_len = event->msg_len; 1394 1395 /* Only copy the data buffer if a destination was set */ 1396 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1397 memcpy(task_ev->msg_buf, event->msg_buf, 1398 event->buf_len); 1399 task_ev->buf_len = event->buf_len; 1400 } 1401 1402 task->state = ICE_AQ_TASK_COMPLETE; 1403 found = true; 1404 } 1405 spin_unlock_bh(&pf->aq_wait_lock); 1406 1407 if (found) 1408 wake_up(&pf->aq_wait_queue); 1409 } 1410 1411 /** 1412 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1413 * @pf: the PF private structure 1414 * 1415 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1416 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1417 */ 1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1419 { 1420 struct ice_aq_task *task; 1421 1422 spin_lock_bh(&pf->aq_wait_lock); 1423 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1424 task->state = ICE_AQ_TASK_CANCELED; 1425 spin_unlock_bh(&pf->aq_wait_lock); 1426 1427 wake_up(&pf->aq_wait_queue); 1428 } 1429 1430 #define ICE_MBX_OVERFLOW_WATERMARK 64 1431 1432 /** 1433 * __ice_clean_ctrlq - helper function to clean controlq rings 1434 * @pf: ptr to struct ice_pf 1435 * @q_type: specific Control queue type 1436 */ 1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1438 { 1439 struct device *dev = ice_pf_to_dev(pf); 1440 struct ice_rq_event_info event; 1441 struct ice_hw *hw = &pf->hw; 1442 struct ice_ctl_q_info *cq; 1443 u16 pending, i = 0; 1444 const char *qtype; 1445 u32 oldval, val; 1446 1447 /* Do not clean control queue if/when PF reset fails */ 1448 if (test_bit(ICE_RESET_FAILED, pf->state)) 1449 return 0; 1450 1451 switch (q_type) { 1452 case ICE_CTL_Q_ADMIN: 1453 cq = &hw->adminq; 1454 qtype = "Admin"; 1455 break; 1456 case ICE_CTL_Q_SB: 1457 cq = &hw->sbq; 1458 qtype = "Sideband"; 1459 break; 1460 case ICE_CTL_Q_MAILBOX: 1461 cq = &hw->mailboxq; 1462 qtype = "Mailbox"; 1463 /* we are going to try to detect a malicious VF, so set the 1464 * state to begin detection 1465 */ 1466 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1467 break; 1468 default: 1469 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1470 return 0; 1471 } 1472 1473 /* check for error indications - PF_xx_AxQLEN register layout for 1474 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1475 */ 1476 val = rd32(hw, cq->rq.len); 1477 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1478 PF_FW_ARQLEN_ARQCRIT_M)) { 1479 oldval = val; 1480 if (val & PF_FW_ARQLEN_ARQVFE_M) 1481 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1482 qtype); 1483 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1484 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1485 qtype); 1486 } 1487 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1488 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1489 qtype); 1490 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1491 PF_FW_ARQLEN_ARQCRIT_M); 1492 if (oldval != val) 1493 wr32(hw, cq->rq.len, val); 1494 } 1495 1496 val = rd32(hw, cq->sq.len); 1497 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1498 PF_FW_ATQLEN_ATQCRIT_M)) { 1499 oldval = val; 1500 if (val & PF_FW_ATQLEN_ATQVFE_M) 1501 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1502 qtype); 1503 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1504 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1505 qtype); 1506 } 1507 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1508 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1509 qtype); 1510 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1511 PF_FW_ATQLEN_ATQCRIT_M); 1512 if (oldval != val) 1513 wr32(hw, cq->sq.len, val); 1514 } 1515 1516 event.buf_len = cq->rq_buf_size; 1517 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1518 if (!event.msg_buf) 1519 return 0; 1520 1521 do { 1522 struct ice_mbx_data data = {}; 1523 u16 opcode; 1524 int ret; 1525 1526 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1527 if (ret == -EALREADY) 1528 break; 1529 if (ret) { 1530 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1531 ret); 1532 break; 1533 } 1534 1535 opcode = le16_to_cpu(event.desc.opcode); 1536 1537 /* Notify any thread that might be waiting for this event */ 1538 ice_aq_check_events(pf, opcode, &event); 1539 1540 switch (opcode) { 1541 case ice_aqc_opc_get_link_status: 1542 if (ice_handle_link_event(pf, &event)) 1543 dev_err(dev, "Could not handle link event\n"); 1544 break; 1545 case ice_aqc_opc_event_lan_overflow: 1546 ice_vf_lan_overflow_event(pf, &event); 1547 break; 1548 case ice_mbx_opc_send_msg_to_pf: 1549 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) { 1550 ice_vc_process_vf_msg(pf, &event, NULL); 1551 ice_mbx_vf_dec_trig_e830(hw, &event); 1552 } else { 1553 u16 val = hw->mailboxq.num_rq_entries; 1554 1555 data.max_num_msgs_mbx = val; 1556 val = ICE_MBX_OVERFLOW_WATERMARK; 1557 data.async_watermark_val = val; 1558 data.num_msg_proc = i; 1559 data.num_pending_arq = pending; 1560 1561 ice_vc_process_vf_msg(pf, &event, &data); 1562 } 1563 break; 1564 case ice_aqc_opc_fw_logs_event: 1565 ice_get_fwlog_data(pf, &event); 1566 break; 1567 case ice_aqc_opc_lldp_set_mib_change: 1568 ice_dcb_process_lldp_set_mib_change(pf, &event); 1569 break; 1570 case ice_aqc_opc_get_health_status: 1571 ice_process_health_status_event(pf, &event); 1572 break; 1573 default: 1574 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1575 qtype, opcode); 1576 break; 1577 } 1578 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1579 1580 kfree(event.msg_buf); 1581 1582 return pending && (i == ICE_DFLT_IRQ_WORK); 1583 } 1584 1585 /** 1586 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1587 * @hw: pointer to hardware info 1588 * @cq: control queue information 1589 * 1590 * returns true if there are pending messages in a queue, false if there aren't 1591 */ 1592 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1593 { 1594 u16 ntu; 1595 1596 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1597 return cq->rq.next_to_clean != ntu; 1598 } 1599 1600 /** 1601 * ice_clean_adminq_subtask - clean the AdminQ rings 1602 * @pf: board private structure 1603 */ 1604 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1605 { 1606 struct ice_hw *hw = &pf->hw; 1607 1608 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1609 return; 1610 1611 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1612 return; 1613 1614 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1615 1616 /* There might be a situation where new messages arrive to a control 1617 * queue between processing the last message and clearing the 1618 * EVENT_PENDING bit. So before exiting, check queue head again (using 1619 * ice_ctrlq_pending) and process new messages if any. 1620 */ 1621 if (ice_ctrlq_pending(hw, &hw->adminq)) 1622 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1623 1624 ice_flush(hw); 1625 } 1626 1627 /** 1628 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1629 * @pf: board private structure 1630 */ 1631 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1632 { 1633 struct ice_hw *hw = &pf->hw; 1634 1635 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1636 return; 1637 1638 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1639 return; 1640 1641 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1642 1643 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1644 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1645 1646 ice_flush(hw); 1647 } 1648 1649 /** 1650 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1651 * @pf: board private structure 1652 */ 1653 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1654 { 1655 struct ice_hw *hw = &pf->hw; 1656 1657 /* if mac_type is not generic, sideband is not supported 1658 * and there's nothing to do here 1659 */ 1660 if (!ice_is_generic_mac(hw)) { 1661 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1662 return; 1663 } 1664 1665 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1666 return; 1667 1668 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1669 return; 1670 1671 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1672 1673 if (ice_ctrlq_pending(hw, &hw->sbq)) 1674 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1675 1676 ice_flush(hw); 1677 } 1678 1679 /** 1680 * ice_service_task_schedule - schedule the service task to wake up 1681 * @pf: board private structure 1682 * 1683 * If not already scheduled, this puts the task into the work queue. 1684 */ 1685 void ice_service_task_schedule(struct ice_pf *pf) 1686 { 1687 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1688 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1689 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1690 queue_work(ice_wq, &pf->serv_task); 1691 } 1692 1693 /** 1694 * ice_service_task_complete - finish up the service task 1695 * @pf: board private structure 1696 */ 1697 static void ice_service_task_complete(struct ice_pf *pf) 1698 { 1699 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1700 1701 /* force memory (pf->state) to sync before next service task */ 1702 smp_mb__before_atomic(); 1703 clear_bit(ICE_SERVICE_SCHED, pf->state); 1704 } 1705 1706 /** 1707 * ice_service_task_stop - stop service task and cancel works 1708 * @pf: board private structure 1709 * 1710 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1711 * 1 otherwise. 1712 */ 1713 static int ice_service_task_stop(struct ice_pf *pf) 1714 { 1715 int ret; 1716 1717 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1718 1719 if (pf->serv_tmr.function) 1720 timer_delete_sync(&pf->serv_tmr); 1721 if (pf->serv_task.func) 1722 cancel_work_sync(&pf->serv_task); 1723 1724 clear_bit(ICE_SERVICE_SCHED, pf->state); 1725 return ret; 1726 } 1727 1728 /** 1729 * ice_service_task_restart - restart service task and schedule works 1730 * @pf: board private structure 1731 * 1732 * This function is needed for suspend and resume works (e.g WoL scenario) 1733 */ 1734 static void ice_service_task_restart(struct ice_pf *pf) 1735 { 1736 clear_bit(ICE_SERVICE_DIS, pf->state); 1737 ice_service_task_schedule(pf); 1738 } 1739 1740 /** 1741 * ice_service_timer - timer callback to schedule service task 1742 * @t: pointer to timer_list 1743 */ 1744 static void ice_service_timer(struct timer_list *t) 1745 { 1746 struct ice_pf *pf = timer_container_of(pf, t, serv_tmr); 1747 1748 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1749 ice_service_task_schedule(pf); 1750 } 1751 1752 /** 1753 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1754 * @pf: pointer to the PF structure 1755 * @vf: pointer to the VF structure 1756 * @reset_vf_tx: whether Tx MDD has occurred 1757 * @reset_vf_rx: whether Rx MDD has occurred 1758 * 1759 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1760 * automatically reset the VF by enabling the private ethtool flag 1761 * mdd-auto-reset-vf. 1762 */ 1763 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1764 bool reset_vf_tx, bool reset_vf_rx) 1765 { 1766 struct device *dev = ice_pf_to_dev(pf); 1767 1768 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1769 return; 1770 1771 /* VF MDD event counters will be cleared by reset, so print the event 1772 * prior to reset. 1773 */ 1774 if (reset_vf_tx) 1775 ice_print_vf_tx_mdd_event(vf); 1776 1777 if (reset_vf_rx) 1778 ice_print_vf_rx_mdd_event(vf); 1779 1780 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1781 pf->hw.pf_id, vf->vf_id); 1782 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1783 } 1784 1785 /** 1786 * ice_handle_mdd_event - handle malicious driver detect event 1787 * @pf: pointer to the PF structure 1788 * 1789 * Called from service task. OICR interrupt handler indicates MDD event. 1790 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1791 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1792 * disable the queue, the PF can be configured to reset the VF using ethtool 1793 * private flag mdd-auto-reset-vf. 1794 */ 1795 static void ice_handle_mdd_event(struct ice_pf *pf) 1796 { 1797 struct device *dev = ice_pf_to_dev(pf); 1798 struct ice_hw *hw = &pf->hw; 1799 struct ice_vf *vf; 1800 unsigned int bkt; 1801 u32 reg; 1802 1803 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1804 /* Since the VF MDD event logging is rate limited, check if 1805 * there are pending MDD events. 1806 */ 1807 ice_print_vfs_mdd_events(pf); 1808 return; 1809 } 1810 1811 /* find what triggered an MDD event */ 1812 reg = rd32(hw, GL_MDET_TX_PQM); 1813 if (reg & GL_MDET_TX_PQM_VALID_M) { 1814 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1815 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1816 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1817 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1818 1819 if (netif_msg_tx_err(pf)) 1820 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1821 event, queue, pf_num, vf_num); 1822 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num, 1823 event, queue); 1824 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1825 } 1826 1827 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1828 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1829 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1830 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1831 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1832 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1833 1834 if (netif_msg_tx_err(pf)) 1835 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1836 event, queue, pf_num, vf_num); 1837 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num, 1838 event, queue); 1839 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1840 } 1841 1842 reg = rd32(hw, GL_MDET_RX); 1843 if (reg & GL_MDET_RX_VALID_M) { 1844 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1845 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1846 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1847 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1848 1849 if (netif_msg_rx_err(pf)) 1850 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1851 event, queue, pf_num, vf_num); 1852 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event, 1853 queue); 1854 wr32(hw, GL_MDET_RX, 0xffffffff); 1855 } 1856 1857 /* check to see if this PF caused an MDD event */ 1858 reg = rd32(hw, PF_MDET_TX_PQM); 1859 if (reg & PF_MDET_TX_PQM_VALID_M) { 1860 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1861 if (netif_msg_tx_err(pf)) 1862 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1863 } 1864 1865 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1866 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1867 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1868 if (netif_msg_tx_err(pf)) 1869 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1870 } 1871 1872 reg = rd32(hw, PF_MDET_RX); 1873 if (reg & PF_MDET_RX_VALID_M) { 1874 wr32(hw, PF_MDET_RX, 0xFFFF); 1875 if (netif_msg_rx_err(pf)) 1876 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1877 } 1878 1879 /* Check to see if one of the VFs caused an MDD event, and then 1880 * increment counters and set print pending 1881 */ 1882 mutex_lock(&pf->vfs.table_lock); 1883 ice_for_each_vf(pf, bkt, vf) { 1884 bool reset_vf_tx = false, reset_vf_rx = false; 1885 1886 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1887 if (reg & VP_MDET_TX_PQM_VALID_M) { 1888 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1889 vf->mdd_tx_events.count++; 1890 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1891 if (netif_msg_tx_err(pf)) 1892 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1893 vf->vf_id); 1894 1895 reset_vf_tx = true; 1896 } 1897 1898 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1899 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1900 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1901 vf->mdd_tx_events.count++; 1902 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1903 if (netif_msg_tx_err(pf)) 1904 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1905 vf->vf_id); 1906 1907 reset_vf_tx = true; 1908 } 1909 1910 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1911 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1912 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1913 vf->mdd_tx_events.count++; 1914 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1915 if (netif_msg_tx_err(pf)) 1916 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1917 vf->vf_id); 1918 1919 reset_vf_tx = true; 1920 } 1921 1922 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1923 if (reg & VP_MDET_RX_VALID_M) { 1924 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1925 vf->mdd_rx_events.count++; 1926 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1927 if (netif_msg_rx_err(pf)) 1928 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1929 vf->vf_id); 1930 1931 reset_vf_rx = true; 1932 } 1933 1934 if (reset_vf_tx || reset_vf_rx) 1935 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1936 reset_vf_rx); 1937 } 1938 mutex_unlock(&pf->vfs.table_lock); 1939 1940 ice_print_vfs_mdd_events(pf); 1941 } 1942 1943 /** 1944 * ice_force_phys_link_state - Force the physical link state 1945 * @vsi: VSI to force the physical link state to up/down 1946 * @link_up: true/false indicates to set the physical link to up/down 1947 * 1948 * Force the physical link state by getting the current PHY capabilities from 1949 * hardware and setting the PHY config based on the determined capabilities. If 1950 * link changes a link event will be triggered because both the Enable Automatic 1951 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1952 * 1953 * Returns 0 on success, negative on failure 1954 */ 1955 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1956 { 1957 struct ice_aqc_get_phy_caps_data *pcaps; 1958 struct ice_aqc_set_phy_cfg_data *cfg; 1959 struct ice_port_info *pi; 1960 struct device *dev; 1961 int retcode; 1962 1963 if (!vsi || !vsi->port_info || !vsi->back) 1964 return -EINVAL; 1965 if (vsi->type != ICE_VSI_PF) 1966 return 0; 1967 1968 dev = ice_pf_to_dev(vsi->back); 1969 1970 pi = vsi->port_info; 1971 1972 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1973 if (!pcaps) 1974 return -ENOMEM; 1975 1976 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1977 NULL); 1978 if (retcode) { 1979 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1980 vsi->vsi_num, retcode); 1981 retcode = -EIO; 1982 goto out; 1983 } 1984 1985 /* No change in link */ 1986 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1987 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1988 goto out; 1989 1990 /* Use the current user PHY configuration. The current user PHY 1991 * configuration is initialized during probe from PHY capabilities 1992 * software mode, and updated on set PHY configuration. 1993 */ 1994 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1995 if (!cfg) { 1996 retcode = -ENOMEM; 1997 goto out; 1998 } 1999 2000 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2001 if (link_up) 2002 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 2003 else 2004 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 2005 2006 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2007 if (retcode) { 2008 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2009 vsi->vsi_num, retcode); 2010 retcode = -EIO; 2011 } 2012 2013 kfree(cfg); 2014 out: 2015 kfree(pcaps); 2016 return retcode; 2017 } 2018 2019 /** 2020 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2021 * @pi: port info structure 2022 * 2023 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2024 */ 2025 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2026 { 2027 struct ice_aqc_get_phy_caps_data *pcaps; 2028 struct ice_pf *pf = pi->hw->back; 2029 int err; 2030 2031 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2032 if (!pcaps) 2033 return -ENOMEM; 2034 2035 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2036 pcaps, NULL); 2037 2038 if (err) { 2039 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2040 goto out; 2041 } 2042 2043 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2044 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2045 2046 out: 2047 kfree(pcaps); 2048 return err; 2049 } 2050 2051 /** 2052 * ice_init_link_dflt_override - Initialize link default override 2053 * @pi: port info structure 2054 * 2055 * Initialize link default override and PHY total port shutdown during probe 2056 */ 2057 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2058 { 2059 struct ice_link_default_override_tlv *ldo; 2060 struct ice_pf *pf = pi->hw->back; 2061 2062 ldo = &pf->link_dflt_override; 2063 if (ice_get_link_default_override(ldo, pi)) 2064 return; 2065 2066 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2067 return; 2068 2069 /* Enable Total Port Shutdown (override/replace link-down-on-close 2070 * ethtool private flag) for ports with Port Disable bit set. 2071 */ 2072 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2073 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2074 } 2075 2076 /** 2077 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2078 * @pi: port info structure 2079 * 2080 * If default override is enabled, initialize the user PHY cfg speed and FEC 2081 * settings using the default override mask from the NVM. 2082 * 2083 * The PHY should only be configured with the default override settings the 2084 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2085 * is used to indicate that the user PHY cfg default override is initialized 2086 * and the PHY has not been configured with the default override settings. The 2087 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2088 * configured. 2089 * 2090 * This function should be called only if the FW doesn't support default 2091 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2092 */ 2093 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2094 { 2095 struct ice_link_default_override_tlv *ldo; 2096 struct ice_aqc_set_phy_cfg_data *cfg; 2097 struct ice_phy_info *phy = &pi->phy; 2098 struct ice_pf *pf = pi->hw->back; 2099 2100 ldo = &pf->link_dflt_override; 2101 2102 /* If link default override is enabled, use to mask NVM PHY capabilities 2103 * for speed and FEC default configuration. 2104 */ 2105 cfg = &phy->curr_user_phy_cfg; 2106 2107 if (ldo->phy_type_low || ldo->phy_type_high) { 2108 cfg->phy_type_low = pf->nvm_phy_type_lo & 2109 cpu_to_le64(ldo->phy_type_low); 2110 cfg->phy_type_high = pf->nvm_phy_type_hi & 2111 cpu_to_le64(ldo->phy_type_high); 2112 } 2113 cfg->link_fec_opt = ldo->fec_options; 2114 phy->curr_user_fec_req = ICE_FEC_AUTO; 2115 2116 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2117 } 2118 2119 /** 2120 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2121 * @pi: port info structure 2122 * 2123 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2124 * mode to default. The PHY defaults are from get PHY capabilities topology 2125 * with media so call when media is first available. An error is returned if 2126 * called when media is not available. The PHY initialization completed state is 2127 * set here. 2128 * 2129 * These configurations are used when setting PHY 2130 * configuration. The user PHY configuration is updated on set PHY 2131 * configuration. Returns 0 on success, negative on failure 2132 */ 2133 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2134 { 2135 struct ice_aqc_get_phy_caps_data *pcaps; 2136 struct ice_phy_info *phy = &pi->phy; 2137 struct ice_pf *pf = pi->hw->back; 2138 int err; 2139 2140 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2141 return -EIO; 2142 2143 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2144 if (!pcaps) 2145 return -ENOMEM; 2146 2147 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2148 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2149 pcaps, NULL); 2150 else 2151 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2152 pcaps, NULL); 2153 if (err) { 2154 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2155 goto err_out; 2156 } 2157 2158 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2159 2160 /* check if lenient mode is supported and enabled */ 2161 if (ice_fw_supports_link_override(pi->hw) && 2162 !(pcaps->module_compliance_enforcement & 2163 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2164 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2165 2166 /* if the FW supports default PHY configuration mode, then the driver 2167 * does not have to apply link override settings. If not, 2168 * initialize user PHY configuration with link override values 2169 */ 2170 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2171 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2172 ice_init_phy_cfg_dflt_override(pi); 2173 goto out; 2174 } 2175 } 2176 2177 /* if link default override is not enabled, set user flow control and 2178 * FEC settings based on what get_phy_caps returned 2179 */ 2180 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2181 pcaps->link_fec_options); 2182 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2183 2184 out: 2185 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2186 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2187 err_out: 2188 kfree(pcaps); 2189 return err; 2190 } 2191 2192 /** 2193 * ice_configure_phy - configure PHY 2194 * @vsi: VSI of PHY 2195 * 2196 * Set the PHY configuration. If the current PHY configuration is the same as 2197 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2198 * configure the based get PHY capabilities for topology with media. 2199 */ 2200 static int ice_configure_phy(struct ice_vsi *vsi) 2201 { 2202 struct device *dev = ice_pf_to_dev(vsi->back); 2203 struct ice_port_info *pi = vsi->port_info; 2204 struct ice_aqc_get_phy_caps_data *pcaps; 2205 struct ice_aqc_set_phy_cfg_data *cfg; 2206 struct ice_phy_info *phy = &pi->phy; 2207 struct ice_pf *pf = vsi->back; 2208 int err; 2209 2210 /* Ensure we have media as we cannot configure a medialess port */ 2211 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2212 return -ENOMEDIUM; 2213 2214 ice_print_topo_conflict(vsi); 2215 2216 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2217 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2218 return -EPERM; 2219 2220 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2221 return ice_force_phys_link_state(vsi, true); 2222 2223 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2224 if (!pcaps) 2225 return -ENOMEM; 2226 2227 /* Get current PHY config */ 2228 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2229 NULL); 2230 if (err) { 2231 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2232 vsi->vsi_num, err); 2233 goto done; 2234 } 2235 2236 /* If PHY enable link is configured and configuration has not changed, 2237 * there's nothing to do 2238 */ 2239 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2240 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2241 goto done; 2242 2243 /* Use PHY topology as baseline for configuration */ 2244 memset(pcaps, 0, sizeof(*pcaps)); 2245 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2246 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2247 pcaps, NULL); 2248 else 2249 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2250 pcaps, NULL); 2251 if (err) { 2252 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2253 vsi->vsi_num, err); 2254 goto done; 2255 } 2256 2257 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2258 if (!cfg) { 2259 err = -ENOMEM; 2260 goto done; 2261 } 2262 2263 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2264 2265 /* Speed - If default override pending, use curr_user_phy_cfg set in 2266 * ice_init_phy_user_cfg_ldo. 2267 */ 2268 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2269 vsi->back->state)) { 2270 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2271 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2272 } else { 2273 u64 phy_low = 0, phy_high = 0; 2274 2275 ice_update_phy_type(&phy_low, &phy_high, 2276 pi->phy.curr_user_speed_req); 2277 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2278 cfg->phy_type_high = pcaps->phy_type_high & 2279 cpu_to_le64(phy_high); 2280 } 2281 2282 /* Can't provide what was requested; use PHY capabilities */ 2283 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2284 cfg->phy_type_low = pcaps->phy_type_low; 2285 cfg->phy_type_high = pcaps->phy_type_high; 2286 } 2287 2288 /* FEC */ 2289 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2290 2291 /* Can't provide what was requested; use PHY capabilities */ 2292 if (cfg->link_fec_opt != 2293 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2294 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2295 cfg->link_fec_opt = pcaps->link_fec_options; 2296 } 2297 2298 /* Flow Control - always supported; no need to check against 2299 * capabilities 2300 */ 2301 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2302 2303 /* Enable link and link update */ 2304 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2305 2306 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2307 if (err) 2308 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2309 vsi->vsi_num, err); 2310 2311 kfree(cfg); 2312 done: 2313 kfree(pcaps); 2314 return err; 2315 } 2316 2317 /** 2318 * ice_check_media_subtask - Check for media 2319 * @pf: pointer to PF struct 2320 * 2321 * If media is available, then initialize PHY user configuration if it is not 2322 * been, and configure the PHY if the interface is up. 2323 */ 2324 static void ice_check_media_subtask(struct ice_pf *pf) 2325 { 2326 struct ice_port_info *pi; 2327 struct ice_vsi *vsi; 2328 int err; 2329 2330 /* No need to check for media if it's already present */ 2331 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2332 return; 2333 2334 vsi = ice_get_main_vsi(pf); 2335 if (!vsi) 2336 return; 2337 2338 /* Refresh link info and check if media is present */ 2339 pi = vsi->port_info; 2340 err = ice_update_link_info(pi); 2341 if (err) 2342 return; 2343 2344 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2345 2346 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2347 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2348 ice_init_phy_user_cfg(pi); 2349 2350 /* PHY settings are reset on media insertion, reconfigure 2351 * PHY to preserve settings. 2352 */ 2353 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2354 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2355 return; 2356 2357 err = ice_configure_phy(vsi); 2358 if (!err) 2359 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2360 2361 /* A Link Status Event will be generated; the event handler 2362 * will complete bringing the interface up 2363 */ 2364 } 2365 } 2366 2367 static void ice_service_task_recovery_mode(struct work_struct *work) 2368 { 2369 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2370 2371 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2372 ice_clean_adminq_subtask(pf); 2373 2374 ice_service_task_complete(pf); 2375 2376 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100)); 2377 } 2378 2379 /** 2380 * ice_service_task - manage and run subtasks 2381 * @work: pointer to work_struct contained by the PF struct 2382 */ 2383 static void ice_service_task(struct work_struct *work) 2384 { 2385 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2386 unsigned long start_time = jiffies; 2387 2388 if (pf->health_reporters.tx_hang_buf.tx_ring) { 2389 ice_report_tx_hang(pf); 2390 pf->health_reporters.tx_hang_buf.tx_ring = NULL; 2391 } 2392 2393 ice_reset_subtask(pf); 2394 2395 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2396 if (ice_is_reset_in_progress(pf->state) || 2397 test_bit(ICE_SUSPENDED, pf->state) || 2398 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2399 ice_service_task_complete(pf); 2400 return; 2401 } 2402 2403 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2404 struct iidc_rdma_event *event; 2405 2406 event = kzalloc(sizeof(*event), GFP_KERNEL); 2407 if (event) { 2408 set_bit(IIDC_RDMA_EVENT_CRIT_ERR, event->type); 2409 /* report the entire OICR value to AUX driver */ 2410 swap(event->reg, pf->oicr_err_reg); 2411 ice_send_event_to_aux(pf, event); 2412 kfree(event); 2413 } 2414 } 2415 2416 /* unplug aux dev per request, if an unplug request came in 2417 * while processing a plug request, this will handle it 2418 */ 2419 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2420 ice_unplug_aux_dev(pf); 2421 2422 /* Plug aux device per request */ 2423 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2424 ice_plug_aux_dev(pf); 2425 2426 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2427 struct iidc_rdma_event *event; 2428 2429 event = kzalloc(sizeof(*event), GFP_KERNEL); 2430 if (event) { 2431 set_bit(IIDC_RDMA_EVENT_AFTER_MTU_CHANGE, event->type); 2432 ice_send_event_to_aux(pf, event); 2433 kfree(event); 2434 } 2435 } 2436 2437 ice_clean_adminq_subtask(pf); 2438 ice_check_media_subtask(pf); 2439 ice_check_for_hang_subtask(pf); 2440 ice_sync_fltr_subtask(pf); 2441 ice_handle_mdd_event(pf); 2442 ice_watchdog_subtask(pf); 2443 2444 if (ice_is_safe_mode(pf)) { 2445 ice_service_task_complete(pf); 2446 return; 2447 } 2448 2449 ice_process_vflr_event(pf); 2450 ice_clean_mailboxq_subtask(pf); 2451 ice_clean_sbq_subtask(pf); 2452 ice_sync_arfs_fltrs(pf); 2453 ice_flush_fdir_ctx(pf); 2454 2455 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2456 ice_service_task_complete(pf); 2457 2458 /* If the tasks have taken longer than one service timer period 2459 * or there is more work to be done, reset the service timer to 2460 * schedule the service task now. 2461 */ 2462 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2463 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2464 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2465 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2466 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2467 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2468 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2469 mod_timer(&pf->serv_tmr, jiffies); 2470 } 2471 2472 /** 2473 * ice_set_ctrlq_len - helper function to set controlq length 2474 * @hw: pointer to the HW instance 2475 */ 2476 static void ice_set_ctrlq_len(struct ice_hw *hw) 2477 { 2478 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2479 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2480 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2481 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2482 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2483 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2484 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2485 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2486 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2487 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2488 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2489 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2490 } 2491 2492 /** 2493 * ice_schedule_reset - schedule a reset 2494 * @pf: board private structure 2495 * @reset: reset being requested 2496 */ 2497 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2498 { 2499 struct device *dev = ice_pf_to_dev(pf); 2500 2501 /* bail out if earlier reset has failed */ 2502 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2503 dev_dbg(dev, "earlier reset has failed\n"); 2504 return -EIO; 2505 } 2506 /* bail if reset/recovery already in progress */ 2507 if (ice_is_reset_in_progress(pf->state)) { 2508 dev_dbg(dev, "Reset already in progress\n"); 2509 return -EBUSY; 2510 } 2511 2512 switch (reset) { 2513 case ICE_RESET_PFR: 2514 set_bit(ICE_PFR_REQ, pf->state); 2515 break; 2516 case ICE_RESET_CORER: 2517 set_bit(ICE_CORER_REQ, pf->state); 2518 break; 2519 case ICE_RESET_GLOBR: 2520 set_bit(ICE_GLOBR_REQ, pf->state); 2521 break; 2522 default: 2523 return -EINVAL; 2524 } 2525 2526 ice_service_task_schedule(pf); 2527 return 0; 2528 } 2529 2530 /** 2531 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2532 * @vsi: the VSI being configured 2533 */ 2534 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2535 { 2536 struct ice_hw *hw = &vsi->back->hw; 2537 int i; 2538 2539 ice_for_each_q_vector(vsi, i) 2540 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2541 2542 ice_flush(hw); 2543 return 0; 2544 } 2545 2546 /** 2547 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2548 * @vsi: the VSI being configured 2549 * @basename: name for the vector 2550 */ 2551 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2552 { 2553 int q_vectors = vsi->num_q_vectors; 2554 struct ice_pf *pf = vsi->back; 2555 struct device *dev; 2556 int rx_int_idx = 0; 2557 int tx_int_idx = 0; 2558 int vector, err; 2559 int irq_num; 2560 2561 dev = ice_pf_to_dev(pf); 2562 for (vector = 0; vector < q_vectors; vector++) { 2563 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2564 2565 irq_num = q_vector->irq.virq; 2566 2567 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2568 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2569 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2570 tx_int_idx++; 2571 } else if (q_vector->rx.rx_ring) { 2572 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2573 "%s-%s-%d", basename, "rx", rx_int_idx++); 2574 } else if (q_vector->tx.tx_ring) { 2575 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2576 "%s-%s-%d", basename, "tx", tx_int_idx++); 2577 } else { 2578 /* skip this unused q_vector */ 2579 continue; 2580 } 2581 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2582 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2583 IRQF_SHARED, q_vector->name, 2584 q_vector); 2585 else 2586 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2587 0, q_vector->name, q_vector); 2588 if (err) { 2589 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2590 err); 2591 goto free_q_irqs; 2592 } 2593 } 2594 2595 err = ice_set_cpu_rx_rmap(vsi); 2596 if (err) { 2597 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2598 vsi->vsi_num, ERR_PTR(err)); 2599 goto free_q_irqs; 2600 } 2601 2602 vsi->irqs_ready = true; 2603 return 0; 2604 2605 free_q_irqs: 2606 while (vector--) { 2607 irq_num = vsi->q_vectors[vector]->irq.virq; 2608 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2609 } 2610 return err; 2611 } 2612 2613 /** 2614 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2615 * @vsi: VSI to setup Tx rings used by XDP 2616 * 2617 * Return 0 on success and negative value on error 2618 */ 2619 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2620 { 2621 struct device *dev = ice_pf_to_dev(vsi->back); 2622 struct ice_tx_desc *tx_desc; 2623 int i, j; 2624 2625 ice_for_each_xdp_txq(vsi, i) { 2626 u16 xdp_q_idx = vsi->alloc_txq + i; 2627 struct ice_ring_stats *ring_stats; 2628 struct ice_tx_ring *xdp_ring; 2629 2630 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2631 if (!xdp_ring) 2632 goto free_xdp_rings; 2633 2634 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2635 if (!ring_stats) { 2636 ice_free_tx_ring(xdp_ring); 2637 goto free_xdp_rings; 2638 } 2639 2640 xdp_ring->ring_stats = ring_stats; 2641 xdp_ring->q_index = xdp_q_idx; 2642 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2643 xdp_ring->vsi = vsi; 2644 xdp_ring->netdev = NULL; 2645 xdp_ring->dev = dev; 2646 xdp_ring->count = vsi->num_tx_desc; 2647 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2648 if (ice_setup_tx_ring(xdp_ring)) 2649 goto free_xdp_rings; 2650 ice_set_ring_xdp(xdp_ring); 2651 spin_lock_init(&xdp_ring->tx_lock); 2652 for (j = 0; j < xdp_ring->count; j++) { 2653 tx_desc = ICE_TX_DESC(xdp_ring, j); 2654 tx_desc->cmd_type_offset_bsz = 0; 2655 } 2656 } 2657 2658 return 0; 2659 2660 free_xdp_rings: 2661 for (; i >= 0; i--) { 2662 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2663 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2664 vsi->xdp_rings[i]->ring_stats = NULL; 2665 ice_free_tx_ring(vsi->xdp_rings[i]); 2666 } 2667 } 2668 return -ENOMEM; 2669 } 2670 2671 /** 2672 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2673 * @vsi: VSI to set the bpf prog on 2674 * @prog: the bpf prog pointer 2675 */ 2676 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2677 { 2678 struct bpf_prog *old_prog; 2679 int i; 2680 2681 old_prog = xchg(&vsi->xdp_prog, prog); 2682 ice_for_each_rxq(vsi, i) 2683 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2684 2685 if (old_prog) 2686 bpf_prog_put(old_prog); 2687 } 2688 2689 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2690 { 2691 struct ice_q_vector *q_vector; 2692 struct ice_tx_ring *ring; 2693 2694 if (static_key_enabled(&ice_xdp_locking_key)) 2695 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2696 2697 q_vector = vsi->rx_rings[qid]->q_vector; 2698 ice_for_each_tx_ring(ring, q_vector->tx) 2699 if (ice_ring_is_xdp(ring)) 2700 return ring; 2701 2702 return NULL; 2703 } 2704 2705 /** 2706 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2707 * @vsi: the VSI with XDP rings being configured 2708 * 2709 * Map XDP rings to interrupt vectors and perform the configuration steps 2710 * dependent on the mapping. 2711 */ 2712 void ice_map_xdp_rings(struct ice_vsi *vsi) 2713 { 2714 int xdp_rings_rem = vsi->num_xdp_txq; 2715 int v_idx, q_idx; 2716 2717 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2718 ice_for_each_q_vector(vsi, v_idx) { 2719 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2720 int xdp_rings_per_v, q_id, q_base; 2721 2722 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2723 vsi->num_q_vectors - v_idx); 2724 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2725 2726 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2727 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2728 2729 xdp_ring->q_vector = q_vector; 2730 xdp_ring->next = q_vector->tx.tx_ring; 2731 q_vector->tx.tx_ring = xdp_ring; 2732 } 2733 xdp_rings_rem -= xdp_rings_per_v; 2734 } 2735 2736 ice_for_each_rxq(vsi, q_idx) { 2737 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2738 q_idx); 2739 ice_tx_xsk_pool(vsi, q_idx); 2740 } 2741 } 2742 2743 /** 2744 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors 2745 * @vsi: the VSI with XDP rings being unmapped 2746 */ 2747 static void ice_unmap_xdp_rings(struct ice_vsi *vsi) 2748 { 2749 int v_idx; 2750 2751 ice_for_each_q_vector(vsi, v_idx) { 2752 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2753 struct ice_tx_ring *ring; 2754 2755 ice_for_each_tx_ring(ring, q_vector->tx) 2756 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2757 break; 2758 2759 /* restore the value of last node prior to XDP setup */ 2760 q_vector->tx.tx_ring = ring; 2761 } 2762 } 2763 2764 /** 2765 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2766 * @vsi: VSI to bring up Tx rings used by XDP 2767 * @prog: bpf program that will be assigned to VSI 2768 * @cfg_type: create from scratch or restore the existing configuration 2769 * 2770 * Return 0 on success and negative value on error 2771 */ 2772 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2773 enum ice_xdp_cfg cfg_type) 2774 { 2775 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2776 struct ice_pf *pf = vsi->back; 2777 struct ice_qs_cfg xdp_qs_cfg = { 2778 .qs_mutex = &pf->avail_q_mutex, 2779 .pf_map = pf->avail_txqs, 2780 .pf_map_size = pf->max_pf_txqs, 2781 .q_count = vsi->num_xdp_txq, 2782 .scatter_count = ICE_MAX_SCATTER_TXQS, 2783 .vsi_map = vsi->txq_map, 2784 .vsi_map_offset = vsi->alloc_txq, 2785 .mapping_mode = ICE_VSI_MAP_CONTIG 2786 }; 2787 struct device *dev; 2788 int status, i; 2789 2790 dev = ice_pf_to_dev(pf); 2791 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2792 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2793 if (!vsi->xdp_rings) 2794 return -ENOMEM; 2795 2796 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2797 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2798 goto err_map_xdp; 2799 2800 if (static_key_enabled(&ice_xdp_locking_key)) 2801 netdev_warn(vsi->netdev, 2802 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2803 2804 if (ice_xdp_alloc_setup_rings(vsi)) 2805 goto clear_xdp_rings; 2806 2807 /* omit the scheduler update if in reset path; XDP queues will be 2808 * taken into account at the end of ice_vsi_rebuild, where 2809 * ice_cfg_vsi_lan is being called 2810 */ 2811 if (cfg_type == ICE_XDP_CFG_PART) 2812 return 0; 2813 2814 ice_map_xdp_rings(vsi); 2815 2816 /* tell the Tx scheduler that right now we have 2817 * additional queues 2818 */ 2819 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2820 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2821 2822 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2823 max_txqs); 2824 if (status) { 2825 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2826 status); 2827 goto unmap_xdp_rings; 2828 } 2829 2830 /* assign the prog only when it's not already present on VSI; 2831 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2832 * VSI rebuild that happens under ethtool -L can expose us to 2833 * the bpf_prog refcount issues as we would be swapping same 2834 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2835 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2836 * this is not harmful as dev_xdp_install bumps the refcount 2837 * before calling the op exposed by the driver; 2838 */ 2839 if (!ice_is_xdp_ena_vsi(vsi)) 2840 ice_vsi_assign_bpf_prog(vsi, prog); 2841 2842 return 0; 2843 unmap_xdp_rings: 2844 ice_unmap_xdp_rings(vsi); 2845 clear_xdp_rings: 2846 ice_for_each_xdp_txq(vsi, i) 2847 if (vsi->xdp_rings[i]) { 2848 kfree_rcu(vsi->xdp_rings[i], rcu); 2849 vsi->xdp_rings[i] = NULL; 2850 } 2851 2852 err_map_xdp: 2853 mutex_lock(&pf->avail_q_mutex); 2854 ice_for_each_xdp_txq(vsi, i) { 2855 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2856 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2857 } 2858 mutex_unlock(&pf->avail_q_mutex); 2859 2860 devm_kfree(dev, vsi->xdp_rings); 2861 vsi->xdp_rings = NULL; 2862 2863 return -ENOMEM; 2864 } 2865 2866 /** 2867 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2868 * @vsi: VSI to remove XDP rings 2869 * @cfg_type: disable XDP permanently or allow it to be restored later 2870 * 2871 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2872 * resources 2873 */ 2874 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2875 { 2876 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2877 struct ice_pf *pf = vsi->back; 2878 int i; 2879 2880 /* q_vectors are freed in reset path so there's no point in detaching 2881 * rings 2882 */ 2883 if (cfg_type == ICE_XDP_CFG_PART) 2884 goto free_qmap; 2885 2886 ice_unmap_xdp_rings(vsi); 2887 2888 free_qmap: 2889 mutex_lock(&pf->avail_q_mutex); 2890 ice_for_each_xdp_txq(vsi, i) { 2891 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2892 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2893 } 2894 mutex_unlock(&pf->avail_q_mutex); 2895 2896 ice_for_each_xdp_txq(vsi, i) 2897 if (vsi->xdp_rings[i]) { 2898 if (vsi->xdp_rings[i]->desc) { 2899 synchronize_rcu(); 2900 ice_free_tx_ring(vsi->xdp_rings[i]); 2901 } 2902 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2903 vsi->xdp_rings[i]->ring_stats = NULL; 2904 kfree_rcu(vsi->xdp_rings[i], rcu); 2905 vsi->xdp_rings[i] = NULL; 2906 } 2907 2908 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2909 vsi->xdp_rings = NULL; 2910 2911 if (static_key_enabled(&ice_xdp_locking_key)) 2912 static_branch_dec(&ice_xdp_locking_key); 2913 2914 if (cfg_type == ICE_XDP_CFG_PART) 2915 return 0; 2916 2917 ice_vsi_assign_bpf_prog(vsi, NULL); 2918 2919 /* notify Tx scheduler that we destroyed XDP queues and bring 2920 * back the old number of child nodes 2921 */ 2922 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2923 max_txqs[i] = vsi->num_txq; 2924 2925 /* change number of XDP Tx queues to 0 */ 2926 vsi->num_xdp_txq = 0; 2927 2928 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2929 max_txqs); 2930 } 2931 2932 /** 2933 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2934 * @vsi: VSI to schedule napi on 2935 */ 2936 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2937 { 2938 int i; 2939 2940 ice_for_each_rxq(vsi, i) { 2941 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2942 2943 if (READ_ONCE(rx_ring->xsk_pool)) 2944 napi_schedule(&rx_ring->q_vector->napi); 2945 } 2946 } 2947 2948 /** 2949 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2950 * @vsi: VSI to determine the count of XDP Tx qs 2951 * 2952 * returns 0 if Tx qs count is higher than at least half of CPU count, 2953 * -ENOMEM otherwise 2954 */ 2955 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2956 { 2957 u16 avail = ice_get_avail_txq_count(vsi->back); 2958 u16 cpus = num_possible_cpus(); 2959 2960 if (avail < cpus / 2) 2961 return -ENOMEM; 2962 2963 if (vsi->type == ICE_VSI_SF) 2964 avail = vsi->alloc_txq; 2965 2966 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2967 2968 if (vsi->num_xdp_txq < cpus) 2969 static_branch_inc(&ice_xdp_locking_key); 2970 2971 return 0; 2972 } 2973 2974 /** 2975 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2976 * @vsi: Pointer to VSI structure 2977 */ 2978 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2979 { 2980 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2981 return ICE_RXBUF_1664; 2982 else 2983 return ICE_RXBUF_3072; 2984 } 2985 2986 /** 2987 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2988 * @vsi: VSI to setup XDP for 2989 * @prog: XDP program 2990 * @extack: netlink extended ack 2991 */ 2992 static int 2993 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2994 struct netlink_ext_ack *extack) 2995 { 2996 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2997 int ret = 0, xdp_ring_err = 0; 2998 bool if_running; 2999 3000 if (prog && !prog->aux->xdp_has_frags) { 3001 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3002 NL_SET_ERR_MSG_MOD(extack, 3003 "MTU is too large for linear frames and XDP prog does not support frags"); 3004 return -EOPNOTSUPP; 3005 } 3006 } 3007 3008 /* hot swap progs and avoid toggling link */ 3009 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 3010 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 3011 ice_vsi_assign_bpf_prog(vsi, prog); 3012 return 0; 3013 } 3014 3015 if_running = netif_running(vsi->netdev) && 3016 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3017 3018 /* need to stop netdev while setting up the program for Rx rings */ 3019 if (if_running) { 3020 ret = ice_down(vsi); 3021 if (ret) { 3022 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3023 return ret; 3024 } 3025 } 3026 3027 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3028 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3029 if (xdp_ring_err) { 3030 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3031 goto resume_if; 3032 } else { 3033 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3034 ICE_XDP_CFG_FULL); 3035 if (xdp_ring_err) { 3036 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3037 goto resume_if; 3038 } 3039 } 3040 xdp_features_set_redirect_target(vsi->netdev, true); 3041 /* reallocate Rx queues that are used for zero-copy */ 3042 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3043 if (xdp_ring_err) 3044 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3045 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3046 xdp_features_clear_redirect_target(vsi->netdev); 3047 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3048 if (xdp_ring_err) 3049 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3050 /* reallocate Rx queues that were used for zero-copy */ 3051 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3052 if (xdp_ring_err) 3053 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3054 } 3055 3056 resume_if: 3057 if (if_running) 3058 ret = ice_up(vsi); 3059 3060 if (!ret && prog) 3061 ice_vsi_rx_napi_schedule(vsi); 3062 3063 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3064 } 3065 3066 /** 3067 * ice_xdp_safe_mode - XDP handler for safe mode 3068 * @dev: netdevice 3069 * @xdp: XDP command 3070 */ 3071 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3072 struct netdev_bpf *xdp) 3073 { 3074 NL_SET_ERR_MSG_MOD(xdp->extack, 3075 "Please provide working DDP firmware package in order to use XDP\n" 3076 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3077 return -EOPNOTSUPP; 3078 } 3079 3080 /** 3081 * ice_xdp - implements XDP handler 3082 * @dev: netdevice 3083 * @xdp: XDP command 3084 */ 3085 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3086 { 3087 struct ice_netdev_priv *np = netdev_priv(dev); 3088 struct ice_vsi *vsi = np->vsi; 3089 int ret; 3090 3091 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3092 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3093 return -EINVAL; 3094 } 3095 3096 mutex_lock(&vsi->xdp_state_lock); 3097 3098 switch (xdp->command) { 3099 case XDP_SETUP_PROG: 3100 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3101 break; 3102 case XDP_SETUP_XSK_POOL: 3103 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3104 break; 3105 default: 3106 ret = -EINVAL; 3107 } 3108 3109 mutex_unlock(&vsi->xdp_state_lock); 3110 return ret; 3111 } 3112 3113 /** 3114 * ice_ena_misc_vector - enable the non-queue interrupts 3115 * @pf: board private structure 3116 */ 3117 static void ice_ena_misc_vector(struct ice_pf *pf) 3118 { 3119 struct ice_hw *hw = &pf->hw; 3120 u32 pf_intr_start_offset; 3121 u32 val; 3122 3123 /* Disable anti-spoof detection interrupt to prevent spurious event 3124 * interrupts during a function reset. Anti-spoof functionally is 3125 * still supported. 3126 */ 3127 val = rd32(hw, GL_MDCK_TX_TDPU); 3128 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3129 wr32(hw, GL_MDCK_TX_TDPU, val); 3130 3131 /* clear things first */ 3132 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3133 rd32(hw, PFINT_OICR); /* read to clear */ 3134 3135 val = (PFINT_OICR_ECC_ERR_M | 3136 PFINT_OICR_MAL_DETECT_M | 3137 PFINT_OICR_GRST_M | 3138 PFINT_OICR_PCI_EXCEPTION_M | 3139 PFINT_OICR_VFLR_M | 3140 PFINT_OICR_HMC_ERR_M | 3141 PFINT_OICR_PE_PUSH_M | 3142 PFINT_OICR_PE_CRITERR_M); 3143 3144 wr32(hw, PFINT_OICR_ENA, val); 3145 3146 /* SW_ITR_IDX = 0, but don't change INTENA */ 3147 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3148 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3149 3150 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3151 return; 3152 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3153 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3154 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3155 } 3156 3157 /** 3158 * ice_ll_ts_intr - ll_ts interrupt handler 3159 * @irq: interrupt number 3160 * @data: pointer to a q_vector 3161 */ 3162 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3163 { 3164 struct ice_pf *pf = data; 3165 u32 pf_intr_start_offset; 3166 struct ice_ptp_tx *tx; 3167 unsigned long flags; 3168 struct ice_hw *hw; 3169 u32 val; 3170 u8 idx; 3171 3172 hw = &pf->hw; 3173 tx = &pf->ptp.port.tx; 3174 spin_lock_irqsave(&tx->lock, flags); 3175 ice_ptp_complete_tx_single_tstamp(tx); 3176 3177 idx = find_next_bit_wrap(tx->in_use, tx->len, 3178 tx->last_ll_ts_idx_read + 1); 3179 if (idx != tx->len) 3180 ice_ptp_req_tx_single_tstamp(tx, idx); 3181 spin_unlock_irqrestore(&tx->lock, flags); 3182 3183 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3184 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3185 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3186 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3187 val); 3188 3189 return IRQ_HANDLED; 3190 } 3191 3192 /** 3193 * ice_misc_intr - misc interrupt handler 3194 * @irq: interrupt number 3195 * @data: pointer to a q_vector 3196 */ 3197 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3198 { 3199 struct ice_pf *pf = (struct ice_pf *)data; 3200 irqreturn_t ret = IRQ_HANDLED; 3201 struct ice_hw *hw = &pf->hw; 3202 struct device *dev; 3203 u32 oicr, ena_mask; 3204 3205 dev = ice_pf_to_dev(pf); 3206 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3207 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3208 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3209 3210 oicr = rd32(hw, PFINT_OICR); 3211 ena_mask = rd32(hw, PFINT_OICR_ENA); 3212 3213 if (oicr & PFINT_OICR_SWINT_M) { 3214 ena_mask &= ~PFINT_OICR_SWINT_M; 3215 pf->sw_int_count++; 3216 } 3217 3218 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3219 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3220 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3221 } 3222 if (oicr & PFINT_OICR_VFLR_M) { 3223 /* disable any further VFLR event notifications */ 3224 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3225 u32 reg = rd32(hw, PFINT_OICR_ENA); 3226 3227 reg &= ~PFINT_OICR_VFLR_M; 3228 wr32(hw, PFINT_OICR_ENA, reg); 3229 } else { 3230 ena_mask &= ~PFINT_OICR_VFLR_M; 3231 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3232 } 3233 } 3234 3235 if (oicr & PFINT_OICR_GRST_M) { 3236 u32 reset; 3237 3238 /* we have a reset warning */ 3239 ena_mask &= ~PFINT_OICR_GRST_M; 3240 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3241 rd32(hw, GLGEN_RSTAT)); 3242 3243 if (reset == ICE_RESET_CORER) 3244 pf->corer_count++; 3245 else if (reset == ICE_RESET_GLOBR) 3246 pf->globr_count++; 3247 else if (reset == ICE_RESET_EMPR) 3248 pf->empr_count++; 3249 else 3250 dev_dbg(dev, "Invalid reset type %d\n", reset); 3251 3252 /* If a reset cycle isn't already in progress, we set a bit in 3253 * pf->state so that the service task can start a reset/rebuild. 3254 */ 3255 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3256 if (reset == ICE_RESET_CORER) 3257 set_bit(ICE_CORER_RECV, pf->state); 3258 else if (reset == ICE_RESET_GLOBR) 3259 set_bit(ICE_GLOBR_RECV, pf->state); 3260 else 3261 set_bit(ICE_EMPR_RECV, pf->state); 3262 3263 /* There are couple of different bits at play here. 3264 * hw->reset_ongoing indicates whether the hardware is 3265 * in reset. This is set to true when a reset interrupt 3266 * is received and set back to false after the driver 3267 * has determined that the hardware is out of reset. 3268 * 3269 * ICE_RESET_OICR_RECV in pf->state indicates 3270 * that a post reset rebuild is required before the 3271 * driver is operational again. This is set above. 3272 * 3273 * As this is the start of the reset/rebuild cycle, set 3274 * both to indicate that. 3275 */ 3276 hw->reset_ongoing = true; 3277 } 3278 } 3279 3280 if (oicr & PFINT_OICR_TSYN_TX_M) { 3281 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3282 3283 ret = ice_ptp_ts_irq(pf); 3284 } 3285 3286 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3287 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3288 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3289 3290 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3291 3292 if (ice_pf_src_tmr_owned(pf)) { 3293 /* Save EVENTs from GLTSYN register */ 3294 pf->ptp.ext_ts_irq |= gltsyn_stat & 3295 (GLTSYN_STAT_EVENT0_M | 3296 GLTSYN_STAT_EVENT1_M | 3297 GLTSYN_STAT_EVENT2_M); 3298 3299 ice_ptp_extts_event(pf); 3300 } 3301 } 3302 3303 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3304 if (oicr & ICE_AUX_CRIT_ERR) { 3305 pf->oicr_err_reg |= oicr; 3306 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3307 ena_mask &= ~ICE_AUX_CRIT_ERR; 3308 } 3309 3310 /* Report any remaining unexpected interrupts */ 3311 oicr &= ena_mask; 3312 if (oicr) { 3313 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3314 /* If a critical error is pending there is no choice but to 3315 * reset the device. 3316 */ 3317 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3318 PFINT_OICR_ECC_ERR_M)) { 3319 set_bit(ICE_PFR_REQ, pf->state); 3320 } 3321 } 3322 ice_service_task_schedule(pf); 3323 if (ret == IRQ_HANDLED) 3324 ice_irq_dynamic_ena(hw, NULL, NULL); 3325 3326 return ret; 3327 } 3328 3329 /** 3330 * ice_misc_intr_thread_fn - misc interrupt thread function 3331 * @irq: interrupt number 3332 * @data: pointer to a q_vector 3333 */ 3334 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3335 { 3336 struct ice_pf *pf = data; 3337 struct ice_hw *hw; 3338 3339 hw = &pf->hw; 3340 3341 if (ice_is_reset_in_progress(pf->state)) 3342 goto skip_irq; 3343 3344 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3345 /* Process outstanding Tx timestamps. If there is more work, 3346 * re-arm the interrupt to trigger again. 3347 */ 3348 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3349 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3350 ice_flush(hw); 3351 } 3352 } 3353 3354 skip_irq: 3355 ice_irq_dynamic_ena(hw, NULL, NULL); 3356 3357 return IRQ_HANDLED; 3358 } 3359 3360 /** 3361 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3362 * @hw: pointer to HW structure 3363 */ 3364 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3365 { 3366 /* disable Admin queue Interrupt causes */ 3367 wr32(hw, PFINT_FW_CTL, 3368 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3369 3370 /* disable Mailbox queue Interrupt causes */ 3371 wr32(hw, PFINT_MBX_CTL, 3372 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3373 3374 wr32(hw, PFINT_SB_CTL, 3375 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3376 3377 /* disable Control queue Interrupt causes */ 3378 wr32(hw, PFINT_OICR_CTL, 3379 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3380 3381 ice_flush(hw); 3382 } 3383 3384 /** 3385 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3386 * @pf: board private structure 3387 */ 3388 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3389 { 3390 int irq_num = pf->ll_ts_irq.virq; 3391 3392 synchronize_irq(irq_num); 3393 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3394 3395 ice_free_irq(pf, pf->ll_ts_irq); 3396 } 3397 3398 /** 3399 * ice_free_irq_msix_misc - Unroll misc vector setup 3400 * @pf: board private structure 3401 */ 3402 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3403 { 3404 int misc_irq_num = pf->oicr_irq.virq; 3405 struct ice_hw *hw = &pf->hw; 3406 3407 ice_dis_ctrlq_interrupts(hw); 3408 3409 /* disable OICR interrupt */ 3410 wr32(hw, PFINT_OICR_ENA, 0); 3411 ice_flush(hw); 3412 3413 synchronize_irq(misc_irq_num); 3414 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3415 3416 ice_free_irq(pf, pf->oicr_irq); 3417 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3418 ice_free_irq_msix_ll_ts(pf); 3419 } 3420 3421 /** 3422 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3423 * @hw: pointer to HW structure 3424 * @reg_idx: HW vector index to associate the control queue interrupts with 3425 */ 3426 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3427 { 3428 u32 val; 3429 3430 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3431 PFINT_OICR_CTL_CAUSE_ENA_M); 3432 wr32(hw, PFINT_OICR_CTL, val); 3433 3434 /* enable Admin queue Interrupt causes */ 3435 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3436 PFINT_FW_CTL_CAUSE_ENA_M); 3437 wr32(hw, PFINT_FW_CTL, val); 3438 3439 /* enable Mailbox queue Interrupt causes */ 3440 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3441 PFINT_MBX_CTL_CAUSE_ENA_M); 3442 wr32(hw, PFINT_MBX_CTL, val); 3443 3444 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3445 /* enable Sideband queue Interrupt causes */ 3446 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3447 PFINT_SB_CTL_CAUSE_ENA_M); 3448 wr32(hw, PFINT_SB_CTL, val); 3449 } 3450 3451 ice_flush(hw); 3452 } 3453 3454 /** 3455 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3456 * @pf: board private structure 3457 * 3458 * This sets up the handler for MSIX 0, which is used to manage the 3459 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3460 * when in MSI or Legacy interrupt mode. 3461 */ 3462 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3463 { 3464 struct device *dev = ice_pf_to_dev(pf); 3465 struct ice_hw *hw = &pf->hw; 3466 u32 pf_intr_start_offset; 3467 struct msi_map irq; 3468 int err = 0; 3469 3470 if (!pf->int_name[0]) 3471 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3472 dev_driver_string(dev), dev_name(dev)); 3473 3474 if (!pf->int_name_ll_ts[0]) 3475 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3476 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3477 /* Do not request IRQ but do enable OICR interrupt since settings are 3478 * lost during reset. Note that this function is called only during 3479 * rebuild path and not while reset is in progress. 3480 */ 3481 if (ice_is_reset_in_progress(pf->state)) 3482 goto skip_req_irq; 3483 3484 /* reserve one vector in irq_tracker for misc interrupts */ 3485 irq = ice_alloc_irq(pf, false); 3486 if (irq.index < 0) 3487 return irq.index; 3488 3489 pf->oicr_irq = irq; 3490 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3491 ice_misc_intr_thread_fn, 0, 3492 pf->int_name, pf); 3493 if (err) { 3494 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3495 pf->int_name, err); 3496 ice_free_irq(pf, pf->oicr_irq); 3497 return err; 3498 } 3499 3500 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3501 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3502 goto skip_req_irq; 3503 3504 irq = ice_alloc_irq(pf, false); 3505 if (irq.index < 0) 3506 return irq.index; 3507 3508 pf->ll_ts_irq = irq; 3509 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3510 pf->int_name_ll_ts, pf); 3511 if (err) { 3512 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3513 pf->int_name_ll_ts, err); 3514 ice_free_irq(pf, pf->ll_ts_irq); 3515 return err; 3516 } 3517 3518 skip_req_irq: 3519 ice_ena_misc_vector(pf); 3520 3521 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3522 /* This enables LL TS interrupt */ 3523 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3524 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3525 wr32(hw, PFINT_SB_CTL, 3526 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3527 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3528 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3529 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3530 3531 ice_flush(hw); 3532 ice_irq_dynamic_ena(hw, NULL, NULL); 3533 3534 return 0; 3535 } 3536 3537 /** 3538 * ice_set_ops - set netdev and ethtools ops for the given netdev 3539 * @vsi: the VSI associated with the new netdev 3540 */ 3541 static void ice_set_ops(struct ice_vsi *vsi) 3542 { 3543 struct net_device *netdev = vsi->netdev; 3544 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3545 3546 if (ice_is_safe_mode(pf)) { 3547 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3548 ice_set_ethtool_safe_mode_ops(netdev); 3549 return; 3550 } 3551 3552 netdev->netdev_ops = &ice_netdev_ops; 3553 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3554 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3555 ice_set_ethtool_ops(netdev); 3556 3557 if (vsi->type != ICE_VSI_PF) 3558 return; 3559 3560 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3561 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3562 NETDEV_XDP_ACT_RX_SG; 3563 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3564 } 3565 3566 /** 3567 * ice_set_netdev_features - set features for the given netdev 3568 * @netdev: netdev instance 3569 */ 3570 void ice_set_netdev_features(struct net_device *netdev) 3571 { 3572 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3573 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3574 netdev_features_t csumo_features; 3575 netdev_features_t vlano_features; 3576 netdev_features_t dflt_features; 3577 netdev_features_t tso_features; 3578 3579 if (ice_is_safe_mode(pf)) { 3580 /* safe mode */ 3581 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3582 netdev->hw_features = netdev->features; 3583 return; 3584 } 3585 3586 dflt_features = NETIF_F_SG | 3587 NETIF_F_HIGHDMA | 3588 NETIF_F_NTUPLE | 3589 NETIF_F_RXHASH; 3590 3591 csumo_features = NETIF_F_RXCSUM | 3592 NETIF_F_IP_CSUM | 3593 NETIF_F_SCTP_CRC | 3594 NETIF_F_IPV6_CSUM; 3595 3596 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3597 NETIF_F_HW_VLAN_CTAG_TX | 3598 NETIF_F_HW_VLAN_CTAG_RX; 3599 3600 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3601 if (is_dvm_ena) 3602 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3603 3604 tso_features = NETIF_F_TSO | 3605 NETIF_F_TSO_ECN | 3606 NETIF_F_TSO6 | 3607 NETIF_F_GSO_GRE | 3608 NETIF_F_GSO_UDP_TUNNEL | 3609 NETIF_F_GSO_GRE_CSUM | 3610 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3611 NETIF_F_GSO_PARTIAL | 3612 NETIF_F_GSO_IPXIP4 | 3613 NETIF_F_GSO_IPXIP6 | 3614 NETIF_F_GSO_UDP_L4; 3615 3616 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3617 NETIF_F_GSO_GRE_CSUM; 3618 /* set features that user can change */ 3619 netdev->hw_features = dflt_features | csumo_features | 3620 vlano_features | tso_features; 3621 3622 /* add support for HW_CSUM on packets with MPLS header */ 3623 netdev->mpls_features = NETIF_F_HW_CSUM | 3624 NETIF_F_TSO | 3625 NETIF_F_TSO6; 3626 3627 /* enable features */ 3628 netdev->features |= netdev->hw_features; 3629 3630 netdev->hw_features |= NETIF_F_HW_TC; 3631 netdev->hw_features |= NETIF_F_LOOPBACK; 3632 3633 /* encap and VLAN devices inherit default, csumo and tso features */ 3634 netdev->hw_enc_features |= dflt_features | csumo_features | 3635 tso_features; 3636 netdev->vlan_features |= dflt_features | csumo_features | 3637 tso_features; 3638 3639 /* advertise support but don't enable by default since only one type of 3640 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3641 * type turns on the other has to be turned off. This is enforced by the 3642 * ice_fix_features() ndo callback. 3643 */ 3644 if (is_dvm_ena) 3645 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3646 NETIF_F_HW_VLAN_STAG_TX; 3647 3648 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3649 * be changed at runtime 3650 */ 3651 netdev->hw_features |= NETIF_F_RXFCS; 3652 3653 /* Allow core to manage IRQs affinity */ 3654 netif_set_affinity_auto(netdev); 3655 3656 /* Mutual exclusivity for TSO and GCS is enforced by the set features 3657 * ndo callback. 3658 */ 3659 if (ice_is_feature_supported(pf, ICE_F_GCS)) 3660 netdev->hw_features |= NETIF_F_HW_CSUM; 3661 3662 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3663 } 3664 3665 /** 3666 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3667 * @lut: Lookup table 3668 * @rss_table_size: Lookup table size 3669 * @rss_size: Range of queue number for hashing 3670 */ 3671 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3672 { 3673 u16 i; 3674 3675 for (i = 0; i < rss_table_size; i++) 3676 lut[i] = i % rss_size; 3677 } 3678 3679 /** 3680 * ice_pf_vsi_setup - Set up a PF VSI 3681 * @pf: board private structure 3682 * @pi: pointer to the port_info instance 3683 * 3684 * Returns pointer to the successfully allocated VSI software struct 3685 * on success, otherwise returns NULL on failure. 3686 */ 3687 static struct ice_vsi * 3688 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3689 { 3690 struct ice_vsi_cfg_params params = {}; 3691 3692 params.type = ICE_VSI_PF; 3693 params.port_info = pi; 3694 params.flags = ICE_VSI_FLAG_INIT; 3695 3696 return ice_vsi_setup(pf, ¶ms); 3697 } 3698 3699 static struct ice_vsi * 3700 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3701 struct ice_channel *ch) 3702 { 3703 struct ice_vsi_cfg_params params = {}; 3704 3705 params.type = ICE_VSI_CHNL; 3706 params.port_info = pi; 3707 params.ch = ch; 3708 params.flags = ICE_VSI_FLAG_INIT; 3709 3710 return ice_vsi_setup(pf, ¶ms); 3711 } 3712 3713 /** 3714 * ice_ctrl_vsi_setup - Set up a control VSI 3715 * @pf: board private structure 3716 * @pi: pointer to the port_info instance 3717 * 3718 * Returns pointer to the successfully allocated VSI software struct 3719 * on success, otherwise returns NULL on failure. 3720 */ 3721 static struct ice_vsi * 3722 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3723 { 3724 struct ice_vsi_cfg_params params = {}; 3725 3726 params.type = ICE_VSI_CTRL; 3727 params.port_info = pi; 3728 params.flags = ICE_VSI_FLAG_INIT; 3729 3730 return ice_vsi_setup(pf, ¶ms); 3731 } 3732 3733 /** 3734 * ice_lb_vsi_setup - Set up a loopback VSI 3735 * @pf: board private structure 3736 * @pi: pointer to the port_info instance 3737 * 3738 * Returns pointer to the successfully allocated VSI software struct 3739 * on success, otherwise returns NULL on failure. 3740 */ 3741 struct ice_vsi * 3742 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3743 { 3744 struct ice_vsi_cfg_params params = {}; 3745 3746 params.type = ICE_VSI_LB; 3747 params.port_info = pi; 3748 params.flags = ICE_VSI_FLAG_INIT; 3749 3750 return ice_vsi_setup(pf, ¶ms); 3751 } 3752 3753 /** 3754 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3755 * @netdev: network interface to be adjusted 3756 * @proto: VLAN TPID 3757 * @vid: VLAN ID to be added 3758 * 3759 * net_device_ops implementation for adding VLAN IDs 3760 */ 3761 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3762 { 3763 struct ice_netdev_priv *np = netdev_priv(netdev); 3764 struct ice_vsi_vlan_ops *vlan_ops; 3765 struct ice_vsi *vsi = np->vsi; 3766 struct ice_vlan vlan; 3767 int ret; 3768 3769 /* VLAN 0 is added by default during load/reset */ 3770 if (!vid) 3771 return 0; 3772 3773 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3774 usleep_range(1000, 2000); 3775 3776 /* Add multicast promisc rule for the VLAN ID to be added if 3777 * all-multicast is currently enabled. 3778 */ 3779 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3780 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3781 ICE_MCAST_VLAN_PROMISC_BITS, 3782 vid); 3783 if (ret) 3784 goto finish; 3785 } 3786 3787 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3788 3789 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3790 * packets aren't pruned by the device's internal switch on Rx 3791 */ 3792 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3793 ret = vlan_ops->add_vlan(vsi, &vlan); 3794 if (ret) 3795 goto finish; 3796 3797 /* If all-multicast is currently enabled and this VLAN ID is only one 3798 * besides VLAN-0 we have to update look-up type of multicast promisc 3799 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3800 */ 3801 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3802 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3803 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3804 ICE_MCAST_PROMISC_BITS, 0); 3805 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3806 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3807 } 3808 3809 finish: 3810 clear_bit(ICE_CFG_BUSY, vsi->state); 3811 3812 return ret; 3813 } 3814 3815 /** 3816 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3817 * @netdev: network interface to be adjusted 3818 * @proto: VLAN TPID 3819 * @vid: VLAN ID to be removed 3820 * 3821 * net_device_ops implementation for removing VLAN IDs 3822 */ 3823 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3824 { 3825 struct ice_netdev_priv *np = netdev_priv(netdev); 3826 struct ice_vsi_vlan_ops *vlan_ops; 3827 struct ice_vsi *vsi = np->vsi; 3828 struct ice_vlan vlan; 3829 int ret; 3830 3831 /* don't allow removal of VLAN 0 */ 3832 if (!vid) 3833 return 0; 3834 3835 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3836 usleep_range(1000, 2000); 3837 3838 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3839 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3840 if (ret) { 3841 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3842 vsi->vsi_num); 3843 vsi->current_netdev_flags |= IFF_ALLMULTI; 3844 } 3845 3846 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3847 3848 /* Make sure VLAN delete is successful before updating VLAN 3849 * information 3850 */ 3851 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3852 ret = vlan_ops->del_vlan(vsi, &vlan); 3853 if (ret) 3854 goto finish; 3855 3856 /* Remove multicast promisc rule for the removed VLAN ID if 3857 * all-multicast is enabled. 3858 */ 3859 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3860 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3861 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3862 3863 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3864 /* Update look-up type of multicast promisc rule for VLAN 0 3865 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3866 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3867 */ 3868 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3869 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3870 ICE_MCAST_VLAN_PROMISC_BITS, 3871 0); 3872 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3873 ICE_MCAST_PROMISC_BITS, 0); 3874 } 3875 } 3876 3877 finish: 3878 clear_bit(ICE_CFG_BUSY, vsi->state); 3879 3880 return ret; 3881 } 3882 3883 /** 3884 * ice_rep_indr_tc_block_unbind 3885 * @cb_priv: indirection block private data 3886 */ 3887 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3888 { 3889 struct ice_indr_block_priv *indr_priv = cb_priv; 3890 3891 list_del(&indr_priv->list); 3892 kfree(indr_priv); 3893 } 3894 3895 /** 3896 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3897 * @vsi: VSI struct which has the netdev 3898 */ 3899 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3900 { 3901 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3902 3903 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3904 ice_rep_indr_tc_block_unbind); 3905 } 3906 3907 /** 3908 * ice_tc_indir_block_register - Register TC indirect block notifications 3909 * @vsi: VSI struct which has the netdev 3910 * 3911 * Returns 0 on success, negative value on failure 3912 */ 3913 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3914 { 3915 struct ice_netdev_priv *np; 3916 3917 if (!vsi || !vsi->netdev) 3918 return -EINVAL; 3919 3920 np = netdev_priv(vsi->netdev); 3921 3922 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3923 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3924 } 3925 3926 /** 3927 * ice_get_avail_q_count - Get count of queues in use 3928 * @pf_qmap: bitmap to get queue use count from 3929 * @lock: pointer to a mutex that protects access to pf_qmap 3930 * @size: size of the bitmap 3931 */ 3932 static u16 3933 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3934 { 3935 unsigned long bit; 3936 u16 count = 0; 3937 3938 mutex_lock(lock); 3939 for_each_clear_bit(bit, pf_qmap, size) 3940 count++; 3941 mutex_unlock(lock); 3942 3943 return count; 3944 } 3945 3946 /** 3947 * ice_get_avail_txq_count - Get count of Tx queues in use 3948 * @pf: pointer to an ice_pf instance 3949 */ 3950 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3951 { 3952 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3953 pf->max_pf_txqs); 3954 } 3955 3956 /** 3957 * ice_get_avail_rxq_count - Get count of Rx queues in use 3958 * @pf: pointer to an ice_pf instance 3959 */ 3960 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3961 { 3962 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3963 pf->max_pf_rxqs); 3964 } 3965 3966 /** 3967 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3968 * @pf: board private structure to initialize 3969 */ 3970 static void ice_deinit_pf(struct ice_pf *pf) 3971 { 3972 ice_service_task_stop(pf); 3973 mutex_destroy(&pf->lag_mutex); 3974 mutex_destroy(&pf->adev_mutex); 3975 mutex_destroy(&pf->sw_mutex); 3976 mutex_destroy(&pf->tc_mutex); 3977 mutex_destroy(&pf->avail_q_mutex); 3978 mutex_destroy(&pf->vfs.table_lock); 3979 3980 if (pf->avail_txqs) { 3981 bitmap_free(pf->avail_txqs); 3982 pf->avail_txqs = NULL; 3983 } 3984 3985 if (pf->avail_rxqs) { 3986 bitmap_free(pf->avail_rxqs); 3987 pf->avail_rxqs = NULL; 3988 } 3989 3990 if (pf->ptp.clock) 3991 ptp_clock_unregister(pf->ptp.clock); 3992 3993 xa_destroy(&pf->dyn_ports); 3994 xa_destroy(&pf->sf_nums); 3995 } 3996 3997 /** 3998 * ice_set_pf_caps - set PFs capability flags 3999 * @pf: pointer to the PF instance 4000 */ 4001 static void ice_set_pf_caps(struct ice_pf *pf) 4002 { 4003 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4004 4005 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4006 if (func_caps->common_cap.rdma) 4007 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4008 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4009 if (func_caps->common_cap.dcb) 4010 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4011 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4012 if (func_caps->common_cap.sr_iov_1_1) { 4013 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4014 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4015 ICE_MAX_SRIOV_VFS); 4016 } 4017 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4018 if (func_caps->common_cap.rss_table_size) 4019 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4020 4021 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4022 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4023 u16 unused; 4024 4025 /* ctrl_vsi_idx will be set to a valid value when flow director 4026 * is setup by ice_init_fdir 4027 */ 4028 pf->ctrl_vsi_idx = ICE_NO_VSI; 4029 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4030 /* force guaranteed filter pool for PF */ 4031 ice_alloc_fd_guar_item(&pf->hw, &unused, 4032 func_caps->fd_fltr_guar); 4033 /* force shared filter pool for PF */ 4034 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4035 func_caps->fd_fltr_best_effort); 4036 } 4037 4038 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4039 if (func_caps->common_cap.ieee_1588) 4040 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4041 4042 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4043 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4044 } 4045 4046 /** 4047 * ice_init_pf - Initialize general software structures (struct ice_pf) 4048 * @pf: board private structure to initialize 4049 */ 4050 static int ice_init_pf(struct ice_pf *pf) 4051 { 4052 ice_set_pf_caps(pf); 4053 4054 mutex_init(&pf->sw_mutex); 4055 mutex_init(&pf->tc_mutex); 4056 mutex_init(&pf->adev_mutex); 4057 mutex_init(&pf->lag_mutex); 4058 4059 INIT_HLIST_HEAD(&pf->aq_wait_list); 4060 spin_lock_init(&pf->aq_wait_lock); 4061 init_waitqueue_head(&pf->aq_wait_queue); 4062 4063 init_waitqueue_head(&pf->reset_wait_queue); 4064 4065 /* setup service timer and periodic service task */ 4066 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4067 pf->serv_tmr_period = HZ; 4068 INIT_WORK(&pf->serv_task, ice_service_task); 4069 clear_bit(ICE_SERVICE_SCHED, pf->state); 4070 4071 mutex_init(&pf->avail_q_mutex); 4072 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4073 if (!pf->avail_txqs) 4074 return -ENOMEM; 4075 4076 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4077 if (!pf->avail_rxqs) { 4078 bitmap_free(pf->avail_txqs); 4079 pf->avail_txqs = NULL; 4080 return -ENOMEM; 4081 } 4082 4083 mutex_init(&pf->vfs.table_lock); 4084 hash_init(pf->vfs.table); 4085 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 4086 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH, 4087 ICE_MBX_OVERFLOW_WATERMARK); 4088 else 4089 ice_mbx_init_snapshot(&pf->hw); 4090 4091 xa_init(&pf->dyn_ports); 4092 xa_init(&pf->sf_nums); 4093 4094 return 0; 4095 } 4096 4097 /** 4098 * ice_is_wol_supported - check if WoL is supported 4099 * @hw: pointer to hardware info 4100 * 4101 * Check if WoL is supported based on the HW configuration. 4102 * Returns true if NVM supports and enables WoL for this port, false otherwise 4103 */ 4104 bool ice_is_wol_supported(struct ice_hw *hw) 4105 { 4106 u16 wol_ctrl; 4107 4108 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4109 * word) indicates WoL is not supported on the corresponding PF ID. 4110 */ 4111 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4112 return false; 4113 4114 return !(BIT(hw->port_info->lport) & wol_ctrl); 4115 } 4116 4117 /** 4118 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4119 * @vsi: VSI being changed 4120 * @new_rx: new number of Rx queues 4121 * @new_tx: new number of Tx queues 4122 * @locked: is adev device_lock held 4123 * 4124 * Only change the number of queues if new_tx, or new_rx is non-0. 4125 * 4126 * Returns 0 on success. 4127 */ 4128 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4129 { 4130 struct ice_pf *pf = vsi->back; 4131 int i, err = 0, timeout = 50; 4132 4133 if (!new_rx && !new_tx) 4134 return -EINVAL; 4135 4136 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4137 timeout--; 4138 if (!timeout) 4139 return -EBUSY; 4140 usleep_range(1000, 2000); 4141 } 4142 4143 if (new_tx) 4144 vsi->req_txq = (u16)new_tx; 4145 if (new_rx) 4146 vsi->req_rxq = (u16)new_rx; 4147 4148 /* set for the next time the netdev is started */ 4149 if (!netif_running(vsi->netdev)) { 4150 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4151 if (err) 4152 goto rebuild_err; 4153 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4154 goto done; 4155 } 4156 4157 ice_vsi_close(vsi); 4158 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4159 if (err) 4160 goto rebuild_err; 4161 4162 ice_for_each_traffic_class(i) { 4163 if (vsi->tc_cfg.ena_tc & BIT(i)) 4164 netdev_set_tc_queue(vsi->netdev, 4165 vsi->tc_cfg.tc_info[i].netdev_tc, 4166 vsi->tc_cfg.tc_info[i].qcount_tx, 4167 vsi->tc_cfg.tc_info[i].qoffset); 4168 } 4169 ice_pf_dcb_recfg(pf, locked); 4170 ice_vsi_open(vsi); 4171 goto done; 4172 4173 rebuild_err: 4174 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4175 err); 4176 done: 4177 clear_bit(ICE_CFG_BUSY, pf->state); 4178 return err; 4179 } 4180 4181 /** 4182 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4183 * @pf: PF to configure 4184 * 4185 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4186 * VSI can still Tx/Rx VLAN tagged packets. 4187 */ 4188 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4189 { 4190 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4191 struct ice_vsi_ctx *ctxt; 4192 struct ice_hw *hw; 4193 int status; 4194 4195 if (!vsi) 4196 return; 4197 4198 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4199 if (!ctxt) 4200 return; 4201 4202 hw = &pf->hw; 4203 ctxt->info = vsi->info; 4204 4205 ctxt->info.valid_sections = 4206 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4207 ICE_AQ_VSI_PROP_SECURITY_VALID | 4208 ICE_AQ_VSI_PROP_SW_VALID); 4209 4210 /* disable VLAN anti-spoof */ 4211 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4212 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4213 4214 /* disable VLAN pruning and keep all other settings */ 4215 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4216 4217 /* allow all VLANs on Tx and don't strip on Rx */ 4218 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4219 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4220 4221 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4222 if (status) { 4223 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4224 status, ice_aq_str(hw->adminq.sq_last_status)); 4225 } else { 4226 vsi->info.sec_flags = ctxt->info.sec_flags; 4227 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4228 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4229 } 4230 4231 kfree(ctxt); 4232 } 4233 4234 /** 4235 * ice_log_pkg_init - log result of DDP package load 4236 * @hw: pointer to hardware info 4237 * @state: state of package load 4238 */ 4239 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4240 { 4241 struct ice_pf *pf = hw->back; 4242 struct device *dev; 4243 4244 dev = ice_pf_to_dev(pf); 4245 4246 switch (state) { 4247 case ICE_DDP_PKG_SUCCESS: 4248 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4249 hw->active_pkg_name, 4250 hw->active_pkg_ver.major, 4251 hw->active_pkg_ver.minor, 4252 hw->active_pkg_ver.update, 4253 hw->active_pkg_ver.draft); 4254 break; 4255 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4256 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4257 hw->active_pkg_name, 4258 hw->active_pkg_ver.major, 4259 hw->active_pkg_ver.minor, 4260 hw->active_pkg_ver.update, 4261 hw->active_pkg_ver.draft); 4262 break; 4263 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4264 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4265 hw->active_pkg_name, 4266 hw->active_pkg_ver.major, 4267 hw->active_pkg_ver.minor, 4268 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4269 break; 4270 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4271 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4272 hw->active_pkg_name, 4273 hw->active_pkg_ver.major, 4274 hw->active_pkg_ver.minor, 4275 hw->active_pkg_ver.update, 4276 hw->active_pkg_ver.draft, 4277 hw->pkg_name, 4278 hw->pkg_ver.major, 4279 hw->pkg_ver.minor, 4280 hw->pkg_ver.update, 4281 hw->pkg_ver.draft); 4282 break; 4283 case ICE_DDP_PKG_FW_MISMATCH: 4284 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4285 break; 4286 case ICE_DDP_PKG_INVALID_FILE: 4287 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4288 break; 4289 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4290 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4291 break; 4292 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4293 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4294 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4295 break; 4296 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4297 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4298 break; 4299 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4300 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4301 break; 4302 case ICE_DDP_PKG_LOAD_ERROR: 4303 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4304 /* poll for reset to complete */ 4305 if (ice_check_reset(hw)) 4306 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4307 break; 4308 case ICE_DDP_PKG_ERR: 4309 default: 4310 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4311 break; 4312 } 4313 } 4314 4315 /** 4316 * ice_load_pkg - load/reload the DDP Package file 4317 * @firmware: firmware structure when firmware requested or NULL for reload 4318 * @pf: pointer to the PF instance 4319 * 4320 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4321 * initialize HW tables. 4322 */ 4323 static void 4324 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4325 { 4326 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4327 struct device *dev = ice_pf_to_dev(pf); 4328 struct ice_hw *hw = &pf->hw; 4329 4330 /* Load DDP Package */ 4331 if (firmware && !hw->pkg_copy) { 4332 state = ice_copy_and_init_pkg(hw, firmware->data, 4333 firmware->size); 4334 ice_log_pkg_init(hw, state); 4335 } else if (!firmware && hw->pkg_copy) { 4336 /* Reload package during rebuild after CORER/GLOBR reset */ 4337 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4338 ice_log_pkg_init(hw, state); 4339 } else { 4340 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4341 } 4342 4343 if (!ice_is_init_pkg_successful(state)) { 4344 /* Safe Mode */ 4345 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4346 return; 4347 } 4348 4349 /* Successful download package is the precondition for advanced 4350 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4351 */ 4352 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4353 } 4354 4355 /** 4356 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4357 * @pf: pointer to the PF structure 4358 * 4359 * There is no error returned here because the driver should be able to handle 4360 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4361 * specifically with Tx. 4362 */ 4363 static void ice_verify_cacheline_size(struct ice_pf *pf) 4364 { 4365 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4366 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4367 ICE_CACHE_LINE_BYTES); 4368 } 4369 4370 /** 4371 * ice_send_version - update firmware with driver version 4372 * @pf: PF struct 4373 * 4374 * Returns 0 on success, else error code 4375 */ 4376 static int ice_send_version(struct ice_pf *pf) 4377 { 4378 struct ice_driver_ver dv; 4379 4380 dv.major_ver = 0xff; 4381 dv.minor_ver = 0xff; 4382 dv.build_ver = 0xff; 4383 dv.subbuild_ver = 0; 4384 strscpy((char *)dv.driver_string, UTS_RELEASE, 4385 sizeof(dv.driver_string)); 4386 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4387 } 4388 4389 /** 4390 * ice_init_fdir - Initialize flow director VSI and configuration 4391 * @pf: pointer to the PF instance 4392 * 4393 * returns 0 on success, negative on error 4394 */ 4395 static int ice_init_fdir(struct ice_pf *pf) 4396 { 4397 struct device *dev = ice_pf_to_dev(pf); 4398 struct ice_vsi *ctrl_vsi; 4399 int err; 4400 4401 /* Side Band Flow Director needs to have a control VSI. 4402 * Allocate it and store it in the PF. 4403 */ 4404 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4405 if (!ctrl_vsi) { 4406 dev_dbg(dev, "could not create control VSI\n"); 4407 return -ENOMEM; 4408 } 4409 4410 err = ice_vsi_open_ctrl(ctrl_vsi); 4411 if (err) { 4412 dev_dbg(dev, "could not open control VSI\n"); 4413 goto err_vsi_open; 4414 } 4415 4416 mutex_init(&pf->hw.fdir_fltr_lock); 4417 4418 err = ice_fdir_create_dflt_rules(pf); 4419 if (err) 4420 goto err_fdir_rule; 4421 4422 return 0; 4423 4424 err_fdir_rule: 4425 ice_fdir_release_flows(&pf->hw); 4426 ice_vsi_close(ctrl_vsi); 4427 err_vsi_open: 4428 ice_vsi_release(ctrl_vsi); 4429 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4430 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4431 pf->ctrl_vsi_idx = ICE_NO_VSI; 4432 } 4433 return err; 4434 } 4435 4436 static void ice_deinit_fdir(struct ice_pf *pf) 4437 { 4438 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4439 4440 if (!vsi) 4441 return; 4442 4443 ice_vsi_manage_fdir(vsi, false); 4444 ice_vsi_release(vsi); 4445 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4446 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4447 pf->ctrl_vsi_idx = ICE_NO_VSI; 4448 } 4449 4450 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4451 } 4452 4453 /** 4454 * ice_get_opt_fw_name - return optional firmware file name or NULL 4455 * @pf: pointer to the PF instance 4456 */ 4457 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4458 { 4459 /* Optional firmware name same as default with additional dash 4460 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4461 */ 4462 struct pci_dev *pdev = pf->pdev; 4463 char *opt_fw_filename; 4464 u64 dsn; 4465 4466 /* Determine the name of the optional file using the DSN (two 4467 * dwords following the start of the DSN Capability). 4468 */ 4469 dsn = pci_get_dsn(pdev); 4470 if (!dsn) 4471 return NULL; 4472 4473 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4474 if (!opt_fw_filename) 4475 return NULL; 4476 4477 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4478 ICE_DDP_PKG_PATH, dsn); 4479 4480 return opt_fw_filename; 4481 } 4482 4483 /** 4484 * ice_request_fw - Device initialization routine 4485 * @pf: pointer to the PF instance 4486 * @firmware: double pointer to firmware struct 4487 * 4488 * Return: zero when successful, negative values otherwise. 4489 */ 4490 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4491 { 4492 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4493 struct device *dev = ice_pf_to_dev(pf); 4494 int err = 0; 4495 4496 /* optional device-specific DDP (if present) overrides the default DDP 4497 * package file. kernel logs a debug message if the file doesn't exist, 4498 * and warning messages for other errors. 4499 */ 4500 if (opt_fw_filename) { 4501 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4502 kfree(opt_fw_filename); 4503 if (!err) 4504 return err; 4505 } 4506 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4507 if (err) 4508 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4509 4510 return err; 4511 } 4512 4513 /** 4514 * ice_init_tx_topology - performs Tx topology initialization 4515 * @hw: pointer to the hardware structure 4516 * @firmware: pointer to firmware structure 4517 * 4518 * Return: zero when init was successful, negative values otherwise. 4519 */ 4520 static int 4521 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4522 { 4523 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4524 struct ice_pf *pf = hw->back; 4525 struct device *dev; 4526 int err; 4527 4528 dev = ice_pf_to_dev(pf); 4529 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4530 if (!err) { 4531 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4532 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4533 else 4534 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4535 /* if there was a change in topology ice_cfg_tx_topo triggered 4536 * a CORER and we need to re-init hw 4537 */ 4538 ice_deinit_hw(hw); 4539 err = ice_init_hw(hw); 4540 4541 return err; 4542 } else if (err == -EIO) { 4543 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4544 } 4545 4546 return 0; 4547 } 4548 4549 /** 4550 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs 4551 * @hw: pointer to the hardware structure 4552 * @pf: pointer to pf structure 4553 * 4554 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor 4555 * formats the PF hardware supports. The exact list of supported RXDIDs 4556 * depends on the loaded DDP package. The IDs can be determined by reading the 4557 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded. 4558 * 4559 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed 4560 * in the DDP package. The 16-byte legacy descriptor is never supported by 4561 * VFs. 4562 */ 4563 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf) 4564 { 4565 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1); 4566 4567 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 4568 u32 regval; 4569 4570 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 4571 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 4572 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 4573 pf->supported_rxdids |= BIT(i); 4574 } 4575 } 4576 4577 /** 4578 * ice_init_ddp_config - DDP related configuration 4579 * @hw: pointer to the hardware structure 4580 * @pf: pointer to pf structure 4581 * 4582 * This function loads DDP file from the disk, then initializes Tx 4583 * topology. At the end DDP package is loaded on the card. 4584 * 4585 * Return: zero when init was successful, negative values otherwise. 4586 */ 4587 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4588 { 4589 struct device *dev = ice_pf_to_dev(pf); 4590 const struct firmware *firmware = NULL; 4591 int err; 4592 4593 err = ice_request_fw(pf, &firmware); 4594 if (err) { 4595 dev_err(dev, "Fail during requesting FW: %d\n", err); 4596 return err; 4597 } 4598 4599 err = ice_init_tx_topology(hw, firmware); 4600 if (err) { 4601 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4602 err); 4603 release_firmware(firmware); 4604 return err; 4605 } 4606 4607 /* Download firmware to device */ 4608 ice_load_pkg(firmware, pf); 4609 release_firmware(firmware); 4610 4611 /* Initialize the supported Rx descriptor IDs after loading DDP */ 4612 ice_init_supported_rxdids(hw, pf); 4613 4614 return 0; 4615 } 4616 4617 /** 4618 * ice_print_wake_reason - show the wake up cause in the log 4619 * @pf: pointer to the PF struct 4620 */ 4621 static void ice_print_wake_reason(struct ice_pf *pf) 4622 { 4623 u32 wus = pf->wakeup_reason; 4624 const char *wake_str; 4625 4626 /* if no wake event, nothing to print */ 4627 if (!wus) 4628 return; 4629 4630 if (wus & PFPM_WUS_LNKC_M) 4631 wake_str = "Link\n"; 4632 else if (wus & PFPM_WUS_MAG_M) 4633 wake_str = "Magic Packet\n"; 4634 else if (wus & PFPM_WUS_MNG_M) 4635 wake_str = "Management\n"; 4636 else if (wus & PFPM_WUS_FW_RST_WK_M) 4637 wake_str = "Firmware Reset\n"; 4638 else 4639 wake_str = "Unknown\n"; 4640 4641 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4642 } 4643 4644 /** 4645 * ice_pf_fwlog_update_module - update 1 module 4646 * @pf: pointer to the PF struct 4647 * @log_level: log_level to use for the @module 4648 * @module: module to update 4649 */ 4650 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4651 { 4652 struct ice_hw *hw = &pf->hw; 4653 4654 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4655 } 4656 4657 /** 4658 * ice_register_netdev - register netdev 4659 * @vsi: pointer to the VSI struct 4660 */ 4661 static int ice_register_netdev(struct ice_vsi *vsi) 4662 { 4663 int err; 4664 4665 if (!vsi || !vsi->netdev) 4666 return -EIO; 4667 4668 err = register_netdev(vsi->netdev); 4669 if (err) 4670 return err; 4671 4672 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4673 netif_carrier_off(vsi->netdev); 4674 netif_tx_stop_all_queues(vsi->netdev); 4675 4676 return 0; 4677 } 4678 4679 static void ice_unregister_netdev(struct ice_vsi *vsi) 4680 { 4681 if (!vsi || !vsi->netdev) 4682 return; 4683 4684 unregister_netdev(vsi->netdev); 4685 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4686 } 4687 4688 /** 4689 * ice_cfg_netdev - Allocate, configure and register a netdev 4690 * @vsi: the VSI associated with the new netdev 4691 * 4692 * Returns 0 on success, negative value on failure 4693 */ 4694 static int ice_cfg_netdev(struct ice_vsi *vsi) 4695 { 4696 struct ice_netdev_priv *np; 4697 struct net_device *netdev; 4698 u8 mac_addr[ETH_ALEN]; 4699 4700 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4701 vsi->alloc_rxq); 4702 if (!netdev) 4703 return -ENOMEM; 4704 4705 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4706 vsi->netdev = netdev; 4707 np = netdev_priv(netdev); 4708 np->vsi = vsi; 4709 4710 ice_set_netdev_features(netdev); 4711 ice_set_ops(vsi); 4712 4713 if (vsi->type == ICE_VSI_PF) { 4714 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4715 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4716 eth_hw_addr_set(netdev, mac_addr); 4717 } 4718 4719 netdev->priv_flags |= IFF_UNICAST_FLT; 4720 4721 /* Setup netdev TC information */ 4722 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4723 4724 netdev->max_mtu = ICE_MAX_MTU; 4725 4726 return 0; 4727 } 4728 4729 static void ice_decfg_netdev(struct ice_vsi *vsi) 4730 { 4731 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4732 free_netdev(vsi->netdev); 4733 vsi->netdev = NULL; 4734 } 4735 4736 int ice_init_dev(struct ice_pf *pf) 4737 { 4738 struct device *dev = ice_pf_to_dev(pf); 4739 struct ice_hw *hw = &pf->hw; 4740 int err; 4741 4742 ice_init_feature_support(pf); 4743 4744 err = ice_init_ddp_config(hw, pf); 4745 4746 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4747 * set in pf->state, which will cause ice_is_safe_mode to return 4748 * true 4749 */ 4750 if (err || ice_is_safe_mode(pf)) { 4751 /* we already got function/device capabilities but these don't 4752 * reflect what the driver needs to do in safe mode. Instead of 4753 * adding conditional logic everywhere to ignore these 4754 * device/function capabilities, override them. 4755 */ 4756 ice_set_safe_mode_caps(hw); 4757 } 4758 4759 err = ice_init_pf(pf); 4760 if (err) { 4761 dev_err(dev, "ice_init_pf failed: %d\n", err); 4762 return err; 4763 } 4764 4765 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4766 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4767 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4768 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4769 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4770 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4771 pf->hw.tnl.valid_count[TNL_VXLAN]; 4772 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4773 UDP_TUNNEL_TYPE_VXLAN; 4774 } 4775 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4776 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4777 pf->hw.tnl.valid_count[TNL_GENEVE]; 4778 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4779 UDP_TUNNEL_TYPE_GENEVE; 4780 } 4781 4782 err = ice_init_interrupt_scheme(pf); 4783 if (err) { 4784 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4785 err = -EIO; 4786 goto unroll_pf_init; 4787 } 4788 4789 /* In case of MSIX we are going to setup the misc vector right here 4790 * to handle admin queue events etc. In case of legacy and MSI 4791 * the misc functionality and queue processing is combined in 4792 * the same vector and that gets setup at open. 4793 */ 4794 err = ice_req_irq_msix_misc(pf); 4795 if (err) { 4796 dev_err(dev, "setup of misc vector failed: %d\n", err); 4797 goto unroll_irq_scheme_init; 4798 } 4799 4800 return 0; 4801 4802 unroll_irq_scheme_init: 4803 ice_clear_interrupt_scheme(pf); 4804 unroll_pf_init: 4805 ice_deinit_pf(pf); 4806 return err; 4807 } 4808 4809 void ice_deinit_dev(struct ice_pf *pf) 4810 { 4811 ice_free_irq_msix_misc(pf); 4812 ice_deinit_pf(pf); 4813 ice_deinit_hw(&pf->hw); 4814 4815 /* Service task is already stopped, so call reset directly. */ 4816 ice_reset(&pf->hw, ICE_RESET_PFR); 4817 pci_wait_for_pending_transaction(pf->pdev); 4818 ice_clear_interrupt_scheme(pf); 4819 } 4820 4821 static void ice_init_features(struct ice_pf *pf) 4822 { 4823 struct device *dev = ice_pf_to_dev(pf); 4824 4825 if (ice_is_safe_mode(pf)) 4826 return; 4827 4828 /* initialize DDP driven features */ 4829 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4830 ice_ptp_init(pf); 4831 4832 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4833 ice_gnss_init(pf); 4834 4835 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4836 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4837 ice_dpll_init(pf); 4838 4839 /* Note: Flow director init failure is non-fatal to load */ 4840 if (ice_init_fdir(pf)) 4841 dev_err(dev, "could not initialize flow director\n"); 4842 4843 /* Note: DCB init failure is non-fatal to load */ 4844 if (ice_init_pf_dcb(pf, false)) { 4845 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4846 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4847 } else { 4848 ice_cfg_lldp_mib_change(&pf->hw, true); 4849 } 4850 4851 if (ice_init_lag(pf)) 4852 dev_warn(dev, "Failed to init link aggregation support\n"); 4853 4854 ice_hwmon_init(pf); 4855 } 4856 4857 static void ice_deinit_features(struct ice_pf *pf) 4858 { 4859 if (ice_is_safe_mode(pf)) 4860 return; 4861 4862 ice_deinit_lag(pf); 4863 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4864 ice_cfg_lldp_mib_change(&pf->hw, false); 4865 ice_deinit_fdir(pf); 4866 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4867 ice_gnss_exit(pf); 4868 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4869 ice_ptp_release(pf); 4870 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4871 ice_dpll_deinit(pf); 4872 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4873 xa_destroy(&pf->eswitch.reprs); 4874 } 4875 4876 static void ice_init_wakeup(struct ice_pf *pf) 4877 { 4878 /* Save wakeup reason register for later use */ 4879 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4880 4881 /* check for a power management event */ 4882 ice_print_wake_reason(pf); 4883 4884 /* clear wake status, all bits */ 4885 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4886 4887 /* Disable WoL at init, wait for user to enable */ 4888 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4889 } 4890 4891 static int ice_init_link(struct ice_pf *pf) 4892 { 4893 struct device *dev = ice_pf_to_dev(pf); 4894 int err; 4895 4896 err = ice_init_link_events(pf->hw.port_info); 4897 if (err) { 4898 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4899 return err; 4900 } 4901 4902 /* not a fatal error if this fails */ 4903 err = ice_init_nvm_phy_type(pf->hw.port_info); 4904 if (err) 4905 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4906 4907 /* not a fatal error if this fails */ 4908 err = ice_update_link_info(pf->hw.port_info); 4909 if (err) 4910 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4911 4912 ice_init_link_dflt_override(pf->hw.port_info); 4913 4914 ice_check_link_cfg_err(pf, 4915 pf->hw.port_info->phy.link_info.link_cfg_err); 4916 4917 /* if media available, initialize PHY settings */ 4918 if (pf->hw.port_info->phy.link_info.link_info & 4919 ICE_AQ_MEDIA_AVAILABLE) { 4920 /* not a fatal error if this fails */ 4921 err = ice_init_phy_user_cfg(pf->hw.port_info); 4922 if (err) 4923 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4924 4925 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4926 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4927 4928 if (vsi) 4929 ice_configure_phy(vsi); 4930 } 4931 } else { 4932 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4933 } 4934 4935 return err; 4936 } 4937 4938 static int ice_init_pf_sw(struct ice_pf *pf) 4939 { 4940 bool dvm = ice_is_dvm_ena(&pf->hw); 4941 struct ice_vsi *vsi; 4942 int err; 4943 4944 /* create switch struct for the switch element created by FW on boot */ 4945 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4946 if (!pf->first_sw) 4947 return -ENOMEM; 4948 4949 if (pf->hw.evb_veb) 4950 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4951 else 4952 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4953 4954 pf->first_sw->pf = pf; 4955 4956 /* record the sw_id available for later use */ 4957 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4958 4959 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4960 if (err) 4961 goto err_aq_set_port_params; 4962 4963 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4964 if (!vsi) { 4965 err = -ENOMEM; 4966 goto err_pf_vsi_setup; 4967 } 4968 4969 return 0; 4970 4971 err_pf_vsi_setup: 4972 err_aq_set_port_params: 4973 kfree(pf->first_sw); 4974 return err; 4975 } 4976 4977 static void ice_deinit_pf_sw(struct ice_pf *pf) 4978 { 4979 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4980 4981 if (!vsi) 4982 return; 4983 4984 ice_vsi_release(vsi); 4985 kfree(pf->first_sw); 4986 } 4987 4988 static int ice_alloc_vsis(struct ice_pf *pf) 4989 { 4990 struct device *dev = ice_pf_to_dev(pf); 4991 4992 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4993 if (!pf->num_alloc_vsi) 4994 return -EIO; 4995 4996 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4997 dev_warn(dev, 4998 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4999 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5000 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5001 } 5002 5003 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5004 GFP_KERNEL); 5005 if (!pf->vsi) 5006 return -ENOMEM; 5007 5008 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5009 sizeof(*pf->vsi_stats), GFP_KERNEL); 5010 if (!pf->vsi_stats) { 5011 devm_kfree(dev, pf->vsi); 5012 return -ENOMEM; 5013 } 5014 5015 return 0; 5016 } 5017 5018 static void ice_dealloc_vsis(struct ice_pf *pf) 5019 { 5020 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5021 pf->vsi_stats = NULL; 5022 5023 pf->num_alloc_vsi = 0; 5024 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5025 pf->vsi = NULL; 5026 } 5027 5028 static int ice_init_devlink(struct ice_pf *pf) 5029 { 5030 int err; 5031 5032 err = ice_devlink_register_params(pf); 5033 if (err) 5034 return err; 5035 5036 ice_devlink_init_regions(pf); 5037 ice_devlink_register(pf); 5038 ice_health_init(pf); 5039 5040 return 0; 5041 } 5042 5043 static void ice_deinit_devlink(struct ice_pf *pf) 5044 { 5045 ice_health_deinit(pf); 5046 ice_devlink_unregister(pf); 5047 ice_devlink_destroy_regions(pf); 5048 ice_devlink_unregister_params(pf); 5049 } 5050 5051 static int ice_init(struct ice_pf *pf) 5052 { 5053 int err; 5054 5055 err = ice_init_dev(pf); 5056 if (err) 5057 return err; 5058 5059 if (pf->hw.mac_type == ICE_MAC_E830) { 5060 err = pci_enable_ptm(pf->pdev, NULL); 5061 if (err) 5062 dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n"); 5063 } 5064 5065 err = ice_alloc_vsis(pf); 5066 if (err) 5067 goto err_alloc_vsis; 5068 5069 err = ice_init_pf_sw(pf); 5070 if (err) 5071 goto err_init_pf_sw; 5072 5073 ice_init_wakeup(pf); 5074 5075 err = ice_init_link(pf); 5076 if (err) 5077 goto err_init_link; 5078 5079 err = ice_send_version(pf); 5080 if (err) 5081 goto err_init_link; 5082 5083 ice_verify_cacheline_size(pf); 5084 5085 if (ice_is_safe_mode(pf)) 5086 ice_set_safe_mode_vlan_cfg(pf); 5087 else 5088 /* print PCI link speed and width */ 5089 pcie_print_link_status(pf->pdev); 5090 5091 /* ready to go, so clear down state bit */ 5092 clear_bit(ICE_DOWN, pf->state); 5093 clear_bit(ICE_SERVICE_DIS, pf->state); 5094 5095 /* since everything is good, start the service timer */ 5096 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5097 5098 return 0; 5099 5100 err_init_link: 5101 ice_deinit_pf_sw(pf); 5102 err_init_pf_sw: 5103 ice_dealloc_vsis(pf); 5104 err_alloc_vsis: 5105 ice_deinit_dev(pf); 5106 return err; 5107 } 5108 5109 static void ice_deinit(struct ice_pf *pf) 5110 { 5111 set_bit(ICE_SERVICE_DIS, pf->state); 5112 set_bit(ICE_DOWN, pf->state); 5113 5114 ice_deinit_pf_sw(pf); 5115 ice_dealloc_vsis(pf); 5116 ice_deinit_dev(pf); 5117 } 5118 5119 /** 5120 * ice_load - load pf by init hw and starting VSI 5121 * @pf: pointer to the pf instance 5122 * 5123 * This function has to be called under devl_lock. 5124 */ 5125 int ice_load(struct ice_pf *pf) 5126 { 5127 struct ice_vsi *vsi; 5128 int err; 5129 5130 devl_assert_locked(priv_to_devlink(pf)); 5131 5132 vsi = ice_get_main_vsi(pf); 5133 5134 /* init channel list */ 5135 INIT_LIST_HEAD(&vsi->ch_list); 5136 5137 err = ice_cfg_netdev(vsi); 5138 if (err) 5139 return err; 5140 5141 /* Setup DCB netlink interface */ 5142 ice_dcbnl_setup(vsi); 5143 5144 err = ice_init_mac_fltr(pf); 5145 if (err) 5146 goto err_init_mac_fltr; 5147 5148 err = ice_devlink_create_pf_port(pf); 5149 if (err) 5150 goto err_devlink_create_pf_port; 5151 5152 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5153 5154 err = ice_register_netdev(vsi); 5155 if (err) 5156 goto err_register_netdev; 5157 5158 err = ice_tc_indir_block_register(vsi); 5159 if (err) 5160 goto err_tc_indir_block_register; 5161 5162 ice_napi_add(vsi); 5163 5164 ice_init_features(pf); 5165 5166 err = ice_init_rdma(pf); 5167 if (err) 5168 goto err_init_rdma; 5169 5170 ice_service_task_restart(pf); 5171 5172 clear_bit(ICE_DOWN, pf->state); 5173 5174 return 0; 5175 5176 err_init_rdma: 5177 ice_deinit_features(pf); 5178 ice_tc_indir_block_unregister(vsi); 5179 err_tc_indir_block_register: 5180 ice_unregister_netdev(vsi); 5181 err_register_netdev: 5182 ice_devlink_destroy_pf_port(pf); 5183 err_devlink_create_pf_port: 5184 err_init_mac_fltr: 5185 ice_decfg_netdev(vsi); 5186 return err; 5187 } 5188 5189 /** 5190 * ice_unload - unload pf by stopping VSI and deinit hw 5191 * @pf: pointer to the pf instance 5192 * 5193 * This function has to be called under devl_lock. 5194 */ 5195 void ice_unload(struct ice_pf *pf) 5196 { 5197 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5198 5199 devl_assert_locked(priv_to_devlink(pf)); 5200 5201 ice_deinit_rdma(pf); 5202 ice_deinit_features(pf); 5203 ice_tc_indir_block_unregister(vsi); 5204 ice_unregister_netdev(vsi); 5205 ice_devlink_destroy_pf_port(pf); 5206 ice_decfg_netdev(vsi); 5207 } 5208 5209 static int ice_probe_recovery_mode(struct ice_pf *pf) 5210 { 5211 struct device *dev = ice_pf_to_dev(pf); 5212 int err; 5213 5214 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n"); 5215 5216 INIT_HLIST_HEAD(&pf->aq_wait_list); 5217 spin_lock_init(&pf->aq_wait_lock); 5218 init_waitqueue_head(&pf->aq_wait_queue); 5219 5220 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 5221 pf->serv_tmr_period = HZ; 5222 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode); 5223 clear_bit(ICE_SERVICE_SCHED, pf->state); 5224 err = ice_create_all_ctrlq(&pf->hw); 5225 if (err) 5226 return err; 5227 5228 scoped_guard(devl, priv_to_devlink(pf)) { 5229 err = ice_init_devlink(pf); 5230 if (err) 5231 return err; 5232 } 5233 5234 ice_service_task_restart(pf); 5235 5236 return 0; 5237 } 5238 5239 /** 5240 * ice_probe - Device initialization routine 5241 * @pdev: PCI device information struct 5242 * @ent: entry in ice_pci_tbl 5243 * 5244 * Returns 0 on success, negative on failure 5245 */ 5246 static int 5247 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5248 { 5249 struct device *dev = &pdev->dev; 5250 struct ice_adapter *adapter; 5251 struct ice_pf *pf; 5252 struct ice_hw *hw; 5253 int err; 5254 5255 if (pdev->is_virtfn) { 5256 dev_err(dev, "can't probe a virtual function\n"); 5257 return -EINVAL; 5258 } 5259 5260 /* when under a kdump kernel initiate a reset before enabling the 5261 * device in order to clear out any pending DMA transactions. These 5262 * transactions can cause some systems to machine check when doing 5263 * the pcim_enable_device() below. 5264 */ 5265 if (is_kdump_kernel()) { 5266 pci_save_state(pdev); 5267 pci_clear_master(pdev); 5268 err = pcie_flr(pdev); 5269 if (err) 5270 return err; 5271 pci_restore_state(pdev); 5272 } 5273 5274 /* this driver uses devres, see 5275 * Documentation/driver-api/driver-model/devres.rst 5276 */ 5277 err = pcim_enable_device(pdev); 5278 if (err) 5279 return err; 5280 5281 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5282 if (err) { 5283 dev_err(dev, "BAR0 I/O map error %d\n", err); 5284 return err; 5285 } 5286 5287 pf = ice_allocate_pf(dev); 5288 if (!pf) 5289 return -ENOMEM; 5290 5291 /* initialize Auxiliary index to invalid value */ 5292 pf->aux_idx = -1; 5293 5294 /* set up for high or low DMA */ 5295 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5296 if (err) { 5297 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5298 return err; 5299 } 5300 5301 pci_set_master(pdev); 5302 pf->pdev = pdev; 5303 pci_set_drvdata(pdev, pf); 5304 set_bit(ICE_DOWN, pf->state); 5305 /* Disable service task until DOWN bit is cleared */ 5306 set_bit(ICE_SERVICE_DIS, pf->state); 5307 5308 hw = &pf->hw; 5309 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5310 pci_save_state(pdev); 5311 5312 hw->back = pf; 5313 hw->port_info = NULL; 5314 hw->vendor_id = pdev->vendor; 5315 hw->device_id = pdev->device; 5316 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5317 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5318 hw->subsystem_device_id = pdev->subsystem_device; 5319 hw->bus.device = PCI_SLOT(pdev->devfn); 5320 hw->bus.func = PCI_FUNC(pdev->devfn); 5321 ice_set_ctrlq_len(hw); 5322 5323 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5324 5325 #ifndef CONFIG_DYNAMIC_DEBUG 5326 if (debug < -1) 5327 hw->debug_mask = debug; 5328 #endif 5329 5330 if (ice_is_recovery_mode(hw)) 5331 return ice_probe_recovery_mode(pf); 5332 5333 err = ice_init_hw(hw); 5334 if (err) { 5335 dev_err(dev, "ice_init_hw failed: %d\n", err); 5336 return err; 5337 } 5338 5339 adapter = ice_adapter_get(pdev); 5340 if (IS_ERR(adapter)) { 5341 err = PTR_ERR(adapter); 5342 goto unroll_hw_init; 5343 } 5344 pf->adapter = adapter; 5345 5346 err = ice_init(pf); 5347 if (err) 5348 goto unroll_adapter; 5349 5350 devl_lock(priv_to_devlink(pf)); 5351 err = ice_load(pf); 5352 if (err) 5353 goto unroll_init; 5354 5355 err = ice_init_devlink(pf); 5356 if (err) 5357 goto unroll_load; 5358 devl_unlock(priv_to_devlink(pf)); 5359 5360 return 0; 5361 5362 unroll_load: 5363 ice_unload(pf); 5364 unroll_init: 5365 devl_unlock(priv_to_devlink(pf)); 5366 ice_deinit(pf); 5367 unroll_adapter: 5368 ice_adapter_put(pdev); 5369 unroll_hw_init: 5370 ice_deinit_hw(hw); 5371 return err; 5372 } 5373 5374 /** 5375 * ice_set_wake - enable or disable Wake on LAN 5376 * @pf: pointer to the PF struct 5377 * 5378 * Simple helper for WoL control 5379 */ 5380 static void ice_set_wake(struct ice_pf *pf) 5381 { 5382 struct ice_hw *hw = &pf->hw; 5383 bool wol = pf->wol_ena; 5384 5385 /* clear wake state, otherwise new wake events won't fire */ 5386 wr32(hw, PFPM_WUS, U32_MAX); 5387 5388 /* enable / disable APM wake up, no RMW needed */ 5389 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5390 5391 /* set magic packet filter enabled */ 5392 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5393 } 5394 5395 /** 5396 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5397 * @pf: pointer to the PF struct 5398 * 5399 * Issue firmware command to enable multicast magic wake, making 5400 * sure that any locally administered address (LAA) is used for 5401 * wake, and that PF reset doesn't undo the LAA. 5402 */ 5403 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5404 { 5405 struct device *dev = ice_pf_to_dev(pf); 5406 struct ice_hw *hw = &pf->hw; 5407 u8 mac_addr[ETH_ALEN]; 5408 struct ice_vsi *vsi; 5409 int status; 5410 u8 flags; 5411 5412 if (!pf->wol_ena) 5413 return; 5414 5415 vsi = ice_get_main_vsi(pf); 5416 if (!vsi) 5417 return; 5418 5419 /* Get current MAC address in case it's an LAA */ 5420 if (vsi->netdev) 5421 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5422 else 5423 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5424 5425 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5426 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5427 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5428 5429 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5430 if (status) 5431 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5432 status, ice_aq_str(hw->adminq.sq_last_status)); 5433 } 5434 5435 /** 5436 * ice_remove - Device removal routine 5437 * @pdev: PCI device information struct 5438 */ 5439 static void ice_remove(struct pci_dev *pdev) 5440 { 5441 struct ice_pf *pf = pci_get_drvdata(pdev); 5442 int i; 5443 5444 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5445 if (!ice_is_reset_in_progress(pf->state)) 5446 break; 5447 msleep(100); 5448 } 5449 5450 if (ice_is_recovery_mode(&pf->hw)) { 5451 ice_service_task_stop(pf); 5452 scoped_guard(devl, priv_to_devlink(pf)) { 5453 ice_deinit_devlink(pf); 5454 } 5455 return; 5456 } 5457 5458 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5459 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5460 ice_free_vfs(pf); 5461 } 5462 5463 ice_hwmon_exit(pf); 5464 5465 ice_service_task_stop(pf); 5466 ice_aq_cancel_waiting_tasks(pf); 5467 set_bit(ICE_DOWN, pf->state); 5468 5469 if (!ice_is_safe_mode(pf)) 5470 ice_remove_arfs(pf); 5471 5472 devl_lock(priv_to_devlink(pf)); 5473 ice_dealloc_all_dynamic_ports(pf); 5474 ice_deinit_devlink(pf); 5475 5476 ice_unload(pf); 5477 devl_unlock(priv_to_devlink(pf)); 5478 5479 ice_deinit(pf); 5480 ice_vsi_release_all(pf); 5481 5482 ice_setup_mc_magic_wake(pf); 5483 ice_set_wake(pf); 5484 5485 ice_adapter_put(pdev); 5486 } 5487 5488 /** 5489 * ice_shutdown - PCI callback for shutting down device 5490 * @pdev: PCI device information struct 5491 */ 5492 static void ice_shutdown(struct pci_dev *pdev) 5493 { 5494 struct ice_pf *pf = pci_get_drvdata(pdev); 5495 5496 ice_remove(pdev); 5497 5498 if (system_state == SYSTEM_POWER_OFF) { 5499 pci_wake_from_d3(pdev, pf->wol_ena); 5500 pci_set_power_state(pdev, PCI_D3hot); 5501 } 5502 } 5503 5504 /** 5505 * ice_prepare_for_shutdown - prep for PCI shutdown 5506 * @pf: board private structure 5507 * 5508 * Inform or close all dependent features in prep for PCI device shutdown 5509 */ 5510 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5511 { 5512 struct ice_hw *hw = &pf->hw; 5513 u32 v; 5514 5515 /* Notify VFs of impending reset */ 5516 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5517 ice_vc_notify_reset(pf); 5518 5519 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5520 5521 /* disable the VSIs and their queues that are not already DOWN */ 5522 ice_pf_dis_all_vsi(pf, false); 5523 5524 ice_for_each_vsi(pf, v) 5525 if (pf->vsi[v]) 5526 pf->vsi[v]->vsi_num = 0; 5527 5528 ice_shutdown_all_ctrlq(hw, true); 5529 } 5530 5531 /** 5532 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5533 * @pf: board private structure to reinitialize 5534 * 5535 * This routine reinitialize interrupt scheme that was cleared during 5536 * power management suspend callback. 5537 * 5538 * This should be called during resume routine to re-allocate the q_vectors 5539 * and reacquire interrupts. 5540 */ 5541 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5542 { 5543 struct device *dev = ice_pf_to_dev(pf); 5544 int ret, v; 5545 5546 /* Since we clear MSIX flag during suspend, we need to 5547 * set it back during resume... 5548 */ 5549 5550 ret = ice_init_interrupt_scheme(pf); 5551 if (ret) { 5552 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5553 return ret; 5554 } 5555 5556 /* Remap vectors and rings, after successful re-init interrupts */ 5557 ice_for_each_vsi(pf, v) { 5558 if (!pf->vsi[v]) 5559 continue; 5560 5561 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5562 if (ret) 5563 goto err_reinit; 5564 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5565 rtnl_lock(); 5566 ice_vsi_set_napi_queues(pf->vsi[v]); 5567 rtnl_unlock(); 5568 } 5569 5570 ret = ice_req_irq_msix_misc(pf); 5571 if (ret) { 5572 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5573 ret); 5574 goto err_reinit; 5575 } 5576 5577 return 0; 5578 5579 err_reinit: 5580 while (v--) 5581 if (pf->vsi[v]) { 5582 rtnl_lock(); 5583 ice_vsi_clear_napi_queues(pf->vsi[v]); 5584 rtnl_unlock(); 5585 ice_vsi_free_q_vectors(pf->vsi[v]); 5586 } 5587 5588 return ret; 5589 } 5590 5591 /** 5592 * ice_suspend 5593 * @dev: generic device information structure 5594 * 5595 * Power Management callback to quiesce the device and prepare 5596 * for D3 transition. 5597 */ 5598 static int ice_suspend(struct device *dev) 5599 { 5600 struct pci_dev *pdev = to_pci_dev(dev); 5601 struct ice_pf *pf; 5602 int disabled, v; 5603 5604 pf = pci_get_drvdata(pdev); 5605 5606 if (!ice_pf_state_is_nominal(pf)) { 5607 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5608 return -EBUSY; 5609 } 5610 5611 /* Stop watchdog tasks until resume completion. 5612 * Even though it is most likely that the service task is 5613 * disabled if the device is suspended or down, the service task's 5614 * state is controlled by a different state bit, and we should 5615 * store and honor whatever state that bit is in at this point. 5616 */ 5617 disabled = ice_service_task_stop(pf); 5618 5619 ice_deinit_rdma(pf); 5620 5621 /* Already suspended?, then there is nothing to do */ 5622 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5623 if (!disabled) 5624 ice_service_task_restart(pf); 5625 return 0; 5626 } 5627 5628 if (test_bit(ICE_DOWN, pf->state) || 5629 ice_is_reset_in_progress(pf->state)) { 5630 dev_err(dev, "can't suspend device in reset or already down\n"); 5631 if (!disabled) 5632 ice_service_task_restart(pf); 5633 return 0; 5634 } 5635 5636 ice_setup_mc_magic_wake(pf); 5637 5638 ice_prepare_for_shutdown(pf); 5639 5640 ice_set_wake(pf); 5641 5642 /* Free vectors, clear the interrupt scheme and release IRQs 5643 * for proper hibernation, especially with large number of CPUs. 5644 * Otherwise hibernation might fail when mapping all the vectors back 5645 * to CPU0. 5646 */ 5647 ice_free_irq_msix_misc(pf); 5648 ice_for_each_vsi(pf, v) { 5649 if (!pf->vsi[v]) 5650 continue; 5651 rtnl_lock(); 5652 ice_vsi_clear_napi_queues(pf->vsi[v]); 5653 rtnl_unlock(); 5654 ice_vsi_free_q_vectors(pf->vsi[v]); 5655 } 5656 ice_clear_interrupt_scheme(pf); 5657 5658 pci_save_state(pdev); 5659 pci_wake_from_d3(pdev, pf->wol_ena); 5660 pci_set_power_state(pdev, PCI_D3hot); 5661 return 0; 5662 } 5663 5664 /** 5665 * ice_resume - PM callback for waking up from D3 5666 * @dev: generic device information structure 5667 */ 5668 static int ice_resume(struct device *dev) 5669 { 5670 struct pci_dev *pdev = to_pci_dev(dev); 5671 enum ice_reset_req reset_type; 5672 struct ice_pf *pf; 5673 struct ice_hw *hw; 5674 int ret; 5675 5676 pci_set_power_state(pdev, PCI_D0); 5677 pci_restore_state(pdev); 5678 pci_save_state(pdev); 5679 5680 if (!pci_device_is_present(pdev)) 5681 return -ENODEV; 5682 5683 ret = pci_enable_device_mem(pdev); 5684 if (ret) { 5685 dev_err(dev, "Cannot enable device after suspend\n"); 5686 return ret; 5687 } 5688 5689 pf = pci_get_drvdata(pdev); 5690 hw = &pf->hw; 5691 5692 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5693 ice_print_wake_reason(pf); 5694 5695 /* We cleared the interrupt scheme when we suspended, so we need to 5696 * restore it now to resume device functionality. 5697 */ 5698 ret = ice_reinit_interrupt_scheme(pf); 5699 if (ret) 5700 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5701 5702 ret = ice_init_rdma(pf); 5703 if (ret) 5704 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5705 ret); 5706 5707 clear_bit(ICE_DOWN, pf->state); 5708 /* Now perform PF reset and rebuild */ 5709 reset_type = ICE_RESET_PFR; 5710 /* re-enable service task for reset, but allow reset to schedule it */ 5711 clear_bit(ICE_SERVICE_DIS, pf->state); 5712 5713 if (ice_schedule_reset(pf, reset_type)) 5714 dev_err(dev, "Reset during resume failed.\n"); 5715 5716 clear_bit(ICE_SUSPENDED, pf->state); 5717 ice_service_task_restart(pf); 5718 5719 /* Restart the service task */ 5720 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5721 5722 return 0; 5723 } 5724 5725 /** 5726 * ice_pci_err_detected - warning that PCI error has been detected 5727 * @pdev: PCI device information struct 5728 * @err: the type of PCI error 5729 * 5730 * Called to warn that something happened on the PCI bus and the error handling 5731 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5732 */ 5733 static pci_ers_result_t 5734 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5735 { 5736 struct ice_pf *pf = pci_get_drvdata(pdev); 5737 5738 if (!pf) { 5739 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5740 __func__, err); 5741 return PCI_ERS_RESULT_DISCONNECT; 5742 } 5743 5744 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5745 ice_service_task_stop(pf); 5746 5747 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5748 set_bit(ICE_PFR_REQ, pf->state); 5749 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5750 } 5751 } 5752 5753 return PCI_ERS_RESULT_NEED_RESET; 5754 } 5755 5756 /** 5757 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5758 * @pdev: PCI device information struct 5759 * 5760 * Called to determine if the driver can recover from the PCI slot reset by 5761 * using a register read to determine if the device is recoverable. 5762 */ 5763 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5764 { 5765 struct ice_pf *pf = pci_get_drvdata(pdev); 5766 pci_ers_result_t result; 5767 int err; 5768 u32 reg; 5769 5770 err = pci_enable_device_mem(pdev); 5771 if (err) { 5772 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5773 err); 5774 result = PCI_ERS_RESULT_DISCONNECT; 5775 } else { 5776 pci_set_master(pdev); 5777 pci_restore_state(pdev); 5778 pci_save_state(pdev); 5779 pci_wake_from_d3(pdev, false); 5780 5781 /* Check for life */ 5782 reg = rd32(&pf->hw, GLGEN_RTRIG); 5783 if (!reg) 5784 result = PCI_ERS_RESULT_RECOVERED; 5785 else 5786 result = PCI_ERS_RESULT_DISCONNECT; 5787 } 5788 5789 return result; 5790 } 5791 5792 /** 5793 * ice_pci_err_resume - restart operations after PCI error recovery 5794 * @pdev: PCI device information struct 5795 * 5796 * Called to allow the driver to bring things back up after PCI error and/or 5797 * reset recovery have finished 5798 */ 5799 static void ice_pci_err_resume(struct pci_dev *pdev) 5800 { 5801 struct ice_pf *pf = pci_get_drvdata(pdev); 5802 5803 if (!pf) { 5804 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5805 __func__); 5806 return; 5807 } 5808 5809 if (test_bit(ICE_SUSPENDED, pf->state)) { 5810 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5811 __func__); 5812 return; 5813 } 5814 5815 ice_restore_all_vfs_msi_state(pf); 5816 5817 ice_do_reset(pf, ICE_RESET_PFR); 5818 ice_service_task_restart(pf); 5819 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5820 } 5821 5822 /** 5823 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5824 * @pdev: PCI device information struct 5825 */ 5826 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5827 { 5828 struct ice_pf *pf = pci_get_drvdata(pdev); 5829 5830 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5831 ice_service_task_stop(pf); 5832 5833 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5834 set_bit(ICE_PFR_REQ, pf->state); 5835 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5836 } 5837 } 5838 } 5839 5840 /** 5841 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5842 * @pdev: PCI device information struct 5843 */ 5844 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5845 { 5846 ice_pci_err_resume(pdev); 5847 } 5848 5849 /* ice_pci_tbl - PCI Device ID Table 5850 * 5851 * Wildcard entries (PCI_ANY_ID) should come last 5852 * Last entry must be all 0s 5853 * 5854 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5855 * Class, Class Mask, private data (not used) } 5856 */ 5857 static const struct pci_device_id ice_pci_tbl[] = { 5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5889 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5890 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5891 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5892 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5893 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5894 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5895 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5896 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5897 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5898 /* required last entry */ 5899 {} 5900 }; 5901 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5902 5903 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5904 5905 static const struct pci_error_handlers ice_pci_err_handler = { 5906 .error_detected = ice_pci_err_detected, 5907 .slot_reset = ice_pci_err_slot_reset, 5908 .reset_prepare = ice_pci_err_reset_prepare, 5909 .reset_done = ice_pci_err_reset_done, 5910 .resume = ice_pci_err_resume 5911 }; 5912 5913 static struct pci_driver ice_driver = { 5914 .name = KBUILD_MODNAME, 5915 .id_table = ice_pci_tbl, 5916 .probe = ice_probe, 5917 .remove = ice_remove, 5918 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5919 .shutdown = ice_shutdown, 5920 .sriov_configure = ice_sriov_configure, 5921 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5922 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5923 .err_handler = &ice_pci_err_handler 5924 }; 5925 5926 /** 5927 * ice_module_init - Driver registration routine 5928 * 5929 * ice_module_init is the first routine called when the driver is 5930 * loaded. All it does is register with the PCI subsystem. 5931 */ 5932 static int __init ice_module_init(void) 5933 { 5934 int status = -ENOMEM; 5935 5936 pr_info("%s\n", ice_driver_string); 5937 pr_info("%s\n", ice_copyright); 5938 5939 ice_adv_lnk_speed_maps_init(); 5940 5941 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME); 5942 if (!ice_wq) { 5943 pr_err("Failed to create workqueue\n"); 5944 return status; 5945 } 5946 5947 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5948 if (!ice_lag_wq) { 5949 pr_err("Failed to create LAG workqueue\n"); 5950 goto err_dest_wq; 5951 } 5952 5953 ice_debugfs_init(); 5954 5955 status = pci_register_driver(&ice_driver); 5956 if (status) { 5957 pr_err("failed to register PCI driver, err %d\n", status); 5958 goto err_dest_lag_wq; 5959 } 5960 5961 status = ice_sf_driver_register(); 5962 if (status) { 5963 pr_err("Failed to register SF driver, err %d\n", status); 5964 goto err_sf_driver; 5965 } 5966 5967 return 0; 5968 5969 err_sf_driver: 5970 pci_unregister_driver(&ice_driver); 5971 err_dest_lag_wq: 5972 destroy_workqueue(ice_lag_wq); 5973 ice_debugfs_exit(); 5974 err_dest_wq: 5975 destroy_workqueue(ice_wq); 5976 return status; 5977 } 5978 module_init(ice_module_init); 5979 5980 /** 5981 * ice_module_exit - Driver exit cleanup routine 5982 * 5983 * ice_module_exit is called just before the driver is removed 5984 * from memory. 5985 */ 5986 static void __exit ice_module_exit(void) 5987 { 5988 ice_sf_driver_unregister(); 5989 pci_unregister_driver(&ice_driver); 5990 ice_debugfs_exit(); 5991 destroy_workqueue(ice_wq); 5992 destroy_workqueue(ice_lag_wq); 5993 pr_info("module unloaded\n"); 5994 } 5995 module_exit(ice_module_exit); 5996 5997 /** 5998 * ice_set_mac_address - NDO callback to set MAC address 5999 * @netdev: network interface device structure 6000 * @pi: pointer to an address structure 6001 * 6002 * Returns 0 on success, negative on failure 6003 */ 6004 static int ice_set_mac_address(struct net_device *netdev, void *pi) 6005 { 6006 struct ice_netdev_priv *np = netdev_priv(netdev); 6007 struct ice_vsi *vsi = np->vsi; 6008 struct ice_pf *pf = vsi->back; 6009 struct ice_hw *hw = &pf->hw; 6010 struct sockaddr *addr = pi; 6011 u8 old_mac[ETH_ALEN]; 6012 u8 flags = 0; 6013 u8 *mac; 6014 int err; 6015 6016 mac = (u8 *)addr->sa_data; 6017 6018 if (!is_valid_ether_addr(mac)) 6019 return -EADDRNOTAVAIL; 6020 6021 if (test_bit(ICE_DOWN, pf->state) || 6022 ice_is_reset_in_progress(pf->state)) { 6023 netdev_err(netdev, "can't set mac %pM. device not ready\n", 6024 mac); 6025 return -EBUSY; 6026 } 6027 6028 if (ice_chnl_dmac_fltr_cnt(pf)) { 6029 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 6030 mac); 6031 return -EAGAIN; 6032 } 6033 6034 netif_addr_lock_bh(netdev); 6035 ether_addr_copy(old_mac, netdev->dev_addr); 6036 /* change the netdev's MAC address */ 6037 eth_hw_addr_set(netdev, mac); 6038 netif_addr_unlock_bh(netdev); 6039 6040 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6041 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6042 if (err && err != -ENOENT) { 6043 err = -EADDRNOTAVAIL; 6044 goto err_update_filters; 6045 } 6046 6047 /* Add filter for new MAC. If filter exists, return success */ 6048 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6049 if (err == -EEXIST) { 6050 /* Although this MAC filter is already present in hardware it's 6051 * possible in some cases (e.g. bonding) that dev_addr was 6052 * modified outside of the driver and needs to be restored back 6053 * to this value. 6054 */ 6055 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6056 6057 return 0; 6058 } else if (err) { 6059 /* error if the new filter addition failed */ 6060 err = -EADDRNOTAVAIL; 6061 } 6062 6063 err_update_filters: 6064 if (err) { 6065 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6066 mac); 6067 netif_addr_lock_bh(netdev); 6068 eth_hw_addr_set(netdev, old_mac); 6069 netif_addr_unlock_bh(netdev); 6070 return err; 6071 } 6072 6073 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6074 netdev->dev_addr); 6075 6076 /* write new MAC address to the firmware */ 6077 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6078 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6079 if (err) { 6080 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6081 mac, err); 6082 } 6083 return 0; 6084 } 6085 6086 /** 6087 * ice_set_rx_mode - NDO callback to set the netdev filters 6088 * @netdev: network interface device structure 6089 */ 6090 static void ice_set_rx_mode(struct net_device *netdev) 6091 { 6092 struct ice_netdev_priv *np = netdev_priv(netdev); 6093 struct ice_vsi *vsi = np->vsi; 6094 6095 if (!vsi || ice_is_switchdev_running(vsi->back)) 6096 return; 6097 6098 /* Set the flags to synchronize filters 6099 * ndo_set_rx_mode may be triggered even without a change in netdev 6100 * flags 6101 */ 6102 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6103 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6104 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6105 6106 /* schedule our worker thread which will take care of 6107 * applying the new filter changes 6108 */ 6109 ice_service_task_schedule(vsi->back); 6110 } 6111 6112 /** 6113 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6114 * @netdev: network interface device structure 6115 * @queue_index: Queue ID 6116 * @maxrate: maximum bandwidth in Mbps 6117 */ 6118 static int 6119 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6120 { 6121 struct ice_netdev_priv *np = netdev_priv(netdev); 6122 struct ice_vsi *vsi = np->vsi; 6123 u16 q_handle; 6124 int status; 6125 u8 tc; 6126 6127 /* Validate maxrate requested is within permitted range */ 6128 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6129 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6130 maxrate, queue_index); 6131 return -EINVAL; 6132 } 6133 6134 q_handle = vsi->tx_rings[queue_index]->q_handle; 6135 tc = ice_dcb_get_tc(vsi, queue_index); 6136 6137 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6138 if (!vsi) { 6139 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6140 queue_index); 6141 return -EINVAL; 6142 } 6143 6144 /* Set BW back to default, when user set maxrate to 0 */ 6145 if (!maxrate) 6146 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6147 q_handle, ICE_MAX_BW); 6148 else 6149 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6150 q_handle, ICE_MAX_BW, maxrate * 1000); 6151 if (status) 6152 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6153 status); 6154 6155 return status; 6156 } 6157 6158 /** 6159 * ice_fdb_add - add an entry to the hardware database 6160 * @ndm: the input from the stack 6161 * @tb: pointer to array of nladdr (unused) 6162 * @dev: the net device pointer 6163 * @addr: the MAC address entry being added 6164 * @vid: VLAN ID 6165 * @flags: instructions from stack about fdb operation 6166 * @notified: whether notification was emitted 6167 * @extack: netlink extended ack 6168 */ 6169 static int 6170 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6171 struct net_device *dev, const unsigned char *addr, u16 vid, 6172 u16 flags, bool *notified, 6173 struct netlink_ext_ack __always_unused *extack) 6174 { 6175 int err; 6176 6177 if (vid) { 6178 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6179 return -EINVAL; 6180 } 6181 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6182 netdev_err(dev, "FDB only supports static addresses\n"); 6183 return -EINVAL; 6184 } 6185 6186 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6187 err = dev_uc_add_excl(dev, addr); 6188 else if (is_multicast_ether_addr(addr)) 6189 err = dev_mc_add_excl(dev, addr); 6190 else 6191 err = -EINVAL; 6192 6193 /* Only return duplicate errors if NLM_F_EXCL is set */ 6194 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6195 err = 0; 6196 6197 return err; 6198 } 6199 6200 /** 6201 * ice_fdb_del - delete an entry from the hardware database 6202 * @ndm: the input from the stack 6203 * @tb: pointer to array of nladdr (unused) 6204 * @dev: the net device pointer 6205 * @addr: the MAC address entry being added 6206 * @vid: VLAN ID 6207 * @notified: whether notification was emitted 6208 * @extack: netlink extended ack 6209 */ 6210 static int 6211 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6212 struct net_device *dev, const unsigned char *addr, 6213 __always_unused u16 vid, bool *notified, 6214 struct netlink_ext_ack *extack) 6215 { 6216 int err; 6217 6218 if (ndm->ndm_state & NUD_PERMANENT) { 6219 netdev_err(dev, "FDB only supports static addresses\n"); 6220 return -EINVAL; 6221 } 6222 6223 if (is_unicast_ether_addr(addr)) 6224 err = dev_uc_del(dev, addr); 6225 else if (is_multicast_ether_addr(addr)) 6226 err = dev_mc_del(dev, addr); 6227 else 6228 err = -EINVAL; 6229 6230 return err; 6231 } 6232 6233 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6234 NETIF_F_HW_VLAN_CTAG_TX | \ 6235 NETIF_F_HW_VLAN_STAG_RX | \ 6236 NETIF_F_HW_VLAN_STAG_TX) 6237 6238 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6239 NETIF_F_HW_VLAN_STAG_RX) 6240 6241 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6242 NETIF_F_HW_VLAN_STAG_FILTER) 6243 6244 /** 6245 * ice_fix_features - fix the netdev features flags based on device limitations 6246 * @netdev: ptr to the netdev that flags are being fixed on 6247 * @features: features that need to be checked and possibly fixed 6248 * 6249 * Make sure any fixups are made to features in this callback. This enables the 6250 * driver to not have to check unsupported configurations throughout the driver 6251 * because that's the responsiblity of this callback. 6252 * 6253 * Single VLAN Mode (SVM) Supported Features: 6254 * NETIF_F_HW_VLAN_CTAG_FILTER 6255 * NETIF_F_HW_VLAN_CTAG_RX 6256 * NETIF_F_HW_VLAN_CTAG_TX 6257 * 6258 * Double VLAN Mode (DVM) Supported Features: 6259 * NETIF_F_HW_VLAN_CTAG_FILTER 6260 * NETIF_F_HW_VLAN_CTAG_RX 6261 * NETIF_F_HW_VLAN_CTAG_TX 6262 * 6263 * NETIF_F_HW_VLAN_STAG_FILTER 6264 * NETIF_HW_VLAN_STAG_RX 6265 * NETIF_HW_VLAN_STAG_TX 6266 * 6267 * Features that need fixing: 6268 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6269 * These are mutually exlusive as the VSI context cannot support multiple 6270 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6271 * is not done, then default to clearing the requested STAG offload 6272 * settings. 6273 * 6274 * All supported filtering has to be enabled or disabled together. For 6275 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6276 * together. If this is not done, then default to VLAN filtering disabled. 6277 * These are mutually exclusive as there is currently no way to 6278 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6279 * prune rules. 6280 */ 6281 static netdev_features_t 6282 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6283 { 6284 struct ice_netdev_priv *np = netdev_priv(netdev); 6285 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6286 bool cur_ctag, cur_stag, req_ctag, req_stag; 6287 6288 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6289 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6290 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6291 6292 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6293 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6294 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6295 6296 if (req_vlan_fltr != cur_vlan_fltr) { 6297 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6298 if (req_ctag && req_stag) { 6299 features |= NETIF_VLAN_FILTERING_FEATURES; 6300 } else if (!req_ctag && !req_stag) { 6301 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6302 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6303 (!cur_stag && req_stag && !cur_ctag)) { 6304 features |= NETIF_VLAN_FILTERING_FEATURES; 6305 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6306 } else if ((cur_ctag && !req_ctag && cur_stag) || 6307 (cur_stag && !req_stag && cur_ctag)) { 6308 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6309 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6310 } 6311 } else { 6312 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6313 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6314 6315 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6316 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6317 } 6318 } 6319 6320 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6321 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6322 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6323 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6324 NETIF_F_HW_VLAN_STAG_TX); 6325 } 6326 6327 if (!(netdev->features & NETIF_F_RXFCS) && 6328 (features & NETIF_F_RXFCS) && 6329 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6330 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6331 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6332 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6333 } 6334 6335 return features; 6336 } 6337 6338 /** 6339 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6340 * @vsi: PF's VSI 6341 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6342 * 6343 * Store current stripped VLAN proto in ring packet context, 6344 * so it can be accessed more efficiently by packet processing code. 6345 */ 6346 static void 6347 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6348 { 6349 u16 i; 6350 6351 ice_for_each_alloc_rxq(vsi, i) 6352 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6353 } 6354 6355 /** 6356 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6357 * @vsi: PF's VSI 6358 * @features: features used to determine VLAN offload settings 6359 * 6360 * First, determine the vlan_ethertype based on the VLAN offload bits in 6361 * features. Then determine if stripping and insertion should be enabled or 6362 * disabled. Finally enable or disable VLAN stripping and insertion. 6363 */ 6364 static int 6365 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6366 { 6367 bool enable_stripping = true, enable_insertion = true; 6368 struct ice_vsi_vlan_ops *vlan_ops; 6369 int strip_err = 0, insert_err = 0; 6370 u16 vlan_ethertype = 0; 6371 6372 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6373 6374 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6375 vlan_ethertype = ETH_P_8021AD; 6376 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6377 vlan_ethertype = ETH_P_8021Q; 6378 6379 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6380 enable_stripping = false; 6381 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6382 enable_insertion = false; 6383 6384 if (enable_stripping) 6385 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6386 else 6387 strip_err = vlan_ops->dis_stripping(vsi); 6388 6389 if (enable_insertion) 6390 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6391 else 6392 insert_err = vlan_ops->dis_insertion(vsi); 6393 6394 if (strip_err || insert_err) 6395 return -EIO; 6396 6397 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6398 htons(vlan_ethertype) : 0); 6399 6400 return 0; 6401 } 6402 6403 /** 6404 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6405 * @vsi: PF's VSI 6406 * @features: features used to determine VLAN filtering settings 6407 * 6408 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6409 * features. 6410 */ 6411 static int 6412 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6413 { 6414 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6415 int err = 0; 6416 6417 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6418 * if either bit is set. In switchdev mode Rx filtering should never be 6419 * enabled. 6420 */ 6421 if ((features & 6422 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) && 6423 !ice_is_eswitch_mode_switchdev(vsi->back)) 6424 err = vlan_ops->ena_rx_filtering(vsi); 6425 else 6426 err = vlan_ops->dis_rx_filtering(vsi); 6427 6428 return err; 6429 } 6430 6431 /** 6432 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6433 * @netdev: ptr to the netdev being adjusted 6434 * @features: the feature set that the stack is suggesting 6435 * 6436 * Only update VLAN settings if the requested_vlan_features are different than 6437 * the current_vlan_features. 6438 */ 6439 static int 6440 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6441 { 6442 netdev_features_t current_vlan_features, requested_vlan_features; 6443 struct ice_netdev_priv *np = netdev_priv(netdev); 6444 struct ice_vsi *vsi = np->vsi; 6445 int err; 6446 6447 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6448 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6449 if (current_vlan_features ^ requested_vlan_features) { 6450 if ((features & NETIF_F_RXFCS) && 6451 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6452 dev_err(ice_pf_to_dev(vsi->back), 6453 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6454 return -EIO; 6455 } 6456 6457 err = ice_set_vlan_offload_features(vsi, features); 6458 if (err) 6459 return err; 6460 } 6461 6462 current_vlan_features = netdev->features & 6463 NETIF_VLAN_FILTERING_FEATURES; 6464 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6465 if (current_vlan_features ^ requested_vlan_features) { 6466 err = ice_set_vlan_filtering_features(vsi, features); 6467 if (err) 6468 return err; 6469 } 6470 6471 return 0; 6472 } 6473 6474 /** 6475 * ice_set_loopback - turn on/off loopback mode on underlying PF 6476 * @vsi: ptr to VSI 6477 * @ena: flag to indicate the on/off setting 6478 */ 6479 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6480 { 6481 bool if_running = netif_running(vsi->netdev); 6482 int ret; 6483 6484 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6485 ret = ice_down(vsi); 6486 if (ret) { 6487 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6488 return ret; 6489 } 6490 } 6491 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6492 if (ret) 6493 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6494 if (if_running) 6495 ret = ice_up(vsi); 6496 6497 return ret; 6498 } 6499 6500 /** 6501 * ice_set_features - set the netdev feature flags 6502 * @netdev: ptr to the netdev being adjusted 6503 * @features: the feature set that the stack is suggesting 6504 */ 6505 static int 6506 ice_set_features(struct net_device *netdev, netdev_features_t features) 6507 { 6508 netdev_features_t changed = netdev->features ^ features; 6509 struct ice_netdev_priv *np = netdev_priv(netdev); 6510 struct ice_vsi *vsi = np->vsi; 6511 struct ice_pf *pf = vsi->back; 6512 int ret = 0; 6513 6514 /* Don't set any netdev advanced features with device in Safe Mode */ 6515 if (ice_is_safe_mode(pf)) { 6516 dev_err(ice_pf_to_dev(pf), 6517 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6518 return ret; 6519 } 6520 6521 /* Do not change setting during reset */ 6522 if (ice_is_reset_in_progress(pf->state)) { 6523 dev_err(ice_pf_to_dev(pf), 6524 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6525 return -EBUSY; 6526 } 6527 6528 /* Multiple features can be changed in one call so keep features in 6529 * separate if/else statements to guarantee each feature is checked 6530 */ 6531 if (changed & NETIF_F_RXHASH) 6532 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6533 6534 ret = ice_set_vlan_features(netdev, features); 6535 if (ret) 6536 return ret; 6537 6538 /* Turn on receive of FCS aka CRC, and after setting this 6539 * flag the packet data will have the 4 byte CRC appended 6540 */ 6541 if (changed & NETIF_F_RXFCS) { 6542 if ((features & NETIF_F_RXFCS) && 6543 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6544 dev_err(ice_pf_to_dev(vsi->back), 6545 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6546 return -EIO; 6547 } 6548 6549 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6550 ret = ice_down_up(vsi); 6551 if (ret) 6552 return ret; 6553 } 6554 6555 if (changed & NETIF_F_NTUPLE) { 6556 bool ena = !!(features & NETIF_F_NTUPLE); 6557 6558 ice_vsi_manage_fdir(vsi, ena); 6559 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6560 } 6561 6562 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6563 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6564 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6565 return -EACCES; 6566 } 6567 6568 if (changed & NETIF_F_HW_TC) { 6569 bool ena = !!(features & NETIF_F_HW_TC); 6570 6571 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena); 6572 } 6573 6574 if (changed & NETIF_F_LOOPBACK) 6575 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6576 6577 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS 6578 * (NETIF_F_HW_CSUM) is not supported. 6579 */ 6580 if (ice_is_feature_supported(pf, ICE_F_GCS) && 6581 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) { 6582 if (netdev->features & NETIF_F_HW_CSUM) 6583 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n"); 6584 else 6585 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n"); 6586 return -EIO; 6587 } 6588 6589 return ret; 6590 } 6591 6592 /** 6593 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6594 * @vsi: VSI to setup VLAN properties for 6595 */ 6596 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6597 { 6598 int err; 6599 6600 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6601 if (err) 6602 return err; 6603 6604 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6605 if (err) 6606 return err; 6607 6608 return ice_vsi_add_vlan_zero(vsi); 6609 } 6610 6611 /** 6612 * ice_vsi_cfg_lan - Setup the VSI lan related config 6613 * @vsi: the VSI being configured 6614 * 6615 * Return 0 on success and negative value on error 6616 */ 6617 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6618 { 6619 int err; 6620 6621 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6622 ice_set_rx_mode(vsi->netdev); 6623 6624 err = ice_vsi_vlan_setup(vsi); 6625 if (err) 6626 return err; 6627 } 6628 ice_vsi_cfg_dcb_rings(vsi); 6629 6630 err = ice_vsi_cfg_lan_txqs(vsi); 6631 if (!err && ice_is_xdp_ena_vsi(vsi)) 6632 err = ice_vsi_cfg_xdp_txqs(vsi); 6633 if (!err) 6634 err = ice_vsi_cfg_rxqs(vsi); 6635 6636 return err; 6637 } 6638 6639 /* THEORY OF MODERATION: 6640 * The ice driver hardware works differently than the hardware that DIMLIB was 6641 * originally made for. ice hardware doesn't have packet count limits that 6642 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6643 * which is hard-coded to a limit of 250,000 ints/second. 6644 * If not using dynamic moderation, the INTRL value can be modified 6645 * by ethtool rx-usecs-high. 6646 */ 6647 struct ice_dim { 6648 /* the throttle rate for interrupts, basically worst case delay before 6649 * an initial interrupt fires, value is stored in microseconds. 6650 */ 6651 u16 itr; 6652 }; 6653 6654 /* Make a different profile for Rx that doesn't allow quite so aggressive 6655 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6656 * second. 6657 */ 6658 static const struct ice_dim rx_profile[] = { 6659 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6660 {8}, /* 125,000 ints/s */ 6661 {16}, /* 62,500 ints/s */ 6662 {62}, /* 16,129 ints/s */ 6663 {126} /* 7,936 ints/s */ 6664 }; 6665 6666 /* The transmit profile, which has the same sorts of values 6667 * as the previous struct 6668 */ 6669 static const struct ice_dim tx_profile[] = { 6670 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6671 {8}, /* 125,000 ints/s */ 6672 {40}, /* 16,125 ints/s */ 6673 {128}, /* 7,812 ints/s */ 6674 {256} /* 3,906 ints/s */ 6675 }; 6676 6677 static void ice_tx_dim_work(struct work_struct *work) 6678 { 6679 struct ice_ring_container *rc; 6680 struct dim *dim; 6681 u16 itr; 6682 6683 dim = container_of(work, struct dim, work); 6684 rc = dim->priv; 6685 6686 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6687 6688 /* look up the values in our local table */ 6689 itr = tx_profile[dim->profile_ix].itr; 6690 6691 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6692 ice_write_itr(rc, itr); 6693 6694 dim->state = DIM_START_MEASURE; 6695 } 6696 6697 static void ice_rx_dim_work(struct work_struct *work) 6698 { 6699 struct ice_ring_container *rc; 6700 struct dim *dim; 6701 u16 itr; 6702 6703 dim = container_of(work, struct dim, work); 6704 rc = dim->priv; 6705 6706 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6707 6708 /* look up the values in our local table */ 6709 itr = rx_profile[dim->profile_ix].itr; 6710 6711 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6712 ice_write_itr(rc, itr); 6713 6714 dim->state = DIM_START_MEASURE; 6715 } 6716 6717 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6718 6719 /** 6720 * ice_init_moderation - set up interrupt moderation 6721 * @q_vector: the vector containing rings to be configured 6722 * 6723 * Set up interrupt moderation registers, with the intent to do the right thing 6724 * when called from reset or from probe, and whether or not dynamic moderation 6725 * is enabled or not. Take special care to write all the registers in both 6726 * dynamic moderation mode or not in order to make sure hardware is in a known 6727 * state. 6728 */ 6729 static void ice_init_moderation(struct ice_q_vector *q_vector) 6730 { 6731 struct ice_ring_container *rc; 6732 bool tx_dynamic, rx_dynamic; 6733 6734 rc = &q_vector->tx; 6735 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6736 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6737 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6738 rc->dim.priv = rc; 6739 tx_dynamic = ITR_IS_DYNAMIC(rc); 6740 6741 /* set the initial TX ITR to match the above */ 6742 ice_write_itr(rc, tx_dynamic ? 6743 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6744 6745 rc = &q_vector->rx; 6746 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6747 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6748 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6749 rc->dim.priv = rc; 6750 rx_dynamic = ITR_IS_DYNAMIC(rc); 6751 6752 /* set the initial RX ITR to match the above */ 6753 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6754 rc->itr_setting); 6755 6756 ice_set_q_vector_intrl(q_vector); 6757 } 6758 6759 /** 6760 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6761 * @vsi: the VSI being configured 6762 */ 6763 static void ice_napi_enable_all(struct ice_vsi *vsi) 6764 { 6765 int q_idx; 6766 6767 if (!vsi->netdev) 6768 return; 6769 6770 ice_for_each_q_vector(vsi, q_idx) { 6771 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6772 6773 ice_init_moderation(q_vector); 6774 6775 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6776 napi_enable(&q_vector->napi); 6777 } 6778 } 6779 6780 /** 6781 * ice_up_complete - Finish the last steps of bringing up a connection 6782 * @vsi: The VSI being configured 6783 * 6784 * Return 0 on success and negative value on error 6785 */ 6786 static int ice_up_complete(struct ice_vsi *vsi) 6787 { 6788 struct ice_pf *pf = vsi->back; 6789 int err; 6790 6791 ice_vsi_cfg_msix(vsi); 6792 6793 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6794 * Tx queue group list was configured and the context bits were 6795 * programmed using ice_vsi_cfg_txqs 6796 */ 6797 err = ice_vsi_start_all_rx_rings(vsi); 6798 if (err) 6799 return err; 6800 6801 clear_bit(ICE_VSI_DOWN, vsi->state); 6802 ice_napi_enable_all(vsi); 6803 ice_vsi_ena_irq(vsi); 6804 6805 if (vsi->port_info && 6806 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6807 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6808 vsi->type == ICE_VSI_SF)))) { 6809 ice_print_link_msg(vsi, true); 6810 netif_tx_start_all_queues(vsi->netdev); 6811 netif_carrier_on(vsi->netdev); 6812 ice_ptp_link_change(pf, true); 6813 } 6814 6815 /* Perform an initial read of the statistics registers now to 6816 * set the baseline so counters are ready when interface is up 6817 */ 6818 ice_update_eth_stats(vsi); 6819 6820 if (vsi->type == ICE_VSI_PF) 6821 ice_service_task_schedule(pf); 6822 6823 return 0; 6824 } 6825 6826 /** 6827 * ice_up - Bring the connection back up after being down 6828 * @vsi: VSI being configured 6829 */ 6830 int ice_up(struct ice_vsi *vsi) 6831 { 6832 int err; 6833 6834 err = ice_vsi_cfg_lan(vsi); 6835 if (!err) 6836 err = ice_up_complete(vsi); 6837 6838 return err; 6839 } 6840 6841 /** 6842 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6843 * @syncp: pointer to u64_stats_sync 6844 * @stats: stats that pkts and bytes count will be taken from 6845 * @pkts: packets stats counter 6846 * @bytes: bytes stats counter 6847 * 6848 * This function fetches stats from the ring considering the atomic operations 6849 * that needs to be performed to read u64 values in 32 bit machine. 6850 */ 6851 void 6852 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6853 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6854 { 6855 unsigned int start; 6856 6857 do { 6858 start = u64_stats_fetch_begin(syncp); 6859 *pkts = stats.pkts; 6860 *bytes = stats.bytes; 6861 } while (u64_stats_fetch_retry(syncp, start)); 6862 } 6863 6864 /** 6865 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6866 * @vsi: the VSI to be updated 6867 * @vsi_stats: the stats struct to be updated 6868 * @rings: rings to work on 6869 * @count: number of rings 6870 */ 6871 static void 6872 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6873 struct rtnl_link_stats64 *vsi_stats, 6874 struct ice_tx_ring **rings, u16 count) 6875 { 6876 u16 i; 6877 6878 for (i = 0; i < count; i++) { 6879 struct ice_tx_ring *ring; 6880 u64 pkts = 0, bytes = 0; 6881 6882 ring = READ_ONCE(rings[i]); 6883 if (!ring || !ring->ring_stats) 6884 continue; 6885 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6886 ring->ring_stats->stats, &pkts, 6887 &bytes); 6888 vsi_stats->tx_packets += pkts; 6889 vsi_stats->tx_bytes += bytes; 6890 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6891 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6892 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6893 } 6894 } 6895 6896 /** 6897 * ice_update_vsi_ring_stats - Update VSI stats counters 6898 * @vsi: the VSI to be updated 6899 */ 6900 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6901 { 6902 struct rtnl_link_stats64 *net_stats, *stats_prev; 6903 struct rtnl_link_stats64 *vsi_stats; 6904 struct ice_pf *pf = vsi->back; 6905 u64 pkts, bytes; 6906 int i; 6907 6908 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6909 if (!vsi_stats) 6910 return; 6911 6912 /* reset non-netdev (extended) stats */ 6913 vsi->tx_restart = 0; 6914 vsi->tx_busy = 0; 6915 vsi->tx_linearize = 0; 6916 vsi->rx_buf_failed = 0; 6917 vsi->rx_page_failed = 0; 6918 6919 rcu_read_lock(); 6920 6921 /* update Tx rings counters */ 6922 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6923 vsi->num_txq); 6924 6925 /* update Rx rings counters */ 6926 ice_for_each_rxq(vsi, i) { 6927 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6928 struct ice_ring_stats *ring_stats; 6929 6930 ring_stats = ring->ring_stats; 6931 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6932 ring_stats->stats, &pkts, 6933 &bytes); 6934 vsi_stats->rx_packets += pkts; 6935 vsi_stats->rx_bytes += bytes; 6936 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6937 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6938 } 6939 6940 /* update XDP Tx rings counters */ 6941 if (ice_is_xdp_ena_vsi(vsi)) 6942 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6943 vsi->num_xdp_txq); 6944 6945 rcu_read_unlock(); 6946 6947 net_stats = &vsi->net_stats; 6948 stats_prev = &vsi->net_stats_prev; 6949 6950 /* Update netdev counters, but keep in mind that values could start at 6951 * random value after PF reset. And as we increase the reported stat by 6952 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6953 * let's skip this round. 6954 */ 6955 if (likely(pf->stat_prev_loaded)) { 6956 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6957 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6958 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6959 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6960 } 6961 6962 stats_prev->tx_packets = vsi_stats->tx_packets; 6963 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6964 stats_prev->rx_packets = vsi_stats->rx_packets; 6965 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6966 6967 kfree(vsi_stats); 6968 } 6969 6970 /** 6971 * ice_update_vsi_stats - Update VSI stats counters 6972 * @vsi: the VSI to be updated 6973 */ 6974 void ice_update_vsi_stats(struct ice_vsi *vsi) 6975 { 6976 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6977 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6978 struct ice_pf *pf = vsi->back; 6979 6980 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6981 test_bit(ICE_CFG_BUSY, pf->state)) 6982 return; 6983 6984 /* get stats as recorded by Tx/Rx rings */ 6985 ice_update_vsi_ring_stats(vsi); 6986 6987 /* get VSI stats as recorded by the hardware */ 6988 ice_update_eth_stats(vsi); 6989 6990 cur_ns->tx_errors = cur_es->tx_errors; 6991 cur_ns->rx_dropped = cur_es->rx_discards; 6992 cur_ns->tx_dropped = cur_es->tx_discards; 6993 cur_ns->multicast = cur_es->rx_multicast; 6994 6995 /* update some more netdev stats if this is main VSI */ 6996 if (vsi->type == ICE_VSI_PF) { 6997 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6998 cur_ns->rx_errors = pf->stats.crc_errors + 6999 pf->stats.illegal_bytes + 7000 pf->stats.rx_undersize + 7001 pf->hw_csum_rx_error + 7002 pf->stats.rx_jabber + 7003 pf->stats.rx_fragments + 7004 pf->stats.rx_oversize; 7005 /* record drops from the port level */ 7006 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 7007 } 7008 } 7009 7010 /** 7011 * ice_update_pf_stats - Update PF port stats counters 7012 * @pf: PF whose stats needs to be updated 7013 */ 7014 void ice_update_pf_stats(struct ice_pf *pf) 7015 { 7016 struct ice_hw_port_stats *prev_ps, *cur_ps; 7017 struct ice_hw *hw = &pf->hw; 7018 u16 fd_ctr_base; 7019 u8 port; 7020 7021 port = hw->port_info->lport; 7022 prev_ps = &pf->stats_prev; 7023 cur_ps = &pf->stats; 7024 7025 if (ice_is_reset_in_progress(pf->state)) 7026 pf->stat_prev_loaded = false; 7027 7028 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 7029 &prev_ps->eth.rx_bytes, 7030 &cur_ps->eth.rx_bytes); 7031 7032 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 7033 &prev_ps->eth.rx_unicast, 7034 &cur_ps->eth.rx_unicast); 7035 7036 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 7037 &prev_ps->eth.rx_multicast, 7038 &cur_ps->eth.rx_multicast); 7039 7040 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 7041 &prev_ps->eth.rx_broadcast, 7042 &cur_ps->eth.rx_broadcast); 7043 7044 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 7045 &prev_ps->eth.rx_discards, 7046 &cur_ps->eth.rx_discards); 7047 7048 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 7049 &prev_ps->eth.tx_bytes, 7050 &cur_ps->eth.tx_bytes); 7051 7052 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 7053 &prev_ps->eth.tx_unicast, 7054 &cur_ps->eth.tx_unicast); 7055 7056 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7057 &prev_ps->eth.tx_multicast, 7058 &cur_ps->eth.tx_multicast); 7059 7060 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7061 &prev_ps->eth.tx_broadcast, 7062 &cur_ps->eth.tx_broadcast); 7063 7064 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7065 &prev_ps->tx_dropped_link_down, 7066 &cur_ps->tx_dropped_link_down); 7067 7068 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7069 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7070 7071 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7072 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7073 7074 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7075 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7076 7077 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7078 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7079 7080 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7081 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7082 7083 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7084 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7085 7086 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7087 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7088 7089 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7090 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7091 7092 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7093 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7094 7095 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7096 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7097 7098 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7099 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7100 7101 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7102 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7103 7104 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7105 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7106 7107 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7108 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7109 7110 fd_ctr_base = hw->fd_ctr_base; 7111 7112 ice_stat_update40(hw, 7113 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7114 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7115 &cur_ps->fd_sb_match); 7116 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7117 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7118 7119 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7120 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7121 7122 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7123 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7124 7125 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7126 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7127 7128 ice_update_dcb_stats(pf); 7129 7130 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7131 &prev_ps->crc_errors, &cur_ps->crc_errors); 7132 7133 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7134 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7135 7136 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7137 &prev_ps->mac_local_faults, 7138 &cur_ps->mac_local_faults); 7139 7140 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7141 &prev_ps->mac_remote_faults, 7142 &cur_ps->mac_remote_faults); 7143 7144 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7145 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7146 7147 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7148 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7149 7150 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7151 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7152 7153 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7154 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7155 7156 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7157 7158 pf->stat_prev_loaded = true; 7159 } 7160 7161 /** 7162 * ice_get_stats64 - get statistics for network device structure 7163 * @netdev: network interface device structure 7164 * @stats: main device statistics structure 7165 */ 7166 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7167 { 7168 struct ice_netdev_priv *np = netdev_priv(netdev); 7169 struct rtnl_link_stats64 *vsi_stats; 7170 struct ice_vsi *vsi = np->vsi; 7171 7172 vsi_stats = &vsi->net_stats; 7173 7174 if (!vsi->num_txq || !vsi->num_rxq) 7175 return; 7176 7177 /* netdev packet/byte stats come from ring counter. These are obtained 7178 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7179 * But, only call the update routine and read the registers if VSI is 7180 * not down. 7181 */ 7182 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7183 ice_update_vsi_ring_stats(vsi); 7184 stats->tx_packets = vsi_stats->tx_packets; 7185 stats->tx_bytes = vsi_stats->tx_bytes; 7186 stats->rx_packets = vsi_stats->rx_packets; 7187 stats->rx_bytes = vsi_stats->rx_bytes; 7188 7189 /* The rest of the stats can be read from the hardware but instead we 7190 * just return values that the watchdog task has already obtained from 7191 * the hardware. 7192 */ 7193 stats->multicast = vsi_stats->multicast; 7194 stats->tx_errors = vsi_stats->tx_errors; 7195 stats->tx_dropped = vsi_stats->tx_dropped; 7196 stats->rx_errors = vsi_stats->rx_errors; 7197 stats->rx_dropped = vsi_stats->rx_dropped; 7198 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7199 stats->rx_length_errors = vsi_stats->rx_length_errors; 7200 } 7201 7202 /** 7203 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7204 * @vsi: VSI having NAPI disabled 7205 */ 7206 static void ice_napi_disable_all(struct ice_vsi *vsi) 7207 { 7208 int q_idx; 7209 7210 if (!vsi->netdev) 7211 return; 7212 7213 ice_for_each_q_vector(vsi, q_idx) { 7214 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7215 7216 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7217 napi_disable(&q_vector->napi); 7218 7219 cancel_work_sync(&q_vector->tx.dim.work); 7220 cancel_work_sync(&q_vector->rx.dim.work); 7221 } 7222 } 7223 7224 /** 7225 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7226 * @vsi: the VSI being un-configured 7227 */ 7228 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7229 { 7230 struct ice_pf *pf = vsi->back; 7231 struct ice_hw *hw = &pf->hw; 7232 u32 val; 7233 int i; 7234 7235 /* disable interrupt causation from each Rx queue; Tx queues are 7236 * handled in ice_vsi_stop_tx_ring() 7237 */ 7238 if (vsi->rx_rings) { 7239 ice_for_each_rxq(vsi, i) { 7240 if (vsi->rx_rings[i]) { 7241 u16 reg; 7242 7243 reg = vsi->rx_rings[i]->reg_idx; 7244 val = rd32(hw, QINT_RQCTL(reg)); 7245 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7246 wr32(hw, QINT_RQCTL(reg), val); 7247 } 7248 } 7249 } 7250 7251 /* disable each interrupt */ 7252 ice_for_each_q_vector(vsi, i) { 7253 if (!vsi->q_vectors[i]) 7254 continue; 7255 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7256 } 7257 7258 ice_flush(hw); 7259 7260 /* don't call synchronize_irq() for VF's from the host */ 7261 if (vsi->type == ICE_VSI_VF) 7262 return; 7263 7264 ice_for_each_q_vector(vsi, i) 7265 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7266 } 7267 7268 /** 7269 * ice_down - Shutdown the connection 7270 * @vsi: The VSI being stopped 7271 * 7272 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7273 */ 7274 int ice_down(struct ice_vsi *vsi) 7275 { 7276 int i, tx_err, rx_err, vlan_err = 0; 7277 7278 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7279 7280 if (vsi->netdev) { 7281 vlan_err = ice_vsi_del_vlan_zero(vsi); 7282 ice_ptp_link_change(vsi->back, false); 7283 netif_carrier_off(vsi->netdev); 7284 netif_tx_disable(vsi->netdev); 7285 } 7286 7287 ice_vsi_dis_irq(vsi); 7288 7289 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7290 if (tx_err) 7291 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7292 vsi->vsi_num, tx_err); 7293 if (!tx_err && vsi->xdp_rings) { 7294 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7295 if (tx_err) 7296 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7297 vsi->vsi_num, tx_err); 7298 } 7299 7300 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7301 if (rx_err) 7302 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7303 vsi->vsi_num, rx_err); 7304 7305 ice_napi_disable_all(vsi); 7306 7307 ice_for_each_txq(vsi, i) 7308 ice_clean_tx_ring(vsi->tx_rings[i]); 7309 7310 if (vsi->xdp_rings) 7311 ice_for_each_xdp_txq(vsi, i) 7312 ice_clean_tx_ring(vsi->xdp_rings[i]); 7313 7314 ice_for_each_rxq(vsi, i) 7315 ice_clean_rx_ring(vsi->rx_rings[i]); 7316 7317 if (tx_err || rx_err || vlan_err) { 7318 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7319 vsi->vsi_num, vsi->vsw->sw_id); 7320 return -EIO; 7321 } 7322 7323 return 0; 7324 } 7325 7326 /** 7327 * ice_down_up - shutdown the VSI connection and bring it up 7328 * @vsi: the VSI to be reconnected 7329 */ 7330 int ice_down_up(struct ice_vsi *vsi) 7331 { 7332 int ret; 7333 7334 /* if DOWN already set, nothing to do */ 7335 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7336 return 0; 7337 7338 ret = ice_down(vsi); 7339 if (ret) 7340 return ret; 7341 7342 ret = ice_up(vsi); 7343 if (ret) { 7344 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7345 return ret; 7346 } 7347 7348 return 0; 7349 } 7350 7351 /** 7352 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7353 * @vsi: VSI having resources allocated 7354 * 7355 * Return 0 on success, negative on failure 7356 */ 7357 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7358 { 7359 int i, err = 0; 7360 7361 if (!vsi->num_txq) { 7362 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7363 vsi->vsi_num); 7364 return -EINVAL; 7365 } 7366 7367 ice_for_each_txq(vsi, i) { 7368 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7369 7370 if (!ring) 7371 return -EINVAL; 7372 7373 if (vsi->netdev) 7374 ring->netdev = vsi->netdev; 7375 err = ice_setup_tx_ring(ring); 7376 if (err) 7377 break; 7378 } 7379 7380 return err; 7381 } 7382 7383 /** 7384 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7385 * @vsi: VSI having resources allocated 7386 * 7387 * Return 0 on success, negative on failure 7388 */ 7389 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7390 { 7391 int i, err = 0; 7392 7393 if (!vsi->num_rxq) { 7394 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7395 vsi->vsi_num); 7396 return -EINVAL; 7397 } 7398 7399 ice_for_each_rxq(vsi, i) { 7400 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7401 7402 if (!ring) 7403 return -EINVAL; 7404 7405 if (vsi->netdev) 7406 ring->netdev = vsi->netdev; 7407 err = ice_setup_rx_ring(ring); 7408 if (err) 7409 break; 7410 } 7411 7412 return err; 7413 } 7414 7415 /** 7416 * ice_vsi_open_ctrl - open control VSI for use 7417 * @vsi: the VSI to open 7418 * 7419 * Initialization of the Control VSI 7420 * 7421 * Returns 0 on success, negative value on error 7422 */ 7423 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7424 { 7425 char int_name[ICE_INT_NAME_STR_LEN]; 7426 struct ice_pf *pf = vsi->back; 7427 struct device *dev; 7428 int err; 7429 7430 dev = ice_pf_to_dev(pf); 7431 /* allocate descriptors */ 7432 err = ice_vsi_setup_tx_rings(vsi); 7433 if (err) 7434 goto err_setup_tx; 7435 7436 err = ice_vsi_setup_rx_rings(vsi); 7437 if (err) 7438 goto err_setup_rx; 7439 7440 err = ice_vsi_cfg_lan(vsi); 7441 if (err) 7442 goto err_setup_rx; 7443 7444 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7445 dev_driver_string(dev), dev_name(dev)); 7446 err = ice_vsi_req_irq_msix(vsi, int_name); 7447 if (err) 7448 goto err_setup_rx; 7449 7450 ice_vsi_cfg_msix(vsi); 7451 7452 err = ice_vsi_start_all_rx_rings(vsi); 7453 if (err) 7454 goto err_up_complete; 7455 7456 clear_bit(ICE_VSI_DOWN, vsi->state); 7457 ice_vsi_ena_irq(vsi); 7458 7459 return 0; 7460 7461 err_up_complete: 7462 ice_down(vsi); 7463 err_setup_rx: 7464 ice_vsi_free_rx_rings(vsi); 7465 err_setup_tx: 7466 ice_vsi_free_tx_rings(vsi); 7467 7468 return err; 7469 } 7470 7471 /** 7472 * ice_vsi_open - Called when a network interface is made active 7473 * @vsi: the VSI to open 7474 * 7475 * Initialization of the VSI 7476 * 7477 * Returns 0 on success, negative value on error 7478 */ 7479 int ice_vsi_open(struct ice_vsi *vsi) 7480 { 7481 char int_name[ICE_INT_NAME_STR_LEN]; 7482 struct ice_pf *pf = vsi->back; 7483 int err; 7484 7485 /* allocate descriptors */ 7486 err = ice_vsi_setup_tx_rings(vsi); 7487 if (err) 7488 goto err_setup_tx; 7489 7490 err = ice_vsi_setup_rx_rings(vsi); 7491 if (err) 7492 goto err_setup_rx; 7493 7494 err = ice_vsi_cfg_lan(vsi); 7495 if (err) 7496 goto err_setup_rx; 7497 7498 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7499 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7500 err = ice_vsi_req_irq_msix(vsi, int_name); 7501 if (err) 7502 goto err_setup_rx; 7503 7504 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7505 7506 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7507 /* Notify the stack of the actual queue counts. */ 7508 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7509 if (err) 7510 goto err_set_qs; 7511 7512 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7513 if (err) 7514 goto err_set_qs; 7515 7516 ice_vsi_set_napi_queues(vsi); 7517 } 7518 7519 err = ice_up_complete(vsi); 7520 if (err) 7521 goto err_up_complete; 7522 7523 return 0; 7524 7525 err_up_complete: 7526 ice_down(vsi); 7527 err_set_qs: 7528 ice_vsi_free_irq(vsi); 7529 err_setup_rx: 7530 ice_vsi_free_rx_rings(vsi); 7531 err_setup_tx: 7532 ice_vsi_free_tx_rings(vsi); 7533 7534 return err; 7535 } 7536 7537 /** 7538 * ice_vsi_release_all - Delete all VSIs 7539 * @pf: PF from which all VSIs are being removed 7540 */ 7541 static void ice_vsi_release_all(struct ice_pf *pf) 7542 { 7543 int err, i; 7544 7545 if (!pf->vsi) 7546 return; 7547 7548 ice_for_each_vsi(pf, i) { 7549 if (!pf->vsi[i]) 7550 continue; 7551 7552 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7553 continue; 7554 7555 err = ice_vsi_release(pf->vsi[i]); 7556 if (err) 7557 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7558 i, err, pf->vsi[i]->vsi_num); 7559 } 7560 } 7561 7562 /** 7563 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7564 * @pf: pointer to the PF instance 7565 * @type: VSI type to rebuild 7566 * 7567 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7568 */ 7569 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7570 { 7571 struct device *dev = ice_pf_to_dev(pf); 7572 int i, err; 7573 7574 ice_for_each_vsi(pf, i) { 7575 struct ice_vsi *vsi = pf->vsi[i]; 7576 7577 if (!vsi || vsi->type != type) 7578 continue; 7579 7580 /* rebuild the VSI */ 7581 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7582 if (err) { 7583 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7584 err, vsi->idx, ice_vsi_type_str(type)); 7585 return err; 7586 } 7587 7588 /* replay filters for the VSI */ 7589 err = ice_replay_vsi(&pf->hw, vsi->idx); 7590 if (err) { 7591 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7592 err, vsi->idx, ice_vsi_type_str(type)); 7593 return err; 7594 } 7595 7596 /* Re-map HW VSI number, using VSI handle that has been 7597 * previously validated in ice_replay_vsi() call above 7598 */ 7599 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7600 7601 /* enable the VSI */ 7602 err = ice_ena_vsi(vsi, false); 7603 if (err) { 7604 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7605 err, vsi->idx, ice_vsi_type_str(type)); 7606 return err; 7607 } 7608 7609 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7610 ice_vsi_type_str(type)); 7611 } 7612 7613 return 0; 7614 } 7615 7616 /** 7617 * ice_update_pf_netdev_link - Update PF netdev link status 7618 * @pf: pointer to the PF instance 7619 */ 7620 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7621 { 7622 bool link_up; 7623 int i; 7624 7625 ice_for_each_vsi(pf, i) { 7626 struct ice_vsi *vsi = pf->vsi[i]; 7627 7628 if (!vsi || vsi->type != ICE_VSI_PF) 7629 return; 7630 7631 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7632 if (link_up) { 7633 netif_carrier_on(pf->vsi[i]->netdev); 7634 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7635 } else { 7636 netif_carrier_off(pf->vsi[i]->netdev); 7637 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7638 } 7639 } 7640 } 7641 7642 /** 7643 * ice_rebuild - rebuild after reset 7644 * @pf: PF to rebuild 7645 * @reset_type: type of reset 7646 * 7647 * Do not rebuild VF VSI in this flow because that is already handled via 7648 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7649 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7650 * to reset/rebuild all the VF VSI twice. 7651 */ 7652 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7653 { 7654 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7655 struct device *dev = ice_pf_to_dev(pf); 7656 struct ice_hw *hw = &pf->hw; 7657 bool dvm; 7658 int err; 7659 7660 if (test_bit(ICE_DOWN, pf->state)) 7661 goto clear_recovery; 7662 7663 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7664 7665 #define ICE_EMP_RESET_SLEEP_MS 5000 7666 if (reset_type == ICE_RESET_EMPR) { 7667 /* If an EMP reset has occurred, any previously pending flash 7668 * update will have completed. We no longer know whether or 7669 * not the NVM update EMP reset is restricted. 7670 */ 7671 pf->fw_emp_reset_disabled = false; 7672 7673 msleep(ICE_EMP_RESET_SLEEP_MS); 7674 } 7675 7676 err = ice_init_all_ctrlq(hw); 7677 if (err) { 7678 dev_err(dev, "control queues init failed %d\n", err); 7679 goto err_init_ctrlq; 7680 } 7681 7682 /* if DDP was previously loaded successfully */ 7683 if (!ice_is_safe_mode(pf)) { 7684 /* reload the SW DB of filter tables */ 7685 if (reset_type == ICE_RESET_PFR) 7686 ice_fill_blk_tbls(hw); 7687 else 7688 /* Reload DDP Package after CORER/GLOBR reset */ 7689 ice_load_pkg(NULL, pf); 7690 } 7691 7692 err = ice_clear_pf_cfg(hw); 7693 if (err) { 7694 dev_err(dev, "clear PF configuration failed %d\n", err); 7695 goto err_init_ctrlq; 7696 } 7697 7698 ice_clear_pxe_mode(hw); 7699 7700 err = ice_init_nvm(hw); 7701 if (err) { 7702 dev_err(dev, "ice_init_nvm failed %d\n", err); 7703 goto err_init_ctrlq; 7704 } 7705 7706 err = ice_get_caps(hw); 7707 if (err) { 7708 dev_err(dev, "ice_get_caps failed %d\n", err); 7709 goto err_init_ctrlq; 7710 } 7711 7712 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7713 if (err) { 7714 dev_err(dev, "set_mac_cfg failed %d\n", err); 7715 goto err_init_ctrlq; 7716 } 7717 7718 dvm = ice_is_dvm_ena(hw); 7719 7720 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7721 if (err) 7722 goto err_init_ctrlq; 7723 7724 err = ice_sched_init_port(hw->port_info); 7725 if (err) 7726 goto err_sched_init_port; 7727 7728 /* start misc vector */ 7729 err = ice_req_irq_msix_misc(pf); 7730 if (err) { 7731 dev_err(dev, "misc vector setup failed: %d\n", err); 7732 goto err_sched_init_port; 7733 } 7734 7735 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7736 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7737 if (!rd32(hw, PFQF_FD_SIZE)) { 7738 u16 unused, guar, b_effort; 7739 7740 guar = hw->func_caps.fd_fltr_guar; 7741 b_effort = hw->func_caps.fd_fltr_best_effort; 7742 7743 /* force guaranteed filter pool for PF */ 7744 ice_alloc_fd_guar_item(hw, &unused, guar); 7745 /* force shared filter pool for PF */ 7746 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7747 } 7748 } 7749 7750 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7751 ice_dcb_rebuild(pf); 7752 7753 /* If the PF previously had enabled PTP, PTP init needs to happen before 7754 * the VSI rebuild. If not, this causes the PTP link status events to 7755 * fail. 7756 */ 7757 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7758 ice_ptp_rebuild(pf, reset_type); 7759 7760 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7761 ice_gnss_init(pf); 7762 7763 /* rebuild PF VSI */ 7764 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7765 if (err) { 7766 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7767 goto err_vsi_rebuild; 7768 } 7769 7770 if (reset_type == ICE_RESET_PFR) { 7771 err = ice_rebuild_channels(pf); 7772 if (err) { 7773 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7774 err); 7775 goto err_vsi_rebuild; 7776 } 7777 } 7778 7779 /* If Flow Director is active */ 7780 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7781 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7782 if (err) { 7783 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7784 goto err_vsi_rebuild; 7785 } 7786 7787 /* replay HW Flow Director recipes */ 7788 if (hw->fdir_prof) 7789 ice_fdir_replay_flows(hw); 7790 7791 /* replay Flow Director filters */ 7792 ice_fdir_replay_fltrs(pf); 7793 7794 ice_rebuild_arfs(pf); 7795 } 7796 7797 if (vsi && vsi->netdev) 7798 netif_device_attach(vsi->netdev); 7799 7800 ice_update_pf_netdev_link(pf); 7801 7802 /* tell the firmware we are up */ 7803 err = ice_send_version(pf); 7804 if (err) { 7805 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7806 err); 7807 goto err_vsi_rebuild; 7808 } 7809 7810 ice_replay_post(hw); 7811 7812 /* if we get here, reset flow is successful */ 7813 clear_bit(ICE_RESET_FAILED, pf->state); 7814 7815 ice_health_clear(pf); 7816 7817 ice_plug_aux_dev(pf); 7818 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7819 ice_lag_rebuild(pf); 7820 7821 /* Restore timestamp mode settings after VSI rebuild */ 7822 ice_ptp_restore_timestamp_mode(pf); 7823 return; 7824 7825 err_vsi_rebuild: 7826 err_sched_init_port: 7827 ice_sched_cleanup_all(hw); 7828 err_init_ctrlq: 7829 ice_shutdown_all_ctrlq(hw, false); 7830 set_bit(ICE_RESET_FAILED, pf->state); 7831 clear_recovery: 7832 /* set this bit in PF state to control service task scheduling */ 7833 set_bit(ICE_NEEDS_RESTART, pf->state); 7834 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7835 } 7836 7837 /** 7838 * ice_change_mtu - NDO callback to change the MTU 7839 * @netdev: network interface device structure 7840 * @new_mtu: new value for maximum frame size 7841 * 7842 * Returns 0 on success, negative on failure 7843 */ 7844 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7845 { 7846 struct ice_netdev_priv *np = netdev_priv(netdev); 7847 struct ice_vsi *vsi = np->vsi; 7848 struct ice_pf *pf = vsi->back; 7849 struct bpf_prog *prog; 7850 u8 count = 0; 7851 int err = 0; 7852 7853 if (new_mtu == (int)netdev->mtu) { 7854 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7855 return 0; 7856 } 7857 7858 prog = vsi->xdp_prog; 7859 if (prog && !prog->aux->xdp_has_frags) { 7860 int frame_size = ice_max_xdp_frame_size(vsi); 7861 7862 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7863 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7864 frame_size - ICE_ETH_PKT_HDR_PAD); 7865 return -EINVAL; 7866 } 7867 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7868 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7869 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7870 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7871 return -EINVAL; 7872 } 7873 } 7874 7875 /* if a reset is in progress, wait for some time for it to complete */ 7876 do { 7877 if (ice_is_reset_in_progress(pf->state)) { 7878 count++; 7879 usleep_range(1000, 2000); 7880 } else { 7881 break; 7882 } 7883 7884 } while (count < 100); 7885 7886 if (count == 100) { 7887 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7888 return -EBUSY; 7889 } 7890 7891 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7892 err = ice_down_up(vsi); 7893 if (err) 7894 return err; 7895 7896 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7897 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7898 7899 return err; 7900 } 7901 7902 /** 7903 * ice_eth_ioctl - Access the hwtstamp interface 7904 * @netdev: network interface device structure 7905 * @ifr: interface request data 7906 * @cmd: ioctl command 7907 */ 7908 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7909 { 7910 struct ice_netdev_priv *np = netdev_priv(netdev); 7911 struct ice_pf *pf = np->vsi->back; 7912 7913 switch (cmd) { 7914 case SIOCGHWTSTAMP: 7915 return ice_ptp_get_ts_config(pf, ifr); 7916 case SIOCSHWTSTAMP: 7917 return ice_ptp_set_ts_config(pf, ifr); 7918 default: 7919 return -EOPNOTSUPP; 7920 } 7921 } 7922 7923 /** 7924 * ice_aq_str - convert AQ err code to a string 7925 * @aq_err: the AQ error code to convert 7926 */ 7927 const char *ice_aq_str(enum ice_aq_err aq_err) 7928 { 7929 switch (aq_err) { 7930 case ICE_AQ_RC_OK: 7931 return "OK"; 7932 case ICE_AQ_RC_EPERM: 7933 return "ICE_AQ_RC_EPERM"; 7934 case ICE_AQ_RC_ENOENT: 7935 return "ICE_AQ_RC_ENOENT"; 7936 case ICE_AQ_RC_ENOMEM: 7937 return "ICE_AQ_RC_ENOMEM"; 7938 case ICE_AQ_RC_EBUSY: 7939 return "ICE_AQ_RC_EBUSY"; 7940 case ICE_AQ_RC_EEXIST: 7941 return "ICE_AQ_RC_EEXIST"; 7942 case ICE_AQ_RC_EINVAL: 7943 return "ICE_AQ_RC_EINVAL"; 7944 case ICE_AQ_RC_ENOSPC: 7945 return "ICE_AQ_RC_ENOSPC"; 7946 case ICE_AQ_RC_ENOSYS: 7947 return "ICE_AQ_RC_ENOSYS"; 7948 case ICE_AQ_RC_EMODE: 7949 return "ICE_AQ_RC_EMODE"; 7950 case ICE_AQ_RC_ENOSEC: 7951 return "ICE_AQ_RC_ENOSEC"; 7952 case ICE_AQ_RC_EBADSIG: 7953 return "ICE_AQ_RC_EBADSIG"; 7954 case ICE_AQ_RC_ESVN: 7955 return "ICE_AQ_RC_ESVN"; 7956 case ICE_AQ_RC_EBADMAN: 7957 return "ICE_AQ_RC_EBADMAN"; 7958 case ICE_AQ_RC_EBADBUF: 7959 return "ICE_AQ_RC_EBADBUF"; 7960 } 7961 7962 return "ICE_AQ_RC_UNKNOWN"; 7963 } 7964 7965 /** 7966 * ice_set_rss_lut - Set RSS LUT 7967 * @vsi: Pointer to VSI structure 7968 * @lut: Lookup table 7969 * @lut_size: Lookup table size 7970 * 7971 * Returns 0 on success, negative on failure 7972 */ 7973 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7974 { 7975 struct ice_aq_get_set_rss_lut_params params = {}; 7976 struct ice_hw *hw = &vsi->back->hw; 7977 int status; 7978 7979 if (!lut) 7980 return -EINVAL; 7981 7982 params.vsi_handle = vsi->idx; 7983 params.lut_size = lut_size; 7984 params.lut_type = vsi->rss_lut_type; 7985 params.lut = lut; 7986 7987 status = ice_aq_set_rss_lut(hw, ¶ms); 7988 if (status) 7989 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7990 status, ice_aq_str(hw->adminq.sq_last_status)); 7991 7992 return status; 7993 } 7994 7995 /** 7996 * ice_set_rss_key - Set RSS key 7997 * @vsi: Pointer to the VSI structure 7998 * @seed: RSS hash seed 7999 * 8000 * Returns 0 on success, negative on failure 8001 */ 8002 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 8003 { 8004 struct ice_hw *hw = &vsi->back->hw; 8005 int status; 8006 8007 if (!seed) 8008 return -EINVAL; 8009 8010 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8011 if (status) 8012 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 8013 status, ice_aq_str(hw->adminq.sq_last_status)); 8014 8015 return status; 8016 } 8017 8018 /** 8019 * ice_get_rss_lut - Get RSS LUT 8020 * @vsi: Pointer to VSI structure 8021 * @lut: Buffer to store the lookup table entries 8022 * @lut_size: Size of buffer to store the lookup table entries 8023 * 8024 * Returns 0 on success, negative on failure 8025 */ 8026 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 8027 { 8028 struct ice_aq_get_set_rss_lut_params params = {}; 8029 struct ice_hw *hw = &vsi->back->hw; 8030 int status; 8031 8032 if (!lut) 8033 return -EINVAL; 8034 8035 params.vsi_handle = vsi->idx; 8036 params.lut_size = lut_size; 8037 params.lut_type = vsi->rss_lut_type; 8038 params.lut = lut; 8039 8040 status = ice_aq_get_rss_lut(hw, ¶ms); 8041 if (status) 8042 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 8043 status, ice_aq_str(hw->adminq.sq_last_status)); 8044 8045 return status; 8046 } 8047 8048 /** 8049 * ice_get_rss_key - Get RSS key 8050 * @vsi: Pointer to VSI structure 8051 * @seed: Buffer to store the key in 8052 * 8053 * Returns 0 on success, negative on failure 8054 */ 8055 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 8056 { 8057 struct ice_hw *hw = &vsi->back->hw; 8058 int status; 8059 8060 if (!seed) 8061 return -EINVAL; 8062 8063 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8064 if (status) 8065 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8066 status, ice_aq_str(hw->adminq.sq_last_status)); 8067 8068 return status; 8069 } 8070 8071 /** 8072 * ice_set_rss_hfunc - Set RSS HASH function 8073 * @vsi: Pointer to VSI structure 8074 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8075 * 8076 * Returns 0 on success, negative on failure 8077 */ 8078 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8079 { 8080 struct ice_hw *hw = &vsi->back->hw; 8081 struct ice_vsi_ctx *ctx; 8082 bool symm; 8083 int err; 8084 8085 if (hfunc == vsi->rss_hfunc) 8086 return 0; 8087 8088 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8089 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8090 return -EOPNOTSUPP; 8091 8092 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8093 if (!ctx) 8094 return -ENOMEM; 8095 8096 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8097 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8098 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8099 ctx->info.q_opt_rss |= 8100 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8101 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8102 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8103 8104 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8105 if (err) { 8106 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8107 vsi->vsi_num, err); 8108 } else { 8109 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8110 vsi->rss_hfunc = hfunc; 8111 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8112 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8113 "Symmetric " : ""); 8114 } 8115 kfree(ctx); 8116 if (err) 8117 return err; 8118 8119 /* Fix the symmetry setting for all existing RSS configurations */ 8120 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8121 return ice_set_rss_cfg_symm(hw, vsi, symm); 8122 } 8123 8124 /** 8125 * ice_bridge_getlink - Get the hardware bridge mode 8126 * @skb: skb buff 8127 * @pid: process ID 8128 * @seq: RTNL message seq 8129 * @dev: the netdev being configured 8130 * @filter_mask: filter mask passed in 8131 * @nlflags: netlink flags passed in 8132 * 8133 * Return the bridge mode (VEB/VEPA) 8134 */ 8135 static int 8136 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8137 struct net_device *dev, u32 filter_mask, int nlflags) 8138 { 8139 struct ice_netdev_priv *np = netdev_priv(dev); 8140 struct ice_vsi *vsi = np->vsi; 8141 struct ice_pf *pf = vsi->back; 8142 u16 bmode; 8143 8144 bmode = pf->first_sw->bridge_mode; 8145 8146 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8147 filter_mask, NULL); 8148 } 8149 8150 /** 8151 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8152 * @vsi: Pointer to VSI structure 8153 * @bmode: Hardware bridge mode (VEB/VEPA) 8154 * 8155 * Returns 0 on success, negative on failure 8156 */ 8157 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8158 { 8159 struct ice_aqc_vsi_props *vsi_props; 8160 struct ice_hw *hw = &vsi->back->hw; 8161 struct ice_vsi_ctx *ctxt; 8162 int ret; 8163 8164 vsi_props = &vsi->info; 8165 8166 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8167 if (!ctxt) 8168 return -ENOMEM; 8169 8170 ctxt->info = vsi->info; 8171 8172 if (bmode == BRIDGE_MODE_VEB) 8173 /* change from VEPA to VEB mode */ 8174 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8175 else 8176 /* change from VEB to VEPA mode */ 8177 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8178 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8179 8180 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8181 if (ret) { 8182 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8183 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8184 goto out; 8185 } 8186 /* Update sw flags for book keeping */ 8187 vsi_props->sw_flags = ctxt->info.sw_flags; 8188 8189 out: 8190 kfree(ctxt); 8191 return ret; 8192 } 8193 8194 /** 8195 * ice_bridge_setlink - Set the hardware bridge mode 8196 * @dev: the netdev being configured 8197 * @nlh: RTNL message 8198 * @flags: bridge setlink flags 8199 * @extack: netlink extended ack 8200 * 8201 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8202 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8203 * not already set for all VSIs connected to this switch. And also update the 8204 * unicast switch filter rules for the corresponding switch of the netdev. 8205 */ 8206 static int 8207 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8208 u16 __always_unused flags, 8209 struct netlink_ext_ack __always_unused *extack) 8210 { 8211 struct ice_netdev_priv *np = netdev_priv(dev); 8212 struct ice_pf *pf = np->vsi->back; 8213 struct nlattr *attr, *br_spec; 8214 struct ice_hw *hw = &pf->hw; 8215 struct ice_sw *pf_sw; 8216 int rem, v, err = 0; 8217 8218 pf_sw = pf->first_sw; 8219 /* find the attribute in the netlink message */ 8220 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8221 if (!br_spec) 8222 return -EINVAL; 8223 8224 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8225 __u16 mode = nla_get_u16(attr); 8226 8227 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8228 return -EINVAL; 8229 /* Continue if bridge mode is not being flipped */ 8230 if (mode == pf_sw->bridge_mode) 8231 continue; 8232 /* Iterates through the PF VSI list and update the loopback 8233 * mode of the VSI 8234 */ 8235 ice_for_each_vsi(pf, v) { 8236 if (!pf->vsi[v]) 8237 continue; 8238 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8239 if (err) 8240 return err; 8241 } 8242 8243 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8244 /* Update the unicast switch filter rules for the corresponding 8245 * switch of the netdev 8246 */ 8247 err = ice_update_sw_rule_bridge_mode(hw); 8248 if (err) { 8249 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8250 mode, err, 8251 ice_aq_str(hw->adminq.sq_last_status)); 8252 /* revert hw->evb_veb */ 8253 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8254 return err; 8255 } 8256 8257 pf_sw->bridge_mode = mode; 8258 } 8259 8260 return 0; 8261 } 8262 8263 /** 8264 * ice_tx_timeout - Respond to a Tx Hang 8265 * @netdev: network interface device structure 8266 * @txqueue: Tx queue 8267 */ 8268 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8269 { 8270 struct ice_netdev_priv *np = netdev_priv(netdev); 8271 struct ice_tx_ring *tx_ring = NULL; 8272 struct ice_vsi *vsi = np->vsi; 8273 struct ice_pf *pf = vsi->back; 8274 u32 i; 8275 8276 pf->tx_timeout_count++; 8277 8278 /* Check if PFC is enabled for the TC to which the queue belongs 8279 * to. If yes then Tx timeout is not caused by a hung queue, no 8280 * need to reset and rebuild 8281 */ 8282 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8283 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8284 txqueue); 8285 return; 8286 } 8287 8288 /* now that we have an index, find the tx_ring struct */ 8289 ice_for_each_txq(vsi, i) 8290 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8291 if (txqueue == vsi->tx_rings[i]->q_index) { 8292 tx_ring = vsi->tx_rings[i]; 8293 break; 8294 } 8295 8296 /* Reset recovery level if enough time has elapsed after last timeout. 8297 * Also ensure no new reset action happens before next timeout period. 8298 */ 8299 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8300 pf->tx_timeout_recovery_level = 1; 8301 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8302 netdev->watchdog_timeo))) 8303 return; 8304 8305 if (tx_ring) { 8306 struct ice_hw *hw = &pf->hw; 8307 u32 head, intr = 0; 8308 8309 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8310 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8311 /* Read interrupt register */ 8312 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8313 8314 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8315 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8316 head, tx_ring->next_to_use, intr); 8317 8318 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr); 8319 } 8320 8321 pf->tx_timeout_last_recovery = jiffies; 8322 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8323 pf->tx_timeout_recovery_level, txqueue); 8324 8325 switch (pf->tx_timeout_recovery_level) { 8326 case 1: 8327 set_bit(ICE_PFR_REQ, pf->state); 8328 break; 8329 case 2: 8330 set_bit(ICE_CORER_REQ, pf->state); 8331 break; 8332 case 3: 8333 set_bit(ICE_GLOBR_REQ, pf->state); 8334 break; 8335 default: 8336 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8337 set_bit(ICE_DOWN, pf->state); 8338 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8339 set_bit(ICE_SERVICE_DIS, pf->state); 8340 break; 8341 } 8342 8343 ice_service_task_schedule(pf); 8344 pf->tx_timeout_recovery_level++; 8345 } 8346 8347 /** 8348 * ice_setup_tc_cls_flower - flower classifier offloads 8349 * @np: net device to configure 8350 * @filter_dev: device on which filter is added 8351 * @cls_flower: offload data 8352 * @ingress: if the rule is added to an ingress block 8353 * 8354 * Return: 0 if the flower was successfully added or deleted, 8355 * negative error code otherwise. 8356 */ 8357 static int 8358 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8359 struct net_device *filter_dev, 8360 struct flow_cls_offload *cls_flower, 8361 bool ingress) 8362 { 8363 struct ice_vsi *vsi = np->vsi; 8364 8365 if (cls_flower->common.chain_index) 8366 return -EOPNOTSUPP; 8367 8368 switch (cls_flower->command) { 8369 case FLOW_CLS_REPLACE: 8370 return ice_add_cls_flower(filter_dev, vsi, cls_flower, ingress); 8371 case FLOW_CLS_DESTROY: 8372 return ice_del_cls_flower(vsi, cls_flower); 8373 default: 8374 return -EINVAL; 8375 } 8376 } 8377 8378 /** 8379 * ice_setup_tc_block_cb_ingress - callback handler for ingress TC block 8380 * @type: TC SETUP type 8381 * @type_data: TC flower offload data that contains user input 8382 * @cb_priv: netdev private data 8383 * 8384 * Return: 0 if the setup was successful, negative error code otherwise. 8385 */ 8386 static int 8387 ice_setup_tc_block_cb_ingress(enum tc_setup_type type, void *type_data, 8388 void *cb_priv) 8389 { 8390 struct ice_netdev_priv *np = cb_priv; 8391 8392 switch (type) { 8393 case TC_SETUP_CLSFLOWER: 8394 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8395 type_data, true); 8396 default: 8397 return -EOPNOTSUPP; 8398 } 8399 } 8400 8401 /** 8402 * ice_setup_tc_block_cb_egress - callback handler for egress TC block 8403 * @type: TC SETUP type 8404 * @type_data: TC flower offload data that contains user input 8405 * @cb_priv: netdev private data 8406 * 8407 * Return: 0 if the setup was successful, negative error code otherwise. 8408 */ 8409 static int 8410 ice_setup_tc_block_cb_egress(enum tc_setup_type type, void *type_data, 8411 void *cb_priv) 8412 { 8413 struct ice_netdev_priv *np = cb_priv; 8414 8415 switch (type) { 8416 case TC_SETUP_CLSFLOWER: 8417 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8418 type_data, false); 8419 default: 8420 return -EOPNOTSUPP; 8421 } 8422 } 8423 8424 /** 8425 * ice_validate_mqprio_qopt - Validate TCF input parameters 8426 * @vsi: Pointer to VSI 8427 * @mqprio_qopt: input parameters for mqprio queue configuration 8428 * 8429 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8430 * needed), and make sure user doesn't specify qcount and BW rate limit 8431 * for TCs, which are more than "num_tc" 8432 */ 8433 static int 8434 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8435 struct tc_mqprio_qopt_offload *mqprio_qopt) 8436 { 8437 int non_power_of_2_qcount = 0; 8438 struct ice_pf *pf = vsi->back; 8439 int max_rss_q_cnt = 0; 8440 u64 sum_min_rate = 0; 8441 struct device *dev; 8442 int i, speed; 8443 u8 num_tc; 8444 8445 if (vsi->type != ICE_VSI_PF) 8446 return -EINVAL; 8447 8448 if (mqprio_qopt->qopt.offset[0] != 0 || 8449 mqprio_qopt->qopt.num_tc < 1 || 8450 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8451 return -EINVAL; 8452 8453 dev = ice_pf_to_dev(pf); 8454 vsi->ch_rss_size = 0; 8455 num_tc = mqprio_qopt->qopt.num_tc; 8456 speed = ice_get_link_speed_kbps(vsi); 8457 8458 for (i = 0; num_tc; i++) { 8459 int qcount = mqprio_qopt->qopt.count[i]; 8460 u64 max_rate, min_rate, rem; 8461 8462 if (!qcount) 8463 return -EINVAL; 8464 8465 if (is_power_of_2(qcount)) { 8466 if (non_power_of_2_qcount && 8467 qcount > non_power_of_2_qcount) { 8468 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8469 qcount, non_power_of_2_qcount); 8470 return -EINVAL; 8471 } 8472 if (qcount > max_rss_q_cnt) 8473 max_rss_q_cnt = qcount; 8474 } else { 8475 if (non_power_of_2_qcount && 8476 qcount != non_power_of_2_qcount) { 8477 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8478 qcount, non_power_of_2_qcount); 8479 return -EINVAL; 8480 } 8481 if (qcount < max_rss_q_cnt) { 8482 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8483 qcount, max_rss_q_cnt); 8484 return -EINVAL; 8485 } 8486 max_rss_q_cnt = qcount; 8487 non_power_of_2_qcount = qcount; 8488 } 8489 8490 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8491 * converts the bandwidth rate limit into Bytes/s when 8492 * passing it down to the driver. So convert input bandwidth 8493 * from Bytes/s to Kbps 8494 */ 8495 max_rate = mqprio_qopt->max_rate[i]; 8496 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8497 8498 /* min_rate is minimum guaranteed rate and it can't be zero */ 8499 min_rate = mqprio_qopt->min_rate[i]; 8500 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8501 sum_min_rate += min_rate; 8502 8503 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8504 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8505 min_rate, ICE_MIN_BW_LIMIT); 8506 return -EINVAL; 8507 } 8508 8509 if (max_rate && max_rate > speed) { 8510 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8511 i, max_rate, speed); 8512 return -EINVAL; 8513 } 8514 8515 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8516 if (rem) { 8517 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8518 i, ICE_MIN_BW_LIMIT); 8519 return -EINVAL; 8520 } 8521 8522 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8523 if (rem) { 8524 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8525 i, ICE_MIN_BW_LIMIT); 8526 return -EINVAL; 8527 } 8528 8529 /* min_rate can't be more than max_rate, except when max_rate 8530 * is zero (implies max_rate sought is max line rate). In such 8531 * a case min_rate can be more than max. 8532 */ 8533 if (max_rate && min_rate > max_rate) { 8534 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8535 min_rate, max_rate); 8536 return -EINVAL; 8537 } 8538 8539 if (i >= mqprio_qopt->qopt.num_tc - 1) 8540 break; 8541 if (mqprio_qopt->qopt.offset[i + 1] != 8542 (mqprio_qopt->qopt.offset[i] + qcount)) 8543 return -EINVAL; 8544 } 8545 if (vsi->num_rxq < 8546 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8547 return -EINVAL; 8548 if (vsi->num_txq < 8549 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8550 return -EINVAL; 8551 8552 if (sum_min_rate && sum_min_rate > (u64)speed) { 8553 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8554 sum_min_rate, speed); 8555 return -EINVAL; 8556 } 8557 8558 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8559 vsi->ch_rss_size = max_rss_q_cnt; 8560 8561 return 0; 8562 } 8563 8564 /** 8565 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8566 * @pf: ptr to PF device 8567 * @vsi: ptr to VSI 8568 */ 8569 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8570 { 8571 struct device *dev = ice_pf_to_dev(pf); 8572 bool added = false; 8573 struct ice_hw *hw; 8574 int flow; 8575 8576 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8577 return -EINVAL; 8578 8579 hw = &pf->hw; 8580 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8581 struct ice_fd_hw_prof *prof; 8582 int tun, status; 8583 u64 entry_h; 8584 8585 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8586 hw->fdir_prof[flow]->cnt)) 8587 continue; 8588 8589 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8590 enum ice_flow_priority prio; 8591 8592 /* add this VSI to FDir profile for this flow */ 8593 prio = ICE_FLOW_PRIO_NORMAL; 8594 prof = hw->fdir_prof[flow]; 8595 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8596 prof->prof_id[tun], 8597 prof->vsi_h[0], vsi->idx, 8598 prio, prof->fdir_seg[tun], 8599 &entry_h); 8600 if (status) { 8601 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8602 vsi->idx, flow); 8603 continue; 8604 } 8605 8606 prof->entry_h[prof->cnt][tun] = entry_h; 8607 } 8608 8609 /* store VSI for filter replay and delete */ 8610 prof->vsi_h[prof->cnt] = vsi->idx; 8611 prof->cnt++; 8612 8613 added = true; 8614 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8615 flow); 8616 } 8617 8618 if (!added) 8619 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8620 8621 return 0; 8622 } 8623 8624 /** 8625 * ice_add_channel - add a channel by adding VSI 8626 * @pf: ptr to PF device 8627 * @sw_id: underlying HW switching element ID 8628 * @ch: ptr to channel structure 8629 * 8630 * Add a channel (VSI) using add_vsi and queue_map 8631 */ 8632 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8633 { 8634 struct device *dev = ice_pf_to_dev(pf); 8635 struct ice_vsi *vsi; 8636 8637 if (ch->type != ICE_VSI_CHNL) { 8638 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8639 return -EINVAL; 8640 } 8641 8642 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8643 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8644 dev_err(dev, "create chnl VSI failure\n"); 8645 return -EINVAL; 8646 } 8647 8648 ice_add_vsi_to_fdir(pf, vsi); 8649 8650 ch->sw_id = sw_id; 8651 ch->vsi_num = vsi->vsi_num; 8652 ch->info.mapping_flags = vsi->info.mapping_flags; 8653 ch->ch_vsi = vsi; 8654 /* set the back pointer of channel for newly created VSI */ 8655 vsi->ch = ch; 8656 8657 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8658 sizeof(vsi->info.q_mapping)); 8659 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8660 sizeof(vsi->info.tc_mapping)); 8661 8662 return 0; 8663 } 8664 8665 /** 8666 * ice_chnl_cfg_res 8667 * @vsi: the VSI being setup 8668 * @ch: ptr to channel structure 8669 * 8670 * Configure channel specific resources such as rings, vector. 8671 */ 8672 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8673 { 8674 int i; 8675 8676 for (i = 0; i < ch->num_txq; i++) { 8677 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8678 struct ice_ring_container *rc; 8679 struct ice_tx_ring *tx_ring; 8680 struct ice_rx_ring *rx_ring; 8681 8682 tx_ring = vsi->tx_rings[ch->base_q + i]; 8683 rx_ring = vsi->rx_rings[ch->base_q + i]; 8684 if (!tx_ring || !rx_ring) 8685 continue; 8686 8687 /* setup ring being channel enabled */ 8688 tx_ring->ch = ch; 8689 rx_ring->ch = ch; 8690 8691 /* following code block sets up vector specific attributes */ 8692 tx_q_vector = tx_ring->q_vector; 8693 rx_q_vector = rx_ring->q_vector; 8694 if (!tx_q_vector && !rx_q_vector) 8695 continue; 8696 8697 if (tx_q_vector) { 8698 tx_q_vector->ch = ch; 8699 /* setup Tx and Rx ITR setting if DIM is off */ 8700 rc = &tx_q_vector->tx; 8701 if (!ITR_IS_DYNAMIC(rc)) 8702 ice_write_itr(rc, rc->itr_setting); 8703 } 8704 if (rx_q_vector) { 8705 rx_q_vector->ch = ch; 8706 /* setup Tx and Rx ITR setting if DIM is off */ 8707 rc = &rx_q_vector->rx; 8708 if (!ITR_IS_DYNAMIC(rc)) 8709 ice_write_itr(rc, rc->itr_setting); 8710 } 8711 } 8712 8713 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8714 * GLINT_ITR register would have written to perform in-context 8715 * update, hence perform flush 8716 */ 8717 if (ch->num_txq || ch->num_rxq) 8718 ice_flush(&vsi->back->hw); 8719 } 8720 8721 /** 8722 * ice_cfg_chnl_all_res - configure channel resources 8723 * @vsi: pte to main_vsi 8724 * @ch: ptr to channel structure 8725 * 8726 * This function configures channel specific resources such as flow-director 8727 * counter index, and other resources such as queues, vectors, ITR settings 8728 */ 8729 static void 8730 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8731 { 8732 /* configure channel (aka ADQ) resources such as queues, vectors, 8733 * ITR settings for channel specific vectors and anything else 8734 */ 8735 ice_chnl_cfg_res(vsi, ch); 8736 } 8737 8738 /** 8739 * ice_setup_hw_channel - setup new channel 8740 * @pf: ptr to PF device 8741 * @vsi: the VSI being setup 8742 * @ch: ptr to channel structure 8743 * @sw_id: underlying HW switching element ID 8744 * @type: type of channel to be created (VMDq2/VF) 8745 * 8746 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8747 * and configures Tx rings accordingly 8748 */ 8749 static int 8750 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8751 struct ice_channel *ch, u16 sw_id, u8 type) 8752 { 8753 struct device *dev = ice_pf_to_dev(pf); 8754 int ret; 8755 8756 ch->base_q = vsi->next_base_q; 8757 ch->type = type; 8758 8759 ret = ice_add_channel(pf, sw_id, ch); 8760 if (ret) { 8761 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8762 return ret; 8763 } 8764 8765 /* configure/setup ADQ specific resources */ 8766 ice_cfg_chnl_all_res(vsi, ch); 8767 8768 /* make sure to update the next_base_q so that subsequent channel's 8769 * (aka ADQ) VSI queue map is correct 8770 */ 8771 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8772 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8773 ch->num_rxq); 8774 8775 return 0; 8776 } 8777 8778 /** 8779 * ice_setup_channel - setup new channel using uplink element 8780 * @pf: ptr to PF device 8781 * @vsi: the VSI being setup 8782 * @ch: ptr to channel structure 8783 * 8784 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8785 * and uplink switching element 8786 */ 8787 static bool 8788 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8789 struct ice_channel *ch) 8790 { 8791 struct device *dev = ice_pf_to_dev(pf); 8792 u16 sw_id; 8793 int ret; 8794 8795 if (vsi->type != ICE_VSI_PF) { 8796 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8797 return false; 8798 } 8799 8800 sw_id = pf->first_sw->sw_id; 8801 8802 /* create channel (VSI) */ 8803 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8804 if (ret) { 8805 dev_err(dev, "failed to setup hw_channel\n"); 8806 return false; 8807 } 8808 dev_dbg(dev, "successfully created channel()\n"); 8809 8810 return ch->ch_vsi ? true : false; 8811 } 8812 8813 /** 8814 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8815 * @vsi: VSI to be configured 8816 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8817 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8818 */ 8819 static int 8820 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8821 { 8822 int err; 8823 8824 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8825 if (err) 8826 return err; 8827 8828 return ice_set_max_bw_limit(vsi, max_tx_rate); 8829 } 8830 8831 /** 8832 * ice_create_q_channel - function to create channel 8833 * @vsi: VSI to be configured 8834 * @ch: ptr to channel (it contains channel specific params) 8835 * 8836 * This function creates channel (VSI) using num_queues specified by user, 8837 * reconfigs RSS if needed. 8838 */ 8839 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8840 { 8841 struct ice_pf *pf = vsi->back; 8842 struct device *dev; 8843 8844 if (!ch) 8845 return -EINVAL; 8846 8847 dev = ice_pf_to_dev(pf); 8848 if (!ch->num_txq || !ch->num_rxq) { 8849 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8850 return -EINVAL; 8851 } 8852 8853 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8854 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8855 vsi->cnt_q_avail, ch->num_txq); 8856 return -EINVAL; 8857 } 8858 8859 if (!ice_setup_channel(pf, vsi, ch)) { 8860 dev_info(dev, "Failed to setup channel\n"); 8861 return -EINVAL; 8862 } 8863 /* configure BW rate limit */ 8864 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8865 int ret; 8866 8867 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8868 ch->min_tx_rate); 8869 if (ret) 8870 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8871 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8872 else 8873 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8874 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8875 } 8876 8877 vsi->cnt_q_avail -= ch->num_txq; 8878 8879 return 0; 8880 } 8881 8882 /** 8883 * ice_rem_all_chnl_fltrs - removes all channel filters 8884 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8885 * 8886 * Remove all advanced switch filters only if they are channel specific 8887 * tc-flower based filter 8888 */ 8889 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8890 { 8891 struct ice_tc_flower_fltr *fltr; 8892 struct hlist_node *node; 8893 8894 /* to remove all channel filters, iterate an ordered list of filters */ 8895 hlist_for_each_entry_safe(fltr, node, 8896 &pf->tc_flower_fltr_list, 8897 tc_flower_node) { 8898 struct ice_rule_query_data rule; 8899 int status; 8900 8901 /* for now process only channel specific filters */ 8902 if (!ice_is_chnl_fltr(fltr)) 8903 continue; 8904 8905 rule.rid = fltr->rid; 8906 rule.rule_id = fltr->rule_id; 8907 rule.vsi_handle = fltr->dest_vsi_handle; 8908 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8909 if (status) { 8910 if (status == -ENOENT) 8911 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8912 rule.rule_id); 8913 else 8914 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8915 status); 8916 } else if (fltr->dest_vsi) { 8917 /* update advanced switch filter count */ 8918 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8919 u32 flags = fltr->flags; 8920 8921 fltr->dest_vsi->num_chnl_fltr--; 8922 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8923 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8924 pf->num_dmac_chnl_fltrs--; 8925 } 8926 } 8927 8928 hlist_del(&fltr->tc_flower_node); 8929 kfree(fltr); 8930 } 8931 } 8932 8933 /** 8934 * ice_remove_q_channels - Remove queue channels for the TCs 8935 * @vsi: VSI to be configured 8936 * @rem_fltr: delete advanced switch filter or not 8937 * 8938 * Remove queue channels for the TCs 8939 */ 8940 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8941 { 8942 struct ice_channel *ch, *ch_tmp; 8943 struct ice_pf *pf = vsi->back; 8944 int i; 8945 8946 /* remove all tc-flower based filter if they are channel filters only */ 8947 if (rem_fltr) 8948 ice_rem_all_chnl_fltrs(pf); 8949 8950 /* remove ntuple filters since queue configuration is being changed */ 8951 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8952 struct ice_hw *hw = &pf->hw; 8953 8954 mutex_lock(&hw->fdir_fltr_lock); 8955 ice_fdir_del_all_fltrs(vsi); 8956 mutex_unlock(&hw->fdir_fltr_lock); 8957 } 8958 8959 /* perform cleanup for channels if they exist */ 8960 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8961 struct ice_vsi *ch_vsi; 8962 8963 list_del(&ch->list); 8964 ch_vsi = ch->ch_vsi; 8965 if (!ch_vsi) { 8966 kfree(ch); 8967 continue; 8968 } 8969 8970 /* Reset queue contexts */ 8971 for (i = 0; i < ch->num_rxq; i++) { 8972 struct ice_tx_ring *tx_ring; 8973 struct ice_rx_ring *rx_ring; 8974 8975 tx_ring = vsi->tx_rings[ch->base_q + i]; 8976 rx_ring = vsi->rx_rings[ch->base_q + i]; 8977 if (tx_ring) { 8978 tx_ring->ch = NULL; 8979 if (tx_ring->q_vector) 8980 tx_ring->q_vector->ch = NULL; 8981 } 8982 if (rx_ring) { 8983 rx_ring->ch = NULL; 8984 if (rx_ring->q_vector) 8985 rx_ring->q_vector->ch = NULL; 8986 } 8987 } 8988 8989 /* Release FD resources for the channel VSI */ 8990 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8991 8992 /* clear the VSI from scheduler tree */ 8993 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8994 8995 /* Delete VSI from FW, PF and HW VSI arrays */ 8996 ice_vsi_delete(ch->ch_vsi); 8997 8998 /* free the channel */ 8999 kfree(ch); 9000 } 9001 9002 /* clear the channel VSI map which is stored in main VSI */ 9003 ice_for_each_chnl_tc(i) 9004 vsi->tc_map_vsi[i] = NULL; 9005 9006 /* reset main VSI's all TC information */ 9007 vsi->all_enatc = 0; 9008 vsi->all_numtc = 0; 9009 } 9010 9011 /** 9012 * ice_rebuild_channels - rebuild channel 9013 * @pf: ptr to PF 9014 * 9015 * Recreate channel VSIs and replay filters 9016 */ 9017 static int ice_rebuild_channels(struct ice_pf *pf) 9018 { 9019 struct device *dev = ice_pf_to_dev(pf); 9020 struct ice_vsi *main_vsi; 9021 bool rem_adv_fltr = true; 9022 struct ice_channel *ch; 9023 struct ice_vsi *vsi; 9024 int tc_idx = 1; 9025 int i, err; 9026 9027 main_vsi = ice_get_main_vsi(pf); 9028 if (!main_vsi) 9029 return 0; 9030 9031 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 9032 main_vsi->old_numtc == 1) 9033 return 0; /* nothing to be done */ 9034 9035 /* reconfigure main VSI based on old value of TC and cached values 9036 * for MQPRIO opts 9037 */ 9038 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 9039 if (err) { 9040 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 9041 main_vsi->old_ena_tc, main_vsi->vsi_num); 9042 return err; 9043 } 9044 9045 /* rebuild ADQ VSIs */ 9046 ice_for_each_vsi(pf, i) { 9047 enum ice_vsi_type type; 9048 9049 vsi = pf->vsi[i]; 9050 if (!vsi || vsi->type != ICE_VSI_CHNL) 9051 continue; 9052 9053 type = vsi->type; 9054 9055 /* rebuild ADQ VSI */ 9056 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 9057 if (err) { 9058 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 9059 ice_vsi_type_str(type), vsi->idx, err); 9060 goto cleanup; 9061 } 9062 9063 /* Re-map HW VSI number, using VSI handle that has been 9064 * previously validated in ice_replay_vsi() call above 9065 */ 9066 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 9067 9068 /* replay filters for the VSI */ 9069 err = ice_replay_vsi(&pf->hw, vsi->idx); 9070 if (err) { 9071 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 9072 ice_vsi_type_str(type), err, vsi->idx); 9073 rem_adv_fltr = false; 9074 goto cleanup; 9075 } 9076 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 9077 ice_vsi_type_str(type), vsi->idx); 9078 9079 /* store ADQ VSI at correct TC index in main VSI's 9080 * map of TC to VSI 9081 */ 9082 main_vsi->tc_map_vsi[tc_idx++] = vsi; 9083 } 9084 9085 /* ADQ VSI(s) has been rebuilt successfully, so setup 9086 * channel for main VSI's Tx and Rx rings 9087 */ 9088 list_for_each_entry(ch, &main_vsi->ch_list, list) { 9089 struct ice_vsi *ch_vsi; 9090 9091 ch_vsi = ch->ch_vsi; 9092 if (!ch_vsi) 9093 continue; 9094 9095 /* reconfig channel resources */ 9096 ice_cfg_chnl_all_res(main_vsi, ch); 9097 9098 /* replay BW rate limit if it is non-zero */ 9099 if (!ch->max_tx_rate && !ch->min_tx_rate) 9100 continue; 9101 9102 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9103 ch->min_tx_rate); 9104 if (err) 9105 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9106 err, ch->max_tx_rate, ch->min_tx_rate, 9107 ch_vsi->vsi_num); 9108 else 9109 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9110 ch->max_tx_rate, ch->min_tx_rate, 9111 ch_vsi->vsi_num); 9112 } 9113 9114 /* reconfig RSS for main VSI */ 9115 if (main_vsi->ch_rss_size) 9116 ice_vsi_cfg_rss_lut_key(main_vsi); 9117 9118 return 0; 9119 9120 cleanup: 9121 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9122 return err; 9123 } 9124 9125 /** 9126 * ice_create_q_channels - Add queue channel for the given TCs 9127 * @vsi: VSI to be configured 9128 * 9129 * Configures queue channel mapping to the given TCs 9130 */ 9131 static int ice_create_q_channels(struct ice_vsi *vsi) 9132 { 9133 struct ice_pf *pf = vsi->back; 9134 struct ice_channel *ch; 9135 int ret = 0, i; 9136 9137 ice_for_each_chnl_tc(i) { 9138 if (!(vsi->all_enatc & BIT(i))) 9139 continue; 9140 9141 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9142 if (!ch) { 9143 ret = -ENOMEM; 9144 goto err_free; 9145 } 9146 INIT_LIST_HEAD(&ch->list); 9147 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9148 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9149 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9150 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9151 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9152 9153 /* convert to Kbits/s */ 9154 if (ch->max_tx_rate) 9155 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9156 ICE_BW_KBPS_DIVISOR); 9157 if (ch->min_tx_rate) 9158 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9159 ICE_BW_KBPS_DIVISOR); 9160 9161 ret = ice_create_q_channel(vsi, ch); 9162 if (ret) { 9163 dev_err(ice_pf_to_dev(pf), 9164 "failed creating channel TC:%d\n", i); 9165 kfree(ch); 9166 goto err_free; 9167 } 9168 list_add_tail(&ch->list, &vsi->ch_list); 9169 vsi->tc_map_vsi[i] = ch->ch_vsi; 9170 dev_dbg(ice_pf_to_dev(pf), 9171 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9172 } 9173 return 0; 9174 9175 err_free: 9176 ice_remove_q_channels(vsi, false); 9177 9178 return ret; 9179 } 9180 9181 /** 9182 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9183 * @netdev: net device to configure 9184 * @type_data: TC offload data 9185 */ 9186 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9187 { 9188 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9189 struct ice_netdev_priv *np = netdev_priv(netdev); 9190 struct ice_vsi *vsi = np->vsi; 9191 struct ice_pf *pf = vsi->back; 9192 u16 mode, ena_tc_qdisc = 0; 9193 int cur_txq, cur_rxq; 9194 u8 hw = 0, num_tcf; 9195 struct device *dev; 9196 int ret, i; 9197 9198 dev = ice_pf_to_dev(pf); 9199 num_tcf = mqprio_qopt->qopt.num_tc; 9200 hw = mqprio_qopt->qopt.hw; 9201 mode = mqprio_qopt->mode; 9202 if (!hw) { 9203 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9204 vsi->ch_rss_size = 0; 9205 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9206 goto config_tcf; 9207 } 9208 9209 /* Generate queue region map for number of TCF requested */ 9210 for (i = 0; i < num_tcf; i++) 9211 ena_tc_qdisc |= BIT(i); 9212 9213 switch (mode) { 9214 case TC_MQPRIO_MODE_CHANNEL: 9215 9216 if (pf->hw.port_info->is_custom_tx_enabled) { 9217 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9218 return -EBUSY; 9219 } 9220 ice_tear_down_devlink_rate_tree(pf); 9221 9222 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9223 if (ret) { 9224 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9225 ret); 9226 return ret; 9227 } 9228 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9229 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9230 /* don't assume state of hw_tc_offload during driver load 9231 * and set the flag for TC flower filter if hw_tc_offload 9232 * already ON 9233 */ 9234 if (vsi->netdev->features & NETIF_F_HW_TC) 9235 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9236 break; 9237 default: 9238 return -EINVAL; 9239 } 9240 9241 config_tcf: 9242 9243 /* Requesting same TCF configuration as already enabled */ 9244 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9245 mode != TC_MQPRIO_MODE_CHANNEL) 9246 return 0; 9247 9248 /* Pause VSI queues */ 9249 ice_dis_vsi(vsi, true); 9250 9251 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9252 ice_remove_q_channels(vsi, true); 9253 9254 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9255 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9256 num_online_cpus()); 9257 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9258 num_online_cpus()); 9259 } else { 9260 /* logic to rebuild VSI, same like ethtool -L */ 9261 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9262 9263 for (i = 0; i < num_tcf; i++) { 9264 if (!(ena_tc_qdisc & BIT(i))) 9265 continue; 9266 9267 offset = vsi->mqprio_qopt.qopt.offset[i]; 9268 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9269 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9270 } 9271 vsi->req_txq = offset + qcount_tx; 9272 vsi->req_rxq = offset + qcount_rx; 9273 9274 /* store away original rss_size info, so that it gets reused 9275 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9276 * determine, what should be the rss_sizefor main VSI 9277 */ 9278 vsi->orig_rss_size = vsi->rss_size; 9279 } 9280 9281 /* save current values of Tx and Rx queues before calling VSI rebuild 9282 * for fallback option 9283 */ 9284 cur_txq = vsi->num_txq; 9285 cur_rxq = vsi->num_rxq; 9286 9287 /* proceed with rebuild main VSI using correct number of queues */ 9288 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9289 if (ret) { 9290 /* fallback to current number of queues */ 9291 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9292 vsi->req_txq = cur_txq; 9293 vsi->req_rxq = cur_rxq; 9294 clear_bit(ICE_RESET_FAILED, pf->state); 9295 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9296 dev_err(dev, "Rebuild of main VSI failed again\n"); 9297 return ret; 9298 } 9299 } 9300 9301 vsi->all_numtc = num_tcf; 9302 vsi->all_enatc = ena_tc_qdisc; 9303 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9304 if (ret) { 9305 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9306 vsi->vsi_num); 9307 goto exit; 9308 } 9309 9310 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9311 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9312 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9313 9314 /* set TC0 rate limit if specified */ 9315 if (max_tx_rate || min_tx_rate) { 9316 /* convert to Kbits/s */ 9317 if (max_tx_rate) 9318 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9319 if (min_tx_rate) 9320 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9321 9322 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9323 if (!ret) { 9324 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9325 max_tx_rate, min_tx_rate, vsi->vsi_num); 9326 } else { 9327 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9328 max_tx_rate, min_tx_rate, vsi->vsi_num); 9329 goto exit; 9330 } 9331 } 9332 ret = ice_create_q_channels(vsi); 9333 if (ret) { 9334 netdev_err(netdev, "failed configuring queue channels\n"); 9335 goto exit; 9336 } else { 9337 netdev_dbg(netdev, "successfully configured channels\n"); 9338 } 9339 } 9340 9341 if (vsi->ch_rss_size) 9342 ice_vsi_cfg_rss_lut_key(vsi); 9343 9344 exit: 9345 /* if error, reset the all_numtc and all_enatc */ 9346 if (ret) { 9347 vsi->all_numtc = 0; 9348 vsi->all_enatc = 0; 9349 } 9350 /* resume VSI */ 9351 ice_ena_vsi(vsi, true); 9352 9353 return ret; 9354 } 9355 9356 static LIST_HEAD(ice_block_cb_list); 9357 9358 static int 9359 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9360 void *type_data) 9361 { 9362 struct ice_netdev_priv *np = netdev_priv(netdev); 9363 enum flow_block_binder_type binder_type; 9364 struct iidc_rdma_core_dev_info *cdev; 9365 struct ice_pf *pf = np->vsi->back; 9366 flow_setup_cb_t *flower_handler; 9367 bool locked = false; 9368 int err; 9369 9370 switch (type) { 9371 case TC_SETUP_BLOCK: 9372 binder_type = 9373 ((struct flow_block_offload *)type_data)->binder_type; 9374 9375 switch (binder_type) { 9376 case FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS: 9377 flower_handler = ice_setup_tc_block_cb_ingress; 9378 break; 9379 case FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS: 9380 flower_handler = ice_setup_tc_block_cb_egress; 9381 break; 9382 default: 9383 return -EOPNOTSUPP; 9384 } 9385 9386 return flow_block_cb_setup_simple(type_data, 9387 &ice_block_cb_list, 9388 flower_handler, 9389 np, np, false); 9390 case TC_SETUP_QDISC_MQPRIO: 9391 if (ice_is_eswitch_mode_switchdev(pf)) { 9392 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9393 return -EOPNOTSUPP; 9394 } 9395 9396 cdev = pf->cdev_info; 9397 if (cdev && cdev->adev) { 9398 mutex_lock(&pf->adev_mutex); 9399 device_lock(&cdev->adev->dev); 9400 locked = true; 9401 if (cdev->adev->dev.driver) { 9402 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9403 err = -EBUSY; 9404 goto adev_unlock; 9405 } 9406 } 9407 9408 /* setup traffic classifier for receive side */ 9409 mutex_lock(&pf->tc_mutex); 9410 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9411 mutex_unlock(&pf->tc_mutex); 9412 9413 adev_unlock: 9414 if (locked) { 9415 device_unlock(&cdev->adev->dev); 9416 mutex_unlock(&pf->adev_mutex); 9417 } 9418 return err; 9419 default: 9420 return -EOPNOTSUPP; 9421 } 9422 return -EOPNOTSUPP; 9423 } 9424 9425 static struct ice_indr_block_priv * 9426 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9427 struct net_device *netdev) 9428 { 9429 struct ice_indr_block_priv *cb_priv; 9430 9431 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9432 if (!cb_priv->netdev) 9433 return NULL; 9434 if (cb_priv->netdev == netdev) 9435 return cb_priv; 9436 } 9437 return NULL; 9438 } 9439 9440 static int 9441 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9442 void *indr_priv) 9443 { 9444 struct ice_indr_block_priv *priv = indr_priv; 9445 struct ice_netdev_priv *np = priv->np; 9446 9447 switch (type) { 9448 case TC_SETUP_CLSFLOWER: 9449 return ice_setup_tc_cls_flower(np, priv->netdev, 9450 (struct flow_cls_offload *) 9451 type_data, false); 9452 default: 9453 return -EOPNOTSUPP; 9454 } 9455 } 9456 9457 static int 9458 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9459 struct ice_netdev_priv *np, 9460 struct flow_block_offload *f, void *data, 9461 void (*cleanup)(struct flow_block_cb *block_cb)) 9462 { 9463 struct ice_indr_block_priv *indr_priv; 9464 struct flow_block_cb *block_cb; 9465 9466 if (!ice_is_tunnel_supported(netdev) && 9467 !(is_vlan_dev(netdev) && 9468 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9469 return -EOPNOTSUPP; 9470 9471 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9472 return -EOPNOTSUPP; 9473 9474 switch (f->command) { 9475 case FLOW_BLOCK_BIND: 9476 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9477 if (indr_priv) 9478 return -EEXIST; 9479 9480 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9481 if (!indr_priv) 9482 return -ENOMEM; 9483 9484 indr_priv->netdev = netdev; 9485 indr_priv->np = np; 9486 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9487 9488 block_cb = 9489 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9490 indr_priv, indr_priv, 9491 ice_rep_indr_tc_block_unbind, 9492 f, netdev, sch, data, np, 9493 cleanup); 9494 9495 if (IS_ERR(block_cb)) { 9496 list_del(&indr_priv->list); 9497 kfree(indr_priv); 9498 return PTR_ERR(block_cb); 9499 } 9500 flow_block_cb_add(block_cb, f); 9501 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9502 break; 9503 case FLOW_BLOCK_UNBIND: 9504 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9505 if (!indr_priv) 9506 return -ENOENT; 9507 9508 block_cb = flow_block_cb_lookup(f->block, 9509 ice_indr_setup_block_cb, 9510 indr_priv); 9511 if (!block_cb) 9512 return -ENOENT; 9513 9514 flow_indr_block_cb_remove(block_cb, f); 9515 9516 list_del(&block_cb->driver_list); 9517 break; 9518 default: 9519 return -EOPNOTSUPP; 9520 } 9521 return 0; 9522 } 9523 9524 static int 9525 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9526 void *cb_priv, enum tc_setup_type type, void *type_data, 9527 void *data, 9528 void (*cleanup)(struct flow_block_cb *block_cb)) 9529 { 9530 switch (type) { 9531 case TC_SETUP_BLOCK: 9532 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9533 data, cleanup); 9534 9535 default: 9536 return -EOPNOTSUPP; 9537 } 9538 } 9539 9540 /** 9541 * ice_open - Called when a network interface becomes active 9542 * @netdev: network interface device structure 9543 * 9544 * The open entry point is called when a network interface is made 9545 * active by the system (IFF_UP). At this point all resources needed 9546 * for transmit and receive operations are allocated, the interrupt 9547 * handler is registered with the OS, the netdev watchdog is enabled, 9548 * and the stack is notified that the interface is ready. 9549 * 9550 * Returns 0 on success, negative value on failure 9551 */ 9552 int ice_open(struct net_device *netdev) 9553 { 9554 struct ice_netdev_priv *np = netdev_priv(netdev); 9555 struct ice_pf *pf = np->vsi->back; 9556 9557 if (ice_is_reset_in_progress(pf->state)) { 9558 netdev_err(netdev, "can't open net device while reset is in progress"); 9559 return -EBUSY; 9560 } 9561 9562 return ice_open_internal(netdev); 9563 } 9564 9565 /** 9566 * ice_open_internal - Called when a network interface becomes active 9567 * @netdev: network interface device structure 9568 * 9569 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9570 * handling routine 9571 * 9572 * Returns 0 on success, negative value on failure 9573 */ 9574 int ice_open_internal(struct net_device *netdev) 9575 { 9576 struct ice_netdev_priv *np = netdev_priv(netdev); 9577 struct ice_vsi *vsi = np->vsi; 9578 struct ice_pf *pf = vsi->back; 9579 struct ice_port_info *pi; 9580 int err; 9581 9582 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9583 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9584 return -EIO; 9585 } 9586 9587 netif_carrier_off(netdev); 9588 9589 pi = vsi->port_info; 9590 err = ice_update_link_info(pi); 9591 if (err) { 9592 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9593 return err; 9594 } 9595 9596 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9597 9598 /* Set PHY if there is media, otherwise, turn off PHY */ 9599 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9600 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9601 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9602 err = ice_init_phy_user_cfg(pi); 9603 if (err) { 9604 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9605 err); 9606 return err; 9607 } 9608 } 9609 9610 err = ice_configure_phy(vsi); 9611 if (err) { 9612 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9613 err); 9614 return err; 9615 } 9616 } else { 9617 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9618 ice_set_link(vsi, false); 9619 } 9620 9621 err = ice_vsi_open(vsi); 9622 if (err) 9623 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9624 vsi->vsi_num, vsi->vsw->sw_id); 9625 9626 /* Update existing tunnels information */ 9627 udp_tunnel_get_rx_info(netdev); 9628 9629 return err; 9630 } 9631 9632 /** 9633 * ice_stop - Disables a network interface 9634 * @netdev: network interface device structure 9635 * 9636 * The stop entry point is called when an interface is de-activated by the OS, 9637 * and the netdevice enters the DOWN state. The hardware is still under the 9638 * driver's control, but the netdev interface is disabled. 9639 * 9640 * Returns success only - not allowed to fail 9641 */ 9642 int ice_stop(struct net_device *netdev) 9643 { 9644 struct ice_netdev_priv *np = netdev_priv(netdev); 9645 struct ice_vsi *vsi = np->vsi; 9646 struct ice_pf *pf = vsi->back; 9647 9648 if (ice_is_reset_in_progress(pf->state)) { 9649 netdev_err(netdev, "can't stop net device while reset is in progress"); 9650 return -EBUSY; 9651 } 9652 9653 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9654 int link_err = ice_force_phys_link_state(vsi, false); 9655 9656 if (link_err) { 9657 if (link_err == -ENOMEDIUM) 9658 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9659 vsi->vsi_num); 9660 else 9661 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9662 vsi->vsi_num, link_err); 9663 9664 ice_vsi_close(vsi); 9665 return -EIO; 9666 } 9667 } 9668 9669 ice_vsi_close(vsi); 9670 9671 return 0; 9672 } 9673 9674 /** 9675 * ice_features_check - Validate encapsulated packet conforms to limits 9676 * @skb: skb buffer 9677 * @netdev: This port's netdev 9678 * @features: Offload features that the stack believes apply 9679 */ 9680 static netdev_features_t 9681 ice_features_check(struct sk_buff *skb, 9682 struct net_device __always_unused *netdev, 9683 netdev_features_t features) 9684 { 9685 bool gso = skb_is_gso(skb); 9686 size_t len; 9687 9688 /* No point in doing any of this if neither checksum nor GSO are 9689 * being requested for this frame. We can rule out both by just 9690 * checking for CHECKSUM_PARTIAL 9691 */ 9692 if (skb->ip_summed != CHECKSUM_PARTIAL) 9693 return features; 9694 9695 /* We cannot support GSO if the MSS is going to be less than 9696 * 64 bytes. If it is then we need to drop support for GSO. 9697 */ 9698 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9699 features &= ~NETIF_F_GSO_MASK; 9700 9701 len = skb_network_offset(skb); 9702 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9703 goto out_rm_features; 9704 9705 len = skb_network_header_len(skb); 9706 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9707 goto out_rm_features; 9708 9709 if (skb->encapsulation) { 9710 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9711 * the case of IPIP frames, the transport header pointer is 9712 * after the inner header! So check to make sure that this 9713 * is a GRE or UDP_TUNNEL frame before doing that math. 9714 */ 9715 if (gso && (skb_shinfo(skb)->gso_type & 9716 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9717 len = skb_inner_network_header(skb) - 9718 skb_transport_header(skb); 9719 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9720 goto out_rm_features; 9721 } 9722 9723 len = skb_inner_network_header_len(skb); 9724 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9725 goto out_rm_features; 9726 } 9727 9728 return features; 9729 out_rm_features: 9730 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9731 } 9732 9733 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9734 .ndo_open = ice_open, 9735 .ndo_stop = ice_stop, 9736 .ndo_start_xmit = ice_start_xmit, 9737 .ndo_set_mac_address = ice_set_mac_address, 9738 .ndo_validate_addr = eth_validate_addr, 9739 .ndo_change_mtu = ice_change_mtu, 9740 .ndo_get_stats64 = ice_get_stats64, 9741 .ndo_tx_timeout = ice_tx_timeout, 9742 .ndo_bpf = ice_xdp_safe_mode, 9743 }; 9744 9745 static const struct net_device_ops ice_netdev_ops = { 9746 .ndo_open = ice_open, 9747 .ndo_stop = ice_stop, 9748 .ndo_start_xmit = ice_start_xmit, 9749 .ndo_select_queue = ice_select_queue, 9750 .ndo_features_check = ice_features_check, 9751 .ndo_fix_features = ice_fix_features, 9752 .ndo_set_rx_mode = ice_set_rx_mode, 9753 .ndo_set_mac_address = ice_set_mac_address, 9754 .ndo_validate_addr = eth_validate_addr, 9755 .ndo_change_mtu = ice_change_mtu, 9756 .ndo_get_stats64 = ice_get_stats64, 9757 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9758 .ndo_eth_ioctl = ice_eth_ioctl, 9759 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9760 .ndo_set_vf_mac = ice_set_vf_mac, 9761 .ndo_get_vf_config = ice_get_vf_cfg, 9762 .ndo_set_vf_trust = ice_set_vf_trust, 9763 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9764 .ndo_set_vf_link_state = ice_set_vf_link_state, 9765 .ndo_get_vf_stats = ice_get_vf_stats, 9766 .ndo_set_vf_rate = ice_set_vf_bw, 9767 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9768 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9769 .ndo_setup_tc = ice_setup_tc, 9770 .ndo_set_features = ice_set_features, 9771 .ndo_bridge_getlink = ice_bridge_getlink, 9772 .ndo_bridge_setlink = ice_bridge_setlink, 9773 .ndo_fdb_add = ice_fdb_add, 9774 .ndo_fdb_del = ice_fdb_del, 9775 #ifdef CONFIG_RFS_ACCEL 9776 .ndo_rx_flow_steer = ice_rx_flow_steer, 9777 #endif 9778 .ndo_tx_timeout = ice_tx_timeout, 9779 .ndo_bpf = ice_xdp, 9780 .ndo_xdp_xmit = ice_xdp_xmit, 9781 .ndo_xsk_wakeup = ice_xsk_wakeup, 9782 }; 9783