1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS(LIBIE); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops || 91 dev->netdev_ops == &ice_netdev_safe_mode_ops); 92 } 93 94 /** 95 * ice_get_tx_pending - returns number of Tx descriptors not processed 96 * @ring: the ring of descriptors 97 */ 98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 99 { 100 u16 head, tail; 101 102 head = ring->next_to_clean; 103 tail = ring->next_to_use; 104 105 if (head != tail) 106 return (head < tail) ? 107 tail - head : (tail + ring->count - head); 108 return 0; 109 } 110 111 /** 112 * ice_check_for_hang_subtask - check for and recover hung queues 113 * @pf: pointer to PF struct 114 */ 115 static void ice_check_for_hang_subtask(struct ice_pf *pf) 116 { 117 struct ice_vsi *vsi = NULL; 118 struct ice_hw *hw; 119 unsigned int i; 120 int packets; 121 u32 v; 122 123 ice_for_each_vsi(pf, v) 124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 125 vsi = pf->vsi[v]; 126 break; 127 } 128 129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 130 return; 131 132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 133 return; 134 135 hw = &vsi->back->hw; 136 137 ice_for_each_txq(vsi, i) { 138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 139 struct ice_ring_stats *ring_stats; 140 141 if (!tx_ring) 142 continue; 143 if (ice_ring_ch_enabled(tx_ring)) 144 continue; 145 146 ring_stats = tx_ring->ring_stats; 147 if (!ring_stats) 148 continue; 149 150 if (tx_ring->desc) { 151 /* If packet counter has not changed the queue is 152 * likely stalled, so force an interrupt for this 153 * queue. 154 * 155 * prev_pkt would be negative if there was no 156 * pending work. 157 */ 158 packets = ring_stats->stats.pkts & INT_MAX; 159 if (ring_stats->tx_stats.prev_pkt == packets) { 160 /* Trigger sw interrupt to revive the queue */ 161 ice_trigger_sw_intr(hw, tx_ring->q_vector); 162 continue; 163 } 164 165 /* Memory barrier between read of packet count and call 166 * to ice_get_tx_pending() 167 */ 168 smp_rmb(); 169 ring_stats->tx_stats.prev_pkt = 170 ice_get_tx_pending(tx_ring) ? packets : -1; 171 } 172 } 173 } 174 175 /** 176 * ice_init_mac_fltr - Set initial MAC filters 177 * @pf: board private structure 178 * 179 * Set initial set of MAC filters for PF VSI; configure filters for permanent 180 * address and broadcast address. If an error is encountered, netdevice will be 181 * unregistered. 182 */ 183 static int ice_init_mac_fltr(struct ice_pf *pf) 184 { 185 struct ice_vsi *vsi; 186 u8 *perm_addr; 187 188 vsi = ice_get_main_vsi(pf); 189 if (!vsi) 190 return -EINVAL; 191 192 perm_addr = vsi->port_info->mac.perm_addr; 193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 194 } 195 196 /** 197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 198 * @netdev: the net device on which the sync is happening 199 * @addr: MAC address to sync 200 * 201 * This is a callback function which is called by the in kernel device sync 202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 204 * MAC filters from the hardware. 205 */ 206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 207 { 208 struct ice_netdev_priv *np = netdev_priv(netdev); 209 struct ice_vsi *vsi = np->vsi; 210 211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 212 ICE_FWD_TO_VSI)) 213 return -EINVAL; 214 215 return 0; 216 } 217 218 /** 219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 220 * @netdev: the net device on which the unsync is happening 221 * @addr: MAC address to unsync 222 * 223 * This is a callback function which is called by the in kernel device unsync 224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 226 * delete the MAC filters from the hardware. 227 */ 228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 229 { 230 struct ice_netdev_priv *np = netdev_priv(netdev); 231 struct ice_vsi *vsi = np->vsi; 232 233 /* Under some circumstances, we might receive a request to delete our 234 * own device address from our uc list. Because we store the device 235 * address in the VSI's MAC filter list, we need to ignore such 236 * requests and not delete our device address from this list. 237 */ 238 if (ether_addr_equal(addr, netdev->dev_addr)) 239 return 0; 240 241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 242 ICE_FWD_TO_VSI)) 243 return -EINVAL; 244 245 return 0; 246 } 247 248 /** 249 * ice_vsi_fltr_changed - check if filter state changed 250 * @vsi: VSI to be checked 251 * 252 * returns true if filter state has changed, false otherwise. 253 */ 254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 255 { 256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 258 } 259 260 /** 261 * ice_set_promisc - Enable promiscuous mode for a given PF 262 * @vsi: the VSI being configured 263 * @promisc_m: mask of promiscuous config bits 264 * 265 */ 266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 267 { 268 int status; 269 270 if (vsi->type != ICE_VSI_PF) 271 return 0; 272 273 if (ice_vsi_has_non_zero_vlans(vsi)) { 274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 276 promisc_m); 277 } else { 278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 279 promisc_m, 0); 280 } 281 if (status && status != -EEXIST) 282 return status; 283 284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 285 vsi->vsi_num, promisc_m); 286 return 0; 287 } 288 289 /** 290 * ice_clear_promisc - Disable promiscuous mode for a given PF 291 * @vsi: the VSI being configured 292 * @promisc_m: mask of promiscuous config bits 293 * 294 */ 295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 296 { 297 int status; 298 299 if (vsi->type != ICE_VSI_PF) 300 return 0; 301 302 if (ice_vsi_has_non_zero_vlans(vsi)) { 303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 305 promisc_m); 306 } else { 307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 308 promisc_m, 0); 309 } 310 311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 312 vsi->vsi_num, promisc_m); 313 return status; 314 } 315 316 /** 317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 318 * @vsi: ptr to the VSI 319 * 320 * Push any outstanding VSI filter changes through the AdminQ. 321 */ 322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 323 { 324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 325 struct device *dev = ice_pf_to_dev(vsi->back); 326 struct net_device *netdev = vsi->netdev; 327 bool promisc_forced_on = false; 328 struct ice_pf *pf = vsi->back; 329 struct ice_hw *hw = &pf->hw; 330 u32 changed_flags = 0; 331 int err; 332 333 if (!vsi->netdev) 334 return -EINVAL; 335 336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 337 usleep_range(1000, 2000); 338 339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 340 vsi->current_netdev_flags = vsi->netdev->flags; 341 342 INIT_LIST_HEAD(&vsi->tmp_sync_list); 343 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 344 345 if (ice_vsi_fltr_changed(vsi)) { 346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 348 349 /* grab the netdev's addr_list_lock */ 350 netif_addr_lock_bh(netdev); 351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 354 ice_add_mac_to_unsync_list); 355 /* our temp lists are populated. release lock */ 356 netif_addr_unlock_bh(netdev); 357 } 358 359 /* Remove MAC addresses in the unsync list */ 360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 362 if (err) { 363 netdev_err(netdev, "Failed to delete MAC filters\n"); 364 /* if we failed because of alloc failures, just bail */ 365 if (err == -ENOMEM) 366 goto out; 367 } 368 369 /* Add MAC addresses in the sync list */ 370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 371 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 372 /* If filter is added successfully or already exists, do not go into 373 * 'if' condition and report it as error. Instead continue processing 374 * rest of the function. 375 */ 376 if (err && err != -EEXIST) { 377 netdev_err(netdev, "Failed to add MAC filters\n"); 378 /* If there is no more space for new umac filters, VSI 379 * should go into promiscuous mode. There should be some 380 * space reserved for promiscuous filters. 381 */ 382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 384 vsi->state)) { 385 promisc_forced_on = true; 386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 387 vsi->vsi_num); 388 } else { 389 goto out; 390 } 391 } 392 err = 0; 393 /* check for changes in promiscuous modes */ 394 if (changed_flags & IFF_ALLMULTI) { 395 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 397 if (err) { 398 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 399 goto out_promisc; 400 } 401 } else { 402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 404 if (err) { 405 vsi->current_netdev_flags |= IFF_ALLMULTI; 406 goto out_promisc; 407 } 408 } 409 } 410 411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 414 if (vsi->current_netdev_flags & IFF_PROMISC) { 415 /* Apply Rx filter rule to get traffic from wire */ 416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 417 err = ice_set_dflt_vsi(vsi); 418 if (err && err != -EEXIST) { 419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 420 err, vsi->vsi_num); 421 vsi->current_netdev_flags &= 422 ~IFF_PROMISC; 423 goto out_promisc; 424 } 425 err = 0; 426 vlan_ops->dis_rx_filtering(vsi); 427 428 /* promiscuous mode implies allmulticast so 429 * that VSIs that are in promiscuous mode are 430 * subscribed to multicast packets coming to 431 * the port 432 */ 433 err = ice_set_promisc(vsi, 434 ICE_MCAST_PROMISC_BITS); 435 if (err) 436 goto out_promisc; 437 } 438 } else { 439 /* Clear Rx filter to remove traffic from wire */ 440 if (ice_is_vsi_dflt_vsi(vsi)) { 441 err = ice_clear_dflt_vsi(vsi); 442 if (err) { 443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 444 err, vsi->vsi_num); 445 vsi->current_netdev_flags |= 446 IFF_PROMISC; 447 goto out_promisc; 448 } 449 if (vsi->netdev->features & 450 NETIF_F_HW_VLAN_CTAG_FILTER) 451 vlan_ops->ena_rx_filtering(vsi); 452 } 453 454 /* disable allmulti here, but only if allmulti is not 455 * still enabled for the netdev 456 */ 457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 458 err = ice_clear_promisc(vsi, 459 ICE_MCAST_PROMISC_BITS); 460 if (err) { 461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 462 err, vsi->vsi_num); 463 } 464 } 465 } 466 } 467 goto exit; 468 469 out_promisc: 470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 471 goto exit; 472 out: 473 /* if something went wrong then set the changed flag so we try again */ 474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 476 exit: 477 clear_bit(ICE_CFG_BUSY, vsi->state); 478 return err; 479 } 480 481 /** 482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 483 * @pf: board private structure 484 */ 485 static void ice_sync_fltr_subtask(struct ice_pf *pf) 486 { 487 int v; 488 489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 490 return; 491 492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 494 ice_for_each_vsi(pf, v) 495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 496 ice_vsi_sync_fltr(pf->vsi[v])) { 497 /* come back and try again later */ 498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 499 break; 500 } 501 } 502 503 /** 504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 505 * @pf: the PF 506 * @locked: is the rtnl_lock already held 507 */ 508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 509 { 510 int node; 511 int v; 512 513 ice_for_each_vsi(pf, v) 514 if (pf->vsi[v]) 515 ice_dis_vsi(pf->vsi[v], locked); 516 517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 518 pf->pf_agg_node[node].num_vsis = 0; 519 520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 521 pf->vf_agg_node[node].num_vsis = 0; 522 } 523 524 /** 525 * ice_prepare_for_reset - prep for reset 526 * @pf: board private structure 527 * @reset_type: reset type requested 528 * 529 * Inform or close all dependent features in prep for reset. 530 */ 531 static void 532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 533 { 534 struct ice_hw *hw = &pf->hw; 535 struct ice_vsi *vsi; 536 struct ice_vf *vf; 537 unsigned int bkt; 538 539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 540 541 /* already prepared for reset */ 542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 543 return; 544 545 synchronize_irq(pf->oicr_irq.virq); 546 547 ice_unplug_aux_dev(pf); 548 549 /* Notify VFs of impending reset */ 550 if (ice_check_sq_alive(hw, &hw->mailboxq)) 551 ice_vc_notify_reset(pf); 552 553 /* Disable VFs until reset is completed */ 554 mutex_lock(&pf->vfs.table_lock); 555 ice_for_each_vf(pf, bkt, vf) 556 ice_set_vf_state_dis(vf); 557 mutex_unlock(&pf->vfs.table_lock); 558 559 if (ice_is_eswitch_mode_switchdev(pf)) { 560 rtnl_lock(); 561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 562 rtnl_unlock(); 563 } 564 565 /* release ADQ specific HW and SW resources */ 566 vsi = ice_get_main_vsi(pf); 567 if (!vsi) 568 goto skip; 569 570 /* to be on safe side, reset orig_rss_size so that normal flow 571 * of deciding rss_size can take precedence 572 */ 573 vsi->orig_rss_size = 0; 574 575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 576 if (reset_type == ICE_RESET_PFR) { 577 vsi->old_ena_tc = vsi->all_enatc; 578 vsi->old_numtc = vsi->all_numtc; 579 } else { 580 ice_remove_q_channels(vsi, true); 581 582 /* for other reset type, do not support channel rebuild 583 * hence reset needed info 584 */ 585 vsi->old_ena_tc = 0; 586 vsi->all_enatc = 0; 587 vsi->old_numtc = 0; 588 vsi->all_numtc = 0; 589 vsi->req_txq = 0; 590 vsi->req_rxq = 0; 591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 593 } 594 } 595 596 if (vsi->netdev) 597 netif_device_detach(vsi->netdev); 598 skip: 599 600 /* clear SW filtering DB */ 601 ice_clear_hw_tbls(hw); 602 /* disable the VSIs and their queues that are not already DOWN */ 603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 604 ice_pf_dis_all_vsi(pf, false); 605 606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 607 ice_ptp_prepare_for_reset(pf, reset_type); 608 609 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 610 ice_gnss_exit(pf); 611 612 if (hw->port_info) 613 ice_sched_clear_port(hw->port_info); 614 615 ice_shutdown_all_ctrlq(hw, false); 616 617 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 618 } 619 620 /** 621 * ice_do_reset - Initiate one of many types of resets 622 * @pf: board private structure 623 * @reset_type: reset type requested before this function was called. 624 */ 625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 626 { 627 struct device *dev = ice_pf_to_dev(pf); 628 struct ice_hw *hw = &pf->hw; 629 630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 631 632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 634 reset_type = ICE_RESET_CORER; 635 } 636 637 ice_prepare_for_reset(pf, reset_type); 638 639 /* trigger the reset */ 640 if (ice_reset(hw, reset_type)) { 641 dev_err(dev, "reset %d failed\n", reset_type); 642 set_bit(ICE_RESET_FAILED, pf->state); 643 clear_bit(ICE_RESET_OICR_RECV, pf->state); 644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 645 clear_bit(ICE_PFR_REQ, pf->state); 646 clear_bit(ICE_CORER_REQ, pf->state); 647 clear_bit(ICE_GLOBR_REQ, pf->state); 648 wake_up(&pf->reset_wait_queue); 649 return; 650 } 651 652 /* PFR is a bit of a special case because it doesn't result in an OICR 653 * interrupt. So for PFR, rebuild after the reset and clear the reset- 654 * associated state bits. 655 */ 656 if (reset_type == ICE_RESET_PFR) { 657 pf->pfr_count++; 658 ice_rebuild(pf, reset_type); 659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 660 clear_bit(ICE_PFR_REQ, pf->state); 661 wake_up(&pf->reset_wait_queue); 662 ice_reset_all_vfs(pf); 663 } 664 } 665 666 /** 667 * ice_reset_subtask - Set up for resetting the device and driver 668 * @pf: board private structure 669 */ 670 static void ice_reset_subtask(struct ice_pf *pf) 671 { 672 enum ice_reset_req reset_type = ICE_RESET_INVAL; 673 674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 676 * of reset is pending and sets bits in pf->state indicating the reset 677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 678 * prepare for pending reset if not already (for PF software-initiated 679 * global resets the software should already be prepared for it as 680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 681 * by firmware or software on other PFs, that bit is not set so prepare 682 * for the reset now), poll for reset done, rebuild and return. 683 */ 684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 685 /* Perform the largest reset requested */ 686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 687 reset_type = ICE_RESET_CORER; 688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 689 reset_type = ICE_RESET_GLOBR; 690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 691 reset_type = ICE_RESET_EMPR; 692 /* return if no valid reset type requested */ 693 if (reset_type == ICE_RESET_INVAL) 694 return; 695 ice_prepare_for_reset(pf, reset_type); 696 697 /* make sure we are ready to rebuild */ 698 if (ice_check_reset(&pf->hw)) { 699 set_bit(ICE_RESET_FAILED, pf->state); 700 } else { 701 /* done with reset. start rebuild */ 702 pf->hw.reset_ongoing = false; 703 ice_rebuild(pf, reset_type); 704 /* clear bit to resume normal operations, but 705 * ICE_NEEDS_RESTART bit is set in case rebuild failed 706 */ 707 clear_bit(ICE_RESET_OICR_RECV, pf->state); 708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 709 clear_bit(ICE_PFR_REQ, pf->state); 710 clear_bit(ICE_CORER_REQ, pf->state); 711 clear_bit(ICE_GLOBR_REQ, pf->state); 712 wake_up(&pf->reset_wait_queue); 713 ice_reset_all_vfs(pf); 714 } 715 716 return; 717 } 718 719 /* No pending resets to finish processing. Check for new resets */ 720 if (test_bit(ICE_PFR_REQ, pf->state)) { 721 reset_type = ICE_RESET_PFR; 722 if (pf->lag && pf->lag->bonded) { 723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 724 reset_type = ICE_RESET_CORER; 725 } 726 } 727 if (test_bit(ICE_CORER_REQ, pf->state)) 728 reset_type = ICE_RESET_CORER; 729 if (test_bit(ICE_GLOBR_REQ, pf->state)) 730 reset_type = ICE_RESET_GLOBR; 731 /* If no valid reset type requested just return */ 732 if (reset_type == ICE_RESET_INVAL) 733 return; 734 735 /* reset if not already down or busy */ 736 if (!test_bit(ICE_DOWN, pf->state) && 737 !test_bit(ICE_CFG_BUSY, pf->state)) { 738 ice_do_reset(pf, reset_type); 739 } 740 } 741 742 /** 743 * ice_print_topo_conflict - print topology conflict message 744 * @vsi: the VSI whose topology status is being checked 745 */ 746 static void ice_print_topo_conflict(struct ice_vsi *vsi) 747 { 748 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 749 case ICE_AQ_LINK_TOPO_CONFLICT: 750 case ICE_AQ_LINK_MEDIA_CONFLICT: 751 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 755 break; 756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 759 else 760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 761 break; 762 default: 763 break; 764 } 765 } 766 767 /** 768 * ice_print_link_msg - print link up or down message 769 * @vsi: the VSI whose link status is being queried 770 * @isup: boolean for if the link is now up or down 771 */ 772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 773 { 774 struct ice_aqc_get_phy_caps_data *caps; 775 const char *an_advertised; 776 const char *fec_req; 777 const char *speed; 778 const char *fec; 779 const char *fc; 780 const char *an; 781 int status; 782 783 if (!vsi) 784 return; 785 786 if (vsi->current_isup == isup) 787 return; 788 789 vsi->current_isup = isup; 790 791 if (!isup) { 792 netdev_info(vsi->netdev, "NIC Link is Down\n"); 793 return; 794 } 795 796 switch (vsi->port_info->phy.link_info.link_speed) { 797 case ICE_AQ_LINK_SPEED_200GB: 798 speed = "200 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_100GB: 801 speed = "100 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_50GB: 804 speed = "50 G"; 805 break; 806 case ICE_AQ_LINK_SPEED_40GB: 807 speed = "40 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_25GB: 810 speed = "25 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_20GB: 813 speed = "20 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_10GB: 816 speed = "10 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_5GB: 819 speed = "5 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_2500MB: 822 speed = "2.5 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_1000MB: 825 speed = "1 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_100MB: 828 speed = "100 M"; 829 break; 830 default: 831 speed = "Unknown "; 832 break; 833 } 834 835 switch (vsi->port_info->fc.current_mode) { 836 case ICE_FC_FULL: 837 fc = "Rx/Tx"; 838 break; 839 case ICE_FC_TX_PAUSE: 840 fc = "Tx"; 841 break; 842 case ICE_FC_RX_PAUSE: 843 fc = "Rx"; 844 break; 845 case ICE_FC_NONE: 846 fc = "None"; 847 break; 848 default: 849 fc = "Unknown"; 850 break; 851 } 852 853 /* Get FEC mode based on negotiated link info */ 854 switch (vsi->port_info->phy.link_info.fec_info) { 855 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 856 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 857 fec = "RS-FEC"; 858 break; 859 case ICE_AQ_LINK_25G_KR_FEC_EN: 860 fec = "FC-FEC/BASE-R"; 861 break; 862 default: 863 fec = "NONE"; 864 break; 865 } 866 867 /* check if autoneg completed, might be false due to not supported */ 868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 869 an = "True"; 870 else 871 an = "False"; 872 873 /* Get FEC mode requested based on PHY caps last SW configuration */ 874 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 875 if (!caps) { 876 fec_req = "Unknown"; 877 an_advertised = "Unknown"; 878 goto done; 879 } 880 881 status = ice_aq_get_phy_caps(vsi->port_info, false, 882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 883 if (status) 884 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 885 886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 887 888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 890 fec_req = "RS-FEC"; 891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 893 fec_req = "FC-FEC/BASE-R"; 894 else 895 fec_req = "NONE"; 896 897 kfree(caps); 898 899 done: 900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 901 speed, fec_req, fec, an_advertised, an, fc); 902 ice_print_topo_conflict(vsi); 903 } 904 905 /** 906 * ice_vsi_link_event - update the VSI's netdev 907 * @vsi: the VSI on which the link event occurred 908 * @link_up: whether or not the VSI needs to be set up or down 909 */ 910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 911 { 912 if (!vsi) 913 return; 914 915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 916 return; 917 918 if (vsi->type == ICE_VSI_PF) { 919 if (link_up == netif_carrier_ok(vsi->netdev)) 920 return; 921 922 if (link_up) { 923 netif_carrier_on(vsi->netdev); 924 netif_tx_wake_all_queues(vsi->netdev); 925 } else { 926 netif_carrier_off(vsi->netdev); 927 netif_tx_stop_all_queues(vsi->netdev); 928 } 929 } 930 } 931 932 /** 933 * ice_set_dflt_mib - send a default config MIB to the FW 934 * @pf: private PF struct 935 * 936 * This function sends a default configuration MIB to the FW. 937 * 938 * If this function errors out at any point, the driver is still able to 939 * function. The main impact is that LFC may not operate as expected. 940 * Therefore an error state in this function should be treated with a DBG 941 * message and continue on with driver rebuild/reenable. 942 */ 943 static void ice_set_dflt_mib(struct ice_pf *pf) 944 { 945 struct device *dev = ice_pf_to_dev(pf); 946 u8 mib_type, *buf, *lldpmib = NULL; 947 u16 len, typelen, offset = 0; 948 struct ice_lldp_org_tlv *tlv; 949 struct ice_hw *hw = &pf->hw; 950 u32 ouisubtype; 951 952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 954 if (!lldpmib) { 955 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 956 __func__); 957 return; 958 } 959 960 /* Add ETS CFG TLV */ 961 tlv = (struct ice_lldp_org_tlv *)lldpmib; 962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 963 ICE_IEEE_ETS_TLV_LEN); 964 tlv->typelen = htons(typelen); 965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 966 ICE_IEEE_SUBTYPE_ETS_CFG); 967 tlv->ouisubtype = htonl(ouisubtype); 968 969 buf = tlv->tlvinfo; 970 buf[0] = 0; 971 972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 974 * Octets 13 - 20 are TSA values - leave as zeros 975 */ 976 buf[5] = 0x64; 977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 978 offset += len + 2; 979 tlv = (struct ice_lldp_org_tlv *) 980 ((char *)tlv + sizeof(tlv->typelen) + len); 981 982 /* Add ETS REC TLV */ 983 buf = tlv->tlvinfo; 984 tlv->typelen = htons(typelen); 985 986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 987 ICE_IEEE_SUBTYPE_ETS_REC); 988 tlv->ouisubtype = htonl(ouisubtype); 989 990 /* First octet of buf is reserved 991 * Octets 1 - 4 map UP to TC - all UPs map to zero 992 * Octets 5 - 12 are BW values - set TC 0 to 100%. 993 * Octets 13 - 20 are TSA value - leave as zeros 994 */ 995 buf[5] = 0x64; 996 offset += len + 2; 997 tlv = (struct ice_lldp_org_tlv *) 998 ((char *)tlv + sizeof(tlv->typelen) + len); 999 1000 /* Add PFC CFG TLV */ 1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1002 ICE_IEEE_PFC_TLV_LEN); 1003 tlv->typelen = htons(typelen); 1004 1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1006 ICE_IEEE_SUBTYPE_PFC_CFG); 1007 tlv->ouisubtype = htonl(ouisubtype); 1008 1009 /* Octet 1 left as all zeros - PFC disabled */ 1010 buf[0] = 0x08; 1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1012 offset += len + 2; 1013 1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1016 1017 kfree(lldpmib); 1018 } 1019 1020 /** 1021 * ice_check_phy_fw_load - check if PHY FW load failed 1022 * @pf: pointer to PF struct 1023 * @link_cfg_err: bitmap from the link info structure 1024 * 1025 * check if external PHY FW load failed and print an error message if it did 1026 */ 1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1031 return; 1032 } 1033 1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1035 return; 1036 1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1040 } 1041 } 1042 1043 /** 1044 * ice_check_module_power 1045 * @pf: pointer to PF struct 1046 * @link_cfg_err: bitmap from the link info structure 1047 * 1048 * check module power level returned by a previous call to aq_get_link_info 1049 * and print error messages if module power level is not supported 1050 */ 1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1052 { 1053 /* if module power level is supported, clear the flag */ 1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1057 return; 1058 } 1059 1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1061 * above block didn't clear this bit, there's nothing to do 1062 */ 1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1064 return; 1065 1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1072 } 1073 } 1074 1075 /** 1076 * ice_check_link_cfg_err - check if link configuration failed 1077 * @pf: pointer to the PF struct 1078 * @link_cfg_err: bitmap from the link info structure 1079 * 1080 * print if any link configuration failure happens due to the value in the 1081 * link_cfg_err parameter in the link info structure 1082 */ 1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1084 { 1085 ice_check_module_power(pf, link_cfg_err); 1086 ice_check_phy_fw_load(pf, link_cfg_err); 1087 } 1088 1089 /** 1090 * ice_link_event - process the link event 1091 * @pf: PF that the link event is associated with 1092 * @pi: port_info for the port that the link event is associated with 1093 * @link_up: true if the physical link is up and false if it is down 1094 * @link_speed: current link speed received from the link event 1095 * 1096 * Returns 0 on success and negative on failure 1097 */ 1098 static int 1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1100 u16 link_speed) 1101 { 1102 struct device *dev = ice_pf_to_dev(pf); 1103 struct ice_phy_info *phy_info; 1104 struct ice_vsi *vsi; 1105 u16 old_link_speed; 1106 bool old_link; 1107 int status; 1108 1109 phy_info = &pi->phy; 1110 phy_info->link_info_old = phy_info->link_info; 1111 1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1113 old_link_speed = phy_info->link_info_old.link_speed; 1114 1115 /* update the link info structures and re-enable link events, 1116 * don't bail on failure due to other book keeping needed 1117 */ 1118 status = ice_update_link_info(pi); 1119 if (status) 1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1121 pi->lport, status, 1122 ice_aq_str(pi->hw->adminq.sq_last_status)); 1123 1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1125 1126 /* Check if the link state is up after updating link info, and treat 1127 * this event as an UP event since the link is actually UP now. 1128 */ 1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1130 link_up = true; 1131 1132 vsi = ice_get_main_vsi(pf); 1133 if (!vsi || !vsi->port_info) 1134 return -EINVAL; 1135 1136 /* turn off PHY if media was removed */ 1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1140 ice_set_link(vsi, false); 1141 } 1142 1143 /* if the old link up/down and speed is the same as the new */ 1144 if (link_up == old_link && link_speed == old_link_speed) 1145 return 0; 1146 1147 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1148 1149 if (ice_is_dcb_active(pf)) { 1150 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1151 ice_dcb_rebuild(pf); 1152 } else { 1153 if (link_up) 1154 ice_set_dflt_mib(pf); 1155 } 1156 ice_vsi_link_event(vsi, link_up); 1157 ice_print_link_msg(vsi, link_up); 1158 1159 ice_vc_notify_link_state(pf); 1160 1161 return 0; 1162 } 1163 1164 /** 1165 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1166 * @pf: board private structure 1167 */ 1168 static void ice_watchdog_subtask(struct ice_pf *pf) 1169 { 1170 int i; 1171 1172 /* if interface is down do nothing */ 1173 if (test_bit(ICE_DOWN, pf->state) || 1174 test_bit(ICE_CFG_BUSY, pf->state)) 1175 return; 1176 1177 /* make sure we don't do these things too often */ 1178 if (time_before(jiffies, 1179 pf->serv_tmr_prev + pf->serv_tmr_period)) 1180 return; 1181 1182 pf->serv_tmr_prev = jiffies; 1183 1184 /* Update the stats for active netdevs so the network stack 1185 * can look at updated numbers whenever it cares to 1186 */ 1187 ice_update_pf_stats(pf); 1188 ice_for_each_vsi(pf, i) 1189 if (pf->vsi[i] && pf->vsi[i]->netdev) 1190 ice_update_vsi_stats(pf->vsi[i]); 1191 } 1192 1193 /** 1194 * ice_init_link_events - enable/initialize link events 1195 * @pi: pointer to the port_info instance 1196 * 1197 * Returns -EIO on failure, 0 on success 1198 */ 1199 static int ice_init_link_events(struct ice_port_info *pi) 1200 { 1201 u16 mask; 1202 1203 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1204 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1205 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1206 1207 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1209 pi->lport); 1210 return -EIO; 1211 } 1212 1213 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1215 pi->lport); 1216 return -EIO; 1217 } 1218 1219 return 0; 1220 } 1221 1222 /** 1223 * ice_handle_link_event - handle link event via ARQ 1224 * @pf: PF that the link event is associated with 1225 * @event: event structure containing link status info 1226 */ 1227 static int 1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1229 { 1230 struct ice_aqc_get_link_status_data *link_data; 1231 struct ice_port_info *port_info; 1232 int status; 1233 1234 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1235 port_info = pf->hw.port_info; 1236 if (!port_info) 1237 return -EINVAL; 1238 1239 status = ice_link_event(pf, port_info, 1240 !!(link_data->link_info & ICE_AQ_LINK_UP), 1241 le16_to_cpu(link_data->link_speed)); 1242 if (status) 1243 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1244 status); 1245 1246 return status; 1247 } 1248 1249 /** 1250 * ice_get_fwlog_data - copy the FW log data from ARQ event 1251 * @pf: PF that the FW log event is associated with 1252 * @event: event structure containing FW log data 1253 */ 1254 static void 1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1256 { 1257 struct ice_fwlog_data *fwlog; 1258 struct ice_hw *hw = &pf->hw; 1259 1260 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1261 1262 memset(fwlog->data, 0, PAGE_SIZE); 1263 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1264 1265 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1266 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1267 1268 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1269 /* the rings are full so bump the head to create room */ 1270 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1271 hw->fwlog_ring.size); 1272 } 1273 } 1274 1275 /** 1276 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1277 * @pf: pointer to the PF private structure 1278 * @task: intermediate helper storage and identifier for waiting 1279 * @opcode: the opcode to wait for 1280 * 1281 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1282 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1283 * 1284 * Calls are separated to allow caller registering for event before sending 1285 * the command, which mitigates a race between registering and FW responding. 1286 * 1287 * To obtain only the descriptor contents, pass an task->event with null 1288 * msg_buf. If the complete data buffer is desired, allocate the 1289 * task->event.msg_buf with enough space ahead of time. 1290 */ 1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1292 u16 opcode) 1293 { 1294 INIT_HLIST_NODE(&task->entry); 1295 task->opcode = opcode; 1296 task->state = ICE_AQ_TASK_WAITING; 1297 1298 spin_lock_bh(&pf->aq_wait_lock); 1299 hlist_add_head(&task->entry, &pf->aq_wait_list); 1300 spin_unlock_bh(&pf->aq_wait_lock); 1301 } 1302 1303 /** 1304 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1305 * @pf: pointer to the PF private structure 1306 * @task: ptr prepared by ice_aq_prep_for_event() 1307 * @timeout: how long to wait, in jiffies 1308 * 1309 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1310 * current thread will be put to sleep until the specified event occurs or 1311 * until the given timeout is reached. 1312 * 1313 * Returns: zero on success, or a negative error code on failure. 1314 */ 1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1316 unsigned long timeout) 1317 { 1318 enum ice_aq_task_state *state = &task->state; 1319 struct device *dev = ice_pf_to_dev(pf); 1320 unsigned long start = jiffies; 1321 long ret; 1322 int err; 1323 1324 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1325 *state != ICE_AQ_TASK_WAITING, 1326 timeout); 1327 switch (*state) { 1328 case ICE_AQ_TASK_NOT_PREPARED: 1329 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1330 err = -EINVAL; 1331 break; 1332 case ICE_AQ_TASK_WAITING: 1333 err = ret < 0 ? ret : -ETIMEDOUT; 1334 break; 1335 case ICE_AQ_TASK_CANCELED: 1336 err = ret < 0 ? ret : -ECANCELED; 1337 break; 1338 case ICE_AQ_TASK_COMPLETE: 1339 err = ret < 0 ? ret : 0; 1340 break; 1341 default: 1342 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1343 err = -EINVAL; 1344 break; 1345 } 1346 1347 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1348 jiffies_to_msecs(jiffies - start), 1349 jiffies_to_msecs(timeout), 1350 task->opcode); 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_del(&task->entry); 1354 spin_unlock_bh(&pf->aq_wait_lock); 1355 1356 return err; 1357 } 1358 1359 /** 1360 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1361 * @pf: pointer to the PF private structure 1362 * @opcode: the opcode of the event 1363 * @event: the event to check 1364 * 1365 * Loops over the current list of pending threads waiting for an AdminQ event. 1366 * For each matching task, copy the contents of the event into the task 1367 * structure and wake up the thread. 1368 * 1369 * If multiple threads wait for the same opcode, they will all be woken up. 1370 * 1371 * Note that event->msg_buf will only be duplicated if the event has a buffer 1372 * with enough space already allocated. Otherwise, only the descriptor and 1373 * message length will be copied. 1374 * 1375 * Returns: true if an event was found, false otherwise 1376 */ 1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1378 struct ice_rq_event_info *event) 1379 { 1380 struct ice_rq_event_info *task_ev; 1381 struct ice_aq_task *task; 1382 bool found = false; 1383 1384 spin_lock_bh(&pf->aq_wait_lock); 1385 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1386 if (task->state != ICE_AQ_TASK_WAITING) 1387 continue; 1388 if (task->opcode != opcode) 1389 continue; 1390 1391 task_ev = &task->event; 1392 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1393 task_ev->msg_len = event->msg_len; 1394 1395 /* Only copy the data buffer if a destination was set */ 1396 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1397 memcpy(task_ev->msg_buf, event->msg_buf, 1398 event->buf_len); 1399 task_ev->buf_len = event->buf_len; 1400 } 1401 1402 task->state = ICE_AQ_TASK_COMPLETE; 1403 found = true; 1404 } 1405 spin_unlock_bh(&pf->aq_wait_lock); 1406 1407 if (found) 1408 wake_up(&pf->aq_wait_queue); 1409 } 1410 1411 /** 1412 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1413 * @pf: the PF private structure 1414 * 1415 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1416 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1417 */ 1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1419 { 1420 struct ice_aq_task *task; 1421 1422 spin_lock_bh(&pf->aq_wait_lock); 1423 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1424 task->state = ICE_AQ_TASK_CANCELED; 1425 spin_unlock_bh(&pf->aq_wait_lock); 1426 1427 wake_up(&pf->aq_wait_queue); 1428 } 1429 1430 #define ICE_MBX_OVERFLOW_WATERMARK 64 1431 1432 /** 1433 * __ice_clean_ctrlq - helper function to clean controlq rings 1434 * @pf: ptr to struct ice_pf 1435 * @q_type: specific Control queue type 1436 */ 1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1438 { 1439 struct device *dev = ice_pf_to_dev(pf); 1440 struct ice_rq_event_info event; 1441 struct ice_hw *hw = &pf->hw; 1442 struct ice_ctl_q_info *cq; 1443 u16 pending, i = 0; 1444 const char *qtype; 1445 u32 oldval, val; 1446 1447 /* Do not clean control queue if/when PF reset fails */ 1448 if (test_bit(ICE_RESET_FAILED, pf->state)) 1449 return 0; 1450 1451 switch (q_type) { 1452 case ICE_CTL_Q_ADMIN: 1453 cq = &hw->adminq; 1454 qtype = "Admin"; 1455 break; 1456 case ICE_CTL_Q_SB: 1457 cq = &hw->sbq; 1458 qtype = "Sideband"; 1459 break; 1460 case ICE_CTL_Q_MAILBOX: 1461 cq = &hw->mailboxq; 1462 qtype = "Mailbox"; 1463 /* we are going to try to detect a malicious VF, so set the 1464 * state to begin detection 1465 */ 1466 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1467 break; 1468 default: 1469 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1470 return 0; 1471 } 1472 1473 /* check for error indications - PF_xx_AxQLEN register layout for 1474 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1475 */ 1476 val = rd32(hw, cq->rq.len); 1477 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1478 PF_FW_ARQLEN_ARQCRIT_M)) { 1479 oldval = val; 1480 if (val & PF_FW_ARQLEN_ARQVFE_M) 1481 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1482 qtype); 1483 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1484 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1485 qtype); 1486 } 1487 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1488 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1489 qtype); 1490 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1491 PF_FW_ARQLEN_ARQCRIT_M); 1492 if (oldval != val) 1493 wr32(hw, cq->rq.len, val); 1494 } 1495 1496 val = rd32(hw, cq->sq.len); 1497 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1498 PF_FW_ATQLEN_ATQCRIT_M)) { 1499 oldval = val; 1500 if (val & PF_FW_ATQLEN_ATQVFE_M) 1501 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1502 qtype); 1503 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1504 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1505 qtype); 1506 } 1507 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1508 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1509 qtype); 1510 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1511 PF_FW_ATQLEN_ATQCRIT_M); 1512 if (oldval != val) 1513 wr32(hw, cq->sq.len, val); 1514 } 1515 1516 event.buf_len = cq->rq_buf_size; 1517 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1518 if (!event.msg_buf) 1519 return 0; 1520 1521 do { 1522 struct ice_mbx_data data = {}; 1523 u16 opcode; 1524 int ret; 1525 1526 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1527 if (ret == -EALREADY) 1528 break; 1529 if (ret) { 1530 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1531 ret); 1532 break; 1533 } 1534 1535 opcode = le16_to_cpu(event.desc.opcode); 1536 1537 /* Notify any thread that might be waiting for this event */ 1538 ice_aq_check_events(pf, opcode, &event); 1539 1540 switch (opcode) { 1541 case ice_aqc_opc_get_link_status: 1542 if (ice_handle_link_event(pf, &event)) 1543 dev_err(dev, "Could not handle link event\n"); 1544 break; 1545 case ice_aqc_opc_event_lan_overflow: 1546 ice_vf_lan_overflow_event(pf, &event); 1547 break; 1548 case ice_mbx_opc_send_msg_to_pf: 1549 data.num_msg_proc = i; 1550 data.num_pending_arq = pending; 1551 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1552 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1553 1554 ice_vc_process_vf_msg(pf, &event, &data); 1555 break; 1556 case ice_aqc_opc_fw_logs_event: 1557 ice_get_fwlog_data(pf, &event); 1558 break; 1559 case ice_aqc_opc_lldp_set_mib_change: 1560 ice_dcb_process_lldp_set_mib_change(pf, &event); 1561 break; 1562 default: 1563 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1564 qtype, opcode); 1565 break; 1566 } 1567 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1568 1569 kfree(event.msg_buf); 1570 1571 return pending && (i == ICE_DFLT_IRQ_WORK); 1572 } 1573 1574 /** 1575 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1576 * @hw: pointer to hardware info 1577 * @cq: control queue information 1578 * 1579 * returns true if there are pending messages in a queue, false if there aren't 1580 */ 1581 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1582 { 1583 u16 ntu; 1584 1585 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1586 return cq->rq.next_to_clean != ntu; 1587 } 1588 1589 /** 1590 * ice_clean_adminq_subtask - clean the AdminQ rings 1591 * @pf: board private structure 1592 */ 1593 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1594 { 1595 struct ice_hw *hw = &pf->hw; 1596 1597 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1598 return; 1599 1600 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1601 return; 1602 1603 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1604 1605 /* There might be a situation where new messages arrive to a control 1606 * queue between processing the last message and clearing the 1607 * EVENT_PENDING bit. So before exiting, check queue head again (using 1608 * ice_ctrlq_pending) and process new messages if any. 1609 */ 1610 if (ice_ctrlq_pending(hw, &hw->adminq)) 1611 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1612 1613 ice_flush(hw); 1614 } 1615 1616 /** 1617 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1618 * @pf: board private structure 1619 */ 1620 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1621 { 1622 struct ice_hw *hw = &pf->hw; 1623 1624 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1625 return; 1626 1627 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1628 return; 1629 1630 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1631 1632 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1633 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1634 1635 ice_flush(hw); 1636 } 1637 1638 /** 1639 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1640 * @pf: board private structure 1641 */ 1642 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1643 { 1644 struct ice_hw *hw = &pf->hw; 1645 1646 /* if mac_type is not generic, sideband is not supported 1647 * and there's nothing to do here 1648 */ 1649 if (!ice_is_generic_mac(hw)) { 1650 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1651 return; 1652 } 1653 1654 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1655 return; 1656 1657 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1658 return; 1659 1660 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1661 1662 if (ice_ctrlq_pending(hw, &hw->sbq)) 1663 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1664 1665 ice_flush(hw); 1666 } 1667 1668 /** 1669 * ice_service_task_schedule - schedule the service task to wake up 1670 * @pf: board private structure 1671 * 1672 * If not already scheduled, this puts the task into the work queue. 1673 */ 1674 void ice_service_task_schedule(struct ice_pf *pf) 1675 { 1676 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1677 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1678 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1679 queue_work(ice_wq, &pf->serv_task); 1680 } 1681 1682 /** 1683 * ice_service_task_complete - finish up the service task 1684 * @pf: board private structure 1685 */ 1686 static void ice_service_task_complete(struct ice_pf *pf) 1687 { 1688 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1689 1690 /* force memory (pf->state) to sync before next service task */ 1691 smp_mb__before_atomic(); 1692 clear_bit(ICE_SERVICE_SCHED, pf->state); 1693 } 1694 1695 /** 1696 * ice_service_task_stop - stop service task and cancel works 1697 * @pf: board private structure 1698 * 1699 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1700 * 1 otherwise. 1701 */ 1702 static int ice_service_task_stop(struct ice_pf *pf) 1703 { 1704 int ret; 1705 1706 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1707 1708 if (pf->serv_tmr.function) 1709 del_timer_sync(&pf->serv_tmr); 1710 if (pf->serv_task.func) 1711 cancel_work_sync(&pf->serv_task); 1712 1713 clear_bit(ICE_SERVICE_SCHED, pf->state); 1714 return ret; 1715 } 1716 1717 /** 1718 * ice_service_task_restart - restart service task and schedule works 1719 * @pf: board private structure 1720 * 1721 * This function is needed for suspend and resume works (e.g WoL scenario) 1722 */ 1723 static void ice_service_task_restart(struct ice_pf *pf) 1724 { 1725 clear_bit(ICE_SERVICE_DIS, pf->state); 1726 ice_service_task_schedule(pf); 1727 } 1728 1729 /** 1730 * ice_service_timer - timer callback to schedule service task 1731 * @t: pointer to timer_list 1732 */ 1733 static void ice_service_timer(struct timer_list *t) 1734 { 1735 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1736 1737 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1738 ice_service_task_schedule(pf); 1739 } 1740 1741 /** 1742 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1743 * @pf: pointer to the PF structure 1744 * @vf: pointer to the VF structure 1745 * @reset_vf_tx: whether Tx MDD has occurred 1746 * @reset_vf_rx: whether Rx MDD has occurred 1747 * 1748 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1749 * automatically reset the VF by enabling the private ethtool flag 1750 * mdd-auto-reset-vf. 1751 */ 1752 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1753 bool reset_vf_tx, bool reset_vf_rx) 1754 { 1755 struct device *dev = ice_pf_to_dev(pf); 1756 1757 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1758 return; 1759 1760 /* VF MDD event counters will be cleared by reset, so print the event 1761 * prior to reset. 1762 */ 1763 if (reset_vf_tx) 1764 ice_print_vf_tx_mdd_event(vf); 1765 1766 if (reset_vf_rx) 1767 ice_print_vf_rx_mdd_event(vf); 1768 1769 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1770 pf->hw.pf_id, vf->vf_id); 1771 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1772 } 1773 1774 /** 1775 * ice_handle_mdd_event - handle malicious driver detect event 1776 * @pf: pointer to the PF structure 1777 * 1778 * Called from service task. OICR interrupt handler indicates MDD event. 1779 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1780 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1781 * disable the queue, the PF can be configured to reset the VF using ethtool 1782 * private flag mdd-auto-reset-vf. 1783 */ 1784 static void ice_handle_mdd_event(struct ice_pf *pf) 1785 { 1786 struct device *dev = ice_pf_to_dev(pf); 1787 struct ice_hw *hw = &pf->hw; 1788 struct ice_vf *vf; 1789 unsigned int bkt; 1790 u32 reg; 1791 1792 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1793 /* Since the VF MDD event logging is rate limited, check if 1794 * there are pending MDD events. 1795 */ 1796 ice_print_vfs_mdd_events(pf); 1797 return; 1798 } 1799 1800 /* find what triggered an MDD event */ 1801 reg = rd32(hw, GL_MDET_TX_PQM); 1802 if (reg & GL_MDET_TX_PQM_VALID_M) { 1803 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1804 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1805 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1806 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1807 1808 if (netif_msg_tx_err(pf)) 1809 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1810 event, queue, pf_num, vf_num); 1811 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1812 } 1813 1814 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1815 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1816 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1817 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1818 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1819 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1820 1821 if (netif_msg_tx_err(pf)) 1822 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1823 event, queue, pf_num, vf_num); 1824 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1825 } 1826 1827 reg = rd32(hw, GL_MDET_RX); 1828 if (reg & GL_MDET_RX_VALID_M) { 1829 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1830 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1831 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1832 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1833 1834 if (netif_msg_rx_err(pf)) 1835 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1836 event, queue, pf_num, vf_num); 1837 wr32(hw, GL_MDET_RX, 0xffffffff); 1838 } 1839 1840 /* check to see if this PF caused an MDD event */ 1841 reg = rd32(hw, PF_MDET_TX_PQM); 1842 if (reg & PF_MDET_TX_PQM_VALID_M) { 1843 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1844 if (netif_msg_tx_err(pf)) 1845 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1846 } 1847 1848 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1849 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1850 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1851 if (netif_msg_tx_err(pf)) 1852 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1853 } 1854 1855 reg = rd32(hw, PF_MDET_RX); 1856 if (reg & PF_MDET_RX_VALID_M) { 1857 wr32(hw, PF_MDET_RX, 0xFFFF); 1858 if (netif_msg_rx_err(pf)) 1859 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1860 } 1861 1862 /* Check to see if one of the VFs caused an MDD event, and then 1863 * increment counters and set print pending 1864 */ 1865 mutex_lock(&pf->vfs.table_lock); 1866 ice_for_each_vf(pf, bkt, vf) { 1867 bool reset_vf_tx = false, reset_vf_rx = false; 1868 1869 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1870 if (reg & VP_MDET_TX_PQM_VALID_M) { 1871 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1872 vf->mdd_tx_events.count++; 1873 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1874 if (netif_msg_tx_err(pf)) 1875 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1876 vf->vf_id); 1877 1878 reset_vf_tx = true; 1879 } 1880 1881 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1882 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1883 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1884 vf->mdd_tx_events.count++; 1885 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1886 if (netif_msg_tx_err(pf)) 1887 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1888 vf->vf_id); 1889 1890 reset_vf_tx = true; 1891 } 1892 1893 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1894 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1895 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1896 vf->mdd_tx_events.count++; 1897 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1898 if (netif_msg_tx_err(pf)) 1899 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1900 vf->vf_id); 1901 1902 reset_vf_tx = true; 1903 } 1904 1905 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1906 if (reg & VP_MDET_RX_VALID_M) { 1907 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1908 vf->mdd_rx_events.count++; 1909 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1910 if (netif_msg_rx_err(pf)) 1911 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1912 vf->vf_id); 1913 1914 reset_vf_rx = true; 1915 } 1916 1917 if (reset_vf_tx || reset_vf_rx) 1918 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1919 reset_vf_rx); 1920 } 1921 mutex_unlock(&pf->vfs.table_lock); 1922 1923 ice_print_vfs_mdd_events(pf); 1924 } 1925 1926 /** 1927 * ice_force_phys_link_state - Force the physical link state 1928 * @vsi: VSI to force the physical link state to up/down 1929 * @link_up: true/false indicates to set the physical link to up/down 1930 * 1931 * Force the physical link state by getting the current PHY capabilities from 1932 * hardware and setting the PHY config based on the determined capabilities. If 1933 * link changes a link event will be triggered because both the Enable Automatic 1934 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1935 * 1936 * Returns 0 on success, negative on failure 1937 */ 1938 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1939 { 1940 struct ice_aqc_get_phy_caps_data *pcaps; 1941 struct ice_aqc_set_phy_cfg_data *cfg; 1942 struct ice_port_info *pi; 1943 struct device *dev; 1944 int retcode; 1945 1946 if (!vsi || !vsi->port_info || !vsi->back) 1947 return -EINVAL; 1948 if (vsi->type != ICE_VSI_PF) 1949 return 0; 1950 1951 dev = ice_pf_to_dev(vsi->back); 1952 1953 pi = vsi->port_info; 1954 1955 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1956 if (!pcaps) 1957 return -ENOMEM; 1958 1959 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1960 NULL); 1961 if (retcode) { 1962 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1963 vsi->vsi_num, retcode); 1964 retcode = -EIO; 1965 goto out; 1966 } 1967 1968 /* No change in link */ 1969 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1970 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1971 goto out; 1972 1973 /* Use the current user PHY configuration. The current user PHY 1974 * configuration is initialized during probe from PHY capabilities 1975 * software mode, and updated on set PHY configuration. 1976 */ 1977 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1978 if (!cfg) { 1979 retcode = -ENOMEM; 1980 goto out; 1981 } 1982 1983 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1984 if (link_up) 1985 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1986 else 1987 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1988 1989 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1990 if (retcode) { 1991 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1992 vsi->vsi_num, retcode); 1993 retcode = -EIO; 1994 } 1995 1996 kfree(cfg); 1997 out: 1998 kfree(pcaps); 1999 return retcode; 2000 } 2001 2002 /** 2003 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2004 * @pi: port info structure 2005 * 2006 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2007 */ 2008 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2009 { 2010 struct ice_aqc_get_phy_caps_data *pcaps; 2011 struct ice_pf *pf = pi->hw->back; 2012 int err; 2013 2014 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2015 if (!pcaps) 2016 return -ENOMEM; 2017 2018 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2019 pcaps, NULL); 2020 2021 if (err) { 2022 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2023 goto out; 2024 } 2025 2026 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2027 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2028 2029 out: 2030 kfree(pcaps); 2031 return err; 2032 } 2033 2034 /** 2035 * ice_init_link_dflt_override - Initialize link default override 2036 * @pi: port info structure 2037 * 2038 * Initialize link default override and PHY total port shutdown during probe 2039 */ 2040 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2041 { 2042 struct ice_link_default_override_tlv *ldo; 2043 struct ice_pf *pf = pi->hw->back; 2044 2045 ldo = &pf->link_dflt_override; 2046 if (ice_get_link_default_override(ldo, pi)) 2047 return; 2048 2049 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2050 return; 2051 2052 /* Enable Total Port Shutdown (override/replace link-down-on-close 2053 * ethtool private flag) for ports with Port Disable bit set. 2054 */ 2055 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2056 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2057 } 2058 2059 /** 2060 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2061 * @pi: port info structure 2062 * 2063 * If default override is enabled, initialize the user PHY cfg speed and FEC 2064 * settings using the default override mask from the NVM. 2065 * 2066 * The PHY should only be configured with the default override settings the 2067 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2068 * is used to indicate that the user PHY cfg default override is initialized 2069 * and the PHY has not been configured with the default override settings. The 2070 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2071 * configured. 2072 * 2073 * This function should be called only if the FW doesn't support default 2074 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2075 */ 2076 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2077 { 2078 struct ice_link_default_override_tlv *ldo; 2079 struct ice_aqc_set_phy_cfg_data *cfg; 2080 struct ice_phy_info *phy = &pi->phy; 2081 struct ice_pf *pf = pi->hw->back; 2082 2083 ldo = &pf->link_dflt_override; 2084 2085 /* If link default override is enabled, use to mask NVM PHY capabilities 2086 * for speed and FEC default configuration. 2087 */ 2088 cfg = &phy->curr_user_phy_cfg; 2089 2090 if (ldo->phy_type_low || ldo->phy_type_high) { 2091 cfg->phy_type_low = pf->nvm_phy_type_lo & 2092 cpu_to_le64(ldo->phy_type_low); 2093 cfg->phy_type_high = pf->nvm_phy_type_hi & 2094 cpu_to_le64(ldo->phy_type_high); 2095 } 2096 cfg->link_fec_opt = ldo->fec_options; 2097 phy->curr_user_fec_req = ICE_FEC_AUTO; 2098 2099 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2100 } 2101 2102 /** 2103 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2104 * @pi: port info structure 2105 * 2106 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2107 * mode to default. The PHY defaults are from get PHY capabilities topology 2108 * with media so call when media is first available. An error is returned if 2109 * called when media is not available. The PHY initialization completed state is 2110 * set here. 2111 * 2112 * These configurations are used when setting PHY 2113 * configuration. The user PHY configuration is updated on set PHY 2114 * configuration. Returns 0 on success, negative on failure 2115 */ 2116 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2117 { 2118 struct ice_aqc_get_phy_caps_data *pcaps; 2119 struct ice_phy_info *phy = &pi->phy; 2120 struct ice_pf *pf = pi->hw->back; 2121 int err; 2122 2123 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2124 return -EIO; 2125 2126 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2127 if (!pcaps) 2128 return -ENOMEM; 2129 2130 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2131 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2132 pcaps, NULL); 2133 else 2134 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2135 pcaps, NULL); 2136 if (err) { 2137 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2138 goto err_out; 2139 } 2140 2141 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2142 2143 /* check if lenient mode is supported and enabled */ 2144 if (ice_fw_supports_link_override(pi->hw) && 2145 !(pcaps->module_compliance_enforcement & 2146 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2147 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2148 2149 /* if the FW supports default PHY configuration mode, then the driver 2150 * does not have to apply link override settings. If not, 2151 * initialize user PHY configuration with link override values 2152 */ 2153 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2154 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2155 ice_init_phy_cfg_dflt_override(pi); 2156 goto out; 2157 } 2158 } 2159 2160 /* if link default override is not enabled, set user flow control and 2161 * FEC settings based on what get_phy_caps returned 2162 */ 2163 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2164 pcaps->link_fec_options); 2165 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2166 2167 out: 2168 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2169 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2170 err_out: 2171 kfree(pcaps); 2172 return err; 2173 } 2174 2175 /** 2176 * ice_configure_phy - configure PHY 2177 * @vsi: VSI of PHY 2178 * 2179 * Set the PHY configuration. If the current PHY configuration is the same as 2180 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2181 * configure the based get PHY capabilities for topology with media. 2182 */ 2183 static int ice_configure_phy(struct ice_vsi *vsi) 2184 { 2185 struct device *dev = ice_pf_to_dev(vsi->back); 2186 struct ice_port_info *pi = vsi->port_info; 2187 struct ice_aqc_get_phy_caps_data *pcaps; 2188 struct ice_aqc_set_phy_cfg_data *cfg; 2189 struct ice_phy_info *phy = &pi->phy; 2190 struct ice_pf *pf = vsi->back; 2191 int err; 2192 2193 /* Ensure we have media as we cannot configure a medialess port */ 2194 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2195 return -ENOMEDIUM; 2196 2197 ice_print_topo_conflict(vsi); 2198 2199 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2200 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2201 return -EPERM; 2202 2203 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2204 return ice_force_phys_link_state(vsi, true); 2205 2206 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2207 if (!pcaps) 2208 return -ENOMEM; 2209 2210 /* Get current PHY config */ 2211 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2212 NULL); 2213 if (err) { 2214 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2215 vsi->vsi_num, err); 2216 goto done; 2217 } 2218 2219 /* If PHY enable link is configured and configuration has not changed, 2220 * there's nothing to do 2221 */ 2222 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2223 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2224 goto done; 2225 2226 /* Use PHY topology as baseline for configuration */ 2227 memset(pcaps, 0, sizeof(*pcaps)); 2228 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2229 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2230 pcaps, NULL); 2231 else 2232 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2233 pcaps, NULL); 2234 if (err) { 2235 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2236 vsi->vsi_num, err); 2237 goto done; 2238 } 2239 2240 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2241 if (!cfg) { 2242 err = -ENOMEM; 2243 goto done; 2244 } 2245 2246 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2247 2248 /* Speed - If default override pending, use curr_user_phy_cfg set in 2249 * ice_init_phy_user_cfg_ldo. 2250 */ 2251 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2252 vsi->back->state)) { 2253 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2254 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2255 } else { 2256 u64 phy_low = 0, phy_high = 0; 2257 2258 ice_update_phy_type(&phy_low, &phy_high, 2259 pi->phy.curr_user_speed_req); 2260 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2261 cfg->phy_type_high = pcaps->phy_type_high & 2262 cpu_to_le64(phy_high); 2263 } 2264 2265 /* Can't provide what was requested; use PHY capabilities */ 2266 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2267 cfg->phy_type_low = pcaps->phy_type_low; 2268 cfg->phy_type_high = pcaps->phy_type_high; 2269 } 2270 2271 /* FEC */ 2272 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2273 2274 /* Can't provide what was requested; use PHY capabilities */ 2275 if (cfg->link_fec_opt != 2276 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2277 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2278 cfg->link_fec_opt = pcaps->link_fec_options; 2279 } 2280 2281 /* Flow Control - always supported; no need to check against 2282 * capabilities 2283 */ 2284 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2285 2286 /* Enable link and link update */ 2287 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2288 2289 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2290 if (err) 2291 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2292 vsi->vsi_num, err); 2293 2294 kfree(cfg); 2295 done: 2296 kfree(pcaps); 2297 return err; 2298 } 2299 2300 /** 2301 * ice_check_media_subtask - Check for media 2302 * @pf: pointer to PF struct 2303 * 2304 * If media is available, then initialize PHY user configuration if it is not 2305 * been, and configure the PHY if the interface is up. 2306 */ 2307 static void ice_check_media_subtask(struct ice_pf *pf) 2308 { 2309 struct ice_port_info *pi; 2310 struct ice_vsi *vsi; 2311 int err; 2312 2313 /* No need to check for media if it's already present */ 2314 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2315 return; 2316 2317 vsi = ice_get_main_vsi(pf); 2318 if (!vsi) 2319 return; 2320 2321 /* Refresh link info and check if media is present */ 2322 pi = vsi->port_info; 2323 err = ice_update_link_info(pi); 2324 if (err) 2325 return; 2326 2327 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2328 2329 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2330 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2331 ice_init_phy_user_cfg(pi); 2332 2333 /* PHY settings are reset on media insertion, reconfigure 2334 * PHY to preserve settings. 2335 */ 2336 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2337 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2338 return; 2339 2340 err = ice_configure_phy(vsi); 2341 if (!err) 2342 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2343 2344 /* A Link Status Event will be generated; the event handler 2345 * will complete bringing the interface up 2346 */ 2347 } 2348 } 2349 2350 /** 2351 * ice_service_task - manage and run subtasks 2352 * @work: pointer to work_struct contained by the PF struct 2353 */ 2354 static void ice_service_task(struct work_struct *work) 2355 { 2356 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2357 unsigned long start_time = jiffies; 2358 2359 /* subtasks */ 2360 2361 /* process reset requests first */ 2362 ice_reset_subtask(pf); 2363 2364 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2365 if (ice_is_reset_in_progress(pf->state) || 2366 test_bit(ICE_SUSPENDED, pf->state) || 2367 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2368 ice_service_task_complete(pf); 2369 return; 2370 } 2371 2372 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2373 struct iidc_event *event; 2374 2375 event = kzalloc(sizeof(*event), GFP_KERNEL); 2376 if (event) { 2377 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2378 /* report the entire OICR value to AUX driver */ 2379 swap(event->reg, pf->oicr_err_reg); 2380 ice_send_event_to_aux(pf, event); 2381 kfree(event); 2382 } 2383 } 2384 2385 /* unplug aux dev per request, if an unplug request came in 2386 * while processing a plug request, this will handle it 2387 */ 2388 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2389 ice_unplug_aux_dev(pf); 2390 2391 /* Plug aux device per request */ 2392 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2393 ice_plug_aux_dev(pf); 2394 2395 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2396 struct iidc_event *event; 2397 2398 event = kzalloc(sizeof(*event), GFP_KERNEL); 2399 if (event) { 2400 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2401 ice_send_event_to_aux(pf, event); 2402 kfree(event); 2403 } 2404 } 2405 2406 ice_clean_adminq_subtask(pf); 2407 ice_check_media_subtask(pf); 2408 ice_check_for_hang_subtask(pf); 2409 ice_sync_fltr_subtask(pf); 2410 ice_handle_mdd_event(pf); 2411 ice_watchdog_subtask(pf); 2412 2413 if (ice_is_safe_mode(pf)) { 2414 ice_service_task_complete(pf); 2415 return; 2416 } 2417 2418 ice_process_vflr_event(pf); 2419 ice_clean_mailboxq_subtask(pf); 2420 ice_clean_sbq_subtask(pf); 2421 ice_sync_arfs_fltrs(pf); 2422 ice_flush_fdir_ctx(pf); 2423 2424 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2425 ice_service_task_complete(pf); 2426 2427 /* If the tasks have taken longer than one service timer period 2428 * or there is more work to be done, reset the service timer to 2429 * schedule the service task now. 2430 */ 2431 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2432 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2433 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2434 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2435 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2436 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2437 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2438 mod_timer(&pf->serv_tmr, jiffies); 2439 } 2440 2441 /** 2442 * ice_set_ctrlq_len - helper function to set controlq length 2443 * @hw: pointer to the HW instance 2444 */ 2445 static void ice_set_ctrlq_len(struct ice_hw *hw) 2446 { 2447 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2448 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2449 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2450 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2451 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2452 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2453 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2454 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2455 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2456 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2457 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2458 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2459 } 2460 2461 /** 2462 * ice_schedule_reset - schedule a reset 2463 * @pf: board private structure 2464 * @reset: reset being requested 2465 */ 2466 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2467 { 2468 struct device *dev = ice_pf_to_dev(pf); 2469 2470 /* bail out if earlier reset has failed */ 2471 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2472 dev_dbg(dev, "earlier reset has failed\n"); 2473 return -EIO; 2474 } 2475 /* bail if reset/recovery already in progress */ 2476 if (ice_is_reset_in_progress(pf->state)) { 2477 dev_dbg(dev, "Reset already in progress\n"); 2478 return -EBUSY; 2479 } 2480 2481 switch (reset) { 2482 case ICE_RESET_PFR: 2483 set_bit(ICE_PFR_REQ, pf->state); 2484 break; 2485 case ICE_RESET_CORER: 2486 set_bit(ICE_CORER_REQ, pf->state); 2487 break; 2488 case ICE_RESET_GLOBR: 2489 set_bit(ICE_GLOBR_REQ, pf->state); 2490 break; 2491 default: 2492 return -EINVAL; 2493 } 2494 2495 ice_service_task_schedule(pf); 2496 return 0; 2497 } 2498 2499 /** 2500 * ice_irq_affinity_notify - Callback for affinity changes 2501 * @notify: context as to what irq was changed 2502 * @mask: the new affinity mask 2503 * 2504 * This is a callback function used by the irq_set_affinity_notifier function 2505 * so that we may register to receive changes to the irq affinity masks. 2506 */ 2507 static void 2508 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2509 const cpumask_t *mask) 2510 { 2511 struct ice_q_vector *q_vector = 2512 container_of(notify, struct ice_q_vector, affinity_notify); 2513 2514 cpumask_copy(&q_vector->affinity_mask, mask); 2515 } 2516 2517 /** 2518 * ice_irq_affinity_release - Callback for affinity notifier release 2519 * @ref: internal core kernel usage 2520 * 2521 * This is a callback function used by the irq_set_affinity_notifier function 2522 * to inform the current notification subscriber that they will no longer 2523 * receive notifications. 2524 */ 2525 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2526 2527 /** 2528 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2529 * @vsi: the VSI being configured 2530 */ 2531 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2532 { 2533 struct ice_hw *hw = &vsi->back->hw; 2534 int i; 2535 2536 ice_for_each_q_vector(vsi, i) 2537 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2538 2539 ice_flush(hw); 2540 return 0; 2541 } 2542 2543 /** 2544 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2545 * @vsi: the VSI being configured 2546 * @basename: name for the vector 2547 */ 2548 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2549 { 2550 int q_vectors = vsi->num_q_vectors; 2551 struct ice_pf *pf = vsi->back; 2552 struct device *dev; 2553 int rx_int_idx = 0; 2554 int tx_int_idx = 0; 2555 int vector, err; 2556 int irq_num; 2557 2558 dev = ice_pf_to_dev(pf); 2559 for (vector = 0; vector < q_vectors; vector++) { 2560 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2561 2562 irq_num = q_vector->irq.virq; 2563 2564 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2565 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2566 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2567 tx_int_idx++; 2568 } else if (q_vector->rx.rx_ring) { 2569 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2570 "%s-%s-%d", basename, "rx", rx_int_idx++); 2571 } else if (q_vector->tx.tx_ring) { 2572 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2573 "%s-%s-%d", basename, "tx", tx_int_idx++); 2574 } else { 2575 /* skip this unused q_vector */ 2576 continue; 2577 } 2578 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2579 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2580 IRQF_SHARED, q_vector->name, 2581 q_vector); 2582 else 2583 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2584 0, q_vector->name, q_vector); 2585 if (err) { 2586 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2587 err); 2588 goto free_q_irqs; 2589 } 2590 2591 /* register for affinity change notifications */ 2592 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2593 struct irq_affinity_notify *affinity_notify; 2594 2595 affinity_notify = &q_vector->affinity_notify; 2596 affinity_notify->notify = ice_irq_affinity_notify; 2597 affinity_notify->release = ice_irq_affinity_release; 2598 irq_set_affinity_notifier(irq_num, affinity_notify); 2599 } 2600 2601 /* assign the mask for this irq */ 2602 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask); 2603 } 2604 2605 err = ice_set_cpu_rx_rmap(vsi); 2606 if (err) { 2607 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2608 vsi->vsi_num, ERR_PTR(err)); 2609 goto free_q_irqs; 2610 } 2611 2612 vsi->irqs_ready = true; 2613 return 0; 2614 2615 free_q_irqs: 2616 while (vector--) { 2617 irq_num = vsi->q_vectors[vector]->irq.virq; 2618 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2619 irq_set_affinity_notifier(irq_num, NULL); 2620 irq_update_affinity_hint(irq_num, NULL); 2621 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2622 } 2623 return err; 2624 } 2625 2626 /** 2627 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2628 * @vsi: VSI to setup Tx rings used by XDP 2629 * 2630 * Return 0 on success and negative value on error 2631 */ 2632 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2633 { 2634 struct device *dev = ice_pf_to_dev(vsi->back); 2635 struct ice_tx_desc *tx_desc; 2636 int i, j; 2637 2638 ice_for_each_xdp_txq(vsi, i) { 2639 u16 xdp_q_idx = vsi->alloc_txq + i; 2640 struct ice_ring_stats *ring_stats; 2641 struct ice_tx_ring *xdp_ring; 2642 2643 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2644 if (!xdp_ring) 2645 goto free_xdp_rings; 2646 2647 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2648 if (!ring_stats) { 2649 ice_free_tx_ring(xdp_ring); 2650 goto free_xdp_rings; 2651 } 2652 2653 xdp_ring->ring_stats = ring_stats; 2654 xdp_ring->q_index = xdp_q_idx; 2655 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2656 xdp_ring->vsi = vsi; 2657 xdp_ring->netdev = NULL; 2658 xdp_ring->dev = dev; 2659 xdp_ring->count = vsi->num_tx_desc; 2660 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2661 if (ice_setup_tx_ring(xdp_ring)) 2662 goto free_xdp_rings; 2663 ice_set_ring_xdp(xdp_ring); 2664 spin_lock_init(&xdp_ring->tx_lock); 2665 for (j = 0; j < xdp_ring->count; j++) { 2666 tx_desc = ICE_TX_DESC(xdp_ring, j); 2667 tx_desc->cmd_type_offset_bsz = 0; 2668 } 2669 } 2670 2671 return 0; 2672 2673 free_xdp_rings: 2674 for (; i >= 0; i--) { 2675 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2676 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2677 vsi->xdp_rings[i]->ring_stats = NULL; 2678 ice_free_tx_ring(vsi->xdp_rings[i]); 2679 } 2680 } 2681 return -ENOMEM; 2682 } 2683 2684 /** 2685 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2686 * @vsi: VSI to set the bpf prog on 2687 * @prog: the bpf prog pointer 2688 */ 2689 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2690 { 2691 struct bpf_prog *old_prog; 2692 int i; 2693 2694 old_prog = xchg(&vsi->xdp_prog, prog); 2695 ice_for_each_rxq(vsi, i) 2696 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2697 2698 if (old_prog) 2699 bpf_prog_put(old_prog); 2700 } 2701 2702 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2703 { 2704 struct ice_q_vector *q_vector; 2705 struct ice_tx_ring *ring; 2706 2707 if (static_key_enabled(&ice_xdp_locking_key)) 2708 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2709 2710 q_vector = vsi->rx_rings[qid]->q_vector; 2711 ice_for_each_tx_ring(ring, q_vector->tx) 2712 if (ice_ring_is_xdp(ring)) 2713 return ring; 2714 2715 return NULL; 2716 } 2717 2718 /** 2719 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2720 * @vsi: the VSI with XDP rings being configured 2721 * 2722 * Map XDP rings to interrupt vectors and perform the configuration steps 2723 * dependent on the mapping. 2724 */ 2725 void ice_map_xdp_rings(struct ice_vsi *vsi) 2726 { 2727 int xdp_rings_rem = vsi->num_xdp_txq; 2728 int v_idx, q_idx; 2729 2730 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2731 ice_for_each_q_vector(vsi, v_idx) { 2732 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2733 int xdp_rings_per_v, q_id, q_base; 2734 2735 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2736 vsi->num_q_vectors - v_idx); 2737 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2738 2739 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2740 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2741 2742 xdp_ring->q_vector = q_vector; 2743 xdp_ring->next = q_vector->tx.tx_ring; 2744 q_vector->tx.tx_ring = xdp_ring; 2745 } 2746 xdp_rings_rem -= xdp_rings_per_v; 2747 } 2748 2749 ice_for_each_rxq(vsi, q_idx) { 2750 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2751 q_idx); 2752 ice_tx_xsk_pool(vsi, q_idx); 2753 } 2754 } 2755 2756 /** 2757 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2758 * @vsi: VSI to bring up Tx rings used by XDP 2759 * @prog: bpf program that will be assigned to VSI 2760 * @cfg_type: create from scratch or restore the existing configuration 2761 * 2762 * Return 0 on success and negative value on error 2763 */ 2764 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2765 enum ice_xdp_cfg cfg_type) 2766 { 2767 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2768 struct ice_pf *pf = vsi->back; 2769 struct ice_qs_cfg xdp_qs_cfg = { 2770 .qs_mutex = &pf->avail_q_mutex, 2771 .pf_map = pf->avail_txqs, 2772 .pf_map_size = pf->max_pf_txqs, 2773 .q_count = vsi->num_xdp_txq, 2774 .scatter_count = ICE_MAX_SCATTER_TXQS, 2775 .vsi_map = vsi->txq_map, 2776 .vsi_map_offset = vsi->alloc_txq, 2777 .mapping_mode = ICE_VSI_MAP_CONTIG 2778 }; 2779 struct device *dev; 2780 int status, i; 2781 2782 dev = ice_pf_to_dev(pf); 2783 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2784 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2785 if (!vsi->xdp_rings) 2786 return -ENOMEM; 2787 2788 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2789 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2790 goto err_map_xdp; 2791 2792 if (static_key_enabled(&ice_xdp_locking_key)) 2793 netdev_warn(vsi->netdev, 2794 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2795 2796 if (ice_xdp_alloc_setup_rings(vsi)) 2797 goto clear_xdp_rings; 2798 2799 /* omit the scheduler update if in reset path; XDP queues will be 2800 * taken into account at the end of ice_vsi_rebuild, where 2801 * ice_cfg_vsi_lan is being called 2802 */ 2803 if (cfg_type == ICE_XDP_CFG_PART) 2804 return 0; 2805 2806 ice_map_xdp_rings(vsi); 2807 2808 /* tell the Tx scheduler that right now we have 2809 * additional queues 2810 */ 2811 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2812 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2813 2814 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2815 max_txqs); 2816 if (status) { 2817 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2818 status); 2819 goto clear_xdp_rings; 2820 } 2821 2822 /* assign the prog only when it's not already present on VSI; 2823 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2824 * VSI rebuild that happens under ethtool -L can expose us to 2825 * the bpf_prog refcount issues as we would be swapping same 2826 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2827 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2828 * this is not harmful as dev_xdp_install bumps the refcount 2829 * before calling the op exposed by the driver; 2830 */ 2831 if (!ice_is_xdp_ena_vsi(vsi)) 2832 ice_vsi_assign_bpf_prog(vsi, prog); 2833 2834 return 0; 2835 clear_xdp_rings: 2836 ice_for_each_xdp_txq(vsi, i) 2837 if (vsi->xdp_rings[i]) { 2838 kfree_rcu(vsi->xdp_rings[i], rcu); 2839 vsi->xdp_rings[i] = NULL; 2840 } 2841 2842 err_map_xdp: 2843 mutex_lock(&pf->avail_q_mutex); 2844 ice_for_each_xdp_txq(vsi, i) { 2845 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2846 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2847 } 2848 mutex_unlock(&pf->avail_q_mutex); 2849 2850 devm_kfree(dev, vsi->xdp_rings); 2851 return -ENOMEM; 2852 } 2853 2854 /** 2855 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2856 * @vsi: VSI to remove XDP rings 2857 * @cfg_type: disable XDP permanently or allow it to be restored later 2858 * 2859 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2860 * resources 2861 */ 2862 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2863 { 2864 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2865 struct ice_pf *pf = vsi->back; 2866 int i, v_idx; 2867 2868 /* q_vectors are freed in reset path so there's no point in detaching 2869 * rings 2870 */ 2871 if (cfg_type == ICE_XDP_CFG_PART) 2872 goto free_qmap; 2873 2874 ice_for_each_q_vector(vsi, v_idx) { 2875 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2876 struct ice_tx_ring *ring; 2877 2878 ice_for_each_tx_ring(ring, q_vector->tx) 2879 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2880 break; 2881 2882 /* restore the value of last node prior to XDP setup */ 2883 q_vector->tx.tx_ring = ring; 2884 } 2885 2886 free_qmap: 2887 mutex_lock(&pf->avail_q_mutex); 2888 ice_for_each_xdp_txq(vsi, i) { 2889 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2890 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2891 } 2892 mutex_unlock(&pf->avail_q_mutex); 2893 2894 ice_for_each_xdp_txq(vsi, i) 2895 if (vsi->xdp_rings[i]) { 2896 if (vsi->xdp_rings[i]->desc) { 2897 synchronize_rcu(); 2898 ice_free_tx_ring(vsi->xdp_rings[i]); 2899 } 2900 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2901 vsi->xdp_rings[i]->ring_stats = NULL; 2902 kfree_rcu(vsi->xdp_rings[i], rcu); 2903 vsi->xdp_rings[i] = NULL; 2904 } 2905 2906 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2907 vsi->xdp_rings = NULL; 2908 2909 if (static_key_enabled(&ice_xdp_locking_key)) 2910 static_branch_dec(&ice_xdp_locking_key); 2911 2912 if (cfg_type == ICE_XDP_CFG_PART) 2913 return 0; 2914 2915 ice_vsi_assign_bpf_prog(vsi, NULL); 2916 2917 /* notify Tx scheduler that we destroyed XDP queues and bring 2918 * back the old number of child nodes 2919 */ 2920 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2921 max_txqs[i] = vsi->num_txq; 2922 2923 /* change number of XDP Tx queues to 0 */ 2924 vsi->num_xdp_txq = 0; 2925 2926 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2927 max_txqs); 2928 } 2929 2930 /** 2931 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2932 * @vsi: VSI to schedule napi on 2933 */ 2934 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2935 { 2936 int i; 2937 2938 ice_for_each_rxq(vsi, i) { 2939 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2940 2941 if (READ_ONCE(rx_ring->xsk_pool)) 2942 napi_schedule(&rx_ring->q_vector->napi); 2943 } 2944 } 2945 2946 /** 2947 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2948 * @vsi: VSI to determine the count of XDP Tx qs 2949 * 2950 * returns 0 if Tx qs count is higher than at least half of CPU count, 2951 * -ENOMEM otherwise 2952 */ 2953 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2954 { 2955 u16 avail = ice_get_avail_txq_count(vsi->back); 2956 u16 cpus = num_possible_cpus(); 2957 2958 if (avail < cpus / 2) 2959 return -ENOMEM; 2960 2961 if (vsi->type == ICE_VSI_SF) 2962 avail = vsi->alloc_txq; 2963 2964 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2965 2966 if (vsi->num_xdp_txq < cpus) 2967 static_branch_inc(&ice_xdp_locking_key); 2968 2969 return 0; 2970 } 2971 2972 /** 2973 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2974 * @vsi: Pointer to VSI structure 2975 */ 2976 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2977 { 2978 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2979 return ICE_RXBUF_1664; 2980 else 2981 return ICE_RXBUF_3072; 2982 } 2983 2984 /** 2985 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2986 * @vsi: VSI to setup XDP for 2987 * @prog: XDP program 2988 * @extack: netlink extended ack 2989 */ 2990 static int 2991 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2992 struct netlink_ext_ack *extack) 2993 { 2994 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2995 int ret = 0, xdp_ring_err = 0; 2996 bool if_running; 2997 2998 if (prog && !prog->aux->xdp_has_frags) { 2999 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3000 NL_SET_ERR_MSG_MOD(extack, 3001 "MTU is too large for linear frames and XDP prog does not support frags"); 3002 return -EOPNOTSUPP; 3003 } 3004 } 3005 3006 /* hot swap progs and avoid toggling link */ 3007 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 3008 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 3009 ice_vsi_assign_bpf_prog(vsi, prog); 3010 return 0; 3011 } 3012 3013 if_running = netif_running(vsi->netdev) && 3014 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3015 3016 /* need to stop netdev while setting up the program for Rx rings */ 3017 if (if_running) { 3018 ret = ice_down(vsi); 3019 if (ret) { 3020 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3021 return ret; 3022 } 3023 } 3024 3025 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3026 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3027 if (xdp_ring_err) { 3028 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3029 } else { 3030 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3031 ICE_XDP_CFG_FULL); 3032 if (xdp_ring_err) 3033 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3034 } 3035 xdp_features_set_redirect_target(vsi->netdev, true); 3036 /* reallocate Rx queues that are used for zero-copy */ 3037 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3038 if (xdp_ring_err) 3039 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3040 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3041 xdp_features_clear_redirect_target(vsi->netdev); 3042 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3043 if (xdp_ring_err) 3044 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3045 /* reallocate Rx queues that were used for zero-copy */ 3046 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3047 if (xdp_ring_err) 3048 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3049 } 3050 3051 if (if_running) 3052 ret = ice_up(vsi); 3053 3054 if (!ret && prog) 3055 ice_vsi_rx_napi_schedule(vsi); 3056 3057 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3058 } 3059 3060 /** 3061 * ice_xdp_safe_mode - XDP handler for safe mode 3062 * @dev: netdevice 3063 * @xdp: XDP command 3064 */ 3065 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3066 struct netdev_bpf *xdp) 3067 { 3068 NL_SET_ERR_MSG_MOD(xdp->extack, 3069 "Please provide working DDP firmware package in order to use XDP\n" 3070 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3071 return -EOPNOTSUPP; 3072 } 3073 3074 /** 3075 * ice_xdp - implements XDP handler 3076 * @dev: netdevice 3077 * @xdp: XDP command 3078 */ 3079 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3080 { 3081 struct ice_netdev_priv *np = netdev_priv(dev); 3082 struct ice_vsi *vsi = np->vsi; 3083 int ret; 3084 3085 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3086 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3087 return -EINVAL; 3088 } 3089 3090 mutex_lock(&vsi->xdp_state_lock); 3091 3092 switch (xdp->command) { 3093 case XDP_SETUP_PROG: 3094 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3095 break; 3096 case XDP_SETUP_XSK_POOL: 3097 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3098 break; 3099 default: 3100 ret = -EINVAL; 3101 } 3102 3103 mutex_unlock(&vsi->xdp_state_lock); 3104 return ret; 3105 } 3106 3107 /** 3108 * ice_ena_misc_vector - enable the non-queue interrupts 3109 * @pf: board private structure 3110 */ 3111 static void ice_ena_misc_vector(struct ice_pf *pf) 3112 { 3113 struct ice_hw *hw = &pf->hw; 3114 u32 pf_intr_start_offset; 3115 u32 val; 3116 3117 /* Disable anti-spoof detection interrupt to prevent spurious event 3118 * interrupts during a function reset. Anti-spoof functionally is 3119 * still supported. 3120 */ 3121 val = rd32(hw, GL_MDCK_TX_TDPU); 3122 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3123 wr32(hw, GL_MDCK_TX_TDPU, val); 3124 3125 /* clear things first */ 3126 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3127 rd32(hw, PFINT_OICR); /* read to clear */ 3128 3129 val = (PFINT_OICR_ECC_ERR_M | 3130 PFINT_OICR_MAL_DETECT_M | 3131 PFINT_OICR_GRST_M | 3132 PFINT_OICR_PCI_EXCEPTION_M | 3133 PFINT_OICR_VFLR_M | 3134 PFINT_OICR_HMC_ERR_M | 3135 PFINT_OICR_PE_PUSH_M | 3136 PFINT_OICR_PE_CRITERR_M); 3137 3138 wr32(hw, PFINT_OICR_ENA, val); 3139 3140 /* SW_ITR_IDX = 0, but don't change INTENA */ 3141 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3142 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3143 3144 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3145 return; 3146 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3147 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3148 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3149 } 3150 3151 /** 3152 * ice_ll_ts_intr - ll_ts interrupt handler 3153 * @irq: interrupt number 3154 * @data: pointer to a q_vector 3155 */ 3156 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3157 { 3158 struct ice_pf *pf = data; 3159 u32 pf_intr_start_offset; 3160 struct ice_ptp_tx *tx; 3161 unsigned long flags; 3162 struct ice_hw *hw; 3163 u32 val; 3164 u8 idx; 3165 3166 hw = &pf->hw; 3167 tx = &pf->ptp.port.tx; 3168 spin_lock_irqsave(&tx->lock, flags); 3169 ice_ptp_complete_tx_single_tstamp(tx); 3170 3171 idx = find_next_bit_wrap(tx->in_use, tx->len, 3172 tx->last_ll_ts_idx_read + 1); 3173 if (idx != tx->len) 3174 ice_ptp_req_tx_single_tstamp(tx, idx); 3175 spin_unlock_irqrestore(&tx->lock, flags); 3176 3177 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3178 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3179 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3180 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3181 val); 3182 3183 return IRQ_HANDLED; 3184 } 3185 3186 /** 3187 * ice_misc_intr - misc interrupt handler 3188 * @irq: interrupt number 3189 * @data: pointer to a q_vector 3190 */ 3191 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3192 { 3193 struct ice_pf *pf = (struct ice_pf *)data; 3194 irqreturn_t ret = IRQ_HANDLED; 3195 struct ice_hw *hw = &pf->hw; 3196 struct device *dev; 3197 u32 oicr, ena_mask; 3198 3199 dev = ice_pf_to_dev(pf); 3200 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3201 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3202 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3203 3204 oicr = rd32(hw, PFINT_OICR); 3205 ena_mask = rd32(hw, PFINT_OICR_ENA); 3206 3207 if (oicr & PFINT_OICR_SWINT_M) { 3208 ena_mask &= ~PFINT_OICR_SWINT_M; 3209 pf->sw_int_count++; 3210 } 3211 3212 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3213 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3214 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3215 } 3216 if (oicr & PFINT_OICR_VFLR_M) { 3217 /* disable any further VFLR event notifications */ 3218 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3219 u32 reg = rd32(hw, PFINT_OICR_ENA); 3220 3221 reg &= ~PFINT_OICR_VFLR_M; 3222 wr32(hw, PFINT_OICR_ENA, reg); 3223 } else { 3224 ena_mask &= ~PFINT_OICR_VFLR_M; 3225 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3226 } 3227 } 3228 3229 if (oicr & PFINT_OICR_GRST_M) { 3230 u32 reset; 3231 3232 /* we have a reset warning */ 3233 ena_mask &= ~PFINT_OICR_GRST_M; 3234 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3235 rd32(hw, GLGEN_RSTAT)); 3236 3237 if (reset == ICE_RESET_CORER) 3238 pf->corer_count++; 3239 else if (reset == ICE_RESET_GLOBR) 3240 pf->globr_count++; 3241 else if (reset == ICE_RESET_EMPR) 3242 pf->empr_count++; 3243 else 3244 dev_dbg(dev, "Invalid reset type %d\n", reset); 3245 3246 /* If a reset cycle isn't already in progress, we set a bit in 3247 * pf->state so that the service task can start a reset/rebuild. 3248 */ 3249 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3250 if (reset == ICE_RESET_CORER) 3251 set_bit(ICE_CORER_RECV, pf->state); 3252 else if (reset == ICE_RESET_GLOBR) 3253 set_bit(ICE_GLOBR_RECV, pf->state); 3254 else 3255 set_bit(ICE_EMPR_RECV, pf->state); 3256 3257 /* There are couple of different bits at play here. 3258 * hw->reset_ongoing indicates whether the hardware is 3259 * in reset. This is set to true when a reset interrupt 3260 * is received and set back to false after the driver 3261 * has determined that the hardware is out of reset. 3262 * 3263 * ICE_RESET_OICR_RECV in pf->state indicates 3264 * that a post reset rebuild is required before the 3265 * driver is operational again. This is set above. 3266 * 3267 * As this is the start of the reset/rebuild cycle, set 3268 * both to indicate that. 3269 */ 3270 hw->reset_ongoing = true; 3271 } 3272 } 3273 3274 if (oicr & PFINT_OICR_TSYN_TX_M) { 3275 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3276 if (ice_pf_state_is_nominal(pf) && 3277 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3278 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3279 unsigned long flags; 3280 u8 idx; 3281 3282 spin_lock_irqsave(&tx->lock, flags); 3283 idx = find_next_bit_wrap(tx->in_use, tx->len, 3284 tx->last_ll_ts_idx_read + 1); 3285 if (idx != tx->len) 3286 ice_ptp_req_tx_single_tstamp(tx, idx); 3287 spin_unlock_irqrestore(&tx->lock, flags); 3288 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3289 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3290 ret = IRQ_WAKE_THREAD; 3291 } 3292 } 3293 3294 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3295 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3296 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3297 3298 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3299 3300 if (ice_pf_src_tmr_owned(pf)) { 3301 /* Save EVENTs from GLTSYN register */ 3302 pf->ptp.ext_ts_irq |= gltsyn_stat & 3303 (GLTSYN_STAT_EVENT0_M | 3304 GLTSYN_STAT_EVENT1_M | 3305 GLTSYN_STAT_EVENT2_M); 3306 3307 ice_ptp_extts_event(pf); 3308 } 3309 } 3310 3311 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3312 if (oicr & ICE_AUX_CRIT_ERR) { 3313 pf->oicr_err_reg |= oicr; 3314 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3315 ena_mask &= ~ICE_AUX_CRIT_ERR; 3316 } 3317 3318 /* Report any remaining unexpected interrupts */ 3319 oicr &= ena_mask; 3320 if (oicr) { 3321 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3322 /* If a critical error is pending there is no choice but to 3323 * reset the device. 3324 */ 3325 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3326 PFINT_OICR_ECC_ERR_M)) { 3327 set_bit(ICE_PFR_REQ, pf->state); 3328 } 3329 } 3330 ice_service_task_schedule(pf); 3331 if (ret == IRQ_HANDLED) 3332 ice_irq_dynamic_ena(hw, NULL, NULL); 3333 3334 return ret; 3335 } 3336 3337 /** 3338 * ice_misc_intr_thread_fn - misc interrupt thread function 3339 * @irq: interrupt number 3340 * @data: pointer to a q_vector 3341 */ 3342 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3343 { 3344 struct ice_pf *pf = data; 3345 struct ice_hw *hw; 3346 3347 hw = &pf->hw; 3348 3349 if (ice_is_reset_in_progress(pf->state)) 3350 goto skip_irq; 3351 3352 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3353 /* Process outstanding Tx timestamps. If there is more work, 3354 * re-arm the interrupt to trigger again. 3355 */ 3356 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3357 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3358 ice_flush(hw); 3359 } 3360 } 3361 3362 skip_irq: 3363 ice_irq_dynamic_ena(hw, NULL, NULL); 3364 3365 return IRQ_HANDLED; 3366 } 3367 3368 /** 3369 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3370 * @hw: pointer to HW structure 3371 */ 3372 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3373 { 3374 /* disable Admin queue Interrupt causes */ 3375 wr32(hw, PFINT_FW_CTL, 3376 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3377 3378 /* disable Mailbox queue Interrupt causes */ 3379 wr32(hw, PFINT_MBX_CTL, 3380 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3381 3382 wr32(hw, PFINT_SB_CTL, 3383 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3384 3385 /* disable Control queue Interrupt causes */ 3386 wr32(hw, PFINT_OICR_CTL, 3387 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3388 3389 ice_flush(hw); 3390 } 3391 3392 /** 3393 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3394 * @pf: board private structure 3395 */ 3396 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3397 { 3398 int irq_num = pf->ll_ts_irq.virq; 3399 3400 synchronize_irq(irq_num); 3401 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3402 3403 ice_free_irq(pf, pf->ll_ts_irq); 3404 } 3405 3406 /** 3407 * ice_free_irq_msix_misc - Unroll misc vector setup 3408 * @pf: board private structure 3409 */ 3410 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3411 { 3412 int misc_irq_num = pf->oicr_irq.virq; 3413 struct ice_hw *hw = &pf->hw; 3414 3415 ice_dis_ctrlq_interrupts(hw); 3416 3417 /* disable OICR interrupt */ 3418 wr32(hw, PFINT_OICR_ENA, 0); 3419 ice_flush(hw); 3420 3421 synchronize_irq(misc_irq_num); 3422 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3423 3424 ice_free_irq(pf, pf->oicr_irq); 3425 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3426 ice_free_irq_msix_ll_ts(pf); 3427 } 3428 3429 /** 3430 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3431 * @hw: pointer to HW structure 3432 * @reg_idx: HW vector index to associate the control queue interrupts with 3433 */ 3434 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3435 { 3436 u32 val; 3437 3438 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3439 PFINT_OICR_CTL_CAUSE_ENA_M); 3440 wr32(hw, PFINT_OICR_CTL, val); 3441 3442 /* enable Admin queue Interrupt causes */ 3443 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3444 PFINT_FW_CTL_CAUSE_ENA_M); 3445 wr32(hw, PFINT_FW_CTL, val); 3446 3447 /* enable Mailbox queue Interrupt causes */ 3448 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3449 PFINT_MBX_CTL_CAUSE_ENA_M); 3450 wr32(hw, PFINT_MBX_CTL, val); 3451 3452 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3453 /* enable Sideband queue Interrupt causes */ 3454 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3455 PFINT_SB_CTL_CAUSE_ENA_M); 3456 wr32(hw, PFINT_SB_CTL, val); 3457 } 3458 3459 ice_flush(hw); 3460 } 3461 3462 /** 3463 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3464 * @pf: board private structure 3465 * 3466 * This sets up the handler for MSIX 0, which is used to manage the 3467 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3468 * when in MSI or Legacy interrupt mode. 3469 */ 3470 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3471 { 3472 struct device *dev = ice_pf_to_dev(pf); 3473 struct ice_hw *hw = &pf->hw; 3474 u32 pf_intr_start_offset; 3475 struct msi_map irq; 3476 int err = 0; 3477 3478 if (!pf->int_name[0]) 3479 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3480 dev_driver_string(dev), dev_name(dev)); 3481 3482 if (!pf->int_name_ll_ts[0]) 3483 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3484 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3485 /* Do not request IRQ but do enable OICR interrupt since settings are 3486 * lost during reset. Note that this function is called only during 3487 * rebuild path and not while reset is in progress. 3488 */ 3489 if (ice_is_reset_in_progress(pf->state)) 3490 goto skip_req_irq; 3491 3492 /* reserve one vector in irq_tracker for misc interrupts */ 3493 irq = ice_alloc_irq(pf, false); 3494 if (irq.index < 0) 3495 return irq.index; 3496 3497 pf->oicr_irq = irq; 3498 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3499 ice_misc_intr_thread_fn, 0, 3500 pf->int_name, pf); 3501 if (err) { 3502 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3503 pf->int_name, err); 3504 ice_free_irq(pf, pf->oicr_irq); 3505 return err; 3506 } 3507 3508 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3509 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3510 goto skip_req_irq; 3511 3512 irq = ice_alloc_irq(pf, false); 3513 if (irq.index < 0) 3514 return irq.index; 3515 3516 pf->ll_ts_irq = irq; 3517 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3518 pf->int_name_ll_ts, pf); 3519 if (err) { 3520 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3521 pf->int_name_ll_ts, err); 3522 ice_free_irq(pf, pf->ll_ts_irq); 3523 return err; 3524 } 3525 3526 skip_req_irq: 3527 ice_ena_misc_vector(pf); 3528 3529 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3530 /* This enables LL TS interrupt */ 3531 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3532 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3533 wr32(hw, PFINT_SB_CTL, 3534 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3535 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3536 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3537 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3538 3539 ice_flush(hw); 3540 ice_irq_dynamic_ena(hw, NULL, NULL); 3541 3542 return 0; 3543 } 3544 3545 /** 3546 * ice_set_ops - set netdev and ethtools ops for the given netdev 3547 * @vsi: the VSI associated with the new netdev 3548 */ 3549 static void ice_set_ops(struct ice_vsi *vsi) 3550 { 3551 struct net_device *netdev = vsi->netdev; 3552 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3553 3554 if (ice_is_safe_mode(pf)) { 3555 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3556 ice_set_ethtool_safe_mode_ops(netdev); 3557 return; 3558 } 3559 3560 netdev->netdev_ops = &ice_netdev_ops; 3561 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3562 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3563 ice_set_ethtool_ops(netdev); 3564 3565 if (vsi->type != ICE_VSI_PF) 3566 return; 3567 3568 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3569 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3570 NETDEV_XDP_ACT_RX_SG; 3571 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3572 } 3573 3574 /** 3575 * ice_set_netdev_features - set features for the given netdev 3576 * @netdev: netdev instance 3577 */ 3578 void ice_set_netdev_features(struct net_device *netdev) 3579 { 3580 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3581 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3582 netdev_features_t csumo_features; 3583 netdev_features_t vlano_features; 3584 netdev_features_t dflt_features; 3585 netdev_features_t tso_features; 3586 3587 if (ice_is_safe_mode(pf)) { 3588 /* safe mode */ 3589 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3590 netdev->hw_features = netdev->features; 3591 return; 3592 } 3593 3594 dflt_features = NETIF_F_SG | 3595 NETIF_F_HIGHDMA | 3596 NETIF_F_NTUPLE | 3597 NETIF_F_RXHASH; 3598 3599 csumo_features = NETIF_F_RXCSUM | 3600 NETIF_F_IP_CSUM | 3601 NETIF_F_SCTP_CRC | 3602 NETIF_F_IPV6_CSUM; 3603 3604 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3605 NETIF_F_HW_VLAN_CTAG_TX | 3606 NETIF_F_HW_VLAN_CTAG_RX; 3607 3608 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3609 if (is_dvm_ena) 3610 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3611 3612 tso_features = NETIF_F_TSO | 3613 NETIF_F_TSO_ECN | 3614 NETIF_F_TSO6 | 3615 NETIF_F_GSO_GRE | 3616 NETIF_F_GSO_UDP_TUNNEL | 3617 NETIF_F_GSO_GRE_CSUM | 3618 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3619 NETIF_F_GSO_PARTIAL | 3620 NETIF_F_GSO_IPXIP4 | 3621 NETIF_F_GSO_IPXIP6 | 3622 NETIF_F_GSO_UDP_L4; 3623 3624 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3625 NETIF_F_GSO_GRE_CSUM; 3626 /* set features that user can change */ 3627 netdev->hw_features = dflt_features | csumo_features | 3628 vlano_features | tso_features; 3629 3630 /* add support for HW_CSUM on packets with MPLS header */ 3631 netdev->mpls_features = NETIF_F_HW_CSUM | 3632 NETIF_F_TSO | 3633 NETIF_F_TSO6; 3634 3635 /* enable features */ 3636 netdev->features |= netdev->hw_features; 3637 3638 netdev->hw_features |= NETIF_F_HW_TC; 3639 netdev->hw_features |= NETIF_F_LOOPBACK; 3640 3641 /* encap and VLAN devices inherit default, csumo and tso features */ 3642 netdev->hw_enc_features |= dflt_features | csumo_features | 3643 tso_features; 3644 netdev->vlan_features |= dflt_features | csumo_features | 3645 tso_features; 3646 3647 /* advertise support but don't enable by default since only one type of 3648 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3649 * type turns on the other has to be turned off. This is enforced by the 3650 * ice_fix_features() ndo callback. 3651 */ 3652 if (is_dvm_ena) 3653 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3654 NETIF_F_HW_VLAN_STAG_TX; 3655 3656 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3657 * be changed at runtime 3658 */ 3659 netdev->hw_features |= NETIF_F_RXFCS; 3660 3661 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3662 } 3663 3664 /** 3665 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3666 * @lut: Lookup table 3667 * @rss_table_size: Lookup table size 3668 * @rss_size: Range of queue number for hashing 3669 */ 3670 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3671 { 3672 u16 i; 3673 3674 for (i = 0; i < rss_table_size; i++) 3675 lut[i] = i % rss_size; 3676 } 3677 3678 /** 3679 * ice_pf_vsi_setup - Set up a PF VSI 3680 * @pf: board private structure 3681 * @pi: pointer to the port_info instance 3682 * 3683 * Returns pointer to the successfully allocated VSI software struct 3684 * on success, otherwise returns NULL on failure. 3685 */ 3686 static struct ice_vsi * 3687 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3688 { 3689 struct ice_vsi_cfg_params params = {}; 3690 3691 params.type = ICE_VSI_PF; 3692 params.port_info = pi; 3693 params.flags = ICE_VSI_FLAG_INIT; 3694 3695 return ice_vsi_setup(pf, ¶ms); 3696 } 3697 3698 static struct ice_vsi * 3699 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3700 struct ice_channel *ch) 3701 { 3702 struct ice_vsi_cfg_params params = {}; 3703 3704 params.type = ICE_VSI_CHNL; 3705 params.port_info = pi; 3706 params.ch = ch; 3707 params.flags = ICE_VSI_FLAG_INIT; 3708 3709 return ice_vsi_setup(pf, ¶ms); 3710 } 3711 3712 /** 3713 * ice_ctrl_vsi_setup - Set up a control VSI 3714 * @pf: board private structure 3715 * @pi: pointer to the port_info instance 3716 * 3717 * Returns pointer to the successfully allocated VSI software struct 3718 * on success, otherwise returns NULL on failure. 3719 */ 3720 static struct ice_vsi * 3721 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3722 { 3723 struct ice_vsi_cfg_params params = {}; 3724 3725 params.type = ICE_VSI_CTRL; 3726 params.port_info = pi; 3727 params.flags = ICE_VSI_FLAG_INIT; 3728 3729 return ice_vsi_setup(pf, ¶ms); 3730 } 3731 3732 /** 3733 * ice_lb_vsi_setup - Set up a loopback VSI 3734 * @pf: board private structure 3735 * @pi: pointer to the port_info instance 3736 * 3737 * Returns pointer to the successfully allocated VSI software struct 3738 * on success, otherwise returns NULL on failure. 3739 */ 3740 struct ice_vsi * 3741 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3742 { 3743 struct ice_vsi_cfg_params params = {}; 3744 3745 params.type = ICE_VSI_LB; 3746 params.port_info = pi; 3747 params.flags = ICE_VSI_FLAG_INIT; 3748 3749 return ice_vsi_setup(pf, ¶ms); 3750 } 3751 3752 /** 3753 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3754 * @netdev: network interface to be adjusted 3755 * @proto: VLAN TPID 3756 * @vid: VLAN ID to be added 3757 * 3758 * net_device_ops implementation for adding VLAN IDs 3759 */ 3760 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3761 { 3762 struct ice_netdev_priv *np = netdev_priv(netdev); 3763 struct ice_vsi_vlan_ops *vlan_ops; 3764 struct ice_vsi *vsi = np->vsi; 3765 struct ice_vlan vlan; 3766 int ret; 3767 3768 /* VLAN 0 is added by default during load/reset */ 3769 if (!vid) 3770 return 0; 3771 3772 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3773 usleep_range(1000, 2000); 3774 3775 /* Add multicast promisc rule for the VLAN ID to be added if 3776 * all-multicast is currently enabled. 3777 */ 3778 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3779 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3780 ICE_MCAST_VLAN_PROMISC_BITS, 3781 vid); 3782 if (ret) 3783 goto finish; 3784 } 3785 3786 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3787 3788 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3789 * packets aren't pruned by the device's internal switch on Rx 3790 */ 3791 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3792 ret = vlan_ops->add_vlan(vsi, &vlan); 3793 if (ret) 3794 goto finish; 3795 3796 /* If all-multicast is currently enabled and this VLAN ID is only one 3797 * besides VLAN-0 we have to update look-up type of multicast promisc 3798 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3799 */ 3800 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3801 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3802 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3803 ICE_MCAST_PROMISC_BITS, 0); 3804 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3805 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3806 } 3807 3808 finish: 3809 clear_bit(ICE_CFG_BUSY, vsi->state); 3810 3811 return ret; 3812 } 3813 3814 /** 3815 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3816 * @netdev: network interface to be adjusted 3817 * @proto: VLAN TPID 3818 * @vid: VLAN ID to be removed 3819 * 3820 * net_device_ops implementation for removing VLAN IDs 3821 */ 3822 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3823 { 3824 struct ice_netdev_priv *np = netdev_priv(netdev); 3825 struct ice_vsi_vlan_ops *vlan_ops; 3826 struct ice_vsi *vsi = np->vsi; 3827 struct ice_vlan vlan; 3828 int ret; 3829 3830 /* don't allow removal of VLAN 0 */ 3831 if (!vid) 3832 return 0; 3833 3834 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3835 usleep_range(1000, 2000); 3836 3837 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3838 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3839 if (ret) { 3840 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3841 vsi->vsi_num); 3842 vsi->current_netdev_flags |= IFF_ALLMULTI; 3843 } 3844 3845 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3846 3847 /* Make sure VLAN delete is successful before updating VLAN 3848 * information 3849 */ 3850 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3851 ret = vlan_ops->del_vlan(vsi, &vlan); 3852 if (ret) 3853 goto finish; 3854 3855 /* Remove multicast promisc rule for the removed VLAN ID if 3856 * all-multicast is enabled. 3857 */ 3858 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3859 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3860 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3861 3862 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3863 /* Update look-up type of multicast promisc rule for VLAN 0 3864 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3865 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3866 */ 3867 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3868 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3869 ICE_MCAST_VLAN_PROMISC_BITS, 3870 0); 3871 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3872 ICE_MCAST_PROMISC_BITS, 0); 3873 } 3874 } 3875 3876 finish: 3877 clear_bit(ICE_CFG_BUSY, vsi->state); 3878 3879 return ret; 3880 } 3881 3882 /** 3883 * ice_rep_indr_tc_block_unbind 3884 * @cb_priv: indirection block private data 3885 */ 3886 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3887 { 3888 struct ice_indr_block_priv *indr_priv = cb_priv; 3889 3890 list_del(&indr_priv->list); 3891 kfree(indr_priv); 3892 } 3893 3894 /** 3895 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3896 * @vsi: VSI struct which has the netdev 3897 */ 3898 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3899 { 3900 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3901 3902 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3903 ice_rep_indr_tc_block_unbind); 3904 } 3905 3906 /** 3907 * ice_tc_indir_block_register - Register TC indirect block notifications 3908 * @vsi: VSI struct which has the netdev 3909 * 3910 * Returns 0 on success, negative value on failure 3911 */ 3912 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3913 { 3914 struct ice_netdev_priv *np; 3915 3916 if (!vsi || !vsi->netdev) 3917 return -EINVAL; 3918 3919 np = netdev_priv(vsi->netdev); 3920 3921 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3922 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3923 } 3924 3925 /** 3926 * ice_get_avail_q_count - Get count of queues in use 3927 * @pf_qmap: bitmap to get queue use count from 3928 * @lock: pointer to a mutex that protects access to pf_qmap 3929 * @size: size of the bitmap 3930 */ 3931 static u16 3932 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3933 { 3934 unsigned long bit; 3935 u16 count = 0; 3936 3937 mutex_lock(lock); 3938 for_each_clear_bit(bit, pf_qmap, size) 3939 count++; 3940 mutex_unlock(lock); 3941 3942 return count; 3943 } 3944 3945 /** 3946 * ice_get_avail_txq_count - Get count of Tx queues in use 3947 * @pf: pointer to an ice_pf instance 3948 */ 3949 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3950 { 3951 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3952 pf->max_pf_txqs); 3953 } 3954 3955 /** 3956 * ice_get_avail_rxq_count - Get count of Rx queues in use 3957 * @pf: pointer to an ice_pf instance 3958 */ 3959 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3960 { 3961 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3962 pf->max_pf_rxqs); 3963 } 3964 3965 /** 3966 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3967 * @pf: board private structure to initialize 3968 */ 3969 static void ice_deinit_pf(struct ice_pf *pf) 3970 { 3971 ice_service_task_stop(pf); 3972 mutex_destroy(&pf->lag_mutex); 3973 mutex_destroy(&pf->adev_mutex); 3974 mutex_destroy(&pf->sw_mutex); 3975 mutex_destroy(&pf->tc_mutex); 3976 mutex_destroy(&pf->avail_q_mutex); 3977 mutex_destroy(&pf->vfs.table_lock); 3978 3979 if (pf->avail_txqs) { 3980 bitmap_free(pf->avail_txqs); 3981 pf->avail_txqs = NULL; 3982 } 3983 3984 if (pf->avail_rxqs) { 3985 bitmap_free(pf->avail_rxqs); 3986 pf->avail_rxqs = NULL; 3987 } 3988 3989 if (pf->ptp.clock) 3990 ptp_clock_unregister(pf->ptp.clock); 3991 3992 xa_destroy(&pf->dyn_ports); 3993 xa_destroy(&pf->sf_nums); 3994 } 3995 3996 /** 3997 * ice_set_pf_caps - set PFs capability flags 3998 * @pf: pointer to the PF instance 3999 */ 4000 static void ice_set_pf_caps(struct ice_pf *pf) 4001 { 4002 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4003 4004 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4005 if (func_caps->common_cap.rdma) 4006 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4007 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4008 if (func_caps->common_cap.dcb) 4009 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4010 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4011 if (func_caps->common_cap.sr_iov_1_1) { 4012 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4013 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4014 ICE_MAX_SRIOV_VFS); 4015 } 4016 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4017 if (func_caps->common_cap.rss_table_size) 4018 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4019 4020 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4021 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4022 u16 unused; 4023 4024 /* ctrl_vsi_idx will be set to a valid value when flow director 4025 * is setup by ice_init_fdir 4026 */ 4027 pf->ctrl_vsi_idx = ICE_NO_VSI; 4028 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4029 /* force guaranteed filter pool for PF */ 4030 ice_alloc_fd_guar_item(&pf->hw, &unused, 4031 func_caps->fd_fltr_guar); 4032 /* force shared filter pool for PF */ 4033 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4034 func_caps->fd_fltr_best_effort); 4035 } 4036 4037 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4038 if (func_caps->common_cap.ieee_1588 && 4039 !(pf->hw.mac_type == ICE_MAC_E830)) 4040 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4041 4042 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4043 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4044 } 4045 4046 /** 4047 * ice_init_pf - Initialize general software structures (struct ice_pf) 4048 * @pf: board private structure to initialize 4049 */ 4050 static int ice_init_pf(struct ice_pf *pf) 4051 { 4052 ice_set_pf_caps(pf); 4053 4054 mutex_init(&pf->sw_mutex); 4055 mutex_init(&pf->tc_mutex); 4056 mutex_init(&pf->adev_mutex); 4057 mutex_init(&pf->lag_mutex); 4058 4059 INIT_HLIST_HEAD(&pf->aq_wait_list); 4060 spin_lock_init(&pf->aq_wait_lock); 4061 init_waitqueue_head(&pf->aq_wait_queue); 4062 4063 init_waitqueue_head(&pf->reset_wait_queue); 4064 4065 /* setup service timer and periodic service task */ 4066 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4067 pf->serv_tmr_period = HZ; 4068 INIT_WORK(&pf->serv_task, ice_service_task); 4069 clear_bit(ICE_SERVICE_SCHED, pf->state); 4070 4071 mutex_init(&pf->avail_q_mutex); 4072 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4073 if (!pf->avail_txqs) 4074 return -ENOMEM; 4075 4076 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4077 if (!pf->avail_rxqs) { 4078 bitmap_free(pf->avail_txqs); 4079 pf->avail_txqs = NULL; 4080 return -ENOMEM; 4081 } 4082 4083 mutex_init(&pf->vfs.table_lock); 4084 hash_init(pf->vfs.table); 4085 ice_mbx_init_snapshot(&pf->hw); 4086 4087 xa_init(&pf->dyn_ports); 4088 xa_init(&pf->sf_nums); 4089 4090 return 0; 4091 } 4092 4093 /** 4094 * ice_is_wol_supported - check if WoL is supported 4095 * @hw: pointer to hardware info 4096 * 4097 * Check if WoL is supported based on the HW configuration. 4098 * Returns true if NVM supports and enables WoL for this port, false otherwise 4099 */ 4100 bool ice_is_wol_supported(struct ice_hw *hw) 4101 { 4102 u16 wol_ctrl; 4103 4104 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4105 * word) indicates WoL is not supported on the corresponding PF ID. 4106 */ 4107 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4108 return false; 4109 4110 return !(BIT(hw->port_info->lport) & wol_ctrl); 4111 } 4112 4113 /** 4114 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4115 * @vsi: VSI being changed 4116 * @new_rx: new number of Rx queues 4117 * @new_tx: new number of Tx queues 4118 * @locked: is adev device_lock held 4119 * 4120 * Only change the number of queues if new_tx, or new_rx is non-0. 4121 * 4122 * Returns 0 on success. 4123 */ 4124 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4125 { 4126 struct ice_pf *pf = vsi->back; 4127 int i, err = 0, timeout = 50; 4128 4129 if (!new_rx && !new_tx) 4130 return -EINVAL; 4131 4132 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4133 timeout--; 4134 if (!timeout) 4135 return -EBUSY; 4136 usleep_range(1000, 2000); 4137 } 4138 4139 if (new_tx) 4140 vsi->req_txq = (u16)new_tx; 4141 if (new_rx) 4142 vsi->req_rxq = (u16)new_rx; 4143 4144 /* set for the next time the netdev is started */ 4145 if (!netif_running(vsi->netdev)) { 4146 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4147 if (err) 4148 goto rebuild_err; 4149 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4150 goto done; 4151 } 4152 4153 ice_vsi_close(vsi); 4154 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4155 if (err) 4156 goto rebuild_err; 4157 4158 ice_for_each_traffic_class(i) { 4159 if (vsi->tc_cfg.ena_tc & BIT(i)) 4160 netdev_set_tc_queue(vsi->netdev, 4161 vsi->tc_cfg.tc_info[i].netdev_tc, 4162 vsi->tc_cfg.tc_info[i].qcount_tx, 4163 vsi->tc_cfg.tc_info[i].qoffset); 4164 } 4165 ice_pf_dcb_recfg(pf, locked); 4166 ice_vsi_open(vsi); 4167 goto done; 4168 4169 rebuild_err: 4170 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4171 err); 4172 done: 4173 clear_bit(ICE_CFG_BUSY, pf->state); 4174 return err; 4175 } 4176 4177 /** 4178 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4179 * @pf: PF to configure 4180 * 4181 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4182 * VSI can still Tx/Rx VLAN tagged packets. 4183 */ 4184 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4185 { 4186 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4187 struct ice_vsi_ctx *ctxt; 4188 struct ice_hw *hw; 4189 int status; 4190 4191 if (!vsi) 4192 return; 4193 4194 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4195 if (!ctxt) 4196 return; 4197 4198 hw = &pf->hw; 4199 ctxt->info = vsi->info; 4200 4201 ctxt->info.valid_sections = 4202 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4203 ICE_AQ_VSI_PROP_SECURITY_VALID | 4204 ICE_AQ_VSI_PROP_SW_VALID); 4205 4206 /* disable VLAN anti-spoof */ 4207 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4208 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4209 4210 /* disable VLAN pruning and keep all other settings */ 4211 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4212 4213 /* allow all VLANs on Tx and don't strip on Rx */ 4214 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4215 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4216 4217 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4218 if (status) { 4219 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4220 status, ice_aq_str(hw->adminq.sq_last_status)); 4221 } else { 4222 vsi->info.sec_flags = ctxt->info.sec_flags; 4223 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4224 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4225 } 4226 4227 kfree(ctxt); 4228 } 4229 4230 /** 4231 * ice_log_pkg_init - log result of DDP package load 4232 * @hw: pointer to hardware info 4233 * @state: state of package load 4234 */ 4235 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4236 { 4237 struct ice_pf *pf = hw->back; 4238 struct device *dev; 4239 4240 dev = ice_pf_to_dev(pf); 4241 4242 switch (state) { 4243 case ICE_DDP_PKG_SUCCESS: 4244 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4245 hw->active_pkg_name, 4246 hw->active_pkg_ver.major, 4247 hw->active_pkg_ver.minor, 4248 hw->active_pkg_ver.update, 4249 hw->active_pkg_ver.draft); 4250 break; 4251 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4252 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4253 hw->active_pkg_name, 4254 hw->active_pkg_ver.major, 4255 hw->active_pkg_ver.minor, 4256 hw->active_pkg_ver.update, 4257 hw->active_pkg_ver.draft); 4258 break; 4259 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4260 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4261 hw->active_pkg_name, 4262 hw->active_pkg_ver.major, 4263 hw->active_pkg_ver.minor, 4264 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4265 break; 4266 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4267 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4268 hw->active_pkg_name, 4269 hw->active_pkg_ver.major, 4270 hw->active_pkg_ver.minor, 4271 hw->active_pkg_ver.update, 4272 hw->active_pkg_ver.draft, 4273 hw->pkg_name, 4274 hw->pkg_ver.major, 4275 hw->pkg_ver.minor, 4276 hw->pkg_ver.update, 4277 hw->pkg_ver.draft); 4278 break; 4279 case ICE_DDP_PKG_FW_MISMATCH: 4280 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4281 break; 4282 case ICE_DDP_PKG_INVALID_FILE: 4283 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4284 break; 4285 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4286 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4287 break; 4288 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4289 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4290 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4291 break; 4292 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4293 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4294 break; 4295 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4296 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4297 break; 4298 case ICE_DDP_PKG_LOAD_ERROR: 4299 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4300 /* poll for reset to complete */ 4301 if (ice_check_reset(hw)) 4302 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4303 break; 4304 case ICE_DDP_PKG_ERR: 4305 default: 4306 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4307 break; 4308 } 4309 } 4310 4311 /** 4312 * ice_load_pkg - load/reload the DDP Package file 4313 * @firmware: firmware structure when firmware requested or NULL for reload 4314 * @pf: pointer to the PF instance 4315 * 4316 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4317 * initialize HW tables. 4318 */ 4319 static void 4320 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4321 { 4322 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4323 struct device *dev = ice_pf_to_dev(pf); 4324 struct ice_hw *hw = &pf->hw; 4325 4326 /* Load DDP Package */ 4327 if (firmware && !hw->pkg_copy) { 4328 state = ice_copy_and_init_pkg(hw, firmware->data, 4329 firmware->size); 4330 ice_log_pkg_init(hw, state); 4331 } else if (!firmware && hw->pkg_copy) { 4332 /* Reload package during rebuild after CORER/GLOBR reset */ 4333 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4334 ice_log_pkg_init(hw, state); 4335 } else { 4336 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4337 } 4338 4339 if (!ice_is_init_pkg_successful(state)) { 4340 /* Safe Mode */ 4341 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4342 return; 4343 } 4344 4345 /* Successful download package is the precondition for advanced 4346 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4347 */ 4348 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4349 } 4350 4351 /** 4352 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4353 * @pf: pointer to the PF structure 4354 * 4355 * There is no error returned here because the driver should be able to handle 4356 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4357 * specifically with Tx. 4358 */ 4359 static void ice_verify_cacheline_size(struct ice_pf *pf) 4360 { 4361 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4362 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4363 ICE_CACHE_LINE_BYTES); 4364 } 4365 4366 /** 4367 * ice_send_version - update firmware with driver version 4368 * @pf: PF struct 4369 * 4370 * Returns 0 on success, else error code 4371 */ 4372 static int ice_send_version(struct ice_pf *pf) 4373 { 4374 struct ice_driver_ver dv; 4375 4376 dv.major_ver = 0xff; 4377 dv.minor_ver = 0xff; 4378 dv.build_ver = 0xff; 4379 dv.subbuild_ver = 0; 4380 strscpy((char *)dv.driver_string, UTS_RELEASE, 4381 sizeof(dv.driver_string)); 4382 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4383 } 4384 4385 /** 4386 * ice_init_fdir - Initialize flow director VSI and configuration 4387 * @pf: pointer to the PF instance 4388 * 4389 * returns 0 on success, negative on error 4390 */ 4391 static int ice_init_fdir(struct ice_pf *pf) 4392 { 4393 struct device *dev = ice_pf_to_dev(pf); 4394 struct ice_vsi *ctrl_vsi; 4395 int err; 4396 4397 /* Side Band Flow Director needs to have a control VSI. 4398 * Allocate it and store it in the PF. 4399 */ 4400 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4401 if (!ctrl_vsi) { 4402 dev_dbg(dev, "could not create control VSI\n"); 4403 return -ENOMEM; 4404 } 4405 4406 err = ice_vsi_open_ctrl(ctrl_vsi); 4407 if (err) { 4408 dev_dbg(dev, "could not open control VSI\n"); 4409 goto err_vsi_open; 4410 } 4411 4412 mutex_init(&pf->hw.fdir_fltr_lock); 4413 4414 err = ice_fdir_create_dflt_rules(pf); 4415 if (err) 4416 goto err_fdir_rule; 4417 4418 return 0; 4419 4420 err_fdir_rule: 4421 ice_fdir_release_flows(&pf->hw); 4422 ice_vsi_close(ctrl_vsi); 4423 err_vsi_open: 4424 ice_vsi_release(ctrl_vsi); 4425 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4426 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4427 pf->ctrl_vsi_idx = ICE_NO_VSI; 4428 } 4429 return err; 4430 } 4431 4432 static void ice_deinit_fdir(struct ice_pf *pf) 4433 { 4434 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4435 4436 if (!vsi) 4437 return; 4438 4439 ice_vsi_manage_fdir(vsi, false); 4440 ice_vsi_release(vsi); 4441 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4442 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4443 pf->ctrl_vsi_idx = ICE_NO_VSI; 4444 } 4445 4446 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4447 } 4448 4449 /** 4450 * ice_get_opt_fw_name - return optional firmware file name or NULL 4451 * @pf: pointer to the PF instance 4452 */ 4453 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4454 { 4455 /* Optional firmware name same as default with additional dash 4456 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4457 */ 4458 struct pci_dev *pdev = pf->pdev; 4459 char *opt_fw_filename; 4460 u64 dsn; 4461 4462 /* Determine the name of the optional file using the DSN (two 4463 * dwords following the start of the DSN Capability). 4464 */ 4465 dsn = pci_get_dsn(pdev); 4466 if (!dsn) 4467 return NULL; 4468 4469 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4470 if (!opt_fw_filename) 4471 return NULL; 4472 4473 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4474 ICE_DDP_PKG_PATH, dsn); 4475 4476 return opt_fw_filename; 4477 } 4478 4479 /** 4480 * ice_request_fw - Device initialization routine 4481 * @pf: pointer to the PF instance 4482 * @firmware: double pointer to firmware struct 4483 * 4484 * Return: zero when successful, negative values otherwise. 4485 */ 4486 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4487 { 4488 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4489 struct device *dev = ice_pf_to_dev(pf); 4490 int err = 0; 4491 4492 /* optional device-specific DDP (if present) overrides the default DDP 4493 * package file. kernel logs a debug message if the file doesn't exist, 4494 * and warning messages for other errors. 4495 */ 4496 if (opt_fw_filename) { 4497 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4498 kfree(opt_fw_filename); 4499 if (!err) 4500 return err; 4501 } 4502 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4503 if (err) 4504 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4505 4506 return err; 4507 } 4508 4509 /** 4510 * ice_init_tx_topology - performs Tx topology initialization 4511 * @hw: pointer to the hardware structure 4512 * @firmware: pointer to firmware structure 4513 * 4514 * Return: zero when init was successful, negative values otherwise. 4515 */ 4516 static int 4517 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4518 { 4519 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4520 struct ice_pf *pf = hw->back; 4521 struct device *dev; 4522 int err; 4523 4524 dev = ice_pf_to_dev(pf); 4525 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4526 if (!err) { 4527 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4528 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4529 else 4530 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4531 /* if there was a change in topology ice_cfg_tx_topo triggered 4532 * a CORER and we need to re-init hw 4533 */ 4534 ice_deinit_hw(hw); 4535 err = ice_init_hw(hw); 4536 4537 return err; 4538 } else if (err == -EIO) { 4539 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4540 } 4541 4542 return 0; 4543 } 4544 4545 /** 4546 * ice_init_ddp_config - DDP related configuration 4547 * @hw: pointer to the hardware structure 4548 * @pf: pointer to pf structure 4549 * 4550 * This function loads DDP file from the disk, then initializes Tx 4551 * topology. At the end DDP package is loaded on the card. 4552 * 4553 * Return: zero when init was successful, negative values otherwise. 4554 */ 4555 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4556 { 4557 struct device *dev = ice_pf_to_dev(pf); 4558 const struct firmware *firmware = NULL; 4559 int err; 4560 4561 err = ice_request_fw(pf, &firmware); 4562 if (err) { 4563 dev_err(dev, "Fail during requesting FW: %d\n", err); 4564 return err; 4565 } 4566 4567 err = ice_init_tx_topology(hw, firmware); 4568 if (err) { 4569 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4570 err); 4571 release_firmware(firmware); 4572 return err; 4573 } 4574 4575 /* Download firmware to device */ 4576 ice_load_pkg(firmware, pf); 4577 release_firmware(firmware); 4578 4579 return 0; 4580 } 4581 4582 /** 4583 * ice_print_wake_reason - show the wake up cause in the log 4584 * @pf: pointer to the PF struct 4585 */ 4586 static void ice_print_wake_reason(struct ice_pf *pf) 4587 { 4588 u32 wus = pf->wakeup_reason; 4589 const char *wake_str; 4590 4591 /* if no wake event, nothing to print */ 4592 if (!wus) 4593 return; 4594 4595 if (wus & PFPM_WUS_LNKC_M) 4596 wake_str = "Link\n"; 4597 else if (wus & PFPM_WUS_MAG_M) 4598 wake_str = "Magic Packet\n"; 4599 else if (wus & PFPM_WUS_MNG_M) 4600 wake_str = "Management\n"; 4601 else if (wus & PFPM_WUS_FW_RST_WK_M) 4602 wake_str = "Firmware Reset\n"; 4603 else 4604 wake_str = "Unknown\n"; 4605 4606 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4607 } 4608 4609 /** 4610 * ice_pf_fwlog_update_module - update 1 module 4611 * @pf: pointer to the PF struct 4612 * @log_level: log_level to use for the @module 4613 * @module: module to update 4614 */ 4615 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4616 { 4617 struct ice_hw *hw = &pf->hw; 4618 4619 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4620 } 4621 4622 /** 4623 * ice_register_netdev - register netdev 4624 * @vsi: pointer to the VSI struct 4625 */ 4626 static int ice_register_netdev(struct ice_vsi *vsi) 4627 { 4628 int err; 4629 4630 if (!vsi || !vsi->netdev) 4631 return -EIO; 4632 4633 err = register_netdev(vsi->netdev); 4634 if (err) 4635 return err; 4636 4637 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4638 netif_carrier_off(vsi->netdev); 4639 netif_tx_stop_all_queues(vsi->netdev); 4640 4641 return 0; 4642 } 4643 4644 static void ice_unregister_netdev(struct ice_vsi *vsi) 4645 { 4646 if (!vsi || !vsi->netdev) 4647 return; 4648 4649 unregister_netdev(vsi->netdev); 4650 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4651 } 4652 4653 /** 4654 * ice_cfg_netdev - Allocate, configure and register a netdev 4655 * @vsi: the VSI associated with the new netdev 4656 * 4657 * Returns 0 on success, negative value on failure 4658 */ 4659 static int ice_cfg_netdev(struct ice_vsi *vsi) 4660 { 4661 struct ice_netdev_priv *np; 4662 struct net_device *netdev; 4663 u8 mac_addr[ETH_ALEN]; 4664 4665 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4666 vsi->alloc_rxq); 4667 if (!netdev) 4668 return -ENOMEM; 4669 4670 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4671 vsi->netdev = netdev; 4672 np = netdev_priv(netdev); 4673 np->vsi = vsi; 4674 4675 ice_set_netdev_features(netdev); 4676 ice_set_ops(vsi); 4677 4678 if (vsi->type == ICE_VSI_PF) { 4679 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4680 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4681 eth_hw_addr_set(netdev, mac_addr); 4682 } 4683 4684 netdev->priv_flags |= IFF_UNICAST_FLT; 4685 4686 /* Setup netdev TC information */ 4687 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4688 4689 netdev->max_mtu = ICE_MAX_MTU; 4690 4691 return 0; 4692 } 4693 4694 static void ice_decfg_netdev(struct ice_vsi *vsi) 4695 { 4696 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4697 free_netdev(vsi->netdev); 4698 vsi->netdev = NULL; 4699 } 4700 4701 /** 4702 * ice_wait_for_fw - wait for full FW readiness 4703 * @hw: pointer to the hardware structure 4704 * @timeout: milliseconds that can elapse before timing out 4705 */ 4706 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4707 { 4708 int fw_loading; 4709 u32 elapsed = 0; 4710 4711 while (elapsed <= timeout) { 4712 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4713 4714 /* firmware was not yet loaded, we have to wait more */ 4715 if (fw_loading) { 4716 elapsed += 100; 4717 msleep(100); 4718 continue; 4719 } 4720 return 0; 4721 } 4722 4723 return -ETIMEDOUT; 4724 } 4725 4726 int ice_init_dev(struct ice_pf *pf) 4727 { 4728 struct device *dev = ice_pf_to_dev(pf); 4729 struct ice_hw *hw = &pf->hw; 4730 int err; 4731 4732 err = ice_init_hw(hw); 4733 if (err) { 4734 dev_err(dev, "ice_init_hw failed: %d\n", err); 4735 return err; 4736 } 4737 4738 /* Some cards require longer initialization times 4739 * due to necessity of loading FW from an external source. 4740 * This can take even half a minute. 4741 */ 4742 if (ice_is_pf_c827(hw)) { 4743 err = ice_wait_for_fw(hw, 30000); 4744 if (err) { 4745 dev_err(dev, "ice_wait_for_fw timed out"); 4746 return err; 4747 } 4748 } 4749 4750 ice_init_feature_support(pf); 4751 4752 err = ice_init_ddp_config(hw, pf); 4753 4754 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4755 * set in pf->state, which will cause ice_is_safe_mode to return 4756 * true 4757 */ 4758 if (err || ice_is_safe_mode(pf)) { 4759 /* we already got function/device capabilities but these don't 4760 * reflect what the driver needs to do in safe mode. Instead of 4761 * adding conditional logic everywhere to ignore these 4762 * device/function capabilities, override them. 4763 */ 4764 ice_set_safe_mode_caps(hw); 4765 } 4766 4767 err = ice_init_pf(pf); 4768 if (err) { 4769 dev_err(dev, "ice_init_pf failed: %d\n", err); 4770 goto err_init_pf; 4771 } 4772 4773 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4774 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4775 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4776 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4777 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4778 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4779 pf->hw.tnl.valid_count[TNL_VXLAN]; 4780 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4781 UDP_TUNNEL_TYPE_VXLAN; 4782 } 4783 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4784 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4785 pf->hw.tnl.valid_count[TNL_GENEVE]; 4786 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4787 UDP_TUNNEL_TYPE_GENEVE; 4788 } 4789 4790 err = ice_init_interrupt_scheme(pf); 4791 if (err) { 4792 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4793 err = -EIO; 4794 goto err_init_interrupt_scheme; 4795 } 4796 4797 /* In case of MSIX we are going to setup the misc vector right here 4798 * to handle admin queue events etc. In case of legacy and MSI 4799 * the misc functionality and queue processing is combined in 4800 * the same vector and that gets setup at open. 4801 */ 4802 err = ice_req_irq_msix_misc(pf); 4803 if (err) { 4804 dev_err(dev, "setup of misc vector failed: %d\n", err); 4805 goto err_req_irq_msix_misc; 4806 } 4807 4808 return 0; 4809 4810 err_req_irq_msix_misc: 4811 ice_clear_interrupt_scheme(pf); 4812 err_init_interrupt_scheme: 4813 ice_deinit_pf(pf); 4814 err_init_pf: 4815 ice_deinit_hw(hw); 4816 return err; 4817 } 4818 4819 void ice_deinit_dev(struct ice_pf *pf) 4820 { 4821 ice_free_irq_msix_misc(pf); 4822 ice_deinit_pf(pf); 4823 ice_deinit_hw(&pf->hw); 4824 4825 /* Service task is already stopped, so call reset directly. */ 4826 ice_reset(&pf->hw, ICE_RESET_PFR); 4827 pci_wait_for_pending_transaction(pf->pdev); 4828 ice_clear_interrupt_scheme(pf); 4829 } 4830 4831 static void ice_init_features(struct ice_pf *pf) 4832 { 4833 struct device *dev = ice_pf_to_dev(pf); 4834 4835 if (ice_is_safe_mode(pf)) 4836 return; 4837 4838 /* initialize DDP driven features */ 4839 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4840 ice_ptp_init(pf); 4841 4842 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4843 ice_gnss_init(pf); 4844 4845 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4846 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4847 ice_dpll_init(pf); 4848 4849 /* Note: Flow director init failure is non-fatal to load */ 4850 if (ice_init_fdir(pf)) 4851 dev_err(dev, "could not initialize flow director\n"); 4852 4853 /* Note: DCB init failure is non-fatal to load */ 4854 if (ice_init_pf_dcb(pf, false)) { 4855 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4856 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4857 } else { 4858 ice_cfg_lldp_mib_change(&pf->hw, true); 4859 } 4860 4861 if (ice_init_lag(pf)) 4862 dev_warn(dev, "Failed to init link aggregation support\n"); 4863 4864 ice_hwmon_init(pf); 4865 } 4866 4867 static void ice_deinit_features(struct ice_pf *pf) 4868 { 4869 if (ice_is_safe_mode(pf)) 4870 return; 4871 4872 ice_deinit_lag(pf); 4873 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4874 ice_cfg_lldp_mib_change(&pf->hw, false); 4875 ice_deinit_fdir(pf); 4876 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4877 ice_gnss_exit(pf); 4878 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4879 ice_ptp_release(pf); 4880 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4881 ice_dpll_deinit(pf); 4882 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4883 xa_destroy(&pf->eswitch.reprs); 4884 } 4885 4886 static void ice_init_wakeup(struct ice_pf *pf) 4887 { 4888 /* Save wakeup reason register for later use */ 4889 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4890 4891 /* check for a power management event */ 4892 ice_print_wake_reason(pf); 4893 4894 /* clear wake status, all bits */ 4895 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4896 4897 /* Disable WoL at init, wait for user to enable */ 4898 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4899 } 4900 4901 static int ice_init_link(struct ice_pf *pf) 4902 { 4903 struct device *dev = ice_pf_to_dev(pf); 4904 int err; 4905 4906 err = ice_init_link_events(pf->hw.port_info); 4907 if (err) { 4908 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4909 return err; 4910 } 4911 4912 /* not a fatal error if this fails */ 4913 err = ice_init_nvm_phy_type(pf->hw.port_info); 4914 if (err) 4915 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4916 4917 /* not a fatal error if this fails */ 4918 err = ice_update_link_info(pf->hw.port_info); 4919 if (err) 4920 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4921 4922 ice_init_link_dflt_override(pf->hw.port_info); 4923 4924 ice_check_link_cfg_err(pf, 4925 pf->hw.port_info->phy.link_info.link_cfg_err); 4926 4927 /* if media available, initialize PHY settings */ 4928 if (pf->hw.port_info->phy.link_info.link_info & 4929 ICE_AQ_MEDIA_AVAILABLE) { 4930 /* not a fatal error if this fails */ 4931 err = ice_init_phy_user_cfg(pf->hw.port_info); 4932 if (err) 4933 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4934 4935 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4936 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4937 4938 if (vsi) 4939 ice_configure_phy(vsi); 4940 } 4941 } else { 4942 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4943 } 4944 4945 return err; 4946 } 4947 4948 static int ice_init_pf_sw(struct ice_pf *pf) 4949 { 4950 bool dvm = ice_is_dvm_ena(&pf->hw); 4951 struct ice_vsi *vsi; 4952 int err; 4953 4954 /* create switch struct for the switch element created by FW on boot */ 4955 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4956 if (!pf->first_sw) 4957 return -ENOMEM; 4958 4959 if (pf->hw.evb_veb) 4960 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4961 else 4962 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4963 4964 pf->first_sw->pf = pf; 4965 4966 /* record the sw_id available for later use */ 4967 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4968 4969 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4970 if (err) 4971 goto err_aq_set_port_params; 4972 4973 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4974 if (!vsi) { 4975 err = -ENOMEM; 4976 goto err_pf_vsi_setup; 4977 } 4978 4979 return 0; 4980 4981 err_pf_vsi_setup: 4982 err_aq_set_port_params: 4983 kfree(pf->first_sw); 4984 return err; 4985 } 4986 4987 static void ice_deinit_pf_sw(struct ice_pf *pf) 4988 { 4989 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4990 4991 if (!vsi) 4992 return; 4993 4994 ice_vsi_release(vsi); 4995 kfree(pf->first_sw); 4996 } 4997 4998 static int ice_alloc_vsis(struct ice_pf *pf) 4999 { 5000 struct device *dev = ice_pf_to_dev(pf); 5001 5002 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5003 if (!pf->num_alloc_vsi) 5004 return -EIO; 5005 5006 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5007 dev_warn(dev, 5008 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5009 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5010 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5011 } 5012 5013 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5014 GFP_KERNEL); 5015 if (!pf->vsi) 5016 return -ENOMEM; 5017 5018 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5019 sizeof(*pf->vsi_stats), GFP_KERNEL); 5020 if (!pf->vsi_stats) { 5021 devm_kfree(dev, pf->vsi); 5022 return -ENOMEM; 5023 } 5024 5025 return 0; 5026 } 5027 5028 static void ice_dealloc_vsis(struct ice_pf *pf) 5029 { 5030 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5031 pf->vsi_stats = NULL; 5032 5033 pf->num_alloc_vsi = 0; 5034 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5035 pf->vsi = NULL; 5036 } 5037 5038 static int ice_init_devlink(struct ice_pf *pf) 5039 { 5040 int err; 5041 5042 err = ice_devlink_register_params(pf); 5043 if (err) 5044 return err; 5045 5046 ice_devlink_init_regions(pf); 5047 ice_devlink_register(pf); 5048 5049 return 0; 5050 } 5051 5052 static void ice_deinit_devlink(struct ice_pf *pf) 5053 { 5054 ice_devlink_unregister(pf); 5055 ice_devlink_destroy_regions(pf); 5056 ice_devlink_unregister_params(pf); 5057 } 5058 5059 static int ice_init(struct ice_pf *pf) 5060 { 5061 int err; 5062 5063 err = ice_init_dev(pf); 5064 if (err) 5065 return err; 5066 5067 err = ice_alloc_vsis(pf); 5068 if (err) 5069 goto err_alloc_vsis; 5070 5071 err = ice_init_pf_sw(pf); 5072 if (err) 5073 goto err_init_pf_sw; 5074 5075 ice_init_wakeup(pf); 5076 5077 err = ice_init_link(pf); 5078 if (err) 5079 goto err_init_link; 5080 5081 err = ice_send_version(pf); 5082 if (err) 5083 goto err_init_link; 5084 5085 ice_verify_cacheline_size(pf); 5086 5087 if (ice_is_safe_mode(pf)) 5088 ice_set_safe_mode_vlan_cfg(pf); 5089 else 5090 /* print PCI link speed and width */ 5091 pcie_print_link_status(pf->pdev); 5092 5093 /* ready to go, so clear down state bit */ 5094 clear_bit(ICE_DOWN, pf->state); 5095 clear_bit(ICE_SERVICE_DIS, pf->state); 5096 5097 /* since everything is good, start the service timer */ 5098 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5099 5100 return 0; 5101 5102 err_init_link: 5103 ice_deinit_pf_sw(pf); 5104 err_init_pf_sw: 5105 ice_dealloc_vsis(pf); 5106 err_alloc_vsis: 5107 ice_deinit_dev(pf); 5108 return err; 5109 } 5110 5111 static void ice_deinit(struct ice_pf *pf) 5112 { 5113 set_bit(ICE_SERVICE_DIS, pf->state); 5114 set_bit(ICE_DOWN, pf->state); 5115 5116 ice_deinit_pf_sw(pf); 5117 ice_dealloc_vsis(pf); 5118 ice_deinit_dev(pf); 5119 } 5120 5121 /** 5122 * ice_load - load pf by init hw and starting VSI 5123 * @pf: pointer to the pf instance 5124 * 5125 * This function has to be called under devl_lock. 5126 */ 5127 int ice_load(struct ice_pf *pf) 5128 { 5129 struct ice_vsi *vsi; 5130 int err; 5131 5132 devl_assert_locked(priv_to_devlink(pf)); 5133 5134 vsi = ice_get_main_vsi(pf); 5135 5136 /* init channel list */ 5137 INIT_LIST_HEAD(&vsi->ch_list); 5138 5139 err = ice_cfg_netdev(vsi); 5140 if (err) 5141 return err; 5142 5143 /* Setup DCB netlink interface */ 5144 ice_dcbnl_setup(vsi); 5145 5146 err = ice_init_mac_fltr(pf); 5147 if (err) 5148 goto err_init_mac_fltr; 5149 5150 err = ice_devlink_create_pf_port(pf); 5151 if (err) 5152 goto err_devlink_create_pf_port; 5153 5154 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5155 5156 err = ice_register_netdev(vsi); 5157 if (err) 5158 goto err_register_netdev; 5159 5160 err = ice_tc_indir_block_register(vsi); 5161 if (err) 5162 goto err_tc_indir_block_register; 5163 5164 ice_napi_add(vsi); 5165 5166 err = ice_init_rdma(pf); 5167 if (err) 5168 goto err_init_rdma; 5169 5170 ice_init_features(pf); 5171 ice_service_task_restart(pf); 5172 5173 clear_bit(ICE_DOWN, pf->state); 5174 5175 return 0; 5176 5177 err_init_rdma: 5178 ice_tc_indir_block_unregister(vsi); 5179 err_tc_indir_block_register: 5180 ice_unregister_netdev(vsi); 5181 err_register_netdev: 5182 ice_devlink_destroy_pf_port(pf); 5183 err_devlink_create_pf_port: 5184 err_init_mac_fltr: 5185 ice_decfg_netdev(vsi); 5186 return err; 5187 } 5188 5189 /** 5190 * ice_unload - unload pf by stopping VSI and deinit hw 5191 * @pf: pointer to the pf instance 5192 * 5193 * This function has to be called under devl_lock. 5194 */ 5195 void ice_unload(struct ice_pf *pf) 5196 { 5197 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5198 5199 devl_assert_locked(priv_to_devlink(pf)); 5200 5201 ice_deinit_features(pf); 5202 ice_deinit_rdma(pf); 5203 ice_tc_indir_block_unregister(vsi); 5204 ice_unregister_netdev(vsi); 5205 ice_devlink_destroy_pf_port(pf); 5206 ice_decfg_netdev(vsi); 5207 } 5208 5209 /** 5210 * ice_probe - Device initialization routine 5211 * @pdev: PCI device information struct 5212 * @ent: entry in ice_pci_tbl 5213 * 5214 * Returns 0 on success, negative on failure 5215 */ 5216 static int 5217 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5218 { 5219 struct device *dev = &pdev->dev; 5220 struct ice_adapter *adapter; 5221 struct ice_pf *pf; 5222 struct ice_hw *hw; 5223 int err; 5224 5225 if (pdev->is_virtfn) { 5226 dev_err(dev, "can't probe a virtual function\n"); 5227 return -EINVAL; 5228 } 5229 5230 /* when under a kdump kernel initiate a reset before enabling the 5231 * device in order to clear out any pending DMA transactions. These 5232 * transactions can cause some systems to machine check when doing 5233 * the pcim_enable_device() below. 5234 */ 5235 if (is_kdump_kernel()) { 5236 pci_save_state(pdev); 5237 pci_clear_master(pdev); 5238 err = pcie_flr(pdev); 5239 if (err) 5240 return err; 5241 pci_restore_state(pdev); 5242 } 5243 5244 /* this driver uses devres, see 5245 * Documentation/driver-api/driver-model/devres.rst 5246 */ 5247 err = pcim_enable_device(pdev); 5248 if (err) 5249 return err; 5250 5251 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5252 if (err) { 5253 dev_err(dev, "BAR0 I/O map error %d\n", err); 5254 return err; 5255 } 5256 5257 pf = ice_allocate_pf(dev); 5258 if (!pf) 5259 return -ENOMEM; 5260 5261 /* initialize Auxiliary index to invalid value */ 5262 pf->aux_idx = -1; 5263 5264 /* set up for high or low DMA */ 5265 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5266 if (err) { 5267 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5268 return err; 5269 } 5270 5271 pci_set_master(pdev); 5272 5273 adapter = ice_adapter_get(pdev); 5274 if (IS_ERR(adapter)) 5275 return PTR_ERR(adapter); 5276 5277 pf->pdev = pdev; 5278 pf->adapter = adapter; 5279 pci_set_drvdata(pdev, pf); 5280 set_bit(ICE_DOWN, pf->state); 5281 /* Disable service task until DOWN bit is cleared */ 5282 set_bit(ICE_SERVICE_DIS, pf->state); 5283 5284 hw = &pf->hw; 5285 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5286 pci_save_state(pdev); 5287 5288 hw->back = pf; 5289 hw->port_info = NULL; 5290 hw->vendor_id = pdev->vendor; 5291 hw->device_id = pdev->device; 5292 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5293 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5294 hw->subsystem_device_id = pdev->subsystem_device; 5295 hw->bus.device = PCI_SLOT(pdev->devfn); 5296 hw->bus.func = PCI_FUNC(pdev->devfn); 5297 ice_set_ctrlq_len(hw); 5298 5299 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5300 5301 #ifndef CONFIG_DYNAMIC_DEBUG 5302 if (debug < -1) 5303 hw->debug_mask = debug; 5304 #endif 5305 5306 err = ice_init(pf); 5307 if (err) 5308 goto err_init; 5309 5310 devl_lock(priv_to_devlink(pf)); 5311 err = ice_load(pf); 5312 if (err) 5313 goto err_load; 5314 5315 err = ice_init_devlink(pf); 5316 if (err) 5317 goto err_init_devlink; 5318 devl_unlock(priv_to_devlink(pf)); 5319 5320 return 0; 5321 5322 err_init_devlink: 5323 ice_unload(pf); 5324 err_load: 5325 devl_unlock(priv_to_devlink(pf)); 5326 ice_deinit(pf); 5327 err_init: 5328 ice_adapter_put(pdev); 5329 return err; 5330 } 5331 5332 /** 5333 * ice_set_wake - enable or disable Wake on LAN 5334 * @pf: pointer to the PF struct 5335 * 5336 * Simple helper for WoL control 5337 */ 5338 static void ice_set_wake(struct ice_pf *pf) 5339 { 5340 struct ice_hw *hw = &pf->hw; 5341 bool wol = pf->wol_ena; 5342 5343 /* clear wake state, otherwise new wake events won't fire */ 5344 wr32(hw, PFPM_WUS, U32_MAX); 5345 5346 /* enable / disable APM wake up, no RMW needed */ 5347 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5348 5349 /* set magic packet filter enabled */ 5350 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5351 } 5352 5353 /** 5354 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5355 * @pf: pointer to the PF struct 5356 * 5357 * Issue firmware command to enable multicast magic wake, making 5358 * sure that any locally administered address (LAA) is used for 5359 * wake, and that PF reset doesn't undo the LAA. 5360 */ 5361 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5362 { 5363 struct device *dev = ice_pf_to_dev(pf); 5364 struct ice_hw *hw = &pf->hw; 5365 u8 mac_addr[ETH_ALEN]; 5366 struct ice_vsi *vsi; 5367 int status; 5368 u8 flags; 5369 5370 if (!pf->wol_ena) 5371 return; 5372 5373 vsi = ice_get_main_vsi(pf); 5374 if (!vsi) 5375 return; 5376 5377 /* Get current MAC address in case it's an LAA */ 5378 if (vsi->netdev) 5379 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5380 else 5381 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5382 5383 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5384 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5385 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5386 5387 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5388 if (status) 5389 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5390 status, ice_aq_str(hw->adminq.sq_last_status)); 5391 } 5392 5393 /** 5394 * ice_remove - Device removal routine 5395 * @pdev: PCI device information struct 5396 */ 5397 static void ice_remove(struct pci_dev *pdev) 5398 { 5399 struct ice_pf *pf = pci_get_drvdata(pdev); 5400 int i; 5401 5402 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5403 if (!ice_is_reset_in_progress(pf->state)) 5404 break; 5405 msleep(100); 5406 } 5407 5408 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5409 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5410 ice_free_vfs(pf); 5411 } 5412 5413 ice_hwmon_exit(pf); 5414 5415 ice_service_task_stop(pf); 5416 ice_aq_cancel_waiting_tasks(pf); 5417 set_bit(ICE_DOWN, pf->state); 5418 5419 if (!ice_is_safe_mode(pf)) 5420 ice_remove_arfs(pf); 5421 5422 devl_lock(priv_to_devlink(pf)); 5423 ice_dealloc_all_dynamic_ports(pf); 5424 ice_deinit_devlink(pf); 5425 5426 ice_unload(pf); 5427 devl_unlock(priv_to_devlink(pf)); 5428 5429 ice_deinit(pf); 5430 ice_vsi_release_all(pf); 5431 5432 ice_setup_mc_magic_wake(pf); 5433 ice_set_wake(pf); 5434 5435 ice_adapter_put(pdev); 5436 } 5437 5438 /** 5439 * ice_shutdown - PCI callback for shutting down device 5440 * @pdev: PCI device information struct 5441 */ 5442 static void ice_shutdown(struct pci_dev *pdev) 5443 { 5444 struct ice_pf *pf = pci_get_drvdata(pdev); 5445 5446 ice_remove(pdev); 5447 5448 if (system_state == SYSTEM_POWER_OFF) { 5449 pci_wake_from_d3(pdev, pf->wol_ena); 5450 pci_set_power_state(pdev, PCI_D3hot); 5451 } 5452 } 5453 5454 /** 5455 * ice_prepare_for_shutdown - prep for PCI shutdown 5456 * @pf: board private structure 5457 * 5458 * Inform or close all dependent features in prep for PCI device shutdown 5459 */ 5460 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5461 { 5462 struct ice_hw *hw = &pf->hw; 5463 u32 v; 5464 5465 /* Notify VFs of impending reset */ 5466 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5467 ice_vc_notify_reset(pf); 5468 5469 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5470 5471 /* disable the VSIs and their queues that are not already DOWN */ 5472 ice_pf_dis_all_vsi(pf, false); 5473 5474 ice_for_each_vsi(pf, v) 5475 if (pf->vsi[v]) 5476 pf->vsi[v]->vsi_num = 0; 5477 5478 ice_shutdown_all_ctrlq(hw, true); 5479 } 5480 5481 /** 5482 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5483 * @pf: board private structure to reinitialize 5484 * 5485 * This routine reinitialize interrupt scheme that was cleared during 5486 * power management suspend callback. 5487 * 5488 * This should be called during resume routine to re-allocate the q_vectors 5489 * and reacquire interrupts. 5490 */ 5491 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5492 { 5493 struct device *dev = ice_pf_to_dev(pf); 5494 int ret, v; 5495 5496 /* Since we clear MSIX flag during suspend, we need to 5497 * set it back during resume... 5498 */ 5499 5500 ret = ice_init_interrupt_scheme(pf); 5501 if (ret) { 5502 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5503 return ret; 5504 } 5505 5506 /* Remap vectors and rings, after successful re-init interrupts */ 5507 ice_for_each_vsi(pf, v) { 5508 if (!pf->vsi[v]) 5509 continue; 5510 5511 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5512 if (ret) 5513 goto err_reinit; 5514 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5515 rtnl_lock(); 5516 ice_vsi_set_napi_queues(pf->vsi[v]); 5517 rtnl_unlock(); 5518 } 5519 5520 ret = ice_req_irq_msix_misc(pf); 5521 if (ret) { 5522 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5523 ret); 5524 goto err_reinit; 5525 } 5526 5527 return 0; 5528 5529 err_reinit: 5530 while (v--) 5531 if (pf->vsi[v]) { 5532 rtnl_lock(); 5533 ice_vsi_clear_napi_queues(pf->vsi[v]); 5534 rtnl_unlock(); 5535 ice_vsi_free_q_vectors(pf->vsi[v]); 5536 } 5537 5538 return ret; 5539 } 5540 5541 /** 5542 * ice_suspend 5543 * @dev: generic device information structure 5544 * 5545 * Power Management callback to quiesce the device and prepare 5546 * for D3 transition. 5547 */ 5548 static int ice_suspend(struct device *dev) 5549 { 5550 struct pci_dev *pdev = to_pci_dev(dev); 5551 struct ice_pf *pf; 5552 int disabled, v; 5553 5554 pf = pci_get_drvdata(pdev); 5555 5556 if (!ice_pf_state_is_nominal(pf)) { 5557 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5558 return -EBUSY; 5559 } 5560 5561 /* Stop watchdog tasks until resume completion. 5562 * Even though it is most likely that the service task is 5563 * disabled if the device is suspended or down, the service task's 5564 * state is controlled by a different state bit, and we should 5565 * store and honor whatever state that bit is in at this point. 5566 */ 5567 disabled = ice_service_task_stop(pf); 5568 5569 ice_deinit_rdma(pf); 5570 5571 /* Already suspended?, then there is nothing to do */ 5572 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5573 if (!disabled) 5574 ice_service_task_restart(pf); 5575 return 0; 5576 } 5577 5578 if (test_bit(ICE_DOWN, pf->state) || 5579 ice_is_reset_in_progress(pf->state)) { 5580 dev_err(dev, "can't suspend device in reset or already down\n"); 5581 if (!disabled) 5582 ice_service_task_restart(pf); 5583 return 0; 5584 } 5585 5586 ice_setup_mc_magic_wake(pf); 5587 5588 ice_prepare_for_shutdown(pf); 5589 5590 ice_set_wake(pf); 5591 5592 /* Free vectors, clear the interrupt scheme and release IRQs 5593 * for proper hibernation, especially with large number of CPUs. 5594 * Otherwise hibernation might fail when mapping all the vectors back 5595 * to CPU0. 5596 */ 5597 ice_free_irq_msix_misc(pf); 5598 ice_for_each_vsi(pf, v) { 5599 if (!pf->vsi[v]) 5600 continue; 5601 rtnl_lock(); 5602 ice_vsi_clear_napi_queues(pf->vsi[v]); 5603 rtnl_unlock(); 5604 ice_vsi_free_q_vectors(pf->vsi[v]); 5605 } 5606 ice_clear_interrupt_scheme(pf); 5607 5608 pci_save_state(pdev); 5609 pci_wake_from_d3(pdev, pf->wol_ena); 5610 pci_set_power_state(pdev, PCI_D3hot); 5611 return 0; 5612 } 5613 5614 /** 5615 * ice_resume - PM callback for waking up from D3 5616 * @dev: generic device information structure 5617 */ 5618 static int ice_resume(struct device *dev) 5619 { 5620 struct pci_dev *pdev = to_pci_dev(dev); 5621 enum ice_reset_req reset_type; 5622 struct ice_pf *pf; 5623 struct ice_hw *hw; 5624 int ret; 5625 5626 pci_set_power_state(pdev, PCI_D0); 5627 pci_restore_state(pdev); 5628 pci_save_state(pdev); 5629 5630 if (!pci_device_is_present(pdev)) 5631 return -ENODEV; 5632 5633 ret = pci_enable_device_mem(pdev); 5634 if (ret) { 5635 dev_err(dev, "Cannot enable device after suspend\n"); 5636 return ret; 5637 } 5638 5639 pf = pci_get_drvdata(pdev); 5640 hw = &pf->hw; 5641 5642 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5643 ice_print_wake_reason(pf); 5644 5645 /* We cleared the interrupt scheme when we suspended, so we need to 5646 * restore it now to resume device functionality. 5647 */ 5648 ret = ice_reinit_interrupt_scheme(pf); 5649 if (ret) 5650 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5651 5652 ret = ice_init_rdma(pf); 5653 if (ret) 5654 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5655 ret); 5656 5657 clear_bit(ICE_DOWN, pf->state); 5658 /* Now perform PF reset and rebuild */ 5659 reset_type = ICE_RESET_PFR; 5660 /* re-enable service task for reset, but allow reset to schedule it */ 5661 clear_bit(ICE_SERVICE_DIS, pf->state); 5662 5663 if (ice_schedule_reset(pf, reset_type)) 5664 dev_err(dev, "Reset during resume failed.\n"); 5665 5666 clear_bit(ICE_SUSPENDED, pf->state); 5667 ice_service_task_restart(pf); 5668 5669 /* Restart the service task */ 5670 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5671 5672 return 0; 5673 } 5674 5675 /** 5676 * ice_pci_err_detected - warning that PCI error has been detected 5677 * @pdev: PCI device information struct 5678 * @err: the type of PCI error 5679 * 5680 * Called to warn that something happened on the PCI bus and the error handling 5681 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5682 */ 5683 static pci_ers_result_t 5684 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5685 { 5686 struct ice_pf *pf = pci_get_drvdata(pdev); 5687 5688 if (!pf) { 5689 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5690 __func__, err); 5691 return PCI_ERS_RESULT_DISCONNECT; 5692 } 5693 5694 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5695 ice_service_task_stop(pf); 5696 5697 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5698 set_bit(ICE_PFR_REQ, pf->state); 5699 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5700 } 5701 } 5702 5703 return PCI_ERS_RESULT_NEED_RESET; 5704 } 5705 5706 /** 5707 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5708 * @pdev: PCI device information struct 5709 * 5710 * Called to determine if the driver can recover from the PCI slot reset by 5711 * using a register read to determine if the device is recoverable. 5712 */ 5713 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5714 { 5715 struct ice_pf *pf = pci_get_drvdata(pdev); 5716 pci_ers_result_t result; 5717 int err; 5718 u32 reg; 5719 5720 err = pci_enable_device_mem(pdev); 5721 if (err) { 5722 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5723 err); 5724 result = PCI_ERS_RESULT_DISCONNECT; 5725 } else { 5726 pci_set_master(pdev); 5727 pci_restore_state(pdev); 5728 pci_save_state(pdev); 5729 pci_wake_from_d3(pdev, false); 5730 5731 /* Check for life */ 5732 reg = rd32(&pf->hw, GLGEN_RTRIG); 5733 if (!reg) 5734 result = PCI_ERS_RESULT_RECOVERED; 5735 else 5736 result = PCI_ERS_RESULT_DISCONNECT; 5737 } 5738 5739 return result; 5740 } 5741 5742 /** 5743 * ice_pci_err_resume - restart operations after PCI error recovery 5744 * @pdev: PCI device information struct 5745 * 5746 * Called to allow the driver to bring things back up after PCI error and/or 5747 * reset recovery have finished 5748 */ 5749 static void ice_pci_err_resume(struct pci_dev *pdev) 5750 { 5751 struct ice_pf *pf = pci_get_drvdata(pdev); 5752 5753 if (!pf) { 5754 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5755 __func__); 5756 return; 5757 } 5758 5759 if (test_bit(ICE_SUSPENDED, pf->state)) { 5760 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5761 __func__); 5762 return; 5763 } 5764 5765 ice_restore_all_vfs_msi_state(pf); 5766 5767 ice_do_reset(pf, ICE_RESET_PFR); 5768 ice_service_task_restart(pf); 5769 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5770 } 5771 5772 /** 5773 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5774 * @pdev: PCI device information struct 5775 */ 5776 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5777 { 5778 struct ice_pf *pf = pci_get_drvdata(pdev); 5779 5780 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5781 ice_service_task_stop(pf); 5782 5783 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5784 set_bit(ICE_PFR_REQ, pf->state); 5785 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5786 } 5787 } 5788 } 5789 5790 /** 5791 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5792 * @pdev: PCI device information struct 5793 */ 5794 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5795 { 5796 ice_pci_err_resume(pdev); 5797 } 5798 5799 /* ice_pci_tbl - PCI Device ID Table 5800 * 5801 * Wildcard entries (PCI_ANY_ID) should come last 5802 * Last entry must be all 0s 5803 * 5804 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5805 * Class, Class Mask, private data (not used) } 5806 */ 5807 static const struct pci_device_id ice_pci_tbl[] = { 5808 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5809 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5810 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5811 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5812 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5813 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5814 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5815 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5816 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5817 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5818 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5819 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5820 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5821 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5822 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5823 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5824 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5825 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5826 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5831 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5832 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5848 /* required last entry */ 5849 {} 5850 }; 5851 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5852 5853 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5854 5855 static const struct pci_error_handlers ice_pci_err_handler = { 5856 .error_detected = ice_pci_err_detected, 5857 .slot_reset = ice_pci_err_slot_reset, 5858 .reset_prepare = ice_pci_err_reset_prepare, 5859 .reset_done = ice_pci_err_reset_done, 5860 .resume = ice_pci_err_resume 5861 }; 5862 5863 static struct pci_driver ice_driver = { 5864 .name = KBUILD_MODNAME, 5865 .id_table = ice_pci_tbl, 5866 .probe = ice_probe, 5867 .remove = ice_remove, 5868 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5869 .shutdown = ice_shutdown, 5870 .sriov_configure = ice_sriov_configure, 5871 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5872 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5873 .err_handler = &ice_pci_err_handler 5874 }; 5875 5876 /** 5877 * ice_module_init - Driver registration routine 5878 * 5879 * ice_module_init is the first routine called when the driver is 5880 * loaded. All it does is register with the PCI subsystem. 5881 */ 5882 static int __init ice_module_init(void) 5883 { 5884 int status = -ENOMEM; 5885 5886 pr_info("%s\n", ice_driver_string); 5887 pr_info("%s\n", ice_copyright); 5888 5889 ice_adv_lnk_speed_maps_init(); 5890 5891 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5892 if (!ice_wq) { 5893 pr_err("Failed to create workqueue\n"); 5894 return status; 5895 } 5896 5897 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5898 if (!ice_lag_wq) { 5899 pr_err("Failed to create LAG workqueue\n"); 5900 goto err_dest_wq; 5901 } 5902 5903 ice_debugfs_init(); 5904 5905 status = pci_register_driver(&ice_driver); 5906 if (status) { 5907 pr_err("failed to register PCI driver, err %d\n", status); 5908 goto err_dest_lag_wq; 5909 } 5910 5911 status = ice_sf_driver_register(); 5912 if (status) { 5913 pr_err("Failed to register SF driver, err %d\n", status); 5914 goto err_sf_driver; 5915 } 5916 5917 return 0; 5918 5919 err_sf_driver: 5920 pci_unregister_driver(&ice_driver); 5921 err_dest_lag_wq: 5922 destroy_workqueue(ice_lag_wq); 5923 ice_debugfs_exit(); 5924 err_dest_wq: 5925 destroy_workqueue(ice_wq); 5926 return status; 5927 } 5928 module_init(ice_module_init); 5929 5930 /** 5931 * ice_module_exit - Driver exit cleanup routine 5932 * 5933 * ice_module_exit is called just before the driver is removed 5934 * from memory. 5935 */ 5936 static void __exit ice_module_exit(void) 5937 { 5938 ice_sf_driver_unregister(); 5939 pci_unregister_driver(&ice_driver); 5940 ice_debugfs_exit(); 5941 destroy_workqueue(ice_wq); 5942 destroy_workqueue(ice_lag_wq); 5943 pr_info("module unloaded\n"); 5944 } 5945 module_exit(ice_module_exit); 5946 5947 /** 5948 * ice_set_mac_address - NDO callback to set MAC address 5949 * @netdev: network interface device structure 5950 * @pi: pointer to an address structure 5951 * 5952 * Returns 0 on success, negative on failure 5953 */ 5954 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5955 { 5956 struct ice_netdev_priv *np = netdev_priv(netdev); 5957 struct ice_vsi *vsi = np->vsi; 5958 struct ice_pf *pf = vsi->back; 5959 struct ice_hw *hw = &pf->hw; 5960 struct sockaddr *addr = pi; 5961 u8 old_mac[ETH_ALEN]; 5962 u8 flags = 0; 5963 u8 *mac; 5964 int err; 5965 5966 mac = (u8 *)addr->sa_data; 5967 5968 if (!is_valid_ether_addr(mac)) 5969 return -EADDRNOTAVAIL; 5970 5971 if (test_bit(ICE_DOWN, pf->state) || 5972 ice_is_reset_in_progress(pf->state)) { 5973 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5974 mac); 5975 return -EBUSY; 5976 } 5977 5978 if (ice_chnl_dmac_fltr_cnt(pf)) { 5979 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5980 mac); 5981 return -EAGAIN; 5982 } 5983 5984 netif_addr_lock_bh(netdev); 5985 ether_addr_copy(old_mac, netdev->dev_addr); 5986 /* change the netdev's MAC address */ 5987 eth_hw_addr_set(netdev, mac); 5988 netif_addr_unlock_bh(netdev); 5989 5990 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5991 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5992 if (err && err != -ENOENT) { 5993 err = -EADDRNOTAVAIL; 5994 goto err_update_filters; 5995 } 5996 5997 /* Add filter for new MAC. If filter exists, return success */ 5998 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5999 if (err == -EEXIST) { 6000 /* Although this MAC filter is already present in hardware it's 6001 * possible in some cases (e.g. bonding) that dev_addr was 6002 * modified outside of the driver and needs to be restored back 6003 * to this value. 6004 */ 6005 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6006 6007 return 0; 6008 } else if (err) { 6009 /* error if the new filter addition failed */ 6010 err = -EADDRNOTAVAIL; 6011 } 6012 6013 err_update_filters: 6014 if (err) { 6015 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6016 mac); 6017 netif_addr_lock_bh(netdev); 6018 eth_hw_addr_set(netdev, old_mac); 6019 netif_addr_unlock_bh(netdev); 6020 return err; 6021 } 6022 6023 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6024 netdev->dev_addr); 6025 6026 /* write new MAC address to the firmware */ 6027 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6028 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6029 if (err) { 6030 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6031 mac, err); 6032 } 6033 return 0; 6034 } 6035 6036 /** 6037 * ice_set_rx_mode - NDO callback to set the netdev filters 6038 * @netdev: network interface device structure 6039 */ 6040 static void ice_set_rx_mode(struct net_device *netdev) 6041 { 6042 struct ice_netdev_priv *np = netdev_priv(netdev); 6043 struct ice_vsi *vsi = np->vsi; 6044 6045 if (!vsi || ice_is_switchdev_running(vsi->back)) 6046 return; 6047 6048 /* Set the flags to synchronize filters 6049 * ndo_set_rx_mode may be triggered even without a change in netdev 6050 * flags 6051 */ 6052 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6053 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6054 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6055 6056 /* schedule our worker thread which will take care of 6057 * applying the new filter changes 6058 */ 6059 ice_service_task_schedule(vsi->back); 6060 } 6061 6062 /** 6063 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6064 * @netdev: network interface device structure 6065 * @queue_index: Queue ID 6066 * @maxrate: maximum bandwidth in Mbps 6067 */ 6068 static int 6069 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6070 { 6071 struct ice_netdev_priv *np = netdev_priv(netdev); 6072 struct ice_vsi *vsi = np->vsi; 6073 u16 q_handle; 6074 int status; 6075 u8 tc; 6076 6077 /* Validate maxrate requested is within permitted range */ 6078 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6079 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6080 maxrate, queue_index); 6081 return -EINVAL; 6082 } 6083 6084 q_handle = vsi->tx_rings[queue_index]->q_handle; 6085 tc = ice_dcb_get_tc(vsi, queue_index); 6086 6087 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6088 if (!vsi) { 6089 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6090 queue_index); 6091 return -EINVAL; 6092 } 6093 6094 /* Set BW back to default, when user set maxrate to 0 */ 6095 if (!maxrate) 6096 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6097 q_handle, ICE_MAX_BW); 6098 else 6099 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6100 q_handle, ICE_MAX_BW, maxrate * 1000); 6101 if (status) 6102 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6103 status); 6104 6105 return status; 6106 } 6107 6108 /** 6109 * ice_fdb_add - add an entry to the hardware database 6110 * @ndm: the input from the stack 6111 * @tb: pointer to array of nladdr (unused) 6112 * @dev: the net device pointer 6113 * @addr: the MAC address entry being added 6114 * @vid: VLAN ID 6115 * @flags: instructions from stack about fdb operation 6116 * @extack: netlink extended ack 6117 */ 6118 static int 6119 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6120 struct net_device *dev, const unsigned char *addr, u16 vid, 6121 u16 flags, struct netlink_ext_ack __always_unused *extack) 6122 { 6123 int err; 6124 6125 if (vid) { 6126 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6127 return -EINVAL; 6128 } 6129 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6130 netdev_err(dev, "FDB only supports static addresses\n"); 6131 return -EINVAL; 6132 } 6133 6134 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6135 err = dev_uc_add_excl(dev, addr); 6136 else if (is_multicast_ether_addr(addr)) 6137 err = dev_mc_add_excl(dev, addr); 6138 else 6139 err = -EINVAL; 6140 6141 /* Only return duplicate errors if NLM_F_EXCL is set */ 6142 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6143 err = 0; 6144 6145 return err; 6146 } 6147 6148 /** 6149 * ice_fdb_del - delete an entry from the hardware database 6150 * @ndm: the input from the stack 6151 * @tb: pointer to array of nladdr (unused) 6152 * @dev: the net device pointer 6153 * @addr: the MAC address entry being added 6154 * @vid: VLAN ID 6155 * @extack: netlink extended ack 6156 */ 6157 static int 6158 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6159 struct net_device *dev, const unsigned char *addr, 6160 __always_unused u16 vid, struct netlink_ext_ack *extack) 6161 { 6162 int err; 6163 6164 if (ndm->ndm_state & NUD_PERMANENT) { 6165 netdev_err(dev, "FDB only supports static addresses\n"); 6166 return -EINVAL; 6167 } 6168 6169 if (is_unicast_ether_addr(addr)) 6170 err = dev_uc_del(dev, addr); 6171 else if (is_multicast_ether_addr(addr)) 6172 err = dev_mc_del(dev, addr); 6173 else 6174 err = -EINVAL; 6175 6176 return err; 6177 } 6178 6179 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6180 NETIF_F_HW_VLAN_CTAG_TX | \ 6181 NETIF_F_HW_VLAN_STAG_RX | \ 6182 NETIF_F_HW_VLAN_STAG_TX) 6183 6184 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6185 NETIF_F_HW_VLAN_STAG_RX) 6186 6187 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6188 NETIF_F_HW_VLAN_STAG_FILTER) 6189 6190 /** 6191 * ice_fix_features - fix the netdev features flags based on device limitations 6192 * @netdev: ptr to the netdev that flags are being fixed on 6193 * @features: features that need to be checked and possibly fixed 6194 * 6195 * Make sure any fixups are made to features in this callback. This enables the 6196 * driver to not have to check unsupported configurations throughout the driver 6197 * because that's the responsiblity of this callback. 6198 * 6199 * Single VLAN Mode (SVM) Supported Features: 6200 * NETIF_F_HW_VLAN_CTAG_FILTER 6201 * NETIF_F_HW_VLAN_CTAG_RX 6202 * NETIF_F_HW_VLAN_CTAG_TX 6203 * 6204 * Double VLAN Mode (DVM) Supported Features: 6205 * NETIF_F_HW_VLAN_CTAG_FILTER 6206 * NETIF_F_HW_VLAN_CTAG_RX 6207 * NETIF_F_HW_VLAN_CTAG_TX 6208 * 6209 * NETIF_F_HW_VLAN_STAG_FILTER 6210 * NETIF_HW_VLAN_STAG_RX 6211 * NETIF_HW_VLAN_STAG_TX 6212 * 6213 * Features that need fixing: 6214 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6215 * These are mutually exlusive as the VSI context cannot support multiple 6216 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6217 * is not done, then default to clearing the requested STAG offload 6218 * settings. 6219 * 6220 * All supported filtering has to be enabled or disabled together. For 6221 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6222 * together. If this is not done, then default to VLAN filtering disabled. 6223 * These are mutually exclusive as there is currently no way to 6224 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6225 * prune rules. 6226 */ 6227 static netdev_features_t 6228 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6229 { 6230 struct ice_netdev_priv *np = netdev_priv(netdev); 6231 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6232 bool cur_ctag, cur_stag, req_ctag, req_stag; 6233 6234 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6235 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6236 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6237 6238 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6239 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6240 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6241 6242 if (req_vlan_fltr != cur_vlan_fltr) { 6243 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6244 if (req_ctag && req_stag) { 6245 features |= NETIF_VLAN_FILTERING_FEATURES; 6246 } else if (!req_ctag && !req_stag) { 6247 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6248 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6249 (!cur_stag && req_stag && !cur_ctag)) { 6250 features |= NETIF_VLAN_FILTERING_FEATURES; 6251 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6252 } else if ((cur_ctag && !req_ctag && cur_stag) || 6253 (cur_stag && !req_stag && cur_ctag)) { 6254 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6255 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6256 } 6257 } else { 6258 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6259 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6260 6261 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6262 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6263 } 6264 } 6265 6266 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6267 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6268 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6269 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6270 NETIF_F_HW_VLAN_STAG_TX); 6271 } 6272 6273 if (!(netdev->features & NETIF_F_RXFCS) && 6274 (features & NETIF_F_RXFCS) && 6275 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6276 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6277 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6278 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6279 } 6280 6281 return features; 6282 } 6283 6284 /** 6285 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6286 * @vsi: PF's VSI 6287 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6288 * 6289 * Store current stripped VLAN proto in ring packet context, 6290 * so it can be accessed more efficiently by packet processing code. 6291 */ 6292 static void 6293 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6294 { 6295 u16 i; 6296 6297 ice_for_each_alloc_rxq(vsi, i) 6298 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6299 } 6300 6301 /** 6302 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6303 * @vsi: PF's VSI 6304 * @features: features used to determine VLAN offload settings 6305 * 6306 * First, determine the vlan_ethertype based on the VLAN offload bits in 6307 * features. Then determine if stripping and insertion should be enabled or 6308 * disabled. Finally enable or disable VLAN stripping and insertion. 6309 */ 6310 static int 6311 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6312 { 6313 bool enable_stripping = true, enable_insertion = true; 6314 struct ice_vsi_vlan_ops *vlan_ops; 6315 int strip_err = 0, insert_err = 0; 6316 u16 vlan_ethertype = 0; 6317 6318 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6319 6320 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6321 vlan_ethertype = ETH_P_8021AD; 6322 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6323 vlan_ethertype = ETH_P_8021Q; 6324 6325 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6326 enable_stripping = false; 6327 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6328 enable_insertion = false; 6329 6330 if (enable_stripping) 6331 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6332 else 6333 strip_err = vlan_ops->dis_stripping(vsi); 6334 6335 if (enable_insertion) 6336 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6337 else 6338 insert_err = vlan_ops->dis_insertion(vsi); 6339 6340 if (strip_err || insert_err) 6341 return -EIO; 6342 6343 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6344 htons(vlan_ethertype) : 0); 6345 6346 return 0; 6347 } 6348 6349 /** 6350 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6351 * @vsi: PF's VSI 6352 * @features: features used to determine VLAN filtering settings 6353 * 6354 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6355 * features. 6356 */ 6357 static int 6358 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6359 { 6360 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6361 int err = 0; 6362 6363 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6364 * if either bit is set 6365 */ 6366 if (features & 6367 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6368 err = vlan_ops->ena_rx_filtering(vsi); 6369 else 6370 err = vlan_ops->dis_rx_filtering(vsi); 6371 6372 return err; 6373 } 6374 6375 /** 6376 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6377 * @netdev: ptr to the netdev being adjusted 6378 * @features: the feature set that the stack is suggesting 6379 * 6380 * Only update VLAN settings if the requested_vlan_features are different than 6381 * the current_vlan_features. 6382 */ 6383 static int 6384 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6385 { 6386 netdev_features_t current_vlan_features, requested_vlan_features; 6387 struct ice_netdev_priv *np = netdev_priv(netdev); 6388 struct ice_vsi *vsi = np->vsi; 6389 int err; 6390 6391 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6392 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6393 if (current_vlan_features ^ requested_vlan_features) { 6394 if ((features & NETIF_F_RXFCS) && 6395 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6396 dev_err(ice_pf_to_dev(vsi->back), 6397 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6398 return -EIO; 6399 } 6400 6401 err = ice_set_vlan_offload_features(vsi, features); 6402 if (err) 6403 return err; 6404 } 6405 6406 current_vlan_features = netdev->features & 6407 NETIF_VLAN_FILTERING_FEATURES; 6408 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6409 if (current_vlan_features ^ requested_vlan_features) { 6410 err = ice_set_vlan_filtering_features(vsi, features); 6411 if (err) 6412 return err; 6413 } 6414 6415 return 0; 6416 } 6417 6418 /** 6419 * ice_set_loopback - turn on/off loopback mode on underlying PF 6420 * @vsi: ptr to VSI 6421 * @ena: flag to indicate the on/off setting 6422 */ 6423 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6424 { 6425 bool if_running = netif_running(vsi->netdev); 6426 int ret; 6427 6428 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6429 ret = ice_down(vsi); 6430 if (ret) { 6431 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6432 return ret; 6433 } 6434 } 6435 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6436 if (ret) 6437 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6438 if (if_running) 6439 ret = ice_up(vsi); 6440 6441 return ret; 6442 } 6443 6444 /** 6445 * ice_set_features - set the netdev feature flags 6446 * @netdev: ptr to the netdev being adjusted 6447 * @features: the feature set that the stack is suggesting 6448 */ 6449 static int 6450 ice_set_features(struct net_device *netdev, netdev_features_t features) 6451 { 6452 netdev_features_t changed = netdev->features ^ features; 6453 struct ice_netdev_priv *np = netdev_priv(netdev); 6454 struct ice_vsi *vsi = np->vsi; 6455 struct ice_pf *pf = vsi->back; 6456 int ret = 0; 6457 6458 /* Don't set any netdev advanced features with device in Safe Mode */ 6459 if (ice_is_safe_mode(pf)) { 6460 dev_err(ice_pf_to_dev(pf), 6461 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6462 return ret; 6463 } 6464 6465 /* Do not change setting during reset */ 6466 if (ice_is_reset_in_progress(pf->state)) { 6467 dev_err(ice_pf_to_dev(pf), 6468 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6469 return -EBUSY; 6470 } 6471 6472 /* Multiple features can be changed in one call so keep features in 6473 * separate if/else statements to guarantee each feature is checked 6474 */ 6475 if (changed & NETIF_F_RXHASH) 6476 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6477 6478 ret = ice_set_vlan_features(netdev, features); 6479 if (ret) 6480 return ret; 6481 6482 /* Turn on receive of FCS aka CRC, and after setting this 6483 * flag the packet data will have the 4 byte CRC appended 6484 */ 6485 if (changed & NETIF_F_RXFCS) { 6486 if ((features & NETIF_F_RXFCS) && 6487 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6488 dev_err(ice_pf_to_dev(vsi->back), 6489 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6490 return -EIO; 6491 } 6492 6493 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6494 ret = ice_down_up(vsi); 6495 if (ret) 6496 return ret; 6497 } 6498 6499 if (changed & NETIF_F_NTUPLE) { 6500 bool ena = !!(features & NETIF_F_NTUPLE); 6501 6502 ice_vsi_manage_fdir(vsi, ena); 6503 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6504 } 6505 6506 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6507 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6508 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6509 return -EACCES; 6510 } 6511 6512 if (changed & NETIF_F_HW_TC) { 6513 bool ena = !!(features & NETIF_F_HW_TC); 6514 6515 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6516 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6517 } 6518 6519 if (changed & NETIF_F_LOOPBACK) 6520 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6521 6522 return ret; 6523 } 6524 6525 /** 6526 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6527 * @vsi: VSI to setup VLAN properties for 6528 */ 6529 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6530 { 6531 int err; 6532 6533 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6534 if (err) 6535 return err; 6536 6537 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6538 if (err) 6539 return err; 6540 6541 return ice_vsi_add_vlan_zero(vsi); 6542 } 6543 6544 /** 6545 * ice_vsi_cfg_lan - Setup the VSI lan related config 6546 * @vsi: the VSI being configured 6547 * 6548 * Return 0 on success and negative value on error 6549 */ 6550 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6551 { 6552 int err; 6553 6554 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6555 ice_set_rx_mode(vsi->netdev); 6556 6557 err = ice_vsi_vlan_setup(vsi); 6558 if (err) 6559 return err; 6560 } 6561 ice_vsi_cfg_dcb_rings(vsi); 6562 6563 err = ice_vsi_cfg_lan_txqs(vsi); 6564 if (!err && ice_is_xdp_ena_vsi(vsi)) 6565 err = ice_vsi_cfg_xdp_txqs(vsi); 6566 if (!err) 6567 err = ice_vsi_cfg_rxqs(vsi); 6568 6569 return err; 6570 } 6571 6572 /* THEORY OF MODERATION: 6573 * The ice driver hardware works differently than the hardware that DIMLIB was 6574 * originally made for. ice hardware doesn't have packet count limits that 6575 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6576 * which is hard-coded to a limit of 250,000 ints/second. 6577 * If not using dynamic moderation, the INTRL value can be modified 6578 * by ethtool rx-usecs-high. 6579 */ 6580 struct ice_dim { 6581 /* the throttle rate for interrupts, basically worst case delay before 6582 * an initial interrupt fires, value is stored in microseconds. 6583 */ 6584 u16 itr; 6585 }; 6586 6587 /* Make a different profile for Rx that doesn't allow quite so aggressive 6588 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6589 * second. 6590 */ 6591 static const struct ice_dim rx_profile[] = { 6592 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6593 {8}, /* 125,000 ints/s */ 6594 {16}, /* 62,500 ints/s */ 6595 {62}, /* 16,129 ints/s */ 6596 {126} /* 7,936 ints/s */ 6597 }; 6598 6599 /* The transmit profile, which has the same sorts of values 6600 * as the previous struct 6601 */ 6602 static const struct ice_dim tx_profile[] = { 6603 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6604 {8}, /* 125,000 ints/s */ 6605 {40}, /* 16,125 ints/s */ 6606 {128}, /* 7,812 ints/s */ 6607 {256} /* 3,906 ints/s */ 6608 }; 6609 6610 static void ice_tx_dim_work(struct work_struct *work) 6611 { 6612 struct ice_ring_container *rc; 6613 struct dim *dim; 6614 u16 itr; 6615 6616 dim = container_of(work, struct dim, work); 6617 rc = dim->priv; 6618 6619 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6620 6621 /* look up the values in our local table */ 6622 itr = tx_profile[dim->profile_ix].itr; 6623 6624 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6625 ice_write_itr(rc, itr); 6626 6627 dim->state = DIM_START_MEASURE; 6628 } 6629 6630 static void ice_rx_dim_work(struct work_struct *work) 6631 { 6632 struct ice_ring_container *rc; 6633 struct dim *dim; 6634 u16 itr; 6635 6636 dim = container_of(work, struct dim, work); 6637 rc = dim->priv; 6638 6639 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6640 6641 /* look up the values in our local table */ 6642 itr = rx_profile[dim->profile_ix].itr; 6643 6644 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6645 ice_write_itr(rc, itr); 6646 6647 dim->state = DIM_START_MEASURE; 6648 } 6649 6650 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6651 6652 /** 6653 * ice_init_moderation - set up interrupt moderation 6654 * @q_vector: the vector containing rings to be configured 6655 * 6656 * Set up interrupt moderation registers, with the intent to do the right thing 6657 * when called from reset or from probe, and whether or not dynamic moderation 6658 * is enabled or not. Take special care to write all the registers in both 6659 * dynamic moderation mode or not in order to make sure hardware is in a known 6660 * state. 6661 */ 6662 static void ice_init_moderation(struct ice_q_vector *q_vector) 6663 { 6664 struct ice_ring_container *rc; 6665 bool tx_dynamic, rx_dynamic; 6666 6667 rc = &q_vector->tx; 6668 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6669 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6670 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6671 rc->dim.priv = rc; 6672 tx_dynamic = ITR_IS_DYNAMIC(rc); 6673 6674 /* set the initial TX ITR to match the above */ 6675 ice_write_itr(rc, tx_dynamic ? 6676 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6677 6678 rc = &q_vector->rx; 6679 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6680 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6681 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6682 rc->dim.priv = rc; 6683 rx_dynamic = ITR_IS_DYNAMIC(rc); 6684 6685 /* set the initial RX ITR to match the above */ 6686 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6687 rc->itr_setting); 6688 6689 ice_set_q_vector_intrl(q_vector); 6690 } 6691 6692 /** 6693 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6694 * @vsi: the VSI being configured 6695 */ 6696 static void ice_napi_enable_all(struct ice_vsi *vsi) 6697 { 6698 int q_idx; 6699 6700 if (!vsi->netdev) 6701 return; 6702 6703 ice_for_each_q_vector(vsi, q_idx) { 6704 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6705 6706 ice_init_moderation(q_vector); 6707 6708 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6709 napi_enable(&q_vector->napi); 6710 } 6711 } 6712 6713 /** 6714 * ice_up_complete - Finish the last steps of bringing up a connection 6715 * @vsi: The VSI being configured 6716 * 6717 * Return 0 on success and negative value on error 6718 */ 6719 static int ice_up_complete(struct ice_vsi *vsi) 6720 { 6721 struct ice_pf *pf = vsi->back; 6722 int err; 6723 6724 ice_vsi_cfg_msix(vsi); 6725 6726 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6727 * Tx queue group list was configured and the context bits were 6728 * programmed using ice_vsi_cfg_txqs 6729 */ 6730 err = ice_vsi_start_all_rx_rings(vsi); 6731 if (err) 6732 return err; 6733 6734 clear_bit(ICE_VSI_DOWN, vsi->state); 6735 ice_napi_enable_all(vsi); 6736 ice_vsi_ena_irq(vsi); 6737 6738 if (vsi->port_info && 6739 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6740 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6741 vsi->type == ICE_VSI_SF)))) { 6742 ice_print_link_msg(vsi, true); 6743 netif_tx_start_all_queues(vsi->netdev); 6744 netif_carrier_on(vsi->netdev); 6745 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6746 } 6747 6748 /* Perform an initial read of the statistics registers now to 6749 * set the baseline so counters are ready when interface is up 6750 */ 6751 ice_update_eth_stats(vsi); 6752 6753 if (vsi->type == ICE_VSI_PF) 6754 ice_service_task_schedule(pf); 6755 6756 return 0; 6757 } 6758 6759 /** 6760 * ice_up - Bring the connection back up after being down 6761 * @vsi: VSI being configured 6762 */ 6763 int ice_up(struct ice_vsi *vsi) 6764 { 6765 int err; 6766 6767 err = ice_vsi_cfg_lan(vsi); 6768 if (!err) 6769 err = ice_up_complete(vsi); 6770 6771 return err; 6772 } 6773 6774 /** 6775 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6776 * @syncp: pointer to u64_stats_sync 6777 * @stats: stats that pkts and bytes count will be taken from 6778 * @pkts: packets stats counter 6779 * @bytes: bytes stats counter 6780 * 6781 * This function fetches stats from the ring considering the atomic operations 6782 * that needs to be performed to read u64 values in 32 bit machine. 6783 */ 6784 void 6785 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6786 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6787 { 6788 unsigned int start; 6789 6790 do { 6791 start = u64_stats_fetch_begin(syncp); 6792 *pkts = stats.pkts; 6793 *bytes = stats.bytes; 6794 } while (u64_stats_fetch_retry(syncp, start)); 6795 } 6796 6797 /** 6798 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6799 * @vsi: the VSI to be updated 6800 * @vsi_stats: the stats struct to be updated 6801 * @rings: rings to work on 6802 * @count: number of rings 6803 */ 6804 static void 6805 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6806 struct rtnl_link_stats64 *vsi_stats, 6807 struct ice_tx_ring **rings, u16 count) 6808 { 6809 u16 i; 6810 6811 for (i = 0; i < count; i++) { 6812 struct ice_tx_ring *ring; 6813 u64 pkts = 0, bytes = 0; 6814 6815 ring = READ_ONCE(rings[i]); 6816 if (!ring || !ring->ring_stats) 6817 continue; 6818 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6819 ring->ring_stats->stats, &pkts, 6820 &bytes); 6821 vsi_stats->tx_packets += pkts; 6822 vsi_stats->tx_bytes += bytes; 6823 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6824 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6825 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6826 } 6827 } 6828 6829 /** 6830 * ice_update_vsi_ring_stats - Update VSI stats counters 6831 * @vsi: the VSI to be updated 6832 */ 6833 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6834 { 6835 struct rtnl_link_stats64 *net_stats, *stats_prev; 6836 struct rtnl_link_stats64 *vsi_stats; 6837 struct ice_pf *pf = vsi->back; 6838 u64 pkts, bytes; 6839 int i; 6840 6841 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6842 if (!vsi_stats) 6843 return; 6844 6845 /* reset non-netdev (extended) stats */ 6846 vsi->tx_restart = 0; 6847 vsi->tx_busy = 0; 6848 vsi->tx_linearize = 0; 6849 vsi->rx_buf_failed = 0; 6850 vsi->rx_page_failed = 0; 6851 6852 rcu_read_lock(); 6853 6854 /* update Tx rings counters */ 6855 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6856 vsi->num_txq); 6857 6858 /* update Rx rings counters */ 6859 ice_for_each_rxq(vsi, i) { 6860 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6861 struct ice_ring_stats *ring_stats; 6862 6863 ring_stats = ring->ring_stats; 6864 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6865 ring_stats->stats, &pkts, 6866 &bytes); 6867 vsi_stats->rx_packets += pkts; 6868 vsi_stats->rx_bytes += bytes; 6869 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6870 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6871 } 6872 6873 /* update XDP Tx rings counters */ 6874 if (ice_is_xdp_ena_vsi(vsi)) 6875 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6876 vsi->num_xdp_txq); 6877 6878 rcu_read_unlock(); 6879 6880 net_stats = &vsi->net_stats; 6881 stats_prev = &vsi->net_stats_prev; 6882 6883 /* Update netdev counters, but keep in mind that values could start at 6884 * random value after PF reset. And as we increase the reported stat by 6885 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6886 * let's skip this round. 6887 */ 6888 if (likely(pf->stat_prev_loaded)) { 6889 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6890 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6891 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6892 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6893 } 6894 6895 stats_prev->tx_packets = vsi_stats->tx_packets; 6896 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6897 stats_prev->rx_packets = vsi_stats->rx_packets; 6898 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6899 6900 kfree(vsi_stats); 6901 } 6902 6903 /** 6904 * ice_update_vsi_stats - Update VSI stats counters 6905 * @vsi: the VSI to be updated 6906 */ 6907 void ice_update_vsi_stats(struct ice_vsi *vsi) 6908 { 6909 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6910 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6911 struct ice_pf *pf = vsi->back; 6912 6913 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6914 test_bit(ICE_CFG_BUSY, pf->state)) 6915 return; 6916 6917 /* get stats as recorded by Tx/Rx rings */ 6918 ice_update_vsi_ring_stats(vsi); 6919 6920 /* get VSI stats as recorded by the hardware */ 6921 ice_update_eth_stats(vsi); 6922 6923 cur_ns->tx_errors = cur_es->tx_errors; 6924 cur_ns->rx_dropped = cur_es->rx_discards; 6925 cur_ns->tx_dropped = cur_es->tx_discards; 6926 cur_ns->multicast = cur_es->rx_multicast; 6927 6928 /* update some more netdev stats if this is main VSI */ 6929 if (vsi->type == ICE_VSI_PF) { 6930 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6931 cur_ns->rx_errors = pf->stats.crc_errors + 6932 pf->stats.illegal_bytes + 6933 pf->stats.rx_undersize + 6934 pf->hw_csum_rx_error + 6935 pf->stats.rx_jabber + 6936 pf->stats.rx_fragments + 6937 pf->stats.rx_oversize; 6938 /* record drops from the port level */ 6939 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6940 } 6941 } 6942 6943 /** 6944 * ice_update_pf_stats - Update PF port stats counters 6945 * @pf: PF whose stats needs to be updated 6946 */ 6947 void ice_update_pf_stats(struct ice_pf *pf) 6948 { 6949 struct ice_hw_port_stats *prev_ps, *cur_ps; 6950 struct ice_hw *hw = &pf->hw; 6951 u16 fd_ctr_base; 6952 u8 port; 6953 6954 port = hw->port_info->lport; 6955 prev_ps = &pf->stats_prev; 6956 cur_ps = &pf->stats; 6957 6958 if (ice_is_reset_in_progress(pf->state)) 6959 pf->stat_prev_loaded = false; 6960 6961 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6962 &prev_ps->eth.rx_bytes, 6963 &cur_ps->eth.rx_bytes); 6964 6965 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6966 &prev_ps->eth.rx_unicast, 6967 &cur_ps->eth.rx_unicast); 6968 6969 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6970 &prev_ps->eth.rx_multicast, 6971 &cur_ps->eth.rx_multicast); 6972 6973 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6974 &prev_ps->eth.rx_broadcast, 6975 &cur_ps->eth.rx_broadcast); 6976 6977 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6978 &prev_ps->eth.rx_discards, 6979 &cur_ps->eth.rx_discards); 6980 6981 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6982 &prev_ps->eth.tx_bytes, 6983 &cur_ps->eth.tx_bytes); 6984 6985 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6986 &prev_ps->eth.tx_unicast, 6987 &cur_ps->eth.tx_unicast); 6988 6989 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6990 &prev_ps->eth.tx_multicast, 6991 &cur_ps->eth.tx_multicast); 6992 6993 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6994 &prev_ps->eth.tx_broadcast, 6995 &cur_ps->eth.tx_broadcast); 6996 6997 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6998 &prev_ps->tx_dropped_link_down, 6999 &cur_ps->tx_dropped_link_down); 7000 7001 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7002 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7003 7004 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7005 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7006 7007 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7008 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7009 7010 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7011 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7012 7013 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7014 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7015 7016 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7017 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7018 7019 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7020 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7021 7022 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7023 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7024 7025 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7026 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7027 7028 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7029 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7030 7031 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7032 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7033 7034 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7035 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7036 7037 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7038 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7039 7040 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7041 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7042 7043 fd_ctr_base = hw->fd_ctr_base; 7044 7045 ice_stat_update40(hw, 7046 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7047 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7048 &cur_ps->fd_sb_match); 7049 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7050 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7051 7052 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7053 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7054 7055 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7056 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7057 7058 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7059 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7060 7061 ice_update_dcb_stats(pf); 7062 7063 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7064 &prev_ps->crc_errors, &cur_ps->crc_errors); 7065 7066 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7067 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7068 7069 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7070 &prev_ps->mac_local_faults, 7071 &cur_ps->mac_local_faults); 7072 7073 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7074 &prev_ps->mac_remote_faults, 7075 &cur_ps->mac_remote_faults); 7076 7077 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7078 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7079 7080 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7081 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7082 7083 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7084 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7085 7086 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7087 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7088 7089 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7090 7091 pf->stat_prev_loaded = true; 7092 } 7093 7094 /** 7095 * ice_get_stats64 - get statistics for network device structure 7096 * @netdev: network interface device structure 7097 * @stats: main device statistics structure 7098 */ 7099 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7100 { 7101 struct ice_netdev_priv *np = netdev_priv(netdev); 7102 struct rtnl_link_stats64 *vsi_stats; 7103 struct ice_vsi *vsi = np->vsi; 7104 7105 vsi_stats = &vsi->net_stats; 7106 7107 if (!vsi->num_txq || !vsi->num_rxq) 7108 return; 7109 7110 /* netdev packet/byte stats come from ring counter. These are obtained 7111 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7112 * But, only call the update routine and read the registers if VSI is 7113 * not down. 7114 */ 7115 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7116 ice_update_vsi_ring_stats(vsi); 7117 stats->tx_packets = vsi_stats->tx_packets; 7118 stats->tx_bytes = vsi_stats->tx_bytes; 7119 stats->rx_packets = vsi_stats->rx_packets; 7120 stats->rx_bytes = vsi_stats->rx_bytes; 7121 7122 /* The rest of the stats can be read from the hardware but instead we 7123 * just return values that the watchdog task has already obtained from 7124 * the hardware. 7125 */ 7126 stats->multicast = vsi_stats->multicast; 7127 stats->tx_errors = vsi_stats->tx_errors; 7128 stats->tx_dropped = vsi_stats->tx_dropped; 7129 stats->rx_errors = vsi_stats->rx_errors; 7130 stats->rx_dropped = vsi_stats->rx_dropped; 7131 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7132 stats->rx_length_errors = vsi_stats->rx_length_errors; 7133 } 7134 7135 /** 7136 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7137 * @vsi: VSI having NAPI disabled 7138 */ 7139 static void ice_napi_disable_all(struct ice_vsi *vsi) 7140 { 7141 int q_idx; 7142 7143 if (!vsi->netdev) 7144 return; 7145 7146 ice_for_each_q_vector(vsi, q_idx) { 7147 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7148 7149 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7150 napi_disable(&q_vector->napi); 7151 7152 cancel_work_sync(&q_vector->tx.dim.work); 7153 cancel_work_sync(&q_vector->rx.dim.work); 7154 } 7155 } 7156 7157 /** 7158 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7159 * @vsi: the VSI being un-configured 7160 */ 7161 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7162 { 7163 struct ice_pf *pf = vsi->back; 7164 struct ice_hw *hw = &pf->hw; 7165 u32 val; 7166 int i; 7167 7168 /* disable interrupt causation from each Rx queue; Tx queues are 7169 * handled in ice_vsi_stop_tx_ring() 7170 */ 7171 if (vsi->rx_rings) { 7172 ice_for_each_rxq(vsi, i) { 7173 if (vsi->rx_rings[i]) { 7174 u16 reg; 7175 7176 reg = vsi->rx_rings[i]->reg_idx; 7177 val = rd32(hw, QINT_RQCTL(reg)); 7178 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7179 wr32(hw, QINT_RQCTL(reg), val); 7180 } 7181 } 7182 } 7183 7184 /* disable each interrupt */ 7185 ice_for_each_q_vector(vsi, i) { 7186 if (!vsi->q_vectors[i]) 7187 continue; 7188 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7189 } 7190 7191 ice_flush(hw); 7192 7193 /* don't call synchronize_irq() for VF's from the host */ 7194 if (vsi->type == ICE_VSI_VF) 7195 return; 7196 7197 ice_for_each_q_vector(vsi, i) 7198 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7199 } 7200 7201 /** 7202 * ice_down - Shutdown the connection 7203 * @vsi: The VSI being stopped 7204 * 7205 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7206 */ 7207 int ice_down(struct ice_vsi *vsi) 7208 { 7209 int i, tx_err, rx_err, vlan_err = 0; 7210 7211 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7212 7213 if (vsi->netdev) { 7214 vlan_err = ice_vsi_del_vlan_zero(vsi); 7215 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7216 netif_carrier_off(vsi->netdev); 7217 netif_tx_disable(vsi->netdev); 7218 } 7219 7220 ice_vsi_dis_irq(vsi); 7221 7222 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7223 if (tx_err) 7224 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7225 vsi->vsi_num, tx_err); 7226 if (!tx_err && vsi->xdp_rings) { 7227 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7228 if (tx_err) 7229 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7230 vsi->vsi_num, tx_err); 7231 } 7232 7233 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7234 if (rx_err) 7235 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7236 vsi->vsi_num, rx_err); 7237 7238 ice_napi_disable_all(vsi); 7239 7240 ice_for_each_txq(vsi, i) 7241 ice_clean_tx_ring(vsi->tx_rings[i]); 7242 7243 if (vsi->xdp_rings) 7244 ice_for_each_xdp_txq(vsi, i) 7245 ice_clean_tx_ring(vsi->xdp_rings[i]); 7246 7247 ice_for_each_rxq(vsi, i) 7248 ice_clean_rx_ring(vsi->rx_rings[i]); 7249 7250 if (tx_err || rx_err || vlan_err) { 7251 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7252 vsi->vsi_num, vsi->vsw->sw_id); 7253 return -EIO; 7254 } 7255 7256 return 0; 7257 } 7258 7259 /** 7260 * ice_down_up - shutdown the VSI connection and bring it up 7261 * @vsi: the VSI to be reconnected 7262 */ 7263 int ice_down_up(struct ice_vsi *vsi) 7264 { 7265 int ret; 7266 7267 /* if DOWN already set, nothing to do */ 7268 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7269 return 0; 7270 7271 ret = ice_down(vsi); 7272 if (ret) 7273 return ret; 7274 7275 ret = ice_up(vsi); 7276 if (ret) { 7277 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7278 return ret; 7279 } 7280 7281 return 0; 7282 } 7283 7284 /** 7285 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7286 * @vsi: VSI having resources allocated 7287 * 7288 * Return 0 on success, negative on failure 7289 */ 7290 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7291 { 7292 int i, err = 0; 7293 7294 if (!vsi->num_txq) { 7295 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7296 vsi->vsi_num); 7297 return -EINVAL; 7298 } 7299 7300 ice_for_each_txq(vsi, i) { 7301 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7302 7303 if (!ring) 7304 return -EINVAL; 7305 7306 if (vsi->netdev) 7307 ring->netdev = vsi->netdev; 7308 err = ice_setup_tx_ring(ring); 7309 if (err) 7310 break; 7311 } 7312 7313 return err; 7314 } 7315 7316 /** 7317 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7318 * @vsi: VSI having resources allocated 7319 * 7320 * Return 0 on success, negative on failure 7321 */ 7322 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7323 { 7324 int i, err = 0; 7325 7326 if (!vsi->num_rxq) { 7327 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7328 vsi->vsi_num); 7329 return -EINVAL; 7330 } 7331 7332 ice_for_each_rxq(vsi, i) { 7333 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7334 7335 if (!ring) 7336 return -EINVAL; 7337 7338 if (vsi->netdev) 7339 ring->netdev = vsi->netdev; 7340 err = ice_setup_rx_ring(ring); 7341 if (err) 7342 break; 7343 } 7344 7345 return err; 7346 } 7347 7348 /** 7349 * ice_vsi_open_ctrl - open control VSI for use 7350 * @vsi: the VSI to open 7351 * 7352 * Initialization of the Control VSI 7353 * 7354 * Returns 0 on success, negative value on error 7355 */ 7356 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7357 { 7358 char int_name[ICE_INT_NAME_STR_LEN]; 7359 struct ice_pf *pf = vsi->back; 7360 struct device *dev; 7361 int err; 7362 7363 dev = ice_pf_to_dev(pf); 7364 /* allocate descriptors */ 7365 err = ice_vsi_setup_tx_rings(vsi); 7366 if (err) 7367 goto err_setup_tx; 7368 7369 err = ice_vsi_setup_rx_rings(vsi); 7370 if (err) 7371 goto err_setup_rx; 7372 7373 err = ice_vsi_cfg_lan(vsi); 7374 if (err) 7375 goto err_setup_rx; 7376 7377 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7378 dev_driver_string(dev), dev_name(dev)); 7379 err = ice_vsi_req_irq_msix(vsi, int_name); 7380 if (err) 7381 goto err_setup_rx; 7382 7383 ice_vsi_cfg_msix(vsi); 7384 7385 err = ice_vsi_start_all_rx_rings(vsi); 7386 if (err) 7387 goto err_up_complete; 7388 7389 clear_bit(ICE_VSI_DOWN, vsi->state); 7390 ice_vsi_ena_irq(vsi); 7391 7392 return 0; 7393 7394 err_up_complete: 7395 ice_down(vsi); 7396 err_setup_rx: 7397 ice_vsi_free_rx_rings(vsi); 7398 err_setup_tx: 7399 ice_vsi_free_tx_rings(vsi); 7400 7401 return err; 7402 } 7403 7404 /** 7405 * ice_vsi_open - Called when a network interface is made active 7406 * @vsi: the VSI to open 7407 * 7408 * Initialization of the VSI 7409 * 7410 * Returns 0 on success, negative value on error 7411 */ 7412 int ice_vsi_open(struct ice_vsi *vsi) 7413 { 7414 char int_name[ICE_INT_NAME_STR_LEN]; 7415 struct ice_pf *pf = vsi->back; 7416 int err; 7417 7418 /* allocate descriptors */ 7419 err = ice_vsi_setup_tx_rings(vsi); 7420 if (err) 7421 goto err_setup_tx; 7422 7423 err = ice_vsi_setup_rx_rings(vsi); 7424 if (err) 7425 goto err_setup_rx; 7426 7427 err = ice_vsi_cfg_lan(vsi); 7428 if (err) 7429 goto err_setup_rx; 7430 7431 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7432 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7433 err = ice_vsi_req_irq_msix(vsi, int_name); 7434 if (err) 7435 goto err_setup_rx; 7436 7437 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7438 7439 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7440 /* Notify the stack of the actual queue counts. */ 7441 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7442 if (err) 7443 goto err_set_qs; 7444 7445 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7446 if (err) 7447 goto err_set_qs; 7448 7449 ice_vsi_set_napi_queues(vsi); 7450 } 7451 7452 err = ice_up_complete(vsi); 7453 if (err) 7454 goto err_up_complete; 7455 7456 return 0; 7457 7458 err_up_complete: 7459 ice_down(vsi); 7460 err_set_qs: 7461 ice_vsi_free_irq(vsi); 7462 err_setup_rx: 7463 ice_vsi_free_rx_rings(vsi); 7464 err_setup_tx: 7465 ice_vsi_free_tx_rings(vsi); 7466 7467 return err; 7468 } 7469 7470 /** 7471 * ice_vsi_release_all - Delete all VSIs 7472 * @pf: PF from which all VSIs are being removed 7473 */ 7474 static void ice_vsi_release_all(struct ice_pf *pf) 7475 { 7476 int err, i; 7477 7478 if (!pf->vsi) 7479 return; 7480 7481 ice_for_each_vsi(pf, i) { 7482 if (!pf->vsi[i]) 7483 continue; 7484 7485 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7486 continue; 7487 7488 err = ice_vsi_release(pf->vsi[i]); 7489 if (err) 7490 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7491 i, err, pf->vsi[i]->vsi_num); 7492 } 7493 } 7494 7495 /** 7496 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7497 * @pf: pointer to the PF instance 7498 * @type: VSI type to rebuild 7499 * 7500 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7501 */ 7502 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7503 { 7504 struct device *dev = ice_pf_to_dev(pf); 7505 int i, err; 7506 7507 ice_for_each_vsi(pf, i) { 7508 struct ice_vsi *vsi = pf->vsi[i]; 7509 7510 if (!vsi || vsi->type != type) 7511 continue; 7512 7513 /* rebuild the VSI */ 7514 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7515 if (err) { 7516 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7517 err, vsi->idx, ice_vsi_type_str(type)); 7518 return err; 7519 } 7520 7521 /* replay filters for the VSI */ 7522 err = ice_replay_vsi(&pf->hw, vsi->idx); 7523 if (err) { 7524 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7525 err, vsi->idx, ice_vsi_type_str(type)); 7526 return err; 7527 } 7528 7529 /* Re-map HW VSI number, using VSI handle that has been 7530 * previously validated in ice_replay_vsi() call above 7531 */ 7532 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7533 7534 /* enable the VSI */ 7535 err = ice_ena_vsi(vsi, false); 7536 if (err) { 7537 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7538 err, vsi->idx, ice_vsi_type_str(type)); 7539 return err; 7540 } 7541 7542 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7543 ice_vsi_type_str(type)); 7544 } 7545 7546 return 0; 7547 } 7548 7549 /** 7550 * ice_update_pf_netdev_link - Update PF netdev link status 7551 * @pf: pointer to the PF instance 7552 */ 7553 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7554 { 7555 bool link_up; 7556 int i; 7557 7558 ice_for_each_vsi(pf, i) { 7559 struct ice_vsi *vsi = pf->vsi[i]; 7560 7561 if (!vsi || vsi->type != ICE_VSI_PF) 7562 return; 7563 7564 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7565 if (link_up) { 7566 netif_carrier_on(pf->vsi[i]->netdev); 7567 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7568 } else { 7569 netif_carrier_off(pf->vsi[i]->netdev); 7570 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7571 } 7572 } 7573 } 7574 7575 /** 7576 * ice_rebuild - rebuild after reset 7577 * @pf: PF to rebuild 7578 * @reset_type: type of reset 7579 * 7580 * Do not rebuild VF VSI in this flow because that is already handled via 7581 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7582 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7583 * to reset/rebuild all the VF VSI twice. 7584 */ 7585 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7586 { 7587 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7588 struct device *dev = ice_pf_to_dev(pf); 7589 struct ice_hw *hw = &pf->hw; 7590 bool dvm; 7591 int err; 7592 7593 if (test_bit(ICE_DOWN, pf->state)) 7594 goto clear_recovery; 7595 7596 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7597 7598 #define ICE_EMP_RESET_SLEEP_MS 5000 7599 if (reset_type == ICE_RESET_EMPR) { 7600 /* If an EMP reset has occurred, any previously pending flash 7601 * update will have completed. We no longer know whether or 7602 * not the NVM update EMP reset is restricted. 7603 */ 7604 pf->fw_emp_reset_disabled = false; 7605 7606 msleep(ICE_EMP_RESET_SLEEP_MS); 7607 } 7608 7609 err = ice_init_all_ctrlq(hw); 7610 if (err) { 7611 dev_err(dev, "control queues init failed %d\n", err); 7612 goto err_init_ctrlq; 7613 } 7614 7615 /* if DDP was previously loaded successfully */ 7616 if (!ice_is_safe_mode(pf)) { 7617 /* reload the SW DB of filter tables */ 7618 if (reset_type == ICE_RESET_PFR) 7619 ice_fill_blk_tbls(hw); 7620 else 7621 /* Reload DDP Package after CORER/GLOBR reset */ 7622 ice_load_pkg(NULL, pf); 7623 } 7624 7625 err = ice_clear_pf_cfg(hw); 7626 if (err) { 7627 dev_err(dev, "clear PF configuration failed %d\n", err); 7628 goto err_init_ctrlq; 7629 } 7630 7631 ice_clear_pxe_mode(hw); 7632 7633 err = ice_init_nvm(hw); 7634 if (err) { 7635 dev_err(dev, "ice_init_nvm failed %d\n", err); 7636 goto err_init_ctrlq; 7637 } 7638 7639 err = ice_get_caps(hw); 7640 if (err) { 7641 dev_err(dev, "ice_get_caps failed %d\n", err); 7642 goto err_init_ctrlq; 7643 } 7644 7645 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7646 if (err) { 7647 dev_err(dev, "set_mac_cfg failed %d\n", err); 7648 goto err_init_ctrlq; 7649 } 7650 7651 dvm = ice_is_dvm_ena(hw); 7652 7653 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7654 if (err) 7655 goto err_init_ctrlq; 7656 7657 err = ice_sched_init_port(hw->port_info); 7658 if (err) 7659 goto err_sched_init_port; 7660 7661 /* start misc vector */ 7662 err = ice_req_irq_msix_misc(pf); 7663 if (err) { 7664 dev_err(dev, "misc vector setup failed: %d\n", err); 7665 goto err_sched_init_port; 7666 } 7667 7668 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7669 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7670 if (!rd32(hw, PFQF_FD_SIZE)) { 7671 u16 unused, guar, b_effort; 7672 7673 guar = hw->func_caps.fd_fltr_guar; 7674 b_effort = hw->func_caps.fd_fltr_best_effort; 7675 7676 /* force guaranteed filter pool for PF */ 7677 ice_alloc_fd_guar_item(hw, &unused, guar); 7678 /* force shared filter pool for PF */ 7679 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7680 } 7681 } 7682 7683 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7684 ice_dcb_rebuild(pf); 7685 7686 /* If the PF previously had enabled PTP, PTP init needs to happen before 7687 * the VSI rebuild. If not, this causes the PTP link status events to 7688 * fail. 7689 */ 7690 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7691 ice_ptp_rebuild(pf, reset_type); 7692 7693 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7694 ice_gnss_init(pf); 7695 7696 /* rebuild PF VSI */ 7697 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7698 if (err) { 7699 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7700 goto err_vsi_rebuild; 7701 } 7702 7703 if (reset_type == ICE_RESET_PFR) { 7704 err = ice_rebuild_channels(pf); 7705 if (err) { 7706 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7707 err); 7708 goto err_vsi_rebuild; 7709 } 7710 } 7711 7712 /* If Flow Director is active */ 7713 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7714 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7715 if (err) { 7716 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7717 goto err_vsi_rebuild; 7718 } 7719 7720 /* replay HW Flow Director recipes */ 7721 if (hw->fdir_prof) 7722 ice_fdir_replay_flows(hw); 7723 7724 /* replay Flow Director filters */ 7725 ice_fdir_replay_fltrs(pf); 7726 7727 ice_rebuild_arfs(pf); 7728 } 7729 7730 if (vsi && vsi->netdev) 7731 netif_device_attach(vsi->netdev); 7732 7733 ice_update_pf_netdev_link(pf); 7734 7735 /* tell the firmware we are up */ 7736 err = ice_send_version(pf); 7737 if (err) { 7738 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7739 err); 7740 goto err_vsi_rebuild; 7741 } 7742 7743 ice_replay_post(hw); 7744 7745 /* if we get here, reset flow is successful */ 7746 clear_bit(ICE_RESET_FAILED, pf->state); 7747 7748 ice_plug_aux_dev(pf); 7749 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7750 ice_lag_rebuild(pf); 7751 7752 /* Restore timestamp mode settings after VSI rebuild */ 7753 ice_ptp_restore_timestamp_mode(pf); 7754 return; 7755 7756 err_vsi_rebuild: 7757 err_sched_init_port: 7758 ice_sched_cleanup_all(hw); 7759 err_init_ctrlq: 7760 ice_shutdown_all_ctrlq(hw, false); 7761 set_bit(ICE_RESET_FAILED, pf->state); 7762 clear_recovery: 7763 /* set this bit in PF state to control service task scheduling */ 7764 set_bit(ICE_NEEDS_RESTART, pf->state); 7765 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7766 } 7767 7768 /** 7769 * ice_change_mtu - NDO callback to change the MTU 7770 * @netdev: network interface device structure 7771 * @new_mtu: new value for maximum frame size 7772 * 7773 * Returns 0 on success, negative on failure 7774 */ 7775 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7776 { 7777 struct ice_netdev_priv *np = netdev_priv(netdev); 7778 struct ice_vsi *vsi = np->vsi; 7779 struct ice_pf *pf = vsi->back; 7780 struct bpf_prog *prog; 7781 u8 count = 0; 7782 int err = 0; 7783 7784 if (new_mtu == (int)netdev->mtu) { 7785 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7786 return 0; 7787 } 7788 7789 prog = vsi->xdp_prog; 7790 if (prog && !prog->aux->xdp_has_frags) { 7791 int frame_size = ice_max_xdp_frame_size(vsi); 7792 7793 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7794 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7795 frame_size - ICE_ETH_PKT_HDR_PAD); 7796 return -EINVAL; 7797 } 7798 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7799 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7800 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7801 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7802 return -EINVAL; 7803 } 7804 } 7805 7806 /* if a reset is in progress, wait for some time for it to complete */ 7807 do { 7808 if (ice_is_reset_in_progress(pf->state)) { 7809 count++; 7810 usleep_range(1000, 2000); 7811 } else { 7812 break; 7813 } 7814 7815 } while (count < 100); 7816 7817 if (count == 100) { 7818 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7819 return -EBUSY; 7820 } 7821 7822 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7823 err = ice_down_up(vsi); 7824 if (err) 7825 return err; 7826 7827 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7828 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7829 7830 return err; 7831 } 7832 7833 /** 7834 * ice_eth_ioctl - Access the hwtstamp interface 7835 * @netdev: network interface device structure 7836 * @ifr: interface request data 7837 * @cmd: ioctl command 7838 */ 7839 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7840 { 7841 struct ice_netdev_priv *np = netdev_priv(netdev); 7842 struct ice_pf *pf = np->vsi->back; 7843 7844 switch (cmd) { 7845 case SIOCGHWTSTAMP: 7846 return ice_ptp_get_ts_config(pf, ifr); 7847 case SIOCSHWTSTAMP: 7848 return ice_ptp_set_ts_config(pf, ifr); 7849 default: 7850 return -EOPNOTSUPP; 7851 } 7852 } 7853 7854 /** 7855 * ice_aq_str - convert AQ err code to a string 7856 * @aq_err: the AQ error code to convert 7857 */ 7858 const char *ice_aq_str(enum ice_aq_err aq_err) 7859 { 7860 switch (aq_err) { 7861 case ICE_AQ_RC_OK: 7862 return "OK"; 7863 case ICE_AQ_RC_EPERM: 7864 return "ICE_AQ_RC_EPERM"; 7865 case ICE_AQ_RC_ENOENT: 7866 return "ICE_AQ_RC_ENOENT"; 7867 case ICE_AQ_RC_ENOMEM: 7868 return "ICE_AQ_RC_ENOMEM"; 7869 case ICE_AQ_RC_EBUSY: 7870 return "ICE_AQ_RC_EBUSY"; 7871 case ICE_AQ_RC_EEXIST: 7872 return "ICE_AQ_RC_EEXIST"; 7873 case ICE_AQ_RC_EINVAL: 7874 return "ICE_AQ_RC_EINVAL"; 7875 case ICE_AQ_RC_ENOSPC: 7876 return "ICE_AQ_RC_ENOSPC"; 7877 case ICE_AQ_RC_ENOSYS: 7878 return "ICE_AQ_RC_ENOSYS"; 7879 case ICE_AQ_RC_EMODE: 7880 return "ICE_AQ_RC_EMODE"; 7881 case ICE_AQ_RC_ENOSEC: 7882 return "ICE_AQ_RC_ENOSEC"; 7883 case ICE_AQ_RC_EBADSIG: 7884 return "ICE_AQ_RC_EBADSIG"; 7885 case ICE_AQ_RC_ESVN: 7886 return "ICE_AQ_RC_ESVN"; 7887 case ICE_AQ_RC_EBADMAN: 7888 return "ICE_AQ_RC_EBADMAN"; 7889 case ICE_AQ_RC_EBADBUF: 7890 return "ICE_AQ_RC_EBADBUF"; 7891 } 7892 7893 return "ICE_AQ_RC_UNKNOWN"; 7894 } 7895 7896 /** 7897 * ice_set_rss_lut - Set RSS LUT 7898 * @vsi: Pointer to VSI structure 7899 * @lut: Lookup table 7900 * @lut_size: Lookup table size 7901 * 7902 * Returns 0 on success, negative on failure 7903 */ 7904 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7905 { 7906 struct ice_aq_get_set_rss_lut_params params = {}; 7907 struct ice_hw *hw = &vsi->back->hw; 7908 int status; 7909 7910 if (!lut) 7911 return -EINVAL; 7912 7913 params.vsi_handle = vsi->idx; 7914 params.lut_size = lut_size; 7915 params.lut_type = vsi->rss_lut_type; 7916 params.lut = lut; 7917 7918 status = ice_aq_set_rss_lut(hw, ¶ms); 7919 if (status) 7920 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7921 status, ice_aq_str(hw->adminq.sq_last_status)); 7922 7923 return status; 7924 } 7925 7926 /** 7927 * ice_set_rss_key - Set RSS key 7928 * @vsi: Pointer to the VSI structure 7929 * @seed: RSS hash seed 7930 * 7931 * Returns 0 on success, negative on failure 7932 */ 7933 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7934 { 7935 struct ice_hw *hw = &vsi->back->hw; 7936 int status; 7937 7938 if (!seed) 7939 return -EINVAL; 7940 7941 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7942 if (status) 7943 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7944 status, ice_aq_str(hw->adminq.sq_last_status)); 7945 7946 return status; 7947 } 7948 7949 /** 7950 * ice_get_rss_lut - Get RSS LUT 7951 * @vsi: Pointer to VSI structure 7952 * @lut: Buffer to store the lookup table entries 7953 * @lut_size: Size of buffer to store the lookup table entries 7954 * 7955 * Returns 0 on success, negative on failure 7956 */ 7957 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7958 { 7959 struct ice_aq_get_set_rss_lut_params params = {}; 7960 struct ice_hw *hw = &vsi->back->hw; 7961 int status; 7962 7963 if (!lut) 7964 return -EINVAL; 7965 7966 params.vsi_handle = vsi->idx; 7967 params.lut_size = lut_size; 7968 params.lut_type = vsi->rss_lut_type; 7969 params.lut = lut; 7970 7971 status = ice_aq_get_rss_lut(hw, ¶ms); 7972 if (status) 7973 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7974 status, ice_aq_str(hw->adminq.sq_last_status)); 7975 7976 return status; 7977 } 7978 7979 /** 7980 * ice_get_rss_key - Get RSS key 7981 * @vsi: Pointer to VSI structure 7982 * @seed: Buffer to store the key in 7983 * 7984 * Returns 0 on success, negative on failure 7985 */ 7986 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7987 { 7988 struct ice_hw *hw = &vsi->back->hw; 7989 int status; 7990 7991 if (!seed) 7992 return -EINVAL; 7993 7994 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7995 if (status) 7996 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7997 status, ice_aq_str(hw->adminq.sq_last_status)); 7998 7999 return status; 8000 } 8001 8002 /** 8003 * ice_set_rss_hfunc - Set RSS HASH function 8004 * @vsi: Pointer to VSI structure 8005 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8006 * 8007 * Returns 0 on success, negative on failure 8008 */ 8009 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8010 { 8011 struct ice_hw *hw = &vsi->back->hw; 8012 struct ice_vsi_ctx *ctx; 8013 bool symm; 8014 int err; 8015 8016 if (hfunc == vsi->rss_hfunc) 8017 return 0; 8018 8019 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8020 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8021 return -EOPNOTSUPP; 8022 8023 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8024 if (!ctx) 8025 return -ENOMEM; 8026 8027 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8028 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8029 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8030 ctx->info.q_opt_rss |= 8031 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8032 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8033 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8034 8035 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8036 if (err) { 8037 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8038 vsi->vsi_num, err); 8039 } else { 8040 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8041 vsi->rss_hfunc = hfunc; 8042 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8043 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8044 "Symmetric " : ""); 8045 } 8046 kfree(ctx); 8047 if (err) 8048 return err; 8049 8050 /* Fix the symmetry setting for all existing RSS configurations */ 8051 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8052 return ice_set_rss_cfg_symm(hw, vsi, symm); 8053 } 8054 8055 /** 8056 * ice_bridge_getlink - Get the hardware bridge mode 8057 * @skb: skb buff 8058 * @pid: process ID 8059 * @seq: RTNL message seq 8060 * @dev: the netdev being configured 8061 * @filter_mask: filter mask passed in 8062 * @nlflags: netlink flags passed in 8063 * 8064 * Return the bridge mode (VEB/VEPA) 8065 */ 8066 static int 8067 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8068 struct net_device *dev, u32 filter_mask, int nlflags) 8069 { 8070 struct ice_netdev_priv *np = netdev_priv(dev); 8071 struct ice_vsi *vsi = np->vsi; 8072 struct ice_pf *pf = vsi->back; 8073 u16 bmode; 8074 8075 bmode = pf->first_sw->bridge_mode; 8076 8077 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8078 filter_mask, NULL); 8079 } 8080 8081 /** 8082 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8083 * @vsi: Pointer to VSI structure 8084 * @bmode: Hardware bridge mode (VEB/VEPA) 8085 * 8086 * Returns 0 on success, negative on failure 8087 */ 8088 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8089 { 8090 struct ice_aqc_vsi_props *vsi_props; 8091 struct ice_hw *hw = &vsi->back->hw; 8092 struct ice_vsi_ctx *ctxt; 8093 int ret; 8094 8095 vsi_props = &vsi->info; 8096 8097 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8098 if (!ctxt) 8099 return -ENOMEM; 8100 8101 ctxt->info = vsi->info; 8102 8103 if (bmode == BRIDGE_MODE_VEB) 8104 /* change from VEPA to VEB mode */ 8105 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8106 else 8107 /* change from VEB to VEPA mode */ 8108 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8109 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8110 8111 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8112 if (ret) { 8113 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8114 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8115 goto out; 8116 } 8117 /* Update sw flags for book keeping */ 8118 vsi_props->sw_flags = ctxt->info.sw_flags; 8119 8120 out: 8121 kfree(ctxt); 8122 return ret; 8123 } 8124 8125 /** 8126 * ice_bridge_setlink - Set the hardware bridge mode 8127 * @dev: the netdev being configured 8128 * @nlh: RTNL message 8129 * @flags: bridge setlink flags 8130 * @extack: netlink extended ack 8131 * 8132 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8133 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8134 * not already set for all VSIs connected to this switch. And also update the 8135 * unicast switch filter rules for the corresponding switch of the netdev. 8136 */ 8137 static int 8138 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8139 u16 __always_unused flags, 8140 struct netlink_ext_ack __always_unused *extack) 8141 { 8142 struct ice_netdev_priv *np = netdev_priv(dev); 8143 struct ice_pf *pf = np->vsi->back; 8144 struct nlattr *attr, *br_spec; 8145 struct ice_hw *hw = &pf->hw; 8146 struct ice_sw *pf_sw; 8147 int rem, v, err = 0; 8148 8149 pf_sw = pf->first_sw; 8150 /* find the attribute in the netlink message */ 8151 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8152 if (!br_spec) 8153 return -EINVAL; 8154 8155 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8156 __u16 mode = nla_get_u16(attr); 8157 8158 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8159 return -EINVAL; 8160 /* Continue if bridge mode is not being flipped */ 8161 if (mode == pf_sw->bridge_mode) 8162 continue; 8163 /* Iterates through the PF VSI list and update the loopback 8164 * mode of the VSI 8165 */ 8166 ice_for_each_vsi(pf, v) { 8167 if (!pf->vsi[v]) 8168 continue; 8169 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8170 if (err) 8171 return err; 8172 } 8173 8174 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8175 /* Update the unicast switch filter rules for the corresponding 8176 * switch of the netdev 8177 */ 8178 err = ice_update_sw_rule_bridge_mode(hw); 8179 if (err) { 8180 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8181 mode, err, 8182 ice_aq_str(hw->adminq.sq_last_status)); 8183 /* revert hw->evb_veb */ 8184 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8185 return err; 8186 } 8187 8188 pf_sw->bridge_mode = mode; 8189 } 8190 8191 return 0; 8192 } 8193 8194 /** 8195 * ice_tx_timeout - Respond to a Tx Hang 8196 * @netdev: network interface device structure 8197 * @txqueue: Tx queue 8198 */ 8199 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8200 { 8201 struct ice_netdev_priv *np = netdev_priv(netdev); 8202 struct ice_tx_ring *tx_ring = NULL; 8203 struct ice_vsi *vsi = np->vsi; 8204 struct ice_pf *pf = vsi->back; 8205 u32 i; 8206 8207 pf->tx_timeout_count++; 8208 8209 /* Check if PFC is enabled for the TC to which the queue belongs 8210 * to. If yes then Tx timeout is not caused by a hung queue, no 8211 * need to reset and rebuild 8212 */ 8213 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8214 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8215 txqueue); 8216 return; 8217 } 8218 8219 /* now that we have an index, find the tx_ring struct */ 8220 ice_for_each_txq(vsi, i) 8221 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8222 if (txqueue == vsi->tx_rings[i]->q_index) { 8223 tx_ring = vsi->tx_rings[i]; 8224 break; 8225 } 8226 8227 /* Reset recovery level if enough time has elapsed after last timeout. 8228 * Also ensure no new reset action happens before next timeout period. 8229 */ 8230 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8231 pf->tx_timeout_recovery_level = 1; 8232 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8233 netdev->watchdog_timeo))) 8234 return; 8235 8236 if (tx_ring) { 8237 struct ice_hw *hw = &pf->hw; 8238 u32 head, val = 0; 8239 8240 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8241 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8242 /* Read interrupt register */ 8243 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8244 8245 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8246 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8247 head, tx_ring->next_to_use, val); 8248 } 8249 8250 pf->tx_timeout_last_recovery = jiffies; 8251 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8252 pf->tx_timeout_recovery_level, txqueue); 8253 8254 switch (pf->tx_timeout_recovery_level) { 8255 case 1: 8256 set_bit(ICE_PFR_REQ, pf->state); 8257 break; 8258 case 2: 8259 set_bit(ICE_CORER_REQ, pf->state); 8260 break; 8261 case 3: 8262 set_bit(ICE_GLOBR_REQ, pf->state); 8263 break; 8264 default: 8265 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8266 set_bit(ICE_DOWN, pf->state); 8267 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8268 set_bit(ICE_SERVICE_DIS, pf->state); 8269 break; 8270 } 8271 8272 ice_service_task_schedule(pf); 8273 pf->tx_timeout_recovery_level++; 8274 } 8275 8276 /** 8277 * ice_setup_tc_cls_flower - flower classifier offloads 8278 * @np: net device to configure 8279 * @filter_dev: device on which filter is added 8280 * @cls_flower: offload data 8281 */ 8282 static int 8283 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8284 struct net_device *filter_dev, 8285 struct flow_cls_offload *cls_flower) 8286 { 8287 struct ice_vsi *vsi = np->vsi; 8288 8289 if (cls_flower->common.chain_index) 8290 return -EOPNOTSUPP; 8291 8292 switch (cls_flower->command) { 8293 case FLOW_CLS_REPLACE: 8294 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8295 case FLOW_CLS_DESTROY: 8296 return ice_del_cls_flower(vsi, cls_flower); 8297 default: 8298 return -EINVAL; 8299 } 8300 } 8301 8302 /** 8303 * ice_setup_tc_block_cb - callback handler registered for TC block 8304 * @type: TC SETUP type 8305 * @type_data: TC flower offload data that contains user input 8306 * @cb_priv: netdev private data 8307 */ 8308 static int 8309 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8310 { 8311 struct ice_netdev_priv *np = cb_priv; 8312 8313 switch (type) { 8314 case TC_SETUP_CLSFLOWER: 8315 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8316 type_data); 8317 default: 8318 return -EOPNOTSUPP; 8319 } 8320 } 8321 8322 /** 8323 * ice_validate_mqprio_qopt - Validate TCF input parameters 8324 * @vsi: Pointer to VSI 8325 * @mqprio_qopt: input parameters for mqprio queue configuration 8326 * 8327 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8328 * needed), and make sure user doesn't specify qcount and BW rate limit 8329 * for TCs, which are more than "num_tc" 8330 */ 8331 static int 8332 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8333 struct tc_mqprio_qopt_offload *mqprio_qopt) 8334 { 8335 int non_power_of_2_qcount = 0; 8336 struct ice_pf *pf = vsi->back; 8337 int max_rss_q_cnt = 0; 8338 u64 sum_min_rate = 0; 8339 struct device *dev; 8340 int i, speed; 8341 u8 num_tc; 8342 8343 if (vsi->type != ICE_VSI_PF) 8344 return -EINVAL; 8345 8346 if (mqprio_qopt->qopt.offset[0] != 0 || 8347 mqprio_qopt->qopt.num_tc < 1 || 8348 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8349 return -EINVAL; 8350 8351 dev = ice_pf_to_dev(pf); 8352 vsi->ch_rss_size = 0; 8353 num_tc = mqprio_qopt->qopt.num_tc; 8354 speed = ice_get_link_speed_kbps(vsi); 8355 8356 for (i = 0; num_tc; i++) { 8357 int qcount = mqprio_qopt->qopt.count[i]; 8358 u64 max_rate, min_rate, rem; 8359 8360 if (!qcount) 8361 return -EINVAL; 8362 8363 if (is_power_of_2(qcount)) { 8364 if (non_power_of_2_qcount && 8365 qcount > non_power_of_2_qcount) { 8366 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8367 qcount, non_power_of_2_qcount); 8368 return -EINVAL; 8369 } 8370 if (qcount > max_rss_q_cnt) 8371 max_rss_q_cnt = qcount; 8372 } else { 8373 if (non_power_of_2_qcount && 8374 qcount != non_power_of_2_qcount) { 8375 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8376 qcount, non_power_of_2_qcount); 8377 return -EINVAL; 8378 } 8379 if (qcount < max_rss_q_cnt) { 8380 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8381 qcount, max_rss_q_cnt); 8382 return -EINVAL; 8383 } 8384 max_rss_q_cnt = qcount; 8385 non_power_of_2_qcount = qcount; 8386 } 8387 8388 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8389 * converts the bandwidth rate limit into Bytes/s when 8390 * passing it down to the driver. So convert input bandwidth 8391 * from Bytes/s to Kbps 8392 */ 8393 max_rate = mqprio_qopt->max_rate[i]; 8394 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8395 8396 /* min_rate is minimum guaranteed rate and it can't be zero */ 8397 min_rate = mqprio_qopt->min_rate[i]; 8398 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8399 sum_min_rate += min_rate; 8400 8401 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8402 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8403 min_rate, ICE_MIN_BW_LIMIT); 8404 return -EINVAL; 8405 } 8406 8407 if (max_rate && max_rate > speed) { 8408 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8409 i, max_rate, speed); 8410 return -EINVAL; 8411 } 8412 8413 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8414 if (rem) { 8415 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8416 i, ICE_MIN_BW_LIMIT); 8417 return -EINVAL; 8418 } 8419 8420 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8421 if (rem) { 8422 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8423 i, ICE_MIN_BW_LIMIT); 8424 return -EINVAL; 8425 } 8426 8427 /* min_rate can't be more than max_rate, except when max_rate 8428 * is zero (implies max_rate sought is max line rate). In such 8429 * a case min_rate can be more than max. 8430 */ 8431 if (max_rate && min_rate > max_rate) { 8432 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8433 min_rate, max_rate); 8434 return -EINVAL; 8435 } 8436 8437 if (i >= mqprio_qopt->qopt.num_tc - 1) 8438 break; 8439 if (mqprio_qopt->qopt.offset[i + 1] != 8440 (mqprio_qopt->qopt.offset[i] + qcount)) 8441 return -EINVAL; 8442 } 8443 if (vsi->num_rxq < 8444 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8445 return -EINVAL; 8446 if (vsi->num_txq < 8447 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8448 return -EINVAL; 8449 8450 if (sum_min_rate && sum_min_rate > (u64)speed) { 8451 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8452 sum_min_rate, speed); 8453 return -EINVAL; 8454 } 8455 8456 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8457 vsi->ch_rss_size = max_rss_q_cnt; 8458 8459 return 0; 8460 } 8461 8462 /** 8463 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8464 * @pf: ptr to PF device 8465 * @vsi: ptr to VSI 8466 */ 8467 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8468 { 8469 struct device *dev = ice_pf_to_dev(pf); 8470 bool added = false; 8471 struct ice_hw *hw; 8472 int flow; 8473 8474 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8475 return -EINVAL; 8476 8477 hw = &pf->hw; 8478 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8479 struct ice_fd_hw_prof *prof; 8480 int tun, status; 8481 u64 entry_h; 8482 8483 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8484 hw->fdir_prof[flow]->cnt)) 8485 continue; 8486 8487 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8488 enum ice_flow_priority prio; 8489 8490 /* add this VSI to FDir profile for this flow */ 8491 prio = ICE_FLOW_PRIO_NORMAL; 8492 prof = hw->fdir_prof[flow]; 8493 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8494 prof->prof_id[tun], 8495 prof->vsi_h[0], vsi->idx, 8496 prio, prof->fdir_seg[tun], 8497 &entry_h); 8498 if (status) { 8499 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8500 vsi->idx, flow); 8501 continue; 8502 } 8503 8504 prof->entry_h[prof->cnt][tun] = entry_h; 8505 } 8506 8507 /* store VSI for filter replay and delete */ 8508 prof->vsi_h[prof->cnt] = vsi->idx; 8509 prof->cnt++; 8510 8511 added = true; 8512 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8513 flow); 8514 } 8515 8516 if (!added) 8517 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8518 8519 return 0; 8520 } 8521 8522 /** 8523 * ice_add_channel - add a channel by adding VSI 8524 * @pf: ptr to PF device 8525 * @sw_id: underlying HW switching element ID 8526 * @ch: ptr to channel structure 8527 * 8528 * Add a channel (VSI) using add_vsi and queue_map 8529 */ 8530 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8531 { 8532 struct device *dev = ice_pf_to_dev(pf); 8533 struct ice_vsi *vsi; 8534 8535 if (ch->type != ICE_VSI_CHNL) { 8536 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8537 return -EINVAL; 8538 } 8539 8540 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8541 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8542 dev_err(dev, "create chnl VSI failure\n"); 8543 return -EINVAL; 8544 } 8545 8546 ice_add_vsi_to_fdir(pf, vsi); 8547 8548 ch->sw_id = sw_id; 8549 ch->vsi_num = vsi->vsi_num; 8550 ch->info.mapping_flags = vsi->info.mapping_flags; 8551 ch->ch_vsi = vsi; 8552 /* set the back pointer of channel for newly created VSI */ 8553 vsi->ch = ch; 8554 8555 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8556 sizeof(vsi->info.q_mapping)); 8557 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8558 sizeof(vsi->info.tc_mapping)); 8559 8560 return 0; 8561 } 8562 8563 /** 8564 * ice_chnl_cfg_res 8565 * @vsi: the VSI being setup 8566 * @ch: ptr to channel structure 8567 * 8568 * Configure channel specific resources such as rings, vector. 8569 */ 8570 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8571 { 8572 int i; 8573 8574 for (i = 0; i < ch->num_txq; i++) { 8575 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8576 struct ice_ring_container *rc; 8577 struct ice_tx_ring *tx_ring; 8578 struct ice_rx_ring *rx_ring; 8579 8580 tx_ring = vsi->tx_rings[ch->base_q + i]; 8581 rx_ring = vsi->rx_rings[ch->base_q + i]; 8582 if (!tx_ring || !rx_ring) 8583 continue; 8584 8585 /* setup ring being channel enabled */ 8586 tx_ring->ch = ch; 8587 rx_ring->ch = ch; 8588 8589 /* following code block sets up vector specific attributes */ 8590 tx_q_vector = tx_ring->q_vector; 8591 rx_q_vector = rx_ring->q_vector; 8592 if (!tx_q_vector && !rx_q_vector) 8593 continue; 8594 8595 if (tx_q_vector) { 8596 tx_q_vector->ch = ch; 8597 /* setup Tx and Rx ITR setting if DIM is off */ 8598 rc = &tx_q_vector->tx; 8599 if (!ITR_IS_DYNAMIC(rc)) 8600 ice_write_itr(rc, rc->itr_setting); 8601 } 8602 if (rx_q_vector) { 8603 rx_q_vector->ch = ch; 8604 /* setup Tx and Rx ITR setting if DIM is off */ 8605 rc = &rx_q_vector->rx; 8606 if (!ITR_IS_DYNAMIC(rc)) 8607 ice_write_itr(rc, rc->itr_setting); 8608 } 8609 } 8610 8611 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8612 * GLINT_ITR register would have written to perform in-context 8613 * update, hence perform flush 8614 */ 8615 if (ch->num_txq || ch->num_rxq) 8616 ice_flush(&vsi->back->hw); 8617 } 8618 8619 /** 8620 * ice_cfg_chnl_all_res - configure channel resources 8621 * @vsi: pte to main_vsi 8622 * @ch: ptr to channel structure 8623 * 8624 * This function configures channel specific resources such as flow-director 8625 * counter index, and other resources such as queues, vectors, ITR settings 8626 */ 8627 static void 8628 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8629 { 8630 /* configure channel (aka ADQ) resources such as queues, vectors, 8631 * ITR settings for channel specific vectors and anything else 8632 */ 8633 ice_chnl_cfg_res(vsi, ch); 8634 } 8635 8636 /** 8637 * ice_setup_hw_channel - setup new channel 8638 * @pf: ptr to PF device 8639 * @vsi: the VSI being setup 8640 * @ch: ptr to channel structure 8641 * @sw_id: underlying HW switching element ID 8642 * @type: type of channel to be created (VMDq2/VF) 8643 * 8644 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8645 * and configures Tx rings accordingly 8646 */ 8647 static int 8648 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8649 struct ice_channel *ch, u16 sw_id, u8 type) 8650 { 8651 struct device *dev = ice_pf_to_dev(pf); 8652 int ret; 8653 8654 ch->base_q = vsi->next_base_q; 8655 ch->type = type; 8656 8657 ret = ice_add_channel(pf, sw_id, ch); 8658 if (ret) { 8659 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8660 return ret; 8661 } 8662 8663 /* configure/setup ADQ specific resources */ 8664 ice_cfg_chnl_all_res(vsi, ch); 8665 8666 /* make sure to update the next_base_q so that subsequent channel's 8667 * (aka ADQ) VSI queue map is correct 8668 */ 8669 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8670 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8671 ch->num_rxq); 8672 8673 return 0; 8674 } 8675 8676 /** 8677 * ice_setup_channel - setup new channel using uplink element 8678 * @pf: ptr to PF device 8679 * @vsi: the VSI being setup 8680 * @ch: ptr to channel structure 8681 * 8682 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8683 * and uplink switching element 8684 */ 8685 static bool 8686 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8687 struct ice_channel *ch) 8688 { 8689 struct device *dev = ice_pf_to_dev(pf); 8690 u16 sw_id; 8691 int ret; 8692 8693 if (vsi->type != ICE_VSI_PF) { 8694 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8695 return false; 8696 } 8697 8698 sw_id = pf->first_sw->sw_id; 8699 8700 /* create channel (VSI) */ 8701 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8702 if (ret) { 8703 dev_err(dev, "failed to setup hw_channel\n"); 8704 return false; 8705 } 8706 dev_dbg(dev, "successfully created channel()\n"); 8707 8708 return ch->ch_vsi ? true : false; 8709 } 8710 8711 /** 8712 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8713 * @vsi: VSI to be configured 8714 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8715 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8716 */ 8717 static int 8718 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8719 { 8720 int err; 8721 8722 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8723 if (err) 8724 return err; 8725 8726 return ice_set_max_bw_limit(vsi, max_tx_rate); 8727 } 8728 8729 /** 8730 * ice_create_q_channel - function to create channel 8731 * @vsi: VSI to be configured 8732 * @ch: ptr to channel (it contains channel specific params) 8733 * 8734 * This function creates channel (VSI) using num_queues specified by user, 8735 * reconfigs RSS if needed. 8736 */ 8737 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8738 { 8739 struct ice_pf *pf = vsi->back; 8740 struct device *dev; 8741 8742 if (!ch) 8743 return -EINVAL; 8744 8745 dev = ice_pf_to_dev(pf); 8746 if (!ch->num_txq || !ch->num_rxq) { 8747 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8748 return -EINVAL; 8749 } 8750 8751 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8752 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8753 vsi->cnt_q_avail, ch->num_txq); 8754 return -EINVAL; 8755 } 8756 8757 if (!ice_setup_channel(pf, vsi, ch)) { 8758 dev_info(dev, "Failed to setup channel\n"); 8759 return -EINVAL; 8760 } 8761 /* configure BW rate limit */ 8762 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8763 int ret; 8764 8765 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8766 ch->min_tx_rate); 8767 if (ret) 8768 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8769 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8770 else 8771 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8772 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8773 } 8774 8775 vsi->cnt_q_avail -= ch->num_txq; 8776 8777 return 0; 8778 } 8779 8780 /** 8781 * ice_rem_all_chnl_fltrs - removes all channel filters 8782 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8783 * 8784 * Remove all advanced switch filters only if they are channel specific 8785 * tc-flower based filter 8786 */ 8787 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8788 { 8789 struct ice_tc_flower_fltr *fltr; 8790 struct hlist_node *node; 8791 8792 /* to remove all channel filters, iterate an ordered list of filters */ 8793 hlist_for_each_entry_safe(fltr, node, 8794 &pf->tc_flower_fltr_list, 8795 tc_flower_node) { 8796 struct ice_rule_query_data rule; 8797 int status; 8798 8799 /* for now process only channel specific filters */ 8800 if (!ice_is_chnl_fltr(fltr)) 8801 continue; 8802 8803 rule.rid = fltr->rid; 8804 rule.rule_id = fltr->rule_id; 8805 rule.vsi_handle = fltr->dest_vsi_handle; 8806 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8807 if (status) { 8808 if (status == -ENOENT) 8809 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8810 rule.rule_id); 8811 else 8812 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8813 status); 8814 } else if (fltr->dest_vsi) { 8815 /* update advanced switch filter count */ 8816 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8817 u32 flags = fltr->flags; 8818 8819 fltr->dest_vsi->num_chnl_fltr--; 8820 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8821 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8822 pf->num_dmac_chnl_fltrs--; 8823 } 8824 } 8825 8826 hlist_del(&fltr->tc_flower_node); 8827 kfree(fltr); 8828 } 8829 } 8830 8831 /** 8832 * ice_remove_q_channels - Remove queue channels for the TCs 8833 * @vsi: VSI to be configured 8834 * @rem_fltr: delete advanced switch filter or not 8835 * 8836 * Remove queue channels for the TCs 8837 */ 8838 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8839 { 8840 struct ice_channel *ch, *ch_tmp; 8841 struct ice_pf *pf = vsi->back; 8842 int i; 8843 8844 /* remove all tc-flower based filter if they are channel filters only */ 8845 if (rem_fltr) 8846 ice_rem_all_chnl_fltrs(pf); 8847 8848 /* remove ntuple filters since queue configuration is being changed */ 8849 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8850 struct ice_hw *hw = &pf->hw; 8851 8852 mutex_lock(&hw->fdir_fltr_lock); 8853 ice_fdir_del_all_fltrs(vsi); 8854 mutex_unlock(&hw->fdir_fltr_lock); 8855 } 8856 8857 /* perform cleanup for channels if they exist */ 8858 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8859 struct ice_vsi *ch_vsi; 8860 8861 list_del(&ch->list); 8862 ch_vsi = ch->ch_vsi; 8863 if (!ch_vsi) { 8864 kfree(ch); 8865 continue; 8866 } 8867 8868 /* Reset queue contexts */ 8869 for (i = 0; i < ch->num_rxq; i++) { 8870 struct ice_tx_ring *tx_ring; 8871 struct ice_rx_ring *rx_ring; 8872 8873 tx_ring = vsi->tx_rings[ch->base_q + i]; 8874 rx_ring = vsi->rx_rings[ch->base_q + i]; 8875 if (tx_ring) { 8876 tx_ring->ch = NULL; 8877 if (tx_ring->q_vector) 8878 tx_ring->q_vector->ch = NULL; 8879 } 8880 if (rx_ring) { 8881 rx_ring->ch = NULL; 8882 if (rx_ring->q_vector) 8883 rx_ring->q_vector->ch = NULL; 8884 } 8885 } 8886 8887 /* Release FD resources for the channel VSI */ 8888 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8889 8890 /* clear the VSI from scheduler tree */ 8891 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8892 8893 /* Delete VSI from FW, PF and HW VSI arrays */ 8894 ice_vsi_delete(ch->ch_vsi); 8895 8896 /* free the channel */ 8897 kfree(ch); 8898 } 8899 8900 /* clear the channel VSI map which is stored in main VSI */ 8901 ice_for_each_chnl_tc(i) 8902 vsi->tc_map_vsi[i] = NULL; 8903 8904 /* reset main VSI's all TC information */ 8905 vsi->all_enatc = 0; 8906 vsi->all_numtc = 0; 8907 } 8908 8909 /** 8910 * ice_rebuild_channels - rebuild channel 8911 * @pf: ptr to PF 8912 * 8913 * Recreate channel VSIs and replay filters 8914 */ 8915 static int ice_rebuild_channels(struct ice_pf *pf) 8916 { 8917 struct device *dev = ice_pf_to_dev(pf); 8918 struct ice_vsi *main_vsi; 8919 bool rem_adv_fltr = true; 8920 struct ice_channel *ch; 8921 struct ice_vsi *vsi; 8922 int tc_idx = 1; 8923 int i, err; 8924 8925 main_vsi = ice_get_main_vsi(pf); 8926 if (!main_vsi) 8927 return 0; 8928 8929 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8930 main_vsi->old_numtc == 1) 8931 return 0; /* nothing to be done */ 8932 8933 /* reconfigure main VSI based on old value of TC and cached values 8934 * for MQPRIO opts 8935 */ 8936 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8937 if (err) { 8938 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8939 main_vsi->old_ena_tc, main_vsi->vsi_num); 8940 return err; 8941 } 8942 8943 /* rebuild ADQ VSIs */ 8944 ice_for_each_vsi(pf, i) { 8945 enum ice_vsi_type type; 8946 8947 vsi = pf->vsi[i]; 8948 if (!vsi || vsi->type != ICE_VSI_CHNL) 8949 continue; 8950 8951 type = vsi->type; 8952 8953 /* rebuild ADQ VSI */ 8954 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8955 if (err) { 8956 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8957 ice_vsi_type_str(type), vsi->idx, err); 8958 goto cleanup; 8959 } 8960 8961 /* Re-map HW VSI number, using VSI handle that has been 8962 * previously validated in ice_replay_vsi() call above 8963 */ 8964 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8965 8966 /* replay filters for the VSI */ 8967 err = ice_replay_vsi(&pf->hw, vsi->idx); 8968 if (err) { 8969 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8970 ice_vsi_type_str(type), err, vsi->idx); 8971 rem_adv_fltr = false; 8972 goto cleanup; 8973 } 8974 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8975 ice_vsi_type_str(type), vsi->idx); 8976 8977 /* store ADQ VSI at correct TC index in main VSI's 8978 * map of TC to VSI 8979 */ 8980 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8981 } 8982 8983 /* ADQ VSI(s) has been rebuilt successfully, so setup 8984 * channel for main VSI's Tx and Rx rings 8985 */ 8986 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8987 struct ice_vsi *ch_vsi; 8988 8989 ch_vsi = ch->ch_vsi; 8990 if (!ch_vsi) 8991 continue; 8992 8993 /* reconfig channel resources */ 8994 ice_cfg_chnl_all_res(main_vsi, ch); 8995 8996 /* replay BW rate limit if it is non-zero */ 8997 if (!ch->max_tx_rate && !ch->min_tx_rate) 8998 continue; 8999 9000 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9001 ch->min_tx_rate); 9002 if (err) 9003 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9004 err, ch->max_tx_rate, ch->min_tx_rate, 9005 ch_vsi->vsi_num); 9006 else 9007 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9008 ch->max_tx_rate, ch->min_tx_rate, 9009 ch_vsi->vsi_num); 9010 } 9011 9012 /* reconfig RSS for main VSI */ 9013 if (main_vsi->ch_rss_size) 9014 ice_vsi_cfg_rss_lut_key(main_vsi); 9015 9016 return 0; 9017 9018 cleanup: 9019 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9020 return err; 9021 } 9022 9023 /** 9024 * ice_create_q_channels - Add queue channel for the given TCs 9025 * @vsi: VSI to be configured 9026 * 9027 * Configures queue channel mapping to the given TCs 9028 */ 9029 static int ice_create_q_channels(struct ice_vsi *vsi) 9030 { 9031 struct ice_pf *pf = vsi->back; 9032 struct ice_channel *ch; 9033 int ret = 0, i; 9034 9035 ice_for_each_chnl_tc(i) { 9036 if (!(vsi->all_enatc & BIT(i))) 9037 continue; 9038 9039 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9040 if (!ch) { 9041 ret = -ENOMEM; 9042 goto err_free; 9043 } 9044 INIT_LIST_HEAD(&ch->list); 9045 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9046 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9047 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9048 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9049 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9050 9051 /* convert to Kbits/s */ 9052 if (ch->max_tx_rate) 9053 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9054 ICE_BW_KBPS_DIVISOR); 9055 if (ch->min_tx_rate) 9056 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9057 ICE_BW_KBPS_DIVISOR); 9058 9059 ret = ice_create_q_channel(vsi, ch); 9060 if (ret) { 9061 dev_err(ice_pf_to_dev(pf), 9062 "failed creating channel TC:%d\n", i); 9063 kfree(ch); 9064 goto err_free; 9065 } 9066 list_add_tail(&ch->list, &vsi->ch_list); 9067 vsi->tc_map_vsi[i] = ch->ch_vsi; 9068 dev_dbg(ice_pf_to_dev(pf), 9069 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9070 } 9071 return 0; 9072 9073 err_free: 9074 ice_remove_q_channels(vsi, false); 9075 9076 return ret; 9077 } 9078 9079 /** 9080 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9081 * @netdev: net device to configure 9082 * @type_data: TC offload data 9083 */ 9084 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9085 { 9086 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9087 struct ice_netdev_priv *np = netdev_priv(netdev); 9088 struct ice_vsi *vsi = np->vsi; 9089 struct ice_pf *pf = vsi->back; 9090 u16 mode, ena_tc_qdisc = 0; 9091 int cur_txq, cur_rxq; 9092 u8 hw = 0, num_tcf; 9093 struct device *dev; 9094 int ret, i; 9095 9096 dev = ice_pf_to_dev(pf); 9097 num_tcf = mqprio_qopt->qopt.num_tc; 9098 hw = mqprio_qopt->qopt.hw; 9099 mode = mqprio_qopt->mode; 9100 if (!hw) { 9101 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9102 vsi->ch_rss_size = 0; 9103 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9104 goto config_tcf; 9105 } 9106 9107 /* Generate queue region map for number of TCF requested */ 9108 for (i = 0; i < num_tcf; i++) 9109 ena_tc_qdisc |= BIT(i); 9110 9111 switch (mode) { 9112 case TC_MQPRIO_MODE_CHANNEL: 9113 9114 if (pf->hw.port_info->is_custom_tx_enabled) { 9115 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9116 return -EBUSY; 9117 } 9118 ice_tear_down_devlink_rate_tree(pf); 9119 9120 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9121 if (ret) { 9122 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9123 ret); 9124 return ret; 9125 } 9126 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9127 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9128 /* don't assume state of hw_tc_offload during driver load 9129 * and set the flag for TC flower filter if hw_tc_offload 9130 * already ON 9131 */ 9132 if (vsi->netdev->features & NETIF_F_HW_TC) 9133 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9134 break; 9135 default: 9136 return -EINVAL; 9137 } 9138 9139 config_tcf: 9140 9141 /* Requesting same TCF configuration as already enabled */ 9142 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9143 mode != TC_MQPRIO_MODE_CHANNEL) 9144 return 0; 9145 9146 /* Pause VSI queues */ 9147 ice_dis_vsi(vsi, true); 9148 9149 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9150 ice_remove_q_channels(vsi, true); 9151 9152 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9153 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9154 num_online_cpus()); 9155 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9156 num_online_cpus()); 9157 } else { 9158 /* logic to rebuild VSI, same like ethtool -L */ 9159 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9160 9161 for (i = 0; i < num_tcf; i++) { 9162 if (!(ena_tc_qdisc & BIT(i))) 9163 continue; 9164 9165 offset = vsi->mqprio_qopt.qopt.offset[i]; 9166 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9167 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9168 } 9169 vsi->req_txq = offset + qcount_tx; 9170 vsi->req_rxq = offset + qcount_rx; 9171 9172 /* store away original rss_size info, so that it gets reused 9173 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9174 * determine, what should be the rss_sizefor main VSI 9175 */ 9176 vsi->orig_rss_size = vsi->rss_size; 9177 } 9178 9179 /* save current values of Tx and Rx queues before calling VSI rebuild 9180 * for fallback option 9181 */ 9182 cur_txq = vsi->num_txq; 9183 cur_rxq = vsi->num_rxq; 9184 9185 /* proceed with rebuild main VSI using correct number of queues */ 9186 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9187 if (ret) { 9188 /* fallback to current number of queues */ 9189 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9190 vsi->req_txq = cur_txq; 9191 vsi->req_rxq = cur_rxq; 9192 clear_bit(ICE_RESET_FAILED, pf->state); 9193 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9194 dev_err(dev, "Rebuild of main VSI failed again\n"); 9195 return ret; 9196 } 9197 } 9198 9199 vsi->all_numtc = num_tcf; 9200 vsi->all_enatc = ena_tc_qdisc; 9201 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9202 if (ret) { 9203 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9204 vsi->vsi_num); 9205 goto exit; 9206 } 9207 9208 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9209 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9210 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9211 9212 /* set TC0 rate limit if specified */ 9213 if (max_tx_rate || min_tx_rate) { 9214 /* convert to Kbits/s */ 9215 if (max_tx_rate) 9216 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9217 if (min_tx_rate) 9218 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9219 9220 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9221 if (!ret) { 9222 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9223 max_tx_rate, min_tx_rate, vsi->vsi_num); 9224 } else { 9225 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9226 max_tx_rate, min_tx_rate, vsi->vsi_num); 9227 goto exit; 9228 } 9229 } 9230 ret = ice_create_q_channels(vsi); 9231 if (ret) { 9232 netdev_err(netdev, "failed configuring queue channels\n"); 9233 goto exit; 9234 } else { 9235 netdev_dbg(netdev, "successfully configured channels\n"); 9236 } 9237 } 9238 9239 if (vsi->ch_rss_size) 9240 ice_vsi_cfg_rss_lut_key(vsi); 9241 9242 exit: 9243 /* if error, reset the all_numtc and all_enatc */ 9244 if (ret) { 9245 vsi->all_numtc = 0; 9246 vsi->all_enatc = 0; 9247 } 9248 /* resume VSI */ 9249 ice_ena_vsi(vsi, true); 9250 9251 return ret; 9252 } 9253 9254 static LIST_HEAD(ice_block_cb_list); 9255 9256 static int 9257 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9258 void *type_data) 9259 { 9260 struct ice_netdev_priv *np = netdev_priv(netdev); 9261 struct ice_pf *pf = np->vsi->back; 9262 bool locked = false; 9263 int err; 9264 9265 switch (type) { 9266 case TC_SETUP_BLOCK: 9267 return flow_block_cb_setup_simple(type_data, 9268 &ice_block_cb_list, 9269 ice_setup_tc_block_cb, 9270 np, np, true); 9271 case TC_SETUP_QDISC_MQPRIO: 9272 if (ice_is_eswitch_mode_switchdev(pf)) { 9273 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9274 return -EOPNOTSUPP; 9275 } 9276 9277 if (pf->adev) { 9278 mutex_lock(&pf->adev_mutex); 9279 device_lock(&pf->adev->dev); 9280 locked = true; 9281 if (pf->adev->dev.driver) { 9282 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9283 err = -EBUSY; 9284 goto adev_unlock; 9285 } 9286 } 9287 9288 /* setup traffic classifier for receive side */ 9289 mutex_lock(&pf->tc_mutex); 9290 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9291 mutex_unlock(&pf->tc_mutex); 9292 9293 adev_unlock: 9294 if (locked) { 9295 device_unlock(&pf->adev->dev); 9296 mutex_unlock(&pf->adev_mutex); 9297 } 9298 return err; 9299 default: 9300 return -EOPNOTSUPP; 9301 } 9302 return -EOPNOTSUPP; 9303 } 9304 9305 static struct ice_indr_block_priv * 9306 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9307 struct net_device *netdev) 9308 { 9309 struct ice_indr_block_priv *cb_priv; 9310 9311 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9312 if (!cb_priv->netdev) 9313 return NULL; 9314 if (cb_priv->netdev == netdev) 9315 return cb_priv; 9316 } 9317 return NULL; 9318 } 9319 9320 static int 9321 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9322 void *indr_priv) 9323 { 9324 struct ice_indr_block_priv *priv = indr_priv; 9325 struct ice_netdev_priv *np = priv->np; 9326 9327 switch (type) { 9328 case TC_SETUP_CLSFLOWER: 9329 return ice_setup_tc_cls_flower(np, priv->netdev, 9330 (struct flow_cls_offload *) 9331 type_data); 9332 default: 9333 return -EOPNOTSUPP; 9334 } 9335 } 9336 9337 static int 9338 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9339 struct ice_netdev_priv *np, 9340 struct flow_block_offload *f, void *data, 9341 void (*cleanup)(struct flow_block_cb *block_cb)) 9342 { 9343 struct ice_indr_block_priv *indr_priv; 9344 struct flow_block_cb *block_cb; 9345 9346 if (!ice_is_tunnel_supported(netdev) && 9347 !(is_vlan_dev(netdev) && 9348 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9349 return -EOPNOTSUPP; 9350 9351 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9352 return -EOPNOTSUPP; 9353 9354 switch (f->command) { 9355 case FLOW_BLOCK_BIND: 9356 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9357 if (indr_priv) 9358 return -EEXIST; 9359 9360 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9361 if (!indr_priv) 9362 return -ENOMEM; 9363 9364 indr_priv->netdev = netdev; 9365 indr_priv->np = np; 9366 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9367 9368 block_cb = 9369 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9370 indr_priv, indr_priv, 9371 ice_rep_indr_tc_block_unbind, 9372 f, netdev, sch, data, np, 9373 cleanup); 9374 9375 if (IS_ERR(block_cb)) { 9376 list_del(&indr_priv->list); 9377 kfree(indr_priv); 9378 return PTR_ERR(block_cb); 9379 } 9380 flow_block_cb_add(block_cb, f); 9381 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9382 break; 9383 case FLOW_BLOCK_UNBIND: 9384 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9385 if (!indr_priv) 9386 return -ENOENT; 9387 9388 block_cb = flow_block_cb_lookup(f->block, 9389 ice_indr_setup_block_cb, 9390 indr_priv); 9391 if (!block_cb) 9392 return -ENOENT; 9393 9394 flow_indr_block_cb_remove(block_cb, f); 9395 9396 list_del(&block_cb->driver_list); 9397 break; 9398 default: 9399 return -EOPNOTSUPP; 9400 } 9401 return 0; 9402 } 9403 9404 static int 9405 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9406 void *cb_priv, enum tc_setup_type type, void *type_data, 9407 void *data, 9408 void (*cleanup)(struct flow_block_cb *block_cb)) 9409 { 9410 switch (type) { 9411 case TC_SETUP_BLOCK: 9412 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9413 data, cleanup); 9414 9415 default: 9416 return -EOPNOTSUPP; 9417 } 9418 } 9419 9420 /** 9421 * ice_open - Called when a network interface becomes active 9422 * @netdev: network interface device structure 9423 * 9424 * The open entry point is called when a network interface is made 9425 * active by the system (IFF_UP). At this point all resources needed 9426 * for transmit and receive operations are allocated, the interrupt 9427 * handler is registered with the OS, the netdev watchdog is enabled, 9428 * and the stack is notified that the interface is ready. 9429 * 9430 * Returns 0 on success, negative value on failure 9431 */ 9432 int ice_open(struct net_device *netdev) 9433 { 9434 struct ice_netdev_priv *np = netdev_priv(netdev); 9435 struct ice_pf *pf = np->vsi->back; 9436 9437 if (ice_is_reset_in_progress(pf->state)) { 9438 netdev_err(netdev, "can't open net device while reset is in progress"); 9439 return -EBUSY; 9440 } 9441 9442 return ice_open_internal(netdev); 9443 } 9444 9445 /** 9446 * ice_open_internal - Called when a network interface becomes active 9447 * @netdev: network interface device structure 9448 * 9449 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9450 * handling routine 9451 * 9452 * Returns 0 on success, negative value on failure 9453 */ 9454 int ice_open_internal(struct net_device *netdev) 9455 { 9456 struct ice_netdev_priv *np = netdev_priv(netdev); 9457 struct ice_vsi *vsi = np->vsi; 9458 struct ice_pf *pf = vsi->back; 9459 struct ice_port_info *pi; 9460 int err; 9461 9462 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9463 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9464 return -EIO; 9465 } 9466 9467 netif_carrier_off(netdev); 9468 9469 pi = vsi->port_info; 9470 err = ice_update_link_info(pi); 9471 if (err) { 9472 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9473 return err; 9474 } 9475 9476 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9477 9478 /* Set PHY if there is media, otherwise, turn off PHY */ 9479 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9480 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9481 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9482 err = ice_init_phy_user_cfg(pi); 9483 if (err) { 9484 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9485 err); 9486 return err; 9487 } 9488 } 9489 9490 err = ice_configure_phy(vsi); 9491 if (err) { 9492 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9493 err); 9494 return err; 9495 } 9496 } else { 9497 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9498 ice_set_link(vsi, false); 9499 } 9500 9501 err = ice_vsi_open(vsi); 9502 if (err) 9503 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9504 vsi->vsi_num, vsi->vsw->sw_id); 9505 9506 /* Update existing tunnels information */ 9507 udp_tunnel_get_rx_info(netdev); 9508 9509 return err; 9510 } 9511 9512 /** 9513 * ice_stop - Disables a network interface 9514 * @netdev: network interface device structure 9515 * 9516 * The stop entry point is called when an interface is de-activated by the OS, 9517 * and the netdevice enters the DOWN state. The hardware is still under the 9518 * driver's control, but the netdev interface is disabled. 9519 * 9520 * Returns success only - not allowed to fail 9521 */ 9522 int ice_stop(struct net_device *netdev) 9523 { 9524 struct ice_netdev_priv *np = netdev_priv(netdev); 9525 struct ice_vsi *vsi = np->vsi; 9526 struct ice_pf *pf = vsi->back; 9527 9528 if (ice_is_reset_in_progress(pf->state)) { 9529 netdev_err(netdev, "can't stop net device while reset is in progress"); 9530 return -EBUSY; 9531 } 9532 9533 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9534 int link_err = ice_force_phys_link_state(vsi, false); 9535 9536 if (link_err) { 9537 if (link_err == -ENOMEDIUM) 9538 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9539 vsi->vsi_num); 9540 else 9541 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9542 vsi->vsi_num, link_err); 9543 9544 ice_vsi_close(vsi); 9545 return -EIO; 9546 } 9547 } 9548 9549 ice_vsi_close(vsi); 9550 9551 return 0; 9552 } 9553 9554 /** 9555 * ice_features_check - Validate encapsulated packet conforms to limits 9556 * @skb: skb buffer 9557 * @netdev: This port's netdev 9558 * @features: Offload features that the stack believes apply 9559 */ 9560 static netdev_features_t 9561 ice_features_check(struct sk_buff *skb, 9562 struct net_device __always_unused *netdev, 9563 netdev_features_t features) 9564 { 9565 bool gso = skb_is_gso(skb); 9566 size_t len; 9567 9568 /* No point in doing any of this if neither checksum nor GSO are 9569 * being requested for this frame. We can rule out both by just 9570 * checking for CHECKSUM_PARTIAL 9571 */ 9572 if (skb->ip_summed != CHECKSUM_PARTIAL) 9573 return features; 9574 9575 /* We cannot support GSO if the MSS is going to be less than 9576 * 64 bytes. If it is then we need to drop support for GSO. 9577 */ 9578 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9579 features &= ~NETIF_F_GSO_MASK; 9580 9581 len = skb_network_offset(skb); 9582 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9583 goto out_rm_features; 9584 9585 len = skb_network_header_len(skb); 9586 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9587 goto out_rm_features; 9588 9589 if (skb->encapsulation) { 9590 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9591 * the case of IPIP frames, the transport header pointer is 9592 * after the inner header! So check to make sure that this 9593 * is a GRE or UDP_TUNNEL frame before doing that math. 9594 */ 9595 if (gso && (skb_shinfo(skb)->gso_type & 9596 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9597 len = skb_inner_network_header(skb) - 9598 skb_transport_header(skb); 9599 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9600 goto out_rm_features; 9601 } 9602 9603 len = skb_inner_network_header_len(skb); 9604 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9605 goto out_rm_features; 9606 } 9607 9608 return features; 9609 out_rm_features: 9610 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9611 } 9612 9613 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9614 .ndo_open = ice_open, 9615 .ndo_stop = ice_stop, 9616 .ndo_start_xmit = ice_start_xmit, 9617 .ndo_set_mac_address = ice_set_mac_address, 9618 .ndo_validate_addr = eth_validate_addr, 9619 .ndo_change_mtu = ice_change_mtu, 9620 .ndo_get_stats64 = ice_get_stats64, 9621 .ndo_tx_timeout = ice_tx_timeout, 9622 .ndo_bpf = ice_xdp_safe_mode, 9623 }; 9624 9625 static const struct net_device_ops ice_netdev_ops = { 9626 .ndo_open = ice_open, 9627 .ndo_stop = ice_stop, 9628 .ndo_start_xmit = ice_start_xmit, 9629 .ndo_select_queue = ice_select_queue, 9630 .ndo_features_check = ice_features_check, 9631 .ndo_fix_features = ice_fix_features, 9632 .ndo_set_rx_mode = ice_set_rx_mode, 9633 .ndo_set_mac_address = ice_set_mac_address, 9634 .ndo_validate_addr = eth_validate_addr, 9635 .ndo_change_mtu = ice_change_mtu, 9636 .ndo_get_stats64 = ice_get_stats64, 9637 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9638 .ndo_eth_ioctl = ice_eth_ioctl, 9639 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9640 .ndo_set_vf_mac = ice_set_vf_mac, 9641 .ndo_get_vf_config = ice_get_vf_cfg, 9642 .ndo_set_vf_trust = ice_set_vf_trust, 9643 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9644 .ndo_set_vf_link_state = ice_set_vf_link_state, 9645 .ndo_get_vf_stats = ice_get_vf_stats, 9646 .ndo_set_vf_rate = ice_set_vf_bw, 9647 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9648 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9649 .ndo_setup_tc = ice_setup_tc, 9650 .ndo_set_features = ice_set_features, 9651 .ndo_bridge_getlink = ice_bridge_getlink, 9652 .ndo_bridge_setlink = ice_bridge_setlink, 9653 .ndo_fdb_add = ice_fdb_add, 9654 .ndo_fdb_del = ice_fdb_del, 9655 #ifdef CONFIG_RFS_ACCEL 9656 .ndo_rx_flow_steer = ice_rx_flow_steer, 9657 #endif 9658 .ndo_tx_timeout = ice_tx_timeout, 9659 .ndo_bpf = ice_xdp, 9660 .ndo_xdp_xmit = ice_xdp_xmit, 9661 .ndo_xsk_wakeup = ice_xsk_wakeup, 9662 }; 9663