1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS(LIBIE); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops || 91 dev->netdev_ops == &ice_netdev_safe_mode_ops); 92 } 93 94 /** 95 * ice_get_tx_pending - returns number of Tx descriptors not processed 96 * @ring: the ring of descriptors 97 */ 98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 99 { 100 u16 head, tail; 101 102 head = ring->next_to_clean; 103 tail = ring->next_to_use; 104 105 if (head != tail) 106 return (head < tail) ? 107 tail - head : (tail + ring->count - head); 108 return 0; 109 } 110 111 /** 112 * ice_check_for_hang_subtask - check for and recover hung queues 113 * @pf: pointer to PF struct 114 */ 115 static void ice_check_for_hang_subtask(struct ice_pf *pf) 116 { 117 struct ice_vsi *vsi = NULL; 118 struct ice_hw *hw; 119 unsigned int i; 120 int packets; 121 u32 v; 122 123 ice_for_each_vsi(pf, v) 124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 125 vsi = pf->vsi[v]; 126 break; 127 } 128 129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 130 return; 131 132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 133 return; 134 135 hw = &vsi->back->hw; 136 137 ice_for_each_txq(vsi, i) { 138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 139 struct ice_ring_stats *ring_stats; 140 141 if (!tx_ring) 142 continue; 143 if (ice_ring_ch_enabled(tx_ring)) 144 continue; 145 146 ring_stats = tx_ring->ring_stats; 147 if (!ring_stats) 148 continue; 149 150 if (tx_ring->desc) { 151 /* If packet counter has not changed the queue is 152 * likely stalled, so force an interrupt for this 153 * queue. 154 * 155 * prev_pkt would be negative if there was no 156 * pending work. 157 */ 158 packets = ring_stats->stats.pkts & INT_MAX; 159 if (ring_stats->tx_stats.prev_pkt == packets) { 160 /* Trigger sw interrupt to revive the queue */ 161 ice_trigger_sw_intr(hw, tx_ring->q_vector); 162 continue; 163 } 164 165 /* Memory barrier between read of packet count and call 166 * to ice_get_tx_pending() 167 */ 168 smp_rmb(); 169 ring_stats->tx_stats.prev_pkt = 170 ice_get_tx_pending(tx_ring) ? packets : -1; 171 } 172 } 173 } 174 175 /** 176 * ice_init_mac_fltr - Set initial MAC filters 177 * @pf: board private structure 178 * 179 * Set initial set of MAC filters for PF VSI; configure filters for permanent 180 * address and broadcast address. If an error is encountered, netdevice will be 181 * unregistered. 182 */ 183 static int ice_init_mac_fltr(struct ice_pf *pf) 184 { 185 struct ice_vsi *vsi; 186 u8 *perm_addr; 187 188 vsi = ice_get_main_vsi(pf); 189 if (!vsi) 190 return -EINVAL; 191 192 perm_addr = vsi->port_info->mac.perm_addr; 193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 194 } 195 196 /** 197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 198 * @netdev: the net device on which the sync is happening 199 * @addr: MAC address to sync 200 * 201 * This is a callback function which is called by the in kernel device sync 202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 204 * MAC filters from the hardware. 205 */ 206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 207 { 208 struct ice_netdev_priv *np = netdev_priv(netdev); 209 struct ice_vsi *vsi = np->vsi; 210 211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 212 ICE_FWD_TO_VSI)) 213 return -EINVAL; 214 215 return 0; 216 } 217 218 /** 219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 220 * @netdev: the net device on which the unsync is happening 221 * @addr: MAC address to unsync 222 * 223 * This is a callback function which is called by the in kernel device unsync 224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 226 * delete the MAC filters from the hardware. 227 */ 228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 229 { 230 struct ice_netdev_priv *np = netdev_priv(netdev); 231 struct ice_vsi *vsi = np->vsi; 232 233 /* Under some circumstances, we might receive a request to delete our 234 * own device address from our uc list. Because we store the device 235 * address in the VSI's MAC filter list, we need to ignore such 236 * requests and not delete our device address from this list. 237 */ 238 if (ether_addr_equal(addr, netdev->dev_addr)) 239 return 0; 240 241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 242 ICE_FWD_TO_VSI)) 243 return -EINVAL; 244 245 return 0; 246 } 247 248 /** 249 * ice_vsi_fltr_changed - check if filter state changed 250 * @vsi: VSI to be checked 251 * 252 * returns true if filter state has changed, false otherwise. 253 */ 254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 255 { 256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 258 } 259 260 /** 261 * ice_set_promisc - Enable promiscuous mode for a given PF 262 * @vsi: the VSI being configured 263 * @promisc_m: mask of promiscuous config bits 264 * 265 */ 266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 267 { 268 int status; 269 270 if (vsi->type != ICE_VSI_PF) 271 return 0; 272 273 if (ice_vsi_has_non_zero_vlans(vsi)) { 274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 276 promisc_m); 277 } else { 278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 279 promisc_m, 0); 280 } 281 if (status && status != -EEXIST) 282 return status; 283 284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 285 vsi->vsi_num, promisc_m); 286 return 0; 287 } 288 289 /** 290 * ice_clear_promisc - Disable promiscuous mode for a given PF 291 * @vsi: the VSI being configured 292 * @promisc_m: mask of promiscuous config bits 293 * 294 */ 295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 296 { 297 int status; 298 299 if (vsi->type != ICE_VSI_PF) 300 return 0; 301 302 if (ice_vsi_has_non_zero_vlans(vsi)) { 303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 305 promisc_m); 306 } else { 307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 308 promisc_m, 0); 309 } 310 311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 312 vsi->vsi_num, promisc_m); 313 return status; 314 } 315 316 /** 317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 318 * @vsi: ptr to the VSI 319 * 320 * Push any outstanding VSI filter changes through the AdminQ. 321 */ 322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 323 { 324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 325 struct device *dev = ice_pf_to_dev(vsi->back); 326 struct net_device *netdev = vsi->netdev; 327 bool promisc_forced_on = false; 328 struct ice_pf *pf = vsi->back; 329 struct ice_hw *hw = &pf->hw; 330 u32 changed_flags = 0; 331 int err; 332 333 if (!vsi->netdev) 334 return -EINVAL; 335 336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 337 usleep_range(1000, 2000); 338 339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 340 vsi->current_netdev_flags = vsi->netdev->flags; 341 342 INIT_LIST_HEAD(&vsi->tmp_sync_list); 343 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 344 345 if (ice_vsi_fltr_changed(vsi)) { 346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 348 349 /* grab the netdev's addr_list_lock */ 350 netif_addr_lock_bh(netdev); 351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 354 ice_add_mac_to_unsync_list); 355 /* our temp lists are populated. release lock */ 356 netif_addr_unlock_bh(netdev); 357 } 358 359 /* Remove MAC addresses in the unsync list */ 360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 362 if (err) { 363 netdev_err(netdev, "Failed to delete MAC filters\n"); 364 /* if we failed because of alloc failures, just bail */ 365 if (err == -ENOMEM) 366 goto out; 367 } 368 369 /* Add MAC addresses in the sync list */ 370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 371 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 372 /* If filter is added successfully or already exists, do not go into 373 * 'if' condition and report it as error. Instead continue processing 374 * rest of the function. 375 */ 376 if (err && err != -EEXIST) { 377 netdev_err(netdev, "Failed to add MAC filters\n"); 378 /* If there is no more space for new umac filters, VSI 379 * should go into promiscuous mode. There should be some 380 * space reserved for promiscuous filters. 381 */ 382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 384 vsi->state)) { 385 promisc_forced_on = true; 386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 387 vsi->vsi_num); 388 } else { 389 goto out; 390 } 391 } 392 err = 0; 393 /* check for changes in promiscuous modes */ 394 if (changed_flags & IFF_ALLMULTI) { 395 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 397 if (err) { 398 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 399 goto out_promisc; 400 } 401 } else { 402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 404 if (err) { 405 vsi->current_netdev_flags |= IFF_ALLMULTI; 406 goto out_promisc; 407 } 408 } 409 } 410 411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 414 if (vsi->current_netdev_flags & IFF_PROMISC) { 415 /* Apply Rx filter rule to get traffic from wire */ 416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 417 err = ice_set_dflt_vsi(vsi); 418 if (err && err != -EEXIST) { 419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 420 err, vsi->vsi_num); 421 vsi->current_netdev_flags &= 422 ~IFF_PROMISC; 423 goto out_promisc; 424 } 425 err = 0; 426 vlan_ops->dis_rx_filtering(vsi); 427 428 /* promiscuous mode implies allmulticast so 429 * that VSIs that are in promiscuous mode are 430 * subscribed to multicast packets coming to 431 * the port 432 */ 433 err = ice_set_promisc(vsi, 434 ICE_MCAST_PROMISC_BITS); 435 if (err) 436 goto out_promisc; 437 } 438 } else { 439 /* Clear Rx filter to remove traffic from wire */ 440 if (ice_is_vsi_dflt_vsi(vsi)) { 441 err = ice_clear_dflt_vsi(vsi); 442 if (err) { 443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 444 err, vsi->vsi_num); 445 vsi->current_netdev_flags |= 446 IFF_PROMISC; 447 goto out_promisc; 448 } 449 if (vsi->netdev->features & 450 NETIF_F_HW_VLAN_CTAG_FILTER) 451 vlan_ops->ena_rx_filtering(vsi); 452 } 453 454 /* disable allmulti here, but only if allmulti is not 455 * still enabled for the netdev 456 */ 457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 458 err = ice_clear_promisc(vsi, 459 ICE_MCAST_PROMISC_BITS); 460 if (err) { 461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 462 err, vsi->vsi_num); 463 } 464 } 465 } 466 } 467 goto exit; 468 469 out_promisc: 470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 471 goto exit; 472 out: 473 /* if something went wrong then set the changed flag so we try again */ 474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 476 exit: 477 clear_bit(ICE_CFG_BUSY, vsi->state); 478 return err; 479 } 480 481 /** 482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 483 * @pf: board private structure 484 */ 485 static void ice_sync_fltr_subtask(struct ice_pf *pf) 486 { 487 int v; 488 489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 490 return; 491 492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 494 ice_for_each_vsi(pf, v) 495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 496 ice_vsi_sync_fltr(pf->vsi[v])) { 497 /* come back and try again later */ 498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 499 break; 500 } 501 } 502 503 /** 504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 505 * @pf: the PF 506 * @locked: is the rtnl_lock already held 507 */ 508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 509 { 510 int node; 511 int v; 512 513 ice_for_each_vsi(pf, v) 514 if (pf->vsi[v]) 515 ice_dis_vsi(pf->vsi[v], locked); 516 517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 518 pf->pf_agg_node[node].num_vsis = 0; 519 520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 521 pf->vf_agg_node[node].num_vsis = 0; 522 } 523 524 /** 525 * ice_prepare_for_reset - prep for reset 526 * @pf: board private structure 527 * @reset_type: reset type requested 528 * 529 * Inform or close all dependent features in prep for reset. 530 */ 531 static void 532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 533 { 534 struct ice_hw *hw = &pf->hw; 535 struct ice_vsi *vsi; 536 struct ice_vf *vf; 537 unsigned int bkt; 538 539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 540 541 /* already prepared for reset */ 542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 543 return; 544 545 synchronize_irq(pf->oicr_irq.virq); 546 547 ice_unplug_aux_dev(pf); 548 549 /* Notify VFs of impending reset */ 550 if (ice_check_sq_alive(hw, &hw->mailboxq)) 551 ice_vc_notify_reset(pf); 552 553 /* Disable VFs until reset is completed */ 554 mutex_lock(&pf->vfs.table_lock); 555 ice_for_each_vf(pf, bkt, vf) 556 ice_set_vf_state_dis(vf); 557 mutex_unlock(&pf->vfs.table_lock); 558 559 if (ice_is_eswitch_mode_switchdev(pf)) { 560 rtnl_lock(); 561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 562 rtnl_unlock(); 563 } 564 565 /* release ADQ specific HW and SW resources */ 566 vsi = ice_get_main_vsi(pf); 567 if (!vsi) 568 goto skip; 569 570 /* to be on safe side, reset orig_rss_size so that normal flow 571 * of deciding rss_size can take precedence 572 */ 573 vsi->orig_rss_size = 0; 574 575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 576 if (reset_type == ICE_RESET_PFR) { 577 vsi->old_ena_tc = vsi->all_enatc; 578 vsi->old_numtc = vsi->all_numtc; 579 } else { 580 ice_remove_q_channels(vsi, true); 581 582 /* for other reset type, do not support channel rebuild 583 * hence reset needed info 584 */ 585 vsi->old_ena_tc = 0; 586 vsi->all_enatc = 0; 587 vsi->old_numtc = 0; 588 vsi->all_numtc = 0; 589 vsi->req_txq = 0; 590 vsi->req_rxq = 0; 591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 593 } 594 } 595 596 if (vsi->netdev) 597 netif_device_detach(vsi->netdev); 598 skip: 599 600 /* clear SW filtering DB */ 601 ice_clear_hw_tbls(hw); 602 /* disable the VSIs and their queues that are not already DOWN */ 603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 604 ice_pf_dis_all_vsi(pf, false); 605 606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 607 ice_ptp_prepare_for_reset(pf, reset_type); 608 609 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 610 ice_gnss_exit(pf); 611 612 if (hw->port_info) 613 ice_sched_clear_port(hw->port_info); 614 615 ice_shutdown_all_ctrlq(hw, false); 616 617 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 618 } 619 620 /** 621 * ice_do_reset - Initiate one of many types of resets 622 * @pf: board private structure 623 * @reset_type: reset type requested before this function was called. 624 */ 625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 626 { 627 struct device *dev = ice_pf_to_dev(pf); 628 struct ice_hw *hw = &pf->hw; 629 630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 631 632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 634 reset_type = ICE_RESET_CORER; 635 } 636 637 ice_prepare_for_reset(pf, reset_type); 638 639 /* trigger the reset */ 640 if (ice_reset(hw, reset_type)) { 641 dev_err(dev, "reset %d failed\n", reset_type); 642 set_bit(ICE_RESET_FAILED, pf->state); 643 clear_bit(ICE_RESET_OICR_RECV, pf->state); 644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 645 clear_bit(ICE_PFR_REQ, pf->state); 646 clear_bit(ICE_CORER_REQ, pf->state); 647 clear_bit(ICE_GLOBR_REQ, pf->state); 648 wake_up(&pf->reset_wait_queue); 649 return; 650 } 651 652 /* PFR is a bit of a special case because it doesn't result in an OICR 653 * interrupt. So for PFR, rebuild after the reset and clear the reset- 654 * associated state bits. 655 */ 656 if (reset_type == ICE_RESET_PFR) { 657 pf->pfr_count++; 658 ice_rebuild(pf, reset_type); 659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 660 clear_bit(ICE_PFR_REQ, pf->state); 661 wake_up(&pf->reset_wait_queue); 662 ice_reset_all_vfs(pf); 663 } 664 } 665 666 /** 667 * ice_reset_subtask - Set up for resetting the device and driver 668 * @pf: board private structure 669 */ 670 static void ice_reset_subtask(struct ice_pf *pf) 671 { 672 enum ice_reset_req reset_type = ICE_RESET_INVAL; 673 674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 676 * of reset is pending and sets bits in pf->state indicating the reset 677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 678 * prepare for pending reset if not already (for PF software-initiated 679 * global resets the software should already be prepared for it as 680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 681 * by firmware or software on other PFs, that bit is not set so prepare 682 * for the reset now), poll for reset done, rebuild and return. 683 */ 684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 685 /* Perform the largest reset requested */ 686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 687 reset_type = ICE_RESET_CORER; 688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 689 reset_type = ICE_RESET_GLOBR; 690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 691 reset_type = ICE_RESET_EMPR; 692 /* return if no valid reset type requested */ 693 if (reset_type == ICE_RESET_INVAL) 694 return; 695 ice_prepare_for_reset(pf, reset_type); 696 697 /* make sure we are ready to rebuild */ 698 if (ice_check_reset(&pf->hw)) { 699 set_bit(ICE_RESET_FAILED, pf->state); 700 } else { 701 /* done with reset. start rebuild */ 702 pf->hw.reset_ongoing = false; 703 ice_rebuild(pf, reset_type); 704 /* clear bit to resume normal operations, but 705 * ICE_NEEDS_RESTART bit is set in case rebuild failed 706 */ 707 clear_bit(ICE_RESET_OICR_RECV, pf->state); 708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 709 clear_bit(ICE_PFR_REQ, pf->state); 710 clear_bit(ICE_CORER_REQ, pf->state); 711 clear_bit(ICE_GLOBR_REQ, pf->state); 712 wake_up(&pf->reset_wait_queue); 713 ice_reset_all_vfs(pf); 714 } 715 716 return; 717 } 718 719 /* No pending resets to finish processing. Check for new resets */ 720 if (test_bit(ICE_PFR_REQ, pf->state)) { 721 reset_type = ICE_RESET_PFR; 722 if (pf->lag && pf->lag->bonded) { 723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 724 reset_type = ICE_RESET_CORER; 725 } 726 } 727 if (test_bit(ICE_CORER_REQ, pf->state)) 728 reset_type = ICE_RESET_CORER; 729 if (test_bit(ICE_GLOBR_REQ, pf->state)) 730 reset_type = ICE_RESET_GLOBR; 731 /* If no valid reset type requested just return */ 732 if (reset_type == ICE_RESET_INVAL) 733 return; 734 735 /* reset if not already down or busy */ 736 if (!test_bit(ICE_DOWN, pf->state) && 737 !test_bit(ICE_CFG_BUSY, pf->state)) { 738 ice_do_reset(pf, reset_type); 739 } 740 } 741 742 /** 743 * ice_print_topo_conflict - print topology conflict message 744 * @vsi: the VSI whose topology status is being checked 745 */ 746 static void ice_print_topo_conflict(struct ice_vsi *vsi) 747 { 748 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 749 case ICE_AQ_LINK_TOPO_CONFLICT: 750 case ICE_AQ_LINK_MEDIA_CONFLICT: 751 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 755 break; 756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 759 else 760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 761 break; 762 default: 763 break; 764 } 765 } 766 767 /** 768 * ice_print_link_msg - print link up or down message 769 * @vsi: the VSI whose link status is being queried 770 * @isup: boolean for if the link is now up or down 771 */ 772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 773 { 774 struct ice_aqc_get_phy_caps_data *caps; 775 const char *an_advertised; 776 const char *fec_req; 777 const char *speed; 778 const char *fec; 779 const char *fc; 780 const char *an; 781 int status; 782 783 if (!vsi) 784 return; 785 786 if (vsi->current_isup == isup) 787 return; 788 789 vsi->current_isup = isup; 790 791 if (!isup) { 792 netdev_info(vsi->netdev, "NIC Link is Down\n"); 793 return; 794 } 795 796 switch (vsi->port_info->phy.link_info.link_speed) { 797 case ICE_AQ_LINK_SPEED_200GB: 798 speed = "200 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_100GB: 801 speed = "100 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_50GB: 804 speed = "50 G"; 805 break; 806 case ICE_AQ_LINK_SPEED_40GB: 807 speed = "40 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_25GB: 810 speed = "25 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_20GB: 813 speed = "20 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_10GB: 816 speed = "10 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_5GB: 819 speed = "5 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_2500MB: 822 speed = "2.5 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_1000MB: 825 speed = "1 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_100MB: 828 speed = "100 M"; 829 break; 830 default: 831 speed = "Unknown "; 832 break; 833 } 834 835 switch (vsi->port_info->fc.current_mode) { 836 case ICE_FC_FULL: 837 fc = "Rx/Tx"; 838 break; 839 case ICE_FC_TX_PAUSE: 840 fc = "Tx"; 841 break; 842 case ICE_FC_RX_PAUSE: 843 fc = "Rx"; 844 break; 845 case ICE_FC_NONE: 846 fc = "None"; 847 break; 848 default: 849 fc = "Unknown"; 850 break; 851 } 852 853 /* Get FEC mode based on negotiated link info */ 854 switch (vsi->port_info->phy.link_info.fec_info) { 855 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 856 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 857 fec = "RS-FEC"; 858 break; 859 case ICE_AQ_LINK_25G_KR_FEC_EN: 860 fec = "FC-FEC/BASE-R"; 861 break; 862 default: 863 fec = "NONE"; 864 break; 865 } 866 867 /* check if autoneg completed, might be false due to not supported */ 868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 869 an = "True"; 870 else 871 an = "False"; 872 873 /* Get FEC mode requested based on PHY caps last SW configuration */ 874 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 875 if (!caps) { 876 fec_req = "Unknown"; 877 an_advertised = "Unknown"; 878 goto done; 879 } 880 881 status = ice_aq_get_phy_caps(vsi->port_info, false, 882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 883 if (status) 884 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 885 886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 887 888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 890 fec_req = "RS-FEC"; 891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 893 fec_req = "FC-FEC/BASE-R"; 894 else 895 fec_req = "NONE"; 896 897 kfree(caps); 898 899 done: 900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 901 speed, fec_req, fec, an_advertised, an, fc); 902 ice_print_topo_conflict(vsi); 903 } 904 905 /** 906 * ice_vsi_link_event - update the VSI's netdev 907 * @vsi: the VSI on which the link event occurred 908 * @link_up: whether or not the VSI needs to be set up or down 909 */ 910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 911 { 912 if (!vsi) 913 return; 914 915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 916 return; 917 918 if (vsi->type == ICE_VSI_PF) { 919 if (link_up == netif_carrier_ok(vsi->netdev)) 920 return; 921 922 if (link_up) { 923 netif_carrier_on(vsi->netdev); 924 netif_tx_wake_all_queues(vsi->netdev); 925 } else { 926 netif_carrier_off(vsi->netdev); 927 netif_tx_stop_all_queues(vsi->netdev); 928 } 929 } 930 } 931 932 /** 933 * ice_set_dflt_mib - send a default config MIB to the FW 934 * @pf: private PF struct 935 * 936 * This function sends a default configuration MIB to the FW. 937 * 938 * If this function errors out at any point, the driver is still able to 939 * function. The main impact is that LFC may not operate as expected. 940 * Therefore an error state in this function should be treated with a DBG 941 * message and continue on with driver rebuild/reenable. 942 */ 943 static void ice_set_dflt_mib(struct ice_pf *pf) 944 { 945 struct device *dev = ice_pf_to_dev(pf); 946 u8 mib_type, *buf, *lldpmib = NULL; 947 u16 len, typelen, offset = 0; 948 struct ice_lldp_org_tlv *tlv; 949 struct ice_hw *hw = &pf->hw; 950 u32 ouisubtype; 951 952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 954 if (!lldpmib) { 955 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 956 __func__); 957 return; 958 } 959 960 /* Add ETS CFG TLV */ 961 tlv = (struct ice_lldp_org_tlv *)lldpmib; 962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 963 ICE_IEEE_ETS_TLV_LEN); 964 tlv->typelen = htons(typelen); 965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 966 ICE_IEEE_SUBTYPE_ETS_CFG); 967 tlv->ouisubtype = htonl(ouisubtype); 968 969 buf = tlv->tlvinfo; 970 buf[0] = 0; 971 972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 974 * Octets 13 - 20 are TSA values - leave as zeros 975 */ 976 buf[5] = 0x64; 977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 978 offset += len + 2; 979 tlv = (struct ice_lldp_org_tlv *) 980 ((char *)tlv + sizeof(tlv->typelen) + len); 981 982 /* Add ETS REC TLV */ 983 buf = tlv->tlvinfo; 984 tlv->typelen = htons(typelen); 985 986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 987 ICE_IEEE_SUBTYPE_ETS_REC); 988 tlv->ouisubtype = htonl(ouisubtype); 989 990 /* First octet of buf is reserved 991 * Octets 1 - 4 map UP to TC - all UPs map to zero 992 * Octets 5 - 12 are BW values - set TC 0 to 100%. 993 * Octets 13 - 20 are TSA value - leave as zeros 994 */ 995 buf[5] = 0x64; 996 offset += len + 2; 997 tlv = (struct ice_lldp_org_tlv *) 998 ((char *)tlv + sizeof(tlv->typelen) + len); 999 1000 /* Add PFC CFG TLV */ 1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1002 ICE_IEEE_PFC_TLV_LEN); 1003 tlv->typelen = htons(typelen); 1004 1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1006 ICE_IEEE_SUBTYPE_PFC_CFG); 1007 tlv->ouisubtype = htonl(ouisubtype); 1008 1009 /* Octet 1 left as all zeros - PFC disabled */ 1010 buf[0] = 0x08; 1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1012 offset += len + 2; 1013 1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1016 1017 kfree(lldpmib); 1018 } 1019 1020 /** 1021 * ice_check_phy_fw_load - check if PHY FW load failed 1022 * @pf: pointer to PF struct 1023 * @link_cfg_err: bitmap from the link info structure 1024 * 1025 * check if external PHY FW load failed and print an error message if it did 1026 */ 1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1031 return; 1032 } 1033 1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1035 return; 1036 1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1040 } 1041 } 1042 1043 /** 1044 * ice_check_module_power 1045 * @pf: pointer to PF struct 1046 * @link_cfg_err: bitmap from the link info structure 1047 * 1048 * check module power level returned by a previous call to aq_get_link_info 1049 * and print error messages if module power level is not supported 1050 */ 1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1052 { 1053 /* if module power level is supported, clear the flag */ 1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1057 return; 1058 } 1059 1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1061 * above block didn't clear this bit, there's nothing to do 1062 */ 1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1064 return; 1065 1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1072 } 1073 } 1074 1075 /** 1076 * ice_check_link_cfg_err - check if link configuration failed 1077 * @pf: pointer to the PF struct 1078 * @link_cfg_err: bitmap from the link info structure 1079 * 1080 * print if any link configuration failure happens due to the value in the 1081 * link_cfg_err parameter in the link info structure 1082 */ 1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1084 { 1085 ice_check_module_power(pf, link_cfg_err); 1086 ice_check_phy_fw_load(pf, link_cfg_err); 1087 } 1088 1089 /** 1090 * ice_link_event - process the link event 1091 * @pf: PF that the link event is associated with 1092 * @pi: port_info for the port that the link event is associated with 1093 * @link_up: true if the physical link is up and false if it is down 1094 * @link_speed: current link speed received from the link event 1095 * 1096 * Returns 0 on success and negative on failure 1097 */ 1098 static int 1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1100 u16 link_speed) 1101 { 1102 struct device *dev = ice_pf_to_dev(pf); 1103 struct ice_phy_info *phy_info; 1104 struct ice_vsi *vsi; 1105 u16 old_link_speed; 1106 bool old_link; 1107 int status; 1108 1109 phy_info = &pi->phy; 1110 phy_info->link_info_old = phy_info->link_info; 1111 1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1113 old_link_speed = phy_info->link_info_old.link_speed; 1114 1115 /* update the link info structures and re-enable link events, 1116 * don't bail on failure due to other book keeping needed 1117 */ 1118 status = ice_update_link_info(pi); 1119 if (status) 1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1121 pi->lport, status, 1122 ice_aq_str(pi->hw->adminq.sq_last_status)); 1123 1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1125 1126 /* Check if the link state is up after updating link info, and treat 1127 * this event as an UP event since the link is actually UP now. 1128 */ 1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1130 link_up = true; 1131 1132 vsi = ice_get_main_vsi(pf); 1133 if (!vsi || !vsi->port_info) 1134 return -EINVAL; 1135 1136 /* turn off PHY if media was removed */ 1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1140 ice_set_link(vsi, false); 1141 } 1142 1143 /* if the old link up/down and speed is the same as the new */ 1144 if (link_up == old_link && link_speed == old_link_speed) 1145 return 0; 1146 1147 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1148 1149 if (ice_is_dcb_active(pf)) { 1150 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1151 ice_dcb_rebuild(pf); 1152 } else { 1153 if (link_up) 1154 ice_set_dflt_mib(pf); 1155 } 1156 ice_vsi_link_event(vsi, link_up); 1157 ice_print_link_msg(vsi, link_up); 1158 1159 ice_vc_notify_link_state(pf); 1160 1161 return 0; 1162 } 1163 1164 /** 1165 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1166 * @pf: board private structure 1167 */ 1168 static void ice_watchdog_subtask(struct ice_pf *pf) 1169 { 1170 int i; 1171 1172 /* if interface is down do nothing */ 1173 if (test_bit(ICE_DOWN, pf->state) || 1174 test_bit(ICE_CFG_BUSY, pf->state)) 1175 return; 1176 1177 /* make sure we don't do these things too often */ 1178 if (time_before(jiffies, 1179 pf->serv_tmr_prev + pf->serv_tmr_period)) 1180 return; 1181 1182 pf->serv_tmr_prev = jiffies; 1183 1184 /* Update the stats for active netdevs so the network stack 1185 * can look at updated numbers whenever it cares to 1186 */ 1187 ice_update_pf_stats(pf); 1188 ice_for_each_vsi(pf, i) 1189 if (pf->vsi[i] && pf->vsi[i]->netdev) 1190 ice_update_vsi_stats(pf->vsi[i]); 1191 } 1192 1193 /** 1194 * ice_init_link_events - enable/initialize link events 1195 * @pi: pointer to the port_info instance 1196 * 1197 * Returns -EIO on failure, 0 on success 1198 */ 1199 static int ice_init_link_events(struct ice_port_info *pi) 1200 { 1201 u16 mask; 1202 1203 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1204 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1205 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1206 1207 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1209 pi->lport); 1210 return -EIO; 1211 } 1212 1213 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1215 pi->lport); 1216 return -EIO; 1217 } 1218 1219 return 0; 1220 } 1221 1222 /** 1223 * ice_handle_link_event - handle link event via ARQ 1224 * @pf: PF that the link event is associated with 1225 * @event: event structure containing link status info 1226 */ 1227 static int 1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1229 { 1230 struct ice_aqc_get_link_status_data *link_data; 1231 struct ice_port_info *port_info; 1232 int status; 1233 1234 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1235 port_info = pf->hw.port_info; 1236 if (!port_info) 1237 return -EINVAL; 1238 1239 status = ice_link_event(pf, port_info, 1240 !!(link_data->link_info & ICE_AQ_LINK_UP), 1241 le16_to_cpu(link_data->link_speed)); 1242 if (status) 1243 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1244 status); 1245 1246 return status; 1247 } 1248 1249 /** 1250 * ice_get_fwlog_data - copy the FW log data from ARQ event 1251 * @pf: PF that the FW log event is associated with 1252 * @event: event structure containing FW log data 1253 */ 1254 static void 1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1256 { 1257 struct ice_fwlog_data *fwlog; 1258 struct ice_hw *hw = &pf->hw; 1259 1260 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1261 1262 memset(fwlog->data, 0, PAGE_SIZE); 1263 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1264 1265 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1266 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1267 1268 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1269 /* the rings are full so bump the head to create room */ 1270 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1271 hw->fwlog_ring.size); 1272 } 1273 } 1274 1275 /** 1276 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1277 * @pf: pointer to the PF private structure 1278 * @task: intermediate helper storage and identifier for waiting 1279 * @opcode: the opcode to wait for 1280 * 1281 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1282 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1283 * 1284 * Calls are separated to allow caller registering for event before sending 1285 * the command, which mitigates a race between registering and FW responding. 1286 * 1287 * To obtain only the descriptor contents, pass an task->event with null 1288 * msg_buf. If the complete data buffer is desired, allocate the 1289 * task->event.msg_buf with enough space ahead of time. 1290 */ 1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1292 u16 opcode) 1293 { 1294 INIT_HLIST_NODE(&task->entry); 1295 task->opcode = opcode; 1296 task->state = ICE_AQ_TASK_WAITING; 1297 1298 spin_lock_bh(&pf->aq_wait_lock); 1299 hlist_add_head(&task->entry, &pf->aq_wait_list); 1300 spin_unlock_bh(&pf->aq_wait_lock); 1301 } 1302 1303 /** 1304 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1305 * @pf: pointer to the PF private structure 1306 * @task: ptr prepared by ice_aq_prep_for_event() 1307 * @timeout: how long to wait, in jiffies 1308 * 1309 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1310 * current thread will be put to sleep until the specified event occurs or 1311 * until the given timeout is reached. 1312 * 1313 * Returns: zero on success, or a negative error code on failure. 1314 */ 1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1316 unsigned long timeout) 1317 { 1318 enum ice_aq_task_state *state = &task->state; 1319 struct device *dev = ice_pf_to_dev(pf); 1320 unsigned long start = jiffies; 1321 long ret; 1322 int err; 1323 1324 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1325 *state != ICE_AQ_TASK_WAITING, 1326 timeout); 1327 switch (*state) { 1328 case ICE_AQ_TASK_NOT_PREPARED: 1329 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1330 err = -EINVAL; 1331 break; 1332 case ICE_AQ_TASK_WAITING: 1333 err = ret < 0 ? ret : -ETIMEDOUT; 1334 break; 1335 case ICE_AQ_TASK_CANCELED: 1336 err = ret < 0 ? ret : -ECANCELED; 1337 break; 1338 case ICE_AQ_TASK_COMPLETE: 1339 err = ret < 0 ? ret : 0; 1340 break; 1341 default: 1342 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1343 err = -EINVAL; 1344 break; 1345 } 1346 1347 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1348 jiffies_to_msecs(jiffies - start), 1349 jiffies_to_msecs(timeout), 1350 task->opcode); 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_del(&task->entry); 1354 spin_unlock_bh(&pf->aq_wait_lock); 1355 1356 return err; 1357 } 1358 1359 /** 1360 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1361 * @pf: pointer to the PF private structure 1362 * @opcode: the opcode of the event 1363 * @event: the event to check 1364 * 1365 * Loops over the current list of pending threads waiting for an AdminQ event. 1366 * For each matching task, copy the contents of the event into the task 1367 * structure and wake up the thread. 1368 * 1369 * If multiple threads wait for the same opcode, they will all be woken up. 1370 * 1371 * Note that event->msg_buf will only be duplicated if the event has a buffer 1372 * with enough space already allocated. Otherwise, only the descriptor and 1373 * message length will be copied. 1374 * 1375 * Returns: true if an event was found, false otherwise 1376 */ 1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1378 struct ice_rq_event_info *event) 1379 { 1380 struct ice_rq_event_info *task_ev; 1381 struct ice_aq_task *task; 1382 bool found = false; 1383 1384 spin_lock_bh(&pf->aq_wait_lock); 1385 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1386 if (task->state != ICE_AQ_TASK_WAITING) 1387 continue; 1388 if (task->opcode != opcode) 1389 continue; 1390 1391 task_ev = &task->event; 1392 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1393 task_ev->msg_len = event->msg_len; 1394 1395 /* Only copy the data buffer if a destination was set */ 1396 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1397 memcpy(task_ev->msg_buf, event->msg_buf, 1398 event->buf_len); 1399 task_ev->buf_len = event->buf_len; 1400 } 1401 1402 task->state = ICE_AQ_TASK_COMPLETE; 1403 found = true; 1404 } 1405 spin_unlock_bh(&pf->aq_wait_lock); 1406 1407 if (found) 1408 wake_up(&pf->aq_wait_queue); 1409 } 1410 1411 /** 1412 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1413 * @pf: the PF private structure 1414 * 1415 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1416 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1417 */ 1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1419 { 1420 struct ice_aq_task *task; 1421 1422 spin_lock_bh(&pf->aq_wait_lock); 1423 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1424 task->state = ICE_AQ_TASK_CANCELED; 1425 spin_unlock_bh(&pf->aq_wait_lock); 1426 1427 wake_up(&pf->aq_wait_queue); 1428 } 1429 1430 #define ICE_MBX_OVERFLOW_WATERMARK 64 1431 1432 /** 1433 * __ice_clean_ctrlq - helper function to clean controlq rings 1434 * @pf: ptr to struct ice_pf 1435 * @q_type: specific Control queue type 1436 */ 1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1438 { 1439 struct device *dev = ice_pf_to_dev(pf); 1440 struct ice_rq_event_info event; 1441 struct ice_hw *hw = &pf->hw; 1442 struct ice_ctl_q_info *cq; 1443 u16 pending, i = 0; 1444 const char *qtype; 1445 u32 oldval, val; 1446 1447 /* Do not clean control queue if/when PF reset fails */ 1448 if (test_bit(ICE_RESET_FAILED, pf->state)) 1449 return 0; 1450 1451 switch (q_type) { 1452 case ICE_CTL_Q_ADMIN: 1453 cq = &hw->adminq; 1454 qtype = "Admin"; 1455 break; 1456 case ICE_CTL_Q_SB: 1457 cq = &hw->sbq; 1458 qtype = "Sideband"; 1459 break; 1460 case ICE_CTL_Q_MAILBOX: 1461 cq = &hw->mailboxq; 1462 qtype = "Mailbox"; 1463 /* we are going to try to detect a malicious VF, so set the 1464 * state to begin detection 1465 */ 1466 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1467 break; 1468 default: 1469 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1470 return 0; 1471 } 1472 1473 /* check for error indications - PF_xx_AxQLEN register layout for 1474 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1475 */ 1476 val = rd32(hw, cq->rq.len); 1477 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1478 PF_FW_ARQLEN_ARQCRIT_M)) { 1479 oldval = val; 1480 if (val & PF_FW_ARQLEN_ARQVFE_M) 1481 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1482 qtype); 1483 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1484 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1485 qtype); 1486 } 1487 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1488 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1489 qtype); 1490 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1491 PF_FW_ARQLEN_ARQCRIT_M); 1492 if (oldval != val) 1493 wr32(hw, cq->rq.len, val); 1494 } 1495 1496 val = rd32(hw, cq->sq.len); 1497 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1498 PF_FW_ATQLEN_ATQCRIT_M)) { 1499 oldval = val; 1500 if (val & PF_FW_ATQLEN_ATQVFE_M) 1501 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1502 qtype); 1503 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1504 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1505 qtype); 1506 } 1507 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1508 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1509 qtype); 1510 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1511 PF_FW_ATQLEN_ATQCRIT_M); 1512 if (oldval != val) 1513 wr32(hw, cq->sq.len, val); 1514 } 1515 1516 event.buf_len = cq->rq_buf_size; 1517 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1518 if (!event.msg_buf) 1519 return 0; 1520 1521 do { 1522 struct ice_mbx_data data = {}; 1523 u16 opcode; 1524 int ret; 1525 1526 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1527 if (ret == -EALREADY) 1528 break; 1529 if (ret) { 1530 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1531 ret); 1532 break; 1533 } 1534 1535 opcode = le16_to_cpu(event.desc.opcode); 1536 1537 /* Notify any thread that might be waiting for this event */ 1538 ice_aq_check_events(pf, opcode, &event); 1539 1540 switch (opcode) { 1541 case ice_aqc_opc_get_link_status: 1542 if (ice_handle_link_event(pf, &event)) 1543 dev_err(dev, "Could not handle link event\n"); 1544 break; 1545 case ice_aqc_opc_event_lan_overflow: 1546 ice_vf_lan_overflow_event(pf, &event); 1547 break; 1548 case ice_mbx_opc_send_msg_to_pf: 1549 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) { 1550 ice_vc_process_vf_msg(pf, &event, NULL); 1551 ice_mbx_vf_dec_trig_e830(hw, &event); 1552 } else { 1553 u16 val = hw->mailboxq.num_rq_entries; 1554 1555 data.max_num_msgs_mbx = val; 1556 val = ICE_MBX_OVERFLOW_WATERMARK; 1557 data.async_watermark_val = val; 1558 data.num_msg_proc = i; 1559 data.num_pending_arq = pending; 1560 1561 ice_vc_process_vf_msg(pf, &event, &data); 1562 } 1563 break; 1564 case ice_aqc_opc_fw_logs_event: 1565 ice_get_fwlog_data(pf, &event); 1566 break; 1567 case ice_aqc_opc_lldp_set_mib_change: 1568 ice_dcb_process_lldp_set_mib_change(pf, &event); 1569 break; 1570 default: 1571 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1572 qtype, opcode); 1573 break; 1574 } 1575 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1576 1577 kfree(event.msg_buf); 1578 1579 return pending && (i == ICE_DFLT_IRQ_WORK); 1580 } 1581 1582 /** 1583 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1584 * @hw: pointer to hardware info 1585 * @cq: control queue information 1586 * 1587 * returns true if there are pending messages in a queue, false if there aren't 1588 */ 1589 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1590 { 1591 u16 ntu; 1592 1593 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1594 return cq->rq.next_to_clean != ntu; 1595 } 1596 1597 /** 1598 * ice_clean_adminq_subtask - clean the AdminQ rings 1599 * @pf: board private structure 1600 */ 1601 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1602 { 1603 struct ice_hw *hw = &pf->hw; 1604 1605 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1606 return; 1607 1608 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1609 return; 1610 1611 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1612 1613 /* There might be a situation where new messages arrive to a control 1614 * queue between processing the last message and clearing the 1615 * EVENT_PENDING bit. So before exiting, check queue head again (using 1616 * ice_ctrlq_pending) and process new messages if any. 1617 */ 1618 if (ice_ctrlq_pending(hw, &hw->adminq)) 1619 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1620 1621 ice_flush(hw); 1622 } 1623 1624 /** 1625 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1626 * @pf: board private structure 1627 */ 1628 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1629 { 1630 struct ice_hw *hw = &pf->hw; 1631 1632 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1633 return; 1634 1635 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1636 return; 1637 1638 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1639 1640 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1641 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1642 1643 ice_flush(hw); 1644 } 1645 1646 /** 1647 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1648 * @pf: board private structure 1649 */ 1650 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1651 { 1652 struct ice_hw *hw = &pf->hw; 1653 1654 /* if mac_type is not generic, sideband is not supported 1655 * and there's nothing to do here 1656 */ 1657 if (!ice_is_generic_mac(hw)) { 1658 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1659 return; 1660 } 1661 1662 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1663 return; 1664 1665 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1666 return; 1667 1668 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1669 1670 if (ice_ctrlq_pending(hw, &hw->sbq)) 1671 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1672 1673 ice_flush(hw); 1674 } 1675 1676 /** 1677 * ice_service_task_schedule - schedule the service task to wake up 1678 * @pf: board private structure 1679 * 1680 * If not already scheduled, this puts the task into the work queue. 1681 */ 1682 void ice_service_task_schedule(struct ice_pf *pf) 1683 { 1684 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1685 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1686 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1687 queue_work(ice_wq, &pf->serv_task); 1688 } 1689 1690 /** 1691 * ice_service_task_complete - finish up the service task 1692 * @pf: board private structure 1693 */ 1694 static void ice_service_task_complete(struct ice_pf *pf) 1695 { 1696 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1697 1698 /* force memory (pf->state) to sync before next service task */ 1699 smp_mb__before_atomic(); 1700 clear_bit(ICE_SERVICE_SCHED, pf->state); 1701 } 1702 1703 /** 1704 * ice_service_task_stop - stop service task and cancel works 1705 * @pf: board private structure 1706 * 1707 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1708 * 1 otherwise. 1709 */ 1710 static int ice_service_task_stop(struct ice_pf *pf) 1711 { 1712 int ret; 1713 1714 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1715 1716 if (pf->serv_tmr.function) 1717 del_timer_sync(&pf->serv_tmr); 1718 if (pf->serv_task.func) 1719 cancel_work_sync(&pf->serv_task); 1720 1721 clear_bit(ICE_SERVICE_SCHED, pf->state); 1722 return ret; 1723 } 1724 1725 /** 1726 * ice_service_task_restart - restart service task and schedule works 1727 * @pf: board private structure 1728 * 1729 * This function is needed for suspend and resume works (e.g WoL scenario) 1730 */ 1731 static void ice_service_task_restart(struct ice_pf *pf) 1732 { 1733 clear_bit(ICE_SERVICE_DIS, pf->state); 1734 ice_service_task_schedule(pf); 1735 } 1736 1737 /** 1738 * ice_service_timer - timer callback to schedule service task 1739 * @t: pointer to timer_list 1740 */ 1741 static void ice_service_timer(struct timer_list *t) 1742 { 1743 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1744 1745 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1746 ice_service_task_schedule(pf); 1747 } 1748 1749 /** 1750 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1751 * @pf: pointer to the PF structure 1752 * @vf: pointer to the VF structure 1753 * @reset_vf_tx: whether Tx MDD has occurred 1754 * @reset_vf_rx: whether Rx MDD has occurred 1755 * 1756 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1757 * automatically reset the VF by enabling the private ethtool flag 1758 * mdd-auto-reset-vf. 1759 */ 1760 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1761 bool reset_vf_tx, bool reset_vf_rx) 1762 { 1763 struct device *dev = ice_pf_to_dev(pf); 1764 1765 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1766 return; 1767 1768 /* VF MDD event counters will be cleared by reset, so print the event 1769 * prior to reset. 1770 */ 1771 if (reset_vf_tx) 1772 ice_print_vf_tx_mdd_event(vf); 1773 1774 if (reset_vf_rx) 1775 ice_print_vf_rx_mdd_event(vf); 1776 1777 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1778 pf->hw.pf_id, vf->vf_id); 1779 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1780 } 1781 1782 /** 1783 * ice_handle_mdd_event - handle malicious driver detect event 1784 * @pf: pointer to the PF structure 1785 * 1786 * Called from service task. OICR interrupt handler indicates MDD event. 1787 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1788 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1789 * disable the queue, the PF can be configured to reset the VF using ethtool 1790 * private flag mdd-auto-reset-vf. 1791 */ 1792 static void ice_handle_mdd_event(struct ice_pf *pf) 1793 { 1794 struct device *dev = ice_pf_to_dev(pf); 1795 struct ice_hw *hw = &pf->hw; 1796 struct ice_vf *vf; 1797 unsigned int bkt; 1798 u32 reg; 1799 1800 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1801 /* Since the VF MDD event logging is rate limited, check if 1802 * there are pending MDD events. 1803 */ 1804 ice_print_vfs_mdd_events(pf); 1805 return; 1806 } 1807 1808 /* find what triggered an MDD event */ 1809 reg = rd32(hw, GL_MDET_TX_PQM); 1810 if (reg & GL_MDET_TX_PQM_VALID_M) { 1811 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1812 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1813 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1814 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1815 1816 if (netif_msg_tx_err(pf)) 1817 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1818 event, queue, pf_num, vf_num); 1819 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1820 } 1821 1822 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1823 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1824 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1825 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1826 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1827 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1828 1829 if (netif_msg_tx_err(pf)) 1830 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1831 event, queue, pf_num, vf_num); 1832 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1833 } 1834 1835 reg = rd32(hw, GL_MDET_RX); 1836 if (reg & GL_MDET_RX_VALID_M) { 1837 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1838 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1839 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1840 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1841 1842 if (netif_msg_rx_err(pf)) 1843 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1844 event, queue, pf_num, vf_num); 1845 wr32(hw, GL_MDET_RX, 0xffffffff); 1846 } 1847 1848 /* check to see if this PF caused an MDD event */ 1849 reg = rd32(hw, PF_MDET_TX_PQM); 1850 if (reg & PF_MDET_TX_PQM_VALID_M) { 1851 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1852 if (netif_msg_tx_err(pf)) 1853 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1854 } 1855 1856 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1857 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1858 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1859 if (netif_msg_tx_err(pf)) 1860 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1861 } 1862 1863 reg = rd32(hw, PF_MDET_RX); 1864 if (reg & PF_MDET_RX_VALID_M) { 1865 wr32(hw, PF_MDET_RX, 0xFFFF); 1866 if (netif_msg_rx_err(pf)) 1867 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1868 } 1869 1870 /* Check to see if one of the VFs caused an MDD event, and then 1871 * increment counters and set print pending 1872 */ 1873 mutex_lock(&pf->vfs.table_lock); 1874 ice_for_each_vf(pf, bkt, vf) { 1875 bool reset_vf_tx = false, reset_vf_rx = false; 1876 1877 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1878 if (reg & VP_MDET_TX_PQM_VALID_M) { 1879 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1880 vf->mdd_tx_events.count++; 1881 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1882 if (netif_msg_tx_err(pf)) 1883 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1884 vf->vf_id); 1885 1886 reset_vf_tx = true; 1887 } 1888 1889 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1890 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1891 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1892 vf->mdd_tx_events.count++; 1893 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1894 if (netif_msg_tx_err(pf)) 1895 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1896 vf->vf_id); 1897 1898 reset_vf_tx = true; 1899 } 1900 1901 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1902 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1903 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1904 vf->mdd_tx_events.count++; 1905 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1906 if (netif_msg_tx_err(pf)) 1907 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1908 vf->vf_id); 1909 1910 reset_vf_tx = true; 1911 } 1912 1913 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1914 if (reg & VP_MDET_RX_VALID_M) { 1915 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1916 vf->mdd_rx_events.count++; 1917 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1918 if (netif_msg_rx_err(pf)) 1919 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1920 vf->vf_id); 1921 1922 reset_vf_rx = true; 1923 } 1924 1925 if (reset_vf_tx || reset_vf_rx) 1926 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1927 reset_vf_rx); 1928 } 1929 mutex_unlock(&pf->vfs.table_lock); 1930 1931 ice_print_vfs_mdd_events(pf); 1932 } 1933 1934 /** 1935 * ice_force_phys_link_state - Force the physical link state 1936 * @vsi: VSI to force the physical link state to up/down 1937 * @link_up: true/false indicates to set the physical link to up/down 1938 * 1939 * Force the physical link state by getting the current PHY capabilities from 1940 * hardware and setting the PHY config based on the determined capabilities. If 1941 * link changes a link event will be triggered because both the Enable Automatic 1942 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1943 * 1944 * Returns 0 on success, negative on failure 1945 */ 1946 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1947 { 1948 struct ice_aqc_get_phy_caps_data *pcaps; 1949 struct ice_aqc_set_phy_cfg_data *cfg; 1950 struct ice_port_info *pi; 1951 struct device *dev; 1952 int retcode; 1953 1954 if (!vsi || !vsi->port_info || !vsi->back) 1955 return -EINVAL; 1956 if (vsi->type != ICE_VSI_PF) 1957 return 0; 1958 1959 dev = ice_pf_to_dev(vsi->back); 1960 1961 pi = vsi->port_info; 1962 1963 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1964 if (!pcaps) 1965 return -ENOMEM; 1966 1967 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1968 NULL); 1969 if (retcode) { 1970 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1971 vsi->vsi_num, retcode); 1972 retcode = -EIO; 1973 goto out; 1974 } 1975 1976 /* No change in link */ 1977 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1978 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1979 goto out; 1980 1981 /* Use the current user PHY configuration. The current user PHY 1982 * configuration is initialized during probe from PHY capabilities 1983 * software mode, and updated on set PHY configuration. 1984 */ 1985 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1986 if (!cfg) { 1987 retcode = -ENOMEM; 1988 goto out; 1989 } 1990 1991 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1992 if (link_up) 1993 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1994 else 1995 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1996 1997 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1998 if (retcode) { 1999 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2000 vsi->vsi_num, retcode); 2001 retcode = -EIO; 2002 } 2003 2004 kfree(cfg); 2005 out: 2006 kfree(pcaps); 2007 return retcode; 2008 } 2009 2010 /** 2011 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2012 * @pi: port info structure 2013 * 2014 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2015 */ 2016 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2017 { 2018 struct ice_aqc_get_phy_caps_data *pcaps; 2019 struct ice_pf *pf = pi->hw->back; 2020 int err; 2021 2022 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2023 if (!pcaps) 2024 return -ENOMEM; 2025 2026 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2027 pcaps, NULL); 2028 2029 if (err) { 2030 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2031 goto out; 2032 } 2033 2034 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2035 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2036 2037 out: 2038 kfree(pcaps); 2039 return err; 2040 } 2041 2042 /** 2043 * ice_init_link_dflt_override - Initialize link default override 2044 * @pi: port info structure 2045 * 2046 * Initialize link default override and PHY total port shutdown during probe 2047 */ 2048 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2049 { 2050 struct ice_link_default_override_tlv *ldo; 2051 struct ice_pf *pf = pi->hw->back; 2052 2053 ldo = &pf->link_dflt_override; 2054 if (ice_get_link_default_override(ldo, pi)) 2055 return; 2056 2057 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2058 return; 2059 2060 /* Enable Total Port Shutdown (override/replace link-down-on-close 2061 * ethtool private flag) for ports with Port Disable bit set. 2062 */ 2063 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2064 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2065 } 2066 2067 /** 2068 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2069 * @pi: port info structure 2070 * 2071 * If default override is enabled, initialize the user PHY cfg speed and FEC 2072 * settings using the default override mask from the NVM. 2073 * 2074 * The PHY should only be configured with the default override settings the 2075 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2076 * is used to indicate that the user PHY cfg default override is initialized 2077 * and the PHY has not been configured with the default override settings. The 2078 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2079 * configured. 2080 * 2081 * This function should be called only if the FW doesn't support default 2082 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2083 */ 2084 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2085 { 2086 struct ice_link_default_override_tlv *ldo; 2087 struct ice_aqc_set_phy_cfg_data *cfg; 2088 struct ice_phy_info *phy = &pi->phy; 2089 struct ice_pf *pf = pi->hw->back; 2090 2091 ldo = &pf->link_dflt_override; 2092 2093 /* If link default override is enabled, use to mask NVM PHY capabilities 2094 * for speed and FEC default configuration. 2095 */ 2096 cfg = &phy->curr_user_phy_cfg; 2097 2098 if (ldo->phy_type_low || ldo->phy_type_high) { 2099 cfg->phy_type_low = pf->nvm_phy_type_lo & 2100 cpu_to_le64(ldo->phy_type_low); 2101 cfg->phy_type_high = pf->nvm_phy_type_hi & 2102 cpu_to_le64(ldo->phy_type_high); 2103 } 2104 cfg->link_fec_opt = ldo->fec_options; 2105 phy->curr_user_fec_req = ICE_FEC_AUTO; 2106 2107 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2108 } 2109 2110 /** 2111 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2112 * @pi: port info structure 2113 * 2114 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2115 * mode to default. The PHY defaults are from get PHY capabilities topology 2116 * with media so call when media is first available. An error is returned if 2117 * called when media is not available. The PHY initialization completed state is 2118 * set here. 2119 * 2120 * These configurations are used when setting PHY 2121 * configuration. The user PHY configuration is updated on set PHY 2122 * configuration. Returns 0 on success, negative on failure 2123 */ 2124 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2125 { 2126 struct ice_aqc_get_phy_caps_data *pcaps; 2127 struct ice_phy_info *phy = &pi->phy; 2128 struct ice_pf *pf = pi->hw->back; 2129 int err; 2130 2131 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2132 return -EIO; 2133 2134 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2135 if (!pcaps) 2136 return -ENOMEM; 2137 2138 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2139 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2140 pcaps, NULL); 2141 else 2142 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2143 pcaps, NULL); 2144 if (err) { 2145 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2146 goto err_out; 2147 } 2148 2149 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2150 2151 /* check if lenient mode is supported and enabled */ 2152 if (ice_fw_supports_link_override(pi->hw) && 2153 !(pcaps->module_compliance_enforcement & 2154 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2155 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2156 2157 /* if the FW supports default PHY configuration mode, then the driver 2158 * does not have to apply link override settings. If not, 2159 * initialize user PHY configuration with link override values 2160 */ 2161 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2162 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2163 ice_init_phy_cfg_dflt_override(pi); 2164 goto out; 2165 } 2166 } 2167 2168 /* if link default override is not enabled, set user flow control and 2169 * FEC settings based on what get_phy_caps returned 2170 */ 2171 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2172 pcaps->link_fec_options); 2173 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2174 2175 out: 2176 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2177 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2178 err_out: 2179 kfree(pcaps); 2180 return err; 2181 } 2182 2183 /** 2184 * ice_configure_phy - configure PHY 2185 * @vsi: VSI of PHY 2186 * 2187 * Set the PHY configuration. If the current PHY configuration is the same as 2188 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2189 * configure the based get PHY capabilities for topology with media. 2190 */ 2191 static int ice_configure_phy(struct ice_vsi *vsi) 2192 { 2193 struct device *dev = ice_pf_to_dev(vsi->back); 2194 struct ice_port_info *pi = vsi->port_info; 2195 struct ice_aqc_get_phy_caps_data *pcaps; 2196 struct ice_aqc_set_phy_cfg_data *cfg; 2197 struct ice_phy_info *phy = &pi->phy; 2198 struct ice_pf *pf = vsi->back; 2199 int err; 2200 2201 /* Ensure we have media as we cannot configure a medialess port */ 2202 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2203 return -ENOMEDIUM; 2204 2205 ice_print_topo_conflict(vsi); 2206 2207 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2208 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2209 return -EPERM; 2210 2211 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2212 return ice_force_phys_link_state(vsi, true); 2213 2214 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2215 if (!pcaps) 2216 return -ENOMEM; 2217 2218 /* Get current PHY config */ 2219 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2220 NULL); 2221 if (err) { 2222 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2223 vsi->vsi_num, err); 2224 goto done; 2225 } 2226 2227 /* If PHY enable link is configured and configuration has not changed, 2228 * there's nothing to do 2229 */ 2230 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2231 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2232 goto done; 2233 2234 /* Use PHY topology as baseline for configuration */ 2235 memset(pcaps, 0, sizeof(*pcaps)); 2236 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2237 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2238 pcaps, NULL); 2239 else 2240 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2241 pcaps, NULL); 2242 if (err) { 2243 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2244 vsi->vsi_num, err); 2245 goto done; 2246 } 2247 2248 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2249 if (!cfg) { 2250 err = -ENOMEM; 2251 goto done; 2252 } 2253 2254 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2255 2256 /* Speed - If default override pending, use curr_user_phy_cfg set in 2257 * ice_init_phy_user_cfg_ldo. 2258 */ 2259 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2260 vsi->back->state)) { 2261 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2262 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2263 } else { 2264 u64 phy_low = 0, phy_high = 0; 2265 2266 ice_update_phy_type(&phy_low, &phy_high, 2267 pi->phy.curr_user_speed_req); 2268 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2269 cfg->phy_type_high = pcaps->phy_type_high & 2270 cpu_to_le64(phy_high); 2271 } 2272 2273 /* Can't provide what was requested; use PHY capabilities */ 2274 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2275 cfg->phy_type_low = pcaps->phy_type_low; 2276 cfg->phy_type_high = pcaps->phy_type_high; 2277 } 2278 2279 /* FEC */ 2280 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2281 2282 /* Can't provide what was requested; use PHY capabilities */ 2283 if (cfg->link_fec_opt != 2284 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2285 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2286 cfg->link_fec_opt = pcaps->link_fec_options; 2287 } 2288 2289 /* Flow Control - always supported; no need to check against 2290 * capabilities 2291 */ 2292 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2293 2294 /* Enable link and link update */ 2295 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2296 2297 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2298 if (err) 2299 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2300 vsi->vsi_num, err); 2301 2302 kfree(cfg); 2303 done: 2304 kfree(pcaps); 2305 return err; 2306 } 2307 2308 /** 2309 * ice_check_media_subtask - Check for media 2310 * @pf: pointer to PF struct 2311 * 2312 * If media is available, then initialize PHY user configuration if it is not 2313 * been, and configure the PHY if the interface is up. 2314 */ 2315 static void ice_check_media_subtask(struct ice_pf *pf) 2316 { 2317 struct ice_port_info *pi; 2318 struct ice_vsi *vsi; 2319 int err; 2320 2321 /* No need to check for media if it's already present */ 2322 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2323 return; 2324 2325 vsi = ice_get_main_vsi(pf); 2326 if (!vsi) 2327 return; 2328 2329 /* Refresh link info and check if media is present */ 2330 pi = vsi->port_info; 2331 err = ice_update_link_info(pi); 2332 if (err) 2333 return; 2334 2335 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2336 2337 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2338 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2339 ice_init_phy_user_cfg(pi); 2340 2341 /* PHY settings are reset on media insertion, reconfigure 2342 * PHY to preserve settings. 2343 */ 2344 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2345 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2346 return; 2347 2348 err = ice_configure_phy(vsi); 2349 if (!err) 2350 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2351 2352 /* A Link Status Event will be generated; the event handler 2353 * will complete bringing the interface up 2354 */ 2355 } 2356 } 2357 2358 /** 2359 * ice_service_task - manage and run subtasks 2360 * @work: pointer to work_struct contained by the PF struct 2361 */ 2362 static void ice_service_task(struct work_struct *work) 2363 { 2364 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2365 unsigned long start_time = jiffies; 2366 2367 /* subtasks */ 2368 2369 /* process reset requests first */ 2370 ice_reset_subtask(pf); 2371 2372 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2373 if (ice_is_reset_in_progress(pf->state) || 2374 test_bit(ICE_SUSPENDED, pf->state) || 2375 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2376 ice_service_task_complete(pf); 2377 return; 2378 } 2379 2380 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2381 struct iidc_event *event; 2382 2383 event = kzalloc(sizeof(*event), GFP_KERNEL); 2384 if (event) { 2385 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2386 /* report the entire OICR value to AUX driver */ 2387 swap(event->reg, pf->oicr_err_reg); 2388 ice_send_event_to_aux(pf, event); 2389 kfree(event); 2390 } 2391 } 2392 2393 /* unplug aux dev per request, if an unplug request came in 2394 * while processing a plug request, this will handle it 2395 */ 2396 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2397 ice_unplug_aux_dev(pf); 2398 2399 /* Plug aux device per request */ 2400 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2401 ice_plug_aux_dev(pf); 2402 2403 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2404 struct iidc_event *event; 2405 2406 event = kzalloc(sizeof(*event), GFP_KERNEL); 2407 if (event) { 2408 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2409 ice_send_event_to_aux(pf, event); 2410 kfree(event); 2411 } 2412 } 2413 2414 ice_clean_adminq_subtask(pf); 2415 ice_check_media_subtask(pf); 2416 ice_check_for_hang_subtask(pf); 2417 ice_sync_fltr_subtask(pf); 2418 ice_handle_mdd_event(pf); 2419 ice_watchdog_subtask(pf); 2420 2421 if (ice_is_safe_mode(pf)) { 2422 ice_service_task_complete(pf); 2423 return; 2424 } 2425 2426 ice_process_vflr_event(pf); 2427 ice_clean_mailboxq_subtask(pf); 2428 ice_clean_sbq_subtask(pf); 2429 ice_sync_arfs_fltrs(pf); 2430 ice_flush_fdir_ctx(pf); 2431 2432 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2433 ice_service_task_complete(pf); 2434 2435 /* If the tasks have taken longer than one service timer period 2436 * or there is more work to be done, reset the service timer to 2437 * schedule the service task now. 2438 */ 2439 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2440 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2441 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2442 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2443 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2444 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2445 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2446 mod_timer(&pf->serv_tmr, jiffies); 2447 } 2448 2449 /** 2450 * ice_set_ctrlq_len - helper function to set controlq length 2451 * @hw: pointer to the HW instance 2452 */ 2453 static void ice_set_ctrlq_len(struct ice_hw *hw) 2454 { 2455 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2456 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2457 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2458 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2459 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2460 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2461 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2462 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2463 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2464 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2465 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2466 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2467 } 2468 2469 /** 2470 * ice_schedule_reset - schedule a reset 2471 * @pf: board private structure 2472 * @reset: reset being requested 2473 */ 2474 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2475 { 2476 struct device *dev = ice_pf_to_dev(pf); 2477 2478 /* bail out if earlier reset has failed */ 2479 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2480 dev_dbg(dev, "earlier reset has failed\n"); 2481 return -EIO; 2482 } 2483 /* bail if reset/recovery already in progress */ 2484 if (ice_is_reset_in_progress(pf->state)) { 2485 dev_dbg(dev, "Reset already in progress\n"); 2486 return -EBUSY; 2487 } 2488 2489 switch (reset) { 2490 case ICE_RESET_PFR: 2491 set_bit(ICE_PFR_REQ, pf->state); 2492 break; 2493 case ICE_RESET_CORER: 2494 set_bit(ICE_CORER_REQ, pf->state); 2495 break; 2496 case ICE_RESET_GLOBR: 2497 set_bit(ICE_GLOBR_REQ, pf->state); 2498 break; 2499 default: 2500 return -EINVAL; 2501 } 2502 2503 ice_service_task_schedule(pf); 2504 return 0; 2505 } 2506 2507 /** 2508 * ice_irq_affinity_notify - Callback for affinity changes 2509 * @notify: context as to what irq was changed 2510 * @mask: the new affinity mask 2511 * 2512 * This is a callback function used by the irq_set_affinity_notifier function 2513 * so that we may register to receive changes to the irq affinity masks. 2514 */ 2515 static void 2516 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2517 const cpumask_t *mask) 2518 { 2519 struct ice_q_vector *q_vector = 2520 container_of(notify, struct ice_q_vector, affinity_notify); 2521 2522 cpumask_copy(&q_vector->affinity_mask, mask); 2523 } 2524 2525 /** 2526 * ice_irq_affinity_release - Callback for affinity notifier release 2527 * @ref: internal core kernel usage 2528 * 2529 * This is a callback function used by the irq_set_affinity_notifier function 2530 * to inform the current notification subscriber that they will no longer 2531 * receive notifications. 2532 */ 2533 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2534 2535 /** 2536 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2537 * @vsi: the VSI being configured 2538 */ 2539 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2540 { 2541 struct ice_hw *hw = &vsi->back->hw; 2542 int i; 2543 2544 ice_for_each_q_vector(vsi, i) 2545 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2546 2547 ice_flush(hw); 2548 return 0; 2549 } 2550 2551 /** 2552 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2553 * @vsi: the VSI being configured 2554 * @basename: name for the vector 2555 */ 2556 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2557 { 2558 int q_vectors = vsi->num_q_vectors; 2559 struct ice_pf *pf = vsi->back; 2560 struct device *dev; 2561 int rx_int_idx = 0; 2562 int tx_int_idx = 0; 2563 int vector, err; 2564 int irq_num; 2565 2566 dev = ice_pf_to_dev(pf); 2567 for (vector = 0; vector < q_vectors; vector++) { 2568 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2569 2570 irq_num = q_vector->irq.virq; 2571 2572 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2573 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2574 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2575 tx_int_idx++; 2576 } else if (q_vector->rx.rx_ring) { 2577 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2578 "%s-%s-%d", basename, "rx", rx_int_idx++); 2579 } else if (q_vector->tx.tx_ring) { 2580 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2581 "%s-%s-%d", basename, "tx", tx_int_idx++); 2582 } else { 2583 /* skip this unused q_vector */ 2584 continue; 2585 } 2586 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2587 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2588 IRQF_SHARED, q_vector->name, 2589 q_vector); 2590 else 2591 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2592 0, q_vector->name, q_vector); 2593 if (err) { 2594 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2595 err); 2596 goto free_q_irqs; 2597 } 2598 2599 /* register for affinity change notifications */ 2600 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2601 struct irq_affinity_notify *affinity_notify; 2602 2603 affinity_notify = &q_vector->affinity_notify; 2604 affinity_notify->notify = ice_irq_affinity_notify; 2605 affinity_notify->release = ice_irq_affinity_release; 2606 irq_set_affinity_notifier(irq_num, affinity_notify); 2607 } 2608 2609 /* assign the mask for this irq */ 2610 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask); 2611 } 2612 2613 err = ice_set_cpu_rx_rmap(vsi); 2614 if (err) { 2615 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2616 vsi->vsi_num, ERR_PTR(err)); 2617 goto free_q_irqs; 2618 } 2619 2620 vsi->irqs_ready = true; 2621 return 0; 2622 2623 free_q_irqs: 2624 while (vector--) { 2625 irq_num = vsi->q_vectors[vector]->irq.virq; 2626 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2627 irq_set_affinity_notifier(irq_num, NULL); 2628 irq_update_affinity_hint(irq_num, NULL); 2629 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2630 } 2631 return err; 2632 } 2633 2634 /** 2635 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2636 * @vsi: VSI to setup Tx rings used by XDP 2637 * 2638 * Return 0 on success and negative value on error 2639 */ 2640 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2641 { 2642 struct device *dev = ice_pf_to_dev(vsi->back); 2643 struct ice_tx_desc *tx_desc; 2644 int i, j; 2645 2646 ice_for_each_xdp_txq(vsi, i) { 2647 u16 xdp_q_idx = vsi->alloc_txq + i; 2648 struct ice_ring_stats *ring_stats; 2649 struct ice_tx_ring *xdp_ring; 2650 2651 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2652 if (!xdp_ring) 2653 goto free_xdp_rings; 2654 2655 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2656 if (!ring_stats) { 2657 ice_free_tx_ring(xdp_ring); 2658 goto free_xdp_rings; 2659 } 2660 2661 xdp_ring->ring_stats = ring_stats; 2662 xdp_ring->q_index = xdp_q_idx; 2663 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2664 xdp_ring->vsi = vsi; 2665 xdp_ring->netdev = NULL; 2666 xdp_ring->dev = dev; 2667 xdp_ring->count = vsi->num_tx_desc; 2668 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2669 if (ice_setup_tx_ring(xdp_ring)) 2670 goto free_xdp_rings; 2671 ice_set_ring_xdp(xdp_ring); 2672 spin_lock_init(&xdp_ring->tx_lock); 2673 for (j = 0; j < xdp_ring->count; j++) { 2674 tx_desc = ICE_TX_DESC(xdp_ring, j); 2675 tx_desc->cmd_type_offset_bsz = 0; 2676 } 2677 } 2678 2679 return 0; 2680 2681 free_xdp_rings: 2682 for (; i >= 0; i--) { 2683 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2684 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2685 vsi->xdp_rings[i]->ring_stats = NULL; 2686 ice_free_tx_ring(vsi->xdp_rings[i]); 2687 } 2688 } 2689 return -ENOMEM; 2690 } 2691 2692 /** 2693 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2694 * @vsi: VSI to set the bpf prog on 2695 * @prog: the bpf prog pointer 2696 */ 2697 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2698 { 2699 struct bpf_prog *old_prog; 2700 int i; 2701 2702 old_prog = xchg(&vsi->xdp_prog, prog); 2703 ice_for_each_rxq(vsi, i) 2704 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2705 2706 if (old_prog) 2707 bpf_prog_put(old_prog); 2708 } 2709 2710 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2711 { 2712 struct ice_q_vector *q_vector; 2713 struct ice_tx_ring *ring; 2714 2715 if (static_key_enabled(&ice_xdp_locking_key)) 2716 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2717 2718 q_vector = vsi->rx_rings[qid]->q_vector; 2719 ice_for_each_tx_ring(ring, q_vector->tx) 2720 if (ice_ring_is_xdp(ring)) 2721 return ring; 2722 2723 return NULL; 2724 } 2725 2726 /** 2727 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2728 * @vsi: the VSI with XDP rings being configured 2729 * 2730 * Map XDP rings to interrupt vectors and perform the configuration steps 2731 * dependent on the mapping. 2732 */ 2733 void ice_map_xdp_rings(struct ice_vsi *vsi) 2734 { 2735 int xdp_rings_rem = vsi->num_xdp_txq; 2736 int v_idx, q_idx; 2737 2738 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2739 ice_for_each_q_vector(vsi, v_idx) { 2740 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2741 int xdp_rings_per_v, q_id, q_base; 2742 2743 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2744 vsi->num_q_vectors - v_idx); 2745 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2746 2747 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2748 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2749 2750 xdp_ring->q_vector = q_vector; 2751 xdp_ring->next = q_vector->tx.tx_ring; 2752 q_vector->tx.tx_ring = xdp_ring; 2753 } 2754 xdp_rings_rem -= xdp_rings_per_v; 2755 } 2756 2757 ice_for_each_rxq(vsi, q_idx) { 2758 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2759 q_idx); 2760 ice_tx_xsk_pool(vsi, q_idx); 2761 } 2762 } 2763 2764 /** 2765 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2766 * @vsi: VSI to bring up Tx rings used by XDP 2767 * @prog: bpf program that will be assigned to VSI 2768 * @cfg_type: create from scratch or restore the existing configuration 2769 * 2770 * Return 0 on success and negative value on error 2771 */ 2772 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2773 enum ice_xdp_cfg cfg_type) 2774 { 2775 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2776 struct ice_pf *pf = vsi->back; 2777 struct ice_qs_cfg xdp_qs_cfg = { 2778 .qs_mutex = &pf->avail_q_mutex, 2779 .pf_map = pf->avail_txqs, 2780 .pf_map_size = pf->max_pf_txqs, 2781 .q_count = vsi->num_xdp_txq, 2782 .scatter_count = ICE_MAX_SCATTER_TXQS, 2783 .vsi_map = vsi->txq_map, 2784 .vsi_map_offset = vsi->alloc_txq, 2785 .mapping_mode = ICE_VSI_MAP_CONTIG 2786 }; 2787 struct device *dev; 2788 int status, i; 2789 2790 dev = ice_pf_to_dev(pf); 2791 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2792 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2793 if (!vsi->xdp_rings) 2794 return -ENOMEM; 2795 2796 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2797 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2798 goto err_map_xdp; 2799 2800 if (static_key_enabled(&ice_xdp_locking_key)) 2801 netdev_warn(vsi->netdev, 2802 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2803 2804 if (ice_xdp_alloc_setup_rings(vsi)) 2805 goto clear_xdp_rings; 2806 2807 /* omit the scheduler update if in reset path; XDP queues will be 2808 * taken into account at the end of ice_vsi_rebuild, where 2809 * ice_cfg_vsi_lan is being called 2810 */ 2811 if (cfg_type == ICE_XDP_CFG_PART) 2812 return 0; 2813 2814 ice_map_xdp_rings(vsi); 2815 2816 /* tell the Tx scheduler that right now we have 2817 * additional queues 2818 */ 2819 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2820 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2821 2822 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2823 max_txqs); 2824 if (status) { 2825 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2826 status); 2827 goto clear_xdp_rings; 2828 } 2829 2830 /* assign the prog only when it's not already present on VSI; 2831 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2832 * VSI rebuild that happens under ethtool -L can expose us to 2833 * the bpf_prog refcount issues as we would be swapping same 2834 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2835 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2836 * this is not harmful as dev_xdp_install bumps the refcount 2837 * before calling the op exposed by the driver; 2838 */ 2839 if (!ice_is_xdp_ena_vsi(vsi)) 2840 ice_vsi_assign_bpf_prog(vsi, prog); 2841 2842 return 0; 2843 clear_xdp_rings: 2844 ice_for_each_xdp_txq(vsi, i) 2845 if (vsi->xdp_rings[i]) { 2846 kfree_rcu(vsi->xdp_rings[i], rcu); 2847 vsi->xdp_rings[i] = NULL; 2848 } 2849 2850 err_map_xdp: 2851 mutex_lock(&pf->avail_q_mutex); 2852 ice_for_each_xdp_txq(vsi, i) { 2853 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2854 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2855 } 2856 mutex_unlock(&pf->avail_q_mutex); 2857 2858 devm_kfree(dev, vsi->xdp_rings); 2859 return -ENOMEM; 2860 } 2861 2862 /** 2863 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2864 * @vsi: VSI to remove XDP rings 2865 * @cfg_type: disable XDP permanently or allow it to be restored later 2866 * 2867 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2868 * resources 2869 */ 2870 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2871 { 2872 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2873 struct ice_pf *pf = vsi->back; 2874 int i, v_idx; 2875 2876 /* q_vectors are freed in reset path so there's no point in detaching 2877 * rings 2878 */ 2879 if (cfg_type == ICE_XDP_CFG_PART) 2880 goto free_qmap; 2881 2882 ice_for_each_q_vector(vsi, v_idx) { 2883 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2884 struct ice_tx_ring *ring; 2885 2886 ice_for_each_tx_ring(ring, q_vector->tx) 2887 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2888 break; 2889 2890 /* restore the value of last node prior to XDP setup */ 2891 q_vector->tx.tx_ring = ring; 2892 } 2893 2894 free_qmap: 2895 mutex_lock(&pf->avail_q_mutex); 2896 ice_for_each_xdp_txq(vsi, i) { 2897 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2898 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2899 } 2900 mutex_unlock(&pf->avail_q_mutex); 2901 2902 ice_for_each_xdp_txq(vsi, i) 2903 if (vsi->xdp_rings[i]) { 2904 if (vsi->xdp_rings[i]->desc) { 2905 synchronize_rcu(); 2906 ice_free_tx_ring(vsi->xdp_rings[i]); 2907 } 2908 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2909 vsi->xdp_rings[i]->ring_stats = NULL; 2910 kfree_rcu(vsi->xdp_rings[i], rcu); 2911 vsi->xdp_rings[i] = NULL; 2912 } 2913 2914 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2915 vsi->xdp_rings = NULL; 2916 2917 if (static_key_enabled(&ice_xdp_locking_key)) 2918 static_branch_dec(&ice_xdp_locking_key); 2919 2920 if (cfg_type == ICE_XDP_CFG_PART) 2921 return 0; 2922 2923 ice_vsi_assign_bpf_prog(vsi, NULL); 2924 2925 /* notify Tx scheduler that we destroyed XDP queues and bring 2926 * back the old number of child nodes 2927 */ 2928 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2929 max_txqs[i] = vsi->num_txq; 2930 2931 /* change number of XDP Tx queues to 0 */ 2932 vsi->num_xdp_txq = 0; 2933 2934 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2935 max_txqs); 2936 } 2937 2938 /** 2939 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2940 * @vsi: VSI to schedule napi on 2941 */ 2942 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2943 { 2944 int i; 2945 2946 ice_for_each_rxq(vsi, i) { 2947 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2948 2949 if (READ_ONCE(rx_ring->xsk_pool)) 2950 napi_schedule(&rx_ring->q_vector->napi); 2951 } 2952 } 2953 2954 /** 2955 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2956 * @vsi: VSI to determine the count of XDP Tx qs 2957 * 2958 * returns 0 if Tx qs count is higher than at least half of CPU count, 2959 * -ENOMEM otherwise 2960 */ 2961 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2962 { 2963 u16 avail = ice_get_avail_txq_count(vsi->back); 2964 u16 cpus = num_possible_cpus(); 2965 2966 if (avail < cpus / 2) 2967 return -ENOMEM; 2968 2969 if (vsi->type == ICE_VSI_SF) 2970 avail = vsi->alloc_txq; 2971 2972 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2973 2974 if (vsi->num_xdp_txq < cpus) 2975 static_branch_inc(&ice_xdp_locking_key); 2976 2977 return 0; 2978 } 2979 2980 /** 2981 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2982 * @vsi: Pointer to VSI structure 2983 */ 2984 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2985 { 2986 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2987 return ICE_RXBUF_1664; 2988 else 2989 return ICE_RXBUF_3072; 2990 } 2991 2992 /** 2993 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2994 * @vsi: VSI to setup XDP for 2995 * @prog: XDP program 2996 * @extack: netlink extended ack 2997 */ 2998 static int 2999 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 3000 struct netlink_ext_ack *extack) 3001 { 3002 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3003 int ret = 0, xdp_ring_err = 0; 3004 bool if_running; 3005 3006 if (prog && !prog->aux->xdp_has_frags) { 3007 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3008 NL_SET_ERR_MSG_MOD(extack, 3009 "MTU is too large for linear frames and XDP prog does not support frags"); 3010 return -EOPNOTSUPP; 3011 } 3012 } 3013 3014 /* hot swap progs and avoid toggling link */ 3015 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 3016 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 3017 ice_vsi_assign_bpf_prog(vsi, prog); 3018 return 0; 3019 } 3020 3021 if_running = netif_running(vsi->netdev) && 3022 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3023 3024 /* need to stop netdev while setting up the program for Rx rings */ 3025 if (if_running) { 3026 ret = ice_down(vsi); 3027 if (ret) { 3028 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3029 return ret; 3030 } 3031 } 3032 3033 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3034 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3035 if (xdp_ring_err) { 3036 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3037 } else { 3038 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3039 ICE_XDP_CFG_FULL); 3040 if (xdp_ring_err) 3041 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3042 } 3043 xdp_features_set_redirect_target(vsi->netdev, true); 3044 /* reallocate Rx queues that are used for zero-copy */ 3045 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3046 if (xdp_ring_err) 3047 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3048 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3049 xdp_features_clear_redirect_target(vsi->netdev); 3050 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3051 if (xdp_ring_err) 3052 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3053 /* reallocate Rx queues that were used for zero-copy */ 3054 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3055 if (xdp_ring_err) 3056 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3057 } 3058 3059 if (if_running) 3060 ret = ice_up(vsi); 3061 3062 if (!ret && prog) 3063 ice_vsi_rx_napi_schedule(vsi); 3064 3065 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3066 } 3067 3068 /** 3069 * ice_xdp_safe_mode - XDP handler for safe mode 3070 * @dev: netdevice 3071 * @xdp: XDP command 3072 */ 3073 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3074 struct netdev_bpf *xdp) 3075 { 3076 NL_SET_ERR_MSG_MOD(xdp->extack, 3077 "Please provide working DDP firmware package in order to use XDP\n" 3078 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3079 return -EOPNOTSUPP; 3080 } 3081 3082 /** 3083 * ice_xdp - implements XDP handler 3084 * @dev: netdevice 3085 * @xdp: XDP command 3086 */ 3087 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3088 { 3089 struct ice_netdev_priv *np = netdev_priv(dev); 3090 struct ice_vsi *vsi = np->vsi; 3091 int ret; 3092 3093 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3094 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3095 return -EINVAL; 3096 } 3097 3098 mutex_lock(&vsi->xdp_state_lock); 3099 3100 switch (xdp->command) { 3101 case XDP_SETUP_PROG: 3102 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3103 break; 3104 case XDP_SETUP_XSK_POOL: 3105 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3106 break; 3107 default: 3108 ret = -EINVAL; 3109 } 3110 3111 mutex_unlock(&vsi->xdp_state_lock); 3112 return ret; 3113 } 3114 3115 /** 3116 * ice_ena_misc_vector - enable the non-queue interrupts 3117 * @pf: board private structure 3118 */ 3119 static void ice_ena_misc_vector(struct ice_pf *pf) 3120 { 3121 struct ice_hw *hw = &pf->hw; 3122 u32 pf_intr_start_offset; 3123 u32 val; 3124 3125 /* Disable anti-spoof detection interrupt to prevent spurious event 3126 * interrupts during a function reset. Anti-spoof functionally is 3127 * still supported. 3128 */ 3129 val = rd32(hw, GL_MDCK_TX_TDPU); 3130 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3131 wr32(hw, GL_MDCK_TX_TDPU, val); 3132 3133 /* clear things first */ 3134 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3135 rd32(hw, PFINT_OICR); /* read to clear */ 3136 3137 val = (PFINT_OICR_ECC_ERR_M | 3138 PFINT_OICR_MAL_DETECT_M | 3139 PFINT_OICR_GRST_M | 3140 PFINT_OICR_PCI_EXCEPTION_M | 3141 PFINT_OICR_VFLR_M | 3142 PFINT_OICR_HMC_ERR_M | 3143 PFINT_OICR_PE_PUSH_M | 3144 PFINT_OICR_PE_CRITERR_M); 3145 3146 wr32(hw, PFINT_OICR_ENA, val); 3147 3148 /* SW_ITR_IDX = 0, but don't change INTENA */ 3149 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3150 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3151 3152 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3153 return; 3154 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3155 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3156 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3157 } 3158 3159 /** 3160 * ice_ll_ts_intr - ll_ts interrupt handler 3161 * @irq: interrupt number 3162 * @data: pointer to a q_vector 3163 */ 3164 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3165 { 3166 struct ice_pf *pf = data; 3167 u32 pf_intr_start_offset; 3168 struct ice_ptp_tx *tx; 3169 unsigned long flags; 3170 struct ice_hw *hw; 3171 u32 val; 3172 u8 idx; 3173 3174 hw = &pf->hw; 3175 tx = &pf->ptp.port.tx; 3176 spin_lock_irqsave(&tx->lock, flags); 3177 ice_ptp_complete_tx_single_tstamp(tx); 3178 3179 idx = find_next_bit_wrap(tx->in_use, tx->len, 3180 tx->last_ll_ts_idx_read + 1); 3181 if (idx != tx->len) 3182 ice_ptp_req_tx_single_tstamp(tx, idx); 3183 spin_unlock_irqrestore(&tx->lock, flags); 3184 3185 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3186 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3187 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3188 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3189 val); 3190 3191 return IRQ_HANDLED; 3192 } 3193 3194 /** 3195 * ice_misc_intr - misc interrupt handler 3196 * @irq: interrupt number 3197 * @data: pointer to a q_vector 3198 */ 3199 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3200 { 3201 struct ice_pf *pf = (struct ice_pf *)data; 3202 irqreturn_t ret = IRQ_HANDLED; 3203 struct ice_hw *hw = &pf->hw; 3204 struct device *dev; 3205 u32 oicr, ena_mask; 3206 3207 dev = ice_pf_to_dev(pf); 3208 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3209 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3210 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3211 3212 oicr = rd32(hw, PFINT_OICR); 3213 ena_mask = rd32(hw, PFINT_OICR_ENA); 3214 3215 if (oicr & PFINT_OICR_SWINT_M) { 3216 ena_mask &= ~PFINT_OICR_SWINT_M; 3217 pf->sw_int_count++; 3218 } 3219 3220 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3221 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3222 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3223 } 3224 if (oicr & PFINT_OICR_VFLR_M) { 3225 /* disable any further VFLR event notifications */ 3226 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3227 u32 reg = rd32(hw, PFINT_OICR_ENA); 3228 3229 reg &= ~PFINT_OICR_VFLR_M; 3230 wr32(hw, PFINT_OICR_ENA, reg); 3231 } else { 3232 ena_mask &= ~PFINT_OICR_VFLR_M; 3233 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3234 } 3235 } 3236 3237 if (oicr & PFINT_OICR_GRST_M) { 3238 u32 reset; 3239 3240 /* we have a reset warning */ 3241 ena_mask &= ~PFINT_OICR_GRST_M; 3242 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3243 rd32(hw, GLGEN_RSTAT)); 3244 3245 if (reset == ICE_RESET_CORER) 3246 pf->corer_count++; 3247 else if (reset == ICE_RESET_GLOBR) 3248 pf->globr_count++; 3249 else if (reset == ICE_RESET_EMPR) 3250 pf->empr_count++; 3251 else 3252 dev_dbg(dev, "Invalid reset type %d\n", reset); 3253 3254 /* If a reset cycle isn't already in progress, we set a bit in 3255 * pf->state so that the service task can start a reset/rebuild. 3256 */ 3257 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3258 if (reset == ICE_RESET_CORER) 3259 set_bit(ICE_CORER_RECV, pf->state); 3260 else if (reset == ICE_RESET_GLOBR) 3261 set_bit(ICE_GLOBR_RECV, pf->state); 3262 else 3263 set_bit(ICE_EMPR_RECV, pf->state); 3264 3265 /* There are couple of different bits at play here. 3266 * hw->reset_ongoing indicates whether the hardware is 3267 * in reset. This is set to true when a reset interrupt 3268 * is received and set back to false after the driver 3269 * has determined that the hardware is out of reset. 3270 * 3271 * ICE_RESET_OICR_RECV in pf->state indicates 3272 * that a post reset rebuild is required before the 3273 * driver is operational again. This is set above. 3274 * 3275 * As this is the start of the reset/rebuild cycle, set 3276 * both to indicate that. 3277 */ 3278 hw->reset_ongoing = true; 3279 } 3280 } 3281 3282 if (oicr & PFINT_OICR_TSYN_TX_M) { 3283 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3284 if (ice_pf_state_is_nominal(pf) && 3285 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3286 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3287 unsigned long flags; 3288 u8 idx; 3289 3290 spin_lock_irqsave(&tx->lock, flags); 3291 idx = find_next_bit_wrap(tx->in_use, tx->len, 3292 tx->last_ll_ts_idx_read + 1); 3293 if (idx != tx->len) 3294 ice_ptp_req_tx_single_tstamp(tx, idx); 3295 spin_unlock_irqrestore(&tx->lock, flags); 3296 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3297 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3298 ret = IRQ_WAKE_THREAD; 3299 } 3300 } 3301 3302 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3303 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3304 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3305 3306 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3307 3308 if (ice_pf_src_tmr_owned(pf)) { 3309 /* Save EVENTs from GLTSYN register */ 3310 pf->ptp.ext_ts_irq |= gltsyn_stat & 3311 (GLTSYN_STAT_EVENT0_M | 3312 GLTSYN_STAT_EVENT1_M | 3313 GLTSYN_STAT_EVENT2_M); 3314 3315 ice_ptp_extts_event(pf); 3316 } 3317 } 3318 3319 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3320 if (oicr & ICE_AUX_CRIT_ERR) { 3321 pf->oicr_err_reg |= oicr; 3322 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3323 ena_mask &= ~ICE_AUX_CRIT_ERR; 3324 } 3325 3326 /* Report any remaining unexpected interrupts */ 3327 oicr &= ena_mask; 3328 if (oicr) { 3329 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3330 /* If a critical error is pending there is no choice but to 3331 * reset the device. 3332 */ 3333 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3334 PFINT_OICR_ECC_ERR_M)) { 3335 set_bit(ICE_PFR_REQ, pf->state); 3336 } 3337 } 3338 ice_service_task_schedule(pf); 3339 if (ret == IRQ_HANDLED) 3340 ice_irq_dynamic_ena(hw, NULL, NULL); 3341 3342 return ret; 3343 } 3344 3345 /** 3346 * ice_misc_intr_thread_fn - misc interrupt thread function 3347 * @irq: interrupt number 3348 * @data: pointer to a q_vector 3349 */ 3350 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3351 { 3352 struct ice_pf *pf = data; 3353 struct ice_hw *hw; 3354 3355 hw = &pf->hw; 3356 3357 if (ice_is_reset_in_progress(pf->state)) 3358 goto skip_irq; 3359 3360 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3361 /* Process outstanding Tx timestamps. If there is more work, 3362 * re-arm the interrupt to trigger again. 3363 */ 3364 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3365 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3366 ice_flush(hw); 3367 } 3368 } 3369 3370 skip_irq: 3371 ice_irq_dynamic_ena(hw, NULL, NULL); 3372 3373 return IRQ_HANDLED; 3374 } 3375 3376 /** 3377 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3378 * @hw: pointer to HW structure 3379 */ 3380 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3381 { 3382 /* disable Admin queue Interrupt causes */ 3383 wr32(hw, PFINT_FW_CTL, 3384 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3385 3386 /* disable Mailbox queue Interrupt causes */ 3387 wr32(hw, PFINT_MBX_CTL, 3388 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3389 3390 wr32(hw, PFINT_SB_CTL, 3391 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3392 3393 /* disable Control queue Interrupt causes */ 3394 wr32(hw, PFINT_OICR_CTL, 3395 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3396 3397 ice_flush(hw); 3398 } 3399 3400 /** 3401 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3402 * @pf: board private structure 3403 */ 3404 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3405 { 3406 int irq_num = pf->ll_ts_irq.virq; 3407 3408 synchronize_irq(irq_num); 3409 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3410 3411 ice_free_irq(pf, pf->ll_ts_irq); 3412 } 3413 3414 /** 3415 * ice_free_irq_msix_misc - Unroll misc vector setup 3416 * @pf: board private structure 3417 */ 3418 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3419 { 3420 int misc_irq_num = pf->oicr_irq.virq; 3421 struct ice_hw *hw = &pf->hw; 3422 3423 ice_dis_ctrlq_interrupts(hw); 3424 3425 /* disable OICR interrupt */ 3426 wr32(hw, PFINT_OICR_ENA, 0); 3427 ice_flush(hw); 3428 3429 synchronize_irq(misc_irq_num); 3430 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3431 3432 ice_free_irq(pf, pf->oicr_irq); 3433 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3434 ice_free_irq_msix_ll_ts(pf); 3435 } 3436 3437 /** 3438 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3439 * @hw: pointer to HW structure 3440 * @reg_idx: HW vector index to associate the control queue interrupts with 3441 */ 3442 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3443 { 3444 u32 val; 3445 3446 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3447 PFINT_OICR_CTL_CAUSE_ENA_M); 3448 wr32(hw, PFINT_OICR_CTL, val); 3449 3450 /* enable Admin queue Interrupt causes */ 3451 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3452 PFINT_FW_CTL_CAUSE_ENA_M); 3453 wr32(hw, PFINT_FW_CTL, val); 3454 3455 /* enable Mailbox queue Interrupt causes */ 3456 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3457 PFINT_MBX_CTL_CAUSE_ENA_M); 3458 wr32(hw, PFINT_MBX_CTL, val); 3459 3460 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3461 /* enable Sideband queue Interrupt causes */ 3462 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3463 PFINT_SB_CTL_CAUSE_ENA_M); 3464 wr32(hw, PFINT_SB_CTL, val); 3465 } 3466 3467 ice_flush(hw); 3468 } 3469 3470 /** 3471 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3472 * @pf: board private structure 3473 * 3474 * This sets up the handler for MSIX 0, which is used to manage the 3475 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3476 * when in MSI or Legacy interrupt mode. 3477 */ 3478 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3479 { 3480 struct device *dev = ice_pf_to_dev(pf); 3481 struct ice_hw *hw = &pf->hw; 3482 u32 pf_intr_start_offset; 3483 struct msi_map irq; 3484 int err = 0; 3485 3486 if (!pf->int_name[0]) 3487 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3488 dev_driver_string(dev), dev_name(dev)); 3489 3490 if (!pf->int_name_ll_ts[0]) 3491 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3492 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3493 /* Do not request IRQ but do enable OICR interrupt since settings are 3494 * lost during reset. Note that this function is called only during 3495 * rebuild path and not while reset is in progress. 3496 */ 3497 if (ice_is_reset_in_progress(pf->state)) 3498 goto skip_req_irq; 3499 3500 /* reserve one vector in irq_tracker for misc interrupts */ 3501 irq = ice_alloc_irq(pf, false); 3502 if (irq.index < 0) 3503 return irq.index; 3504 3505 pf->oicr_irq = irq; 3506 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3507 ice_misc_intr_thread_fn, 0, 3508 pf->int_name, pf); 3509 if (err) { 3510 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3511 pf->int_name, err); 3512 ice_free_irq(pf, pf->oicr_irq); 3513 return err; 3514 } 3515 3516 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3517 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3518 goto skip_req_irq; 3519 3520 irq = ice_alloc_irq(pf, false); 3521 if (irq.index < 0) 3522 return irq.index; 3523 3524 pf->ll_ts_irq = irq; 3525 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3526 pf->int_name_ll_ts, pf); 3527 if (err) { 3528 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3529 pf->int_name_ll_ts, err); 3530 ice_free_irq(pf, pf->ll_ts_irq); 3531 return err; 3532 } 3533 3534 skip_req_irq: 3535 ice_ena_misc_vector(pf); 3536 3537 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3538 /* This enables LL TS interrupt */ 3539 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3540 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3541 wr32(hw, PFINT_SB_CTL, 3542 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3543 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3544 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3545 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3546 3547 ice_flush(hw); 3548 ice_irq_dynamic_ena(hw, NULL, NULL); 3549 3550 return 0; 3551 } 3552 3553 /** 3554 * ice_set_ops - set netdev and ethtools ops for the given netdev 3555 * @vsi: the VSI associated with the new netdev 3556 */ 3557 static void ice_set_ops(struct ice_vsi *vsi) 3558 { 3559 struct net_device *netdev = vsi->netdev; 3560 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3561 3562 if (ice_is_safe_mode(pf)) { 3563 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3564 ice_set_ethtool_safe_mode_ops(netdev); 3565 return; 3566 } 3567 3568 netdev->netdev_ops = &ice_netdev_ops; 3569 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3570 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3571 ice_set_ethtool_ops(netdev); 3572 3573 if (vsi->type != ICE_VSI_PF) 3574 return; 3575 3576 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3577 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3578 NETDEV_XDP_ACT_RX_SG; 3579 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3580 } 3581 3582 /** 3583 * ice_set_netdev_features - set features for the given netdev 3584 * @netdev: netdev instance 3585 */ 3586 void ice_set_netdev_features(struct net_device *netdev) 3587 { 3588 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3589 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3590 netdev_features_t csumo_features; 3591 netdev_features_t vlano_features; 3592 netdev_features_t dflt_features; 3593 netdev_features_t tso_features; 3594 3595 if (ice_is_safe_mode(pf)) { 3596 /* safe mode */ 3597 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3598 netdev->hw_features = netdev->features; 3599 return; 3600 } 3601 3602 dflt_features = NETIF_F_SG | 3603 NETIF_F_HIGHDMA | 3604 NETIF_F_NTUPLE | 3605 NETIF_F_RXHASH; 3606 3607 csumo_features = NETIF_F_RXCSUM | 3608 NETIF_F_IP_CSUM | 3609 NETIF_F_SCTP_CRC | 3610 NETIF_F_IPV6_CSUM; 3611 3612 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3613 NETIF_F_HW_VLAN_CTAG_TX | 3614 NETIF_F_HW_VLAN_CTAG_RX; 3615 3616 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3617 if (is_dvm_ena) 3618 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3619 3620 tso_features = NETIF_F_TSO | 3621 NETIF_F_TSO_ECN | 3622 NETIF_F_TSO6 | 3623 NETIF_F_GSO_GRE | 3624 NETIF_F_GSO_UDP_TUNNEL | 3625 NETIF_F_GSO_GRE_CSUM | 3626 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3627 NETIF_F_GSO_PARTIAL | 3628 NETIF_F_GSO_IPXIP4 | 3629 NETIF_F_GSO_IPXIP6 | 3630 NETIF_F_GSO_UDP_L4; 3631 3632 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3633 NETIF_F_GSO_GRE_CSUM; 3634 /* set features that user can change */ 3635 netdev->hw_features = dflt_features | csumo_features | 3636 vlano_features | tso_features; 3637 3638 /* add support for HW_CSUM on packets with MPLS header */ 3639 netdev->mpls_features = NETIF_F_HW_CSUM | 3640 NETIF_F_TSO | 3641 NETIF_F_TSO6; 3642 3643 /* enable features */ 3644 netdev->features |= netdev->hw_features; 3645 3646 netdev->hw_features |= NETIF_F_HW_TC; 3647 netdev->hw_features |= NETIF_F_LOOPBACK; 3648 3649 /* encap and VLAN devices inherit default, csumo and tso features */ 3650 netdev->hw_enc_features |= dflt_features | csumo_features | 3651 tso_features; 3652 netdev->vlan_features |= dflt_features | csumo_features | 3653 tso_features; 3654 3655 /* advertise support but don't enable by default since only one type of 3656 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3657 * type turns on the other has to be turned off. This is enforced by the 3658 * ice_fix_features() ndo callback. 3659 */ 3660 if (is_dvm_ena) 3661 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3662 NETIF_F_HW_VLAN_STAG_TX; 3663 3664 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3665 * be changed at runtime 3666 */ 3667 netdev->hw_features |= NETIF_F_RXFCS; 3668 3669 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3670 } 3671 3672 /** 3673 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3674 * @lut: Lookup table 3675 * @rss_table_size: Lookup table size 3676 * @rss_size: Range of queue number for hashing 3677 */ 3678 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3679 { 3680 u16 i; 3681 3682 for (i = 0; i < rss_table_size; i++) 3683 lut[i] = i % rss_size; 3684 } 3685 3686 /** 3687 * ice_pf_vsi_setup - Set up a PF VSI 3688 * @pf: board private structure 3689 * @pi: pointer to the port_info instance 3690 * 3691 * Returns pointer to the successfully allocated VSI software struct 3692 * on success, otherwise returns NULL on failure. 3693 */ 3694 static struct ice_vsi * 3695 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3696 { 3697 struct ice_vsi_cfg_params params = {}; 3698 3699 params.type = ICE_VSI_PF; 3700 params.port_info = pi; 3701 params.flags = ICE_VSI_FLAG_INIT; 3702 3703 return ice_vsi_setup(pf, ¶ms); 3704 } 3705 3706 static struct ice_vsi * 3707 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3708 struct ice_channel *ch) 3709 { 3710 struct ice_vsi_cfg_params params = {}; 3711 3712 params.type = ICE_VSI_CHNL; 3713 params.port_info = pi; 3714 params.ch = ch; 3715 params.flags = ICE_VSI_FLAG_INIT; 3716 3717 return ice_vsi_setup(pf, ¶ms); 3718 } 3719 3720 /** 3721 * ice_ctrl_vsi_setup - Set up a control VSI 3722 * @pf: board private structure 3723 * @pi: pointer to the port_info instance 3724 * 3725 * Returns pointer to the successfully allocated VSI software struct 3726 * on success, otherwise returns NULL on failure. 3727 */ 3728 static struct ice_vsi * 3729 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3730 { 3731 struct ice_vsi_cfg_params params = {}; 3732 3733 params.type = ICE_VSI_CTRL; 3734 params.port_info = pi; 3735 params.flags = ICE_VSI_FLAG_INIT; 3736 3737 return ice_vsi_setup(pf, ¶ms); 3738 } 3739 3740 /** 3741 * ice_lb_vsi_setup - Set up a loopback VSI 3742 * @pf: board private structure 3743 * @pi: pointer to the port_info instance 3744 * 3745 * Returns pointer to the successfully allocated VSI software struct 3746 * on success, otherwise returns NULL on failure. 3747 */ 3748 struct ice_vsi * 3749 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3750 { 3751 struct ice_vsi_cfg_params params = {}; 3752 3753 params.type = ICE_VSI_LB; 3754 params.port_info = pi; 3755 params.flags = ICE_VSI_FLAG_INIT; 3756 3757 return ice_vsi_setup(pf, ¶ms); 3758 } 3759 3760 /** 3761 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3762 * @netdev: network interface to be adjusted 3763 * @proto: VLAN TPID 3764 * @vid: VLAN ID to be added 3765 * 3766 * net_device_ops implementation for adding VLAN IDs 3767 */ 3768 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3769 { 3770 struct ice_netdev_priv *np = netdev_priv(netdev); 3771 struct ice_vsi_vlan_ops *vlan_ops; 3772 struct ice_vsi *vsi = np->vsi; 3773 struct ice_vlan vlan; 3774 int ret; 3775 3776 /* VLAN 0 is added by default during load/reset */ 3777 if (!vid) 3778 return 0; 3779 3780 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3781 usleep_range(1000, 2000); 3782 3783 /* Add multicast promisc rule for the VLAN ID to be added if 3784 * all-multicast is currently enabled. 3785 */ 3786 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3787 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3788 ICE_MCAST_VLAN_PROMISC_BITS, 3789 vid); 3790 if (ret) 3791 goto finish; 3792 } 3793 3794 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3795 3796 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3797 * packets aren't pruned by the device's internal switch on Rx 3798 */ 3799 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3800 ret = vlan_ops->add_vlan(vsi, &vlan); 3801 if (ret) 3802 goto finish; 3803 3804 /* If all-multicast is currently enabled and this VLAN ID is only one 3805 * besides VLAN-0 we have to update look-up type of multicast promisc 3806 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3807 */ 3808 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3809 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3810 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3811 ICE_MCAST_PROMISC_BITS, 0); 3812 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3813 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3814 } 3815 3816 finish: 3817 clear_bit(ICE_CFG_BUSY, vsi->state); 3818 3819 return ret; 3820 } 3821 3822 /** 3823 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3824 * @netdev: network interface to be adjusted 3825 * @proto: VLAN TPID 3826 * @vid: VLAN ID to be removed 3827 * 3828 * net_device_ops implementation for removing VLAN IDs 3829 */ 3830 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3831 { 3832 struct ice_netdev_priv *np = netdev_priv(netdev); 3833 struct ice_vsi_vlan_ops *vlan_ops; 3834 struct ice_vsi *vsi = np->vsi; 3835 struct ice_vlan vlan; 3836 int ret; 3837 3838 /* don't allow removal of VLAN 0 */ 3839 if (!vid) 3840 return 0; 3841 3842 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3843 usleep_range(1000, 2000); 3844 3845 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3846 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3847 if (ret) { 3848 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3849 vsi->vsi_num); 3850 vsi->current_netdev_flags |= IFF_ALLMULTI; 3851 } 3852 3853 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3854 3855 /* Make sure VLAN delete is successful before updating VLAN 3856 * information 3857 */ 3858 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3859 ret = vlan_ops->del_vlan(vsi, &vlan); 3860 if (ret) 3861 goto finish; 3862 3863 /* Remove multicast promisc rule for the removed VLAN ID if 3864 * all-multicast is enabled. 3865 */ 3866 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3867 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3868 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3869 3870 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3871 /* Update look-up type of multicast promisc rule for VLAN 0 3872 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3873 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3874 */ 3875 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3876 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3877 ICE_MCAST_VLAN_PROMISC_BITS, 3878 0); 3879 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3880 ICE_MCAST_PROMISC_BITS, 0); 3881 } 3882 } 3883 3884 finish: 3885 clear_bit(ICE_CFG_BUSY, vsi->state); 3886 3887 return ret; 3888 } 3889 3890 /** 3891 * ice_rep_indr_tc_block_unbind 3892 * @cb_priv: indirection block private data 3893 */ 3894 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3895 { 3896 struct ice_indr_block_priv *indr_priv = cb_priv; 3897 3898 list_del(&indr_priv->list); 3899 kfree(indr_priv); 3900 } 3901 3902 /** 3903 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3904 * @vsi: VSI struct which has the netdev 3905 */ 3906 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3907 { 3908 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3909 3910 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3911 ice_rep_indr_tc_block_unbind); 3912 } 3913 3914 /** 3915 * ice_tc_indir_block_register - Register TC indirect block notifications 3916 * @vsi: VSI struct which has the netdev 3917 * 3918 * Returns 0 on success, negative value on failure 3919 */ 3920 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3921 { 3922 struct ice_netdev_priv *np; 3923 3924 if (!vsi || !vsi->netdev) 3925 return -EINVAL; 3926 3927 np = netdev_priv(vsi->netdev); 3928 3929 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3930 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3931 } 3932 3933 /** 3934 * ice_get_avail_q_count - Get count of queues in use 3935 * @pf_qmap: bitmap to get queue use count from 3936 * @lock: pointer to a mutex that protects access to pf_qmap 3937 * @size: size of the bitmap 3938 */ 3939 static u16 3940 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3941 { 3942 unsigned long bit; 3943 u16 count = 0; 3944 3945 mutex_lock(lock); 3946 for_each_clear_bit(bit, pf_qmap, size) 3947 count++; 3948 mutex_unlock(lock); 3949 3950 return count; 3951 } 3952 3953 /** 3954 * ice_get_avail_txq_count - Get count of Tx queues in use 3955 * @pf: pointer to an ice_pf instance 3956 */ 3957 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3958 { 3959 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3960 pf->max_pf_txqs); 3961 } 3962 3963 /** 3964 * ice_get_avail_rxq_count - Get count of Rx queues in use 3965 * @pf: pointer to an ice_pf instance 3966 */ 3967 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3968 { 3969 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3970 pf->max_pf_rxqs); 3971 } 3972 3973 /** 3974 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3975 * @pf: board private structure to initialize 3976 */ 3977 static void ice_deinit_pf(struct ice_pf *pf) 3978 { 3979 ice_service_task_stop(pf); 3980 mutex_destroy(&pf->lag_mutex); 3981 mutex_destroy(&pf->adev_mutex); 3982 mutex_destroy(&pf->sw_mutex); 3983 mutex_destroy(&pf->tc_mutex); 3984 mutex_destroy(&pf->avail_q_mutex); 3985 mutex_destroy(&pf->vfs.table_lock); 3986 3987 if (pf->avail_txqs) { 3988 bitmap_free(pf->avail_txqs); 3989 pf->avail_txqs = NULL; 3990 } 3991 3992 if (pf->avail_rxqs) { 3993 bitmap_free(pf->avail_rxqs); 3994 pf->avail_rxqs = NULL; 3995 } 3996 3997 if (pf->ptp.clock) 3998 ptp_clock_unregister(pf->ptp.clock); 3999 4000 xa_destroy(&pf->dyn_ports); 4001 xa_destroy(&pf->sf_nums); 4002 } 4003 4004 /** 4005 * ice_set_pf_caps - set PFs capability flags 4006 * @pf: pointer to the PF instance 4007 */ 4008 static void ice_set_pf_caps(struct ice_pf *pf) 4009 { 4010 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4011 4012 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4013 if (func_caps->common_cap.rdma) 4014 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4015 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4016 if (func_caps->common_cap.dcb) 4017 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4018 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4019 if (func_caps->common_cap.sr_iov_1_1) { 4020 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4021 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4022 ICE_MAX_SRIOV_VFS); 4023 } 4024 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4025 if (func_caps->common_cap.rss_table_size) 4026 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4027 4028 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4029 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4030 u16 unused; 4031 4032 /* ctrl_vsi_idx will be set to a valid value when flow director 4033 * is setup by ice_init_fdir 4034 */ 4035 pf->ctrl_vsi_idx = ICE_NO_VSI; 4036 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4037 /* force guaranteed filter pool for PF */ 4038 ice_alloc_fd_guar_item(&pf->hw, &unused, 4039 func_caps->fd_fltr_guar); 4040 /* force shared filter pool for PF */ 4041 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4042 func_caps->fd_fltr_best_effort); 4043 } 4044 4045 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4046 if (func_caps->common_cap.ieee_1588 && 4047 !(pf->hw.mac_type == ICE_MAC_E830)) 4048 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4049 4050 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4051 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4052 } 4053 4054 /** 4055 * ice_init_pf - Initialize general software structures (struct ice_pf) 4056 * @pf: board private structure to initialize 4057 */ 4058 static int ice_init_pf(struct ice_pf *pf) 4059 { 4060 ice_set_pf_caps(pf); 4061 4062 mutex_init(&pf->sw_mutex); 4063 mutex_init(&pf->tc_mutex); 4064 mutex_init(&pf->adev_mutex); 4065 mutex_init(&pf->lag_mutex); 4066 4067 INIT_HLIST_HEAD(&pf->aq_wait_list); 4068 spin_lock_init(&pf->aq_wait_lock); 4069 init_waitqueue_head(&pf->aq_wait_queue); 4070 4071 init_waitqueue_head(&pf->reset_wait_queue); 4072 4073 /* setup service timer and periodic service task */ 4074 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4075 pf->serv_tmr_period = HZ; 4076 INIT_WORK(&pf->serv_task, ice_service_task); 4077 clear_bit(ICE_SERVICE_SCHED, pf->state); 4078 4079 mutex_init(&pf->avail_q_mutex); 4080 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4081 if (!pf->avail_txqs) 4082 return -ENOMEM; 4083 4084 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4085 if (!pf->avail_rxqs) { 4086 bitmap_free(pf->avail_txqs); 4087 pf->avail_txqs = NULL; 4088 return -ENOMEM; 4089 } 4090 4091 mutex_init(&pf->vfs.table_lock); 4092 hash_init(pf->vfs.table); 4093 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 4094 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH, 4095 ICE_MBX_OVERFLOW_WATERMARK); 4096 else 4097 ice_mbx_init_snapshot(&pf->hw); 4098 4099 xa_init(&pf->dyn_ports); 4100 xa_init(&pf->sf_nums); 4101 4102 return 0; 4103 } 4104 4105 /** 4106 * ice_is_wol_supported - check if WoL is supported 4107 * @hw: pointer to hardware info 4108 * 4109 * Check if WoL is supported based on the HW configuration. 4110 * Returns true if NVM supports and enables WoL for this port, false otherwise 4111 */ 4112 bool ice_is_wol_supported(struct ice_hw *hw) 4113 { 4114 u16 wol_ctrl; 4115 4116 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4117 * word) indicates WoL is not supported on the corresponding PF ID. 4118 */ 4119 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4120 return false; 4121 4122 return !(BIT(hw->port_info->lport) & wol_ctrl); 4123 } 4124 4125 /** 4126 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4127 * @vsi: VSI being changed 4128 * @new_rx: new number of Rx queues 4129 * @new_tx: new number of Tx queues 4130 * @locked: is adev device_lock held 4131 * 4132 * Only change the number of queues if new_tx, or new_rx is non-0. 4133 * 4134 * Returns 0 on success. 4135 */ 4136 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4137 { 4138 struct ice_pf *pf = vsi->back; 4139 int i, err = 0, timeout = 50; 4140 4141 if (!new_rx && !new_tx) 4142 return -EINVAL; 4143 4144 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4145 timeout--; 4146 if (!timeout) 4147 return -EBUSY; 4148 usleep_range(1000, 2000); 4149 } 4150 4151 if (new_tx) 4152 vsi->req_txq = (u16)new_tx; 4153 if (new_rx) 4154 vsi->req_rxq = (u16)new_rx; 4155 4156 /* set for the next time the netdev is started */ 4157 if (!netif_running(vsi->netdev)) { 4158 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4159 if (err) 4160 goto rebuild_err; 4161 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4162 goto done; 4163 } 4164 4165 ice_vsi_close(vsi); 4166 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4167 if (err) 4168 goto rebuild_err; 4169 4170 ice_for_each_traffic_class(i) { 4171 if (vsi->tc_cfg.ena_tc & BIT(i)) 4172 netdev_set_tc_queue(vsi->netdev, 4173 vsi->tc_cfg.tc_info[i].netdev_tc, 4174 vsi->tc_cfg.tc_info[i].qcount_tx, 4175 vsi->tc_cfg.tc_info[i].qoffset); 4176 } 4177 ice_pf_dcb_recfg(pf, locked); 4178 ice_vsi_open(vsi); 4179 goto done; 4180 4181 rebuild_err: 4182 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4183 err); 4184 done: 4185 clear_bit(ICE_CFG_BUSY, pf->state); 4186 return err; 4187 } 4188 4189 /** 4190 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4191 * @pf: PF to configure 4192 * 4193 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4194 * VSI can still Tx/Rx VLAN tagged packets. 4195 */ 4196 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4197 { 4198 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4199 struct ice_vsi_ctx *ctxt; 4200 struct ice_hw *hw; 4201 int status; 4202 4203 if (!vsi) 4204 return; 4205 4206 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4207 if (!ctxt) 4208 return; 4209 4210 hw = &pf->hw; 4211 ctxt->info = vsi->info; 4212 4213 ctxt->info.valid_sections = 4214 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4215 ICE_AQ_VSI_PROP_SECURITY_VALID | 4216 ICE_AQ_VSI_PROP_SW_VALID); 4217 4218 /* disable VLAN anti-spoof */ 4219 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4220 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4221 4222 /* disable VLAN pruning and keep all other settings */ 4223 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4224 4225 /* allow all VLANs on Tx and don't strip on Rx */ 4226 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4227 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4228 4229 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4230 if (status) { 4231 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4232 status, ice_aq_str(hw->adminq.sq_last_status)); 4233 } else { 4234 vsi->info.sec_flags = ctxt->info.sec_flags; 4235 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4236 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4237 } 4238 4239 kfree(ctxt); 4240 } 4241 4242 /** 4243 * ice_log_pkg_init - log result of DDP package load 4244 * @hw: pointer to hardware info 4245 * @state: state of package load 4246 */ 4247 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4248 { 4249 struct ice_pf *pf = hw->back; 4250 struct device *dev; 4251 4252 dev = ice_pf_to_dev(pf); 4253 4254 switch (state) { 4255 case ICE_DDP_PKG_SUCCESS: 4256 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4257 hw->active_pkg_name, 4258 hw->active_pkg_ver.major, 4259 hw->active_pkg_ver.minor, 4260 hw->active_pkg_ver.update, 4261 hw->active_pkg_ver.draft); 4262 break; 4263 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4264 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4265 hw->active_pkg_name, 4266 hw->active_pkg_ver.major, 4267 hw->active_pkg_ver.minor, 4268 hw->active_pkg_ver.update, 4269 hw->active_pkg_ver.draft); 4270 break; 4271 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4272 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4273 hw->active_pkg_name, 4274 hw->active_pkg_ver.major, 4275 hw->active_pkg_ver.minor, 4276 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4277 break; 4278 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4279 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4280 hw->active_pkg_name, 4281 hw->active_pkg_ver.major, 4282 hw->active_pkg_ver.minor, 4283 hw->active_pkg_ver.update, 4284 hw->active_pkg_ver.draft, 4285 hw->pkg_name, 4286 hw->pkg_ver.major, 4287 hw->pkg_ver.minor, 4288 hw->pkg_ver.update, 4289 hw->pkg_ver.draft); 4290 break; 4291 case ICE_DDP_PKG_FW_MISMATCH: 4292 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4293 break; 4294 case ICE_DDP_PKG_INVALID_FILE: 4295 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4296 break; 4297 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4298 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4299 break; 4300 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4301 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4302 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4303 break; 4304 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4305 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4306 break; 4307 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4308 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4309 break; 4310 case ICE_DDP_PKG_LOAD_ERROR: 4311 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4312 /* poll for reset to complete */ 4313 if (ice_check_reset(hw)) 4314 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4315 break; 4316 case ICE_DDP_PKG_ERR: 4317 default: 4318 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4319 break; 4320 } 4321 } 4322 4323 /** 4324 * ice_load_pkg - load/reload the DDP Package file 4325 * @firmware: firmware structure when firmware requested or NULL for reload 4326 * @pf: pointer to the PF instance 4327 * 4328 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4329 * initialize HW tables. 4330 */ 4331 static void 4332 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4333 { 4334 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4335 struct device *dev = ice_pf_to_dev(pf); 4336 struct ice_hw *hw = &pf->hw; 4337 4338 /* Load DDP Package */ 4339 if (firmware && !hw->pkg_copy) { 4340 state = ice_copy_and_init_pkg(hw, firmware->data, 4341 firmware->size); 4342 ice_log_pkg_init(hw, state); 4343 } else if (!firmware && hw->pkg_copy) { 4344 /* Reload package during rebuild after CORER/GLOBR reset */ 4345 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4346 ice_log_pkg_init(hw, state); 4347 } else { 4348 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4349 } 4350 4351 if (!ice_is_init_pkg_successful(state)) { 4352 /* Safe Mode */ 4353 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4354 return; 4355 } 4356 4357 /* Successful download package is the precondition for advanced 4358 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4359 */ 4360 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4361 } 4362 4363 /** 4364 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4365 * @pf: pointer to the PF structure 4366 * 4367 * There is no error returned here because the driver should be able to handle 4368 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4369 * specifically with Tx. 4370 */ 4371 static void ice_verify_cacheline_size(struct ice_pf *pf) 4372 { 4373 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4374 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4375 ICE_CACHE_LINE_BYTES); 4376 } 4377 4378 /** 4379 * ice_send_version - update firmware with driver version 4380 * @pf: PF struct 4381 * 4382 * Returns 0 on success, else error code 4383 */ 4384 static int ice_send_version(struct ice_pf *pf) 4385 { 4386 struct ice_driver_ver dv; 4387 4388 dv.major_ver = 0xff; 4389 dv.minor_ver = 0xff; 4390 dv.build_ver = 0xff; 4391 dv.subbuild_ver = 0; 4392 strscpy((char *)dv.driver_string, UTS_RELEASE, 4393 sizeof(dv.driver_string)); 4394 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4395 } 4396 4397 /** 4398 * ice_init_fdir - Initialize flow director VSI and configuration 4399 * @pf: pointer to the PF instance 4400 * 4401 * returns 0 on success, negative on error 4402 */ 4403 static int ice_init_fdir(struct ice_pf *pf) 4404 { 4405 struct device *dev = ice_pf_to_dev(pf); 4406 struct ice_vsi *ctrl_vsi; 4407 int err; 4408 4409 /* Side Band Flow Director needs to have a control VSI. 4410 * Allocate it and store it in the PF. 4411 */ 4412 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4413 if (!ctrl_vsi) { 4414 dev_dbg(dev, "could not create control VSI\n"); 4415 return -ENOMEM; 4416 } 4417 4418 err = ice_vsi_open_ctrl(ctrl_vsi); 4419 if (err) { 4420 dev_dbg(dev, "could not open control VSI\n"); 4421 goto err_vsi_open; 4422 } 4423 4424 mutex_init(&pf->hw.fdir_fltr_lock); 4425 4426 err = ice_fdir_create_dflt_rules(pf); 4427 if (err) 4428 goto err_fdir_rule; 4429 4430 return 0; 4431 4432 err_fdir_rule: 4433 ice_fdir_release_flows(&pf->hw); 4434 ice_vsi_close(ctrl_vsi); 4435 err_vsi_open: 4436 ice_vsi_release(ctrl_vsi); 4437 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4438 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4439 pf->ctrl_vsi_idx = ICE_NO_VSI; 4440 } 4441 return err; 4442 } 4443 4444 static void ice_deinit_fdir(struct ice_pf *pf) 4445 { 4446 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4447 4448 if (!vsi) 4449 return; 4450 4451 ice_vsi_manage_fdir(vsi, false); 4452 ice_vsi_release(vsi); 4453 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4454 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4455 pf->ctrl_vsi_idx = ICE_NO_VSI; 4456 } 4457 4458 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4459 } 4460 4461 /** 4462 * ice_get_opt_fw_name - return optional firmware file name or NULL 4463 * @pf: pointer to the PF instance 4464 */ 4465 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4466 { 4467 /* Optional firmware name same as default with additional dash 4468 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4469 */ 4470 struct pci_dev *pdev = pf->pdev; 4471 char *opt_fw_filename; 4472 u64 dsn; 4473 4474 /* Determine the name of the optional file using the DSN (two 4475 * dwords following the start of the DSN Capability). 4476 */ 4477 dsn = pci_get_dsn(pdev); 4478 if (!dsn) 4479 return NULL; 4480 4481 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4482 if (!opt_fw_filename) 4483 return NULL; 4484 4485 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4486 ICE_DDP_PKG_PATH, dsn); 4487 4488 return opt_fw_filename; 4489 } 4490 4491 /** 4492 * ice_request_fw - Device initialization routine 4493 * @pf: pointer to the PF instance 4494 * @firmware: double pointer to firmware struct 4495 * 4496 * Return: zero when successful, negative values otherwise. 4497 */ 4498 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4499 { 4500 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4501 struct device *dev = ice_pf_to_dev(pf); 4502 int err = 0; 4503 4504 /* optional device-specific DDP (if present) overrides the default DDP 4505 * package file. kernel logs a debug message if the file doesn't exist, 4506 * and warning messages for other errors. 4507 */ 4508 if (opt_fw_filename) { 4509 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4510 kfree(opt_fw_filename); 4511 if (!err) 4512 return err; 4513 } 4514 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4515 if (err) 4516 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4517 4518 return err; 4519 } 4520 4521 /** 4522 * ice_init_tx_topology - performs Tx topology initialization 4523 * @hw: pointer to the hardware structure 4524 * @firmware: pointer to firmware structure 4525 * 4526 * Return: zero when init was successful, negative values otherwise. 4527 */ 4528 static int 4529 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4530 { 4531 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4532 struct ice_pf *pf = hw->back; 4533 struct device *dev; 4534 int err; 4535 4536 dev = ice_pf_to_dev(pf); 4537 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4538 if (!err) { 4539 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4540 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4541 else 4542 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4543 /* if there was a change in topology ice_cfg_tx_topo triggered 4544 * a CORER and we need to re-init hw 4545 */ 4546 ice_deinit_hw(hw); 4547 err = ice_init_hw(hw); 4548 4549 return err; 4550 } else if (err == -EIO) { 4551 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4552 } 4553 4554 return 0; 4555 } 4556 4557 /** 4558 * ice_init_ddp_config - DDP related configuration 4559 * @hw: pointer to the hardware structure 4560 * @pf: pointer to pf structure 4561 * 4562 * This function loads DDP file from the disk, then initializes Tx 4563 * topology. At the end DDP package is loaded on the card. 4564 * 4565 * Return: zero when init was successful, negative values otherwise. 4566 */ 4567 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4568 { 4569 struct device *dev = ice_pf_to_dev(pf); 4570 const struct firmware *firmware = NULL; 4571 int err; 4572 4573 err = ice_request_fw(pf, &firmware); 4574 if (err) { 4575 dev_err(dev, "Fail during requesting FW: %d\n", err); 4576 return err; 4577 } 4578 4579 err = ice_init_tx_topology(hw, firmware); 4580 if (err) { 4581 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4582 err); 4583 release_firmware(firmware); 4584 return err; 4585 } 4586 4587 /* Download firmware to device */ 4588 ice_load_pkg(firmware, pf); 4589 release_firmware(firmware); 4590 4591 return 0; 4592 } 4593 4594 /** 4595 * ice_print_wake_reason - show the wake up cause in the log 4596 * @pf: pointer to the PF struct 4597 */ 4598 static void ice_print_wake_reason(struct ice_pf *pf) 4599 { 4600 u32 wus = pf->wakeup_reason; 4601 const char *wake_str; 4602 4603 /* if no wake event, nothing to print */ 4604 if (!wus) 4605 return; 4606 4607 if (wus & PFPM_WUS_LNKC_M) 4608 wake_str = "Link\n"; 4609 else if (wus & PFPM_WUS_MAG_M) 4610 wake_str = "Magic Packet\n"; 4611 else if (wus & PFPM_WUS_MNG_M) 4612 wake_str = "Management\n"; 4613 else if (wus & PFPM_WUS_FW_RST_WK_M) 4614 wake_str = "Firmware Reset\n"; 4615 else 4616 wake_str = "Unknown\n"; 4617 4618 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4619 } 4620 4621 /** 4622 * ice_pf_fwlog_update_module - update 1 module 4623 * @pf: pointer to the PF struct 4624 * @log_level: log_level to use for the @module 4625 * @module: module to update 4626 */ 4627 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4628 { 4629 struct ice_hw *hw = &pf->hw; 4630 4631 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4632 } 4633 4634 /** 4635 * ice_register_netdev - register netdev 4636 * @vsi: pointer to the VSI struct 4637 */ 4638 static int ice_register_netdev(struct ice_vsi *vsi) 4639 { 4640 int err; 4641 4642 if (!vsi || !vsi->netdev) 4643 return -EIO; 4644 4645 err = register_netdev(vsi->netdev); 4646 if (err) 4647 return err; 4648 4649 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4650 netif_carrier_off(vsi->netdev); 4651 netif_tx_stop_all_queues(vsi->netdev); 4652 4653 return 0; 4654 } 4655 4656 static void ice_unregister_netdev(struct ice_vsi *vsi) 4657 { 4658 if (!vsi || !vsi->netdev) 4659 return; 4660 4661 unregister_netdev(vsi->netdev); 4662 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4663 } 4664 4665 /** 4666 * ice_cfg_netdev - Allocate, configure and register a netdev 4667 * @vsi: the VSI associated with the new netdev 4668 * 4669 * Returns 0 on success, negative value on failure 4670 */ 4671 static int ice_cfg_netdev(struct ice_vsi *vsi) 4672 { 4673 struct ice_netdev_priv *np; 4674 struct net_device *netdev; 4675 u8 mac_addr[ETH_ALEN]; 4676 4677 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4678 vsi->alloc_rxq); 4679 if (!netdev) 4680 return -ENOMEM; 4681 4682 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4683 vsi->netdev = netdev; 4684 np = netdev_priv(netdev); 4685 np->vsi = vsi; 4686 4687 ice_set_netdev_features(netdev); 4688 ice_set_ops(vsi); 4689 4690 if (vsi->type == ICE_VSI_PF) { 4691 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4692 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4693 eth_hw_addr_set(netdev, mac_addr); 4694 } 4695 4696 netdev->priv_flags |= IFF_UNICAST_FLT; 4697 4698 /* Setup netdev TC information */ 4699 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4700 4701 netdev->max_mtu = ICE_MAX_MTU; 4702 4703 return 0; 4704 } 4705 4706 static void ice_decfg_netdev(struct ice_vsi *vsi) 4707 { 4708 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4709 free_netdev(vsi->netdev); 4710 vsi->netdev = NULL; 4711 } 4712 4713 /** 4714 * ice_wait_for_fw - wait for full FW readiness 4715 * @hw: pointer to the hardware structure 4716 * @timeout: milliseconds that can elapse before timing out 4717 */ 4718 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4719 { 4720 int fw_loading; 4721 u32 elapsed = 0; 4722 4723 while (elapsed <= timeout) { 4724 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4725 4726 /* firmware was not yet loaded, we have to wait more */ 4727 if (fw_loading) { 4728 elapsed += 100; 4729 msleep(100); 4730 continue; 4731 } 4732 return 0; 4733 } 4734 4735 return -ETIMEDOUT; 4736 } 4737 4738 int ice_init_dev(struct ice_pf *pf) 4739 { 4740 struct device *dev = ice_pf_to_dev(pf); 4741 struct ice_hw *hw = &pf->hw; 4742 int err; 4743 4744 err = ice_init_hw(hw); 4745 if (err) { 4746 dev_err(dev, "ice_init_hw failed: %d\n", err); 4747 return err; 4748 } 4749 4750 /* Some cards require longer initialization times 4751 * due to necessity of loading FW from an external source. 4752 * This can take even half a minute. 4753 */ 4754 if (ice_is_pf_c827(hw)) { 4755 err = ice_wait_for_fw(hw, 30000); 4756 if (err) { 4757 dev_err(dev, "ice_wait_for_fw timed out"); 4758 return err; 4759 } 4760 } 4761 4762 ice_init_feature_support(pf); 4763 4764 err = ice_init_ddp_config(hw, pf); 4765 4766 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4767 * set in pf->state, which will cause ice_is_safe_mode to return 4768 * true 4769 */ 4770 if (err || ice_is_safe_mode(pf)) { 4771 /* we already got function/device capabilities but these don't 4772 * reflect what the driver needs to do in safe mode. Instead of 4773 * adding conditional logic everywhere to ignore these 4774 * device/function capabilities, override them. 4775 */ 4776 ice_set_safe_mode_caps(hw); 4777 } 4778 4779 err = ice_init_pf(pf); 4780 if (err) { 4781 dev_err(dev, "ice_init_pf failed: %d\n", err); 4782 goto err_init_pf; 4783 } 4784 4785 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4786 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4787 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4788 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4789 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4790 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4791 pf->hw.tnl.valid_count[TNL_VXLAN]; 4792 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4793 UDP_TUNNEL_TYPE_VXLAN; 4794 } 4795 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4796 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4797 pf->hw.tnl.valid_count[TNL_GENEVE]; 4798 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4799 UDP_TUNNEL_TYPE_GENEVE; 4800 } 4801 4802 err = ice_init_interrupt_scheme(pf); 4803 if (err) { 4804 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4805 err = -EIO; 4806 goto err_init_interrupt_scheme; 4807 } 4808 4809 /* In case of MSIX we are going to setup the misc vector right here 4810 * to handle admin queue events etc. In case of legacy and MSI 4811 * the misc functionality and queue processing is combined in 4812 * the same vector and that gets setup at open. 4813 */ 4814 err = ice_req_irq_msix_misc(pf); 4815 if (err) { 4816 dev_err(dev, "setup of misc vector failed: %d\n", err); 4817 goto err_req_irq_msix_misc; 4818 } 4819 4820 return 0; 4821 4822 err_req_irq_msix_misc: 4823 ice_clear_interrupt_scheme(pf); 4824 err_init_interrupt_scheme: 4825 ice_deinit_pf(pf); 4826 err_init_pf: 4827 ice_deinit_hw(hw); 4828 return err; 4829 } 4830 4831 void ice_deinit_dev(struct ice_pf *pf) 4832 { 4833 ice_free_irq_msix_misc(pf); 4834 ice_deinit_pf(pf); 4835 ice_deinit_hw(&pf->hw); 4836 4837 /* Service task is already stopped, so call reset directly. */ 4838 ice_reset(&pf->hw, ICE_RESET_PFR); 4839 pci_wait_for_pending_transaction(pf->pdev); 4840 ice_clear_interrupt_scheme(pf); 4841 } 4842 4843 static void ice_init_features(struct ice_pf *pf) 4844 { 4845 struct device *dev = ice_pf_to_dev(pf); 4846 4847 if (ice_is_safe_mode(pf)) 4848 return; 4849 4850 /* initialize DDP driven features */ 4851 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4852 ice_ptp_init(pf); 4853 4854 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4855 ice_gnss_init(pf); 4856 4857 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4858 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4859 ice_dpll_init(pf); 4860 4861 /* Note: Flow director init failure is non-fatal to load */ 4862 if (ice_init_fdir(pf)) 4863 dev_err(dev, "could not initialize flow director\n"); 4864 4865 /* Note: DCB init failure is non-fatal to load */ 4866 if (ice_init_pf_dcb(pf, false)) { 4867 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4868 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4869 } else { 4870 ice_cfg_lldp_mib_change(&pf->hw, true); 4871 } 4872 4873 if (ice_init_lag(pf)) 4874 dev_warn(dev, "Failed to init link aggregation support\n"); 4875 4876 ice_hwmon_init(pf); 4877 } 4878 4879 static void ice_deinit_features(struct ice_pf *pf) 4880 { 4881 if (ice_is_safe_mode(pf)) 4882 return; 4883 4884 ice_deinit_lag(pf); 4885 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4886 ice_cfg_lldp_mib_change(&pf->hw, false); 4887 ice_deinit_fdir(pf); 4888 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4889 ice_gnss_exit(pf); 4890 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4891 ice_ptp_release(pf); 4892 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4893 ice_dpll_deinit(pf); 4894 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4895 xa_destroy(&pf->eswitch.reprs); 4896 } 4897 4898 static void ice_init_wakeup(struct ice_pf *pf) 4899 { 4900 /* Save wakeup reason register for later use */ 4901 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4902 4903 /* check for a power management event */ 4904 ice_print_wake_reason(pf); 4905 4906 /* clear wake status, all bits */ 4907 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4908 4909 /* Disable WoL at init, wait for user to enable */ 4910 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4911 } 4912 4913 static int ice_init_link(struct ice_pf *pf) 4914 { 4915 struct device *dev = ice_pf_to_dev(pf); 4916 int err; 4917 4918 err = ice_init_link_events(pf->hw.port_info); 4919 if (err) { 4920 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4921 return err; 4922 } 4923 4924 /* not a fatal error if this fails */ 4925 err = ice_init_nvm_phy_type(pf->hw.port_info); 4926 if (err) 4927 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4928 4929 /* not a fatal error if this fails */ 4930 err = ice_update_link_info(pf->hw.port_info); 4931 if (err) 4932 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4933 4934 ice_init_link_dflt_override(pf->hw.port_info); 4935 4936 ice_check_link_cfg_err(pf, 4937 pf->hw.port_info->phy.link_info.link_cfg_err); 4938 4939 /* if media available, initialize PHY settings */ 4940 if (pf->hw.port_info->phy.link_info.link_info & 4941 ICE_AQ_MEDIA_AVAILABLE) { 4942 /* not a fatal error if this fails */ 4943 err = ice_init_phy_user_cfg(pf->hw.port_info); 4944 if (err) 4945 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4946 4947 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4948 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4949 4950 if (vsi) 4951 ice_configure_phy(vsi); 4952 } 4953 } else { 4954 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4955 } 4956 4957 return err; 4958 } 4959 4960 static int ice_init_pf_sw(struct ice_pf *pf) 4961 { 4962 bool dvm = ice_is_dvm_ena(&pf->hw); 4963 struct ice_vsi *vsi; 4964 int err; 4965 4966 /* create switch struct for the switch element created by FW on boot */ 4967 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4968 if (!pf->first_sw) 4969 return -ENOMEM; 4970 4971 if (pf->hw.evb_veb) 4972 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4973 else 4974 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4975 4976 pf->first_sw->pf = pf; 4977 4978 /* record the sw_id available for later use */ 4979 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4980 4981 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4982 if (err) 4983 goto err_aq_set_port_params; 4984 4985 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4986 if (!vsi) { 4987 err = -ENOMEM; 4988 goto err_pf_vsi_setup; 4989 } 4990 4991 return 0; 4992 4993 err_pf_vsi_setup: 4994 err_aq_set_port_params: 4995 kfree(pf->first_sw); 4996 return err; 4997 } 4998 4999 static void ice_deinit_pf_sw(struct ice_pf *pf) 5000 { 5001 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5002 5003 if (!vsi) 5004 return; 5005 5006 ice_vsi_release(vsi); 5007 kfree(pf->first_sw); 5008 } 5009 5010 static int ice_alloc_vsis(struct ice_pf *pf) 5011 { 5012 struct device *dev = ice_pf_to_dev(pf); 5013 5014 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5015 if (!pf->num_alloc_vsi) 5016 return -EIO; 5017 5018 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5019 dev_warn(dev, 5020 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5021 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5022 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5023 } 5024 5025 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5026 GFP_KERNEL); 5027 if (!pf->vsi) 5028 return -ENOMEM; 5029 5030 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5031 sizeof(*pf->vsi_stats), GFP_KERNEL); 5032 if (!pf->vsi_stats) { 5033 devm_kfree(dev, pf->vsi); 5034 return -ENOMEM; 5035 } 5036 5037 return 0; 5038 } 5039 5040 static void ice_dealloc_vsis(struct ice_pf *pf) 5041 { 5042 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5043 pf->vsi_stats = NULL; 5044 5045 pf->num_alloc_vsi = 0; 5046 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5047 pf->vsi = NULL; 5048 } 5049 5050 static int ice_init_devlink(struct ice_pf *pf) 5051 { 5052 int err; 5053 5054 err = ice_devlink_register_params(pf); 5055 if (err) 5056 return err; 5057 5058 ice_devlink_init_regions(pf); 5059 ice_devlink_register(pf); 5060 5061 return 0; 5062 } 5063 5064 static void ice_deinit_devlink(struct ice_pf *pf) 5065 { 5066 ice_devlink_unregister(pf); 5067 ice_devlink_destroy_regions(pf); 5068 ice_devlink_unregister_params(pf); 5069 } 5070 5071 static int ice_init(struct ice_pf *pf) 5072 { 5073 int err; 5074 5075 err = ice_init_dev(pf); 5076 if (err) 5077 return err; 5078 5079 err = ice_alloc_vsis(pf); 5080 if (err) 5081 goto err_alloc_vsis; 5082 5083 err = ice_init_pf_sw(pf); 5084 if (err) 5085 goto err_init_pf_sw; 5086 5087 ice_init_wakeup(pf); 5088 5089 err = ice_init_link(pf); 5090 if (err) 5091 goto err_init_link; 5092 5093 err = ice_send_version(pf); 5094 if (err) 5095 goto err_init_link; 5096 5097 ice_verify_cacheline_size(pf); 5098 5099 if (ice_is_safe_mode(pf)) 5100 ice_set_safe_mode_vlan_cfg(pf); 5101 else 5102 /* print PCI link speed and width */ 5103 pcie_print_link_status(pf->pdev); 5104 5105 /* ready to go, so clear down state bit */ 5106 clear_bit(ICE_DOWN, pf->state); 5107 clear_bit(ICE_SERVICE_DIS, pf->state); 5108 5109 /* since everything is good, start the service timer */ 5110 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5111 5112 return 0; 5113 5114 err_init_link: 5115 ice_deinit_pf_sw(pf); 5116 err_init_pf_sw: 5117 ice_dealloc_vsis(pf); 5118 err_alloc_vsis: 5119 ice_deinit_dev(pf); 5120 return err; 5121 } 5122 5123 static void ice_deinit(struct ice_pf *pf) 5124 { 5125 set_bit(ICE_SERVICE_DIS, pf->state); 5126 set_bit(ICE_DOWN, pf->state); 5127 5128 ice_deinit_pf_sw(pf); 5129 ice_dealloc_vsis(pf); 5130 ice_deinit_dev(pf); 5131 } 5132 5133 /** 5134 * ice_load - load pf by init hw and starting VSI 5135 * @pf: pointer to the pf instance 5136 * 5137 * This function has to be called under devl_lock. 5138 */ 5139 int ice_load(struct ice_pf *pf) 5140 { 5141 struct ice_vsi *vsi; 5142 int err; 5143 5144 devl_assert_locked(priv_to_devlink(pf)); 5145 5146 vsi = ice_get_main_vsi(pf); 5147 5148 /* init channel list */ 5149 INIT_LIST_HEAD(&vsi->ch_list); 5150 5151 err = ice_cfg_netdev(vsi); 5152 if (err) 5153 return err; 5154 5155 /* Setup DCB netlink interface */ 5156 ice_dcbnl_setup(vsi); 5157 5158 err = ice_init_mac_fltr(pf); 5159 if (err) 5160 goto err_init_mac_fltr; 5161 5162 err = ice_devlink_create_pf_port(pf); 5163 if (err) 5164 goto err_devlink_create_pf_port; 5165 5166 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5167 5168 err = ice_register_netdev(vsi); 5169 if (err) 5170 goto err_register_netdev; 5171 5172 err = ice_tc_indir_block_register(vsi); 5173 if (err) 5174 goto err_tc_indir_block_register; 5175 5176 ice_napi_add(vsi); 5177 5178 err = ice_init_rdma(pf); 5179 if (err) 5180 goto err_init_rdma; 5181 5182 ice_init_features(pf); 5183 ice_service_task_restart(pf); 5184 5185 clear_bit(ICE_DOWN, pf->state); 5186 5187 return 0; 5188 5189 err_init_rdma: 5190 ice_tc_indir_block_unregister(vsi); 5191 err_tc_indir_block_register: 5192 ice_unregister_netdev(vsi); 5193 err_register_netdev: 5194 ice_devlink_destroy_pf_port(pf); 5195 err_devlink_create_pf_port: 5196 err_init_mac_fltr: 5197 ice_decfg_netdev(vsi); 5198 return err; 5199 } 5200 5201 /** 5202 * ice_unload - unload pf by stopping VSI and deinit hw 5203 * @pf: pointer to the pf instance 5204 * 5205 * This function has to be called under devl_lock. 5206 */ 5207 void ice_unload(struct ice_pf *pf) 5208 { 5209 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5210 5211 devl_assert_locked(priv_to_devlink(pf)); 5212 5213 ice_deinit_features(pf); 5214 ice_deinit_rdma(pf); 5215 ice_tc_indir_block_unregister(vsi); 5216 ice_unregister_netdev(vsi); 5217 ice_devlink_destroy_pf_port(pf); 5218 ice_decfg_netdev(vsi); 5219 } 5220 5221 /** 5222 * ice_probe - Device initialization routine 5223 * @pdev: PCI device information struct 5224 * @ent: entry in ice_pci_tbl 5225 * 5226 * Returns 0 on success, negative on failure 5227 */ 5228 static int 5229 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5230 { 5231 struct device *dev = &pdev->dev; 5232 struct ice_adapter *adapter; 5233 struct ice_pf *pf; 5234 struct ice_hw *hw; 5235 int err; 5236 5237 if (pdev->is_virtfn) { 5238 dev_err(dev, "can't probe a virtual function\n"); 5239 return -EINVAL; 5240 } 5241 5242 /* when under a kdump kernel initiate a reset before enabling the 5243 * device in order to clear out any pending DMA transactions. These 5244 * transactions can cause some systems to machine check when doing 5245 * the pcim_enable_device() below. 5246 */ 5247 if (is_kdump_kernel()) { 5248 pci_save_state(pdev); 5249 pci_clear_master(pdev); 5250 err = pcie_flr(pdev); 5251 if (err) 5252 return err; 5253 pci_restore_state(pdev); 5254 } 5255 5256 /* this driver uses devres, see 5257 * Documentation/driver-api/driver-model/devres.rst 5258 */ 5259 err = pcim_enable_device(pdev); 5260 if (err) 5261 return err; 5262 5263 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5264 if (err) { 5265 dev_err(dev, "BAR0 I/O map error %d\n", err); 5266 return err; 5267 } 5268 5269 pf = ice_allocate_pf(dev); 5270 if (!pf) 5271 return -ENOMEM; 5272 5273 /* initialize Auxiliary index to invalid value */ 5274 pf->aux_idx = -1; 5275 5276 /* set up for high or low DMA */ 5277 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5278 if (err) { 5279 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5280 return err; 5281 } 5282 5283 pci_set_master(pdev); 5284 5285 adapter = ice_adapter_get(pdev); 5286 if (IS_ERR(adapter)) 5287 return PTR_ERR(adapter); 5288 5289 pf->pdev = pdev; 5290 pf->adapter = adapter; 5291 pci_set_drvdata(pdev, pf); 5292 set_bit(ICE_DOWN, pf->state); 5293 /* Disable service task until DOWN bit is cleared */ 5294 set_bit(ICE_SERVICE_DIS, pf->state); 5295 5296 hw = &pf->hw; 5297 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5298 pci_save_state(pdev); 5299 5300 hw->back = pf; 5301 hw->port_info = NULL; 5302 hw->vendor_id = pdev->vendor; 5303 hw->device_id = pdev->device; 5304 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5305 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5306 hw->subsystem_device_id = pdev->subsystem_device; 5307 hw->bus.device = PCI_SLOT(pdev->devfn); 5308 hw->bus.func = PCI_FUNC(pdev->devfn); 5309 ice_set_ctrlq_len(hw); 5310 5311 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5312 5313 #ifndef CONFIG_DYNAMIC_DEBUG 5314 if (debug < -1) 5315 hw->debug_mask = debug; 5316 #endif 5317 5318 err = ice_init(pf); 5319 if (err) 5320 goto err_init; 5321 5322 devl_lock(priv_to_devlink(pf)); 5323 err = ice_load(pf); 5324 if (err) 5325 goto err_load; 5326 5327 err = ice_init_devlink(pf); 5328 if (err) 5329 goto err_init_devlink; 5330 devl_unlock(priv_to_devlink(pf)); 5331 5332 return 0; 5333 5334 err_init_devlink: 5335 ice_unload(pf); 5336 err_load: 5337 devl_unlock(priv_to_devlink(pf)); 5338 ice_deinit(pf); 5339 err_init: 5340 ice_adapter_put(pdev); 5341 return err; 5342 } 5343 5344 /** 5345 * ice_set_wake - enable or disable Wake on LAN 5346 * @pf: pointer to the PF struct 5347 * 5348 * Simple helper for WoL control 5349 */ 5350 static void ice_set_wake(struct ice_pf *pf) 5351 { 5352 struct ice_hw *hw = &pf->hw; 5353 bool wol = pf->wol_ena; 5354 5355 /* clear wake state, otherwise new wake events won't fire */ 5356 wr32(hw, PFPM_WUS, U32_MAX); 5357 5358 /* enable / disable APM wake up, no RMW needed */ 5359 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5360 5361 /* set magic packet filter enabled */ 5362 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5363 } 5364 5365 /** 5366 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5367 * @pf: pointer to the PF struct 5368 * 5369 * Issue firmware command to enable multicast magic wake, making 5370 * sure that any locally administered address (LAA) is used for 5371 * wake, and that PF reset doesn't undo the LAA. 5372 */ 5373 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5374 { 5375 struct device *dev = ice_pf_to_dev(pf); 5376 struct ice_hw *hw = &pf->hw; 5377 u8 mac_addr[ETH_ALEN]; 5378 struct ice_vsi *vsi; 5379 int status; 5380 u8 flags; 5381 5382 if (!pf->wol_ena) 5383 return; 5384 5385 vsi = ice_get_main_vsi(pf); 5386 if (!vsi) 5387 return; 5388 5389 /* Get current MAC address in case it's an LAA */ 5390 if (vsi->netdev) 5391 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5392 else 5393 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5394 5395 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5396 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5397 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5398 5399 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5400 if (status) 5401 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5402 status, ice_aq_str(hw->adminq.sq_last_status)); 5403 } 5404 5405 /** 5406 * ice_remove - Device removal routine 5407 * @pdev: PCI device information struct 5408 */ 5409 static void ice_remove(struct pci_dev *pdev) 5410 { 5411 struct ice_pf *pf = pci_get_drvdata(pdev); 5412 int i; 5413 5414 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5415 if (!ice_is_reset_in_progress(pf->state)) 5416 break; 5417 msleep(100); 5418 } 5419 5420 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5421 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5422 ice_free_vfs(pf); 5423 } 5424 5425 ice_hwmon_exit(pf); 5426 5427 ice_service_task_stop(pf); 5428 ice_aq_cancel_waiting_tasks(pf); 5429 set_bit(ICE_DOWN, pf->state); 5430 5431 if (!ice_is_safe_mode(pf)) 5432 ice_remove_arfs(pf); 5433 5434 devl_lock(priv_to_devlink(pf)); 5435 ice_dealloc_all_dynamic_ports(pf); 5436 ice_deinit_devlink(pf); 5437 5438 ice_unload(pf); 5439 devl_unlock(priv_to_devlink(pf)); 5440 5441 ice_deinit(pf); 5442 ice_vsi_release_all(pf); 5443 5444 ice_setup_mc_magic_wake(pf); 5445 ice_set_wake(pf); 5446 5447 ice_adapter_put(pdev); 5448 } 5449 5450 /** 5451 * ice_shutdown - PCI callback for shutting down device 5452 * @pdev: PCI device information struct 5453 */ 5454 static void ice_shutdown(struct pci_dev *pdev) 5455 { 5456 struct ice_pf *pf = pci_get_drvdata(pdev); 5457 5458 ice_remove(pdev); 5459 5460 if (system_state == SYSTEM_POWER_OFF) { 5461 pci_wake_from_d3(pdev, pf->wol_ena); 5462 pci_set_power_state(pdev, PCI_D3hot); 5463 } 5464 } 5465 5466 /** 5467 * ice_prepare_for_shutdown - prep for PCI shutdown 5468 * @pf: board private structure 5469 * 5470 * Inform or close all dependent features in prep for PCI device shutdown 5471 */ 5472 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5473 { 5474 struct ice_hw *hw = &pf->hw; 5475 u32 v; 5476 5477 /* Notify VFs of impending reset */ 5478 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5479 ice_vc_notify_reset(pf); 5480 5481 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5482 5483 /* disable the VSIs and their queues that are not already DOWN */ 5484 ice_pf_dis_all_vsi(pf, false); 5485 5486 ice_for_each_vsi(pf, v) 5487 if (pf->vsi[v]) 5488 pf->vsi[v]->vsi_num = 0; 5489 5490 ice_shutdown_all_ctrlq(hw, true); 5491 } 5492 5493 /** 5494 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5495 * @pf: board private structure to reinitialize 5496 * 5497 * This routine reinitialize interrupt scheme that was cleared during 5498 * power management suspend callback. 5499 * 5500 * This should be called during resume routine to re-allocate the q_vectors 5501 * and reacquire interrupts. 5502 */ 5503 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5504 { 5505 struct device *dev = ice_pf_to_dev(pf); 5506 int ret, v; 5507 5508 /* Since we clear MSIX flag during suspend, we need to 5509 * set it back during resume... 5510 */ 5511 5512 ret = ice_init_interrupt_scheme(pf); 5513 if (ret) { 5514 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5515 return ret; 5516 } 5517 5518 /* Remap vectors and rings, after successful re-init interrupts */ 5519 ice_for_each_vsi(pf, v) { 5520 if (!pf->vsi[v]) 5521 continue; 5522 5523 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5524 if (ret) 5525 goto err_reinit; 5526 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5527 rtnl_lock(); 5528 ice_vsi_set_napi_queues(pf->vsi[v]); 5529 rtnl_unlock(); 5530 } 5531 5532 ret = ice_req_irq_msix_misc(pf); 5533 if (ret) { 5534 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5535 ret); 5536 goto err_reinit; 5537 } 5538 5539 return 0; 5540 5541 err_reinit: 5542 while (v--) 5543 if (pf->vsi[v]) { 5544 rtnl_lock(); 5545 ice_vsi_clear_napi_queues(pf->vsi[v]); 5546 rtnl_unlock(); 5547 ice_vsi_free_q_vectors(pf->vsi[v]); 5548 } 5549 5550 return ret; 5551 } 5552 5553 /** 5554 * ice_suspend 5555 * @dev: generic device information structure 5556 * 5557 * Power Management callback to quiesce the device and prepare 5558 * for D3 transition. 5559 */ 5560 static int ice_suspend(struct device *dev) 5561 { 5562 struct pci_dev *pdev = to_pci_dev(dev); 5563 struct ice_pf *pf; 5564 int disabled, v; 5565 5566 pf = pci_get_drvdata(pdev); 5567 5568 if (!ice_pf_state_is_nominal(pf)) { 5569 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5570 return -EBUSY; 5571 } 5572 5573 /* Stop watchdog tasks until resume completion. 5574 * Even though it is most likely that the service task is 5575 * disabled if the device is suspended or down, the service task's 5576 * state is controlled by a different state bit, and we should 5577 * store and honor whatever state that bit is in at this point. 5578 */ 5579 disabled = ice_service_task_stop(pf); 5580 5581 ice_deinit_rdma(pf); 5582 5583 /* Already suspended?, then there is nothing to do */ 5584 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5585 if (!disabled) 5586 ice_service_task_restart(pf); 5587 return 0; 5588 } 5589 5590 if (test_bit(ICE_DOWN, pf->state) || 5591 ice_is_reset_in_progress(pf->state)) { 5592 dev_err(dev, "can't suspend device in reset or already down\n"); 5593 if (!disabled) 5594 ice_service_task_restart(pf); 5595 return 0; 5596 } 5597 5598 ice_setup_mc_magic_wake(pf); 5599 5600 ice_prepare_for_shutdown(pf); 5601 5602 ice_set_wake(pf); 5603 5604 /* Free vectors, clear the interrupt scheme and release IRQs 5605 * for proper hibernation, especially with large number of CPUs. 5606 * Otherwise hibernation might fail when mapping all the vectors back 5607 * to CPU0. 5608 */ 5609 ice_free_irq_msix_misc(pf); 5610 ice_for_each_vsi(pf, v) { 5611 if (!pf->vsi[v]) 5612 continue; 5613 rtnl_lock(); 5614 ice_vsi_clear_napi_queues(pf->vsi[v]); 5615 rtnl_unlock(); 5616 ice_vsi_free_q_vectors(pf->vsi[v]); 5617 } 5618 ice_clear_interrupt_scheme(pf); 5619 5620 pci_save_state(pdev); 5621 pci_wake_from_d3(pdev, pf->wol_ena); 5622 pci_set_power_state(pdev, PCI_D3hot); 5623 return 0; 5624 } 5625 5626 /** 5627 * ice_resume - PM callback for waking up from D3 5628 * @dev: generic device information structure 5629 */ 5630 static int ice_resume(struct device *dev) 5631 { 5632 struct pci_dev *pdev = to_pci_dev(dev); 5633 enum ice_reset_req reset_type; 5634 struct ice_pf *pf; 5635 struct ice_hw *hw; 5636 int ret; 5637 5638 pci_set_power_state(pdev, PCI_D0); 5639 pci_restore_state(pdev); 5640 pci_save_state(pdev); 5641 5642 if (!pci_device_is_present(pdev)) 5643 return -ENODEV; 5644 5645 ret = pci_enable_device_mem(pdev); 5646 if (ret) { 5647 dev_err(dev, "Cannot enable device after suspend\n"); 5648 return ret; 5649 } 5650 5651 pf = pci_get_drvdata(pdev); 5652 hw = &pf->hw; 5653 5654 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5655 ice_print_wake_reason(pf); 5656 5657 /* We cleared the interrupt scheme when we suspended, so we need to 5658 * restore it now to resume device functionality. 5659 */ 5660 ret = ice_reinit_interrupt_scheme(pf); 5661 if (ret) 5662 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5663 5664 ret = ice_init_rdma(pf); 5665 if (ret) 5666 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5667 ret); 5668 5669 clear_bit(ICE_DOWN, pf->state); 5670 /* Now perform PF reset and rebuild */ 5671 reset_type = ICE_RESET_PFR; 5672 /* re-enable service task for reset, but allow reset to schedule it */ 5673 clear_bit(ICE_SERVICE_DIS, pf->state); 5674 5675 if (ice_schedule_reset(pf, reset_type)) 5676 dev_err(dev, "Reset during resume failed.\n"); 5677 5678 clear_bit(ICE_SUSPENDED, pf->state); 5679 ice_service_task_restart(pf); 5680 5681 /* Restart the service task */ 5682 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5683 5684 return 0; 5685 } 5686 5687 /** 5688 * ice_pci_err_detected - warning that PCI error has been detected 5689 * @pdev: PCI device information struct 5690 * @err: the type of PCI error 5691 * 5692 * Called to warn that something happened on the PCI bus and the error handling 5693 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5694 */ 5695 static pci_ers_result_t 5696 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5697 { 5698 struct ice_pf *pf = pci_get_drvdata(pdev); 5699 5700 if (!pf) { 5701 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5702 __func__, err); 5703 return PCI_ERS_RESULT_DISCONNECT; 5704 } 5705 5706 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5707 ice_service_task_stop(pf); 5708 5709 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5710 set_bit(ICE_PFR_REQ, pf->state); 5711 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5712 } 5713 } 5714 5715 return PCI_ERS_RESULT_NEED_RESET; 5716 } 5717 5718 /** 5719 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5720 * @pdev: PCI device information struct 5721 * 5722 * Called to determine if the driver can recover from the PCI slot reset by 5723 * using a register read to determine if the device is recoverable. 5724 */ 5725 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5726 { 5727 struct ice_pf *pf = pci_get_drvdata(pdev); 5728 pci_ers_result_t result; 5729 int err; 5730 u32 reg; 5731 5732 err = pci_enable_device_mem(pdev); 5733 if (err) { 5734 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5735 err); 5736 result = PCI_ERS_RESULT_DISCONNECT; 5737 } else { 5738 pci_set_master(pdev); 5739 pci_restore_state(pdev); 5740 pci_save_state(pdev); 5741 pci_wake_from_d3(pdev, false); 5742 5743 /* Check for life */ 5744 reg = rd32(&pf->hw, GLGEN_RTRIG); 5745 if (!reg) 5746 result = PCI_ERS_RESULT_RECOVERED; 5747 else 5748 result = PCI_ERS_RESULT_DISCONNECT; 5749 } 5750 5751 return result; 5752 } 5753 5754 /** 5755 * ice_pci_err_resume - restart operations after PCI error recovery 5756 * @pdev: PCI device information struct 5757 * 5758 * Called to allow the driver to bring things back up after PCI error and/or 5759 * reset recovery have finished 5760 */ 5761 static void ice_pci_err_resume(struct pci_dev *pdev) 5762 { 5763 struct ice_pf *pf = pci_get_drvdata(pdev); 5764 5765 if (!pf) { 5766 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5767 __func__); 5768 return; 5769 } 5770 5771 if (test_bit(ICE_SUSPENDED, pf->state)) { 5772 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5773 __func__); 5774 return; 5775 } 5776 5777 ice_restore_all_vfs_msi_state(pf); 5778 5779 ice_do_reset(pf, ICE_RESET_PFR); 5780 ice_service_task_restart(pf); 5781 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5782 } 5783 5784 /** 5785 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5786 * @pdev: PCI device information struct 5787 */ 5788 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5789 { 5790 struct ice_pf *pf = pci_get_drvdata(pdev); 5791 5792 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5793 ice_service_task_stop(pf); 5794 5795 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5796 set_bit(ICE_PFR_REQ, pf->state); 5797 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5798 } 5799 } 5800 } 5801 5802 /** 5803 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5804 * @pdev: PCI device information struct 5805 */ 5806 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5807 { 5808 ice_pci_err_resume(pdev); 5809 } 5810 5811 /* ice_pci_tbl - PCI Device ID Table 5812 * 5813 * Wildcard entries (PCI_ANY_ID) should come last 5814 * Last entry must be all 0s 5815 * 5816 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5817 * Class, Class Mask, private data (not used) } 5818 */ 5819 static const struct pci_device_id ice_pci_tbl[] = { 5820 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5821 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5822 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5823 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5824 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5825 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5826 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5831 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5832 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5860 /* required last entry */ 5861 {} 5862 }; 5863 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5864 5865 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5866 5867 static const struct pci_error_handlers ice_pci_err_handler = { 5868 .error_detected = ice_pci_err_detected, 5869 .slot_reset = ice_pci_err_slot_reset, 5870 .reset_prepare = ice_pci_err_reset_prepare, 5871 .reset_done = ice_pci_err_reset_done, 5872 .resume = ice_pci_err_resume 5873 }; 5874 5875 static struct pci_driver ice_driver = { 5876 .name = KBUILD_MODNAME, 5877 .id_table = ice_pci_tbl, 5878 .probe = ice_probe, 5879 .remove = ice_remove, 5880 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5881 .shutdown = ice_shutdown, 5882 .sriov_configure = ice_sriov_configure, 5883 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5884 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5885 .err_handler = &ice_pci_err_handler 5886 }; 5887 5888 /** 5889 * ice_module_init - Driver registration routine 5890 * 5891 * ice_module_init is the first routine called when the driver is 5892 * loaded. All it does is register with the PCI subsystem. 5893 */ 5894 static int __init ice_module_init(void) 5895 { 5896 int status = -ENOMEM; 5897 5898 pr_info("%s\n", ice_driver_string); 5899 pr_info("%s\n", ice_copyright); 5900 5901 ice_adv_lnk_speed_maps_init(); 5902 5903 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5904 if (!ice_wq) { 5905 pr_err("Failed to create workqueue\n"); 5906 return status; 5907 } 5908 5909 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5910 if (!ice_lag_wq) { 5911 pr_err("Failed to create LAG workqueue\n"); 5912 goto err_dest_wq; 5913 } 5914 5915 ice_debugfs_init(); 5916 5917 status = pci_register_driver(&ice_driver); 5918 if (status) { 5919 pr_err("failed to register PCI driver, err %d\n", status); 5920 goto err_dest_lag_wq; 5921 } 5922 5923 status = ice_sf_driver_register(); 5924 if (status) { 5925 pr_err("Failed to register SF driver, err %d\n", status); 5926 goto err_sf_driver; 5927 } 5928 5929 return 0; 5930 5931 err_sf_driver: 5932 pci_unregister_driver(&ice_driver); 5933 err_dest_lag_wq: 5934 destroy_workqueue(ice_lag_wq); 5935 ice_debugfs_exit(); 5936 err_dest_wq: 5937 destroy_workqueue(ice_wq); 5938 return status; 5939 } 5940 module_init(ice_module_init); 5941 5942 /** 5943 * ice_module_exit - Driver exit cleanup routine 5944 * 5945 * ice_module_exit is called just before the driver is removed 5946 * from memory. 5947 */ 5948 static void __exit ice_module_exit(void) 5949 { 5950 ice_sf_driver_unregister(); 5951 pci_unregister_driver(&ice_driver); 5952 ice_debugfs_exit(); 5953 destroy_workqueue(ice_wq); 5954 destroy_workqueue(ice_lag_wq); 5955 pr_info("module unloaded\n"); 5956 } 5957 module_exit(ice_module_exit); 5958 5959 /** 5960 * ice_set_mac_address - NDO callback to set MAC address 5961 * @netdev: network interface device structure 5962 * @pi: pointer to an address structure 5963 * 5964 * Returns 0 on success, negative on failure 5965 */ 5966 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5967 { 5968 struct ice_netdev_priv *np = netdev_priv(netdev); 5969 struct ice_vsi *vsi = np->vsi; 5970 struct ice_pf *pf = vsi->back; 5971 struct ice_hw *hw = &pf->hw; 5972 struct sockaddr *addr = pi; 5973 u8 old_mac[ETH_ALEN]; 5974 u8 flags = 0; 5975 u8 *mac; 5976 int err; 5977 5978 mac = (u8 *)addr->sa_data; 5979 5980 if (!is_valid_ether_addr(mac)) 5981 return -EADDRNOTAVAIL; 5982 5983 if (test_bit(ICE_DOWN, pf->state) || 5984 ice_is_reset_in_progress(pf->state)) { 5985 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5986 mac); 5987 return -EBUSY; 5988 } 5989 5990 if (ice_chnl_dmac_fltr_cnt(pf)) { 5991 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5992 mac); 5993 return -EAGAIN; 5994 } 5995 5996 netif_addr_lock_bh(netdev); 5997 ether_addr_copy(old_mac, netdev->dev_addr); 5998 /* change the netdev's MAC address */ 5999 eth_hw_addr_set(netdev, mac); 6000 netif_addr_unlock_bh(netdev); 6001 6002 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6003 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6004 if (err && err != -ENOENT) { 6005 err = -EADDRNOTAVAIL; 6006 goto err_update_filters; 6007 } 6008 6009 /* Add filter for new MAC. If filter exists, return success */ 6010 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6011 if (err == -EEXIST) { 6012 /* Although this MAC filter is already present in hardware it's 6013 * possible in some cases (e.g. bonding) that dev_addr was 6014 * modified outside of the driver and needs to be restored back 6015 * to this value. 6016 */ 6017 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6018 6019 return 0; 6020 } else if (err) { 6021 /* error if the new filter addition failed */ 6022 err = -EADDRNOTAVAIL; 6023 } 6024 6025 err_update_filters: 6026 if (err) { 6027 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6028 mac); 6029 netif_addr_lock_bh(netdev); 6030 eth_hw_addr_set(netdev, old_mac); 6031 netif_addr_unlock_bh(netdev); 6032 return err; 6033 } 6034 6035 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6036 netdev->dev_addr); 6037 6038 /* write new MAC address to the firmware */ 6039 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6040 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6041 if (err) { 6042 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6043 mac, err); 6044 } 6045 return 0; 6046 } 6047 6048 /** 6049 * ice_set_rx_mode - NDO callback to set the netdev filters 6050 * @netdev: network interface device structure 6051 */ 6052 static void ice_set_rx_mode(struct net_device *netdev) 6053 { 6054 struct ice_netdev_priv *np = netdev_priv(netdev); 6055 struct ice_vsi *vsi = np->vsi; 6056 6057 if (!vsi || ice_is_switchdev_running(vsi->back)) 6058 return; 6059 6060 /* Set the flags to synchronize filters 6061 * ndo_set_rx_mode may be triggered even without a change in netdev 6062 * flags 6063 */ 6064 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6065 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6066 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6067 6068 /* schedule our worker thread which will take care of 6069 * applying the new filter changes 6070 */ 6071 ice_service_task_schedule(vsi->back); 6072 } 6073 6074 /** 6075 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6076 * @netdev: network interface device structure 6077 * @queue_index: Queue ID 6078 * @maxrate: maximum bandwidth in Mbps 6079 */ 6080 static int 6081 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6082 { 6083 struct ice_netdev_priv *np = netdev_priv(netdev); 6084 struct ice_vsi *vsi = np->vsi; 6085 u16 q_handle; 6086 int status; 6087 u8 tc; 6088 6089 /* Validate maxrate requested is within permitted range */ 6090 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6091 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6092 maxrate, queue_index); 6093 return -EINVAL; 6094 } 6095 6096 q_handle = vsi->tx_rings[queue_index]->q_handle; 6097 tc = ice_dcb_get_tc(vsi, queue_index); 6098 6099 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6100 if (!vsi) { 6101 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6102 queue_index); 6103 return -EINVAL; 6104 } 6105 6106 /* Set BW back to default, when user set maxrate to 0 */ 6107 if (!maxrate) 6108 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6109 q_handle, ICE_MAX_BW); 6110 else 6111 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6112 q_handle, ICE_MAX_BW, maxrate * 1000); 6113 if (status) 6114 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6115 status); 6116 6117 return status; 6118 } 6119 6120 /** 6121 * ice_fdb_add - add an entry to the hardware database 6122 * @ndm: the input from the stack 6123 * @tb: pointer to array of nladdr (unused) 6124 * @dev: the net device pointer 6125 * @addr: the MAC address entry being added 6126 * @vid: VLAN ID 6127 * @flags: instructions from stack about fdb operation 6128 * @extack: netlink extended ack 6129 */ 6130 static int 6131 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6132 struct net_device *dev, const unsigned char *addr, u16 vid, 6133 u16 flags, struct netlink_ext_ack __always_unused *extack) 6134 { 6135 int err; 6136 6137 if (vid) { 6138 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6139 return -EINVAL; 6140 } 6141 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6142 netdev_err(dev, "FDB only supports static addresses\n"); 6143 return -EINVAL; 6144 } 6145 6146 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6147 err = dev_uc_add_excl(dev, addr); 6148 else if (is_multicast_ether_addr(addr)) 6149 err = dev_mc_add_excl(dev, addr); 6150 else 6151 err = -EINVAL; 6152 6153 /* Only return duplicate errors if NLM_F_EXCL is set */ 6154 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6155 err = 0; 6156 6157 return err; 6158 } 6159 6160 /** 6161 * ice_fdb_del - delete an entry from the hardware database 6162 * @ndm: the input from the stack 6163 * @tb: pointer to array of nladdr (unused) 6164 * @dev: the net device pointer 6165 * @addr: the MAC address entry being added 6166 * @vid: VLAN ID 6167 * @extack: netlink extended ack 6168 */ 6169 static int 6170 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6171 struct net_device *dev, const unsigned char *addr, 6172 __always_unused u16 vid, struct netlink_ext_ack *extack) 6173 { 6174 int err; 6175 6176 if (ndm->ndm_state & NUD_PERMANENT) { 6177 netdev_err(dev, "FDB only supports static addresses\n"); 6178 return -EINVAL; 6179 } 6180 6181 if (is_unicast_ether_addr(addr)) 6182 err = dev_uc_del(dev, addr); 6183 else if (is_multicast_ether_addr(addr)) 6184 err = dev_mc_del(dev, addr); 6185 else 6186 err = -EINVAL; 6187 6188 return err; 6189 } 6190 6191 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6192 NETIF_F_HW_VLAN_CTAG_TX | \ 6193 NETIF_F_HW_VLAN_STAG_RX | \ 6194 NETIF_F_HW_VLAN_STAG_TX) 6195 6196 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6197 NETIF_F_HW_VLAN_STAG_RX) 6198 6199 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6200 NETIF_F_HW_VLAN_STAG_FILTER) 6201 6202 /** 6203 * ice_fix_features - fix the netdev features flags based on device limitations 6204 * @netdev: ptr to the netdev that flags are being fixed on 6205 * @features: features that need to be checked and possibly fixed 6206 * 6207 * Make sure any fixups are made to features in this callback. This enables the 6208 * driver to not have to check unsupported configurations throughout the driver 6209 * because that's the responsiblity of this callback. 6210 * 6211 * Single VLAN Mode (SVM) Supported Features: 6212 * NETIF_F_HW_VLAN_CTAG_FILTER 6213 * NETIF_F_HW_VLAN_CTAG_RX 6214 * NETIF_F_HW_VLAN_CTAG_TX 6215 * 6216 * Double VLAN Mode (DVM) Supported Features: 6217 * NETIF_F_HW_VLAN_CTAG_FILTER 6218 * NETIF_F_HW_VLAN_CTAG_RX 6219 * NETIF_F_HW_VLAN_CTAG_TX 6220 * 6221 * NETIF_F_HW_VLAN_STAG_FILTER 6222 * NETIF_HW_VLAN_STAG_RX 6223 * NETIF_HW_VLAN_STAG_TX 6224 * 6225 * Features that need fixing: 6226 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6227 * These are mutually exlusive as the VSI context cannot support multiple 6228 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6229 * is not done, then default to clearing the requested STAG offload 6230 * settings. 6231 * 6232 * All supported filtering has to be enabled or disabled together. For 6233 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6234 * together. If this is not done, then default to VLAN filtering disabled. 6235 * These are mutually exclusive as there is currently no way to 6236 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6237 * prune rules. 6238 */ 6239 static netdev_features_t 6240 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6241 { 6242 struct ice_netdev_priv *np = netdev_priv(netdev); 6243 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6244 bool cur_ctag, cur_stag, req_ctag, req_stag; 6245 6246 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6247 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6248 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6249 6250 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6251 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6252 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6253 6254 if (req_vlan_fltr != cur_vlan_fltr) { 6255 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6256 if (req_ctag && req_stag) { 6257 features |= NETIF_VLAN_FILTERING_FEATURES; 6258 } else if (!req_ctag && !req_stag) { 6259 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6260 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6261 (!cur_stag && req_stag && !cur_ctag)) { 6262 features |= NETIF_VLAN_FILTERING_FEATURES; 6263 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6264 } else if ((cur_ctag && !req_ctag && cur_stag) || 6265 (cur_stag && !req_stag && cur_ctag)) { 6266 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6267 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6268 } 6269 } else { 6270 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6271 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6272 6273 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6274 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6275 } 6276 } 6277 6278 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6279 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6280 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6281 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6282 NETIF_F_HW_VLAN_STAG_TX); 6283 } 6284 6285 if (!(netdev->features & NETIF_F_RXFCS) && 6286 (features & NETIF_F_RXFCS) && 6287 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6288 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6289 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6290 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6291 } 6292 6293 return features; 6294 } 6295 6296 /** 6297 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6298 * @vsi: PF's VSI 6299 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6300 * 6301 * Store current stripped VLAN proto in ring packet context, 6302 * so it can be accessed more efficiently by packet processing code. 6303 */ 6304 static void 6305 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6306 { 6307 u16 i; 6308 6309 ice_for_each_alloc_rxq(vsi, i) 6310 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6311 } 6312 6313 /** 6314 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6315 * @vsi: PF's VSI 6316 * @features: features used to determine VLAN offload settings 6317 * 6318 * First, determine the vlan_ethertype based on the VLAN offload bits in 6319 * features. Then determine if stripping and insertion should be enabled or 6320 * disabled. Finally enable or disable VLAN stripping and insertion. 6321 */ 6322 static int 6323 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6324 { 6325 bool enable_stripping = true, enable_insertion = true; 6326 struct ice_vsi_vlan_ops *vlan_ops; 6327 int strip_err = 0, insert_err = 0; 6328 u16 vlan_ethertype = 0; 6329 6330 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6331 6332 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6333 vlan_ethertype = ETH_P_8021AD; 6334 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6335 vlan_ethertype = ETH_P_8021Q; 6336 6337 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6338 enable_stripping = false; 6339 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6340 enable_insertion = false; 6341 6342 if (enable_stripping) 6343 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6344 else 6345 strip_err = vlan_ops->dis_stripping(vsi); 6346 6347 if (enable_insertion) 6348 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6349 else 6350 insert_err = vlan_ops->dis_insertion(vsi); 6351 6352 if (strip_err || insert_err) 6353 return -EIO; 6354 6355 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6356 htons(vlan_ethertype) : 0); 6357 6358 return 0; 6359 } 6360 6361 /** 6362 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6363 * @vsi: PF's VSI 6364 * @features: features used to determine VLAN filtering settings 6365 * 6366 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6367 * features. 6368 */ 6369 static int 6370 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6371 { 6372 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6373 int err = 0; 6374 6375 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6376 * if either bit is set 6377 */ 6378 if (features & 6379 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6380 err = vlan_ops->ena_rx_filtering(vsi); 6381 else 6382 err = vlan_ops->dis_rx_filtering(vsi); 6383 6384 return err; 6385 } 6386 6387 /** 6388 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6389 * @netdev: ptr to the netdev being adjusted 6390 * @features: the feature set that the stack is suggesting 6391 * 6392 * Only update VLAN settings if the requested_vlan_features are different than 6393 * the current_vlan_features. 6394 */ 6395 static int 6396 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6397 { 6398 netdev_features_t current_vlan_features, requested_vlan_features; 6399 struct ice_netdev_priv *np = netdev_priv(netdev); 6400 struct ice_vsi *vsi = np->vsi; 6401 int err; 6402 6403 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6404 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6405 if (current_vlan_features ^ requested_vlan_features) { 6406 if ((features & NETIF_F_RXFCS) && 6407 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6408 dev_err(ice_pf_to_dev(vsi->back), 6409 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6410 return -EIO; 6411 } 6412 6413 err = ice_set_vlan_offload_features(vsi, features); 6414 if (err) 6415 return err; 6416 } 6417 6418 current_vlan_features = netdev->features & 6419 NETIF_VLAN_FILTERING_FEATURES; 6420 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6421 if (current_vlan_features ^ requested_vlan_features) { 6422 err = ice_set_vlan_filtering_features(vsi, features); 6423 if (err) 6424 return err; 6425 } 6426 6427 return 0; 6428 } 6429 6430 /** 6431 * ice_set_loopback - turn on/off loopback mode on underlying PF 6432 * @vsi: ptr to VSI 6433 * @ena: flag to indicate the on/off setting 6434 */ 6435 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6436 { 6437 bool if_running = netif_running(vsi->netdev); 6438 int ret; 6439 6440 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6441 ret = ice_down(vsi); 6442 if (ret) { 6443 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6444 return ret; 6445 } 6446 } 6447 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6448 if (ret) 6449 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6450 if (if_running) 6451 ret = ice_up(vsi); 6452 6453 return ret; 6454 } 6455 6456 /** 6457 * ice_set_features - set the netdev feature flags 6458 * @netdev: ptr to the netdev being adjusted 6459 * @features: the feature set that the stack is suggesting 6460 */ 6461 static int 6462 ice_set_features(struct net_device *netdev, netdev_features_t features) 6463 { 6464 netdev_features_t changed = netdev->features ^ features; 6465 struct ice_netdev_priv *np = netdev_priv(netdev); 6466 struct ice_vsi *vsi = np->vsi; 6467 struct ice_pf *pf = vsi->back; 6468 int ret = 0; 6469 6470 /* Don't set any netdev advanced features with device in Safe Mode */ 6471 if (ice_is_safe_mode(pf)) { 6472 dev_err(ice_pf_to_dev(pf), 6473 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6474 return ret; 6475 } 6476 6477 /* Do not change setting during reset */ 6478 if (ice_is_reset_in_progress(pf->state)) { 6479 dev_err(ice_pf_to_dev(pf), 6480 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6481 return -EBUSY; 6482 } 6483 6484 /* Multiple features can be changed in one call so keep features in 6485 * separate if/else statements to guarantee each feature is checked 6486 */ 6487 if (changed & NETIF_F_RXHASH) 6488 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6489 6490 ret = ice_set_vlan_features(netdev, features); 6491 if (ret) 6492 return ret; 6493 6494 /* Turn on receive of FCS aka CRC, and after setting this 6495 * flag the packet data will have the 4 byte CRC appended 6496 */ 6497 if (changed & NETIF_F_RXFCS) { 6498 if ((features & NETIF_F_RXFCS) && 6499 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6500 dev_err(ice_pf_to_dev(vsi->back), 6501 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6502 return -EIO; 6503 } 6504 6505 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6506 ret = ice_down_up(vsi); 6507 if (ret) 6508 return ret; 6509 } 6510 6511 if (changed & NETIF_F_NTUPLE) { 6512 bool ena = !!(features & NETIF_F_NTUPLE); 6513 6514 ice_vsi_manage_fdir(vsi, ena); 6515 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6516 } 6517 6518 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6519 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6520 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6521 return -EACCES; 6522 } 6523 6524 if (changed & NETIF_F_HW_TC) { 6525 bool ena = !!(features & NETIF_F_HW_TC); 6526 6527 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena); 6528 } 6529 6530 if (changed & NETIF_F_LOOPBACK) 6531 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6532 6533 return ret; 6534 } 6535 6536 /** 6537 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6538 * @vsi: VSI to setup VLAN properties for 6539 */ 6540 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6541 { 6542 int err; 6543 6544 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6545 if (err) 6546 return err; 6547 6548 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6549 if (err) 6550 return err; 6551 6552 return ice_vsi_add_vlan_zero(vsi); 6553 } 6554 6555 /** 6556 * ice_vsi_cfg_lan - Setup the VSI lan related config 6557 * @vsi: the VSI being configured 6558 * 6559 * Return 0 on success and negative value on error 6560 */ 6561 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6562 { 6563 int err; 6564 6565 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6566 ice_set_rx_mode(vsi->netdev); 6567 6568 err = ice_vsi_vlan_setup(vsi); 6569 if (err) 6570 return err; 6571 } 6572 ice_vsi_cfg_dcb_rings(vsi); 6573 6574 err = ice_vsi_cfg_lan_txqs(vsi); 6575 if (!err && ice_is_xdp_ena_vsi(vsi)) 6576 err = ice_vsi_cfg_xdp_txqs(vsi); 6577 if (!err) 6578 err = ice_vsi_cfg_rxqs(vsi); 6579 6580 return err; 6581 } 6582 6583 /* THEORY OF MODERATION: 6584 * The ice driver hardware works differently than the hardware that DIMLIB was 6585 * originally made for. ice hardware doesn't have packet count limits that 6586 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6587 * which is hard-coded to a limit of 250,000 ints/second. 6588 * If not using dynamic moderation, the INTRL value can be modified 6589 * by ethtool rx-usecs-high. 6590 */ 6591 struct ice_dim { 6592 /* the throttle rate for interrupts, basically worst case delay before 6593 * an initial interrupt fires, value is stored in microseconds. 6594 */ 6595 u16 itr; 6596 }; 6597 6598 /* Make a different profile for Rx that doesn't allow quite so aggressive 6599 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6600 * second. 6601 */ 6602 static const struct ice_dim rx_profile[] = { 6603 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6604 {8}, /* 125,000 ints/s */ 6605 {16}, /* 62,500 ints/s */ 6606 {62}, /* 16,129 ints/s */ 6607 {126} /* 7,936 ints/s */ 6608 }; 6609 6610 /* The transmit profile, which has the same sorts of values 6611 * as the previous struct 6612 */ 6613 static const struct ice_dim tx_profile[] = { 6614 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6615 {8}, /* 125,000 ints/s */ 6616 {40}, /* 16,125 ints/s */ 6617 {128}, /* 7,812 ints/s */ 6618 {256} /* 3,906 ints/s */ 6619 }; 6620 6621 static void ice_tx_dim_work(struct work_struct *work) 6622 { 6623 struct ice_ring_container *rc; 6624 struct dim *dim; 6625 u16 itr; 6626 6627 dim = container_of(work, struct dim, work); 6628 rc = dim->priv; 6629 6630 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6631 6632 /* look up the values in our local table */ 6633 itr = tx_profile[dim->profile_ix].itr; 6634 6635 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6636 ice_write_itr(rc, itr); 6637 6638 dim->state = DIM_START_MEASURE; 6639 } 6640 6641 static void ice_rx_dim_work(struct work_struct *work) 6642 { 6643 struct ice_ring_container *rc; 6644 struct dim *dim; 6645 u16 itr; 6646 6647 dim = container_of(work, struct dim, work); 6648 rc = dim->priv; 6649 6650 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6651 6652 /* look up the values in our local table */ 6653 itr = rx_profile[dim->profile_ix].itr; 6654 6655 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6656 ice_write_itr(rc, itr); 6657 6658 dim->state = DIM_START_MEASURE; 6659 } 6660 6661 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6662 6663 /** 6664 * ice_init_moderation - set up interrupt moderation 6665 * @q_vector: the vector containing rings to be configured 6666 * 6667 * Set up interrupt moderation registers, with the intent to do the right thing 6668 * when called from reset or from probe, and whether or not dynamic moderation 6669 * is enabled or not. Take special care to write all the registers in both 6670 * dynamic moderation mode or not in order to make sure hardware is in a known 6671 * state. 6672 */ 6673 static void ice_init_moderation(struct ice_q_vector *q_vector) 6674 { 6675 struct ice_ring_container *rc; 6676 bool tx_dynamic, rx_dynamic; 6677 6678 rc = &q_vector->tx; 6679 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6680 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6681 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6682 rc->dim.priv = rc; 6683 tx_dynamic = ITR_IS_DYNAMIC(rc); 6684 6685 /* set the initial TX ITR to match the above */ 6686 ice_write_itr(rc, tx_dynamic ? 6687 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6688 6689 rc = &q_vector->rx; 6690 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6691 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6692 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6693 rc->dim.priv = rc; 6694 rx_dynamic = ITR_IS_DYNAMIC(rc); 6695 6696 /* set the initial RX ITR to match the above */ 6697 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6698 rc->itr_setting); 6699 6700 ice_set_q_vector_intrl(q_vector); 6701 } 6702 6703 /** 6704 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6705 * @vsi: the VSI being configured 6706 */ 6707 static void ice_napi_enable_all(struct ice_vsi *vsi) 6708 { 6709 int q_idx; 6710 6711 if (!vsi->netdev) 6712 return; 6713 6714 ice_for_each_q_vector(vsi, q_idx) { 6715 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6716 6717 ice_init_moderation(q_vector); 6718 6719 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6720 napi_enable(&q_vector->napi); 6721 } 6722 } 6723 6724 /** 6725 * ice_up_complete - Finish the last steps of bringing up a connection 6726 * @vsi: The VSI being configured 6727 * 6728 * Return 0 on success and negative value on error 6729 */ 6730 static int ice_up_complete(struct ice_vsi *vsi) 6731 { 6732 struct ice_pf *pf = vsi->back; 6733 int err; 6734 6735 ice_vsi_cfg_msix(vsi); 6736 6737 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6738 * Tx queue group list was configured and the context bits were 6739 * programmed using ice_vsi_cfg_txqs 6740 */ 6741 err = ice_vsi_start_all_rx_rings(vsi); 6742 if (err) 6743 return err; 6744 6745 clear_bit(ICE_VSI_DOWN, vsi->state); 6746 ice_napi_enable_all(vsi); 6747 ice_vsi_ena_irq(vsi); 6748 6749 if (vsi->port_info && 6750 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6751 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6752 vsi->type == ICE_VSI_SF)))) { 6753 ice_print_link_msg(vsi, true); 6754 netif_tx_start_all_queues(vsi->netdev); 6755 netif_carrier_on(vsi->netdev); 6756 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6757 } 6758 6759 /* Perform an initial read of the statistics registers now to 6760 * set the baseline so counters are ready when interface is up 6761 */ 6762 ice_update_eth_stats(vsi); 6763 6764 if (vsi->type == ICE_VSI_PF) 6765 ice_service_task_schedule(pf); 6766 6767 return 0; 6768 } 6769 6770 /** 6771 * ice_up - Bring the connection back up after being down 6772 * @vsi: VSI being configured 6773 */ 6774 int ice_up(struct ice_vsi *vsi) 6775 { 6776 int err; 6777 6778 err = ice_vsi_cfg_lan(vsi); 6779 if (!err) 6780 err = ice_up_complete(vsi); 6781 6782 return err; 6783 } 6784 6785 /** 6786 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6787 * @syncp: pointer to u64_stats_sync 6788 * @stats: stats that pkts and bytes count will be taken from 6789 * @pkts: packets stats counter 6790 * @bytes: bytes stats counter 6791 * 6792 * This function fetches stats from the ring considering the atomic operations 6793 * that needs to be performed to read u64 values in 32 bit machine. 6794 */ 6795 void 6796 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6797 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6798 { 6799 unsigned int start; 6800 6801 do { 6802 start = u64_stats_fetch_begin(syncp); 6803 *pkts = stats.pkts; 6804 *bytes = stats.bytes; 6805 } while (u64_stats_fetch_retry(syncp, start)); 6806 } 6807 6808 /** 6809 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6810 * @vsi: the VSI to be updated 6811 * @vsi_stats: the stats struct to be updated 6812 * @rings: rings to work on 6813 * @count: number of rings 6814 */ 6815 static void 6816 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6817 struct rtnl_link_stats64 *vsi_stats, 6818 struct ice_tx_ring **rings, u16 count) 6819 { 6820 u16 i; 6821 6822 for (i = 0; i < count; i++) { 6823 struct ice_tx_ring *ring; 6824 u64 pkts = 0, bytes = 0; 6825 6826 ring = READ_ONCE(rings[i]); 6827 if (!ring || !ring->ring_stats) 6828 continue; 6829 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6830 ring->ring_stats->stats, &pkts, 6831 &bytes); 6832 vsi_stats->tx_packets += pkts; 6833 vsi_stats->tx_bytes += bytes; 6834 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6835 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6836 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6837 } 6838 } 6839 6840 /** 6841 * ice_update_vsi_ring_stats - Update VSI stats counters 6842 * @vsi: the VSI to be updated 6843 */ 6844 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6845 { 6846 struct rtnl_link_stats64 *net_stats, *stats_prev; 6847 struct rtnl_link_stats64 *vsi_stats; 6848 struct ice_pf *pf = vsi->back; 6849 u64 pkts, bytes; 6850 int i; 6851 6852 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6853 if (!vsi_stats) 6854 return; 6855 6856 /* reset non-netdev (extended) stats */ 6857 vsi->tx_restart = 0; 6858 vsi->tx_busy = 0; 6859 vsi->tx_linearize = 0; 6860 vsi->rx_buf_failed = 0; 6861 vsi->rx_page_failed = 0; 6862 6863 rcu_read_lock(); 6864 6865 /* update Tx rings counters */ 6866 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6867 vsi->num_txq); 6868 6869 /* update Rx rings counters */ 6870 ice_for_each_rxq(vsi, i) { 6871 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6872 struct ice_ring_stats *ring_stats; 6873 6874 ring_stats = ring->ring_stats; 6875 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6876 ring_stats->stats, &pkts, 6877 &bytes); 6878 vsi_stats->rx_packets += pkts; 6879 vsi_stats->rx_bytes += bytes; 6880 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6881 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6882 } 6883 6884 /* update XDP Tx rings counters */ 6885 if (ice_is_xdp_ena_vsi(vsi)) 6886 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6887 vsi->num_xdp_txq); 6888 6889 rcu_read_unlock(); 6890 6891 net_stats = &vsi->net_stats; 6892 stats_prev = &vsi->net_stats_prev; 6893 6894 /* Update netdev counters, but keep in mind that values could start at 6895 * random value after PF reset. And as we increase the reported stat by 6896 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6897 * let's skip this round. 6898 */ 6899 if (likely(pf->stat_prev_loaded)) { 6900 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6901 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6902 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6903 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6904 } 6905 6906 stats_prev->tx_packets = vsi_stats->tx_packets; 6907 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6908 stats_prev->rx_packets = vsi_stats->rx_packets; 6909 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6910 6911 kfree(vsi_stats); 6912 } 6913 6914 /** 6915 * ice_update_vsi_stats - Update VSI stats counters 6916 * @vsi: the VSI to be updated 6917 */ 6918 void ice_update_vsi_stats(struct ice_vsi *vsi) 6919 { 6920 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6921 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6922 struct ice_pf *pf = vsi->back; 6923 6924 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6925 test_bit(ICE_CFG_BUSY, pf->state)) 6926 return; 6927 6928 /* get stats as recorded by Tx/Rx rings */ 6929 ice_update_vsi_ring_stats(vsi); 6930 6931 /* get VSI stats as recorded by the hardware */ 6932 ice_update_eth_stats(vsi); 6933 6934 cur_ns->tx_errors = cur_es->tx_errors; 6935 cur_ns->rx_dropped = cur_es->rx_discards; 6936 cur_ns->tx_dropped = cur_es->tx_discards; 6937 cur_ns->multicast = cur_es->rx_multicast; 6938 6939 /* update some more netdev stats if this is main VSI */ 6940 if (vsi->type == ICE_VSI_PF) { 6941 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6942 cur_ns->rx_errors = pf->stats.crc_errors + 6943 pf->stats.illegal_bytes + 6944 pf->stats.rx_undersize + 6945 pf->hw_csum_rx_error + 6946 pf->stats.rx_jabber + 6947 pf->stats.rx_fragments + 6948 pf->stats.rx_oversize; 6949 /* record drops from the port level */ 6950 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6951 } 6952 } 6953 6954 /** 6955 * ice_update_pf_stats - Update PF port stats counters 6956 * @pf: PF whose stats needs to be updated 6957 */ 6958 void ice_update_pf_stats(struct ice_pf *pf) 6959 { 6960 struct ice_hw_port_stats *prev_ps, *cur_ps; 6961 struct ice_hw *hw = &pf->hw; 6962 u16 fd_ctr_base; 6963 u8 port; 6964 6965 port = hw->port_info->lport; 6966 prev_ps = &pf->stats_prev; 6967 cur_ps = &pf->stats; 6968 6969 if (ice_is_reset_in_progress(pf->state)) 6970 pf->stat_prev_loaded = false; 6971 6972 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6973 &prev_ps->eth.rx_bytes, 6974 &cur_ps->eth.rx_bytes); 6975 6976 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6977 &prev_ps->eth.rx_unicast, 6978 &cur_ps->eth.rx_unicast); 6979 6980 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6981 &prev_ps->eth.rx_multicast, 6982 &cur_ps->eth.rx_multicast); 6983 6984 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6985 &prev_ps->eth.rx_broadcast, 6986 &cur_ps->eth.rx_broadcast); 6987 6988 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6989 &prev_ps->eth.rx_discards, 6990 &cur_ps->eth.rx_discards); 6991 6992 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6993 &prev_ps->eth.tx_bytes, 6994 &cur_ps->eth.tx_bytes); 6995 6996 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6997 &prev_ps->eth.tx_unicast, 6998 &cur_ps->eth.tx_unicast); 6999 7000 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7001 &prev_ps->eth.tx_multicast, 7002 &cur_ps->eth.tx_multicast); 7003 7004 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7005 &prev_ps->eth.tx_broadcast, 7006 &cur_ps->eth.tx_broadcast); 7007 7008 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7009 &prev_ps->tx_dropped_link_down, 7010 &cur_ps->tx_dropped_link_down); 7011 7012 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7013 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7014 7015 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7016 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7017 7018 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7019 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7020 7021 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7022 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7023 7024 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7025 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7026 7027 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7028 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7029 7030 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7031 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7032 7033 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7034 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7035 7036 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7037 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7038 7039 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7040 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7041 7042 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7043 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7044 7045 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7046 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7047 7048 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7049 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7050 7051 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7052 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7053 7054 fd_ctr_base = hw->fd_ctr_base; 7055 7056 ice_stat_update40(hw, 7057 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7058 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7059 &cur_ps->fd_sb_match); 7060 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7061 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7062 7063 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7064 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7065 7066 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7067 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7068 7069 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7070 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7071 7072 ice_update_dcb_stats(pf); 7073 7074 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7075 &prev_ps->crc_errors, &cur_ps->crc_errors); 7076 7077 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7078 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7079 7080 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7081 &prev_ps->mac_local_faults, 7082 &cur_ps->mac_local_faults); 7083 7084 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7085 &prev_ps->mac_remote_faults, 7086 &cur_ps->mac_remote_faults); 7087 7088 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7089 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7090 7091 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7092 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7093 7094 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7095 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7096 7097 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7098 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7099 7100 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7101 7102 pf->stat_prev_loaded = true; 7103 } 7104 7105 /** 7106 * ice_get_stats64 - get statistics for network device structure 7107 * @netdev: network interface device structure 7108 * @stats: main device statistics structure 7109 */ 7110 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7111 { 7112 struct ice_netdev_priv *np = netdev_priv(netdev); 7113 struct rtnl_link_stats64 *vsi_stats; 7114 struct ice_vsi *vsi = np->vsi; 7115 7116 vsi_stats = &vsi->net_stats; 7117 7118 if (!vsi->num_txq || !vsi->num_rxq) 7119 return; 7120 7121 /* netdev packet/byte stats come from ring counter. These are obtained 7122 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7123 * But, only call the update routine and read the registers if VSI is 7124 * not down. 7125 */ 7126 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7127 ice_update_vsi_ring_stats(vsi); 7128 stats->tx_packets = vsi_stats->tx_packets; 7129 stats->tx_bytes = vsi_stats->tx_bytes; 7130 stats->rx_packets = vsi_stats->rx_packets; 7131 stats->rx_bytes = vsi_stats->rx_bytes; 7132 7133 /* The rest of the stats can be read from the hardware but instead we 7134 * just return values that the watchdog task has already obtained from 7135 * the hardware. 7136 */ 7137 stats->multicast = vsi_stats->multicast; 7138 stats->tx_errors = vsi_stats->tx_errors; 7139 stats->tx_dropped = vsi_stats->tx_dropped; 7140 stats->rx_errors = vsi_stats->rx_errors; 7141 stats->rx_dropped = vsi_stats->rx_dropped; 7142 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7143 stats->rx_length_errors = vsi_stats->rx_length_errors; 7144 } 7145 7146 /** 7147 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7148 * @vsi: VSI having NAPI disabled 7149 */ 7150 static void ice_napi_disable_all(struct ice_vsi *vsi) 7151 { 7152 int q_idx; 7153 7154 if (!vsi->netdev) 7155 return; 7156 7157 ice_for_each_q_vector(vsi, q_idx) { 7158 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7159 7160 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7161 napi_disable(&q_vector->napi); 7162 7163 cancel_work_sync(&q_vector->tx.dim.work); 7164 cancel_work_sync(&q_vector->rx.dim.work); 7165 } 7166 } 7167 7168 /** 7169 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7170 * @vsi: the VSI being un-configured 7171 */ 7172 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7173 { 7174 struct ice_pf *pf = vsi->back; 7175 struct ice_hw *hw = &pf->hw; 7176 u32 val; 7177 int i; 7178 7179 /* disable interrupt causation from each Rx queue; Tx queues are 7180 * handled in ice_vsi_stop_tx_ring() 7181 */ 7182 if (vsi->rx_rings) { 7183 ice_for_each_rxq(vsi, i) { 7184 if (vsi->rx_rings[i]) { 7185 u16 reg; 7186 7187 reg = vsi->rx_rings[i]->reg_idx; 7188 val = rd32(hw, QINT_RQCTL(reg)); 7189 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7190 wr32(hw, QINT_RQCTL(reg), val); 7191 } 7192 } 7193 } 7194 7195 /* disable each interrupt */ 7196 ice_for_each_q_vector(vsi, i) { 7197 if (!vsi->q_vectors[i]) 7198 continue; 7199 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7200 } 7201 7202 ice_flush(hw); 7203 7204 /* don't call synchronize_irq() for VF's from the host */ 7205 if (vsi->type == ICE_VSI_VF) 7206 return; 7207 7208 ice_for_each_q_vector(vsi, i) 7209 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7210 } 7211 7212 /** 7213 * ice_down - Shutdown the connection 7214 * @vsi: The VSI being stopped 7215 * 7216 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7217 */ 7218 int ice_down(struct ice_vsi *vsi) 7219 { 7220 int i, tx_err, rx_err, vlan_err = 0; 7221 7222 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7223 7224 if (vsi->netdev) { 7225 vlan_err = ice_vsi_del_vlan_zero(vsi); 7226 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7227 netif_carrier_off(vsi->netdev); 7228 netif_tx_disable(vsi->netdev); 7229 } 7230 7231 ice_vsi_dis_irq(vsi); 7232 7233 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7234 if (tx_err) 7235 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7236 vsi->vsi_num, tx_err); 7237 if (!tx_err && vsi->xdp_rings) { 7238 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7239 if (tx_err) 7240 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7241 vsi->vsi_num, tx_err); 7242 } 7243 7244 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7245 if (rx_err) 7246 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7247 vsi->vsi_num, rx_err); 7248 7249 ice_napi_disable_all(vsi); 7250 7251 ice_for_each_txq(vsi, i) 7252 ice_clean_tx_ring(vsi->tx_rings[i]); 7253 7254 if (vsi->xdp_rings) 7255 ice_for_each_xdp_txq(vsi, i) 7256 ice_clean_tx_ring(vsi->xdp_rings[i]); 7257 7258 ice_for_each_rxq(vsi, i) 7259 ice_clean_rx_ring(vsi->rx_rings[i]); 7260 7261 if (tx_err || rx_err || vlan_err) { 7262 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7263 vsi->vsi_num, vsi->vsw->sw_id); 7264 return -EIO; 7265 } 7266 7267 return 0; 7268 } 7269 7270 /** 7271 * ice_down_up - shutdown the VSI connection and bring it up 7272 * @vsi: the VSI to be reconnected 7273 */ 7274 int ice_down_up(struct ice_vsi *vsi) 7275 { 7276 int ret; 7277 7278 /* if DOWN already set, nothing to do */ 7279 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7280 return 0; 7281 7282 ret = ice_down(vsi); 7283 if (ret) 7284 return ret; 7285 7286 ret = ice_up(vsi); 7287 if (ret) { 7288 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7289 return ret; 7290 } 7291 7292 return 0; 7293 } 7294 7295 /** 7296 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7297 * @vsi: VSI having resources allocated 7298 * 7299 * Return 0 on success, negative on failure 7300 */ 7301 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7302 { 7303 int i, err = 0; 7304 7305 if (!vsi->num_txq) { 7306 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7307 vsi->vsi_num); 7308 return -EINVAL; 7309 } 7310 7311 ice_for_each_txq(vsi, i) { 7312 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7313 7314 if (!ring) 7315 return -EINVAL; 7316 7317 if (vsi->netdev) 7318 ring->netdev = vsi->netdev; 7319 err = ice_setup_tx_ring(ring); 7320 if (err) 7321 break; 7322 } 7323 7324 return err; 7325 } 7326 7327 /** 7328 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7329 * @vsi: VSI having resources allocated 7330 * 7331 * Return 0 on success, negative on failure 7332 */ 7333 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7334 { 7335 int i, err = 0; 7336 7337 if (!vsi->num_rxq) { 7338 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7339 vsi->vsi_num); 7340 return -EINVAL; 7341 } 7342 7343 ice_for_each_rxq(vsi, i) { 7344 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7345 7346 if (!ring) 7347 return -EINVAL; 7348 7349 if (vsi->netdev) 7350 ring->netdev = vsi->netdev; 7351 err = ice_setup_rx_ring(ring); 7352 if (err) 7353 break; 7354 } 7355 7356 return err; 7357 } 7358 7359 /** 7360 * ice_vsi_open_ctrl - open control VSI for use 7361 * @vsi: the VSI to open 7362 * 7363 * Initialization of the Control VSI 7364 * 7365 * Returns 0 on success, negative value on error 7366 */ 7367 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7368 { 7369 char int_name[ICE_INT_NAME_STR_LEN]; 7370 struct ice_pf *pf = vsi->back; 7371 struct device *dev; 7372 int err; 7373 7374 dev = ice_pf_to_dev(pf); 7375 /* allocate descriptors */ 7376 err = ice_vsi_setup_tx_rings(vsi); 7377 if (err) 7378 goto err_setup_tx; 7379 7380 err = ice_vsi_setup_rx_rings(vsi); 7381 if (err) 7382 goto err_setup_rx; 7383 7384 err = ice_vsi_cfg_lan(vsi); 7385 if (err) 7386 goto err_setup_rx; 7387 7388 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7389 dev_driver_string(dev), dev_name(dev)); 7390 err = ice_vsi_req_irq_msix(vsi, int_name); 7391 if (err) 7392 goto err_setup_rx; 7393 7394 ice_vsi_cfg_msix(vsi); 7395 7396 err = ice_vsi_start_all_rx_rings(vsi); 7397 if (err) 7398 goto err_up_complete; 7399 7400 clear_bit(ICE_VSI_DOWN, vsi->state); 7401 ice_vsi_ena_irq(vsi); 7402 7403 return 0; 7404 7405 err_up_complete: 7406 ice_down(vsi); 7407 err_setup_rx: 7408 ice_vsi_free_rx_rings(vsi); 7409 err_setup_tx: 7410 ice_vsi_free_tx_rings(vsi); 7411 7412 return err; 7413 } 7414 7415 /** 7416 * ice_vsi_open - Called when a network interface is made active 7417 * @vsi: the VSI to open 7418 * 7419 * Initialization of the VSI 7420 * 7421 * Returns 0 on success, negative value on error 7422 */ 7423 int ice_vsi_open(struct ice_vsi *vsi) 7424 { 7425 char int_name[ICE_INT_NAME_STR_LEN]; 7426 struct ice_pf *pf = vsi->back; 7427 int err; 7428 7429 /* allocate descriptors */ 7430 err = ice_vsi_setup_tx_rings(vsi); 7431 if (err) 7432 goto err_setup_tx; 7433 7434 err = ice_vsi_setup_rx_rings(vsi); 7435 if (err) 7436 goto err_setup_rx; 7437 7438 err = ice_vsi_cfg_lan(vsi); 7439 if (err) 7440 goto err_setup_rx; 7441 7442 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7443 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7444 err = ice_vsi_req_irq_msix(vsi, int_name); 7445 if (err) 7446 goto err_setup_rx; 7447 7448 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7449 7450 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7451 /* Notify the stack of the actual queue counts. */ 7452 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7453 if (err) 7454 goto err_set_qs; 7455 7456 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7457 if (err) 7458 goto err_set_qs; 7459 7460 ice_vsi_set_napi_queues(vsi); 7461 } 7462 7463 err = ice_up_complete(vsi); 7464 if (err) 7465 goto err_up_complete; 7466 7467 return 0; 7468 7469 err_up_complete: 7470 ice_down(vsi); 7471 err_set_qs: 7472 ice_vsi_free_irq(vsi); 7473 err_setup_rx: 7474 ice_vsi_free_rx_rings(vsi); 7475 err_setup_tx: 7476 ice_vsi_free_tx_rings(vsi); 7477 7478 return err; 7479 } 7480 7481 /** 7482 * ice_vsi_release_all - Delete all VSIs 7483 * @pf: PF from which all VSIs are being removed 7484 */ 7485 static void ice_vsi_release_all(struct ice_pf *pf) 7486 { 7487 int err, i; 7488 7489 if (!pf->vsi) 7490 return; 7491 7492 ice_for_each_vsi(pf, i) { 7493 if (!pf->vsi[i]) 7494 continue; 7495 7496 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7497 continue; 7498 7499 err = ice_vsi_release(pf->vsi[i]); 7500 if (err) 7501 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7502 i, err, pf->vsi[i]->vsi_num); 7503 } 7504 } 7505 7506 /** 7507 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7508 * @pf: pointer to the PF instance 7509 * @type: VSI type to rebuild 7510 * 7511 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7512 */ 7513 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7514 { 7515 struct device *dev = ice_pf_to_dev(pf); 7516 int i, err; 7517 7518 ice_for_each_vsi(pf, i) { 7519 struct ice_vsi *vsi = pf->vsi[i]; 7520 7521 if (!vsi || vsi->type != type) 7522 continue; 7523 7524 /* rebuild the VSI */ 7525 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7526 if (err) { 7527 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7528 err, vsi->idx, ice_vsi_type_str(type)); 7529 return err; 7530 } 7531 7532 /* replay filters for the VSI */ 7533 err = ice_replay_vsi(&pf->hw, vsi->idx); 7534 if (err) { 7535 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7536 err, vsi->idx, ice_vsi_type_str(type)); 7537 return err; 7538 } 7539 7540 /* Re-map HW VSI number, using VSI handle that has been 7541 * previously validated in ice_replay_vsi() call above 7542 */ 7543 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7544 7545 /* enable the VSI */ 7546 err = ice_ena_vsi(vsi, false); 7547 if (err) { 7548 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7549 err, vsi->idx, ice_vsi_type_str(type)); 7550 return err; 7551 } 7552 7553 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7554 ice_vsi_type_str(type)); 7555 } 7556 7557 return 0; 7558 } 7559 7560 /** 7561 * ice_update_pf_netdev_link - Update PF netdev link status 7562 * @pf: pointer to the PF instance 7563 */ 7564 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7565 { 7566 bool link_up; 7567 int i; 7568 7569 ice_for_each_vsi(pf, i) { 7570 struct ice_vsi *vsi = pf->vsi[i]; 7571 7572 if (!vsi || vsi->type != ICE_VSI_PF) 7573 return; 7574 7575 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7576 if (link_up) { 7577 netif_carrier_on(pf->vsi[i]->netdev); 7578 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7579 } else { 7580 netif_carrier_off(pf->vsi[i]->netdev); 7581 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7582 } 7583 } 7584 } 7585 7586 /** 7587 * ice_rebuild - rebuild after reset 7588 * @pf: PF to rebuild 7589 * @reset_type: type of reset 7590 * 7591 * Do not rebuild VF VSI in this flow because that is already handled via 7592 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7593 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7594 * to reset/rebuild all the VF VSI twice. 7595 */ 7596 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7597 { 7598 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7599 struct device *dev = ice_pf_to_dev(pf); 7600 struct ice_hw *hw = &pf->hw; 7601 bool dvm; 7602 int err; 7603 7604 if (test_bit(ICE_DOWN, pf->state)) 7605 goto clear_recovery; 7606 7607 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7608 7609 #define ICE_EMP_RESET_SLEEP_MS 5000 7610 if (reset_type == ICE_RESET_EMPR) { 7611 /* If an EMP reset has occurred, any previously pending flash 7612 * update will have completed. We no longer know whether or 7613 * not the NVM update EMP reset is restricted. 7614 */ 7615 pf->fw_emp_reset_disabled = false; 7616 7617 msleep(ICE_EMP_RESET_SLEEP_MS); 7618 } 7619 7620 err = ice_init_all_ctrlq(hw); 7621 if (err) { 7622 dev_err(dev, "control queues init failed %d\n", err); 7623 goto err_init_ctrlq; 7624 } 7625 7626 /* if DDP was previously loaded successfully */ 7627 if (!ice_is_safe_mode(pf)) { 7628 /* reload the SW DB of filter tables */ 7629 if (reset_type == ICE_RESET_PFR) 7630 ice_fill_blk_tbls(hw); 7631 else 7632 /* Reload DDP Package after CORER/GLOBR reset */ 7633 ice_load_pkg(NULL, pf); 7634 } 7635 7636 err = ice_clear_pf_cfg(hw); 7637 if (err) { 7638 dev_err(dev, "clear PF configuration failed %d\n", err); 7639 goto err_init_ctrlq; 7640 } 7641 7642 ice_clear_pxe_mode(hw); 7643 7644 err = ice_init_nvm(hw); 7645 if (err) { 7646 dev_err(dev, "ice_init_nvm failed %d\n", err); 7647 goto err_init_ctrlq; 7648 } 7649 7650 err = ice_get_caps(hw); 7651 if (err) { 7652 dev_err(dev, "ice_get_caps failed %d\n", err); 7653 goto err_init_ctrlq; 7654 } 7655 7656 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7657 if (err) { 7658 dev_err(dev, "set_mac_cfg failed %d\n", err); 7659 goto err_init_ctrlq; 7660 } 7661 7662 dvm = ice_is_dvm_ena(hw); 7663 7664 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7665 if (err) 7666 goto err_init_ctrlq; 7667 7668 err = ice_sched_init_port(hw->port_info); 7669 if (err) 7670 goto err_sched_init_port; 7671 7672 /* start misc vector */ 7673 err = ice_req_irq_msix_misc(pf); 7674 if (err) { 7675 dev_err(dev, "misc vector setup failed: %d\n", err); 7676 goto err_sched_init_port; 7677 } 7678 7679 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7680 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7681 if (!rd32(hw, PFQF_FD_SIZE)) { 7682 u16 unused, guar, b_effort; 7683 7684 guar = hw->func_caps.fd_fltr_guar; 7685 b_effort = hw->func_caps.fd_fltr_best_effort; 7686 7687 /* force guaranteed filter pool for PF */ 7688 ice_alloc_fd_guar_item(hw, &unused, guar); 7689 /* force shared filter pool for PF */ 7690 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7691 } 7692 } 7693 7694 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7695 ice_dcb_rebuild(pf); 7696 7697 /* If the PF previously had enabled PTP, PTP init needs to happen before 7698 * the VSI rebuild. If not, this causes the PTP link status events to 7699 * fail. 7700 */ 7701 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7702 ice_ptp_rebuild(pf, reset_type); 7703 7704 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7705 ice_gnss_init(pf); 7706 7707 /* rebuild PF VSI */ 7708 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7709 if (err) { 7710 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7711 goto err_vsi_rebuild; 7712 } 7713 7714 if (reset_type == ICE_RESET_PFR) { 7715 err = ice_rebuild_channels(pf); 7716 if (err) { 7717 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7718 err); 7719 goto err_vsi_rebuild; 7720 } 7721 } 7722 7723 /* If Flow Director is active */ 7724 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7725 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7726 if (err) { 7727 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7728 goto err_vsi_rebuild; 7729 } 7730 7731 /* replay HW Flow Director recipes */ 7732 if (hw->fdir_prof) 7733 ice_fdir_replay_flows(hw); 7734 7735 /* replay Flow Director filters */ 7736 ice_fdir_replay_fltrs(pf); 7737 7738 ice_rebuild_arfs(pf); 7739 } 7740 7741 if (vsi && vsi->netdev) 7742 netif_device_attach(vsi->netdev); 7743 7744 ice_update_pf_netdev_link(pf); 7745 7746 /* tell the firmware we are up */ 7747 err = ice_send_version(pf); 7748 if (err) { 7749 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7750 err); 7751 goto err_vsi_rebuild; 7752 } 7753 7754 ice_replay_post(hw); 7755 7756 /* if we get here, reset flow is successful */ 7757 clear_bit(ICE_RESET_FAILED, pf->state); 7758 7759 ice_plug_aux_dev(pf); 7760 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7761 ice_lag_rebuild(pf); 7762 7763 /* Restore timestamp mode settings after VSI rebuild */ 7764 ice_ptp_restore_timestamp_mode(pf); 7765 return; 7766 7767 err_vsi_rebuild: 7768 err_sched_init_port: 7769 ice_sched_cleanup_all(hw); 7770 err_init_ctrlq: 7771 ice_shutdown_all_ctrlq(hw, false); 7772 set_bit(ICE_RESET_FAILED, pf->state); 7773 clear_recovery: 7774 /* set this bit in PF state to control service task scheduling */ 7775 set_bit(ICE_NEEDS_RESTART, pf->state); 7776 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7777 } 7778 7779 /** 7780 * ice_change_mtu - NDO callback to change the MTU 7781 * @netdev: network interface device structure 7782 * @new_mtu: new value for maximum frame size 7783 * 7784 * Returns 0 on success, negative on failure 7785 */ 7786 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7787 { 7788 struct ice_netdev_priv *np = netdev_priv(netdev); 7789 struct ice_vsi *vsi = np->vsi; 7790 struct ice_pf *pf = vsi->back; 7791 struct bpf_prog *prog; 7792 u8 count = 0; 7793 int err = 0; 7794 7795 if (new_mtu == (int)netdev->mtu) { 7796 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7797 return 0; 7798 } 7799 7800 prog = vsi->xdp_prog; 7801 if (prog && !prog->aux->xdp_has_frags) { 7802 int frame_size = ice_max_xdp_frame_size(vsi); 7803 7804 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7805 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7806 frame_size - ICE_ETH_PKT_HDR_PAD); 7807 return -EINVAL; 7808 } 7809 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7810 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7811 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7812 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7813 return -EINVAL; 7814 } 7815 } 7816 7817 /* if a reset is in progress, wait for some time for it to complete */ 7818 do { 7819 if (ice_is_reset_in_progress(pf->state)) { 7820 count++; 7821 usleep_range(1000, 2000); 7822 } else { 7823 break; 7824 } 7825 7826 } while (count < 100); 7827 7828 if (count == 100) { 7829 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7830 return -EBUSY; 7831 } 7832 7833 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7834 err = ice_down_up(vsi); 7835 if (err) 7836 return err; 7837 7838 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7839 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7840 7841 return err; 7842 } 7843 7844 /** 7845 * ice_eth_ioctl - Access the hwtstamp interface 7846 * @netdev: network interface device structure 7847 * @ifr: interface request data 7848 * @cmd: ioctl command 7849 */ 7850 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7851 { 7852 struct ice_netdev_priv *np = netdev_priv(netdev); 7853 struct ice_pf *pf = np->vsi->back; 7854 7855 switch (cmd) { 7856 case SIOCGHWTSTAMP: 7857 return ice_ptp_get_ts_config(pf, ifr); 7858 case SIOCSHWTSTAMP: 7859 return ice_ptp_set_ts_config(pf, ifr); 7860 default: 7861 return -EOPNOTSUPP; 7862 } 7863 } 7864 7865 /** 7866 * ice_aq_str - convert AQ err code to a string 7867 * @aq_err: the AQ error code to convert 7868 */ 7869 const char *ice_aq_str(enum ice_aq_err aq_err) 7870 { 7871 switch (aq_err) { 7872 case ICE_AQ_RC_OK: 7873 return "OK"; 7874 case ICE_AQ_RC_EPERM: 7875 return "ICE_AQ_RC_EPERM"; 7876 case ICE_AQ_RC_ENOENT: 7877 return "ICE_AQ_RC_ENOENT"; 7878 case ICE_AQ_RC_ENOMEM: 7879 return "ICE_AQ_RC_ENOMEM"; 7880 case ICE_AQ_RC_EBUSY: 7881 return "ICE_AQ_RC_EBUSY"; 7882 case ICE_AQ_RC_EEXIST: 7883 return "ICE_AQ_RC_EEXIST"; 7884 case ICE_AQ_RC_EINVAL: 7885 return "ICE_AQ_RC_EINVAL"; 7886 case ICE_AQ_RC_ENOSPC: 7887 return "ICE_AQ_RC_ENOSPC"; 7888 case ICE_AQ_RC_ENOSYS: 7889 return "ICE_AQ_RC_ENOSYS"; 7890 case ICE_AQ_RC_EMODE: 7891 return "ICE_AQ_RC_EMODE"; 7892 case ICE_AQ_RC_ENOSEC: 7893 return "ICE_AQ_RC_ENOSEC"; 7894 case ICE_AQ_RC_EBADSIG: 7895 return "ICE_AQ_RC_EBADSIG"; 7896 case ICE_AQ_RC_ESVN: 7897 return "ICE_AQ_RC_ESVN"; 7898 case ICE_AQ_RC_EBADMAN: 7899 return "ICE_AQ_RC_EBADMAN"; 7900 case ICE_AQ_RC_EBADBUF: 7901 return "ICE_AQ_RC_EBADBUF"; 7902 } 7903 7904 return "ICE_AQ_RC_UNKNOWN"; 7905 } 7906 7907 /** 7908 * ice_set_rss_lut - Set RSS LUT 7909 * @vsi: Pointer to VSI structure 7910 * @lut: Lookup table 7911 * @lut_size: Lookup table size 7912 * 7913 * Returns 0 on success, negative on failure 7914 */ 7915 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7916 { 7917 struct ice_aq_get_set_rss_lut_params params = {}; 7918 struct ice_hw *hw = &vsi->back->hw; 7919 int status; 7920 7921 if (!lut) 7922 return -EINVAL; 7923 7924 params.vsi_handle = vsi->idx; 7925 params.lut_size = lut_size; 7926 params.lut_type = vsi->rss_lut_type; 7927 params.lut = lut; 7928 7929 status = ice_aq_set_rss_lut(hw, ¶ms); 7930 if (status) 7931 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7932 status, ice_aq_str(hw->adminq.sq_last_status)); 7933 7934 return status; 7935 } 7936 7937 /** 7938 * ice_set_rss_key - Set RSS key 7939 * @vsi: Pointer to the VSI structure 7940 * @seed: RSS hash seed 7941 * 7942 * Returns 0 on success, negative on failure 7943 */ 7944 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7945 { 7946 struct ice_hw *hw = &vsi->back->hw; 7947 int status; 7948 7949 if (!seed) 7950 return -EINVAL; 7951 7952 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7953 if (status) 7954 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7955 status, ice_aq_str(hw->adminq.sq_last_status)); 7956 7957 return status; 7958 } 7959 7960 /** 7961 * ice_get_rss_lut - Get RSS LUT 7962 * @vsi: Pointer to VSI structure 7963 * @lut: Buffer to store the lookup table entries 7964 * @lut_size: Size of buffer to store the lookup table entries 7965 * 7966 * Returns 0 on success, negative on failure 7967 */ 7968 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7969 { 7970 struct ice_aq_get_set_rss_lut_params params = {}; 7971 struct ice_hw *hw = &vsi->back->hw; 7972 int status; 7973 7974 if (!lut) 7975 return -EINVAL; 7976 7977 params.vsi_handle = vsi->idx; 7978 params.lut_size = lut_size; 7979 params.lut_type = vsi->rss_lut_type; 7980 params.lut = lut; 7981 7982 status = ice_aq_get_rss_lut(hw, ¶ms); 7983 if (status) 7984 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7985 status, ice_aq_str(hw->adminq.sq_last_status)); 7986 7987 return status; 7988 } 7989 7990 /** 7991 * ice_get_rss_key - Get RSS key 7992 * @vsi: Pointer to VSI structure 7993 * @seed: Buffer to store the key in 7994 * 7995 * Returns 0 on success, negative on failure 7996 */ 7997 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7998 { 7999 struct ice_hw *hw = &vsi->back->hw; 8000 int status; 8001 8002 if (!seed) 8003 return -EINVAL; 8004 8005 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8006 if (status) 8007 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8008 status, ice_aq_str(hw->adminq.sq_last_status)); 8009 8010 return status; 8011 } 8012 8013 /** 8014 * ice_set_rss_hfunc - Set RSS HASH function 8015 * @vsi: Pointer to VSI structure 8016 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8017 * 8018 * Returns 0 on success, negative on failure 8019 */ 8020 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8021 { 8022 struct ice_hw *hw = &vsi->back->hw; 8023 struct ice_vsi_ctx *ctx; 8024 bool symm; 8025 int err; 8026 8027 if (hfunc == vsi->rss_hfunc) 8028 return 0; 8029 8030 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8031 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8032 return -EOPNOTSUPP; 8033 8034 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8035 if (!ctx) 8036 return -ENOMEM; 8037 8038 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8039 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8040 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8041 ctx->info.q_opt_rss |= 8042 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8043 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8044 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8045 8046 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8047 if (err) { 8048 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8049 vsi->vsi_num, err); 8050 } else { 8051 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8052 vsi->rss_hfunc = hfunc; 8053 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8054 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8055 "Symmetric " : ""); 8056 } 8057 kfree(ctx); 8058 if (err) 8059 return err; 8060 8061 /* Fix the symmetry setting for all existing RSS configurations */ 8062 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8063 return ice_set_rss_cfg_symm(hw, vsi, symm); 8064 } 8065 8066 /** 8067 * ice_bridge_getlink - Get the hardware bridge mode 8068 * @skb: skb buff 8069 * @pid: process ID 8070 * @seq: RTNL message seq 8071 * @dev: the netdev being configured 8072 * @filter_mask: filter mask passed in 8073 * @nlflags: netlink flags passed in 8074 * 8075 * Return the bridge mode (VEB/VEPA) 8076 */ 8077 static int 8078 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8079 struct net_device *dev, u32 filter_mask, int nlflags) 8080 { 8081 struct ice_netdev_priv *np = netdev_priv(dev); 8082 struct ice_vsi *vsi = np->vsi; 8083 struct ice_pf *pf = vsi->back; 8084 u16 bmode; 8085 8086 bmode = pf->first_sw->bridge_mode; 8087 8088 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8089 filter_mask, NULL); 8090 } 8091 8092 /** 8093 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8094 * @vsi: Pointer to VSI structure 8095 * @bmode: Hardware bridge mode (VEB/VEPA) 8096 * 8097 * Returns 0 on success, negative on failure 8098 */ 8099 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8100 { 8101 struct ice_aqc_vsi_props *vsi_props; 8102 struct ice_hw *hw = &vsi->back->hw; 8103 struct ice_vsi_ctx *ctxt; 8104 int ret; 8105 8106 vsi_props = &vsi->info; 8107 8108 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8109 if (!ctxt) 8110 return -ENOMEM; 8111 8112 ctxt->info = vsi->info; 8113 8114 if (bmode == BRIDGE_MODE_VEB) 8115 /* change from VEPA to VEB mode */ 8116 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8117 else 8118 /* change from VEB to VEPA mode */ 8119 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8120 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8121 8122 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8123 if (ret) { 8124 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8125 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8126 goto out; 8127 } 8128 /* Update sw flags for book keeping */ 8129 vsi_props->sw_flags = ctxt->info.sw_flags; 8130 8131 out: 8132 kfree(ctxt); 8133 return ret; 8134 } 8135 8136 /** 8137 * ice_bridge_setlink - Set the hardware bridge mode 8138 * @dev: the netdev being configured 8139 * @nlh: RTNL message 8140 * @flags: bridge setlink flags 8141 * @extack: netlink extended ack 8142 * 8143 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8144 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8145 * not already set for all VSIs connected to this switch. And also update the 8146 * unicast switch filter rules for the corresponding switch of the netdev. 8147 */ 8148 static int 8149 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8150 u16 __always_unused flags, 8151 struct netlink_ext_ack __always_unused *extack) 8152 { 8153 struct ice_netdev_priv *np = netdev_priv(dev); 8154 struct ice_pf *pf = np->vsi->back; 8155 struct nlattr *attr, *br_spec; 8156 struct ice_hw *hw = &pf->hw; 8157 struct ice_sw *pf_sw; 8158 int rem, v, err = 0; 8159 8160 pf_sw = pf->first_sw; 8161 /* find the attribute in the netlink message */ 8162 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8163 if (!br_spec) 8164 return -EINVAL; 8165 8166 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8167 __u16 mode = nla_get_u16(attr); 8168 8169 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8170 return -EINVAL; 8171 /* Continue if bridge mode is not being flipped */ 8172 if (mode == pf_sw->bridge_mode) 8173 continue; 8174 /* Iterates through the PF VSI list and update the loopback 8175 * mode of the VSI 8176 */ 8177 ice_for_each_vsi(pf, v) { 8178 if (!pf->vsi[v]) 8179 continue; 8180 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8181 if (err) 8182 return err; 8183 } 8184 8185 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8186 /* Update the unicast switch filter rules for the corresponding 8187 * switch of the netdev 8188 */ 8189 err = ice_update_sw_rule_bridge_mode(hw); 8190 if (err) { 8191 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8192 mode, err, 8193 ice_aq_str(hw->adminq.sq_last_status)); 8194 /* revert hw->evb_veb */ 8195 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8196 return err; 8197 } 8198 8199 pf_sw->bridge_mode = mode; 8200 } 8201 8202 return 0; 8203 } 8204 8205 /** 8206 * ice_tx_timeout - Respond to a Tx Hang 8207 * @netdev: network interface device structure 8208 * @txqueue: Tx queue 8209 */ 8210 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8211 { 8212 struct ice_netdev_priv *np = netdev_priv(netdev); 8213 struct ice_tx_ring *tx_ring = NULL; 8214 struct ice_vsi *vsi = np->vsi; 8215 struct ice_pf *pf = vsi->back; 8216 u32 i; 8217 8218 pf->tx_timeout_count++; 8219 8220 /* Check if PFC is enabled for the TC to which the queue belongs 8221 * to. If yes then Tx timeout is not caused by a hung queue, no 8222 * need to reset and rebuild 8223 */ 8224 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8225 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8226 txqueue); 8227 return; 8228 } 8229 8230 /* now that we have an index, find the tx_ring struct */ 8231 ice_for_each_txq(vsi, i) 8232 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8233 if (txqueue == vsi->tx_rings[i]->q_index) { 8234 tx_ring = vsi->tx_rings[i]; 8235 break; 8236 } 8237 8238 /* Reset recovery level if enough time has elapsed after last timeout. 8239 * Also ensure no new reset action happens before next timeout period. 8240 */ 8241 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8242 pf->tx_timeout_recovery_level = 1; 8243 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8244 netdev->watchdog_timeo))) 8245 return; 8246 8247 if (tx_ring) { 8248 struct ice_hw *hw = &pf->hw; 8249 u32 head, val = 0; 8250 8251 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8252 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8253 /* Read interrupt register */ 8254 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8255 8256 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8257 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8258 head, tx_ring->next_to_use, val); 8259 } 8260 8261 pf->tx_timeout_last_recovery = jiffies; 8262 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8263 pf->tx_timeout_recovery_level, txqueue); 8264 8265 switch (pf->tx_timeout_recovery_level) { 8266 case 1: 8267 set_bit(ICE_PFR_REQ, pf->state); 8268 break; 8269 case 2: 8270 set_bit(ICE_CORER_REQ, pf->state); 8271 break; 8272 case 3: 8273 set_bit(ICE_GLOBR_REQ, pf->state); 8274 break; 8275 default: 8276 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8277 set_bit(ICE_DOWN, pf->state); 8278 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8279 set_bit(ICE_SERVICE_DIS, pf->state); 8280 break; 8281 } 8282 8283 ice_service_task_schedule(pf); 8284 pf->tx_timeout_recovery_level++; 8285 } 8286 8287 /** 8288 * ice_setup_tc_cls_flower - flower classifier offloads 8289 * @np: net device to configure 8290 * @filter_dev: device on which filter is added 8291 * @cls_flower: offload data 8292 */ 8293 static int 8294 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8295 struct net_device *filter_dev, 8296 struct flow_cls_offload *cls_flower) 8297 { 8298 struct ice_vsi *vsi = np->vsi; 8299 8300 if (cls_flower->common.chain_index) 8301 return -EOPNOTSUPP; 8302 8303 switch (cls_flower->command) { 8304 case FLOW_CLS_REPLACE: 8305 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8306 case FLOW_CLS_DESTROY: 8307 return ice_del_cls_flower(vsi, cls_flower); 8308 default: 8309 return -EINVAL; 8310 } 8311 } 8312 8313 /** 8314 * ice_setup_tc_block_cb - callback handler registered for TC block 8315 * @type: TC SETUP type 8316 * @type_data: TC flower offload data that contains user input 8317 * @cb_priv: netdev private data 8318 */ 8319 static int 8320 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8321 { 8322 struct ice_netdev_priv *np = cb_priv; 8323 8324 switch (type) { 8325 case TC_SETUP_CLSFLOWER: 8326 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8327 type_data); 8328 default: 8329 return -EOPNOTSUPP; 8330 } 8331 } 8332 8333 /** 8334 * ice_validate_mqprio_qopt - Validate TCF input parameters 8335 * @vsi: Pointer to VSI 8336 * @mqprio_qopt: input parameters for mqprio queue configuration 8337 * 8338 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8339 * needed), and make sure user doesn't specify qcount and BW rate limit 8340 * for TCs, which are more than "num_tc" 8341 */ 8342 static int 8343 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8344 struct tc_mqprio_qopt_offload *mqprio_qopt) 8345 { 8346 int non_power_of_2_qcount = 0; 8347 struct ice_pf *pf = vsi->back; 8348 int max_rss_q_cnt = 0; 8349 u64 sum_min_rate = 0; 8350 struct device *dev; 8351 int i, speed; 8352 u8 num_tc; 8353 8354 if (vsi->type != ICE_VSI_PF) 8355 return -EINVAL; 8356 8357 if (mqprio_qopt->qopt.offset[0] != 0 || 8358 mqprio_qopt->qopt.num_tc < 1 || 8359 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8360 return -EINVAL; 8361 8362 dev = ice_pf_to_dev(pf); 8363 vsi->ch_rss_size = 0; 8364 num_tc = mqprio_qopt->qopt.num_tc; 8365 speed = ice_get_link_speed_kbps(vsi); 8366 8367 for (i = 0; num_tc; i++) { 8368 int qcount = mqprio_qopt->qopt.count[i]; 8369 u64 max_rate, min_rate, rem; 8370 8371 if (!qcount) 8372 return -EINVAL; 8373 8374 if (is_power_of_2(qcount)) { 8375 if (non_power_of_2_qcount && 8376 qcount > non_power_of_2_qcount) { 8377 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8378 qcount, non_power_of_2_qcount); 8379 return -EINVAL; 8380 } 8381 if (qcount > max_rss_q_cnt) 8382 max_rss_q_cnt = qcount; 8383 } else { 8384 if (non_power_of_2_qcount && 8385 qcount != non_power_of_2_qcount) { 8386 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8387 qcount, non_power_of_2_qcount); 8388 return -EINVAL; 8389 } 8390 if (qcount < max_rss_q_cnt) { 8391 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8392 qcount, max_rss_q_cnt); 8393 return -EINVAL; 8394 } 8395 max_rss_q_cnt = qcount; 8396 non_power_of_2_qcount = qcount; 8397 } 8398 8399 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8400 * converts the bandwidth rate limit into Bytes/s when 8401 * passing it down to the driver. So convert input bandwidth 8402 * from Bytes/s to Kbps 8403 */ 8404 max_rate = mqprio_qopt->max_rate[i]; 8405 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8406 8407 /* min_rate is minimum guaranteed rate and it can't be zero */ 8408 min_rate = mqprio_qopt->min_rate[i]; 8409 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8410 sum_min_rate += min_rate; 8411 8412 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8413 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8414 min_rate, ICE_MIN_BW_LIMIT); 8415 return -EINVAL; 8416 } 8417 8418 if (max_rate && max_rate > speed) { 8419 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8420 i, max_rate, speed); 8421 return -EINVAL; 8422 } 8423 8424 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8425 if (rem) { 8426 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8427 i, ICE_MIN_BW_LIMIT); 8428 return -EINVAL; 8429 } 8430 8431 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8432 if (rem) { 8433 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8434 i, ICE_MIN_BW_LIMIT); 8435 return -EINVAL; 8436 } 8437 8438 /* min_rate can't be more than max_rate, except when max_rate 8439 * is zero (implies max_rate sought is max line rate). In such 8440 * a case min_rate can be more than max. 8441 */ 8442 if (max_rate && min_rate > max_rate) { 8443 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8444 min_rate, max_rate); 8445 return -EINVAL; 8446 } 8447 8448 if (i >= mqprio_qopt->qopt.num_tc - 1) 8449 break; 8450 if (mqprio_qopt->qopt.offset[i + 1] != 8451 (mqprio_qopt->qopt.offset[i] + qcount)) 8452 return -EINVAL; 8453 } 8454 if (vsi->num_rxq < 8455 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8456 return -EINVAL; 8457 if (vsi->num_txq < 8458 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8459 return -EINVAL; 8460 8461 if (sum_min_rate && sum_min_rate > (u64)speed) { 8462 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8463 sum_min_rate, speed); 8464 return -EINVAL; 8465 } 8466 8467 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8468 vsi->ch_rss_size = max_rss_q_cnt; 8469 8470 return 0; 8471 } 8472 8473 /** 8474 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8475 * @pf: ptr to PF device 8476 * @vsi: ptr to VSI 8477 */ 8478 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8479 { 8480 struct device *dev = ice_pf_to_dev(pf); 8481 bool added = false; 8482 struct ice_hw *hw; 8483 int flow; 8484 8485 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8486 return -EINVAL; 8487 8488 hw = &pf->hw; 8489 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8490 struct ice_fd_hw_prof *prof; 8491 int tun, status; 8492 u64 entry_h; 8493 8494 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8495 hw->fdir_prof[flow]->cnt)) 8496 continue; 8497 8498 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8499 enum ice_flow_priority prio; 8500 8501 /* add this VSI to FDir profile for this flow */ 8502 prio = ICE_FLOW_PRIO_NORMAL; 8503 prof = hw->fdir_prof[flow]; 8504 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8505 prof->prof_id[tun], 8506 prof->vsi_h[0], vsi->idx, 8507 prio, prof->fdir_seg[tun], 8508 &entry_h); 8509 if (status) { 8510 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8511 vsi->idx, flow); 8512 continue; 8513 } 8514 8515 prof->entry_h[prof->cnt][tun] = entry_h; 8516 } 8517 8518 /* store VSI for filter replay and delete */ 8519 prof->vsi_h[prof->cnt] = vsi->idx; 8520 prof->cnt++; 8521 8522 added = true; 8523 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8524 flow); 8525 } 8526 8527 if (!added) 8528 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8529 8530 return 0; 8531 } 8532 8533 /** 8534 * ice_add_channel - add a channel by adding VSI 8535 * @pf: ptr to PF device 8536 * @sw_id: underlying HW switching element ID 8537 * @ch: ptr to channel structure 8538 * 8539 * Add a channel (VSI) using add_vsi and queue_map 8540 */ 8541 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8542 { 8543 struct device *dev = ice_pf_to_dev(pf); 8544 struct ice_vsi *vsi; 8545 8546 if (ch->type != ICE_VSI_CHNL) { 8547 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8548 return -EINVAL; 8549 } 8550 8551 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8552 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8553 dev_err(dev, "create chnl VSI failure\n"); 8554 return -EINVAL; 8555 } 8556 8557 ice_add_vsi_to_fdir(pf, vsi); 8558 8559 ch->sw_id = sw_id; 8560 ch->vsi_num = vsi->vsi_num; 8561 ch->info.mapping_flags = vsi->info.mapping_flags; 8562 ch->ch_vsi = vsi; 8563 /* set the back pointer of channel for newly created VSI */ 8564 vsi->ch = ch; 8565 8566 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8567 sizeof(vsi->info.q_mapping)); 8568 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8569 sizeof(vsi->info.tc_mapping)); 8570 8571 return 0; 8572 } 8573 8574 /** 8575 * ice_chnl_cfg_res 8576 * @vsi: the VSI being setup 8577 * @ch: ptr to channel structure 8578 * 8579 * Configure channel specific resources such as rings, vector. 8580 */ 8581 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8582 { 8583 int i; 8584 8585 for (i = 0; i < ch->num_txq; i++) { 8586 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8587 struct ice_ring_container *rc; 8588 struct ice_tx_ring *tx_ring; 8589 struct ice_rx_ring *rx_ring; 8590 8591 tx_ring = vsi->tx_rings[ch->base_q + i]; 8592 rx_ring = vsi->rx_rings[ch->base_q + i]; 8593 if (!tx_ring || !rx_ring) 8594 continue; 8595 8596 /* setup ring being channel enabled */ 8597 tx_ring->ch = ch; 8598 rx_ring->ch = ch; 8599 8600 /* following code block sets up vector specific attributes */ 8601 tx_q_vector = tx_ring->q_vector; 8602 rx_q_vector = rx_ring->q_vector; 8603 if (!tx_q_vector && !rx_q_vector) 8604 continue; 8605 8606 if (tx_q_vector) { 8607 tx_q_vector->ch = ch; 8608 /* setup Tx and Rx ITR setting if DIM is off */ 8609 rc = &tx_q_vector->tx; 8610 if (!ITR_IS_DYNAMIC(rc)) 8611 ice_write_itr(rc, rc->itr_setting); 8612 } 8613 if (rx_q_vector) { 8614 rx_q_vector->ch = ch; 8615 /* setup Tx and Rx ITR setting if DIM is off */ 8616 rc = &rx_q_vector->rx; 8617 if (!ITR_IS_DYNAMIC(rc)) 8618 ice_write_itr(rc, rc->itr_setting); 8619 } 8620 } 8621 8622 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8623 * GLINT_ITR register would have written to perform in-context 8624 * update, hence perform flush 8625 */ 8626 if (ch->num_txq || ch->num_rxq) 8627 ice_flush(&vsi->back->hw); 8628 } 8629 8630 /** 8631 * ice_cfg_chnl_all_res - configure channel resources 8632 * @vsi: pte to main_vsi 8633 * @ch: ptr to channel structure 8634 * 8635 * This function configures channel specific resources such as flow-director 8636 * counter index, and other resources such as queues, vectors, ITR settings 8637 */ 8638 static void 8639 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8640 { 8641 /* configure channel (aka ADQ) resources such as queues, vectors, 8642 * ITR settings for channel specific vectors and anything else 8643 */ 8644 ice_chnl_cfg_res(vsi, ch); 8645 } 8646 8647 /** 8648 * ice_setup_hw_channel - setup new channel 8649 * @pf: ptr to PF device 8650 * @vsi: the VSI being setup 8651 * @ch: ptr to channel structure 8652 * @sw_id: underlying HW switching element ID 8653 * @type: type of channel to be created (VMDq2/VF) 8654 * 8655 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8656 * and configures Tx rings accordingly 8657 */ 8658 static int 8659 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8660 struct ice_channel *ch, u16 sw_id, u8 type) 8661 { 8662 struct device *dev = ice_pf_to_dev(pf); 8663 int ret; 8664 8665 ch->base_q = vsi->next_base_q; 8666 ch->type = type; 8667 8668 ret = ice_add_channel(pf, sw_id, ch); 8669 if (ret) { 8670 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8671 return ret; 8672 } 8673 8674 /* configure/setup ADQ specific resources */ 8675 ice_cfg_chnl_all_res(vsi, ch); 8676 8677 /* make sure to update the next_base_q so that subsequent channel's 8678 * (aka ADQ) VSI queue map is correct 8679 */ 8680 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8681 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8682 ch->num_rxq); 8683 8684 return 0; 8685 } 8686 8687 /** 8688 * ice_setup_channel - setup new channel using uplink element 8689 * @pf: ptr to PF device 8690 * @vsi: the VSI being setup 8691 * @ch: ptr to channel structure 8692 * 8693 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8694 * and uplink switching element 8695 */ 8696 static bool 8697 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8698 struct ice_channel *ch) 8699 { 8700 struct device *dev = ice_pf_to_dev(pf); 8701 u16 sw_id; 8702 int ret; 8703 8704 if (vsi->type != ICE_VSI_PF) { 8705 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8706 return false; 8707 } 8708 8709 sw_id = pf->first_sw->sw_id; 8710 8711 /* create channel (VSI) */ 8712 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8713 if (ret) { 8714 dev_err(dev, "failed to setup hw_channel\n"); 8715 return false; 8716 } 8717 dev_dbg(dev, "successfully created channel()\n"); 8718 8719 return ch->ch_vsi ? true : false; 8720 } 8721 8722 /** 8723 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8724 * @vsi: VSI to be configured 8725 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8726 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8727 */ 8728 static int 8729 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8730 { 8731 int err; 8732 8733 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8734 if (err) 8735 return err; 8736 8737 return ice_set_max_bw_limit(vsi, max_tx_rate); 8738 } 8739 8740 /** 8741 * ice_create_q_channel - function to create channel 8742 * @vsi: VSI to be configured 8743 * @ch: ptr to channel (it contains channel specific params) 8744 * 8745 * This function creates channel (VSI) using num_queues specified by user, 8746 * reconfigs RSS if needed. 8747 */ 8748 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8749 { 8750 struct ice_pf *pf = vsi->back; 8751 struct device *dev; 8752 8753 if (!ch) 8754 return -EINVAL; 8755 8756 dev = ice_pf_to_dev(pf); 8757 if (!ch->num_txq || !ch->num_rxq) { 8758 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8759 return -EINVAL; 8760 } 8761 8762 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8763 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8764 vsi->cnt_q_avail, ch->num_txq); 8765 return -EINVAL; 8766 } 8767 8768 if (!ice_setup_channel(pf, vsi, ch)) { 8769 dev_info(dev, "Failed to setup channel\n"); 8770 return -EINVAL; 8771 } 8772 /* configure BW rate limit */ 8773 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8774 int ret; 8775 8776 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8777 ch->min_tx_rate); 8778 if (ret) 8779 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8780 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8781 else 8782 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8783 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8784 } 8785 8786 vsi->cnt_q_avail -= ch->num_txq; 8787 8788 return 0; 8789 } 8790 8791 /** 8792 * ice_rem_all_chnl_fltrs - removes all channel filters 8793 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8794 * 8795 * Remove all advanced switch filters only if they are channel specific 8796 * tc-flower based filter 8797 */ 8798 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8799 { 8800 struct ice_tc_flower_fltr *fltr; 8801 struct hlist_node *node; 8802 8803 /* to remove all channel filters, iterate an ordered list of filters */ 8804 hlist_for_each_entry_safe(fltr, node, 8805 &pf->tc_flower_fltr_list, 8806 tc_flower_node) { 8807 struct ice_rule_query_data rule; 8808 int status; 8809 8810 /* for now process only channel specific filters */ 8811 if (!ice_is_chnl_fltr(fltr)) 8812 continue; 8813 8814 rule.rid = fltr->rid; 8815 rule.rule_id = fltr->rule_id; 8816 rule.vsi_handle = fltr->dest_vsi_handle; 8817 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8818 if (status) { 8819 if (status == -ENOENT) 8820 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8821 rule.rule_id); 8822 else 8823 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8824 status); 8825 } else if (fltr->dest_vsi) { 8826 /* update advanced switch filter count */ 8827 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8828 u32 flags = fltr->flags; 8829 8830 fltr->dest_vsi->num_chnl_fltr--; 8831 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8832 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8833 pf->num_dmac_chnl_fltrs--; 8834 } 8835 } 8836 8837 hlist_del(&fltr->tc_flower_node); 8838 kfree(fltr); 8839 } 8840 } 8841 8842 /** 8843 * ice_remove_q_channels - Remove queue channels for the TCs 8844 * @vsi: VSI to be configured 8845 * @rem_fltr: delete advanced switch filter or not 8846 * 8847 * Remove queue channels for the TCs 8848 */ 8849 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8850 { 8851 struct ice_channel *ch, *ch_tmp; 8852 struct ice_pf *pf = vsi->back; 8853 int i; 8854 8855 /* remove all tc-flower based filter if they are channel filters only */ 8856 if (rem_fltr) 8857 ice_rem_all_chnl_fltrs(pf); 8858 8859 /* remove ntuple filters since queue configuration is being changed */ 8860 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8861 struct ice_hw *hw = &pf->hw; 8862 8863 mutex_lock(&hw->fdir_fltr_lock); 8864 ice_fdir_del_all_fltrs(vsi); 8865 mutex_unlock(&hw->fdir_fltr_lock); 8866 } 8867 8868 /* perform cleanup for channels if they exist */ 8869 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8870 struct ice_vsi *ch_vsi; 8871 8872 list_del(&ch->list); 8873 ch_vsi = ch->ch_vsi; 8874 if (!ch_vsi) { 8875 kfree(ch); 8876 continue; 8877 } 8878 8879 /* Reset queue contexts */ 8880 for (i = 0; i < ch->num_rxq; i++) { 8881 struct ice_tx_ring *tx_ring; 8882 struct ice_rx_ring *rx_ring; 8883 8884 tx_ring = vsi->tx_rings[ch->base_q + i]; 8885 rx_ring = vsi->rx_rings[ch->base_q + i]; 8886 if (tx_ring) { 8887 tx_ring->ch = NULL; 8888 if (tx_ring->q_vector) 8889 tx_ring->q_vector->ch = NULL; 8890 } 8891 if (rx_ring) { 8892 rx_ring->ch = NULL; 8893 if (rx_ring->q_vector) 8894 rx_ring->q_vector->ch = NULL; 8895 } 8896 } 8897 8898 /* Release FD resources for the channel VSI */ 8899 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8900 8901 /* clear the VSI from scheduler tree */ 8902 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8903 8904 /* Delete VSI from FW, PF and HW VSI arrays */ 8905 ice_vsi_delete(ch->ch_vsi); 8906 8907 /* free the channel */ 8908 kfree(ch); 8909 } 8910 8911 /* clear the channel VSI map which is stored in main VSI */ 8912 ice_for_each_chnl_tc(i) 8913 vsi->tc_map_vsi[i] = NULL; 8914 8915 /* reset main VSI's all TC information */ 8916 vsi->all_enatc = 0; 8917 vsi->all_numtc = 0; 8918 } 8919 8920 /** 8921 * ice_rebuild_channels - rebuild channel 8922 * @pf: ptr to PF 8923 * 8924 * Recreate channel VSIs and replay filters 8925 */ 8926 static int ice_rebuild_channels(struct ice_pf *pf) 8927 { 8928 struct device *dev = ice_pf_to_dev(pf); 8929 struct ice_vsi *main_vsi; 8930 bool rem_adv_fltr = true; 8931 struct ice_channel *ch; 8932 struct ice_vsi *vsi; 8933 int tc_idx = 1; 8934 int i, err; 8935 8936 main_vsi = ice_get_main_vsi(pf); 8937 if (!main_vsi) 8938 return 0; 8939 8940 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8941 main_vsi->old_numtc == 1) 8942 return 0; /* nothing to be done */ 8943 8944 /* reconfigure main VSI based on old value of TC and cached values 8945 * for MQPRIO opts 8946 */ 8947 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8948 if (err) { 8949 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8950 main_vsi->old_ena_tc, main_vsi->vsi_num); 8951 return err; 8952 } 8953 8954 /* rebuild ADQ VSIs */ 8955 ice_for_each_vsi(pf, i) { 8956 enum ice_vsi_type type; 8957 8958 vsi = pf->vsi[i]; 8959 if (!vsi || vsi->type != ICE_VSI_CHNL) 8960 continue; 8961 8962 type = vsi->type; 8963 8964 /* rebuild ADQ VSI */ 8965 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8966 if (err) { 8967 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8968 ice_vsi_type_str(type), vsi->idx, err); 8969 goto cleanup; 8970 } 8971 8972 /* Re-map HW VSI number, using VSI handle that has been 8973 * previously validated in ice_replay_vsi() call above 8974 */ 8975 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8976 8977 /* replay filters for the VSI */ 8978 err = ice_replay_vsi(&pf->hw, vsi->idx); 8979 if (err) { 8980 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8981 ice_vsi_type_str(type), err, vsi->idx); 8982 rem_adv_fltr = false; 8983 goto cleanup; 8984 } 8985 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8986 ice_vsi_type_str(type), vsi->idx); 8987 8988 /* store ADQ VSI at correct TC index in main VSI's 8989 * map of TC to VSI 8990 */ 8991 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8992 } 8993 8994 /* ADQ VSI(s) has been rebuilt successfully, so setup 8995 * channel for main VSI's Tx and Rx rings 8996 */ 8997 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8998 struct ice_vsi *ch_vsi; 8999 9000 ch_vsi = ch->ch_vsi; 9001 if (!ch_vsi) 9002 continue; 9003 9004 /* reconfig channel resources */ 9005 ice_cfg_chnl_all_res(main_vsi, ch); 9006 9007 /* replay BW rate limit if it is non-zero */ 9008 if (!ch->max_tx_rate && !ch->min_tx_rate) 9009 continue; 9010 9011 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9012 ch->min_tx_rate); 9013 if (err) 9014 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9015 err, ch->max_tx_rate, ch->min_tx_rate, 9016 ch_vsi->vsi_num); 9017 else 9018 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9019 ch->max_tx_rate, ch->min_tx_rate, 9020 ch_vsi->vsi_num); 9021 } 9022 9023 /* reconfig RSS for main VSI */ 9024 if (main_vsi->ch_rss_size) 9025 ice_vsi_cfg_rss_lut_key(main_vsi); 9026 9027 return 0; 9028 9029 cleanup: 9030 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9031 return err; 9032 } 9033 9034 /** 9035 * ice_create_q_channels - Add queue channel for the given TCs 9036 * @vsi: VSI to be configured 9037 * 9038 * Configures queue channel mapping to the given TCs 9039 */ 9040 static int ice_create_q_channels(struct ice_vsi *vsi) 9041 { 9042 struct ice_pf *pf = vsi->back; 9043 struct ice_channel *ch; 9044 int ret = 0, i; 9045 9046 ice_for_each_chnl_tc(i) { 9047 if (!(vsi->all_enatc & BIT(i))) 9048 continue; 9049 9050 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9051 if (!ch) { 9052 ret = -ENOMEM; 9053 goto err_free; 9054 } 9055 INIT_LIST_HEAD(&ch->list); 9056 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9057 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9058 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9059 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9060 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9061 9062 /* convert to Kbits/s */ 9063 if (ch->max_tx_rate) 9064 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9065 ICE_BW_KBPS_DIVISOR); 9066 if (ch->min_tx_rate) 9067 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9068 ICE_BW_KBPS_DIVISOR); 9069 9070 ret = ice_create_q_channel(vsi, ch); 9071 if (ret) { 9072 dev_err(ice_pf_to_dev(pf), 9073 "failed creating channel TC:%d\n", i); 9074 kfree(ch); 9075 goto err_free; 9076 } 9077 list_add_tail(&ch->list, &vsi->ch_list); 9078 vsi->tc_map_vsi[i] = ch->ch_vsi; 9079 dev_dbg(ice_pf_to_dev(pf), 9080 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9081 } 9082 return 0; 9083 9084 err_free: 9085 ice_remove_q_channels(vsi, false); 9086 9087 return ret; 9088 } 9089 9090 /** 9091 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9092 * @netdev: net device to configure 9093 * @type_data: TC offload data 9094 */ 9095 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9096 { 9097 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9098 struct ice_netdev_priv *np = netdev_priv(netdev); 9099 struct ice_vsi *vsi = np->vsi; 9100 struct ice_pf *pf = vsi->back; 9101 u16 mode, ena_tc_qdisc = 0; 9102 int cur_txq, cur_rxq; 9103 u8 hw = 0, num_tcf; 9104 struct device *dev; 9105 int ret, i; 9106 9107 dev = ice_pf_to_dev(pf); 9108 num_tcf = mqprio_qopt->qopt.num_tc; 9109 hw = mqprio_qopt->qopt.hw; 9110 mode = mqprio_qopt->mode; 9111 if (!hw) { 9112 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9113 vsi->ch_rss_size = 0; 9114 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9115 goto config_tcf; 9116 } 9117 9118 /* Generate queue region map for number of TCF requested */ 9119 for (i = 0; i < num_tcf; i++) 9120 ena_tc_qdisc |= BIT(i); 9121 9122 switch (mode) { 9123 case TC_MQPRIO_MODE_CHANNEL: 9124 9125 if (pf->hw.port_info->is_custom_tx_enabled) { 9126 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9127 return -EBUSY; 9128 } 9129 ice_tear_down_devlink_rate_tree(pf); 9130 9131 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9132 if (ret) { 9133 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9134 ret); 9135 return ret; 9136 } 9137 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9138 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9139 /* don't assume state of hw_tc_offload during driver load 9140 * and set the flag for TC flower filter if hw_tc_offload 9141 * already ON 9142 */ 9143 if (vsi->netdev->features & NETIF_F_HW_TC) 9144 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9145 break; 9146 default: 9147 return -EINVAL; 9148 } 9149 9150 config_tcf: 9151 9152 /* Requesting same TCF configuration as already enabled */ 9153 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9154 mode != TC_MQPRIO_MODE_CHANNEL) 9155 return 0; 9156 9157 /* Pause VSI queues */ 9158 ice_dis_vsi(vsi, true); 9159 9160 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9161 ice_remove_q_channels(vsi, true); 9162 9163 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9164 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9165 num_online_cpus()); 9166 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9167 num_online_cpus()); 9168 } else { 9169 /* logic to rebuild VSI, same like ethtool -L */ 9170 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9171 9172 for (i = 0; i < num_tcf; i++) { 9173 if (!(ena_tc_qdisc & BIT(i))) 9174 continue; 9175 9176 offset = vsi->mqprio_qopt.qopt.offset[i]; 9177 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9178 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9179 } 9180 vsi->req_txq = offset + qcount_tx; 9181 vsi->req_rxq = offset + qcount_rx; 9182 9183 /* store away original rss_size info, so that it gets reused 9184 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9185 * determine, what should be the rss_sizefor main VSI 9186 */ 9187 vsi->orig_rss_size = vsi->rss_size; 9188 } 9189 9190 /* save current values of Tx and Rx queues before calling VSI rebuild 9191 * for fallback option 9192 */ 9193 cur_txq = vsi->num_txq; 9194 cur_rxq = vsi->num_rxq; 9195 9196 /* proceed with rebuild main VSI using correct number of queues */ 9197 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9198 if (ret) { 9199 /* fallback to current number of queues */ 9200 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9201 vsi->req_txq = cur_txq; 9202 vsi->req_rxq = cur_rxq; 9203 clear_bit(ICE_RESET_FAILED, pf->state); 9204 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9205 dev_err(dev, "Rebuild of main VSI failed again\n"); 9206 return ret; 9207 } 9208 } 9209 9210 vsi->all_numtc = num_tcf; 9211 vsi->all_enatc = ena_tc_qdisc; 9212 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9213 if (ret) { 9214 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9215 vsi->vsi_num); 9216 goto exit; 9217 } 9218 9219 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9220 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9221 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9222 9223 /* set TC0 rate limit if specified */ 9224 if (max_tx_rate || min_tx_rate) { 9225 /* convert to Kbits/s */ 9226 if (max_tx_rate) 9227 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9228 if (min_tx_rate) 9229 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9230 9231 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9232 if (!ret) { 9233 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9234 max_tx_rate, min_tx_rate, vsi->vsi_num); 9235 } else { 9236 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9237 max_tx_rate, min_tx_rate, vsi->vsi_num); 9238 goto exit; 9239 } 9240 } 9241 ret = ice_create_q_channels(vsi); 9242 if (ret) { 9243 netdev_err(netdev, "failed configuring queue channels\n"); 9244 goto exit; 9245 } else { 9246 netdev_dbg(netdev, "successfully configured channels\n"); 9247 } 9248 } 9249 9250 if (vsi->ch_rss_size) 9251 ice_vsi_cfg_rss_lut_key(vsi); 9252 9253 exit: 9254 /* if error, reset the all_numtc and all_enatc */ 9255 if (ret) { 9256 vsi->all_numtc = 0; 9257 vsi->all_enatc = 0; 9258 } 9259 /* resume VSI */ 9260 ice_ena_vsi(vsi, true); 9261 9262 return ret; 9263 } 9264 9265 static LIST_HEAD(ice_block_cb_list); 9266 9267 static int 9268 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9269 void *type_data) 9270 { 9271 struct ice_netdev_priv *np = netdev_priv(netdev); 9272 struct ice_pf *pf = np->vsi->back; 9273 bool locked = false; 9274 int err; 9275 9276 switch (type) { 9277 case TC_SETUP_BLOCK: 9278 return flow_block_cb_setup_simple(type_data, 9279 &ice_block_cb_list, 9280 ice_setup_tc_block_cb, 9281 np, np, true); 9282 case TC_SETUP_QDISC_MQPRIO: 9283 if (ice_is_eswitch_mode_switchdev(pf)) { 9284 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9285 return -EOPNOTSUPP; 9286 } 9287 9288 if (pf->adev) { 9289 mutex_lock(&pf->adev_mutex); 9290 device_lock(&pf->adev->dev); 9291 locked = true; 9292 if (pf->adev->dev.driver) { 9293 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9294 err = -EBUSY; 9295 goto adev_unlock; 9296 } 9297 } 9298 9299 /* setup traffic classifier for receive side */ 9300 mutex_lock(&pf->tc_mutex); 9301 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9302 mutex_unlock(&pf->tc_mutex); 9303 9304 adev_unlock: 9305 if (locked) { 9306 device_unlock(&pf->adev->dev); 9307 mutex_unlock(&pf->adev_mutex); 9308 } 9309 return err; 9310 default: 9311 return -EOPNOTSUPP; 9312 } 9313 return -EOPNOTSUPP; 9314 } 9315 9316 static struct ice_indr_block_priv * 9317 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9318 struct net_device *netdev) 9319 { 9320 struct ice_indr_block_priv *cb_priv; 9321 9322 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9323 if (!cb_priv->netdev) 9324 return NULL; 9325 if (cb_priv->netdev == netdev) 9326 return cb_priv; 9327 } 9328 return NULL; 9329 } 9330 9331 static int 9332 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9333 void *indr_priv) 9334 { 9335 struct ice_indr_block_priv *priv = indr_priv; 9336 struct ice_netdev_priv *np = priv->np; 9337 9338 switch (type) { 9339 case TC_SETUP_CLSFLOWER: 9340 return ice_setup_tc_cls_flower(np, priv->netdev, 9341 (struct flow_cls_offload *) 9342 type_data); 9343 default: 9344 return -EOPNOTSUPP; 9345 } 9346 } 9347 9348 static int 9349 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9350 struct ice_netdev_priv *np, 9351 struct flow_block_offload *f, void *data, 9352 void (*cleanup)(struct flow_block_cb *block_cb)) 9353 { 9354 struct ice_indr_block_priv *indr_priv; 9355 struct flow_block_cb *block_cb; 9356 9357 if (!ice_is_tunnel_supported(netdev) && 9358 !(is_vlan_dev(netdev) && 9359 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9360 return -EOPNOTSUPP; 9361 9362 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9363 return -EOPNOTSUPP; 9364 9365 switch (f->command) { 9366 case FLOW_BLOCK_BIND: 9367 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9368 if (indr_priv) 9369 return -EEXIST; 9370 9371 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9372 if (!indr_priv) 9373 return -ENOMEM; 9374 9375 indr_priv->netdev = netdev; 9376 indr_priv->np = np; 9377 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9378 9379 block_cb = 9380 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9381 indr_priv, indr_priv, 9382 ice_rep_indr_tc_block_unbind, 9383 f, netdev, sch, data, np, 9384 cleanup); 9385 9386 if (IS_ERR(block_cb)) { 9387 list_del(&indr_priv->list); 9388 kfree(indr_priv); 9389 return PTR_ERR(block_cb); 9390 } 9391 flow_block_cb_add(block_cb, f); 9392 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9393 break; 9394 case FLOW_BLOCK_UNBIND: 9395 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9396 if (!indr_priv) 9397 return -ENOENT; 9398 9399 block_cb = flow_block_cb_lookup(f->block, 9400 ice_indr_setup_block_cb, 9401 indr_priv); 9402 if (!block_cb) 9403 return -ENOENT; 9404 9405 flow_indr_block_cb_remove(block_cb, f); 9406 9407 list_del(&block_cb->driver_list); 9408 break; 9409 default: 9410 return -EOPNOTSUPP; 9411 } 9412 return 0; 9413 } 9414 9415 static int 9416 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9417 void *cb_priv, enum tc_setup_type type, void *type_data, 9418 void *data, 9419 void (*cleanup)(struct flow_block_cb *block_cb)) 9420 { 9421 switch (type) { 9422 case TC_SETUP_BLOCK: 9423 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9424 data, cleanup); 9425 9426 default: 9427 return -EOPNOTSUPP; 9428 } 9429 } 9430 9431 /** 9432 * ice_open - Called when a network interface becomes active 9433 * @netdev: network interface device structure 9434 * 9435 * The open entry point is called when a network interface is made 9436 * active by the system (IFF_UP). At this point all resources needed 9437 * for transmit and receive operations are allocated, the interrupt 9438 * handler is registered with the OS, the netdev watchdog is enabled, 9439 * and the stack is notified that the interface is ready. 9440 * 9441 * Returns 0 on success, negative value on failure 9442 */ 9443 int ice_open(struct net_device *netdev) 9444 { 9445 struct ice_netdev_priv *np = netdev_priv(netdev); 9446 struct ice_pf *pf = np->vsi->back; 9447 9448 if (ice_is_reset_in_progress(pf->state)) { 9449 netdev_err(netdev, "can't open net device while reset is in progress"); 9450 return -EBUSY; 9451 } 9452 9453 return ice_open_internal(netdev); 9454 } 9455 9456 /** 9457 * ice_open_internal - Called when a network interface becomes active 9458 * @netdev: network interface device structure 9459 * 9460 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9461 * handling routine 9462 * 9463 * Returns 0 on success, negative value on failure 9464 */ 9465 int ice_open_internal(struct net_device *netdev) 9466 { 9467 struct ice_netdev_priv *np = netdev_priv(netdev); 9468 struct ice_vsi *vsi = np->vsi; 9469 struct ice_pf *pf = vsi->back; 9470 struct ice_port_info *pi; 9471 int err; 9472 9473 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9474 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9475 return -EIO; 9476 } 9477 9478 netif_carrier_off(netdev); 9479 9480 pi = vsi->port_info; 9481 err = ice_update_link_info(pi); 9482 if (err) { 9483 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9484 return err; 9485 } 9486 9487 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9488 9489 /* Set PHY if there is media, otherwise, turn off PHY */ 9490 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9491 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9492 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9493 err = ice_init_phy_user_cfg(pi); 9494 if (err) { 9495 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9496 err); 9497 return err; 9498 } 9499 } 9500 9501 err = ice_configure_phy(vsi); 9502 if (err) { 9503 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9504 err); 9505 return err; 9506 } 9507 } else { 9508 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9509 ice_set_link(vsi, false); 9510 } 9511 9512 err = ice_vsi_open(vsi); 9513 if (err) 9514 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9515 vsi->vsi_num, vsi->vsw->sw_id); 9516 9517 /* Update existing tunnels information */ 9518 udp_tunnel_get_rx_info(netdev); 9519 9520 return err; 9521 } 9522 9523 /** 9524 * ice_stop - Disables a network interface 9525 * @netdev: network interface device structure 9526 * 9527 * The stop entry point is called when an interface is de-activated by the OS, 9528 * and the netdevice enters the DOWN state. The hardware is still under the 9529 * driver's control, but the netdev interface is disabled. 9530 * 9531 * Returns success only - not allowed to fail 9532 */ 9533 int ice_stop(struct net_device *netdev) 9534 { 9535 struct ice_netdev_priv *np = netdev_priv(netdev); 9536 struct ice_vsi *vsi = np->vsi; 9537 struct ice_pf *pf = vsi->back; 9538 9539 if (ice_is_reset_in_progress(pf->state)) { 9540 netdev_err(netdev, "can't stop net device while reset is in progress"); 9541 return -EBUSY; 9542 } 9543 9544 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9545 int link_err = ice_force_phys_link_state(vsi, false); 9546 9547 if (link_err) { 9548 if (link_err == -ENOMEDIUM) 9549 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9550 vsi->vsi_num); 9551 else 9552 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9553 vsi->vsi_num, link_err); 9554 9555 ice_vsi_close(vsi); 9556 return -EIO; 9557 } 9558 } 9559 9560 ice_vsi_close(vsi); 9561 9562 return 0; 9563 } 9564 9565 /** 9566 * ice_features_check - Validate encapsulated packet conforms to limits 9567 * @skb: skb buffer 9568 * @netdev: This port's netdev 9569 * @features: Offload features that the stack believes apply 9570 */ 9571 static netdev_features_t 9572 ice_features_check(struct sk_buff *skb, 9573 struct net_device __always_unused *netdev, 9574 netdev_features_t features) 9575 { 9576 bool gso = skb_is_gso(skb); 9577 size_t len; 9578 9579 /* No point in doing any of this if neither checksum nor GSO are 9580 * being requested for this frame. We can rule out both by just 9581 * checking for CHECKSUM_PARTIAL 9582 */ 9583 if (skb->ip_summed != CHECKSUM_PARTIAL) 9584 return features; 9585 9586 /* We cannot support GSO if the MSS is going to be less than 9587 * 64 bytes. If it is then we need to drop support for GSO. 9588 */ 9589 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9590 features &= ~NETIF_F_GSO_MASK; 9591 9592 len = skb_network_offset(skb); 9593 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9594 goto out_rm_features; 9595 9596 len = skb_network_header_len(skb); 9597 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9598 goto out_rm_features; 9599 9600 if (skb->encapsulation) { 9601 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9602 * the case of IPIP frames, the transport header pointer is 9603 * after the inner header! So check to make sure that this 9604 * is a GRE or UDP_TUNNEL frame before doing that math. 9605 */ 9606 if (gso && (skb_shinfo(skb)->gso_type & 9607 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9608 len = skb_inner_network_header(skb) - 9609 skb_transport_header(skb); 9610 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9611 goto out_rm_features; 9612 } 9613 9614 len = skb_inner_network_header_len(skb); 9615 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9616 goto out_rm_features; 9617 } 9618 9619 return features; 9620 out_rm_features: 9621 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9622 } 9623 9624 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9625 .ndo_open = ice_open, 9626 .ndo_stop = ice_stop, 9627 .ndo_start_xmit = ice_start_xmit, 9628 .ndo_set_mac_address = ice_set_mac_address, 9629 .ndo_validate_addr = eth_validate_addr, 9630 .ndo_change_mtu = ice_change_mtu, 9631 .ndo_get_stats64 = ice_get_stats64, 9632 .ndo_tx_timeout = ice_tx_timeout, 9633 .ndo_bpf = ice_xdp_safe_mode, 9634 }; 9635 9636 static const struct net_device_ops ice_netdev_ops = { 9637 .ndo_open = ice_open, 9638 .ndo_stop = ice_stop, 9639 .ndo_start_xmit = ice_start_xmit, 9640 .ndo_select_queue = ice_select_queue, 9641 .ndo_features_check = ice_features_check, 9642 .ndo_fix_features = ice_fix_features, 9643 .ndo_set_rx_mode = ice_set_rx_mode, 9644 .ndo_set_mac_address = ice_set_mac_address, 9645 .ndo_validate_addr = eth_validate_addr, 9646 .ndo_change_mtu = ice_change_mtu, 9647 .ndo_get_stats64 = ice_get_stats64, 9648 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9649 .ndo_eth_ioctl = ice_eth_ioctl, 9650 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9651 .ndo_set_vf_mac = ice_set_vf_mac, 9652 .ndo_get_vf_config = ice_get_vf_cfg, 9653 .ndo_set_vf_trust = ice_set_vf_trust, 9654 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9655 .ndo_set_vf_link_state = ice_set_vf_link_state, 9656 .ndo_get_vf_stats = ice_get_vf_stats, 9657 .ndo_set_vf_rate = ice_set_vf_bw, 9658 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9659 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9660 .ndo_setup_tc = ice_setup_tc, 9661 .ndo_set_features = ice_set_features, 9662 .ndo_bridge_getlink = ice_bridge_getlink, 9663 .ndo_bridge_setlink = ice_bridge_setlink, 9664 .ndo_fdb_add = ice_fdb_add, 9665 .ndo_fdb_del = ice_fdb_del, 9666 #ifdef CONFIG_RFS_ACCEL 9667 .ndo_rx_flow_steer = ice_rx_flow_steer, 9668 #endif 9669 .ndo_tx_timeout = ice_tx_timeout, 9670 .ndo_bpf = ice_xdp, 9671 .ndo_xdp_xmit = ice_xdp_xmit, 9672 .ndo_xsk_wakeup = ice_xsk_wakeup, 9673 }; 9674