1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 18 static const char ice_driver_string[] = DRV_SUMMARY; 19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 20 21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 24 25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 26 MODULE_DESCRIPTION(DRV_SUMMARY); 27 MODULE_LICENSE("GPL v2"); 28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 29 30 static int debug = -1; 31 module_param(debug, int, 0644); 32 #ifndef CONFIG_DYNAMIC_DEBUG 33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 34 #else 35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 36 #endif /* !CONFIG_DYNAMIC_DEBUG */ 37 38 static struct workqueue_struct *ice_wq; 39 static const struct net_device_ops ice_netdev_safe_mode_ops; 40 static const struct net_device_ops ice_netdev_ops; 41 static int ice_vsi_open(struct ice_vsi *vsi); 42 43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 44 45 static void ice_vsi_release_all(struct ice_pf *pf); 46 47 /** 48 * ice_get_tx_pending - returns number of Tx descriptors not processed 49 * @ring: the ring of descriptors 50 */ 51 static u16 ice_get_tx_pending(struct ice_ring *ring) 52 { 53 u16 head, tail; 54 55 head = ring->next_to_clean; 56 tail = ring->next_to_use; 57 58 if (head != tail) 59 return (head < tail) ? 60 tail - head : (tail + ring->count - head); 61 return 0; 62 } 63 64 /** 65 * ice_check_for_hang_subtask - check for and recover hung queues 66 * @pf: pointer to PF struct 67 */ 68 static void ice_check_for_hang_subtask(struct ice_pf *pf) 69 { 70 struct ice_vsi *vsi = NULL; 71 struct ice_hw *hw; 72 unsigned int i; 73 int packets; 74 u32 v; 75 76 ice_for_each_vsi(pf, v) 77 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 78 vsi = pf->vsi[v]; 79 break; 80 } 81 82 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 83 return; 84 85 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 86 return; 87 88 hw = &vsi->back->hw; 89 90 for (i = 0; i < vsi->num_txq; i++) { 91 struct ice_ring *tx_ring = vsi->tx_rings[i]; 92 93 if (tx_ring && tx_ring->desc) { 94 /* If packet counter has not changed the queue is 95 * likely stalled, so force an interrupt for this 96 * queue. 97 * 98 * prev_pkt would be negative if there was no 99 * pending work. 100 */ 101 packets = tx_ring->stats.pkts & INT_MAX; 102 if (tx_ring->tx_stats.prev_pkt == packets) { 103 /* Trigger sw interrupt to revive the queue */ 104 ice_trigger_sw_intr(hw, tx_ring->q_vector); 105 continue; 106 } 107 108 /* Memory barrier between read of packet count and call 109 * to ice_get_tx_pending() 110 */ 111 smp_rmb(); 112 tx_ring->tx_stats.prev_pkt = 113 ice_get_tx_pending(tx_ring) ? packets : -1; 114 } 115 } 116 } 117 118 /** 119 * ice_init_mac_fltr - Set initial MAC filters 120 * @pf: board private structure 121 * 122 * Set initial set of MAC filters for PF VSI; configure filters for permanent 123 * address and broadcast address. If an error is encountered, netdevice will be 124 * unregistered. 125 */ 126 static int ice_init_mac_fltr(struct ice_pf *pf) 127 { 128 enum ice_status status; 129 struct ice_vsi *vsi; 130 u8 *perm_addr; 131 132 vsi = ice_get_main_vsi(pf); 133 if (!vsi) 134 return -EINVAL; 135 136 perm_addr = vsi->port_info->mac.perm_addr; 137 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 138 if (!status) 139 return 0; 140 141 /* We aren't useful with no MAC filters, so unregister if we 142 * had an error 143 */ 144 if (vsi->netdev->reg_state == NETREG_REGISTERED) { 145 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n", 146 ice_stat_str(status)); 147 unregister_netdev(vsi->netdev); 148 free_netdev(vsi->netdev); 149 vsi->netdev = NULL; 150 } 151 152 return -EIO; 153 } 154 155 /** 156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 157 * @netdev: the net device on which the sync is happening 158 * @addr: MAC address to sync 159 * 160 * This is a callback function which is called by the in kernel device sync 161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 163 * MAC filters from the hardware. 164 */ 165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 166 { 167 struct ice_netdev_priv *np = netdev_priv(netdev); 168 struct ice_vsi *vsi = np->vsi; 169 170 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 171 ICE_FWD_TO_VSI)) 172 return -EINVAL; 173 174 return 0; 175 } 176 177 /** 178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 179 * @netdev: the net device on which the unsync is happening 180 * @addr: MAC address to unsync 181 * 182 * This is a callback function which is called by the in kernel device unsync 183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 185 * delete the MAC filters from the hardware. 186 */ 187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 188 { 189 struct ice_netdev_priv *np = netdev_priv(netdev); 190 struct ice_vsi *vsi = np->vsi; 191 192 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 193 ICE_FWD_TO_VSI)) 194 return -EINVAL; 195 196 return 0; 197 } 198 199 /** 200 * ice_vsi_fltr_changed - check if filter state changed 201 * @vsi: VSI to be checked 202 * 203 * returns true if filter state has changed, false otherwise. 204 */ 205 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 206 { 207 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 208 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 209 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 210 } 211 212 /** 213 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 214 * @vsi: the VSI being configured 215 * @promisc_m: mask of promiscuous config bits 216 * @set_promisc: enable or disable promisc flag request 217 * 218 */ 219 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 220 { 221 struct ice_hw *hw = &vsi->back->hw; 222 enum ice_status status = 0; 223 224 if (vsi->type != ICE_VSI_PF) 225 return 0; 226 227 if (vsi->vlan_ena) { 228 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 229 set_promisc); 230 } else { 231 if (set_promisc) 232 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 233 0); 234 else 235 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 236 0); 237 } 238 239 if (status) 240 return -EIO; 241 242 return 0; 243 } 244 245 /** 246 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 247 * @vsi: ptr to the VSI 248 * 249 * Push any outstanding VSI filter changes through the AdminQ. 250 */ 251 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 252 { 253 struct device *dev = ice_pf_to_dev(vsi->back); 254 struct net_device *netdev = vsi->netdev; 255 bool promisc_forced_on = false; 256 struct ice_pf *pf = vsi->back; 257 struct ice_hw *hw = &pf->hw; 258 enum ice_status status = 0; 259 u32 changed_flags = 0; 260 u8 promisc_m; 261 int err = 0; 262 263 if (!vsi->netdev) 264 return -EINVAL; 265 266 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 267 usleep_range(1000, 2000); 268 269 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 270 vsi->current_netdev_flags = vsi->netdev->flags; 271 272 INIT_LIST_HEAD(&vsi->tmp_sync_list); 273 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 274 275 if (ice_vsi_fltr_changed(vsi)) { 276 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 277 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 278 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 279 280 /* grab the netdev's addr_list_lock */ 281 netif_addr_lock_bh(netdev); 282 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 283 ice_add_mac_to_unsync_list); 284 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 285 ice_add_mac_to_unsync_list); 286 /* our temp lists are populated. release lock */ 287 netif_addr_unlock_bh(netdev); 288 } 289 290 /* Remove MAC addresses in the unsync list */ 291 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 292 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 293 if (status) { 294 netdev_err(netdev, "Failed to delete MAC filters\n"); 295 /* if we failed because of alloc failures, just bail */ 296 if (status == ICE_ERR_NO_MEMORY) { 297 err = -ENOMEM; 298 goto out; 299 } 300 } 301 302 /* Add MAC addresses in the sync list */ 303 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 304 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 305 /* If filter is added successfully or already exists, do not go into 306 * 'if' condition and report it as error. Instead continue processing 307 * rest of the function. 308 */ 309 if (status && status != ICE_ERR_ALREADY_EXISTS) { 310 netdev_err(netdev, "Failed to add MAC filters\n"); 311 /* If there is no more space for new umac filters, VSI 312 * should go into promiscuous mode. There should be some 313 * space reserved for promiscuous filters. 314 */ 315 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 316 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 317 vsi->state)) { 318 promisc_forced_on = true; 319 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 320 vsi->vsi_num); 321 } else { 322 err = -EIO; 323 goto out; 324 } 325 } 326 /* check for changes in promiscuous modes */ 327 if (changed_flags & IFF_ALLMULTI) { 328 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 329 if (vsi->vlan_ena) 330 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 331 else 332 promisc_m = ICE_MCAST_PROMISC_BITS; 333 334 err = ice_cfg_promisc(vsi, promisc_m, true); 335 if (err) { 336 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 337 vsi->vsi_num); 338 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 339 goto out_promisc; 340 } 341 } else { 342 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 343 if (vsi->vlan_ena) 344 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 345 else 346 promisc_m = ICE_MCAST_PROMISC_BITS; 347 348 err = ice_cfg_promisc(vsi, promisc_m, false); 349 if (err) { 350 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 351 vsi->vsi_num); 352 vsi->current_netdev_flags |= IFF_ALLMULTI; 353 goto out_promisc; 354 } 355 } 356 } 357 358 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 359 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 360 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 361 if (vsi->current_netdev_flags & IFF_PROMISC) { 362 /* Apply Rx filter rule to get traffic from wire */ 363 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 364 err = ice_set_dflt_vsi(pf->first_sw, vsi); 365 if (err && err != -EEXIST) { 366 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 367 err, vsi->vsi_num); 368 vsi->current_netdev_flags &= 369 ~IFF_PROMISC; 370 goto out_promisc; 371 } 372 ice_cfg_vlan_pruning(vsi, false, false); 373 } 374 } else { 375 /* Clear Rx filter to remove traffic from wire */ 376 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 377 err = ice_clear_dflt_vsi(pf->first_sw); 378 if (err) { 379 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 380 err, vsi->vsi_num); 381 vsi->current_netdev_flags |= 382 IFF_PROMISC; 383 goto out_promisc; 384 } 385 if (vsi->num_vlan > 1) 386 ice_cfg_vlan_pruning(vsi, true, false); 387 } 388 } 389 } 390 goto exit; 391 392 out_promisc: 393 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 394 goto exit; 395 out: 396 /* if something went wrong then set the changed flag so we try again */ 397 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 398 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 399 exit: 400 clear_bit(__ICE_CFG_BUSY, vsi->state); 401 return err; 402 } 403 404 /** 405 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 406 * @pf: board private structure 407 */ 408 static void ice_sync_fltr_subtask(struct ice_pf *pf) 409 { 410 int v; 411 412 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 413 return; 414 415 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 416 417 ice_for_each_vsi(pf, v) 418 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 419 ice_vsi_sync_fltr(pf->vsi[v])) { 420 /* come back and try again later */ 421 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 422 break; 423 } 424 } 425 426 /** 427 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 428 * @pf: the PF 429 * @locked: is the rtnl_lock already held 430 */ 431 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 432 { 433 int v; 434 435 ice_for_each_vsi(pf, v) 436 if (pf->vsi[v]) 437 ice_dis_vsi(pf->vsi[v], locked); 438 } 439 440 /** 441 * ice_prepare_for_reset - prep for the core to reset 442 * @pf: board private structure 443 * 444 * Inform or close all dependent features in prep for reset. 445 */ 446 static void 447 ice_prepare_for_reset(struct ice_pf *pf) 448 { 449 struct ice_hw *hw = &pf->hw; 450 unsigned int i; 451 452 /* already prepared for reset */ 453 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 454 return; 455 456 /* Notify VFs of impending reset */ 457 if (ice_check_sq_alive(hw, &hw->mailboxq)) 458 ice_vc_notify_reset(pf); 459 460 /* Disable VFs until reset is completed */ 461 ice_for_each_vf(pf, i) 462 ice_set_vf_state_qs_dis(&pf->vf[i]); 463 464 /* clear SW filtering DB */ 465 ice_clear_hw_tbls(hw); 466 /* disable the VSIs and their queues that are not already DOWN */ 467 ice_pf_dis_all_vsi(pf, false); 468 469 if (hw->port_info) 470 ice_sched_clear_port(hw->port_info); 471 472 ice_shutdown_all_ctrlq(hw); 473 474 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 475 } 476 477 /** 478 * ice_do_reset - Initiate one of many types of resets 479 * @pf: board private structure 480 * @reset_type: reset type requested 481 * before this function was called. 482 */ 483 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 484 { 485 struct device *dev = ice_pf_to_dev(pf); 486 struct ice_hw *hw = &pf->hw; 487 488 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 489 490 ice_prepare_for_reset(pf); 491 492 /* trigger the reset */ 493 if (ice_reset(hw, reset_type)) { 494 dev_err(dev, "reset %d failed\n", reset_type); 495 set_bit(__ICE_RESET_FAILED, pf->state); 496 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 497 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 498 clear_bit(__ICE_PFR_REQ, pf->state); 499 clear_bit(__ICE_CORER_REQ, pf->state); 500 clear_bit(__ICE_GLOBR_REQ, pf->state); 501 return; 502 } 503 504 /* PFR is a bit of a special case because it doesn't result in an OICR 505 * interrupt. So for PFR, rebuild after the reset and clear the reset- 506 * associated state bits. 507 */ 508 if (reset_type == ICE_RESET_PFR) { 509 pf->pfr_count++; 510 ice_rebuild(pf, reset_type); 511 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 512 clear_bit(__ICE_PFR_REQ, pf->state); 513 ice_reset_all_vfs(pf, true); 514 } 515 } 516 517 /** 518 * ice_reset_subtask - Set up for resetting the device and driver 519 * @pf: board private structure 520 */ 521 static void ice_reset_subtask(struct ice_pf *pf) 522 { 523 enum ice_reset_req reset_type = ICE_RESET_INVAL; 524 525 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 526 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 527 * of reset is pending and sets bits in pf->state indicating the reset 528 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 529 * prepare for pending reset if not already (for PF software-initiated 530 * global resets the software should already be prepared for it as 531 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 532 * by firmware or software on other PFs, that bit is not set so prepare 533 * for the reset now), poll for reset done, rebuild and return. 534 */ 535 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 536 /* Perform the largest reset requested */ 537 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 538 reset_type = ICE_RESET_CORER; 539 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 540 reset_type = ICE_RESET_GLOBR; 541 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 542 reset_type = ICE_RESET_EMPR; 543 /* return if no valid reset type requested */ 544 if (reset_type == ICE_RESET_INVAL) 545 return; 546 ice_prepare_for_reset(pf); 547 548 /* make sure we are ready to rebuild */ 549 if (ice_check_reset(&pf->hw)) { 550 set_bit(__ICE_RESET_FAILED, pf->state); 551 } else { 552 /* done with reset. start rebuild */ 553 pf->hw.reset_ongoing = false; 554 ice_rebuild(pf, reset_type); 555 /* clear bit to resume normal operations, but 556 * ICE_NEEDS_RESTART bit is set in case rebuild failed 557 */ 558 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 559 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 560 clear_bit(__ICE_PFR_REQ, pf->state); 561 clear_bit(__ICE_CORER_REQ, pf->state); 562 clear_bit(__ICE_GLOBR_REQ, pf->state); 563 ice_reset_all_vfs(pf, true); 564 } 565 566 return; 567 } 568 569 /* No pending resets to finish processing. Check for new resets */ 570 if (test_bit(__ICE_PFR_REQ, pf->state)) 571 reset_type = ICE_RESET_PFR; 572 if (test_bit(__ICE_CORER_REQ, pf->state)) 573 reset_type = ICE_RESET_CORER; 574 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 575 reset_type = ICE_RESET_GLOBR; 576 /* If no valid reset type requested just return */ 577 if (reset_type == ICE_RESET_INVAL) 578 return; 579 580 /* reset if not already down or busy */ 581 if (!test_bit(__ICE_DOWN, pf->state) && 582 !test_bit(__ICE_CFG_BUSY, pf->state)) { 583 ice_do_reset(pf, reset_type); 584 } 585 } 586 587 /** 588 * ice_print_topo_conflict - print topology conflict message 589 * @vsi: the VSI whose topology status is being checked 590 */ 591 static void ice_print_topo_conflict(struct ice_vsi *vsi) 592 { 593 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 594 case ICE_AQ_LINK_TOPO_CONFLICT: 595 case ICE_AQ_LINK_MEDIA_CONFLICT: 596 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 597 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 598 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 599 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 600 break; 601 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 602 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 603 break; 604 default: 605 break; 606 } 607 } 608 609 /** 610 * ice_print_link_msg - print link up or down message 611 * @vsi: the VSI whose link status is being queried 612 * @isup: boolean for if the link is now up or down 613 */ 614 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 615 { 616 struct ice_aqc_get_phy_caps_data *caps; 617 const char *an_advertised; 618 enum ice_status status; 619 const char *fec_req; 620 const char *speed; 621 const char *fec; 622 const char *fc; 623 const char *an; 624 625 if (!vsi) 626 return; 627 628 if (vsi->current_isup == isup) 629 return; 630 631 vsi->current_isup = isup; 632 633 if (!isup) { 634 netdev_info(vsi->netdev, "NIC Link is Down\n"); 635 return; 636 } 637 638 switch (vsi->port_info->phy.link_info.link_speed) { 639 case ICE_AQ_LINK_SPEED_100GB: 640 speed = "100 G"; 641 break; 642 case ICE_AQ_LINK_SPEED_50GB: 643 speed = "50 G"; 644 break; 645 case ICE_AQ_LINK_SPEED_40GB: 646 speed = "40 G"; 647 break; 648 case ICE_AQ_LINK_SPEED_25GB: 649 speed = "25 G"; 650 break; 651 case ICE_AQ_LINK_SPEED_20GB: 652 speed = "20 G"; 653 break; 654 case ICE_AQ_LINK_SPEED_10GB: 655 speed = "10 G"; 656 break; 657 case ICE_AQ_LINK_SPEED_5GB: 658 speed = "5 G"; 659 break; 660 case ICE_AQ_LINK_SPEED_2500MB: 661 speed = "2.5 G"; 662 break; 663 case ICE_AQ_LINK_SPEED_1000MB: 664 speed = "1 G"; 665 break; 666 case ICE_AQ_LINK_SPEED_100MB: 667 speed = "100 M"; 668 break; 669 default: 670 speed = "Unknown"; 671 break; 672 } 673 674 switch (vsi->port_info->fc.current_mode) { 675 case ICE_FC_FULL: 676 fc = "Rx/Tx"; 677 break; 678 case ICE_FC_TX_PAUSE: 679 fc = "Tx"; 680 break; 681 case ICE_FC_RX_PAUSE: 682 fc = "Rx"; 683 break; 684 case ICE_FC_NONE: 685 fc = "None"; 686 break; 687 default: 688 fc = "Unknown"; 689 break; 690 } 691 692 /* Get FEC mode based on negotiated link info */ 693 switch (vsi->port_info->phy.link_info.fec_info) { 694 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 695 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 696 fec = "RS-FEC"; 697 break; 698 case ICE_AQ_LINK_25G_KR_FEC_EN: 699 fec = "FC-FEC/BASE-R"; 700 break; 701 default: 702 fec = "NONE"; 703 break; 704 } 705 706 /* check if autoneg completed, might be false due to not supported */ 707 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 708 an = "True"; 709 else 710 an = "False"; 711 712 /* Get FEC mode requested based on PHY caps last SW configuration */ 713 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 714 if (!caps) { 715 fec_req = "Unknown"; 716 an_advertised = "Unknown"; 717 goto done; 718 } 719 720 status = ice_aq_get_phy_caps(vsi->port_info, false, 721 ICE_AQC_REPORT_SW_CFG, caps, NULL); 722 if (status) 723 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 724 725 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 726 727 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 728 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 729 fec_req = "RS-FEC"; 730 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 731 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 732 fec_req = "FC-FEC/BASE-R"; 733 else 734 fec_req = "NONE"; 735 736 kfree(caps); 737 738 done: 739 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 740 speed, fec_req, fec, an_advertised, an, fc); 741 ice_print_topo_conflict(vsi); 742 } 743 744 /** 745 * ice_vsi_link_event - update the VSI's netdev 746 * @vsi: the VSI on which the link event occurred 747 * @link_up: whether or not the VSI needs to be set up or down 748 */ 749 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 750 { 751 if (!vsi) 752 return; 753 754 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 755 return; 756 757 if (vsi->type == ICE_VSI_PF) { 758 if (link_up == netif_carrier_ok(vsi->netdev)) 759 return; 760 761 if (link_up) { 762 netif_carrier_on(vsi->netdev); 763 netif_tx_wake_all_queues(vsi->netdev); 764 } else { 765 netif_carrier_off(vsi->netdev); 766 netif_tx_stop_all_queues(vsi->netdev); 767 } 768 } 769 } 770 771 /** 772 * ice_set_dflt_mib - send a default config MIB to the FW 773 * @pf: private PF struct 774 * 775 * This function sends a default configuration MIB to the FW. 776 * 777 * If this function errors out at any point, the driver is still able to 778 * function. The main impact is that LFC may not operate as expected. 779 * Therefore an error state in this function should be treated with a DBG 780 * message and continue on with driver rebuild/reenable. 781 */ 782 static void ice_set_dflt_mib(struct ice_pf *pf) 783 { 784 struct device *dev = ice_pf_to_dev(pf); 785 u8 mib_type, *buf, *lldpmib = NULL; 786 u16 len, typelen, offset = 0; 787 struct ice_lldp_org_tlv *tlv; 788 struct ice_hw *hw; 789 u32 ouisubtype; 790 791 if (!pf) { 792 dev_dbg(dev, "%s NULL pf pointer\n", __func__); 793 return; 794 } 795 796 hw = &pf->hw; 797 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 798 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 799 if (!lldpmib) { 800 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 801 __func__); 802 return; 803 } 804 805 /* Add ETS CFG TLV */ 806 tlv = (struct ice_lldp_org_tlv *)lldpmib; 807 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 808 ICE_IEEE_ETS_TLV_LEN); 809 tlv->typelen = htons(typelen); 810 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 811 ICE_IEEE_SUBTYPE_ETS_CFG); 812 tlv->ouisubtype = htonl(ouisubtype); 813 814 buf = tlv->tlvinfo; 815 buf[0] = 0; 816 817 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 818 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 819 * Octets 13 - 20 are TSA values - leave as zeros 820 */ 821 buf[5] = 0x64; 822 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 823 offset += len + 2; 824 tlv = (struct ice_lldp_org_tlv *) 825 ((char *)tlv + sizeof(tlv->typelen) + len); 826 827 /* Add ETS REC TLV */ 828 buf = tlv->tlvinfo; 829 tlv->typelen = htons(typelen); 830 831 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 832 ICE_IEEE_SUBTYPE_ETS_REC); 833 tlv->ouisubtype = htonl(ouisubtype); 834 835 /* First octet of buf is reserved 836 * Octets 1 - 4 map UP to TC - all UPs map to zero 837 * Octets 5 - 12 are BW values - set TC 0 to 100%. 838 * Octets 13 - 20 are TSA value - leave as zeros 839 */ 840 buf[5] = 0x64; 841 offset += len + 2; 842 tlv = (struct ice_lldp_org_tlv *) 843 ((char *)tlv + sizeof(tlv->typelen) + len); 844 845 /* Add PFC CFG TLV */ 846 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 847 ICE_IEEE_PFC_TLV_LEN); 848 tlv->typelen = htons(typelen); 849 850 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 851 ICE_IEEE_SUBTYPE_PFC_CFG); 852 tlv->ouisubtype = htonl(ouisubtype); 853 854 /* Octet 1 left as all zeros - PFC disabled */ 855 buf[0] = 0x08; 856 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 857 offset += len + 2; 858 859 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 860 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 861 862 kfree(lldpmib); 863 } 864 865 /** 866 * ice_link_event - process the link event 867 * @pf: PF that the link event is associated with 868 * @pi: port_info for the port that the link event is associated with 869 * @link_up: true if the physical link is up and false if it is down 870 * @link_speed: current link speed received from the link event 871 * 872 * Returns 0 on success and negative on failure 873 */ 874 static int 875 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 876 u16 link_speed) 877 { 878 struct device *dev = ice_pf_to_dev(pf); 879 struct ice_phy_info *phy_info; 880 struct ice_vsi *vsi; 881 u16 old_link_speed; 882 bool old_link; 883 int result; 884 885 phy_info = &pi->phy; 886 phy_info->link_info_old = phy_info->link_info; 887 888 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 889 old_link_speed = phy_info->link_info_old.link_speed; 890 891 /* update the link info structures and re-enable link events, 892 * don't bail on failure due to other book keeping needed 893 */ 894 result = ice_update_link_info(pi); 895 if (result) 896 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n", 897 pi->lport); 898 899 /* Check if the link state is up after updating link info, and treat 900 * this event as an UP event since the link is actually UP now. 901 */ 902 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 903 link_up = true; 904 905 vsi = ice_get_main_vsi(pf); 906 if (!vsi || !vsi->port_info) 907 return -EINVAL; 908 909 /* turn off PHY if media was removed */ 910 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 911 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 912 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 913 914 result = ice_aq_set_link_restart_an(pi, false, NULL); 915 if (result) { 916 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n", 917 vsi->vsi_num, result); 918 return result; 919 } 920 } 921 922 /* if the old link up/down and speed is the same as the new */ 923 if (link_up == old_link && link_speed == old_link_speed) 924 return result; 925 926 if (ice_is_dcb_active(pf)) { 927 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 928 ice_dcb_rebuild(pf); 929 } else { 930 if (link_up) 931 ice_set_dflt_mib(pf); 932 } 933 ice_vsi_link_event(vsi, link_up); 934 ice_print_link_msg(vsi, link_up); 935 936 ice_vc_notify_link_state(pf); 937 938 return result; 939 } 940 941 /** 942 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 943 * @pf: board private structure 944 */ 945 static void ice_watchdog_subtask(struct ice_pf *pf) 946 { 947 int i; 948 949 /* if interface is down do nothing */ 950 if (test_bit(__ICE_DOWN, pf->state) || 951 test_bit(__ICE_CFG_BUSY, pf->state)) 952 return; 953 954 /* make sure we don't do these things too often */ 955 if (time_before(jiffies, 956 pf->serv_tmr_prev + pf->serv_tmr_period)) 957 return; 958 959 pf->serv_tmr_prev = jiffies; 960 961 /* Update the stats for active netdevs so the network stack 962 * can look at updated numbers whenever it cares to 963 */ 964 ice_update_pf_stats(pf); 965 ice_for_each_vsi(pf, i) 966 if (pf->vsi[i] && pf->vsi[i]->netdev) 967 ice_update_vsi_stats(pf->vsi[i]); 968 } 969 970 /** 971 * ice_init_link_events - enable/initialize link events 972 * @pi: pointer to the port_info instance 973 * 974 * Returns -EIO on failure, 0 on success 975 */ 976 static int ice_init_link_events(struct ice_port_info *pi) 977 { 978 u16 mask; 979 980 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 981 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 982 983 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 984 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 985 pi->lport); 986 return -EIO; 987 } 988 989 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 990 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 991 pi->lport); 992 return -EIO; 993 } 994 995 return 0; 996 } 997 998 /** 999 * ice_handle_link_event - handle link event via ARQ 1000 * @pf: PF that the link event is associated with 1001 * @event: event structure containing link status info 1002 */ 1003 static int 1004 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1005 { 1006 struct ice_aqc_get_link_status_data *link_data; 1007 struct ice_port_info *port_info; 1008 int status; 1009 1010 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1011 port_info = pf->hw.port_info; 1012 if (!port_info) 1013 return -EINVAL; 1014 1015 status = ice_link_event(pf, port_info, 1016 !!(link_data->link_info & ICE_AQ_LINK_UP), 1017 le16_to_cpu(link_data->link_speed)); 1018 if (status) 1019 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1020 status); 1021 1022 return status; 1023 } 1024 1025 enum ice_aq_task_state { 1026 ICE_AQ_TASK_WAITING = 0, 1027 ICE_AQ_TASK_COMPLETE, 1028 ICE_AQ_TASK_CANCELED, 1029 }; 1030 1031 struct ice_aq_task { 1032 struct hlist_node entry; 1033 1034 u16 opcode; 1035 struct ice_rq_event_info *event; 1036 enum ice_aq_task_state state; 1037 }; 1038 1039 /** 1040 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware 1041 * @pf: pointer to the PF private structure 1042 * @opcode: the opcode to wait for 1043 * @timeout: how long to wait, in jiffies 1044 * @event: storage for the event info 1045 * 1046 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1047 * current thread will be put to sleep until the specified event occurs or 1048 * until the given timeout is reached. 1049 * 1050 * To obtain only the descriptor contents, pass an event without an allocated 1051 * msg_buf. If the complete data buffer is desired, allocate the 1052 * event->msg_buf with enough space ahead of time. 1053 * 1054 * Returns: zero on success, or a negative error code on failure. 1055 */ 1056 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1057 struct ice_rq_event_info *event) 1058 { 1059 struct ice_aq_task *task; 1060 long ret; 1061 int err; 1062 1063 task = kzalloc(sizeof(*task), GFP_KERNEL); 1064 if (!task) 1065 return -ENOMEM; 1066 1067 INIT_HLIST_NODE(&task->entry); 1068 task->opcode = opcode; 1069 task->event = event; 1070 task->state = ICE_AQ_TASK_WAITING; 1071 1072 spin_lock_bh(&pf->aq_wait_lock); 1073 hlist_add_head(&task->entry, &pf->aq_wait_list); 1074 spin_unlock_bh(&pf->aq_wait_lock); 1075 1076 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1077 timeout); 1078 switch (task->state) { 1079 case ICE_AQ_TASK_WAITING: 1080 err = ret < 0 ? ret : -ETIMEDOUT; 1081 break; 1082 case ICE_AQ_TASK_CANCELED: 1083 err = ret < 0 ? ret : -ECANCELED; 1084 break; 1085 case ICE_AQ_TASK_COMPLETE: 1086 err = ret < 0 ? ret : 0; 1087 break; 1088 default: 1089 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1090 err = -EINVAL; 1091 break; 1092 } 1093 1094 spin_lock_bh(&pf->aq_wait_lock); 1095 hlist_del(&task->entry); 1096 spin_unlock_bh(&pf->aq_wait_lock); 1097 kfree(task); 1098 1099 return err; 1100 } 1101 1102 /** 1103 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1104 * @pf: pointer to the PF private structure 1105 * @opcode: the opcode of the event 1106 * @event: the event to check 1107 * 1108 * Loops over the current list of pending threads waiting for an AdminQ event. 1109 * For each matching task, copy the contents of the event into the task 1110 * structure and wake up the thread. 1111 * 1112 * If multiple threads wait for the same opcode, they will all be woken up. 1113 * 1114 * Note that event->msg_buf will only be duplicated if the event has a buffer 1115 * with enough space already allocated. Otherwise, only the descriptor and 1116 * message length will be copied. 1117 * 1118 * Returns: true if an event was found, false otherwise 1119 */ 1120 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1121 struct ice_rq_event_info *event) 1122 { 1123 struct ice_aq_task *task; 1124 bool found = false; 1125 1126 spin_lock_bh(&pf->aq_wait_lock); 1127 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1128 if (task->state || task->opcode != opcode) 1129 continue; 1130 1131 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1132 task->event->msg_len = event->msg_len; 1133 1134 /* Only copy the data buffer if a destination was set */ 1135 if (task->event->msg_buf && 1136 task->event->buf_len > event->buf_len) { 1137 memcpy(task->event->msg_buf, event->msg_buf, 1138 event->buf_len); 1139 task->event->buf_len = event->buf_len; 1140 } 1141 1142 task->state = ICE_AQ_TASK_COMPLETE; 1143 found = true; 1144 } 1145 spin_unlock_bh(&pf->aq_wait_lock); 1146 1147 if (found) 1148 wake_up(&pf->aq_wait_queue); 1149 } 1150 1151 /** 1152 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1153 * @pf: the PF private structure 1154 * 1155 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1156 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1157 */ 1158 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1159 { 1160 struct ice_aq_task *task; 1161 1162 spin_lock_bh(&pf->aq_wait_lock); 1163 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1164 task->state = ICE_AQ_TASK_CANCELED; 1165 spin_unlock_bh(&pf->aq_wait_lock); 1166 1167 wake_up(&pf->aq_wait_queue); 1168 } 1169 1170 /** 1171 * __ice_clean_ctrlq - helper function to clean controlq rings 1172 * @pf: ptr to struct ice_pf 1173 * @q_type: specific Control queue type 1174 */ 1175 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1176 { 1177 struct device *dev = ice_pf_to_dev(pf); 1178 struct ice_rq_event_info event; 1179 struct ice_hw *hw = &pf->hw; 1180 struct ice_ctl_q_info *cq; 1181 u16 pending, i = 0; 1182 const char *qtype; 1183 u32 oldval, val; 1184 1185 /* Do not clean control queue if/when PF reset fails */ 1186 if (test_bit(__ICE_RESET_FAILED, pf->state)) 1187 return 0; 1188 1189 switch (q_type) { 1190 case ICE_CTL_Q_ADMIN: 1191 cq = &hw->adminq; 1192 qtype = "Admin"; 1193 break; 1194 case ICE_CTL_Q_MAILBOX: 1195 cq = &hw->mailboxq; 1196 qtype = "Mailbox"; 1197 break; 1198 default: 1199 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1200 return 0; 1201 } 1202 1203 /* check for error indications - PF_xx_AxQLEN register layout for 1204 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1205 */ 1206 val = rd32(hw, cq->rq.len); 1207 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1208 PF_FW_ARQLEN_ARQCRIT_M)) { 1209 oldval = val; 1210 if (val & PF_FW_ARQLEN_ARQVFE_M) 1211 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1212 qtype); 1213 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1214 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1215 qtype); 1216 } 1217 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1218 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1219 qtype); 1220 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1221 PF_FW_ARQLEN_ARQCRIT_M); 1222 if (oldval != val) 1223 wr32(hw, cq->rq.len, val); 1224 } 1225 1226 val = rd32(hw, cq->sq.len); 1227 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1228 PF_FW_ATQLEN_ATQCRIT_M)) { 1229 oldval = val; 1230 if (val & PF_FW_ATQLEN_ATQVFE_M) 1231 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1232 qtype); 1233 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1234 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1235 qtype); 1236 } 1237 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1238 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1239 qtype); 1240 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1241 PF_FW_ATQLEN_ATQCRIT_M); 1242 if (oldval != val) 1243 wr32(hw, cq->sq.len, val); 1244 } 1245 1246 event.buf_len = cq->rq_buf_size; 1247 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1248 if (!event.msg_buf) 1249 return 0; 1250 1251 do { 1252 enum ice_status ret; 1253 u16 opcode; 1254 1255 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1256 if (ret == ICE_ERR_AQ_NO_WORK) 1257 break; 1258 if (ret) { 1259 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1260 ice_stat_str(ret)); 1261 break; 1262 } 1263 1264 opcode = le16_to_cpu(event.desc.opcode); 1265 1266 /* Notify any thread that might be waiting for this event */ 1267 ice_aq_check_events(pf, opcode, &event); 1268 1269 switch (opcode) { 1270 case ice_aqc_opc_get_link_status: 1271 if (ice_handle_link_event(pf, &event)) 1272 dev_err(dev, "Could not handle link event\n"); 1273 break; 1274 case ice_aqc_opc_event_lan_overflow: 1275 ice_vf_lan_overflow_event(pf, &event); 1276 break; 1277 case ice_mbx_opc_send_msg_to_pf: 1278 ice_vc_process_vf_msg(pf, &event); 1279 break; 1280 case ice_aqc_opc_fw_logging: 1281 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1282 break; 1283 case ice_aqc_opc_lldp_set_mib_change: 1284 ice_dcb_process_lldp_set_mib_change(pf, &event); 1285 break; 1286 default: 1287 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1288 qtype, opcode); 1289 break; 1290 } 1291 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1292 1293 kfree(event.msg_buf); 1294 1295 return pending && (i == ICE_DFLT_IRQ_WORK); 1296 } 1297 1298 /** 1299 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1300 * @hw: pointer to hardware info 1301 * @cq: control queue information 1302 * 1303 * returns true if there are pending messages in a queue, false if there aren't 1304 */ 1305 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1306 { 1307 u16 ntu; 1308 1309 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1310 return cq->rq.next_to_clean != ntu; 1311 } 1312 1313 /** 1314 * ice_clean_adminq_subtask - clean the AdminQ rings 1315 * @pf: board private structure 1316 */ 1317 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1318 { 1319 struct ice_hw *hw = &pf->hw; 1320 1321 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1322 return; 1323 1324 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1325 return; 1326 1327 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1328 1329 /* There might be a situation where new messages arrive to a control 1330 * queue between processing the last message and clearing the 1331 * EVENT_PENDING bit. So before exiting, check queue head again (using 1332 * ice_ctrlq_pending) and process new messages if any. 1333 */ 1334 if (ice_ctrlq_pending(hw, &hw->adminq)) 1335 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1336 1337 ice_flush(hw); 1338 } 1339 1340 /** 1341 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1342 * @pf: board private structure 1343 */ 1344 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1345 { 1346 struct ice_hw *hw = &pf->hw; 1347 1348 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1349 return; 1350 1351 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1352 return; 1353 1354 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1355 1356 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1357 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1358 1359 ice_flush(hw); 1360 } 1361 1362 /** 1363 * ice_service_task_schedule - schedule the service task to wake up 1364 * @pf: board private structure 1365 * 1366 * If not already scheduled, this puts the task into the work queue. 1367 */ 1368 void ice_service_task_schedule(struct ice_pf *pf) 1369 { 1370 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1371 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1372 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1373 queue_work(ice_wq, &pf->serv_task); 1374 } 1375 1376 /** 1377 * ice_service_task_complete - finish up the service task 1378 * @pf: board private structure 1379 */ 1380 static void ice_service_task_complete(struct ice_pf *pf) 1381 { 1382 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1383 1384 /* force memory (pf->state) to sync before next service task */ 1385 smp_mb__before_atomic(); 1386 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1387 } 1388 1389 /** 1390 * ice_service_task_stop - stop service task and cancel works 1391 * @pf: board private structure 1392 * 1393 * Return 0 if the __ICE_SERVICE_DIS bit was not already set, 1394 * 1 otherwise. 1395 */ 1396 static int ice_service_task_stop(struct ice_pf *pf) 1397 { 1398 int ret; 1399 1400 ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state); 1401 1402 if (pf->serv_tmr.function) 1403 del_timer_sync(&pf->serv_tmr); 1404 if (pf->serv_task.func) 1405 cancel_work_sync(&pf->serv_task); 1406 1407 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1408 return ret; 1409 } 1410 1411 /** 1412 * ice_service_task_restart - restart service task and schedule works 1413 * @pf: board private structure 1414 * 1415 * This function is needed for suspend and resume works (e.g WoL scenario) 1416 */ 1417 static void ice_service_task_restart(struct ice_pf *pf) 1418 { 1419 clear_bit(__ICE_SERVICE_DIS, pf->state); 1420 ice_service_task_schedule(pf); 1421 } 1422 1423 /** 1424 * ice_service_timer - timer callback to schedule service task 1425 * @t: pointer to timer_list 1426 */ 1427 static void ice_service_timer(struct timer_list *t) 1428 { 1429 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1430 1431 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1432 ice_service_task_schedule(pf); 1433 } 1434 1435 /** 1436 * ice_handle_mdd_event - handle malicious driver detect event 1437 * @pf: pointer to the PF structure 1438 * 1439 * Called from service task. OICR interrupt handler indicates MDD event. 1440 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1441 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1442 * disable the queue, the PF can be configured to reset the VF using ethtool 1443 * private flag mdd-auto-reset-vf. 1444 */ 1445 static void ice_handle_mdd_event(struct ice_pf *pf) 1446 { 1447 struct device *dev = ice_pf_to_dev(pf); 1448 struct ice_hw *hw = &pf->hw; 1449 unsigned int i; 1450 u32 reg; 1451 1452 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) { 1453 /* Since the VF MDD event logging is rate limited, check if 1454 * there are pending MDD events. 1455 */ 1456 ice_print_vfs_mdd_events(pf); 1457 return; 1458 } 1459 1460 /* find what triggered an MDD event */ 1461 reg = rd32(hw, GL_MDET_TX_PQM); 1462 if (reg & GL_MDET_TX_PQM_VALID_M) { 1463 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1464 GL_MDET_TX_PQM_PF_NUM_S; 1465 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1466 GL_MDET_TX_PQM_VF_NUM_S; 1467 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1468 GL_MDET_TX_PQM_MAL_TYPE_S; 1469 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1470 GL_MDET_TX_PQM_QNUM_S); 1471 1472 if (netif_msg_tx_err(pf)) 1473 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1474 event, queue, pf_num, vf_num); 1475 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1476 } 1477 1478 reg = rd32(hw, GL_MDET_TX_TCLAN); 1479 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1480 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1481 GL_MDET_TX_TCLAN_PF_NUM_S; 1482 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1483 GL_MDET_TX_TCLAN_VF_NUM_S; 1484 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1485 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1486 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1487 GL_MDET_TX_TCLAN_QNUM_S); 1488 1489 if (netif_msg_tx_err(pf)) 1490 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1491 event, queue, pf_num, vf_num); 1492 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1493 } 1494 1495 reg = rd32(hw, GL_MDET_RX); 1496 if (reg & GL_MDET_RX_VALID_M) { 1497 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1498 GL_MDET_RX_PF_NUM_S; 1499 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1500 GL_MDET_RX_VF_NUM_S; 1501 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1502 GL_MDET_RX_MAL_TYPE_S; 1503 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1504 GL_MDET_RX_QNUM_S); 1505 1506 if (netif_msg_rx_err(pf)) 1507 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1508 event, queue, pf_num, vf_num); 1509 wr32(hw, GL_MDET_RX, 0xffffffff); 1510 } 1511 1512 /* check to see if this PF caused an MDD event */ 1513 reg = rd32(hw, PF_MDET_TX_PQM); 1514 if (reg & PF_MDET_TX_PQM_VALID_M) { 1515 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1516 if (netif_msg_tx_err(pf)) 1517 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1518 } 1519 1520 reg = rd32(hw, PF_MDET_TX_TCLAN); 1521 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1522 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1523 if (netif_msg_tx_err(pf)) 1524 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1525 } 1526 1527 reg = rd32(hw, PF_MDET_RX); 1528 if (reg & PF_MDET_RX_VALID_M) { 1529 wr32(hw, PF_MDET_RX, 0xFFFF); 1530 if (netif_msg_rx_err(pf)) 1531 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1532 } 1533 1534 /* Check to see if one of the VFs caused an MDD event, and then 1535 * increment counters and set print pending 1536 */ 1537 ice_for_each_vf(pf, i) { 1538 struct ice_vf *vf = &pf->vf[i]; 1539 1540 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1541 if (reg & VP_MDET_TX_PQM_VALID_M) { 1542 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1543 vf->mdd_tx_events.count++; 1544 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1545 if (netif_msg_tx_err(pf)) 1546 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1547 i); 1548 } 1549 1550 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1551 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1552 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1553 vf->mdd_tx_events.count++; 1554 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1555 if (netif_msg_tx_err(pf)) 1556 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1557 i); 1558 } 1559 1560 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1561 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1562 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1563 vf->mdd_tx_events.count++; 1564 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1565 if (netif_msg_tx_err(pf)) 1566 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1567 i); 1568 } 1569 1570 reg = rd32(hw, VP_MDET_RX(i)); 1571 if (reg & VP_MDET_RX_VALID_M) { 1572 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1573 vf->mdd_rx_events.count++; 1574 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1575 if (netif_msg_rx_err(pf)) 1576 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1577 i); 1578 1579 /* Since the queue is disabled on VF Rx MDD events, the 1580 * PF can be configured to reset the VF through ethtool 1581 * private flag mdd-auto-reset-vf. 1582 */ 1583 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1584 /* VF MDD event counters will be cleared by 1585 * reset, so print the event prior to reset. 1586 */ 1587 ice_print_vf_rx_mdd_event(vf); 1588 ice_reset_vf(&pf->vf[i], false); 1589 } 1590 } 1591 } 1592 1593 ice_print_vfs_mdd_events(pf); 1594 } 1595 1596 /** 1597 * ice_force_phys_link_state - Force the physical link state 1598 * @vsi: VSI to force the physical link state to up/down 1599 * @link_up: true/false indicates to set the physical link to up/down 1600 * 1601 * Force the physical link state by getting the current PHY capabilities from 1602 * hardware and setting the PHY config based on the determined capabilities. If 1603 * link changes a link event will be triggered because both the Enable Automatic 1604 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1605 * 1606 * Returns 0 on success, negative on failure 1607 */ 1608 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1609 { 1610 struct ice_aqc_get_phy_caps_data *pcaps; 1611 struct ice_aqc_set_phy_cfg_data *cfg; 1612 struct ice_port_info *pi; 1613 struct device *dev; 1614 int retcode; 1615 1616 if (!vsi || !vsi->port_info || !vsi->back) 1617 return -EINVAL; 1618 if (vsi->type != ICE_VSI_PF) 1619 return 0; 1620 1621 dev = ice_pf_to_dev(vsi->back); 1622 1623 pi = vsi->port_info; 1624 1625 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1626 if (!pcaps) 1627 return -ENOMEM; 1628 1629 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1630 NULL); 1631 if (retcode) { 1632 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1633 vsi->vsi_num, retcode); 1634 retcode = -EIO; 1635 goto out; 1636 } 1637 1638 /* No change in link */ 1639 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1640 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1641 goto out; 1642 1643 /* Use the current user PHY configuration. The current user PHY 1644 * configuration is initialized during probe from PHY capabilities 1645 * software mode, and updated on set PHY configuration. 1646 */ 1647 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1648 if (!cfg) { 1649 retcode = -ENOMEM; 1650 goto out; 1651 } 1652 1653 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1654 if (link_up) 1655 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1656 else 1657 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1658 1659 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1660 if (retcode) { 1661 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1662 vsi->vsi_num, retcode); 1663 retcode = -EIO; 1664 } 1665 1666 kfree(cfg); 1667 out: 1668 kfree(pcaps); 1669 return retcode; 1670 } 1671 1672 /** 1673 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1674 * @pi: port info structure 1675 * 1676 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1677 */ 1678 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1679 { 1680 struct ice_aqc_get_phy_caps_data *pcaps; 1681 struct ice_pf *pf = pi->hw->back; 1682 enum ice_status status; 1683 int err = 0; 1684 1685 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1686 if (!pcaps) 1687 return -ENOMEM; 1688 1689 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps, 1690 NULL); 1691 1692 if (status) { 1693 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1694 err = -EIO; 1695 goto out; 1696 } 1697 1698 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1699 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1700 1701 out: 1702 kfree(pcaps); 1703 return err; 1704 } 1705 1706 /** 1707 * ice_init_link_dflt_override - Initialize link default override 1708 * @pi: port info structure 1709 * 1710 * Initialize link default override and PHY total port shutdown during probe 1711 */ 1712 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1713 { 1714 struct ice_link_default_override_tlv *ldo; 1715 struct ice_pf *pf = pi->hw->back; 1716 1717 ldo = &pf->link_dflt_override; 1718 if (ice_get_link_default_override(ldo, pi)) 1719 return; 1720 1721 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1722 return; 1723 1724 /* Enable Total Port Shutdown (override/replace link-down-on-close 1725 * ethtool private flag) for ports with Port Disable bit set. 1726 */ 1727 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1728 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1729 } 1730 1731 /** 1732 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1733 * @pi: port info structure 1734 * 1735 * If default override is enabled, initialized the user PHY cfg speed and FEC 1736 * settings using the default override mask from the NVM. 1737 * 1738 * The PHY should only be configured with the default override settings the 1739 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1740 * is used to indicate that the user PHY cfg default override is initialized 1741 * and the PHY has not been configured with the default override settings. The 1742 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1743 * configured. 1744 */ 1745 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1746 { 1747 struct ice_link_default_override_tlv *ldo; 1748 struct ice_aqc_set_phy_cfg_data *cfg; 1749 struct ice_phy_info *phy = &pi->phy; 1750 struct ice_pf *pf = pi->hw->back; 1751 1752 ldo = &pf->link_dflt_override; 1753 1754 /* If link default override is enabled, use to mask NVM PHY capabilities 1755 * for speed and FEC default configuration. 1756 */ 1757 cfg = &phy->curr_user_phy_cfg; 1758 1759 if (ldo->phy_type_low || ldo->phy_type_high) { 1760 cfg->phy_type_low = pf->nvm_phy_type_lo & 1761 cpu_to_le64(ldo->phy_type_low); 1762 cfg->phy_type_high = pf->nvm_phy_type_hi & 1763 cpu_to_le64(ldo->phy_type_high); 1764 } 1765 cfg->link_fec_opt = ldo->fec_options; 1766 phy->curr_user_fec_req = ICE_FEC_AUTO; 1767 1768 set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1769 } 1770 1771 /** 1772 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1773 * @pi: port info structure 1774 * 1775 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1776 * mode to default. The PHY defaults are from get PHY capabilities topology 1777 * with media so call when media is first available. An error is returned if 1778 * called when media is not available. The PHY initialization completed state is 1779 * set here. 1780 * 1781 * These configurations are used when setting PHY 1782 * configuration. The user PHY configuration is updated on set PHY 1783 * configuration. Returns 0 on success, negative on failure 1784 */ 1785 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1786 { 1787 struct ice_aqc_get_phy_caps_data *pcaps; 1788 struct ice_phy_info *phy = &pi->phy; 1789 struct ice_pf *pf = pi->hw->back; 1790 enum ice_status status; 1791 struct ice_vsi *vsi; 1792 int err = 0; 1793 1794 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1795 return -EIO; 1796 1797 vsi = ice_get_main_vsi(pf); 1798 if (!vsi) 1799 return -EINVAL; 1800 1801 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1802 if (!pcaps) 1803 return -ENOMEM; 1804 1805 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps, 1806 NULL); 1807 if (status) { 1808 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1809 err = -EIO; 1810 goto err_out; 1811 } 1812 1813 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 1814 1815 /* check if lenient mode is supported and enabled */ 1816 if (ice_fw_supports_link_override(&vsi->back->hw) && 1817 !(pcaps->module_compliance_enforcement & 1818 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 1819 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 1820 1821 /* if link default override is enabled, initialize user PHY 1822 * configuration with link default override values 1823 */ 1824 if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) { 1825 ice_init_phy_cfg_dflt_override(pi); 1826 goto out; 1827 } 1828 } 1829 1830 /* if link default override is not enabled, initialize PHY using 1831 * topology with media 1832 */ 1833 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 1834 pcaps->link_fec_options); 1835 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 1836 1837 out: 1838 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 1839 set_bit(__ICE_PHY_INIT_COMPLETE, pf->state); 1840 err_out: 1841 kfree(pcaps); 1842 return err; 1843 } 1844 1845 /** 1846 * ice_configure_phy - configure PHY 1847 * @vsi: VSI of PHY 1848 * 1849 * Set the PHY configuration. If the current PHY configuration is the same as 1850 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 1851 * configure the based get PHY capabilities for topology with media. 1852 */ 1853 static int ice_configure_phy(struct ice_vsi *vsi) 1854 { 1855 struct device *dev = ice_pf_to_dev(vsi->back); 1856 struct ice_aqc_get_phy_caps_data *pcaps; 1857 struct ice_aqc_set_phy_cfg_data *cfg; 1858 struct ice_port_info *pi; 1859 enum ice_status status; 1860 int err = 0; 1861 1862 pi = vsi->port_info; 1863 if (!pi) 1864 return -EINVAL; 1865 1866 /* Ensure we have media as we cannot configure a medialess port */ 1867 if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1868 return -EPERM; 1869 1870 ice_print_topo_conflict(vsi); 1871 1872 if (vsi->port_info->phy.link_info.topo_media_conflict == 1873 ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 1874 return -EPERM; 1875 1876 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 1877 return ice_force_phys_link_state(vsi, true); 1878 1879 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1880 if (!pcaps) 1881 return -ENOMEM; 1882 1883 /* Get current PHY config */ 1884 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1885 NULL); 1886 if (status) { 1887 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 1888 vsi->vsi_num, ice_stat_str(status)); 1889 err = -EIO; 1890 goto done; 1891 } 1892 1893 /* If PHY enable link is configured and configuration has not changed, 1894 * there's nothing to do 1895 */ 1896 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 1897 ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg)) 1898 goto done; 1899 1900 /* Use PHY topology as baseline for configuration */ 1901 memset(pcaps, 0, sizeof(*pcaps)); 1902 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps, 1903 NULL); 1904 if (status) { 1905 dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n", 1906 vsi->vsi_num, ice_stat_str(status)); 1907 err = -EIO; 1908 goto done; 1909 } 1910 1911 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1912 if (!cfg) { 1913 err = -ENOMEM; 1914 goto done; 1915 } 1916 1917 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 1918 1919 /* Speed - If default override pending, use curr_user_phy_cfg set in 1920 * ice_init_phy_user_cfg_ldo. 1921 */ 1922 if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, 1923 vsi->back->state)) { 1924 cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low; 1925 cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high; 1926 } else { 1927 u64 phy_low = 0, phy_high = 0; 1928 1929 ice_update_phy_type(&phy_low, &phy_high, 1930 pi->phy.curr_user_speed_req); 1931 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 1932 cfg->phy_type_high = pcaps->phy_type_high & 1933 cpu_to_le64(phy_high); 1934 } 1935 1936 /* Can't provide what was requested; use PHY capabilities */ 1937 if (!cfg->phy_type_low && !cfg->phy_type_high) { 1938 cfg->phy_type_low = pcaps->phy_type_low; 1939 cfg->phy_type_high = pcaps->phy_type_high; 1940 } 1941 1942 /* FEC */ 1943 ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req); 1944 1945 /* Can't provide what was requested; use PHY capabilities */ 1946 if (cfg->link_fec_opt != 1947 (cfg->link_fec_opt & pcaps->link_fec_options)) { 1948 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 1949 cfg->link_fec_opt = pcaps->link_fec_options; 1950 } 1951 1952 /* Flow Control - always supported; no need to check against 1953 * capabilities 1954 */ 1955 ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req); 1956 1957 /* Enable link and link update */ 1958 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 1959 1960 status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1961 if (status) { 1962 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 1963 vsi->vsi_num, ice_stat_str(status)); 1964 err = -EIO; 1965 } 1966 1967 kfree(cfg); 1968 done: 1969 kfree(pcaps); 1970 return err; 1971 } 1972 1973 /** 1974 * ice_check_media_subtask - Check for media 1975 * @pf: pointer to PF struct 1976 * 1977 * If media is available, then initialize PHY user configuration if it is not 1978 * been, and configure the PHY if the interface is up. 1979 */ 1980 static void ice_check_media_subtask(struct ice_pf *pf) 1981 { 1982 struct ice_port_info *pi; 1983 struct ice_vsi *vsi; 1984 int err; 1985 1986 /* No need to check for media if it's already present */ 1987 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 1988 return; 1989 1990 vsi = ice_get_main_vsi(pf); 1991 if (!vsi) 1992 return; 1993 1994 /* Refresh link info and check if media is present */ 1995 pi = vsi->port_info; 1996 err = ice_update_link_info(pi); 1997 if (err) 1998 return; 1999 2000 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2001 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) 2002 ice_init_phy_user_cfg(pi); 2003 2004 /* PHY settings are reset on media insertion, reconfigure 2005 * PHY to preserve settings. 2006 */ 2007 if (test_bit(__ICE_DOWN, vsi->state) && 2008 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2009 return; 2010 2011 err = ice_configure_phy(vsi); 2012 if (!err) 2013 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2014 2015 /* A Link Status Event will be generated; the event handler 2016 * will complete bringing the interface up 2017 */ 2018 } 2019 } 2020 2021 /** 2022 * ice_service_task - manage and run subtasks 2023 * @work: pointer to work_struct contained by the PF struct 2024 */ 2025 static void ice_service_task(struct work_struct *work) 2026 { 2027 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2028 unsigned long start_time = jiffies; 2029 2030 /* subtasks */ 2031 2032 /* process reset requests first */ 2033 ice_reset_subtask(pf); 2034 2035 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2036 if (ice_is_reset_in_progress(pf->state) || 2037 test_bit(__ICE_SUSPENDED, pf->state) || 2038 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 2039 ice_service_task_complete(pf); 2040 return; 2041 } 2042 2043 ice_clean_adminq_subtask(pf); 2044 ice_check_media_subtask(pf); 2045 ice_check_for_hang_subtask(pf); 2046 ice_sync_fltr_subtask(pf); 2047 ice_handle_mdd_event(pf); 2048 ice_watchdog_subtask(pf); 2049 2050 if (ice_is_safe_mode(pf)) { 2051 ice_service_task_complete(pf); 2052 return; 2053 } 2054 2055 ice_process_vflr_event(pf); 2056 ice_clean_mailboxq_subtask(pf); 2057 ice_sync_arfs_fltrs(pf); 2058 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 2059 ice_service_task_complete(pf); 2060 2061 /* If the tasks have taken longer than one service timer period 2062 * or there is more work to be done, reset the service timer to 2063 * schedule the service task now. 2064 */ 2065 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2066 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 2067 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 2068 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2069 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 2070 mod_timer(&pf->serv_tmr, jiffies); 2071 } 2072 2073 /** 2074 * ice_set_ctrlq_len - helper function to set controlq length 2075 * @hw: pointer to the HW instance 2076 */ 2077 static void ice_set_ctrlq_len(struct ice_hw *hw) 2078 { 2079 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2080 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2081 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2082 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2083 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2084 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2085 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2086 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2087 } 2088 2089 /** 2090 * ice_schedule_reset - schedule a reset 2091 * @pf: board private structure 2092 * @reset: reset being requested 2093 */ 2094 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2095 { 2096 struct device *dev = ice_pf_to_dev(pf); 2097 2098 /* bail out if earlier reset has failed */ 2099 if (test_bit(__ICE_RESET_FAILED, pf->state)) { 2100 dev_dbg(dev, "earlier reset has failed\n"); 2101 return -EIO; 2102 } 2103 /* bail if reset/recovery already in progress */ 2104 if (ice_is_reset_in_progress(pf->state)) { 2105 dev_dbg(dev, "Reset already in progress\n"); 2106 return -EBUSY; 2107 } 2108 2109 switch (reset) { 2110 case ICE_RESET_PFR: 2111 set_bit(__ICE_PFR_REQ, pf->state); 2112 break; 2113 case ICE_RESET_CORER: 2114 set_bit(__ICE_CORER_REQ, pf->state); 2115 break; 2116 case ICE_RESET_GLOBR: 2117 set_bit(__ICE_GLOBR_REQ, pf->state); 2118 break; 2119 default: 2120 return -EINVAL; 2121 } 2122 2123 ice_service_task_schedule(pf); 2124 return 0; 2125 } 2126 2127 /** 2128 * ice_irq_affinity_notify - Callback for affinity changes 2129 * @notify: context as to what irq was changed 2130 * @mask: the new affinity mask 2131 * 2132 * This is a callback function used by the irq_set_affinity_notifier function 2133 * so that we may register to receive changes to the irq affinity masks. 2134 */ 2135 static void 2136 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2137 const cpumask_t *mask) 2138 { 2139 struct ice_q_vector *q_vector = 2140 container_of(notify, struct ice_q_vector, affinity_notify); 2141 2142 cpumask_copy(&q_vector->affinity_mask, mask); 2143 } 2144 2145 /** 2146 * ice_irq_affinity_release - Callback for affinity notifier release 2147 * @ref: internal core kernel usage 2148 * 2149 * This is a callback function used by the irq_set_affinity_notifier function 2150 * to inform the current notification subscriber that they will no longer 2151 * receive notifications. 2152 */ 2153 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2154 2155 /** 2156 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2157 * @vsi: the VSI being configured 2158 */ 2159 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2160 { 2161 struct ice_hw *hw = &vsi->back->hw; 2162 int i; 2163 2164 ice_for_each_q_vector(vsi, i) 2165 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2166 2167 ice_flush(hw); 2168 return 0; 2169 } 2170 2171 /** 2172 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2173 * @vsi: the VSI being configured 2174 * @basename: name for the vector 2175 */ 2176 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2177 { 2178 int q_vectors = vsi->num_q_vectors; 2179 struct ice_pf *pf = vsi->back; 2180 int base = vsi->base_vector; 2181 struct device *dev; 2182 int rx_int_idx = 0; 2183 int tx_int_idx = 0; 2184 int vector, err; 2185 int irq_num; 2186 2187 dev = ice_pf_to_dev(pf); 2188 for (vector = 0; vector < q_vectors; vector++) { 2189 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2190 2191 irq_num = pf->msix_entries[base + vector].vector; 2192 2193 if (q_vector->tx.ring && q_vector->rx.ring) { 2194 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2195 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2196 tx_int_idx++; 2197 } else if (q_vector->rx.ring) { 2198 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2199 "%s-%s-%d", basename, "rx", rx_int_idx++); 2200 } else if (q_vector->tx.ring) { 2201 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2202 "%s-%s-%d", basename, "tx", tx_int_idx++); 2203 } else { 2204 /* skip this unused q_vector */ 2205 continue; 2206 } 2207 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0, 2208 q_vector->name, q_vector); 2209 if (err) { 2210 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2211 err); 2212 goto free_q_irqs; 2213 } 2214 2215 /* register for affinity change notifications */ 2216 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2217 struct irq_affinity_notify *affinity_notify; 2218 2219 affinity_notify = &q_vector->affinity_notify; 2220 affinity_notify->notify = ice_irq_affinity_notify; 2221 affinity_notify->release = ice_irq_affinity_release; 2222 irq_set_affinity_notifier(irq_num, affinity_notify); 2223 } 2224 2225 /* assign the mask for this irq */ 2226 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2227 } 2228 2229 vsi->irqs_ready = true; 2230 return 0; 2231 2232 free_q_irqs: 2233 while (vector) { 2234 vector--; 2235 irq_num = pf->msix_entries[base + vector].vector; 2236 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2237 irq_set_affinity_notifier(irq_num, NULL); 2238 irq_set_affinity_hint(irq_num, NULL); 2239 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2240 } 2241 return err; 2242 } 2243 2244 /** 2245 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2246 * @vsi: VSI to setup Tx rings used by XDP 2247 * 2248 * Return 0 on success and negative value on error 2249 */ 2250 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2251 { 2252 struct device *dev = ice_pf_to_dev(vsi->back); 2253 int i; 2254 2255 for (i = 0; i < vsi->num_xdp_txq; i++) { 2256 u16 xdp_q_idx = vsi->alloc_txq + i; 2257 struct ice_ring *xdp_ring; 2258 2259 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2260 2261 if (!xdp_ring) 2262 goto free_xdp_rings; 2263 2264 xdp_ring->q_index = xdp_q_idx; 2265 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2266 xdp_ring->ring_active = false; 2267 xdp_ring->vsi = vsi; 2268 xdp_ring->netdev = NULL; 2269 xdp_ring->dev = dev; 2270 xdp_ring->count = vsi->num_tx_desc; 2271 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2272 if (ice_setup_tx_ring(xdp_ring)) 2273 goto free_xdp_rings; 2274 ice_set_ring_xdp(xdp_ring); 2275 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring); 2276 } 2277 2278 return 0; 2279 2280 free_xdp_rings: 2281 for (; i >= 0; i--) 2282 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2283 ice_free_tx_ring(vsi->xdp_rings[i]); 2284 return -ENOMEM; 2285 } 2286 2287 /** 2288 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2289 * @vsi: VSI to set the bpf prog on 2290 * @prog: the bpf prog pointer 2291 */ 2292 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2293 { 2294 struct bpf_prog *old_prog; 2295 int i; 2296 2297 old_prog = xchg(&vsi->xdp_prog, prog); 2298 if (old_prog) 2299 bpf_prog_put(old_prog); 2300 2301 ice_for_each_rxq(vsi, i) 2302 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2303 } 2304 2305 /** 2306 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2307 * @vsi: VSI to bring up Tx rings used by XDP 2308 * @prog: bpf program that will be assigned to VSI 2309 * 2310 * Return 0 on success and negative value on error 2311 */ 2312 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2313 { 2314 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2315 int xdp_rings_rem = vsi->num_xdp_txq; 2316 struct ice_pf *pf = vsi->back; 2317 struct ice_qs_cfg xdp_qs_cfg = { 2318 .qs_mutex = &pf->avail_q_mutex, 2319 .pf_map = pf->avail_txqs, 2320 .pf_map_size = pf->max_pf_txqs, 2321 .q_count = vsi->num_xdp_txq, 2322 .scatter_count = ICE_MAX_SCATTER_TXQS, 2323 .vsi_map = vsi->txq_map, 2324 .vsi_map_offset = vsi->alloc_txq, 2325 .mapping_mode = ICE_VSI_MAP_CONTIG 2326 }; 2327 enum ice_status status; 2328 struct device *dev; 2329 int i, v_idx; 2330 2331 dev = ice_pf_to_dev(pf); 2332 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2333 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2334 if (!vsi->xdp_rings) 2335 return -ENOMEM; 2336 2337 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2338 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2339 goto err_map_xdp; 2340 2341 if (ice_xdp_alloc_setup_rings(vsi)) 2342 goto clear_xdp_rings; 2343 2344 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2345 ice_for_each_q_vector(vsi, v_idx) { 2346 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2347 int xdp_rings_per_v, q_id, q_base; 2348 2349 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2350 vsi->num_q_vectors - v_idx); 2351 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2352 2353 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2354 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 2355 2356 xdp_ring->q_vector = q_vector; 2357 xdp_ring->next = q_vector->tx.ring; 2358 q_vector->tx.ring = xdp_ring; 2359 } 2360 xdp_rings_rem -= xdp_rings_per_v; 2361 } 2362 2363 /* omit the scheduler update if in reset path; XDP queues will be 2364 * taken into account at the end of ice_vsi_rebuild, where 2365 * ice_cfg_vsi_lan is being called 2366 */ 2367 if (ice_is_reset_in_progress(pf->state)) 2368 return 0; 2369 2370 /* tell the Tx scheduler that right now we have 2371 * additional queues 2372 */ 2373 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2374 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2375 2376 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2377 max_txqs); 2378 if (status) { 2379 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2380 ice_stat_str(status)); 2381 goto clear_xdp_rings; 2382 } 2383 ice_vsi_assign_bpf_prog(vsi, prog); 2384 2385 return 0; 2386 clear_xdp_rings: 2387 for (i = 0; i < vsi->num_xdp_txq; i++) 2388 if (vsi->xdp_rings[i]) { 2389 kfree_rcu(vsi->xdp_rings[i], rcu); 2390 vsi->xdp_rings[i] = NULL; 2391 } 2392 2393 err_map_xdp: 2394 mutex_lock(&pf->avail_q_mutex); 2395 for (i = 0; i < vsi->num_xdp_txq; i++) { 2396 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2397 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2398 } 2399 mutex_unlock(&pf->avail_q_mutex); 2400 2401 devm_kfree(dev, vsi->xdp_rings); 2402 return -ENOMEM; 2403 } 2404 2405 /** 2406 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2407 * @vsi: VSI to remove XDP rings 2408 * 2409 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2410 * resources 2411 */ 2412 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2413 { 2414 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2415 struct ice_pf *pf = vsi->back; 2416 int i, v_idx; 2417 2418 /* q_vectors are freed in reset path so there's no point in detaching 2419 * rings; in case of rebuild being triggered not from reset reset bits 2420 * in pf->state won't be set, so additionally check first q_vector 2421 * against NULL 2422 */ 2423 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2424 goto free_qmap; 2425 2426 ice_for_each_q_vector(vsi, v_idx) { 2427 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2428 struct ice_ring *ring; 2429 2430 ice_for_each_ring(ring, q_vector->tx) 2431 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2432 break; 2433 2434 /* restore the value of last node prior to XDP setup */ 2435 q_vector->tx.ring = ring; 2436 } 2437 2438 free_qmap: 2439 mutex_lock(&pf->avail_q_mutex); 2440 for (i = 0; i < vsi->num_xdp_txq; i++) { 2441 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2442 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2443 } 2444 mutex_unlock(&pf->avail_q_mutex); 2445 2446 for (i = 0; i < vsi->num_xdp_txq; i++) 2447 if (vsi->xdp_rings[i]) { 2448 if (vsi->xdp_rings[i]->desc) 2449 ice_free_tx_ring(vsi->xdp_rings[i]); 2450 kfree_rcu(vsi->xdp_rings[i], rcu); 2451 vsi->xdp_rings[i] = NULL; 2452 } 2453 2454 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2455 vsi->xdp_rings = NULL; 2456 2457 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2458 return 0; 2459 2460 ice_vsi_assign_bpf_prog(vsi, NULL); 2461 2462 /* notify Tx scheduler that we destroyed XDP queues and bring 2463 * back the old number of child nodes 2464 */ 2465 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2466 max_txqs[i] = vsi->num_txq; 2467 2468 /* change number of XDP Tx queues to 0 */ 2469 vsi->num_xdp_txq = 0; 2470 2471 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2472 max_txqs); 2473 } 2474 2475 /** 2476 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2477 * @vsi: VSI to setup XDP for 2478 * @prog: XDP program 2479 * @extack: netlink extended ack 2480 */ 2481 static int 2482 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2483 struct netlink_ext_ack *extack) 2484 { 2485 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2486 bool if_running = netif_running(vsi->netdev); 2487 int ret = 0, xdp_ring_err = 0; 2488 2489 if (frame_size > vsi->rx_buf_len) { 2490 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2491 return -EOPNOTSUPP; 2492 } 2493 2494 /* need to stop netdev while setting up the program for Rx rings */ 2495 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) { 2496 ret = ice_down(vsi); 2497 if (ret) { 2498 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2499 return ret; 2500 } 2501 } 2502 2503 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2504 vsi->num_xdp_txq = vsi->alloc_rxq; 2505 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2506 if (xdp_ring_err) 2507 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2508 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2509 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2510 if (xdp_ring_err) 2511 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2512 } else { 2513 ice_vsi_assign_bpf_prog(vsi, prog); 2514 } 2515 2516 if (if_running) 2517 ret = ice_up(vsi); 2518 2519 if (!ret && prog && vsi->xsk_pools) { 2520 int i; 2521 2522 ice_for_each_rxq(vsi, i) { 2523 struct ice_ring *rx_ring = vsi->rx_rings[i]; 2524 2525 if (rx_ring->xsk_pool) 2526 napi_schedule(&rx_ring->q_vector->napi); 2527 } 2528 } 2529 2530 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2531 } 2532 2533 /** 2534 * ice_xdp - implements XDP handler 2535 * @dev: netdevice 2536 * @xdp: XDP command 2537 */ 2538 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2539 { 2540 struct ice_netdev_priv *np = netdev_priv(dev); 2541 struct ice_vsi *vsi = np->vsi; 2542 2543 if (vsi->type != ICE_VSI_PF) { 2544 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2545 return -EINVAL; 2546 } 2547 2548 switch (xdp->command) { 2549 case XDP_SETUP_PROG: 2550 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2551 case XDP_SETUP_XSK_POOL: 2552 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2553 xdp->xsk.queue_id); 2554 default: 2555 return -EINVAL; 2556 } 2557 } 2558 2559 /** 2560 * ice_ena_misc_vector - enable the non-queue interrupts 2561 * @pf: board private structure 2562 */ 2563 static void ice_ena_misc_vector(struct ice_pf *pf) 2564 { 2565 struct ice_hw *hw = &pf->hw; 2566 u32 val; 2567 2568 /* Disable anti-spoof detection interrupt to prevent spurious event 2569 * interrupts during a function reset. Anti-spoof functionally is 2570 * still supported. 2571 */ 2572 val = rd32(hw, GL_MDCK_TX_TDPU); 2573 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2574 wr32(hw, GL_MDCK_TX_TDPU, val); 2575 2576 /* clear things first */ 2577 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2578 rd32(hw, PFINT_OICR); /* read to clear */ 2579 2580 val = (PFINT_OICR_ECC_ERR_M | 2581 PFINT_OICR_MAL_DETECT_M | 2582 PFINT_OICR_GRST_M | 2583 PFINT_OICR_PCI_EXCEPTION_M | 2584 PFINT_OICR_VFLR_M | 2585 PFINT_OICR_HMC_ERR_M | 2586 PFINT_OICR_PE_CRITERR_M); 2587 2588 wr32(hw, PFINT_OICR_ENA, val); 2589 2590 /* SW_ITR_IDX = 0, but don't change INTENA */ 2591 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2592 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2593 } 2594 2595 /** 2596 * ice_misc_intr - misc interrupt handler 2597 * @irq: interrupt number 2598 * @data: pointer to a q_vector 2599 */ 2600 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2601 { 2602 struct ice_pf *pf = (struct ice_pf *)data; 2603 struct ice_hw *hw = &pf->hw; 2604 irqreturn_t ret = IRQ_NONE; 2605 struct device *dev; 2606 u32 oicr, ena_mask; 2607 2608 dev = ice_pf_to_dev(pf); 2609 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 2610 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2611 2612 oicr = rd32(hw, PFINT_OICR); 2613 ena_mask = rd32(hw, PFINT_OICR_ENA); 2614 2615 if (oicr & PFINT_OICR_SWINT_M) { 2616 ena_mask &= ~PFINT_OICR_SWINT_M; 2617 pf->sw_int_count++; 2618 } 2619 2620 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2621 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2622 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 2623 } 2624 if (oicr & PFINT_OICR_VFLR_M) { 2625 /* disable any further VFLR event notifications */ 2626 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) { 2627 u32 reg = rd32(hw, PFINT_OICR_ENA); 2628 2629 reg &= ~PFINT_OICR_VFLR_M; 2630 wr32(hw, PFINT_OICR_ENA, reg); 2631 } else { 2632 ena_mask &= ~PFINT_OICR_VFLR_M; 2633 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 2634 } 2635 } 2636 2637 if (oicr & PFINT_OICR_GRST_M) { 2638 u32 reset; 2639 2640 /* we have a reset warning */ 2641 ena_mask &= ~PFINT_OICR_GRST_M; 2642 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2643 GLGEN_RSTAT_RESET_TYPE_S; 2644 2645 if (reset == ICE_RESET_CORER) 2646 pf->corer_count++; 2647 else if (reset == ICE_RESET_GLOBR) 2648 pf->globr_count++; 2649 else if (reset == ICE_RESET_EMPR) 2650 pf->empr_count++; 2651 else 2652 dev_dbg(dev, "Invalid reset type %d\n", reset); 2653 2654 /* If a reset cycle isn't already in progress, we set a bit in 2655 * pf->state so that the service task can start a reset/rebuild. 2656 * We also make note of which reset happened so that peer 2657 * devices/drivers can be informed. 2658 */ 2659 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 2660 if (reset == ICE_RESET_CORER) 2661 set_bit(__ICE_CORER_RECV, pf->state); 2662 else if (reset == ICE_RESET_GLOBR) 2663 set_bit(__ICE_GLOBR_RECV, pf->state); 2664 else 2665 set_bit(__ICE_EMPR_RECV, pf->state); 2666 2667 /* There are couple of different bits at play here. 2668 * hw->reset_ongoing indicates whether the hardware is 2669 * in reset. This is set to true when a reset interrupt 2670 * is received and set back to false after the driver 2671 * has determined that the hardware is out of reset. 2672 * 2673 * __ICE_RESET_OICR_RECV in pf->state indicates 2674 * that a post reset rebuild is required before the 2675 * driver is operational again. This is set above. 2676 * 2677 * As this is the start of the reset/rebuild cycle, set 2678 * both to indicate that. 2679 */ 2680 hw->reset_ongoing = true; 2681 } 2682 } 2683 2684 if (oicr & PFINT_OICR_HMC_ERR_M) { 2685 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2686 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", 2687 rd32(hw, PFHMC_ERRORINFO), 2688 rd32(hw, PFHMC_ERRORDATA)); 2689 } 2690 2691 /* Report any remaining unexpected interrupts */ 2692 oicr &= ena_mask; 2693 if (oicr) { 2694 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2695 /* If a critical error is pending there is no choice but to 2696 * reset the device. 2697 */ 2698 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2699 PFINT_OICR_PCI_EXCEPTION_M | 2700 PFINT_OICR_ECC_ERR_M)) { 2701 set_bit(__ICE_PFR_REQ, pf->state); 2702 ice_service_task_schedule(pf); 2703 } 2704 } 2705 ret = IRQ_HANDLED; 2706 2707 ice_service_task_schedule(pf); 2708 ice_irq_dynamic_ena(hw, NULL, NULL); 2709 2710 return ret; 2711 } 2712 2713 /** 2714 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2715 * @hw: pointer to HW structure 2716 */ 2717 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2718 { 2719 /* disable Admin queue Interrupt causes */ 2720 wr32(hw, PFINT_FW_CTL, 2721 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2722 2723 /* disable Mailbox queue Interrupt causes */ 2724 wr32(hw, PFINT_MBX_CTL, 2725 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2726 2727 /* disable Control queue Interrupt causes */ 2728 wr32(hw, PFINT_OICR_CTL, 2729 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2730 2731 ice_flush(hw); 2732 } 2733 2734 /** 2735 * ice_free_irq_msix_misc - Unroll misc vector setup 2736 * @pf: board private structure 2737 */ 2738 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2739 { 2740 struct ice_hw *hw = &pf->hw; 2741 2742 ice_dis_ctrlq_interrupts(hw); 2743 2744 /* disable OICR interrupt */ 2745 wr32(hw, PFINT_OICR_ENA, 0); 2746 ice_flush(hw); 2747 2748 if (pf->msix_entries) { 2749 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2750 devm_free_irq(ice_pf_to_dev(pf), 2751 pf->msix_entries[pf->oicr_idx].vector, pf); 2752 } 2753 2754 pf->num_avail_sw_msix += 1; 2755 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2756 } 2757 2758 /** 2759 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2760 * @hw: pointer to HW structure 2761 * @reg_idx: HW vector index to associate the control queue interrupts with 2762 */ 2763 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2764 { 2765 u32 val; 2766 2767 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2768 PFINT_OICR_CTL_CAUSE_ENA_M); 2769 wr32(hw, PFINT_OICR_CTL, val); 2770 2771 /* enable Admin queue Interrupt causes */ 2772 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2773 PFINT_FW_CTL_CAUSE_ENA_M); 2774 wr32(hw, PFINT_FW_CTL, val); 2775 2776 /* enable Mailbox queue Interrupt causes */ 2777 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2778 PFINT_MBX_CTL_CAUSE_ENA_M); 2779 wr32(hw, PFINT_MBX_CTL, val); 2780 2781 ice_flush(hw); 2782 } 2783 2784 /** 2785 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2786 * @pf: board private structure 2787 * 2788 * This sets up the handler for MSIX 0, which is used to manage the 2789 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2790 * when in MSI or Legacy interrupt mode. 2791 */ 2792 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2793 { 2794 struct device *dev = ice_pf_to_dev(pf); 2795 struct ice_hw *hw = &pf->hw; 2796 int oicr_idx, err = 0; 2797 2798 if (!pf->int_name[0]) 2799 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2800 dev_driver_string(dev), dev_name(dev)); 2801 2802 /* Do not request IRQ but do enable OICR interrupt since settings are 2803 * lost during reset. Note that this function is called only during 2804 * rebuild path and not while reset is in progress. 2805 */ 2806 if (ice_is_reset_in_progress(pf->state)) 2807 goto skip_req_irq; 2808 2809 /* reserve one vector in irq_tracker for misc interrupts */ 2810 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2811 if (oicr_idx < 0) 2812 return oicr_idx; 2813 2814 pf->num_avail_sw_msix -= 1; 2815 pf->oicr_idx = (u16)oicr_idx; 2816 2817 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2818 ice_misc_intr, 0, pf->int_name, pf); 2819 if (err) { 2820 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2821 pf->int_name, err); 2822 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2823 pf->num_avail_sw_msix += 1; 2824 return err; 2825 } 2826 2827 skip_req_irq: 2828 ice_ena_misc_vector(pf); 2829 2830 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2831 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2832 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2833 2834 ice_flush(hw); 2835 ice_irq_dynamic_ena(hw, NULL, NULL); 2836 2837 return 0; 2838 } 2839 2840 /** 2841 * ice_napi_add - register NAPI handler for the VSI 2842 * @vsi: VSI for which NAPI handler is to be registered 2843 * 2844 * This function is only called in the driver's load path. Registering the NAPI 2845 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2846 * reset/rebuild, etc.) 2847 */ 2848 static void ice_napi_add(struct ice_vsi *vsi) 2849 { 2850 int v_idx; 2851 2852 if (!vsi->netdev) 2853 return; 2854 2855 ice_for_each_q_vector(vsi, v_idx) 2856 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2857 ice_napi_poll, NAPI_POLL_WEIGHT); 2858 } 2859 2860 /** 2861 * ice_set_ops - set netdev and ethtools ops for the given netdev 2862 * @netdev: netdev instance 2863 */ 2864 static void ice_set_ops(struct net_device *netdev) 2865 { 2866 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2867 2868 if (ice_is_safe_mode(pf)) { 2869 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2870 ice_set_ethtool_safe_mode_ops(netdev); 2871 return; 2872 } 2873 2874 netdev->netdev_ops = &ice_netdev_ops; 2875 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 2876 ice_set_ethtool_ops(netdev); 2877 } 2878 2879 /** 2880 * ice_set_netdev_features - set features for the given netdev 2881 * @netdev: netdev instance 2882 */ 2883 static void ice_set_netdev_features(struct net_device *netdev) 2884 { 2885 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2886 netdev_features_t csumo_features; 2887 netdev_features_t vlano_features; 2888 netdev_features_t dflt_features; 2889 netdev_features_t tso_features; 2890 2891 if (ice_is_safe_mode(pf)) { 2892 /* safe mode */ 2893 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2894 netdev->hw_features = netdev->features; 2895 return; 2896 } 2897 2898 dflt_features = NETIF_F_SG | 2899 NETIF_F_HIGHDMA | 2900 NETIF_F_NTUPLE | 2901 NETIF_F_RXHASH; 2902 2903 csumo_features = NETIF_F_RXCSUM | 2904 NETIF_F_IP_CSUM | 2905 NETIF_F_SCTP_CRC | 2906 NETIF_F_IPV6_CSUM; 2907 2908 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2909 NETIF_F_HW_VLAN_CTAG_TX | 2910 NETIF_F_HW_VLAN_CTAG_RX; 2911 2912 tso_features = NETIF_F_TSO | 2913 NETIF_F_TSO_ECN | 2914 NETIF_F_TSO6 | 2915 NETIF_F_GSO_GRE | 2916 NETIF_F_GSO_UDP_TUNNEL | 2917 NETIF_F_GSO_GRE_CSUM | 2918 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2919 NETIF_F_GSO_PARTIAL | 2920 NETIF_F_GSO_IPXIP4 | 2921 NETIF_F_GSO_IPXIP6 | 2922 NETIF_F_GSO_UDP_L4; 2923 2924 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 2925 NETIF_F_GSO_GRE_CSUM; 2926 /* set features that user can change */ 2927 netdev->hw_features = dflt_features | csumo_features | 2928 vlano_features | tso_features; 2929 2930 /* add support for HW_CSUM on packets with MPLS header */ 2931 netdev->mpls_features = NETIF_F_HW_CSUM; 2932 2933 /* enable features */ 2934 netdev->features |= netdev->hw_features; 2935 /* encap and VLAN devices inherit default, csumo and tso features */ 2936 netdev->hw_enc_features |= dflt_features | csumo_features | 2937 tso_features; 2938 netdev->vlan_features |= dflt_features | csumo_features | 2939 tso_features; 2940 } 2941 2942 /** 2943 * ice_cfg_netdev - Allocate, configure and register a netdev 2944 * @vsi: the VSI associated with the new netdev 2945 * 2946 * Returns 0 on success, negative value on failure 2947 */ 2948 static int ice_cfg_netdev(struct ice_vsi *vsi) 2949 { 2950 struct ice_pf *pf = vsi->back; 2951 struct ice_netdev_priv *np; 2952 struct net_device *netdev; 2953 u8 mac_addr[ETH_ALEN]; 2954 int err; 2955 2956 err = ice_devlink_create_port(pf); 2957 if (err) 2958 return err; 2959 2960 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2961 vsi->alloc_rxq); 2962 if (!netdev) { 2963 err = -ENOMEM; 2964 goto err_destroy_devlink_port; 2965 } 2966 2967 vsi->netdev = netdev; 2968 np = netdev_priv(netdev); 2969 np->vsi = vsi; 2970 2971 ice_set_netdev_features(netdev); 2972 2973 ice_set_ops(netdev); 2974 2975 if (vsi->type == ICE_VSI_PF) { 2976 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 2977 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 2978 ether_addr_copy(netdev->dev_addr, mac_addr); 2979 ether_addr_copy(netdev->perm_addr, mac_addr); 2980 } 2981 2982 netdev->priv_flags |= IFF_UNICAST_FLT; 2983 2984 /* Setup netdev TC information */ 2985 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 2986 2987 /* setup watchdog timeout value to be 5 second */ 2988 netdev->watchdog_timeo = 5 * HZ; 2989 2990 netdev->min_mtu = ETH_MIN_MTU; 2991 netdev->max_mtu = ICE_MAX_MTU; 2992 2993 err = register_netdev(vsi->netdev); 2994 if (err) 2995 goto err_free_netdev; 2996 2997 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 2998 2999 netif_carrier_off(vsi->netdev); 3000 3001 /* make sure transmit queues start off as stopped */ 3002 netif_tx_stop_all_queues(vsi->netdev); 3003 3004 return 0; 3005 3006 err_free_netdev: 3007 free_netdev(vsi->netdev); 3008 vsi->netdev = NULL; 3009 err_destroy_devlink_port: 3010 ice_devlink_destroy_port(pf); 3011 return err; 3012 } 3013 3014 /** 3015 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3016 * @lut: Lookup table 3017 * @rss_table_size: Lookup table size 3018 * @rss_size: Range of queue number for hashing 3019 */ 3020 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3021 { 3022 u16 i; 3023 3024 for (i = 0; i < rss_table_size; i++) 3025 lut[i] = i % rss_size; 3026 } 3027 3028 /** 3029 * ice_pf_vsi_setup - Set up a PF VSI 3030 * @pf: board private structure 3031 * @pi: pointer to the port_info instance 3032 * 3033 * Returns pointer to the successfully allocated VSI software struct 3034 * on success, otherwise returns NULL on failure. 3035 */ 3036 static struct ice_vsi * 3037 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3038 { 3039 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 3040 } 3041 3042 /** 3043 * ice_ctrl_vsi_setup - Set up a control VSI 3044 * @pf: board private structure 3045 * @pi: pointer to the port_info instance 3046 * 3047 * Returns pointer to the successfully allocated VSI software struct 3048 * on success, otherwise returns NULL on failure. 3049 */ 3050 static struct ice_vsi * 3051 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3052 { 3053 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 3054 } 3055 3056 /** 3057 * ice_lb_vsi_setup - Set up a loopback VSI 3058 * @pf: board private structure 3059 * @pi: pointer to the port_info instance 3060 * 3061 * Returns pointer to the successfully allocated VSI software struct 3062 * on success, otherwise returns NULL on failure. 3063 */ 3064 struct ice_vsi * 3065 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3066 { 3067 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 3068 } 3069 3070 /** 3071 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3072 * @netdev: network interface to be adjusted 3073 * @proto: unused protocol 3074 * @vid: VLAN ID to be added 3075 * 3076 * net_device_ops implementation for adding VLAN IDs 3077 */ 3078 static int 3079 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3080 u16 vid) 3081 { 3082 struct ice_netdev_priv *np = netdev_priv(netdev); 3083 struct ice_vsi *vsi = np->vsi; 3084 int ret; 3085 3086 if (vid >= VLAN_N_VID) { 3087 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 3088 vid, VLAN_N_VID); 3089 return -EINVAL; 3090 } 3091 3092 if (vsi->info.pvid) 3093 return -EINVAL; 3094 3095 /* VLAN 0 is added by default during load/reset */ 3096 if (!vid) 3097 return 0; 3098 3099 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3100 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3101 ret = ice_cfg_vlan_pruning(vsi, true, false); 3102 if (ret) 3103 return ret; 3104 } 3105 3106 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3107 * packets aren't pruned by the device's internal switch on Rx 3108 */ 3109 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3110 if (!ret) { 3111 vsi->vlan_ena = true; 3112 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 3113 } 3114 3115 return ret; 3116 } 3117 3118 /** 3119 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3120 * @netdev: network interface to be adjusted 3121 * @proto: unused protocol 3122 * @vid: VLAN ID to be removed 3123 * 3124 * net_device_ops implementation for removing VLAN IDs 3125 */ 3126 static int 3127 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3128 u16 vid) 3129 { 3130 struct ice_netdev_priv *np = netdev_priv(netdev); 3131 struct ice_vsi *vsi = np->vsi; 3132 int ret; 3133 3134 if (vsi->info.pvid) 3135 return -EINVAL; 3136 3137 /* don't allow removal of VLAN 0 */ 3138 if (!vid) 3139 return 0; 3140 3141 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3142 * information 3143 */ 3144 ret = ice_vsi_kill_vlan(vsi, vid); 3145 if (ret) 3146 return ret; 3147 3148 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3149 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3150 ret = ice_cfg_vlan_pruning(vsi, false, false); 3151 3152 vsi->vlan_ena = false; 3153 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 3154 return ret; 3155 } 3156 3157 /** 3158 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3159 * @pf: board private structure 3160 * 3161 * Returns 0 on success, negative value on failure 3162 */ 3163 static int ice_setup_pf_sw(struct ice_pf *pf) 3164 { 3165 struct ice_vsi *vsi; 3166 int status = 0; 3167 3168 if (ice_is_reset_in_progress(pf->state)) 3169 return -EBUSY; 3170 3171 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3172 if (!vsi) 3173 return -ENOMEM; 3174 3175 status = ice_cfg_netdev(vsi); 3176 if (status) { 3177 status = -ENODEV; 3178 goto unroll_vsi_setup; 3179 } 3180 /* netdev has to be configured before setting frame size */ 3181 ice_vsi_cfg_frame_size(vsi); 3182 3183 /* Setup DCB netlink interface */ 3184 ice_dcbnl_setup(vsi); 3185 3186 /* registering the NAPI handler requires both the queues and 3187 * netdev to be created, which are done in ice_pf_vsi_setup() 3188 * and ice_cfg_netdev() respectively 3189 */ 3190 ice_napi_add(vsi); 3191 3192 status = ice_set_cpu_rx_rmap(vsi); 3193 if (status) { 3194 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 3195 vsi->vsi_num, status); 3196 status = -EINVAL; 3197 goto unroll_napi_add; 3198 } 3199 status = ice_init_mac_fltr(pf); 3200 if (status) 3201 goto free_cpu_rx_map; 3202 3203 return status; 3204 3205 free_cpu_rx_map: 3206 ice_free_cpu_rx_rmap(vsi); 3207 3208 unroll_napi_add: 3209 if (vsi) { 3210 ice_napi_del(vsi); 3211 if (vsi->netdev) { 3212 if (vsi->netdev->reg_state == NETREG_REGISTERED) 3213 unregister_netdev(vsi->netdev); 3214 free_netdev(vsi->netdev); 3215 vsi->netdev = NULL; 3216 } 3217 } 3218 3219 unroll_vsi_setup: 3220 ice_vsi_release(vsi); 3221 return status; 3222 } 3223 3224 /** 3225 * ice_get_avail_q_count - Get count of queues in use 3226 * @pf_qmap: bitmap to get queue use count from 3227 * @lock: pointer to a mutex that protects access to pf_qmap 3228 * @size: size of the bitmap 3229 */ 3230 static u16 3231 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3232 { 3233 unsigned long bit; 3234 u16 count = 0; 3235 3236 mutex_lock(lock); 3237 for_each_clear_bit(bit, pf_qmap, size) 3238 count++; 3239 mutex_unlock(lock); 3240 3241 return count; 3242 } 3243 3244 /** 3245 * ice_get_avail_txq_count - Get count of Tx queues in use 3246 * @pf: pointer to an ice_pf instance 3247 */ 3248 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3249 { 3250 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3251 pf->max_pf_txqs); 3252 } 3253 3254 /** 3255 * ice_get_avail_rxq_count - Get count of Rx queues in use 3256 * @pf: pointer to an ice_pf instance 3257 */ 3258 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3259 { 3260 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3261 pf->max_pf_rxqs); 3262 } 3263 3264 /** 3265 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3266 * @pf: board private structure to initialize 3267 */ 3268 static void ice_deinit_pf(struct ice_pf *pf) 3269 { 3270 ice_service_task_stop(pf); 3271 mutex_destroy(&pf->sw_mutex); 3272 mutex_destroy(&pf->tc_mutex); 3273 mutex_destroy(&pf->avail_q_mutex); 3274 3275 if (pf->avail_txqs) { 3276 bitmap_free(pf->avail_txqs); 3277 pf->avail_txqs = NULL; 3278 } 3279 3280 if (pf->avail_rxqs) { 3281 bitmap_free(pf->avail_rxqs); 3282 pf->avail_rxqs = NULL; 3283 } 3284 } 3285 3286 /** 3287 * ice_set_pf_caps - set PFs capability flags 3288 * @pf: pointer to the PF instance 3289 */ 3290 static void ice_set_pf_caps(struct ice_pf *pf) 3291 { 3292 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3293 3294 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3295 if (func_caps->common_cap.dcb) 3296 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3297 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3298 if (func_caps->common_cap.sr_iov_1_1) { 3299 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3300 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3301 ICE_MAX_VF_COUNT); 3302 } 3303 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3304 if (func_caps->common_cap.rss_table_size) 3305 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3306 3307 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3308 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3309 u16 unused; 3310 3311 /* ctrl_vsi_idx will be set to a valid value when flow director 3312 * is setup by ice_init_fdir 3313 */ 3314 pf->ctrl_vsi_idx = ICE_NO_VSI; 3315 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3316 /* force guaranteed filter pool for PF */ 3317 ice_alloc_fd_guar_item(&pf->hw, &unused, 3318 func_caps->fd_fltr_guar); 3319 /* force shared filter pool for PF */ 3320 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3321 func_caps->fd_fltr_best_effort); 3322 } 3323 3324 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3325 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3326 } 3327 3328 /** 3329 * ice_init_pf - Initialize general software structures (struct ice_pf) 3330 * @pf: board private structure to initialize 3331 */ 3332 static int ice_init_pf(struct ice_pf *pf) 3333 { 3334 ice_set_pf_caps(pf); 3335 3336 mutex_init(&pf->sw_mutex); 3337 mutex_init(&pf->tc_mutex); 3338 3339 INIT_HLIST_HEAD(&pf->aq_wait_list); 3340 spin_lock_init(&pf->aq_wait_lock); 3341 init_waitqueue_head(&pf->aq_wait_queue); 3342 3343 /* setup service timer and periodic service task */ 3344 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3345 pf->serv_tmr_period = HZ; 3346 INIT_WORK(&pf->serv_task, ice_service_task); 3347 clear_bit(__ICE_SERVICE_SCHED, pf->state); 3348 3349 mutex_init(&pf->avail_q_mutex); 3350 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3351 if (!pf->avail_txqs) 3352 return -ENOMEM; 3353 3354 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3355 if (!pf->avail_rxqs) { 3356 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3357 pf->avail_txqs = NULL; 3358 return -ENOMEM; 3359 } 3360 3361 return 0; 3362 } 3363 3364 /** 3365 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3366 * @pf: board private structure 3367 * 3368 * compute the number of MSIX vectors required (v_budget) and request from 3369 * the OS. Return the number of vectors reserved or negative on failure 3370 */ 3371 static int ice_ena_msix_range(struct ice_pf *pf) 3372 { 3373 struct device *dev = ice_pf_to_dev(pf); 3374 int v_left, v_actual, v_budget = 0; 3375 int needed, err, i; 3376 3377 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3378 3379 /* reserve one vector for miscellaneous handler */ 3380 needed = 1; 3381 if (v_left < needed) 3382 goto no_hw_vecs_left_err; 3383 v_budget += needed; 3384 v_left -= needed; 3385 3386 /* reserve vectors for LAN traffic */ 3387 needed = min_t(int, num_online_cpus(), v_left); 3388 if (v_left < needed) 3389 goto no_hw_vecs_left_err; 3390 pf->num_lan_msix = needed; 3391 v_budget += needed; 3392 v_left -= needed; 3393 3394 /* reserve one vector for flow director */ 3395 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3396 needed = ICE_FDIR_MSIX; 3397 if (v_left < needed) 3398 goto no_hw_vecs_left_err; 3399 v_budget += needed; 3400 v_left -= needed; 3401 } 3402 3403 pf->msix_entries = devm_kcalloc(dev, v_budget, 3404 sizeof(*pf->msix_entries), GFP_KERNEL); 3405 3406 if (!pf->msix_entries) { 3407 err = -ENOMEM; 3408 goto exit_err; 3409 } 3410 3411 for (i = 0; i < v_budget; i++) 3412 pf->msix_entries[i].entry = i; 3413 3414 /* actually reserve the vectors */ 3415 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3416 ICE_MIN_MSIX, v_budget); 3417 3418 if (v_actual < 0) { 3419 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3420 err = v_actual; 3421 goto msix_err; 3422 } 3423 3424 if (v_actual < v_budget) { 3425 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3426 v_budget, v_actual); 3427 /* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */ 3428 #define ICE_MIN_LAN_VECS 2 3429 #define ICE_MIN_RDMA_VECS 2 3430 #define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1) 3431 3432 if (v_actual < ICE_MIN_LAN_VECS) { 3433 /* error if we can't get minimum vectors */ 3434 pci_disable_msix(pf->pdev); 3435 err = -ERANGE; 3436 goto msix_err; 3437 } else { 3438 pf->num_lan_msix = ICE_MIN_LAN_VECS; 3439 } 3440 } 3441 3442 return v_actual; 3443 3444 msix_err: 3445 devm_kfree(dev, pf->msix_entries); 3446 goto exit_err; 3447 3448 no_hw_vecs_left_err: 3449 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3450 needed, v_left); 3451 err = -ERANGE; 3452 exit_err: 3453 pf->num_lan_msix = 0; 3454 return err; 3455 } 3456 3457 /** 3458 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3459 * @pf: board private structure 3460 */ 3461 static void ice_dis_msix(struct ice_pf *pf) 3462 { 3463 pci_disable_msix(pf->pdev); 3464 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3465 pf->msix_entries = NULL; 3466 } 3467 3468 /** 3469 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3470 * @pf: board private structure 3471 */ 3472 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3473 { 3474 ice_dis_msix(pf); 3475 3476 if (pf->irq_tracker) { 3477 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3478 pf->irq_tracker = NULL; 3479 } 3480 } 3481 3482 /** 3483 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3484 * @pf: board private structure to initialize 3485 */ 3486 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3487 { 3488 int vectors; 3489 3490 vectors = ice_ena_msix_range(pf); 3491 3492 if (vectors < 0) 3493 return vectors; 3494 3495 /* set up vector assignment tracking */ 3496 pf->irq_tracker = 3497 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) + 3498 (sizeof(u16) * vectors), GFP_KERNEL); 3499 if (!pf->irq_tracker) { 3500 ice_dis_msix(pf); 3501 return -ENOMEM; 3502 } 3503 3504 /* populate SW interrupts pool with number of OS granted IRQs. */ 3505 pf->num_avail_sw_msix = (u16)vectors; 3506 pf->irq_tracker->num_entries = (u16)vectors; 3507 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3508 3509 return 0; 3510 } 3511 3512 /** 3513 * ice_is_wol_supported - get NVM state of WoL 3514 * @pf: board private structure 3515 * 3516 * Check if WoL is supported based on the HW configuration. 3517 * Returns true if NVM supports and enables WoL for this port, false otherwise 3518 */ 3519 bool ice_is_wol_supported(struct ice_pf *pf) 3520 { 3521 struct ice_hw *hw = &pf->hw; 3522 u16 wol_ctrl; 3523 3524 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3525 * word) indicates WoL is not supported on the corresponding PF ID. 3526 */ 3527 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3528 return false; 3529 3530 return !(BIT(hw->pf_id) & wol_ctrl); 3531 } 3532 3533 /** 3534 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3535 * @vsi: VSI being changed 3536 * @new_rx: new number of Rx queues 3537 * @new_tx: new number of Tx queues 3538 * 3539 * Only change the number of queues if new_tx, or new_rx is non-0. 3540 * 3541 * Returns 0 on success. 3542 */ 3543 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3544 { 3545 struct ice_pf *pf = vsi->back; 3546 int err = 0, timeout = 50; 3547 3548 if (!new_rx && !new_tx) 3549 return -EINVAL; 3550 3551 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) { 3552 timeout--; 3553 if (!timeout) 3554 return -EBUSY; 3555 usleep_range(1000, 2000); 3556 } 3557 3558 if (new_tx) 3559 vsi->req_txq = (u16)new_tx; 3560 if (new_rx) 3561 vsi->req_rxq = (u16)new_rx; 3562 3563 /* set for the next time the netdev is started */ 3564 if (!netif_running(vsi->netdev)) { 3565 ice_vsi_rebuild(vsi, false); 3566 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3567 goto done; 3568 } 3569 3570 ice_vsi_close(vsi); 3571 ice_vsi_rebuild(vsi, false); 3572 ice_pf_dcb_recfg(pf); 3573 ice_vsi_open(vsi); 3574 done: 3575 clear_bit(__ICE_CFG_BUSY, pf->state); 3576 return err; 3577 } 3578 3579 /** 3580 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3581 * @pf: PF to configure 3582 * 3583 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3584 * VSI can still Tx/Rx VLAN tagged packets. 3585 */ 3586 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3587 { 3588 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3589 struct ice_vsi_ctx *ctxt; 3590 enum ice_status status; 3591 struct ice_hw *hw; 3592 3593 if (!vsi) 3594 return; 3595 3596 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3597 if (!ctxt) 3598 return; 3599 3600 hw = &pf->hw; 3601 ctxt->info = vsi->info; 3602 3603 ctxt->info.valid_sections = 3604 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3605 ICE_AQ_VSI_PROP_SECURITY_VALID | 3606 ICE_AQ_VSI_PROP_SW_VALID); 3607 3608 /* disable VLAN anti-spoof */ 3609 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3610 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3611 3612 /* disable VLAN pruning and keep all other settings */ 3613 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3614 3615 /* allow all VLANs on Tx and don't strip on Rx */ 3616 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 3617 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 3618 3619 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 3620 if (status) { 3621 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 3622 ice_stat_str(status), 3623 ice_aq_str(hw->adminq.sq_last_status)); 3624 } else { 3625 vsi->info.sec_flags = ctxt->info.sec_flags; 3626 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 3627 vsi->info.vlan_flags = ctxt->info.vlan_flags; 3628 } 3629 3630 kfree(ctxt); 3631 } 3632 3633 /** 3634 * ice_log_pkg_init - log result of DDP package load 3635 * @hw: pointer to hardware info 3636 * @status: status of package load 3637 */ 3638 static void 3639 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3640 { 3641 struct ice_pf *pf = (struct ice_pf *)hw->back; 3642 struct device *dev = ice_pf_to_dev(pf); 3643 3644 switch (*status) { 3645 case ICE_SUCCESS: 3646 /* The package download AdminQ command returned success because 3647 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3648 * already a package loaded on the device. 3649 */ 3650 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3651 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3652 hw->pkg_ver.update == hw->active_pkg_ver.update && 3653 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3654 !memcmp(hw->pkg_name, hw->active_pkg_name, 3655 sizeof(hw->pkg_name))) { 3656 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3657 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3658 hw->active_pkg_name, 3659 hw->active_pkg_ver.major, 3660 hw->active_pkg_ver.minor, 3661 hw->active_pkg_ver.update, 3662 hw->active_pkg_ver.draft); 3663 else 3664 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3665 hw->active_pkg_name, 3666 hw->active_pkg_ver.major, 3667 hw->active_pkg_ver.minor, 3668 hw->active_pkg_ver.update, 3669 hw->active_pkg_ver.draft); 3670 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3671 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3672 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3673 hw->active_pkg_name, 3674 hw->active_pkg_ver.major, 3675 hw->active_pkg_ver.minor, 3676 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3677 *status = ICE_ERR_NOT_SUPPORTED; 3678 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3679 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3680 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3681 hw->active_pkg_name, 3682 hw->active_pkg_ver.major, 3683 hw->active_pkg_ver.minor, 3684 hw->active_pkg_ver.update, 3685 hw->active_pkg_ver.draft, 3686 hw->pkg_name, 3687 hw->pkg_ver.major, 3688 hw->pkg_ver.minor, 3689 hw->pkg_ver.update, 3690 hw->pkg_ver.draft); 3691 } else { 3692 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3693 *status = ICE_ERR_NOT_SUPPORTED; 3694 } 3695 break; 3696 case ICE_ERR_FW_DDP_MISMATCH: 3697 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3698 break; 3699 case ICE_ERR_BUF_TOO_SHORT: 3700 case ICE_ERR_CFG: 3701 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3702 break; 3703 case ICE_ERR_NOT_SUPPORTED: 3704 /* Package File version not supported */ 3705 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3706 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3707 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3708 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3709 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3710 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3711 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3712 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3713 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3714 break; 3715 case ICE_ERR_AQ_ERROR: 3716 switch (hw->pkg_dwnld_status) { 3717 case ICE_AQ_RC_ENOSEC: 3718 case ICE_AQ_RC_EBADSIG: 3719 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3720 return; 3721 case ICE_AQ_RC_ESVN: 3722 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3723 return; 3724 case ICE_AQ_RC_EBADMAN: 3725 case ICE_AQ_RC_EBADBUF: 3726 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3727 /* poll for reset to complete */ 3728 if (ice_check_reset(hw)) 3729 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3730 return; 3731 default: 3732 break; 3733 } 3734 fallthrough; 3735 default: 3736 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3737 *status); 3738 break; 3739 } 3740 } 3741 3742 /** 3743 * ice_load_pkg - load/reload the DDP Package file 3744 * @firmware: firmware structure when firmware requested or NULL for reload 3745 * @pf: pointer to the PF instance 3746 * 3747 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3748 * initialize HW tables. 3749 */ 3750 static void 3751 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3752 { 3753 enum ice_status status = ICE_ERR_PARAM; 3754 struct device *dev = ice_pf_to_dev(pf); 3755 struct ice_hw *hw = &pf->hw; 3756 3757 /* Load DDP Package */ 3758 if (firmware && !hw->pkg_copy) { 3759 status = ice_copy_and_init_pkg(hw, firmware->data, 3760 firmware->size); 3761 ice_log_pkg_init(hw, &status); 3762 } else if (!firmware && hw->pkg_copy) { 3763 /* Reload package during rebuild after CORER/GLOBR reset */ 3764 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3765 ice_log_pkg_init(hw, &status); 3766 } else { 3767 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3768 } 3769 3770 if (status) { 3771 /* Safe Mode */ 3772 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3773 return; 3774 } 3775 3776 /* Successful download package is the precondition for advanced 3777 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3778 */ 3779 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3780 } 3781 3782 /** 3783 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3784 * @pf: pointer to the PF structure 3785 * 3786 * There is no error returned here because the driver should be able to handle 3787 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3788 * specifically with Tx. 3789 */ 3790 static void ice_verify_cacheline_size(struct ice_pf *pf) 3791 { 3792 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3793 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3794 ICE_CACHE_LINE_BYTES); 3795 } 3796 3797 /** 3798 * ice_send_version - update firmware with driver version 3799 * @pf: PF struct 3800 * 3801 * Returns ICE_SUCCESS on success, else error code 3802 */ 3803 static enum ice_status ice_send_version(struct ice_pf *pf) 3804 { 3805 struct ice_driver_ver dv; 3806 3807 dv.major_ver = 0xff; 3808 dv.minor_ver = 0xff; 3809 dv.build_ver = 0xff; 3810 dv.subbuild_ver = 0; 3811 strscpy((char *)dv.driver_string, UTS_RELEASE, 3812 sizeof(dv.driver_string)); 3813 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3814 } 3815 3816 /** 3817 * ice_init_fdir - Initialize flow director VSI and configuration 3818 * @pf: pointer to the PF instance 3819 * 3820 * returns 0 on success, negative on error 3821 */ 3822 static int ice_init_fdir(struct ice_pf *pf) 3823 { 3824 struct device *dev = ice_pf_to_dev(pf); 3825 struct ice_vsi *ctrl_vsi; 3826 int err; 3827 3828 /* Side Band Flow Director needs to have a control VSI. 3829 * Allocate it and store it in the PF. 3830 */ 3831 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 3832 if (!ctrl_vsi) { 3833 dev_dbg(dev, "could not create control VSI\n"); 3834 return -ENOMEM; 3835 } 3836 3837 err = ice_vsi_open_ctrl(ctrl_vsi); 3838 if (err) { 3839 dev_dbg(dev, "could not open control VSI\n"); 3840 goto err_vsi_open; 3841 } 3842 3843 mutex_init(&pf->hw.fdir_fltr_lock); 3844 3845 err = ice_fdir_create_dflt_rules(pf); 3846 if (err) 3847 goto err_fdir_rule; 3848 3849 return 0; 3850 3851 err_fdir_rule: 3852 ice_fdir_release_flows(&pf->hw); 3853 ice_vsi_close(ctrl_vsi); 3854 err_vsi_open: 3855 ice_vsi_release(ctrl_vsi); 3856 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 3857 pf->vsi[pf->ctrl_vsi_idx] = NULL; 3858 pf->ctrl_vsi_idx = ICE_NO_VSI; 3859 } 3860 return err; 3861 } 3862 3863 /** 3864 * ice_get_opt_fw_name - return optional firmware file name or NULL 3865 * @pf: pointer to the PF instance 3866 */ 3867 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3868 { 3869 /* Optional firmware name same as default with additional dash 3870 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3871 */ 3872 struct pci_dev *pdev = pf->pdev; 3873 char *opt_fw_filename; 3874 u64 dsn; 3875 3876 /* Determine the name of the optional file using the DSN (two 3877 * dwords following the start of the DSN Capability). 3878 */ 3879 dsn = pci_get_dsn(pdev); 3880 if (!dsn) 3881 return NULL; 3882 3883 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3884 if (!opt_fw_filename) 3885 return NULL; 3886 3887 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 3888 ICE_DDP_PKG_PATH, dsn); 3889 3890 return opt_fw_filename; 3891 } 3892 3893 /** 3894 * ice_request_fw - Device initialization routine 3895 * @pf: pointer to the PF instance 3896 */ 3897 static void ice_request_fw(struct ice_pf *pf) 3898 { 3899 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3900 const struct firmware *firmware = NULL; 3901 struct device *dev = ice_pf_to_dev(pf); 3902 int err = 0; 3903 3904 /* optional device-specific DDP (if present) overrides the default DDP 3905 * package file. kernel logs a debug message if the file doesn't exist, 3906 * and warning messages for other errors. 3907 */ 3908 if (opt_fw_filename) { 3909 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3910 if (err) { 3911 kfree(opt_fw_filename); 3912 goto dflt_pkg_load; 3913 } 3914 3915 /* request for firmware was successful. Download to device */ 3916 ice_load_pkg(firmware, pf); 3917 kfree(opt_fw_filename); 3918 release_firmware(firmware); 3919 return; 3920 } 3921 3922 dflt_pkg_load: 3923 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3924 if (err) { 3925 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3926 return; 3927 } 3928 3929 /* request for firmware was successful. Download to device */ 3930 ice_load_pkg(firmware, pf); 3931 release_firmware(firmware); 3932 } 3933 3934 /** 3935 * ice_print_wake_reason - show the wake up cause in the log 3936 * @pf: pointer to the PF struct 3937 */ 3938 static void ice_print_wake_reason(struct ice_pf *pf) 3939 { 3940 u32 wus = pf->wakeup_reason; 3941 const char *wake_str; 3942 3943 /* if no wake event, nothing to print */ 3944 if (!wus) 3945 return; 3946 3947 if (wus & PFPM_WUS_LNKC_M) 3948 wake_str = "Link\n"; 3949 else if (wus & PFPM_WUS_MAG_M) 3950 wake_str = "Magic Packet\n"; 3951 else if (wus & PFPM_WUS_MNG_M) 3952 wake_str = "Management\n"; 3953 else if (wus & PFPM_WUS_FW_RST_WK_M) 3954 wake_str = "Firmware Reset\n"; 3955 else 3956 wake_str = "Unknown\n"; 3957 3958 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 3959 } 3960 3961 /** 3962 * ice_probe - Device initialization routine 3963 * @pdev: PCI device information struct 3964 * @ent: entry in ice_pci_tbl 3965 * 3966 * Returns 0 on success, negative on failure 3967 */ 3968 static int 3969 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 3970 { 3971 struct device *dev = &pdev->dev; 3972 struct ice_pf *pf; 3973 struct ice_hw *hw; 3974 int i, err; 3975 3976 /* this driver uses devres, see 3977 * Documentation/driver-api/driver-model/devres.rst 3978 */ 3979 err = pcim_enable_device(pdev); 3980 if (err) 3981 return err; 3982 3983 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 3984 if (err) { 3985 dev_err(dev, "BAR0 I/O map error %d\n", err); 3986 return err; 3987 } 3988 3989 pf = ice_allocate_pf(dev); 3990 if (!pf) 3991 return -ENOMEM; 3992 3993 /* set up for high or low DMA */ 3994 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 3995 if (err) 3996 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 3997 if (err) { 3998 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 3999 return err; 4000 } 4001 4002 pci_enable_pcie_error_reporting(pdev); 4003 pci_set_master(pdev); 4004 4005 pf->pdev = pdev; 4006 pci_set_drvdata(pdev, pf); 4007 set_bit(__ICE_DOWN, pf->state); 4008 /* Disable service task until DOWN bit is cleared */ 4009 set_bit(__ICE_SERVICE_DIS, pf->state); 4010 4011 hw = &pf->hw; 4012 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4013 pci_save_state(pdev); 4014 4015 hw->back = pf; 4016 hw->vendor_id = pdev->vendor; 4017 hw->device_id = pdev->device; 4018 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4019 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4020 hw->subsystem_device_id = pdev->subsystem_device; 4021 hw->bus.device = PCI_SLOT(pdev->devfn); 4022 hw->bus.func = PCI_FUNC(pdev->devfn); 4023 ice_set_ctrlq_len(hw); 4024 4025 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4026 4027 err = ice_devlink_register(pf); 4028 if (err) { 4029 dev_err(dev, "ice_devlink_register failed: %d\n", err); 4030 goto err_exit_unroll; 4031 } 4032 4033 #ifndef CONFIG_DYNAMIC_DEBUG 4034 if (debug < -1) 4035 hw->debug_mask = debug; 4036 #endif 4037 4038 err = ice_init_hw(hw); 4039 if (err) { 4040 dev_err(dev, "ice_init_hw failed: %d\n", err); 4041 err = -EIO; 4042 goto err_exit_unroll; 4043 } 4044 4045 ice_request_fw(pf); 4046 4047 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4048 * set in pf->state, which will cause ice_is_safe_mode to return 4049 * true 4050 */ 4051 if (ice_is_safe_mode(pf)) { 4052 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4053 /* we already got function/device capabilities but these don't 4054 * reflect what the driver needs to do in safe mode. Instead of 4055 * adding conditional logic everywhere to ignore these 4056 * device/function capabilities, override them. 4057 */ 4058 ice_set_safe_mode_caps(hw); 4059 } 4060 4061 err = ice_init_pf(pf); 4062 if (err) { 4063 dev_err(dev, "ice_init_pf failed: %d\n", err); 4064 goto err_init_pf_unroll; 4065 } 4066 4067 ice_devlink_init_regions(pf); 4068 4069 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4070 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4071 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4072 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4073 i = 0; 4074 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4075 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4076 pf->hw.tnl.valid_count[TNL_VXLAN]; 4077 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4078 UDP_TUNNEL_TYPE_VXLAN; 4079 i++; 4080 } 4081 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4082 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4083 pf->hw.tnl.valid_count[TNL_GENEVE]; 4084 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4085 UDP_TUNNEL_TYPE_GENEVE; 4086 i++; 4087 } 4088 4089 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4090 if (!pf->num_alloc_vsi) { 4091 err = -EIO; 4092 goto err_init_pf_unroll; 4093 } 4094 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4095 dev_warn(&pf->pdev->dev, 4096 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4097 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4098 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4099 } 4100 4101 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4102 GFP_KERNEL); 4103 if (!pf->vsi) { 4104 err = -ENOMEM; 4105 goto err_init_pf_unroll; 4106 } 4107 4108 err = ice_init_interrupt_scheme(pf); 4109 if (err) { 4110 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4111 err = -EIO; 4112 goto err_init_vsi_unroll; 4113 } 4114 4115 /* In case of MSIX we are going to setup the misc vector right here 4116 * to handle admin queue events etc. In case of legacy and MSI 4117 * the misc functionality and queue processing is combined in 4118 * the same vector and that gets setup at open. 4119 */ 4120 err = ice_req_irq_msix_misc(pf); 4121 if (err) { 4122 dev_err(dev, "setup of misc vector failed: %d\n", err); 4123 goto err_init_interrupt_unroll; 4124 } 4125 4126 /* create switch struct for the switch element created by FW on boot */ 4127 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4128 if (!pf->first_sw) { 4129 err = -ENOMEM; 4130 goto err_msix_misc_unroll; 4131 } 4132 4133 if (hw->evb_veb) 4134 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4135 else 4136 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4137 4138 pf->first_sw->pf = pf; 4139 4140 /* record the sw_id available for later use */ 4141 pf->first_sw->sw_id = hw->port_info->sw_id; 4142 4143 err = ice_setup_pf_sw(pf); 4144 if (err) { 4145 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4146 goto err_alloc_sw_unroll; 4147 } 4148 4149 clear_bit(__ICE_SERVICE_DIS, pf->state); 4150 4151 /* tell the firmware we are up */ 4152 err = ice_send_version(pf); 4153 if (err) { 4154 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4155 UTS_RELEASE, err); 4156 goto err_send_version_unroll; 4157 } 4158 4159 /* since everything is good, start the service timer */ 4160 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4161 4162 err = ice_init_link_events(pf->hw.port_info); 4163 if (err) { 4164 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4165 goto err_send_version_unroll; 4166 } 4167 4168 err = ice_init_nvm_phy_type(pf->hw.port_info); 4169 if (err) { 4170 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4171 goto err_send_version_unroll; 4172 } 4173 4174 err = ice_update_link_info(pf->hw.port_info); 4175 if (err) { 4176 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4177 goto err_send_version_unroll; 4178 } 4179 4180 ice_init_link_dflt_override(pf->hw.port_info); 4181 4182 /* if media available, initialize PHY settings */ 4183 if (pf->hw.port_info->phy.link_info.link_info & 4184 ICE_AQ_MEDIA_AVAILABLE) { 4185 err = ice_init_phy_user_cfg(pf->hw.port_info); 4186 if (err) { 4187 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4188 goto err_send_version_unroll; 4189 } 4190 4191 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4192 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4193 4194 if (vsi) 4195 ice_configure_phy(vsi); 4196 } 4197 } else { 4198 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4199 } 4200 4201 ice_verify_cacheline_size(pf); 4202 4203 /* Save wakeup reason register for later use */ 4204 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4205 4206 /* check for a power management event */ 4207 ice_print_wake_reason(pf); 4208 4209 /* clear wake status, all bits */ 4210 wr32(hw, PFPM_WUS, U32_MAX); 4211 4212 /* Disable WoL at init, wait for user to enable */ 4213 device_set_wakeup_enable(dev, false); 4214 4215 if (ice_is_safe_mode(pf)) { 4216 ice_set_safe_mode_vlan_cfg(pf); 4217 goto probe_done; 4218 } 4219 4220 /* initialize DDP driven features */ 4221 4222 /* Note: Flow director init failure is non-fatal to load */ 4223 if (ice_init_fdir(pf)) 4224 dev_err(dev, "could not initialize flow director\n"); 4225 4226 /* Note: DCB init failure is non-fatal to load */ 4227 if (ice_init_pf_dcb(pf, false)) { 4228 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4229 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4230 } else { 4231 ice_cfg_lldp_mib_change(&pf->hw, true); 4232 } 4233 4234 /* print PCI link speed and width */ 4235 pcie_print_link_status(pf->pdev); 4236 4237 probe_done: 4238 /* ready to go, so clear down state bit */ 4239 clear_bit(__ICE_DOWN, pf->state); 4240 return 0; 4241 4242 err_send_version_unroll: 4243 ice_vsi_release_all(pf); 4244 err_alloc_sw_unroll: 4245 ice_devlink_destroy_port(pf); 4246 set_bit(__ICE_SERVICE_DIS, pf->state); 4247 set_bit(__ICE_DOWN, pf->state); 4248 devm_kfree(dev, pf->first_sw); 4249 err_msix_misc_unroll: 4250 ice_free_irq_msix_misc(pf); 4251 err_init_interrupt_unroll: 4252 ice_clear_interrupt_scheme(pf); 4253 err_init_vsi_unroll: 4254 devm_kfree(dev, pf->vsi); 4255 err_init_pf_unroll: 4256 ice_deinit_pf(pf); 4257 ice_devlink_destroy_regions(pf); 4258 ice_deinit_hw(hw); 4259 err_exit_unroll: 4260 ice_devlink_unregister(pf); 4261 pci_disable_pcie_error_reporting(pdev); 4262 pci_disable_device(pdev); 4263 return err; 4264 } 4265 4266 /** 4267 * ice_set_wake - enable or disable Wake on LAN 4268 * @pf: pointer to the PF struct 4269 * 4270 * Simple helper for WoL control 4271 */ 4272 static void ice_set_wake(struct ice_pf *pf) 4273 { 4274 struct ice_hw *hw = &pf->hw; 4275 bool wol = pf->wol_ena; 4276 4277 /* clear wake state, otherwise new wake events won't fire */ 4278 wr32(hw, PFPM_WUS, U32_MAX); 4279 4280 /* enable / disable APM wake up, no RMW needed */ 4281 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4282 4283 /* set magic packet filter enabled */ 4284 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4285 } 4286 4287 /** 4288 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet 4289 * @pf: pointer to the PF struct 4290 * 4291 * Issue firmware command to enable multicast magic wake, making 4292 * sure that any locally administered address (LAA) is used for 4293 * wake, and that PF reset doesn't undo the LAA. 4294 */ 4295 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4296 { 4297 struct device *dev = ice_pf_to_dev(pf); 4298 struct ice_hw *hw = &pf->hw; 4299 enum ice_status status; 4300 u8 mac_addr[ETH_ALEN]; 4301 struct ice_vsi *vsi; 4302 u8 flags; 4303 4304 if (!pf->wol_ena) 4305 return; 4306 4307 vsi = ice_get_main_vsi(pf); 4308 if (!vsi) 4309 return; 4310 4311 /* Get current MAC address in case it's an LAA */ 4312 if (vsi->netdev) 4313 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4314 else 4315 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4316 4317 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4318 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4319 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4320 4321 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4322 if (status) 4323 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4324 ice_stat_str(status), 4325 ice_aq_str(hw->adminq.sq_last_status)); 4326 } 4327 4328 /** 4329 * ice_remove - Device removal routine 4330 * @pdev: PCI device information struct 4331 */ 4332 static void ice_remove(struct pci_dev *pdev) 4333 { 4334 struct ice_pf *pf = pci_get_drvdata(pdev); 4335 int i; 4336 4337 if (!pf) 4338 return; 4339 4340 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4341 if (!ice_is_reset_in_progress(pf->state)) 4342 break; 4343 msleep(100); 4344 } 4345 4346 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4347 set_bit(__ICE_VF_RESETS_DISABLED, pf->state); 4348 ice_free_vfs(pf); 4349 } 4350 4351 set_bit(__ICE_DOWN, pf->state); 4352 ice_service_task_stop(pf); 4353 4354 ice_aq_cancel_waiting_tasks(pf); 4355 4356 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4357 if (!ice_is_safe_mode(pf)) 4358 ice_remove_arfs(pf); 4359 ice_setup_mc_magic_wake(pf); 4360 ice_devlink_destroy_port(pf); 4361 ice_vsi_release_all(pf); 4362 ice_set_wake(pf); 4363 ice_free_irq_msix_misc(pf); 4364 ice_for_each_vsi(pf, i) { 4365 if (!pf->vsi[i]) 4366 continue; 4367 ice_vsi_free_q_vectors(pf->vsi[i]); 4368 } 4369 ice_deinit_pf(pf); 4370 ice_devlink_destroy_regions(pf); 4371 ice_deinit_hw(&pf->hw); 4372 ice_devlink_unregister(pf); 4373 4374 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4375 * do it via ice_schedule_reset() since there is no need to rebuild 4376 * and the service task is already stopped. 4377 */ 4378 ice_reset(&pf->hw, ICE_RESET_PFR); 4379 pci_wait_for_pending_transaction(pdev); 4380 ice_clear_interrupt_scheme(pf); 4381 pci_disable_pcie_error_reporting(pdev); 4382 pci_disable_device(pdev); 4383 } 4384 4385 /** 4386 * ice_shutdown - PCI callback for shutting down device 4387 * @pdev: PCI device information struct 4388 */ 4389 static void ice_shutdown(struct pci_dev *pdev) 4390 { 4391 struct ice_pf *pf = pci_get_drvdata(pdev); 4392 4393 ice_remove(pdev); 4394 4395 if (system_state == SYSTEM_POWER_OFF) { 4396 pci_wake_from_d3(pdev, pf->wol_ena); 4397 pci_set_power_state(pdev, PCI_D3hot); 4398 } 4399 } 4400 4401 #ifdef CONFIG_PM 4402 /** 4403 * ice_prepare_for_shutdown - prep for PCI shutdown 4404 * @pf: board private structure 4405 * 4406 * Inform or close all dependent features in prep for PCI device shutdown 4407 */ 4408 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4409 { 4410 struct ice_hw *hw = &pf->hw; 4411 u32 v; 4412 4413 /* Notify VFs of impending reset */ 4414 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4415 ice_vc_notify_reset(pf); 4416 4417 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4418 4419 /* disable the VSIs and their queues that are not already DOWN */ 4420 ice_pf_dis_all_vsi(pf, false); 4421 4422 ice_for_each_vsi(pf, v) 4423 if (pf->vsi[v]) 4424 pf->vsi[v]->vsi_num = 0; 4425 4426 ice_shutdown_all_ctrlq(hw); 4427 } 4428 4429 /** 4430 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4431 * @pf: board private structure to reinitialize 4432 * 4433 * This routine reinitialize interrupt scheme that was cleared during 4434 * power management suspend callback. 4435 * 4436 * This should be called during resume routine to re-allocate the q_vectors 4437 * and reacquire interrupts. 4438 */ 4439 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4440 { 4441 struct device *dev = ice_pf_to_dev(pf); 4442 int ret, v; 4443 4444 /* Since we clear MSIX flag during suspend, we need to 4445 * set it back during resume... 4446 */ 4447 4448 ret = ice_init_interrupt_scheme(pf); 4449 if (ret) { 4450 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4451 return ret; 4452 } 4453 4454 /* Remap vectors and rings, after successful re-init interrupts */ 4455 ice_for_each_vsi(pf, v) { 4456 if (!pf->vsi[v]) 4457 continue; 4458 4459 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4460 if (ret) 4461 goto err_reinit; 4462 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4463 } 4464 4465 ret = ice_req_irq_msix_misc(pf); 4466 if (ret) { 4467 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4468 ret); 4469 goto err_reinit; 4470 } 4471 4472 return 0; 4473 4474 err_reinit: 4475 while (v--) 4476 if (pf->vsi[v]) 4477 ice_vsi_free_q_vectors(pf->vsi[v]); 4478 4479 return ret; 4480 } 4481 4482 /** 4483 * ice_suspend 4484 * @dev: generic device information structure 4485 * 4486 * Power Management callback to quiesce the device and prepare 4487 * for D3 transition. 4488 */ 4489 static int __maybe_unused ice_suspend(struct device *dev) 4490 { 4491 struct pci_dev *pdev = to_pci_dev(dev); 4492 struct ice_pf *pf; 4493 int disabled, v; 4494 4495 pf = pci_get_drvdata(pdev); 4496 4497 if (!ice_pf_state_is_nominal(pf)) { 4498 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4499 return -EBUSY; 4500 } 4501 4502 /* Stop watchdog tasks until resume completion. 4503 * Even though it is most likely that the service task is 4504 * disabled if the device is suspended or down, the service task's 4505 * state is controlled by a different state bit, and we should 4506 * store and honor whatever state that bit is in at this point. 4507 */ 4508 disabled = ice_service_task_stop(pf); 4509 4510 /* Already suspended?, then there is nothing to do */ 4511 if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) { 4512 if (!disabled) 4513 ice_service_task_restart(pf); 4514 return 0; 4515 } 4516 4517 if (test_bit(__ICE_DOWN, pf->state) || 4518 ice_is_reset_in_progress(pf->state)) { 4519 dev_err(dev, "can't suspend device in reset or already down\n"); 4520 if (!disabled) 4521 ice_service_task_restart(pf); 4522 return 0; 4523 } 4524 4525 ice_setup_mc_magic_wake(pf); 4526 4527 ice_prepare_for_shutdown(pf); 4528 4529 ice_set_wake(pf); 4530 4531 /* Free vectors, clear the interrupt scheme and release IRQs 4532 * for proper hibernation, especially with large number of CPUs. 4533 * Otherwise hibernation might fail when mapping all the vectors back 4534 * to CPU0. 4535 */ 4536 ice_free_irq_msix_misc(pf); 4537 ice_for_each_vsi(pf, v) { 4538 if (!pf->vsi[v]) 4539 continue; 4540 ice_vsi_free_q_vectors(pf->vsi[v]); 4541 } 4542 ice_clear_interrupt_scheme(pf); 4543 4544 pci_save_state(pdev); 4545 pci_wake_from_d3(pdev, pf->wol_ena); 4546 pci_set_power_state(pdev, PCI_D3hot); 4547 return 0; 4548 } 4549 4550 /** 4551 * ice_resume - PM callback for waking up from D3 4552 * @dev: generic device information structure 4553 */ 4554 static int __maybe_unused ice_resume(struct device *dev) 4555 { 4556 struct pci_dev *pdev = to_pci_dev(dev); 4557 enum ice_reset_req reset_type; 4558 struct ice_pf *pf; 4559 struct ice_hw *hw; 4560 int ret; 4561 4562 pci_set_power_state(pdev, PCI_D0); 4563 pci_restore_state(pdev); 4564 pci_save_state(pdev); 4565 4566 if (!pci_device_is_present(pdev)) 4567 return -ENODEV; 4568 4569 ret = pci_enable_device_mem(pdev); 4570 if (ret) { 4571 dev_err(dev, "Cannot enable device after suspend\n"); 4572 return ret; 4573 } 4574 4575 pf = pci_get_drvdata(pdev); 4576 hw = &pf->hw; 4577 4578 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4579 ice_print_wake_reason(pf); 4580 4581 /* We cleared the interrupt scheme when we suspended, so we need to 4582 * restore it now to resume device functionality. 4583 */ 4584 ret = ice_reinit_interrupt_scheme(pf); 4585 if (ret) 4586 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 4587 4588 clear_bit(__ICE_DOWN, pf->state); 4589 /* Now perform PF reset and rebuild */ 4590 reset_type = ICE_RESET_PFR; 4591 /* re-enable service task for reset, but allow reset to schedule it */ 4592 clear_bit(__ICE_SERVICE_DIS, pf->state); 4593 4594 if (ice_schedule_reset(pf, reset_type)) 4595 dev_err(dev, "Reset during resume failed.\n"); 4596 4597 clear_bit(__ICE_SUSPENDED, pf->state); 4598 ice_service_task_restart(pf); 4599 4600 /* Restart the service task */ 4601 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4602 4603 return 0; 4604 } 4605 #endif /* CONFIG_PM */ 4606 4607 /** 4608 * ice_pci_err_detected - warning that PCI error has been detected 4609 * @pdev: PCI device information struct 4610 * @err: the type of PCI error 4611 * 4612 * Called to warn that something happened on the PCI bus and the error handling 4613 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 4614 */ 4615 static pci_ers_result_t 4616 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 4617 { 4618 struct ice_pf *pf = pci_get_drvdata(pdev); 4619 4620 if (!pf) { 4621 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 4622 __func__, err); 4623 return PCI_ERS_RESULT_DISCONNECT; 4624 } 4625 4626 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 4627 ice_service_task_stop(pf); 4628 4629 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 4630 set_bit(__ICE_PFR_REQ, pf->state); 4631 ice_prepare_for_reset(pf); 4632 } 4633 } 4634 4635 return PCI_ERS_RESULT_NEED_RESET; 4636 } 4637 4638 /** 4639 * ice_pci_err_slot_reset - a PCI slot reset has just happened 4640 * @pdev: PCI device information struct 4641 * 4642 * Called to determine if the driver can recover from the PCI slot reset by 4643 * using a register read to determine if the device is recoverable. 4644 */ 4645 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 4646 { 4647 struct ice_pf *pf = pci_get_drvdata(pdev); 4648 pci_ers_result_t result; 4649 int err; 4650 u32 reg; 4651 4652 err = pci_enable_device_mem(pdev); 4653 if (err) { 4654 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 4655 err); 4656 result = PCI_ERS_RESULT_DISCONNECT; 4657 } else { 4658 pci_set_master(pdev); 4659 pci_restore_state(pdev); 4660 pci_save_state(pdev); 4661 pci_wake_from_d3(pdev, false); 4662 4663 /* Check for life */ 4664 reg = rd32(&pf->hw, GLGEN_RTRIG); 4665 if (!reg) 4666 result = PCI_ERS_RESULT_RECOVERED; 4667 else 4668 result = PCI_ERS_RESULT_DISCONNECT; 4669 } 4670 4671 err = pci_aer_clear_nonfatal_status(pdev); 4672 if (err) 4673 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 4674 err); 4675 /* non-fatal, continue */ 4676 4677 return result; 4678 } 4679 4680 /** 4681 * ice_pci_err_resume - restart operations after PCI error recovery 4682 * @pdev: PCI device information struct 4683 * 4684 * Called to allow the driver to bring things back up after PCI error and/or 4685 * reset recovery have finished 4686 */ 4687 static void ice_pci_err_resume(struct pci_dev *pdev) 4688 { 4689 struct ice_pf *pf = pci_get_drvdata(pdev); 4690 4691 if (!pf) { 4692 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 4693 __func__); 4694 return; 4695 } 4696 4697 if (test_bit(__ICE_SUSPENDED, pf->state)) { 4698 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 4699 __func__); 4700 return; 4701 } 4702 4703 ice_restore_all_vfs_msi_state(pdev); 4704 4705 ice_do_reset(pf, ICE_RESET_PFR); 4706 ice_service_task_restart(pf); 4707 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4708 } 4709 4710 /** 4711 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 4712 * @pdev: PCI device information struct 4713 */ 4714 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 4715 { 4716 struct ice_pf *pf = pci_get_drvdata(pdev); 4717 4718 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 4719 ice_service_task_stop(pf); 4720 4721 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 4722 set_bit(__ICE_PFR_REQ, pf->state); 4723 ice_prepare_for_reset(pf); 4724 } 4725 } 4726 } 4727 4728 /** 4729 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 4730 * @pdev: PCI device information struct 4731 */ 4732 static void ice_pci_err_reset_done(struct pci_dev *pdev) 4733 { 4734 ice_pci_err_resume(pdev); 4735 } 4736 4737 /* ice_pci_tbl - PCI Device ID Table 4738 * 4739 * Wildcard entries (PCI_ANY_ID) should come last 4740 * Last entry must be all 0s 4741 * 4742 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 4743 * Class, Class Mask, private data (not used) } 4744 */ 4745 static const struct pci_device_id ice_pci_tbl[] = { 4746 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 4747 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 4748 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 4749 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 4750 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 4751 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 4752 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 4753 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 4754 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 4755 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 4756 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 4757 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 4758 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 4759 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 4760 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 4761 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 4762 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 4763 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 4764 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 4765 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 4766 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 4767 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 4768 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 4769 /* required last entry */ 4770 { 0, } 4771 }; 4772 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 4773 4774 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 4775 4776 static const struct pci_error_handlers ice_pci_err_handler = { 4777 .error_detected = ice_pci_err_detected, 4778 .slot_reset = ice_pci_err_slot_reset, 4779 .reset_prepare = ice_pci_err_reset_prepare, 4780 .reset_done = ice_pci_err_reset_done, 4781 .resume = ice_pci_err_resume 4782 }; 4783 4784 static struct pci_driver ice_driver = { 4785 .name = KBUILD_MODNAME, 4786 .id_table = ice_pci_tbl, 4787 .probe = ice_probe, 4788 .remove = ice_remove, 4789 #ifdef CONFIG_PM 4790 .driver.pm = &ice_pm_ops, 4791 #endif /* CONFIG_PM */ 4792 .shutdown = ice_shutdown, 4793 .sriov_configure = ice_sriov_configure, 4794 .err_handler = &ice_pci_err_handler 4795 }; 4796 4797 /** 4798 * ice_module_init - Driver registration routine 4799 * 4800 * ice_module_init is the first routine called when the driver is 4801 * loaded. All it does is register with the PCI subsystem. 4802 */ 4803 static int __init ice_module_init(void) 4804 { 4805 int status; 4806 4807 pr_info("%s\n", ice_driver_string); 4808 pr_info("%s\n", ice_copyright); 4809 4810 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 4811 if (!ice_wq) { 4812 pr_err("Failed to create workqueue\n"); 4813 return -ENOMEM; 4814 } 4815 4816 status = pci_register_driver(&ice_driver); 4817 if (status) { 4818 pr_err("failed to register PCI driver, err %d\n", status); 4819 destroy_workqueue(ice_wq); 4820 } 4821 4822 return status; 4823 } 4824 module_init(ice_module_init); 4825 4826 /** 4827 * ice_module_exit - Driver exit cleanup routine 4828 * 4829 * ice_module_exit is called just before the driver is removed 4830 * from memory. 4831 */ 4832 static void __exit ice_module_exit(void) 4833 { 4834 pci_unregister_driver(&ice_driver); 4835 destroy_workqueue(ice_wq); 4836 pr_info("module unloaded\n"); 4837 } 4838 module_exit(ice_module_exit); 4839 4840 /** 4841 * ice_set_mac_address - NDO callback to set MAC address 4842 * @netdev: network interface device structure 4843 * @pi: pointer to an address structure 4844 * 4845 * Returns 0 on success, negative on failure 4846 */ 4847 static int ice_set_mac_address(struct net_device *netdev, void *pi) 4848 { 4849 struct ice_netdev_priv *np = netdev_priv(netdev); 4850 struct ice_vsi *vsi = np->vsi; 4851 struct ice_pf *pf = vsi->back; 4852 struct ice_hw *hw = &pf->hw; 4853 struct sockaddr *addr = pi; 4854 enum ice_status status; 4855 u8 flags = 0; 4856 int err = 0; 4857 u8 *mac; 4858 4859 mac = (u8 *)addr->sa_data; 4860 4861 if (!is_valid_ether_addr(mac)) 4862 return -EADDRNOTAVAIL; 4863 4864 if (ether_addr_equal(netdev->dev_addr, mac)) { 4865 netdev_warn(netdev, "already using mac %pM\n", mac); 4866 return 0; 4867 } 4868 4869 if (test_bit(__ICE_DOWN, pf->state) || 4870 ice_is_reset_in_progress(pf->state)) { 4871 netdev_err(netdev, "can't set mac %pM. device not ready\n", 4872 mac); 4873 return -EBUSY; 4874 } 4875 4876 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 4877 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI); 4878 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 4879 err = -EADDRNOTAVAIL; 4880 goto err_update_filters; 4881 } 4882 4883 /* Add filter for new MAC. If filter exists, just return success */ 4884 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 4885 if (status == ICE_ERR_ALREADY_EXISTS) { 4886 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 4887 return 0; 4888 } 4889 4890 /* error if the new filter addition failed */ 4891 if (status) 4892 err = -EADDRNOTAVAIL; 4893 4894 err_update_filters: 4895 if (err) { 4896 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 4897 mac); 4898 return err; 4899 } 4900 4901 /* change the netdev's MAC address */ 4902 memcpy(netdev->dev_addr, mac, netdev->addr_len); 4903 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 4904 netdev->dev_addr); 4905 4906 /* write new MAC address to the firmware */ 4907 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 4908 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 4909 if (status) { 4910 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 4911 mac, ice_stat_str(status)); 4912 } 4913 return 0; 4914 } 4915 4916 /** 4917 * ice_set_rx_mode - NDO callback to set the netdev filters 4918 * @netdev: network interface device structure 4919 */ 4920 static void ice_set_rx_mode(struct net_device *netdev) 4921 { 4922 struct ice_netdev_priv *np = netdev_priv(netdev); 4923 struct ice_vsi *vsi = np->vsi; 4924 4925 if (!vsi) 4926 return; 4927 4928 /* Set the flags to synchronize filters 4929 * ndo_set_rx_mode may be triggered even without a change in netdev 4930 * flags 4931 */ 4932 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 4933 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 4934 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 4935 4936 /* schedule our worker thread which will take care of 4937 * applying the new filter changes 4938 */ 4939 ice_service_task_schedule(vsi->back); 4940 } 4941 4942 /** 4943 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 4944 * @netdev: network interface device structure 4945 * @queue_index: Queue ID 4946 * @maxrate: maximum bandwidth in Mbps 4947 */ 4948 static int 4949 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 4950 { 4951 struct ice_netdev_priv *np = netdev_priv(netdev); 4952 struct ice_vsi *vsi = np->vsi; 4953 enum ice_status status; 4954 u16 q_handle; 4955 u8 tc; 4956 4957 /* Validate maxrate requested is within permitted range */ 4958 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 4959 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 4960 maxrate, queue_index); 4961 return -EINVAL; 4962 } 4963 4964 q_handle = vsi->tx_rings[queue_index]->q_handle; 4965 tc = ice_dcb_get_tc(vsi, queue_index); 4966 4967 /* Set BW back to default, when user set maxrate to 0 */ 4968 if (!maxrate) 4969 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 4970 q_handle, ICE_MAX_BW); 4971 else 4972 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 4973 q_handle, ICE_MAX_BW, maxrate * 1000); 4974 if (status) { 4975 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 4976 ice_stat_str(status)); 4977 return -EIO; 4978 } 4979 4980 return 0; 4981 } 4982 4983 /** 4984 * ice_fdb_add - add an entry to the hardware database 4985 * @ndm: the input from the stack 4986 * @tb: pointer to array of nladdr (unused) 4987 * @dev: the net device pointer 4988 * @addr: the MAC address entry being added 4989 * @vid: VLAN ID 4990 * @flags: instructions from stack about fdb operation 4991 * @extack: netlink extended ack 4992 */ 4993 static int 4994 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 4995 struct net_device *dev, const unsigned char *addr, u16 vid, 4996 u16 flags, struct netlink_ext_ack __always_unused *extack) 4997 { 4998 int err; 4999 5000 if (vid) { 5001 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5002 return -EINVAL; 5003 } 5004 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5005 netdev_err(dev, "FDB only supports static addresses\n"); 5006 return -EINVAL; 5007 } 5008 5009 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5010 err = dev_uc_add_excl(dev, addr); 5011 else if (is_multicast_ether_addr(addr)) 5012 err = dev_mc_add_excl(dev, addr); 5013 else 5014 err = -EINVAL; 5015 5016 /* Only return duplicate errors if NLM_F_EXCL is set */ 5017 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5018 err = 0; 5019 5020 return err; 5021 } 5022 5023 /** 5024 * ice_fdb_del - delete an entry from the hardware database 5025 * @ndm: the input from the stack 5026 * @tb: pointer to array of nladdr (unused) 5027 * @dev: the net device pointer 5028 * @addr: the MAC address entry being added 5029 * @vid: VLAN ID 5030 */ 5031 static int 5032 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5033 struct net_device *dev, const unsigned char *addr, 5034 __always_unused u16 vid) 5035 { 5036 int err; 5037 5038 if (ndm->ndm_state & NUD_PERMANENT) { 5039 netdev_err(dev, "FDB only supports static addresses\n"); 5040 return -EINVAL; 5041 } 5042 5043 if (is_unicast_ether_addr(addr)) 5044 err = dev_uc_del(dev, addr); 5045 else if (is_multicast_ether_addr(addr)) 5046 err = dev_mc_del(dev, addr); 5047 else 5048 err = -EINVAL; 5049 5050 return err; 5051 } 5052 5053 /** 5054 * ice_set_features - set the netdev feature flags 5055 * @netdev: ptr to the netdev being adjusted 5056 * @features: the feature set that the stack is suggesting 5057 */ 5058 static int 5059 ice_set_features(struct net_device *netdev, netdev_features_t features) 5060 { 5061 struct ice_netdev_priv *np = netdev_priv(netdev); 5062 struct ice_vsi *vsi = np->vsi; 5063 struct ice_pf *pf = vsi->back; 5064 int ret = 0; 5065 5066 /* Don't set any netdev advanced features with device in Safe Mode */ 5067 if (ice_is_safe_mode(vsi->back)) { 5068 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5069 return ret; 5070 } 5071 5072 /* Do not change setting during reset */ 5073 if (ice_is_reset_in_progress(pf->state)) { 5074 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5075 return -EBUSY; 5076 } 5077 5078 /* Multiple features can be changed in one call so keep features in 5079 * separate if/else statements to guarantee each feature is checked 5080 */ 5081 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5082 ret = ice_vsi_manage_rss_lut(vsi, true); 5083 else if (!(features & NETIF_F_RXHASH) && 5084 netdev->features & NETIF_F_RXHASH) 5085 ret = ice_vsi_manage_rss_lut(vsi, false); 5086 5087 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5088 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5089 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5090 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5091 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5092 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5093 5094 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5095 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5096 ret = ice_vsi_manage_vlan_insertion(vsi); 5097 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5098 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5099 ret = ice_vsi_manage_vlan_insertion(vsi); 5100 5101 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5102 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5103 ret = ice_cfg_vlan_pruning(vsi, true, false); 5104 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5105 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5106 ret = ice_cfg_vlan_pruning(vsi, false, false); 5107 5108 if ((features & NETIF_F_NTUPLE) && 5109 !(netdev->features & NETIF_F_NTUPLE)) { 5110 ice_vsi_manage_fdir(vsi, true); 5111 ice_init_arfs(vsi); 5112 } else if (!(features & NETIF_F_NTUPLE) && 5113 (netdev->features & NETIF_F_NTUPLE)) { 5114 ice_vsi_manage_fdir(vsi, false); 5115 ice_clear_arfs(vsi); 5116 } 5117 5118 return ret; 5119 } 5120 5121 /** 5122 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5123 * @vsi: VSI to setup VLAN properties for 5124 */ 5125 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5126 { 5127 int ret = 0; 5128 5129 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5130 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5131 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5132 ret = ice_vsi_manage_vlan_insertion(vsi); 5133 5134 return ret; 5135 } 5136 5137 /** 5138 * ice_vsi_cfg - Setup the VSI 5139 * @vsi: the VSI being configured 5140 * 5141 * Return 0 on success and negative value on error 5142 */ 5143 int ice_vsi_cfg(struct ice_vsi *vsi) 5144 { 5145 int err; 5146 5147 if (vsi->netdev) { 5148 ice_set_rx_mode(vsi->netdev); 5149 5150 err = ice_vsi_vlan_setup(vsi); 5151 5152 if (err) 5153 return err; 5154 } 5155 ice_vsi_cfg_dcb_rings(vsi); 5156 5157 err = ice_vsi_cfg_lan_txqs(vsi); 5158 if (!err && ice_is_xdp_ena_vsi(vsi)) 5159 err = ice_vsi_cfg_xdp_txqs(vsi); 5160 if (!err) 5161 err = ice_vsi_cfg_rxqs(vsi); 5162 5163 return err; 5164 } 5165 5166 /** 5167 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5168 * @vsi: the VSI being configured 5169 */ 5170 static void ice_napi_enable_all(struct ice_vsi *vsi) 5171 { 5172 int q_idx; 5173 5174 if (!vsi->netdev) 5175 return; 5176 5177 ice_for_each_q_vector(vsi, q_idx) { 5178 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5179 5180 if (q_vector->rx.ring || q_vector->tx.ring) 5181 napi_enable(&q_vector->napi); 5182 } 5183 } 5184 5185 /** 5186 * ice_up_complete - Finish the last steps of bringing up a connection 5187 * @vsi: The VSI being configured 5188 * 5189 * Return 0 on success and negative value on error 5190 */ 5191 static int ice_up_complete(struct ice_vsi *vsi) 5192 { 5193 struct ice_pf *pf = vsi->back; 5194 int err; 5195 5196 ice_vsi_cfg_msix(vsi); 5197 5198 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5199 * Tx queue group list was configured and the context bits were 5200 * programmed using ice_vsi_cfg_txqs 5201 */ 5202 err = ice_vsi_start_all_rx_rings(vsi); 5203 if (err) 5204 return err; 5205 5206 clear_bit(__ICE_DOWN, vsi->state); 5207 ice_napi_enable_all(vsi); 5208 ice_vsi_ena_irq(vsi); 5209 5210 if (vsi->port_info && 5211 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5212 vsi->netdev) { 5213 ice_print_link_msg(vsi, true); 5214 netif_tx_start_all_queues(vsi->netdev); 5215 netif_carrier_on(vsi->netdev); 5216 } 5217 5218 ice_service_task_schedule(pf); 5219 5220 return 0; 5221 } 5222 5223 /** 5224 * ice_up - Bring the connection back up after being down 5225 * @vsi: VSI being configured 5226 */ 5227 int ice_up(struct ice_vsi *vsi) 5228 { 5229 int err; 5230 5231 err = ice_vsi_cfg(vsi); 5232 if (!err) 5233 err = ice_up_complete(vsi); 5234 5235 return err; 5236 } 5237 5238 /** 5239 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5240 * @ring: Tx or Rx ring to read stats from 5241 * @pkts: packets stats counter 5242 * @bytes: bytes stats counter 5243 * 5244 * This function fetches stats from the ring considering the atomic operations 5245 * that needs to be performed to read u64 values in 32 bit machine. 5246 */ 5247 static void 5248 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 5249 { 5250 unsigned int start; 5251 *pkts = 0; 5252 *bytes = 0; 5253 5254 if (!ring) 5255 return; 5256 do { 5257 start = u64_stats_fetch_begin_irq(&ring->syncp); 5258 *pkts = ring->stats.pkts; 5259 *bytes = ring->stats.bytes; 5260 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 5261 } 5262 5263 /** 5264 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5265 * @vsi: the VSI to be updated 5266 * @rings: rings to work on 5267 * @count: number of rings 5268 */ 5269 static void 5270 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 5271 u16 count) 5272 { 5273 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5274 u16 i; 5275 5276 for (i = 0; i < count; i++) { 5277 struct ice_ring *ring; 5278 u64 pkts, bytes; 5279 5280 ring = READ_ONCE(rings[i]); 5281 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5282 vsi_stats->tx_packets += pkts; 5283 vsi_stats->tx_bytes += bytes; 5284 vsi->tx_restart += ring->tx_stats.restart_q; 5285 vsi->tx_busy += ring->tx_stats.tx_busy; 5286 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5287 } 5288 } 5289 5290 /** 5291 * ice_update_vsi_ring_stats - Update VSI stats counters 5292 * @vsi: the VSI to be updated 5293 */ 5294 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5295 { 5296 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5297 struct ice_ring *ring; 5298 u64 pkts, bytes; 5299 int i; 5300 5301 /* reset netdev stats */ 5302 vsi_stats->tx_packets = 0; 5303 vsi_stats->tx_bytes = 0; 5304 vsi_stats->rx_packets = 0; 5305 vsi_stats->rx_bytes = 0; 5306 5307 /* reset non-netdev (extended) stats */ 5308 vsi->tx_restart = 0; 5309 vsi->tx_busy = 0; 5310 vsi->tx_linearize = 0; 5311 vsi->rx_buf_failed = 0; 5312 vsi->rx_page_failed = 0; 5313 vsi->rx_gro_dropped = 0; 5314 5315 rcu_read_lock(); 5316 5317 /* update Tx rings counters */ 5318 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5319 5320 /* update Rx rings counters */ 5321 ice_for_each_rxq(vsi, i) { 5322 ring = READ_ONCE(vsi->rx_rings[i]); 5323 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5324 vsi_stats->rx_packets += pkts; 5325 vsi_stats->rx_bytes += bytes; 5326 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5327 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5328 vsi->rx_gro_dropped += ring->rx_stats.gro_dropped; 5329 } 5330 5331 /* update XDP Tx rings counters */ 5332 if (ice_is_xdp_ena_vsi(vsi)) 5333 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 5334 vsi->num_xdp_txq); 5335 5336 rcu_read_unlock(); 5337 } 5338 5339 /** 5340 * ice_update_vsi_stats - Update VSI stats counters 5341 * @vsi: the VSI to be updated 5342 */ 5343 void ice_update_vsi_stats(struct ice_vsi *vsi) 5344 { 5345 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5346 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5347 struct ice_pf *pf = vsi->back; 5348 5349 if (test_bit(__ICE_DOWN, vsi->state) || 5350 test_bit(__ICE_CFG_BUSY, pf->state)) 5351 return; 5352 5353 /* get stats as recorded by Tx/Rx rings */ 5354 ice_update_vsi_ring_stats(vsi); 5355 5356 /* get VSI stats as recorded by the hardware */ 5357 ice_update_eth_stats(vsi); 5358 5359 cur_ns->tx_errors = cur_es->tx_errors; 5360 cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped; 5361 cur_ns->tx_dropped = cur_es->tx_discards; 5362 cur_ns->multicast = cur_es->rx_multicast; 5363 5364 /* update some more netdev stats if this is main VSI */ 5365 if (vsi->type == ICE_VSI_PF) { 5366 cur_ns->rx_crc_errors = pf->stats.crc_errors; 5367 cur_ns->rx_errors = pf->stats.crc_errors + 5368 pf->stats.illegal_bytes + 5369 pf->stats.rx_len_errors + 5370 pf->stats.rx_undersize + 5371 pf->hw_csum_rx_error + 5372 pf->stats.rx_jabber + 5373 pf->stats.rx_fragments + 5374 pf->stats.rx_oversize; 5375 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 5376 /* record drops from the port level */ 5377 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 5378 } 5379 } 5380 5381 /** 5382 * ice_update_pf_stats - Update PF port stats counters 5383 * @pf: PF whose stats needs to be updated 5384 */ 5385 void ice_update_pf_stats(struct ice_pf *pf) 5386 { 5387 struct ice_hw_port_stats *prev_ps, *cur_ps; 5388 struct ice_hw *hw = &pf->hw; 5389 u16 fd_ctr_base; 5390 u8 port; 5391 5392 port = hw->port_info->lport; 5393 prev_ps = &pf->stats_prev; 5394 cur_ps = &pf->stats; 5395 5396 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 5397 &prev_ps->eth.rx_bytes, 5398 &cur_ps->eth.rx_bytes); 5399 5400 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 5401 &prev_ps->eth.rx_unicast, 5402 &cur_ps->eth.rx_unicast); 5403 5404 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 5405 &prev_ps->eth.rx_multicast, 5406 &cur_ps->eth.rx_multicast); 5407 5408 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 5409 &prev_ps->eth.rx_broadcast, 5410 &cur_ps->eth.rx_broadcast); 5411 5412 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 5413 &prev_ps->eth.rx_discards, 5414 &cur_ps->eth.rx_discards); 5415 5416 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 5417 &prev_ps->eth.tx_bytes, 5418 &cur_ps->eth.tx_bytes); 5419 5420 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 5421 &prev_ps->eth.tx_unicast, 5422 &cur_ps->eth.tx_unicast); 5423 5424 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 5425 &prev_ps->eth.tx_multicast, 5426 &cur_ps->eth.tx_multicast); 5427 5428 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 5429 &prev_ps->eth.tx_broadcast, 5430 &cur_ps->eth.tx_broadcast); 5431 5432 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 5433 &prev_ps->tx_dropped_link_down, 5434 &cur_ps->tx_dropped_link_down); 5435 5436 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 5437 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 5438 5439 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 5440 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 5441 5442 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 5443 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 5444 5445 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 5446 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 5447 5448 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 5449 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 5450 5451 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 5452 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 5453 5454 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 5455 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 5456 5457 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 5458 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 5459 5460 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 5461 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 5462 5463 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 5464 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 5465 5466 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 5467 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 5468 5469 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 5470 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 5471 5472 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 5473 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 5474 5475 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 5476 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 5477 5478 fd_ctr_base = hw->fd_ctr_base; 5479 5480 ice_stat_update40(hw, 5481 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 5482 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 5483 &cur_ps->fd_sb_match); 5484 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 5485 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 5486 5487 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 5488 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 5489 5490 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 5491 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 5492 5493 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 5494 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 5495 5496 ice_update_dcb_stats(pf); 5497 5498 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 5499 &prev_ps->crc_errors, &cur_ps->crc_errors); 5500 5501 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 5502 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 5503 5504 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 5505 &prev_ps->mac_local_faults, 5506 &cur_ps->mac_local_faults); 5507 5508 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 5509 &prev_ps->mac_remote_faults, 5510 &cur_ps->mac_remote_faults); 5511 5512 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 5513 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 5514 5515 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 5516 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 5517 5518 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 5519 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 5520 5521 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 5522 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 5523 5524 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 5525 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 5526 5527 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 5528 5529 pf->stat_prev_loaded = true; 5530 } 5531 5532 /** 5533 * ice_get_stats64 - get statistics for network device structure 5534 * @netdev: network interface device structure 5535 * @stats: main device statistics structure 5536 */ 5537 static 5538 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 5539 { 5540 struct ice_netdev_priv *np = netdev_priv(netdev); 5541 struct rtnl_link_stats64 *vsi_stats; 5542 struct ice_vsi *vsi = np->vsi; 5543 5544 vsi_stats = &vsi->net_stats; 5545 5546 if (!vsi->num_txq || !vsi->num_rxq) 5547 return; 5548 5549 /* netdev packet/byte stats come from ring counter. These are obtained 5550 * by summing up ring counters (done by ice_update_vsi_ring_stats). 5551 * But, only call the update routine and read the registers if VSI is 5552 * not down. 5553 */ 5554 if (!test_bit(__ICE_DOWN, vsi->state)) 5555 ice_update_vsi_ring_stats(vsi); 5556 stats->tx_packets = vsi_stats->tx_packets; 5557 stats->tx_bytes = vsi_stats->tx_bytes; 5558 stats->rx_packets = vsi_stats->rx_packets; 5559 stats->rx_bytes = vsi_stats->rx_bytes; 5560 5561 /* The rest of the stats can be read from the hardware but instead we 5562 * just return values that the watchdog task has already obtained from 5563 * the hardware. 5564 */ 5565 stats->multicast = vsi_stats->multicast; 5566 stats->tx_errors = vsi_stats->tx_errors; 5567 stats->tx_dropped = vsi_stats->tx_dropped; 5568 stats->rx_errors = vsi_stats->rx_errors; 5569 stats->rx_dropped = vsi_stats->rx_dropped; 5570 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 5571 stats->rx_length_errors = vsi_stats->rx_length_errors; 5572 } 5573 5574 /** 5575 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5576 * @vsi: VSI having NAPI disabled 5577 */ 5578 static void ice_napi_disable_all(struct ice_vsi *vsi) 5579 { 5580 int q_idx; 5581 5582 if (!vsi->netdev) 5583 return; 5584 5585 ice_for_each_q_vector(vsi, q_idx) { 5586 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5587 5588 if (q_vector->rx.ring || q_vector->tx.ring) 5589 napi_disable(&q_vector->napi); 5590 } 5591 } 5592 5593 /** 5594 * ice_down - Shutdown the connection 5595 * @vsi: The VSI being stopped 5596 */ 5597 int ice_down(struct ice_vsi *vsi) 5598 { 5599 int i, tx_err, rx_err, link_err = 0; 5600 5601 /* Caller of this function is expected to set the 5602 * vsi->state __ICE_DOWN bit 5603 */ 5604 if (vsi->netdev) { 5605 netif_carrier_off(vsi->netdev); 5606 netif_tx_disable(vsi->netdev); 5607 } 5608 5609 ice_vsi_dis_irq(vsi); 5610 5611 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 5612 if (tx_err) 5613 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 5614 vsi->vsi_num, tx_err); 5615 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 5616 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 5617 if (tx_err) 5618 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 5619 vsi->vsi_num, tx_err); 5620 } 5621 5622 rx_err = ice_vsi_stop_all_rx_rings(vsi); 5623 if (rx_err) 5624 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 5625 vsi->vsi_num, rx_err); 5626 5627 ice_napi_disable_all(vsi); 5628 5629 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 5630 link_err = ice_force_phys_link_state(vsi, false); 5631 if (link_err) 5632 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 5633 vsi->vsi_num, link_err); 5634 } 5635 5636 ice_for_each_txq(vsi, i) 5637 ice_clean_tx_ring(vsi->tx_rings[i]); 5638 5639 ice_for_each_rxq(vsi, i) 5640 ice_clean_rx_ring(vsi->rx_rings[i]); 5641 5642 if (tx_err || rx_err || link_err) { 5643 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 5644 vsi->vsi_num, vsi->vsw->sw_id); 5645 return -EIO; 5646 } 5647 5648 return 0; 5649 } 5650 5651 /** 5652 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 5653 * @vsi: VSI having resources allocated 5654 * 5655 * Return 0 on success, negative on failure 5656 */ 5657 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 5658 { 5659 int i, err = 0; 5660 5661 if (!vsi->num_txq) { 5662 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 5663 vsi->vsi_num); 5664 return -EINVAL; 5665 } 5666 5667 ice_for_each_txq(vsi, i) { 5668 struct ice_ring *ring = vsi->tx_rings[i]; 5669 5670 if (!ring) 5671 return -EINVAL; 5672 5673 ring->netdev = vsi->netdev; 5674 err = ice_setup_tx_ring(ring); 5675 if (err) 5676 break; 5677 } 5678 5679 return err; 5680 } 5681 5682 /** 5683 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 5684 * @vsi: VSI having resources allocated 5685 * 5686 * Return 0 on success, negative on failure 5687 */ 5688 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 5689 { 5690 int i, err = 0; 5691 5692 if (!vsi->num_rxq) { 5693 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 5694 vsi->vsi_num); 5695 return -EINVAL; 5696 } 5697 5698 ice_for_each_rxq(vsi, i) { 5699 struct ice_ring *ring = vsi->rx_rings[i]; 5700 5701 if (!ring) 5702 return -EINVAL; 5703 5704 ring->netdev = vsi->netdev; 5705 err = ice_setup_rx_ring(ring); 5706 if (err) 5707 break; 5708 } 5709 5710 return err; 5711 } 5712 5713 /** 5714 * ice_vsi_open_ctrl - open control VSI for use 5715 * @vsi: the VSI to open 5716 * 5717 * Initialization of the Control VSI 5718 * 5719 * Returns 0 on success, negative value on error 5720 */ 5721 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 5722 { 5723 char int_name[ICE_INT_NAME_STR_LEN]; 5724 struct ice_pf *pf = vsi->back; 5725 struct device *dev; 5726 int err; 5727 5728 dev = ice_pf_to_dev(pf); 5729 /* allocate descriptors */ 5730 err = ice_vsi_setup_tx_rings(vsi); 5731 if (err) 5732 goto err_setup_tx; 5733 5734 err = ice_vsi_setup_rx_rings(vsi); 5735 if (err) 5736 goto err_setup_rx; 5737 5738 err = ice_vsi_cfg(vsi); 5739 if (err) 5740 goto err_setup_rx; 5741 5742 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 5743 dev_driver_string(dev), dev_name(dev)); 5744 err = ice_vsi_req_irq_msix(vsi, int_name); 5745 if (err) 5746 goto err_setup_rx; 5747 5748 ice_vsi_cfg_msix(vsi); 5749 5750 err = ice_vsi_start_all_rx_rings(vsi); 5751 if (err) 5752 goto err_up_complete; 5753 5754 clear_bit(__ICE_DOWN, vsi->state); 5755 ice_vsi_ena_irq(vsi); 5756 5757 return 0; 5758 5759 err_up_complete: 5760 ice_down(vsi); 5761 err_setup_rx: 5762 ice_vsi_free_rx_rings(vsi); 5763 err_setup_tx: 5764 ice_vsi_free_tx_rings(vsi); 5765 5766 return err; 5767 } 5768 5769 /** 5770 * ice_vsi_open - Called when a network interface is made active 5771 * @vsi: the VSI to open 5772 * 5773 * Initialization of the VSI 5774 * 5775 * Returns 0 on success, negative value on error 5776 */ 5777 static int ice_vsi_open(struct ice_vsi *vsi) 5778 { 5779 char int_name[ICE_INT_NAME_STR_LEN]; 5780 struct ice_pf *pf = vsi->back; 5781 int err; 5782 5783 /* allocate descriptors */ 5784 err = ice_vsi_setup_tx_rings(vsi); 5785 if (err) 5786 goto err_setup_tx; 5787 5788 err = ice_vsi_setup_rx_rings(vsi); 5789 if (err) 5790 goto err_setup_rx; 5791 5792 err = ice_vsi_cfg(vsi); 5793 if (err) 5794 goto err_setup_rx; 5795 5796 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 5797 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 5798 err = ice_vsi_req_irq_msix(vsi, int_name); 5799 if (err) 5800 goto err_setup_rx; 5801 5802 /* Notify the stack of the actual queue counts. */ 5803 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 5804 if (err) 5805 goto err_set_qs; 5806 5807 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 5808 if (err) 5809 goto err_set_qs; 5810 5811 err = ice_up_complete(vsi); 5812 if (err) 5813 goto err_up_complete; 5814 5815 return 0; 5816 5817 err_up_complete: 5818 ice_down(vsi); 5819 err_set_qs: 5820 ice_vsi_free_irq(vsi); 5821 err_setup_rx: 5822 ice_vsi_free_rx_rings(vsi); 5823 err_setup_tx: 5824 ice_vsi_free_tx_rings(vsi); 5825 5826 return err; 5827 } 5828 5829 /** 5830 * ice_vsi_release_all - Delete all VSIs 5831 * @pf: PF from which all VSIs are being removed 5832 */ 5833 static void ice_vsi_release_all(struct ice_pf *pf) 5834 { 5835 int err, i; 5836 5837 if (!pf->vsi) 5838 return; 5839 5840 ice_for_each_vsi(pf, i) { 5841 if (!pf->vsi[i]) 5842 continue; 5843 5844 err = ice_vsi_release(pf->vsi[i]); 5845 if (err) 5846 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 5847 i, err, pf->vsi[i]->vsi_num); 5848 } 5849 } 5850 5851 /** 5852 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 5853 * @pf: pointer to the PF instance 5854 * @type: VSI type to rebuild 5855 * 5856 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 5857 */ 5858 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 5859 { 5860 struct device *dev = ice_pf_to_dev(pf); 5861 enum ice_status status; 5862 int i, err; 5863 5864 ice_for_each_vsi(pf, i) { 5865 struct ice_vsi *vsi = pf->vsi[i]; 5866 5867 if (!vsi || vsi->type != type) 5868 continue; 5869 5870 /* rebuild the VSI */ 5871 err = ice_vsi_rebuild(vsi, true); 5872 if (err) { 5873 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 5874 err, vsi->idx, ice_vsi_type_str(type)); 5875 return err; 5876 } 5877 5878 /* replay filters for the VSI */ 5879 status = ice_replay_vsi(&pf->hw, vsi->idx); 5880 if (status) { 5881 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 5882 ice_stat_str(status), vsi->idx, 5883 ice_vsi_type_str(type)); 5884 return -EIO; 5885 } 5886 5887 /* Re-map HW VSI number, using VSI handle that has been 5888 * previously validated in ice_replay_vsi() call above 5889 */ 5890 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 5891 5892 /* enable the VSI */ 5893 err = ice_ena_vsi(vsi, false); 5894 if (err) { 5895 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 5896 err, vsi->idx, ice_vsi_type_str(type)); 5897 return err; 5898 } 5899 5900 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 5901 ice_vsi_type_str(type)); 5902 } 5903 5904 return 0; 5905 } 5906 5907 /** 5908 * ice_update_pf_netdev_link - Update PF netdev link status 5909 * @pf: pointer to the PF instance 5910 */ 5911 static void ice_update_pf_netdev_link(struct ice_pf *pf) 5912 { 5913 bool link_up; 5914 int i; 5915 5916 ice_for_each_vsi(pf, i) { 5917 struct ice_vsi *vsi = pf->vsi[i]; 5918 5919 if (!vsi || vsi->type != ICE_VSI_PF) 5920 return; 5921 5922 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 5923 if (link_up) { 5924 netif_carrier_on(pf->vsi[i]->netdev); 5925 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 5926 } else { 5927 netif_carrier_off(pf->vsi[i]->netdev); 5928 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 5929 } 5930 } 5931 } 5932 5933 /** 5934 * ice_rebuild - rebuild after reset 5935 * @pf: PF to rebuild 5936 * @reset_type: type of reset 5937 * 5938 * Do not rebuild VF VSI in this flow because that is already handled via 5939 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 5940 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 5941 * to reset/rebuild all the VF VSI twice. 5942 */ 5943 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 5944 { 5945 struct device *dev = ice_pf_to_dev(pf); 5946 struct ice_hw *hw = &pf->hw; 5947 enum ice_status ret; 5948 int err; 5949 5950 if (test_bit(__ICE_DOWN, pf->state)) 5951 goto clear_recovery; 5952 5953 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 5954 5955 ret = ice_init_all_ctrlq(hw); 5956 if (ret) { 5957 dev_err(dev, "control queues init failed %s\n", 5958 ice_stat_str(ret)); 5959 goto err_init_ctrlq; 5960 } 5961 5962 /* if DDP was previously loaded successfully */ 5963 if (!ice_is_safe_mode(pf)) { 5964 /* reload the SW DB of filter tables */ 5965 if (reset_type == ICE_RESET_PFR) 5966 ice_fill_blk_tbls(hw); 5967 else 5968 /* Reload DDP Package after CORER/GLOBR reset */ 5969 ice_load_pkg(NULL, pf); 5970 } 5971 5972 ret = ice_clear_pf_cfg(hw); 5973 if (ret) { 5974 dev_err(dev, "clear PF configuration failed %s\n", 5975 ice_stat_str(ret)); 5976 goto err_init_ctrlq; 5977 } 5978 5979 if (pf->first_sw->dflt_vsi_ena) 5980 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 5981 /* clear the default VSI configuration if it exists */ 5982 pf->first_sw->dflt_vsi = NULL; 5983 pf->first_sw->dflt_vsi_ena = false; 5984 5985 ice_clear_pxe_mode(hw); 5986 5987 ret = ice_get_caps(hw); 5988 if (ret) { 5989 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 5990 goto err_init_ctrlq; 5991 } 5992 5993 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 5994 if (ret) { 5995 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 5996 goto err_init_ctrlq; 5997 } 5998 5999 err = ice_sched_init_port(hw->port_info); 6000 if (err) 6001 goto err_sched_init_port; 6002 6003 /* start misc vector */ 6004 err = ice_req_irq_msix_misc(pf); 6005 if (err) { 6006 dev_err(dev, "misc vector setup failed: %d\n", err); 6007 goto err_sched_init_port; 6008 } 6009 6010 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6011 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6012 if (!rd32(hw, PFQF_FD_SIZE)) { 6013 u16 unused, guar, b_effort; 6014 6015 guar = hw->func_caps.fd_fltr_guar; 6016 b_effort = hw->func_caps.fd_fltr_best_effort; 6017 6018 /* force guaranteed filter pool for PF */ 6019 ice_alloc_fd_guar_item(hw, &unused, guar); 6020 /* force shared filter pool for PF */ 6021 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6022 } 6023 } 6024 6025 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6026 ice_dcb_rebuild(pf); 6027 6028 /* rebuild PF VSI */ 6029 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6030 if (err) { 6031 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6032 goto err_vsi_rebuild; 6033 } 6034 6035 /* If Flow Director is active */ 6036 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6037 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6038 if (err) { 6039 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6040 goto err_vsi_rebuild; 6041 } 6042 6043 /* replay HW Flow Director recipes */ 6044 if (hw->fdir_prof) 6045 ice_fdir_replay_flows(hw); 6046 6047 /* replay Flow Director filters */ 6048 ice_fdir_replay_fltrs(pf); 6049 6050 ice_rebuild_arfs(pf); 6051 } 6052 6053 ice_update_pf_netdev_link(pf); 6054 6055 /* tell the firmware we are up */ 6056 ret = ice_send_version(pf); 6057 if (ret) { 6058 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6059 ice_stat_str(ret)); 6060 goto err_vsi_rebuild; 6061 } 6062 6063 ice_replay_post(hw); 6064 6065 /* if we get here, reset flow is successful */ 6066 clear_bit(__ICE_RESET_FAILED, pf->state); 6067 return; 6068 6069 err_vsi_rebuild: 6070 err_sched_init_port: 6071 ice_sched_cleanup_all(hw); 6072 err_init_ctrlq: 6073 ice_shutdown_all_ctrlq(hw); 6074 set_bit(__ICE_RESET_FAILED, pf->state); 6075 clear_recovery: 6076 /* set this bit in PF state to control service task scheduling */ 6077 set_bit(__ICE_NEEDS_RESTART, pf->state); 6078 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6079 } 6080 6081 /** 6082 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6083 * @vsi: Pointer to VSI structure 6084 */ 6085 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6086 { 6087 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6088 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6089 else 6090 return ICE_RXBUF_3072; 6091 } 6092 6093 /** 6094 * ice_change_mtu - NDO callback to change the MTU 6095 * @netdev: network interface device structure 6096 * @new_mtu: new value for maximum frame size 6097 * 6098 * Returns 0 on success, negative on failure 6099 */ 6100 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6101 { 6102 struct ice_netdev_priv *np = netdev_priv(netdev); 6103 struct ice_vsi *vsi = np->vsi; 6104 struct ice_pf *pf = vsi->back; 6105 u8 count = 0; 6106 6107 if (new_mtu == (int)netdev->mtu) { 6108 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6109 return 0; 6110 } 6111 6112 if (ice_is_xdp_ena_vsi(vsi)) { 6113 int frame_size = ice_max_xdp_frame_size(vsi); 6114 6115 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6116 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6117 frame_size - ICE_ETH_PKT_HDR_PAD); 6118 return -EINVAL; 6119 } 6120 } 6121 6122 if (new_mtu < (int)netdev->min_mtu) { 6123 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 6124 netdev->min_mtu); 6125 return -EINVAL; 6126 } else if (new_mtu > (int)netdev->max_mtu) { 6127 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 6128 netdev->min_mtu); 6129 return -EINVAL; 6130 } 6131 /* if a reset is in progress, wait for some time for it to complete */ 6132 do { 6133 if (ice_is_reset_in_progress(pf->state)) { 6134 count++; 6135 usleep_range(1000, 2000); 6136 } else { 6137 break; 6138 } 6139 6140 } while (count < 100); 6141 6142 if (count == 100) { 6143 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6144 return -EBUSY; 6145 } 6146 6147 netdev->mtu = (unsigned int)new_mtu; 6148 6149 /* if VSI is up, bring it down and then back up */ 6150 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 6151 int err; 6152 6153 err = ice_down(vsi); 6154 if (err) { 6155 netdev_err(netdev, "change MTU if_up err %d\n", err); 6156 return err; 6157 } 6158 6159 err = ice_up(vsi); 6160 if (err) { 6161 netdev_err(netdev, "change MTU if_up err %d\n", err); 6162 return err; 6163 } 6164 } 6165 6166 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6167 return 0; 6168 } 6169 6170 /** 6171 * ice_aq_str - convert AQ err code to a string 6172 * @aq_err: the AQ error code to convert 6173 */ 6174 const char *ice_aq_str(enum ice_aq_err aq_err) 6175 { 6176 switch (aq_err) { 6177 case ICE_AQ_RC_OK: 6178 return "OK"; 6179 case ICE_AQ_RC_EPERM: 6180 return "ICE_AQ_RC_EPERM"; 6181 case ICE_AQ_RC_ENOENT: 6182 return "ICE_AQ_RC_ENOENT"; 6183 case ICE_AQ_RC_ENOMEM: 6184 return "ICE_AQ_RC_ENOMEM"; 6185 case ICE_AQ_RC_EBUSY: 6186 return "ICE_AQ_RC_EBUSY"; 6187 case ICE_AQ_RC_EEXIST: 6188 return "ICE_AQ_RC_EEXIST"; 6189 case ICE_AQ_RC_EINVAL: 6190 return "ICE_AQ_RC_EINVAL"; 6191 case ICE_AQ_RC_ENOSPC: 6192 return "ICE_AQ_RC_ENOSPC"; 6193 case ICE_AQ_RC_ENOSYS: 6194 return "ICE_AQ_RC_ENOSYS"; 6195 case ICE_AQ_RC_EMODE: 6196 return "ICE_AQ_RC_EMODE"; 6197 case ICE_AQ_RC_ENOSEC: 6198 return "ICE_AQ_RC_ENOSEC"; 6199 case ICE_AQ_RC_EBADSIG: 6200 return "ICE_AQ_RC_EBADSIG"; 6201 case ICE_AQ_RC_ESVN: 6202 return "ICE_AQ_RC_ESVN"; 6203 case ICE_AQ_RC_EBADMAN: 6204 return "ICE_AQ_RC_EBADMAN"; 6205 case ICE_AQ_RC_EBADBUF: 6206 return "ICE_AQ_RC_EBADBUF"; 6207 } 6208 6209 return "ICE_AQ_RC_UNKNOWN"; 6210 } 6211 6212 /** 6213 * ice_stat_str - convert status err code to a string 6214 * @stat_err: the status error code to convert 6215 */ 6216 const char *ice_stat_str(enum ice_status stat_err) 6217 { 6218 switch (stat_err) { 6219 case ICE_SUCCESS: 6220 return "OK"; 6221 case ICE_ERR_PARAM: 6222 return "ICE_ERR_PARAM"; 6223 case ICE_ERR_NOT_IMPL: 6224 return "ICE_ERR_NOT_IMPL"; 6225 case ICE_ERR_NOT_READY: 6226 return "ICE_ERR_NOT_READY"; 6227 case ICE_ERR_NOT_SUPPORTED: 6228 return "ICE_ERR_NOT_SUPPORTED"; 6229 case ICE_ERR_BAD_PTR: 6230 return "ICE_ERR_BAD_PTR"; 6231 case ICE_ERR_INVAL_SIZE: 6232 return "ICE_ERR_INVAL_SIZE"; 6233 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6234 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6235 case ICE_ERR_RESET_FAILED: 6236 return "ICE_ERR_RESET_FAILED"; 6237 case ICE_ERR_FW_API_VER: 6238 return "ICE_ERR_FW_API_VER"; 6239 case ICE_ERR_NO_MEMORY: 6240 return "ICE_ERR_NO_MEMORY"; 6241 case ICE_ERR_CFG: 6242 return "ICE_ERR_CFG"; 6243 case ICE_ERR_OUT_OF_RANGE: 6244 return "ICE_ERR_OUT_OF_RANGE"; 6245 case ICE_ERR_ALREADY_EXISTS: 6246 return "ICE_ERR_ALREADY_EXISTS"; 6247 case ICE_ERR_NVM_CHECKSUM: 6248 return "ICE_ERR_NVM_CHECKSUM"; 6249 case ICE_ERR_BUF_TOO_SHORT: 6250 return "ICE_ERR_BUF_TOO_SHORT"; 6251 case ICE_ERR_NVM_BLANK_MODE: 6252 return "ICE_ERR_NVM_BLANK_MODE"; 6253 case ICE_ERR_IN_USE: 6254 return "ICE_ERR_IN_USE"; 6255 case ICE_ERR_MAX_LIMIT: 6256 return "ICE_ERR_MAX_LIMIT"; 6257 case ICE_ERR_RESET_ONGOING: 6258 return "ICE_ERR_RESET_ONGOING"; 6259 case ICE_ERR_HW_TABLE: 6260 return "ICE_ERR_HW_TABLE"; 6261 case ICE_ERR_DOES_NOT_EXIST: 6262 return "ICE_ERR_DOES_NOT_EXIST"; 6263 case ICE_ERR_FW_DDP_MISMATCH: 6264 return "ICE_ERR_FW_DDP_MISMATCH"; 6265 case ICE_ERR_AQ_ERROR: 6266 return "ICE_ERR_AQ_ERROR"; 6267 case ICE_ERR_AQ_TIMEOUT: 6268 return "ICE_ERR_AQ_TIMEOUT"; 6269 case ICE_ERR_AQ_FULL: 6270 return "ICE_ERR_AQ_FULL"; 6271 case ICE_ERR_AQ_NO_WORK: 6272 return "ICE_ERR_AQ_NO_WORK"; 6273 case ICE_ERR_AQ_EMPTY: 6274 return "ICE_ERR_AQ_EMPTY"; 6275 case ICE_ERR_AQ_FW_CRITICAL: 6276 return "ICE_ERR_AQ_FW_CRITICAL"; 6277 } 6278 6279 return "ICE_ERR_UNKNOWN"; 6280 } 6281 6282 /** 6283 * ice_set_rss - Set RSS keys and lut 6284 * @vsi: Pointer to VSI structure 6285 * @seed: RSS hash seed 6286 * @lut: Lookup table 6287 * @lut_size: Lookup table size 6288 * 6289 * Returns 0 on success, negative on failure 6290 */ 6291 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 6292 { 6293 struct ice_pf *pf = vsi->back; 6294 struct ice_hw *hw = &pf->hw; 6295 enum ice_status status; 6296 struct device *dev; 6297 6298 dev = ice_pf_to_dev(pf); 6299 if (seed) { 6300 struct ice_aqc_get_set_rss_keys *buf = 6301 (struct ice_aqc_get_set_rss_keys *)seed; 6302 6303 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 6304 6305 if (status) { 6306 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n", 6307 ice_stat_str(status), 6308 ice_aq_str(hw->adminq.sq_last_status)); 6309 return -EIO; 6310 } 6311 } 6312 6313 if (lut) { 6314 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 6315 lut, lut_size); 6316 if (status) { 6317 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n", 6318 ice_stat_str(status), 6319 ice_aq_str(hw->adminq.sq_last_status)); 6320 return -EIO; 6321 } 6322 } 6323 6324 return 0; 6325 } 6326 6327 /** 6328 * ice_get_rss - Get RSS keys and lut 6329 * @vsi: Pointer to VSI structure 6330 * @seed: Buffer to store the keys 6331 * @lut: Buffer to store the lookup table entries 6332 * @lut_size: Size of buffer to store the lookup table entries 6333 * 6334 * Returns 0 on success, negative on failure 6335 */ 6336 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 6337 { 6338 struct ice_pf *pf = vsi->back; 6339 struct ice_hw *hw = &pf->hw; 6340 enum ice_status status; 6341 struct device *dev; 6342 6343 dev = ice_pf_to_dev(pf); 6344 if (seed) { 6345 struct ice_aqc_get_set_rss_keys *buf = 6346 (struct ice_aqc_get_set_rss_keys *)seed; 6347 6348 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 6349 if (status) { 6350 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n", 6351 ice_stat_str(status), 6352 ice_aq_str(hw->adminq.sq_last_status)); 6353 return -EIO; 6354 } 6355 } 6356 6357 if (lut) { 6358 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 6359 lut, lut_size); 6360 if (status) { 6361 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n", 6362 ice_stat_str(status), 6363 ice_aq_str(hw->adminq.sq_last_status)); 6364 return -EIO; 6365 } 6366 } 6367 6368 return 0; 6369 } 6370 6371 /** 6372 * ice_bridge_getlink - Get the hardware bridge mode 6373 * @skb: skb buff 6374 * @pid: process ID 6375 * @seq: RTNL message seq 6376 * @dev: the netdev being configured 6377 * @filter_mask: filter mask passed in 6378 * @nlflags: netlink flags passed in 6379 * 6380 * Return the bridge mode (VEB/VEPA) 6381 */ 6382 static int 6383 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 6384 struct net_device *dev, u32 filter_mask, int nlflags) 6385 { 6386 struct ice_netdev_priv *np = netdev_priv(dev); 6387 struct ice_vsi *vsi = np->vsi; 6388 struct ice_pf *pf = vsi->back; 6389 u16 bmode; 6390 6391 bmode = pf->first_sw->bridge_mode; 6392 6393 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 6394 filter_mask, NULL); 6395 } 6396 6397 /** 6398 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 6399 * @vsi: Pointer to VSI structure 6400 * @bmode: Hardware bridge mode (VEB/VEPA) 6401 * 6402 * Returns 0 on success, negative on failure 6403 */ 6404 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 6405 { 6406 struct ice_aqc_vsi_props *vsi_props; 6407 struct ice_hw *hw = &vsi->back->hw; 6408 struct ice_vsi_ctx *ctxt; 6409 enum ice_status status; 6410 int ret = 0; 6411 6412 vsi_props = &vsi->info; 6413 6414 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 6415 if (!ctxt) 6416 return -ENOMEM; 6417 6418 ctxt->info = vsi->info; 6419 6420 if (bmode == BRIDGE_MODE_VEB) 6421 /* change from VEPA to VEB mode */ 6422 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6423 else 6424 /* change from VEB to VEPA mode */ 6425 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6426 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 6427 6428 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 6429 if (status) { 6430 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 6431 bmode, ice_stat_str(status), 6432 ice_aq_str(hw->adminq.sq_last_status)); 6433 ret = -EIO; 6434 goto out; 6435 } 6436 /* Update sw flags for book keeping */ 6437 vsi_props->sw_flags = ctxt->info.sw_flags; 6438 6439 out: 6440 kfree(ctxt); 6441 return ret; 6442 } 6443 6444 /** 6445 * ice_bridge_setlink - Set the hardware bridge mode 6446 * @dev: the netdev being configured 6447 * @nlh: RTNL message 6448 * @flags: bridge setlink flags 6449 * @extack: netlink extended ack 6450 * 6451 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 6452 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 6453 * not already set for all VSIs connected to this switch. And also update the 6454 * unicast switch filter rules for the corresponding switch of the netdev. 6455 */ 6456 static int 6457 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 6458 u16 __always_unused flags, 6459 struct netlink_ext_ack __always_unused *extack) 6460 { 6461 struct ice_netdev_priv *np = netdev_priv(dev); 6462 struct ice_pf *pf = np->vsi->back; 6463 struct nlattr *attr, *br_spec; 6464 struct ice_hw *hw = &pf->hw; 6465 enum ice_status status; 6466 struct ice_sw *pf_sw; 6467 int rem, v, err = 0; 6468 6469 pf_sw = pf->first_sw; 6470 /* find the attribute in the netlink message */ 6471 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 6472 6473 nla_for_each_nested(attr, br_spec, rem) { 6474 __u16 mode; 6475 6476 if (nla_type(attr) != IFLA_BRIDGE_MODE) 6477 continue; 6478 mode = nla_get_u16(attr); 6479 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 6480 return -EINVAL; 6481 /* Continue if bridge mode is not being flipped */ 6482 if (mode == pf_sw->bridge_mode) 6483 continue; 6484 /* Iterates through the PF VSI list and update the loopback 6485 * mode of the VSI 6486 */ 6487 ice_for_each_vsi(pf, v) { 6488 if (!pf->vsi[v]) 6489 continue; 6490 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 6491 if (err) 6492 return err; 6493 } 6494 6495 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 6496 /* Update the unicast switch filter rules for the corresponding 6497 * switch of the netdev 6498 */ 6499 status = ice_update_sw_rule_bridge_mode(hw); 6500 if (status) { 6501 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 6502 mode, ice_stat_str(status), 6503 ice_aq_str(hw->adminq.sq_last_status)); 6504 /* revert hw->evb_veb */ 6505 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 6506 return -EIO; 6507 } 6508 6509 pf_sw->bridge_mode = mode; 6510 } 6511 6512 return 0; 6513 } 6514 6515 /** 6516 * ice_tx_timeout - Respond to a Tx Hang 6517 * @netdev: network interface device structure 6518 * @txqueue: Tx queue 6519 */ 6520 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 6521 { 6522 struct ice_netdev_priv *np = netdev_priv(netdev); 6523 struct ice_ring *tx_ring = NULL; 6524 struct ice_vsi *vsi = np->vsi; 6525 struct ice_pf *pf = vsi->back; 6526 u32 i; 6527 6528 pf->tx_timeout_count++; 6529 6530 /* Check if PFC is enabled for the TC to which the queue belongs 6531 * to. If yes then Tx timeout is not caused by a hung queue, no 6532 * need to reset and rebuild 6533 */ 6534 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 6535 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 6536 txqueue); 6537 return; 6538 } 6539 6540 /* now that we have an index, find the tx_ring struct */ 6541 for (i = 0; i < vsi->num_txq; i++) 6542 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 6543 if (txqueue == vsi->tx_rings[i]->q_index) { 6544 tx_ring = vsi->tx_rings[i]; 6545 break; 6546 } 6547 6548 /* Reset recovery level if enough time has elapsed after last timeout. 6549 * Also ensure no new reset action happens before next timeout period. 6550 */ 6551 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 6552 pf->tx_timeout_recovery_level = 1; 6553 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 6554 netdev->watchdog_timeo))) 6555 return; 6556 6557 if (tx_ring) { 6558 struct ice_hw *hw = &pf->hw; 6559 u32 head, val = 0; 6560 6561 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 6562 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 6563 /* Read interrupt register */ 6564 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 6565 6566 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 6567 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 6568 head, tx_ring->next_to_use, val); 6569 } 6570 6571 pf->tx_timeout_last_recovery = jiffies; 6572 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 6573 pf->tx_timeout_recovery_level, txqueue); 6574 6575 switch (pf->tx_timeout_recovery_level) { 6576 case 1: 6577 set_bit(__ICE_PFR_REQ, pf->state); 6578 break; 6579 case 2: 6580 set_bit(__ICE_CORER_REQ, pf->state); 6581 break; 6582 case 3: 6583 set_bit(__ICE_GLOBR_REQ, pf->state); 6584 break; 6585 default: 6586 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 6587 set_bit(__ICE_DOWN, pf->state); 6588 set_bit(__ICE_NEEDS_RESTART, vsi->state); 6589 set_bit(__ICE_SERVICE_DIS, pf->state); 6590 break; 6591 } 6592 6593 ice_service_task_schedule(pf); 6594 pf->tx_timeout_recovery_level++; 6595 } 6596 6597 /** 6598 * ice_open - Called when a network interface becomes active 6599 * @netdev: network interface device structure 6600 * 6601 * The open entry point is called when a network interface is made 6602 * active by the system (IFF_UP). At this point all resources needed 6603 * for transmit and receive operations are allocated, the interrupt 6604 * handler is registered with the OS, the netdev watchdog is enabled, 6605 * and the stack is notified that the interface is ready. 6606 * 6607 * Returns 0 on success, negative value on failure 6608 */ 6609 int ice_open(struct net_device *netdev) 6610 { 6611 struct ice_netdev_priv *np = netdev_priv(netdev); 6612 struct ice_vsi *vsi = np->vsi; 6613 struct ice_pf *pf = vsi->back; 6614 struct ice_port_info *pi; 6615 int err; 6616 6617 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) { 6618 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 6619 return -EIO; 6620 } 6621 6622 if (test_bit(__ICE_DOWN, pf->state)) { 6623 netdev_err(netdev, "device is not ready yet\n"); 6624 return -EBUSY; 6625 } 6626 6627 netif_carrier_off(netdev); 6628 6629 pi = vsi->port_info; 6630 err = ice_update_link_info(pi); 6631 if (err) { 6632 netdev_err(netdev, "Failed to get link info, error %d\n", 6633 err); 6634 return err; 6635 } 6636 6637 /* Set PHY if there is media, otherwise, turn off PHY */ 6638 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 6639 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6640 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) { 6641 err = ice_init_phy_user_cfg(pi); 6642 if (err) { 6643 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 6644 err); 6645 return err; 6646 } 6647 } 6648 6649 err = ice_configure_phy(vsi); 6650 if (err) { 6651 netdev_err(netdev, "Failed to set physical link up, error %d\n", 6652 err); 6653 return err; 6654 } 6655 } else { 6656 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6657 err = ice_aq_set_link_restart_an(pi, false, NULL); 6658 if (err) { 6659 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 6660 vsi->vsi_num, err); 6661 return err; 6662 } 6663 } 6664 6665 err = ice_vsi_open(vsi); 6666 if (err) 6667 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 6668 vsi->vsi_num, vsi->vsw->sw_id); 6669 6670 /* Update existing tunnels information */ 6671 udp_tunnel_get_rx_info(netdev); 6672 6673 return err; 6674 } 6675 6676 /** 6677 * ice_stop - Disables a network interface 6678 * @netdev: network interface device structure 6679 * 6680 * The stop entry point is called when an interface is de-activated by the OS, 6681 * and the netdevice enters the DOWN state. The hardware is still under the 6682 * driver's control, but the netdev interface is disabled. 6683 * 6684 * Returns success only - not allowed to fail 6685 */ 6686 int ice_stop(struct net_device *netdev) 6687 { 6688 struct ice_netdev_priv *np = netdev_priv(netdev); 6689 struct ice_vsi *vsi = np->vsi; 6690 6691 ice_vsi_close(vsi); 6692 6693 return 0; 6694 } 6695 6696 /** 6697 * ice_features_check - Validate encapsulated packet conforms to limits 6698 * @skb: skb buffer 6699 * @netdev: This port's netdev 6700 * @features: Offload features that the stack believes apply 6701 */ 6702 static netdev_features_t 6703 ice_features_check(struct sk_buff *skb, 6704 struct net_device __always_unused *netdev, 6705 netdev_features_t features) 6706 { 6707 size_t len; 6708 6709 /* No point in doing any of this if neither checksum nor GSO are 6710 * being requested for this frame. We can rule out both by just 6711 * checking for CHECKSUM_PARTIAL 6712 */ 6713 if (skb->ip_summed != CHECKSUM_PARTIAL) 6714 return features; 6715 6716 /* We cannot support GSO if the MSS is going to be less than 6717 * 64 bytes. If it is then we need to drop support for GSO. 6718 */ 6719 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 6720 features &= ~NETIF_F_GSO_MASK; 6721 6722 len = skb_network_header(skb) - skb->data; 6723 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 6724 goto out_rm_features; 6725 6726 len = skb_transport_header(skb) - skb_network_header(skb); 6727 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6728 goto out_rm_features; 6729 6730 if (skb->encapsulation) { 6731 len = skb_inner_network_header(skb) - skb_transport_header(skb); 6732 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 6733 goto out_rm_features; 6734 6735 len = skb_inner_transport_header(skb) - 6736 skb_inner_network_header(skb); 6737 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6738 goto out_rm_features; 6739 } 6740 6741 return features; 6742 out_rm_features: 6743 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 6744 } 6745 6746 static const struct net_device_ops ice_netdev_safe_mode_ops = { 6747 .ndo_open = ice_open, 6748 .ndo_stop = ice_stop, 6749 .ndo_start_xmit = ice_start_xmit, 6750 .ndo_set_mac_address = ice_set_mac_address, 6751 .ndo_validate_addr = eth_validate_addr, 6752 .ndo_change_mtu = ice_change_mtu, 6753 .ndo_get_stats64 = ice_get_stats64, 6754 .ndo_tx_timeout = ice_tx_timeout, 6755 }; 6756 6757 static const struct net_device_ops ice_netdev_ops = { 6758 .ndo_open = ice_open, 6759 .ndo_stop = ice_stop, 6760 .ndo_start_xmit = ice_start_xmit, 6761 .ndo_features_check = ice_features_check, 6762 .ndo_set_rx_mode = ice_set_rx_mode, 6763 .ndo_set_mac_address = ice_set_mac_address, 6764 .ndo_validate_addr = eth_validate_addr, 6765 .ndo_change_mtu = ice_change_mtu, 6766 .ndo_get_stats64 = ice_get_stats64, 6767 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 6768 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 6769 .ndo_set_vf_mac = ice_set_vf_mac, 6770 .ndo_get_vf_config = ice_get_vf_cfg, 6771 .ndo_set_vf_trust = ice_set_vf_trust, 6772 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 6773 .ndo_set_vf_link_state = ice_set_vf_link_state, 6774 .ndo_get_vf_stats = ice_get_vf_stats, 6775 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 6776 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 6777 .ndo_set_features = ice_set_features, 6778 .ndo_bridge_getlink = ice_bridge_getlink, 6779 .ndo_bridge_setlink = ice_bridge_setlink, 6780 .ndo_fdb_add = ice_fdb_add, 6781 .ndo_fdb_del = ice_fdb_del, 6782 #ifdef CONFIG_RFS_ACCEL 6783 .ndo_rx_flow_steer = ice_rx_flow_steer, 6784 #endif 6785 .ndo_tx_timeout = ice_tx_timeout, 6786 .ndo_bpf = ice_xdp, 6787 .ndo_xdp_xmit = ice_xdp_xmit, 6788 .ndo_xsk_wakeup = ice_xsk_wakeup, 6789 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 6790 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 6791 }; 6792