xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "ice_devlink.h"
17 #include "ice_hwmon.h"
18 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
19  * ice tracepoint functions. This must be done exactly once across the
20  * ice driver.
21  */
22 #define CREATE_TRACE_POINTS
23 #include "ice_trace.h"
24 #include "ice_eswitch.h"
25 #include "ice_tc_lib.h"
26 #include "ice_vsi_vlan_ops.h"
27 #include <net/xdp_sock_drv.h>
28 
29 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
30 static const char ice_driver_string[] = DRV_SUMMARY;
31 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
32 
33 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
34 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
35 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
36 
37 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
38 MODULE_DESCRIPTION(DRV_SUMMARY);
39 MODULE_LICENSE("GPL v2");
40 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
41 
42 static int debug = -1;
43 module_param(debug, int, 0644);
44 #ifndef CONFIG_DYNAMIC_DEBUG
45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
46 #else
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
48 #endif /* !CONFIG_DYNAMIC_DEBUG */
49 
50 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
51 EXPORT_SYMBOL(ice_xdp_locking_key);
52 
53 /**
54  * ice_hw_to_dev - Get device pointer from the hardware structure
55  * @hw: pointer to the device HW structure
56  *
57  * Used to access the device pointer from compilation units which can't easily
58  * include the definition of struct ice_pf without leading to circular header
59  * dependencies.
60  */
61 struct device *ice_hw_to_dev(struct ice_hw *hw)
62 {
63 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
64 
65 	return &pf->pdev->dev;
66 }
67 
68 static struct workqueue_struct *ice_wq;
69 struct workqueue_struct *ice_lag_wq;
70 static const struct net_device_ops ice_netdev_safe_mode_ops;
71 static const struct net_device_ops ice_netdev_ops;
72 
73 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
74 
75 static void ice_vsi_release_all(struct ice_pf *pf);
76 
77 static int ice_rebuild_channels(struct ice_pf *pf);
78 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
79 
80 static int
81 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
82 		     void *cb_priv, enum tc_setup_type type, void *type_data,
83 		     void *data,
84 		     void (*cleanup)(struct flow_block_cb *block_cb));
85 
86 bool netif_is_ice(const struct net_device *dev)
87 {
88 	return dev && (dev->netdev_ops == &ice_netdev_ops);
89 }
90 
91 /**
92  * ice_get_tx_pending - returns number of Tx descriptors not processed
93  * @ring: the ring of descriptors
94  */
95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
96 {
97 	u16 head, tail;
98 
99 	head = ring->next_to_clean;
100 	tail = ring->next_to_use;
101 
102 	if (head != tail)
103 		return (head < tail) ?
104 			tail - head : (tail + ring->count - head);
105 	return 0;
106 }
107 
108 /**
109  * ice_check_for_hang_subtask - check for and recover hung queues
110  * @pf: pointer to PF struct
111  */
112 static void ice_check_for_hang_subtask(struct ice_pf *pf)
113 {
114 	struct ice_vsi *vsi = NULL;
115 	struct ice_hw *hw;
116 	unsigned int i;
117 	int packets;
118 	u32 v;
119 
120 	ice_for_each_vsi(pf, v)
121 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
122 			vsi = pf->vsi[v];
123 			break;
124 		}
125 
126 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
127 		return;
128 
129 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
130 		return;
131 
132 	hw = &vsi->back->hw;
133 
134 	ice_for_each_txq(vsi, i) {
135 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
136 		struct ice_ring_stats *ring_stats;
137 
138 		if (!tx_ring)
139 			continue;
140 		if (ice_ring_ch_enabled(tx_ring))
141 			continue;
142 
143 		ring_stats = tx_ring->ring_stats;
144 		if (!ring_stats)
145 			continue;
146 
147 		if (tx_ring->desc) {
148 			/* If packet counter has not changed the queue is
149 			 * likely stalled, so force an interrupt for this
150 			 * queue.
151 			 *
152 			 * prev_pkt would be negative if there was no
153 			 * pending work.
154 			 */
155 			packets = ring_stats->stats.pkts & INT_MAX;
156 			if (ring_stats->tx_stats.prev_pkt == packets) {
157 				/* Trigger sw interrupt to revive the queue */
158 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
159 				continue;
160 			}
161 
162 			/* Memory barrier between read of packet count and call
163 			 * to ice_get_tx_pending()
164 			 */
165 			smp_rmb();
166 			ring_stats->tx_stats.prev_pkt =
167 			    ice_get_tx_pending(tx_ring) ? packets : -1;
168 		}
169 	}
170 }
171 
172 /**
173  * ice_init_mac_fltr - Set initial MAC filters
174  * @pf: board private structure
175  *
176  * Set initial set of MAC filters for PF VSI; configure filters for permanent
177  * address and broadcast address. If an error is encountered, netdevice will be
178  * unregistered.
179  */
180 static int ice_init_mac_fltr(struct ice_pf *pf)
181 {
182 	struct ice_vsi *vsi;
183 	u8 *perm_addr;
184 
185 	vsi = ice_get_main_vsi(pf);
186 	if (!vsi)
187 		return -EINVAL;
188 
189 	perm_addr = vsi->port_info->mac.perm_addr;
190 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
191 }
192 
193 /**
194  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
195  * @netdev: the net device on which the sync is happening
196  * @addr: MAC address to sync
197  *
198  * This is a callback function which is called by the in kernel device sync
199  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
200  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
201  * MAC filters from the hardware.
202  */
203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
204 {
205 	struct ice_netdev_priv *np = netdev_priv(netdev);
206 	struct ice_vsi *vsi = np->vsi;
207 
208 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
209 				     ICE_FWD_TO_VSI))
210 		return -EINVAL;
211 
212 	return 0;
213 }
214 
215 /**
216  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
217  * @netdev: the net device on which the unsync is happening
218  * @addr: MAC address to unsync
219  *
220  * This is a callback function which is called by the in kernel device unsync
221  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
222  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
223  * delete the MAC filters from the hardware.
224  */
225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
226 {
227 	struct ice_netdev_priv *np = netdev_priv(netdev);
228 	struct ice_vsi *vsi = np->vsi;
229 
230 	/* Under some circumstances, we might receive a request to delete our
231 	 * own device address from our uc list. Because we store the device
232 	 * address in the VSI's MAC filter list, we need to ignore such
233 	 * requests and not delete our device address from this list.
234 	 */
235 	if (ether_addr_equal(addr, netdev->dev_addr))
236 		return 0;
237 
238 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
239 				     ICE_FWD_TO_VSI))
240 		return -EINVAL;
241 
242 	return 0;
243 }
244 
245 /**
246  * ice_vsi_fltr_changed - check if filter state changed
247  * @vsi: VSI to be checked
248  *
249  * returns true if filter state has changed, false otherwise.
250  */
251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
252 {
253 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
254 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
255 }
256 
257 /**
258  * ice_set_promisc - Enable promiscuous mode for a given PF
259  * @vsi: the VSI being configured
260  * @promisc_m: mask of promiscuous config bits
261  *
262  */
263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
264 {
265 	int status;
266 
267 	if (vsi->type != ICE_VSI_PF)
268 		return 0;
269 
270 	if (ice_vsi_has_non_zero_vlans(vsi)) {
271 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
272 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
273 						       promisc_m);
274 	} else {
275 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
276 						  promisc_m, 0);
277 	}
278 	if (status && status != -EEXIST)
279 		return status;
280 
281 	netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
282 		   vsi->vsi_num, promisc_m);
283 	return 0;
284 }
285 
286 /**
287  * ice_clear_promisc - Disable promiscuous mode for a given PF
288  * @vsi: the VSI being configured
289  * @promisc_m: mask of promiscuous config bits
290  *
291  */
292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
293 {
294 	int status;
295 
296 	if (vsi->type != ICE_VSI_PF)
297 		return 0;
298 
299 	if (ice_vsi_has_non_zero_vlans(vsi)) {
300 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
301 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
302 							 promisc_m);
303 	} else {
304 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
305 						    promisc_m, 0);
306 	}
307 
308 	netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
309 		   vsi->vsi_num, promisc_m);
310 	return status;
311 }
312 
313 /**
314  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
315  * @vsi: ptr to the VSI
316  *
317  * Push any outstanding VSI filter changes through the AdminQ.
318  */
319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
320 {
321 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
322 	struct device *dev = ice_pf_to_dev(vsi->back);
323 	struct net_device *netdev = vsi->netdev;
324 	bool promisc_forced_on = false;
325 	struct ice_pf *pf = vsi->back;
326 	struct ice_hw *hw = &pf->hw;
327 	u32 changed_flags = 0;
328 	int err;
329 
330 	if (!vsi->netdev)
331 		return -EINVAL;
332 
333 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
334 		usleep_range(1000, 2000);
335 
336 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
337 	vsi->current_netdev_flags = vsi->netdev->flags;
338 
339 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
340 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
341 
342 	if (ice_vsi_fltr_changed(vsi)) {
343 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
344 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
345 
346 		/* grab the netdev's addr_list_lock */
347 		netif_addr_lock_bh(netdev);
348 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
349 			      ice_add_mac_to_unsync_list);
350 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
351 			      ice_add_mac_to_unsync_list);
352 		/* our temp lists are populated. release lock */
353 		netif_addr_unlock_bh(netdev);
354 	}
355 
356 	/* Remove MAC addresses in the unsync list */
357 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
358 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
359 	if (err) {
360 		netdev_err(netdev, "Failed to delete MAC filters\n");
361 		/* if we failed because of alloc failures, just bail */
362 		if (err == -ENOMEM)
363 			goto out;
364 	}
365 
366 	/* Add MAC addresses in the sync list */
367 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
368 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
369 	/* If filter is added successfully or already exists, do not go into
370 	 * 'if' condition and report it as error. Instead continue processing
371 	 * rest of the function.
372 	 */
373 	if (err && err != -EEXIST) {
374 		netdev_err(netdev, "Failed to add MAC filters\n");
375 		/* If there is no more space for new umac filters, VSI
376 		 * should go into promiscuous mode. There should be some
377 		 * space reserved for promiscuous filters.
378 		 */
379 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
380 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
381 				      vsi->state)) {
382 			promisc_forced_on = true;
383 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
384 				    vsi->vsi_num);
385 		} else {
386 			goto out;
387 		}
388 	}
389 	err = 0;
390 	/* check for changes in promiscuous modes */
391 	if (changed_flags & IFF_ALLMULTI) {
392 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
393 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 			if (err) {
395 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
396 				goto out_promisc;
397 			}
398 		} else {
399 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
400 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 			if (err) {
402 				vsi->current_netdev_flags |= IFF_ALLMULTI;
403 				goto out_promisc;
404 			}
405 		}
406 	}
407 
408 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
409 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
410 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
411 		if (vsi->current_netdev_flags & IFF_PROMISC) {
412 			/* Apply Rx filter rule to get traffic from wire */
413 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
414 				err = ice_set_dflt_vsi(vsi);
415 				if (err && err != -EEXIST) {
416 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
417 						   err, vsi->vsi_num);
418 					vsi->current_netdev_flags &=
419 						~IFF_PROMISC;
420 					goto out_promisc;
421 				}
422 				err = 0;
423 				vlan_ops->dis_rx_filtering(vsi);
424 
425 				/* promiscuous mode implies allmulticast so
426 				 * that VSIs that are in promiscuous mode are
427 				 * subscribed to multicast packets coming to
428 				 * the port
429 				 */
430 				err = ice_set_promisc(vsi,
431 						      ICE_MCAST_PROMISC_BITS);
432 				if (err)
433 					goto out_promisc;
434 			}
435 		} else {
436 			/* Clear Rx filter to remove traffic from wire */
437 			if (ice_is_vsi_dflt_vsi(vsi)) {
438 				err = ice_clear_dflt_vsi(vsi);
439 				if (err) {
440 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
441 						   err, vsi->vsi_num);
442 					vsi->current_netdev_flags |=
443 						IFF_PROMISC;
444 					goto out_promisc;
445 				}
446 				if (vsi->netdev->features &
447 				    NETIF_F_HW_VLAN_CTAG_FILTER)
448 					vlan_ops->ena_rx_filtering(vsi);
449 			}
450 
451 			/* disable allmulti here, but only if allmulti is not
452 			 * still enabled for the netdev
453 			 */
454 			if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
455 				err = ice_clear_promisc(vsi,
456 							ICE_MCAST_PROMISC_BITS);
457 				if (err) {
458 					netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
459 						   err, vsi->vsi_num);
460 				}
461 			}
462 		}
463 	}
464 	goto exit;
465 
466 out_promisc:
467 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
468 	goto exit;
469 out:
470 	/* if something went wrong then set the changed flag so we try again */
471 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
472 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
473 exit:
474 	clear_bit(ICE_CFG_BUSY, vsi->state);
475 	return err;
476 }
477 
478 /**
479  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
480  * @pf: board private structure
481  */
482 static void ice_sync_fltr_subtask(struct ice_pf *pf)
483 {
484 	int v;
485 
486 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
487 		return;
488 
489 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
490 
491 	ice_for_each_vsi(pf, v)
492 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
493 		    ice_vsi_sync_fltr(pf->vsi[v])) {
494 			/* come back and try again later */
495 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
496 			break;
497 		}
498 }
499 
500 /**
501  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
502  * @pf: the PF
503  * @locked: is the rtnl_lock already held
504  */
505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
506 {
507 	int node;
508 	int v;
509 
510 	ice_for_each_vsi(pf, v)
511 		if (pf->vsi[v])
512 			ice_dis_vsi(pf->vsi[v], locked);
513 
514 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
515 		pf->pf_agg_node[node].num_vsis = 0;
516 
517 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
518 		pf->vf_agg_node[node].num_vsis = 0;
519 }
520 
521 /**
522  * ice_clear_sw_switch_recipes - clear switch recipes
523  * @pf: board private structure
524  *
525  * Mark switch recipes as not created in sw structures. There are cases where
526  * rules (especially advanced rules) need to be restored, either re-read from
527  * hardware or added again. For example after the reset. 'recp_created' flag
528  * prevents from doing that and need to be cleared upfront.
529  */
530 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
531 {
532 	struct ice_sw_recipe *recp;
533 	u8 i;
534 
535 	recp = pf->hw.switch_info->recp_list;
536 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
537 		recp[i].recp_created = false;
538 }
539 
540 /**
541  * ice_prepare_for_reset - prep for reset
542  * @pf: board private structure
543  * @reset_type: reset type requested
544  *
545  * Inform or close all dependent features in prep for reset.
546  */
547 static void
548 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
549 {
550 	struct ice_hw *hw = &pf->hw;
551 	struct ice_vsi *vsi;
552 	struct ice_vf *vf;
553 	unsigned int bkt;
554 
555 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
556 
557 	/* already prepared for reset */
558 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
559 		return;
560 
561 	ice_unplug_aux_dev(pf);
562 
563 	/* Notify VFs of impending reset */
564 	if (ice_check_sq_alive(hw, &hw->mailboxq))
565 		ice_vc_notify_reset(pf);
566 
567 	/* Disable VFs until reset is completed */
568 	mutex_lock(&pf->vfs.table_lock);
569 	ice_for_each_vf(pf, bkt, vf)
570 		ice_set_vf_state_dis(vf);
571 	mutex_unlock(&pf->vfs.table_lock);
572 
573 	if (ice_is_eswitch_mode_switchdev(pf)) {
574 		if (reset_type != ICE_RESET_PFR)
575 			ice_clear_sw_switch_recipes(pf);
576 	}
577 
578 	/* release ADQ specific HW and SW resources */
579 	vsi = ice_get_main_vsi(pf);
580 	if (!vsi)
581 		goto skip;
582 
583 	/* to be on safe side, reset orig_rss_size so that normal flow
584 	 * of deciding rss_size can take precedence
585 	 */
586 	vsi->orig_rss_size = 0;
587 
588 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
589 		if (reset_type == ICE_RESET_PFR) {
590 			vsi->old_ena_tc = vsi->all_enatc;
591 			vsi->old_numtc = vsi->all_numtc;
592 		} else {
593 			ice_remove_q_channels(vsi, true);
594 
595 			/* for other reset type, do not support channel rebuild
596 			 * hence reset needed info
597 			 */
598 			vsi->old_ena_tc = 0;
599 			vsi->all_enatc = 0;
600 			vsi->old_numtc = 0;
601 			vsi->all_numtc = 0;
602 			vsi->req_txq = 0;
603 			vsi->req_rxq = 0;
604 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
605 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
606 		}
607 	}
608 skip:
609 
610 	/* clear SW filtering DB */
611 	ice_clear_hw_tbls(hw);
612 	/* disable the VSIs and their queues that are not already DOWN */
613 	ice_pf_dis_all_vsi(pf, false);
614 
615 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
616 		ice_ptp_prepare_for_reset(pf);
617 
618 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
619 		ice_gnss_exit(pf);
620 
621 	if (hw->port_info)
622 		ice_sched_clear_port(hw->port_info);
623 
624 	ice_shutdown_all_ctrlq(hw);
625 
626 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
627 }
628 
629 /**
630  * ice_do_reset - Initiate one of many types of resets
631  * @pf: board private structure
632  * @reset_type: reset type requested before this function was called.
633  */
634 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
635 {
636 	struct device *dev = ice_pf_to_dev(pf);
637 	struct ice_hw *hw = &pf->hw;
638 
639 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
640 
641 	if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
642 		dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
643 		reset_type = ICE_RESET_CORER;
644 	}
645 
646 	ice_prepare_for_reset(pf, reset_type);
647 
648 	/* trigger the reset */
649 	if (ice_reset(hw, reset_type)) {
650 		dev_err(dev, "reset %d failed\n", reset_type);
651 		set_bit(ICE_RESET_FAILED, pf->state);
652 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
653 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
654 		clear_bit(ICE_PFR_REQ, pf->state);
655 		clear_bit(ICE_CORER_REQ, pf->state);
656 		clear_bit(ICE_GLOBR_REQ, pf->state);
657 		wake_up(&pf->reset_wait_queue);
658 		return;
659 	}
660 
661 	/* PFR is a bit of a special case because it doesn't result in an OICR
662 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
663 	 * associated state bits.
664 	 */
665 	if (reset_type == ICE_RESET_PFR) {
666 		pf->pfr_count++;
667 		ice_rebuild(pf, reset_type);
668 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
669 		clear_bit(ICE_PFR_REQ, pf->state);
670 		wake_up(&pf->reset_wait_queue);
671 		ice_reset_all_vfs(pf);
672 	}
673 }
674 
675 /**
676  * ice_reset_subtask - Set up for resetting the device and driver
677  * @pf: board private structure
678  */
679 static void ice_reset_subtask(struct ice_pf *pf)
680 {
681 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
682 
683 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
684 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
685 	 * of reset is pending and sets bits in pf->state indicating the reset
686 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
687 	 * prepare for pending reset if not already (for PF software-initiated
688 	 * global resets the software should already be prepared for it as
689 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
690 	 * by firmware or software on other PFs, that bit is not set so prepare
691 	 * for the reset now), poll for reset done, rebuild and return.
692 	 */
693 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
694 		/* Perform the largest reset requested */
695 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
696 			reset_type = ICE_RESET_CORER;
697 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
698 			reset_type = ICE_RESET_GLOBR;
699 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
700 			reset_type = ICE_RESET_EMPR;
701 		/* return if no valid reset type requested */
702 		if (reset_type == ICE_RESET_INVAL)
703 			return;
704 		ice_prepare_for_reset(pf, reset_type);
705 
706 		/* make sure we are ready to rebuild */
707 		if (ice_check_reset(&pf->hw)) {
708 			set_bit(ICE_RESET_FAILED, pf->state);
709 		} else {
710 			/* done with reset. start rebuild */
711 			pf->hw.reset_ongoing = false;
712 			ice_rebuild(pf, reset_type);
713 			/* clear bit to resume normal operations, but
714 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
715 			 */
716 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
717 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
718 			clear_bit(ICE_PFR_REQ, pf->state);
719 			clear_bit(ICE_CORER_REQ, pf->state);
720 			clear_bit(ICE_GLOBR_REQ, pf->state);
721 			wake_up(&pf->reset_wait_queue);
722 			ice_reset_all_vfs(pf);
723 		}
724 
725 		return;
726 	}
727 
728 	/* No pending resets to finish processing. Check for new resets */
729 	if (test_bit(ICE_PFR_REQ, pf->state)) {
730 		reset_type = ICE_RESET_PFR;
731 		if (pf->lag && pf->lag->bonded) {
732 			dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
733 			reset_type = ICE_RESET_CORER;
734 		}
735 	}
736 	if (test_bit(ICE_CORER_REQ, pf->state))
737 		reset_type = ICE_RESET_CORER;
738 	if (test_bit(ICE_GLOBR_REQ, pf->state))
739 		reset_type = ICE_RESET_GLOBR;
740 	/* If no valid reset type requested just return */
741 	if (reset_type == ICE_RESET_INVAL)
742 		return;
743 
744 	/* reset if not already down or busy */
745 	if (!test_bit(ICE_DOWN, pf->state) &&
746 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
747 		ice_do_reset(pf, reset_type);
748 	}
749 }
750 
751 /**
752  * ice_print_topo_conflict - print topology conflict message
753  * @vsi: the VSI whose topology status is being checked
754  */
755 static void ice_print_topo_conflict(struct ice_vsi *vsi)
756 {
757 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
758 	case ICE_AQ_LINK_TOPO_CONFLICT:
759 	case ICE_AQ_LINK_MEDIA_CONFLICT:
760 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
761 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
762 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
763 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
764 		break;
765 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
766 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
767 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
768 		else
769 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
770 		break;
771 	default:
772 		break;
773 	}
774 }
775 
776 /**
777  * ice_print_link_msg - print link up or down message
778  * @vsi: the VSI whose link status is being queried
779  * @isup: boolean for if the link is now up or down
780  */
781 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
782 {
783 	struct ice_aqc_get_phy_caps_data *caps;
784 	const char *an_advertised;
785 	const char *fec_req;
786 	const char *speed;
787 	const char *fec;
788 	const char *fc;
789 	const char *an;
790 	int status;
791 
792 	if (!vsi)
793 		return;
794 
795 	if (vsi->current_isup == isup)
796 		return;
797 
798 	vsi->current_isup = isup;
799 
800 	if (!isup) {
801 		netdev_info(vsi->netdev, "NIC Link is Down\n");
802 		return;
803 	}
804 
805 	switch (vsi->port_info->phy.link_info.link_speed) {
806 	case ICE_AQ_LINK_SPEED_100GB:
807 		speed = "100 G";
808 		break;
809 	case ICE_AQ_LINK_SPEED_50GB:
810 		speed = "50 G";
811 		break;
812 	case ICE_AQ_LINK_SPEED_40GB:
813 		speed = "40 G";
814 		break;
815 	case ICE_AQ_LINK_SPEED_25GB:
816 		speed = "25 G";
817 		break;
818 	case ICE_AQ_LINK_SPEED_20GB:
819 		speed = "20 G";
820 		break;
821 	case ICE_AQ_LINK_SPEED_10GB:
822 		speed = "10 G";
823 		break;
824 	case ICE_AQ_LINK_SPEED_5GB:
825 		speed = "5 G";
826 		break;
827 	case ICE_AQ_LINK_SPEED_2500MB:
828 		speed = "2.5 G";
829 		break;
830 	case ICE_AQ_LINK_SPEED_1000MB:
831 		speed = "1 G";
832 		break;
833 	case ICE_AQ_LINK_SPEED_100MB:
834 		speed = "100 M";
835 		break;
836 	default:
837 		speed = "Unknown ";
838 		break;
839 	}
840 
841 	switch (vsi->port_info->fc.current_mode) {
842 	case ICE_FC_FULL:
843 		fc = "Rx/Tx";
844 		break;
845 	case ICE_FC_TX_PAUSE:
846 		fc = "Tx";
847 		break;
848 	case ICE_FC_RX_PAUSE:
849 		fc = "Rx";
850 		break;
851 	case ICE_FC_NONE:
852 		fc = "None";
853 		break;
854 	default:
855 		fc = "Unknown";
856 		break;
857 	}
858 
859 	/* Get FEC mode based on negotiated link info */
860 	switch (vsi->port_info->phy.link_info.fec_info) {
861 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
862 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
863 		fec = "RS-FEC";
864 		break;
865 	case ICE_AQ_LINK_25G_KR_FEC_EN:
866 		fec = "FC-FEC/BASE-R";
867 		break;
868 	default:
869 		fec = "NONE";
870 		break;
871 	}
872 
873 	/* check if autoneg completed, might be false due to not supported */
874 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
875 		an = "True";
876 	else
877 		an = "False";
878 
879 	/* Get FEC mode requested based on PHY caps last SW configuration */
880 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
881 	if (!caps) {
882 		fec_req = "Unknown";
883 		an_advertised = "Unknown";
884 		goto done;
885 	}
886 
887 	status = ice_aq_get_phy_caps(vsi->port_info, false,
888 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
889 	if (status)
890 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
891 
892 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
893 
894 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
895 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
896 		fec_req = "RS-FEC";
897 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
898 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
899 		fec_req = "FC-FEC/BASE-R";
900 	else
901 		fec_req = "NONE";
902 
903 	kfree(caps);
904 
905 done:
906 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
907 		    speed, fec_req, fec, an_advertised, an, fc);
908 	ice_print_topo_conflict(vsi);
909 }
910 
911 /**
912  * ice_vsi_link_event - update the VSI's netdev
913  * @vsi: the VSI on which the link event occurred
914  * @link_up: whether or not the VSI needs to be set up or down
915  */
916 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
917 {
918 	if (!vsi)
919 		return;
920 
921 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
922 		return;
923 
924 	if (vsi->type == ICE_VSI_PF) {
925 		if (link_up == netif_carrier_ok(vsi->netdev))
926 			return;
927 
928 		if (link_up) {
929 			netif_carrier_on(vsi->netdev);
930 			netif_tx_wake_all_queues(vsi->netdev);
931 		} else {
932 			netif_carrier_off(vsi->netdev);
933 			netif_tx_stop_all_queues(vsi->netdev);
934 		}
935 	}
936 }
937 
938 /**
939  * ice_set_dflt_mib - send a default config MIB to the FW
940  * @pf: private PF struct
941  *
942  * This function sends a default configuration MIB to the FW.
943  *
944  * If this function errors out at any point, the driver is still able to
945  * function.  The main impact is that LFC may not operate as expected.
946  * Therefore an error state in this function should be treated with a DBG
947  * message and continue on with driver rebuild/reenable.
948  */
949 static void ice_set_dflt_mib(struct ice_pf *pf)
950 {
951 	struct device *dev = ice_pf_to_dev(pf);
952 	u8 mib_type, *buf, *lldpmib = NULL;
953 	u16 len, typelen, offset = 0;
954 	struct ice_lldp_org_tlv *tlv;
955 	struct ice_hw *hw = &pf->hw;
956 	u32 ouisubtype;
957 
958 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
959 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
960 	if (!lldpmib) {
961 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
962 			__func__);
963 		return;
964 	}
965 
966 	/* Add ETS CFG TLV */
967 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
968 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
969 		   ICE_IEEE_ETS_TLV_LEN);
970 	tlv->typelen = htons(typelen);
971 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
972 		      ICE_IEEE_SUBTYPE_ETS_CFG);
973 	tlv->ouisubtype = htonl(ouisubtype);
974 
975 	buf = tlv->tlvinfo;
976 	buf[0] = 0;
977 
978 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
979 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
980 	 * Octets 13 - 20 are TSA values - leave as zeros
981 	 */
982 	buf[5] = 0x64;
983 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
984 	offset += len + 2;
985 	tlv = (struct ice_lldp_org_tlv *)
986 		((char *)tlv + sizeof(tlv->typelen) + len);
987 
988 	/* Add ETS REC TLV */
989 	buf = tlv->tlvinfo;
990 	tlv->typelen = htons(typelen);
991 
992 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
993 		      ICE_IEEE_SUBTYPE_ETS_REC);
994 	tlv->ouisubtype = htonl(ouisubtype);
995 
996 	/* First octet of buf is reserved
997 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
998 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
999 	 * Octets 13 - 20 are TSA value - leave as zeros
1000 	 */
1001 	buf[5] = 0x64;
1002 	offset += len + 2;
1003 	tlv = (struct ice_lldp_org_tlv *)
1004 		((char *)tlv + sizeof(tlv->typelen) + len);
1005 
1006 	/* Add PFC CFG TLV */
1007 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1008 		   ICE_IEEE_PFC_TLV_LEN);
1009 	tlv->typelen = htons(typelen);
1010 
1011 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1012 		      ICE_IEEE_SUBTYPE_PFC_CFG);
1013 	tlv->ouisubtype = htonl(ouisubtype);
1014 
1015 	/* Octet 1 left as all zeros - PFC disabled */
1016 	buf[0] = 0x08;
1017 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1018 	offset += len + 2;
1019 
1020 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1021 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1022 
1023 	kfree(lldpmib);
1024 }
1025 
1026 /**
1027  * ice_check_phy_fw_load - check if PHY FW load failed
1028  * @pf: pointer to PF struct
1029  * @link_cfg_err: bitmap from the link info structure
1030  *
1031  * check if external PHY FW load failed and print an error message if it did
1032  */
1033 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1034 {
1035 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1036 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1037 		return;
1038 	}
1039 
1040 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1041 		return;
1042 
1043 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1044 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1045 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1046 	}
1047 }
1048 
1049 /**
1050  * ice_check_module_power
1051  * @pf: pointer to PF struct
1052  * @link_cfg_err: bitmap from the link info structure
1053  *
1054  * check module power level returned by a previous call to aq_get_link_info
1055  * and print error messages if module power level is not supported
1056  */
1057 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1058 {
1059 	/* if module power level is supported, clear the flag */
1060 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1061 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1062 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1063 		return;
1064 	}
1065 
1066 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1067 	 * above block didn't clear this bit, there's nothing to do
1068 	 */
1069 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1070 		return;
1071 
1072 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1073 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1074 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1075 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1076 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1077 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1078 	}
1079 }
1080 
1081 /**
1082  * ice_check_link_cfg_err - check if link configuration failed
1083  * @pf: pointer to the PF struct
1084  * @link_cfg_err: bitmap from the link info structure
1085  *
1086  * print if any link configuration failure happens due to the value in the
1087  * link_cfg_err parameter in the link info structure
1088  */
1089 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1090 {
1091 	ice_check_module_power(pf, link_cfg_err);
1092 	ice_check_phy_fw_load(pf, link_cfg_err);
1093 }
1094 
1095 /**
1096  * ice_link_event - process the link event
1097  * @pf: PF that the link event is associated with
1098  * @pi: port_info for the port that the link event is associated with
1099  * @link_up: true if the physical link is up and false if it is down
1100  * @link_speed: current link speed received from the link event
1101  *
1102  * Returns 0 on success and negative on failure
1103  */
1104 static int
1105 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1106 	       u16 link_speed)
1107 {
1108 	struct device *dev = ice_pf_to_dev(pf);
1109 	struct ice_phy_info *phy_info;
1110 	struct ice_vsi *vsi;
1111 	u16 old_link_speed;
1112 	bool old_link;
1113 	int status;
1114 
1115 	phy_info = &pi->phy;
1116 	phy_info->link_info_old = phy_info->link_info;
1117 
1118 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1119 	old_link_speed = phy_info->link_info_old.link_speed;
1120 
1121 	/* update the link info structures and re-enable link events,
1122 	 * don't bail on failure due to other book keeping needed
1123 	 */
1124 	status = ice_update_link_info(pi);
1125 	if (status)
1126 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1127 			pi->lport, status,
1128 			ice_aq_str(pi->hw->adminq.sq_last_status));
1129 
1130 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1131 
1132 	/* Check if the link state is up after updating link info, and treat
1133 	 * this event as an UP event since the link is actually UP now.
1134 	 */
1135 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1136 		link_up = true;
1137 
1138 	vsi = ice_get_main_vsi(pf);
1139 	if (!vsi || !vsi->port_info)
1140 		return -EINVAL;
1141 
1142 	/* turn off PHY if media was removed */
1143 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1144 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1145 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1146 		ice_set_link(vsi, false);
1147 	}
1148 
1149 	/* if the old link up/down and speed is the same as the new */
1150 	if (link_up == old_link && link_speed == old_link_speed)
1151 		return 0;
1152 
1153 	ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1154 
1155 	if (ice_is_dcb_active(pf)) {
1156 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1157 			ice_dcb_rebuild(pf);
1158 	} else {
1159 		if (link_up)
1160 			ice_set_dflt_mib(pf);
1161 	}
1162 	ice_vsi_link_event(vsi, link_up);
1163 	ice_print_link_msg(vsi, link_up);
1164 
1165 	ice_vc_notify_link_state(pf);
1166 
1167 	return 0;
1168 }
1169 
1170 /**
1171  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1172  * @pf: board private structure
1173  */
1174 static void ice_watchdog_subtask(struct ice_pf *pf)
1175 {
1176 	int i;
1177 
1178 	/* if interface is down do nothing */
1179 	if (test_bit(ICE_DOWN, pf->state) ||
1180 	    test_bit(ICE_CFG_BUSY, pf->state))
1181 		return;
1182 
1183 	/* make sure we don't do these things too often */
1184 	if (time_before(jiffies,
1185 			pf->serv_tmr_prev + pf->serv_tmr_period))
1186 		return;
1187 
1188 	pf->serv_tmr_prev = jiffies;
1189 
1190 	/* Update the stats for active netdevs so the network stack
1191 	 * can look at updated numbers whenever it cares to
1192 	 */
1193 	ice_update_pf_stats(pf);
1194 	ice_for_each_vsi(pf, i)
1195 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1196 			ice_update_vsi_stats(pf->vsi[i]);
1197 }
1198 
1199 /**
1200  * ice_init_link_events - enable/initialize link events
1201  * @pi: pointer to the port_info instance
1202  *
1203  * Returns -EIO on failure, 0 on success
1204  */
1205 static int ice_init_link_events(struct ice_port_info *pi)
1206 {
1207 	u16 mask;
1208 
1209 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1210 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1211 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1212 
1213 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1214 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1215 			pi->lport);
1216 		return -EIO;
1217 	}
1218 
1219 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1220 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1221 			pi->lport);
1222 		return -EIO;
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 /**
1229  * ice_handle_link_event - handle link event via ARQ
1230  * @pf: PF that the link event is associated with
1231  * @event: event structure containing link status info
1232  */
1233 static int
1234 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1235 {
1236 	struct ice_aqc_get_link_status_data *link_data;
1237 	struct ice_port_info *port_info;
1238 	int status;
1239 
1240 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1241 	port_info = pf->hw.port_info;
1242 	if (!port_info)
1243 		return -EINVAL;
1244 
1245 	status = ice_link_event(pf, port_info,
1246 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1247 				le16_to_cpu(link_data->link_speed));
1248 	if (status)
1249 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1250 			status);
1251 
1252 	return status;
1253 }
1254 
1255 /**
1256  * ice_get_fwlog_data - copy the FW log data from ARQ event
1257  * @pf: PF that the FW log event is associated with
1258  * @event: event structure containing FW log data
1259  */
1260 static void
1261 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1262 {
1263 	struct ice_fwlog_data *fwlog;
1264 	struct ice_hw *hw = &pf->hw;
1265 
1266 	fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1267 
1268 	memset(fwlog->data, 0, PAGE_SIZE);
1269 	fwlog->data_size = le16_to_cpu(event->desc.datalen);
1270 
1271 	memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1272 	ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1273 
1274 	if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1275 		/* the rings are full so bump the head to create room */
1276 		ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1277 					 hw->fwlog_ring.size);
1278 	}
1279 }
1280 
1281 /**
1282  * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1283  * @pf: pointer to the PF private structure
1284  * @task: intermediate helper storage and identifier for waiting
1285  * @opcode: the opcode to wait for
1286  *
1287  * Prepares to wait for a specific AdminQ completion event on the ARQ for
1288  * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1289  *
1290  * Calls are separated to allow caller registering for event before sending
1291  * the command, which mitigates a race between registering and FW responding.
1292  *
1293  * To obtain only the descriptor contents, pass an task->event with null
1294  * msg_buf. If the complete data buffer is desired, allocate the
1295  * task->event.msg_buf with enough space ahead of time.
1296  */
1297 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1298 			   u16 opcode)
1299 {
1300 	INIT_HLIST_NODE(&task->entry);
1301 	task->opcode = opcode;
1302 	task->state = ICE_AQ_TASK_WAITING;
1303 
1304 	spin_lock_bh(&pf->aq_wait_lock);
1305 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1306 	spin_unlock_bh(&pf->aq_wait_lock);
1307 }
1308 
1309 /**
1310  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1311  * @pf: pointer to the PF private structure
1312  * @task: ptr prepared by ice_aq_prep_for_event()
1313  * @timeout: how long to wait, in jiffies
1314  *
1315  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1316  * current thread will be put to sleep until the specified event occurs or
1317  * until the given timeout is reached.
1318  *
1319  * Returns: zero on success, or a negative error code on failure.
1320  */
1321 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1322 			  unsigned long timeout)
1323 {
1324 	enum ice_aq_task_state *state = &task->state;
1325 	struct device *dev = ice_pf_to_dev(pf);
1326 	unsigned long start = jiffies;
1327 	long ret;
1328 	int err;
1329 
1330 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1331 					       *state != ICE_AQ_TASK_WAITING,
1332 					       timeout);
1333 	switch (*state) {
1334 	case ICE_AQ_TASK_NOT_PREPARED:
1335 		WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1336 		err = -EINVAL;
1337 		break;
1338 	case ICE_AQ_TASK_WAITING:
1339 		err = ret < 0 ? ret : -ETIMEDOUT;
1340 		break;
1341 	case ICE_AQ_TASK_CANCELED:
1342 		err = ret < 0 ? ret : -ECANCELED;
1343 		break;
1344 	case ICE_AQ_TASK_COMPLETE:
1345 		err = ret < 0 ? ret : 0;
1346 		break;
1347 	default:
1348 		WARN(1, "Unexpected AdminQ wait task state %u", *state);
1349 		err = -EINVAL;
1350 		break;
1351 	}
1352 
1353 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1354 		jiffies_to_msecs(jiffies - start),
1355 		jiffies_to_msecs(timeout),
1356 		task->opcode);
1357 
1358 	spin_lock_bh(&pf->aq_wait_lock);
1359 	hlist_del(&task->entry);
1360 	spin_unlock_bh(&pf->aq_wait_lock);
1361 
1362 	return err;
1363 }
1364 
1365 /**
1366  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1367  * @pf: pointer to the PF private structure
1368  * @opcode: the opcode of the event
1369  * @event: the event to check
1370  *
1371  * Loops over the current list of pending threads waiting for an AdminQ event.
1372  * For each matching task, copy the contents of the event into the task
1373  * structure and wake up the thread.
1374  *
1375  * If multiple threads wait for the same opcode, they will all be woken up.
1376  *
1377  * Note that event->msg_buf will only be duplicated if the event has a buffer
1378  * with enough space already allocated. Otherwise, only the descriptor and
1379  * message length will be copied.
1380  *
1381  * Returns: true if an event was found, false otherwise
1382  */
1383 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1384 				struct ice_rq_event_info *event)
1385 {
1386 	struct ice_rq_event_info *task_ev;
1387 	struct ice_aq_task *task;
1388 	bool found = false;
1389 
1390 	spin_lock_bh(&pf->aq_wait_lock);
1391 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1392 		if (task->state != ICE_AQ_TASK_WAITING)
1393 			continue;
1394 		if (task->opcode != opcode)
1395 			continue;
1396 
1397 		task_ev = &task->event;
1398 		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1399 		task_ev->msg_len = event->msg_len;
1400 
1401 		/* Only copy the data buffer if a destination was set */
1402 		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1403 			memcpy(task_ev->msg_buf, event->msg_buf,
1404 			       event->buf_len);
1405 			task_ev->buf_len = event->buf_len;
1406 		}
1407 
1408 		task->state = ICE_AQ_TASK_COMPLETE;
1409 		found = true;
1410 	}
1411 	spin_unlock_bh(&pf->aq_wait_lock);
1412 
1413 	if (found)
1414 		wake_up(&pf->aq_wait_queue);
1415 }
1416 
1417 /**
1418  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1419  * @pf: the PF private structure
1420  *
1421  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1422  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1423  */
1424 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1425 {
1426 	struct ice_aq_task *task;
1427 
1428 	spin_lock_bh(&pf->aq_wait_lock);
1429 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1430 		task->state = ICE_AQ_TASK_CANCELED;
1431 	spin_unlock_bh(&pf->aq_wait_lock);
1432 
1433 	wake_up(&pf->aq_wait_queue);
1434 }
1435 
1436 #define ICE_MBX_OVERFLOW_WATERMARK 64
1437 
1438 /**
1439  * __ice_clean_ctrlq - helper function to clean controlq rings
1440  * @pf: ptr to struct ice_pf
1441  * @q_type: specific Control queue type
1442  */
1443 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1444 {
1445 	struct device *dev = ice_pf_to_dev(pf);
1446 	struct ice_rq_event_info event;
1447 	struct ice_hw *hw = &pf->hw;
1448 	struct ice_ctl_q_info *cq;
1449 	u16 pending, i = 0;
1450 	const char *qtype;
1451 	u32 oldval, val;
1452 
1453 	/* Do not clean control queue if/when PF reset fails */
1454 	if (test_bit(ICE_RESET_FAILED, pf->state))
1455 		return 0;
1456 
1457 	switch (q_type) {
1458 	case ICE_CTL_Q_ADMIN:
1459 		cq = &hw->adminq;
1460 		qtype = "Admin";
1461 		break;
1462 	case ICE_CTL_Q_SB:
1463 		cq = &hw->sbq;
1464 		qtype = "Sideband";
1465 		break;
1466 	case ICE_CTL_Q_MAILBOX:
1467 		cq = &hw->mailboxq;
1468 		qtype = "Mailbox";
1469 		/* we are going to try to detect a malicious VF, so set the
1470 		 * state to begin detection
1471 		 */
1472 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1473 		break;
1474 	default:
1475 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1476 		return 0;
1477 	}
1478 
1479 	/* check for error indications - PF_xx_AxQLEN register layout for
1480 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1481 	 */
1482 	val = rd32(hw, cq->rq.len);
1483 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1484 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1485 		oldval = val;
1486 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1487 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1488 				qtype);
1489 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1490 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1491 				qtype);
1492 		}
1493 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1494 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1495 				qtype);
1496 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1497 			 PF_FW_ARQLEN_ARQCRIT_M);
1498 		if (oldval != val)
1499 			wr32(hw, cq->rq.len, val);
1500 	}
1501 
1502 	val = rd32(hw, cq->sq.len);
1503 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1504 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1505 		oldval = val;
1506 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1507 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1508 				qtype);
1509 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1510 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1511 				qtype);
1512 		}
1513 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1514 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1515 				qtype);
1516 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1517 			 PF_FW_ATQLEN_ATQCRIT_M);
1518 		if (oldval != val)
1519 			wr32(hw, cq->sq.len, val);
1520 	}
1521 
1522 	event.buf_len = cq->rq_buf_size;
1523 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1524 	if (!event.msg_buf)
1525 		return 0;
1526 
1527 	do {
1528 		struct ice_mbx_data data = {};
1529 		u16 opcode;
1530 		int ret;
1531 
1532 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1533 		if (ret == -EALREADY)
1534 			break;
1535 		if (ret) {
1536 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1537 				ret);
1538 			break;
1539 		}
1540 
1541 		opcode = le16_to_cpu(event.desc.opcode);
1542 
1543 		/* Notify any thread that might be waiting for this event */
1544 		ice_aq_check_events(pf, opcode, &event);
1545 
1546 		switch (opcode) {
1547 		case ice_aqc_opc_get_link_status:
1548 			if (ice_handle_link_event(pf, &event))
1549 				dev_err(dev, "Could not handle link event\n");
1550 			break;
1551 		case ice_aqc_opc_event_lan_overflow:
1552 			ice_vf_lan_overflow_event(pf, &event);
1553 			break;
1554 		case ice_mbx_opc_send_msg_to_pf:
1555 			data.num_msg_proc = i;
1556 			data.num_pending_arq = pending;
1557 			data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1558 			data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1559 
1560 			ice_vc_process_vf_msg(pf, &event, &data);
1561 			break;
1562 		case ice_aqc_opc_fw_logs_event:
1563 			ice_get_fwlog_data(pf, &event);
1564 			break;
1565 		case ice_aqc_opc_lldp_set_mib_change:
1566 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1567 			break;
1568 		default:
1569 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1570 				qtype, opcode);
1571 			break;
1572 		}
1573 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1574 
1575 	kfree(event.msg_buf);
1576 
1577 	return pending && (i == ICE_DFLT_IRQ_WORK);
1578 }
1579 
1580 /**
1581  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1582  * @hw: pointer to hardware info
1583  * @cq: control queue information
1584  *
1585  * returns true if there are pending messages in a queue, false if there aren't
1586  */
1587 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1588 {
1589 	u16 ntu;
1590 
1591 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1592 	return cq->rq.next_to_clean != ntu;
1593 }
1594 
1595 /**
1596  * ice_clean_adminq_subtask - clean the AdminQ rings
1597  * @pf: board private structure
1598  */
1599 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1600 {
1601 	struct ice_hw *hw = &pf->hw;
1602 
1603 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1604 		return;
1605 
1606 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1607 		return;
1608 
1609 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1610 
1611 	/* There might be a situation where new messages arrive to a control
1612 	 * queue between processing the last message and clearing the
1613 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1614 	 * ice_ctrlq_pending) and process new messages if any.
1615 	 */
1616 	if (ice_ctrlq_pending(hw, &hw->adminq))
1617 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1618 
1619 	ice_flush(hw);
1620 }
1621 
1622 /**
1623  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1624  * @pf: board private structure
1625  */
1626 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1627 {
1628 	struct ice_hw *hw = &pf->hw;
1629 
1630 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1631 		return;
1632 
1633 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1634 		return;
1635 
1636 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1637 
1638 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1639 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1640 
1641 	ice_flush(hw);
1642 }
1643 
1644 /**
1645  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1646  * @pf: board private structure
1647  */
1648 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1649 {
1650 	struct ice_hw *hw = &pf->hw;
1651 
1652 	/* Nothing to do here if sideband queue is not supported */
1653 	if (!ice_is_sbq_supported(hw)) {
1654 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1655 		return;
1656 	}
1657 
1658 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1659 		return;
1660 
1661 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1662 		return;
1663 
1664 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1665 
1666 	if (ice_ctrlq_pending(hw, &hw->sbq))
1667 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1668 
1669 	ice_flush(hw);
1670 }
1671 
1672 /**
1673  * ice_service_task_schedule - schedule the service task to wake up
1674  * @pf: board private structure
1675  *
1676  * If not already scheduled, this puts the task into the work queue.
1677  */
1678 void ice_service_task_schedule(struct ice_pf *pf)
1679 {
1680 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1681 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1682 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1683 		queue_work(ice_wq, &pf->serv_task);
1684 }
1685 
1686 /**
1687  * ice_service_task_complete - finish up the service task
1688  * @pf: board private structure
1689  */
1690 static void ice_service_task_complete(struct ice_pf *pf)
1691 {
1692 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1693 
1694 	/* force memory (pf->state) to sync before next service task */
1695 	smp_mb__before_atomic();
1696 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1697 }
1698 
1699 /**
1700  * ice_service_task_stop - stop service task and cancel works
1701  * @pf: board private structure
1702  *
1703  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1704  * 1 otherwise.
1705  */
1706 static int ice_service_task_stop(struct ice_pf *pf)
1707 {
1708 	int ret;
1709 
1710 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1711 
1712 	if (pf->serv_tmr.function)
1713 		del_timer_sync(&pf->serv_tmr);
1714 	if (pf->serv_task.func)
1715 		cancel_work_sync(&pf->serv_task);
1716 
1717 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1718 	return ret;
1719 }
1720 
1721 /**
1722  * ice_service_task_restart - restart service task and schedule works
1723  * @pf: board private structure
1724  *
1725  * This function is needed for suspend and resume works (e.g WoL scenario)
1726  */
1727 static void ice_service_task_restart(struct ice_pf *pf)
1728 {
1729 	clear_bit(ICE_SERVICE_DIS, pf->state);
1730 	ice_service_task_schedule(pf);
1731 }
1732 
1733 /**
1734  * ice_service_timer - timer callback to schedule service task
1735  * @t: pointer to timer_list
1736  */
1737 static void ice_service_timer(struct timer_list *t)
1738 {
1739 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1740 
1741 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1742 	ice_service_task_schedule(pf);
1743 }
1744 
1745 /**
1746  * ice_handle_mdd_event - handle malicious driver detect event
1747  * @pf: pointer to the PF structure
1748  *
1749  * Called from service task. OICR interrupt handler indicates MDD event.
1750  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1751  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1752  * disable the queue, the PF can be configured to reset the VF using ethtool
1753  * private flag mdd-auto-reset-vf.
1754  */
1755 static void ice_handle_mdd_event(struct ice_pf *pf)
1756 {
1757 	struct device *dev = ice_pf_to_dev(pf);
1758 	struct ice_hw *hw = &pf->hw;
1759 	struct ice_vf *vf;
1760 	unsigned int bkt;
1761 	u32 reg;
1762 
1763 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1764 		/* Since the VF MDD event logging is rate limited, check if
1765 		 * there are pending MDD events.
1766 		 */
1767 		ice_print_vfs_mdd_events(pf);
1768 		return;
1769 	}
1770 
1771 	/* find what triggered an MDD event */
1772 	reg = rd32(hw, GL_MDET_TX_PQM);
1773 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1774 		u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1775 		u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1776 		u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1777 		u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1778 
1779 		if (netif_msg_tx_err(pf))
1780 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1781 				 event, queue, pf_num, vf_num);
1782 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1783 	}
1784 
1785 	reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1786 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1787 		u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1788 		u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1789 		u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1790 		u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1791 
1792 		if (netif_msg_tx_err(pf))
1793 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1794 				 event, queue, pf_num, vf_num);
1795 		wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1796 	}
1797 
1798 	reg = rd32(hw, GL_MDET_RX);
1799 	if (reg & GL_MDET_RX_VALID_M) {
1800 		u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1801 		u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1802 		u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1803 		u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1804 
1805 		if (netif_msg_rx_err(pf))
1806 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1807 				 event, queue, pf_num, vf_num);
1808 		wr32(hw, GL_MDET_RX, 0xffffffff);
1809 	}
1810 
1811 	/* check to see if this PF caused an MDD event */
1812 	reg = rd32(hw, PF_MDET_TX_PQM);
1813 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1814 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1815 		if (netif_msg_tx_err(pf))
1816 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1817 	}
1818 
1819 	reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1820 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1821 		wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1822 		if (netif_msg_tx_err(pf))
1823 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1824 	}
1825 
1826 	reg = rd32(hw, PF_MDET_RX);
1827 	if (reg & PF_MDET_RX_VALID_M) {
1828 		wr32(hw, PF_MDET_RX, 0xFFFF);
1829 		if (netif_msg_rx_err(pf))
1830 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1831 	}
1832 
1833 	/* Check to see if one of the VFs caused an MDD event, and then
1834 	 * increment counters and set print pending
1835 	 */
1836 	mutex_lock(&pf->vfs.table_lock);
1837 	ice_for_each_vf(pf, bkt, vf) {
1838 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1839 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1840 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1841 			vf->mdd_tx_events.count++;
1842 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1843 			if (netif_msg_tx_err(pf))
1844 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1845 					 vf->vf_id);
1846 		}
1847 
1848 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1849 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1850 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1851 			vf->mdd_tx_events.count++;
1852 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1853 			if (netif_msg_tx_err(pf))
1854 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1855 					 vf->vf_id);
1856 		}
1857 
1858 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1859 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1860 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1861 			vf->mdd_tx_events.count++;
1862 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1863 			if (netif_msg_tx_err(pf))
1864 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1865 					 vf->vf_id);
1866 		}
1867 
1868 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1869 		if (reg & VP_MDET_RX_VALID_M) {
1870 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1871 			vf->mdd_rx_events.count++;
1872 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1873 			if (netif_msg_rx_err(pf))
1874 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1875 					 vf->vf_id);
1876 
1877 			/* Since the queue is disabled on VF Rx MDD events, the
1878 			 * PF can be configured to reset the VF through ethtool
1879 			 * private flag mdd-auto-reset-vf.
1880 			 */
1881 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1882 				/* VF MDD event counters will be cleared by
1883 				 * reset, so print the event prior to reset.
1884 				 */
1885 				ice_print_vf_rx_mdd_event(vf);
1886 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1887 			}
1888 		}
1889 	}
1890 	mutex_unlock(&pf->vfs.table_lock);
1891 
1892 	ice_print_vfs_mdd_events(pf);
1893 }
1894 
1895 /**
1896  * ice_force_phys_link_state - Force the physical link state
1897  * @vsi: VSI to force the physical link state to up/down
1898  * @link_up: true/false indicates to set the physical link to up/down
1899  *
1900  * Force the physical link state by getting the current PHY capabilities from
1901  * hardware and setting the PHY config based on the determined capabilities. If
1902  * link changes a link event will be triggered because both the Enable Automatic
1903  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1904  *
1905  * Returns 0 on success, negative on failure
1906  */
1907 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1908 {
1909 	struct ice_aqc_get_phy_caps_data *pcaps;
1910 	struct ice_aqc_set_phy_cfg_data *cfg;
1911 	struct ice_port_info *pi;
1912 	struct device *dev;
1913 	int retcode;
1914 
1915 	if (!vsi || !vsi->port_info || !vsi->back)
1916 		return -EINVAL;
1917 	if (vsi->type != ICE_VSI_PF)
1918 		return 0;
1919 
1920 	dev = ice_pf_to_dev(vsi->back);
1921 
1922 	pi = vsi->port_info;
1923 
1924 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1925 	if (!pcaps)
1926 		return -ENOMEM;
1927 
1928 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1929 				      NULL);
1930 	if (retcode) {
1931 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1932 			vsi->vsi_num, retcode);
1933 		retcode = -EIO;
1934 		goto out;
1935 	}
1936 
1937 	/* No change in link */
1938 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1939 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1940 		goto out;
1941 
1942 	/* Use the current user PHY configuration. The current user PHY
1943 	 * configuration is initialized during probe from PHY capabilities
1944 	 * software mode, and updated on set PHY configuration.
1945 	 */
1946 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1947 	if (!cfg) {
1948 		retcode = -ENOMEM;
1949 		goto out;
1950 	}
1951 
1952 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1953 	if (link_up)
1954 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1955 	else
1956 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1957 
1958 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1959 	if (retcode) {
1960 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1961 			vsi->vsi_num, retcode);
1962 		retcode = -EIO;
1963 	}
1964 
1965 	kfree(cfg);
1966 out:
1967 	kfree(pcaps);
1968 	return retcode;
1969 }
1970 
1971 /**
1972  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1973  * @pi: port info structure
1974  *
1975  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1976  */
1977 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1978 {
1979 	struct ice_aqc_get_phy_caps_data *pcaps;
1980 	struct ice_pf *pf = pi->hw->back;
1981 	int err;
1982 
1983 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1984 	if (!pcaps)
1985 		return -ENOMEM;
1986 
1987 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1988 				  pcaps, NULL);
1989 
1990 	if (err) {
1991 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1992 		goto out;
1993 	}
1994 
1995 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1996 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1997 
1998 out:
1999 	kfree(pcaps);
2000 	return err;
2001 }
2002 
2003 /**
2004  * ice_init_link_dflt_override - Initialize link default override
2005  * @pi: port info structure
2006  *
2007  * Initialize link default override and PHY total port shutdown during probe
2008  */
2009 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2010 {
2011 	struct ice_link_default_override_tlv *ldo;
2012 	struct ice_pf *pf = pi->hw->back;
2013 
2014 	ldo = &pf->link_dflt_override;
2015 	if (ice_get_link_default_override(ldo, pi))
2016 		return;
2017 
2018 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2019 		return;
2020 
2021 	/* Enable Total Port Shutdown (override/replace link-down-on-close
2022 	 * ethtool private flag) for ports with Port Disable bit set.
2023 	 */
2024 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2025 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2026 }
2027 
2028 /**
2029  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2030  * @pi: port info structure
2031  *
2032  * If default override is enabled, initialize the user PHY cfg speed and FEC
2033  * settings using the default override mask from the NVM.
2034  *
2035  * The PHY should only be configured with the default override settings the
2036  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2037  * is used to indicate that the user PHY cfg default override is initialized
2038  * and the PHY has not been configured with the default override settings. The
2039  * state is set here, and cleared in ice_configure_phy the first time the PHY is
2040  * configured.
2041  *
2042  * This function should be called only if the FW doesn't support default
2043  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2044  */
2045 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2046 {
2047 	struct ice_link_default_override_tlv *ldo;
2048 	struct ice_aqc_set_phy_cfg_data *cfg;
2049 	struct ice_phy_info *phy = &pi->phy;
2050 	struct ice_pf *pf = pi->hw->back;
2051 
2052 	ldo = &pf->link_dflt_override;
2053 
2054 	/* If link default override is enabled, use to mask NVM PHY capabilities
2055 	 * for speed and FEC default configuration.
2056 	 */
2057 	cfg = &phy->curr_user_phy_cfg;
2058 
2059 	if (ldo->phy_type_low || ldo->phy_type_high) {
2060 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2061 				    cpu_to_le64(ldo->phy_type_low);
2062 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2063 				     cpu_to_le64(ldo->phy_type_high);
2064 	}
2065 	cfg->link_fec_opt = ldo->fec_options;
2066 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2067 
2068 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2069 }
2070 
2071 /**
2072  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2073  * @pi: port info structure
2074  *
2075  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2076  * mode to default. The PHY defaults are from get PHY capabilities topology
2077  * with media so call when media is first available. An error is returned if
2078  * called when media is not available. The PHY initialization completed state is
2079  * set here.
2080  *
2081  * These configurations are used when setting PHY
2082  * configuration. The user PHY configuration is updated on set PHY
2083  * configuration. Returns 0 on success, negative on failure
2084  */
2085 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2086 {
2087 	struct ice_aqc_get_phy_caps_data *pcaps;
2088 	struct ice_phy_info *phy = &pi->phy;
2089 	struct ice_pf *pf = pi->hw->back;
2090 	int err;
2091 
2092 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2093 		return -EIO;
2094 
2095 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2096 	if (!pcaps)
2097 		return -ENOMEM;
2098 
2099 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2100 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2101 					  pcaps, NULL);
2102 	else
2103 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2104 					  pcaps, NULL);
2105 	if (err) {
2106 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2107 		goto err_out;
2108 	}
2109 
2110 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2111 
2112 	/* check if lenient mode is supported and enabled */
2113 	if (ice_fw_supports_link_override(pi->hw) &&
2114 	    !(pcaps->module_compliance_enforcement &
2115 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2116 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2117 
2118 		/* if the FW supports default PHY configuration mode, then the driver
2119 		 * does not have to apply link override settings. If not,
2120 		 * initialize user PHY configuration with link override values
2121 		 */
2122 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2123 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2124 			ice_init_phy_cfg_dflt_override(pi);
2125 			goto out;
2126 		}
2127 	}
2128 
2129 	/* if link default override is not enabled, set user flow control and
2130 	 * FEC settings based on what get_phy_caps returned
2131 	 */
2132 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2133 						      pcaps->link_fec_options);
2134 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2135 
2136 out:
2137 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2138 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2139 err_out:
2140 	kfree(pcaps);
2141 	return err;
2142 }
2143 
2144 /**
2145  * ice_configure_phy - configure PHY
2146  * @vsi: VSI of PHY
2147  *
2148  * Set the PHY configuration. If the current PHY configuration is the same as
2149  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2150  * configure the based get PHY capabilities for topology with media.
2151  */
2152 static int ice_configure_phy(struct ice_vsi *vsi)
2153 {
2154 	struct device *dev = ice_pf_to_dev(vsi->back);
2155 	struct ice_port_info *pi = vsi->port_info;
2156 	struct ice_aqc_get_phy_caps_data *pcaps;
2157 	struct ice_aqc_set_phy_cfg_data *cfg;
2158 	struct ice_phy_info *phy = &pi->phy;
2159 	struct ice_pf *pf = vsi->back;
2160 	int err;
2161 
2162 	/* Ensure we have media as we cannot configure a medialess port */
2163 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2164 		return -ENOMEDIUM;
2165 
2166 	ice_print_topo_conflict(vsi);
2167 
2168 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2169 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2170 		return -EPERM;
2171 
2172 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2173 		return ice_force_phys_link_state(vsi, true);
2174 
2175 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2176 	if (!pcaps)
2177 		return -ENOMEM;
2178 
2179 	/* Get current PHY config */
2180 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2181 				  NULL);
2182 	if (err) {
2183 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2184 			vsi->vsi_num, err);
2185 		goto done;
2186 	}
2187 
2188 	/* If PHY enable link is configured and configuration has not changed,
2189 	 * there's nothing to do
2190 	 */
2191 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2192 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2193 		goto done;
2194 
2195 	/* Use PHY topology as baseline for configuration */
2196 	memset(pcaps, 0, sizeof(*pcaps));
2197 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2198 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2199 					  pcaps, NULL);
2200 	else
2201 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2202 					  pcaps, NULL);
2203 	if (err) {
2204 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2205 			vsi->vsi_num, err);
2206 		goto done;
2207 	}
2208 
2209 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2210 	if (!cfg) {
2211 		err = -ENOMEM;
2212 		goto done;
2213 	}
2214 
2215 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2216 
2217 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2218 	 * ice_init_phy_user_cfg_ldo.
2219 	 */
2220 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2221 			       vsi->back->state)) {
2222 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2223 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2224 	} else {
2225 		u64 phy_low = 0, phy_high = 0;
2226 
2227 		ice_update_phy_type(&phy_low, &phy_high,
2228 				    pi->phy.curr_user_speed_req);
2229 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2230 		cfg->phy_type_high = pcaps->phy_type_high &
2231 				     cpu_to_le64(phy_high);
2232 	}
2233 
2234 	/* Can't provide what was requested; use PHY capabilities */
2235 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2236 		cfg->phy_type_low = pcaps->phy_type_low;
2237 		cfg->phy_type_high = pcaps->phy_type_high;
2238 	}
2239 
2240 	/* FEC */
2241 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2242 
2243 	/* Can't provide what was requested; use PHY capabilities */
2244 	if (cfg->link_fec_opt !=
2245 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2246 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2247 		cfg->link_fec_opt = pcaps->link_fec_options;
2248 	}
2249 
2250 	/* Flow Control - always supported; no need to check against
2251 	 * capabilities
2252 	 */
2253 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2254 
2255 	/* Enable link and link update */
2256 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2257 
2258 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2259 	if (err)
2260 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2261 			vsi->vsi_num, err);
2262 
2263 	kfree(cfg);
2264 done:
2265 	kfree(pcaps);
2266 	return err;
2267 }
2268 
2269 /**
2270  * ice_check_media_subtask - Check for media
2271  * @pf: pointer to PF struct
2272  *
2273  * If media is available, then initialize PHY user configuration if it is not
2274  * been, and configure the PHY if the interface is up.
2275  */
2276 static void ice_check_media_subtask(struct ice_pf *pf)
2277 {
2278 	struct ice_port_info *pi;
2279 	struct ice_vsi *vsi;
2280 	int err;
2281 
2282 	/* No need to check for media if it's already present */
2283 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2284 		return;
2285 
2286 	vsi = ice_get_main_vsi(pf);
2287 	if (!vsi)
2288 		return;
2289 
2290 	/* Refresh link info and check if media is present */
2291 	pi = vsi->port_info;
2292 	err = ice_update_link_info(pi);
2293 	if (err)
2294 		return;
2295 
2296 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2297 
2298 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2299 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2300 			ice_init_phy_user_cfg(pi);
2301 
2302 		/* PHY settings are reset on media insertion, reconfigure
2303 		 * PHY to preserve settings.
2304 		 */
2305 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2306 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2307 			return;
2308 
2309 		err = ice_configure_phy(vsi);
2310 		if (!err)
2311 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2312 
2313 		/* A Link Status Event will be generated; the event handler
2314 		 * will complete bringing the interface up
2315 		 */
2316 	}
2317 }
2318 
2319 /**
2320  * ice_service_task - manage and run subtasks
2321  * @work: pointer to work_struct contained by the PF struct
2322  */
2323 static void ice_service_task(struct work_struct *work)
2324 {
2325 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2326 	unsigned long start_time = jiffies;
2327 
2328 	/* subtasks */
2329 
2330 	/* process reset requests first */
2331 	ice_reset_subtask(pf);
2332 
2333 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2334 	if (ice_is_reset_in_progress(pf->state) ||
2335 	    test_bit(ICE_SUSPENDED, pf->state) ||
2336 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2337 		ice_service_task_complete(pf);
2338 		return;
2339 	}
2340 
2341 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2342 		struct iidc_event *event;
2343 
2344 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2345 		if (event) {
2346 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2347 			/* report the entire OICR value to AUX driver */
2348 			swap(event->reg, pf->oicr_err_reg);
2349 			ice_send_event_to_aux(pf, event);
2350 			kfree(event);
2351 		}
2352 	}
2353 
2354 	/* unplug aux dev per request, if an unplug request came in
2355 	 * while processing a plug request, this will handle it
2356 	 */
2357 	if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2358 		ice_unplug_aux_dev(pf);
2359 
2360 	/* Plug aux device per request */
2361 	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2362 		ice_plug_aux_dev(pf);
2363 
2364 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2365 		struct iidc_event *event;
2366 
2367 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2368 		if (event) {
2369 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2370 			ice_send_event_to_aux(pf, event);
2371 			kfree(event);
2372 		}
2373 	}
2374 
2375 	ice_clean_adminq_subtask(pf);
2376 	ice_check_media_subtask(pf);
2377 	ice_check_for_hang_subtask(pf);
2378 	ice_sync_fltr_subtask(pf);
2379 	ice_handle_mdd_event(pf);
2380 	ice_watchdog_subtask(pf);
2381 
2382 	if (ice_is_safe_mode(pf)) {
2383 		ice_service_task_complete(pf);
2384 		return;
2385 	}
2386 
2387 	ice_process_vflr_event(pf);
2388 	ice_clean_mailboxq_subtask(pf);
2389 	ice_clean_sbq_subtask(pf);
2390 	ice_sync_arfs_fltrs(pf);
2391 	ice_flush_fdir_ctx(pf);
2392 
2393 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2394 	ice_service_task_complete(pf);
2395 
2396 	/* If the tasks have taken longer than one service timer period
2397 	 * or there is more work to be done, reset the service timer to
2398 	 * schedule the service task now.
2399 	 */
2400 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2401 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2402 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2403 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2404 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2405 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2406 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2407 		mod_timer(&pf->serv_tmr, jiffies);
2408 }
2409 
2410 /**
2411  * ice_set_ctrlq_len - helper function to set controlq length
2412  * @hw: pointer to the HW instance
2413  */
2414 static void ice_set_ctrlq_len(struct ice_hw *hw)
2415 {
2416 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2417 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2418 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2419 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2420 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2421 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2422 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2423 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2424 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2425 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2426 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2427 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2428 }
2429 
2430 /**
2431  * ice_schedule_reset - schedule a reset
2432  * @pf: board private structure
2433  * @reset: reset being requested
2434  */
2435 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2436 {
2437 	struct device *dev = ice_pf_to_dev(pf);
2438 
2439 	/* bail out if earlier reset has failed */
2440 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2441 		dev_dbg(dev, "earlier reset has failed\n");
2442 		return -EIO;
2443 	}
2444 	/* bail if reset/recovery already in progress */
2445 	if (ice_is_reset_in_progress(pf->state)) {
2446 		dev_dbg(dev, "Reset already in progress\n");
2447 		return -EBUSY;
2448 	}
2449 
2450 	switch (reset) {
2451 	case ICE_RESET_PFR:
2452 		set_bit(ICE_PFR_REQ, pf->state);
2453 		break;
2454 	case ICE_RESET_CORER:
2455 		set_bit(ICE_CORER_REQ, pf->state);
2456 		break;
2457 	case ICE_RESET_GLOBR:
2458 		set_bit(ICE_GLOBR_REQ, pf->state);
2459 		break;
2460 	default:
2461 		return -EINVAL;
2462 	}
2463 
2464 	ice_service_task_schedule(pf);
2465 	return 0;
2466 }
2467 
2468 /**
2469  * ice_irq_affinity_notify - Callback for affinity changes
2470  * @notify: context as to what irq was changed
2471  * @mask: the new affinity mask
2472  *
2473  * This is a callback function used by the irq_set_affinity_notifier function
2474  * so that we may register to receive changes to the irq affinity masks.
2475  */
2476 static void
2477 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2478 			const cpumask_t *mask)
2479 {
2480 	struct ice_q_vector *q_vector =
2481 		container_of(notify, struct ice_q_vector, affinity_notify);
2482 
2483 	cpumask_copy(&q_vector->affinity_mask, mask);
2484 }
2485 
2486 /**
2487  * ice_irq_affinity_release - Callback for affinity notifier release
2488  * @ref: internal core kernel usage
2489  *
2490  * This is a callback function used by the irq_set_affinity_notifier function
2491  * to inform the current notification subscriber that they will no longer
2492  * receive notifications.
2493  */
2494 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2495 
2496 /**
2497  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2498  * @vsi: the VSI being configured
2499  */
2500 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2501 {
2502 	struct ice_hw *hw = &vsi->back->hw;
2503 	int i;
2504 
2505 	ice_for_each_q_vector(vsi, i)
2506 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2507 
2508 	ice_flush(hw);
2509 	return 0;
2510 }
2511 
2512 /**
2513  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2514  * @vsi: the VSI being configured
2515  * @basename: name for the vector
2516  */
2517 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2518 {
2519 	int q_vectors = vsi->num_q_vectors;
2520 	struct ice_pf *pf = vsi->back;
2521 	struct device *dev;
2522 	int rx_int_idx = 0;
2523 	int tx_int_idx = 0;
2524 	int vector, err;
2525 	int irq_num;
2526 
2527 	dev = ice_pf_to_dev(pf);
2528 	for (vector = 0; vector < q_vectors; vector++) {
2529 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2530 
2531 		irq_num = q_vector->irq.virq;
2532 
2533 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2534 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2535 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2536 			tx_int_idx++;
2537 		} else if (q_vector->rx.rx_ring) {
2538 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2539 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2540 		} else if (q_vector->tx.tx_ring) {
2541 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2542 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2543 		} else {
2544 			/* skip this unused q_vector */
2545 			continue;
2546 		}
2547 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2548 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2549 					       IRQF_SHARED, q_vector->name,
2550 					       q_vector);
2551 		else
2552 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2553 					       0, q_vector->name, q_vector);
2554 		if (err) {
2555 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2556 				   err);
2557 			goto free_q_irqs;
2558 		}
2559 
2560 		/* register for affinity change notifications */
2561 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2562 			struct irq_affinity_notify *affinity_notify;
2563 
2564 			affinity_notify = &q_vector->affinity_notify;
2565 			affinity_notify->notify = ice_irq_affinity_notify;
2566 			affinity_notify->release = ice_irq_affinity_release;
2567 			irq_set_affinity_notifier(irq_num, affinity_notify);
2568 		}
2569 
2570 		/* assign the mask for this irq */
2571 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2572 	}
2573 
2574 	err = ice_set_cpu_rx_rmap(vsi);
2575 	if (err) {
2576 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2577 			   vsi->vsi_num, ERR_PTR(err));
2578 		goto free_q_irqs;
2579 	}
2580 
2581 	vsi->irqs_ready = true;
2582 	return 0;
2583 
2584 free_q_irqs:
2585 	while (vector--) {
2586 		irq_num = vsi->q_vectors[vector]->irq.virq;
2587 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2588 			irq_set_affinity_notifier(irq_num, NULL);
2589 		irq_set_affinity_hint(irq_num, NULL);
2590 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2591 	}
2592 	return err;
2593 }
2594 
2595 /**
2596  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2597  * @vsi: VSI to setup Tx rings used by XDP
2598  *
2599  * Return 0 on success and negative value on error
2600  */
2601 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2602 {
2603 	struct device *dev = ice_pf_to_dev(vsi->back);
2604 	struct ice_tx_desc *tx_desc;
2605 	int i, j;
2606 
2607 	ice_for_each_xdp_txq(vsi, i) {
2608 		u16 xdp_q_idx = vsi->alloc_txq + i;
2609 		struct ice_ring_stats *ring_stats;
2610 		struct ice_tx_ring *xdp_ring;
2611 
2612 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2613 		if (!xdp_ring)
2614 			goto free_xdp_rings;
2615 
2616 		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2617 		if (!ring_stats) {
2618 			ice_free_tx_ring(xdp_ring);
2619 			goto free_xdp_rings;
2620 		}
2621 
2622 		xdp_ring->ring_stats = ring_stats;
2623 		xdp_ring->q_index = xdp_q_idx;
2624 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2625 		xdp_ring->vsi = vsi;
2626 		xdp_ring->netdev = NULL;
2627 		xdp_ring->dev = dev;
2628 		xdp_ring->count = vsi->num_tx_desc;
2629 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2630 		if (ice_setup_tx_ring(xdp_ring))
2631 			goto free_xdp_rings;
2632 		ice_set_ring_xdp(xdp_ring);
2633 		spin_lock_init(&xdp_ring->tx_lock);
2634 		for (j = 0; j < xdp_ring->count; j++) {
2635 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2636 			tx_desc->cmd_type_offset_bsz = 0;
2637 		}
2638 	}
2639 
2640 	return 0;
2641 
2642 free_xdp_rings:
2643 	for (; i >= 0; i--) {
2644 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2645 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2646 			vsi->xdp_rings[i]->ring_stats = NULL;
2647 			ice_free_tx_ring(vsi->xdp_rings[i]);
2648 		}
2649 	}
2650 	return -ENOMEM;
2651 }
2652 
2653 /**
2654  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2655  * @vsi: VSI to set the bpf prog on
2656  * @prog: the bpf prog pointer
2657  */
2658 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2659 {
2660 	struct bpf_prog *old_prog;
2661 	int i;
2662 
2663 	old_prog = xchg(&vsi->xdp_prog, prog);
2664 	ice_for_each_rxq(vsi, i)
2665 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2666 
2667 	if (old_prog)
2668 		bpf_prog_put(old_prog);
2669 }
2670 
2671 /**
2672  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2673  * @vsi: VSI to bring up Tx rings used by XDP
2674  * @prog: bpf program that will be assigned to VSI
2675  *
2676  * Return 0 on success and negative value on error
2677  */
2678 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2679 {
2680 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2681 	int xdp_rings_rem = vsi->num_xdp_txq;
2682 	struct ice_pf *pf = vsi->back;
2683 	struct ice_qs_cfg xdp_qs_cfg = {
2684 		.qs_mutex = &pf->avail_q_mutex,
2685 		.pf_map = pf->avail_txqs,
2686 		.pf_map_size = pf->max_pf_txqs,
2687 		.q_count = vsi->num_xdp_txq,
2688 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2689 		.vsi_map = vsi->txq_map,
2690 		.vsi_map_offset = vsi->alloc_txq,
2691 		.mapping_mode = ICE_VSI_MAP_CONTIG
2692 	};
2693 	struct device *dev;
2694 	int i, v_idx;
2695 	int status;
2696 
2697 	dev = ice_pf_to_dev(pf);
2698 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2699 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2700 	if (!vsi->xdp_rings)
2701 		return -ENOMEM;
2702 
2703 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2704 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2705 		goto err_map_xdp;
2706 
2707 	if (static_key_enabled(&ice_xdp_locking_key))
2708 		netdev_warn(vsi->netdev,
2709 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2710 
2711 	if (ice_xdp_alloc_setup_rings(vsi))
2712 		goto clear_xdp_rings;
2713 
2714 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2715 	ice_for_each_q_vector(vsi, v_idx) {
2716 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2717 		int xdp_rings_per_v, q_id, q_base;
2718 
2719 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2720 					       vsi->num_q_vectors - v_idx);
2721 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2722 
2723 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2724 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2725 
2726 			xdp_ring->q_vector = q_vector;
2727 			xdp_ring->next = q_vector->tx.tx_ring;
2728 			q_vector->tx.tx_ring = xdp_ring;
2729 		}
2730 		xdp_rings_rem -= xdp_rings_per_v;
2731 	}
2732 
2733 	ice_for_each_rxq(vsi, i) {
2734 		if (static_key_enabled(&ice_xdp_locking_key)) {
2735 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2736 		} else {
2737 			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2738 			struct ice_tx_ring *ring;
2739 
2740 			ice_for_each_tx_ring(ring, q_vector->tx) {
2741 				if (ice_ring_is_xdp(ring)) {
2742 					vsi->rx_rings[i]->xdp_ring = ring;
2743 					break;
2744 				}
2745 			}
2746 		}
2747 		ice_tx_xsk_pool(vsi, i);
2748 	}
2749 
2750 	/* omit the scheduler update if in reset path; XDP queues will be
2751 	 * taken into account at the end of ice_vsi_rebuild, where
2752 	 * ice_cfg_vsi_lan is being called
2753 	 */
2754 	if (ice_is_reset_in_progress(pf->state))
2755 		return 0;
2756 
2757 	/* tell the Tx scheduler that right now we have
2758 	 * additional queues
2759 	 */
2760 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2761 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2762 
2763 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2764 				 max_txqs);
2765 	if (status) {
2766 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2767 			status);
2768 		goto clear_xdp_rings;
2769 	}
2770 
2771 	/* assign the prog only when it's not already present on VSI;
2772 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2773 	 * VSI rebuild that happens under ethtool -L can expose us to
2774 	 * the bpf_prog refcount issues as we would be swapping same
2775 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2776 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2777 	 * this is not harmful as dev_xdp_install bumps the refcount
2778 	 * before calling the op exposed by the driver;
2779 	 */
2780 	if (!ice_is_xdp_ena_vsi(vsi))
2781 		ice_vsi_assign_bpf_prog(vsi, prog);
2782 
2783 	return 0;
2784 clear_xdp_rings:
2785 	ice_for_each_xdp_txq(vsi, i)
2786 		if (vsi->xdp_rings[i]) {
2787 			kfree_rcu(vsi->xdp_rings[i], rcu);
2788 			vsi->xdp_rings[i] = NULL;
2789 		}
2790 
2791 err_map_xdp:
2792 	mutex_lock(&pf->avail_q_mutex);
2793 	ice_for_each_xdp_txq(vsi, i) {
2794 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2795 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2796 	}
2797 	mutex_unlock(&pf->avail_q_mutex);
2798 
2799 	devm_kfree(dev, vsi->xdp_rings);
2800 	return -ENOMEM;
2801 }
2802 
2803 /**
2804  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2805  * @vsi: VSI to remove XDP rings
2806  *
2807  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2808  * resources
2809  */
2810 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2811 {
2812 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2813 	struct ice_pf *pf = vsi->back;
2814 	int i, v_idx;
2815 
2816 	/* q_vectors are freed in reset path so there's no point in detaching
2817 	 * rings; in case of rebuild being triggered not from reset bits
2818 	 * in pf->state won't be set, so additionally check first q_vector
2819 	 * against NULL
2820 	 */
2821 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2822 		goto free_qmap;
2823 
2824 	ice_for_each_q_vector(vsi, v_idx) {
2825 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2826 		struct ice_tx_ring *ring;
2827 
2828 		ice_for_each_tx_ring(ring, q_vector->tx)
2829 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2830 				break;
2831 
2832 		/* restore the value of last node prior to XDP setup */
2833 		q_vector->tx.tx_ring = ring;
2834 	}
2835 
2836 free_qmap:
2837 	mutex_lock(&pf->avail_q_mutex);
2838 	ice_for_each_xdp_txq(vsi, i) {
2839 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2840 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2841 	}
2842 	mutex_unlock(&pf->avail_q_mutex);
2843 
2844 	ice_for_each_xdp_txq(vsi, i)
2845 		if (vsi->xdp_rings[i]) {
2846 			if (vsi->xdp_rings[i]->desc) {
2847 				synchronize_rcu();
2848 				ice_free_tx_ring(vsi->xdp_rings[i]);
2849 			}
2850 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2851 			vsi->xdp_rings[i]->ring_stats = NULL;
2852 			kfree_rcu(vsi->xdp_rings[i], rcu);
2853 			vsi->xdp_rings[i] = NULL;
2854 		}
2855 
2856 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2857 	vsi->xdp_rings = NULL;
2858 
2859 	if (static_key_enabled(&ice_xdp_locking_key))
2860 		static_branch_dec(&ice_xdp_locking_key);
2861 
2862 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2863 		return 0;
2864 
2865 	ice_vsi_assign_bpf_prog(vsi, NULL);
2866 
2867 	/* notify Tx scheduler that we destroyed XDP queues and bring
2868 	 * back the old number of child nodes
2869 	 */
2870 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2871 		max_txqs[i] = vsi->num_txq;
2872 
2873 	/* change number of XDP Tx queues to 0 */
2874 	vsi->num_xdp_txq = 0;
2875 
2876 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2877 			       max_txqs);
2878 }
2879 
2880 /**
2881  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2882  * @vsi: VSI to schedule napi on
2883  */
2884 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2885 {
2886 	int i;
2887 
2888 	ice_for_each_rxq(vsi, i) {
2889 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2890 
2891 		if (rx_ring->xsk_pool)
2892 			napi_schedule(&rx_ring->q_vector->napi);
2893 	}
2894 }
2895 
2896 /**
2897  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2898  * @vsi: VSI to determine the count of XDP Tx qs
2899  *
2900  * returns 0 if Tx qs count is higher than at least half of CPU count,
2901  * -ENOMEM otherwise
2902  */
2903 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2904 {
2905 	u16 avail = ice_get_avail_txq_count(vsi->back);
2906 	u16 cpus = num_possible_cpus();
2907 
2908 	if (avail < cpus / 2)
2909 		return -ENOMEM;
2910 
2911 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2912 
2913 	if (vsi->num_xdp_txq < cpus)
2914 		static_branch_inc(&ice_xdp_locking_key);
2915 
2916 	return 0;
2917 }
2918 
2919 /**
2920  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2921  * @vsi: Pointer to VSI structure
2922  */
2923 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2924 {
2925 	if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2926 		return ICE_RXBUF_1664;
2927 	else
2928 		return ICE_RXBUF_3072;
2929 }
2930 
2931 /**
2932  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2933  * @vsi: VSI to setup XDP for
2934  * @prog: XDP program
2935  * @extack: netlink extended ack
2936  */
2937 static int
2938 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2939 		   struct netlink_ext_ack *extack)
2940 {
2941 	unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2942 	bool if_running = netif_running(vsi->netdev);
2943 	int ret = 0, xdp_ring_err = 0;
2944 
2945 	if (prog && !prog->aux->xdp_has_frags) {
2946 		if (frame_size > ice_max_xdp_frame_size(vsi)) {
2947 			NL_SET_ERR_MSG_MOD(extack,
2948 					   "MTU is too large for linear frames and XDP prog does not support frags");
2949 			return -EOPNOTSUPP;
2950 		}
2951 	}
2952 
2953 	/* hot swap progs and avoid toggling link */
2954 	if (ice_is_xdp_ena_vsi(vsi) == !!prog) {
2955 		ice_vsi_assign_bpf_prog(vsi, prog);
2956 		return 0;
2957 	}
2958 
2959 	/* need to stop netdev while setting up the program for Rx rings */
2960 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2961 		ret = ice_down(vsi);
2962 		if (ret) {
2963 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2964 			return ret;
2965 		}
2966 	}
2967 
2968 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2969 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2970 		if (xdp_ring_err) {
2971 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2972 		} else {
2973 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2974 			if (xdp_ring_err)
2975 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2976 		}
2977 		xdp_features_set_redirect_target(vsi->netdev, true);
2978 		/* reallocate Rx queues that are used for zero-copy */
2979 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2980 		if (xdp_ring_err)
2981 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2982 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2983 		xdp_features_clear_redirect_target(vsi->netdev);
2984 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2985 		if (xdp_ring_err)
2986 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2987 		/* reallocate Rx queues that were used for zero-copy */
2988 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2989 		if (xdp_ring_err)
2990 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2991 	}
2992 
2993 	if (if_running)
2994 		ret = ice_up(vsi);
2995 
2996 	if (!ret && prog)
2997 		ice_vsi_rx_napi_schedule(vsi);
2998 
2999 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
3000 }
3001 
3002 /**
3003  * ice_xdp_safe_mode - XDP handler for safe mode
3004  * @dev: netdevice
3005  * @xdp: XDP command
3006  */
3007 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3008 			     struct netdev_bpf *xdp)
3009 {
3010 	NL_SET_ERR_MSG_MOD(xdp->extack,
3011 			   "Please provide working DDP firmware package in order to use XDP\n"
3012 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3013 	return -EOPNOTSUPP;
3014 }
3015 
3016 /**
3017  * ice_xdp - implements XDP handler
3018  * @dev: netdevice
3019  * @xdp: XDP command
3020  */
3021 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3022 {
3023 	struct ice_netdev_priv *np = netdev_priv(dev);
3024 	struct ice_vsi *vsi = np->vsi;
3025 
3026 	if (vsi->type != ICE_VSI_PF) {
3027 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3028 		return -EINVAL;
3029 	}
3030 
3031 	switch (xdp->command) {
3032 	case XDP_SETUP_PROG:
3033 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3034 	case XDP_SETUP_XSK_POOL:
3035 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
3036 					  xdp->xsk.queue_id);
3037 	default:
3038 		return -EINVAL;
3039 	}
3040 }
3041 
3042 /**
3043  * ice_ena_misc_vector - enable the non-queue interrupts
3044  * @pf: board private structure
3045  */
3046 static void ice_ena_misc_vector(struct ice_pf *pf)
3047 {
3048 	struct ice_hw *hw = &pf->hw;
3049 	u32 pf_intr_start_offset;
3050 	u32 val;
3051 
3052 	/* Disable anti-spoof detection interrupt to prevent spurious event
3053 	 * interrupts during a function reset. Anti-spoof functionally is
3054 	 * still supported.
3055 	 */
3056 	val = rd32(hw, GL_MDCK_TX_TDPU);
3057 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3058 	wr32(hw, GL_MDCK_TX_TDPU, val);
3059 
3060 	/* clear things first */
3061 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
3062 	rd32(hw, PFINT_OICR);		/* read to clear */
3063 
3064 	val = (PFINT_OICR_ECC_ERR_M |
3065 	       PFINT_OICR_MAL_DETECT_M |
3066 	       PFINT_OICR_GRST_M |
3067 	       PFINT_OICR_PCI_EXCEPTION_M |
3068 	       PFINT_OICR_VFLR_M |
3069 	       PFINT_OICR_HMC_ERR_M |
3070 	       PFINT_OICR_PE_PUSH_M |
3071 	       PFINT_OICR_PE_CRITERR_M);
3072 
3073 	wr32(hw, PFINT_OICR_ENA, val);
3074 
3075 	/* SW_ITR_IDX = 0, but don't change INTENA */
3076 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3077 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3078 
3079 	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3080 		return;
3081 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3082 	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3083 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3084 }
3085 
3086 /**
3087  * ice_ll_ts_intr - ll_ts interrupt handler
3088  * @irq: interrupt number
3089  * @data: pointer to a q_vector
3090  */
3091 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3092 {
3093 	struct ice_pf *pf = data;
3094 	u32 pf_intr_start_offset;
3095 	struct ice_ptp_tx *tx;
3096 	unsigned long flags;
3097 	struct ice_hw *hw;
3098 	u32 val;
3099 	u8 idx;
3100 
3101 	hw = &pf->hw;
3102 	tx = &pf->ptp.port.tx;
3103 	spin_lock_irqsave(&tx->lock, flags);
3104 	ice_ptp_complete_tx_single_tstamp(tx);
3105 
3106 	idx = find_next_bit_wrap(tx->in_use, tx->len,
3107 				 tx->last_ll_ts_idx_read + 1);
3108 	if (idx != tx->len)
3109 		ice_ptp_req_tx_single_tstamp(tx, idx);
3110 	spin_unlock_irqrestore(&tx->lock, flags);
3111 
3112 	val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3113 	      (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3114 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3115 	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3116 	     val);
3117 
3118 	return IRQ_HANDLED;
3119 }
3120 
3121 /**
3122  * ice_misc_intr - misc interrupt handler
3123  * @irq: interrupt number
3124  * @data: pointer to a q_vector
3125  */
3126 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3127 {
3128 	struct ice_pf *pf = (struct ice_pf *)data;
3129 	irqreturn_t ret = IRQ_HANDLED;
3130 	struct ice_hw *hw = &pf->hw;
3131 	struct device *dev;
3132 	u32 oicr, ena_mask;
3133 
3134 	dev = ice_pf_to_dev(pf);
3135 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3136 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3137 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3138 
3139 	oicr = rd32(hw, PFINT_OICR);
3140 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3141 
3142 	if (oicr & PFINT_OICR_SWINT_M) {
3143 		ena_mask &= ~PFINT_OICR_SWINT_M;
3144 		pf->sw_int_count++;
3145 	}
3146 
3147 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3148 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3149 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3150 	}
3151 	if (oicr & PFINT_OICR_VFLR_M) {
3152 		/* disable any further VFLR event notifications */
3153 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3154 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3155 
3156 			reg &= ~PFINT_OICR_VFLR_M;
3157 			wr32(hw, PFINT_OICR_ENA, reg);
3158 		} else {
3159 			ena_mask &= ~PFINT_OICR_VFLR_M;
3160 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3161 		}
3162 	}
3163 
3164 	if (oicr & PFINT_OICR_GRST_M) {
3165 		u32 reset;
3166 
3167 		/* we have a reset warning */
3168 		ena_mask &= ~PFINT_OICR_GRST_M;
3169 		reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3170 				  rd32(hw, GLGEN_RSTAT));
3171 
3172 		if (reset == ICE_RESET_CORER)
3173 			pf->corer_count++;
3174 		else if (reset == ICE_RESET_GLOBR)
3175 			pf->globr_count++;
3176 		else if (reset == ICE_RESET_EMPR)
3177 			pf->empr_count++;
3178 		else
3179 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3180 
3181 		/* If a reset cycle isn't already in progress, we set a bit in
3182 		 * pf->state so that the service task can start a reset/rebuild.
3183 		 */
3184 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3185 			if (reset == ICE_RESET_CORER)
3186 				set_bit(ICE_CORER_RECV, pf->state);
3187 			else if (reset == ICE_RESET_GLOBR)
3188 				set_bit(ICE_GLOBR_RECV, pf->state);
3189 			else
3190 				set_bit(ICE_EMPR_RECV, pf->state);
3191 
3192 			/* There are couple of different bits at play here.
3193 			 * hw->reset_ongoing indicates whether the hardware is
3194 			 * in reset. This is set to true when a reset interrupt
3195 			 * is received and set back to false after the driver
3196 			 * has determined that the hardware is out of reset.
3197 			 *
3198 			 * ICE_RESET_OICR_RECV in pf->state indicates
3199 			 * that a post reset rebuild is required before the
3200 			 * driver is operational again. This is set above.
3201 			 *
3202 			 * As this is the start of the reset/rebuild cycle, set
3203 			 * both to indicate that.
3204 			 */
3205 			hw->reset_ongoing = true;
3206 		}
3207 	}
3208 
3209 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3210 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3211 		if (ice_pf_state_is_nominal(pf) &&
3212 		    pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) {
3213 			struct ice_ptp_tx *tx = &pf->ptp.port.tx;
3214 			unsigned long flags;
3215 			u8 idx;
3216 
3217 			spin_lock_irqsave(&tx->lock, flags);
3218 			idx = find_next_bit_wrap(tx->in_use, tx->len,
3219 						 tx->last_ll_ts_idx_read + 1);
3220 			if (idx != tx->len)
3221 				ice_ptp_req_tx_single_tstamp(tx, idx);
3222 			spin_unlock_irqrestore(&tx->lock, flags);
3223 		} else if (ice_ptp_pf_handles_tx_interrupt(pf)) {
3224 			set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3225 			ret = IRQ_WAKE_THREAD;
3226 		}
3227 	}
3228 
3229 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3230 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3231 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3232 
3233 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3234 
3235 		if (ice_pf_src_tmr_owned(pf)) {
3236 			/* Save EVENTs from GLTSYN register */
3237 			pf->ptp.ext_ts_irq |= gltsyn_stat &
3238 					      (GLTSYN_STAT_EVENT0_M |
3239 					       GLTSYN_STAT_EVENT1_M |
3240 					       GLTSYN_STAT_EVENT2_M);
3241 
3242 			ice_ptp_extts_event(pf);
3243 		}
3244 	}
3245 
3246 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3247 	if (oicr & ICE_AUX_CRIT_ERR) {
3248 		pf->oicr_err_reg |= oicr;
3249 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3250 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3251 	}
3252 
3253 	/* Report any remaining unexpected interrupts */
3254 	oicr &= ena_mask;
3255 	if (oicr) {
3256 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3257 		/* If a critical error is pending there is no choice but to
3258 		 * reset the device.
3259 		 */
3260 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3261 			    PFINT_OICR_ECC_ERR_M)) {
3262 			set_bit(ICE_PFR_REQ, pf->state);
3263 		}
3264 	}
3265 	ice_service_task_schedule(pf);
3266 	if (ret == IRQ_HANDLED)
3267 		ice_irq_dynamic_ena(hw, NULL, NULL);
3268 
3269 	return ret;
3270 }
3271 
3272 /**
3273  * ice_misc_intr_thread_fn - misc interrupt thread function
3274  * @irq: interrupt number
3275  * @data: pointer to a q_vector
3276  */
3277 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3278 {
3279 	struct ice_pf *pf = data;
3280 	struct ice_hw *hw;
3281 
3282 	hw = &pf->hw;
3283 
3284 	if (ice_is_reset_in_progress(pf->state))
3285 		goto skip_irq;
3286 
3287 	if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3288 		/* Process outstanding Tx timestamps. If there is more work,
3289 		 * re-arm the interrupt to trigger again.
3290 		 */
3291 		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3292 			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3293 			ice_flush(hw);
3294 		}
3295 	}
3296 
3297 skip_irq:
3298 	ice_irq_dynamic_ena(hw, NULL, NULL);
3299 
3300 	return IRQ_HANDLED;
3301 }
3302 
3303 /**
3304  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3305  * @hw: pointer to HW structure
3306  */
3307 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3308 {
3309 	/* disable Admin queue Interrupt causes */
3310 	wr32(hw, PFINT_FW_CTL,
3311 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3312 
3313 	/* disable Mailbox queue Interrupt causes */
3314 	wr32(hw, PFINT_MBX_CTL,
3315 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3316 
3317 	wr32(hw, PFINT_SB_CTL,
3318 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3319 
3320 	/* disable Control queue Interrupt causes */
3321 	wr32(hw, PFINT_OICR_CTL,
3322 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3323 
3324 	ice_flush(hw);
3325 }
3326 
3327 /**
3328  * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3329  * @pf: board private structure
3330  */
3331 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3332 {
3333 	int irq_num = pf->ll_ts_irq.virq;
3334 
3335 	synchronize_irq(irq_num);
3336 	devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3337 
3338 	ice_free_irq(pf, pf->ll_ts_irq);
3339 }
3340 
3341 /**
3342  * ice_free_irq_msix_misc - Unroll misc vector setup
3343  * @pf: board private structure
3344  */
3345 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3346 {
3347 	int misc_irq_num = pf->oicr_irq.virq;
3348 	struct ice_hw *hw = &pf->hw;
3349 
3350 	ice_dis_ctrlq_interrupts(hw);
3351 
3352 	/* disable OICR interrupt */
3353 	wr32(hw, PFINT_OICR_ENA, 0);
3354 	ice_flush(hw);
3355 
3356 	synchronize_irq(misc_irq_num);
3357 	devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3358 
3359 	ice_free_irq(pf, pf->oicr_irq);
3360 	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3361 		ice_free_irq_msix_ll_ts(pf);
3362 }
3363 
3364 /**
3365  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3366  * @hw: pointer to HW structure
3367  * @reg_idx: HW vector index to associate the control queue interrupts with
3368  */
3369 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3370 {
3371 	u32 val;
3372 
3373 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3374 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3375 	wr32(hw, PFINT_OICR_CTL, val);
3376 
3377 	/* enable Admin queue Interrupt causes */
3378 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3379 	       PFINT_FW_CTL_CAUSE_ENA_M);
3380 	wr32(hw, PFINT_FW_CTL, val);
3381 
3382 	/* enable Mailbox queue Interrupt causes */
3383 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3384 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3385 	wr32(hw, PFINT_MBX_CTL, val);
3386 
3387 	if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3388 		/* enable Sideband queue Interrupt causes */
3389 		val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3390 		       PFINT_SB_CTL_CAUSE_ENA_M);
3391 		wr32(hw, PFINT_SB_CTL, val);
3392 	}
3393 
3394 	ice_flush(hw);
3395 }
3396 
3397 /**
3398  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3399  * @pf: board private structure
3400  *
3401  * This sets up the handler for MSIX 0, which is used to manage the
3402  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3403  * when in MSI or Legacy interrupt mode.
3404  */
3405 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3406 {
3407 	struct device *dev = ice_pf_to_dev(pf);
3408 	struct ice_hw *hw = &pf->hw;
3409 	u32 pf_intr_start_offset;
3410 	struct msi_map irq;
3411 	int err = 0;
3412 
3413 	if (!pf->int_name[0])
3414 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3415 			 dev_driver_string(dev), dev_name(dev));
3416 
3417 	if (!pf->int_name_ll_ts[0])
3418 		snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3419 			 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3420 	/* Do not request IRQ but do enable OICR interrupt since settings are
3421 	 * lost during reset. Note that this function is called only during
3422 	 * rebuild path and not while reset is in progress.
3423 	 */
3424 	if (ice_is_reset_in_progress(pf->state))
3425 		goto skip_req_irq;
3426 
3427 	/* reserve one vector in irq_tracker for misc interrupts */
3428 	irq = ice_alloc_irq(pf, false);
3429 	if (irq.index < 0)
3430 		return irq.index;
3431 
3432 	pf->oicr_irq = irq;
3433 	err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3434 					ice_misc_intr_thread_fn, 0,
3435 					pf->int_name, pf);
3436 	if (err) {
3437 		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3438 			pf->int_name, err);
3439 		ice_free_irq(pf, pf->oicr_irq);
3440 		return err;
3441 	}
3442 
3443 	/* reserve one vector in irq_tracker for ll_ts interrupt */
3444 	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3445 		goto skip_req_irq;
3446 
3447 	irq = ice_alloc_irq(pf, false);
3448 	if (irq.index < 0)
3449 		return irq.index;
3450 
3451 	pf->ll_ts_irq = irq;
3452 	err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3453 			       pf->int_name_ll_ts, pf);
3454 	if (err) {
3455 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3456 			pf->int_name_ll_ts, err);
3457 		ice_free_irq(pf, pf->ll_ts_irq);
3458 		return err;
3459 	}
3460 
3461 skip_req_irq:
3462 	ice_ena_misc_vector(pf);
3463 
3464 	ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3465 	/* This enables LL TS interrupt */
3466 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3467 	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3468 		wr32(hw, PFINT_SB_CTL,
3469 		     ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3470 		      PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3471 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3472 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3473 
3474 	ice_flush(hw);
3475 	ice_irq_dynamic_ena(hw, NULL, NULL);
3476 
3477 	return 0;
3478 }
3479 
3480 /**
3481  * ice_napi_add - register NAPI handler for the VSI
3482  * @vsi: VSI for which NAPI handler is to be registered
3483  *
3484  * This function is only called in the driver's load path. Registering the NAPI
3485  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3486  * reset/rebuild, etc.)
3487  */
3488 static void ice_napi_add(struct ice_vsi *vsi)
3489 {
3490 	int v_idx;
3491 
3492 	if (!vsi->netdev)
3493 		return;
3494 
3495 	ice_for_each_q_vector(vsi, v_idx) {
3496 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3497 			       ice_napi_poll);
3498 		ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false);
3499 	}
3500 }
3501 
3502 /**
3503  * ice_set_ops - set netdev and ethtools ops for the given netdev
3504  * @vsi: the VSI associated with the new netdev
3505  */
3506 static void ice_set_ops(struct ice_vsi *vsi)
3507 {
3508 	struct net_device *netdev = vsi->netdev;
3509 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3510 
3511 	if (ice_is_safe_mode(pf)) {
3512 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3513 		ice_set_ethtool_safe_mode_ops(netdev);
3514 		return;
3515 	}
3516 
3517 	netdev->netdev_ops = &ice_netdev_ops;
3518 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3519 	netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3520 	ice_set_ethtool_ops(netdev);
3521 
3522 	if (vsi->type != ICE_VSI_PF)
3523 		return;
3524 
3525 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3526 			       NETDEV_XDP_ACT_XSK_ZEROCOPY |
3527 			       NETDEV_XDP_ACT_RX_SG;
3528 	netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3529 }
3530 
3531 /**
3532  * ice_set_netdev_features - set features for the given netdev
3533  * @netdev: netdev instance
3534  */
3535 static void ice_set_netdev_features(struct net_device *netdev)
3536 {
3537 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3538 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3539 	netdev_features_t csumo_features;
3540 	netdev_features_t vlano_features;
3541 	netdev_features_t dflt_features;
3542 	netdev_features_t tso_features;
3543 
3544 	if (ice_is_safe_mode(pf)) {
3545 		/* safe mode */
3546 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3547 		netdev->hw_features = netdev->features;
3548 		return;
3549 	}
3550 
3551 	dflt_features = NETIF_F_SG	|
3552 			NETIF_F_HIGHDMA	|
3553 			NETIF_F_NTUPLE	|
3554 			NETIF_F_RXHASH;
3555 
3556 	csumo_features = NETIF_F_RXCSUM	  |
3557 			 NETIF_F_IP_CSUM  |
3558 			 NETIF_F_SCTP_CRC |
3559 			 NETIF_F_IPV6_CSUM;
3560 
3561 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3562 			 NETIF_F_HW_VLAN_CTAG_TX     |
3563 			 NETIF_F_HW_VLAN_CTAG_RX;
3564 
3565 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3566 	if (is_dvm_ena)
3567 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3568 
3569 	tso_features = NETIF_F_TSO			|
3570 		       NETIF_F_TSO_ECN			|
3571 		       NETIF_F_TSO6			|
3572 		       NETIF_F_GSO_GRE			|
3573 		       NETIF_F_GSO_UDP_TUNNEL		|
3574 		       NETIF_F_GSO_GRE_CSUM		|
3575 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3576 		       NETIF_F_GSO_PARTIAL		|
3577 		       NETIF_F_GSO_IPXIP4		|
3578 		       NETIF_F_GSO_IPXIP6		|
3579 		       NETIF_F_GSO_UDP_L4;
3580 
3581 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3582 					NETIF_F_GSO_GRE_CSUM;
3583 	/* set features that user can change */
3584 	netdev->hw_features = dflt_features | csumo_features |
3585 			      vlano_features | tso_features;
3586 
3587 	/* add support for HW_CSUM on packets with MPLS header */
3588 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3589 				 NETIF_F_TSO     |
3590 				 NETIF_F_TSO6;
3591 
3592 	/* enable features */
3593 	netdev->features |= netdev->hw_features;
3594 
3595 	netdev->hw_features |= NETIF_F_HW_TC;
3596 	netdev->hw_features |= NETIF_F_LOOPBACK;
3597 
3598 	/* encap and VLAN devices inherit default, csumo and tso features */
3599 	netdev->hw_enc_features |= dflt_features | csumo_features |
3600 				   tso_features;
3601 	netdev->vlan_features |= dflt_features | csumo_features |
3602 				 tso_features;
3603 
3604 	/* advertise support but don't enable by default since only one type of
3605 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3606 	 * type turns on the other has to be turned off. This is enforced by the
3607 	 * ice_fix_features() ndo callback.
3608 	 */
3609 	if (is_dvm_ena)
3610 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3611 			NETIF_F_HW_VLAN_STAG_TX;
3612 
3613 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3614 	 * be changed at runtime
3615 	 */
3616 	netdev->hw_features |= NETIF_F_RXFCS;
3617 
3618 	netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3619 }
3620 
3621 /**
3622  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3623  * @lut: Lookup table
3624  * @rss_table_size: Lookup table size
3625  * @rss_size: Range of queue number for hashing
3626  */
3627 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3628 {
3629 	u16 i;
3630 
3631 	for (i = 0; i < rss_table_size; i++)
3632 		lut[i] = i % rss_size;
3633 }
3634 
3635 /**
3636  * ice_pf_vsi_setup - Set up a PF VSI
3637  * @pf: board private structure
3638  * @pi: pointer to the port_info instance
3639  *
3640  * Returns pointer to the successfully allocated VSI software struct
3641  * on success, otherwise returns NULL on failure.
3642  */
3643 static struct ice_vsi *
3644 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3645 {
3646 	struct ice_vsi_cfg_params params = {};
3647 
3648 	params.type = ICE_VSI_PF;
3649 	params.pi = pi;
3650 	params.flags = ICE_VSI_FLAG_INIT;
3651 
3652 	return ice_vsi_setup(pf, &params);
3653 }
3654 
3655 static struct ice_vsi *
3656 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3657 		   struct ice_channel *ch)
3658 {
3659 	struct ice_vsi_cfg_params params = {};
3660 
3661 	params.type = ICE_VSI_CHNL;
3662 	params.pi = pi;
3663 	params.ch = ch;
3664 	params.flags = ICE_VSI_FLAG_INIT;
3665 
3666 	return ice_vsi_setup(pf, &params);
3667 }
3668 
3669 /**
3670  * ice_ctrl_vsi_setup - Set up a control VSI
3671  * @pf: board private structure
3672  * @pi: pointer to the port_info instance
3673  *
3674  * Returns pointer to the successfully allocated VSI software struct
3675  * on success, otherwise returns NULL on failure.
3676  */
3677 static struct ice_vsi *
3678 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3679 {
3680 	struct ice_vsi_cfg_params params = {};
3681 
3682 	params.type = ICE_VSI_CTRL;
3683 	params.pi = pi;
3684 	params.flags = ICE_VSI_FLAG_INIT;
3685 
3686 	return ice_vsi_setup(pf, &params);
3687 }
3688 
3689 /**
3690  * ice_lb_vsi_setup - Set up a loopback VSI
3691  * @pf: board private structure
3692  * @pi: pointer to the port_info instance
3693  *
3694  * Returns pointer to the successfully allocated VSI software struct
3695  * on success, otherwise returns NULL on failure.
3696  */
3697 struct ice_vsi *
3698 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3699 {
3700 	struct ice_vsi_cfg_params params = {};
3701 
3702 	params.type = ICE_VSI_LB;
3703 	params.pi = pi;
3704 	params.flags = ICE_VSI_FLAG_INIT;
3705 
3706 	return ice_vsi_setup(pf, &params);
3707 }
3708 
3709 /**
3710  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3711  * @netdev: network interface to be adjusted
3712  * @proto: VLAN TPID
3713  * @vid: VLAN ID to be added
3714  *
3715  * net_device_ops implementation for adding VLAN IDs
3716  */
3717 static int
3718 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3719 {
3720 	struct ice_netdev_priv *np = netdev_priv(netdev);
3721 	struct ice_vsi_vlan_ops *vlan_ops;
3722 	struct ice_vsi *vsi = np->vsi;
3723 	struct ice_vlan vlan;
3724 	int ret;
3725 
3726 	/* VLAN 0 is added by default during load/reset */
3727 	if (!vid)
3728 		return 0;
3729 
3730 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3731 		usleep_range(1000, 2000);
3732 
3733 	/* Add multicast promisc rule for the VLAN ID to be added if
3734 	 * all-multicast is currently enabled.
3735 	 */
3736 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3737 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3738 					       ICE_MCAST_VLAN_PROMISC_BITS,
3739 					       vid);
3740 		if (ret)
3741 			goto finish;
3742 	}
3743 
3744 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3745 
3746 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3747 	 * packets aren't pruned by the device's internal switch on Rx
3748 	 */
3749 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3750 	ret = vlan_ops->add_vlan(vsi, &vlan);
3751 	if (ret)
3752 		goto finish;
3753 
3754 	/* If all-multicast is currently enabled and this VLAN ID is only one
3755 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3756 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3757 	 */
3758 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3759 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3760 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3761 					   ICE_MCAST_PROMISC_BITS, 0);
3762 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3763 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3764 	}
3765 
3766 finish:
3767 	clear_bit(ICE_CFG_BUSY, vsi->state);
3768 
3769 	return ret;
3770 }
3771 
3772 /**
3773  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3774  * @netdev: network interface to be adjusted
3775  * @proto: VLAN TPID
3776  * @vid: VLAN ID to be removed
3777  *
3778  * net_device_ops implementation for removing VLAN IDs
3779  */
3780 static int
3781 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3782 {
3783 	struct ice_netdev_priv *np = netdev_priv(netdev);
3784 	struct ice_vsi_vlan_ops *vlan_ops;
3785 	struct ice_vsi *vsi = np->vsi;
3786 	struct ice_vlan vlan;
3787 	int ret;
3788 
3789 	/* don't allow removal of VLAN 0 */
3790 	if (!vid)
3791 		return 0;
3792 
3793 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3794 		usleep_range(1000, 2000);
3795 
3796 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3797 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3798 	if (ret) {
3799 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3800 			   vsi->vsi_num);
3801 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3802 	}
3803 
3804 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3805 
3806 	/* Make sure VLAN delete is successful before updating VLAN
3807 	 * information
3808 	 */
3809 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3810 	ret = vlan_ops->del_vlan(vsi, &vlan);
3811 	if (ret)
3812 		goto finish;
3813 
3814 	/* Remove multicast promisc rule for the removed VLAN ID if
3815 	 * all-multicast is enabled.
3816 	 */
3817 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3818 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3819 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3820 
3821 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3822 		/* Update look-up type of multicast promisc rule for VLAN 0
3823 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3824 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3825 		 */
3826 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3827 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3828 						   ICE_MCAST_VLAN_PROMISC_BITS,
3829 						   0);
3830 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3831 						 ICE_MCAST_PROMISC_BITS, 0);
3832 		}
3833 	}
3834 
3835 finish:
3836 	clear_bit(ICE_CFG_BUSY, vsi->state);
3837 
3838 	return ret;
3839 }
3840 
3841 /**
3842  * ice_rep_indr_tc_block_unbind
3843  * @cb_priv: indirection block private data
3844  */
3845 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3846 {
3847 	struct ice_indr_block_priv *indr_priv = cb_priv;
3848 
3849 	list_del(&indr_priv->list);
3850 	kfree(indr_priv);
3851 }
3852 
3853 /**
3854  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3855  * @vsi: VSI struct which has the netdev
3856  */
3857 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3858 {
3859 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3860 
3861 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3862 				 ice_rep_indr_tc_block_unbind);
3863 }
3864 
3865 /**
3866  * ice_tc_indir_block_register - Register TC indirect block notifications
3867  * @vsi: VSI struct which has the netdev
3868  *
3869  * Returns 0 on success, negative value on failure
3870  */
3871 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3872 {
3873 	struct ice_netdev_priv *np;
3874 
3875 	if (!vsi || !vsi->netdev)
3876 		return -EINVAL;
3877 
3878 	np = netdev_priv(vsi->netdev);
3879 
3880 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3881 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3882 }
3883 
3884 /**
3885  * ice_get_avail_q_count - Get count of queues in use
3886  * @pf_qmap: bitmap to get queue use count from
3887  * @lock: pointer to a mutex that protects access to pf_qmap
3888  * @size: size of the bitmap
3889  */
3890 static u16
3891 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3892 {
3893 	unsigned long bit;
3894 	u16 count = 0;
3895 
3896 	mutex_lock(lock);
3897 	for_each_clear_bit(bit, pf_qmap, size)
3898 		count++;
3899 	mutex_unlock(lock);
3900 
3901 	return count;
3902 }
3903 
3904 /**
3905  * ice_get_avail_txq_count - Get count of Tx queues in use
3906  * @pf: pointer to an ice_pf instance
3907  */
3908 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3909 {
3910 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3911 				     pf->max_pf_txqs);
3912 }
3913 
3914 /**
3915  * ice_get_avail_rxq_count - Get count of Rx queues in use
3916  * @pf: pointer to an ice_pf instance
3917  */
3918 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3919 {
3920 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3921 				     pf->max_pf_rxqs);
3922 }
3923 
3924 /**
3925  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3926  * @pf: board private structure to initialize
3927  */
3928 static void ice_deinit_pf(struct ice_pf *pf)
3929 {
3930 	ice_service_task_stop(pf);
3931 	mutex_destroy(&pf->lag_mutex);
3932 	mutex_destroy(&pf->adev_mutex);
3933 	mutex_destroy(&pf->sw_mutex);
3934 	mutex_destroy(&pf->tc_mutex);
3935 	mutex_destroy(&pf->avail_q_mutex);
3936 	mutex_destroy(&pf->vfs.table_lock);
3937 
3938 	if (pf->avail_txqs) {
3939 		bitmap_free(pf->avail_txqs);
3940 		pf->avail_txqs = NULL;
3941 	}
3942 
3943 	if (pf->avail_rxqs) {
3944 		bitmap_free(pf->avail_rxqs);
3945 		pf->avail_rxqs = NULL;
3946 	}
3947 
3948 	if (pf->ptp.clock)
3949 		ptp_clock_unregister(pf->ptp.clock);
3950 }
3951 
3952 /**
3953  * ice_set_pf_caps - set PFs capability flags
3954  * @pf: pointer to the PF instance
3955  */
3956 static void ice_set_pf_caps(struct ice_pf *pf)
3957 {
3958 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3959 
3960 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3961 	if (func_caps->common_cap.rdma)
3962 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3963 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3964 	if (func_caps->common_cap.dcb)
3965 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3966 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3967 	if (func_caps->common_cap.sr_iov_1_1) {
3968 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3969 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3970 					      ICE_MAX_SRIOV_VFS);
3971 	}
3972 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3973 	if (func_caps->common_cap.rss_table_size)
3974 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3975 
3976 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3977 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3978 		u16 unused;
3979 
3980 		/* ctrl_vsi_idx will be set to a valid value when flow director
3981 		 * is setup by ice_init_fdir
3982 		 */
3983 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3984 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3985 		/* force guaranteed filter pool for PF */
3986 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3987 				       func_caps->fd_fltr_guar);
3988 		/* force shared filter pool for PF */
3989 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3990 				       func_caps->fd_fltr_best_effort);
3991 	}
3992 
3993 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3994 	if (func_caps->common_cap.ieee_1588 &&
3995 	    !(pf->hw.mac_type == ICE_MAC_E830))
3996 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3997 
3998 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3999 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4000 }
4001 
4002 /**
4003  * ice_init_pf - Initialize general software structures (struct ice_pf)
4004  * @pf: board private structure to initialize
4005  */
4006 static int ice_init_pf(struct ice_pf *pf)
4007 {
4008 	ice_set_pf_caps(pf);
4009 
4010 	mutex_init(&pf->sw_mutex);
4011 	mutex_init(&pf->tc_mutex);
4012 	mutex_init(&pf->adev_mutex);
4013 	mutex_init(&pf->lag_mutex);
4014 
4015 	INIT_HLIST_HEAD(&pf->aq_wait_list);
4016 	spin_lock_init(&pf->aq_wait_lock);
4017 	init_waitqueue_head(&pf->aq_wait_queue);
4018 
4019 	init_waitqueue_head(&pf->reset_wait_queue);
4020 
4021 	/* setup service timer and periodic service task */
4022 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4023 	pf->serv_tmr_period = HZ;
4024 	INIT_WORK(&pf->serv_task, ice_service_task);
4025 	clear_bit(ICE_SERVICE_SCHED, pf->state);
4026 
4027 	mutex_init(&pf->avail_q_mutex);
4028 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4029 	if (!pf->avail_txqs)
4030 		return -ENOMEM;
4031 
4032 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4033 	if (!pf->avail_rxqs) {
4034 		bitmap_free(pf->avail_txqs);
4035 		pf->avail_txqs = NULL;
4036 		return -ENOMEM;
4037 	}
4038 
4039 	mutex_init(&pf->vfs.table_lock);
4040 	hash_init(pf->vfs.table);
4041 	ice_mbx_init_snapshot(&pf->hw);
4042 
4043 	return 0;
4044 }
4045 
4046 /**
4047  * ice_is_wol_supported - check if WoL is supported
4048  * @hw: pointer to hardware info
4049  *
4050  * Check if WoL is supported based on the HW configuration.
4051  * Returns true if NVM supports and enables WoL for this port, false otherwise
4052  */
4053 bool ice_is_wol_supported(struct ice_hw *hw)
4054 {
4055 	u16 wol_ctrl;
4056 
4057 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4058 	 * word) indicates WoL is not supported on the corresponding PF ID.
4059 	 */
4060 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4061 		return false;
4062 
4063 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4064 }
4065 
4066 /**
4067  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4068  * @vsi: VSI being changed
4069  * @new_rx: new number of Rx queues
4070  * @new_tx: new number of Tx queues
4071  * @locked: is adev device_lock held
4072  *
4073  * Only change the number of queues if new_tx, or new_rx is non-0.
4074  *
4075  * Returns 0 on success.
4076  */
4077 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4078 {
4079 	struct ice_pf *pf = vsi->back;
4080 	int err = 0, timeout = 50;
4081 
4082 	if (!new_rx && !new_tx)
4083 		return -EINVAL;
4084 
4085 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4086 		timeout--;
4087 		if (!timeout)
4088 			return -EBUSY;
4089 		usleep_range(1000, 2000);
4090 	}
4091 
4092 	if (new_tx)
4093 		vsi->req_txq = (u16)new_tx;
4094 	if (new_rx)
4095 		vsi->req_rxq = (u16)new_rx;
4096 
4097 	/* set for the next time the netdev is started */
4098 	if (!netif_running(vsi->netdev)) {
4099 		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4100 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4101 		goto done;
4102 	}
4103 
4104 	ice_vsi_close(vsi);
4105 	ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4106 	ice_pf_dcb_recfg(pf, locked);
4107 	ice_vsi_open(vsi);
4108 done:
4109 	clear_bit(ICE_CFG_BUSY, pf->state);
4110 	return err;
4111 }
4112 
4113 /**
4114  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4115  * @pf: PF to configure
4116  *
4117  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4118  * VSI can still Tx/Rx VLAN tagged packets.
4119  */
4120 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4121 {
4122 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4123 	struct ice_vsi_ctx *ctxt;
4124 	struct ice_hw *hw;
4125 	int status;
4126 
4127 	if (!vsi)
4128 		return;
4129 
4130 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4131 	if (!ctxt)
4132 		return;
4133 
4134 	hw = &pf->hw;
4135 	ctxt->info = vsi->info;
4136 
4137 	ctxt->info.valid_sections =
4138 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4139 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4140 			    ICE_AQ_VSI_PROP_SW_VALID);
4141 
4142 	/* disable VLAN anti-spoof */
4143 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4144 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4145 
4146 	/* disable VLAN pruning and keep all other settings */
4147 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4148 
4149 	/* allow all VLANs on Tx and don't strip on Rx */
4150 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4151 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4152 
4153 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4154 	if (status) {
4155 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4156 			status, ice_aq_str(hw->adminq.sq_last_status));
4157 	} else {
4158 		vsi->info.sec_flags = ctxt->info.sec_flags;
4159 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4160 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4161 	}
4162 
4163 	kfree(ctxt);
4164 }
4165 
4166 /**
4167  * ice_log_pkg_init - log result of DDP package load
4168  * @hw: pointer to hardware info
4169  * @state: state of package load
4170  */
4171 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4172 {
4173 	struct ice_pf *pf = hw->back;
4174 	struct device *dev;
4175 
4176 	dev = ice_pf_to_dev(pf);
4177 
4178 	switch (state) {
4179 	case ICE_DDP_PKG_SUCCESS:
4180 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4181 			 hw->active_pkg_name,
4182 			 hw->active_pkg_ver.major,
4183 			 hw->active_pkg_ver.minor,
4184 			 hw->active_pkg_ver.update,
4185 			 hw->active_pkg_ver.draft);
4186 		break;
4187 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4188 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4189 			 hw->active_pkg_name,
4190 			 hw->active_pkg_ver.major,
4191 			 hw->active_pkg_ver.minor,
4192 			 hw->active_pkg_ver.update,
4193 			 hw->active_pkg_ver.draft);
4194 		break;
4195 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4196 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4197 			hw->active_pkg_name,
4198 			hw->active_pkg_ver.major,
4199 			hw->active_pkg_ver.minor,
4200 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4201 		break;
4202 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4203 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4204 			 hw->active_pkg_name,
4205 			 hw->active_pkg_ver.major,
4206 			 hw->active_pkg_ver.minor,
4207 			 hw->active_pkg_ver.update,
4208 			 hw->active_pkg_ver.draft,
4209 			 hw->pkg_name,
4210 			 hw->pkg_ver.major,
4211 			 hw->pkg_ver.minor,
4212 			 hw->pkg_ver.update,
4213 			 hw->pkg_ver.draft);
4214 		break;
4215 	case ICE_DDP_PKG_FW_MISMATCH:
4216 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4217 		break;
4218 	case ICE_DDP_PKG_INVALID_FILE:
4219 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4220 		break;
4221 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4222 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4223 		break;
4224 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4225 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4226 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4227 		break;
4228 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4229 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4230 		break;
4231 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4232 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4233 		break;
4234 	case ICE_DDP_PKG_LOAD_ERROR:
4235 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4236 		/* poll for reset to complete */
4237 		if (ice_check_reset(hw))
4238 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4239 		break;
4240 	case ICE_DDP_PKG_ERR:
4241 	default:
4242 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4243 		break;
4244 	}
4245 }
4246 
4247 /**
4248  * ice_load_pkg - load/reload the DDP Package file
4249  * @firmware: firmware structure when firmware requested or NULL for reload
4250  * @pf: pointer to the PF instance
4251  *
4252  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4253  * initialize HW tables.
4254  */
4255 static void
4256 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4257 {
4258 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4259 	struct device *dev = ice_pf_to_dev(pf);
4260 	struct ice_hw *hw = &pf->hw;
4261 
4262 	/* Load DDP Package */
4263 	if (firmware && !hw->pkg_copy) {
4264 		state = ice_copy_and_init_pkg(hw, firmware->data,
4265 					      firmware->size);
4266 		ice_log_pkg_init(hw, state);
4267 	} else if (!firmware && hw->pkg_copy) {
4268 		/* Reload package during rebuild after CORER/GLOBR reset */
4269 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4270 		ice_log_pkg_init(hw, state);
4271 	} else {
4272 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4273 	}
4274 
4275 	if (!ice_is_init_pkg_successful(state)) {
4276 		/* Safe Mode */
4277 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4278 		return;
4279 	}
4280 
4281 	/* Successful download package is the precondition for advanced
4282 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4283 	 */
4284 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4285 }
4286 
4287 /**
4288  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4289  * @pf: pointer to the PF structure
4290  *
4291  * There is no error returned here because the driver should be able to handle
4292  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4293  * specifically with Tx.
4294  */
4295 static void ice_verify_cacheline_size(struct ice_pf *pf)
4296 {
4297 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4298 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4299 			 ICE_CACHE_LINE_BYTES);
4300 }
4301 
4302 /**
4303  * ice_send_version - update firmware with driver version
4304  * @pf: PF struct
4305  *
4306  * Returns 0 on success, else error code
4307  */
4308 static int ice_send_version(struct ice_pf *pf)
4309 {
4310 	struct ice_driver_ver dv;
4311 
4312 	dv.major_ver = 0xff;
4313 	dv.minor_ver = 0xff;
4314 	dv.build_ver = 0xff;
4315 	dv.subbuild_ver = 0;
4316 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4317 		sizeof(dv.driver_string));
4318 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4319 }
4320 
4321 /**
4322  * ice_init_fdir - Initialize flow director VSI and configuration
4323  * @pf: pointer to the PF instance
4324  *
4325  * returns 0 on success, negative on error
4326  */
4327 static int ice_init_fdir(struct ice_pf *pf)
4328 {
4329 	struct device *dev = ice_pf_to_dev(pf);
4330 	struct ice_vsi *ctrl_vsi;
4331 	int err;
4332 
4333 	/* Side Band Flow Director needs to have a control VSI.
4334 	 * Allocate it and store it in the PF.
4335 	 */
4336 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4337 	if (!ctrl_vsi) {
4338 		dev_dbg(dev, "could not create control VSI\n");
4339 		return -ENOMEM;
4340 	}
4341 
4342 	err = ice_vsi_open_ctrl(ctrl_vsi);
4343 	if (err) {
4344 		dev_dbg(dev, "could not open control VSI\n");
4345 		goto err_vsi_open;
4346 	}
4347 
4348 	mutex_init(&pf->hw.fdir_fltr_lock);
4349 
4350 	err = ice_fdir_create_dflt_rules(pf);
4351 	if (err)
4352 		goto err_fdir_rule;
4353 
4354 	return 0;
4355 
4356 err_fdir_rule:
4357 	ice_fdir_release_flows(&pf->hw);
4358 	ice_vsi_close(ctrl_vsi);
4359 err_vsi_open:
4360 	ice_vsi_release(ctrl_vsi);
4361 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4362 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4363 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4364 	}
4365 	return err;
4366 }
4367 
4368 static void ice_deinit_fdir(struct ice_pf *pf)
4369 {
4370 	struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4371 
4372 	if (!vsi)
4373 		return;
4374 
4375 	ice_vsi_manage_fdir(vsi, false);
4376 	ice_vsi_release(vsi);
4377 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4378 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4379 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4380 	}
4381 
4382 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4383 }
4384 
4385 /**
4386  * ice_get_opt_fw_name - return optional firmware file name or NULL
4387  * @pf: pointer to the PF instance
4388  */
4389 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4390 {
4391 	/* Optional firmware name same as default with additional dash
4392 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4393 	 */
4394 	struct pci_dev *pdev = pf->pdev;
4395 	char *opt_fw_filename;
4396 	u64 dsn;
4397 
4398 	/* Determine the name of the optional file using the DSN (two
4399 	 * dwords following the start of the DSN Capability).
4400 	 */
4401 	dsn = pci_get_dsn(pdev);
4402 	if (!dsn)
4403 		return NULL;
4404 
4405 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4406 	if (!opt_fw_filename)
4407 		return NULL;
4408 
4409 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4410 		 ICE_DDP_PKG_PATH, dsn);
4411 
4412 	return opt_fw_filename;
4413 }
4414 
4415 /**
4416  * ice_request_fw - Device initialization routine
4417  * @pf: pointer to the PF instance
4418  */
4419 static void ice_request_fw(struct ice_pf *pf)
4420 {
4421 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4422 	const struct firmware *firmware = NULL;
4423 	struct device *dev = ice_pf_to_dev(pf);
4424 	int err = 0;
4425 
4426 	/* optional device-specific DDP (if present) overrides the default DDP
4427 	 * package file. kernel logs a debug message if the file doesn't exist,
4428 	 * and warning messages for other errors.
4429 	 */
4430 	if (opt_fw_filename) {
4431 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4432 		if (err) {
4433 			kfree(opt_fw_filename);
4434 			goto dflt_pkg_load;
4435 		}
4436 
4437 		/* request for firmware was successful. Download to device */
4438 		ice_load_pkg(firmware, pf);
4439 		kfree(opt_fw_filename);
4440 		release_firmware(firmware);
4441 		return;
4442 	}
4443 
4444 dflt_pkg_load:
4445 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4446 	if (err) {
4447 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4448 		return;
4449 	}
4450 
4451 	/* request for firmware was successful. Download to device */
4452 	ice_load_pkg(firmware, pf);
4453 	release_firmware(firmware);
4454 }
4455 
4456 /**
4457  * ice_print_wake_reason - show the wake up cause in the log
4458  * @pf: pointer to the PF struct
4459  */
4460 static void ice_print_wake_reason(struct ice_pf *pf)
4461 {
4462 	u32 wus = pf->wakeup_reason;
4463 	const char *wake_str;
4464 
4465 	/* if no wake event, nothing to print */
4466 	if (!wus)
4467 		return;
4468 
4469 	if (wus & PFPM_WUS_LNKC_M)
4470 		wake_str = "Link\n";
4471 	else if (wus & PFPM_WUS_MAG_M)
4472 		wake_str = "Magic Packet\n";
4473 	else if (wus & PFPM_WUS_MNG_M)
4474 		wake_str = "Management\n";
4475 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4476 		wake_str = "Firmware Reset\n";
4477 	else
4478 		wake_str = "Unknown\n";
4479 
4480 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4481 }
4482 
4483 /**
4484  * ice_pf_fwlog_update_module - update 1 module
4485  * @pf: pointer to the PF struct
4486  * @log_level: log_level to use for the @module
4487  * @module: module to update
4488  */
4489 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4490 {
4491 	struct ice_hw *hw = &pf->hw;
4492 
4493 	hw->fwlog_cfg.module_entries[module].log_level = log_level;
4494 }
4495 
4496 /**
4497  * ice_register_netdev - register netdev
4498  * @vsi: pointer to the VSI struct
4499  */
4500 static int ice_register_netdev(struct ice_vsi *vsi)
4501 {
4502 	int err;
4503 
4504 	if (!vsi || !vsi->netdev)
4505 		return -EIO;
4506 
4507 	err = register_netdev(vsi->netdev);
4508 	if (err)
4509 		return err;
4510 
4511 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4512 	netif_carrier_off(vsi->netdev);
4513 	netif_tx_stop_all_queues(vsi->netdev);
4514 
4515 	return 0;
4516 }
4517 
4518 static void ice_unregister_netdev(struct ice_vsi *vsi)
4519 {
4520 	if (!vsi || !vsi->netdev)
4521 		return;
4522 
4523 	unregister_netdev(vsi->netdev);
4524 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4525 }
4526 
4527 /**
4528  * ice_cfg_netdev - Allocate, configure and register a netdev
4529  * @vsi: the VSI associated with the new netdev
4530  *
4531  * Returns 0 on success, negative value on failure
4532  */
4533 static int ice_cfg_netdev(struct ice_vsi *vsi)
4534 {
4535 	struct ice_netdev_priv *np;
4536 	struct net_device *netdev;
4537 	u8 mac_addr[ETH_ALEN];
4538 
4539 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4540 				    vsi->alloc_rxq);
4541 	if (!netdev)
4542 		return -ENOMEM;
4543 
4544 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4545 	vsi->netdev = netdev;
4546 	np = netdev_priv(netdev);
4547 	np->vsi = vsi;
4548 
4549 	ice_set_netdev_features(netdev);
4550 	ice_set_ops(vsi);
4551 
4552 	if (vsi->type == ICE_VSI_PF) {
4553 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4554 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4555 		eth_hw_addr_set(netdev, mac_addr);
4556 	}
4557 
4558 	netdev->priv_flags |= IFF_UNICAST_FLT;
4559 
4560 	/* Setup netdev TC information */
4561 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4562 
4563 	netdev->max_mtu = ICE_MAX_MTU;
4564 
4565 	return 0;
4566 }
4567 
4568 static void ice_decfg_netdev(struct ice_vsi *vsi)
4569 {
4570 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4571 	free_netdev(vsi->netdev);
4572 	vsi->netdev = NULL;
4573 }
4574 
4575 static int ice_start_eth(struct ice_vsi *vsi)
4576 {
4577 	int err;
4578 
4579 	err = ice_init_mac_fltr(vsi->back);
4580 	if (err)
4581 		return err;
4582 
4583 	err = ice_vsi_open(vsi);
4584 	if (err)
4585 		ice_fltr_remove_all(vsi);
4586 
4587 	return err;
4588 }
4589 
4590 static void ice_stop_eth(struct ice_vsi *vsi)
4591 {
4592 	ice_fltr_remove_all(vsi);
4593 	ice_vsi_close(vsi);
4594 }
4595 
4596 static int ice_init_eth(struct ice_pf *pf)
4597 {
4598 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4599 	int err;
4600 
4601 	if (!vsi)
4602 		return -EINVAL;
4603 
4604 	/* init channel list */
4605 	INIT_LIST_HEAD(&vsi->ch_list);
4606 
4607 	err = ice_cfg_netdev(vsi);
4608 	if (err)
4609 		return err;
4610 	/* Setup DCB netlink interface */
4611 	ice_dcbnl_setup(vsi);
4612 
4613 	err = ice_init_mac_fltr(pf);
4614 	if (err)
4615 		goto err_init_mac_fltr;
4616 
4617 	err = ice_devlink_create_pf_port(pf);
4618 	if (err)
4619 		goto err_devlink_create_pf_port;
4620 
4621 	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4622 
4623 	err = ice_register_netdev(vsi);
4624 	if (err)
4625 		goto err_register_netdev;
4626 
4627 	err = ice_tc_indir_block_register(vsi);
4628 	if (err)
4629 		goto err_tc_indir_block_register;
4630 
4631 	ice_napi_add(vsi);
4632 
4633 	return 0;
4634 
4635 err_tc_indir_block_register:
4636 	ice_unregister_netdev(vsi);
4637 err_register_netdev:
4638 	ice_devlink_destroy_pf_port(pf);
4639 err_devlink_create_pf_port:
4640 err_init_mac_fltr:
4641 	ice_decfg_netdev(vsi);
4642 	return err;
4643 }
4644 
4645 static void ice_deinit_eth(struct ice_pf *pf)
4646 {
4647 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4648 
4649 	if (!vsi)
4650 		return;
4651 
4652 	ice_vsi_close(vsi);
4653 	ice_unregister_netdev(vsi);
4654 	ice_devlink_destroy_pf_port(pf);
4655 	ice_tc_indir_block_unregister(vsi);
4656 	ice_decfg_netdev(vsi);
4657 }
4658 
4659 /**
4660  * ice_wait_for_fw - wait for full FW readiness
4661  * @hw: pointer to the hardware structure
4662  * @timeout: milliseconds that can elapse before timing out
4663  */
4664 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4665 {
4666 	int fw_loading;
4667 	u32 elapsed = 0;
4668 
4669 	while (elapsed <= timeout) {
4670 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4671 
4672 		/* firmware was not yet loaded, we have to wait more */
4673 		if (fw_loading) {
4674 			elapsed += 100;
4675 			msleep(100);
4676 			continue;
4677 		}
4678 		return 0;
4679 	}
4680 
4681 	return -ETIMEDOUT;
4682 }
4683 
4684 static int ice_init_dev(struct ice_pf *pf)
4685 {
4686 	struct device *dev = ice_pf_to_dev(pf);
4687 	struct ice_hw *hw = &pf->hw;
4688 	int err;
4689 
4690 	err = ice_init_hw(hw);
4691 	if (err) {
4692 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4693 		return err;
4694 	}
4695 
4696 	/* Some cards require longer initialization times
4697 	 * due to necessity of loading FW from an external source.
4698 	 * This can take even half a minute.
4699 	 */
4700 	if (ice_is_pf_c827(hw)) {
4701 		err = ice_wait_for_fw(hw, 30000);
4702 		if (err) {
4703 			dev_err(dev, "ice_wait_for_fw timed out");
4704 			return err;
4705 		}
4706 	}
4707 
4708 	ice_init_feature_support(pf);
4709 
4710 	ice_request_fw(pf);
4711 
4712 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4713 	 * set in pf->state, which will cause ice_is_safe_mode to return
4714 	 * true
4715 	 */
4716 	if (ice_is_safe_mode(pf)) {
4717 		/* we already got function/device capabilities but these don't
4718 		 * reflect what the driver needs to do in safe mode. Instead of
4719 		 * adding conditional logic everywhere to ignore these
4720 		 * device/function capabilities, override them.
4721 		 */
4722 		ice_set_safe_mode_caps(hw);
4723 	}
4724 
4725 	err = ice_init_pf(pf);
4726 	if (err) {
4727 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4728 		goto err_init_pf;
4729 	}
4730 
4731 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4732 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4733 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4734 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4735 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4736 		pf->hw.udp_tunnel_nic.tables[0].n_entries =
4737 			pf->hw.tnl.valid_count[TNL_VXLAN];
4738 		pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4739 			UDP_TUNNEL_TYPE_VXLAN;
4740 	}
4741 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4742 		pf->hw.udp_tunnel_nic.tables[1].n_entries =
4743 			pf->hw.tnl.valid_count[TNL_GENEVE];
4744 		pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4745 			UDP_TUNNEL_TYPE_GENEVE;
4746 	}
4747 
4748 	err = ice_init_interrupt_scheme(pf);
4749 	if (err) {
4750 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4751 		err = -EIO;
4752 		goto err_init_interrupt_scheme;
4753 	}
4754 
4755 	/* In case of MSIX we are going to setup the misc vector right here
4756 	 * to handle admin queue events etc. In case of legacy and MSI
4757 	 * the misc functionality and queue processing is combined in
4758 	 * the same vector and that gets setup at open.
4759 	 */
4760 	err = ice_req_irq_msix_misc(pf);
4761 	if (err) {
4762 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4763 		goto err_req_irq_msix_misc;
4764 	}
4765 
4766 	return 0;
4767 
4768 err_req_irq_msix_misc:
4769 	ice_clear_interrupt_scheme(pf);
4770 err_init_interrupt_scheme:
4771 	ice_deinit_pf(pf);
4772 err_init_pf:
4773 	ice_deinit_hw(hw);
4774 	return err;
4775 }
4776 
4777 static void ice_deinit_dev(struct ice_pf *pf)
4778 {
4779 	ice_free_irq_msix_misc(pf);
4780 	ice_deinit_pf(pf);
4781 	ice_deinit_hw(&pf->hw);
4782 
4783 	/* Service task is already stopped, so call reset directly. */
4784 	ice_reset(&pf->hw, ICE_RESET_PFR);
4785 	pci_wait_for_pending_transaction(pf->pdev);
4786 	ice_clear_interrupt_scheme(pf);
4787 }
4788 
4789 static void ice_init_features(struct ice_pf *pf)
4790 {
4791 	struct device *dev = ice_pf_to_dev(pf);
4792 
4793 	if (ice_is_safe_mode(pf))
4794 		return;
4795 
4796 	/* initialize DDP driven features */
4797 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4798 		ice_ptp_init(pf);
4799 
4800 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4801 		ice_gnss_init(pf);
4802 
4803 	if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4804 	    ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4805 		ice_dpll_init(pf);
4806 
4807 	/* Note: Flow director init failure is non-fatal to load */
4808 	if (ice_init_fdir(pf))
4809 		dev_err(dev, "could not initialize flow director\n");
4810 
4811 	/* Note: DCB init failure is non-fatal to load */
4812 	if (ice_init_pf_dcb(pf, false)) {
4813 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4814 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4815 	} else {
4816 		ice_cfg_lldp_mib_change(&pf->hw, true);
4817 	}
4818 
4819 	if (ice_init_lag(pf))
4820 		dev_warn(dev, "Failed to init link aggregation support\n");
4821 
4822 	ice_hwmon_init(pf);
4823 }
4824 
4825 static void ice_deinit_features(struct ice_pf *pf)
4826 {
4827 	if (ice_is_safe_mode(pf))
4828 		return;
4829 
4830 	ice_deinit_lag(pf);
4831 	if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4832 		ice_cfg_lldp_mib_change(&pf->hw, false);
4833 	ice_deinit_fdir(pf);
4834 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4835 		ice_gnss_exit(pf);
4836 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4837 		ice_ptp_release(pf);
4838 	if (test_bit(ICE_FLAG_DPLL, pf->flags))
4839 		ice_dpll_deinit(pf);
4840 	if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4841 		xa_destroy(&pf->eswitch.reprs);
4842 }
4843 
4844 static void ice_init_wakeup(struct ice_pf *pf)
4845 {
4846 	/* Save wakeup reason register for later use */
4847 	pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4848 
4849 	/* check for a power management event */
4850 	ice_print_wake_reason(pf);
4851 
4852 	/* clear wake status, all bits */
4853 	wr32(&pf->hw, PFPM_WUS, U32_MAX);
4854 
4855 	/* Disable WoL at init, wait for user to enable */
4856 	device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4857 }
4858 
4859 static int ice_init_link(struct ice_pf *pf)
4860 {
4861 	struct device *dev = ice_pf_to_dev(pf);
4862 	int err;
4863 
4864 	err = ice_init_link_events(pf->hw.port_info);
4865 	if (err) {
4866 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4867 		return err;
4868 	}
4869 
4870 	/* not a fatal error if this fails */
4871 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4872 	if (err)
4873 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4874 
4875 	/* not a fatal error if this fails */
4876 	err = ice_update_link_info(pf->hw.port_info);
4877 	if (err)
4878 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4879 
4880 	ice_init_link_dflt_override(pf->hw.port_info);
4881 
4882 	ice_check_link_cfg_err(pf,
4883 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4884 
4885 	/* if media available, initialize PHY settings */
4886 	if (pf->hw.port_info->phy.link_info.link_info &
4887 	    ICE_AQ_MEDIA_AVAILABLE) {
4888 		/* not a fatal error if this fails */
4889 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4890 		if (err)
4891 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4892 
4893 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4894 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4895 
4896 			if (vsi)
4897 				ice_configure_phy(vsi);
4898 		}
4899 	} else {
4900 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4901 	}
4902 
4903 	return err;
4904 }
4905 
4906 static int ice_init_pf_sw(struct ice_pf *pf)
4907 {
4908 	bool dvm = ice_is_dvm_ena(&pf->hw);
4909 	struct ice_vsi *vsi;
4910 	int err;
4911 
4912 	/* create switch struct for the switch element created by FW on boot */
4913 	pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4914 	if (!pf->first_sw)
4915 		return -ENOMEM;
4916 
4917 	if (pf->hw.evb_veb)
4918 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4919 	else
4920 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4921 
4922 	pf->first_sw->pf = pf;
4923 
4924 	/* record the sw_id available for later use */
4925 	pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4926 
4927 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4928 	if (err)
4929 		goto err_aq_set_port_params;
4930 
4931 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4932 	if (!vsi) {
4933 		err = -ENOMEM;
4934 		goto err_pf_vsi_setup;
4935 	}
4936 
4937 	return 0;
4938 
4939 err_pf_vsi_setup:
4940 err_aq_set_port_params:
4941 	kfree(pf->first_sw);
4942 	return err;
4943 }
4944 
4945 static void ice_deinit_pf_sw(struct ice_pf *pf)
4946 {
4947 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4948 
4949 	if (!vsi)
4950 		return;
4951 
4952 	ice_vsi_release(vsi);
4953 	kfree(pf->first_sw);
4954 }
4955 
4956 static int ice_alloc_vsis(struct ice_pf *pf)
4957 {
4958 	struct device *dev = ice_pf_to_dev(pf);
4959 
4960 	pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4961 	if (!pf->num_alloc_vsi)
4962 		return -EIO;
4963 
4964 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4965 		dev_warn(dev,
4966 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4967 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4968 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4969 	}
4970 
4971 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4972 			       GFP_KERNEL);
4973 	if (!pf->vsi)
4974 		return -ENOMEM;
4975 
4976 	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4977 				     sizeof(*pf->vsi_stats), GFP_KERNEL);
4978 	if (!pf->vsi_stats) {
4979 		devm_kfree(dev, pf->vsi);
4980 		return -ENOMEM;
4981 	}
4982 
4983 	return 0;
4984 }
4985 
4986 static void ice_dealloc_vsis(struct ice_pf *pf)
4987 {
4988 	devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4989 	pf->vsi_stats = NULL;
4990 
4991 	pf->num_alloc_vsi = 0;
4992 	devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4993 	pf->vsi = NULL;
4994 }
4995 
4996 static int ice_init_devlink(struct ice_pf *pf)
4997 {
4998 	int err;
4999 
5000 	err = ice_devlink_register_params(pf);
5001 	if (err)
5002 		return err;
5003 
5004 	ice_devlink_init_regions(pf);
5005 	ice_devlink_register(pf);
5006 
5007 	return 0;
5008 }
5009 
5010 static void ice_deinit_devlink(struct ice_pf *pf)
5011 {
5012 	ice_devlink_unregister(pf);
5013 	ice_devlink_destroy_regions(pf);
5014 	ice_devlink_unregister_params(pf);
5015 }
5016 
5017 static int ice_init(struct ice_pf *pf)
5018 {
5019 	int err;
5020 
5021 	err = ice_init_dev(pf);
5022 	if (err)
5023 		return err;
5024 
5025 	err = ice_alloc_vsis(pf);
5026 	if (err)
5027 		goto err_alloc_vsis;
5028 
5029 	err = ice_init_pf_sw(pf);
5030 	if (err)
5031 		goto err_init_pf_sw;
5032 
5033 	ice_init_wakeup(pf);
5034 
5035 	err = ice_init_link(pf);
5036 	if (err)
5037 		goto err_init_link;
5038 
5039 	err = ice_send_version(pf);
5040 	if (err)
5041 		goto err_init_link;
5042 
5043 	ice_verify_cacheline_size(pf);
5044 
5045 	if (ice_is_safe_mode(pf))
5046 		ice_set_safe_mode_vlan_cfg(pf);
5047 	else
5048 		/* print PCI link speed and width */
5049 		pcie_print_link_status(pf->pdev);
5050 
5051 	/* ready to go, so clear down state bit */
5052 	clear_bit(ICE_DOWN, pf->state);
5053 	clear_bit(ICE_SERVICE_DIS, pf->state);
5054 
5055 	/* since everything is good, start the service timer */
5056 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5057 
5058 	return 0;
5059 
5060 err_init_link:
5061 	ice_deinit_pf_sw(pf);
5062 err_init_pf_sw:
5063 	ice_dealloc_vsis(pf);
5064 err_alloc_vsis:
5065 	ice_deinit_dev(pf);
5066 	return err;
5067 }
5068 
5069 static void ice_deinit(struct ice_pf *pf)
5070 {
5071 	set_bit(ICE_SERVICE_DIS, pf->state);
5072 	set_bit(ICE_DOWN, pf->state);
5073 
5074 	ice_deinit_pf_sw(pf);
5075 	ice_dealloc_vsis(pf);
5076 	ice_deinit_dev(pf);
5077 }
5078 
5079 /**
5080  * ice_load - load pf by init hw and starting VSI
5081  * @pf: pointer to the pf instance
5082  */
5083 int ice_load(struct ice_pf *pf)
5084 {
5085 	struct ice_vsi_cfg_params params = {};
5086 	struct ice_vsi *vsi;
5087 	int err;
5088 
5089 	err = ice_init_dev(pf);
5090 	if (err)
5091 		return err;
5092 
5093 	vsi = ice_get_main_vsi(pf);
5094 
5095 	params = ice_vsi_to_params(vsi);
5096 	params.flags = ICE_VSI_FLAG_INIT;
5097 
5098 	rtnl_lock();
5099 	err = ice_vsi_cfg(vsi, &params);
5100 	if (err)
5101 		goto err_vsi_cfg;
5102 
5103 	err = ice_start_eth(ice_get_main_vsi(pf));
5104 	if (err)
5105 		goto err_start_eth;
5106 	rtnl_unlock();
5107 
5108 	err = ice_init_rdma(pf);
5109 	if (err)
5110 		goto err_init_rdma;
5111 
5112 	ice_init_features(pf);
5113 	ice_service_task_restart(pf);
5114 
5115 	clear_bit(ICE_DOWN, pf->state);
5116 
5117 	return 0;
5118 
5119 err_init_rdma:
5120 	ice_vsi_close(ice_get_main_vsi(pf));
5121 	rtnl_lock();
5122 err_start_eth:
5123 	ice_vsi_decfg(ice_get_main_vsi(pf));
5124 err_vsi_cfg:
5125 	rtnl_unlock();
5126 	ice_deinit_dev(pf);
5127 	return err;
5128 }
5129 
5130 /**
5131  * ice_unload - unload pf by stopping VSI and deinit hw
5132  * @pf: pointer to the pf instance
5133  */
5134 void ice_unload(struct ice_pf *pf)
5135 {
5136 	ice_deinit_features(pf);
5137 	ice_deinit_rdma(pf);
5138 	rtnl_lock();
5139 	ice_stop_eth(ice_get_main_vsi(pf));
5140 	ice_vsi_decfg(ice_get_main_vsi(pf));
5141 	rtnl_unlock();
5142 	ice_deinit_dev(pf);
5143 }
5144 
5145 /**
5146  * ice_probe - Device initialization routine
5147  * @pdev: PCI device information struct
5148  * @ent: entry in ice_pci_tbl
5149  *
5150  * Returns 0 on success, negative on failure
5151  */
5152 static int
5153 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5154 {
5155 	struct device *dev = &pdev->dev;
5156 	struct ice_pf *pf;
5157 	struct ice_hw *hw;
5158 	int err;
5159 
5160 	if (pdev->is_virtfn) {
5161 		dev_err(dev, "can't probe a virtual function\n");
5162 		return -EINVAL;
5163 	}
5164 
5165 	/* when under a kdump kernel initiate a reset before enabling the
5166 	 * device in order to clear out any pending DMA transactions. These
5167 	 * transactions can cause some systems to machine check when doing
5168 	 * the pcim_enable_device() below.
5169 	 */
5170 	if (is_kdump_kernel()) {
5171 		pci_save_state(pdev);
5172 		pci_clear_master(pdev);
5173 		err = pcie_flr(pdev);
5174 		if (err)
5175 			return err;
5176 		pci_restore_state(pdev);
5177 	}
5178 
5179 	/* this driver uses devres, see
5180 	 * Documentation/driver-api/driver-model/devres.rst
5181 	 */
5182 	err = pcim_enable_device(pdev);
5183 	if (err)
5184 		return err;
5185 
5186 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5187 	if (err) {
5188 		dev_err(dev, "BAR0 I/O map error %d\n", err);
5189 		return err;
5190 	}
5191 
5192 	pf = ice_allocate_pf(dev);
5193 	if (!pf)
5194 		return -ENOMEM;
5195 
5196 	/* initialize Auxiliary index to invalid value */
5197 	pf->aux_idx = -1;
5198 
5199 	/* set up for high or low DMA */
5200 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5201 	if (err) {
5202 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5203 		return err;
5204 	}
5205 
5206 	pci_set_master(pdev);
5207 
5208 	pf->pdev = pdev;
5209 	pci_set_drvdata(pdev, pf);
5210 	set_bit(ICE_DOWN, pf->state);
5211 	/* Disable service task until DOWN bit is cleared */
5212 	set_bit(ICE_SERVICE_DIS, pf->state);
5213 
5214 	hw = &pf->hw;
5215 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5216 	pci_save_state(pdev);
5217 
5218 	hw->back = pf;
5219 	hw->port_info = NULL;
5220 	hw->vendor_id = pdev->vendor;
5221 	hw->device_id = pdev->device;
5222 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5223 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5224 	hw->subsystem_device_id = pdev->subsystem_device;
5225 	hw->bus.device = PCI_SLOT(pdev->devfn);
5226 	hw->bus.func = PCI_FUNC(pdev->devfn);
5227 	ice_set_ctrlq_len(hw);
5228 
5229 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5230 
5231 #ifndef CONFIG_DYNAMIC_DEBUG
5232 	if (debug < -1)
5233 		hw->debug_mask = debug;
5234 #endif
5235 
5236 	err = ice_init(pf);
5237 	if (err)
5238 		goto err_init;
5239 
5240 	err = ice_init_eth(pf);
5241 	if (err)
5242 		goto err_init_eth;
5243 
5244 	err = ice_init_rdma(pf);
5245 	if (err)
5246 		goto err_init_rdma;
5247 
5248 	err = ice_init_devlink(pf);
5249 	if (err)
5250 		goto err_init_devlink;
5251 
5252 	ice_init_features(pf);
5253 
5254 	return 0;
5255 
5256 err_init_devlink:
5257 	ice_deinit_rdma(pf);
5258 err_init_rdma:
5259 	ice_deinit_eth(pf);
5260 err_init_eth:
5261 	ice_deinit(pf);
5262 err_init:
5263 	pci_disable_device(pdev);
5264 	return err;
5265 }
5266 
5267 /**
5268  * ice_set_wake - enable or disable Wake on LAN
5269  * @pf: pointer to the PF struct
5270  *
5271  * Simple helper for WoL control
5272  */
5273 static void ice_set_wake(struct ice_pf *pf)
5274 {
5275 	struct ice_hw *hw = &pf->hw;
5276 	bool wol = pf->wol_ena;
5277 
5278 	/* clear wake state, otherwise new wake events won't fire */
5279 	wr32(hw, PFPM_WUS, U32_MAX);
5280 
5281 	/* enable / disable APM wake up, no RMW needed */
5282 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5283 
5284 	/* set magic packet filter enabled */
5285 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5286 }
5287 
5288 /**
5289  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5290  * @pf: pointer to the PF struct
5291  *
5292  * Issue firmware command to enable multicast magic wake, making
5293  * sure that any locally administered address (LAA) is used for
5294  * wake, and that PF reset doesn't undo the LAA.
5295  */
5296 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5297 {
5298 	struct device *dev = ice_pf_to_dev(pf);
5299 	struct ice_hw *hw = &pf->hw;
5300 	u8 mac_addr[ETH_ALEN];
5301 	struct ice_vsi *vsi;
5302 	int status;
5303 	u8 flags;
5304 
5305 	if (!pf->wol_ena)
5306 		return;
5307 
5308 	vsi = ice_get_main_vsi(pf);
5309 	if (!vsi)
5310 		return;
5311 
5312 	/* Get current MAC address in case it's an LAA */
5313 	if (vsi->netdev)
5314 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5315 	else
5316 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5317 
5318 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5319 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5320 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5321 
5322 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5323 	if (status)
5324 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5325 			status, ice_aq_str(hw->adminq.sq_last_status));
5326 }
5327 
5328 /**
5329  * ice_remove - Device removal routine
5330  * @pdev: PCI device information struct
5331  */
5332 static void ice_remove(struct pci_dev *pdev)
5333 {
5334 	struct ice_pf *pf = pci_get_drvdata(pdev);
5335 	int i;
5336 
5337 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5338 		if (!ice_is_reset_in_progress(pf->state))
5339 			break;
5340 		msleep(100);
5341 	}
5342 
5343 	ice_debugfs_exit();
5344 
5345 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5346 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5347 		ice_free_vfs(pf);
5348 	}
5349 
5350 	ice_hwmon_exit(pf);
5351 
5352 	ice_service_task_stop(pf);
5353 	ice_aq_cancel_waiting_tasks(pf);
5354 	set_bit(ICE_DOWN, pf->state);
5355 
5356 	if (!ice_is_safe_mode(pf))
5357 		ice_remove_arfs(pf);
5358 	ice_deinit_features(pf);
5359 	ice_deinit_devlink(pf);
5360 	ice_deinit_rdma(pf);
5361 	ice_deinit_eth(pf);
5362 	ice_deinit(pf);
5363 
5364 	ice_vsi_release_all(pf);
5365 
5366 	ice_setup_mc_magic_wake(pf);
5367 	ice_set_wake(pf);
5368 
5369 	pci_disable_device(pdev);
5370 }
5371 
5372 /**
5373  * ice_shutdown - PCI callback for shutting down device
5374  * @pdev: PCI device information struct
5375  */
5376 static void ice_shutdown(struct pci_dev *pdev)
5377 {
5378 	struct ice_pf *pf = pci_get_drvdata(pdev);
5379 
5380 	ice_remove(pdev);
5381 
5382 	if (system_state == SYSTEM_POWER_OFF) {
5383 		pci_wake_from_d3(pdev, pf->wol_ena);
5384 		pci_set_power_state(pdev, PCI_D3hot);
5385 	}
5386 }
5387 
5388 #ifdef CONFIG_PM
5389 /**
5390  * ice_prepare_for_shutdown - prep for PCI shutdown
5391  * @pf: board private structure
5392  *
5393  * Inform or close all dependent features in prep for PCI device shutdown
5394  */
5395 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5396 {
5397 	struct ice_hw *hw = &pf->hw;
5398 	u32 v;
5399 
5400 	/* Notify VFs of impending reset */
5401 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5402 		ice_vc_notify_reset(pf);
5403 
5404 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5405 
5406 	/* disable the VSIs and their queues that are not already DOWN */
5407 	ice_pf_dis_all_vsi(pf, false);
5408 
5409 	ice_for_each_vsi(pf, v)
5410 		if (pf->vsi[v])
5411 			pf->vsi[v]->vsi_num = 0;
5412 
5413 	ice_shutdown_all_ctrlq(hw);
5414 }
5415 
5416 /**
5417  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5418  * @pf: board private structure to reinitialize
5419  *
5420  * This routine reinitialize interrupt scheme that was cleared during
5421  * power management suspend callback.
5422  *
5423  * This should be called during resume routine to re-allocate the q_vectors
5424  * and reacquire interrupts.
5425  */
5426 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5427 {
5428 	struct device *dev = ice_pf_to_dev(pf);
5429 	int ret, v;
5430 
5431 	/* Since we clear MSIX flag during suspend, we need to
5432 	 * set it back during resume...
5433 	 */
5434 
5435 	ret = ice_init_interrupt_scheme(pf);
5436 	if (ret) {
5437 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5438 		return ret;
5439 	}
5440 
5441 	/* Remap vectors and rings, after successful re-init interrupts */
5442 	ice_for_each_vsi(pf, v) {
5443 		if (!pf->vsi[v])
5444 			continue;
5445 
5446 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5447 		if (ret)
5448 			goto err_reinit;
5449 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5450 	}
5451 
5452 	ret = ice_req_irq_msix_misc(pf);
5453 	if (ret) {
5454 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5455 			ret);
5456 		goto err_reinit;
5457 	}
5458 
5459 	return 0;
5460 
5461 err_reinit:
5462 	while (v--)
5463 		if (pf->vsi[v])
5464 			ice_vsi_free_q_vectors(pf->vsi[v]);
5465 
5466 	return ret;
5467 }
5468 
5469 /**
5470  * ice_suspend
5471  * @dev: generic device information structure
5472  *
5473  * Power Management callback to quiesce the device and prepare
5474  * for D3 transition.
5475  */
5476 static int __maybe_unused ice_suspend(struct device *dev)
5477 {
5478 	struct pci_dev *pdev = to_pci_dev(dev);
5479 	struct ice_pf *pf;
5480 	int disabled, v;
5481 
5482 	pf = pci_get_drvdata(pdev);
5483 
5484 	if (!ice_pf_state_is_nominal(pf)) {
5485 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5486 		return -EBUSY;
5487 	}
5488 
5489 	/* Stop watchdog tasks until resume completion.
5490 	 * Even though it is most likely that the service task is
5491 	 * disabled if the device is suspended or down, the service task's
5492 	 * state is controlled by a different state bit, and we should
5493 	 * store and honor whatever state that bit is in at this point.
5494 	 */
5495 	disabled = ice_service_task_stop(pf);
5496 
5497 	ice_unplug_aux_dev(pf);
5498 
5499 	/* Already suspended?, then there is nothing to do */
5500 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5501 		if (!disabled)
5502 			ice_service_task_restart(pf);
5503 		return 0;
5504 	}
5505 
5506 	if (test_bit(ICE_DOWN, pf->state) ||
5507 	    ice_is_reset_in_progress(pf->state)) {
5508 		dev_err(dev, "can't suspend device in reset or already down\n");
5509 		if (!disabled)
5510 			ice_service_task_restart(pf);
5511 		return 0;
5512 	}
5513 
5514 	ice_setup_mc_magic_wake(pf);
5515 
5516 	ice_prepare_for_shutdown(pf);
5517 
5518 	ice_set_wake(pf);
5519 
5520 	/* Free vectors, clear the interrupt scheme and release IRQs
5521 	 * for proper hibernation, especially with large number of CPUs.
5522 	 * Otherwise hibernation might fail when mapping all the vectors back
5523 	 * to CPU0.
5524 	 */
5525 	ice_free_irq_msix_misc(pf);
5526 	ice_for_each_vsi(pf, v) {
5527 		if (!pf->vsi[v])
5528 			continue;
5529 		ice_vsi_free_q_vectors(pf->vsi[v]);
5530 	}
5531 	ice_clear_interrupt_scheme(pf);
5532 
5533 	pci_save_state(pdev);
5534 	pci_wake_from_d3(pdev, pf->wol_ena);
5535 	pci_set_power_state(pdev, PCI_D3hot);
5536 	return 0;
5537 }
5538 
5539 /**
5540  * ice_resume - PM callback for waking up from D3
5541  * @dev: generic device information structure
5542  */
5543 static int __maybe_unused ice_resume(struct device *dev)
5544 {
5545 	struct pci_dev *pdev = to_pci_dev(dev);
5546 	enum ice_reset_req reset_type;
5547 	struct ice_pf *pf;
5548 	struct ice_hw *hw;
5549 	int ret;
5550 
5551 	pci_set_power_state(pdev, PCI_D0);
5552 	pci_restore_state(pdev);
5553 	pci_save_state(pdev);
5554 
5555 	if (!pci_device_is_present(pdev))
5556 		return -ENODEV;
5557 
5558 	ret = pci_enable_device_mem(pdev);
5559 	if (ret) {
5560 		dev_err(dev, "Cannot enable device after suspend\n");
5561 		return ret;
5562 	}
5563 
5564 	pf = pci_get_drvdata(pdev);
5565 	hw = &pf->hw;
5566 
5567 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5568 	ice_print_wake_reason(pf);
5569 
5570 	/* We cleared the interrupt scheme when we suspended, so we need to
5571 	 * restore it now to resume device functionality.
5572 	 */
5573 	ret = ice_reinit_interrupt_scheme(pf);
5574 	if (ret)
5575 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5576 
5577 	clear_bit(ICE_DOWN, pf->state);
5578 	/* Now perform PF reset and rebuild */
5579 	reset_type = ICE_RESET_PFR;
5580 	/* re-enable service task for reset, but allow reset to schedule it */
5581 	clear_bit(ICE_SERVICE_DIS, pf->state);
5582 
5583 	if (ice_schedule_reset(pf, reset_type))
5584 		dev_err(dev, "Reset during resume failed.\n");
5585 
5586 	clear_bit(ICE_SUSPENDED, pf->state);
5587 	ice_service_task_restart(pf);
5588 
5589 	/* Restart the service task */
5590 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5591 
5592 	return 0;
5593 }
5594 #endif /* CONFIG_PM */
5595 
5596 /**
5597  * ice_pci_err_detected - warning that PCI error has been detected
5598  * @pdev: PCI device information struct
5599  * @err: the type of PCI error
5600  *
5601  * Called to warn that something happened on the PCI bus and the error handling
5602  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5603  */
5604 static pci_ers_result_t
5605 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5606 {
5607 	struct ice_pf *pf = pci_get_drvdata(pdev);
5608 
5609 	if (!pf) {
5610 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5611 			__func__, err);
5612 		return PCI_ERS_RESULT_DISCONNECT;
5613 	}
5614 
5615 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5616 		ice_service_task_stop(pf);
5617 
5618 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5619 			set_bit(ICE_PFR_REQ, pf->state);
5620 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5621 		}
5622 	}
5623 
5624 	return PCI_ERS_RESULT_NEED_RESET;
5625 }
5626 
5627 /**
5628  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5629  * @pdev: PCI device information struct
5630  *
5631  * Called to determine if the driver can recover from the PCI slot reset by
5632  * using a register read to determine if the device is recoverable.
5633  */
5634 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5635 {
5636 	struct ice_pf *pf = pci_get_drvdata(pdev);
5637 	pci_ers_result_t result;
5638 	int err;
5639 	u32 reg;
5640 
5641 	err = pci_enable_device_mem(pdev);
5642 	if (err) {
5643 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5644 			err);
5645 		result = PCI_ERS_RESULT_DISCONNECT;
5646 	} else {
5647 		pci_set_master(pdev);
5648 		pci_restore_state(pdev);
5649 		pci_save_state(pdev);
5650 		pci_wake_from_d3(pdev, false);
5651 
5652 		/* Check for life */
5653 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5654 		if (!reg)
5655 			result = PCI_ERS_RESULT_RECOVERED;
5656 		else
5657 			result = PCI_ERS_RESULT_DISCONNECT;
5658 	}
5659 
5660 	return result;
5661 }
5662 
5663 /**
5664  * ice_pci_err_resume - restart operations after PCI error recovery
5665  * @pdev: PCI device information struct
5666  *
5667  * Called to allow the driver to bring things back up after PCI error and/or
5668  * reset recovery have finished
5669  */
5670 static void ice_pci_err_resume(struct pci_dev *pdev)
5671 {
5672 	struct ice_pf *pf = pci_get_drvdata(pdev);
5673 
5674 	if (!pf) {
5675 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5676 			__func__);
5677 		return;
5678 	}
5679 
5680 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5681 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5682 			__func__);
5683 		return;
5684 	}
5685 
5686 	ice_restore_all_vfs_msi_state(pf);
5687 
5688 	ice_do_reset(pf, ICE_RESET_PFR);
5689 	ice_service_task_restart(pf);
5690 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5691 }
5692 
5693 /**
5694  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5695  * @pdev: PCI device information struct
5696  */
5697 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5698 {
5699 	struct ice_pf *pf = pci_get_drvdata(pdev);
5700 
5701 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5702 		ice_service_task_stop(pf);
5703 
5704 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5705 			set_bit(ICE_PFR_REQ, pf->state);
5706 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5707 		}
5708 	}
5709 }
5710 
5711 /**
5712  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5713  * @pdev: PCI device information struct
5714  */
5715 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5716 {
5717 	ice_pci_err_resume(pdev);
5718 }
5719 
5720 /* ice_pci_tbl - PCI Device ID Table
5721  *
5722  * Wildcard entries (PCI_ANY_ID) should come last
5723  * Last entry must be all 0s
5724  *
5725  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5726  *   Class, Class Mask, private data (not used) }
5727  */
5728 static const struct pci_device_id ice_pci_tbl[] = {
5729 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5730 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5731 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5732 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5733 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5734 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5735 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5736 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5737 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5738 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5739 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5740 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5741 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5742 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5743 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5744 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5745 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5746 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5747 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5748 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5749 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5750 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5751 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5752 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5753 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5754 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5755 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) },
5756 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) },
5757 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) },
5758 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) },
5759 	/* required last entry */
5760 	{}
5761 };
5762 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5763 
5764 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5765 
5766 static const struct pci_error_handlers ice_pci_err_handler = {
5767 	.error_detected = ice_pci_err_detected,
5768 	.slot_reset = ice_pci_err_slot_reset,
5769 	.reset_prepare = ice_pci_err_reset_prepare,
5770 	.reset_done = ice_pci_err_reset_done,
5771 	.resume = ice_pci_err_resume
5772 };
5773 
5774 static struct pci_driver ice_driver = {
5775 	.name = KBUILD_MODNAME,
5776 	.id_table = ice_pci_tbl,
5777 	.probe = ice_probe,
5778 	.remove = ice_remove,
5779 #ifdef CONFIG_PM
5780 	.driver.pm = &ice_pm_ops,
5781 #endif /* CONFIG_PM */
5782 	.shutdown = ice_shutdown,
5783 	.sriov_configure = ice_sriov_configure,
5784 	.sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5785 	.sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5786 	.err_handler = &ice_pci_err_handler
5787 };
5788 
5789 /**
5790  * ice_module_init - Driver registration routine
5791  *
5792  * ice_module_init is the first routine called when the driver is
5793  * loaded. All it does is register with the PCI subsystem.
5794  */
5795 static int __init ice_module_init(void)
5796 {
5797 	int status = -ENOMEM;
5798 
5799 	pr_info("%s\n", ice_driver_string);
5800 	pr_info("%s\n", ice_copyright);
5801 
5802 	ice_adv_lnk_speed_maps_init();
5803 
5804 	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5805 	if (!ice_wq) {
5806 		pr_err("Failed to create workqueue\n");
5807 		return status;
5808 	}
5809 
5810 	ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5811 	if (!ice_lag_wq) {
5812 		pr_err("Failed to create LAG workqueue\n");
5813 		goto err_dest_wq;
5814 	}
5815 
5816 	ice_debugfs_init();
5817 
5818 	status = pci_register_driver(&ice_driver);
5819 	if (status) {
5820 		pr_err("failed to register PCI driver, err %d\n", status);
5821 		goto err_dest_lag_wq;
5822 	}
5823 
5824 	return 0;
5825 
5826 err_dest_lag_wq:
5827 	destroy_workqueue(ice_lag_wq);
5828 	ice_debugfs_exit();
5829 err_dest_wq:
5830 	destroy_workqueue(ice_wq);
5831 	return status;
5832 }
5833 module_init(ice_module_init);
5834 
5835 /**
5836  * ice_module_exit - Driver exit cleanup routine
5837  *
5838  * ice_module_exit is called just before the driver is removed
5839  * from memory.
5840  */
5841 static void __exit ice_module_exit(void)
5842 {
5843 	pci_unregister_driver(&ice_driver);
5844 	destroy_workqueue(ice_wq);
5845 	destroy_workqueue(ice_lag_wq);
5846 	pr_info("module unloaded\n");
5847 }
5848 module_exit(ice_module_exit);
5849 
5850 /**
5851  * ice_set_mac_address - NDO callback to set MAC address
5852  * @netdev: network interface device structure
5853  * @pi: pointer to an address structure
5854  *
5855  * Returns 0 on success, negative on failure
5856  */
5857 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5858 {
5859 	struct ice_netdev_priv *np = netdev_priv(netdev);
5860 	struct ice_vsi *vsi = np->vsi;
5861 	struct ice_pf *pf = vsi->back;
5862 	struct ice_hw *hw = &pf->hw;
5863 	struct sockaddr *addr = pi;
5864 	u8 old_mac[ETH_ALEN];
5865 	u8 flags = 0;
5866 	u8 *mac;
5867 	int err;
5868 
5869 	mac = (u8 *)addr->sa_data;
5870 
5871 	if (!is_valid_ether_addr(mac))
5872 		return -EADDRNOTAVAIL;
5873 
5874 	if (test_bit(ICE_DOWN, pf->state) ||
5875 	    ice_is_reset_in_progress(pf->state)) {
5876 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5877 			   mac);
5878 		return -EBUSY;
5879 	}
5880 
5881 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5882 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5883 			   mac);
5884 		return -EAGAIN;
5885 	}
5886 
5887 	netif_addr_lock_bh(netdev);
5888 	ether_addr_copy(old_mac, netdev->dev_addr);
5889 	/* change the netdev's MAC address */
5890 	eth_hw_addr_set(netdev, mac);
5891 	netif_addr_unlock_bh(netdev);
5892 
5893 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5894 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5895 	if (err && err != -ENOENT) {
5896 		err = -EADDRNOTAVAIL;
5897 		goto err_update_filters;
5898 	}
5899 
5900 	/* Add filter for new MAC. If filter exists, return success */
5901 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5902 	if (err == -EEXIST) {
5903 		/* Although this MAC filter is already present in hardware it's
5904 		 * possible in some cases (e.g. bonding) that dev_addr was
5905 		 * modified outside of the driver and needs to be restored back
5906 		 * to this value.
5907 		 */
5908 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5909 
5910 		return 0;
5911 	} else if (err) {
5912 		/* error if the new filter addition failed */
5913 		err = -EADDRNOTAVAIL;
5914 	}
5915 
5916 err_update_filters:
5917 	if (err) {
5918 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5919 			   mac);
5920 		netif_addr_lock_bh(netdev);
5921 		eth_hw_addr_set(netdev, old_mac);
5922 		netif_addr_unlock_bh(netdev);
5923 		return err;
5924 	}
5925 
5926 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5927 		   netdev->dev_addr);
5928 
5929 	/* write new MAC address to the firmware */
5930 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5931 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5932 	if (err) {
5933 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5934 			   mac, err);
5935 	}
5936 	return 0;
5937 }
5938 
5939 /**
5940  * ice_set_rx_mode - NDO callback to set the netdev filters
5941  * @netdev: network interface device structure
5942  */
5943 static void ice_set_rx_mode(struct net_device *netdev)
5944 {
5945 	struct ice_netdev_priv *np = netdev_priv(netdev);
5946 	struct ice_vsi *vsi = np->vsi;
5947 
5948 	if (!vsi || ice_is_switchdev_running(vsi->back))
5949 		return;
5950 
5951 	/* Set the flags to synchronize filters
5952 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5953 	 * flags
5954 	 */
5955 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5956 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5957 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5958 
5959 	/* schedule our worker thread which will take care of
5960 	 * applying the new filter changes
5961 	 */
5962 	ice_service_task_schedule(vsi->back);
5963 }
5964 
5965 /**
5966  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5967  * @netdev: network interface device structure
5968  * @queue_index: Queue ID
5969  * @maxrate: maximum bandwidth in Mbps
5970  */
5971 static int
5972 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5973 {
5974 	struct ice_netdev_priv *np = netdev_priv(netdev);
5975 	struct ice_vsi *vsi = np->vsi;
5976 	u16 q_handle;
5977 	int status;
5978 	u8 tc;
5979 
5980 	/* Validate maxrate requested is within permitted range */
5981 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5982 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5983 			   maxrate, queue_index);
5984 		return -EINVAL;
5985 	}
5986 
5987 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5988 	tc = ice_dcb_get_tc(vsi, queue_index);
5989 
5990 	vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5991 	if (!vsi) {
5992 		netdev_err(netdev, "Invalid VSI for given queue %d\n",
5993 			   queue_index);
5994 		return -EINVAL;
5995 	}
5996 
5997 	/* Set BW back to default, when user set maxrate to 0 */
5998 	if (!maxrate)
5999 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6000 					       q_handle, ICE_MAX_BW);
6001 	else
6002 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6003 					  q_handle, ICE_MAX_BW, maxrate * 1000);
6004 	if (status)
6005 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6006 			   status);
6007 
6008 	return status;
6009 }
6010 
6011 /**
6012  * ice_fdb_add - add an entry to the hardware database
6013  * @ndm: the input from the stack
6014  * @tb: pointer to array of nladdr (unused)
6015  * @dev: the net device pointer
6016  * @addr: the MAC address entry being added
6017  * @vid: VLAN ID
6018  * @flags: instructions from stack about fdb operation
6019  * @extack: netlink extended ack
6020  */
6021 static int
6022 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6023 	    struct net_device *dev, const unsigned char *addr, u16 vid,
6024 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
6025 {
6026 	int err;
6027 
6028 	if (vid) {
6029 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6030 		return -EINVAL;
6031 	}
6032 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6033 		netdev_err(dev, "FDB only supports static addresses\n");
6034 		return -EINVAL;
6035 	}
6036 
6037 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6038 		err = dev_uc_add_excl(dev, addr);
6039 	else if (is_multicast_ether_addr(addr))
6040 		err = dev_mc_add_excl(dev, addr);
6041 	else
6042 		err = -EINVAL;
6043 
6044 	/* Only return duplicate errors if NLM_F_EXCL is set */
6045 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
6046 		err = 0;
6047 
6048 	return err;
6049 }
6050 
6051 /**
6052  * ice_fdb_del - delete an entry from the hardware database
6053  * @ndm: the input from the stack
6054  * @tb: pointer to array of nladdr (unused)
6055  * @dev: the net device pointer
6056  * @addr: the MAC address entry being added
6057  * @vid: VLAN ID
6058  * @extack: netlink extended ack
6059  */
6060 static int
6061 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6062 	    struct net_device *dev, const unsigned char *addr,
6063 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
6064 {
6065 	int err;
6066 
6067 	if (ndm->ndm_state & NUD_PERMANENT) {
6068 		netdev_err(dev, "FDB only supports static addresses\n");
6069 		return -EINVAL;
6070 	}
6071 
6072 	if (is_unicast_ether_addr(addr))
6073 		err = dev_uc_del(dev, addr);
6074 	else if (is_multicast_ether_addr(addr))
6075 		err = dev_mc_del(dev, addr);
6076 	else
6077 		err = -EINVAL;
6078 
6079 	return err;
6080 }
6081 
6082 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6083 					 NETIF_F_HW_VLAN_CTAG_TX | \
6084 					 NETIF_F_HW_VLAN_STAG_RX | \
6085 					 NETIF_F_HW_VLAN_STAG_TX)
6086 
6087 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6088 					 NETIF_F_HW_VLAN_STAG_RX)
6089 
6090 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
6091 					 NETIF_F_HW_VLAN_STAG_FILTER)
6092 
6093 /**
6094  * ice_fix_features - fix the netdev features flags based on device limitations
6095  * @netdev: ptr to the netdev that flags are being fixed on
6096  * @features: features that need to be checked and possibly fixed
6097  *
6098  * Make sure any fixups are made to features in this callback. This enables the
6099  * driver to not have to check unsupported configurations throughout the driver
6100  * because that's the responsiblity of this callback.
6101  *
6102  * Single VLAN Mode (SVM) Supported Features:
6103  *	NETIF_F_HW_VLAN_CTAG_FILTER
6104  *	NETIF_F_HW_VLAN_CTAG_RX
6105  *	NETIF_F_HW_VLAN_CTAG_TX
6106  *
6107  * Double VLAN Mode (DVM) Supported Features:
6108  *	NETIF_F_HW_VLAN_CTAG_FILTER
6109  *	NETIF_F_HW_VLAN_CTAG_RX
6110  *	NETIF_F_HW_VLAN_CTAG_TX
6111  *
6112  *	NETIF_F_HW_VLAN_STAG_FILTER
6113  *	NETIF_HW_VLAN_STAG_RX
6114  *	NETIF_HW_VLAN_STAG_TX
6115  *
6116  * Features that need fixing:
6117  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6118  *	These are mutually exlusive as the VSI context cannot support multiple
6119  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
6120  *	is not done, then default to clearing the requested STAG offload
6121  *	settings.
6122  *
6123  *	All supported filtering has to be enabled or disabled together. For
6124  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6125  *	together. If this is not done, then default to VLAN filtering disabled.
6126  *	These are mutually exclusive as there is currently no way to
6127  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6128  *	prune rules.
6129  */
6130 static netdev_features_t
6131 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6132 {
6133 	struct ice_netdev_priv *np = netdev_priv(netdev);
6134 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6135 	bool cur_ctag, cur_stag, req_ctag, req_stag;
6136 
6137 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6138 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6139 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6140 
6141 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6142 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6143 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6144 
6145 	if (req_vlan_fltr != cur_vlan_fltr) {
6146 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6147 			if (req_ctag && req_stag) {
6148 				features |= NETIF_VLAN_FILTERING_FEATURES;
6149 			} else if (!req_ctag && !req_stag) {
6150 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6151 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
6152 				   (!cur_stag && req_stag && !cur_ctag)) {
6153 				features |= NETIF_VLAN_FILTERING_FEATURES;
6154 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6155 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
6156 				   (cur_stag && !req_stag && cur_ctag)) {
6157 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6158 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6159 			}
6160 		} else {
6161 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6162 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6163 
6164 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6165 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6166 		}
6167 	}
6168 
6169 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6170 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6171 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6172 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6173 			      NETIF_F_HW_VLAN_STAG_TX);
6174 	}
6175 
6176 	if (!(netdev->features & NETIF_F_RXFCS) &&
6177 	    (features & NETIF_F_RXFCS) &&
6178 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6179 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
6180 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6181 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6182 	}
6183 
6184 	return features;
6185 }
6186 
6187 /**
6188  * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6189  * @vsi: PF's VSI
6190  * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6191  *
6192  * Store current stripped VLAN proto in ring packet context,
6193  * so it can be accessed more efficiently by packet processing code.
6194  */
6195 static void
6196 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6197 {
6198 	u16 i;
6199 
6200 	ice_for_each_alloc_rxq(vsi, i)
6201 		vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6202 }
6203 
6204 /**
6205  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6206  * @vsi: PF's VSI
6207  * @features: features used to determine VLAN offload settings
6208  *
6209  * First, determine the vlan_ethertype based on the VLAN offload bits in
6210  * features. Then determine if stripping and insertion should be enabled or
6211  * disabled. Finally enable or disable VLAN stripping and insertion.
6212  */
6213 static int
6214 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6215 {
6216 	bool enable_stripping = true, enable_insertion = true;
6217 	struct ice_vsi_vlan_ops *vlan_ops;
6218 	int strip_err = 0, insert_err = 0;
6219 	u16 vlan_ethertype = 0;
6220 
6221 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6222 
6223 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6224 		vlan_ethertype = ETH_P_8021AD;
6225 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6226 		vlan_ethertype = ETH_P_8021Q;
6227 
6228 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6229 		enable_stripping = false;
6230 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6231 		enable_insertion = false;
6232 
6233 	if (enable_stripping)
6234 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6235 	else
6236 		strip_err = vlan_ops->dis_stripping(vsi);
6237 
6238 	if (enable_insertion)
6239 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6240 	else
6241 		insert_err = vlan_ops->dis_insertion(vsi);
6242 
6243 	if (strip_err || insert_err)
6244 		return -EIO;
6245 
6246 	ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6247 				    htons(vlan_ethertype) : 0);
6248 
6249 	return 0;
6250 }
6251 
6252 /**
6253  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6254  * @vsi: PF's VSI
6255  * @features: features used to determine VLAN filtering settings
6256  *
6257  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6258  * features.
6259  */
6260 static int
6261 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6262 {
6263 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6264 	int err = 0;
6265 
6266 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6267 	 * if either bit is set
6268 	 */
6269 	if (features &
6270 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6271 		err = vlan_ops->ena_rx_filtering(vsi);
6272 	else
6273 		err = vlan_ops->dis_rx_filtering(vsi);
6274 
6275 	return err;
6276 }
6277 
6278 /**
6279  * ice_set_vlan_features - set VLAN settings based on suggested feature set
6280  * @netdev: ptr to the netdev being adjusted
6281  * @features: the feature set that the stack is suggesting
6282  *
6283  * Only update VLAN settings if the requested_vlan_features are different than
6284  * the current_vlan_features.
6285  */
6286 static int
6287 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6288 {
6289 	netdev_features_t current_vlan_features, requested_vlan_features;
6290 	struct ice_netdev_priv *np = netdev_priv(netdev);
6291 	struct ice_vsi *vsi = np->vsi;
6292 	int err;
6293 
6294 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6295 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6296 	if (current_vlan_features ^ requested_vlan_features) {
6297 		if ((features & NETIF_F_RXFCS) &&
6298 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6299 			dev_err(ice_pf_to_dev(vsi->back),
6300 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6301 			return -EIO;
6302 		}
6303 
6304 		err = ice_set_vlan_offload_features(vsi, features);
6305 		if (err)
6306 			return err;
6307 	}
6308 
6309 	current_vlan_features = netdev->features &
6310 		NETIF_VLAN_FILTERING_FEATURES;
6311 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6312 	if (current_vlan_features ^ requested_vlan_features) {
6313 		err = ice_set_vlan_filtering_features(vsi, features);
6314 		if (err)
6315 			return err;
6316 	}
6317 
6318 	return 0;
6319 }
6320 
6321 /**
6322  * ice_set_loopback - turn on/off loopback mode on underlying PF
6323  * @vsi: ptr to VSI
6324  * @ena: flag to indicate the on/off setting
6325  */
6326 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6327 {
6328 	bool if_running = netif_running(vsi->netdev);
6329 	int ret;
6330 
6331 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6332 		ret = ice_down(vsi);
6333 		if (ret) {
6334 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6335 			return ret;
6336 		}
6337 	}
6338 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6339 	if (ret)
6340 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6341 	if (if_running)
6342 		ret = ice_up(vsi);
6343 
6344 	return ret;
6345 }
6346 
6347 /**
6348  * ice_set_features - set the netdev feature flags
6349  * @netdev: ptr to the netdev being adjusted
6350  * @features: the feature set that the stack is suggesting
6351  */
6352 static int
6353 ice_set_features(struct net_device *netdev, netdev_features_t features)
6354 {
6355 	netdev_features_t changed = netdev->features ^ features;
6356 	struct ice_netdev_priv *np = netdev_priv(netdev);
6357 	struct ice_vsi *vsi = np->vsi;
6358 	struct ice_pf *pf = vsi->back;
6359 	int ret = 0;
6360 
6361 	/* Don't set any netdev advanced features with device in Safe Mode */
6362 	if (ice_is_safe_mode(pf)) {
6363 		dev_err(ice_pf_to_dev(pf),
6364 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6365 		return ret;
6366 	}
6367 
6368 	/* Do not change setting during reset */
6369 	if (ice_is_reset_in_progress(pf->state)) {
6370 		dev_err(ice_pf_to_dev(pf),
6371 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6372 		return -EBUSY;
6373 	}
6374 
6375 	/* Multiple features can be changed in one call so keep features in
6376 	 * separate if/else statements to guarantee each feature is checked
6377 	 */
6378 	if (changed & NETIF_F_RXHASH)
6379 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6380 
6381 	ret = ice_set_vlan_features(netdev, features);
6382 	if (ret)
6383 		return ret;
6384 
6385 	/* Turn on receive of FCS aka CRC, and after setting this
6386 	 * flag the packet data will have the 4 byte CRC appended
6387 	 */
6388 	if (changed & NETIF_F_RXFCS) {
6389 		if ((features & NETIF_F_RXFCS) &&
6390 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6391 			dev_err(ice_pf_to_dev(vsi->back),
6392 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6393 			return -EIO;
6394 		}
6395 
6396 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6397 		ret = ice_down_up(vsi);
6398 		if (ret)
6399 			return ret;
6400 	}
6401 
6402 	if (changed & NETIF_F_NTUPLE) {
6403 		bool ena = !!(features & NETIF_F_NTUPLE);
6404 
6405 		ice_vsi_manage_fdir(vsi, ena);
6406 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6407 	}
6408 
6409 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6410 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6411 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6412 		return -EACCES;
6413 	}
6414 
6415 	if (changed & NETIF_F_HW_TC) {
6416 		bool ena = !!(features & NETIF_F_HW_TC);
6417 
6418 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6419 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6420 	}
6421 
6422 	if (changed & NETIF_F_LOOPBACK)
6423 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6424 
6425 	return ret;
6426 }
6427 
6428 /**
6429  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6430  * @vsi: VSI to setup VLAN properties for
6431  */
6432 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6433 {
6434 	int err;
6435 
6436 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6437 	if (err)
6438 		return err;
6439 
6440 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6441 	if (err)
6442 		return err;
6443 
6444 	return ice_vsi_add_vlan_zero(vsi);
6445 }
6446 
6447 /**
6448  * ice_vsi_cfg_lan - Setup the VSI lan related config
6449  * @vsi: the VSI being configured
6450  *
6451  * Return 0 on success and negative value on error
6452  */
6453 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6454 {
6455 	int err;
6456 
6457 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6458 		ice_set_rx_mode(vsi->netdev);
6459 
6460 		err = ice_vsi_vlan_setup(vsi);
6461 		if (err)
6462 			return err;
6463 	}
6464 	ice_vsi_cfg_dcb_rings(vsi);
6465 
6466 	err = ice_vsi_cfg_lan_txqs(vsi);
6467 	if (!err && ice_is_xdp_ena_vsi(vsi))
6468 		err = ice_vsi_cfg_xdp_txqs(vsi);
6469 	if (!err)
6470 		err = ice_vsi_cfg_rxqs(vsi);
6471 
6472 	return err;
6473 }
6474 
6475 /* THEORY OF MODERATION:
6476  * The ice driver hardware works differently than the hardware that DIMLIB was
6477  * originally made for. ice hardware doesn't have packet count limits that
6478  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6479  * which is hard-coded to a limit of 250,000 ints/second.
6480  * If not using dynamic moderation, the INTRL value can be modified
6481  * by ethtool rx-usecs-high.
6482  */
6483 struct ice_dim {
6484 	/* the throttle rate for interrupts, basically worst case delay before
6485 	 * an initial interrupt fires, value is stored in microseconds.
6486 	 */
6487 	u16 itr;
6488 };
6489 
6490 /* Make a different profile for Rx that doesn't allow quite so aggressive
6491  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6492  * second.
6493  */
6494 static const struct ice_dim rx_profile[] = {
6495 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6496 	{8},    /* 125,000 ints/s */
6497 	{16},   /*  62,500 ints/s */
6498 	{62},   /*  16,129 ints/s */
6499 	{126}   /*   7,936 ints/s */
6500 };
6501 
6502 /* The transmit profile, which has the same sorts of values
6503  * as the previous struct
6504  */
6505 static const struct ice_dim tx_profile[] = {
6506 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6507 	{8},    /* 125,000 ints/s */
6508 	{40},   /*  16,125 ints/s */
6509 	{128},  /*   7,812 ints/s */
6510 	{256}   /*   3,906 ints/s */
6511 };
6512 
6513 static void ice_tx_dim_work(struct work_struct *work)
6514 {
6515 	struct ice_ring_container *rc;
6516 	struct dim *dim;
6517 	u16 itr;
6518 
6519 	dim = container_of(work, struct dim, work);
6520 	rc = dim->priv;
6521 
6522 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6523 
6524 	/* look up the values in our local table */
6525 	itr = tx_profile[dim->profile_ix].itr;
6526 
6527 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6528 	ice_write_itr(rc, itr);
6529 
6530 	dim->state = DIM_START_MEASURE;
6531 }
6532 
6533 static void ice_rx_dim_work(struct work_struct *work)
6534 {
6535 	struct ice_ring_container *rc;
6536 	struct dim *dim;
6537 	u16 itr;
6538 
6539 	dim = container_of(work, struct dim, work);
6540 	rc = dim->priv;
6541 
6542 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6543 
6544 	/* look up the values in our local table */
6545 	itr = rx_profile[dim->profile_ix].itr;
6546 
6547 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6548 	ice_write_itr(rc, itr);
6549 
6550 	dim->state = DIM_START_MEASURE;
6551 }
6552 
6553 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6554 
6555 /**
6556  * ice_init_moderation - set up interrupt moderation
6557  * @q_vector: the vector containing rings to be configured
6558  *
6559  * Set up interrupt moderation registers, with the intent to do the right thing
6560  * when called from reset or from probe, and whether or not dynamic moderation
6561  * is enabled or not. Take special care to write all the registers in both
6562  * dynamic moderation mode or not in order to make sure hardware is in a known
6563  * state.
6564  */
6565 static void ice_init_moderation(struct ice_q_vector *q_vector)
6566 {
6567 	struct ice_ring_container *rc;
6568 	bool tx_dynamic, rx_dynamic;
6569 
6570 	rc = &q_vector->tx;
6571 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6572 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6573 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6574 	rc->dim.priv = rc;
6575 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6576 
6577 	/* set the initial TX ITR to match the above */
6578 	ice_write_itr(rc, tx_dynamic ?
6579 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6580 
6581 	rc = &q_vector->rx;
6582 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6583 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6584 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6585 	rc->dim.priv = rc;
6586 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6587 
6588 	/* set the initial RX ITR to match the above */
6589 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6590 				       rc->itr_setting);
6591 
6592 	ice_set_q_vector_intrl(q_vector);
6593 }
6594 
6595 /**
6596  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6597  * @vsi: the VSI being configured
6598  */
6599 static void ice_napi_enable_all(struct ice_vsi *vsi)
6600 {
6601 	int q_idx;
6602 
6603 	if (!vsi->netdev)
6604 		return;
6605 
6606 	ice_for_each_q_vector(vsi, q_idx) {
6607 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6608 
6609 		ice_init_moderation(q_vector);
6610 
6611 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6612 			napi_enable(&q_vector->napi);
6613 	}
6614 }
6615 
6616 /**
6617  * ice_up_complete - Finish the last steps of bringing up a connection
6618  * @vsi: The VSI being configured
6619  *
6620  * Return 0 on success and negative value on error
6621  */
6622 static int ice_up_complete(struct ice_vsi *vsi)
6623 {
6624 	struct ice_pf *pf = vsi->back;
6625 	int err;
6626 
6627 	ice_vsi_cfg_msix(vsi);
6628 
6629 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6630 	 * Tx queue group list was configured and the context bits were
6631 	 * programmed using ice_vsi_cfg_txqs
6632 	 */
6633 	err = ice_vsi_start_all_rx_rings(vsi);
6634 	if (err)
6635 		return err;
6636 
6637 	clear_bit(ICE_VSI_DOWN, vsi->state);
6638 	ice_napi_enable_all(vsi);
6639 	ice_vsi_ena_irq(vsi);
6640 
6641 	if (vsi->port_info &&
6642 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6643 	    vsi->netdev && vsi->type == ICE_VSI_PF) {
6644 		ice_print_link_msg(vsi, true);
6645 		netif_tx_start_all_queues(vsi->netdev);
6646 		netif_carrier_on(vsi->netdev);
6647 		ice_ptp_link_change(pf, pf->hw.pf_id, true);
6648 	}
6649 
6650 	/* Perform an initial read of the statistics registers now to
6651 	 * set the baseline so counters are ready when interface is up
6652 	 */
6653 	ice_update_eth_stats(vsi);
6654 
6655 	if (vsi->type == ICE_VSI_PF)
6656 		ice_service_task_schedule(pf);
6657 
6658 	return 0;
6659 }
6660 
6661 /**
6662  * ice_up - Bring the connection back up after being down
6663  * @vsi: VSI being configured
6664  */
6665 int ice_up(struct ice_vsi *vsi)
6666 {
6667 	int err;
6668 
6669 	err = ice_vsi_cfg_lan(vsi);
6670 	if (!err)
6671 		err = ice_up_complete(vsi);
6672 
6673 	return err;
6674 }
6675 
6676 /**
6677  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6678  * @syncp: pointer to u64_stats_sync
6679  * @stats: stats that pkts and bytes count will be taken from
6680  * @pkts: packets stats counter
6681  * @bytes: bytes stats counter
6682  *
6683  * This function fetches stats from the ring considering the atomic operations
6684  * that needs to be performed to read u64 values in 32 bit machine.
6685  */
6686 void
6687 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6688 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6689 {
6690 	unsigned int start;
6691 
6692 	do {
6693 		start = u64_stats_fetch_begin(syncp);
6694 		*pkts = stats.pkts;
6695 		*bytes = stats.bytes;
6696 	} while (u64_stats_fetch_retry(syncp, start));
6697 }
6698 
6699 /**
6700  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6701  * @vsi: the VSI to be updated
6702  * @vsi_stats: the stats struct to be updated
6703  * @rings: rings to work on
6704  * @count: number of rings
6705  */
6706 static void
6707 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6708 			     struct rtnl_link_stats64 *vsi_stats,
6709 			     struct ice_tx_ring **rings, u16 count)
6710 {
6711 	u16 i;
6712 
6713 	for (i = 0; i < count; i++) {
6714 		struct ice_tx_ring *ring;
6715 		u64 pkts = 0, bytes = 0;
6716 
6717 		ring = READ_ONCE(rings[i]);
6718 		if (!ring || !ring->ring_stats)
6719 			continue;
6720 		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6721 					     ring->ring_stats->stats, &pkts,
6722 					     &bytes);
6723 		vsi_stats->tx_packets += pkts;
6724 		vsi_stats->tx_bytes += bytes;
6725 		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6726 		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6727 		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6728 	}
6729 }
6730 
6731 /**
6732  * ice_update_vsi_ring_stats - Update VSI stats counters
6733  * @vsi: the VSI to be updated
6734  */
6735 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6736 {
6737 	struct rtnl_link_stats64 *net_stats, *stats_prev;
6738 	struct rtnl_link_stats64 *vsi_stats;
6739 	u64 pkts, bytes;
6740 	int i;
6741 
6742 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6743 	if (!vsi_stats)
6744 		return;
6745 
6746 	/* reset non-netdev (extended) stats */
6747 	vsi->tx_restart = 0;
6748 	vsi->tx_busy = 0;
6749 	vsi->tx_linearize = 0;
6750 	vsi->rx_buf_failed = 0;
6751 	vsi->rx_page_failed = 0;
6752 
6753 	rcu_read_lock();
6754 
6755 	/* update Tx rings counters */
6756 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6757 				     vsi->num_txq);
6758 
6759 	/* update Rx rings counters */
6760 	ice_for_each_rxq(vsi, i) {
6761 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6762 		struct ice_ring_stats *ring_stats;
6763 
6764 		ring_stats = ring->ring_stats;
6765 		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6766 					     ring_stats->stats, &pkts,
6767 					     &bytes);
6768 		vsi_stats->rx_packets += pkts;
6769 		vsi_stats->rx_bytes += bytes;
6770 		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6771 		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6772 	}
6773 
6774 	/* update XDP Tx rings counters */
6775 	if (ice_is_xdp_ena_vsi(vsi))
6776 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6777 					     vsi->num_xdp_txq);
6778 
6779 	rcu_read_unlock();
6780 
6781 	net_stats = &vsi->net_stats;
6782 	stats_prev = &vsi->net_stats_prev;
6783 
6784 	/* clear prev counters after reset */
6785 	if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6786 	    vsi_stats->rx_packets < stats_prev->rx_packets) {
6787 		stats_prev->tx_packets = 0;
6788 		stats_prev->tx_bytes = 0;
6789 		stats_prev->rx_packets = 0;
6790 		stats_prev->rx_bytes = 0;
6791 	}
6792 
6793 	/* update netdev counters */
6794 	net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6795 	net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6796 	net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6797 	net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6798 
6799 	stats_prev->tx_packets = vsi_stats->tx_packets;
6800 	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6801 	stats_prev->rx_packets = vsi_stats->rx_packets;
6802 	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6803 
6804 	kfree(vsi_stats);
6805 }
6806 
6807 /**
6808  * ice_update_vsi_stats - Update VSI stats counters
6809  * @vsi: the VSI to be updated
6810  */
6811 void ice_update_vsi_stats(struct ice_vsi *vsi)
6812 {
6813 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6814 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6815 	struct ice_pf *pf = vsi->back;
6816 
6817 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6818 	    test_bit(ICE_CFG_BUSY, pf->state))
6819 		return;
6820 
6821 	/* get stats as recorded by Tx/Rx rings */
6822 	ice_update_vsi_ring_stats(vsi);
6823 
6824 	/* get VSI stats as recorded by the hardware */
6825 	ice_update_eth_stats(vsi);
6826 
6827 	cur_ns->tx_errors = cur_es->tx_errors;
6828 	cur_ns->rx_dropped = cur_es->rx_discards;
6829 	cur_ns->tx_dropped = cur_es->tx_discards;
6830 	cur_ns->multicast = cur_es->rx_multicast;
6831 
6832 	/* update some more netdev stats if this is main VSI */
6833 	if (vsi->type == ICE_VSI_PF) {
6834 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6835 		cur_ns->rx_errors = pf->stats.crc_errors +
6836 				    pf->stats.illegal_bytes +
6837 				    pf->stats.rx_undersize +
6838 				    pf->hw_csum_rx_error +
6839 				    pf->stats.rx_jabber +
6840 				    pf->stats.rx_fragments +
6841 				    pf->stats.rx_oversize;
6842 		/* record drops from the port level */
6843 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6844 	}
6845 }
6846 
6847 /**
6848  * ice_update_pf_stats - Update PF port stats counters
6849  * @pf: PF whose stats needs to be updated
6850  */
6851 void ice_update_pf_stats(struct ice_pf *pf)
6852 {
6853 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6854 	struct ice_hw *hw = &pf->hw;
6855 	u16 fd_ctr_base;
6856 	u8 port;
6857 
6858 	port = hw->port_info->lport;
6859 	prev_ps = &pf->stats_prev;
6860 	cur_ps = &pf->stats;
6861 
6862 	if (ice_is_reset_in_progress(pf->state))
6863 		pf->stat_prev_loaded = false;
6864 
6865 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6866 			  &prev_ps->eth.rx_bytes,
6867 			  &cur_ps->eth.rx_bytes);
6868 
6869 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6870 			  &prev_ps->eth.rx_unicast,
6871 			  &cur_ps->eth.rx_unicast);
6872 
6873 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6874 			  &prev_ps->eth.rx_multicast,
6875 			  &cur_ps->eth.rx_multicast);
6876 
6877 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6878 			  &prev_ps->eth.rx_broadcast,
6879 			  &cur_ps->eth.rx_broadcast);
6880 
6881 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6882 			  &prev_ps->eth.rx_discards,
6883 			  &cur_ps->eth.rx_discards);
6884 
6885 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6886 			  &prev_ps->eth.tx_bytes,
6887 			  &cur_ps->eth.tx_bytes);
6888 
6889 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6890 			  &prev_ps->eth.tx_unicast,
6891 			  &cur_ps->eth.tx_unicast);
6892 
6893 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6894 			  &prev_ps->eth.tx_multicast,
6895 			  &cur_ps->eth.tx_multicast);
6896 
6897 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6898 			  &prev_ps->eth.tx_broadcast,
6899 			  &cur_ps->eth.tx_broadcast);
6900 
6901 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6902 			  &prev_ps->tx_dropped_link_down,
6903 			  &cur_ps->tx_dropped_link_down);
6904 
6905 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6906 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6907 
6908 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6909 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6910 
6911 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6912 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6913 
6914 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6915 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6916 
6917 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6918 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6919 
6920 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6921 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6922 
6923 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6924 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6925 
6926 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6927 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6928 
6929 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6930 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6931 
6932 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6933 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6934 
6935 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6936 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6937 
6938 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6939 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6940 
6941 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6942 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6943 
6944 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6945 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6946 
6947 	fd_ctr_base = hw->fd_ctr_base;
6948 
6949 	ice_stat_update40(hw,
6950 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6951 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6952 			  &cur_ps->fd_sb_match);
6953 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6954 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6955 
6956 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6957 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6958 
6959 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6960 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6961 
6962 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6963 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6964 
6965 	ice_update_dcb_stats(pf);
6966 
6967 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6968 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6969 
6970 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6971 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6972 
6973 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6974 			  &prev_ps->mac_local_faults,
6975 			  &cur_ps->mac_local_faults);
6976 
6977 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6978 			  &prev_ps->mac_remote_faults,
6979 			  &cur_ps->mac_remote_faults);
6980 
6981 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6982 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6983 
6984 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6985 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6986 
6987 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6988 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6989 
6990 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6991 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6992 
6993 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6994 
6995 	pf->stat_prev_loaded = true;
6996 }
6997 
6998 /**
6999  * ice_get_stats64 - get statistics for network device structure
7000  * @netdev: network interface device structure
7001  * @stats: main device statistics structure
7002  */
7003 static
7004 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7005 {
7006 	struct ice_netdev_priv *np = netdev_priv(netdev);
7007 	struct rtnl_link_stats64 *vsi_stats;
7008 	struct ice_vsi *vsi = np->vsi;
7009 
7010 	vsi_stats = &vsi->net_stats;
7011 
7012 	if (!vsi->num_txq || !vsi->num_rxq)
7013 		return;
7014 
7015 	/* netdev packet/byte stats come from ring counter. These are obtained
7016 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7017 	 * But, only call the update routine and read the registers if VSI is
7018 	 * not down.
7019 	 */
7020 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
7021 		ice_update_vsi_ring_stats(vsi);
7022 	stats->tx_packets = vsi_stats->tx_packets;
7023 	stats->tx_bytes = vsi_stats->tx_bytes;
7024 	stats->rx_packets = vsi_stats->rx_packets;
7025 	stats->rx_bytes = vsi_stats->rx_bytes;
7026 
7027 	/* The rest of the stats can be read from the hardware but instead we
7028 	 * just return values that the watchdog task has already obtained from
7029 	 * the hardware.
7030 	 */
7031 	stats->multicast = vsi_stats->multicast;
7032 	stats->tx_errors = vsi_stats->tx_errors;
7033 	stats->tx_dropped = vsi_stats->tx_dropped;
7034 	stats->rx_errors = vsi_stats->rx_errors;
7035 	stats->rx_dropped = vsi_stats->rx_dropped;
7036 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7037 	stats->rx_length_errors = vsi_stats->rx_length_errors;
7038 }
7039 
7040 /**
7041  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7042  * @vsi: VSI having NAPI disabled
7043  */
7044 static void ice_napi_disable_all(struct ice_vsi *vsi)
7045 {
7046 	int q_idx;
7047 
7048 	if (!vsi->netdev)
7049 		return;
7050 
7051 	ice_for_each_q_vector(vsi, q_idx) {
7052 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7053 
7054 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7055 			napi_disable(&q_vector->napi);
7056 
7057 		cancel_work_sync(&q_vector->tx.dim.work);
7058 		cancel_work_sync(&q_vector->rx.dim.work);
7059 	}
7060 }
7061 
7062 /**
7063  * ice_down - Shutdown the connection
7064  * @vsi: The VSI being stopped
7065  *
7066  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7067  */
7068 int ice_down(struct ice_vsi *vsi)
7069 {
7070 	int i, tx_err, rx_err, vlan_err = 0;
7071 
7072 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7073 
7074 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
7075 		vlan_err = ice_vsi_del_vlan_zero(vsi);
7076 		ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
7077 		netif_carrier_off(vsi->netdev);
7078 		netif_tx_disable(vsi->netdev);
7079 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
7080 		ice_eswitch_stop_all_tx_queues(vsi->back);
7081 	}
7082 
7083 	ice_vsi_dis_irq(vsi);
7084 
7085 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7086 	if (tx_err)
7087 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7088 			   vsi->vsi_num, tx_err);
7089 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
7090 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7091 		if (tx_err)
7092 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7093 				   vsi->vsi_num, tx_err);
7094 	}
7095 
7096 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
7097 	if (rx_err)
7098 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7099 			   vsi->vsi_num, rx_err);
7100 
7101 	ice_napi_disable_all(vsi);
7102 
7103 	ice_for_each_txq(vsi, i)
7104 		ice_clean_tx_ring(vsi->tx_rings[i]);
7105 
7106 	if (ice_is_xdp_ena_vsi(vsi))
7107 		ice_for_each_xdp_txq(vsi, i)
7108 			ice_clean_tx_ring(vsi->xdp_rings[i]);
7109 
7110 	ice_for_each_rxq(vsi, i)
7111 		ice_clean_rx_ring(vsi->rx_rings[i]);
7112 
7113 	if (tx_err || rx_err || vlan_err) {
7114 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7115 			   vsi->vsi_num, vsi->vsw->sw_id);
7116 		return -EIO;
7117 	}
7118 
7119 	return 0;
7120 }
7121 
7122 /**
7123  * ice_down_up - shutdown the VSI connection and bring it up
7124  * @vsi: the VSI to be reconnected
7125  */
7126 int ice_down_up(struct ice_vsi *vsi)
7127 {
7128 	int ret;
7129 
7130 	/* if DOWN already set, nothing to do */
7131 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7132 		return 0;
7133 
7134 	ret = ice_down(vsi);
7135 	if (ret)
7136 		return ret;
7137 
7138 	ret = ice_up(vsi);
7139 	if (ret) {
7140 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7141 		return ret;
7142 	}
7143 
7144 	return 0;
7145 }
7146 
7147 /**
7148  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7149  * @vsi: VSI having resources allocated
7150  *
7151  * Return 0 on success, negative on failure
7152  */
7153 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7154 {
7155 	int i, err = 0;
7156 
7157 	if (!vsi->num_txq) {
7158 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7159 			vsi->vsi_num);
7160 		return -EINVAL;
7161 	}
7162 
7163 	ice_for_each_txq(vsi, i) {
7164 		struct ice_tx_ring *ring = vsi->tx_rings[i];
7165 
7166 		if (!ring)
7167 			return -EINVAL;
7168 
7169 		if (vsi->netdev)
7170 			ring->netdev = vsi->netdev;
7171 		err = ice_setup_tx_ring(ring);
7172 		if (err)
7173 			break;
7174 	}
7175 
7176 	return err;
7177 }
7178 
7179 /**
7180  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7181  * @vsi: VSI having resources allocated
7182  *
7183  * Return 0 on success, negative on failure
7184  */
7185 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7186 {
7187 	int i, err = 0;
7188 
7189 	if (!vsi->num_rxq) {
7190 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7191 			vsi->vsi_num);
7192 		return -EINVAL;
7193 	}
7194 
7195 	ice_for_each_rxq(vsi, i) {
7196 		struct ice_rx_ring *ring = vsi->rx_rings[i];
7197 
7198 		if (!ring)
7199 			return -EINVAL;
7200 
7201 		if (vsi->netdev)
7202 			ring->netdev = vsi->netdev;
7203 		err = ice_setup_rx_ring(ring);
7204 		if (err)
7205 			break;
7206 	}
7207 
7208 	return err;
7209 }
7210 
7211 /**
7212  * ice_vsi_open_ctrl - open control VSI for use
7213  * @vsi: the VSI to open
7214  *
7215  * Initialization of the Control VSI
7216  *
7217  * Returns 0 on success, negative value on error
7218  */
7219 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7220 {
7221 	char int_name[ICE_INT_NAME_STR_LEN];
7222 	struct ice_pf *pf = vsi->back;
7223 	struct device *dev;
7224 	int err;
7225 
7226 	dev = ice_pf_to_dev(pf);
7227 	/* allocate descriptors */
7228 	err = ice_vsi_setup_tx_rings(vsi);
7229 	if (err)
7230 		goto err_setup_tx;
7231 
7232 	err = ice_vsi_setup_rx_rings(vsi);
7233 	if (err)
7234 		goto err_setup_rx;
7235 
7236 	err = ice_vsi_cfg_lan(vsi);
7237 	if (err)
7238 		goto err_setup_rx;
7239 
7240 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7241 		 dev_driver_string(dev), dev_name(dev));
7242 	err = ice_vsi_req_irq_msix(vsi, int_name);
7243 	if (err)
7244 		goto err_setup_rx;
7245 
7246 	ice_vsi_cfg_msix(vsi);
7247 
7248 	err = ice_vsi_start_all_rx_rings(vsi);
7249 	if (err)
7250 		goto err_up_complete;
7251 
7252 	clear_bit(ICE_VSI_DOWN, vsi->state);
7253 	ice_vsi_ena_irq(vsi);
7254 
7255 	return 0;
7256 
7257 err_up_complete:
7258 	ice_down(vsi);
7259 err_setup_rx:
7260 	ice_vsi_free_rx_rings(vsi);
7261 err_setup_tx:
7262 	ice_vsi_free_tx_rings(vsi);
7263 
7264 	return err;
7265 }
7266 
7267 /**
7268  * ice_vsi_open - Called when a network interface is made active
7269  * @vsi: the VSI to open
7270  *
7271  * Initialization of the VSI
7272  *
7273  * Returns 0 on success, negative value on error
7274  */
7275 int ice_vsi_open(struct ice_vsi *vsi)
7276 {
7277 	char int_name[ICE_INT_NAME_STR_LEN];
7278 	struct ice_pf *pf = vsi->back;
7279 	int err;
7280 
7281 	/* allocate descriptors */
7282 	err = ice_vsi_setup_tx_rings(vsi);
7283 	if (err)
7284 		goto err_setup_tx;
7285 
7286 	err = ice_vsi_setup_rx_rings(vsi);
7287 	if (err)
7288 		goto err_setup_rx;
7289 
7290 	err = ice_vsi_cfg_lan(vsi);
7291 	if (err)
7292 		goto err_setup_rx;
7293 
7294 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7295 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7296 	err = ice_vsi_req_irq_msix(vsi, int_name);
7297 	if (err)
7298 		goto err_setup_rx;
7299 
7300 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7301 
7302 	if (vsi->type == ICE_VSI_PF) {
7303 		/* Notify the stack of the actual queue counts. */
7304 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7305 		if (err)
7306 			goto err_set_qs;
7307 
7308 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7309 		if (err)
7310 			goto err_set_qs;
7311 	}
7312 
7313 	err = ice_up_complete(vsi);
7314 	if (err)
7315 		goto err_up_complete;
7316 
7317 	return 0;
7318 
7319 err_up_complete:
7320 	ice_down(vsi);
7321 err_set_qs:
7322 	ice_vsi_free_irq(vsi);
7323 err_setup_rx:
7324 	ice_vsi_free_rx_rings(vsi);
7325 err_setup_tx:
7326 	ice_vsi_free_tx_rings(vsi);
7327 
7328 	return err;
7329 }
7330 
7331 /**
7332  * ice_vsi_release_all - Delete all VSIs
7333  * @pf: PF from which all VSIs are being removed
7334  */
7335 static void ice_vsi_release_all(struct ice_pf *pf)
7336 {
7337 	int err, i;
7338 
7339 	if (!pf->vsi)
7340 		return;
7341 
7342 	ice_for_each_vsi(pf, i) {
7343 		if (!pf->vsi[i])
7344 			continue;
7345 
7346 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7347 			continue;
7348 
7349 		err = ice_vsi_release(pf->vsi[i]);
7350 		if (err)
7351 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7352 				i, err, pf->vsi[i]->vsi_num);
7353 	}
7354 }
7355 
7356 /**
7357  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7358  * @pf: pointer to the PF instance
7359  * @type: VSI type to rebuild
7360  *
7361  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7362  */
7363 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7364 {
7365 	struct device *dev = ice_pf_to_dev(pf);
7366 	int i, err;
7367 
7368 	ice_for_each_vsi(pf, i) {
7369 		struct ice_vsi *vsi = pf->vsi[i];
7370 
7371 		if (!vsi || vsi->type != type)
7372 			continue;
7373 
7374 		/* rebuild the VSI */
7375 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7376 		if (err) {
7377 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7378 				err, vsi->idx, ice_vsi_type_str(type));
7379 			return err;
7380 		}
7381 
7382 		/* replay filters for the VSI */
7383 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7384 		if (err) {
7385 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7386 				err, vsi->idx, ice_vsi_type_str(type));
7387 			return err;
7388 		}
7389 
7390 		/* Re-map HW VSI number, using VSI handle that has been
7391 		 * previously validated in ice_replay_vsi() call above
7392 		 */
7393 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7394 
7395 		/* enable the VSI */
7396 		err = ice_ena_vsi(vsi, false);
7397 		if (err) {
7398 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7399 				err, vsi->idx, ice_vsi_type_str(type));
7400 			return err;
7401 		}
7402 
7403 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7404 			 ice_vsi_type_str(type));
7405 	}
7406 
7407 	return 0;
7408 }
7409 
7410 /**
7411  * ice_update_pf_netdev_link - Update PF netdev link status
7412  * @pf: pointer to the PF instance
7413  */
7414 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7415 {
7416 	bool link_up;
7417 	int i;
7418 
7419 	ice_for_each_vsi(pf, i) {
7420 		struct ice_vsi *vsi = pf->vsi[i];
7421 
7422 		if (!vsi || vsi->type != ICE_VSI_PF)
7423 			return;
7424 
7425 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7426 		if (link_up) {
7427 			netif_carrier_on(pf->vsi[i]->netdev);
7428 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7429 		} else {
7430 			netif_carrier_off(pf->vsi[i]->netdev);
7431 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7432 		}
7433 	}
7434 }
7435 
7436 /**
7437  * ice_rebuild - rebuild after reset
7438  * @pf: PF to rebuild
7439  * @reset_type: type of reset
7440  *
7441  * Do not rebuild VF VSI in this flow because that is already handled via
7442  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7443  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7444  * to reset/rebuild all the VF VSI twice.
7445  */
7446 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7447 {
7448 	struct device *dev = ice_pf_to_dev(pf);
7449 	struct ice_hw *hw = &pf->hw;
7450 	bool dvm;
7451 	int err;
7452 
7453 	if (test_bit(ICE_DOWN, pf->state))
7454 		goto clear_recovery;
7455 
7456 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7457 
7458 #define ICE_EMP_RESET_SLEEP_MS 5000
7459 	if (reset_type == ICE_RESET_EMPR) {
7460 		/* If an EMP reset has occurred, any previously pending flash
7461 		 * update will have completed. We no longer know whether or
7462 		 * not the NVM update EMP reset is restricted.
7463 		 */
7464 		pf->fw_emp_reset_disabled = false;
7465 
7466 		msleep(ICE_EMP_RESET_SLEEP_MS);
7467 	}
7468 
7469 	err = ice_init_all_ctrlq(hw);
7470 	if (err) {
7471 		dev_err(dev, "control queues init failed %d\n", err);
7472 		goto err_init_ctrlq;
7473 	}
7474 
7475 	/* if DDP was previously loaded successfully */
7476 	if (!ice_is_safe_mode(pf)) {
7477 		/* reload the SW DB of filter tables */
7478 		if (reset_type == ICE_RESET_PFR)
7479 			ice_fill_blk_tbls(hw);
7480 		else
7481 			/* Reload DDP Package after CORER/GLOBR reset */
7482 			ice_load_pkg(NULL, pf);
7483 	}
7484 
7485 	err = ice_clear_pf_cfg(hw);
7486 	if (err) {
7487 		dev_err(dev, "clear PF configuration failed %d\n", err);
7488 		goto err_init_ctrlq;
7489 	}
7490 
7491 	ice_clear_pxe_mode(hw);
7492 
7493 	err = ice_init_nvm(hw);
7494 	if (err) {
7495 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7496 		goto err_init_ctrlq;
7497 	}
7498 
7499 	err = ice_get_caps(hw);
7500 	if (err) {
7501 		dev_err(dev, "ice_get_caps failed %d\n", err);
7502 		goto err_init_ctrlq;
7503 	}
7504 
7505 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7506 	if (err) {
7507 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7508 		goto err_init_ctrlq;
7509 	}
7510 
7511 	dvm = ice_is_dvm_ena(hw);
7512 
7513 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7514 	if (err)
7515 		goto err_init_ctrlq;
7516 
7517 	err = ice_sched_init_port(hw->port_info);
7518 	if (err)
7519 		goto err_sched_init_port;
7520 
7521 	/* start misc vector */
7522 	err = ice_req_irq_msix_misc(pf);
7523 	if (err) {
7524 		dev_err(dev, "misc vector setup failed: %d\n", err);
7525 		goto err_sched_init_port;
7526 	}
7527 
7528 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7529 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7530 		if (!rd32(hw, PFQF_FD_SIZE)) {
7531 			u16 unused, guar, b_effort;
7532 
7533 			guar = hw->func_caps.fd_fltr_guar;
7534 			b_effort = hw->func_caps.fd_fltr_best_effort;
7535 
7536 			/* force guaranteed filter pool for PF */
7537 			ice_alloc_fd_guar_item(hw, &unused, guar);
7538 			/* force shared filter pool for PF */
7539 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7540 		}
7541 	}
7542 
7543 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7544 		ice_dcb_rebuild(pf);
7545 
7546 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7547 	 * the VSI rebuild. If not, this causes the PTP link status events to
7548 	 * fail.
7549 	 */
7550 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7551 		ice_ptp_reset(pf);
7552 
7553 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7554 		ice_gnss_init(pf);
7555 
7556 	/* rebuild PF VSI */
7557 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7558 	if (err) {
7559 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7560 		goto err_vsi_rebuild;
7561 	}
7562 
7563 	err = ice_eswitch_rebuild(pf);
7564 	if (err) {
7565 		dev_err(dev, "Switchdev rebuild failed: %d\n", err);
7566 		goto err_vsi_rebuild;
7567 	}
7568 
7569 	if (reset_type == ICE_RESET_PFR) {
7570 		err = ice_rebuild_channels(pf);
7571 		if (err) {
7572 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7573 				err);
7574 			goto err_vsi_rebuild;
7575 		}
7576 	}
7577 
7578 	/* If Flow Director is active */
7579 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7580 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7581 		if (err) {
7582 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7583 			goto err_vsi_rebuild;
7584 		}
7585 
7586 		/* replay HW Flow Director recipes */
7587 		if (hw->fdir_prof)
7588 			ice_fdir_replay_flows(hw);
7589 
7590 		/* replay Flow Director filters */
7591 		ice_fdir_replay_fltrs(pf);
7592 
7593 		ice_rebuild_arfs(pf);
7594 	}
7595 
7596 	ice_update_pf_netdev_link(pf);
7597 
7598 	/* tell the firmware we are up */
7599 	err = ice_send_version(pf);
7600 	if (err) {
7601 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7602 			err);
7603 		goto err_vsi_rebuild;
7604 	}
7605 
7606 	ice_replay_post(hw);
7607 
7608 	/* if we get here, reset flow is successful */
7609 	clear_bit(ICE_RESET_FAILED, pf->state);
7610 
7611 	ice_plug_aux_dev(pf);
7612 	if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7613 		ice_lag_rebuild(pf);
7614 
7615 	/* Restore timestamp mode settings after VSI rebuild */
7616 	ice_ptp_restore_timestamp_mode(pf);
7617 	return;
7618 
7619 err_vsi_rebuild:
7620 err_sched_init_port:
7621 	ice_sched_cleanup_all(hw);
7622 err_init_ctrlq:
7623 	ice_shutdown_all_ctrlq(hw);
7624 	set_bit(ICE_RESET_FAILED, pf->state);
7625 clear_recovery:
7626 	/* set this bit in PF state to control service task scheduling */
7627 	set_bit(ICE_NEEDS_RESTART, pf->state);
7628 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7629 }
7630 
7631 /**
7632  * ice_change_mtu - NDO callback to change the MTU
7633  * @netdev: network interface device structure
7634  * @new_mtu: new value for maximum frame size
7635  *
7636  * Returns 0 on success, negative on failure
7637  */
7638 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7639 {
7640 	struct ice_netdev_priv *np = netdev_priv(netdev);
7641 	struct ice_vsi *vsi = np->vsi;
7642 	struct ice_pf *pf = vsi->back;
7643 	struct bpf_prog *prog;
7644 	u8 count = 0;
7645 	int err = 0;
7646 
7647 	if (new_mtu == (int)netdev->mtu) {
7648 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7649 		return 0;
7650 	}
7651 
7652 	prog = vsi->xdp_prog;
7653 	if (prog && !prog->aux->xdp_has_frags) {
7654 		int frame_size = ice_max_xdp_frame_size(vsi);
7655 
7656 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7657 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7658 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7659 			return -EINVAL;
7660 		}
7661 	} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7662 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7663 			netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7664 				   ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7665 			return -EINVAL;
7666 		}
7667 	}
7668 
7669 	/* if a reset is in progress, wait for some time for it to complete */
7670 	do {
7671 		if (ice_is_reset_in_progress(pf->state)) {
7672 			count++;
7673 			usleep_range(1000, 2000);
7674 		} else {
7675 			break;
7676 		}
7677 
7678 	} while (count < 100);
7679 
7680 	if (count == 100) {
7681 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7682 		return -EBUSY;
7683 	}
7684 
7685 	netdev->mtu = (unsigned int)new_mtu;
7686 	err = ice_down_up(vsi);
7687 	if (err)
7688 		return err;
7689 
7690 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7691 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7692 
7693 	return err;
7694 }
7695 
7696 /**
7697  * ice_eth_ioctl - Access the hwtstamp interface
7698  * @netdev: network interface device structure
7699  * @ifr: interface request data
7700  * @cmd: ioctl command
7701  */
7702 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7703 {
7704 	struct ice_netdev_priv *np = netdev_priv(netdev);
7705 	struct ice_pf *pf = np->vsi->back;
7706 
7707 	switch (cmd) {
7708 	case SIOCGHWTSTAMP:
7709 		return ice_ptp_get_ts_config(pf, ifr);
7710 	case SIOCSHWTSTAMP:
7711 		return ice_ptp_set_ts_config(pf, ifr);
7712 	default:
7713 		return -EOPNOTSUPP;
7714 	}
7715 }
7716 
7717 /**
7718  * ice_aq_str - convert AQ err code to a string
7719  * @aq_err: the AQ error code to convert
7720  */
7721 const char *ice_aq_str(enum ice_aq_err aq_err)
7722 {
7723 	switch (aq_err) {
7724 	case ICE_AQ_RC_OK:
7725 		return "OK";
7726 	case ICE_AQ_RC_EPERM:
7727 		return "ICE_AQ_RC_EPERM";
7728 	case ICE_AQ_RC_ENOENT:
7729 		return "ICE_AQ_RC_ENOENT";
7730 	case ICE_AQ_RC_ENOMEM:
7731 		return "ICE_AQ_RC_ENOMEM";
7732 	case ICE_AQ_RC_EBUSY:
7733 		return "ICE_AQ_RC_EBUSY";
7734 	case ICE_AQ_RC_EEXIST:
7735 		return "ICE_AQ_RC_EEXIST";
7736 	case ICE_AQ_RC_EINVAL:
7737 		return "ICE_AQ_RC_EINVAL";
7738 	case ICE_AQ_RC_ENOSPC:
7739 		return "ICE_AQ_RC_ENOSPC";
7740 	case ICE_AQ_RC_ENOSYS:
7741 		return "ICE_AQ_RC_ENOSYS";
7742 	case ICE_AQ_RC_EMODE:
7743 		return "ICE_AQ_RC_EMODE";
7744 	case ICE_AQ_RC_ENOSEC:
7745 		return "ICE_AQ_RC_ENOSEC";
7746 	case ICE_AQ_RC_EBADSIG:
7747 		return "ICE_AQ_RC_EBADSIG";
7748 	case ICE_AQ_RC_ESVN:
7749 		return "ICE_AQ_RC_ESVN";
7750 	case ICE_AQ_RC_EBADMAN:
7751 		return "ICE_AQ_RC_EBADMAN";
7752 	case ICE_AQ_RC_EBADBUF:
7753 		return "ICE_AQ_RC_EBADBUF";
7754 	}
7755 
7756 	return "ICE_AQ_RC_UNKNOWN";
7757 }
7758 
7759 /**
7760  * ice_set_rss_lut - Set RSS LUT
7761  * @vsi: Pointer to VSI structure
7762  * @lut: Lookup table
7763  * @lut_size: Lookup table size
7764  *
7765  * Returns 0 on success, negative on failure
7766  */
7767 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7768 {
7769 	struct ice_aq_get_set_rss_lut_params params = {};
7770 	struct ice_hw *hw = &vsi->back->hw;
7771 	int status;
7772 
7773 	if (!lut)
7774 		return -EINVAL;
7775 
7776 	params.vsi_handle = vsi->idx;
7777 	params.lut_size = lut_size;
7778 	params.lut_type = vsi->rss_lut_type;
7779 	params.lut = lut;
7780 
7781 	status = ice_aq_set_rss_lut(hw, &params);
7782 	if (status)
7783 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7784 			status, ice_aq_str(hw->adminq.sq_last_status));
7785 
7786 	return status;
7787 }
7788 
7789 /**
7790  * ice_set_rss_key - Set RSS key
7791  * @vsi: Pointer to the VSI structure
7792  * @seed: RSS hash seed
7793  *
7794  * Returns 0 on success, negative on failure
7795  */
7796 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7797 {
7798 	struct ice_hw *hw = &vsi->back->hw;
7799 	int status;
7800 
7801 	if (!seed)
7802 		return -EINVAL;
7803 
7804 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7805 	if (status)
7806 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7807 			status, ice_aq_str(hw->adminq.sq_last_status));
7808 
7809 	return status;
7810 }
7811 
7812 /**
7813  * ice_get_rss_lut - Get RSS LUT
7814  * @vsi: Pointer to VSI structure
7815  * @lut: Buffer to store the lookup table entries
7816  * @lut_size: Size of buffer to store the lookup table entries
7817  *
7818  * Returns 0 on success, negative on failure
7819  */
7820 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7821 {
7822 	struct ice_aq_get_set_rss_lut_params params = {};
7823 	struct ice_hw *hw = &vsi->back->hw;
7824 	int status;
7825 
7826 	if (!lut)
7827 		return -EINVAL;
7828 
7829 	params.vsi_handle = vsi->idx;
7830 	params.lut_size = lut_size;
7831 	params.lut_type = vsi->rss_lut_type;
7832 	params.lut = lut;
7833 
7834 	status = ice_aq_get_rss_lut(hw, &params);
7835 	if (status)
7836 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7837 			status, ice_aq_str(hw->adminq.sq_last_status));
7838 
7839 	return status;
7840 }
7841 
7842 /**
7843  * ice_get_rss_key - Get RSS key
7844  * @vsi: Pointer to VSI structure
7845  * @seed: Buffer to store the key in
7846  *
7847  * Returns 0 on success, negative on failure
7848  */
7849 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7850 {
7851 	struct ice_hw *hw = &vsi->back->hw;
7852 	int status;
7853 
7854 	if (!seed)
7855 		return -EINVAL;
7856 
7857 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7858 	if (status)
7859 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7860 			status, ice_aq_str(hw->adminq.sq_last_status));
7861 
7862 	return status;
7863 }
7864 
7865 /**
7866  * ice_set_rss_hfunc - Set RSS HASH function
7867  * @vsi: Pointer to VSI structure
7868  * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
7869  *
7870  * Returns 0 on success, negative on failure
7871  */
7872 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
7873 {
7874 	struct ice_hw *hw = &vsi->back->hw;
7875 	struct ice_vsi_ctx *ctx;
7876 	bool symm;
7877 	int err;
7878 
7879 	if (hfunc == vsi->rss_hfunc)
7880 		return 0;
7881 
7882 	if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
7883 	    hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
7884 		return -EOPNOTSUPP;
7885 
7886 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7887 	if (!ctx)
7888 		return -ENOMEM;
7889 
7890 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
7891 	ctx->info.q_opt_rss = vsi->info.q_opt_rss;
7892 	ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
7893 	ctx->info.q_opt_rss |=
7894 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
7895 	ctx->info.q_opt_tc = vsi->info.q_opt_tc;
7896 	ctx->info.q_opt_flags = vsi->info.q_opt_rss;
7897 
7898 	err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
7899 	if (err) {
7900 		dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
7901 			vsi->vsi_num, err);
7902 	} else {
7903 		vsi->info.q_opt_rss = ctx->info.q_opt_rss;
7904 		vsi->rss_hfunc = hfunc;
7905 		netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
7906 			    hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
7907 			    "Symmetric " : "");
7908 	}
7909 	kfree(ctx);
7910 	if (err)
7911 		return err;
7912 
7913 	/* Fix the symmetry setting for all existing RSS configurations */
7914 	symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
7915 	return ice_set_rss_cfg_symm(hw, vsi, symm);
7916 }
7917 
7918 /**
7919  * ice_bridge_getlink - Get the hardware bridge mode
7920  * @skb: skb buff
7921  * @pid: process ID
7922  * @seq: RTNL message seq
7923  * @dev: the netdev being configured
7924  * @filter_mask: filter mask passed in
7925  * @nlflags: netlink flags passed in
7926  *
7927  * Return the bridge mode (VEB/VEPA)
7928  */
7929 static int
7930 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7931 		   struct net_device *dev, u32 filter_mask, int nlflags)
7932 {
7933 	struct ice_netdev_priv *np = netdev_priv(dev);
7934 	struct ice_vsi *vsi = np->vsi;
7935 	struct ice_pf *pf = vsi->back;
7936 	u16 bmode;
7937 
7938 	bmode = pf->first_sw->bridge_mode;
7939 
7940 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7941 				       filter_mask, NULL);
7942 }
7943 
7944 /**
7945  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7946  * @vsi: Pointer to VSI structure
7947  * @bmode: Hardware bridge mode (VEB/VEPA)
7948  *
7949  * Returns 0 on success, negative on failure
7950  */
7951 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7952 {
7953 	struct ice_aqc_vsi_props *vsi_props;
7954 	struct ice_hw *hw = &vsi->back->hw;
7955 	struct ice_vsi_ctx *ctxt;
7956 	int ret;
7957 
7958 	vsi_props = &vsi->info;
7959 
7960 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7961 	if (!ctxt)
7962 		return -ENOMEM;
7963 
7964 	ctxt->info = vsi->info;
7965 
7966 	if (bmode == BRIDGE_MODE_VEB)
7967 		/* change from VEPA to VEB mode */
7968 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7969 	else
7970 		/* change from VEB to VEPA mode */
7971 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7972 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7973 
7974 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7975 	if (ret) {
7976 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7977 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7978 		goto out;
7979 	}
7980 	/* Update sw flags for book keeping */
7981 	vsi_props->sw_flags = ctxt->info.sw_flags;
7982 
7983 out:
7984 	kfree(ctxt);
7985 	return ret;
7986 }
7987 
7988 /**
7989  * ice_bridge_setlink - Set the hardware bridge mode
7990  * @dev: the netdev being configured
7991  * @nlh: RTNL message
7992  * @flags: bridge setlink flags
7993  * @extack: netlink extended ack
7994  *
7995  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7996  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7997  * not already set for all VSIs connected to this switch. And also update the
7998  * unicast switch filter rules for the corresponding switch of the netdev.
7999  */
8000 static int
8001 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8002 		   u16 __always_unused flags,
8003 		   struct netlink_ext_ack __always_unused *extack)
8004 {
8005 	struct ice_netdev_priv *np = netdev_priv(dev);
8006 	struct ice_pf *pf = np->vsi->back;
8007 	struct nlattr *attr, *br_spec;
8008 	struct ice_hw *hw = &pf->hw;
8009 	struct ice_sw *pf_sw;
8010 	int rem, v, err = 0;
8011 
8012 	pf_sw = pf->first_sw;
8013 	/* find the attribute in the netlink message */
8014 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8015 
8016 	nla_for_each_nested(attr, br_spec, rem) {
8017 		__u16 mode;
8018 
8019 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
8020 			continue;
8021 		mode = nla_get_u16(attr);
8022 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8023 			return -EINVAL;
8024 		/* Continue  if bridge mode is not being flipped */
8025 		if (mode == pf_sw->bridge_mode)
8026 			continue;
8027 		/* Iterates through the PF VSI list and update the loopback
8028 		 * mode of the VSI
8029 		 */
8030 		ice_for_each_vsi(pf, v) {
8031 			if (!pf->vsi[v])
8032 				continue;
8033 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8034 			if (err)
8035 				return err;
8036 		}
8037 
8038 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8039 		/* Update the unicast switch filter rules for the corresponding
8040 		 * switch of the netdev
8041 		 */
8042 		err = ice_update_sw_rule_bridge_mode(hw);
8043 		if (err) {
8044 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8045 				   mode, err,
8046 				   ice_aq_str(hw->adminq.sq_last_status));
8047 			/* revert hw->evb_veb */
8048 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8049 			return err;
8050 		}
8051 
8052 		pf_sw->bridge_mode = mode;
8053 	}
8054 
8055 	return 0;
8056 }
8057 
8058 /**
8059  * ice_tx_timeout - Respond to a Tx Hang
8060  * @netdev: network interface device structure
8061  * @txqueue: Tx queue
8062  */
8063 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8064 {
8065 	struct ice_netdev_priv *np = netdev_priv(netdev);
8066 	struct ice_tx_ring *tx_ring = NULL;
8067 	struct ice_vsi *vsi = np->vsi;
8068 	struct ice_pf *pf = vsi->back;
8069 	u32 i;
8070 
8071 	pf->tx_timeout_count++;
8072 
8073 	/* Check if PFC is enabled for the TC to which the queue belongs
8074 	 * to. If yes then Tx timeout is not caused by a hung queue, no
8075 	 * need to reset and rebuild
8076 	 */
8077 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8078 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8079 			 txqueue);
8080 		return;
8081 	}
8082 
8083 	/* now that we have an index, find the tx_ring struct */
8084 	ice_for_each_txq(vsi, i)
8085 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8086 			if (txqueue == vsi->tx_rings[i]->q_index) {
8087 				tx_ring = vsi->tx_rings[i];
8088 				break;
8089 			}
8090 
8091 	/* Reset recovery level if enough time has elapsed after last timeout.
8092 	 * Also ensure no new reset action happens before next timeout period.
8093 	 */
8094 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8095 		pf->tx_timeout_recovery_level = 1;
8096 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8097 				       netdev->watchdog_timeo)))
8098 		return;
8099 
8100 	if (tx_ring) {
8101 		struct ice_hw *hw = &pf->hw;
8102 		u32 head, val = 0;
8103 
8104 		head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8105 				 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8106 		/* Read interrupt register */
8107 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8108 
8109 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8110 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8111 			    head, tx_ring->next_to_use, val);
8112 	}
8113 
8114 	pf->tx_timeout_last_recovery = jiffies;
8115 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8116 		    pf->tx_timeout_recovery_level, txqueue);
8117 
8118 	switch (pf->tx_timeout_recovery_level) {
8119 	case 1:
8120 		set_bit(ICE_PFR_REQ, pf->state);
8121 		break;
8122 	case 2:
8123 		set_bit(ICE_CORER_REQ, pf->state);
8124 		break;
8125 	case 3:
8126 		set_bit(ICE_GLOBR_REQ, pf->state);
8127 		break;
8128 	default:
8129 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8130 		set_bit(ICE_DOWN, pf->state);
8131 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8132 		set_bit(ICE_SERVICE_DIS, pf->state);
8133 		break;
8134 	}
8135 
8136 	ice_service_task_schedule(pf);
8137 	pf->tx_timeout_recovery_level++;
8138 }
8139 
8140 /**
8141  * ice_setup_tc_cls_flower - flower classifier offloads
8142  * @np: net device to configure
8143  * @filter_dev: device on which filter is added
8144  * @cls_flower: offload data
8145  */
8146 static int
8147 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8148 			struct net_device *filter_dev,
8149 			struct flow_cls_offload *cls_flower)
8150 {
8151 	struct ice_vsi *vsi = np->vsi;
8152 
8153 	if (cls_flower->common.chain_index)
8154 		return -EOPNOTSUPP;
8155 
8156 	switch (cls_flower->command) {
8157 	case FLOW_CLS_REPLACE:
8158 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8159 	case FLOW_CLS_DESTROY:
8160 		return ice_del_cls_flower(vsi, cls_flower);
8161 	default:
8162 		return -EINVAL;
8163 	}
8164 }
8165 
8166 /**
8167  * ice_setup_tc_block_cb - callback handler registered for TC block
8168  * @type: TC SETUP type
8169  * @type_data: TC flower offload data that contains user input
8170  * @cb_priv: netdev private data
8171  */
8172 static int
8173 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8174 {
8175 	struct ice_netdev_priv *np = cb_priv;
8176 
8177 	switch (type) {
8178 	case TC_SETUP_CLSFLOWER:
8179 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8180 					       type_data);
8181 	default:
8182 		return -EOPNOTSUPP;
8183 	}
8184 }
8185 
8186 /**
8187  * ice_validate_mqprio_qopt - Validate TCF input parameters
8188  * @vsi: Pointer to VSI
8189  * @mqprio_qopt: input parameters for mqprio queue configuration
8190  *
8191  * This function validates MQPRIO params, such as qcount (power of 2 wherever
8192  * needed), and make sure user doesn't specify qcount and BW rate limit
8193  * for TCs, which are more than "num_tc"
8194  */
8195 static int
8196 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8197 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
8198 {
8199 	int non_power_of_2_qcount = 0;
8200 	struct ice_pf *pf = vsi->back;
8201 	int max_rss_q_cnt = 0;
8202 	u64 sum_min_rate = 0;
8203 	struct device *dev;
8204 	int i, speed;
8205 	u8 num_tc;
8206 
8207 	if (vsi->type != ICE_VSI_PF)
8208 		return -EINVAL;
8209 
8210 	if (mqprio_qopt->qopt.offset[0] != 0 ||
8211 	    mqprio_qopt->qopt.num_tc < 1 ||
8212 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8213 		return -EINVAL;
8214 
8215 	dev = ice_pf_to_dev(pf);
8216 	vsi->ch_rss_size = 0;
8217 	num_tc = mqprio_qopt->qopt.num_tc;
8218 	speed = ice_get_link_speed_kbps(vsi);
8219 
8220 	for (i = 0; num_tc; i++) {
8221 		int qcount = mqprio_qopt->qopt.count[i];
8222 		u64 max_rate, min_rate, rem;
8223 
8224 		if (!qcount)
8225 			return -EINVAL;
8226 
8227 		if (is_power_of_2(qcount)) {
8228 			if (non_power_of_2_qcount &&
8229 			    qcount > non_power_of_2_qcount) {
8230 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8231 					qcount, non_power_of_2_qcount);
8232 				return -EINVAL;
8233 			}
8234 			if (qcount > max_rss_q_cnt)
8235 				max_rss_q_cnt = qcount;
8236 		} else {
8237 			if (non_power_of_2_qcount &&
8238 			    qcount != non_power_of_2_qcount) {
8239 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8240 					qcount, non_power_of_2_qcount);
8241 				return -EINVAL;
8242 			}
8243 			if (qcount < max_rss_q_cnt) {
8244 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8245 					qcount, max_rss_q_cnt);
8246 				return -EINVAL;
8247 			}
8248 			max_rss_q_cnt = qcount;
8249 			non_power_of_2_qcount = qcount;
8250 		}
8251 
8252 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8253 		 * converts the bandwidth rate limit into Bytes/s when
8254 		 * passing it down to the driver. So convert input bandwidth
8255 		 * from Bytes/s to Kbps
8256 		 */
8257 		max_rate = mqprio_qopt->max_rate[i];
8258 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8259 
8260 		/* min_rate is minimum guaranteed rate and it can't be zero */
8261 		min_rate = mqprio_qopt->min_rate[i];
8262 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8263 		sum_min_rate += min_rate;
8264 
8265 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8266 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8267 				min_rate, ICE_MIN_BW_LIMIT);
8268 			return -EINVAL;
8269 		}
8270 
8271 		if (max_rate && max_rate > speed) {
8272 			dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8273 				i, max_rate, speed);
8274 			return -EINVAL;
8275 		}
8276 
8277 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8278 		if (rem) {
8279 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8280 				i, ICE_MIN_BW_LIMIT);
8281 			return -EINVAL;
8282 		}
8283 
8284 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8285 		if (rem) {
8286 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8287 				i, ICE_MIN_BW_LIMIT);
8288 			return -EINVAL;
8289 		}
8290 
8291 		/* min_rate can't be more than max_rate, except when max_rate
8292 		 * is zero (implies max_rate sought is max line rate). In such
8293 		 * a case min_rate can be more than max.
8294 		 */
8295 		if (max_rate && min_rate > max_rate) {
8296 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8297 				min_rate, max_rate);
8298 			return -EINVAL;
8299 		}
8300 
8301 		if (i >= mqprio_qopt->qopt.num_tc - 1)
8302 			break;
8303 		if (mqprio_qopt->qopt.offset[i + 1] !=
8304 		    (mqprio_qopt->qopt.offset[i] + qcount))
8305 			return -EINVAL;
8306 	}
8307 	if (vsi->num_rxq <
8308 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8309 		return -EINVAL;
8310 	if (vsi->num_txq <
8311 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8312 		return -EINVAL;
8313 
8314 	if (sum_min_rate && sum_min_rate > (u64)speed) {
8315 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8316 			sum_min_rate, speed);
8317 		return -EINVAL;
8318 	}
8319 
8320 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8321 	vsi->ch_rss_size = max_rss_q_cnt;
8322 
8323 	return 0;
8324 }
8325 
8326 /**
8327  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8328  * @pf: ptr to PF device
8329  * @vsi: ptr to VSI
8330  */
8331 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8332 {
8333 	struct device *dev = ice_pf_to_dev(pf);
8334 	bool added = false;
8335 	struct ice_hw *hw;
8336 	int flow;
8337 
8338 	if (!(vsi->num_gfltr || vsi->num_bfltr))
8339 		return -EINVAL;
8340 
8341 	hw = &pf->hw;
8342 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8343 		struct ice_fd_hw_prof *prof;
8344 		int tun, status;
8345 		u64 entry_h;
8346 
8347 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8348 		      hw->fdir_prof[flow]->cnt))
8349 			continue;
8350 
8351 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8352 			enum ice_flow_priority prio;
8353 
8354 			/* add this VSI to FDir profile for this flow */
8355 			prio = ICE_FLOW_PRIO_NORMAL;
8356 			prof = hw->fdir_prof[flow];
8357 			status = ice_flow_add_entry(hw, ICE_BLK_FD,
8358 						    prof->prof_id[tun],
8359 						    prof->vsi_h[0], vsi->idx,
8360 						    prio, prof->fdir_seg[tun],
8361 						    &entry_h);
8362 			if (status) {
8363 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8364 					vsi->idx, flow);
8365 				continue;
8366 			}
8367 
8368 			prof->entry_h[prof->cnt][tun] = entry_h;
8369 		}
8370 
8371 		/* store VSI for filter replay and delete */
8372 		prof->vsi_h[prof->cnt] = vsi->idx;
8373 		prof->cnt++;
8374 
8375 		added = true;
8376 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8377 			flow);
8378 	}
8379 
8380 	if (!added)
8381 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8382 
8383 	return 0;
8384 }
8385 
8386 /**
8387  * ice_add_channel - add a channel by adding VSI
8388  * @pf: ptr to PF device
8389  * @sw_id: underlying HW switching element ID
8390  * @ch: ptr to channel structure
8391  *
8392  * Add a channel (VSI) using add_vsi and queue_map
8393  */
8394 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8395 {
8396 	struct device *dev = ice_pf_to_dev(pf);
8397 	struct ice_vsi *vsi;
8398 
8399 	if (ch->type != ICE_VSI_CHNL) {
8400 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8401 		return -EINVAL;
8402 	}
8403 
8404 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8405 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8406 		dev_err(dev, "create chnl VSI failure\n");
8407 		return -EINVAL;
8408 	}
8409 
8410 	ice_add_vsi_to_fdir(pf, vsi);
8411 
8412 	ch->sw_id = sw_id;
8413 	ch->vsi_num = vsi->vsi_num;
8414 	ch->info.mapping_flags = vsi->info.mapping_flags;
8415 	ch->ch_vsi = vsi;
8416 	/* set the back pointer of channel for newly created VSI */
8417 	vsi->ch = ch;
8418 
8419 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8420 	       sizeof(vsi->info.q_mapping));
8421 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8422 	       sizeof(vsi->info.tc_mapping));
8423 
8424 	return 0;
8425 }
8426 
8427 /**
8428  * ice_chnl_cfg_res
8429  * @vsi: the VSI being setup
8430  * @ch: ptr to channel structure
8431  *
8432  * Configure channel specific resources such as rings, vector.
8433  */
8434 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8435 {
8436 	int i;
8437 
8438 	for (i = 0; i < ch->num_txq; i++) {
8439 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8440 		struct ice_ring_container *rc;
8441 		struct ice_tx_ring *tx_ring;
8442 		struct ice_rx_ring *rx_ring;
8443 
8444 		tx_ring = vsi->tx_rings[ch->base_q + i];
8445 		rx_ring = vsi->rx_rings[ch->base_q + i];
8446 		if (!tx_ring || !rx_ring)
8447 			continue;
8448 
8449 		/* setup ring being channel enabled */
8450 		tx_ring->ch = ch;
8451 		rx_ring->ch = ch;
8452 
8453 		/* following code block sets up vector specific attributes */
8454 		tx_q_vector = tx_ring->q_vector;
8455 		rx_q_vector = rx_ring->q_vector;
8456 		if (!tx_q_vector && !rx_q_vector)
8457 			continue;
8458 
8459 		if (tx_q_vector) {
8460 			tx_q_vector->ch = ch;
8461 			/* setup Tx and Rx ITR setting if DIM is off */
8462 			rc = &tx_q_vector->tx;
8463 			if (!ITR_IS_DYNAMIC(rc))
8464 				ice_write_itr(rc, rc->itr_setting);
8465 		}
8466 		if (rx_q_vector) {
8467 			rx_q_vector->ch = ch;
8468 			/* setup Tx and Rx ITR setting if DIM is off */
8469 			rc = &rx_q_vector->rx;
8470 			if (!ITR_IS_DYNAMIC(rc))
8471 				ice_write_itr(rc, rc->itr_setting);
8472 		}
8473 	}
8474 
8475 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8476 	 * GLINT_ITR register would have written to perform in-context
8477 	 * update, hence perform flush
8478 	 */
8479 	if (ch->num_txq || ch->num_rxq)
8480 		ice_flush(&vsi->back->hw);
8481 }
8482 
8483 /**
8484  * ice_cfg_chnl_all_res - configure channel resources
8485  * @vsi: pte to main_vsi
8486  * @ch: ptr to channel structure
8487  *
8488  * This function configures channel specific resources such as flow-director
8489  * counter index, and other resources such as queues, vectors, ITR settings
8490  */
8491 static void
8492 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8493 {
8494 	/* configure channel (aka ADQ) resources such as queues, vectors,
8495 	 * ITR settings for channel specific vectors and anything else
8496 	 */
8497 	ice_chnl_cfg_res(vsi, ch);
8498 }
8499 
8500 /**
8501  * ice_setup_hw_channel - setup new channel
8502  * @pf: ptr to PF device
8503  * @vsi: the VSI being setup
8504  * @ch: ptr to channel structure
8505  * @sw_id: underlying HW switching element ID
8506  * @type: type of channel to be created (VMDq2/VF)
8507  *
8508  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8509  * and configures Tx rings accordingly
8510  */
8511 static int
8512 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8513 		     struct ice_channel *ch, u16 sw_id, u8 type)
8514 {
8515 	struct device *dev = ice_pf_to_dev(pf);
8516 	int ret;
8517 
8518 	ch->base_q = vsi->next_base_q;
8519 	ch->type = type;
8520 
8521 	ret = ice_add_channel(pf, sw_id, ch);
8522 	if (ret) {
8523 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8524 		return ret;
8525 	}
8526 
8527 	/* configure/setup ADQ specific resources */
8528 	ice_cfg_chnl_all_res(vsi, ch);
8529 
8530 	/* make sure to update the next_base_q so that subsequent channel's
8531 	 * (aka ADQ) VSI queue map is correct
8532 	 */
8533 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8534 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8535 		ch->num_rxq);
8536 
8537 	return 0;
8538 }
8539 
8540 /**
8541  * ice_setup_channel - setup new channel using uplink element
8542  * @pf: ptr to PF device
8543  * @vsi: the VSI being setup
8544  * @ch: ptr to channel structure
8545  *
8546  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8547  * and uplink switching element
8548  */
8549 static bool
8550 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8551 		  struct ice_channel *ch)
8552 {
8553 	struct device *dev = ice_pf_to_dev(pf);
8554 	u16 sw_id;
8555 	int ret;
8556 
8557 	if (vsi->type != ICE_VSI_PF) {
8558 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8559 		return false;
8560 	}
8561 
8562 	sw_id = pf->first_sw->sw_id;
8563 
8564 	/* create channel (VSI) */
8565 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8566 	if (ret) {
8567 		dev_err(dev, "failed to setup hw_channel\n");
8568 		return false;
8569 	}
8570 	dev_dbg(dev, "successfully created channel()\n");
8571 
8572 	return ch->ch_vsi ? true : false;
8573 }
8574 
8575 /**
8576  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8577  * @vsi: VSI to be configured
8578  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8579  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8580  */
8581 static int
8582 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8583 {
8584 	int err;
8585 
8586 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8587 	if (err)
8588 		return err;
8589 
8590 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8591 }
8592 
8593 /**
8594  * ice_create_q_channel - function to create channel
8595  * @vsi: VSI to be configured
8596  * @ch: ptr to channel (it contains channel specific params)
8597  *
8598  * This function creates channel (VSI) using num_queues specified by user,
8599  * reconfigs RSS if needed.
8600  */
8601 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8602 {
8603 	struct ice_pf *pf = vsi->back;
8604 	struct device *dev;
8605 
8606 	if (!ch)
8607 		return -EINVAL;
8608 
8609 	dev = ice_pf_to_dev(pf);
8610 	if (!ch->num_txq || !ch->num_rxq) {
8611 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8612 		return -EINVAL;
8613 	}
8614 
8615 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8616 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8617 			vsi->cnt_q_avail, ch->num_txq);
8618 		return -EINVAL;
8619 	}
8620 
8621 	if (!ice_setup_channel(pf, vsi, ch)) {
8622 		dev_info(dev, "Failed to setup channel\n");
8623 		return -EINVAL;
8624 	}
8625 	/* configure BW rate limit */
8626 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8627 		int ret;
8628 
8629 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8630 				       ch->min_tx_rate);
8631 		if (ret)
8632 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8633 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8634 		else
8635 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8636 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8637 	}
8638 
8639 	vsi->cnt_q_avail -= ch->num_txq;
8640 
8641 	return 0;
8642 }
8643 
8644 /**
8645  * ice_rem_all_chnl_fltrs - removes all channel filters
8646  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8647  *
8648  * Remove all advanced switch filters only if they are channel specific
8649  * tc-flower based filter
8650  */
8651 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8652 {
8653 	struct ice_tc_flower_fltr *fltr;
8654 	struct hlist_node *node;
8655 
8656 	/* to remove all channel filters, iterate an ordered list of filters */
8657 	hlist_for_each_entry_safe(fltr, node,
8658 				  &pf->tc_flower_fltr_list,
8659 				  tc_flower_node) {
8660 		struct ice_rule_query_data rule;
8661 		int status;
8662 
8663 		/* for now process only channel specific filters */
8664 		if (!ice_is_chnl_fltr(fltr))
8665 			continue;
8666 
8667 		rule.rid = fltr->rid;
8668 		rule.rule_id = fltr->rule_id;
8669 		rule.vsi_handle = fltr->dest_vsi_handle;
8670 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8671 		if (status) {
8672 			if (status == -ENOENT)
8673 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8674 					rule.rule_id);
8675 			else
8676 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8677 					status);
8678 		} else if (fltr->dest_vsi) {
8679 			/* update advanced switch filter count */
8680 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8681 				u32 flags = fltr->flags;
8682 
8683 				fltr->dest_vsi->num_chnl_fltr--;
8684 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8685 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8686 					pf->num_dmac_chnl_fltrs--;
8687 			}
8688 		}
8689 
8690 		hlist_del(&fltr->tc_flower_node);
8691 		kfree(fltr);
8692 	}
8693 }
8694 
8695 /**
8696  * ice_remove_q_channels - Remove queue channels for the TCs
8697  * @vsi: VSI to be configured
8698  * @rem_fltr: delete advanced switch filter or not
8699  *
8700  * Remove queue channels for the TCs
8701  */
8702 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8703 {
8704 	struct ice_channel *ch, *ch_tmp;
8705 	struct ice_pf *pf = vsi->back;
8706 	int i;
8707 
8708 	/* remove all tc-flower based filter if they are channel filters only */
8709 	if (rem_fltr)
8710 		ice_rem_all_chnl_fltrs(pf);
8711 
8712 	/* remove ntuple filters since queue configuration is being changed */
8713 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8714 		struct ice_hw *hw = &pf->hw;
8715 
8716 		mutex_lock(&hw->fdir_fltr_lock);
8717 		ice_fdir_del_all_fltrs(vsi);
8718 		mutex_unlock(&hw->fdir_fltr_lock);
8719 	}
8720 
8721 	/* perform cleanup for channels if they exist */
8722 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8723 		struct ice_vsi *ch_vsi;
8724 
8725 		list_del(&ch->list);
8726 		ch_vsi = ch->ch_vsi;
8727 		if (!ch_vsi) {
8728 			kfree(ch);
8729 			continue;
8730 		}
8731 
8732 		/* Reset queue contexts */
8733 		for (i = 0; i < ch->num_rxq; i++) {
8734 			struct ice_tx_ring *tx_ring;
8735 			struct ice_rx_ring *rx_ring;
8736 
8737 			tx_ring = vsi->tx_rings[ch->base_q + i];
8738 			rx_ring = vsi->rx_rings[ch->base_q + i];
8739 			if (tx_ring) {
8740 				tx_ring->ch = NULL;
8741 				if (tx_ring->q_vector)
8742 					tx_ring->q_vector->ch = NULL;
8743 			}
8744 			if (rx_ring) {
8745 				rx_ring->ch = NULL;
8746 				if (rx_ring->q_vector)
8747 					rx_ring->q_vector->ch = NULL;
8748 			}
8749 		}
8750 
8751 		/* Release FD resources for the channel VSI */
8752 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8753 
8754 		/* clear the VSI from scheduler tree */
8755 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8756 
8757 		/* Delete VSI from FW, PF and HW VSI arrays */
8758 		ice_vsi_delete(ch->ch_vsi);
8759 
8760 		/* free the channel */
8761 		kfree(ch);
8762 	}
8763 
8764 	/* clear the channel VSI map which is stored in main VSI */
8765 	ice_for_each_chnl_tc(i)
8766 		vsi->tc_map_vsi[i] = NULL;
8767 
8768 	/* reset main VSI's all TC information */
8769 	vsi->all_enatc = 0;
8770 	vsi->all_numtc = 0;
8771 }
8772 
8773 /**
8774  * ice_rebuild_channels - rebuild channel
8775  * @pf: ptr to PF
8776  *
8777  * Recreate channel VSIs and replay filters
8778  */
8779 static int ice_rebuild_channels(struct ice_pf *pf)
8780 {
8781 	struct device *dev = ice_pf_to_dev(pf);
8782 	struct ice_vsi *main_vsi;
8783 	bool rem_adv_fltr = true;
8784 	struct ice_channel *ch;
8785 	struct ice_vsi *vsi;
8786 	int tc_idx = 1;
8787 	int i, err;
8788 
8789 	main_vsi = ice_get_main_vsi(pf);
8790 	if (!main_vsi)
8791 		return 0;
8792 
8793 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8794 	    main_vsi->old_numtc == 1)
8795 		return 0; /* nothing to be done */
8796 
8797 	/* reconfigure main VSI based on old value of TC and cached values
8798 	 * for MQPRIO opts
8799 	 */
8800 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8801 	if (err) {
8802 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8803 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8804 		return err;
8805 	}
8806 
8807 	/* rebuild ADQ VSIs */
8808 	ice_for_each_vsi(pf, i) {
8809 		enum ice_vsi_type type;
8810 
8811 		vsi = pf->vsi[i];
8812 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8813 			continue;
8814 
8815 		type = vsi->type;
8816 
8817 		/* rebuild ADQ VSI */
8818 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8819 		if (err) {
8820 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8821 				ice_vsi_type_str(type), vsi->idx, err);
8822 			goto cleanup;
8823 		}
8824 
8825 		/* Re-map HW VSI number, using VSI handle that has been
8826 		 * previously validated in ice_replay_vsi() call above
8827 		 */
8828 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8829 
8830 		/* replay filters for the VSI */
8831 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8832 		if (err) {
8833 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8834 				ice_vsi_type_str(type), err, vsi->idx);
8835 			rem_adv_fltr = false;
8836 			goto cleanup;
8837 		}
8838 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8839 			 ice_vsi_type_str(type), vsi->idx);
8840 
8841 		/* store ADQ VSI at correct TC index in main VSI's
8842 		 * map of TC to VSI
8843 		 */
8844 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8845 	}
8846 
8847 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8848 	 * channel for main VSI's Tx and Rx rings
8849 	 */
8850 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8851 		struct ice_vsi *ch_vsi;
8852 
8853 		ch_vsi = ch->ch_vsi;
8854 		if (!ch_vsi)
8855 			continue;
8856 
8857 		/* reconfig channel resources */
8858 		ice_cfg_chnl_all_res(main_vsi, ch);
8859 
8860 		/* replay BW rate limit if it is non-zero */
8861 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8862 			continue;
8863 
8864 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8865 				       ch->min_tx_rate);
8866 		if (err)
8867 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8868 				err, ch->max_tx_rate, ch->min_tx_rate,
8869 				ch_vsi->vsi_num);
8870 		else
8871 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8872 				ch->max_tx_rate, ch->min_tx_rate,
8873 				ch_vsi->vsi_num);
8874 	}
8875 
8876 	/* reconfig RSS for main VSI */
8877 	if (main_vsi->ch_rss_size)
8878 		ice_vsi_cfg_rss_lut_key(main_vsi);
8879 
8880 	return 0;
8881 
8882 cleanup:
8883 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8884 	return err;
8885 }
8886 
8887 /**
8888  * ice_create_q_channels - Add queue channel for the given TCs
8889  * @vsi: VSI to be configured
8890  *
8891  * Configures queue channel mapping to the given TCs
8892  */
8893 static int ice_create_q_channels(struct ice_vsi *vsi)
8894 {
8895 	struct ice_pf *pf = vsi->back;
8896 	struct ice_channel *ch;
8897 	int ret = 0, i;
8898 
8899 	ice_for_each_chnl_tc(i) {
8900 		if (!(vsi->all_enatc & BIT(i)))
8901 			continue;
8902 
8903 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8904 		if (!ch) {
8905 			ret = -ENOMEM;
8906 			goto err_free;
8907 		}
8908 		INIT_LIST_HEAD(&ch->list);
8909 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8910 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8911 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8912 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8913 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8914 
8915 		/* convert to Kbits/s */
8916 		if (ch->max_tx_rate)
8917 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8918 						  ICE_BW_KBPS_DIVISOR);
8919 		if (ch->min_tx_rate)
8920 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8921 						  ICE_BW_KBPS_DIVISOR);
8922 
8923 		ret = ice_create_q_channel(vsi, ch);
8924 		if (ret) {
8925 			dev_err(ice_pf_to_dev(pf),
8926 				"failed creating channel TC:%d\n", i);
8927 			kfree(ch);
8928 			goto err_free;
8929 		}
8930 		list_add_tail(&ch->list, &vsi->ch_list);
8931 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8932 		dev_dbg(ice_pf_to_dev(pf),
8933 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8934 	}
8935 	return 0;
8936 
8937 err_free:
8938 	ice_remove_q_channels(vsi, false);
8939 
8940 	return ret;
8941 }
8942 
8943 /**
8944  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8945  * @netdev: net device to configure
8946  * @type_data: TC offload data
8947  */
8948 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8949 {
8950 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8951 	struct ice_netdev_priv *np = netdev_priv(netdev);
8952 	struct ice_vsi *vsi = np->vsi;
8953 	struct ice_pf *pf = vsi->back;
8954 	u16 mode, ena_tc_qdisc = 0;
8955 	int cur_txq, cur_rxq;
8956 	u8 hw = 0, num_tcf;
8957 	struct device *dev;
8958 	int ret, i;
8959 
8960 	dev = ice_pf_to_dev(pf);
8961 	num_tcf = mqprio_qopt->qopt.num_tc;
8962 	hw = mqprio_qopt->qopt.hw;
8963 	mode = mqprio_qopt->mode;
8964 	if (!hw) {
8965 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8966 		vsi->ch_rss_size = 0;
8967 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8968 		goto config_tcf;
8969 	}
8970 
8971 	/* Generate queue region map for number of TCF requested */
8972 	for (i = 0; i < num_tcf; i++)
8973 		ena_tc_qdisc |= BIT(i);
8974 
8975 	switch (mode) {
8976 	case TC_MQPRIO_MODE_CHANNEL:
8977 
8978 		if (pf->hw.port_info->is_custom_tx_enabled) {
8979 			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8980 			return -EBUSY;
8981 		}
8982 		ice_tear_down_devlink_rate_tree(pf);
8983 
8984 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8985 		if (ret) {
8986 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8987 				   ret);
8988 			return ret;
8989 		}
8990 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8991 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8992 		/* don't assume state of hw_tc_offload during driver load
8993 		 * and set the flag for TC flower filter if hw_tc_offload
8994 		 * already ON
8995 		 */
8996 		if (vsi->netdev->features & NETIF_F_HW_TC)
8997 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8998 		break;
8999 	default:
9000 		return -EINVAL;
9001 	}
9002 
9003 config_tcf:
9004 
9005 	/* Requesting same TCF configuration as already enabled */
9006 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9007 	    mode != TC_MQPRIO_MODE_CHANNEL)
9008 		return 0;
9009 
9010 	/* Pause VSI queues */
9011 	ice_dis_vsi(vsi, true);
9012 
9013 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9014 		ice_remove_q_channels(vsi, true);
9015 
9016 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9017 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9018 				     num_online_cpus());
9019 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9020 				     num_online_cpus());
9021 	} else {
9022 		/* logic to rebuild VSI, same like ethtool -L */
9023 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9024 
9025 		for (i = 0; i < num_tcf; i++) {
9026 			if (!(ena_tc_qdisc & BIT(i)))
9027 				continue;
9028 
9029 			offset = vsi->mqprio_qopt.qopt.offset[i];
9030 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9031 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9032 		}
9033 		vsi->req_txq = offset + qcount_tx;
9034 		vsi->req_rxq = offset + qcount_rx;
9035 
9036 		/* store away original rss_size info, so that it gets reused
9037 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9038 		 * determine, what should be the rss_sizefor main VSI
9039 		 */
9040 		vsi->orig_rss_size = vsi->rss_size;
9041 	}
9042 
9043 	/* save current values of Tx and Rx queues before calling VSI rebuild
9044 	 * for fallback option
9045 	 */
9046 	cur_txq = vsi->num_txq;
9047 	cur_rxq = vsi->num_rxq;
9048 
9049 	/* proceed with rebuild main VSI using correct number of queues */
9050 	ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9051 	if (ret) {
9052 		/* fallback to current number of queues */
9053 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9054 		vsi->req_txq = cur_txq;
9055 		vsi->req_rxq = cur_rxq;
9056 		clear_bit(ICE_RESET_FAILED, pf->state);
9057 		if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9058 			dev_err(dev, "Rebuild of main VSI failed again\n");
9059 			return ret;
9060 		}
9061 	}
9062 
9063 	vsi->all_numtc = num_tcf;
9064 	vsi->all_enatc = ena_tc_qdisc;
9065 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9066 	if (ret) {
9067 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9068 			   vsi->vsi_num);
9069 		goto exit;
9070 	}
9071 
9072 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9073 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9074 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9075 
9076 		/* set TC0 rate limit if specified */
9077 		if (max_tx_rate || min_tx_rate) {
9078 			/* convert to Kbits/s */
9079 			if (max_tx_rate)
9080 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9081 			if (min_tx_rate)
9082 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9083 
9084 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9085 			if (!ret) {
9086 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9087 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9088 			} else {
9089 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9090 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9091 				goto exit;
9092 			}
9093 		}
9094 		ret = ice_create_q_channels(vsi);
9095 		if (ret) {
9096 			netdev_err(netdev, "failed configuring queue channels\n");
9097 			goto exit;
9098 		} else {
9099 			netdev_dbg(netdev, "successfully configured channels\n");
9100 		}
9101 	}
9102 
9103 	if (vsi->ch_rss_size)
9104 		ice_vsi_cfg_rss_lut_key(vsi);
9105 
9106 exit:
9107 	/* if error, reset the all_numtc and all_enatc */
9108 	if (ret) {
9109 		vsi->all_numtc = 0;
9110 		vsi->all_enatc = 0;
9111 	}
9112 	/* resume VSI */
9113 	ice_ena_vsi(vsi, true);
9114 
9115 	return ret;
9116 }
9117 
9118 static LIST_HEAD(ice_block_cb_list);
9119 
9120 static int
9121 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9122 	     void *type_data)
9123 {
9124 	struct ice_netdev_priv *np = netdev_priv(netdev);
9125 	struct ice_pf *pf = np->vsi->back;
9126 	bool locked = false;
9127 	int err;
9128 
9129 	switch (type) {
9130 	case TC_SETUP_BLOCK:
9131 		return flow_block_cb_setup_simple(type_data,
9132 						  &ice_block_cb_list,
9133 						  ice_setup_tc_block_cb,
9134 						  np, np, true);
9135 	case TC_SETUP_QDISC_MQPRIO:
9136 		if (ice_is_eswitch_mode_switchdev(pf)) {
9137 			netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9138 			return -EOPNOTSUPP;
9139 		}
9140 
9141 		if (pf->adev) {
9142 			mutex_lock(&pf->adev_mutex);
9143 			device_lock(&pf->adev->dev);
9144 			locked = true;
9145 			if (pf->adev->dev.driver) {
9146 				netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9147 				err = -EBUSY;
9148 				goto adev_unlock;
9149 			}
9150 		}
9151 
9152 		/* setup traffic classifier for receive side */
9153 		mutex_lock(&pf->tc_mutex);
9154 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9155 		mutex_unlock(&pf->tc_mutex);
9156 
9157 adev_unlock:
9158 		if (locked) {
9159 			device_unlock(&pf->adev->dev);
9160 			mutex_unlock(&pf->adev_mutex);
9161 		}
9162 		return err;
9163 	default:
9164 		return -EOPNOTSUPP;
9165 	}
9166 	return -EOPNOTSUPP;
9167 }
9168 
9169 static struct ice_indr_block_priv *
9170 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9171 			   struct net_device *netdev)
9172 {
9173 	struct ice_indr_block_priv *cb_priv;
9174 
9175 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9176 		if (!cb_priv->netdev)
9177 			return NULL;
9178 		if (cb_priv->netdev == netdev)
9179 			return cb_priv;
9180 	}
9181 	return NULL;
9182 }
9183 
9184 static int
9185 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9186 			void *indr_priv)
9187 {
9188 	struct ice_indr_block_priv *priv = indr_priv;
9189 	struct ice_netdev_priv *np = priv->np;
9190 
9191 	switch (type) {
9192 	case TC_SETUP_CLSFLOWER:
9193 		return ice_setup_tc_cls_flower(np, priv->netdev,
9194 					       (struct flow_cls_offload *)
9195 					       type_data);
9196 	default:
9197 		return -EOPNOTSUPP;
9198 	}
9199 }
9200 
9201 static int
9202 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9203 			struct ice_netdev_priv *np,
9204 			struct flow_block_offload *f, void *data,
9205 			void (*cleanup)(struct flow_block_cb *block_cb))
9206 {
9207 	struct ice_indr_block_priv *indr_priv;
9208 	struct flow_block_cb *block_cb;
9209 
9210 	if (!ice_is_tunnel_supported(netdev) &&
9211 	    !(is_vlan_dev(netdev) &&
9212 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
9213 		return -EOPNOTSUPP;
9214 
9215 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9216 		return -EOPNOTSUPP;
9217 
9218 	switch (f->command) {
9219 	case FLOW_BLOCK_BIND:
9220 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9221 		if (indr_priv)
9222 			return -EEXIST;
9223 
9224 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9225 		if (!indr_priv)
9226 			return -ENOMEM;
9227 
9228 		indr_priv->netdev = netdev;
9229 		indr_priv->np = np;
9230 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9231 
9232 		block_cb =
9233 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9234 						 indr_priv, indr_priv,
9235 						 ice_rep_indr_tc_block_unbind,
9236 						 f, netdev, sch, data, np,
9237 						 cleanup);
9238 
9239 		if (IS_ERR(block_cb)) {
9240 			list_del(&indr_priv->list);
9241 			kfree(indr_priv);
9242 			return PTR_ERR(block_cb);
9243 		}
9244 		flow_block_cb_add(block_cb, f);
9245 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9246 		break;
9247 	case FLOW_BLOCK_UNBIND:
9248 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9249 		if (!indr_priv)
9250 			return -ENOENT;
9251 
9252 		block_cb = flow_block_cb_lookup(f->block,
9253 						ice_indr_setup_block_cb,
9254 						indr_priv);
9255 		if (!block_cb)
9256 			return -ENOENT;
9257 
9258 		flow_indr_block_cb_remove(block_cb, f);
9259 
9260 		list_del(&block_cb->driver_list);
9261 		break;
9262 	default:
9263 		return -EOPNOTSUPP;
9264 	}
9265 	return 0;
9266 }
9267 
9268 static int
9269 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9270 		     void *cb_priv, enum tc_setup_type type, void *type_data,
9271 		     void *data,
9272 		     void (*cleanup)(struct flow_block_cb *block_cb))
9273 {
9274 	switch (type) {
9275 	case TC_SETUP_BLOCK:
9276 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9277 					       data, cleanup);
9278 
9279 	default:
9280 		return -EOPNOTSUPP;
9281 	}
9282 }
9283 
9284 /**
9285  * ice_open - Called when a network interface becomes active
9286  * @netdev: network interface device structure
9287  *
9288  * The open entry point is called when a network interface is made
9289  * active by the system (IFF_UP). At this point all resources needed
9290  * for transmit and receive operations are allocated, the interrupt
9291  * handler is registered with the OS, the netdev watchdog is enabled,
9292  * and the stack is notified that the interface is ready.
9293  *
9294  * Returns 0 on success, negative value on failure
9295  */
9296 int ice_open(struct net_device *netdev)
9297 {
9298 	struct ice_netdev_priv *np = netdev_priv(netdev);
9299 	struct ice_pf *pf = np->vsi->back;
9300 
9301 	if (ice_is_reset_in_progress(pf->state)) {
9302 		netdev_err(netdev, "can't open net device while reset is in progress");
9303 		return -EBUSY;
9304 	}
9305 
9306 	return ice_open_internal(netdev);
9307 }
9308 
9309 /**
9310  * ice_open_internal - Called when a network interface becomes active
9311  * @netdev: network interface device structure
9312  *
9313  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9314  * handling routine
9315  *
9316  * Returns 0 on success, negative value on failure
9317  */
9318 int ice_open_internal(struct net_device *netdev)
9319 {
9320 	struct ice_netdev_priv *np = netdev_priv(netdev);
9321 	struct ice_vsi *vsi = np->vsi;
9322 	struct ice_pf *pf = vsi->back;
9323 	struct ice_port_info *pi;
9324 	int err;
9325 
9326 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9327 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9328 		return -EIO;
9329 	}
9330 
9331 	netif_carrier_off(netdev);
9332 
9333 	pi = vsi->port_info;
9334 	err = ice_update_link_info(pi);
9335 	if (err) {
9336 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
9337 		return err;
9338 	}
9339 
9340 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9341 
9342 	/* Set PHY if there is media, otherwise, turn off PHY */
9343 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9344 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9345 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9346 			err = ice_init_phy_user_cfg(pi);
9347 			if (err) {
9348 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9349 					   err);
9350 				return err;
9351 			}
9352 		}
9353 
9354 		err = ice_configure_phy(vsi);
9355 		if (err) {
9356 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9357 				   err);
9358 			return err;
9359 		}
9360 	} else {
9361 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9362 		ice_set_link(vsi, false);
9363 	}
9364 
9365 	err = ice_vsi_open(vsi);
9366 	if (err)
9367 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9368 			   vsi->vsi_num, vsi->vsw->sw_id);
9369 
9370 	/* Update existing tunnels information */
9371 	udp_tunnel_get_rx_info(netdev);
9372 
9373 	return err;
9374 }
9375 
9376 /**
9377  * ice_stop - Disables a network interface
9378  * @netdev: network interface device structure
9379  *
9380  * The stop entry point is called when an interface is de-activated by the OS,
9381  * and the netdevice enters the DOWN state. The hardware is still under the
9382  * driver's control, but the netdev interface is disabled.
9383  *
9384  * Returns success only - not allowed to fail
9385  */
9386 int ice_stop(struct net_device *netdev)
9387 {
9388 	struct ice_netdev_priv *np = netdev_priv(netdev);
9389 	struct ice_vsi *vsi = np->vsi;
9390 	struct ice_pf *pf = vsi->back;
9391 
9392 	if (ice_is_reset_in_progress(pf->state)) {
9393 		netdev_err(netdev, "can't stop net device while reset is in progress");
9394 		return -EBUSY;
9395 	}
9396 
9397 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9398 		int link_err = ice_force_phys_link_state(vsi, false);
9399 
9400 		if (link_err) {
9401 			if (link_err == -ENOMEDIUM)
9402 				netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9403 					    vsi->vsi_num);
9404 			else
9405 				netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9406 					   vsi->vsi_num, link_err);
9407 
9408 			ice_vsi_close(vsi);
9409 			return -EIO;
9410 		}
9411 	}
9412 
9413 	ice_vsi_close(vsi);
9414 
9415 	return 0;
9416 }
9417 
9418 /**
9419  * ice_features_check - Validate encapsulated packet conforms to limits
9420  * @skb: skb buffer
9421  * @netdev: This port's netdev
9422  * @features: Offload features that the stack believes apply
9423  */
9424 static netdev_features_t
9425 ice_features_check(struct sk_buff *skb,
9426 		   struct net_device __always_unused *netdev,
9427 		   netdev_features_t features)
9428 {
9429 	bool gso = skb_is_gso(skb);
9430 	size_t len;
9431 
9432 	/* No point in doing any of this if neither checksum nor GSO are
9433 	 * being requested for this frame. We can rule out both by just
9434 	 * checking for CHECKSUM_PARTIAL
9435 	 */
9436 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9437 		return features;
9438 
9439 	/* We cannot support GSO if the MSS is going to be less than
9440 	 * 64 bytes. If it is then we need to drop support for GSO.
9441 	 */
9442 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9443 		features &= ~NETIF_F_GSO_MASK;
9444 
9445 	len = skb_network_offset(skb);
9446 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9447 		goto out_rm_features;
9448 
9449 	len = skb_network_header_len(skb);
9450 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9451 		goto out_rm_features;
9452 
9453 	if (skb->encapsulation) {
9454 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9455 		 * the case of IPIP frames, the transport header pointer is
9456 		 * after the inner header! So check to make sure that this
9457 		 * is a GRE or UDP_TUNNEL frame before doing that math.
9458 		 */
9459 		if (gso && (skb_shinfo(skb)->gso_type &
9460 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9461 			len = skb_inner_network_header(skb) -
9462 			      skb_transport_header(skb);
9463 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9464 				goto out_rm_features;
9465 		}
9466 
9467 		len = skb_inner_network_header_len(skb);
9468 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9469 			goto out_rm_features;
9470 	}
9471 
9472 	return features;
9473 out_rm_features:
9474 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9475 }
9476 
9477 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9478 	.ndo_open = ice_open,
9479 	.ndo_stop = ice_stop,
9480 	.ndo_start_xmit = ice_start_xmit,
9481 	.ndo_set_mac_address = ice_set_mac_address,
9482 	.ndo_validate_addr = eth_validate_addr,
9483 	.ndo_change_mtu = ice_change_mtu,
9484 	.ndo_get_stats64 = ice_get_stats64,
9485 	.ndo_tx_timeout = ice_tx_timeout,
9486 	.ndo_bpf = ice_xdp_safe_mode,
9487 };
9488 
9489 static const struct net_device_ops ice_netdev_ops = {
9490 	.ndo_open = ice_open,
9491 	.ndo_stop = ice_stop,
9492 	.ndo_start_xmit = ice_start_xmit,
9493 	.ndo_select_queue = ice_select_queue,
9494 	.ndo_features_check = ice_features_check,
9495 	.ndo_fix_features = ice_fix_features,
9496 	.ndo_set_rx_mode = ice_set_rx_mode,
9497 	.ndo_set_mac_address = ice_set_mac_address,
9498 	.ndo_validate_addr = eth_validate_addr,
9499 	.ndo_change_mtu = ice_change_mtu,
9500 	.ndo_get_stats64 = ice_get_stats64,
9501 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9502 	.ndo_eth_ioctl = ice_eth_ioctl,
9503 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9504 	.ndo_set_vf_mac = ice_set_vf_mac,
9505 	.ndo_get_vf_config = ice_get_vf_cfg,
9506 	.ndo_set_vf_trust = ice_set_vf_trust,
9507 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9508 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9509 	.ndo_get_vf_stats = ice_get_vf_stats,
9510 	.ndo_set_vf_rate = ice_set_vf_bw,
9511 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9512 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9513 	.ndo_setup_tc = ice_setup_tc,
9514 	.ndo_set_features = ice_set_features,
9515 	.ndo_bridge_getlink = ice_bridge_getlink,
9516 	.ndo_bridge_setlink = ice_bridge_setlink,
9517 	.ndo_fdb_add = ice_fdb_add,
9518 	.ndo_fdb_del = ice_fdb_del,
9519 #ifdef CONFIG_RFS_ACCEL
9520 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9521 #endif
9522 	.ndo_tx_timeout = ice_tx_timeout,
9523 	.ndo_bpf = ice_xdp,
9524 	.ndo_xdp_xmit = ice_xdp_xmit,
9525 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9526 };
9527