xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17  * ice tracepoint functions. This must be done exactly once across the
18  * ice driver.
19  */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 #include "ice_vsi_vlan_ops.h"
25 
26 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
27 static const char ice_driver_string[] = DRV_SUMMARY;
28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29 
30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
32 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
33 
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38 
39 static int debug = -1;
40 module_param(debug, int, 0644);
41 #ifndef CONFIG_DYNAMIC_DEBUG
42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43 #else
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45 #endif /* !CONFIG_DYNAMIC_DEBUG */
46 
47 static DEFINE_IDA(ice_aux_ida);
48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49 EXPORT_SYMBOL(ice_xdp_locking_key);
50 
51 /**
52  * ice_hw_to_dev - Get device pointer from the hardware structure
53  * @hw: pointer to the device HW structure
54  *
55  * Used to access the device pointer from compilation units which can't easily
56  * include the definition of struct ice_pf without leading to circular header
57  * dependencies.
58  */
59 struct device *ice_hw_to_dev(struct ice_hw *hw)
60 {
61 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62 
63 	return &pf->pdev->dev;
64 }
65 
66 static struct workqueue_struct *ice_wq;
67 static const struct net_device_ops ice_netdev_safe_mode_ops;
68 static const struct net_device_ops ice_netdev_ops;
69 
70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71 
72 static void ice_vsi_release_all(struct ice_pf *pf);
73 
74 static int ice_rebuild_channels(struct ice_pf *pf);
75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76 
77 static int
78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 		     void *cb_priv, enum tc_setup_type type, void *type_data,
80 		     void *data,
81 		     void (*cleanup)(struct flow_block_cb *block_cb));
82 
83 bool netif_is_ice(struct net_device *dev)
84 {
85 	return dev && (dev->netdev_ops == &ice_netdev_ops);
86 }
87 
88 /**
89  * ice_get_tx_pending - returns number of Tx descriptors not processed
90  * @ring: the ring of descriptors
91  */
92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93 {
94 	u16 head, tail;
95 
96 	head = ring->next_to_clean;
97 	tail = ring->next_to_use;
98 
99 	if (head != tail)
100 		return (head < tail) ?
101 			tail - head : (tail + ring->count - head);
102 	return 0;
103 }
104 
105 /**
106  * ice_check_for_hang_subtask - check for and recover hung queues
107  * @pf: pointer to PF struct
108  */
109 static void ice_check_for_hang_subtask(struct ice_pf *pf)
110 {
111 	struct ice_vsi *vsi = NULL;
112 	struct ice_hw *hw;
113 	unsigned int i;
114 	int packets;
115 	u32 v;
116 
117 	ice_for_each_vsi(pf, v)
118 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 			vsi = pf->vsi[v];
120 			break;
121 		}
122 
123 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 		return;
125 
126 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 		return;
128 
129 	hw = &vsi->back->hw;
130 
131 	ice_for_each_txq(vsi, i) {
132 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133 		struct ice_ring_stats *ring_stats;
134 
135 		if (!tx_ring)
136 			continue;
137 		if (ice_ring_ch_enabled(tx_ring))
138 			continue;
139 
140 		ring_stats = tx_ring->ring_stats;
141 		if (!ring_stats)
142 			continue;
143 
144 		if (tx_ring->desc) {
145 			/* If packet counter has not changed the queue is
146 			 * likely stalled, so force an interrupt for this
147 			 * queue.
148 			 *
149 			 * prev_pkt would be negative if there was no
150 			 * pending work.
151 			 */
152 			packets = ring_stats->stats.pkts & INT_MAX;
153 			if (ring_stats->tx_stats.prev_pkt == packets) {
154 				/* Trigger sw interrupt to revive the queue */
155 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
156 				continue;
157 			}
158 
159 			/* Memory barrier between read of packet count and call
160 			 * to ice_get_tx_pending()
161 			 */
162 			smp_rmb();
163 			ring_stats->tx_stats.prev_pkt =
164 			    ice_get_tx_pending(tx_ring) ? packets : -1;
165 		}
166 	}
167 }
168 
169 /**
170  * ice_init_mac_fltr - Set initial MAC filters
171  * @pf: board private structure
172  *
173  * Set initial set of MAC filters for PF VSI; configure filters for permanent
174  * address and broadcast address. If an error is encountered, netdevice will be
175  * unregistered.
176  */
177 static int ice_init_mac_fltr(struct ice_pf *pf)
178 {
179 	struct ice_vsi *vsi;
180 	u8 *perm_addr;
181 
182 	vsi = ice_get_main_vsi(pf);
183 	if (!vsi)
184 		return -EINVAL;
185 
186 	perm_addr = vsi->port_info->mac.perm_addr;
187 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
188 }
189 
190 /**
191  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
192  * @netdev: the net device on which the sync is happening
193  * @addr: MAC address to sync
194  *
195  * This is a callback function which is called by the in kernel device sync
196  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
197  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
198  * MAC filters from the hardware.
199  */
200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
201 {
202 	struct ice_netdev_priv *np = netdev_priv(netdev);
203 	struct ice_vsi *vsi = np->vsi;
204 
205 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
206 				     ICE_FWD_TO_VSI))
207 		return -EINVAL;
208 
209 	return 0;
210 }
211 
212 /**
213  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
214  * @netdev: the net device on which the unsync is happening
215  * @addr: MAC address to unsync
216  *
217  * This is a callback function which is called by the in kernel device unsync
218  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
219  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
220  * delete the MAC filters from the hardware.
221  */
222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
223 {
224 	struct ice_netdev_priv *np = netdev_priv(netdev);
225 	struct ice_vsi *vsi = np->vsi;
226 
227 	/* Under some circumstances, we might receive a request to delete our
228 	 * own device address from our uc list. Because we store the device
229 	 * address in the VSI's MAC filter list, we need to ignore such
230 	 * requests and not delete our device address from this list.
231 	 */
232 	if (ether_addr_equal(addr, netdev->dev_addr))
233 		return 0;
234 
235 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
236 				     ICE_FWD_TO_VSI))
237 		return -EINVAL;
238 
239 	return 0;
240 }
241 
242 /**
243  * ice_vsi_fltr_changed - check if filter state changed
244  * @vsi: VSI to be checked
245  *
246  * returns true if filter state has changed, false otherwise.
247  */
248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
249 {
250 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
251 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
252 }
253 
254 /**
255  * ice_set_promisc - Enable promiscuous mode for a given PF
256  * @vsi: the VSI being configured
257  * @promisc_m: mask of promiscuous config bits
258  *
259  */
260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
261 {
262 	int status;
263 
264 	if (vsi->type != ICE_VSI_PF)
265 		return 0;
266 
267 	if (ice_vsi_has_non_zero_vlans(vsi)) {
268 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
269 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
270 						       promisc_m);
271 	} else {
272 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
273 						  promisc_m, 0);
274 	}
275 	if (status && status != -EEXIST)
276 		return status;
277 
278 	return 0;
279 }
280 
281 /**
282  * ice_clear_promisc - Disable promiscuous mode for a given PF
283  * @vsi: the VSI being configured
284  * @promisc_m: mask of promiscuous config bits
285  *
286  */
287 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
288 {
289 	int status;
290 
291 	if (vsi->type != ICE_VSI_PF)
292 		return 0;
293 
294 	if (ice_vsi_has_non_zero_vlans(vsi)) {
295 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
296 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
297 							 promisc_m);
298 	} else {
299 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
300 						    promisc_m, 0);
301 	}
302 
303 	return status;
304 }
305 
306 /**
307  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
308  * @vsi: ptr to the VSI
309  *
310  * Push any outstanding VSI filter changes through the AdminQ.
311  */
312 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
313 {
314 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
315 	struct device *dev = ice_pf_to_dev(vsi->back);
316 	struct net_device *netdev = vsi->netdev;
317 	bool promisc_forced_on = false;
318 	struct ice_pf *pf = vsi->back;
319 	struct ice_hw *hw = &pf->hw;
320 	u32 changed_flags = 0;
321 	int err;
322 
323 	if (!vsi->netdev)
324 		return -EINVAL;
325 
326 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
327 		usleep_range(1000, 2000);
328 
329 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
330 	vsi->current_netdev_flags = vsi->netdev->flags;
331 
332 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
333 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
334 
335 	if (ice_vsi_fltr_changed(vsi)) {
336 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
337 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
338 
339 		/* grab the netdev's addr_list_lock */
340 		netif_addr_lock_bh(netdev);
341 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
342 			      ice_add_mac_to_unsync_list);
343 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
344 			      ice_add_mac_to_unsync_list);
345 		/* our temp lists are populated. release lock */
346 		netif_addr_unlock_bh(netdev);
347 	}
348 
349 	/* Remove MAC addresses in the unsync list */
350 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
351 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
352 	if (err) {
353 		netdev_err(netdev, "Failed to delete MAC filters\n");
354 		/* if we failed because of alloc failures, just bail */
355 		if (err == -ENOMEM)
356 			goto out;
357 	}
358 
359 	/* Add MAC addresses in the sync list */
360 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
361 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
362 	/* If filter is added successfully or already exists, do not go into
363 	 * 'if' condition and report it as error. Instead continue processing
364 	 * rest of the function.
365 	 */
366 	if (err && err != -EEXIST) {
367 		netdev_err(netdev, "Failed to add MAC filters\n");
368 		/* If there is no more space for new umac filters, VSI
369 		 * should go into promiscuous mode. There should be some
370 		 * space reserved for promiscuous filters.
371 		 */
372 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
373 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
374 				      vsi->state)) {
375 			promisc_forced_on = true;
376 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
377 				    vsi->vsi_num);
378 		} else {
379 			goto out;
380 		}
381 	}
382 	err = 0;
383 	/* check for changes in promiscuous modes */
384 	if (changed_flags & IFF_ALLMULTI) {
385 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
386 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
387 			if (err) {
388 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
389 				goto out_promisc;
390 			}
391 		} else {
392 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
393 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 			if (err) {
395 				vsi->current_netdev_flags |= IFF_ALLMULTI;
396 				goto out_promisc;
397 			}
398 		}
399 	}
400 
401 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
402 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
403 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
404 		if (vsi->current_netdev_flags & IFF_PROMISC) {
405 			/* Apply Rx filter rule to get traffic from wire */
406 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
407 				err = ice_set_dflt_vsi(vsi);
408 				if (err && err != -EEXIST) {
409 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
410 						   err, vsi->vsi_num);
411 					vsi->current_netdev_flags &=
412 						~IFF_PROMISC;
413 					goto out_promisc;
414 				}
415 				err = 0;
416 				vlan_ops->dis_rx_filtering(vsi);
417 			}
418 		} else {
419 			/* Clear Rx filter to remove traffic from wire */
420 			if (ice_is_vsi_dflt_vsi(vsi)) {
421 				err = ice_clear_dflt_vsi(vsi);
422 				if (err) {
423 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
424 						   err, vsi->vsi_num);
425 					vsi->current_netdev_flags |=
426 						IFF_PROMISC;
427 					goto out_promisc;
428 				}
429 				if (vsi->netdev->features &
430 				    NETIF_F_HW_VLAN_CTAG_FILTER)
431 					vlan_ops->ena_rx_filtering(vsi);
432 			}
433 		}
434 	}
435 	goto exit;
436 
437 out_promisc:
438 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
439 	goto exit;
440 out:
441 	/* if something went wrong then set the changed flag so we try again */
442 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
443 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
444 exit:
445 	clear_bit(ICE_CFG_BUSY, vsi->state);
446 	return err;
447 }
448 
449 /**
450  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
451  * @pf: board private structure
452  */
453 static void ice_sync_fltr_subtask(struct ice_pf *pf)
454 {
455 	int v;
456 
457 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
458 		return;
459 
460 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
461 
462 	ice_for_each_vsi(pf, v)
463 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
464 		    ice_vsi_sync_fltr(pf->vsi[v])) {
465 			/* come back and try again later */
466 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
467 			break;
468 		}
469 }
470 
471 /**
472  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
473  * @pf: the PF
474  * @locked: is the rtnl_lock already held
475  */
476 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
477 {
478 	int node;
479 	int v;
480 
481 	ice_for_each_vsi(pf, v)
482 		if (pf->vsi[v])
483 			ice_dis_vsi(pf->vsi[v], locked);
484 
485 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
486 		pf->pf_agg_node[node].num_vsis = 0;
487 
488 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
489 		pf->vf_agg_node[node].num_vsis = 0;
490 }
491 
492 /**
493  * ice_clear_sw_switch_recipes - clear switch recipes
494  * @pf: board private structure
495  *
496  * Mark switch recipes as not created in sw structures. There are cases where
497  * rules (especially advanced rules) need to be restored, either re-read from
498  * hardware or added again. For example after the reset. 'recp_created' flag
499  * prevents from doing that and need to be cleared upfront.
500  */
501 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
502 {
503 	struct ice_sw_recipe *recp;
504 	u8 i;
505 
506 	recp = pf->hw.switch_info->recp_list;
507 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
508 		recp[i].recp_created = false;
509 }
510 
511 /**
512  * ice_prepare_for_reset - prep for reset
513  * @pf: board private structure
514  * @reset_type: reset type requested
515  *
516  * Inform or close all dependent features in prep for reset.
517  */
518 static void
519 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
520 {
521 	struct ice_hw *hw = &pf->hw;
522 	struct ice_vsi *vsi;
523 	struct ice_vf *vf;
524 	unsigned int bkt;
525 
526 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
527 
528 	/* already prepared for reset */
529 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
530 		return;
531 
532 	ice_unplug_aux_dev(pf);
533 
534 	/* Notify VFs of impending reset */
535 	if (ice_check_sq_alive(hw, &hw->mailboxq))
536 		ice_vc_notify_reset(pf);
537 
538 	/* Disable VFs until reset is completed */
539 	mutex_lock(&pf->vfs.table_lock);
540 	ice_for_each_vf(pf, bkt, vf)
541 		ice_set_vf_state_qs_dis(vf);
542 	mutex_unlock(&pf->vfs.table_lock);
543 
544 	if (ice_is_eswitch_mode_switchdev(pf)) {
545 		if (reset_type != ICE_RESET_PFR)
546 			ice_clear_sw_switch_recipes(pf);
547 	}
548 
549 	/* release ADQ specific HW and SW resources */
550 	vsi = ice_get_main_vsi(pf);
551 	if (!vsi)
552 		goto skip;
553 
554 	/* to be on safe side, reset orig_rss_size so that normal flow
555 	 * of deciding rss_size can take precedence
556 	 */
557 	vsi->orig_rss_size = 0;
558 
559 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
560 		if (reset_type == ICE_RESET_PFR) {
561 			vsi->old_ena_tc = vsi->all_enatc;
562 			vsi->old_numtc = vsi->all_numtc;
563 		} else {
564 			ice_remove_q_channels(vsi, true);
565 
566 			/* for other reset type, do not support channel rebuild
567 			 * hence reset needed info
568 			 */
569 			vsi->old_ena_tc = 0;
570 			vsi->all_enatc = 0;
571 			vsi->old_numtc = 0;
572 			vsi->all_numtc = 0;
573 			vsi->req_txq = 0;
574 			vsi->req_rxq = 0;
575 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
576 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
577 		}
578 	}
579 skip:
580 
581 	/* clear SW filtering DB */
582 	ice_clear_hw_tbls(hw);
583 	/* disable the VSIs and their queues that are not already DOWN */
584 	ice_pf_dis_all_vsi(pf, false);
585 
586 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
587 		ice_ptp_prepare_for_reset(pf);
588 
589 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
590 		ice_gnss_exit(pf);
591 
592 	if (hw->port_info)
593 		ice_sched_clear_port(hw->port_info);
594 
595 	ice_shutdown_all_ctrlq(hw);
596 
597 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
598 }
599 
600 /**
601  * ice_do_reset - Initiate one of many types of resets
602  * @pf: board private structure
603  * @reset_type: reset type requested before this function was called.
604  */
605 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
606 {
607 	struct device *dev = ice_pf_to_dev(pf);
608 	struct ice_hw *hw = &pf->hw;
609 
610 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
611 
612 	ice_prepare_for_reset(pf, reset_type);
613 
614 	/* trigger the reset */
615 	if (ice_reset(hw, reset_type)) {
616 		dev_err(dev, "reset %d failed\n", reset_type);
617 		set_bit(ICE_RESET_FAILED, pf->state);
618 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
619 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
620 		clear_bit(ICE_PFR_REQ, pf->state);
621 		clear_bit(ICE_CORER_REQ, pf->state);
622 		clear_bit(ICE_GLOBR_REQ, pf->state);
623 		wake_up(&pf->reset_wait_queue);
624 		return;
625 	}
626 
627 	/* PFR is a bit of a special case because it doesn't result in an OICR
628 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
629 	 * associated state bits.
630 	 */
631 	if (reset_type == ICE_RESET_PFR) {
632 		pf->pfr_count++;
633 		ice_rebuild(pf, reset_type);
634 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
635 		clear_bit(ICE_PFR_REQ, pf->state);
636 		wake_up(&pf->reset_wait_queue);
637 		ice_reset_all_vfs(pf);
638 	}
639 }
640 
641 /**
642  * ice_reset_subtask - Set up for resetting the device and driver
643  * @pf: board private structure
644  */
645 static void ice_reset_subtask(struct ice_pf *pf)
646 {
647 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
648 
649 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
650 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
651 	 * of reset is pending and sets bits in pf->state indicating the reset
652 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
653 	 * prepare for pending reset if not already (for PF software-initiated
654 	 * global resets the software should already be prepared for it as
655 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
656 	 * by firmware or software on other PFs, that bit is not set so prepare
657 	 * for the reset now), poll for reset done, rebuild and return.
658 	 */
659 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
660 		/* Perform the largest reset requested */
661 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
662 			reset_type = ICE_RESET_CORER;
663 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
664 			reset_type = ICE_RESET_GLOBR;
665 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
666 			reset_type = ICE_RESET_EMPR;
667 		/* return if no valid reset type requested */
668 		if (reset_type == ICE_RESET_INVAL)
669 			return;
670 		ice_prepare_for_reset(pf, reset_type);
671 
672 		/* make sure we are ready to rebuild */
673 		if (ice_check_reset(&pf->hw)) {
674 			set_bit(ICE_RESET_FAILED, pf->state);
675 		} else {
676 			/* done with reset. start rebuild */
677 			pf->hw.reset_ongoing = false;
678 			ice_rebuild(pf, reset_type);
679 			/* clear bit to resume normal operations, but
680 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
681 			 */
682 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
683 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
684 			clear_bit(ICE_PFR_REQ, pf->state);
685 			clear_bit(ICE_CORER_REQ, pf->state);
686 			clear_bit(ICE_GLOBR_REQ, pf->state);
687 			wake_up(&pf->reset_wait_queue);
688 			ice_reset_all_vfs(pf);
689 		}
690 
691 		return;
692 	}
693 
694 	/* No pending resets to finish processing. Check for new resets */
695 	if (test_bit(ICE_PFR_REQ, pf->state))
696 		reset_type = ICE_RESET_PFR;
697 	if (test_bit(ICE_CORER_REQ, pf->state))
698 		reset_type = ICE_RESET_CORER;
699 	if (test_bit(ICE_GLOBR_REQ, pf->state))
700 		reset_type = ICE_RESET_GLOBR;
701 	/* If no valid reset type requested just return */
702 	if (reset_type == ICE_RESET_INVAL)
703 		return;
704 
705 	/* reset if not already down or busy */
706 	if (!test_bit(ICE_DOWN, pf->state) &&
707 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
708 		ice_do_reset(pf, reset_type);
709 	}
710 }
711 
712 /**
713  * ice_print_topo_conflict - print topology conflict message
714  * @vsi: the VSI whose topology status is being checked
715  */
716 static void ice_print_topo_conflict(struct ice_vsi *vsi)
717 {
718 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
719 	case ICE_AQ_LINK_TOPO_CONFLICT:
720 	case ICE_AQ_LINK_MEDIA_CONFLICT:
721 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
722 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
723 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
724 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
725 		break;
726 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
727 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
728 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
729 		else
730 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
731 		break;
732 	default:
733 		break;
734 	}
735 }
736 
737 /**
738  * ice_print_link_msg - print link up or down message
739  * @vsi: the VSI whose link status is being queried
740  * @isup: boolean for if the link is now up or down
741  */
742 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
743 {
744 	struct ice_aqc_get_phy_caps_data *caps;
745 	const char *an_advertised;
746 	const char *fec_req;
747 	const char *speed;
748 	const char *fec;
749 	const char *fc;
750 	const char *an;
751 	int status;
752 
753 	if (!vsi)
754 		return;
755 
756 	if (vsi->current_isup == isup)
757 		return;
758 
759 	vsi->current_isup = isup;
760 
761 	if (!isup) {
762 		netdev_info(vsi->netdev, "NIC Link is Down\n");
763 		return;
764 	}
765 
766 	switch (vsi->port_info->phy.link_info.link_speed) {
767 	case ICE_AQ_LINK_SPEED_100GB:
768 		speed = "100 G";
769 		break;
770 	case ICE_AQ_LINK_SPEED_50GB:
771 		speed = "50 G";
772 		break;
773 	case ICE_AQ_LINK_SPEED_40GB:
774 		speed = "40 G";
775 		break;
776 	case ICE_AQ_LINK_SPEED_25GB:
777 		speed = "25 G";
778 		break;
779 	case ICE_AQ_LINK_SPEED_20GB:
780 		speed = "20 G";
781 		break;
782 	case ICE_AQ_LINK_SPEED_10GB:
783 		speed = "10 G";
784 		break;
785 	case ICE_AQ_LINK_SPEED_5GB:
786 		speed = "5 G";
787 		break;
788 	case ICE_AQ_LINK_SPEED_2500MB:
789 		speed = "2.5 G";
790 		break;
791 	case ICE_AQ_LINK_SPEED_1000MB:
792 		speed = "1 G";
793 		break;
794 	case ICE_AQ_LINK_SPEED_100MB:
795 		speed = "100 M";
796 		break;
797 	default:
798 		speed = "Unknown ";
799 		break;
800 	}
801 
802 	switch (vsi->port_info->fc.current_mode) {
803 	case ICE_FC_FULL:
804 		fc = "Rx/Tx";
805 		break;
806 	case ICE_FC_TX_PAUSE:
807 		fc = "Tx";
808 		break;
809 	case ICE_FC_RX_PAUSE:
810 		fc = "Rx";
811 		break;
812 	case ICE_FC_NONE:
813 		fc = "None";
814 		break;
815 	default:
816 		fc = "Unknown";
817 		break;
818 	}
819 
820 	/* Get FEC mode based on negotiated link info */
821 	switch (vsi->port_info->phy.link_info.fec_info) {
822 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
823 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
824 		fec = "RS-FEC";
825 		break;
826 	case ICE_AQ_LINK_25G_KR_FEC_EN:
827 		fec = "FC-FEC/BASE-R";
828 		break;
829 	default:
830 		fec = "NONE";
831 		break;
832 	}
833 
834 	/* check if autoneg completed, might be false due to not supported */
835 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
836 		an = "True";
837 	else
838 		an = "False";
839 
840 	/* Get FEC mode requested based on PHY caps last SW configuration */
841 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
842 	if (!caps) {
843 		fec_req = "Unknown";
844 		an_advertised = "Unknown";
845 		goto done;
846 	}
847 
848 	status = ice_aq_get_phy_caps(vsi->port_info, false,
849 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
850 	if (status)
851 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
852 
853 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
854 
855 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
856 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
857 		fec_req = "RS-FEC";
858 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
859 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
860 		fec_req = "FC-FEC/BASE-R";
861 	else
862 		fec_req = "NONE";
863 
864 	kfree(caps);
865 
866 done:
867 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
868 		    speed, fec_req, fec, an_advertised, an, fc);
869 	ice_print_topo_conflict(vsi);
870 }
871 
872 /**
873  * ice_vsi_link_event - update the VSI's netdev
874  * @vsi: the VSI on which the link event occurred
875  * @link_up: whether or not the VSI needs to be set up or down
876  */
877 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
878 {
879 	if (!vsi)
880 		return;
881 
882 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
883 		return;
884 
885 	if (vsi->type == ICE_VSI_PF) {
886 		if (link_up == netif_carrier_ok(vsi->netdev))
887 			return;
888 
889 		if (link_up) {
890 			netif_carrier_on(vsi->netdev);
891 			netif_tx_wake_all_queues(vsi->netdev);
892 		} else {
893 			netif_carrier_off(vsi->netdev);
894 			netif_tx_stop_all_queues(vsi->netdev);
895 		}
896 	}
897 }
898 
899 /**
900  * ice_set_dflt_mib - send a default config MIB to the FW
901  * @pf: private PF struct
902  *
903  * This function sends a default configuration MIB to the FW.
904  *
905  * If this function errors out at any point, the driver is still able to
906  * function.  The main impact is that LFC may not operate as expected.
907  * Therefore an error state in this function should be treated with a DBG
908  * message and continue on with driver rebuild/reenable.
909  */
910 static void ice_set_dflt_mib(struct ice_pf *pf)
911 {
912 	struct device *dev = ice_pf_to_dev(pf);
913 	u8 mib_type, *buf, *lldpmib = NULL;
914 	u16 len, typelen, offset = 0;
915 	struct ice_lldp_org_tlv *tlv;
916 	struct ice_hw *hw = &pf->hw;
917 	u32 ouisubtype;
918 
919 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
920 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
921 	if (!lldpmib) {
922 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
923 			__func__);
924 		return;
925 	}
926 
927 	/* Add ETS CFG TLV */
928 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
929 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
930 		   ICE_IEEE_ETS_TLV_LEN);
931 	tlv->typelen = htons(typelen);
932 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
933 		      ICE_IEEE_SUBTYPE_ETS_CFG);
934 	tlv->ouisubtype = htonl(ouisubtype);
935 
936 	buf = tlv->tlvinfo;
937 	buf[0] = 0;
938 
939 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
940 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
941 	 * Octets 13 - 20 are TSA values - leave as zeros
942 	 */
943 	buf[5] = 0x64;
944 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
945 	offset += len + 2;
946 	tlv = (struct ice_lldp_org_tlv *)
947 		((char *)tlv + sizeof(tlv->typelen) + len);
948 
949 	/* Add ETS REC TLV */
950 	buf = tlv->tlvinfo;
951 	tlv->typelen = htons(typelen);
952 
953 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
954 		      ICE_IEEE_SUBTYPE_ETS_REC);
955 	tlv->ouisubtype = htonl(ouisubtype);
956 
957 	/* First octet of buf is reserved
958 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
959 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
960 	 * Octets 13 - 20 are TSA value - leave as zeros
961 	 */
962 	buf[5] = 0x64;
963 	offset += len + 2;
964 	tlv = (struct ice_lldp_org_tlv *)
965 		((char *)tlv + sizeof(tlv->typelen) + len);
966 
967 	/* Add PFC CFG TLV */
968 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
969 		   ICE_IEEE_PFC_TLV_LEN);
970 	tlv->typelen = htons(typelen);
971 
972 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
973 		      ICE_IEEE_SUBTYPE_PFC_CFG);
974 	tlv->ouisubtype = htonl(ouisubtype);
975 
976 	/* Octet 1 left as all zeros - PFC disabled */
977 	buf[0] = 0x08;
978 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
979 	offset += len + 2;
980 
981 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
982 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
983 
984 	kfree(lldpmib);
985 }
986 
987 /**
988  * ice_check_phy_fw_load - check if PHY FW load failed
989  * @pf: pointer to PF struct
990  * @link_cfg_err: bitmap from the link info structure
991  *
992  * check if external PHY FW load failed and print an error message if it did
993  */
994 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
995 {
996 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
997 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
998 		return;
999 	}
1000 
1001 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1002 		return;
1003 
1004 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1005 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1006 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1007 	}
1008 }
1009 
1010 /**
1011  * ice_check_module_power
1012  * @pf: pointer to PF struct
1013  * @link_cfg_err: bitmap from the link info structure
1014  *
1015  * check module power level returned by a previous call to aq_get_link_info
1016  * and print error messages if module power level is not supported
1017  */
1018 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1019 {
1020 	/* if module power level is supported, clear the flag */
1021 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1022 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1023 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1024 		return;
1025 	}
1026 
1027 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1028 	 * above block didn't clear this bit, there's nothing to do
1029 	 */
1030 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1031 		return;
1032 
1033 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1034 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1035 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1036 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1037 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1038 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1039 	}
1040 }
1041 
1042 /**
1043  * ice_check_link_cfg_err - check if link configuration failed
1044  * @pf: pointer to the PF struct
1045  * @link_cfg_err: bitmap from the link info structure
1046  *
1047  * print if any link configuration failure happens due to the value in the
1048  * link_cfg_err parameter in the link info structure
1049  */
1050 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1051 {
1052 	ice_check_module_power(pf, link_cfg_err);
1053 	ice_check_phy_fw_load(pf, link_cfg_err);
1054 }
1055 
1056 /**
1057  * ice_link_event - process the link event
1058  * @pf: PF that the link event is associated with
1059  * @pi: port_info for the port that the link event is associated with
1060  * @link_up: true if the physical link is up and false if it is down
1061  * @link_speed: current link speed received from the link event
1062  *
1063  * Returns 0 on success and negative on failure
1064  */
1065 static int
1066 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1067 	       u16 link_speed)
1068 {
1069 	struct device *dev = ice_pf_to_dev(pf);
1070 	struct ice_phy_info *phy_info;
1071 	struct ice_vsi *vsi;
1072 	u16 old_link_speed;
1073 	bool old_link;
1074 	int status;
1075 
1076 	phy_info = &pi->phy;
1077 	phy_info->link_info_old = phy_info->link_info;
1078 
1079 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1080 	old_link_speed = phy_info->link_info_old.link_speed;
1081 
1082 	/* update the link info structures and re-enable link events,
1083 	 * don't bail on failure due to other book keeping needed
1084 	 */
1085 	status = ice_update_link_info(pi);
1086 	if (status)
1087 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1088 			pi->lport, status,
1089 			ice_aq_str(pi->hw->adminq.sq_last_status));
1090 
1091 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1092 
1093 	/* Check if the link state is up after updating link info, and treat
1094 	 * this event as an UP event since the link is actually UP now.
1095 	 */
1096 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1097 		link_up = true;
1098 
1099 	vsi = ice_get_main_vsi(pf);
1100 	if (!vsi || !vsi->port_info)
1101 		return -EINVAL;
1102 
1103 	/* turn off PHY if media was removed */
1104 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1105 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1106 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1107 		ice_set_link(vsi, false);
1108 	}
1109 
1110 	/* if the old link up/down and speed is the same as the new */
1111 	if (link_up == old_link && link_speed == old_link_speed)
1112 		return 0;
1113 
1114 	ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1115 
1116 	if (ice_is_dcb_active(pf)) {
1117 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1118 			ice_dcb_rebuild(pf);
1119 	} else {
1120 		if (link_up)
1121 			ice_set_dflt_mib(pf);
1122 	}
1123 	ice_vsi_link_event(vsi, link_up);
1124 	ice_print_link_msg(vsi, link_up);
1125 
1126 	ice_vc_notify_link_state(pf);
1127 
1128 	return 0;
1129 }
1130 
1131 /**
1132  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1133  * @pf: board private structure
1134  */
1135 static void ice_watchdog_subtask(struct ice_pf *pf)
1136 {
1137 	int i;
1138 
1139 	/* if interface is down do nothing */
1140 	if (test_bit(ICE_DOWN, pf->state) ||
1141 	    test_bit(ICE_CFG_BUSY, pf->state))
1142 		return;
1143 
1144 	/* make sure we don't do these things too often */
1145 	if (time_before(jiffies,
1146 			pf->serv_tmr_prev + pf->serv_tmr_period))
1147 		return;
1148 
1149 	pf->serv_tmr_prev = jiffies;
1150 
1151 	/* Update the stats for active netdevs so the network stack
1152 	 * can look at updated numbers whenever it cares to
1153 	 */
1154 	ice_update_pf_stats(pf);
1155 	ice_for_each_vsi(pf, i)
1156 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1157 			ice_update_vsi_stats(pf->vsi[i]);
1158 }
1159 
1160 /**
1161  * ice_init_link_events - enable/initialize link events
1162  * @pi: pointer to the port_info instance
1163  *
1164  * Returns -EIO on failure, 0 on success
1165  */
1166 static int ice_init_link_events(struct ice_port_info *pi)
1167 {
1168 	u16 mask;
1169 
1170 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1171 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1172 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1173 
1174 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1175 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1176 			pi->lport);
1177 		return -EIO;
1178 	}
1179 
1180 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1181 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1182 			pi->lport);
1183 		return -EIO;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 /**
1190  * ice_handle_link_event - handle link event via ARQ
1191  * @pf: PF that the link event is associated with
1192  * @event: event structure containing link status info
1193  */
1194 static int
1195 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1196 {
1197 	struct ice_aqc_get_link_status_data *link_data;
1198 	struct ice_port_info *port_info;
1199 	int status;
1200 
1201 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1202 	port_info = pf->hw.port_info;
1203 	if (!port_info)
1204 		return -EINVAL;
1205 
1206 	status = ice_link_event(pf, port_info,
1207 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1208 				le16_to_cpu(link_data->link_speed));
1209 	if (status)
1210 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1211 			status);
1212 
1213 	return status;
1214 }
1215 
1216 enum ice_aq_task_state {
1217 	ICE_AQ_TASK_WAITING = 0,
1218 	ICE_AQ_TASK_COMPLETE,
1219 	ICE_AQ_TASK_CANCELED,
1220 };
1221 
1222 struct ice_aq_task {
1223 	struct hlist_node entry;
1224 
1225 	u16 opcode;
1226 	struct ice_rq_event_info *event;
1227 	enum ice_aq_task_state state;
1228 };
1229 
1230 /**
1231  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1232  * @pf: pointer to the PF private structure
1233  * @opcode: the opcode to wait for
1234  * @timeout: how long to wait, in jiffies
1235  * @event: storage for the event info
1236  *
1237  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1238  * current thread will be put to sleep until the specified event occurs or
1239  * until the given timeout is reached.
1240  *
1241  * To obtain only the descriptor contents, pass an event without an allocated
1242  * msg_buf. If the complete data buffer is desired, allocate the
1243  * event->msg_buf with enough space ahead of time.
1244  *
1245  * Returns: zero on success, or a negative error code on failure.
1246  */
1247 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1248 			  struct ice_rq_event_info *event)
1249 {
1250 	struct device *dev = ice_pf_to_dev(pf);
1251 	struct ice_aq_task *task;
1252 	unsigned long start;
1253 	long ret;
1254 	int err;
1255 
1256 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1257 	if (!task)
1258 		return -ENOMEM;
1259 
1260 	INIT_HLIST_NODE(&task->entry);
1261 	task->opcode = opcode;
1262 	task->event = event;
1263 	task->state = ICE_AQ_TASK_WAITING;
1264 
1265 	spin_lock_bh(&pf->aq_wait_lock);
1266 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1267 	spin_unlock_bh(&pf->aq_wait_lock);
1268 
1269 	start = jiffies;
1270 
1271 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1272 					       timeout);
1273 	switch (task->state) {
1274 	case ICE_AQ_TASK_WAITING:
1275 		err = ret < 0 ? ret : -ETIMEDOUT;
1276 		break;
1277 	case ICE_AQ_TASK_CANCELED:
1278 		err = ret < 0 ? ret : -ECANCELED;
1279 		break;
1280 	case ICE_AQ_TASK_COMPLETE:
1281 		err = ret < 0 ? ret : 0;
1282 		break;
1283 	default:
1284 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1285 		err = -EINVAL;
1286 		break;
1287 	}
1288 
1289 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1290 		jiffies_to_msecs(jiffies - start),
1291 		jiffies_to_msecs(timeout),
1292 		opcode);
1293 
1294 	spin_lock_bh(&pf->aq_wait_lock);
1295 	hlist_del(&task->entry);
1296 	spin_unlock_bh(&pf->aq_wait_lock);
1297 	kfree(task);
1298 
1299 	return err;
1300 }
1301 
1302 /**
1303  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1304  * @pf: pointer to the PF private structure
1305  * @opcode: the opcode of the event
1306  * @event: the event to check
1307  *
1308  * Loops over the current list of pending threads waiting for an AdminQ event.
1309  * For each matching task, copy the contents of the event into the task
1310  * structure and wake up the thread.
1311  *
1312  * If multiple threads wait for the same opcode, they will all be woken up.
1313  *
1314  * Note that event->msg_buf will only be duplicated if the event has a buffer
1315  * with enough space already allocated. Otherwise, only the descriptor and
1316  * message length will be copied.
1317  *
1318  * Returns: true if an event was found, false otherwise
1319  */
1320 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1321 				struct ice_rq_event_info *event)
1322 {
1323 	struct ice_aq_task *task;
1324 	bool found = false;
1325 
1326 	spin_lock_bh(&pf->aq_wait_lock);
1327 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1328 		if (task->state || task->opcode != opcode)
1329 			continue;
1330 
1331 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1332 		task->event->msg_len = event->msg_len;
1333 
1334 		/* Only copy the data buffer if a destination was set */
1335 		if (task->event->msg_buf &&
1336 		    task->event->buf_len > event->buf_len) {
1337 			memcpy(task->event->msg_buf, event->msg_buf,
1338 			       event->buf_len);
1339 			task->event->buf_len = event->buf_len;
1340 		}
1341 
1342 		task->state = ICE_AQ_TASK_COMPLETE;
1343 		found = true;
1344 	}
1345 	spin_unlock_bh(&pf->aq_wait_lock);
1346 
1347 	if (found)
1348 		wake_up(&pf->aq_wait_queue);
1349 }
1350 
1351 /**
1352  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1353  * @pf: the PF private structure
1354  *
1355  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1356  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1357  */
1358 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1359 {
1360 	struct ice_aq_task *task;
1361 
1362 	spin_lock_bh(&pf->aq_wait_lock);
1363 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1364 		task->state = ICE_AQ_TASK_CANCELED;
1365 	spin_unlock_bh(&pf->aq_wait_lock);
1366 
1367 	wake_up(&pf->aq_wait_queue);
1368 }
1369 
1370 /**
1371  * __ice_clean_ctrlq - helper function to clean controlq rings
1372  * @pf: ptr to struct ice_pf
1373  * @q_type: specific Control queue type
1374  */
1375 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1376 {
1377 	struct device *dev = ice_pf_to_dev(pf);
1378 	struct ice_rq_event_info event;
1379 	struct ice_hw *hw = &pf->hw;
1380 	struct ice_ctl_q_info *cq;
1381 	u16 pending, i = 0;
1382 	const char *qtype;
1383 	u32 oldval, val;
1384 
1385 	/* Do not clean control queue if/when PF reset fails */
1386 	if (test_bit(ICE_RESET_FAILED, pf->state))
1387 		return 0;
1388 
1389 	switch (q_type) {
1390 	case ICE_CTL_Q_ADMIN:
1391 		cq = &hw->adminq;
1392 		qtype = "Admin";
1393 		break;
1394 	case ICE_CTL_Q_SB:
1395 		cq = &hw->sbq;
1396 		qtype = "Sideband";
1397 		break;
1398 	case ICE_CTL_Q_MAILBOX:
1399 		cq = &hw->mailboxq;
1400 		qtype = "Mailbox";
1401 		/* we are going to try to detect a malicious VF, so set the
1402 		 * state to begin detection
1403 		 */
1404 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1405 		break;
1406 	default:
1407 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1408 		return 0;
1409 	}
1410 
1411 	/* check for error indications - PF_xx_AxQLEN register layout for
1412 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1413 	 */
1414 	val = rd32(hw, cq->rq.len);
1415 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1416 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1417 		oldval = val;
1418 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1419 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1420 				qtype);
1421 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1422 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1423 				qtype);
1424 		}
1425 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1426 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1427 				qtype);
1428 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1429 			 PF_FW_ARQLEN_ARQCRIT_M);
1430 		if (oldval != val)
1431 			wr32(hw, cq->rq.len, val);
1432 	}
1433 
1434 	val = rd32(hw, cq->sq.len);
1435 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1436 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1437 		oldval = val;
1438 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1439 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1440 				qtype);
1441 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1442 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1443 				qtype);
1444 		}
1445 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1446 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1447 				qtype);
1448 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1449 			 PF_FW_ATQLEN_ATQCRIT_M);
1450 		if (oldval != val)
1451 			wr32(hw, cq->sq.len, val);
1452 	}
1453 
1454 	event.buf_len = cq->rq_buf_size;
1455 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1456 	if (!event.msg_buf)
1457 		return 0;
1458 
1459 	do {
1460 		u16 opcode;
1461 		int ret;
1462 
1463 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1464 		if (ret == -EALREADY)
1465 			break;
1466 		if (ret) {
1467 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1468 				ret);
1469 			break;
1470 		}
1471 
1472 		opcode = le16_to_cpu(event.desc.opcode);
1473 
1474 		/* Notify any thread that might be waiting for this event */
1475 		ice_aq_check_events(pf, opcode, &event);
1476 
1477 		switch (opcode) {
1478 		case ice_aqc_opc_get_link_status:
1479 			if (ice_handle_link_event(pf, &event))
1480 				dev_err(dev, "Could not handle link event\n");
1481 			break;
1482 		case ice_aqc_opc_event_lan_overflow:
1483 			ice_vf_lan_overflow_event(pf, &event);
1484 			break;
1485 		case ice_mbx_opc_send_msg_to_pf:
1486 			if (!ice_is_malicious_vf(pf, &event, i, pending))
1487 				ice_vc_process_vf_msg(pf, &event);
1488 			break;
1489 		case ice_aqc_opc_fw_logging:
1490 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1491 			break;
1492 		case ice_aqc_opc_lldp_set_mib_change:
1493 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1494 			break;
1495 		default:
1496 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1497 				qtype, opcode);
1498 			break;
1499 		}
1500 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1501 
1502 	kfree(event.msg_buf);
1503 
1504 	return pending && (i == ICE_DFLT_IRQ_WORK);
1505 }
1506 
1507 /**
1508  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1509  * @hw: pointer to hardware info
1510  * @cq: control queue information
1511  *
1512  * returns true if there are pending messages in a queue, false if there aren't
1513  */
1514 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1515 {
1516 	u16 ntu;
1517 
1518 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1519 	return cq->rq.next_to_clean != ntu;
1520 }
1521 
1522 /**
1523  * ice_clean_adminq_subtask - clean the AdminQ rings
1524  * @pf: board private structure
1525  */
1526 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1527 {
1528 	struct ice_hw *hw = &pf->hw;
1529 
1530 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1531 		return;
1532 
1533 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1534 		return;
1535 
1536 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1537 
1538 	/* There might be a situation where new messages arrive to a control
1539 	 * queue between processing the last message and clearing the
1540 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1541 	 * ice_ctrlq_pending) and process new messages if any.
1542 	 */
1543 	if (ice_ctrlq_pending(hw, &hw->adminq))
1544 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1545 
1546 	ice_flush(hw);
1547 }
1548 
1549 /**
1550  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1551  * @pf: board private structure
1552  */
1553 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1554 {
1555 	struct ice_hw *hw = &pf->hw;
1556 
1557 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1558 		return;
1559 
1560 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1561 		return;
1562 
1563 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1564 
1565 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1566 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1567 
1568 	ice_flush(hw);
1569 }
1570 
1571 /**
1572  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1573  * @pf: board private structure
1574  */
1575 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1576 {
1577 	struct ice_hw *hw = &pf->hw;
1578 
1579 	/* Nothing to do here if sideband queue is not supported */
1580 	if (!ice_is_sbq_supported(hw)) {
1581 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1582 		return;
1583 	}
1584 
1585 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1586 		return;
1587 
1588 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1589 		return;
1590 
1591 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1592 
1593 	if (ice_ctrlq_pending(hw, &hw->sbq))
1594 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1595 
1596 	ice_flush(hw);
1597 }
1598 
1599 /**
1600  * ice_service_task_schedule - schedule the service task to wake up
1601  * @pf: board private structure
1602  *
1603  * If not already scheduled, this puts the task into the work queue.
1604  */
1605 void ice_service_task_schedule(struct ice_pf *pf)
1606 {
1607 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1608 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1609 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1610 		queue_work(ice_wq, &pf->serv_task);
1611 }
1612 
1613 /**
1614  * ice_service_task_complete - finish up the service task
1615  * @pf: board private structure
1616  */
1617 static void ice_service_task_complete(struct ice_pf *pf)
1618 {
1619 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1620 
1621 	/* force memory (pf->state) to sync before next service task */
1622 	smp_mb__before_atomic();
1623 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1624 }
1625 
1626 /**
1627  * ice_service_task_stop - stop service task and cancel works
1628  * @pf: board private structure
1629  *
1630  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1631  * 1 otherwise.
1632  */
1633 static int ice_service_task_stop(struct ice_pf *pf)
1634 {
1635 	int ret;
1636 
1637 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1638 
1639 	if (pf->serv_tmr.function)
1640 		del_timer_sync(&pf->serv_tmr);
1641 	if (pf->serv_task.func)
1642 		cancel_work_sync(&pf->serv_task);
1643 
1644 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1645 	return ret;
1646 }
1647 
1648 /**
1649  * ice_service_task_restart - restart service task and schedule works
1650  * @pf: board private structure
1651  *
1652  * This function is needed for suspend and resume works (e.g WoL scenario)
1653  */
1654 static void ice_service_task_restart(struct ice_pf *pf)
1655 {
1656 	clear_bit(ICE_SERVICE_DIS, pf->state);
1657 	ice_service_task_schedule(pf);
1658 }
1659 
1660 /**
1661  * ice_service_timer - timer callback to schedule service task
1662  * @t: pointer to timer_list
1663  */
1664 static void ice_service_timer(struct timer_list *t)
1665 {
1666 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1667 
1668 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1669 	ice_service_task_schedule(pf);
1670 }
1671 
1672 /**
1673  * ice_handle_mdd_event - handle malicious driver detect event
1674  * @pf: pointer to the PF structure
1675  *
1676  * Called from service task. OICR interrupt handler indicates MDD event.
1677  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1678  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1679  * disable the queue, the PF can be configured to reset the VF using ethtool
1680  * private flag mdd-auto-reset-vf.
1681  */
1682 static void ice_handle_mdd_event(struct ice_pf *pf)
1683 {
1684 	struct device *dev = ice_pf_to_dev(pf);
1685 	struct ice_hw *hw = &pf->hw;
1686 	struct ice_vf *vf;
1687 	unsigned int bkt;
1688 	u32 reg;
1689 
1690 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1691 		/* Since the VF MDD event logging is rate limited, check if
1692 		 * there are pending MDD events.
1693 		 */
1694 		ice_print_vfs_mdd_events(pf);
1695 		return;
1696 	}
1697 
1698 	/* find what triggered an MDD event */
1699 	reg = rd32(hw, GL_MDET_TX_PQM);
1700 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1701 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1702 				GL_MDET_TX_PQM_PF_NUM_S;
1703 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1704 				GL_MDET_TX_PQM_VF_NUM_S;
1705 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1706 				GL_MDET_TX_PQM_MAL_TYPE_S;
1707 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1708 				GL_MDET_TX_PQM_QNUM_S);
1709 
1710 		if (netif_msg_tx_err(pf))
1711 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1712 				 event, queue, pf_num, vf_num);
1713 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1714 	}
1715 
1716 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1717 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1718 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1719 				GL_MDET_TX_TCLAN_PF_NUM_S;
1720 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1721 				GL_MDET_TX_TCLAN_VF_NUM_S;
1722 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1723 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1724 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1725 				GL_MDET_TX_TCLAN_QNUM_S);
1726 
1727 		if (netif_msg_tx_err(pf))
1728 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1729 				 event, queue, pf_num, vf_num);
1730 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1731 	}
1732 
1733 	reg = rd32(hw, GL_MDET_RX);
1734 	if (reg & GL_MDET_RX_VALID_M) {
1735 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1736 				GL_MDET_RX_PF_NUM_S;
1737 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1738 				GL_MDET_RX_VF_NUM_S;
1739 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1740 				GL_MDET_RX_MAL_TYPE_S;
1741 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1742 				GL_MDET_RX_QNUM_S);
1743 
1744 		if (netif_msg_rx_err(pf))
1745 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1746 				 event, queue, pf_num, vf_num);
1747 		wr32(hw, GL_MDET_RX, 0xffffffff);
1748 	}
1749 
1750 	/* check to see if this PF caused an MDD event */
1751 	reg = rd32(hw, PF_MDET_TX_PQM);
1752 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1753 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1754 		if (netif_msg_tx_err(pf))
1755 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1756 	}
1757 
1758 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1759 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1760 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1761 		if (netif_msg_tx_err(pf))
1762 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1763 	}
1764 
1765 	reg = rd32(hw, PF_MDET_RX);
1766 	if (reg & PF_MDET_RX_VALID_M) {
1767 		wr32(hw, PF_MDET_RX, 0xFFFF);
1768 		if (netif_msg_rx_err(pf))
1769 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1770 	}
1771 
1772 	/* Check to see if one of the VFs caused an MDD event, and then
1773 	 * increment counters and set print pending
1774 	 */
1775 	mutex_lock(&pf->vfs.table_lock);
1776 	ice_for_each_vf(pf, bkt, vf) {
1777 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1778 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1779 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1780 			vf->mdd_tx_events.count++;
1781 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1782 			if (netif_msg_tx_err(pf))
1783 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1784 					 vf->vf_id);
1785 		}
1786 
1787 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1788 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1789 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1790 			vf->mdd_tx_events.count++;
1791 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1792 			if (netif_msg_tx_err(pf))
1793 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1794 					 vf->vf_id);
1795 		}
1796 
1797 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1798 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1799 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1800 			vf->mdd_tx_events.count++;
1801 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1802 			if (netif_msg_tx_err(pf))
1803 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1804 					 vf->vf_id);
1805 		}
1806 
1807 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1808 		if (reg & VP_MDET_RX_VALID_M) {
1809 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1810 			vf->mdd_rx_events.count++;
1811 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1812 			if (netif_msg_rx_err(pf))
1813 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1814 					 vf->vf_id);
1815 
1816 			/* Since the queue is disabled on VF Rx MDD events, the
1817 			 * PF can be configured to reset the VF through ethtool
1818 			 * private flag mdd-auto-reset-vf.
1819 			 */
1820 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1821 				/* VF MDD event counters will be cleared by
1822 				 * reset, so print the event prior to reset.
1823 				 */
1824 				ice_print_vf_rx_mdd_event(vf);
1825 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1826 			}
1827 		}
1828 	}
1829 	mutex_unlock(&pf->vfs.table_lock);
1830 
1831 	ice_print_vfs_mdd_events(pf);
1832 }
1833 
1834 /**
1835  * ice_force_phys_link_state - Force the physical link state
1836  * @vsi: VSI to force the physical link state to up/down
1837  * @link_up: true/false indicates to set the physical link to up/down
1838  *
1839  * Force the physical link state by getting the current PHY capabilities from
1840  * hardware and setting the PHY config based on the determined capabilities. If
1841  * link changes a link event will be triggered because both the Enable Automatic
1842  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1843  *
1844  * Returns 0 on success, negative on failure
1845  */
1846 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1847 {
1848 	struct ice_aqc_get_phy_caps_data *pcaps;
1849 	struct ice_aqc_set_phy_cfg_data *cfg;
1850 	struct ice_port_info *pi;
1851 	struct device *dev;
1852 	int retcode;
1853 
1854 	if (!vsi || !vsi->port_info || !vsi->back)
1855 		return -EINVAL;
1856 	if (vsi->type != ICE_VSI_PF)
1857 		return 0;
1858 
1859 	dev = ice_pf_to_dev(vsi->back);
1860 
1861 	pi = vsi->port_info;
1862 
1863 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1864 	if (!pcaps)
1865 		return -ENOMEM;
1866 
1867 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1868 				      NULL);
1869 	if (retcode) {
1870 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1871 			vsi->vsi_num, retcode);
1872 		retcode = -EIO;
1873 		goto out;
1874 	}
1875 
1876 	/* No change in link */
1877 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1878 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1879 		goto out;
1880 
1881 	/* Use the current user PHY configuration. The current user PHY
1882 	 * configuration is initialized during probe from PHY capabilities
1883 	 * software mode, and updated on set PHY configuration.
1884 	 */
1885 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1886 	if (!cfg) {
1887 		retcode = -ENOMEM;
1888 		goto out;
1889 	}
1890 
1891 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1892 	if (link_up)
1893 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1894 	else
1895 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1896 
1897 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1898 	if (retcode) {
1899 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1900 			vsi->vsi_num, retcode);
1901 		retcode = -EIO;
1902 	}
1903 
1904 	kfree(cfg);
1905 out:
1906 	kfree(pcaps);
1907 	return retcode;
1908 }
1909 
1910 /**
1911  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1912  * @pi: port info structure
1913  *
1914  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1915  */
1916 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1917 {
1918 	struct ice_aqc_get_phy_caps_data *pcaps;
1919 	struct ice_pf *pf = pi->hw->back;
1920 	int err;
1921 
1922 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1923 	if (!pcaps)
1924 		return -ENOMEM;
1925 
1926 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1927 				  pcaps, NULL);
1928 
1929 	if (err) {
1930 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1931 		goto out;
1932 	}
1933 
1934 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1935 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1936 
1937 out:
1938 	kfree(pcaps);
1939 	return err;
1940 }
1941 
1942 /**
1943  * ice_init_link_dflt_override - Initialize link default override
1944  * @pi: port info structure
1945  *
1946  * Initialize link default override and PHY total port shutdown during probe
1947  */
1948 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1949 {
1950 	struct ice_link_default_override_tlv *ldo;
1951 	struct ice_pf *pf = pi->hw->back;
1952 
1953 	ldo = &pf->link_dflt_override;
1954 	if (ice_get_link_default_override(ldo, pi))
1955 		return;
1956 
1957 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1958 		return;
1959 
1960 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1961 	 * ethtool private flag) for ports with Port Disable bit set.
1962 	 */
1963 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1964 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1965 }
1966 
1967 /**
1968  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1969  * @pi: port info structure
1970  *
1971  * If default override is enabled, initialize the user PHY cfg speed and FEC
1972  * settings using the default override mask from the NVM.
1973  *
1974  * The PHY should only be configured with the default override settings the
1975  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1976  * is used to indicate that the user PHY cfg default override is initialized
1977  * and the PHY has not been configured with the default override settings. The
1978  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1979  * configured.
1980  *
1981  * This function should be called only if the FW doesn't support default
1982  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1983  */
1984 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1985 {
1986 	struct ice_link_default_override_tlv *ldo;
1987 	struct ice_aqc_set_phy_cfg_data *cfg;
1988 	struct ice_phy_info *phy = &pi->phy;
1989 	struct ice_pf *pf = pi->hw->back;
1990 
1991 	ldo = &pf->link_dflt_override;
1992 
1993 	/* If link default override is enabled, use to mask NVM PHY capabilities
1994 	 * for speed and FEC default configuration.
1995 	 */
1996 	cfg = &phy->curr_user_phy_cfg;
1997 
1998 	if (ldo->phy_type_low || ldo->phy_type_high) {
1999 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2000 				    cpu_to_le64(ldo->phy_type_low);
2001 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2002 				     cpu_to_le64(ldo->phy_type_high);
2003 	}
2004 	cfg->link_fec_opt = ldo->fec_options;
2005 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2006 
2007 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2008 }
2009 
2010 /**
2011  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2012  * @pi: port info structure
2013  *
2014  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2015  * mode to default. The PHY defaults are from get PHY capabilities topology
2016  * with media so call when media is first available. An error is returned if
2017  * called when media is not available. The PHY initialization completed state is
2018  * set here.
2019  *
2020  * These configurations are used when setting PHY
2021  * configuration. The user PHY configuration is updated on set PHY
2022  * configuration. Returns 0 on success, negative on failure
2023  */
2024 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2025 {
2026 	struct ice_aqc_get_phy_caps_data *pcaps;
2027 	struct ice_phy_info *phy = &pi->phy;
2028 	struct ice_pf *pf = pi->hw->back;
2029 	int err;
2030 
2031 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2032 		return -EIO;
2033 
2034 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2035 	if (!pcaps)
2036 		return -ENOMEM;
2037 
2038 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2039 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2040 					  pcaps, NULL);
2041 	else
2042 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2043 					  pcaps, NULL);
2044 	if (err) {
2045 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2046 		goto err_out;
2047 	}
2048 
2049 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2050 
2051 	/* check if lenient mode is supported and enabled */
2052 	if (ice_fw_supports_link_override(pi->hw) &&
2053 	    !(pcaps->module_compliance_enforcement &
2054 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2055 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2056 
2057 		/* if the FW supports default PHY configuration mode, then the driver
2058 		 * does not have to apply link override settings. If not,
2059 		 * initialize user PHY configuration with link override values
2060 		 */
2061 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2062 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2063 			ice_init_phy_cfg_dflt_override(pi);
2064 			goto out;
2065 		}
2066 	}
2067 
2068 	/* if link default override is not enabled, set user flow control and
2069 	 * FEC settings based on what get_phy_caps returned
2070 	 */
2071 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2072 						      pcaps->link_fec_options);
2073 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2074 
2075 out:
2076 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2077 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2078 err_out:
2079 	kfree(pcaps);
2080 	return err;
2081 }
2082 
2083 /**
2084  * ice_configure_phy - configure PHY
2085  * @vsi: VSI of PHY
2086  *
2087  * Set the PHY configuration. If the current PHY configuration is the same as
2088  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2089  * configure the based get PHY capabilities for topology with media.
2090  */
2091 static int ice_configure_phy(struct ice_vsi *vsi)
2092 {
2093 	struct device *dev = ice_pf_to_dev(vsi->back);
2094 	struct ice_port_info *pi = vsi->port_info;
2095 	struct ice_aqc_get_phy_caps_data *pcaps;
2096 	struct ice_aqc_set_phy_cfg_data *cfg;
2097 	struct ice_phy_info *phy = &pi->phy;
2098 	struct ice_pf *pf = vsi->back;
2099 	int err;
2100 
2101 	/* Ensure we have media as we cannot configure a medialess port */
2102 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2103 		return -EPERM;
2104 
2105 	ice_print_topo_conflict(vsi);
2106 
2107 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2108 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2109 		return -EPERM;
2110 
2111 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2112 		return ice_force_phys_link_state(vsi, true);
2113 
2114 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2115 	if (!pcaps)
2116 		return -ENOMEM;
2117 
2118 	/* Get current PHY config */
2119 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2120 				  NULL);
2121 	if (err) {
2122 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2123 			vsi->vsi_num, err);
2124 		goto done;
2125 	}
2126 
2127 	/* If PHY enable link is configured and configuration has not changed,
2128 	 * there's nothing to do
2129 	 */
2130 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2131 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2132 		goto done;
2133 
2134 	/* Use PHY topology as baseline for configuration */
2135 	memset(pcaps, 0, sizeof(*pcaps));
2136 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2137 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2138 					  pcaps, NULL);
2139 	else
2140 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2141 					  pcaps, NULL);
2142 	if (err) {
2143 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2144 			vsi->vsi_num, err);
2145 		goto done;
2146 	}
2147 
2148 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2149 	if (!cfg) {
2150 		err = -ENOMEM;
2151 		goto done;
2152 	}
2153 
2154 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2155 
2156 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2157 	 * ice_init_phy_user_cfg_ldo.
2158 	 */
2159 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2160 			       vsi->back->state)) {
2161 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2162 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2163 	} else {
2164 		u64 phy_low = 0, phy_high = 0;
2165 
2166 		ice_update_phy_type(&phy_low, &phy_high,
2167 				    pi->phy.curr_user_speed_req);
2168 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2169 		cfg->phy_type_high = pcaps->phy_type_high &
2170 				     cpu_to_le64(phy_high);
2171 	}
2172 
2173 	/* Can't provide what was requested; use PHY capabilities */
2174 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2175 		cfg->phy_type_low = pcaps->phy_type_low;
2176 		cfg->phy_type_high = pcaps->phy_type_high;
2177 	}
2178 
2179 	/* FEC */
2180 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2181 
2182 	/* Can't provide what was requested; use PHY capabilities */
2183 	if (cfg->link_fec_opt !=
2184 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2185 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2186 		cfg->link_fec_opt = pcaps->link_fec_options;
2187 	}
2188 
2189 	/* Flow Control - always supported; no need to check against
2190 	 * capabilities
2191 	 */
2192 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2193 
2194 	/* Enable link and link update */
2195 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2196 
2197 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2198 	if (err)
2199 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2200 			vsi->vsi_num, err);
2201 
2202 	kfree(cfg);
2203 done:
2204 	kfree(pcaps);
2205 	return err;
2206 }
2207 
2208 /**
2209  * ice_check_media_subtask - Check for media
2210  * @pf: pointer to PF struct
2211  *
2212  * If media is available, then initialize PHY user configuration if it is not
2213  * been, and configure the PHY if the interface is up.
2214  */
2215 static void ice_check_media_subtask(struct ice_pf *pf)
2216 {
2217 	struct ice_port_info *pi;
2218 	struct ice_vsi *vsi;
2219 	int err;
2220 
2221 	/* No need to check for media if it's already present */
2222 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2223 		return;
2224 
2225 	vsi = ice_get_main_vsi(pf);
2226 	if (!vsi)
2227 		return;
2228 
2229 	/* Refresh link info and check if media is present */
2230 	pi = vsi->port_info;
2231 	err = ice_update_link_info(pi);
2232 	if (err)
2233 		return;
2234 
2235 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2236 
2237 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2238 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2239 			ice_init_phy_user_cfg(pi);
2240 
2241 		/* PHY settings are reset on media insertion, reconfigure
2242 		 * PHY to preserve settings.
2243 		 */
2244 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2245 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2246 			return;
2247 
2248 		err = ice_configure_phy(vsi);
2249 		if (!err)
2250 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2251 
2252 		/* A Link Status Event will be generated; the event handler
2253 		 * will complete bringing the interface up
2254 		 */
2255 	}
2256 }
2257 
2258 /**
2259  * ice_service_task - manage and run subtasks
2260  * @work: pointer to work_struct contained by the PF struct
2261  */
2262 static void ice_service_task(struct work_struct *work)
2263 {
2264 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2265 	unsigned long start_time = jiffies;
2266 
2267 	/* subtasks */
2268 
2269 	/* process reset requests first */
2270 	ice_reset_subtask(pf);
2271 
2272 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2273 	if (ice_is_reset_in_progress(pf->state) ||
2274 	    test_bit(ICE_SUSPENDED, pf->state) ||
2275 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2276 		ice_service_task_complete(pf);
2277 		return;
2278 	}
2279 
2280 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2281 		struct iidc_event *event;
2282 
2283 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2284 		if (event) {
2285 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2286 			/* report the entire OICR value to AUX driver */
2287 			swap(event->reg, pf->oicr_err_reg);
2288 			ice_send_event_to_aux(pf, event);
2289 			kfree(event);
2290 		}
2291 	}
2292 
2293 	if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2294 		/* Plug aux device per request */
2295 		ice_plug_aux_dev(pf);
2296 
2297 		/* Mark plugging as done but check whether unplug was
2298 		 * requested during ice_plug_aux_dev() call
2299 		 * (e.g. from ice_clear_rdma_cap()) and if so then
2300 		 * plug aux device.
2301 		 */
2302 		if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2303 			ice_unplug_aux_dev(pf);
2304 	}
2305 
2306 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2307 		struct iidc_event *event;
2308 
2309 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2310 		if (event) {
2311 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2312 			ice_send_event_to_aux(pf, event);
2313 			kfree(event);
2314 		}
2315 	}
2316 
2317 	ice_clean_adminq_subtask(pf);
2318 	ice_check_media_subtask(pf);
2319 	ice_check_for_hang_subtask(pf);
2320 	ice_sync_fltr_subtask(pf);
2321 	ice_handle_mdd_event(pf);
2322 	ice_watchdog_subtask(pf);
2323 
2324 	if (ice_is_safe_mode(pf)) {
2325 		ice_service_task_complete(pf);
2326 		return;
2327 	}
2328 
2329 	ice_process_vflr_event(pf);
2330 	ice_clean_mailboxq_subtask(pf);
2331 	ice_clean_sbq_subtask(pf);
2332 	ice_sync_arfs_fltrs(pf);
2333 	ice_flush_fdir_ctx(pf);
2334 
2335 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2336 	ice_service_task_complete(pf);
2337 
2338 	/* If the tasks have taken longer than one service timer period
2339 	 * or there is more work to be done, reset the service timer to
2340 	 * schedule the service task now.
2341 	 */
2342 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2343 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2344 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2345 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2346 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2347 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2348 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2349 		mod_timer(&pf->serv_tmr, jiffies);
2350 }
2351 
2352 /**
2353  * ice_set_ctrlq_len - helper function to set controlq length
2354  * @hw: pointer to the HW instance
2355  */
2356 static void ice_set_ctrlq_len(struct ice_hw *hw)
2357 {
2358 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2359 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2360 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2361 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2362 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2363 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2364 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2365 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2366 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2367 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2368 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2369 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2370 }
2371 
2372 /**
2373  * ice_schedule_reset - schedule a reset
2374  * @pf: board private structure
2375  * @reset: reset being requested
2376  */
2377 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2378 {
2379 	struct device *dev = ice_pf_to_dev(pf);
2380 
2381 	/* bail out if earlier reset has failed */
2382 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2383 		dev_dbg(dev, "earlier reset has failed\n");
2384 		return -EIO;
2385 	}
2386 	/* bail if reset/recovery already in progress */
2387 	if (ice_is_reset_in_progress(pf->state)) {
2388 		dev_dbg(dev, "Reset already in progress\n");
2389 		return -EBUSY;
2390 	}
2391 
2392 	switch (reset) {
2393 	case ICE_RESET_PFR:
2394 		set_bit(ICE_PFR_REQ, pf->state);
2395 		break;
2396 	case ICE_RESET_CORER:
2397 		set_bit(ICE_CORER_REQ, pf->state);
2398 		break;
2399 	case ICE_RESET_GLOBR:
2400 		set_bit(ICE_GLOBR_REQ, pf->state);
2401 		break;
2402 	default:
2403 		return -EINVAL;
2404 	}
2405 
2406 	ice_service_task_schedule(pf);
2407 	return 0;
2408 }
2409 
2410 /**
2411  * ice_irq_affinity_notify - Callback for affinity changes
2412  * @notify: context as to what irq was changed
2413  * @mask: the new affinity mask
2414  *
2415  * This is a callback function used by the irq_set_affinity_notifier function
2416  * so that we may register to receive changes to the irq affinity masks.
2417  */
2418 static void
2419 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2420 			const cpumask_t *mask)
2421 {
2422 	struct ice_q_vector *q_vector =
2423 		container_of(notify, struct ice_q_vector, affinity_notify);
2424 
2425 	cpumask_copy(&q_vector->affinity_mask, mask);
2426 }
2427 
2428 /**
2429  * ice_irq_affinity_release - Callback for affinity notifier release
2430  * @ref: internal core kernel usage
2431  *
2432  * This is a callback function used by the irq_set_affinity_notifier function
2433  * to inform the current notification subscriber that they will no longer
2434  * receive notifications.
2435  */
2436 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2437 
2438 /**
2439  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2440  * @vsi: the VSI being configured
2441  */
2442 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2443 {
2444 	struct ice_hw *hw = &vsi->back->hw;
2445 	int i;
2446 
2447 	ice_for_each_q_vector(vsi, i)
2448 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2449 
2450 	ice_flush(hw);
2451 	return 0;
2452 }
2453 
2454 /**
2455  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2456  * @vsi: the VSI being configured
2457  * @basename: name for the vector
2458  */
2459 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2460 {
2461 	int q_vectors = vsi->num_q_vectors;
2462 	struct ice_pf *pf = vsi->back;
2463 	int base = vsi->base_vector;
2464 	struct device *dev;
2465 	int rx_int_idx = 0;
2466 	int tx_int_idx = 0;
2467 	int vector, err;
2468 	int irq_num;
2469 
2470 	dev = ice_pf_to_dev(pf);
2471 	for (vector = 0; vector < q_vectors; vector++) {
2472 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2473 
2474 		irq_num = pf->msix_entries[base + vector].vector;
2475 
2476 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2477 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2478 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2479 			tx_int_idx++;
2480 		} else if (q_vector->rx.rx_ring) {
2481 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2482 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2483 		} else if (q_vector->tx.tx_ring) {
2484 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2485 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2486 		} else {
2487 			/* skip this unused q_vector */
2488 			continue;
2489 		}
2490 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2491 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2492 					       IRQF_SHARED, q_vector->name,
2493 					       q_vector);
2494 		else
2495 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2496 					       0, q_vector->name, q_vector);
2497 		if (err) {
2498 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2499 				   err);
2500 			goto free_q_irqs;
2501 		}
2502 
2503 		/* register for affinity change notifications */
2504 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2505 			struct irq_affinity_notify *affinity_notify;
2506 
2507 			affinity_notify = &q_vector->affinity_notify;
2508 			affinity_notify->notify = ice_irq_affinity_notify;
2509 			affinity_notify->release = ice_irq_affinity_release;
2510 			irq_set_affinity_notifier(irq_num, affinity_notify);
2511 		}
2512 
2513 		/* assign the mask for this irq */
2514 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2515 	}
2516 
2517 	err = ice_set_cpu_rx_rmap(vsi);
2518 	if (err) {
2519 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2520 			   vsi->vsi_num, ERR_PTR(err));
2521 		goto free_q_irqs;
2522 	}
2523 
2524 	vsi->irqs_ready = true;
2525 	return 0;
2526 
2527 free_q_irqs:
2528 	while (vector) {
2529 		vector--;
2530 		irq_num = pf->msix_entries[base + vector].vector;
2531 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2532 			irq_set_affinity_notifier(irq_num, NULL);
2533 		irq_set_affinity_hint(irq_num, NULL);
2534 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2535 	}
2536 	return err;
2537 }
2538 
2539 /**
2540  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2541  * @vsi: VSI to setup Tx rings used by XDP
2542  *
2543  * Return 0 on success and negative value on error
2544  */
2545 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2546 {
2547 	struct device *dev = ice_pf_to_dev(vsi->back);
2548 	struct ice_tx_desc *tx_desc;
2549 	int i, j;
2550 
2551 	ice_for_each_xdp_txq(vsi, i) {
2552 		u16 xdp_q_idx = vsi->alloc_txq + i;
2553 		struct ice_ring_stats *ring_stats;
2554 		struct ice_tx_ring *xdp_ring;
2555 
2556 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2557 		if (!xdp_ring)
2558 			goto free_xdp_rings;
2559 
2560 		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2561 		if (!ring_stats) {
2562 			ice_free_tx_ring(xdp_ring);
2563 			goto free_xdp_rings;
2564 		}
2565 
2566 		xdp_ring->ring_stats = ring_stats;
2567 		xdp_ring->q_index = xdp_q_idx;
2568 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2569 		xdp_ring->vsi = vsi;
2570 		xdp_ring->netdev = NULL;
2571 		xdp_ring->dev = dev;
2572 		xdp_ring->count = vsi->num_tx_desc;
2573 		xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2574 		xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2575 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2576 		if (ice_setup_tx_ring(xdp_ring))
2577 			goto free_xdp_rings;
2578 		ice_set_ring_xdp(xdp_ring);
2579 		spin_lock_init(&xdp_ring->tx_lock);
2580 		for (j = 0; j < xdp_ring->count; j++) {
2581 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2582 			tx_desc->cmd_type_offset_bsz = 0;
2583 		}
2584 	}
2585 
2586 	return 0;
2587 
2588 free_xdp_rings:
2589 	for (; i >= 0; i--) {
2590 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2591 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2592 			vsi->xdp_rings[i]->ring_stats = NULL;
2593 			ice_free_tx_ring(vsi->xdp_rings[i]);
2594 		}
2595 	}
2596 	return -ENOMEM;
2597 }
2598 
2599 /**
2600  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2601  * @vsi: VSI to set the bpf prog on
2602  * @prog: the bpf prog pointer
2603  */
2604 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2605 {
2606 	struct bpf_prog *old_prog;
2607 	int i;
2608 
2609 	old_prog = xchg(&vsi->xdp_prog, prog);
2610 	if (old_prog)
2611 		bpf_prog_put(old_prog);
2612 
2613 	ice_for_each_rxq(vsi, i)
2614 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2615 }
2616 
2617 /**
2618  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2619  * @vsi: VSI to bring up Tx rings used by XDP
2620  * @prog: bpf program that will be assigned to VSI
2621  *
2622  * Return 0 on success and negative value on error
2623  */
2624 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2625 {
2626 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2627 	int xdp_rings_rem = vsi->num_xdp_txq;
2628 	struct ice_pf *pf = vsi->back;
2629 	struct ice_qs_cfg xdp_qs_cfg = {
2630 		.qs_mutex = &pf->avail_q_mutex,
2631 		.pf_map = pf->avail_txqs,
2632 		.pf_map_size = pf->max_pf_txqs,
2633 		.q_count = vsi->num_xdp_txq,
2634 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2635 		.vsi_map = vsi->txq_map,
2636 		.vsi_map_offset = vsi->alloc_txq,
2637 		.mapping_mode = ICE_VSI_MAP_CONTIG
2638 	};
2639 	struct device *dev;
2640 	int i, v_idx;
2641 	int status;
2642 
2643 	dev = ice_pf_to_dev(pf);
2644 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2645 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2646 	if (!vsi->xdp_rings)
2647 		return -ENOMEM;
2648 
2649 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2650 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2651 		goto err_map_xdp;
2652 
2653 	if (static_key_enabled(&ice_xdp_locking_key))
2654 		netdev_warn(vsi->netdev,
2655 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2656 
2657 	if (ice_xdp_alloc_setup_rings(vsi))
2658 		goto clear_xdp_rings;
2659 
2660 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2661 	ice_for_each_q_vector(vsi, v_idx) {
2662 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2663 		int xdp_rings_per_v, q_id, q_base;
2664 
2665 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2666 					       vsi->num_q_vectors - v_idx);
2667 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2668 
2669 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2670 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2671 
2672 			xdp_ring->q_vector = q_vector;
2673 			xdp_ring->next = q_vector->tx.tx_ring;
2674 			q_vector->tx.tx_ring = xdp_ring;
2675 		}
2676 		xdp_rings_rem -= xdp_rings_per_v;
2677 	}
2678 
2679 	ice_for_each_rxq(vsi, i) {
2680 		if (static_key_enabled(&ice_xdp_locking_key)) {
2681 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2682 		} else {
2683 			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2684 			struct ice_tx_ring *ring;
2685 
2686 			ice_for_each_tx_ring(ring, q_vector->tx) {
2687 				if (ice_ring_is_xdp(ring)) {
2688 					vsi->rx_rings[i]->xdp_ring = ring;
2689 					break;
2690 				}
2691 			}
2692 		}
2693 		ice_tx_xsk_pool(vsi, i);
2694 	}
2695 
2696 	/* omit the scheduler update if in reset path; XDP queues will be
2697 	 * taken into account at the end of ice_vsi_rebuild, where
2698 	 * ice_cfg_vsi_lan is being called
2699 	 */
2700 	if (ice_is_reset_in_progress(pf->state))
2701 		return 0;
2702 
2703 	/* tell the Tx scheduler that right now we have
2704 	 * additional queues
2705 	 */
2706 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2707 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2708 
2709 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2710 				 max_txqs);
2711 	if (status) {
2712 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2713 			status);
2714 		goto clear_xdp_rings;
2715 	}
2716 
2717 	/* assign the prog only when it's not already present on VSI;
2718 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2719 	 * VSI rebuild that happens under ethtool -L can expose us to
2720 	 * the bpf_prog refcount issues as we would be swapping same
2721 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2722 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2723 	 * this is not harmful as dev_xdp_install bumps the refcount
2724 	 * before calling the op exposed by the driver;
2725 	 */
2726 	if (!ice_is_xdp_ena_vsi(vsi))
2727 		ice_vsi_assign_bpf_prog(vsi, prog);
2728 
2729 	return 0;
2730 clear_xdp_rings:
2731 	ice_for_each_xdp_txq(vsi, i)
2732 		if (vsi->xdp_rings[i]) {
2733 			kfree_rcu(vsi->xdp_rings[i], rcu);
2734 			vsi->xdp_rings[i] = NULL;
2735 		}
2736 
2737 err_map_xdp:
2738 	mutex_lock(&pf->avail_q_mutex);
2739 	ice_for_each_xdp_txq(vsi, i) {
2740 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2741 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2742 	}
2743 	mutex_unlock(&pf->avail_q_mutex);
2744 
2745 	devm_kfree(dev, vsi->xdp_rings);
2746 	return -ENOMEM;
2747 }
2748 
2749 /**
2750  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2751  * @vsi: VSI to remove XDP rings
2752  *
2753  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2754  * resources
2755  */
2756 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2757 {
2758 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2759 	struct ice_pf *pf = vsi->back;
2760 	int i, v_idx;
2761 
2762 	/* q_vectors are freed in reset path so there's no point in detaching
2763 	 * rings; in case of rebuild being triggered not from reset bits
2764 	 * in pf->state won't be set, so additionally check first q_vector
2765 	 * against NULL
2766 	 */
2767 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2768 		goto free_qmap;
2769 
2770 	ice_for_each_q_vector(vsi, v_idx) {
2771 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2772 		struct ice_tx_ring *ring;
2773 
2774 		ice_for_each_tx_ring(ring, q_vector->tx)
2775 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2776 				break;
2777 
2778 		/* restore the value of last node prior to XDP setup */
2779 		q_vector->tx.tx_ring = ring;
2780 	}
2781 
2782 free_qmap:
2783 	mutex_lock(&pf->avail_q_mutex);
2784 	ice_for_each_xdp_txq(vsi, i) {
2785 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2786 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2787 	}
2788 	mutex_unlock(&pf->avail_q_mutex);
2789 
2790 	ice_for_each_xdp_txq(vsi, i)
2791 		if (vsi->xdp_rings[i]) {
2792 			if (vsi->xdp_rings[i]->desc) {
2793 				synchronize_rcu();
2794 				ice_free_tx_ring(vsi->xdp_rings[i]);
2795 			}
2796 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2797 			vsi->xdp_rings[i]->ring_stats = NULL;
2798 			kfree_rcu(vsi->xdp_rings[i], rcu);
2799 			vsi->xdp_rings[i] = NULL;
2800 		}
2801 
2802 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2803 	vsi->xdp_rings = NULL;
2804 
2805 	if (static_key_enabled(&ice_xdp_locking_key))
2806 		static_branch_dec(&ice_xdp_locking_key);
2807 
2808 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2809 		return 0;
2810 
2811 	ice_vsi_assign_bpf_prog(vsi, NULL);
2812 
2813 	/* notify Tx scheduler that we destroyed XDP queues and bring
2814 	 * back the old number of child nodes
2815 	 */
2816 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2817 		max_txqs[i] = vsi->num_txq;
2818 
2819 	/* change number of XDP Tx queues to 0 */
2820 	vsi->num_xdp_txq = 0;
2821 
2822 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2823 			       max_txqs);
2824 }
2825 
2826 /**
2827  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2828  * @vsi: VSI to schedule napi on
2829  */
2830 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2831 {
2832 	int i;
2833 
2834 	ice_for_each_rxq(vsi, i) {
2835 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2836 
2837 		if (rx_ring->xsk_pool)
2838 			napi_schedule(&rx_ring->q_vector->napi);
2839 	}
2840 }
2841 
2842 /**
2843  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2844  * @vsi: VSI to determine the count of XDP Tx qs
2845  *
2846  * returns 0 if Tx qs count is higher than at least half of CPU count,
2847  * -ENOMEM otherwise
2848  */
2849 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2850 {
2851 	u16 avail = ice_get_avail_txq_count(vsi->back);
2852 	u16 cpus = num_possible_cpus();
2853 
2854 	if (avail < cpus / 2)
2855 		return -ENOMEM;
2856 
2857 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2858 
2859 	if (vsi->num_xdp_txq < cpus)
2860 		static_branch_inc(&ice_xdp_locking_key);
2861 
2862 	return 0;
2863 }
2864 
2865 /**
2866  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2867  * @vsi: VSI to setup XDP for
2868  * @prog: XDP program
2869  * @extack: netlink extended ack
2870  */
2871 static int
2872 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2873 		   struct netlink_ext_ack *extack)
2874 {
2875 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2876 	bool if_running = netif_running(vsi->netdev);
2877 	int ret = 0, xdp_ring_err = 0;
2878 
2879 	if (frame_size > vsi->rx_buf_len) {
2880 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2881 		return -EOPNOTSUPP;
2882 	}
2883 
2884 	/* need to stop netdev while setting up the program for Rx rings */
2885 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2886 		ret = ice_down(vsi);
2887 		if (ret) {
2888 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2889 			return ret;
2890 		}
2891 	}
2892 
2893 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2894 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2895 		if (xdp_ring_err) {
2896 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2897 		} else {
2898 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2899 			if (xdp_ring_err)
2900 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2901 		}
2902 		/* reallocate Rx queues that are used for zero-copy */
2903 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2904 		if (xdp_ring_err)
2905 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2906 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2907 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2908 		if (xdp_ring_err)
2909 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2910 		/* reallocate Rx queues that were used for zero-copy */
2911 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2912 		if (xdp_ring_err)
2913 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2914 	} else {
2915 		/* safe to call even when prog == vsi->xdp_prog as
2916 		 * dev_xdp_install in net/core/dev.c incremented prog's
2917 		 * refcount so corresponding bpf_prog_put won't cause
2918 		 * underflow
2919 		 */
2920 		ice_vsi_assign_bpf_prog(vsi, prog);
2921 	}
2922 
2923 	if (if_running)
2924 		ret = ice_up(vsi);
2925 
2926 	if (!ret && prog)
2927 		ice_vsi_rx_napi_schedule(vsi);
2928 
2929 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2930 }
2931 
2932 /**
2933  * ice_xdp_safe_mode - XDP handler for safe mode
2934  * @dev: netdevice
2935  * @xdp: XDP command
2936  */
2937 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2938 			     struct netdev_bpf *xdp)
2939 {
2940 	NL_SET_ERR_MSG_MOD(xdp->extack,
2941 			   "Please provide working DDP firmware package in order to use XDP\n"
2942 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2943 	return -EOPNOTSUPP;
2944 }
2945 
2946 /**
2947  * ice_xdp - implements XDP handler
2948  * @dev: netdevice
2949  * @xdp: XDP command
2950  */
2951 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2952 {
2953 	struct ice_netdev_priv *np = netdev_priv(dev);
2954 	struct ice_vsi *vsi = np->vsi;
2955 
2956 	if (vsi->type != ICE_VSI_PF) {
2957 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2958 		return -EINVAL;
2959 	}
2960 
2961 	switch (xdp->command) {
2962 	case XDP_SETUP_PROG:
2963 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2964 	case XDP_SETUP_XSK_POOL:
2965 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2966 					  xdp->xsk.queue_id);
2967 	default:
2968 		return -EINVAL;
2969 	}
2970 }
2971 
2972 /**
2973  * ice_ena_misc_vector - enable the non-queue interrupts
2974  * @pf: board private structure
2975  */
2976 static void ice_ena_misc_vector(struct ice_pf *pf)
2977 {
2978 	struct ice_hw *hw = &pf->hw;
2979 	u32 val;
2980 
2981 	/* Disable anti-spoof detection interrupt to prevent spurious event
2982 	 * interrupts during a function reset. Anti-spoof functionally is
2983 	 * still supported.
2984 	 */
2985 	val = rd32(hw, GL_MDCK_TX_TDPU);
2986 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2987 	wr32(hw, GL_MDCK_TX_TDPU, val);
2988 
2989 	/* clear things first */
2990 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2991 	rd32(hw, PFINT_OICR);		/* read to clear */
2992 
2993 	val = (PFINT_OICR_ECC_ERR_M |
2994 	       PFINT_OICR_MAL_DETECT_M |
2995 	       PFINT_OICR_GRST_M |
2996 	       PFINT_OICR_PCI_EXCEPTION_M |
2997 	       PFINT_OICR_VFLR_M |
2998 	       PFINT_OICR_HMC_ERR_M |
2999 	       PFINT_OICR_PE_PUSH_M |
3000 	       PFINT_OICR_PE_CRITERR_M);
3001 
3002 	wr32(hw, PFINT_OICR_ENA, val);
3003 
3004 	/* SW_ITR_IDX = 0, but don't change INTENA */
3005 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
3006 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3007 }
3008 
3009 /**
3010  * ice_misc_intr - misc interrupt handler
3011  * @irq: interrupt number
3012  * @data: pointer to a q_vector
3013  */
3014 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3015 {
3016 	struct ice_pf *pf = (struct ice_pf *)data;
3017 	struct ice_hw *hw = &pf->hw;
3018 	irqreturn_t ret = IRQ_NONE;
3019 	struct device *dev;
3020 	u32 oicr, ena_mask;
3021 
3022 	dev = ice_pf_to_dev(pf);
3023 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3024 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3025 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3026 
3027 	oicr = rd32(hw, PFINT_OICR);
3028 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3029 
3030 	if (oicr & PFINT_OICR_SWINT_M) {
3031 		ena_mask &= ~PFINT_OICR_SWINT_M;
3032 		pf->sw_int_count++;
3033 	}
3034 
3035 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3036 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3037 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3038 	}
3039 	if (oicr & PFINT_OICR_VFLR_M) {
3040 		/* disable any further VFLR event notifications */
3041 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3042 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3043 
3044 			reg &= ~PFINT_OICR_VFLR_M;
3045 			wr32(hw, PFINT_OICR_ENA, reg);
3046 		} else {
3047 			ena_mask &= ~PFINT_OICR_VFLR_M;
3048 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3049 		}
3050 	}
3051 
3052 	if (oicr & PFINT_OICR_GRST_M) {
3053 		u32 reset;
3054 
3055 		/* we have a reset warning */
3056 		ena_mask &= ~PFINT_OICR_GRST_M;
3057 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3058 			GLGEN_RSTAT_RESET_TYPE_S;
3059 
3060 		if (reset == ICE_RESET_CORER)
3061 			pf->corer_count++;
3062 		else if (reset == ICE_RESET_GLOBR)
3063 			pf->globr_count++;
3064 		else if (reset == ICE_RESET_EMPR)
3065 			pf->empr_count++;
3066 		else
3067 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3068 
3069 		/* If a reset cycle isn't already in progress, we set a bit in
3070 		 * pf->state so that the service task can start a reset/rebuild.
3071 		 */
3072 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3073 			if (reset == ICE_RESET_CORER)
3074 				set_bit(ICE_CORER_RECV, pf->state);
3075 			else if (reset == ICE_RESET_GLOBR)
3076 				set_bit(ICE_GLOBR_RECV, pf->state);
3077 			else
3078 				set_bit(ICE_EMPR_RECV, pf->state);
3079 
3080 			/* There are couple of different bits at play here.
3081 			 * hw->reset_ongoing indicates whether the hardware is
3082 			 * in reset. This is set to true when a reset interrupt
3083 			 * is received and set back to false after the driver
3084 			 * has determined that the hardware is out of reset.
3085 			 *
3086 			 * ICE_RESET_OICR_RECV in pf->state indicates
3087 			 * that a post reset rebuild is required before the
3088 			 * driver is operational again. This is set above.
3089 			 *
3090 			 * As this is the start of the reset/rebuild cycle, set
3091 			 * both to indicate that.
3092 			 */
3093 			hw->reset_ongoing = true;
3094 		}
3095 	}
3096 
3097 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3098 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3099 		if (!hw->reset_ongoing)
3100 			ret = IRQ_WAKE_THREAD;
3101 	}
3102 
3103 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3104 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3105 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3106 
3107 		/* Save EVENTs from GTSYN register */
3108 		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3109 						     GLTSYN_STAT_EVENT1_M |
3110 						     GLTSYN_STAT_EVENT2_M);
3111 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3112 		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3113 	}
3114 
3115 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3116 	if (oicr & ICE_AUX_CRIT_ERR) {
3117 		pf->oicr_err_reg |= oicr;
3118 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3119 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3120 	}
3121 
3122 	/* Report any remaining unexpected interrupts */
3123 	oicr &= ena_mask;
3124 	if (oicr) {
3125 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3126 		/* If a critical error is pending there is no choice but to
3127 		 * reset the device.
3128 		 */
3129 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3130 			    PFINT_OICR_ECC_ERR_M)) {
3131 			set_bit(ICE_PFR_REQ, pf->state);
3132 			ice_service_task_schedule(pf);
3133 		}
3134 	}
3135 	if (!ret)
3136 		ret = IRQ_HANDLED;
3137 
3138 	ice_service_task_schedule(pf);
3139 	ice_irq_dynamic_ena(hw, NULL, NULL);
3140 
3141 	return ret;
3142 }
3143 
3144 /**
3145  * ice_misc_intr_thread_fn - misc interrupt thread function
3146  * @irq: interrupt number
3147  * @data: pointer to a q_vector
3148  */
3149 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3150 {
3151 	struct ice_pf *pf = data;
3152 
3153 	if (ice_is_reset_in_progress(pf->state))
3154 		return IRQ_HANDLED;
3155 
3156 	while (!ice_ptp_process_ts(pf))
3157 		usleep_range(50, 100);
3158 
3159 	return IRQ_HANDLED;
3160 }
3161 
3162 /**
3163  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3164  * @hw: pointer to HW structure
3165  */
3166 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3167 {
3168 	/* disable Admin queue Interrupt causes */
3169 	wr32(hw, PFINT_FW_CTL,
3170 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3171 
3172 	/* disable Mailbox queue Interrupt causes */
3173 	wr32(hw, PFINT_MBX_CTL,
3174 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3175 
3176 	wr32(hw, PFINT_SB_CTL,
3177 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3178 
3179 	/* disable Control queue Interrupt causes */
3180 	wr32(hw, PFINT_OICR_CTL,
3181 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3182 
3183 	ice_flush(hw);
3184 }
3185 
3186 /**
3187  * ice_free_irq_msix_misc - Unroll misc vector setup
3188  * @pf: board private structure
3189  */
3190 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3191 {
3192 	struct ice_hw *hw = &pf->hw;
3193 
3194 	ice_dis_ctrlq_interrupts(hw);
3195 
3196 	/* disable OICR interrupt */
3197 	wr32(hw, PFINT_OICR_ENA, 0);
3198 	ice_flush(hw);
3199 
3200 	if (pf->msix_entries) {
3201 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3202 		devm_free_irq(ice_pf_to_dev(pf),
3203 			      pf->msix_entries[pf->oicr_idx].vector, pf);
3204 	}
3205 
3206 	pf->num_avail_sw_msix += 1;
3207 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3208 }
3209 
3210 /**
3211  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3212  * @hw: pointer to HW structure
3213  * @reg_idx: HW vector index to associate the control queue interrupts with
3214  */
3215 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3216 {
3217 	u32 val;
3218 
3219 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3220 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3221 	wr32(hw, PFINT_OICR_CTL, val);
3222 
3223 	/* enable Admin queue Interrupt causes */
3224 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3225 	       PFINT_FW_CTL_CAUSE_ENA_M);
3226 	wr32(hw, PFINT_FW_CTL, val);
3227 
3228 	/* enable Mailbox queue Interrupt causes */
3229 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3230 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3231 	wr32(hw, PFINT_MBX_CTL, val);
3232 
3233 	/* This enables Sideband queue Interrupt causes */
3234 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3235 	       PFINT_SB_CTL_CAUSE_ENA_M);
3236 	wr32(hw, PFINT_SB_CTL, val);
3237 
3238 	ice_flush(hw);
3239 }
3240 
3241 /**
3242  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3243  * @pf: board private structure
3244  *
3245  * This sets up the handler for MSIX 0, which is used to manage the
3246  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3247  * when in MSI or Legacy interrupt mode.
3248  */
3249 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3250 {
3251 	struct device *dev = ice_pf_to_dev(pf);
3252 	struct ice_hw *hw = &pf->hw;
3253 	int oicr_idx, err = 0;
3254 
3255 	if (!pf->int_name[0])
3256 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3257 			 dev_driver_string(dev), dev_name(dev));
3258 
3259 	/* Do not request IRQ but do enable OICR interrupt since settings are
3260 	 * lost during reset. Note that this function is called only during
3261 	 * rebuild path and not while reset is in progress.
3262 	 */
3263 	if (ice_is_reset_in_progress(pf->state))
3264 		goto skip_req_irq;
3265 
3266 	/* reserve one vector in irq_tracker for misc interrupts */
3267 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3268 	if (oicr_idx < 0)
3269 		return oicr_idx;
3270 
3271 	pf->num_avail_sw_msix -= 1;
3272 	pf->oicr_idx = (u16)oicr_idx;
3273 
3274 	err = devm_request_threaded_irq(dev,
3275 					pf->msix_entries[pf->oicr_idx].vector,
3276 					ice_misc_intr, ice_misc_intr_thread_fn,
3277 					0, pf->int_name, pf);
3278 	if (err) {
3279 		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3280 			pf->int_name, err);
3281 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3282 		pf->num_avail_sw_msix += 1;
3283 		return err;
3284 	}
3285 
3286 skip_req_irq:
3287 	ice_ena_misc_vector(pf);
3288 
3289 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3290 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3291 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3292 
3293 	ice_flush(hw);
3294 	ice_irq_dynamic_ena(hw, NULL, NULL);
3295 
3296 	return 0;
3297 }
3298 
3299 /**
3300  * ice_napi_add - register NAPI handler for the VSI
3301  * @vsi: VSI for which NAPI handler is to be registered
3302  *
3303  * This function is only called in the driver's load path. Registering the NAPI
3304  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3305  * reset/rebuild, etc.)
3306  */
3307 static void ice_napi_add(struct ice_vsi *vsi)
3308 {
3309 	int v_idx;
3310 
3311 	if (!vsi->netdev)
3312 		return;
3313 
3314 	ice_for_each_q_vector(vsi, v_idx)
3315 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3316 			       ice_napi_poll);
3317 }
3318 
3319 /**
3320  * ice_set_ops - set netdev and ethtools ops for the given netdev
3321  * @netdev: netdev instance
3322  */
3323 static void ice_set_ops(struct net_device *netdev)
3324 {
3325 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3326 
3327 	if (ice_is_safe_mode(pf)) {
3328 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3329 		ice_set_ethtool_safe_mode_ops(netdev);
3330 		return;
3331 	}
3332 
3333 	netdev->netdev_ops = &ice_netdev_ops;
3334 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3335 	ice_set_ethtool_ops(netdev);
3336 }
3337 
3338 /**
3339  * ice_set_netdev_features - set features for the given netdev
3340  * @netdev: netdev instance
3341  */
3342 static void ice_set_netdev_features(struct net_device *netdev)
3343 {
3344 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3345 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3346 	netdev_features_t csumo_features;
3347 	netdev_features_t vlano_features;
3348 	netdev_features_t dflt_features;
3349 	netdev_features_t tso_features;
3350 
3351 	if (ice_is_safe_mode(pf)) {
3352 		/* safe mode */
3353 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3354 		netdev->hw_features = netdev->features;
3355 		return;
3356 	}
3357 
3358 	dflt_features = NETIF_F_SG	|
3359 			NETIF_F_HIGHDMA	|
3360 			NETIF_F_NTUPLE	|
3361 			NETIF_F_RXHASH;
3362 
3363 	csumo_features = NETIF_F_RXCSUM	  |
3364 			 NETIF_F_IP_CSUM  |
3365 			 NETIF_F_SCTP_CRC |
3366 			 NETIF_F_IPV6_CSUM;
3367 
3368 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3369 			 NETIF_F_HW_VLAN_CTAG_TX     |
3370 			 NETIF_F_HW_VLAN_CTAG_RX;
3371 
3372 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3373 	if (is_dvm_ena)
3374 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3375 
3376 	tso_features = NETIF_F_TSO			|
3377 		       NETIF_F_TSO_ECN			|
3378 		       NETIF_F_TSO6			|
3379 		       NETIF_F_GSO_GRE			|
3380 		       NETIF_F_GSO_UDP_TUNNEL		|
3381 		       NETIF_F_GSO_GRE_CSUM		|
3382 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3383 		       NETIF_F_GSO_PARTIAL		|
3384 		       NETIF_F_GSO_IPXIP4		|
3385 		       NETIF_F_GSO_IPXIP6		|
3386 		       NETIF_F_GSO_UDP_L4;
3387 
3388 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3389 					NETIF_F_GSO_GRE_CSUM;
3390 	/* set features that user can change */
3391 	netdev->hw_features = dflt_features | csumo_features |
3392 			      vlano_features | tso_features;
3393 
3394 	/* add support for HW_CSUM on packets with MPLS header */
3395 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3396 				 NETIF_F_TSO     |
3397 				 NETIF_F_TSO6;
3398 
3399 	/* enable features */
3400 	netdev->features |= netdev->hw_features;
3401 
3402 	netdev->hw_features |= NETIF_F_HW_TC;
3403 	netdev->hw_features |= NETIF_F_LOOPBACK;
3404 
3405 	/* encap and VLAN devices inherit default, csumo and tso features */
3406 	netdev->hw_enc_features |= dflt_features | csumo_features |
3407 				   tso_features;
3408 	netdev->vlan_features |= dflt_features | csumo_features |
3409 				 tso_features;
3410 
3411 	/* advertise support but don't enable by default since only one type of
3412 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3413 	 * type turns on the other has to be turned off. This is enforced by the
3414 	 * ice_fix_features() ndo callback.
3415 	 */
3416 	if (is_dvm_ena)
3417 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3418 			NETIF_F_HW_VLAN_STAG_TX;
3419 
3420 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3421 	 * be changed at runtime
3422 	 */
3423 	netdev->hw_features |= NETIF_F_RXFCS;
3424 }
3425 
3426 /**
3427  * ice_cfg_netdev - Allocate, configure and register a netdev
3428  * @vsi: the VSI associated with the new netdev
3429  *
3430  * Returns 0 on success, negative value on failure
3431  */
3432 static int ice_cfg_netdev(struct ice_vsi *vsi)
3433 {
3434 	struct ice_netdev_priv *np;
3435 	struct net_device *netdev;
3436 	u8 mac_addr[ETH_ALEN];
3437 
3438 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3439 				    vsi->alloc_rxq);
3440 	if (!netdev)
3441 		return -ENOMEM;
3442 
3443 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3444 	vsi->netdev = netdev;
3445 	np = netdev_priv(netdev);
3446 	np->vsi = vsi;
3447 
3448 	ice_set_netdev_features(netdev);
3449 
3450 	ice_set_ops(netdev);
3451 
3452 	if (vsi->type == ICE_VSI_PF) {
3453 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3454 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3455 		eth_hw_addr_set(netdev, mac_addr);
3456 		ether_addr_copy(netdev->perm_addr, mac_addr);
3457 	}
3458 
3459 	netdev->priv_flags |= IFF_UNICAST_FLT;
3460 
3461 	/* Setup netdev TC information */
3462 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3463 
3464 	/* setup watchdog timeout value to be 5 second */
3465 	netdev->watchdog_timeo = 5 * HZ;
3466 
3467 	netdev->min_mtu = ETH_MIN_MTU;
3468 	netdev->max_mtu = ICE_MAX_MTU;
3469 
3470 	return 0;
3471 }
3472 
3473 /**
3474  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3475  * @lut: Lookup table
3476  * @rss_table_size: Lookup table size
3477  * @rss_size: Range of queue number for hashing
3478  */
3479 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3480 {
3481 	u16 i;
3482 
3483 	for (i = 0; i < rss_table_size; i++)
3484 		lut[i] = i % rss_size;
3485 }
3486 
3487 /**
3488  * ice_pf_vsi_setup - Set up a PF VSI
3489  * @pf: board private structure
3490  * @pi: pointer to the port_info instance
3491  *
3492  * Returns pointer to the successfully allocated VSI software struct
3493  * on success, otherwise returns NULL on failure.
3494  */
3495 static struct ice_vsi *
3496 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3497 {
3498 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3499 }
3500 
3501 static struct ice_vsi *
3502 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3503 		   struct ice_channel *ch)
3504 {
3505 	return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3506 }
3507 
3508 /**
3509  * ice_ctrl_vsi_setup - Set up a control VSI
3510  * @pf: board private structure
3511  * @pi: pointer to the port_info instance
3512  *
3513  * Returns pointer to the successfully allocated VSI software struct
3514  * on success, otherwise returns NULL on failure.
3515  */
3516 static struct ice_vsi *
3517 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3518 {
3519 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3520 }
3521 
3522 /**
3523  * ice_lb_vsi_setup - Set up a loopback VSI
3524  * @pf: board private structure
3525  * @pi: pointer to the port_info instance
3526  *
3527  * Returns pointer to the successfully allocated VSI software struct
3528  * on success, otherwise returns NULL on failure.
3529  */
3530 struct ice_vsi *
3531 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3532 {
3533 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3534 }
3535 
3536 /**
3537  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3538  * @netdev: network interface to be adjusted
3539  * @proto: VLAN TPID
3540  * @vid: VLAN ID to be added
3541  *
3542  * net_device_ops implementation for adding VLAN IDs
3543  */
3544 static int
3545 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3546 {
3547 	struct ice_netdev_priv *np = netdev_priv(netdev);
3548 	struct ice_vsi_vlan_ops *vlan_ops;
3549 	struct ice_vsi *vsi = np->vsi;
3550 	struct ice_vlan vlan;
3551 	int ret;
3552 
3553 	/* VLAN 0 is added by default during load/reset */
3554 	if (!vid)
3555 		return 0;
3556 
3557 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3558 		usleep_range(1000, 2000);
3559 
3560 	/* Add multicast promisc rule for the VLAN ID to be added if
3561 	 * all-multicast is currently enabled.
3562 	 */
3563 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3564 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3565 					       ICE_MCAST_VLAN_PROMISC_BITS,
3566 					       vid);
3567 		if (ret)
3568 			goto finish;
3569 	}
3570 
3571 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3572 
3573 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3574 	 * packets aren't pruned by the device's internal switch on Rx
3575 	 */
3576 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3577 	ret = vlan_ops->add_vlan(vsi, &vlan);
3578 	if (ret)
3579 		goto finish;
3580 
3581 	/* If all-multicast is currently enabled and this VLAN ID is only one
3582 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3583 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3584 	 */
3585 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3586 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3587 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3588 					   ICE_MCAST_PROMISC_BITS, 0);
3589 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3590 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3591 	}
3592 
3593 finish:
3594 	clear_bit(ICE_CFG_BUSY, vsi->state);
3595 
3596 	return ret;
3597 }
3598 
3599 /**
3600  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3601  * @netdev: network interface to be adjusted
3602  * @proto: VLAN TPID
3603  * @vid: VLAN ID to be removed
3604  *
3605  * net_device_ops implementation for removing VLAN IDs
3606  */
3607 static int
3608 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3609 {
3610 	struct ice_netdev_priv *np = netdev_priv(netdev);
3611 	struct ice_vsi_vlan_ops *vlan_ops;
3612 	struct ice_vsi *vsi = np->vsi;
3613 	struct ice_vlan vlan;
3614 	int ret;
3615 
3616 	/* don't allow removal of VLAN 0 */
3617 	if (!vid)
3618 		return 0;
3619 
3620 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3621 		usleep_range(1000, 2000);
3622 
3623 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3624 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3625 	if (ret) {
3626 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3627 			   vsi->vsi_num);
3628 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3629 	}
3630 
3631 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3632 
3633 	/* Make sure VLAN delete is successful before updating VLAN
3634 	 * information
3635 	 */
3636 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3637 	ret = vlan_ops->del_vlan(vsi, &vlan);
3638 	if (ret)
3639 		goto finish;
3640 
3641 	/* Remove multicast promisc rule for the removed VLAN ID if
3642 	 * all-multicast is enabled.
3643 	 */
3644 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3645 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3646 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3647 
3648 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3649 		/* Update look-up type of multicast promisc rule for VLAN 0
3650 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3651 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3652 		 */
3653 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3654 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3655 						   ICE_MCAST_VLAN_PROMISC_BITS,
3656 						   0);
3657 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3658 						 ICE_MCAST_PROMISC_BITS, 0);
3659 		}
3660 	}
3661 
3662 finish:
3663 	clear_bit(ICE_CFG_BUSY, vsi->state);
3664 
3665 	return ret;
3666 }
3667 
3668 /**
3669  * ice_rep_indr_tc_block_unbind
3670  * @cb_priv: indirection block private data
3671  */
3672 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3673 {
3674 	struct ice_indr_block_priv *indr_priv = cb_priv;
3675 
3676 	list_del(&indr_priv->list);
3677 	kfree(indr_priv);
3678 }
3679 
3680 /**
3681  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3682  * @vsi: VSI struct which has the netdev
3683  */
3684 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3685 {
3686 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3687 
3688 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3689 				 ice_rep_indr_tc_block_unbind);
3690 }
3691 
3692 /**
3693  * ice_tc_indir_block_remove - clean indirect TC block notifications
3694  * @pf: PF structure
3695  */
3696 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3697 {
3698 	struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3699 
3700 	if (!pf_vsi)
3701 		return;
3702 
3703 	ice_tc_indir_block_unregister(pf_vsi);
3704 }
3705 
3706 /**
3707  * ice_tc_indir_block_register - Register TC indirect block notifications
3708  * @vsi: VSI struct which has the netdev
3709  *
3710  * Returns 0 on success, negative value on failure
3711  */
3712 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3713 {
3714 	struct ice_netdev_priv *np;
3715 
3716 	if (!vsi || !vsi->netdev)
3717 		return -EINVAL;
3718 
3719 	np = netdev_priv(vsi->netdev);
3720 
3721 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3722 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3723 }
3724 
3725 /**
3726  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3727  * @pf: board private structure
3728  *
3729  * Returns 0 on success, negative value on failure
3730  */
3731 static int ice_setup_pf_sw(struct ice_pf *pf)
3732 {
3733 	struct device *dev = ice_pf_to_dev(pf);
3734 	bool dvm = ice_is_dvm_ena(&pf->hw);
3735 	struct ice_vsi *vsi;
3736 	int status;
3737 
3738 	if (ice_is_reset_in_progress(pf->state))
3739 		return -EBUSY;
3740 
3741 	status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3742 	if (status)
3743 		return -EIO;
3744 
3745 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3746 	if (!vsi)
3747 		return -ENOMEM;
3748 
3749 	/* init channel list */
3750 	INIT_LIST_HEAD(&vsi->ch_list);
3751 
3752 	status = ice_cfg_netdev(vsi);
3753 	if (status)
3754 		goto unroll_vsi_setup;
3755 	/* netdev has to be configured before setting frame size */
3756 	ice_vsi_cfg_frame_size(vsi);
3757 
3758 	/* init indirect block notifications */
3759 	status = ice_tc_indir_block_register(vsi);
3760 	if (status) {
3761 		dev_err(dev, "Failed to register netdev notifier\n");
3762 		goto unroll_cfg_netdev;
3763 	}
3764 
3765 	/* Setup DCB netlink interface */
3766 	ice_dcbnl_setup(vsi);
3767 
3768 	/* registering the NAPI handler requires both the queues and
3769 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3770 	 * and ice_cfg_netdev() respectively
3771 	 */
3772 	ice_napi_add(vsi);
3773 
3774 	status = ice_init_mac_fltr(pf);
3775 	if (status)
3776 		goto unroll_napi_add;
3777 
3778 	return 0;
3779 
3780 unroll_napi_add:
3781 	ice_tc_indir_block_unregister(vsi);
3782 unroll_cfg_netdev:
3783 	if (vsi) {
3784 		ice_napi_del(vsi);
3785 		if (vsi->netdev) {
3786 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3787 			free_netdev(vsi->netdev);
3788 			vsi->netdev = NULL;
3789 		}
3790 	}
3791 
3792 unroll_vsi_setup:
3793 	ice_vsi_release(vsi);
3794 	return status;
3795 }
3796 
3797 /**
3798  * ice_get_avail_q_count - Get count of queues in use
3799  * @pf_qmap: bitmap to get queue use count from
3800  * @lock: pointer to a mutex that protects access to pf_qmap
3801  * @size: size of the bitmap
3802  */
3803 static u16
3804 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3805 {
3806 	unsigned long bit;
3807 	u16 count = 0;
3808 
3809 	mutex_lock(lock);
3810 	for_each_clear_bit(bit, pf_qmap, size)
3811 		count++;
3812 	mutex_unlock(lock);
3813 
3814 	return count;
3815 }
3816 
3817 /**
3818  * ice_get_avail_txq_count - Get count of Tx queues in use
3819  * @pf: pointer to an ice_pf instance
3820  */
3821 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3822 {
3823 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3824 				     pf->max_pf_txqs);
3825 }
3826 
3827 /**
3828  * ice_get_avail_rxq_count - Get count of Rx queues in use
3829  * @pf: pointer to an ice_pf instance
3830  */
3831 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3832 {
3833 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3834 				     pf->max_pf_rxqs);
3835 }
3836 
3837 /**
3838  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3839  * @pf: board private structure to initialize
3840  */
3841 static void ice_deinit_pf(struct ice_pf *pf)
3842 {
3843 	ice_service_task_stop(pf);
3844 	mutex_destroy(&pf->adev_mutex);
3845 	mutex_destroy(&pf->sw_mutex);
3846 	mutex_destroy(&pf->tc_mutex);
3847 	mutex_destroy(&pf->avail_q_mutex);
3848 	mutex_destroy(&pf->vfs.table_lock);
3849 
3850 	if (pf->avail_txqs) {
3851 		bitmap_free(pf->avail_txqs);
3852 		pf->avail_txqs = NULL;
3853 	}
3854 
3855 	if (pf->avail_rxqs) {
3856 		bitmap_free(pf->avail_rxqs);
3857 		pf->avail_rxqs = NULL;
3858 	}
3859 
3860 	if (pf->ptp.clock)
3861 		ptp_clock_unregister(pf->ptp.clock);
3862 }
3863 
3864 /**
3865  * ice_set_pf_caps - set PFs capability flags
3866  * @pf: pointer to the PF instance
3867  */
3868 static void ice_set_pf_caps(struct ice_pf *pf)
3869 {
3870 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3871 
3872 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3873 	if (func_caps->common_cap.rdma)
3874 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3875 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3876 	if (func_caps->common_cap.dcb)
3877 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3878 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3879 	if (func_caps->common_cap.sr_iov_1_1) {
3880 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3881 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3882 					      ICE_MAX_SRIOV_VFS);
3883 	}
3884 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3885 	if (func_caps->common_cap.rss_table_size)
3886 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3887 
3888 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3889 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3890 		u16 unused;
3891 
3892 		/* ctrl_vsi_idx will be set to a valid value when flow director
3893 		 * is setup by ice_init_fdir
3894 		 */
3895 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3896 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3897 		/* force guaranteed filter pool for PF */
3898 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3899 				       func_caps->fd_fltr_guar);
3900 		/* force shared filter pool for PF */
3901 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3902 				       func_caps->fd_fltr_best_effort);
3903 	}
3904 
3905 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3906 	if (func_caps->common_cap.ieee_1588)
3907 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3908 
3909 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3910 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3911 }
3912 
3913 /**
3914  * ice_init_pf - Initialize general software structures (struct ice_pf)
3915  * @pf: board private structure to initialize
3916  */
3917 static int ice_init_pf(struct ice_pf *pf)
3918 {
3919 	ice_set_pf_caps(pf);
3920 
3921 	mutex_init(&pf->sw_mutex);
3922 	mutex_init(&pf->tc_mutex);
3923 	mutex_init(&pf->adev_mutex);
3924 
3925 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3926 	spin_lock_init(&pf->aq_wait_lock);
3927 	init_waitqueue_head(&pf->aq_wait_queue);
3928 
3929 	init_waitqueue_head(&pf->reset_wait_queue);
3930 
3931 	/* setup service timer and periodic service task */
3932 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3933 	pf->serv_tmr_period = HZ;
3934 	INIT_WORK(&pf->serv_task, ice_service_task);
3935 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3936 
3937 	mutex_init(&pf->avail_q_mutex);
3938 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3939 	if (!pf->avail_txqs)
3940 		return -ENOMEM;
3941 
3942 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3943 	if (!pf->avail_rxqs) {
3944 		bitmap_free(pf->avail_txqs);
3945 		pf->avail_txqs = NULL;
3946 		return -ENOMEM;
3947 	}
3948 
3949 	mutex_init(&pf->vfs.table_lock);
3950 	hash_init(pf->vfs.table);
3951 
3952 	return 0;
3953 }
3954 
3955 /**
3956  * ice_reduce_msix_usage - Reduce usage of MSI-X vectors
3957  * @pf: board private structure
3958  * @v_remain: number of remaining MSI-X vectors to be distributed
3959  *
3960  * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled.
3961  * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of
3962  * remaining vectors.
3963  */
3964 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain)
3965 {
3966 	int v_rdma;
3967 
3968 	if (!ice_is_rdma_ena(pf)) {
3969 		pf->num_lan_msix = v_remain;
3970 		return;
3971 	}
3972 
3973 	/* RDMA needs at least 1 interrupt in addition to AEQ MSIX */
3974 	v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3975 
3976 	if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) {
3977 		dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n");
3978 		clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3979 
3980 		pf->num_rdma_msix = 0;
3981 		pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3982 	} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
3983 		   (v_remain - v_rdma < v_rdma)) {
3984 		/* Support minimum RDMA and give remaining vectors to LAN MSIX */
3985 		pf->num_rdma_msix = ICE_MIN_RDMA_MSIX;
3986 		pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX;
3987 	} else {
3988 		/* Split remaining MSIX with RDMA after accounting for AEQ MSIX
3989 		 */
3990 		pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
3991 				    ICE_RDMA_NUM_AEQ_MSIX;
3992 		pf->num_lan_msix = v_remain - pf->num_rdma_msix;
3993 	}
3994 }
3995 
3996 /**
3997  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3998  * @pf: board private structure
3999  *
4000  * Compute the number of MSIX vectors wanted and request from the OS. Adjust
4001  * device usage if there are not enough vectors. Return the number of vectors
4002  * reserved or negative on failure.
4003  */
4004 static int ice_ena_msix_range(struct ice_pf *pf)
4005 {
4006 	int num_cpus, hw_num_msix, v_other, v_wanted, v_actual;
4007 	struct device *dev = ice_pf_to_dev(pf);
4008 	int err, i;
4009 
4010 	hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors;
4011 	num_cpus = num_online_cpus();
4012 
4013 	/* LAN miscellaneous handler */
4014 	v_other = ICE_MIN_LAN_OICR_MSIX;
4015 
4016 	/* Flow Director */
4017 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
4018 		v_other += ICE_FDIR_MSIX;
4019 
4020 	/* switchdev */
4021 	v_other += ICE_ESWITCH_MSIX;
4022 
4023 	v_wanted = v_other;
4024 
4025 	/* LAN traffic */
4026 	pf->num_lan_msix = num_cpus;
4027 	v_wanted += pf->num_lan_msix;
4028 
4029 	/* RDMA auxiliary driver */
4030 	if (ice_is_rdma_ena(pf)) {
4031 		pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
4032 		v_wanted += pf->num_rdma_msix;
4033 	}
4034 
4035 	if (v_wanted > hw_num_msix) {
4036 		int v_remain;
4037 
4038 		dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n",
4039 			 v_wanted, hw_num_msix);
4040 
4041 		if (hw_num_msix < ICE_MIN_MSIX) {
4042 			err = -ERANGE;
4043 			goto exit_err;
4044 		}
4045 
4046 		v_remain = hw_num_msix - v_other;
4047 		if (v_remain < ICE_MIN_LAN_TXRX_MSIX) {
4048 			v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX;
4049 			v_remain = ICE_MIN_LAN_TXRX_MSIX;
4050 		}
4051 
4052 		ice_reduce_msix_usage(pf, v_remain);
4053 		v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other;
4054 
4055 		dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n",
4056 			   pf->num_lan_msix);
4057 		if (ice_is_rdma_ena(pf))
4058 			dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n",
4059 				   pf->num_rdma_msix);
4060 	}
4061 
4062 	pf->msix_entries = devm_kcalloc(dev, v_wanted,
4063 					sizeof(*pf->msix_entries), GFP_KERNEL);
4064 	if (!pf->msix_entries) {
4065 		err = -ENOMEM;
4066 		goto exit_err;
4067 	}
4068 
4069 	for (i = 0; i < v_wanted; i++)
4070 		pf->msix_entries[i].entry = i;
4071 
4072 	/* actually reserve the vectors */
4073 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
4074 					 ICE_MIN_MSIX, v_wanted);
4075 	if (v_actual < 0) {
4076 		dev_err(dev, "unable to reserve MSI-X vectors\n");
4077 		err = v_actual;
4078 		goto msix_err;
4079 	}
4080 
4081 	if (v_actual < v_wanted) {
4082 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
4083 			 v_wanted, v_actual);
4084 
4085 		if (v_actual < ICE_MIN_MSIX) {
4086 			/* error if we can't get minimum vectors */
4087 			pci_disable_msix(pf->pdev);
4088 			err = -ERANGE;
4089 			goto msix_err;
4090 		} else {
4091 			int v_remain = v_actual - v_other;
4092 
4093 			if (v_remain < ICE_MIN_LAN_TXRX_MSIX)
4094 				v_remain = ICE_MIN_LAN_TXRX_MSIX;
4095 
4096 			ice_reduce_msix_usage(pf, v_remain);
4097 
4098 			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4099 				   pf->num_lan_msix);
4100 
4101 			if (ice_is_rdma_ena(pf))
4102 				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4103 					   pf->num_rdma_msix);
4104 		}
4105 	}
4106 
4107 	return v_actual;
4108 
4109 msix_err:
4110 	devm_kfree(dev, pf->msix_entries);
4111 
4112 exit_err:
4113 	pf->num_rdma_msix = 0;
4114 	pf->num_lan_msix = 0;
4115 	return err;
4116 }
4117 
4118 /**
4119  * ice_dis_msix - Disable MSI-X interrupt setup in OS
4120  * @pf: board private structure
4121  */
4122 static void ice_dis_msix(struct ice_pf *pf)
4123 {
4124 	pci_disable_msix(pf->pdev);
4125 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4126 	pf->msix_entries = NULL;
4127 }
4128 
4129 /**
4130  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4131  * @pf: board private structure
4132  */
4133 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4134 {
4135 	ice_dis_msix(pf);
4136 
4137 	if (pf->irq_tracker) {
4138 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4139 		pf->irq_tracker = NULL;
4140 	}
4141 }
4142 
4143 /**
4144  * ice_init_interrupt_scheme - Determine proper interrupt scheme
4145  * @pf: board private structure to initialize
4146  */
4147 static int ice_init_interrupt_scheme(struct ice_pf *pf)
4148 {
4149 	int vectors;
4150 
4151 	vectors = ice_ena_msix_range(pf);
4152 
4153 	if (vectors < 0)
4154 		return vectors;
4155 
4156 	/* set up vector assignment tracking */
4157 	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4158 				       struct_size(pf->irq_tracker, list, vectors),
4159 				       GFP_KERNEL);
4160 	if (!pf->irq_tracker) {
4161 		ice_dis_msix(pf);
4162 		return -ENOMEM;
4163 	}
4164 
4165 	/* populate SW interrupts pool with number of OS granted IRQs. */
4166 	pf->num_avail_sw_msix = (u16)vectors;
4167 	pf->irq_tracker->num_entries = (u16)vectors;
4168 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
4169 
4170 	return 0;
4171 }
4172 
4173 /**
4174  * ice_is_wol_supported - check if WoL is supported
4175  * @hw: pointer to hardware info
4176  *
4177  * Check if WoL is supported based on the HW configuration.
4178  * Returns true if NVM supports and enables WoL for this port, false otherwise
4179  */
4180 bool ice_is_wol_supported(struct ice_hw *hw)
4181 {
4182 	u16 wol_ctrl;
4183 
4184 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4185 	 * word) indicates WoL is not supported on the corresponding PF ID.
4186 	 */
4187 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4188 		return false;
4189 
4190 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4191 }
4192 
4193 /**
4194  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4195  * @vsi: VSI being changed
4196  * @new_rx: new number of Rx queues
4197  * @new_tx: new number of Tx queues
4198  *
4199  * Only change the number of queues if new_tx, or new_rx is non-0.
4200  *
4201  * Returns 0 on success.
4202  */
4203 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
4204 {
4205 	struct ice_pf *pf = vsi->back;
4206 	int err = 0, timeout = 50;
4207 
4208 	if (!new_rx && !new_tx)
4209 		return -EINVAL;
4210 
4211 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4212 		timeout--;
4213 		if (!timeout)
4214 			return -EBUSY;
4215 		usleep_range(1000, 2000);
4216 	}
4217 
4218 	if (new_tx)
4219 		vsi->req_txq = (u16)new_tx;
4220 	if (new_rx)
4221 		vsi->req_rxq = (u16)new_rx;
4222 
4223 	/* set for the next time the netdev is started */
4224 	if (!netif_running(vsi->netdev)) {
4225 		ice_vsi_rebuild(vsi, false);
4226 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4227 		goto done;
4228 	}
4229 
4230 	ice_vsi_close(vsi);
4231 	ice_vsi_rebuild(vsi, false);
4232 	ice_pf_dcb_recfg(pf);
4233 	ice_vsi_open(vsi);
4234 done:
4235 	clear_bit(ICE_CFG_BUSY, pf->state);
4236 	return err;
4237 }
4238 
4239 /**
4240  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4241  * @pf: PF to configure
4242  *
4243  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4244  * VSI can still Tx/Rx VLAN tagged packets.
4245  */
4246 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4247 {
4248 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4249 	struct ice_vsi_ctx *ctxt;
4250 	struct ice_hw *hw;
4251 	int status;
4252 
4253 	if (!vsi)
4254 		return;
4255 
4256 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4257 	if (!ctxt)
4258 		return;
4259 
4260 	hw = &pf->hw;
4261 	ctxt->info = vsi->info;
4262 
4263 	ctxt->info.valid_sections =
4264 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4265 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4266 			    ICE_AQ_VSI_PROP_SW_VALID);
4267 
4268 	/* disable VLAN anti-spoof */
4269 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4270 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4271 
4272 	/* disable VLAN pruning and keep all other settings */
4273 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4274 
4275 	/* allow all VLANs on Tx and don't strip on Rx */
4276 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4277 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4278 
4279 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4280 	if (status) {
4281 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4282 			status, ice_aq_str(hw->adminq.sq_last_status));
4283 	} else {
4284 		vsi->info.sec_flags = ctxt->info.sec_flags;
4285 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4286 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4287 	}
4288 
4289 	kfree(ctxt);
4290 }
4291 
4292 /**
4293  * ice_log_pkg_init - log result of DDP package load
4294  * @hw: pointer to hardware info
4295  * @state: state of package load
4296  */
4297 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4298 {
4299 	struct ice_pf *pf = hw->back;
4300 	struct device *dev;
4301 
4302 	dev = ice_pf_to_dev(pf);
4303 
4304 	switch (state) {
4305 	case ICE_DDP_PKG_SUCCESS:
4306 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4307 			 hw->active_pkg_name,
4308 			 hw->active_pkg_ver.major,
4309 			 hw->active_pkg_ver.minor,
4310 			 hw->active_pkg_ver.update,
4311 			 hw->active_pkg_ver.draft);
4312 		break;
4313 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4314 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4315 			 hw->active_pkg_name,
4316 			 hw->active_pkg_ver.major,
4317 			 hw->active_pkg_ver.minor,
4318 			 hw->active_pkg_ver.update,
4319 			 hw->active_pkg_ver.draft);
4320 		break;
4321 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4322 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4323 			hw->active_pkg_name,
4324 			hw->active_pkg_ver.major,
4325 			hw->active_pkg_ver.minor,
4326 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4327 		break;
4328 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4329 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4330 			 hw->active_pkg_name,
4331 			 hw->active_pkg_ver.major,
4332 			 hw->active_pkg_ver.minor,
4333 			 hw->active_pkg_ver.update,
4334 			 hw->active_pkg_ver.draft,
4335 			 hw->pkg_name,
4336 			 hw->pkg_ver.major,
4337 			 hw->pkg_ver.minor,
4338 			 hw->pkg_ver.update,
4339 			 hw->pkg_ver.draft);
4340 		break;
4341 	case ICE_DDP_PKG_FW_MISMATCH:
4342 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4343 		break;
4344 	case ICE_DDP_PKG_INVALID_FILE:
4345 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4346 		break;
4347 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4348 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4349 		break;
4350 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4351 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4352 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4353 		break;
4354 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4355 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4356 		break;
4357 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4358 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4359 		break;
4360 	case ICE_DDP_PKG_LOAD_ERROR:
4361 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4362 		/* poll for reset to complete */
4363 		if (ice_check_reset(hw))
4364 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4365 		break;
4366 	case ICE_DDP_PKG_ERR:
4367 	default:
4368 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4369 		break;
4370 	}
4371 }
4372 
4373 /**
4374  * ice_load_pkg - load/reload the DDP Package file
4375  * @firmware: firmware structure when firmware requested or NULL for reload
4376  * @pf: pointer to the PF instance
4377  *
4378  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4379  * initialize HW tables.
4380  */
4381 static void
4382 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4383 {
4384 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4385 	struct device *dev = ice_pf_to_dev(pf);
4386 	struct ice_hw *hw = &pf->hw;
4387 
4388 	/* Load DDP Package */
4389 	if (firmware && !hw->pkg_copy) {
4390 		state = ice_copy_and_init_pkg(hw, firmware->data,
4391 					      firmware->size);
4392 		ice_log_pkg_init(hw, state);
4393 	} else if (!firmware && hw->pkg_copy) {
4394 		/* Reload package during rebuild after CORER/GLOBR reset */
4395 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4396 		ice_log_pkg_init(hw, state);
4397 	} else {
4398 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4399 	}
4400 
4401 	if (!ice_is_init_pkg_successful(state)) {
4402 		/* Safe Mode */
4403 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4404 		return;
4405 	}
4406 
4407 	/* Successful download package is the precondition for advanced
4408 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4409 	 */
4410 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4411 }
4412 
4413 /**
4414  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4415  * @pf: pointer to the PF structure
4416  *
4417  * There is no error returned here because the driver should be able to handle
4418  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4419  * specifically with Tx.
4420  */
4421 static void ice_verify_cacheline_size(struct ice_pf *pf)
4422 {
4423 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4424 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4425 			 ICE_CACHE_LINE_BYTES);
4426 }
4427 
4428 /**
4429  * ice_send_version - update firmware with driver version
4430  * @pf: PF struct
4431  *
4432  * Returns 0 on success, else error code
4433  */
4434 static int ice_send_version(struct ice_pf *pf)
4435 {
4436 	struct ice_driver_ver dv;
4437 
4438 	dv.major_ver = 0xff;
4439 	dv.minor_ver = 0xff;
4440 	dv.build_ver = 0xff;
4441 	dv.subbuild_ver = 0;
4442 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4443 		sizeof(dv.driver_string));
4444 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4445 }
4446 
4447 /**
4448  * ice_init_fdir - Initialize flow director VSI and configuration
4449  * @pf: pointer to the PF instance
4450  *
4451  * returns 0 on success, negative on error
4452  */
4453 static int ice_init_fdir(struct ice_pf *pf)
4454 {
4455 	struct device *dev = ice_pf_to_dev(pf);
4456 	struct ice_vsi *ctrl_vsi;
4457 	int err;
4458 
4459 	/* Side Band Flow Director needs to have a control VSI.
4460 	 * Allocate it and store it in the PF.
4461 	 */
4462 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4463 	if (!ctrl_vsi) {
4464 		dev_dbg(dev, "could not create control VSI\n");
4465 		return -ENOMEM;
4466 	}
4467 
4468 	err = ice_vsi_open_ctrl(ctrl_vsi);
4469 	if (err) {
4470 		dev_dbg(dev, "could not open control VSI\n");
4471 		goto err_vsi_open;
4472 	}
4473 
4474 	mutex_init(&pf->hw.fdir_fltr_lock);
4475 
4476 	err = ice_fdir_create_dflt_rules(pf);
4477 	if (err)
4478 		goto err_fdir_rule;
4479 
4480 	return 0;
4481 
4482 err_fdir_rule:
4483 	ice_fdir_release_flows(&pf->hw);
4484 	ice_vsi_close(ctrl_vsi);
4485 err_vsi_open:
4486 	ice_vsi_release(ctrl_vsi);
4487 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4488 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4489 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4490 	}
4491 	return err;
4492 }
4493 
4494 /**
4495  * ice_get_opt_fw_name - return optional firmware file name or NULL
4496  * @pf: pointer to the PF instance
4497  */
4498 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4499 {
4500 	/* Optional firmware name same as default with additional dash
4501 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4502 	 */
4503 	struct pci_dev *pdev = pf->pdev;
4504 	char *opt_fw_filename;
4505 	u64 dsn;
4506 
4507 	/* Determine the name of the optional file using the DSN (two
4508 	 * dwords following the start of the DSN Capability).
4509 	 */
4510 	dsn = pci_get_dsn(pdev);
4511 	if (!dsn)
4512 		return NULL;
4513 
4514 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4515 	if (!opt_fw_filename)
4516 		return NULL;
4517 
4518 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4519 		 ICE_DDP_PKG_PATH, dsn);
4520 
4521 	return opt_fw_filename;
4522 }
4523 
4524 /**
4525  * ice_request_fw - Device initialization routine
4526  * @pf: pointer to the PF instance
4527  */
4528 static void ice_request_fw(struct ice_pf *pf)
4529 {
4530 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4531 	const struct firmware *firmware = NULL;
4532 	struct device *dev = ice_pf_to_dev(pf);
4533 	int err = 0;
4534 
4535 	/* optional device-specific DDP (if present) overrides the default DDP
4536 	 * package file. kernel logs a debug message if the file doesn't exist,
4537 	 * and warning messages for other errors.
4538 	 */
4539 	if (opt_fw_filename) {
4540 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4541 		if (err) {
4542 			kfree(opt_fw_filename);
4543 			goto dflt_pkg_load;
4544 		}
4545 
4546 		/* request for firmware was successful. Download to device */
4547 		ice_load_pkg(firmware, pf);
4548 		kfree(opt_fw_filename);
4549 		release_firmware(firmware);
4550 		return;
4551 	}
4552 
4553 dflt_pkg_load:
4554 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4555 	if (err) {
4556 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4557 		return;
4558 	}
4559 
4560 	/* request for firmware was successful. Download to device */
4561 	ice_load_pkg(firmware, pf);
4562 	release_firmware(firmware);
4563 }
4564 
4565 /**
4566  * ice_print_wake_reason - show the wake up cause in the log
4567  * @pf: pointer to the PF struct
4568  */
4569 static void ice_print_wake_reason(struct ice_pf *pf)
4570 {
4571 	u32 wus = pf->wakeup_reason;
4572 	const char *wake_str;
4573 
4574 	/* if no wake event, nothing to print */
4575 	if (!wus)
4576 		return;
4577 
4578 	if (wus & PFPM_WUS_LNKC_M)
4579 		wake_str = "Link\n";
4580 	else if (wus & PFPM_WUS_MAG_M)
4581 		wake_str = "Magic Packet\n";
4582 	else if (wus & PFPM_WUS_MNG_M)
4583 		wake_str = "Management\n";
4584 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4585 		wake_str = "Firmware Reset\n";
4586 	else
4587 		wake_str = "Unknown\n";
4588 
4589 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4590 }
4591 
4592 /**
4593  * ice_register_netdev - register netdev and devlink port
4594  * @pf: pointer to the PF struct
4595  */
4596 static int ice_register_netdev(struct ice_pf *pf)
4597 {
4598 	struct ice_vsi *vsi;
4599 	int err = 0;
4600 
4601 	vsi = ice_get_main_vsi(pf);
4602 	if (!vsi || !vsi->netdev)
4603 		return -EIO;
4604 
4605 	err = ice_devlink_create_pf_port(pf);
4606 	if (err)
4607 		goto err_devlink_create;
4608 
4609 	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4610 	err = register_netdev(vsi->netdev);
4611 	if (err)
4612 		goto err_register_netdev;
4613 
4614 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4615 	netif_carrier_off(vsi->netdev);
4616 	netif_tx_stop_all_queues(vsi->netdev);
4617 
4618 	return 0;
4619 err_register_netdev:
4620 	ice_devlink_destroy_pf_port(pf);
4621 err_devlink_create:
4622 	free_netdev(vsi->netdev);
4623 	vsi->netdev = NULL;
4624 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4625 	return err;
4626 }
4627 
4628 /**
4629  * ice_probe - Device initialization routine
4630  * @pdev: PCI device information struct
4631  * @ent: entry in ice_pci_tbl
4632  *
4633  * Returns 0 on success, negative on failure
4634  */
4635 static int
4636 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4637 {
4638 	struct device *dev = &pdev->dev;
4639 	struct ice_pf *pf;
4640 	struct ice_hw *hw;
4641 	int i, err;
4642 
4643 	if (pdev->is_virtfn) {
4644 		dev_err(dev, "can't probe a virtual function\n");
4645 		return -EINVAL;
4646 	}
4647 
4648 	/* this driver uses devres, see
4649 	 * Documentation/driver-api/driver-model/devres.rst
4650 	 */
4651 	err = pcim_enable_device(pdev);
4652 	if (err)
4653 		return err;
4654 
4655 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4656 	if (err) {
4657 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4658 		return err;
4659 	}
4660 
4661 	pf = ice_allocate_pf(dev);
4662 	if (!pf)
4663 		return -ENOMEM;
4664 
4665 	/* initialize Auxiliary index to invalid value */
4666 	pf->aux_idx = -1;
4667 
4668 	/* set up for high or low DMA */
4669 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4670 	if (err) {
4671 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4672 		return err;
4673 	}
4674 
4675 	pci_enable_pcie_error_reporting(pdev);
4676 	pci_set_master(pdev);
4677 
4678 	pf->pdev = pdev;
4679 	pci_set_drvdata(pdev, pf);
4680 	set_bit(ICE_DOWN, pf->state);
4681 	/* Disable service task until DOWN bit is cleared */
4682 	set_bit(ICE_SERVICE_DIS, pf->state);
4683 
4684 	hw = &pf->hw;
4685 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4686 	pci_save_state(pdev);
4687 
4688 	hw->back = pf;
4689 	hw->vendor_id = pdev->vendor;
4690 	hw->device_id = pdev->device;
4691 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4692 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4693 	hw->subsystem_device_id = pdev->subsystem_device;
4694 	hw->bus.device = PCI_SLOT(pdev->devfn);
4695 	hw->bus.func = PCI_FUNC(pdev->devfn);
4696 	ice_set_ctrlq_len(hw);
4697 
4698 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4699 
4700 #ifndef CONFIG_DYNAMIC_DEBUG
4701 	if (debug < -1)
4702 		hw->debug_mask = debug;
4703 #endif
4704 
4705 	err = ice_init_hw(hw);
4706 	if (err) {
4707 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4708 		err = -EIO;
4709 		goto err_exit_unroll;
4710 	}
4711 
4712 	ice_init_feature_support(pf);
4713 
4714 	ice_request_fw(pf);
4715 
4716 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4717 	 * set in pf->state, which will cause ice_is_safe_mode to return
4718 	 * true
4719 	 */
4720 	if (ice_is_safe_mode(pf)) {
4721 		/* we already got function/device capabilities but these don't
4722 		 * reflect what the driver needs to do in safe mode. Instead of
4723 		 * adding conditional logic everywhere to ignore these
4724 		 * device/function capabilities, override them.
4725 		 */
4726 		ice_set_safe_mode_caps(hw);
4727 	}
4728 
4729 	err = ice_init_pf(pf);
4730 	if (err) {
4731 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4732 		goto err_init_pf_unroll;
4733 	}
4734 
4735 	ice_devlink_init_regions(pf);
4736 
4737 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4738 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4739 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4740 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4741 	i = 0;
4742 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4743 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4744 			pf->hw.tnl.valid_count[TNL_VXLAN];
4745 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4746 			UDP_TUNNEL_TYPE_VXLAN;
4747 		i++;
4748 	}
4749 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4750 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4751 			pf->hw.tnl.valid_count[TNL_GENEVE];
4752 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4753 			UDP_TUNNEL_TYPE_GENEVE;
4754 		i++;
4755 	}
4756 
4757 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4758 	if (!pf->num_alloc_vsi) {
4759 		err = -EIO;
4760 		goto err_init_pf_unroll;
4761 	}
4762 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4763 		dev_warn(&pf->pdev->dev,
4764 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4765 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4766 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4767 	}
4768 
4769 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4770 			       GFP_KERNEL);
4771 	if (!pf->vsi) {
4772 		err = -ENOMEM;
4773 		goto err_init_pf_unroll;
4774 	}
4775 
4776 	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4777 				     sizeof(*pf->vsi_stats), GFP_KERNEL);
4778 	if (!pf->vsi_stats) {
4779 		err = -ENOMEM;
4780 		goto err_init_vsi_unroll;
4781 	}
4782 
4783 	err = ice_init_interrupt_scheme(pf);
4784 	if (err) {
4785 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4786 		err = -EIO;
4787 		goto err_init_vsi_stats_unroll;
4788 	}
4789 
4790 	/* In case of MSIX we are going to setup the misc vector right here
4791 	 * to handle admin queue events etc. In case of legacy and MSI
4792 	 * the misc functionality and queue processing is combined in
4793 	 * the same vector and that gets setup at open.
4794 	 */
4795 	err = ice_req_irq_msix_misc(pf);
4796 	if (err) {
4797 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4798 		goto err_init_interrupt_unroll;
4799 	}
4800 
4801 	/* create switch struct for the switch element created by FW on boot */
4802 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4803 	if (!pf->first_sw) {
4804 		err = -ENOMEM;
4805 		goto err_msix_misc_unroll;
4806 	}
4807 
4808 	if (hw->evb_veb)
4809 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4810 	else
4811 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4812 
4813 	pf->first_sw->pf = pf;
4814 
4815 	/* record the sw_id available for later use */
4816 	pf->first_sw->sw_id = hw->port_info->sw_id;
4817 
4818 	err = ice_setup_pf_sw(pf);
4819 	if (err) {
4820 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4821 		goto err_alloc_sw_unroll;
4822 	}
4823 
4824 	clear_bit(ICE_SERVICE_DIS, pf->state);
4825 
4826 	/* tell the firmware we are up */
4827 	err = ice_send_version(pf);
4828 	if (err) {
4829 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4830 			UTS_RELEASE, err);
4831 		goto err_send_version_unroll;
4832 	}
4833 
4834 	/* since everything is good, start the service timer */
4835 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4836 
4837 	err = ice_init_link_events(pf->hw.port_info);
4838 	if (err) {
4839 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4840 		goto err_send_version_unroll;
4841 	}
4842 
4843 	/* not a fatal error if this fails */
4844 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4845 	if (err)
4846 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4847 
4848 	/* not a fatal error if this fails */
4849 	err = ice_update_link_info(pf->hw.port_info);
4850 	if (err)
4851 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4852 
4853 	ice_init_link_dflt_override(pf->hw.port_info);
4854 
4855 	ice_check_link_cfg_err(pf,
4856 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4857 
4858 	/* if media available, initialize PHY settings */
4859 	if (pf->hw.port_info->phy.link_info.link_info &
4860 	    ICE_AQ_MEDIA_AVAILABLE) {
4861 		/* not a fatal error if this fails */
4862 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4863 		if (err)
4864 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4865 
4866 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4867 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4868 
4869 			if (vsi)
4870 				ice_configure_phy(vsi);
4871 		}
4872 	} else {
4873 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4874 	}
4875 
4876 	ice_verify_cacheline_size(pf);
4877 
4878 	/* Save wakeup reason register for later use */
4879 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4880 
4881 	/* check for a power management event */
4882 	ice_print_wake_reason(pf);
4883 
4884 	/* clear wake status, all bits */
4885 	wr32(hw, PFPM_WUS, U32_MAX);
4886 
4887 	/* Disable WoL at init, wait for user to enable */
4888 	device_set_wakeup_enable(dev, false);
4889 
4890 	if (ice_is_safe_mode(pf)) {
4891 		ice_set_safe_mode_vlan_cfg(pf);
4892 		goto probe_done;
4893 	}
4894 
4895 	/* initialize DDP driven features */
4896 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4897 		ice_ptp_init(pf);
4898 
4899 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4900 		ice_gnss_init(pf);
4901 
4902 	/* Note: Flow director init failure is non-fatal to load */
4903 	if (ice_init_fdir(pf))
4904 		dev_err(dev, "could not initialize flow director\n");
4905 
4906 	/* Note: DCB init failure is non-fatal to load */
4907 	if (ice_init_pf_dcb(pf, false)) {
4908 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4909 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4910 	} else {
4911 		ice_cfg_lldp_mib_change(&pf->hw, true);
4912 	}
4913 
4914 	if (ice_init_lag(pf))
4915 		dev_warn(dev, "Failed to init link aggregation support\n");
4916 
4917 	/* print PCI link speed and width */
4918 	pcie_print_link_status(pf->pdev);
4919 
4920 probe_done:
4921 	err = ice_register_netdev(pf);
4922 	if (err)
4923 		goto err_netdev_reg;
4924 
4925 	err = ice_devlink_register_params(pf);
4926 	if (err)
4927 		goto err_netdev_reg;
4928 
4929 	/* ready to go, so clear down state bit */
4930 	clear_bit(ICE_DOWN, pf->state);
4931 	if (ice_is_rdma_ena(pf)) {
4932 		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4933 		if (pf->aux_idx < 0) {
4934 			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4935 			err = -ENOMEM;
4936 			goto err_devlink_reg_param;
4937 		}
4938 
4939 		err = ice_init_rdma(pf);
4940 		if (err) {
4941 			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4942 			err = -EIO;
4943 			goto err_init_aux_unroll;
4944 		}
4945 	} else {
4946 		dev_warn(dev, "RDMA is not supported on this device\n");
4947 	}
4948 
4949 	ice_devlink_register(pf);
4950 	return 0;
4951 
4952 err_init_aux_unroll:
4953 	pf->adev = NULL;
4954 	ida_free(&ice_aux_ida, pf->aux_idx);
4955 err_devlink_reg_param:
4956 	ice_devlink_unregister_params(pf);
4957 err_netdev_reg:
4958 err_send_version_unroll:
4959 	ice_vsi_release_all(pf);
4960 err_alloc_sw_unroll:
4961 	set_bit(ICE_SERVICE_DIS, pf->state);
4962 	set_bit(ICE_DOWN, pf->state);
4963 	devm_kfree(dev, pf->first_sw);
4964 err_msix_misc_unroll:
4965 	ice_free_irq_msix_misc(pf);
4966 err_init_interrupt_unroll:
4967 	ice_clear_interrupt_scheme(pf);
4968 err_init_vsi_stats_unroll:
4969 	devm_kfree(dev, pf->vsi_stats);
4970 	pf->vsi_stats = NULL;
4971 err_init_vsi_unroll:
4972 	devm_kfree(dev, pf->vsi);
4973 err_init_pf_unroll:
4974 	ice_deinit_pf(pf);
4975 	ice_devlink_destroy_regions(pf);
4976 	ice_deinit_hw(hw);
4977 err_exit_unroll:
4978 	pci_disable_pcie_error_reporting(pdev);
4979 	pci_disable_device(pdev);
4980 	return err;
4981 }
4982 
4983 /**
4984  * ice_set_wake - enable or disable Wake on LAN
4985  * @pf: pointer to the PF struct
4986  *
4987  * Simple helper for WoL control
4988  */
4989 static void ice_set_wake(struct ice_pf *pf)
4990 {
4991 	struct ice_hw *hw = &pf->hw;
4992 	bool wol = pf->wol_ena;
4993 
4994 	/* clear wake state, otherwise new wake events won't fire */
4995 	wr32(hw, PFPM_WUS, U32_MAX);
4996 
4997 	/* enable / disable APM wake up, no RMW needed */
4998 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4999 
5000 	/* set magic packet filter enabled */
5001 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5002 }
5003 
5004 /**
5005  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5006  * @pf: pointer to the PF struct
5007  *
5008  * Issue firmware command to enable multicast magic wake, making
5009  * sure that any locally administered address (LAA) is used for
5010  * wake, and that PF reset doesn't undo the LAA.
5011  */
5012 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5013 {
5014 	struct device *dev = ice_pf_to_dev(pf);
5015 	struct ice_hw *hw = &pf->hw;
5016 	u8 mac_addr[ETH_ALEN];
5017 	struct ice_vsi *vsi;
5018 	int status;
5019 	u8 flags;
5020 
5021 	if (!pf->wol_ena)
5022 		return;
5023 
5024 	vsi = ice_get_main_vsi(pf);
5025 	if (!vsi)
5026 		return;
5027 
5028 	/* Get current MAC address in case it's an LAA */
5029 	if (vsi->netdev)
5030 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5031 	else
5032 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5033 
5034 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5035 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5036 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5037 
5038 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5039 	if (status)
5040 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5041 			status, ice_aq_str(hw->adminq.sq_last_status));
5042 }
5043 
5044 /**
5045  * ice_remove - Device removal routine
5046  * @pdev: PCI device information struct
5047  */
5048 static void ice_remove(struct pci_dev *pdev)
5049 {
5050 	struct ice_pf *pf = pci_get_drvdata(pdev);
5051 	int i;
5052 
5053 	ice_devlink_unregister(pf);
5054 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5055 		if (!ice_is_reset_in_progress(pf->state))
5056 			break;
5057 		msleep(100);
5058 	}
5059 
5060 	ice_tc_indir_block_remove(pf);
5061 
5062 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5063 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5064 		ice_free_vfs(pf);
5065 	}
5066 
5067 	ice_service_task_stop(pf);
5068 
5069 	ice_aq_cancel_waiting_tasks(pf);
5070 	ice_unplug_aux_dev(pf);
5071 	if (pf->aux_idx >= 0)
5072 		ida_free(&ice_aux_ida, pf->aux_idx);
5073 	ice_devlink_unregister_params(pf);
5074 	set_bit(ICE_DOWN, pf->state);
5075 
5076 	ice_deinit_lag(pf);
5077 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
5078 		ice_ptp_release(pf);
5079 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
5080 		ice_gnss_exit(pf);
5081 	if (!ice_is_safe_mode(pf))
5082 		ice_remove_arfs(pf);
5083 	ice_setup_mc_magic_wake(pf);
5084 	ice_vsi_release_all(pf);
5085 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5086 	ice_set_wake(pf);
5087 	ice_free_irq_msix_misc(pf);
5088 	ice_for_each_vsi(pf, i) {
5089 		if (!pf->vsi[i])
5090 			continue;
5091 		ice_vsi_free_q_vectors(pf->vsi[i]);
5092 	}
5093 	devm_kfree(&pdev->dev, pf->vsi_stats);
5094 	pf->vsi_stats = NULL;
5095 	ice_deinit_pf(pf);
5096 	ice_devlink_destroy_regions(pf);
5097 	ice_deinit_hw(&pf->hw);
5098 
5099 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
5100 	 * do it via ice_schedule_reset() since there is no need to rebuild
5101 	 * and the service task is already stopped.
5102 	 */
5103 	ice_reset(&pf->hw, ICE_RESET_PFR);
5104 	pci_wait_for_pending_transaction(pdev);
5105 	ice_clear_interrupt_scheme(pf);
5106 	pci_disable_pcie_error_reporting(pdev);
5107 	pci_disable_device(pdev);
5108 }
5109 
5110 /**
5111  * ice_shutdown - PCI callback for shutting down device
5112  * @pdev: PCI device information struct
5113  */
5114 static void ice_shutdown(struct pci_dev *pdev)
5115 {
5116 	struct ice_pf *pf = pci_get_drvdata(pdev);
5117 
5118 	ice_remove(pdev);
5119 
5120 	if (system_state == SYSTEM_POWER_OFF) {
5121 		pci_wake_from_d3(pdev, pf->wol_ena);
5122 		pci_set_power_state(pdev, PCI_D3hot);
5123 	}
5124 }
5125 
5126 #ifdef CONFIG_PM
5127 /**
5128  * ice_prepare_for_shutdown - prep for PCI shutdown
5129  * @pf: board private structure
5130  *
5131  * Inform or close all dependent features in prep for PCI device shutdown
5132  */
5133 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5134 {
5135 	struct ice_hw *hw = &pf->hw;
5136 	u32 v;
5137 
5138 	/* Notify VFs of impending reset */
5139 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5140 		ice_vc_notify_reset(pf);
5141 
5142 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5143 
5144 	/* disable the VSIs and their queues that are not already DOWN */
5145 	ice_pf_dis_all_vsi(pf, false);
5146 
5147 	ice_for_each_vsi(pf, v)
5148 		if (pf->vsi[v])
5149 			pf->vsi[v]->vsi_num = 0;
5150 
5151 	ice_shutdown_all_ctrlq(hw);
5152 }
5153 
5154 /**
5155  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5156  * @pf: board private structure to reinitialize
5157  *
5158  * This routine reinitialize interrupt scheme that was cleared during
5159  * power management suspend callback.
5160  *
5161  * This should be called during resume routine to re-allocate the q_vectors
5162  * and reacquire interrupts.
5163  */
5164 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5165 {
5166 	struct device *dev = ice_pf_to_dev(pf);
5167 	int ret, v;
5168 
5169 	/* Since we clear MSIX flag during suspend, we need to
5170 	 * set it back during resume...
5171 	 */
5172 
5173 	ret = ice_init_interrupt_scheme(pf);
5174 	if (ret) {
5175 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5176 		return ret;
5177 	}
5178 
5179 	/* Remap vectors and rings, after successful re-init interrupts */
5180 	ice_for_each_vsi(pf, v) {
5181 		if (!pf->vsi[v])
5182 			continue;
5183 
5184 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5185 		if (ret)
5186 			goto err_reinit;
5187 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5188 	}
5189 
5190 	ret = ice_req_irq_msix_misc(pf);
5191 	if (ret) {
5192 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5193 			ret);
5194 		goto err_reinit;
5195 	}
5196 
5197 	return 0;
5198 
5199 err_reinit:
5200 	while (v--)
5201 		if (pf->vsi[v])
5202 			ice_vsi_free_q_vectors(pf->vsi[v]);
5203 
5204 	return ret;
5205 }
5206 
5207 /**
5208  * ice_suspend
5209  * @dev: generic device information structure
5210  *
5211  * Power Management callback to quiesce the device and prepare
5212  * for D3 transition.
5213  */
5214 static int __maybe_unused ice_suspend(struct device *dev)
5215 {
5216 	struct pci_dev *pdev = to_pci_dev(dev);
5217 	struct ice_pf *pf;
5218 	int disabled, v;
5219 
5220 	pf = pci_get_drvdata(pdev);
5221 
5222 	if (!ice_pf_state_is_nominal(pf)) {
5223 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5224 		return -EBUSY;
5225 	}
5226 
5227 	/* Stop watchdog tasks until resume completion.
5228 	 * Even though it is most likely that the service task is
5229 	 * disabled if the device is suspended or down, the service task's
5230 	 * state is controlled by a different state bit, and we should
5231 	 * store and honor whatever state that bit is in at this point.
5232 	 */
5233 	disabled = ice_service_task_stop(pf);
5234 
5235 	ice_unplug_aux_dev(pf);
5236 
5237 	/* Already suspended?, then there is nothing to do */
5238 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5239 		if (!disabled)
5240 			ice_service_task_restart(pf);
5241 		return 0;
5242 	}
5243 
5244 	if (test_bit(ICE_DOWN, pf->state) ||
5245 	    ice_is_reset_in_progress(pf->state)) {
5246 		dev_err(dev, "can't suspend device in reset or already down\n");
5247 		if (!disabled)
5248 			ice_service_task_restart(pf);
5249 		return 0;
5250 	}
5251 
5252 	ice_setup_mc_magic_wake(pf);
5253 
5254 	ice_prepare_for_shutdown(pf);
5255 
5256 	ice_set_wake(pf);
5257 
5258 	/* Free vectors, clear the interrupt scheme and release IRQs
5259 	 * for proper hibernation, especially with large number of CPUs.
5260 	 * Otherwise hibernation might fail when mapping all the vectors back
5261 	 * to CPU0.
5262 	 */
5263 	ice_free_irq_msix_misc(pf);
5264 	ice_for_each_vsi(pf, v) {
5265 		if (!pf->vsi[v])
5266 			continue;
5267 		ice_vsi_free_q_vectors(pf->vsi[v]);
5268 	}
5269 	ice_clear_interrupt_scheme(pf);
5270 
5271 	pci_save_state(pdev);
5272 	pci_wake_from_d3(pdev, pf->wol_ena);
5273 	pci_set_power_state(pdev, PCI_D3hot);
5274 	return 0;
5275 }
5276 
5277 /**
5278  * ice_resume - PM callback for waking up from D3
5279  * @dev: generic device information structure
5280  */
5281 static int __maybe_unused ice_resume(struct device *dev)
5282 {
5283 	struct pci_dev *pdev = to_pci_dev(dev);
5284 	enum ice_reset_req reset_type;
5285 	struct ice_pf *pf;
5286 	struct ice_hw *hw;
5287 	int ret;
5288 
5289 	pci_set_power_state(pdev, PCI_D0);
5290 	pci_restore_state(pdev);
5291 	pci_save_state(pdev);
5292 
5293 	if (!pci_device_is_present(pdev))
5294 		return -ENODEV;
5295 
5296 	ret = pci_enable_device_mem(pdev);
5297 	if (ret) {
5298 		dev_err(dev, "Cannot enable device after suspend\n");
5299 		return ret;
5300 	}
5301 
5302 	pf = pci_get_drvdata(pdev);
5303 	hw = &pf->hw;
5304 
5305 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5306 	ice_print_wake_reason(pf);
5307 
5308 	/* We cleared the interrupt scheme when we suspended, so we need to
5309 	 * restore it now to resume device functionality.
5310 	 */
5311 	ret = ice_reinit_interrupt_scheme(pf);
5312 	if (ret)
5313 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5314 
5315 	clear_bit(ICE_DOWN, pf->state);
5316 	/* Now perform PF reset and rebuild */
5317 	reset_type = ICE_RESET_PFR;
5318 	/* re-enable service task for reset, but allow reset to schedule it */
5319 	clear_bit(ICE_SERVICE_DIS, pf->state);
5320 
5321 	if (ice_schedule_reset(pf, reset_type))
5322 		dev_err(dev, "Reset during resume failed.\n");
5323 
5324 	clear_bit(ICE_SUSPENDED, pf->state);
5325 	ice_service_task_restart(pf);
5326 
5327 	/* Restart the service task */
5328 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5329 
5330 	return 0;
5331 }
5332 #endif /* CONFIG_PM */
5333 
5334 /**
5335  * ice_pci_err_detected - warning that PCI error has been detected
5336  * @pdev: PCI device information struct
5337  * @err: the type of PCI error
5338  *
5339  * Called to warn that something happened on the PCI bus and the error handling
5340  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5341  */
5342 static pci_ers_result_t
5343 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5344 {
5345 	struct ice_pf *pf = pci_get_drvdata(pdev);
5346 
5347 	if (!pf) {
5348 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5349 			__func__, err);
5350 		return PCI_ERS_RESULT_DISCONNECT;
5351 	}
5352 
5353 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5354 		ice_service_task_stop(pf);
5355 
5356 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5357 			set_bit(ICE_PFR_REQ, pf->state);
5358 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5359 		}
5360 	}
5361 
5362 	return PCI_ERS_RESULT_NEED_RESET;
5363 }
5364 
5365 /**
5366  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5367  * @pdev: PCI device information struct
5368  *
5369  * Called to determine if the driver can recover from the PCI slot reset by
5370  * using a register read to determine if the device is recoverable.
5371  */
5372 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5373 {
5374 	struct ice_pf *pf = pci_get_drvdata(pdev);
5375 	pci_ers_result_t result;
5376 	int err;
5377 	u32 reg;
5378 
5379 	err = pci_enable_device_mem(pdev);
5380 	if (err) {
5381 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5382 			err);
5383 		result = PCI_ERS_RESULT_DISCONNECT;
5384 	} else {
5385 		pci_set_master(pdev);
5386 		pci_restore_state(pdev);
5387 		pci_save_state(pdev);
5388 		pci_wake_from_d3(pdev, false);
5389 
5390 		/* Check for life */
5391 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5392 		if (!reg)
5393 			result = PCI_ERS_RESULT_RECOVERED;
5394 		else
5395 			result = PCI_ERS_RESULT_DISCONNECT;
5396 	}
5397 
5398 	return result;
5399 }
5400 
5401 /**
5402  * ice_pci_err_resume - restart operations after PCI error recovery
5403  * @pdev: PCI device information struct
5404  *
5405  * Called to allow the driver to bring things back up after PCI error and/or
5406  * reset recovery have finished
5407  */
5408 static void ice_pci_err_resume(struct pci_dev *pdev)
5409 {
5410 	struct ice_pf *pf = pci_get_drvdata(pdev);
5411 
5412 	if (!pf) {
5413 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5414 			__func__);
5415 		return;
5416 	}
5417 
5418 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5419 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5420 			__func__);
5421 		return;
5422 	}
5423 
5424 	ice_restore_all_vfs_msi_state(pdev);
5425 
5426 	ice_do_reset(pf, ICE_RESET_PFR);
5427 	ice_service_task_restart(pf);
5428 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5429 }
5430 
5431 /**
5432  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5433  * @pdev: PCI device information struct
5434  */
5435 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5436 {
5437 	struct ice_pf *pf = pci_get_drvdata(pdev);
5438 
5439 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5440 		ice_service_task_stop(pf);
5441 
5442 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5443 			set_bit(ICE_PFR_REQ, pf->state);
5444 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5445 		}
5446 	}
5447 }
5448 
5449 /**
5450  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5451  * @pdev: PCI device information struct
5452  */
5453 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5454 {
5455 	ice_pci_err_resume(pdev);
5456 }
5457 
5458 /* ice_pci_tbl - PCI Device ID Table
5459  *
5460  * Wildcard entries (PCI_ANY_ID) should come last
5461  * Last entry must be all 0s
5462  *
5463  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5464  *   Class, Class Mask, private data (not used) }
5465  */
5466 static const struct pci_device_id ice_pci_tbl[] = {
5467 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5468 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5469 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5470 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5471 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5472 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5473 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5474 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5475 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5476 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5477 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5478 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5479 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5480 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5481 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5482 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5483 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5484 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5485 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5486 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5487 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5488 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5489 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5490 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5491 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5492 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5493 	/* required last entry */
5494 	{ 0, }
5495 };
5496 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5497 
5498 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5499 
5500 static const struct pci_error_handlers ice_pci_err_handler = {
5501 	.error_detected = ice_pci_err_detected,
5502 	.slot_reset = ice_pci_err_slot_reset,
5503 	.reset_prepare = ice_pci_err_reset_prepare,
5504 	.reset_done = ice_pci_err_reset_done,
5505 	.resume = ice_pci_err_resume
5506 };
5507 
5508 static struct pci_driver ice_driver = {
5509 	.name = KBUILD_MODNAME,
5510 	.id_table = ice_pci_tbl,
5511 	.probe = ice_probe,
5512 	.remove = ice_remove,
5513 #ifdef CONFIG_PM
5514 	.driver.pm = &ice_pm_ops,
5515 #endif /* CONFIG_PM */
5516 	.shutdown = ice_shutdown,
5517 	.sriov_configure = ice_sriov_configure,
5518 	.err_handler = &ice_pci_err_handler
5519 };
5520 
5521 /**
5522  * ice_module_init - Driver registration routine
5523  *
5524  * ice_module_init is the first routine called when the driver is
5525  * loaded. All it does is register with the PCI subsystem.
5526  */
5527 static int __init ice_module_init(void)
5528 {
5529 	int status;
5530 
5531 	pr_info("%s\n", ice_driver_string);
5532 	pr_info("%s\n", ice_copyright);
5533 
5534 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5535 	if (!ice_wq) {
5536 		pr_err("Failed to create workqueue\n");
5537 		return -ENOMEM;
5538 	}
5539 
5540 	status = pci_register_driver(&ice_driver);
5541 	if (status) {
5542 		pr_err("failed to register PCI driver, err %d\n", status);
5543 		destroy_workqueue(ice_wq);
5544 	}
5545 
5546 	return status;
5547 }
5548 module_init(ice_module_init);
5549 
5550 /**
5551  * ice_module_exit - Driver exit cleanup routine
5552  *
5553  * ice_module_exit is called just before the driver is removed
5554  * from memory.
5555  */
5556 static void __exit ice_module_exit(void)
5557 {
5558 	pci_unregister_driver(&ice_driver);
5559 	destroy_workqueue(ice_wq);
5560 	pr_info("module unloaded\n");
5561 }
5562 module_exit(ice_module_exit);
5563 
5564 /**
5565  * ice_set_mac_address - NDO callback to set MAC address
5566  * @netdev: network interface device structure
5567  * @pi: pointer to an address structure
5568  *
5569  * Returns 0 on success, negative on failure
5570  */
5571 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5572 {
5573 	struct ice_netdev_priv *np = netdev_priv(netdev);
5574 	struct ice_vsi *vsi = np->vsi;
5575 	struct ice_pf *pf = vsi->back;
5576 	struct ice_hw *hw = &pf->hw;
5577 	struct sockaddr *addr = pi;
5578 	u8 old_mac[ETH_ALEN];
5579 	u8 flags = 0;
5580 	u8 *mac;
5581 	int err;
5582 
5583 	mac = (u8 *)addr->sa_data;
5584 
5585 	if (!is_valid_ether_addr(mac))
5586 		return -EADDRNOTAVAIL;
5587 
5588 	if (ether_addr_equal(netdev->dev_addr, mac)) {
5589 		netdev_dbg(netdev, "already using mac %pM\n", mac);
5590 		return 0;
5591 	}
5592 
5593 	if (test_bit(ICE_DOWN, pf->state) ||
5594 	    ice_is_reset_in_progress(pf->state)) {
5595 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5596 			   mac);
5597 		return -EBUSY;
5598 	}
5599 
5600 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5601 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5602 			   mac);
5603 		return -EAGAIN;
5604 	}
5605 
5606 	netif_addr_lock_bh(netdev);
5607 	ether_addr_copy(old_mac, netdev->dev_addr);
5608 	/* change the netdev's MAC address */
5609 	eth_hw_addr_set(netdev, mac);
5610 	netif_addr_unlock_bh(netdev);
5611 
5612 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5613 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5614 	if (err && err != -ENOENT) {
5615 		err = -EADDRNOTAVAIL;
5616 		goto err_update_filters;
5617 	}
5618 
5619 	/* Add filter for new MAC. If filter exists, return success */
5620 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5621 	if (err == -EEXIST) {
5622 		/* Although this MAC filter is already present in hardware it's
5623 		 * possible in some cases (e.g. bonding) that dev_addr was
5624 		 * modified outside of the driver and needs to be restored back
5625 		 * to this value.
5626 		 */
5627 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5628 
5629 		return 0;
5630 	} else if (err) {
5631 		/* error if the new filter addition failed */
5632 		err = -EADDRNOTAVAIL;
5633 	}
5634 
5635 err_update_filters:
5636 	if (err) {
5637 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5638 			   mac);
5639 		netif_addr_lock_bh(netdev);
5640 		eth_hw_addr_set(netdev, old_mac);
5641 		netif_addr_unlock_bh(netdev);
5642 		return err;
5643 	}
5644 
5645 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5646 		   netdev->dev_addr);
5647 
5648 	/* write new MAC address to the firmware */
5649 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5650 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5651 	if (err) {
5652 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5653 			   mac, err);
5654 	}
5655 	return 0;
5656 }
5657 
5658 /**
5659  * ice_set_rx_mode - NDO callback to set the netdev filters
5660  * @netdev: network interface device structure
5661  */
5662 static void ice_set_rx_mode(struct net_device *netdev)
5663 {
5664 	struct ice_netdev_priv *np = netdev_priv(netdev);
5665 	struct ice_vsi *vsi = np->vsi;
5666 
5667 	if (!vsi)
5668 		return;
5669 
5670 	/* Set the flags to synchronize filters
5671 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5672 	 * flags
5673 	 */
5674 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5675 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5676 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5677 
5678 	/* schedule our worker thread which will take care of
5679 	 * applying the new filter changes
5680 	 */
5681 	ice_service_task_schedule(vsi->back);
5682 }
5683 
5684 /**
5685  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5686  * @netdev: network interface device structure
5687  * @queue_index: Queue ID
5688  * @maxrate: maximum bandwidth in Mbps
5689  */
5690 static int
5691 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5692 {
5693 	struct ice_netdev_priv *np = netdev_priv(netdev);
5694 	struct ice_vsi *vsi = np->vsi;
5695 	u16 q_handle;
5696 	int status;
5697 	u8 tc;
5698 
5699 	/* Validate maxrate requested is within permitted range */
5700 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5701 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5702 			   maxrate, queue_index);
5703 		return -EINVAL;
5704 	}
5705 
5706 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5707 	tc = ice_dcb_get_tc(vsi, queue_index);
5708 
5709 	/* Set BW back to default, when user set maxrate to 0 */
5710 	if (!maxrate)
5711 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5712 					       q_handle, ICE_MAX_BW);
5713 	else
5714 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5715 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5716 	if (status)
5717 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5718 			   status);
5719 
5720 	return status;
5721 }
5722 
5723 /**
5724  * ice_fdb_add - add an entry to the hardware database
5725  * @ndm: the input from the stack
5726  * @tb: pointer to array of nladdr (unused)
5727  * @dev: the net device pointer
5728  * @addr: the MAC address entry being added
5729  * @vid: VLAN ID
5730  * @flags: instructions from stack about fdb operation
5731  * @extack: netlink extended ack
5732  */
5733 static int
5734 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5735 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5736 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5737 {
5738 	int err;
5739 
5740 	if (vid) {
5741 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5742 		return -EINVAL;
5743 	}
5744 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5745 		netdev_err(dev, "FDB only supports static addresses\n");
5746 		return -EINVAL;
5747 	}
5748 
5749 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5750 		err = dev_uc_add_excl(dev, addr);
5751 	else if (is_multicast_ether_addr(addr))
5752 		err = dev_mc_add_excl(dev, addr);
5753 	else
5754 		err = -EINVAL;
5755 
5756 	/* Only return duplicate errors if NLM_F_EXCL is set */
5757 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5758 		err = 0;
5759 
5760 	return err;
5761 }
5762 
5763 /**
5764  * ice_fdb_del - delete an entry from the hardware database
5765  * @ndm: the input from the stack
5766  * @tb: pointer to array of nladdr (unused)
5767  * @dev: the net device pointer
5768  * @addr: the MAC address entry being added
5769  * @vid: VLAN ID
5770  * @extack: netlink extended ack
5771  */
5772 static int
5773 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5774 	    struct net_device *dev, const unsigned char *addr,
5775 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
5776 {
5777 	int err;
5778 
5779 	if (ndm->ndm_state & NUD_PERMANENT) {
5780 		netdev_err(dev, "FDB only supports static addresses\n");
5781 		return -EINVAL;
5782 	}
5783 
5784 	if (is_unicast_ether_addr(addr))
5785 		err = dev_uc_del(dev, addr);
5786 	else if (is_multicast_ether_addr(addr))
5787 		err = dev_mc_del(dev, addr);
5788 	else
5789 		err = -EINVAL;
5790 
5791 	return err;
5792 }
5793 
5794 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5795 					 NETIF_F_HW_VLAN_CTAG_TX | \
5796 					 NETIF_F_HW_VLAN_STAG_RX | \
5797 					 NETIF_F_HW_VLAN_STAG_TX)
5798 
5799 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5800 					 NETIF_F_HW_VLAN_STAG_RX)
5801 
5802 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
5803 					 NETIF_F_HW_VLAN_STAG_FILTER)
5804 
5805 /**
5806  * ice_fix_features - fix the netdev features flags based on device limitations
5807  * @netdev: ptr to the netdev that flags are being fixed on
5808  * @features: features that need to be checked and possibly fixed
5809  *
5810  * Make sure any fixups are made to features in this callback. This enables the
5811  * driver to not have to check unsupported configurations throughout the driver
5812  * because that's the responsiblity of this callback.
5813  *
5814  * Single VLAN Mode (SVM) Supported Features:
5815  *	NETIF_F_HW_VLAN_CTAG_FILTER
5816  *	NETIF_F_HW_VLAN_CTAG_RX
5817  *	NETIF_F_HW_VLAN_CTAG_TX
5818  *
5819  * Double VLAN Mode (DVM) Supported Features:
5820  *	NETIF_F_HW_VLAN_CTAG_FILTER
5821  *	NETIF_F_HW_VLAN_CTAG_RX
5822  *	NETIF_F_HW_VLAN_CTAG_TX
5823  *
5824  *	NETIF_F_HW_VLAN_STAG_FILTER
5825  *	NETIF_HW_VLAN_STAG_RX
5826  *	NETIF_HW_VLAN_STAG_TX
5827  *
5828  * Features that need fixing:
5829  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5830  *	These are mutually exlusive as the VSI context cannot support multiple
5831  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
5832  *	is not done, then default to clearing the requested STAG offload
5833  *	settings.
5834  *
5835  *	All supported filtering has to be enabled or disabled together. For
5836  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5837  *	together. If this is not done, then default to VLAN filtering disabled.
5838  *	These are mutually exclusive as there is currently no way to
5839  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5840  *	prune rules.
5841  */
5842 static netdev_features_t
5843 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5844 {
5845 	struct ice_netdev_priv *np = netdev_priv(netdev);
5846 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5847 	bool cur_ctag, cur_stag, req_ctag, req_stag;
5848 
5849 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5850 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5851 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5852 
5853 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5854 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5855 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5856 
5857 	if (req_vlan_fltr != cur_vlan_fltr) {
5858 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5859 			if (req_ctag && req_stag) {
5860 				features |= NETIF_VLAN_FILTERING_FEATURES;
5861 			} else if (!req_ctag && !req_stag) {
5862 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5863 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
5864 				   (!cur_stag && req_stag && !cur_ctag)) {
5865 				features |= NETIF_VLAN_FILTERING_FEATURES;
5866 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5867 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
5868 				   (cur_stag && !req_stag && cur_ctag)) {
5869 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5870 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
5871 			}
5872 		} else {
5873 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
5874 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
5875 
5876 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
5877 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5878 		}
5879 	}
5880 
5881 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5882 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5883 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5884 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5885 			      NETIF_F_HW_VLAN_STAG_TX);
5886 	}
5887 
5888 	if (!(netdev->features & NETIF_F_RXFCS) &&
5889 	    (features & NETIF_F_RXFCS) &&
5890 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
5891 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
5892 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
5893 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
5894 	}
5895 
5896 	return features;
5897 }
5898 
5899 /**
5900  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5901  * @vsi: PF's VSI
5902  * @features: features used to determine VLAN offload settings
5903  *
5904  * First, determine the vlan_ethertype based on the VLAN offload bits in
5905  * features. Then determine if stripping and insertion should be enabled or
5906  * disabled. Finally enable or disable VLAN stripping and insertion.
5907  */
5908 static int
5909 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5910 {
5911 	bool enable_stripping = true, enable_insertion = true;
5912 	struct ice_vsi_vlan_ops *vlan_ops;
5913 	int strip_err = 0, insert_err = 0;
5914 	u16 vlan_ethertype = 0;
5915 
5916 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5917 
5918 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5919 		vlan_ethertype = ETH_P_8021AD;
5920 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5921 		vlan_ethertype = ETH_P_8021Q;
5922 
5923 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5924 		enable_stripping = false;
5925 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5926 		enable_insertion = false;
5927 
5928 	if (enable_stripping)
5929 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5930 	else
5931 		strip_err = vlan_ops->dis_stripping(vsi);
5932 
5933 	if (enable_insertion)
5934 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5935 	else
5936 		insert_err = vlan_ops->dis_insertion(vsi);
5937 
5938 	if (strip_err || insert_err)
5939 		return -EIO;
5940 
5941 	return 0;
5942 }
5943 
5944 /**
5945  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5946  * @vsi: PF's VSI
5947  * @features: features used to determine VLAN filtering settings
5948  *
5949  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5950  * features.
5951  */
5952 static int
5953 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5954 {
5955 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5956 	int err = 0;
5957 
5958 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5959 	 * if either bit is set
5960 	 */
5961 	if (features &
5962 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5963 		err = vlan_ops->ena_rx_filtering(vsi);
5964 	else
5965 		err = vlan_ops->dis_rx_filtering(vsi);
5966 
5967 	return err;
5968 }
5969 
5970 /**
5971  * ice_set_vlan_features - set VLAN settings based on suggested feature set
5972  * @netdev: ptr to the netdev being adjusted
5973  * @features: the feature set that the stack is suggesting
5974  *
5975  * Only update VLAN settings if the requested_vlan_features are different than
5976  * the current_vlan_features.
5977  */
5978 static int
5979 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
5980 {
5981 	netdev_features_t current_vlan_features, requested_vlan_features;
5982 	struct ice_netdev_priv *np = netdev_priv(netdev);
5983 	struct ice_vsi *vsi = np->vsi;
5984 	int err;
5985 
5986 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
5987 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
5988 	if (current_vlan_features ^ requested_vlan_features) {
5989 		if ((features & NETIF_F_RXFCS) &&
5990 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
5991 			dev_err(ice_pf_to_dev(vsi->back),
5992 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
5993 			return -EIO;
5994 		}
5995 
5996 		err = ice_set_vlan_offload_features(vsi, features);
5997 		if (err)
5998 			return err;
5999 	}
6000 
6001 	current_vlan_features = netdev->features &
6002 		NETIF_VLAN_FILTERING_FEATURES;
6003 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6004 	if (current_vlan_features ^ requested_vlan_features) {
6005 		err = ice_set_vlan_filtering_features(vsi, features);
6006 		if (err)
6007 			return err;
6008 	}
6009 
6010 	return 0;
6011 }
6012 
6013 /**
6014  * ice_set_loopback - turn on/off loopback mode on underlying PF
6015  * @vsi: ptr to VSI
6016  * @ena: flag to indicate the on/off setting
6017  */
6018 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6019 {
6020 	bool if_running = netif_running(vsi->netdev);
6021 	int ret;
6022 
6023 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6024 		ret = ice_down(vsi);
6025 		if (ret) {
6026 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6027 			return ret;
6028 		}
6029 	}
6030 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6031 	if (ret)
6032 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6033 	if (if_running)
6034 		ret = ice_up(vsi);
6035 
6036 	return ret;
6037 }
6038 
6039 /**
6040  * ice_set_features - set the netdev feature flags
6041  * @netdev: ptr to the netdev being adjusted
6042  * @features: the feature set that the stack is suggesting
6043  */
6044 static int
6045 ice_set_features(struct net_device *netdev, netdev_features_t features)
6046 {
6047 	netdev_features_t changed = netdev->features ^ features;
6048 	struct ice_netdev_priv *np = netdev_priv(netdev);
6049 	struct ice_vsi *vsi = np->vsi;
6050 	struct ice_pf *pf = vsi->back;
6051 	int ret = 0;
6052 
6053 	/* Don't set any netdev advanced features with device in Safe Mode */
6054 	if (ice_is_safe_mode(pf)) {
6055 		dev_err(ice_pf_to_dev(pf),
6056 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6057 		return ret;
6058 	}
6059 
6060 	/* Do not change setting during reset */
6061 	if (ice_is_reset_in_progress(pf->state)) {
6062 		dev_err(ice_pf_to_dev(pf),
6063 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6064 		return -EBUSY;
6065 	}
6066 
6067 	/* Multiple features can be changed in one call so keep features in
6068 	 * separate if/else statements to guarantee each feature is checked
6069 	 */
6070 	if (changed & NETIF_F_RXHASH)
6071 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6072 
6073 	ret = ice_set_vlan_features(netdev, features);
6074 	if (ret)
6075 		return ret;
6076 
6077 	/* Turn on receive of FCS aka CRC, and after setting this
6078 	 * flag the packet data will have the 4 byte CRC appended
6079 	 */
6080 	if (changed & NETIF_F_RXFCS) {
6081 		if ((features & NETIF_F_RXFCS) &&
6082 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6083 			dev_err(ice_pf_to_dev(vsi->back),
6084 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6085 			return -EIO;
6086 		}
6087 
6088 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6089 		ret = ice_down_up(vsi);
6090 		if (ret)
6091 			return ret;
6092 	}
6093 
6094 	if (changed & NETIF_F_NTUPLE) {
6095 		bool ena = !!(features & NETIF_F_NTUPLE);
6096 
6097 		ice_vsi_manage_fdir(vsi, ena);
6098 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6099 	}
6100 
6101 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6102 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6103 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6104 		return -EACCES;
6105 	}
6106 
6107 	if (changed & NETIF_F_HW_TC) {
6108 		bool ena = !!(features & NETIF_F_HW_TC);
6109 
6110 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6111 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6112 	}
6113 
6114 	if (changed & NETIF_F_LOOPBACK)
6115 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6116 
6117 	return ret;
6118 }
6119 
6120 /**
6121  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6122  * @vsi: VSI to setup VLAN properties for
6123  */
6124 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6125 {
6126 	int err;
6127 
6128 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6129 	if (err)
6130 		return err;
6131 
6132 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6133 	if (err)
6134 		return err;
6135 
6136 	return ice_vsi_add_vlan_zero(vsi);
6137 }
6138 
6139 /**
6140  * ice_vsi_cfg - Setup the VSI
6141  * @vsi: the VSI being configured
6142  *
6143  * Return 0 on success and negative value on error
6144  */
6145 int ice_vsi_cfg(struct ice_vsi *vsi)
6146 {
6147 	int err;
6148 
6149 	if (vsi->netdev) {
6150 		ice_set_rx_mode(vsi->netdev);
6151 
6152 		if (vsi->type != ICE_VSI_LB) {
6153 			err = ice_vsi_vlan_setup(vsi);
6154 
6155 			if (err)
6156 				return err;
6157 		}
6158 	}
6159 	ice_vsi_cfg_dcb_rings(vsi);
6160 
6161 	err = ice_vsi_cfg_lan_txqs(vsi);
6162 	if (!err && ice_is_xdp_ena_vsi(vsi))
6163 		err = ice_vsi_cfg_xdp_txqs(vsi);
6164 	if (!err)
6165 		err = ice_vsi_cfg_rxqs(vsi);
6166 
6167 	return err;
6168 }
6169 
6170 /* THEORY OF MODERATION:
6171  * The ice driver hardware works differently than the hardware that DIMLIB was
6172  * originally made for. ice hardware doesn't have packet count limits that
6173  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6174  * which is hard-coded to a limit of 250,000 ints/second.
6175  * If not using dynamic moderation, the INTRL value can be modified
6176  * by ethtool rx-usecs-high.
6177  */
6178 struct ice_dim {
6179 	/* the throttle rate for interrupts, basically worst case delay before
6180 	 * an initial interrupt fires, value is stored in microseconds.
6181 	 */
6182 	u16 itr;
6183 };
6184 
6185 /* Make a different profile for Rx that doesn't allow quite so aggressive
6186  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6187  * second.
6188  */
6189 static const struct ice_dim rx_profile[] = {
6190 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6191 	{8},    /* 125,000 ints/s */
6192 	{16},   /*  62,500 ints/s */
6193 	{62},   /*  16,129 ints/s */
6194 	{126}   /*   7,936 ints/s */
6195 };
6196 
6197 /* The transmit profile, which has the same sorts of values
6198  * as the previous struct
6199  */
6200 static const struct ice_dim tx_profile[] = {
6201 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6202 	{8},    /* 125,000 ints/s */
6203 	{40},   /*  16,125 ints/s */
6204 	{128},  /*   7,812 ints/s */
6205 	{256}   /*   3,906 ints/s */
6206 };
6207 
6208 static void ice_tx_dim_work(struct work_struct *work)
6209 {
6210 	struct ice_ring_container *rc;
6211 	struct dim *dim;
6212 	u16 itr;
6213 
6214 	dim = container_of(work, struct dim, work);
6215 	rc = (struct ice_ring_container *)dim->priv;
6216 
6217 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6218 
6219 	/* look up the values in our local table */
6220 	itr = tx_profile[dim->profile_ix].itr;
6221 
6222 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6223 	ice_write_itr(rc, itr);
6224 
6225 	dim->state = DIM_START_MEASURE;
6226 }
6227 
6228 static void ice_rx_dim_work(struct work_struct *work)
6229 {
6230 	struct ice_ring_container *rc;
6231 	struct dim *dim;
6232 	u16 itr;
6233 
6234 	dim = container_of(work, struct dim, work);
6235 	rc = (struct ice_ring_container *)dim->priv;
6236 
6237 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6238 
6239 	/* look up the values in our local table */
6240 	itr = rx_profile[dim->profile_ix].itr;
6241 
6242 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6243 	ice_write_itr(rc, itr);
6244 
6245 	dim->state = DIM_START_MEASURE;
6246 }
6247 
6248 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6249 
6250 /**
6251  * ice_init_moderation - set up interrupt moderation
6252  * @q_vector: the vector containing rings to be configured
6253  *
6254  * Set up interrupt moderation registers, with the intent to do the right thing
6255  * when called from reset or from probe, and whether or not dynamic moderation
6256  * is enabled or not. Take special care to write all the registers in both
6257  * dynamic moderation mode or not in order to make sure hardware is in a known
6258  * state.
6259  */
6260 static void ice_init_moderation(struct ice_q_vector *q_vector)
6261 {
6262 	struct ice_ring_container *rc;
6263 	bool tx_dynamic, rx_dynamic;
6264 
6265 	rc = &q_vector->tx;
6266 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6267 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6268 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6269 	rc->dim.priv = rc;
6270 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6271 
6272 	/* set the initial TX ITR to match the above */
6273 	ice_write_itr(rc, tx_dynamic ?
6274 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6275 
6276 	rc = &q_vector->rx;
6277 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6278 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6279 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6280 	rc->dim.priv = rc;
6281 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6282 
6283 	/* set the initial RX ITR to match the above */
6284 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6285 				       rc->itr_setting);
6286 
6287 	ice_set_q_vector_intrl(q_vector);
6288 }
6289 
6290 /**
6291  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6292  * @vsi: the VSI being configured
6293  */
6294 static void ice_napi_enable_all(struct ice_vsi *vsi)
6295 {
6296 	int q_idx;
6297 
6298 	if (!vsi->netdev)
6299 		return;
6300 
6301 	ice_for_each_q_vector(vsi, q_idx) {
6302 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6303 
6304 		ice_init_moderation(q_vector);
6305 
6306 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6307 			napi_enable(&q_vector->napi);
6308 	}
6309 }
6310 
6311 /**
6312  * ice_up_complete - Finish the last steps of bringing up a connection
6313  * @vsi: The VSI being configured
6314  *
6315  * Return 0 on success and negative value on error
6316  */
6317 static int ice_up_complete(struct ice_vsi *vsi)
6318 {
6319 	struct ice_pf *pf = vsi->back;
6320 	int err;
6321 
6322 	ice_vsi_cfg_msix(vsi);
6323 
6324 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6325 	 * Tx queue group list was configured and the context bits were
6326 	 * programmed using ice_vsi_cfg_txqs
6327 	 */
6328 	err = ice_vsi_start_all_rx_rings(vsi);
6329 	if (err)
6330 		return err;
6331 
6332 	clear_bit(ICE_VSI_DOWN, vsi->state);
6333 	ice_napi_enable_all(vsi);
6334 	ice_vsi_ena_irq(vsi);
6335 
6336 	if (vsi->port_info &&
6337 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6338 	    vsi->netdev) {
6339 		ice_print_link_msg(vsi, true);
6340 		netif_tx_start_all_queues(vsi->netdev);
6341 		netif_carrier_on(vsi->netdev);
6342 		ice_ptp_link_change(pf, pf->hw.pf_id, true);
6343 	}
6344 
6345 	/* Perform an initial read of the statistics registers now to
6346 	 * set the baseline so counters are ready when interface is up
6347 	 */
6348 	ice_update_eth_stats(vsi);
6349 	ice_service_task_schedule(pf);
6350 
6351 	return 0;
6352 }
6353 
6354 /**
6355  * ice_up - Bring the connection back up after being down
6356  * @vsi: VSI being configured
6357  */
6358 int ice_up(struct ice_vsi *vsi)
6359 {
6360 	int err;
6361 
6362 	err = ice_vsi_cfg(vsi);
6363 	if (!err)
6364 		err = ice_up_complete(vsi);
6365 
6366 	return err;
6367 }
6368 
6369 /**
6370  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6371  * @syncp: pointer to u64_stats_sync
6372  * @stats: stats that pkts and bytes count will be taken from
6373  * @pkts: packets stats counter
6374  * @bytes: bytes stats counter
6375  *
6376  * This function fetches stats from the ring considering the atomic operations
6377  * that needs to be performed to read u64 values in 32 bit machine.
6378  */
6379 void
6380 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6381 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6382 {
6383 	unsigned int start;
6384 
6385 	do {
6386 		start = u64_stats_fetch_begin(syncp);
6387 		*pkts = stats.pkts;
6388 		*bytes = stats.bytes;
6389 	} while (u64_stats_fetch_retry(syncp, start));
6390 }
6391 
6392 /**
6393  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6394  * @vsi: the VSI to be updated
6395  * @vsi_stats: the stats struct to be updated
6396  * @rings: rings to work on
6397  * @count: number of rings
6398  */
6399 static void
6400 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6401 			     struct rtnl_link_stats64 *vsi_stats,
6402 			     struct ice_tx_ring **rings, u16 count)
6403 {
6404 	u16 i;
6405 
6406 	for (i = 0; i < count; i++) {
6407 		struct ice_tx_ring *ring;
6408 		u64 pkts = 0, bytes = 0;
6409 
6410 		ring = READ_ONCE(rings[i]);
6411 		if (!ring || !ring->ring_stats)
6412 			continue;
6413 		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6414 					     ring->ring_stats->stats, &pkts,
6415 					     &bytes);
6416 		vsi_stats->tx_packets += pkts;
6417 		vsi_stats->tx_bytes += bytes;
6418 		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6419 		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6420 		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6421 	}
6422 }
6423 
6424 /**
6425  * ice_update_vsi_ring_stats - Update VSI stats counters
6426  * @vsi: the VSI to be updated
6427  */
6428 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6429 {
6430 	struct rtnl_link_stats64 *net_stats, *stats_prev;
6431 	struct rtnl_link_stats64 *vsi_stats;
6432 	u64 pkts, bytes;
6433 	int i;
6434 
6435 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6436 	if (!vsi_stats)
6437 		return;
6438 
6439 	/* reset non-netdev (extended) stats */
6440 	vsi->tx_restart = 0;
6441 	vsi->tx_busy = 0;
6442 	vsi->tx_linearize = 0;
6443 	vsi->rx_buf_failed = 0;
6444 	vsi->rx_page_failed = 0;
6445 
6446 	rcu_read_lock();
6447 
6448 	/* update Tx rings counters */
6449 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6450 				     vsi->num_txq);
6451 
6452 	/* update Rx rings counters */
6453 	ice_for_each_rxq(vsi, i) {
6454 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6455 		struct ice_ring_stats *ring_stats;
6456 
6457 		ring_stats = ring->ring_stats;
6458 		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6459 					     ring_stats->stats, &pkts,
6460 					     &bytes);
6461 		vsi_stats->rx_packets += pkts;
6462 		vsi_stats->rx_bytes += bytes;
6463 		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6464 		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6465 	}
6466 
6467 	/* update XDP Tx rings counters */
6468 	if (ice_is_xdp_ena_vsi(vsi))
6469 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6470 					     vsi->num_xdp_txq);
6471 
6472 	rcu_read_unlock();
6473 
6474 	net_stats = &vsi->net_stats;
6475 	stats_prev = &vsi->net_stats_prev;
6476 
6477 	/* clear prev counters after reset */
6478 	if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6479 	    vsi_stats->rx_packets < stats_prev->rx_packets) {
6480 		stats_prev->tx_packets = 0;
6481 		stats_prev->tx_bytes = 0;
6482 		stats_prev->rx_packets = 0;
6483 		stats_prev->rx_bytes = 0;
6484 	}
6485 
6486 	/* update netdev counters */
6487 	net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6488 	net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6489 	net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6490 	net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6491 
6492 	stats_prev->tx_packets = vsi_stats->tx_packets;
6493 	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6494 	stats_prev->rx_packets = vsi_stats->rx_packets;
6495 	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6496 
6497 	kfree(vsi_stats);
6498 }
6499 
6500 /**
6501  * ice_update_vsi_stats - Update VSI stats counters
6502  * @vsi: the VSI to be updated
6503  */
6504 void ice_update_vsi_stats(struct ice_vsi *vsi)
6505 {
6506 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6507 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6508 	struct ice_pf *pf = vsi->back;
6509 
6510 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6511 	    test_bit(ICE_CFG_BUSY, pf->state))
6512 		return;
6513 
6514 	/* get stats as recorded by Tx/Rx rings */
6515 	ice_update_vsi_ring_stats(vsi);
6516 
6517 	/* get VSI stats as recorded by the hardware */
6518 	ice_update_eth_stats(vsi);
6519 
6520 	cur_ns->tx_errors = cur_es->tx_errors;
6521 	cur_ns->rx_dropped = cur_es->rx_discards;
6522 	cur_ns->tx_dropped = cur_es->tx_discards;
6523 	cur_ns->multicast = cur_es->rx_multicast;
6524 
6525 	/* update some more netdev stats if this is main VSI */
6526 	if (vsi->type == ICE_VSI_PF) {
6527 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6528 		cur_ns->rx_errors = pf->stats.crc_errors +
6529 				    pf->stats.illegal_bytes +
6530 				    pf->stats.rx_len_errors +
6531 				    pf->stats.rx_undersize +
6532 				    pf->hw_csum_rx_error +
6533 				    pf->stats.rx_jabber +
6534 				    pf->stats.rx_fragments +
6535 				    pf->stats.rx_oversize;
6536 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6537 		/* record drops from the port level */
6538 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6539 	}
6540 }
6541 
6542 /**
6543  * ice_update_pf_stats - Update PF port stats counters
6544  * @pf: PF whose stats needs to be updated
6545  */
6546 void ice_update_pf_stats(struct ice_pf *pf)
6547 {
6548 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6549 	struct ice_hw *hw = &pf->hw;
6550 	u16 fd_ctr_base;
6551 	u8 port;
6552 
6553 	port = hw->port_info->lport;
6554 	prev_ps = &pf->stats_prev;
6555 	cur_ps = &pf->stats;
6556 
6557 	if (ice_is_reset_in_progress(pf->state))
6558 		pf->stat_prev_loaded = false;
6559 
6560 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6561 			  &prev_ps->eth.rx_bytes,
6562 			  &cur_ps->eth.rx_bytes);
6563 
6564 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6565 			  &prev_ps->eth.rx_unicast,
6566 			  &cur_ps->eth.rx_unicast);
6567 
6568 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6569 			  &prev_ps->eth.rx_multicast,
6570 			  &cur_ps->eth.rx_multicast);
6571 
6572 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6573 			  &prev_ps->eth.rx_broadcast,
6574 			  &cur_ps->eth.rx_broadcast);
6575 
6576 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6577 			  &prev_ps->eth.rx_discards,
6578 			  &cur_ps->eth.rx_discards);
6579 
6580 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6581 			  &prev_ps->eth.tx_bytes,
6582 			  &cur_ps->eth.tx_bytes);
6583 
6584 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6585 			  &prev_ps->eth.tx_unicast,
6586 			  &cur_ps->eth.tx_unicast);
6587 
6588 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6589 			  &prev_ps->eth.tx_multicast,
6590 			  &cur_ps->eth.tx_multicast);
6591 
6592 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6593 			  &prev_ps->eth.tx_broadcast,
6594 			  &cur_ps->eth.tx_broadcast);
6595 
6596 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6597 			  &prev_ps->tx_dropped_link_down,
6598 			  &cur_ps->tx_dropped_link_down);
6599 
6600 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6601 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6602 
6603 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6604 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6605 
6606 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6607 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6608 
6609 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6610 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6611 
6612 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6613 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6614 
6615 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6616 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6617 
6618 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6619 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6620 
6621 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6622 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6623 
6624 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6625 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6626 
6627 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6628 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6629 
6630 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6631 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6632 
6633 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6634 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6635 
6636 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6637 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6638 
6639 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6640 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6641 
6642 	fd_ctr_base = hw->fd_ctr_base;
6643 
6644 	ice_stat_update40(hw,
6645 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6646 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6647 			  &cur_ps->fd_sb_match);
6648 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6649 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6650 
6651 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6652 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6653 
6654 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6655 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6656 
6657 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6658 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6659 
6660 	ice_update_dcb_stats(pf);
6661 
6662 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6663 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6664 
6665 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6666 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6667 
6668 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6669 			  &prev_ps->mac_local_faults,
6670 			  &cur_ps->mac_local_faults);
6671 
6672 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6673 			  &prev_ps->mac_remote_faults,
6674 			  &cur_ps->mac_remote_faults);
6675 
6676 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6677 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6678 
6679 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6680 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6681 
6682 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6683 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6684 
6685 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6686 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6687 
6688 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6689 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6690 
6691 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6692 
6693 	pf->stat_prev_loaded = true;
6694 }
6695 
6696 /**
6697  * ice_get_stats64 - get statistics for network device structure
6698  * @netdev: network interface device structure
6699  * @stats: main device statistics structure
6700  */
6701 static
6702 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6703 {
6704 	struct ice_netdev_priv *np = netdev_priv(netdev);
6705 	struct rtnl_link_stats64 *vsi_stats;
6706 	struct ice_vsi *vsi = np->vsi;
6707 
6708 	vsi_stats = &vsi->net_stats;
6709 
6710 	if (!vsi->num_txq || !vsi->num_rxq)
6711 		return;
6712 
6713 	/* netdev packet/byte stats come from ring counter. These are obtained
6714 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6715 	 * But, only call the update routine and read the registers if VSI is
6716 	 * not down.
6717 	 */
6718 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6719 		ice_update_vsi_ring_stats(vsi);
6720 	stats->tx_packets = vsi_stats->tx_packets;
6721 	stats->tx_bytes = vsi_stats->tx_bytes;
6722 	stats->rx_packets = vsi_stats->rx_packets;
6723 	stats->rx_bytes = vsi_stats->rx_bytes;
6724 
6725 	/* The rest of the stats can be read from the hardware but instead we
6726 	 * just return values that the watchdog task has already obtained from
6727 	 * the hardware.
6728 	 */
6729 	stats->multicast = vsi_stats->multicast;
6730 	stats->tx_errors = vsi_stats->tx_errors;
6731 	stats->tx_dropped = vsi_stats->tx_dropped;
6732 	stats->rx_errors = vsi_stats->rx_errors;
6733 	stats->rx_dropped = vsi_stats->rx_dropped;
6734 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6735 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6736 }
6737 
6738 /**
6739  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6740  * @vsi: VSI having NAPI disabled
6741  */
6742 static void ice_napi_disable_all(struct ice_vsi *vsi)
6743 {
6744 	int q_idx;
6745 
6746 	if (!vsi->netdev)
6747 		return;
6748 
6749 	ice_for_each_q_vector(vsi, q_idx) {
6750 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6751 
6752 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6753 			napi_disable(&q_vector->napi);
6754 
6755 		cancel_work_sync(&q_vector->tx.dim.work);
6756 		cancel_work_sync(&q_vector->rx.dim.work);
6757 	}
6758 }
6759 
6760 /**
6761  * ice_down - Shutdown the connection
6762  * @vsi: The VSI being stopped
6763  *
6764  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6765  */
6766 int ice_down(struct ice_vsi *vsi)
6767 {
6768 	int i, tx_err, rx_err, vlan_err = 0;
6769 
6770 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6771 
6772 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6773 		vlan_err = ice_vsi_del_vlan_zero(vsi);
6774 		ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6775 		netif_carrier_off(vsi->netdev);
6776 		netif_tx_disable(vsi->netdev);
6777 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6778 		ice_eswitch_stop_all_tx_queues(vsi->back);
6779 	}
6780 
6781 	ice_vsi_dis_irq(vsi);
6782 
6783 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6784 	if (tx_err)
6785 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6786 			   vsi->vsi_num, tx_err);
6787 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6788 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6789 		if (tx_err)
6790 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6791 				   vsi->vsi_num, tx_err);
6792 	}
6793 
6794 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6795 	if (rx_err)
6796 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6797 			   vsi->vsi_num, rx_err);
6798 
6799 	ice_napi_disable_all(vsi);
6800 
6801 	ice_for_each_txq(vsi, i)
6802 		ice_clean_tx_ring(vsi->tx_rings[i]);
6803 
6804 	ice_for_each_rxq(vsi, i)
6805 		ice_clean_rx_ring(vsi->rx_rings[i]);
6806 
6807 	if (tx_err || rx_err || vlan_err) {
6808 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6809 			   vsi->vsi_num, vsi->vsw->sw_id);
6810 		return -EIO;
6811 	}
6812 
6813 	return 0;
6814 }
6815 
6816 /**
6817  * ice_down_up - shutdown the VSI connection and bring it up
6818  * @vsi: the VSI to be reconnected
6819  */
6820 int ice_down_up(struct ice_vsi *vsi)
6821 {
6822 	int ret;
6823 
6824 	/* if DOWN already set, nothing to do */
6825 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
6826 		return 0;
6827 
6828 	ret = ice_down(vsi);
6829 	if (ret)
6830 		return ret;
6831 
6832 	ret = ice_up(vsi);
6833 	if (ret) {
6834 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
6835 		return ret;
6836 	}
6837 
6838 	return 0;
6839 }
6840 
6841 /**
6842  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6843  * @vsi: VSI having resources allocated
6844  *
6845  * Return 0 on success, negative on failure
6846  */
6847 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6848 {
6849 	int i, err = 0;
6850 
6851 	if (!vsi->num_txq) {
6852 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6853 			vsi->vsi_num);
6854 		return -EINVAL;
6855 	}
6856 
6857 	ice_for_each_txq(vsi, i) {
6858 		struct ice_tx_ring *ring = vsi->tx_rings[i];
6859 
6860 		if (!ring)
6861 			return -EINVAL;
6862 
6863 		if (vsi->netdev)
6864 			ring->netdev = vsi->netdev;
6865 		err = ice_setup_tx_ring(ring);
6866 		if (err)
6867 			break;
6868 	}
6869 
6870 	return err;
6871 }
6872 
6873 /**
6874  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6875  * @vsi: VSI having resources allocated
6876  *
6877  * Return 0 on success, negative on failure
6878  */
6879 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6880 {
6881 	int i, err = 0;
6882 
6883 	if (!vsi->num_rxq) {
6884 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6885 			vsi->vsi_num);
6886 		return -EINVAL;
6887 	}
6888 
6889 	ice_for_each_rxq(vsi, i) {
6890 		struct ice_rx_ring *ring = vsi->rx_rings[i];
6891 
6892 		if (!ring)
6893 			return -EINVAL;
6894 
6895 		if (vsi->netdev)
6896 			ring->netdev = vsi->netdev;
6897 		err = ice_setup_rx_ring(ring);
6898 		if (err)
6899 			break;
6900 	}
6901 
6902 	return err;
6903 }
6904 
6905 /**
6906  * ice_vsi_open_ctrl - open control VSI for use
6907  * @vsi: the VSI to open
6908  *
6909  * Initialization of the Control VSI
6910  *
6911  * Returns 0 on success, negative value on error
6912  */
6913 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6914 {
6915 	char int_name[ICE_INT_NAME_STR_LEN];
6916 	struct ice_pf *pf = vsi->back;
6917 	struct device *dev;
6918 	int err;
6919 
6920 	dev = ice_pf_to_dev(pf);
6921 	/* allocate descriptors */
6922 	err = ice_vsi_setup_tx_rings(vsi);
6923 	if (err)
6924 		goto err_setup_tx;
6925 
6926 	err = ice_vsi_setup_rx_rings(vsi);
6927 	if (err)
6928 		goto err_setup_rx;
6929 
6930 	err = ice_vsi_cfg(vsi);
6931 	if (err)
6932 		goto err_setup_rx;
6933 
6934 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6935 		 dev_driver_string(dev), dev_name(dev));
6936 	err = ice_vsi_req_irq_msix(vsi, int_name);
6937 	if (err)
6938 		goto err_setup_rx;
6939 
6940 	ice_vsi_cfg_msix(vsi);
6941 
6942 	err = ice_vsi_start_all_rx_rings(vsi);
6943 	if (err)
6944 		goto err_up_complete;
6945 
6946 	clear_bit(ICE_VSI_DOWN, vsi->state);
6947 	ice_vsi_ena_irq(vsi);
6948 
6949 	return 0;
6950 
6951 err_up_complete:
6952 	ice_down(vsi);
6953 err_setup_rx:
6954 	ice_vsi_free_rx_rings(vsi);
6955 err_setup_tx:
6956 	ice_vsi_free_tx_rings(vsi);
6957 
6958 	return err;
6959 }
6960 
6961 /**
6962  * ice_vsi_open - Called when a network interface is made active
6963  * @vsi: the VSI to open
6964  *
6965  * Initialization of the VSI
6966  *
6967  * Returns 0 on success, negative value on error
6968  */
6969 int ice_vsi_open(struct ice_vsi *vsi)
6970 {
6971 	char int_name[ICE_INT_NAME_STR_LEN];
6972 	struct ice_pf *pf = vsi->back;
6973 	int err;
6974 
6975 	/* allocate descriptors */
6976 	err = ice_vsi_setup_tx_rings(vsi);
6977 	if (err)
6978 		goto err_setup_tx;
6979 
6980 	err = ice_vsi_setup_rx_rings(vsi);
6981 	if (err)
6982 		goto err_setup_rx;
6983 
6984 	err = ice_vsi_cfg(vsi);
6985 	if (err)
6986 		goto err_setup_rx;
6987 
6988 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6989 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6990 	err = ice_vsi_req_irq_msix(vsi, int_name);
6991 	if (err)
6992 		goto err_setup_rx;
6993 
6994 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
6995 
6996 	if (vsi->type == ICE_VSI_PF) {
6997 		/* Notify the stack of the actual queue counts. */
6998 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6999 		if (err)
7000 			goto err_set_qs;
7001 
7002 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7003 		if (err)
7004 			goto err_set_qs;
7005 	}
7006 
7007 	err = ice_up_complete(vsi);
7008 	if (err)
7009 		goto err_up_complete;
7010 
7011 	return 0;
7012 
7013 err_up_complete:
7014 	ice_down(vsi);
7015 err_set_qs:
7016 	ice_vsi_free_irq(vsi);
7017 err_setup_rx:
7018 	ice_vsi_free_rx_rings(vsi);
7019 err_setup_tx:
7020 	ice_vsi_free_tx_rings(vsi);
7021 
7022 	return err;
7023 }
7024 
7025 /**
7026  * ice_vsi_release_all - Delete all VSIs
7027  * @pf: PF from which all VSIs are being removed
7028  */
7029 static void ice_vsi_release_all(struct ice_pf *pf)
7030 {
7031 	int err, i;
7032 
7033 	if (!pf->vsi)
7034 		return;
7035 
7036 	ice_for_each_vsi(pf, i) {
7037 		if (!pf->vsi[i])
7038 			continue;
7039 
7040 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7041 			continue;
7042 
7043 		err = ice_vsi_release(pf->vsi[i]);
7044 		if (err)
7045 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7046 				i, err, pf->vsi[i]->vsi_num);
7047 	}
7048 }
7049 
7050 /**
7051  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7052  * @pf: pointer to the PF instance
7053  * @type: VSI type to rebuild
7054  *
7055  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7056  */
7057 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7058 {
7059 	struct device *dev = ice_pf_to_dev(pf);
7060 	int i, err;
7061 
7062 	ice_for_each_vsi(pf, i) {
7063 		struct ice_vsi *vsi = pf->vsi[i];
7064 
7065 		if (!vsi || vsi->type != type)
7066 			continue;
7067 
7068 		/* rebuild the VSI */
7069 		err = ice_vsi_rebuild(vsi, true);
7070 		if (err) {
7071 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7072 				err, vsi->idx, ice_vsi_type_str(type));
7073 			return err;
7074 		}
7075 
7076 		/* replay filters for the VSI */
7077 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7078 		if (err) {
7079 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7080 				err, vsi->idx, ice_vsi_type_str(type));
7081 			return err;
7082 		}
7083 
7084 		/* Re-map HW VSI number, using VSI handle that has been
7085 		 * previously validated in ice_replay_vsi() call above
7086 		 */
7087 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7088 
7089 		/* enable the VSI */
7090 		err = ice_ena_vsi(vsi, false);
7091 		if (err) {
7092 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7093 				err, vsi->idx, ice_vsi_type_str(type));
7094 			return err;
7095 		}
7096 
7097 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7098 			 ice_vsi_type_str(type));
7099 	}
7100 
7101 	return 0;
7102 }
7103 
7104 /**
7105  * ice_update_pf_netdev_link - Update PF netdev link status
7106  * @pf: pointer to the PF instance
7107  */
7108 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7109 {
7110 	bool link_up;
7111 	int i;
7112 
7113 	ice_for_each_vsi(pf, i) {
7114 		struct ice_vsi *vsi = pf->vsi[i];
7115 
7116 		if (!vsi || vsi->type != ICE_VSI_PF)
7117 			return;
7118 
7119 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7120 		if (link_up) {
7121 			netif_carrier_on(pf->vsi[i]->netdev);
7122 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7123 		} else {
7124 			netif_carrier_off(pf->vsi[i]->netdev);
7125 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7126 		}
7127 	}
7128 }
7129 
7130 /**
7131  * ice_rebuild - rebuild after reset
7132  * @pf: PF to rebuild
7133  * @reset_type: type of reset
7134  *
7135  * Do not rebuild VF VSI in this flow because that is already handled via
7136  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7137  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7138  * to reset/rebuild all the VF VSI twice.
7139  */
7140 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7141 {
7142 	struct device *dev = ice_pf_to_dev(pf);
7143 	struct ice_hw *hw = &pf->hw;
7144 	bool dvm;
7145 	int err;
7146 
7147 	if (test_bit(ICE_DOWN, pf->state))
7148 		goto clear_recovery;
7149 
7150 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7151 
7152 #define ICE_EMP_RESET_SLEEP_MS 5000
7153 	if (reset_type == ICE_RESET_EMPR) {
7154 		/* If an EMP reset has occurred, any previously pending flash
7155 		 * update will have completed. We no longer know whether or
7156 		 * not the NVM update EMP reset is restricted.
7157 		 */
7158 		pf->fw_emp_reset_disabled = false;
7159 
7160 		msleep(ICE_EMP_RESET_SLEEP_MS);
7161 	}
7162 
7163 	err = ice_init_all_ctrlq(hw);
7164 	if (err) {
7165 		dev_err(dev, "control queues init failed %d\n", err);
7166 		goto err_init_ctrlq;
7167 	}
7168 
7169 	/* if DDP was previously loaded successfully */
7170 	if (!ice_is_safe_mode(pf)) {
7171 		/* reload the SW DB of filter tables */
7172 		if (reset_type == ICE_RESET_PFR)
7173 			ice_fill_blk_tbls(hw);
7174 		else
7175 			/* Reload DDP Package after CORER/GLOBR reset */
7176 			ice_load_pkg(NULL, pf);
7177 	}
7178 
7179 	err = ice_clear_pf_cfg(hw);
7180 	if (err) {
7181 		dev_err(dev, "clear PF configuration failed %d\n", err);
7182 		goto err_init_ctrlq;
7183 	}
7184 
7185 	ice_clear_pxe_mode(hw);
7186 
7187 	err = ice_init_nvm(hw);
7188 	if (err) {
7189 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7190 		goto err_init_ctrlq;
7191 	}
7192 
7193 	err = ice_get_caps(hw);
7194 	if (err) {
7195 		dev_err(dev, "ice_get_caps failed %d\n", err);
7196 		goto err_init_ctrlq;
7197 	}
7198 
7199 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7200 	if (err) {
7201 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7202 		goto err_init_ctrlq;
7203 	}
7204 
7205 	dvm = ice_is_dvm_ena(hw);
7206 
7207 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7208 	if (err)
7209 		goto err_init_ctrlq;
7210 
7211 	err = ice_sched_init_port(hw->port_info);
7212 	if (err)
7213 		goto err_sched_init_port;
7214 
7215 	/* start misc vector */
7216 	err = ice_req_irq_msix_misc(pf);
7217 	if (err) {
7218 		dev_err(dev, "misc vector setup failed: %d\n", err);
7219 		goto err_sched_init_port;
7220 	}
7221 
7222 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7223 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7224 		if (!rd32(hw, PFQF_FD_SIZE)) {
7225 			u16 unused, guar, b_effort;
7226 
7227 			guar = hw->func_caps.fd_fltr_guar;
7228 			b_effort = hw->func_caps.fd_fltr_best_effort;
7229 
7230 			/* force guaranteed filter pool for PF */
7231 			ice_alloc_fd_guar_item(hw, &unused, guar);
7232 			/* force shared filter pool for PF */
7233 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7234 		}
7235 	}
7236 
7237 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7238 		ice_dcb_rebuild(pf);
7239 
7240 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7241 	 * the VSI rebuild. If not, this causes the PTP link status events to
7242 	 * fail.
7243 	 */
7244 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7245 		ice_ptp_reset(pf);
7246 
7247 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7248 		ice_gnss_init(pf);
7249 
7250 	/* rebuild PF VSI */
7251 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7252 	if (err) {
7253 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7254 		goto err_vsi_rebuild;
7255 	}
7256 
7257 	/* configure PTP timestamping after VSI rebuild */
7258 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7259 		ice_ptp_cfg_timestamp(pf, false);
7260 
7261 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7262 	if (err) {
7263 		dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7264 		goto err_vsi_rebuild;
7265 	}
7266 
7267 	if (reset_type == ICE_RESET_PFR) {
7268 		err = ice_rebuild_channels(pf);
7269 		if (err) {
7270 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7271 				err);
7272 			goto err_vsi_rebuild;
7273 		}
7274 	}
7275 
7276 	/* If Flow Director is active */
7277 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7278 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7279 		if (err) {
7280 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7281 			goto err_vsi_rebuild;
7282 		}
7283 
7284 		/* replay HW Flow Director recipes */
7285 		if (hw->fdir_prof)
7286 			ice_fdir_replay_flows(hw);
7287 
7288 		/* replay Flow Director filters */
7289 		ice_fdir_replay_fltrs(pf);
7290 
7291 		ice_rebuild_arfs(pf);
7292 	}
7293 
7294 	ice_update_pf_netdev_link(pf);
7295 
7296 	/* tell the firmware we are up */
7297 	err = ice_send_version(pf);
7298 	if (err) {
7299 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7300 			err);
7301 		goto err_vsi_rebuild;
7302 	}
7303 
7304 	ice_replay_post(hw);
7305 
7306 	/* if we get here, reset flow is successful */
7307 	clear_bit(ICE_RESET_FAILED, pf->state);
7308 
7309 	ice_plug_aux_dev(pf);
7310 	return;
7311 
7312 err_vsi_rebuild:
7313 err_sched_init_port:
7314 	ice_sched_cleanup_all(hw);
7315 err_init_ctrlq:
7316 	ice_shutdown_all_ctrlq(hw);
7317 	set_bit(ICE_RESET_FAILED, pf->state);
7318 clear_recovery:
7319 	/* set this bit in PF state to control service task scheduling */
7320 	set_bit(ICE_NEEDS_RESTART, pf->state);
7321 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7322 }
7323 
7324 /**
7325  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7326  * @vsi: Pointer to VSI structure
7327  */
7328 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7329 {
7330 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7331 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7332 	else
7333 		return ICE_RXBUF_3072;
7334 }
7335 
7336 /**
7337  * ice_change_mtu - NDO callback to change the MTU
7338  * @netdev: network interface device structure
7339  * @new_mtu: new value for maximum frame size
7340  *
7341  * Returns 0 on success, negative on failure
7342  */
7343 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7344 {
7345 	struct ice_netdev_priv *np = netdev_priv(netdev);
7346 	struct ice_vsi *vsi = np->vsi;
7347 	struct ice_pf *pf = vsi->back;
7348 	u8 count = 0;
7349 	int err = 0;
7350 
7351 	if (new_mtu == (int)netdev->mtu) {
7352 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7353 		return 0;
7354 	}
7355 
7356 	if (ice_is_xdp_ena_vsi(vsi)) {
7357 		int frame_size = ice_max_xdp_frame_size(vsi);
7358 
7359 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7360 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7361 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7362 			return -EINVAL;
7363 		}
7364 	}
7365 
7366 	/* if a reset is in progress, wait for some time for it to complete */
7367 	do {
7368 		if (ice_is_reset_in_progress(pf->state)) {
7369 			count++;
7370 			usleep_range(1000, 2000);
7371 		} else {
7372 			break;
7373 		}
7374 
7375 	} while (count < 100);
7376 
7377 	if (count == 100) {
7378 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7379 		return -EBUSY;
7380 	}
7381 
7382 	netdev->mtu = (unsigned int)new_mtu;
7383 
7384 	/* if VSI is up, bring it down and then back up */
7385 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7386 		err = ice_down(vsi);
7387 		if (err) {
7388 			netdev_err(netdev, "change MTU if_down err %d\n", err);
7389 			return err;
7390 		}
7391 
7392 		err = ice_up(vsi);
7393 		if (err) {
7394 			netdev_err(netdev, "change MTU if_up err %d\n", err);
7395 			return err;
7396 		}
7397 	}
7398 
7399 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7400 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7401 
7402 	return err;
7403 }
7404 
7405 /**
7406  * ice_eth_ioctl - Access the hwtstamp interface
7407  * @netdev: network interface device structure
7408  * @ifr: interface request data
7409  * @cmd: ioctl command
7410  */
7411 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7412 {
7413 	struct ice_netdev_priv *np = netdev_priv(netdev);
7414 	struct ice_pf *pf = np->vsi->back;
7415 
7416 	switch (cmd) {
7417 	case SIOCGHWTSTAMP:
7418 		return ice_ptp_get_ts_config(pf, ifr);
7419 	case SIOCSHWTSTAMP:
7420 		return ice_ptp_set_ts_config(pf, ifr);
7421 	default:
7422 		return -EOPNOTSUPP;
7423 	}
7424 }
7425 
7426 /**
7427  * ice_aq_str - convert AQ err code to a string
7428  * @aq_err: the AQ error code to convert
7429  */
7430 const char *ice_aq_str(enum ice_aq_err aq_err)
7431 {
7432 	switch (aq_err) {
7433 	case ICE_AQ_RC_OK:
7434 		return "OK";
7435 	case ICE_AQ_RC_EPERM:
7436 		return "ICE_AQ_RC_EPERM";
7437 	case ICE_AQ_RC_ENOENT:
7438 		return "ICE_AQ_RC_ENOENT";
7439 	case ICE_AQ_RC_ENOMEM:
7440 		return "ICE_AQ_RC_ENOMEM";
7441 	case ICE_AQ_RC_EBUSY:
7442 		return "ICE_AQ_RC_EBUSY";
7443 	case ICE_AQ_RC_EEXIST:
7444 		return "ICE_AQ_RC_EEXIST";
7445 	case ICE_AQ_RC_EINVAL:
7446 		return "ICE_AQ_RC_EINVAL";
7447 	case ICE_AQ_RC_ENOSPC:
7448 		return "ICE_AQ_RC_ENOSPC";
7449 	case ICE_AQ_RC_ENOSYS:
7450 		return "ICE_AQ_RC_ENOSYS";
7451 	case ICE_AQ_RC_EMODE:
7452 		return "ICE_AQ_RC_EMODE";
7453 	case ICE_AQ_RC_ENOSEC:
7454 		return "ICE_AQ_RC_ENOSEC";
7455 	case ICE_AQ_RC_EBADSIG:
7456 		return "ICE_AQ_RC_EBADSIG";
7457 	case ICE_AQ_RC_ESVN:
7458 		return "ICE_AQ_RC_ESVN";
7459 	case ICE_AQ_RC_EBADMAN:
7460 		return "ICE_AQ_RC_EBADMAN";
7461 	case ICE_AQ_RC_EBADBUF:
7462 		return "ICE_AQ_RC_EBADBUF";
7463 	}
7464 
7465 	return "ICE_AQ_RC_UNKNOWN";
7466 }
7467 
7468 /**
7469  * ice_set_rss_lut - Set RSS LUT
7470  * @vsi: Pointer to VSI structure
7471  * @lut: Lookup table
7472  * @lut_size: Lookup table size
7473  *
7474  * Returns 0 on success, negative on failure
7475  */
7476 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7477 {
7478 	struct ice_aq_get_set_rss_lut_params params = {};
7479 	struct ice_hw *hw = &vsi->back->hw;
7480 	int status;
7481 
7482 	if (!lut)
7483 		return -EINVAL;
7484 
7485 	params.vsi_handle = vsi->idx;
7486 	params.lut_size = lut_size;
7487 	params.lut_type = vsi->rss_lut_type;
7488 	params.lut = lut;
7489 
7490 	status = ice_aq_set_rss_lut(hw, &params);
7491 	if (status)
7492 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7493 			status, ice_aq_str(hw->adminq.sq_last_status));
7494 
7495 	return status;
7496 }
7497 
7498 /**
7499  * ice_set_rss_key - Set RSS key
7500  * @vsi: Pointer to the VSI structure
7501  * @seed: RSS hash seed
7502  *
7503  * Returns 0 on success, negative on failure
7504  */
7505 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7506 {
7507 	struct ice_hw *hw = &vsi->back->hw;
7508 	int status;
7509 
7510 	if (!seed)
7511 		return -EINVAL;
7512 
7513 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7514 	if (status)
7515 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7516 			status, ice_aq_str(hw->adminq.sq_last_status));
7517 
7518 	return status;
7519 }
7520 
7521 /**
7522  * ice_get_rss_lut - Get RSS LUT
7523  * @vsi: Pointer to VSI structure
7524  * @lut: Buffer to store the lookup table entries
7525  * @lut_size: Size of buffer to store the lookup table entries
7526  *
7527  * Returns 0 on success, negative on failure
7528  */
7529 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7530 {
7531 	struct ice_aq_get_set_rss_lut_params params = {};
7532 	struct ice_hw *hw = &vsi->back->hw;
7533 	int status;
7534 
7535 	if (!lut)
7536 		return -EINVAL;
7537 
7538 	params.vsi_handle = vsi->idx;
7539 	params.lut_size = lut_size;
7540 	params.lut_type = vsi->rss_lut_type;
7541 	params.lut = lut;
7542 
7543 	status = ice_aq_get_rss_lut(hw, &params);
7544 	if (status)
7545 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7546 			status, ice_aq_str(hw->adminq.sq_last_status));
7547 
7548 	return status;
7549 }
7550 
7551 /**
7552  * ice_get_rss_key - Get RSS key
7553  * @vsi: Pointer to VSI structure
7554  * @seed: Buffer to store the key in
7555  *
7556  * Returns 0 on success, negative on failure
7557  */
7558 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7559 {
7560 	struct ice_hw *hw = &vsi->back->hw;
7561 	int status;
7562 
7563 	if (!seed)
7564 		return -EINVAL;
7565 
7566 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7567 	if (status)
7568 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7569 			status, ice_aq_str(hw->adminq.sq_last_status));
7570 
7571 	return status;
7572 }
7573 
7574 /**
7575  * ice_bridge_getlink - Get the hardware bridge mode
7576  * @skb: skb buff
7577  * @pid: process ID
7578  * @seq: RTNL message seq
7579  * @dev: the netdev being configured
7580  * @filter_mask: filter mask passed in
7581  * @nlflags: netlink flags passed in
7582  *
7583  * Return the bridge mode (VEB/VEPA)
7584  */
7585 static int
7586 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7587 		   struct net_device *dev, u32 filter_mask, int nlflags)
7588 {
7589 	struct ice_netdev_priv *np = netdev_priv(dev);
7590 	struct ice_vsi *vsi = np->vsi;
7591 	struct ice_pf *pf = vsi->back;
7592 	u16 bmode;
7593 
7594 	bmode = pf->first_sw->bridge_mode;
7595 
7596 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7597 				       filter_mask, NULL);
7598 }
7599 
7600 /**
7601  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7602  * @vsi: Pointer to VSI structure
7603  * @bmode: Hardware bridge mode (VEB/VEPA)
7604  *
7605  * Returns 0 on success, negative on failure
7606  */
7607 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7608 {
7609 	struct ice_aqc_vsi_props *vsi_props;
7610 	struct ice_hw *hw = &vsi->back->hw;
7611 	struct ice_vsi_ctx *ctxt;
7612 	int ret;
7613 
7614 	vsi_props = &vsi->info;
7615 
7616 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7617 	if (!ctxt)
7618 		return -ENOMEM;
7619 
7620 	ctxt->info = vsi->info;
7621 
7622 	if (bmode == BRIDGE_MODE_VEB)
7623 		/* change from VEPA to VEB mode */
7624 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7625 	else
7626 		/* change from VEB to VEPA mode */
7627 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7628 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7629 
7630 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7631 	if (ret) {
7632 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7633 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7634 		goto out;
7635 	}
7636 	/* Update sw flags for book keeping */
7637 	vsi_props->sw_flags = ctxt->info.sw_flags;
7638 
7639 out:
7640 	kfree(ctxt);
7641 	return ret;
7642 }
7643 
7644 /**
7645  * ice_bridge_setlink - Set the hardware bridge mode
7646  * @dev: the netdev being configured
7647  * @nlh: RTNL message
7648  * @flags: bridge setlink flags
7649  * @extack: netlink extended ack
7650  *
7651  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7652  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7653  * not already set for all VSIs connected to this switch. And also update the
7654  * unicast switch filter rules for the corresponding switch of the netdev.
7655  */
7656 static int
7657 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7658 		   u16 __always_unused flags,
7659 		   struct netlink_ext_ack __always_unused *extack)
7660 {
7661 	struct ice_netdev_priv *np = netdev_priv(dev);
7662 	struct ice_pf *pf = np->vsi->back;
7663 	struct nlattr *attr, *br_spec;
7664 	struct ice_hw *hw = &pf->hw;
7665 	struct ice_sw *pf_sw;
7666 	int rem, v, err = 0;
7667 
7668 	pf_sw = pf->first_sw;
7669 	/* find the attribute in the netlink message */
7670 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7671 
7672 	nla_for_each_nested(attr, br_spec, rem) {
7673 		__u16 mode;
7674 
7675 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7676 			continue;
7677 		mode = nla_get_u16(attr);
7678 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7679 			return -EINVAL;
7680 		/* Continue  if bridge mode is not being flipped */
7681 		if (mode == pf_sw->bridge_mode)
7682 			continue;
7683 		/* Iterates through the PF VSI list and update the loopback
7684 		 * mode of the VSI
7685 		 */
7686 		ice_for_each_vsi(pf, v) {
7687 			if (!pf->vsi[v])
7688 				continue;
7689 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7690 			if (err)
7691 				return err;
7692 		}
7693 
7694 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7695 		/* Update the unicast switch filter rules for the corresponding
7696 		 * switch of the netdev
7697 		 */
7698 		err = ice_update_sw_rule_bridge_mode(hw);
7699 		if (err) {
7700 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7701 				   mode, err,
7702 				   ice_aq_str(hw->adminq.sq_last_status));
7703 			/* revert hw->evb_veb */
7704 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7705 			return err;
7706 		}
7707 
7708 		pf_sw->bridge_mode = mode;
7709 	}
7710 
7711 	return 0;
7712 }
7713 
7714 /**
7715  * ice_tx_timeout - Respond to a Tx Hang
7716  * @netdev: network interface device structure
7717  * @txqueue: Tx queue
7718  */
7719 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7720 {
7721 	struct ice_netdev_priv *np = netdev_priv(netdev);
7722 	struct ice_tx_ring *tx_ring = NULL;
7723 	struct ice_vsi *vsi = np->vsi;
7724 	struct ice_pf *pf = vsi->back;
7725 	u32 i;
7726 
7727 	pf->tx_timeout_count++;
7728 
7729 	/* Check if PFC is enabled for the TC to which the queue belongs
7730 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7731 	 * need to reset and rebuild
7732 	 */
7733 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7734 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7735 			 txqueue);
7736 		return;
7737 	}
7738 
7739 	/* now that we have an index, find the tx_ring struct */
7740 	ice_for_each_txq(vsi, i)
7741 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7742 			if (txqueue == vsi->tx_rings[i]->q_index) {
7743 				tx_ring = vsi->tx_rings[i];
7744 				break;
7745 			}
7746 
7747 	/* Reset recovery level if enough time has elapsed after last timeout.
7748 	 * Also ensure no new reset action happens before next timeout period.
7749 	 */
7750 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7751 		pf->tx_timeout_recovery_level = 1;
7752 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7753 				       netdev->watchdog_timeo)))
7754 		return;
7755 
7756 	if (tx_ring) {
7757 		struct ice_hw *hw = &pf->hw;
7758 		u32 head, val = 0;
7759 
7760 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7761 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7762 		/* Read interrupt register */
7763 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7764 
7765 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7766 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7767 			    head, tx_ring->next_to_use, val);
7768 	}
7769 
7770 	pf->tx_timeout_last_recovery = jiffies;
7771 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7772 		    pf->tx_timeout_recovery_level, txqueue);
7773 
7774 	switch (pf->tx_timeout_recovery_level) {
7775 	case 1:
7776 		set_bit(ICE_PFR_REQ, pf->state);
7777 		break;
7778 	case 2:
7779 		set_bit(ICE_CORER_REQ, pf->state);
7780 		break;
7781 	case 3:
7782 		set_bit(ICE_GLOBR_REQ, pf->state);
7783 		break;
7784 	default:
7785 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7786 		set_bit(ICE_DOWN, pf->state);
7787 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7788 		set_bit(ICE_SERVICE_DIS, pf->state);
7789 		break;
7790 	}
7791 
7792 	ice_service_task_schedule(pf);
7793 	pf->tx_timeout_recovery_level++;
7794 }
7795 
7796 /**
7797  * ice_setup_tc_cls_flower - flower classifier offloads
7798  * @np: net device to configure
7799  * @filter_dev: device on which filter is added
7800  * @cls_flower: offload data
7801  */
7802 static int
7803 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7804 			struct net_device *filter_dev,
7805 			struct flow_cls_offload *cls_flower)
7806 {
7807 	struct ice_vsi *vsi = np->vsi;
7808 
7809 	if (cls_flower->common.chain_index)
7810 		return -EOPNOTSUPP;
7811 
7812 	switch (cls_flower->command) {
7813 	case FLOW_CLS_REPLACE:
7814 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7815 	case FLOW_CLS_DESTROY:
7816 		return ice_del_cls_flower(vsi, cls_flower);
7817 	default:
7818 		return -EINVAL;
7819 	}
7820 }
7821 
7822 /**
7823  * ice_setup_tc_block_cb - callback handler registered for TC block
7824  * @type: TC SETUP type
7825  * @type_data: TC flower offload data that contains user input
7826  * @cb_priv: netdev private data
7827  */
7828 static int
7829 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7830 {
7831 	struct ice_netdev_priv *np = cb_priv;
7832 
7833 	switch (type) {
7834 	case TC_SETUP_CLSFLOWER:
7835 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7836 					       type_data);
7837 	default:
7838 		return -EOPNOTSUPP;
7839 	}
7840 }
7841 
7842 /**
7843  * ice_validate_mqprio_qopt - Validate TCF input parameters
7844  * @vsi: Pointer to VSI
7845  * @mqprio_qopt: input parameters for mqprio queue configuration
7846  *
7847  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7848  * needed), and make sure user doesn't specify qcount and BW rate limit
7849  * for TCs, which are more than "num_tc"
7850  */
7851 static int
7852 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7853 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7854 {
7855 	u64 sum_max_rate = 0, sum_min_rate = 0;
7856 	int non_power_of_2_qcount = 0;
7857 	struct ice_pf *pf = vsi->back;
7858 	int max_rss_q_cnt = 0;
7859 	struct device *dev;
7860 	int i, speed;
7861 	u8 num_tc;
7862 
7863 	if (vsi->type != ICE_VSI_PF)
7864 		return -EINVAL;
7865 
7866 	if (mqprio_qopt->qopt.offset[0] != 0 ||
7867 	    mqprio_qopt->qopt.num_tc < 1 ||
7868 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7869 		return -EINVAL;
7870 
7871 	dev = ice_pf_to_dev(pf);
7872 	vsi->ch_rss_size = 0;
7873 	num_tc = mqprio_qopt->qopt.num_tc;
7874 
7875 	for (i = 0; num_tc; i++) {
7876 		int qcount = mqprio_qopt->qopt.count[i];
7877 		u64 max_rate, min_rate, rem;
7878 
7879 		if (!qcount)
7880 			return -EINVAL;
7881 
7882 		if (is_power_of_2(qcount)) {
7883 			if (non_power_of_2_qcount &&
7884 			    qcount > non_power_of_2_qcount) {
7885 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7886 					qcount, non_power_of_2_qcount);
7887 				return -EINVAL;
7888 			}
7889 			if (qcount > max_rss_q_cnt)
7890 				max_rss_q_cnt = qcount;
7891 		} else {
7892 			if (non_power_of_2_qcount &&
7893 			    qcount != non_power_of_2_qcount) {
7894 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7895 					qcount, non_power_of_2_qcount);
7896 				return -EINVAL;
7897 			}
7898 			if (qcount < max_rss_q_cnt) {
7899 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7900 					qcount, max_rss_q_cnt);
7901 				return -EINVAL;
7902 			}
7903 			max_rss_q_cnt = qcount;
7904 			non_power_of_2_qcount = qcount;
7905 		}
7906 
7907 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7908 		 * converts the bandwidth rate limit into Bytes/s when
7909 		 * passing it down to the driver. So convert input bandwidth
7910 		 * from Bytes/s to Kbps
7911 		 */
7912 		max_rate = mqprio_qopt->max_rate[i];
7913 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7914 		sum_max_rate += max_rate;
7915 
7916 		/* min_rate is minimum guaranteed rate and it can't be zero */
7917 		min_rate = mqprio_qopt->min_rate[i];
7918 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7919 		sum_min_rate += min_rate;
7920 
7921 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7922 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7923 				min_rate, ICE_MIN_BW_LIMIT);
7924 			return -EINVAL;
7925 		}
7926 
7927 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7928 		if (rem) {
7929 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7930 				i, ICE_MIN_BW_LIMIT);
7931 			return -EINVAL;
7932 		}
7933 
7934 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7935 		if (rem) {
7936 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7937 				i, ICE_MIN_BW_LIMIT);
7938 			return -EINVAL;
7939 		}
7940 
7941 		/* min_rate can't be more than max_rate, except when max_rate
7942 		 * is zero (implies max_rate sought is max line rate). In such
7943 		 * a case min_rate can be more than max.
7944 		 */
7945 		if (max_rate && min_rate > max_rate) {
7946 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7947 				min_rate, max_rate);
7948 			return -EINVAL;
7949 		}
7950 
7951 		if (i >= mqprio_qopt->qopt.num_tc - 1)
7952 			break;
7953 		if (mqprio_qopt->qopt.offset[i + 1] !=
7954 		    (mqprio_qopt->qopt.offset[i] + qcount))
7955 			return -EINVAL;
7956 	}
7957 	if (vsi->num_rxq <
7958 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7959 		return -EINVAL;
7960 	if (vsi->num_txq <
7961 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7962 		return -EINVAL;
7963 
7964 	speed = ice_get_link_speed_kbps(vsi);
7965 	if (sum_max_rate && sum_max_rate > (u64)speed) {
7966 		dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7967 			sum_max_rate, speed);
7968 		return -EINVAL;
7969 	}
7970 	if (sum_min_rate && sum_min_rate > (u64)speed) {
7971 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7972 			sum_min_rate, speed);
7973 		return -EINVAL;
7974 	}
7975 
7976 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7977 	vsi->ch_rss_size = max_rss_q_cnt;
7978 
7979 	return 0;
7980 }
7981 
7982 /**
7983  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
7984  * @pf: ptr to PF device
7985  * @vsi: ptr to VSI
7986  */
7987 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
7988 {
7989 	struct device *dev = ice_pf_to_dev(pf);
7990 	bool added = false;
7991 	struct ice_hw *hw;
7992 	int flow;
7993 
7994 	if (!(vsi->num_gfltr || vsi->num_bfltr))
7995 		return -EINVAL;
7996 
7997 	hw = &pf->hw;
7998 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
7999 		struct ice_fd_hw_prof *prof;
8000 		int tun, status;
8001 		u64 entry_h;
8002 
8003 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8004 		      hw->fdir_prof[flow]->cnt))
8005 			continue;
8006 
8007 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8008 			enum ice_flow_priority prio;
8009 			u64 prof_id;
8010 
8011 			/* add this VSI to FDir profile for this flow */
8012 			prio = ICE_FLOW_PRIO_NORMAL;
8013 			prof = hw->fdir_prof[flow];
8014 			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
8015 			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
8016 						    prof->vsi_h[0], vsi->idx,
8017 						    prio, prof->fdir_seg[tun],
8018 						    &entry_h);
8019 			if (status) {
8020 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8021 					vsi->idx, flow);
8022 				continue;
8023 			}
8024 
8025 			prof->entry_h[prof->cnt][tun] = entry_h;
8026 		}
8027 
8028 		/* store VSI for filter replay and delete */
8029 		prof->vsi_h[prof->cnt] = vsi->idx;
8030 		prof->cnt++;
8031 
8032 		added = true;
8033 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8034 			flow);
8035 	}
8036 
8037 	if (!added)
8038 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8039 
8040 	return 0;
8041 }
8042 
8043 /**
8044  * ice_add_channel - add a channel by adding VSI
8045  * @pf: ptr to PF device
8046  * @sw_id: underlying HW switching element ID
8047  * @ch: ptr to channel structure
8048  *
8049  * Add a channel (VSI) using add_vsi and queue_map
8050  */
8051 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8052 {
8053 	struct device *dev = ice_pf_to_dev(pf);
8054 	struct ice_vsi *vsi;
8055 
8056 	if (ch->type != ICE_VSI_CHNL) {
8057 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8058 		return -EINVAL;
8059 	}
8060 
8061 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8062 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8063 		dev_err(dev, "create chnl VSI failure\n");
8064 		return -EINVAL;
8065 	}
8066 
8067 	ice_add_vsi_to_fdir(pf, vsi);
8068 
8069 	ch->sw_id = sw_id;
8070 	ch->vsi_num = vsi->vsi_num;
8071 	ch->info.mapping_flags = vsi->info.mapping_flags;
8072 	ch->ch_vsi = vsi;
8073 	/* set the back pointer of channel for newly created VSI */
8074 	vsi->ch = ch;
8075 
8076 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8077 	       sizeof(vsi->info.q_mapping));
8078 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8079 	       sizeof(vsi->info.tc_mapping));
8080 
8081 	return 0;
8082 }
8083 
8084 /**
8085  * ice_chnl_cfg_res
8086  * @vsi: the VSI being setup
8087  * @ch: ptr to channel structure
8088  *
8089  * Configure channel specific resources such as rings, vector.
8090  */
8091 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8092 {
8093 	int i;
8094 
8095 	for (i = 0; i < ch->num_txq; i++) {
8096 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8097 		struct ice_ring_container *rc;
8098 		struct ice_tx_ring *tx_ring;
8099 		struct ice_rx_ring *rx_ring;
8100 
8101 		tx_ring = vsi->tx_rings[ch->base_q + i];
8102 		rx_ring = vsi->rx_rings[ch->base_q + i];
8103 		if (!tx_ring || !rx_ring)
8104 			continue;
8105 
8106 		/* setup ring being channel enabled */
8107 		tx_ring->ch = ch;
8108 		rx_ring->ch = ch;
8109 
8110 		/* following code block sets up vector specific attributes */
8111 		tx_q_vector = tx_ring->q_vector;
8112 		rx_q_vector = rx_ring->q_vector;
8113 		if (!tx_q_vector && !rx_q_vector)
8114 			continue;
8115 
8116 		if (tx_q_vector) {
8117 			tx_q_vector->ch = ch;
8118 			/* setup Tx and Rx ITR setting if DIM is off */
8119 			rc = &tx_q_vector->tx;
8120 			if (!ITR_IS_DYNAMIC(rc))
8121 				ice_write_itr(rc, rc->itr_setting);
8122 		}
8123 		if (rx_q_vector) {
8124 			rx_q_vector->ch = ch;
8125 			/* setup Tx and Rx ITR setting if DIM is off */
8126 			rc = &rx_q_vector->rx;
8127 			if (!ITR_IS_DYNAMIC(rc))
8128 				ice_write_itr(rc, rc->itr_setting);
8129 		}
8130 	}
8131 
8132 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8133 	 * GLINT_ITR register would have written to perform in-context
8134 	 * update, hence perform flush
8135 	 */
8136 	if (ch->num_txq || ch->num_rxq)
8137 		ice_flush(&vsi->back->hw);
8138 }
8139 
8140 /**
8141  * ice_cfg_chnl_all_res - configure channel resources
8142  * @vsi: pte to main_vsi
8143  * @ch: ptr to channel structure
8144  *
8145  * This function configures channel specific resources such as flow-director
8146  * counter index, and other resources such as queues, vectors, ITR settings
8147  */
8148 static void
8149 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8150 {
8151 	/* configure channel (aka ADQ) resources such as queues, vectors,
8152 	 * ITR settings for channel specific vectors and anything else
8153 	 */
8154 	ice_chnl_cfg_res(vsi, ch);
8155 }
8156 
8157 /**
8158  * ice_setup_hw_channel - setup new channel
8159  * @pf: ptr to PF device
8160  * @vsi: the VSI being setup
8161  * @ch: ptr to channel structure
8162  * @sw_id: underlying HW switching element ID
8163  * @type: type of channel to be created (VMDq2/VF)
8164  *
8165  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8166  * and configures Tx rings accordingly
8167  */
8168 static int
8169 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8170 		     struct ice_channel *ch, u16 sw_id, u8 type)
8171 {
8172 	struct device *dev = ice_pf_to_dev(pf);
8173 	int ret;
8174 
8175 	ch->base_q = vsi->next_base_q;
8176 	ch->type = type;
8177 
8178 	ret = ice_add_channel(pf, sw_id, ch);
8179 	if (ret) {
8180 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8181 		return ret;
8182 	}
8183 
8184 	/* configure/setup ADQ specific resources */
8185 	ice_cfg_chnl_all_res(vsi, ch);
8186 
8187 	/* make sure to update the next_base_q so that subsequent channel's
8188 	 * (aka ADQ) VSI queue map is correct
8189 	 */
8190 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8191 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8192 		ch->num_rxq);
8193 
8194 	return 0;
8195 }
8196 
8197 /**
8198  * ice_setup_channel - setup new channel using uplink element
8199  * @pf: ptr to PF device
8200  * @vsi: the VSI being setup
8201  * @ch: ptr to channel structure
8202  *
8203  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8204  * and uplink switching element
8205  */
8206 static bool
8207 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8208 		  struct ice_channel *ch)
8209 {
8210 	struct device *dev = ice_pf_to_dev(pf);
8211 	u16 sw_id;
8212 	int ret;
8213 
8214 	if (vsi->type != ICE_VSI_PF) {
8215 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8216 		return false;
8217 	}
8218 
8219 	sw_id = pf->first_sw->sw_id;
8220 
8221 	/* create channel (VSI) */
8222 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8223 	if (ret) {
8224 		dev_err(dev, "failed to setup hw_channel\n");
8225 		return false;
8226 	}
8227 	dev_dbg(dev, "successfully created channel()\n");
8228 
8229 	return ch->ch_vsi ? true : false;
8230 }
8231 
8232 /**
8233  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8234  * @vsi: VSI to be configured
8235  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8236  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8237  */
8238 static int
8239 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8240 {
8241 	int err;
8242 
8243 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8244 	if (err)
8245 		return err;
8246 
8247 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8248 }
8249 
8250 /**
8251  * ice_create_q_channel - function to create channel
8252  * @vsi: VSI to be configured
8253  * @ch: ptr to channel (it contains channel specific params)
8254  *
8255  * This function creates channel (VSI) using num_queues specified by user,
8256  * reconfigs RSS if needed.
8257  */
8258 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8259 {
8260 	struct ice_pf *pf = vsi->back;
8261 	struct device *dev;
8262 
8263 	if (!ch)
8264 		return -EINVAL;
8265 
8266 	dev = ice_pf_to_dev(pf);
8267 	if (!ch->num_txq || !ch->num_rxq) {
8268 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8269 		return -EINVAL;
8270 	}
8271 
8272 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8273 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8274 			vsi->cnt_q_avail, ch->num_txq);
8275 		return -EINVAL;
8276 	}
8277 
8278 	if (!ice_setup_channel(pf, vsi, ch)) {
8279 		dev_info(dev, "Failed to setup channel\n");
8280 		return -EINVAL;
8281 	}
8282 	/* configure BW rate limit */
8283 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8284 		int ret;
8285 
8286 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8287 				       ch->min_tx_rate);
8288 		if (ret)
8289 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8290 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8291 		else
8292 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8293 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8294 	}
8295 
8296 	vsi->cnt_q_avail -= ch->num_txq;
8297 
8298 	return 0;
8299 }
8300 
8301 /**
8302  * ice_rem_all_chnl_fltrs - removes all channel filters
8303  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8304  *
8305  * Remove all advanced switch filters only if they are channel specific
8306  * tc-flower based filter
8307  */
8308 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8309 {
8310 	struct ice_tc_flower_fltr *fltr;
8311 	struct hlist_node *node;
8312 
8313 	/* to remove all channel filters, iterate an ordered list of filters */
8314 	hlist_for_each_entry_safe(fltr, node,
8315 				  &pf->tc_flower_fltr_list,
8316 				  tc_flower_node) {
8317 		struct ice_rule_query_data rule;
8318 		int status;
8319 
8320 		/* for now process only channel specific filters */
8321 		if (!ice_is_chnl_fltr(fltr))
8322 			continue;
8323 
8324 		rule.rid = fltr->rid;
8325 		rule.rule_id = fltr->rule_id;
8326 		rule.vsi_handle = fltr->dest_vsi_handle;
8327 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8328 		if (status) {
8329 			if (status == -ENOENT)
8330 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8331 					rule.rule_id);
8332 			else
8333 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8334 					status);
8335 		} else if (fltr->dest_vsi) {
8336 			/* update advanced switch filter count */
8337 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8338 				u32 flags = fltr->flags;
8339 
8340 				fltr->dest_vsi->num_chnl_fltr--;
8341 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8342 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8343 					pf->num_dmac_chnl_fltrs--;
8344 			}
8345 		}
8346 
8347 		hlist_del(&fltr->tc_flower_node);
8348 		kfree(fltr);
8349 	}
8350 }
8351 
8352 /**
8353  * ice_remove_q_channels - Remove queue channels for the TCs
8354  * @vsi: VSI to be configured
8355  * @rem_fltr: delete advanced switch filter or not
8356  *
8357  * Remove queue channels for the TCs
8358  */
8359 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8360 {
8361 	struct ice_channel *ch, *ch_tmp;
8362 	struct ice_pf *pf = vsi->back;
8363 	int i;
8364 
8365 	/* remove all tc-flower based filter if they are channel filters only */
8366 	if (rem_fltr)
8367 		ice_rem_all_chnl_fltrs(pf);
8368 
8369 	/* remove ntuple filters since queue configuration is being changed */
8370 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8371 		struct ice_hw *hw = &pf->hw;
8372 
8373 		mutex_lock(&hw->fdir_fltr_lock);
8374 		ice_fdir_del_all_fltrs(vsi);
8375 		mutex_unlock(&hw->fdir_fltr_lock);
8376 	}
8377 
8378 	/* perform cleanup for channels if they exist */
8379 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8380 		struct ice_vsi *ch_vsi;
8381 
8382 		list_del(&ch->list);
8383 		ch_vsi = ch->ch_vsi;
8384 		if (!ch_vsi) {
8385 			kfree(ch);
8386 			continue;
8387 		}
8388 
8389 		/* Reset queue contexts */
8390 		for (i = 0; i < ch->num_rxq; i++) {
8391 			struct ice_tx_ring *tx_ring;
8392 			struct ice_rx_ring *rx_ring;
8393 
8394 			tx_ring = vsi->tx_rings[ch->base_q + i];
8395 			rx_ring = vsi->rx_rings[ch->base_q + i];
8396 			if (tx_ring) {
8397 				tx_ring->ch = NULL;
8398 				if (tx_ring->q_vector)
8399 					tx_ring->q_vector->ch = NULL;
8400 			}
8401 			if (rx_ring) {
8402 				rx_ring->ch = NULL;
8403 				if (rx_ring->q_vector)
8404 					rx_ring->q_vector->ch = NULL;
8405 			}
8406 		}
8407 
8408 		/* Release FD resources for the channel VSI */
8409 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8410 
8411 		/* clear the VSI from scheduler tree */
8412 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8413 
8414 		/* Delete VSI from FW */
8415 		ice_vsi_delete(ch->ch_vsi);
8416 
8417 		/* Delete VSI from PF and HW VSI arrays */
8418 		ice_vsi_clear(ch->ch_vsi);
8419 
8420 		/* free the channel */
8421 		kfree(ch);
8422 	}
8423 
8424 	/* clear the channel VSI map which is stored in main VSI */
8425 	ice_for_each_chnl_tc(i)
8426 		vsi->tc_map_vsi[i] = NULL;
8427 
8428 	/* reset main VSI's all TC information */
8429 	vsi->all_enatc = 0;
8430 	vsi->all_numtc = 0;
8431 }
8432 
8433 /**
8434  * ice_rebuild_channels - rebuild channel
8435  * @pf: ptr to PF
8436  *
8437  * Recreate channel VSIs and replay filters
8438  */
8439 static int ice_rebuild_channels(struct ice_pf *pf)
8440 {
8441 	struct device *dev = ice_pf_to_dev(pf);
8442 	struct ice_vsi *main_vsi;
8443 	bool rem_adv_fltr = true;
8444 	struct ice_channel *ch;
8445 	struct ice_vsi *vsi;
8446 	int tc_idx = 1;
8447 	int i, err;
8448 
8449 	main_vsi = ice_get_main_vsi(pf);
8450 	if (!main_vsi)
8451 		return 0;
8452 
8453 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8454 	    main_vsi->old_numtc == 1)
8455 		return 0; /* nothing to be done */
8456 
8457 	/* reconfigure main VSI based on old value of TC and cached values
8458 	 * for MQPRIO opts
8459 	 */
8460 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8461 	if (err) {
8462 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8463 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8464 		return err;
8465 	}
8466 
8467 	/* rebuild ADQ VSIs */
8468 	ice_for_each_vsi(pf, i) {
8469 		enum ice_vsi_type type;
8470 
8471 		vsi = pf->vsi[i];
8472 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8473 			continue;
8474 
8475 		type = vsi->type;
8476 
8477 		/* rebuild ADQ VSI */
8478 		err = ice_vsi_rebuild(vsi, true);
8479 		if (err) {
8480 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8481 				ice_vsi_type_str(type), vsi->idx, err);
8482 			goto cleanup;
8483 		}
8484 
8485 		/* Re-map HW VSI number, using VSI handle that has been
8486 		 * previously validated in ice_replay_vsi() call above
8487 		 */
8488 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8489 
8490 		/* replay filters for the VSI */
8491 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8492 		if (err) {
8493 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8494 				ice_vsi_type_str(type), err, vsi->idx);
8495 			rem_adv_fltr = false;
8496 			goto cleanup;
8497 		}
8498 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8499 			 ice_vsi_type_str(type), vsi->idx);
8500 
8501 		/* store ADQ VSI at correct TC index in main VSI's
8502 		 * map of TC to VSI
8503 		 */
8504 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8505 	}
8506 
8507 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8508 	 * channel for main VSI's Tx and Rx rings
8509 	 */
8510 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8511 		struct ice_vsi *ch_vsi;
8512 
8513 		ch_vsi = ch->ch_vsi;
8514 		if (!ch_vsi)
8515 			continue;
8516 
8517 		/* reconfig channel resources */
8518 		ice_cfg_chnl_all_res(main_vsi, ch);
8519 
8520 		/* replay BW rate limit if it is non-zero */
8521 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8522 			continue;
8523 
8524 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8525 				       ch->min_tx_rate);
8526 		if (err)
8527 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8528 				err, ch->max_tx_rate, ch->min_tx_rate,
8529 				ch_vsi->vsi_num);
8530 		else
8531 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8532 				ch->max_tx_rate, ch->min_tx_rate,
8533 				ch_vsi->vsi_num);
8534 	}
8535 
8536 	/* reconfig RSS for main VSI */
8537 	if (main_vsi->ch_rss_size)
8538 		ice_vsi_cfg_rss_lut_key(main_vsi);
8539 
8540 	return 0;
8541 
8542 cleanup:
8543 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8544 	return err;
8545 }
8546 
8547 /**
8548  * ice_create_q_channels - Add queue channel for the given TCs
8549  * @vsi: VSI to be configured
8550  *
8551  * Configures queue channel mapping to the given TCs
8552  */
8553 static int ice_create_q_channels(struct ice_vsi *vsi)
8554 {
8555 	struct ice_pf *pf = vsi->back;
8556 	struct ice_channel *ch;
8557 	int ret = 0, i;
8558 
8559 	ice_for_each_chnl_tc(i) {
8560 		if (!(vsi->all_enatc & BIT(i)))
8561 			continue;
8562 
8563 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8564 		if (!ch) {
8565 			ret = -ENOMEM;
8566 			goto err_free;
8567 		}
8568 		INIT_LIST_HEAD(&ch->list);
8569 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8570 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8571 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8572 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8573 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8574 
8575 		/* convert to Kbits/s */
8576 		if (ch->max_tx_rate)
8577 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8578 						  ICE_BW_KBPS_DIVISOR);
8579 		if (ch->min_tx_rate)
8580 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8581 						  ICE_BW_KBPS_DIVISOR);
8582 
8583 		ret = ice_create_q_channel(vsi, ch);
8584 		if (ret) {
8585 			dev_err(ice_pf_to_dev(pf),
8586 				"failed creating channel TC:%d\n", i);
8587 			kfree(ch);
8588 			goto err_free;
8589 		}
8590 		list_add_tail(&ch->list, &vsi->ch_list);
8591 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8592 		dev_dbg(ice_pf_to_dev(pf),
8593 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8594 	}
8595 	return 0;
8596 
8597 err_free:
8598 	ice_remove_q_channels(vsi, false);
8599 
8600 	return ret;
8601 }
8602 
8603 /**
8604  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8605  * @netdev: net device to configure
8606  * @type_data: TC offload data
8607  */
8608 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8609 {
8610 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8611 	struct ice_netdev_priv *np = netdev_priv(netdev);
8612 	struct ice_vsi *vsi = np->vsi;
8613 	struct ice_pf *pf = vsi->back;
8614 	u16 mode, ena_tc_qdisc = 0;
8615 	int cur_txq, cur_rxq;
8616 	u8 hw = 0, num_tcf;
8617 	struct device *dev;
8618 	int ret, i;
8619 
8620 	dev = ice_pf_to_dev(pf);
8621 	num_tcf = mqprio_qopt->qopt.num_tc;
8622 	hw = mqprio_qopt->qopt.hw;
8623 	mode = mqprio_qopt->mode;
8624 	if (!hw) {
8625 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8626 		vsi->ch_rss_size = 0;
8627 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8628 		goto config_tcf;
8629 	}
8630 
8631 	/* Generate queue region map for number of TCF requested */
8632 	for (i = 0; i < num_tcf; i++)
8633 		ena_tc_qdisc |= BIT(i);
8634 
8635 	switch (mode) {
8636 	case TC_MQPRIO_MODE_CHANNEL:
8637 
8638 		if (pf->hw.port_info->is_custom_tx_enabled) {
8639 			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8640 			return -EBUSY;
8641 		}
8642 		ice_tear_down_devlink_rate_tree(pf);
8643 
8644 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8645 		if (ret) {
8646 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8647 				   ret);
8648 			return ret;
8649 		}
8650 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8651 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8652 		/* don't assume state of hw_tc_offload during driver load
8653 		 * and set the flag for TC flower filter if hw_tc_offload
8654 		 * already ON
8655 		 */
8656 		if (vsi->netdev->features & NETIF_F_HW_TC)
8657 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8658 		break;
8659 	default:
8660 		return -EINVAL;
8661 	}
8662 
8663 config_tcf:
8664 
8665 	/* Requesting same TCF configuration as already enabled */
8666 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8667 	    mode != TC_MQPRIO_MODE_CHANNEL)
8668 		return 0;
8669 
8670 	/* Pause VSI queues */
8671 	ice_dis_vsi(vsi, true);
8672 
8673 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8674 		ice_remove_q_channels(vsi, true);
8675 
8676 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8677 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8678 				     num_online_cpus());
8679 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8680 				     num_online_cpus());
8681 	} else {
8682 		/* logic to rebuild VSI, same like ethtool -L */
8683 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8684 
8685 		for (i = 0; i < num_tcf; i++) {
8686 			if (!(ena_tc_qdisc & BIT(i)))
8687 				continue;
8688 
8689 			offset = vsi->mqprio_qopt.qopt.offset[i];
8690 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8691 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8692 		}
8693 		vsi->req_txq = offset + qcount_tx;
8694 		vsi->req_rxq = offset + qcount_rx;
8695 
8696 		/* store away original rss_size info, so that it gets reused
8697 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8698 		 * determine, what should be the rss_sizefor main VSI
8699 		 */
8700 		vsi->orig_rss_size = vsi->rss_size;
8701 	}
8702 
8703 	/* save current values of Tx and Rx queues before calling VSI rebuild
8704 	 * for fallback option
8705 	 */
8706 	cur_txq = vsi->num_txq;
8707 	cur_rxq = vsi->num_rxq;
8708 
8709 	/* proceed with rebuild main VSI using correct number of queues */
8710 	ret = ice_vsi_rebuild(vsi, false);
8711 	if (ret) {
8712 		/* fallback to current number of queues */
8713 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8714 		vsi->req_txq = cur_txq;
8715 		vsi->req_rxq = cur_rxq;
8716 		clear_bit(ICE_RESET_FAILED, pf->state);
8717 		if (ice_vsi_rebuild(vsi, false)) {
8718 			dev_err(dev, "Rebuild of main VSI failed again\n");
8719 			return ret;
8720 		}
8721 	}
8722 
8723 	vsi->all_numtc = num_tcf;
8724 	vsi->all_enatc = ena_tc_qdisc;
8725 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8726 	if (ret) {
8727 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8728 			   vsi->vsi_num);
8729 		goto exit;
8730 	}
8731 
8732 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8733 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8734 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8735 
8736 		/* set TC0 rate limit if specified */
8737 		if (max_tx_rate || min_tx_rate) {
8738 			/* convert to Kbits/s */
8739 			if (max_tx_rate)
8740 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8741 			if (min_tx_rate)
8742 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8743 
8744 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8745 			if (!ret) {
8746 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8747 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8748 			} else {
8749 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8750 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8751 				goto exit;
8752 			}
8753 		}
8754 		ret = ice_create_q_channels(vsi);
8755 		if (ret) {
8756 			netdev_err(netdev, "failed configuring queue channels\n");
8757 			goto exit;
8758 		} else {
8759 			netdev_dbg(netdev, "successfully configured channels\n");
8760 		}
8761 	}
8762 
8763 	if (vsi->ch_rss_size)
8764 		ice_vsi_cfg_rss_lut_key(vsi);
8765 
8766 exit:
8767 	/* if error, reset the all_numtc and all_enatc */
8768 	if (ret) {
8769 		vsi->all_numtc = 0;
8770 		vsi->all_enatc = 0;
8771 	}
8772 	/* resume VSI */
8773 	ice_ena_vsi(vsi, true);
8774 
8775 	return ret;
8776 }
8777 
8778 static LIST_HEAD(ice_block_cb_list);
8779 
8780 static int
8781 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8782 	     void *type_data)
8783 {
8784 	struct ice_netdev_priv *np = netdev_priv(netdev);
8785 	struct ice_pf *pf = np->vsi->back;
8786 	int err;
8787 
8788 	switch (type) {
8789 	case TC_SETUP_BLOCK:
8790 		return flow_block_cb_setup_simple(type_data,
8791 						  &ice_block_cb_list,
8792 						  ice_setup_tc_block_cb,
8793 						  np, np, true);
8794 	case TC_SETUP_QDISC_MQPRIO:
8795 		/* setup traffic classifier for receive side */
8796 		mutex_lock(&pf->tc_mutex);
8797 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8798 		mutex_unlock(&pf->tc_mutex);
8799 		return err;
8800 	default:
8801 		return -EOPNOTSUPP;
8802 	}
8803 	return -EOPNOTSUPP;
8804 }
8805 
8806 static struct ice_indr_block_priv *
8807 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8808 			   struct net_device *netdev)
8809 {
8810 	struct ice_indr_block_priv *cb_priv;
8811 
8812 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8813 		if (!cb_priv->netdev)
8814 			return NULL;
8815 		if (cb_priv->netdev == netdev)
8816 			return cb_priv;
8817 	}
8818 	return NULL;
8819 }
8820 
8821 static int
8822 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8823 			void *indr_priv)
8824 {
8825 	struct ice_indr_block_priv *priv = indr_priv;
8826 	struct ice_netdev_priv *np = priv->np;
8827 
8828 	switch (type) {
8829 	case TC_SETUP_CLSFLOWER:
8830 		return ice_setup_tc_cls_flower(np, priv->netdev,
8831 					       (struct flow_cls_offload *)
8832 					       type_data);
8833 	default:
8834 		return -EOPNOTSUPP;
8835 	}
8836 }
8837 
8838 static int
8839 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8840 			struct ice_netdev_priv *np,
8841 			struct flow_block_offload *f, void *data,
8842 			void (*cleanup)(struct flow_block_cb *block_cb))
8843 {
8844 	struct ice_indr_block_priv *indr_priv;
8845 	struct flow_block_cb *block_cb;
8846 
8847 	if (!ice_is_tunnel_supported(netdev) &&
8848 	    !(is_vlan_dev(netdev) &&
8849 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
8850 		return -EOPNOTSUPP;
8851 
8852 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8853 		return -EOPNOTSUPP;
8854 
8855 	switch (f->command) {
8856 	case FLOW_BLOCK_BIND:
8857 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8858 		if (indr_priv)
8859 			return -EEXIST;
8860 
8861 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8862 		if (!indr_priv)
8863 			return -ENOMEM;
8864 
8865 		indr_priv->netdev = netdev;
8866 		indr_priv->np = np;
8867 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8868 
8869 		block_cb =
8870 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8871 						 indr_priv, indr_priv,
8872 						 ice_rep_indr_tc_block_unbind,
8873 						 f, netdev, sch, data, np,
8874 						 cleanup);
8875 
8876 		if (IS_ERR(block_cb)) {
8877 			list_del(&indr_priv->list);
8878 			kfree(indr_priv);
8879 			return PTR_ERR(block_cb);
8880 		}
8881 		flow_block_cb_add(block_cb, f);
8882 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8883 		break;
8884 	case FLOW_BLOCK_UNBIND:
8885 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8886 		if (!indr_priv)
8887 			return -ENOENT;
8888 
8889 		block_cb = flow_block_cb_lookup(f->block,
8890 						ice_indr_setup_block_cb,
8891 						indr_priv);
8892 		if (!block_cb)
8893 			return -ENOENT;
8894 
8895 		flow_indr_block_cb_remove(block_cb, f);
8896 
8897 		list_del(&block_cb->driver_list);
8898 		break;
8899 	default:
8900 		return -EOPNOTSUPP;
8901 	}
8902 	return 0;
8903 }
8904 
8905 static int
8906 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8907 		     void *cb_priv, enum tc_setup_type type, void *type_data,
8908 		     void *data,
8909 		     void (*cleanup)(struct flow_block_cb *block_cb))
8910 {
8911 	switch (type) {
8912 	case TC_SETUP_BLOCK:
8913 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8914 					       data, cleanup);
8915 
8916 	default:
8917 		return -EOPNOTSUPP;
8918 	}
8919 }
8920 
8921 /**
8922  * ice_open - Called when a network interface becomes active
8923  * @netdev: network interface device structure
8924  *
8925  * The open entry point is called when a network interface is made
8926  * active by the system (IFF_UP). At this point all resources needed
8927  * for transmit and receive operations are allocated, the interrupt
8928  * handler is registered with the OS, the netdev watchdog is enabled,
8929  * and the stack is notified that the interface is ready.
8930  *
8931  * Returns 0 on success, negative value on failure
8932  */
8933 int ice_open(struct net_device *netdev)
8934 {
8935 	struct ice_netdev_priv *np = netdev_priv(netdev);
8936 	struct ice_pf *pf = np->vsi->back;
8937 
8938 	if (ice_is_reset_in_progress(pf->state)) {
8939 		netdev_err(netdev, "can't open net device while reset is in progress");
8940 		return -EBUSY;
8941 	}
8942 
8943 	return ice_open_internal(netdev);
8944 }
8945 
8946 /**
8947  * ice_open_internal - Called when a network interface becomes active
8948  * @netdev: network interface device structure
8949  *
8950  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8951  * handling routine
8952  *
8953  * Returns 0 on success, negative value on failure
8954  */
8955 int ice_open_internal(struct net_device *netdev)
8956 {
8957 	struct ice_netdev_priv *np = netdev_priv(netdev);
8958 	struct ice_vsi *vsi = np->vsi;
8959 	struct ice_pf *pf = vsi->back;
8960 	struct ice_port_info *pi;
8961 	int err;
8962 
8963 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8964 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8965 		return -EIO;
8966 	}
8967 
8968 	netif_carrier_off(netdev);
8969 
8970 	pi = vsi->port_info;
8971 	err = ice_update_link_info(pi);
8972 	if (err) {
8973 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
8974 		return err;
8975 	}
8976 
8977 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8978 
8979 	/* Set PHY if there is media, otherwise, turn off PHY */
8980 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8981 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8982 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8983 			err = ice_init_phy_user_cfg(pi);
8984 			if (err) {
8985 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8986 					   err);
8987 				return err;
8988 			}
8989 		}
8990 
8991 		err = ice_configure_phy(vsi);
8992 		if (err) {
8993 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
8994 				   err);
8995 			return err;
8996 		}
8997 	} else {
8998 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8999 		ice_set_link(vsi, false);
9000 	}
9001 
9002 	err = ice_vsi_open(vsi);
9003 	if (err)
9004 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9005 			   vsi->vsi_num, vsi->vsw->sw_id);
9006 
9007 	/* Update existing tunnels information */
9008 	udp_tunnel_get_rx_info(netdev);
9009 
9010 	return err;
9011 }
9012 
9013 /**
9014  * ice_stop - Disables a network interface
9015  * @netdev: network interface device structure
9016  *
9017  * The stop entry point is called when an interface is de-activated by the OS,
9018  * and the netdevice enters the DOWN state. The hardware is still under the
9019  * driver's control, but the netdev interface is disabled.
9020  *
9021  * Returns success only - not allowed to fail
9022  */
9023 int ice_stop(struct net_device *netdev)
9024 {
9025 	struct ice_netdev_priv *np = netdev_priv(netdev);
9026 	struct ice_vsi *vsi = np->vsi;
9027 	struct ice_pf *pf = vsi->back;
9028 
9029 	if (ice_is_reset_in_progress(pf->state)) {
9030 		netdev_err(netdev, "can't stop net device while reset is in progress");
9031 		return -EBUSY;
9032 	}
9033 
9034 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9035 		int link_err = ice_force_phys_link_state(vsi, false);
9036 
9037 		if (link_err) {
9038 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9039 				   vsi->vsi_num, link_err);
9040 			return -EIO;
9041 		}
9042 	}
9043 
9044 	ice_vsi_close(vsi);
9045 
9046 	return 0;
9047 }
9048 
9049 /**
9050  * ice_features_check - Validate encapsulated packet conforms to limits
9051  * @skb: skb buffer
9052  * @netdev: This port's netdev
9053  * @features: Offload features that the stack believes apply
9054  */
9055 static netdev_features_t
9056 ice_features_check(struct sk_buff *skb,
9057 		   struct net_device __always_unused *netdev,
9058 		   netdev_features_t features)
9059 {
9060 	bool gso = skb_is_gso(skb);
9061 	size_t len;
9062 
9063 	/* No point in doing any of this if neither checksum nor GSO are
9064 	 * being requested for this frame. We can rule out both by just
9065 	 * checking for CHECKSUM_PARTIAL
9066 	 */
9067 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9068 		return features;
9069 
9070 	/* We cannot support GSO if the MSS is going to be less than
9071 	 * 64 bytes. If it is then we need to drop support for GSO.
9072 	 */
9073 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9074 		features &= ~NETIF_F_GSO_MASK;
9075 
9076 	len = skb_network_offset(skb);
9077 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9078 		goto out_rm_features;
9079 
9080 	len = skb_network_header_len(skb);
9081 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9082 		goto out_rm_features;
9083 
9084 	if (skb->encapsulation) {
9085 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9086 		 * the case of IPIP frames, the transport header pointer is
9087 		 * after the inner header! So check to make sure that this
9088 		 * is a GRE or UDP_TUNNEL frame before doing that math.
9089 		 */
9090 		if (gso && (skb_shinfo(skb)->gso_type &
9091 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9092 			len = skb_inner_network_header(skb) -
9093 			      skb_transport_header(skb);
9094 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9095 				goto out_rm_features;
9096 		}
9097 
9098 		len = skb_inner_network_header_len(skb);
9099 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9100 			goto out_rm_features;
9101 	}
9102 
9103 	return features;
9104 out_rm_features:
9105 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9106 }
9107 
9108 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9109 	.ndo_open = ice_open,
9110 	.ndo_stop = ice_stop,
9111 	.ndo_start_xmit = ice_start_xmit,
9112 	.ndo_set_mac_address = ice_set_mac_address,
9113 	.ndo_validate_addr = eth_validate_addr,
9114 	.ndo_change_mtu = ice_change_mtu,
9115 	.ndo_get_stats64 = ice_get_stats64,
9116 	.ndo_tx_timeout = ice_tx_timeout,
9117 	.ndo_bpf = ice_xdp_safe_mode,
9118 };
9119 
9120 static const struct net_device_ops ice_netdev_ops = {
9121 	.ndo_open = ice_open,
9122 	.ndo_stop = ice_stop,
9123 	.ndo_start_xmit = ice_start_xmit,
9124 	.ndo_select_queue = ice_select_queue,
9125 	.ndo_features_check = ice_features_check,
9126 	.ndo_fix_features = ice_fix_features,
9127 	.ndo_set_rx_mode = ice_set_rx_mode,
9128 	.ndo_set_mac_address = ice_set_mac_address,
9129 	.ndo_validate_addr = eth_validate_addr,
9130 	.ndo_change_mtu = ice_change_mtu,
9131 	.ndo_get_stats64 = ice_get_stats64,
9132 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9133 	.ndo_eth_ioctl = ice_eth_ioctl,
9134 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9135 	.ndo_set_vf_mac = ice_set_vf_mac,
9136 	.ndo_get_vf_config = ice_get_vf_cfg,
9137 	.ndo_set_vf_trust = ice_set_vf_trust,
9138 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9139 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9140 	.ndo_get_vf_stats = ice_get_vf_stats,
9141 	.ndo_set_vf_rate = ice_set_vf_bw,
9142 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9143 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9144 	.ndo_setup_tc = ice_setup_tc,
9145 	.ndo_set_features = ice_set_features,
9146 	.ndo_bridge_getlink = ice_bridge_getlink,
9147 	.ndo_bridge_setlink = ice_bridge_setlink,
9148 	.ndo_fdb_add = ice_fdb_add,
9149 	.ndo_fdb_del = ice_fdb_del,
9150 #ifdef CONFIG_RFS_ACCEL
9151 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9152 #endif
9153 	.ndo_tx_timeout = ice_tx_timeout,
9154 	.ndo_bpf = ice_xdp,
9155 	.ndo_xdp_xmit = ice_xdp_xmit,
9156 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9157 };
9158