xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision de5ca699bc3f7fe9f90ba927d8a6e7783cd7311d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "devlink/devlink.h"
17 #include "devlink/port.h"
18 #include "ice_sf_eth.h"
19 #include "ice_hwmon.h"
20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21  * ice tracepoint functions. This must be done exactly once across the
22  * ice driver.
23  */
24 #define CREATE_TRACE_POINTS
25 #include "ice_trace.h"
26 #include "ice_eswitch.h"
27 #include "ice_tc_lib.h"
28 #include "ice_vsi_vlan_ops.h"
29 #include <net/xdp_sock_drv.h>
30 
31 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
32 static const char ice_driver_string[] = DRV_SUMMARY;
33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34 
35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
37 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
38 
39 MODULE_DESCRIPTION(DRV_SUMMARY);
40 MODULE_IMPORT_NS("LIBIE");
41 MODULE_LICENSE("GPL v2");
42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
43 
44 static int debug = -1;
45 module_param(debug, int, 0644);
46 #ifndef CONFIG_DYNAMIC_DEBUG
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
48 #else
49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
50 #endif /* !CONFIG_DYNAMIC_DEBUG */
51 
52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
53 EXPORT_SYMBOL(ice_xdp_locking_key);
54 
55 /**
56  * ice_hw_to_dev - Get device pointer from the hardware structure
57  * @hw: pointer to the device HW structure
58  *
59  * Used to access the device pointer from compilation units which can't easily
60  * include the definition of struct ice_pf without leading to circular header
61  * dependencies.
62  */
63 struct device *ice_hw_to_dev(struct ice_hw *hw)
64 {
65 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
66 
67 	return &pf->pdev->dev;
68 }
69 
70 static struct workqueue_struct *ice_wq;
71 struct workqueue_struct *ice_lag_wq;
72 static const struct net_device_ops ice_netdev_safe_mode_ops;
73 static const struct net_device_ops ice_netdev_ops;
74 
75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
76 
77 static void ice_vsi_release_all(struct ice_pf *pf);
78 
79 static int ice_rebuild_channels(struct ice_pf *pf);
80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
81 
82 static int
83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
84 		     void *cb_priv, enum tc_setup_type type, void *type_data,
85 		     void *data,
86 		     void (*cleanup)(struct flow_block_cb *block_cb));
87 
88 bool netif_is_ice(const struct net_device *dev)
89 {
90 	return dev && (dev->netdev_ops == &ice_netdev_ops ||
91 		       dev->netdev_ops == &ice_netdev_safe_mode_ops);
92 }
93 
94 /**
95  * ice_get_tx_pending - returns number of Tx descriptors not processed
96  * @ring: the ring of descriptors
97  */
98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
99 {
100 	u16 head, tail;
101 
102 	head = ring->next_to_clean;
103 	tail = ring->next_to_use;
104 
105 	if (head != tail)
106 		return (head < tail) ?
107 			tail - head : (tail + ring->count - head);
108 	return 0;
109 }
110 
111 /**
112  * ice_check_for_hang_subtask - check for and recover hung queues
113  * @pf: pointer to PF struct
114  */
115 static void ice_check_for_hang_subtask(struct ice_pf *pf)
116 {
117 	struct ice_vsi *vsi = NULL;
118 	struct ice_hw *hw;
119 	unsigned int i;
120 	int packets;
121 	u32 v;
122 
123 	ice_for_each_vsi(pf, v)
124 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
125 			vsi = pf->vsi[v];
126 			break;
127 		}
128 
129 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
130 		return;
131 
132 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
133 		return;
134 
135 	hw = &vsi->back->hw;
136 
137 	ice_for_each_txq(vsi, i) {
138 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
139 		struct ice_ring_stats *ring_stats;
140 
141 		if (!tx_ring)
142 			continue;
143 		if (ice_ring_ch_enabled(tx_ring))
144 			continue;
145 
146 		ring_stats = tx_ring->ring_stats;
147 		if (!ring_stats)
148 			continue;
149 
150 		if (tx_ring->desc) {
151 			/* If packet counter has not changed the queue is
152 			 * likely stalled, so force an interrupt for this
153 			 * queue.
154 			 *
155 			 * prev_pkt would be negative if there was no
156 			 * pending work.
157 			 */
158 			packets = ring_stats->stats.pkts & INT_MAX;
159 			if (ring_stats->tx_stats.prev_pkt == packets) {
160 				/* Trigger sw interrupt to revive the queue */
161 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
162 				continue;
163 			}
164 
165 			/* Memory barrier between read of packet count and call
166 			 * to ice_get_tx_pending()
167 			 */
168 			smp_rmb();
169 			ring_stats->tx_stats.prev_pkt =
170 			    ice_get_tx_pending(tx_ring) ? packets : -1;
171 		}
172 	}
173 }
174 
175 /**
176  * ice_init_mac_fltr - Set initial MAC filters
177  * @pf: board private structure
178  *
179  * Set initial set of MAC filters for PF VSI; configure filters for permanent
180  * address and broadcast address. If an error is encountered, netdevice will be
181  * unregistered.
182  */
183 static int ice_init_mac_fltr(struct ice_pf *pf)
184 {
185 	struct ice_vsi *vsi;
186 	u8 *perm_addr;
187 
188 	vsi = ice_get_main_vsi(pf);
189 	if (!vsi)
190 		return -EINVAL;
191 
192 	perm_addr = vsi->port_info->mac.perm_addr;
193 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
194 }
195 
196 /**
197  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
198  * @netdev: the net device on which the sync is happening
199  * @addr: MAC address to sync
200  *
201  * This is a callback function which is called by the in kernel device sync
202  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
203  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
204  * MAC filters from the hardware.
205  */
206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
207 {
208 	struct ice_netdev_priv *np = netdev_priv(netdev);
209 	struct ice_vsi *vsi = np->vsi;
210 
211 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
212 				     ICE_FWD_TO_VSI))
213 		return -EINVAL;
214 
215 	return 0;
216 }
217 
218 /**
219  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
220  * @netdev: the net device on which the unsync is happening
221  * @addr: MAC address to unsync
222  *
223  * This is a callback function which is called by the in kernel device unsync
224  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
225  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
226  * delete the MAC filters from the hardware.
227  */
228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
229 {
230 	struct ice_netdev_priv *np = netdev_priv(netdev);
231 	struct ice_vsi *vsi = np->vsi;
232 
233 	/* Under some circumstances, we might receive a request to delete our
234 	 * own device address from our uc list. Because we store the device
235 	 * address in the VSI's MAC filter list, we need to ignore such
236 	 * requests and not delete our device address from this list.
237 	 */
238 	if (ether_addr_equal(addr, netdev->dev_addr))
239 		return 0;
240 
241 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
242 				     ICE_FWD_TO_VSI))
243 		return -EINVAL;
244 
245 	return 0;
246 }
247 
248 /**
249  * ice_vsi_fltr_changed - check if filter state changed
250  * @vsi: VSI to be checked
251  *
252  * returns true if filter state has changed, false otherwise.
253  */
254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
255 {
256 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
257 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
258 }
259 
260 /**
261  * ice_set_promisc - Enable promiscuous mode for a given PF
262  * @vsi: the VSI being configured
263  * @promisc_m: mask of promiscuous config bits
264  *
265  */
266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
267 {
268 	int status;
269 
270 	if (vsi->type != ICE_VSI_PF)
271 		return 0;
272 
273 	if (ice_vsi_has_non_zero_vlans(vsi)) {
274 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
275 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
276 						       promisc_m);
277 	} else {
278 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
279 						  promisc_m, 0);
280 	}
281 	if (status && status != -EEXIST)
282 		return status;
283 
284 	netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
285 		   vsi->vsi_num, promisc_m);
286 	return 0;
287 }
288 
289 /**
290  * ice_clear_promisc - Disable promiscuous mode for a given PF
291  * @vsi: the VSI being configured
292  * @promisc_m: mask of promiscuous config bits
293  *
294  */
295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
296 {
297 	int status;
298 
299 	if (vsi->type != ICE_VSI_PF)
300 		return 0;
301 
302 	if (ice_vsi_has_non_zero_vlans(vsi)) {
303 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
304 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
305 							 promisc_m);
306 	} else {
307 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
308 						    promisc_m, 0);
309 	}
310 
311 	netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
312 		   vsi->vsi_num, promisc_m);
313 	return status;
314 }
315 
316 /**
317  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
318  * @vsi: ptr to the VSI
319  *
320  * Push any outstanding VSI filter changes through the AdminQ.
321  */
322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
323 {
324 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
325 	struct device *dev = ice_pf_to_dev(vsi->back);
326 	struct net_device *netdev = vsi->netdev;
327 	bool promisc_forced_on = false;
328 	struct ice_pf *pf = vsi->back;
329 	struct ice_hw *hw = &pf->hw;
330 	u32 changed_flags = 0;
331 	int err;
332 
333 	if (!vsi->netdev)
334 		return -EINVAL;
335 
336 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
337 		usleep_range(1000, 2000);
338 
339 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
340 	vsi->current_netdev_flags = vsi->netdev->flags;
341 
342 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
343 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
344 
345 	if (ice_vsi_fltr_changed(vsi)) {
346 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
347 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
348 
349 		/* grab the netdev's addr_list_lock */
350 		netif_addr_lock_bh(netdev);
351 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
352 			      ice_add_mac_to_unsync_list);
353 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
354 			      ice_add_mac_to_unsync_list);
355 		/* our temp lists are populated. release lock */
356 		netif_addr_unlock_bh(netdev);
357 	}
358 
359 	/* Remove MAC addresses in the unsync list */
360 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
361 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
362 	if (err) {
363 		netdev_err(netdev, "Failed to delete MAC filters\n");
364 		/* if we failed because of alloc failures, just bail */
365 		if (err == -ENOMEM)
366 			goto out;
367 	}
368 
369 	/* Add MAC addresses in the sync list */
370 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
371 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
372 	/* If filter is added successfully or already exists, do not go into
373 	 * 'if' condition and report it as error. Instead continue processing
374 	 * rest of the function.
375 	 */
376 	if (err && err != -EEXIST) {
377 		netdev_err(netdev, "Failed to add MAC filters\n");
378 		/* If there is no more space for new umac filters, VSI
379 		 * should go into promiscuous mode. There should be some
380 		 * space reserved for promiscuous filters.
381 		 */
382 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
383 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
384 				      vsi->state)) {
385 			promisc_forced_on = true;
386 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
387 				    vsi->vsi_num);
388 		} else {
389 			goto out;
390 		}
391 	}
392 	err = 0;
393 	/* check for changes in promiscuous modes */
394 	if (changed_flags & IFF_ALLMULTI) {
395 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
396 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
397 			if (err) {
398 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
399 				goto out_promisc;
400 			}
401 		} else {
402 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
403 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
404 			if (err) {
405 				vsi->current_netdev_flags |= IFF_ALLMULTI;
406 				goto out_promisc;
407 			}
408 		}
409 	}
410 
411 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
412 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
413 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
414 		if (vsi->current_netdev_flags & IFF_PROMISC) {
415 			/* Apply Rx filter rule to get traffic from wire */
416 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
417 				err = ice_set_dflt_vsi(vsi);
418 				if (err && err != -EEXIST) {
419 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
420 						   err, vsi->vsi_num);
421 					vsi->current_netdev_flags &=
422 						~IFF_PROMISC;
423 					goto out_promisc;
424 				}
425 				err = 0;
426 				vlan_ops->dis_rx_filtering(vsi);
427 
428 				/* promiscuous mode implies allmulticast so
429 				 * that VSIs that are in promiscuous mode are
430 				 * subscribed to multicast packets coming to
431 				 * the port
432 				 */
433 				err = ice_set_promisc(vsi,
434 						      ICE_MCAST_PROMISC_BITS);
435 				if (err)
436 					goto out_promisc;
437 			}
438 		} else {
439 			/* Clear Rx filter to remove traffic from wire */
440 			if (ice_is_vsi_dflt_vsi(vsi)) {
441 				err = ice_clear_dflt_vsi(vsi);
442 				if (err) {
443 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
444 						   err, vsi->vsi_num);
445 					vsi->current_netdev_flags |=
446 						IFF_PROMISC;
447 					goto out_promisc;
448 				}
449 				if (vsi->netdev->features &
450 				    NETIF_F_HW_VLAN_CTAG_FILTER)
451 					vlan_ops->ena_rx_filtering(vsi);
452 			}
453 
454 			/* disable allmulti here, but only if allmulti is not
455 			 * still enabled for the netdev
456 			 */
457 			if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
458 				err = ice_clear_promisc(vsi,
459 							ICE_MCAST_PROMISC_BITS);
460 				if (err) {
461 					netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
462 						   err, vsi->vsi_num);
463 				}
464 			}
465 		}
466 	}
467 	goto exit;
468 
469 out_promisc:
470 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
471 	goto exit;
472 out:
473 	/* if something went wrong then set the changed flag so we try again */
474 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
475 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
476 exit:
477 	clear_bit(ICE_CFG_BUSY, vsi->state);
478 	return err;
479 }
480 
481 /**
482  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
483  * @pf: board private structure
484  */
485 static void ice_sync_fltr_subtask(struct ice_pf *pf)
486 {
487 	int v;
488 
489 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
490 		return;
491 
492 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
493 
494 	ice_for_each_vsi(pf, v)
495 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
496 		    ice_vsi_sync_fltr(pf->vsi[v])) {
497 			/* come back and try again later */
498 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
499 			break;
500 		}
501 }
502 
503 /**
504  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
505  * @pf: the PF
506  * @locked: is the rtnl_lock already held
507  */
508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
509 {
510 	int node;
511 	int v;
512 
513 	ice_for_each_vsi(pf, v)
514 		if (pf->vsi[v])
515 			ice_dis_vsi(pf->vsi[v], locked);
516 
517 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
518 		pf->pf_agg_node[node].num_vsis = 0;
519 
520 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
521 		pf->vf_agg_node[node].num_vsis = 0;
522 }
523 
524 /**
525  * ice_prepare_for_reset - prep for reset
526  * @pf: board private structure
527  * @reset_type: reset type requested
528  *
529  * Inform or close all dependent features in prep for reset.
530  */
531 static void
532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
533 {
534 	struct ice_hw *hw = &pf->hw;
535 	struct ice_vsi *vsi;
536 	struct ice_vf *vf;
537 	unsigned int bkt;
538 
539 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
540 
541 	/* already prepared for reset */
542 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
543 		return;
544 
545 	synchronize_irq(pf->oicr_irq.virq);
546 
547 	ice_unplug_aux_dev(pf);
548 
549 	/* Notify VFs of impending reset */
550 	if (ice_check_sq_alive(hw, &hw->mailboxq))
551 		ice_vc_notify_reset(pf);
552 
553 	/* Disable VFs until reset is completed */
554 	mutex_lock(&pf->vfs.table_lock);
555 	ice_for_each_vf(pf, bkt, vf)
556 		ice_set_vf_state_dis(vf);
557 	mutex_unlock(&pf->vfs.table_lock);
558 
559 	if (ice_is_eswitch_mode_switchdev(pf)) {
560 		rtnl_lock();
561 		ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
562 		rtnl_unlock();
563 	}
564 
565 	/* release ADQ specific HW and SW resources */
566 	vsi = ice_get_main_vsi(pf);
567 	if (!vsi)
568 		goto skip;
569 
570 	/* to be on safe side, reset orig_rss_size so that normal flow
571 	 * of deciding rss_size can take precedence
572 	 */
573 	vsi->orig_rss_size = 0;
574 
575 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
576 		if (reset_type == ICE_RESET_PFR) {
577 			vsi->old_ena_tc = vsi->all_enatc;
578 			vsi->old_numtc = vsi->all_numtc;
579 		} else {
580 			ice_remove_q_channels(vsi, true);
581 
582 			/* for other reset type, do not support channel rebuild
583 			 * hence reset needed info
584 			 */
585 			vsi->old_ena_tc = 0;
586 			vsi->all_enatc = 0;
587 			vsi->old_numtc = 0;
588 			vsi->all_numtc = 0;
589 			vsi->req_txq = 0;
590 			vsi->req_rxq = 0;
591 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
592 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
593 		}
594 	}
595 
596 	if (vsi->netdev)
597 		netif_device_detach(vsi->netdev);
598 skip:
599 
600 	/* clear SW filtering DB */
601 	ice_clear_hw_tbls(hw);
602 	/* disable the VSIs and their queues that are not already DOWN */
603 	set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
604 	ice_pf_dis_all_vsi(pf, false);
605 
606 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
607 		ice_ptp_prepare_for_reset(pf, reset_type);
608 
609 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
610 		ice_gnss_exit(pf);
611 
612 	if (hw->port_info)
613 		ice_sched_clear_port(hw->port_info);
614 
615 	ice_shutdown_all_ctrlq(hw, false);
616 
617 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
618 }
619 
620 /**
621  * ice_do_reset - Initiate one of many types of resets
622  * @pf: board private structure
623  * @reset_type: reset type requested before this function was called.
624  */
625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
626 {
627 	struct device *dev = ice_pf_to_dev(pf);
628 	struct ice_hw *hw = &pf->hw;
629 
630 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
631 
632 	if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
633 		dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
634 		reset_type = ICE_RESET_CORER;
635 	}
636 
637 	ice_prepare_for_reset(pf, reset_type);
638 
639 	/* trigger the reset */
640 	if (ice_reset(hw, reset_type)) {
641 		dev_err(dev, "reset %d failed\n", reset_type);
642 		set_bit(ICE_RESET_FAILED, pf->state);
643 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
644 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
645 		clear_bit(ICE_PFR_REQ, pf->state);
646 		clear_bit(ICE_CORER_REQ, pf->state);
647 		clear_bit(ICE_GLOBR_REQ, pf->state);
648 		wake_up(&pf->reset_wait_queue);
649 		return;
650 	}
651 
652 	/* PFR is a bit of a special case because it doesn't result in an OICR
653 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
654 	 * associated state bits.
655 	 */
656 	if (reset_type == ICE_RESET_PFR) {
657 		pf->pfr_count++;
658 		ice_rebuild(pf, reset_type);
659 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
660 		clear_bit(ICE_PFR_REQ, pf->state);
661 		wake_up(&pf->reset_wait_queue);
662 		ice_reset_all_vfs(pf);
663 	}
664 }
665 
666 /**
667  * ice_reset_subtask - Set up for resetting the device and driver
668  * @pf: board private structure
669  */
670 static void ice_reset_subtask(struct ice_pf *pf)
671 {
672 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
673 
674 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
675 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
676 	 * of reset is pending and sets bits in pf->state indicating the reset
677 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
678 	 * prepare for pending reset if not already (for PF software-initiated
679 	 * global resets the software should already be prepared for it as
680 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
681 	 * by firmware or software on other PFs, that bit is not set so prepare
682 	 * for the reset now), poll for reset done, rebuild and return.
683 	 */
684 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
685 		/* Perform the largest reset requested */
686 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
687 			reset_type = ICE_RESET_CORER;
688 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
689 			reset_type = ICE_RESET_GLOBR;
690 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
691 			reset_type = ICE_RESET_EMPR;
692 		/* return if no valid reset type requested */
693 		if (reset_type == ICE_RESET_INVAL)
694 			return;
695 		ice_prepare_for_reset(pf, reset_type);
696 
697 		/* make sure we are ready to rebuild */
698 		if (ice_check_reset(&pf->hw)) {
699 			set_bit(ICE_RESET_FAILED, pf->state);
700 		} else {
701 			/* done with reset. start rebuild */
702 			pf->hw.reset_ongoing = false;
703 			ice_rebuild(pf, reset_type);
704 			/* clear bit to resume normal operations, but
705 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
706 			 */
707 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
708 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
709 			clear_bit(ICE_PFR_REQ, pf->state);
710 			clear_bit(ICE_CORER_REQ, pf->state);
711 			clear_bit(ICE_GLOBR_REQ, pf->state);
712 			wake_up(&pf->reset_wait_queue);
713 			ice_reset_all_vfs(pf);
714 		}
715 
716 		return;
717 	}
718 
719 	/* No pending resets to finish processing. Check for new resets */
720 	if (test_bit(ICE_PFR_REQ, pf->state)) {
721 		reset_type = ICE_RESET_PFR;
722 		if (pf->lag && pf->lag->bonded) {
723 			dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
724 			reset_type = ICE_RESET_CORER;
725 		}
726 	}
727 	if (test_bit(ICE_CORER_REQ, pf->state))
728 		reset_type = ICE_RESET_CORER;
729 	if (test_bit(ICE_GLOBR_REQ, pf->state))
730 		reset_type = ICE_RESET_GLOBR;
731 	/* If no valid reset type requested just return */
732 	if (reset_type == ICE_RESET_INVAL)
733 		return;
734 
735 	/* reset if not already down or busy */
736 	if (!test_bit(ICE_DOWN, pf->state) &&
737 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
738 		ice_do_reset(pf, reset_type);
739 	}
740 }
741 
742 /**
743  * ice_print_topo_conflict - print topology conflict message
744  * @vsi: the VSI whose topology status is being checked
745  */
746 static void ice_print_topo_conflict(struct ice_vsi *vsi)
747 {
748 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
749 	case ICE_AQ_LINK_TOPO_CONFLICT:
750 	case ICE_AQ_LINK_MEDIA_CONFLICT:
751 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
752 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
753 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
754 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
755 		break;
756 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
757 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
758 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
759 		else
760 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
761 		break;
762 	default:
763 		break;
764 	}
765 }
766 
767 /**
768  * ice_print_link_msg - print link up or down message
769  * @vsi: the VSI whose link status is being queried
770  * @isup: boolean for if the link is now up or down
771  */
772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
773 {
774 	struct ice_aqc_get_phy_caps_data *caps;
775 	const char *an_advertised;
776 	const char *fec_req;
777 	const char *speed;
778 	const char *fec;
779 	const char *fc;
780 	const char *an;
781 	int status;
782 
783 	if (!vsi)
784 		return;
785 
786 	if (vsi->current_isup == isup)
787 		return;
788 
789 	vsi->current_isup = isup;
790 
791 	if (!isup) {
792 		netdev_info(vsi->netdev, "NIC Link is Down\n");
793 		return;
794 	}
795 
796 	switch (vsi->port_info->phy.link_info.link_speed) {
797 	case ICE_AQ_LINK_SPEED_200GB:
798 		speed = "200 G";
799 		break;
800 	case ICE_AQ_LINK_SPEED_100GB:
801 		speed = "100 G";
802 		break;
803 	case ICE_AQ_LINK_SPEED_50GB:
804 		speed = "50 G";
805 		break;
806 	case ICE_AQ_LINK_SPEED_40GB:
807 		speed = "40 G";
808 		break;
809 	case ICE_AQ_LINK_SPEED_25GB:
810 		speed = "25 G";
811 		break;
812 	case ICE_AQ_LINK_SPEED_20GB:
813 		speed = "20 G";
814 		break;
815 	case ICE_AQ_LINK_SPEED_10GB:
816 		speed = "10 G";
817 		break;
818 	case ICE_AQ_LINK_SPEED_5GB:
819 		speed = "5 G";
820 		break;
821 	case ICE_AQ_LINK_SPEED_2500MB:
822 		speed = "2.5 G";
823 		break;
824 	case ICE_AQ_LINK_SPEED_1000MB:
825 		speed = "1 G";
826 		break;
827 	case ICE_AQ_LINK_SPEED_100MB:
828 		speed = "100 M";
829 		break;
830 	default:
831 		speed = "Unknown ";
832 		break;
833 	}
834 
835 	switch (vsi->port_info->fc.current_mode) {
836 	case ICE_FC_FULL:
837 		fc = "Rx/Tx";
838 		break;
839 	case ICE_FC_TX_PAUSE:
840 		fc = "Tx";
841 		break;
842 	case ICE_FC_RX_PAUSE:
843 		fc = "Rx";
844 		break;
845 	case ICE_FC_NONE:
846 		fc = "None";
847 		break;
848 	default:
849 		fc = "Unknown";
850 		break;
851 	}
852 
853 	/* Get FEC mode based on negotiated link info */
854 	switch (vsi->port_info->phy.link_info.fec_info) {
855 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
856 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
857 		fec = "RS-FEC";
858 		break;
859 	case ICE_AQ_LINK_25G_KR_FEC_EN:
860 		fec = "FC-FEC/BASE-R";
861 		break;
862 	default:
863 		fec = "NONE";
864 		break;
865 	}
866 
867 	/* check if autoneg completed, might be false due to not supported */
868 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
869 		an = "True";
870 	else
871 		an = "False";
872 
873 	/* Get FEC mode requested based on PHY caps last SW configuration */
874 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
875 	if (!caps) {
876 		fec_req = "Unknown";
877 		an_advertised = "Unknown";
878 		goto done;
879 	}
880 
881 	status = ice_aq_get_phy_caps(vsi->port_info, false,
882 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
883 	if (status)
884 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
885 
886 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
887 
888 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
889 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
890 		fec_req = "RS-FEC";
891 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
892 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
893 		fec_req = "FC-FEC/BASE-R";
894 	else
895 		fec_req = "NONE";
896 
897 	kfree(caps);
898 
899 done:
900 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
901 		    speed, fec_req, fec, an_advertised, an, fc);
902 	ice_print_topo_conflict(vsi);
903 }
904 
905 /**
906  * ice_vsi_link_event - update the VSI's netdev
907  * @vsi: the VSI on which the link event occurred
908  * @link_up: whether or not the VSI needs to be set up or down
909  */
910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
911 {
912 	if (!vsi)
913 		return;
914 
915 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
916 		return;
917 
918 	if (vsi->type == ICE_VSI_PF) {
919 		if (link_up == netif_carrier_ok(vsi->netdev))
920 			return;
921 
922 		if (link_up) {
923 			netif_carrier_on(vsi->netdev);
924 			netif_tx_wake_all_queues(vsi->netdev);
925 		} else {
926 			netif_carrier_off(vsi->netdev);
927 			netif_tx_stop_all_queues(vsi->netdev);
928 		}
929 	}
930 }
931 
932 /**
933  * ice_set_dflt_mib - send a default config MIB to the FW
934  * @pf: private PF struct
935  *
936  * This function sends a default configuration MIB to the FW.
937  *
938  * If this function errors out at any point, the driver is still able to
939  * function.  The main impact is that LFC may not operate as expected.
940  * Therefore an error state in this function should be treated with a DBG
941  * message and continue on with driver rebuild/reenable.
942  */
943 static void ice_set_dflt_mib(struct ice_pf *pf)
944 {
945 	struct device *dev = ice_pf_to_dev(pf);
946 	u8 mib_type, *buf, *lldpmib = NULL;
947 	u16 len, typelen, offset = 0;
948 	struct ice_lldp_org_tlv *tlv;
949 	struct ice_hw *hw = &pf->hw;
950 	u32 ouisubtype;
951 
952 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
953 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
954 	if (!lldpmib) {
955 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
956 			__func__);
957 		return;
958 	}
959 
960 	/* Add ETS CFG TLV */
961 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
962 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
963 		   ICE_IEEE_ETS_TLV_LEN);
964 	tlv->typelen = htons(typelen);
965 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
966 		      ICE_IEEE_SUBTYPE_ETS_CFG);
967 	tlv->ouisubtype = htonl(ouisubtype);
968 
969 	buf = tlv->tlvinfo;
970 	buf[0] = 0;
971 
972 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
973 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
974 	 * Octets 13 - 20 are TSA values - leave as zeros
975 	 */
976 	buf[5] = 0x64;
977 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
978 	offset += len + 2;
979 	tlv = (struct ice_lldp_org_tlv *)
980 		((char *)tlv + sizeof(tlv->typelen) + len);
981 
982 	/* Add ETS REC TLV */
983 	buf = tlv->tlvinfo;
984 	tlv->typelen = htons(typelen);
985 
986 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
987 		      ICE_IEEE_SUBTYPE_ETS_REC);
988 	tlv->ouisubtype = htonl(ouisubtype);
989 
990 	/* First octet of buf is reserved
991 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
992 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
993 	 * Octets 13 - 20 are TSA value - leave as zeros
994 	 */
995 	buf[5] = 0x64;
996 	offset += len + 2;
997 	tlv = (struct ice_lldp_org_tlv *)
998 		((char *)tlv + sizeof(tlv->typelen) + len);
999 
1000 	/* Add PFC CFG TLV */
1001 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1002 		   ICE_IEEE_PFC_TLV_LEN);
1003 	tlv->typelen = htons(typelen);
1004 
1005 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1006 		      ICE_IEEE_SUBTYPE_PFC_CFG);
1007 	tlv->ouisubtype = htonl(ouisubtype);
1008 
1009 	/* Octet 1 left as all zeros - PFC disabled */
1010 	buf[0] = 0x08;
1011 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1012 	offset += len + 2;
1013 
1014 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1015 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1016 
1017 	kfree(lldpmib);
1018 }
1019 
1020 /**
1021  * ice_check_phy_fw_load - check if PHY FW load failed
1022  * @pf: pointer to PF struct
1023  * @link_cfg_err: bitmap from the link info structure
1024  *
1025  * check if external PHY FW load failed and print an error message if it did
1026  */
1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1030 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1031 		return;
1032 	}
1033 
1034 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1035 		return;
1036 
1037 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1038 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1039 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1040 	}
1041 }
1042 
1043 /**
1044  * ice_check_module_power
1045  * @pf: pointer to PF struct
1046  * @link_cfg_err: bitmap from the link info structure
1047  *
1048  * check module power level returned by a previous call to aq_get_link_info
1049  * and print error messages if module power level is not supported
1050  */
1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1052 {
1053 	/* if module power level is supported, clear the flag */
1054 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1055 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1056 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1057 		return;
1058 	}
1059 
1060 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1061 	 * above block didn't clear this bit, there's nothing to do
1062 	 */
1063 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1064 		return;
1065 
1066 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1067 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1068 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1069 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1070 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1071 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1072 	}
1073 }
1074 
1075 /**
1076  * ice_check_link_cfg_err - check if link configuration failed
1077  * @pf: pointer to the PF struct
1078  * @link_cfg_err: bitmap from the link info structure
1079  *
1080  * print if any link configuration failure happens due to the value in the
1081  * link_cfg_err parameter in the link info structure
1082  */
1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1084 {
1085 	ice_check_module_power(pf, link_cfg_err);
1086 	ice_check_phy_fw_load(pf, link_cfg_err);
1087 }
1088 
1089 /**
1090  * ice_link_event - process the link event
1091  * @pf: PF that the link event is associated with
1092  * @pi: port_info for the port that the link event is associated with
1093  * @link_up: true if the physical link is up and false if it is down
1094  * @link_speed: current link speed received from the link event
1095  *
1096  * Returns 0 on success and negative on failure
1097  */
1098 static int
1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1100 	       u16 link_speed)
1101 {
1102 	struct device *dev = ice_pf_to_dev(pf);
1103 	struct ice_phy_info *phy_info;
1104 	struct ice_vsi *vsi;
1105 	u16 old_link_speed;
1106 	bool old_link;
1107 	int status;
1108 
1109 	phy_info = &pi->phy;
1110 	phy_info->link_info_old = phy_info->link_info;
1111 
1112 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1113 	old_link_speed = phy_info->link_info_old.link_speed;
1114 
1115 	/* update the link info structures and re-enable link events,
1116 	 * don't bail on failure due to other book keeping needed
1117 	 */
1118 	status = ice_update_link_info(pi);
1119 	if (status)
1120 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1121 			pi->lport, status,
1122 			ice_aq_str(pi->hw->adminq.sq_last_status));
1123 
1124 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1125 
1126 	/* Check if the link state is up after updating link info, and treat
1127 	 * this event as an UP event since the link is actually UP now.
1128 	 */
1129 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1130 		link_up = true;
1131 
1132 	vsi = ice_get_main_vsi(pf);
1133 	if (!vsi || !vsi->port_info)
1134 		return -EINVAL;
1135 
1136 	/* turn off PHY if media was removed */
1137 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1138 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1139 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1140 		ice_set_link(vsi, false);
1141 	}
1142 
1143 	/* if the old link up/down and speed is the same as the new */
1144 	if (link_up == old_link && link_speed == old_link_speed)
1145 		return 0;
1146 
1147 	ice_ptp_link_change(pf, link_up);
1148 
1149 	if (ice_is_dcb_active(pf)) {
1150 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1151 			ice_dcb_rebuild(pf);
1152 	} else {
1153 		if (link_up)
1154 			ice_set_dflt_mib(pf);
1155 	}
1156 	ice_vsi_link_event(vsi, link_up);
1157 	ice_print_link_msg(vsi, link_up);
1158 
1159 	ice_vc_notify_link_state(pf);
1160 
1161 	return 0;
1162 }
1163 
1164 /**
1165  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1166  * @pf: board private structure
1167  */
1168 static void ice_watchdog_subtask(struct ice_pf *pf)
1169 {
1170 	int i;
1171 
1172 	/* if interface is down do nothing */
1173 	if (test_bit(ICE_DOWN, pf->state) ||
1174 	    test_bit(ICE_CFG_BUSY, pf->state))
1175 		return;
1176 
1177 	/* make sure we don't do these things too often */
1178 	if (time_before(jiffies,
1179 			pf->serv_tmr_prev + pf->serv_tmr_period))
1180 		return;
1181 
1182 	pf->serv_tmr_prev = jiffies;
1183 
1184 	/* Update the stats for active netdevs so the network stack
1185 	 * can look at updated numbers whenever it cares to
1186 	 */
1187 	ice_update_pf_stats(pf);
1188 	ice_for_each_vsi(pf, i)
1189 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1190 			ice_update_vsi_stats(pf->vsi[i]);
1191 }
1192 
1193 /**
1194  * ice_init_link_events - enable/initialize link events
1195  * @pi: pointer to the port_info instance
1196  *
1197  * Returns -EIO on failure, 0 on success
1198  */
1199 static int ice_init_link_events(struct ice_port_info *pi)
1200 {
1201 	u16 mask;
1202 
1203 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1204 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1205 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1206 
1207 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1208 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1209 			pi->lport);
1210 		return -EIO;
1211 	}
1212 
1213 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1214 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1215 			pi->lport);
1216 		return -EIO;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 /**
1223  * ice_handle_link_event - handle link event via ARQ
1224  * @pf: PF that the link event is associated with
1225  * @event: event structure containing link status info
1226  */
1227 static int
1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1229 {
1230 	struct ice_aqc_get_link_status_data *link_data;
1231 	struct ice_port_info *port_info;
1232 	int status;
1233 
1234 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1235 	port_info = pf->hw.port_info;
1236 	if (!port_info)
1237 		return -EINVAL;
1238 
1239 	status = ice_link_event(pf, port_info,
1240 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1241 				le16_to_cpu(link_data->link_speed));
1242 	if (status)
1243 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1244 			status);
1245 
1246 	return status;
1247 }
1248 
1249 /**
1250  * ice_get_fwlog_data - copy the FW log data from ARQ event
1251  * @pf: PF that the FW log event is associated with
1252  * @event: event structure containing FW log data
1253  */
1254 static void
1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1256 {
1257 	struct ice_fwlog_data *fwlog;
1258 	struct ice_hw *hw = &pf->hw;
1259 
1260 	fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1261 
1262 	memset(fwlog->data, 0, PAGE_SIZE);
1263 	fwlog->data_size = le16_to_cpu(event->desc.datalen);
1264 
1265 	memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1266 	ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1267 
1268 	if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1269 		/* the rings are full so bump the head to create room */
1270 		ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1271 					 hw->fwlog_ring.size);
1272 	}
1273 }
1274 
1275 /**
1276  * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1277  * @pf: pointer to the PF private structure
1278  * @task: intermediate helper storage and identifier for waiting
1279  * @opcode: the opcode to wait for
1280  *
1281  * Prepares to wait for a specific AdminQ completion event on the ARQ for
1282  * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1283  *
1284  * Calls are separated to allow caller registering for event before sending
1285  * the command, which mitigates a race between registering and FW responding.
1286  *
1287  * To obtain only the descriptor contents, pass an task->event with null
1288  * msg_buf. If the complete data buffer is desired, allocate the
1289  * task->event.msg_buf with enough space ahead of time.
1290  */
1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1292 			   u16 opcode)
1293 {
1294 	INIT_HLIST_NODE(&task->entry);
1295 	task->opcode = opcode;
1296 	task->state = ICE_AQ_TASK_WAITING;
1297 
1298 	spin_lock_bh(&pf->aq_wait_lock);
1299 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1300 	spin_unlock_bh(&pf->aq_wait_lock);
1301 }
1302 
1303 /**
1304  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1305  * @pf: pointer to the PF private structure
1306  * @task: ptr prepared by ice_aq_prep_for_event()
1307  * @timeout: how long to wait, in jiffies
1308  *
1309  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1310  * current thread will be put to sleep until the specified event occurs or
1311  * until the given timeout is reached.
1312  *
1313  * Returns: zero on success, or a negative error code on failure.
1314  */
1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1316 			  unsigned long timeout)
1317 {
1318 	enum ice_aq_task_state *state = &task->state;
1319 	struct device *dev = ice_pf_to_dev(pf);
1320 	unsigned long start = jiffies;
1321 	long ret;
1322 	int err;
1323 
1324 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1325 					       *state != ICE_AQ_TASK_WAITING,
1326 					       timeout);
1327 	switch (*state) {
1328 	case ICE_AQ_TASK_NOT_PREPARED:
1329 		WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1330 		err = -EINVAL;
1331 		break;
1332 	case ICE_AQ_TASK_WAITING:
1333 		err = ret < 0 ? ret : -ETIMEDOUT;
1334 		break;
1335 	case ICE_AQ_TASK_CANCELED:
1336 		err = ret < 0 ? ret : -ECANCELED;
1337 		break;
1338 	case ICE_AQ_TASK_COMPLETE:
1339 		err = ret < 0 ? ret : 0;
1340 		break;
1341 	default:
1342 		WARN(1, "Unexpected AdminQ wait task state %u", *state);
1343 		err = -EINVAL;
1344 		break;
1345 	}
1346 
1347 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1348 		jiffies_to_msecs(jiffies - start),
1349 		jiffies_to_msecs(timeout),
1350 		task->opcode);
1351 
1352 	spin_lock_bh(&pf->aq_wait_lock);
1353 	hlist_del(&task->entry);
1354 	spin_unlock_bh(&pf->aq_wait_lock);
1355 
1356 	return err;
1357 }
1358 
1359 /**
1360  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1361  * @pf: pointer to the PF private structure
1362  * @opcode: the opcode of the event
1363  * @event: the event to check
1364  *
1365  * Loops over the current list of pending threads waiting for an AdminQ event.
1366  * For each matching task, copy the contents of the event into the task
1367  * structure and wake up the thread.
1368  *
1369  * If multiple threads wait for the same opcode, they will all be woken up.
1370  *
1371  * Note that event->msg_buf will only be duplicated if the event has a buffer
1372  * with enough space already allocated. Otherwise, only the descriptor and
1373  * message length will be copied.
1374  *
1375  * Returns: true if an event was found, false otherwise
1376  */
1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1378 				struct ice_rq_event_info *event)
1379 {
1380 	struct ice_rq_event_info *task_ev;
1381 	struct ice_aq_task *task;
1382 	bool found = false;
1383 
1384 	spin_lock_bh(&pf->aq_wait_lock);
1385 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1386 		if (task->state != ICE_AQ_TASK_WAITING)
1387 			continue;
1388 		if (task->opcode != opcode)
1389 			continue;
1390 
1391 		task_ev = &task->event;
1392 		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1393 		task_ev->msg_len = event->msg_len;
1394 
1395 		/* Only copy the data buffer if a destination was set */
1396 		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1397 			memcpy(task_ev->msg_buf, event->msg_buf,
1398 			       event->buf_len);
1399 			task_ev->buf_len = event->buf_len;
1400 		}
1401 
1402 		task->state = ICE_AQ_TASK_COMPLETE;
1403 		found = true;
1404 	}
1405 	spin_unlock_bh(&pf->aq_wait_lock);
1406 
1407 	if (found)
1408 		wake_up(&pf->aq_wait_queue);
1409 }
1410 
1411 /**
1412  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1413  * @pf: the PF private structure
1414  *
1415  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1416  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1417  */
1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1419 {
1420 	struct ice_aq_task *task;
1421 
1422 	spin_lock_bh(&pf->aq_wait_lock);
1423 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1424 		task->state = ICE_AQ_TASK_CANCELED;
1425 	spin_unlock_bh(&pf->aq_wait_lock);
1426 
1427 	wake_up(&pf->aq_wait_queue);
1428 }
1429 
1430 #define ICE_MBX_OVERFLOW_WATERMARK 64
1431 
1432 /**
1433  * __ice_clean_ctrlq - helper function to clean controlq rings
1434  * @pf: ptr to struct ice_pf
1435  * @q_type: specific Control queue type
1436  */
1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1438 {
1439 	struct device *dev = ice_pf_to_dev(pf);
1440 	struct ice_rq_event_info event;
1441 	struct ice_hw *hw = &pf->hw;
1442 	struct ice_ctl_q_info *cq;
1443 	u16 pending, i = 0;
1444 	const char *qtype;
1445 	u32 oldval, val;
1446 
1447 	/* Do not clean control queue if/when PF reset fails */
1448 	if (test_bit(ICE_RESET_FAILED, pf->state))
1449 		return 0;
1450 
1451 	switch (q_type) {
1452 	case ICE_CTL_Q_ADMIN:
1453 		cq = &hw->adminq;
1454 		qtype = "Admin";
1455 		break;
1456 	case ICE_CTL_Q_SB:
1457 		cq = &hw->sbq;
1458 		qtype = "Sideband";
1459 		break;
1460 	case ICE_CTL_Q_MAILBOX:
1461 		cq = &hw->mailboxq;
1462 		qtype = "Mailbox";
1463 		/* we are going to try to detect a malicious VF, so set the
1464 		 * state to begin detection
1465 		 */
1466 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1467 		break;
1468 	default:
1469 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1470 		return 0;
1471 	}
1472 
1473 	/* check for error indications - PF_xx_AxQLEN register layout for
1474 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1475 	 */
1476 	val = rd32(hw, cq->rq.len);
1477 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1478 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1479 		oldval = val;
1480 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1481 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1482 				qtype);
1483 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1484 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1485 				qtype);
1486 		}
1487 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1488 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1489 				qtype);
1490 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1491 			 PF_FW_ARQLEN_ARQCRIT_M);
1492 		if (oldval != val)
1493 			wr32(hw, cq->rq.len, val);
1494 	}
1495 
1496 	val = rd32(hw, cq->sq.len);
1497 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1498 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1499 		oldval = val;
1500 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1501 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1502 				qtype);
1503 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1504 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1505 				qtype);
1506 		}
1507 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1508 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1509 				qtype);
1510 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1511 			 PF_FW_ATQLEN_ATQCRIT_M);
1512 		if (oldval != val)
1513 			wr32(hw, cq->sq.len, val);
1514 	}
1515 
1516 	event.buf_len = cq->rq_buf_size;
1517 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1518 	if (!event.msg_buf)
1519 		return 0;
1520 
1521 	do {
1522 		struct ice_mbx_data data = {};
1523 		u16 opcode;
1524 		int ret;
1525 
1526 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1527 		if (ret == -EALREADY)
1528 			break;
1529 		if (ret) {
1530 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1531 				ret);
1532 			break;
1533 		}
1534 
1535 		opcode = le16_to_cpu(event.desc.opcode);
1536 
1537 		/* Notify any thread that might be waiting for this event */
1538 		ice_aq_check_events(pf, opcode, &event);
1539 
1540 		switch (opcode) {
1541 		case ice_aqc_opc_get_link_status:
1542 			if (ice_handle_link_event(pf, &event))
1543 				dev_err(dev, "Could not handle link event\n");
1544 			break;
1545 		case ice_aqc_opc_event_lan_overflow:
1546 			ice_vf_lan_overflow_event(pf, &event);
1547 			break;
1548 		case ice_mbx_opc_send_msg_to_pf:
1549 			if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1550 				ice_vc_process_vf_msg(pf, &event, NULL);
1551 				ice_mbx_vf_dec_trig_e830(hw, &event);
1552 			} else {
1553 				u16 val = hw->mailboxq.num_rq_entries;
1554 
1555 				data.max_num_msgs_mbx = val;
1556 				val = ICE_MBX_OVERFLOW_WATERMARK;
1557 				data.async_watermark_val = val;
1558 				data.num_msg_proc = i;
1559 				data.num_pending_arq = pending;
1560 
1561 				ice_vc_process_vf_msg(pf, &event, &data);
1562 			}
1563 			break;
1564 		case ice_aqc_opc_fw_logs_event:
1565 			ice_get_fwlog_data(pf, &event);
1566 			break;
1567 		case ice_aqc_opc_lldp_set_mib_change:
1568 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1569 			break;
1570 		case ice_aqc_opc_get_health_status:
1571 			ice_process_health_status_event(pf, &event);
1572 			break;
1573 		default:
1574 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1575 				qtype, opcode);
1576 			break;
1577 		}
1578 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1579 
1580 	kfree(event.msg_buf);
1581 
1582 	return pending && (i == ICE_DFLT_IRQ_WORK);
1583 }
1584 
1585 /**
1586  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1587  * @hw: pointer to hardware info
1588  * @cq: control queue information
1589  *
1590  * returns true if there are pending messages in a queue, false if there aren't
1591  */
1592 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1593 {
1594 	u16 ntu;
1595 
1596 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1597 	return cq->rq.next_to_clean != ntu;
1598 }
1599 
1600 /**
1601  * ice_clean_adminq_subtask - clean the AdminQ rings
1602  * @pf: board private structure
1603  */
1604 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1605 {
1606 	struct ice_hw *hw = &pf->hw;
1607 
1608 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1609 		return;
1610 
1611 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1612 		return;
1613 
1614 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1615 
1616 	/* There might be a situation where new messages arrive to a control
1617 	 * queue between processing the last message and clearing the
1618 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1619 	 * ice_ctrlq_pending) and process new messages if any.
1620 	 */
1621 	if (ice_ctrlq_pending(hw, &hw->adminq))
1622 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1623 
1624 	ice_flush(hw);
1625 }
1626 
1627 /**
1628  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1629  * @pf: board private structure
1630  */
1631 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1632 {
1633 	struct ice_hw *hw = &pf->hw;
1634 
1635 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1636 		return;
1637 
1638 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1639 		return;
1640 
1641 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1642 
1643 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1644 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1645 
1646 	ice_flush(hw);
1647 }
1648 
1649 /**
1650  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1651  * @pf: board private structure
1652  */
1653 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1654 {
1655 	struct ice_hw *hw = &pf->hw;
1656 
1657 	/* if mac_type is not generic, sideband is not supported
1658 	 * and there's nothing to do here
1659 	 */
1660 	if (!ice_is_generic_mac(hw)) {
1661 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1662 		return;
1663 	}
1664 
1665 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1666 		return;
1667 
1668 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1669 		return;
1670 
1671 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1672 
1673 	if (ice_ctrlq_pending(hw, &hw->sbq))
1674 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1675 
1676 	ice_flush(hw);
1677 }
1678 
1679 /**
1680  * ice_service_task_schedule - schedule the service task to wake up
1681  * @pf: board private structure
1682  *
1683  * If not already scheduled, this puts the task into the work queue.
1684  */
1685 void ice_service_task_schedule(struct ice_pf *pf)
1686 {
1687 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1688 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1689 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1690 		queue_work(ice_wq, &pf->serv_task);
1691 }
1692 
1693 /**
1694  * ice_service_task_complete - finish up the service task
1695  * @pf: board private structure
1696  */
1697 static void ice_service_task_complete(struct ice_pf *pf)
1698 {
1699 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1700 
1701 	/* force memory (pf->state) to sync before next service task */
1702 	smp_mb__before_atomic();
1703 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1704 }
1705 
1706 /**
1707  * ice_service_task_stop - stop service task and cancel works
1708  * @pf: board private structure
1709  *
1710  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1711  * 1 otherwise.
1712  */
1713 static int ice_service_task_stop(struct ice_pf *pf)
1714 {
1715 	int ret;
1716 
1717 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1718 
1719 	if (pf->serv_tmr.function)
1720 		del_timer_sync(&pf->serv_tmr);
1721 	if (pf->serv_task.func)
1722 		cancel_work_sync(&pf->serv_task);
1723 
1724 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1725 	return ret;
1726 }
1727 
1728 /**
1729  * ice_service_task_restart - restart service task and schedule works
1730  * @pf: board private structure
1731  *
1732  * This function is needed for suspend and resume works (e.g WoL scenario)
1733  */
1734 static void ice_service_task_restart(struct ice_pf *pf)
1735 {
1736 	clear_bit(ICE_SERVICE_DIS, pf->state);
1737 	ice_service_task_schedule(pf);
1738 }
1739 
1740 /**
1741  * ice_service_timer - timer callback to schedule service task
1742  * @t: pointer to timer_list
1743  */
1744 static void ice_service_timer(struct timer_list *t)
1745 {
1746 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1747 
1748 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1749 	ice_service_task_schedule(pf);
1750 }
1751 
1752 /**
1753  * ice_mdd_maybe_reset_vf - reset VF after MDD event
1754  * @pf: pointer to the PF structure
1755  * @vf: pointer to the VF structure
1756  * @reset_vf_tx: whether Tx MDD has occurred
1757  * @reset_vf_rx: whether Rx MDD has occurred
1758  *
1759  * Since the queue can get stuck on VF MDD events, the PF can be configured to
1760  * automatically reset the VF by enabling the private ethtool flag
1761  * mdd-auto-reset-vf.
1762  */
1763 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1764 				   bool reset_vf_tx, bool reset_vf_rx)
1765 {
1766 	struct device *dev = ice_pf_to_dev(pf);
1767 
1768 	if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1769 		return;
1770 
1771 	/* VF MDD event counters will be cleared by reset, so print the event
1772 	 * prior to reset.
1773 	 */
1774 	if (reset_vf_tx)
1775 		ice_print_vf_tx_mdd_event(vf);
1776 
1777 	if (reset_vf_rx)
1778 		ice_print_vf_rx_mdd_event(vf);
1779 
1780 	dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1781 		 pf->hw.pf_id, vf->vf_id);
1782 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1783 }
1784 
1785 /**
1786  * ice_handle_mdd_event - handle malicious driver detect event
1787  * @pf: pointer to the PF structure
1788  *
1789  * Called from service task. OICR interrupt handler indicates MDD event.
1790  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1791  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1792  * disable the queue, the PF can be configured to reset the VF using ethtool
1793  * private flag mdd-auto-reset-vf.
1794  */
1795 static void ice_handle_mdd_event(struct ice_pf *pf)
1796 {
1797 	struct device *dev = ice_pf_to_dev(pf);
1798 	struct ice_hw *hw = &pf->hw;
1799 	struct ice_vf *vf;
1800 	unsigned int bkt;
1801 	u32 reg;
1802 
1803 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1804 		/* Since the VF MDD event logging is rate limited, check if
1805 		 * there are pending MDD events.
1806 		 */
1807 		ice_print_vfs_mdd_events(pf);
1808 		return;
1809 	}
1810 
1811 	/* find what triggered an MDD event */
1812 	reg = rd32(hw, GL_MDET_TX_PQM);
1813 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1814 		u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1815 		u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1816 		u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1817 		u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1818 
1819 		if (netif_msg_tx_err(pf))
1820 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1821 				 event, queue, pf_num, vf_num);
1822 		ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num,
1823 				     event, queue);
1824 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1825 	}
1826 
1827 	reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1828 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1829 		u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1830 		u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1831 		u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1832 		u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1833 
1834 		if (netif_msg_tx_err(pf))
1835 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1836 				 event, queue, pf_num, vf_num);
1837 		ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num,
1838 				     event, queue);
1839 		wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1840 	}
1841 
1842 	reg = rd32(hw, GL_MDET_RX);
1843 	if (reg & GL_MDET_RX_VALID_M) {
1844 		u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1845 		u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1846 		u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1847 		u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1848 
1849 		if (netif_msg_rx_err(pf))
1850 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1851 				 event, queue, pf_num, vf_num);
1852 		ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event,
1853 				     queue);
1854 		wr32(hw, GL_MDET_RX, 0xffffffff);
1855 	}
1856 
1857 	/* check to see if this PF caused an MDD event */
1858 	reg = rd32(hw, PF_MDET_TX_PQM);
1859 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1860 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1861 		if (netif_msg_tx_err(pf))
1862 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1863 	}
1864 
1865 	reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1866 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1867 		wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1868 		if (netif_msg_tx_err(pf))
1869 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1870 	}
1871 
1872 	reg = rd32(hw, PF_MDET_RX);
1873 	if (reg & PF_MDET_RX_VALID_M) {
1874 		wr32(hw, PF_MDET_RX, 0xFFFF);
1875 		if (netif_msg_rx_err(pf))
1876 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1877 	}
1878 
1879 	/* Check to see if one of the VFs caused an MDD event, and then
1880 	 * increment counters and set print pending
1881 	 */
1882 	mutex_lock(&pf->vfs.table_lock);
1883 	ice_for_each_vf(pf, bkt, vf) {
1884 		bool reset_vf_tx = false, reset_vf_rx = false;
1885 
1886 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1887 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1888 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1889 			vf->mdd_tx_events.count++;
1890 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1891 			if (netif_msg_tx_err(pf))
1892 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1893 					 vf->vf_id);
1894 
1895 			reset_vf_tx = true;
1896 		}
1897 
1898 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1899 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1900 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1901 			vf->mdd_tx_events.count++;
1902 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1903 			if (netif_msg_tx_err(pf))
1904 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1905 					 vf->vf_id);
1906 
1907 			reset_vf_tx = true;
1908 		}
1909 
1910 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1911 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1912 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1913 			vf->mdd_tx_events.count++;
1914 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1915 			if (netif_msg_tx_err(pf))
1916 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1917 					 vf->vf_id);
1918 
1919 			reset_vf_tx = true;
1920 		}
1921 
1922 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1923 		if (reg & VP_MDET_RX_VALID_M) {
1924 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1925 			vf->mdd_rx_events.count++;
1926 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1927 			if (netif_msg_rx_err(pf))
1928 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1929 					 vf->vf_id);
1930 
1931 			reset_vf_rx = true;
1932 		}
1933 
1934 		if (reset_vf_tx || reset_vf_rx)
1935 			ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1936 					       reset_vf_rx);
1937 	}
1938 	mutex_unlock(&pf->vfs.table_lock);
1939 
1940 	ice_print_vfs_mdd_events(pf);
1941 }
1942 
1943 /**
1944  * ice_force_phys_link_state - Force the physical link state
1945  * @vsi: VSI to force the physical link state to up/down
1946  * @link_up: true/false indicates to set the physical link to up/down
1947  *
1948  * Force the physical link state by getting the current PHY capabilities from
1949  * hardware and setting the PHY config based on the determined capabilities. If
1950  * link changes a link event will be triggered because both the Enable Automatic
1951  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1952  *
1953  * Returns 0 on success, negative on failure
1954  */
1955 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1956 {
1957 	struct ice_aqc_get_phy_caps_data *pcaps;
1958 	struct ice_aqc_set_phy_cfg_data *cfg;
1959 	struct ice_port_info *pi;
1960 	struct device *dev;
1961 	int retcode;
1962 
1963 	if (!vsi || !vsi->port_info || !vsi->back)
1964 		return -EINVAL;
1965 	if (vsi->type != ICE_VSI_PF)
1966 		return 0;
1967 
1968 	dev = ice_pf_to_dev(vsi->back);
1969 
1970 	pi = vsi->port_info;
1971 
1972 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1973 	if (!pcaps)
1974 		return -ENOMEM;
1975 
1976 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1977 				      NULL);
1978 	if (retcode) {
1979 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1980 			vsi->vsi_num, retcode);
1981 		retcode = -EIO;
1982 		goto out;
1983 	}
1984 
1985 	/* No change in link */
1986 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1987 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1988 		goto out;
1989 
1990 	/* Use the current user PHY configuration. The current user PHY
1991 	 * configuration is initialized during probe from PHY capabilities
1992 	 * software mode, and updated on set PHY configuration.
1993 	 */
1994 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1995 	if (!cfg) {
1996 		retcode = -ENOMEM;
1997 		goto out;
1998 	}
1999 
2000 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2001 	if (link_up)
2002 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
2003 	else
2004 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
2005 
2006 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
2007 	if (retcode) {
2008 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2009 			vsi->vsi_num, retcode);
2010 		retcode = -EIO;
2011 	}
2012 
2013 	kfree(cfg);
2014 out:
2015 	kfree(pcaps);
2016 	return retcode;
2017 }
2018 
2019 /**
2020  * ice_init_nvm_phy_type - Initialize the NVM PHY type
2021  * @pi: port info structure
2022  *
2023  * Initialize nvm_phy_type_[low|high] for link lenient mode support
2024  */
2025 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2026 {
2027 	struct ice_aqc_get_phy_caps_data *pcaps;
2028 	struct ice_pf *pf = pi->hw->back;
2029 	int err;
2030 
2031 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2032 	if (!pcaps)
2033 		return -ENOMEM;
2034 
2035 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2036 				  pcaps, NULL);
2037 
2038 	if (err) {
2039 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2040 		goto out;
2041 	}
2042 
2043 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
2044 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
2045 
2046 out:
2047 	kfree(pcaps);
2048 	return err;
2049 }
2050 
2051 /**
2052  * ice_init_link_dflt_override - Initialize link default override
2053  * @pi: port info structure
2054  *
2055  * Initialize link default override and PHY total port shutdown during probe
2056  */
2057 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2058 {
2059 	struct ice_link_default_override_tlv *ldo;
2060 	struct ice_pf *pf = pi->hw->back;
2061 
2062 	ldo = &pf->link_dflt_override;
2063 	if (ice_get_link_default_override(ldo, pi))
2064 		return;
2065 
2066 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2067 		return;
2068 
2069 	/* Enable Total Port Shutdown (override/replace link-down-on-close
2070 	 * ethtool private flag) for ports with Port Disable bit set.
2071 	 */
2072 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2073 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2074 }
2075 
2076 /**
2077  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2078  * @pi: port info structure
2079  *
2080  * If default override is enabled, initialize the user PHY cfg speed and FEC
2081  * settings using the default override mask from the NVM.
2082  *
2083  * The PHY should only be configured with the default override settings the
2084  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2085  * is used to indicate that the user PHY cfg default override is initialized
2086  * and the PHY has not been configured with the default override settings. The
2087  * state is set here, and cleared in ice_configure_phy the first time the PHY is
2088  * configured.
2089  *
2090  * This function should be called only if the FW doesn't support default
2091  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2092  */
2093 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2094 {
2095 	struct ice_link_default_override_tlv *ldo;
2096 	struct ice_aqc_set_phy_cfg_data *cfg;
2097 	struct ice_phy_info *phy = &pi->phy;
2098 	struct ice_pf *pf = pi->hw->back;
2099 
2100 	ldo = &pf->link_dflt_override;
2101 
2102 	/* If link default override is enabled, use to mask NVM PHY capabilities
2103 	 * for speed and FEC default configuration.
2104 	 */
2105 	cfg = &phy->curr_user_phy_cfg;
2106 
2107 	if (ldo->phy_type_low || ldo->phy_type_high) {
2108 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2109 				    cpu_to_le64(ldo->phy_type_low);
2110 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2111 				     cpu_to_le64(ldo->phy_type_high);
2112 	}
2113 	cfg->link_fec_opt = ldo->fec_options;
2114 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2115 
2116 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2117 }
2118 
2119 /**
2120  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2121  * @pi: port info structure
2122  *
2123  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2124  * mode to default. The PHY defaults are from get PHY capabilities topology
2125  * with media so call when media is first available. An error is returned if
2126  * called when media is not available. The PHY initialization completed state is
2127  * set here.
2128  *
2129  * These configurations are used when setting PHY
2130  * configuration. The user PHY configuration is updated on set PHY
2131  * configuration. Returns 0 on success, negative on failure
2132  */
2133 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2134 {
2135 	struct ice_aqc_get_phy_caps_data *pcaps;
2136 	struct ice_phy_info *phy = &pi->phy;
2137 	struct ice_pf *pf = pi->hw->back;
2138 	int err;
2139 
2140 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2141 		return -EIO;
2142 
2143 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2144 	if (!pcaps)
2145 		return -ENOMEM;
2146 
2147 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2148 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2149 					  pcaps, NULL);
2150 	else
2151 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2152 					  pcaps, NULL);
2153 	if (err) {
2154 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2155 		goto err_out;
2156 	}
2157 
2158 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2159 
2160 	/* check if lenient mode is supported and enabled */
2161 	if (ice_fw_supports_link_override(pi->hw) &&
2162 	    !(pcaps->module_compliance_enforcement &
2163 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2164 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2165 
2166 		/* if the FW supports default PHY configuration mode, then the driver
2167 		 * does not have to apply link override settings. If not,
2168 		 * initialize user PHY configuration with link override values
2169 		 */
2170 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2171 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2172 			ice_init_phy_cfg_dflt_override(pi);
2173 			goto out;
2174 		}
2175 	}
2176 
2177 	/* if link default override is not enabled, set user flow control and
2178 	 * FEC settings based on what get_phy_caps returned
2179 	 */
2180 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2181 						      pcaps->link_fec_options);
2182 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2183 
2184 out:
2185 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2186 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2187 err_out:
2188 	kfree(pcaps);
2189 	return err;
2190 }
2191 
2192 /**
2193  * ice_configure_phy - configure PHY
2194  * @vsi: VSI of PHY
2195  *
2196  * Set the PHY configuration. If the current PHY configuration is the same as
2197  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2198  * configure the based get PHY capabilities for topology with media.
2199  */
2200 static int ice_configure_phy(struct ice_vsi *vsi)
2201 {
2202 	struct device *dev = ice_pf_to_dev(vsi->back);
2203 	struct ice_port_info *pi = vsi->port_info;
2204 	struct ice_aqc_get_phy_caps_data *pcaps;
2205 	struct ice_aqc_set_phy_cfg_data *cfg;
2206 	struct ice_phy_info *phy = &pi->phy;
2207 	struct ice_pf *pf = vsi->back;
2208 	int err;
2209 
2210 	/* Ensure we have media as we cannot configure a medialess port */
2211 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2212 		return -ENOMEDIUM;
2213 
2214 	ice_print_topo_conflict(vsi);
2215 
2216 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2217 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2218 		return -EPERM;
2219 
2220 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2221 		return ice_force_phys_link_state(vsi, true);
2222 
2223 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2224 	if (!pcaps)
2225 		return -ENOMEM;
2226 
2227 	/* Get current PHY config */
2228 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2229 				  NULL);
2230 	if (err) {
2231 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2232 			vsi->vsi_num, err);
2233 		goto done;
2234 	}
2235 
2236 	/* If PHY enable link is configured and configuration has not changed,
2237 	 * there's nothing to do
2238 	 */
2239 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2240 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2241 		goto done;
2242 
2243 	/* Use PHY topology as baseline for configuration */
2244 	memset(pcaps, 0, sizeof(*pcaps));
2245 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2246 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2247 					  pcaps, NULL);
2248 	else
2249 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2250 					  pcaps, NULL);
2251 	if (err) {
2252 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2253 			vsi->vsi_num, err);
2254 		goto done;
2255 	}
2256 
2257 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2258 	if (!cfg) {
2259 		err = -ENOMEM;
2260 		goto done;
2261 	}
2262 
2263 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2264 
2265 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2266 	 * ice_init_phy_user_cfg_ldo.
2267 	 */
2268 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2269 			       vsi->back->state)) {
2270 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2271 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2272 	} else {
2273 		u64 phy_low = 0, phy_high = 0;
2274 
2275 		ice_update_phy_type(&phy_low, &phy_high,
2276 				    pi->phy.curr_user_speed_req);
2277 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2278 		cfg->phy_type_high = pcaps->phy_type_high &
2279 				     cpu_to_le64(phy_high);
2280 	}
2281 
2282 	/* Can't provide what was requested; use PHY capabilities */
2283 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2284 		cfg->phy_type_low = pcaps->phy_type_low;
2285 		cfg->phy_type_high = pcaps->phy_type_high;
2286 	}
2287 
2288 	/* FEC */
2289 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2290 
2291 	/* Can't provide what was requested; use PHY capabilities */
2292 	if (cfg->link_fec_opt !=
2293 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2294 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2295 		cfg->link_fec_opt = pcaps->link_fec_options;
2296 	}
2297 
2298 	/* Flow Control - always supported; no need to check against
2299 	 * capabilities
2300 	 */
2301 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2302 
2303 	/* Enable link and link update */
2304 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2305 
2306 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2307 	if (err)
2308 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2309 			vsi->vsi_num, err);
2310 
2311 	kfree(cfg);
2312 done:
2313 	kfree(pcaps);
2314 	return err;
2315 }
2316 
2317 /**
2318  * ice_check_media_subtask - Check for media
2319  * @pf: pointer to PF struct
2320  *
2321  * If media is available, then initialize PHY user configuration if it is not
2322  * been, and configure the PHY if the interface is up.
2323  */
2324 static void ice_check_media_subtask(struct ice_pf *pf)
2325 {
2326 	struct ice_port_info *pi;
2327 	struct ice_vsi *vsi;
2328 	int err;
2329 
2330 	/* No need to check for media if it's already present */
2331 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2332 		return;
2333 
2334 	vsi = ice_get_main_vsi(pf);
2335 	if (!vsi)
2336 		return;
2337 
2338 	/* Refresh link info and check if media is present */
2339 	pi = vsi->port_info;
2340 	err = ice_update_link_info(pi);
2341 	if (err)
2342 		return;
2343 
2344 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2345 
2346 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2347 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2348 			ice_init_phy_user_cfg(pi);
2349 
2350 		/* PHY settings are reset on media insertion, reconfigure
2351 		 * PHY to preserve settings.
2352 		 */
2353 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2354 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2355 			return;
2356 
2357 		err = ice_configure_phy(vsi);
2358 		if (!err)
2359 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2360 
2361 		/* A Link Status Event will be generated; the event handler
2362 		 * will complete bringing the interface up
2363 		 */
2364 	}
2365 }
2366 
2367 static void ice_service_task_recovery_mode(struct work_struct *work)
2368 {
2369 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2370 
2371 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2372 	ice_clean_adminq_subtask(pf);
2373 
2374 	ice_service_task_complete(pf);
2375 
2376 	mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100));
2377 }
2378 
2379 /**
2380  * ice_service_task - manage and run subtasks
2381  * @work: pointer to work_struct contained by the PF struct
2382  */
2383 static void ice_service_task(struct work_struct *work)
2384 {
2385 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2386 	unsigned long start_time = jiffies;
2387 
2388 	if (pf->health_reporters.tx_hang_buf.tx_ring) {
2389 		ice_report_tx_hang(pf);
2390 		pf->health_reporters.tx_hang_buf.tx_ring = NULL;
2391 	}
2392 
2393 	ice_reset_subtask(pf);
2394 
2395 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2396 	if (ice_is_reset_in_progress(pf->state) ||
2397 	    test_bit(ICE_SUSPENDED, pf->state) ||
2398 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2399 		ice_service_task_complete(pf);
2400 		return;
2401 	}
2402 
2403 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2404 		struct iidc_event *event;
2405 
2406 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2407 		if (event) {
2408 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2409 			/* report the entire OICR value to AUX driver */
2410 			swap(event->reg, pf->oicr_err_reg);
2411 			ice_send_event_to_aux(pf, event);
2412 			kfree(event);
2413 		}
2414 	}
2415 
2416 	/* unplug aux dev per request, if an unplug request came in
2417 	 * while processing a plug request, this will handle it
2418 	 */
2419 	if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2420 		ice_unplug_aux_dev(pf);
2421 
2422 	/* Plug aux device per request */
2423 	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2424 		ice_plug_aux_dev(pf);
2425 
2426 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2427 		struct iidc_event *event;
2428 
2429 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2430 		if (event) {
2431 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2432 			ice_send_event_to_aux(pf, event);
2433 			kfree(event);
2434 		}
2435 	}
2436 
2437 	ice_clean_adminq_subtask(pf);
2438 	ice_check_media_subtask(pf);
2439 	ice_check_for_hang_subtask(pf);
2440 	ice_sync_fltr_subtask(pf);
2441 	ice_handle_mdd_event(pf);
2442 	ice_watchdog_subtask(pf);
2443 
2444 	if (ice_is_safe_mode(pf)) {
2445 		ice_service_task_complete(pf);
2446 		return;
2447 	}
2448 
2449 	ice_process_vflr_event(pf);
2450 	ice_clean_mailboxq_subtask(pf);
2451 	ice_clean_sbq_subtask(pf);
2452 	ice_sync_arfs_fltrs(pf);
2453 	ice_flush_fdir_ctx(pf);
2454 
2455 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2456 	ice_service_task_complete(pf);
2457 
2458 	/* If the tasks have taken longer than one service timer period
2459 	 * or there is more work to be done, reset the service timer to
2460 	 * schedule the service task now.
2461 	 */
2462 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2463 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2464 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2465 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2466 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2467 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2468 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2469 		mod_timer(&pf->serv_tmr, jiffies);
2470 }
2471 
2472 /**
2473  * ice_set_ctrlq_len - helper function to set controlq length
2474  * @hw: pointer to the HW instance
2475  */
2476 static void ice_set_ctrlq_len(struct ice_hw *hw)
2477 {
2478 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2479 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2480 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2481 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2482 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2483 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2484 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2485 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2486 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2487 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2488 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2489 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2490 }
2491 
2492 /**
2493  * ice_schedule_reset - schedule a reset
2494  * @pf: board private structure
2495  * @reset: reset being requested
2496  */
2497 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2498 {
2499 	struct device *dev = ice_pf_to_dev(pf);
2500 
2501 	/* bail out if earlier reset has failed */
2502 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2503 		dev_dbg(dev, "earlier reset has failed\n");
2504 		return -EIO;
2505 	}
2506 	/* bail if reset/recovery already in progress */
2507 	if (ice_is_reset_in_progress(pf->state)) {
2508 		dev_dbg(dev, "Reset already in progress\n");
2509 		return -EBUSY;
2510 	}
2511 
2512 	switch (reset) {
2513 	case ICE_RESET_PFR:
2514 		set_bit(ICE_PFR_REQ, pf->state);
2515 		break;
2516 	case ICE_RESET_CORER:
2517 		set_bit(ICE_CORER_REQ, pf->state);
2518 		break;
2519 	case ICE_RESET_GLOBR:
2520 		set_bit(ICE_GLOBR_REQ, pf->state);
2521 		break;
2522 	default:
2523 		return -EINVAL;
2524 	}
2525 
2526 	ice_service_task_schedule(pf);
2527 	return 0;
2528 }
2529 
2530 /**
2531  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2532  * @vsi: the VSI being configured
2533  */
2534 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2535 {
2536 	struct ice_hw *hw = &vsi->back->hw;
2537 	int i;
2538 
2539 	ice_for_each_q_vector(vsi, i)
2540 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2541 
2542 	ice_flush(hw);
2543 	return 0;
2544 }
2545 
2546 /**
2547  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2548  * @vsi: the VSI being configured
2549  * @basename: name for the vector
2550  */
2551 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2552 {
2553 	int q_vectors = vsi->num_q_vectors;
2554 	struct ice_pf *pf = vsi->back;
2555 	struct device *dev;
2556 	int rx_int_idx = 0;
2557 	int tx_int_idx = 0;
2558 	int vector, err;
2559 	int irq_num;
2560 
2561 	dev = ice_pf_to_dev(pf);
2562 	for (vector = 0; vector < q_vectors; vector++) {
2563 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2564 
2565 		irq_num = q_vector->irq.virq;
2566 
2567 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2568 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2569 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2570 			tx_int_idx++;
2571 		} else if (q_vector->rx.rx_ring) {
2572 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2573 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2574 		} else if (q_vector->tx.tx_ring) {
2575 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2576 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2577 		} else {
2578 			/* skip this unused q_vector */
2579 			continue;
2580 		}
2581 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2582 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2583 					       IRQF_SHARED, q_vector->name,
2584 					       q_vector);
2585 		else
2586 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2587 					       0, q_vector->name, q_vector);
2588 		if (err) {
2589 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2590 				   err);
2591 			goto free_q_irqs;
2592 		}
2593 	}
2594 
2595 	err = ice_set_cpu_rx_rmap(vsi);
2596 	if (err) {
2597 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2598 			   vsi->vsi_num, ERR_PTR(err));
2599 		goto free_q_irqs;
2600 	}
2601 
2602 	vsi->irqs_ready = true;
2603 	return 0;
2604 
2605 free_q_irqs:
2606 	while (vector--) {
2607 		irq_num = vsi->q_vectors[vector]->irq.virq;
2608 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2609 	}
2610 	return err;
2611 }
2612 
2613 /**
2614  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2615  * @vsi: VSI to setup Tx rings used by XDP
2616  *
2617  * Return 0 on success and negative value on error
2618  */
2619 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2620 {
2621 	struct device *dev = ice_pf_to_dev(vsi->back);
2622 	struct ice_tx_desc *tx_desc;
2623 	int i, j;
2624 
2625 	ice_for_each_xdp_txq(vsi, i) {
2626 		u16 xdp_q_idx = vsi->alloc_txq + i;
2627 		struct ice_ring_stats *ring_stats;
2628 		struct ice_tx_ring *xdp_ring;
2629 
2630 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2631 		if (!xdp_ring)
2632 			goto free_xdp_rings;
2633 
2634 		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2635 		if (!ring_stats) {
2636 			ice_free_tx_ring(xdp_ring);
2637 			goto free_xdp_rings;
2638 		}
2639 
2640 		xdp_ring->ring_stats = ring_stats;
2641 		xdp_ring->q_index = xdp_q_idx;
2642 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2643 		xdp_ring->vsi = vsi;
2644 		xdp_ring->netdev = NULL;
2645 		xdp_ring->dev = dev;
2646 		xdp_ring->count = vsi->num_tx_desc;
2647 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2648 		if (ice_setup_tx_ring(xdp_ring))
2649 			goto free_xdp_rings;
2650 		ice_set_ring_xdp(xdp_ring);
2651 		spin_lock_init(&xdp_ring->tx_lock);
2652 		for (j = 0; j < xdp_ring->count; j++) {
2653 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2654 			tx_desc->cmd_type_offset_bsz = 0;
2655 		}
2656 	}
2657 
2658 	return 0;
2659 
2660 free_xdp_rings:
2661 	for (; i >= 0; i--) {
2662 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2663 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2664 			vsi->xdp_rings[i]->ring_stats = NULL;
2665 			ice_free_tx_ring(vsi->xdp_rings[i]);
2666 		}
2667 	}
2668 	return -ENOMEM;
2669 }
2670 
2671 /**
2672  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2673  * @vsi: VSI to set the bpf prog on
2674  * @prog: the bpf prog pointer
2675  */
2676 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2677 {
2678 	struct bpf_prog *old_prog;
2679 	int i;
2680 
2681 	old_prog = xchg(&vsi->xdp_prog, prog);
2682 	ice_for_each_rxq(vsi, i)
2683 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2684 
2685 	if (old_prog)
2686 		bpf_prog_put(old_prog);
2687 }
2688 
2689 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2690 {
2691 	struct ice_q_vector *q_vector;
2692 	struct ice_tx_ring *ring;
2693 
2694 	if (static_key_enabled(&ice_xdp_locking_key))
2695 		return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2696 
2697 	q_vector = vsi->rx_rings[qid]->q_vector;
2698 	ice_for_each_tx_ring(ring, q_vector->tx)
2699 		if (ice_ring_is_xdp(ring))
2700 			return ring;
2701 
2702 	return NULL;
2703 }
2704 
2705 /**
2706  * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2707  * @vsi: the VSI with XDP rings being configured
2708  *
2709  * Map XDP rings to interrupt vectors and perform the configuration steps
2710  * dependent on the mapping.
2711  */
2712 void ice_map_xdp_rings(struct ice_vsi *vsi)
2713 {
2714 	int xdp_rings_rem = vsi->num_xdp_txq;
2715 	int v_idx, q_idx;
2716 
2717 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2718 	ice_for_each_q_vector(vsi, v_idx) {
2719 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2720 		int xdp_rings_per_v, q_id, q_base;
2721 
2722 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2723 					       vsi->num_q_vectors - v_idx);
2724 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2725 
2726 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2727 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2728 
2729 			xdp_ring->q_vector = q_vector;
2730 			xdp_ring->next = q_vector->tx.tx_ring;
2731 			q_vector->tx.tx_ring = xdp_ring;
2732 		}
2733 		xdp_rings_rem -= xdp_rings_per_v;
2734 	}
2735 
2736 	ice_for_each_rxq(vsi, q_idx) {
2737 		vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2738 								       q_idx);
2739 		ice_tx_xsk_pool(vsi, q_idx);
2740 	}
2741 }
2742 
2743 /**
2744  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2745  * @vsi: VSI to bring up Tx rings used by XDP
2746  * @prog: bpf program that will be assigned to VSI
2747  * @cfg_type: create from scratch or restore the existing configuration
2748  *
2749  * Return 0 on success and negative value on error
2750  */
2751 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2752 			  enum ice_xdp_cfg cfg_type)
2753 {
2754 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2755 	struct ice_pf *pf = vsi->back;
2756 	struct ice_qs_cfg xdp_qs_cfg = {
2757 		.qs_mutex = &pf->avail_q_mutex,
2758 		.pf_map = pf->avail_txqs,
2759 		.pf_map_size = pf->max_pf_txqs,
2760 		.q_count = vsi->num_xdp_txq,
2761 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2762 		.vsi_map = vsi->txq_map,
2763 		.vsi_map_offset = vsi->alloc_txq,
2764 		.mapping_mode = ICE_VSI_MAP_CONTIG
2765 	};
2766 	struct device *dev;
2767 	int status, i;
2768 
2769 	dev = ice_pf_to_dev(pf);
2770 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2771 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2772 	if (!vsi->xdp_rings)
2773 		return -ENOMEM;
2774 
2775 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2776 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2777 		goto err_map_xdp;
2778 
2779 	if (static_key_enabled(&ice_xdp_locking_key))
2780 		netdev_warn(vsi->netdev,
2781 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2782 
2783 	if (ice_xdp_alloc_setup_rings(vsi))
2784 		goto clear_xdp_rings;
2785 
2786 	/* omit the scheduler update if in reset path; XDP queues will be
2787 	 * taken into account at the end of ice_vsi_rebuild, where
2788 	 * ice_cfg_vsi_lan is being called
2789 	 */
2790 	if (cfg_type == ICE_XDP_CFG_PART)
2791 		return 0;
2792 
2793 	ice_map_xdp_rings(vsi);
2794 
2795 	/* tell the Tx scheduler that right now we have
2796 	 * additional queues
2797 	 */
2798 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2799 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2800 
2801 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2802 				 max_txqs);
2803 	if (status) {
2804 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2805 			status);
2806 		goto clear_xdp_rings;
2807 	}
2808 
2809 	/* assign the prog only when it's not already present on VSI;
2810 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2811 	 * VSI rebuild that happens under ethtool -L can expose us to
2812 	 * the bpf_prog refcount issues as we would be swapping same
2813 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2814 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2815 	 * this is not harmful as dev_xdp_install bumps the refcount
2816 	 * before calling the op exposed by the driver;
2817 	 */
2818 	if (!ice_is_xdp_ena_vsi(vsi))
2819 		ice_vsi_assign_bpf_prog(vsi, prog);
2820 
2821 	return 0;
2822 clear_xdp_rings:
2823 	ice_for_each_xdp_txq(vsi, i)
2824 		if (vsi->xdp_rings[i]) {
2825 			kfree_rcu(vsi->xdp_rings[i], rcu);
2826 			vsi->xdp_rings[i] = NULL;
2827 		}
2828 
2829 err_map_xdp:
2830 	mutex_lock(&pf->avail_q_mutex);
2831 	ice_for_each_xdp_txq(vsi, i) {
2832 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2833 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2834 	}
2835 	mutex_unlock(&pf->avail_q_mutex);
2836 
2837 	devm_kfree(dev, vsi->xdp_rings);
2838 	return -ENOMEM;
2839 }
2840 
2841 /**
2842  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2843  * @vsi: VSI to remove XDP rings
2844  * @cfg_type: disable XDP permanently or allow it to be restored later
2845  *
2846  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2847  * resources
2848  */
2849 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2850 {
2851 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2852 	struct ice_pf *pf = vsi->back;
2853 	int i, v_idx;
2854 
2855 	/* q_vectors are freed in reset path so there's no point in detaching
2856 	 * rings
2857 	 */
2858 	if (cfg_type == ICE_XDP_CFG_PART)
2859 		goto free_qmap;
2860 
2861 	ice_for_each_q_vector(vsi, v_idx) {
2862 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2863 		struct ice_tx_ring *ring;
2864 
2865 		ice_for_each_tx_ring(ring, q_vector->tx)
2866 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2867 				break;
2868 
2869 		/* restore the value of last node prior to XDP setup */
2870 		q_vector->tx.tx_ring = ring;
2871 	}
2872 
2873 free_qmap:
2874 	mutex_lock(&pf->avail_q_mutex);
2875 	ice_for_each_xdp_txq(vsi, i) {
2876 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2877 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2878 	}
2879 	mutex_unlock(&pf->avail_q_mutex);
2880 
2881 	ice_for_each_xdp_txq(vsi, i)
2882 		if (vsi->xdp_rings[i]) {
2883 			if (vsi->xdp_rings[i]->desc) {
2884 				synchronize_rcu();
2885 				ice_free_tx_ring(vsi->xdp_rings[i]);
2886 			}
2887 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2888 			vsi->xdp_rings[i]->ring_stats = NULL;
2889 			kfree_rcu(vsi->xdp_rings[i], rcu);
2890 			vsi->xdp_rings[i] = NULL;
2891 		}
2892 
2893 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2894 	vsi->xdp_rings = NULL;
2895 
2896 	if (static_key_enabled(&ice_xdp_locking_key))
2897 		static_branch_dec(&ice_xdp_locking_key);
2898 
2899 	if (cfg_type == ICE_XDP_CFG_PART)
2900 		return 0;
2901 
2902 	ice_vsi_assign_bpf_prog(vsi, NULL);
2903 
2904 	/* notify Tx scheduler that we destroyed XDP queues and bring
2905 	 * back the old number of child nodes
2906 	 */
2907 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2908 		max_txqs[i] = vsi->num_txq;
2909 
2910 	/* change number of XDP Tx queues to 0 */
2911 	vsi->num_xdp_txq = 0;
2912 
2913 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2914 			       max_txqs);
2915 }
2916 
2917 /**
2918  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2919  * @vsi: VSI to schedule napi on
2920  */
2921 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2922 {
2923 	int i;
2924 
2925 	ice_for_each_rxq(vsi, i) {
2926 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2927 
2928 		if (READ_ONCE(rx_ring->xsk_pool))
2929 			napi_schedule(&rx_ring->q_vector->napi);
2930 	}
2931 }
2932 
2933 /**
2934  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2935  * @vsi: VSI to determine the count of XDP Tx qs
2936  *
2937  * returns 0 if Tx qs count is higher than at least half of CPU count,
2938  * -ENOMEM otherwise
2939  */
2940 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2941 {
2942 	u16 avail = ice_get_avail_txq_count(vsi->back);
2943 	u16 cpus = num_possible_cpus();
2944 
2945 	if (avail < cpus / 2)
2946 		return -ENOMEM;
2947 
2948 	if (vsi->type == ICE_VSI_SF)
2949 		avail = vsi->alloc_txq;
2950 
2951 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2952 
2953 	if (vsi->num_xdp_txq < cpus)
2954 		static_branch_inc(&ice_xdp_locking_key);
2955 
2956 	return 0;
2957 }
2958 
2959 /**
2960  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2961  * @vsi: Pointer to VSI structure
2962  */
2963 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2964 {
2965 	if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2966 		return ICE_RXBUF_1664;
2967 	else
2968 		return ICE_RXBUF_3072;
2969 }
2970 
2971 /**
2972  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2973  * @vsi: VSI to setup XDP for
2974  * @prog: XDP program
2975  * @extack: netlink extended ack
2976  */
2977 static int
2978 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2979 		   struct netlink_ext_ack *extack)
2980 {
2981 	unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2982 	int ret = 0, xdp_ring_err = 0;
2983 	bool if_running;
2984 
2985 	if (prog && !prog->aux->xdp_has_frags) {
2986 		if (frame_size > ice_max_xdp_frame_size(vsi)) {
2987 			NL_SET_ERR_MSG_MOD(extack,
2988 					   "MTU is too large for linear frames and XDP prog does not support frags");
2989 			return -EOPNOTSUPP;
2990 		}
2991 	}
2992 
2993 	/* hot swap progs and avoid toggling link */
2994 	if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
2995 	    test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
2996 		ice_vsi_assign_bpf_prog(vsi, prog);
2997 		return 0;
2998 	}
2999 
3000 	if_running = netif_running(vsi->netdev) &&
3001 		     !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
3002 
3003 	/* need to stop netdev while setting up the program for Rx rings */
3004 	if (if_running) {
3005 		ret = ice_down(vsi);
3006 		if (ret) {
3007 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3008 			return ret;
3009 		}
3010 	}
3011 
3012 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3013 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3014 		if (xdp_ring_err) {
3015 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3016 		} else {
3017 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3018 							     ICE_XDP_CFG_FULL);
3019 			if (xdp_ring_err)
3020 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3021 		}
3022 		xdp_features_set_redirect_target(vsi->netdev, true);
3023 		/* reallocate Rx queues that are used for zero-copy */
3024 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
3025 		if (xdp_ring_err)
3026 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
3027 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3028 		xdp_features_clear_redirect_target(vsi->netdev);
3029 		xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3030 		if (xdp_ring_err)
3031 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3032 		/* reallocate Rx queues that were used for zero-copy */
3033 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
3034 		if (xdp_ring_err)
3035 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
3036 	}
3037 
3038 	if (if_running)
3039 		ret = ice_up(vsi);
3040 
3041 	if (!ret && prog)
3042 		ice_vsi_rx_napi_schedule(vsi);
3043 
3044 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
3045 }
3046 
3047 /**
3048  * ice_xdp_safe_mode - XDP handler for safe mode
3049  * @dev: netdevice
3050  * @xdp: XDP command
3051  */
3052 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3053 			     struct netdev_bpf *xdp)
3054 {
3055 	NL_SET_ERR_MSG_MOD(xdp->extack,
3056 			   "Please provide working DDP firmware package in order to use XDP\n"
3057 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3058 	return -EOPNOTSUPP;
3059 }
3060 
3061 /**
3062  * ice_xdp - implements XDP handler
3063  * @dev: netdevice
3064  * @xdp: XDP command
3065  */
3066 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3067 {
3068 	struct ice_netdev_priv *np = netdev_priv(dev);
3069 	struct ice_vsi *vsi = np->vsi;
3070 	int ret;
3071 
3072 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3073 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3074 		return -EINVAL;
3075 	}
3076 
3077 	mutex_lock(&vsi->xdp_state_lock);
3078 
3079 	switch (xdp->command) {
3080 	case XDP_SETUP_PROG:
3081 		ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3082 		break;
3083 	case XDP_SETUP_XSK_POOL:
3084 		ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3085 		break;
3086 	default:
3087 		ret = -EINVAL;
3088 	}
3089 
3090 	mutex_unlock(&vsi->xdp_state_lock);
3091 	return ret;
3092 }
3093 
3094 /**
3095  * ice_ena_misc_vector - enable the non-queue interrupts
3096  * @pf: board private structure
3097  */
3098 static void ice_ena_misc_vector(struct ice_pf *pf)
3099 {
3100 	struct ice_hw *hw = &pf->hw;
3101 	u32 pf_intr_start_offset;
3102 	u32 val;
3103 
3104 	/* Disable anti-spoof detection interrupt to prevent spurious event
3105 	 * interrupts during a function reset. Anti-spoof functionally is
3106 	 * still supported.
3107 	 */
3108 	val = rd32(hw, GL_MDCK_TX_TDPU);
3109 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3110 	wr32(hw, GL_MDCK_TX_TDPU, val);
3111 
3112 	/* clear things first */
3113 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
3114 	rd32(hw, PFINT_OICR);		/* read to clear */
3115 
3116 	val = (PFINT_OICR_ECC_ERR_M |
3117 	       PFINT_OICR_MAL_DETECT_M |
3118 	       PFINT_OICR_GRST_M |
3119 	       PFINT_OICR_PCI_EXCEPTION_M |
3120 	       PFINT_OICR_VFLR_M |
3121 	       PFINT_OICR_HMC_ERR_M |
3122 	       PFINT_OICR_PE_PUSH_M |
3123 	       PFINT_OICR_PE_CRITERR_M);
3124 
3125 	wr32(hw, PFINT_OICR_ENA, val);
3126 
3127 	/* SW_ITR_IDX = 0, but don't change INTENA */
3128 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3129 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3130 
3131 	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3132 		return;
3133 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3134 	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3135 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3136 }
3137 
3138 /**
3139  * ice_ll_ts_intr - ll_ts interrupt handler
3140  * @irq: interrupt number
3141  * @data: pointer to a q_vector
3142  */
3143 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3144 {
3145 	struct ice_pf *pf = data;
3146 	u32 pf_intr_start_offset;
3147 	struct ice_ptp_tx *tx;
3148 	unsigned long flags;
3149 	struct ice_hw *hw;
3150 	u32 val;
3151 	u8 idx;
3152 
3153 	hw = &pf->hw;
3154 	tx = &pf->ptp.port.tx;
3155 	spin_lock_irqsave(&tx->lock, flags);
3156 	ice_ptp_complete_tx_single_tstamp(tx);
3157 
3158 	idx = find_next_bit_wrap(tx->in_use, tx->len,
3159 				 tx->last_ll_ts_idx_read + 1);
3160 	if (idx != tx->len)
3161 		ice_ptp_req_tx_single_tstamp(tx, idx);
3162 	spin_unlock_irqrestore(&tx->lock, flags);
3163 
3164 	val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3165 	      (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3166 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3167 	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3168 	     val);
3169 
3170 	return IRQ_HANDLED;
3171 }
3172 
3173 /**
3174  * ice_misc_intr - misc interrupt handler
3175  * @irq: interrupt number
3176  * @data: pointer to a q_vector
3177  */
3178 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3179 {
3180 	struct ice_pf *pf = (struct ice_pf *)data;
3181 	irqreturn_t ret = IRQ_HANDLED;
3182 	struct ice_hw *hw = &pf->hw;
3183 	struct device *dev;
3184 	u32 oicr, ena_mask;
3185 
3186 	dev = ice_pf_to_dev(pf);
3187 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3188 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3189 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3190 
3191 	oicr = rd32(hw, PFINT_OICR);
3192 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3193 
3194 	if (oicr & PFINT_OICR_SWINT_M) {
3195 		ena_mask &= ~PFINT_OICR_SWINT_M;
3196 		pf->sw_int_count++;
3197 	}
3198 
3199 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3200 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3201 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3202 	}
3203 	if (oicr & PFINT_OICR_VFLR_M) {
3204 		/* disable any further VFLR event notifications */
3205 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3206 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3207 
3208 			reg &= ~PFINT_OICR_VFLR_M;
3209 			wr32(hw, PFINT_OICR_ENA, reg);
3210 		} else {
3211 			ena_mask &= ~PFINT_OICR_VFLR_M;
3212 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3213 		}
3214 	}
3215 
3216 	if (oicr & PFINT_OICR_GRST_M) {
3217 		u32 reset;
3218 
3219 		/* we have a reset warning */
3220 		ena_mask &= ~PFINT_OICR_GRST_M;
3221 		reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3222 				  rd32(hw, GLGEN_RSTAT));
3223 
3224 		if (reset == ICE_RESET_CORER)
3225 			pf->corer_count++;
3226 		else if (reset == ICE_RESET_GLOBR)
3227 			pf->globr_count++;
3228 		else if (reset == ICE_RESET_EMPR)
3229 			pf->empr_count++;
3230 		else
3231 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3232 
3233 		/* If a reset cycle isn't already in progress, we set a bit in
3234 		 * pf->state so that the service task can start a reset/rebuild.
3235 		 */
3236 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3237 			if (reset == ICE_RESET_CORER)
3238 				set_bit(ICE_CORER_RECV, pf->state);
3239 			else if (reset == ICE_RESET_GLOBR)
3240 				set_bit(ICE_GLOBR_RECV, pf->state);
3241 			else
3242 				set_bit(ICE_EMPR_RECV, pf->state);
3243 
3244 			/* There are couple of different bits at play here.
3245 			 * hw->reset_ongoing indicates whether the hardware is
3246 			 * in reset. This is set to true when a reset interrupt
3247 			 * is received and set back to false after the driver
3248 			 * has determined that the hardware is out of reset.
3249 			 *
3250 			 * ICE_RESET_OICR_RECV in pf->state indicates
3251 			 * that a post reset rebuild is required before the
3252 			 * driver is operational again. This is set above.
3253 			 *
3254 			 * As this is the start of the reset/rebuild cycle, set
3255 			 * both to indicate that.
3256 			 */
3257 			hw->reset_ongoing = true;
3258 		}
3259 	}
3260 
3261 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3262 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3263 
3264 		ret = ice_ptp_ts_irq(pf);
3265 	}
3266 
3267 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3268 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3269 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3270 
3271 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3272 
3273 		if (ice_pf_src_tmr_owned(pf)) {
3274 			/* Save EVENTs from GLTSYN register */
3275 			pf->ptp.ext_ts_irq |= gltsyn_stat &
3276 					      (GLTSYN_STAT_EVENT0_M |
3277 					       GLTSYN_STAT_EVENT1_M |
3278 					       GLTSYN_STAT_EVENT2_M);
3279 
3280 			ice_ptp_extts_event(pf);
3281 		}
3282 	}
3283 
3284 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3285 	if (oicr & ICE_AUX_CRIT_ERR) {
3286 		pf->oicr_err_reg |= oicr;
3287 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3288 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3289 	}
3290 
3291 	/* Report any remaining unexpected interrupts */
3292 	oicr &= ena_mask;
3293 	if (oicr) {
3294 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3295 		/* If a critical error is pending there is no choice but to
3296 		 * reset the device.
3297 		 */
3298 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3299 			    PFINT_OICR_ECC_ERR_M)) {
3300 			set_bit(ICE_PFR_REQ, pf->state);
3301 		}
3302 	}
3303 	ice_service_task_schedule(pf);
3304 	if (ret == IRQ_HANDLED)
3305 		ice_irq_dynamic_ena(hw, NULL, NULL);
3306 
3307 	return ret;
3308 }
3309 
3310 /**
3311  * ice_misc_intr_thread_fn - misc interrupt thread function
3312  * @irq: interrupt number
3313  * @data: pointer to a q_vector
3314  */
3315 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3316 {
3317 	struct ice_pf *pf = data;
3318 	struct ice_hw *hw;
3319 
3320 	hw = &pf->hw;
3321 
3322 	if (ice_is_reset_in_progress(pf->state))
3323 		goto skip_irq;
3324 
3325 	if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3326 		/* Process outstanding Tx timestamps. If there is more work,
3327 		 * re-arm the interrupt to trigger again.
3328 		 */
3329 		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3330 			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3331 			ice_flush(hw);
3332 		}
3333 	}
3334 
3335 skip_irq:
3336 	ice_irq_dynamic_ena(hw, NULL, NULL);
3337 
3338 	return IRQ_HANDLED;
3339 }
3340 
3341 /**
3342  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3343  * @hw: pointer to HW structure
3344  */
3345 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3346 {
3347 	/* disable Admin queue Interrupt causes */
3348 	wr32(hw, PFINT_FW_CTL,
3349 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3350 
3351 	/* disable Mailbox queue Interrupt causes */
3352 	wr32(hw, PFINT_MBX_CTL,
3353 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3354 
3355 	wr32(hw, PFINT_SB_CTL,
3356 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3357 
3358 	/* disable Control queue Interrupt causes */
3359 	wr32(hw, PFINT_OICR_CTL,
3360 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3361 
3362 	ice_flush(hw);
3363 }
3364 
3365 /**
3366  * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3367  * @pf: board private structure
3368  */
3369 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3370 {
3371 	int irq_num = pf->ll_ts_irq.virq;
3372 
3373 	synchronize_irq(irq_num);
3374 	devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3375 
3376 	ice_free_irq(pf, pf->ll_ts_irq);
3377 }
3378 
3379 /**
3380  * ice_free_irq_msix_misc - Unroll misc vector setup
3381  * @pf: board private structure
3382  */
3383 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3384 {
3385 	int misc_irq_num = pf->oicr_irq.virq;
3386 	struct ice_hw *hw = &pf->hw;
3387 
3388 	ice_dis_ctrlq_interrupts(hw);
3389 
3390 	/* disable OICR interrupt */
3391 	wr32(hw, PFINT_OICR_ENA, 0);
3392 	ice_flush(hw);
3393 
3394 	synchronize_irq(misc_irq_num);
3395 	devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3396 
3397 	ice_free_irq(pf, pf->oicr_irq);
3398 	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3399 		ice_free_irq_msix_ll_ts(pf);
3400 }
3401 
3402 /**
3403  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3404  * @hw: pointer to HW structure
3405  * @reg_idx: HW vector index to associate the control queue interrupts with
3406  */
3407 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3408 {
3409 	u32 val;
3410 
3411 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3412 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3413 	wr32(hw, PFINT_OICR_CTL, val);
3414 
3415 	/* enable Admin queue Interrupt causes */
3416 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3417 	       PFINT_FW_CTL_CAUSE_ENA_M);
3418 	wr32(hw, PFINT_FW_CTL, val);
3419 
3420 	/* enable Mailbox queue Interrupt causes */
3421 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3422 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3423 	wr32(hw, PFINT_MBX_CTL, val);
3424 
3425 	if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3426 		/* enable Sideband queue Interrupt causes */
3427 		val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3428 		       PFINT_SB_CTL_CAUSE_ENA_M);
3429 		wr32(hw, PFINT_SB_CTL, val);
3430 	}
3431 
3432 	ice_flush(hw);
3433 }
3434 
3435 /**
3436  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3437  * @pf: board private structure
3438  *
3439  * This sets up the handler for MSIX 0, which is used to manage the
3440  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3441  * when in MSI or Legacy interrupt mode.
3442  */
3443 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3444 {
3445 	struct device *dev = ice_pf_to_dev(pf);
3446 	struct ice_hw *hw = &pf->hw;
3447 	u32 pf_intr_start_offset;
3448 	struct msi_map irq;
3449 	int err = 0;
3450 
3451 	if (!pf->int_name[0])
3452 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3453 			 dev_driver_string(dev), dev_name(dev));
3454 
3455 	if (!pf->int_name_ll_ts[0])
3456 		snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3457 			 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3458 	/* Do not request IRQ but do enable OICR interrupt since settings are
3459 	 * lost during reset. Note that this function is called only during
3460 	 * rebuild path and not while reset is in progress.
3461 	 */
3462 	if (ice_is_reset_in_progress(pf->state))
3463 		goto skip_req_irq;
3464 
3465 	/* reserve one vector in irq_tracker for misc interrupts */
3466 	irq = ice_alloc_irq(pf, false);
3467 	if (irq.index < 0)
3468 		return irq.index;
3469 
3470 	pf->oicr_irq = irq;
3471 	err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3472 					ice_misc_intr_thread_fn, 0,
3473 					pf->int_name, pf);
3474 	if (err) {
3475 		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3476 			pf->int_name, err);
3477 		ice_free_irq(pf, pf->oicr_irq);
3478 		return err;
3479 	}
3480 
3481 	/* reserve one vector in irq_tracker for ll_ts interrupt */
3482 	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3483 		goto skip_req_irq;
3484 
3485 	irq = ice_alloc_irq(pf, false);
3486 	if (irq.index < 0)
3487 		return irq.index;
3488 
3489 	pf->ll_ts_irq = irq;
3490 	err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3491 			       pf->int_name_ll_ts, pf);
3492 	if (err) {
3493 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3494 			pf->int_name_ll_ts, err);
3495 		ice_free_irq(pf, pf->ll_ts_irq);
3496 		return err;
3497 	}
3498 
3499 skip_req_irq:
3500 	ice_ena_misc_vector(pf);
3501 
3502 	ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3503 	/* This enables LL TS interrupt */
3504 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3505 	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3506 		wr32(hw, PFINT_SB_CTL,
3507 		     ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3508 		      PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3509 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3510 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3511 
3512 	ice_flush(hw);
3513 	ice_irq_dynamic_ena(hw, NULL, NULL);
3514 
3515 	return 0;
3516 }
3517 
3518 /**
3519  * ice_set_ops - set netdev and ethtools ops for the given netdev
3520  * @vsi: the VSI associated with the new netdev
3521  */
3522 static void ice_set_ops(struct ice_vsi *vsi)
3523 {
3524 	struct net_device *netdev = vsi->netdev;
3525 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3526 
3527 	if (ice_is_safe_mode(pf)) {
3528 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3529 		ice_set_ethtool_safe_mode_ops(netdev);
3530 		return;
3531 	}
3532 
3533 	netdev->netdev_ops = &ice_netdev_ops;
3534 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3535 	netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3536 	ice_set_ethtool_ops(netdev);
3537 
3538 	if (vsi->type != ICE_VSI_PF)
3539 		return;
3540 
3541 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3542 			       NETDEV_XDP_ACT_XSK_ZEROCOPY |
3543 			       NETDEV_XDP_ACT_RX_SG;
3544 	netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3545 }
3546 
3547 /**
3548  * ice_set_netdev_features - set features for the given netdev
3549  * @netdev: netdev instance
3550  */
3551 void ice_set_netdev_features(struct net_device *netdev)
3552 {
3553 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3554 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3555 	netdev_features_t csumo_features;
3556 	netdev_features_t vlano_features;
3557 	netdev_features_t dflt_features;
3558 	netdev_features_t tso_features;
3559 
3560 	if (ice_is_safe_mode(pf)) {
3561 		/* safe mode */
3562 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3563 		netdev->hw_features = netdev->features;
3564 		return;
3565 	}
3566 
3567 	dflt_features = NETIF_F_SG	|
3568 			NETIF_F_HIGHDMA	|
3569 			NETIF_F_NTUPLE	|
3570 			NETIF_F_RXHASH;
3571 
3572 	csumo_features = NETIF_F_RXCSUM	  |
3573 			 NETIF_F_IP_CSUM  |
3574 			 NETIF_F_SCTP_CRC |
3575 			 NETIF_F_IPV6_CSUM;
3576 
3577 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3578 			 NETIF_F_HW_VLAN_CTAG_TX     |
3579 			 NETIF_F_HW_VLAN_CTAG_RX;
3580 
3581 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3582 	if (is_dvm_ena)
3583 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3584 
3585 	tso_features = NETIF_F_TSO			|
3586 		       NETIF_F_TSO_ECN			|
3587 		       NETIF_F_TSO6			|
3588 		       NETIF_F_GSO_GRE			|
3589 		       NETIF_F_GSO_UDP_TUNNEL		|
3590 		       NETIF_F_GSO_GRE_CSUM		|
3591 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3592 		       NETIF_F_GSO_PARTIAL		|
3593 		       NETIF_F_GSO_IPXIP4		|
3594 		       NETIF_F_GSO_IPXIP6		|
3595 		       NETIF_F_GSO_UDP_L4;
3596 
3597 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3598 					NETIF_F_GSO_GRE_CSUM;
3599 	/* set features that user can change */
3600 	netdev->hw_features = dflt_features | csumo_features |
3601 			      vlano_features | tso_features;
3602 
3603 	/* add support for HW_CSUM on packets with MPLS header */
3604 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3605 				 NETIF_F_TSO     |
3606 				 NETIF_F_TSO6;
3607 
3608 	/* enable features */
3609 	netdev->features |= netdev->hw_features;
3610 
3611 	netdev->hw_features |= NETIF_F_HW_TC;
3612 	netdev->hw_features |= NETIF_F_LOOPBACK;
3613 
3614 	/* encap and VLAN devices inherit default, csumo and tso features */
3615 	netdev->hw_enc_features |= dflt_features | csumo_features |
3616 				   tso_features;
3617 	netdev->vlan_features |= dflt_features | csumo_features |
3618 				 tso_features;
3619 
3620 	/* advertise support but don't enable by default since only one type of
3621 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3622 	 * type turns on the other has to be turned off. This is enforced by the
3623 	 * ice_fix_features() ndo callback.
3624 	 */
3625 	if (is_dvm_ena)
3626 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3627 			NETIF_F_HW_VLAN_STAG_TX;
3628 
3629 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3630 	 * be changed at runtime
3631 	 */
3632 	netdev->hw_features |= NETIF_F_RXFCS;
3633 
3634 	/* Allow core to manage IRQs affinity */
3635 	netif_set_affinity_auto(netdev);
3636 
3637 	netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3638 }
3639 
3640 /**
3641  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3642  * @lut: Lookup table
3643  * @rss_table_size: Lookup table size
3644  * @rss_size: Range of queue number for hashing
3645  */
3646 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3647 {
3648 	u16 i;
3649 
3650 	for (i = 0; i < rss_table_size; i++)
3651 		lut[i] = i % rss_size;
3652 }
3653 
3654 /**
3655  * ice_pf_vsi_setup - Set up a PF VSI
3656  * @pf: board private structure
3657  * @pi: pointer to the port_info instance
3658  *
3659  * Returns pointer to the successfully allocated VSI software struct
3660  * on success, otherwise returns NULL on failure.
3661  */
3662 static struct ice_vsi *
3663 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3664 {
3665 	struct ice_vsi_cfg_params params = {};
3666 
3667 	params.type = ICE_VSI_PF;
3668 	params.port_info = pi;
3669 	params.flags = ICE_VSI_FLAG_INIT;
3670 
3671 	return ice_vsi_setup(pf, &params);
3672 }
3673 
3674 static struct ice_vsi *
3675 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3676 		   struct ice_channel *ch)
3677 {
3678 	struct ice_vsi_cfg_params params = {};
3679 
3680 	params.type = ICE_VSI_CHNL;
3681 	params.port_info = pi;
3682 	params.ch = ch;
3683 	params.flags = ICE_VSI_FLAG_INIT;
3684 
3685 	return ice_vsi_setup(pf, &params);
3686 }
3687 
3688 /**
3689  * ice_ctrl_vsi_setup - Set up a control VSI
3690  * @pf: board private structure
3691  * @pi: pointer to the port_info instance
3692  *
3693  * Returns pointer to the successfully allocated VSI software struct
3694  * on success, otherwise returns NULL on failure.
3695  */
3696 static struct ice_vsi *
3697 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3698 {
3699 	struct ice_vsi_cfg_params params = {};
3700 
3701 	params.type = ICE_VSI_CTRL;
3702 	params.port_info = pi;
3703 	params.flags = ICE_VSI_FLAG_INIT;
3704 
3705 	return ice_vsi_setup(pf, &params);
3706 }
3707 
3708 /**
3709  * ice_lb_vsi_setup - Set up a loopback VSI
3710  * @pf: board private structure
3711  * @pi: pointer to the port_info instance
3712  *
3713  * Returns pointer to the successfully allocated VSI software struct
3714  * on success, otherwise returns NULL on failure.
3715  */
3716 struct ice_vsi *
3717 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3718 {
3719 	struct ice_vsi_cfg_params params = {};
3720 
3721 	params.type = ICE_VSI_LB;
3722 	params.port_info = pi;
3723 	params.flags = ICE_VSI_FLAG_INIT;
3724 
3725 	return ice_vsi_setup(pf, &params);
3726 }
3727 
3728 /**
3729  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3730  * @netdev: network interface to be adjusted
3731  * @proto: VLAN TPID
3732  * @vid: VLAN ID to be added
3733  *
3734  * net_device_ops implementation for adding VLAN IDs
3735  */
3736 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3737 {
3738 	struct ice_netdev_priv *np = netdev_priv(netdev);
3739 	struct ice_vsi_vlan_ops *vlan_ops;
3740 	struct ice_vsi *vsi = np->vsi;
3741 	struct ice_vlan vlan;
3742 	int ret;
3743 
3744 	/* VLAN 0 is added by default during load/reset */
3745 	if (!vid)
3746 		return 0;
3747 
3748 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3749 		usleep_range(1000, 2000);
3750 
3751 	/* Add multicast promisc rule for the VLAN ID to be added if
3752 	 * all-multicast is currently enabled.
3753 	 */
3754 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3755 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3756 					       ICE_MCAST_VLAN_PROMISC_BITS,
3757 					       vid);
3758 		if (ret)
3759 			goto finish;
3760 	}
3761 
3762 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3763 
3764 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3765 	 * packets aren't pruned by the device's internal switch on Rx
3766 	 */
3767 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3768 	ret = vlan_ops->add_vlan(vsi, &vlan);
3769 	if (ret)
3770 		goto finish;
3771 
3772 	/* If all-multicast is currently enabled and this VLAN ID is only one
3773 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3774 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3775 	 */
3776 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3777 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3778 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3779 					   ICE_MCAST_PROMISC_BITS, 0);
3780 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3781 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3782 	}
3783 
3784 finish:
3785 	clear_bit(ICE_CFG_BUSY, vsi->state);
3786 
3787 	return ret;
3788 }
3789 
3790 /**
3791  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3792  * @netdev: network interface to be adjusted
3793  * @proto: VLAN TPID
3794  * @vid: VLAN ID to be removed
3795  *
3796  * net_device_ops implementation for removing VLAN IDs
3797  */
3798 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3799 {
3800 	struct ice_netdev_priv *np = netdev_priv(netdev);
3801 	struct ice_vsi_vlan_ops *vlan_ops;
3802 	struct ice_vsi *vsi = np->vsi;
3803 	struct ice_vlan vlan;
3804 	int ret;
3805 
3806 	/* don't allow removal of VLAN 0 */
3807 	if (!vid)
3808 		return 0;
3809 
3810 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3811 		usleep_range(1000, 2000);
3812 
3813 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3814 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3815 	if (ret) {
3816 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3817 			   vsi->vsi_num);
3818 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3819 	}
3820 
3821 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3822 
3823 	/* Make sure VLAN delete is successful before updating VLAN
3824 	 * information
3825 	 */
3826 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3827 	ret = vlan_ops->del_vlan(vsi, &vlan);
3828 	if (ret)
3829 		goto finish;
3830 
3831 	/* Remove multicast promisc rule for the removed VLAN ID if
3832 	 * all-multicast is enabled.
3833 	 */
3834 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3835 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3836 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3837 
3838 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3839 		/* Update look-up type of multicast promisc rule for VLAN 0
3840 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3841 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3842 		 */
3843 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3844 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3845 						   ICE_MCAST_VLAN_PROMISC_BITS,
3846 						   0);
3847 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3848 						 ICE_MCAST_PROMISC_BITS, 0);
3849 		}
3850 	}
3851 
3852 finish:
3853 	clear_bit(ICE_CFG_BUSY, vsi->state);
3854 
3855 	return ret;
3856 }
3857 
3858 /**
3859  * ice_rep_indr_tc_block_unbind
3860  * @cb_priv: indirection block private data
3861  */
3862 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3863 {
3864 	struct ice_indr_block_priv *indr_priv = cb_priv;
3865 
3866 	list_del(&indr_priv->list);
3867 	kfree(indr_priv);
3868 }
3869 
3870 /**
3871  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3872  * @vsi: VSI struct which has the netdev
3873  */
3874 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3875 {
3876 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3877 
3878 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3879 				 ice_rep_indr_tc_block_unbind);
3880 }
3881 
3882 /**
3883  * ice_tc_indir_block_register - Register TC indirect block notifications
3884  * @vsi: VSI struct which has the netdev
3885  *
3886  * Returns 0 on success, negative value on failure
3887  */
3888 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3889 {
3890 	struct ice_netdev_priv *np;
3891 
3892 	if (!vsi || !vsi->netdev)
3893 		return -EINVAL;
3894 
3895 	np = netdev_priv(vsi->netdev);
3896 
3897 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3898 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3899 }
3900 
3901 /**
3902  * ice_get_avail_q_count - Get count of queues in use
3903  * @pf_qmap: bitmap to get queue use count from
3904  * @lock: pointer to a mutex that protects access to pf_qmap
3905  * @size: size of the bitmap
3906  */
3907 static u16
3908 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3909 {
3910 	unsigned long bit;
3911 	u16 count = 0;
3912 
3913 	mutex_lock(lock);
3914 	for_each_clear_bit(bit, pf_qmap, size)
3915 		count++;
3916 	mutex_unlock(lock);
3917 
3918 	return count;
3919 }
3920 
3921 /**
3922  * ice_get_avail_txq_count - Get count of Tx queues in use
3923  * @pf: pointer to an ice_pf instance
3924  */
3925 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3926 {
3927 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3928 				     pf->max_pf_txqs);
3929 }
3930 
3931 /**
3932  * ice_get_avail_rxq_count - Get count of Rx queues in use
3933  * @pf: pointer to an ice_pf instance
3934  */
3935 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3936 {
3937 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3938 				     pf->max_pf_rxqs);
3939 }
3940 
3941 /**
3942  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3943  * @pf: board private structure to initialize
3944  */
3945 static void ice_deinit_pf(struct ice_pf *pf)
3946 {
3947 	ice_service_task_stop(pf);
3948 	mutex_destroy(&pf->lag_mutex);
3949 	mutex_destroy(&pf->adev_mutex);
3950 	mutex_destroy(&pf->sw_mutex);
3951 	mutex_destroy(&pf->tc_mutex);
3952 	mutex_destroy(&pf->avail_q_mutex);
3953 	mutex_destroy(&pf->vfs.table_lock);
3954 
3955 	if (pf->avail_txqs) {
3956 		bitmap_free(pf->avail_txqs);
3957 		pf->avail_txqs = NULL;
3958 	}
3959 
3960 	if (pf->avail_rxqs) {
3961 		bitmap_free(pf->avail_rxqs);
3962 		pf->avail_rxqs = NULL;
3963 	}
3964 
3965 	if (pf->ptp.clock)
3966 		ptp_clock_unregister(pf->ptp.clock);
3967 
3968 	xa_destroy(&pf->dyn_ports);
3969 	xa_destroy(&pf->sf_nums);
3970 }
3971 
3972 /**
3973  * ice_set_pf_caps - set PFs capability flags
3974  * @pf: pointer to the PF instance
3975  */
3976 static void ice_set_pf_caps(struct ice_pf *pf)
3977 {
3978 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3979 
3980 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3981 	if (func_caps->common_cap.rdma)
3982 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3983 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3984 	if (func_caps->common_cap.dcb)
3985 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3986 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3987 	if (func_caps->common_cap.sr_iov_1_1) {
3988 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3989 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3990 					      ICE_MAX_SRIOV_VFS);
3991 	}
3992 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3993 	if (func_caps->common_cap.rss_table_size)
3994 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3995 
3996 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3997 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3998 		u16 unused;
3999 
4000 		/* ctrl_vsi_idx will be set to a valid value when flow director
4001 		 * is setup by ice_init_fdir
4002 		 */
4003 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4004 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
4005 		/* force guaranteed filter pool for PF */
4006 		ice_alloc_fd_guar_item(&pf->hw, &unused,
4007 				       func_caps->fd_fltr_guar);
4008 		/* force shared filter pool for PF */
4009 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
4010 				       func_caps->fd_fltr_best_effort);
4011 	}
4012 
4013 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4014 	if (func_caps->common_cap.ieee_1588)
4015 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4016 
4017 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
4018 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4019 }
4020 
4021 /**
4022  * ice_init_pf - Initialize general software structures (struct ice_pf)
4023  * @pf: board private structure to initialize
4024  */
4025 static int ice_init_pf(struct ice_pf *pf)
4026 {
4027 	ice_set_pf_caps(pf);
4028 
4029 	mutex_init(&pf->sw_mutex);
4030 	mutex_init(&pf->tc_mutex);
4031 	mutex_init(&pf->adev_mutex);
4032 	mutex_init(&pf->lag_mutex);
4033 
4034 	INIT_HLIST_HEAD(&pf->aq_wait_list);
4035 	spin_lock_init(&pf->aq_wait_lock);
4036 	init_waitqueue_head(&pf->aq_wait_queue);
4037 
4038 	init_waitqueue_head(&pf->reset_wait_queue);
4039 
4040 	/* setup service timer and periodic service task */
4041 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4042 	pf->serv_tmr_period = HZ;
4043 	INIT_WORK(&pf->serv_task, ice_service_task);
4044 	clear_bit(ICE_SERVICE_SCHED, pf->state);
4045 
4046 	mutex_init(&pf->avail_q_mutex);
4047 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4048 	if (!pf->avail_txqs)
4049 		return -ENOMEM;
4050 
4051 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4052 	if (!pf->avail_rxqs) {
4053 		bitmap_free(pf->avail_txqs);
4054 		pf->avail_txqs = NULL;
4055 		return -ENOMEM;
4056 	}
4057 
4058 	mutex_init(&pf->vfs.table_lock);
4059 	hash_init(pf->vfs.table);
4060 	if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
4061 		wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
4062 		     ICE_MBX_OVERFLOW_WATERMARK);
4063 	else
4064 		ice_mbx_init_snapshot(&pf->hw);
4065 
4066 	xa_init(&pf->dyn_ports);
4067 	xa_init(&pf->sf_nums);
4068 
4069 	return 0;
4070 }
4071 
4072 /**
4073  * ice_is_wol_supported - check if WoL is supported
4074  * @hw: pointer to hardware info
4075  *
4076  * Check if WoL is supported based on the HW configuration.
4077  * Returns true if NVM supports and enables WoL for this port, false otherwise
4078  */
4079 bool ice_is_wol_supported(struct ice_hw *hw)
4080 {
4081 	u16 wol_ctrl;
4082 
4083 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4084 	 * word) indicates WoL is not supported on the corresponding PF ID.
4085 	 */
4086 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4087 		return false;
4088 
4089 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4090 }
4091 
4092 /**
4093  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4094  * @vsi: VSI being changed
4095  * @new_rx: new number of Rx queues
4096  * @new_tx: new number of Tx queues
4097  * @locked: is adev device_lock held
4098  *
4099  * Only change the number of queues if new_tx, or new_rx is non-0.
4100  *
4101  * Returns 0 on success.
4102  */
4103 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4104 {
4105 	struct ice_pf *pf = vsi->back;
4106 	int i, err = 0, timeout = 50;
4107 
4108 	if (!new_rx && !new_tx)
4109 		return -EINVAL;
4110 
4111 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4112 		timeout--;
4113 		if (!timeout)
4114 			return -EBUSY;
4115 		usleep_range(1000, 2000);
4116 	}
4117 
4118 	if (new_tx)
4119 		vsi->req_txq = (u16)new_tx;
4120 	if (new_rx)
4121 		vsi->req_rxq = (u16)new_rx;
4122 
4123 	/* set for the next time the netdev is started */
4124 	if (!netif_running(vsi->netdev)) {
4125 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4126 		if (err)
4127 			goto rebuild_err;
4128 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4129 		goto done;
4130 	}
4131 
4132 	ice_vsi_close(vsi);
4133 	err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4134 	if (err)
4135 		goto rebuild_err;
4136 
4137 	ice_for_each_traffic_class(i) {
4138 		if (vsi->tc_cfg.ena_tc & BIT(i))
4139 			netdev_set_tc_queue(vsi->netdev,
4140 					    vsi->tc_cfg.tc_info[i].netdev_tc,
4141 					    vsi->tc_cfg.tc_info[i].qcount_tx,
4142 					    vsi->tc_cfg.tc_info[i].qoffset);
4143 	}
4144 	ice_pf_dcb_recfg(pf, locked);
4145 	ice_vsi_open(vsi);
4146 	goto done;
4147 
4148 rebuild_err:
4149 	dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4150 		err);
4151 done:
4152 	clear_bit(ICE_CFG_BUSY, pf->state);
4153 	return err;
4154 }
4155 
4156 /**
4157  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4158  * @pf: PF to configure
4159  *
4160  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4161  * VSI can still Tx/Rx VLAN tagged packets.
4162  */
4163 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4164 {
4165 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4166 	struct ice_vsi_ctx *ctxt;
4167 	struct ice_hw *hw;
4168 	int status;
4169 
4170 	if (!vsi)
4171 		return;
4172 
4173 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4174 	if (!ctxt)
4175 		return;
4176 
4177 	hw = &pf->hw;
4178 	ctxt->info = vsi->info;
4179 
4180 	ctxt->info.valid_sections =
4181 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4182 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4183 			    ICE_AQ_VSI_PROP_SW_VALID);
4184 
4185 	/* disable VLAN anti-spoof */
4186 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4187 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4188 
4189 	/* disable VLAN pruning and keep all other settings */
4190 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4191 
4192 	/* allow all VLANs on Tx and don't strip on Rx */
4193 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4194 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4195 
4196 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4197 	if (status) {
4198 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4199 			status, ice_aq_str(hw->adminq.sq_last_status));
4200 	} else {
4201 		vsi->info.sec_flags = ctxt->info.sec_flags;
4202 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4203 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4204 	}
4205 
4206 	kfree(ctxt);
4207 }
4208 
4209 /**
4210  * ice_log_pkg_init - log result of DDP package load
4211  * @hw: pointer to hardware info
4212  * @state: state of package load
4213  */
4214 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4215 {
4216 	struct ice_pf *pf = hw->back;
4217 	struct device *dev;
4218 
4219 	dev = ice_pf_to_dev(pf);
4220 
4221 	switch (state) {
4222 	case ICE_DDP_PKG_SUCCESS:
4223 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4224 			 hw->active_pkg_name,
4225 			 hw->active_pkg_ver.major,
4226 			 hw->active_pkg_ver.minor,
4227 			 hw->active_pkg_ver.update,
4228 			 hw->active_pkg_ver.draft);
4229 		break;
4230 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4231 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4232 			 hw->active_pkg_name,
4233 			 hw->active_pkg_ver.major,
4234 			 hw->active_pkg_ver.minor,
4235 			 hw->active_pkg_ver.update,
4236 			 hw->active_pkg_ver.draft);
4237 		break;
4238 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4239 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4240 			hw->active_pkg_name,
4241 			hw->active_pkg_ver.major,
4242 			hw->active_pkg_ver.minor,
4243 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4244 		break;
4245 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4246 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4247 			 hw->active_pkg_name,
4248 			 hw->active_pkg_ver.major,
4249 			 hw->active_pkg_ver.minor,
4250 			 hw->active_pkg_ver.update,
4251 			 hw->active_pkg_ver.draft,
4252 			 hw->pkg_name,
4253 			 hw->pkg_ver.major,
4254 			 hw->pkg_ver.minor,
4255 			 hw->pkg_ver.update,
4256 			 hw->pkg_ver.draft);
4257 		break;
4258 	case ICE_DDP_PKG_FW_MISMATCH:
4259 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4260 		break;
4261 	case ICE_DDP_PKG_INVALID_FILE:
4262 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4263 		break;
4264 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4265 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4266 		break;
4267 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4268 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4269 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4270 		break;
4271 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4272 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4273 		break;
4274 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4275 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4276 		break;
4277 	case ICE_DDP_PKG_LOAD_ERROR:
4278 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4279 		/* poll for reset to complete */
4280 		if (ice_check_reset(hw))
4281 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4282 		break;
4283 	case ICE_DDP_PKG_ERR:
4284 	default:
4285 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4286 		break;
4287 	}
4288 }
4289 
4290 /**
4291  * ice_load_pkg - load/reload the DDP Package file
4292  * @firmware: firmware structure when firmware requested or NULL for reload
4293  * @pf: pointer to the PF instance
4294  *
4295  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4296  * initialize HW tables.
4297  */
4298 static void
4299 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4300 {
4301 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4302 	struct device *dev = ice_pf_to_dev(pf);
4303 	struct ice_hw *hw = &pf->hw;
4304 
4305 	/* Load DDP Package */
4306 	if (firmware && !hw->pkg_copy) {
4307 		state = ice_copy_and_init_pkg(hw, firmware->data,
4308 					      firmware->size);
4309 		ice_log_pkg_init(hw, state);
4310 	} else if (!firmware && hw->pkg_copy) {
4311 		/* Reload package during rebuild after CORER/GLOBR reset */
4312 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4313 		ice_log_pkg_init(hw, state);
4314 	} else {
4315 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4316 	}
4317 
4318 	if (!ice_is_init_pkg_successful(state)) {
4319 		/* Safe Mode */
4320 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4321 		return;
4322 	}
4323 
4324 	/* Successful download package is the precondition for advanced
4325 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4326 	 */
4327 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4328 }
4329 
4330 /**
4331  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4332  * @pf: pointer to the PF structure
4333  *
4334  * There is no error returned here because the driver should be able to handle
4335  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4336  * specifically with Tx.
4337  */
4338 static void ice_verify_cacheline_size(struct ice_pf *pf)
4339 {
4340 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4341 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4342 			 ICE_CACHE_LINE_BYTES);
4343 }
4344 
4345 /**
4346  * ice_send_version - update firmware with driver version
4347  * @pf: PF struct
4348  *
4349  * Returns 0 on success, else error code
4350  */
4351 static int ice_send_version(struct ice_pf *pf)
4352 {
4353 	struct ice_driver_ver dv;
4354 
4355 	dv.major_ver = 0xff;
4356 	dv.minor_ver = 0xff;
4357 	dv.build_ver = 0xff;
4358 	dv.subbuild_ver = 0;
4359 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4360 		sizeof(dv.driver_string));
4361 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4362 }
4363 
4364 /**
4365  * ice_init_fdir - Initialize flow director VSI and configuration
4366  * @pf: pointer to the PF instance
4367  *
4368  * returns 0 on success, negative on error
4369  */
4370 static int ice_init_fdir(struct ice_pf *pf)
4371 {
4372 	struct device *dev = ice_pf_to_dev(pf);
4373 	struct ice_vsi *ctrl_vsi;
4374 	int err;
4375 
4376 	/* Side Band Flow Director needs to have a control VSI.
4377 	 * Allocate it and store it in the PF.
4378 	 */
4379 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4380 	if (!ctrl_vsi) {
4381 		dev_dbg(dev, "could not create control VSI\n");
4382 		return -ENOMEM;
4383 	}
4384 
4385 	err = ice_vsi_open_ctrl(ctrl_vsi);
4386 	if (err) {
4387 		dev_dbg(dev, "could not open control VSI\n");
4388 		goto err_vsi_open;
4389 	}
4390 
4391 	mutex_init(&pf->hw.fdir_fltr_lock);
4392 
4393 	err = ice_fdir_create_dflt_rules(pf);
4394 	if (err)
4395 		goto err_fdir_rule;
4396 
4397 	return 0;
4398 
4399 err_fdir_rule:
4400 	ice_fdir_release_flows(&pf->hw);
4401 	ice_vsi_close(ctrl_vsi);
4402 err_vsi_open:
4403 	ice_vsi_release(ctrl_vsi);
4404 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4405 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4406 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4407 	}
4408 	return err;
4409 }
4410 
4411 static void ice_deinit_fdir(struct ice_pf *pf)
4412 {
4413 	struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4414 
4415 	if (!vsi)
4416 		return;
4417 
4418 	ice_vsi_manage_fdir(vsi, false);
4419 	ice_vsi_release(vsi);
4420 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4421 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4422 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4423 	}
4424 
4425 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4426 }
4427 
4428 /**
4429  * ice_get_opt_fw_name - return optional firmware file name or NULL
4430  * @pf: pointer to the PF instance
4431  */
4432 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4433 {
4434 	/* Optional firmware name same as default with additional dash
4435 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4436 	 */
4437 	struct pci_dev *pdev = pf->pdev;
4438 	char *opt_fw_filename;
4439 	u64 dsn;
4440 
4441 	/* Determine the name of the optional file using the DSN (two
4442 	 * dwords following the start of the DSN Capability).
4443 	 */
4444 	dsn = pci_get_dsn(pdev);
4445 	if (!dsn)
4446 		return NULL;
4447 
4448 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4449 	if (!opt_fw_filename)
4450 		return NULL;
4451 
4452 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4453 		 ICE_DDP_PKG_PATH, dsn);
4454 
4455 	return opt_fw_filename;
4456 }
4457 
4458 /**
4459  * ice_request_fw - Device initialization routine
4460  * @pf: pointer to the PF instance
4461  * @firmware: double pointer to firmware struct
4462  *
4463  * Return: zero when successful, negative values otherwise.
4464  */
4465 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4466 {
4467 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4468 	struct device *dev = ice_pf_to_dev(pf);
4469 	int err = 0;
4470 
4471 	/* optional device-specific DDP (if present) overrides the default DDP
4472 	 * package file. kernel logs a debug message if the file doesn't exist,
4473 	 * and warning messages for other errors.
4474 	 */
4475 	if (opt_fw_filename) {
4476 		err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4477 		kfree(opt_fw_filename);
4478 		if (!err)
4479 			return err;
4480 	}
4481 	err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4482 	if (err)
4483 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4484 
4485 	return err;
4486 }
4487 
4488 /**
4489  * ice_init_tx_topology - performs Tx topology initialization
4490  * @hw: pointer to the hardware structure
4491  * @firmware: pointer to firmware structure
4492  *
4493  * Return: zero when init was successful, negative values otherwise.
4494  */
4495 static int
4496 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4497 {
4498 	u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4499 	struct ice_pf *pf = hw->back;
4500 	struct device *dev;
4501 	int err;
4502 
4503 	dev = ice_pf_to_dev(pf);
4504 	err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4505 	if (!err) {
4506 		if (hw->num_tx_sched_layers > num_tx_sched_layers)
4507 			dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4508 		else
4509 			dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4510 		/* if there was a change in topology ice_cfg_tx_topo triggered
4511 		 * a CORER and we need to re-init hw
4512 		 */
4513 		ice_deinit_hw(hw);
4514 		err = ice_init_hw(hw);
4515 
4516 		return err;
4517 	} else if (err == -EIO) {
4518 		dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4519 	}
4520 
4521 	return 0;
4522 }
4523 
4524 /**
4525  * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs
4526  * @hw: pointer to the hardware structure
4527  * @pf: pointer to pf structure
4528  *
4529  * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor
4530  * formats the PF hardware supports. The exact list of supported RXDIDs
4531  * depends on the loaded DDP package. The IDs can be determined by reading the
4532  * GLFLXP_RXDID_FLAGS register after the DDP package is loaded.
4533  *
4534  * Note that the legacy 32-byte RXDID 0 is always supported but is not listed
4535  * in the DDP package. The 16-byte legacy descriptor is never supported by
4536  * VFs.
4537  */
4538 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf)
4539 {
4540 	pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1);
4541 
4542 	for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
4543 		u32 regval;
4544 
4545 		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
4546 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
4547 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
4548 			pf->supported_rxdids |= BIT(i);
4549 	}
4550 }
4551 
4552 /**
4553  * ice_init_ddp_config - DDP related configuration
4554  * @hw: pointer to the hardware structure
4555  * @pf: pointer to pf structure
4556  *
4557  * This function loads DDP file from the disk, then initializes Tx
4558  * topology. At the end DDP package is loaded on the card.
4559  *
4560  * Return: zero when init was successful, negative values otherwise.
4561  */
4562 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4563 {
4564 	struct device *dev = ice_pf_to_dev(pf);
4565 	const struct firmware *firmware = NULL;
4566 	int err;
4567 
4568 	err = ice_request_fw(pf, &firmware);
4569 	if (err) {
4570 		dev_err(dev, "Fail during requesting FW: %d\n", err);
4571 		return err;
4572 	}
4573 
4574 	err = ice_init_tx_topology(hw, firmware);
4575 	if (err) {
4576 		dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4577 			err);
4578 		release_firmware(firmware);
4579 		return err;
4580 	}
4581 
4582 	/* Download firmware to device */
4583 	ice_load_pkg(firmware, pf);
4584 	release_firmware(firmware);
4585 
4586 	/* Initialize the supported Rx descriptor IDs after loading DDP */
4587 	ice_init_supported_rxdids(hw, pf);
4588 
4589 	return 0;
4590 }
4591 
4592 /**
4593  * ice_print_wake_reason - show the wake up cause in the log
4594  * @pf: pointer to the PF struct
4595  */
4596 static void ice_print_wake_reason(struct ice_pf *pf)
4597 {
4598 	u32 wus = pf->wakeup_reason;
4599 	const char *wake_str;
4600 
4601 	/* if no wake event, nothing to print */
4602 	if (!wus)
4603 		return;
4604 
4605 	if (wus & PFPM_WUS_LNKC_M)
4606 		wake_str = "Link\n";
4607 	else if (wus & PFPM_WUS_MAG_M)
4608 		wake_str = "Magic Packet\n";
4609 	else if (wus & PFPM_WUS_MNG_M)
4610 		wake_str = "Management\n";
4611 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4612 		wake_str = "Firmware Reset\n";
4613 	else
4614 		wake_str = "Unknown\n";
4615 
4616 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4617 }
4618 
4619 /**
4620  * ice_pf_fwlog_update_module - update 1 module
4621  * @pf: pointer to the PF struct
4622  * @log_level: log_level to use for the @module
4623  * @module: module to update
4624  */
4625 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4626 {
4627 	struct ice_hw *hw = &pf->hw;
4628 
4629 	hw->fwlog_cfg.module_entries[module].log_level = log_level;
4630 }
4631 
4632 /**
4633  * ice_register_netdev - register netdev
4634  * @vsi: pointer to the VSI struct
4635  */
4636 static int ice_register_netdev(struct ice_vsi *vsi)
4637 {
4638 	int err;
4639 
4640 	if (!vsi || !vsi->netdev)
4641 		return -EIO;
4642 
4643 	err = register_netdev(vsi->netdev);
4644 	if (err)
4645 		return err;
4646 
4647 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4648 	netif_carrier_off(vsi->netdev);
4649 	netif_tx_stop_all_queues(vsi->netdev);
4650 
4651 	return 0;
4652 }
4653 
4654 static void ice_unregister_netdev(struct ice_vsi *vsi)
4655 {
4656 	if (!vsi || !vsi->netdev)
4657 		return;
4658 
4659 	unregister_netdev(vsi->netdev);
4660 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4661 }
4662 
4663 /**
4664  * ice_cfg_netdev - Allocate, configure and register a netdev
4665  * @vsi: the VSI associated with the new netdev
4666  *
4667  * Returns 0 on success, negative value on failure
4668  */
4669 static int ice_cfg_netdev(struct ice_vsi *vsi)
4670 {
4671 	struct ice_netdev_priv *np;
4672 	struct net_device *netdev;
4673 	u8 mac_addr[ETH_ALEN];
4674 
4675 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4676 				    vsi->alloc_rxq);
4677 	if (!netdev)
4678 		return -ENOMEM;
4679 
4680 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4681 	vsi->netdev = netdev;
4682 	np = netdev_priv(netdev);
4683 	np->vsi = vsi;
4684 
4685 	ice_set_netdev_features(netdev);
4686 	ice_set_ops(vsi);
4687 
4688 	if (vsi->type == ICE_VSI_PF) {
4689 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4690 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4691 		eth_hw_addr_set(netdev, mac_addr);
4692 	}
4693 
4694 	netdev->priv_flags |= IFF_UNICAST_FLT;
4695 
4696 	/* Setup netdev TC information */
4697 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4698 
4699 	netdev->max_mtu = ICE_MAX_MTU;
4700 
4701 	return 0;
4702 }
4703 
4704 static void ice_decfg_netdev(struct ice_vsi *vsi)
4705 {
4706 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4707 	free_netdev(vsi->netdev);
4708 	vsi->netdev = NULL;
4709 }
4710 
4711 int ice_init_dev(struct ice_pf *pf)
4712 {
4713 	struct device *dev = ice_pf_to_dev(pf);
4714 	struct ice_hw *hw = &pf->hw;
4715 	int err;
4716 
4717 	ice_init_feature_support(pf);
4718 
4719 	err = ice_init_ddp_config(hw, pf);
4720 
4721 	/* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4722 	 * set in pf->state, which will cause ice_is_safe_mode to return
4723 	 * true
4724 	 */
4725 	if (err || ice_is_safe_mode(pf)) {
4726 		/* we already got function/device capabilities but these don't
4727 		 * reflect what the driver needs to do in safe mode. Instead of
4728 		 * adding conditional logic everywhere to ignore these
4729 		 * device/function capabilities, override them.
4730 		 */
4731 		ice_set_safe_mode_caps(hw);
4732 	}
4733 
4734 	err = ice_init_pf(pf);
4735 	if (err) {
4736 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4737 		return err;
4738 	}
4739 
4740 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4741 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4742 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4743 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4744 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4745 		pf->hw.udp_tunnel_nic.tables[0].n_entries =
4746 			pf->hw.tnl.valid_count[TNL_VXLAN];
4747 		pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4748 			UDP_TUNNEL_TYPE_VXLAN;
4749 	}
4750 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4751 		pf->hw.udp_tunnel_nic.tables[1].n_entries =
4752 			pf->hw.tnl.valid_count[TNL_GENEVE];
4753 		pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4754 			UDP_TUNNEL_TYPE_GENEVE;
4755 	}
4756 
4757 	err = ice_init_interrupt_scheme(pf);
4758 	if (err) {
4759 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4760 		err = -EIO;
4761 		goto unroll_pf_init;
4762 	}
4763 
4764 	/* In case of MSIX we are going to setup the misc vector right here
4765 	 * to handle admin queue events etc. In case of legacy and MSI
4766 	 * the misc functionality and queue processing is combined in
4767 	 * the same vector and that gets setup at open.
4768 	 */
4769 	err = ice_req_irq_msix_misc(pf);
4770 	if (err) {
4771 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4772 		goto unroll_irq_scheme_init;
4773 	}
4774 
4775 	return 0;
4776 
4777 unroll_irq_scheme_init:
4778 	ice_clear_interrupt_scheme(pf);
4779 unroll_pf_init:
4780 	ice_deinit_pf(pf);
4781 	return err;
4782 }
4783 
4784 void ice_deinit_dev(struct ice_pf *pf)
4785 {
4786 	ice_free_irq_msix_misc(pf);
4787 	ice_deinit_pf(pf);
4788 	ice_deinit_hw(&pf->hw);
4789 
4790 	/* Service task is already stopped, so call reset directly. */
4791 	ice_reset(&pf->hw, ICE_RESET_PFR);
4792 	pci_wait_for_pending_transaction(pf->pdev);
4793 	ice_clear_interrupt_scheme(pf);
4794 }
4795 
4796 static void ice_init_features(struct ice_pf *pf)
4797 {
4798 	struct device *dev = ice_pf_to_dev(pf);
4799 
4800 	if (ice_is_safe_mode(pf))
4801 		return;
4802 
4803 	/* initialize DDP driven features */
4804 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4805 		ice_ptp_init(pf);
4806 
4807 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4808 		ice_gnss_init(pf);
4809 
4810 	if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4811 	    ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4812 		ice_dpll_init(pf);
4813 
4814 	/* Note: Flow director init failure is non-fatal to load */
4815 	if (ice_init_fdir(pf))
4816 		dev_err(dev, "could not initialize flow director\n");
4817 
4818 	/* Note: DCB init failure is non-fatal to load */
4819 	if (ice_init_pf_dcb(pf, false)) {
4820 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4821 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4822 	} else {
4823 		ice_cfg_lldp_mib_change(&pf->hw, true);
4824 	}
4825 
4826 	if (ice_init_lag(pf))
4827 		dev_warn(dev, "Failed to init link aggregation support\n");
4828 
4829 	ice_hwmon_init(pf);
4830 }
4831 
4832 static void ice_deinit_features(struct ice_pf *pf)
4833 {
4834 	if (ice_is_safe_mode(pf))
4835 		return;
4836 
4837 	ice_deinit_lag(pf);
4838 	if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4839 		ice_cfg_lldp_mib_change(&pf->hw, false);
4840 	ice_deinit_fdir(pf);
4841 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4842 		ice_gnss_exit(pf);
4843 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4844 		ice_ptp_release(pf);
4845 	if (test_bit(ICE_FLAG_DPLL, pf->flags))
4846 		ice_dpll_deinit(pf);
4847 	if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4848 		xa_destroy(&pf->eswitch.reprs);
4849 }
4850 
4851 static void ice_init_wakeup(struct ice_pf *pf)
4852 {
4853 	/* Save wakeup reason register for later use */
4854 	pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4855 
4856 	/* check for a power management event */
4857 	ice_print_wake_reason(pf);
4858 
4859 	/* clear wake status, all bits */
4860 	wr32(&pf->hw, PFPM_WUS, U32_MAX);
4861 
4862 	/* Disable WoL at init, wait for user to enable */
4863 	device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4864 }
4865 
4866 static int ice_init_link(struct ice_pf *pf)
4867 {
4868 	struct device *dev = ice_pf_to_dev(pf);
4869 	int err;
4870 
4871 	err = ice_init_link_events(pf->hw.port_info);
4872 	if (err) {
4873 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4874 		return err;
4875 	}
4876 
4877 	/* not a fatal error if this fails */
4878 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4879 	if (err)
4880 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4881 
4882 	/* not a fatal error if this fails */
4883 	err = ice_update_link_info(pf->hw.port_info);
4884 	if (err)
4885 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4886 
4887 	ice_init_link_dflt_override(pf->hw.port_info);
4888 
4889 	ice_check_link_cfg_err(pf,
4890 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4891 
4892 	/* if media available, initialize PHY settings */
4893 	if (pf->hw.port_info->phy.link_info.link_info &
4894 	    ICE_AQ_MEDIA_AVAILABLE) {
4895 		/* not a fatal error if this fails */
4896 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4897 		if (err)
4898 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4899 
4900 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4901 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4902 
4903 			if (vsi)
4904 				ice_configure_phy(vsi);
4905 		}
4906 	} else {
4907 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4908 	}
4909 
4910 	return err;
4911 }
4912 
4913 static int ice_init_pf_sw(struct ice_pf *pf)
4914 {
4915 	bool dvm = ice_is_dvm_ena(&pf->hw);
4916 	struct ice_vsi *vsi;
4917 	int err;
4918 
4919 	/* create switch struct for the switch element created by FW on boot */
4920 	pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4921 	if (!pf->first_sw)
4922 		return -ENOMEM;
4923 
4924 	if (pf->hw.evb_veb)
4925 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4926 	else
4927 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4928 
4929 	pf->first_sw->pf = pf;
4930 
4931 	/* record the sw_id available for later use */
4932 	pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4933 
4934 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4935 	if (err)
4936 		goto err_aq_set_port_params;
4937 
4938 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4939 	if (!vsi) {
4940 		err = -ENOMEM;
4941 		goto err_pf_vsi_setup;
4942 	}
4943 
4944 	return 0;
4945 
4946 err_pf_vsi_setup:
4947 err_aq_set_port_params:
4948 	kfree(pf->first_sw);
4949 	return err;
4950 }
4951 
4952 static void ice_deinit_pf_sw(struct ice_pf *pf)
4953 {
4954 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4955 
4956 	if (!vsi)
4957 		return;
4958 
4959 	ice_vsi_release(vsi);
4960 	kfree(pf->first_sw);
4961 }
4962 
4963 static int ice_alloc_vsis(struct ice_pf *pf)
4964 {
4965 	struct device *dev = ice_pf_to_dev(pf);
4966 
4967 	pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4968 	if (!pf->num_alloc_vsi)
4969 		return -EIO;
4970 
4971 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4972 		dev_warn(dev,
4973 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4974 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4975 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4976 	}
4977 
4978 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4979 			       GFP_KERNEL);
4980 	if (!pf->vsi)
4981 		return -ENOMEM;
4982 
4983 	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4984 				     sizeof(*pf->vsi_stats), GFP_KERNEL);
4985 	if (!pf->vsi_stats) {
4986 		devm_kfree(dev, pf->vsi);
4987 		return -ENOMEM;
4988 	}
4989 
4990 	return 0;
4991 }
4992 
4993 static void ice_dealloc_vsis(struct ice_pf *pf)
4994 {
4995 	devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4996 	pf->vsi_stats = NULL;
4997 
4998 	pf->num_alloc_vsi = 0;
4999 	devm_kfree(ice_pf_to_dev(pf), pf->vsi);
5000 	pf->vsi = NULL;
5001 }
5002 
5003 static int ice_init_devlink(struct ice_pf *pf)
5004 {
5005 	int err;
5006 
5007 	err = ice_devlink_register_params(pf);
5008 	if (err)
5009 		return err;
5010 
5011 	ice_devlink_init_regions(pf);
5012 	ice_devlink_register(pf);
5013 	ice_health_init(pf);
5014 
5015 	return 0;
5016 }
5017 
5018 static void ice_deinit_devlink(struct ice_pf *pf)
5019 {
5020 	ice_health_deinit(pf);
5021 	ice_devlink_unregister(pf);
5022 	ice_devlink_destroy_regions(pf);
5023 	ice_devlink_unregister_params(pf);
5024 }
5025 
5026 static int ice_init(struct ice_pf *pf)
5027 {
5028 	int err;
5029 
5030 	err = ice_init_dev(pf);
5031 	if (err)
5032 		return err;
5033 
5034 	if (pf->hw.mac_type == ICE_MAC_E830) {
5035 		err = pci_enable_ptm(pf->pdev, NULL);
5036 		if (err)
5037 			dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n");
5038 	}
5039 
5040 	err = ice_alloc_vsis(pf);
5041 	if (err)
5042 		goto err_alloc_vsis;
5043 
5044 	err = ice_init_pf_sw(pf);
5045 	if (err)
5046 		goto err_init_pf_sw;
5047 
5048 	ice_init_wakeup(pf);
5049 
5050 	err = ice_init_link(pf);
5051 	if (err)
5052 		goto err_init_link;
5053 
5054 	err = ice_send_version(pf);
5055 	if (err)
5056 		goto err_init_link;
5057 
5058 	ice_verify_cacheline_size(pf);
5059 
5060 	if (ice_is_safe_mode(pf))
5061 		ice_set_safe_mode_vlan_cfg(pf);
5062 	else
5063 		/* print PCI link speed and width */
5064 		pcie_print_link_status(pf->pdev);
5065 
5066 	/* ready to go, so clear down state bit */
5067 	clear_bit(ICE_DOWN, pf->state);
5068 	clear_bit(ICE_SERVICE_DIS, pf->state);
5069 
5070 	/* since everything is good, start the service timer */
5071 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5072 
5073 	return 0;
5074 
5075 err_init_link:
5076 	ice_deinit_pf_sw(pf);
5077 err_init_pf_sw:
5078 	ice_dealloc_vsis(pf);
5079 err_alloc_vsis:
5080 	ice_deinit_dev(pf);
5081 	return err;
5082 }
5083 
5084 static void ice_deinit(struct ice_pf *pf)
5085 {
5086 	set_bit(ICE_SERVICE_DIS, pf->state);
5087 	set_bit(ICE_DOWN, pf->state);
5088 
5089 	ice_deinit_pf_sw(pf);
5090 	ice_dealloc_vsis(pf);
5091 	ice_deinit_dev(pf);
5092 }
5093 
5094 /**
5095  * ice_load - load pf by init hw and starting VSI
5096  * @pf: pointer to the pf instance
5097  *
5098  * This function has to be called under devl_lock.
5099  */
5100 int ice_load(struct ice_pf *pf)
5101 {
5102 	struct ice_vsi *vsi;
5103 	int err;
5104 
5105 	devl_assert_locked(priv_to_devlink(pf));
5106 
5107 	vsi = ice_get_main_vsi(pf);
5108 
5109 	/* init channel list */
5110 	INIT_LIST_HEAD(&vsi->ch_list);
5111 
5112 	err = ice_cfg_netdev(vsi);
5113 	if (err)
5114 		return err;
5115 
5116 	/* Setup DCB netlink interface */
5117 	ice_dcbnl_setup(vsi);
5118 
5119 	err = ice_init_mac_fltr(pf);
5120 	if (err)
5121 		goto err_init_mac_fltr;
5122 
5123 	err = ice_devlink_create_pf_port(pf);
5124 	if (err)
5125 		goto err_devlink_create_pf_port;
5126 
5127 	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5128 
5129 	err = ice_register_netdev(vsi);
5130 	if (err)
5131 		goto err_register_netdev;
5132 
5133 	err = ice_tc_indir_block_register(vsi);
5134 	if (err)
5135 		goto err_tc_indir_block_register;
5136 
5137 	ice_napi_add(vsi);
5138 
5139 	ice_init_features(pf);
5140 
5141 	err = ice_init_rdma(pf);
5142 	if (err)
5143 		goto err_init_rdma;
5144 
5145 	ice_service_task_restart(pf);
5146 
5147 	clear_bit(ICE_DOWN, pf->state);
5148 
5149 	return 0;
5150 
5151 err_init_rdma:
5152 	ice_deinit_features(pf);
5153 	ice_tc_indir_block_unregister(vsi);
5154 err_tc_indir_block_register:
5155 	ice_unregister_netdev(vsi);
5156 err_register_netdev:
5157 	ice_devlink_destroy_pf_port(pf);
5158 err_devlink_create_pf_port:
5159 err_init_mac_fltr:
5160 	ice_decfg_netdev(vsi);
5161 	return err;
5162 }
5163 
5164 /**
5165  * ice_unload - unload pf by stopping VSI and deinit hw
5166  * @pf: pointer to the pf instance
5167  *
5168  * This function has to be called under devl_lock.
5169  */
5170 void ice_unload(struct ice_pf *pf)
5171 {
5172 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
5173 
5174 	devl_assert_locked(priv_to_devlink(pf));
5175 
5176 	ice_deinit_rdma(pf);
5177 	ice_deinit_features(pf);
5178 	ice_tc_indir_block_unregister(vsi);
5179 	ice_unregister_netdev(vsi);
5180 	ice_devlink_destroy_pf_port(pf);
5181 	ice_decfg_netdev(vsi);
5182 }
5183 
5184 static int ice_probe_recovery_mode(struct ice_pf *pf)
5185 {
5186 	struct device *dev = ice_pf_to_dev(pf);
5187 	int err;
5188 
5189 	dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n");
5190 
5191 	INIT_HLIST_HEAD(&pf->aq_wait_list);
5192 	spin_lock_init(&pf->aq_wait_lock);
5193 	init_waitqueue_head(&pf->aq_wait_queue);
5194 
5195 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
5196 	pf->serv_tmr_period = HZ;
5197 	INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode);
5198 	clear_bit(ICE_SERVICE_SCHED, pf->state);
5199 	err = ice_create_all_ctrlq(&pf->hw);
5200 	if (err)
5201 		return err;
5202 
5203 	scoped_guard(devl, priv_to_devlink(pf)) {
5204 		err = ice_init_devlink(pf);
5205 		if (err)
5206 			return err;
5207 	}
5208 
5209 	ice_service_task_restart(pf);
5210 
5211 	return 0;
5212 }
5213 
5214 /**
5215  * ice_probe - Device initialization routine
5216  * @pdev: PCI device information struct
5217  * @ent: entry in ice_pci_tbl
5218  *
5219  * Returns 0 on success, negative on failure
5220  */
5221 static int
5222 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5223 {
5224 	struct device *dev = &pdev->dev;
5225 	struct ice_adapter *adapter;
5226 	struct ice_pf *pf;
5227 	struct ice_hw *hw;
5228 	int err;
5229 
5230 	if (pdev->is_virtfn) {
5231 		dev_err(dev, "can't probe a virtual function\n");
5232 		return -EINVAL;
5233 	}
5234 
5235 	/* when under a kdump kernel initiate a reset before enabling the
5236 	 * device in order to clear out any pending DMA transactions. These
5237 	 * transactions can cause some systems to machine check when doing
5238 	 * the pcim_enable_device() below.
5239 	 */
5240 	if (is_kdump_kernel()) {
5241 		pci_save_state(pdev);
5242 		pci_clear_master(pdev);
5243 		err = pcie_flr(pdev);
5244 		if (err)
5245 			return err;
5246 		pci_restore_state(pdev);
5247 	}
5248 
5249 	/* this driver uses devres, see
5250 	 * Documentation/driver-api/driver-model/devres.rst
5251 	 */
5252 	err = pcim_enable_device(pdev);
5253 	if (err)
5254 		return err;
5255 
5256 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5257 	if (err) {
5258 		dev_err(dev, "BAR0 I/O map error %d\n", err);
5259 		return err;
5260 	}
5261 
5262 	pf = ice_allocate_pf(dev);
5263 	if (!pf)
5264 		return -ENOMEM;
5265 
5266 	/* initialize Auxiliary index to invalid value */
5267 	pf->aux_idx = -1;
5268 
5269 	/* set up for high or low DMA */
5270 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5271 	if (err) {
5272 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5273 		return err;
5274 	}
5275 
5276 	pci_set_master(pdev);
5277 	pf->pdev = pdev;
5278 	pci_set_drvdata(pdev, pf);
5279 	set_bit(ICE_DOWN, pf->state);
5280 	/* Disable service task until DOWN bit is cleared */
5281 	set_bit(ICE_SERVICE_DIS, pf->state);
5282 
5283 	hw = &pf->hw;
5284 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5285 	pci_save_state(pdev);
5286 
5287 	hw->back = pf;
5288 	hw->port_info = NULL;
5289 	hw->vendor_id = pdev->vendor;
5290 	hw->device_id = pdev->device;
5291 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5292 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5293 	hw->subsystem_device_id = pdev->subsystem_device;
5294 	hw->bus.device = PCI_SLOT(pdev->devfn);
5295 	hw->bus.func = PCI_FUNC(pdev->devfn);
5296 	ice_set_ctrlq_len(hw);
5297 
5298 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5299 
5300 #ifndef CONFIG_DYNAMIC_DEBUG
5301 	if (debug < -1)
5302 		hw->debug_mask = debug;
5303 #endif
5304 
5305 	if (ice_is_recovery_mode(hw))
5306 		return ice_probe_recovery_mode(pf);
5307 
5308 	err = ice_init_hw(hw);
5309 	if (err) {
5310 		dev_err(dev, "ice_init_hw failed: %d\n", err);
5311 		return err;
5312 	}
5313 
5314 	adapter = ice_adapter_get(pdev);
5315 	if (IS_ERR(adapter)) {
5316 		err = PTR_ERR(adapter);
5317 		goto unroll_hw_init;
5318 	}
5319 	pf->adapter = adapter;
5320 
5321 	err = ice_init(pf);
5322 	if (err)
5323 		goto unroll_adapter;
5324 
5325 	devl_lock(priv_to_devlink(pf));
5326 	err = ice_load(pf);
5327 	if (err)
5328 		goto unroll_init;
5329 
5330 	err = ice_init_devlink(pf);
5331 	if (err)
5332 		goto unroll_load;
5333 	devl_unlock(priv_to_devlink(pf));
5334 
5335 	return 0;
5336 
5337 unroll_load:
5338 	ice_unload(pf);
5339 unroll_init:
5340 	devl_unlock(priv_to_devlink(pf));
5341 	ice_deinit(pf);
5342 unroll_adapter:
5343 	ice_adapter_put(pdev);
5344 unroll_hw_init:
5345 	ice_deinit_hw(hw);
5346 	return err;
5347 }
5348 
5349 /**
5350  * ice_set_wake - enable or disable Wake on LAN
5351  * @pf: pointer to the PF struct
5352  *
5353  * Simple helper for WoL control
5354  */
5355 static void ice_set_wake(struct ice_pf *pf)
5356 {
5357 	struct ice_hw *hw = &pf->hw;
5358 	bool wol = pf->wol_ena;
5359 
5360 	/* clear wake state, otherwise new wake events won't fire */
5361 	wr32(hw, PFPM_WUS, U32_MAX);
5362 
5363 	/* enable / disable APM wake up, no RMW needed */
5364 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5365 
5366 	/* set magic packet filter enabled */
5367 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5368 }
5369 
5370 /**
5371  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5372  * @pf: pointer to the PF struct
5373  *
5374  * Issue firmware command to enable multicast magic wake, making
5375  * sure that any locally administered address (LAA) is used for
5376  * wake, and that PF reset doesn't undo the LAA.
5377  */
5378 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5379 {
5380 	struct device *dev = ice_pf_to_dev(pf);
5381 	struct ice_hw *hw = &pf->hw;
5382 	u8 mac_addr[ETH_ALEN];
5383 	struct ice_vsi *vsi;
5384 	int status;
5385 	u8 flags;
5386 
5387 	if (!pf->wol_ena)
5388 		return;
5389 
5390 	vsi = ice_get_main_vsi(pf);
5391 	if (!vsi)
5392 		return;
5393 
5394 	/* Get current MAC address in case it's an LAA */
5395 	if (vsi->netdev)
5396 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5397 	else
5398 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5399 
5400 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5401 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5402 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5403 
5404 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5405 	if (status)
5406 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5407 			status, ice_aq_str(hw->adminq.sq_last_status));
5408 }
5409 
5410 /**
5411  * ice_remove - Device removal routine
5412  * @pdev: PCI device information struct
5413  */
5414 static void ice_remove(struct pci_dev *pdev)
5415 {
5416 	struct ice_pf *pf = pci_get_drvdata(pdev);
5417 	int i;
5418 
5419 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5420 		if (!ice_is_reset_in_progress(pf->state))
5421 			break;
5422 		msleep(100);
5423 	}
5424 
5425 	if (ice_is_recovery_mode(&pf->hw)) {
5426 		ice_service_task_stop(pf);
5427 		scoped_guard(devl, priv_to_devlink(pf)) {
5428 			ice_deinit_devlink(pf);
5429 		}
5430 		return;
5431 	}
5432 
5433 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5434 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5435 		ice_free_vfs(pf);
5436 	}
5437 
5438 	ice_hwmon_exit(pf);
5439 
5440 	ice_service_task_stop(pf);
5441 	ice_aq_cancel_waiting_tasks(pf);
5442 	set_bit(ICE_DOWN, pf->state);
5443 
5444 	if (!ice_is_safe_mode(pf))
5445 		ice_remove_arfs(pf);
5446 
5447 	devl_lock(priv_to_devlink(pf));
5448 	ice_dealloc_all_dynamic_ports(pf);
5449 	ice_deinit_devlink(pf);
5450 
5451 	ice_unload(pf);
5452 	devl_unlock(priv_to_devlink(pf));
5453 
5454 	ice_deinit(pf);
5455 	ice_vsi_release_all(pf);
5456 
5457 	ice_setup_mc_magic_wake(pf);
5458 	ice_set_wake(pf);
5459 
5460 	ice_adapter_put(pdev);
5461 }
5462 
5463 /**
5464  * ice_shutdown - PCI callback for shutting down device
5465  * @pdev: PCI device information struct
5466  */
5467 static void ice_shutdown(struct pci_dev *pdev)
5468 {
5469 	struct ice_pf *pf = pci_get_drvdata(pdev);
5470 
5471 	ice_remove(pdev);
5472 
5473 	if (system_state == SYSTEM_POWER_OFF) {
5474 		pci_wake_from_d3(pdev, pf->wol_ena);
5475 		pci_set_power_state(pdev, PCI_D3hot);
5476 	}
5477 }
5478 
5479 /**
5480  * ice_prepare_for_shutdown - prep for PCI shutdown
5481  * @pf: board private structure
5482  *
5483  * Inform or close all dependent features in prep for PCI device shutdown
5484  */
5485 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5486 {
5487 	struct ice_hw *hw = &pf->hw;
5488 	u32 v;
5489 
5490 	/* Notify VFs of impending reset */
5491 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5492 		ice_vc_notify_reset(pf);
5493 
5494 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5495 
5496 	/* disable the VSIs and their queues that are not already DOWN */
5497 	ice_pf_dis_all_vsi(pf, false);
5498 
5499 	ice_for_each_vsi(pf, v)
5500 		if (pf->vsi[v])
5501 			pf->vsi[v]->vsi_num = 0;
5502 
5503 	ice_shutdown_all_ctrlq(hw, true);
5504 }
5505 
5506 /**
5507  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5508  * @pf: board private structure to reinitialize
5509  *
5510  * This routine reinitialize interrupt scheme that was cleared during
5511  * power management suspend callback.
5512  *
5513  * This should be called during resume routine to re-allocate the q_vectors
5514  * and reacquire interrupts.
5515  */
5516 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5517 {
5518 	struct device *dev = ice_pf_to_dev(pf);
5519 	int ret, v;
5520 
5521 	/* Since we clear MSIX flag during suspend, we need to
5522 	 * set it back during resume...
5523 	 */
5524 
5525 	ret = ice_init_interrupt_scheme(pf);
5526 	if (ret) {
5527 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5528 		return ret;
5529 	}
5530 
5531 	/* Remap vectors and rings, after successful re-init interrupts */
5532 	ice_for_each_vsi(pf, v) {
5533 		if (!pf->vsi[v])
5534 			continue;
5535 
5536 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5537 		if (ret)
5538 			goto err_reinit;
5539 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5540 		rtnl_lock();
5541 		ice_vsi_set_napi_queues(pf->vsi[v]);
5542 		rtnl_unlock();
5543 	}
5544 
5545 	ret = ice_req_irq_msix_misc(pf);
5546 	if (ret) {
5547 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5548 			ret);
5549 		goto err_reinit;
5550 	}
5551 
5552 	return 0;
5553 
5554 err_reinit:
5555 	while (v--)
5556 		if (pf->vsi[v]) {
5557 			rtnl_lock();
5558 			ice_vsi_clear_napi_queues(pf->vsi[v]);
5559 			rtnl_unlock();
5560 			ice_vsi_free_q_vectors(pf->vsi[v]);
5561 		}
5562 
5563 	return ret;
5564 }
5565 
5566 /**
5567  * ice_suspend
5568  * @dev: generic device information structure
5569  *
5570  * Power Management callback to quiesce the device and prepare
5571  * for D3 transition.
5572  */
5573 static int ice_suspend(struct device *dev)
5574 {
5575 	struct pci_dev *pdev = to_pci_dev(dev);
5576 	struct ice_pf *pf;
5577 	int disabled, v;
5578 
5579 	pf = pci_get_drvdata(pdev);
5580 
5581 	if (!ice_pf_state_is_nominal(pf)) {
5582 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5583 		return -EBUSY;
5584 	}
5585 
5586 	/* Stop watchdog tasks until resume completion.
5587 	 * Even though it is most likely that the service task is
5588 	 * disabled if the device is suspended or down, the service task's
5589 	 * state is controlled by a different state bit, and we should
5590 	 * store and honor whatever state that bit is in at this point.
5591 	 */
5592 	disabled = ice_service_task_stop(pf);
5593 
5594 	ice_deinit_rdma(pf);
5595 
5596 	/* Already suspended?, then there is nothing to do */
5597 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5598 		if (!disabled)
5599 			ice_service_task_restart(pf);
5600 		return 0;
5601 	}
5602 
5603 	if (test_bit(ICE_DOWN, pf->state) ||
5604 	    ice_is_reset_in_progress(pf->state)) {
5605 		dev_err(dev, "can't suspend device in reset or already down\n");
5606 		if (!disabled)
5607 			ice_service_task_restart(pf);
5608 		return 0;
5609 	}
5610 
5611 	ice_setup_mc_magic_wake(pf);
5612 
5613 	ice_prepare_for_shutdown(pf);
5614 
5615 	ice_set_wake(pf);
5616 
5617 	/* Free vectors, clear the interrupt scheme and release IRQs
5618 	 * for proper hibernation, especially with large number of CPUs.
5619 	 * Otherwise hibernation might fail when mapping all the vectors back
5620 	 * to CPU0.
5621 	 */
5622 	ice_free_irq_msix_misc(pf);
5623 	ice_for_each_vsi(pf, v) {
5624 		if (!pf->vsi[v])
5625 			continue;
5626 		rtnl_lock();
5627 		ice_vsi_clear_napi_queues(pf->vsi[v]);
5628 		rtnl_unlock();
5629 		ice_vsi_free_q_vectors(pf->vsi[v]);
5630 	}
5631 	ice_clear_interrupt_scheme(pf);
5632 
5633 	pci_save_state(pdev);
5634 	pci_wake_from_d3(pdev, pf->wol_ena);
5635 	pci_set_power_state(pdev, PCI_D3hot);
5636 	return 0;
5637 }
5638 
5639 /**
5640  * ice_resume - PM callback for waking up from D3
5641  * @dev: generic device information structure
5642  */
5643 static int ice_resume(struct device *dev)
5644 {
5645 	struct pci_dev *pdev = to_pci_dev(dev);
5646 	enum ice_reset_req reset_type;
5647 	struct ice_pf *pf;
5648 	struct ice_hw *hw;
5649 	int ret;
5650 
5651 	pci_set_power_state(pdev, PCI_D0);
5652 	pci_restore_state(pdev);
5653 	pci_save_state(pdev);
5654 
5655 	if (!pci_device_is_present(pdev))
5656 		return -ENODEV;
5657 
5658 	ret = pci_enable_device_mem(pdev);
5659 	if (ret) {
5660 		dev_err(dev, "Cannot enable device after suspend\n");
5661 		return ret;
5662 	}
5663 
5664 	pf = pci_get_drvdata(pdev);
5665 	hw = &pf->hw;
5666 
5667 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5668 	ice_print_wake_reason(pf);
5669 
5670 	/* We cleared the interrupt scheme when we suspended, so we need to
5671 	 * restore it now to resume device functionality.
5672 	 */
5673 	ret = ice_reinit_interrupt_scheme(pf);
5674 	if (ret)
5675 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5676 
5677 	ret = ice_init_rdma(pf);
5678 	if (ret)
5679 		dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5680 			ret);
5681 
5682 	clear_bit(ICE_DOWN, pf->state);
5683 	/* Now perform PF reset and rebuild */
5684 	reset_type = ICE_RESET_PFR;
5685 	/* re-enable service task for reset, but allow reset to schedule it */
5686 	clear_bit(ICE_SERVICE_DIS, pf->state);
5687 
5688 	if (ice_schedule_reset(pf, reset_type))
5689 		dev_err(dev, "Reset during resume failed.\n");
5690 
5691 	clear_bit(ICE_SUSPENDED, pf->state);
5692 	ice_service_task_restart(pf);
5693 
5694 	/* Restart the service task */
5695 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5696 
5697 	return 0;
5698 }
5699 
5700 /**
5701  * ice_pci_err_detected - warning that PCI error has been detected
5702  * @pdev: PCI device information struct
5703  * @err: the type of PCI error
5704  *
5705  * Called to warn that something happened on the PCI bus and the error handling
5706  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5707  */
5708 static pci_ers_result_t
5709 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5710 {
5711 	struct ice_pf *pf = pci_get_drvdata(pdev);
5712 
5713 	if (!pf) {
5714 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5715 			__func__, err);
5716 		return PCI_ERS_RESULT_DISCONNECT;
5717 	}
5718 
5719 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5720 		ice_service_task_stop(pf);
5721 
5722 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5723 			set_bit(ICE_PFR_REQ, pf->state);
5724 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5725 		}
5726 	}
5727 
5728 	return PCI_ERS_RESULT_NEED_RESET;
5729 }
5730 
5731 /**
5732  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5733  * @pdev: PCI device information struct
5734  *
5735  * Called to determine if the driver can recover from the PCI slot reset by
5736  * using a register read to determine if the device is recoverable.
5737  */
5738 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5739 {
5740 	struct ice_pf *pf = pci_get_drvdata(pdev);
5741 	pci_ers_result_t result;
5742 	int err;
5743 	u32 reg;
5744 
5745 	err = pci_enable_device_mem(pdev);
5746 	if (err) {
5747 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5748 			err);
5749 		result = PCI_ERS_RESULT_DISCONNECT;
5750 	} else {
5751 		pci_set_master(pdev);
5752 		pci_restore_state(pdev);
5753 		pci_save_state(pdev);
5754 		pci_wake_from_d3(pdev, false);
5755 
5756 		/* Check for life */
5757 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5758 		if (!reg)
5759 			result = PCI_ERS_RESULT_RECOVERED;
5760 		else
5761 			result = PCI_ERS_RESULT_DISCONNECT;
5762 	}
5763 
5764 	return result;
5765 }
5766 
5767 /**
5768  * ice_pci_err_resume - restart operations after PCI error recovery
5769  * @pdev: PCI device information struct
5770  *
5771  * Called to allow the driver to bring things back up after PCI error and/or
5772  * reset recovery have finished
5773  */
5774 static void ice_pci_err_resume(struct pci_dev *pdev)
5775 {
5776 	struct ice_pf *pf = pci_get_drvdata(pdev);
5777 
5778 	if (!pf) {
5779 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5780 			__func__);
5781 		return;
5782 	}
5783 
5784 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5785 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5786 			__func__);
5787 		return;
5788 	}
5789 
5790 	ice_restore_all_vfs_msi_state(pf);
5791 
5792 	ice_do_reset(pf, ICE_RESET_PFR);
5793 	ice_service_task_restart(pf);
5794 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5795 }
5796 
5797 /**
5798  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5799  * @pdev: PCI device information struct
5800  */
5801 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5802 {
5803 	struct ice_pf *pf = pci_get_drvdata(pdev);
5804 
5805 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5806 		ice_service_task_stop(pf);
5807 
5808 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5809 			set_bit(ICE_PFR_REQ, pf->state);
5810 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5811 		}
5812 	}
5813 }
5814 
5815 /**
5816  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5817  * @pdev: PCI device information struct
5818  */
5819 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5820 {
5821 	ice_pci_err_resume(pdev);
5822 }
5823 
5824 /* ice_pci_tbl - PCI Device ID Table
5825  *
5826  * Wildcard entries (PCI_ANY_ID) should come last
5827  * Last entry must be all 0s
5828  *
5829  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5830  *   Class, Class Mask, private data (not used) }
5831  */
5832 static const struct pci_device_id ice_pci_tbl[] = {
5833 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5834 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5835 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5836 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5837 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5838 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5839 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5840 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5841 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5842 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5843 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5844 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5845 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5846 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5847 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5848 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5849 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5850 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5851 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5852 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5853 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5854 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5855 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5856 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5857 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5858 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5859 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5860 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5861 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5862 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5863 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5864 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5865 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5866 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5867 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5868 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5869 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5870 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5871 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5872 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5873 	/* required last entry */
5874 	{}
5875 };
5876 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5877 
5878 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5879 
5880 static const struct pci_error_handlers ice_pci_err_handler = {
5881 	.error_detected = ice_pci_err_detected,
5882 	.slot_reset = ice_pci_err_slot_reset,
5883 	.reset_prepare = ice_pci_err_reset_prepare,
5884 	.reset_done = ice_pci_err_reset_done,
5885 	.resume = ice_pci_err_resume
5886 };
5887 
5888 static struct pci_driver ice_driver = {
5889 	.name = KBUILD_MODNAME,
5890 	.id_table = ice_pci_tbl,
5891 	.probe = ice_probe,
5892 	.remove = ice_remove,
5893 	.driver.pm = pm_sleep_ptr(&ice_pm_ops),
5894 	.shutdown = ice_shutdown,
5895 	.sriov_configure = ice_sriov_configure,
5896 	.sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5897 	.sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5898 	.err_handler = &ice_pci_err_handler
5899 };
5900 
5901 /**
5902  * ice_module_init - Driver registration routine
5903  *
5904  * ice_module_init is the first routine called when the driver is
5905  * loaded. All it does is register with the PCI subsystem.
5906  */
5907 static int __init ice_module_init(void)
5908 {
5909 	int status = -ENOMEM;
5910 
5911 	pr_info("%s\n", ice_driver_string);
5912 	pr_info("%s\n", ice_copyright);
5913 
5914 	ice_adv_lnk_speed_maps_init();
5915 
5916 	ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME);
5917 	if (!ice_wq) {
5918 		pr_err("Failed to create workqueue\n");
5919 		return status;
5920 	}
5921 
5922 	ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5923 	if (!ice_lag_wq) {
5924 		pr_err("Failed to create LAG workqueue\n");
5925 		goto err_dest_wq;
5926 	}
5927 
5928 	ice_debugfs_init();
5929 
5930 	status = pci_register_driver(&ice_driver);
5931 	if (status) {
5932 		pr_err("failed to register PCI driver, err %d\n", status);
5933 		goto err_dest_lag_wq;
5934 	}
5935 
5936 	status = ice_sf_driver_register();
5937 	if (status) {
5938 		pr_err("Failed to register SF driver, err %d\n", status);
5939 		goto err_sf_driver;
5940 	}
5941 
5942 	return 0;
5943 
5944 err_sf_driver:
5945 	pci_unregister_driver(&ice_driver);
5946 err_dest_lag_wq:
5947 	destroy_workqueue(ice_lag_wq);
5948 	ice_debugfs_exit();
5949 err_dest_wq:
5950 	destroy_workqueue(ice_wq);
5951 	return status;
5952 }
5953 module_init(ice_module_init);
5954 
5955 /**
5956  * ice_module_exit - Driver exit cleanup routine
5957  *
5958  * ice_module_exit is called just before the driver is removed
5959  * from memory.
5960  */
5961 static void __exit ice_module_exit(void)
5962 {
5963 	ice_sf_driver_unregister();
5964 	pci_unregister_driver(&ice_driver);
5965 	ice_debugfs_exit();
5966 	destroy_workqueue(ice_wq);
5967 	destroy_workqueue(ice_lag_wq);
5968 	pr_info("module unloaded\n");
5969 }
5970 module_exit(ice_module_exit);
5971 
5972 /**
5973  * ice_set_mac_address - NDO callback to set MAC address
5974  * @netdev: network interface device structure
5975  * @pi: pointer to an address structure
5976  *
5977  * Returns 0 on success, negative on failure
5978  */
5979 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5980 {
5981 	struct ice_netdev_priv *np = netdev_priv(netdev);
5982 	struct ice_vsi *vsi = np->vsi;
5983 	struct ice_pf *pf = vsi->back;
5984 	struct ice_hw *hw = &pf->hw;
5985 	struct sockaddr *addr = pi;
5986 	u8 old_mac[ETH_ALEN];
5987 	u8 flags = 0;
5988 	u8 *mac;
5989 	int err;
5990 
5991 	mac = (u8 *)addr->sa_data;
5992 
5993 	if (!is_valid_ether_addr(mac))
5994 		return -EADDRNOTAVAIL;
5995 
5996 	if (test_bit(ICE_DOWN, pf->state) ||
5997 	    ice_is_reset_in_progress(pf->state)) {
5998 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5999 			   mac);
6000 		return -EBUSY;
6001 	}
6002 
6003 	if (ice_chnl_dmac_fltr_cnt(pf)) {
6004 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
6005 			   mac);
6006 		return -EAGAIN;
6007 	}
6008 
6009 	netif_addr_lock_bh(netdev);
6010 	ether_addr_copy(old_mac, netdev->dev_addr);
6011 	/* change the netdev's MAC address */
6012 	eth_hw_addr_set(netdev, mac);
6013 	netif_addr_unlock_bh(netdev);
6014 
6015 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
6016 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
6017 	if (err && err != -ENOENT) {
6018 		err = -EADDRNOTAVAIL;
6019 		goto err_update_filters;
6020 	}
6021 
6022 	/* Add filter for new MAC. If filter exists, return success */
6023 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
6024 	if (err == -EEXIST) {
6025 		/* Although this MAC filter is already present in hardware it's
6026 		 * possible in some cases (e.g. bonding) that dev_addr was
6027 		 * modified outside of the driver and needs to be restored back
6028 		 * to this value.
6029 		 */
6030 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6031 
6032 		return 0;
6033 	} else if (err) {
6034 		/* error if the new filter addition failed */
6035 		err = -EADDRNOTAVAIL;
6036 	}
6037 
6038 err_update_filters:
6039 	if (err) {
6040 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6041 			   mac);
6042 		netif_addr_lock_bh(netdev);
6043 		eth_hw_addr_set(netdev, old_mac);
6044 		netif_addr_unlock_bh(netdev);
6045 		return err;
6046 	}
6047 
6048 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6049 		   netdev->dev_addr);
6050 
6051 	/* write new MAC address to the firmware */
6052 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6053 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6054 	if (err) {
6055 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6056 			   mac, err);
6057 	}
6058 	return 0;
6059 }
6060 
6061 /**
6062  * ice_set_rx_mode - NDO callback to set the netdev filters
6063  * @netdev: network interface device structure
6064  */
6065 static void ice_set_rx_mode(struct net_device *netdev)
6066 {
6067 	struct ice_netdev_priv *np = netdev_priv(netdev);
6068 	struct ice_vsi *vsi = np->vsi;
6069 
6070 	if (!vsi || ice_is_switchdev_running(vsi->back))
6071 		return;
6072 
6073 	/* Set the flags to synchronize filters
6074 	 * ndo_set_rx_mode may be triggered even without a change in netdev
6075 	 * flags
6076 	 */
6077 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6078 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6079 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6080 
6081 	/* schedule our worker thread which will take care of
6082 	 * applying the new filter changes
6083 	 */
6084 	ice_service_task_schedule(vsi->back);
6085 }
6086 
6087 /**
6088  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6089  * @netdev: network interface device structure
6090  * @queue_index: Queue ID
6091  * @maxrate: maximum bandwidth in Mbps
6092  */
6093 static int
6094 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6095 {
6096 	struct ice_netdev_priv *np = netdev_priv(netdev);
6097 	struct ice_vsi *vsi = np->vsi;
6098 	u16 q_handle;
6099 	int status;
6100 	u8 tc;
6101 
6102 	/* Validate maxrate requested is within permitted range */
6103 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6104 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6105 			   maxrate, queue_index);
6106 		return -EINVAL;
6107 	}
6108 
6109 	q_handle = vsi->tx_rings[queue_index]->q_handle;
6110 	tc = ice_dcb_get_tc(vsi, queue_index);
6111 
6112 	vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6113 	if (!vsi) {
6114 		netdev_err(netdev, "Invalid VSI for given queue %d\n",
6115 			   queue_index);
6116 		return -EINVAL;
6117 	}
6118 
6119 	/* Set BW back to default, when user set maxrate to 0 */
6120 	if (!maxrate)
6121 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6122 					       q_handle, ICE_MAX_BW);
6123 	else
6124 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6125 					  q_handle, ICE_MAX_BW, maxrate * 1000);
6126 	if (status)
6127 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6128 			   status);
6129 
6130 	return status;
6131 }
6132 
6133 /**
6134  * ice_fdb_add - add an entry to the hardware database
6135  * @ndm: the input from the stack
6136  * @tb: pointer to array of nladdr (unused)
6137  * @dev: the net device pointer
6138  * @addr: the MAC address entry being added
6139  * @vid: VLAN ID
6140  * @flags: instructions from stack about fdb operation
6141  * @notified: whether notification was emitted
6142  * @extack: netlink extended ack
6143  */
6144 static int
6145 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6146 	    struct net_device *dev, const unsigned char *addr, u16 vid,
6147 	    u16 flags, bool *notified,
6148 	    struct netlink_ext_ack __always_unused *extack)
6149 {
6150 	int err;
6151 
6152 	if (vid) {
6153 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6154 		return -EINVAL;
6155 	}
6156 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6157 		netdev_err(dev, "FDB only supports static addresses\n");
6158 		return -EINVAL;
6159 	}
6160 
6161 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6162 		err = dev_uc_add_excl(dev, addr);
6163 	else if (is_multicast_ether_addr(addr))
6164 		err = dev_mc_add_excl(dev, addr);
6165 	else
6166 		err = -EINVAL;
6167 
6168 	/* Only return duplicate errors if NLM_F_EXCL is set */
6169 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
6170 		err = 0;
6171 
6172 	return err;
6173 }
6174 
6175 /**
6176  * ice_fdb_del - delete an entry from the hardware database
6177  * @ndm: the input from the stack
6178  * @tb: pointer to array of nladdr (unused)
6179  * @dev: the net device pointer
6180  * @addr: the MAC address entry being added
6181  * @vid: VLAN ID
6182  * @notified: whether notification was emitted
6183  * @extack: netlink extended ack
6184  */
6185 static int
6186 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6187 	    struct net_device *dev, const unsigned char *addr,
6188 	    __always_unused u16 vid, bool *notified,
6189 	    struct netlink_ext_ack *extack)
6190 {
6191 	int err;
6192 
6193 	if (ndm->ndm_state & NUD_PERMANENT) {
6194 		netdev_err(dev, "FDB only supports static addresses\n");
6195 		return -EINVAL;
6196 	}
6197 
6198 	if (is_unicast_ether_addr(addr))
6199 		err = dev_uc_del(dev, addr);
6200 	else if (is_multicast_ether_addr(addr))
6201 		err = dev_mc_del(dev, addr);
6202 	else
6203 		err = -EINVAL;
6204 
6205 	return err;
6206 }
6207 
6208 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6209 					 NETIF_F_HW_VLAN_CTAG_TX | \
6210 					 NETIF_F_HW_VLAN_STAG_RX | \
6211 					 NETIF_F_HW_VLAN_STAG_TX)
6212 
6213 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6214 					 NETIF_F_HW_VLAN_STAG_RX)
6215 
6216 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
6217 					 NETIF_F_HW_VLAN_STAG_FILTER)
6218 
6219 /**
6220  * ice_fix_features - fix the netdev features flags based on device limitations
6221  * @netdev: ptr to the netdev that flags are being fixed on
6222  * @features: features that need to be checked and possibly fixed
6223  *
6224  * Make sure any fixups are made to features in this callback. This enables the
6225  * driver to not have to check unsupported configurations throughout the driver
6226  * because that's the responsiblity of this callback.
6227  *
6228  * Single VLAN Mode (SVM) Supported Features:
6229  *	NETIF_F_HW_VLAN_CTAG_FILTER
6230  *	NETIF_F_HW_VLAN_CTAG_RX
6231  *	NETIF_F_HW_VLAN_CTAG_TX
6232  *
6233  * Double VLAN Mode (DVM) Supported Features:
6234  *	NETIF_F_HW_VLAN_CTAG_FILTER
6235  *	NETIF_F_HW_VLAN_CTAG_RX
6236  *	NETIF_F_HW_VLAN_CTAG_TX
6237  *
6238  *	NETIF_F_HW_VLAN_STAG_FILTER
6239  *	NETIF_HW_VLAN_STAG_RX
6240  *	NETIF_HW_VLAN_STAG_TX
6241  *
6242  * Features that need fixing:
6243  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6244  *	These are mutually exlusive as the VSI context cannot support multiple
6245  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
6246  *	is not done, then default to clearing the requested STAG offload
6247  *	settings.
6248  *
6249  *	All supported filtering has to be enabled or disabled together. For
6250  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6251  *	together. If this is not done, then default to VLAN filtering disabled.
6252  *	These are mutually exclusive as there is currently no way to
6253  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6254  *	prune rules.
6255  */
6256 static netdev_features_t
6257 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6258 {
6259 	struct ice_netdev_priv *np = netdev_priv(netdev);
6260 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6261 	bool cur_ctag, cur_stag, req_ctag, req_stag;
6262 
6263 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6264 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6265 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6266 
6267 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6268 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6269 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6270 
6271 	if (req_vlan_fltr != cur_vlan_fltr) {
6272 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6273 			if (req_ctag && req_stag) {
6274 				features |= NETIF_VLAN_FILTERING_FEATURES;
6275 			} else if (!req_ctag && !req_stag) {
6276 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6277 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
6278 				   (!cur_stag && req_stag && !cur_ctag)) {
6279 				features |= NETIF_VLAN_FILTERING_FEATURES;
6280 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6281 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
6282 				   (cur_stag && !req_stag && cur_ctag)) {
6283 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6284 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6285 			}
6286 		} else {
6287 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6288 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6289 
6290 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6291 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6292 		}
6293 	}
6294 
6295 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6296 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6297 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6298 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6299 			      NETIF_F_HW_VLAN_STAG_TX);
6300 	}
6301 
6302 	if (!(netdev->features & NETIF_F_RXFCS) &&
6303 	    (features & NETIF_F_RXFCS) &&
6304 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6305 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
6306 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6307 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6308 	}
6309 
6310 	return features;
6311 }
6312 
6313 /**
6314  * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6315  * @vsi: PF's VSI
6316  * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6317  *
6318  * Store current stripped VLAN proto in ring packet context,
6319  * so it can be accessed more efficiently by packet processing code.
6320  */
6321 static void
6322 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6323 {
6324 	u16 i;
6325 
6326 	ice_for_each_alloc_rxq(vsi, i)
6327 		vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6328 }
6329 
6330 /**
6331  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6332  * @vsi: PF's VSI
6333  * @features: features used to determine VLAN offload settings
6334  *
6335  * First, determine the vlan_ethertype based on the VLAN offload bits in
6336  * features. Then determine if stripping and insertion should be enabled or
6337  * disabled. Finally enable or disable VLAN stripping and insertion.
6338  */
6339 static int
6340 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6341 {
6342 	bool enable_stripping = true, enable_insertion = true;
6343 	struct ice_vsi_vlan_ops *vlan_ops;
6344 	int strip_err = 0, insert_err = 0;
6345 	u16 vlan_ethertype = 0;
6346 
6347 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6348 
6349 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6350 		vlan_ethertype = ETH_P_8021AD;
6351 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6352 		vlan_ethertype = ETH_P_8021Q;
6353 
6354 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6355 		enable_stripping = false;
6356 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6357 		enable_insertion = false;
6358 
6359 	if (enable_stripping)
6360 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6361 	else
6362 		strip_err = vlan_ops->dis_stripping(vsi);
6363 
6364 	if (enable_insertion)
6365 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6366 	else
6367 		insert_err = vlan_ops->dis_insertion(vsi);
6368 
6369 	if (strip_err || insert_err)
6370 		return -EIO;
6371 
6372 	ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6373 				    htons(vlan_ethertype) : 0);
6374 
6375 	return 0;
6376 }
6377 
6378 /**
6379  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6380  * @vsi: PF's VSI
6381  * @features: features used to determine VLAN filtering settings
6382  *
6383  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6384  * features.
6385  */
6386 static int
6387 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6388 {
6389 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6390 	int err = 0;
6391 
6392 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6393 	 * if either bit is set. In switchdev mode Rx filtering should never be
6394 	 * enabled.
6395 	 */
6396 	if ((features &
6397 	     (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) &&
6398 	     !ice_is_eswitch_mode_switchdev(vsi->back))
6399 		err = vlan_ops->ena_rx_filtering(vsi);
6400 	else
6401 		err = vlan_ops->dis_rx_filtering(vsi);
6402 
6403 	return err;
6404 }
6405 
6406 /**
6407  * ice_set_vlan_features - set VLAN settings based on suggested feature set
6408  * @netdev: ptr to the netdev being adjusted
6409  * @features: the feature set that the stack is suggesting
6410  *
6411  * Only update VLAN settings if the requested_vlan_features are different than
6412  * the current_vlan_features.
6413  */
6414 static int
6415 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6416 {
6417 	netdev_features_t current_vlan_features, requested_vlan_features;
6418 	struct ice_netdev_priv *np = netdev_priv(netdev);
6419 	struct ice_vsi *vsi = np->vsi;
6420 	int err;
6421 
6422 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6423 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6424 	if (current_vlan_features ^ requested_vlan_features) {
6425 		if ((features & NETIF_F_RXFCS) &&
6426 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6427 			dev_err(ice_pf_to_dev(vsi->back),
6428 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6429 			return -EIO;
6430 		}
6431 
6432 		err = ice_set_vlan_offload_features(vsi, features);
6433 		if (err)
6434 			return err;
6435 	}
6436 
6437 	current_vlan_features = netdev->features &
6438 		NETIF_VLAN_FILTERING_FEATURES;
6439 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6440 	if (current_vlan_features ^ requested_vlan_features) {
6441 		err = ice_set_vlan_filtering_features(vsi, features);
6442 		if (err)
6443 			return err;
6444 	}
6445 
6446 	return 0;
6447 }
6448 
6449 /**
6450  * ice_set_loopback - turn on/off loopback mode on underlying PF
6451  * @vsi: ptr to VSI
6452  * @ena: flag to indicate the on/off setting
6453  */
6454 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6455 {
6456 	bool if_running = netif_running(vsi->netdev);
6457 	int ret;
6458 
6459 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6460 		ret = ice_down(vsi);
6461 		if (ret) {
6462 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6463 			return ret;
6464 		}
6465 	}
6466 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6467 	if (ret)
6468 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6469 	if (if_running)
6470 		ret = ice_up(vsi);
6471 
6472 	return ret;
6473 }
6474 
6475 /**
6476  * ice_set_features - set the netdev feature flags
6477  * @netdev: ptr to the netdev being adjusted
6478  * @features: the feature set that the stack is suggesting
6479  */
6480 static int
6481 ice_set_features(struct net_device *netdev, netdev_features_t features)
6482 {
6483 	netdev_features_t changed = netdev->features ^ features;
6484 	struct ice_netdev_priv *np = netdev_priv(netdev);
6485 	struct ice_vsi *vsi = np->vsi;
6486 	struct ice_pf *pf = vsi->back;
6487 	int ret = 0;
6488 
6489 	/* Don't set any netdev advanced features with device in Safe Mode */
6490 	if (ice_is_safe_mode(pf)) {
6491 		dev_err(ice_pf_to_dev(pf),
6492 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6493 		return ret;
6494 	}
6495 
6496 	/* Do not change setting during reset */
6497 	if (ice_is_reset_in_progress(pf->state)) {
6498 		dev_err(ice_pf_to_dev(pf),
6499 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6500 		return -EBUSY;
6501 	}
6502 
6503 	/* Multiple features can be changed in one call so keep features in
6504 	 * separate if/else statements to guarantee each feature is checked
6505 	 */
6506 	if (changed & NETIF_F_RXHASH)
6507 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6508 
6509 	ret = ice_set_vlan_features(netdev, features);
6510 	if (ret)
6511 		return ret;
6512 
6513 	/* Turn on receive of FCS aka CRC, and after setting this
6514 	 * flag the packet data will have the 4 byte CRC appended
6515 	 */
6516 	if (changed & NETIF_F_RXFCS) {
6517 		if ((features & NETIF_F_RXFCS) &&
6518 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6519 			dev_err(ice_pf_to_dev(vsi->back),
6520 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6521 			return -EIO;
6522 		}
6523 
6524 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6525 		ret = ice_down_up(vsi);
6526 		if (ret)
6527 			return ret;
6528 	}
6529 
6530 	if (changed & NETIF_F_NTUPLE) {
6531 		bool ena = !!(features & NETIF_F_NTUPLE);
6532 
6533 		ice_vsi_manage_fdir(vsi, ena);
6534 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6535 	}
6536 
6537 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6538 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6539 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6540 		return -EACCES;
6541 	}
6542 
6543 	if (changed & NETIF_F_HW_TC) {
6544 		bool ena = !!(features & NETIF_F_HW_TC);
6545 
6546 		assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena);
6547 	}
6548 
6549 	if (changed & NETIF_F_LOOPBACK)
6550 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6551 
6552 	return ret;
6553 }
6554 
6555 /**
6556  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6557  * @vsi: VSI to setup VLAN properties for
6558  */
6559 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6560 {
6561 	int err;
6562 
6563 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6564 	if (err)
6565 		return err;
6566 
6567 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6568 	if (err)
6569 		return err;
6570 
6571 	return ice_vsi_add_vlan_zero(vsi);
6572 }
6573 
6574 /**
6575  * ice_vsi_cfg_lan - Setup the VSI lan related config
6576  * @vsi: the VSI being configured
6577  *
6578  * Return 0 on success and negative value on error
6579  */
6580 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6581 {
6582 	int err;
6583 
6584 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6585 		ice_set_rx_mode(vsi->netdev);
6586 
6587 		err = ice_vsi_vlan_setup(vsi);
6588 		if (err)
6589 			return err;
6590 	}
6591 	ice_vsi_cfg_dcb_rings(vsi);
6592 
6593 	err = ice_vsi_cfg_lan_txqs(vsi);
6594 	if (!err && ice_is_xdp_ena_vsi(vsi))
6595 		err = ice_vsi_cfg_xdp_txqs(vsi);
6596 	if (!err)
6597 		err = ice_vsi_cfg_rxqs(vsi);
6598 
6599 	return err;
6600 }
6601 
6602 /* THEORY OF MODERATION:
6603  * The ice driver hardware works differently than the hardware that DIMLIB was
6604  * originally made for. ice hardware doesn't have packet count limits that
6605  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6606  * which is hard-coded to a limit of 250,000 ints/second.
6607  * If not using dynamic moderation, the INTRL value can be modified
6608  * by ethtool rx-usecs-high.
6609  */
6610 struct ice_dim {
6611 	/* the throttle rate for interrupts, basically worst case delay before
6612 	 * an initial interrupt fires, value is stored in microseconds.
6613 	 */
6614 	u16 itr;
6615 };
6616 
6617 /* Make a different profile for Rx that doesn't allow quite so aggressive
6618  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6619  * second.
6620  */
6621 static const struct ice_dim rx_profile[] = {
6622 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6623 	{8},    /* 125,000 ints/s */
6624 	{16},   /*  62,500 ints/s */
6625 	{62},   /*  16,129 ints/s */
6626 	{126}   /*   7,936 ints/s */
6627 };
6628 
6629 /* The transmit profile, which has the same sorts of values
6630  * as the previous struct
6631  */
6632 static const struct ice_dim tx_profile[] = {
6633 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6634 	{8},    /* 125,000 ints/s */
6635 	{40},   /*  16,125 ints/s */
6636 	{128},  /*   7,812 ints/s */
6637 	{256}   /*   3,906 ints/s */
6638 };
6639 
6640 static void ice_tx_dim_work(struct work_struct *work)
6641 {
6642 	struct ice_ring_container *rc;
6643 	struct dim *dim;
6644 	u16 itr;
6645 
6646 	dim = container_of(work, struct dim, work);
6647 	rc = dim->priv;
6648 
6649 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6650 
6651 	/* look up the values in our local table */
6652 	itr = tx_profile[dim->profile_ix].itr;
6653 
6654 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6655 	ice_write_itr(rc, itr);
6656 
6657 	dim->state = DIM_START_MEASURE;
6658 }
6659 
6660 static void ice_rx_dim_work(struct work_struct *work)
6661 {
6662 	struct ice_ring_container *rc;
6663 	struct dim *dim;
6664 	u16 itr;
6665 
6666 	dim = container_of(work, struct dim, work);
6667 	rc = dim->priv;
6668 
6669 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6670 
6671 	/* look up the values in our local table */
6672 	itr = rx_profile[dim->profile_ix].itr;
6673 
6674 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6675 	ice_write_itr(rc, itr);
6676 
6677 	dim->state = DIM_START_MEASURE;
6678 }
6679 
6680 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6681 
6682 /**
6683  * ice_init_moderation - set up interrupt moderation
6684  * @q_vector: the vector containing rings to be configured
6685  *
6686  * Set up interrupt moderation registers, with the intent to do the right thing
6687  * when called from reset or from probe, and whether or not dynamic moderation
6688  * is enabled or not. Take special care to write all the registers in both
6689  * dynamic moderation mode or not in order to make sure hardware is in a known
6690  * state.
6691  */
6692 static void ice_init_moderation(struct ice_q_vector *q_vector)
6693 {
6694 	struct ice_ring_container *rc;
6695 	bool tx_dynamic, rx_dynamic;
6696 
6697 	rc = &q_vector->tx;
6698 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6699 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6700 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6701 	rc->dim.priv = rc;
6702 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6703 
6704 	/* set the initial TX ITR to match the above */
6705 	ice_write_itr(rc, tx_dynamic ?
6706 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6707 
6708 	rc = &q_vector->rx;
6709 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6710 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6711 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6712 	rc->dim.priv = rc;
6713 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6714 
6715 	/* set the initial RX ITR to match the above */
6716 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6717 				       rc->itr_setting);
6718 
6719 	ice_set_q_vector_intrl(q_vector);
6720 }
6721 
6722 /**
6723  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6724  * @vsi: the VSI being configured
6725  */
6726 static void ice_napi_enable_all(struct ice_vsi *vsi)
6727 {
6728 	int q_idx;
6729 
6730 	if (!vsi->netdev)
6731 		return;
6732 
6733 	ice_for_each_q_vector(vsi, q_idx) {
6734 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6735 
6736 		ice_init_moderation(q_vector);
6737 
6738 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6739 			napi_enable(&q_vector->napi);
6740 	}
6741 }
6742 
6743 /**
6744  * ice_up_complete - Finish the last steps of bringing up a connection
6745  * @vsi: The VSI being configured
6746  *
6747  * Return 0 on success and negative value on error
6748  */
6749 static int ice_up_complete(struct ice_vsi *vsi)
6750 {
6751 	struct ice_pf *pf = vsi->back;
6752 	int err;
6753 
6754 	ice_vsi_cfg_msix(vsi);
6755 
6756 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6757 	 * Tx queue group list was configured and the context bits were
6758 	 * programmed using ice_vsi_cfg_txqs
6759 	 */
6760 	err = ice_vsi_start_all_rx_rings(vsi);
6761 	if (err)
6762 		return err;
6763 
6764 	clear_bit(ICE_VSI_DOWN, vsi->state);
6765 	ice_napi_enable_all(vsi);
6766 	ice_vsi_ena_irq(vsi);
6767 
6768 	if (vsi->port_info &&
6769 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6770 	    ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6771 			      vsi->type == ICE_VSI_SF)))) {
6772 		ice_print_link_msg(vsi, true);
6773 		netif_tx_start_all_queues(vsi->netdev);
6774 		netif_carrier_on(vsi->netdev);
6775 		ice_ptp_link_change(pf, true);
6776 	}
6777 
6778 	/* Perform an initial read of the statistics registers now to
6779 	 * set the baseline so counters are ready when interface is up
6780 	 */
6781 	ice_update_eth_stats(vsi);
6782 
6783 	if (vsi->type == ICE_VSI_PF)
6784 		ice_service_task_schedule(pf);
6785 
6786 	return 0;
6787 }
6788 
6789 /**
6790  * ice_up - Bring the connection back up after being down
6791  * @vsi: VSI being configured
6792  */
6793 int ice_up(struct ice_vsi *vsi)
6794 {
6795 	int err;
6796 
6797 	err = ice_vsi_cfg_lan(vsi);
6798 	if (!err)
6799 		err = ice_up_complete(vsi);
6800 
6801 	return err;
6802 }
6803 
6804 /**
6805  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6806  * @syncp: pointer to u64_stats_sync
6807  * @stats: stats that pkts and bytes count will be taken from
6808  * @pkts: packets stats counter
6809  * @bytes: bytes stats counter
6810  *
6811  * This function fetches stats from the ring considering the atomic operations
6812  * that needs to be performed to read u64 values in 32 bit machine.
6813  */
6814 void
6815 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6816 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6817 {
6818 	unsigned int start;
6819 
6820 	do {
6821 		start = u64_stats_fetch_begin(syncp);
6822 		*pkts = stats.pkts;
6823 		*bytes = stats.bytes;
6824 	} while (u64_stats_fetch_retry(syncp, start));
6825 }
6826 
6827 /**
6828  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6829  * @vsi: the VSI to be updated
6830  * @vsi_stats: the stats struct to be updated
6831  * @rings: rings to work on
6832  * @count: number of rings
6833  */
6834 static void
6835 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6836 			     struct rtnl_link_stats64 *vsi_stats,
6837 			     struct ice_tx_ring **rings, u16 count)
6838 {
6839 	u16 i;
6840 
6841 	for (i = 0; i < count; i++) {
6842 		struct ice_tx_ring *ring;
6843 		u64 pkts = 0, bytes = 0;
6844 
6845 		ring = READ_ONCE(rings[i]);
6846 		if (!ring || !ring->ring_stats)
6847 			continue;
6848 		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6849 					     ring->ring_stats->stats, &pkts,
6850 					     &bytes);
6851 		vsi_stats->tx_packets += pkts;
6852 		vsi_stats->tx_bytes += bytes;
6853 		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6854 		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6855 		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6856 	}
6857 }
6858 
6859 /**
6860  * ice_update_vsi_ring_stats - Update VSI stats counters
6861  * @vsi: the VSI to be updated
6862  */
6863 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6864 {
6865 	struct rtnl_link_stats64 *net_stats, *stats_prev;
6866 	struct rtnl_link_stats64 *vsi_stats;
6867 	struct ice_pf *pf = vsi->back;
6868 	u64 pkts, bytes;
6869 	int i;
6870 
6871 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6872 	if (!vsi_stats)
6873 		return;
6874 
6875 	/* reset non-netdev (extended) stats */
6876 	vsi->tx_restart = 0;
6877 	vsi->tx_busy = 0;
6878 	vsi->tx_linearize = 0;
6879 	vsi->rx_buf_failed = 0;
6880 	vsi->rx_page_failed = 0;
6881 
6882 	rcu_read_lock();
6883 
6884 	/* update Tx rings counters */
6885 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6886 				     vsi->num_txq);
6887 
6888 	/* update Rx rings counters */
6889 	ice_for_each_rxq(vsi, i) {
6890 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6891 		struct ice_ring_stats *ring_stats;
6892 
6893 		ring_stats = ring->ring_stats;
6894 		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6895 					     ring_stats->stats, &pkts,
6896 					     &bytes);
6897 		vsi_stats->rx_packets += pkts;
6898 		vsi_stats->rx_bytes += bytes;
6899 		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6900 		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6901 	}
6902 
6903 	/* update XDP Tx rings counters */
6904 	if (ice_is_xdp_ena_vsi(vsi))
6905 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6906 					     vsi->num_xdp_txq);
6907 
6908 	rcu_read_unlock();
6909 
6910 	net_stats = &vsi->net_stats;
6911 	stats_prev = &vsi->net_stats_prev;
6912 
6913 	/* Update netdev counters, but keep in mind that values could start at
6914 	 * random value after PF reset. And as we increase the reported stat by
6915 	 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6916 	 * let's skip this round.
6917 	 */
6918 	if (likely(pf->stat_prev_loaded)) {
6919 		net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6920 		net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6921 		net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6922 		net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6923 	}
6924 
6925 	stats_prev->tx_packets = vsi_stats->tx_packets;
6926 	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6927 	stats_prev->rx_packets = vsi_stats->rx_packets;
6928 	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6929 
6930 	kfree(vsi_stats);
6931 }
6932 
6933 /**
6934  * ice_update_vsi_stats - Update VSI stats counters
6935  * @vsi: the VSI to be updated
6936  */
6937 void ice_update_vsi_stats(struct ice_vsi *vsi)
6938 {
6939 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6940 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6941 	struct ice_pf *pf = vsi->back;
6942 
6943 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6944 	    test_bit(ICE_CFG_BUSY, pf->state))
6945 		return;
6946 
6947 	/* get stats as recorded by Tx/Rx rings */
6948 	ice_update_vsi_ring_stats(vsi);
6949 
6950 	/* get VSI stats as recorded by the hardware */
6951 	ice_update_eth_stats(vsi);
6952 
6953 	cur_ns->tx_errors = cur_es->tx_errors;
6954 	cur_ns->rx_dropped = cur_es->rx_discards;
6955 	cur_ns->tx_dropped = cur_es->tx_discards;
6956 	cur_ns->multicast = cur_es->rx_multicast;
6957 
6958 	/* update some more netdev stats if this is main VSI */
6959 	if (vsi->type == ICE_VSI_PF) {
6960 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6961 		cur_ns->rx_errors = pf->stats.crc_errors +
6962 				    pf->stats.illegal_bytes +
6963 				    pf->stats.rx_undersize +
6964 				    pf->hw_csum_rx_error +
6965 				    pf->stats.rx_jabber +
6966 				    pf->stats.rx_fragments +
6967 				    pf->stats.rx_oversize;
6968 		/* record drops from the port level */
6969 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6970 	}
6971 }
6972 
6973 /**
6974  * ice_update_pf_stats - Update PF port stats counters
6975  * @pf: PF whose stats needs to be updated
6976  */
6977 void ice_update_pf_stats(struct ice_pf *pf)
6978 {
6979 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6980 	struct ice_hw *hw = &pf->hw;
6981 	u16 fd_ctr_base;
6982 	u8 port;
6983 
6984 	port = hw->port_info->lport;
6985 	prev_ps = &pf->stats_prev;
6986 	cur_ps = &pf->stats;
6987 
6988 	if (ice_is_reset_in_progress(pf->state))
6989 		pf->stat_prev_loaded = false;
6990 
6991 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6992 			  &prev_ps->eth.rx_bytes,
6993 			  &cur_ps->eth.rx_bytes);
6994 
6995 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6996 			  &prev_ps->eth.rx_unicast,
6997 			  &cur_ps->eth.rx_unicast);
6998 
6999 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
7000 			  &prev_ps->eth.rx_multicast,
7001 			  &cur_ps->eth.rx_multicast);
7002 
7003 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
7004 			  &prev_ps->eth.rx_broadcast,
7005 			  &cur_ps->eth.rx_broadcast);
7006 
7007 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
7008 			  &prev_ps->eth.rx_discards,
7009 			  &cur_ps->eth.rx_discards);
7010 
7011 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
7012 			  &prev_ps->eth.tx_bytes,
7013 			  &cur_ps->eth.tx_bytes);
7014 
7015 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
7016 			  &prev_ps->eth.tx_unicast,
7017 			  &cur_ps->eth.tx_unicast);
7018 
7019 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
7020 			  &prev_ps->eth.tx_multicast,
7021 			  &cur_ps->eth.tx_multicast);
7022 
7023 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
7024 			  &prev_ps->eth.tx_broadcast,
7025 			  &cur_ps->eth.tx_broadcast);
7026 
7027 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
7028 			  &prev_ps->tx_dropped_link_down,
7029 			  &cur_ps->tx_dropped_link_down);
7030 
7031 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7032 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7033 
7034 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7035 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7036 
7037 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7038 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7039 
7040 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7041 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7042 
7043 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7044 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7045 
7046 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7047 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7048 
7049 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7050 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7051 
7052 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7053 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7054 
7055 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7056 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7057 
7058 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7059 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7060 
7061 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7062 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7063 
7064 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7065 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7066 
7067 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7068 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7069 
7070 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7071 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7072 
7073 	fd_ctr_base = hw->fd_ctr_base;
7074 
7075 	ice_stat_update40(hw,
7076 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7077 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7078 			  &cur_ps->fd_sb_match);
7079 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7080 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7081 
7082 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7083 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7084 
7085 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7086 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7087 
7088 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7089 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7090 
7091 	ice_update_dcb_stats(pf);
7092 
7093 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7094 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
7095 
7096 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7097 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7098 
7099 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7100 			  &prev_ps->mac_local_faults,
7101 			  &cur_ps->mac_local_faults);
7102 
7103 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7104 			  &prev_ps->mac_remote_faults,
7105 			  &cur_ps->mac_remote_faults);
7106 
7107 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7108 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7109 
7110 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7111 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7112 
7113 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7114 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7115 
7116 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7117 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7118 
7119 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7120 
7121 	pf->stat_prev_loaded = true;
7122 }
7123 
7124 /**
7125  * ice_get_stats64 - get statistics for network device structure
7126  * @netdev: network interface device structure
7127  * @stats: main device statistics structure
7128  */
7129 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7130 {
7131 	struct ice_netdev_priv *np = netdev_priv(netdev);
7132 	struct rtnl_link_stats64 *vsi_stats;
7133 	struct ice_vsi *vsi = np->vsi;
7134 
7135 	vsi_stats = &vsi->net_stats;
7136 
7137 	if (!vsi->num_txq || !vsi->num_rxq)
7138 		return;
7139 
7140 	/* netdev packet/byte stats come from ring counter. These are obtained
7141 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7142 	 * But, only call the update routine and read the registers if VSI is
7143 	 * not down.
7144 	 */
7145 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
7146 		ice_update_vsi_ring_stats(vsi);
7147 	stats->tx_packets = vsi_stats->tx_packets;
7148 	stats->tx_bytes = vsi_stats->tx_bytes;
7149 	stats->rx_packets = vsi_stats->rx_packets;
7150 	stats->rx_bytes = vsi_stats->rx_bytes;
7151 
7152 	/* The rest of the stats can be read from the hardware but instead we
7153 	 * just return values that the watchdog task has already obtained from
7154 	 * the hardware.
7155 	 */
7156 	stats->multicast = vsi_stats->multicast;
7157 	stats->tx_errors = vsi_stats->tx_errors;
7158 	stats->tx_dropped = vsi_stats->tx_dropped;
7159 	stats->rx_errors = vsi_stats->rx_errors;
7160 	stats->rx_dropped = vsi_stats->rx_dropped;
7161 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7162 	stats->rx_length_errors = vsi_stats->rx_length_errors;
7163 }
7164 
7165 /**
7166  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7167  * @vsi: VSI having NAPI disabled
7168  */
7169 static void ice_napi_disable_all(struct ice_vsi *vsi)
7170 {
7171 	int q_idx;
7172 
7173 	if (!vsi->netdev)
7174 		return;
7175 
7176 	ice_for_each_q_vector(vsi, q_idx) {
7177 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7178 
7179 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7180 			napi_disable(&q_vector->napi);
7181 
7182 		cancel_work_sync(&q_vector->tx.dim.work);
7183 		cancel_work_sync(&q_vector->rx.dim.work);
7184 	}
7185 }
7186 
7187 /**
7188  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7189  * @vsi: the VSI being un-configured
7190  */
7191 static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7192 {
7193 	struct ice_pf *pf = vsi->back;
7194 	struct ice_hw *hw = &pf->hw;
7195 	u32 val;
7196 	int i;
7197 
7198 	/* disable interrupt causation from each Rx queue; Tx queues are
7199 	 * handled in ice_vsi_stop_tx_ring()
7200 	 */
7201 	if (vsi->rx_rings) {
7202 		ice_for_each_rxq(vsi, i) {
7203 			if (vsi->rx_rings[i]) {
7204 				u16 reg;
7205 
7206 				reg = vsi->rx_rings[i]->reg_idx;
7207 				val = rd32(hw, QINT_RQCTL(reg));
7208 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
7209 				wr32(hw, QINT_RQCTL(reg), val);
7210 			}
7211 		}
7212 	}
7213 
7214 	/* disable each interrupt */
7215 	ice_for_each_q_vector(vsi, i) {
7216 		if (!vsi->q_vectors[i])
7217 			continue;
7218 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7219 	}
7220 
7221 	ice_flush(hw);
7222 
7223 	/* don't call synchronize_irq() for VF's from the host */
7224 	if (vsi->type == ICE_VSI_VF)
7225 		return;
7226 
7227 	ice_for_each_q_vector(vsi, i)
7228 		synchronize_irq(vsi->q_vectors[i]->irq.virq);
7229 }
7230 
7231 /**
7232  * ice_down - Shutdown the connection
7233  * @vsi: The VSI being stopped
7234  *
7235  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7236  */
7237 int ice_down(struct ice_vsi *vsi)
7238 {
7239 	int i, tx_err, rx_err, vlan_err = 0;
7240 
7241 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7242 
7243 	if (vsi->netdev) {
7244 		vlan_err = ice_vsi_del_vlan_zero(vsi);
7245 		ice_ptp_link_change(vsi->back, false);
7246 		netif_carrier_off(vsi->netdev);
7247 		netif_tx_disable(vsi->netdev);
7248 	}
7249 
7250 	ice_vsi_dis_irq(vsi);
7251 
7252 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7253 	if (tx_err)
7254 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7255 			   vsi->vsi_num, tx_err);
7256 	if (!tx_err && vsi->xdp_rings) {
7257 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7258 		if (tx_err)
7259 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7260 				   vsi->vsi_num, tx_err);
7261 	}
7262 
7263 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
7264 	if (rx_err)
7265 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7266 			   vsi->vsi_num, rx_err);
7267 
7268 	ice_napi_disable_all(vsi);
7269 
7270 	ice_for_each_txq(vsi, i)
7271 		ice_clean_tx_ring(vsi->tx_rings[i]);
7272 
7273 	if (vsi->xdp_rings)
7274 		ice_for_each_xdp_txq(vsi, i)
7275 			ice_clean_tx_ring(vsi->xdp_rings[i]);
7276 
7277 	ice_for_each_rxq(vsi, i)
7278 		ice_clean_rx_ring(vsi->rx_rings[i]);
7279 
7280 	if (tx_err || rx_err || vlan_err) {
7281 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7282 			   vsi->vsi_num, vsi->vsw->sw_id);
7283 		return -EIO;
7284 	}
7285 
7286 	return 0;
7287 }
7288 
7289 /**
7290  * ice_down_up - shutdown the VSI connection and bring it up
7291  * @vsi: the VSI to be reconnected
7292  */
7293 int ice_down_up(struct ice_vsi *vsi)
7294 {
7295 	int ret;
7296 
7297 	/* if DOWN already set, nothing to do */
7298 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7299 		return 0;
7300 
7301 	ret = ice_down(vsi);
7302 	if (ret)
7303 		return ret;
7304 
7305 	ret = ice_up(vsi);
7306 	if (ret) {
7307 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7308 		return ret;
7309 	}
7310 
7311 	return 0;
7312 }
7313 
7314 /**
7315  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7316  * @vsi: VSI having resources allocated
7317  *
7318  * Return 0 on success, negative on failure
7319  */
7320 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7321 {
7322 	int i, err = 0;
7323 
7324 	if (!vsi->num_txq) {
7325 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7326 			vsi->vsi_num);
7327 		return -EINVAL;
7328 	}
7329 
7330 	ice_for_each_txq(vsi, i) {
7331 		struct ice_tx_ring *ring = vsi->tx_rings[i];
7332 
7333 		if (!ring)
7334 			return -EINVAL;
7335 
7336 		if (vsi->netdev)
7337 			ring->netdev = vsi->netdev;
7338 		err = ice_setup_tx_ring(ring);
7339 		if (err)
7340 			break;
7341 	}
7342 
7343 	return err;
7344 }
7345 
7346 /**
7347  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7348  * @vsi: VSI having resources allocated
7349  *
7350  * Return 0 on success, negative on failure
7351  */
7352 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7353 {
7354 	int i, err = 0;
7355 
7356 	if (!vsi->num_rxq) {
7357 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7358 			vsi->vsi_num);
7359 		return -EINVAL;
7360 	}
7361 
7362 	ice_for_each_rxq(vsi, i) {
7363 		struct ice_rx_ring *ring = vsi->rx_rings[i];
7364 
7365 		if (!ring)
7366 			return -EINVAL;
7367 
7368 		if (vsi->netdev)
7369 			ring->netdev = vsi->netdev;
7370 		err = ice_setup_rx_ring(ring);
7371 		if (err)
7372 			break;
7373 	}
7374 
7375 	return err;
7376 }
7377 
7378 /**
7379  * ice_vsi_open_ctrl - open control VSI for use
7380  * @vsi: the VSI to open
7381  *
7382  * Initialization of the Control VSI
7383  *
7384  * Returns 0 on success, negative value on error
7385  */
7386 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7387 {
7388 	char int_name[ICE_INT_NAME_STR_LEN];
7389 	struct ice_pf *pf = vsi->back;
7390 	struct device *dev;
7391 	int err;
7392 
7393 	dev = ice_pf_to_dev(pf);
7394 	/* allocate descriptors */
7395 	err = ice_vsi_setup_tx_rings(vsi);
7396 	if (err)
7397 		goto err_setup_tx;
7398 
7399 	err = ice_vsi_setup_rx_rings(vsi);
7400 	if (err)
7401 		goto err_setup_rx;
7402 
7403 	err = ice_vsi_cfg_lan(vsi);
7404 	if (err)
7405 		goto err_setup_rx;
7406 
7407 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7408 		 dev_driver_string(dev), dev_name(dev));
7409 	err = ice_vsi_req_irq_msix(vsi, int_name);
7410 	if (err)
7411 		goto err_setup_rx;
7412 
7413 	ice_vsi_cfg_msix(vsi);
7414 
7415 	err = ice_vsi_start_all_rx_rings(vsi);
7416 	if (err)
7417 		goto err_up_complete;
7418 
7419 	clear_bit(ICE_VSI_DOWN, vsi->state);
7420 	ice_vsi_ena_irq(vsi);
7421 
7422 	return 0;
7423 
7424 err_up_complete:
7425 	ice_down(vsi);
7426 err_setup_rx:
7427 	ice_vsi_free_rx_rings(vsi);
7428 err_setup_tx:
7429 	ice_vsi_free_tx_rings(vsi);
7430 
7431 	return err;
7432 }
7433 
7434 /**
7435  * ice_vsi_open - Called when a network interface is made active
7436  * @vsi: the VSI to open
7437  *
7438  * Initialization of the VSI
7439  *
7440  * Returns 0 on success, negative value on error
7441  */
7442 int ice_vsi_open(struct ice_vsi *vsi)
7443 {
7444 	char int_name[ICE_INT_NAME_STR_LEN];
7445 	struct ice_pf *pf = vsi->back;
7446 	int err;
7447 
7448 	/* allocate descriptors */
7449 	err = ice_vsi_setup_tx_rings(vsi);
7450 	if (err)
7451 		goto err_setup_tx;
7452 
7453 	err = ice_vsi_setup_rx_rings(vsi);
7454 	if (err)
7455 		goto err_setup_rx;
7456 
7457 	err = ice_vsi_cfg_lan(vsi);
7458 	if (err)
7459 		goto err_setup_rx;
7460 
7461 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7462 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7463 	err = ice_vsi_req_irq_msix(vsi, int_name);
7464 	if (err)
7465 		goto err_setup_rx;
7466 
7467 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7468 
7469 	if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7470 		/* Notify the stack of the actual queue counts. */
7471 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7472 		if (err)
7473 			goto err_set_qs;
7474 
7475 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7476 		if (err)
7477 			goto err_set_qs;
7478 
7479 		ice_vsi_set_napi_queues(vsi);
7480 	}
7481 
7482 	err = ice_up_complete(vsi);
7483 	if (err)
7484 		goto err_up_complete;
7485 
7486 	return 0;
7487 
7488 err_up_complete:
7489 	ice_down(vsi);
7490 err_set_qs:
7491 	ice_vsi_free_irq(vsi);
7492 err_setup_rx:
7493 	ice_vsi_free_rx_rings(vsi);
7494 err_setup_tx:
7495 	ice_vsi_free_tx_rings(vsi);
7496 
7497 	return err;
7498 }
7499 
7500 /**
7501  * ice_vsi_release_all - Delete all VSIs
7502  * @pf: PF from which all VSIs are being removed
7503  */
7504 static void ice_vsi_release_all(struct ice_pf *pf)
7505 {
7506 	int err, i;
7507 
7508 	if (!pf->vsi)
7509 		return;
7510 
7511 	ice_for_each_vsi(pf, i) {
7512 		if (!pf->vsi[i])
7513 			continue;
7514 
7515 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7516 			continue;
7517 
7518 		err = ice_vsi_release(pf->vsi[i]);
7519 		if (err)
7520 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7521 				i, err, pf->vsi[i]->vsi_num);
7522 	}
7523 }
7524 
7525 /**
7526  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7527  * @pf: pointer to the PF instance
7528  * @type: VSI type to rebuild
7529  *
7530  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7531  */
7532 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7533 {
7534 	struct device *dev = ice_pf_to_dev(pf);
7535 	int i, err;
7536 
7537 	ice_for_each_vsi(pf, i) {
7538 		struct ice_vsi *vsi = pf->vsi[i];
7539 
7540 		if (!vsi || vsi->type != type)
7541 			continue;
7542 
7543 		/* rebuild the VSI */
7544 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7545 		if (err) {
7546 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7547 				err, vsi->idx, ice_vsi_type_str(type));
7548 			return err;
7549 		}
7550 
7551 		/* replay filters for the VSI */
7552 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7553 		if (err) {
7554 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7555 				err, vsi->idx, ice_vsi_type_str(type));
7556 			return err;
7557 		}
7558 
7559 		/* Re-map HW VSI number, using VSI handle that has been
7560 		 * previously validated in ice_replay_vsi() call above
7561 		 */
7562 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7563 
7564 		/* enable the VSI */
7565 		err = ice_ena_vsi(vsi, false);
7566 		if (err) {
7567 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7568 				err, vsi->idx, ice_vsi_type_str(type));
7569 			return err;
7570 		}
7571 
7572 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7573 			 ice_vsi_type_str(type));
7574 	}
7575 
7576 	return 0;
7577 }
7578 
7579 /**
7580  * ice_update_pf_netdev_link - Update PF netdev link status
7581  * @pf: pointer to the PF instance
7582  */
7583 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7584 {
7585 	bool link_up;
7586 	int i;
7587 
7588 	ice_for_each_vsi(pf, i) {
7589 		struct ice_vsi *vsi = pf->vsi[i];
7590 
7591 		if (!vsi || vsi->type != ICE_VSI_PF)
7592 			return;
7593 
7594 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7595 		if (link_up) {
7596 			netif_carrier_on(pf->vsi[i]->netdev);
7597 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7598 		} else {
7599 			netif_carrier_off(pf->vsi[i]->netdev);
7600 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7601 		}
7602 	}
7603 }
7604 
7605 /**
7606  * ice_rebuild - rebuild after reset
7607  * @pf: PF to rebuild
7608  * @reset_type: type of reset
7609  *
7610  * Do not rebuild VF VSI in this flow because that is already handled via
7611  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7612  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7613  * to reset/rebuild all the VF VSI twice.
7614  */
7615 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7616 {
7617 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
7618 	struct device *dev = ice_pf_to_dev(pf);
7619 	struct ice_hw *hw = &pf->hw;
7620 	bool dvm;
7621 	int err;
7622 
7623 	if (test_bit(ICE_DOWN, pf->state))
7624 		goto clear_recovery;
7625 
7626 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7627 
7628 #define ICE_EMP_RESET_SLEEP_MS 5000
7629 	if (reset_type == ICE_RESET_EMPR) {
7630 		/* If an EMP reset has occurred, any previously pending flash
7631 		 * update will have completed. We no longer know whether or
7632 		 * not the NVM update EMP reset is restricted.
7633 		 */
7634 		pf->fw_emp_reset_disabled = false;
7635 
7636 		msleep(ICE_EMP_RESET_SLEEP_MS);
7637 	}
7638 
7639 	err = ice_init_all_ctrlq(hw);
7640 	if (err) {
7641 		dev_err(dev, "control queues init failed %d\n", err);
7642 		goto err_init_ctrlq;
7643 	}
7644 
7645 	/* if DDP was previously loaded successfully */
7646 	if (!ice_is_safe_mode(pf)) {
7647 		/* reload the SW DB of filter tables */
7648 		if (reset_type == ICE_RESET_PFR)
7649 			ice_fill_blk_tbls(hw);
7650 		else
7651 			/* Reload DDP Package after CORER/GLOBR reset */
7652 			ice_load_pkg(NULL, pf);
7653 	}
7654 
7655 	err = ice_clear_pf_cfg(hw);
7656 	if (err) {
7657 		dev_err(dev, "clear PF configuration failed %d\n", err);
7658 		goto err_init_ctrlq;
7659 	}
7660 
7661 	ice_clear_pxe_mode(hw);
7662 
7663 	err = ice_init_nvm(hw);
7664 	if (err) {
7665 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7666 		goto err_init_ctrlq;
7667 	}
7668 
7669 	err = ice_get_caps(hw);
7670 	if (err) {
7671 		dev_err(dev, "ice_get_caps failed %d\n", err);
7672 		goto err_init_ctrlq;
7673 	}
7674 
7675 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7676 	if (err) {
7677 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7678 		goto err_init_ctrlq;
7679 	}
7680 
7681 	dvm = ice_is_dvm_ena(hw);
7682 
7683 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7684 	if (err)
7685 		goto err_init_ctrlq;
7686 
7687 	err = ice_sched_init_port(hw->port_info);
7688 	if (err)
7689 		goto err_sched_init_port;
7690 
7691 	/* start misc vector */
7692 	err = ice_req_irq_msix_misc(pf);
7693 	if (err) {
7694 		dev_err(dev, "misc vector setup failed: %d\n", err);
7695 		goto err_sched_init_port;
7696 	}
7697 
7698 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7699 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7700 		if (!rd32(hw, PFQF_FD_SIZE)) {
7701 			u16 unused, guar, b_effort;
7702 
7703 			guar = hw->func_caps.fd_fltr_guar;
7704 			b_effort = hw->func_caps.fd_fltr_best_effort;
7705 
7706 			/* force guaranteed filter pool for PF */
7707 			ice_alloc_fd_guar_item(hw, &unused, guar);
7708 			/* force shared filter pool for PF */
7709 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7710 		}
7711 	}
7712 
7713 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7714 		ice_dcb_rebuild(pf);
7715 
7716 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7717 	 * the VSI rebuild. If not, this causes the PTP link status events to
7718 	 * fail.
7719 	 */
7720 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7721 		ice_ptp_rebuild(pf, reset_type);
7722 
7723 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7724 		ice_gnss_init(pf);
7725 
7726 	/* rebuild PF VSI */
7727 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7728 	if (err) {
7729 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7730 		goto err_vsi_rebuild;
7731 	}
7732 
7733 	if (reset_type == ICE_RESET_PFR) {
7734 		err = ice_rebuild_channels(pf);
7735 		if (err) {
7736 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7737 				err);
7738 			goto err_vsi_rebuild;
7739 		}
7740 	}
7741 
7742 	/* If Flow Director is active */
7743 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7744 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7745 		if (err) {
7746 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7747 			goto err_vsi_rebuild;
7748 		}
7749 
7750 		/* replay HW Flow Director recipes */
7751 		if (hw->fdir_prof)
7752 			ice_fdir_replay_flows(hw);
7753 
7754 		/* replay Flow Director filters */
7755 		ice_fdir_replay_fltrs(pf);
7756 
7757 		ice_rebuild_arfs(pf);
7758 	}
7759 
7760 	if (vsi && vsi->netdev)
7761 		netif_device_attach(vsi->netdev);
7762 
7763 	ice_update_pf_netdev_link(pf);
7764 
7765 	/* tell the firmware we are up */
7766 	err = ice_send_version(pf);
7767 	if (err) {
7768 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7769 			err);
7770 		goto err_vsi_rebuild;
7771 	}
7772 
7773 	ice_replay_post(hw);
7774 
7775 	/* if we get here, reset flow is successful */
7776 	clear_bit(ICE_RESET_FAILED, pf->state);
7777 
7778 	ice_health_clear(pf);
7779 
7780 	ice_plug_aux_dev(pf);
7781 	if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7782 		ice_lag_rebuild(pf);
7783 
7784 	/* Restore timestamp mode settings after VSI rebuild */
7785 	ice_ptp_restore_timestamp_mode(pf);
7786 	return;
7787 
7788 err_vsi_rebuild:
7789 err_sched_init_port:
7790 	ice_sched_cleanup_all(hw);
7791 err_init_ctrlq:
7792 	ice_shutdown_all_ctrlq(hw, false);
7793 	set_bit(ICE_RESET_FAILED, pf->state);
7794 clear_recovery:
7795 	/* set this bit in PF state to control service task scheduling */
7796 	set_bit(ICE_NEEDS_RESTART, pf->state);
7797 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7798 }
7799 
7800 /**
7801  * ice_change_mtu - NDO callback to change the MTU
7802  * @netdev: network interface device structure
7803  * @new_mtu: new value for maximum frame size
7804  *
7805  * Returns 0 on success, negative on failure
7806  */
7807 int ice_change_mtu(struct net_device *netdev, int new_mtu)
7808 {
7809 	struct ice_netdev_priv *np = netdev_priv(netdev);
7810 	struct ice_vsi *vsi = np->vsi;
7811 	struct ice_pf *pf = vsi->back;
7812 	struct bpf_prog *prog;
7813 	u8 count = 0;
7814 	int err = 0;
7815 
7816 	if (new_mtu == (int)netdev->mtu) {
7817 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7818 		return 0;
7819 	}
7820 
7821 	prog = vsi->xdp_prog;
7822 	if (prog && !prog->aux->xdp_has_frags) {
7823 		int frame_size = ice_max_xdp_frame_size(vsi);
7824 
7825 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7826 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7827 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7828 			return -EINVAL;
7829 		}
7830 	} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7831 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7832 			netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7833 				   ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7834 			return -EINVAL;
7835 		}
7836 	}
7837 
7838 	/* if a reset is in progress, wait for some time for it to complete */
7839 	do {
7840 		if (ice_is_reset_in_progress(pf->state)) {
7841 			count++;
7842 			usleep_range(1000, 2000);
7843 		} else {
7844 			break;
7845 		}
7846 
7847 	} while (count < 100);
7848 
7849 	if (count == 100) {
7850 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7851 		return -EBUSY;
7852 	}
7853 
7854 	WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7855 	err = ice_down_up(vsi);
7856 	if (err)
7857 		return err;
7858 
7859 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7860 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7861 
7862 	return err;
7863 }
7864 
7865 /**
7866  * ice_eth_ioctl - Access the hwtstamp interface
7867  * @netdev: network interface device structure
7868  * @ifr: interface request data
7869  * @cmd: ioctl command
7870  */
7871 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7872 {
7873 	struct ice_netdev_priv *np = netdev_priv(netdev);
7874 	struct ice_pf *pf = np->vsi->back;
7875 
7876 	switch (cmd) {
7877 	case SIOCGHWTSTAMP:
7878 		return ice_ptp_get_ts_config(pf, ifr);
7879 	case SIOCSHWTSTAMP:
7880 		return ice_ptp_set_ts_config(pf, ifr);
7881 	default:
7882 		return -EOPNOTSUPP;
7883 	}
7884 }
7885 
7886 /**
7887  * ice_aq_str - convert AQ err code to a string
7888  * @aq_err: the AQ error code to convert
7889  */
7890 const char *ice_aq_str(enum ice_aq_err aq_err)
7891 {
7892 	switch (aq_err) {
7893 	case ICE_AQ_RC_OK:
7894 		return "OK";
7895 	case ICE_AQ_RC_EPERM:
7896 		return "ICE_AQ_RC_EPERM";
7897 	case ICE_AQ_RC_ENOENT:
7898 		return "ICE_AQ_RC_ENOENT";
7899 	case ICE_AQ_RC_ENOMEM:
7900 		return "ICE_AQ_RC_ENOMEM";
7901 	case ICE_AQ_RC_EBUSY:
7902 		return "ICE_AQ_RC_EBUSY";
7903 	case ICE_AQ_RC_EEXIST:
7904 		return "ICE_AQ_RC_EEXIST";
7905 	case ICE_AQ_RC_EINVAL:
7906 		return "ICE_AQ_RC_EINVAL";
7907 	case ICE_AQ_RC_ENOSPC:
7908 		return "ICE_AQ_RC_ENOSPC";
7909 	case ICE_AQ_RC_ENOSYS:
7910 		return "ICE_AQ_RC_ENOSYS";
7911 	case ICE_AQ_RC_EMODE:
7912 		return "ICE_AQ_RC_EMODE";
7913 	case ICE_AQ_RC_ENOSEC:
7914 		return "ICE_AQ_RC_ENOSEC";
7915 	case ICE_AQ_RC_EBADSIG:
7916 		return "ICE_AQ_RC_EBADSIG";
7917 	case ICE_AQ_RC_ESVN:
7918 		return "ICE_AQ_RC_ESVN";
7919 	case ICE_AQ_RC_EBADMAN:
7920 		return "ICE_AQ_RC_EBADMAN";
7921 	case ICE_AQ_RC_EBADBUF:
7922 		return "ICE_AQ_RC_EBADBUF";
7923 	}
7924 
7925 	return "ICE_AQ_RC_UNKNOWN";
7926 }
7927 
7928 /**
7929  * ice_set_rss_lut - Set RSS LUT
7930  * @vsi: Pointer to VSI structure
7931  * @lut: Lookup table
7932  * @lut_size: Lookup table size
7933  *
7934  * Returns 0 on success, negative on failure
7935  */
7936 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7937 {
7938 	struct ice_aq_get_set_rss_lut_params params = {};
7939 	struct ice_hw *hw = &vsi->back->hw;
7940 	int status;
7941 
7942 	if (!lut)
7943 		return -EINVAL;
7944 
7945 	params.vsi_handle = vsi->idx;
7946 	params.lut_size = lut_size;
7947 	params.lut_type = vsi->rss_lut_type;
7948 	params.lut = lut;
7949 
7950 	status = ice_aq_set_rss_lut(hw, &params);
7951 	if (status)
7952 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7953 			status, ice_aq_str(hw->adminq.sq_last_status));
7954 
7955 	return status;
7956 }
7957 
7958 /**
7959  * ice_set_rss_key - Set RSS key
7960  * @vsi: Pointer to the VSI structure
7961  * @seed: RSS hash seed
7962  *
7963  * Returns 0 on success, negative on failure
7964  */
7965 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7966 {
7967 	struct ice_hw *hw = &vsi->back->hw;
7968 	int status;
7969 
7970 	if (!seed)
7971 		return -EINVAL;
7972 
7973 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7974 	if (status)
7975 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7976 			status, ice_aq_str(hw->adminq.sq_last_status));
7977 
7978 	return status;
7979 }
7980 
7981 /**
7982  * ice_get_rss_lut - Get RSS LUT
7983  * @vsi: Pointer to VSI structure
7984  * @lut: Buffer to store the lookup table entries
7985  * @lut_size: Size of buffer to store the lookup table entries
7986  *
7987  * Returns 0 on success, negative on failure
7988  */
7989 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7990 {
7991 	struct ice_aq_get_set_rss_lut_params params = {};
7992 	struct ice_hw *hw = &vsi->back->hw;
7993 	int status;
7994 
7995 	if (!lut)
7996 		return -EINVAL;
7997 
7998 	params.vsi_handle = vsi->idx;
7999 	params.lut_size = lut_size;
8000 	params.lut_type = vsi->rss_lut_type;
8001 	params.lut = lut;
8002 
8003 	status = ice_aq_get_rss_lut(hw, &params);
8004 	if (status)
8005 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
8006 			status, ice_aq_str(hw->adminq.sq_last_status));
8007 
8008 	return status;
8009 }
8010 
8011 /**
8012  * ice_get_rss_key - Get RSS key
8013  * @vsi: Pointer to VSI structure
8014  * @seed: Buffer to store the key in
8015  *
8016  * Returns 0 on success, negative on failure
8017  */
8018 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
8019 {
8020 	struct ice_hw *hw = &vsi->back->hw;
8021 	int status;
8022 
8023 	if (!seed)
8024 		return -EINVAL;
8025 
8026 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
8027 	if (status)
8028 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
8029 			status, ice_aq_str(hw->adminq.sq_last_status));
8030 
8031 	return status;
8032 }
8033 
8034 /**
8035  * ice_set_rss_hfunc - Set RSS HASH function
8036  * @vsi: Pointer to VSI structure
8037  * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8038  *
8039  * Returns 0 on success, negative on failure
8040  */
8041 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8042 {
8043 	struct ice_hw *hw = &vsi->back->hw;
8044 	struct ice_vsi_ctx *ctx;
8045 	bool symm;
8046 	int err;
8047 
8048 	if (hfunc == vsi->rss_hfunc)
8049 		return 0;
8050 
8051 	if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8052 	    hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8053 		return -EOPNOTSUPP;
8054 
8055 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8056 	if (!ctx)
8057 		return -ENOMEM;
8058 
8059 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8060 	ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8061 	ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8062 	ctx->info.q_opt_rss |=
8063 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8064 	ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8065 	ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8066 
8067 	err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8068 	if (err) {
8069 		dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8070 			vsi->vsi_num, err);
8071 	} else {
8072 		vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8073 		vsi->rss_hfunc = hfunc;
8074 		netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8075 			    hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8076 			    "Symmetric " : "");
8077 	}
8078 	kfree(ctx);
8079 	if (err)
8080 		return err;
8081 
8082 	/* Fix the symmetry setting for all existing RSS configurations */
8083 	symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8084 	return ice_set_rss_cfg_symm(hw, vsi, symm);
8085 }
8086 
8087 /**
8088  * ice_bridge_getlink - Get the hardware bridge mode
8089  * @skb: skb buff
8090  * @pid: process ID
8091  * @seq: RTNL message seq
8092  * @dev: the netdev being configured
8093  * @filter_mask: filter mask passed in
8094  * @nlflags: netlink flags passed in
8095  *
8096  * Return the bridge mode (VEB/VEPA)
8097  */
8098 static int
8099 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8100 		   struct net_device *dev, u32 filter_mask, int nlflags)
8101 {
8102 	struct ice_netdev_priv *np = netdev_priv(dev);
8103 	struct ice_vsi *vsi = np->vsi;
8104 	struct ice_pf *pf = vsi->back;
8105 	u16 bmode;
8106 
8107 	bmode = pf->first_sw->bridge_mode;
8108 
8109 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8110 				       filter_mask, NULL);
8111 }
8112 
8113 /**
8114  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8115  * @vsi: Pointer to VSI structure
8116  * @bmode: Hardware bridge mode (VEB/VEPA)
8117  *
8118  * Returns 0 on success, negative on failure
8119  */
8120 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8121 {
8122 	struct ice_aqc_vsi_props *vsi_props;
8123 	struct ice_hw *hw = &vsi->back->hw;
8124 	struct ice_vsi_ctx *ctxt;
8125 	int ret;
8126 
8127 	vsi_props = &vsi->info;
8128 
8129 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8130 	if (!ctxt)
8131 		return -ENOMEM;
8132 
8133 	ctxt->info = vsi->info;
8134 
8135 	if (bmode == BRIDGE_MODE_VEB)
8136 		/* change from VEPA to VEB mode */
8137 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8138 	else
8139 		/* change from VEB to VEPA mode */
8140 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8141 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8142 
8143 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8144 	if (ret) {
8145 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8146 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
8147 		goto out;
8148 	}
8149 	/* Update sw flags for book keeping */
8150 	vsi_props->sw_flags = ctxt->info.sw_flags;
8151 
8152 out:
8153 	kfree(ctxt);
8154 	return ret;
8155 }
8156 
8157 /**
8158  * ice_bridge_setlink - Set the hardware bridge mode
8159  * @dev: the netdev being configured
8160  * @nlh: RTNL message
8161  * @flags: bridge setlink flags
8162  * @extack: netlink extended ack
8163  *
8164  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8165  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8166  * not already set for all VSIs connected to this switch. And also update the
8167  * unicast switch filter rules for the corresponding switch of the netdev.
8168  */
8169 static int
8170 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8171 		   u16 __always_unused flags,
8172 		   struct netlink_ext_ack __always_unused *extack)
8173 {
8174 	struct ice_netdev_priv *np = netdev_priv(dev);
8175 	struct ice_pf *pf = np->vsi->back;
8176 	struct nlattr *attr, *br_spec;
8177 	struct ice_hw *hw = &pf->hw;
8178 	struct ice_sw *pf_sw;
8179 	int rem, v, err = 0;
8180 
8181 	pf_sw = pf->first_sw;
8182 	/* find the attribute in the netlink message */
8183 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8184 	if (!br_spec)
8185 		return -EINVAL;
8186 
8187 	nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8188 		__u16 mode = nla_get_u16(attr);
8189 
8190 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8191 			return -EINVAL;
8192 		/* Continue  if bridge mode is not being flipped */
8193 		if (mode == pf_sw->bridge_mode)
8194 			continue;
8195 		/* Iterates through the PF VSI list and update the loopback
8196 		 * mode of the VSI
8197 		 */
8198 		ice_for_each_vsi(pf, v) {
8199 			if (!pf->vsi[v])
8200 				continue;
8201 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8202 			if (err)
8203 				return err;
8204 		}
8205 
8206 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8207 		/* Update the unicast switch filter rules for the corresponding
8208 		 * switch of the netdev
8209 		 */
8210 		err = ice_update_sw_rule_bridge_mode(hw);
8211 		if (err) {
8212 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8213 				   mode, err,
8214 				   ice_aq_str(hw->adminq.sq_last_status));
8215 			/* revert hw->evb_veb */
8216 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8217 			return err;
8218 		}
8219 
8220 		pf_sw->bridge_mode = mode;
8221 	}
8222 
8223 	return 0;
8224 }
8225 
8226 /**
8227  * ice_tx_timeout - Respond to a Tx Hang
8228  * @netdev: network interface device structure
8229  * @txqueue: Tx queue
8230  */
8231 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8232 {
8233 	struct ice_netdev_priv *np = netdev_priv(netdev);
8234 	struct ice_tx_ring *tx_ring = NULL;
8235 	struct ice_vsi *vsi = np->vsi;
8236 	struct ice_pf *pf = vsi->back;
8237 	u32 i;
8238 
8239 	pf->tx_timeout_count++;
8240 
8241 	/* Check if PFC is enabled for the TC to which the queue belongs
8242 	 * to. If yes then Tx timeout is not caused by a hung queue, no
8243 	 * need to reset and rebuild
8244 	 */
8245 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8246 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8247 			 txqueue);
8248 		return;
8249 	}
8250 
8251 	/* now that we have an index, find the tx_ring struct */
8252 	ice_for_each_txq(vsi, i)
8253 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8254 			if (txqueue == vsi->tx_rings[i]->q_index) {
8255 				tx_ring = vsi->tx_rings[i];
8256 				break;
8257 			}
8258 
8259 	/* Reset recovery level if enough time has elapsed after last timeout.
8260 	 * Also ensure no new reset action happens before next timeout period.
8261 	 */
8262 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8263 		pf->tx_timeout_recovery_level = 1;
8264 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8265 				       netdev->watchdog_timeo)))
8266 		return;
8267 
8268 	if (tx_ring) {
8269 		struct ice_hw *hw = &pf->hw;
8270 		u32 head, intr = 0;
8271 
8272 		head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8273 				 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8274 		/* Read interrupt register */
8275 		intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8276 
8277 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8278 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8279 			    head, tx_ring->next_to_use, intr);
8280 
8281 		ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr);
8282 	}
8283 
8284 	pf->tx_timeout_last_recovery = jiffies;
8285 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8286 		    pf->tx_timeout_recovery_level, txqueue);
8287 
8288 	switch (pf->tx_timeout_recovery_level) {
8289 	case 1:
8290 		set_bit(ICE_PFR_REQ, pf->state);
8291 		break;
8292 	case 2:
8293 		set_bit(ICE_CORER_REQ, pf->state);
8294 		break;
8295 	case 3:
8296 		set_bit(ICE_GLOBR_REQ, pf->state);
8297 		break;
8298 	default:
8299 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8300 		set_bit(ICE_DOWN, pf->state);
8301 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8302 		set_bit(ICE_SERVICE_DIS, pf->state);
8303 		break;
8304 	}
8305 
8306 	ice_service_task_schedule(pf);
8307 	pf->tx_timeout_recovery_level++;
8308 }
8309 
8310 /**
8311  * ice_setup_tc_cls_flower - flower classifier offloads
8312  * @np: net device to configure
8313  * @filter_dev: device on which filter is added
8314  * @cls_flower: offload data
8315  */
8316 static int
8317 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8318 			struct net_device *filter_dev,
8319 			struct flow_cls_offload *cls_flower)
8320 {
8321 	struct ice_vsi *vsi = np->vsi;
8322 
8323 	if (cls_flower->common.chain_index)
8324 		return -EOPNOTSUPP;
8325 
8326 	switch (cls_flower->command) {
8327 	case FLOW_CLS_REPLACE:
8328 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8329 	case FLOW_CLS_DESTROY:
8330 		return ice_del_cls_flower(vsi, cls_flower);
8331 	default:
8332 		return -EINVAL;
8333 	}
8334 }
8335 
8336 /**
8337  * ice_setup_tc_block_cb - callback handler registered for TC block
8338  * @type: TC SETUP type
8339  * @type_data: TC flower offload data that contains user input
8340  * @cb_priv: netdev private data
8341  */
8342 static int
8343 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8344 {
8345 	struct ice_netdev_priv *np = cb_priv;
8346 
8347 	switch (type) {
8348 	case TC_SETUP_CLSFLOWER:
8349 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8350 					       type_data);
8351 	default:
8352 		return -EOPNOTSUPP;
8353 	}
8354 }
8355 
8356 /**
8357  * ice_validate_mqprio_qopt - Validate TCF input parameters
8358  * @vsi: Pointer to VSI
8359  * @mqprio_qopt: input parameters for mqprio queue configuration
8360  *
8361  * This function validates MQPRIO params, such as qcount (power of 2 wherever
8362  * needed), and make sure user doesn't specify qcount and BW rate limit
8363  * for TCs, which are more than "num_tc"
8364  */
8365 static int
8366 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8367 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
8368 {
8369 	int non_power_of_2_qcount = 0;
8370 	struct ice_pf *pf = vsi->back;
8371 	int max_rss_q_cnt = 0;
8372 	u64 sum_min_rate = 0;
8373 	struct device *dev;
8374 	int i, speed;
8375 	u8 num_tc;
8376 
8377 	if (vsi->type != ICE_VSI_PF)
8378 		return -EINVAL;
8379 
8380 	if (mqprio_qopt->qopt.offset[0] != 0 ||
8381 	    mqprio_qopt->qopt.num_tc < 1 ||
8382 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8383 		return -EINVAL;
8384 
8385 	dev = ice_pf_to_dev(pf);
8386 	vsi->ch_rss_size = 0;
8387 	num_tc = mqprio_qopt->qopt.num_tc;
8388 	speed = ice_get_link_speed_kbps(vsi);
8389 
8390 	for (i = 0; num_tc; i++) {
8391 		int qcount = mqprio_qopt->qopt.count[i];
8392 		u64 max_rate, min_rate, rem;
8393 
8394 		if (!qcount)
8395 			return -EINVAL;
8396 
8397 		if (is_power_of_2(qcount)) {
8398 			if (non_power_of_2_qcount &&
8399 			    qcount > non_power_of_2_qcount) {
8400 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8401 					qcount, non_power_of_2_qcount);
8402 				return -EINVAL;
8403 			}
8404 			if (qcount > max_rss_q_cnt)
8405 				max_rss_q_cnt = qcount;
8406 		} else {
8407 			if (non_power_of_2_qcount &&
8408 			    qcount != non_power_of_2_qcount) {
8409 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8410 					qcount, non_power_of_2_qcount);
8411 				return -EINVAL;
8412 			}
8413 			if (qcount < max_rss_q_cnt) {
8414 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8415 					qcount, max_rss_q_cnt);
8416 				return -EINVAL;
8417 			}
8418 			max_rss_q_cnt = qcount;
8419 			non_power_of_2_qcount = qcount;
8420 		}
8421 
8422 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8423 		 * converts the bandwidth rate limit into Bytes/s when
8424 		 * passing it down to the driver. So convert input bandwidth
8425 		 * from Bytes/s to Kbps
8426 		 */
8427 		max_rate = mqprio_qopt->max_rate[i];
8428 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8429 
8430 		/* min_rate is minimum guaranteed rate and it can't be zero */
8431 		min_rate = mqprio_qopt->min_rate[i];
8432 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8433 		sum_min_rate += min_rate;
8434 
8435 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8436 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8437 				min_rate, ICE_MIN_BW_LIMIT);
8438 			return -EINVAL;
8439 		}
8440 
8441 		if (max_rate && max_rate > speed) {
8442 			dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8443 				i, max_rate, speed);
8444 			return -EINVAL;
8445 		}
8446 
8447 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8448 		if (rem) {
8449 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8450 				i, ICE_MIN_BW_LIMIT);
8451 			return -EINVAL;
8452 		}
8453 
8454 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8455 		if (rem) {
8456 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8457 				i, ICE_MIN_BW_LIMIT);
8458 			return -EINVAL;
8459 		}
8460 
8461 		/* min_rate can't be more than max_rate, except when max_rate
8462 		 * is zero (implies max_rate sought is max line rate). In such
8463 		 * a case min_rate can be more than max.
8464 		 */
8465 		if (max_rate && min_rate > max_rate) {
8466 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8467 				min_rate, max_rate);
8468 			return -EINVAL;
8469 		}
8470 
8471 		if (i >= mqprio_qopt->qopt.num_tc - 1)
8472 			break;
8473 		if (mqprio_qopt->qopt.offset[i + 1] !=
8474 		    (mqprio_qopt->qopt.offset[i] + qcount))
8475 			return -EINVAL;
8476 	}
8477 	if (vsi->num_rxq <
8478 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8479 		return -EINVAL;
8480 	if (vsi->num_txq <
8481 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8482 		return -EINVAL;
8483 
8484 	if (sum_min_rate && sum_min_rate > (u64)speed) {
8485 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8486 			sum_min_rate, speed);
8487 		return -EINVAL;
8488 	}
8489 
8490 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8491 	vsi->ch_rss_size = max_rss_q_cnt;
8492 
8493 	return 0;
8494 }
8495 
8496 /**
8497  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8498  * @pf: ptr to PF device
8499  * @vsi: ptr to VSI
8500  */
8501 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8502 {
8503 	struct device *dev = ice_pf_to_dev(pf);
8504 	bool added = false;
8505 	struct ice_hw *hw;
8506 	int flow;
8507 
8508 	if (!(vsi->num_gfltr || vsi->num_bfltr))
8509 		return -EINVAL;
8510 
8511 	hw = &pf->hw;
8512 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8513 		struct ice_fd_hw_prof *prof;
8514 		int tun, status;
8515 		u64 entry_h;
8516 
8517 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8518 		      hw->fdir_prof[flow]->cnt))
8519 			continue;
8520 
8521 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8522 			enum ice_flow_priority prio;
8523 
8524 			/* add this VSI to FDir profile for this flow */
8525 			prio = ICE_FLOW_PRIO_NORMAL;
8526 			prof = hw->fdir_prof[flow];
8527 			status = ice_flow_add_entry(hw, ICE_BLK_FD,
8528 						    prof->prof_id[tun],
8529 						    prof->vsi_h[0], vsi->idx,
8530 						    prio, prof->fdir_seg[tun],
8531 						    &entry_h);
8532 			if (status) {
8533 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8534 					vsi->idx, flow);
8535 				continue;
8536 			}
8537 
8538 			prof->entry_h[prof->cnt][tun] = entry_h;
8539 		}
8540 
8541 		/* store VSI for filter replay and delete */
8542 		prof->vsi_h[prof->cnt] = vsi->idx;
8543 		prof->cnt++;
8544 
8545 		added = true;
8546 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8547 			flow);
8548 	}
8549 
8550 	if (!added)
8551 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8552 
8553 	return 0;
8554 }
8555 
8556 /**
8557  * ice_add_channel - add a channel by adding VSI
8558  * @pf: ptr to PF device
8559  * @sw_id: underlying HW switching element ID
8560  * @ch: ptr to channel structure
8561  *
8562  * Add a channel (VSI) using add_vsi and queue_map
8563  */
8564 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8565 {
8566 	struct device *dev = ice_pf_to_dev(pf);
8567 	struct ice_vsi *vsi;
8568 
8569 	if (ch->type != ICE_VSI_CHNL) {
8570 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8571 		return -EINVAL;
8572 	}
8573 
8574 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8575 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8576 		dev_err(dev, "create chnl VSI failure\n");
8577 		return -EINVAL;
8578 	}
8579 
8580 	ice_add_vsi_to_fdir(pf, vsi);
8581 
8582 	ch->sw_id = sw_id;
8583 	ch->vsi_num = vsi->vsi_num;
8584 	ch->info.mapping_flags = vsi->info.mapping_flags;
8585 	ch->ch_vsi = vsi;
8586 	/* set the back pointer of channel for newly created VSI */
8587 	vsi->ch = ch;
8588 
8589 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8590 	       sizeof(vsi->info.q_mapping));
8591 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8592 	       sizeof(vsi->info.tc_mapping));
8593 
8594 	return 0;
8595 }
8596 
8597 /**
8598  * ice_chnl_cfg_res
8599  * @vsi: the VSI being setup
8600  * @ch: ptr to channel structure
8601  *
8602  * Configure channel specific resources such as rings, vector.
8603  */
8604 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8605 {
8606 	int i;
8607 
8608 	for (i = 0; i < ch->num_txq; i++) {
8609 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8610 		struct ice_ring_container *rc;
8611 		struct ice_tx_ring *tx_ring;
8612 		struct ice_rx_ring *rx_ring;
8613 
8614 		tx_ring = vsi->tx_rings[ch->base_q + i];
8615 		rx_ring = vsi->rx_rings[ch->base_q + i];
8616 		if (!tx_ring || !rx_ring)
8617 			continue;
8618 
8619 		/* setup ring being channel enabled */
8620 		tx_ring->ch = ch;
8621 		rx_ring->ch = ch;
8622 
8623 		/* following code block sets up vector specific attributes */
8624 		tx_q_vector = tx_ring->q_vector;
8625 		rx_q_vector = rx_ring->q_vector;
8626 		if (!tx_q_vector && !rx_q_vector)
8627 			continue;
8628 
8629 		if (tx_q_vector) {
8630 			tx_q_vector->ch = ch;
8631 			/* setup Tx and Rx ITR setting if DIM is off */
8632 			rc = &tx_q_vector->tx;
8633 			if (!ITR_IS_DYNAMIC(rc))
8634 				ice_write_itr(rc, rc->itr_setting);
8635 		}
8636 		if (rx_q_vector) {
8637 			rx_q_vector->ch = ch;
8638 			/* setup Tx and Rx ITR setting if DIM is off */
8639 			rc = &rx_q_vector->rx;
8640 			if (!ITR_IS_DYNAMIC(rc))
8641 				ice_write_itr(rc, rc->itr_setting);
8642 		}
8643 	}
8644 
8645 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8646 	 * GLINT_ITR register would have written to perform in-context
8647 	 * update, hence perform flush
8648 	 */
8649 	if (ch->num_txq || ch->num_rxq)
8650 		ice_flush(&vsi->back->hw);
8651 }
8652 
8653 /**
8654  * ice_cfg_chnl_all_res - configure channel resources
8655  * @vsi: pte to main_vsi
8656  * @ch: ptr to channel structure
8657  *
8658  * This function configures channel specific resources such as flow-director
8659  * counter index, and other resources such as queues, vectors, ITR settings
8660  */
8661 static void
8662 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8663 {
8664 	/* configure channel (aka ADQ) resources such as queues, vectors,
8665 	 * ITR settings for channel specific vectors and anything else
8666 	 */
8667 	ice_chnl_cfg_res(vsi, ch);
8668 }
8669 
8670 /**
8671  * ice_setup_hw_channel - setup new channel
8672  * @pf: ptr to PF device
8673  * @vsi: the VSI being setup
8674  * @ch: ptr to channel structure
8675  * @sw_id: underlying HW switching element ID
8676  * @type: type of channel to be created (VMDq2/VF)
8677  *
8678  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8679  * and configures Tx rings accordingly
8680  */
8681 static int
8682 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8683 		     struct ice_channel *ch, u16 sw_id, u8 type)
8684 {
8685 	struct device *dev = ice_pf_to_dev(pf);
8686 	int ret;
8687 
8688 	ch->base_q = vsi->next_base_q;
8689 	ch->type = type;
8690 
8691 	ret = ice_add_channel(pf, sw_id, ch);
8692 	if (ret) {
8693 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8694 		return ret;
8695 	}
8696 
8697 	/* configure/setup ADQ specific resources */
8698 	ice_cfg_chnl_all_res(vsi, ch);
8699 
8700 	/* make sure to update the next_base_q so that subsequent channel's
8701 	 * (aka ADQ) VSI queue map is correct
8702 	 */
8703 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8704 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8705 		ch->num_rxq);
8706 
8707 	return 0;
8708 }
8709 
8710 /**
8711  * ice_setup_channel - setup new channel using uplink element
8712  * @pf: ptr to PF device
8713  * @vsi: the VSI being setup
8714  * @ch: ptr to channel structure
8715  *
8716  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8717  * and uplink switching element
8718  */
8719 static bool
8720 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8721 		  struct ice_channel *ch)
8722 {
8723 	struct device *dev = ice_pf_to_dev(pf);
8724 	u16 sw_id;
8725 	int ret;
8726 
8727 	if (vsi->type != ICE_VSI_PF) {
8728 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8729 		return false;
8730 	}
8731 
8732 	sw_id = pf->first_sw->sw_id;
8733 
8734 	/* create channel (VSI) */
8735 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8736 	if (ret) {
8737 		dev_err(dev, "failed to setup hw_channel\n");
8738 		return false;
8739 	}
8740 	dev_dbg(dev, "successfully created channel()\n");
8741 
8742 	return ch->ch_vsi ? true : false;
8743 }
8744 
8745 /**
8746  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8747  * @vsi: VSI to be configured
8748  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8749  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8750  */
8751 static int
8752 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8753 {
8754 	int err;
8755 
8756 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8757 	if (err)
8758 		return err;
8759 
8760 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8761 }
8762 
8763 /**
8764  * ice_create_q_channel - function to create channel
8765  * @vsi: VSI to be configured
8766  * @ch: ptr to channel (it contains channel specific params)
8767  *
8768  * This function creates channel (VSI) using num_queues specified by user,
8769  * reconfigs RSS if needed.
8770  */
8771 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8772 {
8773 	struct ice_pf *pf = vsi->back;
8774 	struct device *dev;
8775 
8776 	if (!ch)
8777 		return -EINVAL;
8778 
8779 	dev = ice_pf_to_dev(pf);
8780 	if (!ch->num_txq || !ch->num_rxq) {
8781 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8782 		return -EINVAL;
8783 	}
8784 
8785 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8786 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8787 			vsi->cnt_q_avail, ch->num_txq);
8788 		return -EINVAL;
8789 	}
8790 
8791 	if (!ice_setup_channel(pf, vsi, ch)) {
8792 		dev_info(dev, "Failed to setup channel\n");
8793 		return -EINVAL;
8794 	}
8795 	/* configure BW rate limit */
8796 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8797 		int ret;
8798 
8799 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8800 				       ch->min_tx_rate);
8801 		if (ret)
8802 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8803 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8804 		else
8805 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8806 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8807 	}
8808 
8809 	vsi->cnt_q_avail -= ch->num_txq;
8810 
8811 	return 0;
8812 }
8813 
8814 /**
8815  * ice_rem_all_chnl_fltrs - removes all channel filters
8816  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8817  *
8818  * Remove all advanced switch filters only if they are channel specific
8819  * tc-flower based filter
8820  */
8821 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8822 {
8823 	struct ice_tc_flower_fltr *fltr;
8824 	struct hlist_node *node;
8825 
8826 	/* to remove all channel filters, iterate an ordered list of filters */
8827 	hlist_for_each_entry_safe(fltr, node,
8828 				  &pf->tc_flower_fltr_list,
8829 				  tc_flower_node) {
8830 		struct ice_rule_query_data rule;
8831 		int status;
8832 
8833 		/* for now process only channel specific filters */
8834 		if (!ice_is_chnl_fltr(fltr))
8835 			continue;
8836 
8837 		rule.rid = fltr->rid;
8838 		rule.rule_id = fltr->rule_id;
8839 		rule.vsi_handle = fltr->dest_vsi_handle;
8840 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8841 		if (status) {
8842 			if (status == -ENOENT)
8843 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8844 					rule.rule_id);
8845 			else
8846 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8847 					status);
8848 		} else if (fltr->dest_vsi) {
8849 			/* update advanced switch filter count */
8850 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8851 				u32 flags = fltr->flags;
8852 
8853 				fltr->dest_vsi->num_chnl_fltr--;
8854 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8855 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8856 					pf->num_dmac_chnl_fltrs--;
8857 			}
8858 		}
8859 
8860 		hlist_del(&fltr->tc_flower_node);
8861 		kfree(fltr);
8862 	}
8863 }
8864 
8865 /**
8866  * ice_remove_q_channels - Remove queue channels for the TCs
8867  * @vsi: VSI to be configured
8868  * @rem_fltr: delete advanced switch filter or not
8869  *
8870  * Remove queue channels for the TCs
8871  */
8872 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8873 {
8874 	struct ice_channel *ch, *ch_tmp;
8875 	struct ice_pf *pf = vsi->back;
8876 	int i;
8877 
8878 	/* remove all tc-flower based filter if they are channel filters only */
8879 	if (rem_fltr)
8880 		ice_rem_all_chnl_fltrs(pf);
8881 
8882 	/* remove ntuple filters since queue configuration is being changed */
8883 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8884 		struct ice_hw *hw = &pf->hw;
8885 
8886 		mutex_lock(&hw->fdir_fltr_lock);
8887 		ice_fdir_del_all_fltrs(vsi);
8888 		mutex_unlock(&hw->fdir_fltr_lock);
8889 	}
8890 
8891 	/* perform cleanup for channels if they exist */
8892 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8893 		struct ice_vsi *ch_vsi;
8894 
8895 		list_del(&ch->list);
8896 		ch_vsi = ch->ch_vsi;
8897 		if (!ch_vsi) {
8898 			kfree(ch);
8899 			continue;
8900 		}
8901 
8902 		/* Reset queue contexts */
8903 		for (i = 0; i < ch->num_rxq; i++) {
8904 			struct ice_tx_ring *tx_ring;
8905 			struct ice_rx_ring *rx_ring;
8906 
8907 			tx_ring = vsi->tx_rings[ch->base_q + i];
8908 			rx_ring = vsi->rx_rings[ch->base_q + i];
8909 			if (tx_ring) {
8910 				tx_ring->ch = NULL;
8911 				if (tx_ring->q_vector)
8912 					tx_ring->q_vector->ch = NULL;
8913 			}
8914 			if (rx_ring) {
8915 				rx_ring->ch = NULL;
8916 				if (rx_ring->q_vector)
8917 					rx_ring->q_vector->ch = NULL;
8918 			}
8919 		}
8920 
8921 		/* Release FD resources for the channel VSI */
8922 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8923 
8924 		/* clear the VSI from scheduler tree */
8925 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8926 
8927 		/* Delete VSI from FW, PF and HW VSI arrays */
8928 		ice_vsi_delete(ch->ch_vsi);
8929 
8930 		/* free the channel */
8931 		kfree(ch);
8932 	}
8933 
8934 	/* clear the channel VSI map which is stored in main VSI */
8935 	ice_for_each_chnl_tc(i)
8936 		vsi->tc_map_vsi[i] = NULL;
8937 
8938 	/* reset main VSI's all TC information */
8939 	vsi->all_enatc = 0;
8940 	vsi->all_numtc = 0;
8941 }
8942 
8943 /**
8944  * ice_rebuild_channels - rebuild channel
8945  * @pf: ptr to PF
8946  *
8947  * Recreate channel VSIs and replay filters
8948  */
8949 static int ice_rebuild_channels(struct ice_pf *pf)
8950 {
8951 	struct device *dev = ice_pf_to_dev(pf);
8952 	struct ice_vsi *main_vsi;
8953 	bool rem_adv_fltr = true;
8954 	struct ice_channel *ch;
8955 	struct ice_vsi *vsi;
8956 	int tc_idx = 1;
8957 	int i, err;
8958 
8959 	main_vsi = ice_get_main_vsi(pf);
8960 	if (!main_vsi)
8961 		return 0;
8962 
8963 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8964 	    main_vsi->old_numtc == 1)
8965 		return 0; /* nothing to be done */
8966 
8967 	/* reconfigure main VSI based on old value of TC and cached values
8968 	 * for MQPRIO opts
8969 	 */
8970 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8971 	if (err) {
8972 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8973 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8974 		return err;
8975 	}
8976 
8977 	/* rebuild ADQ VSIs */
8978 	ice_for_each_vsi(pf, i) {
8979 		enum ice_vsi_type type;
8980 
8981 		vsi = pf->vsi[i];
8982 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8983 			continue;
8984 
8985 		type = vsi->type;
8986 
8987 		/* rebuild ADQ VSI */
8988 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8989 		if (err) {
8990 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8991 				ice_vsi_type_str(type), vsi->idx, err);
8992 			goto cleanup;
8993 		}
8994 
8995 		/* Re-map HW VSI number, using VSI handle that has been
8996 		 * previously validated in ice_replay_vsi() call above
8997 		 */
8998 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8999 
9000 		/* replay filters for the VSI */
9001 		err = ice_replay_vsi(&pf->hw, vsi->idx);
9002 		if (err) {
9003 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
9004 				ice_vsi_type_str(type), err, vsi->idx);
9005 			rem_adv_fltr = false;
9006 			goto cleanup;
9007 		}
9008 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
9009 			 ice_vsi_type_str(type), vsi->idx);
9010 
9011 		/* store ADQ VSI at correct TC index in main VSI's
9012 		 * map of TC to VSI
9013 		 */
9014 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
9015 	}
9016 
9017 	/* ADQ VSI(s) has been rebuilt successfully, so setup
9018 	 * channel for main VSI's Tx and Rx rings
9019 	 */
9020 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
9021 		struct ice_vsi *ch_vsi;
9022 
9023 		ch_vsi = ch->ch_vsi;
9024 		if (!ch_vsi)
9025 			continue;
9026 
9027 		/* reconfig channel resources */
9028 		ice_cfg_chnl_all_res(main_vsi, ch);
9029 
9030 		/* replay BW rate limit if it is non-zero */
9031 		if (!ch->max_tx_rate && !ch->min_tx_rate)
9032 			continue;
9033 
9034 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9035 				       ch->min_tx_rate);
9036 		if (err)
9037 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9038 				err, ch->max_tx_rate, ch->min_tx_rate,
9039 				ch_vsi->vsi_num);
9040 		else
9041 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9042 				ch->max_tx_rate, ch->min_tx_rate,
9043 				ch_vsi->vsi_num);
9044 	}
9045 
9046 	/* reconfig RSS for main VSI */
9047 	if (main_vsi->ch_rss_size)
9048 		ice_vsi_cfg_rss_lut_key(main_vsi);
9049 
9050 	return 0;
9051 
9052 cleanup:
9053 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
9054 	return err;
9055 }
9056 
9057 /**
9058  * ice_create_q_channels - Add queue channel for the given TCs
9059  * @vsi: VSI to be configured
9060  *
9061  * Configures queue channel mapping to the given TCs
9062  */
9063 static int ice_create_q_channels(struct ice_vsi *vsi)
9064 {
9065 	struct ice_pf *pf = vsi->back;
9066 	struct ice_channel *ch;
9067 	int ret = 0, i;
9068 
9069 	ice_for_each_chnl_tc(i) {
9070 		if (!(vsi->all_enatc & BIT(i)))
9071 			continue;
9072 
9073 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9074 		if (!ch) {
9075 			ret = -ENOMEM;
9076 			goto err_free;
9077 		}
9078 		INIT_LIST_HEAD(&ch->list);
9079 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9080 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9081 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9082 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9083 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9084 
9085 		/* convert to Kbits/s */
9086 		if (ch->max_tx_rate)
9087 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
9088 						  ICE_BW_KBPS_DIVISOR);
9089 		if (ch->min_tx_rate)
9090 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
9091 						  ICE_BW_KBPS_DIVISOR);
9092 
9093 		ret = ice_create_q_channel(vsi, ch);
9094 		if (ret) {
9095 			dev_err(ice_pf_to_dev(pf),
9096 				"failed creating channel TC:%d\n", i);
9097 			kfree(ch);
9098 			goto err_free;
9099 		}
9100 		list_add_tail(&ch->list, &vsi->ch_list);
9101 		vsi->tc_map_vsi[i] = ch->ch_vsi;
9102 		dev_dbg(ice_pf_to_dev(pf),
9103 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
9104 	}
9105 	return 0;
9106 
9107 err_free:
9108 	ice_remove_q_channels(vsi, false);
9109 
9110 	return ret;
9111 }
9112 
9113 /**
9114  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9115  * @netdev: net device to configure
9116  * @type_data: TC offload data
9117  */
9118 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9119 {
9120 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9121 	struct ice_netdev_priv *np = netdev_priv(netdev);
9122 	struct ice_vsi *vsi = np->vsi;
9123 	struct ice_pf *pf = vsi->back;
9124 	u16 mode, ena_tc_qdisc = 0;
9125 	int cur_txq, cur_rxq;
9126 	u8 hw = 0, num_tcf;
9127 	struct device *dev;
9128 	int ret, i;
9129 
9130 	dev = ice_pf_to_dev(pf);
9131 	num_tcf = mqprio_qopt->qopt.num_tc;
9132 	hw = mqprio_qopt->qopt.hw;
9133 	mode = mqprio_qopt->mode;
9134 	if (!hw) {
9135 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9136 		vsi->ch_rss_size = 0;
9137 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9138 		goto config_tcf;
9139 	}
9140 
9141 	/* Generate queue region map for number of TCF requested */
9142 	for (i = 0; i < num_tcf; i++)
9143 		ena_tc_qdisc |= BIT(i);
9144 
9145 	switch (mode) {
9146 	case TC_MQPRIO_MODE_CHANNEL:
9147 
9148 		if (pf->hw.port_info->is_custom_tx_enabled) {
9149 			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9150 			return -EBUSY;
9151 		}
9152 		ice_tear_down_devlink_rate_tree(pf);
9153 
9154 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9155 		if (ret) {
9156 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9157 				   ret);
9158 			return ret;
9159 		}
9160 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9161 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9162 		/* don't assume state of hw_tc_offload during driver load
9163 		 * and set the flag for TC flower filter if hw_tc_offload
9164 		 * already ON
9165 		 */
9166 		if (vsi->netdev->features & NETIF_F_HW_TC)
9167 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9168 		break;
9169 	default:
9170 		return -EINVAL;
9171 	}
9172 
9173 config_tcf:
9174 
9175 	/* Requesting same TCF configuration as already enabled */
9176 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9177 	    mode != TC_MQPRIO_MODE_CHANNEL)
9178 		return 0;
9179 
9180 	/* Pause VSI queues */
9181 	ice_dis_vsi(vsi, true);
9182 
9183 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9184 		ice_remove_q_channels(vsi, true);
9185 
9186 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9187 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9188 				     num_online_cpus());
9189 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9190 				     num_online_cpus());
9191 	} else {
9192 		/* logic to rebuild VSI, same like ethtool -L */
9193 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9194 
9195 		for (i = 0; i < num_tcf; i++) {
9196 			if (!(ena_tc_qdisc & BIT(i)))
9197 				continue;
9198 
9199 			offset = vsi->mqprio_qopt.qopt.offset[i];
9200 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9201 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9202 		}
9203 		vsi->req_txq = offset + qcount_tx;
9204 		vsi->req_rxq = offset + qcount_rx;
9205 
9206 		/* store away original rss_size info, so that it gets reused
9207 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9208 		 * determine, what should be the rss_sizefor main VSI
9209 		 */
9210 		vsi->orig_rss_size = vsi->rss_size;
9211 	}
9212 
9213 	/* save current values of Tx and Rx queues before calling VSI rebuild
9214 	 * for fallback option
9215 	 */
9216 	cur_txq = vsi->num_txq;
9217 	cur_rxq = vsi->num_rxq;
9218 
9219 	/* proceed with rebuild main VSI using correct number of queues */
9220 	ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9221 	if (ret) {
9222 		/* fallback to current number of queues */
9223 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9224 		vsi->req_txq = cur_txq;
9225 		vsi->req_rxq = cur_rxq;
9226 		clear_bit(ICE_RESET_FAILED, pf->state);
9227 		if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9228 			dev_err(dev, "Rebuild of main VSI failed again\n");
9229 			return ret;
9230 		}
9231 	}
9232 
9233 	vsi->all_numtc = num_tcf;
9234 	vsi->all_enatc = ena_tc_qdisc;
9235 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9236 	if (ret) {
9237 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9238 			   vsi->vsi_num);
9239 		goto exit;
9240 	}
9241 
9242 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9243 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9244 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9245 
9246 		/* set TC0 rate limit if specified */
9247 		if (max_tx_rate || min_tx_rate) {
9248 			/* convert to Kbits/s */
9249 			if (max_tx_rate)
9250 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9251 			if (min_tx_rate)
9252 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9253 
9254 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9255 			if (!ret) {
9256 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9257 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9258 			} else {
9259 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9260 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9261 				goto exit;
9262 			}
9263 		}
9264 		ret = ice_create_q_channels(vsi);
9265 		if (ret) {
9266 			netdev_err(netdev, "failed configuring queue channels\n");
9267 			goto exit;
9268 		} else {
9269 			netdev_dbg(netdev, "successfully configured channels\n");
9270 		}
9271 	}
9272 
9273 	if (vsi->ch_rss_size)
9274 		ice_vsi_cfg_rss_lut_key(vsi);
9275 
9276 exit:
9277 	/* if error, reset the all_numtc and all_enatc */
9278 	if (ret) {
9279 		vsi->all_numtc = 0;
9280 		vsi->all_enatc = 0;
9281 	}
9282 	/* resume VSI */
9283 	ice_ena_vsi(vsi, true);
9284 
9285 	return ret;
9286 }
9287 
9288 static LIST_HEAD(ice_block_cb_list);
9289 
9290 static int
9291 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9292 	     void *type_data)
9293 {
9294 	struct ice_netdev_priv *np = netdev_priv(netdev);
9295 	struct ice_pf *pf = np->vsi->back;
9296 	bool locked = false;
9297 	int err;
9298 
9299 	switch (type) {
9300 	case TC_SETUP_BLOCK:
9301 		return flow_block_cb_setup_simple(type_data,
9302 						  &ice_block_cb_list,
9303 						  ice_setup_tc_block_cb,
9304 						  np, np, true);
9305 	case TC_SETUP_QDISC_MQPRIO:
9306 		if (ice_is_eswitch_mode_switchdev(pf)) {
9307 			netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9308 			return -EOPNOTSUPP;
9309 		}
9310 
9311 		if (pf->adev) {
9312 			mutex_lock(&pf->adev_mutex);
9313 			device_lock(&pf->adev->dev);
9314 			locked = true;
9315 			if (pf->adev->dev.driver) {
9316 				netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9317 				err = -EBUSY;
9318 				goto adev_unlock;
9319 			}
9320 		}
9321 
9322 		/* setup traffic classifier for receive side */
9323 		mutex_lock(&pf->tc_mutex);
9324 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9325 		mutex_unlock(&pf->tc_mutex);
9326 
9327 adev_unlock:
9328 		if (locked) {
9329 			device_unlock(&pf->adev->dev);
9330 			mutex_unlock(&pf->adev_mutex);
9331 		}
9332 		return err;
9333 	default:
9334 		return -EOPNOTSUPP;
9335 	}
9336 	return -EOPNOTSUPP;
9337 }
9338 
9339 static struct ice_indr_block_priv *
9340 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9341 			   struct net_device *netdev)
9342 {
9343 	struct ice_indr_block_priv *cb_priv;
9344 
9345 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9346 		if (!cb_priv->netdev)
9347 			return NULL;
9348 		if (cb_priv->netdev == netdev)
9349 			return cb_priv;
9350 	}
9351 	return NULL;
9352 }
9353 
9354 static int
9355 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9356 			void *indr_priv)
9357 {
9358 	struct ice_indr_block_priv *priv = indr_priv;
9359 	struct ice_netdev_priv *np = priv->np;
9360 
9361 	switch (type) {
9362 	case TC_SETUP_CLSFLOWER:
9363 		return ice_setup_tc_cls_flower(np, priv->netdev,
9364 					       (struct flow_cls_offload *)
9365 					       type_data);
9366 	default:
9367 		return -EOPNOTSUPP;
9368 	}
9369 }
9370 
9371 static int
9372 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9373 			struct ice_netdev_priv *np,
9374 			struct flow_block_offload *f, void *data,
9375 			void (*cleanup)(struct flow_block_cb *block_cb))
9376 {
9377 	struct ice_indr_block_priv *indr_priv;
9378 	struct flow_block_cb *block_cb;
9379 
9380 	if (!ice_is_tunnel_supported(netdev) &&
9381 	    !(is_vlan_dev(netdev) &&
9382 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
9383 		return -EOPNOTSUPP;
9384 
9385 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9386 		return -EOPNOTSUPP;
9387 
9388 	switch (f->command) {
9389 	case FLOW_BLOCK_BIND:
9390 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9391 		if (indr_priv)
9392 			return -EEXIST;
9393 
9394 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9395 		if (!indr_priv)
9396 			return -ENOMEM;
9397 
9398 		indr_priv->netdev = netdev;
9399 		indr_priv->np = np;
9400 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9401 
9402 		block_cb =
9403 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9404 						 indr_priv, indr_priv,
9405 						 ice_rep_indr_tc_block_unbind,
9406 						 f, netdev, sch, data, np,
9407 						 cleanup);
9408 
9409 		if (IS_ERR(block_cb)) {
9410 			list_del(&indr_priv->list);
9411 			kfree(indr_priv);
9412 			return PTR_ERR(block_cb);
9413 		}
9414 		flow_block_cb_add(block_cb, f);
9415 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9416 		break;
9417 	case FLOW_BLOCK_UNBIND:
9418 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9419 		if (!indr_priv)
9420 			return -ENOENT;
9421 
9422 		block_cb = flow_block_cb_lookup(f->block,
9423 						ice_indr_setup_block_cb,
9424 						indr_priv);
9425 		if (!block_cb)
9426 			return -ENOENT;
9427 
9428 		flow_indr_block_cb_remove(block_cb, f);
9429 
9430 		list_del(&block_cb->driver_list);
9431 		break;
9432 	default:
9433 		return -EOPNOTSUPP;
9434 	}
9435 	return 0;
9436 }
9437 
9438 static int
9439 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9440 		     void *cb_priv, enum tc_setup_type type, void *type_data,
9441 		     void *data,
9442 		     void (*cleanup)(struct flow_block_cb *block_cb))
9443 {
9444 	switch (type) {
9445 	case TC_SETUP_BLOCK:
9446 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9447 					       data, cleanup);
9448 
9449 	default:
9450 		return -EOPNOTSUPP;
9451 	}
9452 }
9453 
9454 /**
9455  * ice_open - Called when a network interface becomes active
9456  * @netdev: network interface device structure
9457  *
9458  * The open entry point is called when a network interface is made
9459  * active by the system (IFF_UP). At this point all resources needed
9460  * for transmit and receive operations are allocated, the interrupt
9461  * handler is registered with the OS, the netdev watchdog is enabled,
9462  * and the stack is notified that the interface is ready.
9463  *
9464  * Returns 0 on success, negative value on failure
9465  */
9466 int ice_open(struct net_device *netdev)
9467 {
9468 	struct ice_netdev_priv *np = netdev_priv(netdev);
9469 	struct ice_pf *pf = np->vsi->back;
9470 
9471 	if (ice_is_reset_in_progress(pf->state)) {
9472 		netdev_err(netdev, "can't open net device while reset is in progress");
9473 		return -EBUSY;
9474 	}
9475 
9476 	return ice_open_internal(netdev);
9477 }
9478 
9479 /**
9480  * ice_open_internal - Called when a network interface becomes active
9481  * @netdev: network interface device structure
9482  *
9483  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9484  * handling routine
9485  *
9486  * Returns 0 on success, negative value on failure
9487  */
9488 int ice_open_internal(struct net_device *netdev)
9489 {
9490 	struct ice_netdev_priv *np = netdev_priv(netdev);
9491 	struct ice_vsi *vsi = np->vsi;
9492 	struct ice_pf *pf = vsi->back;
9493 	struct ice_port_info *pi;
9494 	int err;
9495 
9496 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9497 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9498 		return -EIO;
9499 	}
9500 
9501 	netif_carrier_off(netdev);
9502 
9503 	pi = vsi->port_info;
9504 	err = ice_update_link_info(pi);
9505 	if (err) {
9506 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
9507 		return err;
9508 	}
9509 
9510 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9511 
9512 	/* Set PHY if there is media, otherwise, turn off PHY */
9513 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9514 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9515 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9516 			err = ice_init_phy_user_cfg(pi);
9517 			if (err) {
9518 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9519 					   err);
9520 				return err;
9521 			}
9522 		}
9523 
9524 		err = ice_configure_phy(vsi);
9525 		if (err) {
9526 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9527 				   err);
9528 			return err;
9529 		}
9530 	} else {
9531 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9532 		ice_set_link(vsi, false);
9533 	}
9534 
9535 	err = ice_vsi_open(vsi);
9536 	if (err)
9537 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9538 			   vsi->vsi_num, vsi->vsw->sw_id);
9539 
9540 	/* Update existing tunnels information */
9541 	udp_tunnel_get_rx_info(netdev);
9542 
9543 	return err;
9544 }
9545 
9546 /**
9547  * ice_stop - Disables a network interface
9548  * @netdev: network interface device structure
9549  *
9550  * The stop entry point is called when an interface is de-activated by the OS,
9551  * and the netdevice enters the DOWN state. The hardware is still under the
9552  * driver's control, but the netdev interface is disabled.
9553  *
9554  * Returns success only - not allowed to fail
9555  */
9556 int ice_stop(struct net_device *netdev)
9557 {
9558 	struct ice_netdev_priv *np = netdev_priv(netdev);
9559 	struct ice_vsi *vsi = np->vsi;
9560 	struct ice_pf *pf = vsi->back;
9561 
9562 	if (ice_is_reset_in_progress(pf->state)) {
9563 		netdev_err(netdev, "can't stop net device while reset is in progress");
9564 		return -EBUSY;
9565 	}
9566 
9567 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9568 		int link_err = ice_force_phys_link_state(vsi, false);
9569 
9570 		if (link_err) {
9571 			if (link_err == -ENOMEDIUM)
9572 				netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9573 					    vsi->vsi_num);
9574 			else
9575 				netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9576 					   vsi->vsi_num, link_err);
9577 
9578 			ice_vsi_close(vsi);
9579 			return -EIO;
9580 		}
9581 	}
9582 
9583 	ice_vsi_close(vsi);
9584 
9585 	return 0;
9586 }
9587 
9588 /**
9589  * ice_features_check - Validate encapsulated packet conforms to limits
9590  * @skb: skb buffer
9591  * @netdev: This port's netdev
9592  * @features: Offload features that the stack believes apply
9593  */
9594 static netdev_features_t
9595 ice_features_check(struct sk_buff *skb,
9596 		   struct net_device __always_unused *netdev,
9597 		   netdev_features_t features)
9598 {
9599 	bool gso = skb_is_gso(skb);
9600 	size_t len;
9601 
9602 	/* No point in doing any of this if neither checksum nor GSO are
9603 	 * being requested for this frame. We can rule out both by just
9604 	 * checking for CHECKSUM_PARTIAL
9605 	 */
9606 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9607 		return features;
9608 
9609 	/* We cannot support GSO if the MSS is going to be less than
9610 	 * 64 bytes. If it is then we need to drop support for GSO.
9611 	 */
9612 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9613 		features &= ~NETIF_F_GSO_MASK;
9614 
9615 	len = skb_network_offset(skb);
9616 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9617 		goto out_rm_features;
9618 
9619 	len = skb_network_header_len(skb);
9620 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9621 		goto out_rm_features;
9622 
9623 	if (skb->encapsulation) {
9624 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9625 		 * the case of IPIP frames, the transport header pointer is
9626 		 * after the inner header! So check to make sure that this
9627 		 * is a GRE or UDP_TUNNEL frame before doing that math.
9628 		 */
9629 		if (gso && (skb_shinfo(skb)->gso_type &
9630 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9631 			len = skb_inner_network_header(skb) -
9632 			      skb_transport_header(skb);
9633 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9634 				goto out_rm_features;
9635 		}
9636 
9637 		len = skb_inner_network_header_len(skb);
9638 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9639 			goto out_rm_features;
9640 	}
9641 
9642 	return features;
9643 out_rm_features:
9644 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9645 }
9646 
9647 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9648 	.ndo_open = ice_open,
9649 	.ndo_stop = ice_stop,
9650 	.ndo_start_xmit = ice_start_xmit,
9651 	.ndo_set_mac_address = ice_set_mac_address,
9652 	.ndo_validate_addr = eth_validate_addr,
9653 	.ndo_change_mtu = ice_change_mtu,
9654 	.ndo_get_stats64 = ice_get_stats64,
9655 	.ndo_tx_timeout = ice_tx_timeout,
9656 	.ndo_bpf = ice_xdp_safe_mode,
9657 };
9658 
9659 static const struct net_device_ops ice_netdev_ops = {
9660 	.ndo_open = ice_open,
9661 	.ndo_stop = ice_stop,
9662 	.ndo_start_xmit = ice_start_xmit,
9663 	.ndo_select_queue = ice_select_queue,
9664 	.ndo_features_check = ice_features_check,
9665 	.ndo_fix_features = ice_fix_features,
9666 	.ndo_set_rx_mode = ice_set_rx_mode,
9667 	.ndo_set_mac_address = ice_set_mac_address,
9668 	.ndo_validate_addr = eth_validate_addr,
9669 	.ndo_change_mtu = ice_change_mtu,
9670 	.ndo_get_stats64 = ice_get_stats64,
9671 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9672 	.ndo_eth_ioctl = ice_eth_ioctl,
9673 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9674 	.ndo_set_vf_mac = ice_set_vf_mac,
9675 	.ndo_get_vf_config = ice_get_vf_cfg,
9676 	.ndo_set_vf_trust = ice_set_vf_trust,
9677 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9678 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9679 	.ndo_get_vf_stats = ice_get_vf_stats,
9680 	.ndo_set_vf_rate = ice_set_vf_bw,
9681 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9682 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9683 	.ndo_setup_tc = ice_setup_tc,
9684 	.ndo_set_features = ice_set_features,
9685 	.ndo_bridge_getlink = ice_bridge_getlink,
9686 	.ndo_bridge_setlink = ice_bridge_setlink,
9687 	.ndo_fdb_add = ice_fdb_add,
9688 	.ndo_fdb_del = ice_fdb_del,
9689 #ifdef CONFIG_RFS_ACCEL
9690 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9691 #endif
9692 	.ndo_tx_timeout = ice_tx_timeout,
9693 	.ndo_bpf = ice_xdp,
9694 	.ndo_xdp_xmit = ice_xdp_xmit,
9695 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9696 };
9697