1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 #include <net/xdp_sock_drv.h> 26 27 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 28 static const char ice_driver_string[] = DRV_SUMMARY; 29 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 30 31 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 32 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 33 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 39 40 static int debug = -1; 41 module_param(debug, int, 0644); 42 #ifndef CONFIG_DYNAMIC_DEBUG 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 44 #else 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 46 #endif /* !CONFIG_DYNAMIC_DEBUG */ 47 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 struct ice_ring_stats *ring_stats; 134 135 if (!tx_ring) 136 continue; 137 if (ice_ring_ch_enabled(tx_ring)) 138 continue; 139 140 ring_stats = tx_ring->ring_stats; 141 if (!ring_stats) 142 continue; 143 144 if (tx_ring->desc) { 145 /* If packet counter has not changed the queue is 146 * likely stalled, so force an interrupt for this 147 * queue. 148 * 149 * prev_pkt would be negative if there was no 150 * pending work. 151 */ 152 packets = ring_stats->stats.pkts & INT_MAX; 153 if (ring_stats->tx_stats.prev_pkt == packets) { 154 /* Trigger sw interrupt to revive the queue */ 155 ice_trigger_sw_intr(hw, tx_ring->q_vector); 156 continue; 157 } 158 159 /* Memory barrier between read of packet count and call 160 * to ice_get_tx_pending() 161 */ 162 smp_rmb(); 163 ring_stats->tx_stats.prev_pkt = 164 ice_get_tx_pending(tx_ring) ? packets : -1; 165 } 166 } 167 } 168 169 /** 170 * ice_init_mac_fltr - Set initial MAC filters 171 * @pf: board private structure 172 * 173 * Set initial set of MAC filters for PF VSI; configure filters for permanent 174 * address and broadcast address. If an error is encountered, netdevice will be 175 * unregistered. 176 */ 177 static int ice_init_mac_fltr(struct ice_pf *pf) 178 { 179 struct ice_vsi *vsi; 180 u8 *perm_addr; 181 182 vsi = ice_get_main_vsi(pf); 183 if (!vsi) 184 return -EINVAL; 185 186 perm_addr = vsi->port_info->mac.perm_addr; 187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 188 } 189 190 /** 191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 192 * @netdev: the net device on which the sync is happening 193 * @addr: MAC address to sync 194 * 195 * This is a callback function which is called by the in kernel device sync 196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 198 * MAC filters from the hardware. 199 */ 200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 201 { 202 struct ice_netdev_priv *np = netdev_priv(netdev); 203 struct ice_vsi *vsi = np->vsi; 204 205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 206 ICE_FWD_TO_VSI)) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /** 213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 214 * @netdev: the net device on which the unsync is happening 215 * @addr: MAC address to unsync 216 * 217 * This is a callback function which is called by the in kernel device unsync 218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 220 * delete the MAC filters from the hardware. 221 */ 222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 223 { 224 struct ice_netdev_priv *np = netdev_priv(netdev); 225 struct ice_vsi *vsi = np->vsi; 226 227 /* Under some circumstances, we might receive a request to delete our 228 * own device address from our uc list. Because we store the device 229 * address in the VSI's MAC filter list, we need to ignore such 230 * requests and not delete our device address from this list. 231 */ 232 if (ether_addr_equal(addr, netdev->dev_addr)) 233 return 0; 234 235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 236 ICE_FWD_TO_VSI)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 /** 243 * ice_vsi_fltr_changed - check if filter state changed 244 * @vsi: VSI to be checked 245 * 246 * returns true if filter state has changed, false otherwise. 247 */ 248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 249 { 250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 252 } 253 254 /** 255 * ice_set_promisc - Enable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (ice_vsi_has_non_zero_vlans(vsi)) { 268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 270 promisc_m); 271 } else { 272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 273 promisc_m, 0); 274 } 275 if (status && status != -EEXIST) 276 return status; 277 278 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 279 vsi->vsi_num, promisc_m); 280 return 0; 281 } 282 283 /** 284 * ice_clear_promisc - Disable promiscuous mode for a given PF 285 * @vsi: the VSI being configured 286 * @promisc_m: mask of promiscuous config bits 287 * 288 */ 289 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 290 { 291 int status; 292 293 if (vsi->type != ICE_VSI_PF) 294 return 0; 295 296 if (ice_vsi_has_non_zero_vlans(vsi)) { 297 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 298 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 299 promisc_m); 300 } else { 301 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 302 promisc_m, 0); 303 } 304 305 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 306 vsi->vsi_num, promisc_m); 307 return status; 308 } 309 310 /** 311 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 312 * @vsi: ptr to the VSI 313 * 314 * Push any outstanding VSI filter changes through the AdminQ. 315 */ 316 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 317 { 318 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 319 struct device *dev = ice_pf_to_dev(vsi->back); 320 struct net_device *netdev = vsi->netdev; 321 bool promisc_forced_on = false; 322 struct ice_pf *pf = vsi->back; 323 struct ice_hw *hw = &pf->hw; 324 u32 changed_flags = 0; 325 int err; 326 327 if (!vsi->netdev) 328 return -EINVAL; 329 330 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 331 usleep_range(1000, 2000); 332 333 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 334 vsi->current_netdev_flags = vsi->netdev->flags; 335 336 INIT_LIST_HEAD(&vsi->tmp_sync_list); 337 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 338 339 if (ice_vsi_fltr_changed(vsi)) { 340 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 341 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 342 343 /* grab the netdev's addr_list_lock */ 344 netif_addr_lock_bh(netdev); 345 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 346 ice_add_mac_to_unsync_list); 347 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 348 ice_add_mac_to_unsync_list); 349 /* our temp lists are populated. release lock */ 350 netif_addr_unlock_bh(netdev); 351 } 352 353 /* Remove MAC addresses in the unsync list */ 354 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 355 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 356 if (err) { 357 netdev_err(netdev, "Failed to delete MAC filters\n"); 358 /* if we failed because of alloc failures, just bail */ 359 if (err == -ENOMEM) 360 goto out; 361 } 362 363 /* Add MAC addresses in the sync list */ 364 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 365 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 366 /* If filter is added successfully or already exists, do not go into 367 * 'if' condition and report it as error. Instead continue processing 368 * rest of the function. 369 */ 370 if (err && err != -EEXIST) { 371 netdev_err(netdev, "Failed to add MAC filters\n"); 372 /* If there is no more space for new umac filters, VSI 373 * should go into promiscuous mode. There should be some 374 * space reserved for promiscuous filters. 375 */ 376 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 377 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 378 vsi->state)) { 379 promisc_forced_on = true; 380 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 381 vsi->vsi_num); 382 } else { 383 goto out; 384 } 385 } 386 err = 0; 387 /* check for changes in promiscuous modes */ 388 if (changed_flags & IFF_ALLMULTI) { 389 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 390 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 391 if (err) { 392 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 393 goto out_promisc; 394 } 395 } else { 396 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 397 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 398 if (err) { 399 vsi->current_netdev_flags |= IFF_ALLMULTI; 400 goto out_promisc; 401 } 402 } 403 } 404 405 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 406 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 407 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 408 if (vsi->current_netdev_flags & IFF_PROMISC) { 409 /* Apply Rx filter rule to get traffic from wire */ 410 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 411 err = ice_set_dflt_vsi(vsi); 412 if (err && err != -EEXIST) { 413 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 414 err, vsi->vsi_num); 415 vsi->current_netdev_flags &= 416 ~IFF_PROMISC; 417 goto out_promisc; 418 } 419 err = 0; 420 vlan_ops->dis_rx_filtering(vsi); 421 422 /* promiscuous mode implies allmulticast so 423 * that VSIs that are in promiscuous mode are 424 * subscribed to multicast packets coming to 425 * the port 426 */ 427 err = ice_set_promisc(vsi, 428 ICE_MCAST_PROMISC_BITS); 429 if (err) 430 goto out_promisc; 431 } 432 } else { 433 /* Clear Rx filter to remove traffic from wire */ 434 if (ice_is_vsi_dflt_vsi(vsi)) { 435 err = ice_clear_dflt_vsi(vsi); 436 if (err) { 437 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 438 err, vsi->vsi_num); 439 vsi->current_netdev_flags |= 440 IFF_PROMISC; 441 goto out_promisc; 442 } 443 if (vsi->netdev->features & 444 NETIF_F_HW_VLAN_CTAG_FILTER) 445 vlan_ops->ena_rx_filtering(vsi); 446 } 447 448 /* disable allmulti here, but only if allmulti is not 449 * still enabled for the netdev 450 */ 451 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 452 err = ice_clear_promisc(vsi, 453 ICE_MCAST_PROMISC_BITS); 454 if (err) { 455 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 456 err, vsi->vsi_num); 457 } 458 } 459 } 460 } 461 goto exit; 462 463 out_promisc: 464 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 465 goto exit; 466 out: 467 /* if something went wrong then set the changed flag so we try again */ 468 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 469 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 470 exit: 471 clear_bit(ICE_CFG_BUSY, vsi->state); 472 return err; 473 } 474 475 /** 476 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 477 * @pf: board private structure 478 */ 479 static void ice_sync_fltr_subtask(struct ice_pf *pf) 480 { 481 int v; 482 483 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 484 return; 485 486 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 487 488 ice_for_each_vsi(pf, v) 489 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 490 ice_vsi_sync_fltr(pf->vsi[v])) { 491 /* come back and try again later */ 492 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 break; 494 } 495 } 496 497 /** 498 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 499 * @pf: the PF 500 * @locked: is the rtnl_lock already held 501 */ 502 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 503 { 504 int node; 505 int v; 506 507 ice_for_each_vsi(pf, v) 508 if (pf->vsi[v]) 509 ice_dis_vsi(pf->vsi[v], locked); 510 511 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 512 pf->pf_agg_node[node].num_vsis = 0; 513 514 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 515 pf->vf_agg_node[node].num_vsis = 0; 516 } 517 518 /** 519 * ice_clear_sw_switch_recipes - clear switch recipes 520 * @pf: board private structure 521 * 522 * Mark switch recipes as not created in sw structures. There are cases where 523 * rules (especially advanced rules) need to be restored, either re-read from 524 * hardware or added again. For example after the reset. 'recp_created' flag 525 * prevents from doing that and need to be cleared upfront. 526 */ 527 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 528 { 529 struct ice_sw_recipe *recp; 530 u8 i; 531 532 recp = pf->hw.switch_info->recp_list; 533 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 534 recp[i].recp_created = false; 535 } 536 537 /** 538 * ice_prepare_for_reset - prep for reset 539 * @pf: board private structure 540 * @reset_type: reset type requested 541 * 542 * Inform or close all dependent features in prep for reset. 543 */ 544 static void 545 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 546 { 547 struct ice_hw *hw = &pf->hw; 548 struct ice_vsi *vsi; 549 struct ice_vf *vf; 550 unsigned int bkt; 551 552 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 553 554 /* already prepared for reset */ 555 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 556 return; 557 558 ice_unplug_aux_dev(pf); 559 560 /* Notify VFs of impending reset */ 561 if (ice_check_sq_alive(hw, &hw->mailboxq)) 562 ice_vc_notify_reset(pf); 563 564 /* Disable VFs until reset is completed */ 565 mutex_lock(&pf->vfs.table_lock); 566 ice_for_each_vf(pf, bkt, vf) 567 ice_set_vf_state_dis(vf); 568 mutex_unlock(&pf->vfs.table_lock); 569 570 if (ice_is_eswitch_mode_switchdev(pf)) { 571 if (reset_type != ICE_RESET_PFR) 572 ice_clear_sw_switch_recipes(pf); 573 } 574 575 /* release ADQ specific HW and SW resources */ 576 vsi = ice_get_main_vsi(pf); 577 if (!vsi) 578 goto skip; 579 580 /* to be on safe side, reset orig_rss_size so that normal flow 581 * of deciding rss_size can take precedence 582 */ 583 vsi->orig_rss_size = 0; 584 585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 586 if (reset_type == ICE_RESET_PFR) { 587 vsi->old_ena_tc = vsi->all_enatc; 588 vsi->old_numtc = vsi->all_numtc; 589 } else { 590 ice_remove_q_channels(vsi, true); 591 592 /* for other reset type, do not support channel rebuild 593 * hence reset needed info 594 */ 595 vsi->old_ena_tc = 0; 596 vsi->all_enatc = 0; 597 vsi->old_numtc = 0; 598 vsi->all_numtc = 0; 599 vsi->req_txq = 0; 600 vsi->req_rxq = 0; 601 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 602 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 603 } 604 } 605 skip: 606 607 /* clear SW filtering DB */ 608 ice_clear_hw_tbls(hw); 609 /* disable the VSIs and their queues that are not already DOWN */ 610 ice_pf_dis_all_vsi(pf, false); 611 612 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 613 ice_ptp_prepare_for_reset(pf); 614 615 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 616 ice_gnss_exit(pf); 617 618 if (hw->port_info) 619 ice_sched_clear_port(hw->port_info); 620 621 ice_shutdown_all_ctrlq(hw); 622 623 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 624 } 625 626 /** 627 * ice_do_reset - Initiate one of many types of resets 628 * @pf: board private structure 629 * @reset_type: reset type requested before this function was called. 630 */ 631 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 632 { 633 struct device *dev = ice_pf_to_dev(pf); 634 struct ice_hw *hw = &pf->hw; 635 636 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 637 638 ice_prepare_for_reset(pf, reset_type); 639 640 /* trigger the reset */ 641 if (ice_reset(hw, reset_type)) { 642 dev_err(dev, "reset %d failed\n", reset_type); 643 set_bit(ICE_RESET_FAILED, pf->state); 644 clear_bit(ICE_RESET_OICR_RECV, pf->state); 645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 646 clear_bit(ICE_PFR_REQ, pf->state); 647 clear_bit(ICE_CORER_REQ, pf->state); 648 clear_bit(ICE_GLOBR_REQ, pf->state); 649 wake_up(&pf->reset_wait_queue); 650 return; 651 } 652 653 /* PFR is a bit of a special case because it doesn't result in an OICR 654 * interrupt. So for PFR, rebuild after the reset and clear the reset- 655 * associated state bits. 656 */ 657 if (reset_type == ICE_RESET_PFR) { 658 pf->pfr_count++; 659 ice_rebuild(pf, reset_type); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 ice_reset_all_vfs(pf); 664 } 665 } 666 667 /** 668 * ice_reset_subtask - Set up for resetting the device and driver 669 * @pf: board private structure 670 */ 671 static void ice_reset_subtask(struct ice_pf *pf) 672 { 673 enum ice_reset_req reset_type = ICE_RESET_INVAL; 674 675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 677 * of reset is pending and sets bits in pf->state indicating the reset 678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 679 * prepare for pending reset if not already (for PF software-initiated 680 * global resets the software should already be prepared for it as 681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 682 * by firmware or software on other PFs, that bit is not set so prepare 683 * for the reset now), poll for reset done, rebuild and return. 684 */ 685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 686 /* Perform the largest reset requested */ 687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 688 reset_type = ICE_RESET_CORER; 689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 690 reset_type = ICE_RESET_GLOBR; 691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 692 reset_type = ICE_RESET_EMPR; 693 /* return if no valid reset type requested */ 694 if (reset_type == ICE_RESET_INVAL) 695 return; 696 ice_prepare_for_reset(pf, reset_type); 697 698 /* make sure we are ready to rebuild */ 699 if (ice_check_reset(&pf->hw)) { 700 set_bit(ICE_RESET_FAILED, pf->state); 701 } else { 702 /* done with reset. start rebuild */ 703 pf->hw.reset_ongoing = false; 704 ice_rebuild(pf, reset_type); 705 /* clear bit to resume normal operations, but 706 * ICE_NEEDS_RESTART bit is set in case rebuild failed 707 */ 708 clear_bit(ICE_RESET_OICR_RECV, pf->state); 709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 710 clear_bit(ICE_PFR_REQ, pf->state); 711 clear_bit(ICE_CORER_REQ, pf->state); 712 clear_bit(ICE_GLOBR_REQ, pf->state); 713 wake_up(&pf->reset_wait_queue); 714 ice_reset_all_vfs(pf); 715 } 716 717 return; 718 } 719 720 /* No pending resets to finish processing. Check for new resets */ 721 if (test_bit(ICE_PFR_REQ, pf->state)) 722 reset_type = ICE_RESET_PFR; 723 if (test_bit(ICE_CORER_REQ, pf->state)) 724 reset_type = ICE_RESET_CORER; 725 if (test_bit(ICE_GLOBR_REQ, pf->state)) 726 reset_type = ICE_RESET_GLOBR; 727 /* If no valid reset type requested just return */ 728 if (reset_type == ICE_RESET_INVAL) 729 return; 730 731 /* reset if not already down or busy */ 732 if (!test_bit(ICE_DOWN, pf->state) && 733 !test_bit(ICE_CFG_BUSY, pf->state)) { 734 ice_do_reset(pf, reset_type); 735 } 736 } 737 738 /** 739 * ice_print_topo_conflict - print topology conflict message 740 * @vsi: the VSI whose topology status is being checked 741 */ 742 static void ice_print_topo_conflict(struct ice_vsi *vsi) 743 { 744 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 745 case ICE_AQ_LINK_TOPO_CONFLICT: 746 case ICE_AQ_LINK_MEDIA_CONFLICT: 747 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 748 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 749 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 750 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 751 break; 752 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 754 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 755 else 756 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 757 break; 758 default: 759 break; 760 } 761 } 762 763 /** 764 * ice_print_link_msg - print link up or down message 765 * @vsi: the VSI whose link status is being queried 766 * @isup: boolean for if the link is now up or down 767 */ 768 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 769 { 770 struct ice_aqc_get_phy_caps_data *caps; 771 const char *an_advertised; 772 const char *fec_req; 773 const char *speed; 774 const char *fec; 775 const char *fc; 776 const char *an; 777 int status; 778 779 if (!vsi) 780 return; 781 782 if (vsi->current_isup == isup) 783 return; 784 785 vsi->current_isup = isup; 786 787 if (!isup) { 788 netdev_info(vsi->netdev, "NIC Link is Down\n"); 789 return; 790 } 791 792 switch (vsi->port_info->phy.link_info.link_speed) { 793 case ICE_AQ_LINK_SPEED_100GB: 794 speed = "100 G"; 795 break; 796 case ICE_AQ_LINK_SPEED_50GB: 797 speed = "50 G"; 798 break; 799 case ICE_AQ_LINK_SPEED_40GB: 800 speed = "40 G"; 801 break; 802 case ICE_AQ_LINK_SPEED_25GB: 803 speed = "25 G"; 804 break; 805 case ICE_AQ_LINK_SPEED_20GB: 806 speed = "20 G"; 807 break; 808 case ICE_AQ_LINK_SPEED_10GB: 809 speed = "10 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_5GB: 812 speed = "5 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_2500MB: 815 speed = "2.5 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_1000MB: 818 speed = "1 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_100MB: 821 speed = "100 M"; 822 break; 823 default: 824 speed = "Unknown "; 825 break; 826 } 827 828 switch (vsi->port_info->fc.current_mode) { 829 case ICE_FC_FULL: 830 fc = "Rx/Tx"; 831 break; 832 case ICE_FC_TX_PAUSE: 833 fc = "Tx"; 834 break; 835 case ICE_FC_RX_PAUSE: 836 fc = "Rx"; 837 break; 838 case ICE_FC_NONE: 839 fc = "None"; 840 break; 841 default: 842 fc = "Unknown"; 843 break; 844 } 845 846 /* Get FEC mode based on negotiated link info */ 847 switch (vsi->port_info->phy.link_info.fec_info) { 848 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 849 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 850 fec = "RS-FEC"; 851 break; 852 case ICE_AQ_LINK_25G_KR_FEC_EN: 853 fec = "FC-FEC/BASE-R"; 854 break; 855 default: 856 fec = "NONE"; 857 break; 858 } 859 860 /* check if autoneg completed, might be false due to not supported */ 861 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 862 an = "True"; 863 else 864 an = "False"; 865 866 /* Get FEC mode requested based on PHY caps last SW configuration */ 867 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 868 if (!caps) { 869 fec_req = "Unknown"; 870 an_advertised = "Unknown"; 871 goto done; 872 } 873 874 status = ice_aq_get_phy_caps(vsi->port_info, false, 875 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 876 if (status) 877 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 878 879 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 880 881 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 882 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 883 fec_req = "RS-FEC"; 884 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 885 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 886 fec_req = "FC-FEC/BASE-R"; 887 else 888 fec_req = "NONE"; 889 890 kfree(caps); 891 892 done: 893 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 894 speed, fec_req, fec, an_advertised, an, fc); 895 ice_print_topo_conflict(vsi); 896 } 897 898 /** 899 * ice_vsi_link_event - update the VSI's netdev 900 * @vsi: the VSI on which the link event occurred 901 * @link_up: whether or not the VSI needs to be set up or down 902 */ 903 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 904 { 905 if (!vsi) 906 return; 907 908 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 909 return; 910 911 if (vsi->type == ICE_VSI_PF) { 912 if (link_up == netif_carrier_ok(vsi->netdev)) 913 return; 914 915 if (link_up) { 916 netif_carrier_on(vsi->netdev); 917 netif_tx_wake_all_queues(vsi->netdev); 918 } else { 919 netif_carrier_off(vsi->netdev); 920 netif_tx_stop_all_queues(vsi->netdev); 921 } 922 } 923 } 924 925 /** 926 * ice_set_dflt_mib - send a default config MIB to the FW 927 * @pf: private PF struct 928 * 929 * This function sends a default configuration MIB to the FW. 930 * 931 * If this function errors out at any point, the driver is still able to 932 * function. The main impact is that LFC may not operate as expected. 933 * Therefore an error state in this function should be treated with a DBG 934 * message and continue on with driver rebuild/reenable. 935 */ 936 static void ice_set_dflt_mib(struct ice_pf *pf) 937 { 938 struct device *dev = ice_pf_to_dev(pf); 939 u8 mib_type, *buf, *lldpmib = NULL; 940 u16 len, typelen, offset = 0; 941 struct ice_lldp_org_tlv *tlv; 942 struct ice_hw *hw = &pf->hw; 943 u32 ouisubtype; 944 945 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 946 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 947 if (!lldpmib) { 948 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 949 __func__); 950 return; 951 } 952 953 /* Add ETS CFG TLV */ 954 tlv = (struct ice_lldp_org_tlv *)lldpmib; 955 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 956 ICE_IEEE_ETS_TLV_LEN); 957 tlv->typelen = htons(typelen); 958 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 959 ICE_IEEE_SUBTYPE_ETS_CFG); 960 tlv->ouisubtype = htonl(ouisubtype); 961 962 buf = tlv->tlvinfo; 963 buf[0] = 0; 964 965 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 966 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 967 * Octets 13 - 20 are TSA values - leave as zeros 968 */ 969 buf[5] = 0x64; 970 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 971 offset += len + 2; 972 tlv = (struct ice_lldp_org_tlv *) 973 ((char *)tlv + sizeof(tlv->typelen) + len); 974 975 /* Add ETS REC TLV */ 976 buf = tlv->tlvinfo; 977 tlv->typelen = htons(typelen); 978 979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 980 ICE_IEEE_SUBTYPE_ETS_REC); 981 tlv->ouisubtype = htonl(ouisubtype); 982 983 /* First octet of buf is reserved 984 * Octets 1 - 4 map UP to TC - all UPs map to zero 985 * Octets 5 - 12 are BW values - set TC 0 to 100%. 986 * Octets 13 - 20 are TSA value - leave as zeros 987 */ 988 buf[5] = 0x64; 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add PFC CFG TLV */ 994 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 995 ICE_IEEE_PFC_TLV_LEN); 996 tlv->typelen = htons(typelen); 997 998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 999 ICE_IEEE_SUBTYPE_PFC_CFG); 1000 tlv->ouisubtype = htonl(ouisubtype); 1001 1002 /* Octet 1 left as all zeros - PFC disabled */ 1003 buf[0] = 0x08; 1004 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1005 offset += len + 2; 1006 1007 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1008 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1009 1010 kfree(lldpmib); 1011 } 1012 1013 /** 1014 * ice_check_phy_fw_load - check if PHY FW load failed 1015 * @pf: pointer to PF struct 1016 * @link_cfg_err: bitmap from the link info structure 1017 * 1018 * check if external PHY FW load failed and print an error message if it did 1019 */ 1020 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1021 { 1022 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1023 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1024 return; 1025 } 1026 1027 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1028 return; 1029 1030 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1031 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1032 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1033 } 1034 } 1035 1036 /** 1037 * ice_check_module_power 1038 * @pf: pointer to PF struct 1039 * @link_cfg_err: bitmap from the link info structure 1040 * 1041 * check module power level returned by a previous call to aq_get_link_info 1042 * and print error messages if module power level is not supported 1043 */ 1044 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1045 { 1046 /* if module power level is supported, clear the flag */ 1047 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1048 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1049 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1050 return; 1051 } 1052 1053 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1054 * above block didn't clear this bit, there's nothing to do 1055 */ 1056 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1057 return; 1058 1059 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1060 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1061 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1062 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1063 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1064 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1065 } 1066 } 1067 1068 /** 1069 * ice_check_link_cfg_err - check if link configuration failed 1070 * @pf: pointer to the PF struct 1071 * @link_cfg_err: bitmap from the link info structure 1072 * 1073 * print if any link configuration failure happens due to the value in the 1074 * link_cfg_err parameter in the link info structure 1075 */ 1076 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1077 { 1078 ice_check_module_power(pf, link_cfg_err); 1079 ice_check_phy_fw_load(pf, link_cfg_err); 1080 } 1081 1082 /** 1083 * ice_link_event - process the link event 1084 * @pf: PF that the link event is associated with 1085 * @pi: port_info for the port that the link event is associated with 1086 * @link_up: true if the physical link is up and false if it is down 1087 * @link_speed: current link speed received from the link event 1088 * 1089 * Returns 0 on success and negative on failure 1090 */ 1091 static int 1092 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1093 u16 link_speed) 1094 { 1095 struct device *dev = ice_pf_to_dev(pf); 1096 struct ice_phy_info *phy_info; 1097 struct ice_vsi *vsi; 1098 u16 old_link_speed; 1099 bool old_link; 1100 int status; 1101 1102 phy_info = &pi->phy; 1103 phy_info->link_info_old = phy_info->link_info; 1104 1105 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1106 old_link_speed = phy_info->link_info_old.link_speed; 1107 1108 /* update the link info structures and re-enable link events, 1109 * don't bail on failure due to other book keeping needed 1110 */ 1111 status = ice_update_link_info(pi); 1112 if (status) 1113 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1114 pi->lport, status, 1115 ice_aq_str(pi->hw->adminq.sq_last_status)); 1116 1117 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1118 1119 /* Check if the link state is up after updating link info, and treat 1120 * this event as an UP event since the link is actually UP now. 1121 */ 1122 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1123 link_up = true; 1124 1125 vsi = ice_get_main_vsi(pf); 1126 if (!vsi || !vsi->port_info) 1127 return -EINVAL; 1128 1129 /* turn off PHY if media was removed */ 1130 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1131 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1133 ice_set_link(vsi, false); 1134 } 1135 1136 /* if the old link up/down and speed is the same as the new */ 1137 if (link_up == old_link && link_speed == old_link_speed) 1138 return 0; 1139 1140 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1141 1142 if (ice_is_dcb_active(pf)) { 1143 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1144 ice_dcb_rebuild(pf); 1145 } else { 1146 if (link_up) 1147 ice_set_dflt_mib(pf); 1148 } 1149 ice_vsi_link_event(vsi, link_up); 1150 ice_print_link_msg(vsi, link_up); 1151 1152 ice_vc_notify_link_state(pf); 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1159 * @pf: board private structure 1160 */ 1161 static void ice_watchdog_subtask(struct ice_pf *pf) 1162 { 1163 int i; 1164 1165 /* if interface is down do nothing */ 1166 if (test_bit(ICE_DOWN, pf->state) || 1167 test_bit(ICE_CFG_BUSY, pf->state)) 1168 return; 1169 1170 /* make sure we don't do these things too often */ 1171 if (time_before(jiffies, 1172 pf->serv_tmr_prev + pf->serv_tmr_period)) 1173 return; 1174 1175 pf->serv_tmr_prev = jiffies; 1176 1177 /* Update the stats for active netdevs so the network stack 1178 * can look at updated numbers whenever it cares to 1179 */ 1180 ice_update_pf_stats(pf); 1181 ice_for_each_vsi(pf, i) 1182 if (pf->vsi[i] && pf->vsi[i]->netdev) 1183 ice_update_vsi_stats(pf->vsi[i]); 1184 } 1185 1186 /** 1187 * ice_init_link_events - enable/initialize link events 1188 * @pi: pointer to the port_info instance 1189 * 1190 * Returns -EIO on failure, 0 on success 1191 */ 1192 static int ice_init_link_events(struct ice_port_info *pi) 1193 { 1194 u16 mask; 1195 1196 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1197 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1198 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1199 1200 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1201 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1202 pi->lport); 1203 return -EIO; 1204 } 1205 1206 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1207 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1208 pi->lport); 1209 return -EIO; 1210 } 1211 1212 return 0; 1213 } 1214 1215 /** 1216 * ice_handle_link_event - handle link event via ARQ 1217 * @pf: PF that the link event is associated with 1218 * @event: event structure containing link status info 1219 */ 1220 static int 1221 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1222 { 1223 struct ice_aqc_get_link_status_data *link_data; 1224 struct ice_port_info *port_info; 1225 int status; 1226 1227 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1228 port_info = pf->hw.port_info; 1229 if (!port_info) 1230 return -EINVAL; 1231 1232 status = ice_link_event(pf, port_info, 1233 !!(link_data->link_info & ICE_AQ_LINK_UP), 1234 le16_to_cpu(link_data->link_speed)); 1235 if (status) 1236 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1237 status); 1238 1239 return status; 1240 } 1241 1242 enum ice_aq_task_state { 1243 ICE_AQ_TASK_WAITING = 0, 1244 ICE_AQ_TASK_COMPLETE, 1245 ICE_AQ_TASK_CANCELED, 1246 }; 1247 1248 struct ice_aq_task { 1249 struct hlist_node entry; 1250 1251 u16 opcode; 1252 struct ice_rq_event_info *event; 1253 enum ice_aq_task_state state; 1254 }; 1255 1256 /** 1257 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1258 * @pf: pointer to the PF private structure 1259 * @opcode: the opcode to wait for 1260 * @timeout: how long to wait, in jiffies 1261 * @event: storage for the event info 1262 * 1263 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1264 * current thread will be put to sleep until the specified event occurs or 1265 * until the given timeout is reached. 1266 * 1267 * To obtain only the descriptor contents, pass an event without an allocated 1268 * msg_buf. If the complete data buffer is desired, allocate the 1269 * event->msg_buf with enough space ahead of time. 1270 * 1271 * Returns: zero on success, or a negative error code on failure. 1272 */ 1273 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1274 struct ice_rq_event_info *event) 1275 { 1276 struct device *dev = ice_pf_to_dev(pf); 1277 struct ice_aq_task *task; 1278 unsigned long start; 1279 long ret; 1280 int err; 1281 1282 task = kzalloc(sizeof(*task), GFP_KERNEL); 1283 if (!task) 1284 return -ENOMEM; 1285 1286 INIT_HLIST_NODE(&task->entry); 1287 task->opcode = opcode; 1288 task->event = event; 1289 task->state = ICE_AQ_TASK_WAITING; 1290 1291 spin_lock_bh(&pf->aq_wait_lock); 1292 hlist_add_head(&task->entry, &pf->aq_wait_list); 1293 spin_unlock_bh(&pf->aq_wait_lock); 1294 1295 start = jiffies; 1296 1297 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1298 timeout); 1299 switch (task->state) { 1300 case ICE_AQ_TASK_WAITING: 1301 err = ret < 0 ? ret : -ETIMEDOUT; 1302 break; 1303 case ICE_AQ_TASK_CANCELED: 1304 err = ret < 0 ? ret : -ECANCELED; 1305 break; 1306 case ICE_AQ_TASK_COMPLETE: 1307 err = ret < 0 ? ret : 0; 1308 break; 1309 default: 1310 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1311 err = -EINVAL; 1312 break; 1313 } 1314 1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1316 jiffies_to_msecs(jiffies - start), 1317 jiffies_to_msecs(timeout), 1318 opcode); 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_del(&task->entry); 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 kfree(task); 1324 1325 return err; 1326 } 1327 1328 /** 1329 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1330 * @pf: pointer to the PF private structure 1331 * @opcode: the opcode of the event 1332 * @event: the event to check 1333 * 1334 * Loops over the current list of pending threads waiting for an AdminQ event. 1335 * For each matching task, copy the contents of the event into the task 1336 * structure and wake up the thread. 1337 * 1338 * If multiple threads wait for the same opcode, they will all be woken up. 1339 * 1340 * Note that event->msg_buf will only be duplicated if the event has a buffer 1341 * with enough space already allocated. Otherwise, only the descriptor and 1342 * message length will be copied. 1343 * 1344 * Returns: true if an event was found, false otherwise 1345 */ 1346 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1347 struct ice_rq_event_info *event) 1348 { 1349 struct ice_aq_task *task; 1350 bool found = false; 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1354 if (task->state || task->opcode != opcode) 1355 continue; 1356 1357 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1358 task->event->msg_len = event->msg_len; 1359 1360 /* Only copy the data buffer if a destination was set */ 1361 if (task->event->msg_buf && 1362 task->event->buf_len > event->buf_len) { 1363 memcpy(task->event->msg_buf, event->msg_buf, 1364 event->buf_len); 1365 task->event->buf_len = event->buf_len; 1366 } 1367 1368 task->state = ICE_AQ_TASK_COMPLETE; 1369 found = true; 1370 } 1371 spin_unlock_bh(&pf->aq_wait_lock); 1372 1373 if (found) 1374 wake_up(&pf->aq_wait_queue); 1375 } 1376 1377 /** 1378 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1379 * @pf: the PF private structure 1380 * 1381 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1382 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1383 */ 1384 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1385 { 1386 struct ice_aq_task *task; 1387 1388 spin_lock_bh(&pf->aq_wait_lock); 1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1390 task->state = ICE_AQ_TASK_CANCELED; 1391 spin_unlock_bh(&pf->aq_wait_lock); 1392 1393 wake_up(&pf->aq_wait_queue); 1394 } 1395 1396 #define ICE_MBX_OVERFLOW_WATERMARK 64 1397 1398 /** 1399 * __ice_clean_ctrlq - helper function to clean controlq rings 1400 * @pf: ptr to struct ice_pf 1401 * @q_type: specific Control queue type 1402 */ 1403 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1404 { 1405 struct device *dev = ice_pf_to_dev(pf); 1406 struct ice_rq_event_info event; 1407 struct ice_hw *hw = &pf->hw; 1408 struct ice_ctl_q_info *cq; 1409 u16 pending, i = 0; 1410 const char *qtype; 1411 u32 oldval, val; 1412 1413 /* Do not clean control queue if/when PF reset fails */ 1414 if (test_bit(ICE_RESET_FAILED, pf->state)) 1415 return 0; 1416 1417 switch (q_type) { 1418 case ICE_CTL_Q_ADMIN: 1419 cq = &hw->adminq; 1420 qtype = "Admin"; 1421 break; 1422 case ICE_CTL_Q_SB: 1423 cq = &hw->sbq; 1424 qtype = "Sideband"; 1425 break; 1426 case ICE_CTL_Q_MAILBOX: 1427 cq = &hw->mailboxq; 1428 qtype = "Mailbox"; 1429 /* we are going to try to detect a malicious VF, so set the 1430 * state to begin detection 1431 */ 1432 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1433 break; 1434 default: 1435 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1436 return 0; 1437 } 1438 1439 /* check for error indications - PF_xx_AxQLEN register layout for 1440 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1441 */ 1442 val = rd32(hw, cq->rq.len); 1443 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1444 PF_FW_ARQLEN_ARQCRIT_M)) { 1445 oldval = val; 1446 if (val & PF_FW_ARQLEN_ARQVFE_M) 1447 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1448 qtype); 1449 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1450 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1451 qtype); 1452 } 1453 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1454 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1455 qtype); 1456 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1457 PF_FW_ARQLEN_ARQCRIT_M); 1458 if (oldval != val) 1459 wr32(hw, cq->rq.len, val); 1460 } 1461 1462 val = rd32(hw, cq->sq.len); 1463 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1464 PF_FW_ATQLEN_ATQCRIT_M)) { 1465 oldval = val; 1466 if (val & PF_FW_ATQLEN_ATQVFE_M) 1467 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1468 qtype); 1469 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1470 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1471 qtype); 1472 } 1473 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1474 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1475 qtype); 1476 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1477 PF_FW_ATQLEN_ATQCRIT_M); 1478 if (oldval != val) 1479 wr32(hw, cq->sq.len, val); 1480 } 1481 1482 event.buf_len = cq->rq_buf_size; 1483 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1484 if (!event.msg_buf) 1485 return 0; 1486 1487 do { 1488 struct ice_mbx_data data = {}; 1489 u16 opcode; 1490 int ret; 1491 1492 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1493 if (ret == -EALREADY) 1494 break; 1495 if (ret) { 1496 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1497 ret); 1498 break; 1499 } 1500 1501 opcode = le16_to_cpu(event.desc.opcode); 1502 1503 /* Notify any thread that might be waiting for this event */ 1504 ice_aq_check_events(pf, opcode, &event); 1505 1506 switch (opcode) { 1507 case ice_aqc_opc_get_link_status: 1508 if (ice_handle_link_event(pf, &event)) 1509 dev_err(dev, "Could not handle link event\n"); 1510 break; 1511 case ice_aqc_opc_event_lan_overflow: 1512 ice_vf_lan_overflow_event(pf, &event); 1513 break; 1514 case ice_mbx_opc_send_msg_to_pf: 1515 data.num_msg_proc = i; 1516 data.num_pending_arq = pending; 1517 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1518 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1519 1520 ice_vc_process_vf_msg(pf, &event, &data); 1521 break; 1522 case ice_aqc_opc_fw_logging: 1523 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1524 break; 1525 case ice_aqc_opc_lldp_set_mib_change: 1526 ice_dcb_process_lldp_set_mib_change(pf, &event); 1527 break; 1528 default: 1529 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1530 qtype, opcode); 1531 break; 1532 } 1533 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1534 1535 kfree(event.msg_buf); 1536 1537 return pending && (i == ICE_DFLT_IRQ_WORK); 1538 } 1539 1540 /** 1541 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1542 * @hw: pointer to hardware info 1543 * @cq: control queue information 1544 * 1545 * returns true if there are pending messages in a queue, false if there aren't 1546 */ 1547 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1548 { 1549 u16 ntu; 1550 1551 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1552 return cq->rq.next_to_clean != ntu; 1553 } 1554 1555 /** 1556 * ice_clean_adminq_subtask - clean the AdminQ rings 1557 * @pf: board private structure 1558 */ 1559 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1560 { 1561 struct ice_hw *hw = &pf->hw; 1562 1563 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1564 return; 1565 1566 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1567 return; 1568 1569 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1570 1571 /* There might be a situation where new messages arrive to a control 1572 * queue between processing the last message and clearing the 1573 * EVENT_PENDING bit. So before exiting, check queue head again (using 1574 * ice_ctrlq_pending) and process new messages if any. 1575 */ 1576 if (ice_ctrlq_pending(hw, &hw->adminq)) 1577 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1578 1579 ice_flush(hw); 1580 } 1581 1582 /** 1583 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1584 * @pf: board private structure 1585 */ 1586 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1587 { 1588 struct ice_hw *hw = &pf->hw; 1589 1590 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1591 return; 1592 1593 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1594 return; 1595 1596 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1597 1598 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1599 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1600 1601 ice_flush(hw); 1602 } 1603 1604 /** 1605 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1606 * @pf: board private structure 1607 */ 1608 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1609 { 1610 struct ice_hw *hw = &pf->hw; 1611 1612 /* Nothing to do here if sideband queue is not supported */ 1613 if (!ice_is_sbq_supported(hw)) { 1614 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1615 return; 1616 } 1617 1618 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1619 return; 1620 1621 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1622 return; 1623 1624 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1625 1626 if (ice_ctrlq_pending(hw, &hw->sbq)) 1627 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1628 1629 ice_flush(hw); 1630 } 1631 1632 /** 1633 * ice_service_task_schedule - schedule the service task to wake up 1634 * @pf: board private structure 1635 * 1636 * If not already scheduled, this puts the task into the work queue. 1637 */ 1638 void ice_service_task_schedule(struct ice_pf *pf) 1639 { 1640 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1641 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1642 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1643 queue_work(ice_wq, &pf->serv_task); 1644 } 1645 1646 /** 1647 * ice_service_task_complete - finish up the service task 1648 * @pf: board private structure 1649 */ 1650 static void ice_service_task_complete(struct ice_pf *pf) 1651 { 1652 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1653 1654 /* force memory (pf->state) to sync before next service task */ 1655 smp_mb__before_atomic(); 1656 clear_bit(ICE_SERVICE_SCHED, pf->state); 1657 } 1658 1659 /** 1660 * ice_service_task_stop - stop service task and cancel works 1661 * @pf: board private structure 1662 * 1663 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1664 * 1 otherwise. 1665 */ 1666 static int ice_service_task_stop(struct ice_pf *pf) 1667 { 1668 int ret; 1669 1670 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1671 1672 if (pf->serv_tmr.function) 1673 del_timer_sync(&pf->serv_tmr); 1674 if (pf->serv_task.func) 1675 cancel_work_sync(&pf->serv_task); 1676 1677 clear_bit(ICE_SERVICE_SCHED, pf->state); 1678 return ret; 1679 } 1680 1681 /** 1682 * ice_service_task_restart - restart service task and schedule works 1683 * @pf: board private structure 1684 * 1685 * This function is needed for suspend and resume works (e.g WoL scenario) 1686 */ 1687 static void ice_service_task_restart(struct ice_pf *pf) 1688 { 1689 clear_bit(ICE_SERVICE_DIS, pf->state); 1690 ice_service_task_schedule(pf); 1691 } 1692 1693 /** 1694 * ice_service_timer - timer callback to schedule service task 1695 * @t: pointer to timer_list 1696 */ 1697 static void ice_service_timer(struct timer_list *t) 1698 { 1699 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1700 1701 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1702 ice_service_task_schedule(pf); 1703 } 1704 1705 /** 1706 * ice_handle_mdd_event - handle malicious driver detect event 1707 * @pf: pointer to the PF structure 1708 * 1709 * Called from service task. OICR interrupt handler indicates MDD event. 1710 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1711 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1712 * disable the queue, the PF can be configured to reset the VF using ethtool 1713 * private flag mdd-auto-reset-vf. 1714 */ 1715 static void ice_handle_mdd_event(struct ice_pf *pf) 1716 { 1717 struct device *dev = ice_pf_to_dev(pf); 1718 struct ice_hw *hw = &pf->hw; 1719 struct ice_vf *vf; 1720 unsigned int bkt; 1721 u32 reg; 1722 1723 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1724 /* Since the VF MDD event logging is rate limited, check if 1725 * there are pending MDD events. 1726 */ 1727 ice_print_vfs_mdd_events(pf); 1728 return; 1729 } 1730 1731 /* find what triggered an MDD event */ 1732 reg = rd32(hw, GL_MDET_TX_PQM); 1733 if (reg & GL_MDET_TX_PQM_VALID_M) { 1734 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1735 GL_MDET_TX_PQM_PF_NUM_S; 1736 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1737 GL_MDET_TX_PQM_VF_NUM_S; 1738 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1739 GL_MDET_TX_PQM_MAL_TYPE_S; 1740 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1741 GL_MDET_TX_PQM_QNUM_S); 1742 1743 if (netif_msg_tx_err(pf)) 1744 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1745 event, queue, pf_num, vf_num); 1746 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1747 } 1748 1749 reg = rd32(hw, GL_MDET_TX_TCLAN); 1750 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1751 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1752 GL_MDET_TX_TCLAN_PF_NUM_S; 1753 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1754 GL_MDET_TX_TCLAN_VF_NUM_S; 1755 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1756 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1757 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1758 GL_MDET_TX_TCLAN_QNUM_S); 1759 1760 if (netif_msg_tx_err(pf)) 1761 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1762 event, queue, pf_num, vf_num); 1763 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1764 } 1765 1766 reg = rd32(hw, GL_MDET_RX); 1767 if (reg & GL_MDET_RX_VALID_M) { 1768 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1769 GL_MDET_RX_PF_NUM_S; 1770 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1771 GL_MDET_RX_VF_NUM_S; 1772 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1773 GL_MDET_RX_MAL_TYPE_S; 1774 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1775 GL_MDET_RX_QNUM_S); 1776 1777 if (netif_msg_rx_err(pf)) 1778 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1779 event, queue, pf_num, vf_num); 1780 wr32(hw, GL_MDET_RX, 0xffffffff); 1781 } 1782 1783 /* check to see if this PF caused an MDD event */ 1784 reg = rd32(hw, PF_MDET_TX_PQM); 1785 if (reg & PF_MDET_TX_PQM_VALID_M) { 1786 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1787 if (netif_msg_tx_err(pf)) 1788 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1789 } 1790 1791 reg = rd32(hw, PF_MDET_TX_TCLAN); 1792 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1793 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1794 if (netif_msg_tx_err(pf)) 1795 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1796 } 1797 1798 reg = rd32(hw, PF_MDET_RX); 1799 if (reg & PF_MDET_RX_VALID_M) { 1800 wr32(hw, PF_MDET_RX, 0xFFFF); 1801 if (netif_msg_rx_err(pf)) 1802 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1803 } 1804 1805 /* Check to see if one of the VFs caused an MDD event, and then 1806 * increment counters and set print pending 1807 */ 1808 mutex_lock(&pf->vfs.table_lock); 1809 ice_for_each_vf(pf, bkt, vf) { 1810 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1811 if (reg & VP_MDET_TX_PQM_VALID_M) { 1812 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1813 vf->mdd_tx_events.count++; 1814 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1815 if (netif_msg_tx_err(pf)) 1816 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1817 vf->vf_id); 1818 } 1819 1820 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1821 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1822 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1823 vf->mdd_tx_events.count++; 1824 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1825 if (netif_msg_tx_err(pf)) 1826 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1827 vf->vf_id); 1828 } 1829 1830 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1831 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1832 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1833 vf->mdd_tx_events.count++; 1834 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1835 if (netif_msg_tx_err(pf)) 1836 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1837 vf->vf_id); 1838 } 1839 1840 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1841 if (reg & VP_MDET_RX_VALID_M) { 1842 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1843 vf->mdd_rx_events.count++; 1844 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1845 if (netif_msg_rx_err(pf)) 1846 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1847 vf->vf_id); 1848 1849 /* Since the queue is disabled on VF Rx MDD events, the 1850 * PF can be configured to reset the VF through ethtool 1851 * private flag mdd-auto-reset-vf. 1852 */ 1853 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1854 /* VF MDD event counters will be cleared by 1855 * reset, so print the event prior to reset. 1856 */ 1857 ice_print_vf_rx_mdd_event(vf); 1858 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1859 } 1860 } 1861 } 1862 mutex_unlock(&pf->vfs.table_lock); 1863 1864 ice_print_vfs_mdd_events(pf); 1865 } 1866 1867 /** 1868 * ice_force_phys_link_state - Force the physical link state 1869 * @vsi: VSI to force the physical link state to up/down 1870 * @link_up: true/false indicates to set the physical link to up/down 1871 * 1872 * Force the physical link state by getting the current PHY capabilities from 1873 * hardware and setting the PHY config based on the determined capabilities. If 1874 * link changes a link event will be triggered because both the Enable Automatic 1875 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1876 * 1877 * Returns 0 on success, negative on failure 1878 */ 1879 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1880 { 1881 struct ice_aqc_get_phy_caps_data *pcaps; 1882 struct ice_aqc_set_phy_cfg_data *cfg; 1883 struct ice_port_info *pi; 1884 struct device *dev; 1885 int retcode; 1886 1887 if (!vsi || !vsi->port_info || !vsi->back) 1888 return -EINVAL; 1889 if (vsi->type != ICE_VSI_PF) 1890 return 0; 1891 1892 dev = ice_pf_to_dev(vsi->back); 1893 1894 pi = vsi->port_info; 1895 1896 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1897 if (!pcaps) 1898 return -ENOMEM; 1899 1900 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1901 NULL); 1902 if (retcode) { 1903 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1904 vsi->vsi_num, retcode); 1905 retcode = -EIO; 1906 goto out; 1907 } 1908 1909 /* No change in link */ 1910 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1911 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1912 goto out; 1913 1914 /* Use the current user PHY configuration. The current user PHY 1915 * configuration is initialized during probe from PHY capabilities 1916 * software mode, and updated on set PHY configuration. 1917 */ 1918 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1919 if (!cfg) { 1920 retcode = -ENOMEM; 1921 goto out; 1922 } 1923 1924 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1925 if (link_up) 1926 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1927 else 1928 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1929 1930 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1931 if (retcode) { 1932 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1933 vsi->vsi_num, retcode); 1934 retcode = -EIO; 1935 } 1936 1937 kfree(cfg); 1938 out: 1939 kfree(pcaps); 1940 return retcode; 1941 } 1942 1943 /** 1944 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1945 * @pi: port info structure 1946 * 1947 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1948 */ 1949 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1950 { 1951 struct ice_aqc_get_phy_caps_data *pcaps; 1952 struct ice_pf *pf = pi->hw->back; 1953 int err; 1954 1955 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1956 if (!pcaps) 1957 return -ENOMEM; 1958 1959 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1960 pcaps, NULL); 1961 1962 if (err) { 1963 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1964 goto out; 1965 } 1966 1967 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1968 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1969 1970 out: 1971 kfree(pcaps); 1972 return err; 1973 } 1974 1975 /** 1976 * ice_init_link_dflt_override - Initialize link default override 1977 * @pi: port info structure 1978 * 1979 * Initialize link default override and PHY total port shutdown during probe 1980 */ 1981 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1982 { 1983 struct ice_link_default_override_tlv *ldo; 1984 struct ice_pf *pf = pi->hw->back; 1985 1986 ldo = &pf->link_dflt_override; 1987 if (ice_get_link_default_override(ldo, pi)) 1988 return; 1989 1990 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1991 return; 1992 1993 /* Enable Total Port Shutdown (override/replace link-down-on-close 1994 * ethtool private flag) for ports with Port Disable bit set. 1995 */ 1996 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1997 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1998 } 1999 2000 /** 2001 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2002 * @pi: port info structure 2003 * 2004 * If default override is enabled, initialize the user PHY cfg speed and FEC 2005 * settings using the default override mask from the NVM. 2006 * 2007 * The PHY should only be configured with the default override settings the 2008 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2009 * is used to indicate that the user PHY cfg default override is initialized 2010 * and the PHY has not been configured with the default override settings. The 2011 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2012 * configured. 2013 * 2014 * This function should be called only if the FW doesn't support default 2015 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2016 */ 2017 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2018 { 2019 struct ice_link_default_override_tlv *ldo; 2020 struct ice_aqc_set_phy_cfg_data *cfg; 2021 struct ice_phy_info *phy = &pi->phy; 2022 struct ice_pf *pf = pi->hw->back; 2023 2024 ldo = &pf->link_dflt_override; 2025 2026 /* If link default override is enabled, use to mask NVM PHY capabilities 2027 * for speed and FEC default configuration. 2028 */ 2029 cfg = &phy->curr_user_phy_cfg; 2030 2031 if (ldo->phy_type_low || ldo->phy_type_high) { 2032 cfg->phy_type_low = pf->nvm_phy_type_lo & 2033 cpu_to_le64(ldo->phy_type_low); 2034 cfg->phy_type_high = pf->nvm_phy_type_hi & 2035 cpu_to_le64(ldo->phy_type_high); 2036 } 2037 cfg->link_fec_opt = ldo->fec_options; 2038 phy->curr_user_fec_req = ICE_FEC_AUTO; 2039 2040 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2041 } 2042 2043 /** 2044 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2045 * @pi: port info structure 2046 * 2047 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2048 * mode to default. The PHY defaults are from get PHY capabilities topology 2049 * with media so call when media is first available. An error is returned if 2050 * called when media is not available. The PHY initialization completed state is 2051 * set here. 2052 * 2053 * These configurations are used when setting PHY 2054 * configuration. The user PHY configuration is updated on set PHY 2055 * configuration. Returns 0 on success, negative on failure 2056 */ 2057 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2058 { 2059 struct ice_aqc_get_phy_caps_data *pcaps; 2060 struct ice_phy_info *phy = &pi->phy; 2061 struct ice_pf *pf = pi->hw->back; 2062 int err; 2063 2064 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2065 return -EIO; 2066 2067 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2068 if (!pcaps) 2069 return -ENOMEM; 2070 2071 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2072 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2073 pcaps, NULL); 2074 else 2075 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2076 pcaps, NULL); 2077 if (err) { 2078 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2079 goto err_out; 2080 } 2081 2082 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2083 2084 /* check if lenient mode is supported and enabled */ 2085 if (ice_fw_supports_link_override(pi->hw) && 2086 !(pcaps->module_compliance_enforcement & 2087 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2088 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2089 2090 /* if the FW supports default PHY configuration mode, then the driver 2091 * does not have to apply link override settings. If not, 2092 * initialize user PHY configuration with link override values 2093 */ 2094 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2095 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2096 ice_init_phy_cfg_dflt_override(pi); 2097 goto out; 2098 } 2099 } 2100 2101 /* if link default override is not enabled, set user flow control and 2102 * FEC settings based on what get_phy_caps returned 2103 */ 2104 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2105 pcaps->link_fec_options); 2106 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2107 2108 out: 2109 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2110 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2111 err_out: 2112 kfree(pcaps); 2113 return err; 2114 } 2115 2116 /** 2117 * ice_configure_phy - configure PHY 2118 * @vsi: VSI of PHY 2119 * 2120 * Set the PHY configuration. If the current PHY configuration is the same as 2121 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2122 * configure the based get PHY capabilities for topology with media. 2123 */ 2124 static int ice_configure_phy(struct ice_vsi *vsi) 2125 { 2126 struct device *dev = ice_pf_to_dev(vsi->back); 2127 struct ice_port_info *pi = vsi->port_info; 2128 struct ice_aqc_get_phy_caps_data *pcaps; 2129 struct ice_aqc_set_phy_cfg_data *cfg; 2130 struct ice_phy_info *phy = &pi->phy; 2131 struct ice_pf *pf = vsi->back; 2132 int err; 2133 2134 /* Ensure we have media as we cannot configure a medialess port */ 2135 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2136 return -EPERM; 2137 2138 ice_print_topo_conflict(vsi); 2139 2140 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2141 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2142 return -EPERM; 2143 2144 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2145 return ice_force_phys_link_state(vsi, true); 2146 2147 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2148 if (!pcaps) 2149 return -ENOMEM; 2150 2151 /* Get current PHY config */ 2152 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2153 NULL); 2154 if (err) { 2155 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2156 vsi->vsi_num, err); 2157 goto done; 2158 } 2159 2160 /* If PHY enable link is configured and configuration has not changed, 2161 * there's nothing to do 2162 */ 2163 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2164 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2165 goto done; 2166 2167 /* Use PHY topology as baseline for configuration */ 2168 memset(pcaps, 0, sizeof(*pcaps)); 2169 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2170 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2171 pcaps, NULL); 2172 else 2173 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2174 pcaps, NULL); 2175 if (err) { 2176 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2177 vsi->vsi_num, err); 2178 goto done; 2179 } 2180 2181 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2182 if (!cfg) { 2183 err = -ENOMEM; 2184 goto done; 2185 } 2186 2187 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2188 2189 /* Speed - If default override pending, use curr_user_phy_cfg set in 2190 * ice_init_phy_user_cfg_ldo. 2191 */ 2192 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2193 vsi->back->state)) { 2194 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2195 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2196 } else { 2197 u64 phy_low = 0, phy_high = 0; 2198 2199 ice_update_phy_type(&phy_low, &phy_high, 2200 pi->phy.curr_user_speed_req); 2201 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2202 cfg->phy_type_high = pcaps->phy_type_high & 2203 cpu_to_le64(phy_high); 2204 } 2205 2206 /* Can't provide what was requested; use PHY capabilities */ 2207 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2208 cfg->phy_type_low = pcaps->phy_type_low; 2209 cfg->phy_type_high = pcaps->phy_type_high; 2210 } 2211 2212 /* FEC */ 2213 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2214 2215 /* Can't provide what was requested; use PHY capabilities */ 2216 if (cfg->link_fec_opt != 2217 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2218 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2219 cfg->link_fec_opt = pcaps->link_fec_options; 2220 } 2221 2222 /* Flow Control - always supported; no need to check against 2223 * capabilities 2224 */ 2225 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2226 2227 /* Enable link and link update */ 2228 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2229 2230 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2231 if (err) 2232 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2233 vsi->vsi_num, err); 2234 2235 kfree(cfg); 2236 done: 2237 kfree(pcaps); 2238 return err; 2239 } 2240 2241 /** 2242 * ice_check_media_subtask - Check for media 2243 * @pf: pointer to PF struct 2244 * 2245 * If media is available, then initialize PHY user configuration if it is not 2246 * been, and configure the PHY if the interface is up. 2247 */ 2248 static void ice_check_media_subtask(struct ice_pf *pf) 2249 { 2250 struct ice_port_info *pi; 2251 struct ice_vsi *vsi; 2252 int err; 2253 2254 /* No need to check for media if it's already present */ 2255 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2256 return; 2257 2258 vsi = ice_get_main_vsi(pf); 2259 if (!vsi) 2260 return; 2261 2262 /* Refresh link info and check if media is present */ 2263 pi = vsi->port_info; 2264 err = ice_update_link_info(pi); 2265 if (err) 2266 return; 2267 2268 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2269 2270 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2271 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2272 ice_init_phy_user_cfg(pi); 2273 2274 /* PHY settings are reset on media insertion, reconfigure 2275 * PHY to preserve settings. 2276 */ 2277 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2278 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2279 return; 2280 2281 err = ice_configure_phy(vsi); 2282 if (!err) 2283 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2284 2285 /* A Link Status Event will be generated; the event handler 2286 * will complete bringing the interface up 2287 */ 2288 } 2289 } 2290 2291 /** 2292 * ice_service_task - manage and run subtasks 2293 * @work: pointer to work_struct contained by the PF struct 2294 */ 2295 static void ice_service_task(struct work_struct *work) 2296 { 2297 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2298 unsigned long start_time = jiffies; 2299 2300 /* subtasks */ 2301 2302 /* process reset requests first */ 2303 ice_reset_subtask(pf); 2304 2305 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2306 if (ice_is_reset_in_progress(pf->state) || 2307 test_bit(ICE_SUSPENDED, pf->state) || 2308 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2309 ice_service_task_complete(pf); 2310 return; 2311 } 2312 2313 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2314 struct iidc_event *event; 2315 2316 event = kzalloc(sizeof(*event), GFP_KERNEL); 2317 if (event) { 2318 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2319 /* report the entire OICR value to AUX driver */ 2320 swap(event->reg, pf->oicr_err_reg); 2321 ice_send_event_to_aux(pf, event); 2322 kfree(event); 2323 } 2324 } 2325 2326 /* unplug aux dev per request, if an unplug request came in 2327 * while processing a plug request, this will handle it 2328 */ 2329 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2330 ice_unplug_aux_dev(pf); 2331 2332 /* Plug aux device per request */ 2333 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2334 ice_plug_aux_dev(pf); 2335 2336 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2337 struct iidc_event *event; 2338 2339 event = kzalloc(sizeof(*event), GFP_KERNEL); 2340 if (event) { 2341 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2342 ice_send_event_to_aux(pf, event); 2343 kfree(event); 2344 } 2345 } 2346 2347 ice_clean_adminq_subtask(pf); 2348 ice_check_media_subtask(pf); 2349 ice_check_for_hang_subtask(pf); 2350 ice_sync_fltr_subtask(pf); 2351 ice_handle_mdd_event(pf); 2352 ice_watchdog_subtask(pf); 2353 2354 if (ice_is_safe_mode(pf)) { 2355 ice_service_task_complete(pf); 2356 return; 2357 } 2358 2359 ice_process_vflr_event(pf); 2360 ice_clean_mailboxq_subtask(pf); 2361 ice_clean_sbq_subtask(pf); 2362 ice_sync_arfs_fltrs(pf); 2363 ice_flush_fdir_ctx(pf); 2364 2365 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2366 ice_service_task_complete(pf); 2367 2368 /* If the tasks have taken longer than one service timer period 2369 * or there is more work to be done, reset the service timer to 2370 * schedule the service task now. 2371 */ 2372 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2373 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2374 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2375 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2376 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2377 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2378 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2379 mod_timer(&pf->serv_tmr, jiffies); 2380 } 2381 2382 /** 2383 * ice_set_ctrlq_len - helper function to set controlq length 2384 * @hw: pointer to the HW instance 2385 */ 2386 static void ice_set_ctrlq_len(struct ice_hw *hw) 2387 { 2388 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2389 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2390 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2391 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2392 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2393 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2394 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2395 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2396 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2397 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2398 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2399 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2400 } 2401 2402 /** 2403 * ice_schedule_reset - schedule a reset 2404 * @pf: board private structure 2405 * @reset: reset being requested 2406 */ 2407 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2408 { 2409 struct device *dev = ice_pf_to_dev(pf); 2410 2411 /* bail out if earlier reset has failed */ 2412 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2413 dev_dbg(dev, "earlier reset has failed\n"); 2414 return -EIO; 2415 } 2416 /* bail if reset/recovery already in progress */ 2417 if (ice_is_reset_in_progress(pf->state)) { 2418 dev_dbg(dev, "Reset already in progress\n"); 2419 return -EBUSY; 2420 } 2421 2422 switch (reset) { 2423 case ICE_RESET_PFR: 2424 set_bit(ICE_PFR_REQ, pf->state); 2425 break; 2426 case ICE_RESET_CORER: 2427 set_bit(ICE_CORER_REQ, pf->state); 2428 break; 2429 case ICE_RESET_GLOBR: 2430 set_bit(ICE_GLOBR_REQ, pf->state); 2431 break; 2432 default: 2433 return -EINVAL; 2434 } 2435 2436 ice_service_task_schedule(pf); 2437 return 0; 2438 } 2439 2440 /** 2441 * ice_irq_affinity_notify - Callback for affinity changes 2442 * @notify: context as to what irq was changed 2443 * @mask: the new affinity mask 2444 * 2445 * This is a callback function used by the irq_set_affinity_notifier function 2446 * so that we may register to receive changes to the irq affinity masks. 2447 */ 2448 static void 2449 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2450 const cpumask_t *mask) 2451 { 2452 struct ice_q_vector *q_vector = 2453 container_of(notify, struct ice_q_vector, affinity_notify); 2454 2455 cpumask_copy(&q_vector->affinity_mask, mask); 2456 } 2457 2458 /** 2459 * ice_irq_affinity_release - Callback for affinity notifier release 2460 * @ref: internal core kernel usage 2461 * 2462 * This is a callback function used by the irq_set_affinity_notifier function 2463 * to inform the current notification subscriber that they will no longer 2464 * receive notifications. 2465 */ 2466 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2467 2468 /** 2469 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2470 * @vsi: the VSI being configured 2471 */ 2472 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2473 { 2474 struct ice_hw *hw = &vsi->back->hw; 2475 int i; 2476 2477 ice_for_each_q_vector(vsi, i) 2478 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2479 2480 ice_flush(hw); 2481 return 0; 2482 } 2483 2484 /** 2485 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2486 * @vsi: the VSI being configured 2487 * @basename: name for the vector 2488 */ 2489 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2490 { 2491 int q_vectors = vsi->num_q_vectors; 2492 struct ice_pf *pf = vsi->back; 2493 struct device *dev; 2494 int rx_int_idx = 0; 2495 int tx_int_idx = 0; 2496 int vector, err; 2497 int irq_num; 2498 2499 dev = ice_pf_to_dev(pf); 2500 for (vector = 0; vector < q_vectors; vector++) { 2501 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2502 2503 irq_num = q_vector->irq.virq; 2504 2505 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2506 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2507 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2508 tx_int_idx++; 2509 } else if (q_vector->rx.rx_ring) { 2510 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2511 "%s-%s-%d", basename, "rx", rx_int_idx++); 2512 } else if (q_vector->tx.tx_ring) { 2513 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2514 "%s-%s-%d", basename, "tx", tx_int_idx++); 2515 } else { 2516 /* skip this unused q_vector */ 2517 continue; 2518 } 2519 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2520 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2521 IRQF_SHARED, q_vector->name, 2522 q_vector); 2523 else 2524 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2525 0, q_vector->name, q_vector); 2526 if (err) { 2527 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2528 err); 2529 goto free_q_irqs; 2530 } 2531 2532 /* register for affinity change notifications */ 2533 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2534 struct irq_affinity_notify *affinity_notify; 2535 2536 affinity_notify = &q_vector->affinity_notify; 2537 affinity_notify->notify = ice_irq_affinity_notify; 2538 affinity_notify->release = ice_irq_affinity_release; 2539 irq_set_affinity_notifier(irq_num, affinity_notify); 2540 } 2541 2542 /* assign the mask for this irq */ 2543 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2544 } 2545 2546 err = ice_set_cpu_rx_rmap(vsi); 2547 if (err) { 2548 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2549 vsi->vsi_num, ERR_PTR(err)); 2550 goto free_q_irqs; 2551 } 2552 2553 vsi->irqs_ready = true; 2554 return 0; 2555 2556 free_q_irqs: 2557 while (vector--) { 2558 irq_num = vsi->q_vectors[vector]->irq.virq; 2559 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2560 irq_set_affinity_notifier(irq_num, NULL); 2561 irq_set_affinity_hint(irq_num, NULL); 2562 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2563 } 2564 return err; 2565 } 2566 2567 /** 2568 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2569 * @vsi: VSI to setup Tx rings used by XDP 2570 * 2571 * Return 0 on success and negative value on error 2572 */ 2573 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2574 { 2575 struct device *dev = ice_pf_to_dev(vsi->back); 2576 struct ice_tx_desc *tx_desc; 2577 int i, j; 2578 2579 ice_for_each_xdp_txq(vsi, i) { 2580 u16 xdp_q_idx = vsi->alloc_txq + i; 2581 struct ice_ring_stats *ring_stats; 2582 struct ice_tx_ring *xdp_ring; 2583 2584 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2585 if (!xdp_ring) 2586 goto free_xdp_rings; 2587 2588 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2589 if (!ring_stats) { 2590 ice_free_tx_ring(xdp_ring); 2591 goto free_xdp_rings; 2592 } 2593 2594 xdp_ring->ring_stats = ring_stats; 2595 xdp_ring->q_index = xdp_q_idx; 2596 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2597 xdp_ring->vsi = vsi; 2598 xdp_ring->netdev = NULL; 2599 xdp_ring->dev = dev; 2600 xdp_ring->count = vsi->num_tx_desc; 2601 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2602 if (ice_setup_tx_ring(xdp_ring)) 2603 goto free_xdp_rings; 2604 ice_set_ring_xdp(xdp_ring); 2605 spin_lock_init(&xdp_ring->tx_lock); 2606 for (j = 0; j < xdp_ring->count; j++) { 2607 tx_desc = ICE_TX_DESC(xdp_ring, j); 2608 tx_desc->cmd_type_offset_bsz = 0; 2609 } 2610 } 2611 2612 return 0; 2613 2614 free_xdp_rings: 2615 for (; i >= 0; i--) { 2616 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2617 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2618 vsi->xdp_rings[i]->ring_stats = NULL; 2619 ice_free_tx_ring(vsi->xdp_rings[i]); 2620 } 2621 } 2622 return -ENOMEM; 2623 } 2624 2625 /** 2626 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2627 * @vsi: VSI to set the bpf prog on 2628 * @prog: the bpf prog pointer 2629 */ 2630 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2631 { 2632 struct bpf_prog *old_prog; 2633 int i; 2634 2635 old_prog = xchg(&vsi->xdp_prog, prog); 2636 ice_for_each_rxq(vsi, i) 2637 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2638 2639 if (old_prog) 2640 bpf_prog_put(old_prog); 2641 } 2642 2643 /** 2644 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2645 * @vsi: VSI to bring up Tx rings used by XDP 2646 * @prog: bpf program that will be assigned to VSI 2647 * 2648 * Return 0 on success and negative value on error 2649 */ 2650 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2651 { 2652 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2653 int xdp_rings_rem = vsi->num_xdp_txq; 2654 struct ice_pf *pf = vsi->back; 2655 struct ice_qs_cfg xdp_qs_cfg = { 2656 .qs_mutex = &pf->avail_q_mutex, 2657 .pf_map = pf->avail_txqs, 2658 .pf_map_size = pf->max_pf_txqs, 2659 .q_count = vsi->num_xdp_txq, 2660 .scatter_count = ICE_MAX_SCATTER_TXQS, 2661 .vsi_map = vsi->txq_map, 2662 .vsi_map_offset = vsi->alloc_txq, 2663 .mapping_mode = ICE_VSI_MAP_CONTIG 2664 }; 2665 struct device *dev; 2666 int i, v_idx; 2667 int status; 2668 2669 dev = ice_pf_to_dev(pf); 2670 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2671 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2672 if (!vsi->xdp_rings) 2673 return -ENOMEM; 2674 2675 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2676 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2677 goto err_map_xdp; 2678 2679 if (static_key_enabled(&ice_xdp_locking_key)) 2680 netdev_warn(vsi->netdev, 2681 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2682 2683 if (ice_xdp_alloc_setup_rings(vsi)) 2684 goto clear_xdp_rings; 2685 2686 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2687 ice_for_each_q_vector(vsi, v_idx) { 2688 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2689 int xdp_rings_per_v, q_id, q_base; 2690 2691 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2692 vsi->num_q_vectors - v_idx); 2693 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2694 2695 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2696 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2697 2698 xdp_ring->q_vector = q_vector; 2699 xdp_ring->next = q_vector->tx.tx_ring; 2700 q_vector->tx.tx_ring = xdp_ring; 2701 } 2702 xdp_rings_rem -= xdp_rings_per_v; 2703 } 2704 2705 ice_for_each_rxq(vsi, i) { 2706 if (static_key_enabled(&ice_xdp_locking_key)) { 2707 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2708 } else { 2709 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2710 struct ice_tx_ring *ring; 2711 2712 ice_for_each_tx_ring(ring, q_vector->tx) { 2713 if (ice_ring_is_xdp(ring)) { 2714 vsi->rx_rings[i]->xdp_ring = ring; 2715 break; 2716 } 2717 } 2718 } 2719 ice_tx_xsk_pool(vsi, i); 2720 } 2721 2722 /* omit the scheduler update if in reset path; XDP queues will be 2723 * taken into account at the end of ice_vsi_rebuild, where 2724 * ice_cfg_vsi_lan is being called 2725 */ 2726 if (ice_is_reset_in_progress(pf->state)) 2727 return 0; 2728 2729 /* tell the Tx scheduler that right now we have 2730 * additional queues 2731 */ 2732 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2733 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2734 2735 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2736 max_txqs); 2737 if (status) { 2738 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2739 status); 2740 goto clear_xdp_rings; 2741 } 2742 2743 /* assign the prog only when it's not already present on VSI; 2744 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2745 * VSI rebuild that happens under ethtool -L can expose us to 2746 * the bpf_prog refcount issues as we would be swapping same 2747 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2748 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2749 * this is not harmful as dev_xdp_install bumps the refcount 2750 * before calling the op exposed by the driver; 2751 */ 2752 if (!ice_is_xdp_ena_vsi(vsi)) 2753 ice_vsi_assign_bpf_prog(vsi, prog); 2754 2755 return 0; 2756 clear_xdp_rings: 2757 ice_for_each_xdp_txq(vsi, i) 2758 if (vsi->xdp_rings[i]) { 2759 kfree_rcu(vsi->xdp_rings[i], rcu); 2760 vsi->xdp_rings[i] = NULL; 2761 } 2762 2763 err_map_xdp: 2764 mutex_lock(&pf->avail_q_mutex); 2765 ice_for_each_xdp_txq(vsi, i) { 2766 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2767 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2768 } 2769 mutex_unlock(&pf->avail_q_mutex); 2770 2771 devm_kfree(dev, vsi->xdp_rings); 2772 return -ENOMEM; 2773 } 2774 2775 /** 2776 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2777 * @vsi: VSI to remove XDP rings 2778 * 2779 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2780 * resources 2781 */ 2782 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2783 { 2784 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2785 struct ice_pf *pf = vsi->back; 2786 int i, v_idx; 2787 2788 /* q_vectors are freed in reset path so there's no point in detaching 2789 * rings; in case of rebuild being triggered not from reset bits 2790 * in pf->state won't be set, so additionally check first q_vector 2791 * against NULL 2792 */ 2793 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2794 goto free_qmap; 2795 2796 ice_for_each_q_vector(vsi, v_idx) { 2797 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2798 struct ice_tx_ring *ring; 2799 2800 ice_for_each_tx_ring(ring, q_vector->tx) 2801 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2802 break; 2803 2804 /* restore the value of last node prior to XDP setup */ 2805 q_vector->tx.tx_ring = ring; 2806 } 2807 2808 free_qmap: 2809 mutex_lock(&pf->avail_q_mutex); 2810 ice_for_each_xdp_txq(vsi, i) { 2811 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2812 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2813 } 2814 mutex_unlock(&pf->avail_q_mutex); 2815 2816 ice_for_each_xdp_txq(vsi, i) 2817 if (vsi->xdp_rings[i]) { 2818 if (vsi->xdp_rings[i]->desc) { 2819 synchronize_rcu(); 2820 ice_free_tx_ring(vsi->xdp_rings[i]); 2821 } 2822 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2823 vsi->xdp_rings[i]->ring_stats = NULL; 2824 kfree_rcu(vsi->xdp_rings[i], rcu); 2825 vsi->xdp_rings[i] = NULL; 2826 } 2827 2828 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2829 vsi->xdp_rings = NULL; 2830 2831 if (static_key_enabled(&ice_xdp_locking_key)) 2832 static_branch_dec(&ice_xdp_locking_key); 2833 2834 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2835 return 0; 2836 2837 ice_vsi_assign_bpf_prog(vsi, NULL); 2838 2839 /* notify Tx scheduler that we destroyed XDP queues and bring 2840 * back the old number of child nodes 2841 */ 2842 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2843 max_txqs[i] = vsi->num_txq; 2844 2845 /* change number of XDP Tx queues to 0 */ 2846 vsi->num_xdp_txq = 0; 2847 2848 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2849 max_txqs); 2850 } 2851 2852 /** 2853 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2854 * @vsi: VSI to schedule napi on 2855 */ 2856 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2857 { 2858 int i; 2859 2860 ice_for_each_rxq(vsi, i) { 2861 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2862 2863 if (rx_ring->xsk_pool) 2864 napi_schedule(&rx_ring->q_vector->napi); 2865 } 2866 } 2867 2868 /** 2869 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2870 * @vsi: VSI to determine the count of XDP Tx qs 2871 * 2872 * returns 0 if Tx qs count is higher than at least half of CPU count, 2873 * -ENOMEM otherwise 2874 */ 2875 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2876 { 2877 u16 avail = ice_get_avail_txq_count(vsi->back); 2878 u16 cpus = num_possible_cpus(); 2879 2880 if (avail < cpus / 2) 2881 return -ENOMEM; 2882 2883 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2884 2885 if (vsi->num_xdp_txq < cpus) 2886 static_branch_inc(&ice_xdp_locking_key); 2887 2888 return 0; 2889 } 2890 2891 /** 2892 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2893 * @vsi: Pointer to VSI structure 2894 */ 2895 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2896 { 2897 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2898 return ICE_RXBUF_1664; 2899 else 2900 return ICE_RXBUF_3072; 2901 } 2902 2903 /** 2904 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2905 * @vsi: VSI to setup XDP for 2906 * @prog: XDP program 2907 * @extack: netlink extended ack 2908 */ 2909 static int 2910 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2911 struct netlink_ext_ack *extack) 2912 { 2913 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2914 bool if_running = netif_running(vsi->netdev); 2915 int ret = 0, xdp_ring_err = 0; 2916 2917 if (prog && !prog->aux->xdp_has_frags) { 2918 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2919 NL_SET_ERR_MSG_MOD(extack, 2920 "MTU is too large for linear frames and XDP prog does not support frags"); 2921 return -EOPNOTSUPP; 2922 } 2923 } 2924 2925 /* hot swap progs and avoid toggling link */ 2926 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2927 ice_vsi_assign_bpf_prog(vsi, prog); 2928 return 0; 2929 } 2930 2931 /* need to stop netdev while setting up the program for Rx rings */ 2932 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2933 ret = ice_down(vsi); 2934 if (ret) { 2935 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2936 return ret; 2937 } 2938 } 2939 2940 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2941 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2942 if (xdp_ring_err) { 2943 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2944 } else { 2945 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2946 if (xdp_ring_err) 2947 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2948 } 2949 xdp_features_set_redirect_target(vsi->netdev, true); 2950 /* reallocate Rx queues that are used for zero-copy */ 2951 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2952 if (xdp_ring_err) 2953 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2954 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2955 xdp_features_clear_redirect_target(vsi->netdev); 2956 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2957 if (xdp_ring_err) 2958 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2959 /* reallocate Rx queues that were used for zero-copy */ 2960 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2961 if (xdp_ring_err) 2962 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2963 } 2964 2965 if (if_running) 2966 ret = ice_up(vsi); 2967 2968 if (!ret && prog) 2969 ice_vsi_rx_napi_schedule(vsi); 2970 2971 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2972 } 2973 2974 /** 2975 * ice_xdp_safe_mode - XDP handler for safe mode 2976 * @dev: netdevice 2977 * @xdp: XDP command 2978 */ 2979 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2980 struct netdev_bpf *xdp) 2981 { 2982 NL_SET_ERR_MSG_MOD(xdp->extack, 2983 "Please provide working DDP firmware package in order to use XDP\n" 2984 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2985 return -EOPNOTSUPP; 2986 } 2987 2988 /** 2989 * ice_xdp - implements XDP handler 2990 * @dev: netdevice 2991 * @xdp: XDP command 2992 */ 2993 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2994 { 2995 struct ice_netdev_priv *np = netdev_priv(dev); 2996 struct ice_vsi *vsi = np->vsi; 2997 2998 if (vsi->type != ICE_VSI_PF) { 2999 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3000 return -EINVAL; 3001 } 3002 3003 switch (xdp->command) { 3004 case XDP_SETUP_PROG: 3005 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3006 case XDP_SETUP_XSK_POOL: 3007 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3008 xdp->xsk.queue_id); 3009 default: 3010 return -EINVAL; 3011 } 3012 } 3013 3014 /** 3015 * ice_ena_misc_vector - enable the non-queue interrupts 3016 * @pf: board private structure 3017 */ 3018 static void ice_ena_misc_vector(struct ice_pf *pf) 3019 { 3020 struct ice_hw *hw = &pf->hw; 3021 u32 val; 3022 3023 /* Disable anti-spoof detection interrupt to prevent spurious event 3024 * interrupts during a function reset. Anti-spoof functionally is 3025 * still supported. 3026 */ 3027 val = rd32(hw, GL_MDCK_TX_TDPU); 3028 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3029 wr32(hw, GL_MDCK_TX_TDPU, val); 3030 3031 /* clear things first */ 3032 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3033 rd32(hw, PFINT_OICR); /* read to clear */ 3034 3035 val = (PFINT_OICR_ECC_ERR_M | 3036 PFINT_OICR_MAL_DETECT_M | 3037 PFINT_OICR_GRST_M | 3038 PFINT_OICR_PCI_EXCEPTION_M | 3039 PFINT_OICR_VFLR_M | 3040 PFINT_OICR_HMC_ERR_M | 3041 PFINT_OICR_PE_PUSH_M | 3042 PFINT_OICR_PE_CRITERR_M); 3043 3044 wr32(hw, PFINT_OICR_ENA, val); 3045 3046 /* SW_ITR_IDX = 0, but don't change INTENA */ 3047 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3048 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3049 } 3050 3051 /** 3052 * ice_misc_intr - misc interrupt handler 3053 * @irq: interrupt number 3054 * @data: pointer to a q_vector 3055 */ 3056 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3057 { 3058 struct ice_pf *pf = (struct ice_pf *)data; 3059 struct ice_hw *hw = &pf->hw; 3060 struct device *dev; 3061 u32 oicr, ena_mask; 3062 3063 dev = ice_pf_to_dev(pf); 3064 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3065 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3066 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3067 3068 oicr = rd32(hw, PFINT_OICR); 3069 ena_mask = rd32(hw, PFINT_OICR_ENA); 3070 3071 if (oicr & PFINT_OICR_SWINT_M) { 3072 ena_mask &= ~PFINT_OICR_SWINT_M; 3073 pf->sw_int_count++; 3074 } 3075 3076 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3077 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3078 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3079 } 3080 if (oicr & PFINT_OICR_VFLR_M) { 3081 /* disable any further VFLR event notifications */ 3082 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3083 u32 reg = rd32(hw, PFINT_OICR_ENA); 3084 3085 reg &= ~PFINT_OICR_VFLR_M; 3086 wr32(hw, PFINT_OICR_ENA, reg); 3087 } else { 3088 ena_mask &= ~PFINT_OICR_VFLR_M; 3089 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3090 } 3091 } 3092 3093 if (oicr & PFINT_OICR_GRST_M) { 3094 u32 reset; 3095 3096 /* we have a reset warning */ 3097 ena_mask &= ~PFINT_OICR_GRST_M; 3098 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3099 GLGEN_RSTAT_RESET_TYPE_S; 3100 3101 if (reset == ICE_RESET_CORER) 3102 pf->corer_count++; 3103 else if (reset == ICE_RESET_GLOBR) 3104 pf->globr_count++; 3105 else if (reset == ICE_RESET_EMPR) 3106 pf->empr_count++; 3107 else 3108 dev_dbg(dev, "Invalid reset type %d\n", reset); 3109 3110 /* If a reset cycle isn't already in progress, we set a bit in 3111 * pf->state so that the service task can start a reset/rebuild. 3112 */ 3113 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3114 if (reset == ICE_RESET_CORER) 3115 set_bit(ICE_CORER_RECV, pf->state); 3116 else if (reset == ICE_RESET_GLOBR) 3117 set_bit(ICE_GLOBR_RECV, pf->state); 3118 else 3119 set_bit(ICE_EMPR_RECV, pf->state); 3120 3121 /* There are couple of different bits at play here. 3122 * hw->reset_ongoing indicates whether the hardware is 3123 * in reset. This is set to true when a reset interrupt 3124 * is received and set back to false after the driver 3125 * has determined that the hardware is out of reset. 3126 * 3127 * ICE_RESET_OICR_RECV in pf->state indicates 3128 * that a post reset rebuild is required before the 3129 * driver is operational again. This is set above. 3130 * 3131 * As this is the start of the reset/rebuild cycle, set 3132 * both to indicate that. 3133 */ 3134 hw->reset_ongoing = true; 3135 } 3136 } 3137 3138 if (oicr & PFINT_OICR_TSYN_TX_M) { 3139 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3140 if (!hw->reset_ongoing) 3141 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3142 } 3143 3144 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3145 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3146 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3147 3148 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3149 3150 if (hw->func_caps.ts_func_info.src_tmr_owned) { 3151 /* Save EVENTs from GLTSYN register */ 3152 pf->ptp.ext_ts_irq |= gltsyn_stat & 3153 (GLTSYN_STAT_EVENT0_M | 3154 GLTSYN_STAT_EVENT1_M | 3155 GLTSYN_STAT_EVENT2_M); 3156 3157 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3158 } 3159 } 3160 3161 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3162 if (oicr & ICE_AUX_CRIT_ERR) { 3163 pf->oicr_err_reg |= oicr; 3164 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3165 ena_mask &= ~ICE_AUX_CRIT_ERR; 3166 } 3167 3168 /* Report any remaining unexpected interrupts */ 3169 oicr &= ena_mask; 3170 if (oicr) { 3171 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3172 /* If a critical error is pending there is no choice but to 3173 * reset the device. 3174 */ 3175 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3176 PFINT_OICR_ECC_ERR_M)) { 3177 set_bit(ICE_PFR_REQ, pf->state); 3178 } 3179 } 3180 3181 return IRQ_WAKE_THREAD; 3182 } 3183 3184 /** 3185 * ice_misc_intr_thread_fn - misc interrupt thread function 3186 * @irq: interrupt number 3187 * @data: pointer to a q_vector 3188 */ 3189 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3190 { 3191 struct ice_pf *pf = data; 3192 struct ice_hw *hw; 3193 3194 hw = &pf->hw; 3195 3196 if (ice_is_reset_in_progress(pf->state)) 3197 return IRQ_HANDLED; 3198 3199 ice_service_task_schedule(pf); 3200 3201 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3202 ice_ptp_extts_event(pf); 3203 3204 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3205 /* Process outstanding Tx timestamps. If there is more work, 3206 * re-arm the interrupt to trigger again. 3207 */ 3208 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3209 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3210 ice_flush(hw); 3211 } 3212 } 3213 3214 ice_irq_dynamic_ena(hw, NULL, NULL); 3215 3216 return IRQ_HANDLED; 3217 } 3218 3219 /** 3220 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3221 * @hw: pointer to HW structure 3222 */ 3223 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3224 { 3225 /* disable Admin queue Interrupt causes */ 3226 wr32(hw, PFINT_FW_CTL, 3227 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3228 3229 /* disable Mailbox queue Interrupt causes */ 3230 wr32(hw, PFINT_MBX_CTL, 3231 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3232 3233 wr32(hw, PFINT_SB_CTL, 3234 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3235 3236 /* disable Control queue Interrupt causes */ 3237 wr32(hw, PFINT_OICR_CTL, 3238 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3239 3240 ice_flush(hw); 3241 } 3242 3243 /** 3244 * ice_free_irq_msix_misc - Unroll misc vector setup 3245 * @pf: board private structure 3246 */ 3247 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3248 { 3249 int misc_irq_num = pf->oicr_irq.virq; 3250 struct ice_hw *hw = &pf->hw; 3251 3252 ice_dis_ctrlq_interrupts(hw); 3253 3254 /* disable OICR interrupt */ 3255 wr32(hw, PFINT_OICR_ENA, 0); 3256 ice_flush(hw); 3257 3258 synchronize_irq(misc_irq_num); 3259 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3260 3261 ice_free_irq(pf, pf->oicr_irq); 3262 } 3263 3264 /** 3265 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3266 * @hw: pointer to HW structure 3267 * @reg_idx: HW vector index to associate the control queue interrupts with 3268 */ 3269 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3270 { 3271 u32 val; 3272 3273 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3274 PFINT_OICR_CTL_CAUSE_ENA_M); 3275 wr32(hw, PFINT_OICR_CTL, val); 3276 3277 /* enable Admin queue Interrupt causes */ 3278 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3279 PFINT_FW_CTL_CAUSE_ENA_M); 3280 wr32(hw, PFINT_FW_CTL, val); 3281 3282 /* enable Mailbox queue Interrupt causes */ 3283 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3284 PFINT_MBX_CTL_CAUSE_ENA_M); 3285 wr32(hw, PFINT_MBX_CTL, val); 3286 3287 /* This enables Sideband queue Interrupt causes */ 3288 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3289 PFINT_SB_CTL_CAUSE_ENA_M); 3290 wr32(hw, PFINT_SB_CTL, val); 3291 3292 ice_flush(hw); 3293 } 3294 3295 /** 3296 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3297 * @pf: board private structure 3298 * 3299 * This sets up the handler for MSIX 0, which is used to manage the 3300 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3301 * when in MSI or Legacy interrupt mode. 3302 */ 3303 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3304 { 3305 struct device *dev = ice_pf_to_dev(pf); 3306 struct ice_hw *hw = &pf->hw; 3307 struct msi_map oicr_irq; 3308 int err = 0; 3309 3310 if (!pf->int_name[0]) 3311 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3312 dev_driver_string(dev), dev_name(dev)); 3313 3314 /* Do not request IRQ but do enable OICR interrupt since settings are 3315 * lost during reset. Note that this function is called only during 3316 * rebuild path and not while reset is in progress. 3317 */ 3318 if (ice_is_reset_in_progress(pf->state)) 3319 goto skip_req_irq; 3320 3321 /* reserve one vector in irq_tracker for misc interrupts */ 3322 oicr_irq = ice_alloc_irq(pf, false); 3323 if (oicr_irq.index < 0) 3324 return oicr_irq.index; 3325 3326 pf->oicr_irq = oicr_irq; 3327 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3328 ice_misc_intr_thread_fn, 0, 3329 pf->int_name, pf); 3330 if (err) { 3331 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3332 pf->int_name, err); 3333 ice_free_irq(pf, pf->oicr_irq); 3334 return err; 3335 } 3336 3337 skip_req_irq: 3338 ice_ena_misc_vector(pf); 3339 3340 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3341 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3342 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3343 3344 ice_flush(hw); 3345 ice_irq_dynamic_ena(hw, NULL, NULL); 3346 3347 return 0; 3348 } 3349 3350 /** 3351 * ice_napi_add - register NAPI handler for the VSI 3352 * @vsi: VSI for which NAPI handler is to be registered 3353 * 3354 * This function is only called in the driver's load path. Registering the NAPI 3355 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3356 * reset/rebuild, etc.) 3357 */ 3358 static void ice_napi_add(struct ice_vsi *vsi) 3359 { 3360 int v_idx; 3361 3362 if (!vsi->netdev) 3363 return; 3364 3365 ice_for_each_q_vector(vsi, v_idx) 3366 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3367 ice_napi_poll); 3368 } 3369 3370 /** 3371 * ice_set_ops - set netdev and ethtools ops for the given netdev 3372 * @vsi: the VSI associated with the new netdev 3373 */ 3374 static void ice_set_ops(struct ice_vsi *vsi) 3375 { 3376 struct net_device *netdev = vsi->netdev; 3377 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3378 3379 if (ice_is_safe_mode(pf)) { 3380 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3381 ice_set_ethtool_safe_mode_ops(netdev); 3382 return; 3383 } 3384 3385 netdev->netdev_ops = &ice_netdev_ops; 3386 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3387 ice_set_ethtool_ops(netdev); 3388 3389 if (vsi->type != ICE_VSI_PF) 3390 return; 3391 3392 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3393 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3394 NETDEV_XDP_ACT_RX_SG; 3395 } 3396 3397 /** 3398 * ice_set_netdev_features - set features for the given netdev 3399 * @netdev: netdev instance 3400 */ 3401 static void ice_set_netdev_features(struct net_device *netdev) 3402 { 3403 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3404 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3405 netdev_features_t csumo_features; 3406 netdev_features_t vlano_features; 3407 netdev_features_t dflt_features; 3408 netdev_features_t tso_features; 3409 3410 if (ice_is_safe_mode(pf)) { 3411 /* safe mode */ 3412 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3413 netdev->hw_features = netdev->features; 3414 return; 3415 } 3416 3417 dflt_features = NETIF_F_SG | 3418 NETIF_F_HIGHDMA | 3419 NETIF_F_NTUPLE | 3420 NETIF_F_RXHASH; 3421 3422 csumo_features = NETIF_F_RXCSUM | 3423 NETIF_F_IP_CSUM | 3424 NETIF_F_SCTP_CRC | 3425 NETIF_F_IPV6_CSUM; 3426 3427 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3428 NETIF_F_HW_VLAN_CTAG_TX | 3429 NETIF_F_HW_VLAN_CTAG_RX; 3430 3431 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3432 if (is_dvm_ena) 3433 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3434 3435 tso_features = NETIF_F_TSO | 3436 NETIF_F_TSO_ECN | 3437 NETIF_F_TSO6 | 3438 NETIF_F_GSO_GRE | 3439 NETIF_F_GSO_UDP_TUNNEL | 3440 NETIF_F_GSO_GRE_CSUM | 3441 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3442 NETIF_F_GSO_PARTIAL | 3443 NETIF_F_GSO_IPXIP4 | 3444 NETIF_F_GSO_IPXIP6 | 3445 NETIF_F_GSO_UDP_L4; 3446 3447 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3448 NETIF_F_GSO_GRE_CSUM; 3449 /* set features that user can change */ 3450 netdev->hw_features = dflt_features | csumo_features | 3451 vlano_features | tso_features; 3452 3453 /* add support for HW_CSUM on packets with MPLS header */ 3454 netdev->mpls_features = NETIF_F_HW_CSUM | 3455 NETIF_F_TSO | 3456 NETIF_F_TSO6; 3457 3458 /* enable features */ 3459 netdev->features |= netdev->hw_features; 3460 3461 netdev->hw_features |= NETIF_F_HW_TC; 3462 netdev->hw_features |= NETIF_F_LOOPBACK; 3463 3464 /* encap and VLAN devices inherit default, csumo and tso features */ 3465 netdev->hw_enc_features |= dflt_features | csumo_features | 3466 tso_features; 3467 netdev->vlan_features |= dflt_features | csumo_features | 3468 tso_features; 3469 3470 /* advertise support but don't enable by default since only one type of 3471 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3472 * type turns on the other has to be turned off. This is enforced by the 3473 * ice_fix_features() ndo callback. 3474 */ 3475 if (is_dvm_ena) 3476 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3477 NETIF_F_HW_VLAN_STAG_TX; 3478 3479 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3480 * be changed at runtime 3481 */ 3482 netdev->hw_features |= NETIF_F_RXFCS; 3483 3484 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3485 } 3486 3487 /** 3488 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3489 * @lut: Lookup table 3490 * @rss_table_size: Lookup table size 3491 * @rss_size: Range of queue number for hashing 3492 */ 3493 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3494 { 3495 u16 i; 3496 3497 for (i = 0; i < rss_table_size; i++) 3498 lut[i] = i % rss_size; 3499 } 3500 3501 /** 3502 * ice_pf_vsi_setup - Set up a PF VSI 3503 * @pf: board private structure 3504 * @pi: pointer to the port_info instance 3505 * 3506 * Returns pointer to the successfully allocated VSI software struct 3507 * on success, otherwise returns NULL on failure. 3508 */ 3509 static struct ice_vsi * 3510 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3511 { 3512 struct ice_vsi_cfg_params params = {}; 3513 3514 params.type = ICE_VSI_PF; 3515 params.pi = pi; 3516 params.flags = ICE_VSI_FLAG_INIT; 3517 3518 return ice_vsi_setup(pf, ¶ms); 3519 } 3520 3521 static struct ice_vsi * 3522 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3523 struct ice_channel *ch) 3524 { 3525 struct ice_vsi_cfg_params params = {}; 3526 3527 params.type = ICE_VSI_CHNL; 3528 params.pi = pi; 3529 params.ch = ch; 3530 params.flags = ICE_VSI_FLAG_INIT; 3531 3532 return ice_vsi_setup(pf, ¶ms); 3533 } 3534 3535 /** 3536 * ice_ctrl_vsi_setup - Set up a control VSI 3537 * @pf: board private structure 3538 * @pi: pointer to the port_info instance 3539 * 3540 * Returns pointer to the successfully allocated VSI software struct 3541 * on success, otherwise returns NULL on failure. 3542 */ 3543 static struct ice_vsi * 3544 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3545 { 3546 struct ice_vsi_cfg_params params = {}; 3547 3548 params.type = ICE_VSI_CTRL; 3549 params.pi = pi; 3550 params.flags = ICE_VSI_FLAG_INIT; 3551 3552 return ice_vsi_setup(pf, ¶ms); 3553 } 3554 3555 /** 3556 * ice_lb_vsi_setup - Set up a loopback VSI 3557 * @pf: board private structure 3558 * @pi: pointer to the port_info instance 3559 * 3560 * Returns pointer to the successfully allocated VSI software struct 3561 * on success, otherwise returns NULL on failure. 3562 */ 3563 struct ice_vsi * 3564 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3565 { 3566 struct ice_vsi_cfg_params params = {}; 3567 3568 params.type = ICE_VSI_LB; 3569 params.pi = pi; 3570 params.flags = ICE_VSI_FLAG_INIT; 3571 3572 return ice_vsi_setup(pf, ¶ms); 3573 } 3574 3575 /** 3576 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3577 * @netdev: network interface to be adjusted 3578 * @proto: VLAN TPID 3579 * @vid: VLAN ID to be added 3580 * 3581 * net_device_ops implementation for adding VLAN IDs 3582 */ 3583 static int 3584 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3585 { 3586 struct ice_netdev_priv *np = netdev_priv(netdev); 3587 struct ice_vsi_vlan_ops *vlan_ops; 3588 struct ice_vsi *vsi = np->vsi; 3589 struct ice_vlan vlan; 3590 int ret; 3591 3592 /* VLAN 0 is added by default during load/reset */ 3593 if (!vid) 3594 return 0; 3595 3596 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3597 usleep_range(1000, 2000); 3598 3599 /* Add multicast promisc rule for the VLAN ID to be added if 3600 * all-multicast is currently enabled. 3601 */ 3602 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3603 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3604 ICE_MCAST_VLAN_PROMISC_BITS, 3605 vid); 3606 if (ret) 3607 goto finish; 3608 } 3609 3610 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3611 3612 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3613 * packets aren't pruned by the device's internal switch on Rx 3614 */ 3615 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3616 ret = vlan_ops->add_vlan(vsi, &vlan); 3617 if (ret) 3618 goto finish; 3619 3620 /* If all-multicast is currently enabled and this VLAN ID is only one 3621 * besides VLAN-0 we have to update look-up type of multicast promisc 3622 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3623 */ 3624 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3625 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3626 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3627 ICE_MCAST_PROMISC_BITS, 0); 3628 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3629 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3630 } 3631 3632 finish: 3633 clear_bit(ICE_CFG_BUSY, vsi->state); 3634 3635 return ret; 3636 } 3637 3638 /** 3639 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3640 * @netdev: network interface to be adjusted 3641 * @proto: VLAN TPID 3642 * @vid: VLAN ID to be removed 3643 * 3644 * net_device_ops implementation for removing VLAN IDs 3645 */ 3646 static int 3647 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3648 { 3649 struct ice_netdev_priv *np = netdev_priv(netdev); 3650 struct ice_vsi_vlan_ops *vlan_ops; 3651 struct ice_vsi *vsi = np->vsi; 3652 struct ice_vlan vlan; 3653 int ret; 3654 3655 /* don't allow removal of VLAN 0 */ 3656 if (!vid) 3657 return 0; 3658 3659 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3660 usleep_range(1000, 2000); 3661 3662 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3663 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3664 if (ret) { 3665 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3666 vsi->vsi_num); 3667 vsi->current_netdev_flags |= IFF_ALLMULTI; 3668 } 3669 3670 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3671 3672 /* Make sure VLAN delete is successful before updating VLAN 3673 * information 3674 */ 3675 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3676 ret = vlan_ops->del_vlan(vsi, &vlan); 3677 if (ret) 3678 goto finish; 3679 3680 /* Remove multicast promisc rule for the removed VLAN ID if 3681 * all-multicast is enabled. 3682 */ 3683 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3684 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3685 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3686 3687 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3688 /* Update look-up type of multicast promisc rule for VLAN 0 3689 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3690 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3691 */ 3692 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3693 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3694 ICE_MCAST_VLAN_PROMISC_BITS, 3695 0); 3696 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3697 ICE_MCAST_PROMISC_BITS, 0); 3698 } 3699 } 3700 3701 finish: 3702 clear_bit(ICE_CFG_BUSY, vsi->state); 3703 3704 return ret; 3705 } 3706 3707 /** 3708 * ice_rep_indr_tc_block_unbind 3709 * @cb_priv: indirection block private data 3710 */ 3711 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3712 { 3713 struct ice_indr_block_priv *indr_priv = cb_priv; 3714 3715 list_del(&indr_priv->list); 3716 kfree(indr_priv); 3717 } 3718 3719 /** 3720 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3721 * @vsi: VSI struct which has the netdev 3722 */ 3723 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3724 { 3725 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3726 3727 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3728 ice_rep_indr_tc_block_unbind); 3729 } 3730 3731 /** 3732 * ice_tc_indir_block_register - Register TC indirect block notifications 3733 * @vsi: VSI struct which has the netdev 3734 * 3735 * Returns 0 on success, negative value on failure 3736 */ 3737 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3738 { 3739 struct ice_netdev_priv *np; 3740 3741 if (!vsi || !vsi->netdev) 3742 return -EINVAL; 3743 3744 np = netdev_priv(vsi->netdev); 3745 3746 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3747 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3748 } 3749 3750 /** 3751 * ice_get_avail_q_count - Get count of queues in use 3752 * @pf_qmap: bitmap to get queue use count from 3753 * @lock: pointer to a mutex that protects access to pf_qmap 3754 * @size: size of the bitmap 3755 */ 3756 static u16 3757 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3758 { 3759 unsigned long bit; 3760 u16 count = 0; 3761 3762 mutex_lock(lock); 3763 for_each_clear_bit(bit, pf_qmap, size) 3764 count++; 3765 mutex_unlock(lock); 3766 3767 return count; 3768 } 3769 3770 /** 3771 * ice_get_avail_txq_count - Get count of Tx queues in use 3772 * @pf: pointer to an ice_pf instance 3773 */ 3774 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3775 { 3776 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3777 pf->max_pf_txqs); 3778 } 3779 3780 /** 3781 * ice_get_avail_rxq_count - Get count of Rx queues in use 3782 * @pf: pointer to an ice_pf instance 3783 */ 3784 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3785 { 3786 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3787 pf->max_pf_rxqs); 3788 } 3789 3790 /** 3791 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3792 * @pf: board private structure to initialize 3793 */ 3794 static void ice_deinit_pf(struct ice_pf *pf) 3795 { 3796 ice_service_task_stop(pf); 3797 mutex_destroy(&pf->adev_mutex); 3798 mutex_destroy(&pf->sw_mutex); 3799 mutex_destroy(&pf->tc_mutex); 3800 mutex_destroy(&pf->avail_q_mutex); 3801 mutex_destroy(&pf->vfs.table_lock); 3802 3803 if (pf->avail_txqs) { 3804 bitmap_free(pf->avail_txqs); 3805 pf->avail_txqs = NULL; 3806 } 3807 3808 if (pf->avail_rxqs) { 3809 bitmap_free(pf->avail_rxqs); 3810 pf->avail_rxqs = NULL; 3811 } 3812 3813 if (pf->ptp.clock) 3814 ptp_clock_unregister(pf->ptp.clock); 3815 } 3816 3817 /** 3818 * ice_set_pf_caps - set PFs capability flags 3819 * @pf: pointer to the PF instance 3820 */ 3821 static void ice_set_pf_caps(struct ice_pf *pf) 3822 { 3823 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3824 3825 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3826 if (func_caps->common_cap.rdma) 3827 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3828 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3829 if (func_caps->common_cap.dcb) 3830 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3831 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3832 if (func_caps->common_cap.sr_iov_1_1) { 3833 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3834 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3835 ICE_MAX_SRIOV_VFS); 3836 } 3837 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3838 if (func_caps->common_cap.rss_table_size) 3839 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3840 3841 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3842 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3843 u16 unused; 3844 3845 /* ctrl_vsi_idx will be set to a valid value when flow director 3846 * is setup by ice_init_fdir 3847 */ 3848 pf->ctrl_vsi_idx = ICE_NO_VSI; 3849 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3850 /* force guaranteed filter pool for PF */ 3851 ice_alloc_fd_guar_item(&pf->hw, &unused, 3852 func_caps->fd_fltr_guar); 3853 /* force shared filter pool for PF */ 3854 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3855 func_caps->fd_fltr_best_effort); 3856 } 3857 3858 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3859 if (func_caps->common_cap.ieee_1588) 3860 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3861 3862 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3863 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3864 } 3865 3866 /** 3867 * ice_init_pf - Initialize general software structures (struct ice_pf) 3868 * @pf: board private structure to initialize 3869 */ 3870 static int ice_init_pf(struct ice_pf *pf) 3871 { 3872 ice_set_pf_caps(pf); 3873 3874 mutex_init(&pf->sw_mutex); 3875 mutex_init(&pf->tc_mutex); 3876 mutex_init(&pf->adev_mutex); 3877 3878 INIT_HLIST_HEAD(&pf->aq_wait_list); 3879 spin_lock_init(&pf->aq_wait_lock); 3880 init_waitqueue_head(&pf->aq_wait_queue); 3881 3882 init_waitqueue_head(&pf->reset_wait_queue); 3883 3884 /* setup service timer and periodic service task */ 3885 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3886 pf->serv_tmr_period = HZ; 3887 INIT_WORK(&pf->serv_task, ice_service_task); 3888 clear_bit(ICE_SERVICE_SCHED, pf->state); 3889 3890 mutex_init(&pf->avail_q_mutex); 3891 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3892 if (!pf->avail_txqs) 3893 return -ENOMEM; 3894 3895 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3896 if (!pf->avail_rxqs) { 3897 bitmap_free(pf->avail_txqs); 3898 pf->avail_txqs = NULL; 3899 return -ENOMEM; 3900 } 3901 3902 mutex_init(&pf->vfs.table_lock); 3903 hash_init(pf->vfs.table); 3904 ice_mbx_init_snapshot(&pf->hw); 3905 3906 return 0; 3907 } 3908 3909 /** 3910 * ice_is_wol_supported - check if WoL is supported 3911 * @hw: pointer to hardware info 3912 * 3913 * Check if WoL is supported based on the HW configuration. 3914 * Returns true if NVM supports and enables WoL for this port, false otherwise 3915 */ 3916 bool ice_is_wol_supported(struct ice_hw *hw) 3917 { 3918 u16 wol_ctrl; 3919 3920 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3921 * word) indicates WoL is not supported on the corresponding PF ID. 3922 */ 3923 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3924 return false; 3925 3926 return !(BIT(hw->port_info->lport) & wol_ctrl); 3927 } 3928 3929 /** 3930 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3931 * @vsi: VSI being changed 3932 * @new_rx: new number of Rx queues 3933 * @new_tx: new number of Tx queues 3934 * @locked: is adev device_lock held 3935 * 3936 * Only change the number of queues if new_tx, or new_rx is non-0. 3937 * 3938 * Returns 0 on success. 3939 */ 3940 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3941 { 3942 struct ice_pf *pf = vsi->back; 3943 int err = 0, timeout = 50; 3944 3945 if (!new_rx && !new_tx) 3946 return -EINVAL; 3947 3948 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3949 timeout--; 3950 if (!timeout) 3951 return -EBUSY; 3952 usleep_range(1000, 2000); 3953 } 3954 3955 if (new_tx) 3956 vsi->req_txq = (u16)new_tx; 3957 if (new_rx) 3958 vsi->req_rxq = (u16)new_rx; 3959 3960 /* set for the next time the netdev is started */ 3961 if (!netif_running(vsi->netdev)) { 3962 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3963 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3964 goto done; 3965 } 3966 3967 ice_vsi_close(vsi); 3968 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3969 ice_pf_dcb_recfg(pf, locked); 3970 ice_vsi_open(vsi); 3971 done: 3972 clear_bit(ICE_CFG_BUSY, pf->state); 3973 return err; 3974 } 3975 3976 /** 3977 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3978 * @pf: PF to configure 3979 * 3980 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3981 * VSI can still Tx/Rx VLAN tagged packets. 3982 */ 3983 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3984 { 3985 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3986 struct ice_vsi_ctx *ctxt; 3987 struct ice_hw *hw; 3988 int status; 3989 3990 if (!vsi) 3991 return; 3992 3993 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3994 if (!ctxt) 3995 return; 3996 3997 hw = &pf->hw; 3998 ctxt->info = vsi->info; 3999 4000 ctxt->info.valid_sections = 4001 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4002 ICE_AQ_VSI_PROP_SECURITY_VALID | 4003 ICE_AQ_VSI_PROP_SW_VALID); 4004 4005 /* disable VLAN anti-spoof */ 4006 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4007 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4008 4009 /* disable VLAN pruning and keep all other settings */ 4010 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4011 4012 /* allow all VLANs on Tx and don't strip on Rx */ 4013 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4014 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4015 4016 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4017 if (status) { 4018 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4019 status, ice_aq_str(hw->adminq.sq_last_status)); 4020 } else { 4021 vsi->info.sec_flags = ctxt->info.sec_flags; 4022 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4023 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4024 } 4025 4026 kfree(ctxt); 4027 } 4028 4029 /** 4030 * ice_log_pkg_init - log result of DDP package load 4031 * @hw: pointer to hardware info 4032 * @state: state of package load 4033 */ 4034 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4035 { 4036 struct ice_pf *pf = hw->back; 4037 struct device *dev; 4038 4039 dev = ice_pf_to_dev(pf); 4040 4041 switch (state) { 4042 case ICE_DDP_PKG_SUCCESS: 4043 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4044 hw->active_pkg_name, 4045 hw->active_pkg_ver.major, 4046 hw->active_pkg_ver.minor, 4047 hw->active_pkg_ver.update, 4048 hw->active_pkg_ver.draft); 4049 break; 4050 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4051 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4052 hw->active_pkg_name, 4053 hw->active_pkg_ver.major, 4054 hw->active_pkg_ver.minor, 4055 hw->active_pkg_ver.update, 4056 hw->active_pkg_ver.draft); 4057 break; 4058 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4059 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4060 hw->active_pkg_name, 4061 hw->active_pkg_ver.major, 4062 hw->active_pkg_ver.minor, 4063 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4064 break; 4065 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4066 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4067 hw->active_pkg_name, 4068 hw->active_pkg_ver.major, 4069 hw->active_pkg_ver.minor, 4070 hw->active_pkg_ver.update, 4071 hw->active_pkg_ver.draft, 4072 hw->pkg_name, 4073 hw->pkg_ver.major, 4074 hw->pkg_ver.minor, 4075 hw->pkg_ver.update, 4076 hw->pkg_ver.draft); 4077 break; 4078 case ICE_DDP_PKG_FW_MISMATCH: 4079 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4080 break; 4081 case ICE_DDP_PKG_INVALID_FILE: 4082 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4083 break; 4084 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4085 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4086 break; 4087 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4088 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4089 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4090 break; 4091 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4092 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4093 break; 4094 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4095 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4096 break; 4097 case ICE_DDP_PKG_LOAD_ERROR: 4098 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4099 /* poll for reset to complete */ 4100 if (ice_check_reset(hw)) 4101 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4102 break; 4103 case ICE_DDP_PKG_ERR: 4104 default: 4105 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4106 break; 4107 } 4108 } 4109 4110 /** 4111 * ice_load_pkg - load/reload the DDP Package file 4112 * @firmware: firmware structure when firmware requested or NULL for reload 4113 * @pf: pointer to the PF instance 4114 * 4115 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4116 * initialize HW tables. 4117 */ 4118 static void 4119 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4120 { 4121 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4122 struct device *dev = ice_pf_to_dev(pf); 4123 struct ice_hw *hw = &pf->hw; 4124 4125 /* Load DDP Package */ 4126 if (firmware && !hw->pkg_copy) { 4127 state = ice_copy_and_init_pkg(hw, firmware->data, 4128 firmware->size); 4129 ice_log_pkg_init(hw, state); 4130 } else if (!firmware && hw->pkg_copy) { 4131 /* Reload package during rebuild after CORER/GLOBR reset */ 4132 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4133 ice_log_pkg_init(hw, state); 4134 } else { 4135 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4136 } 4137 4138 if (!ice_is_init_pkg_successful(state)) { 4139 /* Safe Mode */ 4140 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4141 return; 4142 } 4143 4144 /* Successful download package is the precondition for advanced 4145 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4146 */ 4147 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4148 } 4149 4150 /** 4151 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4152 * @pf: pointer to the PF structure 4153 * 4154 * There is no error returned here because the driver should be able to handle 4155 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4156 * specifically with Tx. 4157 */ 4158 static void ice_verify_cacheline_size(struct ice_pf *pf) 4159 { 4160 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4161 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4162 ICE_CACHE_LINE_BYTES); 4163 } 4164 4165 /** 4166 * ice_send_version - update firmware with driver version 4167 * @pf: PF struct 4168 * 4169 * Returns 0 on success, else error code 4170 */ 4171 static int ice_send_version(struct ice_pf *pf) 4172 { 4173 struct ice_driver_ver dv; 4174 4175 dv.major_ver = 0xff; 4176 dv.minor_ver = 0xff; 4177 dv.build_ver = 0xff; 4178 dv.subbuild_ver = 0; 4179 strscpy((char *)dv.driver_string, UTS_RELEASE, 4180 sizeof(dv.driver_string)); 4181 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4182 } 4183 4184 /** 4185 * ice_init_fdir - Initialize flow director VSI and configuration 4186 * @pf: pointer to the PF instance 4187 * 4188 * returns 0 on success, negative on error 4189 */ 4190 static int ice_init_fdir(struct ice_pf *pf) 4191 { 4192 struct device *dev = ice_pf_to_dev(pf); 4193 struct ice_vsi *ctrl_vsi; 4194 int err; 4195 4196 /* Side Band Flow Director needs to have a control VSI. 4197 * Allocate it and store it in the PF. 4198 */ 4199 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4200 if (!ctrl_vsi) { 4201 dev_dbg(dev, "could not create control VSI\n"); 4202 return -ENOMEM; 4203 } 4204 4205 err = ice_vsi_open_ctrl(ctrl_vsi); 4206 if (err) { 4207 dev_dbg(dev, "could not open control VSI\n"); 4208 goto err_vsi_open; 4209 } 4210 4211 mutex_init(&pf->hw.fdir_fltr_lock); 4212 4213 err = ice_fdir_create_dflt_rules(pf); 4214 if (err) 4215 goto err_fdir_rule; 4216 4217 return 0; 4218 4219 err_fdir_rule: 4220 ice_fdir_release_flows(&pf->hw); 4221 ice_vsi_close(ctrl_vsi); 4222 err_vsi_open: 4223 ice_vsi_release(ctrl_vsi); 4224 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4225 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4226 pf->ctrl_vsi_idx = ICE_NO_VSI; 4227 } 4228 return err; 4229 } 4230 4231 static void ice_deinit_fdir(struct ice_pf *pf) 4232 { 4233 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4234 4235 if (!vsi) 4236 return; 4237 4238 ice_vsi_manage_fdir(vsi, false); 4239 ice_vsi_release(vsi); 4240 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4241 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4242 pf->ctrl_vsi_idx = ICE_NO_VSI; 4243 } 4244 4245 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4246 } 4247 4248 /** 4249 * ice_get_opt_fw_name - return optional firmware file name or NULL 4250 * @pf: pointer to the PF instance 4251 */ 4252 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4253 { 4254 /* Optional firmware name same as default with additional dash 4255 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4256 */ 4257 struct pci_dev *pdev = pf->pdev; 4258 char *opt_fw_filename; 4259 u64 dsn; 4260 4261 /* Determine the name of the optional file using the DSN (two 4262 * dwords following the start of the DSN Capability). 4263 */ 4264 dsn = pci_get_dsn(pdev); 4265 if (!dsn) 4266 return NULL; 4267 4268 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4269 if (!opt_fw_filename) 4270 return NULL; 4271 4272 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4273 ICE_DDP_PKG_PATH, dsn); 4274 4275 return opt_fw_filename; 4276 } 4277 4278 /** 4279 * ice_request_fw - Device initialization routine 4280 * @pf: pointer to the PF instance 4281 */ 4282 static void ice_request_fw(struct ice_pf *pf) 4283 { 4284 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4285 const struct firmware *firmware = NULL; 4286 struct device *dev = ice_pf_to_dev(pf); 4287 int err = 0; 4288 4289 /* optional device-specific DDP (if present) overrides the default DDP 4290 * package file. kernel logs a debug message if the file doesn't exist, 4291 * and warning messages for other errors. 4292 */ 4293 if (opt_fw_filename) { 4294 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4295 if (err) { 4296 kfree(opt_fw_filename); 4297 goto dflt_pkg_load; 4298 } 4299 4300 /* request for firmware was successful. Download to device */ 4301 ice_load_pkg(firmware, pf); 4302 kfree(opt_fw_filename); 4303 release_firmware(firmware); 4304 return; 4305 } 4306 4307 dflt_pkg_load: 4308 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4309 if (err) { 4310 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4311 return; 4312 } 4313 4314 /* request for firmware was successful. Download to device */ 4315 ice_load_pkg(firmware, pf); 4316 release_firmware(firmware); 4317 } 4318 4319 /** 4320 * ice_print_wake_reason - show the wake up cause in the log 4321 * @pf: pointer to the PF struct 4322 */ 4323 static void ice_print_wake_reason(struct ice_pf *pf) 4324 { 4325 u32 wus = pf->wakeup_reason; 4326 const char *wake_str; 4327 4328 /* if no wake event, nothing to print */ 4329 if (!wus) 4330 return; 4331 4332 if (wus & PFPM_WUS_LNKC_M) 4333 wake_str = "Link\n"; 4334 else if (wus & PFPM_WUS_MAG_M) 4335 wake_str = "Magic Packet\n"; 4336 else if (wus & PFPM_WUS_MNG_M) 4337 wake_str = "Management\n"; 4338 else if (wus & PFPM_WUS_FW_RST_WK_M) 4339 wake_str = "Firmware Reset\n"; 4340 else 4341 wake_str = "Unknown\n"; 4342 4343 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4344 } 4345 4346 /** 4347 * ice_register_netdev - register netdev 4348 * @vsi: pointer to the VSI struct 4349 */ 4350 static int ice_register_netdev(struct ice_vsi *vsi) 4351 { 4352 int err; 4353 4354 if (!vsi || !vsi->netdev) 4355 return -EIO; 4356 4357 err = register_netdev(vsi->netdev); 4358 if (err) 4359 return err; 4360 4361 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4362 netif_carrier_off(vsi->netdev); 4363 netif_tx_stop_all_queues(vsi->netdev); 4364 4365 return 0; 4366 } 4367 4368 static void ice_unregister_netdev(struct ice_vsi *vsi) 4369 { 4370 if (!vsi || !vsi->netdev) 4371 return; 4372 4373 unregister_netdev(vsi->netdev); 4374 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4375 } 4376 4377 /** 4378 * ice_cfg_netdev - Allocate, configure and register a netdev 4379 * @vsi: the VSI associated with the new netdev 4380 * 4381 * Returns 0 on success, negative value on failure 4382 */ 4383 static int ice_cfg_netdev(struct ice_vsi *vsi) 4384 { 4385 struct ice_netdev_priv *np; 4386 struct net_device *netdev; 4387 u8 mac_addr[ETH_ALEN]; 4388 4389 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4390 vsi->alloc_rxq); 4391 if (!netdev) 4392 return -ENOMEM; 4393 4394 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4395 vsi->netdev = netdev; 4396 np = netdev_priv(netdev); 4397 np->vsi = vsi; 4398 4399 ice_set_netdev_features(netdev); 4400 ice_set_ops(vsi); 4401 4402 if (vsi->type == ICE_VSI_PF) { 4403 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4404 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4405 eth_hw_addr_set(netdev, mac_addr); 4406 } 4407 4408 netdev->priv_flags |= IFF_UNICAST_FLT; 4409 4410 /* Setup netdev TC information */ 4411 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4412 4413 netdev->max_mtu = ICE_MAX_MTU; 4414 4415 return 0; 4416 } 4417 4418 static void ice_decfg_netdev(struct ice_vsi *vsi) 4419 { 4420 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4421 free_netdev(vsi->netdev); 4422 vsi->netdev = NULL; 4423 } 4424 4425 static int ice_start_eth(struct ice_vsi *vsi) 4426 { 4427 int err; 4428 4429 err = ice_init_mac_fltr(vsi->back); 4430 if (err) 4431 return err; 4432 4433 err = ice_vsi_open(vsi); 4434 if (err) 4435 ice_fltr_remove_all(vsi); 4436 4437 return err; 4438 } 4439 4440 static void ice_stop_eth(struct ice_vsi *vsi) 4441 { 4442 ice_fltr_remove_all(vsi); 4443 ice_vsi_close(vsi); 4444 } 4445 4446 static int ice_init_eth(struct ice_pf *pf) 4447 { 4448 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4449 int err; 4450 4451 if (!vsi) 4452 return -EINVAL; 4453 4454 /* init channel list */ 4455 INIT_LIST_HEAD(&vsi->ch_list); 4456 4457 err = ice_cfg_netdev(vsi); 4458 if (err) 4459 return err; 4460 /* Setup DCB netlink interface */ 4461 ice_dcbnl_setup(vsi); 4462 4463 err = ice_init_mac_fltr(pf); 4464 if (err) 4465 goto err_init_mac_fltr; 4466 4467 err = ice_devlink_create_pf_port(pf); 4468 if (err) 4469 goto err_devlink_create_pf_port; 4470 4471 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4472 4473 err = ice_register_netdev(vsi); 4474 if (err) 4475 goto err_register_netdev; 4476 4477 err = ice_tc_indir_block_register(vsi); 4478 if (err) 4479 goto err_tc_indir_block_register; 4480 4481 ice_napi_add(vsi); 4482 4483 return 0; 4484 4485 err_tc_indir_block_register: 4486 ice_unregister_netdev(vsi); 4487 err_register_netdev: 4488 ice_devlink_destroy_pf_port(pf); 4489 err_devlink_create_pf_port: 4490 err_init_mac_fltr: 4491 ice_decfg_netdev(vsi); 4492 return err; 4493 } 4494 4495 static void ice_deinit_eth(struct ice_pf *pf) 4496 { 4497 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4498 4499 if (!vsi) 4500 return; 4501 4502 ice_vsi_close(vsi); 4503 ice_unregister_netdev(vsi); 4504 ice_devlink_destroy_pf_port(pf); 4505 ice_tc_indir_block_unregister(vsi); 4506 ice_decfg_netdev(vsi); 4507 } 4508 4509 static int ice_init_dev(struct ice_pf *pf) 4510 { 4511 struct device *dev = ice_pf_to_dev(pf); 4512 struct ice_hw *hw = &pf->hw; 4513 int err; 4514 4515 err = ice_init_hw(hw); 4516 if (err) { 4517 dev_err(dev, "ice_init_hw failed: %d\n", err); 4518 return err; 4519 } 4520 4521 ice_init_feature_support(pf); 4522 4523 ice_request_fw(pf); 4524 4525 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4526 * set in pf->state, which will cause ice_is_safe_mode to return 4527 * true 4528 */ 4529 if (ice_is_safe_mode(pf)) { 4530 /* we already got function/device capabilities but these don't 4531 * reflect what the driver needs to do in safe mode. Instead of 4532 * adding conditional logic everywhere to ignore these 4533 * device/function capabilities, override them. 4534 */ 4535 ice_set_safe_mode_caps(hw); 4536 } 4537 4538 err = ice_init_pf(pf); 4539 if (err) { 4540 dev_err(dev, "ice_init_pf failed: %d\n", err); 4541 goto err_init_pf; 4542 } 4543 4544 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4545 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4546 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4547 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4548 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4549 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4550 pf->hw.tnl.valid_count[TNL_VXLAN]; 4551 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4552 UDP_TUNNEL_TYPE_VXLAN; 4553 } 4554 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4555 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4556 pf->hw.tnl.valid_count[TNL_GENEVE]; 4557 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4558 UDP_TUNNEL_TYPE_GENEVE; 4559 } 4560 4561 err = ice_init_interrupt_scheme(pf); 4562 if (err) { 4563 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4564 err = -EIO; 4565 goto err_init_interrupt_scheme; 4566 } 4567 4568 /* In case of MSIX we are going to setup the misc vector right here 4569 * to handle admin queue events etc. In case of legacy and MSI 4570 * the misc functionality and queue processing is combined in 4571 * the same vector and that gets setup at open. 4572 */ 4573 err = ice_req_irq_msix_misc(pf); 4574 if (err) { 4575 dev_err(dev, "setup of misc vector failed: %d\n", err); 4576 goto err_req_irq_msix_misc; 4577 } 4578 4579 return 0; 4580 4581 err_req_irq_msix_misc: 4582 ice_clear_interrupt_scheme(pf); 4583 err_init_interrupt_scheme: 4584 ice_deinit_pf(pf); 4585 err_init_pf: 4586 ice_deinit_hw(hw); 4587 return err; 4588 } 4589 4590 static void ice_deinit_dev(struct ice_pf *pf) 4591 { 4592 ice_free_irq_msix_misc(pf); 4593 ice_deinit_pf(pf); 4594 ice_deinit_hw(&pf->hw); 4595 4596 /* Service task is already stopped, so call reset directly. */ 4597 ice_reset(&pf->hw, ICE_RESET_PFR); 4598 pci_wait_for_pending_transaction(pf->pdev); 4599 ice_clear_interrupt_scheme(pf); 4600 } 4601 4602 static void ice_init_features(struct ice_pf *pf) 4603 { 4604 struct device *dev = ice_pf_to_dev(pf); 4605 4606 if (ice_is_safe_mode(pf)) 4607 return; 4608 4609 /* initialize DDP driven features */ 4610 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4611 ice_ptp_init(pf); 4612 4613 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4614 ice_gnss_init(pf); 4615 4616 /* Note: Flow director init failure is non-fatal to load */ 4617 if (ice_init_fdir(pf)) 4618 dev_err(dev, "could not initialize flow director\n"); 4619 4620 /* Note: DCB init failure is non-fatal to load */ 4621 if (ice_init_pf_dcb(pf, false)) { 4622 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4623 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4624 } else { 4625 ice_cfg_lldp_mib_change(&pf->hw, true); 4626 } 4627 4628 if (ice_init_lag(pf)) 4629 dev_warn(dev, "Failed to init link aggregation support\n"); 4630 } 4631 4632 static void ice_deinit_features(struct ice_pf *pf) 4633 { 4634 ice_deinit_lag(pf); 4635 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4636 ice_cfg_lldp_mib_change(&pf->hw, false); 4637 ice_deinit_fdir(pf); 4638 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4639 ice_gnss_exit(pf); 4640 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4641 ice_ptp_release(pf); 4642 } 4643 4644 static void ice_init_wakeup(struct ice_pf *pf) 4645 { 4646 /* Save wakeup reason register for later use */ 4647 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4648 4649 /* check for a power management event */ 4650 ice_print_wake_reason(pf); 4651 4652 /* clear wake status, all bits */ 4653 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4654 4655 /* Disable WoL at init, wait for user to enable */ 4656 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4657 } 4658 4659 static int ice_init_link(struct ice_pf *pf) 4660 { 4661 struct device *dev = ice_pf_to_dev(pf); 4662 int err; 4663 4664 err = ice_init_link_events(pf->hw.port_info); 4665 if (err) { 4666 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4667 return err; 4668 } 4669 4670 /* not a fatal error if this fails */ 4671 err = ice_init_nvm_phy_type(pf->hw.port_info); 4672 if (err) 4673 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4674 4675 /* not a fatal error if this fails */ 4676 err = ice_update_link_info(pf->hw.port_info); 4677 if (err) 4678 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4679 4680 ice_init_link_dflt_override(pf->hw.port_info); 4681 4682 ice_check_link_cfg_err(pf, 4683 pf->hw.port_info->phy.link_info.link_cfg_err); 4684 4685 /* if media available, initialize PHY settings */ 4686 if (pf->hw.port_info->phy.link_info.link_info & 4687 ICE_AQ_MEDIA_AVAILABLE) { 4688 /* not a fatal error if this fails */ 4689 err = ice_init_phy_user_cfg(pf->hw.port_info); 4690 if (err) 4691 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4692 4693 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4694 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4695 4696 if (vsi) 4697 ice_configure_phy(vsi); 4698 } 4699 } else { 4700 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4701 } 4702 4703 return err; 4704 } 4705 4706 static int ice_init_pf_sw(struct ice_pf *pf) 4707 { 4708 bool dvm = ice_is_dvm_ena(&pf->hw); 4709 struct ice_vsi *vsi; 4710 int err; 4711 4712 /* create switch struct for the switch element created by FW on boot */ 4713 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4714 if (!pf->first_sw) 4715 return -ENOMEM; 4716 4717 if (pf->hw.evb_veb) 4718 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4719 else 4720 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4721 4722 pf->first_sw->pf = pf; 4723 4724 /* record the sw_id available for later use */ 4725 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4726 4727 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4728 if (err) 4729 goto err_aq_set_port_params; 4730 4731 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4732 if (!vsi) { 4733 err = -ENOMEM; 4734 goto err_pf_vsi_setup; 4735 } 4736 4737 return 0; 4738 4739 err_pf_vsi_setup: 4740 err_aq_set_port_params: 4741 kfree(pf->first_sw); 4742 return err; 4743 } 4744 4745 static void ice_deinit_pf_sw(struct ice_pf *pf) 4746 { 4747 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4748 4749 if (!vsi) 4750 return; 4751 4752 ice_vsi_release(vsi); 4753 kfree(pf->first_sw); 4754 } 4755 4756 static int ice_alloc_vsis(struct ice_pf *pf) 4757 { 4758 struct device *dev = ice_pf_to_dev(pf); 4759 4760 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4761 if (!pf->num_alloc_vsi) 4762 return -EIO; 4763 4764 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4765 dev_warn(dev, 4766 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4767 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4768 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4769 } 4770 4771 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4772 GFP_KERNEL); 4773 if (!pf->vsi) 4774 return -ENOMEM; 4775 4776 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4777 sizeof(*pf->vsi_stats), GFP_KERNEL); 4778 if (!pf->vsi_stats) { 4779 devm_kfree(dev, pf->vsi); 4780 return -ENOMEM; 4781 } 4782 4783 return 0; 4784 } 4785 4786 static void ice_dealloc_vsis(struct ice_pf *pf) 4787 { 4788 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4789 pf->vsi_stats = NULL; 4790 4791 pf->num_alloc_vsi = 0; 4792 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4793 pf->vsi = NULL; 4794 } 4795 4796 static int ice_init_devlink(struct ice_pf *pf) 4797 { 4798 int err; 4799 4800 err = ice_devlink_register_params(pf); 4801 if (err) 4802 return err; 4803 4804 ice_devlink_init_regions(pf); 4805 ice_devlink_register(pf); 4806 4807 return 0; 4808 } 4809 4810 static void ice_deinit_devlink(struct ice_pf *pf) 4811 { 4812 ice_devlink_unregister(pf); 4813 ice_devlink_destroy_regions(pf); 4814 ice_devlink_unregister_params(pf); 4815 } 4816 4817 static int ice_init(struct ice_pf *pf) 4818 { 4819 int err; 4820 4821 err = ice_init_dev(pf); 4822 if (err) 4823 return err; 4824 4825 err = ice_alloc_vsis(pf); 4826 if (err) 4827 goto err_alloc_vsis; 4828 4829 err = ice_init_pf_sw(pf); 4830 if (err) 4831 goto err_init_pf_sw; 4832 4833 ice_init_wakeup(pf); 4834 4835 err = ice_init_link(pf); 4836 if (err) 4837 goto err_init_link; 4838 4839 err = ice_send_version(pf); 4840 if (err) 4841 goto err_init_link; 4842 4843 ice_verify_cacheline_size(pf); 4844 4845 if (ice_is_safe_mode(pf)) 4846 ice_set_safe_mode_vlan_cfg(pf); 4847 else 4848 /* print PCI link speed and width */ 4849 pcie_print_link_status(pf->pdev); 4850 4851 /* ready to go, so clear down state bit */ 4852 clear_bit(ICE_DOWN, pf->state); 4853 clear_bit(ICE_SERVICE_DIS, pf->state); 4854 4855 /* since everything is good, start the service timer */ 4856 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4857 4858 return 0; 4859 4860 err_init_link: 4861 ice_deinit_pf_sw(pf); 4862 err_init_pf_sw: 4863 ice_dealloc_vsis(pf); 4864 err_alloc_vsis: 4865 ice_deinit_dev(pf); 4866 return err; 4867 } 4868 4869 static void ice_deinit(struct ice_pf *pf) 4870 { 4871 set_bit(ICE_SERVICE_DIS, pf->state); 4872 set_bit(ICE_DOWN, pf->state); 4873 4874 ice_deinit_pf_sw(pf); 4875 ice_dealloc_vsis(pf); 4876 ice_deinit_dev(pf); 4877 } 4878 4879 /** 4880 * ice_load - load pf by init hw and starting VSI 4881 * @pf: pointer to the pf instance 4882 */ 4883 int ice_load(struct ice_pf *pf) 4884 { 4885 struct ice_vsi_cfg_params params = {}; 4886 struct ice_vsi *vsi; 4887 int err; 4888 4889 err = ice_init_dev(pf); 4890 if (err) 4891 return err; 4892 4893 vsi = ice_get_main_vsi(pf); 4894 4895 params = ice_vsi_to_params(vsi); 4896 params.flags = ICE_VSI_FLAG_INIT; 4897 4898 rtnl_lock(); 4899 err = ice_vsi_cfg(vsi, ¶ms); 4900 if (err) 4901 goto err_vsi_cfg; 4902 4903 err = ice_start_eth(ice_get_main_vsi(pf)); 4904 if (err) 4905 goto err_start_eth; 4906 rtnl_unlock(); 4907 4908 err = ice_init_rdma(pf); 4909 if (err) 4910 goto err_init_rdma; 4911 4912 ice_init_features(pf); 4913 ice_service_task_restart(pf); 4914 4915 clear_bit(ICE_DOWN, pf->state); 4916 4917 return 0; 4918 4919 err_init_rdma: 4920 ice_vsi_close(ice_get_main_vsi(pf)); 4921 rtnl_lock(); 4922 err_start_eth: 4923 ice_vsi_decfg(ice_get_main_vsi(pf)); 4924 err_vsi_cfg: 4925 rtnl_unlock(); 4926 ice_deinit_dev(pf); 4927 return err; 4928 } 4929 4930 /** 4931 * ice_unload - unload pf by stopping VSI and deinit hw 4932 * @pf: pointer to the pf instance 4933 */ 4934 void ice_unload(struct ice_pf *pf) 4935 { 4936 ice_deinit_features(pf); 4937 ice_deinit_rdma(pf); 4938 rtnl_lock(); 4939 ice_stop_eth(ice_get_main_vsi(pf)); 4940 ice_vsi_decfg(ice_get_main_vsi(pf)); 4941 rtnl_unlock(); 4942 ice_deinit_dev(pf); 4943 } 4944 4945 /** 4946 * ice_probe - Device initialization routine 4947 * @pdev: PCI device information struct 4948 * @ent: entry in ice_pci_tbl 4949 * 4950 * Returns 0 on success, negative on failure 4951 */ 4952 static int 4953 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4954 { 4955 struct device *dev = &pdev->dev; 4956 struct ice_pf *pf; 4957 struct ice_hw *hw; 4958 int err; 4959 4960 if (pdev->is_virtfn) { 4961 dev_err(dev, "can't probe a virtual function\n"); 4962 return -EINVAL; 4963 } 4964 4965 /* this driver uses devres, see 4966 * Documentation/driver-api/driver-model/devres.rst 4967 */ 4968 err = pcim_enable_device(pdev); 4969 if (err) 4970 return err; 4971 4972 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4973 if (err) { 4974 dev_err(dev, "BAR0 I/O map error %d\n", err); 4975 return err; 4976 } 4977 4978 pf = ice_allocate_pf(dev); 4979 if (!pf) 4980 return -ENOMEM; 4981 4982 /* initialize Auxiliary index to invalid value */ 4983 pf->aux_idx = -1; 4984 4985 /* set up for high or low DMA */ 4986 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4987 if (err) { 4988 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4989 return err; 4990 } 4991 4992 pci_set_master(pdev); 4993 4994 pf->pdev = pdev; 4995 pci_set_drvdata(pdev, pf); 4996 set_bit(ICE_DOWN, pf->state); 4997 /* Disable service task until DOWN bit is cleared */ 4998 set_bit(ICE_SERVICE_DIS, pf->state); 4999 5000 hw = &pf->hw; 5001 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5002 pci_save_state(pdev); 5003 5004 hw->back = pf; 5005 hw->port_info = NULL; 5006 hw->vendor_id = pdev->vendor; 5007 hw->device_id = pdev->device; 5008 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5009 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5010 hw->subsystem_device_id = pdev->subsystem_device; 5011 hw->bus.device = PCI_SLOT(pdev->devfn); 5012 hw->bus.func = PCI_FUNC(pdev->devfn); 5013 ice_set_ctrlq_len(hw); 5014 5015 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5016 5017 #ifndef CONFIG_DYNAMIC_DEBUG 5018 if (debug < -1) 5019 hw->debug_mask = debug; 5020 #endif 5021 5022 err = ice_init(pf); 5023 if (err) 5024 goto err_init; 5025 5026 err = ice_init_eth(pf); 5027 if (err) 5028 goto err_init_eth; 5029 5030 err = ice_init_rdma(pf); 5031 if (err) 5032 goto err_init_rdma; 5033 5034 err = ice_init_devlink(pf); 5035 if (err) 5036 goto err_init_devlink; 5037 5038 ice_init_features(pf); 5039 5040 return 0; 5041 5042 err_init_devlink: 5043 ice_deinit_rdma(pf); 5044 err_init_rdma: 5045 ice_deinit_eth(pf); 5046 err_init_eth: 5047 ice_deinit(pf); 5048 err_init: 5049 pci_disable_device(pdev); 5050 return err; 5051 } 5052 5053 /** 5054 * ice_set_wake - enable or disable Wake on LAN 5055 * @pf: pointer to the PF struct 5056 * 5057 * Simple helper for WoL control 5058 */ 5059 static void ice_set_wake(struct ice_pf *pf) 5060 { 5061 struct ice_hw *hw = &pf->hw; 5062 bool wol = pf->wol_ena; 5063 5064 /* clear wake state, otherwise new wake events won't fire */ 5065 wr32(hw, PFPM_WUS, U32_MAX); 5066 5067 /* enable / disable APM wake up, no RMW needed */ 5068 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5069 5070 /* set magic packet filter enabled */ 5071 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5072 } 5073 5074 /** 5075 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5076 * @pf: pointer to the PF struct 5077 * 5078 * Issue firmware command to enable multicast magic wake, making 5079 * sure that any locally administered address (LAA) is used for 5080 * wake, and that PF reset doesn't undo the LAA. 5081 */ 5082 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5083 { 5084 struct device *dev = ice_pf_to_dev(pf); 5085 struct ice_hw *hw = &pf->hw; 5086 u8 mac_addr[ETH_ALEN]; 5087 struct ice_vsi *vsi; 5088 int status; 5089 u8 flags; 5090 5091 if (!pf->wol_ena) 5092 return; 5093 5094 vsi = ice_get_main_vsi(pf); 5095 if (!vsi) 5096 return; 5097 5098 /* Get current MAC address in case it's an LAA */ 5099 if (vsi->netdev) 5100 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5101 else 5102 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5103 5104 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5105 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5106 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5107 5108 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5109 if (status) 5110 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5111 status, ice_aq_str(hw->adminq.sq_last_status)); 5112 } 5113 5114 /** 5115 * ice_remove - Device removal routine 5116 * @pdev: PCI device information struct 5117 */ 5118 static void ice_remove(struct pci_dev *pdev) 5119 { 5120 struct ice_pf *pf = pci_get_drvdata(pdev); 5121 int i; 5122 5123 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5124 if (!ice_is_reset_in_progress(pf->state)) 5125 break; 5126 msleep(100); 5127 } 5128 5129 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5130 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5131 ice_free_vfs(pf); 5132 } 5133 5134 ice_service_task_stop(pf); 5135 ice_aq_cancel_waiting_tasks(pf); 5136 set_bit(ICE_DOWN, pf->state); 5137 5138 if (!ice_is_safe_mode(pf)) 5139 ice_remove_arfs(pf); 5140 ice_deinit_features(pf); 5141 ice_deinit_devlink(pf); 5142 ice_deinit_rdma(pf); 5143 ice_deinit_eth(pf); 5144 ice_deinit(pf); 5145 5146 ice_vsi_release_all(pf); 5147 5148 ice_setup_mc_magic_wake(pf); 5149 ice_set_wake(pf); 5150 5151 pci_disable_device(pdev); 5152 } 5153 5154 /** 5155 * ice_shutdown - PCI callback for shutting down device 5156 * @pdev: PCI device information struct 5157 */ 5158 static void ice_shutdown(struct pci_dev *pdev) 5159 { 5160 struct ice_pf *pf = pci_get_drvdata(pdev); 5161 5162 ice_remove(pdev); 5163 5164 if (system_state == SYSTEM_POWER_OFF) { 5165 pci_wake_from_d3(pdev, pf->wol_ena); 5166 pci_set_power_state(pdev, PCI_D3hot); 5167 } 5168 } 5169 5170 #ifdef CONFIG_PM 5171 /** 5172 * ice_prepare_for_shutdown - prep for PCI shutdown 5173 * @pf: board private structure 5174 * 5175 * Inform or close all dependent features in prep for PCI device shutdown 5176 */ 5177 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5178 { 5179 struct ice_hw *hw = &pf->hw; 5180 u32 v; 5181 5182 /* Notify VFs of impending reset */ 5183 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5184 ice_vc_notify_reset(pf); 5185 5186 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5187 5188 /* disable the VSIs and their queues that are not already DOWN */ 5189 ice_pf_dis_all_vsi(pf, false); 5190 5191 ice_for_each_vsi(pf, v) 5192 if (pf->vsi[v]) 5193 pf->vsi[v]->vsi_num = 0; 5194 5195 ice_shutdown_all_ctrlq(hw); 5196 } 5197 5198 /** 5199 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5200 * @pf: board private structure to reinitialize 5201 * 5202 * This routine reinitialize interrupt scheme that was cleared during 5203 * power management suspend callback. 5204 * 5205 * This should be called during resume routine to re-allocate the q_vectors 5206 * and reacquire interrupts. 5207 */ 5208 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5209 { 5210 struct device *dev = ice_pf_to_dev(pf); 5211 int ret, v; 5212 5213 /* Since we clear MSIX flag during suspend, we need to 5214 * set it back during resume... 5215 */ 5216 5217 ret = ice_init_interrupt_scheme(pf); 5218 if (ret) { 5219 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5220 return ret; 5221 } 5222 5223 /* Remap vectors and rings, after successful re-init interrupts */ 5224 ice_for_each_vsi(pf, v) { 5225 if (!pf->vsi[v]) 5226 continue; 5227 5228 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5229 if (ret) 5230 goto err_reinit; 5231 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5232 } 5233 5234 ret = ice_req_irq_msix_misc(pf); 5235 if (ret) { 5236 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5237 ret); 5238 goto err_reinit; 5239 } 5240 5241 return 0; 5242 5243 err_reinit: 5244 while (v--) 5245 if (pf->vsi[v]) 5246 ice_vsi_free_q_vectors(pf->vsi[v]); 5247 5248 return ret; 5249 } 5250 5251 /** 5252 * ice_suspend 5253 * @dev: generic device information structure 5254 * 5255 * Power Management callback to quiesce the device and prepare 5256 * for D3 transition. 5257 */ 5258 static int __maybe_unused ice_suspend(struct device *dev) 5259 { 5260 struct pci_dev *pdev = to_pci_dev(dev); 5261 struct ice_pf *pf; 5262 int disabled, v; 5263 5264 pf = pci_get_drvdata(pdev); 5265 5266 if (!ice_pf_state_is_nominal(pf)) { 5267 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5268 return -EBUSY; 5269 } 5270 5271 /* Stop watchdog tasks until resume completion. 5272 * Even though it is most likely that the service task is 5273 * disabled if the device is suspended or down, the service task's 5274 * state is controlled by a different state bit, and we should 5275 * store and honor whatever state that bit is in at this point. 5276 */ 5277 disabled = ice_service_task_stop(pf); 5278 5279 ice_unplug_aux_dev(pf); 5280 5281 /* Already suspended?, then there is nothing to do */ 5282 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5283 if (!disabled) 5284 ice_service_task_restart(pf); 5285 return 0; 5286 } 5287 5288 if (test_bit(ICE_DOWN, pf->state) || 5289 ice_is_reset_in_progress(pf->state)) { 5290 dev_err(dev, "can't suspend device in reset or already down\n"); 5291 if (!disabled) 5292 ice_service_task_restart(pf); 5293 return 0; 5294 } 5295 5296 ice_setup_mc_magic_wake(pf); 5297 5298 ice_prepare_for_shutdown(pf); 5299 5300 ice_set_wake(pf); 5301 5302 /* Free vectors, clear the interrupt scheme and release IRQs 5303 * for proper hibernation, especially with large number of CPUs. 5304 * Otherwise hibernation might fail when mapping all the vectors back 5305 * to CPU0. 5306 */ 5307 ice_free_irq_msix_misc(pf); 5308 ice_for_each_vsi(pf, v) { 5309 if (!pf->vsi[v]) 5310 continue; 5311 ice_vsi_free_q_vectors(pf->vsi[v]); 5312 } 5313 ice_clear_interrupt_scheme(pf); 5314 5315 pci_save_state(pdev); 5316 pci_wake_from_d3(pdev, pf->wol_ena); 5317 pci_set_power_state(pdev, PCI_D3hot); 5318 return 0; 5319 } 5320 5321 /** 5322 * ice_resume - PM callback for waking up from D3 5323 * @dev: generic device information structure 5324 */ 5325 static int __maybe_unused ice_resume(struct device *dev) 5326 { 5327 struct pci_dev *pdev = to_pci_dev(dev); 5328 enum ice_reset_req reset_type; 5329 struct ice_pf *pf; 5330 struct ice_hw *hw; 5331 int ret; 5332 5333 pci_set_power_state(pdev, PCI_D0); 5334 pci_restore_state(pdev); 5335 pci_save_state(pdev); 5336 5337 if (!pci_device_is_present(pdev)) 5338 return -ENODEV; 5339 5340 ret = pci_enable_device_mem(pdev); 5341 if (ret) { 5342 dev_err(dev, "Cannot enable device after suspend\n"); 5343 return ret; 5344 } 5345 5346 pf = pci_get_drvdata(pdev); 5347 hw = &pf->hw; 5348 5349 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5350 ice_print_wake_reason(pf); 5351 5352 /* We cleared the interrupt scheme when we suspended, so we need to 5353 * restore it now to resume device functionality. 5354 */ 5355 ret = ice_reinit_interrupt_scheme(pf); 5356 if (ret) 5357 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5358 5359 clear_bit(ICE_DOWN, pf->state); 5360 /* Now perform PF reset and rebuild */ 5361 reset_type = ICE_RESET_PFR; 5362 /* re-enable service task for reset, but allow reset to schedule it */ 5363 clear_bit(ICE_SERVICE_DIS, pf->state); 5364 5365 if (ice_schedule_reset(pf, reset_type)) 5366 dev_err(dev, "Reset during resume failed.\n"); 5367 5368 clear_bit(ICE_SUSPENDED, pf->state); 5369 ice_service_task_restart(pf); 5370 5371 /* Restart the service task */ 5372 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5373 5374 return 0; 5375 } 5376 #endif /* CONFIG_PM */ 5377 5378 /** 5379 * ice_pci_err_detected - warning that PCI error has been detected 5380 * @pdev: PCI device information struct 5381 * @err: the type of PCI error 5382 * 5383 * Called to warn that something happened on the PCI bus and the error handling 5384 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5385 */ 5386 static pci_ers_result_t 5387 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5388 { 5389 struct ice_pf *pf = pci_get_drvdata(pdev); 5390 5391 if (!pf) { 5392 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5393 __func__, err); 5394 return PCI_ERS_RESULT_DISCONNECT; 5395 } 5396 5397 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5398 ice_service_task_stop(pf); 5399 5400 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5401 set_bit(ICE_PFR_REQ, pf->state); 5402 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5403 } 5404 } 5405 5406 return PCI_ERS_RESULT_NEED_RESET; 5407 } 5408 5409 /** 5410 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5411 * @pdev: PCI device information struct 5412 * 5413 * Called to determine if the driver can recover from the PCI slot reset by 5414 * using a register read to determine if the device is recoverable. 5415 */ 5416 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5417 { 5418 struct ice_pf *pf = pci_get_drvdata(pdev); 5419 pci_ers_result_t result; 5420 int err; 5421 u32 reg; 5422 5423 err = pci_enable_device_mem(pdev); 5424 if (err) { 5425 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5426 err); 5427 result = PCI_ERS_RESULT_DISCONNECT; 5428 } else { 5429 pci_set_master(pdev); 5430 pci_restore_state(pdev); 5431 pci_save_state(pdev); 5432 pci_wake_from_d3(pdev, false); 5433 5434 /* Check for life */ 5435 reg = rd32(&pf->hw, GLGEN_RTRIG); 5436 if (!reg) 5437 result = PCI_ERS_RESULT_RECOVERED; 5438 else 5439 result = PCI_ERS_RESULT_DISCONNECT; 5440 } 5441 5442 return result; 5443 } 5444 5445 /** 5446 * ice_pci_err_resume - restart operations after PCI error recovery 5447 * @pdev: PCI device information struct 5448 * 5449 * Called to allow the driver to bring things back up after PCI error and/or 5450 * reset recovery have finished 5451 */ 5452 static void ice_pci_err_resume(struct pci_dev *pdev) 5453 { 5454 struct ice_pf *pf = pci_get_drvdata(pdev); 5455 5456 if (!pf) { 5457 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5458 __func__); 5459 return; 5460 } 5461 5462 if (test_bit(ICE_SUSPENDED, pf->state)) { 5463 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5464 __func__); 5465 return; 5466 } 5467 5468 ice_restore_all_vfs_msi_state(pdev); 5469 5470 ice_do_reset(pf, ICE_RESET_PFR); 5471 ice_service_task_restart(pf); 5472 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5473 } 5474 5475 /** 5476 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5477 * @pdev: PCI device information struct 5478 */ 5479 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5480 { 5481 struct ice_pf *pf = pci_get_drvdata(pdev); 5482 5483 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5484 ice_service_task_stop(pf); 5485 5486 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5487 set_bit(ICE_PFR_REQ, pf->state); 5488 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5489 } 5490 } 5491 } 5492 5493 /** 5494 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5495 * @pdev: PCI device information struct 5496 */ 5497 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5498 { 5499 ice_pci_err_resume(pdev); 5500 } 5501 5502 /* ice_pci_tbl - PCI Device ID Table 5503 * 5504 * Wildcard entries (PCI_ANY_ID) should come last 5505 * Last entry must be all 0s 5506 * 5507 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5508 * Class, Class Mask, private data (not used) } 5509 */ 5510 static const struct pci_device_id ice_pci_tbl[] = { 5511 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5512 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5513 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5514 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5515 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5516 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5517 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5518 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5519 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5520 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5521 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5522 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5523 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5524 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5525 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5526 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5527 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5528 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5529 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5530 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5531 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5532 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5533 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5534 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5535 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5536 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5537 /* required last entry */ 5538 { 0, } 5539 }; 5540 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5541 5542 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5543 5544 static const struct pci_error_handlers ice_pci_err_handler = { 5545 .error_detected = ice_pci_err_detected, 5546 .slot_reset = ice_pci_err_slot_reset, 5547 .reset_prepare = ice_pci_err_reset_prepare, 5548 .reset_done = ice_pci_err_reset_done, 5549 .resume = ice_pci_err_resume 5550 }; 5551 5552 static struct pci_driver ice_driver = { 5553 .name = KBUILD_MODNAME, 5554 .id_table = ice_pci_tbl, 5555 .probe = ice_probe, 5556 .remove = ice_remove, 5557 #ifdef CONFIG_PM 5558 .driver.pm = &ice_pm_ops, 5559 #endif /* CONFIG_PM */ 5560 .shutdown = ice_shutdown, 5561 .sriov_configure = ice_sriov_configure, 5562 .err_handler = &ice_pci_err_handler 5563 }; 5564 5565 /** 5566 * ice_module_init - Driver registration routine 5567 * 5568 * ice_module_init is the first routine called when the driver is 5569 * loaded. All it does is register with the PCI subsystem. 5570 */ 5571 static int __init ice_module_init(void) 5572 { 5573 int status; 5574 5575 pr_info("%s\n", ice_driver_string); 5576 pr_info("%s\n", ice_copyright); 5577 5578 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5579 if (!ice_wq) { 5580 pr_err("Failed to create workqueue\n"); 5581 return -ENOMEM; 5582 } 5583 5584 status = pci_register_driver(&ice_driver); 5585 if (status) { 5586 pr_err("failed to register PCI driver, err %d\n", status); 5587 destroy_workqueue(ice_wq); 5588 } 5589 5590 return status; 5591 } 5592 module_init(ice_module_init); 5593 5594 /** 5595 * ice_module_exit - Driver exit cleanup routine 5596 * 5597 * ice_module_exit is called just before the driver is removed 5598 * from memory. 5599 */ 5600 static void __exit ice_module_exit(void) 5601 { 5602 pci_unregister_driver(&ice_driver); 5603 destroy_workqueue(ice_wq); 5604 pr_info("module unloaded\n"); 5605 } 5606 module_exit(ice_module_exit); 5607 5608 /** 5609 * ice_set_mac_address - NDO callback to set MAC address 5610 * @netdev: network interface device structure 5611 * @pi: pointer to an address structure 5612 * 5613 * Returns 0 on success, negative on failure 5614 */ 5615 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5616 { 5617 struct ice_netdev_priv *np = netdev_priv(netdev); 5618 struct ice_vsi *vsi = np->vsi; 5619 struct ice_pf *pf = vsi->back; 5620 struct ice_hw *hw = &pf->hw; 5621 struct sockaddr *addr = pi; 5622 u8 old_mac[ETH_ALEN]; 5623 u8 flags = 0; 5624 u8 *mac; 5625 int err; 5626 5627 mac = (u8 *)addr->sa_data; 5628 5629 if (!is_valid_ether_addr(mac)) 5630 return -EADDRNOTAVAIL; 5631 5632 if (test_bit(ICE_DOWN, pf->state) || 5633 ice_is_reset_in_progress(pf->state)) { 5634 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5635 mac); 5636 return -EBUSY; 5637 } 5638 5639 if (ice_chnl_dmac_fltr_cnt(pf)) { 5640 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5641 mac); 5642 return -EAGAIN; 5643 } 5644 5645 netif_addr_lock_bh(netdev); 5646 ether_addr_copy(old_mac, netdev->dev_addr); 5647 /* change the netdev's MAC address */ 5648 eth_hw_addr_set(netdev, mac); 5649 netif_addr_unlock_bh(netdev); 5650 5651 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5652 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5653 if (err && err != -ENOENT) { 5654 err = -EADDRNOTAVAIL; 5655 goto err_update_filters; 5656 } 5657 5658 /* Add filter for new MAC. If filter exists, return success */ 5659 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5660 if (err == -EEXIST) { 5661 /* Although this MAC filter is already present in hardware it's 5662 * possible in some cases (e.g. bonding) that dev_addr was 5663 * modified outside of the driver and needs to be restored back 5664 * to this value. 5665 */ 5666 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5667 5668 return 0; 5669 } else if (err) { 5670 /* error if the new filter addition failed */ 5671 err = -EADDRNOTAVAIL; 5672 } 5673 5674 err_update_filters: 5675 if (err) { 5676 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5677 mac); 5678 netif_addr_lock_bh(netdev); 5679 eth_hw_addr_set(netdev, old_mac); 5680 netif_addr_unlock_bh(netdev); 5681 return err; 5682 } 5683 5684 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5685 netdev->dev_addr); 5686 5687 /* write new MAC address to the firmware */ 5688 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5689 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5690 if (err) { 5691 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5692 mac, err); 5693 } 5694 return 0; 5695 } 5696 5697 /** 5698 * ice_set_rx_mode - NDO callback to set the netdev filters 5699 * @netdev: network interface device structure 5700 */ 5701 static void ice_set_rx_mode(struct net_device *netdev) 5702 { 5703 struct ice_netdev_priv *np = netdev_priv(netdev); 5704 struct ice_vsi *vsi = np->vsi; 5705 5706 if (!vsi) 5707 return; 5708 5709 /* Set the flags to synchronize filters 5710 * ndo_set_rx_mode may be triggered even without a change in netdev 5711 * flags 5712 */ 5713 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5714 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5715 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5716 5717 /* schedule our worker thread which will take care of 5718 * applying the new filter changes 5719 */ 5720 ice_service_task_schedule(vsi->back); 5721 } 5722 5723 /** 5724 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5725 * @netdev: network interface device structure 5726 * @queue_index: Queue ID 5727 * @maxrate: maximum bandwidth in Mbps 5728 */ 5729 static int 5730 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5731 { 5732 struct ice_netdev_priv *np = netdev_priv(netdev); 5733 struct ice_vsi *vsi = np->vsi; 5734 u16 q_handle; 5735 int status; 5736 u8 tc; 5737 5738 /* Validate maxrate requested is within permitted range */ 5739 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5740 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5741 maxrate, queue_index); 5742 return -EINVAL; 5743 } 5744 5745 q_handle = vsi->tx_rings[queue_index]->q_handle; 5746 tc = ice_dcb_get_tc(vsi, queue_index); 5747 5748 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5749 if (!vsi) { 5750 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5751 queue_index); 5752 return -EINVAL; 5753 } 5754 5755 /* Set BW back to default, when user set maxrate to 0 */ 5756 if (!maxrate) 5757 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5758 q_handle, ICE_MAX_BW); 5759 else 5760 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5761 q_handle, ICE_MAX_BW, maxrate * 1000); 5762 if (status) 5763 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5764 status); 5765 5766 return status; 5767 } 5768 5769 /** 5770 * ice_fdb_add - add an entry to the hardware database 5771 * @ndm: the input from the stack 5772 * @tb: pointer to array of nladdr (unused) 5773 * @dev: the net device pointer 5774 * @addr: the MAC address entry being added 5775 * @vid: VLAN ID 5776 * @flags: instructions from stack about fdb operation 5777 * @extack: netlink extended ack 5778 */ 5779 static int 5780 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5781 struct net_device *dev, const unsigned char *addr, u16 vid, 5782 u16 flags, struct netlink_ext_ack __always_unused *extack) 5783 { 5784 int err; 5785 5786 if (vid) { 5787 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5788 return -EINVAL; 5789 } 5790 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5791 netdev_err(dev, "FDB only supports static addresses\n"); 5792 return -EINVAL; 5793 } 5794 5795 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5796 err = dev_uc_add_excl(dev, addr); 5797 else if (is_multicast_ether_addr(addr)) 5798 err = dev_mc_add_excl(dev, addr); 5799 else 5800 err = -EINVAL; 5801 5802 /* Only return duplicate errors if NLM_F_EXCL is set */ 5803 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5804 err = 0; 5805 5806 return err; 5807 } 5808 5809 /** 5810 * ice_fdb_del - delete an entry from the hardware database 5811 * @ndm: the input from the stack 5812 * @tb: pointer to array of nladdr (unused) 5813 * @dev: the net device pointer 5814 * @addr: the MAC address entry being added 5815 * @vid: VLAN ID 5816 * @extack: netlink extended ack 5817 */ 5818 static int 5819 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5820 struct net_device *dev, const unsigned char *addr, 5821 __always_unused u16 vid, struct netlink_ext_ack *extack) 5822 { 5823 int err; 5824 5825 if (ndm->ndm_state & NUD_PERMANENT) { 5826 netdev_err(dev, "FDB only supports static addresses\n"); 5827 return -EINVAL; 5828 } 5829 5830 if (is_unicast_ether_addr(addr)) 5831 err = dev_uc_del(dev, addr); 5832 else if (is_multicast_ether_addr(addr)) 5833 err = dev_mc_del(dev, addr); 5834 else 5835 err = -EINVAL; 5836 5837 return err; 5838 } 5839 5840 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5841 NETIF_F_HW_VLAN_CTAG_TX | \ 5842 NETIF_F_HW_VLAN_STAG_RX | \ 5843 NETIF_F_HW_VLAN_STAG_TX) 5844 5845 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5846 NETIF_F_HW_VLAN_STAG_RX) 5847 5848 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5849 NETIF_F_HW_VLAN_STAG_FILTER) 5850 5851 /** 5852 * ice_fix_features - fix the netdev features flags based on device limitations 5853 * @netdev: ptr to the netdev that flags are being fixed on 5854 * @features: features that need to be checked and possibly fixed 5855 * 5856 * Make sure any fixups are made to features in this callback. This enables the 5857 * driver to not have to check unsupported configurations throughout the driver 5858 * because that's the responsiblity of this callback. 5859 * 5860 * Single VLAN Mode (SVM) Supported Features: 5861 * NETIF_F_HW_VLAN_CTAG_FILTER 5862 * NETIF_F_HW_VLAN_CTAG_RX 5863 * NETIF_F_HW_VLAN_CTAG_TX 5864 * 5865 * Double VLAN Mode (DVM) Supported Features: 5866 * NETIF_F_HW_VLAN_CTAG_FILTER 5867 * NETIF_F_HW_VLAN_CTAG_RX 5868 * NETIF_F_HW_VLAN_CTAG_TX 5869 * 5870 * NETIF_F_HW_VLAN_STAG_FILTER 5871 * NETIF_HW_VLAN_STAG_RX 5872 * NETIF_HW_VLAN_STAG_TX 5873 * 5874 * Features that need fixing: 5875 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5876 * These are mutually exlusive as the VSI context cannot support multiple 5877 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5878 * is not done, then default to clearing the requested STAG offload 5879 * settings. 5880 * 5881 * All supported filtering has to be enabled or disabled together. For 5882 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5883 * together. If this is not done, then default to VLAN filtering disabled. 5884 * These are mutually exclusive as there is currently no way to 5885 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5886 * prune rules. 5887 */ 5888 static netdev_features_t 5889 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5890 { 5891 struct ice_netdev_priv *np = netdev_priv(netdev); 5892 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5893 bool cur_ctag, cur_stag, req_ctag, req_stag; 5894 5895 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5896 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5897 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5898 5899 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5900 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5901 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5902 5903 if (req_vlan_fltr != cur_vlan_fltr) { 5904 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5905 if (req_ctag && req_stag) { 5906 features |= NETIF_VLAN_FILTERING_FEATURES; 5907 } else if (!req_ctag && !req_stag) { 5908 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5909 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5910 (!cur_stag && req_stag && !cur_ctag)) { 5911 features |= NETIF_VLAN_FILTERING_FEATURES; 5912 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5913 } else if ((cur_ctag && !req_ctag && cur_stag) || 5914 (cur_stag && !req_stag && cur_ctag)) { 5915 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5916 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5917 } 5918 } else { 5919 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5920 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5921 5922 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5923 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5924 } 5925 } 5926 5927 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5928 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5929 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5930 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5931 NETIF_F_HW_VLAN_STAG_TX); 5932 } 5933 5934 if (!(netdev->features & NETIF_F_RXFCS) && 5935 (features & NETIF_F_RXFCS) && 5936 (features & NETIF_VLAN_STRIPPING_FEATURES) && 5937 !ice_vsi_has_non_zero_vlans(np->vsi)) { 5938 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5939 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 5940 } 5941 5942 return features; 5943 } 5944 5945 /** 5946 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5947 * @vsi: PF's VSI 5948 * @features: features used to determine VLAN offload settings 5949 * 5950 * First, determine the vlan_ethertype based on the VLAN offload bits in 5951 * features. Then determine if stripping and insertion should be enabled or 5952 * disabled. Finally enable or disable VLAN stripping and insertion. 5953 */ 5954 static int 5955 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5956 { 5957 bool enable_stripping = true, enable_insertion = true; 5958 struct ice_vsi_vlan_ops *vlan_ops; 5959 int strip_err = 0, insert_err = 0; 5960 u16 vlan_ethertype = 0; 5961 5962 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5963 5964 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5965 vlan_ethertype = ETH_P_8021AD; 5966 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5967 vlan_ethertype = ETH_P_8021Q; 5968 5969 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5970 enable_stripping = false; 5971 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5972 enable_insertion = false; 5973 5974 if (enable_stripping) 5975 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5976 else 5977 strip_err = vlan_ops->dis_stripping(vsi); 5978 5979 if (enable_insertion) 5980 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5981 else 5982 insert_err = vlan_ops->dis_insertion(vsi); 5983 5984 if (strip_err || insert_err) 5985 return -EIO; 5986 5987 return 0; 5988 } 5989 5990 /** 5991 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5992 * @vsi: PF's VSI 5993 * @features: features used to determine VLAN filtering settings 5994 * 5995 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5996 * features. 5997 */ 5998 static int 5999 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6000 { 6001 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6002 int err = 0; 6003 6004 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6005 * if either bit is set 6006 */ 6007 if (features & 6008 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6009 err = vlan_ops->ena_rx_filtering(vsi); 6010 else 6011 err = vlan_ops->dis_rx_filtering(vsi); 6012 6013 return err; 6014 } 6015 6016 /** 6017 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6018 * @netdev: ptr to the netdev being adjusted 6019 * @features: the feature set that the stack is suggesting 6020 * 6021 * Only update VLAN settings if the requested_vlan_features are different than 6022 * the current_vlan_features. 6023 */ 6024 static int 6025 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6026 { 6027 netdev_features_t current_vlan_features, requested_vlan_features; 6028 struct ice_netdev_priv *np = netdev_priv(netdev); 6029 struct ice_vsi *vsi = np->vsi; 6030 int err; 6031 6032 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6033 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6034 if (current_vlan_features ^ requested_vlan_features) { 6035 if ((features & NETIF_F_RXFCS) && 6036 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6037 dev_err(ice_pf_to_dev(vsi->back), 6038 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6039 return -EIO; 6040 } 6041 6042 err = ice_set_vlan_offload_features(vsi, features); 6043 if (err) 6044 return err; 6045 } 6046 6047 current_vlan_features = netdev->features & 6048 NETIF_VLAN_FILTERING_FEATURES; 6049 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6050 if (current_vlan_features ^ requested_vlan_features) { 6051 err = ice_set_vlan_filtering_features(vsi, features); 6052 if (err) 6053 return err; 6054 } 6055 6056 return 0; 6057 } 6058 6059 /** 6060 * ice_set_loopback - turn on/off loopback mode on underlying PF 6061 * @vsi: ptr to VSI 6062 * @ena: flag to indicate the on/off setting 6063 */ 6064 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6065 { 6066 bool if_running = netif_running(vsi->netdev); 6067 int ret; 6068 6069 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6070 ret = ice_down(vsi); 6071 if (ret) { 6072 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6073 return ret; 6074 } 6075 } 6076 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6077 if (ret) 6078 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6079 if (if_running) 6080 ret = ice_up(vsi); 6081 6082 return ret; 6083 } 6084 6085 /** 6086 * ice_set_features - set the netdev feature flags 6087 * @netdev: ptr to the netdev being adjusted 6088 * @features: the feature set that the stack is suggesting 6089 */ 6090 static int 6091 ice_set_features(struct net_device *netdev, netdev_features_t features) 6092 { 6093 netdev_features_t changed = netdev->features ^ features; 6094 struct ice_netdev_priv *np = netdev_priv(netdev); 6095 struct ice_vsi *vsi = np->vsi; 6096 struct ice_pf *pf = vsi->back; 6097 int ret = 0; 6098 6099 /* Don't set any netdev advanced features with device in Safe Mode */ 6100 if (ice_is_safe_mode(pf)) { 6101 dev_err(ice_pf_to_dev(pf), 6102 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6103 return ret; 6104 } 6105 6106 /* Do not change setting during reset */ 6107 if (ice_is_reset_in_progress(pf->state)) { 6108 dev_err(ice_pf_to_dev(pf), 6109 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6110 return -EBUSY; 6111 } 6112 6113 /* Multiple features can be changed in one call so keep features in 6114 * separate if/else statements to guarantee each feature is checked 6115 */ 6116 if (changed & NETIF_F_RXHASH) 6117 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6118 6119 ret = ice_set_vlan_features(netdev, features); 6120 if (ret) 6121 return ret; 6122 6123 /* Turn on receive of FCS aka CRC, and after setting this 6124 * flag the packet data will have the 4 byte CRC appended 6125 */ 6126 if (changed & NETIF_F_RXFCS) { 6127 if ((features & NETIF_F_RXFCS) && 6128 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6129 dev_err(ice_pf_to_dev(vsi->back), 6130 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6131 return -EIO; 6132 } 6133 6134 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6135 ret = ice_down_up(vsi); 6136 if (ret) 6137 return ret; 6138 } 6139 6140 if (changed & NETIF_F_NTUPLE) { 6141 bool ena = !!(features & NETIF_F_NTUPLE); 6142 6143 ice_vsi_manage_fdir(vsi, ena); 6144 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6145 } 6146 6147 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6148 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6149 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6150 return -EACCES; 6151 } 6152 6153 if (changed & NETIF_F_HW_TC) { 6154 bool ena = !!(features & NETIF_F_HW_TC); 6155 6156 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6157 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6158 } 6159 6160 if (changed & NETIF_F_LOOPBACK) 6161 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6162 6163 return ret; 6164 } 6165 6166 /** 6167 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6168 * @vsi: VSI to setup VLAN properties for 6169 */ 6170 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6171 { 6172 int err; 6173 6174 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6175 if (err) 6176 return err; 6177 6178 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6179 if (err) 6180 return err; 6181 6182 return ice_vsi_add_vlan_zero(vsi); 6183 } 6184 6185 /** 6186 * ice_vsi_cfg_lan - Setup the VSI lan related config 6187 * @vsi: the VSI being configured 6188 * 6189 * Return 0 on success and negative value on error 6190 */ 6191 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6192 { 6193 int err; 6194 6195 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6196 ice_set_rx_mode(vsi->netdev); 6197 6198 err = ice_vsi_vlan_setup(vsi); 6199 if (err) 6200 return err; 6201 } 6202 ice_vsi_cfg_dcb_rings(vsi); 6203 6204 err = ice_vsi_cfg_lan_txqs(vsi); 6205 if (!err && ice_is_xdp_ena_vsi(vsi)) 6206 err = ice_vsi_cfg_xdp_txqs(vsi); 6207 if (!err) 6208 err = ice_vsi_cfg_rxqs(vsi); 6209 6210 return err; 6211 } 6212 6213 /* THEORY OF MODERATION: 6214 * The ice driver hardware works differently than the hardware that DIMLIB was 6215 * originally made for. ice hardware doesn't have packet count limits that 6216 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6217 * which is hard-coded to a limit of 250,000 ints/second. 6218 * If not using dynamic moderation, the INTRL value can be modified 6219 * by ethtool rx-usecs-high. 6220 */ 6221 struct ice_dim { 6222 /* the throttle rate for interrupts, basically worst case delay before 6223 * an initial interrupt fires, value is stored in microseconds. 6224 */ 6225 u16 itr; 6226 }; 6227 6228 /* Make a different profile for Rx that doesn't allow quite so aggressive 6229 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6230 * second. 6231 */ 6232 static const struct ice_dim rx_profile[] = { 6233 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6234 {8}, /* 125,000 ints/s */ 6235 {16}, /* 62,500 ints/s */ 6236 {62}, /* 16,129 ints/s */ 6237 {126} /* 7,936 ints/s */ 6238 }; 6239 6240 /* The transmit profile, which has the same sorts of values 6241 * as the previous struct 6242 */ 6243 static const struct ice_dim tx_profile[] = { 6244 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6245 {8}, /* 125,000 ints/s */ 6246 {40}, /* 16,125 ints/s */ 6247 {128}, /* 7,812 ints/s */ 6248 {256} /* 3,906 ints/s */ 6249 }; 6250 6251 static void ice_tx_dim_work(struct work_struct *work) 6252 { 6253 struct ice_ring_container *rc; 6254 struct dim *dim; 6255 u16 itr; 6256 6257 dim = container_of(work, struct dim, work); 6258 rc = (struct ice_ring_container *)dim->priv; 6259 6260 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6261 6262 /* look up the values in our local table */ 6263 itr = tx_profile[dim->profile_ix].itr; 6264 6265 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6266 ice_write_itr(rc, itr); 6267 6268 dim->state = DIM_START_MEASURE; 6269 } 6270 6271 static void ice_rx_dim_work(struct work_struct *work) 6272 { 6273 struct ice_ring_container *rc; 6274 struct dim *dim; 6275 u16 itr; 6276 6277 dim = container_of(work, struct dim, work); 6278 rc = (struct ice_ring_container *)dim->priv; 6279 6280 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6281 6282 /* look up the values in our local table */ 6283 itr = rx_profile[dim->profile_ix].itr; 6284 6285 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6286 ice_write_itr(rc, itr); 6287 6288 dim->state = DIM_START_MEASURE; 6289 } 6290 6291 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6292 6293 /** 6294 * ice_init_moderation - set up interrupt moderation 6295 * @q_vector: the vector containing rings to be configured 6296 * 6297 * Set up interrupt moderation registers, with the intent to do the right thing 6298 * when called from reset or from probe, and whether or not dynamic moderation 6299 * is enabled or not. Take special care to write all the registers in both 6300 * dynamic moderation mode or not in order to make sure hardware is in a known 6301 * state. 6302 */ 6303 static void ice_init_moderation(struct ice_q_vector *q_vector) 6304 { 6305 struct ice_ring_container *rc; 6306 bool tx_dynamic, rx_dynamic; 6307 6308 rc = &q_vector->tx; 6309 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6310 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6311 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6312 rc->dim.priv = rc; 6313 tx_dynamic = ITR_IS_DYNAMIC(rc); 6314 6315 /* set the initial TX ITR to match the above */ 6316 ice_write_itr(rc, tx_dynamic ? 6317 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6318 6319 rc = &q_vector->rx; 6320 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6321 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6322 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6323 rc->dim.priv = rc; 6324 rx_dynamic = ITR_IS_DYNAMIC(rc); 6325 6326 /* set the initial RX ITR to match the above */ 6327 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6328 rc->itr_setting); 6329 6330 ice_set_q_vector_intrl(q_vector); 6331 } 6332 6333 /** 6334 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6335 * @vsi: the VSI being configured 6336 */ 6337 static void ice_napi_enable_all(struct ice_vsi *vsi) 6338 { 6339 int q_idx; 6340 6341 if (!vsi->netdev) 6342 return; 6343 6344 ice_for_each_q_vector(vsi, q_idx) { 6345 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6346 6347 ice_init_moderation(q_vector); 6348 6349 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6350 napi_enable(&q_vector->napi); 6351 } 6352 } 6353 6354 /** 6355 * ice_up_complete - Finish the last steps of bringing up a connection 6356 * @vsi: The VSI being configured 6357 * 6358 * Return 0 on success and negative value on error 6359 */ 6360 static int ice_up_complete(struct ice_vsi *vsi) 6361 { 6362 struct ice_pf *pf = vsi->back; 6363 int err; 6364 6365 ice_vsi_cfg_msix(vsi); 6366 6367 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6368 * Tx queue group list was configured and the context bits were 6369 * programmed using ice_vsi_cfg_txqs 6370 */ 6371 err = ice_vsi_start_all_rx_rings(vsi); 6372 if (err) 6373 return err; 6374 6375 clear_bit(ICE_VSI_DOWN, vsi->state); 6376 ice_napi_enable_all(vsi); 6377 ice_vsi_ena_irq(vsi); 6378 6379 if (vsi->port_info && 6380 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6381 vsi->netdev && vsi->type == ICE_VSI_PF) { 6382 ice_print_link_msg(vsi, true); 6383 netif_tx_start_all_queues(vsi->netdev); 6384 netif_carrier_on(vsi->netdev); 6385 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6386 } 6387 6388 /* Perform an initial read of the statistics registers now to 6389 * set the baseline so counters are ready when interface is up 6390 */ 6391 ice_update_eth_stats(vsi); 6392 6393 if (vsi->type == ICE_VSI_PF) 6394 ice_service_task_schedule(pf); 6395 6396 return 0; 6397 } 6398 6399 /** 6400 * ice_up - Bring the connection back up after being down 6401 * @vsi: VSI being configured 6402 */ 6403 int ice_up(struct ice_vsi *vsi) 6404 { 6405 int err; 6406 6407 err = ice_vsi_cfg_lan(vsi); 6408 if (!err) 6409 err = ice_up_complete(vsi); 6410 6411 return err; 6412 } 6413 6414 /** 6415 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6416 * @syncp: pointer to u64_stats_sync 6417 * @stats: stats that pkts and bytes count will be taken from 6418 * @pkts: packets stats counter 6419 * @bytes: bytes stats counter 6420 * 6421 * This function fetches stats from the ring considering the atomic operations 6422 * that needs to be performed to read u64 values in 32 bit machine. 6423 */ 6424 void 6425 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6426 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6427 { 6428 unsigned int start; 6429 6430 do { 6431 start = u64_stats_fetch_begin(syncp); 6432 *pkts = stats.pkts; 6433 *bytes = stats.bytes; 6434 } while (u64_stats_fetch_retry(syncp, start)); 6435 } 6436 6437 /** 6438 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6439 * @vsi: the VSI to be updated 6440 * @vsi_stats: the stats struct to be updated 6441 * @rings: rings to work on 6442 * @count: number of rings 6443 */ 6444 static void 6445 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6446 struct rtnl_link_stats64 *vsi_stats, 6447 struct ice_tx_ring **rings, u16 count) 6448 { 6449 u16 i; 6450 6451 for (i = 0; i < count; i++) { 6452 struct ice_tx_ring *ring; 6453 u64 pkts = 0, bytes = 0; 6454 6455 ring = READ_ONCE(rings[i]); 6456 if (!ring || !ring->ring_stats) 6457 continue; 6458 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6459 ring->ring_stats->stats, &pkts, 6460 &bytes); 6461 vsi_stats->tx_packets += pkts; 6462 vsi_stats->tx_bytes += bytes; 6463 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6464 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6465 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6466 } 6467 } 6468 6469 /** 6470 * ice_update_vsi_ring_stats - Update VSI stats counters 6471 * @vsi: the VSI to be updated 6472 */ 6473 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6474 { 6475 struct rtnl_link_stats64 *net_stats, *stats_prev; 6476 struct rtnl_link_stats64 *vsi_stats; 6477 u64 pkts, bytes; 6478 int i; 6479 6480 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6481 if (!vsi_stats) 6482 return; 6483 6484 /* reset non-netdev (extended) stats */ 6485 vsi->tx_restart = 0; 6486 vsi->tx_busy = 0; 6487 vsi->tx_linearize = 0; 6488 vsi->rx_buf_failed = 0; 6489 vsi->rx_page_failed = 0; 6490 6491 rcu_read_lock(); 6492 6493 /* update Tx rings counters */ 6494 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6495 vsi->num_txq); 6496 6497 /* update Rx rings counters */ 6498 ice_for_each_rxq(vsi, i) { 6499 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6500 struct ice_ring_stats *ring_stats; 6501 6502 ring_stats = ring->ring_stats; 6503 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6504 ring_stats->stats, &pkts, 6505 &bytes); 6506 vsi_stats->rx_packets += pkts; 6507 vsi_stats->rx_bytes += bytes; 6508 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6509 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6510 } 6511 6512 /* update XDP Tx rings counters */ 6513 if (ice_is_xdp_ena_vsi(vsi)) 6514 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6515 vsi->num_xdp_txq); 6516 6517 rcu_read_unlock(); 6518 6519 net_stats = &vsi->net_stats; 6520 stats_prev = &vsi->net_stats_prev; 6521 6522 /* clear prev counters after reset */ 6523 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6524 vsi_stats->rx_packets < stats_prev->rx_packets) { 6525 stats_prev->tx_packets = 0; 6526 stats_prev->tx_bytes = 0; 6527 stats_prev->rx_packets = 0; 6528 stats_prev->rx_bytes = 0; 6529 } 6530 6531 /* update netdev counters */ 6532 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6533 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6534 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6535 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6536 6537 stats_prev->tx_packets = vsi_stats->tx_packets; 6538 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6539 stats_prev->rx_packets = vsi_stats->rx_packets; 6540 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6541 6542 kfree(vsi_stats); 6543 } 6544 6545 /** 6546 * ice_update_vsi_stats - Update VSI stats counters 6547 * @vsi: the VSI to be updated 6548 */ 6549 void ice_update_vsi_stats(struct ice_vsi *vsi) 6550 { 6551 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6552 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6553 struct ice_pf *pf = vsi->back; 6554 6555 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6556 test_bit(ICE_CFG_BUSY, pf->state)) 6557 return; 6558 6559 /* get stats as recorded by Tx/Rx rings */ 6560 ice_update_vsi_ring_stats(vsi); 6561 6562 /* get VSI stats as recorded by the hardware */ 6563 ice_update_eth_stats(vsi); 6564 6565 cur_ns->tx_errors = cur_es->tx_errors; 6566 cur_ns->rx_dropped = cur_es->rx_discards; 6567 cur_ns->tx_dropped = cur_es->tx_discards; 6568 cur_ns->multicast = cur_es->rx_multicast; 6569 6570 /* update some more netdev stats if this is main VSI */ 6571 if (vsi->type == ICE_VSI_PF) { 6572 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6573 cur_ns->rx_errors = pf->stats.crc_errors + 6574 pf->stats.illegal_bytes + 6575 pf->stats.rx_len_errors + 6576 pf->stats.rx_undersize + 6577 pf->hw_csum_rx_error + 6578 pf->stats.rx_jabber + 6579 pf->stats.rx_fragments + 6580 pf->stats.rx_oversize; 6581 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6582 /* record drops from the port level */ 6583 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6584 } 6585 } 6586 6587 /** 6588 * ice_update_pf_stats - Update PF port stats counters 6589 * @pf: PF whose stats needs to be updated 6590 */ 6591 void ice_update_pf_stats(struct ice_pf *pf) 6592 { 6593 struct ice_hw_port_stats *prev_ps, *cur_ps; 6594 struct ice_hw *hw = &pf->hw; 6595 u16 fd_ctr_base; 6596 u8 port; 6597 6598 port = hw->port_info->lport; 6599 prev_ps = &pf->stats_prev; 6600 cur_ps = &pf->stats; 6601 6602 if (ice_is_reset_in_progress(pf->state)) 6603 pf->stat_prev_loaded = false; 6604 6605 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6606 &prev_ps->eth.rx_bytes, 6607 &cur_ps->eth.rx_bytes); 6608 6609 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6610 &prev_ps->eth.rx_unicast, 6611 &cur_ps->eth.rx_unicast); 6612 6613 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6614 &prev_ps->eth.rx_multicast, 6615 &cur_ps->eth.rx_multicast); 6616 6617 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6618 &prev_ps->eth.rx_broadcast, 6619 &cur_ps->eth.rx_broadcast); 6620 6621 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6622 &prev_ps->eth.rx_discards, 6623 &cur_ps->eth.rx_discards); 6624 6625 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6626 &prev_ps->eth.tx_bytes, 6627 &cur_ps->eth.tx_bytes); 6628 6629 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6630 &prev_ps->eth.tx_unicast, 6631 &cur_ps->eth.tx_unicast); 6632 6633 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6634 &prev_ps->eth.tx_multicast, 6635 &cur_ps->eth.tx_multicast); 6636 6637 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6638 &prev_ps->eth.tx_broadcast, 6639 &cur_ps->eth.tx_broadcast); 6640 6641 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6642 &prev_ps->tx_dropped_link_down, 6643 &cur_ps->tx_dropped_link_down); 6644 6645 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6646 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6647 6648 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6649 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6650 6651 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6652 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6653 6654 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6655 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6656 6657 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6658 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6659 6660 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6661 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6662 6663 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6664 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6665 6666 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6667 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6668 6669 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6670 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6671 6672 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6673 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6674 6675 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6676 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6677 6678 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6679 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6680 6681 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6682 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6683 6684 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6685 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6686 6687 fd_ctr_base = hw->fd_ctr_base; 6688 6689 ice_stat_update40(hw, 6690 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6691 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6692 &cur_ps->fd_sb_match); 6693 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6694 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6695 6696 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6697 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6698 6699 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6700 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6701 6702 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6703 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6704 6705 ice_update_dcb_stats(pf); 6706 6707 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6708 &prev_ps->crc_errors, &cur_ps->crc_errors); 6709 6710 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6711 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6712 6713 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6714 &prev_ps->mac_local_faults, 6715 &cur_ps->mac_local_faults); 6716 6717 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6718 &prev_ps->mac_remote_faults, 6719 &cur_ps->mac_remote_faults); 6720 6721 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6722 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6723 6724 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6725 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6726 6727 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6728 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6729 6730 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6731 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6732 6733 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6734 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6735 6736 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6737 6738 pf->stat_prev_loaded = true; 6739 } 6740 6741 /** 6742 * ice_get_stats64 - get statistics for network device structure 6743 * @netdev: network interface device structure 6744 * @stats: main device statistics structure 6745 */ 6746 static 6747 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6748 { 6749 struct ice_netdev_priv *np = netdev_priv(netdev); 6750 struct rtnl_link_stats64 *vsi_stats; 6751 struct ice_vsi *vsi = np->vsi; 6752 6753 vsi_stats = &vsi->net_stats; 6754 6755 if (!vsi->num_txq || !vsi->num_rxq) 6756 return; 6757 6758 /* netdev packet/byte stats come from ring counter. These are obtained 6759 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6760 * But, only call the update routine and read the registers if VSI is 6761 * not down. 6762 */ 6763 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6764 ice_update_vsi_ring_stats(vsi); 6765 stats->tx_packets = vsi_stats->tx_packets; 6766 stats->tx_bytes = vsi_stats->tx_bytes; 6767 stats->rx_packets = vsi_stats->rx_packets; 6768 stats->rx_bytes = vsi_stats->rx_bytes; 6769 6770 /* The rest of the stats can be read from the hardware but instead we 6771 * just return values that the watchdog task has already obtained from 6772 * the hardware. 6773 */ 6774 stats->multicast = vsi_stats->multicast; 6775 stats->tx_errors = vsi_stats->tx_errors; 6776 stats->tx_dropped = vsi_stats->tx_dropped; 6777 stats->rx_errors = vsi_stats->rx_errors; 6778 stats->rx_dropped = vsi_stats->rx_dropped; 6779 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6780 stats->rx_length_errors = vsi_stats->rx_length_errors; 6781 } 6782 6783 /** 6784 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6785 * @vsi: VSI having NAPI disabled 6786 */ 6787 static void ice_napi_disable_all(struct ice_vsi *vsi) 6788 { 6789 int q_idx; 6790 6791 if (!vsi->netdev) 6792 return; 6793 6794 ice_for_each_q_vector(vsi, q_idx) { 6795 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6796 6797 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6798 napi_disable(&q_vector->napi); 6799 6800 cancel_work_sync(&q_vector->tx.dim.work); 6801 cancel_work_sync(&q_vector->rx.dim.work); 6802 } 6803 } 6804 6805 /** 6806 * ice_down - Shutdown the connection 6807 * @vsi: The VSI being stopped 6808 * 6809 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6810 */ 6811 int ice_down(struct ice_vsi *vsi) 6812 { 6813 int i, tx_err, rx_err, vlan_err = 0; 6814 6815 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6816 6817 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6818 vlan_err = ice_vsi_del_vlan_zero(vsi); 6819 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6820 netif_carrier_off(vsi->netdev); 6821 netif_tx_disable(vsi->netdev); 6822 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6823 ice_eswitch_stop_all_tx_queues(vsi->back); 6824 } 6825 6826 ice_vsi_dis_irq(vsi); 6827 6828 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6829 if (tx_err) 6830 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6831 vsi->vsi_num, tx_err); 6832 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6833 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6834 if (tx_err) 6835 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6836 vsi->vsi_num, tx_err); 6837 } 6838 6839 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6840 if (rx_err) 6841 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6842 vsi->vsi_num, rx_err); 6843 6844 ice_napi_disable_all(vsi); 6845 6846 ice_for_each_txq(vsi, i) 6847 ice_clean_tx_ring(vsi->tx_rings[i]); 6848 6849 if (ice_is_xdp_ena_vsi(vsi)) 6850 ice_for_each_xdp_txq(vsi, i) 6851 ice_clean_tx_ring(vsi->xdp_rings[i]); 6852 6853 ice_for_each_rxq(vsi, i) 6854 ice_clean_rx_ring(vsi->rx_rings[i]); 6855 6856 if (tx_err || rx_err || vlan_err) { 6857 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6858 vsi->vsi_num, vsi->vsw->sw_id); 6859 return -EIO; 6860 } 6861 6862 return 0; 6863 } 6864 6865 /** 6866 * ice_down_up - shutdown the VSI connection and bring it up 6867 * @vsi: the VSI to be reconnected 6868 */ 6869 int ice_down_up(struct ice_vsi *vsi) 6870 { 6871 int ret; 6872 6873 /* if DOWN already set, nothing to do */ 6874 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6875 return 0; 6876 6877 ret = ice_down(vsi); 6878 if (ret) 6879 return ret; 6880 6881 ret = ice_up(vsi); 6882 if (ret) { 6883 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6884 return ret; 6885 } 6886 6887 return 0; 6888 } 6889 6890 /** 6891 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6892 * @vsi: VSI having resources allocated 6893 * 6894 * Return 0 on success, negative on failure 6895 */ 6896 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6897 { 6898 int i, err = 0; 6899 6900 if (!vsi->num_txq) { 6901 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6902 vsi->vsi_num); 6903 return -EINVAL; 6904 } 6905 6906 ice_for_each_txq(vsi, i) { 6907 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6908 6909 if (!ring) 6910 return -EINVAL; 6911 6912 if (vsi->netdev) 6913 ring->netdev = vsi->netdev; 6914 err = ice_setup_tx_ring(ring); 6915 if (err) 6916 break; 6917 } 6918 6919 return err; 6920 } 6921 6922 /** 6923 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6924 * @vsi: VSI having resources allocated 6925 * 6926 * Return 0 on success, negative on failure 6927 */ 6928 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6929 { 6930 int i, err = 0; 6931 6932 if (!vsi->num_rxq) { 6933 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6934 vsi->vsi_num); 6935 return -EINVAL; 6936 } 6937 6938 ice_for_each_rxq(vsi, i) { 6939 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6940 6941 if (!ring) 6942 return -EINVAL; 6943 6944 if (vsi->netdev) 6945 ring->netdev = vsi->netdev; 6946 err = ice_setup_rx_ring(ring); 6947 if (err) 6948 break; 6949 } 6950 6951 return err; 6952 } 6953 6954 /** 6955 * ice_vsi_open_ctrl - open control VSI for use 6956 * @vsi: the VSI to open 6957 * 6958 * Initialization of the Control VSI 6959 * 6960 * Returns 0 on success, negative value on error 6961 */ 6962 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6963 { 6964 char int_name[ICE_INT_NAME_STR_LEN]; 6965 struct ice_pf *pf = vsi->back; 6966 struct device *dev; 6967 int err; 6968 6969 dev = ice_pf_to_dev(pf); 6970 /* allocate descriptors */ 6971 err = ice_vsi_setup_tx_rings(vsi); 6972 if (err) 6973 goto err_setup_tx; 6974 6975 err = ice_vsi_setup_rx_rings(vsi); 6976 if (err) 6977 goto err_setup_rx; 6978 6979 err = ice_vsi_cfg_lan(vsi); 6980 if (err) 6981 goto err_setup_rx; 6982 6983 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6984 dev_driver_string(dev), dev_name(dev)); 6985 err = ice_vsi_req_irq_msix(vsi, int_name); 6986 if (err) 6987 goto err_setup_rx; 6988 6989 ice_vsi_cfg_msix(vsi); 6990 6991 err = ice_vsi_start_all_rx_rings(vsi); 6992 if (err) 6993 goto err_up_complete; 6994 6995 clear_bit(ICE_VSI_DOWN, vsi->state); 6996 ice_vsi_ena_irq(vsi); 6997 6998 return 0; 6999 7000 err_up_complete: 7001 ice_down(vsi); 7002 err_setup_rx: 7003 ice_vsi_free_rx_rings(vsi); 7004 err_setup_tx: 7005 ice_vsi_free_tx_rings(vsi); 7006 7007 return err; 7008 } 7009 7010 /** 7011 * ice_vsi_open - Called when a network interface is made active 7012 * @vsi: the VSI to open 7013 * 7014 * Initialization of the VSI 7015 * 7016 * Returns 0 on success, negative value on error 7017 */ 7018 int ice_vsi_open(struct ice_vsi *vsi) 7019 { 7020 char int_name[ICE_INT_NAME_STR_LEN]; 7021 struct ice_pf *pf = vsi->back; 7022 int err; 7023 7024 /* allocate descriptors */ 7025 err = ice_vsi_setup_tx_rings(vsi); 7026 if (err) 7027 goto err_setup_tx; 7028 7029 err = ice_vsi_setup_rx_rings(vsi); 7030 if (err) 7031 goto err_setup_rx; 7032 7033 err = ice_vsi_cfg_lan(vsi); 7034 if (err) 7035 goto err_setup_rx; 7036 7037 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7038 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7039 err = ice_vsi_req_irq_msix(vsi, int_name); 7040 if (err) 7041 goto err_setup_rx; 7042 7043 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7044 7045 if (vsi->type == ICE_VSI_PF) { 7046 /* Notify the stack of the actual queue counts. */ 7047 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7048 if (err) 7049 goto err_set_qs; 7050 7051 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7052 if (err) 7053 goto err_set_qs; 7054 } 7055 7056 err = ice_up_complete(vsi); 7057 if (err) 7058 goto err_up_complete; 7059 7060 return 0; 7061 7062 err_up_complete: 7063 ice_down(vsi); 7064 err_set_qs: 7065 ice_vsi_free_irq(vsi); 7066 err_setup_rx: 7067 ice_vsi_free_rx_rings(vsi); 7068 err_setup_tx: 7069 ice_vsi_free_tx_rings(vsi); 7070 7071 return err; 7072 } 7073 7074 /** 7075 * ice_vsi_release_all - Delete all VSIs 7076 * @pf: PF from which all VSIs are being removed 7077 */ 7078 static void ice_vsi_release_all(struct ice_pf *pf) 7079 { 7080 int err, i; 7081 7082 if (!pf->vsi) 7083 return; 7084 7085 ice_for_each_vsi(pf, i) { 7086 if (!pf->vsi[i]) 7087 continue; 7088 7089 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7090 continue; 7091 7092 err = ice_vsi_release(pf->vsi[i]); 7093 if (err) 7094 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7095 i, err, pf->vsi[i]->vsi_num); 7096 } 7097 } 7098 7099 /** 7100 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7101 * @pf: pointer to the PF instance 7102 * @type: VSI type to rebuild 7103 * 7104 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7105 */ 7106 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7107 { 7108 struct device *dev = ice_pf_to_dev(pf); 7109 int i, err; 7110 7111 ice_for_each_vsi(pf, i) { 7112 struct ice_vsi *vsi = pf->vsi[i]; 7113 7114 if (!vsi || vsi->type != type) 7115 continue; 7116 7117 /* rebuild the VSI */ 7118 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7119 if (err) { 7120 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7121 err, vsi->idx, ice_vsi_type_str(type)); 7122 return err; 7123 } 7124 7125 /* replay filters for the VSI */ 7126 err = ice_replay_vsi(&pf->hw, vsi->idx); 7127 if (err) { 7128 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7129 err, vsi->idx, ice_vsi_type_str(type)); 7130 return err; 7131 } 7132 7133 /* Re-map HW VSI number, using VSI handle that has been 7134 * previously validated in ice_replay_vsi() call above 7135 */ 7136 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7137 7138 /* enable the VSI */ 7139 err = ice_ena_vsi(vsi, false); 7140 if (err) { 7141 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7142 err, vsi->idx, ice_vsi_type_str(type)); 7143 return err; 7144 } 7145 7146 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7147 ice_vsi_type_str(type)); 7148 } 7149 7150 return 0; 7151 } 7152 7153 /** 7154 * ice_update_pf_netdev_link - Update PF netdev link status 7155 * @pf: pointer to the PF instance 7156 */ 7157 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7158 { 7159 bool link_up; 7160 int i; 7161 7162 ice_for_each_vsi(pf, i) { 7163 struct ice_vsi *vsi = pf->vsi[i]; 7164 7165 if (!vsi || vsi->type != ICE_VSI_PF) 7166 return; 7167 7168 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7169 if (link_up) { 7170 netif_carrier_on(pf->vsi[i]->netdev); 7171 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7172 } else { 7173 netif_carrier_off(pf->vsi[i]->netdev); 7174 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7175 } 7176 } 7177 } 7178 7179 /** 7180 * ice_rebuild - rebuild after reset 7181 * @pf: PF to rebuild 7182 * @reset_type: type of reset 7183 * 7184 * Do not rebuild VF VSI in this flow because that is already handled via 7185 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7186 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7187 * to reset/rebuild all the VF VSI twice. 7188 */ 7189 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7190 { 7191 struct device *dev = ice_pf_to_dev(pf); 7192 struct ice_hw *hw = &pf->hw; 7193 bool dvm; 7194 int err; 7195 7196 if (test_bit(ICE_DOWN, pf->state)) 7197 goto clear_recovery; 7198 7199 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7200 7201 #define ICE_EMP_RESET_SLEEP_MS 5000 7202 if (reset_type == ICE_RESET_EMPR) { 7203 /* If an EMP reset has occurred, any previously pending flash 7204 * update will have completed. We no longer know whether or 7205 * not the NVM update EMP reset is restricted. 7206 */ 7207 pf->fw_emp_reset_disabled = false; 7208 7209 msleep(ICE_EMP_RESET_SLEEP_MS); 7210 } 7211 7212 err = ice_init_all_ctrlq(hw); 7213 if (err) { 7214 dev_err(dev, "control queues init failed %d\n", err); 7215 goto err_init_ctrlq; 7216 } 7217 7218 /* if DDP was previously loaded successfully */ 7219 if (!ice_is_safe_mode(pf)) { 7220 /* reload the SW DB of filter tables */ 7221 if (reset_type == ICE_RESET_PFR) 7222 ice_fill_blk_tbls(hw); 7223 else 7224 /* Reload DDP Package after CORER/GLOBR reset */ 7225 ice_load_pkg(NULL, pf); 7226 } 7227 7228 err = ice_clear_pf_cfg(hw); 7229 if (err) { 7230 dev_err(dev, "clear PF configuration failed %d\n", err); 7231 goto err_init_ctrlq; 7232 } 7233 7234 ice_clear_pxe_mode(hw); 7235 7236 err = ice_init_nvm(hw); 7237 if (err) { 7238 dev_err(dev, "ice_init_nvm failed %d\n", err); 7239 goto err_init_ctrlq; 7240 } 7241 7242 err = ice_get_caps(hw); 7243 if (err) { 7244 dev_err(dev, "ice_get_caps failed %d\n", err); 7245 goto err_init_ctrlq; 7246 } 7247 7248 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7249 if (err) { 7250 dev_err(dev, "set_mac_cfg failed %d\n", err); 7251 goto err_init_ctrlq; 7252 } 7253 7254 dvm = ice_is_dvm_ena(hw); 7255 7256 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7257 if (err) 7258 goto err_init_ctrlq; 7259 7260 err = ice_sched_init_port(hw->port_info); 7261 if (err) 7262 goto err_sched_init_port; 7263 7264 /* start misc vector */ 7265 err = ice_req_irq_msix_misc(pf); 7266 if (err) { 7267 dev_err(dev, "misc vector setup failed: %d\n", err); 7268 goto err_sched_init_port; 7269 } 7270 7271 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7272 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7273 if (!rd32(hw, PFQF_FD_SIZE)) { 7274 u16 unused, guar, b_effort; 7275 7276 guar = hw->func_caps.fd_fltr_guar; 7277 b_effort = hw->func_caps.fd_fltr_best_effort; 7278 7279 /* force guaranteed filter pool for PF */ 7280 ice_alloc_fd_guar_item(hw, &unused, guar); 7281 /* force shared filter pool for PF */ 7282 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7283 } 7284 } 7285 7286 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7287 ice_dcb_rebuild(pf); 7288 7289 /* If the PF previously had enabled PTP, PTP init needs to happen before 7290 * the VSI rebuild. If not, this causes the PTP link status events to 7291 * fail. 7292 */ 7293 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7294 ice_ptp_reset(pf); 7295 7296 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7297 ice_gnss_init(pf); 7298 7299 /* rebuild PF VSI */ 7300 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7301 if (err) { 7302 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7303 goto err_vsi_rebuild; 7304 } 7305 7306 /* configure PTP timestamping after VSI rebuild */ 7307 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7308 ice_ptp_cfg_timestamp(pf, false); 7309 7310 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7311 if (err) { 7312 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7313 goto err_vsi_rebuild; 7314 } 7315 7316 if (reset_type == ICE_RESET_PFR) { 7317 err = ice_rebuild_channels(pf); 7318 if (err) { 7319 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7320 err); 7321 goto err_vsi_rebuild; 7322 } 7323 } 7324 7325 /* If Flow Director is active */ 7326 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7327 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7328 if (err) { 7329 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7330 goto err_vsi_rebuild; 7331 } 7332 7333 /* replay HW Flow Director recipes */ 7334 if (hw->fdir_prof) 7335 ice_fdir_replay_flows(hw); 7336 7337 /* replay Flow Director filters */ 7338 ice_fdir_replay_fltrs(pf); 7339 7340 ice_rebuild_arfs(pf); 7341 } 7342 7343 ice_update_pf_netdev_link(pf); 7344 7345 /* tell the firmware we are up */ 7346 err = ice_send_version(pf); 7347 if (err) { 7348 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7349 err); 7350 goto err_vsi_rebuild; 7351 } 7352 7353 ice_replay_post(hw); 7354 7355 /* if we get here, reset flow is successful */ 7356 clear_bit(ICE_RESET_FAILED, pf->state); 7357 7358 ice_plug_aux_dev(pf); 7359 return; 7360 7361 err_vsi_rebuild: 7362 err_sched_init_port: 7363 ice_sched_cleanup_all(hw); 7364 err_init_ctrlq: 7365 ice_shutdown_all_ctrlq(hw); 7366 set_bit(ICE_RESET_FAILED, pf->state); 7367 clear_recovery: 7368 /* set this bit in PF state to control service task scheduling */ 7369 set_bit(ICE_NEEDS_RESTART, pf->state); 7370 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7371 } 7372 7373 /** 7374 * ice_change_mtu - NDO callback to change the MTU 7375 * @netdev: network interface device structure 7376 * @new_mtu: new value for maximum frame size 7377 * 7378 * Returns 0 on success, negative on failure 7379 */ 7380 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7381 { 7382 struct ice_netdev_priv *np = netdev_priv(netdev); 7383 struct ice_vsi *vsi = np->vsi; 7384 struct ice_pf *pf = vsi->back; 7385 struct bpf_prog *prog; 7386 u8 count = 0; 7387 int err = 0; 7388 7389 if (new_mtu == (int)netdev->mtu) { 7390 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7391 return 0; 7392 } 7393 7394 prog = vsi->xdp_prog; 7395 if (prog && !prog->aux->xdp_has_frags) { 7396 int frame_size = ice_max_xdp_frame_size(vsi); 7397 7398 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7399 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7400 frame_size - ICE_ETH_PKT_HDR_PAD); 7401 return -EINVAL; 7402 } 7403 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7404 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7405 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7406 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7407 return -EINVAL; 7408 } 7409 } 7410 7411 /* if a reset is in progress, wait for some time for it to complete */ 7412 do { 7413 if (ice_is_reset_in_progress(pf->state)) { 7414 count++; 7415 usleep_range(1000, 2000); 7416 } else { 7417 break; 7418 } 7419 7420 } while (count < 100); 7421 7422 if (count == 100) { 7423 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7424 return -EBUSY; 7425 } 7426 7427 netdev->mtu = (unsigned int)new_mtu; 7428 err = ice_down_up(vsi); 7429 if (err) 7430 return err; 7431 7432 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7433 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7434 7435 return err; 7436 } 7437 7438 /** 7439 * ice_eth_ioctl - Access the hwtstamp interface 7440 * @netdev: network interface device structure 7441 * @ifr: interface request data 7442 * @cmd: ioctl command 7443 */ 7444 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7445 { 7446 struct ice_netdev_priv *np = netdev_priv(netdev); 7447 struct ice_pf *pf = np->vsi->back; 7448 7449 switch (cmd) { 7450 case SIOCGHWTSTAMP: 7451 return ice_ptp_get_ts_config(pf, ifr); 7452 case SIOCSHWTSTAMP: 7453 return ice_ptp_set_ts_config(pf, ifr); 7454 default: 7455 return -EOPNOTSUPP; 7456 } 7457 } 7458 7459 /** 7460 * ice_aq_str - convert AQ err code to a string 7461 * @aq_err: the AQ error code to convert 7462 */ 7463 const char *ice_aq_str(enum ice_aq_err aq_err) 7464 { 7465 switch (aq_err) { 7466 case ICE_AQ_RC_OK: 7467 return "OK"; 7468 case ICE_AQ_RC_EPERM: 7469 return "ICE_AQ_RC_EPERM"; 7470 case ICE_AQ_RC_ENOENT: 7471 return "ICE_AQ_RC_ENOENT"; 7472 case ICE_AQ_RC_ENOMEM: 7473 return "ICE_AQ_RC_ENOMEM"; 7474 case ICE_AQ_RC_EBUSY: 7475 return "ICE_AQ_RC_EBUSY"; 7476 case ICE_AQ_RC_EEXIST: 7477 return "ICE_AQ_RC_EEXIST"; 7478 case ICE_AQ_RC_EINVAL: 7479 return "ICE_AQ_RC_EINVAL"; 7480 case ICE_AQ_RC_ENOSPC: 7481 return "ICE_AQ_RC_ENOSPC"; 7482 case ICE_AQ_RC_ENOSYS: 7483 return "ICE_AQ_RC_ENOSYS"; 7484 case ICE_AQ_RC_EMODE: 7485 return "ICE_AQ_RC_EMODE"; 7486 case ICE_AQ_RC_ENOSEC: 7487 return "ICE_AQ_RC_ENOSEC"; 7488 case ICE_AQ_RC_EBADSIG: 7489 return "ICE_AQ_RC_EBADSIG"; 7490 case ICE_AQ_RC_ESVN: 7491 return "ICE_AQ_RC_ESVN"; 7492 case ICE_AQ_RC_EBADMAN: 7493 return "ICE_AQ_RC_EBADMAN"; 7494 case ICE_AQ_RC_EBADBUF: 7495 return "ICE_AQ_RC_EBADBUF"; 7496 } 7497 7498 return "ICE_AQ_RC_UNKNOWN"; 7499 } 7500 7501 /** 7502 * ice_set_rss_lut - Set RSS LUT 7503 * @vsi: Pointer to VSI structure 7504 * @lut: Lookup table 7505 * @lut_size: Lookup table size 7506 * 7507 * Returns 0 on success, negative on failure 7508 */ 7509 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7510 { 7511 struct ice_aq_get_set_rss_lut_params params = {}; 7512 struct ice_hw *hw = &vsi->back->hw; 7513 int status; 7514 7515 if (!lut) 7516 return -EINVAL; 7517 7518 params.vsi_handle = vsi->idx; 7519 params.lut_size = lut_size; 7520 params.lut_type = vsi->rss_lut_type; 7521 params.lut = lut; 7522 7523 status = ice_aq_set_rss_lut(hw, ¶ms); 7524 if (status) 7525 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7526 status, ice_aq_str(hw->adminq.sq_last_status)); 7527 7528 return status; 7529 } 7530 7531 /** 7532 * ice_set_rss_key - Set RSS key 7533 * @vsi: Pointer to the VSI structure 7534 * @seed: RSS hash seed 7535 * 7536 * Returns 0 on success, negative on failure 7537 */ 7538 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7539 { 7540 struct ice_hw *hw = &vsi->back->hw; 7541 int status; 7542 7543 if (!seed) 7544 return -EINVAL; 7545 7546 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7547 if (status) 7548 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7549 status, ice_aq_str(hw->adminq.sq_last_status)); 7550 7551 return status; 7552 } 7553 7554 /** 7555 * ice_get_rss_lut - Get RSS LUT 7556 * @vsi: Pointer to VSI structure 7557 * @lut: Buffer to store the lookup table entries 7558 * @lut_size: Size of buffer to store the lookup table entries 7559 * 7560 * Returns 0 on success, negative on failure 7561 */ 7562 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7563 { 7564 struct ice_aq_get_set_rss_lut_params params = {}; 7565 struct ice_hw *hw = &vsi->back->hw; 7566 int status; 7567 7568 if (!lut) 7569 return -EINVAL; 7570 7571 params.vsi_handle = vsi->idx; 7572 params.lut_size = lut_size; 7573 params.lut_type = vsi->rss_lut_type; 7574 params.lut = lut; 7575 7576 status = ice_aq_get_rss_lut(hw, ¶ms); 7577 if (status) 7578 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7579 status, ice_aq_str(hw->adminq.sq_last_status)); 7580 7581 return status; 7582 } 7583 7584 /** 7585 * ice_get_rss_key - Get RSS key 7586 * @vsi: Pointer to VSI structure 7587 * @seed: Buffer to store the key in 7588 * 7589 * Returns 0 on success, negative on failure 7590 */ 7591 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7592 { 7593 struct ice_hw *hw = &vsi->back->hw; 7594 int status; 7595 7596 if (!seed) 7597 return -EINVAL; 7598 7599 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7600 if (status) 7601 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7602 status, ice_aq_str(hw->adminq.sq_last_status)); 7603 7604 return status; 7605 } 7606 7607 /** 7608 * ice_bridge_getlink - Get the hardware bridge mode 7609 * @skb: skb buff 7610 * @pid: process ID 7611 * @seq: RTNL message seq 7612 * @dev: the netdev being configured 7613 * @filter_mask: filter mask passed in 7614 * @nlflags: netlink flags passed in 7615 * 7616 * Return the bridge mode (VEB/VEPA) 7617 */ 7618 static int 7619 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7620 struct net_device *dev, u32 filter_mask, int nlflags) 7621 { 7622 struct ice_netdev_priv *np = netdev_priv(dev); 7623 struct ice_vsi *vsi = np->vsi; 7624 struct ice_pf *pf = vsi->back; 7625 u16 bmode; 7626 7627 bmode = pf->first_sw->bridge_mode; 7628 7629 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7630 filter_mask, NULL); 7631 } 7632 7633 /** 7634 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7635 * @vsi: Pointer to VSI structure 7636 * @bmode: Hardware bridge mode (VEB/VEPA) 7637 * 7638 * Returns 0 on success, negative on failure 7639 */ 7640 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7641 { 7642 struct ice_aqc_vsi_props *vsi_props; 7643 struct ice_hw *hw = &vsi->back->hw; 7644 struct ice_vsi_ctx *ctxt; 7645 int ret; 7646 7647 vsi_props = &vsi->info; 7648 7649 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7650 if (!ctxt) 7651 return -ENOMEM; 7652 7653 ctxt->info = vsi->info; 7654 7655 if (bmode == BRIDGE_MODE_VEB) 7656 /* change from VEPA to VEB mode */ 7657 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7658 else 7659 /* change from VEB to VEPA mode */ 7660 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7661 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7662 7663 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7664 if (ret) { 7665 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7666 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7667 goto out; 7668 } 7669 /* Update sw flags for book keeping */ 7670 vsi_props->sw_flags = ctxt->info.sw_flags; 7671 7672 out: 7673 kfree(ctxt); 7674 return ret; 7675 } 7676 7677 /** 7678 * ice_bridge_setlink - Set the hardware bridge mode 7679 * @dev: the netdev being configured 7680 * @nlh: RTNL message 7681 * @flags: bridge setlink flags 7682 * @extack: netlink extended ack 7683 * 7684 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7685 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7686 * not already set for all VSIs connected to this switch. And also update the 7687 * unicast switch filter rules for the corresponding switch of the netdev. 7688 */ 7689 static int 7690 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7691 u16 __always_unused flags, 7692 struct netlink_ext_ack __always_unused *extack) 7693 { 7694 struct ice_netdev_priv *np = netdev_priv(dev); 7695 struct ice_pf *pf = np->vsi->back; 7696 struct nlattr *attr, *br_spec; 7697 struct ice_hw *hw = &pf->hw; 7698 struct ice_sw *pf_sw; 7699 int rem, v, err = 0; 7700 7701 pf_sw = pf->first_sw; 7702 /* find the attribute in the netlink message */ 7703 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7704 7705 nla_for_each_nested(attr, br_spec, rem) { 7706 __u16 mode; 7707 7708 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7709 continue; 7710 mode = nla_get_u16(attr); 7711 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7712 return -EINVAL; 7713 /* Continue if bridge mode is not being flipped */ 7714 if (mode == pf_sw->bridge_mode) 7715 continue; 7716 /* Iterates through the PF VSI list and update the loopback 7717 * mode of the VSI 7718 */ 7719 ice_for_each_vsi(pf, v) { 7720 if (!pf->vsi[v]) 7721 continue; 7722 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7723 if (err) 7724 return err; 7725 } 7726 7727 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7728 /* Update the unicast switch filter rules for the corresponding 7729 * switch of the netdev 7730 */ 7731 err = ice_update_sw_rule_bridge_mode(hw); 7732 if (err) { 7733 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7734 mode, err, 7735 ice_aq_str(hw->adminq.sq_last_status)); 7736 /* revert hw->evb_veb */ 7737 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7738 return err; 7739 } 7740 7741 pf_sw->bridge_mode = mode; 7742 } 7743 7744 return 0; 7745 } 7746 7747 /** 7748 * ice_tx_timeout - Respond to a Tx Hang 7749 * @netdev: network interface device structure 7750 * @txqueue: Tx queue 7751 */ 7752 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7753 { 7754 struct ice_netdev_priv *np = netdev_priv(netdev); 7755 struct ice_tx_ring *tx_ring = NULL; 7756 struct ice_vsi *vsi = np->vsi; 7757 struct ice_pf *pf = vsi->back; 7758 u32 i; 7759 7760 pf->tx_timeout_count++; 7761 7762 /* Check if PFC is enabled for the TC to which the queue belongs 7763 * to. If yes then Tx timeout is not caused by a hung queue, no 7764 * need to reset and rebuild 7765 */ 7766 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7767 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7768 txqueue); 7769 return; 7770 } 7771 7772 /* now that we have an index, find the tx_ring struct */ 7773 ice_for_each_txq(vsi, i) 7774 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7775 if (txqueue == vsi->tx_rings[i]->q_index) { 7776 tx_ring = vsi->tx_rings[i]; 7777 break; 7778 } 7779 7780 /* Reset recovery level if enough time has elapsed after last timeout. 7781 * Also ensure no new reset action happens before next timeout period. 7782 */ 7783 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7784 pf->tx_timeout_recovery_level = 1; 7785 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7786 netdev->watchdog_timeo))) 7787 return; 7788 7789 if (tx_ring) { 7790 struct ice_hw *hw = &pf->hw; 7791 u32 head, val = 0; 7792 7793 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7794 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7795 /* Read interrupt register */ 7796 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7797 7798 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7799 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7800 head, tx_ring->next_to_use, val); 7801 } 7802 7803 pf->tx_timeout_last_recovery = jiffies; 7804 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7805 pf->tx_timeout_recovery_level, txqueue); 7806 7807 switch (pf->tx_timeout_recovery_level) { 7808 case 1: 7809 set_bit(ICE_PFR_REQ, pf->state); 7810 break; 7811 case 2: 7812 set_bit(ICE_CORER_REQ, pf->state); 7813 break; 7814 case 3: 7815 set_bit(ICE_GLOBR_REQ, pf->state); 7816 break; 7817 default: 7818 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7819 set_bit(ICE_DOWN, pf->state); 7820 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7821 set_bit(ICE_SERVICE_DIS, pf->state); 7822 break; 7823 } 7824 7825 ice_service_task_schedule(pf); 7826 pf->tx_timeout_recovery_level++; 7827 } 7828 7829 /** 7830 * ice_setup_tc_cls_flower - flower classifier offloads 7831 * @np: net device to configure 7832 * @filter_dev: device on which filter is added 7833 * @cls_flower: offload data 7834 */ 7835 static int 7836 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7837 struct net_device *filter_dev, 7838 struct flow_cls_offload *cls_flower) 7839 { 7840 struct ice_vsi *vsi = np->vsi; 7841 7842 if (cls_flower->common.chain_index) 7843 return -EOPNOTSUPP; 7844 7845 switch (cls_flower->command) { 7846 case FLOW_CLS_REPLACE: 7847 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7848 case FLOW_CLS_DESTROY: 7849 return ice_del_cls_flower(vsi, cls_flower); 7850 default: 7851 return -EINVAL; 7852 } 7853 } 7854 7855 /** 7856 * ice_setup_tc_block_cb - callback handler registered for TC block 7857 * @type: TC SETUP type 7858 * @type_data: TC flower offload data that contains user input 7859 * @cb_priv: netdev private data 7860 */ 7861 static int 7862 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7863 { 7864 struct ice_netdev_priv *np = cb_priv; 7865 7866 switch (type) { 7867 case TC_SETUP_CLSFLOWER: 7868 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7869 type_data); 7870 default: 7871 return -EOPNOTSUPP; 7872 } 7873 } 7874 7875 /** 7876 * ice_validate_mqprio_qopt - Validate TCF input parameters 7877 * @vsi: Pointer to VSI 7878 * @mqprio_qopt: input parameters for mqprio queue configuration 7879 * 7880 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7881 * needed), and make sure user doesn't specify qcount and BW rate limit 7882 * for TCs, which are more than "num_tc" 7883 */ 7884 static int 7885 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7886 struct tc_mqprio_qopt_offload *mqprio_qopt) 7887 { 7888 int non_power_of_2_qcount = 0; 7889 struct ice_pf *pf = vsi->back; 7890 int max_rss_q_cnt = 0; 7891 u64 sum_min_rate = 0; 7892 struct device *dev; 7893 int i, speed; 7894 u8 num_tc; 7895 7896 if (vsi->type != ICE_VSI_PF) 7897 return -EINVAL; 7898 7899 if (mqprio_qopt->qopt.offset[0] != 0 || 7900 mqprio_qopt->qopt.num_tc < 1 || 7901 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7902 return -EINVAL; 7903 7904 dev = ice_pf_to_dev(pf); 7905 vsi->ch_rss_size = 0; 7906 num_tc = mqprio_qopt->qopt.num_tc; 7907 speed = ice_get_link_speed_kbps(vsi); 7908 7909 for (i = 0; num_tc; i++) { 7910 int qcount = mqprio_qopt->qopt.count[i]; 7911 u64 max_rate, min_rate, rem; 7912 7913 if (!qcount) 7914 return -EINVAL; 7915 7916 if (is_power_of_2(qcount)) { 7917 if (non_power_of_2_qcount && 7918 qcount > non_power_of_2_qcount) { 7919 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7920 qcount, non_power_of_2_qcount); 7921 return -EINVAL; 7922 } 7923 if (qcount > max_rss_q_cnt) 7924 max_rss_q_cnt = qcount; 7925 } else { 7926 if (non_power_of_2_qcount && 7927 qcount != non_power_of_2_qcount) { 7928 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7929 qcount, non_power_of_2_qcount); 7930 return -EINVAL; 7931 } 7932 if (qcount < max_rss_q_cnt) { 7933 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7934 qcount, max_rss_q_cnt); 7935 return -EINVAL; 7936 } 7937 max_rss_q_cnt = qcount; 7938 non_power_of_2_qcount = qcount; 7939 } 7940 7941 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7942 * converts the bandwidth rate limit into Bytes/s when 7943 * passing it down to the driver. So convert input bandwidth 7944 * from Bytes/s to Kbps 7945 */ 7946 max_rate = mqprio_qopt->max_rate[i]; 7947 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7948 7949 /* min_rate is minimum guaranteed rate and it can't be zero */ 7950 min_rate = mqprio_qopt->min_rate[i]; 7951 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7952 sum_min_rate += min_rate; 7953 7954 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7955 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7956 min_rate, ICE_MIN_BW_LIMIT); 7957 return -EINVAL; 7958 } 7959 7960 if (max_rate && max_rate > speed) { 7961 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 7962 i, max_rate, speed); 7963 return -EINVAL; 7964 } 7965 7966 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7967 if (rem) { 7968 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7969 i, ICE_MIN_BW_LIMIT); 7970 return -EINVAL; 7971 } 7972 7973 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7974 if (rem) { 7975 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7976 i, ICE_MIN_BW_LIMIT); 7977 return -EINVAL; 7978 } 7979 7980 /* min_rate can't be more than max_rate, except when max_rate 7981 * is zero (implies max_rate sought is max line rate). In such 7982 * a case min_rate can be more than max. 7983 */ 7984 if (max_rate && min_rate > max_rate) { 7985 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7986 min_rate, max_rate); 7987 return -EINVAL; 7988 } 7989 7990 if (i >= mqprio_qopt->qopt.num_tc - 1) 7991 break; 7992 if (mqprio_qopt->qopt.offset[i + 1] != 7993 (mqprio_qopt->qopt.offset[i] + qcount)) 7994 return -EINVAL; 7995 } 7996 if (vsi->num_rxq < 7997 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7998 return -EINVAL; 7999 if (vsi->num_txq < 8000 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8001 return -EINVAL; 8002 8003 if (sum_min_rate && sum_min_rate > (u64)speed) { 8004 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8005 sum_min_rate, speed); 8006 return -EINVAL; 8007 } 8008 8009 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8010 vsi->ch_rss_size = max_rss_q_cnt; 8011 8012 return 0; 8013 } 8014 8015 /** 8016 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8017 * @pf: ptr to PF device 8018 * @vsi: ptr to VSI 8019 */ 8020 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8021 { 8022 struct device *dev = ice_pf_to_dev(pf); 8023 bool added = false; 8024 struct ice_hw *hw; 8025 int flow; 8026 8027 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8028 return -EINVAL; 8029 8030 hw = &pf->hw; 8031 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8032 struct ice_fd_hw_prof *prof; 8033 int tun, status; 8034 u64 entry_h; 8035 8036 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8037 hw->fdir_prof[flow]->cnt)) 8038 continue; 8039 8040 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8041 enum ice_flow_priority prio; 8042 u64 prof_id; 8043 8044 /* add this VSI to FDir profile for this flow */ 8045 prio = ICE_FLOW_PRIO_NORMAL; 8046 prof = hw->fdir_prof[flow]; 8047 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8048 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8049 prof->vsi_h[0], vsi->idx, 8050 prio, prof->fdir_seg[tun], 8051 &entry_h); 8052 if (status) { 8053 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8054 vsi->idx, flow); 8055 continue; 8056 } 8057 8058 prof->entry_h[prof->cnt][tun] = entry_h; 8059 } 8060 8061 /* store VSI for filter replay and delete */ 8062 prof->vsi_h[prof->cnt] = vsi->idx; 8063 prof->cnt++; 8064 8065 added = true; 8066 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8067 flow); 8068 } 8069 8070 if (!added) 8071 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8072 8073 return 0; 8074 } 8075 8076 /** 8077 * ice_add_channel - add a channel by adding VSI 8078 * @pf: ptr to PF device 8079 * @sw_id: underlying HW switching element ID 8080 * @ch: ptr to channel structure 8081 * 8082 * Add a channel (VSI) using add_vsi and queue_map 8083 */ 8084 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8085 { 8086 struct device *dev = ice_pf_to_dev(pf); 8087 struct ice_vsi *vsi; 8088 8089 if (ch->type != ICE_VSI_CHNL) { 8090 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8091 return -EINVAL; 8092 } 8093 8094 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8095 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8096 dev_err(dev, "create chnl VSI failure\n"); 8097 return -EINVAL; 8098 } 8099 8100 ice_add_vsi_to_fdir(pf, vsi); 8101 8102 ch->sw_id = sw_id; 8103 ch->vsi_num = vsi->vsi_num; 8104 ch->info.mapping_flags = vsi->info.mapping_flags; 8105 ch->ch_vsi = vsi; 8106 /* set the back pointer of channel for newly created VSI */ 8107 vsi->ch = ch; 8108 8109 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8110 sizeof(vsi->info.q_mapping)); 8111 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8112 sizeof(vsi->info.tc_mapping)); 8113 8114 return 0; 8115 } 8116 8117 /** 8118 * ice_chnl_cfg_res 8119 * @vsi: the VSI being setup 8120 * @ch: ptr to channel structure 8121 * 8122 * Configure channel specific resources such as rings, vector. 8123 */ 8124 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8125 { 8126 int i; 8127 8128 for (i = 0; i < ch->num_txq; i++) { 8129 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8130 struct ice_ring_container *rc; 8131 struct ice_tx_ring *tx_ring; 8132 struct ice_rx_ring *rx_ring; 8133 8134 tx_ring = vsi->tx_rings[ch->base_q + i]; 8135 rx_ring = vsi->rx_rings[ch->base_q + i]; 8136 if (!tx_ring || !rx_ring) 8137 continue; 8138 8139 /* setup ring being channel enabled */ 8140 tx_ring->ch = ch; 8141 rx_ring->ch = ch; 8142 8143 /* following code block sets up vector specific attributes */ 8144 tx_q_vector = tx_ring->q_vector; 8145 rx_q_vector = rx_ring->q_vector; 8146 if (!tx_q_vector && !rx_q_vector) 8147 continue; 8148 8149 if (tx_q_vector) { 8150 tx_q_vector->ch = ch; 8151 /* setup Tx and Rx ITR setting if DIM is off */ 8152 rc = &tx_q_vector->tx; 8153 if (!ITR_IS_DYNAMIC(rc)) 8154 ice_write_itr(rc, rc->itr_setting); 8155 } 8156 if (rx_q_vector) { 8157 rx_q_vector->ch = ch; 8158 /* setup Tx and Rx ITR setting if DIM is off */ 8159 rc = &rx_q_vector->rx; 8160 if (!ITR_IS_DYNAMIC(rc)) 8161 ice_write_itr(rc, rc->itr_setting); 8162 } 8163 } 8164 8165 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8166 * GLINT_ITR register would have written to perform in-context 8167 * update, hence perform flush 8168 */ 8169 if (ch->num_txq || ch->num_rxq) 8170 ice_flush(&vsi->back->hw); 8171 } 8172 8173 /** 8174 * ice_cfg_chnl_all_res - configure channel resources 8175 * @vsi: pte to main_vsi 8176 * @ch: ptr to channel structure 8177 * 8178 * This function configures channel specific resources such as flow-director 8179 * counter index, and other resources such as queues, vectors, ITR settings 8180 */ 8181 static void 8182 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8183 { 8184 /* configure channel (aka ADQ) resources such as queues, vectors, 8185 * ITR settings for channel specific vectors and anything else 8186 */ 8187 ice_chnl_cfg_res(vsi, ch); 8188 } 8189 8190 /** 8191 * ice_setup_hw_channel - setup new channel 8192 * @pf: ptr to PF device 8193 * @vsi: the VSI being setup 8194 * @ch: ptr to channel structure 8195 * @sw_id: underlying HW switching element ID 8196 * @type: type of channel to be created (VMDq2/VF) 8197 * 8198 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8199 * and configures Tx rings accordingly 8200 */ 8201 static int 8202 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8203 struct ice_channel *ch, u16 sw_id, u8 type) 8204 { 8205 struct device *dev = ice_pf_to_dev(pf); 8206 int ret; 8207 8208 ch->base_q = vsi->next_base_q; 8209 ch->type = type; 8210 8211 ret = ice_add_channel(pf, sw_id, ch); 8212 if (ret) { 8213 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8214 return ret; 8215 } 8216 8217 /* configure/setup ADQ specific resources */ 8218 ice_cfg_chnl_all_res(vsi, ch); 8219 8220 /* make sure to update the next_base_q so that subsequent channel's 8221 * (aka ADQ) VSI queue map is correct 8222 */ 8223 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8224 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8225 ch->num_rxq); 8226 8227 return 0; 8228 } 8229 8230 /** 8231 * ice_setup_channel - setup new channel using uplink element 8232 * @pf: ptr to PF device 8233 * @vsi: the VSI being setup 8234 * @ch: ptr to channel structure 8235 * 8236 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8237 * and uplink switching element 8238 */ 8239 static bool 8240 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8241 struct ice_channel *ch) 8242 { 8243 struct device *dev = ice_pf_to_dev(pf); 8244 u16 sw_id; 8245 int ret; 8246 8247 if (vsi->type != ICE_VSI_PF) { 8248 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8249 return false; 8250 } 8251 8252 sw_id = pf->first_sw->sw_id; 8253 8254 /* create channel (VSI) */ 8255 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8256 if (ret) { 8257 dev_err(dev, "failed to setup hw_channel\n"); 8258 return false; 8259 } 8260 dev_dbg(dev, "successfully created channel()\n"); 8261 8262 return ch->ch_vsi ? true : false; 8263 } 8264 8265 /** 8266 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8267 * @vsi: VSI to be configured 8268 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8269 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8270 */ 8271 static int 8272 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8273 { 8274 int err; 8275 8276 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8277 if (err) 8278 return err; 8279 8280 return ice_set_max_bw_limit(vsi, max_tx_rate); 8281 } 8282 8283 /** 8284 * ice_create_q_channel - function to create channel 8285 * @vsi: VSI to be configured 8286 * @ch: ptr to channel (it contains channel specific params) 8287 * 8288 * This function creates channel (VSI) using num_queues specified by user, 8289 * reconfigs RSS if needed. 8290 */ 8291 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8292 { 8293 struct ice_pf *pf = vsi->back; 8294 struct device *dev; 8295 8296 if (!ch) 8297 return -EINVAL; 8298 8299 dev = ice_pf_to_dev(pf); 8300 if (!ch->num_txq || !ch->num_rxq) { 8301 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8302 return -EINVAL; 8303 } 8304 8305 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8306 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8307 vsi->cnt_q_avail, ch->num_txq); 8308 return -EINVAL; 8309 } 8310 8311 if (!ice_setup_channel(pf, vsi, ch)) { 8312 dev_info(dev, "Failed to setup channel\n"); 8313 return -EINVAL; 8314 } 8315 /* configure BW rate limit */ 8316 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8317 int ret; 8318 8319 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8320 ch->min_tx_rate); 8321 if (ret) 8322 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8323 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8324 else 8325 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8326 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8327 } 8328 8329 vsi->cnt_q_avail -= ch->num_txq; 8330 8331 return 0; 8332 } 8333 8334 /** 8335 * ice_rem_all_chnl_fltrs - removes all channel filters 8336 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8337 * 8338 * Remove all advanced switch filters only if they are channel specific 8339 * tc-flower based filter 8340 */ 8341 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8342 { 8343 struct ice_tc_flower_fltr *fltr; 8344 struct hlist_node *node; 8345 8346 /* to remove all channel filters, iterate an ordered list of filters */ 8347 hlist_for_each_entry_safe(fltr, node, 8348 &pf->tc_flower_fltr_list, 8349 tc_flower_node) { 8350 struct ice_rule_query_data rule; 8351 int status; 8352 8353 /* for now process only channel specific filters */ 8354 if (!ice_is_chnl_fltr(fltr)) 8355 continue; 8356 8357 rule.rid = fltr->rid; 8358 rule.rule_id = fltr->rule_id; 8359 rule.vsi_handle = fltr->dest_vsi_handle; 8360 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8361 if (status) { 8362 if (status == -ENOENT) 8363 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8364 rule.rule_id); 8365 else 8366 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8367 status); 8368 } else if (fltr->dest_vsi) { 8369 /* update advanced switch filter count */ 8370 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8371 u32 flags = fltr->flags; 8372 8373 fltr->dest_vsi->num_chnl_fltr--; 8374 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8375 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8376 pf->num_dmac_chnl_fltrs--; 8377 } 8378 } 8379 8380 hlist_del(&fltr->tc_flower_node); 8381 kfree(fltr); 8382 } 8383 } 8384 8385 /** 8386 * ice_remove_q_channels - Remove queue channels for the TCs 8387 * @vsi: VSI to be configured 8388 * @rem_fltr: delete advanced switch filter or not 8389 * 8390 * Remove queue channels for the TCs 8391 */ 8392 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8393 { 8394 struct ice_channel *ch, *ch_tmp; 8395 struct ice_pf *pf = vsi->back; 8396 int i; 8397 8398 /* remove all tc-flower based filter if they are channel filters only */ 8399 if (rem_fltr) 8400 ice_rem_all_chnl_fltrs(pf); 8401 8402 /* remove ntuple filters since queue configuration is being changed */ 8403 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8404 struct ice_hw *hw = &pf->hw; 8405 8406 mutex_lock(&hw->fdir_fltr_lock); 8407 ice_fdir_del_all_fltrs(vsi); 8408 mutex_unlock(&hw->fdir_fltr_lock); 8409 } 8410 8411 /* perform cleanup for channels if they exist */ 8412 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8413 struct ice_vsi *ch_vsi; 8414 8415 list_del(&ch->list); 8416 ch_vsi = ch->ch_vsi; 8417 if (!ch_vsi) { 8418 kfree(ch); 8419 continue; 8420 } 8421 8422 /* Reset queue contexts */ 8423 for (i = 0; i < ch->num_rxq; i++) { 8424 struct ice_tx_ring *tx_ring; 8425 struct ice_rx_ring *rx_ring; 8426 8427 tx_ring = vsi->tx_rings[ch->base_q + i]; 8428 rx_ring = vsi->rx_rings[ch->base_q + i]; 8429 if (tx_ring) { 8430 tx_ring->ch = NULL; 8431 if (tx_ring->q_vector) 8432 tx_ring->q_vector->ch = NULL; 8433 } 8434 if (rx_ring) { 8435 rx_ring->ch = NULL; 8436 if (rx_ring->q_vector) 8437 rx_ring->q_vector->ch = NULL; 8438 } 8439 } 8440 8441 /* Release FD resources for the channel VSI */ 8442 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8443 8444 /* clear the VSI from scheduler tree */ 8445 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8446 8447 /* Delete VSI from FW, PF and HW VSI arrays */ 8448 ice_vsi_delete(ch->ch_vsi); 8449 8450 /* free the channel */ 8451 kfree(ch); 8452 } 8453 8454 /* clear the channel VSI map which is stored in main VSI */ 8455 ice_for_each_chnl_tc(i) 8456 vsi->tc_map_vsi[i] = NULL; 8457 8458 /* reset main VSI's all TC information */ 8459 vsi->all_enatc = 0; 8460 vsi->all_numtc = 0; 8461 } 8462 8463 /** 8464 * ice_rebuild_channels - rebuild channel 8465 * @pf: ptr to PF 8466 * 8467 * Recreate channel VSIs and replay filters 8468 */ 8469 static int ice_rebuild_channels(struct ice_pf *pf) 8470 { 8471 struct device *dev = ice_pf_to_dev(pf); 8472 struct ice_vsi *main_vsi; 8473 bool rem_adv_fltr = true; 8474 struct ice_channel *ch; 8475 struct ice_vsi *vsi; 8476 int tc_idx = 1; 8477 int i, err; 8478 8479 main_vsi = ice_get_main_vsi(pf); 8480 if (!main_vsi) 8481 return 0; 8482 8483 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8484 main_vsi->old_numtc == 1) 8485 return 0; /* nothing to be done */ 8486 8487 /* reconfigure main VSI based on old value of TC and cached values 8488 * for MQPRIO opts 8489 */ 8490 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8491 if (err) { 8492 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8493 main_vsi->old_ena_tc, main_vsi->vsi_num); 8494 return err; 8495 } 8496 8497 /* rebuild ADQ VSIs */ 8498 ice_for_each_vsi(pf, i) { 8499 enum ice_vsi_type type; 8500 8501 vsi = pf->vsi[i]; 8502 if (!vsi || vsi->type != ICE_VSI_CHNL) 8503 continue; 8504 8505 type = vsi->type; 8506 8507 /* rebuild ADQ VSI */ 8508 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8509 if (err) { 8510 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8511 ice_vsi_type_str(type), vsi->idx, err); 8512 goto cleanup; 8513 } 8514 8515 /* Re-map HW VSI number, using VSI handle that has been 8516 * previously validated in ice_replay_vsi() call above 8517 */ 8518 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8519 8520 /* replay filters for the VSI */ 8521 err = ice_replay_vsi(&pf->hw, vsi->idx); 8522 if (err) { 8523 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8524 ice_vsi_type_str(type), err, vsi->idx); 8525 rem_adv_fltr = false; 8526 goto cleanup; 8527 } 8528 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8529 ice_vsi_type_str(type), vsi->idx); 8530 8531 /* store ADQ VSI at correct TC index in main VSI's 8532 * map of TC to VSI 8533 */ 8534 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8535 } 8536 8537 /* ADQ VSI(s) has been rebuilt successfully, so setup 8538 * channel for main VSI's Tx and Rx rings 8539 */ 8540 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8541 struct ice_vsi *ch_vsi; 8542 8543 ch_vsi = ch->ch_vsi; 8544 if (!ch_vsi) 8545 continue; 8546 8547 /* reconfig channel resources */ 8548 ice_cfg_chnl_all_res(main_vsi, ch); 8549 8550 /* replay BW rate limit if it is non-zero */ 8551 if (!ch->max_tx_rate && !ch->min_tx_rate) 8552 continue; 8553 8554 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8555 ch->min_tx_rate); 8556 if (err) 8557 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8558 err, ch->max_tx_rate, ch->min_tx_rate, 8559 ch_vsi->vsi_num); 8560 else 8561 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8562 ch->max_tx_rate, ch->min_tx_rate, 8563 ch_vsi->vsi_num); 8564 } 8565 8566 /* reconfig RSS for main VSI */ 8567 if (main_vsi->ch_rss_size) 8568 ice_vsi_cfg_rss_lut_key(main_vsi); 8569 8570 return 0; 8571 8572 cleanup: 8573 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8574 return err; 8575 } 8576 8577 /** 8578 * ice_create_q_channels - Add queue channel for the given TCs 8579 * @vsi: VSI to be configured 8580 * 8581 * Configures queue channel mapping to the given TCs 8582 */ 8583 static int ice_create_q_channels(struct ice_vsi *vsi) 8584 { 8585 struct ice_pf *pf = vsi->back; 8586 struct ice_channel *ch; 8587 int ret = 0, i; 8588 8589 ice_for_each_chnl_tc(i) { 8590 if (!(vsi->all_enatc & BIT(i))) 8591 continue; 8592 8593 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8594 if (!ch) { 8595 ret = -ENOMEM; 8596 goto err_free; 8597 } 8598 INIT_LIST_HEAD(&ch->list); 8599 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8600 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8601 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8602 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8603 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8604 8605 /* convert to Kbits/s */ 8606 if (ch->max_tx_rate) 8607 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8608 ICE_BW_KBPS_DIVISOR); 8609 if (ch->min_tx_rate) 8610 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8611 ICE_BW_KBPS_DIVISOR); 8612 8613 ret = ice_create_q_channel(vsi, ch); 8614 if (ret) { 8615 dev_err(ice_pf_to_dev(pf), 8616 "failed creating channel TC:%d\n", i); 8617 kfree(ch); 8618 goto err_free; 8619 } 8620 list_add_tail(&ch->list, &vsi->ch_list); 8621 vsi->tc_map_vsi[i] = ch->ch_vsi; 8622 dev_dbg(ice_pf_to_dev(pf), 8623 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8624 } 8625 return 0; 8626 8627 err_free: 8628 ice_remove_q_channels(vsi, false); 8629 8630 return ret; 8631 } 8632 8633 /** 8634 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8635 * @netdev: net device to configure 8636 * @type_data: TC offload data 8637 */ 8638 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8639 { 8640 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8641 struct ice_netdev_priv *np = netdev_priv(netdev); 8642 struct ice_vsi *vsi = np->vsi; 8643 struct ice_pf *pf = vsi->back; 8644 u16 mode, ena_tc_qdisc = 0; 8645 int cur_txq, cur_rxq; 8646 u8 hw = 0, num_tcf; 8647 struct device *dev; 8648 int ret, i; 8649 8650 dev = ice_pf_to_dev(pf); 8651 num_tcf = mqprio_qopt->qopt.num_tc; 8652 hw = mqprio_qopt->qopt.hw; 8653 mode = mqprio_qopt->mode; 8654 if (!hw) { 8655 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8656 vsi->ch_rss_size = 0; 8657 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8658 goto config_tcf; 8659 } 8660 8661 /* Generate queue region map for number of TCF requested */ 8662 for (i = 0; i < num_tcf; i++) 8663 ena_tc_qdisc |= BIT(i); 8664 8665 switch (mode) { 8666 case TC_MQPRIO_MODE_CHANNEL: 8667 8668 if (pf->hw.port_info->is_custom_tx_enabled) { 8669 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8670 return -EBUSY; 8671 } 8672 ice_tear_down_devlink_rate_tree(pf); 8673 8674 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8675 if (ret) { 8676 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8677 ret); 8678 return ret; 8679 } 8680 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8681 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8682 /* don't assume state of hw_tc_offload during driver load 8683 * and set the flag for TC flower filter if hw_tc_offload 8684 * already ON 8685 */ 8686 if (vsi->netdev->features & NETIF_F_HW_TC) 8687 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8688 break; 8689 default: 8690 return -EINVAL; 8691 } 8692 8693 config_tcf: 8694 8695 /* Requesting same TCF configuration as already enabled */ 8696 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8697 mode != TC_MQPRIO_MODE_CHANNEL) 8698 return 0; 8699 8700 /* Pause VSI queues */ 8701 ice_dis_vsi(vsi, true); 8702 8703 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8704 ice_remove_q_channels(vsi, true); 8705 8706 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8707 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8708 num_online_cpus()); 8709 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8710 num_online_cpus()); 8711 } else { 8712 /* logic to rebuild VSI, same like ethtool -L */ 8713 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8714 8715 for (i = 0; i < num_tcf; i++) { 8716 if (!(ena_tc_qdisc & BIT(i))) 8717 continue; 8718 8719 offset = vsi->mqprio_qopt.qopt.offset[i]; 8720 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8721 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8722 } 8723 vsi->req_txq = offset + qcount_tx; 8724 vsi->req_rxq = offset + qcount_rx; 8725 8726 /* store away original rss_size info, so that it gets reused 8727 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8728 * determine, what should be the rss_sizefor main VSI 8729 */ 8730 vsi->orig_rss_size = vsi->rss_size; 8731 } 8732 8733 /* save current values of Tx and Rx queues before calling VSI rebuild 8734 * for fallback option 8735 */ 8736 cur_txq = vsi->num_txq; 8737 cur_rxq = vsi->num_rxq; 8738 8739 /* proceed with rebuild main VSI using correct number of queues */ 8740 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8741 if (ret) { 8742 /* fallback to current number of queues */ 8743 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8744 vsi->req_txq = cur_txq; 8745 vsi->req_rxq = cur_rxq; 8746 clear_bit(ICE_RESET_FAILED, pf->state); 8747 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8748 dev_err(dev, "Rebuild of main VSI failed again\n"); 8749 return ret; 8750 } 8751 } 8752 8753 vsi->all_numtc = num_tcf; 8754 vsi->all_enatc = ena_tc_qdisc; 8755 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8756 if (ret) { 8757 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8758 vsi->vsi_num); 8759 goto exit; 8760 } 8761 8762 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8763 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8764 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8765 8766 /* set TC0 rate limit if specified */ 8767 if (max_tx_rate || min_tx_rate) { 8768 /* convert to Kbits/s */ 8769 if (max_tx_rate) 8770 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8771 if (min_tx_rate) 8772 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8773 8774 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8775 if (!ret) { 8776 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8777 max_tx_rate, min_tx_rate, vsi->vsi_num); 8778 } else { 8779 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8780 max_tx_rate, min_tx_rate, vsi->vsi_num); 8781 goto exit; 8782 } 8783 } 8784 ret = ice_create_q_channels(vsi); 8785 if (ret) { 8786 netdev_err(netdev, "failed configuring queue channels\n"); 8787 goto exit; 8788 } else { 8789 netdev_dbg(netdev, "successfully configured channels\n"); 8790 } 8791 } 8792 8793 if (vsi->ch_rss_size) 8794 ice_vsi_cfg_rss_lut_key(vsi); 8795 8796 exit: 8797 /* if error, reset the all_numtc and all_enatc */ 8798 if (ret) { 8799 vsi->all_numtc = 0; 8800 vsi->all_enatc = 0; 8801 } 8802 /* resume VSI */ 8803 ice_ena_vsi(vsi, true); 8804 8805 return ret; 8806 } 8807 8808 static LIST_HEAD(ice_block_cb_list); 8809 8810 static int 8811 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8812 void *type_data) 8813 { 8814 struct ice_netdev_priv *np = netdev_priv(netdev); 8815 struct ice_pf *pf = np->vsi->back; 8816 bool locked = false; 8817 int err; 8818 8819 switch (type) { 8820 case TC_SETUP_BLOCK: 8821 return flow_block_cb_setup_simple(type_data, 8822 &ice_block_cb_list, 8823 ice_setup_tc_block_cb, 8824 np, np, true); 8825 case TC_SETUP_QDISC_MQPRIO: 8826 if (pf->adev) { 8827 mutex_lock(&pf->adev_mutex); 8828 device_lock(&pf->adev->dev); 8829 locked = true; 8830 if (pf->adev->dev.driver) { 8831 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 8832 err = -EBUSY; 8833 goto adev_unlock; 8834 } 8835 } 8836 8837 /* setup traffic classifier for receive side */ 8838 mutex_lock(&pf->tc_mutex); 8839 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8840 mutex_unlock(&pf->tc_mutex); 8841 8842 adev_unlock: 8843 if (locked) { 8844 device_unlock(&pf->adev->dev); 8845 mutex_unlock(&pf->adev_mutex); 8846 } 8847 return err; 8848 default: 8849 return -EOPNOTSUPP; 8850 } 8851 return -EOPNOTSUPP; 8852 } 8853 8854 static struct ice_indr_block_priv * 8855 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8856 struct net_device *netdev) 8857 { 8858 struct ice_indr_block_priv *cb_priv; 8859 8860 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8861 if (!cb_priv->netdev) 8862 return NULL; 8863 if (cb_priv->netdev == netdev) 8864 return cb_priv; 8865 } 8866 return NULL; 8867 } 8868 8869 static int 8870 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8871 void *indr_priv) 8872 { 8873 struct ice_indr_block_priv *priv = indr_priv; 8874 struct ice_netdev_priv *np = priv->np; 8875 8876 switch (type) { 8877 case TC_SETUP_CLSFLOWER: 8878 return ice_setup_tc_cls_flower(np, priv->netdev, 8879 (struct flow_cls_offload *) 8880 type_data); 8881 default: 8882 return -EOPNOTSUPP; 8883 } 8884 } 8885 8886 static int 8887 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8888 struct ice_netdev_priv *np, 8889 struct flow_block_offload *f, void *data, 8890 void (*cleanup)(struct flow_block_cb *block_cb)) 8891 { 8892 struct ice_indr_block_priv *indr_priv; 8893 struct flow_block_cb *block_cb; 8894 8895 if (!ice_is_tunnel_supported(netdev) && 8896 !(is_vlan_dev(netdev) && 8897 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8898 return -EOPNOTSUPP; 8899 8900 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8901 return -EOPNOTSUPP; 8902 8903 switch (f->command) { 8904 case FLOW_BLOCK_BIND: 8905 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8906 if (indr_priv) 8907 return -EEXIST; 8908 8909 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8910 if (!indr_priv) 8911 return -ENOMEM; 8912 8913 indr_priv->netdev = netdev; 8914 indr_priv->np = np; 8915 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8916 8917 block_cb = 8918 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8919 indr_priv, indr_priv, 8920 ice_rep_indr_tc_block_unbind, 8921 f, netdev, sch, data, np, 8922 cleanup); 8923 8924 if (IS_ERR(block_cb)) { 8925 list_del(&indr_priv->list); 8926 kfree(indr_priv); 8927 return PTR_ERR(block_cb); 8928 } 8929 flow_block_cb_add(block_cb, f); 8930 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8931 break; 8932 case FLOW_BLOCK_UNBIND: 8933 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8934 if (!indr_priv) 8935 return -ENOENT; 8936 8937 block_cb = flow_block_cb_lookup(f->block, 8938 ice_indr_setup_block_cb, 8939 indr_priv); 8940 if (!block_cb) 8941 return -ENOENT; 8942 8943 flow_indr_block_cb_remove(block_cb, f); 8944 8945 list_del(&block_cb->driver_list); 8946 break; 8947 default: 8948 return -EOPNOTSUPP; 8949 } 8950 return 0; 8951 } 8952 8953 static int 8954 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8955 void *cb_priv, enum tc_setup_type type, void *type_data, 8956 void *data, 8957 void (*cleanup)(struct flow_block_cb *block_cb)) 8958 { 8959 switch (type) { 8960 case TC_SETUP_BLOCK: 8961 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8962 data, cleanup); 8963 8964 default: 8965 return -EOPNOTSUPP; 8966 } 8967 } 8968 8969 /** 8970 * ice_open - Called when a network interface becomes active 8971 * @netdev: network interface device structure 8972 * 8973 * The open entry point is called when a network interface is made 8974 * active by the system (IFF_UP). At this point all resources needed 8975 * for transmit and receive operations are allocated, the interrupt 8976 * handler is registered with the OS, the netdev watchdog is enabled, 8977 * and the stack is notified that the interface is ready. 8978 * 8979 * Returns 0 on success, negative value on failure 8980 */ 8981 int ice_open(struct net_device *netdev) 8982 { 8983 struct ice_netdev_priv *np = netdev_priv(netdev); 8984 struct ice_pf *pf = np->vsi->back; 8985 8986 if (ice_is_reset_in_progress(pf->state)) { 8987 netdev_err(netdev, "can't open net device while reset is in progress"); 8988 return -EBUSY; 8989 } 8990 8991 return ice_open_internal(netdev); 8992 } 8993 8994 /** 8995 * ice_open_internal - Called when a network interface becomes active 8996 * @netdev: network interface device structure 8997 * 8998 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8999 * handling routine 9000 * 9001 * Returns 0 on success, negative value on failure 9002 */ 9003 int ice_open_internal(struct net_device *netdev) 9004 { 9005 struct ice_netdev_priv *np = netdev_priv(netdev); 9006 struct ice_vsi *vsi = np->vsi; 9007 struct ice_pf *pf = vsi->back; 9008 struct ice_port_info *pi; 9009 int err; 9010 9011 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9012 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9013 return -EIO; 9014 } 9015 9016 netif_carrier_off(netdev); 9017 9018 pi = vsi->port_info; 9019 err = ice_update_link_info(pi); 9020 if (err) { 9021 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9022 return err; 9023 } 9024 9025 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9026 9027 /* Set PHY if there is media, otherwise, turn off PHY */ 9028 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9029 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9030 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9031 err = ice_init_phy_user_cfg(pi); 9032 if (err) { 9033 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9034 err); 9035 return err; 9036 } 9037 } 9038 9039 err = ice_configure_phy(vsi); 9040 if (err) { 9041 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9042 err); 9043 return err; 9044 } 9045 } else { 9046 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9047 ice_set_link(vsi, false); 9048 } 9049 9050 err = ice_vsi_open(vsi); 9051 if (err) 9052 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9053 vsi->vsi_num, vsi->vsw->sw_id); 9054 9055 /* Update existing tunnels information */ 9056 udp_tunnel_get_rx_info(netdev); 9057 9058 return err; 9059 } 9060 9061 /** 9062 * ice_stop - Disables a network interface 9063 * @netdev: network interface device structure 9064 * 9065 * The stop entry point is called when an interface is de-activated by the OS, 9066 * and the netdevice enters the DOWN state. The hardware is still under the 9067 * driver's control, but the netdev interface is disabled. 9068 * 9069 * Returns success only - not allowed to fail 9070 */ 9071 int ice_stop(struct net_device *netdev) 9072 { 9073 struct ice_netdev_priv *np = netdev_priv(netdev); 9074 struct ice_vsi *vsi = np->vsi; 9075 struct ice_pf *pf = vsi->back; 9076 9077 if (ice_is_reset_in_progress(pf->state)) { 9078 netdev_err(netdev, "can't stop net device while reset is in progress"); 9079 return -EBUSY; 9080 } 9081 9082 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9083 int link_err = ice_force_phys_link_state(vsi, false); 9084 9085 if (link_err) { 9086 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9087 vsi->vsi_num, link_err); 9088 return -EIO; 9089 } 9090 } 9091 9092 ice_vsi_close(vsi); 9093 9094 return 0; 9095 } 9096 9097 /** 9098 * ice_features_check - Validate encapsulated packet conforms to limits 9099 * @skb: skb buffer 9100 * @netdev: This port's netdev 9101 * @features: Offload features that the stack believes apply 9102 */ 9103 static netdev_features_t 9104 ice_features_check(struct sk_buff *skb, 9105 struct net_device __always_unused *netdev, 9106 netdev_features_t features) 9107 { 9108 bool gso = skb_is_gso(skb); 9109 size_t len; 9110 9111 /* No point in doing any of this if neither checksum nor GSO are 9112 * being requested for this frame. We can rule out both by just 9113 * checking for CHECKSUM_PARTIAL 9114 */ 9115 if (skb->ip_summed != CHECKSUM_PARTIAL) 9116 return features; 9117 9118 /* We cannot support GSO if the MSS is going to be less than 9119 * 64 bytes. If it is then we need to drop support for GSO. 9120 */ 9121 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9122 features &= ~NETIF_F_GSO_MASK; 9123 9124 len = skb_network_offset(skb); 9125 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9126 goto out_rm_features; 9127 9128 len = skb_network_header_len(skb); 9129 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9130 goto out_rm_features; 9131 9132 if (skb->encapsulation) { 9133 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9134 * the case of IPIP frames, the transport header pointer is 9135 * after the inner header! So check to make sure that this 9136 * is a GRE or UDP_TUNNEL frame before doing that math. 9137 */ 9138 if (gso && (skb_shinfo(skb)->gso_type & 9139 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9140 len = skb_inner_network_header(skb) - 9141 skb_transport_header(skb); 9142 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9143 goto out_rm_features; 9144 } 9145 9146 len = skb_inner_network_header_len(skb); 9147 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9148 goto out_rm_features; 9149 } 9150 9151 return features; 9152 out_rm_features: 9153 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9154 } 9155 9156 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9157 .ndo_open = ice_open, 9158 .ndo_stop = ice_stop, 9159 .ndo_start_xmit = ice_start_xmit, 9160 .ndo_set_mac_address = ice_set_mac_address, 9161 .ndo_validate_addr = eth_validate_addr, 9162 .ndo_change_mtu = ice_change_mtu, 9163 .ndo_get_stats64 = ice_get_stats64, 9164 .ndo_tx_timeout = ice_tx_timeout, 9165 .ndo_bpf = ice_xdp_safe_mode, 9166 }; 9167 9168 static const struct net_device_ops ice_netdev_ops = { 9169 .ndo_open = ice_open, 9170 .ndo_stop = ice_stop, 9171 .ndo_start_xmit = ice_start_xmit, 9172 .ndo_select_queue = ice_select_queue, 9173 .ndo_features_check = ice_features_check, 9174 .ndo_fix_features = ice_fix_features, 9175 .ndo_set_rx_mode = ice_set_rx_mode, 9176 .ndo_set_mac_address = ice_set_mac_address, 9177 .ndo_validate_addr = eth_validate_addr, 9178 .ndo_change_mtu = ice_change_mtu, 9179 .ndo_get_stats64 = ice_get_stats64, 9180 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9181 .ndo_eth_ioctl = ice_eth_ioctl, 9182 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9183 .ndo_set_vf_mac = ice_set_vf_mac, 9184 .ndo_get_vf_config = ice_get_vf_cfg, 9185 .ndo_set_vf_trust = ice_set_vf_trust, 9186 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9187 .ndo_set_vf_link_state = ice_set_vf_link_state, 9188 .ndo_get_vf_stats = ice_get_vf_stats, 9189 .ndo_set_vf_rate = ice_set_vf_bw, 9190 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9191 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9192 .ndo_setup_tc = ice_setup_tc, 9193 .ndo_set_features = ice_set_features, 9194 .ndo_bridge_getlink = ice_bridge_getlink, 9195 .ndo_bridge_setlink = ice_bridge_setlink, 9196 .ndo_fdb_add = ice_fdb_add, 9197 .ndo_fdb_del = ice_fdb_del, 9198 #ifdef CONFIG_RFS_ACCEL 9199 .ndo_rx_flow_steer = ice_rx_flow_steer, 9200 #endif 9201 .ndo_tx_timeout = ice_tx_timeout, 9202 .ndo_bpf = ice_xdp, 9203 .ndo_xdp_xmit = ice_xdp_xmit, 9204 .ndo_xsk_wakeup = ice_xsk_wakeup, 9205 }; 9206