1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 18 static const char ice_driver_string[] = DRV_SUMMARY; 19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 20 21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 24 25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 26 MODULE_DESCRIPTION(DRV_SUMMARY); 27 MODULE_LICENSE("GPL v2"); 28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 29 30 static int debug = -1; 31 module_param(debug, int, 0644); 32 #ifndef CONFIG_DYNAMIC_DEBUG 33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 34 #else 35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 36 #endif /* !CONFIG_DYNAMIC_DEBUG */ 37 38 static DEFINE_IDA(ice_aux_ida); 39 40 static struct workqueue_struct *ice_wq; 41 static const struct net_device_ops ice_netdev_safe_mode_ops; 42 static const struct net_device_ops ice_netdev_ops; 43 static int ice_vsi_open(struct ice_vsi *vsi); 44 45 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 46 47 static void ice_vsi_release_all(struct ice_pf *pf); 48 49 bool netif_is_ice(struct net_device *dev) 50 { 51 return dev && (dev->netdev_ops == &ice_netdev_ops); 52 } 53 54 /** 55 * ice_get_tx_pending - returns number of Tx descriptors not processed 56 * @ring: the ring of descriptors 57 */ 58 static u16 ice_get_tx_pending(struct ice_ring *ring) 59 { 60 u16 head, tail; 61 62 head = ring->next_to_clean; 63 tail = ring->next_to_use; 64 65 if (head != tail) 66 return (head < tail) ? 67 tail - head : (tail + ring->count - head); 68 return 0; 69 } 70 71 /** 72 * ice_check_for_hang_subtask - check for and recover hung queues 73 * @pf: pointer to PF struct 74 */ 75 static void ice_check_for_hang_subtask(struct ice_pf *pf) 76 { 77 struct ice_vsi *vsi = NULL; 78 struct ice_hw *hw; 79 unsigned int i; 80 int packets; 81 u32 v; 82 83 ice_for_each_vsi(pf, v) 84 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 85 vsi = pf->vsi[v]; 86 break; 87 } 88 89 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 90 return; 91 92 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 93 return; 94 95 hw = &vsi->back->hw; 96 97 for (i = 0; i < vsi->num_txq; i++) { 98 struct ice_ring *tx_ring = vsi->tx_rings[i]; 99 100 if (tx_ring && tx_ring->desc) { 101 /* If packet counter has not changed the queue is 102 * likely stalled, so force an interrupt for this 103 * queue. 104 * 105 * prev_pkt would be negative if there was no 106 * pending work. 107 */ 108 packets = tx_ring->stats.pkts & INT_MAX; 109 if (tx_ring->tx_stats.prev_pkt == packets) { 110 /* Trigger sw interrupt to revive the queue */ 111 ice_trigger_sw_intr(hw, tx_ring->q_vector); 112 continue; 113 } 114 115 /* Memory barrier between read of packet count and call 116 * to ice_get_tx_pending() 117 */ 118 smp_rmb(); 119 tx_ring->tx_stats.prev_pkt = 120 ice_get_tx_pending(tx_ring) ? packets : -1; 121 } 122 } 123 } 124 125 /** 126 * ice_init_mac_fltr - Set initial MAC filters 127 * @pf: board private structure 128 * 129 * Set initial set of MAC filters for PF VSI; configure filters for permanent 130 * address and broadcast address. If an error is encountered, netdevice will be 131 * unregistered. 132 */ 133 static int ice_init_mac_fltr(struct ice_pf *pf) 134 { 135 enum ice_status status; 136 struct ice_vsi *vsi; 137 u8 *perm_addr; 138 139 vsi = ice_get_main_vsi(pf); 140 if (!vsi) 141 return -EINVAL; 142 143 perm_addr = vsi->port_info->mac.perm_addr; 144 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 145 if (status) 146 return -EIO; 147 148 return 0; 149 } 150 151 /** 152 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 153 * @netdev: the net device on which the sync is happening 154 * @addr: MAC address to sync 155 * 156 * This is a callback function which is called by the in kernel device sync 157 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 158 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 159 * MAC filters from the hardware. 160 */ 161 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 162 { 163 struct ice_netdev_priv *np = netdev_priv(netdev); 164 struct ice_vsi *vsi = np->vsi; 165 166 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 167 ICE_FWD_TO_VSI)) 168 return -EINVAL; 169 170 return 0; 171 } 172 173 /** 174 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 175 * @netdev: the net device on which the unsync is happening 176 * @addr: MAC address to unsync 177 * 178 * This is a callback function which is called by the in kernel device unsync 179 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 180 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 181 * delete the MAC filters from the hardware. 182 */ 183 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 184 { 185 struct ice_netdev_priv *np = netdev_priv(netdev); 186 struct ice_vsi *vsi = np->vsi; 187 188 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 189 ICE_FWD_TO_VSI)) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 /** 196 * ice_vsi_fltr_changed - check if filter state changed 197 * @vsi: VSI to be checked 198 * 199 * returns true if filter state has changed, false otherwise. 200 */ 201 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 202 { 203 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 204 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 205 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 206 } 207 208 /** 209 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 210 * @vsi: the VSI being configured 211 * @promisc_m: mask of promiscuous config bits 212 * @set_promisc: enable or disable promisc flag request 213 * 214 */ 215 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 216 { 217 struct ice_hw *hw = &vsi->back->hw; 218 enum ice_status status = 0; 219 220 if (vsi->type != ICE_VSI_PF) 221 return 0; 222 223 if (vsi->num_vlan > 1) { 224 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 225 set_promisc); 226 } else { 227 if (set_promisc) 228 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 229 0); 230 else 231 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 232 0); 233 } 234 235 if (status) 236 return -EIO; 237 238 return 0; 239 } 240 241 /** 242 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 243 * @vsi: ptr to the VSI 244 * 245 * Push any outstanding VSI filter changes through the AdminQ. 246 */ 247 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 248 { 249 struct device *dev = ice_pf_to_dev(vsi->back); 250 struct net_device *netdev = vsi->netdev; 251 bool promisc_forced_on = false; 252 struct ice_pf *pf = vsi->back; 253 struct ice_hw *hw = &pf->hw; 254 enum ice_status status = 0; 255 u32 changed_flags = 0; 256 u8 promisc_m; 257 int err = 0; 258 259 if (!vsi->netdev) 260 return -EINVAL; 261 262 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 263 usleep_range(1000, 2000); 264 265 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 266 vsi->current_netdev_flags = vsi->netdev->flags; 267 268 INIT_LIST_HEAD(&vsi->tmp_sync_list); 269 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 270 271 if (ice_vsi_fltr_changed(vsi)) { 272 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 273 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 274 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 275 276 /* grab the netdev's addr_list_lock */ 277 netif_addr_lock_bh(netdev); 278 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 279 ice_add_mac_to_unsync_list); 280 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 281 ice_add_mac_to_unsync_list); 282 /* our temp lists are populated. release lock */ 283 netif_addr_unlock_bh(netdev); 284 } 285 286 /* Remove MAC addresses in the unsync list */ 287 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 288 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 289 if (status) { 290 netdev_err(netdev, "Failed to delete MAC filters\n"); 291 /* if we failed because of alloc failures, just bail */ 292 if (status == ICE_ERR_NO_MEMORY) { 293 err = -ENOMEM; 294 goto out; 295 } 296 } 297 298 /* Add MAC addresses in the sync list */ 299 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 300 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 301 /* If filter is added successfully or already exists, do not go into 302 * 'if' condition and report it as error. Instead continue processing 303 * rest of the function. 304 */ 305 if (status && status != ICE_ERR_ALREADY_EXISTS) { 306 netdev_err(netdev, "Failed to add MAC filters\n"); 307 /* If there is no more space for new umac filters, VSI 308 * should go into promiscuous mode. There should be some 309 * space reserved for promiscuous filters. 310 */ 311 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 312 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 313 vsi->state)) { 314 promisc_forced_on = true; 315 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 316 vsi->vsi_num); 317 } else { 318 err = -EIO; 319 goto out; 320 } 321 } 322 /* check for changes in promiscuous modes */ 323 if (changed_flags & IFF_ALLMULTI) { 324 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 325 if (vsi->num_vlan > 1) 326 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 327 else 328 promisc_m = ICE_MCAST_PROMISC_BITS; 329 330 err = ice_cfg_promisc(vsi, promisc_m, true); 331 if (err) { 332 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 333 vsi->vsi_num); 334 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 335 goto out_promisc; 336 } 337 } else { 338 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 339 if (vsi->num_vlan > 1) 340 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 341 else 342 promisc_m = ICE_MCAST_PROMISC_BITS; 343 344 err = ice_cfg_promisc(vsi, promisc_m, false); 345 if (err) { 346 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 347 vsi->vsi_num); 348 vsi->current_netdev_flags |= IFF_ALLMULTI; 349 goto out_promisc; 350 } 351 } 352 } 353 354 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 355 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 356 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 357 if (vsi->current_netdev_flags & IFF_PROMISC) { 358 /* Apply Rx filter rule to get traffic from wire */ 359 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 360 err = ice_set_dflt_vsi(pf->first_sw, vsi); 361 if (err && err != -EEXIST) { 362 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 363 err, vsi->vsi_num); 364 vsi->current_netdev_flags &= 365 ~IFF_PROMISC; 366 goto out_promisc; 367 } 368 ice_cfg_vlan_pruning(vsi, false, false); 369 } 370 } else { 371 /* Clear Rx filter to remove traffic from wire */ 372 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 373 err = ice_clear_dflt_vsi(pf->first_sw); 374 if (err) { 375 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 376 err, vsi->vsi_num); 377 vsi->current_netdev_flags |= 378 IFF_PROMISC; 379 goto out_promisc; 380 } 381 if (vsi->num_vlan > 1) 382 ice_cfg_vlan_pruning(vsi, true, false); 383 } 384 } 385 } 386 goto exit; 387 388 out_promisc: 389 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 390 goto exit; 391 out: 392 /* if something went wrong then set the changed flag so we try again */ 393 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 394 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 395 exit: 396 clear_bit(ICE_CFG_BUSY, vsi->state); 397 return err; 398 } 399 400 /** 401 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 402 * @pf: board private structure 403 */ 404 static void ice_sync_fltr_subtask(struct ice_pf *pf) 405 { 406 int v; 407 408 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 409 return; 410 411 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 412 413 ice_for_each_vsi(pf, v) 414 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 415 ice_vsi_sync_fltr(pf->vsi[v])) { 416 /* come back and try again later */ 417 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 418 break; 419 } 420 } 421 422 /** 423 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 424 * @pf: the PF 425 * @locked: is the rtnl_lock already held 426 */ 427 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 428 { 429 int node; 430 int v; 431 432 ice_for_each_vsi(pf, v) 433 if (pf->vsi[v]) 434 ice_dis_vsi(pf->vsi[v], locked); 435 436 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 437 pf->pf_agg_node[node].num_vsis = 0; 438 439 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 440 pf->vf_agg_node[node].num_vsis = 0; 441 } 442 443 /** 444 * ice_prepare_for_reset - prep for the core to reset 445 * @pf: board private structure 446 * 447 * Inform or close all dependent features in prep for reset. 448 */ 449 static void 450 ice_prepare_for_reset(struct ice_pf *pf) 451 { 452 struct ice_hw *hw = &pf->hw; 453 unsigned int i; 454 455 /* already prepared for reset */ 456 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 457 return; 458 459 ice_unplug_aux_dev(pf); 460 461 /* Notify VFs of impending reset */ 462 if (ice_check_sq_alive(hw, &hw->mailboxq)) 463 ice_vc_notify_reset(pf); 464 465 /* Disable VFs until reset is completed */ 466 ice_for_each_vf(pf, i) 467 ice_set_vf_state_qs_dis(&pf->vf[i]); 468 469 /* clear SW filtering DB */ 470 ice_clear_hw_tbls(hw); 471 /* disable the VSIs and their queues that are not already DOWN */ 472 ice_pf_dis_all_vsi(pf, false); 473 474 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 475 ice_ptp_release(pf); 476 477 if (hw->port_info) 478 ice_sched_clear_port(hw->port_info); 479 480 ice_shutdown_all_ctrlq(hw); 481 482 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 483 } 484 485 /** 486 * ice_do_reset - Initiate one of many types of resets 487 * @pf: board private structure 488 * @reset_type: reset type requested 489 * before this function was called. 490 */ 491 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 492 { 493 struct device *dev = ice_pf_to_dev(pf); 494 struct ice_hw *hw = &pf->hw; 495 496 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 497 498 ice_prepare_for_reset(pf); 499 500 /* trigger the reset */ 501 if (ice_reset(hw, reset_type)) { 502 dev_err(dev, "reset %d failed\n", reset_type); 503 set_bit(ICE_RESET_FAILED, pf->state); 504 clear_bit(ICE_RESET_OICR_RECV, pf->state); 505 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 506 clear_bit(ICE_PFR_REQ, pf->state); 507 clear_bit(ICE_CORER_REQ, pf->state); 508 clear_bit(ICE_GLOBR_REQ, pf->state); 509 wake_up(&pf->reset_wait_queue); 510 return; 511 } 512 513 /* PFR is a bit of a special case because it doesn't result in an OICR 514 * interrupt. So for PFR, rebuild after the reset and clear the reset- 515 * associated state bits. 516 */ 517 if (reset_type == ICE_RESET_PFR) { 518 pf->pfr_count++; 519 ice_rebuild(pf, reset_type); 520 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 521 clear_bit(ICE_PFR_REQ, pf->state); 522 wake_up(&pf->reset_wait_queue); 523 ice_reset_all_vfs(pf, true); 524 } 525 } 526 527 /** 528 * ice_reset_subtask - Set up for resetting the device and driver 529 * @pf: board private structure 530 */ 531 static void ice_reset_subtask(struct ice_pf *pf) 532 { 533 enum ice_reset_req reset_type = ICE_RESET_INVAL; 534 535 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 536 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 537 * of reset is pending and sets bits in pf->state indicating the reset 538 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 539 * prepare for pending reset if not already (for PF software-initiated 540 * global resets the software should already be prepared for it as 541 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 542 * by firmware or software on other PFs, that bit is not set so prepare 543 * for the reset now), poll for reset done, rebuild and return. 544 */ 545 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 546 /* Perform the largest reset requested */ 547 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 548 reset_type = ICE_RESET_CORER; 549 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 550 reset_type = ICE_RESET_GLOBR; 551 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 552 reset_type = ICE_RESET_EMPR; 553 /* return if no valid reset type requested */ 554 if (reset_type == ICE_RESET_INVAL) 555 return; 556 ice_prepare_for_reset(pf); 557 558 /* make sure we are ready to rebuild */ 559 if (ice_check_reset(&pf->hw)) { 560 set_bit(ICE_RESET_FAILED, pf->state); 561 } else { 562 /* done with reset. start rebuild */ 563 pf->hw.reset_ongoing = false; 564 ice_rebuild(pf, reset_type); 565 /* clear bit to resume normal operations, but 566 * ICE_NEEDS_RESTART bit is set in case rebuild failed 567 */ 568 clear_bit(ICE_RESET_OICR_RECV, pf->state); 569 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 570 clear_bit(ICE_PFR_REQ, pf->state); 571 clear_bit(ICE_CORER_REQ, pf->state); 572 clear_bit(ICE_GLOBR_REQ, pf->state); 573 wake_up(&pf->reset_wait_queue); 574 ice_reset_all_vfs(pf, true); 575 } 576 577 return; 578 } 579 580 /* No pending resets to finish processing. Check for new resets */ 581 if (test_bit(ICE_PFR_REQ, pf->state)) 582 reset_type = ICE_RESET_PFR; 583 if (test_bit(ICE_CORER_REQ, pf->state)) 584 reset_type = ICE_RESET_CORER; 585 if (test_bit(ICE_GLOBR_REQ, pf->state)) 586 reset_type = ICE_RESET_GLOBR; 587 /* If no valid reset type requested just return */ 588 if (reset_type == ICE_RESET_INVAL) 589 return; 590 591 /* reset if not already down or busy */ 592 if (!test_bit(ICE_DOWN, pf->state) && 593 !test_bit(ICE_CFG_BUSY, pf->state)) { 594 ice_do_reset(pf, reset_type); 595 } 596 } 597 598 /** 599 * ice_print_topo_conflict - print topology conflict message 600 * @vsi: the VSI whose topology status is being checked 601 */ 602 static void ice_print_topo_conflict(struct ice_vsi *vsi) 603 { 604 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 605 case ICE_AQ_LINK_TOPO_CONFLICT: 606 case ICE_AQ_LINK_MEDIA_CONFLICT: 607 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 608 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 609 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 610 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 611 break; 612 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 613 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 614 break; 615 default: 616 break; 617 } 618 } 619 620 /** 621 * ice_print_link_msg - print link up or down message 622 * @vsi: the VSI whose link status is being queried 623 * @isup: boolean for if the link is now up or down 624 */ 625 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 626 { 627 struct ice_aqc_get_phy_caps_data *caps; 628 const char *an_advertised; 629 enum ice_status status; 630 const char *fec_req; 631 const char *speed; 632 const char *fec; 633 const char *fc; 634 const char *an; 635 636 if (!vsi) 637 return; 638 639 if (vsi->current_isup == isup) 640 return; 641 642 vsi->current_isup = isup; 643 644 if (!isup) { 645 netdev_info(vsi->netdev, "NIC Link is Down\n"); 646 return; 647 } 648 649 switch (vsi->port_info->phy.link_info.link_speed) { 650 case ICE_AQ_LINK_SPEED_100GB: 651 speed = "100 G"; 652 break; 653 case ICE_AQ_LINK_SPEED_50GB: 654 speed = "50 G"; 655 break; 656 case ICE_AQ_LINK_SPEED_40GB: 657 speed = "40 G"; 658 break; 659 case ICE_AQ_LINK_SPEED_25GB: 660 speed = "25 G"; 661 break; 662 case ICE_AQ_LINK_SPEED_20GB: 663 speed = "20 G"; 664 break; 665 case ICE_AQ_LINK_SPEED_10GB: 666 speed = "10 G"; 667 break; 668 case ICE_AQ_LINK_SPEED_5GB: 669 speed = "5 G"; 670 break; 671 case ICE_AQ_LINK_SPEED_2500MB: 672 speed = "2.5 G"; 673 break; 674 case ICE_AQ_LINK_SPEED_1000MB: 675 speed = "1 G"; 676 break; 677 case ICE_AQ_LINK_SPEED_100MB: 678 speed = "100 M"; 679 break; 680 default: 681 speed = "Unknown "; 682 break; 683 } 684 685 switch (vsi->port_info->fc.current_mode) { 686 case ICE_FC_FULL: 687 fc = "Rx/Tx"; 688 break; 689 case ICE_FC_TX_PAUSE: 690 fc = "Tx"; 691 break; 692 case ICE_FC_RX_PAUSE: 693 fc = "Rx"; 694 break; 695 case ICE_FC_NONE: 696 fc = "None"; 697 break; 698 default: 699 fc = "Unknown"; 700 break; 701 } 702 703 /* Get FEC mode based on negotiated link info */ 704 switch (vsi->port_info->phy.link_info.fec_info) { 705 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 706 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 707 fec = "RS-FEC"; 708 break; 709 case ICE_AQ_LINK_25G_KR_FEC_EN: 710 fec = "FC-FEC/BASE-R"; 711 break; 712 default: 713 fec = "NONE"; 714 break; 715 } 716 717 /* check if autoneg completed, might be false due to not supported */ 718 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 719 an = "True"; 720 else 721 an = "False"; 722 723 /* Get FEC mode requested based on PHY caps last SW configuration */ 724 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 725 if (!caps) { 726 fec_req = "Unknown"; 727 an_advertised = "Unknown"; 728 goto done; 729 } 730 731 status = ice_aq_get_phy_caps(vsi->port_info, false, 732 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 733 if (status) 734 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 735 736 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 737 738 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 739 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 740 fec_req = "RS-FEC"; 741 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 742 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 743 fec_req = "FC-FEC/BASE-R"; 744 else 745 fec_req = "NONE"; 746 747 kfree(caps); 748 749 done: 750 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 751 speed, fec_req, fec, an_advertised, an, fc); 752 ice_print_topo_conflict(vsi); 753 } 754 755 /** 756 * ice_vsi_link_event - update the VSI's netdev 757 * @vsi: the VSI on which the link event occurred 758 * @link_up: whether or not the VSI needs to be set up or down 759 */ 760 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 761 { 762 if (!vsi) 763 return; 764 765 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 766 return; 767 768 if (vsi->type == ICE_VSI_PF) { 769 if (link_up == netif_carrier_ok(vsi->netdev)) 770 return; 771 772 if (link_up) { 773 netif_carrier_on(vsi->netdev); 774 netif_tx_wake_all_queues(vsi->netdev); 775 } else { 776 netif_carrier_off(vsi->netdev); 777 netif_tx_stop_all_queues(vsi->netdev); 778 } 779 } 780 } 781 782 /** 783 * ice_set_dflt_mib - send a default config MIB to the FW 784 * @pf: private PF struct 785 * 786 * This function sends a default configuration MIB to the FW. 787 * 788 * If this function errors out at any point, the driver is still able to 789 * function. The main impact is that LFC may not operate as expected. 790 * Therefore an error state in this function should be treated with a DBG 791 * message and continue on with driver rebuild/reenable. 792 */ 793 static void ice_set_dflt_mib(struct ice_pf *pf) 794 { 795 struct device *dev = ice_pf_to_dev(pf); 796 u8 mib_type, *buf, *lldpmib = NULL; 797 u16 len, typelen, offset = 0; 798 struct ice_lldp_org_tlv *tlv; 799 struct ice_hw *hw = &pf->hw; 800 u32 ouisubtype; 801 802 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 803 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 804 if (!lldpmib) { 805 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 806 __func__); 807 return; 808 } 809 810 /* Add ETS CFG TLV */ 811 tlv = (struct ice_lldp_org_tlv *)lldpmib; 812 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 813 ICE_IEEE_ETS_TLV_LEN); 814 tlv->typelen = htons(typelen); 815 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 816 ICE_IEEE_SUBTYPE_ETS_CFG); 817 tlv->ouisubtype = htonl(ouisubtype); 818 819 buf = tlv->tlvinfo; 820 buf[0] = 0; 821 822 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 823 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 824 * Octets 13 - 20 are TSA values - leave as zeros 825 */ 826 buf[5] = 0x64; 827 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 828 offset += len + 2; 829 tlv = (struct ice_lldp_org_tlv *) 830 ((char *)tlv + sizeof(tlv->typelen) + len); 831 832 /* Add ETS REC TLV */ 833 buf = tlv->tlvinfo; 834 tlv->typelen = htons(typelen); 835 836 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 837 ICE_IEEE_SUBTYPE_ETS_REC); 838 tlv->ouisubtype = htonl(ouisubtype); 839 840 /* First octet of buf is reserved 841 * Octets 1 - 4 map UP to TC - all UPs map to zero 842 * Octets 5 - 12 are BW values - set TC 0 to 100%. 843 * Octets 13 - 20 are TSA value - leave as zeros 844 */ 845 buf[5] = 0x64; 846 offset += len + 2; 847 tlv = (struct ice_lldp_org_tlv *) 848 ((char *)tlv + sizeof(tlv->typelen) + len); 849 850 /* Add PFC CFG TLV */ 851 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 852 ICE_IEEE_PFC_TLV_LEN); 853 tlv->typelen = htons(typelen); 854 855 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 856 ICE_IEEE_SUBTYPE_PFC_CFG); 857 tlv->ouisubtype = htonl(ouisubtype); 858 859 /* Octet 1 left as all zeros - PFC disabled */ 860 buf[0] = 0x08; 861 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 862 offset += len + 2; 863 864 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 865 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 866 867 kfree(lldpmib); 868 } 869 870 /** 871 * ice_check_module_power 872 * @pf: pointer to PF struct 873 * @link_cfg_err: bitmap from the link info structure 874 * 875 * check module power level returned by a previous call to aq_get_link_info 876 * and print error messages if module power level is not supported 877 */ 878 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 879 { 880 /* if module power level is supported, clear the flag */ 881 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 882 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 883 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 884 return; 885 } 886 887 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 888 * above block didn't clear this bit, there's nothing to do 889 */ 890 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 891 return; 892 893 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 894 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 895 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 896 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 897 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 898 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 899 } 900 } 901 902 /** 903 * ice_link_event - process the link event 904 * @pf: PF that the link event is associated with 905 * @pi: port_info for the port that the link event is associated with 906 * @link_up: true if the physical link is up and false if it is down 907 * @link_speed: current link speed received from the link event 908 * 909 * Returns 0 on success and negative on failure 910 */ 911 static int 912 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 913 u16 link_speed) 914 { 915 struct device *dev = ice_pf_to_dev(pf); 916 struct ice_phy_info *phy_info; 917 enum ice_status status; 918 struct ice_vsi *vsi; 919 u16 old_link_speed; 920 bool old_link; 921 922 phy_info = &pi->phy; 923 phy_info->link_info_old = phy_info->link_info; 924 925 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 926 old_link_speed = phy_info->link_info_old.link_speed; 927 928 /* update the link info structures and re-enable link events, 929 * don't bail on failure due to other book keeping needed 930 */ 931 status = ice_update_link_info(pi); 932 if (status) 933 dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n", 934 pi->lport, ice_stat_str(status), 935 ice_aq_str(pi->hw->adminq.sq_last_status)); 936 937 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 938 939 /* Check if the link state is up after updating link info, and treat 940 * this event as an UP event since the link is actually UP now. 941 */ 942 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 943 link_up = true; 944 945 vsi = ice_get_main_vsi(pf); 946 if (!vsi || !vsi->port_info) 947 return -EINVAL; 948 949 /* turn off PHY if media was removed */ 950 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 951 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 952 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 953 ice_set_link(vsi, false); 954 } 955 956 /* if the old link up/down and speed is the same as the new */ 957 if (link_up == old_link && link_speed == old_link_speed) 958 return 0; 959 960 if (ice_is_dcb_active(pf)) { 961 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 962 ice_dcb_rebuild(pf); 963 } else { 964 if (link_up) 965 ice_set_dflt_mib(pf); 966 } 967 ice_vsi_link_event(vsi, link_up); 968 ice_print_link_msg(vsi, link_up); 969 970 ice_vc_notify_link_state(pf); 971 972 return 0; 973 } 974 975 /** 976 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 977 * @pf: board private structure 978 */ 979 static void ice_watchdog_subtask(struct ice_pf *pf) 980 { 981 int i; 982 983 /* if interface is down do nothing */ 984 if (test_bit(ICE_DOWN, pf->state) || 985 test_bit(ICE_CFG_BUSY, pf->state)) 986 return; 987 988 /* make sure we don't do these things too often */ 989 if (time_before(jiffies, 990 pf->serv_tmr_prev + pf->serv_tmr_period)) 991 return; 992 993 pf->serv_tmr_prev = jiffies; 994 995 /* Update the stats for active netdevs so the network stack 996 * can look at updated numbers whenever it cares to 997 */ 998 ice_update_pf_stats(pf); 999 ice_for_each_vsi(pf, i) 1000 if (pf->vsi[i] && pf->vsi[i]->netdev) 1001 ice_update_vsi_stats(pf->vsi[i]); 1002 } 1003 1004 /** 1005 * ice_init_link_events - enable/initialize link events 1006 * @pi: pointer to the port_info instance 1007 * 1008 * Returns -EIO on failure, 0 on success 1009 */ 1010 static int ice_init_link_events(struct ice_port_info *pi) 1011 { 1012 u16 mask; 1013 1014 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1015 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 1016 1017 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1018 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1019 pi->lport); 1020 return -EIO; 1021 } 1022 1023 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1024 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1025 pi->lport); 1026 return -EIO; 1027 } 1028 1029 return 0; 1030 } 1031 1032 /** 1033 * ice_handle_link_event - handle link event via ARQ 1034 * @pf: PF that the link event is associated with 1035 * @event: event structure containing link status info 1036 */ 1037 static int 1038 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1039 { 1040 struct ice_aqc_get_link_status_data *link_data; 1041 struct ice_port_info *port_info; 1042 int status; 1043 1044 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1045 port_info = pf->hw.port_info; 1046 if (!port_info) 1047 return -EINVAL; 1048 1049 status = ice_link_event(pf, port_info, 1050 !!(link_data->link_info & ICE_AQ_LINK_UP), 1051 le16_to_cpu(link_data->link_speed)); 1052 if (status) 1053 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1054 status); 1055 1056 return status; 1057 } 1058 1059 enum ice_aq_task_state { 1060 ICE_AQ_TASK_WAITING = 0, 1061 ICE_AQ_TASK_COMPLETE, 1062 ICE_AQ_TASK_CANCELED, 1063 }; 1064 1065 struct ice_aq_task { 1066 struct hlist_node entry; 1067 1068 u16 opcode; 1069 struct ice_rq_event_info *event; 1070 enum ice_aq_task_state state; 1071 }; 1072 1073 /** 1074 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1075 * @pf: pointer to the PF private structure 1076 * @opcode: the opcode to wait for 1077 * @timeout: how long to wait, in jiffies 1078 * @event: storage for the event info 1079 * 1080 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1081 * current thread will be put to sleep until the specified event occurs or 1082 * until the given timeout is reached. 1083 * 1084 * To obtain only the descriptor contents, pass an event without an allocated 1085 * msg_buf. If the complete data buffer is desired, allocate the 1086 * event->msg_buf with enough space ahead of time. 1087 * 1088 * Returns: zero on success, or a negative error code on failure. 1089 */ 1090 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1091 struct ice_rq_event_info *event) 1092 { 1093 struct device *dev = ice_pf_to_dev(pf); 1094 struct ice_aq_task *task; 1095 unsigned long start; 1096 long ret; 1097 int err; 1098 1099 task = kzalloc(sizeof(*task), GFP_KERNEL); 1100 if (!task) 1101 return -ENOMEM; 1102 1103 INIT_HLIST_NODE(&task->entry); 1104 task->opcode = opcode; 1105 task->event = event; 1106 task->state = ICE_AQ_TASK_WAITING; 1107 1108 spin_lock_bh(&pf->aq_wait_lock); 1109 hlist_add_head(&task->entry, &pf->aq_wait_list); 1110 spin_unlock_bh(&pf->aq_wait_lock); 1111 1112 start = jiffies; 1113 1114 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1115 timeout); 1116 switch (task->state) { 1117 case ICE_AQ_TASK_WAITING: 1118 err = ret < 0 ? ret : -ETIMEDOUT; 1119 break; 1120 case ICE_AQ_TASK_CANCELED: 1121 err = ret < 0 ? ret : -ECANCELED; 1122 break; 1123 case ICE_AQ_TASK_COMPLETE: 1124 err = ret < 0 ? ret : 0; 1125 break; 1126 default: 1127 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1128 err = -EINVAL; 1129 break; 1130 } 1131 1132 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1133 jiffies_to_msecs(jiffies - start), 1134 jiffies_to_msecs(timeout), 1135 opcode); 1136 1137 spin_lock_bh(&pf->aq_wait_lock); 1138 hlist_del(&task->entry); 1139 spin_unlock_bh(&pf->aq_wait_lock); 1140 kfree(task); 1141 1142 return err; 1143 } 1144 1145 /** 1146 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1147 * @pf: pointer to the PF private structure 1148 * @opcode: the opcode of the event 1149 * @event: the event to check 1150 * 1151 * Loops over the current list of pending threads waiting for an AdminQ event. 1152 * For each matching task, copy the contents of the event into the task 1153 * structure and wake up the thread. 1154 * 1155 * If multiple threads wait for the same opcode, they will all be woken up. 1156 * 1157 * Note that event->msg_buf will only be duplicated if the event has a buffer 1158 * with enough space already allocated. Otherwise, only the descriptor and 1159 * message length will be copied. 1160 * 1161 * Returns: true if an event was found, false otherwise 1162 */ 1163 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1164 struct ice_rq_event_info *event) 1165 { 1166 struct ice_aq_task *task; 1167 bool found = false; 1168 1169 spin_lock_bh(&pf->aq_wait_lock); 1170 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1171 if (task->state || task->opcode != opcode) 1172 continue; 1173 1174 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1175 task->event->msg_len = event->msg_len; 1176 1177 /* Only copy the data buffer if a destination was set */ 1178 if (task->event->msg_buf && 1179 task->event->buf_len > event->buf_len) { 1180 memcpy(task->event->msg_buf, event->msg_buf, 1181 event->buf_len); 1182 task->event->buf_len = event->buf_len; 1183 } 1184 1185 task->state = ICE_AQ_TASK_COMPLETE; 1186 found = true; 1187 } 1188 spin_unlock_bh(&pf->aq_wait_lock); 1189 1190 if (found) 1191 wake_up(&pf->aq_wait_queue); 1192 } 1193 1194 /** 1195 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1196 * @pf: the PF private structure 1197 * 1198 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1199 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1200 */ 1201 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1202 { 1203 struct ice_aq_task *task; 1204 1205 spin_lock_bh(&pf->aq_wait_lock); 1206 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1207 task->state = ICE_AQ_TASK_CANCELED; 1208 spin_unlock_bh(&pf->aq_wait_lock); 1209 1210 wake_up(&pf->aq_wait_queue); 1211 } 1212 1213 /** 1214 * __ice_clean_ctrlq - helper function to clean controlq rings 1215 * @pf: ptr to struct ice_pf 1216 * @q_type: specific Control queue type 1217 */ 1218 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1219 { 1220 struct device *dev = ice_pf_to_dev(pf); 1221 struct ice_rq_event_info event; 1222 struct ice_hw *hw = &pf->hw; 1223 struct ice_ctl_q_info *cq; 1224 u16 pending, i = 0; 1225 const char *qtype; 1226 u32 oldval, val; 1227 1228 /* Do not clean control queue if/when PF reset fails */ 1229 if (test_bit(ICE_RESET_FAILED, pf->state)) 1230 return 0; 1231 1232 switch (q_type) { 1233 case ICE_CTL_Q_ADMIN: 1234 cq = &hw->adminq; 1235 qtype = "Admin"; 1236 break; 1237 case ICE_CTL_Q_SB: 1238 cq = &hw->sbq; 1239 qtype = "Sideband"; 1240 break; 1241 case ICE_CTL_Q_MAILBOX: 1242 cq = &hw->mailboxq; 1243 qtype = "Mailbox"; 1244 /* we are going to try to detect a malicious VF, so set the 1245 * state to begin detection 1246 */ 1247 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1248 break; 1249 default: 1250 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1251 return 0; 1252 } 1253 1254 /* check for error indications - PF_xx_AxQLEN register layout for 1255 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1256 */ 1257 val = rd32(hw, cq->rq.len); 1258 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1259 PF_FW_ARQLEN_ARQCRIT_M)) { 1260 oldval = val; 1261 if (val & PF_FW_ARQLEN_ARQVFE_M) 1262 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1263 qtype); 1264 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1265 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1266 qtype); 1267 } 1268 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1269 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1270 qtype); 1271 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1272 PF_FW_ARQLEN_ARQCRIT_M); 1273 if (oldval != val) 1274 wr32(hw, cq->rq.len, val); 1275 } 1276 1277 val = rd32(hw, cq->sq.len); 1278 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1279 PF_FW_ATQLEN_ATQCRIT_M)) { 1280 oldval = val; 1281 if (val & PF_FW_ATQLEN_ATQVFE_M) 1282 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1283 qtype); 1284 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1285 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1286 qtype); 1287 } 1288 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1289 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1290 qtype); 1291 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1292 PF_FW_ATQLEN_ATQCRIT_M); 1293 if (oldval != val) 1294 wr32(hw, cq->sq.len, val); 1295 } 1296 1297 event.buf_len = cq->rq_buf_size; 1298 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1299 if (!event.msg_buf) 1300 return 0; 1301 1302 do { 1303 enum ice_status ret; 1304 u16 opcode; 1305 1306 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1307 if (ret == ICE_ERR_AQ_NO_WORK) 1308 break; 1309 if (ret) { 1310 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1311 ice_stat_str(ret)); 1312 break; 1313 } 1314 1315 opcode = le16_to_cpu(event.desc.opcode); 1316 1317 /* Notify any thread that might be waiting for this event */ 1318 ice_aq_check_events(pf, opcode, &event); 1319 1320 switch (opcode) { 1321 case ice_aqc_opc_get_link_status: 1322 if (ice_handle_link_event(pf, &event)) 1323 dev_err(dev, "Could not handle link event\n"); 1324 break; 1325 case ice_aqc_opc_event_lan_overflow: 1326 ice_vf_lan_overflow_event(pf, &event); 1327 break; 1328 case ice_mbx_opc_send_msg_to_pf: 1329 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1330 ice_vc_process_vf_msg(pf, &event); 1331 break; 1332 case ice_aqc_opc_fw_logging: 1333 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1334 break; 1335 case ice_aqc_opc_lldp_set_mib_change: 1336 ice_dcb_process_lldp_set_mib_change(pf, &event); 1337 break; 1338 default: 1339 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1340 qtype, opcode); 1341 break; 1342 } 1343 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1344 1345 kfree(event.msg_buf); 1346 1347 return pending && (i == ICE_DFLT_IRQ_WORK); 1348 } 1349 1350 /** 1351 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1352 * @hw: pointer to hardware info 1353 * @cq: control queue information 1354 * 1355 * returns true if there are pending messages in a queue, false if there aren't 1356 */ 1357 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1358 { 1359 u16 ntu; 1360 1361 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1362 return cq->rq.next_to_clean != ntu; 1363 } 1364 1365 /** 1366 * ice_clean_adminq_subtask - clean the AdminQ rings 1367 * @pf: board private structure 1368 */ 1369 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1370 { 1371 struct ice_hw *hw = &pf->hw; 1372 1373 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1374 return; 1375 1376 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1377 return; 1378 1379 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1380 1381 /* There might be a situation where new messages arrive to a control 1382 * queue between processing the last message and clearing the 1383 * EVENT_PENDING bit. So before exiting, check queue head again (using 1384 * ice_ctrlq_pending) and process new messages if any. 1385 */ 1386 if (ice_ctrlq_pending(hw, &hw->adminq)) 1387 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1388 1389 ice_flush(hw); 1390 } 1391 1392 /** 1393 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1394 * @pf: board private structure 1395 */ 1396 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1397 { 1398 struct ice_hw *hw = &pf->hw; 1399 1400 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1401 return; 1402 1403 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1404 return; 1405 1406 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1407 1408 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1409 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1410 1411 ice_flush(hw); 1412 } 1413 1414 /** 1415 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1416 * @pf: board private structure 1417 */ 1418 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1419 { 1420 struct ice_hw *hw = &pf->hw; 1421 1422 /* Nothing to do here if sideband queue is not supported */ 1423 if (!ice_is_sbq_supported(hw)) { 1424 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1425 return; 1426 } 1427 1428 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1429 return; 1430 1431 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1432 return; 1433 1434 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1435 1436 if (ice_ctrlq_pending(hw, &hw->sbq)) 1437 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1438 1439 ice_flush(hw); 1440 } 1441 1442 /** 1443 * ice_service_task_schedule - schedule the service task to wake up 1444 * @pf: board private structure 1445 * 1446 * If not already scheduled, this puts the task into the work queue. 1447 */ 1448 void ice_service_task_schedule(struct ice_pf *pf) 1449 { 1450 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1451 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1452 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1453 queue_work(ice_wq, &pf->serv_task); 1454 } 1455 1456 /** 1457 * ice_service_task_complete - finish up the service task 1458 * @pf: board private structure 1459 */ 1460 static void ice_service_task_complete(struct ice_pf *pf) 1461 { 1462 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1463 1464 /* force memory (pf->state) to sync before next service task */ 1465 smp_mb__before_atomic(); 1466 clear_bit(ICE_SERVICE_SCHED, pf->state); 1467 } 1468 1469 /** 1470 * ice_service_task_stop - stop service task and cancel works 1471 * @pf: board private structure 1472 * 1473 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1474 * 1 otherwise. 1475 */ 1476 static int ice_service_task_stop(struct ice_pf *pf) 1477 { 1478 int ret; 1479 1480 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1481 1482 if (pf->serv_tmr.function) 1483 del_timer_sync(&pf->serv_tmr); 1484 if (pf->serv_task.func) 1485 cancel_work_sync(&pf->serv_task); 1486 1487 clear_bit(ICE_SERVICE_SCHED, pf->state); 1488 return ret; 1489 } 1490 1491 /** 1492 * ice_service_task_restart - restart service task and schedule works 1493 * @pf: board private structure 1494 * 1495 * This function is needed for suspend and resume works (e.g WoL scenario) 1496 */ 1497 static void ice_service_task_restart(struct ice_pf *pf) 1498 { 1499 clear_bit(ICE_SERVICE_DIS, pf->state); 1500 ice_service_task_schedule(pf); 1501 } 1502 1503 /** 1504 * ice_service_timer - timer callback to schedule service task 1505 * @t: pointer to timer_list 1506 */ 1507 static void ice_service_timer(struct timer_list *t) 1508 { 1509 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1510 1511 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1512 ice_service_task_schedule(pf); 1513 } 1514 1515 /** 1516 * ice_handle_mdd_event - handle malicious driver detect event 1517 * @pf: pointer to the PF structure 1518 * 1519 * Called from service task. OICR interrupt handler indicates MDD event. 1520 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1521 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1522 * disable the queue, the PF can be configured to reset the VF using ethtool 1523 * private flag mdd-auto-reset-vf. 1524 */ 1525 static void ice_handle_mdd_event(struct ice_pf *pf) 1526 { 1527 struct device *dev = ice_pf_to_dev(pf); 1528 struct ice_hw *hw = &pf->hw; 1529 unsigned int i; 1530 u32 reg; 1531 1532 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1533 /* Since the VF MDD event logging is rate limited, check if 1534 * there are pending MDD events. 1535 */ 1536 ice_print_vfs_mdd_events(pf); 1537 return; 1538 } 1539 1540 /* find what triggered an MDD event */ 1541 reg = rd32(hw, GL_MDET_TX_PQM); 1542 if (reg & GL_MDET_TX_PQM_VALID_M) { 1543 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1544 GL_MDET_TX_PQM_PF_NUM_S; 1545 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1546 GL_MDET_TX_PQM_VF_NUM_S; 1547 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1548 GL_MDET_TX_PQM_MAL_TYPE_S; 1549 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1550 GL_MDET_TX_PQM_QNUM_S); 1551 1552 if (netif_msg_tx_err(pf)) 1553 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1554 event, queue, pf_num, vf_num); 1555 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1556 } 1557 1558 reg = rd32(hw, GL_MDET_TX_TCLAN); 1559 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1560 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1561 GL_MDET_TX_TCLAN_PF_NUM_S; 1562 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1563 GL_MDET_TX_TCLAN_VF_NUM_S; 1564 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1565 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1566 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1567 GL_MDET_TX_TCLAN_QNUM_S); 1568 1569 if (netif_msg_tx_err(pf)) 1570 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1571 event, queue, pf_num, vf_num); 1572 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1573 } 1574 1575 reg = rd32(hw, GL_MDET_RX); 1576 if (reg & GL_MDET_RX_VALID_M) { 1577 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1578 GL_MDET_RX_PF_NUM_S; 1579 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1580 GL_MDET_RX_VF_NUM_S; 1581 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1582 GL_MDET_RX_MAL_TYPE_S; 1583 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1584 GL_MDET_RX_QNUM_S); 1585 1586 if (netif_msg_rx_err(pf)) 1587 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1588 event, queue, pf_num, vf_num); 1589 wr32(hw, GL_MDET_RX, 0xffffffff); 1590 } 1591 1592 /* check to see if this PF caused an MDD event */ 1593 reg = rd32(hw, PF_MDET_TX_PQM); 1594 if (reg & PF_MDET_TX_PQM_VALID_M) { 1595 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1596 if (netif_msg_tx_err(pf)) 1597 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1598 } 1599 1600 reg = rd32(hw, PF_MDET_TX_TCLAN); 1601 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1602 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1603 if (netif_msg_tx_err(pf)) 1604 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1605 } 1606 1607 reg = rd32(hw, PF_MDET_RX); 1608 if (reg & PF_MDET_RX_VALID_M) { 1609 wr32(hw, PF_MDET_RX, 0xFFFF); 1610 if (netif_msg_rx_err(pf)) 1611 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1612 } 1613 1614 /* Check to see if one of the VFs caused an MDD event, and then 1615 * increment counters and set print pending 1616 */ 1617 ice_for_each_vf(pf, i) { 1618 struct ice_vf *vf = &pf->vf[i]; 1619 1620 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1621 if (reg & VP_MDET_TX_PQM_VALID_M) { 1622 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1623 vf->mdd_tx_events.count++; 1624 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1625 if (netif_msg_tx_err(pf)) 1626 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1627 i); 1628 } 1629 1630 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1631 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1632 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1633 vf->mdd_tx_events.count++; 1634 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1635 if (netif_msg_tx_err(pf)) 1636 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1637 i); 1638 } 1639 1640 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1641 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1642 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1643 vf->mdd_tx_events.count++; 1644 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1645 if (netif_msg_tx_err(pf)) 1646 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1647 i); 1648 } 1649 1650 reg = rd32(hw, VP_MDET_RX(i)); 1651 if (reg & VP_MDET_RX_VALID_M) { 1652 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1653 vf->mdd_rx_events.count++; 1654 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1655 if (netif_msg_rx_err(pf)) 1656 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1657 i); 1658 1659 /* Since the queue is disabled on VF Rx MDD events, the 1660 * PF can be configured to reset the VF through ethtool 1661 * private flag mdd-auto-reset-vf. 1662 */ 1663 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1664 /* VF MDD event counters will be cleared by 1665 * reset, so print the event prior to reset. 1666 */ 1667 ice_print_vf_rx_mdd_event(vf); 1668 ice_reset_vf(&pf->vf[i], false); 1669 } 1670 } 1671 } 1672 1673 ice_print_vfs_mdd_events(pf); 1674 } 1675 1676 /** 1677 * ice_force_phys_link_state - Force the physical link state 1678 * @vsi: VSI to force the physical link state to up/down 1679 * @link_up: true/false indicates to set the physical link to up/down 1680 * 1681 * Force the physical link state by getting the current PHY capabilities from 1682 * hardware and setting the PHY config based on the determined capabilities. If 1683 * link changes a link event will be triggered because both the Enable Automatic 1684 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1685 * 1686 * Returns 0 on success, negative on failure 1687 */ 1688 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1689 { 1690 struct ice_aqc_get_phy_caps_data *pcaps; 1691 struct ice_aqc_set_phy_cfg_data *cfg; 1692 struct ice_port_info *pi; 1693 struct device *dev; 1694 int retcode; 1695 1696 if (!vsi || !vsi->port_info || !vsi->back) 1697 return -EINVAL; 1698 if (vsi->type != ICE_VSI_PF) 1699 return 0; 1700 1701 dev = ice_pf_to_dev(vsi->back); 1702 1703 pi = vsi->port_info; 1704 1705 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1706 if (!pcaps) 1707 return -ENOMEM; 1708 1709 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1710 NULL); 1711 if (retcode) { 1712 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1713 vsi->vsi_num, retcode); 1714 retcode = -EIO; 1715 goto out; 1716 } 1717 1718 /* No change in link */ 1719 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1720 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1721 goto out; 1722 1723 /* Use the current user PHY configuration. The current user PHY 1724 * configuration is initialized during probe from PHY capabilities 1725 * software mode, and updated on set PHY configuration. 1726 */ 1727 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1728 if (!cfg) { 1729 retcode = -ENOMEM; 1730 goto out; 1731 } 1732 1733 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1734 if (link_up) 1735 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1736 else 1737 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1738 1739 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1740 if (retcode) { 1741 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1742 vsi->vsi_num, retcode); 1743 retcode = -EIO; 1744 } 1745 1746 kfree(cfg); 1747 out: 1748 kfree(pcaps); 1749 return retcode; 1750 } 1751 1752 /** 1753 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1754 * @pi: port info structure 1755 * 1756 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1757 */ 1758 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1759 { 1760 struct ice_aqc_get_phy_caps_data *pcaps; 1761 struct ice_pf *pf = pi->hw->back; 1762 enum ice_status status; 1763 int err = 0; 1764 1765 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1766 if (!pcaps) 1767 return -ENOMEM; 1768 1769 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps, 1770 NULL); 1771 1772 if (status) { 1773 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1774 err = -EIO; 1775 goto out; 1776 } 1777 1778 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1779 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1780 1781 out: 1782 kfree(pcaps); 1783 return err; 1784 } 1785 1786 /** 1787 * ice_init_link_dflt_override - Initialize link default override 1788 * @pi: port info structure 1789 * 1790 * Initialize link default override and PHY total port shutdown during probe 1791 */ 1792 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1793 { 1794 struct ice_link_default_override_tlv *ldo; 1795 struct ice_pf *pf = pi->hw->back; 1796 1797 ldo = &pf->link_dflt_override; 1798 if (ice_get_link_default_override(ldo, pi)) 1799 return; 1800 1801 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1802 return; 1803 1804 /* Enable Total Port Shutdown (override/replace link-down-on-close 1805 * ethtool private flag) for ports with Port Disable bit set. 1806 */ 1807 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1808 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1809 } 1810 1811 /** 1812 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1813 * @pi: port info structure 1814 * 1815 * If default override is enabled, initialize the user PHY cfg speed and FEC 1816 * settings using the default override mask from the NVM. 1817 * 1818 * The PHY should only be configured with the default override settings the 1819 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1820 * is used to indicate that the user PHY cfg default override is initialized 1821 * and the PHY has not been configured with the default override settings. The 1822 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1823 * configured. 1824 * 1825 * This function should be called only if the FW doesn't support default 1826 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1827 */ 1828 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1829 { 1830 struct ice_link_default_override_tlv *ldo; 1831 struct ice_aqc_set_phy_cfg_data *cfg; 1832 struct ice_phy_info *phy = &pi->phy; 1833 struct ice_pf *pf = pi->hw->back; 1834 1835 ldo = &pf->link_dflt_override; 1836 1837 /* If link default override is enabled, use to mask NVM PHY capabilities 1838 * for speed and FEC default configuration. 1839 */ 1840 cfg = &phy->curr_user_phy_cfg; 1841 1842 if (ldo->phy_type_low || ldo->phy_type_high) { 1843 cfg->phy_type_low = pf->nvm_phy_type_lo & 1844 cpu_to_le64(ldo->phy_type_low); 1845 cfg->phy_type_high = pf->nvm_phy_type_hi & 1846 cpu_to_le64(ldo->phy_type_high); 1847 } 1848 cfg->link_fec_opt = ldo->fec_options; 1849 phy->curr_user_fec_req = ICE_FEC_AUTO; 1850 1851 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1852 } 1853 1854 /** 1855 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1856 * @pi: port info structure 1857 * 1858 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1859 * mode to default. The PHY defaults are from get PHY capabilities topology 1860 * with media so call when media is first available. An error is returned if 1861 * called when media is not available. The PHY initialization completed state is 1862 * set here. 1863 * 1864 * These configurations are used when setting PHY 1865 * configuration. The user PHY configuration is updated on set PHY 1866 * configuration. Returns 0 on success, negative on failure 1867 */ 1868 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1869 { 1870 struct ice_aqc_get_phy_caps_data *pcaps; 1871 struct ice_phy_info *phy = &pi->phy; 1872 struct ice_pf *pf = pi->hw->back; 1873 enum ice_status status; 1874 int err = 0; 1875 1876 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1877 return -EIO; 1878 1879 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1880 if (!pcaps) 1881 return -ENOMEM; 1882 1883 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1884 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1885 pcaps, NULL); 1886 else 1887 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1888 pcaps, NULL); 1889 if (status) { 1890 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1891 err = -EIO; 1892 goto err_out; 1893 } 1894 1895 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 1896 1897 /* check if lenient mode is supported and enabled */ 1898 if (ice_fw_supports_link_override(pi->hw) && 1899 !(pcaps->module_compliance_enforcement & 1900 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 1901 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 1902 1903 /* if the FW supports default PHY configuration mode, then the driver 1904 * does not have to apply link override settings. If not, 1905 * initialize user PHY configuration with link override values 1906 */ 1907 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 1908 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 1909 ice_init_phy_cfg_dflt_override(pi); 1910 goto out; 1911 } 1912 } 1913 1914 /* if link default override is not enabled, set user flow control and 1915 * FEC settings based on what get_phy_caps returned 1916 */ 1917 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 1918 pcaps->link_fec_options); 1919 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 1920 1921 out: 1922 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 1923 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 1924 err_out: 1925 kfree(pcaps); 1926 return err; 1927 } 1928 1929 /** 1930 * ice_configure_phy - configure PHY 1931 * @vsi: VSI of PHY 1932 * 1933 * Set the PHY configuration. If the current PHY configuration is the same as 1934 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 1935 * configure the based get PHY capabilities for topology with media. 1936 */ 1937 static int ice_configure_phy(struct ice_vsi *vsi) 1938 { 1939 struct device *dev = ice_pf_to_dev(vsi->back); 1940 struct ice_port_info *pi = vsi->port_info; 1941 struct ice_aqc_get_phy_caps_data *pcaps; 1942 struct ice_aqc_set_phy_cfg_data *cfg; 1943 struct ice_phy_info *phy = &pi->phy; 1944 struct ice_pf *pf = vsi->back; 1945 enum ice_status status; 1946 int err = 0; 1947 1948 /* Ensure we have media as we cannot configure a medialess port */ 1949 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1950 return -EPERM; 1951 1952 ice_print_topo_conflict(vsi); 1953 1954 if (phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 1955 return -EPERM; 1956 1957 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 1958 return ice_force_phys_link_state(vsi, true); 1959 1960 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1961 if (!pcaps) 1962 return -ENOMEM; 1963 1964 /* Get current PHY config */ 1965 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1966 NULL); 1967 if (status) { 1968 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 1969 vsi->vsi_num, ice_stat_str(status)); 1970 err = -EIO; 1971 goto done; 1972 } 1973 1974 /* If PHY enable link is configured and configuration has not changed, 1975 * there's nothing to do 1976 */ 1977 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 1978 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 1979 goto done; 1980 1981 /* Use PHY topology as baseline for configuration */ 1982 memset(pcaps, 0, sizeof(*pcaps)); 1983 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1984 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1985 pcaps, NULL); 1986 else 1987 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1988 pcaps, NULL); 1989 if (status) { 1990 dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n", 1991 vsi->vsi_num, ice_stat_str(status)); 1992 err = -EIO; 1993 goto done; 1994 } 1995 1996 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1997 if (!cfg) { 1998 err = -ENOMEM; 1999 goto done; 2000 } 2001 2002 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2003 2004 /* Speed - If default override pending, use curr_user_phy_cfg set in 2005 * ice_init_phy_user_cfg_ldo. 2006 */ 2007 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2008 vsi->back->state)) { 2009 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2010 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2011 } else { 2012 u64 phy_low = 0, phy_high = 0; 2013 2014 ice_update_phy_type(&phy_low, &phy_high, 2015 pi->phy.curr_user_speed_req); 2016 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2017 cfg->phy_type_high = pcaps->phy_type_high & 2018 cpu_to_le64(phy_high); 2019 } 2020 2021 /* Can't provide what was requested; use PHY capabilities */ 2022 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2023 cfg->phy_type_low = pcaps->phy_type_low; 2024 cfg->phy_type_high = pcaps->phy_type_high; 2025 } 2026 2027 /* FEC */ 2028 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2029 2030 /* Can't provide what was requested; use PHY capabilities */ 2031 if (cfg->link_fec_opt != 2032 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2033 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2034 cfg->link_fec_opt = pcaps->link_fec_options; 2035 } 2036 2037 /* Flow Control - always supported; no need to check against 2038 * capabilities 2039 */ 2040 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2041 2042 /* Enable link and link update */ 2043 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2044 2045 status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2046 if (status) { 2047 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 2048 vsi->vsi_num, ice_stat_str(status)); 2049 err = -EIO; 2050 } 2051 2052 kfree(cfg); 2053 done: 2054 kfree(pcaps); 2055 return err; 2056 } 2057 2058 /** 2059 * ice_check_media_subtask - Check for media 2060 * @pf: pointer to PF struct 2061 * 2062 * If media is available, then initialize PHY user configuration if it is not 2063 * been, and configure the PHY if the interface is up. 2064 */ 2065 static void ice_check_media_subtask(struct ice_pf *pf) 2066 { 2067 struct ice_port_info *pi; 2068 struct ice_vsi *vsi; 2069 int err; 2070 2071 /* No need to check for media if it's already present */ 2072 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2073 return; 2074 2075 vsi = ice_get_main_vsi(pf); 2076 if (!vsi) 2077 return; 2078 2079 /* Refresh link info and check if media is present */ 2080 pi = vsi->port_info; 2081 err = ice_update_link_info(pi); 2082 if (err) 2083 return; 2084 2085 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 2086 2087 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2088 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2089 ice_init_phy_user_cfg(pi); 2090 2091 /* PHY settings are reset on media insertion, reconfigure 2092 * PHY to preserve settings. 2093 */ 2094 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2095 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2096 return; 2097 2098 err = ice_configure_phy(vsi); 2099 if (!err) 2100 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2101 2102 /* A Link Status Event will be generated; the event handler 2103 * will complete bringing the interface up 2104 */ 2105 } 2106 } 2107 2108 /** 2109 * ice_service_task - manage and run subtasks 2110 * @work: pointer to work_struct contained by the PF struct 2111 */ 2112 static void ice_service_task(struct work_struct *work) 2113 { 2114 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2115 unsigned long start_time = jiffies; 2116 2117 /* subtasks */ 2118 2119 /* process reset requests first */ 2120 ice_reset_subtask(pf); 2121 2122 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2123 if (ice_is_reset_in_progress(pf->state) || 2124 test_bit(ICE_SUSPENDED, pf->state) || 2125 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2126 ice_service_task_complete(pf); 2127 return; 2128 } 2129 2130 ice_clean_adminq_subtask(pf); 2131 ice_check_media_subtask(pf); 2132 ice_check_for_hang_subtask(pf); 2133 ice_sync_fltr_subtask(pf); 2134 ice_handle_mdd_event(pf); 2135 ice_watchdog_subtask(pf); 2136 2137 if (ice_is_safe_mode(pf)) { 2138 ice_service_task_complete(pf); 2139 return; 2140 } 2141 2142 ice_process_vflr_event(pf); 2143 ice_clean_mailboxq_subtask(pf); 2144 ice_clean_sbq_subtask(pf); 2145 ice_sync_arfs_fltrs(pf); 2146 ice_flush_fdir_ctx(pf); 2147 2148 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2149 ice_service_task_complete(pf); 2150 2151 /* If the tasks have taken longer than one service timer period 2152 * or there is more work to be done, reset the service timer to 2153 * schedule the service task now. 2154 */ 2155 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2156 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2157 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2158 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2159 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2160 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2161 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2162 mod_timer(&pf->serv_tmr, jiffies); 2163 } 2164 2165 /** 2166 * ice_set_ctrlq_len - helper function to set controlq length 2167 * @hw: pointer to the HW instance 2168 */ 2169 static void ice_set_ctrlq_len(struct ice_hw *hw) 2170 { 2171 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2172 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2173 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2174 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2175 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2176 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2177 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2178 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2179 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2180 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2181 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2182 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2183 } 2184 2185 /** 2186 * ice_schedule_reset - schedule a reset 2187 * @pf: board private structure 2188 * @reset: reset being requested 2189 */ 2190 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2191 { 2192 struct device *dev = ice_pf_to_dev(pf); 2193 2194 /* bail out if earlier reset has failed */ 2195 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2196 dev_dbg(dev, "earlier reset has failed\n"); 2197 return -EIO; 2198 } 2199 /* bail if reset/recovery already in progress */ 2200 if (ice_is_reset_in_progress(pf->state)) { 2201 dev_dbg(dev, "Reset already in progress\n"); 2202 return -EBUSY; 2203 } 2204 2205 ice_unplug_aux_dev(pf); 2206 2207 switch (reset) { 2208 case ICE_RESET_PFR: 2209 set_bit(ICE_PFR_REQ, pf->state); 2210 break; 2211 case ICE_RESET_CORER: 2212 set_bit(ICE_CORER_REQ, pf->state); 2213 break; 2214 case ICE_RESET_GLOBR: 2215 set_bit(ICE_GLOBR_REQ, pf->state); 2216 break; 2217 default: 2218 return -EINVAL; 2219 } 2220 2221 ice_service_task_schedule(pf); 2222 return 0; 2223 } 2224 2225 /** 2226 * ice_irq_affinity_notify - Callback for affinity changes 2227 * @notify: context as to what irq was changed 2228 * @mask: the new affinity mask 2229 * 2230 * This is a callback function used by the irq_set_affinity_notifier function 2231 * so that we may register to receive changes to the irq affinity masks. 2232 */ 2233 static void 2234 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2235 const cpumask_t *mask) 2236 { 2237 struct ice_q_vector *q_vector = 2238 container_of(notify, struct ice_q_vector, affinity_notify); 2239 2240 cpumask_copy(&q_vector->affinity_mask, mask); 2241 } 2242 2243 /** 2244 * ice_irq_affinity_release - Callback for affinity notifier release 2245 * @ref: internal core kernel usage 2246 * 2247 * This is a callback function used by the irq_set_affinity_notifier function 2248 * to inform the current notification subscriber that they will no longer 2249 * receive notifications. 2250 */ 2251 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2252 2253 /** 2254 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2255 * @vsi: the VSI being configured 2256 */ 2257 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2258 { 2259 struct ice_hw *hw = &vsi->back->hw; 2260 int i; 2261 2262 ice_for_each_q_vector(vsi, i) 2263 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2264 2265 ice_flush(hw); 2266 return 0; 2267 } 2268 2269 /** 2270 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2271 * @vsi: the VSI being configured 2272 * @basename: name for the vector 2273 */ 2274 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2275 { 2276 int q_vectors = vsi->num_q_vectors; 2277 struct ice_pf *pf = vsi->back; 2278 int base = vsi->base_vector; 2279 struct device *dev; 2280 int rx_int_idx = 0; 2281 int tx_int_idx = 0; 2282 int vector, err; 2283 int irq_num; 2284 2285 dev = ice_pf_to_dev(pf); 2286 for (vector = 0; vector < q_vectors; vector++) { 2287 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2288 2289 irq_num = pf->msix_entries[base + vector].vector; 2290 2291 if (q_vector->tx.ring && q_vector->rx.ring) { 2292 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2293 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2294 tx_int_idx++; 2295 } else if (q_vector->rx.ring) { 2296 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2297 "%s-%s-%d", basename, "rx", rx_int_idx++); 2298 } else if (q_vector->tx.ring) { 2299 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2300 "%s-%s-%d", basename, "tx", tx_int_idx++); 2301 } else { 2302 /* skip this unused q_vector */ 2303 continue; 2304 } 2305 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2306 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2307 IRQF_SHARED, q_vector->name, 2308 q_vector); 2309 else 2310 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2311 0, q_vector->name, q_vector); 2312 if (err) { 2313 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2314 err); 2315 goto free_q_irqs; 2316 } 2317 2318 /* register for affinity change notifications */ 2319 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2320 struct irq_affinity_notify *affinity_notify; 2321 2322 affinity_notify = &q_vector->affinity_notify; 2323 affinity_notify->notify = ice_irq_affinity_notify; 2324 affinity_notify->release = ice_irq_affinity_release; 2325 irq_set_affinity_notifier(irq_num, affinity_notify); 2326 } 2327 2328 /* assign the mask for this irq */ 2329 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2330 } 2331 2332 vsi->irqs_ready = true; 2333 return 0; 2334 2335 free_q_irqs: 2336 while (vector) { 2337 vector--; 2338 irq_num = pf->msix_entries[base + vector].vector; 2339 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2340 irq_set_affinity_notifier(irq_num, NULL); 2341 irq_set_affinity_hint(irq_num, NULL); 2342 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2343 } 2344 return err; 2345 } 2346 2347 /** 2348 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2349 * @vsi: VSI to setup Tx rings used by XDP 2350 * 2351 * Return 0 on success and negative value on error 2352 */ 2353 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2354 { 2355 struct device *dev = ice_pf_to_dev(vsi->back); 2356 int i; 2357 2358 for (i = 0; i < vsi->num_xdp_txq; i++) { 2359 u16 xdp_q_idx = vsi->alloc_txq + i; 2360 struct ice_ring *xdp_ring; 2361 2362 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2363 2364 if (!xdp_ring) 2365 goto free_xdp_rings; 2366 2367 xdp_ring->q_index = xdp_q_idx; 2368 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2369 xdp_ring->ring_active = false; 2370 xdp_ring->vsi = vsi; 2371 xdp_ring->netdev = NULL; 2372 xdp_ring->dev = dev; 2373 xdp_ring->count = vsi->num_tx_desc; 2374 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2375 if (ice_setup_tx_ring(xdp_ring)) 2376 goto free_xdp_rings; 2377 ice_set_ring_xdp(xdp_ring); 2378 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring); 2379 } 2380 2381 return 0; 2382 2383 free_xdp_rings: 2384 for (; i >= 0; i--) 2385 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2386 ice_free_tx_ring(vsi->xdp_rings[i]); 2387 return -ENOMEM; 2388 } 2389 2390 /** 2391 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2392 * @vsi: VSI to set the bpf prog on 2393 * @prog: the bpf prog pointer 2394 */ 2395 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2396 { 2397 struct bpf_prog *old_prog; 2398 int i; 2399 2400 old_prog = xchg(&vsi->xdp_prog, prog); 2401 if (old_prog) 2402 bpf_prog_put(old_prog); 2403 2404 ice_for_each_rxq(vsi, i) 2405 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2406 } 2407 2408 /** 2409 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2410 * @vsi: VSI to bring up Tx rings used by XDP 2411 * @prog: bpf program that will be assigned to VSI 2412 * 2413 * Return 0 on success and negative value on error 2414 */ 2415 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2416 { 2417 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2418 int xdp_rings_rem = vsi->num_xdp_txq; 2419 struct ice_pf *pf = vsi->back; 2420 struct ice_qs_cfg xdp_qs_cfg = { 2421 .qs_mutex = &pf->avail_q_mutex, 2422 .pf_map = pf->avail_txqs, 2423 .pf_map_size = pf->max_pf_txqs, 2424 .q_count = vsi->num_xdp_txq, 2425 .scatter_count = ICE_MAX_SCATTER_TXQS, 2426 .vsi_map = vsi->txq_map, 2427 .vsi_map_offset = vsi->alloc_txq, 2428 .mapping_mode = ICE_VSI_MAP_CONTIG 2429 }; 2430 enum ice_status status; 2431 struct device *dev; 2432 int i, v_idx; 2433 2434 dev = ice_pf_to_dev(pf); 2435 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2436 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2437 if (!vsi->xdp_rings) 2438 return -ENOMEM; 2439 2440 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2441 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2442 goto err_map_xdp; 2443 2444 if (ice_xdp_alloc_setup_rings(vsi)) 2445 goto clear_xdp_rings; 2446 2447 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2448 ice_for_each_q_vector(vsi, v_idx) { 2449 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2450 int xdp_rings_per_v, q_id, q_base; 2451 2452 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2453 vsi->num_q_vectors - v_idx); 2454 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2455 2456 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2457 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 2458 2459 xdp_ring->q_vector = q_vector; 2460 xdp_ring->next = q_vector->tx.ring; 2461 q_vector->tx.ring = xdp_ring; 2462 } 2463 xdp_rings_rem -= xdp_rings_per_v; 2464 } 2465 2466 /* omit the scheduler update if in reset path; XDP queues will be 2467 * taken into account at the end of ice_vsi_rebuild, where 2468 * ice_cfg_vsi_lan is being called 2469 */ 2470 if (ice_is_reset_in_progress(pf->state)) 2471 return 0; 2472 2473 /* tell the Tx scheduler that right now we have 2474 * additional queues 2475 */ 2476 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2477 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2478 2479 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2480 max_txqs); 2481 if (status) { 2482 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2483 ice_stat_str(status)); 2484 goto clear_xdp_rings; 2485 } 2486 ice_vsi_assign_bpf_prog(vsi, prog); 2487 2488 return 0; 2489 clear_xdp_rings: 2490 for (i = 0; i < vsi->num_xdp_txq; i++) 2491 if (vsi->xdp_rings[i]) { 2492 kfree_rcu(vsi->xdp_rings[i], rcu); 2493 vsi->xdp_rings[i] = NULL; 2494 } 2495 2496 err_map_xdp: 2497 mutex_lock(&pf->avail_q_mutex); 2498 for (i = 0; i < vsi->num_xdp_txq; i++) { 2499 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2500 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2501 } 2502 mutex_unlock(&pf->avail_q_mutex); 2503 2504 devm_kfree(dev, vsi->xdp_rings); 2505 return -ENOMEM; 2506 } 2507 2508 /** 2509 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2510 * @vsi: VSI to remove XDP rings 2511 * 2512 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2513 * resources 2514 */ 2515 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2516 { 2517 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2518 struct ice_pf *pf = vsi->back; 2519 int i, v_idx; 2520 2521 /* q_vectors are freed in reset path so there's no point in detaching 2522 * rings; in case of rebuild being triggered not from reset bits 2523 * in pf->state won't be set, so additionally check first q_vector 2524 * against NULL 2525 */ 2526 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2527 goto free_qmap; 2528 2529 ice_for_each_q_vector(vsi, v_idx) { 2530 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2531 struct ice_ring *ring; 2532 2533 ice_for_each_ring(ring, q_vector->tx) 2534 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2535 break; 2536 2537 /* restore the value of last node prior to XDP setup */ 2538 q_vector->tx.ring = ring; 2539 } 2540 2541 free_qmap: 2542 mutex_lock(&pf->avail_q_mutex); 2543 for (i = 0; i < vsi->num_xdp_txq; i++) { 2544 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2545 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2546 } 2547 mutex_unlock(&pf->avail_q_mutex); 2548 2549 for (i = 0; i < vsi->num_xdp_txq; i++) 2550 if (vsi->xdp_rings[i]) { 2551 if (vsi->xdp_rings[i]->desc) 2552 ice_free_tx_ring(vsi->xdp_rings[i]); 2553 kfree_rcu(vsi->xdp_rings[i], rcu); 2554 vsi->xdp_rings[i] = NULL; 2555 } 2556 2557 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2558 vsi->xdp_rings = NULL; 2559 2560 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2561 return 0; 2562 2563 ice_vsi_assign_bpf_prog(vsi, NULL); 2564 2565 /* notify Tx scheduler that we destroyed XDP queues and bring 2566 * back the old number of child nodes 2567 */ 2568 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2569 max_txqs[i] = vsi->num_txq; 2570 2571 /* change number of XDP Tx queues to 0 */ 2572 vsi->num_xdp_txq = 0; 2573 2574 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2575 max_txqs); 2576 } 2577 2578 /** 2579 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2580 * @vsi: VSI to schedule napi on 2581 */ 2582 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2583 { 2584 int i; 2585 2586 ice_for_each_rxq(vsi, i) { 2587 struct ice_ring *rx_ring = vsi->rx_rings[i]; 2588 2589 if (rx_ring->xsk_pool) 2590 napi_schedule(&rx_ring->q_vector->napi); 2591 } 2592 } 2593 2594 /** 2595 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2596 * @vsi: VSI to setup XDP for 2597 * @prog: XDP program 2598 * @extack: netlink extended ack 2599 */ 2600 static int 2601 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2602 struct netlink_ext_ack *extack) 2603 { 2604 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2605 bool if_running = netif_running(vsi->netdev); 2606 int ret = 0, xdp_ring_err = 0; 2607 2608 if (frame_size > vsi->rx_buf_len) { 2609 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2610 return -EOPNOTSUPP; 2611 } 2612 2613 /* need to stop netdev while setting up the program for Rx rings */ 2614 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2615 ret = ice_down(vsi); 2616 if (ret) { 2617 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2618 return ret; 2619 } 2620 } 2621 2622 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2623 vsi->num_xdp_txq = vsi->alloc_rxq; 2624 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2625 if (xdp_ring_err) 2626 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2627 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2628 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2629 if (xdp_ring_err) 2630 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2631 } else { 2632 ice_vsi_assign_bpf_prog(vsi, prog); 2633 } 2634 2635 if (if_running) 2636 ret = ice_up(vsi); 2637 2638 if (!ret && prog) 2639 ice_vsi_rx_napi_schedule(vsi); 2640 2641 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2642 } 2643 2644 /** 2645 * ice_xdp_safe_mode - XDP handler for safe mode 2646 * @dev: netdevice 2647 * @xdp: XDP command 2648 */ 2649 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2650 struct netdev_bpf *xdp) 2651 { 2652 NL_SET_ERR_MSG_MOD(xdp->extack, 2653 "Please provide working DDP firmware package in order to use XDP\n" 2654 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2655 return -EOPNOTSUPP; 2656 } 2657 2658 /** 2659 * ice_xdp - implements XDP handler 2660 * @dev: netdevice 2661 * @xdp: XDP command 2662 */ 2663 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2664 { 2665 struct ice_netdev_priv *np = netdev_priv(dev); 2666 struct ice_vsi *vsi = np->vsi; 2667 2668 if (vsi->type != ICE_VSI_PF) { 2669 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2670 return -EINVAL; 2671 } 2672 2673 switch (xdp->command) { 2674 case XDP_SETUP_PROG: 2675 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2676 case XDP_SETUP_XSK_POOL: 2677 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2678 xdp->xsk.queue_id); 2679 default: 2680 return -EINVAL; 2681 } 2682 } 2683 2684 /** 2685 * ice_ena_misc_vector - enable the non-queue interrupts 2686 * @pf: board private structure 2687 */ 2688 static void ice_ena_misc_vector(struct ice_pf *pf) 2689 { 2690 struct ice_hw *hw = &pf->hw; 2691 u32 val; 2692 2693 /* Disable anti-spoof detection interrupt to prevent spurious event 2694 * interrupts during a function reset. Anti-spoof functionally is 2695 * still supported. 2696 */ 2697 val = rd32(hw, GL_MDCK_TX_TDPU); 2698 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2699 wr32(hw, GL_MDCK_TX_TDPU, val); 2700 2701 /* clear things first */ 2702 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2703 rd32(hw, PFINT_OICR); /* read to clear */ 2704 2705 val = (PFINT_OICR_ECC_ERR_M | 2706 PFINT_OICR_MAL_DETECT_M | 2707 PFINT_OICR_GRST_M | 2708 PFINT_OICR_PCI_EXCEPTION_M | 2709 PFINT_OICR_VFLR_M | 2710 PFINT_OICR_HMC_ERR_M | 2711 PFINT_OICR_PE_PUSH_M | 2712 PFINT_OICR_PE_CRITERR_M); 2713 2714 wr32(hw, PFINT_OICR_ENA, val); 2715 2716 /* SW_ITR_IDX = 0, but don't change INTENA */ 2717 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2718 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2719 } 2720 2721 /** 2722 * ice_misc_intr - misc interrupt handler 2723 * @irq: interrupt number 2724 * @data: pointer to a q_vector 2725 */ 2726 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2727 { 2728 struct ice_pf *pf = (struct ice_pf *)data; 2729 struct ice_hw *hw = &pf->hw; 2730 irqreturn_t ret = IRQ_NONE; 2731 struct device *dev; 2732 u32 oicr, ena_mask; 2733 2734 dev = ice_pf_to_dev(pf); 2735 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2736 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2737 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2738 2739 oicr = rd32(hw, PFINT_OICR); 2740 ena_mask = rd32(hw, PFINT_OICR_ENA); 2741 2742 if (oicr & PFINT_OICR_SWINT_M) { 2743 ena_mask &= ~PFINT_OICR_SWINT_M; 2744 pf->sw_int_count++; 2745 } 2746 2747 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2748 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2749 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2750 } 2751 if (oicr & PFINT_OICR_VFLR_M) { 2752 /* disable any further VFLR event notifications */ 2753 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2754 u32 reg = rd32(hw, PFINT_OICR_ENA); 2755 2756 reg &= ~PFINT_OICR_VFLR_M; 2757 wr32(hw, PFINT_OICR_ENA, reg); 2758 } else { 2759 ena_mask &= ~PFINT_OICR_VFLR_M; 2760 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2761 } 2762 } 2763 2764 if (oicr & PFINT_OICR_GRST_M) { 2765 u32 reset; 2766 2767 /* we have a reset warning */ 2768 ena_mask &= ~PFINT_OICR_GRST_M; 2769 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2770 GLGEN_RSTAT_RESET_TYPE_S; 2771 2772 if (reset == ICE_RESET_CORER) 2773 pf->corer_count++; 2774 else if (reset == ICE_RESET_GLOBR) 2775 pf->globr_count++; 2776 else if (reset == ICE_RESET_EMPR) 2777 pf->empr_count++; 2778 else 2779 dev_dbg(dev, "Invalid reset type %d\n", reset); 2780 2781 /* If a reset cycle isn't already in progress, we set a bit in 2782 * pf->state so that the service task can start a reset/rebuild. 2783 */ 2784 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2785 if (reset == ICE_RESET_CORER) 2786 set_bit(ICE_CORER_RECV, pf->state); 2787 else if (reset == ICE_RESET_GLOBR) 2788 set_bit(ICE_GLOBR_RECV, pf->state); 2789 else 2790 set_bit(ICE_EMPR_RECV, pf->state); 2791 2792 /* There are couple of different bits at play here. 2793 * hw->reset_ongoing indicates whether the hardware is 2794 * in reset. This is set to true when a reset interrupt 2795 * is received and set back to false after the driver 2796 * has determined that the hardware is out of reset. 2797 * 2798 * ICE_RESET_OICR_RECV in pf->state indicates 2799 * that a post reset rebuild is required before the 2800 * driver is operational again. This is set above. 2801 * 2802 * As this is the start of the reset/rebuild cycle, set 2803 * both to indicate that. 2804 */ 2805 hw->reset_ongoing = true; 2806 } 2807 } 2808 2809 if (oicr & PFINT_OICR_TSYN_TX_M) { 2810 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 2811 ice_ptp_process_ts(pf); 2812 } 2813 2814 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 2815 if (oicr & ICE_AUX_CRIT_ERR) { 2816 struct iidc_event *event; 2817 2818 ena_mask &= ~ICE_AUX_CRIT_ERR; 2819 event = kzalloc(sizeof(*event), GFP_KERNEL); 2820 if (event) { 2821 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2822 /* report the entire OICR value to AUX driver */ 2823 event->reg = oicr; 2824 ice_send_event_to_aux(pf, event); 2825 kfree(event); 2826 } 2827 } 2828 2829 /* Report any remaining unexpected interrupts */ 2830 oicr &= ena_mask; 2831 if (oicr) { 2832 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2833 /* If a critical error is pending there is no choice but to 2834 * reset the device. 2835 */ 2836 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 2837 PFINT_OICR_ECC_ERR_M)) { 2838 set_bit(ICE_PFR_REQ, pf->state); 2839 ice_service_task_schedule(pf); 2840 } 2841 } 2842 ret = IRQ_HANDLED; 2843 2844 ice_service_task_schedule(pf); 2845 ice_irq_dynamic_ena(hw, NULL, NULL); 2846 2847 return ret; 2848 } 2849 2850 /** 2851 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2852 * @hw: pointer to HW structure 2853 */ 2854 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2855 { 2856 /* disable Admin queue Interrupt causes */ 2857 wr32(hw, PFINT_FW_CTL, 2858 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2859 2860 /* disable Mailbox queue Interrupt causes */ 2861 wr32(hw, PFINT_MBX_CTL, 2862 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2863 2864 wr32(hw, PFINT_SB_CTL, 2865 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 2866 2867 /* disable Control queue Interrupt causes */ 2868 wr32(hw, PFINT_OICR_CTL, 2869 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2870 2871 ice_flush(hw); 2872 } 2873 2874 /** 2875 * ice_free_irq_msix_misc - Unroll misc vector setup 2876 * @pf: board private structure 2877 */ 2878 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2879 { 2880 struct ice_hw *hw = &pf->hw; 2881 2882 ice_dis_ctrlq_interrupts(hw); 2883 2884 /* disable OICR interrupt */ 2885 wr32(hw, PFINT_OICR_ENA, 0); 2886 ice_flush(hw); 2887 2888 if (pf->msix_entries) { 2889 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2890 devm_free_irq(ice_pf_to_dev(pf), 2891 pf->msix_entries[pf->oicr_idx].vector, pf); 2892 } 2893 2894 pf->num_avail_sw_msix += 1; 2895 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2896 } 2897 2898 /** 2899 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2900 * @hw: pointer to HW structure 2901 * @reg_idx: HW vector index to associate the control queue interrupts with 2902 */ 2903 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2904 { 2905 u32 val; 2906 2907 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2908 PFINT_OICR_CTL_CAUSE_ENA_M); 2909 wr32(hw, PFINT_OICR_CTL, val); 2910 2911 /* enable Admin queue Interrupt causes */ 2912 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2913 PFINT_FW_CTL_CAUSE_ENA_M); 2914 wr32(hw, PFINT_FW_CTL, val); 2915 2916 /* enable Mailbox queue Interrupt causes */ 2917 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2918 PFINT_MBX_CTL_CAUSE_ENA_M); 2919 wr32(hw, PFINT_MBX_CTL, val); 2920 2921 /* This enables Sideband queue Interrupt causes */ 2922 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 2923 PFINT_SB_CTL_CAUSE_ENA_M); 2924 wr32(hw, PFINT_SB_CTL, val); 2925 2926 ice_flush(hw); 2927 } 2928 2929 /** 2930 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2931 * @pf: board private structure 2932 * 2933 * This sets up the handler for MSIX 0, which is used to manage the 2934 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2935 * when in MSI or Legacy interrupt mode. 2936 */ 2937 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2938 { 2939 struct device *dev = ice_pf_to_dev(pf); 2940 struct ice_hw *hw = &pf->hw; 2941 int oicr_idx, err = 0; 2942 2943 if (!pf->int_name[0]) 2944 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2945 dev_driver_string(dev), dev_name(dev)); 2946 2947 /* Do not request IRQ but do enable OICR interrupt since settings are 2948 * lost during reset. Note that this function is called only during 2949 * rebuild path and not while reset is in progress. 2950 */ 2951 if (ice_is_reset_in_progress(pf->state)) 2952 goto skip_req_irq; 2953 2954 /* reserve one vector in irq_tracker for misc interrupts */ 2955 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2956 if (oicr_idx < 0) 2957 return oicr_idx; 2958 2959 pf->num_avail_sw_msix -= 1; 2960 pf->oicr_idx = (u16)oicr_idx; 2961 2962 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2963 ice_misc_intr, 0, pf->int_name, pf); 2964 if (err) { 2965 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2966 pf->int_name, err); 2967 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2968 pf->num_avail_sw_msix += 1; 2969 return err; 2970 } 2971 2972 skip_req_irq: 2973 ice_ena_misc_vector(pf); 2974 2975 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2976 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2977 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2978 2979 ice_flush(hw); 2980 ice_irq_dynamic_ena(hw, NULL, NULL); 2981 2982 return 0; 2983 } 2984 2985 /** 2986 * ice_napi_add - register NAPI handler for the VSI 2987 * @vsi: VSI for which NAPI handler is to be registered 2988 * 2989 * This function is only called in the driver's load path. Registering the NAPI 2990 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2991 * reset/rebuild, etc.) 2992 */ 2993 static void ice_napi_add(struct ice_vsi *vsi) 2994 { 2995 int v_idx; 2996 2997 if (!vsi->netdev) 2998 return; 2999 3000 ice_for_each_q_vector(vsi, v_idx) 3001 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3002 ice_napi_poll, NAPI_POLL_WEIGHT); 3003 } 3004 3005 /** 3006 * ice_set_ops - set netdev and ethtools ops for the given netdev 3007 * @netdev: netdev instance 3008 */ 3009 static void ice_set_ops(struct net_device *netdev) 3010 { 3011 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3012 3013 if (ice_is_safe_mode(pf)) { 3014 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3015 ice_set_ethtool_safe_mode_ops(netdev); 3016 return; 3017 } 3018 3019 netdev->netdev_ops = &ice_netdev_ops; 3020 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3021 ice_set_ethtool_ops(netdev); 3022 } 3023 3024 /** 3025 * ice_set_netdev_features - set features for the given netdev 3026 * @netdev: netdev instance 3027 */ 3028 static void ice_set_netdev_features(struct net_device *netdev) 3029 { 3030 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3031 netdev_features_t csumo_features; 3032 netdev_features_t vlano_features; 3033 netdev_features_t dflt_features; 3034 netdev_features_t tso_features; 3035 3036 if (ice_is_safe_mode(pf)) { 3037 /* safe mode */ 3038 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3039 netdev->hw_features = netdev->features; 3040 return; 3041 } 3042 3043 dflt_features = NETIF_F_SG | 3044 NETIF_F_HIGHDMA | 3045 NETIF_F_NTUPLE | 3046 NETIF_F_RXHASH; 3047 3048 csumo_features = NETIF_F_RXCSUM | 3049 NETIF_F_IP_CSUM | 3050 NETIF_F_SCTP_CRC | 3051 NETIF_F_IPV6_CSUM; 3052 3053 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3054 NETIF_F_HW_VLAN_CTAG_TX | 3055 NETIF_F_HW_VLAN_CTAG_RX; 3056 3057 tso_features = NETIF_F_TSO | 3058 NETIF_F_TSO_ECN | 3059 NETIF_F_TSO6 | 3060 NETIF_F_GSO_GRE | 3061 NETIF_F_GSO_UDP_TUNNEL | 3062 NETIF_F_GSO_GRE_CSUM | 3063 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3064 NETIF_F_GSO_PARTIAL | 3065 NETIF_F_GSO_IPXIP4 | 3066 NETIF_F_GSO_IPXIP6 | 3067 NETIF_F_GSO_UDP_L4; 3068 3069 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3070 NETIF_F_GSO_GRE_CSUM; 3071 /* set features that user can change */ 3072 netdev->hw_features = dflt_features | csumo_features | 3073 vlano_features | tso_features; 3074 3075 /* add support for HW_CSUM on packets with MPLS header */ 3076 netdev->mpls_features = NETIF_F_HW_CSUM; 3077 3078 /* enable features */ 3079 netdev->features |= netdev->hw_features; 3080 /* encap and VLAN devices inherit default, csumo and tso features */ 3081 netdev->hw_enc_features |= dflt_features | csumo_features | 3082 tso_features; 3083 netdev->vlan_features |= dflt_features | csumo_features | 3084 tso_features; 3085 } 3086 3087 /** 3088 * ice_cfg_netdev - Allocate, configure and register a netdev 3089 * @vsi: the VSI associated with the new netdev 3090 * 3091 * Returns 0 on success, negative value on failure 3092 */ 3093 static int ice_cfg_netdev(struct ice_vsi *vsi) 3094 { 3095 struct ice_netdev_priv *np; 3096 struct net_device *netdev; 3097 u8 mac_addr[ETH_ALEN]; 3098 3099 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3100 vsi->alloc_rxq); 3101 if (!netdev) 3102 return -ENOMEM; 3103 3104 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3105 vsi->netdev = netdev; 3106 np = netdev_priv(netdev); 3107 np->vsi = vsi; 3108 3109 ice_set_netdev_features(netdev); 3110 3111 ice_set_ops(netdev); 3112 3113 if (vsi->type == ICE_VSI_PF) { 3114 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3115 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3116 ether_addr_copy(netdev->dev_addr, mac_addr); 3117 ether_addr_copy(netdev->perm_addr, mac_addr); 3118 } 3119 3120 netdev->priv_flags |= IFF_UNICAST_FLT; 3121 3122 /* Setup netdev TC information */ 3123 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3124 3125 /* setup watchdog timeout value to be 5 second */ 3126 netdev->watchdog_timeo = 5 * HZ; 3127 3128 netdev->min_mtu = ETH_MIN_MTU; 3129 netdev->max_mtu = ICE_MAX_MTU; 3130 3131 return 0; 3132 } 3133 3134 /** 3135 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3136 * @lut: Lookup table 3137 * @rss_table_size: Lookup table size 3138 * @rss_size: Range of queue number for hashing 3139 */ 3140 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3141 { 3142 u16 i; 3143 3144 for (i = 0; i < rss_table_size; i++) 3145 lut[i] = i % rss_size; 3146 } 3147 3148 /** 3149 * ice_pf_vsi_setup - Set up a PF VSI 3150 * @pf: board private structure 3151 * @pi: pointer to the port_info instance 3152 * 3153 * Returns pointer to the successfully allocated VSI software struct 3154 * on success, otherwise returns NULL on failure. 3155 */ 3156 static struct ice_vsi * 3157 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3158 { 3159 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 3160 } 3161 3162 /** 3163 * ice_ctrl_vsi_setup - Set up a control VSI 3164 * @pf: board private structure 3165 * @pi: pointer to the port_info instance 3166 * 3167 * Returns pointer to the successfully allocated VSI software struct 3168 * on success, otherwise returns NULL on failure. 3169 */ 3170 static struct ice_vsi * 3171 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3172 { 3173 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 3174 } 3175 3176 /** 3177 * ice_lb_vsi_setup - Set up a loopback VSI 3178 * @pf: board private structure 3179 * @pi: pointer to the port_info instance 3180 * 3181 * Returns pointer to the successfully allocated VSI software struct 3182 * on success, otherwise returns NULL on failure. 3183 */ 3184 struct ice_vsi * 3185 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3186 { 3187 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 3188 } 3189 3190 /** 3191 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3192 * @netdev: network interface to be adjusted 3193 * @proto: unused protocol 3194 * @vid: VLAN ID to be added 3195 * 3196 * net_device_ops implementation for adding VLAN IDs 3197 */ 3198 static int 3199 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3200 u16 vid) 3201 { 3202 struct ice_netdev_priv *np = netdev_priv(netdev); 3203 struct ice_vsi *vsi = np->vsi; 3204 int ret; 3205 3206 /* VLAN 0 is added by default during load/reset */ 3207 if (!vid) 3208 return 0; 3209 3210 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3211 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3212 ret = ice_cfg_vlan_pruning(vsi, true, false); 3213 if (ret) 3214 return ret; 3215 } 3216 3217 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3218 * packets aren't pruned by the device's internal switch on Rx 3219 */ 3220 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3221 if (!ret) 3222 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3223 3224 return ret; 3225 } 3226 3227 /** 3228 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3229 * @netdev: network interface to be adjusted 3230 * @proto: unused protocol 3231 * @vid: VLAN ID to be removed 3232 * 3233 * net_device_ops implementation for removing VLAN IDs 3234 */ 3235 static int 3236 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3237 u16 vid) 3238 { 3239 struct ice_netdev_priv *np = netdev_priv(netdev); 3240 struct ice_vsi *vsi = np->vsi; 3241 int ret; 3242 3243 /* don't allow removal of VLAN 0 */ 3244 if (!vid) 3245 return 0; 3246 3247 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3248 * information 3249 */ 3250 ret = ice_vsi_kill_vlan(vsi, vid); 3251 if (ret) 3252 return ret; 3253 3254 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3255 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3256 ret = ice_cfg_vlan_pruning(vsi, false, false); 3257 3258 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3259 return ret; 3260 } 3261 3262 /** 3263 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3264 * @pf: board private structure 3265 * 3266 * Returns 0 on success, negative value on failure 3267 */ 3268 static int ice_setup_pf_sw(struct ice_pf *pf) 3269 { 3270 struct ice_vsi *vsi; 3271 int status = 0; 3272 3273 if (ice_is_reset_in_progress(pf->state)) 3274 return -EBUSY; 3275 3276 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3277 if (!vsi) 3278 return -ENOMEM; 3279 3280 status = ice_cfg_netdev(vsi); 3281 if (status) { 3282 status = -ENODEV; 3283 goto unroll_vsi_setup; 3284 } 3285 /* netdev has to be configured before setting frame size */ 3286 ice_vsi_cfg_frame_size(vsi); 3287 3288 /* Setup DCB netlink interface */ 3289 ice_dcbnl_setup(vsi); 3290 3291 /* registering the NAPI handler requires both the queues and 3292 * netdev to be created, which are done in ice_pf_vsi_setup() 3293 * and ice_cfg_netdev() respectively 3294 */ 3295 ice_napi_add(vsi); 3296 3297 status = ice_set_cpu_rx_rmap(vsi); 3298 if (status) { 3299 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 3300 vsi->vsi_num, status); 3301 status = -EINVAL; 3302 goto unroll_napi_add; 3303 } 3304 status = ice_init_mac_fltr(pf); 3305 if (status) 3306 goto free_cpu_rx_map; 3307 3308 return status; 3309 3310 free_cpu_rx_map: 3311 ice_free_cpu_rx_rmap(vsi); 3312 3313 unroll_napi_add: 3314 if (vsi) { 3315 ice_napi_del(vsi); 3316 if (vsi->netdev) { 3317 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3318 free_netdev(vsi->netdev); 3319 vsi->netdev = NULL; 3320 } 3321 } 3322 3323 unroll_vsi_setup: 3324 ice_vsi_release(vsi); 3325 return status; 3326 } 3327 3328 /** 3329 * ice_get_avail_q_count - Get count of queues in use 3330 * @pf_qmap: bitmap to get queue use count from 3331 * @lock: pointer to a mutex that protects access to pf_qmap 3332 * @size: size of the bitmap 3333 */ 3334 static u16 3335 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3336 { 3337 unsigned long bit; 3338 u16 count = 0; 3339 3340 mutex_lock(lock); 3341 for_each_clear_bit(bit, pf_qmap, size) 3342 count++; 3343 mutex_unlock(lock); 3344 3345 return count; 3346 } 3347 3348 /** 3349 * ice_get_avail_txq_count - Get count of Tx queues in use 3350 * @pf: pointer to an ice_pf instance 3351 */ 3352 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3353 { 3354 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3355 pf->max_pf_txqs); 3356 } 3357 3358 /** 3359 * ice_get_avail_rxq_count - Get count of Rx queues in use 3360 * @pf: pointer to an ice_pf instance 3361 */ 3362 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3363 { 3364 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3365 pf->max_pf_rxqs); 3366 } 3367 3368 /** 3369 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3370 * @pf: board private structure to initialize 3371 */ 3372 static void ice_deinit_pf(struct ice_pf *pf) 3373 { 3374 ice_service_task_stop(pf); 3375 mutex_destroy(&pf->sw_mutex); 3376 mutex_destroy(&pf->tc_mutex); 3377 mutex_destroy(&pf->avail_q_mutex); 3378 3379 if (pf->avail_txqs) { 3380 bitmap_free(pf->avail_txqs); 3381 pf->avail_txqs = NULL; 3382 } 3383 3384 if (pf->avail_rxqs) { 3385 bitmap_free(pf->avail_rxqs); 3386 pf->avail_rxqs = NULL; 3387 } 3388 3389 if (pf->ptp.clock) 3390 ptp_clock_unregister(pf->ptp.clock); 3391 } 3392 3393 /** 3394 * ice_set_pf_caps - set PFs capability flags 3395 * @pf: pointer to the PF instance 3396 */ 3397 static void ice_set_pf_caps(struct ice_pf *pf) 3398 { 3399 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3400 3401 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3402 clear_bit(ICE_FLAG_AUX_ENA, pf->flags); 3403 if (func_caps->common_cap.rdma) { 3404 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3405 set_bit(ICE_FLAG_AUX_ENA, pf->flags); 3406 } 3407 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3408 if (func_caps->common_cap.dcb) 3409 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3410 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3411 if (func_caps->common_cap.sr_iov_1_1) { 3412 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3413 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3414 ICE_MAX_VF_COUNT); 3415 } 3416 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3417 if (func_caps->common_cap.rss_table_size) 3418 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3419 3420 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3421 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3422 u16 unused; 3423 3424 /* ctrl_vsi_idx will be set to a valid value when flow director 3425 * is setup by ice_init_fdir 3426 */ 3427 pf->ctrl_vsi_idx = ICE_NO_VSI; 3428 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3429 /* force guaranteed filter pool for PF */ 3430 ice_alloc_fd_guar_item(&pf->hw, &unused, 3431 func_caps->fd_fltr_guar); 3432 /* force shared filter pool for PF */ 3433 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3434 func_caps->fd_fltr_best_effort); 3435 } 3436 3437 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3438 if (func_caps->common_cap.ieee_1588) 3439 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3440 3441 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3442 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3443 } 3444 3445 /** 3446 * ice_init_pf - Initialize general software structures (struct ice_pf) 3447 * @pf: board private structure to initialize 3448 */ 3449 static int ice_init_pf(struct ice_pf *pf) 3450 { 3451 ice_set_pf_caps(pf); 3452 3453 mutex_init(&pf->sw_mutex); 3454 mutex_init(&pf->tc_mutex); 3455 3456 INIT_HLIST_HEAD(&pf->aq_wait_list); 3457 spin_lock_init(&pf->aq_wait_lock); 3458 init_waitqueue_head(&pf->aq_wait_queue); 3459 3460 init_waitqueue_head(&pf->reset_wait_queue); 3461 3462 /* setup service timer and periodic service task */ 3463 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3464 pf->serv_tmr_period = HZ; 3465 INIT_WORK(&pf->serv_task, ice_service_task); 3466 clear_bit(ICE_SERVICE_SCHED, pf->state); 3467 3468 mutex_init(&pf->avail_q_mutex); 3469 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3470 if (!pf->avail_txqs) 3471 return -ENOMEM; 3472 3473 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3474 if (!pf->avail_rxqs) { 3475 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3476 pf->avail_txqs = NULL; 3477 return -ENOMEM; 3478 } 3479 3480 return 0; 3481 } 3482 3483 /** 3484 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3485 * @pf: board private structure 3486 * 3487 * compute the number of MSIX vectors required (v_budget) and request from 3488 * the OS. Return the number of vectors reserved or negative on failure 3489 */ 3490 static int ice_ena_msix_range(struct ice_pf *pf) 3491 { 3492 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3493 struct device *dev = ice_pf_to_dev(pf); 3494 int needed, err, i; 3495 3496 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3497 num_cpus = num_online_cpus(); 3498 3499 /* reserve for LAN miscellaneous handler */ 3500 needed = ICE_MIN_LAN_OICR_MSIX; 3501 if (v_left < needed) 3502 goto no_hw_vecs_left_err; 3503 v_budget += needed; 3504 v_left -= needed; 3505 3506 /* reserve for flow director */ 3507 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3508 needed = ICE_FDIR_MSIX; 3509 if (v_left < needed) 3510 goto no_hw_vecs_left_err; 3511 v_budget += needed; 3512 v_left -= needed; 3513 } 3514 3515 /* total used for non-traffic vectors */ 3516 v_other = v_budget; 3517 3518 /* reserve vectors for LAN traffic */ 3519 needed = num_cpus; 3520 if (v_left < needed) 3521 goto no_hw_vecs_left_err; 3522 pf->num_lan_msix = needed; 3523 v_budget += needed; 3524 v_left -= needed; 3525 3526 /* reserve vectors for RDMA auxiliary driver */ 3527 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3528 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3529 if (v_left < needed) 3530 goto no_hw_vecs_left_err; 3531 pf->num_rdma_msix = needed; 3532 v_budget += needed; 3533 v_left -= needed; 3534 } 3535 3536 pf->msix_entries = devm_kcalloc(dev, v_budget, 3537 sizeof(*pf->msix_entries), GFP_KERNEL); 3538 if (!pf->msix_entries) { 3539 err = -ENOMEM; 3540 goto exit_err; 3541 } 3542 3543 for (i = 0; i < v_budget; i++) 3544 pf->msix_entries[i].entry = i; 3545 3546 /* actually reserve the vectors */ 3547 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3548 ICE_MIN_MSIX, v_budget); 3549 if (v_actual < 0) { 3550 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3551 err = v_actual; 3552 goto msix_err; 3553 } 3554 3555 if (v_actual < v_budget) { 3556 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3557 v_budget, v_actual); 3558 3559 if (v_actual < ICE_MIN_MSIX) { 3560 /* error if we can't get minimum vectors */ 3561 pci_disable_msix(pf->pdev); 3562 err = -ERANGE; 3563 goto msix_err; 3564 } else { 3565 int v_remain = v_actual - v_other; 3566 int v_rdma = 0, v_min_rdma = 0; 3567 3568 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3569 /* Need at least 1 interrupt in addition to 3570 * AEQ MSIX 3571 */ 3572 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3573 v_min_rdma = ICE_MIN_RDMA_MSIX; 3574 } 3575 3576 if (v_actual == ICE_MIN_MSIX || 3577 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3578 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3579 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3580 3581 pf->num_rdma_msix = 0; 3582 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3583 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3584 (v_remain - v_rdma < v_rdma)) { 3585 /* Support minimum RDMA and give remaining 3586 * vectors to LAN MSIX 3587 */ 3588 pf->num_rdma_msix = v_min_rdma; 3589 pf->num_lan_msix = v_remain - v_min_rdma; 3590 } else { 3591 /* Split remaining MSIX with RDMA after 3592 * accounting for AEQ MSIX 3593 */ 3594 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3595 ICE_RDMA_NUM_AEQ_MSIX; 3596 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3597 } 3598 3599 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3600 pf->num_lan_msix); 3601 3602 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 3603 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3604 pf->num_rdma_msix); 3605 } 3606 } 3607 3608 return v_actual; 3609 3610 msix_err: 3611 devm_kfree(dev, pf->msix_entries); 3612 goto exit_err; 3613 3614 no_hw_vecs_left_err: 3615 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3616 needed, v_left); 3617 err = -ERANGE; 3618 exit_err: 3619 pf->num_rdma_msix = 0; 3620 pf->num_lan_msix = 0; 3621 return err; 3622 } 3623 3624 /** 3625 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3626 * @pf: board private structure 3627 */ 3628 static void ice_dis_msix(struct ice_pf *pf) 3629 { 3630 pci_disable_msix(pf->pdev); 3631 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3632 pf->msix_entries = NULL; 3633 } 3634 3635 /** 3636 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3637 * @pf: board private structure 3638 */ 3639 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3640 { 3641 ice_dis_msix(pf); 3642 3643 if (pf->irq_tracker) { 3644 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3645 pf->irq_tracker = NULL; 3646 } 3647 } 3648 3649 /** 3650 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3651 * @pf: board private structure to initialize 3652 */ 3653 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3654 { 3655 int vectors; 3656 3657 vectors = ice_ena_msix_range(pf); 3658 3659 if (vectors < 0) 3660 return vectors; 3661 3662 /* set up vector assignment tracking */ 3663 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3664 struct_size(pf->irq_tracker, list, vectors), 3665 GFP_KERNEL); 3666 if (!pf->irq_tracker) { 3667 ice_dis_msix(pf); 3668 return -ENOMEM; 3669 } 3670 3671 /* populate SW interrupts pool with number of OS granted IRQs. */ 3672 pf->num_avail_sw_msix = (u16)vectors; 3673 pf->irq_tracker->num_entries = (u16)vectors; 3674 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3675 3676 return 0; 3677 } 3678 3679 /** 3680 * ice_is_wol_supported - check if WoL is supported 3681 * @hw: pointer to hardware info 3682 * 3683 * Check if WoL is supported based on the HW configuration. 3684 * Returns true if NVM supports and enables WoL for this port, false otherwise 3685 */ 3686 bool ice_is_wol_supported(struct ice_hw *hw) 3687 { 3688 u16 wol_ctrl; 3689 3690 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3691 * word) indicates WoL is not supported on the corresponding PF ID. 3692 */ 3693 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3694 return false; 3695 3696 return !(BIT(hw->port_info->lport) & wol_ctrl); 3697 } 3698 3699 /** 3700 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3701 * @vsi: VSI being changed 3702 * @new_rx: new number of Rx queues 3703 * @new_tx: new number of Tx queues 3704 * 3705 * Only change the number of queues if new_tx, or new_rx is non-0. 3706 * 3707 * Returns 0 on success. 3708 */ 3709 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3710 { 3711 struct ice_pf *pf = vsi->back; 3712 int err = 0, timeout = 50; 3713 3714 if (!new_rx && !new_tx) 3715 return -EINVAL; 3716 3717 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3718 timeout--; 3719 if (!timeout) 3720 return -EBUSY; 3721 usleep_range(1000, 2000); 3722 } 3723 3724 if (new_tx) 3725 vsi->req_txq = (u16)new_tx; 3726 if (new_rx) 3727 vsi->req_rxq = (u16)new_rx; 3728 3729 /* set for the next time the netdev is started */ 3730 if (!netif_running(vsi->netdev)) { 3731 ice_vsi_rebuild(vsi, false); 3732 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3733 goto done; 3734 } 3735 3736 ice_vsi_close(vsi); 3737 ice_vsi_rebuild(vsi, false); 3738 ice_pf_dcb_recfg(pf); 3739 ice_vsi_open(vsi); 3740 done: 3741 clear_bit(ICE_CFG_BUSY, pf->state); 3742 return err; 3743 } 3744 3745 /** 3746 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3747 * @pf: PF to configure 3748 * 3749 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3750 * VSI can still Tx/Rx VLAN tagged packets. 3751 */ 3752 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3753 { 3754 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3755 struct ice_vsi_ctx *ctxt; 3756 enum ice_status status; 3757 struct ice_hw *hw; 3758 3759 if (!vsi) 3760 return; 3761 3762 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3763 if (!ctxt) 3764 return; 3765 3766 hw = &pf->hw; 3767 ctxt->info = vsi->info; 3768 3769 ctxt->info.valid_sections = 3770 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3771 ICE_AQ_VSI_PROP_SECURITY_VALID | 3772 ICE_AQ_VSI_PROP_SW_VALID); 3773 3774 /* disable VLAN anti-spoof */ 3775 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3776 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3777 3778 /* disable VLAN pruning and keep all other settings */ 3779 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3780 3781 /* allow all VLANs on Tx and don't strip on Rx */ 3782 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 3783 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 3784 3785 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 3786 if (status) { 3787 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 3788 ice_stat_str(status), 3789 ice_aq_str(hw->adminq.sq_last_status)); 3790 } else { 3791 vsi->info.sec_flags = ctxt->info.sec_flags; 3792 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 3793 vsi->info.vlan_flags = ctxt->info.vlan_flags; 3794 } 3795 3796 kfree(ctxt); 3797 } 3798 3799 /** 3800 * ice_log_pkg_init - log result of DDP package load 3801 * @hw: pointer to hardware info 3802 * @status: status of package load 3803 */ 3804 static void 3805 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3806 { 3807 struct ice_pf *pf = (struct ice_pf *)hw->back; 3808 struct device *dev = ice_pf_to_dev(pf); 3809 3810 switch (*status) { 3811 case ICE_SUCCESS: 3812 /* The package download AdminQ command returned success because 3813 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3814 * already a package loaded on the device. 3815 */ 3816 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3817 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3818 hw->pkg_ver.update == hw->active_pkg_ver.update && 3819 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3820 !memcmp(hw->pkg_name, hw->active_pkg_name, 3821 sizeof(hw->pkg_name))) { 3822 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3823 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3824 hw->active_pkg_name, 3825 hw->active_pkg_ver.major, 3826 hw->active_pkg_ver.minor, 3827 hw->active_pkg_ver.update, 3828 hw->active_pkg_ver.draft); 3829 else 3830 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3831 hw->active_pkg_name, 3832 hw->active_pkg_ver.major, 3833 hw->active_pkg_ver.minor, 3834 hw->active_pkg_ver.update, 3835 hw->active_pkg_ver.draft); 3836 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3837 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3838 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3839 hw->active_pkg_name, 3840 hw->active_pkg_ver.major, 3841 hw->active_pkg_ver.minor, 3842 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3843 *status = ICE_ERR_NOT_SUPPORTED; 3844 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3845 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3846 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3847 hw->active_pkg_name, 3848 hw->active_pkg_ver.major, 3849 hw->active_pkg_ver.minor, 3850 hw->active_pkg_ver.update, 3851 hw->active_pkg_ver.draft, 3852 hw->pkg_name, 3853 hw->pkg_ver.major, 3854 hw->pkg_ver.minor, 3855 hw->pkg_ver.update, 3856 hw->pkg_ver.draft); 3857 } else { 3858 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3859 *status = ICE_ERR_NOT_SUPPORTED; 3860 } 3861 break; 3862 case ICE_ERR_FW_DDP_MISMATCH: 3863 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3864 break; 3865 case ICE_ERR_BUF_TOO_SHORT: 3866 case ICE_ERR_CFG: 3867 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3868 break; 3869 case ICE_ERR_NOT_SUPPORTED: 3870 /* Package File version not supported */ 3871 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3872 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3873 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3874 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3875 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3876 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3877 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3878 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3879 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3880 break; 3881 case ICE_ERR_AQ_ERROR: 3882 switch (hw->pkg_dwnld_status) { 3883 case ICE_AQ_RC_ENOSEC: 3884 case ICE_AQ_RC_EBADSIG: 3885 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3886 return; 3887 case ICE_AQ_RC_ESVN: 3888 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3889 return; 3890 case ICE_AQ_RC_EBADMAN: 3891 case ICE_AQ_RC_EBADBUF: 3892 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3893 /* poll for reset to complete */ 3894 if (ice_check_reset(hw)) 3895 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3896 return; 3897 default: 3898 break; 3899 } 3900 fallthrough; 3901 default: 3902 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3903 *status); 3904 break; 3905 } 3906 } 3907 3908 /** 3909 * ice_load_pkg - load/reload the DDP Package file 3910 * @firmware: firmware structure when firmware requested or NULL for reload 3911 * @pf: pointer to the PF instance 3912 * 3913 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3914 * initialize HW tables. 3915 */ 3916 static void 3917 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3918 { 3919 enum ice_status status = ICE_ERR_PARAM; 3920 struct device *dev = ice_pf_to_dev(pf); 3921 struct ice_hw *hw = &pf->hw; 3922 3923 /* Load DDP Package */ 3924 if (firmware && !hw->pkg_copy) { 3925 status = ice_copy_and_init_pkg(hw, firmware->data, 3926 firmware->size); 3927 ice_log_pkg_init(hw, &status); 3928 } else if (!firmware && hw->pkg_copy) { 3929 /* Reload package during rebuild after CORER/GLOBR reset */ 3930 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3931 ice_log_pkg_init(hw, &status); 3932 } else { 3933 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3934 } 3935 3936 if (status) { 3937 /* Safe Mode */ 3938 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3939 return; 3940 } 3941 3942 /* Successful download package is the precondition for advanced 3943 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3944 */ 3945 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3946 } 3947 3948 /** 3949 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3950 * @pf: pointer to the PF structure 3951 * 3952 * There is no error returned here because the driver should be able to handle 3953 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3954 * specifically with Tx. 3955 */ 3956 static void ice_verify_cacheline_size(struct ice_pf *pf) 3957 { 3958 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3959 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3960 ICE_CACHE_LINE_BYTES); 3961 } 3962 3963 /** 3964 * ice_send_version - update firmware with driver version 3965 * @pf: PF struct 3966 * 3967 * Returns ICE_SUCCESS on success, else error code 3968 */ 3969 static enum ice_status ice_send_version(struct ice_pf *pf) 3970 { 3971 struct ice_driver_ver dv; 3972 3973 dv.major_ver = 0xff; 3974 dv.minor_ver = 0xff; 3975 dv.build_ver = 0xff; 3976 dv.subbuild_ver = 0; 3977 strscpy((char *)dv.driver_string, UTS_RELEASE, 3978 sizeof(dv.driver_string)); 3979 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3980 } 3981 3982 /** 3983 * ice_init_fdir - Initialize flow director VSI and configuration 3984 * @pf: pointer to the PF instance 3985 * 3986 * returns 0 on success, negative on error 3987 */ 3988 static int ice_init_fdir(struct ice_pf *pf) 3989 { 3990 struct device *dev = ice_pf_to_dev(pf); 3991 struct ice_vsi *ctrl_vsi; 3992 int err; 3993 3994 /* Side Band Flow Director needs to have a control VSI. 3995 * Allocate it and store it in the PF. 3996 */ 3997 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 3998 if (!ctrl_vsi) { 3999 dev_dbg(dev, "could not create control VSI\n"); 4000 return -ENOMEM; 4001 } 4002 4003 err = ice_vsi_open_ctrl(ctrl_vsi); 4004 if (err) { 4005 dev_dbg(dev, "could not open control VSI\n"); 4006 goto err_vsi_open; 4007 } 4008 4009 mutex_init(&pf->hw.fdir_fltr_lock); 4010 4011 err = ice_fdir_create_dflt_rules(pf); 4012 if (err) 4013 goto err_fdir_rule; 4014 4015 return 0; 4016 4017 err_fdir_rule: 4018 ice_fdir_release_flows(&pf->hw); 4019 ice_vsi_close(ctrl_vsi); 4020 err_vsi_open: 4021 ice_vsi_release(ctrl_vsi); 4022 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4023 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4024 pf->ctrl_vsi_idx = ICE_NO_VSI; 4025 } 4026 return err; 4027 } 4028 4029 /** 4030 * ice_get_opt_fw_name - return optional firmware file name or NULL 4031 * @pf: pointer to the PF instance 4032 */ 4033 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4034 { 4035 /* Optional firmware name same as default with additional dash 4036 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4037 */ 4038 struct pci_dev *pdev = pf->pdev; 4039 char *opt_fw_filename; 4040 u64 dsn; 4041 4042 /* Determine the name of the optional file using the DSN (two 4043 * dwords following the start of the DSN Capability). 4044 */ 4045 dsn = pci_get_dsn(pdev); 4046 if (!dsn) 4047 return NULL; 4048 4049 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4050 if (!opt_fw_filename) 4051 return NULL; 4052 4053 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4054 ICE_DDP_PKG_PATH, dsn); 4055 4056 return opt_fw_filename; 4057 } 4058 4059 /** 4060 * ice_request_fw - Device initialization routine 4061 * @pf: pointer to the PF instance 4062 */ 4063 static void ice_request_fw(struct ice_pf *pf) 4064 { 4065 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4066 const struct firmware *firmware = NULL; 4067 struct device *dev = ice_pf_to_dev(pf); 4068 int err = 0; 4069 4070 /* optional device-specific DDP (if present) overrides the default DDP 4071 * package file. kernel logs a debug message if the file doesn't exist, 4072 * and warning messages for other errors. 4073 */ 4074 if (opt_fw_filename) { 4075 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4076 if (err) { 4077 kfree(opt_fw_filename); 4078 goto dflt_pkg_load; 4079 } 4080 4081 /* request for firmware was successful. Download to device */ 4082 ice_load_pkg(firmware, pf); 4083 kfree(opt_fw_filename); 4084 release_firmware(firmware); 4085 return; 4086 } 4087 4088 dflt_pkg_load: 4089 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4090 if (err) { 4091 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4092 return; 4093 } 4094 4095 /* request for firmware was successful. Download to device */ 4096 ice_load_pkg(firmware, pf); 4097 release_firmware(firmware); 4098 } 4099 4100 /** 4101 * ice_print_wake_reason - show the wake up cause in the log 4102 * @pf: pointer to the PF struct 4103 */ 4104 static void ice_print_wake_reason(struct ice_pf *pf) 4105 { 4106 u32 wus = pf->wakeup_reason; 4107 const char *wake_str; 4108 4109 /* if no wake event, nothing to print */ 4110 if (!wus) 4111 return; 4112 4113 if (wus & PFPM_WUS_LNKC_M) 4114 wake_str = "Link\n"; 4115 else if (wus & PFPM_WUS_MAG_M) 4116 wake_str = "Magic Packet\n"; 4117 else if (wus & PFPM_WUS_MNG_M) 4118 wake_str = "Management\n"; 4119 else if (wus & PFPM_WUS_FW_RST_WK_M) 4120 wake_str = "Firmware Reset\n"; 4121 else 4122 wake_str = "Unknown\n"; 4123 4124 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4125 } 4126 4127 /** 4128 * ice_register_netdev - register netdev and devlink port 4129 * @pf: pointer to the PF struct 4130 */ 4131 static int ice_register_netdev(struct ice_pf *pf) 4132 { 4133 struct ice_vsi *vsi; 4134 int err = 0; 4135 4136 vsi = ice_get_main_vsi(pf); 4137 if (!vsi || !vsi->netdev) 4138 return -EIO; 4139 4140 err = register_netdev(vsi->netdev); 4141 if (err) 4142 goto err_register_netdev; 4143 4144 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4145 netif_carrier_off(vsi->netdev); 4146 netif_tx_stop_all_queues(vsi->netdev); 4147 err = ice_devlink_create_port(vsi); 4148 if (err) 4149 goto err_devlink_create; 4150 4151 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev); 4152 4153 return 0; 4154 err_devlink_create: 4155 unregister_netdev(vsi->netdev); 4156 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4157 err_register_netdev: 4158 free_netdev(vsi->netdev); 4159 vsi->netdev = NULL; 4160 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4161 return err; 4162 } 4163 4164 /** 4165 * ice_probe - Device initialization routine 4166 * @pdev: PCI device information struct 4167 * @ent: entry in ice_pci_tbl 4168 * 4169 * Returns 0 on success, negative on failure 4170 */ 4171 static int 4172 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4173 { 4174 struct device *dev = &pdev->dev; 4175 struct ice_pf *pf; 4176 struct ice_hw *hw; 4177 int i, err; 4178 4179 /* this driver uses devres, see 4180 * Documentation/driver-api/driver-model/devres.rst 4181 */ 4182 err = pcim_enable_device(pdev); 4183 if (err) 4184 return err; 4185 4186 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4187 if (err) { 4188 dev_err(dev, "BAR0 I/O map error %d\n", err); 4189 return err; 4190 } 4191 4192 pf = ice_allocate_pf(dev); 4193 if (!pf) 4194 return -ENOMEM; 4195 4196 /* set up for high or low DMA */ 4197 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4198 if (err) 4199 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4200 if (err) { 4201 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4202 return err; 4203 } 4204 4205 pci_enable_pcie_error_reporting(pdev); 4206 pci_set_master(pdev); 4207 4208 pf->pdev = pdev; 4209 pci_set_drvdata(pdev, pf); 4210 set_bit(ICE_DOWN, pf->state); 4211 /* Disable service task until DOWN bit is cleared */ 4212 set_bit(ICE_SERVICE_DIS, pf->state); 4213 4214 hw = &pf->hw; 4215 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4216 pci_save_state(pdev); 4217 4218 hw->back = pf; 4219 hw->vendor_id = pdev->vendor; 4220 hw->device_id = pdev->device; 4221 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4222 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4223 hw->subsystem_device_id = pdev->subsystem_device; 4224 hw->bus.device = PCI_SLOT(pdev->devfn); 4225 hw->bus.func = PCI_FUNC(pdev->devfn); 4226 ice_set_ctrlq_len(hw); 4227 4228 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4229 4230 err = ice_devlink_register(pf); 4231 if (err) { 4232 dev_err(dev, "ice_devlink_register failed: %d\n", err); 4233 goto err_exit_unroll; 4234 } 4235 4236 #ifndef CONFIG_DYNAMIC_DEBUG 4237 if (debug < -1) 4238 hw->debug_mask = debug; 4239 #endif 4240 4241 err = ice_init_hw(hw); 4242 if (err) { 4243 dev_err(dev, "ice_init_hw failed: %d\n", err); 4244 err = -EIO; 4245 goto err_exit_unroll; 4246 } 4247 4248 ice_request_fw(pf); 4249 4250 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4251 * set in pf->state, which will cause ice_is_safe_mode to return 4252 * true 4253 */ 4254 if (ice_is_safe_mode(pf)) { 4255 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4256 /* we already got function/device capabilities but these don't 4257 * reflect what the driver needs to do in safe mode. Instead of 4258 * adding conditional logic everywhere to ignore these 4259 * device/function capabilities, override them. 4260 */ 4261 ice_set_safe_mode_caps(hw); 4262 } 4263 4264 err = ice_init_pf(pf); 4265 if (err) { 4266 dev_err(dev, "ice_init_pf failed: %d\n", err); 4267 goto err_init_pf_unroll; 4268 } 4269 4270 ice_devlink_init_regions(pf); 4271 4272 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4273 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4274 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4275 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4276 i = 0; 4277 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4278 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4279 pf->hw.tnl.valid_count[TNL_VXLAN]; 4280 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4281 UDP_TUNNEL_TYPE_VXLAN; 4282 i++; 4283 } 4284 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4285 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4286 pf->hw.tnl.valid_count[TNL_GENEVE]; 4287 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4288 UDP_TUNNEL_TYPE_GENEVE; 4289 i++; 4290 } 4291 4292 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4293 if (!pf->num_alloc_vsi) { 4294 err = -EIO; 4295 goto err_init_pf_unroll; 4296 } 4297 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4298 dev_warn(&pf->pdev->dev, 4299 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4300 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4301 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4302 } 4303 4304 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4305 GFP_KERNEL); 4306 if (!pf->vsi) { 4307 err = -ENOMEM; 4308 goto err_init_pf_unroll; 4309 } 4310 4311 err = ice_init_interrupt_scheme(pf); 4312 if (err) { 4313 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4314 err = -EIO; 4315 goto err_init_vsi_unroll; 4316 } 4317 4318 /* In case of MSIX we are going to setup the misc vector right here 4319 * to handle admin queue events etc. In case of legacy and MSI 4320 * the misc functionality and queue processing is combined in 4321 * the same vector and that gets setup at open. 4322 */ 4323 err = ice_req_irq_msix_misc(pf); 4324 if (err) { 4325 dev_err(dev, "setup of misc vector failed: %d\n", err); 4326 goto err_init_interrupt_unroll; 4327 } 4328 4329 /* create switch struct for the switch element created by FW on boot */ 4330 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4331 if (!pf->first_sw) { 4332 err = -ENOMEM; 4333 goto err_msix_misc_unroll; 4334 } 4335 4336 if (hw->evb_veb) 4337 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4338 else 4339 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4340 4341 pf->first_sw->pf = pf; 4342 4343 /* record the sw_id available for later use */ 4344 pf->first_sw->sw_id = hw->port_info->sw_id; 4345 4346 err = ice_setup_pf_sw(pf); 4347 if (err) { 4348 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4349 goto err_alloc_sw_unroll; 4350 } 4351 4352 clear_bit(ICE_SERVICE_DIS, pf->state); 4353 4354 /* tell the firmware we are up */ 4355 err = ice_send_version(pf); 4356 if (err) { 4357 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4358 UTS_RELEASE, err); 4359 goto err_send_version_unroll; 4360 } 4361 4362 /* since everything is good, start the service timer */ 4363 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4364 4365 err = ice_init_link_events(pf->hw.port_info); 4366 if (err) { 4367 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4368 goto err_send_version_unroll; 4369 } 4370 4371 /* not a fatal error if this fails */ 4372 err = ice_init_nvm_phy_type(pf->hw.port_info); 4373 if (err) 4374 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4375 4376 /* not a fatal error if this fails */ 4377 err = ice_update_link_info(pf->hw.port_info); 4378 if (err) 4379 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4380 4381 ice_init_link_dflt_override(pf->hw.port_info); 4382 4383 ice_check_module_power(pf, pf->hw.port_info->phy.link_info.link_cfg_err); 4384 4385 /* if media available, initialize PHY settings */ 4386 if (pf->hw.port_info->phy.link_info.link_info & 4387 ICE_AQ_MEDIA_AVAILABLE) { 4388 /* not a fatal error if this fails */ 4389 err = ice_init_phy_user_cfg(pf->hw.port_info); 4390 if (err) 4391 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4392 4393 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4394 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4395 4396 if (vsi) 4397 ice_configure_phy(vsi); 4398 } 4399 } else { 4400 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4401 } 4402 4403 ice_verify_cacheline_size(pf); 4404 4405 /* Save wakeup reason register for later use */ 4406 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4407 4408 /* check for a power management event */ 4409 ice_print_wake_reason(pf); 4410 4411 /* clear wake status, all bits */ 4412 wr32(hw, PFPM_WUS, U32_MAX); 4413 4414 /* Disable WoL at init, wait for user to enable */ 4415 device_set_wakeup_enable(dev, false); 4416 4417 if (ice_is_safe_mode(pf)) { 4418 ice_set_safe_mode_vlan_cfg(pf); 4419 goto probe_done; 4420 } 4421 4422 /* initialize DDP driven features */ 4423 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4424 ice_ptp_init(pf); 4425 4426 /* Note: Flow director init failure is non-fatal to load */ 4427 if (ice_init_fdir(pf)) 4428 dev_err(dev, "could not initialize flow director\n"); 4429 4430 /* Note: DCB init failure is non-fatal to load */ 4431 if (ice_init_pf_dcb(pf, false)) { 4432 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4433 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4434 } else { 4435 ice_cfg_lldp_mib_change(&pf->hw, true); 4436 } 4437 4438 if (ice_init_lag(pf)) 4439 dev_warn(dev, "Failed to init link aggregation support\n"); 4440 4441 /* print PCI link speed and width */ 4442 pcie_print_link_status(pf->pdev); 4443 4444 probe_done: 4445 err = ice_register_netdev(pf); 4446 if (err) 4447 goto err_netdev_reg; 4448 4449 /* ready to go, so clear down state bit */ 4450 clear_bit(ICE_DOWN, pf->state); 4451 if (ice_is_aux_ena(pf)) { 4452 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4453 if (pf->aux_idx < 0) { 4454 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4455 err = -ENOMEM; 4456 goto err_netdev_reg; 4457 } 4458 4459 err = ice_init_rdma(pf); 4460 if (err) { 4461 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4462 err = -EIO; 4463 goto err_init_aux_unroll; 4464 } 4465 } else { 4466 dev_warn(dev, "RDMA is not supported on this device\n"); 4467 } 4468 4469 return 0; 4470 4471 err_init_aux_unroll: 4472 pf->adev = NULL; 4473 ida_free(&ice_aux_ida, pf->aux_idx); 4474 err_netdev_reg: 4475 err_send_version_unroll: 4476 ice_vsi_release_all(pf); 4477 err_alloc_sw_unroll: 4478 set_bit(ICE_SERVICE_DIS, pf->state); 4479 set_bit(ICE_DOWN, pf->state); 4480 devm_kfree(dev, pf->first_sw); 4481 err_msix_misc_unroll: 4482 ice_free_irq_msix_misc(pf); 4483 err_init_interrupt_unroll: 4484 ice_clear_interrupt_scheme(pf); 4485 err_init_vsi_unroll: 4486 devm_kfree(dev, pf->vsi); 4487 err_init_pf_unroll: 4488 ice_deinit_pf(pf); 4489 ice_devlink_destroy_regions(pf); 4490 ice_deinit_hw(hw); 4491 err_exit_unroll: 4492 ice_devlink_unregister(pf); 4493 pci_disable_pcie_error_reporting(pdev); 4494 pci_disable_device(pdev); 4495 return err; 4496 } 4497 4498 /** 4499 * ice_set_wake - enable or disable Wake on LAN 4500 * @pf: pointer to the PF struct 4501 * 4502 * Simple helper for WoL control 4503 */ 4504 static void ice_set_wake(struct ice_pf *pf) 4505 { 4506 struct ice_hw *hw = &pf->hw; 4507 bool wol = pf->wol_ena; 4508 4509 /* clear wake state, otherwise new wake events won't fire */ 4510 wr32(hw, PFPM_WUS, U32_MAX); 4511 4512 /* enable / disable APM wake up, no RMW needed */ 4513 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4514 4515 /* set magic packet filter enabled */ 4516 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4517 } 4518 4519 /** 4520 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4521 * @pf: pointer to the PF struct 4522 * 4523 * Issue firmware command to enable multicast magic wake, making 4524 * sure that any locally administered address (LAA) is used for 4525 * wake, and that PF reset doesn't undo the LAA. 4526 */ 4527 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4528 { 4529 struct device *dev = ice_pf_to_dev(pf); 4530 struct ice_hw *hw = &pf->hw; 4531 enum ice_status status; 4532 u8 mac_addr[ETH_ALEN]; 4533 struct ice_vsi *vsi; 4534 u8 flags; 4535 4536 if (!pf->wol_ena) 4537 return; 4538 4539 vsi = ice_get_main_vsi(pf); 4540 if (!vsi) 4541 return; 4542 4543 /* Get current MAC address in case it's an LAA */ 4544 if (vsi->netdev) 4545 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4546 else 4547 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4548 4549 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4550 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4551 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4552 4553 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4554 if (status) 4555 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4556 ice_stat_str(status), 4557 ice_aq_str(hw->adminq.sq_last_status)); 4558 } 4559 4560 /** 4561 * ice_remove - Device removal routine 4562 * @pdev: PCI device information struct 4563 */ 4564 static void ice_remove(struct pci_dev *pdev) 4565 { 4566 struct ice_pf *pf = pci_get_drvdata(pdev); 4567 int i; 4568 4569 if (!pf) 4570 return; 4571 4572 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4573 if (!ice_is_reset_in_progress(pf->state)) 4574 break; 4575 msleep(100); 4576 } 4577 4578 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4579 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4580 ice_free_vfs(pf); 4581 } 4582 4583 ice_service_task_stop(pf); 4584 4585 ice_aq_cancel_waiting_tasks(pf); 4586 ice_unplug_aux_dev(pf); 4587 ida_free(&ice_aux_ida, pf->aux_idx); 4588 set_bit(ICE_DOWN, pf->state); 4589 4590 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4591 ice_deinit_lag(pf); 4592 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4593 ice_ptp_release(pf); 4594 if (!ice_is_safe_mode(pf)) 4595 ice_remove_arfs(pf); 4596 ice_setup_mc_magic_wake(pf); 4597 ice_vsi_release_all(pf); 4598 ice_set_wake(pf); 4599 ice_free_irq_msix_misc(pf); 4600 ice_for_each_vsi(pf, i) { 4601 if (!pf->vsi[i]) 4602 continue; 4603 ice_vsi_free_q_vectors(pf->vsi[i]); 4604 } 4605 ice_deinit_pf(pf); 4606 ice_devlink_destroy_regions(pf); 4607 ice_deinit_hw(&pf->hw); 4608 ice_devlink_unregister(pf); 4609 4610 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4611 * do it via ice_schedule_reset() since there is no need to rebuild 4612 * and the service task is already stopped. 4613 */ 4614 ice_reset(&pf->hw, ICE_RESET_PFR); 4615 pci_wait_for_pending_transaction(pdev); 4616 ice_clear_interrupt_scheme(pf); 4617 pci_disable_pcie_error_reporting(pdev); 4618 pci_disable_device(pdev); 4619 } 4620 4621 /** 4622 * ice_shutdown - PCI callback for shutting down device 4623 * @pdev: PCI device information struct 4624 */ 4625 static void ice_shutdown(struct pci_dev *pdev) 4626 { 4627 struct ice_pf *pf = pci_get_drvdata(pdev); 4628 4629 ice_remove(pdev); 4630 4631 if (system_state == SYSTEM_POWER_OFF) { 4632 pci_wake_from_d3(pdev, pf->wol_ena); 4633 pci_set_power_state(pdev, PCI_D3hot); 4634 } 4635 } 4636 4637 #ifdef CONFIG_PM 4638 /** 4639 * ice_prepare_for_shutdown - prep for PCI shutdown 4640 * @pf: board private structure 4641 * 4642 * Inform or close all dependent features in prep for PCI device shutdown 4643 */ 4644 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4645 { 4646 struct ice_hw *hw = &pf->hw; 4647 u32 v; 4648 4649 /* Notify VFs of impending reset */ 4650 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4651 ice_vc_notify_reset(pf); 4652 4653 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4654 4655 /* disable the VSIs and their queues that are not already DOWN */ 4656 ice_pf_dis_all_vsi(pf, false); 4657 4658 ice_for_each_vsi(pf, v) 4659 if (pf->vsi[v]) 4660 pf->vsi[v]->vsi_num = 0; 4661 4662 ice_shutdown_all_ctrlq(hw); 4663 } 4664 4665 /** 4666 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4667 * @pf: board private structure to reinitialize 4668 * 4669 * This routine reinitialize interrupt scheme that was cleared during 4670 * power management suspend callback. 4671 * 4672 * This should be called during resume routine to re-allocate the q_vectors 4673 * and reacquire interrupts. 4674 */ 4675 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4676 { 4677 struct device *dev = ice_pf_to_dev(pf); 4678 int ret, v; 4679 4680 /* Since we clear MSIX flag during suspend, we need to 4681 * set it back during resume... 4682 */ 4683 4684 ret = ice_init_interrupt_scheme(pf); 4685 if (ret) { 4686 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4687 return ret; 4688 } 4689 4690 /* Remap vectors and rings, after successful re-init interrupts */ 4691 ice_for_each_vsi(pf, v) { 4692 if (!pf->vsi[v]) 4693 continue; 4694 4695 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4696 if (ret) 4697 goto err_reinit; 4698 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4699 } 4700 4701 ret = ice_req_irq_msix_misc(pf); 4702 if (ret) { 4703 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4704 ret); 4705 goto err_reinit; 4706 } 4707 4708 return 0; 4709 4710 err_reinit: 4711 while (v--) 4712 if (pf->vsi[v]) 4713 ice_vsi_free_q_vectors(pf->vsi[v]); 4714 4715 return ret; 4716 } 4717 4718 /** 4719 * ice_suspend 4720 * @dev: generic device information structure 4721 * 4722 * Power Management callback to quiesce the device and prepare 4723 * for D3 transition. 4724 */ 4725 static int __maybe_unused ice_suspend(struct device *dev) 4726 { 4727 struct pci_dev *pdev = to_pci_dev(dev); 4728 struct ice_pf *pf; 4729 int disabled, v; 4730 4731 pf = pci_get_drvdata(pdev); 4732 4733 if (!ice_pf_state_is_nominal(pf)) { 4734 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4735 return -EBUSY; 4736 } 4737 4738 /* Stop watchdog tasks until resume completion. 4739 * Even though it is most likely that the service task is 4740 * disabled if the device is suspended or down, the service task's 4741 * state is controlled by a different state bit, and we should 4742 * store and honor whatever state that bit is in at this point. 4743 */ 4744 disabled = ice_service_task_stop(pf); 4745 4746 ice_unplug_aux_dev(pf); 4747 4748 /* Already suspended?, then there is nothing to do */ 4749 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 4750 if (!disabled) 4751 ice_service_task_restart(pf); 4752 return 0; 4753 } 4754 4755 if (test_bit(ICE_DOWN, pf->state) || 4756 ice_is_reset_in_progress(pf->state)) { 4757 dev_err(dev, "can't suspend device in reset or already down\n"); 4758 if (!disabled) 4759 ice_service_task_restart(pf); 4760 return 0; 4761 } 4762 4763 ice_setup_mc_magic_wake(pf); 4764 4765 ice_prepare_for_shutdown(pf); 4766 4767 ice_set_wake(pf); 4768 4769 /* Free vectors, clear the interrupt scheme and release IRQs 4770 * for proper hibernation, especially with large number of CPUs. 4771 * Otherwise hibernation might fail when mapping all the vectors back 4772 * to CPU0. 4773 */ 4774 ice_free_irq_msix_misc(pf); 4775 ice_for_each_vsi(pf, v) { 4776 if (!pf->vsi[v]) 4777 continue; 4778 ice_vsi_free_q_vectors(pf->vsi[v]); 4779 } 4780 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 4781 ice_clear_interrupt_scheme(pf); 4782 4783 pci_save_state(pdev); 4784 pci_wake_from_d3(pdev, pf->wol_ena); 4785 pci_set_power_state(pdev, PCI_D3hot); 4786 return 0; 4787 } 4788 4789 /** 4790 * ice_resume - PM callback for waking up from D3 4791 * @dev: generic device information structure 4792 */ 4793 static int __maybe_unused ice_resume(struct device *dev) 4794 { 4795 struct pci_dev *pdev = to_pci_dev(dev); 4796 enum ice_reset_req reset_type; 4797 struct ice_pf *pf; 4798 struct ice_hw *hw; 4799 int ret; 4800 4801 pci_set_power_state(pdev, PCI_D0); 4802 pci_restore_state(pdev); 4803 pci_save_state(pdev); 4804 4805 if (!pci_device_is_present(pdev)) 4806 return -ENODEV; 4807 4808 ret = pci_enable_device_mem(pdev); 4809 if (ret) { 4810 dev_err(dev, "Cannot enable device after suspend\n"); 4811 return ret; 4812 } 4813 4814 pf = pci_get_drvdata(pdev); 4815 hw = &pf->hw; 4816 4817 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4818 ice_print_wake_reason(pf); 4819 4820 /* We cleared the interrupt scheme when we suspended, so we need to 4821 * restore it now to resume device functionality. 4822 */ 4823 ret = ice_reinit_interrupt_scheme(pf); 4824 if (ret) 4825 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 4826 4827 clear_bit(ICE_DOWN, pf->state); 4828 /* Now perform PF reset and rebuild */ 4829 reset_type = ICE_RESET_PFR; 4830 /* re-enable service task for reset, but allow reset to schedule it */ 4831 clear_bit(ICE_SERVICE_DIS, pf->state); 4832 4833 if (ice_schedule_reset(pf, reset_type)) 4834 dev_err(dev, "Reset during resume failed.\n"); 4835 4836 clear_bit(ICE_SUSPENDED, pf->state); 4837 ice_service_task_restart(pf); 4838 4839 /* Restart the service task */ 4840 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4841 4842 return 0; 4843 } 4844 #endif /* CONFIG_PM */ 4845 4846 /** 4847 * ice_pci_err_detected - warning that PCI error has been detected 4848 * @pdev: PCI device information struct 4849 * @err: the type of PCI error 4850 * 4851 * Called to warn that something happened on the PCI bus and the error handling 4852 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 4853 */ 4854 static pci_ers_result_t 4855 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 4856 { 4857 struct ice_pf *pf = pci_get_drvdata(pdev); 4858 4859 if (!pf) { 4860 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 4861 __func__, err); 4862 return PCI_ERS_RESULT_DISCONNECT; 4863 } 4864 4865 if (!test_bit(ICE_SUSPENDED, pf->state)) { 4866 ice_service_task_stop(pf); 4867 4868 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 4869 set_bit(ICE_PFR_REQ, pf->state); 4870 ice_prepare_for_reset(pf); 4871 } 4872 } 4873 4874 return PCI_ERS_RESULT_NEED_RESET; 4875 } 4876 4877 /** 4878 * ice_pci_err_slot_reset - a PCI slot reset has just happened 4879 * @pdev: PCI device information struct 4880 * 4881 * Called to determine if the driver can recover from the PCI slot reset by 4882 * using a register read to determine if the device is recoverable. 4883 */ 4884 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 4885 { 4886 struct ice_pf *pf = pci_get_drvdata(pdev); 4887 pci_ers_result_t result; 4888 int err; 4889 u32 reg; 4890 4891 err = pci_enable_device_mem(pdev); 4892 if (err) { 4893 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 4894 err); 4895 result = PCI_ERS_RESULT_DISCONNECT; 4896 } else { 4897 pci_set_master(pdev); 4898 pci_restore_state(pdev); 4899 pci_save_state(pdev); 4900 pci_wake_from_d3(pdev, false); 4901 4902 /* Check for life */ 4903 reg = rd32(&pf->hw, GLGEN_RTRIG); 4904 if (!reg) 4905 result = PCI_ERS_RESULT_RECOVERED; 4906 else 4907 result = PCI_ERS_RESULT_DISCONNECT; 4908 } 4909 4910 err = pci_aer_clear_nonfatal_status(pdev); 4911 if (err) 4912 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 4913 err); 4914 /* non-fatal, continue */ 4915 4916 return result; 4917 } 4918 4919 /** 4920 * ice_pci_err_resume - restart operations after PCI error recovery 4921 * @pdev: PCI device information struct 4922 * 4923 * Called to allow the driver to bring things back up after PCI error and/or 4924 * reset recovery have finished 4925 */ 4926 static void ice_pci_err_resume(struct pci_dev *pdev) 4927 { 4928 struct ice_pf *pf = pci_get_drvdata(pdev); 4929 4930 if (!pf) { 4931 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 4932 __func__); 4933 return; 4934 } 4935 4936 if (test_bit(ICE_SUSPENDED, pf->state)) { 4937 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 4938 __func__); 4939 return; 4940 } 4941 4942 ice_restore_all_vfs_msi_state(pdev); 4943 4944 ice_do_reset(pf, ICE_RESET_PFR); 4945 ice_service_task_restart(pf); 4946 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4947 } 4948 4949 /** 4950 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 4951 * @pdev: PCI device information struct 4952 */ 4953 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 4954 { 4955 struct ice_pf *pf = pci_get_drvdata(pdev); 4956 4957 if (!test_bit(ICE_SUSPENDED, pf->state)) { 4958 ice_service_task_stop(pf); 4959 4960 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 4961 set_bit(ICE_PFR_REQ, pf->state); 4962 ice_prepare_for_reset(pf); 4963 } 4964 } 4965 } 4966 4967 /** 4968 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 4969 * @pdev: PCI device information struct 4970 */ 4971 static void ice_pci_err_reset_done(struct pci_dev *pdev) 4972 { 4973 ice_pci_err_resume(pdev); 4974 } 4975 4976 /* ice_pci_tbl - PCI Device ID Table 4977 * 4978 * Wildcard entries (PCI_ANY_ID) should come last 4979 * Last entry must be all 0s 4980 * 4981 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 4982 * Class, Class Mask, private data (not used) } 4983 */ 4984 static const struct pci_device_id ice_pci_tbl[] = { 4985 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 4986 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 4987 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 4988 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 4989 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 4990 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 4991 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 4992 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 4993 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 4994 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 4995 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 4996 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 4997 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 4998 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 4999 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5000 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5001 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5002 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5003 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5004 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5005 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5006 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5007 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5008 /* required last entry */ 5009 { 0, } 5010 }; 5011 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5012 5013 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5014 5015 static const struct pci_error_handlers ice_pci_err_handler = { 5016 .error_detected = ice_pci_err_detected, 5017 .slot_reset = ice_pci_err_slot_reset, 5018 .reset_prepare = ice_pci_err_reset_prepare, 5019 .reset_done = ice_pci_err_reset_done, 5020 .resume = ice_pci_err_resume 5021 }; 5022 5023 static struct pci_driver ice_driver = { 5024 .name = KBUILD_MODNAME, 5025 .id_table = ice_pci_tbl, 5026 .probe = ice_probe, 5027 .remove = ice_remove, 5028 #ifdef CONFIG_PM 5029 .driver.pm = &ice_pm_ops, 5030 #endif /* CONFIG_PM */ 5031 .shutdown = ice_shutdown, 5032 .sriov_configure = ice_sriov_configure, 5033 .err_handler = &ice_pci_err_handler 5034 }; 5035 5036 /** 5037 * ice_module_init - Driver registration routine 5038 * 5039 * ice_module_init is the first routine called when the driver is 5040 * loaded. All it does is register with the PCI subsystem. 5041 */ 5042 static int __init ice_module_init(void) 5043 { 5044 int status; 5045 5046 pr_info("%s\n", ice_driver_string); 5047 pr_info("%s\n", ice_copyright); 5048 5049 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5050 if (!ice_wq) { 5051 pr_err("Failed to create workqueue\n"); 5052 return -ENOMEM; 5053 } 5054 5055 status = pci_register_driver(&ice_driver); 5056 if (status) { 5057 pr_err("failed to register PCI driver, err %d\n", status); 5058 destroy_workqueue(ice_wq); 5059 } 5060 5061 return status; 5062 } 5063 module_init(ice_module_init); 5064 5065 /** 5066 * ice_module_exit - Driver exit cleanup routine 5067 * 5068 * ice_module_exit is called just before the driver is removed 5069 * from memory. 5070 */ 5071 static void __exit ice_module_exit(void) 5072 { 5073 pci_unregister_driver(&ice_driver); 5074 destroy_workqueue(ice_wq); 5075 pr_info("module unloaded\n"); 5076 } 5077 module_exit(ice_module_exit); 5078 5079 /** 5080 * ice_set_mac_address - NDO callback to set MAC address 5081 * @netdev: network interface device structure 5082 * @pi: pointer to an address structure 5083 * 5084 * Returns 0 on success, negative on failure 5085 */ 5086 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5087 { 5088 struct ice_netdev_priv *np = netdev_priv(netdev); 5089 struct ice_vsi *vsi = np->vsi; 5090 struct ice_pf *pf = vsi->back; 5091 struct ice_hw *hw = &pf->hw; 5092 struct sockaddr *addr = pi; 5093 enum ice_status status; 5094 u8 flags = 0; 5095 int err = 0; 5096 u8 *mac; 5097 5098 mac = (u8 *)addr->sa_data; 5099 5100 if (!is_valid_ether_addr(mac)) 5101 return -EADDRNOTAVAIL; 5102 5103 if (ether_addr_equal(netdev->dev_addr, mac)) { 5104 netdev_warn(netdev, "already using mac %pM\n", mac); 5105 return 0; 5106 } 5107 5108 if (test_bit(ICE_DOWN, pf->state) || 5109 ice_is_reset_in_progress(pf->state)) { 5110 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5111 mac); 5112 return -EBUSY; 5113 } 5114 5115 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5116 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI); 5117 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 5118 err = -EADDRNOTAVAIL; 5119 goto err_update_filters; 5120 } 5121 5122 /* Add filter for new MAC. If filter exists, return success */ 5123 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5124 if (status == ICE_ERR_ALREADY_EXISTS) { 5125 /* Although this MAC filter is already present in hardware it's 5126 * possible in some cases (e.g. bonding) that dev_addr was 5127 * modified outside of the driver and needs to be restored back 5128 * to this value. 5129 */ 5130 memcpy(netdev->dev_addr, mac, netdev->addr_len); 5131 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5132 return 0; 5133 } 5134 5135 /* error if the new filter addition failed */ 5136 if (status) 5137 err = -EADDRNOTAVAIL; 5138 5139 err_update_filters: 5140 if (err) { 5141 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5142 mac); 5143 return err; 5144 } 5145 5146 /* change the netdev's MAC address */ 5147 memcpy(netdev->dev_addr, mac, netdev->addr_len); 5148 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5149 netdev->dev_addr); 5150 5151 /* write new MAC address to the firmware */ 5152 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5153 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5154 if (status) { 5155 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 5156 mac, ice_stat_str(status)); 5157 } 5158 return 0; 5159 } 5160 5161 /** 5162 * ice_set_rx_mode - NDO callback to set the netdev filters 5163 * @netdev: network interface device structure 5164 */ 5165 static void ice_set_rx_mode(struct net_device *netdev) 5166 { 5167 struct ice_netdev_priv *np = netdev_priv(netdev); 5168 struct ice_vsi *vsi = np->vsi; 5169 5170 if (!vsi) 5171 return; 5172 5173 /* Set the flags to synchronize filters 5174 * ndo_set_rx_mode may be triggered even without a change in netdev 5175 * flags 5176 */ 5177 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5178 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5179 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5180 5181 /* schedule our worker thread which will take care of 5182 * applying the new filter changes 5183 */ 5184 ice_service_task_schedule(vsi->back); 5185 } 5186 5187 /** 5188 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5189 * @netdev: network interface device structure 5190 * @queue_index: Queue ID 5191 * @maxrate: maximum bandwidth in Mbps 5192 */ 5193 static int 5194 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5195 { 5196 struct ice_netdev_priv *np = netdev_priv(netdev); 5197 struct ice_vsi *vsi = np->vsi; 5198 enum ice_status status; 5199 u16 q_handle; 5200 u8 tc; 5201 5202 /* Validate maxrate requested is within permitted range */ 5203 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5204 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5205 maxrate, queue_index); 5206 return -EINVAL; 5207 } 5208 5209 q_handle = vsi->tx_rings[queue_index]->q_handle; 5210 tc = ice_dcb_get_tc(vsi, queue_index); 5211 5212 /* Set BW back to default, when user set maxrate to 0 */ 5213 if (!maxrate) 5214 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5215 q_handle, ICE_MAX_BW); 5216 else 5217 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5218 q_handle, ICE_MAX_BW, maxrate * 1000); 5219 if (status) { 5220 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 5221 ice_stat_str(status)); 5222 return -EIO; 5223 } 5224 5225 return 0; 5226 } 5227 5228 /** 5229 * ice_fdb_add - add an entry to the hardware database 5230 * @ndm: the input from the stack 5231 * @tb: pointer to array of nladdr (unused) 5232 * @dev: the net device pointer 5233 * @addr: the MAC address entry being added 5234 * @vid: VLAN ID 5235 * @flags: instructions from stack about fdb operation 5236 * @extack: netlink extended ack 5237 */ 5238 static int 5239 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5240 struct net_device *dev, const unsigned char *addr, u16 vid, 5241 u16 flags, struct netlink_ext_ack __always_unused *extack) 5242 { 5243 int err; 5244 5245 if (vid) { 5246 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5247 return -EINVAL; 5248 } 5249 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5250 netdev_err(dev, "FDB only supports static addresses\n"); 5251 return -EINVAL; 5252 } 5253 5254 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5255 err = dev_uc_add_excl(dev, addr); 5256 else if (is_multicast_ether_addr(addr)) 5257 err = dev_mc_add_excl(dev, addr); 5258 else 5259 err = -EINVAL; 5260 5261 /* Only return duplicate errors if NLM_F_EXCL is set */ 5262 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5263 err = 0; 5264 5265 return err; 5266 } 5267 5268 /** 5269 * ice_fdb_del - delete an entry from the hardware database 5270 * @ndm: the input from the stack 5271 * @tb: pointer to array of nladdr (unused) 5272 * @dev: the net device pointer 5273 * @addr: the MAC address entry being added 5274 * @vid: VLAN ID 5275 */ 5276 static int 5277 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5278 struct net_device *dev, const unsigned char *addr, 5279 __always_unused u16 vid) 5280 { 5281 int err; 5282 5283 if (ndm->ndm_state & NUD_PERMANENT) { 5284 netdev_err(dev, "FDB only supports static addresses\n"); 5285 return -EINVAL; 5286 } 5287 5288 if (is_unicast_ether_addr(addr)) 5289 err = dev_uc_del(dev, addr); 5290 else if (is_multicast_ether_addr(addr)) 5291 err = dev_mc_del(dev, addr); 5292 else 5293 err = -EINVAL; 5294 5295 return err; 5296 } 5297 5298 /** 5299 * ice_set_features - set the netdev feature flags 5300 * @netdev: ptr to the netdev being adjusted 5301 * @features: the feature set that the stack is suggesting 5302 */ 5303 static int 5304 ice_set_features(struct net_device *netdev, netdev_features_t features) 5305 { 5306 struct ice_netdev_priv *np = netdev_priv(netdev); 5307 struct ice_vsi *vsi = np->vsi; 5308 struct ice_pf *pf = vsi->back; 5309 int ret = 0; 5310 5311 /* Don't set any netdev advanced features with device in Safe Mode */ 5312 if (ice_is_safe_mode(vsi->back)) { 5313 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5314 return ret; 5315 } 5316 5317 /* Do not change setting during reset */ 5318 if (ice_is_reset_in_progress(pf->state)) { 5319 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5320 return -EBUSY; 5321 } 5322 5323 /* Multiple features can be changed in one call so keep features in 5324 * separate if/else statements to guarantee each feature is checked 5325 */ 5326 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5327 ice_vsi_manage_rss_lut(vsi, true); 5328 else if (!(features & NETIF_F_RXHASH) && 5329 netdev->features & NETIF_F_RXHASH) 5330 ice_vsi_manage_rss_lut(vsi, false); 5331 5332 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5333 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5334 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5335 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5336 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5337 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5338 5339 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5340 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5341 ret = ice_vsi_manage_vlan_insertion(vsi); 5342 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5343 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5344 ret = ice_vsi_manage_vlan_insertion(vsi); 5345 5346 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5347 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5348 ret = ice_cfg_vlan_pruning(vsi, true, false); 5349 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5350 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5351 ret = ice_cfg_vlan_pruning(vsi, false, false); 5352 5353 if ((features & NETIF_F_NTUPLE) && 5354 !(netdev->features & NETIF_F_NTUPLE)) { 5355 ice_vsi_manage_fdir(vsi, true); 5356 ice_init_arfs(vsi); 5357 } else if (!(features & NETIF_F_NTUPLE) && 5358 (netdev->features & NETIF_F_NTUPLE)) { 5359 ice_vsi_manage_fdir(vsi, false); 5360 ice_clear_arfs(vsi); 5361 } 5362 5363 return ret; 5364 } 5365 5366 /** 5367 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5368 * @vsi: VSI to setup VLAN properties for 5369 */ 5370 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5371 { 5372 int ret = 0; 5373 5374 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5375 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5376 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5377 ret = ice_vsi_manage_vlan_insertion(vsi); 5378 5379 return ret; 5380 } 5381 5382 /** 5383 * ice_vsi_cfg - Setup the VSI 5384 * @vsi: the VSI being configured 5385 * 5386 * Return 0 on success and negative value on error 5387 */ 5388 int ice_vsi_cfg(struct ice_vsi *vsi) 5389 { 5390 int err; 5391 5392 if (vsi->netdev) { 5393 ice_set_rx_mode(vsi->netdev); 5394 5395 err = ice_vsi_vlan_setup(vsi); 5396 5397 if (err) 5398 return err; 5399 } 5400 ice_vsi_cfg_dcb_rings(vsi); 5401 5402 err = ice_vsi_cfg_lan_txqs(vsi); 5403 if (!err && ice_is_xdp_ena_vsi(vsi)) 5404 err = ice_vsi_cfg_xdp_txqs(vsi); 5405 if (!err) 5406 err = ice_vsi_cfg_rxqs(vsi); 5407 5408 return err; 5409 } 5410 5411 /* THEORY OF MODERATION: 5412 * The below code creates custom DIM profiles for use by this driver, because 5413 * the ice driver hardware works differently than the hardware that DIMLIB was 5414 * originally made for. ice hardware doesn't have packet count limits that 5415 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5416 * and this code adds that capability to be used by the driver when it's using 5417 * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver 5418 * for how to "respond" to traffic and interrupts, so this driver uses a 5419 * slightly different set of moderation parameters to get best performance. 5420 */ 5421 struct ice_dim { 5422 /* the throttle rate for interrupts, basically worst case delay before 5423 * an initial interrupt fires, value is stored in microseconds. 5424 */ 5425 u16 itr; 5426 /* the rate limit for interrupts, which can cap a delay from a small 5427 * ITR at a certain amount of interrupts per second. f.e. a 2us ITR 5428 * could yield as much as 500,000 interrupts per second, but with a 5429 * 10us rate limit, it limits to 100,000 interrupts per second. Value 5430 * is stored in microseconds. 5431 */ 5432 u16 intrl; 5433 }; 5434 5435 /* Make a different profile for Rx that doesn't allow quite so aggressive 5436 * moderation at the high end (it maxes out at 128us or about 8k interrupts a 5437 * second. The INTRL/rate parameters here are only useful to cap small ITR 5438 * values, which is why for larger ITR's - like 128, which can only generate 5439 * 8k interrupts per second, there is no point to rate limit and the values 5440 * are set to zero. The rate limit values do affect latency, and so must 5441 * be reasonably small so to not impact latency sensitive tests. 5442 */ 5443 static const struct ice_dim rx_profile[] = { 5444 {2, 10}, 5445 {8, 16}, 5446 {32, 0}, 5447 {96, 0}, 5448 {128, 0} 5449 }; 5450 5451 /* The transmit profile, which has the same sorts of values 5452 * as the previous struct 5453 */ 5454 static const struct ice_dim tx_profile[] = { 5455 {2, 10}, 5456 {8, 16}, 5457 {64, 0}, 5458 {128, 0}, 5459 {256, 0} 5460 }; 5461 5462 static void ice_tx_dim_work(struct work_struct *work) 5463 { 5464 struct ice_ring_container *rc; 5465 struct ice_q_vector *q_vector; 5466 struct dim *dim; 5467 u16 itr, intrl; 5468 5469 dim = container_of(work, struct dim, work); 5470 rc = container_of(dim, struct ice_ring_container, dim); 5471 q_vector = container_of(rc, struct ice_q_vector, tx); 5472 5473 if (dim->profile_ix >= ARRAY_SIZE(tx_profile)) 5474 dim->profile_ix = ARRAY_SIZE(tx_profile) - 1; 5475 5476 /* look up the values in our local table */ 5477 itr = tx_profile[dim->profile_ix].itr; 5478 intrl = tx_profile[dim->profile_ix].intrl; 5479 5480 ice_write_itr(rc, itr); 5481 ice_write_intrl(q_vector, intrl); 5482 5483 dim->state = DIM_START_MEASURE; 5484 } 5485 5486 static void ice_rx_dim_work(struct work_struct *work) 5487 { 5488 struct ice_ring_container *rc; 5489 struct ice_q_vector *q_vector; 5490 struct dim *dim; 5491 u16 itr, intrl; 5492 5493 dim = container_of(work, struct dim, work); 5494 rc = container_of(dim, struct ice_ring_container, dim); 5495 q_vector = container_of(rc, struct ice_q_vector, rx); 5496 5497 if (dim->profile_ix >= ARRAY_SIZE(rx_profile)) 5498 dim->profile_ix = ARRAY_SIZE(rx_profile) - 1; 5499 5500 /* look up the values in our local table */ 5501 itr = rx_profile[dim->profile_ix].itr; 5502 intrl = rx_profile[dim->profile_ix].intrl; 5503 5504 ice_write_itr(rc, itr); 5505 ice_write_intrl(q_vector, intrl); 5506 5507 dim->state = DIM_START_MEASURE; 5508 } 5509 5510 /** 5511 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5512 * @vsi: the VSI being configured 5513 */ 5514 static void ice_napi_enable_all(struct ice_vsi *vsi) 5515 { 5516 int q_idx; 5517 5518 if (!vsi->netdev) 5519 return; 5520 5521 ice_for_each_q_vector(vsi, q_idx) { 5522 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5523 5524 INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work); 5525 q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5526 5527 INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work); 5528 q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5529 5530 if (q_vector->rx.ring || q_vector->tx.ring) 5531 napi_enable(&q_vector->napi); 5532 } 5533 } 5534 5535 /** 5536 * ice_up_complete - Finish the last steps of bringing up a connection 5537 * @vsi: The VSI being configured 5538 * 5539 * Return 0 on success and negative value on error 5540 */ 5541 static int ice_up_complete(struct ice_vsi *vsi) 5542 { 5543 struct ice_pf *pf = vsi->back; 5544 int err; 5545 5546 ice_vsi_cfg_msix(vsi); 5547 5548 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5549 * Tx queue group list was configured and the context bits were 5550 * programmed using ice_vsi_cfg_txqs 5551 */ 5552 err = ice_vsi_start_all_rx_rings(vsi); 5553 if (err) 5554 return err; 5555 5556 clear_bit(ICE_VSI_DOWN, vsi->state); 5557 ice_napi_enable_all(vsi); 5558 ice_vsi_ena_irq(vsi); 5559 5560 if (vsi->port_info && 5561 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5562 vsi->netdev) { 5563 ice_print_link_msg(vsi, true); 5564 netif_tx_start_all_queues(vsi->netdev); 5565 netif_carrier_on(vsi->netdev); 5566 } 5567 5568 ice_service_task_schedule(pf); 5569 5570 return 0; 5571 } 5572 5573 /** 5574 * ice_up - Bring the connection back up after being down 5575 * @vsi: VSI being configured 5576 */ 5577 int ice_up(struct ice_vsi *vsi) 5578 { 5579 int err; 5580 5581 err = ice_vsi_cfg(vsi); 5582 if (!err) 5583 err = ice_up_complete(vsi); 5584 5585 return err; 5586 } 5587 5588 /** 5589 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5590 * @ring: Tx or Rx ring to read stats from 5591 * @pkts: packets stats counter 5592 * @bytes: bytes stats counter 5593 * 5594 * This function fetches stats from the ring considering the atomic operations 5595 * that needs to be performed to read u64 values in 32 bit machine. 5596 */ 5597 static void 5598 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 5599 { 5600 unsigned int start; 5601 *pkts = 0; 5602 *bytes = 0; 5603 5604 if (!ring) 5605 return; 5606 do { 5607 start = u64_stats_fetch_begin_irq(&ring->syncp); 5608 *pkts = ring->stats.pkts; 5609 *bytes = ring->stats.bytes; 5610 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 5611 } 5612 5613 /** 5614 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5615 * @vsi: the VSI to be updated 5616 * @rings: rings to work on 5617 * @count: number of rings 5618 */ 5619 static void 5620 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 5621 u16 count) 5622 { 5623 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5624 u16 i; 5625 5626 for (i = 0; i < count; i++) { 5627 struct ice_ring *ring; 5628 u64 pkts, bytes; 5629 5630 ring = READ_ONCE(rings[i]); 5631 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5632 vsi_stats->tx_packets += pkts; 5633 vsi_stats->tx_bytes += bytes; 5634 vsi->tx_restart += ring->tx_stats.restart_q; 5635 vsi->tx_busy += ring->tx_stats.tx_busy; 5636 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5637 } 5638 } 5639 5640 /** 5641 * ice_update_vsi_ring_stats - Update VSI stats counters 5642 * @vsi: the VSI to be updated 5643 */ 5644 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5645 { 5646 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5647 u64 pkts, bytes; 5648 int i; 5649 5650 /* reset netdev stats */ 5651 vsi_stats->tx_packets = 0; 5652 vsi_stats->tx_bytes = 0; 5653 vsi_stats->rx_packets = 0; 5654 vsi_stats->rx_bytes = 0; 5655 5656 /* reset non-netdev (extended) stats */ 5657 vsi->tx_restart = 0; 5658 vsi->tx_busy = 0; 5659 vsi->tx_linearize = 0; 5660 vsi->rx_buf_failed = 0; 5661 vsi->rx_page_failed = 0; 5662 5663 rcu_read_lock(); 5664 5665 /* update Tx rings counters */ 5666 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5667 5668 /* update Rx rings counters */ 5669 ice_for_each_rxq(vsi, i) { 5670 struct ice_ring *ring = READ_ONCE(vsi->rx_rings[i]); 5671 5672 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5673 vsi_stats->rx_packets += pkts; 5674 vsi_stats->rx_bytes += bytes; 5675 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5676 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5677 } 5678 5679 /* update XDP Tx rings counters */ 5680 if (ice_is_xdp_ena_vsi(vsi)) 5681 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 5682 vsi->num_xdp_txq); 5683 5684 rcu_read_unlock(); 5685 } 5686 5687 /** 5688 * ice_update_vsi_stats - Update VSI stats counters 5689 * @vsi: the VSI to be updated 5690 */ 5691 void ice_update_vsi_stats(struct ice_vsi *vsi) 5692 { 5693 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5694 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5695 struct ice_pf *pf = vsi->back; 5696 5697 if (test_bit(ICE_VSI_DOWN, vsi->state) || 5698 test_bit(ICE_CFG_BUSY, pf->state)) 5699 return; 5700 5701 /* get stats as recorded by Tx/Rx rings */ 5702 ice_update_vsi_ring_stats(vsi); 5703 5704 /* get VSI stats as recorded by the hardware */ 5705 ice_update_eth_stats(vsi); 5706 5707 cur_ns->tx_errors = cur_es->tx_errors; 5708 cur_ns->rx_dropped = cur_es->rx_discards; 5709 cur_ns->tx_dropped = cur_es->tx_discards; 5710 cur_ns->multicast = cur_es->rx_multicast; 5711 5712 /* update some more netdev stats if this is main VSI */ 5713 if (vsi->type == ICE_VSI_PF) { 5714 cur_ns->rx_crc_errors = pf->stats.crc_errors; 5715 cur_ns->rx_errors = pf->stats.crc_errors + 5716 pf->stats.illegal_bytes + 5717 pf->stats.rx_len_errors + 5718 pf->stats.rx_undersize + 5719 pf->hw_csum_rx_error + 5720 pf->stats.rx_jabber + 5721 pf->stats.rx_fragments + 5722 pf->stats.rx_oversize; 5723 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 5724 /* record drops from the port level */ 5725 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 5726 } 5727 } 5728 5729 /** 5730 * ice_update_pf_stats - Update PF port stats counters 5731 * @pf: PF whose stats needs to be updated 5732 */ 5733 void ice_update_pf_stats(struct ice_pf *pf) 5734 { 5735 struct ice_hw_port_stats *prev_ps, *cur_ps; 5736 struct ice_hw *hw = &pf->hw; 5737 u16 fd_ctr_base; 5738 u8 port; 5739 5740 port = hw->port_info->lport; 5741 prev_ps = &pf->stats_prev; 5742 cur_ps = &pf->stats; 5743 5744 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 5745 &prev_ps->eth.rx_bytes, 5746 &cur_ps->eth.rx_bytes); 5747 5748 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 5749 &prev_ps->eth.rx_unicast, 5750 &cur_ps->eth.rx_unicast); 5751 5752 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 5753 &prev_ps->eth.rx_multicast, 5754 &cur_ps->eth.rx_multicast); 5755 5756 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 5757 &prev_ps->eth.rx_broadcast, 5758 &cur_ps->eth.rx_broadcast); 5759 5760 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 5761 &prev_ps->eth.rx_discards, 5762 &cur_ps->eth.rx_discards); 5763 5764 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 5765 &prev_ps->eth.tx_bytes, 5766 &cur_ps->eth.tx_bytes); 5767 5768 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 5769 &prev_ps->eth.tx_unicast, 5770 &cur_ps->eth.tx_unicast); 5771 5772 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 5773 &prev_ps->eth.tx_multicast, 5774 &cur_ps->eth.tx_multicast); 5775 5776 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 5777 &prev_ps->eth.tx_broadcast, 5778 &cur_ps->eth.tx_broadcast); 5779 5780 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 5781 &prev_ps->tx_dropped_link_down, 5782 &cur_ps->tx_dropped_link_down); 5783 5784 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 5785 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 5786 5787 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 5788 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 5789 5790 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 5791 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 5792 5793 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 5794 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 5795 5796 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 5797 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 5798 5799 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 5800 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 5801 5802 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 5803 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 5804 5805 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 5806 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 5807 5808 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 5809 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 5810 5811 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 5812 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 5813 5814 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 5815 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 5816 5817 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 5818 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 5819 5820 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 5821 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 5822 5823 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 5824 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 5825 5826 fd_ctr_base = hw->fd_ctr_base; 5827 5828 ice_stat_update40(hw, 5829 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 5830 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 5831 &cur_ps->fd_sb_match); 5832 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 5833 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 5834 5835 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 5836 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 5837 5838 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 5839 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 5840 5841 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 5842 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 5843 5844 ice_update_dcb_stats(pf); 5845 5846 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 5847 &prev_ps->crc_errors, &cur_ps->crc_errors); 5848 5849 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 5850 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 5851 5852 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 5853 &prev_ps->mac_local_faults, 5854 &cur_ps->mac_local_faults); 5855 5856 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 5857 &prev_ps->mac_remote_faults, 5858 &cur_ps->mac_remote_faults); 5859 5860 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 5861 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 5862 5863 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 5864 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 5865 5866 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 5867 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 5868 5869 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 5870 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 5871 5872 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 5873 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 5874 5875 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 5876 5877 pf->stat_prev_loaded = true; 5878 } 5879 5880 /** 5881 * ice_get_stats64 - get statistics for network device structure 5882 * @netdev: network interface device structure 5883 * @stats: main device statistics structure 5884 */ 5885 static 5886 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 5887 { 5888 struct ice_netdev_priv *np = netdev_priv(netdev); 5889 struct rtnl_link_stats64 *vsi_stats; 5890 struct ice_vsi *vsi = np->vsi; 5891 5892 vsi_stats = &vsi->net_stats; 5893 5894 if (!vsi->num_txq || !vsi->num_rxq) 5895 return; 5896 5897 /* netdev packet/byte stats come from ring counter. These are obtained 5898 * by summing up ring counters (done by ice_update_vsi_ring_stats). 5899 * But, only call the update routine and read the registers if VSI is 5900 * not down. 5901 */ 5902 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 5903 ice_update_vsi_ring_stats(vsi); 5904 stats->tx_packets = vsi_stats->tx_packets; 5905 stats->tx_bytes = vsi_stats->tx_bytes; 5906 stats->rx_packets = vsi_stats->rx_packets; 5907 stats->rx_bytes = vsi_stats->rx_bytes; 5908 5909 /* The rest of the stats can be read from the hardware but instead we 5910 * just return values that the watchdog task has already obtained from 5911 * the hardware. 5912 */ 5913 stats->multicast = vsi_stats->multicast; 5914 stats->tx_errors = vsi_stats->tx_errors; 5915 stats->tx_dropped = vsi_stats->tx_dropped; 5916 stats->rx_errors = vsi_stats->rx_errors; 5917 stats->rx_dropped = vsi_stats->rx_dropped; 5918 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 5919 stats->rx_length_errors = vsi_stats->rx_length_errors; 5920 } 5921 5922 /** 5923 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5924 * @vsi: VSI having NAPI disabled 5925 */ 5926 static void ice_napi_disable_all(struct ice_vsi *vsi) 5927 { 5928 int q_idx; 5929 5930 if (!vsi->netdev) 5931 return; 5932 5933 ice_for_each_q_vector(vsi, q_idx) { 5934 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5935 5936 if (q_vector->rx.ring || q_vector->tx.ring) 5937 napi_disable(&q_vector->napi); 5938 5939 cancel_work_sync(&q_vector->tx.dim.work); 5940 cancel_work_sync(&q_vector->rx.dim.work); 5941 } 5942 } 5943 5944 /** 5945 * ice_down - Shutdown the connection 5946 * @vsi: The VSI being stopped 5947 */ 5948 int ice_down(struct ice_vsi *vsi) 5949 { 5950 int i, tx_err, rx_err, link_err = 0; 5951 5952 /* Caller of this function is expected to set the 5953 * vsi->state ICE_DOWN bit 5954 */ 5955 if (vsi->netdev) { 5956 netif_carrier_off(vsi->netdev); 5957 netif_tx_disable(vsi->netdev); 5958 } 5959 5960 ice_vsi_dis_irq(vsi); 5961 5962 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 5963 if (tx_err) 5964 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 5965 vsi->vsi_num, tx_err); 5966 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 5967 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 5968 if (tx_err) 5969 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 5970 vsi->vsi_num, tx_err); 5971 } 5972 5973 rx_err = ice_vsi_stop_all_rx_rings(vsi); 5974 if (rx_err) 5975 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 5976 vsi->vsi_num, rx_err); 5977 5978 ice_napi_disable_all(vsi); 5979 5980 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 5981 link_err = ice_force_phys_link_state(vsi, false); 5982 if (link_err) 5983 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 5984 vsi->vsi_num, link_err); 5985 } 5986 5987 ice_for_each_txq(vsi, i) 5988 ice_clean_tx_ring(vsi->tx_rings[i]); 5989 5990 ice_for_each_rxq(vsi, i) 5991 ice_clean_rx_ring(vsi->rx_rings[i]); 5992 5993 if (tx_err || rx_err || link_err) { 5994 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 5995 vsi->vsi_num, vsi->vsw->sw_id); 5996 return -EIO; 5997 } 5998 5999 return 0; 6000 } 6001 6002 /** 6003 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6004 * @vsi: VSI having resources allocated 6005 * 6006 * Return 0 on success, negative on failure 6007 */ 6008 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6009 { 6010 int i, err = 0; 6011 6012 if (!vsi->num_txq) { 6013 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6014 vsi->vsi_num); 6015 return -EINVAL; 6016 } 6017 6018 ice_for_each_txq(vsi, i) { 6019 struct ice_ring *ring = vsi->tx_rings[i]; 6020 6021 if (!ring) 6022 return -EINVAL; 6023 6024 ring->netdev = vsi->netdev; 6025 err = ice_setup_tx_ring(ring); 6026 if (err) 6027 break; 6028 } 6029 6030 return err; 6031 } 6032 6033 /** 6034 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6035 * @vsi: VSI having resources allocated 6036 * 6037 * Return 0 on success, negative on failure 6038 */ 6039 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6040 { 6041 int i, err = 0; 6042 6043 if (!vsi->num_rxq) { 6044 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6045 vsi->vsi_num); 6046 return -EINVAL; 6047 } 6048 6049 ice_for_each_rxq(vsi, i) { 6050 struct ice_ring *ring = vsi->rx_rings[i]; 6051 6052 if (!ring) 6053 return -EINVAL; 6054 6055 ring->netdev = vsi->netdev; 6056 err = ice_setup_rx_ring(ring); 6057 if (err) 6058 break; 6059 } 6060 6061 return err; 6062 } 6063 6064 /** 6065 * ice_vsi_open_ctrl - open control VSI for use 6066 * @vsi: the VSI to open 6067 * 6068 * Initialization of the Control VSI 6069 * 6070 * Returns 0 on success, negative value on error 6071 */ 6072 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6073 { 6074 char int_name[ICE_INT_NAME_STR_LEN]; 6075 struct ice_pf *pf = vsi->back; 6076 struct device *dev; 6077 int err; 6078 6079 dev = ice_pf_to_dev(pf); 6080 /* allocate descriptors */ 6081 err = ice_vsi_setup_tx_rings(vsi); 6082 if (err) 6083 goto err_setup_tx; 6084 6085 err = ice_vsi_setup_rx_rings(vsi); 6086 if (err) 6087 goto err_setup_rx; 6088 6089 err = ice_vsi_cfg(vsi); 6090 if (err) 6091 goto err_setup_rx; 6092 6093 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6094 dev_driver_string(dev), dev_name(dev)); 6095 err = ice_vsi_req_irq_msix(vsi, int_name); 6096 if (err) 6097 goto err_setup_rx; 6098 6099 ice_vsi_cfg_msix(vsi); 6100 6101 err = ice_vsi_start_all_rx_rings(vsi); 6102 if (err) 6103 goto err_up_complete; 6104 6105 clear_bit(ICE_VSI_DOWN, vsi->state); 6106 ice_vsi_ena_irq(vsi); 6107 6108 return 0; 6109 6110 err_up_complete: 6111 ice_down(vsi); 6112 err_setup_rx: 6113 ice_vsi_free_rx_rings(vsi); 6114 err_setup_tx: 6115 ice_vsi_free_tx_rings(vsi); 6116 6117 return err; 6118 } 6119 6120 /** 6121 * ice_vsi_open - Called when a network interface is made active 6122 * @vsi: the VSI to open 6123 * 6124 * Initialization of the VSI 6125 * 6126 * Returns 0 on success, negative value on error 6127 */ 6128 static int ice_vsi_open(struct ice_vsi *vsi) 6129 { 6130 char int_name[ICE_INT_NAME_STR_LEN]; 6131 struct ice_pf *pf = vsi->back; 6132 int err; 6133 6134 /* allocate descriptors */ 6135 err = ice_vsi_setup_tx_rings(vsi); 6136 if (err) 6137 goto err_setup_tx; 6138 6139 err = ice_vsi_setup_rx_rings(vsi); 6140 if (err) 6141 goto err_setup_rx; 6142 6143 err = ice_vsi_cfg(vsi); 6144 if (err) 6145 goto err_setup_rx; 6146 6147 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6148 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6149 err = ice_vsi_req_irq_msix(vsi, int_name); 6150 if (err) 6151 goto err_setup_rx; 6152 6153 /* Notify the stack of the actual queue counts. */ 6154 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6155 if (err) 6156 goto err_set_qs; 6157 6158 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6159 if (err) 6160 goto err_set_qs; 6161 6162 err = ice_up_complete(vsi); 6163 if (err) 6164 goto err_up_complete; 6165 6166 return 0; 6167 6168 err_up_complete: 6169 ice_down(vsi); 6170 err_set_qs: 6171 ice_vsi_free_irq(vsi); 6172 err_setup_rx: 6173 ice_vsi_free_rx_rings(vsi); 6174 err_setup_tx: 6175 ice_vsi_free_tx_rings(vsi); 6176 6177 return err; 6178 } 6179 6180 /** 6181 * ice_vsi_release_all - Delete all VSIs 6182 * @pf: PF from which all VSIs are being removed 6183 */ 6184 static void ice_vsi_release_all(struct ice_pf *pf) 6185 { 6186 int err, i; 6187 6188 if (!pf->vsi) 6189 return; 6190 6191 ice_for_each_vsi(pf, i) { 6192 if (!pf->vsi[i]) 6193 continue; 6194 6195 err = ice_vsi_release(pf->vsi[i]); 6196 if (err) 6197 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6198 i, err, pf->vsi[i]->vsi_num); 6199 } 6200 } 6201 6202 /** 6203 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6204 * @pf: pointer to the PF instance 6205 * @type: VSI type to rebuild 6206 * 6207 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6208 */ 6209 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6210 { 6211 struct device *dev = ice_pf_to_dev(pf); 6212 enum ice_status status; 6213 int i, err; 6214 6215 ice_for_each_vsi(pf, i) { 6216 struct ice_vsi *vsi = pf->vsi[i]; 6217 6218 if (!vsi || vsi->type != type) 6219 continue; 6220 6221 /* rebuild the VSI */ 6222 err = ice_vsi_rebuild(vsi, true); 6223 if (err) { 6224 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6225 err, vsi->idx, ice_vsi_type_str(type)); 6226 return err; 6227 } 6228 6229 /* replay filters for the VSI */ 6230 status = ice_replay_vsi(&pf->hw, vsi->idx); 6231 if (status) { 6232 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 6233 ice_stat_str(status), vsi->idx, 6234 ice_vsi_type_str(type)); 6235 return -EIO; 6236 } 6237 6238 /* Re-map HW VSI number, using VSI handle that has been 6239 * previously validated in ice_replay_vsi() call above 6240 */ 6241 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6242 6243 /* enable the VSI */ 6244 err = ice_ena_vsi(vsi, false); 6245 if (err) { 6246 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6247 err, vsi->idx, ice_vsi_type_str(type)); 6248 return err; 6249 } 6250 6251 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6252 ice_vsi_type_str(type)); 6253 } 6254 6255 return 0; 6256 } 6257 6258 /** 6259 * ice_update_pf_netdev_link - Update PF netdev link status 6260 * @pf: pointer to the PF instance 6261 */ 6262 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6263 { 6264 bool link_up; 6265 int i; 6266 6267 ice_for_each_vsi(pf, i) { 6268 struct ice_vsi *vsi = pf->vsi[i]; 6269 6270 if (!vsi || vsi->type != ICE_VSI_PF) 6271 return; 6272 6273 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6274 if (link_up) { 6275 netif_carrier_on(pf->vsi[i]->netdev); 6276 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6277 } else { 6278 netif_carrier_off(pf->vsi[i]->netdev); 6279 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6280 } 6281 } 6282 } 6283 6284 /** 6285 * ice_rebuild - rebuild after reset 6286 * @pf: PF to rebuild 6287 * @reset_type: type of reset 6288 * 6289 * Do not rebuild VF VSI in this flow because that is already handled via 6290 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6291 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6292 * to reset/rebuild all the VF VSI twice. 6293 */ 6294 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6295 { 6296 struct device *dev = ice_pf_to_dev(pf); 6297 struct ice_hw *hw = &pf->hw; 6298 enum ice_status ret; 6299 int err; 6300 6301 if (test_bit(ICE_DOWN, pf->state)) 6302 goto clear_recovery; 6303 6304 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6305 6306 ret = ice_init_all_ctrlq(hw); 6307 if (ret) { 6308 dev_err(dev, "control queues init failed %s\n", 6309 ice_stat_str(ret)); 6310 goto err_init_ctrlq; 6311 } 6312 6313 /* if DDP was previously loaded successfully */ 6314 if (!ice_is_safe_mode(pf)) { 6315 /* reload the SW DB of filter tables */ 6316 if (reset_type == ICE_RESET_PFR) 6317 ice_fill_blk_tbls(hw); 6318 else 6319 /* Reload DDP Package after CORER/GLOBR reset */ 6320 ice_load_pkg(NULL, pf); 6321 } 6322 6323 ret = ice_clear_pf_cfg(hw); 6324 if (ret) { 6325 dev_err(dev, "clear PF configuration failed %s\n", 6326 ice_stat_str(ret)); 6327 goto err_init_ctrlq; 6328 } 6329 6330 if (pf->first_sw->dflt_vsi_ena) 6331 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6332 /* clear the default VSI configuration if it exists */ 6333 pf->first_sw->dflt_vsi = NULL; 6334 pf->first_sw->dflt_vsi_ena = false; 6335 6336 ice_clear_pxe_mode(hw); 6337 6338 ret = ice_init_nvm(hw); 6339 if (ret) { 6340 dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret)); 6341 goto err_init_ctrlq; 6342 } 6343 6344 ret = ice_get_caps(hw); 6345 if (ret) { 6346 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 6347 goto err_init_ctrlq; 6348 } 6349 6350 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6351 if (ret) { 6352 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 6353 goto err_init_ctrlq; 6354 } 6355 6356 err = ice_sched_init_port(hw->port_info); 6357 if (err) 6358 goto err_sched_init_port; 6359 6360 /* start misc vector */ 6361 err = ice_req_irq_msix_misc(pf); 6362 if (err) { 6363 dev_err(dev, "misc vector setup failed: %d\n", err); 6364 goto err_sched_init_port; 6365 } 6366 6367 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6368 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6369 if (!rd32(hw, PFQF_FD_SIZE)) { 6370 u16 unused, guar, b_effort; 6371 6372 guar = hw->func_caps.fd_fltr_guar; 6373 b_effort = hw->func_caps.fd_fltr_best_effort; 6374 6375 /* force guaranteed filter pool for PF */ 6376 ice_alloc_fd_guar_item(hw, &unused, guar); 6377 /* force shared filter pool for PF */ 6378 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6379 } 6380 } 6381 6382 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6383 ice_dcb_rebuild(pf); 6384 6385 /* If the PF previously had enabled PTP, PTP init needs to happen before 6386 * the VSI rebuild. If not, this causes the PTP link status events to 6387 * fail. 6388 */ 6389 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6390 ice_ptp_init(pf); 6391 6392 /* rebuild PF VSI */ 6393 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6394 if (err) { 6395 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6396 goto err_vsi_rebuild; 6397 } 6398 6399 /* If Flow Director is active */ 6400 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6401 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6402 if (err) { 6403 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6404 goto err_vsi_rebuild; 6405 } 6406 6407 /* replay HW Flow Director recipes */ 6408 if (hw->fdir_prof) 6409 ice_fdir_replay_flows(hw); 6410 6411 /* replay Flow Director filters */ 6412 ice_fdir_replay_fltrs(pf); 6413 6414 ice_rebuild_arfs(pf); 6415 } 6416 6417 ice_update_pf_netdev_link(pf); 6418 6419 /* tell the firmware we are up */ 6420 ret = ice_send_version(pf); 6421 if (ret) { 6422 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6423 ice_stat_str(ret)); 6424 goto err_vsi_rebuild; 6425 } 6426 6427 ice_replay_post(hw); 6428 6429 /* if we get here, reset flow is successful */ 6430 clear_bit(ICE_RESET_FAILED, pf->state); 6431 6432 ice_plug_aux_dev(pf); 6433 return; 6434 6435 err_vsi_rebuild: 6436 err_sched_init_port: 6437 ice_sched_cleanup_all(hw); 6438 err_init_ctrlq: 6439 ice_shutdown_all_ctrlq(hw); 6440 set_bit(ICE_RESET_FAILED, pf->state); 6441 clear_recovery: 6442 /* set this bit in PF state to control service task scheduling */ 6443 set_bit(ICE_NEEDS_RESTART, pf->state); 6444 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6445 } 6446 6447 /** 6448 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6449 * @vsi: Pointer to VSI structure 6450 */ 6451 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6452 { 6453 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6454 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6455 else 6456 return ICE_RXBUF_3072; 6457 } 6458 6459 /** 6460 * ice_change_mtu - NDO callback to change the MTU 6461 * @netdev: network interface device structure 6462 * @new_mtu: new value for maximum frame size 6463 * 6464 * Returns 0 on success, negative on failure 6465 */ 6466 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6467 { 6468 struct ice_netdev_priv *np = netdev_priv(netdev); 6469 struct ice_vsi *vsi = np->vsi; 6470 struct ice_pf *pf = vsi->back; 6471 struct iidc_event *event; 6472 u8 count = 0; 6473 int err = 0; 6474 6475 if (new_mtu == (int)netdev->mtu) { 6476 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6477 return 0; 6478 } 6479 6480 if (ice_is_xdp_ena_vsi(vsi)) { 6481 int frame_size = ice_max_xdp_frame_size(vsi); 6482 6483 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6484 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6485 frame_size - ICE_ETH_PKT_HDR_PAD); 6486 return -EINVAL; 6487 } 6488 } 6489 6490 /* if a reset is in progress, wait for some time for it to complete */ 6491 do { 6492 if (ice_is_reset_in_progress(pf->state)) { 6493 count++; 6494 usleep_range(1000, 2000); 6495 } else { 6496 break; 6497 } 6498 6499 } while (count < 100); 6500 6501 if (count == 100) { 6502 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6503 return -EBUSY; 6504 } 6505 6506 event = kzalloc(sizeof(*event), GFP_KERNEL); 6507 if (!event) 6508 return -ENOMEM; 6509 6510 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6511 ice_send_event_to_aux(pf, event); 6512 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6513 6514 netdev->mtu = (unsigned int)new_mtu; 6515 6516 /* if VSI is up, bring it down and then back up */ 6517 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6518 err = ice_down(vsi); 6519 if (err) { 6520 netdev_err(netdev, "change MTU if_down err %d\n", err); 6521 goto event_after; 6522 } 6523 6524 err = ice_up(vsi); 6525 if (err) { 6526 netdev_err(netdev, "change MTU if_up err %d\n", err); 6527 goto event_after; 6528 } 6529 } 6530 6531 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6532 event_after: 6533 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 6534 ice_send_event_to_aux(pf, event); 6535 kfree(event); 6536 6537 return err; 6538 } 6539 6540 /** 6541 * ice_do_ioctl - Access the hwtstamp interface 6542 * @netdev: network interface device structure 6543 * @ifr: interface request data 6544 * @cmd: ioctl command 6545 */ 6546 static int ice_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6547 { 6548 struct ice_netdev_priv *np = netdev_priv(netdev); 6549 struct ice_pf *pf = np->vsi->back; 6550 6551 switch (cmd) { 6552 case SIOCGHWTSTAMP: 6553 return ice_ptp_get_ts_config(pf, ifr); 6554 case SIOCSHWTSTAMP: 6555 return ice_ptp_set_ts_config(pf, ifr); 6556 default: 6557 return -EOPNOTSUPP; 6558 } 6559 } 6560 6561 /** 6562 * ice_aq_str - convert AQ err code to a string 6563 * @aq_err: the AQ error code to convert 6564 */ 6565 const char *ice_aq_str(enum ice_aq_err aq_err) 6566 { 6567 switch (aq_err) { 6568 case ICE_AQ_RC_OK: 6569 return "OK"; 6570 case ICE_AQ_RC_EPERM: 6571 return "ICE_AQ_RC_EPERM"; 6572 case ICE_AQ_RC_ENOENT: 6573 return "ICE_AQ_RC_ENOENT"; 6574 case ICE_AQ_RC_ENOMEM: 6575 return "ICE_AQ_RC_ENOMEM"; 6576 case ICE_AQ_RC_EBUSY: 6577 return "ICE_AQ_RC_EBUSY"; 6578 case ICE_AQ_RC_EEXIST: 6579 return "ICE_AQ_RC_EEXIST"; 6580 case ICE_AQ_RC_EINVAL: 6581 return "ICE_AQ_RC_EINVAL"; 6582 case ICE_AQ_RC_ENOSPC: 6583 return "ICE_AQ_RC_ENOSPC"; 6584 case ICE_AQ_RC_ENOSYS: 6585 return "ICE_AQ_RC_ENOSYS"; 6586 case ICE_AQ_RC_EMODE: 6587 return "ICE_AQ_RC_EMODE"; 6588 case ICE_AQ_RC_ENOSEC: 6589 return "ICE_AQ_RC_ENOSEC"; 6590 case ICE_AQ_RC_EBADSIG: 6591 return "ICE_AQ_RC_EBADSIG"; 6592 case ICE_AQ_RC_ESVN: 6593 return "ICE_AQ_RC_ESVN"; 6594 case ICE_AQ_RC_EBADMAN: 6595 return "ICE_AQ_RC_EBADMAN"; 6596 case ICE_AQ_RC_EBADBUF: 6597 return "ICE_AQ_RC_EBADBUF"; 6598 } 6599 6600 return "ICE_AQ_RC_UNKNOWN"; 6601 } 6602 6603 /** 6604 * ice_stat_str - convert status err code to a string 6605 * @stat_err: the status error code to convert 6606 */ 6607 const char *ice_stat_str(enum ice_status stat_err) 6608 { 6609 switch (stat_err) { 6610 case ICE_SUCCESS: 6611 return "OK"; 6612 case ICE_ERR_PARAM: 6613 return "ICE_ERR_PARAM"; 6614 case ICE_ERR_NOT_IMPL: 6615 return "ICE_ERR_NOT_IMPL"; 6616 case ICE_ERR_NOT_READY: 6617 return "ICE_ERR_NOT_READY"; 6618 case ICE_ERR_NOT_SUPPORTED: 6619 return "ICE_ERR_NOT_SUPPORTED"; 6620 case ICE_ERR_BAD_PTR: 6621 return "ICE_ERR_BAD_PTR"; 6622 case ICE_ERR_INVAL_SIZE: 6623 return "ICE_ERR_INVAL_SIZE"; 6624 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6625 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6626 case ICE_ERR_RESET_FAILED: 6627 return "ICE_ERR_RESET_FAILED"; 6628 case ICE_ERR_FW_API_VER: 6629 return "ICE_ERR_FW_API_VER"; 6630 case ICE_ERR_NO_MEMORY: 6631 return "ICE_ERR_NO_MEMORY"; 6632 case ICE_ERR_CFG: 6633 return "ICE_ERR_CFG"; 6634 case ICE_ERR_OUT_OF_RANGE: 6635 return "ICE_ERR_OUT_OF_RANGE"; 6636 case ICE_ERR_ALREADY_EXISTS: 6637 return "ICE_ERR_ALREADY_EXISTS"; 6638 case ICE_ERR_NVM: 6639 return "ICE_ERR_NVM"; 6640 case ICE_ERR_NVM_CHECKSUM: 6641 return "ICE_ERR_NVM_CHECKSUM"; 6642 case ICE_ERR_BUF_TOO_SHORT: 6643 return "ICE_ERR_BUF_TOO_SHORT"; 6644 case ICE_ERR_NVM_BLANK_MODE: 6645 return "ICE_ERR_NVM_BLANK_MODE"; 6646 case ICE_ERR_IN_USE: 6647 return "ICE_ERR_IN_USE"; 6648 case ICE_ERR_MAX_LIMIT: 6649 return "ICE_ERR_MAX_LIMIT"; 6650 case ICE_ERR_RESET_ONGOING: 6651 return "ICE_ERR_RESET_ONGOING"; 6652 case ICE_ERR_HW_TABLE: 6653 return "ICE_ERR_HW_TABLE"; 6654 case ICE_ERR_DOES_NOT_EXIST: 6655 return "ICE_ERR_DOES_NOT_EXIST"; 6656 case ICE_ERR_FW_DDP_MISMATCH: 6657 return "ICE_ERR_FW_DDP_MISMATCH"; 6658 case ICE_ERR_AQ_ERROR: 6659 return "ICE_ERR_AQ_ERROR"; 6660 case ICE_ERR_AQ_TIMEOUT: 6661 return "ICE_ERR_AQ_TIMEOUT"; 6662 case ICE_ERR_AQ_FULL: 6663 return "ICE_ERR_AQ_FULL"; 6664 case ICE_ERR_AQ_NO_WORK: 6665 return "ICE_ERR_AQ_NO_WORK"; 6666 case ICE_ERR_AQ_EMPTY: 6667 return "ICE_ERR_AQ_EMPTY"; 6668 case ICE_ERR_AQ_FW_CRITICAL: 6669 return "ICE_ERR_AQ_FW_CRITICAL"; 6670 } 6671 6672 return "ICE_ERR_UNKNOWN"; 6673 } 6674 6675 /** 6676 * ice_set_rss_lut - Set RSS LUT 6677 * @vsi: Pointer to VSI structure 6678 * @lut: Lookup table 6679 * @lut_size: Lookup table size 6680 * 6681 * Returns 0 on success, negative on failure 6682 */ 6683 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6684 { 6685 struct ice_aq_get_set_rss_lut_params params = {}; 6686 struct ice_hw *hw = &vsi->back->hw; 6687 enum ice_status status; 6688 6689 if (!lut) 6690 return -EINVAL; 6691 6692 params.vsi_handle = vsi->idx; 6693 params.lut_size = lut_size; 6694 params.lut_type = vsi->rss_lut_type; 6695 params.lut = lut; 6696 6697 status = ice_aq_set_rss_lut(hw, ¶ms); 6698 if (status) { 6699 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n", 6700 ice_stat_str(status), 6701 ice_aq_str(hw->adminq.sq_last_status)); 6702 return -EIO; 6703 } 6704 6705 return 0; 6706 } 6707 6708 /** 6709 * ice_set_rss_key - Set RSS key 6710 * @vsi: Pointer to the VSI structure 6711 * @seed: RSS hash seed 6712 * 6713 * Returns 0 on success, negative on failure 6714 */ 6715 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 6716 { 6717 struct ice_hw *hw = &vsi->back->hw; 6718 enum ice_status status; 6719 6720 if (!seed) 6721 return -EINVAL; 6722 6723 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6724 if (status) { 6725 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n", 6726 ice_stat_str(status), 6727 ice_aq_str(hw->adminq.sq_last_status)); 6728 return -EIO; 6729 } 6730 6731 return 0; 6732 } 6733 6734 /** 6735 * ice_get_rss_lut - Get RSS LUT 6736 * @vsi: Pointer to VSI structure 6737 * @lut: Buffer to store the lookup table entries 6738 * @lut_size: Size of buffer to store the lookup table entries 6739 * 6740 * Returns 0 on success, negative on failure 6741 */ 6742 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6743 { 6744 struct ice_aq_get_set_rss_lut_params params = {}; 6745 struct ice_hw *hw = &vsi->back->hw; 6746 enum ice_status status; 6747 6748 if (!lut) 6749 return -EINVAL; 6750 6751 params.vsi_handle = vsi->idx; 6752 params.lut_size = lut_size; 6753 params.lut_type = vsi->rss_lut_type; 6754 params.lut = lut; 6755 6756 status = ice_aq_get_rss_lut(hw, ¶ms); 6757 if (status) { 6758 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n", 6759 ice_stat_str(status), 6760 ice_aq_str(hw->adminq.sq_last_status)); 6761 return -EIO; 6762 } 6763 6764 return 0; 6765 } 6766 6767 /** 6768 * ice_get_rss_key - Get RSS key 6769 * @vsi: Pointer to VSI structure 6770 * @seed: Buffer to store the key in 6771 * 6772 * Returns 0 on success, negative on failure 6773 */ 6774 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 6775 { 6776 struct ice_hw *hw = &vsi->back->hw; 6777 enum ice_status status; 6778 6779 if (!seed) 6780 return -EINVAL; 6781 6782 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6783 if (status) { 6784 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n", 6785 ice_stat_str(status), 6786 ice_aq_str(hw->adminq.sq_last_status)); 6787 return -EIO; 6788 } 6789 6790 return 0; 6791 } 6792 6793 /** 6794 * ice_bridge_getlink - Get the hardware bridge mode 6795 * @skb: skb buff 6796 * @pid: process ID 6797 * @seq: RTNL message seq 6798 * @dev: the netdev being configured 6799 * @filter_mask: filter mask passed in 6800 * @nlflags: netlink flags passed in 6801 * 6802 * Return the bridge mode (VEB/VEPA) 6803 */ 6804 static int 6805 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 6806 struct net_device *dev, u32 filter_mask, int nlflags) 6807 { 6808 struct ice_netdev_priv *np = netdev_priv(dev); 6809 struct ice_vsi *vsi = np->vsi; 6810 struct ice_pf *pf = vsi->back; 6811 u16 bmode; 6812 6813 bmode = pf->first_sw->bridge_mode; 6814 6815 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 6816 filter_mask, NULL); 6817 } 6818 6819 /** 6820 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 6821 * @vsi: Pointer to VSI structure 6822 * @bmode: Hardware bridge mode (VEB/VEPA) 6823 * 6824 * Returns 0 on success, negative on failure 6825 */ 6826 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 6827 { 6828 struct ice_aqc_vsi_props *vsi_props; 6829 struct ice_hw *hw = &vsi->back->hw; 6830 struct ice_vsi_ctx *ctxt; 6831 enum ice_status status; 6832 int ret = 0; 6833 6834 vsi_props = &vsi->info; 6835 6836 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 6837 if (!ctxt) 6838 return -ENOMEM; 6839 6840 ctxt->info = vsi->info; 6841 6842 if (bmode == BRIDGE_MODE_VEB) 6843 /* change from VEPA to VEB mode */ 6844 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6845 else 6846 /* change from VEB to VEPA mode */ 6847 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6848 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 6849 6850 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 6851 if (status) { 6852 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 6853 bmode, ice_stat_str(status), 6854 ice_aq_str(hw->adminq.sq_last_status)); 6855 ret = -EIO; 6856 goto out; 6857 } 6858 /* Update sw flags for book keeping */ 6859 vsi_props->sw_flags = ctxt->info.sw_flags; 6860 6861 out: 6862 kfree(ctxt); 6863 return ret; 6864 } 6865 6866 /** 6867 * ice_bridge_setlink - Set the hardware bridge mode 6868 * @dev: the netdev being configured 6869 * @nlh: RTNL message 6870 * @flags: bridge setlink flags 6871 * @extack: netlink extended ack 6872 * 6873 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 6874 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 6875 * not already set for all VSIs connected to this switch. And also update the 6876 * unicast switch filter rules for the corresponding switch of the netdev. 6877 */ 6878 static int 6879 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 6880 u16 __always_unused flags, 6881 struct netlink_ext_ack __always_unused *extack) 6882 { 6883 struct ice_netdev_priv *np = netdev_priv(dev); 6884 struct ice_pf *pf = np->vsi->back; 6885 struct nlattr *attr, *br_spec; 6886 struct ice_hw *hw = &pf->hw; 6887 enum ice_status status; 6888 struct ice_sw *pf_sw; 6889 int rem, v, err = 0; 6890 6891 pf_sw = pf->first_sw; 6892 /* find the attribute in the netlink message */ 6893 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 6894 6895 nla_for_each_nested(attr, br_spec, rem) { 6896 __u16 mode; 6897 6898 if (nla_type(attr) != IFLA_BRIDGE_MODE) 6899 continue; 6900 mode = nla_get_u16(attr); 6901 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 6902 return -EINVAL; 6903 /* Continue if bridge mode is not being flipped */ 6904 if (mode == pf_sw->bridge_mode) 6905 continue; 6906 /* Iterates through the PF VSI list and update the loopback 6907 * mode of the VSI 6908 */ 6909 ice_for_each_vsi(pf, v) { 6910 if (!pf->vsi[v]) 6911 continue; 6912 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 6913 if (err) 6914 return err; 6915 } 6916 6917 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 6918 /* Update the unicast switch filter rules for the corresponding 6919 * switch of the netdev 6920 */ 6921 status = ice_update_sw_rule_bridge_mode(hw); 6922 if (status) { 6923 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 6924 mode, ice_stat_str(status), 6925 ice_aq_str(hw->adminq.sq_last_status)); 6926 /* revert hw->evb_veb */ 6927 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 6928 return -EIO; 6929 } 6930 6931 pf_sw->bridge_mode = mode; 6932 } 6933 6934 return 0; 6935 } 6936 6937 /** 6938 * ice_tx_timeout - Respond to a Tx Hang 6939 * @netdev: network interface device structure 6940 * @txqueue: Tx queue 6941 */ 6942 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 6943 { 6944 struct ice_netdev_priv *np = netdev_priv(netdev); 6945 struct ice_ring *tx_ring = NULL; 6946 struct ice_vsi *vsi = np->vsi; 6947 struct ice_pf *pf = vsi->back; 6948 u32 i; 6949 6950 pf->tx_timeout_count++; 6951 6952 /* Check if PFC is enabled for the TC to which the queue belongs 6953 * to. If yes then Tx timeout is not caused by a hung queue, no 6954 * need to reset and rebuild 6955 */ 6956 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 6957 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 6958 txqueue); 6959 return; 6960 } 6961 6962 /* now that we have an index, find the tx_ring struct */ 6963 for (i = 0; i < vsi->num_txq; i++) 6964 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 6965 if (txqueue == vsi->tx_rings[i]->q_index) { 6966 tx_ring = vsi->tx_rings[i]; 6967 break; 6968 } 6969 6970 /* Reset recovery level if enough time has elapsed after last timeout. 6971 * Also ensure no new reset action happens before next timeout period. 6972 */ 6973 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 6974 pf->tx_timeout_recovery_level = 1; 6975 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 6976 netdev->watchdog_timeo))) 6977 return; 6978 6979 if (tx_ring) { 6980 struct ice_hw *hw = &pf->hw; 6981 u32 head, val = 0; 6982 6983 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 6984 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 6985 /* Read interrupt register */ 6986 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 6987 6988 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 6989 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 6990 head, tx_ring->next_to_use, val); 6991 } 6992 6993 pf->tx_timeout_last_recovery = jiffies; 6994 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 6995 pf->tx_timeout_recovery_level, txqueue); 6996 6997 switch (pf->tx_timeout_recovery_level) { 6998 case 1: 6999 set_bit(ICE_PFR_REQ, pf->state); 7000 break; 7001 case 2: 7002 set_bit(ICE_CORER_REQ, pf->state); 7003 break; 7004 case 3: 7005 set_bit(ICE_GLOBR_REQ, pf->state); 7006 break; 7007 default: 7008 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7009 set_bit(ICE_DOWN, pf->state); 7010 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7011 set_bit(ICE_SERVICE_DIS, pf->state); 7012 break; 7013 } 7014 7015 ice_service_task_schedule(pf); 7016 pf->tx_timeout_recovery_level++; 7017 } 7018 7019 /** 7020 * ice_open - Called when a network interface becomes active 7021 * @netdev: network interface device structure 7022 * 7023 * The open entry point is called when a network interface is made 7024 * active by the system (IFF_UP). At this point all resources needed 7025 * for transmit and receive operations are allocated, the interrupt 7026 * handler is registered with the OS, the netdev watchdog is enabled, 7027 * and the stack is notified that the interface is ready. 7028 * 7029 * Returns 0 on success, negative value on failure 7030 */ 7031 int ice_open(struct net_device *netdev) 7032 { 7033 struct ice_netdev_priv *np = netdev_priv(netdev); 7034 struct ice_pf *pf = np->vsi->back; 7035 7036 if (ice_is_reset_in_progress(pf->state)) { 7037 netdev_err(netdev, "can't open net device while reset is in progress"); 7038 return -EBUSY; 7039 } 7040 7041 return ice_open_internal(netdev); 7042 } 7043 7044 /** 7045 * ice_open_internal - Called when a network interface becomes active 7046 * @netdev: network interface device structure 7047 * 7048 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 7049 * handling routine 7050 * 7051 * Returns 0 on success, negative value on failure 7052 */ 7053 int ice_open_internal(struct net_device *netdev) 7054 { 7055 struct ice_netdev_priv *np = netdev_priv(netdev); 7056 struct ice_vsi *vsi = np->vsi; 7057 struct ice_pf *pf = vsi->back; 7058 struct ice_port_info *pi; 7059 enum ice_status status; 7060 int err; 7061 7062 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 7063 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 7064 return -EIO; 7065 } 7066 7067 netif_carrier_off(netdev); 7068 7069 pi = vsi->port_info; 7070 status = ice_update_link_info(pi); 7071 if (status) { 7072 netdev_err(netdev, "Failed to get link info, error %s\n", 7073 ice_stat_str(status)); 7074 return -EIO; 7075 } 7076 7077 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 7078 7079 /* Set PHY if there is media, otherwise, turn off PHY */ 7080 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 7081 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 7082 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 7083 err = ice_init_phy_user_cfg(pi); 7084 if (err) { 7085 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 7086 err); 7087 return err; 7088 } 7089 } 7090 7091 err = ice_configure_phy(vsi); 7092 if (err) { 7093 netdev_err(netdev, "Failed to set physical link up, error %d\n", 7094 err); 7095 return err; 7096 } 7097 } else { 7098 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 7099 ice_set_link(vsi, false); 7100 } 7101 7102 err = ice_vsi_open(vsi); 7103 if (err) 7104 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 7105 vsi->vsi_num, vsi->vsw->sw_id); 7106 7107 /* Update existing tunnels information */ 7108 udp_tunnel_get_rx_info(netdev); 7109 7110 return err; 7111 } 7112 7113 /** 7114 * ice_stop - Disables a network interface 7115 * @netdev: network interface device structure 7116 * 7117 * The stop entry point is called when an interface is de-activated by the OS, 7118 * and the netdevice enters the DOWN state. The hardware is still under the 7119 * driver's control, but the netdev interface is disabled. 7120 * 7121 * Returns success only - not allowed to fail 7122 */ 7123 int ice_stop(struct net_device *netdev) 7124 { 7125 struct ice_netdev_priv *np = netdev_priv(netdev); 7126 struct ice_vsi *vsi = np->vsi; 7127 struct ice_pf *pf = vsi->back; 7128 7129 if (ice_is_reset_in_progress(pf->state)) { 7130 netdev_err(netdev, "can't stop net device while reset is in progress"); 7131 return -EBUSY; 7132 } 7133 7134 ice_vsi_close(vsi); 7135 7136 return 0; 7137 } 7138 7139 /** 7140 * ice_features_check - Validate encapsulated packet conforms to limits 7141 * @skb: skb buffer 7142 * @netdev: This port's netdev 7143 * @features: Offload features that the stack believes apply 7144 */ 7145 static netdev_features_t 7146 ice_features_check(struct sk_buff *skb, 7147 struct net_device __always_unused *netdev, 7148 netdev_features_t features) 7149 { 7150 size_t len; 7151 7152 /* No point in doing any of this if neither checksum nor GSO are 7153 * being requested for this frame. We can rule out both by just 7154 * checking for CHECKSUM_PARTIAL 7155 */ 7156 if (skb->ip_summed != CHECKSUM_PARTIAL) 7157 return features; 7158 7159 /* We cannot support GSO if the MSS is going to be less than 7160 * 64 bytes. If it is then we need to drop support for GSO. 7161 */ 7162 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 7163 features &= ~NETIF_F_GSO_MASK; 7164 7165 len = skb_network_header(skb) - skb->data; 7166 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 7167 goto out_rm_features; 7168 7169 len = skb_transport_header(skb) - skb_network_header(skb); 7170 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 7171 goto out_rm_features; 7172 7173 if (skb->encapsulation) { 7174 len = skb_inner_network_header(skb) - skb_transport_header(skb); 7175 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 7176 goto out_rm_features; 7177 7178 len = skb_inner_transport_header(skb) - 7179 skb_inner_network_header(skb); 7180 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 7181 goto out_rm_features; 7182 } 7183 7184 return features; 7185 out_rm_features: 7186 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 7187 } 7188 7189 static const struct net_device_ops ice_netdev_safe_mode_ops = { 7190 .ndo_open = ice_open, 7191 .ndo_stop = ice_stop, 7192 .ndo_start_xmit = ice_start_xmit, 7193 .ndo_set_mac_address = ice_set_mac_address, 7194 .ndo_validate_addr = eth_validate_addr, 7195 .ndo_change_mtu = ice_change_mtu, 7196 .ndo_get_stats64 = ice_get_stats64, 7197 .ndo_tx_timeout = ice_tx_timeout, 7198 .ndo_bpf = ice_xdp_safe_mode, 7199 }; 7200 7201 static const struct net_device_ops ice_netdev_ops = { 7202 .ndo_open = ice_open, 7203 .ndo_stop = ice_stop, 7204 .ndo_start_xmit = ice_start_xmit, 7205 .ndo_features_check = ice_features_check, 7206 .ndo_set_rx_mode = ice_set_rx_mode, 7207 .ndo_set_mac_address = ice_set_mac_address, 7208 .ndo_validate_addr = eth_validate_addr, 7209 .ndo_change_mtu = ice_change_mtu, 7210 .ndo_get_stats64 = ice_get_stats64, 7211 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 7212 .ndo_do_ioctl = ice_do_ioctl, 7213 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 7214 .ndo_set_vf_mac = ice_set_vf_mac, 7215 .ndo_get_vf_config = ice_get_vf_cfg, 7216 .ndo_set_vf_trust = ice_set_vf_trust, 7217 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 7218 .ndo_set_vf_link_state = ice_set_vf_link_state, 7219 .ndo_get_vf_stats = ice_get_vf_stats, 7220 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 7221 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 7222 .ndo_set_features = ice_set_features, 7223 .ndo_bridge_getlink = ice_bridge_getlink, 7224 .ndo_bridge_setlink = ice_bridge_setlink, 7225 .ndo_fdb_add = ice_fdb_add, 7226 .ndo_fdb_del = ice_fdb_del, 7227 #ifdef CONFIG_RFS_ACCEL 7228 .ndo_rx_flow_steer = ice_rx_flow_steer, 7229 #endif 7230 .ndo_tx_timeout = ice_tx_timeout, 7231 .ndo_bpf = ice_xdp, 7232 .ndo_xdp_xmit = ice_xdp_xmit, 7233 .ndo_xsk_wakeup = ice_xsk_wakeup, 7234 }; 7235