xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision cff9c565e65f3622e8dc1dcc21c1520a083dff35)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "ice_devlink.h"
17 #include "ice_hwmon.h"
18 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
19  * ice tracepoint functions. This must be done exactly once across the
20  * ice driver.
21  */
22 #define CREATE_TRACE_POINTS
23 #include "ice_trace.h"
24 #include "ice_eswitch.h"
25 #include "ice_tc_lib.h"
26 #include "ice_vsi_vlan_ops.h"
27 #include <net/xdp_sock_drv.h>
28 
29 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
30 static const char ice_driver_string[] = DRV_SUMMARY;
31 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
32 
33 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
34 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
35 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
36 
37 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
38 MODULE_DESCRIPTION(DRV_SUMMARY);
39 MODULE_LICENSE("GPL v2");
40 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
41 
42 static int debug = -1;
43 module_param(debug, int, 0644);
44 #ifndef CONFIG_DYNAMIC_DEBUG
45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
46 #else
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
48 #endif /* !CONFIG_DYNAMIC_DEBUG */
49 
50 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
51 EXPORT_SYMBOL(ice_xdp_locking_key);
52 
53 /**
54  * ice_hw_to_dev - Get device pointer from the hardware structure
55  * @hw: pointer to the device HW structure
56  *
57  * Used to access the device pointer from compilation units which can't easily
58  * include the definition of struct ice_pf without leading to circular header
59  * dependencies.
60  */
61 struct device *ice_hw_to_dev(struct ice_hw *hw)
62 {
63 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
64 
65 	return &pf->pdev->dev;
66 }
67 
68 static struct workqueue_struct *ice_wq;
69 struct workqueue_struct *ice_lag_wq;
70 static const struct net_device_ops ice_netdev_safe_mode_ops;
71 static const struct net_device_ops ice_netdev_ops;
72 
73 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
74 
75 static void ice_vsi_release_all(struct ice_pf *pf);
76 
77 static int ice_rebuild_channels(struct ice_pf *pf);
78 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
79 
80 static int
81 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
82 		     void *cb_priv, enum tc_setup_type type, void *type_data,
83 		     void *data,
84 		     void (*cleanup)(struct flow_block_cb *block_cb));
85 
86 bool netif_is_ice(const struct net_device *dev)
87 {
88 	return dev && (dev->netdev_ops == &ice_netdev_ops);
89 }
90 
91 /**
92  * ice_get_tx_pending - returns number of Tx descriptors not processed
93  * @ring: the ring of descriptors
94  */
95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
96 {
97 	u16 head, tail;
98 
99 	head = ring->next_to_clean;
100 	tail = ring->next_to_use;
101 
102 	if (head != tail)
103 		return (head < tail) ?
104 			tail - head : (tail + ring->count - head);
105 	return 0;
106 }
107 
108 /**
109  * ice_check_for_hang_subtask - check for and recover hung queues
110  * @pf: pointer to PF struct
111  */
112 static void ice_check_for_hang_subtask(struct ice_pf *pf)
113 {
114 	struct ice_vsi *vsi = NULL;
115 	struct ice_hw *hw;
116 	unsigned int i;
117 	int packets;
118 	u32 v;
119 
120 	ice_for_each_vsi(pf, v)
121 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
122 			vsi = pf->vsi[v];
123 			break;
124 		}
125 
126 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
127 		return;
128 
129 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
130 		return;
131 
132 	hw = &vsi->back->hw;
133 
134 	ice_for_each_txq(vsi, i) {
135 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
136 		struct ice_ring_stats *ring_stats;
137 
138 		if (!tx_ring)
139 			continue;
140 		if (ice_ring_ch_enabled(tx_ring))
141 			continue;
142 
143 		ring_stats = tx_ring->ring_stats;
144 		if (!ring_stats)
145 			continue;
146 
147 		if (tx_ring->desc) {
148 			/* If packet counter has not changed the queue is
149 			 * likely stalled, so force an interrupt for this
150 			 * queue.
151 			 *
152 			 * prev_pkt would be negative if there was no
153 			 * pending work.
154 			 */
155 			packets = ring_stats->stats.pkts & INT_MAX;
156 			if (ring_stats->tx_stats.prev_pkt == packets) {
157 				/* Trigger sw interrupt to revive the queue */
158 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
159 				continue;
160 			}
161 
162 			/* Memory barrier between read of packet count and call
163 			 * to ice_get_tx_pending()
164 			 */
165 			smp_rmb();
166 			ring_stats->tx_stats.prev_pkt =
167 			    ice_get_tx_pending(tx_ring) ? packets : -1;
168 		}
169 	}
170 }
171 
172 /**
173  * ice_init_mac_fltr - Set initial MAC filters
174  * @pf: board private structure
175  *
176  * Set initial set of MAC filters for PF VSI; configure filters for permanent
177  * address and broadcast address. If an error is encountered, netdevice will be
178  * unregistered.
179  */
180 static int ice_init_mac_fltr(struct ice_pf *pf)
181 {
182 	struct ice_vsi *vsi;
183 	u8 *perm_addr;
184 
185 	vsi = ice_get_main_vsi(pf);
186 	if (!vsi)
187 		return -EINVAL;
188 
189 	perm_addr = vsi->port_info->mac.perm_addr;
190 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
191 }
192 
193 /**
194  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
195  * @netdev: the net device on which the sync is happening
196  * @addr: MAC address to sync
197  *
198  * This is a callback function which is called by the in kernel device sync
199  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
200  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
201  * MAC filters from the hardware.
202  */
203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
204 {
205 	struct ice_netdev_priv *np = netdev_priv(netdev);
206 	struct ice_vsi *vsi = np->vsi;
207 
208 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
209 				     ICE_FWD_TO_VSI))
210 		return -EINVAL;
211 
212 	return 0;
213 }
214 
215 /**
216  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
217  * @netdev: the net device on which the unsync is happening
218  * @addr: MAC address to unsync
219  *
220  * This is a callback function which is called by the in kernel device unsync
221  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
222  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
223  * delete the MAC filters from the hardware.
224  */
225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
226 {
227 	struct ice_netdev_priv *np = netdev_priv(netdev);
228 	struct ice_vsi *vsi = np->vsi;
229 
230 	/* Under some circumstances, we might receive a request to delete our
231 	 * own device address from our uc list. Because we store the device
232 	 * address in the VSI's MAC filter list, we need to ignore such
233 	 * requests and not delete our device address from this list.
234 	 */
235 	if (ether_addr_equal(addr, netdev->dev_addr))
236 		return 0;
237 
238 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
239 				     ICE_FWD_TO_VSI))
240 		return -EINVAL;
241 
242 	return 0;
243 }
244 
245 /**
246  * ice_vsi_fltr_changed - check if filter state changed
247  * @vsi: VSI to be checked
248  *
249  * returns true if filter state has changed, false otherwise.
250  */
251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
252 {
253 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
254 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
255 }
256 
257 /**
258  * ice_set_promisc - Enable promiscuous mode for a given PF
259  * @vsi: the VSI being configured
260  * @promisc_m: mask of promiscuous config bits
261  *
262  */
263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
264 {
265 	int status;
266 
267 	if (vsi->type != ICE_VSI_PF)
268 		return 0;
269 
270 	if (ice_vsi_has_non_zero_vlans(vsi)) {
271 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
272 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
273 						       promisc_m);
274 	} else {
275 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
276 						  promisc_m, 0);
277 	}
278 	if (status && status != -EEXIST)
279 		return status;
280 
281 	netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
282 		   vsi->vsi_num, promisc_m);
283 	return 0;
284 }
285 
286 /**
287  * ice_clear_promisc - Disable promiscuous mode for a given PF
288  * @vsi: the VSI being configured
289  * @promisc_m: mask of promiscuous config bits
290  *
291  */
292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
293 {
294 	int status;
295 
296 	if (vsi->type != ICE_VSI_PF)
297 		return 0;
298 
299 	if (ice_vsi_has_non_zero_vlans(vsi)) {
300 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
301 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
302 							 promisc_m);
303 	} else {
304 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
305 						    promisc_m, 0);
306 	}
307 
308 	netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
309 		   vsi->vsi_num, promisc_m);
310 	return status;
311 }
312 
313 /**
314  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
315  * @vsi: ptr to the VSI
316  *
317  * Push any outstanding VSI filter changes through the AdminQ.
318  */
319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
320 {
321 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
322 	struct device *dev = ice_pf_to_dev(vsi->back);
323 	struct net_device *netdev = vsi->netdev;
324 	bool promisc_forced_on = false;
325 	struct ice_pf *pf = vsi->back;
326 	struct ice_hw *hw = &pf->hw;
327 	u32 changed_flags = 0;
328 	int err;
329 
330 	if (!vsi->netdev)
331 		return -EINVAL;
332 
333 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
334 		usleep_range(1000, 2000);
335 
336 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
337 	vsi->current_netdev_flags = vsi->netdev->flags;
338 
339 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
340 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
341 
342 	if (ice_vsi_fltr_changed(vsi)) {
343 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
344 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
345 
346 		/* grab the netdev's addr_list_lock */
347 		netif_addr_lock_bh(netdev);
348 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
349 			      ice_add_mac_to_unsync_list);
350 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
351 			      ice_add_mac_to_unsync_list);
352 		/* our temp lists are populated. release lock */
353 		netif_addr_unlock_bh(netdev);
354 	}
355 
356 	/* Remove MAC addresses in the unsync list */
357 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
358 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
359 	if (err) {
360 		netdev_err(netdev, "Failed to delete MAC filters\n");
361 		/* if we failed because of alloc failures, just bail */
362 		if (err == -ENOMEM)
363 			goto out;
364 	}
365 
366 	/* Add MAC addresses in the sync list */
367 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
368 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
369 	/* If filter is added successfully or already exists, do not go into
370 	 * 'if' condition and report it as error. Instead continue processing
371 	 * rest of the function.
372 	 */
373 	if (err && err != -EEXIST) {
374 		netdev_err(netdev, "Failed to add MAC filters\n");
375 		/* If there is no more space for new umac filters, VSI
376 		 * should go into promiscuous mode. There should be some
377 		 * space reserved for promiscuous filters.
378 		 */
379 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
380 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
381 				      vsi->state)) {
382 			promisc_forced_on = true;
383 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
384 				    vsi->vsi_num);
385 		} else {
386 			goto out;
387 		}
388 	}
389 	err = 0;
390 	/* check for changes in promiscuous modes */
391 	if (changed_flags & IFF_ALLMULTI) {
392 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
393 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 			if (err) {
395 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
396 				goto out_promisc;
397 			}
398 		} else {
399 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
400 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 			if (err) {
402 				vsi->current_netdev_flags |= IFF_ALLMULTI;
403 				goto out_promisc;
404 			}
405 		}
406 	}
407 
408 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
409 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
410 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
411 		if (vsi->current_netdev_flags & IFF_PROMISC) {
412 			/* Apply Rx filter rule to get traffic from wire */
413 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
414 				err = ice_set_dflt_vsi(vsi);
415 				if (err && err != -EEXIST) {
416 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
417 						   err, vsi->vsi_num);
418 					vsi->current_netdev_flags &=
419 						~IFF_PROMISC;
420 					goto out_promisc;
421 				}
422 				err = 0;
423 				vlan_ops->dis_rx_filtering(vsi);
424 
425 				/* promiscuous mode implies allmulticast so
426 				 * that VSIs that are in promiscuous mode are
427 				 * subscribed to multicast packets coming to
428 				 * the port
429 				 */
430 				err = ice_set_promisc(vsi,
431 						      ICE_MCAST_PROMISC_BITS);
432 				if (err)
433 					goto out_promisc;
434 			}
435 		} else {
436 			/* Clear Rx filter to remove traffic from wire */
437 			if (ice_is_vsi_dflt_vsi(vsi)) {
438 				err = ice_clear_dflt_vsi(vsi);
439 				if (err) {
440 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
441 						   err, vsi->vsi_num);
442 					vsi->current_netdev_flags |=
443 						IFF_PROMISC;
444 					goto out_promisc;
445 				}
446 				if (vsi->netdev->features &
447 				    NETIF_F_HW_VLAN_CTAG_FILTER)
448 					vlan_ops->ena_rx_filtering(vsi);
449 			}
450 
451 			/* disable allmulti here, but only if allmulti is not
452 			 * still enabled for the netdev
453 			 */
454 			if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
455 				err = ice_clear_promisc(vsi,
456 							ICE_MCAST_PROMISC_BITS);
457 				if (err) {
458 					netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
459 						   err, vsi->vsi_num);
460 				}
461 			}
462 		}
463 	}
464 	goto exit;
465 
466 out_promisc:
467 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
468 	goto exit;
469 out:
470 	/* if something went wrong then set the changed flag so we try again */
471 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
472 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
473 exit:
474 	clear_bit(ICE_CFG_BUSY, vsi->state);
475 	return err;
476 }
477 
478 /**
479  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
480  * @pf: board private structure
481  */
482 static void ice_sync_fltr_subtask(struct ice_pf *pf)
483 {
484 	int v;
485 
486 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
487 		return;
488 
489 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
490 
491 	ice_for_each_vsi(pf, v)
492 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
493 		    ice_vsi_sync_fltr(pf->vsi[v])) {
494 			/* come back and try again later */
495 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
496 			break;
497 		}
498 }
499 
500 /**
501  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
502  * @pf: the PF
503  * @locked: is the rtnl_lock already held
504  */
505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
506 {
507 	int node;
508 	int v;
509 
510 	ice_for_each_vsi(pf, v)
511 		if (pf->vsi[v])
512 			ice_dis_vsi(pf->vsi[v], locked);
513 
514 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
515 		pf->pf_agg_node[node].num_vsis = 0;
516 
517 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
518 		pf->vf_agg_node[node].num_vsis = 0;
519 }
520 
521 /**
522  * ice_clear_sw_switch_recipes - clear switch recipes
523  * @pf: board private structure
524  *
525  * Mark switch recipes as not created in sw structures. There are cases where
526  * rules (especially advanced rules) need to be restored, either re-read from
527  * hardware or added again. For example after the reset. 'recp_created' flag
528  * prevents from doing that and need to be cleared upfront.
529  */
530 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
531 {
532 	struct ice_sw_recipe *recp;
533 	u8 i;
534 
535 	recp = pf->hw.switch_info->recp_list;
536 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
537 		recp[i].recp_created = false;
538 }
539 
540 /**
541  * ice_prepare_for_reset - prep for reset
542  * @pf: board private structure
543  * @reset_type: reset type requested
544  *
545  * Inform or close all dependent features in prep for reset.
546  */
547 static void
548 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
549 {
550 	struct ice_hw *hw = &pf->hw;
551 	struct ice_vsi *vsi;
552 	struct ice_vf *vf;
553 	unsigned int bkt;
554 
555 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
556 
557 	/* already prepared for reset */
558 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
559 		return;
560 
561 	ice_unplug_aux_dev(pf);
562 
563 	/* Notify VFs of impending reset */
564 	if (ice_check_sq_alive(hw, &hw->mailboxq))
565 		ice_vc_notify_reset(pf);
566 
567 	/* Disable VFs until reset is completed */
568 	mutex_lock(&pf->vfs.table_lock);
569 	ice_for_each_vf(pf, bkt, vf)
570 		ice_set_vf_state_dis(vf);
571 	mutex_unlock(&pf->vfs.table_lock);
572 
573 	if (ice_is_eswitch_mode_switchdev(pf)) {
574 		if (reset_type != ICE_RESET_PFR)
575 			ice_clear_sw_switch_recipes(pf);
576 	}
577 
578 	/* release ADQ specific HW and SW resources */
579 	vsi = ice_get_main_vsi(pf);
580 	if (!vsi)
581 		goto skip;
582 
583 	/* to be on safe side, reset orig_rss_size so that normal flow
584 	 * of deciding rss_size can take precedence
585 	 */
586 	vsi->orig_rss_size = 0;
587 
588 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
589 		if (reset_type == ICE_RESET_PFR) {
590 			vsi->old_ena_tc = vsi->all_enatc;
591 			vsi->old_numtc = vsi->all_numtc;
592 		} else {
593 			ice_remove_q_channels(vsi, true);
594 
595 			/* for other reset type, do not support channel rebuild
596 			 * hence reset needed info
597 			 */
598 			vsi->old_ena_tc = 0;
599 			vsi->all_enatc = 0;
600 			vsi->old_numtc = 0;
601 			vsi->all_numtc = 0;
602 			vsi->req_txq = 0;
603 			vsi->req_rxq = 0;
604 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
605 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
606 		}
607 	}
608 skip:
609 
610 	/* clear SW filtering DB */
611 	ice_clear_hw_tbls(hw);
612 	/* disable the VSIs and their queues that are not already DOWN */
613 	ice_pf_dis_all_vsi(pf, false);
614 
615 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
616 		ice_ptp_prepare_for_reset(pf);
617 
618 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
619 		ice_gnss_exit(pf);
620 
621 	if (hw->port_info)
622 		ice_sched_clear_port(hw->port_info);
623 
624 	ice_shutdown_all_ctrlq(hw);
625 
626 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
627 }
628 
629 /**
630  * ice_do_reset - Initiate one of many types of resets
631  * @pf: board private structure
632  * @reset_type: reset type requested before this function was called.
633  */
634 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
635 {
636 	struct device *dev = ice_pf_to_dev(pf);
637 	struct ice_hw *hw = &pf->hw;
638 
639 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
640 
641 	if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
642 		dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
643 		reset_type = ICE_RESET_CORER;
644 	}
645 
646 	ice_prepare_for_reset(pf, reset_type);
647 
648 	/* trigger the reset */
649 	if (ice_reset(hw, reset_type)) {
650 		dev_err(dev, "reset %d failed\n", reset_type);
651 		set_bit(ICE_RESET_FAILED, pf->state);
652 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
653 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
654 		clear_bit(ICE_PFR_REQ, pf->state);
655 		clear_bit(ICE_CORER_REQ, pf->state);
656 		clear_bit(ICE_GLOBR_REQ, pf->state);
657 		wake_up(&pf->reset_wait_queue);
658 		return;
659 	}
660 
661 	/* PFR is a bit of a special case because it doesn't result in an OICR
662 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
663 	 * associated state bits.
664 	 */
665 	if (reset_type == ICE_RESET_PFR) {
666 		pf->pfr_count++;
667 		ice_rebuild(pf, reset_type);
668 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
669 		clear_bit(ICE_PFR_REQ, pf->state);
670 		wake_up(&pf->reset_wait_queue);
671 		ice_reset_all_vfs(pf);
672 	}
673 }
674 
675 /**
676  * ice_reset_subtask - Set up for resetting the device and driver
677  * @pf: board private structure
678  */
679 static void ice_reset_subtask(struct ice_pf *pf)
680 {
681 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
682 
683 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
684 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
685 	 * of reset is pending and sets bits in pf->state indicating the reset
686 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
687 	 * prepare for pending reset if not already (for PF software-initiated
688 	 * global resets the software should already be prepared for it as
689 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
690 	 * by firmware or software on other PFs, that bit is not set so prepare
691 	 * for the reset now), poll for reset done, rebuild and return.
692 	 */
693 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
694 		/* Perform the largest reset requested */
695 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
696 			reset_type = ICE_RESET_CORER;
697 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
698 			reset_type = ICE_RESET_GLOBR;
699 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
700 			reset_type = ICE_RESET_EMPR;
701 		/* return if no valid reset type requested */
702 		if (reset_type == ICE_RESET_INVAL)
703 			return;
704 		ice_prepare_for_reset(pf, reset_type);
705 
706 		/* make sure we are ready to rebuild */
707 		if (ice_check_reset(&pf->hw)) {
708 			set_bit(ICE_RESET_FAILED, pf->state);
709 		} else {
710 			/* done with reset. start rebuild */
711 			pf->hw.reset_ongoing = false;
712 			ice_rebuild(pf, reset_type);
713 			/* clear bit to resume normal operations, but
714 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
715 			 */
716 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
717 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
718 			clear_bit(ICE_PFR_REQ, pf->state);
719 			clear_bit(ICE_CORER_REQ, pf->state);
720 			clear_bit(ICE_GLOBR_REQ, pf->state);
721 			wake_up(&pf->reset_wait_queue);
722 			ice_reset_all_vfs(pf);
723 		}
724 
725 		return;
726 	}
727 
728 	/* No pending resets to finish processing. Check for new resets */
729 	if (test_bit(ICE_PFR_REQ, pf->state)) {
730 		reset_type = ICE_RESET_PFR;
731 		if (pf->lag && pf->lag->bonded) {
732 			dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
733 			reset_type = ICE_RESET_CORER;
734 		}
735 	}
736 	if (test_bit(ICE_CORER_REQ, pf->state))
737 		reset_type = ICE_RESET_CORER;
738 	if (test_bit(ICE_GLOBR_REQ, pf->state))
739 		reset_type = ICE_RESET_GLOBR;
740 	/* If no valid reset type requested just return */
741 	if (reset_type == ICE_RESET_INVAL)
742 		return;
743 
744 	/* reset if not already down or busy */
745 	if (!test_bit(ICE_DOWN, pf->state) &&
746 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
747 		ice_do_reset(pf, reset_type);
748 	}
749 }
750 
751 /**
752  * ice_print_topo_conflict - print topology conflict message
753  * @vsi: the VSI whose topology status is being checked
754  */
755 static void ice_print_topo_conflict(struct ice_vsi *vsi)
756 {
757 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
758 	case ICE_AQ_LINK_TOPO_CONFLICT:
759 	case ICE_AQ_LINK_MEDIA_CONFLICT:
760 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
761 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
762 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
763 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
764 		break;
765 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
766 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
767 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
768 		else
769 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
770 		break;
771 	default:
772 		break;
773 	}
774 }
775 
776 /**
777  * ice_print_link_msg - print link up or down message
778  * @vsi: the VSI whose link status is being queried
779  * @isup: boolean for if the link is now up or down
780  */
781 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
782 {
783 	struct ice_aqc_get_phy_caps_data *caps;
784 	const char *an_advertised;
785 	const char *fec_req;
786 	const char *speed;
787 	const char *fec;
788 	const char *fc;
789 	const char *an;
790 	int status;
791 
792 	if (!vsi)
793 		return;
794 
795 	if (vsi->current_isup == isup)
796 		return;
797 
798 	vsi->current_isup = isup;
799 
800 	if (!isup) {
801 		netdev_info(vsi->netdev, "NIC Link is Down\n");
802 		return;
803 	}
804 
805 	switch (vsi->port_info->phy.link_info.link_speed) {
806 	case ICE_AQ_LINK_SPEED_100GB:
807 		speed = "100 G";
808 		break;
809 	case ICE_AQ_LINK_SPEED_50GB:
810 		speed = "50 G";
811 		break;
812 	case ICE_AQ_LINK_SPEED_40GB:
813 		speed = "40 G";
814 		break;
815 	case ICE_AQ_LINK_SPEED_25GB:
816 		speed = "25 G";
817 		break;
818 	case ICE_AQ_LINK_SPEED_20GB:
819 		speed = "20 G";
820 		break;
821 	case ICE_AQ_LINK_SPEED_10GB:
822 		speed = "10 G";
823 		break;
824 	case ICE_AQ_LINK_SPEED_5GB:
825 		speed = "5 G";
826 		break;
827 	case ICE_AQ_LINK_SPEED_2500MB:
828 		speed = "2.5 G";
829 		break;
830 	case ICE_AQ_LINK_SPEED_1000MB:
831 		speed = "1 G";
832 		break;
833 	case ICE_AQ_LINK_SPEED_100MB:
834 		speed = "100 M";
835 		break;
836 	default:
837 		speed = "Unknown ";
838 		break;
839 	}
840 
841 	switch (vsi->port_info->fc.current_mode) {
842 	case ICE_FC_FULL:
843 		fc = "Rx/Tx";
844 		break;
845 	case ICE_FC_TX_PAUSE:
846 		fc = "Tx";
847 		break;
848 	case ICE_FC_RX_PAUSE:
849 		fc = "Rx";
850 		break;
851 	case ICE_FC_NONE:
852 		fc = "None";
853 		break;
854 	default:
855 		fc = "Unknown";
856 		break;
857 	}
858 
859 	/* Get FEC mode based on negotiated link info */
860 	switch (vsi->port_info->phy.link_info.fec_info) {
861 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
862 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
863 		fec = "RS-FEC";
864 		break;
865 	case ICE_AQ_LINK_25G_KR_FEC_EN:
866 		fec = "FC-FEC/BASE-R";
867 		break;
868 	default:
869 		fec = "NONE";
870 		break;
871 	}
872 
873 	/* check if autoneg completed, might be false due to not supported */
874 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
875 		an = "True";
876 	else
877 		an = "False";
878 
879 	/* Get FEC mode requested based on PHY caps last SW configuration */
880 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
881 	if (!caps) {
882 		fec_req = "Unknown";
883 		an_advertised = "Unknown";
884 		goto done;
885 	}
886 
887 	status = ice_aq_get_phy_caps(vsi->port_info, false,
888 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
889 	if (status)
890 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
891 
892 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
893 
894 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
895 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
896 		fec_req = "RS-FEC";
897 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
898 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
899 		fec_req = "FC-FEC/BASE-R";
900 	else
901 		fec_req = "NONE";
902 
903 	kfree(caps);
904 
905 done:
906 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
907 		    speed, fec_req, fec, an_advertised, an, fc);
908 	ice_print_topo_conflict(vsi);
909 }
910 
911 /**
912  * ice_vsi_link_event - update the VSI's netdev
913  * @vsi: the VSI on which the link event occurred
914  * @link_up: whether or not the VSI needs to be set up or down
915  */
916 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
917 {
918 	if (!vsi)
919 		return;
920 
921 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
922 		return;
923 
924 	if (vsi->type == ICE_VSI_PF) {
925 		if (link_up == netif_carrier_ok(vsi->netdev))
926 			return;
927 
928 		if (link_up) {
929 			netif_carrier_on(vsi->netdev);
930 			netif_tx_wake_all_queues(vsi->netdev);
931 		} else {
932 			netif_carrier_off(vsi->netdev);
933 			netif_tx_stop_all_queues(vsi->netdev);
934 		}
935 	}
936 }
937 
938 /**
939  * ice_set_dflt_mib - send a default config MIB to the FW
940  * @pf: private PF struct
941  *
942  * This function sends a default configuration MIB to the FW.
943  *
944  * If this function errors out at any point, the driver is still able to
945  * function.  The main impact is that LFC may not operate as expected.
946  * Therefore an error state in this function should be treated with a DBG
947  * message and continue on with driver rebuild/reenable.
948  */
949 static void ice_set_dflt_mib(struct ice_pf *pf)
950 {
951 	struct device *dev = ice_pf_to_dev(pf);
952 	u8 mib_type, *buf, *lldpmib = NULL;
953 	u16 len, typelen, offset = 0;
954 	struct ice_lldp_org_tlv *tlv;
955 	struct ice_hw *hw = &pf->hw;
956 	u32 ouisubtype;
957 
958 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
959 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
960 	if (!lldpmib) {
961 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
962 			__func__);
963 		return;
964 	}
965 
966 	/* Add ETS CFG TLV */
967 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
968 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
969 		   ICE_IEEE_ETS_TLV_LEN);
970 	tlv->typelen = htons(typelen);
971 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
972 		      ICE_IEEE_SUBTYPE_ETS_CFG);
973 	tlv->ouisubtype = htonl(ouisubtype);
974 
975 	buf = tlv->tlvinfo;
976 	buf[0] = 0;
977 
978 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
979 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
980 	 * Octets 13 - 20 are TSA values - leave as zeros
981 	 */
982 	buf[5] = 0x64;
983 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
984 	offset += len + 2;
985 	tlv = (struct ice_lldp_org_tlv *)
986 		((char *)tlv + sizeof(tlv->typelen) + len);
987 
988 	/* Add ETS REC TLV */
989 	buf = tlv->tlvinfo;
990 	tlv->typelen = htons(typelen);
991 
992 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
993 		      ICE_IEEE_SUBTYPE_ETS_REC);
994 	tlv->ouisubtype = htonl(ouisubtype);
995 
996 	/* First octet of buf is reserved
997 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
998 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
999 	 * Octets 13 - 20 are TSA value - leave as zeros
1000 	 */
1001 	buf[5] = 0x64;
1002 	offset += len + 2;
1003 	tlv = (struct ice_lldp_org_tlv *)
1004 		((char *)tlv + sizeof(tlv->typelen) + len);
1005 
1006 	/* Add PFC CFG TLV */
1007 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1008 		   ICE_IEEE_PFC_TLV_LEN);
1009 	tlv->typelen = htons(typelen);
1010 
1011 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1012 		      ICE_IEEE_SUBTYPE_PFC_CFG);
1013 	tlv->ouisubtype = htonl(ouisubtype);
1014 
1015 	/* Octet 1 left as all zeros - PFC disabled */
1016 	buf[0] = 0x08;
1017 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1018 	offset += len + 2;
1019 
1020 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1021 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1022 
1023 	kfree(lldpmib);
1024 }
1025 
1026 /**
1027  * ice_check_phy_fw_load - check if PHY FW load failed
1028  * @pf: pointer to PF struct
1029  * @link_cfg_err: bitmap from the link info structure
1030  *
1031  * check if external PHY FW load failed and print an error message if it did
1032  */
1033 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1034 {
1035 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1036 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1037 		return;
1038 	}
1039 
1040 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1041 		return;
1042 
1043 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1044 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1045 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1046 	}
1047 }
1048 
1049 /**
1050  * ice_check_module_power
1051  * @pf: pointer to PF struct
1052  * @link_cfg_err: bitmap from the link info structure
1053  *
1054  * check module power level returned by a previous call to aq_get_link_info
1055  * and print error messages if module power level is not supported
1056  */
1057 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1058 {
1059 	/* if module power level is supported, clear the flag */
1060 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1061 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1062 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1063 		return;
1064 	}
1065 
1066 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1067 	 * above block didn't clear this bit, there's nothing to do
1068 	 */
1069 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1070 		return;
1071 
1072 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1073 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1074 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1075 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1076 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1077 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1078 	}
1079 }
1080 
1081 /**
1082  * ice_check_link_cfg_err - check if link configuration failed
1083  * @pf: pointer to the PF struct
1084  * @link_cfg_err: bitmap from the link info structure
1085  *
1086  * print if any link configuration failure happens due to the value in the
1087  * link_cfg_err parameter in the link info structure
1088  */
1089 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1090 {
1091 	ice_check_module_power(pf, link_cfg_err);
1092 	ice_check_phy_fw_load(pf, link_cfg_err);
1093 }
1094 
1095 /**
1096  * ice_link_event - process the link event
1097  * @pf: PF that the link event is associated with
1098  * @pi: port_info for the port that the link event is associated with
1099  * @link_up: true if the physical link is up and false if it is down
1100  * @link_speed: current link speed received from the link event
1101  *
1102  * Returns 0 on success and negative on failure
1103  */
1104 static int
1105 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1106 	       u16 link_speed)
1107 {
1108 	struct device *dev = ice_pf_to_dev(pf);
1109 	struct ice_phy_info *phy_info;
1110 	struct ice_vsi *vsi;
1111 	u16 old_link_speed;
1112 	bool old_link;
1113 	int status;
1114 
1115 	phy_info = &pi->phy;
1116 	phy_info->link_info_old = phy_info->link_info;
1117 
1118 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1119 	old_link_speed = phy_info->link_info_old.link_speed;
1120 
1121 	/* update the link info structures and re-enable link events,
1122 	 * don't bail on failure due to other book keeping needed
1123 	 */
1124 	status = ice_update_link_info(pi);
1125 	if (status)
1126 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1127 			pi->lport, status,
1128 			ice_aq_str(pi->hw->adminq.sq_last_status));
1129 
1130 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1131 
1132 	/* Check if the link state is up after updating link info, and treat
1133 	 * this event as an UP event since the link is actually UP now.
1134 	 */
1135 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1136 		link_up = true;
1137 
1138 	vsi = ice_get_main_vsi(pf);
1139 	if (!vsi || !vsi->port_info)
1140 		return -EINVAL;
1141 
1142 	/* turn off PHY if media was removed */
1143 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1144 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1145 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1146 		ice_set_link(vsi, false);
1147 	}
1148 
1149 	/* if the old link up/down and speed is the same as the new */
1150 	if (link_up == old_link && link_speed == old_link_speed)
1151 		return 0;
1152 
1153 	ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1154 
1155 	if (ice_is_dcb_active(pf)) {
1156 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1157 			ice_dcb_rebuild(pf);
1158 	} else {
1159 		if (link_up)
1160 			ice_set_dflt_mib(pf);
1161 	}
1162 	ice_vsi_link_event(vsi, link_up);
1163 	ice_print_link_msg(vsi, link_up);
1164 
1165 	ice_vc_notify_link_state(pf);
1166 
1167 	return 0;
1168 }
1169 
1170 /**
1171  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1172  * @pf: board private structure
1173  */
1174 static void ice_watchdog_subtask(struct ice_pf *pf)
1175 {
1176 	int i;
1177 
1178 	/* if interface is down do nothing */
1179 	if (test_bit(ICE_DOWN, pf->state) ||
1180 	    test_bit(ICE_CFG_BUSY, pf->state))
1181 		return;
1182 
1183 	/* make sure we don't do these things too often */
1184 	if (time_before(jiffies,
1185 			pf->serv_tmr_prev + pf->serv_tmr_period))
1186 		return;
1187 
1188 	pf->serv_tmr_prev = jiffies;
1189 
1190 	/* Update the stats for active netdevs so the network stack
1191 	 * can look at updated numbers whenever it cares to
1192 	 */
1193 	ice_update_pf_stats(pf);
1194 	ice_for_each_vsi(pf, i)
1195 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1196 			ice_update_vsi_stats(pf->vsi[i]);
1197 }
1198 
1199 /**
1200  * ice_init_link_events - enable/initialize link events
1201  * @pi: pointer to the port_info instance
1202  *
1203  * Returns -EIO on failure, 0 on success
1204  */
1205 static int ice_init_link_events(struct ice_port_info *pi)
1206 {
1207 	u16 mask;
1208 
1209 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1210 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1211 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1212 
1213 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1214 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1215 			pi->lport);
1216 		return -EIO;
1217 	}
1218 
1219 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1220 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1221 			pi->lport);
1222 		return -EIO;
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 /**
1229  * ice_handle_link_event - handle link event via ARQ
1230  * @pf: PF that the link event is associated with
1231  * @event: event structure containing link status info
1232  */
1233 static int
1234 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1235 {
1236 	struct ice_aqc_get_link_status_data *link_data;
1237 	struct ice_port_info *port_info;
1238 	int status;
1239 
1240 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1241 	port_info = pf->hw.port_info;
1242 	if (!port_info)
1243 		return -EINVAL;
1244 
1245 	status = ice_link_event(pf, port_info,
1246 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1247 				le16_to_cpu(link_data->link_speed));
1248 	if (status)
1249 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1250 			status);
1251 
1252 	return status;
1253 }
1254 
1255 /**
1256  * ice_get_fwlog_data - copy the FW log data from ARQ event
1257  * @pf: PF that the FW log event is associated with
1258  * @event: event structure containing FW log data
1259  */
1260 static void
1261 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1262 {
1263 	struct ice_fwlog_data *fwlog;
1264 	struct ice_hw *hw = &pf->hw;
1265 
1266 	fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1267 
1268 	memset(fwlog->data, 0, PAGE_SIZE);
1269 	fwlog->data_size = le16_to_cpu(event->desc.datalen);
1270 
1271 	memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1272 	ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1273 
1274 	if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1275 		/* the rings are full so bump the head to create room */
1276 		ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1277 					 hw->fwlog_ring.size);
1278 	}
1279 }
1280 
1281 /**
1282  * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1283  * @pf: pointer to the PF private structure
1284  * @task: intermediate helper storage and identifier for waiting
1285  * @opcode: the opcode to wait for
1286  *
1287  * Prepares to wait for a specific AdminQ completion event on the ARQ for
1288  * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1289  *
1290  * Calls are separated to allow caller registering for event before sending
1291  * the command, which mitigates a race between registering and FW responding.
1292  *
1293  * To obtain only the descriptor contents, pass an task->event with null
1294  * msg_buf. If the complete data buffer is desired, allocate the
1295  * task->event.msg_buf with enough space ahead of time.
1296  */
1297 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1298 			   u16 opcode)
1299 {
1300 	INIT_HLIST_NODE(&task->entry);
1301 	task->opcode = opcode;
1302 	task->state = ICE_AQ_TASK_WAITING;
1303 
1304 	spin_lock_bh(&pf->aq_wait_lock);
1305 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1306 	spin_unlock_bh(&pf->aq_wait_lock);
1307 }
1308 
1309 /**
1310  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1311  * @pf: pointer to the PF private structure
1312  * @task: ptr prepared by ice_aq_prep_for_event()
1313  * @timeout: how long to wait, in jiffies
1314  *
1315  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1316  * current thread will be put to sleep until the specified event occurs or
1317  * until the given timeout is reached.
1318  *
1319  * Returns: zero on success, or a negative error code on failure.
1320  */
1321 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1322 			  unsigned long timeout)
1323 {
1324 	enum ice_aq_task_state *state = &task->state;
1325 	struct device *dev = ice_pf_to_dev(pf);
1326 	unsigned long start = jiffies;
1327 	long ret;
1328 	int err;
1329 
1330 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1331 					       *state != ICE_AQ_TASK_WAITING,
1332 					       timeout);
1333 	switch (*state) {
1334 	case ICE_AQ_TASK_NOT_PREPARED:
1335 		WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1336 		err = -EINVAL;
1337 		break;
1338 	case ICE_AQ_TASK_WAITING:
1339 		err = ret < 0 ? ret : -ETIMEDOUT;
1340 		break;
1341 	case ICE_AQ_TASK_CANCELED:
1342 		err = ret < 0 ? ret : -ECANCELED;
1343 		break;
1344 	case ICE_AQ_TASK_COMPLETE:
1345 		err = ret < 0 ? ret : 0;
1346 		break;
1347 	default:
1348 		WARN(1, "Unexpected AdminQ wait task state %u", *state);
1349 		err = -EINVAL;
1350 		break;
1351 	}
1352 
1353 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1354 		jiffies_to_msecs(jiffies - start),
1355 		jiffies_to_msecs(timeout),
1356 		task->opcode);
1357 
1358 	spin_lock_bh(&pf->aq_wait_lock);
1359 	hlist_del(&task->entry);
1360 	spin_unlock_bh(&pf->aq_wait_lock);
1361 
1362 	return err;
1363 }
1364 
1365 /**
1366  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1367  * @pf: pointer to the PF private structure
1368  * @opcode: the opcode of the event
1369  * @event: the event to check
1370  *
1371  * Loops over the current list of pending threads waiting for an AdminQ event.
1372  * For each matching task, copy the contents of the event into the task
1373  * structure and wake up the thread.
1374  *
1375  * If multiple threads wait for the same opcode, they will all be woken up.
1376  *
1377  * Note that event->msg_buf will only be duplicated if the event has a buffer
1378  * with enough space already allocated. Otherwise, only the descriptor and
1379  * message length will be copied.
1380  *
1381  * Returns: true if an event was found, false otherwise
1382  */
1383 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1384 				struct ice_rq_event_info *event)
1385 {
1386 	struct ice_rq_event_info *task_ev;
1387 	struct ice_aq_task *task;
1388 	bool found = false;
1389 
1390 	spin_lock_bh(&pf->aq_wait_lock);
1391 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1392 		if (task->state != ICE_AQ_TASK_WAITING)
1393 			continue;
1394 		if (task->opcode != opcode)
1395 			continue;
1396 
1397 		task_ev = &task->event;
1398 		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1399 		task_ev->msg_len = event->msg_len;
1400 
1401 		/* Only copy the data buffer if a destination was set */
1402 		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1403 			memcpy(task_ev->msg_buf, event->msg_buf,
1404 			       event->buf_len);
1405 			task_ev->buf_len = event->buf_len;
1406 		}
1407 
1408 		task->state = ICE_AQ_TASK_COMPLETE;
1409 		found = true;
1410 	}
1411 	spin_unlock_bh(&pf->aq_wait_lock);
1412 
1413 	if (found)
1414 		wake_up(&pf->aq_wait_queue);
1415 }
1416 
1417 /**
1418  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1419  * @pf: the PF private structure
1420  *
1421  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1422  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1423  */
1424 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1425 {
1426 	struct ice_aq_task *task;
1427 
1428 	spin_lock_bh(&pf->aq_wait_lock);
1429 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1430 		task->state = ICE_AQ_TASK_CANCELED;
1431 	spin_unlock_bh(&pf->aq_wait_lock);
1432 
1433 	wake_up(&pf->aq_wait_queue);
1434 }
1435 
1436 #define ICE_MBX_OVERFLOW_WATERMARK 64
1437 
1438 /**
1439  * __ice_clean_ctrlq - helper function to clean controlq rings
1440  * @pf: ptr to struct ice_pf
1441  * @q_type: specific Control queue type
1442  */
1443 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1444 {
1445 	struct device *dev = ice_pf_to_dev(pf);
1446 	struct ice_rq_event_info event;
1447 	struct ice_hw *hw = &pf->hw;
1448 	struct ice_ctl_q_info *cq;
1449 	u16 pending, i = 0;
1450 	const char *qtype;
1451 	u32 oldval, val;
1452 
1453 	/* Do not clean control queue if/when PF reset fails */
1454 	if (test_bit(ICE_RESET_FAILED, pf->state))
1455 		return 0;
1456 
1457 	switch (q_type) {
1458 	case ICE_CTL_Q_ADMIN:
1459 		cq = &hw->adminq;
1460 		qtype = "Admin";
1461 		break;
1462 	case ICE_CTL_Q_SB:
1463 		cq = &hw->sbq;
1464 		qtype = "Sideband";
1465 		break;
1466 	case ICE_CTL_Q_MAILBOX:
1467 		cq = &hw->mailboxq;
1468 		qtype = "Mailbox";
1469 		/* we are going to try to detect a malicious VF, so set the
1470 		 * state to begin detection
1471 		 */
1472 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1473 		break;
1474 	default:
1475 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1476 		return 0;
1477 	}
1478 
1479 	/* check for error indications - PF_xx_AxQLEN register layout for
1480 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1481 	 */
1482 	val = rd32(hw, cq->rq.len);
1483 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1484 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1485 		oldval = val;
1486 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1487 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1488 				qtype);
1489 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1490 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1491 				qtype);
1492 		}
1493 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1494 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1495 				qtype);
1496 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1497 			 PF_FW_ARQLEN_ARQCRIT_M);
1498 		if (oldval != val)
1499 			wr32(hw, cq->rq.len, val);
1500 	}
1501 
1502 	val = rd32(hw, cq->sq.len);
1503 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1504 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1505 		oldval = val;
1506 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1507 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1508 				qtype);
1509 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1510 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1511 				qtype);
1512 		}
1513 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1514 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1515 				qtype);
1516 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1517 			 PF_FW_ATQLEN_ATQCRIT_M);
1518 		if (oldval != val)
1519 			wr32(hw, cq->sq.len, val);
1520 	}
1521 
1522 	event.buf_len = cq->rq_buf_size;
1523 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1524 	if (!event.msg_buf)
1525 		return 0;
1526 
1527 	do {
1528 		struct ice_mbx_data data = {};
1529 		u16 opcode;
1530 		int ret;
1531 
1532 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1533 		if (ret == -EALREADY)
1534 			break;
1535 		if (ret) {
1536 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1537 				ret);
1538 			break;
1539 		}
1540 
1541 		opcode = le16_to_cpu(event.desc.opcode);
1542 
1543 		/* Notify any thread that might be waiting for this event */
1544 		ice_aq_check_events(pf, opcode, &event);
1545 
1546 		switch (opcode) {
1547 		case ice_aqc_opc_get_link_status:
1548 			if (ice_handle_link_event(pf, &event))
1549 				dev_err(dev, "Could not handle link event\n");
1550 			break;
1551 		case ice_aqc_opc_event_lan_overflow:
1552 			ice_vf_lan_overflow_event(pf, &event);
1553 			break;
1554 		case ice_mbx_opc_send_msg_to_pf:
1555 			data.num_msg_proc = i;
1556 			data.num_pending_arq = pending;
1557 			data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1558 			data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1559 
1560 			ice_vc_process_vf_msg(pf, &event, &data);
1561 			break;
1562 		case ice_aqc_opc_fw_logs_event:
1563 			ice_get_fwlog_data(pf, &event);
1564 			break;
1565 		case ice_aqc_opc_lldp_set_mib_change:
1566 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1567 			break;
1568 		default:
1569 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1570 				qtype, opcode);
1571 			break;
1572 		}
1573 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1574 
1575 	kfree(event.msg_buf);
1576 
1577 	return pending && (i == ICE_DFLT_IRQ_WORK);
1578 }
1579 
1580 /**
1581  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1582  * @hw: pointer to hardware info
1583  * @cq: control queue information
1584  *
1585  * returns true if there are pending messages in a queue, false if there aren't
1586  */
1587 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1588 {
1589 	u16 ntu;
1590 
1591 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1592 	return cq->rq.next_to_clean != ntu;
1593 }
1594 
1595 /**
1596  * ice_clean_adminq_subtask - clean the AdminQ rings
1597  * @pf: board private structure
1598  */
1599 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1600 {
1601 	struct ice_hw *hw = &pf->hw;
1602 
1603 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1604 		return;
1605 
1606 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1607 		return;
1608 
1609 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1610 
1611 	/* There might be a situation where new messages arrive to a control
1612 	 * queue between processing the last message and clearing the
1613 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1614 	 * ice_ctrlq_pending) and process new messages if any.
1615 	 */
1616 	if (ice_ctrlq_pending(hw, &hw->adminq))
1617 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1618 
1619 	ice_flush(hw);
1620 }
1621 
1622 /**
1623  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1624  * @pf: board private structure
1625  */
1626 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1627 {
1628 	struct ice_hw *hw = &pf->hw;
1629 
1630 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1631 		return;
1632 
1633 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1634 		return;
1635 
1636 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1637 
1638 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1639 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1640 
1641 	ice_flush(hw);
1642 }
1643 
1644 /**
1645  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1646  * @pf: board private structure
1647  */
1648 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1649 {
1650 	struct ice_hw *hw = &pf->hw;
1651 
1652 	/* Nothing to do here if sideband queue is not supported */
1653 	if (!ice_is_sbq_supported(hw)) {
1654 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1655 		return;
1656 	}
1657 
1658 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1659 		return;
1660 
1661 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1662 		return;
1663 
1664 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1665 
1666 	if (ice_ctrlq_pending(hw, &hw->sbq))
1667 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1668 
1669 	ice_flush(hw);
1670 }
1671 
1672 /**
1673  * ice_service_task_schedule - schedule the service task to wake up
1674  * @pf: board private structure
1675  *
1676  * If not already scheduled, this puts the task into the work queue.
1677  */
1678 void ice_service_task_schedule(struct ice_pf *pf)
1679 {
1680 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1681 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1682 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1683 		queue_work(ice_wq, &pf->serv_task);
1684 }
1685 
1686 /**
1687  * ice_service_task_complete - finish up the service task
1688  * @pf: board private structure
1689  */
1690 static void ice_service_task_complete(struct ice_pf *pf)
1691 {
1692 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1693 
1694 	/* force memory (pf->state) to sync before next service task */
1695 	smp_mb__before_atomic();
1696 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1697 }
1698 
1699 /**
1700  * ice_service_task_stop - stop service task and cancel works
1701  * @pf: board private structure
1702  *
1703  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1704  * 1 otherwise.
1705  */
1706 static int ice_service_task_stop(struct ice_pf *pf)
1707 {
1708 	int ret;
1709 
1710 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1711 
1712 	if (pf->serv_tmr.function)
1713 		del_timer_sync(&pf->serv_tmr);
1714 	if (pf->serv_task.func)
1715 		cancel_work_sync(&pf->serv_task);
1716 
1717 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1718 	return ret;
1719 }
1720 
1721 /**
1722  * ice_service_task_restart - restart service task and schedule works
1723  * @pf: board private structure
1724  *
1725  * This function is needed for suspend and resume works (e.g WoL scenario)
1726  */
1727 static void ice_service_task_restart(struct ice_pf *pf)
1728 {
1729 	clear_bit(ICE_SERVICE_DIS, pf->state);
1730 	ice_service_task_schedule(pf);
1731 }
1732 
1733 /**
1734  * ice_service_timer - timer callback to schedule service task
1735  * @t: pointer to timer_list
1736  */
1737 static void ice_service_timer(struct timer_list *t)
1738 {
1739 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1740 
1741 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1742 	ice_service_task_schedule(pf);
1743 }
1744 
1745 /**
1746  * ice_handle_mdd_event - handle malicious driver detect event
1747  * @pf: pointer to the PF structure
1748  *
1749  * Called from service task. OICR interrupt handler indicates MDD event.
1750  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1751  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1752  * disable the queue, the PF can be configured to reset the VF using ethtool
1753  * private flag mdd-auto-reset-vf.
1754  */
1755 static void ice_handle_mdd_event(struct ice_pf *pf)
1756 {
1757 	struct device *dev = ice_pf_to_dev(pf);
1758 	struct ice_hw *hw = &pf->hw;
1759 	struct ice_vf *vf;
1760 	unsigned int bkt;
1761 	u32 reg;
1762 
1763 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1764 		/* Since the VF MDD event logging is rate limited, check if
1765 		 * there are pending MDD events.
1766 		 */
1767 		ice_print_vfs_mdd_events(pf);
1768 		return;
1769 	}
1770 
1771 	/* find what triggered an MDD event */
1772 	reg = rd32(hw, GL_MDET_TX_PQM);
1773 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1774 		u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1775 		u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1776 		u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1777 		u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1778 
1779 		if (netif_msg_tx_err(pf))
1780 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1781 				 event, queue, pf_num, vf_num);
1782 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1783 	}
1784 
1785 	reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1786 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1787 		u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1788 		u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1789 		u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1790 		u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1791 
1792 		if (netif_msg_tx_err(pf))
1793 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1794 				 event, queue, pf_num, vf_num);
1795 		wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1796 	}
1797 
1798 	reg = rd32(hw, GL_MDET_RX);
1799 	if (reg & GL_MDET_RX_VALID_M) {
1800 		u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1801 		u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1802 		u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1803 		u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1804 
1805 		if (netif_msg_rx_err(pf))
1806 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1807 				 event, queue, pf_num, vf_num);
1808 		wr32(hw, GL_MDET_RX, 0xffffffff);
1809 	}
1810 
1811 	/* check to see if this PF caused an MDD event */
1812 	reg = rd32(hw, PF_MDET_TX_PQM);
1813 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1814 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1815 		if (netif_msg_tx_err(pf))
1816 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1817 	}
1818 
1819 	reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1820 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1821 		wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1822 		if (netif_msg_tx_err(pf))
1823 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1824 	}
1825 
1826 	reg = rd32(hw, PF_MDET_RX);
1827 	if (reg & PF_MDET_RX_VALID_M) {
1828 		wr32(hw, PF_MDET_RX, 0xFFFF);
1829 		if (netif_msg_rx_err(pf))
1830 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1831 	}
1832 
1833 	/* Check to see if one of the VFs caused an MDD event, and then
1834 	 * increment counters and set print pending
1835 	 */
1836 	mutex_lock(&pf->vfs.table_lock);
1837 	ice_for_each_vf(pf, bkt, vf) {
1838 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1839 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1840 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1841 			vf->mdd_tx_events.count++;
1842 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1843 			if (netif_msg_tx_err(pf))
1844 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1845 					 vf->vf_id);
1846 		}
1847 
1848 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1849 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1850 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1851 			vf->mdd_tx_events.count++;
1852 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1853 			if (netif_msg_tx_err(pf))
1854 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1855 					 vf->vf_id);
1856 		}
1857 
1858 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1859 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1860 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1861 			vf->mdd_tx_events.count++;
1862 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1863 			if (netif_msg_tx_err(pf))
1864 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1865 					 vf->vf_id);
1866 		}
1867 
1868 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1869 		if (reg & VP_MDET_RX_VALID_M) {
1870 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1871 			vf->mdd_rx_events.count++;
1872 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1873 			if (netif_msg_rx_err(pf))
1874 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1875 					 vf->vf_id);
1876 
1877 			/* Since the queue is disabled on VF Rx MDD events, the
1878 			 * PF can be configured to reset the VF through ethtool
1879 			 * private flag mdd-auto-reset-vf.
1880 			 */
1881 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1882 				/* VF MDD event counters will be cleared by
1883 				 * reset, so print the event prior to reset.
1884 				 */
1885 				ice_print_vf_rx_mdd_event(vf);
1886 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1887 			}
1888 		}
1889 	}
1890 	mutex_unlock(&pf->vfs.table_lock);
1891 
1892 	ice_print_vfs_mdd_events(pf);
1893 }
1894 
1895 /**
1896  * ice_force_phys_link_state - Force the physical link state
1897  * @vsi: VSI to force the physical link state to up/down
1898  * @link_up: true/false indicates to set the physical link to up/down
1899  *
1900  * Force the physical link state by getting the current PHY capabilities from
1901  * hardware and setting the PHY config based on the determined capabilities. If
1902  * link changes a link event will be triggered because both the Enable Automatic
1903  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1904  *
1905  * Returns 0 on success, negative on failure
1906  */
1907 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1908 {
1909 	struct ice_aqc_get_phy_caps_data *pcaps;
1910 	struct ice_aqc_set_phy_cfg_data *cfg;
1911 	struct ice_port_info *pi;
1912 	struct device *dev;
1913 	int retcode;
1914 
1915 	if (!vsi || !vsi->port_info || !vsi->back)
1916 		return -EINVAL;
1917 	if (vsi->type != ICE_VSI_PF)
1918 		return 0;
1919 
1920 	dev = ice_pf_to_dev(vsi->back);
1921 
1922 	pi = vsi->port_info;
1923 
1924 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1925 	if (!pcaps)
1926 		return -ENOMEM;
1927 
1928 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1929 				      NULL);
1930 	if (retcode) {
1931 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1932 			vsi->vsi_num, retcode);
1933 		retcode = -EIO;
1934 		goto out;
1935 	}
1936 
1937 	/* No change in link */
1938 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1939 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1940 		goto out;
1941 
1942 	/* Use the current user PHY configuration. The current user PHY
1943 	 * configuration is initialized during probe from PHY capabilities
1944 	 * software mode, and updated on set PHY configuration.
1945 	 */
1946 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1947 	if (!cfg) {
1948 		retcode = -ENOMEM;
1949 		goto out;
1950 	}
1951 
1952 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1953 	if (link_up)
1954 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1955 	else
1956 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1957 
1958 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1959 	if (retcode) {
1960 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1961 			vsi->vsi_num, retcode);
1962 		retcode = -EIO;
1963 	}
1964 
1965 	kfree(cfg);
1966 out:
1967 	kfree(pcaps);
1968 	return retcode;
1969 }
1970 
1971 /**
1972  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1973  * @pi: port info structure
1974  *
1975  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1976  */
1977 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1978 {
1979 	struct ice_aqc_get_phy_caps_data *pcaps;
1980 	struct ice_pf *pf = pi->hw->back;
1981 	int err;
1982 
1983 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1984 	if (!pcaps)
1985 		return -ENOMEM;
1986 
1987 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1988 				  pcaps, NULL);
1989 
1990 	if (err) {
1991 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1992 		goto out;
1993 	}
1994 
1995 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1996 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1997 
1998 out:
1999 	kfree(pcaps);
2000 	return err;
2001 }
2002 
2003 /**
2004  * ice_init_link_dflt_override - Initialize link default override
2005  * @pi: port info structure
2006  *
2007  * Initialize link default override and PHY total port shutdown during probe
2008  */
2009 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2010 {
2011 	struct ice_link_default_override_tlv *ldo;
2012 	struct ice_pf *pf = pi->hw->back;
2013 
2014 	ldo = &pf->link_dflt_override;
2015 	if (ice_get_link_default_override(ldo, pi))
2016 		return;
2017 
2018 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2019 		return;
2020 
2021 	/* Enable Total Port Shutdown (override/replace link-down-on-close
2022 	 * ethtool private flag) for ports with Port Disable bit set.
2023 	 */
2024 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2025 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2026 }
2027 
2028 /**
2029  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2030  * @pi: port info structure
2031  *
2032  * If default override is enabled, initialize the user PHY cfg speed and FEC
2033  * settings using the default override mask from the NVM.
2034  *
2035  * The PHY should only be configured with the default override settings the
2036  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2037  * is used to indicate that the user PHY cfg default override is initialized
2038  * and the PHY has not been configured with the default override settings. The
2039  * state is set here, and cleared in ice_configure_phy the first time the PHY is
2040  * configured.
2041  *
2042  * This function should be called only if the FW doesn't support default
2043  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2044  */
2045 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2046 {
2047 	struct ice_link_default_override_tlv *ldo;
2048 	struct ice_aqc_set_phy_cfg_data *cfg;
2049 	struct ice_phy_info *phy = &pi->phy;
2050 	struct ice_pf *pf = pi->hw->back;
2051 
2052 	ldo = &pf->link_dflt_override;
2053 
2054 	/* If link default override is enabled, use to mask NVM PHY capabilities
2055 	 * for speed and FEC default configuration.
2056 	 */
2057 	cfg = &phy->curr_user_phy_cfg;
2058 
2059 	if (ldo->phy_type_low || ldo->phy_type_high) {
2060 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2061 				    cpu_to_le64(ldo->phy_type_low);
2062 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2063 				     cpu_to_le64(ldo->phy_type_high);
2064 	}
2065 	cfg->link_fec_opt = ldo->fec_options;
2066 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2067 
2068 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2069 }
2070 
2071 /**
2072  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2073  * @pi: port info structure
2074  *
2075  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2076  * mode to default. The PHY defaults are from get PHY capabilities topology
2077  * with media so call when media is first available. An error is returned if
2078  * called when media is not available. The PHY initialization completed state is
2079  * set here.
2080  *
2081  * These configurations are used when setting PHY
2082  * configuration. The user PHY configuration is updated on set PHY
2083  * configuration. Returns 0 on success, negative on failure
2084  */
2085 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2086 {
2087 	struct ice_aqc_get_phy_caps_data *pcaps;
2088 	struct ice_phy_info *phy = &pi->phy;
2089 	struct ice_pf *pf = pi->hw->back;
2090 	int err;
2091 
2092 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2093 		return -EIO;
2094 
2095 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2096 	if (!pcaps)
2097 		return -ENOMEM;
2098 
2099 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2100 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2101 					  pcaps, NULL);
2102 	else
2103 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2104 					  pcaps, NULL);
2105 	if (err) {
2106 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2107 		goto err_out;
2108 	}
2109 
2110 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2111 
2112 	/* check if lenient mode is supported and enabled */
2113 	if (ice_fw_supports_link_override(pi->hw) &&
2114 	    !(pcaps->module_compliance_enforcement &
2115 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2116 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2117 
2118 		/* if the FW supports default PHY configuration mode, then the driver
2119 		 * does not have to apply link override settings. If not,
2120 		 * initialize user PHY configuration with link override values
2121 		 */
2122 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2123 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2124 			ice_init_phy_cfg_dflt_override(pi);
2125 			goto out;
2126 		}
2127 	}
2128 
2129 	/* if link default override is not enabled, set user flow control and
2130 	 * FEC settings based on what get_phy_caps returned
2131 	 */
2132 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2133 						      pcaps->link_fec_options);
2134 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2135 
2136 out:
2137 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2138 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2139 err_out:
2140 	kfree(pcaps);
2141 	return err;
2142 }
2143 
2144 /**
2145  * ice_configure_phy - configure PHY
2146  * @vsi: VSI of PHY
2147  *
2148  * Set the PHY configuration. If the current PHY configuration is the same as
2149  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2150  * configure the based get PHY capabilities for topology with media.
2151  */
2152 static int ice_configure_phy(struct ice_vsi *vsi)
2153 {
2154 	struct device *dev = ice_pf_to_dev(vsi->back);
2155 	struct ice_port_info *pi = vsi->port_info;
2156 	struct ice_aqc_get_phy_caps_data *pcaps;
2157 	struct ice_aqc_set_phy_cfg_data *cfg;
2158 	struct ice_phy_info *phy = &pi->phy;
2159 	struct ice_pf *pf = vsi->back;
2160 	int err;
2161 
2162 	/* Ensure we have media as we cannot configure a medialess port */
2163 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2164 		return -EPERM;
2165 
2166 	ice_print_topo_conflict(vsi);
2167 
2168 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2169 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2170 		return -EPERM;
2171 
2172 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2173 		return ice_force_phys_link_state(vsi, true);
2174 
2175 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2176 	if (!pcaps)
2177 		return -ENOMEM;
2178 
2179 	/* Get current PHY config */
2180 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2181 				  NULL);
2182 	if (err) {
2183 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2184 			vsi->vsi_num, err);
2185 		goto done;
2186 	}
2187 
2188 	/* If PHY enable link is configured and configuration has not changed,
2189 	 * there's nothing to do
2190 	 */
2191 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2192 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2193 		goto done;
2194 
2195 	/* Use PHY topology as baseline for configuration */
2196 	memset(pcaps, 0, sizeof(*pcaps));
2197 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2198 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2199 					  pcaps, NULL);
2200 	else
2201 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2202 					  pcaps, NULL);
2203 	if (err) {
2204 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2205 			vsi->vsi_num, err);
2206 		goto done;
2207 	}
2208 
2209 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2210 	if (!cfg) {
2211 		err = -ENOMEM;
2212 		goto done;
2213 	}
2214 
2215 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2216 
2217 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2218 	 * ice_init_phy_user_cfg_ldo.
2219 	 */
2220 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2221 			       vsi->back->state)) {
2222 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2223 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2224 	} else {
2225 		u64 phy_low = 0, phy_high = 0;
2226 
2227 		ice_update_phy_type(&phy_low, &phy_high,
2228 				    pi->phy.curr_user_speed_req);
2229 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2230 		cfg->phy_type_high = pcaps->phy_type_high &
2231 				     cpu_to_le64(phy_high);
2232 	}
2233 
2234 	/* Can't provide what was requested; use PHY capabilities */
2235 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2236 		cfg->phy_type_low = pcaps->phy_type_low;
2237 		cfg->phy_type_high = pcaps->phy_type_high;
2238 	}
2239 
2240 	/* FEC */
2241 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2242 
2243 	/* Can't provide what was requested; use PHY capabilities */
2244 	if (cfg->link_fec_opt !=
2245 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2246 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2247 		cfg->link_fec_opt = pcaps->link_fec_options;
2248 	}
2249 
2250 	/* Flow Control - always supported; no need to check against
2251 	 * capabilities
2252 	 */
2253 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2254 
2255 	/* Enable link and link update */
2256 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2257 
2258 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2259 	if (err)
2260 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2261 			vsi->vsi_num, err);
2262 
2263 	kfree(cfg);
2264 done:
2265 	kfree(pcaps);
2266 	return err;
2267 }
2268 
2269 /**
2270  * ice_check_media_subtask - Check for media
2271  * @pf: pointer to PF struct
2272  *
2273  * If media is available, then initialize PHY user configuration if it is not
2274  * been, and configure the PHY if the interface is up.
2275  */
2276 static void ice_check_media_subtask(struct ice_pf *pf)
2277 {
2278 	struct ice_port_info *pi;
2279 	struct ice_vsi *vsi;
2280 	int err;
2281 
2282 	/* No need to check for media if it's already present */
2283 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2284 		return;
2285 
2286 	vsi = ice_get_main_vsi(pf);
2287 	if (!vsi)
2288 		return;
2289 
2290 	/* Refresh link info and check if media is present */
2291 	pi = vsi->port_info;
2292 	err = ice_update_link_info(pi);
2293 	if (err)
2294 		return;
2295 
2296 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2297 
2298 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2299 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2300 			ice_init_phy_user_cfg(pi);
2301 
2302 		/* PHY settings are reset on media insertion, reconfigure
2303 		 * PHY to preserve settings.
2304 		 */
2305 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2306 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2307 			return;
2308 
2309 		err = ice_configure_phy(vsi);
2310 		if (!err)
2311 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2312 
2313 		/* A Link Status Event will be generated; the event handler
2314 		 * will complete bringing the interface up
2315 		 */
2316 	}
2317 }
2318 
2319 /**
2320  * ice_service_task - manage and run subtasks
2321  * @work: pointer to work_struct contained by the PF struct
2322  */
2323 static void ice_service_task(struct work_struct *work)
2324 {
2325 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2326 	unsigned long start_time = jiffies;
2327 
2328 	/* subtasks */
2329 
2330 	/* process reset requests first */
2331 	ice_reset_subtask(pf);
2332 
2333 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2334 	if (ice_is_reset_in_progress(pf->state) ||
2335 	    test_bit(ICE_SUSPENDED, pf->state) ||
2336 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2337 		ice_service_task_complete(pf);
2338 		return;
2339 	}
2340 
2341 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2342 		struct iidc_event *event;
2343 
2344 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2345 		if (event) {
2346 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2347 			/* report the entire OICR value to AUX driver */
2348 			swap(event->reg, pf->oicr_err_reg);
2349 			ice_send_event_to_aux(pf, event);
2350 			kfree(event);
2351 		}
2352 	}
2353 
2354 	/* unplug aux dev per request, if an unplug request came in
2355 	 * while processing a plug request, this will handle it
2356 	 */
2357 	if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2358 		ice_unplug_aux_dev(pf);
2359 
2360 	/* Plug aux device per request */
2361 	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2362 		ice_plug_aux_dev(pf);
2363 
2364 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2365 		struct iidc_event *event;
2366 
2367 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2368 		if (event) {
2369 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2370 			ice_send_event_to_aux(pf, event);
2371 			kfree(event);
2372 		}
2373 	}
2374 
2375 	ice_clean_adminq_subtask(pf);
2376 	ice_check_media_subtask(pf);
2377 	ice_check_for_hang_subtask(pf);
2378 	ice_sync_fltr_subtask(pf);
2379 	ice_handle_mdd_event(pf);
2380 	ice_watchdog_subtask(pf);
2381 
2382 	if (ice_is_safe_mode(pf)) {
2383 		ice_service_task_complete(pf);
2384 		return;
2385 	}
2386 
2387 	ice_process_vflr_event(pf);
2388 	ice_clean_mailboxq_subtask(pf);
2389 	ice_clean_sbq_subtask(pf);
2390 	ice_sync_arfs_fltrs(pf);
2391 	ice_flush_fdir_ctx(pf);
2392 
2393 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2394 	ice_service_task_complete(pf);
2395 
2396 	/* If the tasks have taken longer than one service timer period
2397 	 * or there is more work to be done, reset the service timer to
2398 	 * schedule the service task now.
2399 	 */
2400 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2401 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2402 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2403 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2404 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2405 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2406 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2407 		mod_timer(&pf->serv_tmr, jiffies);
2408 }
2409 
2410 /**
2411  * ice_set_ctrlq_len - helper function to set controlq length
2412  * @hw: pointer to the HW instance
2413  */
2414 static void ice_set_ctrlq_len(struct ice_hw *hw)
2415 {
2416 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2417 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2418 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2419 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2420 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2421 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2422 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2423 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2424 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2425 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2426 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2427 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2428 }
2429 
2430 /**
2431  * ice_schedule_reset - schedule a reset
2432  * @pf: board private structure
2433  * @reset: reset being requested
2434  */
2435 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2436 {
2437 	struct device *dev = ice_pf_to_dev(pf);
2438 
2439 	/* bail out if earlier reset has failed */
2440 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2441 		dev_dbg(dev, "earlier reset has failed\n");
2442 		return -EIO;
2443 	}
2444 	/* bail if reset/recovery already in progress */
2445 	if (ice_is_reset_in_progress(pf->state)) {
2446 		dev_dbg(dev, "Reset already in progress\n");
2447 		return -EBUSY;
2448 	}
2449 
2450 	switch (reset) {
2451 	case ICE_RESET_PFR:
2452 		set_bit(ICE_PFR_REQ, pf->state);
2453 		break;
2454 	case ICE_RESET_CORER:
2455 		set_bit(ICE_CORER_REQ, pf->state);
2456 		break;
2457 	case ICE_RESET_GLOBR:
2458 		set_bit(ICE_GLOBR_REQ, pf->state);
2459 		break;
2460 	default:
2461 		return -EINVAL;
2462 	}
2463 
2464 	ice_service_task_schedule(pf);
2465 	return 0;
2466 }
2467 
2468 /**
2469  * ice_irq_affinity_notify - Callback for affinity changes
2470  * @notify: context as to what irq was changed
2471  * @mask: the new affinity mask
2472  *
2473  * This is a callback function used by the irq_set_affinity_notifier function
2474  * so that we may register to receive changes to the irq affinity masks.
2475  */
2476 static void
2477 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2478 			const cpumask_t *mask)
2479 {
2480 	struct ice_q_vector *q_vector =
2481 		container_of(notify, struct ice_q_vector, affinity_notify);
2482 
2483 	cpumask_copy(&q_vector->affinity_mask, mask);
2484 }
2485 
2486 /**
2487  * ice_irq_affinity_release - Callback for affinity notifier release
2488  * @ref: internal core kernel usage
2489  *
2490  * This is a callback function used by the irq_set_affinity_notifier function
2491  * to inform the current notification subscriber that they will no longer
2492  * receive notifications.
2493  */
2494 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2495 
2496 /**
2497  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2498  * @vsi: the VSI being configured
2499  */
2500 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2501 {
2502 	struct ice_hw *hw = &vsi->back->hw;
2503 	int i;
2504 
2505 	ice_for_each_q_vector(vsi, i)
2506 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2507 
2508 	ice_flush(hw);
2509 	return 0;
2510 }
2511 
2512 /**
2513  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2514  * @vsi: the VSI being configured
2515  * @basename: name for the vector
2516  */
2517 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2518 {
2519 	int q_vectors = vsi->num_q_vectors;
2520 	struct ice_pf *pf = vsi->back;
2521 	struct device *dev;
2522 	int rx_int_idx = 0;
2523 	int tx_int_idx = 0;
2524 	int vector, err;
2525 	int irq_num;
2526 
2527 	dev = ice_pf_to_dev(pf);
2528 	for (vector = 0; vector < q_vectors; vector++) {
2529 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2530 
2531 		irq_num = q_vector->irq.virq;
2532 
2533 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2534 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2535 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2536 			tx_int_idx++;
2537 		} else if (q_vector->rx.rx_ring) {
2538 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2539 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2540 		} else if (q_vector->tx.tx_ring) {
2541 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2542 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2543 		} else {
2544 			/* skip this unused q_vector */
2545 			continue;
2546 		}
2547 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2548 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2549 					       IRQF_SHARED, q_vector->name,
2550 					       q_vector);
2551 		else
2552 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2553 					       0, q_vector->name, q_vector);
2554 		if (err) {
2555 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2556 				   err);
2557 			goto free_q_irqs;
2558 		}
2559 
2560 		/* register for affinity change notifications */
2561 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2562 			struct irq_affinity_notify *affinity_notify;
2563 
2564 			affinity_notify = &q_vector->affinity_notify;
2565 			affinity_notify->notify = ice_irq_affinity_notify;
2566 			affinity_notify->release = ice_irq_affinity_release;
2567 			irq_set_affinity_notifier(irq_num, affinity_notify);
2568 		}
2569 
2570 		/* assign the mask for this irq */
2571 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2572 	}
2573 
2574 	err = ice_set_cpu_rx_rmap(vsi);
2575 	if (err) {
2576 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2577 			   vsi->vsi_num, ERR_PTR(err));
2578 		goto free_q_irqs;
2579 	}
2580 
2581 	vsi->irqs_ready = true;
2582 	return 0;
2583 
2584 free_q_irqs:
2585 	while (vector--) {
2586 		irq_num = vsi->q_vectors[vector]->irq.virq;
2587 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2588 			irq_set_affinity_notifier(irq_num, NULL);
2589 		irq_set_affinity_hint(irq_num, NULL);
2590 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2591 	}
2592 	return err;
2593 }
2594 
2595 /**
2596  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2597  * @vsi: VSI to setup Tx rings used by XDP
2598  *
2599  * Return 0 on success and negative value on error
2600  */
2601 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2602 {
2603 	struct device *dev = ice_pf_to_dev(vsi->back);
2604 	struct ice_tx_desc *tx_desc;
2605 	int i, j;
2606 
2607 	ice_for_each_xdp_txq(vsi, i) {
2608 		u16 xdp_q_idx = vsi->alloc_txq + i;
2609 		struct ice_ring_stats *ring_stats;
2610 		struct ice_tx_ring *xdp_ring;
2611 
2612 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2613 		if (!xdp_ring)
2614 			goto free_xdp_rings;
2615 
2616 		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2617 		if (!ring_stats) {
2618 			ice_free_tx_ring(xdp_ring);
2619 			goto free_xdp_rings;
2620 		}
2621 
2622 		xdp_ring->ring_stats = ring_stats;
2623 		xdp_ring->q_index = xdp_q_idx;
2624 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2625 		xdp_ring->vsi = vsi;
2626 		xdp_ring->netdev = NULL;
2627 		xdp_ring->dev = dev;
2628 		xdp_ring->count = vsi->num_tx_desc;
2629 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2630 		if (ice_setup_tx_ring(xdp_ring))
2631 			goto free_xdp_rings;
2632 		ice_set_ring_xdp(xdp_ring);
2633 		spin_lock_init(&xdp_ring->tx_lock);
2634 		for (j = 0; j < xdp_ring->count; j++) {
2635 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2636 			tx_desc->cmd_type_offset_bsz = 0;
2637 		}
2638 	}
2639 
2640 	return 0;
2641 
2642 free_xdp_rings:
2643 	for (; i >= 0; i--) {
2644 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2645 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2646 			vsi->xdp_rings[i]->ring_stats = NULL;
2647 			ice_free_tx_ring(vsi->xdp_rings[i]);
2648 		}
2649 	}
2650 	return -ENOMEM;
2651 }
2652 
2653 /**
2654  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2655  * @vsi: VSI to set the bpf prog on
2656  * @prog: the bpf prog pointer
2657  */
2658 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2659 {
2660 	struct bpf_prog *old_prog;
2661 	int i;
2662 
2663 	old_prog = xchg(&vsi->xdp_prog, prog);
2664 	ice_for_each_rxq(vsi, i)
2665 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2666 
2667 	if (old_prog)
2668 		bpf_prog_put(old_prog);
2669 }
2670 
2671 /**
2672  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2673  * @vsi: VSI to bring up Tx rings used by XDP
2674  * @prog: bpf program that will be assigned to VSI
2675  *
2676  * Return 0 on success and negative value on error
2677  */
2678 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2679 {
2680 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2681 	int xdp_rings_rem = vsi->num_xdp_txq;
2682 	struct ice_pf *pf = vsi->back;
2683 	struct ice_qs_cfg xdp_qs_cfg = {
2684 		.qs_mutex = &pf->avail_q_mutex,
2685 		.pf_map = pf->avail_txqs,
2686 		.pf_map_size = pf->max_pf_txqs,
2687 		.q_count = vsi->num_xdp_txq,
2688 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2689 		.vsi_map = vsi->txq_map,
2690 		.vsi_map_offset = vsi->alloc_txq,
2691 		.mapping_mode = ICE_VSI_MAP_CONTIG
2692 	};
2693 	struct device *dev;
2694 	int i, v_idx;
2695 	int status;
2696 
2697 	dev = ice_pf_to_dev(pf);
2698 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2699 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2700 	if (!vsi->xdp_rings)
2701 		return -ENOMEM;
2702 
2703 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2704 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2705 		goto err_map_xdp;
2706 
2707 	if (static_key_enabled(&ice_xdp_locking_key))
2708 		netdev_warn(vsi->netdev,
2709 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2710 
2711 	if (ice_xdp_alloc_setup_rings(vsi))
2712 		goto clear_xdp_rings;
2713 
2714 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2715 	ice_for_each_q_vector(vsi, v_idx) {
2716 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2717 		int xdp_rings_per_v, q_id, q_base;
2718 
2719 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2720 					       vsi->num_q_vectors - v_idx);
2721 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2722 
2723 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2724 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2725 
2726 			xdp_ring->q_vector = q_vector;
2727 			xdp_ring->next = q_vector->tx.tx_ring;
2728 			q_vector->tx.tx_ring = xdp_ring;
2729 		}
2730 		xdp_rings_rem -= xdp_rings_per_v;
2731 	}
2732 
2733 	ice_for_each_rxq(vsi, i) {
2734 		if (static_key_enabled(&ice_xdp_locking_key)) {
2735 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2736 		} else {
2737 			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2738 			struct ice_tx_ring *ring;
2739 
2740 			ice_for_each_tx_ring(ring, q_vector->tx) {
2741 				if (ice_ring_is_xdp(ring)) {
2742 					vsi->rx_rings[i]->xdp_ring = ring;
2743 					break;
2744 				}
2745 			}
2746 		}
2747 		ice_tx_xsk_pool(vsi, i);
2748 	}
2749 
2750 	/* omit the scheduler update if in reset path; XDP queues will be
2751 	 * taken into account at the end of ice_vsi_rebuild, where
2752 	 * ice_cfg_vsi_lan is being called
2753 	 */
2754 	if (ice_is_reset_in_progress(pf->state))
2755 		return 0;
2756 
2757 	/* tell the Tx scheduler that right now we have
2758 	 * additional queues
2759 	 */
2760 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2761 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2762 
2763 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2764 				 max_txqs);
2765 	if (status) {
2766 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2767 			status);
2768 		goto clear_xdp_rings;
2769 	}
2770 
2771 	/* assign the prog only when it's not already present on VSI;
2772 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2773 	 * VSI rebuild that happens under ethtool -L can expose us to
2774 	 * the bpf_prog refcount issues as we would be swapping same
2775 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2776 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2777 	 * this is not harmful as dev_xdp_install bumps the refcount
2778 	 * before calling the op exposed by the driver;
2779 	 */
2780 	if (!ice_is_xdp_ena_vsi(vsi))
2781 		ice_vsi_assign_bpf_prog(vsi, prog);
2782 
2783 	return 0;
2784 clear_xdp_rings:
2785 	ice_for_each_xdp_txq(vsi, i)
2786 		if (vsi->xdp_rings[i]) {
2787 			kfree_rcu(vsi->xdp_rings[i], rcu);
2788 			vsi->xdp_rings[i] = NULL;
2789 		}
2790 
2791 err_map_xdp:
2792 	mutex_lock(&pf->avail_q_mutex);
2793 	ice_for_each_xdp_txq(vsi, i) {
2794 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2795 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2796 	}
2797 	mutex_unlock(&pf->avail_q_mutex);
2798 
2799 	devm_kfree(dev, vsi->xdp_rings);
2800 	return -ENOMEM;
2801 }
2802 
2803 /**
2804  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2805  * @vsi: VSI to remove XDP rings
2806  *
2807  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2808  * resources
2809  */
2810 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2811 {
2812 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2813 	struct ice_pf *pf = vsi->back;
2814 	int i, v_idx;
2815 
2816 	/* q_vectors are freed in reset path so there's no point in detaching
2817 	 * rings; in case of rebuild being triggered not from reset bits
2818 	 * in pf->state won't be set, so additionally check first q_vector
2819 	 * against NULL
2820 	 */
2821 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2822 		goto free_qmap;
2823 
2824 	ice_for_each_q_vector(vsi, v_idx) {
2825 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2826 		struct ice_tx_ring *ring;
2827 
2828 		ice_for_each_tx_ring(ring, q_vector->tx)
2829 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2830 				break;
2831 
2832 		/* restore the value of last node prior to XDP setup */
2833 		q_vector->tx.tx_ring = ring;
2834 	}
2835 
2836 free_qmap:
2837 	mutex_lock(&pf->avail_q_mutex);
2838 	ice_for_each_xdp_txq(vsi, i) {
2839 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2840 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2841 	}
2842 	mutex_unlock(&pf->avail_q_mutex);
2843 
2844 	ice_for_each_xdp_txq(vsi, i)
2845 		if (vsi->xdp_rings[i]) {
2846 			if (vsi->xdp_rings[i]->desc) {
2847 				synchronize_rcu();
2848 				ice_free_tx_ring(vsi->xdp_rings[i]);
2849 			}
2850 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2851 			vsi->xdp_rings[i]->ring_stats = NULL;
2852 			kfree_rcu(vsi->xdp_rings[i], rcu);
2853 			vsi->xdp_rings[i] = NULL;
2854 		}
2855 
2856 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2857 	vsi->xdp_rings = NULL;
2858 
2859 	if (static_key_enabled(&ice_xdp_locking_key))
2860 		static_branch_dec(&ice_xdp_locking_key);
2861 
2862 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2863 		return 0;
2864 
2865 	ice_vsi_assign_bpf_prog(vsi, NULL);
2866 
2867 	/* notify Tx scheduler that we destroyed XDP queues and bring
2868 	 * back the old number of child nodes
2869 	 */
2870 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2871 		max_txqs[i] = vsi->num_txq;
2872 
2873 	/* change number of XDP Tx queues to 0 */
2874 	vsi->num_xdp_txq = 0;
2875 
2876 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2877 			       max_txqs);
2878 }
2879 
2880 /**
2881  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2882  * @vsi: VSI to schedule napi on
2883  */
2884 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2885 {
2886 	int i;
2887 
2888 	ice_for_each_rxq(vsi, i) {
2889 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2890 
2891 		if (rx_ring->xsk_pool)
2892 			napi_schedule(&rx_ring->q_vector->napi);
2893 	}
2894 }
2895 
2896 /**
2897  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2898  * @vsi: VSI to determine the count of XDP Tx qs
2899  *
2900  * returns 0 if Tx qs count is higher than at least half of CPU count,
2901  * -ENOMEM otherwise
2902  */
2903 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2904 {
2905 	u16 avail = ice_get_avail_txq_count(vsi->back);
2906 	u16 cpus = num_possible_cpus();
2907 
2908 	if (avail < cpus / 2)
2909 		return -ENOMEM;
2910 
2911 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2912 
2913 	if (vsi->num_xdp_txq < cpus)
2914 		static_branch_inc(&ice_xdp_locking_key);
2915 
2916 	return 0;
2917 }
2918 
2919 /**
2920  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2921  * @vsi: Pointer to VSI structure
2922  */
2923 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2924 {
2925 	if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2926 		return ICE_RXBUF_1664;
2927 	else
2928 		return ICE_RXBUF_3072;
2929 }
2930 
2931 /**
2932  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2933  * @vsi: VSI to setup XDP for
2934  * @prog: XDP program
2935  * @extack: netlink extended ack
2936  */
2937 static int
2938 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2939 		   struct netlink_ext_ack *extack)
2940 {
2941 	unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2942 	bool if_running = netif_running(vsi->netdev);
2943 	int ret = 0, xdp_ring_err = 0;
2944 
2945 	if (prog && !prog->aux->xdp_has_frags) {
2946 		if (frame_size > ice_max_xdp_frame_size(vsi)) {
2947 			NL_SET_ERR_MSG_MOD(extack,
2948 					   "MTU is too large for linear frames and XDP prog does not support frags");
2949 			return -EOPNOTSUPP;
2950 		}
2951 	}
2952 
2953 	/* hot swap progs and avoid toggling link */
2954 	if (ice_is_xdp_ena_vsi(vsi) == !!prog) {
2955 		ice_vsi_assign_bpf_prog(vsi, prog);
2956 		return 0;
2957 	}
2958 
2959 	/* need to stop netdev while setting up the program for Rx rings */
2960 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2961 		ret = ice_down(vsi);
2962 		if (ret) {
2963 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2964 			return ret;
2965 		}
2966 	}
2967 
2968 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2969 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2970 		if (xdp_ring_err) {
2971 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2972 		} else {
2973 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2974 			if (xdp_ring_err)
2975 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2976 		}
2977 		xdp_features_set_redirect_target(vsi->netdev, true);
2978 		/* reallocate Rx queues that are used for zero-copy */
2979 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2980 		if (xdp_ring_err)
2981 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2982 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2983 		xdp_features_clear_redirect_target(vsi->netdev);
2984 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2985 		if (xdp_ring_err)
2986 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2987 		/* reallocate Rx queues that were used for zero-copy */
2988 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2989 		if (xdp_ring_err)
2990 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2991 	}
2992 
2993 	if (if_running)
2994 		ret = ice_up(vsi);
2995 
2996 	if (!ret && prog)
2997 		ice_vsi_rx_napi_schedule(vsi);
2998 
2999 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
3000 }
3001 
3002 /**
3003  * ice_xdp_safe_mode - XDP handler for safe mode
3004  * @dev: netdevice
3005  * @xdp: XDP command
3006  */
3007 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3008 			     struct netdev_bpf *xdp)
3009 {
3010 	NL_SET_ERR_MSG_MOD(xdp->extack,
3011 			   "Please provide working DDP firmware package in order to use XDP\n"
3012 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3013 	return -EOPNOTSUPP;
3014 }
3015 
3016 /**
3017  * ice_xdp - implements XDP handler
3018  * @dev: netdevice
3019  * @xdp: XDP command
3020  */
3021 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3022 {
3023 	struct ice_netdev_priv *np = netdev_priv(dev);
3024 	struct ice_vsi *vsi = np->vsi;
3025 
3026 	if (vsi->type != ICE_VSI_PF) {
3027 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3028 		return -EINVAL;
3029 	}
3030 
3031 	switch (xdp->command) {
3032 	case XDP_SETUP_PROG:
3033 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3034 	case XDP_SETUP_XSK_POOL:
3035 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
3036 					  xdp->xsk.queue_id);
3037 	default:
3038 		return -EINVAL;
3039 	}
3040 }
3041 
3042 /**
3043  * ice_ena_misc_vector - enable the non-queue interrupts
3044  * @pf: board private structure
3045  */
3046 static void ice_ena_misc_vector(struct ice_pf *pf)
3047 {
3048 	struct ice_hw *hw = &pf->hw;
3049 	u32 val;
3050 
3051 	/* Disable anti-spoof detection interrupt to prevent spurious event
3052 	 * interrupts during a function reset. Anti-spoof functionally is
3053 	 * still supported.
3054 	 */
3055 	val = rd32(hw, GL_MDCK_TX_TDPU);
3056 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3057 	wr32(hw, GL_MDCK_TX_TDPU, val);
3058 
3059 	/* clear things first */
3060 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
3061 	rd32(hw, PFINT_OICR);		/* read to clear */
3062 
3063 	val = (PFINT_OICR_ECC_ERR_M |
3064 	       PFINT_OICR_MAL_DETECT_M |
3065 	       PFINT_OICR_GRST_M |
3066 	       PFINT_OICR_PCI_EXCEPTION_M |
3067 	       PFINT_OICR_VFLR_M |
3068 	       PFINT_OICR_HMC_ERR_M |
3069 	       PFINT_OICR_PE_PUSH_M |
3070 	       PFINT_OICR_PE_CRITERR_M);
3071 
3072 	wr32(hw, PFINT_OICR_ENA, val);
3073 
3074 	/* SW_ITR_IDX = 0, but don't change INTENA */
3075 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3076 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3077 }
3078 
3079 /**
3080  * ice_misc_intr - misc interrupt handler
3081  * @irq: interrupt number
3082  * @data: pointer to a q_vector
3083  */
3084 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3085 {
3086 	struct ice_pf *pf = (struct ice_pf *)data;
3087 	struct ice_hw *hw = &pf->hw;
3088 	struct device *dev;
3089 	u32 oicr, ena_mask;
3090 
3091 	dev = ice_pf_to_dev(pf);
3092 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3093 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3094 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3095 
3096 	oicr = rd32(hw, PFINT_OICR);
3097 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3098 
3099 	if (oicr & PFINT_OICR_SWINT_M) {
3100 		ena_mask &= ~PFINT_OICR_SWINT_M;
3101 		pf->sw_int_count++;
3102 	}
3103 
3104 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3105 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3106 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3107 	}
3108 	if (oicr & PFINT_OICR_VFLR_M) {
3109 		/* disable any further VFLR event notifications */
3110 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3111 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3112 
3113 			reg &= ~PFINT_OICR_VFLR_M;
3114 			wr32(hw, PFINT_OICR_ENA, reg);
3115 		} else {
3116 			ena_mask &= ~PFINT_OICR_VFLR_M;
3117 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3118 		}
3119 	}
3120 
3121 	if (oicr & PFINT_OICR_GRST_M) {
3122 		u32 reset;
3123 
3124 		/* we have a reset warning */
3125 		ena_mask &= ~PFINT_OICR_GRST_M;
3126 		reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3127 				  rd32(hw, GLGEN_RSTAT));
3128 
3129 		if (reset == ICE_RESET_CORER)
3130 			pf->corer_count++;
3131 		else if (reset == ICE_RESET_GLOBR)
3132 			pf->globr_count++;
3133 		else if (reset == ICE_RESET_EMPR)
3134 			pf->empr_count++;
3135 		else
3136 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3137 
3138 		/* If a reset cycle isn't already in progress, we set a bit in
3139 		 * pf->state so that the service task can start a reset/rebuild.
3140 		 */
3141 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3142 			if (reset == ICE_RESET_CORER)
3143 				set_bit(ICE_CORER_RECV, pf->state);
3144 			else if (reset == ICE_RESET_GLOBR)
3145 				set_bit(ICE_GLOBR_RECV, pf->state);
3146 			else
3147 				set_bit(ICE_EMPR_RECV, pf->state);
3148 
3149 			/* There are couple of different bits at play here.
3150 			 * hw->reset_ongoing indicates whether the hardware is
3151 			 * in reset. This is set to true when a reset interrupt
3152 			 * is received and set back to false after the driver
3153 			 * has determined that the hardware is out of reset.
3154 			 *
3155 			 * ICE_RESET_OICR_RECV in pf->state indicates
3156 			 * that a post reset rebuild is required before the
3157 			 * driver is operational again. This is set above.
3158 			 *
3159 			 * As this is the start of the reset/rebuild cycle, set
3160 			 * both to indicate that.
3161 			 */
3162 			hw->reset_ongoing = true;
3163 		}
3164 	}
3165 
3166 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3167 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3168 		if (ice_ptp_pf_handles_tx_interrupt(pf))
3169 			set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3170 	}
3171 
3172 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3173 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3174 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3175 
3176 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3177 
3178 		if (ice_pf_src_tmr_owned(pf)) {
3179 			/* Save EVENTs from GLTSYN register */
3180 			pf->ptp.ext_ts_irq |= gltsyn_stat &
3181 					      (GLTSYN_STAT_EVENT0_M |
3182 					       GLTSYN_STAT_EVENT1_M |
3183 					       GLTSYN_STAT_EVENT2_M);
3184 
3185 			set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread);
3186 		}
3187 	}
3188 
3189 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3190 	if (oicr & ICE_AUX_CRIT_ERR) {
3191 		pf->oicr_err_reg |= oicr;
3192 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3193 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3194 	}
3195 
3196 	/* Report any remaining unexpected interrupts */
3197 	oicr &= ena_mask;
3198 	if (oicr) {
3199 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3200 		/* If a critical error is pending there is no choice but to
3201 		 * reset the device.
3202 		 */
3203 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3204 			    PFINT_OICR_ECC_ERR_M)) {
3205 			set_bit(ICE_PFR_REQ, pf->state);
3206 		}
3207 	}
3208 
3209 	return IRQ_WAKE_THREAD;
3210 }
3211 
3212 /**
3213  * ice_misc_intr_thread_fn - misc interrupt thread function
3214  * @irq: interrupt number
3215  * @data: pointer to a q_vector
3216  */
3217 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3218 {
3219 	struct ice_pf *pf = data;
3220 	struct ice_hw *hw;
3221 
3222 	hw = &pf->hw;
3223 
3224 	if (ice_is_reset_in_progress(pf->state))
3225 		return IRQ_HANDLED;
3226 
3227 	ice_service_task_schedule(pf);
3228 
3229 	if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread))
3230 		ice_ptp_extts_event(pf);
3231 
3232 	if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3233 		/* Process outstanding Tx timestamps. If there is more work,
3234 		 * re-arm the interrupt to trigger again.
3235 		 */
3236 		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3237 			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3238 			ice_flush(hw);
3239 		}
3240 	}
3241 
3242 	ice_irq_dynamic_ena(hw, NULL, NULL);
3243 
3244 	return IRQ_HANDLED;
3245 }
3246 
3247 /**
3248  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3249  * @hw: pointer to HW structure
3250  */
3251 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3252 {
3253 	/* disable Admin queue Interrupt causes */
3254 	wr32(hw, PFINT_FW_CTL,
3255 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3256 
3257 	/* disable Mailbox queue Interrupt causes */
3258 	wr32(hw, PFINT_MBX_CTL,
3259 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3260 
3261 	wr32(hw, PFINT_SB_CTL,
3262 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3263 
3264 	/* disable Control queue Interrupt causes */
3265 	wr32(hw, PFINT_OICR_CTL,
3266 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3267 
3268 	ice_flush(hw);
3269 }
3270 
3271 /**
3272  * ice_free_irq_msix_misc - Unroll misc vector setup
3273  * @pf: board private structure
3274  */
3275 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3276 {
3277 	int misc_irq_num = pf->oicr_irq.virq;
3278 	struct ice_hw *hw = &pf->hw;
3279 
3280 	ice_dis_ctrlq_interrupts(hw);
3281 
3282 	/* disable OICR interrupt */
3283 	wr32(hw, PFINT_OICR_ENA, 0);
3284 	ice_flush(hw);
3285 
3286 	synchronize_irq(misc_irq_num);
3287 	devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3288 
3289 	ice_free_irq(pf, pf->oicr_irq);
3290 }
3291 
3292 /**
3293  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3294  * @hw: pointer to HW structure
3295  * @reg_idx: HW vector index to associate the control queue interrupts with
3296  */
3297 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3298 {
3299 	u32 val;
3300 
3301 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3302 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3303 	wr32(hw, PFINT_OICR_CTL, val);
3304 
3305 	/* enable Admin queue Interrupt causes */
3306 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3307 	       PFINT_FW_CTL_CAUSE_ENA_M);
3308 	wr32(hw, PFINT_FW_CTL, val);
3309 
3310 	/* enable Mailbox queue Interrupt causes */
3311 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3312 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3313 	wr32(hw, PFINT_MBX_CTL, val);
3314 
3315 	/* This enables Sideband queue Interrupt causes */
3316 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3317 	       PFINT_SB_CTL_CAUSE_ENA_M);
3318 	wr32(hw, PFINT_SB_CTL, val);
3319 
3320 	ice_flush(hw);
3321 }
3322 
3323 /**
3324  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3325  * @pf: board private structure
3326  *
3327  * This sets up the handler for MSIX 0, which is used to manage the
3328  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3329  * when in MSI or Legacy interrupt mode.
3330  */
3331 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3332 {
3333 	struct device *dev = ice_pf_to_dev(pf);
3334 	struct ice_hw *hw = &pf->hw;
3335 	struct msi_map oicr_irq;
3336 	int err = 0;
3337 
3338 	if (!pf->int_name[0])
3339 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3340 			 dev_driver_string(dev), dev_name(dev));
3341 
3342 	/* Do not request IRQ but do enable OICR interrupt since settings are
3343 	 * lost during reset. Note that this function is called only during
3344 	 * rebuild path and not while reset is in progress.
3345 	 */
3346 	if (ice_is_reset_in_progress(pf->state))
3347 		goto skip_req_irq;
3348 
3349 	/* reserve one vector in irq_tracker for misc interrupts */
3350 	oicr_irq = ice_alloc_irq(pf, false);
3351 	if (oicr_irq.index < 0)
3352 		return oicr_irq.index;
3353 
3354 	pf->oicr_irq = oicr_irq;
3355 	err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3356 					ice_misc_intr_thread_fn, 0,
3357 					pf->int_name, pf);
3358 	if (err) {
3359 		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3360 			pf->int_name, err);
3361 		ice_free_irq(pf, pf->oicr_irq);
3362 		return err;
3363 	}
3364 
3365 skip_req_irq:
3366 	ice_ena_misc_vector(pf);
3367 
3368 	ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3369 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3370 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3371 
3372 	ice_flush(hw);
3373 	ice_irq_dynamic_ena(hw, NULL, NULL);
3374 
3375 	return 0;
3376 }
3377 
3378 /**
3379  * ice_napi_add - register NAPI handler for the VSI
3380  * @vsi: VSI for which NAPI handler is to be registered
3381  *
3382  * This function is only called in the driver's load path. Registering the NAPI
3383  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3384  * reset/rebuild, etc.)
3385  */
3386 static void ice_napi_add(struct ice_vsi *vsi)
3387 {
3388 	int v_idx;
3389 
3390 	if (!vsi->netdev)
3391 		return;
3392 
3393 	ice_for_each_q_vector(vsi, v_idx) {
3394 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3395 			       ice_napi_poll);
3396 		ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false);
3397 	}
3398 }
3399 
3400 /**
3401  * ice_set_ops - set netdev and ethtools ops for the given netdev
3402  * @vsi: the VSI associated with the new netdev
3403  */
3404 static void ice_set_ops(struct ice_vsi *vsi)
3405 {
3406 	struct net_device *netdev = vsi->netdev;
3407 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3408 
3409 	if (ice_is_safe_mode(pf)) {
3410 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3411 		ice_set_ethtool_safe_mode_ops(netdev);
3412 		return;
3413 	}
3414 
3415 	netdev->netdev_ops = &ice_netdev_ops;
3416 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3417 	netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3418 	ice_set_ethtool_ops(netdev);
3419 
3420 	if (vsi->type != ICE_VSI_PF)
3421 		return;
3422 
3423 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3424 			       NETDEV_XDP_ACT_XSK_ZEROCOPY |
3425 			       NETDEV_XDP_ACT_RX_SG;
3426 	netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3427 }
3428 
3429 /**
3430  * ice_set_netdev_features - set features for the given netdev
3431  * @netdev: netdev instance
3432  */
3433 static void ice_set_netdev_features(struct net_device *netdev)
3434 {
3435 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3436 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3437 	netdev_features_t csumo_features;
3438 	netdev_features_t vlano_features;
3439 	netdev_features_t dflt_features;
3440 	netdev_features_t tso_features;
3441 
3442 	if (ice_is_safe_mode(pf)) {
3443 		/* safe mode */
3444 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3445 		netdev->hw_features = netdev->features;
3446 		return;
3447 	}
3448 
3449 	dflt_features = NETIF_F_SG	|
3450 			NETIF_F_HIGHDMA	|
3451 			NETIF_F_NTUPLE	|
3452 			NETIF_F_RXHASH;
3453 
3454 	csumo_features = NETIF_F_RXCSUM	  |
3455 			 NETIF_F_IP_CSUM  |
3456 			 NETIF_F_SCTP_CRC |
3457 			 NETIF_F_IPV6_CSUM;
3458 
3459 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3460 			 NETIF_F_HW_VLAN_CTAG_TX     |
3461 			 NETIF_F_HW_VLAN_CTAG_RX;
3462 
3463 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3464 	if (is_dvm_ena)
3465 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3466 
3467 	tso_features = NETIF_F_TSO			|
3468 		       NETIF_F_TSO_ECN			|
3469 		       NETIF_F_TSO6			|
3470 		       NETIF_F_GSO_GRE			|
3471 		       NETIF_F_GSO_UDP_TUNNEL		|
3472 		       NETIF_F_GSO_GRE_CSUM		|
3473 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3474 		       NETIF_F_GSO_PARTIAL		|
3475 		       NETIF_F_GSO_IPXIP4		|
3476 		       NETIF_F_GSO_IPXIP6		|
3477 		       NETIF_F_GSO_UDP_L4;
3478 
3479 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3480 					NETIF_F_GSO_GRE_CSUM;
3481 	/* set features that user can change */
3482 	netdev->hw_features = dflt_features | csumo_features |
3483 			      vlano_features | tso_features;
3484 
3485 	/* add support for HW_CSUM on packets with MPLS header */
3486 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3487 				 NETIF_F_TSO     |
3488 				 NETIF_F_TSO6;
3489 
3490 	/* enable features */
3491 	netdev->features |= netdev->hw_features;
3492 
3493 	netdev->hw_features |= NETIF_F_HW_TC;
3494 	netdev->hw_features |= NETIF_F_LOOPBACK;
3495 
3496 	/* encap and VLAN devices inherit default, csumo and tso features */
3497 	netdev->hw_enc_features |= dflt_features | csumo_features |
3498 				   tso_features;
3499 	netdev->vlan_features |= dflt_features | csumo_features |
3500 				 tso_features;
3501 
3502 	/* advertise support but don't enable by default since only one type of
3503 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3504 	 * type turns on the other has to be turned off. This is enforced by the
3505 	 * ice_fix_features() ndo callback.
3506 	 */
3507 	if (is_dvm_ena)
3508 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3509 			NETIF_F_HW_VLAN_STAG_TX;
3510 
3511 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3512 	 * be changed at runtime
3513 	 */
3514 	netdev->hw_features |= NETIF_F_RXFCS;
3515 
3516 	netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3517 }
3518 
3519 /**
3520  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3521  * @lut: Lookup table
3522  * @rss_table_size: Lookup table size
3523  * @rss_size: Range of queue number for hashing
3524  */
3525 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3526 {
3527 	u16 i;
3528 
3529 	for (i = 0; i < rss_table_size; i++)
3530 		lut[i] = i % rss_size;
3531 }
3532 
3533 /**
3534  * ice_pf_vsi_setup - Set up a PF VSI
3535  * @pf: board private structure
3536  * @pi: pointer to the port_info instance
3537  *
3538  * Returns pointer to the successfully allocated VSI software struct
3539  * on success, otherwise returns NULL on failure.
3540  */
3541 static struct ice_vsi *
3542 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3543 {
3544 	struct ice_vsi_cfg_params params = {};
3545 
3546 	params.type = ICE_VSI_PF;
3547 	params.pi = pi;
3548 	params.flags = ICE_VSI_FLAG_INIT;
3549 
3550 	return ice_vsi_setup(pf, &params);
3551 }
3552 
3553 static struct ice_vsi *
3554 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3555 		   struct ice_channel *ch)
3556 {
3557 	struct ice_vsi_cfg_params params = {};
3558 
3559 	params.type = ICE_VSI_CHNL;
3560 	params.pi = pi;
3561 	params.ch = ch;
3562 	params.flags = ICE_VSI_FLAG_INIT;
3563 
3564 	return ice_vsi_setup(pf, &params);
3565 }
3566 
3567 /**
3568  * ice_ctrl_vsi_setup - Set up a control VSI
3569  * @pf: board private structure
3570  * @pi: pointer to the port_info instance
3571  *
3572  * Returns pointer to the successfully allocated VSI software struct
3573  * on success, otherwise returns NULL on failure.
3574  */
3575 static struct ice_vsi *
3576 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3577 {
3578 	struct ice_vsi_cfg_params params = {};
3579 
3580 	params.type = ICE_VSI_CTRL;
3581 	params.pi = pi;
3582 	params.flags = ICE_VSI_FLAG_INIT;
3583 
3584 	return ice_vsi_setup(pf, &params);
3585 }
3586 
3587 /**
3588  * ice_lb_vsi_setup - Set up a loopback VSI
3589  * @pf: board private structure
3590  * @pi: pointer to the port_info instance
3591  *
3592  * Returns pointer to the successfully allocated VSI software struct
3593  * on success, otherwise returns NULL on failure.
3594  */
3595 struct ice_vsi *
3596 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3597 {
3598 	struct ice_vsi_cfg_params params = {};
3599 
3600 	params.type = ICE_VSI_LB;
3601 	params.pi = pi;
3602 	params.flags = ICE_VSI_FLAG_INIT;
3603 
3604 	return ice_vsi_setup(pf, &params);
3605 }
3606 
3607 /**
3608  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3609  * @netdev: network interface to be adjusted
3610  * @proto: VLAN TPID
3611  * @vid: VLAN ID to be added
3612  *
3613  * net_device_ops implementation for adding VLAN IDs
3614  */
3615 static int
3616 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3617 {
3618 	struct ice_netdev_priv *np = netdev_priv(netdev);
3619 	struct ice_vsi_vlan_ops *vlan_ops;
3620 	struct ice_vsi *vsi = np->vsi;
3621 	struct ice_vlan vlan;
3622 	int ret;
3623 
3624 	/* VLAN 0 is added by default during load/reset */
3625 	if (!vid)
3626 		return 0;
3627 
3628 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3629 		usleep_range(1000, 2000);
3630 
3631 	/* Add multicast promisc rule for the VLAN ID to be added if
3632 	 * all-multicast is currently enabled.
3633 	 */
3634 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3635 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3636 					       ICE_MCAST_VLAN_PROMISC_BITS,
3637 					       vid);
3638 		if (ret)
3639 			goto finish;
3640 	}
3641 
3642 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3643 
3644 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3645 	 * packets aren't pruned by the device's internal switch on Rx
3646 	 */
3647 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3648 	ret = vlan_ops->add_vlan(vsi, &vlan);
3649 	if (ret)
3650 		goto finish;
3651 
3652 	/* If all-multicast is currently enabled and this VLAN ID is only one
3653 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3654 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3655 	 */
3656 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3657 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3658 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3659 					   ICE_MCAST_PROMISC_BITS, 0);
3660 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3661 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3662 	}
3663 
3664 finish:
3665 	clear_bit(ICE_CFG_BUSY, vsi->state);
3666 
3667 	return ret;
3668 }
3669 
3670 /**
3671  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3672  * @netdev: network interface to be adjusted
3673  * @proto: VLAN TPID
3674  * @vid: VLAN ID to be removed
3675  *
3676  * net_device_ops implementation for removing VLAN IDs
3677  */
3678 static int
3679 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3680 {
3681 	struct ice_netdev_priv *np = netdev_priv(netdev);
3682 	struct ice_vsi_vlan_ops *vlan_ops;
3683 	struct ice_vsi *vsi = np->vsi;
3684 	struct ice_vlan vlan;
3685 	int ret;
3686 
3687 	/* don't allow removal of VLAN 0 */
3688 	if (!vid)
3689 		return 0;
3690 
3691 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3692 		usleep_range(1000, 2000);
3693 
3694 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3695 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3696 	if (ret) {
3697 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3698 			   vsi->vsi_num);
3699 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3700 	}
3701 
3702 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3703 
3704 	/* Make sure VLAN delete is successful before updating VLAN
3705 	 * information
3706 	 */
3707 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3708 	ret = vlan_ops->del_vlan(vsi, &vlan);
3709 	if (ret)
3710 		goto finish;
3711 
3712 	/* Remove multicast promisc rule for the removed VLAN ID if
3713 	 * all-multicast is enabled.
3714 	 */
3715 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3716 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3717 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3718 
3719 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3720 		/* Update look-up type of multicast promisc rule for VLAN 0
3721 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3722 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3723 		 */
3724 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3725 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3726 						   ICE_MCAST_VLAN_PROMISC_BITS,
3727 						   0);
3728 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3729 						 ICE_MCAST_PROMISC_BITS, 0);
3730 		}
3731 	}
3732 
3733 finish:
3734 	clear_bit(ICE_CFG_BUSY, vsi->state);
3735 
3736 	return ret;
3737 }
3738 
3739 /**
3740  * ice_rep_indr_tc_block_unbind
3741  * @cb_priv: indirection block private data
3742  */
3743 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3744 {
3745 	struct ice_indr_block_priv *indr_priv = cb_priv;
3746 
3747 	list_del(&indr_priv->list);
3748 	kfree(indr_priv);
3749 }
3750 
3751 /**
3752  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3753  * @vsi: VSI struct which has the netdev
3754  */
3755 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3756 {
3757 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3758 
3759 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3760 				 ice_rep_indr_tc_block_unbind);
3761 }
3762 
3763 /**
3764  * ice_tc_indir_block_register - Register TC indirect block notifications
3765  * @vsi: VSI struct which has the netdev
3766  *
3767  * Returns 0 on success, negative value on failure
3768  */
3769 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3770 {
3771 	struct ice_netdev_priv *np;
3772 
3773 	if (!vsi || !vsi->netdev)
3774 		return -EINVAL;
3775 
3776 	np = netdev_priv(vsi->netdev);
3777 
3778 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3779 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3780 }
3781 
3782 /**
3783  * ice_get_avail_q_count - Get count of queues in use
3784  * @pf_qmap: bitmap to get queue use count from
3785  * @lock: pointer to a mutex that protects access to pf_qmap
3786  * @size: size of the bitmap
3787  */
3788 static u16
3789 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3790 {
3791 	unsigned long bit;
3792 	u16 count = 0;
3793 
3794 	mutex_lock(lock);
3795 	for_each_clear_bit(bit, pf_qmap, size)
3796 		count++;
3797 	mutex_unlock(lock);
3798 
3799 	return count;
3800 }
3801 
3802 /**
3803  * ice_get_avail_txq_count - Get count of Tx queues in use
3804  * @pf: pointer to an ice_pf instance
3805  */
3806 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3807 {
3808 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3809 				     pf->max_pf_txqs);
3810 }
3811 
3812 /**
3813  * ice_get_avail_rxq_count - Get count of Rx queues in use
3814  * @pf: pointer to an ice_pf instance
3815  */
3816 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3817 {
3818 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3819 				     pf->max_pf_rxqs);
3820 }
3821 
3822 /**
3823  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3824  * @pf: board private structure to initialize
3825  */
3826 static void ice_deinit_pf(struct ice_pf *pf)
3827 {
3828 	ice_service_task_stop(pf);
3829 	mutex_destroy(&pf->lag_mutex);
3830 	mutex_destroy(&pf->adev_mutex);
3831 	mutex_destroy(&pf->sw_mutex);
3832 	mutex_destroy(&pf->tc_mutex);
3833 	mutex_destroy(&pf->avail_q_mutex);
3834 	mutex_destroy(&pf->vfs.table_lock);
3835 
3836 	if (pf->avail_txqs) {
3837 		bitmap_free(pf->avail_txqs);
3838 		pf->avail_txqs = NULL;
3839 	}
3840 
3841 	if (pf->avail_rxqs) {
3842 		bitmap_free(pf->avail_rxqs);
3843 		pf->avail_rxqs = NULL;
3844 	}
3845 
3846 	if (pf->ptp.clock)
3847 		ptp_clock_unregister(pf->ptp.clock);
3848 }
3849 
3850 /**
3851  * ice_set_pf_caps - set PFs capability flags
3852  * @pf: pointer to the PF instance
3853  */
3854 static void ice_set_pf_caps(struct ice_pf *pf)
3855 {
3856 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3857 
3858 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3859 	if (func_caps->common_cap.rdma)
3860 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3861 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3862 	if (func_caps->common_cap.dcb)
3863 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3864 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3865 	if (func_caps->common_cap.sr_iov_1_1) {
3866 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3867 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3868 					      ICE_MAX_SRIOV_VFS);
3869 	}
3870 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3871 	if (func_caps->common_cap.rss_table_size)
3872 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3873 
3874 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3875 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3876 		u16 unused;
3877 
3878 		/* ctrl_vsi_idx will be set to a valid value when flow director
3879 		 * is setup by ice_init_fdir
3880 		 */
3881 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3882 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3883 		/* force guaranteed filter pool for PF */
3884 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3885 				       func_caps->fd_fltr_guar);
3886 		/* force shared filter pool for PF */
3887 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3888 				       func_caps->fd_fltr_best_effort);
3889 	}
3890 
3891 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3892 	if (func_caps->common_cap.ieee_1588 &&
3893 	    !(pf->hw.mac_type == ICE_MAC_E830))
3894 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3895 
3896 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3897 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3898 }
3899 
3900 /**
3901  * ice_init_pf - Initialize general software structures (struct ice_pf)
3902  * @pf: board private structure to initialize
3903  */
3904 static int ice_init_pf(struct ice_pf *pf)
3905 {
3906 	ice_set_pf_caps(pf);
3907 
3908 	mutex_init(&pf->sw_mutex);
3909 	mutex_init(&pf->tc_mutex);
3910 	mutex_init(&pf->adev_mutex);
3911 	mutex_init(&pf->lag_mutex);
3912 
3913 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3914 	spin_lock_init(&pf->aq_wait_lock);
3915 	init_waitqueue_head(&pf->aq_wait_queue);
3916 
3917 	init_waitqueue_head(&pf->reset_wait_queue);
3918 
3919 	/* setup service timer and periodic service task */
3920 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3921 	pf->serv_tmr_period = HZ;
3922 	INIT_WORK(&pf->serv_task, ice_service_task);
3923 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3924 
3925 	mutex_init(&pf->avail_q_mutex);
3926 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3927 	if (!pf->avail_txqs)
3928 		return -ENOMEM;
3929 
3930 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3931 	if (!pf->avail_rxqs) {
3932 		bitmap_free(pf->avail_txqs);
3933 		pf->avail_txqs = NULL;
3934 		return -ENOMEM;
3935 	}
3936 
3937 	mutex_init(&pf->vfs.table_lock);
3938 	hash_init(pf->vfs.table);
3939 	ice_mbx_init_snapshot(&pf->hw);
3940 
3941 	return 0;
3942 }
3943 
3944 /**
3945  * ice_is_wol_supported - check if WoL is supported
3946  * @hw: pointer to hardware info
3947  *
3948  * Check if WoL is supported based on the HW configuration.
3949  * Returns true if NVM supports and enables WoL for this port, false otherwise
3950  */
3951 bool ice_is_wol_supported(struct ice_hw *hw)
3952 {
3953 	u16 wol_ctrl;
3954 
3955 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3956 	 * word) indicates WoL is not supported on the corresponding PF ID.
3957 	 */
3958 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3959 		return false;
3960 
3961 	return !(BIT(hw->port_info->lport) & wol_ctrl);
3962 }
3963 
3964 /**
3965  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3966  * @vsi: VSI being changed
3967  * @new_rx: new number of Rx queues
3968  * @new_tx: new number of Tx queues
3969  * @locked: is adev device_lock held
3970  *
3971  * Only change the number of queues if new_tx, or new_rx is non-0.
3972  *
3973  * Returns 0 on success.
3974  */
3975 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
3976 {
3977 	struct ice_pf *pf = vsi->back;
3978 	int err = 0, timeout = 50;
3979 
3980 	if (!new_rx && !new_tx)
3981 		return -EINVAL;
3982 
3983 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3984 		timeout--;
3985 		if (!timeout)
3986 			return -EBUSY;
3987 		usleep_range(1000, 2000);
3988 	}
3989 
3990 	if (new_tx)
3991 		vsi->req_txq = (u16)new_tx;
3992 	if (new_rx)
3993 		vsi->req_rxq = (u16)new_rx;
3994 
3995 	/* set for the next time the netdev is started */
3996 	if (!netif_running(vsi->netdev)) {
3997 		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
3998 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3999 		goto done;
4000 	}
4001 
4002 	ice_vsi_close(vsi);
4003 	ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4004 	ice_pf_dcb_recfg(pf, locked);
4005 	ice_vsi_open(vsi);
4006 done:
4007 	clear_bit(ICE_CFG_BUSY, pf->state);
4008 	return err;
4009 }
4010 
4011 /**
4012  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4013  * @pf: PF to configure
4014  *
4015  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4016  * VSI can still Tx/Rx VLAN tagged packets.
4017  */
4018 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4019 {
4020 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4021 	struct ice_vsi_ctx *ctxt;
4022 	struct ice_hw *hw;
4023 	int status;
4024 
4025 	if (!vsi)
4026 		return;
4027 
4028 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4029 	if (!ctxt)
4030 		return;
4031 
4032 	hw = &pf->hw;
4033 	ctxt->info = vsi->info;
4034 
4035 	ctxt->info.valid_sections =
4036 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4037 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4038 			    ICE_AQ_VSI_PROP_SW_VALID);
4039 
4040 	/* disable VLAN anti-spoof */
4041 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4042 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4043 
4044 	/* disable VLAN pruning and keep all other settings */
4045 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4046 
4047 	/* allow all VLANs on Tx and don't strip on Rx */
4048 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4049 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4050 
4051 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4052 	if (status) {
4053 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4054 			status, ice_aq_str(hw->adminq.sq_last_status));
4055 	} else {
4056 		vsi->info.sec_flags = ctxt->info.sec_flags;
4057 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4058 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4059 	}
4060 
4061 	kfree(ctxt);
4062 }
4063 
4064 /**
4065  * ice_log_pkg_init - log result of DDP package load
4066  * @hw: pointer to hardware info
4067  * @state: state of package load
4068  */
4069 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4070 {
4071 	struct ice_pf *pf = hw->back;
4072 	struct device *dev;
4073 
4074 	dev = ice_pf_to_dev(pf);
4075 
4076 	switch (state) {
4077 	case ICE_DDP_PKG_SUCCESS:
4078 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4079 			 hw->active_pkg_name,
4080 			 hw->active_pkg_ver.major,
4081 			 hw->active_pkg_ver.minor,
4082 			 hw->active_pkg_ver.update,
4083 			 hw->active_pkg_ver.draft);
4084 		break;
4085 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4086 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4087 			 hw->active_pkg_name,
4088 			 hw->active_pkg_ver.major,
4089 			 hw->active_pkg_ver.minor,
4090 			 hw->active_pkg_ver.update,
4091 			 hw->active_pkg_ver.draft);
4092 		break;
4093 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4094 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4095 			hw->active_pkg_name,
4096 			hw->active_pkg_ver.major,
4097 			hw->active_pkg_ver.minor,
4098 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4099 		break;
4100 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4101 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4102 			 hw->active_pkg_name,
4103 			 hw->active_pkg_ver.major,
4104 			 hw->active_pkg_ver.minor,
4105 			 hw->active_pkg_ver.update,
4106 			 hw->active_pkg_ver.draft,
4107 			 hw->pkg_name,
4108 			 hw->pkg_ver.major,
4109 			 hw->pkg_ver.minor,
4110 			 hw->pkg_ver.update,
4111 			 hw->pkg_ver.draft);
4112 		break;
4113 	case ICE_DDP_PKG_FW_MISMATCH:
4114 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4115 		break;
4116 	case ICE_DDP_PKG_INVALID_FILE:
4117 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4118 		break;
4119 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4120 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4121 		break;
4122 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4123 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4124 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4125 		break;
4126 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4127 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4128 		break;
4129 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4130 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4131 		break;
4132 	case ICE_DDP_PKG_LOAD_ERROR:
4133 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4134 		/* poll for reset to complete */
4135 		if (ice_check_reset(hw))
4136 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4137 		break;
4138 	case ICE_DDP_PKG_ERR:
4139 	default:
4140 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4141 		break;
4142 	}
4143 }
4144 
4145 /**
4146  * ice_load_pkg - load/reload the DDP Package file
4147  * @firmware: firmware structure when firmware requested or NULL for reload
4148  * @pf: pointer to the PF instance
4149  *
4150  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4151  * initialize HW tables.
4152  */
4153 static void
4154 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4155 {
4156 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4157 	struct device *dev = ice_pf_to_dev(pf);
4158 	struct ice_hw *hw = &pf->hw;
4159 
4160 	/* Load DDP Package */
4161 	if (firmware && !hw->pkg_copy) {
4162 		state = ice_copy_and_init_pkg(hw, firmware->data,
4163 					      firmware->size);
4164 		ice_log_pkg_init(hw, state);
4165 	} else if (!firmware && hw->pkg_copy) {
4166 		/* Reload package during rebuild after CORER/GLOBR reset */
4167 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4168 		ice_log_pkg_init(hw, state);
4169 	} else {
4170 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4171 	}
4172 
4173 	if (!ice_is_init_pkg_successful(state)) {
4174 		/* Safe Mode */
4175 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4176 		return;
4177 	}
4178 
4179 	/* Successful download package is the precondition for advanced
4180 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4181 	 */
4182 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4183 }
4184 
4185 /**
4186  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4187  * @pf: pointer to the PF structure
4188  *
4189  * There is no error returned here because the driver should be able to handle
4190  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4191  * specifically with Tx.
4192  */
4193 static void ice_verify_cacheline_size(struct ice_pf *pf)
4194 {
4195 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4196 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4197 			 ICE_CACHE_LINE_BYTES);
4198 }
4199 
4200 /**
4201  * ice_send_version - update firmware with driver version
4202  * @pf: PF struct
4203  *
4204  * Returns 0 on success, else error code
4205  */
4206 static int ice_send_version(struct ice_pf *pf)
4207 {
4208 	struct ice_driver_ver dv;
4209 
4210 	dv.major_ver = 0xff;
4211 	dv.minor_ver = 0xff;
4212 	dv.build_ver = 0xff;
4213 	dv.subbuild_ver = 0;
4214 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4215 		sizeof(dv.driver_string));
4216 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4217 }
4218 
4219 /**
4220  * ice_init_fdir - Initialize flow director VSI and configuration
4221  * @pf: pointer to the PF instance
4222  *
4223  * returns 0 on success, negative on error
4224  */
4225 static int ice_init_fdir(struct ice_pf *pf)
4226 {
4227 	struct device *dev = ice_pf_to_dev(pf);
4228 	struct ice_vsi *ctrl_vsi;
4229 	int err;
4230 
4231 	/* Side Band Flow Director needs to have a control VSI.
4232 	 * Allocate it and store it in the PF.
4233 	 */
4234 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4235 	if (!ctrl_vsi) {
4236 		dev_dbg(dev, "could not create control VSI\n");
4237 		return -ENOMEM;
4238 	}
4239 
4240 	err = ice_vsi_open_ctrl(ctrl_vsi);
4241 	if (err) {
4242 		dev_dbg(dev, "could not open control VSI\n");
4243 		goto err_vsi_open;
4244 	}
4245 
4246 	mutex_init(&pf->hw.fdir_fltr_lock);
4247 
4248 	err = ice_fdir_create_dflt_rules(pf);
4249 	if (err)
4250 		goto err_fdir_rule;
4251 
4252 	return 0;
4253 
4254 err_fdir_rule:
4255 	ice_fdir_release_flows(&pf->hw);
4256 	ice_vsi_close(ctrl_vsi);
4257 err_vsi_open:
4258 	ice_vsi_release(ctrl_vsi);
4259 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4260 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4261 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4262 	}
4263 	return err;
4264 }
4265 
4266 static void ice_deinit_fdir(struct ice_pf *pf)
4267 {
4268 	struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4269 
4270 	if (!vsi)
4271 		return;
4272 
4273 	ice_vsi_manage_fdir(vsi, false);
4274 	ice_vsi_release(vsi);
4275 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4276 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4277 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4278 	}
4279 
4280 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4281 }
4282 
4283 /**
4284  * ice_get_opt_fw_name - return optional firmware file name or NULL
4285  * @pf: pointer to the PF instance
4286  */
4287 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4288 {
4289 	/* Optional firmware name same as default with additional dash
4290 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4291 	 */
4292 	struct pci_dev *pdev = pf->pdev;
4293 	char *opt_fw_filename;
4294 	u64 dsn;
4295 
4296 	/* Determine the name of the optional file using the DSN (two
4297 	 * dwords following the start of the DSN Capability).
4298 	 */
4299 	dsn = pci_get_dsn(pdev);
4300 	if (!dsn)
4301 		return NULL;
4302 
4303 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4304 	if (!opt_fw_filename)
4305 		return NULL;
4306 
4307 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4308 		 ICE_DDP_PKG_PATH, dsn);
4309 
4310 	return opt_fw_filename;
4311 }
4312 
4313 /**
4314  * ice_request_fw - Device initialization routine
4315  * @pf: pointer to the PF instance
4316  */
4317 static void ice_request_fw(struct ice_pf *pf)
4318 {
4319 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4320 	const struct firmware *firmware = NULL;
4321 	struct device *dev = ice_pf_to_dev(pf);
4322 	int err = 0;
4323 
4324 	/* optional device-specific DDP (if present) overrides the default DDP
4325 	 * package file. kernel logs a debug message if the file doesn't exist,
4326 	 * and warning messages for other errors.
4327 	 */
4328 	if (opt_fw_filename) {
4329 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4330 		if (err) {
4331 			kfree(opt_fw_filename);
4332 			goto dflt_pkg_load;
4333 		}
4334 
4335 		/* request for firmware was successful. Download to device */
4336 		ice_load_pkg(firmware, pf);
4337 		kfree(opt_fw_filename);
4338 		release_firmware(firmware);
4339 		return;
4340 	}
4341 
4342 dflt_pkg_load:
4343 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4344 	if (err) {
4345 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4346 		return;
4347 	}
4348 
4349 	/* request for firmware was successful. Download to device */
4350 	ice_load_pkg(firmware, pf);
4351 	release_firmware(firmware);
4352 }
4353 
4354 /**
4355  * ice_print_wake_reason - show the wake up cause in the log
4356  * @pf: pointer to the PF struct
4357  */
4358 static void ice_print_wake_reason(struct ice_pf *pf)
4359 {
4360 	u32 wus = pf->wakeup_reason;
4361 	const char *wake_str;
4362 
4363 	/* if no wake event, nothing to print */
4364 	if (!wus)
4365 		return;
4366 
4367 	if (wus & PFPM_WUS_LNKC_M)
4368 		wake_str = "Link\n";
4369 	else if (wus & PFPM_WUS_MAG_M)
4370 		wake_str = "Magic Packet\n";
4371 	else if (wus & PFPM_WUS_MNG_M)
4372 		wake_str = "Management\n";
4373 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4374 		wake_str = "Firmware Reset\n";
4375 	else
4376 		wake_str = "Unknown\n";
4377 
4378 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4379 }
4380 
4381 /**
4382  * ice_pf_fwlog_update_module - update 1 module
4383  * @pf: pointer to the PF struct
4384  * @log_level: log_level to use for the @module
4385  * @module: module to update
4386  */
4387 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4388 {
4389 	struct ice_hw *hw = &pf->hw;
4390 
4391 	hw->fwlog_cfg.module_entries[module].log_level = log_level;
4392 }
4393 
4394 /**
4395  * ice_register_netdev - register netdev
4396  * @vsi: pointer to the VSI struct
4397  */
4398 static int ice_register_netdev(struct ice_vsi *vsi)
4399 {
4400 	int err;
4401 
4402 	if (!vsi || !vsi->netdev)
4403 		return -EIO;
4404 
4405 	err = register_netdev(vsi->netdev);
4406 	if (err)
4407 		return err;
4408 
4409 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4410 	netif_carrier_off(vsi->netdev);
4411 	netif_tx_stop_all_queues(vsi->netdev);
4412 
4413 	return 0;
4414 }
4415 
4416 static void ice_unregister_netdev(struct ice_vsi *vsi)
4417 {
4418 	if (!vsi || !vsi->netdev)
4419 		return;
4420 
4421 	unregister_netdev(vsi->netdev);
4422 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4423 }
4424 
4425 /**
4426  * ice_cfg_netdev - Allocate, configure and register a netdev
4427  * @vsi: the VSI associated with the new netdev
4428  *
4429  * Returns 0 on success, negative value on failure
4430  */
4431 static int ice_cfg_netdev(struct ice_vsi *vsi)
4432 {
4433 	struct ice_netdev_priv *np;
4434 	struct net_device *netdev;
4435 	u8 mac_addr[ETH_ALEN];
4436 
4437 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4438 				    vsi->alloc_rxq);
4439 	if (!netdev)
4440 		return -ENOMEM;
4441 
4442 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4443 	vsi->netdev = netdev;
4444 	np = netdev_priv(netdev);
4445 	np->vsi = vsi;
4446 
4447 	ice_set_netdev_features(netdev);
4448 	ice_set_ops(vsi);
4449 
4450 	if (vsi->type == ICE_VSI_PF) {
4451 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4452 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4453 		eth_hw_addr_set(netdev, mac_addr);
4454 	}
4455 
4456 	netdev->priv_flags |= IFF_UNICAST_FLT;
4457 
4458 	/* Setup netdev TC information */
4459 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4460 
4461 	netdev->max_mtu = ICE_MAX_MTU;
4462 
4463 	return 0;
4464 }
4465 
4466 static void ice_decfg_netdev(struct ice_vsi *vsi)
4467 {
4468 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4469 	free_netdev(vsi->netdev);
4470 	vsi->netdev = NULL;
4471 }
4472 
4473 static int ice_start_eth(struct ice_vsi *vsi)
4474 {
4475 	int err;
4476 
4477 	err = ice_init_mac_fltr(vsi->back);
4478 	if (err)
4479 		return err;
4480 
4481 	err = ice_vsi_open(vsi);
4482 	if (err)
4483 		ice_fltr_remove_all(vsi);
4484 
4485 	return err;
4486 }
4487 
4488 static void ice_stop_eth(struct ice_vsi *vsi)
4489 {
4490 	ice_fltr_remove_all(vsi);
4491 	ice_vsi_close(vsi);
4492 }
4493 
4494 static int ice_init_eth(struct ice_pf *pf)
4495 {
4496 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4497 	int err;
4498 
4499 	if (!vsi)
4500 		return -EINVAL;
4501 
4502 	/* init channel list */
4503 	INIT_LIST_HEAD(&vsi->ch_list);
4504 
4505 	err = ice_cfg_netdev(vsi);
4506 	if (err)
4507 		return err;
4508 	/* Setup DCB netlink interface */
4509 	ice_dcbnl_setup(vsi);
4510 
4511 	err = ice_init_mac_fltr(pf);
4512 	if (err)
4513 		goto err_init_mac_fltr;
4514 
4515 	err = ice_devlink_create_pf_port(pf);
4516 	if (err)
4517 		goto err_devlink_create_pf_port;
4518 
4519 	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4520 
4521 	err = ice_register_netdev(vsi);
4522 	if (err)
4523 		goto err_register_netdev;
4524 
4525 	err = ice_tc_indir_block_register(vsi);
4526 	if (err)
4527 		goto err_tc_indir_block_register;
4528 
4529 	ice_napi_add(vsi);
4530 
4531 	return 0;
4532 
4533 err_tc_indir_block_register:
4534 	ice_unregister_netdev(vsi);
4535 err_register_netdev:
4536 	ice_devlink_destroy_pf_port(pf);
4537 err_devlink_create_pf_port:
4538 err_init_mac_fltr:
4539 	ice_decfg_netdev(vsi);
4540 	return err;
4541 }
4542 
4543 static void ice_deinit_eth(struct ice_pf *pf)
4544 {
4545 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4546 
4547 	if (!vsi)
4548 		return;
4549 
4550 	ice_vsi_close(vsi);
4551 	ice_unregister_netdev(vsi);
4552 	ice_devlink_destroy_pf_port(pf);
4553 	ice_tc_indir_block_unregister(vsi);
4554 	ice_decfg_netdev(vsi);
4555 }
4556 
4557 /**
4558  * ice_wait_for_fw - wait for full FW readiness
4559  * @hw: pointer to the hardware structure
4560  * @timeout: milliseconds that can elapse before timing out
4561  */
4562 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4563 {
4564 	int fw_loading;
4565 	u32 elapsed = 0;
4566 
4567 	while (elapsed <= timeout) {
4568 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4569 
4570 		/* firmware was not yet loaded, we have to wait more */
4571 		if (fw_loading) {
4572 			elapsed += 100;
4573 			msleep(100);
4574 			continue;
4575 		}
4576 		return 0;
4577 	}
4578 
4579 	return -ETIMEDOUT;
4580 }
4581 
4582 static int ice_init_dev(struct ice_pf *pf)
4583 {
4584 	struct device *dev = ice_pf_to_dev(pf);
4585 	struct ice_hw *hw = &pf->hw;
4586 	int err;
4587 
4588 	err = ice_init_hw(hw);
4589 	if (err) {
4590 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4591 		return err;
4592 	}
4593 
4594 	/* Some cards require longer initialization times
4595 	 * due to necessity of loading FW from an external source.
4596 	 * This can take even half a minute.
4597 	 */
4598 	if (ice_is_pf_c827(hw)) {
4599 		err = ice_wait_for_fw(hw, 30000);
4600 		if (err) {
4601 			dev_err(dev, "ice_wait_for_fw timed out");
4602 			return err;
4603 		}
4604 	}
4605 
4606 	ice_init_feature_support(pf);
4607 
4608 	ice_request_fw(pf);
4609 
4610 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4611 	 * set in pf->state, which will cause ice_is_safe_mode to return
4612 	 * true
4613 	 */
4614 	if (ice_is_safe_mode(pf)) {
4615 		/* we already got function/device capabilities but these don't
4616 		 * reflect what the driver needs to do in safe mode. Instead of
4617 		 * adding conditional logic everywhere to ignore these
4618 		 * device/function capabilities, override them.
4619 		 */
4620 		ice_set_safe_mode_caps(hw);
4621 	}
4622 
4623 	err = ice_init_pf(pf);
4624 	if (err) {
4625 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4626 		goto err_init_pf;
4627 	}
4628 
4629 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4630 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4631 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4632 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4633 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4634 		pf->hw.udp_tunnel_nic.tables[0].n_entries =
4635 			pf->hw.tnl.valid_count[TNL_VXLAN];
4636 		pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4637 			UDP_TUNNEL_TYPE_VXLAN;
4638 	}
4639 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4640 		pf->hw.udp_tunnel_nic.tables[1].n_entries =
4641 			pf->hw.tnl.valid_count[TNL_GENEVE];
4642 		pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4643 			UDP_TUNNEL_TYPE_GENEVE;
4644 	}
4645 
4646 	err = ice_init_interrupt_scheme(pf);
4647 	if (err) {
4648 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4649 		err = -EIO;
4650 		goto err_init_interrupt_scheme;
4651 	}
4652 
4653 	/* In case of MSIX we are going to setup the misc vector right here
4654 	 * to handle admin queue events etc. In case of legacy and MSI
4655 	 * the misc functionality and queue processing is combined in
4656 	 * the same vector and that gets setup at open.
4657 	 */
4658 	err = ice_req_irq_msix_misc(pf);
4659 	if (err) {
4660 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4661 		goto err_req_irq_msix_misc;
4662 	}
4663 
4664 	return 0;
4665 
4666 err_req_irq_msix_misc:
4667 	ice_clear_interrupt_scheme(pf);
4668 err_init_interrupt_scheme:
4669 	ice_deinit_pf(pf);
4670 err_init_pf:
4671 	ice_deinit_hw(hw);
4672 	return err;
4673 }
4674 
4675 static void ice_deinit_dev(struct ice_pf *pf)
4676 {
4677 	ice_free_irq_msix_misc(pf);
4678 	ice_deinit_pf(pf);
4679 	ice_deinit_hw(&pf->hw);
4680 
4681 	/* Service task is already stopped, so call reset directly. */
4682 	ice_reset(&pf->hw, ICE_RESET_PFR);
4683 	pci_wait_for_pending_transaction(pf->pdev);
4684 	ice_clear_interrupt_scheme(pf);
4685 }
4686 
4687 static void ice_init_features(struct ice_pf *pf)
4688 {
4689 	struct device *dev = ice_pf_to_dev(pf);
4690 
4691 	if (ice_is_safe_mode(pf))
4692 		return;
4693 
4694 	/* initialize DDP driven features */
4695 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4696 		ice_ptp_init(pf);
4697 
4698 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4699 		ice_gnss_init(pf);
4700 
4701 	if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4702 	    ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4703 		ice_dpll_init(pf);
4704 
4705 	/* Note: Flow director init failure is non-fatal to load */
4706 	if (ice_init_fdir(pf))
4707 		dev_err(dev, "could not initialize flow director\n");
4708 
4709 	/* Note: DCB init failure is non-fatal to load */
4710 	if (ice_init_pf_dcb(pf, false)) {
4711 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4712 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4713 	} else {
4714 		ice_cfg_lldp_mib_change(&pf->hw, true);
4715 	}
4716 
4717 	if (ice_init_lag(pf))
4718 		dev_warn(dev, "Failed to init link aggregation support\n");
4719 
4720 	ice_hwmon_init(pf);
4721 }
4722 
4723 static void ice_deinit_features(struct ice_pf *pf)
4724 {
4725 	if (ice_is_safe_mode(pf))
4726 		return;
4727 
4728 	ice_deinit_lag(pf);
4729 	if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4730 		ice_cfg_lldp_mib_change(&pf->hw, false);
4731 	ice_deinit_fdir(pf);
4732 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4733 		ice_gnss_exit(pf);
4734 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4735 		ice_ptp_release(pf);
4736 	if (test_bit(ICE_FLAG_DPLL, pf->flags))
4737 		ice_dpll_deinit(pf);
4738 	if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4739 		xa_destroy(&pf->eswitch.reprs);
4740 }
4741 
4742 static void ice_init_wakeup(struct ice_pf *pf)
4743 {
4744 	/* Save wakeup reason register for later use */
4745 	pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4746 
4747 	/* check for a power management event */
4748 	ice_print_wake_reason(pf);
4749 
4750 	/* clear wake status, all bits */
4751 	wr32(&pf->hw, PFPM_WUS, U32_MAX);
4752 
4753 	/* Disable WoL at init, wait for user to enable */
4754 	device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4755 }
4756 
4757 static int ice_init_link(struct ice_pf *pf)
4758 {
4759 	struct device *dev = ice_pf_to_dev(pf);
4760 	int err;
4761 
4762 	err = ice_init_link_events(pf->hw.port_info);
4763 	if (err) {
4764 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4765 		return err;
4766 	}
4767 
4768 	/* not a fatal error if this fails */
4769 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4770 	if (err)
4771 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4772 
4773 	/* not a fatal error if this fails */
4774 	err = ice_update_link_info(pf->hw.port_info);
4775 	if (err)
4776 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4777 
4778 	ice_init_link_dflt_override(pf->hw.port_info);
4779 
4780 	ice_check_link_cfg_err(pf,
4781 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4782 
4783 	/* if media available, initialize PHY settings */
4784 	if (pf->hw.port_info->phy.link_info.link_info &
4785 	    ICE_AQ_MEDIA_AVAILABLE) {
4786 		/* not a fatal error if this fails */
4787 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4788 		if (err)
4789 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4790 
4791 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4792 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4793 
4794 			if (vsi)
4795 				ice_configure_phy(vsi);
4796 		}
4797 	} else {
4798 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4799 	}
4800 
4801 	return err;
4802 }
4803 
4804 static int ice_init_pf_sw(struct ice_pf *pf)
4805 {
4806 	bool dvm = ice_is_dvm_ena(&pf->hw);
4807 	struct ice_vsi *vsi;
4808 	int err;
4809 
4810 	/* create switch struct for the switch element created by FW on boot */
4811 	pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4812 	if (!pf->first_sw)
4813 		return -ENOMEM;
4814 
4815 	if (pf->hw.evb_veb)
4816 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4817 	else
4818 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4819 
4820 	pf->first_sw->pf = pf;
4821 
4822 	/* record the sw_id available for later use */
4823 	pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4824 
4825 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4826 	if (err)
4827 		goto err_aq_set_port_params;
4828 
4829 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4830 	if (!vsi) {
4831 		err = -ENOMEM;
4832 		goto err_pf_vsi_setup;
4833 	}
4834 
4835 	return 0;
4836 
4837 err_pf_vsi_setup:
4838 err_aq_set_port_params:
4839 	kfree(pf->first_sw);
4840 	return err;
4841 }
4842 
4843 static void ice_deinit_pf_sw(struct ice_pf *pf)
4844 {
4845 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4846 
4847 	if (!vsi)
4848 		return;
4849 
4850 	ice_vsi_release(vsi);
4851 	kfree(pf->first_sw);
4852 }
4853 
4854 static int ice_alloc_vsis(struct ice_pf *pf)
4855 {
4856 	struct device *dev = ice_pf_to_dev(pf);
4857 
4858 	pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4859 	if (!pf->num_alloc_vsi)
4860 		return -EIO;
4861 
4862 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4863 		dev_warn(dev,
4864 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4865 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4866 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4867 	}
4868 
4869 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4870 			       GFP_KERNEL);
4871 	if (!pf->vsi)
4872 		return -ENOMEM;
4873 
4874 	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4875 				     sizeof(*pf->vsi_stats), GFP_KERNEL);
4876 	if (!pf->vsi_stats) {
4877 		devm_kfree(dev, pf->vsi);
4878 		return -ENOMEM;
4879 	}
4880 
4881 	return 0;
4882 }
4883 
4884 static void ice_dealloc_vsis(struct ice_pf *pf)
4885 {
4886 	devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4887 	pf->vsi_stats = NULL;
4888 
4889 	pf->num_alloc_vsi = 0;
4890 	devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4891 	pf->vsi = NULL;
4892 }
4893 
4894 static int ice_init_devlink(struct ice_pf *pf)
4895 {
4896 	int err;
4897 
4898 	err = ice_devlink_register_params(pf);
4899 	if (err)
4900 		return err;
4901 
4902 	ice_devlink_init_regions(pf);
4903 	ice_devlink_register(pf);
4904 
4905 	return 0;
4906 }
4907 
4908 static void ice_deinit_devlink(struct ice_pf *pf)
4909 {
4910 	ice_devlink_unregister(pf);
4911 	ice_devlink_destroy_regions(pf);
4912 	ice_devlink_unregister_params(pf);
4913 }
4914 
4915 static int ice_init(struct ice_pf *pf)
4916 {
4917 	int err;
4918 
4919 	err = ice_init_dev(pf);
4920 	if (err)
4921 		return err;
4922 
4923 	err = ice_alloc_vsis(pf);
4924 	if (err)
4925 		goto err_alloc_vsis;
4926 
4927 	err = ice_init_pf_sw(pf);
4928 	if (err)
4929 		goto err_init_pf_sw;
4930 
4931 	ice_init_wakeup(pf);
4932 
4933 	err = ice_init_link(pf);
4934 	if (err)
4935 		goto err_init_link;
4936 
4937 	err = ice_send_version(pf);
4938 	if (err)
4939 		goto err_init_link;
4940 
4941 	ice_verify_cacheline_size(pf);
4942 
4943 	if (ice_is_safe_mode(pf))
4944 		ice_set_safe_mode_vlan_cfg(pf);
4945 	else
4946 		/* print PCI link speed and width */
4947 		pcie_print_link_status(pf->pdev);
4948 
4949 	/* ready to go, so clear down state bit */
4950 	clear_bit(ICE_DOWN, pf->state);
4951 	clear_bit(ICE_SERVICE_DIS, pf->state);
4952 
4953 	/* since everything is good, start the service timer */
4954 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4955 
4956 	return 0;
4957 
4958 err_init_link:
4959 	ice_deinit_pf_sw(pf);
4960 err_init_pf_sw:
4961 	ice_dealloc_vsis(pf);
4962 err_alloc_vsis:
4963 	ice_deinit_dev(pf);
4964 	return err;
4965 }
4966 
4967 static void ice_deinit(struct ice_pf *pf)
4968 {
4969 	set_bit(ICE_SERVICE_DIS, pf->state);
4970 	set_bit(ICE_DOWN, pf->state);
4971 
4972 	ice_deinit_pf_sw(pf);
4973 	ice_dealloc_vsis(pf);
4974 	ice_deinit_dev(pf);
4975 }
4976 
4977 /**
4978  * ice_load - load pf by init hw and starting VSI
4979  * @pf: pointer to the pf instance
4980  */
4981 int ice_load(struct ice_pf *pf)
4982 {
4983 	struct ice_vsi_cfg_params params = {};
4984 	struct ice_vsi *vsi;
4985 	int err;
4986 
4987 	err = ice_init_dev(pf);
4988 	if (err)
4989 		return err;
4990 
4991 	vsi = ice_get_main_vsi(pf);
4992 
4993 	params = ice_vsi_to_params(vsi);
4994 	params.flags = ICE_VSI_FLAG_INIT;
4995 
4996 	rtnl_lock();
4997 	err = ice_vsi_cfg(vsi, &params);
4998 	if (err)
4999 		goto err_vsi_cfg;
5000 
5001 	err = ice_start_eth(ice_get_main_vsi(pf));
5002 	if (err)
5003 		goto err_start_eth;
5004 	rtnl_unlock();
5005 
5006 	err = ice_init_rdma(pf);
5007 	if (err)
5008 		goto err_init_rdma;
5009 
5010 	ice_init_features(pf);
5011 	ice_service_task_restart(pf);
5012 
5013 	clear_bit(ICE_DOWN, pf->state);
5014 
5015 	return 0;
5016 
5017 err_init_rdma:
5018 	ice_vsi_close(ice_get_main_vsi(pf));
5019 	rtnl_lock();
5020 err_start_eth:
5021 	ice_vsi_decfg(ice_get_main_vsi(pf));
5022 err_vsi_cfg:
5023 	rtnl_unlock();
5024 	ice_deinit_dev(pf);
5025 	return err;
5026 }
5027 
5028 /**
5029  * ice_unload - unload pf by stopping VSI and deinit hw
5030  * @pf: pointer to the pf instance
5031  */
5032 void ice_unload(struct ice_pf *pf)
5033 {
5034 	ice_deinit_features(pf);
5035 	ice_deinit_rdma(pf);
5036 	rtnl_lock();
5037 	ice_stop_eth(ice_get_main_vsi(pf));
5038 	ice_vsi_decfg(ice_get_main_vsi(pf));
5039 	rtnl_unlock();
5040 	ice_deinit_dev(pf);
5041 }
5042 
5043 /**
5044  * ice_probe - Device initialization routine
5045  * @pdev: PCI device information struct
5046  * @ent: entry in ice_pci_tbl
5047  *
5048  * Returns 0 on success, negative on failure
5049  */
5050 static int
5051 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5052 {
5053 	struct device *dev = &pdev->dev;
5054 	struct ice_pf *pf;
5055 	struct ice_hw *hw;
5056 	int err;
5057 
5058 	if (pdev->is_virtfn) {
5059 		dev_err(dev, "can't probe a virtual function\n");
5060 		return -EINVAL;
5061 	}
5062 
5063 	/* when under a kdump kernel initiate a reset before enabling the
5064 	 * device in order to clear out any pending DMA transactions. These
5065 	 * transactions can cause some systems to machine check when doing
5066 	 * the pcim_enable_device() below.
5067 	 */
5068 	if (is_kdump_kernel()) {
5069 		pci_save_state(pdev);
5070 		pci_clear_master(pdev);
5071 		err = pcie_flr(pdev);
5072 		if (err)
5073 			return err;
5074 		pci_restore_state(pdev);
5075 	}
5076 
5077 	/* this driver uses devres, see
5078 	 * Documentation/driver-api/driver-model/devres.rst
5079 	 */
5080 	err = pcim_enable_device(pdev);
5081 	if (err)
5082 		return err;
5083 
5084 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5085 	if (err) {
5086 		dev_err(dev, "BAR0 I/O map error %d\n", err);
5087 		return err;
5088 	}
5089 
5090 	pf = ice_allocate_pf(dev);
5091 	if (!pf)
5092 		return -ENOMEM;
5093 
5094 	/* initialize Auxiliary index to invalid value */
5095 	pf->aux_idx = -1;
5096 
5097 	/* set up for high or low DMA */
5098 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5099 	if (err) {
5100 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5101 		return err;
5102 	}
5103 
5104 	pci_set_master(pdev);
5105 
5106 	pf->pdev = pdev;
5107 	pci_set_drvdata(pdev, pf);
5108 	set_bit(ICE_DOWN, pf->state);
5109 	/* Disable service task until DOWN bit is cleared */
5110 	set_bit(ICE_SERVICE_DIS, pf->state);
5111 
5112 	hw = &pf->hw;
5113 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5114 	pci_save_state(pdev);
5115 
5116 	hw->back = pf;
5117 	hw->port_info = NULL;
5118 	hw->vendor_id = pdev->vendor;
5119 	hw->device_id = pdev->device;
5120 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5121 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5122 	hw->subsystem_device_id = pdev->subsystem_device;
5123 	hw->bus.device = PCI_SLOT(pdev->devfn);
5124 	hw->bus.func = PCI_FUNC(pdev->devfn);
5125 	ice_set_ctrlq_len(hw);
5126 
5127 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5128 
5129 #ifndef CONFIG_DYNAMIC_DEBUG
5130 	if (debug < -1)
5131 		hw->debug_mask = debug;
5132 #endif
5133 
5134 	err = ice_init(pf);
5135 	if (err)
5136 		goto err_init;
5137 
5138 	err = ice_init_eth(pf);
5139 	if (err)
5140 		goto err_init_eth;
5141 
5142 	err = ice_init_rdma(pf);
5143 	if (err)
5144 		goto err_init_rdma;
5145 
5146 	err = ice_init_devlink(pf);
5147 	if (err)
5148 		goto err_init_devlink;
5149 
5150 	ice_init_features(pf);
5151 
5152 	return 0;
5153 
5154 err_init_devlink:
5155 	ice_deinit_rdma(pf);
5156 err_init_rdma:
5157 	ice_deinit_eth(pf);
5158 err_init_eth:
5159 	ice_deinit(pf);
5160 err_init:
5161 	pci_disable_device(pdev);
5162 	return err;
5163 }
5164 
5165 /**
5166  * ice_set_wake - enable or disable Wake on LAN
5167  * @pf: pointer to the PF struct
5168  *
5169  * Simple helper for WoL control
5170  */
5171 static void ice_set_wake(struct ice_pf *pf)
5172 {
5173 	struct ice_hw *hw = &pf->hw;
5174 	bool wol = pf->wol_ena;
5175 
5176 	/* clear wake state, otherwise new wake events won't fire */
5177 	wr32(hw, PFPM_WUS, U32_MAX);
5178 
5179 	/* enable / disable APM wake up, no RMW needed */
5180 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5181 
5182 	/* set magic packet filter enabled */
5183 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5184 }
5185 
5186 /**
5187  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5188  * @pf: pointer to the PF struct
5189  *
5190  * Issue firmware command to enable multicast magic wake, making
5191  * sure that any locally administered address (LAA) is used for
5192  * wake, and that PF reset doesn't undo the LAA.
5193  */
5194 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5195 {
5196 	struct device *dev = ice_pf_to_dev(pf);
5197 	struct ice_hw *hw = &pf->hw;
5198 	u8 mac_addr[ETH_ALEN];
5199 	struct ice_vsi *vsi;
5200 	int status;
5201 	u8 flags;
5202 
5203 	if (!pf->wol_ena)
5204 		return;
5205 
5206 	vsi = ice_get_main_vsi(pf);
5207 	if (!vsi)
5208 		return;
5209 
5210 	/* Get current MAC address in case it's an LAA */
5211 	if (vsi->netdev)
5212 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5213 	else
5214 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5215 
5216 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5217 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5218 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5219 
5220 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5221 	if (status)
5222 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5223 			status, ice_aq_str(hw->adminq.sq_last_status));
5224 }
5225 
5226 /**
5227  * ice_remove - Device removal routine
5228  * @pdev: PCI device information struct
5229  */
5230 static void ice_remove(struct pci_dev *pdev)
5231 {
5232 	struct ice_pf *pf = pci_get_drvdata(pdev);
5233 	int i;
5234 
5235 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5236 		if (!ice_is_reset_in_progress(pf->state))
5237 			break;
5238 		msleep(100);
5239 	}
5240 
5241 	ice_debugfs_exit();
5242 
5243 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5244 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5245 		ice_free_vfs(pf);
5246 	}
5247 
5248 	ice_hwmon_exit(pf);
5249 
5250 	ice_service_task_stop(pf);
5251 	ice_aq_cancel_waiting_tasks(pf);
5252 	set_bit(ICE_DOWN, pf->state);
5253 
5254 	if (!ice_is_safe_mode(pf))
5255 		ice_remove_arfs(pf);
5256 	ice_deinit_features(pf);
5257 	ice_deinit_devlink(pf);
5258 	ice_deinit_rdma(pf);
5259 	ice_deinit_eth(pf);
5260 	ice_deinit(pf);
5261 
5262 	ice_vsi_release_all(pf);
5263 
5264 	ice_setup_mc_magic_wake(pf);
5265 	ice_set_wake(pf);
5266 
5267 	pci_disable_device(pdev);
5268 }
5269 
5270 /**
5271  * ice_shutdown - PCI callback for shutting down device
5272  * @pdev: PCI device information struct
5273  */
5274 static void ice_shutdown(struct pci_dev *pdev)
5275 {
5276 	struct ice_pf *pf = pci_get_drvdata(pdev);
5277 
5278 	ice_remove(pdev);
5279 
5280 	if (system_state == SYSTEM_POWER_OFF) {
5281 		pci_wake_from_d3(pdev, pf->wol_ena);
5282 		pci_set_power_state(pdev, PCI_D3hot);
5283 	}
5284 }
5285 
5286 #ifdef CONFIG_PM
5287 /**
5288  * ice_prepare_for_shutdown - prep for PCI shutdown
5289  * @pf: board private structure
5290  *
5291  * Inform or close all dependent features in prep for PCI device shutdown
5292  */
5293 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5294 {
5295 	struct ice_hw *hw = &pf->hw;
5296 	u32 v;
5297 
5298 	/* Notify VFs of impending reset */
5299 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5300 		ice_vc_notify_reset(pf);
5301 
5302 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5303 
5304 	/* disable the VSIs and their queues that are not already DOWN */
5305 	ice_pf_dis_all_vsi(pf, false);
5306 
5307 	ice_for_each_vsi(pf, v)
5308 		if (pf->vsi[v])
5309 			pf->vsi[v]->vsi_num = 0;
5310 
5311 	ice_shutdown_all_ctrlq(hw);
5312 }
5313 
5314 /**
5315  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5316  * @pf: board private structure to reinitialize
5317  *
5318  * This routine reinitialize interrupt scheme that was cleared during
5319  * power management suspend callback.
5320  *
5321  * This should be called during resume routine to re-allocate the q_vectors
5322  * and reacquire interrupts.
5323  */
5324 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5325 {
5326 	struct device *dev = ice_pf_to_dev(pf);
5327 	int ret, v;
5328 
5329 	/* Since we clear MSIX flag during suspend, we need to
5330 	 * set it back during resume...
5331 	 */
5332 
5333 	ret = ice_init_interrupt_scheme(pf);
5334 	if (ret) {
5335 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5336 		return ret;
5337 	}
5338 
5339 	/* Remap vectors and rings, after successful re-init interrupts */
5340 	ice_for_each_vsi(pf, v) {
5341 		if (!pf->vsi[v])
5342 			continue;
5343 
5344 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5345 		if (ret)
5346 			goto err_reinit;
5347 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5348 	}
5349 
5350 	ret = ice_req_irq_msix_misc(pf);
5351 	if (ret) {
5352 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5353 			ret);
5354 		goto err_reinit;
5355 	}
5356 
5357 	return 0;
5358 
5359 err_reinit:
5360 	while (v--)
5361 		if (pf->vsi[v])
5362 			ice_vsi_free_q_vectors(pf->vsi[v]);
5363 
5364 	return ret;
5365 }
5366 
5367 /**
5368  * ice_suspend
5369  * @dev: generic device information structure
5370  *
5371  * Power Management callback to quiesce the device and prepare
5372  * for D3 transition.
5373  */
5374 static int __maybe_unused ice_suspend(struct device *dev)
5375 {
5376 	struct pci_dev *pdev = to_pci_dev(dev);
5377 	struct ice_pf *pf;
5378 	int disabled, v;
5379 
5380 	pf = pci_get_drvdata(pdev);
5381 
5382 	if (!ice_pf_state_is_nominal(pf)) {
5383 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5384 		return -EBUSY;
5385 	}
5386 
5387 	/* Stop watchdog tasks until resume completion.
5388 	 * Even though it is most likely that the service task is
5389 	 * disabled if the device is suspended or down, the service task's
5390 	 * state is controlled by a different state bit, and we should
5391 	 * store and honor whatever state that bit is in at this point.
5392 	 */
5393 	disabled = ice_service_task_stop(pf);
5394 
5395 	ice_unplug_aux_dev(pf);
5396 
5397 	/* Already suspended?, then there is nothing to do */
5398 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5399 		if (!disabled)
5400 			ice_service_task_restart(pf);
5401 		return 0;
5402 	}
5403 
5404 	if (test_bit(ICE_DOWN, pf->state) ||
5405 	    ice_is_reset_in_progress(pf->state)) {
5406 		dev_err(dev, "can't suspend device in reset or already down\n");
5407 		if (!disabled)
5408 			ice_service_task_restart(pf);
5409 		return 0;
5410 	}
5411 
5412 	ice_setup_mc_magic_wake(pf);
5413 
5414 	ice_prepare_for_shutdown(pf);
5415 
5416 	ice_set_wake(pf);
5417 
5418 	/* Free vectors, clear the interrupt scheme and release IRQs
5419 	 * for proper hibernation, especially with large number of CPUs.
5420 	 * Otherwise hibernation might fail when mapping all the vectors back
5421 	 * to CPU0.
5422 	 */
5423 	ice_free_irq_msix_misc(pf);
5424 	ice_for_each_vsi(pf, v) {
5425 		if (!pf->vsi[v])
5426 			continue;
5427 		ice_vsi_free_q_vectors(pf->vsi[v]);
5428 	}
5429 	ice_clear_interrupt_scheme(pf);
5430 
5431 	pci_save_state(pdev);
5432 	pci_wake_from_d3(pdev, pf->wol_ena);
5433 	pci_set_power_state(pdev, PCI_D3hot);
5434 	return 0;
5435 }
5436 
5437 /**
5438  * ice_resume - PM callback for waking up from D3
5439  * @dev: generic device information structure
5440  */
5441 static int __maybe_unused ice_resume(struct device *dev)
5442 {
5443 	struct pci_dev *pdev = to_pci_dev(dev);
5444 	enum ice_reset_req reset_type;
5445 	struct ice_pf *pf;
5446 	struct ice_hw *hw;
5447 	int ret;
5448 
5449 	pci_set_power_state(pdev, PCI_D0);
5450 	pci_restore_state(pdev);
5451 	pci_save_state(pdev);
5452 
5453 	if (!pci_device_is_present(pdev))
5454 		return -ENODEV;
5455 
5456 	ret = pci_enable_device_mem(pdev);
5457 	if (ret) {
5458 		dev_err(dev, "Cannot enable device after suspend\n");
5459 		return ret;
5460 	}
5461 
5462 	pf = pci_get_drvdata(pdev);
5463 	hw = &pf->hw;
5464 
5465 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5466 	ice_print_wake_reason(pf);
5467 
5468 	/* We cleared the interrupt scheme when we suspended, so we need to
5469 	 * restore it now to resume device functionality.
5470 	 */
5471 	ret = ice_reinit_interrupt_scheme(pf);
5472 	if (ret)
5473 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5474 
5475 	clear_bit(ICE_DOWN, pf->state);
5476 	/* Now perform PF reset and rebuild */
5477 	reset_type = ICE_RESET_PFR;
5478 	/* re-enable service task for reset, but allow reset to schedule it */
5479 	clear_bit(ICE_SERVICE_DIS, pf->state);
5480 
5481 	if (ice_schedule_reset(pf, reset_type))
5482 		dev_err(dev, "Reset during resume failed.\n");
5483 
5484 	clear_bit(ICE_SUSPENDED, pf->state);
5485 	ice_service_task_restart(pf);
5486 
5487 	/* Restart the service task */
5488 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5489 
5490 	return 0;
5491 }
5492 #endif /* CONFIG_PM */
5493 
5494 /**
5495  * ice_pci_err_detected - warning that PCI error has been detected
5496  * @pdev: PCI device information struct
5497  * @err: the type of PCI error
5498  *
5499  * Called to warn that something happened on the PCI bus and the error handling
5500  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5501  */
5502 static pci_ers_result_t
5503 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5504 {
5505 	struct ice_pf *pf = pci_get_drvdata(pdev);
5506 
5507 	if (!pf) {
5508 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5509 			__func__, err);
5510 		return PCI_ERS_RESULT_DISCONNECT;
5511 	}
5512 
5513 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5514 		ice_service_task_stop(pf);
5515 
5516 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5517 			set_bit(ICE_PFR_REQ, pf->state);
5518 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5519 		}
5520 	}
5521 
5522 	return PCI_ERS_RESULT_NEED_RESET;
5523 }
5524 
5525 /**
5526  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5527  * @pdev: PCI device information struct
5528  *
5529  * Called to determine if the driver can recover from the PCI slot reset by
5530  * using a register read to determine if the device is recoverable.
5531  */
5532 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5533 {
5534 	struct ice_pf *pf = pci_get_drvdata(pdev);
5535 	pci_ers_result_t result;
5536 	int err;
5537 	u32 reg;
5538 
5539 	err = pci_enable_device_mem(pdev);
5540 	if (err) {
5541 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5542 			err);
5543 		result = PCI_ERS_RESULT_DISCONNECT;
5544 	} else {
5545 		pci_set_master(pdev);
5546 		pci_restore_state(pdev);
5547 		pci_save_state(pdev);
5548 		pci_wake_from_d3(pdev, false);
5549 
5550 		/* Check for life */
5551 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5552 		if (!reg)
5553 			result = PCI_ERS_RESULT_RECOVERED;
5554 		else
5555 			result = PCI_ERS_RESULT_DISCONNECT;
5556 	}
5557 
5558 	return result;
5559 }
5560 
5561 /**
5562  * ice_pci_err_resume - restart operations after PCI error recovery
5563  * @pdev: PCI device information struct
5564  *
5565  * Called to allow the driver to bring things back up after PCI error and/or
5566  * reset recovery have finished
5567  */
5568 static void ice_pci_err_resume(struct pci_dev *pdev)
5569 {
5570 	struct ice_pf *pf = pci_get_drvdata(pdev);
5571 
5572 	if (!pf) {
5573 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5574 			__func__);
5575 		return;
5576 	}
5577 
5578 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5579 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5580 			__func__);
5581 		return;
5582 	}
5583 
5584 	ice_restore_all_vfs_msi_state(pf);
5585 
5586 	ice_do_reset(pf, ICE_RESET_PFR);
5587 	ice_service_task_restart(pf);
5588 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5589 }
5590 
5591 /**
5592  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5593  * @pdev: PCI device information struct
5594  */
5595 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5596 {
5597 	struct ice_pf *pf = pci_get_drvdata(pdev);
5598 
5599 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5600 		ice_service_task_stop(pf);
5601 
5602 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5603 			set_bit(ICE_PFR_REQ, pf->state);
5604 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5605 		}
5606 	}
5607 }
5608 
5609 /**
5610  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5611  * @pdev: PCI device information struct
5612  */
5613 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5614 {
5615 	ice_pci_err_resume(pdev);
5616 }
5617 
5618 /* ice_pci_tbl - PCI Device ID Table
5619  *
5620  * Wildcard entries (PCI_ANY_ID) should come last
5621  * Last entry must be all 0s
5622  *
5623  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5624  *   Class, Class Mask, private data (not used) }
5625  */
5626 static const struct pci_device_id ice_pci_tbl[] = {
5627 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5628 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5629 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5630 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5631 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5632 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5633 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5634 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5635 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5636 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5637 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5638 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5639 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5640 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5641 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5642 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5643 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5644 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5645 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5646 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5647 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5648 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5649 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5650 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5651 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5652 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5653 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) },
5654 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) },
5655 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) },
5656 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) },
5657 	/* required last entry */
5658 	{}
5659 };
5660 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5661 
5662 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5663 
5664 static const struct pci_error_handlers ice_pci_err_handler = {
5665 	.error_detected = ice_pci_err_detected,
5666 	.slot_reset = ice_pci_err_slot_reset,
5667 	.reset_prepare = ice_pci_err_reset_prepare,
5668 	.reset_done = ice_pci_err_reset_done,
5669 	.resume = ice_pci_err_resume
5670 };
5671 
5672 static struct pci_driver ice_driver = {
5673 	.name = KBUILD_MODNAME,
5674 	.id_table = ice_pci_tbl,
5675 	.probe = ice_probe,
5676 	.remove = ice_remove,
5677 #ifdef CONFIG_PM
5678 	.driver.pm = &ice_pm_ops,
5679 #endif /* CONFIG_PM */
5680 	.shutdown = ice_shutdown,
5681 	.sriov_configure = ice_sriov_configure,
5682 	.sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5683 	.sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5684 	.err_handler = &ice_pci_err_handler
5685 };
5686 
5687 /**
5688  * ice_module_init - Driver registration routine
5689  *
5690  * ice_module_init is the first routine called when the driver is
5691  * loaded. All it does is register with the PCI subsystem.
5692  */
5693 static int __init ice_module_init(void)
5694 {
5695 	int status = -ENOMEM;
5696 
5697 	pr_info("%s\n", ice_driver_string);
5698 	pr_info("%s\n", ice_copyright);
5699 
5700 	ice_adv_lnk_speed_maps_init();
5701 
5702 	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5703 	if (!ice_wq) {
5704 		pr_err("Failed to create workqueue\n");
5705 		return status;
5706 	}
5707 
5708 	ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5709 	if (!ice_lag_wq) {
5710 		pr_err("Failed to create LAG workqueue\n");
5711 		goto err_dest_wq;
5712 	}
5713 
5714 	ice_debugfs_init();
5715 
5716 	status = pci_register_driver(&ice_driver);
5717 	if (status) {
5718 		pr_err("failed to register PCI driver, err %d\n", status);
5719 		goto err_dest_lag_wq;
5720 	}
5721 
5722 	return 0;
5723 
5724 err_dest_lag_wq:
5725 	destroy_workqueue(ice_lag_wq);
5726 	ice_debugfs_exit();
5727 err_dest_wq:
5728 	destroy_workqueue(ice_wq);
5729 	return status;
5730 }
5731 module_init(ice_module_init);
5732 
5733 /**
5734  * ice_module_exit - Driver exit cleanup routine
5735  *
5736  * ice_module_exit is called just before the driver is removed
5737  * from memory.
5738  */
5739 static void __exit ice_module_exit(void)
5740 {
5741 	pci_unregister_driver(&ice_driver);
5742 	destroy_workqueue(ice_wq);
5743 	destroy_workqueue(ice_lag_wq);
5744 	pr_info("module unloaded\n");
5745 }
5746 module_exit(ice_module_exit);
5747 
5748 /**
5749  * ice_set_mac_address - NDO callback to set MAC address
5750  * @netdev: network interface device structure
5751  * @pi: pointer to an address structure
5752  *
5753  * Returns 0 on success, negative on failure
5754  */
5755 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5756 {
5757 	struct ice_netdev_priv *np = netdev_priv(netdev);
5758 	struct ice_vsi *vsi = np->vsi;
5759 	struct ice_pf *pf = vsi->back;
5760 	struct ice_hw *hw = &pf->hw;
5761 	struct sockaddr *addr = pi;
5762 	u8 old_mac[ETH_ALEN];
5763 	u8 flags = 0;
5764 	u8 *mac;
5765 	int err;
5766 
5767 	mac = (u8 *)addr->sa_data;
5768 
5769 	if (!is_valid_ether_addr(mac))
5770 		return -EADDRNOTAVAIL;
5771 
5772 	if (test_bit(ICE_DOWN, pf->state) ||
5773 	    ice_is_reset_in_progress(pf->state)) {
5774 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5775 			   mac);
5776 		return -EBUSY;
5777 	}
5778 
5779 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5780 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5781 			   mac);
5782 		return -EAGAIN;
5783 	}
5784 
5785 	netif_addr_lock_bh(netdev);
5786 	ether_addr_copy(old_mac, netdev->dev_addr);
5787 	/* change the netdev's MAC address */
5788 	eth_hw_addr_set(netdev, mac);
5789 	netif_addr_unlock_bh(netdev);
5790 
5791 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5792 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5793 	if (err && err != -ENOENT) {
5794 		err = -EADDRNOTAVAIL;
5795 		goto err_update_filters;
5796 	}
5797 
5798 	/* Add filter for new MAC. If filter exists, return success */
5799 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5800 	if (err == -EEXIST) {
5801 		/* Although this MAC filter is already present in hardware it's
5802 		 * possible in some cases (e.g. bonding) that dev_addr was
5803 		 * modified outside of the driver and needs to be restored back
5804 		 * to this value.
5805 		 */
5806 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5807 
5808 		return 0;
5809 	} else if (err) {
5810 		/* error if the new filter addition failed */
5811 		err = -EADDRNOTAVAIL;
5812 	}
5813 
5814 err_update_filters:
5815 	if (err) {
5816 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5817 			   mac);
5818 		netif_addr_lock_bh(netdev);
5819 		eth_hw_addr_set(netdev, old_mac);
5820 		netif_addr_unlock_bh(netdev);
5821 		return err;
5822 	}
5823 
5824 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5825 		   netdev->dev_addr);
5826 
5827 	/* write new MAC address to the firmware */
5828 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5829 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5830 	if (err) {
5831 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5832 			   mac, err);
5833 	}
5834 	return 0;
5835 }
5836 
5837 /**
5838  * ice_set_rx_mode - NDO callback to set the netdev filters
5839  * @netdev: network interface device structure
5840  */
5841 static void ice_set_rx_mode(struct net_device *netdev)
5842 {
5843 	struct ice_netdev_priv *np = netdev_priv(netdev);
5844 	struct ice_vsi *vsi = np->vsi;
5845 
5846 	if (!vsi || ice_is_switchdev_running(vsi->back))
5847 		return;
5848 
5849 	/* Set the flags to synchronize filters
5850 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5851 	 * flags
5852 	 */
5853 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5854 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5855 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5856 
5857 	/* schedule our worker thread which will take care of
5858 	 * applying the new filter changes
5859 	 */
5860 	ice_service_task_schedule(vsi->back);
5861 }
5862 
5863 /**
5864  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5865  * @netdev: network interface device structure
5866  * @queue_index: Queue ID
5867  * @maxrate: maximum bandwidth in Mbps
5868  */
5869 static int
5870 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5871 {
5872 	struct ice_netdev_priv *np = netdev_priv(netdev);
5873 	struct ice_vsi *vsi = np->vsi;
5874 	u16 q_handle;
5875 	int status;
5876 	u8 tc;
5877 
5878 	/* Validate maxrate requested is within permitted range */
5879 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5880 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5881 			   maxrate, queue_index);
5882 		return -EINVAL;
5883 	}
5884 
5885 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5886 	tc = ice_dcb_get_tc(vsi, queue_index);
5887 
5888 	vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5889 	if (!vsi) {
5890 		netdev_err(netdev, "Invalid VSI for given queue %d\n",
5891 			   queue_index);
5892 		return -EINVAL;
5893 	}
5894 
5895 	/* Set BW back to default, when user set maxrate to 0 */
5896 	if (!maxrate)
5897 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5898 					       q_handle, ICE_MAX_BW);
5899 	else
5900 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5901 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5902 	if (status)
5903 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5904 			   status);
5905 
5906 	return status;
5907 }
5908 
5909 /**
5910  * ice_fdb_add - add an entry to the hardware database
5911  * @ndm: the input from the stack
5912  * @tb: pointer to array of nladdr (unused)
5913  * @dev: the net device pointer
5914  * @addr: the MAC address entry being added
5915  * @vid: VLAN ID
5916  * @flags: instructions from stack about fdb operation
5917  * @extack: netlink extended ack
5918  */
5919 static int
5920 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5921 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5922 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5923 {
5924 	int err;
5925 
5926 	if (vid) {
5927 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5928 		return -EINVAL;
5929 	}
5930 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5931 		netdev_err(dev, "FDB only supports static addresses\n");
5932 		return -EINVAL;
5933 	}
5934 
5935 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5936 		err = dev_uc_add_excl(dev, addr);
5937 	else if (is_multicast_ether_addr(addr))
5938 		err = dev_mc_add_excl(dev, addr);
5939 	else
5940 		err = -EINVAL;
5941 
5942 	/* Only return duplicate errors if NLM_F_EXCL is set */
5943 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5944 		err = 0;
5945 
5946 	return err;
5947 }
5948 
5949 /**
5950  * ice_fdb_del - delete an entry from the hardware database
5951  * @ndm: the input from the stack
5952  * @tb: pointer to array of nladdr (unused)
5953  * @dev: the net device pointer
5954  * @addr: the MAC address entry being added
5955  * @vid: VLAN ID
5956  * @extack: netlink extended ack
5957  */
5958 static int
5959 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5960 	    struct net_device *dev, const unsigned char *addr,
5961 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
5962 {
5963 	int err;
5964 
5965 	if (ndm->ndm_state & NUD_PERMANENT) {
5966 		netdev_err(dev, "FDB only supports static addresses\n");
5967 		return -EINVAL;
5968 	}
5969 
5970 	if (is_unicast_ether_addr(addr))
5971 		err = dev_uc_del(dev, addr);
5972 	else if (is_multicast_ether_addr(addr))
5973 		err = dev_mc_del(dev, addr);
5974 	else
5975 		err = -EINVAL;
5976 
5977 	return err;
5978 }
5979 
5980 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5981 					 NETIF_F_HW_VLAN_CTAG_TX | \
5982 					 NETIF_F_HW_VLAN_STAG_RX | \
5983 					 NETIF_F_HW_VLAN_STAG_TX)
5984 
5985 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5986 					 NETIF_F_HW_VLAN_STAG_RX)
5987 
5988 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
5989 					 NETIF_F_HW_VLAN_STAG_FILTER)
5990 
5991 /**
5992  * ice_fix_features - fix the netdev features flags based on device limitations
5993  * @netdev: ptr to the netdev that flags are being fixed on
5994  * @features: features that need to be checked and possibly fixed
5995  *
5996  * Make sure any fixups are made to features in this callback. This enables the
5997  * driver to not have to check unsupported configurations throughout the driver
5998  * because that's the responsiblity of this callback.
5999  *
6000  * Single VLAN Mode (SVM) Supported Features:
6001  *	NETIF_F_HW_VLAN_CTAG_FILTER
6002  *	NETIF_F_HW_VLAN_CTAG_RX
6003  *	NETIF_F_HW_VLAN_CTAG_TX
6004  *
6005  * Double VLAN Mode (DVM) Supported Features:
6006  *	NETIF_F_HW_VLAN_CTAG_FILTER
6007  *	NETIF_F_HW_VLAN_CTAG_RX
6008  *	NETIF_F_HW_VLAN_CTAG_TX
6009  *
6010  *	NETIF_F_HW_VLAN_STAG_FILTER
6011  *	NETIF_HW_VLAN_STAG_RX
6012  *	NETIF_HW_VLAN_STAG_TX
6013  *
6014  * Features that need fixing:
6015  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6016  *	These are mutually exlusive as the VSI context cannot support multiple
6017  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
6018  *	is not done, then default to clearing the requested STAG offload
6019  *	settings.
6020  *
6021  *	All supported filtering has to be enabled or disabled together. For
6022  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6023  *	together. If this is not done, then default to VLAN filtering disabled.
6024  *	These are mutually exclusive as there is currently no way to
6025  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6026  *	prune rules.
6027  */
6028 static netdev_features_t
6029 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6030 {
6031 	struct ice_netdev_priv *np = netdev_priv(netdev);
6032 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6033 	bool cur_ctag, cur_stag, req_ctag, req_stag;
6034 
6035 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6036 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6037 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6038 
6039 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6040 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6041 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6042 
6043 	if (req_vlan_fltr != cur_vlan_fltr) {
6044 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6045 			if (req_ctag && req_stag) {
6046 				features |= NETIF_VLAN_FILTERING_FEATURES;
6047 			} else if (!req_ctag && !req_stag) {
6048 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6049 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
6050 				   (!cur_stag && req_stag && !cur_ctag)) {
6051 				features |= NETIF_VLAN_FILTERING_FEATURES;
6052 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6053 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
6054 				   (cur_stag && !req_stag && cur_ctag)) {
6055 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6056 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6057 			}
6058 		} else {
6059 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6060 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6061 
6062 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6063 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6064 		}
6065 	}
6066 
6067 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6068 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6069 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6070 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6071 			      NETIF_F_HW_VLAN_STAG_TX);
6072 	}
6073 
6074 	if (!(netdev->features & NETIF_F_RXFCS) &&
6075 	    (features & NETIF_F_RXFCS) &&
6076 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6077 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
6078 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6079 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6080 	}
6081 
6082 	return features;
6083 }
6084 
6085 /**
6086  * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6087  * @vsi: PF's VSI
6088  * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6089  *
6090  * Store current stripped VLAN proto in ring packet context,
6091  * so it can be accessed more efficiently by packet processing code.
6092  */
6093 static void
6094 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6095 {
6096 	u16 i;
6097 
6098 	ice_for_each_alloc_rxq(vsi, i)
6099 		vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6100 }
6101 
6102 /**
6103  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6104  * @vsi: PF's VSI
6105  * @features: features used to determine VLAN offload settings
6106  *
6107  * First, determine the vlan_ethertype based on the VLAN offload bits in
6108  * features. Then determine if stripping and insertion should be enabled or
6109  * disabled. Finally enable or disable VLAN stripping and insertion.
6110  */
6111 static int
6112 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6113 {
6114 	bool enable_stripping = true, enable_insertion = true;
6115 	struct ice_vsi_vlan_ops *vlan_ops;
6116 	int strip_err = 0, insert_err = 0;
6117 	u16 vlan_ethertype = 0;
6118 
6119 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6120 
6121 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6122 		vlan_ethertype = ETH_P_8021AD;
6123 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6124 		vlan_ethertype = ETH_P_8021Q;
6125 
6126 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6127 		enable_stripping = false;
6128 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6129 		enable_insertion = false;
6130 
6131 	if (enable_stripping)
6132 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6133 	else
6134 		strip_err = vlan_ops->dis_stripping(vsi);
6135 
6136 	if (enable_insertion)
6137 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6138 	else
6139 		insert_err = vlan_ops->dis_insertion(vsi);
6140 
6141 	if (strip_err || insert_err)
6142 		return -EIO;
6143 
6144 	ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6145 				    htons(vlan_ethertype) : 0);
6146 
6147 	return 0;
6148 }
6149 
6150 /**
6151  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6152  * @vsi: PF's VSI
6153  * @features: features used to determine VLAN filtering settings
6154  *
6155  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6156  * features.
6157  */
6158 static int
6159 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6160 {
6161 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6162 	int err = 0;
6163 
6164 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6165 	 * if either bit is set
6166 	 */
6167 	if (features &
6168 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6169 		err = vlan_ops->ena_rx_filtering(vsi);
6170 	else
6171 		err = vlan_ops->dis_rx_filtering(vsi);
6172 
6173 	return err;
6174 }
6175 
6176 /**
6177  * ice_set_vlan_features - set VLAN settings based on suggested feature set
6178  * @netdev: ptr to the netdev being adjusted
6179  * @features: the feature set that the stack is suggesting
6180  *
6181  * Only update VLAN settings if the requested_vlan_features are different than
6182  * the current_vlan_features.
6183  */
6184 static int
6185 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6186 {
6187 	netdev_features_t current_vlan_features, requested_vlan_features;
6188 	struct ice_netdev_priv *np = netdev_priv(netdev);
6189 	struct ice_vsi *vsi = np->vsi;
6190 	int err;
6191 
6192 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6193 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6194 	if (current_vlan_features ^ requested_vlan_features) {
6195 		if ((features & NETIF_F_RXFCS) &&
6196 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6197 			dev_err(ice_pf_to_dev(vsi->back),
6198 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6199 			return -EIO;
6200 		}
6201 
6202 		err = ice_set_vlan_offload_features(vsi, features);
6203 		if (err)
6204 			return err;
6205 	}
6206 
6207 	current_vlan_features = netdev->features &
6208 		NETIF_VLAN_FILTERING_FEATURES;
6209 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6210 	if (current_vlan_features ^ requested_vlan_features) {
6211 		err = ice_set_vlan_filtering_features(vsi, features);
6212 		if (err)
6213 			return err;
6214 	}
6215 
6216 	return 0;
6217 }
6218 
6219 /**
6220  * ice_set_loopback - turn on/off loopback mode on underlying PF
6221  * @vsi: ptr to VSI
6222  * @ena: flag to indicate the on/off setting
6223  */
6224 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6225 {
6226 	bool if_running = netif_running(vsi->netdev);
6227 	int ret;
6228 
6229 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6230 		ret = ice_down(vsi);
6231 		if (ret) {
6232 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6233 			return ret;
6234 		}
6235 	}
6236 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6237 	if (ret)
6238 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6239 	if (if_running)
6240 		ret = ice_up(vsi);
6241 
6242 	return ret;
6243 }
6244 
6245 /**
6246  * ice_set_features - set the netdev feature flags
6247  * @netdev: ptr to the netdev being adjusted
6248  * @features: the feature set that the stack is suggesting
6249  */
6250 static int
6251 ice_set_features(struct net_device *netdev, netdev_features_t features)
6252 {
6253 	netdev_features_t changed = netdev->features ^ features;
6254 	struct ice_netdev_priv *np = netdev_priv(netdev);
6255 	struct ice_vsi *vsi = np->vsi;
6256 	struct ice_pf *pf = vsi->back;
6257 	int ret = 0;
6258 
6259 	/* Don't set any netdev advanced features with device in Safe Mode */
6260 	if (ice_is_safe_mode(pf)) {
6261 		dev_err(ice_pf_to_dev(pf),
6262 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6263 		return ret;
6264 	}
6265 
6266 	/* Do not change setting during reset */
6267 	if (ice_is_reset_in_progress(pf->state)) {
6268 		dev_err(ice_pf_to_dev(pf),
6269 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6270 		return -EBUSY;
6271 	}
6272 
6273 	/* Multiple features can be changed in one call so keep features in
6274 	 * separate if/else statements to guarantee each feature is checked
6275 	 */
6276 	if (changed & NETIF_F_RXHASH)
6277 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6278 
6279 	ret = ice_set_vlan_features(netdev, features);
6280 	if (ret)
6281 		return ret;
6282 
6283 	/* Turn on receive of FCS aka CRC, and after setting this
6284 	 * flag the packet data will have the 4 byte CRC appended
6285 	 */
6286 	if (changed & NETIF_F_RXFCS) {
6287 		if ((features & NETIF_F_RXFCS) &&
6288 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6289 			dev_err(ice_pf_to_dev(vsi->back),
6290 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6291 			return -EIO;
6292 		}
6293 
6294 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6295 		ret = ice_down_up(vsi);
6296 		if (ret)
6297 			return ret;
6298 	}
6299 
6300 	if (changed & NETIF_F_NTUPLE) {
6301 		bool ena = !!(features & NETIF_F_NTUPLE);
6302 
6303 		ice_vsi_manage_fdir(vsi, ena);
6304 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6305 	}
6306 
6307 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6308 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6309 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6310 		return -EACCES;
6311 	}
6312 
6313 	if (changed & NETIF_F_HW_TC) {
6314 		bool ena = !!(features & NETIF_F_HW_TC);
6315 
6316 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6317 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6318 	}
6319 
6320 	if (changed & NETIF_F_LOOPBACK)
6321 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6322 
6323 	return ret;
6324 }
6325 
6326 /**
6327  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6328  * @vsi: VSI to setup VLAN properties for
6329  */
6330 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6331 {
6332 	int err;
6333 
6334 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6335 	if (err)
6336 		return err;
6337 
6338 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6339 	if (err)
6340 		return err;
6341 
6342 	return ice_vsi_add_vlan_zero(vsi);
6343 }
6344 
6345 /**
6346  * ice_vsi_cfg_lan - Setup the VSI lan related config
6347  * @vsi: the VSI being configured
6348  *
6349  * Return 0 on success and negative value on error
6350  */
6351 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6352 {
6353 	int err;
6354 
6355 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6356 		ice_set_rx_mode(vsi->netdev);
6357 
6358 		err = ice_vsi_vlan_setup(vsi);
6359 		if (err)
6360 			return err;
6361 	}
6362 	ice_vsi_cfg_dcb_rings(vsi);
6363 
6364 	err = ice_vsi_cfg_lan_txqs(vsi);
6365 	if (!err && ice_is_xdp_ena_vsi(vsi))
6366 		err = ice_vsi_cfg_xdp_txqs(vsi);
6367 	if (!err)
6368 		err = ice_vsi_cfg_rxqs(vsi);
6369 
6370 	return err;
6371 }
6372 
6373 /* THEORY OF MODERATION:
6374  * The ice driver hardware works differently than the hardware that DIMLIB was
6375  * originally made for. ice hardware doesn't have packet count limits that
6376  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6377  * which is hard-coded to a limit of 250,000 ints/second.
6378  * If not using dynamic moderation, the INTRL value can be modified
6379  * by ethtool rx-usecs-high.
6380  */
6381 struct ice_dim {
6382 	/* the throttle rate for interrupts, basically worst case delay before
6383 	 * an initial interrupt fires, value is stored in microseconds.
6384 	 */
6385 	u16 itr;
6386 };
6387 
6388 /* Make a different profile for Rx that doesn't allow quite so aggressive
6389  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6390  * second.
6391  */
6392 static const struct ice_dim rx_profile[] = {
6393 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6394 	{8},    /* 125,000 ints/s */
6395 	{16},   /*  62,500 ints/s */
6396 	{62},   /*  16,129 ints/s */
6397 	{126}   /*   7,936 ints/s */
6398 };
6399 
6400 /* The transmit profile, which has the same sorts of values
6401  * as the previous struct
6402  */
6403 static const struct ice_dim tx_profile[] = {
6404 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6405 	{8},    /* 125,000 ints/s */
6406 	{40},   /*  16,125 ints/s */
6407 	{128},  /*   7,812 ints/s */
6408 	{256}   /*   3,906 ints/s */
6409 };
6410 
6411 static void ice_tx_dim_work(struct work_struct *work)
6412 {
6413 	struct ice_ring_container *rc;
6414 	struct dim *dim;
6415 	u16 itr;
6416 
6417 	dim = container_of(work, struct dim, work);
6418 	rc = dim->priv;
6419 
6420 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6421 
6422 	/* look up the values in our local table */
6423 	itr = tx_profile[dim->profile_ix].itr;
6424 
6425 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6426 	ice_write_itr(rc, itr);
6427 
6428 	dim->state = DIM_START_MEASURE;
6429 }
6430 
6431 static void ice_rx_dim_work(struct work_struct *work)
6432 {
6433 	struct ice_ring_container *rc;
6434 	struct dim *dim;
6435 	u16 itr;
6436 
6437 	dim = container_of(work, struct dim, work);
6438 	rc = dim->priv;
6439 
6440 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6441 
6442 	/* look up the values in our local table */
6443 	itr = rx_profile[dim->profile_ix].itr;
6444 
6445 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6446 	ice_write_itr(rc, itr);
6447 
6448 	dim->state = DIM_START_MEASURE;
6449 }
6450 
6451 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6452 
6453 /**
6454  * ice_init_moderation - set up interrupt moderation
6455  * @q_vector: the vector containing rings to be configured
6456  *
6457  * Set up interrupt moderation registers, with the intent to do the right thing
6458  * when called from reset or from probe, and whether or not dynamic moderation
6459  * is enabled or not. Take special care to write all the registers in both
6460  * dynamic moderation mode or not in order to make sure hardware is in a known
6461  * state.
6462  */
6463 static void ice_init_moderation(struct ice_q_vector *q_vector)
6464 {
6465 	struct ice_ring_container *rc;
6466 	bool tx_dynamic, rx_dynamic;
6467 
6468 	rc = &q_vector->tx;
6469 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6470 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6471 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6472 	rc->dim.priv = rc;
6473 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6474 
6475 	/* set the initial TX ITR to match the above */
6476 	ice_write_itr(rc, tx_dynamic ?
6477 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6478 
6479 	rc = &q_vector->rx;
6480 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6481 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6482 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6483 	rc->dim.priv = rc;
6484 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6485 
6486 	/* set the initial RX ITR to match the above */
6487 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6488 				       rc->itr_setting);
6489 
6490 	ice_set_q_vector_intrl(q_vector);
6491 }
6492 
6493 /**
6494  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6495  * @vsi: the VSI being configured
6496  */
6497 static void ice_napi_enable_all(struct ice_vsi *vsi)
6498 {
6499 	int q_idx;
6500 
6501 	if (!vsi->netdev)
6502 		return;
6503 
6504 	ice_for_each_q_vector(vsi, q_idx) {
6505 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6506 
6507 		ice_init_moderation(q_vector);
6508 
6509 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6510 			napi_enable(&q_vector->napi);
6511 	}
6512 }
6513 
6514 /**
6515  * ice_up_complete - Finish the last steps of bringing up a connection
6516  * @vsi: The VSI being configured
6517  *
6518  * Return 0 on success and negative value on error
6519  */
6520 static int ice_up_complete(struct ice_vsi *vsi)
6521 {
6522 	struct ice_pf *pf = vsi->back;
6523 	int err;
6524 
6525 	ice_vsi_cfg_msix(vsi);
6526 
6527 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6528 	 * Tx queue group list was configured and the context bits were
6529 	 * programmed using ice_vsi_cfg_txqs
6530 	 */
6531 	err = ice_vsi_start_all_rx_rings(vsi);
6532 	if (err)
6533 		return err;
6534 
6535 	clear_bit(ICE_VSI_DOWN, vsi->state);
6536 	ice_napi_enable_all(vsi);
6537 	ice_vsi_ena_irq(vsi);
6538 
6539 	if (vsi->port_info &&
6540 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6541 	    vsi->netdev && vsi->type == ICE_VSI_PF) {
6542 		ice_print_link_msg(vsi, true);
6543 		netif_tx_start_all_queues(vsi->netdev);
6544 		netif_carrier_on(vsi->netdev);
6545 		ice_ptp_link_change(pf, pf->hw.pf_id, true);
6546 	}
6547 
6548 	/* Perform an initial read of the statistics registers now to
6549 	 * set the baseline so counters are ready when interface is up
6550 	 */
6551 	ice_update_eth_stats(vsi);
6552 
6553 	if (vsi->type == ICE_VSI_PF)
6554 		ice_service_task_schedule(pf);
6555 
6556 	return 0;
6557 }
6558 
6559 /**
6560  * ice_up - Bring the connection back up after being down
6561  * @vsi: VSI being configured
6562  */
6563 int ice_up(struct ice_vsi *vsi)
6564 {
6565 	int err;
6566 
6567 	err = ice_vsi_cfg_lan(vsi);
6568 	if (!err)
6569 		err = ice_up_complete(vsi);
6570 
6571 	return err;
6572 }
6573 
6574 /**
6575  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6576  * @syncp: pointer to u64_stats_sync
6577  * @stats: stats that pkts and bytes count will be taken from
6578  * @pkts: packets stats counter
6579  * @bytes: bytes stats counter
6580  *
6581  * This function fetches stats from the ring considering the atomic operations
6582  * that needs to be performed to read u64 values in 32 bit machine.
6583  */
6584 void
6585 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6586 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6587 {
6588 	unsigned int start;
6589 
6590 	do {
6591 		start = u64_stats_fetch_begin(syncp);
6592 		*pkts = stats.pkts;
6593 		*bytes = stats.bytes;
6594 	} while (u64_stats_fetch_retry(syncp, start));
6595 }
6596 
6597 /**
6598  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6599  * @vsi: the VSI to be updated
6600  * @vsi_stats: the stats struct to be updated
6601  * @rings: rings to work on
6602  * @count: number of rings
6603  */
6604 static void
6605 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6606 			     struct rtnl_link_stats64 *vsi_stats,
6607 			     struct ice_tx_ring **rings, u16 count)
6608 {
6609 	u16 i;
6610 
6611 	for (i = 0; i < count; i++) {
6612 		struct ice_tx_ring *ring;
6613 		u64 pkts = 0, bytes = 0;
6614 
6615 		ring = READ_ONCE(rings[i]);
6616 		if (!ring || !ring->ring_stats)
6617 			continue;
6618 		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6619 					     ring->ring_stats->stats, &pkts,
6620 					     &bytes);
6621 		vsi_stats->tx_packets += pkts;
6622 		vsi_stats->tx_bytes += bytes;
6623 		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6624 		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6625 		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6626 	}
6627 }
6628 
6629 /**
6630  * ice_update_vsi_ring_stats - Update VSI stats counters
6631  * @vsi: the VSI to be updated
6632  */
6633 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6634 {
6635 	struct rtnl_link_stats64 *net_stats, *stats_prev;
6636 	struct rtnl_link_stats64 *vsi_stats;
6637 	u64 pkts, bytes;
6638 	int i;
6639 
6640 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6641 	if (!vsi_stats)
6642 		return;
6643 
6644 	/* reset non-netdev (extended) stats */
6645 	vsi->tx_restart = 0;
6646 	vsi->tx_busy = 0;
6647 	vsi->tx_linearize = 0;
6648 	vsi->rx_buf_failed = 0;
6649 	vsi->rx_page_failed = 0;
6650 
6651 	rcu_read_lock();
6652 
6653 	/* update Tx rings counters */
6654 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6655 				     vsi->num_txq);
6656 
6657 	/* update Rx rings counters */
6658 	ice_for_each_rxq(vsi, i) {
6659 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6660 		struct ice_ring_stats *ring_stats;
6661 
6662 		ring_stats = ring->ring_stats;
6663 		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6664 					     ring_stats->stats, &pkts,
6665 					     &bytes);
6666 		vsi_stats->rx_packets += pkts;
6667 		vsi_stats->rx_bytes += bytes;
6668 		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6669 		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6670 	}
6671 
6672 	/* update XDP Tx rings counters */
6673 	if (ice_is_xdp_ena_vsi(vsi))
6674 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6675 					     vsi->num_xdp_txq);
6676 
6677 	rcu_read_unlock();
6678 
6679 	net_stats = &vsi->net_stats;
6680 	stats_prev = &vsi->net_stats_prev;
6681 
6682 	/* clear prev counters after reset */
6683 	if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6684 	    vsi_stats->rx_packets < stats_prev->rx_packets) {
6685 		stats_prev->tx_packets = 0;
6686 		stats_prev->tx_bytes = 0;
6687 		stats_prev->rx_packets = 0;
6688 		stats_prev->rx_bytes = 0;
6689 	}
6690 
6691 	/* update netdev counters */
6692 	net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6693 	net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6694 	net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6695 	net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6696 
6697 	stats_prev->tx_packets = vsi_stats->tx_packets;
6698 	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6699 	stats_prev->rx_packets = vsi_stats->rx_packets;
6700 	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6701 
6702 	kfree(vsi_stats);
6703 }
6704 
6705 /**
6706  * ice_update_vsi_stats - Update VSI stats counters
6707  * @vsi: the VSI to be updated
6708  */
6709 void ice_update_vsi_stats(struct ice_vsi *vsi)
6710 {
6711 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6712 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6713 	struct ice_pf *pf = vsi->back;
6714 
6715 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6716 	    test_bit(ICE_CFG_BUSY, pf->state))
6717 		return;
6718 
6719 	/* get stats as recorded by Tx/Rx rings */
6720 	ice_update_vsi_ring_stats(vsi);
6721 
6722 	/* get VSI stats as recorded by the hardware */
6723 	ice_update_eth_stats(vsi);
6724 
6725 	cur_ns->tx_errors = cur_es->tx_errors;
6726 	cur_ns->rx_dropped = cur_es->rx_discards;
6727 	cur_ns->tx_dropped = cur_es->tx_discards;
6728 	cur_ns->multicast = cur_es->rx_multicast;
6729 
6730 	/* update some more netdev stats if this is main VSI */
6731 	if (vsi->type == ICE_VSI_PF) {
6732 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6733 		cur_ns->rx_errors = pf->stats.crc_errors +
6734 				    pf->stats.illegal_bytes +
6735 				    pf->stats.rx_len_errors +
6736 				    pf->stats.rx_undersize +
6737 				    pf->hw_csum_rx_error +
6738 				    pf->stats.rx_jabber +
6739 				    pf->stats.rx_fragments +
6740 				    pf->stats.rx_oversize;
6741 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6742 		/* record drops from the port level */
6743 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6744 	}
6745 }
6746 
6747 /**
6748  * ice_update_pf_stats - Update PF port stats counters
6749  * @pf: PF whose stats needs to be updated
6750  */
6751 void ice_update_pf_stats(struct ice_pf *pf)
6752 {
6753 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6754 	struct ice_hw *hw = &pf->hw;
6755 	u16 fd_ctr_base;
6756 	u8 port;
6757 
6758 	port = hw->port_info->lport;
6759 	prev_ps = &pf->stats_prev;
6760 	cur_ps = &pf->stats;
6761 
6762 	if (ice_is_reset_in_progress(pf->state))
6763 		pf->stat_prev_loaded = false;
6764 
6765 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6766 			  &prev_ps->eth.rx_bytes,
6767 			  &cur_ps->eth.rx_bytes);
6768 
6769 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6770 			  &prev_ps->eth.rx_unicast,
6771 			  &cur_ps->eth.rx_unicast);
6772 
6773 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6774 			  &prev_ps->eth.rx_multicast,
6775 			  &cur_ps->eth.rx_multicast);
6776 
6777 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6778 			  &prev_ps->eth.rx_broadcast,
6779 			  &cur_ps->eth.rx_broadcast);
6780 
6781 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6782 			  &prev_ps->eth.rx_discards,
6783 			  &cur_ps->eth.rx_discards);
6784 
6785 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6786 			  &prev_ps->eth.tx_bytes,
6787 			  &cur_ps->eth.tx_bytes);
6788 
6789 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6790 			  &prev_ps->eth.tx_unicast,
6791 			  &cur_ps->eth.tx_unicast);
6792 
6793 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6794 			  &prev_ps->eth.tx_multicast,
6795 			  &cur_ps->eth.tx_multicast);
6796 
6797 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6798 			  &prev_ps->eth.tx_broadcast,
6799 			  &cur_ps->eth.tx_broadcast);
6800 
6801 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6802 			  &prev_ps->tx_dropped_link_down,
6803 			  &cur_ps->tx_dropped_link_down);
6804 
6805 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6806 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6807 
6808 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6809 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6810 
6811 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6812 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6813 
6814 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6815 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6816 
6817 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6818 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6819 
6820 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6821 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6822 
6823 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6824 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6825 
6826 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6827 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6828 
6829 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6830 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6831 
6832 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6833 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6834 
6835 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6836 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6837 
6838 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6839 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6840 
6841 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6842 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6843 
6844 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6845 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6846 
6847 	fd_ctr_base = hw->fd_ctr_base;
6848 
6849 	ice_stat_update40(hw,
6850 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6851 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6852 			  &cur_ps->fd_sb_match);
6853 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6854 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6855 
6856 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6857 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6858 
6859 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6860 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6861 
6862 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6863 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6864 
6865 	ice_update_dcb_stats(pf);
6866 
6867 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6868 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6869 
6870 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6871 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6872 
6873 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6874 			  &prev_ps->mac_local_faults,
6875 			  &cur_ps->mac_local_faults);
6876 
6877 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6878 			  &prev_ps->mac_remote_faults,
6879 			  &cur_ps->mac_remote_faults);
6880 
6881 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6882 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6883 
6884 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6885 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6886 
6887 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6888 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6889 
6890 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6891 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6892 
6893 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6894 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6895 
6896 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6897 
6898 	pf->stat_prev_loaded = true;
6899 }
6900 
6901 /**
6902  * ice_get_stats64 - get statistics for network device structure
6903  * @netdev: network interface device structure
6904  * @stats: main device statistics structure
6905  */
6906 static
6907 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6908 {
6909 	struct ice_netdev_priv *np = netdev_priv(netdev);
6910 	struct rtnl_link_stats64 *vsi_stats;
6911 	struct ice_vsi *vsi = np->vsi;
6912 
6913 	vsi_stats = &vsi->net_stats;
6914 
6915 	if (!vsi->num_txq || !vsi->num_rxq)
6916 		return;
6917 
6918 	/* netdev packet/byte stats come from ring counter. These are obtained
6919 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6920 	 * But, only call the update routine and read the registers if VSI is
6921 	 * not down.
6922 	 */
6923 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6924 		ice_update_vsi_ring_stats(vsi);
6925 	stats->tx_packets = vsi_stats->tx_packets;
6926 	stats->tx_bytes = vsi_stats->tx_bytes;
6927 	stats->rx_packets = vsi_stats->rx_packets;
6928 	stats->rx_bytes = vsi_stats->rx_bytes;
6929 
6930 	/* The rest of the stats can be read from the hardware but instead we
6931 	 * just return values that the watchdog task has already obtained from
6932 	 * the hardware.
6933 	 */
6934 	stats->multicast = vsi_stats->multicast;
6935 	stats->tx_errors = vsi_stats->tx_errors;
6936 	stats->tx_dropped = vsi_stats->tx_dropped;
6937 	stats->rx_errors = vsi_stats->rx_errors;
6938 	stats->rx_dropped = vsi_stats->rx_dropped;
6939 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6940 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6941 }
6942 
6943 /**
6944  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6945  * @vsi: VSI having NAPI disabled
6946  */
6947 static void ice_napi_disable_all(struct ice_vsi *vsi)
6948 {
6949 	int q_idx;
6950 
6951 	if (!vsi->netdev)
6952 		return;
6953 
6954 	ice_for_each_q_vector(vsi, q_idx) {
6955 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6956 
6957 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6958 			napi_disable(&q_vector->napi);
6959 
6960 		cancel_work_sync(&q_vector->tx.dim.work);
6961 		cancel_work_sync(&q_vector->rx.dim.work);
6962 	}
6963 }
6964 
6965 /**
6966  * ice_down - Shutdown the connection
6967  * @vsi: The VSI being stopped
6968  *
6969  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6970  */
6971 int ice_down(struct ice_vsi *vsi)
6972 {
6973 	int i, tx_err, rx_err, vlan_err = 0;
6974 
6975 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6976 
6977 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6978 		vlan_err = ice_vsi_del_vlan_zero(vsi);
6979 		ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6980 		netif_carrier_off(vsi->netdev);
6981 		netif_tx_disable(vsi->netdev);
6982 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6983 		ice_eswitch_stop_all_tx_queues(vsi->back);
6984 	}
6985 
6986 	ice_vsi_dis_irq(vsi);
6987 
6988 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6989 	if (tx_err)
6990 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6991 			   vsi->vsi_num, tx_err);
6992 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6993 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6994 		if (tx_err)
6995 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6996 				   vsi->vsi_num, tx_err);
6997 	}
6998 
6999 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
7000 	if (rx_err)
7001 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7002 			   vsi->vsi_num, rx_err);
7003 
7004 	ice_napi_disable_all(vsi);
7005 
7006 	ice_for_each_txq(vsi, i)
7007 		ice_clean_tx_ring(vsi->tx_rings[i]);
7008 
7009 	if (ice_is_xdp_ena_vsi(vsi))
7010 		ice_for_each_xdp_txq(vsi, i)
7011 			ice_clean_tx_ring(vsi->xdp_rings[i]);
7012 
7013 	ice_for_each_rxq(vsi, i)
7014 		ice_clean_rx_ring(vsi->rx_rings[i]);
7015 
7016 	if (tx_err || rx_err || vlan_err) {
7017 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7018 			   vsi->vsi_num, vsi->vsw->sw_id);
7019 		return -EIO;
7020 	}
7021 
7022 	return 0;
7023 }
7024 
7025 /**
7026  * ice_down_up - shutdown the VSI connection and bring it up
7027  * @vsi: the VSI to be reconnected
7028  */
7029 int ice_down_up(struct ice_vsi *vsi)
7030 {
7031 	int ret;
7032 
7033 	/* if DOWN already set, nothing to do */
7034 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7035 		return 0;
7036 
7037 	ret = ice_down(vsi);
7038 	if (ret)
7039 		return ret;
7040 
7041 	ret = ice_up(vsi);
7042 	if (ret) {
7043 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7044 		return ret;
7045 	}
7046 
7047 	return 0;
7048 }
7049 
7050 /**
7051  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7052  * @vsi: VSI having resources allocated
7053  *
7054  * Return 0 on success, negative on failure
7055  */
7056 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7057 {
7058 	int i, err = 0;
7059 
7060 	if (!vsi->num_txq) {
7061 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7062 			vsi->vsi_num);
7063 		return -EINVAL;
7064 	}
7065 
7066 	ice_for_each_txq(vsi, i) {
7067 		struct ice_tx_ring *ring = vsi->tx_rings[i];
7068 
7069 		if (!ring)
7070 			return -EINVAL;
7071 
7072 		if (vsi->netdev)
7073 			ring->netdev = vsi->netdev;
7074 		err = ice_setup_tx_ring(ring);
7075 		if (err)
7076 			break;
7077 	}
7078 
7079 	return err;
7080 }
7081 
7082 /**
7083  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7084  * @vsi: VSI having resources allocated
7085  *
7086  * Return 0 on success, negative on failure
7087  */
7088 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7089 {
7090 	int i, err = 0;
7091 
7092 	if (!vsi->num_rxq) {
7093 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7094 			vsi->vsi_num);
7095 		return -EINVAL;
7096 	}
7097 
7098 	ice_for_each_rxq(vsi, i) {
7099 		struct ice_rx_ring *ring = vsi->rx_rings[i];
7100 
7101 		if (!ring)
7102 			return -EINVAL;
7103 
7104 		if (vsi->netdev)
7105 			ring->netdev = vsi->netdev;
7106 		err = ice_setup_rx_ring(ring);
7107 		if (err)
7108 			break;
7109 	}
7110 
7111 	return err;
7112 }
7113 
7114 /**
7115  * ice_vsi_open_ctrl - open control VSI for use
7116  * @vsi: the VSI to open
7117  *
7118  * Initialization of the Control VSI
7119  *
7120  * Returns 0 on success, negative value on error
7121  */
7122 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7123 {
7124 	char int_name[ICE_INT_NAME_STR_LEN];
7125 	struct ice_pf *pf = vsi->back;
7126 	struct device *dev;
7127 	int err;
7128 
7129 	dev = ice_pf_to_dev(pf);
7130 	/* allocate descriptors */
7131 	err = ice_vsi_setup_tx_rings(vsi);
7132 	if (err)
7133 		goto err_setup_tx;
7134 
7135 	err = ice_vsi_setup_rx_rings(vsi);
7136 	if (err)
7137 		goto err_setup_rx;
7138 
7139 	err = ice_vsi_cfg_lan(vsi);
7140 	if (err)
7141 		goto err_setup_rx;
7142 
7143 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7144 		 dev_driver_string(dev), dev_name(dev));
7145 	err = ice_vsi_req_irq_msix(vsi, int_name);
7146 	if (err)
7147 		goto err_setup_rx;
7148 
7149 	ice_vsi_cfg_msix(vsi);
7150 
7151 	err = ice_vsi_start_all_rx_rings(vsi);
7152 	if (err)
7153 		goto err_up_complete;
7154 
7155 	clear_bit(ICE_VSI_DOWN, vsi->state);
7156 	ice_vsi_ena_irq(vsi);
7157 
7158 	return 0;
7159 
7160 err_up_complete:
7161 	ice_down(vsi);
7162 err_setup_rx:
7163 	ice_vsi_free_rx_rings(vsi);
7164 err_setup_tx:
7165 	ice_vsi_free_tx_rings(vsi);
7166 
7167 	return err;
7168 }
7169 
7170 /**
7171  * ice_vsi_open - Called when a network interface is made active
7172  * @vsi: the VSI to open
7173  *
7174  * Initialization of the VSI
7175  *
7176  * Returns 0 on success, negative value on error
7177  */
7178 int ice_vsi_open(struct ice_vsi *vsi)
7179 {
7180 	char int_name[ICE_INT_NAME_STR_LEN];
7181 	struct ice_pf *pf = vsi->back;
7182 	int err;
7183 
7184 	/* allocate descriptors */
7185 	err = ice_vsi_setup_tx_rings(vsi);
7186 	if (err)
7187 		goto err_setup_tx;
7188 
7189 	err = ice_vsi_setup_rx_rings(vsi);
7190 	if (err)
7191 		goto err_setup_rx;
7192 
7193 	err = ice_vsi_cfg_lan(vsi);
7194 	if (err)
7195 		goto err_setup_rx;
7196 
7197 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7198 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7199 	err = ice_vsi_req_irq_msix(vsi, int_name);
7200 	if (err)
7201 		goto err_setup_rx;
7202 
7203 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7204 
7205 	if (vsi->type == ICE_VSI_PF) {
7206 		/* Notify the stack of the actual queue counts. */
7207 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7208 		if (err)
7209 			goto err_set_qs;
7210 
7211 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7212 		if (err)
7213 			goto err_set_qs;
7214 	}
7215 
7216 	err = ice_up_complete(vsi);
7217 	if (err)
7218 		goto err_up_complete;
7219 
7220 	return 0;
7221 
7222 err_up_complete:
7223 	ice_down(vsi);
7224 err_set_qs:
7225 	ice_vsi_free_irq(vsi);
7226 err_setup_rx:
7227 	ice_vsi_free_rx_rings(vsi);
7228 err_setup_tx:
7229 	ice_vsi_free_tx_rings(vsi);
7230 
7231 	return err;
7232 }
7233 
7234 /**
7235  * ice_vsi_release_all - Delete all VSIs
7236  * @pf: PF from which all VSIs are being removed
7237  */
7238 static void ice_vsi_release_all(struct ice_pf *pf)
7239 {
7240 	int err, i;
7241 
7242 	if (!pf->vsi)
7243 		return;
7244 
7245 	ice_for_each_vsi(pf, i) {
7246 		if (!pf->vsi[i])
7247 			continue;
7248 
7249 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7250 			continue;
7251 
7252 		err = ice_vsi_release(pf->vsi[i]);
7253 		if (err)
7254 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7255 				i, err, pf->vsi[i]->vsi_num);
7256 	}
7257 }
7258 
7259 /**
7260  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7261  * @pf: pointer to the PF instance
7262  * @type: VSI type to rebuild
7263  *
7264  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7265  */
7266 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7267 {
7268 	struct device *dev = ice_pf_to_dev(pf);
7269 	int i, err;
7270 
7271 	ice_for_each_vsi(pf, i) {
7272 		struct ice_vsi *vsi = pf->vsi[i];
7273 
7274 		if (!vsi || vsi->type != type)
7275 			continue;
7276 
7277 		/* rebuild the VSI */
7278 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7279 		if (err) {
7280 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7281 				err, vsi->idx, ice_vsi_type_str(type));
7282 			return err;
7283 		}
7284 
7285 		/* replay filters for the VSI */
7286 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7287 		if (err) {
7288 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7289 				err, vsi->idx, ice_vsi_type_str(type));
7290 			return err;
7291 		}
7292 
7293 		/* Re-map HW VSI number, using VSI handle that has been
7294 		 * previously validated in ice_replay_vsi() call above
7295 		 */
7296 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7297 
7298 		/* enable the VSI */
7299 		err = ice_ena_vsi(vsi, false);
7300 		if (err) {
7301 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7302 				err, vsi->idx, ice_vsi_type_str(type));
7303 			return err;
7304 		}
7305 
7306 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7307 			 ice_vsi_type_str(type));
7308 	}
7309 
7310 	return 0;
7311 }
7312 
7313 /**
7314  * ice_update_pf_netdev_link - Update PF netdev link status
7315  * @pf: pointer to the PF instance
7316  */
7317 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7318 {
7319 	bool link_up;
7320 	int i;
7321 
7322 	ice_for_each_vsi(pf, i) {
7323 		struct ice_vsi *vsi = pf->vsi[i];
7324 
7325 		if (!vsi || vsi->type != ICE_VSI_PF)
7326 			return;
7327 
7328 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7329 		if (link_up) {
7330 			netif_carrier_on(pf->vsi[i]->netdev);
7331 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7332 		} else {
7333 			netif_carrier_off(pf->vsi[i]->netdev);
7334 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7335 		}
7336 	}
7337 }
7338 
7339 /**
7340  * ice_rebuild - rebuild after reset
7341  * @pf: PF to rebuild
7342  * @reset_type: type of reset
7343  *
7344  * Do not rebuild VF VSI in this flow because that is already handled via
7345  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7346  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7347  * to reset/rebuild all the VF VSI twice.
7348  */
7349 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7350 {
7351 	struct device *dev = ice_pf_to_dev(pf);
7352 	struct ice_hw *hw = &pf->hw;
7353 	bool dvm;
7354 	int err;
7355 
7356 	if (test_bit(ICE_DOWN, pf->state))
7357 		goto clear_recovery;
7358 
7359 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7360 
7361 #define ICE_EMP_RESET_SLEEP_MS 5000
7362 	if (reset_type == ICE_RESET_EMPR) {
7363 		/* If an EMP reset has occurred, any previously pending flash
7364 		 * update will have completed. We no longer know whether or
7365 		 * not the NVM update EMP reset is restricted.
7366 		 */
7367 		pf->fw_emp_reset_disabled = false;
7368 
7369 		msleep(ICE_EMP_RESET_SLEEP_MS);
7370 	}
7371 
7372 	err = ice_init_all_ctrlq(hw);
7373 	if (err) {
7374 		dev_err(dev, "control queues init failed %d\n", err);
7375 		goto err_init_ctrlq;
7376 	}
7377 
7378 	/* if DDP was previously loaded successfully */
7379 	if (!ice_is_safe_mode(pf)) {
7380 		/* reload the SW DB of filter tables */
7381 		if (reset_type == ICE_RESET_PFR)
7382 			ice_fill_blk_tbls(hw);
7383 		else
7384 			/* Reload DDP Package after CORER/GLOBR reset */
7385 			ice_load_pkg(NULL, pf);
7386 	}
7387 
7388 	err = ice_clear_pf_cfg(hw);
7389 	if (err) {
7390 		dev_err(dev, "clear PF configuration failed %d\n", err);
7391 		goto err_init_ctrlq;
7392 	}
7393 
7394 	ice_clear_pxe_mode(hw);
7395 
7396 	err = ice_init_nvm(hw);
7397 	if (err) {
7398 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7399 		goto err_init_ctrlq;
7400 	}
7401 
7402 	err = ice_get_caps(hw);
7403 	if (err) {
7404 		dev_err(dev, "ice_get_caps failed %d\n", err);
7405 		goto err_init_ctrlq;
7406 	}
7407 
7408 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7409 	if (err) {
7410 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7411 		goto err_init_ctrlq;
7412 	}
7413 
7414 	dvm = ice_is_dvm_ena(hw);
7415 
7416 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7417 	if (err)
7418 		goto err_init_ctrlq;
7419 
7420 	err = ice_sched_init_port(hw->port_info);
7421 	if (err)
7422 		goto err_sched_init_port;
7423 
7424 	/* start misc vector */
7425 	err = ice_req_irq_msix_misc(pf);
7426 	if (err) {
7427 		dev_err(dev, "misc vector setup failed: %d\n", err);
7428 		goto err_sched_init_port;
7429 	}
7430 
7431 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7432 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7433 		if (!rd32(hw, PFQF_FD_SIZE)) {
7434 			u16 unused, guar, b_effort;
7435 
7436 			guar = hw->func_caps.fd_fltr_guar;
7437 			b_effort = hw->func_caps.fd_fltr_best_effort;
7438 
7439 			/* force guaranteed filter pool for PF */
7440 			ice_alloc_fd_guar_item(hw, &unused, guar);
7441 			/* force shared filter pool for PF */
7442 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7443 		}
7444 	}
7445 
7446 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7447 		ice_dcb_rebuild(pf);
7448 
7449 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7450 	 * the VSI rebuild. If not, this causes the PTP link status events to
7451 	 * fail.
7452 	 */
7453 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7454 		ice_ptp_reset(pf);
7455 
7456 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7457 		ice_gnss_init(pf);
7458 
7459 	/* rebuild PF VSI */
7460 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7461 	if (err) {
7462 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7463 		goto err_vsi_rebuild;
7464 	}
7465 
7466 	err = ice_eswitch_rebuild(pf);
7467 	if (err) {
7468 		dev_err(dev, "Switchdev rebuild failed: %d\n", err);
7469 		goto err_vsi_rebuild;
7470 	}
7471 
7472 	if (reset_type == ICE_RESET_PFR) {
7473 		err = ice_rebuild_channels(pf);
7474 		if (err) {
7475 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7476 				err);
7477 			goto err_vsi_rebuild;
7478 		}
7479 	}
7480 
7481 	/* If Flow Director is active */
7482 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7483 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7484 		if (err) {
7485 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7486 			goto err_vsi_rebuild;
7487 		}
7488 
7489 		/* replay HW Flow Director recipes */
7490 		if (hw->fdir_prof)
7491 			ice_fdir_replay_flows(hw);
7492 
7493 		/* replay Flow Director filters */
7494 		ice_fdir_replay_fltrs(pf);
7495 
7496 		ice_rebuild_arfs(pf);
7497 	}
7498 
7499 	ice_update_pf_netdev_link(pf);
7500 
7501 	/* tell the firmware we are up */
7502 	err = ice_send_version(pf);
7503 	if (err) {
7504 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7505 			err);
7506 		goto err_vsi_rebuild;
7507 	}
7508 
7509 	ice_replay_post(hw);
7510 
7511 	/* if we get here, reset flow is successful */
7512 	clear_bit(ICE_RESET_FAILED, pf->state);
7513 
7514 	ice_plug_aux_dev(pf);
7515 	if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7516 		ice_lag_rebuild(pf);
7517 
7518 	/* Restore timestamp mode settings after VSI rebuild */
7519 	ice_ptp_restore_timestamp_mode(pf);
7520 	return;
7521 
7522 err_vsi_rebuild:
7523 err_sched_init_port:
7524 	ice_sched_cleanup_all(hw);
7525 err_init_ctrlq:
7526 	ice_shutdown_all_ctrlq(hw);
7527 	set_bit(ICE_RESET_FAILED, pf->state);
7528 clear_recovery:
7529 	/* set this bit in PF state to control service task scheduling */
7530 	set_bit(ICE_NEEDS_RESTART, pf->state);
7531 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7532 }
7533 
7534 /**
7535  * ice_change_mtu - NDO callback to change the MTU
7536  * @netdev: network interface device structure
7537  * @new_mtu: new value for maximum frame size
7538  *
7539  * Returns 0 on success, negative on failure
7540  */
7541 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7542 {
7543 	struct ice_netdev_priv *np = netdev_priv(netdev);
7544 	struct ice_vsi *vsi = np->vsi;
7545 	struct ice_pf *pf = vsi->back;
7546 	struct bpf_prog *prog;
7547 	u8 count = 0;
7548 	int err = 0;
7549 
7550 	if (new_mtu == (int)netdev->mtu) {
7551 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7552 		return 0;
7553 	}
7554 
7555 	prog = vsi->xdp_prog;
7556 	if (prog && !prog->aux->xdp_has_frags) {
7557 		int frame_size = ice_max_xdp_frame_size(vsi);
7558 
7559 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7560 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7561 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7562 			return -EINVAL;
7563 		}
7564 	} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7565 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7566 			netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7567 				   ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7568 			return -EINVAL;
7569 		}
7570 	}
7571 
7572 	/* if a reset is in progress, wait for some time for it to complete */
7573 	do {
7574 		if (ice_is_reset_in_progress(pf->state)) {
7575 			count++;
7576 			usleep_range(1000, 2000);
7577 		} else {
7578 			break;
7579 		}
7580 
7581 	} while (count < 100);
7582 
7583 	if (count == 100) {
7584 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7585 		return -EBUSY;
7586 	}
7587 
7588 	netdev->mtu = (unsigned int)new_mtu;
7589 	err = ice_down_up(vsi);
7590 	if (err)
7591 		return err;
7592 
7593 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7594 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7595 
7596 	return err;
7597 }
7598 
7599 /**
7600  * ice_eth_ioctl - Access the hwtstamp interface
7601  * @netdev: network interface device structure
7602  * @ifr: interface request data
7603  * @cmd: ioctl command
7604  */
7605 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7606 {
7607 	struct ice_netdev_priv *np = netdev_priv(netdev);
7608 	struct ice_pf *pf = np->vsi->back;
7609 
7610 	switch (cmd) {
7611 	case SIOCGHWTSTAMP:
7612 		return ice_ptp_get_ts_config(pf, ifr);
7613 	case SIOCSHWTSTAMP:
7614 		return ice_ptp_set_ts_config(pf, ifr);
7615 	default:
7616 		return -EOPNOTSUPP;
7617 	}
7618 }
7619 
7620 /**
7621  * ice_aq_str - convert AQ err code to a string
7622  * @aq_err: the AQ error code to convert
7623  */
7624 const char *ice_aq_str(enum ice_aq_err aq_err)
7625 {
7626 	switch (aq_err) {
7627 	case ICE_AQ_RC_OK:
7628 		return "OK";
7629 	case ICE_AQ_RC_EPERM:
7630 		return "ICE_AQ_RC_EPERM";
7631 	case ICE_AQ_RC_ENOENT:
7632 		return "ICE_AQ_RC_ENOENT";
7633 	case ICE_AQ_RC_ENOMEM:
7634 		return "ICE_AQ_RC_ENOMEM";
7635 	case ICE_AQ_RC_EBUSY:
7636 		return "ICE_AQ_RC_EBUSY";
7637 	case ICE_AQ_RC_EEXIST:
7638 		return "ICE_AQ_RC_EEXIST";
7639 	case ICE_AQ_RC_EINVAL:
7640 		return "ICE_AQ_RC_EINVAL";
7641 	case ICE_AQ_RC_ENOSPC:
7642 		return "ICE_AQ_RC_ENOSPC";
7643 	case ICE_AQ_RC_ENOSYS:
7644 		return "ICE_AQ_RC_ENOSYS";
7645 	case ICE_AQ_RC_EMODE:
7646 		return "ICE_AQ_RC_EMODE";
7647 	case ICE_AQ_RC_ENOSEC:
7648 		return "ICE_AQ_RC_ENOSEC";
7649 	case ICE_AQ_RC_EBADSIG:
7650 		return "ICE_AQ_RC_EBADSIG";
7651 	case ICE_AQ_RC_ESVN:
7652 		return "ICE_AQ_RC_ESVN";
7653 	case ICE_AQ_RC_EBADMAN:
7654 		return "ICE_AQ_RC_EBADMAN";
7655 	case ICE_AQ_RC_EBADBUF:
7656 		return "ICE_AQ_RC_EBADBUF";
7657 	}
7658 
7659 	return "ICE_AQ_RC_UNKNOWN";
7660 }
7661 
7662 /**
7663  * ice_set_rss_lut - Set RSS LUT
7664  * @vsi: Pointer to VSI structure
7665  * @lut: Lookup table
7666  * @lut_size: Lookup table size
7667  *
7668  * Returns 0 on success, negative on failure
7669  */
7670 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7671 {
7672 	struct ice_aq_get_set_rss_lut_params params = {};
7673 	struct ice_hw *hw = &vsi->back->hw;
7674 	int status;
7675 
7676 	if (!lut)
7677 		return -EINVAL;
7678 
7679 	params.vsi_handle = vsi->idx;
7680 	params.lut_size = lut_size;
7681 	params.lut_type = vsi->rss_lut_type;
7682 	params.lut = lut;
7683 
7684 	status = ice_aq_set_rss_lut(hw, &params);
7685 	if (status)
7686 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7687 			status, ice_aq_str(hw->adminq.sq_last_status));
7688 
7689 	return status;
7690 }
7691 
7692 /**
7693  * ice_set_rss_key - Set RSS key
7694  * @vsi: Pointer to the VSI structure
7695  * @seed: RSS hash seed
7696  *
7697  * Returns 0 on success, negative on failure
7698  */
7699 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7700 {
7701 	struct ice_hw *hw = &vsi->back->hw;
7702 	int status;
7703 
7704 	if (!seed)
7705 		return -EINVAL;
7706 
7707 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7708 	if (status)
7709 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7710 			status, ice_aq_str(hw->adminq.sq_last_status));
7711 
7712 	return status;
7713 }
7714 
7715 /**
7716  * ice_get_rss_lut - Get RSS LUT
7717  * @vsi: Pointer to VSI structure
7718  * @lut: Buffer to store the lookup table entries
7719  * @lut_size: Size of buffer to store the lookup table entries
7720  *
7721  * Returns 0 on success, negative on failure
7722  */
7723 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7724 {
7725 	struct ice_aq_get_set_rss_lut_params params = {};
7726 	struct ice_hw *hw = &vsi->back->hw;
7727 	int status;
7728 
7729 	if (!lut)
7730 		return -EINVAL;
7731 
7732 	params.vsi_handle = vsi->idx;
7733 	params.lut_size = lut_size;
7734 	params.lut_type = vsi->rss_lut_type;
7735 	params.lut = lut;
7736 
7737 	status = ice_aq_get_rss_lut(hw, &params);
7738 	if (status)
7739 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7740 			status, ice_aq_str(hw->adminq.sq_last_status));
7741 
7742 	return status;
7743 }
7744 
7745 /**
7746  * ice_get_rss_key - Get RSS key
7747  * @vsi: Pointer to VSI structure
7748  * @seed: Buffer to store the key in
7749  *
7750  * Returns 0 on success, negative on failure
7751  */
7752 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7753 {
7754 	struct ice_hw *hw = &vsi->back->hw;
7755 	int status;
7756 
7757 	if (!seed)
7758 		return -EINVAL;
7759 
7760 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7761 	if (status)
7762 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7763 			status, ice_aq_str(hw->adminq.sq_last_status));
7764 
7765 	return status;
7766 }
7767 
7768 /**
7769  * ice_set_rss_hfunc - Set RSS HASH function
7770  * @vsi: Pointer to VSI structure
7771  * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
7772  *
7773  * Returns 0 on success, negative on failure
7774  */
7775 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
7776 {
7777 	struct ice_hw *hw = &vsi->back->hw;
7778 	struct ice_vsi_ctx *ctx;
7779 	bool symm;
7780 	int err;
7781 
7782 	if (hfunc == vsi->rss_hfunc)
7783 		return 0;
7784 
7785 	if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
7786 	    hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
7787 		return -EOPNOTSUPP;
7788 
7789 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7790 	if (!ctx)
7791 		return -ENOMEM;
7792 
7793 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
7794 	ctx->info.q_opt_rss = vsi->info.q_opt_rss;
7795 	ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
7796 	ctx->info.q_opt_rss |=
7797 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
7798 	ctx->info.q_opt_tc = vsi->info.q_opt_tc;
7799 	ctx->info.q_opt_flags = vsi->info.q_opt_rss;
7800 
7801 	err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
7802 	if (err) {
7803 		dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
7804 			vsi->vsi_num, err);
7805 	} else {
7806 		vsi->info.q_opt_rss = ctx->info.q_opt_rss;
7807 		vsi->rss_hfunc = hfunc;
7808 		netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
7809 			    hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
7810 			    "Symmetric " : "");
7811 	}
7812 	kfree(ctx);
7813 	if (err)
7814 		return err;
7815 
7816 	/* Fix the symmetry setting for all existing RSS configurations */
7817 	symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
7818 	return ice_set_rss_cfg_symm(hw, vsi, symm);
7819 }
7820 
7821 /**
7822  * ice_bridge_getlink - Get the hardware bridge mode
7823  * @skb: skb buff
7824  * @pid: process ID
7825  * @seq: RTNL message seq
7826  * @dev: the netdev being configured
7827  * @filter_mask: filter mask passed in
7828  * @nlflags: netlink flags passed in
7829  *
7830  * Return the bridge mode (VEB/VEPA)
7831  */
7832 static int
7833 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7834 		   struct net_device *dev, u32 filter_mask, int nlflags)
7835 {
7836 	struct ice_netdev_priv *np = netdev_priv(dev);
7837 	struct ice_vsi *vsi = np->vsi;
7838 	struct ice_pf *pf = vsi->back;
7839 	u16 bmode;
7840 
7841 	bmode = pf->first_sw->bridge_mode;
7842 
7843 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7844 				       filter_mask, NULL);
7845 }
7846 
7847 /**
7848  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7849  * @vsi: Pointer to VSI structure
7850  * @bmode: Hardware bridge mode (VEB/VEPA)
7851  *
7852  * Returns 0 on success, negative on failure
7853  */
7854 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7855 {
7856 	struct ice_aqc_vsi_props *vsi_props;
7857 	struct ice_hw *hw = &vsi->back->hw;
7858 	struct ice_vsi_ctx *ctxt;
7859 	int ret;
7860 
7861 	vsi_props = &vsi->info;
7862 
7863 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7864 	if (!ctxt)
7865 		return -ENOMEM;
7866 
7867 	ctxt->info = vsi->info;
7868 
7869 	if (bmode == BRIDGE_MODE_VEB)
7870 		/* change from VEPA to VEB mode */
7871 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7872 	else
7873 		/* change from VEB to VEPA mode */
7874 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7875 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7876 
7877 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7878 	if (ret) {
7879 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7880 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7881 		goto out;
7882 	}
7883 	/* Update sw flags for book keeping */
7884 	vsi_props->sw_flags = ctxt->info.sw_flags;
7885 
7886 out:
7887 	kfree(ctxt);
7888 	return ret;
7889 }
7890 
7891 /**
7892  * ice_bridge_setlink - Set the hardware bridge mode
7893  * @dev: the netdev being configured
7894  * @nlh: RTNL message
7895  * @flags: bridge setlink flags
7896  * @extack: netlink extended ack
7897  *
7898  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7899  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7900  * not already set for all VSIs connected to this switch. And also update the
7901  * unicast switch filter rules for the corresponding switch of the netdev.
7902  */
7903 static int
7904 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7905 		   u16 __always_unused flags,
7906 		   struct netlink_ext_ack __always_unused *extack)
7907 {
7908 	struct ice_netdev_priv *np = netdev_priv(dev);
7909 	struct ice_pf *pf = np->vsi->back;
7910 	struct nlattr *attr, *br_spec;
7911 	struct ice_hw *hw = &pf->hw;
7912 	struct ice_sw *pf_sw;
7913 	int rem, v, err = 0;
7914 
7915 	pf_sw = pf->first_sw;
7916 	/* find the attribute in the netlink message */
7917 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7918 
7919 	nla_for_each_nested(attr, br_spec, rem) {
7920 		__u16 mode;
7921 
7922 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7923 			continue;
7924 		mode = nla_get_u16(attr);
7925 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7926 			return -EINVAL;
7927 		/* Continue  if bridge mode is not being flipped */
7928 		if (mode == pf_sw->bridge_mode)
7929 			continue;
7930 		/* Iterates through the PF VSI list and update the loopback
7931 		 * mode of the VSI
7932 		 */
7933 		ice_for_each_vsi(pf, v) {
7934 			if (!pf->vsi[v])
7935 				continue;
7936 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7937 			if (err)
7938 				return err;
7939 		}
7940 
7941 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7942 		/* Update the unicast switch filter rules for the corresponding
7943 		 * switch of the netdev
7944 		 */
7945 		err = ice_update_sw_rule_bridge_mode(hw);
7946 		if (err) {
7947 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7948 				   mode, err,
7949 				   ice_aq_str(hw->adminq.sq_last_status));
7950 			/* revert hw->evb_veb */
7951 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7952 			return err;
7953 		}
7954 
7955 		pf_sw->bridge_mode = mode;
7956 	}
7957 
7958 	return 0;
7959 }
7960 
7961 /**
7962  * ice_tx_timeout - Respond to a Tx Hang
7963  * @netdev: network interface device structure
7964  * @txqueue: Tx queue
7965  */
7966 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7967 {
7968 	struct ice_netdev_priv *np = netdev_priv(netdev);
7969 	struct ice_tx_ring *tx_ring = NULL;
7970 	struct ice_vsi *vsi = np->vsi;
7971 	struct ice_pf *pf = vsi->back;
7972 	u32 i;
7973 
7974 	pf->tx_timeout_count++;
7975 
7976 	/* Check if PFC is enabled for the TC to which the queue belongs
7977 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7978 	 * need to reset and rebuild
7979 	 */
7980 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7981 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7982 			 txqueue);
7983 		return;
7984 	}
7985 
7986 	/* now that we have an index, find the tx_ring struct */
7987 	ice_for_each_txq(vsi, i)
7988 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7989 			if (txqueue == vsi->tx_rings[i]->q_index) {
7990 				tx_ring = vsi->tx_rings[i];
7991 				break;
7992 			}
7993 
7994 	/* Reset recovery level if enough time has elapsed after last timeout.
7995 	 * Also ensure no new reset action happens before next timeout period.
7996 	 */
7997 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7998 		pf->tx_timeout_recovery_level = 1;
7999 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8000 				       netdev->watchdog_timeo)))
8001 		return;
8002 
8003 	if (tx_ring) {
8004 		struct ice_hw *hw = &pf->hw;
8005 		u32 head, val = 0;
8006 
8007 		head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8008 				 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8009 		/* Read interrupt register */
8010 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8011 
8012 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8013 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8014 			    head, tx_ring->next_to_use, val);
8015 	}
8016 
8017 	pf->tx_timeout_last_recovery = jiffies;
8018 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8019 		    pf->tx_timeout_recovery_level, txqueue);
8020 
8021 	switch (pf->tx_timeout_recovery_level) {
8022 	case 1:
8023 		set_bit(ICE_PFR_REQ, pf->state);
8024 		break;
8025 	case 2:
8026 		set_bit(ICE_CORER_REQ, pf->state);
8027 		break;
8028 	case 3:
8029 		set_bit(ICE_GLOBR_REQ, pf->state);
8030 		break;
8031 	default:
8032 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8033 		set_bit(ICE_DOWN, pf->state);
8034 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8035 		set_bit(ICE_SERVICE_DIS, pf->state);
8036 		break;
8037 	}
8038 
8039 	ice_service_task_schedule(pf);
8040 	pf->tx_timeout_recovery_level++;
8041 }
8042 
8043 /**
8044  * ice_setup_tc_cls_flower - flower classifier offloads
8045  * @np: net device to configure
8046  * @filter_dev: device on which filter is added
8047  * @cls_flower: offload data
8048  */
8049 static int
8050 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8051 			struct net_device *filter_dev,
8052 			struct flow_cls_offload *cls_flower)
8053 {
8054 	struct ice_vsi *vsi = np->vsi;
8055 
8056 	if (cls_flower->common.chain_index)
8057 		return -EOPNOTSUPP;
8058 
8059 	switch (cls_flower->command) {
8060 	case FLOW_CLS_REPLACE:
8061 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8062 	case FLOW_CLS_DESTROY:
8063 		return ice_del_cls_flower(vsi, cls_flower);
8064 	default:
8065 		return -EINVAL;
8066 	}
8067 }
8068 
8069 /**
8070  * ice_setup_tc_block_cb - callback handler registered for TC block
8071  * @type: TC SETUP type
8072  * @type_data: TC flower offload data that contains user input
8073  * @cb_priv: netdev private data
8074  */
8075 static int
8076 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8077 {
8078 	struct ice_netdev_priv *np = cb_priv;
8079 
8080 	switch (type) {
8081 	case TC_SETUP_CLSFLOWER:
8082 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8083 					       type_data);
8084 	default:
8085 		return -EOPNOTSUPP;
8086 	}
8087 }
8088 
8089 /**
8090  * ice_validate_mqprio_qopt - Validate TCF input parameters
8091  * @vsi: Pointer to VSI
8092  * @mqprio_qopt: input parameters for mqprio queue configuration
8093  *
8094  * This function validates MQPRIO params, such as qcount (power of 2 wherever
8095  * needed), and make sure user doesn't specify qcount and BW rate limit
8096  * for TCs, which are more than "num_tc"
8097  */
8098 static int
8099 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8100 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
8101 {
8102 	int non_power_of_2_qcount = 0;
8103 	struct ice_pf *pf = vsi->back;
8104 	int max_rss_q_cnt = 0;
8105 	u64 sum_min_rate = 0;
8106 	struct device *dev;
8107 	int i, speed;
8108 	u8 num_tc;
8109 
8110 	if (vsi->type != ICE_VSI_PF)
8111 		return -EINVAL;
8112 
8113 	if (mqprio_qopt->qopt.offset[0] != 0 ||
8114 	    mqprio_qopt->qopt.num_tc < 1 ||
8115 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8116 		return -EINVAL;
8117 
8118 	dev = ice_pf_to_dev(pf);
8119 	vsi->ch_rss_size = 0;
8120 	num_tc = mqprio_qopt->qopt.num_tc;
8121 	speed = ice_get_link_speed_kbps(vsi);
8122 
8123 	for (i = 0; num_tc; i++) {
8124 		int qcount = mqprio_qopt->qopt.count[i];
8125 		u64 max_rate, min_rate, rem;
8126 
8127 		if (!qcount)
8128 			return -EINVAL;
8129 
8130 		if (is_power_of_2(qcount)) {
8131 			if (non_power_of_2_qcount &&
8132 			    qcount > non_power_of_2_qcount) {
8133 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8134 					qcount, non_power_of_2_qcount);
8135 				return -EINVAL;
8136 			}
8137 			if (qcount > max_rss_q_cnt)
8138 				max_rss_q_cnt = qcount;
8139 		} else {
8140 			if (non_power_of_2_qcount &&
8141 			    qcount != non_power_of_2_qcount) {
8142 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8143 					qcount, non_power_of_2_qcount);
8144 				return -EINVAL;
8145 			}
8146 			if (qcount < max_rss_q_cnt) {
8147 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8148 					qcount, max_rss_q_cnt);
8149 				return -EINVAL;
8150 			}
8151 			max_rss_q_cnt = qcount;
8152 			non_power_of_2_qcount = qcount;
8153 		}
8154 
8155 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8156 		 * converts the bandwidth rate limit into Bytes/s when
8157 		 * passing it down to the driver. So convert input bandwidth
8158 		 * from Bytes/s to Kbps
8159 		 */
8160 		max_rate = mqprio_qopt->max_rate[i];
8161 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8162 
8163 		/* min_rate is minimum guaranteed rate and it can't be zero */
8164 		min_rate = mqprio_qopt->min_rate[i];
8165 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8166 		sum_min_rate += min_rate;
8167 
8168 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8169 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8170 				min_rate, ICE_MIN_BW_LIMIT);
8171 			return -EINVAL;
8172 		}
8173 
8174 		if (max_rate && max_rate > speed) {
8175 			dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8176 				i, max_rate, speed);
8177 			return -EINVAL;
8178 		}
8179 
8180 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8181 		if (rem) {
8182 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8183 				i, ICE_MIN_BW_LIMIT);
8184 			return -EINVAL;
8185 		}
8186 
8187 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8188 		if (rem) {
8189 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8190 				i, ICE_MIN_BW_LIMIT);
8191 			return -EINVAL;
8192 		}
8193 
8194 		/* min_rate can't be more than max_rate, except when max_rate
8195 		 * is zero (implies max_rate sought is max line rate). In such
8196 		 * a case min_rate can be more than max.
8197 		 */
8198 		if (max_rate && min_rate > max_rate) {
8199 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8200 				min_rate, max_rate);
8201 			return -EINVAL;
8202 		}
8203 
8204 		if (i >= mqprio_qopt->qopt.num_tc - 1)
8205 			break;
8206 		if (mqprio_qopt->qopt.offset[i + 1] !=
8207 		    (mqprio_qopt->qopt.offset[i] + qcount))
8208 			return -EINVAL;
8209 	}
8210 	if (vsi->num_rxq <
8211 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8212 		return -EINVAL;
8213 	if (vsi->num_txq <
8214 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8215 		return -EINVAL;
8216 
8217 	if (sum_min_rate && sum_min_rate > (u64)speed) {
8218 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8219 			sum_min_rate, speed);
8220 		return -EINVAL;
8221 	}
8222 
8223 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8224 	vsi->ch_rss_size = max_rss_q_cnt;
8225 
8226 	return 0;
8227 }
8228 
8229 /**
8230  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8231  * @pf: ptr to PF device
8232  * @vsi: ptr to VSI
8233  */
8234 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8235 {
8236 	struct device *dev = ice_pf_to_dev(pf);
8237 	bool added = false;
8238 	struct ice_hw *hw;
8239 	int flow;
8240 
8241 	if (!(vsi->num_gfltr || vsi->num_bfltr))
8242 		return -EINVAL;
8243 
8244 	hw = &pf->hw;
8245 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8246 		struct ice_fd_hw_prof *prof;
8247 		int tun, status;
8248 		u64 entry_h;
8249 
8250 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8251 		      hw->fdir_prof[flow]->cnt))
8252 			continue;
8253 
8254 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8255 			enum ice_flow_priority prio;
8256 
8257 			/* add this VSI to FDir profile for this flow */
8258 			prio = ICE_FLOW_PRIO_NORMAL;
8259 			prof = hw->fdir_prof[flow];
8260 			status = ice_flow_add_entry(hw, ICE_BLK_FD,
8261 						    prof->prof_id[tun],
8262 						    prof->vsi_h[0], vsi->idx,
8263 						    prio, prof->fdir_seg[tun],
8264 						    &entry_h);
8265 			if (status) {
8266 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8267 					vsi->idx, flow);
8268 				continue;
8269 			}
8270 
8271 			prof->entry_h[prof->cnt][tun] = entry_h;
8272 		}
8273 
8274 		/* store VSI for filter replay and delete */
8275 		prof->vsi_h[prof->cnt] = vsi->idx;
8276 		prof->cnt++;
8277 
8278 		added = true;
8279 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8280 			flow);
8281 	}
8282 
8283 	if (!added)
8284 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8285 
8286 	return 0;
8287 }
8288 
8289 /**
8290  * ice_add_channel - add a channel by adding VSI
8291  * @pf: ptr to PF device
8292  * @sw_id: underlying HW switching element ID
8293  * @ch: ptr to channel structure
8294  *
8295  * Add a channel (VSI) using add_vsi and queue_map
8296  */
8297 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8298 {
8299 	struct device *dev = ice_pf_to_dev(pf);
8300 	struct ice_vsi *vsi;
8301 
8302 	if (ch->type != ICE_VSI_CHNL) {
8303 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8304 		return -EINVAL;
8305 	}
8306 
8307 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8308 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8309 		dev_err(dev, "create chnl VSI failure\n");
8310 		return -EINVAL;
8311 	}
8312 
8313 	ice_add_vsi_to_fdir(pf, vsi);
8314 
8315 	ch->sw_id = sw_id;
8316 	ch->vsi_num = vsi->vsi_num;
8317 	ch->info.mapping_flags = vsi->info.mapping_flags;
8318 	ch->ch_vsi = vsi;
8319 	/* set the back pointer of channel for newly created VSI */
8320 	vsi->ch = ch;
8321 
8322 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8323 	       sizeof(vsi->info.q_mapping));
8324 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8325 	       sizeof(vsi->info.tc_mapping));
8326 
8327 	return 0;
8328 }
8329 
8330 /**
8331  * ice_chnl_cfg_res
8332  * @vsi: the VSI being setup
8333  * @ch: ptr to channel structure
8334  *
8335  * Configure channel specific resources such as rings, vector.
8336  */
8337 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8338 {
8339 	int i;
8340 
8341 	for (i = 0; i < ch->num_txq; i++) {
8342 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8343 		struct ice_ring_container *rc;
8344 		struct ice_tx_ring *tx_ring;
8345 		struct ice_rx_ring *rx_ring;
8346 
8347 		tx_ring = vsi->tx_rings[ch->base_q + i];
8348 		rx_ring = vsi->rx_rings[ch->base_q + i];
8349 		if (!tx_ring || !rx_ring)
8350 			continue;
8351 
8352 		/* setup ring being channel enabled */
8353 		tx_ring->ch = ch;
8354 		rx_ring->ch = ch;
8355 
8356 		/* following code block sets up vector specific attributes */
8357 		tx_q_vector = tx_ring->q_vector;
8358 		rx_q_vector = rx_ring->q_vector;
8359 		if (!tx_q_vector && !rx_q_vector)
8360 			continue;
8361 
8362 		if (tx_q_vector) {
8363 			tx_q_vector->ch = ch;
8364 			/* setup Tx and Rx ITR setting if DIM is off */
8365 			rc = &tx_q_vector->tx;
8366 			if (!ITR_IS_DYNAMIC(rc))
8367 				ice_write_itr(rc, rc->itr_setting);
8368 		}
8369 		if (rx_q_vector) {
8370 			rx_q_vector->ch = ch;
8371 			/* setup Tx and Rx ITR setting if DIM is off */
8372 			rc = &rx_q_vector->rx;
8373 			if (!ITR_IS_DYNAMIC(rc))
8374 				ice_write_itr(rc, rc->itr_setting);
8375 		}
8376 	}
8377 
8378 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8379 	 * GLINT_ITR register would have written to perform in-context
8380 	 * update, hence perform flush
8381 	 */
8382 	if (ch->num_txq || ch->num_rxq)
8383 		ice_flush(&vsi->back->hw);
8384 }
8385 
8386 /**
8387  * ice_cfg_chnl_all_res - configure channel resources
8388  * @vsi: pte to main_vsi
8389  * @ch: ptr to channel structure
8390  *
8391  * This function configures channel specific resources such as flow-director
8392  * counter index, and other resources such as queues, vectors, ITR settings
8393  */
8394 static void
8395 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8396 {
8397 	/* configure channel (aka ADQ) resources such as queues, vectors,
8398 	 * ITR settings for channel specific vectors and anything else
8399 	 */
8400 	ice_chnl_cfg_res(vsi, ch);
8401 }
8402 
8403 /**
8404  * ice_setup_hw_channel - setup new channel
8405  * @pf: ptr to PF device
8406  * @vsi: the VSI being setup
8407  * @ch: ptr to channel structure
8408  * @sw_id: underlying HW switching element ID
8409  * @type: type of channel to be created (VMDq2/VF)
8410  *
8411  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8412  * and configures Tx rings accordingly
8413  */
8414 static int
8415 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8416 		     struct ice_channel *ch, u16 sw_id, u8 type)
8417 {
8418 	struct device *dev = ice_pf_to_dev(pf);
8419 	int ret;
8420 
8421 	ch->base_q = vsi->next_base_q;
8422 	ch->type = type;
8423 
8424 	ret = ice_add_channel(pf, sw_id, ch);
8425 	if (ret) {
8426 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8427 		return ret;
8428 	}
8429 
8430 	/* configure/setup ADQ specific resources */
8431 	ice_cfg_chnl_all_res(vsi, ch);
8432 
8433 	/* make sure to update the next_base_q so that subsequent channel's
8434 	 * (aka ADQ) VSI queue map is correct
8435 	 */
8436 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8437 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8438 		ch->num_rxq);
8439 
8440 	return 0;
8441 }
8442 
8443 /**
8444  * ice_setup_channel - setup new channel using uplink element
8445  * @pf: ptr to PF device
8446  * @vsi: the VSI being setup
8447  * @ch: ptr to channel structure
8448  *
8449  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8450  * and uplink switching element
8451  */
8452 static bool
8453 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8454 		  struct ice_channel *ch)
8455 {
8456 	struct device *dev = ice_pf_to_dev(pf);
8457 	u16 sw_id;
8458 	int ret;
8459 
8460 	if (vsi->type != ICE_VSI_PF) {
8461 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8462 		return false;
8463 	}
8464 
8465 	sw_id = pf->first_sw->sw_id;
8466 
8467 	/* create channel (VSI) */
8468 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8469 	if (ret) {
8470 		dev_err(dev, "failed to setup hw_channel\n");
8471 		return false;
8472 	}
8473 	dev_dbg(dev, "successfully created channel()\n");
8474 
8475 	return ch->ch_vsi ? true : false;
8476 }
8477 
8478 /**
8479  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8480  * @vsi: VSI to be configured
8481  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8482  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8483  */
8484 static int
8485 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8486 {
8487 	int err;
8488 
8489 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8490 	if (err)
8491 		return err;
8492 
8493 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8494 }
8495 
8496 /**
8497  * ice_create_q_channel - function to create channel
8498  * @vsi: VSI to be configured
8499  * @ch: ptr to channel (it contains channel specific params)
8500  *
8501  * This function creates channel (VSI) using num_queues specified by user,
8502  * reconfigs RSS if needed.
8503  */
8504 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8505 {
8506 	struct ice_pf *pf = vsi->back;
8507 	struct device *dev;
8508 
8509 	if (!ch)
8510 		return -EINVAL;
8511 
8512 	dev = ice_pf_to_dev(pf);
8513 	if (!ch->num_txq || !ch->num_rxq) {
8514 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8515 		return -EINVAL;
8516 	}
8517 
8518 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8519 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8520 			vsi->cnt_q_avail, ch->num_txq);
8521 		return -EINVAL;
8522 	}
8523 
8524 	if (!ice_setup_channel(pf, vsi, ch)) {
8525 		dev_info(dev, "Failed to setup channel\n");
8526 		return -EINVAL;
8527 	}
8528 	/* configure BW rate limit */
8529 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8530 		int ret;
8531 
8532 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8533 				       ch->min_tx_rate);
8534 		if (ret)
8535 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8536 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8537 		else
8538 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8539 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8540 	}
8541 
8542 	vsi->cnt_q_avail -= ch->num_txq;
8543 
8544 	return 0;
8545 }
8546 
8547 /**
8548  * ice_rem_all_chnl_fltrs - removes all channel filters
8549  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8550  *
8551  * Remove all advanced switch filters only if they are channel specific
8552  * tc-flower based filter
8553  */
8554 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8555 {
8556 	struct ice_tc_flower_fltr *fltr;
8557 	struct hlist_node *node;
8558 
8559 	/* to remove all channel filters, iterate an ordered list of filters */
8560 	hlist_for_each_entry_safe(fltr, node,
8561 				  &pf->tc_flower_fltr_list,
8562 				  tc_flower_node) {
8563 		struct ice_rule_query_data rule;
8564 		int status;
8565 
8566 		/* for now process only channel specific filters */
8567 		if (!ice_is_chnl_fltr(fltr))
8568 			continue;
8569 
8570 		rule.rid = fltr->rid;
8571 		rule.rule_id = fltr->rule_id;
8572 		rule.vsi_handle = fltr->dest_vsi_handle;
8573 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8574 		if (status) {
8575 			if (status == -ENOENT)
8576 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8577 					rule.rule_id);
8578 			else
8579 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8580 					status);
8581 		} else if (fltr->dest_vsi) {
8582 			/* update advanced switch filter count */
8583 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8584 				u32 flags = fltr->flags;
8585 
8586 				fltr->dest_vsi->num_chnl_fltr--;
8587 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8588 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8589 					pf->num_dmac_chnl_fltrs--;
8590 			}
8591 		}
8592 
8593 		hlist_del(&fltr->tc_flower_node);
8594 		kfree(fltr);
8595 	}
8596 }
8597 
8598 /**
8599  * ice_remove_q_channels - Remove queue channels for the TCs
8600  * @vsi: VSI to be configured
8601  * @rem_fltr: delete advanced switch filter or not
8602  *
8603  * Remove queue channels for the TCs
8604  */
8605 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8606 {
8607 	struct ice_channel *ch, *ch_tmp;
8608 	struct ice_pf *pf = vsi->back;
8609 	int i;
8610 
8611 	/* remove all tc-flower based filter if they are channel filters only */
8612 	if (rem_fltr)
8613 		ice_rem_all_chnl_fltrs(pf);
8614 
8615 	/* remove ntuple filters since queue configuration is being changed */
8616 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8617 		struct ice_hw *hw = &pf->hw;
8618 
8619 		mutex_lock(&hw->fdir_fltr_lock);
8620 		ice_fdir_del_all_fltrs(vsi);
8621 		mutex_unlock(&hw->fdir_fltr_lock);
8622 	}
8623 
8624 	/* perform cleanup for channels if they exist */
8625 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8626 		struct ice_vsi *ch_vsi;
8627 
8628 		list_del(&ch->list);
8629 		ch_vsi = ch->ch_vsi;
8630 		if (!ch_vsi) {
8631 			kfree(ch);
8632 			continue;
8633 		}
8634 
8635 		/* Reset queue contexts */
8636 		for (i = 0; i < ch->num_rxq; i++) {
8637 			struct ice_tx_ring *tx_ring;
8638 			struct ice_rx_ring *rx_ring;
8639 
8640 			tx_ring = vsi->tx_rings[ch->base_q + i];
8641 			rx_ring = vsi->rx_rings[ch->base_q + i];
8642 			if (tx_ring) {
8643 				tx_ring->ch = NULL;
8644 				if (tx_ring->q_vector)
8645 					tx_ring->q_vector->ch = NULL;
8646 			}
8647 			if (rx_ring) {
8648 				rx_ring->ch = NULL;
8649 				if (rx_ring->q_vector)
8650 					rx_ring->q_vector->ch = NULL;
8651 			}
8652 		}
8653 
8654 		/* Release FD resources for the channel VSI */
8655 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8656 
8657 		/* clear the VSI from scheduler tree */
8658 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8659 
8660 		/* Delete VSI from FW, PF and HW VSI arrays */
8661 		ice_vsi_delete(ch->ch_vsi);
8662 
8663 		/* free the channel */
8664 		kfree(ch);
8665 	}
8666 
8667 	/* clear the channel VSI map which is stored in main VSI */
8668 	ice_for_each_chnl_tc(i)
8669 		vsi->tc_map_vsi[i] = NULL;
8670 
8671 	/* reset main VSI's all TC information */
8672 	vsi->all_enatc = 0;
8673 	vsi->all_numtc = 0;
8674 }
8675 
8676 /**
8677  * ice_rebuild_channels - rebuild channel
8678  * @pf: ptr to PF
8679  *
8680  * Recreate channel VSIs and replay filters
8681  */
8682 static int ice_rebuild_channels(struct ice_pf *pf)
8683 {
8684 	struct device *dev = ice_pf_to_dev(pf);
8685 	struct ice_vsi *main_vsi;
8686 	bool rem_adv_fltr = true;
8687 	struct ice_channel *ch;
8688 	struct ice_vsi *vsi;
8689 	int tc_idx = 1;
8690 	int i, err;
8691 
8692 	main_vsi = ice_get_main_vsi(pf);
8693 	if (!main_vsi)
8694 		return 0;
8695 
8696 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8697 	    main_vsi->old_numtc == 1)
8698 		return 0; /* nothing to be done */
8699 
8700 	/* reconfigure main VSI based on old value of TC and cached values
8701 	 * for MQPRIO opts
8702 	 */
8703 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8704 	if (err) {
8705 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8706 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8707 		return err;
8708 	}
8709 
8710 	/* rebuild ADQ VSIs */
8711 	ice_for_each_vsi(pf, i) {
8712 		enum ice_vsi_type type;
8713 
8714 		vsi = pf->vsi[i];
8715 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8716 			continue;
8717 
8718 		type = vsi->type;
8719 
8720 		/* rebuild ADQ VSI */
8721 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8722 		if (err) {
8723 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8724 				ice_vsi_type_str(type), vsi->idx, err);
8725 			goto cleanup;
8726 		}
8727 
8728 		/* Re-map HW VSI number, using VSI handle that has been
8729 		 * previously validated in ice_replay_vsi() call above
8730 		 */
8731 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8732 
8733 		/* replay filters for the VSI */
8734 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8735 		if (err) {
8736 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8737 				ice_vsi_type_str(type), err, vsi->idx);
8738 			rem_adv_fltr = false;
8739 			goto cleanup;
8740 		}
8741 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8742 			 ice_vsi_type_str(type), vsi->idx);
8743 
8744 		/* store ADQ VSI at correct TC index in main VSI's
8745 		 * map of TC to VSI
8746 		 */
8747 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8748 	}
8749 
8750 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8751 	 * channel for main VSI's Tx and Rx rings
8752 	 */
8753 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8754 		struct ice_vsi *ch_vsi;
8755 
8756 		ch_vsi = ch->ch_vsi;
8757 		if (!ch_vsi)
8758 			continue;
8759 
8760 		/* reconfig channel resources */
8761 		ice_cfg_chnl_all_res(main_vsi, ch);
8762 
8763 		/* replay BW rate limit if it is non-zero */
8764 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8765 			continue;
8766 
8767 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8768 				       ch->min_tx_rate);
8769 		if (err)
8770 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8771 				err, ch->max_tx_rate, ch->min_tx_rate,
8772 				ch_vsi->vsi_num);
8773 		else
8774 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8775 				ch->max_tx_rate, ch->min_tx_rate,
8776 				ch_vsi->vsi_num);
8777 	}
8778 
8779 	/* reconfig RSS for main VSI */
8780 	if (main_vsi->ch_rss_size)
8781 		ice_vsi_cfg_rss_lut_key(main_vsi);
8782 
8783 	return 0;
8784 
8785 cleanup:
8786 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8787 	return err;
8788 }
8789 
8790 /**
8791  * ice_create_q_channels - Add queue channel for the given TCs
8792  * @vsi: VSI to be configured
8793  *
8794  * Configures queue channel mapping to the given TCs
8795  */
8796 static int ice_create_q_channels(struct ice_vsi *vsi)
8797 {
8798 	struct ice_pf *pf = vsi->back;
8799 	struct ice_channel *ch;
8800 	int ret = 0, i;
8801 
8802 	ice_for_each_chnl_tc(i) {
8803 		if (!(vsi->all_enatc & BIT(i)))
8804 			continue;
8805 
8806 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8807 		if (!ch) {
8808 			ret = -ENOMEM;
8809 			goto err_free;
8810 		}
8811 		INIT_LIST_HEAD(&ch->list);
8812 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8813 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8814 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8815 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8816 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8817 
8818 		/* convert to Kbits/s */
8819 		if (ch->max_tx_rate)
8820 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8821 						  ICE_BW_KBPS_DIVISOR);
8822 		if (ch->min_tx_rate)
8823 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8824 						  ICE_BW_KBPS_DIVISOR);
8825 
8826 		ret = ice_create_q_channel(vsi, ch);
8827 		if (ret) {
8828 			dev_err(ice_pf_to_dev(pf),
8829 				"failed creating channel TC:%d\n", i);
8830 			kfree(ch);
8831 			goto err_free;
8832 		}
8833 		list_add_tail(&ch->list, &vsi->ch_list);
8834 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8835 		dev_dbg(ice_pf_to_dev(pf),
8836 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8837 	}
8838 	return 0;
8839 
8840 err_free:
8841 	ice_remove_q_channels(vsi, false);
8842 
8843 	return ret;
8844 }
8845 
8846 /**
8847  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8848  * @netdev: net device to configure
8849  * @type_data: TC offload data
8850  */
8851 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8852 {
8853 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8854 	struct ice_netdev_priv *np = netdev_priv(netdev);
8855 	struct ice_vsi *vsi = np->vsi;
8856 	struct ice_pf *pf = vsi->back;
8857 	u16 mode, ena_tc_qdisc = 0;
8858 	int cur_txq, cur_rxq;
8859 	u8 hw = 0, num_tcf;
8860 	struct device *dev;
8861 	int ret, i;
8862 
8863 	dev = ice_pf_to_dev(pf);
8864 	num_tcf = mqprio_qopt->qopt.num_tc;
8865 	hw = mqprio_qopt->qopt.hw;
8866 	mode = mqprio_qopt->mode;
8867 	if (!hw) {
8868 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8869 		vsi->ch_rss_size = 0;
8870 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8871 		goto config_tcf;
8872 	}
8873 
8874 	/* Generate queue region map for number of TCF requested */
8875 	for (i = 0; i < num_tcf; i++)
8876 		ena_tc_qdisc |= BIT(i);
8877 
8878 	switch (mode) {
8879 	case TC_MQPRIO_MODE_CHANNEL:
8880 
8881 		if (pf->hw.port_info->is_custom_tx_enabled) {
8882 			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8883 			return -EBUSY;
8884 		}
8885 		ice_tear_down_devlink_rate_tree(pf);
8886 
8887 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8888 		if (ret) {
8889 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8890 				   ret);
8891 			return ret;
8892 		}
8893 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8894 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8895 		/* don't assume state of hw_tc_offload during driver load
8896 		 * and set the flag for TC flower filter if hw_tc_offload
8897 		 * already ON
8898 		 */
8899 		if (vsi->netdev->features & NETIF_F_HW_TC)
8900 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8901 		break;
8902 	default:
8903 		return -EINVAL;
8904 	}
8905 
8906 config_tcf:
8907 
8908 	/* Requesting same TCF configuration as already enabled */
8909 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8910 	    mode != TC_MQPRIO_MODE_CHANNEL)
8911 		return 0;
8912 
8913 	/* Pause VSI queues */
8914 	ice_dis_vsi(vsi, true);
8915 
8916 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8917 		ice_remove_q_channels(vsi, true);
8918 
8919 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8920 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8921 				     num_online_cpus());
8922 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8923 				     num_online_cpus());
8924 	} else {
8925 		/* logic to rebuild VSI, same like ethtool -L */
8926 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8927 
8928 		for (i = 0; i < num_tcf; i++) {
8929 			if (!(ena_tc_qdisc & BIT(i)))
8930 				continue;
8931 
8932 			offset = vsi->mqprio_qopt.qopt.offset[i];
8933 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8934 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8935 		}
8936 		vsi->req_txq = offset + qcount_tx;
8937 		vsi->req_rxq = offset + qcount_rx;
8938 
8939 		/* store away original rss_size info, so that it gets reused
8940 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8941 		 * determine, what should be the rss_sizefor main VSI
8942 		 */
8943 		vsi->orig_rss_size = vsi->rss_size;
8944 	}
8945 
8946 	/* save current values of Tx and Rx queues before calling VSI rebuild
8947 	 * for fallback option
8948 	 */
8949 	cur_txq = vsi->num_txq;
8950 	cur_rxq = vsi->num_rxq;
8951 
8952 	/* proceed with rebuild main VSI using correct number of queues */
8953 	ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
8954 	if (ret) {
8955 		/* fallback to current number of queues */
8956 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8957 		vsi->req_txq = cur_txq;
8958 		vsi->req_rxq = cur_rxq;
8959 		clear_bit(ICE_RESET_FAILED, pf->state);
8960 		if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
8961 			dev_err(dev, "Rebuild of main VSI failed again\n");
8962 			return ret;
8963 		}
8964 	}
8965 
8966 	vsi->all_numtc = num_tcf;
8967 	vsi->all_enatc = ena_tc_qdisc;
8968 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8969 	if (ret) {
8970 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8971 			   vsi->vsi_num);
8972 		goto exit;
8973 	}
8974 
8975 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8976 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8977 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8978 
8979 		/* set TC0 rate limit if specified */
8980 		if (max_tx_rate || min_tx_rate) {
8981 			/* convert to Kbits/s */
8982 			if (max_tx_rate)
8983 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8984 			if (min_tx_rate)
8985 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8986 
8987 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8988 			if (!ret) {
8989 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8990 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8991 			} else {
8992 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8993 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8994 				goto exit;
8995 			}
8996 		}
8997 		ret = ice_create_q_channels(vsi);
8998 		if (ret) {
8999 			netdev_err(netdev, "failed configuring queue channels\n");
9000 			goto exit;
9001 		} else {
9002 			netdev_dbg(netdev, "successfully configured channels\n");
9003 		}
9004 	}
9005 
9006 	if (vsi->ch_rss_size)
9007 		ice_vsi_cfg_rss_lut_key(vsi);
9008 
9009 exit:
9010 	/* if error, reset the all_numtc and all_enatc */
9011 	if (ret) {
9012 		vsi->all_numtc = 0;
9013 		vsi->all_enatc = 0;
9014 	}
9015 	/* resume VSI */
9016 	ice_ena_vsi(vsi, true);
9017 
9018 	return ret;
9019 }
9020 
9021 static LIST_HEAD(ice_block_cb_list);
9022 
9023 static int
9024 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9025 	     void *type_data)
9026 {
9027 	struct ice_netdev_priv *np = netdev_priv(netdev);
9028 	struct ice_pf *pf = np->vsi->back;
9029 	bool locked = false;
9030 	int err;
9031 
9032 	switch (type) {
9033 	case TC_SETUP_BLOCK:
9034 		return flow_block_cb_setup_simple(type_data,
9035 						  &ice_block_cb_list,
9036 						  ice_setup_tc_block_cb,
9037 						  np, np, true);
9038 	case TC_SETUP_QDISC_MQPRIO:
9039 		if (ice_is_eswitch_mode_switchdev(pf)) {
9040 			netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9041 			return -EOPNOTSUPP;
9042 		}
9043 
9044 		if (pf->adev) {
9045 			mutex_lock(&pf->adev_mutex);
9046 			device_lock(&pf->adev->dev);
9047 			locked = true;
9048 			if (pf->adev->dev.driver) {
9049 				netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9050 				err = -EBUSY;
9051 				goto adev_unlock;
9052 			}
9053 		}
9054 
9055 		/* setup traffic classifier for receive side */
9056 		mutex_lock(&pf->tc_mutex);
9057 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9058 		mutex_unlock(&pf->tc_mutex);
9059 
9060 adev_unlock:
9061 		if (locked) {
9062 			device_unlock(&pf->adev->dev);
9063 			mutex_unlock(&pf->adev_mutex);
9064 		}
9065 		return err;
9066 	default:
9067 		return -EOPNOTSUPP;
9068 	}
9069 	return -EOPNOTSUPP;
9070 }
9071 
9072 static struct ice_indr_block_priv *
9073 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9074 			   struct net_device *netdev)
9075 {
9076 	struct ice_indr_block_priv *cb_priv;
9077 
9078 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9079 		if (!cb_priv->netdev)
9080 			return NULL;
9081 		if (cb_priv->netdev == netdev)
9082 			return cb_priv;
9083 	}
9084 	return NULL;
9085 }
9086 
9087 static int
9088 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9089 			void *indr_priv)
9090 {
9091 	struct ice_indr_block_priv *priv = indr_priv;
9092 	struct ice_netdev_priv *np = priv->np;
9093 
9094 	switch (type) {
9095 	case TC_SETUP_CLSFLOWER:
9096 		return ice_setup_tc_cls_flower(np, priv->netdev,
9097 					       (struct flow_cls_offload *)
9098 					       type_data);
9099 	default:
9100 		return -EOPNOTSUPP;
9101 	}
9102 }
9103 
9104 static int
9105 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9106 			struct ice_netdev_priv *np,
9107 			struct flow_block_offload *f, void *data,
9108 			void (*cleanup)(struct flow_block_cb *block_cb))
9109 {
9110 	struct ice_indr_block_priv *indr_priv;
9111 	struct flow_block_cb *block_cb;
9112 
9113 	if (!ice_is_tunnel_supported(netdev) &&
9114 	    !(is_vlan_dev(netdev) &&
9115 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
9116 		return -EOPNOTSUPP;
9117 
9118 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9119 		return -EOPNOTSUPP;
9120 
9121 	switch (f->command) {
9122 	case FLOW_BLOCK_BIND:
9123 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9124 		if (indr_priv)
9125 			return -EEXIST;
9126 
9127 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9128 		if (!indr_priv)
9129 			return -ENOMEM;
9130 
9131 		indr_priv->netdev = netdev;
9132 		indr_priv->np = np;
9133 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9134 
9135 		block_cb =
9136 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9137 						 indr_priv, indr_priv,
9138 						 ice_rep_indr_tc_block_unbind,
9139 						 f, netdev, sch, data, np,
9140 						 cleanup);
9141 
9142 		if (IS_ERR(block_cb)) {
9143 			list_del(&indr_priv->list);
9144 			kfree(indr_priv);
9145 			return PTR_ERR(block_cb);
9146 		}
9147 		flow_block_cb_add(block_cb, f);
9148 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9149 		break;
9150 	case FLOW_BLOCK_UNBIND:
9151 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9152 		if (!indr_priv)
9153 			return -ENOENT;
9154 
9155 		block_cb = flow_block_cb_lookup(f->block,
9156 						ice_indr_setup_block_cb,
9157 						indr_priv);
9158 		if (!block_cb)
9159 			return -ENOENT;
9160 
9161 		flow_indr_block_cb_remove(block_cb, f);
9162 
9163 		list_del(&block_cb->driver_list);
9164 		break;
9165 	default:
9166 		return -EOPNOTSUPP;
9167 	}
9168 	return 0;
9169 }
9170 
9171 static int
9172 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9173 		     void *cb_priv, enum tc_setup_type type, void *type_data,
9174 		     void *data,
9175 		     void (*cleanup)(struct flow_block_cb *block_cb))
9176 {
9177 	switch (type) {
9178 	case TC_SETUP_BLOCK:
9179 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9180 					       data, cleanup);
9181 
9182 	default:
9183 		return -EOPNOTSUPP;
9184 	}
9185 }
9186 
9187 /**
9188  * ice_open - Called when a network interface becomes active
9189  * @netdev: network interface device structure
9190  *
9191  * The open entry point is called when a network interface is made
9192  * active by the system (IFF_UP). At this point all resources needed
9193  * for transmit and receive operations are allocated, the interrupt
9194  * handler is registered with the OS, the netdev watchdog is enabled,
9195  * and the stack is notified that the interface is ready.
9196  *
9197  * Returns 0 on success, negative value on failure
9198  */
9199 int ice_open(struct net_device *netdev)
9200 {
9201 	struct ice_netdev_priv *np = netdev_priv(netdev);
9202 	struct ice_pf *pf = np->vsi->back;
9203 
9204 	if (ice_is_reset_in_progress(pf->state)) {
9205 		netdev_err(netdev, "can't open net device while reset is in progress");
9206 		return -EBUSY;
9207 	}
9208 
9209 	return ice_open_internal(netdev);
9210 }
9211 
9212 /**
9213  * ice_open_internal - Called when a network interface becomes active
9214  * @netdev: network interface device structure
9215  *
9216  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9217  * handling routine
9218  *
9219  * Returns 0 on success, negative value on failure
9220  */
9221 int ice_open_internal(struct net_device *netdev)
9222 {
9223 	struct ice_netdev_priv *np = netdev_priv(netdev);
9224 	struct ice_vsi *vsi = np->vsi;
9225 	struct ice_pf *pf = vsi->back;
9226 	struct ice_port_info *pi;
9227 	int err;
9228 
9229 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9230 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9231 		return -EIO;
9232 	}
9233 
9234 	netif_carrier_off(netdev);
9235 
9236 	pi = vsi->port_info;
9237 	err = ice_update_link_info(pi);
9238 	if (err) {
9239 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
9240 		return err;
9241 	}
9242 
9243 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9244 
9245 	/* Set PHY if there is media, otherwise, turn off PHY */
9246 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9247 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9248 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9249 			err = ice_init_phy_user_cfg(pi);
9250 			if (err) {
9251 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9252 					   err);
9253 				return err;
9254 			}
9255 		}
9256 
9257 		err = ice_configure_phy(vsi);
9258 		if (err) {
9259 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9260 				   err);
9261 			return err;
9262 		}
9263 	} else {
9264 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9265 		ice_set_link(vsi, false);
9266 	}
9267 
9268 	err = ice_vsi_open(vsi);
9269 	if (err)
9270 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9271 			   vsi->vsi_num, vsi->vsw->sw_id);
9272 
9273 	/* Update existing tunnels information */
9274 	udp_tunnel_get_rx_info(netdev);
9275 
9276 	return err;
9277 }
9278 
9279 /**
9280  * ice_stop - Disables a network interface
9281  * @netdev: network interface device structure
9282  *
9283  * The stop entry point is called when an interface is de-activated by the OS,
9284  * and the netdevice enters the DOWN state. The hardware is still under the
9285  * driver's control, but the netdev interface is disabled.
9286  *
9287  * Returns success only - not allowed to fail
9288  */
9289 int ice_stop(struct net_device *netdev)
9290 {
9291 	struct ice_netdev_priv *np = netdev_priv(netdev);
9292 	struct ice_vsi *vsi = np->vsi;
9293 	struct ice_pf *pf = vsi->back;
9294 
9295 	if (ice_is_reset_in_progress(pf->state)) {
9296 		netdev_err(netdev, "can't stop net device while reset is in progress");
9297 		return -EBUSY;
9298 	}
9299 
9300 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9301 		int link_err = ice_force_phys_link_state(vsi, false);
9302 
9303 		if (link_err) {
9304 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9305 				   vsi->vsi_num, link_err);
9306 			return -EIO;
9307 		}
9308 	}
9309 
9310 	ice_vsi_close(vsi);
9311 
9312 	return 0;
9313 }
9314 
9315 /**
9316  * ice_features_check - Validate encapsulated packet conforms to limits
9317  * @skb: skb buffer
9318  * @netdev: This port's netdev
9319  * @features: Offload features that the stack believes apply
9320  */
9321 static netdev_features_t
9322 ice_features_check(struct sk_buff *skb,
9323 		   struct net_device __always_unused *netdev,
9324 		   netdev_features_t features)
9325 {
9326 	bool gso = skb_is_gso(skb);
9327 	size_t len;
9328 
9329 	/* No point in doing any of this if neither checksum nor GSO are
9330 	 * being requested for this frame. We can rule out both by just
9331 	 * checking for CHECKSUM_PARTIAL
9332 	 */
9333 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9334 		return features;
9335 
9336 	/* We cannot support GSO if the MSS is going to be less than
9337 	 * 64 bytes. If it is then we need to drop support for GSO.
9338 	 */
9339 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9340 		features &= ~NETIF_F_GSO_MASK;
9341 
9342 	len = skb_network_offset(skb);
9343 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9344 		goto out_rm_features;
9345 
9346 	len = skb_network_header_len(skb);
9347 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9348 		goto out_rm_features;
9349 
9350 	if (skb->encapsulation) {
9351 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9352 		 * the case of IPIP frames, the transport header pointer is
9353 		 * after the inner header! So check to make sure that this
9354 		 * is a GRE or UDP_TUNNEL frame before doing that math.
9355 		 */
9356 		if (gso && (skb_shinfo(skb)->gso_type &
9357 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9358 			len = skb_inner_network_header(skb) -
9359 			      skb_transport_header(skb);
9360 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9361 				goto out_rm_features;
9362 		}
9363 
9364 		len = skb_inner_network_header_len(skb);
9365 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9366 			goto out_rm_features;
9367 	}
9368 
9369 	return features;
9370 out_rm_features:
9371 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9372 }
9373 
9374 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9375 	.ndo_open = ice_open,
9376 	.ndo_stop = ice_stop,
9377 	.ndo_start_xmit = ice_start_xmit,
9378 	.ndo_set_mac_address = ice_set_mac_address,
9379 	.ndo_validate_addr = eth_validate_addr,
9380 	.ndo_change_mtu = ice_change_mtu,
9381 	.ndo_get_stats64 = ice_get_stats64,
9382 	.ndo_tx_timeout = ice_tx_timeout,
9383 	.ndo_bpf = ice_xdp_safe_mode,
9384 };
9385 
9386 static const struct net_device_ops ice_netdev_ops = {
9387 	.ndo_open = ice_open,
9388 	.ndo_stop = ice_stop,
9389 	.ndo_start_xmit = ice_start_xmit,
9390 	.ndo_select_queue = ice_select_queue,
9391 	.ndo_features_check = ice_features_check,
9392 	.ndo_fix_features = ice_fix_features,
9393 	.ndo_set_rx_mode = ice_set_rx_mode,
9394 	.ndo_set_mac_address = ice_set_mac_address,
9395 	.ndo_validate_addr = eth_validate_addr,
9396 	.ndo_change_mtu = ice_change_mtu,
9397 	.ndo_get_stats64 = ice_get_stats64,
9398 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9399 	.ndo_eth_ioctl = ice_eth_ioctl,
9400 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9401 	.ndo_set_vf_mac = ice_set_vf_mac,
9402 	.ndo_get_vf_config = ice_get_vf_cfg,
9403 	.ndo_set_vf_trust = ice_set_vf_trust,
9404 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9405 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9406 	.ndo_get_vf_stats = ice_get_vf_stats,
9407 	.ndo_set_vf_rate = ice_set_vf_bw,
9408 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9409 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9410 	.ndo_setup_tc = ice_setup_tc,
9411 	.ndo_set_features = ice_set_features,
9412 	.ndo_bridge_getlink = ice_bridge_getlink,
9413 	.ndo_bridge_setlink = ice_bridge_setlink,
9414 	.ndo_fdb_add = ice_fdb_add,
9415 	.ndo_fdb_del = ice_fdb_del,
9416 #ifdef CONFIG_RFS_ACCEL
9417 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9418 #endif
9419 	.ndo_tx_timeout = ice_tx_timeout,
9420 	.ndo_bpf = ice_xdp,
9421 	.ndo_xdp_xmit = ice_xdp_xmit,
9422 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9423 };
9424