1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "ice_devlink.h" 17 #include "ice_hwmon.h" 18 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 19 * ice tracepoint functions. This must be done exactly once across the 20 * ice driver. 21 */ 22 #define CREATE_TRACE_POINTS 23 #include "ice_trace.h" 24 #include "ice_eswitch.h" 25 #include "ice_tc_lib.h" 26 #include "ice_vsi_vlan_ops.h" 27 #include <net/xdp_sock_drv.h> 28 29 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 30 static const char ice_driver_string[] = DRV_SUMMARY; 31 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 32 33 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 34 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 35 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 36 37 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 38 MODULE_DESCRIPTION(DRV_SUMMARY); 39 MODULE_LICENSE("GPL v2"); 40 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 41 42 static int debug = -1; 43 module_param(debug, int, 0644); 44 #ifndef CONFIG_DYNAMIC_DEBUG 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 46 #else 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 48 #endif /* !CONFIG_DYNAMIC_DEBUG */ 49 50 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 51 EXPORT_SYMBOL(ice_xdp_locking_key); 52 53 /** 54 * ice_hw_to_dev - Get device pointer from the hardware structure 55 * @hw: pointer to the device HW structure 56 * 57 * Used to access the device pointer from compilation units which can't easily 58 * include the definition of struct ice_pf without leading to circular header 59 * dependencies. 60 */ 61 struct device *ice_hw_to_dev(struct ice_hw *hw) 62 { 63 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 64 65 return &pf->pdev->dev; 66 } 67 68 static struct workqueue_struct *ice_wq; 69 struct workqueue_struct *ice_lag_wq; 70 static const struct net_device_ops ice_netdev_safe_mode_ops; 71 static const struct net_device_ops ice_netdev_ops; 72 73 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 74 75 static void ice_vsi_release_all(struct ice_pf *pf); 76 77 static int ice_rebuild_channels(struct ice_pf *pf); 78 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 79 80 static int 81 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 82 void *cb_priv, enum tc_setup_type type, void *type_data, 83 void *data, 84 void (*cleanup)(struct flow_block_cb *block_cb)); 85 86 bool netif_is_ice(const struct net_device *dev) 87 { 88 return dev && (dev->netdev_ops == &ice_netdev_ops); 89 } 90 91 /** 92 * ice_get_tx_pending - returns number of Tx descriptors not processed 93 * @ring: the ring of descriptors 94 */ 95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 96 { 97 u16 head, tail; 98 99 head = ring->next_to_clean; 100 tail = ring->next_to_use; 101 102 if (head != tail) 103 return (head < tail) ? 104 tail - head : (tail + ring->count - head); 105 return 0; 106 } 107 108 /** 109 * ice_check_for_hang_subtask - check for and recover hung queues 110 * @pf: pointer to PF struct 111 */ 112 static void ice_check_for_hang_subtask(struct ice_pf *pf) 113 { 114 struct ice_vsi *vsi = NULL; 115 struct ice_hw *hw; 116 unsigned int i; 117 int packets; 118 u32 v; 119 120 ice_for_each_vsi(pf, v) 121 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 122 vsi = pf->vsi[v]; 123 break; 124 } 125 126 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 127 return; 128 129 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 130 return; 131 132 hw = &vsi->back->hw; 133 134 ice_for_each_txq(vsi, i) { 135 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 136 struct ice_ring_stats *ring_stats; 137 138 if (!tx_ring) 139 continue; 140 if (ice_ring_ch_enabled(tx_ring)) 141 continue; 142 143 ring_stats = tx_ring->ring_stats; 144 if (!ring_stats) 145 continue; 146 147 if (tx_ring->desc) { 148 /* If packet counter has not changed the queue is 149 * likely stalled, so force an interrupt for this 150 * queue. 151 * 152 * prev_pkt would be negative if there was no 153 * pending work. 154 */ 155 packets = ring_stats->stats.pkts & INT_MAX; 156 if (ring_stats->tx_stats.prev_pkt == packets) { 157 /* Trigger sw interrupt to revive the queue */ 158 ice_trigger_sw_intr(hw, tx_ring->q_vector); 159 continue; 160 } 161 162 /* Memory barrier between read of packet count and call 163 * to ice_get_tx_pending() 164 */ 165 smp_rmb(); 166 ring_stats->tx_stats.prev_pkt = 167 ice_get_tx_pending(tx_ring) ? packets : -1; 168 } 169 } 170 } 171 172 /** 173 * ice_init_mac_fltr - Set initial MAC filters 174 * @pf: board private structure 175 * 176 * Set initial set of MAC filters for PF VSI; configure filters for permanent 177 * address and broadcast address. If an error is encountered, netdevice will be 178 * unregistered. 179 */ 180 static int ice_init_mac_fltr(struct ice_pf *pf) 181 { 182 struct ice_vsi *vsi; 183 u8 *perm_addr; 184 185 vsi = ice_get_main_vsi(pf); 186 if (!vsi) 187 return -EINVAL; 188 189 perm_addr = vsi->port_info->mac.perm_addr; 190 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 191 } 192 193 /** 194 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 195 * @netdev: the net device on which the sync is happening 196 * @addr: MAC address to sync 197 * 198 * This is a callback function which is called by the in kernel device sync 199 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 200 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 201 * MAC filters from the hardware. 202 */ 203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 204 { 205 struct ice_netdev_priv *np = netdev_priv(netdev); 206 struct ice_vsi *vsi = np->vsi; 207 208 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 209 ICE_FWD_TO_VSI)) 210 return -EINVAL; 211 212 return 0; 213 } 214 215 /** 216 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 217 * @netdev: the net device on which the unsync is happening 218 * @addr: MAC address to unsync 219 * 220 * This is a callback function which is called by the in kernel device unsync 221 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 222 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 223 * delete the MAC filters from the hardware. 224 */ 225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 226 { 227 struct ice_netdev_priv *np = netdev_priv(netdev); 228 struct ice_vsi *vsi = np->vsi; 229 230 /* Under some circumstances, we might receive a request to delete our 231 * own device address from our uc list. Because we store the device 232 * address in the VSI's MAC filter list, we need to ignore such 233 * requests and not delete our device address from this list. 234 */ 235 if (ether_addr_equal(addr, netdev->dev_addr)) 236 return 0; 237 238 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 239 ICE_FWD_TO_VSI)) 240 return -EINVAL; 241 242 return 0; 243 } 244 245 /** 246 * ice_vsi_fltr_changed - check if filter state changed 247 * @vsi: VSI to be checked 248 * 249 * returns true if filter state has changed, false otherwise. 250 */ 251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 252 { 253 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 254 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 255 } 256 257 /** 258 * ice_set_promisc - Enable promiscuous mode for a given PF 259 * @vsi: the VSI being configured 260 * @promisc_m: mask of promiscuous config bits 261 * 262 */ 263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 264 { 265 int status; 266 267 if (vsi->type != ICE_VSI_PF) 268 return 0; 269 270 if (ice_vsi_has_non_zero_vlans(vsi)) { 271 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 272 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 273 promisc_m); 274 } else { 275 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 276 promisc_m, 0); 277 } 278 if (status && status != -EEXIST) 279 return status; 280 281 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 282 vsi->vsi_num, promisc_m); 283 return 0; 284 } 285 286 /** 287 * ice_clear_promisc - Disable promiscuous mode for a given PF 288 * @vsi: the VSI being configured 289 * @promisc_m: mask of promiscuous config bits 290 * 291 */ 292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 293 { 294 int status; 295 296 if (vsi->type != ICE_VSI_PF) 297 return 0; 298 299 if (ice_vsi_has_non_zero_vlans(vsi)) { 300 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 301 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 302 promisc_m); 303 } else { 304 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 305 promisc_m, 0); 306 } 307 308 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 309 vsi->vsi_num, promisc_m); 310 return status; 311 } 312 313 /** 314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 315 * @vsi: ptr to the VSI 316 * 317 * Push any outstanding VSI filter changes through the AdminQ. 318 */ 319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 320 { 321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 322 struct device *dev = ice_pf_to_dev(vsi->back); 323 struct net_device *netdev = vsi->netdev; 324 bool promisc_forced_on = false; 325 struct ice_pf *pf = vsi->back; 326 struct ice_hw *hw = &pf->hw; 327 u32 changed_flags = 0; 328 int err; 329 330 if (!vsi->netdev) 331 return -EINVAL; 332 333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 334 usleep_range(1000, 2000); 335 336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 337 vsi->current_netdev_flags = vsi->netdev->flags; 338 339 INIT_LIST_HEAD(&vsi->tmp_sync_list); 340 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 341 342 if (ice_vsi_fltr_changed(vsi)) { 343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 345 346 /* grab the netdev's addr_list_lock */ 347 netif_addr_lock_bh(netdev); 348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 349 ice_add_mac_to_unsync_list); 350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 /* our temp lists are populated. release lock */ 353 netif_addr_unlock_bh(netdev); 354 } 355 356 /* Remove MAC addresses in the unsync list */ 357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 359 if (err) { 360 netdev_err(netdev, "Failed to delete MAC filters\n"); 361 /* if we failed because of alloc failures, just bail */ 362 if (err == -ENOMEM) 363 goto out; 364 } 365 366 /* Add MAC addresses in the sync list */ 367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 368 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 369 /* If filter is added successfully or already exists, do not go into 370 * 'if' condition and report it as error. Instead continue processing 371 * rest of the function. 372 */ 373 if (err && err != -EEXIST) { 374 netdev_err(netdev, "Failed to add MAC filters\n"); 375 /* If there is no more space for new umac filters, VSI 376 * should go into promiscuous mode. There should be some 377 * space reserved for promiscuous filters. 378 */ 379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 381 vsi->state)) { 382 promisc_forced_on = true; 383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 384 vsi->vsi_num); 385 } else { 386 goto out; 387 } 388 } 389 err = 0; 390 /* check for changes in promiscuous modes */ 391 if (changed_flags & IFF_ALLMULTI) { 392 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 394 if (err) { 395 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 396 goto out_promisc; 397 } 398 } else { 399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 401 if (err) { 402 vsi->current_netdev_flags |= IFF_ALLMULTI; 403 goto out_promisc; 404 } 405 } 406 } 407 408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 411 if (vsi->current_netdev_flags & IFF_PROMISC) { 412 /* Apply Rx filter rule to get traffic from wire */ 413 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 414 err = ice_set_dflt_vsi(vsi); 415 if (err && err != -EEXIST) { 416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags &= 419 ~IFF_PROMISC; 420 goto out_promisc; 421 } 422 err = 0; 423 vlan_ops->dis_rx_filtering(vsi); 424 425 /* promiscuous mode implies allmulticast so 426 * that VSIs that are in promiscuous mode are 427 * subscribed to multicast packets coming to 428 * the port 429 */ 430 err = ice_set_promisc(vsi, 431 ICE_MCAST_PROMISC_BITS); 432 if (err) 433 goto out_promisc; 434 } 435 } else { 436 /* Clear Rx filter to remove traffic from wire */ 437 if (ice_is_vsi_dflt_vsi(vsi)) { 438 err = ice_clear_dflt_vsi(vsi); 439 if (err) { 440 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 441 err, vsi->vsi_num); 442 vsi->current_netdev_flags |= 443 IFF_PROMISC; 444 goto out_promisc; 445 } 446 if (vsi->netdev->features & 447 NETIF_F_HW_VLAN_CTAG_FILTER) 448 vlan_ops->ena_rx_filtering(vsi); 449 } 450 451 /* disable allmulti here, but only if allmulti is not 452 * still enabled for the netdev 453 */ 454 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 455 err = ice_clear_promisc(vsi, 456 ICE_MCAST_PROMISC_BITS); 457 if (err) { 458 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 459 err, vsi->vsi_num); 460 } 461 } 462 } 463 } 464 goto exit; 465 466 out_promisc: 467 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 468 goto exit; 469 out: 470 /* if something went wrong then set the changed flag so we try again */ 471 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 472 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 473 exit: 474 clear_bit(ICE_CFG_BUSY, vsi->state); 475 return err; 476 } 477 478 /** 479 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 480 * @pf: board private structure 481 */ 482 static void ice_sync_fltr_subtask(struct ice_pf *pf) 483 { 484 int v; 485 486 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 487 return; 488 489 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 490 491 ice_for_each_vsi(pf, v) 492 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 493 ice_vsi_sync_fltr(pf->vsi[v])) { 494 /* come back and try again later */ 495 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 496 break; 497 } 498 } 499 500 /** 501 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 502 * @pf: the PF 503 * @locked: is the rtnl_lock already held 504 */ 505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 506 { 507 int node; 508 int v; 509 510 ice_for_each_vsi(pf, v) 511 if (pf->vsi[v]) 512 ice_dis_vsi(pf->vsi[v], locked); 513 514 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 515 pf->pf_agg_node[node].num_vsis = 0; 516 517 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 518 pf->vf_agg_node[node].num_vsis = 0; 519 } 520 521 /** 522 * ice_clear_sw_switch_recipes - clear switch recipes 523 * @pf: board private structure 524 * 525 * Mark switch recipes as not created in sw structures. There are cases where 526 * rules (especially advanced rules) need to be restored, either re-read from 527 * hardware or added again. For example after the reset. 'recp_created' flag 528 * prevents from doing that and need to be cleared upfront. 529 */ 530 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 531 { 532 struct ice_sw_recipe *recp; 533 u8 i; 534 535 recp = pf->hw.switch_info->recp_list; 536 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 537 recp[i].recp_created = false; 538 } 539 540 /** 541 * ice_prepare_for_reset - prep for reset 542 * @pf: board private structure 543 * @reset_type: reset type requested 544 * 545 * Inform or close all dependent features in prep for reset. 546 */ 547 static void 548 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 549 { 550 struct ice_hw *hw = &pf->hw; 551 struct ice_vsi *vsi; 552 struct ice_vf *vf; 553 unsigned int bkt; 554 555 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 556 557 /* already prepared for reset */ 558 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 559 return; 560 561 ice_unplug_aux_dev(pf); 562 563 /* Notify VFs of impending reset */ 564 if (ice_check_sq_alive(hw, &hw->mailboxq)) 565 ice_vc_notify_reset(pf); 566 567 /* Disable VFs until reset is completed */ 568 mutex_lock(&pf->vfs.table_lock); 569 ice_for_each_vf(pf, bkt, vf) 570 ice_set_vf_state_dis(vf); 571 mutex_unlock(&pf->vfs.table_lock); 572 573 if (ice_is_eswitch_mode_switchdev(pf)) { 574 if (reset_type != ICE_RESET_PFR) 575 ice_clear_sw_switch_recipes(pf); 576 } 577 578 /* release ADQ specific HW and SW resources */ 579 vsi = ice_get_main_vsi(pf); 580 if (!vsi) 581 goto skip; 582 583 /* to be on safe side, reset orig_rss_size so that normal flow 584 * of deciding rss_size can take precedence 585 */ 586 vsi->orig_rss_size = 0; 587 588 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 589 if (reset_type == ICE_RESET_PFR) { 590 vsi->old_ena_tc = vsi->all_enatc; 591 vsi->old_numtc = vsi->all_numtc; 592 } else { 593 ice_remove_q_channels(vsi, true); 594 595 /* for other reset type, do not support channel rebuild 596 * hence reset needed info 597 */ 598 vsi->old_ena_tc = 0; 599 vsi->all_enatc = 0; 600 vsi->old_numtc = 0; 601 vsi->all_numtc = 0; 602 vsi->req_txq = 0; 603 vsi->req_rxq = 0; 604 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 605 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 606 } 607 } 608 skip: 609 610 /* clear SW filtering DB */ 611 ice_clear_hw_tbls(hw); 612 /* disable the VSIs and their queues that are not already DOWN */ 613 ice_pf_dis_all_vsi(pf, false); 614 615 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 616 ice_ptp_prepare_for_reset(pf); 617 618 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 619 ice_gnss_exit(pf); 620 621 if (hw->port_info) 622 ice_sched_clear_port(hw->port_info); 623 624 ice_shutdown_all_ctrlq(hw); 625 626 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 627 } 628 629 /** 630 * ice_do_reset - Initiate one of many types of resets 631 * @pf: board private structure 632 * @reset_type: reset type requested before this function was called. 633 */ 634 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 635 { 636 struct device *dev = ice_pf_to_dev(pf); 637 struct ice_hw *hw = &pf->hw; 638 639 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 640 641 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 642 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 643 reset_type = ICE_RESET_CORER; 644 } 645 646 ice_prepare_for_reset(pf, reset_type); 647 648 /* trigger the reset */ 649 if (ice_reset(hw, reset_type)) { 650 dev_err(dev, "reset %d failed\n", reset_type); 651 set_bit(ICE_RESET_FAILED, pf->state); 652 clear_bit(ICE_RESET_OICR_RECV, pf->state); 653 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 654 clear_bit(ICE_PFR_REQ, pf->state); 655 clear_bit(ICE_CORER_REQ, pf->state); 656 clear_bit(ICE_GLOBR_REQ, pf->state); 657 wake_up(&pf->reset_wait_queue); 658 return; 659 } 660 661 /* PFR is a bit of a special case because it doesn't result in an OICR 662 * interrupt. So for PFR, rebuild after the reset and clear the reset- 663 * associated state bits. 664 */ 665 if (reset_type == ICE_RESET_PFR) { 666 pf->pfr_count++; 667 ice_rebuild(pf, reset_type); 668 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 669 clear_bit(ICE_PFR_REQ, pf->state); 670 wake_up(&pf->reset_wait_queue); 671 ice_reset_all_vfs(pf); 672 } 673 } 674 675 /** 676 * ice_reset_subtask - Set up for resetting the device and driver 677 * @pf: board private structure 678 */ 679 static void ice_reset_subtask(struct ice_pf *pf) 680 { 681 enum ice_reset_req reset_type = ICE_RESET_INVAL; 682 683 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 684 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 685 * of reset is pending and sets bits in pf->state indicating the reset 686 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 687 * prepare for pending reset if not already (for PF software-initiated 688 * global resets the software should already be prepared for it as 689 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 690 * by firmware or software on other PFs, that bit is not set so prepare 691 * for the reset now), poll for reset done, rebuild and return. 692 */ 693 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 694 /* Perform the largest reset requested */ 695 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 696 reset_type = ICE_RESET_CORER; 697 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 698 reset_type = ICE_RESET_GLOBR; 699 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 700 reset_type = ICE_RESET_EMPR; 701 /* return if no valid reset type requested */ 702 if (reset_type == ICE_RESET_INVAL) 703 return; 704 ice_prepare_for_reset(pf, reset_type); 705 706 /* make sure we are ready to rebuild */ 707 if (ice_check_reset(&pf->hw)) { 708 set_bit(ICE_RESET_FAILED, pf->state); 709 } else { 710 /* done with reset. start rebuild */ 711 pf->hw.reset_ongoing = false; 712 ice_rebuild(pf, reset_type); 713 /* clear bit to resume normal operations, but 714 * ICE_NEEDS_RESTART bit is set in case rebuild failed 715 */ 716 clear_bit(ICE_RESET_OICR_RECV, pf->state); 717 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 718 clear_bit(ICE_PFR_REQ, pf->state); 719 clear_bit(ICE_CORER_REQ, pf->state); 720 clear_bit(ICE_GLOBR_REQ, pf->state); 721 wake_up(&pf->reset_wait_queue); 722 ice_reset_all_vfs(pf); 723 } 724 725 return; 726 } 727 728 /* No pending resets to finish processing. Check for new resets */ 729 if (test_bit(ICE_PFR_REQ, pf->state)) { 730 reset_type = ICE_RESET_PFR; 731 if (pf->lag && pf->lag->bonded) { 732 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 733 reset_type = ICE_RESET_CORER; 734 } 735 } 736 if (test_bit(ICE_CORER_REQ, pf->state)) 737 reset_type = ICE_RESET_CORER; 738 if (test_bit(ICE_GLOBR_REQ, pf->state)) 739 reset_type = ICE_RESET_GLOBR; 740 /* If no valid reset type requested just return */ 741 if (reset_type == ICE_RESET_INVAL) 742 return; 743 744 /* reset if not already down or busy */ 745 if (!test_bit(ICE_DOWN, pf->state) && 746 !test_bit(ICE_CFG_BUSY, pf->state)) { 747 ice_do_reset(pf, reset_type); 748 } 749 } 750 751 /** 752 * ice_print_topo_conflict - print topology conflict message 753 * @vsi: the VSI whose topology status is being checked 754 */ 755 static void ice_print_topo_conflict(struct ice_vsi *vsi) 756 { 757 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 758 case ICE_AQ_LINK_TOPO_CONFLICT: 759 case ICE_AQ_LINK_MEDIA_CONFLICT: 760 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 761 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 762 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 763 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 764 break; 765 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 766 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 767 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 768 else 769 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 770 break; 771 default: 772 break; 773 } 774 } 775 776 /** 777 * ice_print_link_msg - print link up or down message 778 * @vsi: the VSI whose link status is being queried 779 * @isup: boolean for if the link is now up or down 780 */ 781 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 782 { 783 struct ice_aqc_get_phy_caps_data *caps; 784 const char *an_advertised; 785 const char *fec_req; 786 const char *speed; 787 const char *fec; 788 const char *fc; 789 const char *an; 790 int status; 791 792 if (!vsi) 793 return; 794 795 if (vsi->current_isup == isup) 796 return; 797 798 vsi->current_isup = isup; 799 800 if (!isup) { 801 netdev_info(vsi->netdev, "NIC Link is Down\n"); 802 return; 803 } 804 805 switch (vsi->port_info->phy.link_info.link_speed) { 806 case ICE_AQ_LINK_SPEED_100GB: 807 speed = "100 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_50GB: 810 speed = "50 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_40GB: 813 speed = "40 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_25GB: 816 speed = "25 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_20GB: 819 speed = "20 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_10GB: 822 speed = "10 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_5GB: 825 speed = "5 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_2500MB: 828 speed = "2.5 G"; 829 break; 830 case ICE_AQ_LINK_SPEED_1000MB: 831 speed = "1 G"; 832 break; 833 case ICE_AQ_LINK_SPEED_100MB: 834 speed = "100 M"; 835 break; 836 default: 837 speed = "Unknown "; 838 break; 839 } 840 841 switch (vsi->port_info->fc.current_mode) { 842 case ICE_FC_FULL: 843 fc = "Rx/Tx"; 844 break; 845 case ICE_FC_TX_PAUSE: 846 fc = "Tx"; 847 break; 848 case ICE_FC_RX_PAUSE: 849 fc = "Rx"; 850 break; 851 case ICE_FC_NONE: 852 fc = "None"; 853 break; 854 default: 855 fc = "Unknown"; 856 break; 857 } 858 859 /* Get FEC mode based on negotiated link info */ 860 switch (vsi->port_info->phy.link_info.fec_info) { 861 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 862 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 863 fec = "RS-FEC"; 864 break; 865 case ICE_AQ_LINK_25G_KR_FEC_EN: 866 fec = "FC-FEC/BASE-R"; 867 break; 868 default: 869 fec = "NONE"; 870 break; 871 } 872 873 /* check if autoneg completed, might be false due to not supported */ 874 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 875 an = "True"; 876 else 877 an = "False"; 878 879 /* Get FEC mode requested based on PHY caps last SW configuration */ 880 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 881 if (!caps) { 882 fec_req = "Unknown"; 883 an_advertised = "Unknown"; 884 goto done; 885 } 886 887 status = ice_aq_get_phy_caps(vsi->port_info, false, 888 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 889 if (status) 890 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 891 892 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 893 894 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 895 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 896 fec_req = "RS-FEC"; 897 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 898 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 899 fec_req = "FC-FEC/BASE-R"; 900 else 901 fec_req = "NONE"; 902 903 kfree(caps); 904 905 done: 906 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 907 speed, fec_req, fec, an_advertised, an, fc); 908 ice_print_topo_conflict(vsi); 909 } 910 911 /** 912 * ice_vsi_link_event - update the VSI's netdev 913 * @vsi: the VSI on which the link event occurred 914 * @link_up: whether or not the VSI needs to be set up or down 915 */ 916 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 917 { 918 if (!vsi) 919 return; 920 921 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 922 return; 923 924 if (vsi->type == ICE_VSI_PF) { 925 if (link_up == netif_carrier_ok(vsi->netdev)) 926 return; 927 928 if (link_up) { 929 netif_carrier_on(vsi->netdev); 930 netif_tx_wake_all_queues(vsi->netdev); 931 } else { 932 netif_carrier_off(vsi->netdev); 933 netif_tx_stop_all_queues(vsi->netdev); 934 } 935 } 936 } 937 938 /** 939 * ice_set_dflt_mib - send a default config MIB to the FW 940 * @pf: private PF struct 941 * 942 * This function sends a default configuration MIB to the FW. 943 * 944 * If this function errors out at any point, the driver is still able to 945 * function. The main impact is that LFC may not operate as expected. 946 * Therefore an error state in this function should be treated with a DBG 947 * message and continue on with driver rebuild/reenable. 948 */ 949 static void ice_set_dflt_mib(struct ice_pf *pf) 950 { 951 struct device *dev = ice_pf_to_dev(pf); 952 u8 mib_type, *buf, *lldpmib = NULL; 953 u16 len, typelen, offset = 0; 954 struct ice_lldp_org_tlv *tlv; 955 struct ice_hw *hw = &pf->hw; 956 u32 ouisubtype; 957 958 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 959 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 960 if (!lldpmib) { 961 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 962 __func__); 963 return; 964 } 965 966 /* Add ETS CFG TLV */ 967 tlv = (struct ice_lldp_org_tlv *)lldpmib; 968 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 969 ICE_IEEE_ETS_TLV_LEN); 970 tlv->typelen = htons(typelen); 971 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 972 ICE_IEEE_SUBTYPE_ETS_CFG); 973 tlv->ouisubtype = htonl(ouisubtype); 974 975 buf = tlv->tlvinfo; 976 buf[0] = 0; 977 978 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 979 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 980 * Octets 13 - 20 are TSA values - leave as zeros 981 */ 982 buf[5] = 0x64; 983 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 984 offset += len + 2; 985 tlv = (struct ice_lldp_org_tlv *) 986 ((char *)tlv + sizeof(tlv->typelen) + len); 987 988 /* Add ETS REC TLV */ 989 buf = tlv->tlvinfo; 990 tlv->typelen = htons(typelen); 991 992 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 993 ICE_IEEE_SUBTYPE_ETS_REC); 994 tlv->ouisubtype = htonl(ouisubtype); 995 996 /* First octet of buf is reserved 997 * Octets 1 - 4 map UP to TC - all UPs map to zero 998 * Octets 5 - 12 are BW values - set TC 0 to 100%. 999 * Octets 13 - 20 are TSA value - leave as zeros 1000 */ 1001 buf[5] = 0x64; 1002 offset += len + 2; 1003 tlv = (struct ice_lldp_org_tlv *) 1004 ((char *)tlv + sizeof(tlv->typelen) + len); 1005 1006 /* Add PFC CFG TLV */ 1007 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1008 ICE_IEEE_PFC_TLV_LEN); 1009 tlv->typelen = htons(typelen); 1010 1011 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1012 ICE_IEEE_SUBTYPE_PFC_CFG); 1013 tlv->ouisubtype = htonl(ouisubtype); 1014 1015 /* Octet 1 left as all zeros - PFC disabled */ 1016 buf[0] = 0x08; 1017 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1018 offset += len + 2; 1019 1020 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1021 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1022 1023 kfree(lldpmib); 1024 } 1025 1026 /** 1027 * ice_check_phy_fw_load - check if PHY FW load failed 1028 * @pf: pointer to PF struct 1029 * @link_cfg_err: bitmap from the link info structure 1030 * 1031 * check if external PHY FW load failed and print an error message if it did 1032 */ 1033 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1034 { 1035 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1036 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1037 return; 1038 } 1039 1040 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1041 return; 1042 1043 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1044 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1045 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1046 } 1047 } 1048 1049 /** 1050 * ice_check_module_power 1051 * @pf: pointer to PF struct 1052 * @link_cfg_err: bitmap from the link info structure 1053 * 1054 * check module power level returned by a previous call to aq_get_link_info 1055 * and print error messages if module power level is not supported 1056 */ 1057 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1058 { 1059 /* if module power level is supported, clear the flag */ 1060 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1061 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1062 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1063 return; 1064 } 1065 1066 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1067 * above block didn't clear this bit, there's nothing to do 1068 */ 1069 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1070 return; 1071 1072 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1073 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1074 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1075 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1076 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1077 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1078 } 1079 } 1080 1081 /** 1082 * ice_check_link_cfg_err - check if link configuration failed 1083 * @pf: pointer to the PF struct 1084 * @link_cfg_err: bitmap from the link info structure 1085 * 1086 * print if any link configuration failure happens due to the value in the 1087 * link_cfg_err parameter in the link info structure 1088 */ 1089 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1090 { 1091 ice_check_module_power(pf, link_cfg_err); 1092 ice_check_phy_fw_load(pf, link_cfg_err); 1093 } 1094 1095 /** 1096 * ice_link_event - process the link event 1097 * @pf: PF that the link event is associated with 1098 * @pi: port_info for the port that the link event is associated with 1099 * @link_up: true if the physical link is up and false if it is down 1100 * @link_speed: current link speed received from the link event 1101 * 1102 * Returns 0 on success and negative on failure 1103 */ 1104 static int 1105 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1106 u16 link_speed) 1107 { 1108 struct device *dev = ice_pf_to_dev(pf); 1109 struct ice_phy_info *phy_info; 1110 struct ice_vsi *vsi; 1111 u16 old_link_speed; 1112 bool old_link; 1113 int status; 1114 1115 phy_info = &pi->phy; 1116 phy_info->link_info_old = phy_info->link_info; 1117 1118 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1119 old_link_speed = phy_info->link_info_old.link_speed; 1120 1121 /* update the link info structures and re-enable link events, 1122 * don't bail on failure due to other book keeping needed 1123 */ 1124 status = ice_update_link_info(pi); 1125 if (status) 1126 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1127 pi->lport, status, 1128 ice_aq_str(pi->hw->adminq.sq_last_status)); 1129 1130 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1131 1132 /* Check if the link state is up after updating link info, and treat 1133 * this event as an UP event since the link is actually UP now. 1134 */ 1135 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1136 link_up = true; 1137 1138 vsi = ice_get_main_vsi(pf); 1139 if (!vsi || !vsi->port_info) 1140 return -EINVAL; 1141 1142 /* turn off PHY if media was removed */ 1143 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1144 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1145 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1146 ice_set_link(vsi, false); 1147 } 1148 1149 /* if the old link up/down and speed is the same as the new */ 1150 if (link_up == old_link && link_speed == old_link_speed) 1151 return 0; 1152 1153 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1154 1155 if (ice_is_dcb_active(pf)) { 1156 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1157 ice_dcb_rebuild(pf); 1158 } else { 1159 if (link_up) 1160 ice_set_dflt_mib(pf); 1161 } 1162 ice_vsi_link_event(vsi, link_up); 1163 ice_print_link_msg(vsi, link_up); 1164 1165 ice_vc_notify_link_state(pf); 1166 1167 return 0; 1168 } 1169 1170 /** 1171 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1172 * @pf: board private structure 1173 */ 1174 static void ice_watchdog_subtask(struct ice_pf *pf) 1175 { 1176 int i; 1177 1178 /* if interface is down do nothing */ 1179 if (test_bit(ICE_DOWN, pf->state) || 1180 test_bit(ICE_CFG_BUSY, pf->state)) 1181 return; 1182 1183 /* make sure we don't do these things too often */ 1184 if (time_before(jiffies, 1185 pf->serv_tmr_prev + pf->serv_tmr_period)) 1186 return; 1187 1188 pf->serv_tmr_prev = jiffies; 1189 1190 /* Update the stats for active netdevs so the network stack 1191 * can look at updated numbers whenever it cares to 1192 */ 1193 ice_update_pf_stats(pf); 1194 ice_for_each_vsi(pf, i) 1195 if (pf->vsi[i] && pf->vsi[i]->netdev) 1196 ice_update_vsi_stats(pf->vsi[i]); 1197 } 1198 1199 /** 1200 * ice_init_link_events - enable/initialize link events 1201 * @pi: pointer to the port_info instance 1202 * 1203 * Returns -EIO on failure, 0 on success 1204 */ 1205 static int ice_init_link_events(struct ice_port_info *pi) 1206 { 1207 u16 mask; 1208 1209 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1210 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1211 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1212 1213 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1215 pi->lport); 1216 return -EIO; 1217 } 1218 1219 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1220 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1221 pi->lport); 1222 return -EIO; 1223 } 1224 1225 return 0; 1226 } 1227 1228 /** 1229 * ice_handle_link_event - handle link event via ARQ 1230 * @pf: PF that the link event is associated with 1231 * @event: event structure containing link status info 1232 */ 1233 static int 1234 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1235 { 1236 struct ice_aqc_get_link_status_data *link_data; 1237 struct ice_port_info *port_info; 1238 int status; 1239 1240 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1241 port_info = pf->hw.port_info; 1242 if (!port_info) 1243 return -EINVAL; 1244 1245 status = ice_link_event(pf, port_info, 1246 !!(link_data->link_info & ICE_AQ_LINK_UP), 1247 le16_to_cpu(link_data->link_speed)); 1248 if (status) 1249 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1250 status); 1251 1252 return status; 1253 } 1254 1255 /** 1256 * ice_get_fwlog_data - copy the FW log data from ARQ event 1257 * @pf: PF that the FW log event is associated with 1258 * @event: event structure containing FW log data 1259 */ 1260 static void 1261 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1262 { 1263 struct ice_fwlog_data *fwlog; 1264 struct ice_hw *hw = &pf->hw; 1265 1266 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1267 1268 memset(fwlog->data, 0, PAGE_SIZE); 1269 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1270 1271 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1272 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1273 1274 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1275 /* the rings are full so bump the head to create room */ 1276 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1277 hw->fwlog_ring.size); 1278 } 1279 } 1280 1281 /** 1282 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1283 * @pf: pointer to the PF private structure 1284 * @task: intermediate helper storage and identifier for waiting 1285 * @opcode: the opcode to wait for 1286 * 1287 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1288 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1289 * 1290 * Calls are separated to allow caller registering for event before sending 1291 * the command, which mitigates a race between registering and FW responding. 1292 * 1293 * To obtain only the descriptor contents, pass an task->event with null 1294 * msg_buf. If the complete data buffer is desired, allocate the 1295 * task->event.msg_buf with enough space ahead of time. 1296 */ 1297 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1298 u16 opcode) 1299 { 1300 INIT_HLIST_NODE(&task->entry); 1301 task->opcode = opcode; 1302 task->state = ICE_AQ_TASK_WAITING; 1303 1304 spin_lock_bh(&pf->aq_wait_lock); 1305 hlist_add_head(&task->entry, &pf->aq_wait_list); 1306 spin_unlock_bh(&pf->aq_wait_lock); 1307 } 1308 1309 /** 1310 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1311 * @pf: pointer to the PF private structure 1312 * @task: ptr prepared by ice_aq_prep_for_event() 1313 * @timeout: how long to wait, in jiffies 1314 * 1315 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1316 * current thread will be put to sleep until the specified event occurs or 1317 * until the given timeout is reached. 1318 * 1319 * Returns: zero on success, or a negative error code on failure. 1320 */ 1321 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1322 unsigned long timeout) 1323 { 1324 enum ice_aq_task_state *state = &task->state; 1325 struct device *dev = ice_pf_to_dev(pf); 1326 unsigned long start = jiffies; 1327 long ret; 1328 int err; 1329 1330 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1331 *state != ICE_AQ_TASK_WAITING, 1332 timeout); 1333 switch (*state) { 1334 case ICE_AQ_TASK_NOT_PREPARED: 1335 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1336 err = -EINVAL; 1337 break; 1338 case ICE_AQ_TASK_WAITING: 1339 err = ret < 0 ? ret : -ETIMEDOUT; 1340 break; 1341 case ICE_AQ_TASK_CANCELED: 1342 err = ret < 0 ? ret : -ECANCELED; 1343 break; 1344 case ICE_AQ_TASK_COMPLETE: 1345 err = ret < 0 ? ret : 0; 1346 break; 1347 default: 1348 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1349 err = -EINVAL; 1350 break; 1351 } 1352 1353 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1354 jiffies_to_msecs(jiffies - start), 1355 jiffies_to_msecs(timeout), 1356 task->opcode); 1357 1358 spin_lock_bh(&pf->aq_wait_lock); 1359 hlist_del(&task->entry); 1360 spin_unlock_bh(&pf->aq_wait_lock); 1361 1362 return err; 1363 } 1364 1365 /** 1366 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1367 * @pf: pointer to the PF private structure 1368 * @opcode: the opcode of the event 1369 * @event: the event to check 1370 * 1371 * Loops over the current list of pending threads waiting for an AdminQ event. 1372 * For each matching task, copy the contents of the event into the task 1373 * structure and wake up the thread. 1374 * 1375 * If multiple threads wait for the same opcode, they will all be woken up. 1376 * 1377 * Note that event->msg_buf will only be duplicated if the event has a buffer 1378 * with enough space already allocated. Otherwise, only the descriptor and 1379 * message length will be copied. 1380 * 1381 * Returns: true if an event was found, false otherwise 1382 */ 1383 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1384 struct ice_rq_event_info *event) 1385 { 1386 struct ice_rq_event_info *task_ev; 1387 struct ice_aq_task *task; 1388 bool found = false; 1389 1390 spin_lock_bh(&pf->aq_wait_lock); 1391 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1392 if (task->state != ICE_AQ_TASK_WAITING) 1393 continue; 1394 if (task->opcode != opcode) 1395 continue; 1396 1397 task_ev = &task->event; 1398 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1399 task_ev->msg_len = event->msg_len; 1400 1401 /* Only copy the data buffer if a destination was set */ 1402 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1403 memcpy(task_ev->msg_buf, event->msg_buf, 1404 event->buf_len); 1405 task_ev->buf_len = event->buf_len; 1406 } 1407 1408 task->state = ICE_AQ_TASK_COMPLETE; 1409 found = true; 1410 } 1411 spin_unlock_bh(&pf->aq_wait_lock); 1412 1413 if (found) 1414 wake_up(&pf->aq_wait_queue); 1415 } 1416 1417 /** 1418 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1419 * @pf: the PF private structure 1420 * 1421 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1422 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1423 */ 1424 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1425 { 1426 struct ice_aq_task *task; 1427 1428 spin_lock_bh(&pf->aq_wait_lock); 1429 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1430 task->state = ICE_AQ_TASK_CANCELED; 1431 spin_unlock_bh(&pf->aq_wait_lock); 1432 1433 wake_up(&pf->aq_wait_queue); 1434 } 1435 1436 #define ICE_MBX_OVERFLOW_WATERMARK 64 1437 1438 /** 1439 * __ice_clean_ctrlq - helper function to clean controlq rings 1440 * @pf: ptr to struct ice_pf 1441 * @q_type: specific Control queue type 1442 */ 1443 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1444 { 1445 struct device *dev = ice_pf_to_dev(pf); 1446 struct ice_rq_event_info event; 1447 struct ice_hw *hw = &pf->hw; 1448 struct ice_ctl_q_info *cq; 1449 u16 pending, i = 0; 1450 const char *qtype; 1451 u32 oldval, val; 1452 1453 /* Do not clean control queue if/when PF reset fails */ 1454 if (test_bit(ICE_RESET_FAILED, pf->state)) 1455 return 0; 1456 1457 switch (q_type) { 1458 case ICE_CTL_Q_ADMIN: 1459 cq = &hw->adminq; 1460 qtype = "Admin"; 1461 break; 1462 case ICE_CTL_Q_SB: 1463 cq = &hw->sbq; 1464 qtype = "Sideband"; 1465 break; 1466 case ICE_CTL_Q_MAILBOX: 1467 cq = &hw->mailboxq; 1468 qtype = "Mailbox"; 1469 /* we are going to try to detect a malicious VF, so set the 1470 * state to begin detection 1471 */ 1472 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1473 break; 1474 default: 1475 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1476 return 0; 1477 } 1478 1479 /* check for error indications - PF_xx_AxQLEN register layout for 1480 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1481 */ 1482 val = rd32(hw, cq->rq.len); 1483 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1484 PF_FW_ARQLEN_ARQCRIT_M)) { 1485 oldval = val; 1486 if (val & PF_FW_ARQLEN_ARQVFE_M) 1487 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1488 qtype); 1489 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1490 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1491 qtype); 1492 } 1493 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1494 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1495 qtype); 1496 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1497 PF_FW_ARQLEN_ARQCRIT_M); 1498 if (oldval != val) 1499 wr32(hw, cq->rq.len, val); 1500 } 1501 1502 val = rd32(hw, cq->sq.len); 1503 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1504 PF_FW_ATQLEN_ATQCRIT_M)) { 1505 oldval = val; 1506 if (val & PF_FW_ATQLEN_ATQVFE_M) 1507 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1508 qtype); 1509 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1510 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1511 qtype); 1512 } 1513 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1514 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1515 qtype); 1516 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1517 PF_FW_ATQLEN_ATQCRIT_M); 1518 if (oldval != val) 1519 wr32(hw, cq->sq.len, val); 1520 } 1521 1522 event.buf_len = cq->rq_buf_size; 1523 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1524 if (!event.msg_buf) 1525 return 0; 1526 1527 do { 1528 struct ice_mbx_data data = {}; 1529 u16 opcode; 1530 int ret; 1531 1532 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1533 if (ret == -EALREADY) 1534 break; 1535 if (ret) { 1536 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1537 ret); 1538 break; 1539 } 1540 1541 opcode = le16_to_cpu(event.desc.opcode); 1542 1543 /* Notify any thread that might be waiting for this event */ 1544 ice_aq_check_events(pf, opcode, &event); 1545 1546 switch (opcode) { 1547 case ice_aqc_opc_get_link_status: 1548 if (ice_handle_link_event(pf, &event)) 1549 dev_err(dev, "Could not handle link event\n"); 1550 break; 1551 case ice_aqc_opc_event_lan_overflow: 1552 ice_vf_lan_overflow_event(pf, &event); 1553 break; 1554 case ice_mbx_opc_send_msg_to_pf: 1555 data.num_msg_proc = i; 1556 data.num_pending_arq = pending; 1557 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1558 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1559 1560 ice_vc_process_vf_msg(pf, &event, &data); 1561 break; 1562 case ice_aqc_opc_fw_logs_event: 1563 ice_get_fwlog_data(pf, &event); 1564 break; 1565 case ice_aqc_opc_lldp_set_mib_change: 1566 ice_dcb_process_lldp_set_mib_change(pf, &event); 1567 break; 1568 default: 1569 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1570 qtype, opcode); 1571 break; 1572 } 1573 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1574 1575 kfree(event.msg_buf); 1576 1577 return pending && (i == ICE_DFLT_IRQ_WORK); 1578 } 1579 1580 /** 1581 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1582 * @hw: pointer to hardware info 1583 * @cq: control queue information 1584 * 1585 * returns true if there are pending messages in a queue, false if there aren't 1586 */ 1587 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1588 { 1589 u16 ntu; 1590 1591 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1592 return cq->rq.next_to_clean != ntu; 1593 } 1594 1595 /** 1596 * ice_clean_adminq_subtask - clean the AdminQ rings 1597 * @pf: board private structure 1598 */ 1599 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1600 { 1601 struct ice_hw *hw = &pf->hw; 1602 1603 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1604 return; 1605 1606 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1607 return; 1608 1609 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1610 1611 /* There might be a situation where new messages arrive to a control 1612 * queue between processing the last message and clearing the 1613 * EVENT_PENDING bit. So before exiting, check queue head again (using 1614 * ice_ctrlq_pending) and process new messages if any. 1615 */ 1616 if (ice_ctrlq_pending(hw, &hw->adminq)) 1617 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1618 1619 ice_flush(hw); 1620 } 1621 1622 /** 1623 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1624 * @pf: board private structure 1625 */ 1626 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1627 { 1628 struct ice_hw *hw = &pf->hw; 1629 1630 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1631 return; 1632 1633 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1634 return; 1635 1636 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1637 1638 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1639 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1640 1641 ice_flush(hw); 1642 } 1643 1644 /** 1645 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1646 * @pf: board private structure 1647 */ 1648 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1649 { 1650 struct ice_hw *hw = &pf->hw; 1651 1652 /* Nothing to do here if sideband queue is not supported */ 1653 if (!ice_is_sbq_supported(hw)) { 1654 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1655 return; 1656 } 1657 1658 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1659 return; 1660 1661 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1662 return; 1663 1664 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1665 1666 if (ice_ctrlq_pending(hw, &hw->sbq)) 1667 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1668 1669 ice_flush(hw); 1670 } 1671 1672 /** 1673 * ice_service_task_schedule - schedule the service task to wake up 1674 * @pf: board private structure 1675 * 1676 * If not already scheduled, this puts the task into the work queue. 1677 */ 1678 void ice_service_task_schedule(struct ice_pf *pf) 1679 { 1680 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1681 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1682 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1683 queue_work(ice_wq, &pf->serv_task); 1684 } 1685 1686 /** 1687 * ice_service_task_complete - finish up the service task 1688 * @pf: board private structure 1689 */ 1690 static void ice_service_task_complete(struct ice_pf *pf) 1691 { 1692 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1693 1694 /* force memory (pf->state) to sync before next service task */ 1695 smp_mb__before_atomic(); 1696 clear_bit(ICE_SERVICE_SCHED, pf->state); 1697 } 1698 1699 /** 1700 * ice_service_task_stop - stop service task and cancel works 1701 * @pf: board private structure 1702 * 1703 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1704 * 1 otherwise. 1705 */ 1706 static int ice_service_task_stop(struct ice_pf *pf) 1707 { 1708 int ret; 1709 1710 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1711 1712 if (pf->serv_tmr.function) 1713 del_timer_sync(&pf->serv_tmr); 1714 if (pf->serv_task.func) 1715 cancel_work_sync(&pf->serv_task); 1716 1717 clear_bit(ICE_SERVICE_SCHED, pf->state); 1718 return ret; 1719 } 1720 1721 /** 1722 * ice_service_task_restart - restart service task and schedule works 1723 * @pf: board private structure 1724 * 1725 * This function is needed for suspend and resume works (e.g WoL scenario) 1726 */ 1727 static void ice_service_task_restart(struct ice_pf *pf) 1728 { 1729 clear_bit(ICE_SERVICE_DIS, pf->state); 1730 ice_service_task_schedule(pf); 1731 } 1732 1733 /** 1734 * ice_service_timer - timer callback to schedule service task 1735 * @t: pointer to timer_list 1736 */ 1737 static void ice_service_timer(struct timer_list *t) 1738 { 1739 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1740 1741 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1742 ice_service_task_schedule(pf); 1743 } 1744 1745 /** 1746 * ice_handle_mdd_event - handle malicious driver detect event 1747 * @pf: pointer to the PF structure 1748 * 1749 * Called from service task. OICR interrupt handler indicates MDD event. 1750 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1751 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1752 * disable the queue, the PF can be configured to reset the VF using ethtool 1753 * private flag mdd-auto-reset-vf. 1754 */ 1755 static void ice_handle_mdd_event(struct ice_pf *pf) 1756 { 1757 struct device *dev = ice_pf_to_dev(pf); 1758 struct ice_hw *hw = &pf->hw; 1759 struct ice_vf *vf; 1760 unsigned int bkt; 1761 u32 reg; 1762 1763 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1764 /* Since the VF MDD event logging is rate limited, check if 1765 * there are pending MDD events. 1766 */ 1767 ice_print_vfs_mdd_events(pf); 1768 return; 1769 } 1770 1771 /* find what triggered an MDD event */ 1772 reg = rd32(hw, GL_MDET_TX_PQM); 1773 if (reg & GL_MDET_TX_PQM_VALID_M) { 1774 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1775 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1776 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1777 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1778 1779 if (netif_msg_tx_err(pf)) 1780 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1781 event, queue, pf_num, vf_num); 1782 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1783 } 1784 1785 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1786 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1787 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1788 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1789 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1790 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1791 1792 if (netif_msg_tx_err(pf)) 1793 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1794 event, queue, pf_num, vf_num); 1795 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1796 } 1797 1798 reg = rd32(hw, GL_MDET_RX); 1799 if (reg & GL_MDET_RX_VALID_M) { 1800 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1801 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1802 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1803 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1804 1805 if (netif_msg_rx_err(pf)) 1806 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1807 event, queue, pf_num, vf_num); 1808 wr32(hw, GL_MDET_RX, 0xffffffff); 1809 } 1810 1811 /* check to see if this PF caused an MDD event */ 1812 reg = rd32(hw, PF_MDET_TX_PQM); 1813 if (reg & PF_MDET_TX_PQM_VALID_M) { 1814 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1815 if (netif_msg_tx_err(pf)) 1816 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1817 } 1818 1819 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1820 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1821 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1822 if (netif_msg_tx_err(pf)) 1823 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1824 } 1825 1826 reg = rd32(hw, PF_MDET_RX); 1827 if (reg & PF_MDET_RX_VALID_M) { 1828 wr32(hw, PF_MDET_RX, 0xFFFF); 1829 if (netif_msg_rx_err(pf)) 1830 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1831 } 1832 1833 /* Check to see if one of the VFs caused an MDD event, and then 1834 * increment counters and set print pending 1835 */ 1836 mutex_lock(&pf->vfs.table_lock); 1837 ice_for_each_vf(pf, bkt, vf) { 1838 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1839 if (reg & VP_MDET_TX_PQM_VALID_M) { 1840 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1841 vf->mdd_tx_events.count++; 1842 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1843 if (netif_msg_tx_err(pf)) 1844 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1845 vf->vf_id); 1846 } 1847 1848 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1849 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1850 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1851 vf->mdd_tx_events.count++; 1852 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1853 if (netif_msg_tx_err(pf)) 1854 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1855 vf->vf_id); 1856 } 1857 1858 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1859 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1860 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1861 vf->mdd_tx_events.count++; 1862 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1863 if (netif_msg_tx_err(pf)) 1864 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1865 vf->vf_id); 1866 } 1867 1868 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1869 if (reg & VP_MDET_RX_VALID_M) { 1870 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1871 vf->mdd_rx_events.count++; 1872 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1873 if (netif_msg_rx_err(pf)) 1874 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1875 vf->vf_id); 1876 1877 /* Since the queue is disabled on VF Rx MDD events, the 1878 * PF can be configured to reset the VF through ethtool 1879 * private flag mdd-auto-reset-vf. 1880 */ 1881 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1882 /* VF MDD event counters will be cleared by 1883 * reset, so print the event prior to reset. 1884 */ 1885 ice_print_vf_rx_mdd_event(vf); 1886 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1887 } 1888 } 1889 } 1890 mutex_unlock(&pf->vfs.table_lock); 1891 1892 ice_print_vfs_mdd_events(pf); 1893 } 1894 1895 /** 1896 * ice_force_phys_link_state - Force the physical link state 1897 * @vsi: VSI to force the physical link state to up/down 1898 * @link_up: true/false indicates to set the physical link to up/down 1899 * 1900 * Force the physical link state by getting the current PHY capabilities from 1901 * hardware and setting the PHY config based on the determined capabilities. If 1902 * link changes a link event will be triggered because both the Enable Automatic 1903 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1904 * 1905 * Returns 0 on success, negative on failure 1906 */ 1907 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1908 { 1909 struct ice_aqc_get_phy_caps_data *pcaps; 1910 struct ice_aqc_set_phy_cfg_data *cfg; 1911 struct ice_port_info *pi; 1912 struct device *dev; 1913 int retcode; 1914 1915 if (!vsi || !vsi->port_info || !vsi->back) 1916 return -EINVAL; 1917 if (vsi->type != ICE_VSI_PF) 1918 return 0; 1919 1920 dev = ice_pf_to_dev(vsi->back); 1921 1922 pi = vsi->port_info; 1923 1924 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1925 if (!pcaps) 1926 return -ENOMEM; 1927 1928 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1929 NULL); 1930 if (retcode) { 1931 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1932 vsi->vsi_num, retcode); 1933 retcode = -EIO; 1934 goto out; 1935 } 1936 1937 /* No change in link */ 1938 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1939 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1940 goto out; 1941 1942 /* Use the current user PHY configuration. The current user PHY 1943 * configuration is initialized during probe from PHY capabilities 1944 * software mode, and updated on set PHY configuration. 1945 */ 1946 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1947 if (!cfg) { 1948 retcode = -ENOMEM; 1949 goto out; 1950 } 1951 1952 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1953 if (link_up) 1954 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1955 else 1956 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1957 1958 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1959 if (retcode) { 1960 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1961 vsi->vsi_num, retcode); 1962 retcode = -EIO; 1963 } 1964 1965 kfree(cfg); 1966 out: 1967 kfree(pcaps); 1968 return retcode; 1969 } 1970 1971 /** 1972 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1973 * @pi: port info structure 1974 * 1975 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1976 */ 1977 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1978 { 1979 struct ice_aqc_get_phy_caps_data *pcaps; 1980 struct ice_pf *pf = pi->hw->back; 1981 int err; 1982 1983 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1984 if (!pcaps) 1985 return -ENOMEM; 1986 1987 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1988 pcaps, NULL); 1989 1990 if (err) { 1991 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1992 goto out; 1993 } 1994 1995 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1996 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1997 1998 out: 1999 kfree(pcaps); 2000 return err; 2001 } 2002 2003 /** 2004 * ice_init_link_dflt_override - Initialize link default override 2005 * @pi: port info structure 2006 * 2007 * Initialize link default override and PHY total port shutdown during probe 2008 */ 2009 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2010 { 2011 struct ice_link_default_override_tlv *ldo; 2012 struct ice_pf *pf = pi->hw->back; 2013 2014 ldo = &pf->link_dflt_override; 2015 if (ice_get_link_default_override(ldo, pi)) 2016 return; 2017 2018 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2019 return; 2020 2021 /* Enable Total Port Shutdown (override/replace link-down-on-close 2022 * ethtool private flag) for ports with Port Disable bit set. 2023 */ 2024 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2025 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2026 } 2027 2028 /** 2029 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2030 * @pi: port info structure 2031 * 2032 * If default override is enabled, initialize the user PHY cfg speed and FEC 2033 * settings using the default override mask from the NVM. 2034 * 2035 * The PHY should only be configured with the default override settings the 2036 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2037 * is used to indicate that the user PHY cfg default override is initialized 2038 * and the PHY has not been configured with the default override settings. The 2039 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2040 * configured. 2041 * 2042 * This function should be called only if the FW doesn't support default 2043 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2044 */ 2045 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2046 { 2047 struct ice_link_default_override_tlv *ldo; 2048 struct ice_aqc_set_phy_cfg_data *cfg; 2049 struct ice_phy_info *phy = &pi->phy; 2050 struct ice_pf *pf = pi->hw->back; 2051 2052 ldo = &pf->link_dflt_override; 2053 2054 /* If link default override is enabled, use to mask NVM PHY capabilities 2055 * for speed and FEC default configuration. 2056 */ 2057 cfg = &phy->curr_user_phy_cfg; 2058 2059 if (ldo->phy_type_low || ldo->phy_type_high) { 2060 cfg->phy_type_low = pf->nvm_phy_type_lo & 2061 cpu_to_le64(ldo->phy_type_low); 2062 cfg->phy_type_high = pf->nvm_phy_type_hi & 2063 cpu_to_le64(ldo->phy_type_high); 2064 } 2065 cfg->link_fec_opt = ldo->fec_options; 2066 phy->curr_user_fec_req = ICE_FEC_AUTO; 2067 2068 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2069 } 2070 2071 /** 2072 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2073 * @pi: port info structure 2074 * 2075 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2076 * mode to default. The PHY defaults are from get PHY capabilities topology 2077 * with media so call when media is first available. An error is returned if 2078 * called when media is not available. The PHY initialization completed state is 2079 * set here. 2080 * 2081 * These configurations are used when setting PHY 2082 * configuration. The user PHY configuration is updated on set PHY 2083 * configuration. Returns 0 on success, negative on failure 2084 */ 2085 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2086 { 2087 struct ice_aqc_get_phy_caps_data *pcaps; 2088 struct ice_phy_info *phy = &pi->phy; 2089 struct ice_pf *pf = pi->hw->back; 2090 int err; 2091 2092 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2093 return -EIO; 2094 2095 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2096 if (!pcaps) 2097 return -ENOMEM; 2098 2099 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2100 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2101 pcaps, NULL); 2102 else 2103 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2104 pcaps, NULL); 2105 if (err) { 2106 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2107 goto err_out; 2108 } 2109 2110 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2111 2112 /* check if lenient mode is supported and enabled */ 2113 if (ice_fw_supports_link_override(pi->hw) && 2114 !(pcaps->module_compliance_enforcement & 2115 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2116 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2117 2118 /* if the FW supports default PHY configuration mode, then the driver 2119 * does not have to apply link override settings. If not, 2120 * initialize user PHY configuration with link override values 2121 */ 2122 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2123 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2124 ice_init_phy_cfg_dflt_override(pi); 2125 goto out; 2126 } 2127 } 2128 2129 /* if link default override is not enabled, set user flow control and 2130 * FEC settings based on what get_phy_caps returned 2131 */ 2132 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2133 pcaps->link_fec_options); 2134 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2135 2136 out: 2137 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2138 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2139 err_out: 2140 kfree(pcaps); 2141 return err; 2142 } 2143 2144 /** 2145 * ice_configure_phy - configure PHY 2146 * @vsi: VSI of PHY 2147 * 2148 * Set the PHY configuration. If the current PHY configuration is the same as 2149 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2150 * configure the based get PHY capabilities for topology with media. 2151 */ 2152 static int ice_configure_phy(struct ice_vsi *vsi) 2153 { 2154 struct device *dev = ice_pf_to_dev(vsi->back); 2155 struct ice_port_info *pi = vsi->port_info; 2156 struct ice_aqc_get_phy_caps_data *pcaps; 2157 struct ice_aqc_set_phy_cfg_data *cfg; 2158 struct ice_phy_info *phy = &pi->phy; 2159 struct ice_pf *pf = vsi->back; 2160 int err; 2161 2162 /* Ensure we have media as we cannot configure a medialess port */ 2163 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2164 return -EPERM; 2165 2166 ice_print_topo_conflict(vsi); 2167 2168 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2169 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2170 return -EPERM; 2171 2172 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2173 return ice_force_phys_link_state(vsi, true); 2174 2175 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2176 if (!pcaps) 2177 return -ENOMEM; 2178 2179 /* Get current PHY config */ 2180 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2181 NULL); 2182 if (err) { 2183 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2184 vsi->vsi_num, err); 2185 goto done; 2186 } 2187 2188 /* If PHY enable link is configured and configuration has not changed, 2189 * there's nothing to do 2190 */ 2191 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2192 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2193 goto done; 2194 2195 /* Use PHY topology as baseline for configuration */ 2196 memset(pcaps, 0, sizeof(*pcaps)); 2197 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2198 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2199 pcaps, NULL); 2200 else 2201 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2202 pcaps, NULL); 2203 if (err) { 2204 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2205 vsi->vsi_num, err); 2206 goto done; 2207 } 2208 2209 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2210 if (!cfg) { 2211 err = -ENOMEM; 2212 goto done; 2213 } 2214 2215 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2216 2217 /* Speed - If default override pending, use curr_user_phy_cfg set in 2218 * ice_init_phy_user_cfg_ldo. 2219 */ 2220 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2221 vsi->back->state)) { 2222 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2223 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2224 } else { 2225 u64 phy_low = 0, phy_high = 0; 2226 2227 ice_update_phy_type(&phy_low, &phy_high, 2228 pi->phy.curr_user_speed_req); 2229 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2230 cfg->phy_type_high = pcaps->phy_type_high & 2231 cpu_to_le64(phy_high); 2232 } 2233 2234 /* Can't provide what was requested; use PHY capabilities */ 2235 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2236 cfg->phy_type_low = pcaps->phy_type_low; 2237 cfg->phy_type_high = pcaps->phy_type_high; 2238 } 2239 2240 /* FEC */ 2241 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2242 2243 /* Can't provide what was requested; use PHY capabilities */ 2244 if (cfg->link_fec_opt != 2245 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2246 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2247 cfg->link_fec_opt = pcaps->link_fec_options; 2248 } 2249 2250 /* Flow Control - always supported; no need to check against 2251 * capabilities 2252 */ 2253 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2254 2255 /* Enable link and link update */ 2256 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2257 2258 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2259 if (err) 2260 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2261 vsi->vsi_num, err); 2262 2263 kfree(cfg); 2264 done: 2265 kfree(pcaps); 2266 return err; 2267 } 2268 2269 /** 2270 * ice_check_media_subtask - Check for media 2271 * @pf: pointer to PF struct 2272 * 2273 * If media is available, then initialize PHY user configuration if it is not 2274 * been, and configure the PHY if the interface is up. 2275 */ 2276 static void ice_check_media_subtask(struct ice_pf *pf) 2277 { 2278 struct ice_port_info *pi; 2279 struct ice_vsi *vsi; 2280 int err; 2281 2282 /* No need to check for media if it's already present */ 2283 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2284 return; 2285 2286 vsi = ice_get_main_vsi(pf); 2287 if (!vsi) 2288 return; 2289 2290 /* Refresh link info and check if media is present */ 2291 pi = vsi->port_info; 2292 err = ice_update_link_info(pi); 2293 if (err) 2294 return; 2295 2296 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2297 2298 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2299 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2300 ice_init_phy_user_cfg(pi); 2301 2302 /* PHY settings are reset on media insertion, reconfigure 2303 * PHY to preserve settings. 2304 */ 2305 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2306 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2307 return; 2308 2309 err = ice_configure_phy(vsi); 2310 if (!err) 2311 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2312 2313 /* A Link Status Event will be generated; the event handler 2314 * will complete bringing the interface up 2315 */ 2316 } 2317 } 2318 2319 /** 2320 * ice_service_task - manage and run subtasks 2321 * @work: pointer to work_struct contained by the PF struct 2322 */ 2323 static void ice_service_task(struct work_struct *work) 2324 { 2325 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2326 unsigned long start_time = jiffies; 2327 2328 /* subtasks */ 2329 2330 /* process reset requests first */ 2331 ice_reset_subtask(pf); 2332 2333 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2334 if (ice_is_reset_in_progress(pf->state) || 2335 test_bit(ICE_SUSPENDED, pf->state) || 2336 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2337 ice_service_task_complete(pf); 2338 return; 2339 } 2340 2341 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2342 struct iidc_event *event; 2343 2344 event = kzalloc(sizeof(*event), GFP_KERNEL); 2345 if (event) { 2346 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2347 /* report the entire OICR value to AUX driver */ 2348 swap(event->reg, pf->oicr_err_reg); 2349 ice_send_event_to_aux(pf, event); 2350 kfree(event); 2351 } 2352 } 2353 2354 /* unplug aux dev per request, if an unplug request came in 2355 * while processing a plug request, this will handle it 2356 */ 2357 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2358 ice_unplug_aux_dev(pf); 2359 2360 /* Plug aux device per request */ 2361 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2362 ice_plug_aux_dev(pf); 2363 2364 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2365 struct iidc_event *event; 2366 2367 event = kzalloc(sizeof(*event), GFP_KERNEL); 2368 if (event) { 2369 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2370 ice_send_event_to_aux(pf, event); 2371 kfree(event); 2372 } 2373 } 2374 2375 ice_clean_adminq_subtask(pf); 2376 ice_check_media_subtask(pf); 2377 ice_check_for_hang_subtask(pf); 2378 ice_sync_fltr_subtask(pf); 2379 ice_handle_mdd_event(pf); 2380 ice_watchdog_subtask(pf); 2381 2382 if (ice_is_safe_mode(pf)) { 2383 ice_service_task_complete(pf); 2384 return; 2385 } 2386 2387 ice_process_vflr_event(pf); 2388 ice_clean_mailboxq_subtask(pf); 2389 ice_clean_sbq_subtask(pf); 2390 ice_sync_arfs_fltrs(pf); 2391 ice_flush_fdir_ctx(pf); 2392 2393 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2394 ice_service_task_complete(pf); 2395 2396 /* If the tasks have taken longer than one service timer period 2397 * or there is more work to be done, reset the service timer to 2398 * schedule the service task now. 2399 */ 2400 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2401 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2402 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2403 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2404 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2405 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2406 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2407 mod_timer(&pf->serv_tmr, jiffies); 2408 } 2409 2410 /** 2411 * ice_set_ctrlq_len - helper function to set controlq length 2412 * @hw: pointer to the HW instance 2413 */ 2414 static void ice_set_ctrlq_len(struct ice_hw *hw) 2415 { 2416 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2417 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2418 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2419 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2420 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2421 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2422 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2423 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2424 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2425 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2426 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2427 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2428 } 2429 2430 /** 2431 * ice_schedule_reset - schedule a reset 2432 * @pf: board private structure 2433 * @reset: reset being requested 2434 */ 2435 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2436 { 2437 struct device *dev = ice_pf_to_dev(pf); 2438 2439 /* bail out if earlier reset has failed */ 2440 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2441 dev_dbg(dev, "earlier reset has failed\n"); 2442 return -EIO; 2443 } 2444 /* bail if reset/recovery already in progress */ 2445 if (ice_is_reset_in_progress(pf->state)) { 2446 dev_dbg(dev, "Reset already in progress\n"); 2447 return -EBUSY; 2448 } 2449 2450 switch (reset) { 2451 case ICE_RESET_PFR: 2452 set_bit(ICE_PFR_REQ, pf->state); 2453 break; 2454 case ICE_RESET_CORER: 2455 set_bit(ICE_CORER_REQ, pf->state); 2456 break; 2457 case ICE_RESET_GLOBR: 2458 set_bit(ICE_GLOBR_REQ, pf->state); 2459 break; 2460 default: 2461 return -EINVAL; 2462 } 2463 2464 ice_service_task_schedule(pf); 2465 return 0; 2466 } 2467 2468 /** 2469 * ice_irq_affinity_notify - Callback for affinity changes 2470 * @notify: context as to what irq was changed 2471 * @mask: the new affinity mask 2472 * 2473 * This is a callback function used by the irq_set_affinity_notifier function 2474 * so that we may register to receive changes to the irq affinity masks. 2475 */ 2476 static void 2477 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2478 const cpumask_t *mask) 2479 { 2480 struct ice_q_vector *q_vector = 2481 container_of(notify, struct ice_q_vector, affinity_notify); 2482 2483 cpumask_copy(&q_vector->affinity_mask, mask); 2484 } 2485 2486 /** 2487 * ice_irq_affinity_release - Callback for affinity notifier release 2488 * @ref: internal core kernel usage 2489 * 2490 * This is a callback function used by the irq_set_affinity_notifier function 2491 * to inform the current notification subscriber that they will no longer 2492 * receive notifications. 2493 */ 2494 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2495 2496 /** 2497 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2498 * @vsi: the VSI being configured 2499 */ 2500 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2501 { 2502 struct ice_hw *hw = &vsi->back->hw; 2503 int i; 2504 2505 ice_for_each_q_vector(vsi, i) 2506 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2507 2508 ice_flush(hw); 2509 return 0; 2510 } 2511 2512 /** 2513 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2514 * @vsi: the VSI being configured 2515 * @basename: name for the vector 2516 */ 2517 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2518 { 2519 int q_vectors = vsi->num_q_vectors; 2520 struct ice_pf *pf = vsi->back; 2521 struct device *dev; 2522 int rx_int_idx = 0; 2523 int tx_int_idx = 0; 2524 int vector, err; 2525 int irq_num; 2526 2527 dev = ice_pf_to_dev(pf); 2528 for (vector = 0; vector < q_vectors; vector++) { 2529 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2530 2531 irq_num = q_vector->irq.virq; 2532 2533 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2534 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2535 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2536 tx_int_idx++; 2537 } else if (q_vector->rx.rx_ring) { 2538 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2539 "%s-%s-%d", basename, "rx", rx_int_idx++); 2540 } else if (q_vector->tx.tx_ring) { 2541 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2542 "%s-%s-%d", basename, "tx", tx_int_idx++); 2543 } else { 2544 /* skip this unused q_vector */ 2545 continue; 2546 } 2547 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2548 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2549 IRQF_SHARED, q_vector->name, 2550 q_vector); 2551 else 2552 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2553 0, q_vector->name, q_vector); 2554 if (err) { 2555 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2556 err); 2557 goto free_q_irqs; 2558 } 2559 2560 /* register for affinity change notifications */ 2561 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2562 struct irq_affinity_notify *affinity_notify; 2563 2564 affinity_notify = &q_vector->affinity_notify; 2565 affinity_notify->notify = ice_irq_affinity_notify; 2566 affinity_notify->release = ice_irq_affinity_release; 2567 irq_set_affinity_notifier(irq_num, affinity_notify); 2568 } 2569 2570 /* assign the mask for this irq */ 2571 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2572 } 2573 2574 err = ice_set_cpu_rx_rmap(vsi); 2575 if (err) { 2576 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2577 vsi->vsi_num, ERR_PTR(err)); 2578 goto free_q_irqs; 2579 } 2580 2581 vsi->irqs_ready = true; 2582 return 0; 2583 2584 free_q_irqs: 2585 while (vector--) { 2586 irq_num = vsi->q_vectors[vector]->irq.virq; 2587 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2588 irq_set_affinity_notifier(irq_num, NULL); 2589 irq_set_affinity_hint(irq_num, NULL); 2590 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2591 } 2592 return err; 2593 } 2594 2595 /** 2596 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2597 * @vsi: VSI to setup Tx rings used by XDP 2598 * 2599 * Return 0 on success and negative value on error 2600 */ 2601 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2602 { 2603 struct device *dev = ice_pf_to_dev(vsi->back); 2604 struct ice_tx_desc *tx_desc; 2605 int i, j; 2606 2607 ice_for_each_xdp_txq(vsi, i) { 2608 u16 xdp_q_idx = vsi->alloc_txq + i; 2609 struct ice_ring_stats *ring_stats; 2610 struct ice_tx_ring *xdp_ring; 2611 2612 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2613 if (!xdp_ring) 2614 goto free_xdp_rings; 2615 2616 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2617 if (!ring_stats) { 2618 ice_free_tx_ring(xdp_ring); 2619 goto free_xdp_rings; 2620 } 2621 2622 xdp_ring->ring_stats = ring_stats; 2623 xdp_ring->q_index = xdp_q_idx; 2624 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2625 xdp_ring->vsi = vsi; 2626 xdp_ring->netdev = NULL; 2627 xdp_ring->dev = dev; 2628 xdp_ring->count = vsi->num_tx_desc; 2629 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2630 if (ice_setup_tx_ring(xdp_ring)) 2631 goto free_xdp_rings; 2632 ice_set_ring_xdp(xdp_ring); 2633 spin_lock_init(&xdp_ring->tx_lock); 2634 for (j = 0; j < xdp_ring->count; j++) { 2635 tx_desc = ICE_TX_DESC(xdp_ring, j); 2636 tx_desc->cmd_type_offset_bsz = 0; 2637 } 2638 } 2639 2640 return 0; 2641 2642 free_xdp_rings: 2643 for (; i >= 0; i--) { 2644 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2645 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2646 vsi->xdp_rings[i]->ring_stats = NULL; 2647 ice_free_tx_ring(vsi->xdp_rings[i]); 2648 } 2649 } 2650 return -ENOMEM; 2651 } 2652 2653 /** 2654 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2655 * @vsi: VSI to set the bpf prog on 2656 * @prog: the bpf prog pointer 2657 */ 2658 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2659 { 2660 struct bpf_prog *old_prog; 2661 int i; 2662 2663 old_prog = xchg(&vsi->xdp_prog, prog); 2664 ice_for_each_rxq(vsi, i) 2665 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2666 2667 if (old_prog) 2668 bpf_prog_put(old_prog); 2669 } 2670 2671 /** 2672 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2673 * @vsi: VSI to bring up Tx rings used by XDP 2674 * @prog: bpf program that will be assigned to VSI 2675 * 2676 * Return 0 on success and negative value on error 2677 */ 2678 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2679 { 2680 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2681 int xdp_rings_rem = vsi->num_xdp_txq; 2682 struct ice_pf *pf = vsi->back; 2683 struct ice_qs_cfg xdp_qs_cfg = { 2684 .qs_mutex = &pf->avail_q_mutex, 2685 .pf_map = pf->avail_txqs, 2686 .pf_map_size = pf->max_pf_txqs, 2687 .q_count = vsi->num_xdp_txq, 2688 .scatter_count = ICE_MAX_SCATTER_TXQS, 2689 .vsi_map = vsi->txq_map, 2690 .vsi_map_offset = vsi->alloc_txq, 2691 .mapping_mode = ICE_VSI_MAP_CONTIG 2692 }; 2693 struct device *dev; 2694 int i, v_idx; 2695 int status; 2696 2697 dev = ice_pf_to_dev(pf); 2698 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2699 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2700 if (!vsi->xdp_rings) 2701 return -ENOMEM; 2702 2703 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2704 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2705 goto err_map_xdp; 2706 2707 if (static_key_enabled(&ice_xdp_locking_key)) 2708 netdev_warn(vsi->netdev, 2709 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2710 2711 if (ice_xdp_alloc_setup_rings(vsi)) 2712 goto clear_xdp_rings; 2713 2714 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2715 ice_for_each_q_vector(vsi, v_idx) { 2716 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2717 int xdp_rings_per_v, q_id, q_base; 2718 2719 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2720 vsi->num_q_vectors - v_idx); 2721 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2722 2723 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2724 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2725 2726 xdp_ring->q_vector = q_vector; 2727 xdp_ring->next = q_vector->tx.tx_ring; 2728 q_vector->tx.tx_ring = xdp_ring; 2729 } 2730 xdp_rings_rem -= xdp_rings_per_v; 2731 } 2732 2733 ice_for_each_rxq(vsi, i) { 2734 if (static_key_enabled(&ice_xdp_locking_key)) { 2735 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2736 } else { 2737 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2738 struct ice_tx_ring *ring; 2739 2740 ice_for_each_tx_ring(ring, q_vector->tx) { 2741 if (ice_ring_is_xdp(ring)) { 2742 vsi->rx_rings[i]->xdp_ring = ring; 2743 break; 2744 } 2745 } 2746 } 2747 ice_tx_xsk_pool(vsi, i); 2748 } 2749 2750 /* omit the scheduler update if in reset path; XDP queues will be 2751 * taken into account at the end of ice_vsi_rebuild, where 2752 * ice_cfg_vsi_lan is being called 2753 */ 2754 if (ice_is_reset_in_progress(pf->state)) 2755 return 0; 2756 2757 /* tell the Tx scheduler that right now we have 2758 * additional queues 2759 */ 2760 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2761 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2762 2763 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2764 max_txqs); 2765 if (status) { 2766 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2767 status); 2768 goto clear_xdp_rings; 2769 } 2770 2771 /* assign the prog only when it's not already present on VSI; 2772 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2773 * VSI rebuild that happens under ethtool -L can expose us to 2774 * the bpf_prog refcount issues as we would be swapping same 2775 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2776 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2777 * this is not harmful as dev_xdp_install bumps the refcount 2778 * before calling the op exposed by the driver; 2779 */ 2780 if (!ice_is_xdp_ena_vsi(vsi)) 2781 ice_vsi_assign_bpf_prog(vsi, prog); 2782 2783 return 0; 2784 clear_xdp_rings: 2785 ice_for_each_xdp_txq(vsi, i) 2786 if (vsi->xdp_rings[i]) { 2787 kfree_rcu(vsi->xdp_rings[i], rcu); 2788 vsi->xdp_rings[i] = NULL; 2789 } 2790 2791 err_map_xdp: 2792 mutex_lock(&pf->avail_q_mutex); 2793 ice_for_each_xdp_txq(vsi, i) { 2794 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2795 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2796 } 2797 mutex_unlock(&pf->avail_q_mutex); 2798 2799 devm_kfree(dev, vsi->xdp_rings); 2800 return -ENOMEM; 2801 } 2802 2803 /** 2804 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2805 * @vsi: VSI to remove XDP rings 2806 * 2807 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2808 * resources 2809 */ 2810 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2811 { 2812 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2813 struct ice_pf *pf = vsi->back; 2814 int i, v_idx; 2815 2816 /* q_vectors are freed in reset path so there's no point in detaching 2817 * rings; in case of rebuild being triggered not from reset bits 2818 * in pf->state won't be set, so additionally check first q_vector 2819 * against NULL 2820 */ 2821 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2822 goto free_qmap; 2823 2824 ice_for_each_q_vector(vsi, v_idx) { 2825 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2826 struct ice_tx_ring *ring; 2827 2828 ice_for_each_tx_ring(ring, q_vector->tx) 2829 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2830 break; 2831 2832 /* restore the value of last node prior to XDP setup */ 2833 q_vector->tx.tx_ring = ring; 2834 } 2835 2836 free_qmap: 2837 mutex_lock(&pf->avail_q_mutex); 2838 ice_for_each_xdp_txq(vsi, i) { 2839 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2840 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2841 } 2842 mutex_unlock(&pf->avail_q_mutex); 2843 2844 ice_for_each_xdp_txq(vsi, i) 2845 if (vsi->xdp_rings[i]) { 2846 if (vsi->xdp_rings[i]->desc) { 2847 synchronize_rcu(); 2848 ice_free_tx_ring(vsi->xdp_rings[i]); 2849 } 2850 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2851 vsi->xdp_rings[i]->ring_stats = NULL; 2852 kfree_rcu(vsi->xdp_rings[i], rcu); 2853 vsi->xdp_rings[i] = NULL; 2854 } 2855 2856 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2857 vsi->xdp_rings = NULL; 2858 2859 if (static_key_enabled(&ice_xdp_locking_key)) 2860 static_branch_dec(&ice_xdp_locking_key); 2861 2862 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2863 return 0; 2864 2865 ice_vsi_assign_bpf_prog(vsi, NULL); 2866 2867 /* notify Tx scheduler that we destroyed XDP queues and bring 2868 * back the old number of child nodes 2869 */ 2870 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2871 max_txqs[i] = vsi->num_txq; 2872 2873 /* change number of XDP Tx queues to 0 */ 2874 vsi->num_xdp_txq = 0; 2875 2876 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2877 max_txqs); 2878 } 2879 2880 /** 2881 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2882 * @vsi: VSI to schedule napi on 2883 */ 2884 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2885 { 2886 int i; 2887 2888 ice_for_each_rxq(vsi, i) { 2889 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2890 2891 if (rx_ring->xsk_pool) 2892 napi_schedule(&rx_ring->q_vector->napi); 2893 } 2894 } 2895 2896 /** 2897 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2898 * @vsi: VSI to determine the count of XDP Tx qs 2899 * 2900 * returns 0 if Tx qs count is higher than at least half of CPU count, 2901 * -ENOMEM otherwise 2902 */ 2903 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2904 { 2905 u16 avail = ice_get_avail_txq_count(vsi->back); 2906 u16 cpus = num_possible_cpus(); 2907 2908 if (avail < cpus / 2) 2909 return -ENOMEM; 2910 2911 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2912 2913 if (vsi->num_xdp_txq < cpus) 2914 static_branch_inc(&ice_xdp_locking_key); 2915 2916 return 0; 2917 } 2918 2919 /** 2920 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2921 * @vsi: Pointer to VSI structure 2922 */ 2923 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2924 { 2925 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2926 return ICE_RXBUF_1664; 2927 else 2928 return ICE_RXBUF_3072; 2929 } 2930 2931 /** 2932 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2933 * @vsi: VSI to setup XDP for 2934 * @prog: XDP program 2935 * @extack: netlink extended ack 2936 */ 2937 static int 2938 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2939 struct netlink_ext_ack *extack) 2940 { 2941 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2942 bool if_running = netif_running(vsi->netdev); 2943 int ret = 0, xdp_ring_err = 0; 2944 2945 if (prog && !prog->aux->xdp_has_frags) { 2946 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2947 NL_SET_ERR_MSG_MOD(extack, 2948 "MTU is too large for linear frames and XDP prog does not support frags"); 2949 return -EOPNOTSUPP; 2950 } 2951 } 2952 2953 /* hot swap progs and avoid toggling link */ 2954 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2955 ice_vsi_assign_bpf_prog(vsi, prog); 2956 return 0; 2957 } 2958 2959 /* need to stop netdev while setting up the program for Rx rings */ 2960 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2961 ret = ice_down(vsi); 2962 if (ret) { 2963 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2964 return ret; 2965 } 2966 } 2967 2968 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2969 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2970 if (xdp_ring_err) { 2971 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2972 } else { 2973 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2974 if (xdp_ring_err) 2975 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2976 } 2977 xdp_features_set_redirect_target(vsi->netdev, true); 2978 /* reallocate Rx queues that are used for zero-copy */ 2979 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2980 if (xdp_ring_err) 2981 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2982 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2983 xdp_features_clear_redirect_target(vsi->netdev); 2984 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2985 if (xdp_ring_err) 2986 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2987 /* reallocate Rx queues that were used for zero-copy */ 2988 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2989 if (xdp_ring_err) 2990 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2991 } 2992 2993 if (if_running) 2994 ret = ice_up(vsi); 2995 2996 if (!ret && prog) 2997 ice_vsi_rx_napi_schedule(vsi); 2998 2999 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3000 } 3001 3002 /** 3003 * ice_xdp_safe_mode - XDP handler for safe mode 3004 * @dev: netdevice 3005 * @xdp: XDP command 3006 */ 3007 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3008 struct netdev_bpf *xdp) 3009 { 3010 NL_SET_ERR_MSG_MOD(xdp->extack, 3011 "Please provide working DDP firmware package in order to use XDP\n" 3012 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3013 return -EOPNOTSUPP; 3014 } 3015 3016 /** 3017 * ice_xdp - implements XDP handler 3018 * @dev: netdevice 3019 * @xdp: XDP command 3020 */ 3021 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3022 { 3023 struct ice_netdev_priv *np = netdev_priv(dev); 3024 struct ice_vsi *vsi = np->vsi; 3025 3026 if (vsi->type != ICE_VSI_PF) { 3027 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3028 return -EINVAL; 3029 } 3030 3031 switch (xdp->command) { 3032 case XDP_SETUP_PROG: 3033 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3034 case XDP_SETUP_XSK_POOL: 3035 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3036 xdp->xsk.queue_id); 3037 default: 3038 return -EINVAL; 3039 } 3040 } 3041 3042 /** 3043 * ice_ena_misc_vector - enable the non-queue interrupts 3044 * @pf: board private structure 3045 */ 3046 static void ice_ena_misc_vector(struct ice_pf *pf) 3047 { 3048 struct ice_hw *hw = &pf->hw; 3049 u32 val; 3050 3051 /* Disable anti-spoof detection interrupt to prevent spurious event 3052 * interrupts during a function reset. Anti-spoof functionally is 3053 * still supported. 3054 */ 3055 val = rd32(hw, GL_MDCK_TX_TDPU); 3056 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3057 wr32(hw, GL_MDCK_TX_TDPU, val); 3058 3059 /* clear things first */ 3060 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3061 rd32(hw, PFINT_OICR); /* read to clear */ 3062 3063 val = (PFINT_OICR_ECC_ERR_M | 3064 PFINT_OICR_MAL_DETECT_M | 3065 PFINT_OICR_GRST_M | 3066 PFINT_OICR_PCI_EXCEPTION_M | 3067 PFINT_OICR_VFLR_M | 3068 PFINT_OICR_HMC_ERR_M | 3069 PFINT_OICR_PE_PUSH_M | 3070 PFINT_OICR_PE_CRITERR_M); 3071 3072 wr32(hw, PFINT_OICR_ENA, val); 3073 3074 /* SW_ITR_IDX = 0, but don't change INTENA */ 3075 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3076 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3077 } 3078 3079 /** 3080 * ice_misc_intr - misc interrupt handler 3081 * @irq: interrupt number 3082 * @data: pointer to a q_vector 3083 */ 3084 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3085 { 3086 struct ice_pf *pf = (struct ice_pf *)data; 3087 struct ice_hw *hw = &pf->hw; 3088 struct device *dev; 3089 u32 oicr, ena_mask; 3090 3091 dev = ice_pf_to_dev(pf); 3092 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3093 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3094 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3095 3096 oicr = rd32(hw, PFINT_OICR); 3097 ena_mask = rd32(hw, PFINT_OICR_ENA); 3098 3099 if (oicr & PFINT_OICR_SWINT_M) { 3100 ena_mask &= ~PFINT_OICR_SWINT_M; 3101 pf->sw_int_count++; 3102 } 3103 3104 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3105 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3106 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3107 } 3108 if (oicr & PFINT_OICR_VFLR_M) { 3109 /* disable any further VFLR event notifications */ 3110 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3111 u32 reg = rd32(hw, PFINT_OICR_ENA); 3112 3113 reg &= ~PFINT_OICR_VFLR_M; 3114 wr32(hw, PFINT_OICR_ENA, reg); 3115 } else { 3116 ena_mask &= ~PFINT_OICR_VFLR_M; 3117 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3118 } 3119 } 3120 3121 if (oicr & PFINT_OICR_GRST_M) { 3122 u32 reset; 3123 3124 /* we have a reset warning */ 3125 ena_mask &= ~PFINT_OICR_GRST_M; 3126 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3127 rd32(hw, GLGEN_RSTAT)); 3128 3129 if (reset == ICE_RESET_CORER) 3130 pf->corer_count++; 3131 else if (reset == ICE_RESET_GLOBR) 3132 pf->globr_count++; 3133 else if (reset == ICE_RESET_EMPR) 3134 pf->empr_count++; 3135 else 3136 dev_dbg(dev, "Invalid reset type %d\n", reset); 3137 3138 /* If a reset cycle isn't already in progress, we set a bit in 3139 * pf->state so that the service task can start a reset/rebuild. 3140 */ 3141 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3142 if (reset == ICE_RESET_CORER) 3143 set_bit(ICE_CORER_RECV, pf->state); 3144 else if (reset == ICE_RESET_GLOBR) 3145 set_bit(ICE_GLOBR_RECV, pf->state); 3146 else 3147 set_bit(ICE_EMPR_RECV, pf->state); 3148 3149 /* There are couple of different bits at play here. 3150 * hw->reset_ongoing indicates whether the hardware is 3151 * in reset. This is set to true when a reset interrupt 3152 * is received and set back to false after the driver 3153 * has determined that the hardware is out of reset. 3154 * 3155 * ICE_RESET_OICR_RECV in pf->state indicates 3156 * that a post reset rebuild is required before the 3157 * driver is operational again. This is set above. 3158 * 3159 * As this is the start of the reset/rebuild cycle, set 3160 * both to indicate that. 3161 */ 3162 hw->reset_ongoing = true; 3163 } 3164 } 3165 3166 if (oicr & PFINT_OICR_TSYN_TX_M) { 3167 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3168 if (ice_ptp_pf_handles_tx_interrupt(pf)) 3169 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3170 } 3171 3172 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3173 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3174 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3175 3176 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3177 3178 if (ice_pf_src_tmr_owned(pf)) { 3179 /* Save EVENTs from GLTSYN register */ 3180 pf->ptp.ext_ts_irq |= gltsyn_stat & 3181 (GLTSYN_STAT_EVENT0_M | 3182 GLTSYN_STAT_EVENT1_M | 3183 GLTSYN_STAT_EVENT2_M); 3184 3185 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3186 } 3187 } 3188 3189 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3190 if (oicr & ICE_AUX_CRIT_ERR) { 3191 pf->oicr_err_reg |= oicr; 3192 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3193 ena_mask &= ~ICE_AUX_CRIT_ERR; 3194 } 3195 3196 /* Report any remaining unexpected interrupts */ 3197 oicr &= ena_mask; 3198 if (oicr) { 3199 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3200 /* If a critical error is pending there is no choice but to 3201 * reset the device. 3202 */ 3203 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3204 PFINT_OICR_ECC_ERR_M)) { 3205 set_bit(ICE_PFR_REQ, pf->state); 3206 } 3207 } 3208 3209 return IRQ_WAKE_THREAD; 3210 } 3211 3212 /** 3213 * ice_misc_intr_thread_fn - misc interrupt thread function 3214 * @irq: interrupt number 3215 * @data: pointer to a q_vector 3216 */ 3217 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3218 { 3219 struct ice_pf *pf = data; 3220 struct ice_hw *hw; 3221 3222 hw = &pf->hw; 3223 3224 if (ice_is_reset_in_progress(pf->state)) 3225 return IRQ_HANDLED; 3226 3227 ice_service_task_schedule(pf); 3228 3229 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3230 ice_ptp_extts_event(pf); 3231 3232 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3233 /* Process outstanding Tx timestamps. If there is more work, 3234 * re-arm the interrupt to trigger again. 3235 */ 3236 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3237 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3238 ice_flush(hw); 3239 } 3240 } 3241 3242 ice_irq_dynamic_ena(hw, NULL, NULL); 3243 3244 return IRQ_HANDLED; 3245 } 3246 3247 /** 3248 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3249 * @hw: pointer to HW structure 3250 */ 3251 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3252 { 3253 /* disable Admin queue Interrupt causes */ 3254 wr32(hw, PFINT_FW_CTL, 3255 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3256 3257 /* disable Mailbox queue Interrupt causes */ 3258 wr32(hw, PFINT_MBX_CTL, 3259 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3260 3261 wr32(hw, PFINT_SB_CTL, 3262 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3263 3264 /* disable Control queue Interrupt causes */ 3265 wr32(hw, PFINT_OICR_CTL, 3266 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3267 3268 ice_flush(hw); 3269 } 3270 3271 /** 3272 * ice_free_irq_msix_misc - Unroll misc vector setup 3273 * @pf: board private structure 3274 */ 3275 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3276 { 3277 int misc_irq_num = pf->oicr_irq.virq; 3278 struct ice_hw *hw = &pf->hw; 3279 3280 ice_dis_ctrlq_interrupts(hw); 3281 3282 /* disable OICR interrupt */ 3283 wr32(hw, PFINT_OICR_ENA, 0); 3284 ice_flush(hw); 3285 3286 synchronize_irq(misc_irq_num); 3287 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3288 3289 ice_free_irq(pf, pf->oicr_irq); 3290 } 3291 3292 /** 3293 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3294 * @hw: pointer to HW structure 3295 * @reg_idx: HW vector index to associate the control queue interrupts with 3296 */ 3297 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3298 { 3299 u32 val; 3300 3301 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3302 PFINT_OICR_CTL_CAUSE_ENA_M); 3303 wr32(hw, PFINT_OICR_CTL, val); 3304 3305 /* enable Admin queue Interrupt causes */ 3306 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3307 PFINT_FW_CTL_CAUSE_ENA_M); 3308 wr32(hw, PFINT_FW_CTL, val); 3309 3310 /* enable Mailbox queue Interrupt causes */ 3311 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3312 PFINT_MBX_CTL_CAUSE_ENA_M); 3313 wr32(hw, PFINT_MBX_CTL, val); 3314 3315 /* This enables Sideband queue Interrupt causes */ 3316 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3317 PFINT_SB_CTL_CAUSE_ENA_M); 3318 wr32(hw, PFINT_SB_CTL, val); 3319 3320 ice_flush(hw); 3321 } 3322 3323 /** 3324 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3325 * @pf: board private structure 3326 * 3327 * This sets up the handler for MSIX 0, which is used to manage the 3328 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3329 * when in MSI or Legacy interrupt mode. 3330 */ 3331 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3332 { 3333 struct device *dev = ice_pf_to_dev(pf); 3334 struct ice_hw *hw = &pf->hw; 3335 struct msi_map oicr_irq; 3336 int err = 0; 3337 3338 if (!pf->int_name[0]) 3339 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3340 dev_driver_string(dev), dev_name(dev)); 3341 3342 /* Do not request IRQ but do enable OICR interrupt since settings are 3343 * lost during reset. Note that this function is called only during 3344 * rebuild path and not while reset is in progress. 3345 */ 3346 if (ice_is_reset_in_progress(pf->state)) 3347 goto skip_req_irq; 3348 3349 /* reserve one vector in irq_tracker for misc interrupts */ 3350 oicr_irq = ice_alloc_irq(pf, false); 3351 if (oicr_irq.index < 0) 3352 return oicr_irq.index; 3353 3354 pf->oicr_irq = oicr_irq; 3355 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3356 ice_misc_intr_thread_fn, 0, 3357 pf->int_name, pf); 3358 if (err) { 3359 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3360 pf->int_name, err); 3361 ice_free_irq(pf, pf->oicr_irq); 3362 return err; 3363 } 3364 3365 skip_req_irq: 3366 ice_ena_misc_vector(pf); 3367 3368 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3369 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3370 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3371 3372 ice_flush(hw); 3373 ice_irq_dynamic_ena(hw, NULL, NULL); 3374 3375 return 0; 3376 } 3377 3378 /** 3379 * ice_napi_add - register NAPI handler for the VSI 3380 * @vsi: VSI for which NAPI handler is to be registered 3381 * 3382 * This function is only called in the driver's load path. Registering the NAPI 3383 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3384 * reset/rebuild, etc.) 3385 */ 3386 static void ice_napi_add(struct ice_vsi *vsi) 3387 { 3388 int v_idx; 3389 3390 if (!vsi->netdev) 3391 return; 3392 3393 ice_for_each_q_vector(vsi, v_idx) { 3394 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3395 ice_napi_poll); 3396 ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3397 } 3398 } 3399 3400 /** 3401 * ice_set_ops - set netdev and ethtools ops for the given netdev 3402 * @vsi: the VSI associated with the new netdev 3403 */ 3404 static void ice_set_ops(struct ice_vsi *vsi) 3405 { 3406 struct net_device *netdev = vsi->netdev; 3407 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3408 3409 if (ice_is_safe_mode(pf)) { 3410 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3411 ice_set_ethtool_safe_mode_ops(netdev); 3412 return; 3413 } 3414 3415 netdev->netdev_ops = &ice_netdev_ops; 3416 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3417 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3418 ice_set_ethtool_ops(netdev); 3419 3420 if (vsi->type != ICE_VSI_PF) 3421 return; 3422 3423 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3424 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3425 NETDEV_XDP_ACT_RX_SG; 3426 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3427 } 3428 3429 /** 3430 * ice_set_netdev_features - set features for the given netdev 3431 * @netdev: netdev instance 3432 */ 3433 static void ice_set_netdev_features(struct net_device *netdev) 3434 { 3435 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3436 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3437 netdev_features_t csumo_features; 3438 netdev_features_t vlano_features; 3439 netdev_features_t dflt_features; 3440 netdev_features_t tso_features; 3441 3442 if (ice_is_safe_mode(pf)) { 3443 /* safe mode */ 3444 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3445 netdev->hw_features = netdev->features; 3446 return; 3447 } 3448 3449 dflt_features = NETIF_F_SG | 3450 NETIF_F_HIGHDMA | 3451 NETIF_F_NTUPLE | 3452 NETIF_F_RXHASH; 3453 3454 csumo_features = NETIF_F_RXCSUM | 3455 NETIF_F_IP_CSUM | 3456 NETIF_F_SCTP_CRC | 3457 NETIF_F_IPV6_CSUM; 3458 3459 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3460 NETIF_F_HW_VLAN_CTAG_TX | 3461 NETIF_F_HW_VLAN_CTAG_RX; 3462 3463 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3464 if (is_dvm_ena) 3465 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3466 3467 tso_features = NETIF_F_TSO | 3468 NETIF_F_TSO_ECN | 3469 NETIF_F_TSO6 | 3470 NETIF_F_GSO_GRE | 3471 NETIF_F_GSO_UDP_TUNNEL | 3472 NETIF_F_GSO_GRE_CSUM | 3473 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3474 NETIF_F_GSO_PARTIAL | 3475 NETIF_F_GSO_IPXIP4 | 3476 NETIF_F_GSO_IPXIP6 | 3477 NETIF_F_GSO_UDP_L4; 3478 3479 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3480 NETIF_F_GSO_GRE_CSUM; 3481 /* set features that user can change */ 3482 netdev->hw_features = dflt_features | csumo_features | 3483 vlano_features | tso_features; 3484 3485 /* add support for HW_CSUM on packets with MPLS header */ 3486 netdev->mpls_features = NETIF_F_HW_CSUM | 3487 NETIF_F_TSO | 3488 NETIF_F_TSO6; 3489 3490 /* enable features */ 3491 netdev->features |= netdev->hw_features; 3492 3493 netdev->hw_features |= NETIF_F_HW_TC; 3494 netdev->hw_features |= NETIF_F_LOOPBACK; 3495 3496 /* encap and VLAN devices inherit default, csumo and tso features */ 3497 netdev->hw_enc_features |= dflt_features | csumo_features | 3498 tso_features; 3499 netdev->vlan_features |= dflt_features | csumo_features | 3500 tso_features; 3501 3502 /* advertise support but don't enable by default since only one type of 3503 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3504 * type turns on the other has to be turned off. This is enforced by the 3505 * ice_fix_features() ndo callback. 3506 */ 3507 if (is_dvm_ena) 3508 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3509 NETIF_F_HW_VLAN_STAG_TX; 3510 3511 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3512 * be changed at runtime 3513 */ 3514 netdev->hw_features |= NETIF_F_RXFCS; 3515 3516 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3517 } 3518 3519 /** 3520 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3521 * @lut: Lookup table 3522 * @rss_table_size: Lookup table size 3523 * @rss_size: Range of queue number for hashing 3524 */ 3525 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3526 { 3527 u16 i; 3528 3529 for (i = 0; i < rss_table_size; i++) 3530 lut[i] = i % rss_size; 3531 } 3532 3533 /** 3534 * ice_pf_vsi_setup - Set up a PF VSI 3535 * @pf: board private structure 3536 * @pi: pointer to the port_info instance 3537 * 3538 * Returns pointer to the successfully allocated VSI software struct 3539 * on success, otherwise returns NULL on failure. 3540 */ 3541 static struct ice_vsi * 3542 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3543 { 3544 struct ice_vsi_cfg_params params = {}; 3545 3546 params.type = ICE_VSI_PF; 3547 params.pi = pi; 3548 params.flags = ICE_VSI_FLAG_INIT; 3549 3550 return ice_vsi_setup(pf, ¶ms); 3551 } 3552 3553 static struct ice_vsi * 3554 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3555 struct ice_channel *ch) 3556 { 3557 struct ice_vsi_cfg_params params = {}; 3558 3559 params.type = ICE_VSI_CHNL; 3560 params.pi = pi; 3561 params.ch = ch; 3562 params.flags = ICE_VSI_FLAG_INIT; 3563 3564 return ice_vsi_setup(pf, ¶ms); 3565 } 3566 3567 /** 3568 * ice_ctrl_vsi_setup - Set up a control VSI 3569 * @pf: board private structure 3570 * @pi: pointer to the port_info instance 3571 * 3572 * Returns pointer to the successfully allocated VSI software struct 3573 * on success, otherwise returns NULL on failure. 3574 */ 3575 static struct ice_vsi * 3576 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3577 { 3578 struct ice_vsi_cfg_params params = {}; 3579 3580 params.type = ICE_VSI_CTRL; 3581 params.pi = pi; 3582 params.flags = ICE_VSI_FLAG_INIT; 3583 3584 return ice_vsi_setup(pf, ¶ms); 3585 } 3586 3587 /** 3588 * ice_lb_vsi_setup - Set up a loopback VSI 3589 * @pf: board private structure 3590 * @pi: pointer to the port_info instance 3591 * 3592 * Returns pointer to the successfully allocated VSI software struct 3593 * on success, otherwise returns NULL on failure. 3594 */ 3595 struct ice_vsi * 3596 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3597 { 3598 struct ice_vsi_cfg_params params = {}; 3599 3600 params.type = ICE_VSI_LB; 3601 params.pi = pi; 3602 params.flags = ICE_VSI_FLAG_INIT; 3603 3604 return ice_vsi_setup(pf, ¶ms); 3605 } 3606 3607 /** 3608 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3609 * @netdev: network interface to be adjusted 3610 * @proto: VLAN TPID 3611 * @vid: VLAN ID to be added 3612 * 3613 * net_device_ops implementation for adding VLAN IDs 3614 */ 3615 static int 3616 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3617 { 3618 struct ice_netdev_priv *np = netdev_priv(netdev); 3619 struct ice_vsi_vlan_ops *vlan_ops; 3620 struct ice_vsi *vsi = np->vsi; 3621 struct ice_vlan vlan; 3622 int ret; 3623 3624 /* VLAN 0 is added by default during load/reset */ 3625 if (!vid) 3626 return 0; 3627 3628 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3629 usleep_range(1000, 2000); 3630 3631 /* Add multicast promisc rule for the VLAN ID to be added if 3632 * all-multicast is currently enabled. 3633 */ 3634 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3635 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3636 ICE_MCAST_VLAN_PROMISC_BITS, 3637 vid); 3638 if (ret) 3639 goto finish; 3640 } 3641 3642 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3643 3644 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3645 * packets aren't pruned by the device's internal switch on Rx 3646 */ 3647 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3648 ret = vlan_ops->add_vlan(vsi, &vlan); 3649 if (ret) 3650 goto finish; 3651 3652 /* If all-multicast is currently enabled and this VLAN ID is only one 3653 * besides VLAN-0 we have to update look-up type of multicast promisc 3654 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3655 */ 3656 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3657 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3658 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3659 ICE_MCAST_PROMISC_BITS, 0); 3660 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3661 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3662 } 3663 3664 finish: 3665 clear_bit(ICE_CFG_BUSY, vsi->state); 3666 3667 return ret; 3668 } 3669 3670 /** 3671 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3672 * @netdev: network interface to be adjusted 3673 * @proto: VLAN TPID 3674 * @vid: VLAN ID to be removed 3675 * 3676 * net_device_ops implementation for removing VLAN IDs 3677 */ 3678 static int 3679 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3680 { 3681 struct ice_netdev_priv *np = netdev_priv(netdev); 3682 struct ice_vsi_vlan_ops *vlan_ops; 3683 struct ice_vsi *vsi = np->vsi; 3684 struct ice_vlan vlan; 3685 int ret; 3686 3687 /* don't allow removal of VLAN 0 */ 3688 if (!vid) 3689 return 0; 3690 3691 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3692 usleep_range(1000, 2000); 3693 3694 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3695 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3696 if (ret) { 3697 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3698 vsi->vsi_num); 3699 vsi->current_netdev_flags |= IFF_ALLMULTI; 3700 } 3701 3702 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3703 3704 /* Make sure VLAN delete is successful before updating VLAN 3705 * information 3706 */ 3707 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3708 ret = vlan_ops->del_vlan(vsi, &vlan); 3709 if (ret) 3710 goto finish; 3711 3712 /* Remove multicast promisc rule for the removed VLAN ID if 3713 * all-multicast is enabled. 3714 */ 3715 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3716 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3717 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3718 3719 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3720 /* Update look-up type of multicast promisc rule for VLAN 0 3721 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3722 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3723 */ 3724 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3725 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3726 ICE_MCAST_VLAN_PROMISC_BITS, 3727 0); 3728 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3729 ICE_MCAST_PROMISC_BITS, 0); 3730 } 3731 } 3732 3733 finish: 3734 clear_bit(ICE_CFG_BUSY, vsi->state); 3735 3736 return ret; 3737 } 3738 3739 /** 3740 * ice_rep_indr_tc_block_unbind 3741 * @cb_priv: indirection block private data 3742 */ 3743 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3744 { 3745 struct ice_indr_block_priv *indr_priv = cb_priv; 3746 3747 list_del(&indr_priv->list); 3748 kfree(indr_priv); 3749 } 3750 3751 /** 3752 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3753 * @vsi: VSI struct which has the netdev 3754 */ 3755 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3756 { 3757 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3758 3759 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3760 ice_rep_indr_tc_block_unbind); 3761 } 3762 3763 /** 3764 * ice_tc_indir_block_register - Register TC indirect block notifications 3765 * @vsi: VSI struct which has the netdev 3766 * 3767 * Returns 0 on success, negative value on failure 3768 */ 3769 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3770 { 3771 struct ice_netdev_priv *np; 3772 3773 if (!vsi || !vsi->netdev) 3774 return -EINVAL; 3775 3776 np = netdev_priv(vsi->netdev); 3777 3778 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3779 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3780 } 3781 3782 /** 3783 * ice_get_avail_q_count - Get count of queues in use 3784 * @pf_qmap: bitmap to get queue use count from 3785 * @lock: pointer to a mutex that protects access to pf_qmap 3786 * @size: size of the bitmap 3787 */ 3788 static u16 3789 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3790 { 3791 unsigned long bit; 3792 u16 count = 0; 3793 3794 mutex_lock(lock); 3795 for_each_clear_bit(bit, pf_qmap, size) 3796 count++; 3797 mutex_unlock(lock); 3798 3799 return count; 3800 } 3801 3802 /** 3803 * ice_get_avail_txq_count - Get count of Tx queues in use 3804 * @pf: pointer to an ice_pf instance 3805 */ 3806 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3807 { 3808 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3809 pf->max_pf_txqs); 3810 } 3811 3812 /** 3813 * ice_get_avail_rxq_count - Get count of Rx queues in use 3814 * @pf: pointer to an ice_pf instance 3815 */ 3816 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3817 { 3818 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3819 pf->max_pf_rxqs); 3820 } 3821 3822 /** 3823 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3824 * @pf: board private structure to initialize 3825 */ 3826 static void ice_deinit_pf(struct ice_pf *pf) 3827 { 3828 ice_service_task_stop(pf); 3829 mutex_destroy(&pf->lag_mutex); 3830 mutex_destroy(&pf->adev_mutex); 3831 mutex_destroy(&pf->sw_mutex); 3832 mutex_destroy(&pf->tc_mutex); 3833 mutex_destroy(&pf->avail_q_mutex); 3834 mutex_destroy(&pf->vfs.table_lock); 3835 3836 if (pf->avail_txqs) { 3837 bitmap_free(pf->avail_txqs); 3838 pf->avail_txqs = NULL; 3839 } 3840 3841 if (pf->avail_rxqs) { 3842 bitmap_free(pf->avail_rxqs); 3843 pf->avail_rxqs = NULL; 3844 } 3845 3846 if (pf->ptp.clock) 3847 ptp_clock_unregister(pf->ptp.clock); 3848 } 3849 3850 /** 3851 * ice_set_pf_caps - set PFs capability flags 3852 * @pf: pointer to the PF instance 3853 */ 3854 static void ice_set_pf_caps(struct ice_pf *pf) 3855 { 3856 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3857 3858 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3859 if (func_caps->common_cap.rdma) 3860 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3861 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3862 if (func_caps->common_cap.dcb) 3863 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3864 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3865 if (func_caps->common_cap.sr_iov_1_1) { 3866 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3867 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3868 ICE_MAX_SRIOV_VFS); 3869 } 3870 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3871 if (func_caps->common_cap.rss_table_size) 3872 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3873 3874 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3875 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3876 u16 unused; 3877 3878 /* ctrl_vsi_idx will be set to a valid value when flow director 3879 * is setup by ice_init_fdir 3880 */ 3881 pf->ctrl_vsi_idx = ICE_NO_VSI; 3882 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3883 /* force guaranteed filter pool for PF */ 3884 ice_alloc_fd_guar_item(&pf->hw, &unused, 3885 func_caps->fd_fltr_guar); 3886 /* force shared filter pool for PF */ 3887 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3888 func_caps->fd_fltr_best_effort); 3889 } 3890 3891 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3892 if (func_caps->common_cap.ieee_1588 && 3893 !(pf->hw.mac_type == ICE_MAC_E830)) 3894 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3895 3896 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3897 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3898 } 3899 3900 /** 3901 * ice_init_pf - Initialize general software structures (struct ice_pf) 3902 * @pf: board private structure to initialize 3903 */ 3904 static int ice_init_pf(struct ice_pf *pf) 3905 { 3906 ice_set_pf_caps(pf); 3907 3908 mutex_init(&pf->sw_mutex); 3909 mutex_init(&pf->tc_mutex); 3910 mutex_init(&pf->adev_mutex); 3911 mutex_init(&pf->lag_mutex); 3912 3913 INIT_HLIST_HEAD(&pf->aq_wait_list); 3914 spin_lock_init(&pf->aq_wait_lock); 3915 init_waitqueue_head(&pf->aq_wait_queue); 3916 3917 init_waitqueue_head(&pf->reset_wait_queue); 3918 3919 /* setup service timer and periodic service task */ 3920 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3921 pf->serv_tmr_period = HZ; 3922 INIT_WORK(&pf->serv_task, ice_service_task); 3923 clear_bit(ICE_SERVICE_SCHED, pf->state); 3924 3925 mutex_init(&pf->avail_q_mutex); 3926 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3927 if (!pf->avail_txqs) 3928 return -ENOMEM; 3929 3930 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3931 if (!pf->avail_rxqs) { 3932 bitmap_free(pf->avail_txqs); 3933 pf->avail_txqs = NULL; 3934 return -ENOMEM; 3935 } 3936 3937 mutex_init(&pf->vfs.table_lock); 3938 hash_init(pf->vfs.table); 3939 ice_mbx_init_snapshot(&pf->hw); 3940 3941 return 0; 3942 } 3943 3944 /** 3945 * ice_is_wol_supported - check if WoL is supported 3946 * @hw: pointer to hardware info 3947 * 3948 * Check if WoL is supported based on the HW configuration. 3949 * Returns true if NVM supports and enables WoL for this port, false otherwise 3950 */ 3951 bool ice_is_wol_supported(struct ice_hw *hw) 3952 { 3953 u16 wol_ctrl; 3954 3955 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3956 * word) indicates WoL is not supported on the corresponding PF ID. 3957 */ 3958 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3959 return false; 3960 3961 return !(BIT(hw->port_info->lport) & wol_ctrl); 3962 } 3963 3964 /** 3965 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3966 * @vsi: VSI being changed 3967 * @new_rx: new number of Rx queues 3968 * @new_tx: new number of Tx queues 3969 * @locked: is adev device_lock held 3970 * 3971 * Only change the number of queues if new_tx, or new_rx is non-0. 3972 * 3973 * Returns 0 on success. 3974 */ 3975 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3976 { 3977 struct ice_pf *pf = vsi->back; 3978 int err = 0, timeout = 50; 3979 3980 if (!new_rx && !new_tx) 3981 return -EINVAL; 3982 3983 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3984 timeout--; 3985 if (!timeout) 3986 return -EBUSY; 3987 usleep_range(1000, 2000); 3988 } 3989 3990 if (new_tx) 3991 vsi->req_txq = (u16)new_tx; 3992 if (new_rx) 3993 vsi->req_rxq = (u16)new_rx; 3994 3995 /* set for the next time the netdev is started */ 3996 if (!netif_running(vsi->netdev)) { 3997 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3998 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3999 goto done; 4000 } 4001 4002 ice_vsi_close(vsi); 4003 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4004 ice_pf_dcb_recfg(pf, locked); 4005 ice_vsi_open(vsi); 4006 done: 4007 clear_bit(ICE_CFG_BUSY, pf->state); 4008 return err; 4009 } 4010 4011 /** 4012 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4013 * @pf: PF to configure 4014 * 4015 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4016 * VSI can still Tx/Rx VLAN tagged packets. 4017 */ 4018 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4019 { 4020 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4021 struct ice_vsi_ctx *ctxt; 4022 struct ice_hw *hw; 4023 int status; 4024 4025 if (!vsi) 4026 return; 4027 4028 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4029 if (!ctxt) 4030 return; 4031 4032 hw = &pf->hw; 4033 ctxt->info = vsi->info; 4034 4035 ctxt->info.valid_sections = 4036 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4037 ICE_AQ_VSI_PROP_SECURITY_VALID | 4038 ICE_AQ_VSI_PROP_SW_VALID); 4039 4040 /* disable VLAN anti-spoof */ 4041 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4042 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4043 4044 /* disable VLAN pruning and keep all other settings */ 4045 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4046 4047 /* allow all VLANs on Tx and don't strip on Rx */ 4048 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4049 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4050 4051 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4052 if (status) { 4053 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4054 status, ice_aq_str(hw->adminq.sq_last_status)); 4055 } else { 4056 vsi->info.sec_flags = ctxt->info.sec_flags; 4057 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4058 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4059 } 4060 4061 kfree(ctxt); 4062 } 4063 4064 /** 4065 * ice_log_pkg_init - log result of DDP package load 4066 * @hw: pointer to hardware info 4067 * @state: state of package load 4068 */ 4069 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4070 { 4071 struct ice_pf *pf = hw->back; 4072 struct device *dev; 4073 4074 dev = ice_pf_to_dev(pf); 4075 4076 switch (state) { 4077 case ICE_DDP_PKG_SUCCESS: 4078 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4079 hw->active_pkg_name, 4080 hw->active_pkg_ver.major, 4081 hw->active_pkg_ver.minor, 4082 hw->active_pkg_ver.update, 4083 hw->active_pkg_ver.draft); 4084 break; 4085 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4086 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4087 hw->active_pkg_name, 4088 hw->active_pkg_ver.major, 4089 hw->active_pkg_ver.minor, 4090 hw->active_pkg_ver.update, 4091 hw->active_pkg_ver.draft); 4092 break; 4093 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4094 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4095 hw->active_pkg_name, 4096 hw->active_pkg_ver.major, 4097 hw->active_pkg_ver.minor, 4098 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4099 break; 4100 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4101 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4102 hw->active_pkg_name, 4103 hw->active_pkg_ver.major, 4104 hw->active_pkg_ver.minor, 4105 hw->active_pkg_ver.update, 4106 hw->active_pkg_ver.draft, 4107 hw->pkg_name, 4108 hw->pkg_ver.major, 4109 hw->pkg_ver.minor, 4110 hw->pkg_ver.update, 4111 hw->pkg_ver.draft); 4112 break; 4113 case ICE_DDP_PKG_FW_MISMATCH: 4114 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4115 break; 4116 case ICE_DDP_PKG_INVALID_FILE: 4117 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4118 break; 4119 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4120 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4121 break; 4122 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4123 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4124 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4125 break; 4126 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4127 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4128 break; 4129 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4130 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4131 break; 4132 case ICE_DDP_PKG_LOAD_ERROR: 4133 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4134 /* poll for reset to complete */ 4135 if (ice_check_reset(hw)) 4136 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4137 break; 4138 case ICE_DDP_PKG_ERR: 4139 default: 4140 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4141 break; 4142 } 4143 } 4144 4145 /** 4146 * ice_load_pkg - load/reload the DDP Package file 4147 * @firmware: firmware structure when firmware requested or NULL for reload 4148 * @pf: pointer to the PF instance 4149 * 4150 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4151 * initialize HW tables. 4152 */ 4153 static void 4154 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4155 { 4156 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4157 struct device *dev = ice_pf_to_dev(pf); 4158 struct ice_hw *hw = &pf->hw; 4159 4160 /* Load DDP Package */ 4161 if (firmware && !hw->pkg_copy) { 4162 state = ice_copy_and_init_pkg(hw, firmware->data, 4163 firmware->size); 4164 ice_log_pkg_init(hw, state); 4165 } else if (!firmware && hw->pkg_copy) { 4166 /* Reload package during rebuild after CORER/GLOBR reset */ 4167 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4168 ice_log_pkg_init(hw, state); 4169 } else { 4170 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4171 } 4172 4173 if (!ice_is_init_pkg_successful(state)) { 4174 /* Safe Mode */ 4175 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4176 return; 4177 } 4178 4179 /* Successful download package is the precondition for advanced 4180 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4181 */ 4182 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4183 } 4184 4185 /** 4186 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4187 * @pf: pointer to the PF structure 4188 * 4189 * There is no error returned here because the driver should be able to handle 4190 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4191 * specifically with Tx. 4192 */ 4193 static void ice_verify_cacheline_size(struct ice_pf *pf) 4194 { 4195 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4196 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4197 ICE_CACHE_LINE_BYTES); 4198 } 4199 4200 /** 4201 * ice_send_version - update firmware with driver version 4202 * @pf: PF struct 4203 * 4204 * Returns 0 on success, else error code 4205 */ 4206 static int ice_send_version(struct ice_pf *pf) 4207 { 4208 struct ice_driver_ver dv; 4209 4210 dv.major_ver = 0xff; 4211 dv.minor_ver = 0xff; 4212 dv.build_ver = 0xff; 4213 dv.subbuild_ver = 0; 4214 strscpy((char *)dv.driver_string, UTS_RELEASE, 4215 sizeof(dv.driver_string)); 4216 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4217 } 4218 4219 /** 4220 * ice_init_fdir - Initialize flow director VSI and configuration 4221 * @pf: pointer to the PF instance 4222 * 4223 * returns 0 on success, negative on error 4224 */ 4225 static int ice_init_fdir(struct ice_pf *pf) 4226 { 4227 struct device *dev = ice_pf_to_dev(pf); 4228 struct ice_vsi *ctrl_vsi; 4229 int err; 4230 4231 /* Side Band Flow Director needs to have a control VSI. 4232 * Allocate it and store it in the PF. 4233 */ 4234 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4235 if (!ctrl_vsi) { 4236 dev_dbg(dev, "could not create control VSI\n"); 4237 return -ENOMEM; 4238 } 4239 4240 err = ice_vsi_open_ctrl(ctrl_vsi); 4241 if (err) { 4242 dev_dbg(dev, "could not open control VSI\n"); 4243 goto err_vsi_open; 4244 } 4245 4246 mutex_init(&pf->hw.fdir_fltr_lock); 4247 4248 err = ice_fdir_create_dflt_rules(pf); 4249 if (err) 4250 goto err_fdir_rule; 4251 4252 return 0; 4253 4254 err_fdir_rule: 4255 ice_fdir_release_flows(&pf->hw); 4256 ice_vsi_close(ctrl_vsi); 4257 err_vsi_open: 4258 ice_vsi_release(ctrl_vsi); 4259 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4260 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4261 pf->ctrl_vsi_idx = ICE_NO_VSI; 4262 } 4263 return err; 4264 } 4265 4266 static void ice_deinit_fdir(struct ice_pf *pf) 4267 { 4268 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4269 4270 if (!vsi) 4271 return; 4272 4273 ice_vsi_manage_fdir(vsi, false); 4274 ice_vsi_release(vsi); 4275 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4276 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4277 pf->ctrl_vsi_idx = ICE_NO_VSI; 4278 } 4279 4280 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4281 } 4282 4283 /** 4284 * ice_get_opt_fw_name - return optional firmware file name or NULL 4285 * @pf: pointer to the PF instance 4286 */ 4287 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4288 { 4289 /* Optional firmware name same as default with additional dash 4290 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4291 */ 4292 struct pci_dev *pdev = pf->pdev; 4293 char *opt_fw_filename; 4294 u64 dsn; 4295 4296 /* Determine the name of the optional file using the DSN (two 4297 * dwords following the start of the DSN Capability). 4298 */ 4299 dsn = pci_get_dsn(pdev); 4300 if (!dsn) 4301 return NULL; 4302 4303 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4304 if (!opt_fw_filename) 4305 return NULL; 4306 4307 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4308 ICE_DDP_PKG_PATH, dsn); 4309 4310 return opt_fw_filename; 4311 } 4312 4313 /** 4314 * ice_request_fw - Device initialization routine 4315 * @pf: pointer to the PF instance 4316 */ 4317 static void ice_request_fw(struct ice_pf *pf) 4318 { 4319 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4320 const struct firmware *firmware = NULL; 4321 struct device *dev = ice_pf_to_dev(pf); 4322 int err = 0; 4323 4324 /* optional device-specific DDP (if present) overrides the default DDP 4325 * package file. kernel logs a debug message if the file doesn't exist, 4326 * and warning messages for other errors. 4327 */ 4328 if (opt_fw_filename) { 4329 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4330 if (err) { 4331 kfree(opt_fw_filename); 4332 goto dflt_pkg_load; 4333 } 4334 4335 /* request for firmware was successful. Download to device */ 4336 ice_load_pkg(firmware, pf); 4337 kfree(opt_fw_filename); 4338 release_firmware(firmware); 4339 return; 4340 } 4341 4342 dflt_pkg_load: 4343 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4344 if (err) { 4345 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4346 return; 4347 } 4348 4349 /* request for firmware was successful. Download to device */ 4350 ice_load_pkg(firmware, pf); 4351 release_firmware(firmware); 4352 } 4353 4354 /** 4355 * ice_print_wake_reason - show the wake up cause in the log 4356 * @pf: pointer to the PF struct 4357 */ 4358 static void ice_print_wake_reason(struct ice_pf *pf) 4359 { 4360 u32 wus = pf->wakeup_reason; 4361 const char *wake_str; 4362 4363 /* if no wake event, nothing to print */ 4364 if (!wus) 4365 return; 4366 4367 if (wus & PFPM_WUS_LNKC_M) 4368 wake_str = "Link\n"; 4369 else if (wus & PFPM_WUS_MAG_M) 4370 wake_str = "Magic Packet\n"; 4371 else if (wus & PFPM_WUS_MNG_M) 4372 wake_str = "Management\n"; 4373 else if (wus & PFPM_WUS_FW_RST_WK_M) 4374 wake_str = "Firmware Reset\n"; 4375 else 4376 wake_str = "Unknown\n"; 4377 4378 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4379 } 4380 4381 /** 4382 * ice_pf_fwlog_update_module - update 1 module 4383 * @pf: pointer to the PF struct 4384 * @log_level: log_level to use for the @module 4385 * @module: module to update 4386 */ 4387 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4388 { 4389 struct ice_hw *hw = &pf->hw; 4390 4391 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4392 } 4393 4394 /** 4395 * ice_register_netdev - register netdev 4396 * @vsi: pointer to the VSI struct 4397 */ 4398 static int ice_register_netdev(struct ice_vsi *vsi) 4399 { 4400 int err; 4401 4402 if (!vsi || !vsi->netdev) 4403 return -EIO; 4404 4405 err = register_netdev(vsi->netdev); 4406 if (err) 4407 return err; 4408 4409 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4410 netif_carrier_off(vsi->netdev); 4411 netif_tx_stop_all_queues(vsi->netdev); 4412 4413 return 0; 4414 } 4415 4416 static void ice_unregister_netdev(struct ice_vsi *vsi) 4417 { 4418 if (!vsi || !vsi->netdev) 4419 return; 4420 4421 unregister_netdev(vsi->netdev); 4422 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4423 } 4424 4425 /** 4426 * ice_cfg_netdev - Allocate, configure and register a netdev 4427 * @vsi: the VSI associated with the new netdev 4428 * 4429 * Returns 0 on success, negative value on failure 4430 */ 4431 static int ice_cfg_netdev(struct ice_vsi *vsi) 4432 { 4433 struct ice_netdev_priv *np; 4434 struct net_device *netdev; 4435 u8 mac_addr[ETH_ALEN]; 4436 4437 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4438 vsi->alloc_rxq); 4439 if (!netdev) 4440 return -ENOMEM; 4441 4442 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4443 vsi->netdev = netdev; 4444 np = netdev_priv(netdev); 4445 np->vsi = vsi; 4446 4447 ice_set_netdev_features(netdev); 4448 ice_set_ops(vsi); 4449 4450 if (vsi->type == ICE_VSI_PF) { 4451 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4452 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4453 eth_hw_addr_set(netdev, mac_addr); 4454 } 4455 4456 netdev->priv_flags |= IFF_UNICAST_FLT; 4457 4458 /* Setup netdev TC information */ 4459 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4460 4461 netdev->max_mtu = ICE_MAX_MTU; 4462 4463 return 0; 4464 } 4465 4466 static void ice_decfg_netdev(struct ice_vsi *vsi) 4467 { 4468 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4469 free_netdev(vsi->netdev); 4470 vsi->netdev = NULL; 4471 } 4472 4473 static int ice_start_eth(struct ice_vsi *vsi) 4474 { 4475 int err; 4476 4477 err = ice_init_mac_fltr(vsi->back); 4478 if (err) 4479 return err; 4480 4481 err = ice_vsi_open(vsi); 4482 if (err) 4483 ice_fltr_remove_all(vsi); 4484 4485 return err; 4486 } 4487 4488 static void ice_stop_eth(struct ice_vsi *vsi) 4489 { 4490 ice_fltr_remove_all(vsi); 4491 ice_vsi_close(vsi); 4492 } 4493 4494 static int ice_init_eth(struct ice_pf *pf) 4495 { 4496 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4497 int err; 4498 4499 if (!vsi) 4500 return -EINVAL; 4501 4502 /* init channel list */ 4503 INIT_LIST_HEAD(&vsi->ch_list); 4504 4505 err = ice_cfg_netdev(vsi); 4506 if (err) 4507 return err; 4508 /* Setup DCB netlink interface */ 4509 ice_dcbnl_setup(vsi); 4510 4511 err = ice_init_mac_fltr(pf); 4512 if (err) 4513 goto err_init_mac_fltr; 4514 4515 err = ice_devlink_create_pf_port(pf); 4516 if (err) 4517 goto err_devlink_create_pf_port; 4518 4519 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4520 4521 err = ice_register_netdev(vsi); 4522 if (err) 4523 goto err_register_netdev; 4524 4525 err = ice_tc_indir_block_register(vsi); 4526 if (err) 4527 goto err_tc_indir_block_register; 4528 4529 ice_napi_add(vsi); 4530 4531 return 0; 4532 4533 err_tc_indir_block_register: 4534 ice_unregister_netdev(vsi); 4535 err_register_netdev: 4536 ice_devlink_destroy_pf_port(pf); 4537 err_devlink_create_pf_port: 4538 err_init_mac_fltr: 4539 ice_decfg_netdev(vsi); 4540 return err; 4541 } 4542 4543 static void ice_deinit_eth(struct ice_pf *pf) 4544 { 4545 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4546 4547 if (!vsi) 4548 return; 4549 4550 ice_vsi_close(vsi); 4551 ice_unregister_netdev(vsi); 4552 ice_devlink_destroy_pf_port(pf); 4553 ice_tc_indir_block_unregister(vsi); 4554 ice_decfg_netdev(vsi); 4555 } 4556 4557 /** 4558 * ice_wait_for_fw - wait for full FW readiness 4559 * @hw: pointer to the hardware structure 4560 * @timeout: milliseconds that can elapse before timing out 4561 */ 4562 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4563 { 4564 int fw_loading; 4565 u32 elapsed = 0; 4566 4567 while (elapsed <= timeout) { 4568 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4569 4570 /* firmware was not yet loaded, we have to wait more */ 4571 if (fw_loading) { 4572 elapsed += 100; 4573 msleep(100); 4574 continue; 4575 } 4576 return 0; 4577 } 4578 4579 return -ETIMEDOUT; 4580 } 4581 4582 static int ice_init_dev(struct ice_pf *pf) 4583 { 4584 struct device *dev = ice_pf_to_dev(pf); 4585 struct ice_hw *hw = &pf->hw; 4586 int err; 4587 4588 err = ice_init_hw(hw); 4589 if (err) { 4590 dev_err(dev, "ice_init_hw failed: %d\n", err); 4591 return err; 4592 } 4593 4594 /* Some cards require longer initialization times 4595 * due to necessity of loading FW from an external source. 4596 * This can take even half a minute. 4597 */ 4598 if (ice_is_pf_c827(hw)) { 4599 err = ice_wait_for_fw(hw, 30000); 4600 if (err) { 4601 dev_err(dev, "ice_wait_for_fw timed out"); 4602 return err; 4603 } 4604 } 4605 4606 ice_init_feature_support(pf); 4607 4608 ice_request_fw(pf); 4609 4610 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4611 * set in pf->state, which will cause ice_is_safe_mode to return 4612 * true 4613 */ 4614 if (ice_is_safe_mode(pf)) { 4615 /* we already got function/device capabilities but these don't 4616 * reflect what the driver needs to do in safe mode. Instead of 4617 * adding conditional logic everywhere to ignore these 4618 * device/function capabilities, override them. 4619 */ 4620 ice_set_safe_mode_caps(hw); 4621 } 4622 4623 err = ice_init_pf(pf); 4624 if (err) { 4625 dev_err(dev, "ice_init_pf failed: %d\n", err); 4626 goto err_init_pf; 4627 } 4628 4629 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4630 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4631 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4632 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4633 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4634 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4635 pf->hw.tnl.valid_count[TNL_VXLAN]; 4636 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4637 UDP_TUNNEL_TYPE_VXLAN; 4638 } 4639 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4640 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4641 pf->hw.tnl.valid_count[TNL_GENEVE]; 4642 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4643 UDP_TUNNEL_TYPE_GENEVE; 4644 } 4645 4646 err = ice_init_interrupt_scheme(pf); 4647 if (err) { 4648 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4649 err = -EIO; 4650 goto err_init_interrupt_scheme; 4651 } 4652 4653 /* In case of MSIX we are going to setup the misc vector right here 4654 * to handle admin queue events etc. In case of legacy and MSI 4655 * the misc functionality and queue processing is combined in 4656 * the same vector and that gets setup at open. 4657 */ 4658 err = ice_req_irq_msix_misc(pf); 4659 if (err) { 4660 dev_err(dev, "setup of misc vector failed: %d\n", err); 4661 goto err_req_irq_msix_misc; 4662 } 4663 4664 return 0; 4665 4666 err_req_irq_msix_misc: 4667 ice_clear_interrupt_scheme(pf); 4668 err_init_interrupt_scheme: 4669 ice_deinit_pf(pf); 4670 err_init_pf: 4671 ice_deinit_hw(hw); 4672 return err; 4673 } 4674 4675 static void ice_deinit_dev(struct ice_pf *pf) 4676 { 4677 ice_free_irq_msix_misc(pf); 4678 ice_deinit_pf(pf); 4679 ice_deinit_hw(&pf->hw); 4680 4681 /* Service task is already stopped, so call reset directly. */ 4682 ice_reset(&pf->hw, ICE_RESET_PFR); 4683 pci_wait_for_pending_transaction(pf->pdev); 4684 ice_clear_interrupt_scheme(pf); 4685 } 4686 4687 static void ice_init_features(struct ice_pf *pf) 4688 { 4689 struct device *dev = ice_pf_to_dev(pf); 4690 4691 if (ice_is_safe_mode(pf)) 4692 return; 4693 4694 /* initialize DDP driven features */ 4695 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4696 ice_ptp_init(pf); 4697 4698 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4699 ice_gnss_init(pf); 4700 4701 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4702 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4703 ice_dpll_init(pf); 4704 4705 /* Note: Flow director init failure is non-fatal to load */ 4706 if (ice_init_fdir(pf)) 4707 dev_err(dev, "could not initialize flow director\n"); 4708 4709 /* Note: DCB init failure is non-fatal to load */ 4710 if (ice_init_pf_dcb(pf, false)) { 4711 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4712 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4713 } else { 4714 ice_cfg_lldp_mib_change(&pf->hw, true); 4715 } 4716 4717 if (ice_init_lag(pf)) 4718 dev_warn(dev, "Failed to init link aggregation support\n"); 4719 4720 ice_hwmon_init(pf); 4721 } 4722 4723 static void ice_deinit_features(struct ice_pf *pf) 4724 { 4725 if (ice_is_safe_mode(pf)) 4726 return; 4727 4728 ice_deinit_lag(pf); 4729 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4730 ice_cfg_lldp_mib_change(&pf->hw, false); 4731 ice_deinit_fdir(pf); 4732 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4733 ice_gnss_exit(pf); 4734 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4735 ice_ptp_release(pf); 4736 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4737 ice_dpll_deinit(pf); 4738 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4739 xa_destroy(&pf->eswitch.reprs); 4740 } 4741 4742 static void ice_init_wakeup(struct ice_pf *pf) 4743 { 4744 /* Save wakeup reason register for later use */ 4745 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4746 4747 /* check for a power management event */ 4748 ice_print_wake_reason(pf); 4749 4750 /* clear wake status, all bits */ 4751 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4752 4753 /* Disable WoL at init, wait for user to enable */ 4754 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4755 } 4756 4757 static int ice_init_link(struct ice_pf *pf) 4758 { 4759 struct device *dev = ice_pf_to_dev(pf); 4760 int err; 4761 4762 err = ice_init_link_events(pf->hw.port_info); 4763 if (err) { 4764 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4765 return err; 4766 } 4767 4768 /* not a fatal error if this fails */ 4769 err = ice_init_nvm_phy_type(pf->hw.port_info); 4770 if (err) 4771 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4772 4773 /* not a fatal error if this fails */ 4774 err = ice_update_link_info(pf->hw.port_info); 4775 if (err) 4776 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4777 4778 ice_init_link_dflt_override(pf->hw.port_info); 4779 4780 ice_check_link_cfg_err(pf, 4781 pf->hw.port_info->phy.link_info.link_cfg_err); 4782 4783 /* if media available, initialize PHY settings */ 4784 if (pf->hw.port_info->phy.link_info.link_info & 4785 ICE_AQ_MEDIA_AVAILABLE) { 4786 /* not a fatal error if this fails */ 4787 err = ice_init_phy_user_cfg(pf->hw.port_info); 4788 if (err) 4789 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4790 4791 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4792 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4793 4794 if (vsi) 4795 ice_configure_phy(vsi); 4796 } 4797 } else { 4798 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4799 } 4800 4801 return err; 4802 } 4803 4804 static int ice_init_pf_sw(struct ice_pf *pf) 4805 { 4806 bool dvm = ice_is_dvm_ena(&pf->hw); 4807 struct ice_vsi *vsi; 4808 int err; 4809 4810 /* create switch struct for the switch element created by FW on boot */ 4811 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4812 if (!pf->first_sw) 4813 return -ENOMEM; 4814 4815 if (pf->hw.evb_veb) 4816 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4817 else 4818 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4819 4820 pf->first_sw->pf = pf; 4821 4822 /* record the sw_id available for later use */ 4823 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4824 4825 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4826 if (err) 4827 goto err_aq_set_port_params; 4828 4829 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4830 if (!vsi) { 4831 err = -ENOMEM; 4832 goto err_pf_vsi_setup; 4833 } 4834 4835 return 0; 4836 4837 err_pf_vsi_setup: 4838 err_aq_set_port_params: 4839 kfree(pf->first_sw); 4840 return err; 4841 } 4842 4843 static void ice_deinit_pf_sw(struct ice_pf *pf) 4844 { 4845 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4846 4847 if (!vsi) 4848 return; 4849 4850 ice_vsi_release(vsi); 4851 kfree(pf->first_sw); 4852 } 4853 4854 static int ice_alloc_vsis(struct ice_pf *pf) 4855 { 4856 struct device *dev = ice_pf_to_dev(pf); 4857 4858 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4859 if (!pf->num_alloc_vsi) 4860 return -EIO; 4861 4862 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4863 dev_warn(dev, 4864 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4865 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4866 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4867 } 4868 4869 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4870 GFP_KERNEL); 4871 if (!pf->vsi) 4872 return -ENOMEM; 4873 4874 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4875 sizeof(*pf->vsi_stats), GFP_KERNEL); 4876 if (!pf->vsi_stats) { 4877 devm_kfree(dev, pf->vsi); 4878 return -ENOMEM; 4879 } 4880 4881 return 0; 4882 } 4883 4884 static void ice_dealloc_vsis(struct ice_pf *pf) 4885 { 4886 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4887 pf->vsi_stats = NULL; 4888 4889 pf->num_alloc_vsi = 0; 4890 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4891 pf->vsi = NULL; 4892 } 4893 4894 static int ice_init_devlink(struct ice_pf *pf) 4895 { 4896 int err; 4897 4898 err = ice_devlink_register_params(pf); 4899 if (err) 4900 return err; 4901 4902 ice_devlink_init_regions(pf); 4903 ice_devlink_register(pf); 4904 4905 return 0; 4906 } 4907 4908 static void ice_deinit_devlink(struct ice_pf *pf) 4909 { 4910 ice_devlink_unregister(pf); 4911 ice_devlink_destroy_regions(pf); 4912 ice_devlink_unregister_params(pf); 4913 } 4914 4915 static int ice_init(struct ice_pf *pf) 4916 { 4917 int err; 4918 4919 err = ice_init_dev(pf); 4920 if (err) 4921 return err; 4922 4923 err = ice_alloc_vsis(pf); 4924 if (err) 4925 goto err_alloc_vsis; 4926 4927 err = ice_init_pf_sw(pf); 4928 if (err) 4929 goto err_init_pf_sw; 4930 4931 ice_init_wakeup(pf); 4932 4933 err = ice_init_link(pf); 4934 if (err) 4935 goto err_init_link; 4936 4937 err = ice_send_version(pf); 4938 if (err) 4939 goto err_init_link; 4940 4941 ice_verify_cacheline_size(pf); 4942 4943 if (ice_is_safe_mode(pf)) 4944 ice_set_safe_mode_vlan_cfg(pf); 4945 else 4946 /* print PCI link speed and width */ 4947 pcie_print_link_status(pf->pdev); 4948 4949 /* ready to go, so clear down state bit */ 4950 clear_bit(ICE_DOWN, pf->state); 4951 clear_bit(ICE_SERVICE_DIS, pf->state); 4952 4953 /* since everything is good, start the service timer */ 4954 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4955 4956 return 0; 4957 4958 err_init_link: 4959 ice_deinit_pf_sw(pf); 4960 err_init_pf_sw: 4961 ice_dealloc_vsis(pf); 4962 err_alloc_vsis: 4963 ice_deinit_dev(pf); 4964 return err; 4965 } 4966 4967 static void ice_deinit(struct ice_pf *pf) 4968 { 4969 set_bit(ICE_SERVICE_DIS, pf->state); 4970 set_bit(ICE_DOWN, pf->state); 4971 4972 ice_deinit_pf_sw(pf); 4973 ice_dealloc_vsis(pf); 4974 ice_deinit_dev(pf); 4975 } 4976 4977 /** 4978 * ice_load - load pf by init hw and starting VSI 4979 * @pf: pointer to the pf instance 4980 */ 4981 int ice_load(struct ice_pf *pf) 4982 { 4983 struct ice_vsi_cfg_params params = {}; 4984 struct ice_vsi *vsi; 4985 int err; 4986 4987 err = ice_init_dev(pf); 4988 if (err) 4989 return err; 4990 4991 vsi = ice_get_main_vsi(pf); 4992 4993 params = ice_vsi_to_params(vsi); 4994 params.flags = ICE_VSI_FLAG_INIT; 4995 4996 rtnl_lock(); 4997 err = ice_vsi_cfg(vsi, ¶ms); 4998 if (err) 4999 goto err_vsi_cfg; 5000 5001 err = ice_start_eth(ice_get_main_vsi(pf)); 5002 if (err) 5003 goto err_start_eth; 5004 rtnl_unlock(); 5005 5006 err = ice_init_rdma(pf); 5007 if (err) 5008 goto err_init_rdma; 5009 5010 ice_init_features(pf); 5011 ice_service_task_restart(pf); 5012 5013 clear_bit(ICE_DOWN, pf->state); 5014 5015 return 0; 5016 5017 err_init_rdma: 5018 ice_vsi_close(ice_get_main_vsi(pf)); 5019 rtnl_lock(); 5020 err_start_eth: 5021 ice_vsi_decfg(ice_get_main_vsi(pf)); 5022 err_vsi_cfg: 5023 rtnl_unlock(); 5024 ice_deinit_dev(pf); 5025 return err; 5026 } 5027 5028 /** 5029 * ice_unload - unload pf by stopping VSI and deinit hw 5030 * @pf: pointer to the pf instance 5031 */ 5032 void ice_unload(struct ice_pf *pf) 5033 { 5034 ice_deinit_features(pf); 5035 ice_deinit_rdma(pf); 5036 rtnl_lock(); 5037 ice_stop_eth(ice_get_main_vsi(pf)); 5038 ice_vsi_decfg(ice_get_main_vsi(pf)); 5039 rtnl_unlock(); 5040 ice_deinit_dev(pf); 5041 } 5042 5043 /** 5044 * ice_probe - Device initialization routine 5045 * @pdev: PCI device information struct 5046 * @ent: entry in ice_pci_tbl 5047 * 5048 * Returns 0 on success, negative on failure 5049 */ 5050 static int 5051 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5052 { 5053 struct device *dev = &pdev->dev; 5054 struct ice_pf *pf; 5055 struct ice_hw *hw; 5056 int err; 5057 5058 if (pdev->is_virtfn) { 5059 dev_err(dev, "can't probe a virtual function\n"); 5060 return -EINVAL; 5061 } 5062 5063 /* when under a kdump kernel initiate a reset before enabling the 5064 * device in order to clear out any pending DMA transactions. These 5065 * transactions can cause some systems to machine check when doing 5066 * the pcim_enable_device() below. 5067 */ 5068 if (is_kdump_kernel()) { 5069 pci_save_state(pdev); 5070 pci_clear_master(pdev); 5071 err = pcie_flr(pdev); 5072 if (err) 5073 return err; 5074 pci_restore_state(pdev); 5075 } 5076 5077 /* this driver uses devres, see 5078 * Documentation/driver-api/driver-model/devres.rst 5079 */ 5080 err = pcim_enable_device(pdev); 5081 if (err) 5082 return err; 5083 5084 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5085 if (err) { 5086 dev_err(dev, "BAR0 I/O map error %d\n", err); 5087 return err; 5088 } 5089 5090 pf = ice_allocate_pf(dev); 5091 if (!pf) 5092 return -ENOMEM; 5093 5094 /* initialize Auxiliary index to invalid value */ 5095 pf->aux_idx = -1; 5096 5097 /* set up for high or low DMA */ 5098 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5099 if (err) { 5100 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5101 return err; 5102 } 5103 5104 pci_set_master(pdev); 5105 5106 pf->pdev = pdev; 5107 pci_set_drvdata(pdev, pf); 5108 set_bit(ICE_DOWN, pf->state); 5109 /* Disable service task until DOWN bit is cleared */ 5110 set_bit(ICE_SERVICE_DIS, pf->state); 5111 5112 hw = &pf->hw; 5113 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5114 pci_save_state(pdev); 5115 5116 hw->back = pf; 5117 hw->port_info = NULL; 5118 hw->vendor_id = pdev->vendor; 5119 hw->device_id = pdev->device; 5120 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5121 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5122 hw->subsystem_device_id = pdev->subsystem_device; 5123 hw->bus.device = PCI_SLOT(pdev->devfn); 5124 hw->bus.func = PCI_FUNC(pdev->devfn); 5125 ice_set_ctrlq_len(hw); 5126 5127 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5128 5129 #ifndef CONFIG_DYNAMIC_DEBUG 5130 if (debug < -1) 5131 hw->debug_mask = debug; 5132 #endif 5133 5134 err = ice_init(pf); 5135 if (err) 5136 goto err_init; 5137 5138 err = ice_init_eth(pf); 5139 if (err) 5140 goto err_init_eth; 5141 5142 err = ice_init_rdma(pf); 5143 if (err) 5144 goto err_init_rdma; 5145 5146 err = ice_init_devlink(pf); 5147 if (err) 5148 goto err_init_devlink; 5149 5150 ice_init_features(pf); 5151 5152 return 0; 5153 5154 err_init_devlink: 5155 ice_deinit_rdma(pf); 5156 err_init_rdma: 5157 ice_deinit_eth(pf); 5158 err_init_eth: 5159 ice_deinit(pf); 5160 err_init: 5161 pci_disable_device(pdev); 5162 return err; 5163 } 5164 5165 /** 5166 * ice_set_wake - enable or disable Wake on LAN 5167 * @pf: pointer to the PF struct 5168 * 5169 * Simple helper for WoL control 5170 */ 5171 static void ice_set_wake(struct ice_pf *pf) 5172 { 5173 struct ice_hw *hw = &pf->hw; 5174 bool wol = pf->wol_ena; 5175 5176 /* clear wake state, otherwise new wake events won't fire */ 5177 wr32(hw, PFPM_WUS, U32_MAX); 5178 5179 /* enable / disable APM wake up, no RMW needed */ 5180 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5181 5182 /* set magic packet filter enabled */ 5183 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5184 } 5185 5186 /** 5187 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5188 * @pf: pointer to the PF struct 5189 * 5190 * Issue firmware command to enable multicast magic wake, making 5191 * sure that any locally administered address (LAA) is used for 5192 * wake, and that PF reset doesn't undo the LAA. 5193 */ 5194 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5195 { 5196 struct device *dev = ice_pf_to_dev(pf); 5197 struct ice_hw *hw = &pf->hw; 5198 u8 mac_addr[ETH_ALEN]; 5199 struct ice_vsi *vsi; 5200 int status; 5201 u8 flags; 5202 5203 if (!pf->wol_ena) 5204 return; 5205 5206 vsi = ice_get_main_vsi(pf); 5207 if (!vsi) 5208 return; 5209 5210 /* Get current MAC address in case it's an LAA */ 5211 if (vsi->netdev) 5212 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5213 else 5214 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5215 5216 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5217 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5218 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5219 5220 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5221 if (status) 5222 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5223 status, ice_aq_str(hw->adminq.sq_last_status)); 5224 } 5225 5226 /** 5227 * ice_remove - Device removal routine 5228 * @pdev: PCI device information struct 5229 */ 5230 static void ice_remove(struct pci_dev *pdev) 5231 { 5232 struct ice_pf *pf = pci_get_drvdata(pdev); 5233 int i; 5234 5235 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5236 if (!ice_is_reset_in_progress(pf->state)) 5237 break; 5238 msleep(100); 5239 } 5240 5241 ice_debugfs_exit(); 5242 5243 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5244 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5245 ice_free_vfs(pf); 5246 } 5247 5248 ice_hwmon_exit(pf); 5249 5250 ice_service_task_stop(pf); 5251 ice_aq_cancel_waiting_tasks(pf); 5252 set_bit(ICE_DOWN, pf->state); 5253 5254 if (!ice_is_safe_mode(pf)) 5255 ice_remove_arfs(pf); 5256 ice_deinit_features(pf); 5257 ice_deinit_devlink(pf); 5258 ice_deinit_rdma(pf); 5259 ice_deinit_eth(pf); 5260 ice_deinit(pf); 5261 5262 ice_vsi_release_all(pf); 5263 5264 ice_setup_mc_magic_wake(pf); 5265 ice_set_wake(pf); 5266 5267 pci_disable_device(pdev); 5268 } 5269 5270 /** 5271 * ice_shutdown - PCI callback for shutting down device 5272 * @pdev: PCI device information struct 5273 */ 5274 static void ice_shutdown(struct pci_dev *pdev) 5275 { 5276 struct ice_pf *pf = pci_get_drvdata(pdev); 5277 5278 ice_remove(pdev); 5279 5280 if (system_state == SYSTEM_POWER_OFF) { 5281 pci_wake_from_d3(pdev, pf->wol_ena); 5282 pci_set_power_state(pdev, PCI_D3hot); 5283 } 5284 } 5285 5286 #ifdef CONFIG_PM 5287 /** 5288 * ice_prepare_for_shutdown - prep for PCI shutdown 5289 * @pf: board private structure 5290 * 5291 * Inform or close all dependent features in prep for PCI device shutdown 5292 */ 5293 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5294 { 5295 struct ice_hw *hw = &pf->hw; 5296 u32 v; 5297 5298 /* Notify VFs of impending reset */ 5299 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5300 ice_vc_notify_reset(pf); 5301 5302 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5303 5304 /* disable the VSIs and their queues that are not already DOWN */ 5305 ice_pf_dis_all_vsi(pf, false); 5306 5307 ice_for_each_vsi(pf, v) 5308 if (pf->vsi[v]) 5309 pf->vsi[v]->vsi_num = 0; 5310 5311 ice_shutdown_all_ctrlq(hw); 5312 } 5313 5314 /** 5315 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5316 * @pf: board private structure to reinitialize 5317 * 5318 * This routine reinitialize interrupt scheme that was cleared during 5319 * power management suspend callback. 5320 * 5321 * This should be called during resume routine to re-allocate the q_vectors 5322 * and reacquire interrupts. 5323 */ 5324 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5325 { 5326 struct device *dev = ice_pf_to_dev(pf); 5327 int ret, v; 5328 5329 /* Since we clear MSIX flag during suspend, we need to 5330 * set it back during resume... 5331 */ 5332 5333 ret = ice_init_interrupt_scheme(pf); 5334 if (ret) { 5335 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5336 return ret; 5337 } 5338 5339 /* Remap vectors and rings, after successful re-init interrupts */ 5340 ice_for_each_vsi(pf, v) { 5341 if (!pf->vsi[v]) 5342 continue; 5343 5344 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5345 if (ret) 5346 goto err_reinit; 5347 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5348 } 5349 5350 ret = ice_req_irq_msix_misc(pf); 5351 if (ret) { 5352 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5353 ret); 5354 goto err_reinit; 5355 } 5356 5357 return 0; 5358 5359 err_reinit: 5360 while (v--) 5361 if (pf->vsi[v]) 5362 ice_vsi_free_q_vectors(pf->vsi[v]); 5363 5364 return ret; 5365 } 5366 5367 /** 5368 * ice_suspend 5369 * @dev: generic device information structure 5370 * 5371 * Power Management callback to quiesce the device and prepare 5372 * for D3 transition. 5373 */ 5374 static int __maybe_unused ice_suspend(struct device *dev) 5375 { 5376 struct pci_dev *pdev = to_pci_dev(dev); 5377 struct ice_pf *pf; 5378 int disabled, v; 5379 5380 pf = pci_get_drvdata(pdev); 5381 5382 if (!ice_pf_state_is_nominal(pf)) { 5383 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5384 return -EBUSY; 5385 } 5386 5387 /* Stop watchdog tasks until resume completion. 5388 * Even though it is most likely that the service task is 5389 * disabled if the device is suspended or down, the service task's 5390 * state is controlled by a different state bit, and we should 5391 * store and honor whatever state that bit is in at this point. 5392 */ 5393 disabled = ice_service_task_stop(pf); 5394 5395 ice_unplug_aux_dev(pf); 5396 5397 /* Already suspended?, then there is nothing to do */ 5398 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5399 if (!disabled) 5400 ice_service_task_restart(pf); 5401 return 0; 5402 } 5403 5404 if (test_bit(ICE_DOWN, pf->state) || 5405 ice_is_reset_in_progress(pf->state)) { 5406 dev_err(dev, "can't suspend device in reset or already down\n"); 5407 if (!disabled) 5408 ice_service_task_restart(pf); 5409 return 0; 5410 } 5411 5412 ice_setup_mc_magic_wake(pf); 5413 5414 ice_prepare_for_shutdown(pf); 5415 5416 ice_set_wake(pf); 5417 5418 /* Free vectors, clear the interrupt scheme and release IRQs 5419 * for proper hibernation, especially with large number of CPUs. 5420 * Otherwise hibernation might fail when mapping all the vectors back 5421 * to CPU0. 5422 */ 5423 ice_free_irq_msix_misc(pf); 5424 ice_for_each_vsi(pf, v) { 5425 if (!pf->vsi[v]) 5426 continue; 5427 ice_vsi_free_q_vectors(pf->vsi[v]); 5428 } 5429 ice_clear_interrupt_scheme(pf); 5430 5431 pci_save_state(pdev); 5432 pci_wake_from_d3(pdev, pf->wol_ena); 5433 pci_set_power_state(pdev, PCI_D3hot); 5434 return 0; 5435 } 5436 5437 /** 5438 * ice_resume - PM callback for waking up from D3 5439 * @dev: generic device information structure 5440 */ 5441 static int __maybe_unused ice_resume(struct device *dev) 5442 { 5443 struct pci_dev *pdev = to_pci_dev(dev); 5444 enum ice_reset_req reset_type; 5445 struct ice_pf *pf; 5446 struct ice_hw *hw; 5447 int ret; 5448 5449 pci_set_power_state(pdev, PCI_D0); 5450 pci_restore_state(pdev); 5451 pci_save_state(pdev); 5452 5453 if (!pci_device_is_present(pdev)) 5454 return -ENODEV; 5455 5456 ret = pci_enable_device_mem(pdev); 5457 if (ret) { 5458 dev_err(dev, "Cannot enable device after suspend\n"); 5459 return ret; 5460 } 5461 5462 pf = pci_get_drvdata(pdev); 5463 hw = &pf->hw; 5464 5465 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5466 ice_print_wake_reason(pf); 5467 5468 /* We cleared the interrupt scheme when we suspended, so we need to 5469 * restore it now to resume device functionality. 5470 */ 5471 ret = ice_reinit_interrupt_scheme(pf); 5472 if (ret) 5473 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5474 5475 clear_bit(ICE_DOWN, pf->state); 5476 /* Now perform PF reset and rebuild */ 5477 reset_type = ICE_RESET_PFR; 5478 /* re-enable service task for reset, but allow reset to schedule it */ 5479 clear_bit(ICE_SERVICE_DIS, pf->state); 5480 5481 if (ice_schedule_reset(pf, reset_type)) 5482 dev_err(dev, "Reset during resume failed.\n"); 5483 5484 clear_bit(ICE_SUSPENDED, pf->state); 5485 ice_service_task_restart(pf); 5486 5487 /* Restart the service task */ 5488 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5489 5490 return 0; 5491 } 5492 #endif /* CONFIG_PM */ 5493 5494 /** 5495 * ice_pci_err_detected - warning that PCI error has been detected 5496 * @pdev: PCI device information struct 5497 * @err: the type of PCI error 5498 * 5499 * Called to warn that something happened on the PCI bus and the error handling 5500 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5501 */ 5502 static pci_ers_result_t 5503 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5504 { 5505 struct ice_pf *pf = pci_get_drvdata(pdev); 5506 5507 if (!pf) { 5508 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5509 __func__, err); 5510 return PCI_ERS_RESULT_DISCONNECT; 5511 } 5512 5513 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5514 ice_service_task_stop(pf); 5515 5516 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5517 set_bit(ICE_PFR_REQ, pf->state); 5518 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5519 } 5520 } 5521 5522 return PCI_ERS_RESULT_NEED_RESET; 5523 } 5524 5525 /** 5526 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5527 * @pdev: PCI device information struct 5528 * 5529 * Called to determine if the driver can recover from the PCI slot reset by 5530 * using a register read to determine if the device is recoverable. 5531 */ 5532 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5533 { 5534 struct ice_pf *pf = pci_get_drvdata(pdev); 5535 pci_ers_result_t result; 5536 int err; 5537 u32 reg; 5538 5539 err = pci_enable_device_mem(pdev); 5540 if (err) { 5541 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5542 err); 5543 result = PCI_ERS_RESULT_DISCONNECT; 5544 } else { 5545 pci_set_master(pdev); 5546 pci_restore_state(pdev); 5547 pci_save_state(pdev); 5548 pci_wake_from_d3(pdev, false); 5549 5550 /* Check for life */ 5551 reg = rd32(&pf->hw, GLGEN_RTRIG); 5552 if (!reg) 5553 result = PCI_ERS_RESULT_RECOVERED; 5554 else 5555 result = PCI_ERS_RESULT_DISCONNECT; 5556 } 5557 5558 return result; 5559 } 5560 5561 /** 5562 * ice_pci_err_resume - restart operations after PCI error recovery 5563 * @pdev: PCI device information struct 5564 * 5565 * Called to allow the driver to bring things back up after PCI error and/or 5566 * reset recovery have finished 5567 */ 5568 static void ice_pci_err_resume(struct pci_dev *pdev) 5569 { 5570 struct ice_pf *pf = pci_get_drvdata(pdev); 5571 5572 if (!pf) { 5573 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5574 __func__); 5575 return; 5576 } 5577 5578 if (test_bit(ICE_SUSPENDED, pf->state)) { 5579 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5580 __func__); 5581 return; 5582 } 5583 5584 ice_restore_all_vfs_msi_state(pf); 5585 5586 ice_do_reset(pf, ICE_RESET_PFR); 5587 ice_service_task_restart(pf); 5588 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5589 } 5590 5591 /** 5592 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5593 * @pdev: PCI device information struct 5594 */ 5595 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5596 { 5597 struct ice_pf *pf = pci_get_drvdata(pdev); 5598 5599 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5600 ice_service_task_stop(pf); 5601 5602 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5603 set_bit(ICE_PFR_REQ, pf->state); 5604 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5605 } 5606 } 5607 } 5608 5609 /** 5610 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5611 * @pdev: PCI device information struct 5612 */ 5613 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5614 { 5615 ice_pci_err_resume(pdev); 5616 } 5617 5618 /* ice_pci_tbl - PCI Device ID Table 5619 * 5620 * Wildcard entries (PCI_ANY_ID) should come last 5621 * Last entry must be all 0s 5622 * 5623 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5624 * Class, Class Mask, private data (not used) } 5625 */ 5626 static const struct pci_device_id ice_pci_tbl[] = { 5627 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5628 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5629 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5630 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5631 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5632 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5633 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5634 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5635 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5636 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5637 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5638 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5639 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5640 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5641 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5642 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5643 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5644 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5645 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5646 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5647 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5648 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5649 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5650 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5651 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5652 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5653 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) }, 5654 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) }, 5655 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) }, 5656 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) }, 5657 /* required last entry */ 5658 {} 5659 }; 5660 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5661 5662 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5663 5664 static const struct pci_error_handlers ice_pci_err_handler = { 5665 .error_detected = ice_pci_err_detected, 5666 .slot_reset = ice_pci_err_slot_reset, 5667 .reset_prepare = ice_pci_err_reset_prepare, 5668 .reset_done = ice_pci_err_reset_done, 5669 .resume = ice_pci_err_resume 5670 }; 5671 5672 static struct pci_driver ice_driver = { 5673 .name = KBUILD_MODNAME, 5674 .id_table = ice_pci_tbl, 5675 .probe = ice_probe, 5676 .remove = ice_remove, 5677 #ifdef CONFIG_PM 5678 .driver.pm = &ice_pm_ops, 5679 #endif /* CONFIG_PM */ 5680 .shutdown = ice_shutdown, 5681 .sriov_configure = ice_sriov_configure, 5682 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5683 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5684 .err_handler = &ice_pci_err_handler 5685 }; 5686 5687 /** 5688 * ice_module_init - Driver registration routine 5689 * 5690 * ice_module_init is the first routine called when the driver is 5691 * loaded. All it does is register with the PCI subsystem. 5692 */ 5693 static int __init ice_module_init(void) 5694 { 5695 int status = -ENOMEM; 5696 5697 pr_info("%s\n", ice_driver_string); 5698 pr_info("%s\n", ice_copyright); 5699 5700 ice_adv_lnk_speed_maps_init(); 5701 5702 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5703 if (!ice_wq) { 5704 pr_err("Failed to create workqueue\n"); 5705 return status; 5706 } 5707 5708 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5709 if (!ice_lag_wq) { 5710 pr_err("Failed to create LAG workqueue\n"); 5711 goto err_dest_wq; 5712 } 5713 5714 ice_debugfs_init(); 5715 5716 status = pci_register_driver(&ice_driver); 5717 if (status) { 5718 pr_err("failed to register PCI driver, err %d\n", status); 5719 goto err_dest_lag_wq; 5720 } 5721 5722 return 0; 5723 5724 err_dest_lag_wq: 5725 destroy_workqueue(ice_lag_wq); 5726 ice_debugfs_exit(); 5727 err_dest_wq: 5728 destroy_workqueue(ice_wq); 5729 return status; 5730 } 5731 module_init(ice_module_init); 5732 5733 /** 5734 * ice_module_exit - Driver exit cleanup routine 5735 * 5736 * ice_module_exit is called just before the driver is removed 5737 * from memory. 5738 */ 5739 static void __exit ice_module_exit(void) 5740 { 5741 pci_unregister_driver(&ice_driver); 5742 destroy_workqueue(ice_wq); 5743 destroy_workqueue(ice_lag_wq); 5744 pr_info("module unloaded\n"); 5745 } 5746 module_exit(ice_module_exit); 5747 5748 /** 5749 * ice_set_mac_address - NDO callback to set MAC address 5750 * @netdev: network interface device structure 5751 * @pi: pointer to an address structure 5752 * 5753 * Returns 0 on success, negative on failure 5754 */ 5755 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5756 { 5757 struct ice_netdev_priv *np = netdev_priv(netdev); 5758 struct ice_vsi *vsi = np->vsi; 5759 struct ice_pf *pf = vsi->back; 5760 struct ice_hw *hw = &pf->hw; 5761 struct sockaddr *addr = pi; 5762 u8 old_mac[ETH_ALEN]; 5763 u8 flags = 0; 5764 u8 *mac; 5765 int err; 5766 5767 mac = (u8 *)addr->sa_data; 5768 5769 if (!is_valid_ether_addr(mac)) 5770 return -EADDRNOTAVAIL; 5771 5772 if (test_bit(ICE_DOWN, pf->state) || 5773 ice_is_reset_in_progress(pf->state)) { 5774 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5775 mac); 5776 return -EBUSY; 5777 } 5778 5779 if (ice_chnl_dmac_fltr_cnt(pf)) { 5780 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5781 mac); 5782 return -EAGAIN; 5783 } 5784 5785 netif_addr_lock_bh(netdev); 5786 ether_addr_copy(old_mac, netdev->dev_addr); 5787 /* change the netdev's MAC address */ 5788 eth_hw_addr_set(netdev, mac); 5789 netif_addr_unlock_bh(netdev); 5790 5791 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5792 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5793 if (err && err != -ENOENT) { 5794 err = -EADDRNOTAVAIL; 5795 goto err_update_filters; 5796 } 5797 5798 /* Add filter for new MAC. If filter exists, return success */ 5799 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5800 if (err == -EEXIST) { 5801 /* Although this MAC filter is already present in hardware it's 5802 * possible in some cases (e.g. bonding) that dev_addr was 5803 * modified outside of the driver and needs to be restored back 5804 * to this value. 5805 */ 5806 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5807 5808 return 0; 5809 } else if (err) { 5810 /* error if the new filter addition failed */ 5811 err = -EADDRNOTAVAIL; 5812 } 5813 5814 err_update_filters: 5815 if (err) { 5816 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5817 mac); 5818 netif_addr_lock_bh(netdev); 5819 eth_hw_addr_set(netdev, old_mac); 5820 netif_addr_unlock_bh(netdev); 5821 return err; 5822 } 5823 5824 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5825 netdev->dev_addr); 5826 5827 /* write new MAC address to the firmware */ 5828 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5829 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5830 if (err) { 5831 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5832 mac, err); 5833 } 5834 return 0; 5835 } 5836 5837 /** 5838 * ice_set_rx_mode - NDO callback to set the netdev filters 5839 * @netdev: network interface device structure 5840 */ 5841 static void ice_set_rx_mode(struct net_device *netdev) 5842 { 5843 struct ice_netdev_priv *np = netdev_priv(netdev); 5844 struct ice_vsi *vsi = np->vsi; 5845 5846 if (!vsi || ice_is_switchdev_running(vsi->back)) 5847 return; 5848 5849 /* Set the flags to synchronize filters 5850 * ndo_set_rx_mode may be triggered even without a change in netdev 5851 * flags 5852 */ 5853 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5854 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5855 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5856 5857 /* schedule our worker thread which will take care of 5858 * applying the new filter changes 5859 */ 5860 ice_service_task_schedule(vsi->back); 5861 } 5862 5863 /** 5864 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5865 * @netdev: network interface device structure 5866 * @queue_index: Queue ID 5867 * @maxrate: maximum bandwidth in Mbps 5868 */ 5869 static int 5870 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5871 { 5872 struct ice_netdev_priv *np = netdev_priv(netdev); 5873 struct ice_vsi *vsi = np->vsi; 5874 u16 q_handle; 5875 int status; 5876 u8 tc; 5877 5878 /* Validate maxrate requested is within permitted range */ 5879 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5880 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5881 maxrate, queue_index); 5882 return -EINVAL; 5883 } 5884 5885 q_handle = vsi->tx_rings[queue_index]->q_handle; 5886 tc = ice_dcb_get_tc(vsi, queue_index); 5887 5888 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5889 if (!vsi) { 5890 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5891 queue_index); 5892 return -EINVAL; 5893 } 5894 5895 /* Set BW back to default, when user set maxrate to 0 */ 5896 if (!maxrate) 5897 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5898 q_handle, ICE_MAX_BW); 5899 else 5900 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5901 q_handle, ICE_MAX_BW, maxrate * 1000); 5902 if (status) 5903 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5904 status); 5905 5906 return status; 5907 } 5908 5909 /** 5910 * ice_fdb_add - add an entry to the hardware database 5911 * @ndm: the input from the stack 5912 * @tb: pointer to array of nladdr (unused) 5913 * @dev: the net device pointer 5914 * @addr: the MAC address entry being added 5915 * @vid: VLAN ID 5916 * @flags: instructions from stack about fdb operation 5917 * @extack: netlink extended ack 5918 */ 5919 static int 5920 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5921 struct net_device *dev, const unsigned char *addr, u16 vid, 5922 u16 flags, struct netlink_ext_ack __always_unused *extack) 5923 { 5924 int err; 5925 5926 if (vid) { 5927 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5928 return -EINVAL; 5929 } 5930 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5931 netdev_err(dev, "FDB only supports static addresses\n"); 5932 return -EINVAL; 5933 } 5934 5935 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5936 err = dev_uc_add_excl(dev, addr); 5937 else if (is_multicast_ether_addr(addr)) 5938 err = dev_mc_add_excl(dev, addr); 5939 else 5940 err = -EINVAL; 5941 5942 /* Only return duplicate errors if NLM_F_EXCL is set */ 5943 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5944 err = 0; 5945 5946 return err; 5947 } 5948 5949 /** 5950 * ice_fdb_del - delete an entry from the hardware database 5951 * @ndm: the input from the stack 5952 * @tb: pointer to array of nladdr (unused) 5953 * @dev: the net device pointer 5954 * @addr: the MAC address entry being added 5955 * @vid: VLAN ID 5956 * @extack: netlink extended ack 5957 */ 5958 static int 5959 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5960 struct net_device *dev, const unsigned char *addr, 5961 __always_unused u16 vid, struct netlink_ext_ack *extack) 5962 { 5963 int err; 5964 5965 if (ndm->ndm_state & NUD_PERMANENT) { 5966 netdev_err(dev, "FDB only supports static addresses\n"); 5967 return -EINVAL; 5968 } 5969 5970 if (is_unicast_ether_addr(addr)) 5971 err = dev_uc_del(dev, addr); 5972 else if (is_multicast_ether_addr(addr)) 5973 err = dev_mc_del(dev, addr); 5974 else 5975 err = -EINVAL; 5976 5977 return err; 5978 } 5979 5980 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5981 NETIF_F_HW_VLAN_CTAG_TX | \ 5982 NETIF_F_HW_VLAN_STAG_RX | \ 5983 NETIF_F_HW_VLAN_STAG_TX) 5984 5985 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5986 NETIF_F_HW_VLAN_STAG_RX) 5987 5988 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5989 NETIF_F_HW_VLAN_STAG_FILTER) 5990 5991 /** 5992 * ice_fix_features - fix the netdev features flags based on device limitations 5993 * @netdev: ptr to the netdev that flags are being fixed on 5994 * @features: features that need to be checked and possibly fixed 5995 * 5996 * Make sure any fixups are made to features in this callback. This enables the 5997 * driver to not have to check unsupported configurations throughout the driver 5998 * because that's the responsiblity of this callback. 5999 * 6000 * Single VLAN Mode (SVM) Supported Features: 6001 * NETIF_F_HW_VLAN_CTAG_FILTER 6002 * NETIF_F_HW_VLAN_CTAG_RX 6003 * NETIF_F_HW_VLAN_CTAG_TX 6004 * 6005 * Double VLAN Mode (DVM) Supported Features: 6006 * NETIF_F_HW_VLAN_CTAG_FILTER 6007 * NETIF_F_HW_VLAN_CTAG_RX 6008 * NETIF_F_HW_VLAN_CTAG_TX 6009 * 6010 * NETIF_F_HW_VLAN_STAG_FILTER 6011 * NETIF_HW_VLAN_STAG_RX 6012 * NETIF_HW_VLAN_STAG_TX 6013 * 6014 * Features that need fixing: 6015 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6016 * These are mutually exlusive as the VSI context cannot support multiple 6017 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6018 * is not done, then default to clearing the requested STAG offload 6019 * settings. 6020 * 6021 * All supported filtering has to be enabled or disabled together. For 6022 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6023 * together. If this is not done, then default to VLAN filtering disabled. 6024 * These are mutually exclusive as there is currently no way to 6025 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6026 * prune rules. 6027 */ 6028 static netdev_features_t 6029 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6030 { 6031 struct ice_netdev_priv *np = netdev_priv(netdev); 6032 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6033 bool cur_ctag, cur_stag, req_ctag, req_stag; 6034 6035 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6036 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6037 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6038 6039 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6040 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6041 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6042 6043 if (req_vlan_fltr != cur_vlan_fltr) { 6044 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6045 if (req_ctag && req_stag) { 6046 features |= NETIF_VLAN_FILTERING_FEATURES; 6047 } else if (!req_ctag && !req_stag) { 6048 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6049 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6050 (!cur_stag && req_stag && !cur_ctag)) { 6051 features |= NETIF_VLAN_FILTERING_FEATURES; 6052 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6053 } else if ((cur_ctag && !req_ctag && cur_stag) || 6054 (cur_stag && !req_stag && cur_ctag)) { 6055 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6056 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6057 } 6058 } else { 6059 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6060 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6061 6062 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6063 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6064 } 6065 } 6066 6067 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6068 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6069 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6070 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6071 NETIF_F_HW_VLAN_STAG_TX); 6072 } 6073 6074 if (!(netdev->features & NETIF_F_RXFCS) && 6075 (features & NETIF_F_RXFCS) && 6076 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6077 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6078 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6079 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6080 } 6081 6082 return features; 6083 } 6084 6085 /** 6086 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6087 * @vsi: PF's VSI 6088 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6089 * 6090 * Store current stripped VLAN proto in ring packet context, 6091 * so it can be accessed more efficiently by packet processing code. 6092 */ 6093 static void 6094 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6095 { 6096 u16 i; 6097 6098 ice_for_each_alloc_rxq(vsi, i) 6099 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6100 } 6101 6102 /** 6103 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6104 * @vsi: PF's VSI 6105 * @features: features used to determine VLAN offload settings 6106 * 6107 * First, determine the vlan_ethertype based on the VLAN offload bits in 6108 * features. Then determine if stripping and insertion should be enabled or 6109 * disabled. Finally enable or disable VLAN stripping and insertion. 6110 */ 6111 static int 6112 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6113 { 6114 bool enable_stripping = true, enable_insertion = true; 6115 struct ice_vsi_vlan_ops *vlan_ops; 6116 int strip_err = 0, insert_err = 0; 6117 u16 vlan_ethertype = 0; 6118 6119 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6120 6121 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6122 vlan_ethertype = ETH_P_8021AD; 6123 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6124 vlan_ethertype = ETH_P_8021Q; 6125 6126 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6127 enable_stripping = false; 6128 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6129 enable_insertion = false; 6130 6131 if (enable_stripping) 6132 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6133 else 6134 strip_err = vlan_ops->dis_stripping(vsi); 6135 6136 if (enable_insertion) 6137 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6138 else 6139 insert_err = vlan_ops->dis_insertion(vsi); 6140 6141 if (strip_err || insert_err) 6142 return -EIO; 6143 6144 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6145 htons(vlan_ethertype) : 0); 6146 6147 return 0; 6148 } 6149 6150 /** 6151 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6152 * @vsi: PF's VSI 6153 * @features: features used to determine VLAN filtering settings 6154 * 6155 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6156 * features. 6157 */ 6158 static int 6159 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6160 { 6161 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6162 int err = 0; 6163 6164 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6165 * if either bit is set 6166 */ 6167 if (features & 6168 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6169 err = vlan_ops->ena_rx_filtering(vsi); 6170 else 6171 err = vlan_ops->dis_rx_filtering(vsi); 6172 6173 return err; 6174 } 6175 6176 /** 6177 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6178 * @netdev: ptr to the netdev being adjusted 6179 * @features: the feature set that the stack is suggesting 6180 * 6181 * Only update VLAN settings if the requested_vlan_features are different than 6182 * the current_vlan_features. 6183 */ 6184 static int 6185 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6186 { 6187 netdev_features_t current_vlan_features, requested_vlan_features; 6188 struct ice_netdev_priv *np = netdev_priv(netdev); 6189 struct ice_vsi *vsi = np->vsi; 6190 int err; 6191 6192 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6193 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6194 if (current_vlan_features ^ requested_vlan_features) { 6195 if ((features & NETIF_F_RXFCS) && 6196 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6197 dev_err(ice_pf_to_dev(vsi->back), 6198 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6199 return -EIO; 6200 } 6201 6202 err = ice_set_vlan_offload_features(vsi, features); 6203 if (err) 6204 return err; 6205 } 6206 6207 current_vlan_features = netdev->features & 6208 NETIF_VLAN_FILTERING_FEATURES; 6209 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6210 if (current_vlan_features ^ requested_vlan_features) { 6211 err = ice_set_vlan_filtering_features(vsi, features); 6212 if (err) 6213 return err; 6214 } 6215 6216 return 0; 6217 } 6218 6219 /** 6220 * ice_set_loopback - turn on/off loopback mode on underlying PF 6221 * @vsi: ptr to VSI 6222 * @ena: flag to indicate the on/off setting 6223 */ 6224 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6225 { 6226 bool if_running = netif_running(vsi->netdev); 6227 int ret; 6228 6229 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6230 ret = ice_down(vsi); 6231 if (ret) { 6232 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6233 return ret; 6234 } 6235 } 6236 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6237 if (ret) 6238 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6239 if (if_running) 6240 ret = ice_up(vsi); 6241 6242 return ret; 6243 } 6244 6245 /** 6246 * ice_set_features - set the netdev feature flags 6247 * @netdev: ptr to the netdev being adjusted 6248 * @features: the feature set that the stack is suggesting 6249 */ 6250 static int 6251 ice_set_features(struct net_device *netdev, netdev_features_t features) 6252 { 6253 netdev_features_t changed = netdev->features ^ features; 6254 struct ice_netdev_priv *np = netdev_priv(netdev); 6255 struct ice_vsi *vsi = np->vsi; 6256 struct ice_pf *pf = vsi->back; 6257 int ret = 0; 6258 6259 /* Don't set any netdev advanced features with device in Safe Mode */ 6260 if (ice_is_safe_mode(pf)) { 6261 dev_err(ice_pf_to_dev(pf), 6262 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6263 return ret; 6264 } 6265 6266 /* Do not change setting during reset */ 6267 if (ice_is_reset_in_progress(pf->state)) { 6268 dev_err(ice_pf_to_dev(pf), 6269 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6270 return -EBUSY; 6271 } 6272 6273 /* Multiple features can be changed in one call so keep features in 6274 * separate if/else statements to guarantee each feature is checked 6275 */ 6276 if (changed & NETIF_F_RXHASH) 6277 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6278 6279 ret = ice_set_vlan_features(netdev, features); 6280 if (ret) 6281 return ret; 6282 6283 /* Turn on receive of FCS aka CRC, and after setting this 6284 * flag the packet data will have the 4 byte CRC appended 6285 */ 6286 if (changed & NETIF_F_RXFCS) { 6287 if ((features & NETIF_F_RXFCS) && 6288 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6289 dev_err(ice_pf_to_dev(vsi->back), 6290 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6291 return -EIO; 6292 } 6293 6294 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6295 ret = ice_down_up(vsi); 6296 if (ret) 6297 return ret; 6298 } 6299 6300 if (changed & NETIF_F_NTUPLE) { 6301 bool ena = !!(features & NETIF_F_NTUPLE); 6302 6303 ice_vsi_manage_fdir(vsi, ena); 6304 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6305 } 6306 6307 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6308 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6309 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6310 return -EACCES; 6311 } 6312 6313 if (changed & NETIF_F_HW_TC) { 6314 bool ena = !!(features & NETIF_F_HW_TC); 6315 6316 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6317 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6318 } 6319 6320 if (changed & NETIF_F_LOOPBACK) 6321 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6322 6323 return ret; 6324 } 6325 6326 /** 6327 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6328 * @vsi: VSI to setup VLAN properties for 6329 */ 6330 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6331 { 6332 int err; 6333 6334 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6335 if (err) 6336 return err; 6337 6338 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6339 if (err) 6340 return err; 6341 6342 return ice_vsi_add_vlan_zero(vsi); 6343 } 6344 6345 /** 6346 * ice_vsi_cfg_lan - Setup the VSI lan related config 6347 * @vsi: the VSI being configured 6348 * 6349 * Return 0 on success and negative value on error 6350 */ 6351 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6352 { 6353 int err; 6354 6355 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6356 ice_set_rx_mode(vsi->netdev); 6357 6358 err = ice_vsi_vlan_setup(vsi); 6359 if (err) 6360 return err; 6361 } 6362 ice_vsi_cfg_dcb_rings(vsi); 6363 6364 err = ice_vsi_cfg_lan_txqs(vsi); 6365 if (!err && ice_is_xdp_ena_vsi(vsi)) 6366 err = ice_vsi_cfg_xdp_txqs(vsi); 6367 if (!err) 6368 err = ice_vsi_cfg_rxqs(vsi); 6369 6370 return err; 6371 } 6372 6373 /* THEORY OF MODERATION: 6374 * The ice driver hardware works differently than the hardware that DIMLIB was 6375 * originally made for. ice hardware doesn't have packet count limits that 6376 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6377 * which is hard-coded to a limit of 250,000 ints/second. 6378 * If not using dynamic moderation, the INTRL value can be modified 6379 * by ethtool rx-usecs-high. 6380 */ 6381 struct ice_dim { 6382 /* the throttle rate for interrupts, basically worst case delay before 6383 * an initial interrupt fires, value is stored in microseconds. 6384 */ 6385 u16 itr; 6386 }; 6387 6388 /* Make a different profile for Rx that doesn't allow quite so aggressive 6389 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6390 * second. 6391 */ 6392 static const struct ice_dim rx_profile[] = { 6393 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6394 {8}, /* 125,000 ints/s */ 6395 {16}, /* 62,500 ints/s */ 6396 {62}, /* 16,129 ints/s */ 6397 {126} /* 7,936 ints/s */ 6398 }; 6399 6400 /* The transmit profile, which has the same sorts of values 6401 * as the previous struct 6402 */ 6403 static const struct ice_dim tx_profile[] = { 6404 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6405 {8}, /* 125,000 ints/s */ 6406 {40}, /* 16,125 ints/s */ 6407 {128}, /* 7,812 ints/s */ 6408 {256} /* 3,906 ints/s */ 6409 }; 6410 6411 static void ice_tx_dim_work(struct work_struct *work) 6412 { 6413 struct ice_ring_container *rc; 6414 struct dim *dim; 6415 u16 itr; 6416 6417 dim = container_of(work, struct dim, work); 6418 rc = dim->priv; 6419 6420 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6421 6422 /* look up the values in our local table */ 6423 itr = tx_profile[dim->profile_ix].itr; 6424 6425 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6426 ice_write_itr(rc, itr); 6427 6428 dim->state = DIM_START_MEASURE; 6429 } 6430 6431 static void ice_rx_dim_work(struct work_struct *work) 6432 { 6433 struct ice_ring_container *rc; 6434 struct dim *dim; 6435 u16 itr; 6436 6437 dim = container_of(work, struct dim, work); 6438 rc = dim->priv; 6439 6440 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6441 6442 /* look up the values in our local table */ 6443 itr = rx_profile[dim->profile_ix].itr; 6444 6445 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6446 ice_write_itr(rc, itr); 6447 6448 dim->state = DIM_START_MEASURE; 6449 } 6450 6451 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6452 6453 /** 6454 * ice_init_moderation - set up interrupt moderation 6455 * @q_vector: the vector containing rings to be configured 6456 * 6457 * Set up interrupt moderation registers, with the intent to do the right thing 6458 * when called from reset or from probe, and whether or not dynamic moderation 6459 * is enabled or not. Take special care to write all the registers in both 6460 * dynamic moderation mode or not in order to make sure hardware is in a known 6461 * state. 6462 */ 6463 static void ice_init_moderation(struct ice_q_vector *q_vector) 6464 { 6465 struct ice_ring_container *rc; 6466 bool tx_dynamic, rx_dynamic; 6467 6468 rc = &q_vector->tx; 6469 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6470 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6471 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6472 rc->dim.priv = rc; 6473 tx_dynamic = ITR_IS_DYNAMIC(rc); 6474 6475 /* set the initial TX ITR to match the above */ 6476 ice_write_itr(rc, tx_dynamic ? 6477 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6478 6479 rc = &q_vector->rx; 6480 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6481 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6482 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6483 rc->dim.priv = rc; 6484 rx_dynamic = ITR_IS_DYNAMIC(rc); 6485 6486 /* set the initial RX ITR to match the above */ 6487 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6488 rc->itr_setting); 6489 6490 ice_set_q_vector_intrl(q_vector); 6491 } 6492 6493 /** 6494 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6495 * @vsi: the VSI being configured 6496 */ 6497 static void ice_napi_enable_all(struct ice_vsi *vsi) 6498 { 6499 int q_idx; 6500 6501 if (!vsi->netdev) 6502 return; 6503 6504 ice_for_each_q_vector(vsi, q_idx) { 6505 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6506 6507 ice_init_moderation(q_vector); 6508 6509 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6510 napi_enable(&q_vector->napi); 6511 } 6512 } 6513 6514 /** 6515 * ice_up_complete - Finish the last steps of bringing up a connection 6516 * @vsi: The VSI being configured 6517 * 6518 * Return 0 on success and negative value on error 6519 */ 6520 static int ice_up_complete(struct ice_vsi *vsi) 6521 { 6522 struct ice_pf *pf = vsi->back; 6523 int err; 6524 6525 ice_vsi_cfg_msix(vsi); 6526 6527 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6528 * Tx queue group list was configured and the context bits were 6529 * programmed using ice_vsi_cfg_txqs 6530 */ 6531 err = ice_vsi_start_all_rx_rings(vsi); 6532 if (err) 6533 return err; 6534 6535 clear_bit(ICE_VSI_DOWN, vsi->state); 6536 ice_napi_enable_all(vsi); 6537 ice_vsi_ena_irq(vsi); 6538 6539 if (vsi->port_info && 6540 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6541 vsi->netdev && vsi->type == ICE_VSI_PF) { 6542 ice_print_link_msg(vsi, true); 6543 netif_tx_start_all_queues(vsi->netdev); 6544 netif_carrier_on(vsi->netdev); 6545 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6546 } 6547 6548 /* Perform an initial read of the statistics registers now to 6549 * set the baseline so counters are ready when interface is up 6550 */ 6551 ice_update_eth_stats(vsi); 6552 6553 if (vsi->type == ICE_VSI_PF) 6554 ice_service_task_schedule(pf); 6555 6556 return 0; 6557 } 6558 6559 /** 6560 * ice_up - Bring the connection back up after being down 6561 * @vsi: VSI being configured 6562 */ 6563 int ice_up(struct ice_vsi *vsi) 6564 { 6565 int err; 6566 6567 err = ice_vsi_cfg_lan(vsi); 6568 if (!err) 6569 err = ice_up_complete(vsi); 6570 6571 return err; 6572 } 6573 6574 /** 6575 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6576 * @syncp: pointer to u64_stats_sync 6577 * @stats: stats that pkts and bytes count will be taken from 6578 * @pkts: packets stats counter 6579 * @bytes: bytes stats counter 6580 * 6581 * This function fetches stats from the ring considering the atomic operations 6582 * that needs to be performed to read u64 values in 32 bit machine. 6583 */ 6584 void 6585 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6586 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6587 { 6588 unsigned int start; 6589 6590 do { 6591 start = u64_stats_fetch_begin(syncp); 6592 *pkts = stats.pkts; 6593 *bytes = stats.bytes; 6594 } while (u64_stats_fetch_retry(syncp, start)); 6595 } 6596 6597 /** 6598 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6599 * @vsi: the VSI to be updated 6600 * @vsi_stats: the stats struct to be updated 6601 * @rings: rings to work on 6602 * @count: number of rings 6603 */ 6604 static void 6605 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6606 struct rtnl_link_stats64 *vsi_stats, 6607 struct ice_tx_ring **rings, u16 count) 6608 { 6609 u16 i; 6610 6611 for (i = 0; i < count; i++) { 6612 struct ice_tx_ring *ring; 6613 u64 pkts = 0, bytes = 0; 6614 6615 ring = READ_ONCE(rings[i]); 6616 if (!ring || !ring->ring_stats) 6617 continue; 6618 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6619 ring->ring_stats->stats, &pkts, 6620 &bytes); 6621 vsi_stats->tx_packets += pkts; 6622 vsi_stats->tx_bytes += bytes; 6623 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6624 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6625 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6626 } 6627 } 6628 6629 /** 6630 * ice_update_vsi_ring_stats - Update VSI stats counters 6631 * @vsi: the VSI to be updated 6632 */ 6633 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6634 { 6635 struct rtnl_link_stats64 *net_stats, *stats_prev; 6636 struct rtnl_link_stats64 *vsi_stats; 6637 u64 pkts, bytes; 6638 int i; 6639 6640 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6641 if (!vsi_stats) 6642 return; 6643 6644 /* reset non-netdev (extended) stats */ 6645 vsi->tx_restart = 0; 6646 vsi->tx_busy = 0; 6647 vsi->tx_linearize = 0; 6648 vsi->rx_buf_failed = 0; 6649 vsi->rx_page_failed = 0; 6650 6651 rcu_read_lock(); 6652 6653 /* update Tx rings counters */ 6654 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6655 vsi->num_txq); 6656 6657 /* update Rx rings counters */ 6658 ice_for_each_rxq(vsi, i) { 6659 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6660 struct ice_ring_stats *ring_stats; 6661 6662 ring_stats = ring->ring_stats; 6663 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6664 ring_stats->stats, &pkts, 6665 &bytes); 6666 vsi_stats->rx_packets += pkts; 6667 vsi_stats->rx_bytes += bytes; 6668 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6669 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6670 } 6671 6672 /* update XDP Tx rings counters */ 6673 if (ice_is_xdp_ena_vsi(vsi)) 6674 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6675 vsi->num_xdp_txq); 6676 6677 rcu_read_unlock(); 6678 6679 net_stats = &vsi->net_stats; 6680 stats_prev = &vsi->net_stats_prev; 6681 6682 /* clear prev counters after reset */ 6683 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6684 vsi_stats->rx_packets < stats_prev->rx_packets) { 6685 stats_prev->tx_packets = 0; 6686 stats_prev->tx_bytes = 0; 6687 stats_prev->rx_packets = 0; 6688 stats_prev->rx_bytes = 0; 6689 } 6690 6691 /* update netdev counters */ 6692 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6693 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6694 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6695 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6696 6697 stats_prev->tx_packets = vsi_stats->tx_packets; 6698 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6699 stats_prev->rx_packets = vsi_stats->rx_packets; 6700 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6701 6702 kfree(vsi_stats); 6703 } 6704 6705 /** 6706 * ice_update_vsi_stats - Update VSI stats counters 6707 * @vsi: the VSI to be updated 6708 */ 6709 void ice_update_vsi_stats(struct ice_vsi *vsi) 6710 { 6711 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6712 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6713 struct ice_pf *pf = vsi->back; 6714 6715 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6716 test_bit(ICE_CFG_BUSY, pf->state)) 6717 return; 6718 6719 /* get stats as recorded by Tx/Rx rings */ 6720 ice_update_vsi_ring_stats(vsi); 6721 6722 /* get VSI stats as recorded by the hardware */ 6723 ice_update_eth_stats(vsi); 6724 6725 cur_ns->tx_errors = cur_es->tx_errors; 6726 cur_ns->rx_dropped = cur_es->rx_discards; 6727 cur_ns->tx_dropped = cur_es->tx_discards; 6728 cur_ns->multicast = cur_es->rx_multicast; 6729 6730 /* update some more netdev stats if this is main VSI */ 6731 if (vsi->type == ICE_VSI_PF) { 6732 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6733 cur_ns->rx_errors = pf->stats.crc_errors + 6734 pf->stats.illegal_bytes + 6735 pf->stats.rx_len_errors + 6736 pf->stats.rx_undersize + 6737 pf->hw_csum_rx_error + 6738 pf->stats.rx_jabber + 6739 pf->stats.rx_fragments + 6740 pf->stats.rx_oversize; 6741 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6742 /* record drops from the port level */ 6743 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6744 } 6745 } 6746 6747 /** 6748 * ice_update_pf_stats - Update PF port stats counters 6749 * @pf: PF whose stats needs to be updated 6750 */ 6751 void ice_update_pf_stats(struct ice_pf *pf) 6752 { 6753 struct ice_hw_port_stats *prev_ps, *cur_ps; 6754 struct ice_hw *hw = &pf->hw; 6755 u16 fd_ctr_base; 6756 u8 port; 6757 6758 port = hw->port_info->lport; 6759 prev_ps = &pf->stats_prev; 6760 cur_ps = &pf->stats; 6761 6762 if (ice_is_reset_in_progress(pf->state)) 6763 pf->stat_prev_loaded = false; 6764 6765 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6766 &prev_ps->eth.rx_bytes, 6767 &cur_ps->eth.rx_bytes); 6768 6769 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6770 &prev_ps->eth.rx_unicast, 6771 &cur_ps->eth.rx_unicast); 6772 6773 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6774 &prev_ps->eth.rx_multicast, 6775 &cur_ps->eth.rx_multicast); 6776 6777 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6778 &prev_ps->eth.rx_broadcast, 6779 &cur_ps->eth.rx_broadcast); 6780 6781 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6782 &prev_ps->eth.rx_discards, 6783 &cur_ps->eth.rx_discards); 6784 6785 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6786 &prev_ps->eth.tx_bytes, 6787 &cur_ps->eth.tx_bytes); 6788 6789 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6790 &prev_ps->eth.tx_unicast, 6791 &cur_ps->eth.tx_unicast); 6792 6793 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6794 &prev_ps->eth.tx_multicast, 6795 &cur_ps->eth.tx_multicast); 6796 6797 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6798 &prev_ps->eth.tx_broadcast, 6799 &cur_ps->eth.tx_broadcast); 6800 6801 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6802 &prev_ps->tx_dropped_link_down, 6803 &cur_ps->tx_dropped_link_down); 6804 6805 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6806 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6807 6808 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6809 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6810 6811 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6812 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6813 6814 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6815 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6816 6817 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6818 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6819 6820 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6821 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6822 6823 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6824 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6825 6826 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6827 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6828 6829 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6830 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6831 6832 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6833 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6834 6835 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6836 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6837 6838 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6839 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6840 6841 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6842 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6843 6844 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6845 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6846 6847 fd_ctr_base = hw->fd_ctr_base; 6848 6849 ice_stat_update40(hw, 6850 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6851 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6852 &cur_ps->fd_sb_match); 6853 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6854 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6855 6856 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6857 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6858 6859 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6860 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6861 6862 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6863 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6864 6865 ice_update_dcb_stats(pf); 6866 6867 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6868 &prev_ps->crc_errors, &cur_ps->crc_errors); 6869 6870 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6871 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6872 6873 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6874 &prev_ps->mac_local_faults, 6875 &cur_ps->mac_local_faults); 6876 6877 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6878 &prev_ps->mac_remote_faults, 6879 &cur_ps->mac_remote_faults); 6880 6881 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6882 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6883 6884 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6885 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6886 6887 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6888 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6889 6890 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6891 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6892 6893 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6894 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6895 6896 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6897 6898 pf->stat_prev_loaded = true; 6899 } 6900 6901 /** 6902 * ice_get_stats64 - get statistics for network device structure 6903 * @netdev: network interface device structure 6904 * @stats: main device statistics structure 6905 */ 6906 static 6907 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6908 { 6909 struct ice_netdev_priv *np = netdev_priv(netdev); 6910 struct rtnl_link_stats64 *vsi_stats; 6911 struct ice_vsi *vsi = np->vsi; 6912 6913 vsi_stats = &vsi->net_stats; 6914 6915 if (!vsi->num_txq || !vsi->num_rxq) 6916 return; 6917 6918 /* netdev packet/byte stats come from ring counter. These are obtained 6919 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6920 * But, only call the update routine and read the registers if VSI is 6921 * not down. 6922 */ 6923 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6924 ice_update_vsi_ring_stats(vsi); 6925 stats->tx_packets = vsi_stats->tx_packets; 6926 stats->tx_bytes = vsi_stats->tx_bytes; 6927 stats->rx_packets = vsi_stats->rx_packets; 6928 stats->rx_bytes = vsi_stats->rx_bytes; 6929 6930 /* The rest of the stats can be read from the hardware but instead we 6931 * just return values that the watchdog task has already obtained from 6932 * the hardware. 6933 */ 6934 stats->multicast = vsi_stats->multicast; 6935 stats->tx_errors = vsi_stats->tx_errors; 6936 stats->tx_dropped = vsi_stats->tx_dropped; 6937 stats->rx_errors = vsi_stats->rx_errors; 6938 stats->rx_dropped = vsi_stats->rx_dropped; 6939 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6940 stats->rx_length_errors = vsi_stats->rx_length_errors; 6941 } 6942 6943 /** 6944 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6945 * @vsi: VSI having NAPI disabled 6946 */ 6947 static void ice_napi_disable_all(struct ice_vsi *vsi) 6948 { 6949 int q_idx; 6950 6951 if (!vsi->netdev) 6952 return; 6953 6954 ice_for_each_q_vector(vsi, q_idx) { 6955 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6956 6957 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6958 napi_disable(&q_vector->napi); 6959 6960 cancel_work_sync(&q_vector->tx.dim.work); 6961 cancel_work_sync(&q_vector->rx.dim.work); 6962 } 6963 } 6964 6965 /** 6966 * ice_down - Shutdown the connection 6967 * @vsi: The VSI being stopped 6968 * 6969 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6970 */ 6971 int ice_down(struct ice_vsi *vsi) 6972 { 6973 int i, tx_err, rx_err, vlan_err = 0; 6974 6975 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6976 6977 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6978 vlan_err = ice_vsi_del_vlan_zero(vsi); 6979 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6980 netif_carrier_off(vsi->netdev); 6981 netif_tx_disable(vsi->netdev); 6982 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6983 ice_eswitch_stop_all_tx_queues(vsi->back); 6984 } 6985 6986 ice_vsi_dis_irq(vsi); 6987 6988 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6989 if (tx_err) 6990 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6991 vsi->vsi_num, tx_err); 6992 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6993 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6994 if (tx_err) 6995 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6996 vsi->vsi_num, tx_err); 6997 } 6998 6999 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7000 if (rx_err) 7001 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7002 vsi->vsi_num, rx_err); 7003 7004 ice_napi_disable_all(vsi); 7005 7006 ice_for_each_txq(vsi, i) 7007 ice_clean_tx_ring(vsi->tx_rings[i]); 7008 7009 if (ice_is_xdp_ena_vsi(vsi)) 7010 ice_for_each_xdp_txq(vsi, i) 7011 ice_clean_tx_ring(vsi->xdp_rings[i]); 7012 7013 ice_for_each_rxq(vsi, i) 7014 ice_clean_rx_ring(vsi->rx_rings[i]); 7015 7016 if (tx_err || rx_err || vlan_err) { 7017 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7018 vsi->vsi_num, vsi->vsw->sw_id); 7019 return -EIO; 7020 } 7021 7022 return 0; 7023 } 7024 7025 /** 7026 * ice_down_up - shutdown the VSI connection and bring it up 7027 * @vsi: the VSI to be reconnected 7028 */ 7029 int ice_down_up(struct ice_vsi *vsi) 7030 { 7031 int ret; 7032 7033 /* if DOWN already set, nothing to do */ 7034 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7035 return 0; 7036 7037 ret = ice_down(vsi); 7038 if (ret) 7039 return ret; 7040 7041 ret = ice_up(vsi); 7042 if (ret) { 7043 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7044 return ret; 7045 } 7046 7047 return 0; 7048 } 7049 7050 /** 7051 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7052 * @vsi: VSI having resources allocated 7053 * 7054 * Return 0 on success, negative on failure 7055 */ 7056 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7057 { 7058 int i, err = 0; 7059 7060 if (!vsi->num_txq) { 7061 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7062 vsi->vsi_num); 7063 return -EINVAL; 7064 } 7065 7066 ice_for_each_txq(vsi, i) { 7067 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7068 7069 if (!ring) 7070 return -EINVAL; 7071 7072 if (vsi->netdev) 7073 ring->netdev = vsi->netdev; 7074 err = ice_setup_tx_ring(ring); 7075 if (err) 7076 break; 7077 } 7078 7079 return err; 7080 } 7081 7082 /** 7083 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7084 * @vsi: VSI having resources allocated 7085 * 7086 * Return 0 on success, negative on failure 7087 */ 7088 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7089 { 7090 int i, err = 0; 7091 7092 if (!vsi->num_rxq) { 7093 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7094 vsi->vsi_num); 7095 return -EINVAL; 7096 } 7097 7098 ice_for_each_rxq(vsi, i) { 7099 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7100 7101 if (!ring) 7102 return -EINVAL; 7103 7104 if (vsi->netdev) 7105 ring->netdev = vsi->netdev; 7106 err = ice_setup_rx_ring(ring); 7107 if (err) 7108 break; 7109 } 7110 7111 return err; 7112 } 7113 7114 /** 7115 * ice_vsi_open_ctrl - open control VSI for use 7116 * @vsi: the VSI to open 7117 * 7118 * Initialization of the Control VSI 7119 * 7120 * Returns 0 on success, negative value on error 7121 */ 7122 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7123 { 7124 char int_name[ICE_INT_NAME_STR_LEN]; 7125 struct ice_pf *pf = vsi->back; 7126 struct device *dev; 7127 int err; 7128 7129 dev = ice_pf_to_dev(pf); 7130 /* allocate descriptors */ 7131 err = ice_vsi_setup_tx_rings(vsi); 7132 if (err) 7133 goto err_setup_tx; 7134 7135 err = ice_vsi_setup_rx_rings(vsi); 7136 if (err) 7137 goto err_setup_rx; 7138 7139 err = ice_vsi_cfg_lan(vsi); 7140 if (err) 7141 goto err_setup_rx; 7142 7143 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7144 dev_driver_string(dev), dev_name(dev)); 7145 err = ice_vsi_req_irq_msix(vsi, int_name); 7146 if (err) 7147 goto err_setup_rx; 7148 7149 ice_vsi_cfg_msix(vsi); 7150 7151 err = ice_vsi_start_all_rx_rings(vsi); 7152 if (err) 7153 goto err_up_complete; 7154 7155 clear_bit(ICE_VSI_DOWN, vsi->state); 7156 ice_vsi_ena_irq(vsi); 7157 7158 return 0; 7159 7160 err_up_complete: 7161 ice_down(vsi); 7162 err_setup_rx: 7163 ice_vsi_free_rx_rings(vsi); 7164 err_setup_tx: 7165 ice_vsi_free_tx_rings(vsi); 7166 7167 return err; 7168 } 7169 7170 /** 7171 * ice_vsi_open - Called when a network interface is made active 7172 * @vsi: the VSI to open 7173 * 7174 * Initialization of the VSI 7175 * 7176 * Returns 0 on success, negative value on error 7177 */ 7178 int ice_vsi_open(struct ice_vsi *vsi) 7179 { 7180 char int_name[ICE_INT_NAME_STR_LEN]; 7181 struct ice_pf *pf = vsi->back; 7182 int err; 7183 7184 /* allocate descriptors */ 7185 err = ice_vsi_setup_tx_rings(vsi); 7186 if (err) 7187 goto err_setup_tx; 7188 7189 err = ice_vsi_setup_rx_rings(vsi); 7190 if (err) 7191 goto err_setup_rx; 7192 7193 err = ice_vsi_cfg_lan(vsi); 7194 if (err) 7195 goto err_setup_rx; 7196 7197 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7198 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7199 err = ice_vsi_req_irq_msix(vsi, int_name); 7200 if (err) 7201 goto err_setup_rx; 7202 7203 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7204 7205 if (vsi->type == ICE_VSI_PF) { 7206 /* Notify the stack of the actual queue counts. */ 7207 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7208 if (err) 7209 goto err_set_qs; 7210 7211 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7212 if (err) 7213 goto err_set_qs; 7214 } 7215 7216 err = ice_up_complete(vsi); 7217 if (err) 7218 goto err_up_complete; 7219 7220 return 0; 7221 7222 err_up_complete: 7223 ice_down(vsi); 7224 err_set_qs: 7225 ice_vsi_free_irq(vsi); 7226 err_setup_rx: 7227 ice_vsi_free_rx_rings(vsi); 7228 err_setup_tx: 7229 ice_vsi_free_tx_rings(vsi); 7230 7231 return err; 7232 } 7233 7234 /** 7235 * ice_vsi_release_all - Delete all VSIs 7236 * @pf: PF from which all VSIs are being removed 7237 */ 7238 static void ice_vsi_release_all(struct ice_pf *pf) 7239 { 7240 int err, i; 7241 7242 if (!pf->vsi) 7243 return; 7244 7245 ice_for_each_vsi(pf, i) { 7246 if (!pf->vsi[i]) 7247 continue; 7248 7249 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7250 continue; 7251 7252 err = ice_vsi_release(pf->vsi[i]); 7253 if (err) 7254 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7255 i, err, pf->vsi[i]->vsi_num); 7256 } 7257 } 7258 7259 /** 7260 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7261 * @pf: pointer to the PF instance 7262 * @type: VSI type to rebuild 7263 * 7264 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7265 */ 7266 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7267 { 7268 struct device *dev = ice_pf_to_dev(pf); 7269 int i, err; 7270 7271 ice_for_each_vsi(pf, i) { 7272 struct ice_vsi *vsi = pf->vsi[i]; 7273 7274 if (!vsi || vsi->type != type) 7275 continue; 7276 7277 /* rebuild the VSI */ 7278 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7279 if (err) { 7280 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7281 err, vsi->idx, ice_vsi_type_str(type)); 7282 return err; 7283 } 7284 7285 /* replay filters for the VSI */ 7286 err = ice_replay_vsi(&pf->hw, vsi->idx); 7287 if (err) { 7288 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7289 err, vsi->idx, ice_vsi_type_str(type)); 7290 return err; 7291 } 7292 7293 /* Re-map HW VSI number, using VSI handle that has been 7294 * previously validated in ice_replay_vsi() call above 7295 */ 7296 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7297 7298 /* enable the VSI */ 7299 err = ice_ena_vsi(vsi, false); 7300 if (err) { 7301 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7302 err, vsi->idx, ice_vsi_type_str(type)); 7303 return err; 7304 } 7305 7306 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7307 ice_vsi_type_str(type)); 7308 } 7309 7310 return 0; 7311 } 7312 7313 /** 7314 * ice_update_pf_netdev_link - Update PF netdev link status 7315 * @pf: pointer to the PF instance 7316 */ 7317 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7318 { 7319 bool link_up; 7320 int i; 7321 7322 ice_for_each_vsi(pf, i) { 7323 struct ice_vsi *vsi = pf->vsi[i]; 7324 7325 if (!vsi || vsi->type != ICE_VSI_PF) 7326 return; 7327 7328 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7329 if (link_up) { 7330 netif_carrier_on(pf->vsi[i]->netdev); 7331 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7332 } else { 7333 netif_carrier_off(pf->vsi[i]->netdev); 7334 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7335 } 7336 } 7337 } 7338 7339 /** 7340 * ice_rebuild - rebuild after reset 7341 * @pf: PF to rebuild 7342 * @reset_type: type of reset 7343 * 7344 * Do not rebuild VF VSI in this flow because that is already handled via 7345 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7346 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7347 * to reset/rebuild all the VF VSI twice. 7348 */ 7349 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7350 { 7351 struct device *dev = ice_pf_to_dev(pf); 7352 struct ice_hw *hw = &pf->hw; 7353 bool dvm; 7354 int err; 7355 7356 if (test_bit(ICE_DOWN, pf->state)) 7357 goto clear_recovery; 7358 7359 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7360 7361 #define ICE_EMP_RESET_SLEEP_MS 5000 7362 if (reset_type == ICE_RESET_EMPR) { 7363 /* If an EMP reset has occurred, any previously pending flash 7364 * update will have completed. We no longer know whether or 7365 * not the NVM update EMP reset is restricted. 7366 */ 7367 pf->fw_emp_reset_disabled = false; 7368 7369 msleep(ICE_EMP_RESET_SLEEP_MS); 7370 } 7371 7372 err = ice_init_all_ctrlq(hw); 7373 if (err) { 7374 dev_err(dev, "control queues init failed %d\n", err); 7375 goto err_init_ctrlq; 7376 } 7377 7378 /* if DDP was previously loaded successfully */ 7379 if (!ice_is_safe_mode(pf)) { 7380 /* reload the SW DB of filter tables */ 7381 if (reset_type == ICE_RESET_PFR) 7382 ice_fill_blk_tbls(hw); 7383 else 7384 /* Reload DDP Package after CORER/GLOBR reset */ 7385 ice_load_pkg(NULL, pf); 7386 } 7387 7388 err = ice_clear_pf_cfg(hw); 7389 if (err) { 7390 dev_err(dev, "clear PF configuration failed %d\n", err); 7391 goto err_init_ctrlq; 7392 } 7393 7394 ice_clear_pxe_mode(hw); 7395 7396 err = ice_init_nvm(hw); 7397 if (err) { 7398 dev_err(dev, "ice_init_nvm failed %d\n", err); 7399 goto err_init_ctrlq; 7400 } 7401 7402 err = ice_get_caps(hw); 7403 if (err) { 7404 dev_err(dev, "ice_get_caps failed %d\n", err); 7405 goto err_init_ctrlq; 7406 } 7407 7408 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7409 if (err) { 7410 dev_err(dev, "set_mac_cfg failed %d\n", err); 7411 goto err_init_ctrlq; 7412 } 7413 7414 dvm = ice_is_dvm_ena(hw); 7415 7416 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7417 if (err) 7418 goto err_init_ctrlq; 7419 7420 err = ice_sched_init_port(hw->port_info); 7421 if (err) 7422 goto err_sched_init_port; 7423 7424 /* start misc vector */ 7425 err = ice_req_irq_msix_misc(pf); 7426 if (err) { 7427 dev_err(dev, "misc vector setup failed: %d\n", err); 7428 goto err_sched_init_port; 7429 } 7430 7431 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7432 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7433 if (!rd32(hw, PFQF_FD_SIZE)) { 7434 u16 unused, guar, b_effort; 7435 7436 guar = hw->func_caps.fd_fltr_guar; 7437 b_effort = hw->func_caps.fd_fltr_best_effort; 7438 7439 /* force guaranteed filter pool for PF */ 7440 ice_alloc_fd_guar_item(hw, &unused, guar); 7441 /* force shared filter pool for PF */ 7442 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7443 } 7444 } 7445 7446 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7447 ice_dcb_rebuild(pf); 7448 7449 /* If the PF previously had enabled PTP, PTP init needs to happen before 7450 * the VSI rebuild. If not, this causes the PTP link status events to 7451 * fail. 7452 */ 7453 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7454 ice_ptp_reset(pf); 7455 7456 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7457 ice_gnss_init(pf); 7458 7459 /* rebuild PF VSI */ 7460 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7461 if (err) { 7462 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7463 goto err_vsi_rebuild; 7464 } 7465 7466 err = ice_eswitch_rebuild(pf); 7467 if (err) { 7468 dev_err(dev, "Switchdev rebuild failed: %d\n", err); 7469 goto err_vsi_rebuild; 7470 } 7471 7472 if (reset_type == ICE_RESET_PFR) { 7473 err = ice_rebuild_channels(pf); 7474 if (err) { 7475 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7476 err); 7477 goto err_vsi_rebuild; 7478 } 7479 } 7480 7481 /* If Flow Director is active */ 7482 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7483 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7484 if (err) { 7485 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7486 goto err_vsi_rebuild; 7487 } 7488 7489 /* replay HW Flow Director recipes */ 7490 if (hw->fdir_prof) 7491 ice_fdir_replay_flows(hw); 7492 7493 /* replay Flow Director filters */ 7494 ice_fdir_replay_fltrs(pf); 7495 7496 ice_rebuild_arfs(pf); 7497 } 7498 7499 ice_update_pf_netdev_link(pf); 7500 7501 /* tell the firmware we are up */ 7502 err = ice_send_version(pf); 7503 if (err) { 7504 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7505 err); 7506 goto err_vsi_rebuild; 7507 } 7508 7509 ice_replay_post(hw); 7510 7511 /* if we get here, reset flow is successful */ 7512 clear_bit(ICE_RESET_FAILED, pf->state); 7513 7514 ice_plug_aux_dev(pf); 7515 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7516 ice_lag_rebuild(pf); 7517 7518 /* Restore timestamp mode settings after VSI rebuild */ 7519 ice_ptp_restore_timestamp_mode(pf); 7520 return; 7521 7522 err_vsi_rebuild: 7523 err_sched_init_port: 7524 ice_sched_cleanup_all(hw); 7525 err_init_ctrlq: 7526 ice_shutdown_all_ctrlq(hw); 7527 set_bit(ICE_RESET_FAILED, pf->state); 7528 clear_recovery: 7529 /* set this bit in PF state to control service task scheduling */ 7530 set_bit(ICE_NEEDS_RESTART, pf->state); 7531 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7532 } 7533 7534 /** 7535 * ice_change_mtu - NDO callback to change the MTU 7536 * @netdev: network interface device structure 7537 * @new_mtu: new value for maximum frame size 7538 * 7539 * Returns 0 on success, negative on failure 7540 */ 7541 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7542 { 7543 struct ice_netdev_priv *np = netdev_priv(netdev); 7544 struct ice_vsi *vsi = np->vsi; 7545 struct ice_pf *pf = vsi->back; 7546 struct bpf_prog *prog; 7547 u8 count = 0; 7548 int err = 0; 7549 7550 if (new_mtu == (int)netdev->mtu) { 7551 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7552 return 0; 7553 } 7554 7555 prog = vsi->xdp_prog; 7556 if (prog && !prog->aux->xdp_has_frags) { 7557 int frame_size = ice_max_xdp_frame_size(vsi); 7558 7559 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7560 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7561 frame_size - ICE_ETH_PKT_HDR_PAD); 7562 return -EINVAL; 7563 } 7564 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7565 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7566 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7567 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7568 return -EINVAL; 7569 } 7570 } 7571 7572 /* if a reset is in progress, wait for some time for it to complete */ 7573 do { 7574 if (ice_is_reset_in_progress(pf->state)) { 7575 count++; 7576 usleep_range(1000, 2000); 7577 } else { 7578 break; 7579 } 7580 7581 } while (count < 100); 7582 7583 if (count == 100) { 7584 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7585 return -EBUSY; 7586 } 7587 7588 netdev->mtu = (unsigned int)new_mtu; 7589 err = ice_down_up(vsi); 7590 if (err) 7591 return err; 7592 7593 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7594 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7595 7596 return err; 7597 } 7598 7599 /** 7600 * ice_eth_ioctl - Access the hwtstamp interface 7601 * @netdev: network interface device structure 7602 * @ifr: interface request data 7603 * @cmd: ioctl command 7604 */ 7605 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7606 { 7607 struct ice_netdev_priv *np = netdev_priv(netdev); 7608 struct ice_pf *pf = np->vsi->back; 7609 7610 switch (cmd) { 7611 case SIOCGHWTSTAMP: 7612 return ice_ptp_get_ts_config(pf, ifr); 7613 case SIOCSHWTSTAMP: 7614 return ice_ptp_set_ts_config(pf, ifr); 7615 default: 7616 return -EOPNOTSUPP; 7617 } 7618 } 7619 7620 /** 7621 * ice_aq_str - convert AQ err code to a string 7622 * @aq_err: the AQ error code to convert 7623 */ 7624 const char *ice_aq_str(enum ice_aq_err aq_err) 7625 { 7626 switch (aq_err) { 7627 case ICE_AQ_RC_OK: 7628 return "OK"; 7629 case ICE_AQ_RC_EPERM: 7630 return "ICE_AQ_RC_EPERM"; 7631 case ICE_AQ_RC_ENOENT: 7632 return "ICE_AQ_RC_ENOENT"; 7633 case ICE_AQ_RC_ENOMEM: 7634 return "ICE_AQ_RC_ENOMEM"; 7635 case ICE_AQ_RC_EBUSY: 7636 return "ICE_AQ_RC_EBUSY"; 7637 case ICE_AQ_RC_EEXIST: 7638 return "ICE_AQ_RC_EEXIST"; 7639 case ICE_AQ_RC_EINVAL: 7640 return "ICE_AQ_RC_EINVAL"; 7641 case ICE_AQ_RC_ENOSPC: 7642 return "ICE_AQ_RC_ENOSPC"; 7643 case ICE_AQ_RC_ENOSYS: 7644 return "ICE_AQ_RC_ENOSYS"; 7645 case ICE_AQ_RC_EMODE: 7646 return "ICE_AQ_RC_EMODE"; 7647 case ICE_AQ_RC_ENOSEC: 7648 return "ICE_AQ_RC_ENOSEC"; 7649 case ICE_AQ_RC_EBADSIG: 7650 return "ICE_AQ_RC_EBADSIG"; 7651 case ICE_AQ_RC_ESVN: 7652 return "ICE_AQ_RC_ESVN"; 7653 case ICE_AQ_RC_EBADMAN: 7654 return "ICE_AQ_RC_EBADMAN"; 7655 case ICE_AQ_RC_EBADBUF: 7656 return "ICE_AQ_RC_EBADBUF"; 7657 } 7658 7659 return "ICE_AQ_RC_UNKNOWN"; 7660 } 7661 7662 /** 7663 * ice_set_rss_lut - Set RSS LUT 7664 * @vsi: Pointer to VSI structure 7665 * @lut: Lookup table 7666 * @lut_size: Lookup table size 7667 * 7668 * Returns 0 on success, negative on failure 7669 */ 7670 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7671 { 7672 struct ice_aq_get_set_rss_lut_params params = {}; 7673 struct ice_hw *hw = &vsi->back->hw; 7674 int status; 7675 7676 if (!lut) 7677 return -EINVAL; 7678 7679 params.vsi_handle = vsi->idx; 7680 params.lut_size = lut_size; 7681 params.lut_type = vsi->rss_lut_type; 7682 params.lut = lut; 7683 7684 status = ice_aq_set_rss_lut(hw, ¶ms); 7685 if (status) 7686 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7687 status, ice_aq_str(hw->adminq.sq_last_status)); 7688 7689 return status; 7690 } 7691 7692 /** 7693 * ice_set_rss_key - Set RSS key 7694 * @vsi: Pointer to the VSI structure 7695 * @seed: RSS hash seed 7696 * 7697 * Returns 0 on success, negative on failure 7698 */ 7699 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7700 { 7701 struct ice_hw *hw = &vsi->back->hw; 7702 int status; 7703 7704 if (!seed) 7705 return -EINVAL; 7706 7707 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7708 if (status) 7709 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7710 status, ice_aq_str(hw->adminq.sq_last_status)); 7711 7712 return status; 7713 } 7714 7715 /** 7716 * ice_get_rss_lut - Get RSS LUT 7717 * @vsi: Pointer to VSI structure 7718 * @lut: Buffer to store the lookup table entries 7719 * @lut_size: Size of buffer to store the lookup table entries 7720 * 7721 * Returns 0 on success, negative on failure 7722 */ 7723 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7724 { 7725 struct ice_aq_get_set_rss_lut_params params = {}; 7726 struct ice_hw *hw = &vsi->back->hw; 7727 int status; 7728 7729 if (!lut) 7730 return -EINVAL; 7731 7732 params.vsi_handle = vsi->idx; 7733 params.lut_size = lut_size; 7734 params.lut_type = vsi->rss_lut_type; 7735 params.lut = lut; 7736 7737 status = ice_aq_get_rss_lut(hw, ¶ms); 7738 if (status) 7739 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7740 status, ice_aq_str(hw->adminq.sq_last_status)); 7741 7742 return status; 7743 } 7744 7745 /** 7746 * ice_get_rss_key - Get RSS key 7747 * @vsi: Pointer to VSI structure 7748 * @seed: Buffer to store the key in 7749 * 7750 * Returns 0 on success, negative on failure 7751 */ 7752 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7753 { 7754 struct ice_hw *hw = &vsi->back->hw; 7755 int status; 7756 7757 if (!seed) 7758 return -EINVAL; 7759 7760 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7761 if (status) 7762 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7763 status, ice_aq_str(hw->adminq.sq_last_status)); 7764 7765 return status; 7766 } 7767 7768 /** 7769 * ice_set_rss_hfunc - Set RSS HASH function 7770 * @vsi: Pointer to VSI structure 7771 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 7772 * 7773 * Returns 0 on success, negative on failure 7774 */ 7775 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 7776 { 7777 struct ice_hw *hw = &vsi->back->hw; 7778 struct ice_vsi_ctx *ctx; 7779 bool symm; 7780 int err; 7781 7782 if (hfunc == vsi->rss_hfunc) 7783 return 0; 7784 7785 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 7786 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 7787 return -EOPNOTSUPP; 7788 7789 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7790 if (!ctx) 7791 return -ENOMEM; 7792 7793 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 7794 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 7795 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 7796 ctx->info.q_opt_rss |= 7797 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 7798 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 7799 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 7800 7801 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 7802 if (err) { 7803 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 7804 vsi->vsi_num, err); 7805 } else { 7806 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 7807 vsi->rss_hfunc = hfunc; 7808 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 7809 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 7810 "Symmetric " : ""); 7811 } 7812 kfree(ctx); 7813 if (err) 7814 return err; 7815 7816 /* Fix the symmetry setting for all existing RSS configurations */ 7817 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 7818 return ice_set_rss_cfg_symm(hw, vsi, symm); 7819 } 7820 7821 /** 7822 * ice_bridge_getlink - Get the hardware bridge mode 7823 * @skb: skb buff 7824 * @pid: process ID 7825 * @seq: RTNL message seq 7826 * @dev: the netdev being configured 7827 * @filter_mask: filter mask passed in 7828 * @nlflags: netlink flags passed in 7829 * 7830 * Return the bridge mode (VEB/VEPA) 7831 */ 7832 static int 7833 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7834 struct net_device *dev, u32 filter_mask, int nlflags) 7835 { 7836 struct ice_netdev_priv *np = netdev_priv(dev); 7837 struct ice_vsi *vsi = np->vsi; 7838 struct ice_pf *pf = vsi->back; 7839 u16 bmode; 7840 7841 bmode = pf->first_sw->bridge_mode; 7842 7843 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7844 filter_mask, NULL); 7845 } 7846 7847 /** 7848 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7849 * @vsi: Pointer to VSI structure 7850 * @bmode: Hardware bridge mode (VEB/VEPA) 7851 * 7852 * Returns 0 on success, negative on failure 7853 */ 7854 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7855 { 7856 struct ice_aqc_vsi_props *vsi_props; 7857 struct ice_hw *hw = &vsi->back->hw; 7858 struct ice_vsi_ctx *ctxt; 7859 int ret; 7860 7861 vsi_props = &vsi->info; 7862 7863 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7864 if (!ctxt) 7865 return -ENOMEM; 7866 7867 ctxt->info = vsi->info; 7868 7869 if (bmode == BRIDGE_MODE_VEB) 7870 /* change from VEPA to VEB mode */ 7871 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7872 else 7873 /* change from VEB to VEPA mode */ 7874 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7875 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7876 7877 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7878 if (ret) { 7879 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7880 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7881 goto out; 7882 } 7883 /* Update sw flags for book keeping */ 7884 vsi_props->sw_flags = ctxt->info.sw_flags; 7885 7886 out: 7887 kfree(ctxt); 7888 return ret; 7889 } 7890 7891 /** 7892 * ice_bridge_setlink - Set the hardware bridge mode 7893 * @dev: the netdev being configured 7894 * @nlh: RTNL message 7895 * @flags: bridge setlink flags 7896 * @extack: netlink extended ack 7897 * 7898 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7899 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7900 * not already set for all VSIs connected to this switch. And also update the 7901 * unicast switch filter rules for the corresponding switch of the netdev. 7902 */ 7903 static int 7904 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7905 u16 __always_unused flags, 7906 struct netlink_ext_ack __always_unused *extack) 7907 { 7908 struct ice_netdev_priv *np = netdev_priv(dev); 7909 struct ice_pf *pf = np->vsi->back; 7910 struct nlattr *attr, *br_spec; 7911 struct ice_hw *hw = &pf->hw; 7912 struct ice_sw *pf_sw; 7913 int rem, v, err = 0; 7914 7915 pf_sw = pf->first_sw; 7916 /* find the attribute in the netlink message */ 7917 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7918 7919 nla_for_each_nested(attr, br_spec, rem) { 7920 __u16 mode; 7921 7922 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7923 continue; 7924 mode = nla_get_u16(attr); 7925 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7926 return -EINVAL; 7927 /* Continue if bridge mode is not being flipped */ 7928 if (mode == pf_sw->bridge_mode) 7929 continue; 7930 /* Iterates through the PF VSI list and update the loopback 7931 * mode of the VSI 7932 */ 7933 ice_for_each_vsi(pf, v) { 7934 if (!pf->vsi[v]) 7935 continue; 7936 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7937 if (err) 7938 return err; 7939 } 7940 7941 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7942 /* Update the unicast switch filter rules for the corresponding 7943 * switch of the netdev 7944 */ 7945 err = ice_update_sw_rule_bridge_mode(hw); 7946 if (err) { 7947 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7948 mode, err, 7949 ice_aq_str(hw->adminq.sq_last_status)); 7950 /* revert hw->evb_veb */ 7951 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7952 return err; 7953 } 7954 7955 pf_sw->bridge_mode = mode; 7956 } 7957 7958 return 0; 7959 } 7960 7961 /** 7962 * ice_tx_timeout - Respond to a Tx Hang 7963 * @netdev: network interface device structure 7964 * @txqueue: Tx queue 7965 */ 7966 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7967 { 7968 struct ice_netdev_priv *np = netdev_priv(netdev); 7969 struct ice_tx_ring *tx_ring = NULL; 7970 struct ice_vsi *vsi = np->vsi; 7971 struct ice_pf *pf = vsi->back; 7972 u32 i; 7973 7974 pf->tx_timeout_count++; 7975 7976 /* Check if PFC is enabled for the TC to which the queue belongs 7977 * to. If yes then Tx timeout is not caused by a hung queue, no 7978 * need to reset and rebuild 7979 */ 7980 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7981 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7982 txqueue); 7983 return; 7984 } 7985 7986 /* now that we have an index, find the tx_ring struct */ 7987 ice_for_each_txq(vsi, i) 7988 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7989 if (txqueue == vsi->tx_rings[i]->q_index) { 7990 tx_ring = vsi->tx_rings[i]; 7991 break; 7992 } 7993 7994 /* Reset recovery level if enough time has elapsed after last timeout. 7995 * Also ensure no new reset action happens before next timeout period. 7996 */ 7997 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7998 pf->tx_timeout_recovery_level = 1; 7999 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8000 netdev->watchdog_timeo))) 8001 return; 8002 8003 if (tx_ring) { 8004 struct ice_hw *hw = &pf->hw; 8005 u32 head, val = 0; 8006 8007 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8008 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8009 /* Read interrupt register */ 8010 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8011 8012 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8013 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8014 head, tx_ring->next_to_use, val); 8015 } 8016 8017 pf->tx_timeout_last_recovery = jiffies; 8018 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8019 pf->tx_timeout_recovery_level, txqueue); 8020 8021 switch (pf->tx_timeout_recovery_level) { 8022 case 1: 8023 set_bit(ICE_PFR_REQ, pf->state); 8024 break; 8025 case 2: 8026 set_bit(ICE_CORER_REQ, pf->state); 8027 break; 8028 case 3: 8029 set_bit(ICE_GLOBR_REQ, pf->state); 8030 break; 8031 default: 8032 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8033 set_bit(ICE_DOWN, pf->state); 8034 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8035 set_bit(ICE_SERVICE_DIS, pf->state); 8036 break; 8037 } 8038 8039 ice_service_task_schedule(pf); 8040 pf->tx_timeout_recovery_level++; 8041 } 8042 8043 /** 8044 * ice_setup_tc_cls_flower - flower classifier offloads 8045 * @np: net device to configure 8046 * @filter_dev: device on which filter is added 8047 * @cls_flower: offload data 8048 */ 8049 static int 8050 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8051 struct net_device *filter_dev, 8052 struct flow_cls_offload *cls_flower) 8053 { 8054 struct ice_vsi *vsi = np->vsi; 8055 8056 if (cls_flower->common.chain_index) 8057 return -EOPNOTSUPP; 8058 8059 switch (cls_flower->command) { 8060 case FLOW_CLS_REPLACE: 8061 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8062 case FLOW_CLS_DESTROY: 8063 return ice_del_cls_flower(vsi, cls_flower); 8064 default: 8065 return -EINVAL; 8066 } 8067 } 8068 8069 /** 8070 * ice_setup_tc_block_cb - callback handler registered for TC block 8071 * @type: TC SETUP type 8072 * @type_data: TC flower offload data that contains user input 8073 * @cb_priv: netdev private data 8074 */ 8075 static int 8076 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8077 { 8078 struct ice_netdev_priv *np = cb_priv; 8079 8080 switch (type) { 8081 case TC_SETUP_CLSFLOWER: 8082 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8083 type_data); 8084 default: 8085 return -EOPNOTSUPP; 8086 } 8087 } 8088 8089 /** 8090 * ice_validate_mqprio_qopt - Validate TCF input parameters 8091 * @vsi: Pointer to VSI 8092 * @mqprio_qopt: input parameters for mqprio queue configuration 8093 * 8094 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8095 * needed), and make sure user doesn't specify qcount and BW rate limit 8096 * for TCs, which are more than "num_tc" 8097 */ 8098 static int 8099 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8100 struct tc_mqprio_qopt_offload *mqprio_qopt) 8101 { 8102 int non_power_of_2_qcount = 0; 8103 struct ice_pf *pf = vsi->back; 8104 int max_rss_q_cnt = 0; 8105 u64 sum_min_rate = 0; 8106 struct device *dev; 8107 int i, speed; 8108 u8 num_tc; 8109 8110 if (vsi->type != ICE_VSI_PF) 8111 return -EINVAL; 8112 8113 if (mqprio_qopt->qopt.offset[0] != 0 || 8114 mqprio_qopt->qopt.num_tc < 1 || 8115 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8116 return -EINVAL; 8117 8118 dev = ice_pf_to_dev(pf); 8119 vsi->ch_rss_size = 0; 8120 num_tc = mqprio_qopt->qopt.num_tc; 8121 speed = ice_get_link_speed_kbps(vsi); 8122 8123 for (i = 0; num_tc; i++) { 8124 int qcount = mqprio_qopt->qopt.count[i]; 8125 u64 max_rate, min_rate, rem; 8126 8127 if (!qcount) 8128 return -EINVAL; 8129 8130 if (is_power_of_2(qcount)) { 8131 if (non_power_of_2_qcount && 8132 qcount > non_power_of_2_qcount) { 8133 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8134 qcount, non_power_of_2_qcount); 8135 return -EINVAL; 8136 } 8137 if (qcount > max_rss_q_cnt) 8138 max_rss_q_cnt = qcount; 8139 } else { 8140 if (non_power_of_2_qcount && 8141 qcount != non_power_of_2_qcount) { 8142 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8143 qcount, non_power_of_2_qcount); 8144 return -EINVAL; 8145 } 8146 if (qcount < max_rss_q_cnt) { 8147 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8148 qcount, max_rss_q_cnt); 8149 return -EINVAL; 8150 } 8151 max_rss_q_cnt = qcount; 8152 non_power_of_2_qcount = qcount; 8153 } 8154 8155 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8156 * converts the bandwidth rate limit into Bytes/s when 8157 * passing it down to the driver. So convert input bandwidth 8158 * from Bytes/s to Kbps 8159 */ 8160 max_rate = mqprio_qopt->max_rate[i]; 8161 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8162 8163 /* min_rate is minimum guaranteed rate and it can't be zero */ 8164 min_rate = mqprio_qopt->min_rate[i]; 8165 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8166 sum_min_rate += min_rate; 8167 8168 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8169 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8170 min_rate, ICE_MIN_BW_LIMIT); 8171 return -EINVAL; 8172 } 8173 8174 if (max_rate && max_rate > speed) { 8175 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8176 i, max_rate, speed); 8177 return -EINVAL; 8178 } 8179 8180 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8181 if (rem) { 8182 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8183 i, ICE_MIN_BW_LIMIT); 8184 return -EINVAL; 8185 } 8186 8187 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8188 if (rem) { 8189 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8190 i, ICE_MIN_BW_LIMIT); 8191 return -EINVAL; 8192 } 8193 8194 /* min_rate can't be more than max_rate, except when max_rate 8195 * is zero (implies max_rate sought is max line rate). In such 8196 * a case min_rate can be more than max. 8197 */ 8198 if (max_rate && min_rate > max_rate) { 8199 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8200 min_rate, max_rate); 8201 return -EINVAL; 8202 } 8203 8204 if (i >= mqprio_qopt->qopt.num_tc - 1) 8205 break; 8206 if (mqprio_qopt->qopt.offset[i + 1] != 8207 (mqprio_qopt->qopt.offset[i] + qcount)) 8208 return -EINVAL; 8209 } 8210 if (vsi->num_rxq < 8211 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8212 return -EINVAL; 8213 if (vsi->num_txq < 8214 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8215 return -EINVAL; 8216 8217 if (sum_min_rate && sum_min_rate > (u64)speed) { 8218 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8219 sum_min_rate, speed); 8220 return -EINVAL; 8221 } 8222 8223 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8224 vsi->ch_rss_size = max_rss_q_cnt; 8225 8226 return 0; 8227 } 8228 8229 /** 8230 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8231 * @pf: ptr to PF device 8232 * @vsi: ptr to VSI 8233 */ 8234 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8235 { 8236 struct device *dev = ice_pf_to_dev(pf); 8237 bool added = false; 8238 struct ice_hw *hw; 8239 int flow; 8240 8241 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8242 return -EINVAL; 8243 8244 hw = &pf->hw; 8245 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8246 struct ice_fd_hw_prof *prof; 8247 int tun, status; 8248 u64 entry_h; 8249 8250 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8251 hw->fdir_prof[flow]->cnt)) 8252 continue; 8253 8254 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8255 enum ice_flow_priority prio; 8256 8257 /* add this VSI to FDir profile for this flow */ 8258 prio = ICE_FLOW_PRIO_NORMAL; 8259 prof = hw->fdir_prof[flow]; 8260 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8261 prof->prof_id[tun], 8262 prof->vsi_h[0], vsi->idx, 8263 prio, prof->fdir_seg[tun], 8264 &entry_h); 8265 if (status) { 8266 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8267 vsi->idx, flow); 8268 continue; 8269 } 8270 8271 prof->entry_h[prof->cnt][tun] = entry_h; 8272 } 8273 8274 /* store VSI for filter replay and delete */ 8275 prof->vsi_h[prof->cnt] = vsi->idx; 8276 prof->cnt++; 8277 8278 added = true; 8279 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8280 flow); 8281 } 8282 8283 if (!added) 8284 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8285 8286 return 0; 8287 } 8288 8289 /** 8290 * ice_add_channel - add a channel by adding VSI 8291 * @pf: ptr to PF device 8292 * @sw_id: underlying HW switching element ID 8293 * @ch: ptr to channel structure 8294 * 8295 * Add a channel (VSI) using add_vsi and queue_map 8296 */ 8297 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8298 { 8299 struct device *dev = ice_pf_to_dev(pf); 8300 struct ice_vsi *vsi; 8301 8302 if (ch->type != ICE_VSI_CHNL) { 8303 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8304 return -EINVAL; 8305 } 8306 8307 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8308 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8309 dev_err(dev, "create chnl VSI failure\n"); 8310 return -EINVAL; 8311 } 8312 8313 ice_add_vsi_to_fdir(pf, vsi); 8314 8315 ch->sw_id = sw_id; 8316 ch->vsi_num = vsi->vsi_num; 8317 ch->info.mapping_flags = vsi->info.mapping_flags; 8318 ch->ch_vsi = vsi; 8319 /* set the back pointer of channel for newly created VSI */ 8320 vsi->ch = ch; 8321 8322 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8323 sizeof(vsi->info.q_mapping)); 8324 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8325 sizeof(vsi->info.tc_mapping)); 8326 8327 return 0; 8328 } 8329 8330 /** 8331 * ice_chnl_cfg_res 8332 * @vsi: the VSI being setup 8333 * @ch: ptr to channel structure 8334 * 8335 * Configure channel specific resources such as rings, vector. 8336 */ 8337 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8338 { 8339 int i; 8340 8341 for (i = 0; i < ch->num_txq; i++) { 8342 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8343 struct ice_ring_container *rc; 8344 struct ice_tx_ring *tx_ring; 8345 struct ice_rx_ring *rx_ring; 8346 8347 tx_ring = vsi->tx_rings[ch->base_q + i]; 8348 rx_ring = vsi->rx_rings[ch->base_q + i]; 8349 if (!tx_ring || !rx_ring) 8350 continue; 8351 8352 /* setup ring being channel enabled */ 8353 tx_ring->ch = ch; 8354 rx_ring->ch = ch; 8355 8356 /* following code block sets up vector specific attributes */ 8357 tx_q_vector = tx_ring->q_vector; 8358 rx_q_vector = rx_ring->q_vector; 8359 if (!tx_q_vector && !rx_q_vector) 8360 continue; 8361 8362 if (tx_q_vector) { 8363 tx_q_vector->ch = ch; 8364 /* setup Tx and Rx ITR setting if DIM is off */ 8365 rc = &tx_q_vector->tx; 8366 if (!ITR_IS_DYNAMIC(rc)) 8367 ice_write_itr(rc, rc->itr_setting); 8368 } 8369 if (rx_q_vector) { 8370 rx_q_vector->ch = ch; 8371 /* setup Tx and Rx ITR setting if DIM is off */ 8372 rc = &rx_q_vector->rx; 8373 if (!ITR_IS_DYNAMIC(rc)) 8374 ice_write_itr(rc, rc->itr_setting); 8375 } 8376 } 8377 8378 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8379 * GLINT_ITR register would have written to perform in-context 8380 * update, hence perform flush 8381 */ 8382 if (ch->num_txq || ch->num_rxq) 8383 ice_flush(&vsi->back->hw); 8384 } 8385 8386 /** 8387 * ice_cfg_chnl_all_res - configure channel resources 8388 * @vsi: pte to main_vsi 8389 * @ch: ptr to channel structure 8390 * 8391 * This function configures channel specific resources such as flow-director 8392 * counter index, and other resources such as queues, vectors, ITR settings 8393 */ 8394 static void 8395 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8396 { 8397 /* configure channel (aka ADQ) resources such as queues, vectors, 8398 * ITR settings for channel specific vectors and anything else 8399 */ 8400 ice_chnl_cfg_res(vsi, ch); 8401 } 8402 8403 /** 8404 * ice_setup_hw_channel - setup new channel 8405 * @pf: ptr to PF device 8406 * @vsi: the VSI being setup 8407 * @ch: ptr to channel structure 8408 * @sw_id: underlying HW switching element ID 8409 * @type: type of channel to be created (VMDq2/VF) 8410 * 8411 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8412 * and configures Tx rings accordingly 8413 */ 8414 static int 8415 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8416 struct ice_channel *ch, u16 sw_id, u8 type) 8417 { 8418 struct device *dev = ice_pf_to_dev(pf); 8419 int ret; 8420 8421 ch->base_q = vsi->next_base_q; 8422 ch->type = type; 8423 8424 ret = ice_add_channel(pf, sw_id, ch); 8425 if (ret) { 8426 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8427 return ret; 8428 } 8429 8430 /* configure/setup ADQ specific resources */ 8431 ice_cfg_chnl_all_res(vsi, ch); 8432 8433 /* make sure to update the next_base_q so that subsequent channel's 8434 * (aka ADQ) VSI queue map is correct 8435 */ 8436 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8437 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8438 ch->num_rxq); 8439 8440 return 0; 8441 } 8442 8443 /** 8444 * ice_setup_channel - setup new channel using uplink element 8445 * @pf: ptr to PF device 8446 * @vsi: the VSI being setup 8447 * @ch: ptr to channel structure 8448 * 8449 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8450 * and uplink switching element 8451 */ 8452 static bool 8453 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8454 struct ice_channel *ch) 8455 { 8456 struct device *dev = ice_pf_to_dev(pf); 8457 u16 sw_id; 8458 int ret; 8459 8460 if (vsi->type != ICE_VSI_PF) { 8461 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8462 return false; 8463 } 8464 8465 sw_id = pf->first_sw->sw_id; 8466 8467 /* create channel (VSI) */ 8468 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8469 if (ret) { 8470 dev_err(dev, "failed to setup hw_channel\n"); 8471 return false; 8472 } 8473 dev_dbg(dev, "successfully created channel()\n"); 8474 8475 return ch->ch_vsi ? true : false; 8476 } 8477 8478 /** 8479 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8480 * @vsi: VSI to be configured 8481 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8482 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8483 */ 8484 static int 8485 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8486 { 8487 int err; 8488 8489 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8490 if (err) 8491 return err; 8492 8493 return ice_set_max_bw_limit(vsi, max_tx_rate); 8494 } 8495 8496 /** 8497 * ice_create_q_channel - function to create channel 8498 * @vsi: VSI to be configured 8499 * @ch: ptr to channel (it contains channel specific params) 8500 * 8501 * This function creates channel (VSI) using num_queues specified by user, 8502 * reconfigs RSS if needed. 8503 */ 8504 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8505 { 8506 struct ice_pf *pf = vsi->back; 8507 struct device *dev; 8508 8509 if (!ch) 8510 return -EINVAL; 8511 8512 dev = ice_pf_to_dev(pf); 8513 if (!ch->num_txq || !ch->num_rxq) { 8514 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8515 return -EINVAL; 8516 } 8517 8518 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8519 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8520 vsi->cnt_q_avail, ch->num_txq); 8521 return -EINVAL; 8522 } 8523 8524 if (!ice_setup_channel(pf, vsi, ch)) { 8525 dev_info(dev, "Failed to setup channel\n"); 8526 return -EINVAL; 8527 } 8528 /* configure BW rate limit */ 8529 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8530 int ret; 8531 8532 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8533 ch->min_tx_rate); 8534 if (ret) 8535 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8536 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8537 else 8538 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8539 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8540 } 8541 8542 vsi->cnt_q_avail -= ch->num_txq; 8543 8544 return 0; 8545 } 8546 8547 /** 8548 * ice_rem_all_chnl_fltrs - removes all channel filters 8549 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8550 * 8551 * Remove all advanced switch filters only if they are channel specific 8552 * tc-flower based filter 8553 */ 8554 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8555 { 8556 struct ice_tc_flower_fltr *fltr; 8557 struct hlist_node *node; 8558 8559 /* to remove all channel filters, iterate an ordered list of filters */ 8560 hlist_for_each_entry_safe(fltr, node, 8561 &pf->tc_flower_fltr_list, 8562 tc_flower_node) { 8563 struct ice_rule_query_data rule; 8564 int status; 8565 8566 /* for now process only channel specific filters */ 8567 if (!ice_is_chnl_fltr(fltr)) 8568 continue; 8569 8570 rule.rid = fltr->rid; 8571 rule.rule_id = fltr->rule_id; 8572 rule.vsi_handle = fltr->dest_vsi_handle; 8573 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8574 if (status) { 8575 if (status == -ENOENT) 8576 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8577 rule.rule_id); 8578 else 8579 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8580 status); 8581 } else if (fltr->dest_vsi) { 8582 /* update advanced switch filter count */ 8583 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8584 u32 flags = fltr->flags; 8585 8586 fltr->dest_vsi->num_chnl_fltr--; 8587 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8588 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8589 pf->num_dmac_chnl_fltrs--; 8590 } 8591 } 8592 8593 hlist_del(&fltr->tc_flower_node); 8594 kfree(fltr); 8595 } 8596 } 8597 8598 /** 8599 * ice_remove_q_channels - Remove queue channels for the TCs 8600 * @vsi: VSI to be configured 8601 * @rem_fltr: delete advanced switch filter or not 8602 * 8603 * Remove queue channels for the TCs 8604 */ 8605 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8606 { 8607 struct ice_channel *ch, *ch_tmp; 8608 struct ice_pf *pf = vsi->back; 8609 int i; 8610 8611 /* remove all tc-flower based filter if they are channel filters only */ 8612 if (rem_fltr) 8613 ice_rem_all_chnl_fltrs(pf); 8614 8615 /* remove ntuple filters since queue configuration is being changed */ 8616 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8617 struct ice_hw *hw = &pf->hw; 8618 8619 mutex_lock(&hw->fdir_fltr_lock); 8620 ice_fdir_del_all_fltrs(vsi); 8621 mutex_unlock(&hw->fdir_fltr_lock); 8622 } 8623 8624 /* perform cleanup for channels if they exist */ 8625 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8626 struct ice_vsi *ch_vsi; 8627 8628 list_del(&ch->list); 8629 ch_vsi = ch->ch_vsi; 8630 if (!ch_vsi) { 8631 kfree(ch); 8632 continue; 8633 } 8634 8635 /* Reset queue contexts */ 8636 for (i = 0; i < ch->num_rxq; i++) { 8637 struct ice_tx_ring *tx_ring; 8638 struct ice_rx_ring *rx_ring; 8639 8640 tx_ring = vsi->tx_rings[ch->base_q + i]; 8641 rx_ring = vsi->rx_rings[ch->base_q + i]; 8642 if (tx_ring) { 8643 tx_ring->ch = NULL; 8644 if (tx_ring->q_vector) 8645 tx_ring->q_vector->ch = NULL; 8646 } 8647 if (rx_ring) { 8648 rx_ring->ch = NULL; 8649 if (rx_ring->q_vector) 8650 rx_ring->q_vector->ch = NULL; 8651 } 8652 } 8653 8654 /* Release FD resources for the channel VSI */ 8655 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8656 8657 /* clear the VSI from scheduler tree */ 8658 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8659 8660 /* Delete VSI from FW, PF and HW VSI arrays */ 8661 ice_vsi_delete(ch->ch_vsi); 8662 8663 /* free the channel */ 8664 kfree(ch); 8665 } 8666 8667 /* clear the channel VSI map which is stored in main VSI */ 8668 ice_for_each_chnl_tc(i) 8669 vsi->tc_map_vsi[i] = NULL; 8670 8671 /* reset main VSI's all TC information */ 8672 vsi->all_enatc = 0; 8673 vsi->all_numtc = 0; 8674 } 8675 8676 /** 8677 * ice_rebuild_channels - rebuild channel 8678 * @pf: ptr to PF 8679 * 8680 * Recreate channel VSIs and replay filters 8681 */ 8682 static int ice_rebuild_channels(struct ice_pf *pf) 8683 { 8684 struct device *dev = ice_pf_to_dev(pf); 8685 struct ice_vsi *main_vsi; 8686 bool rem_adv_fltr = true; 8687 struct ice_channel *ch; 8688 struct ice_vsi *vsi; 8689 int tc_idx = 1; 8690 int i, err; 8691 8692 main_vsi = ice_get_main_vsi(pf); 8693 if (!main_vsi) 8694 return 0; 8695 8696 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8697 main_vsi->old_numtc == 1) 8698 return 0; /* nothing to be done */ 8699 8700 /* reconfigure main VSI based on old value of TC and cached values 8701 * for MQPRIO opts 8702 */ 8703 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8704 if (err) { 8705 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8706 main_vsi->old_ena_tc, main_vsi->vsi_num); 8707 return err; 8708 } 8709 8710 /* rebuild ADQ VSIs */ 8711 ice_for_each_vsi(pf, i) { 8712 enum ice_vsi_type type; 8713 8714 vsi = pf->vsi[i]; 8715 if (!vsi || vsi->type != ICE_VSI_CHNL) 8716 continue; 8717 8718 type = vsi->type; 8719 8720 /* rebuild ADQ VSI */ 8721 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8722 if (err) { 8723 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8724 ice_vsi_type_str(type), vsi->idx, err); 8725 goto cleanup; 8726 } 8727 8728 /* Re-map HW VSI number, using VSI handle that has been 8729 * previously validated in ice_replay_vsi() call above 8730 */ 8731 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8732 8733 /* replay filters for the VSI */ 8734 err = ice_replay_vsi(&pf->hw, vsi->idx); 8735 if (err) { 8736 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8737 ice_vsi_type_str(type), err, vsi->idx); 8738 rem_adv_fltr = false; 8739 goto cleanup; 8740 } 8741 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8742 ice_vsi_type_str(type), vsi->idx); 8743 8744 /* store ADQ VSI at correct TC index in main VSI's 8745 * map of TC to VSI 8746 */ 8747 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8748 } 8749 8750 /* ADQ VSI(s) has been rebuilt successfully, so setup 8751 * channel for main VSI's Tx and Rx rings 8752 */ 8753 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8754 struct ice_vsi *ch_vsi; 8755 8756 ch_vsi = ch->ch_vsi; 8757 if (!ch_vsi) 8758 continue; 8759 8760 /* reconfig channel resources */ 8761 ice_cfg_chnl_all_res(main_vsi, ch); 8762 8763 /* replay BW rate limit if it is non-zero */ 8764 if (!ch->max_tx_rate && !ch->min_tx_rate) 8765 continue; 8766 8767 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8768 ch->min_tx_rate); 8769 if (err) 8770 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8771 err, ch->max_tx_rate, ch->min_tx_rate, 8772 ch_vsi->vsi_num); 8773 else 8774 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8775 ch->max_tx_rate, ch->min_tx_rate, 8776 ch_vsi->vsi_num); 8777 } 8778 8779 /* reconfig RSS for main VSI */ 8780 if (main_vsi->ch_rss_size) 8781 ice_vsi_cfg_rss_lut_key(main_vsi); 8782 8783 return 0; 8784 8785 cleanup: 8786 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8787 return err; 8788 } 8789 8790 /** 8791 * ice_create_q_channels - Add queue channel for the given TCs 8792 * @vsi: VSI to be configured 8793 * 8794 * Configures queue channel mapping to the given TCs 8795 */ 8796 static int ice_create_q_channels(struct ice_vsi *vsi) 8797 { 8798 struct ice_pf *pf = vsi->back; 8799 struct ice_channel *ch; 8800 int ret = 0, i; 8801 8802 ice_for_each_chnl_tc(i) { 8803 if (!(vsi->all_enatc & BIT(i))) 8804 continue; 8805 8806 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8807 if (!ch) { 8808 ret = -ENOMEM; 8809 goto err_free; 8810 } 8811 INIT_LIST_HEAD(&ch->list); 8812 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8813 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8814 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8815 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8816 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8817 8818 /* convert to Kbits/s */ 8819 if (ch->max_tx_rate) 8820 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8821 ICE_BW_KBPS_DIVISOR); 8822 if (ch->min_tx_rate) 8823 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8824 ICE_BW_KBPS_DIVISOR); 8825 8826 ret = ice_create_q_channel(vsi, ch); 8827 if (ret) { 8828 dev_err(ice_pf_to_dev(pf), 8829 "failed creating channel TC:%d\n", i); 8830 kfree(ch); 8831 goto err_free; 8832 } 8833 list_add_tail(&ch->list, &vsi->ch_list); 8834 vsi->tc_map_vsi[i] = ch->ch_vsi; 8835 dev_dbg(ice_pf_to_dev(pf), 8836 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8837 } 8838 return 0; 8839 8840 err_free: 8841 ice_remove_q_channels(vsi, false); 8842 8843 return ret; 8844 } 8845 8846 /** 8847 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8848 * @netdev: net device to configure 8849 * @type_data: TC offload data 8850 */ 8851 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8852 { 8853 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8854 struct ice_netdev_priv *np = netdev_priv(netdev); 8855 struct ice_vsi *vsi = np->vsi; 8856 struct ice_pf *pf = vsi->back; 8857 u16 mode, ena_tc_qdisc = 0; 8858 int cur_txq, cur_rxq; 8859 u8 hw = 0, num_tcf; 8860 struct device *dev; 8861 int ret, i; 8862 8863 dev = ice_pf_to_dev(pf); 8864 num_tcf = mqprio_qopt->qopt.num_tc; 8865 hw = mqprio_qopt->qopt.hw; 8866 mode = mqprio_qopt->mode; 8867 if (!hw) { 8868 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8869 vsi->ch_rss_size = 0; 8870 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8871 goto config_tcf; 8872 } 8873 8874 /* Generate queue region map for number of TCF requested */ 8875 for (i = 0; i < num_tcf; i++) 8876 ena_tc_qdisc |= BIT(i); 8877 8878 switch (mode) { 8879 case TC_MQPRIO_MODE_CHANNEL: 8880 8881 if (pf->hw.port_info->is_custom_tx_enabled) { 8882 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8883 return -EBUSY; 8884 } 8885 ice_tear_down_devlink_rate_tree(pf); 8886 8887 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8888 if (ret) { 8889 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8890 ret); 8891 return ret; 8892 } 8893 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8894 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8895 /* don't assume state of hw_tc_offload during driver load 8896 * and set the flag for TC flower filter if hw_tc_offload 8897 * already ON 8898 */ 8899 if (vsi->netdev->features & NETIF_F_HW_TC) 8900 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8901 break; 8902 default: 8903 return -EINVAL; 8904 } 8905 8906 config_tcf: 8907 8908 /* Requesting same TCF configuration as already enabled */ 8909 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8910 mode != TC_MQPRIO_MODE_CHANNEL) 8911 return 0; 8912 8913 /* Pause VSI queues */ 8914 ice_dis_vsi(vsi, true); 8915 8916 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8917 ice_remove_q_channels(vsi, true); 8918 8919 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8920 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8921 num_online_cpus()); 8922 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8923 num_online_cpus()); 8924 } else { 8925 /* logic to rebuild VSI, same like ethtool -L */ 8926 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8927 8928 for (i = 0; i < num_tcf; i++) { 8929 if (!(ena_tc_qdisc & BIT(i))) 8930 continue; 8931 8932 offset = vsi->mqprio_qopt.qopt.offset[i]; 8933 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8934 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8935 } 8936 vsi->req_txq = offset + qcount_tx; 8937 vsi->req_rxq = offset + qcount_rx; 8938 8939 /* store away original rss_size info, so that it gets reused 8940 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8941 * determine, what should be the rss_sizefor main VSI 8942 */ 8943 vsi->orig_rss_size = vsi->rss_size; 8944 } 8945 8946 /* save current values of Tx and Rx queues before calling VSI rebuild 8947 * for fallback option 8948 */ 8949 cur_txq = vsi->num_txq; 8950 cur_rxq = vsi->num_rxq; 8951 8952 /* proceed with rebuild main VSI using correct number of queues */ 8953 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8954 if (ret) { 8955 /* fallback to current number of queues */ 8956 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8957 vsi->req_txq = cur_txq; 8958 vsi->req_rxq = cur_rxq; 8959 clear_bit(ICE_RESET_FAILED, pf->state); 8960 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8961 dev_err(dev, "Rebuild of main VSI failed again\n"); 8962 return ret; 8963 } 8964 } 8965 8966 vsi->all_numtc = num_tcf; 8967 vsi->all_enatc = ena_tc_qdisc; 8968 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8969 if (ret) { 8970 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8971 vsi->vsi_num); 8972 goto exit; 8973 } 8974 8975 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8976 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8977 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8978 8979 /* set TC0 rate limit if specified */ 8980 if (max_tx_rate || min_tx_rate) { 8981 /* convert to Kbits/s */ 8982 if (max_tx_rate) 8983 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8984 if (min_tx_rate) 8985 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8986 8987 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8988 if (!ret) { 8989 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8990 max_tx_rate, min_tx_rate, vsi->vsi_num); 8991 } else { 8992 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8993 max_tx_rate, min_tx_rate, vsi->vsi_num); 8994 goto exit; 8995 } 8996 } 8997 ret = ice_create_q_channels(vsi); 8998 if (ret) { 8999 netdev_err(netdev, "failed configuring queue channels\n"); 9000 goto exit; 9001 } else { 9002 netdev_dbg(netdev, "successfully configured channels\n"); 9003 } 9004 } 9005 9006 if (vsi->ch_rss_size) 9007 ice_vsi_cfg_rss_lut_key(vsi); 9008 9009 exit: 9010 /* if error, reset the all_numtc and all_enatc */ 9011 if (ret) { 9012 vsi->all_numtc = 0; 9013 vsi->all_enatc = 0; 9014 } 9015 /* resume VSI */ 9016 ice_ena_vsi(vsi, true); 9017 9018 return ret; 9019 } 9020 9021 static LIST_HEAD(ice_block_cb_list); 9022 9023 static int 9024 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9025 void *type_data) 9026 { 9027 struct ice_netdev_priv *np = netdev_priv(netdev); 9028 struct ice_pf *pf = np->vsi->back; 9029 bool locked = false; 9030 int err; 9031 9032 switch (type) { 9033 case TC_SETUP_BLOCK: 9034 return flow_block_cb_setup_simple(type_data, 9035 &ice_block_cb_list, 9036 ice_setup_tc_block_cb, 9037 np, np, true); 9038 case TC_SETUP_QDISC_MQPRIO: 9039 if (ice_is_eswitch_mode_switchdev(pf)) { 9040 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9041 return -EOPNOTSUPP; 9042 } 9043 9044 if (pf->adev) { 9045 mutex_lock(&pf->adev_mutex); 9046 device_lock(&pf->adev->dev); 9047 locked = true; 9048 if (pf->adev->dev.driver) { 9049 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9050 err = -EBUSY; 9051 goto adev_unlock; 9052 } 9053 } 9054 9055 /* setup traffic classifier for receive side */ 9056 mutex_lock(&pf->tc_mutex); 9057 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9058 mutex_unlock(&pf->tc_mutex); 9059 9060 adev_unlock: 9061 if (locked) { 9062 device_unlock(&pf->adev->dev); 9063 mutex_unlock(&pf->adev_mutex); 9064 } 9065 return err; 9066 default: 9067 return -EOPNOTSUPP; 9068 } 9069 return -EOPNOTSUPP; 9070 } 9071 9072 static struct ice_indr_block_priv * 9073 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9074 struct net_device *netdev) 9075 { 9076 struct ice_indr_block_priv *cb_priv; 9077 9078 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9079 if (!cb_priv->netdev) 9080 return NULL; 9081 if (cb_priv->netdev == netdev) 9082 return cb_priv; 9083 } 9084 return NULL; 9085 } 9086 9087 static int 9088 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9089 void *indr_priv) 9090 { 9091 struct ice_indr_block_priv *priv = indr_priv; 9092 struct ice_netdev_priv *np = priv->np; 9093 9094 switch (type) { 9095 case TC_SETUP_CLSFLOWER: 9096 return ice_setup_tc_cls_flower(np, priv->netdev, 9097 (struct flow_cls_offload *) 9098 type_data); 9099 default: 9100 return -EOPNOTSUPP; 9101 } 9102 } 9103 9104 static int 9105 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9106 struct ice_netdev_priv *np, 9107 struct flow_block_offload *f, void *data, 9108 void (*cleanup)(struct flow_block_cb *block_cb)) 9109 { 9110 struct ice_indr_block_priv *indr_priv; 9111 struct flow_block_cb *block_cb; 9112 9113 if (!ice_is_tunnel_supported(netdev) && 9114 !(is_vlan_dev(netdev) && 9115 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9116 return -EOPNOTSUPP; 9117 9118 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9119 return -EOPNOTSUPP; 9120 9121 switch (f->command) { 9122 case FLOW_BLOCK_BIND: 9123 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9124 if (indr_priv) 9125 return -EEXIST; 9126 9127 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9128 if (!indr_priv) 9129 return -ENOMEM; 9130 9131 indr_priv->netdev = netdev; 9132 indr_priv->np = np; 9133 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9134 9135 block_cb = 9136 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9137 indr_priv, indr_priv, 9138 ice_rep_indr_tc_block_unbind, 9139 f, netdev, sch, data, np, 9140 cleanup); 9141 9142 if (IS_ERR(block_cb)) { 9143 list_del(&indr_priv->list); 9144 kfree(indr_priv); 9145 return PTR_ERR(block_cb); 9146 } 9147 flow_block_cb_add(block_cb, f); 9148 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9149 break; 9150 case FLOW_BLOCK_UNBIND: 9151 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9152 if (!indr_priv) 9153 return -ENOENT; 9154 9155 block_cb = flow_block_cb_lookup(f->block, 9156 ice_indr_setup_block_cb, 9157 indr_priv); 9158 if (!block_cb) 9159 return -ENOENT; 9160 9161 flow_indr_block_cb_remove(block_cb, f); 9162 9163 list_del(&block_cb->driver_list); 9164 break; 9165 default: 9166 return -EOPNOTSUPP; 9167 } 9168 return 0; 9169 } 9170 9171 static int 9172 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9173 void *cb_priv, enum tc_setup_type type, void *type_data, 9174 void *data, 9175 void (*cleanup)(struct flow_block_cb *block_cb)) 9176 { 9177 switch (type) { 9178 case TC_SETUP_BLOCK: 9179 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9180 data, cleanup); 9181 9182 default: 9183 return -EOPNOTSUPP; 9184 } 9185 } 9186 9187 /** 9188 * ice_open - Called when a network interface becomes active 9189 * @netdev: network interface device structure 9190 * 9191 * The open entry point is called when a network interface is made 9192 * active by the system (IFF_UP). At this point all resources needed 9193 * for transmit and receive operations are allocated, the interrupt 9194 * handler is registered with the OS, the netdev watchdog is enabled, 9195 * and the stack is notified that the interface is ready. 9196 * 9197 * Returns 0 on success, negative value on failure 9198 */ 9199 int ice_open(struct net_device *netdev) 9200 { 9201 struct ice_netdev_priv *np = netdev_priv(netdev); 9202 struct ice_pf *pf = np->vsi->back; 9203 9204 if (ice_is_reset_in_progress(pf->state)) { 9205 netdev_err(netdev, "can't open net device while reset is in progress"); 9206 return -EBUSY; 9207 } 9208 9209 return ice_open_internal(netdev); 9210 } 9211 9212 /** 9213 * ice_open_internal - Called when a network interface becomes active 9214 * @netdev: network interface device structure 9215 * 9216 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9217 * handling routine 9218 * 9219 * Returns 0 on success, negative value on failure 9220 */ 9221 int ice_open_internal(struct net_device *netdev) 9222 { 9223 struct ice_netdev_priv *np = netdev_priv(netdev); 9224 struct ice_vsi *vsi = np->vsi; 9225 struct ice_pf *pf = vsi->back; 9226 struct ice_port_info *pi; 9227 int err; 9228 9229 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9230 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9231 return -EIO; 9232 } 9233 9234 netif_carrier_off(netdev); 9235 9236 pi = vsi->port_info; 9237 err = ice_update_link_info(pi); 9238 if (err) { 9239 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9240 return err; 9241 } 9242 9243 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9244 9245 /* Set PHY if there is media, otherwise, turn off PHY */ 9246 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9247 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9248 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9249 err = ice_init_phy_user_cfg(pi); 9250 if (err) { 9251 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9252 err); 9253 return err; 9254 } 9255 } 9256 9257 err = ice_configure_phy(vsi); 9258 if (err) { 9259 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9260 err); 9261 return err; 9262 } 9263 } else { 9264 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9265 ice_set_link(vsi, false); 9266 } 9267 9268 err = ice_vsi_open(vsi); 9269 if (err) 9270 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9271 vsi->vsi_num, vsi->vsw->sw_id); 9272 9273 /* Update existing tunnels information */ 9274 udp_tunnel_get_rx_info(netdev); 9275 9276 return err; 9277 } 9278 9279 /** 9280 * ice_stop - Disables a network interface 9281 * @netdev: network interface device structure 9282 * 9283 * The stop entry point is called when an interface is de-activated by the OS, 9284 * and the netdevice enters the DOWN state. The hardware is still under the 9285 * driver's control, but the netdev interface is disabled. 9286 * 9287 * Returns success only - not allowed to fail 9288 */ 9289 int ice_stop(struct net_device *netdev) 9290 { 9291 struct ice_netdev_priv *np = netdev_priv(netdev); 9292 struct ice_vsi *vsi = np->vsi; 9293 struct ice_pf *pf = vsi->back; 9294 9295 if (ice_is_reset_in_progress(pf->state)) { 9296 netdev_err(netdev, "can't stop net device while reset is in progress"); 9297 return -EBUSY; 9298 } 9299 9300 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9301 int link_err = ice_force_phys_link_state(vsi, false); 9302 9303 if (link_err) { 9304 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9305 vsi->vsi_num, link_err); 9306 return -EIO; 9307 } 9308 } 9309 9310 ice_vsi_close(vsi); 9311 9312 return 0; 9313 } 9314 9315 /** 9316 * ice_features_check - Validate encapsulated packet conforms to limits 9317 * @skb: skb buffer 9318 * @netdev: This port's netdev 9319 * @features: Offload features that the stack believes apply 9320 */ 9321 static netdev_features_t 9322 ice_features_check(struct sk_buff *skb, 9323 struct net_device __always_unused *netdev, 9324 netdev_features_t features) 9325 { 9326 bool gso = skb_is_gso(skb); 9327 size_t len; 9328 9329 /* No point in doing any of this if neither checksum nor GSO are 9330 * being requested for this frame. We can rule out both by just 9331 * checking for CHECKSUM_PARTIAL 9332 */ 9333 if (skb->ip_summed != CHECKSUM_PARTIAL) 9334 return features; 9335 9336 /* We cannot support GSO if the MSS is going to be less than 9337 * 64 bytes. If it is then we need to drop support for GSO. 9338 */ 9339 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9340 features &= ~NETIF_F_GSO_MASK; 9341 9342 len = skb_network_offset(skb); 9343 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9344 goto out_rm_features; 9345 9346 len = skb_network_header_len(skb); 9347 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9348 goto out_rm_features; 9349 9350 if (skb->encapsulation) { 9351 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9352 * the case of IPIP frames, the transport header pointer is 9353 * after the inner header! So check to make sure that this 9354 * is a GRE or UDP_TUNNEL frame before doing that math. 9355 */ 9356 if (gso && (skb_shinfo(skb)->gso_type & 9357 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9358 len = skb_inner_network_header(skb) - 9359 skb_transport_header(skb); 9360 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9361 goto out_rm_features; 9362 } 9363 9364 len = skb_inner_network_header_len(skb); 9365 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9366 goto out_rm_features; 9367 } 9368 9369 return features; 9370 out_rm_features: 9371 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9372 } 9373 9374 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9375 .ndo_open = ice_open, 9376 .ndo_stop = ice_stop, 9377 .ndo_start_xmit = ice_start_xmit, 9378 .ndo_set_mac_address = ice_set_mac_address, 9379 .ndo_validate_addr = eth_validate_addr, 9380 .ndo_change_mtu = ice_change_mtu, 9381 .ndo_get_stats64 = ice_get_stats64, 9382 .ndo_tx_timeout = ice_tx_timeout, 9383 .ndo_bpf = ice_xdp_safe_mode, 9384 }; 9385 9386 static const struct net_device_ops ice_netdev_ops = { 9387 .ndo_open = ice_open, 9388 .ndo_stop = ice_stop, 9389 .ndo_start_xmit = ice_start_xmit, 9390 .ndo_select_queue = ice_select_queue, 9391 .ndo_features_check = ice_features_check, 9392 .ndo_fix_features = ice_fix_features, 9393 .ndo_set_rx_mode = ice_set_rx_mode, 9394 .ndo_set_mac_address = ice_set_mac_address, 9395 .ndo_validate_addr = eth_validate_addr, 9396 .ndo_change_mtu = ice_change_mtu, 9397 .ndo_get_stats64 = ice_get_stats64, 9398 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9399 .ndo_eth_ioctl = ice_eth_ioctl, 9400 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9401 .ndo_set_vf_mac = ice_set_vf_mac, 9402 .ndo_get_vf_config = ice_get_vf_cfg, 9403 .ndo_set_vf_trust = ice_set_vf_trust, 9404 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9405 .ndo_set_vf_link_state = ice_set_vf_link_state, 9406 .ndo_get_vf_stats = ice_get_vf_stats, 9407 .ndo_set_vf_rate = ice_set_vf_bw, 9408 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9409 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9410 .ndo_setup_tc = ice_setup_tc, 9411 .ndo_set_features = ice_set_features, 9412 .ndo_bridge_getlink = ice_bridge_getlink, 9413 .ndo_bridge_setlink = ice_bridge_setlink, 9414 .ndo_fdb_add = ice_fdb_add, 9415 .ndo_fdb_del = ice_fdb_del, 9416 #ifdef CONFIG_RFS_ACCEL 9417 .ndo_rx_flow_steer = ice_rx_flow_steer, 9418 #endif 9419 .ndo_tx_timeout = ice_tx_timeout, 9420 .ndo_bpf = ice_xdp, 9421 .ndo_xdp_xmit = ice_xdp_xmit, 9422 .ndo_xsk_wakeup = ice_xsk_wakeup, 9423 }; 9424