xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision c7170e7672e52cf38f5979416d20b9133a10726e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "ice_devlink.h"
17 #include "ice_hwmon.h"
18 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
19  * ice tracepoint functions. This must be done exactly once across the
20  * ice driver.
21  */
22 #define CREATE_TRACE_POINTS
23 #include "ice_trace.h"
24 #include "ice_eswitch.h"
25 #include "ice_tc_lib.h"
26 #include "ice_vsi_vlan_ops.h"
27 #include <net/xdp_sock_drv.h>
28 
29 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
30 static const char ice_driver_string[] = DRV_SUMMARY;
31 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
32 
33 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
34 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
35 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
36 
37 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
38 MODULE_DESCRIPTION(DRV_SUMMARY);
39 MODULE_LICENSE("GPL v2");
40 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
41 
42 static int debug = -1;
43 module_param(debug, int, 0644);
44 #ifndef CONFIG_DYNAMIC_DEBUG
45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
46 #else
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
48 #endif /* !CONFIG_DYNAMIC_DEBUG */
49 
50 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
51 EXPORT_SYMBOL(ice_xdp_locking_key);
52 
53 /**
54  * ice_hw_to_dev - Get device pointer from the hardware structure
55  * @hw: pointer to the device HW structure
56  *
57  * Used to access the device pointer from compilation units which can't easily
58  * include the definition of struct ice_pf without leading to circular header
59  * dependencies.
60  */
61 struct device *ice_hw_to_dev(struct ice_hw *hw)
62 {
63 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
64 
65 	return &pf->pdev->dev;
66 }
67 
68 static struct workqueue_struct *ice_wq;
69 struct workqueue_struct *ice_lag_wq;
70 static const struct net_device_ops ice_netdev_safe_mode_ops;
71 static const struct net_device_ops ice_netdev_ops;
72 
73 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
74 
75 static void ice_vsi_release_all(struct ice_pf *pf);
76 
77 static int ice_rebuild_channels(struct ice_pf *pf);
78 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
79 
80 static int
81 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
82 		     void *cb_priv, enum tc_setup_type type, void *type_data,
83 		     void *data,
84 		     void (*cleanup)(struct flow_block_cb *block_cb));
85 
86 bool netif_is_ice(const struct net_device *dev)
87 {
88 	return dev && (dev->netdev_ops == &ice_netdev_ops);
89 }
90 
91 /**
92  * ice_get_tx_pending - returns number of Tx descriptors not processed
93  * @ring: the ring of descriptors
94  */
95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
96 {
97 	u16 head, tail;
98 
99 	head = ring->next_to_clean;
100 	tail = ring->next_to_use;
101 
102 	if (head != tail)
103 		return (head < tail) ?
104 			tail - head : (tail + ring->count - head);
105 	return 0;
106 }
107 
108 /**
109  * ice_check_for_hang_subtask - check for and recover hung queues
110  * @pf: pointer to PF struct
111  */
112 static void ice_check_for_hang_subtask(struct ice_pf *pf)
113 {
114 	struct ice_vsi *vsi = NULL;
115 	struct ice_hw *hw;
116 	unsigned int i;
117 	int packets;
118 	u32 v;
119 
120 	ice_for_each_vsi(pf, v)
121 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
122 			vsi = pf->vsi[v];
123 			break;
124 		}
125 
126 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
127 		return;
128 
129 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
130 		return;
131 
132 	hw = &vsi->back->hw;
133 
134 	ice_for_each_txq(vsi, i) {
135 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
136 		struct ice_ring_stats *ring_stats;
137 
138 		if (!tx_ring)
139 			continue;
140 		if (ice_ring_ch_enabled(tx_ring))
141 			continue;
142 
143 		ring_stats = tx_ring->ring_stats;
144 		if (!ring_stats)
145 			continue;
146 
147 		if (tx_ring->desc) {
148 			/* If packet counter has not changed the queue is
149 			 * likely stalled, so force an interrupt for this
150 			 * queue.
151 			 *
152 			 * prev_pkt would be negative if there was no
153 			 * pending work.
154 			 */
155 			packets = ring_stats->stats.pkts & INT_MAX;
156 			if (ring_stats->tx_stats.prev_pkt == packets) {
157 				/* Trigger sw interrupt to revive the queue */
158 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
159 				continue;
160 			}
161 
162 			/* Memory barrier between read of packet count and call
163 			 * to ice_get_tx_pending()
164 			 */
165 			smp_rmb();
166 			ring_stats->tx_stats.prev_pkt =
167 			    ice_get_tx_pending(tx_ring) ? packets : -1;
168 		}
169 	}
170 }
171 
172 /**
173  * ice_init_mac_fltr - Set initial MAC filters
174  * @pf: board private structure
175  *
176  * Set initial set of MAC filters for PF VSI; configure filters for permanent
177  * address and broadcast address. If an error is encountered, netdevice will be
178  * unregistered.
179  */
180 static int ice_init_mac_fltr(struct ice_pf *pf)
181 {
182 	struct ice_vsi *vsi;
183 	u8 *perm_addr;
184 
185 	vsi = ice_get_main_vsi(pf);
186 	if (!vsi)
187 		return -EINVAL;
188 
189 	perm_addr = vsi->port_info->mac.perm_addr;
190 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
191 }
192 
193 /**
194  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
195  * @netdev: the net device on which the sync is happening
196  * @addr: MAC address to sync
197  *
198  * This is a callback function which is called by the in kernel device sync
199  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
200  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
201  * MAC filters from the hardware.
202  */
203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
204 {
205 	struct ice_netdev_priv *np = netdev_priv(netdev);
206 	struct ice_vsi *vsi = np->vsi;
207 
208 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
209 				     ICE_FWD_TO_VSI))
210 		return -EINVAL;
211 
212 	return 0;
213 }
214 
215 /**
216  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
217  * @netdev: the net device on which the unsync is happening
218  * @addr: MAC address to unsync
219  *
220  * This is a callback function which is called by the in kernel device unsync
221  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
222  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
223  * delete the MAC filters from the hardware.
224  */
225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
226 {
227 	struct ice_netdev_priv *np = netdev_priv(netdev);
228 	struct ice_vsi *vsi = np->vsi;
229 
230 	/* Under some circumstances, we might receive a request to delete our
231 	 * own device address from our uc list. Because we store the device
232 	 * address in the VSI's MAC filter list, we need to ignore such
233 	 * requests and not delete our device address from this list.
234 	 */
235 	if (ether_addr_equal(addr, netdev->dev_addr))
236 		return 0;
237 
238 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
239 				     ICE_FWD_TO_VSI))
240 		return -EINVAL;
241 
242 	return 0;
243 }
244 
245 /**
246  * ice_vsi_fltr_changed - check if filter state changed
247  * @vsi: VSI to be checked
248  *
249  * returns true if filter state has changed, false otherwise.
250  */
251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
252 {
253 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
254 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
255 }
256 
257 /**
258  * ice_set_promisc - Enable promiscuous mode for a given PF
259  * @vsi: the VSI being configured
260  * @promisc_m: mask of promiscuous config bits
261  *
262  */
263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
264 {
265 	int status;
266 
267 	if (vsi->type != ICE_VSI_PF)
268 		return 0;
269 
270 	if (ice_vsi_has_non_zero_vlans(vsi)) {
271 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
272 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
273 						       promisc_m);
274 	} else {
275 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
276 						  promisc_m, 0);
277 	}
278 	if (status && status != -EEXIST)
279 		return status;
280 
281 	netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
282 		   vsi->vsi_num, promisc_m);
283 	return 0;
284 }
285 
286 /**
287  * ice_clear_promisc - Disable promiscuous mode for a given PF
288  * @vsi: the VSI being configured
289  * @promisc_m: mask of promiscuous config bits
290  *
291  */
292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
293 {
294 	int status;
295 
296 	if (vsi->type != ICE_VSI_PF)
297 		return 0;
298 
299 	if (ice_vsi_has_non_zero_vlans(vsi)) {
300 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
301 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
302 							 promisc_m);
303 	} else {
304 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
305 						    promisc_m, 0);
306 	}
307 
308 	netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
309 		   vsi->vsi_num, promisc_m);
310 	return status;
311 }
312 
313 /**
314  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
315  * @vsi: ptr to the VSI
316  *
317  * Push any outstanding VSI filter changes through the AdminQ.
318  */
319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
320 {
321 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
322 	struct device *dev = ice_pf_to_dev(vsi->back);
323 	struct net_device *netdev = vsi->netdev;
324 	bool promisc_forced_on = false;
325 	struct ice_pf *pf = vsi->back;
326 	struct ice_hw *hw = &pf->hw;
327 	u32 changed_flags = 0;
328 	int err;
329 
330 	if (!vsi->netdev)
331 		return -EINVAL;
332 
333 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
334 		usleep_range(1000, 2000);
335 
336 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
337 	vsi->current_netdev_flags = vsi->netdev->flags;
338 
339 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
340 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
341 
342 	if (ice_vsi_fltr_changed(vsi)) {
343 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
344 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
345 
346 		/* grab the netdev's addr_list_lock */
347 		netif_addr_lock_bh(netdev);
348 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
349 			      ice_add_mac_to_unsync_list);
350 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
351 			      ice_add_mac_to_unsync_list);
352 		/* our temp lists are populated. release lock */
353 		netif_addr_unlock_bh(netdev);
354 	}
355 
356 	/* Remove MAC addresses in the unsync list */
357 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
358 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
359 	if (err) {
360 		netdev_err(netdev, "Failed to delete MAC filters\n");
361 		/* if we failed because of alloc failures, just bail */
362 		if (err == -ENOMEM)
363 			goto out;
364 	}
365 
366 	/* Add MAC addresses in the sync list */
367 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
368 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
369 	/* If filter is added successfully or already exists, do not go into
370 	 * 'if' condition and report it as error. Instead continue processing
371 	 * rest of the function.
372 	 */
373 	if (err && err != -EEXIST) {
374 		netdev_err(netdev, "Failed to add MAC filters\n");
375 		/* If there is no more space for new umac filters, VSI
376 		 * should go into promiscuous mode. There should be some
377 		 * space reserved for promiscuous filters.
378 		 */
379 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
380 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
381 				      vsi->state)) {
382 			promisc_forced_on = true;
383 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
384 				    vsi->vsi_num);
385 		} else {
386 			goto out;
387 		}
388 	}
389 	err = 0;
390 	/* check for changes in promiscuous modes */
391 	if (changed_flags & IFF_ALLMULTI) {
392 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
393 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 			if (err) {
395 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
396 				goto out_promisc;
397 			}
398 		} else {
399 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
400 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 			if (err) {
402 				vsi->current_netdev_flags |= IFF_ALLMULTI;
403 				goto out_promisc;
404 			}
405 		}
406 	}
407 
408 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
409 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
410 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
411 		if (vsi->current_netdev_flags & IFF_PROMISC) {
412 			/* Apply Rx filter rule to get traffic from wire */
413 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
414 				err = ice_set_dflt_vsi(vsi);
415 				if (err && err != -EEXIST) {
416 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
417 						   err, vsi->vsi_num);
418 					vsi->current_netdev_flags &=
419 						~IFF_PROMISC;
420 					goto out_promisc;
421 				}
422 				err = 0;
423 				vlan_ops->dis_rx_filtering(vsi);
424 
425 				/* promiscuous mode implies allmulticast so
426 				 * that VSIs that are in promiscuous mode are
427 				 * subscribed to multicast packets coming to
428 				 * the port
429 				 */
430 				err = ice_set_promisc(vsi,
431 						      ICE_MCAST_PROMISC_BITS);
432 				if (err)
433 					goto out_promisc;
434 			}
435 		} else {
436 			/* Clear Rx filter to remove traffic from wire */
437 			if (ice_is_vsi_dflt_vsi(vsi)) {
438 				err = ice_clear_dflt_vsi(vsi);
439 				if (err) {
440 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
441 						   err, vsi->vsi_num);
442 					vsi->current_netdev_flags |=
443 						IFF_PROMISC;
444 					goto out_promisc;
445 				}
446 				if (vsi->netdev->features &
447 				    NETIF_F_HW_VLAN_CTAG_FILTER)
448 					vlan_ops->ena_rx_filtering(vsi);
449 			}
450 
451 			/* disable allmulti here, but only if allmulti is not
452 			 * still enabled for the netdev
453 			 */
454 			if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
455 				err = ice_clear_promisc(vsi,
456 							ICE_MCAST_PROMISC_BITS);
457 				if (err) {
458 					netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
459 						   err, vsi->vsi_num);
460 				}
461 			}
462 		}
463 	}
464 	goto exit;
465 
466 out_promisc:
467 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
468 	goto exit;
469 out:
470 	/* if something went wrong then set the changed flag so we try again */
471 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
472 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
473 exit:
474 	clear_bit(ICE_CFG_BUSY, vsi->state);
475 	return err;
476 }
477 
478 /**
479  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
480  * @pf: board private structure
481  */
482 static void ice_sync_fltr_subtask(struct ice_pf *pf)
483 {
484 	int v;
485 
486 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
487 		return;
488 
489 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
490 
491 	ice_for_each_vsi(pf, v)
492 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
493 		    ice_vsi_sync_fltr(pf->vsi[v])) {
494 			/* come back and try again later */
495 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
496 			break;
497 		}
498 }
499 
500 /**
501  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
502  * @pf: the PF
503  * @locked: is the rtnl_lock already held
504  */
505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
506 {
507 	int node;
508 	int v;
509 
510 	ice_for_each_vsi(pf, v)
511 		if (pf->vsi[v])
512 			ice_dis_vsi(pf->vsi[v], locked);
513 
514 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
515 		pf->pf_agg_node[node].num_vsis = 0;
516 
517 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
518 		pf->vf_agg_node[node].num_vsis = 0;
519 }
520 
521 /**
522  * ice_clear_sw_switch_recipes - clear switch recipes
523  * @pf: board private structure
524  *
525  * Mark switch recipes as not created in sw structures. There are cases where
526  * rules (especially advanced rules) need to be restored, either re-read from
527  * hardware or added again. For example after the reset. 'recp_created' flag
528  * prevents from doing that and need to be cleared upfront.
529  */
530 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
531 {
532 	struct ice_sw_recipe *recp;
533 	u8 i;
534 
535 	recp = pf->hw.switch_info->recp_list;
536 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
537 		recp[i].recp_created = false;
538 }
539 
540 /**
541  * ice_prepare_for_reset - prep for reset
542  * @pf: board private structure
543  * @reset_type: reset type requested
544  *
545  * Inform or close all dependent features in prep for reset.
546  */
547 static void
548 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
549 {
550 	struct ice_hw *hw = &pf->hw;
551 	struct ice_vsi *vsi;
552 	struct ice_vf *vf;
553 	unsigned int bkt;
554 
555 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
556 
557 	/* already prepared for reset */
558 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
559 		return;
560 
561 	ice_unplug_aux_dev(pf);
562 
563 	/* Notify VFs of impending reset */
564 	if (ice_check_sq_alive(hw, &hw->mailboxq))
565 		ice_vc_notify_reset(pf);
566 
567 	/* Disable VFs until reset is completed */
568 	mutex_lock(&pf->vfs.table_lock);
569 	ice_for_each_vf(pf, bkt, vf)
570 		ice_set_vf_state_dis(vf);
571 	mutex_unlock(&pf->vfs.table_lock);
572 
573 	if (ice_is_eswitch_mode_switchdev(pf)) {
574 		if (reset_type != ICE_RESET_PFR)
575 			ice_clear_sw_switch_recipes(pf);
576 	}
577 
578 	/* release ADQ specific HW and SW resources */
579 	vsi = ice_get_main_vsi(pf);
580 	if (!vsi)
581 		goto skip;
582 
583 	/* to be on safe side, reset orig_rss_size so that normal flow
584 	 * of deciding rss_size can take precedence
585 	 */
586 	vsi->orig_rss_size = 0;
587 
588 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
589 		if (reset_type == ICE_RESET_PFR) {
590 			vsi->old_ena_tc = vsi->all_enatc;
591 			vsi->old_numtc = vsi->all_numtc;
592 		} else {
593 			ice_remove_q_channels(vsi, true);
594 
595 			/* for other reset type, do not support channel rebuild
596 			 * hence reset needed info
597 			 */
598 			vsi->old_ena_tc = 0;
599 			vsi->all_enatc = 0;
600 			vsi->old_numtc = 0;
601 			vsi->all_numtc = 0;
602 			vsi->req_txq = 0;
603 			vsi->req_rxq = 0;
604 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
605 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
606 		}
607 	}
608 skip:
609 
610 	/* clear SW filtering DB */
611 	ice_clear_hw_tbls(hw);
612 	/* disable the VSIs and their queues that are not already DOWN */
613 	ice_pf_dis_all_vsi(pf, false);
614 
615 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
616 		ice_ptp_prepare_for_reset(pf, reset_type);
617 
618 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
619 		ice_gnss_exit(pf);
620 
621 	if (hw->port_info)
622 		ice_sched_clear_port(hw->port_info);
623 
624 	ice_shutdown_all_ctrlq(hw);
625 
626 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
627 }
628 
629 /**
630  * ice_do_reset - Initiate one of many types of resets
631  * @pf: board private structure
632  * @reset_type: reset type requested before this function was called.
633  */
634 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
635 {
636 	struct device *dev = ice_pf_to_dev(pf);
637 	struct ice_hw *hw = &pf->hw;
638 
639 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
640 
641 	if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
642 		dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
643 		reset_type = ICE_RESET_CORER;
644 	}
645 
646 	ice_prepare_for_reset(pf, reset_type);
647 
648 	/* trigger the reset */
649 	if (ice_reset(hw, reset_type)) {
650 		dev_err(dev, "reset %d failed\n", reset_type);
651 		set_bit(ICE_RESET_FAILED, pf->state);
652 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
653 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
654 		clear_bit(ICE_PFR_REQ, pf->state);
655 		clear_bit(ICE_CORER_REQ, pf->state);
656 		clear_bit(ICE_GLOBR_REQ, pf->state);
657 		wake_up(&pf->reset_wait_queue);
658 		return;
659 	}
660 
661 	/* PFR is a bit of a special case because it doesn't result in an OICR
662 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
663 	 * associated state bits.
664 	 */
665 	if (reset_type == ICE_RESET_PFR) {
666 		pf->pfr_count++;
667 		ice_rebuild(pf, reset_type);
668 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
669 		clear_bit(ICE_PFR_REQ, pf->state);
670 		wake_up(&pf->reset_wait_queue);
671 		ice_reset_all_vfs(pf);
672 	}
673 }
674 
675 /**
676  * ice_reset_subtask - Set up for resetting the device and driver
677  * @pf: board private structure
678  */
679 static void ice_reset_subtask(struct ice_pf *pf)
680 {
681 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
682 
683 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
684 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
685 	 * of reset is pending and sets bits in pf->state indicating the reset
686 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
687 	 * prepare for pending reset if not already (for PF software-initiated
688 	 * global resets the software should already be prepared for it as
689 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
690 	 * by firmware or software on other PFs, that bit is not set so prepare
691 	 * for the reset now), poll for reset done, rebuild and return.
692 	 */
693 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
694 		/* Perform the largest reset requested */
695 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
696 			reset_type = ICE_RESET_CORER;
697 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
698 			reset_type = ICE_RESET_GLOBR;
699 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
700 			reset_type = ICE_RESET_EMPR;
701 		/* return if no valid reset type requested */
702 		if (reset_type == ICE_RESET_INVAL)
703 			return;
704 		ice_prepare_for_reset(pf, reset_type);
705 
706 		/* make sure we are ready to rebuild */
707 		if (ice_check_reset(&pf->hw)) {
708 			set_bit(ICE_RESET_FAILED, pf->state);
709 		} else {
710 			/* done with reset. start rebuild */
711 			pf->hw.reset_ongoing = false;
712 			ice_rebuild(pf, reset_type);
713 			/* clear bit to resume normal operations, but
714 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
715 			 */
716 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
717 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
718 			clear_bit(ICE_PFR_REQ, pf->state);
719 			clear_bit(ICE_CORER_REQ, pf->state);
720 			clear_bit(ICE_GLOBR_REQ, pf->state);
721 			wake_up(&pf->reset_wait_queue);
722 			ice_reset_all_vfs(pf);
723 		}
724 
725 		return;
726 	}
727 
728 	/* No pending resets to finish processing. Check for new resets */
729 	if (test_bit(ICE_PFR_REQ, pf->state)) {
730 		reset_type = ICE_RESET_PFR;
731 		if (pf->lag && pf->lag->bonded) {
732 			dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
733 			reset_type = ICE_RESET_CORER;
734 		}
735 	}
736 	if (test_bit(ICE_CORER_REQ, pf->state))
737 		reset_type = ICE_RESET_CORER;
738 	if (test_bit(ICE_GLOBR_REQ, pf->state))
739 		reset_type = ICE_RESET_GLOBR;
740 	/* If no valid reset type requested just return */
741 	if (reset_type == ICE_RESET_INVAL)
742 		return;
743 
744 	/* reset if not already down or busy */
745 	if (!test_bit(ICE_DOWN, pf->state) &&
746 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
747 		ice_do_reset(pf, reset_type);
748 	}
749 }
750 
751 /**
752  * ice_print_topo_conflict - print topology conflict message
753  * @vsi: the VSI whose topology status is being checked
754  */
755 static void ice_print_topo_conflict(struct ice_vsi *vsi)
756 {
757 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
758 	case ICE_AQ_LINK_TOPO_CONFLICT:
759 	case ICE_AQ_LINK_MEDIA_CONFLICT:
760 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
761 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
762 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
763 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
764 		break;
765 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
766 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
767 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
768 		else
769 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
770 		break;
771 	default:
772 		break;
773 	}
774 }
775 
776 /**
777  * ice_print_link_msg - print link up or down message
778  * @vsi: the VSI whose link status is being queried
779  * @isup: boolean for if the link is now up or down
780  */
781 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
782 {
783 	struct ice_aqc_get_phy_caps_data *caps;
784 	const char *an_advertised;
785 	const char *fec_req;
786 	const char *speed;
787 	const char *fec;
788 	const char *fc;
789 	const char *an;
790 	int status;
791 
792 	if (!vsi)
793 		return;
794 
795 	if (vsi->current_isup == isup)
796 		return;
797 
798 	vsi->current_isup = isup;
799 
800 	if (!isup) {
801 		netdev_info(vsi->netdev, "NIC Link is Down\n");
802 		return;
803 	}
804 
805 	switch (vsi->port_info->phy.link_info.link_speed) {
806 	case ICE_AQ_LINK_SPEED_100GB:
807 		speed = "100 G";
808 		break;
809 	case ICE_AQ_LINK_SPEED_50GB:
810 		speed = "50 G";
811 		break;
812 	case ICE_AQ_LINK_SPEED_40GB:
813 		speed = "40 G";
814 		break;
815 	case ICE_AQ_LINK_SPEED_25GB:
816 		speed = "25 G";
817 		break;
818 	case ICE_AQ_LINK_SPEED_20GB:
819 		speed = "20 G";
820 		break;
821 	case ICE_AQ_LINK_SPEED_10GB:
822 		speed = "10 G";
823 		break;
824 	case ICE_AQ_LINK_SPEED_5GB:
825 		speed = "5 G";
826 		break;
827 	case ICE_AQ_LINK_SPEED_2500MB:
828 		speed = "2.5 G";
829 		break;
830 	case ICE_AQ_LINK_SPEED_1000MB:
831 		speed = "1 G";
832 		break;
833 	case ICE_AQ_LINK_SPEED_100MB:
834 		speed = "100 M";
835 		break;
836 	default:
837 		speed = "Unknown ";
838 		break;
839 	}
840 
841 	switch (vsi->port_info->fc.current_mode) {
842 	case ICE_FC_FULL:
843 		fc = "Rx/Tx";
844 		break;
845 	case ICE_FC_TX_PAUSE:
846 		fc = "Tx";
847 		break;
848 	case ICE_FC_RX_PAUSE:
849 		fc = "Rx";
850 		break;
851 	case ICE_FC_NONE:
852 		fc = "None";
853 		break;
854 	default:
855 		fc = "Unknown";
856 		break;
857 	}
858 
859 	/* Get FEC mode based on negotiated link info */
860 	switch (vsi->port_info->phy.link_info.fec_info) {
861 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
862 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
863 		fec = "RS-FEC";
864 		break;
865 	case ICE_AQ_LINK_25G_KR_FEC_EN:
866 		fec = "FC-FEC/BASE-R";
867 		break;
868 	default:
869 		fec = "NONE";
870 		break;
871 	}
872 
873 	/* check if autoneg completed, might be false due to not supported */
874 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
875 		an = "True";
876 	else
877 		an = "False";
878 
879 	/* Get FEC mode requested based on PHY caps last SW configuration */
880 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
881 	if (!caps) {
882 		fec_req = "Unknown";
883 		an_advertised = "Unknown";
884 		goto done;
885 	}
886 
887 	status = ice_aq_get_phy_caps(vsi->port_info, false,
888 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
889 	if (status)
890 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
891 
892 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
893 
894 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
895 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
896 		fec_req = "RS-FEC";
897 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
898 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
899 		fec_req = "FC-FEC/BASE-R";
900 	else
901 		fec_req = "NONE";
902 
903 	kfree(caps);
904 
905 done:
906 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
907 		    speed, fec_req, fec, an_advertised, an, fc);
908 	ice_print_topo_conflict(vsi);
909 }
910 
911 /**
912  * ice_vsi_link_event - update the VSI's netdev
913  * @vsi: the VSI on which the link event occurred
914  * @link_up: whether or not the VSI needs to be set up or down
915  */
916 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
917 {
918 	if (!vsi)
919 		return;
920 
921 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
922 		return;
923 
924 	if (vsi->type == ICE_VSI_PF) {
925 		if (link_up == netif_carrier_ok(vsi->netdev))
926 			return;
927 
928 		if (link_up) {
929 			netif_carrier_on(vsi->netdev);
930 			netif_tx_wake_all_queues(vsi->netdev);
931 		} else {
932 			netif_carrier_off(vsi->netdev);
933 			netif_tx_stop_all_queues(vsi->netdev);
934 		}
935 	}
936 }
937 
938 /**
939  * ice_set_dflt_mib - send a default config MIB to the FW
940  * @pf: private PF struct
941  *
942  * This function sends a default configuration MIB to the FW.
943  *
944  * If this function errors out at any point, the driver is still able to
945  * function.  The main impact is that LFC may not operate as expected.
946  * Therefore an error state in this function should be treated with a DBG
947  * message and continue on with driver rebuild/reenable.
948  */
949 static void ice_set_dflt_mib(struct ice_pf *pf)
950 {
951 	struct device *dev = ice_pf_to_dev(pf);
952 	u8 mib_type, *buf, *lldpmib = NULL;
953 	u16 len, typelen, offset = 0;
954 	struct ice_lldp_org_tlv *tlv;
955 	struct ice_hw *hw = &pf->hw;
956 	u32 ouisubtype;
957 
958 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
959 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
960 	if (!lldpmib) {
961 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
962 			__func__);
963 		return;
964 	}
965 
966 	/* Add ETS CFG TLV */
967 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
968 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
969 		   ICE_IEEE_ETS_TLV_LEN);
970 	tlv->typelen = htons(typelen);
971 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
972 		      ICE_IEEE_SUBTYPE_ETS_CFG);
973 	tlv->ouisubtype = htonl(ouisubtype);
974 
975 	buf = tlv->tlvinfo;
976 	buf[0] = 0;
977 
978 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
979 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
980 	 * Octets 13 - 20 are TSA values - leave as zeros
981 	 */
982 	buf[5] = 0x64;
983 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
984 	offset += len + 2;
985 	tlv = (struct ice_lldp_org_tlv *)
986 		((char *)tlv + sizeof(tlv->typelen) + len);
987 
988 	/* Add ETS REC TLV */
989 	buf = tlv->tlvinfo;
990 	tlv->typelen = htons(typelen);
991 
992 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
993 		      ICE_IEEE_SUBTYPE_ETS_REC);
994 	tlv->ouisubtype = htonl(ouisubtype);
995 
996 	/* First octet of buf is reserved
997 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
998 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
999 	 * Octets 13 - 20 are TSA value - leave as zeros
1000 	 */
1001 	buf[5] = 0x64;
1002 	offset += len + 2;
1003 	tlv = (struct ice_lldp_org_tlv *)
1004 		((char *)tlv + sizeof(tlv->typelen) + len);
1005 
1006 	/* Add PFC CFG TLV */
1007 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1008 		   ICE_IEEE_PFC_TLV_LEN);
1009 	tlv->typelen = htons(typelen);
1010 
1011 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1012 		      ICE_IEEE_SUBTYPE_PFC_CFG);
1013 	tlv->ouisubtype = htonl(ouisubtype);
1014 
1015 	/* Octet 1 left as all zeros - PFC disabled */
1016 	buf[0] = 0x08;
1017 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1018 	offset += len + 2;
1019 
1020 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1021 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1022 
1023 	kfree(lldpmib);
1024 }
1025 
1026 /**
1027  * ice_check_phy_fw_load - check if PHY FW load failed
1028  * @pf: pointer to PF struct
1029  * @link_cfg_err: bitmap from the link info structure
1030  *
1031  * check if external PHY FW load failed and print an error message if it did
1032  */
1033 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1034 {
1035 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1036 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1037 		return;
1038 	}
1039 
1040 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1041 		return;
1042 
1043 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1044 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1045 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1046 	}
1047 }
1048 
1049 /**
1050  * ice_check_module_power
1051  * @pf: pointer to PF struct
1052  * @link_cfg_err: bitmap from the link info structure
1053  *
1054  * check module power level returned by a previous call to aq_get_link_info
1055  * and print error messages if module power level is not supported
1056  */
1057 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1058 {
1059 	/* if module power level is supported, clear the flag */
1060 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1061 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1062 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1063 		return;
1064 	}
1065 
1066 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1067 	 * above block didn't clear this bit, there's nothing to do
1068 	 */
1069 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1070 		return;
1071 
1072 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1073 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1074 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1075 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1076 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1077 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1078 	}
1079 }
1080 
1081 /**
1082  * ice_check_link_cfg_err - check if link configuration failed
1083  * @pf: pointer to the PF struct
1084  * @link_cfg_err: bitmap from the link info structure
1085  *
1086  * print if any link configuration failure happens due to the value in the
1087  * link_cfg_err parameter in the link info structure
1088  */
1089 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1090 {
1091 	ice_check_module_power(pf, link_cfg_err);
1092 	ice_check_phy_fw_load(pf, link_cfg_err);
1093 }
1094 
1095 /**
1096  * ice_link_event - process the link event
1097  * @pf: PF that the link event is associated with
1098  * @pi: port_info for the port that the link event is associated with
1099  * @link_up: true if the physical link is up and false if it is down
1100  * @link_speed: current link speed received from the link event
1101  *
1102  * Returns 0 on success and negative on failure
1103  */
1104 static int
1105 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1106 	       u16 link_speed)
1107 {
1108 	struct device *dev = ice_pf_to_dev(pf);
1109 	struct ice_phy_info *phy_info;
1110 	struct ice_vsi *vsi;
1111 	u16 old_link_speed;
1112 	bool old_link;
1113 	int status;
1114 
1115 	phy_info = &pi->phy;
1116 	phy_info->link_info_old = phy_info->link_info;
1117 
1118 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1119 	old_link_speed = phy_info->link_info_old.link_speed;
1120 
1121 	/* update the link info structures and re-enable link events,
1122 	 * don't bail on failure due to other book keeping needed
1123 	 */
1124 	status = ice_update_link_info(pi);
1125 	if (status)
1126 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1127 			pi->lport, status,
1128 			ice_aq_str(pi->hw->adminq.sq_last_status));
1129 
1130 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1131 
1132 	/* Check if the link state is up after updating link info, and treat
1133 	 * this event as an UP event since the link is actually UP now.
1134 	 */
1135 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1136 		link_up = true;
1137 
1138 	vsi = ice_get_main_vsi(pf);
1139 	if (!vsi || !vsi->port_info)
1140 		return -EINVAL;
1141 
1142 	/* turn off PHY if media was removed */
1143 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1144 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1145 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1146 		ice_set_link(vsi, false);
1147 	}
1148 
1149 	/* if the old link up/down and speed is the same as the new */
1150 	if (link_up == old_link && link_speed == old_link_speed)
1151 		return 0;
1152 
1153 	ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1154 
1155 	if (ice_is_dcb_active(pf)) {
1156 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1157 			ice_dcb_rebuild(pf);
1158 	} else {
1159 		if (link_up)
1160 			ice_set_dflt_mib(pf);
1161 	}
1162 	ice_vsi_link_event(vsi, link_up);
1163 	ice_print_link_msg(vsi, link_up);
1164 
1165 	ice_vc_notify_link_state(pf);
1166 
1167 	return 0;
1168 }
1169 
1170 /**
1171  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1172  * @pf: board private structure
1173  */
1174 static void ice_watchdog_subtask(struct ice_pf *pf)
1175 {
1176 	int i;
1177 
1178 	/* if interface is down do nothing */
1179 	if (test_bit(ICE_DOWN, pf->state) ||
1180 	    test_bit(ICE_CFG_BUSY, pf->state))
1181 		return;
1182 
1183 	/* make sure we don't do these things too often */
1184 	if (time_before(jiffies,
1185 			pf->serv_tmr_prev + pf->serv_tmr_period))
1186 		return;
1187 
1188 	pf->serv_tmr_prev = jiffies;
1189 
1190 	/* Update the stats for active netdevs so the network stack
1191 	 * can look at updated numbers whenever it cares to
1192 	 */
1193 	ice_update_pf_stats(pf);
1194 	ice_for_each_vsi(pf, i)
1195 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1196 			ice_update_vsi_stats(pf->vsi[i]);
1197 }
1198 
1199 /**
1200  * ice_init_link_events - enable/initialize link events
1201  * @pi: pointer to the port_info instance
1202  *
1203  * Returns -EIO on failure, 0 on success
1204  */
1205 static int ice_init_link_events(struct ice_port_info *pi)
1206 {
1207 	u16 mask;
1208 
1209 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1210 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1211 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1212 
1213 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1214 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1215 			pi->lport);
1216 		return -EIO;
1217 	}
1218 
1219 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1220 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1221 			pi->lport);
1222 		return -EIO;
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 /**
1229  * ice_handle_link_event - handle link event via ARQ
1230  * @pf: PF that the link event is associated with
1231  * @event: event structure containing link status info
1232  */
1233 static int
1234 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1235 {
1236 	struct ice_aqc_get_link_status_data *link_data;
1237 	struct ice_port_info *port_info;
1238 	int status;
1239 
1240 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1241 	port_info = pf->hw.port_info;
1242 	if (!port_info)
1243 		return -EINVAL;
1244 
1245 	status = ice_link_event(pf, port_info,
1246 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1247 				le16_to_cpu(link_data->link_speed));
1248 	if (status)
1249 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1250 			status);
1251 
1252 	return status;
1253 }
1254 
1255 /**
1256  * ice_get_fwlog_data - copy the FW log data from ARQ event
1257  * @pf: PF that the FW log event is associated with
1258  * @event: event structure containing FW log data
1259  */
1260 static void
1261 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1262 {
1263 	struct ice_fwlog_data *fwlog;
1264 	struct ice_hw *hw = &pf->hw;
1265 
1266 	fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1267 
1268 	memset(fwlog->data, 0, PAGE_SIZE);
1269 	fwlog->data_size = le16_to_cpu(event->desc.datalen);
1270 
1271 	memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1272 	ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1273 
1274 	if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1275 		/* the rings are full so bump the head to create room */
1276 		ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1277 					 hw->fwlog_ring.size);
1278 	}
1279 }
1280 
1281 /**
1282  * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1283  * @pf: pointer to the PF private structure
1284  * @task: intermediate helper storage and identifier for waiting
1285  * @opcode: the opcode to wait for
1286  *
1287  * Prepares to wait for a specific AdminQ completion event on the ARQ for
1288  * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1289  *
1290  * Calls are separated to allow caller registering for event before sending
1291  * the command, which mitigates a race between registering and FW responding.
1292  *
1293  * To obtain only the descriptor contents, pass an task->event with null
1294  * msg_buf. If the complete data buffer is desired, allocate the
1295  * task->event.msg_buf with enough space ahead of time.
1296  */
1297 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1298 			   u16 opcode)
1299 {
1300 	INIT_HLIST_NODE(&task->entry);
1301 	task->opcode = opcode;
1302 	task->state = ICE_AQ_TASK_WAITING;
1303 
1304 	spin_lock_bh(&pf->aq_wait_lock);
1305 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1306 	spin_unlock_bh(&pf->aq_wait_lock);
1307 }
1308 
1309 /**
1310  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1311  * @pf: pointer to the PF private structure
1312  * @task: ptr prepared by ice_aq_prep_for_event()
1313  * @timeout: how long to wait, in jiffies
1314  *
1315  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1316  * current thread will be put to sleep until the specified event occurs or
1317  * until the given timeout is reached.
1318  *
1319  * Returns: zero on success, or a negative error code on failure.
1320  */
1321 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1322 			  unsigned long timeout)
1323 {
1324 	enum ice_aq_task_state *state = &task->state;
1325 	struct device *dev = ice_pf_to_dev(pf);
1326 	unsigned long start = jiffies;
1327 	long ret;
1328 	int err;
1329 
1330 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1331 					       *state != ICE_AQ_TASK_WAITING,
1332 					       timeout);
1333 	switch (*state) {
1334 	case ICE_AQ_TASK_NOT_PREPARED:
1335 		WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1336 		err = -EINVAL;
1337 		break;
1338 	case ICE_AQ_TASK_WAITING:
1339 		err = ret < 0 ? ret : -ETIMEDOUT;
1340 		break;
1341 	case ICE_AQ_TASK_CANCELED:
1342 		err = ret < 0 ? ret : -ECANCELED;
1343 		break;
1344 	case ICE_AQ_TASK_COMPLETE:
1345 		err = ret < 0 ? ret : 0;
1346 		break;
1347 	default:
1348 		WARN(1, "Unexpected AdminQ wait task state %u", *state);
1349 		err = -EINVAL;
1350 		break;
1351 	}
1352 
1353 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1354 		jiffies_to_msecs(jiffies - start),
1355 		jiffies_to_msecs(timeout),
1356 		task->opcode);
1357 
1358 	spin_lock_bh(&pf->aq_wait_lock);
1359 	hlist_del(&task->entry);
1360 	spin_unlock_bh(&pf->aq_wait_lock);
1361 
1362 	return err;
1363 }
1364 
1365 /**
1366  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1367  * @pf: pointer to the PF private structure
1368  * @opcode: the opcode of the event
1369  * @event: the event to check
1370  *
1371  * Loops over the current list of pending threads waiting for an AdminQ event.
1372  * For each matching task, copy the contents of the event into the task
1373  * structure and wake up the thread.
1374  *
1375  * If multiple threads wait for the same opcode, they will all be woken up.
1376  *
1377  * Note that event->msg_buf will only be duplicated if the event has a buffer
1378  * with enough space already allocated. Otherwise, only the descriptor and
1379  * message length will be copied.
1380  *
1381  * Returns: true if an event was found, false otherwise
1382  */
1383 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1384 				struct ice_rq_event_info *event)
1385 {
1386 	struct ice_rq_event_info *task_ev;
1387 	struct ice_aq_task *task;
1388 	bool found = false;
1389 
1390 	spin_lock_bh(&pf->aq_wait_lock);
1391 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1392 		if (task->state != ICE_AQ_TASK_WAITING)
1393 			continue;
1394 		if (task->opcode != opcode)
1395 			continue;
1396 
1397 		task_ev = &task->event;
1398 		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1399 		task_ev->msg_len = event->msg_len;
1400 
1401 		/* Only copy the data buffer if a destination was set */
1402 		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1403 			memcpy(task_ev->msg_buf, event->msg_buf,
1404 			       event->buf_len);
1405 			task_ev->buf_len = event->buf_len;
1406 		}
1407 
1408 		task->state = ICE_AQ_TASK_COMPLETE;
1409 		found = true;
1410 	}
1411 	spin_unlock_bh(&pf->aq_wait_lock);
1412 
1413 	if (found)
1414 		wake_up(&pf->aq_wait_queue);
1415 }
1416 
1417 /**
1418  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1419  * @pf: the PF private structure
1420  *
1421  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1422  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1423  */
1424 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1425 {
1426 	struct ice_aq_task *task;
1427 
1428 	spin_lock_bh(&pf->aq_wait_lock);
1429 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1430 		task->state = ICE_AQ_TASK_CANCELED;
1431 	spin_unlock_bh(&pf->aq_wait_lock);
1432 
1433 	wake_up(&pf->aq_wait_queue);
1434 }
1435 
1436 #define ICE_MBX_OVERFLOW_WATERMARK 64
1437 
1438 /**
1439  * __ice_clean_ctrlq - helper function to clean controlq rings
1440  * @pf: ptr to struct ice_pf
1441  * @q_type: specific Control queue type
1442  */
1443 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1444 {
1445 	struct device *dev = ice_pf_to_dev(pf);
1446 	struct ice_rq_event_info event;
1447 	struct ice_hw *hw = &pf->hw;
1448 	struct ice_ctl_q_info *cq;
1449 	u16 pending, i = 0;
1450 	const char *qtype;
1451 	u32 oldval, val;
1452 
1453 	/* Do not clean control queue if/when PF reset fails */
1454 	if (test_bit(ICE_RESET_FAILED, pf->state))
1455 		return 0;
1456 
1457 	switch (q_type) {
1458 	case ICE_CTL_Q_ADMIN:
1459 		cq = &hw->adminq;
1460 		qtype = "Admin";
1461 		break;
1462 	case ICE_CTL_Q_SB:
1463 		cq = &hw->sbq;
1464 		qtype = "Sideband";
1465 		break;
1466 	case ICE_CTL_Q_MAILBOX:
1467 		cq = &hw->mailboxq;
1468 		qtype = "Mailbox";
1469 		/* we are going to try to detect a malicious VF, so set the
1470 		 * state to begin detection
1471 		 */
1472 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1473 		break;
1474 	default:
1475 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1476 		return 0;
1477 	}
1478 
1479 	/* check for error indications - PF_xx_AxQLEN register layout for
1480 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1481 	 */
1482 	val = rd32(hw, cq->rq.len);
1483 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1484 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1485 		oldval = val;
1486 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1487 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1488 				qtype);
1489 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1490 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1491 				qtype);
1492 		}
1493 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1494 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1495 				qtype);
1496 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1497 			 PF_FW_ARQLEN_ARQCRIT_M);
1498 		if (oldval != val)
1499 			wr32(hw, cq->rq.len, val);
1500 	}
1501 
1502 	val = rd32(hw, cq->sq.len);
1503 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1504 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1505 		oldval = val;
1506 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1507 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1508 				qtype);
1509 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1510 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1511 				qtype);
1512 		}
1513 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1514 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1515 				qtype);
1516 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1517 			 PF_FW_ATQLEN_ATQCRIT_M);
1518 		if (oldval != val)
1519 			wr32(hw, cq->sq.len, val);
1520 	}
1521 
1522 	event.buf_len = cq->rq_buf_size;
1523 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1524 	if (!event.msg_buf)
1525 		return 0;
1526 
1527 	do {
1528 		struct ice_mbx_data data = {};
1529 		u16 opcode;
1530 		int ret;
1531 
1532 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1533 		if (ret == -EALREADY)
1534 			break;
1535 		if (ret) {
1536 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1537 				ret);
1538 			break;
1539 		}
1540 
1541 		opcode = le16_to_cpu(event.desc.opcode);
1542 
1543 		/* Notify any thread that might be waiting for this event */
1544 		ice_aq_check_events(pf, opcode, &event);
1545 
1546 		switch (opcode) {
1547 		case ice_aqc_opc_get_link_status:
1548 			if (ice_handle_link_event(pf, &event))
1549 				dev_err(dev, "Could not handle link event\n");
1550 			break;
1551 		case ice_aqc_opc_event_lan_overflow:
1552 			ice_vf_lan_overflow_event(pf, &event);
1553 			break;
1554 		case ice_mbx_opc_send_msg_to_pf:
1555 			data.num_msg_proc = i;
1556 			data.num_pending_arq = pending;
1557 			data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1558 			data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1559 
1560 			ice_vc_process_vf_msg(pf, &event, &data);
1561 			break;
1562 		case ice_aqc_opc_fw_logs_event:
1563 			ice_get_fwlog_data(pf, &event);
1564 			break;
1565 		case ice_aqc_opc_lldp_set_mib_change:
1566 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1567 			break;
1568 		default:
1569 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1570 				qtype, opcode);
1571 			break;
1572 		}
1573 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1574 
1575 	kfree(event.msg_buf);
1576 
1577 	return pending && (i == ICE_DFLT_IRQ_WORK);
1578 }
1579 
1580 /**
1581  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1582  * @hw: pointer to hardware info
1583  * @cq: control queue information
1584  *
1585  * returns true if there are pending messages in a queue, false if there aren't
1586  */
1587 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1588 {
1589 	u16 ntu;
1590 
1591 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1592 	return cq->rq.next_to_clean != ntu;
1593 }
1594 
1595 /**
1596  * ice_clean_adminq_subtask - clean the AdminQ rings
1597  * @pf: board private structure
1598  */
1599 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1600 {
1601 	struct ice_hw *hw = &pf->hw;
1602 
1603 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1604 		return;
1605 
1606 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1607 		return;
1608 
1609 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1610 
1611 	/* There might be a situation where new messages arrive to a control
1612 	 * queue between processing the last message and clearing the
1613 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1614 	 * ice_ctrlq_pending) and process new messages if any.
1615 	 */
1616 	if (ice_ctrlq_pending(hw, &hw->adminq))
1617 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1618 
1619 	ice_flush(hw);
1620 }
1621 
1622 /**
1623  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1624  * @pf: board private structure
1625  */
1626 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1627 {
1628 	struct ice_hw *hw = &pf->hw;
1629 
1630 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1631 		return;
1632 
1633 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1634 		return;
1635 
1636 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1637 
1638 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1639 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1640 
1641 	ice_flush(hw);
1642 }
1643 
1644 /**
1645  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1646  * @pf: board private structure
1647  */
1648 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1649 {
1650 	struct ice_hw *hw = &pf->hw;
1651 
1652 	/* if mac_type is not generic, sideband is not supported
1653 	 * and there's nothing to do here
1654 	 */
1655 	if (!ice_is_generic_mac(hw)) {
1656 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1657 		return;
1658 	}
1659 
1660 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1661 		return;
1662 
1663 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1664 		return;
1665 
1666 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1667 
1668 	if (ice_ctrlq_pending(hw, &hw->sbq))
1669 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1670 
1671 	ice_flush(hw);
1672 }
1673 
1674 /**
1675  * ice_service_task_schedule - schedule the service task to wake up
1676  * @pf: board private structure
1677  *
1678  * If not already scheduled, this puts the task into the work queue.
1679  */
1680 void ice_service_task_schedule(struct ice_pf *pf)
1681 {
1682 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1683 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1684 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1685 		queue_work(ice_wq, &pf->serv_task);
1686 }
1687 
1688 /**
1689  * ice_service_task_complete - finish up the service task
1690  * @pf: board private structure
1691  */
1692 static void ice_service_task_complete(struct ice_pf *pf)
1693 {
1694 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1695 
1696 	/* force memory (pf->state) to sync before next service task */
1697 	smp_mb__before_atomic();
1698 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1699 }
1700 
1701 /**
1702  * ice_service_task_stop - stop service task and cancel works
1703  * @pf: board private structure
1704  *
1705  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1706  * 1 otherwise.
1707  */
1708 static int ice_service_task_stop(struct ice_pf *pf)
1709 {
1710 	int ret;
1711 
1712 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1713 
1714 	if (pf->serv_tmr.function)
1715 		del_timer_sync(&pf->serv_tmr);
1716 	if (pf->serv_task.func)
1717 		cancel_work_sync(&pf->serv_task);
1718 
1719 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1720 	return ret;
1721 }
1722 
1723 /**
1724  * ice_service_task_restart - restart service task and schedule works
1725  * @pf: board private structure
1726  *
1727  * This function is needed for suspend and resume works (e.g WoL scenario)
1728  */
1729 static void ice_service_task_restart(struct ice_pf *pf)
1730 {
1731 	clear_bit(ICE_SERVICE_DIS, pf->state);
1732 	ice_service_task_schedule(pf);
1733 }
1734 
1735 /**
1736  * ice_service_timer - timer callback to schedule service task
1737  * @t: pointer to timer_list
1738  */
1739 static void ice_service_timer(struct timer_list *t)
1740 {
1741 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1742 
1743 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1744 	ice_service_task_schedule(pf);
1745 }
1746 
1747 /**
1748  * ice_handle_mdd_event - handle malicious driver detect event
1749  * @pf: pointer to the PF structure
1750  *
1751  * Called from service task. OICR interrupt handler indicates MDD event.
1752  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1753  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1754  * disable the queue, the PF can be configured to reset the VF using ethtool
1755  * private flag mdd-auto-reset-vf.
1756  */
1757 static void ice_handle_mdd_event(struct ice_pf *pf)
1758 {
1759 	struct device *dev = ice_pf_to_dev(pf);
1760 	struct ice_hw *hw = &pf->hw;
1761 	struct ice_vf *vf;
1762 	unsigned int bkt;
1763 	u32 reg;
1764 
1765 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1766 		/* Since the VF MDD event logging is rate limited, check if
1767 		 * there are pending MDD events.
1768 		 */
1769 		ice_print_vfs_mdd_events(pf);
1770 		return;
1771 	}
1772 
1773 	/* find what triggered an MDD event */
1774 	reg = rd32(hw, GL_MDET_TX_PQM);
1775 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1776 		u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1777 		u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1778 		u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1779 		u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1780 
1781 		if (netif_msg_tx_err(pf))
1782 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1783 				 event, queue, pf_num, vf_num);
1784 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1785 	}
1786 
1787 	reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1788 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1789 		u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1790 		u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1791 		u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1792 		u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1793 
1794 		if (netif_msg_tx_err(pf))
1795 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1796 				 event, queue, pf_num, vf_num);
1797 		wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1798 	}
1799 
1800 	reg = rd32(hw, GL_MDET_RX);
1801 	if (reg & GL_MDET_RX_VALID_M) {
1802 		u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1803 		u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1804 		u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1805 		u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1806 
1807 		if (netif_msg_rx_err(pf))
1808 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1809 				 event, queue, pf_num, vf_num);
1810 		wr32(hw, GL_MDET_RX, 0xffffffff);
1811 	}
1812 
1813 	/* check to see if this PF caused an MDD event */
1814 	reg = rd32(hw, PF_MDET_TX_PQM);
1815 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1816 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1817 		if (netif_msg_tx_err(pf))
1818 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1819 	}
1820 
1821 	reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1822 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1823 		wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1824 		if (netif_msg_tx_err(pf))
1825 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1826 	}
1827 
1828 	reg = rd32(hw, PF_MDET_RX);
1829 	if (reg & PF_MDET_RX_VALID_M) {
1830 		wr32(hw, PF_MDET_RX, 0xFFFF);
1831 		if (netif_msg_rx_err(pf))
1832 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1833 	}
1834 
1835 	/* Check to see if one of the VFs caused an MDD event, and then
1836 	 * increment counters and set print pending
1837 	 */
1838 	mutex_lock(&pf->vfs.table_lock);
1839 	ice_for_each_vf(pf, bkt, vf) {
1840 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1841 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1842 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1843 			vf->mdd_tx_events.count++;
1844 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1845 			if (netif_msg_tx_err(pf))
1846 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1847 					 vf->vf_id);
1848 		}
1849 
1850 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1851 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1852 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1853 			vf->mdd_tx_events.count++;
1854 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1855 			if (netif_msg_tx_err(pf))
1856 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1857 					 vf->vf_id);
1858 		}
1859 
1860 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1861 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1862 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1863 			vf->mdd_tx_events.count++;
1864 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1865 			if (netif_msg_tx_err(pf))
1866 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1867 					 vf->vf_id);
1868 		}
1869 
1870 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1871 		if (reg & VP_MDET_RX_VALID_M) {
1872 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1873 			vf->mdd_rx_events.count++;
1874 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1875 			if (netif_msg_rx_err(pf))
1876 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1877 					 vf->vf_id);
1878 
1879 			/* Since the queue is disabled on VF Rx MDD events, the
1880 			 * PF can be configured to reset the VF through ethtool
1881 			 * private flag mdd-auto-reset-vf.
1882 			 */
1883 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1884 				/* VF MDD event counters will be cleared by
1885 				 * reset, so print the event prior to reset.
1886 				 */
1887 				ice_print_vf_rx_mdd_event(vf);
1888 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1889 			}
1890 		}
1891 	}
1892 	mutex_unlock(&pf->vfs.table_lock);
1893 
1894 	ice_print_vfs_mdd_events(pf);
1895 }
1896 
1897 /**
1898  * ice_force_phys_link_state - Force the physical link state
1899  * @vsi: VSI to force the physical link state to up/down
1900  * @link_up: true/false indicates to set the physical link to up/down
1901  *
1902  * Force the physical link state by getting the current PHY capabilities from
1903  * hardware and setting the PHY config based on the determined capabilities. If
1904  * link changes a link event will be triggered because both the Enable Automatic
1905  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1906  *
1907  * Returns 0 on success, negative on failure
1908  */
1909 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1910 {
1911 	struct ice_aqc_get_phy_caps_data *pcaps;
1912 	struct ice_aqc_set_phy_cfg_data *cfg;
1913 	struct ice_port_info *pi;
1914 	struct device *dev;
1915 	int retcode;
1916 
1917 	if (!vsi || !vsi->port_info || !vsi->back)
1918 		return -EINVAL;
1919 	if (vsi->type != ICE_VSI_PF)
1920 		return 0;
1921 
1922 	dev = ice_pf_to_dev(vsi->back);
1923 
1924 	pi = vsi->port_info;
1925 
1926 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1927 	if (!pcaps)
1928 		return -ENOMEM;
1929 
1930 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1931 				      NULL);
1932 	if (retcode) {
1933 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1934 			vsi->vsi_num, retcode);
1935 		retcode = -EIO;
1936 		goto out;
1937 	}
1938 
1939 	/* No change in link */
1940 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1941 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1942 		goto out;
1943 
1944 	/* Use the current user PHY configuration. The current user PHY
1945 	 * configuration is initialized during probe from PHY capabilities
1946 	 * software mode, and updated on set PHY configuration.
1947 	 */
1948 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1949 	if (!cfg) {
1950 		retcode = -ENOMEM;
1951 		goto out;
1952 	}
1953 
1954 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1955 	if (link_up)
1956 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1957 	else
1958 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1959 
1960 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1961 	if (retcode) {
1962 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1963 			vsi->vsi_num, retcode);
1964 		retcode = -EIO;
1965 	}
1966 
1967 	kfree(cfg);
1968 out:
1969 	kfree(pcaps);
1970 	return retcode;
1971 }
1972 
1973 /**
1974  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1975  * @pi: port info structure
1976  *
1977  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1978  */
1979 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1980 {
1981 	struct ice_aqc_get_phy_caps_data *pcaps;
1982 	struct ice_pf *pf = pi->hw->back;
1983 	int err;
1984 
1985 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1986 	if (!pcaps)
1987 		return -ENOMEM;
1988 
1989 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1990 				  pcaps, NULL);
1991 
1992 	if (err) {
1993 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1994 		goto out;
1995 	}
1996 
1997 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1998 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1999 
2000 out:
2001 	kfree(pcaps);
2002 	return err;
2003 }
2004 
2005 /**
2006  * ice_init_link_dflt_override - Initialize link default override
2007  * @pi: port info structure
2008  *
2009  * Initialize link default override and PHY total port shutdown during probe
2010  */
2011 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2012 {
2013 	struct ice_link_default_override_tlv *ldo;
2014 	struct ice_pf *pf = pi->hw->back;
2015 
2016 	ldo = &pf->link_dflt_override;
2017 	if (ice_get_link_default_override(ldo, pi))
2018 		return;
2019 
2020 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2021 		return;
2022 
2023 	/* Enable Total Port Shutdown (override/replace link-down-on-close
2024 	 * ethtool private flag) for ports with Port Disable bit set.
2025 	 */
2026 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2027 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2028 }
2029 
2030 /**
2031  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2032  * @pi: port info structure
2033  *
2034  * If default override is enabled, initialize the user PHY cfg speed and FEC
2035  * settings using the default override mask from the NVM.
2036  *
2037  * The PHY should only be configured with the default override settings the
2038  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2039  * is used to indicate that the user PHY cfg default override is initialized
2040  * and the PHY has not been configured with the default override settings. The
2041  * state is set here, and cleared in ice_configure_phy the first time the PHY is
2042  * configured.
2043  *
2044  * This function should be called only if the FW doesn't support default
2045  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2046  */
2047 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2048 {
2049 	struct ice_link_default_override_tlv *ldo;
2050 	struct ice_aqc_set_phy_cfg_data *cfg;
2051 	struct ice_phy_info *phy = &pi->phy;
2052 	struct ice_pf *pf = pi->hw->back;
2053 
2054 	ldo = &pf->link_dflt_override;
2055 
2056 	/* If link default override is enabled, use to mask NVM PHY capabilities
2057 	 * for speed and FEC default configuration.
2058 	 */
2059 	cfg = &phy->curr_user_phy_cfg;
2060 
2061 	if (ldo->phy_type_low || ldo->phy_type_high) {
2062 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2063 				    cpu_to_le64(ldo->phy_type_low);
2064 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2065 				     cpu_to_le64(ldo->phy_type_high);
2066 	}
2067 	cfg->link_fec_opt = ldo->fec_options;
2068 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2069 
2070 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2071 }
2072 
2073 /**
2074  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2075  * @pi: port info structure
2076  *
2077  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2078  * mode to default. The PHY defaults are from get PHY capabilities topology
2079  * with media so call when media is first available. An error is returned if
2080  * called when media is not available. The PHY initialization completed state is
2081  * set here.
2082  *
2083  * These configurations are used when setting PHY
2084  * configuration. The user PHY configuration is updated on set PHY
2085  * configuration. Returns 0 on success, negative on failure
2086  */
2087 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2088 {
2089 	struct ice_aqc_get_phy_caps_data *pcaps;
2090 	struct ice_phy_info *phy = &pi->phy;
2091 	struct ice_pf *pf = pi->hw->back;
2092 	int err;
2093 
2094 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2095 		return -EIO;
2096 
2097 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2098 	if (!pcaps)
2099 		return -ENOMEM;
2100 
2101 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2102 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2103 					  pcaps, NULL);
2104 	else
2105 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2106 					  pcaps, NULL);
2107 	if (err) {
2108 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2109 		goto err_out;
2110 	}
2111 
2112 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2113 
2114 	/* check if lenient mode is supported and enabled */
2115 	if (ice_fw_supports_link_override(pi->hw) &&
2116 	    !(pcaps->module_compliance_enforcement &
2117 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2118 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2119 
2120 		/* if the FW supports default PHY configuration mode, then the driver
2121 		 * does not have to apply link override settings. If not,
2122 		 * initialize user PHY configuration with link override values
2123 		 */
2124 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2125 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2126 			ice_init_phy_cfg_dflt_override(pi);
2127 			goto out;
2128 		}
2129 	}
2130 
2131 	/* if link default override is not enabled, set user flow control and
2132 	 * FEC settings based on what get_phy_caps returned
2133 	 */
2134 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2135 						      pcaps->link_fec_options);
2136 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2137 
2138 out:
2139 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2140 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2141 err_out:
2142 	kfree(pcaps);
2143 	return err;
2144 }
2145 
2146 /**
2147  * ice_configure_phy - configure PHY
2148  * @vsi: VSI of PHY
2149  *
2150  * Set the PHY configuration. If the current PHY configuration is the same as
2151  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2152  * configure the based get PHY capabilities for topology with media.
2153  */
2154 static int ice_configure_phy(struct ice_vsi *vsi)
2155 {
2156 	struct device *dev = ice_pf_to_dev(vsi->back);
2157 	struct ice_port_info *pi = vsi->port_info;
2158 	struct ice_aqc_get_phy_caps_data *pcaps;
2159 	struct ice_aqc_set_phy_cfg_data *cfg;
2160 	struct ice_phy_info *phy = &pi->phy;
2161 	struct ice_pf *pf = vsi->back;
2162 	int err;
2163 
2164 	/* Ensure we have media as we cannot configure a medialess port */
2165 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2166 		return -ENOMEDIUM;
2167 
2168 	ice_print_topo_conflict(vsi);
2169 
2170 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2171 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2172 		return -EPERM;
2173 
2174 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2175 		return ice_force_phys_link_state(vsi, true);
2176 
2177 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2178 	if (!pcaps)
2179 		return -ENOMEM;
2180 
2181 	/* Get current PHY config */
2182 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2183 				  NULL);
2184 	if (err) {
2185 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2186 			vsi->vsi_num, err);
2187 		goto done;
2188 	}
2189 
2190 	/* If PHY enable link is configured and configuration has not changed,
2191 	 * there's nothing to do
2192 	 */
2193 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2194 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2195 		goto done;
2196 
2197 	/* Use PHY topology as baseline for configuration */
2198 	memset(pcaps, 0, sizeof(*pcaps));
2199 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2200 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2201 					  pcaps, NULL);
2202 	else
2203 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2204 					  pcaps, NULL);
2205 	if (err) {
2206 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2207 			vsi->vsi_num, err);
2208 		goto done;
2209 	}
2210 
2211 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2212 	if (!cfg) {
2213 		err = -ENOMEM;
2214 		goto done;
2215 	}
2216 
2217 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2218 
2219 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2220 	 * ice_init_phy_user_cfg_ldo.
2221 	 */
2222 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2223 			       vsi->back->state)) {
2224 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2225 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2226 	} else {
2227 		u64 phy_low = 0, phy_high = 0;
2228 
2229 		ice_update_phy_type(&phy_low, &phy_high,
2230 				    pi->phy.curr_user_speed_req);
2231 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2232 		cfg->phy_type_high = pcaps->phy_type_high &
2233 				     cpu_to_le64(phy_high);
2234 	}
2235 
2236 	/* Can't provide what was requested; use PHY capabilities */
2237 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2238 		cfg->phy_type_low = pcaps->phy_type_low;
2239 		cfg->phy_type_high = pcaps->phy_type_high;
2240 	}
2241 
2242 	/* FEC */
2243 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2244 
2245 	/* Can't provide what was requested; use PHY capabilities */
2246 	if (cfg->link_fec_opt !=
2247 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2248 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2249 		cfg->link_fec_opt = pcaps->link_fec_options;
2250 	}
2251 
2252 	/* Flow Control - always supported; no need to check against
2253 	 * capabilities
2254 	 */
2255 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2256 
2257 	/* Enable link and link update */
2258 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2259 
2260 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2261 	if (err)
2262 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2263 			vsi->vsi_num, err);
2264 
2265 	kfree(cfg);
2266 done:
2267 	kfree(pcaps);
2268 	return err;
2269 }
2270 
2271 /**
2272  * ice_check_media_subtask - Check for media
2273  * @pf: pointer to PF struct
2274  *
2275  * If media is available, then initialize PHY user configuration if it is not
2276  * been, and configure the PHY if the interface is up.
2277  */
2278 static void ice_check_media_subtask(struct ice_pf *pf)
2279 {
2280 	struct ice_port_info *pi;
2281 	struct ice_vsi *vsi;
2282 	int err;
2283 
2284 	/* No need to check for media if it's already present */
2285 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2286 		return;
2287 
2288 	vsi = ice_get_main_vsi(pf);
2289 	if (!vsi)
2290 		return;
2291 
2292 	/* Refresh link info and check if media is present */
2293 	pi = vsi->port_info;
2294 	err = ice_update_link_info(pi);
2295 	if (err)
2296 		return;
2297 
2298 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2299 
2300 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2301 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2302 			ice_init_phy_user_cfg(pi);
2303 
2304 		/* PHY settings are reset on media insertion, reconfigure
2305 		 * PHY to preserve settings.
2306 		 */
2307 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2308 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2309 			return;
2310 
2311 		err = ice_configure_phy(vsi);
2312 		if (!err)
2313 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2314 
2315 		/* A Link Status Event will be generated; the event handler
2316 		 * will complete bringing the interface up
2317 		 */
2318 	}
2319 }
2320 
2321 /**
2322  * ice_service_task - manage and run subtasks
2323  * @work: pointer to work_struct contained by the PF struct
2324  */
2325 static void ice_service_task(struct work_struct *work)
2326 {
2327 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2328 	unsigned long start_time = jiffies;
2329 
2330 	/* subtasks */
2331 
2332 	/* process reset requests first */
2333 	ice_reset_subtask(pf);
2334 
2335 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2336 	if (ice_is_reset_in_progress(pf->state) ||
2337 	    test_bit(ICE_SUSPENDED, pf->state) ||
2338 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2339 		ice_service_task_complete(pf);
2340 		return;
2341 	}
2342 
2343 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2344 		struct iidc_event *event;
2345 
2346 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2347 		if (event) {
2348 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2349 			/* report the entire OICR value to AUX driver */
2350 			swap(event->reg, pf->oicr_err_reg);
2351 			ice_send_event_to_aux(pf, event);
2352 			kfree(event);
2353 		}
2354 	}
2355 
2356 	/* unplug aux dev per request, if an unplug request came in
2357 	 * while processing a plug request, this will handle it
2358 	 */
2359 	if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2360 		ice_unplug_aux_dev(pf);
2361 
2362 	/* Plug aux device per request */
2363 	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2364 		ice_plug_aux_dev(pf);
2365 
2366 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2367 		struct iidc_event *event;
2368 
2369 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2370 		if (event) {
2371 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2372 			ice_send_event_to_aux(pf, event);
2373 			kfree(event);
2374 		}
2375 	}
2376 
2377 	ice_clean_adminq_subtask(pf);
2378 	ice_check_media_subtask(pf);
2379 	ice_check_for_hang_subtask(pf);
2380 	ice_sync_fltr_subtask(pf);
2381 	ice_handle_mdd_event(pf);
2382 	ice_watchdog_subtask(pf);
2383 
2384 	if (ice_is_safe_mode(pf)) {
2385 		ice_service_task_complete(pf);
2386 		return;
2387 	}
2388 
2389 	ice_process_vflr_event(pf);
2390 	ice_clean_mailboxq_subtask(pf);
2391 	ice_clean_sbq_subtask(pf);
2392 	ice_sync_arfs_fltrs(pf);
2393 	ice_flush_fdir_ctx(pf);
2394 
2395 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2396 	ice_service_task_complete(pf);
2397 
2398 	/* If the tasks have taken longer than one service timer period
2399 	 * or there is more work to be done, reset the service timer to
2400 	 * schedule the service task now.
2401 	 */
2402 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2403 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2404 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2405 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2406 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2407 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2408 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2409 		mod_timer(&pf->serv_tmr, jiffies);
2410 }
2411 
2412 /**
2413  * ice_set_ctrlq_len - helper function to set controlq length
2414  * @hw: pointer to the HW instance
2415  */
2416 static void ice_set_ctrlq_len(struct ice_hw *hw)
2417 {
2418 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2419 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2420 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2421 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2422 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2423 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2424 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2425 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2426 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2427 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2428 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2429 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2430 }
2431 
2432 /**
2433  * ice_schedule_reset - schedule a reset
2434  * @pf: board private structure
2435  * @reset: reset being requested
2436  */
2437 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2438 {
2439 	struct device *dev = ice_pf_to_dev(pf);
2440 
2441 	/* bail out if earlier reset has failed */
2442 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2443 		dev_dbg(dev, "earlier reset has failed\n");
2444 		return -EIO;
2445 	}
2446 	/* bail if reset/recovery already in progress */
2447 	if (ice_is_reset_in_progress(pf->state)) {
2448 		dev_dbg(dev, "Reset already in progress\n");
2449 		return -EBUSY;
2450 	}
2451 
2452 	switch (reset) {
2453 	case ICE_RESET_PFR:
2454 		set_bit(ICE_PFR_REQ, pf->state);
2455 		break;
2456 	case ICE_RESET_CORER:
2457 		set_bit(ICE_CORER_REQ, pf->state);
2458 		break;
2459 	case ICE_RESET_GLOBR:
2460 		set_bit(ICE_GLOBR_REQ, pf->state);
2461 		break;
2462 	default:
2463 		return -EINVAL;
2464 	}
2465 
2466 	ice_service_task_schedule(pf);
2467 	return 0;
2468 }
2469 
2470 /**
2471  * ice_irq_affinity_notify - Callback for affinity changes
2472  * @notify: context as to what irq was changed
2473  * @mask: the new affinity mask
2474  *
2475  * This is a callback function used by the irq_set_affinity_notifier function
2476  * so that we may register to receive changes to the irq affinity masks.
2477  */
2478 static void
2479 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2480 			const cpumask_t *mask)
2481 {
2482 	struct ice_q_vector *q_vector =
2483 		container_of(notify, struct ice_q_vector, affinity_notify);
2484 
2485 	cpumask_copy(&q_vector->affinity_mask, mask);
2486 }
2487 
2488 /**
2489  * ice_irq_affinity_release - Callback for affinity notifier release
2490  * @ref: internal core kernel usage
2491  *
2492  * This is a callback function used by the irq_set_affinity_notifier function
2493  * to inform the current notification subscriber that they will no longer
2494  * receive notifications.
2495  */
2496 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2497 
2498 /**
2499  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2500  * @vsi: the VSI being configured
2501  */
2502 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2503 {
2504 	struct ice_hw *hw = &vsi->back->hw;
2505 	int i;
2506 
2507 	ice_for_each_q_vector(vsi, i)
2508 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2509 
2510 	ice_flush(hw);
2511 	return 0;
2512 }
2513 
2514 /**
2515  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2516  * @vsi: the VSI being configured
2517  * @basename: name for the vector
2518  */
2519 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2520 {
2521 	int q_vectors = vsi->num_q_vectors;
2522 	struct ice_pf *pf = vsi->back;
2523 	struct device *dev;
2524 	int rx_int_idx = 0;
2525 	int tx_int_idx = 0;
2526 	int vector, err;
2527 	int irq_num;
2528 
2529 	dev = ice_pf_to_dev(pf);
2530 	for (vector = 0; vector < q_vectors; vector++) {
2531 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2532 
2533 		irq_num = q_vector->irq.virq;
2534 
2535 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2536 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2537 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2538 			tx_int_idx++;
2539 		} else if (q_vector->rx.rx_ring) {
2540 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2541 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2542 		} else if (q_vector->tx.tx_ring) {
2543 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2544 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2545 		} else {
2546 			/* skip this unused q_vector */
2547 			continue;
2548 		}
2549 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2550 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2551 					       IRQF_SHARED, q_vector->name,
2552 					       q_vector);
2553 		else
2554 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2555 					       0, q_vector->name, q_vector);
2556 		if (err) {
2557 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2558 				   err);
2559 			goto free_q_irqs;
2560 		}
2561 
2562 		/* register for affinity change notifications */
2563 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2564 			struct irq_affinity_notify *affinity_notify;
2565 
2566 			affinity_notify = &q_vector->affinity_notify;
2567 			affinity_notify->notify = ice_irq_affinity_notify;
2568 			affinity_notify->release = ice_irq_affinity_release;
2569 			irq_set_affinity_notifier(irq_num, affinity_notify);
2570 		}
2571 
2572 		/* assign the mask for this irq */
2573 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2574 	}
2575 
2576 	err = ice_set_cpu_rx_rmap(vsi);
2577 	if (err) {
2578 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2579 			   vsi->vsi_num, ERR_PTR(err));
2580 		goto free_q_irqs;
2581 	}
2582 
2583 	vsi->irqs_ready = true;
2584 	return 0;
2585 
2586 free_q_irqs:
2587 	while (vector--) {
2588 		irq_num = vsi->q_vectors[vector]->irq.virq;
2589 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2590 			irq_set_affinity_notifier(irq_num, NULL);
2591 		irq_set_affinity_hint(irq_num, NULL);
2592 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2593 	}
2594 	return err;
2595 }
2596 
2597 /**
2598  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2599  * @vsi: VSI to setup Tx rings used by XDP
2600  *
2601  * Return 0 on success and negative value on error
2602  */
2603 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2604 {
2605 	struct device *dev = ice_pf_to_dev(vsi->back);
2606 	struct ice_tx_desc *tx_desc;
2607 	int i, j;
2608 
2609 	ice_for_each_xdp_txq(vsi, i) {
2610 		u16 xdp_q_idx = vsi->alloc_txq + i;
2611 		struct ice_ring_stats *ring_stats;
2612 		struct ice_tx_ring *xdp_ring;
2613 
2614 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2615 		if (!xdp_ring)
2616 			goto free_xdp_rings;
2617 
2618 		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2619 		if (!ring_stats) {
2620 			ice_free_tx_ring(xdp_ring);
2621 			goto free_xdp_rings;
2622 		}
2623 
2624 		xdp_ring->ring_stats = ring_stats;
2625 		xdp_ring->q_index = xdp_q_idx;
2626 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2627 		xdp_ring->vsi = vsi;
2628 		xdp_ring->netdev = NULL;
2629 		xdp_ring->dev = dev;
2630 		xdp_ring->count = vsi->num_tx_desc;
2631 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2632 		if (ice_setup_tx_ring(xdp_ring))
2633 			goto free_xdp_rings;
2634 		ice_set_ring_xdp(xdp_ring);
2635 		spin_lock_init(&xdp_ring->tx_lock);
2636 		for (j = 0; j < xdp_ring->count; j++) {
2637 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2638 			tx_desc->cmd_type_offset_bsz = 0;
2639 		}
2640 	}
2641 
2642 	return 0;
2643 
2644 free_xdp_rings:
2645 	for (; i >= 0; i--) {
2646 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2647 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2648 			vsi->xdp_rings[i]->ring_stats = NULL;
2649 			ice_free_tx_ring(vsi->xdp_rings[i]);
2650 		}
2651 	}
2652 	return -ENOMEM;
2653 }
2654 
2655 /**
2656  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2657  * @vsi: VSI to set the bpf prog on
2658  * @prog: the bpf prog pointer
2659  */
2660 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2661 {
2662 	struct bpf_prog *old_prog;
2663 	int i;
2664 
2665 	old_prog = xchg(&vsi->xdp_prog, prog);
2666 	ice_for_each_rxq(vsi, i)
2667 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2668 
2669 	if (old_prog)
2670 		bpf_prog_put(old_prog);
2671 }
2672 
2673 /**
2674  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2675  * @vsi: VSI to bring up Tx rings used by XDP
2676  * @prog: bpf program that will be assigned to VSI
2677  *
2678  * Return 0 on success and negative value on error
2679  */
2680 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2681 {
2682 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2683 	int xdp_rings_rem = vsi->num_xdp_txq;
2684 	struct ice_pf *pf = vsi->back;
2685 	struct ice_qs_cfg xdp_qs_cfg = {
2686 		.qs_mutex = &pf->avail_q_mutex,
2687 		.pf_map = pf->avail_txqs,
2688 		.pf_map_size = pf->max_pf_txqs,
2689 		.q_count = vsi->num_xdp_txq,
2690 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2691 		.vsi_map = vsi->txq_map,
2692 		.vsi_map_offset = vsi->alloc_txq,
2693 		.mapping_mode = ICE_VSI_MAP_CONTIG
2694 	};
2695 	struct device *dev;
2696 	int i, v_idx;
2697 	int status;
2698 
2699 	dev = ice_pf_to_dev(pf);
2700 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2701 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2702 	if (!vsi->xdp_rings)
2703 		return -ENOMEM;
2704 
2705 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2706 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2707 		goto err_map_xdp;
2708 
2709 	if (static_key_enabled(&ice_xdp_locking_key))
2710 		netdev_warn(vsi->netdev,
2711 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2712 
2713 	if (ice_xdp_alloc_setup_rings(vsi))
2714 		goto clear_xdp_rings;
2715 
2716 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2717 	ice_for_each_q_vector(vsi, v_idx) {
2718 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2719 		int xdp_rings_per_v, q_id, q_base;
2720 
2721 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2722 					       vsi->num_q_vectors - v_idx);
2723 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2724 
2725 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2726 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2727 
2728 			xdp_ring->q_vector = q_vector;
2729 			xdp_ring->next = q_vector->tx.tx_ring;
2730 			q_vector->tx.tx_ring = xdp_ring;
2731 		}
2732 		xdp_rings_rem -= xdp_rings_per_v;
2733 	}
2734 
2735 	ice_for_each_rxq(vsi, i) {
2736 		if (static_key_enabled(&ice_xdp_locking_key)) {
2737 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2738 		} else {
2739 			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2740 			struct ice_tx_ring *ring;
2741 
2742 			ice_for_each_tx_ring(ring, q_vector->tx) {
2743 				if (ice_ring_is_xdp(ring)) {
2744 					vsi->rx_rings[i]->xdp_ring = ring;
2745 					break;
2746 				}
2747 			}
2748 		}
2749 		ice_tx_xsk_pool(vsi, i);
2750 	}
2751 
2752 	/* omit the scheduler update if in reset path; XDP queues will be
2753 	 * taken into account at the end of ice_vsi_rebuild, where
2754 	 * ice_cfg_vsi_lan is being called
2755 	 */
2756 	if (ice_is_reset_in_progress(pf->state))
2757 		return 0;
2758 
2759 	/* tell the Tx scheduler that right now we have
2760 	 * additional queues
2761 	 */
2762 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2763 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2764 
2765 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2766 				 max_txqs);
2767 	if (status) {
2768 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2769 			status);
2770 		goto clear_xdp_rings;
2771 	}
2772 
2773 	/* assign the prog only when it's not already present on VSI;
2774 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2775 	 * VSI rebuild that happens under ethtool -L can expose us to
2776 	 * the bpf_prog refcount issues as we would be swapping same
2777 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2778 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2779 	 * this is not harmful as dev_xdp_install bumps the refcount
2780 	 * before calling the op exposed by the driver;
2781 	 */
2782 	if (!ice_is_xdp_ena_vsi(vsi))
2783 		ice_vsi_assign_bpf_prog(vsi, prog);
2784 
2785 	return 0;
2786 clear_xdp_rings:
2787 	ice_for_each_xdp_txq(vsi, i)
2788 		if (vsi->xdp_rings[i]) {
2789 			kfree_rcu(vsi->xdp_rings[i], rcu);
2790 			vsi->xdp_rings[i] = NULL;
2791 		}
2792 
2793 err_map_xdp:
2794 	mutex_lock(&pf->avail_q_mutex);
2795 	ice_for_each_xdp_txq(vsi, i) {
2796 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2797 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2798 	}
2799 	mutex_unlock(&pf->avail_q_mutex);
2800 
2801 	devm_kfree(dev, vsi->xdp_rings);
2802 	return -ENOMEM;
2803 }
2804 
2805 /**
2806  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2807  * @vsi: VSI to remove XDP rings
2808  *
2809  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2810  * resources
2811  */
2812 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2813 {
2814 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2815 	struct ice_pf *pf = vsi->back;
2816 	int i, v_idx;
2817 
2818 	/* q_vectors are freed in reset path so there's no point in detaching
2819 	 * rings; in case of rebuild being triggered not from reset bits
2820 	 * in pf->state won't be set, so additionally check first q_vector
2821 	 * against NULL
2822 	 */
2823 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2824 		goto free_qmap;
2825 
2826 	ice_for_each_q_vector(vsi, v_idx) {
2827 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2828 		struct ice_tx_ring *ring;
2829 
2830 		ice_for_each_tx_ring(ring, q_vector->tx)
2831 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2832 				break;
2833 
2834 		/* restore the value of last node prior to XDP setup */
2835 		q_vector->tx.tx_ring = ring;
2836 	}
2837 
2838 free_qmap:
2839 	mutex_lock(&pf->avail_q_mutex);
2840 	ice_for_each_xdp_txq(vsi, i) {
2841 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2842 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2843 	}
2844 	mutex_unlock(&pf->avail_q_mutex);
2845 
2846 	ice_for_each_xdp_txq(vsi, i)
2847 		if (vsi->xdp_rings[i]) {
2848 			if (vsi->xdp_rings[i]->desc) {
2849 				synchronize_rcu();
2850 				ice_free_tx_ring(vsi->xdp_rings[i]);
2851 			}
2852 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2853 			vsi->xdp_rings[i]->ring_stats = NULL;
2854 			kfree_rcu(vsi->xdp_rings[i], rcu);
2855 			vsi->xdp_rings[i] = NULL;
2856 		}
2857 
2858 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2859 	vsi->xdp_rings = NULL;
2860 
2861 	if (static_key_enabled(&ice_xdp_locking_key))
2862 		static_branch_dec(&ice_xdp_locking_key);
2863 
2864 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2865 		return 0;
2866 
2867 	ice_vsi_assign_bpf_prog(vsi, NULL);
2868 
2869 	/* notify Tx scheduler that we destroyed XDP queues and bring
2870 	 * back the old number of child nodes
2871 	 */
2872 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2873 		max_txqs[i] = vsi->num_txq;
2874 
2875 	/* change number of XDP Tx queues to 0 */
2876 	vsi->num_xdp_txq = 0;
2877 
2878 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2879 			       max_txqs);
2880 }
2881 
2882 /**
2883  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2884  * @vsi: VSI to schedule napi on
2885  */
2886 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2887 {
2888 	int i;
2889 
2890 	ice_for_each_rxq(vsi, i) {
2891 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2892 
2893 		if (rx_ring->xsk_pool)
2894 			napi_schedule(&rx_ring->q_vector->napi);
2895 	}
2896 }
2897 
2898 /**
2899  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2900  * @vsi: VSI to determine the count of XDP Tx qs
2901  *
2902  * returns 0 if Tx qs count is higher than at least half of CPU count,
2903  * -ENOMEM otherwise
2904  */
2905 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2906 {
2907 	u16 avail = ice_get_avail_txq_count(vsi->back);
2908 	u16 cpus = num_possible_cpus();
2909 
2910 	if (avail < cpus / 2)
2911 		return -ENOMEM;
2912 
2913 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2914 
2915 	if (vsi->num_xdp_txq < cpus)
2916 		static_branch_inc(&ice_xdp_locking_key);
2917 
2918 	return 0;
2919 }
2920 
2921 /**
2922  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2923  * @vsi: Pointer to VSI structure
2924  */
2925 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2926 {
2927 	if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2928 		return ICE_RXBUF_1664;
2929 	else
2930 		return ICE_RXBUF_3072;
2931 }
2932 
2933 /**
2934  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2935  * @vsi: VSI to setup XDP for
2936  * @prog: XDP program
2937  * @extack: netlink extended ack
2938  */
2939 static int
2940 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2941 		   struct netlink_ext_ack *extack)
2942 {
2943 	unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2944 	bool if_running = netif_running(vsi->netdev);
2945 	int ret = 0, xdp_ring_err = 0;
2946 
2947 	if (prog && !prog->aux->xdp_has_frags) {
2948 		if (frame_size > ice_max_xdp_frame_size(vsi)) {
2949 			NL_SET_ERR_MSG_MOD(extack,
2950 					   "MTU is too large for linear frames and XDP prog does not support frags");
2951 			return -EOPNOTSUPP;
2952 		}
2953 	}
2954 
2955 	/* hot swap progs and avoid toggling link */
2956 	if (ice_is_xdp_ena_vsi(vsi) == !!prog) {
2957 		ice_vsi_assign_bpf_prog(vsi, prog);
2958 		return 0;
2959 	}
2960 
2961 	/* need to stop netdev while setting up the program for Rx rings */
2962 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2963 		ret = ice_down(vsi);
2964 		if (ret) {
2965 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2966 			return ret;
2967 		}
2968 	}
2969 
2970 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2971 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2972 		if (xdp_ring_err) {
2973 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2974 		} else {
2975 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2976 			if (xdp_ring_err)
2977 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2978 		}
2979 		xdp_features_set_redirect_target(vsi->netdev, true);
2980 		/* reallocate Rx queues that are used for zero-copy */
2981 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2982 		if (xdp_ring_err)
2983 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2984 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2985 		xdp_features_clear_redirect_target(vsi->netdev);
2986 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2987 		if (xdp_ring_err)
2988 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2989 		/* reallocate Rx queues that were used for zero-copy */
2990 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2991 		if (xdp_ring_err)
2992 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2993 	}
2994 
2995 	if (if_running)
2996 		ret = ice_up(vsi);
2997 
2998 	if (!ret && prog)
2999 		ice_vsi_rx_napi_schedule(vsi);
3000 
3001 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
3002 }
3003 
3004 /**
3005  * ice_xdp_safe_mode - XDP handler for safe mode
3006  * @dev: netdevice
3007  * @xdp: XDP command
3008  */
3009 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3010 			     struct netdev_bpf *xdp)
3011 {
3012 	NL_SET_ERR_MSG_MOD(xdp->extack,
3013 			   "Please provide working DDP firmware package in order to use XDP\n"
3014 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3015 	return -EOPNOTSUPP;
3016 }
3017 
3018 /**
3019  * ice_xdp - implements XDP handler
3020  * @dev: netdevice
3021  * @xdp: XDP command
3022  */
3023 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3024 {
3025 	struct ice_netdev_priv *np = netdev_priv(dev);
3026 	struct ice_vsi *vsi = np->vsi;
3027 
3028 	if (vsi->type != ICE_VSI_PF) {
3029 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3030 		return -EINVAL;
3031 	}
3032 
3033 	switch (xdp->command) {
3034 	case XDP_SETUP_PROG:
3035 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3036 	case XDP_SETUP_XSK_POOL:
3037 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
3038 					  xdp->xsk.queue_id);
3039 	default:
3040 		return -EINVAL;
3041 	}
3042 }
3043 
3044 /**
3045  * ice_ena_misc_vector - enable the non-queue interrupts
3046  * @pf: board private structure
3047  */
3048 static void ice_ena_misc_vector(struct ice_pf *pf)
3049 {
3050 	struct ice_hw *hw = &pf->hw;
3051 	u32 pf_intr_start_offset;
3052 	u32 val;
3053 
3054 	/* Disable anti-spoof detection interrupt to prevent spurious event
3055 	 * interrupts during a function reset. Anti-spoof functionally is
3056 	 * still supported.
3057 	 */
3058 	val = rd32(hw, GL_MDCK_TX_TDPU);
3059 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3060 	wr32(hw, GL_MDCK_TX_TDPU, val);
3061 
3062 	/* clear things first */
3063 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
3064 	rd32(hw, PFINT_OICR);		/* read to clear */
3065 
3066 	val = (PFINT_OICR_ECC_ERR_M |
3067 	       PFINT_OICR_MAL_DETECT_M |
3068 	       PFINT_OICR_GRST_M |
3069 	       PFINT_OICR_PCI_EXCEPTION_M |
3070 	       PFINT_OICR_VFLR_M |
3071 	       PFINT_OICR_HMC_ERR_M |
3072 	       PFINT_OICR_PE_PUSH_M |
3073 	       PFINT_OICR_PE_CRITERR_M);
3074 
3075 	wr32(hw, PFINT_OICR_ENA, val);
3076 
3077 	/* SW_ITR_IDX = 0, but don't change INTENA */
3078 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3079 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3080 
3081 	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3082 		return;
3083 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3084 	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3085 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3086 }
3087 
3088 /**
3089  * ice_ll_ts_intr - ll_ts interrupt handler
3090  * @irq: interrupt number
3091  * @data: pointer to a q_vector
3092  */
3093 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3094 {
3095 	struct ice_pf *pf = data;
3096 	u32 pf_intr_start_offset;
3097 	struct ice_ptp_tx *tx;
3098 	unsigned long flags;
3099 	struct ice_hw *hw;
3100 	u32 val;
3101 	u8 idx;
3102 
3103 	hw = &pf->hw;
3104 	tx = &pf->ptp.port.tx;
3105 	spin_lock_irqsave(&tx->lock, flags);
3106 	ice_ptp_complete_tx_single_tstamp(tx);
3107 
3108 	idx = find_next_bit_wrap(tx->in_use, tx->len,
3109 				 tx->last_ll_ts_idx_read + 1);
3110 	if (idx != tx->len)
3111 		ice_ptp_req_tx_single_tstamp(tx, idx);
3112 	spin_unlock_irqrestore(&tx->lock, flags);
3113 
3114 	val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3115 	      (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3116 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3117 	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3118 	     val);
3119 
3120 	return IRQ_HANDLED;
3121 }
3122 
3123 /**
3124  * ice_misc_intr - misc interrupt handler
3125  * @irq: interrupt number
3126  * @data: pointer to a q_vector
3127  */
3128 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3129 {
3130 	struct ice_pf *pf = (struct ice_pf *)data;
3131 	irqreturn_t ret = IRQ_HANDLED;
3132 	struct ice_hw *hw = &pf->hw;
3133 	struct device *dev;
3134 	u32 oicr, ena_mask;
3135 
3136 	dev = ice_pf_to_dev(pf);
3137 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3138 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3139 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3140 
3141 	oicr = rd32(hw, PFINT_OICR);
3142 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3143 
3144 	if (oicr & PFINT_OICR_SWINT_M) {
3145 		ena_mask &= ~PFINT_OICR_SWINT_M;
3146 		pf->sw_int_count++;
3147 	}
3148 
3149 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3150 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3151 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3152 	}
3153 	if (oicr & PFINT_OICR_VFLR_M) {
3154 		/* disable any further VFLR event notifications */
3155 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3156 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3157 
3158 			reg &= ~PFINT_OICR_VFLR_M;
3159 			wr32(hw, PFINT_OICR_ENA, reg);
3160 		} else {
3161 			ena_mask &= ~PFINT_OICR_VFLR_M;
3162 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3163 		}
3164 	}
3165 
3166 	if (oicr & PFINT_OICR_GRST_M) {
3167 		u32 reset;
3168 
3169 		/* we have a reset warning */
3170 		ena_mask &= ~PFINT_OICR_GRST_M;
3171 		reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3172 				  rd32(hw, GLGEN_RSTAT));
3173 
3174 		if (reset == ICE_RESET_CORER)
3175 			pf->corer_count++;
3176 		else if (reset == ICE_RESET_GLOBR)
3177 			pf->globr_count++;
3178 		else if (reset == ICE_RESET_EMPR)
3179 			pf->empr_count++;
3180 		else
3181 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3182 
3183 		/* If a reset cycle isn't already in progress, we set a bit in
3184 		 * pf->state so that the service task can start a reset/rebuild.
3185 		 */
3186 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3187 			if (reset == ICE_RESET_CORER)
3188 				set_bit(ICE_CORER_RECV, pf->state);
3189 			else if (reset == ICE_RESET_GLOBR)
3190 				set_bit(ICE_GLOBR_RECV, pf->state);
3191 			else
3192 				set_bit(ICE_EMPR_RECV, pf->state);
3193 
3194 			/* There are couple of different bits at play here.
3195 			 * hw->reset_ongoing indicates whether the hardware is
3196 			 * in reset. This is set to true when a reset interrupt
3197 			 * is received and set back to false after the driver
3198 			 * has determined that the hardware is out of reset.
3199 			 *
3200 			 * ICE_RESET_OICR_RECV in pf->state indicates
3201 			 * that a post reset rebuild is required before the
3202 			 * driver is operational again. This is set above.
3203 			 *
3204 			 * As this is the start of the reset/rebuild cycle, set
3205 			 * both to indicate that.
3206 			 */
3207 			hw->reset_ongoing = true;
3208 		}
3209 	}
3210 
3211 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3212 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3213 		if (ice_pf_state_is_nominal(pf) &&
3214 		    pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) {
3215 			struct ice_ptp_tx *tx = &pf->ptp.port.tx;
3216 			unsigned long flags;
3217 			u8 idx;
3218 
3219 			spin_lock_irqsave(&tx->lock, flags);
3220 			idx = find_next_bit_wrap(tx->in_use, tx->len,
3221 						 tx->last_ll_ts_idx_read + 1);
3222 			if (idx != tx->len)
3223 				ice_ptp_req_tx_single_tstamp(tx, idx);
3224 			spin_unlock_irqrestore(&tx->lock, flags);
3225 		} else if (ice_ptp_pf_handles_tx_interrupt(pf)) {
3226 			set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3227 			ret = IRQ_WAKE_THREAD;
3228 		}
3229 	}
3230 
3231 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3232 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3233 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3234 
3235 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3236 
3237 		if (ice_pf_src_tmr_owned(pf)) {
3238 			/* Save EVENTs from GLTSYN register */
3239 			pf->ptp.ext_ts_irq |= gltsyn_stat &
3240 					      (GLTSYN_STAT_EVENT0_M |
3241 					       GLTSYN_STAT_EVENT1_M |
3242 					       GLTSYN_STAT_EVENT2_M);
3243 
3244 			ice_ptp_extts_event(pf);
3245 		}
3246 	}
3247 
3248 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3249 	if (oicr & ICE_AUX_CRIT_ERR) {
3250 		pf->oicr_err_reg |= oicr;
3251 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3252 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3253 	}
3254 
3255 	/* Report any remaining unexpected interrupts */
3256 	oicr &= ena_mask;
3257 	if (oicr) {
3258 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3259 		/* If a critical error is pending there is no choice but to
3260 		 * reset the device.
3261 		 */
3262 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3263 			    PFINT_OICR_ECC_ERR_M)) {
3264 			set_bit(ICE_PFR_REQ, pf->state);
3265 		}
3266 	}
3267 	ice_service_task_schedule(pf);
3268 	if (ret == IRQ_HANDLED)
3269 		ice_irq_dynamic_ena(hw, NULL, NULL);
3270 
3271 	return ret;
3272 }
3273 
3274 /**
3275  * ice_misc_intr_thread_fn - misc interrupt thread function
3276  * @irq: interrupt number
3277  * @data: pointer to a q_vector
3278  */
3279 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3280 {
3281 	struct ice_pf *pf = data;
3282 	struct ice_hw *hw;
3283 
3284 	hw = &pf->hw;
3285 
3286 	if (ice_is_reset_in_progress(pf->state))
3287 		goto skip_irq;
3288 
3289 	if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3290 		/* Process outstanding Tx timestamps. If there is more work,
3291 		 * re-arm the interrupt to trigger again.
3292 		 */
3293 		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3294 			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3295 			ice_flush(hw);
3296 		}
3297 	}
3298 
3299 skip_irq:
3300 	ice_irq_dynamic_ena(hw, NULL, NULL);
3301 
3302 	return IRQ_HANDLED;
3303 }
3304 
3305 /**
3306  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3307  * @hw: pointer to HW structure
3308  */
3309 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3310 {
3311 	/* disable Admin queue Interrupt causes */
3312 	wr32(hw, PFINT_FW_CTL,
3313 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3314 
3315 	/* disable Mailbox queue Interrupt causes */
3316 	wr32(hw, PFINT_MBX_CTL,
3317 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3318 
3319 	wr32(hw, PFINT_SB_CTL,
3320 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3321 
3322 	/* disable Control queue Interrupt causes */
3323 	wr32(hw, PFINT_OICR_CTL,
3324 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3325 
3326 	ice_flush(hw);
3327 }
3328 
3329 /**
3330  * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3331  * @pf: board private structure
3332  */
3333 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3334 {
3335 	int irq_num = pf->ll_ts_irq.virq;
3336 
3337 	synchronize_irq(irq_num);
3338 	devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3339 
3340 	ice_free_irq(pf, pf->ll_ts_irq);
3341 }
3342 
3343 /**
3344  * ice_free_irq_msix_misc - Unroll misc vector setup
3345  * @pf: board private structure
3346  */
3347 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3348 {
3349 	int misc_irq_num = pf->oicr_irq.virq;
3350 	struct ice_hw *hw = &pf->hw;
3351 
3352 	ice_dis_ctrlq_interrupts(hw);
3353 
3354 	/* disable OICR interrupt */
3355 	wr32(hw, PFINT_OICR_ENA, 0);
3356 	ice_flush(hw);
3357 
3358 	synchronize_irq(misc_irq_num);
3359 	devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3360 
3361 	ice_free_irq(pf, pf->oicr_irq);
3362 	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3363 		ice_free_irq_msix_ll_ts(pf);
3364 }
3365 
3366 /**
3367  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3368  * @hw: pointer to HW structure
3369  * @reg_idx: HW vector index to associate the control queue interrupts with
3370  */
3371 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3372 {
3373 	u32 val;
3374 
3375 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3376 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3377 	wr32(hw, PFINT_OICR_CTL, val);
3378 
3379 	/* enable Admin queue Interrupt causes */
3380 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3381 	       PFINT_FW_CTL_CAUSE_ENA_M);
3382 	wr32(hw, PFINT_FW_CTL, val);
3383 
3384 	/* enable Mailbox queue Interrupt causes */
3385 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3386 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3387 	wr32(hw, PFINT_MBX_CTL, val);
3388 
3389 	if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3390 		/* enable Sideband queue Interrupt causes */
3391 		val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3392 		       PFINT_SB_CTL_CAUSE_ENA_M);
3393 		wr32(hw, PFINT_SB_CTL, val);
3394 	}
3395 
3396 	ice_flush(hw);
3397 }
3398 
3399 /**
3400  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3401  * @pf: board private structure
3402  *
3403  * This sets up the handler for MSIX 0, which is used to manage the
3404  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3405  * when in MSI or Legacy interrupt mode.
3406  */
3407 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3408 {
3409 	struct device *dev = ice_pf_to_dev(pf);
3410 	struct ice_hw *hw = &pf->hw;
3411 	u32 pf_intr_start_offset;
3412 	struct msi_map irq;
3413 	int err = 0;
3414 
3415 	if (!pf->int_name[0])
3416 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3417 			 dev_driver_string(dev), dev_name(dev));
3418 
3419 	if (!pf->int_name_ll_ts[0])
3420 		snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3421 			 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3422 	/* Do not request IRQ but do enable OICR interrupt since settings are
3423 	 * lost during reset. Note that this function is called only during
3424 	 * rebuild path and not while reset is in progress.
3425 	 */
3426 	if (ice_is_reset_in_progress(pf->state))
3427 		goto skip_req_irq;
3428 
3429 	/* reserve one vector in irq_tracker for misc interrupts */
3430 	irq = ice_alloc_irq(pf, false);
3431 	if (irq.index < 0)
3432 		return irq.index;
3433 
3434 	pf->oicr_irq = irq;
3435 	err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3436 					ice_misc_intr_thread_fn, 0,
3437 					pf->int_name, pf);
3438 	if (err) {
3439 		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3440 			pf->int_name, err);
3441 		ice_free_irq(pf, pf->oicr_irq);
3442 		return err;
3443 	}
3444 
3445 	/* reserve one vector in irq_tracker for ll_ts interrupt */
3446 	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3447 		goto skip_req_irq;
3448 
3449 	irq = ice_alloc_irq(pf, false);
3450 	if (irq.index < 0)
3451 		return irq.index;
3452 
3453 	pf->ll_ts_irq = irq;
3454 	err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3455 			       pf->int_name_ll_ts, pf);
3456 	if (err) {
3457 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3458 			pf->int_name_ll_ts, err);
3459 		ice_free_irq(pf, pf->ll_ts_irq);
3460 		return err;
3461 	}
3462 
3463 skip_req_irq:
3464 	ice_ena_misc_vector(pf);
3465 
3466 	ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3467 	/* This enables LL TS interrupt */
3468 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3469 	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3470 		wr32(hw, PFINT_SB_CTL,
3471 		     ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3472 		      PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3473 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3474 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3475 
3476 	ice_flush(hw);
3477 	ice_irq_dynamic_ena(hw, NULL, NULL);
3478 
3479 	return 0;
3480 }
3481 
3482 /**
3483  * ice_napi_add - register NAPI handler for the VSI
3484  * @vsi: VSI for which NAPI handler is to be registered
3485  *
3486  * This function is only called in the driver's load path. Registering the NAPI
3487  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3488  * reset/rebuild, etc.)
3489  */
3490 static void ice_napi_add(struct ice_vsi *vsi)
3491 {
3492 	int v_idx;
3493 
3494 	if (!vsi->netdev)
3495 		return;
3496 
3497 	ice_for_each_q_vector(vsi, v_idx) {
3498 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3499 			       ice_napi_poll);
3500 		ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false);
3501 	}
3502 }
3503 
3504 /**
3505  * ice_set_ops - set netdev and ethtools ops for the given netdev
3506  * @vsi: the VSI associated with the new netdev
3507  */
3508 static void ice_set_ops(struct ice_vsi *vsi)
3509 {
3510 	struct net_device *netdev = vsi->netdev;
3511 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3512 
3513 	if (ice_is_safe_mode(pf)) {
3514 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3515 		ice_set_ethtool_safe_mode_ops(netdev);
3516 		return;
3517 	}
3518 
3519 	netdev->netdev_ops = &ice_netdev_ops;
3520 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3521 	netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3522 	ice_set_ethtool_ops(netdev);
3523 
3524 	if (vsi->type != ICE_VSI_PF)
3525 		return;
3526 
3527 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3528 			       NETDEV_XDP_ACT_XSK_ZEROCOPY |
3529 			       NETDEV_XDP_ACT_RX_SG;
3530 	netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3531 }
3532 
3533 /**
3534  * ice_set_netdev_features - set features for the given netdev
3535  * @netdev: netdev instance
3536  */
3537 static void ice_set_netdev_features(struct net_device *netdev)
3538 {
3539 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3540 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3541 	netdev_features_t csumo_features;
3542 	netdev_features_t vlano_features;
3543 	netdev_features_t dflt_features;
3544 	netdev_features_t tso_features;
3545 
3546 	if (ice_is_safe_mode(pf)) {
3547 		/* safe mode */
3548 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3549 		netdev->hw_features = netdev->features;
3550 		return;
3551 	}
3552 
3553 	dflt_features = NETIF_F_SG	|
3554 			NETIF_F_HIGHDMA	|
3555 			NETIF_F_NTUPLE	|
3556 			NETIF_F_RXHASH;
3557 
3558 	csumo_features = NETIF_F_RXCSUM	  |
3559 			 NETIF_F_IP_CSUM  |
3560 			 NETIF_F_SCTP_CRC |
3561 			 NETIF_F_IPV6_CSUM;
3562 
3563 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3564 			 NETIF_F_HW_VLAN_CTAG_TX     |
3565 			 NETIF_F_HW_VLAN_CTAG_RX;
3566 
3567 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3568 	if (is_dvm_ena)
3569 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3570 
3571 	tso_features = NETIF_F_TSO			|
3572 		       NETIF_F_TSO_ECN			|
3573 		       NETIF_F_TSO6			|
3574 		       NETIF_F_GSO_GRE			|
3575 		       NETIF_F_GSO_UDP_TUNNEL		|
3576 		       NETIF_F_GSO_GRE_CSUM		|
3577 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3578 		       NETIF_F_GSO_PARTIAL		|
3579 		       NETIF_F_GSO_IPXIP4		|
3580 		       NETIF_F_GSO_IPXIP6		|
3581 		       NETIF_F_GSO_UDP_L4;
3582 
3583 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3584 					NETIF_F_GSO_GRE_CSUM;
3585 	/* set features that user can change */
3586 	netdev->hw_features = dflt_features | csumo_features |
3587 			      vlano_features | tso_features;
3588 
3589 	/* add support for HW_CSUM on packets with MPLS header */
3590 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3591 				 NETIF_F_TSO     |
3592 				 NETIF_F_TSO6;
3593 
3594 	/* enable features */
3595 	netdev->features |= netdev->hw_features;
3596 
3597 	netdev->hw_features |= NETIF_F_HW_TC;
3598 	netdev->hw_features |= NETIF_F_LOOPBACK;
3599 
3600 	/* encap and VLAN devices inherit default, csumo and tso features */
3601 	netdev->hw_enc_features |= dflt_features | csumo_features |
3602 				   tso_features;
3603 	netdev->vlan_features |= dflt_features | csumo_features |
3604 				 tso_features;
3605 
3606 	/* advertise support but don't enable by default since only one type of
3607 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3608 	 * type turns on the other has to be turned off. This is enforced by the
3609 	 * ice_fix_features() ndo callback.
3610 	 */
3611 	if (is_dvm_ena)
3612 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3613 			NETIF_F_HW_VLAN_STAG_TX;
3614 
3615 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3616 	 * be changed at runtime
3617 	 */
3618 	netdev->hw_features |= NETIF_F_RXFCS;
3619 
3620 	netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3621 }
3622 
3623 /**
3624  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3625  * @lut: Lookup table
3626  * @rss_table_size: Lookup table size
3627  * @rss_size: Range of queue number for hashing
3628  */
3629 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3630 {
3631 	u16 i;
3632 
3633 	for (i = 0; i < rss_table_size; i++)
3634 		lut[i] = i % rss_size;
3635 }
3636 
3637 /**
3638  * ice_pf_vsi_setup - Set up a PF VSI
3639  * @pf: board private structure
3640  * @pi: pointer to the port_info instance
3641  *
3642  * Returns pointer to the successfully allocated VSI software struct
3643  * on success, otherwise returns NULL on failure.
3644  */
3645 static struct ice_vsi *
3646 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3647 {
3648 	struct ice_vsi_cfg_params params = {};
3649 
3650 	params.type = ICE_VSI_PF;
3651 	params.pi = pi;
3652 	params.flags = ICE_VSI_FLAG_INIT;
3653 
3654 	return ice_vsi_setup(pf, &params);
3655 }
3656 
3657 static struct ice_vsi *
3658 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3659 		   struct ice_channel *ch)
3660 {
3661 	struct ice_vsi_cfg_params params = {};
3662 
3663 	params.type = ICE_VSI_CHNL;
3664 	params.pi = pi;
3665 	params.ch = ch;
3666 	params.flags = ICE_VSI_FLAG_INIT;
3667 
3668 	return ice_vsi_setup(pf, &params);
3669 }
3670 
3671 /**
3672  * ice_ctrl_vsi_setup - Set up a control VSI
3673  * @pf: board private structure
3674  * @pi: pointer to the port_info instance
3675  *
3676  * Returns pointer to the successfully allocated VSI software struct
3677  * on success, otherwise returns NULL on failure.
3678  */
3679 static struct ice_vsi *
3680 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3681 {
3682 	struct ice_vsi_cfg_params params = {};
3683 
3684 	params.type = ICE_VSI_CTRL;
3685 	params.pi = pi;
3686 	params.flags = ICE_VSI_FLAG_INIT;
3687 
3688 	return ice_vsi_setup(pf, &params);
3689 }
3690 
3691 /**
3692  * ice_lb_vsi_setup - Set up a loopback VSI
3693  * @pf: board private structure
3694  * @pi: pointer to the port_info instance
3695  *
3696  * Returns pointer to the successfully allocated VSI software struct
3697  * on success, otherwise returns NULL on failure.
3698  */
3699 struct ice_vsi *
3700 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3701 {
3702 	struct ice_vsi_cfg_params params = {};
3703 
3704 	params.type = ICE_VSI_LB;
3705 	params.pi = pi;
3706 	params.flags = ICE_VSI_FLAG_INIT;
3707 
3708 	return ice_vsi_setup(pf, &params);
3709 }
3710 
3711 /**
3712  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3713  * @netdev: network interface to be adjusted
3714  * @proto: VLAN TPID
3715  * @vid: VLAN ID to be added
3716  *
3717  * net_device_ops implementation for adding VLAN IDs
3718  */
3719 static int
3720 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3721 {
3722 	struct ice_netdev_priv *np = netdev_priv(netdev);
3723 	struct ice_vsi_vlan_ops *vlan_ops;
3724 	struct ice_vsi *vsi = np->vsi;
3725 	struct ice_vlan vlan;
3726 	int ret;
3727 
3728 	/* VLAN 0 is added by default during load/reset */
3729 	if (!vid)
3730 		return 0;
3731 
3732 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3733 		usleep_range(1000, 2000);
3734 
3735 	/* Add multicast promisc rule for the VLAN ID to be added if
3736 	 * all-multicast is currently enabled.
3737 	 */
3738 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3739 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3740 					       ICE_MCAST_VLAN_PROMISC_BITS,
3741 					       vid);
3742 		if (ret)
3743 			goto finish;
3744 	}
3745 
3746 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3747 
3748 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3749 	 * packets aren't pruned by the device's internal switch on Rx
3750 	 */
3751 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3752 	ret = vlan_ops->add_vlan(vsi, &vlan);
3753 	if (ret)
3754 		goto finish;
3755 
3756 	/* If all-multicast is currently enabled and this VLAN ID is only one
3757 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3758 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3759 	 */
3760 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3761 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3762 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3763 					   ICE_MCAST_PROMISC_BITS, 0);
3764 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3765 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3766 	}
3767 
3768 finish:
3769 	clear_bit(ICE_CFG_BUSY, vsi->state);
3770 
3771 	return ret;
3772 }
3773 
3774 /**
3775  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3776  * @netdev: network interface to be adjusted
3777  * @proto: VLAN TPID
3778  * @vid: VLAN ID to be removed
3779  *
3780  * net_device_ops implementation for removing VLAN IDs
3781  */
3782 static int
3783 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3784 {
3785 	struct ice_netdev_priv *np = netdev_priv(netdev);
3786 	struct ice_vsi_vlan_ops *vlan_ops;
3787 	struct ice_vsi *vsi = np->vsi;
3788 	struct ice_vlan vlan;
3789 	int ret;
3790 
3791 	/* don't allow removal of VLAN 0 */
3792 	if (!vid)
3793 		return 0;
3794 
3795 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3796 		usleep_range(1000, 2000);
3797 
3798 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3799 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3800 	if (ret) {
3801 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3802 			   vsi->vsi_num);
3803 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3804 	}
3805 
3806 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3807 
3808 	/* Make sure VLAN delete is successful before updating VLAN
3809 	 * information
3810 	 */
3811 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3812 	ret = vlan_ops->del_vlan(vsi, &vlan);
3813 	if (ret)
3814 		goto finish;
3815 
3816 	/* Remove multicast promisc rule for the removed VLAN ID if
3817 	 * all-multicast is enabled.
3818 	 */
3819 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3820 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3821 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3822 
3823 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3824 		/* Update look-up type of multicast promisc rule for VLAN 0
3825 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3826 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3827 		 */
3828 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3829 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3830 						   ICE_MCAST_VLAN_PROMISC_BITS,
3831 						   0);
3832 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3833 						 ICE_MCAST_PROMISC_BITS, 0);
3834 		}
3835 	}
3836 
3837 finish:
3838 	clear_bit(ICE_CFG_BUSY, vsi->state);
3839 
3840 	return ret;
3841 }
3842 
3843 /**
3844  * ice_rep_indr_tc_block_unbind
3845  * @cb_priv: indirection block private data
3846  */
3847 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3848 {
3849 	struct ice_indr_block_priv *indr_priv = cb_priv;
3850 
3851 	list_del(&indr_priv->list);
3852 	kfree(indr_priv);
3853 }
3854 
3855 /**
3856  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3857  * @vsi: VSI struct which has the netdev
3858  */
3859 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3860 {
3861 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3862 
3863 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3864 				 ice_rep_indr_tc_block_unbind);
3865 }
3866 
3867 /**
3868  * ice_tc_indir_block_register - Register TC indirect block notifications
3869  * @vsi: VSI struct which has the netdev
3870  *
3871  * Returns 0 on success, negative value on failure
3872  */
3873 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3874 {
3875 	struct ice_netdev_priv *np;
3876 
3877 	if (!vsi || !vsi->netdev)
3878 		return -EINVAL;
3879 
3880 	np = netdev_priv(vsi->netdev);
3881 
3882 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3883 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3884 }
3885 
3886 /**
3887  * ice_get_avail_q_count - Get count of queues in use
3888  * @pf_qmap: bitmap to get queue use count from
3889  * @lock: pointer to a mutex that protects access to pf_qmap
3890  * @size: size of the bitmap
3891  */
3892 static u16
3893 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3894 {
3895 	unsigned long bit;
3896 	u16 count = 0;
3897 
3898 	mutex_lock(lock);
3899 	for_each_clear_bit(bit, pf_qmap, size)
3900 		count++;
3901 	mutex_unlock(lock);
3902 
3903 	return count;
3904 }
3905 
3906 /**
3907  * ice_get_avail_txq_count - Get count of Tx queues in use
3908  * @pf: pointer to an ice_pf instance
3909  */
3910 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3911 {
3912 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3913 				     pf->max_pf_txqs);
3914 }
3915 
3916 /**
3917  * ice_get_avail_rxq_count - Get count of Rx queues in use
3918  * @pf: pointer to an ice_pf instance
3919  */
3920 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3921 {
3922 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3923 				     pf->max_pf_rxqs);
3924 }
3925 
3926 /**
3927  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3928  * @pf: board private structure to initialize
3929  */
3930 static void ice_deinit_pf(struct ice_pf *pf)
3931 {
3932 	ice_service_task_stop(pf);
3933 	mutex_destroy(&pf->lag_mutex);
3934 	mutex_destroy(&pf->adev_mutex);
3935 	mutex_destroy(&pf->sw_mutex);
3936 	mutex_destroy(&pf->tc_mutex);
3937 	mutex_destroy(&pf->avail_q_mutex);
3938 	mutex_destroy(&pf->vfs.table_lock);
3939 
3940 	if (pf->avail_txqs) {
3941 		bitmap_free(pf->avail_txqs);
3942 		pf->avail_txqs = NULL;
3943 	}
3944 
3945 	if (pf->avail_rxqs) {
3946 		bitmap_free(pf->avail_rxqs);
3947 		pf->avail_rxqs = NULL;
3948 	}
3949 
3950 	if (pf->ptp.clock)
3951 		ptp_clock_unregister(pf->ptp.clock);
3952 }
3953 
3954 /**
3955  * ice_set_pf_caps - set PFs capability flags
3956  * @pf: pointer to the PF instance
3957  */
3958 static void ice_set_pf_caps(struct ice_pf *pf)
3959 {
3960 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3961 
3962 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3963 	if (func_caps->common_cap.rdma)
3964 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3965 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3966 	if (func_caps->common_cap.dcb)
3967 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3968 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3969 	if (func_caps->common_cap.sr_iov_1_1) {
3970 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3971 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3972 					      ICE_MAX_SRIOV_VFS);
3973 	}
3974 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3975 	if (func_caps->common_cap.rss_table_size)
3976 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3977 
3978 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3979 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3980 		u16 unused;
3981 
3982 		/* ctrl_vsi_idx will be set to a valid value when flow director
3983 		 * is setup by ice_init_fdir
3984 		 */
3985 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3986 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3987 		/* force guaranteed filter pool for PF */
3988 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3989 				       func_caps->fd_fltr_guar);
3990 		/* force shared filter pool for PF */
3991 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3992 				       func_caps->fd_fltr_best_effort);
3993 	}
3994 
3995 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3996 	if (func_caps->common_cap.ieee_1588 &&
3997 	    !(pf->hw.mac_type == ICE_MAC_E830))
3998 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3999 
4000 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
4001 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4002 }
4003 
4004 /**
4005  * ice_init_pf - Initialize general software structures (struct ice_pf)
4006  * @pf: board private structure to initialize
4007  */
4008 static int ice_init_pf(struct ice_pf *pf)
4009 {
4010 	ice_set_pf_caps(pf);
4011 
4012 	mutex_init(&pf->sw_mutex);
4013 	mutex_init(&pf->tc_mutex);
4014 	mutex_init(&pf->adev_mutex);
4015 	mutex_init(&pf->lag_mutex);
4016 
4017 	INIT_HLIST_HEAD(&pf->aq_wait_list);
4018 	spin_lock_init(&pf->aq_wait_lock);
4019 	init_waitqueue_head(&pf->aq_wait_queue);
4020 
4021 	init_waitqueue_head(&pf->reset_wait_queue);
4022 
4023 	/* setup service timer and periodic service task */
4024 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4025 	pf->serv_tmr_period = HZ;
4026 	INIT_WORK(&pf->serv_task, ice_service_task);
4027 	clear_bit(ICE_SERVICE_SCHED, pf->state);
4028 
4029 	mutex_init(&pf->avail_q_mutex);
4030 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4031 	if (!pf->avail_txqs)
4032 		return -ENOMEM;
4033 
4034 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4035 	if (!pf->avail_rxqs) {
4036 		bitmap_free(pf->avail_txqs);
4037 		pf->avail_txqs = NULL;
4038 		return -ENOMEM;
4039 	}
4040 
4041 	mutex_init(&pf->vfs.table_lock);
4042 	hash_init(pf->vfs.table);
4043 	ice_mbx_init_snapshot(&pf->hw);
4044 
4045 	return 0;
4046 }
4047 
4048 /**
4049  * ice_is_wol_supported - check if WoL is supported
4050  * @hw: pointer to hardware info
4051  *
4052  * Check if WoL is supported based on the HW configuration.
4053  * Returns true if NVM supports and enables WoL for this port, false otherwise
4054  */
4055 bool ice_is_wol_supported(struct ice_hw *hw)
4056 {
4057 	u16 wol_ctrl;
4058 
4059 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4060 	 * word) indicates WoL is not supported on the corresponding PF ID.
4061 	 */
4062 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4063 		return false;
4064 
4065 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4066 }
4067 
4068 /**
4069  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4070  * @vsi: VSI being changed
4071  * @new_rx: new number of Rx queues
4072  * @new_tx: new number of Tx queues
4073  * @locked: is adev device_lock held
4074  *
4075  * Only change the number of queues if new_tx, or new_rx is non-0.
4076  *
4077  * Returns 0 on success.
4078  */
4079 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4080 {
4081 	struct ice_pf *pf = vsi->back;
4082 	int err = 0, timeout = 50;
4083 
4084 	if (!new_rx && !new_tx)
4085 		return -EINVAL;
4086 
4087 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4088 		timeout--;
4089 		if (!timeout)
4090 			return -EBUSY;
4091 		usleep_range(1000, 2000);
4092 	}
4093 
4094 	if (new_tx)
4095 		vsi->req_txq = (u16)new_tx;
4096 	if (new_rx)
4097 		vsi->req_rxq = (u16)new_rx;
4098 
4099 	/* set for the next time the netdev is started */
4100 	if (!netif_running(vsi->netdev)) {
4101 		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4102 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4103 		goto done;
4104 	}
4105 
4106 	ice_vsi_close(vsi);
4107 	ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4108 	ice_pf_dcb_recfg(pf, locked);
4109 	ice_vsi_open(vsi);
4110 done:
4111 	clear_bit(ICE_CFG_BUSY, pf->state);
4112 	return err;
4113 }
4114 
4115 /**
4116  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4117  * @pf: PF to configure
4118  *
4119  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4120  * VSI can still Tx/Rx VLAN tagged packets.
4121  */
4122 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4123 {
4124 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4125 	struct ice_vsi_ctx *ctxt;
4126 	struct ice_hw *hw;
4127 	int status;
4128 
4129 	if (!vsi)
4130 		return;
4131 
4132 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4133 	if (!ctxt)
4134 		return;
4135 
4136 	hw = &pf->hw;
4137 	ctxt->info = vsi->info;
4138 
4139 	ctxt->info.valid_sections =
4140 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4141 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4142 			    ICE_AQ_VSI_PROP_SW_VALID);
4143 
4144 	/* disable VLAN anti-spoof */
4145 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4146 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4147 
4148 	/* disable VLAN pruning and keep all other settings */
4149 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4150 
4151 	/* allow all VLANs on Tx and don't strip on Rx */
4152 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4153 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4154 
4155 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4156 	if (status) {
4157 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4158 			status, ice_aq_str(hw->adminq.sq_last_status));
4159 	} else {
4160 		vsi->info.sec_flags = ctxt->info.sec_flags;
4161 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4162 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4163 	}
4164 
4165 	kfree(ctxt);
4166 }
4167 
4168 /**
4169  * ice_log_pkg_init - log result of DDP package load
4170  * @hw: pointer to hardware info
4171  * @state: state of package load
4172  */
4173 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4174 {
4175 	struct ice_pf *pf = hw->back;
4176 	struct device *dev;
4177 
4178 	dev = ice_pf_to_dev(pf);
4179 
4180 	switch (state) {
4181 	case ICE_DDP_PKG_SUCCESS:
4182 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4183 			 hw->active_pkg_name,
4184 			 hw->active_pkg_ver.major,
4185 			 hw->active_pkg_ver.minor,
4186 			 hw->active_pkg_ver.update,
4187 			 hw->active_pkg_ver.draft);
4188 		break;
4189 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4190 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4191 			 hw->active_pkg_name,
4192 			 hw->active_pkg_ver.major,
4193 			 hw->active_pkg_ver.minor,
4194 			 hw->active_pkg_ver.update,
4195 			 hw->active_pkg_ver.draft);
4196 		break;
4197 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4198 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4199 			hw->active_pkg_name,
4200 			hw->active_pkg_ver.major,
4201 			hw->active_pkg_ver.minor,
4202 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4203 		break;
4204 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4205 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4206 			 hw->active_pkg_name,
4207 			 hw->active_pkg_ver.major,
4208 			 hw->active_pkg_ver.minor,
4209 			 hw->active_pkg_ver.update,
4210 			 hw->active_pkg_ver.draft,
4211 			 hw->pkg_name,
4212 			 hw->pkg_ver.major,
4213 			 hw->pkg_ver.minor,
4214 			 hw->pkg_ver.update,
4215 			 hw->pkg_ver.draft);
4216 		break;
4217 	case ICE_DDP_PKG_FW_MISMATCH:
4218 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4219 		break;
4220 	case ICE_DDP_PKG_INVALID_FILE:
4221 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4222 		break;
4223 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4224 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4225 		break;
4226 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4227 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4228 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4229 		break;
4230 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4231 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4232 		break;
4233 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4234 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4235 		break;
4236 	case ICE_DDP_PKG_LOAD_ERROR:
4237 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4238 		/* poll for reset to complete */
4239 		if (ice_check_reset(hw))
4240 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4241 		break;
4242 	case ICE_DDP_PKG_ERR:
4243 	default:
4244 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4245 		break;
4246 	}
4247 }
4248 
4249 /**
4250  * ice_load_pkg - load/reload the DDP Package file
4251  * @firmware: firmware structure when firmware requested or NULL for reload
4252  * @pf: pointer to the PF instance
4253  *
4254  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4255  * initialize HW tables.
4256  */
4257 static void
4258 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4259 {
4260 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4261 	struct device *dev = ice_pf_to_dev(pf);
4262 	struct ice_hw *hw = &pf->hw;
4263 
4264 	/* Load DDP Package */
4265 	if (firmware && !hw->pkg_copy) {
4266 		state = ice_copy_and_init_pkg(hw, firmware->data,
4267 					      firmware->size);
4268 		ice_log_pkg_init(hw, state);
4269 	} else if (!firmware && hw->pkg_copy) {
4270 		/* Reload package during rebuild after CORER/GLOBR reset */
4271 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4272 		ice_log_pkg_init(hw, state);
4273 	} else {
4274 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4275 	}
4276 
4277 	if (!ice_is_init_pkg_successful(state)) {
4278 		/* Safe Mode */
4279 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4280 		return;
4281 	}
4282 
4283 	/* Successful download package is the precondition for advanced
4284 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4285 	 */
4286 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4287 }
4288 
4289 /**
4290  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4291  * @pf: pointer to the PF structure
4292  *
4293  * There is no error returned here because the driver should be able to handle
4294  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4295  * specifically with Tx.
4296  */
4297 static void ice_verify_cacheline_size(struct ice_pf *pf)
4298 {
4299 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4300 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4301 			 ICE_CACHE_LINE_BYTES);
4302 }
4303 
4304 /**
4305  * ice_send_version - update firmware with driver version
4306  * @pf: PF struct
4307  *
4308  * Returns 0 on success, else error code
4309  */
4310 static int ice_send_version(struct ice_pf *pf)
4311 {
4312 	struct ice_driver_ver dv;
4313 
4314 	dv.major_ver = 0xff;
4315 	dv.minor_ver = 0xff;
4316 	dv.build_ver = 0xff;
4317 	dv.subbuild_ver = 0;
4318 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4319 		sizeof(dv.driver_string));
4320 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4321 }
4322 
4323 /**
4324  * ice_init_fdir - Initialize flow director VSI and configuration
4325  * @pf: pointer to the PF instance
4326  *
4327  * returns 0 on success, negative on error
4328  */
4329 static int ice_init_fdir(struct ice_pf *pf)
4330 {
4331 	struct device *dev = ice_pf_to_dev(pf);
4332 	struct ice_vsi *ctrl_vsi;
4333 	int err;
4334 
4335 	/* Side Band Flow Director needs to have a control VSI.
4336 	 * Allocate it and store it in the PF.
4337 	 */
4338 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4339 	if (!ctrl_vsi) {
4340 		dev_dbg(dev, "could not create control VSI\n");
4341 		return -ENOMEM;
4342 	}
4343 
4344 	err = ice_vsi_open_ctrl(ctrl_vsi);
4345 	if (err) {
4346 		dev_dbg(dev, "could not open control VSI\n");
4347 		goto err_vsi_open;
4348 	}
4349 
4350 	mutex_init(&pf->hw.fdir_fltr_lock);
4351 
4352 	err = ice_fdir_create_dflt_rules(pf);
4353 	if (err)
4354 		goto err_fdir_rule;
4355 
4356 	return 0;
4357 
4358 err_fdir_rule:
4359 	ice_fdir_release_flows(&pf->hw);
4360 	ice_vsi_close(ctrl_vsi);
4361 err_vsi_open:
4362 	ice_vsi_release(ctrl_vsi);
4363 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4364 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4365 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4366 	}
4367 	return err;
4368 }
4369 
4370 static void ice_deinit_fdir(struct ice_pf *pf)
4371 {
4372 	struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4373 
4374 	if (!vsi)
4375 		return;
4376 
4377 	ice_vsi_manage_fdir(vsi, false);
4378 	ice_vsi_release(vsi);
4379 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4380 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4381 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4382 	}
4383 
4384 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4385 }
4386 
4387 /**
4388  * ice_get_opt_fw_name - return optional firmware file name or NULL
4389  * @pf: pointer to the PF instance
4390  */
4391 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4392 {
4393 	/* Optional firmware name same as default with additional dash
4394 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4395 	 */
4396 	struct pci_dev *pdev = pf->pdev;
4397 	char *opt_fw_filename;
4398 	u64 dsn;
4399 
4400 	/* Determine the name of the optional file using the DSN (two
4401 	 * dwords following the start of the DSN Capability).
4402 	 */
4403 	dsn = pci_get_dsn(pdev);
4404 	if (!dsn)
4405 		return NULL;
4406 
4407 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4408 	if (!opt_fw_filename)
4409 		return NULL;
4410 
4411 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4412 		 ICE_DDP_PKG_PATH, dsn);
4413 
4414 	return opt_fw_filename;
4415 }
4416 
4417 /**
4418  * ice_request_fw - Device initialization routine
4419  * @pf: pointer to the PF instance
4420  */
4421 static void ice_request_fw(struct ice_pf *pf)
4422 {
4423 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4424 	const struct firmware *firmware = NULL;
4425 	struct device *dev = ice_pf_to_dev(pf);
4426 	int err = 0;
4427 
4428 	/* optional device-specific DDP (if present) overrides the default DDP
4429 	 * package file. kernel logs a debug message if the file doesn't exist,
4430 	 * and warning messages for other errors.
4431 	 */
4432 	if (opt_fw_filename) {
4433 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4434 		if (err) {
4435 			kfree(opt_fw_filename);
4436 			goto dflt_pkg_load;
4437 		}
4438 
4439 		/* request for firmware was successful. Download to device */
4440 		ice_load_pkg(firmware, pf);
4441 		kfree(opt_fw_filename);
4442 		release_firmware(firmware);
4443 		return;
4444 	}
4445 
4446 dflt_pkg_load:
4447 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4448 	if (err) {
4449 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4450 		return;
4451 	}
4452 
4453 	/* request for firmware was successful. Download to device */
4454 	ice_load_pkg(firmware, pf);
4455 	release_firmware(firmware);
4456 }
4457 
4458 /**
4459  * ice_print_wake_reason - show the wake up cause in the log
4460  * @pf: pointer to the PF struct
4461  */
4462 static void ice_print_wake_reason(struct ice_pf *pf)
4463 {
4464 	u32 wus = pf->wakeup_reason;
4465 	const char *wake_str;
4466 
4467 	/* if no wake event, nothing to print */
4468 	if (!wus)
4469 		return;
4470 
4471 	if (wus & PFPM_WUS_LNKC_M)
4472 		wake_str = "Link\n";
4473 	else if (wus & PFPM_WUS_MAG_M)
4474 		wake_str = "Magic Packet\n";
4475 	else if (wus & PFPM_WUS_MNG_M)
4476 		wake_str = "Management\n";
4477 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4478 		wake_str = "Firmware Reset\n";
4479 	else
4480 		wake_str = "Unknown\n";
4481 
4482 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4483 }
4484 
4485 /**
4486  * ice_pf_fwlog_update_module - update 1 module
4487  * @pf: pointer to the PF struct
4488  * @log_level: log_level to use for the @module
4489  * @module: module to update
4490  */
4491 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4492 {
4493 	struct ice_hw *hw = &pf->hw;
4494 
4495 	hw->fwlog_cfg.module_entries[module].log_level = log_level;
4496 }
4497 
4498 /**
4499  * ice_register_netdev - register netdev
4500  * @vsi: pointer to the VSI struct
4501  */
4502 static int ice_register_netdev(struct ice_vsi *vsi)
4503 {
4504 	int err;
4505 
4506 	if (!vsi || !vsi->netdev)
4507 		return -EIO;
4508 
4509 	err = register_netdev(vsi->netdev);
4510 	if (err)
4511 		return err;
4512 
4513 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4514 	netif_carrier_off(vsi->netdev);
4515 	netif_tx_stop_all_queues(vsi->netdev);
4516 
4517 	return 0;
4518 }
4519 
4520 static void ice_unregister_netdev(struct ice_vsi *vsi)
4521 {
4522 	if (!vsi || !vsi->netdev)
4523 		return;
4524 
4525 	unregister_netdev(vsi->netdev);
4526 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4527 }
4528 
4529 /**
4530  * ice_cfg_netdev - Allocate, configure and register a netdev
4531  * @vsi: the VSI associated with the new netdev
4532  *
4533  * Returns 0 on success, negative value on failure
4534  */
4535 static int ice_cfg_netdev(struct ice_vsi *vsi)
4536 {
4537 	struct ice_netdev_priv *np;
4538 	struct net_device *netdev;
4539 	u8 mac_addr[ETH_ALEN];
4540 
4541 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4542 				    vsi->alloc_rxq);
4543 	if (!netdev)
4544 		return -ENOMEM;
4545 
4546 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4547 	vsi->netdev = netdev;
4548 	np = netdev_priv(netdev);
4549 	np->vsi = vsi;
4550 
4551 	ice_set_netdev_features(netdev);
4552 	ice_set_ops(vsi);
4553 
4554 	if (vsi->type == ICE_VSI_PF) {
4555 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4556 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4557 		eth_hw_addr_set(netdev, mac_addr);
4558 	}
4559 
4560 	netdev->priv_flags |= IFF_UNICAST_FLT;
4561 
4562 	/* Setup netdev TC information */
4563 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4564 
4565 	netdev->max_mtu = ICE_MAX_MTU;
4566 
4567 	return 0;
4568 }
4569 
4570 static void ice_decfg_netdev(struct ice_vsi *vsi)
4571 {
4572 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4573 	free_netdev(vsi->netdev);
4574 	vsi->netdev = NULL;
4575 }
4576 
4577 /**
4578  * ice_wait_for_fw - wait for full FW readiness
4579  * @hw: pointer to the hardware structure
4580  * @timeout: milliseconds that can elapse before timing out
4581  */
4582 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4583 {
4584 	int fw_loading;
4585 	u32 elapsed = 0;
4586 
4587 	while (elapsed <= timeout) {
4588 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4589 
4590 		/* firmware was not yet loaded, we have to wait more */
4591 		if (fw_loading) {
4592 			elapsed += 100;
4593 			msleep(100);
4594 			continue;
4595 		}
4596 		return 0;
4597 	}
4598 
4599 	return -ETIMEDOUT;
4600 }
4601 
4602 int ice_init_dev(struct ice_pf *pf)
4603 {
4604 	struct device *dev = ice_pf_to_dev(pf);
4605 	struct ice_hw *hw = &pf->hw;
4606 	int err;
4607 
4608 	err = ice_init_hw(hw);
4609 	if (err) {
4610 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4611 		return err;
4612 	}
4613 
4614 	/* Some cards require longer initialization times
4615 	 * due to necessity of loading FW from an external source.
4616 	 * This can take even half a minute.
4617 	 */
4618 	if (ice_is_pf_c827(hw)) {
4619 		err = ice_wait_for_fw(hw, 30000);
4620 		if (err) {
4621 			dev_err(dev, "ice_wait_for_fw timed out");
4622 			return err;
4623 		}
4624 	}
4625 
4626 	ice_init_feature_support(pf);
4627 
4628 	ice_request_fw(pf);
4629 
4630 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4631 	 * set in pf->state, which will cause ice_is_safe_mode to return
4632 	 * true
4633 	 */
4634 	if (ice_is_safe_mode(pf)) {
4635 		/* we already got function/device capabilities but these don't
4636 		 * reflect what the driver needs to do in safe mode. Instead of
4637 		 * adding conditional logic everywhere to ignore these
4638 		 * device/function capabilities, override them.
4639 		 */
4640 		ice_set_safe_mode_caps(hw);
4641 	}
4642 
4643 	err = ice_init_pf(pf);
4644 	if (err) {
4645 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4646 		goto err_init_pf;
4647 	}
4648 
4649 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4650 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4651 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4652 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4653 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4654 		pf->hw.udp_tunnel_nic.tables[0].n_entries =
4655 			pf->hw.tnl.valid_count[TNL_VXLAN];
4656 		pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4657 			UDP_TUNNEL_TYPE_VXLAN;
4658 	}
4659 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4660 		pf->hw.udp_tunnel_nic.tables[1].n_entries =
4661 			pf->hw.tnl.valid_count[TNL_GENEVE];
4662 		pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4663 			UDP_TUNNEL_TYPE_GENEVE;
4664 	}
4665 
4666 	err = ice_init_interrupt_scheme(pf);
4667 	if (err) {
4668 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4669 		err = -EIO;
4670 		goto err_init_interrupt_scheme;
4671 	}
4672 
4673 	/* In case of MSIX we are going to setup the misc vector right here
4674 	 * to handle admin queue events etc. In case of legacy and MSI
4675 	 * the misc functionality and queue processing is combined in
4676 	 * the same vector and that gets setup at open.
4677 	 */
4678 	err = ice_req_irq_msix_misc(pf);
4679 	if (err) {
4680 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4681 		goto err_req_irq_msix_misc;
4682 	}
4683 
4684 	return 0;
4685 
4686 err_req_irq_msix_misc:
4687 	ice_clear_interrupt_scheme(pf);
4688 err_init_interrupt_scheme:
4689 	ice_deinit_pf(pf);
4690 err_init_pf:
4691 	ice_deinit_hw(hw);
4692 	return err;
4693 }
4694 
4695 void ice_deinit_dev(struct ice_pf *pf)
4696 {
4697 	ice_free_irq_msix_misc(pf);
4698 	ice_deinit_pf(pf);
4699 	ice_deinit_hw(&pf->hw);
4700 
4701 	/* Service task is already stopped, so call reset directly. */
4702 	ice_reset(&pf->hw, ICE_RESET_PFR);
4703 	pci_wait_for_pending_transaction(pf->pdev);
4704 	ice_clear_interrupt_scheme(pf);
4705 }
4706 
4707 static void ice_init_features(struct ice_pf *pf)
4708 {
4709 	struct device *dev = ice_pf_to_dev(pf);
4710 
4711 	if (ice_is_safe_mode(pf))
4712 		return;
4713 
4714 	/* initialize DDP driven features */
4715 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4716 		ice_ptp_init(pf);
4717 
4718 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4719 		ice_gnss_init(pf);
4720 
4721 	if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4722 	    ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4723 		ice_dpll_init(pf);
4724 
4725 	/* Note: Flow director init failure is non-fatal to load */
4726 	if (ice_init_fdir(pf))
4727 		dev_err(dev, "could not initialize flow director\n");
4728 
4729 	/* Note: DCB init failure is non-fatal to load */
4730 	if (ice_init_pf_dcb(pf, false)) {
4731 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4732 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4733 	} else {
4734 		ice_cfg_lldp_mib_change(&pf->hw, true);
4735 	}
4736 
4737 	if (ice_init_lag(pf))
4738 		dev_warn(dev, "Failed to init link aggregation support\n");
4739 
4740 	ice_hwmon_init(pf);
4741 }
4742 
4743 static void ice_deinit_features(struct ice_pf *pf)
4744 {
4745 	if (ice_is_safe_mode(pf))
4746 		return;
4747 
4748 	ice_deinit_lag(pf);
4749 	if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4750 		ice_cfg_lldp_mib_change(&pf->hw, false);
4751 	ice_deinit_fdir(pf);
4752 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4753 		ice_gnss_exit(pf);
4754 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4755 		ice_ptp_release(pf);
4756 	if (test_bit(ICE_FLAG_DPLL, pf->flags))
4757 		ice_dpll_deinit(pf);
4758 	if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4759 		xa_destroy(&pf->eswitch.reprs);
4760 }
4761 
4762 static void ice_init_wakeup(struct ice_pf *pf)
4763 {
4764 	/* Save wakeup reason register for later use */
4765 	pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4766 
4767 	/* check for a power management event */
4768 	ice_print_wake_reason(pf);
4769 
4770 	/* clear wake status, all bits */
4771 	wr32(&pf->hw, PFPM_WUS, U32_MAX);
4772 
4773 	/* Disable WoL at init, wait for user to enable */
4774 	device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4775 }
4776 
4777 static int ice_init_link(struct ice_pf *pf)
4778 {
4779 	struct device *dev = ice_pf_to_dev(pf);
4780 	int err;
4781 
4782 	err = ice_init_link_events(pf->hw.port_info);
4783 	if (err) {
4784 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4785 		return err;
4786 	}
4787 
4788 	/* not a fatal error if this fails */
4789 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4790 	if (err)
4791 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4792 
4793 	/* not a fatal error if this fails */
4794 	err = ice_update_link_info(pf->hw.port_info);
4795 	if (err)
4796 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4797 
4798 	ice_init_link_dflt_override(pf->hw.port_info);
4799 
4800 	ice_check_link_cfg_err(pf,
4801 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4802 
4803 	/* if media available, initialize PHY settings */
4804 	if (pf->hw.port_info->phy.link_info.link_info &
4805 	    ICE_AQ_MEDIA_AVAILABLE) {
4806 		/* not a fatal error if this fails */
4807 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4808 		if (err)
4809 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4810 
4811 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4812 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4813 
4814 			if (vsi)
4815 				ice_configure_phy(vsi);
4816 		}
4817 	} else {
4818 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4819 	}
4820 
4821 	return err;
4822 }
4823 
4824 static int ice_init_pf_sw(struct ice_pf *pf)
4825 {
4826 	bool dvm = ice_is_dvm_ena(&pf->hw);
4827 	struct ice_vsi *vsi;
4828 	int err;
4829 
4830 	/* create switch struct for the switch element created by FW on boot */
4831 	pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4832 	if (!pf->first_sw)
4833 		return -ENOMEM;
4834 
4835 	if (pf->hw.evb_veb)
4836 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4837 	else
4838 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4839 
4840 	pf->first_sw->pf = pf;
4841 
4842 	/* record the sw_id available for later use */
4843 	pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4844 
4845 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4846 	if (err)
4847 		goto err_aq_set_port_params;
4848 
4849 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4850 	if (!vsi) {
4851 		err = -ENOMEM;
4852 		goto err_pf_vsi_setup;
4853 	}
4854 
4855 	return 0;
4856 
4857 err_pf_vsi_setup:
4858 err_aq_set_port_params:
4859 	kfree(pf->first_sw);
4860 	return err;
4861 }
4862 
4863 static void ice_deinit_pf_sw(struct ice_pf *pf)
4864 {
4865 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4866 
4867 	if (!vsi)
4868 		return;
4869 
4870 	ice_vsi_release(vsi);
4871 	kfree(pf->first_sw);
4872 }
4873 
4874 static int ice_alloc_vsis(struct ice_pf *pf)
4875 {
4876 	struct device *dev = ice_pf_to_dev(pf);
4877 
4878 	pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4879 	if (!pf->num_alloc_vsi)
4880 		return -EIO;
4881 
4882 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4883 		dev_warn(dev,
4884 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4885 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4886 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4887 	}
4888 
4889 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4890 			       GFP_KERNEL);
4891 	if (!pf->vsi)
4892 		return -ENOMEM;
4893 
4894 	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4895 				     sizeof(*pf->vsi_stats), GFP_KERNEL);
4896 	if (!pf->vsi_stats) {
4897 		devm_kfree(dev, pf->vsi);
4898 		return -ENOMEM;
4899 	}
4900 
4901 	return 0;
4902 }
4903 
4904 static void ice_dealloc_vsis(struct ice_pf *pf)
4905 {
4906 	devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4907 	pf->vsi_stats = NULL;
4908 
4909 	pf->num_alloc_vsi = 0;
4910 	devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4911 	pf->vsi = NULL;
4912 }
4913 
4914 static int ice_init_devlink(struct ice_pf *pf)
4915 {
4916 	int err;
4917 
4918 	err = ice_devlink_register_params(pf);
4919 	if (err)
4920 		return err;
4921 
4922 	ice_devlink_init_regions(pf);
4923 	ice_devlink_register(pf);
4924 
4925 	return 0;
4926 }
4927 
4928 static void ice_deinit_devlink(struct ice_pf *pf)
4929 {
4930 	ice_devlink_unregister(pf);
4931 	ice_devlink_destroy_regions(pf);
4932 	ice_devlink_unregister_params(pf);
4933 }
4934 
4935 static int ice_init(struct ice_pf *pf)
4936 {
4937 	int err;
4938 
4939 	err = ice_init_dev(pf);
4940 	if (err)
4941 		return err;
4942 
4943 	err = ice_alloc_vsis(pf);
4944 	if (err)
4945 		goto err_alloc_vsis;
4946 
4947 	err = ice_init_pf_sw(pf);
4948 	if (err)
4949 		goto err_init_pf_sw;
4950 
4951 	ice_init_wakeup(pf);
4952 
4953 	err = ice_init_link(pf);
4954 	if (err)
4955 		goto err_init_link;
4956 
4957 	err = ice_send_version(pf);
4958 	if (err)
4959 		goto err_init_link;
4960 
4961 	ice_verify_cacheline_size(pf);
4962 
4963 	if (ice_is_safe_mode(pf))
4964 		ice_set_safe_mode_vlan_cfg(pf);
4965 	else
4966 		/* print PCI link speed and width */
4967 		pcie_print_link_status(pf->pdev);
4968 
4969 	/* ready to go, so clear down state bit */
4970 	clear_bit(ICE_DOWN, pf->state);
4971 	clear_bit(ICE_SERVICE_DIS, pf->state);
4972 
4973 	/* since everything is good, start the service timer */
4974 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4975 
4976 	return 0;
4977 
4978 err_init_link:
4979 	ice_deinit_pf_sw(pf);
4980 err_init_pf_sw:
4981 	ice_dealloc_vsis(pf);
4982 err_alloc_vsis:
4983 	ice_deinit_dev(pf);
4984 	return err;
4985 }
4986 
4987 static void ice_deinit(struct ice_pf *pf)
4988 {
4989 	set_bit(ICE_SERVICE_DIS, pf->state);
4990 	set_bit(ICE_DOWN, pf->state);
4991 
4992 	ice_deinit_pf_sw(pf);
4993 	ice_dealloc_vsis(pf);
4994 	ice_deinit_dev(pf);
4995 }
4996 
4997 /**
4998  * ice_load - load pf by init hw and starting VSI
4999  * @pf: pointer to the pf instance
5000  *
5001  * This function has to be called under devl_lock.
5002  */
5003 int ice_load(struct ice_pf *pf)
5004 {
5005 	struct ice_vsi *vsi;
5006 	int err;
5007 
5008 	devl_assert_locked(priv_to_devlink(pf));
5009 
5010 	vsi = ice_get_main_vsi(pf);
5011 
5012 	/* init channel list */
5013 	INIT_LIST_HEAD(&vsi->ch_list);
5014 
5015 	err = ice_cfg_netdev(vsi);
5016 	if (err)
5017 		return err;
5018 
5019 	/* Setup DCB netlink interface */
5020 	ice_dcbnl_setup(vsi);
5021 
5022 	err = ice_init_mac_fltr(pf);
5023 	if (err)
5024 		goto err_init_mac_fltr;
5025 
5026 	err = ice_devlink_create_pf_port(pf);
5027 	if (err)
5028 		goto err_devlink_create_pf_port;
5029 
5030 	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5031 
5032 	err = ice_register_netdev(vsi);
5033 	if (err)
5034 		goto err_register_netdev;
5035 
5036 	err = ice_tc_indir_block_register(vsi);
5037 	if (err)
5038 		goto err_tc_indir_block_register;
5039 
5040 	ice_napi_add(vsi);
5041 
5042 	err = ice_init_rdma(pf);
5043 	if (err)
5044 		goto err_init_rdma;
5045 
5046 	ice_init_features(pf);
5047 	ice_service_task_restart(pf);
5048 
5049 	clear_bit(ICE_DOWN, pf->state);
5050 
5051 	return 0;
5052 
5053 err_init_rdma:
5054 	ice_tc_indir_block_unregister(vsi);
5055 err_tc_indir_block_register:
5056 	ice_unregister_netdev(vsi);
5057 err_register_netdev:
5058 	ice_devlink_destroy_pf_port(pf);
5059 err_devlink_create_pf_port:
5060 err_init_mac_fltr:
5061 	ice_decfg_netdev(vsi);
5062 	return err;
5063 }
5064 
5065 /**
5066  * ice_unload - unload pf by stopping VSI and deinit hw
5067  * @pf: pointer to the pf instance
5068  *
5069  * This function has to be called under devl_lock.
5070  */
5071 void ice_unload(struct ice_pf *pf)
5072 {
5073 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
5074 
5075 	devl_assert_locked(priv_to_devlink(pf));
5076 
5077 	ice_deinit_features(pf);
5078 	ice_deinit_rdma(pf);
5079 	ice_tc_indir_block_unregister(vsi);
5080 	ice_unregister_netdev(vsi);
5081 	ice_devlink_destroy_pf_port(pf);
5082 	ice_decfg_netdev(vsi);
5083 }
5084 
5085 /**
5086  * ice_probe - Device initialization routine
5087  * @pdev: PCI device information struct
5088  * @ent: entry in ice_pci_tbl
5089  *
5090  * Returns 0 on success, negative on failure
5091  */
5092 static int
5093 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5094 {
5095 	struct device *dev = &pdev->dev;
5096 	struct ice_pf *pf;
5097 	struct ice_hw *hw;
5098 	int err;
5099 
5100 	if (pdev->is_virtfn) {
5101 		dev_err(dev, "can't probe a virtual function\n");
5102 		return -EINVAL;
5103 	}
5104 
5105 	/* when under a kdump kernel initiate a reset before enabling the
5106 	 * device in order to clear out any pending DMA transactions. These
5107 	 * transactions can cause some systems to machine check when doing
5108 	 * the pcim_enable_device() below.
5109 	 */
5110 	if (is_kdump_kernel()) {
5111 		pci_save_state(pdev);
5112 		pci_clear_master(pdev);
5113 		err = pcie_flr(pdev);
5114 		if (err)
5115 			return err;
5116 		pci_restore_state(pdev);
5117 	}
5118 
5119 	/* this driver uses devres, see
5120 	 * Documentation/driver-api/driver-model/devres.rst
5121 	 */
5122 	err = pcim_enable_device(pdev);
5123 	if (err)
5124 		return err;
5125 
5126 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5127 	if (err) {
5128 		dev_err(dev, "BAR0 I/O map error %d\n", err);
5129 		return err;
5130 	}
5131 
5132 	pf = ice_allocate_pf(dev);
5133 	if (!pf)
5134 		return -ENOMEM;
5135 
5136 	/* initialize Auxiliary index to invalid value */
5137 	pf->aux_idx = -1;
5138 
5139 	/* set up for high or low DMA */
5140 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5141 	if (err) {
5142 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5143 		return err;
5144 	}
5145 
5146 	pci_set_master(pdev);
5147 
5148 	pf->pdev = pdev;
5149 	pci_set_drvdata(pdev, pf);
5150 	set_bit(ICE_DOWN, pf->state);
5151 	/* Disable service task until DOWN bit is cleared */
5152 	set_bit(ICE_SERVICE_DIS, pf->state);
5153 
5154 	hw = &pf->hw;
5155 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5156 	pci_save_state(pdev);
5157 
5158 	hw->back = pf;
5159 	hw->port_info = NULL;
5160 	hw->vendor_id = pdev->vendor;
5161 	hw->device_id = pdev->device;
5162 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5163 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5164 	hw->subsystem_device_id = pdev->subsystem_device;
5165 	hw->bus.device = PCI_SLOT(pdev->devfn);
5166 	hw->bus.func = PCI_FUNC(pdev->devfn);
5167 	ice_set_ctrlq_len(hw);
5168 
5169 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5170 
5171 #ifndef CONFIG_DYNAMIC_DEBUG
5172 	if (debug < -1)
5173 		hw->debug_mask = debug;
5174 #endif
5175 
5176 	err = ice_init(pf);
5177 	if (err)
5178 		goto err_init;
5179 
5180 	devl_lock(priv_to_devlink(pf));
5181 	err = ice_load(pf);
5182 	devl_unlock(priv_to_devlink(pf));
5183 	if (err)
5184 		goto err_load;
5185 
5186 	err = ice_init_devlink(pf);
5187 	if (err)
5188 		goto err_init_devlink;
5189 
5190 	return 0;
5191 
5192 err_init_devlink:
5193 	devl_lock(priv_to_devlink(pf));
5194 	ice_unload(pf);
5195 	devl_unlock(priv_to_devlink(pf));
5196 err_load:
5197 	ice_deinit(pf);
5198 err_init:
5199 	pci_disable_device(pdev);
5200 	return err;
5201 }
5202 
5203 /**
5204  * ice_set_wake - enable or disable Wake on LAN
5205  * @pf: pointer to the PF struct
5206  *
5207  * Simple helper for WoL control
5208  */
5209 static void ice_set_wake(struct ice_pf *pf)
5210 {
5211 	struct ice_hw *hw = &pf->hw;
5212 	bool wol = pf->wol_ena;
5213 
5214 	/* clear wake state, otherwise new wake events won't fire */
5215 	wr32(hw, PFPM_WUS, U32_MAX);
5216 
5217 	/* enable / disable APM wake up, no RMW needed */
5218 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5219 
5220 	/* set magic packet filter enabled */
5221 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5222 }
5223 
5224 /**
5225  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5226  * @pf: pointer to the PF struct
5227  *
5228  * Issue firmware command to enable multicast magic wake, making
5229  * sure that any locally administered address (LAA) is used for
5230  * wake, and that PF reset doesn't undo the LAA.
5231  */
5232 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5233 {
5234 	struct device *dev = ice_pf_to_dev(pf);
5235 	struct ice_hw *hw = &pf->hw;
5236 	u8 mac_addr[ETH_ALEN];
5237 	struct ice_vsi *vsi;
5238 	int status;
5239 	u8 flags;
5240 
5241 	if (!pf->wol_ena)
5242 		return;
5243 
5244 	vsi = ice_get_main_vsi(pf);
5245 	if (!vsi)
5246 		return;
5247 
5248 	/* Get current MAC address in case it's an LAA */
5249 	if (vsi->netdev)
5250 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5251 	else
5252 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5253 
5254 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5255 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5256 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5257 
5258 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5259 	if (status)
5260 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5261 			status, ice_aq_str(hw->adminq.sq_last_status));
5262 }
5263 
5264 /**
5265  * ice_remove - Device removal routine
5266  * @pdev: PCI device information struct
5267  */
5268 static void ice_remove(struct pci_dev *pdev)
5269 {
5270 	struct ice_pf *pf = pci_get_drvdata(pdev);
5271 	int i;
5272 
5273 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5274 		if (!ice_is_reset_in_progress(pf->state))
5275 			break;
5276 		msleep(100);
5277 	}
5278 
5279 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5280 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5281 		ice_free_vfs(pf);
5282 	}
5283 
5284 	ice_hwmon_exit(pf);
5285 
5286 	ice_service_task_stop(pf);
5287 	ice_aq_cancel_waiting_tasks(pf);
5288 	set_bit(ICE_DOWN, pf->state);
5289 
5290 	if (!ice_is_safe_mode(pf))
5291 		ice_remove_arfs(pf);
5292 
5293 	ice_deinit_devlink(pf);
5294 
5295 	devl_lock(priv_to_devlink(pf));
5296 	ice_unload(pf);
5297 	devl_unlock(priv_to_devlink(pf));
5298 
5299 	ice_deinit(pf);
5300 	ice_vsi_release_all(pf);
5301 
5302 	ice_setup_mc_magic_wake(pf);
5303 	ice_set_wake(pf);
5304 
5305 	pci_disable_device(pdev);
5306 }
5307 
5308 /**
5309  * ice_shutdown - PCI callback for shutting down device
5310  * @pdev: PCI device information struct
5311  */
5312 static void ice_shutdown(struct pci_dev *pdev)
5313 {
5314 	struct ice_pf *pf = pci_get_drvdata(pdev);
5315 
5316 	ice_remove(pdev);
5317 
5318 	if (system_state == SYSTEM_POWER_OFF) {
5319 		pci_wake_from_d3(pdev, pf->wol_ena);
5320 		pci_set_power_state(pdev, PCI_D3hot);
5321 	}
5322 }
5323 
5324 #ifdef CONFIG_PM
5325 /**
5326  * ice_prepare_for_shutdown - prep for PCI shutdown
5327  * @pf: board private structure
5328  *
5329  * Inform or close all dependent features in prep for PCI device shutdown
5330  */
5331 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5332 {
5333 	struct ice_hw *hw = &pf->hw;
5334 	u32 v;
5335 
5336 	/* Notify VFs of impending reset */
5337 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5338 		ice_vc_notify_reset(pf);
5339 
5340 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5341 
5342 	/* disable the VSIs and their queues that are not already DOWN */
5343 	ice_pf_dis_all_vsi(pf, false);
5344 
5345 	ice_for_each_vsi(pf, v)
5346 		if (pf->vsi[v])
5347 			pf->vsi[v]->vsi_num = 0;
5348 
5349 	ice_shutdown_all_ctrlq(hw);
5350 }
5351 
5352 /**
5353  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5354  * @pf: board private structure to reinitialize
5355  *
5356  * This routine reinitialize interrupt scheme that was cleared during
5357  * power management suspend callback.
5358  *
5359  * This should be called during resume routine to re-allocate the q_vectors
5360  * and reacquire interrupts.
5361  */
5362 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5363 {
5364 	struct device *dev = ice_pf_to_dev(pf);
5365 	int ret, v;
5366 
5367 	/* Since we clear MSIX flag during suspend, we need to
5368 	 * set it back during resume...
5369 	 */
5370 
5371 	ret = ice_init_interrupt_scheme(pf);
5372 	if (ret) {
5373 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5374 		return ret;
5375 	}
5376 
5377 	/* Remap vectors and rings, after successful re-init interrupts */
5378 	ice_for_each_vsi(pf, v) {
5379 		if (!pf->vsi[v])
5380 			continue;
5381 
5382 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5383 		if (ret)
5384 			goto err_reinit;
5385 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5386 	}
5387 
5388 	ret = ice_req_irq_msix_misc(pf);
5389 	if (ret) {
5390 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5391 			ret);
5392 		goto err_reinit;
5393 	}
5394 
5395 	return 0;
5396 
5397 err_reinit:
5398 	while (v--)
5399 		if (pf->vsi[v])
5400 			ice_vsi_free_q_vectors(pf->vsi[v]);
5401 
5402 	return ret;
5403 }
5404 
5405 /**
5406  * ice_suspend
5407  * @dev: generic device information structure
5408  *
5409  * Power Management callback to quiesce the device and prepare
5410  * for D3 transition.
5411  */
5412 static int __maybe_unused ice_suspend(struct device *dev)
5413 {
5414 	struct pci_dev *pdev = to_pci_dev(dev);
5415 	struct ice_pf *pf;
5416 	int disabled, v;
5417 
5418 	pf = pci_get_drvdata(pdev);
5419 
5420 	if (!ice_pf_state_is_nominal(pf)) {
5421 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5422 		return -EBUSY;
5423 	}
5424 
5425 	/* Stop watchdog tasks until resume completion.
5426 	 * Even though it is most likely that the service task is
5427 	 * disabled if the device is suspended or down, the service task's
5428 	 * state is controlled by a different state bit, and we should
5429 	 * store and honor whatever state that bit is in at this point.
5430 	 */
5431 	disabled = ice_service_task_stop(pf);
5432 
5433 	ice_unplug_aux_dev(pf);
5434 
5435 	/* Already suspended?, then there is nothing to do */
5436 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5437 		if (!disabled)
5438 			ice_service_task_restart(pf);
5439 		return 0;
5440 	}
5441 
5442 	if (test_bit(ICE_DOWN, pf->state) ||
5443 	    ice_is_reset_in_progress(pf->state)) {
5444 		dev_err(dev, "can't suspend device in reset or already down\n");
5445 		if (!disabled)
5446 			ice_service_task_restart(pf);
5447 		return 0;
5448 	}
5449 
5450 	ice_setup_mc_magic_wake(pf);
5451 
5452 	ice_prepare_for_shutdown(pf);
5453 
5454 	ice_set_wake(pf);
5455 
5456 	/* Free vectors, clear the interrupt scheme and release IRQs
5457 	 * for proper hibernation, especially with large number of CPUs.
5458 	 * Otherwise hibernation might fail when mapping all the vectors back
5459 	 * to CPU0.
5460 	 */
5461 	ice_free_irq_msix_misc(pf);
5462 	ice_for_each_vsi(pf, v) {
5463 		if (!pf->vsi[v])
5464 			continue;
5465 		ice_vsi_free_q_vectors(pf->vsi[v]);
5466 	}
5467 	ice_clear_interrupt_scheme(pf);
5468 
5469 	pci_save_state(pdev);
5470 	pci_wake_from_d3(pdev, pf->wol_ena);
5471 	pci_set_power_state(pdev, PCI_D3hot);
5472 	return 0;
5473 }
5474 
5475 /**
5476  * ice_resume - PM callback for waking up from D3
5477  * @dev: generic device information structure
5478  */
5479 static int __maybe_unused ice_resume(struct device *dev)
5480 {
5481 	struct pci_dev *pdev = to_pci_dev(dev);
5482 	enum ice_reset_req reset_type;
5483 	struct ice_pf *pf;
5484 	struct ice_hw *hw;
5485 	int ret;
5486 
5487 	pci_set_power_state(pdev, PCI_D0);
5488 	pci_restore_state(pdev);
5489 	pci_save_state(pdev);
5490 
5491 	if (!pci_device_is_present(pdev))
5492 		return -ENODEV;
5493 
5494 	ret = pci_enable_device_mem(pdev);
5495 	if (ret) {
5496 		dev_err(dev, "Cannot enable device after suspend\n");
5497 		return ret;
5498 	}
5499 
5500 	pf = pci_get_drvdata(pdev);
5501 	hw = &pf->hw;
5502 
5503 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5504 	ice_print_wake_reason(pf);
5505 
5506 	/* We cleared the interrupt scheme when we suspended, so we need to
5507 	 * restore it now to resume device functionality.
5508 	 */
5509 	ret = ice_reinit_interrupt_scheme(pf);
5510 	if (ret)
5511 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5512 
5513 	clear_bit(ICE_DOWN, pf->state);
5514 	/* Now perform PF reset and rebuild */
5515 	reset_type = ICE_RESET_PFR;
5516 	/* re-enable service task for reset, but allow reset to schedule it */
5517 	clear_bit(ICE_SERVICE_DIS, pf->state);
5518 
5519 	if (ice_schedule_reset(pf, reset_type))
5520 		dev_err(dev, "Reset during resume failed.\n");
5521 
5522 	clear_bit(ICE_SUSPENDED, pf->state);
5523 	ice_service_task_restart(pf);
5524 
5525 	/* Restart the service task */
5526 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5527 
5528 	return 0;
5529 }
5530 #endif /* CONFIG_PM */
5531 
5532 /**
5533  * ice_pci_err_detected - warning that PCI error has been detected
5534  * @pdev: PCI device information struct
5535  * @err: the type of PCI error
5536  *
5537  * Called to warn that something happened on the PCI bus and the error handling
5538  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5539  */
5540 static pci_ers_result_t
5541 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5542 {
5543 	struct ice_pf *pf = pci_get_drvdata(pdev);
5544 
5545 	if (!pf) {
5546 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5547 			__func__, err);
5548 		return PCI_ERS_RESULT_DISCONNECT;
5549 	}
5550 
5551 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5552 		ice_service_task_stop(pf);
5553 
5554 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5555 			set_bit(ICE_PFR_REQ, pf->state);
5556 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5557 		}
5558 	}
5559 
5560 	return PCI_ERS_RESULT_NEED_RESET;
5561 }
5562 
5563 /**
5564  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5565  * @pdev: PCI device information struct
5566  *
5567  * Called to determine if the driver can recover from the PCI slot reset by
5568  * using a register read to determine if the device is recoverable.
5569  */
5570 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5571 {
5572 	struct ice_pf *pf = pci_get_drvdata(pdev);
5573 	pci_ers_result_t result;
5574 	int err;
5575 	u32 reg;
5576 
5577 	err = pci_enable_device_mem(pdev);
5578 	if (err) {
5579 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5580 			err);
5581 		result = PCI_ERS_RESULT_DISCONNECT;
5582 	} else {
5583 		pci_set_master(pdev);
5584 		pci_restore_state(pdev);
5585 		pci_save_state(pdev);
5586 		pci_wake_from_d3(pdev, false);
5587 
5588 		/* Check for life */
5589 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5590 		if (!reg)
5591 			result = PCI_ERS_RESULT_RECOVERED;
5592 		else
5593 			result = PCI_ERS_RESULT_DISCONNECT;
5594 	}
5595 
5596 	return result;
5597 }
5598 
5599 /**
5600  * ice_pci_err_resume - restart operations after PCI error recovery
5601  * @pdev: PCI device information struct
5602  *
5603  * Called to allow the driver to bring things back up after PCI error and/or
5604  * reset recovery have finished
5605  */
5606 static void ice_pci_err_resume(struct pci_dev *pdev)
5607 {
5608 	struct ice_pf *pf = pci_get_drvdata(pdev);
5609 
5610 	if (!pf) {
5611 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5612 			__func__);
5613 		return;
5614 	}
5615 
5616 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5617 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5618 			__func__);
5619 		return;
5620 	}
5621 
5622 	ice_restore_all_vfs_msi_state(pf);
5623 
5624 	ice_do_reset(pf, ICE_RESET_PFR);
5625 	ice_service_task_restart(pf);
5626 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5627 }
5628 
5629 /**
5630  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5631  * @pdev: PCI device information struct
5632  */
5633 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5634 {
5635 	struct ice_pf *pf = pci_get_drvdata(pdev);
5636 
5637 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5638 		ice_service_task_stop(pf);
5639 
5640 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5641 			set_bit(ICE_PFR_REQ, pf->state);
5642 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5643 		}
5644 	}
5645 }
5646 
5647 /**
5648  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5649  * @pdev: PCI device information struct
5650  */
5651 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5652 {
5653 	ice_pci_err_resume(pdev);
5654 }
5655 
5656 /* ice_pci_tbl - PCI Device ID Table
5657  *
5658  * Wildcard entries (PCI_ANY_ID) should come last
5659  * Last entry must be all 0s
5660  *
5661  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5662  *   Class, Class Mask, private data (not used) }
5663  */
5664 static const struct pci_device_id ice_pci_tbl[] = {
5665 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5666 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5667 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5668 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5669 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5670 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5671 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5672 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5673 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5674 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5675 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5676 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5677 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5678 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5679 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5680 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5681 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5682 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5683 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5684 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5685 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5686 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5687 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5688 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5689 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5690 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5691 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5692 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5693 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5694 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5695 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) },
5696 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) },
5697 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) },
5698 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) },
5699 	/* required last entry */
5700 	{}
5701 };
5702 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5703 
5704 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5705 
5706 static const struct pci_error_handlers ice_pci_err_handler = {
5707 	.error_detected = ice_pci_err_detected,
5708 	.slot_reset = ice_pci_err_slot_reset,
5709 	.reset_prepare = ice_pci_err_reset_prepare,
5710 	.reset_done = ice_pci_err_reset_done,
5711 	.resume = ice_pci_err_resume
5712 };
5713 
5714 static struct pci_driver ice_driver = {
5715 	.name = KBUILD_MODNAME,
5716 	.id_table = ice_pci_tbl,
5717 	.probe = ice_probe,
5718 	.remove = ice_remove,
5719 #ifdef CONFIG_PM
5720 	.driver.pm = &ice_pm_ops,
5721 #endif /* CONFIG_PM */
5722 	.shutdown = ice_shutdown,
5723 	.sriov_configure = ice_sriov_configure,
5724 	.sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5725 	.sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5726 	.err_handler = &ice_pci_err_handler
5727 };
5728 
5729 /**
5730  * ice_module_init - Driver registration routine
5731  *
5732  * ice_module_init is the first routine called when the driver is
5733  * loaded. All it does is register with the PCI subsystem.
5734  */
5735 static int __init ice_module_init(void)
5736 {
5737 	int status = -ENOMEM;
5738 
5739 	pr_info("%s\n", ice_driver_string);
5740 	pr_info("%s\n", ice_copyright);
5741 
5742 	ice_adv_lnk_speed_maps_init();
5743 
5744 	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5745 	if (!ice_wq) {
5746 		pr_err("Failed to create workqueue\n");
5747 		return status;
5748 	}
5749 
5750 	ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5751 	if (!ice_lag_wq) {
5752 		pr_err("Failed to create LAG workqueue\n");
5753 		goto err_dest_wq;
5754 	}
5755 
5756 	ice_debugfs_init();
5757 
5758 	status = pci_register_driver(&ice_driver);
5759 	if (status) {
5760 		pr_err("failed to register PCI driver, err %d\n", status);
5761 		goto err_dest_lag_wq;
5762 	}
5763 
5764 	return 0;
5765 
5766 err_dest_lag_wq:
5767 	destroy_workqueue(ice_lag_wq);
5768 	ice_debugfs_exit();
5769 err_dest_wq:
5770 	destroy_workqueue(ice_wq);
5771 	return status;
5772 }
5773 module_init(ice_module_init);
5774 
5775 /**
5776  * ice_module_exit - Driver exit cleanup routine
5777  *
5778  * ice_module_exit is called just before the driver is removed
5779  * from memory.
5780  */
5781 static void __exit ice_module_exit(void)
5782 {
5783 	pci_unregister_driver(&ice_driver);
5784 	ice_debugfs_exit();
5785 	destroy_workqueue(ice_wq);
5786 	destroy_workqueue(ice_lag_wq);
5787 	pr_info("module unloaded\n");
5788 }
5789 module_exit(ice_module_exit);
5790 
5791 /**
5792  * ice_set_mac_address - NDO callback to set MAC address
5793  * @netdev: network interface device structure
5794  * @pi: pointer to an address structure
5795  *
5796  * Returns 0 on success, negative on failure
5797  */
5798 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5799 {
5800 	struct ice_netdev_priv *np = netdev_priv(netdev);
5801 	struct ice_vsi *vsi = np->vsi;
5802 	struct ice_pf *pf = vsi->back;
5803 	struct ice_hw *hw = &pf->hw;
5804 	struct sockaddr *addr = pi;
5805 	u8 old_mac[ETH_ALEN];
5806 	u8 flags = 0;
5807 	u8 *mac;
5808 	int err;
5809 
5810 	mac = (u8 *)addr->sa_data;
5811 
5812 	if (!is_valid_ether_addr(mac))
5813 		return -EADDRNOTAVAIL;
5814 
5815 	if (test_bit(ICE_DOWN, pf->state) ||
5816 	    ice_is_reset_in_progress(pf->state)) {
5817 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5818 			   mac);
5819 		return -EBUSY;
5820 	}
5821 
5822 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5823 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5824 			   mac);
5825 		return -EAGAIN;
5826 	}
5827 
5828 	netif_addr_lock_bh(netdev);
5829 	ether_addr_copy(old_mac, netdev->dev_addr);
5830 	/* change the netdev's MAC address */
5831 	eth_hw_addr_set(netdev, mac);
5832 	netif_addr_unlock_bh(netdev);
5833 
5834 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5835 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5836 	if (err && err != -ENOENT) {
5837 		err = -EADDRNOTAVAIL;
5838 		goto err_update_filters;
5839 	}
5840 
5841 	/* Add filter for new MAC. If filter exists, return success */
5842 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5843 	if (err == -EEXIST) {
5844 		/* Although this MAC filter is already present in hardware it's
5845 		 * possible in some cases (e.g. bonding) that dev_addr was
5846 		 * modified outside of the driver and needs to be restored back
5847 		 * to this value.
5848 		 */
5849 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5850 
5851 		return 0;
5852 	} else if (err) {
5853 		/* error if the new filter addition failed */
5854 		err = -EADDRNOTAVAIL;
5855 	}
5856 
5857 err_update_filters:
5858 	if (err) {
5859 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5860 			   mac);
5861 		netif_addr_lock_bh(netdev);
5862 		eth_hw_addr_set(netdev, old_mac);
5863 		netif_addr_unlock_bh(netdev);
5864 		return err;
5865 	}
5866 
5867 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5868 		   netdev->dev_addr);
5869 
5870 	/* write new MAC address to the firmware */
5871 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5872 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5873 	if (err) {
5874 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5875 			   mac, err);
5876 	}
5877 	return 0;
5878 }
5879 
5880 /**
5881  * ice_set_rx_mode - NDO callback to set the netdev filters
5882  * @netdev: network interface device structure
5883  */
5884 static void ice_set_rx_mode(struct net_device *netdev)
5885 {
5886 	struct ice_netdev_priv *np = netdev_priv(netdev);
5887 	struct ice_vsi *vsi = np->vsi;
5888 
5889 	if (!vsi || ice_is_switchdev_running(vsi->back))
5890 		return;
5891 
5892 	/* Set the flags to synchronize filters
5893 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5894 	 * flags
5895 	 */
5896 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5897 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5898 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5899 
5900 	/* schedule our worker thread which will take care of
5901 	 * applying the new filter changes
5902 	 */
5903 	ice_service_task_schedule(vsi->back);
5904 }
5905 
5906 /**
5907  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5908  * @netdev: network interface device structure
5909  * @queue_index: Queue ID
5910  * @maxrate: maximum bandwidth in Mbps
5911  */
5912 static int
5913 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5914 {
5915 	struct ice_netdev_priv *np = netdev_priv(netdev);
5916 	struct ice_vsi *vsi = np->vsi;
5917 	u16 q_handle;
5918 	int status;
5919 	u8 tc;
5920 
5921 	/* Validate maxrate requested is within permitted range */
5922 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5923 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5924 			   maxrate, queue_index);
5925 		return -EINVAL;
5926 	}
5927 
5928 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5929 	tc = ice_dcb_get_tc(vsi, queue_index);
5930 
5931 	vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5932 	if (!vsi) {
5933 		netdev_err(netdev, "Invalid VSI for given queue %d\n",
5934 			   queue_index);
5935 		return -EINVAL;
5936 	}
5937 
5938 	/* Set BW back to default, when user set maxrate to 0 */
5939 	if (!maxrate)
5940 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5941 					       q_handle, ICE_MAX_BW);
5942 	else
5943 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5944 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5945 	if (status)
5946 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5947 			   status);
5948 
5949 	return status;
5950 }
5951 
5952 /**
5953  * ice_fdb_add - add an entry to the hardware database
5954  * @ndm: the input from the stack
5955  * @tb: pointer to array of nladdr (unused)
5956  * @dev: the net device pointer
5957  * @addr: the MAC address entry being added
5958  * @vid: VLAN ID
5959  * @flags: instructions from stack about fdb operation
5960  * @extack: netlink extended ack
5961  */
5962 static int
5963 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5964 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5965 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5966 {
5967 	int err;
5968 
5969 	if (vid) {
5970 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5971 		return -EINVAL;
5972 	}
5973 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5974 		netdev_err(dev, "FDB only supports static addresses\n");
5975 		return -EINVAL;
5976 	}
5977 
5978 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5979 		err = dev_uc_add_excl(dev, addr);
5980 	else if (is_multicast_ether_addr(addr))
5981 		err = dev_mc_add_excl(dev, addr);
5982 	else
5983 		err = -EINVAL;
5984 
5985 	/* Only return duplicate errors if NLM_F_EXCL is set */
5986 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5987 		err = 0;
5988 
5989 	return err;
5990 }
5991 
5992 /**
5993  * ice_fdb_del - delete an entry from the hardware database
5994  * @ndm: the input from the stack
5995  * @tb: pointer to array of nladdr (unused)
5996  * @dev: the net device pointer
5997  * @addr: the MAC address entry being added
5998  * @vid: VLAN ID
5999  * @extack: netlink extended ack
6000  */
6001 static int
6002 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6003 	    struct net_device *dev, const unsigned char *addr,
6004 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
6005 {
6006 	int err;
6007 
6008 	if (ndm->ndm_state & NUD_PERMANENT) {
6009 		netdev_err(dev, "FDB only supports static addresses\n");
6010 		return -EINVAL;
6011 	}
6012 
6013 	if (is_unicast_ether_addr(addr))
6014 		err = dev_uc_del(dev, addr);
6015 	else if (is_multicast_ether_addr(addr))
6016 		err = dev_mc_del(dev, addr);
6017 	else
6018 		err = -EINVAL;
6019 
6020 	return err;
6021 }
6022 
6023 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6024 					 NETIF_F_HW_VLAN_CTAG_TX | \
6025 					 NETIF_F_HW_VLAN_STAG_RX | \
6026 					 NETIF_F_HW_VLAN_STAG_TX)
6027 
6028 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6029 					 NETIF_F_HW_VLAN_STAG_RX)
6030 
6031 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
6032 					 NETIF_F_HW_VLAN_STAG_FILTER)
6033 
6034 /**
6035  * ice_fix_features - fix the netdev features flags based on device limitations
6036  * @netdev: ptr to the netdev that flags are being fixed on
6037  * @features: features that need to be checked and possibly fixed
6038  *
6039  * Make sure any fixups are made to features in this callback. This enables the
6040  * driver to not have to check unsupported configurations throughout the driver
6041  * because that's the responsiblity of this callback.
6042  *
6043  * Single VLAN Mode (SVM) Supported Features:
6044  *	NETIF_F_HW_VLAN_CTAG_FILTER
6045  *	NETIF_F_HW_VLAN_CTAG_RX
6046  *	NETIF_F_HW_VLAN_CTAG_TX
6047  *
6048  * Double VLAN Mode (DVM) Supported Features:
6049  *	NETIF_F_HW_VLAN_CTAG_FILTER
6050  *	NETIF_F_HW_VLAN_CTAG_RX
6051  *	NETIF_F_HW_VLAN_CTAG_TX
6052  *
6053  *	NETIF_F_HW_VLAN_STAG_FILTER
6054  *	NETIF_HW_VLAN_STAG_RX
6055  *	NETIF_HW_VLAN_STAG_TX
6056  *
6057  * Features that need fixing:
6058  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6059  *	These are mutually exlusive as the VSI context cannot support multiple
6060  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
6061  *	is not done, then default to clearing the requested STAG offload
6062  *	settings.
6063  *
6064  *	All supported filtering has to be enabled or disabled together. For
6065  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6066  *	together. If this is not done, then default to VLAN filtering disabled.
6067  *	These are mutually exclusive as there is currently no way to
6068  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6069  *	prune rules.
6070  */
6071 static netdev_features_t
6072 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6073 {
6074 	struct ice_netdev_priv *np = netdev_priv(netdev);
6075 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6076 	bool cur_ctag, cur_stag, req_ctag, req_stag;
6077 
6078 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6079 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6080 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6081 
6082 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6083 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6084 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6085 
6086 	if (req_vlan_fltr != cur_vlan_fltr) {
6087 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6088 			if (req_ctag && req_stag) {
6089 				features |= NETIF_VLAN_FILTERING_FEATURES;
6090 			} else if (!req_ctag && !req_stag) {
6091 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6092 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
6093 				   (!cur_stag && req_stag && !cur_ctag)) {
6094 				features |= NETIF_VLAN_FILTERING_FEATURES;
6095 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6096 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
6097 				   (cur_stag && !req_stag && cur_ctag)) {
6098 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6099 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6100 			}
6101 		} else {
6102 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6103 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6104 
6105 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6106 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6107 		}
6108 	}
6109 
6110 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6111 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6112 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6113 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6114 			      NETIF_F_HW_VLAN_STAG_TX);
6115 	}
6116 
6117 	if (!(netdev->features & NETIF_F_RXFCS) &&
6118 	    (features & NETIF_F_RXFCS) &&
6119 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6120 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
6121 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6122 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6123 	}
6124 
6125 	return features;
6126 }
6127 
6128 /**
6129  * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6130  * @vsi: PF's VSI
6131  * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6132  *
6133  * Store current stripped VLAN proto in ring packet context,
6134  * so it can be accessed more efficiently by packet processing code.
6135  */
6136 static void
6137 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6138 {
6139 	u16 i;
6140 
6141 	ice_for_each_alloc_rxq(vsi, i)
6142 		vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6143 }
6144 
6145 /**
6146  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6147  * @vsi: PF's VSI
6148  * @features: features used to determine VLAN offload settings
6149  *
6150  * First, determine the vlan_ethertype based on the VLAN offload bits in
6151  * features. Then determine if stripping and insertion should be enabled or
6152  * disabled. Finally enable or disable VLAN stripping and insertion.
6153  */
6154 static int
6155 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6156 {
6157 	bool enable_stripping = true, enable_insertion = true;
6158 	struct ice_vsi_vlan_ops *vlan_ops;
6159 	int strip_err = 0, insert_err = 0;
6160 	u16 vlan_ethertype = 0;
6161 
6162 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6163 
6164 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6165 		vlan_ethertype = ETH_P_8021AD;
6166 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6167 		vlan_ethertype = ETH_P_8021Q;
6168 
6169 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6170 		enable_stripping = false;
6171 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6172 		enable_insertion = false;
6173 
6174 	if (enable_stripping)
6175 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6176 	else
6177 		strip_err = vlan_ops->dis_stripping(vsi);
6178 
6179 	if (enable_insertion)
6180 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6181 	else
6182 		insert_err = vlan_ops->dis_insertion(vsi);
6183 
6184 	if (strip_err || insert_err)
6185 		return -EIO;
6186 
6187 	ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6188 				    htons(vlan_ethertype) : 0);
6189 
6190 	return 0;
6191 }
6192 
6193 /**
6194  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6195  * @vsi: PF's VSI
6196  * @features: features used to determine VLAN filtering settings
6197  *
6198  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6199  * features.
6200  */
6201 static int
6202 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6203 {
6204 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6205 	int err = 0;
6206 
6207 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6208 	 * if either bit is set
6209 	 */
6210 	if (features &
6211 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6212 		err = vlan_ops->ena_rx_filtering(vsi);
6213 	else
6214 		err = vlan_ops->dis_rx_filtering(vsi);
6215 
6216 	return err;
6217 }
6218 
6219 /**
6220  * ice_set_vlan_features - set VLAN settings based on suggested feature set
6221  * @netdev: ptr to the netdev being adjusted
6222  * @features: the feature set that the stack is suggesting
6223  *
6224  * Only update VLAN settings if the requested_vlan_features are different than
6225  * the current_vlan_features.
6226  */
6227 static int
6228 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6229 {
6230 	netdev_features_t current_vlan_features, requested_vlan_features;
6231 	struct ice_netdev_priv *np = netdev_priv(netdev);
6232 	struct ice_vsi *vsi = np->vsi;
6233 	int err;
6234 
6235 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6236 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6237 	if (current_vlan_features ^ requested_vlan_features) {
6238 		if ((features & NETIF_F_RXFCS) &&
6239 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6240 			dev_err(ice_pf_to_dev(vsi->back),
6241 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6242 			return -EIO;
6243 		}
6244 
6245 		err = ice_set_vlan_offload_features(vsi, features);
6246 		if (err)
6247 			return err;
6248 	}
6249 
6250 	current_vlan_features = netdev->features &
6251 		NETIF_VLAN_FILTERING_FEATURES;
6252 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6253 	if (current_vlan_features ^ requested_vlan_features) {
6254 		err = ice_set_vlan_filtering_features(vsi, features);
6255 		if (err)
6256 			return err;
6257 	}
6258 
6259 	return 0;
6260 }
6261 
6262 /**
6263  * ice_set_loopback - turn on/off loopback mode on underlying PF
6264  * @vsi: ptr to VSI
6265  * @ena: flag to indicate the on/off setting
6266  */
6267 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6268 {
6269 	bool if_running = netif_running(vsi->netdev);
6270 	int ret;
6271 
6272 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6273 		ret = ice_down(vsi);
6274 		if (ret) {
6275 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6276 			return ret;
6277 		}
6278 	}
6279 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6280 	if (ret)
6281 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6282 	if (if_running)
6283 		ret = ice_up(vsi);
6284 
6285 	return ret;
6286 }
6287 
6288 /**
6289  * ice_set_features - set the netdev feature flags
6290  * @netdev: ptr to the netdev being adjusted
6291  * @features: the feature set that the stack is suggesting
6292  */
6293 static int
6294 ice_set_features(struct net_device *netdev, netdev_features_t features)
6295 {
6296 	netdev_features_t changed = netdev->features ^ features;
6297 	struct ice_netdev_priv *np = netdev_priv(netdev);
6298 	struct ice_vsi *vsi = np->vsi;
6299 	struct ice_pf *pf = vsi->back;
6300 	int ret = 0;
6301 
6302 	/* Don't set any netdev advanced features with device in Safe Mode */
6303 	if (ice_is_safe_mode(pf)) {
6304 		dev_err(ice_pf_to_dev(pf),
6305 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6306 		return ret;
6307 	}
6308 
6309 	/* Do not change setting during reset */
6310 	if (ice_is_reset_in_progress(pf->state)) {
6311 		dev_err(ice_pf_to_dev(pf),
6312 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6313 		return -EBUSY;
6314 	}
6315 
6316 	/* Multiple features can be changed in one call so keep features in
6317 	 * separate if/else statements to guarantee each feature is checked
6318 	 */
6319 	if (changed & NETIF_F_RXHASH)
6320 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6321 
6322 	ret = ice_set_vlan_features(netdev, features);
6323 	if (ret)
6324 		return ret;
6325 
6326 	/* Turn on receive of FCS aka CRC, and after setting this
6327 	 * flag the packet data will have the 4 byte CRC appended
6328 	 */
6329 	if (changed & NETIF_F_RXFCS) {
6330 		if ((features & NETIF_F_RXFCS) &&
6331 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6332 			dev_err(ice_pf_to_dev(vsi->back),
6333 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6334 			return -EIO;
6335 		}
6336 
6337 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6338 		ret = ice_down_up(vsi);
6339 		if (ret)
6340 			return ret;
6341 	}
6342 
6343 	if (changed & NETIF_F_NTUPLE) {
6344 		bool ena = !!(features & NETIF_F_NTUPLE);
6345 
6346 		ice_vsi_manage_fdir(vsi, ena);
6347 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6348 	}
6349 
6350 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6351 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6352 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6353 		return -EACCES;
6354 	}
6355 
6356 	if (changed & NETIF_F_HW_TC) {
6357 		bool ena = !!(features & NETIF_F_HW_TC);
6358 
6359 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6360 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6361 	}
6362 
6363 	if (changed & NETIF_F_LOOPBACK)
6364 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6365 
6366 	return ret;
6367 }
6368 
6369 /**
6370  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6371  * @vsi: VSI to setup VLAN properties for
6372  */
6373 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6374 {
6375 	int err;
6376 
6377 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6378 	if (err)
6379 		return err;
6380 
6381 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6382 	if (err)
6383 		return err;
6384 
6385 	return ice_vsi_add_vlan_zero(vsi);
6386 }
6387 
6388 /**
6389  * ice_vsi_cfg_lan - Setup the VSI lan related config
6390  * @vsi: the VSI being configured
6391  *
6392  * Return 0 on success and negative value on error
6393  */
6394 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6395 {
6396 	int err;
6397 
6398 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6399 		ice_set_rx_mode(vsi->netdev);
6400 
6401 		err = ice_vsi_vlan_setup(vsi);
6402 		if (err)
6403 			return err;
6404 	}
6405 	ice_vsi_cfg_dcb_rings(vsi);
6406 
6407 	err = ice_vsi_cfg_lan_txqs(vsi);
6408 	if (!err && ice_is_xdp_ena_vsi(vsi))
6409 		err = ice_vsi_cfg_xdp_txqs(vsi);
6410 	if (!err)
6411 		err = ice_vsi_cfg_rxqs(vsi);
6412 
6413 	return err;
6414 }
6415 
6416 /* THEORY OF MODERATION:
6417  * The ice driver hardware works differently than the hardware that DIMLIB was
6418  * originally made for. ice hardware doesn't have packet count limits that
6419  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6420  * which is hard-coded to a limit of 250,000 ints/second.
6421  * If not using dynamic moderation, the INTRL value can be modified
6422  * by ethtool rx-usecs-high.
6423  */
6424 struct ice_dim {
6425 	/* the throttle rate for interrupts, basically worst case delay before
6426 	 * an initial interrupt fires, value is stored in microseconds.
6427 	 */
6428 	u16 itr;
6429 };
6430 
6431 /* Make a different profile for Rx that doesn't allow quite so aggressive
6432  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6433  * second.
6434  */
6435 static const struct ice_dim rx_profile[] = {
6436 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6437 	{8},    /* 125,000 ints/s */
6438 	{16},   /*  62,500 ints/s */
6439 	{62},   /*  16,129 ints/s */
6440 	{126}   /*   7,936 ints/s */
6441 };
6442 
6443 /* The transmit profile, which has the same sorts of values
6444  * as the previous struct
6445  */
6446 static const struct ice_dim tx_profile[] = {
6447 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6448 	{8},    /* 125,000 ints/s */
6449 	{40},   /*  16,125 ints/s */
6450 	{128},  /*   7,812 ints/s */
6451 	{256}   /*   3,906 ints/s */
6452 };
6453 
6454 static void ice_tx_dim_work(struct work_struct *work)
6455 {
6456 	struct ice_ring_container *rc;
6457 	struct dim *dim;
6458 	u16 itr;
6459 
6460 	dim = container_of(work, struct dim, work);
6461 	rc = dim->priv;
6462 
6463 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6464 
6465 	/* look up the values in our local table */
6466 	itr = tx_profile[dim->profile_ix].itr;
6467 
6468 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6469 	ice_write_itr(rc, itr);
6470 
6471 	dim->state = DIM_START_MEASURE;
6472 }
6473 
6474 static void ice_rx_dim_work(struct work_struct *work)
6475 {
6476 	struct ice_ring_container *rc;
6477 	struct dim *dim;
6478 	u16 itr;
6479 
6480 	dim = container_of(work, struct dim, work);
6481 	rc = dim->priv;
6482 
6483 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6484 
6485 	/* look up the values in our local table */
6486 	itr = rx_profile[dim->profile_ix].itr;
6487 
6488 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6489 	ice_write_itr(rc, itr);
6490 
6491 	dim->state = DIM_START_MEASURE;
6492 }
6493 
6494 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6495 
6496 /**
6497  * ice_init_moderation - set up interrupt moderation
6498  * @q_vector: the vector containing rings to be configured
6499  *
6500  * Set up interrupt moderation registers, with the intent to do the right thing
6501  * when called from reset or from probe, and whether or not dynamic moderation
6502  * is enabled or not. Take special care to write all the registers in both
6503  * dynamic moderation mode or not in order to make sure hardware is in a known
6504  * state.
6505  */
6506 static void ice_init_moderation(struct ice_q_vector *q_vector)
6507 {
6508 	struct ice_ring_container *rc;
6509 	bool tx_dynamic, rx_dynamic;
6510 
6511 	rc = &q_vector->tx;
6512 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6513 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6514 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6515 	rc->dim.priv = rc;
6516 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6517 
6518 	/* set the initial TX ITR to match the above */
6519 	ice_write_itr(rc, tx_dynamic ?
6520 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6521 
6522 	rc = &q_vector->rx;
6523 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6524 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6525 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6526 	rc->dim.priv = rc;
6527 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6528 
6529 	/* set the initial RX ITR to match the above */
6530 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6531 				       rc->itr_setting);
6532 
6533 	ice_set_q_vector_intrl(q_vector);
6534 }
6535 
6536 /**
6537  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6538  * @vsi: the VSI being configured
6539  */
6540 static void ice_napi_enable_all(struct ice_vsi *vsi)
6541 {
6542 	int q_idx;
6543 
6544 	if (!vsi->netdev)
6545 		return;
6546 
6547 	ice_for_each_q_vector(vsi, q_idx) {
6548 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6549 
6550 		ice_init_moderation(q_vector);
6551 
6552 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6553 			napi_enable(&q_vector->napi);
6554 	}
6555 }
6556 
6557 /**
6558  * ice_up_complete - Finish the last steps of bringing up a connection
6559  * @vsi: The VSI being configured
6560  *
6561  * Return 0 on success and negative value on error
6562  */
6563 static int ice_up_complete(struct ice_vsi *vsi)
6564 {
6565 	struct ice_pf *pf = vsi->back;
6566 	int err;
6567 
6568 	ice_vsi_cfg_msix(vsi);
6569 
6570 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6571 	 * Tx queue group list was configured and the context bits were
6572 	 * programmed using ice_vsi_cfg_txqs
6573 	 */
6574 	err = ice_vsi_start_all_rx_rings(vsi);
6575 	if (err)
6576 		return err;
6577 
6578 	clear_bit(ICE_VSI_DOWN, vsi->state);
6579 	ice_napi_enable_all(vsi);
6580 	ice_vsi_ena_irq(vsi);
6581 
6582 	if (vsi->port_info &&
6583 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6584 	    vsi->netdev && vsi->type == ICE_VSI_PF) {
6585 		ice_print_link_msg(vsi, true);
6586 		netif_tx_start_all_queues(vsi->netdev);
6587 		netif_carrier_on(vsi->netdev);
6588 		ice_ptp_link_change(pf, pf->hw.pf_id, true);
6589 	}
6590 
6591 	/* Perform an initial read of the statistics registers now to
6592 	 * set the baseline so counters are ready when interface is up
6593 	 */
6594 	ice_update_eth_stats(vsi);
6595 
6596 	if (vsi->type == ICE_VSI_PF)
6597 		ice_service_task_schedule(pf);
6598 
6599 	return 0;
6600 }
6601 
6602 /**
6603  * ice_up - Bring the connection back up after being down
6604  * @vsi: VSI being configured
6605  */
6606 int ice_up(struct ice_vsi *vsi)
6607 {
6608 	int err;
6609 
6610 	err = ice_vsi_cfg_lan(vsi);
6611 	if (!err)
6612 		err = ice_up_complete(vsi);
6613 
6614 	return err;
6615 }
6616 
6617 /**
6618  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6619  * @syncp: pointer to u64_stats_sync
6620  * @stats: stats that pkts and bytes count will be taken from
6621  * @pkts: packets stats counter
6622  * @bytes: bytes stats counter
6623  *
6624  * This function fetches stats from the ring considering the atomic operations
6625  * that needs to be performed to read u64 values in 32 bit machine.
6626  */
6627 void
6628 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6629 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6630 {
6631 	unsigned int start;
6632 
6633 	do {
6634 		start = u64_stats_fetch_begin(syncp);
6635 		*pkts = stats.pkts;
6636 		*bytes = stats.bytes;
6637 	} while (u64_stats_fetch_retry(syncp, start));
6638 }
6639 
6640 /**
6641  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6642  * @vsi: the VSI to be updated
6643  * @vsi_stats: the stats struct to be updated
6644  * @rings: rings to work on
6645  * @count: number of rings
6646  */
6647 static void
6648 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6649 			     struct rtnl_link_stats64 *vsi_stats,
6650 			     struct ice_tx_ring **rings, u16 count)
6651 {
6652 	u16 i;
6653 
6654 	for (i = 0; i < count; i++) {
6655 		struct ice_tx_ring *ring;
6656 		u64 pkts = 0, bytes = 0;
6657 
6658 		ring = READ_ONCE(rings[i]);
6659 		if (!ring || !ring->ring_stats)
6660 			continue;
6661 		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6662 					     ring->ring_stats->stats, &pkts,
6663 					     &bytes);
6664 		vsi_stats->tx_packets += pkts;
6665 		vsi_stats->tx_bytes += bytes;
6666 		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6667 		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6668 		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6669 	}
6670 }
6671 
6672 /**
6673  * ice_update_vsi_ring_stats - Update VSI stats counters
6674  * @vsi: the VSI to be updated
6675  */
6676 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6677 {
6678 	struct rtnl_link_stats64 *net_stats, *stats_prev;
6679 	struct rtnl_link_stats64 *vsi_stats;
6680 	u64 pkts, bytes;
6681 	int i;
6682 
6683 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6684 	if (!vsi_stats)
6685 		return;
6686 
6687 	/* reset non-netdev (extended) stats */
6688 	vsi->tx_restart = 0;
6689 	vsi->tx_busy = 0;
6690 	vsi->tx_linearize = 0;
6691 	vsi->rx_buf_failed = 0;
6692 	vsi->rx_page_failed = 0;
6693 
6694 	rcu_read_lock();
6695 
6696 	/* update Tx rings counters */
6697 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6698 				     vsi->num_txq);
6699 
6700 	/* update Rx rings counters */
6701 	ice_for_each_rxq(vsi, i) {
6702 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6703 		struct ice_ring_stats *ring_stats;
6704 
6705 		ring_stats = ring->ring_stats;
6706 		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6707 					     ring_stats->stats, &pkts,
6708 					     &bytes);
6709 		vsi_stats->rx_packets += pkts;
6710 		vsi_stats->rx_bytes += bytes;
6711 		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6712 		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6713 	}
6714 
6715 	/* update XDP Tx rings counters */
6716 	if (ice_is_xdp_ena_vsi(vsi))
6717 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6718 					     vsi->num_xdp_txq);
6719 
6720 	rcu_read_unlock();
6721 
6722 	net_stats = &vsi->net_stats;
6723 	stats_prev = &vsi->net_stats_prev;
6724 
6725 	/* clear prev counters after reset */
6726 	if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6727 	    vsi_stats->rx_packets < stats_prev->rx_packets) {
6728 		stats_prev->tx_packets = 0;
6729 		stats_prev->tx_bytes = 0;
6730 		stats_prev->rx_packets = 0;
6731 		stats_prev->rx_bytes = 0;
6732 	}
6733 
6734 	/* update netdev counters */
6735 	net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6736 	net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6737 	net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6738 	net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6739 
6740 	stats_prev->tx_packets = vsi_stats->tx_packets;
6741 	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6742 	stats_prev->rx_packets = vsi_stats->rx_packets;
6743 	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6744 
6745 	kfree(vsi_stats);
6746 }
6747 
6748 /**
6749  * ice_update_vsi_stats - Update VSI stats counters
6750  * @vsi: the VSI to be updated
6751  */
6752 void ice_update_vsi_stats(struct ice_vsi *vsi)
6753 {
6754 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6755 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6756 	struct ice_pf *pf = vsi->back;
6757 
6758 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6759 	    test_bit(ICE_CFG_BUSY, pf->state))
6760 		return;
6761 
6762 	/* get stats as recorded by Tx/Rx rings */
6763 	ice_update_vsi_ring_stats(vsi);
6764 
6765 	/* get VSI stats as recorded by the hardware */
6766 	ice_update_eth_stats(vsi);
6767 
6768 	cur_ns->tx_errors = cur_es->tx_errors;
6769 	cur_ns->rx_dropped = cur_es->rx_discards;
6770 	cur_ns->tx_dropped = cur_es->tx_discards;
6771 	cur_ns->multicast = cur_es->rx_multicast;
6772 
6773 	/* update some more netdev stats if this is main VSI */
6774 	if (vsi->type == ICE_VSI_PF) {
6775 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6776 		cur_ns->rx_errors = pf->stats.crc_errors +
6777 				    pf->stats.illegal_bytes +
6778 				    pf->stats.rx_undersize +
6779 				    pf->hw_csum_rx_error +
6780 				    pf->stats.rx_jabber +
6781 				    pf->stats.rx_fragments +
6782 				    pf->stats.rx_oversize;
6783 		/* record drops from the port level */
6784 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6785 	}
6786 }
6787 
6788 /**
6789  * ice_update_pf_stats - Update PF port stats counters
6790  * @pf: PF whose stats needs to be updated
6791  */
6792 void ice_update_pf_stats(struct ice_pf *pf)
6793 {
6794 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6795 	struct ice_hw *hw = &pf->hw;
6796 	u16 fd_ctr_base;
6797 	u8 port;
6798 
6799 	port = hw->port_info->lport;
6800 	prev_ps = &pf->stats_prev;
6801 	cur_ps = &pf->stats;
6802 
6803 	if (ice_is_reset_in_progress(pf->state))
6804 		pf->stat_prev_loaded = false;
6805 
6806 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6807 			  &prev_ps->eth.rx_bytes,
6808 			  &cur_ps->eth.rx_bytes);
6809 
6810 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6811 			  &prev_ps->eth.rx_unicast,
6812 			  &cur_ps->eth.rx_unicast);
6813 
6814 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6815 			  &prev_ps->eth.rx_multicast,
6816 			  &cur_ps->eth.rx_multicast);
6817 
6818 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6819 			  &prev_ps->eth.rx_broadcast,
6820 			  &cur_ps->eth.rx_broadcast);
6821 
6822 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6823 			  &prev_ps->eth.rx_discards,
6824 			  &cur_ps->eth.rx_discards);
6825 
6826 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6827 			  &prev_ps->eth.tx_bytes,
6828 			  &cur_ps->eth.tx_bytes);
6829 
6830 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6831 			  &prev_ps->eth.tx_unicast,
6832 			  &cur_ps->eth.tx_unicast);
6833 
6834 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6835 			  &prev_ps->eth.tx_multicast,
6836 			  &cur_ps->eth.tx_multicast);
6837 
6838 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6839 			  &prev_ps->eth.tx_broadcast,
6840 			  &cur_ps->eth.tx_broadcast);
6841 
6842 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6843 			  &prev_ps->tx_dropped_link_down,
6844 			  &cur_ps->tx_dropped_link_down);
6845 
6846 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6847 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6848 
6849 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6850 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6851 
6852 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6853 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6854 
6855 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6856 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6857 
6858 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6859 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6860 
6861 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6862 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6863 
6864 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6865 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6866 
6867 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6868 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6869 
6870 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6871 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6872 
6873 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6874 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6875 
6876 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6877 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6878 
6879 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6880 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6881 
6882 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6883 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6884 
6885 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6886 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6887 
6888 	fd_ctr_base = hw->fd_ctr_base;
6889 
6890 	ice_stat_update40(hw,
6891 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6892 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6893 			  &cur_ps->fd_sb_match);
6894 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6895 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6896 
6897 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6898 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6899 
6900 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6901 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6902 
6903 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6904 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6905 
6906 	ice_update_dcb_stats(pf);
6907 
6908 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6909 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6910 
6911 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6912 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6913 
6914 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6915 			  &prev_ps->mac_local_faults,
6916 			  &cur_ps->mac_local_faults);
6917 
6918 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6919 			  &prev_ps->mac_remote_faults,
6920 			  &cur_ps->mac_remote_faults);
6921 
6922 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6923 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6924 
6925 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6926 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6927 
6928 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6929 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6930 
6931 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6932 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6933 
6934 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6935 
6936 	pf->stat_prev_loaded = true;
6937 }
6938 
6939 /**
6940  * ice_get_stats64 - get statistics for network device structure
6941  * @netdev: network interface device structure
6942  * @stats: main device statistics structure
6943  */
6944 static
6945 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6946 {
6947 	struct ice_netdev_priv *np = netdev_priv(netdev);
6948 	struct rtnl_link_stats64 *vsi_stats;
6949 	struct ice_vsi *vsi = np->vsi;
6950 
6951 	vsi_stats = &vsi->net_stats;
6952 
6953 	if (!vsi->num_txq || !vsi->num_rxq)
6954 		return;
6955 
6956 	/* netdev packet/byte stats come from ring counter. These are obtained
6957 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6958 	 * But, only call the update routine and read the registers if VSI is
6959 	 * not down.
6960 	 */
6961 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6962 		ice_update_vsi_ring_stats(vsi);
6963 	stats->tx_packets = vsi_stats->tx_packets;
6964 	stats->tx_bytes = vsi_stats->tx_bytes;
6965 	stats->rx_packets = vsi_stats->rx_packets;
6966 	stats->rx_bytes = vsi_stats->rx_bytes;
6967 
6968 	/* The rest of the stats can be read from the hardware but instead we
6969 	 * just return values that the watchdog task has already obtained from
6970 	 * the hardware.
6971 	 */
6972 	stats->multicast = vsi_stats->multicast;
6973 	stats->tx_errors = vsi_stats->tx_errors;
6974 	stats->tx_dropped = vsi_stats->tx_dropped;
6975 	stats->rx_errors = vsi_stats->rx_errors;
6976 	stats->rx_dropped = vsi_stats->rx_dropped;
6977 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6978 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6979 }
6980 
6981 /**
6982  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6983  * @vsi: VSI having NAPI disabled
6984  */
6985 static void ice_napi_disable_all(struct ice_vsi *vsi)
6986 {
6987 	int q_idx;
6988 
6989 	if (!vsi->netdev)
6990 		return;
6991 
6992 	ice_for_each_q_vector(vsi, q_idx) {
6993 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6994 
6995 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6996 			napi_disable(&q_vector->napi);
6997 
6998 		cancel_work_sync(&q_vector->tx.dim.work);
6999 		cancel_work_sync(&q_vector->rx.dim.work);
7000 	}
7001 }
7002 
7003 /**
7004  * ice_down - Shutdown the connection
7005  * @vsi: The VSI being stopped
7006  *
7007  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7008  */
7009 int ice_down(struct ice_vsi *vsi)
7010 {
7011 	int i, tx_err, rx_err, vlan_err = 0;
7012 
7013 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7014 
7015 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
7016 		vlan_err = ice_vsi_del_vlan_zero(vsi);
7017 		ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
7018 		netif_carrier_off(vsi->netdev);
7019 		netif_tx_disable(vsi->netdev);
7020 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
7021 		ice_eswitch_stop_all_tx_queues(vsi->back);
7022 	}
7023 
7024 	ice_vsi_dis_irq(vsi);
7025 
7026 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7027 	if (tx_err)
7028 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7029 			   vsi->vsi_num, tx_err);
7030 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
7031 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7032 		if (tx_err)
7033 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7034 				   vsi->vsi_num, tx_err);
7035 	}
7036 
7037 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
7038 	if (rx_err)
7039 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7040 			   vsi->vsi_num, rx_err);
7041 
7042 	ice_napi_disable_all(vsi);
7043 
7044 	ice_for_each_txq(vsi, i)
7045 		ice_clean_tx_ring(vsi->tx_rings[i]);
7046 
7047 	if (ice_is_xdp_ena_vsi(vsi))
7048 		ice_for_each_xdp_txq(vsi, i)
7049 			ice_clean_tx_ring(vsi->xdp_rings[i]);
7050 
7051 	ice_for_each_rxq(vsi, i)
7052 		ice_clean_rx_ring(vsi->rx_rings[i]);
7053 
7054 	if (tx_err || rx_err || vlan_err) {
7055 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7056 			   vsi->vsi_num, vsi->vsw->sw_id);
7057 		return -EIO;
7058 	}
7059 
7060 	return 0;
7061 }
7062 
7063 /**
7064  * ice_down_up - shutdown the VSI connection and bring it up
7065  * @vsi: the VSI to be reconnected
7066  */
7067 int ice_down_up(struct ice_vsi *vsi)
7068 {
7069 	int ret;
7070 
7071 	/* if DOWN already set, nothing to do */
7072 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7073 		return 0;
7074 
7075 	ret = ice_down(vsi);
7076 	if (ret)
7077 		return ret;
7078 
7079 	ret = ice_up(vsi);
7080 	if (ret) {
7081 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7082 		return ret;
7083 	}
7084 
7085 	return 0;
7086 }
7087 
7088 /**
7089  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7090  * @vsi: VSI having resources allocated
7091  *
7092  * Return 0 on success, negative on failure
7093  */
7094 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7095 {
7096 	int i, err = 0;
7097 
7098 	if (!vsi->num_txq) {
7099 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7100 			vsi->vsi_num);
7101 		return -EINVAL;
7102 	}
7103 
7104 	ice_for_each_txq(vsi, i) {
7105 		struct ice_tx_ring *ring = vsi->tx_rings[i];
7106 
7107 		if (!ring)
7108 			return -EINVAL;
7109 
7110 		if (vsi->netdev)
7111 			ring->netdev = vsi->netdev;
7112 		err = ice_setup_tx_ring(ring);
7113 		if (err)
7114 			break;
7115 	}
7116 
7117 	return err;
7118 }
7119 
7120 /**
7121  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7122  * @vsi: VSI having resources allocated
7123  *
7124  * Return 0 on success, negative on failure
7125  */
7126 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7127 {
7128 	int i, err = 0;
7129 
7130 	if (!vsi->num_rxq) {
7131 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7132 			vsi->vsi_num);
7133 		return -EINVAL;
7134 	}
7135 
7136 	ice_for_each_rxq(vsi, i) {
7137 		struct ice_rx_ring *ring = vsi->rx_rings[i];
7138 
7139 		if (!ring)
7140 			return -EINVAL;
7141 
7142 		if (vsi->netdev)
7143 			ring->netdev = vsi->netdev;
7144 		err = ice_setup_rx_ring(ring);
7145 		if (err)
7146 			break;
7147 	}
7148 
7149 	return err;
7150 }
7151 
7152 /**
7153  * ice_vsi_open_ctrl - open control VSI for use
7154  * @vsi: the VSI to open
7155  *
7156  * Initialization of the Control VSI
7157  *
7158  * Returns 0 on success, negative value on error
7159  */
7160 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7161 {
7162 	char int_name[ICE_INT_NAME_STR_LEN];
7163 	struct ice_pf *pf = vsi->back;
7164 	struct device *dev;
7165 	int err;
7166 
7167 	dev = ice_pf_to_dev(pf);
7168 	/* allocate descriptors */
7169 	err = ice_vsi_setup_tx_rings(vsi);
7170 	if (err)
7171 		goto err_setup_tx;
7172 
7173 	err = ice_vsi_setup_rx_rings(vsi);
7174 	if (err)
7175 		goto err_setup_rx;
7176 
7177 	err = ice_vsi_cfg_lan(vsi);
7178 	if (err)
7179 		goto err_setup_rx;
7180 
7181 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7182 		 dev_driver_string(dev), dev_name(dev));
7183 	err = ice_vsi_req_irq_msix(vsi, int_name);
7184 	if (err)
7185 		goto err_setup_rx;
7186 
7187 	ice_vsi_cfg_msix(vsi);
7188 
7189 	err = ice_vsi_start_all_rx_rings(vsi);
7190 	if (err)
7191 		goto err_up_complete;
7192 
7193 	clear_bit(ICE_VSI_DOWN, vsi->state);
7194 	ice_vsi_ena_irq(vsi);
7195 
7196 	return 0;
7197 
7198 err_up_complete:
7199 	ice_down(vsi);
7200 err_setup_rx:
7201 	ice_vsi_free_rx_rings(vsi);
7202 err_setup_tx:
7203 	ice_vsi_free_tx_rings(vsi);
7204 
7205 	return err;
7206 }
7207 
7208 /**
7209  * ice_vsi_open - Called when a network interface is made active
7210  * @vsi: the VSI to open
7211  *
7212  * Initialization of the VSI
7213  *
7214  * Returns 0 on success, negative value on error
7215  */
7216 int ice_vsi_open(struct ice_vsi *vsi)
7217 {
7218 	char int_name[ICE_INT_NAME_STR_LEN];
7219 	struct ice_pf *pf = vsi->back;
7220 	int err;
7221 
7222 	/* allocate descriptors */
7223 	err = ice_vsi_setup_tx_rings(vsi);
7224 	if (err)
7225 		goto err_setup_tx;
7226 
7227 	err = ice_vsi_setup_rx_rings(vsi);
7228 	if (err)
7229 		goto err_setup_rx;
7230 
7231 	err = ice_vsi_cfg_lan(vsi);
7232 	if (err)
7233 		goto err_setup_rx;
7234 
7235 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7236 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7237 	err = ice_vsi_req_irq_msix(vsi, int_name);
7238 	if (err)
7239 		goto err_setup_rx;
7240 
7241 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7242 
7243 	if (vsi->type == ICE_VSI_PF) {
7244 		/* Notify the stack of the actual queue counts. */
7245 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7246 		if (err)
7247 			goto err_set_qs;
7248 
7249 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7250 		if (err)
7251 			goto err_set_qs;
7252 	}
7253 
7254 	err = ice_up_complete(vsi);
7255 	if (err)
7256 		goto err_up_complete;
7257 
7258 	return 0;
7259 
7260 err_up_complete:
7261 	ice_down(vsi);
7262 err_set_qs:
7263 	ice_vsi_free_irq(vsi);
7264 err_setup_rx:
7265 	ice_vsi_free_rx_rings(vsi);
7266 err_setup_tx:
7267 	ice_vsi_free_tx_rings(vsi);
7268 
7269 	return err;
7270 }
7271 
7272 /**
7273  * ice_vsi_release_all - Delete all VSIs
7274  * @pf: PF from which all VSIs are being removed
7275  */
7276 static void ice_vsi_release_all(struct ice_pf *pf)
7277 {
7278 	int err, i;
7279 
7280 	if (!pf->vsi)
7281 		return;
7282 
7283 	ice_for_each_vsi(pf, i) {
7284 		if (!pf->vsi[i])
7285 			continue;
7286 
7287 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7288 			continue;
7289 
7290 		err = ice_vsi_release(pf->vsi[i]);
7291 		if (err)
7292 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7293 				i, err, pf->vsi[i]->vsi_num);
7294 	}
7295 }
7296 
7297 /**
7298  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7299  * @pf: pointer to the PF instance
7300  * @type: VSI type to rebuild
7301  *
7302  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7303  */
7304 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7305 {
7306 	struct device *dev = ice_pf_to_dev(pf);
7307 	int i, err;
7308 
7309 	ice_for_each_vsi(pf, i) {
7310 		struct ice_vsi *vsi = pf->vsi[i];
7311 
7312 		if (!vsi || vsi->type != type)
7313 			continue;
7314 
7315 		/* rebuild the VSI */
7316 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7317 		if (err) {
7318 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7319 				err, vsi->idx, ice_vsi_type_str(type));
7320 			return err;
7321 		}
7322 
7323 		/* replay filters for the VSI */
7324 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7325 		if (err) {
7326 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7327 				err, vsi->idx, ice_vsi_type_str(type));
7328 			return err;
7329 		}
7330 
7331 		/* Re-map HW VSI number, using VSI handle that has been
7332 		 * previously validated in ice_replay_vsi() call above
7333 		 */
7334 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7335 
7336 		/* enable the VSI */
7337 		err = ice_ena_vsi(vsi, false);
7338 		if (err) {
7339 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7340 				err, vsi->idx, ice_vsi_type_str(type));
7341 			return err;
7342 		}
7343 
7344 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7345 			 ice_vsi_type_str(type));
7346 	}
7347 
7348 	return 0;
7349 }
7350 
7351 /**
7352  * ice_update_pf_netdev_link - Update PF netdev link status
7353  * @pf: pointer to the PF instance
7354  */
7355 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7356 {
7357 	bool link_up;
7358 	int i;
7359 
7360 	ice_for_each_vsi(pf, i) {
7361 		struct ice_vsi *vsi = pf->vsi[i];
7362 
7363 		if (!vsi || vsi->type != ICE_VSI_PF)
7364 			return;
7365 
7366 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7367 		if (link_up) {
7368 			netif_carrier_on(pf->vsi[i]->netdev);
7369 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7370 		} else {
7371 			netif_carrier_off(pf->vsi[i]->netdev);
7372 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7373 		}
7374 	}
7375 }
7376 
7377 /**
7378  * ice_rebuild - rebuild after reset
7379  * @pf: PF to rebuild
7380  * @reset_type: type of reset
7381  *
7382  * Do not rebuild VF VSI in this flow because that is already handled via
7383  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7384  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7385  * to reset/rebuild all the VF VSI twice.
7386  */
7387 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7388 {
7389 	struct device *dev = ice_pf_to_dev(pf);
7390 	struct ice_hw *hw = &pf->hw;
7391 	bool dvm;
7392 	int err;
7393 
7394 	if (test_bit(ICE_DOWN, pf->state))
7395 		goto clear_recovery;
7396 
7397 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7398 
7399 #define ICE_EMP_RESET_SLEEP_MS 5000
7400 	if (reset_type == ICE_RESET_EMPR) {
7401 		/* If an EMP reset has occurred, any previously pending flash
7402 		 * update will have completed. We no longer know whether or
7403 		 * not the NVM update EMP reset is restricted.
7404 		 */
7405 		pf->fw_emp_reset_disabled = false;
7406 
7407 		msleep(ICE_EMP_RESET_SLEEP_MS);
7408 	}
7409 
7410 	err = ice_init_all_ctrlq(hw);
7411 	if (err) {
7412 		dev_err(dev, "control queues init failed %d\n", err);
7413 		goto err_init_ctrlq;
7414 	}
7415 
7416 	/* if DDP was previously loaded successfully */
7417 	if (!ice_is_safe_mode(pf)) {
7418 		/* reload the SW DB of filter tables */
7419 		if (reset_type == ICE_RESET_PFR)
7420 			ice_fill_blk_tbls(hw);
7421 		else
7422 			/* Reload DDP Package after CORER/GLOBR reset */
7423 			ice_load_pkg(NULL, pf);
7424 	}
7425 
7426 	err = ice_clear_pf_cfg(hw);
7427 	if (err) {
7428 		dev_err(dev, "clear PF configuration failed %d\n", err);
7429 		goto err_init_ctrlq;
7430 	}
7431 
7432 	ice_clear_pxe_mode(hw);
7433 
7434 	err = ice_init_nvm(hw);
7435 	if (err) {
7436 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7437 		goto err_init_ctrlq;
7438 	}
7439 
7440 	err = ice_get_caps(hw);
7441 	if (err) {
7442 		dev_err(dev, "ice_get_caps failed %d\n", err);
7443 		goto err_init_ctrlq;
7444 	}
7445 
7446 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7447 	if (err) {
7448 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7449 		goto err_init_ctrlq;
7450 	}
7451 
7452 	dvm = ice_is_dvm_ena(hw);
7453 
7454 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7455 	if (err)
7456 		goto err_init_ctrlq;
7457 
7458 	err = ice_sched_init_port(hw->port_info);
7459 	if (err)
7460 		goto err_sched_init_port;
7461 
7462 	/* start misc vector */
7463 	err = ice_req_irq_msix_misc(pf);
7464 	if (err) {
7465 		dev_err(dev, "misc vector setup failed: %d\n", err);
7466 		goto err_sched_init_port;
7467 	}
7468 
7469 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7470 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7471 		if (!rd32(hw, PFQF_FD_SIZE)) {
7472 			u16 unused, guar, b_effort;
7473 
7474 			guar = hw->func_caps.fd_fltr_guar;
7475 			b_effort = hw->func_caps.fd_fltr_best_effort;
7476 
7477 			/* force guaranteed filter pool for PF */
7478 			ice_alloc_fd_guar_item(hw, &unused, guar);
7479 			/* force shared filter pool for PF */
7480 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7481 		}
7482 	}
7483 
7484 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7485 		ice_dcb_rebuild(pf);
7486 
7487 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7488 	 * the VSI rebuild. If not, this causes the PTP link status events to
7489 	 * fail.
7490 	 */
7491 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7492 		ice_ptp_rebuild(pf, reset_type);
7493 
7494 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7495 		ice_gnss_init(pf);
7496 
7497 	/* rebuild PF VSI */
7498 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7499 	if (err) {
7500 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7501 		goto err_vsi_rebuild;
7502 	}
7503 
7504 	err = ice_eswitch_rebuild(pf);
7505 	if (err) {
7506 		dev_err(dev, "Switchdev rebuild failed: %d\n", err);
7507 		goto err_vsi_rebuild;
7508 	}
7509 
7510 	if (reset_type == ICE_RESET_PFR) {
7511 		err = ice_rebuild_channels(pf);
7512 		if (err) {
7513 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7514 				err);
7515 			goto err_vsi_rebuild;
7516 		}
7517 	}
7518 
7519 	/* If Flow Director is active */
7520 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7521 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7522 		if (err) {
7523 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7524 			goto err_vsi_rebuild;
7525 		}
7526 
7527 		/* replay HW Flow Director recipes */
7528 		if (hw->fdir_prof)
7529 			ice_fdir_replay_flows(hw);
7530 
7531 		/* replay Flow Director filters */
7532 		ice_fdir_replay_fltrs(pf);
7533 
7534 		ice_rebuild_arfs(pf);
7535 	}
7536 
7537 	ice_update_pf_netdev_link(pf);
7538 
7539 	/* tell the firmware we are up */
7540 	err = ice_send_version(pf);
7541 	if (err) {
7542 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7543 			err);
7544 		goto err_vsi_rebuild;
7545 	}
7546 
7547 	ice_replay_post(hw);
7548 
7549 	/* if we get here, reset flow is successful */
7550 	clear_bit(ICE_RESET_FAILED, pf->state);
7551 
7552 	ice_plug_aux_dev(pf);
7553 	if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7554 		ice_lag_rebuild(pf);
7555 
7556 	/* Restore timestamp mode settings after VSI rebuild */
7557 	ice_ptp_restore_timestamp_mode(pf);
7558 	return;
7559 
7560 err_vsi_rebuild:
7561 err_sched_init_port:
7562 	ice_sched_cleanup_all(hw);
7563 err_init_ctrlq:
7564 	ice_shutdown_all_ctrlq(hw);
7565 	set_bit(ICE_RESET_FAILED, pf->state);
7566 clear_recovery:
7567 	/* set this bit in PF state to control service task scheduling */
7568 	set_bit(ICE_NEEDS_RESTART, pf->state);
7569 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7570 }
7571 
7572 /**
7573  * ice_change_mtu - NDO callback to change the MTU
7574  * @netdev: network interface device structure
7575  * @new_mtu: new value for maximum frame size
7576  *
7577  * Returns 0 on success, negative on failure
7578  */
7579 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7580 {
7581 	struct ice_netdev_priv *np = netdev_priv(netdev);
7582 	struct ice_vsi *vsi = np->vsi;
7583 	struct ice_pf *pf = vsi->back;
7584 	struct bpf_prog *prog;
7585 	u8 count = 0;
7586 	int err = 0;
7587 
7588 	if (new_mtu == (int)netdev->mtu) {
7589 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7590 		return 0;
7591 	}
7592 
7593 	prog = vsi->xdp_prog;
7594 	if (prog && !prog->aux->xdp_has_frags) {
7595 		int frame_size = ice_max_xdp_frame_size(vsi);
7596 
7597 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7598 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7599 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7600 			return -EINVAL;
7601 		}
7602 	} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7603 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7604 			netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7605 				   ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7606 			return -EINVAL;
7607 		}
7608 	}
7609 
7610 	/* if a reset is in progress, wait for some time for it to complete */
7611 	do {
7612 		if (ice_is_reset_in_progress(pf->state)) {
7613 			count++;
7614 			usleep_range(1000, 2000);
7615 		} else {
7616 			break;
7617 		}
7618 
7619 	} while (count < 100);
7620 
7621 	if (count == 100) {
7622 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7623 		return -EBUSY;
7624 	}
7625 
7626 	netdev->mtu = (unsigned int)new_mtu;
7627 	err = ice_down_up(vsi);
7628 	if (err)
7629 		return err;
7630 
7631 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7632 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7633 
7634 	return err;
7635 }
7636 
7637 /**
7638  * ice_eth_ioctl - Access the hwtstamp interface
7639  * @netdev: network interface device structure
7640  * @ifr: interface request data
7641  * @cmd: ioctl command
7642  */
7643 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7644 {
7645 	struct ice_netdev_priv *np = netdev_priv(netdev);
7646 	struct ice_pf *pf = np->vsi->back;
7647 
7648 	switch (cmd) {
7649 	case SIOCGHWTSTAMP:
7650 		return ice_ptp_get_ts_config(pf, ifr);
7651 	case SIOCSHWTSTAMP:
7652 		return ice_ptp_set_ts_config(pf, ifr);
7653 	default:
7654 		return -EOPNOTSUPP;
7655 	}
7656 }
7657 
7658 /**
7659  * ice_aq_str - convert AQ err code to a string
7660  * @aq_err: the AQ error code to convert
7661  */
7662 const char *ice_aq_str(enum ice_aq_err aq_err)
7663 {
7664 	switch (aq_err) {
7665 	case ICE_AQ_RC_OK:
7666 		return "OK";
7667 	case ICE_AQ_RC_EPERM:
7668 		return "ICE_AQ_RC_EPERM";
7669 	case ICE_AQ_RC_ENOENT:
7670 		return "ICE_AQ_RC_ENOENT";
7671 	case ICE_AQ_RC_ENOMEM:
7672 		return "ICE_AQ_RC_ENOMEM";
7673 	case ICE_AQ_RC_EBUSY:
7674 		return "ICE_AQ_RC_EBUSY";
7675 	case ICE_AQ_RC_EEXIST:
7676 		return "ICE_AQ_RC_EEXIST";
7677 	case ICE_AQ_RC_EINVAL:
7678 		return "ICE_AQ_RC_EINVAL";
7679 	case ICE_AQ_RC_ENOSPC:
7680 		return "ICE_AQ_RC_ENOSPC";
7681 	case ICE_AQ_RC_ENOSYS:
7682 		return "ICE_AQ_RC_ENOSYS";
7683 	case ICE_AQ_RC_EMODE:
7684 		return "ICE_AQ_RC_EMODE";
7685 	case ICE_AQ_RC_ENOSEC:
7686 		return "ICE_AQ_RC_ENOSEC";
7687 	case ICE_AQ_RC_EBADSIG:
7688 		return "ICE_AQ_RC_EBADSIG";
7689 	case ICE_AQ_RC_ESVN:
7690 		return "ICE_AQ_RC_ESVN";
7691 	case ICE_AQ_RC_EBADMAN:
7692 		return "ICE_AQ_RC_EBADMAN";
7693 	case ICE_AQ_RC_EBADBUF:
7694 		return "ICE_AQ_RC_EBADBUF";
7695 	}
7696 
7697 	return "ICE_AQ_RC_UNKNOWN";
7698 }
7699 
7700 /**
7701  * ice_set_rss_lut - Set RSS LUT
7702  * @vsi: Pointer to VSI structure
7703  * @lut: Lookup table
7704  * @lut_size: Lookup table size
7705  *
7706  * Returns 0 on success, negative on failure
7707  */
7708 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7709 {
7710 	struct ice_aq_get_set_rss_lut_params params = {};
7711 	struct ice_hw *hw = &vsi->back->hw;
7712 	int status;
7713 
7714 	if (!lut)
7715 		return -EINVAL;
7716 
7717 	params.vsi_handle = vsi->idx;
7718 	params.lut_size = lut_size;
7719 	params.lut_type = vsi->rss_lut_type;
7720 	params.lut = lut;
7721 
7722 	status = ice_aq_set_rss_lut(hw, &params);
7723 	if (status)
7724 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7725 			status, ice_aq_str(hw->adminq.sq_last_status));
7726 
7727 	return status;
7728 }
7729 
7730 /**
7731  * ice_set_rss_key - Set RSS key
7732  * @vsi: Pointer to the VSI structure
7733  * @seed: RSS hash seed
7734  *
7735  * Returns 0 on success, negative on failure
7736  */
7737 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7738 {
7739 	struct ice_hw *hw = &vsi->back->hw;
7740 	int status;
7741 
7742 	if (!seed)
7743 		return -EINVAL;
7744 
7745 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7746 	if (status)
7747 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7748 			status, ice_aq_str(hw->adminq.sq_last_status));
7749 
7750 	return status;
7751 }
7752 
7753 /**
7754  * ice_get_rss_lut - Get RSS LUT
7755  * @vsi: Pointer to VSI structure
7756  * @lut: Buffer to store the lookup table entries
7757  * @lut_size: Size of buffer to store the lookup table entries
7758  *
7759  * Returns 0 on success, negative on failure
7760  */
7761 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7762 {
7763 	struct ice_aq_get_set_rss_lut_params params = {};
7764 	struct ice_hw *hw = &vsi->back->hw;
7765 	int status;
7766 
7767 	if (!lut)
7768 		return -EINVAL;
7769 
7770 	params.vsi_handle = vsi->idx;
7771 	params.lut_size = lut_size;
7772 	params.lut_type = vsi->rss_lut_type;
7773 	params.lut = lut;
7774 
7775 	status = ice_aq_get_rss_lut(hw, &params);
7776 	if (status)
7777 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7778 			status, ice_aq_str(hw->adminq.sq_last_status));
7779 
7780 	return status;
7781 }
7782 
7783 /**
7784  * ice_get_rss_key - Get RSS key
7785  * @vsi: Pointer to VSI structure
7786  * @seed: Buffer to store the key in
7787  *
7788  * Returns 0 on success, negative on failure
7789  */
7790 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7791 {
7792 	struct ice_hw *hw = &vsi->back->hw;
7793 	int status;
7794 
7795 	if (!seed)
7796 		return -EINVAL;
7797 
7798 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7799 	if (status)
7800 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7801 			status, ice_aq_str(hw->adminq.sq_last_status));
7802 
7803 	return status;
7804 }
7805 
7806 /**
7807  * ice_set_rss_hfunc - Set RSS HASH function
7808  * @vsi: Pointer to VSI structure
7809  * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
7810  *
7811  * Returns 0 on success, negative on failure
7812  */
7813 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
7814 {
7815 	struct ice_hw *hw = &vsi->back->hw;
7816 	struct ice_vsi_ctx *ctx;
7817 	bool symm;
7818 	int err;
7819 
7820 	if (hfunc == vsi->rss_hfunc)
7821 		return 0;
7822 
7823 	if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
7824 	    hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
7825 		return -EOPNOTSUPP;
7826 
7827 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7828 	if (!ctx)
7829 		return -ENOMEM;
7830 
7831 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
7832 	ctx->info.q_opt_rss = vsi->info.q_opt_rss;
7833 	ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
7834 	ctx->info.q_opt_rss |=
7835 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
7836 	ctx->info.q_opt_tc = vsi->info.q_opt_tc;
7837 	ctx->info.q_opt_flags = vsi->info.q_opt_rss;
7838 
7839 	err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
7840 	if (err) {
7841 		dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
7842 			vsi->vsi_num, err);
7843 	} else {
7844 		vsi->info.q_opt_rss = ctx->info.q_opt_rss;
7845 		vsi->rss_hfunc = hfunc;
7846 		netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
7847 			    hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
7848 			    "Symmetric " : "");
7849 	}
7850 	kfree(ctx);
7851 	if (err)
7852 		return err;
7853 
7854 	/* Fix the symmetry setting for all existing RSS configurations */
7855 	symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
7856 	return ice_set_rss_cfg_symm(hw, vsi, symm);
7857 }
7858 
7859 /**
7860  * ice_bridge_getlink - Get the hardware bridge mode
7861  * @skb: skb buff
7862  * @pid: process ID
7863  * @seq: RTNL message seq
7864  * @dev: the netdev being configured
7865  * @filter_mask: filter mask passed in
7866  * @nlflags: netlink flags passed in
7867  *
7868  * Return the bridge mode (VEB/VEPA)
7869  */
7870 static int
7871 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7872 		   struct net_device *dev, u32 filter_mask, int nlflags)
7873 {
7874 	struct ice_netdev_priv *np = netdev_priv(dev);
7875 	struct ice_vsi *vsi = np->vsi;
7876 	struct ice_pf *pf = vsi->back;
7877 	u16 bmode;
7878 
7879 	bmode = pf->first_sw->bridge_mode;
7880 
7881 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7882 				       filter_mask, NULL);
7883 }
7884 
7885 /**
7886  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7887  * @vsi: Pointer to VSI structure
7888  * @bmode: Hardware bridge mode (VEB/VEPA)
7889  *
7890  * Returns 0 on success, negative on failure
7891  */
7892 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7893 {
7894 	struct ice_aqc_vsi_props *vsi_props;
7895 	struct ice_hw *hw = &vsi->back->hw;
7896 	struct ice_vsi_ctx *ctxt;
7897 	int ret;
7898 
7899 	vsi_props = &vsi->info;
7900 
7901 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7902 	if (!ctxt)
7903 		return -ENOMEM;
7904 
7905 	ctxt->info = vsi->info;
7906 
7907 	if (bmode == BRIDGE_MODE_VEB)
7908 		/* change from VEPA to VEB mode */
7909 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7910 	else
7911 		/* change from VEB to VEPA mode */
7912 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7913 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7914 
7915 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7916 	if (ret) {
7917 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7918 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7919 		goto out;
7920 	}
7921 	/* Update sw flags for book keeping */
7922 	vsi_props->sw_flags = ctxt->info.sw_flags;
7923 
7924 out:
7925 	kfree(ctxt);
7926 	return ret;
7927 }
7928 
7929 /**
7930  * ice_bridge_setlink - Set the hardware bridge mode
7931  * @dev: the netdev being configured
7932  * @nlh: RTNL message
7933  * @flags: bridge setlink flags
7934  * @extack: netlink extended ack
7935  *
7936  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7937  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7938  * not already set for all VSIs connected to this switch. And also update the
7939  * unicast switch filter rules for the corresponding switch of the netdev.
7940  */
7941 static int
7942 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7943 		   u16 __always_unused flags,
7944 		   struct netlink_ext_ack __always_unused *extack)
7945 {
7946 	struct ice_netdev_priv *np = netdev_priv(dev);
7947 	struct ice_pf *pf = np->vsi->back;
7948 	struct nlattr *attr, *br_spec;
7949 	struct ice_hw *hw = &pf->hw;
7950 	struct ice_sw *pf_sw;
7951 	int rem, v, err = 0;
7952 
7953 	pf_sw = pf->first_sw;
7954 	/* find the attribute in the netlink message */
7955 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7956 
7957 	nla_for_each_nested(attr, br_spec, rem) {
7958 		__u16 mode;
7959 
7960 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7961 			continue;
7962 		mode = nla_get_u16(attr);
7963 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7964 			return -EINVAL;
7965 		/* Continue  if bridge mode is not being flipped */
7966 		if (mode == pf_sw->bridge_mode)
7967 			continue;
7968 		/* Iterates through the PF VSI list and update the loopback
7969 		 * mode of the VSI
7970 		 */
7971 		ice_for_each_vsi(pf, v) {
7972 			if (!pf->vsi[v])
7973 				continue;
7974 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7975 			if (err)
7976 				return err;
7977 		}
7978 
7979 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7980 		/* Update the unicast switch filter rules for the corresponding
7981 		 * switch of the netdev
7982 		 */
7983 		err = ice_update_sw_rule_bridge_mode(hw);
7984 		if (err) {
7985 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7986 				   mode, err,
7987 				   ice_aq_str(hw->adminq.sq_last_status));
7988 			/* revert hw->evb_veb */
7989 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7990 			return err;
7991 		}
7992 
7993 		pf_sw->bridge_mode = mode;
7994 	}
7995 
7996 	return 0;
7997 }
7998 
7999 /**
8000  * ice_tx_timeout - Respond to a Tx Hang
8001  * @netdev: network interface device structure
8002  * @txqueue: Tx queue
8003  */
8004 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8005 {
8006 	struct ice_netdev_priv *np = netdev_priv(netdev);
8007 	struct ice_tx_ring *tx_ring = NULL;
8008 	struct ice_vsi *vsi = np->vsi;
8009 	struct ice_pf *pf = vsi->back;
8010 	u32 i;
8011 
8012 	pf->tx_timeout_count++;
8013 
8014 	/* Check if PFC is enabled for the TC to which the queue belongs
8015 	 * to. If yes then Tx timeout is not caused by a hung queue, no
8016 	 * need to reset and rebuild
8017 	 */
8018 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8019 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8020 			 txqueue);
8021 		return;
8022 	}
8023 
8024 	/* now that we have an index, find the tx_ring struct */
8025 	ice_for_each_txq(vsi, i)
8026 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8027 			if (txqueue == vsi->tx_rings[i]->q_index) {
8028 				tx_ring = vsi->tx_rings[i];
8029 				break;
8030 			}
8031 
8032 	/* Reset recovery level if enough time has elapsed after last timeout.
8033 	 * Also ensure no new reset action happens before next timeout period.
8034 	 */
8035 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8036 		pf->tx_timeout_recovery_level = 1;
8037 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8038 				       netdev->watchdog_timeo)))
8039 		return;
8040 
8041 	if (tx_ring) {
8042 		struct ice_hw *hw = &pf->hw;
8043 		u32 head, val = 0;
8044 
8045 		head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8046 				 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8047 		/* Read interrupt register */
8048 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8049 
8050 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8051 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8052 			    head, tx_ring->next_to_use, val);
8053 	}
8054 
8055 	pf->tx_timeout_last_recovery = jiffies;
8056 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8057 		    pf->tx_timeout_recovery_level, txqueue);
8058 
8059 	switch (pf->tx_timeout_recovery_level) {
8060 	case 1:
8061 		set_bit(ICE_PFR_REQ, pf->state);
8062 		break;
8063 	case 2:
8064 		set_bit(ICE_CORER_REQ, pf->state);
8065 		break;
8066 	case 3:
8067 		set_bit(ICE_GLOBR_REQ, pf->state);
8068 		break;
8069 	default:
8070 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8071 		set_bit(ICE_DOWN, pf->state);
8072 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8073 		set_bit(ICE_SERVICE_DIS, pf->state);
8074 		break;
8075 	}
8076 
8077 	ice_service_task_schedule(pf);
8078 	pf->tx_timeout_recovery_level++;
8079 }
8080 
8081 /**
8082  * ice_setup_tc_cls_flower - flower classifier offloads
8083  * @np: net device to configure
8084  * @filter_dev: device on which filter is added
8085  * @cls_flower: offload data
8086  */
8087 static int
8088 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8089 			struct net_device *filter_dev,
8090 			struct flow_cls_offload *cls_flower)
8091 {
8092 	struct ice_vsi *vsi = np->vsi;
8093 
8094 	if (cls_flower->common.chain_index)
8095 		return -EOPNOTSUPP;
8096 
8097 	switch (cls_flower->command) {
8098 	case FLOW_CLS_REPLACE:
8099 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8100 	case FLOW_CLS_DESTROY:
8101 		return ice_del_cls_flower(vsi, cls_flower);
8102 	default:
8103 		return -EINVAL;
8104 	}
8105 }
8106 
8107 /**
8108  * ice_setup_tc_block_cb - callback handler registered for TC block
8109  * @type: TC SETUP type
8110  * @type_data: TC flower offload data that contains user input
8111  * @cb_priv: netdev private data
8112  */
8113 static int
8114 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8115 {
8116 	struct ice_netdev_priv *np = cb_priv;
8117 
8118 	switch (type) {
8119 	case TC_SETUP_CLSFLOWER:
8120 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8121 					       type_data);
8122 	default:
8123 		return -EOPNOTSUPP;
8124 	}
8125 }
8126 
8127 /**
8128  * ice_validate_mqprio_qopt - Validate TCF input parameters
8129  * @vsi: Pointer to VSI
8130  * @mqprio_qopt: input parameters for mqprio queue configuration
8131  *
8132  * This function validates MQPRIO params, such as qcount (power of 2 wherever
8133  * needed), and make sure user doesn't specify qcount and BW rate limit
8134  * for TCs, which are more than "num_tc"
8135  */
8136 static int
8137 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8138 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
8139 {
8140 	int non_power_of_2_qcount = 0;
8141 	struct ice_pf *pf = vsi->back;
8142 	int max_rss_q_cnt = 0;
8143 	u64 sum_min_rate = 0;
8144 	struct device *dev;
8145 	int i, speed;
8146 	u8 num_tc;
8147 
8148 	if (vsi->type != ICE_VSI_PF)
8149 		return -EINVAL;
8150 
8151 	if (mqprio_qopt->qopt.offset[0] != 0 ||
8152 	    mqprio_qopt->qopt.num_tc < 1 ||
8153 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8154 		return -EINVAL;
8155 
8156 	dev = ice_pf_to_dev(pf);
8157 	vsi->ch_rss_size = 0;
8158 	num_tc = mqprio_qopt->qopt.num_tc;
8159 	speed = ice_get_link_speed_kbps(vsi);
8160 
8161 	for (i = 0; num_tc; i++) {
8162 		int qcount = mqprio_qopt->qopt.count[i];
8163 		u64 max_rate, min_rate, rem;
8164 
8165 		if (!qcount)
8166 			return -EINVAL;
8167 
8168 		if (is_power_of_2(qcount)) {
8169 			if (non_power_of_2_qcount &&
8170 			    qcount > non_power_of_2_qcount) {
8171 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8172 					qcount, non_power_of_2_qcount);
8173 				return -EINVAL;
8174 			}
8175 			if (qcount > max_rss_q_cnt)
8176 				max_rss_q_cnt = qcount;
8177 		} else {
8178 			if (non_power_of_2_qcount &&
8179 			    qcount != non_power_of_2_qcount) {
8180 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8181 					qcount, non_power_of_2_qcount);
8182 				return -EINVAL;
8183 			}
8184 			if (qcount < max_rss_q_cnt) {
8185 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8186 					qcount, max_rss_q_cnt);
8187 				return -EINVAL;
8188 			}
8189 			max_rss_q_cnt = qcount;
8190 			non_power_of_2_qcount = qcount;
8191 		}
8192 
8193 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8194 		 * converts the bandwidth rate limit into Bytes/s when
8195 		 * passing it down to the driver. So convert input bandwidth
8196 		 * from Bytes/s to Kbps
8197 		 */
8198 		max_rate = mqprio_qopt->max_rate[i];
8199 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8200 
8201 		/* min_rate is minimum guaranteed rate and it can't be zero */
8202 		min_rate = mqprio_qopt->min_rate[i];
8203 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8204 		sum_min_rate += min_rate;
8205 
8206 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8207 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8208 				min_rate, ICE_MIN_BW_LIMIT);
8209 			return -EINVAL;
8210 		}
8211 
8212 		if (max_rate && max_rate > speed) {
8213 			dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8214 				i, max_rate, speed);
8215 			return -EINVAL;
8216 		}
8217 
8218 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8219 		if (rem) {
8220 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8221 				i, ICE_MIN_BW_LIMIT);
8222 			return -EINVAL;
8223 		}
8224 
8225 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8226 		if (rem) {
8227 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8228 				i, ICE_MIN_BW_LIMIT);
8229 			return -EINVAL;
8230 		}
8231 
8232 		/* min_rate can't be more than max_rate, except when max_rate
8233 		 * is zero (implies max_rate sought is max line rate). In such
8234 		 * a case min_rate can be more than max.
8235 		 */
8236 		if (max_rate && min_rate > max_rate) {
8237 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8238 				min_rate, max_rate);
8239 			return -EINVAL;
8240 		}
8241 
8242 		if (i >= mqprio_qopt->qopt.num_tc - 1)
8243 			break;
8244 		if (mqprio_qopt->qopt.offset[i + 1] !=
8245 		    (mqprio_qopt->qopt.offset[i] + qcount))
8246 			return -EINVAL;
8247 	}
8248 	if (vsi->num_rxq <
8249 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8250 		return -EINVAL;
8251 	if (vsi->num_txq <
8252 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8253 		return -EINVAL;
8254 
8255 	if (sum_min_rate && sum_min_rate > (u64)speed) {
8256 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8257 			sum_min_rate, speed);
8258 		return -EINVAL;
8259 	}
8260 
8261 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8262 	vsi->ch_rss_size = max_rss_q_cnt;
8263 
8264 	return 0;
8265 }
8266 
8267 /**
8268  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8269  * @pf: ptr to PF device
8270  * @vsi: ptr to VSI
8271  */
8272 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8273 {
8274 	struct device *dev = ice_pf_to_dev(pf);
8275 	bool added = false;
8276 	struct ice_hw *hw;
8277 	int flow;
8278 
8279 	if (!(vsi->num_gfltr || vsi->num_bfltr))
8280 		return -EINVAL;
8281 
8282 	hw = &pf->hw;
8283 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8284 		struct ice_fd_hw_prof *prof;
8285 		int tun, status;
8286 		u64 entry_h;
8287 
8288 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8289 		      hw->fdir_prof[flow]->cnt))
8290 			continue;
8291 
8292 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8293 			enum ice_flow_priority prio;
8294 
8295 			/* add this VSI to FDir profile for this flow */
8296 			prio = ICE_FLOW_PRIO_NORMAL;
8297 			prof = hw->fdir_prof[flow];
8298 			status = ice_flow_add_entry(hw, ICE_BLK_FD,
8299 						    prof->prof_id[tun],
8300 						    prof->vsi_h[0], vsi->idx,
8301 						    prio, prof->fdir_seg[tun],
8302 						    &entry_h);
8303 			if (status) {
8304 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8305 					vsi->idx, flow);
8306 				continue;
8307 			}
8308 
8309 			prof->entry_h[prof->cnt][tun] = entry_h;
8310 		}
8311 
8312 		/* store VSI for filter replay and delete */
8313 		prof->vsi_h[prof->cnt] = vsi->idx;
8314 		prof->cnt++;
8315 
8316 		added = true;
8317 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8318 			flow);
8319 	}
8320 
8321 	if (!added)
8322 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8323 
8324 	return 0;
8325 }
8326 
8327 /**
8328  * ice_add_channel - add a channel by adding VSI
8329  * @pf: ptr to PF device
8330  * @sw_id: underlying HW switching element ID
8331  * @ch: ptr to channel structure
8332  *
8333  * Add a channel (VSI) using add_vsi and queue_map
8334  */
8335 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8336 {
8337 	struct device *dev = ice_pf_to_dev(pf);
8338 	struct ice_vsi *vsi;
8339 
8340 	if (ch->type != ICE_VSI_CHNL) {
8341 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8342 		return -EINVAL;
8343 	}
8344 
8345 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8346 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8347 		dev_err(dev, "create chnl VSI failure\n");
8348 		return -EINVAL;
8349 	}
8350 
8351 	ice_add_vsi_to_fdir(pf, vsi);
8352 
8353 	ch->sw_id = sw_id;
8354 	ch->vsi_num = vsi->vsi_num;
8355 	ch->info.mapping_flags = vsi->info.mapping_flags;
8356 	ch->ch_vsi = vsi;
8357 	/* set the back pointer of channel for newly created VSI */
8358 	vsi->ch = ch;
8359 
8360 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8361 	       sizeof(vsi->info.q_mapping));
8362 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8363 	       sizeof(vsi->info.tc_mapping));
8364 
8365 	return 0;
8366 }
8367 
8368 /**
8369  * ice_chnl_cfg_res
8370  * @vsi: the VSI being setup
8371  * @ch: ptr to channel structure
8372  *
8373  * Configure channel specific resources such as rings, vector.
8374  */
8375 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8376 {
8377 	int i;
8378 
8379 	for (i = 0; i < ch->num_txq; i++) {
8380 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8381 		struct ice_ring_container *rc;
8382 		struct ice_tx_ring *tx_ring;
8383 		struct ice_rx_ring *rx_ring;
8384 
8385 		tx_ring = vsi->tx_rings[ch->base_q + i];
8386 		rx_ring = vsi->rx_rings[ch->base_q + i];
8387 		if (!tx_ring || !rx_ring)
8388 			continue;
8389 
8390 		/* setup ring being channel enabled */
8391 		tx_ring->ch = ch;
8392 		rx_ring->ch = ch;
8393 
8394 		/* following code block sets up vector specific attributes */
8395 		tx_q_vector = tx_ring->q_vector;
8396 		rx_q_vector = rx_ring->q_vector;
8397 		if (!tx_q_vector && !rx_q_vector)
8398 			continue;
8399 
8400 		if (tx_q_vector) {
8401 			tx_q_vector->ch = ch;
8402 			/* setup Tx and Rx ITR setting if DIM is off */
8403 			rc = &tx_q_vector->tx;
8404 			if (!ITR_IS_DYNAMIC(rc))
8405 				ice_write_itr(rc, rc->itr_setting);
8406 		}
8407 		if (rx_q_vector) {
8408 			rx_q_vector->ch = ch;
8409 			/* setup Tx and Rx ITR setting if DIM is off */
8410 			rc = &rx_q_vector->rx;
8411 			if (!ITR_IS_DYNAMIC(rc))
8412 				ice_write_itr(rc, rc->itr_setting);
8413 		}
8414 	}
8415 
8416 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8417 	 * GLINT_ITR register would have written to perform in-context
8418 	 * update, hence perform flush
8419 	 */
8420 	if (ch->num_txq || ch->num_rxq)
8421 		ice_flush(&vsi->back->hw);
8422 }
8423 
8424 /**
8425  * ice_cfg_chnl_all_res - configure channel resources
8426  * @vsi: pte to main_vsi
8427  * @ch: ptr to channel structure
8428  *
8429  * This function configures channel specific resources such as flow-director
8430  * counter index, and other resources such as queues, vectors, ITR settings
8431  */
8432 static void
8433 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8434 {
8435 	/* configure channel (aka ADQ) resources such as queues, vectors,
8436 	 * ITR settings for channel specific vectors and anything else
8437 	 */
8438 	ice_chnl_cfg_res(vsi, ch);
8439 }
8440 
8441 /**
8442  * ice_setup_hw_channel - setup new channel
8443  * @pf: ptr to PF device
8444  * @vsi: the VSI being setup
8445  * @ch: ptr to channel structure
8446  * @sw_id: underlying HW switching element ID
8447  * @type: type of channel to be created (VMDq2/VF)
8448  *
8449  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8450  * and configures Tx rings accordingly
8451  */
8452 static int
8453 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8454 		     struct ice_channel *ch, u16 sw_id, u8 type)
8455 {
8456 	struct device *dev = ice_pf_to_dev(pf);
8457 	int ret;
8458 
8459 	ch->base_q = vsi->next_base_q;
8460 	ch->type = type;
8461 
8462 	ret = ice_add_channel(pf, sw_id, ch);
8463 	if (ret) {
8464 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8465 		return ret;
8466 	}
8467 
8468 	/* configure/setup ADQ specific resources */
8469 	ice_cfg_chnl_all_res(vsi, ch);
8470 
8471 	/* make sure to update the next_base_q so that subsequent channel's
8472 	 * (aka ADQ) VSI queue map is correct
8473 	 */
8474 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8475 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8476 		ch->num_rxq);
8477 
8478 	return 0;
8479 }
8480 
8481 /**
8482  * ice_setup_channel - setup new channel using uplink element
8483  * @pf: ptr to PF device
8484  * @vsi: the VSI being setup
8485  * @ch: ptr to channel structure
8486  *
8487  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8488  * and uplink switching element
8489  */
8490 static bool
8491 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8492 		  struct ice_channel *ch)
8493 {
8494 	struct device *dev = ice_pf_to_dev(pf);
8495 	u16 sw_id;
8496 	int ret;
8497 
8498 	if (vsi->type != ICE_VSI_PF) {
8499 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8500 		return false;
8501 	}
8502 
8503 	sw_id = pf->first_sw->sw_id;
8504 
8505 	/* create channel (VSI) */
8506 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8507 	if (ret) {
8508 		dev_err(dev, "failed to setup hw_channel\n");
8509 		return false;
8510 	}
8511 	dev_dbg(dev, "successfully created channel()\n");
8512 
8513 	return ch->ch_vsi ? true : false;
8514 }
8515 
8516 /**
8517  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8518  * @vsi: VSI to be configured
8519  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8520  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8521  */
8522 static int
8523 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8524 {
8525 	int err;
8526 
8527 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8528 	if (err)
8529 		return err;
8530 
8531 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8532 }
8533 
8534 /**
8535  * ice_create_q_channel - function to create channel
8536  * @vsi: VSI to be configured
8537  * @ch: ptr to channel (it contains channel specific params)
8538  *
8539  * This function creates channel (VSI) using num_queues specified by user,
8540  * reconfigs RSS if needed.
8541  */
8542 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8543 {
8544 	struct ice_pf *pf = vsi->back;
8545 	struct device *dev;
8546 
8547 	if (!ch)
8548 		return -EINVAL;
8549 
8550 	dev = ice_pf_to_dev(pf);
8551 	if (!ch->num_txq || !ch->num_rxq) {
8552 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8553 		return -EINVAL;
8554 	}
8555 
8556 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8557 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8558 			vsi->cnt_q_avail, ch->num_txq);
8559 		return -EINVAL;
8560 	}
8561 
8562 	if (!ice_setup_channel(pf, vsi, ch)) {
8563 		dev_info(dev, "Failed to setup channel\n");
8564 		return -EINVAL;
8565 	}
8566 	/* configure BW rate limit */
8567 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8568 		int ret;
8569 
8570 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8571 				       ch->min_tx_rate);
8572 		if (ret)
8573 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8574 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8575 		else
8576 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8577 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8578 	}
8579 
8580 	vsi->cnt_q_avail -= ch->num_txq;
8581 
8582 	return 0;
8583 }
8584 
8585 /**
8586  * ice_rem_all_chnl_fltrs - removes all channel filters
8587  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8588  *
8589  * Remove all advanced switch filters only if they are channel specific
8590  * tc-flower based filter
8591  */
8592 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8593 {
8594 	struct ice_tc_flower_fltr *fltr;
8595 	struct hlist_node *node;
8596 
8597 	/* to remove all channel filters, iterate an ordered list of filters */
8598 	hlist_for_each_entry_safe(fltr, node,
8599 				  &pf->tc_flower_fltr_list,
8600 				  tc_flower_node) {
8601 		struct ice_rule_query_data rule;
8602 		int status;
8603 
8604 		/* for now process only channel specific filters */
8605 		if (!ice_is_chnl_fltr(fltr))
8606 			continue;
8607 
8608 		rule.rid = fltr->rid;
8609 		rule.rule_id = fltr->rule_id;
8610 		rule.vsi_handle = fltr->dest_vsi_handle;
8611 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8612 		if (status) {
8613 			if (status == -ENOENT)
8614 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8615 					rule.rule_id);
8616 			else
8617 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8618 					status);
8619 		} else if (fltr->dest_vsi) {
8620 			/* update advanced switch filter count */
8621 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8622 				u32 flags = fltr->flags;
8623 
8624 				fltr->dest_vsi->num_chnl_fltr--;
8625 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8626 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8627 					pf->num_dmac_chnl_fltrs--;
8628 			}
8629 		}
8630 
8631 		hlist_del(&fltr->tc_flower_node);
8632 		kfree(fltr);
8633 	}
8634 }
8635 
8636 /**
8637  * ice_remove_q_channels - Remove queue channels for the TCs
8638  * @vsi: VSI to be configured
8639  * @rem_fltr: delete advanced switch filter or not
8640  *
8641  * Remove queue channels for the TCs
8642  */
8643 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8644 {
8645 	struct ice_channel *ch, *ch_tmp;
8646 	struct ice_pf *pf = vsi->back;
8647 	int i;
8648 
8649 	/* remove all tc-flower based filter if they are channel filters only */
8650 	if (rem_fltr)
8651 		ice_rem_all_chnl_fltrs(pf);
8652 
8653 	/* remove ntuple filters since queue configuration is being changed */
8654 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8655 		struct ice_hw *hw = &pf->hw;
8656 
8657 		mutex_lock(&hw->fdir_fltr_lock);
8658 		ice_fdir_del_all_fltrs(vsi);
8659 		mutex_unlock(&hw->fdir_fltr_lock);
8660 	}
8661 
8662 	/* perform cleanup for channels if they exist */
8663 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8664 		struct ice_vsi *ch_vsi;
8665 
8666 		list_del(&ch->list);
8667 		ch_vsi = ch->ch_vsi;
8668 		if (!ch_vsi) {
8669 			kfree(ch);
8670 			continue;
8671 		}
8672 
8673 		/* Reset queue contexts */
8674 		for (i = 0; i < ch->num_rxq; i++) {
8675 			struct ice_tx_ring *tx_ring;
8676 			struct ice_rx_ring *rx_ring;
8677 
8678 			tx_ring = vsi->tx_rings[ch->base_q + i];
8679 			rx_ring = vsi->rx_rings[ch->base_q + i];
8680 			if (tx_ring) {
8681 				tx_ring->ch = NULL;
8682 				if (tx_ring->q_vector)
8683 					tx_ring->q_vector->ch = NULL;
8684 			}
8685 			if (rx_ring) {
8686 				rx_ring->ch = NULL;
8687 				if (rx_ring->q_vector)
8688 					rx_ring->q_vector->ch = NULL;
8689 			}
8690 		}
8691 
8692 		/* Release FD resources for the channel VSI */
8693 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8694 
8695 		/* clear the VSI from scheduler tree */
8696 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8697 
8698 		/* Delete VSI from FW, PF and HW VSI arrays */
8699 		ice_vsi_delete(ch->ch_vsi);
8700 
8701 		/* free the channel */
8702 		kfree(ch);
8703 	}
8704 
8705 	/* clear the channel VSI map which is stored in main VSI */
8706 	ice_for_each_chnl_tc(i)
8707 		vsi->tc_map_vsi[i] = NULL;
8708 
8709 	/* reset main VSI's all TC information */
8710 	vsi->all_enatc = 0;
8711 	vsi->all_numtc = 0;
8712 }
8713 
8714 /**
8715  * ice_rebuild_channels - rebuild channel
8716  * @pf: ptr to PF
8717  *
8718  * Recreate channel VSIs and replay filters
8719  */
8720 static int ice_rebuild_channels(struct ice_pf *pf)
8721 {
8722 	struct device *dev = ice_pf_to_dev(pf);
8723 	struct ice_vsi *main_vsi;
8724 	bool rem_adv_fltr = true;
8725 	struct ice_channel *ch;
8726 	struct ice_vsi *vsi;
8727 	int tc_idx = 1;
8728 	int i, err;
8729 
8730 	main_vsi = ice_get_main_vsi(pf);
8731 	if (!main_vsi)
8732 		return 0;
8733 
8734 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8735 	    main_vsi->old_numtc == 1)
8736 		return 0; /* nothing to be done */
8737 
8738 	/* reconfigure main VSI based on old value of TC and cached values
8739 	 * for MQPRIO opts
8740 	 */
8741 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8742 	if (err) {
8743 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8744 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8745 		return err;
8746 	}
8747 
8748 	/* rebuild ADQ VSIs */
8749 	ice_for_each_vsi(pf, i) {
8750 		enum ice_vsi_type type;
8751 
8752 		vsi = pf->vsi[i];
8753 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8754 			continue;
8755 
8756 		type = vsi->type;
8757 
8758 		/* rebuild ADQ VSI */
8759 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8760 		if (err) {
8761 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8762 				ice_vsi_type_str(type), vsi->idx, err);
8763 			goto cleanup;
8764 		}
8765 
8766 		/* Re-map HW VSI number, using VSI handle that has been
8767 		 * previously validated in ice_replay_vsi() call above
8768 		 */
8769 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8770 
8771 		/* replay filters for the VSI */
8772 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8773 		if (err) {
8774 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8775 				ice_vsi_type_str(type), err, vsi->idx);
8776 			rem_adv_fltr = false;
8777 			goto cleanup;
8778 		}
8779 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8780 			 ice_vsi_type_str(type), vsi->idx);
8781 
8782 		/* store ADQ VSI at correct TC index in main VSI's
8783 		 * map of TC to VSI
8784 		 */
8785 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8786 	}
8787 
8788 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8789 	 * channel for main VSI's Tx and Rx rings
8790 	 */
8791 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8792 		struct ice_vsi *ch_vsi;
8793 
8794 		ch_vsi = ch->ch_vsi;
8795 		if (!ch_vsi)
8796 			continue;
8797 
8798 		/* reconfig channel resources */
8799 		ice_cfg_chnl_all_res(main_vsi, ch);
8800 
8801 		/* replay BW rate limit if it is non-zero */
8802 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8803 			continue;
8804 
8805 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8806 				       ch->min_tx_rate);
8807 		if (err)
8808 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8809 				err, ch->max_tx_rate, ch->min_tx_rate,
8810 				ch_vsi->vsi_num);
8811 		else
8812 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8813 				ch->max_tx_rate, ch->min_tx_rate,
8814 				ch_vsi->vsi_num);
8815 	}
8816 
8817 	/* reconfig RSS for main VSI */
8818 	if (main_vsi->ch_rss_size)
8819 		ice_vsi_cfg_rss_lut_key(main_vsi);
8820 
8821 	return 0;
8822 
8823 cleanup:
8824 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8825 	return err;
8826 }
8827 
8828 /**
8829  * ice_create_q_channels - Add queue channel for the given TCs
8830  * @vsi: VSI to be configured
8831  *
8832  * Configures queue channel mapping to the given TCs
8833  */
8834 static int ice_create_q_channels(struct ice_vsi *vsi)
8835 {
8836 	struct ice_pf *pf = vsi->back;
8837 	struct ice_channel *ch;
8838 	int ret = 0, i;
8839 
8840 	ice_for_each_chnl_tc(i) {
8841 		if (!(vsi->all_enatc & BIT(i)))
8842 			continue;
8843 
8844 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8845 		if (!ch) {
8846 			ret = -ENOMEM;
8847 			goto err_free;
8848 		}
8849 		INIT_LIST_HEAD(&ch->list);
8850 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8851 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8852 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8853 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8854 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8855 
8856 		/* convert to Kbits/s */
8857 		if (ch->max_tx_rate)
8858 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8859 						  ICE_BW_KBPS_DIVISOR);
8860 		if (ch->min_tx_rate)
8861 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8862 						  ICE_BW_KBPS_DIVISOR);
8863 
8864 		ret = ice_create_q_channel(vsi, ch);
8865 		if (ret) {
8866 			dev_err(ice_pf_to_dev(pf),
8867 				"failed creating channel TC:%d\n", i);
8868 			kfree(ch);
8869 			goto err_free;
8870 		}
8871 		list_add_tail(&ch->list, &vsi->ch_list);
8872 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8873 		dev_dbg(ice_pf_to_dev(pf),
8874 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8875 	}
8876 	return 0;
8877 
8878 err_free:
8879 	ice_remove_q_channels(vsi, false);
8880 
8881 	return ret;
8882 }
8883 
8884 /**
8885  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8886  * @netdev: net device to configure
8887  * @type_data: TC offload data
8888  */
8889 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8890 {
8891 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8892 	struct ice_netdev_priv *np = netdev_priv(netdev);
8893 	struct ice_vsi *vsi = np->vsi;
8894 	struct ice_pf *pf = vsi->back;
8895 	u16 mode, ena_tc_qdisc = 0;
8896 	int cur_txq, cur_rxq;
8897 	u8 hw = 0, num_tcf;
8898 	struct device *dev;
8899 	int ret, i;
8900 
8901 	dev = ice_pf_to_dev(pf);
8902 	num_tcf = mqprio_qopt->qopt.num_tc;
8903 	hw = mqprio_qopt->qopt.hw;
8904 	mode = mqprio_qopt->mode;
8905 	if (!hw) {
8906 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8907 		vsi->ch_rss_size = 0;
8908 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8909 		goto config_tcf;
8910 	}
8911 
8912 	/* Generate queue region map for number of TCF requested */
8913 	for (i = 0; i < num_tcf; i++)
8914 		ena_tc_qdisc |= BIT(i);
8915 
8916 	switch (mode) {
8917 	case TC_MQPRIO_MODE_CHANNEL:
8918 
8919 		if (pf->hw.port_info->is_custom_tx_enabled) {
8920 			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8921 			return -EBUSY;
8922 		}
8923 		ice_tear_down_devlink_rate_tree(pf);
8924 
8925 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8926 		if (ret) {
8927 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8928 				   ret);
8929 			return ret;
8930 		}
8931 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8932 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8933 		/* don't assume state of hw_tc_offload during driver load
8934 		 * and set the flag for TC flower filter if hw_tc_offload
8935 		 * already ON
8936 		 */
8937 		if (vsi->netdev->features & NETIF_F_HW_TC)
8938 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8939 		break;
8940 	default:
8941 		return -EINVAL;
8942 	}
8943 
8944 config_tcf:
8945 
8946 	/* Requesting same TCF configuration as already enabled */
8947 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8948 	    mode != TC_MQPRIO_MODE_CHANNEL)
8949 		return 0;
8950 
8951 	/* Pause VSI queues */
8952 	ice_dis_vsi(vsi, true);
8953 
8954 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8955 		ice_remove_q_channels(vsi, true);
8956 
8957 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8958 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8959 				     num_online_cpus());
8960 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8961 				     num_online_cpus());
8962 	} else {
8963 		/* logic to rebuild VSI, same like ethtool -L */
8964 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8965 
8966 		for (i = 0; i < num_tcf; i++) {
8967 			if (!(ena_tc_qdisc & BIT(i)))
8968 				continue;
8969 
8970 			offset = vsi->mqprio_qopt.qopt.offset[i];
8971 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8972 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8973 		}
8974 		vsi->req_txq = offset + qcount_tx;
8975 		vsi->req_rxq = offset + qcount_rx;
8976 
8977 		/* store away original rss_size info, so that it gets reused
8978 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8979 		 * determine, what should be the rss_sizefor main VSI
8980 		 */
8981 		vsi->orig_rss_size = vsi->rss_size;
8982 	}
8983 
8984 	/* save current values of Tx and Rx queues before calling VSI rebuild
8985 	 * for fallback option
8986 	 */
8987 	cur_txq = vsi->num_txq;
8988 	cur_rxq = vsi->num_rxq;
8989 
8990 	/* proceed with rebuild main VSI using correct number of queues */
8991 	ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
8992 	if (ret) {
8993 		/* fallback to current number of queues */
8994 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8995 		vsi->req_txq = cur_txq;
8996 		vsi->req_rxq = cur_rxq;
8997 		clear_bit(ICE_RESET_FAILED, pf->state);
8998 		if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
8999 			dev_err(dev, "Rebuild of main VSI failed again\n");
9000 			return ret;
9001 		}
9002 	}
9003 
9004 	vsi->all_numtc = num_tcf;
9005 	vsi->all_enatc = ena_tc_qdisc;
9006 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9007 	if (ret) {
9008 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9009 			   vsi->vsi_num);
9010 		goto exit;
9011 	}
9012 
9013 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9014 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9015 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9016 
9017 		/* set TC0 rate limit if specified */
9018 		if (max_tx_rate || min_tx_rate) {
9019 			/* convert to Kbits/s */
9020 			if (max_tx_rate)
9021 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9022 			if (min_tx_rate)
9023 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9024 
9025 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9026 			if (!ret) {
9027 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9028 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9029 			} else {
9030 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9031 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9032 				goto exit;
9033 			}
9034 		}
9035 		ret = ice_create_q_channels(vsi);
9036 		if (ret) {
9037 			netdev_err(netdev, "failed configuring queue channels\n");
9038 			goto exit;
9039 		} else {
9040 			netdev_dbg(netdev, "successfully configured channels\n");
9041 		}
9042 	}
9043 
9044 	if (vsi->ch_rss_size)
9045 		ice_vsi_cfg_rss_lut_key(vsi);
9046 
9047 exit:
9048 	/* if error, reset the all_numtc and all_enatc */
9049 	if (ret) {
9050 		vsi->all_numtc = 0;
9051 		vsi->all_enatc = 0;
9052 	}
9053 	/* resume VSI */
9054 	ice_ena_vsi(vsi, true);
9055 
9056 	return ret;
9057 }
9058 
9059 static LIST_HEAD(ice_block_cb_list);
9060 
9061 static int
9062 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9063 	     void *type_data)
9064 {
9065 	struct ice_netdev_priv *np = netdev_priv(netdev);
9066 	struct ice_pf *pf = np->vsi->back;
9067 	bool locked = false;
9068 	int err;
9069 
9070 	switch (type) {
9071 	case TC_SETUP_BLOCK:
9072 		return flow_block_cb_setup_simple(type_data,
9073 						  &ice_block_cb_list,
9074 						  ice_setup_tc_block_cb,
9075 						  np, np, true);
9076 	case TC_SETUP_QDISC_MQPRIO:
9077 		if (ice_is_eswitch_mode_switchdev(pf)) {
9078 			netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9079 			return -EOPNOTSUPP;
9080 		}
9081 
9082 		if (pf->adev) {
9083 			mutex_lock(&pf->adev_mutex);
9084 			device_lock(&pf->adev->dev);
9085 			locked = true;
9086 			if (pf->adev->dev.driver) {
9087 				netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9088 				err = -EBUSY;
9089 				goto adev_unlock;
9090 			}
9091 		}
9092 
9093 		/* setup traffic classifier for receive side */
9094 		mutex_lock(&pf->tc_mutex);
9095 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9096 		mutex_unlock(&pf->tc_mutex);
9097 
9098 adev_unlock:
9099 		if (locked) {
9100 			device_unlock(&pf->adev->dev);
9101 			mutex_unlock(&pf->adev_mutex);
9102 		}
9103 		return err;
9104 	default:
9105 		return -EOPNOTSUPP;
9106 	}
9107 	return -EOPNOTSUPP;
9108 }
9109 
9110 static struct ice_indr_block_priv *
9111 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9112 			   struct net_device *netdev)
9113 {
9114 	struct ice_indr_block_priv *cb_priv;
9115 
9116 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9117 		if (!cb_priv->netdev)
9118 			return NULL;
9119 		if (cb_priv->netdev == netdev)
9120 			return cb_priv;
9121 	}
9122 	return NULL;
9123 }
9124 
9125 static int
9126 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9127 			void *indr_priv)
9128 {
9129 	struct ice_indr_block_priv *priv = indr_priv;
9130 	struct ice_netdev_priv *np = priv->np;
9131 
9132 	switch (type) {
9133 	case TC_SETUP_CLSFLOWER:
9134 		return ice_setup_tc_cls_flower(np, priv->netdev,
9135 					       (struct flow_cls_offload *)
9136 					       type_data);
9137 	default:
9138 		return -EOPNOTSUPP;
9139 	}
9140 }
9141 
9142 static int
9143 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9144 			struct ice_netdev_priv *np,
9145 			struct flow_block_offload *f, void *data,
9146 			void (*cleanup)(struct flow_block_cb *block_cb))
9147 {
9148 	struct ice_indr_block_priv *indr_priv;
9149 	struct flow_block_cb *block_cb;
9150 
9151 	if (!ice_is_tunnel_supported(netdev) &&
9152 	    !(is_vlan_dev(netdev) &&
9153 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
9154 		return -EOPNOTSUPP;
9155 
9156 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9157 		return -EOPNOTSUPP;
9158 
9159 	switch (f->command) {
9160 	case FLOW_BLOCK_BIND:
9161 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9162 		if (indr_priv)
9163 			return -EEXIST;
9164 
9165 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9166 		if (!indr_priv)
9167 			return -ENOMEM;
9168 
9169 		indr_priv->netdev = netdev;
9170 		indr_priv->np = np;
9171 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9172 
9173 		block_cb =
9174 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9175 						 indr_priv, indr_priv,
9176 						 ice_rep_indr_tc_block_unbind,
9177 						 f, netdev, sch, data, np,
9178 						 cleanup);
9179 
9180 		if (IS_ERR(block_cb)) {
9181 			list_del(&indr_priv->list);
9182 			kfree(indr_priv);
9183 			return PTR_ERR(block_cb);
9184 		}
9185 		flow_block_cb_add(block_cb, f);
9186 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9187 		break;
9188 	case FLOW_BLOCK_UNBIND:
9189 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9190 		if (!indr_priv)
9191 			return -ENOENT;
9192 
9193 		block_cb = flow_block_cb_lookup(f->block,
9194 						ice_indr_setup_block_cb,
9195 						indr_priv);
9196 		if (!block_cb)
9197 			return -ENOENT;
9198 
9199 		flow_indr_block_cb_remove(block_cb, f);
9200 
9201 		list_del(&block_cb->driver_list);
9202 		break;
9203 	default:
9204 		return -EOPNOTSUPP;
9205 	}
9206 	return 0;
9207 }
9208 
9209 static int
9210 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9211 		     void *cb_priv, enum tc_setup_type type, void *type_data,
9212 		     void *data,
9213 		     void (*cleanup)(struct flow_block_cb *block_cb))
9214 {
9215 	switch (type) {
9216 	case TC_SETUP_BLOCK:
9217 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9218 					       data, cleanup);
9219 
9220 	default:
9221 		return -EOPNOTSUPP;
9222 	}
9223 }
9224 
9225 /**
9226  * ice_open - Called when a network interface becomes active
9227  * @netdev: network interface device structure
9228  *
9229  * The open entry point is called when a network interface is made
9230  * active by the system (IFF_UP). At this point all resources needed
9231  * for transmit and receive operations are allocated, the interrupt
9232  * handler is registered with the OS, the netdev watchdog is enabled,
9233  * and the stack is notified that the interface is ready.
9234  *
9235  * Returns 0 on success, negative value on failure
9236  */
9237 int ice_open(struct net_device *netdev)
9238 {
9239 	struct ice_netdev_priv *np = netdev_priv(netdev);
9240 	struct ice_pf *pf = np->vsi->back;
9241 
9242 	if (ice_is_reset_in_progress(pf->state)) {
9243 		netdev_err(netdev, "can't open net device while reset is in progress");
9244 		return -EBUSY;
9245 	}
9246 
9247 	return ice_open_internal(netdev);
9248 }
9249 
9250 /**
9251  * ice_open_internal - Called when a network interface becomes active
9252  * @netdev: network interface device structure
9253  *
9254  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9255  * handling routine
9256  *
9257  * Returns 0 on success, negative value on failure
9258  */
9259 int ice_open_internal(struct net_device *netdev)
9260 {
9261 	struct ice_netdev_priv *np = netdev_priv(netdev);
9262 	struct ice_vsi *vsi = np->vsi;
9263 	struct ice_pf *pf = vsi->back;
9264 	struct ice_port_info *pi;
9265 	int err;
9266 
9267 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9268 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9269 		return -EIO;
9270 	}
9271 
9272 	netif_carrier_off(netdev);
9273 
9274 	pi = vsi->port_info;
9275 	err = ice_update_link_info(pi);
9276 	if (err) {
9277 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
9278 		return err;
9279 	}
9280 
9281 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9282 
9283 	/* Set PHY if there is media, otherwise, turn off PHY */
9284 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9285 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9286 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9287 			err = ice_init_phy_user_cfg(pi);
9288 			if (err) {
9289 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9290 					   err);
9291 				return err;
9292 			}
9293 		}
9294 
9295 		err = ice_configure_phy(vsi);
9296 		if (err) {
9297 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9298 				   err);
9299 			return err;
9300 		}
9301 	} else {
9302 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9303 		ice_set_link(vsi, false);
9304 	}
9305 
9306 	err = ice_vsi_open(vsi);
9307 	if (err)
9308 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9309 			   vsi->vsi_num, vsi->vsw->sw_id);
9310 
9311 	/* Update existing tunnels information */
9312 	udp_tunnel_get_rx_info(netdev);
9313 
9314 	return err;
9315 }
9316 
9317 /**
9318  * ice_stop - Disables a network interface
9319  * @netdev: network interface device structure
9320  *
9321  * The stop entry point is called when an interface is de-activated by the OS,
9322  * and the netdevice enters the DOWN state. The hardware is still under the
9323  * driver's control, but the netdev interface is disabled.
9324  *
9325  * Returns success only - not allowed to fail
9326  */
9327 int ice_stop(struct net_device *netdev)
9328 {
9329 	struct ice_netdev_priv *np = netdev_priv(netdev);
9330 	struct ice_vsi *vsi = np->vsi;
9331 	struct ice_pf *pf = vsi->back;
9332 
9333 	if (ice_is_reset_in_progress(pf->state)) {
9334 		netdev_err(netdev, "can't stop net device while reset is in progress");
9335 		return -EBUSY;
9336 	}
9337 
9338 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9339 		int link_err = ice_force_phys_link_state(vsi, false);
9340 
9341 		if (link_err) {
9342 			if (link_err == -ENOMEDIUM)
9343 				netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9344 					    vsi->vsi_num);
9345 			else
9346 				netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9347 					   vsi->vsi_num, link_err);
9348 
9349 			ice_vsi_close(vsi);
9350 			return -EIO;
9351 		}
9352 	}
9353 
9354 	ice_vsi_close(vsi);
9355 
9356 	return 0;
9357 }
9358 
9359 /**
9360  * ice_features_check - Validate encapsulated packet conforms to limits
9361  * @skb: skb buffer
9362  * @netdev: This port's netdev
9363  * @features: Offload features that the stack believes apply
9364  */
9365 static netdev_features_t
9366 ice_features_check(struct sk_buff *skb,
9367 		   struct net_device __always_unused *netdev,
9368 		   netdev_features_t features)
9369 {
9370 	bool gso = skb_is_gso(skb);
9371 	size_t len;
9372 
9373 	/* No point in doing any of this if neither checksum nor GSO are
9374 	 * being requested for this frame. We can rule out both by just
9375 	 * checking for CHECKSUM_PARTIAL
9376 	 */
9377 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9378 		return features;
9379 
9380 	/* We cannot support GSO if the MSS is going to be less than
9381 	 * 64 bytes. If it is then we need to drop support for GSO.
9382 	 */
9383 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9384 		features &= ~NETIF_F_GSO_MASK;
9385 
9386 	len = skb_network_offset(skb);
9387 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9388 		goto out_rm_features;
9389 
9390 	len = skb_network_header_len(skb);
9391 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9392 		goto out_rm_features;
9393 
9394 	if (skb->encapsulation) {
9395 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9396 		 * the case of IPIP frames, the transport header pointer is
9397 		 * after the inner header! So check to make sure that this
9398 		 * is a GRE or UDP_TUNNEL frame before doing that math.
9399 		 */
9400 		if (gso && (skb_shinfo(skb)->gso_type &
9401 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9402 			len = skb_inner_network_header(skb) -
9403 			      skb_transport_header(skb);
9404 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9405 				goto out_rm_features;
9406 		}
9407 
9408 		len = skb_inner_network_header_len(skb);
9409 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9410 			goto out_rm_features;
9411 	}
9412 
9413 	return features;
9414 out_rm_features:
9415 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9416 }
9417 
9418 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9419 	.ndo_open = ice_open,
9420 	.ndo_stop = ice_stop,
9421 	.ndo_start_xmit = ice_start_xmit,
9422 	.ndo_set_mac_address = ice_set_mac_address,
9423 	.ndo_validate_addr = eth_validate_addr,
9424 	.ndo_change_mtu = ice_change_mtu,
9425 	.ndo_get_stats64 = ice_get_stats64,
9426 	.ndo_tx_timeout = ice_tx_timeout,
9427 	.ndo_bpf = ice_xdp_safe_mode,
9428 };
9429 
9430 static const struct net_device_ops ice_netdev_ops = {
9431 	.ndo_open = ice_open,
9432 	.ndo_stop = ice_stop,
9433 	.ndo_start_xmit = ice_start_xmit,
9434 	.ndo_select_queue = ice_select_queue,
9435 	.ndo_features_check = ice_features_check,
9436 	.ndo_fix_features = ice_fix_features,
9437 	.ndo_set_rx_mode = ice_set_rx_mode,
9438 	.ndo_set_mac_address = ice_set_mac_address,
9439 	.ndo_validate_addr = eth_validate_addr,
9440 	.ndo_change_mtu = ice_change_mtu,
9441 	.ndo_get_stats64 = ice_get_stats64,
9442 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9443 	.ndo_eth_ioctl = ice_eth_ioctl,
9444 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9445 	.ndo_set_vf_mac = ice_set_vf_mac,
9446 	.ndo_get_vf_config = ice_get_vf_cfg,
9447 	.ndo_set_vf_trust = ice_set_vf_trust,
9448 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9449 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9450 	.ndo_get_vf_stats = ice_get_vf_stats,
9451 	.ndo_set_vf_rate = ice_set_vf_bw,
9452 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9453 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9454 	.ndo_setup_tc = ice_setup_tc,
9455 	.ndo_set_features = ice_set_features,
9456 	.ndo_bridge_getlink = ice_bridge_getlink,
9457 	.ndo_bridge_setlink = ice_bridge_setlink,
9458 	.ndo_fdb_add = ice_fdb_add,
9459 	.ndo_fdb_del = ice_fdb_del,
9460 #ifdef CONFIG_RFS_ACCEL
9461 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9462 #endif
9463 	.ndo_tx_timeout = ice_tx_timeout,
9464 	.ndo_bpf = ice_xdp,
9465 	.ndo_xdp_xmit = ice_xdp_xmit,
9466 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9467 };
9468