1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS("LIBIE"); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops || 91 dev->netdev_ops == &ice_netdev_safe_mode_ops); 92 } 93 94 /** 95 * ice_get_tx_pending - returns number of Tx descriptors not processed 96 * @ring: the ring of descriptors 97 */ 98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 99 { 100 u16 head, tail; 101 102 head = ring->next_to_clean; 103 tail = ring->next_to_use; 104 105 if (head != tail) 106 return (head < tail) ? 107 tail - head : (tail + ring->count - head); 108 return 0; 109 } 110 111 /** 112 * ice_check_for_hang_subtask - check for and recover hung queues 113 * @pf: pointer to PF struct 114 */ 115 static void ice_check_for_hang_subtask(struct ice_pf *pf) 116 { 117 struct ice_vsi *vsi = NULL; 118 struct ice_hw *hw; 119 unsigned int i; 120 int packets; 121 u32 v; 122 123 ice_for_each_vsi(pf, v) 124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 125 vsi = pf->vsi[v]; 126 break; 127 } 128 129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 130 return; 131 132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 133 return; 134 135 hw = &vsi->back->hw; 136 137 ice_for_each_txq(vsi, i) { 138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 139 struct ice_ring_stats *ring_stats; 140 141 if (!tx_ring) 142 continue; 143 if (ice_ring_ch_enabled(tx_ring)) 144 continue; 145 146 ring_stats = tx_ring->ring_stats; 147 if (!ring_stats) 148 continue; 149 150 if (tx_ring->desc) { 151 /* If packet counter has not changed the queue is 152 * likely stalled, so force an interrupt for this 153 * queue. 154 * 155 * prev_pkt would be negative if there was no 156 * pending work. 157 */ 158 packets = ring_stats->stats.pkts & INT_MAX; 159 if (ring_stats->tx_stats.prev_pkt == packets) { 160 /* Trigger sw interrupt to revive the queue */ 161 ice_trigger_sw_intr(hw, tx_ring->q_vector); 162 continue; 163 } 164 165 /* Memory barrier between read of packet count and call 166 * to ice_get_tx_pending() 167 */ 168 smp_rmb(); 169 ring_stats->tx_stats.prev_pkt = 170 ice_get_tx_pending(tx_ring) ? packets : -1; 171 } 172 } 173 } 174 175 /** 176 * ice_init_mac_fltr - Set initial MAC filters 177 * @pf: board private structure 178 * 179 * Set initial set of MAC filters for PF VSI; configure filters for permanent 180 * address and broadcast address. If an error is encountered, netdevice will be 181 * unregistered. 182 */ 183 static int ice_init_mac_fltr(struct ice_pf *pf) 184 { 185 struct ice_vsi *vsi; 186 u8 *perm_addr; 187 188 vsi = ice_get_main_vsi(pf); 189 if (!vsi) 190 return -EINVAL; 191 192 perm_addr = vsi->port_info->mac.perm_addr; 193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 194 } 195 196 /** 197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 198 * @netdev: the net device on which the sync is happening 199 * @addr: MAC address to sync 200 * 201 * This is a callback function which is called by the in kernel device sync 202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 204 * MAC filters from the hardware. 205 */ 206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 207 { 208 struct ice_netdev_priv *np = netdev_priv(netdev); 209 struct ice_vsi *vsi = np->vsi; 210 211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 212 ICE_FWD_TO_VSI)) 213 return -EINVAL; 214 215 return 0; 216 } 217 218 /** 219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 220 * @netdev: the net device on which the unsync is happening 221 * @addr: MAC address to unsync 222 * 223 * This is a callback function which is called by the in kernel device unsync 224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 226 * delete the MAC filters from the hardware. 227 */ 228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 229 { 230 struct ice_netdev_priv *np = netdev_priv(netdev); 231 struct ice_vsi *vsi = np->vsi; 232 233 /* Under some circumstances, we might receive a request to delete our 234 * own device address from our uc list. Because we store the device 235 * address in the VSI's MAC filter list, we need to ignore such 236 * requests and not delete our device address from this list. 237 */ 238 if (ether_addr_equal(addr, netdev->dev_addr)) 239 return 0; 240 241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 242 ICE_FWD_TO_VSI)) 243 return -EINVAL; 244 245 return 0; 246 } 247 248 /** 249 * ice_vsi_fltr_changed - check if filter state changed 250 * @vsi: VSI to be checked 251 * 252 * returns true if filter state has changed, false otherwise. 253 */ 254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 255 { 256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 258 } 259 260 /** 261 * ice_set_promisc - Enable promiscuous mode for a given PF 262 * @vsi: the VSI being configured 263 * @promisc_m: mask of promiscuous config bits 264 * 265 */ 266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 267 { 268 int status; 269 270 if (vsi->type != ICE_VSI_PF) 271 return 0; 272 273 if (ice_vsi_has_non_zero_vlans(vsi)) { 274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 276 promisc_m); 277 } else { 278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 279 promisc_m, 0); 280 } 281 if (status && status != -EEXIST) 282 return status; 283 284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 285 vsi->vsi_num, promisc_m); 286 return 0; 287 } 288 289 /** 290 * ice_clear_promisc - Disable promiscuous mode for a given PF 291 * @vsi: the VSI being configured 292 * @promisc_m: mask of promiscuous config bits 293 * 294 */ 295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 296 { 297 int status; 298 299 if (vsi->type != ICE_VSI_PF) 300 return 0; 301 302 if (ice_vsi_has_non_zero_vlans(vsi)) { 303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 305 promisc_m); 306 } else { 307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 308 promisc_m, 0); 309 } 310 311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 312 vsi->vsi_num, promisc_m); 313 return status; 314 } 315 316 /** 317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 318 * @vsi: ptr to the VSI 319 * 320 * Push any outstanding VSI filter changes through the AdminQ. 321 */ 322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 323 { 324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 325 struct device *dev = ice_pf_to_dev(vsi->back); 326 struct net_device *netdev = vsi->netdev; 327 bool promisc_forced_on = false; 328 struct ice_pf *pf = vsi->back; 329 struct ice_hw *hw = &pf->hw; 330 u32 changed_flags = 0; 331 int err; 332 333 if (!vsi->netdev) 334 return -EINVAL; 335 336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 337 usleep_range(1000, 2000); 338 339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 340 vsi->current_netdev_flags = vsi->netdev->flags; 341 342 INIT_LIST_HEAD(&vsi->tmp_sync_list); 343 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 344 345 if (ice_vsi_fltr_changed(vsi)) { 346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 348 349 /* grab the netdev's addr_list_lock */ 350 netif_addr_lock_bh(netdev); 351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 354 ice_add_mac_to_unsync_list); 355 /* our temp lists are populated. release lock */ 356 netif_addr_unlock_bh(netdev); 357 } 358 359 /* Remove MAC addresses in the unsync list */ 360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 362 if (err) { 363 netdev_err(netdev, "Failed to delete MAC filters\n"); 364 /* if we failed because of alloc failures, just bail */ 365 if (err == -ENOMEM) 366 goto out; 367 } 368 369 /* Add MAC addresses in the sync list */ 370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 371 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 372 /* If filter is added successfully or already exists, do not go into 373 * 'if' condition and report it as error. Instead continue processing 374 * rest of the function. 375 */ 376 if (err && err != -EEXIST) { 377 netdev_err(netdev, "Failed to add MAC filters\n"); 378 /* If there is no more space for new umac filters, VSI 379 * should go into promiscuous mode. There should be some 380 * space reserved for promiscuous filters. 381 */ 382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 384 vsi->state)) { 385 promisc_forced_on = true; 386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 387 vsi->vsi_num); 388 } else { 389 goto out; 390 } 391 } 392 err = 0; 393 /* check for changes in promiscuous modes */ 394 if (changed_flags & IFF_ALLMULTI) { 395 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 397 if (err) { 398 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 399 goto out_promisc; 400 } 401 } else { 402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 404 if (err) { 405 vsi->current_netdev_flags |= IFF_ALLMULTI; 406 goto out_promisc; 407 } 408 } 409 } 410 411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 414 if (vsi->current_netdev_flags & IFF_PROMISC) { 415 /* Apply Rx filter rule to get traffic from wire */ 416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 417 err = ice_set_dflt_vsi(vsi); 418 if (err && err != -EEXIST) { 419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 420 err, vsi->vsi_num); 421 vsi->current_netdev_flags &= 422 ~IFF_PROMISC; 423 goto out_promisc; 424 } 425 err = 0; 426 vlan_ops->dis_rx_filtering(vsi); 427 428 /* promiscuous mode implies allmulticast so 429 * that VSIs that are in promiscuous mode are 430 * subscribed to multicast packets coming to 431 * the port 432 */ 433 err = ice_set_promisc(vsi, 434 ICE_MCAST_PROMISC_BITS); 435 if (err) 436 goto out_promisc; 437 } 438 } else { 439 /* Clear Rx filter to remove traffic from wire */ 440 if (ice_is_vsi_dflt_vsi(vsi)) { 441 err = ice_clear_dflt_vsi(vsi); 442 if (err) { 443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 444 err, vsi->vsi_num); 445 vsi->current_netdev_flags |= 446 IFF_PROMISC; 447 goto out_promisc; 448 } 449 if (vsi->netdev->features & 450 NETIF_F_HW_VLAN_CTAG_FILTER) 451 vlan_ops->ena_rx_filtering(vsi); 452 } 453 454 /* disable allmulti here, but only if allmulti is not 455 * still enabled for the netdev 456 */ 457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 458 err = ice_clear_promisc(vsi, 459 ICE_MCAST_PROMISC_BITS); 460 if (err) { 461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 462 err, vsi->vsi_num); 463 } 464 } 465 } 466 } 467 goto exit; 468 469 out_promisc: 470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 471 goto exit; 472 out: 473 /* if something went wrong then set the changed flag so we try again */ 474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 476 exit: 477 clear_bit(ICE_CFG_BUSY, vsi->state); 478 return err; 479 } 480 481 /** 482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 483 * @pf: board private structure 484 */ 485 static void ice_sync_fltr_subtask(struct ice_pf *pf) 486 { 487 int v; 488 489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 490 return; 491 492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 494 ice_for_each_vsi(pf, v) 495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 496 ice_vsi_sync_fltr(pf->vsi[v])) { 497 /* come back and try again later */ 498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 499 break; 500 } 501 } 502 503 /** 504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 505 * @pf: the PF 506 * @locked: is the rtnl_lock already held 507 */ 508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 509 { 510 int node; 511 int v; 512 513 ice_for_each_vsi(pf, v) 514 if (pf->vsi[v]) 515 ice_dis_vsi(pf->vsi[v], locked); 516 517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 518 pf->pf_agg_node[node].num_vsis = 0; 519 520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 521 pf->vf_agg_node[node].num_vsis = 0; 522 } 523 524 /** 525 * ice_prepare_for_reset - prep for reset 526 * @pf: board private structure 527 * @reset_type: reset type requested 528 * 529 * Inform or close all dependent features in prep for reset. 530 */ 531 static void 532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 533 { 534 struct ice_hw *hw = &pf->hw; 535 struct ice_vsi *vsi; 536 struct ice_vf *vf; 537 unsigned int bkt; 538 539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 540 541 /* already prepared for reset */ 542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 543 return; 544 545 synchronize_irq(pf->oicr_irq.virq); 546 547 ice_unplug_aux_dev(pf); 548 549 /* Notify VFs of impending reset */ 550 if (ice_check_sq_alive(hw, &hw->mailboxq)) 551 ice_vc_notify_reset(pf); 552 553 /* Disable VFs until reset is completed */ 554 mutex_lock(&pf->vfs.table_lock); 555 ice_for_each_vf(pf, bkt, vf) 556 ice_set_vf_state_dis(vf); 557 mutex_unlock(&pf->vfs.table_lock); 558 559 if (ice_is_eswitch_mode_switchdev(pf)) { 560 rtnl_lock(); 561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 562 rtnl_unlock(); 563 } 564 565 /* release ADQ specific HW and SW resources */ 566 vsi = ice_get_main_vsi(pf); 567 if (!vsi) 568 goto skip; 569 570 /* to be on safe side, reset orig_rss_size so that normal flow 571 * of deciding rss_size can take precedence 572 */ 573 vsi->orig_rss_size = 0; 574 575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 576 if (reset_type == ICE_RESET_PFR) { 577 vsi->old_ena_tc = vsi->all_enatc; 578 vsi->old_numtc = vsi->all_numtc; 579 } else { 580 ice_remove_q_channels(vsi, true); 581 582 /* for other reset type, do not support channel rebuild 583 * hence reset needed info 584 */ 585 vsi->old_ena_tc = 0; 586 vsi->all_enatc = 0; 587 vsi->old_numtc = 0; 588 vsi->all_numtc = 0; 589 vsi->req_txq = 0; 590 vsi->req_rxq = 0; 591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 593 } 594 } 595 596 if (vsi->netdev) 597 netif_device_detach(vsi->netdev); 598 skip: 599 600 /* clear SW filtering DB */ 601 ice_clear_hw_tbls(hw); 602 /* disable the VSIs and their queues that are not already DOWN */ 603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 604 ice_pf_dis_all_vsi(pf, false); 605 606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 607 ice_ptp_prepare_for_reset(pf, reset_type); 608 609 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 610 ice_gnss_exit(pf); 611 612 if (hw->port_info) 613 ice_sched_clear_port(hw->port_info); 614 615 ice_shutdown_all_ctrlq(hw, false); 616 617 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 618 } 619 620 /** 621 * ice_do_reset - Initiate one of many types of resets 622 * @pf: board private structure 623 * @reset_type: reset type requested before this function was called. 624 */ 625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 626 { 627 struct device *dev = ice_pf_to_dev(pf); 628 struct ice_hw *hw = &pf->hw; 629 630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 631 632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 634 reset_type = ICE_RESET_CORER; 635 } 636 637 ice_prepare_for_reset(pf, reset_type); 638 639 /* trigger the reset */ 640 if (ice_reset(hw, reset_type)) { 641 dev_err(dev, "reset %d failed\n", reset_type); 642 set_bit(ICE_RESET_FAILED, pf->state); 643 clear_bit(ICE_RESET_OICR_RECV, pf->state); 644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 645 clear_bit(ICE_PFR_REQ, pf->state); 646 clear_bit(ICE_CORER_REQ, pf->state); 647 clear_bit(ICE_GLOBR_REQ, pf->state); 648 wake_up(&pf->reset_wait_queue); 649 return; 650 } 651 652 /* PFR is a bit of a special case because it doesn't result in an OICR 653 * interrupt. So for PFR, rebuild after the reset and clear the reset- 654 * associated state bits. 655 */ 656 if (reset_type == ICE_RESET_PFR) { 657 pf->pfr_count++; 658 ice_rebuild(pf, reset_type); 659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 660 clear_bit(ICE_PFR_REQ, pf->state); 661 wake_up(&pf->reset_wait_queue); 662 ice_reset_all_vfs(pf); 663 } 664 } 665 666 /** 667 * ice_reset_subtask - Set up for resetting the device and driver 668 * @pf: board private structure 669 */ 670 static void ice_reset_subtask(struct ice_pf *pf) 671 { 672 enum ice_reset_req reset_type = ICE_RESET_INVAL; 673 674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 676 * of reset is pending and sets bits in pf->state indicating the reset 677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 678 * prepare for pending reset if not already (for PF software-initiated 679 * global resets the software should already be prepared for it as 680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 681 * by firmware or software on other PFs, that bit is not set so prepare 682 * for the reset now), poll for reset done, rebuild and return. 683 */ 684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 685 /* Perform the largest reset requested */ 686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 687 reset_type = ICE_RESET_CORER; 688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 689 reset_type = ICE_RESET_GLOBR; 690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 691 reset_type = ICE_RESET_EMPR; 692 /* return if no valid reset type requested */ 693 if (reset_type == ICE_RESET_INVAL) 694 return; 695 ice_prepare_for_reset(pf, reset_type); 696 697 /* make sure we are ready to rebuild */ 698 if (ice_check_reset(&pf->hw)) { 699 set_bit(ICE_RESET_FAILED, pf->state); 700 } else { 701 /* done with reset. start rebuild */ 702 pf->hw.reset_ongoing = false; 703 ice_rebuild(pf, reset_type); 704 /* clear bit to resume normal operations, but 705 * ICE_NEEDS_RESTART bit is set in case rebuild failed 706 */ 707 clear_bit(ICE_RESET_OICR_RECV, pf->state); 708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 709 clear_bit(ICE_PFR_REQ, pf->state); 710 clear_bit(ICE_CORER_REQ, pf->state); 711 clear_bit(ICE_GLOBR_REQ, pf->state); 712 wake_up(&pf->reset_wait_queue); 713 ice_reset_all_vfs(pf); 714 } 715 716 return; 717 } 718 719 /* No pending resets to finish processing. Check for new resets */ 720 if (test_bit(ICE_PFR_REQ, pf->state)) { 721 reset_type = ICE_RESET_PFR; 722 if (pf->lag && pf->lag->bonded) { 723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 724 reset_type = ICE_RESET_CORER; 725 } 726 } 727 if (test_bit(ICE_CORER_REQ, pf->state)) 728 reset_type = ICE_RESET_CORER; 729 if (test_bit(ICE_GLOBR_REQ, pf->state)) 730 reset_type = ICE_RESET_GLOBR; 731 /* If no valid reset type requested just return */ 732 if (reset_type == ICE_RESET_INVAL) 733 return; 734 735 /* reset if not already down or busy */ 736 if (!test_bit(ICE_DOWN, pf->state) && 737 !test_bit(ICE_CFG_BUSY, pf->state)) { 738 ice_do_reset(pf, reset_type); 739 } 740 } 741 742 /** 743 * ice_print_topo_conflict - print topology conflict message 744 * @vsi: the VSI whose topology status is being checked 745 */ 746 static void ice_print_topo_conflict(struct ice_vsi *vsi) 747 { 748 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 749 case ICE_AQ_LINK_TOPO_CONFLICT: 750 case ICE_AQ_LINK_MEDIA_CONFLICT: 751 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 755 break; 756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 759 else 760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 761 break; 762 default: 763 break; 764 } 765 } 766 767 /** 768 * ice_print_link_msg - print link up or down message 769 * @vsi: the VSI whose link status is being queried 770 * @isup: boolean for if the link is now up or down 771 */ 772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 773 { 774 struct ice_aqc_get_phy_caps_data *caps; 775 const char *an_advertised; 776 const char *fec_req; 777 const char *speed; 778 const char *fec; 779 const char *fc; 780 const char *an; 781 int status; 782 783 if (!vsi) 784 return; 785 786 if (vsi->current_isup == isup) 787 return; 788 789 vsi->current_isup = isup; 790 791 if (!isup) { 792 netdev_info(vsi->netdev, "NIC Link is Down\n"); 793 return; 794 } 795 796 switch (vsi->port_info->phy.link_info.link_speed) { 797 case ICE_AQ_LINK_SPEED_200GB: 798 speed = "200 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_100GB: 801 speed = "100 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_50GB: 804 speed = "50 G"; 805 break; 806 case ICE_AQ_LINK_SPEED_40GB: 807 speed = "40 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_25GB: 810 speed = "25 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_20GB: 813 speed = "20 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_10GB: 816 speed = "10 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_5GB: 819 speed = "5 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_2500MB: 822 speed = "2.5 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_1000MB: 825 speed = "1 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_100MB: 828 speed = "100 M"; 829 break; 830 default: 831 speed = "Unknown "; 832 break; 833 } 834 835 switch (vsi->port_info->fc.current_mode) { 836 case ICE_FC_FULL: 837 fc = "Rx/Tx"; 838 break; 839 case ICE_FC_TX_PAUSE: 840 fc = "Tx"; 841 break; 842 case ICE_FC_RX_PAUSE: 843 fc = "Rx"; 844 break; 845 case ICE_FC_NONE: 846 fc = "None"; 847 break; 848 default: 849 fc = "Unknown"; 850 break; 851 } 852 853 /* Get FEC mode based on negotiated link info */ 854 switch (vsi->port_info->phy.link_info.fec_info) { 855 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 856 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 857 fec = "RS-FEC"; 858 break; 859 case ICE_AQ_LINK_25G_KR_FEC_EN: 860 fec = "FC-FEC/BASE-R"; 861 break; 862 default: 863 fec = "NONE"; 864 break; 865 } 866 867 /* check if autoneg completed, might be false due to not supported */ 868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 869 an = "True"; 870 else 871 an = "False"; 872 873 /* Get FEC mode requested based on PHY caps last SW configuration */ 874 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 875 if (!caps) { 876 fec_req = "Unknown"; 877 an_advertised = "Unknown"; 878 goto done; 879 } 880 881 status = ice_aq_get_phy_caps(vsi->port_info, false, 882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 883 if (status) 884 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 885 886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 887 888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 890 fec_req = "RS-FEC"; 891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 893 fec_req = "FC-FEC/BASE-R"; 894 else 895 fec_req = "NONE"; 896 897 kfree(caps); 898 899 done: 900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 901 speed, fec_req, fec, an_advertised, an, fc); 902 ice_print_topo_conflict(vsi); 903 } 904 905 /** 906 * ice_vsi_link_event - update the VSI's netdev 907 * @vsi: the VSI on which the link event occurred 908 * @link_up: whether or not the VSI needs to be set up or down 909 */ 910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 911 { 912 if (!vsi) 913 return; 914 915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 916 return; 917 918 if (vsi->type == ICE_VSI_PF) { 919 if (link_up == netif_carrier_ok(vsi->netdev)) 920 return; 921 922 if (link_up) { 923 netif_carrier_on(vsi->netdev); 924 netif_tx_wake_all_queues(vsi->netdev); 925 } else { 926 netif_carrier_off(vsi->netdev); 927 netif_tx_stop_all_queues(vsi->netdev); 928 } 929 } 930 } 931 932 /** 933 * ice_set_dflt_mib - send a default config MIB to the FW 934 * @pf: private PF struct 935 * 936 * This function sends a default configuration MIB to the FW. 937 * 938 * If this function errors out at any point, the driver is still able to 939 * function. The main impact is that LFC may not operate as expected. 940 * Therefore an error state in this function should be treated with a DBG 941 * message and continue on with driver rebuild/reenable. 942 */ 943 static void ice_set_dflt_mib(struct ice_pf *pf) 944 { 945 struct device *dev = ice_pf_to_dev(pf); 946 u8 mib_type, *buf, *lldpmib = NULL; 947 u16 len, typelen, offset = 0; 948 struct ice_lldp_org_tlv *tlv; 949 struct ice_hw *hw = &pf->hw; 950 u32 ouisubtype; 951 952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 954 if (!lldpmib) { 955 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 956 __func__); 957 return; 958 } 959 960 /* Add ETS CFG TLV */ 961 tlv = (struct ice_lldp_org_tlv *)lldpmib; 962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 963 ICE_IEEE_ETS_TLV_LEN); 964 tlv->typelen = htons(typelen); 965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 966 ICE_IEEE_SUBTYPE_ETS_CFG); 967 tlv->ouisubtype = htonl(ouisubtype); 968 969 buf = tlv->tlvinfo; 970 buf[0] = 0; 971 972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 974 * Octets 13 - 20 are TSA values - leave as zeros 975 */ 976 buf[5] = 0x64; 977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 978 offset += len + 2; 979 tlv = (struct ice_lldp_org_tlv *) 980 ((char *)tlv + sizeof(tlv->typelen) + len); 981 982 /* Add ETS REC TLV */ 983 buf = tlv->tlvinfo; 984 tlv->typelen = htons(typelen); 985 986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 987 ICE_IEEE_SUBTYPE_ETS_REC); 988 tlv->ouisubtype = htonl(ouisubtype); 989 990 /* First octet of buf is reserved 991 * Octets 1 - 4 map UP to TC - all UPs map to zero 992 * Octets 5 - 12 are BW values - set TC 0 to 100%. 993 * Octets 13 - 20 are TSA value - leave as zeros 994 */ 995 buf[5] = 0x64; 996 offset += len + 2; 997 tlv = (struct ice_lldp_org_tlv *) 998 ((char *)tlv + sizeof(tlv->typelen) + len); 999 1000 /* Add PFC CFG TLV */ 1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1002 ICE_IEEE_PFC_TLV_LEN); 1003 tlv->typelen = htons(typelen); 1004 1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1006 ICE_IEEE_SUBTYPE_PFC_CFG); 1007 tlv->ouisubtype = htonl(ouisubtype); 1008 1009 /* Octet 1 left as all zeros - PFC disabled */ 1010 buf[0] = 0x08; 1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1012 offset += len + 2; 1013 1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1016 1017 kfree(lldpmib); 1018 } 1019 1020 /** 1021 * ice_check_phy_fw_load - check if PHY FW load failed 1022 * @pf: pointer to PF struct 1023 * @link_cfg_err: bitmap from the link info structure 1024 * 1025 * check if external PHY FW load failed and print an error message if it did 1026 */ 1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1031 return; 1032 } 1033 1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1035 return; 1036 1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1040 } 1041 } 1042 1043 /** 1044 * ice_check_module_power 1045 * @pf: pointer to PF struct 1046 * @link_cfg_err: bitmap from the link info structure 1047 * 1048 * check module power level returned by a previous call to aq_get_link_info 1049 * and print error messages if module power level is not supported 1050 */ 1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1052 { 1053 /* if module power level is supported, clear the flag */ 1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1057 return; 1058 } 1059 1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1061 * above block didn't clear this bit, there's nothing to do 1062 */ 1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1064 return; 1065 1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1072 } 1073 } 1074 1075 /** 1076 * ice_check_link_cfg_err - check if link configuration failed 1077 * @pf: pointer to the PF struct 1078 * @link_cfg_err: bitmap from the link info structure 1079 * 1080 * print if any link configuration failure happens due to the value in the 1081 * link_cfg_err parameter in the link info structure 1082 */ 1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1084 { 1085 ice_check_module_power(pf, link_cfg_err); 1086 ice_check_phy_fw_load(pf, link_cfg_err); 1087 } 1088 1089 /** 1090 * ice_link_event - process the link event 1091 * @pf: PF that the link event is associated with 1092 * @pi: port_info for the port that the link event is associated with 1093 * @link_up: true if the physical link is up and false if it is down 1094 * @link_speed: current link speed received from the link event 1095 * 1096 * Returns 0 on success and negative on failure 1097 */ 1098 static int 1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1100 u16 link_speed) 1101 { 1102 struct device *dev = ice_pf_to_dev(pf); 1103 struct ice_phy_info *phy_info; 1104 struct ice_vsi *vsi; 1105 u16 old_link_speed; 1106 bool old_link; 1107 int status; 1108 1109 phy_info = &pi->phy; 1110 phy_info->link_info_old = phy_info->link_info; 1111 1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1113 old_link_speed = phy_info->link_info_old.link_speed; 1114 1115 /* update the link info structures and re-enable link events, 1116 * don't bail on failure due to other book keeping needed 1117 */ 1118 status = ice_update_link_info(pi); 1119 if (status) 1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1121 pi->lport, status, 1122 ice_aq_str(pi->hw->adminq.sq_last_status)); 1123 1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1125 1126 /* Check if the link state is up after updating link info, and treat 1127 * this event as an UP event since the link is actually UP now. 1128 */ 1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1130 link_up = true; 1131 1132 vsi = ice_get_main_vsi(pf); 1133 if (!vsi || !vsi->port_info) 1134 return -EINVAL; 1135 1136 /* turn off PHY if media was removed */ 1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1140 ice_set_link(vsi, false); 1141 } 1142 1143 /* if the old link up/down and speed is the same as the new */ 1144 if (link_up == old_link && link_speed == old_link_speed) 1145 return 0; 1146 1147 if (!link_up && old_link) 1148 pf->link_down_events++; 1149 1150 ice_ptp_link_change(pf, link_up); 1151 1152 if (ice_is_dcb_active(pf)) { 1153 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1154 ice_dcb_rebuild(pf); 1155 } else { 1156 if (link_up) 1157 ice_set_dflt_mib(pf); 1158 } 1159 ice_vsi_link_event(vsi, link_up); 1160 ice_print_link_msg(vsi, link_up); 1161 1162 ice_vc_notify_link_state(pf); 1163 1164 return 0; 1165 } 1166 1167 /** 1168 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1169 * @pf: board private structure 1170 */ 1171 static void ice_watchdog_subtask(struct ice_pf *pf) 1172 { 1173 int i; 1174 1175 /* if interface is down do nothing */ 1176 if (test_bit(ICE_DOWN, pf->state) || 1177 test_bit(ICE_CFG_BUSY, pf->state)) 1178 return; 1179 1180 /* make sure we don't do these things too often */ 1181 if (time_before(jiffies, 1182 pf->serv_tmr_prev + pf->serv_tmr_period)) 1183 return; 1184 1185 pf->serv_tmr_prev = jiffies; 1186 1187 /* Update the stats for active netdevs so the network stack 1188 * can look at updated numbers whenever it cares to 1189 */ 1190 ice_update_pf_stats(pf); 1191 ice_for_each_vsi(pf, i) 1192 if (pf->vsi[i] && pf->vsi[i]->netdev) 1193 ice_update_vsi_stats(pf->vsi[i]); 1194 } 1195 1196 /** 1197 * ice_init_link_events - enable/initialize link events 1198 * @pi: pointer to the port_info instance 1199 * 1200 * Returns -EIO on failure, 0 on success 1201 */ 1202 static int ice_init_link_events(struct ice_port_info *pi) 1203 { 1204 u16 mask; 1205 1206 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1207 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1208 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1209 1210 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1211 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1212 pi->lport); 1213 return -EIO; 1214 } 1215 1216 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1217 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1218 pi->lport); 1219 return -EIO; 1220 } 1221 1222 return 0; 1223 } 1224 1225 /** 1226 * ice_handle_link_event - handle link event via ARQ 1227 * @pf: PF that the link event is associated with 1228 * @event: event structure containing link status info 1229 */ 1230 static int 1231 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1232 { 1233 struct ice_aqc_get_link_status_data *link_data; 1234 struct ice_port_info *port_info; 1235 int status; 1236 1237 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1238 port_info = pf->hw.port_info; 1239 if (!port_info) 1240 return -EINVAL; 1241 1242 status = ice_link_event(pf, port_info, 1243 !!(link_data->link_info & ICE_AQ_LINK_UP), 1244 le16_to_cpu(link_data->link_speed)); 1245 if (status) 1246 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1247 status); 1248 1249 return status; 1250 } 1251 1252 /** 1253 * ice_get_fwlog_data - copy the FW log data from ARQ event 1254 * @pf: PF that the FW log event is associated with 1255 * @event: event structure containing FW log data 1256 */ 1257 static void 1258 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1259 { 1260 struct ice_fwlog_data *fwlog; 1261 struct ice_hw *hw = &pf->hw; 1262 1263 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1264 1265 memset(fwlog->data, 0, PAGE_SIZE); 1266 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1267 1268 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1269 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1270 1271 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1272 /* the rings are full so bump the head to create room */ 1273 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1274 hw->fwlog_ring.size); 1275 } 1276 } 1277 1278 /** 1279 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1280 * @pf: pointer to the PF private structure 1281 * @task: intermediate helper storage and identifier for waiting 1282 * @opcode: the opcode to wait for 1283 * 1284 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1285 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1286 * 1287 * Calls are separated to allow caller registering for event before sending 1288 * the command, which mitigates a race between registering and FW responding. 1289 * 1290 * To obtain only the descriptor contents, pass an task->event with null 1291 * msg_buf. If the complete data buffer is desired, allocate the 1292 * task->event.msg_buf with enough space ahead of time. 1293 */ 1294 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1295 u16 opcode) 1296 { 1297 INIT_HLIST_NODE(&task->entry); 1298 task->opcode = opcode; 1299 task->state = ICE_AQ_TASK_WAITING; 1300 1301 spin_lock_bh(&pf->aq_wait_lock); 1302 hlist_add_head(&task->entry, &pf->aq_wait_list); 1303 spin_unlock_bh(&pf->aq_wait_lock); 1304 } 1305 1306 /** 1307 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1308 * @pf: pointer to the PF private structure 1309 * @task: ptr prepared by ice_aq_prep_for_event() 1310 * @timeout: how long to wait, in jiffies 1311 * 1312 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1313 * current thread will be put to sleep until the specified event occurs or 1314 * until the given timeout is reached. 1315 * 1316 * Returns: zero on success, or a negative error code on failure. 1317 */ 1318 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1319 unsigned long timeout) 1320 { 1321 enum ice_aq_task_state *state = &task->state; 1322 struct device *dev = ice_pf_to_dev(pf); 1323 unsigned long start = jiffies; 1324 long ret; 1325 int err; 1326 1327 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1328 *state != ICE_AQ_TASK_WAITING, 1329 timeout); 1330 switch (*state) { 1331 case ICE_AQ_TASK_NOT_PREPARED: 1332 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1333 err = -EINVAL; 1334 break; 1335 case ICE_AQ_TASK_WAITING: 1336 err = ret < 0 ? ret : -ETIMEDOUT; 1337 break; 1338 case ICE_AQ_TASK_CANCELED: 1339 err = ret < 0 ? ret : -ECANCELED; 1340 break; 1341 case ICE_AQ_TASK_COMPLETE: 1342 err = ret < 0 ? ret : 0; 1343 break; 1344 default: 1345 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1346 err = -EINVAL; 1347 break; 1348 } 1349 1350 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1351 jiffies_to_msecs(jiffies - start), 1352 jiffies_to_msecs(timeout), 1353 task->opcode); 1354 1355 spin_lock_bh(&pf->aq_wait_lock); 1356 hlist_del(&task->entry); 1357 spin_unlock_bh(&pf->aq_wait_lock); 1358 1359 return err; 1360 } 1361 1362 /** 1363 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1364 * @pf: pointer to the PF private structure 1365 * @opcode: the opcode of the event 1366 * @event: the event to check 1367 * 1368 * Loops over the current list of pending threads waiting for an AdminQ event. 1369 * For each matching task, copy the contents of the event into the task 1370 * structure and wake up the thread. 1371 * 1372 * If multiple threads wait for the same opcode, they will all be woken up. 1373 * 1374 * Note that event->msg_buf will only be duplicated if the event has a buffer 1375 * with enough space already allocated. Otherwise, only the descriptor and 1376 * message length will be copied. 1377 * 1378 * Returns: true if an event was found, false otherwise 1379 */ 1380 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1381 struct ice_rq_event_info *event) 1382 { 1383 struct ice_rq_event_info *task_ev; 1384 struct ice_aq_task *task; 1385 bool found = false; 1386 1387 spin_lock_bh(&pf->aq_wait_lock); 1388 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1389 if (task->state != ICE_AQ_TASK_WAITING) 1390 continue; 1391 if (task->opcode != opcode) 1392 continue; 1393 1394 task_ev = &task->event; 1395 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1396 task_ev->msg_len = event->msg_len; 1397 1398 /* Only copy the data buffer if a destination was set */ 1399 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1400 memcpy(task_ev->msg_buf, event->msg_buf, 1401 event->buf_len); 1402 task_ev->buf_len = event->buf_len; 1403 } 1404 1405 task->state = ICE_AQ_TASK_COMPLETE; 1406 found = true; 1407 } 1408 spin_unlock_bh(&pf->aq_wait_lock); 1409 1410 if (found) 1411 wake_up(&pf->aq_wait_queue); 1412 } 1413 1414 /** 1415 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1416 * @pf: the PF private structure 1417 * 1418 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1419 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1420 */ 1421 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1422 { 1423 struct ice_aq_task *task; 1424 1425 spin_lock_bh(&pf->aq_wait_lock); 1426 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1427 task->state = ICE_AQ_TASK_CANCELED; 1428 spin_unlock_bh(&pf->aq_wait_lock); 1429 1430 wake_up(&pf->aq_wait_queue); 1431 } 1432 1433 #define ICE_MBX_OVERFLOW_WATERMARK 64 1434 1435 /** 1436 * __ice_clean_ctrlq - helper function to clean controlq rings 1437 * @pf: ptr to struct ice_pf 1438 * @q_type: specific Control queue type 1439 */ 1440 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1441 { 1442 struct device *dev = ice_pf_to_dev(pf); 1443 struct ice_rq_event_info event; 1444 struct ice_hw *hw = &pf->hw; 1445 struct ice_ctl_q_info *cq; 1446 u16 pending, i = 0; 1447 const char *qtype; 1448 u32 oldval, val; 1449 1450 /* Do not clean control queue if/when PF reset fails */ 1451 if (test_bit(ICE_RESET_FAILED, pf->state)) 1452 return 0; 1453 1454 switch (q_type) { 1455 case ICE_CTL_Q_ADMIN: 1456 cq = &hw->adminq; 1457 qtype = "Admin"; 1458 break; 1459 case ICE_CTL_Q_SB: 1460 cq = &hw->sbq; 1461 qtype = "Sideband"; 1462 break; 1463 case ICE_CTL_Q_MAILBOX: 1464 cq = &hw->mailboxq; 1465 qtype = "Mailbox"; 1466 /* we are going to try to detect a malicious VF, so set the 1467 * state to begin detection 1468 */ 1469 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1470 break; 1471 default: 1472 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1473 return 0; 1474 } 1475 1476 /* check for error indications - PF_xx_AxQLEN register layout for 1477 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1478 */ 1479 val = rd32(hw, cq->rq.len); 1480 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1481 PF_FW_ARQLEN_ARQCRIT_M)) { 1482 oldval = val; 1483 if (val & PF_FW_ARQLEN_ARQVFE_M) 1484 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1485 qtype); 1486 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1487 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1488 qtype); 1489 } 1490 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1491 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1492 qtype); 1493 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1494 PF_FW_ARQLEN_ARQCRIT_M); 1495 if (oldval != val) 1496 wr32(hw, cq->rq.len, val); 1497 } 1498 1499 val = rd32(hw, cq->sq.len); 1500 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1501 PF_FW_ATQLEN_ATQCRIT_M)) { 1502 oldval = val; 1503 if (val & PF_FW_ATQLEN_ATQVFE_M) 1504 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1505 qtype); 1506 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1507 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1508 qtype); 1509 } 1510 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1511 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1512 qtype); 1513 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1514 PF_FW_ATQLEN_ATQCRIT_M); 1515 if (oldval != val) 1516 wr32(hw, cq->sq.len, val); 1517 } 1518 1519 event.buf_len = cq->rq_buf_size; 1520 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1521 if (!event.msg_buf) 1522 return 0; 1523 1524 do { 1525 struct ice_mbx_data data = {}; 1526 u16 opcode; 1527 int ret; 1528 1529 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1530 if (ret == -EALREADY) 1531 break; 1532 if (ret) { 1533 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1534 ret); 1535 break; 1536 } 1537 1538 opcode = le16_to_cpu(event.desc.opcode); 1539 1540 /* Notify any thread that might be waiting for this event */ 1541 ice_aq_check_events(pf, opcode, &event); 1542 1543 switch (opcode) { 1544 case ice_aqc_opc_get_link_status: 1545 if (ice_handle_link_event(pf, &event)) 1546 dev_err(dev, "Could not handle link event\n"); 1547 break; 1548 case ice_aqc_opc_event_lan_overflow: 1549 ice_vf_lan_overflow_event(pf, &event); 1550 break; 1551 case ice_mbx_opc_send_msg_to_pf: 1552 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) { 1553 ice_vc_process_vf_msg(pf, &event, NULL); 1554 ice_mbx_vf_dec_trig_e830(hw, &event); 1555 } else { 1556 u16 val = hw->mailboxq.num_rq_entries; 1557 1558 data.max_num_msgs_mbx = val; 1559 val = ICE_MBX_OVERFLOW_WATERMARK; 1560 data.async_watermark_val = val; 1561 data.num_msg_proc = i; 1562 data.num_pending_arq = pending; 1563 1564 ice_vc_process_vf_msg(pf, &event, &data); 1565 } 1566 break; 1567 case ice_aqc_opc_fw_logs_event: 1568 ice_get_fwlog_data(pf, &event); 1569 break; 1570 case ice_aqc_opc_lldp_set_mib_change: 1571 ice_dcb_process_lldp_set_mib_change(pf, &event); 1572 break; 1573 case ice_aqc_opc_get_health_status: 1574 ice_process_health_status_event(pf, &event); 1575 break; 1576 default: 1577 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1578 qtype, opcode); 1579 break; 1580 } 1581 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1582 1583 kfree(event.msg_buf); 1584 1585 return pending && (i == ICE_DFLT_IRQ_WORK); 1586 } 1587 1588 /** 1589 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1590 * @hw: pointer to hardware info 1591 * @cq: control queue information 1592 * 1593 * returns true if there are pending messages in a queue, false if there aren't 1594 */ 1595 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1596 { 1597 u16 ntu; 1598 1599 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1600 return cq->rq.next_to_clean != ntu; 1601 } 1602 1603 /** 1604 * ice_clean_adminq_subtask - clean the AdminQ rings 1605 * @pf: board private structure 1606 */ 1607 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1608 { 1609 struct ice_hw *hw = &pf->hw; 1610 1611 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1612 return; 1613 1614 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1615 return; 1616 1617 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1618 1619 /* There might be a situation where new messages arrive to a control 1620 * queue between processing the last message and clearing the 1621 * EVENT_PENDING bit. So before exiting, check queue head again (using 1622 * ice_ctrlq_pending) and process new messages if any. 1623 */ 1624 if (ice_ctrlq_pending(hw, &hw->adminq)) 1625 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1626 1627 ice_flush(hw); 1628 } 1629 1630 /** 1631 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1632 * @pf: board private structure 1633 */ 1634 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1635 { 1636 struct ice_hw *hw = &pf->hw; 1637 1638 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1639 return; 1640 1641 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1642 return; 1643 1644 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1645 1646 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1647 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1648 1649 ice_flush(hw); 1650 } 1651 1652 /** 1653 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1654 * @pf: board private structure 1655 */ 1656 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1657 { 1658 struct ice_hw *hw = &pf->hw; 1659 1660 /* if mac_type is not generic, sideband is not supported 1661 * and there's nothing to do here 1662 */ 1663 if (!ice_is_generic_mac(hw)) { 1664 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1665 return; 1666 } 1667 1668 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1669 return; 1670 1671 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1672 return; 1673 1674 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1675 1676 if (ice_ctrlq_pending(hw, &hw->sbq)) 1677 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1678 1679 ice_flush(hw); 1680 } 1681 1682 /** 1683 * ice_service_task_schedule - schedule the service task to wake up 1684 * @pf: board private structure 1685 * 1686 * If not already scheduled, this puts the task into the work queue. 1687 */ 1688 void ice_service_task_schedule(struct ice_pf *pf) 1689 { 1690 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1691 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1692 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1693 queue_work(ice_wq, &pf->serv_task); 1694 } 1695 1696 /** 1697 * ice_service_task_complete - finish up the service task 1698 * @pf: board private structure 1699 */ 1700 static void ice_service_task_complete(struct ice_pf *pf) 1701 { 1702 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1703 1704 /* force memory (pf->state) to sync before next service task */ 1705 smp_mb__before_atomic(); 1706 clear_bit(ICE_SERVICE_SCHED, pf->state); 1707 } 1708 1709 /** 1710 * ice_service_task_stop - stop service task and cancel works 1711 * @pf: board private structure 1712 * 1713 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1714 * 1 otherwise. 1715 */ 1716 static int ice_service_task_stop(struct ice_pf *pf) 1717 { 1718 int ret; 1719 1720 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1721 1722 if (pf->serv_tmr.function) 1723 timer_delete_sync(&pf->serv_tmr); 1724 if (pf->serv_task.func) 1725 cancel_work_sync(&pf->serv_task); 1726 1727 clear_bit(ICE_SERVICE_SCHED, pf->state); 1728 return ret; 1729 } 1730 1731 /** 1732 * ice_service_task_restart - restart service task and schedule works 1733 * @pf: board private structure 1734 * 1735 * This function is needed for suspend and resume works (e.g WoL scenario) 1736 */ 1737 static void ice_service_task_restart(struct ice_pf *pf) 1738 { 1739 clear_bit(ICE_SERVICE_DIS, pf->state); 1740 ice_service_task_schedule(pf); 1741 } 1742 1743 /** 1744 * ice_service_timer - timer callback to schedule service task 1745 * @t: pointer to timer_list 1746 */ 1747 static void ice_service_timer(struct timer_list *t) 1748 { 1749 struct ice_pf *pf = timer_container_of(pf, t, serv_tmr); 1750 1751 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1752 ice_service_task_schedule(pf); 1753 } 1754 1755 /** 1756 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1757 * @pf: pointer to the PF structure 1758 * @vf: pointer to the VF structure 1759 * @reset_vf_tx: whether Tx MDD has occurred 1760 * @reset_vf_rx: whether Rx MDD has occurred 1761 * 1762 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1763 * automatically reset the VF by enabling the private ethtool flag 1764 * mdd-auto-reset-vf. 1765 */ 1766 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1767 bool reset_vf_tx, bool reset_vf_rx) 1768 { 1769 struct device *dev = ice_pf_to_dev(pf); 1770 1771 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1772 return; 1773 1774 /* VF MDD event counters will be cleared by reset, so print the event 1775 * prior to reset. 1776 */ 1777 if (reset_vf_tx) 1778 ice_print_vf_tx_mdd_event(vf); 1779 1780 if (reset_vf_rx) 1781 ice_print_vf_rx_mdd_event(vf); 1782 1783 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1784 pf->hw.pf_id, vf->vf_id); 1785 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1786 } 1787 1788 /** 1789 * ice_handle_mdd_event - handle malicious driver detect event 1790 * @pf: pointer to the PF structure 1791 * 1792 * Called from service task. OICR interrupt handler indicates MDD event. 1793 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1794 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1795 * disable the queue, the PF can be configured to reset the VF using ethtool 1796 * private flag mdd-auto-reset-vf. 1797 */ 1798 static void ice_handle_mdd_event(struct ice_pf *pf) 1799 { 1800 struct device *dev = ice_pf_to_dev(pf); 1801 struct ice_hw *hw = &pf->hw; 1802 struct ice_vf *vf; 1803 unsigned int bkt; 1804 u32 reg; 1805 1806 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1807 /* Since the VF MDD event logging is rate limited, check if 1808 * there are pending MDD events. 1809 */ 1810 ice_print_vfs_mdd_events(pf); 1811 return; 1812 } 1813 1814 /* find what triggered an MDD event */ 1815 reg = rd32(hw, GL_MDET_TX_PQM); 1816 if (reg & GL_MDET_TX_PQM_VALID_M) { 1817 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1818 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1819 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1820 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1821 1822 if (netif_msg_tx_err(pf)) 1823 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1824 event, queue, pf_num, vf_num); 1825 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num, 1826 event, queue); 1827 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1828 } 1829 1830 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1831 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1832 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1833 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1834 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1835 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1836 1837 if (netif_msg_tx_err(pf)) 1838 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1839 event, queue, pf_num, vf_num); 1840 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num, 1841 event, queue); 1842 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1843 } 1844 1845 reg = rd32(hw, GL_MDET_RX); 1846 if (reg & GL_MDET_RX_VALID_M) { 1847 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1848 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1849 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1850 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1851 1852 if (netif_msg_rx_err(pf)) 1853 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1854 event, queue, pf_num, vf_num); 1855 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event, 1856 queue); 1857 wr32(hw, GL_MDET_RX, 0xffffffff); 1858 } 1859 1860 /* check to see if this PF caused an MDD event */ 1861 reg = rd32(hw, PF_MDET_TX_PQM); 1862 if (reg & PF_MDET_TX_PQM_VALID_M) { 1863 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1864 if (netif_msg_tx_err(pf)) 1865 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1866 } 1867 1868 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1869 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1870 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1871 if (netif_msg_tx_err(pf)) 1872 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1873 } 1874 1875 reg = rd32(hw, PF_MDET_RX); 1876 if (reg & PF_MDET_RX_VALID_M) { 1877 wr32(hw, PF_MDET_RX, 0xFFFF); 1878 if (netif_msg_rx_err(pf)) 1879 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1880 } 1881 1882 /* Check to see if one of the VFs caused an MDD event, and then 1883 * increment counters and set print pending 1884 */ 1885 mutex_lock(&pf->vfs.table_lock); 1886 ice_for_each_vf(pf, bkt, vf) { 1887 bool reset_vf_tx = false, reset_vf_rx = false; 1888 1889 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1890 if (reg & VP_MDET_TX_PQM_VALID_M) { 1891 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1892 vf->mdd_tx_events.count++; 1893 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1894 if (netif_msg_tx_err(pf)) 1895 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1896 vf->vf_id); 1897 1898 reset_vf_tx = true; 1899 } 1900 1901 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1902 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1903 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1904 vf->mdd_tx_events.count++; 1905 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1906 if (netif_msg_tx_err(pf)) 1907 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1908 vf->vf_id); 1909 1910 reset_vf_tx = true; 1911 } 1912 1913 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1914 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1915 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1916 vf->mdd_tx_events.count++; 1917 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1918 if (netif_msg_tx_err(pf)) 1919 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1920 vf->vf_id); 1921 1922 reset_vf_tx = true; 1923 } 1924 1925 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1926 if (reg & VP_MDET_RX_VALID_M) { 1927 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1928 vf->mdd_rx_events.count++; 1929 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1930 if (netif_msg_rx_err(pf)) 1931 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1932 vf->vf_id); 1933 1934 reset_vf_rx = true; 1935 } 1936 1937 if (reset_vf_tx || reset_vf_rx) 1938 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1939 reset_vf_rx); 1940 } 1941 mutex_unlock(&pf->vfs.table_lock); 1942 1943 ice_print_vfs_mdd_events(pf); 1944 } 1945 1946 /** 1947 * ice_force_phys_link_state - Force the physical link state 1948 * @vsi: VSI to force the physical link state to up/down 1949 * @link_up: true/false indicates to set the physical link to up/down 1950 * 1951 * Force the physical link state by getting the current PHY capabilities from 1952 * hardware and setting the PHY config based on the determined capabilities. If 1953 * link changes a link event will be triggered because both the Enable Automatic 1954 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1955 * 1956 * Returns 0 on success, negative on failure 1957 */ 1958 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1959 { 1960 struct ice_aqc_get_phy_caps_data *pcaps; 1961 struct ice_aqc_set_phy_cfg_data *cfg; 1962 struct ice_port_info *pi; 1963 struct device *dev; 1964 int retcode; 1965 1966 if (!vsi || !vsi->port_info || !vsi->back) 1967 return -EINVAL; 1968 if (vsi->type != ICE_VSI_PF) 1969 return 0; 1970 1971 dev = ice_pf_to_dev(vsi->back); 1972 1973 pi = vsi->port_info; 1974 1975 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1976 if (!pcaps) 1977 return -ENOMEM; 1978 1979 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1980 NULL); 1981 if (retcode) { 1982 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1983 vsi->vsi_num, retcode); 1984 retcode = -EIO; 1985 goto out; 1986 } 1987 1988 /* No change in link */ 1989 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1990 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1991 goto out; 1992 1993 /* Use the current user PHY configuration. The current user PHY 1994 * configuration is initialized during probe from PHY capabilities 1995 * software mode, and updated on set PHY configuration. 1996 */ 1997 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1998 if (!cfg) { 1999 retcode = -ENOMEM; 2000 goto out; 2001 } 2002 2003 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2004 if (link_up) 2005 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 2006 else 2007 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 2008 2009 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2010 if (retcode) { 2011 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2012 vsi->vsi_num, retcode); 2013 retcode = -EIO; 2014 } 2015 2016 kfree(cfg); 2017 out: 2018 kfree(pcaps); 2019 return retcode; 2020 } 2021 2022 /** 2023 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2024 * @pi: port info structure 2025 * 2026 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2027 */ 2028 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2029 { 2030 struct ice_aqc_get_phy_caps_data *pcaps; 2031 struct ice_pf *pf = pi->hw->back; 2032 int err; 2033 2034 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2035 if (!pcaps) 2036 return -ENOMEM; 2037 2038 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2039 pcaps, NULL); 2040 2041 if (err) { 2042 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2043 goto out; 2044 } 2045 2046 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2047 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2048 2049 out: 2050 kfree(pcaps); 2051 return err; 2052 } 2053 2054 /** 2055 * ice_init_link_dflt_override - Initialize link default override 2056 * @pi: port info structure 2057 * 2058 * Initialize link default override and PHY total port shutdown during probe 2059 */ 2060 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2061 { 2062 struct ice_link_default_override_tlv *ldo; 2063 struct ice_pf *pf = pi->hw->back; 2064 2065 ldo = &pf->link_dflt_override; 2066 if (ice_get_link_default_override(ldo, pi)) 2067 return; 2068 2069 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2070 return; 2071 2072 /* Enable Total Port Shutdown (override/replace link-down-on-close 2073 * ethtool private flag) for ports with Port Disable bit set. 2074 */ 2075 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2076 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2077 } 2078 2079 /** 2080 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2081 * @pi: port info structure 2082 * 2083 * If default override is enabled, initialize the user PHY cfg speed and FEC 2084 * settings using the default override mask from the NVM. 2085 * 2086 * The PHY should only be configured with the default override settings the 2087 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2088 * is used to indicate that the user PHY cfg default override is initialized 2089 * and the PHY has not been configured with the default override settings. The 2090 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2091 * configured. 2092 * 2093 * This function should be called only if the FW doesn't support default 2094 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2095 */ 2096 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2097 { 2098 struct ice_link_default_override_tlv *ldo; 2099 struct ice_aqc_set_phy_cfg_data *cfg; 2100 struct ice_phy_info *phy = &pi->phy; 2101 struct ice_pf *pf = pi->hw->back; 2102 2103 ldo = &pf->link_dflt_override; 2104 2105 /* If link default override is enabled, use to mask NVM PHY capabilities 2106 * for speed and FEC default configuration. 2107 */ 2108 cfg = &phy->curr_user_phy_cfg; 2109 2110 if (ldo->phy_type_low || ldo->phy_type_high) { 2111 cfg->phy_type_low = pf->nvm_phy_type_lo & 2112 cpu_to_le64(ldo->phy_type_low); 2113 cfg->phy_type_high = pf->nvm_phy_type_hi & 2114 cpu_to_le64(ldo->phy_type_high); 2115 } 2116 cfg->link_fec_opt = ldo->fec_options; 2117 phy->curr_user_fec_req = ICE_FEC_AUTO; 2118 2119 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2120 } 2121 2122 /** 2123 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2124 * @pi: port info structure 2125 * 2126 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2127 * mode to default. The PHY defaults are from get PHY capabilities topology 2128 * with media so call when media is first available. An error is returned if 2129 * called when media is not available. The PHY initialization completed state is 2130 * set here. 2131 * 2132 * These configurations are used when setting PHY 2133 * configuration. The user PHY configuration is updated on set PHY 2134 * configuration. Returns 0 on success, negative on failure 2135 */ 2136 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2137 { 2138 struct ice_aqc_get_phy_caps_data *pcaps; 2139 struct ice_phy_info *phy = &pi->phy; 2140 struct ice_pf *pf = pi->hw->back; 2141 int err; 2142 2143 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2144 return -EIO; 2145 2146 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2147 if (!pcaps) 2148 return -ENOMEM; 2149 2150 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2151 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2152 pcaps, NULL); 2153 else 2154 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2155 pcaps, NULL); 2156 if (err) { 2157 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2158 goto err_out; 2159 } 2160 2161 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2162 2163 /* check if lenient mode is supported and enabled */ 2164 if (ice_fw_supports_link_override(pi->hw) && 2165 !(pcaps->module_compliance_enforcement & 2166 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2167 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2168 2169 /* if the FW supports default PHY configuration mode, then the driver 2170 * does not have to apply link override settings. If not, 2171 * initialize user PHY configuration with link override values 2172 */ 2173 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2174 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2175 ice_init_phy_cfg_dflt_override(pi); 2176 goto out; 2177 } 2178 } 2179 2180 /* if link default override is not enabled, set user flow control and 2181 * FEC settings based on what get_phy_caps returned 2182 */ 2183 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2184 pcaps->link_fec_options); 2185 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2186 2187 out: 2188 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2189 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2190 err_out: 2191 kfree(pcaps); 2192 return err; 2193 } 2194 2195 /** 2196 * ice_configure_phy - configure PHY 2197 * @vsi: VSI of PHY 2198 * 2199 * Set the PHY configuration. If the current PHY configuration is the same as 2200 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2201 * configure the based get PHY capabilities for topology with media. 2202 */ 2203 static int ice_configure_phy(struct ice_vsi *vsi) 2204 { 2205 struct device *dev = ice_pf_to_dev(vsi->back); 2206 struct ice_port_info *pi = vsi->port_info; 2207 struct ice_aqc_get_phy_caps_data *pcaps; 2208 struct ice_aqc_set_phy_cfg_data *cfg; 2209 struct ice_phy_info *phy = &pi->phy; 2210 struct ice_pf *pf = vsi->back; 2211 int err; 2212 2213 /* Ensure we have media as we cannot configure a medialess port */ 2214 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2215 return -ENOMEDIUM; 2216 2217 ice_print_topo_conflict(vsi); 2218 2219 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2220 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2221 return -EPERM; 2222 2223 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2224 return ice_force_phys_link_state(vsi, true); 2225 2226 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2227 if (!pcaps) 2228 return -ENOMEM; 2229 2230 /* Get current PHY config */ 2231 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2232 NULL); 2233 if (err) { 2234 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2235 vsi->vsi_num, err); 2236 goto done; 2237 } 2238 2239 /* If PHY enable link is configured and configuration has not changed, 2240 * there's nothing to do 2241 */ 2242 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2243 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2244 goto done; 2245 2246 /* Use PHY topology as baseline for configuration */ 2247 memset(pcaps, 0, sizeof(*pcaps)); 2248 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2249 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2250 pcaps, NULL); 2251 else 2252 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2253 pcaps, NULL); 2254 if (err) { 2255 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2256 vsi->vsi_num, err); 2257 goto done; 2258 } 2259 2260 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2261 if (!cfg) { 2262 err = -ENOMEM; 2263 goto done; 2264 } 2265 2266 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2267 2268 /* Speed - If default override pending, use curr_user_phy_cfg set in 2269 * ice_init_phy_user_cfg_ldo. 2270 */ 2271 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2272 vsi->back->state)) { 2273 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2274 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2275 } else { 2276 u64 phy_low = 0, phy_high = 0; 2277 2278 ice_update_phy_type(&phy_low, &phy_high, 2279 pi->phy.curr_user_speed_req); 2280 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2281 cfg->phy_type_high = pcaps->phy_type_high & 2282 cpu_to_le64(phy_high); 2283 } 2284 2285 /* Can't provide what was requested; use PHY capabilities */ 2286 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2287 cfg->phy_type_low = pcaps->phy_type_low; 2288 cfg->phy_type_high = pcaps->phy_type_high; 2289 } 2290 2291 /* FEC */ 2292 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2293 2294 /* Can't provide what was requested; use PHY capabilities */ 2295 if (cfg->link_fec_opt != 2296 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2297 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2298 cfg->link_fec_opt = pcaps->link_fec_options; 2299 } 2300 2301 /* Flow Control - always supported; no need to check against 2302 * capabilities 2303 */ 2304 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2305 2306 /* Enable link and link update */ 2307 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2308 2309 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2310 if (err) 2311 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2312 vsi->vsi_num, err); 2313 2314 kfree(cfg); 2315 done: 2316 kfree(pcaps); 2317 return err; 2318 } 2319 2320 /** 2321 * ice_check_media_subtask - Check for media 2322 * @pf: pointer to PF struct 2323 * 2324 * If media is available, then initialize PHY user configuration if it is not 2325 * been, and configure the PHY if the interface is up. 2326 */ 2327 static void ice_check_media_subtask(struct ice_pf *pf) 2328 { 2329 struct ice_port_info *pi; 2330 struct ice_vsi *vsi; 2331 int err; 2332 2333 /* No need to check for media if it's already present */ 2334 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2335 return; 2336 2337 vsi = ice_get_main_vsi(pf); 2338 if (!vsi) 2339 return; 2340 2341 /* Refresh link info and check if media is present */ 2342 pi = vsi->port_info; 2343 err = ice_update_link_info(pi); 2344 if (err) 2345 return; 2346 2347 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2348 2349 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2350 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2351 ice_init_phy_user_cfg(pi); 2352 2353 /* PHY settings are reset on media insertion, reconfigure 2354 * PHY to preserve settings. 2355 */ 2356 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2357 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2358 return; 2359 2360 err = ice_configure_phy(vsi); 2361 if (!err) 2362 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2363 2364 /* A Link Status Event will be generated; the event handler 2365 * will complete bringing the interface up 2366 */ 2367 } 2368 } 2369 2370 static void ice_service_task_recovery_mode(struct work_struct *work) 2371 { 2372 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2373 2374 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2375 ice_clean_adminq_subtask(pf); 2376 2377 ice_service_task_complete(pf); 2378 2379 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100)); 2380 } 2381 2382 /** 2383 * ice_service_task - manage and run subtasks 2384 * @work: pointer to work_struct contained by the PF struct 2385 */ 2386 static void ice_service_task(struct work_struct *work) 2387 { 2388 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2389 unsigned long start_time = jiffies; 2390 2391 if (pf->health_reporters.tx_hang_buf.tx_ring) { 2392 ice_report_tx_hang(pf); 2393 pf->health_reporters.tx_hang_buf.tx_ring = NULL; 2394 } 2395 2396 ice_reset_subtask(pf); 2397 2398 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2399 if (ice_is_reset_in_progress(pf->state) || 2400 test_bit(ICE_SUSPENDED, pf->state) || 2401 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2402 ice_service_task_complete(pf); 2403 return; 2404 } 2405 2406 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2407 struct iidc_rdma_event *event; 2408 2409 event = kzalloc(sizeof(*event), GFP_KERNEL); 2410 if (event) { 2411 set_bit(IIDC_RDMA_EVENT_CRIT_ERR, event->type); 2412 /* report the entire OICR value to AUX driver */ 2413 swap(event->reg, pf->oicr_err_reg); 2414 ice_send_event_to_aux(pf, event); 2415 kfree(event); 2416 } 2417 } 2418 2419 /* unplug aux dev per request, if an unplug request came in 2420 * while processing a plug request, this will handle it 2421 */ 2422 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2423 ice_unplug_aux_dev(pf); 2424 2425 /* Plug aux device per request */ 2426 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2427 ice_plug_aux_dev(pf); 2428 2429 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2430 struct iidc_rdma_event *event; 2431 2432 event = kzalloc(sizeof(*event), GFP_KERNEL); 2433 if (event) { 2434 set_bit(IIDC_RDMA_EVENT_AFTER_MTU_CHANGE, event->type); 2435 ice_send_event_to_aux(pf, event); 2436 kfree(event); 2437 } 2438 } 2439 2440 ice_clean_adminq_subtask(pf); 2441 ice_check_media_subtask(pf); 2442 ice_check_for_hang_subtask(pf); 2443 ice_sync_fltr_subtask(pf); 2444 ice_handle_mdd_event(pf); 2445 ice_watchdog_subtask(pf); 2446 2447 if (ice_is_safe_mode(pf)) { 2448 ice_service_task_complete(pf); 2449 return; 2450 } 2451 2452 ice_process_vflr_event(pf); 2453 ice_clean_mailboxq_subtask(pf); 2454 ice_clean_sbq_subtask(pf); 2455 ice_sync_arfs_fltrs(pf); 2456 ice_flush_fdir_ctx(pf); 2457 2458 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2459 ice_service_task_complete(pf); 2460 2461 /* If the tasks have taken longer than one service timer period 2462 * or there is more work to be done, reset the service timer to 2463 * schedule the service task now. 2464 */ 2465 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2466 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2467 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2468 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2469 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2470 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2471 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2472 mod_timer(&pf->serv_tmr, jiffies); 2473 } 2474 2475 /** 2476 * ice_set_ctrlq_len - helper function to set controlq length 2477 * @hw: pointer to the HW instance 2478 */ 2479 static void ice_set_ctrlq_len(struct ice_hw *hw) 2480 { 2481 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2482 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2483 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2484 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2485 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2486 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2487 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2488 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2489 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2490 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2491 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2492 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2493 } 2494 2495 /** 2496 * ice_schedule_reset - schedule a reset 2497 * @pf: board private structure 2498 * @reset: reset being requested 2499 */ 2500 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2501 { 2502 struct device *dev = ice_pf_to_dev(pf); 2503 2504 /* bail out if earlier reset has failed */ 2505 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2506 dev_dbg(dev, "earlier reset has failed\n"); 2507 return -EIO; 2508 } 2509 /* bail if reset/recovery already in progress */ 2510 if (ice_is_reset_in_progress(pf->state)) { 2511 dev_dbg(dev, "Reset already in progress\n"); 2512 return -EBUSY; 2513 } 2514 2515 switch (reset) { 2516 case ICE_RESET_PFR: 2517 set_bit(ICE_PFR_REQ, pf->state); 2518 break; 2519 case ICE_RESET_CORER: 2520 set_bit(ICE_CORER_REQ, pf->state); 2521 break; 2522 case ICE_RESET_GLOBR: 2523 set_bit(ICE_GLOBR_REQ, pf->state); 2524 break; 2525 default: 2526 return -EINVAL; 2527 } 2528 2529 ice_service_task_schedule(pf); 2530 return 0; 2531 } 2532 2533 /** 2534 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2535 * @vsi: the VSI being configured 2536 */ 2537 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2538 { 2539 struct ice_hw *hw = &vsi->back->hw; 2540 int i; 2541 2542 ice_for_each_q_vector(vsi, i) 2543 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2544 2545 ice_flush(hw); 2546 return 0; 2547 } 2548 2549 /** 2550 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2551 * @vsi: the VSI being configured 2552 * @basename: name for the vector 2553 */ 2554 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2555 { 2556 int q_vectors = vsi->num_q_vectors; 2557 struct ice_pf *pf = vsi->back; 2558 struct device *dev; 2559 int rx_int_idx = 0; 2560 int tx_int_idx = 0; 2561 int vector, err; 2562 int irq_num; 2563 2564 dev = ice_pf_to_dev(pf); 2565 for (vector = 0; vector < q_vectors; vector++) { 2566 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2567 2568 irq_num = q_vector->irq.virq; 2569 2570 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2571 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2572 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2573 tx_int_idx++; 2574 } else if (q_vector->rx.rx_ring) { 2575 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2576 "%s-%s-%d", basename, "rx", rx_int_idx++); 2577 } else if (q_vector->tx.tx_ring) { 2578 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2579 "%s-%s-%d", basename, "tx", tx_int_idx++); 2580 } else { 2581 /* skip this unused q_vector */ 2582 continue; 2583 } 2584 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2585 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2586 IRQF_SHARED, q_vector->name, 2587 q_vector); 2588 else 2589 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2590 0, q_vector->name, q_vector); 2591 if (err) { 2592 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2593 err); 2594 goto free_q_irqs; 2595 } 2596 } 2597 2598 err = ice_set_cpu_rx_rmap(vsi); 2599 if (err) { 2600 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2601 vsi->vsi_num, ERR_PTR(err)); 2602 goto free_q_irqs; 2603 } 2604 2605 vsi->irqs_ready = true; 2606 return 0; 2607 2608 free_q_irqs: 2609 while (vector--) { 2610 irq_num = vsi->q_vectors[vector]->irq.virq; 2611 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2612 } 2613 return err; 2614 } 2615 2616 /** 2617 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2618 * @vsi: VSI to setup Tx rings used by XDP 2619 * 2620 * Return 0 on success and negative value on error 2621 */ 2622 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2623 { 2624 struct device *dev = ice_pf_to_dev(vsi->back); 2625 struct ice_tx_desc *tx_desc; 2626 int i, j; 2627 2628 ice_for_each_xdp_txq(vsi, i) { 2629 u16 xdp_q_idx = vsi->alloc_txq + i; 2630 struct ice_ring_stats *ring_stats; 2631 struct ice_tx_ring *xdp_ring; 2632 2633 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2634 if (!xdp_ring) 2635 goto free_xdp_rings; 2636 2637 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2638 if (!ring_stats) { 2639 ice_free_tx_ring(xdp_ring); 2640 goto free_xdp_rings; 2641 } 2642 2643 xdp_ring->ring_stats = ring_stats; 2644 xdp_ring->q_index = xdp_q_idx; 2645 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2646 xdp_ring->vsi = vsi; 2647 xdp_ring->netdev = NULL; 2648 xdp_ring->dev = dev; 2649 xdp_ring->count = vsi->num_tx_desc; 2650 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2651 if (ice_setup_tx_ring(xdp_ring)) 2652 goto free_xdp_rings; 2653 ice_set_ring_xdp(xdp_ring); 2654 spin_lock_init(&xdp_ring->tx_lock); 2655 for (j = 0; j < xdp_ring->count; j++) { 2656 tx_desc = ICE_TX_DESC(xdp_ring, j); 2657 tx_desc->cmd_type_offset_bsz = 0; 2658 } 2659 } 2660 2661 return 0; 2662 2663 free_xdp_rings: 2664 for (; i >= 0; i--) { 2665 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2666 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2667 vsi->xdp_rings[i]->ring_stats = NULL; 2668 ice_free_tx_ring(vsi->xdp_rings[i]); 2669 } 2670 } 2671 return -ENOMEM; 2672 } 2673 2674 /** 2675 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2676 * @vsi: VSI to set the bpf prog on 2677 * @prog: the bpf prog pointer 2678 */ 2679 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2680 { 2681 struct bpf_prog *old_prog; 2682 int i; 2683 2684 old_prog = xchg(&vsi->xdp_prog, prog); 2685 ice_for_each_rxq(vsi, i) 2686 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2687 2688 if (old_prog) 2689 bpf_prog_put(old_prog); 2690 } 2691 2692 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2693 { 2694 struct ice_q_vector *q_vector; 2695 struct ice_tx_ring *ring; 2696 2697 if (static_key_enabled(&ice_xdp_locking_key)) 2698 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2699 2700 q_vector = vsi->rx_rings[qid]->q_vector; 2701 ice_for_each_tx_ring(ring, q_vector->tx) 2702 if (ice_ring_is_xdp(ring)) 2703 return ring; 2704 2705 return NULL; 2706 } 2707 2708 /** 2709 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2710 * @vsi: the VSI with XDP rings being configured 2711 * 2712 * Map XDP rings to interrupt vectors and perform the configuration steps 2713 * dependent on the mapping. 2714 */ 2715 void ice_map_xdp_rings(struct ice_vsi *vsi) 2716 { 2717 int xdp_rings_rem = vsi->num_xdp_txq; 2718 int v_idx, q_idx; 2719 2720 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2721 ice_for_each_q_vector(vsi, v_idx) { 2722 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2723 int xdp_rings_per_v, q_id, q_base; 2724 2725 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2726 vsi->num_q_vectors - v_idx); 2727 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2728 2729 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2730 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2731 2732 xdp_ring->q_vector = q_vector; 2733 xdp_ring->next = q_vector->tx.tx_ring; 2734 q_vector->tx.tx_ring = xdp_ring; 2735 } 2736 xdp_rings_rem -= xdp_rings_per_v; 2737 } 2738 2739 ice_for_each_rxq(vsi, q_idx) { 2740 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2741 q_idx); 2742 ice_tx_xsk_pool(vsi, q_idx); 2743 } 2744 } 2745 2746 /** 2747 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors 2748 * @vsi: the VSI with XDP rings being unmapped 2749 */ 2750 static void ice_unmap_xdp_rings(struct ice_vsi *vsi) 2751 { 2752 int v_idx; 2753 2754 ice_for_each_q_vector(vsi, v_idx) { 2755 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2756 struct ice_tx_ring *ring; 2757 2758 ice_for_each_tx_ring(ring, q_vector->tx) 2759 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2760 break; 2761 2762 /* restore the value of last node prior to XDP setup */ 2763 q_vector->tx.tx_ring = ring; 2764 } 2765 } 2766 2767 /** 2768 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2769 * @vsi: VSI to bring up Tx rings used by XDP 2770 * @prog: bpf program that will be assigned to VSI 2771 * @cfg_type: create from scratch or restore the existing configuration 2772 * 2773 * Return 0 on success and negative value on error 2774 */ 2775 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2776 enum ice_xdp_cfg cfg_type) 2777 { 2778 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2779 struct ice_pf *pf = vsi->back; 2780 struct ice_qs_cfg xdp_qs_cfg = { 2781 .qs_mutex = &pf->avail_q_mutex, 2782 .pf_map = pf->avail_txqs, 2783 .pf_map_size = pf->max_pf_txqs, 2784 .q_count = vsi->num_xdp_txq, 2785 .scatter_count = ICE_MAX_SCATTER_TXQS, 2786 .vsi_map = vsi->txq_map, 2787 .vsi_map_offset = vsi->alloc_txq, 2788 .mapping_mode = ICE_VSI_MAP_CONTIG 2789 }; 2790 struct device *dev; 2791 int status, i; 2792 2793 dev = ice_pf_to_dev(pf); 2794 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2795 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2796 if (!vsi->xdp_rings) 2797 return -ENOMEM; 2798 2799 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2800 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2801 goto err_map_xdp; 2802 2803 if (static_key_enabled(&ice_xdp_locking_key)) 2804 netdev_warn(vsi->netdev, 2805 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2806 2807 if (ice_xdp_alloc_setup_rings(vsi)) 2808 goto clear_xdp_rings; 2809 2810 /* omit the scheduler update if in reset path; XDP queues will be 2811 * taken into account at the end of ice_vsi_rebuild, where 2812 * ice_cfg_vsi_lan is being called 2813 */ 2814 if (cfg_type == ICE_XDP_CFG_PART) 2815 return 0; 2816 2817 ice_map_xdp_rings(vsi); 2818 2819 /* tell the Tx scheduler that right now we have 2820 * additional queues 2821 */ 2822 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2823 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2824 2825 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2826 max_txqs); 2827 if (status) { 2828 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2829 status); 2830 goto unmap_xdp_rings; 2831 } 2832 2833 /* assign the prog only when it's not already present on VSI; 2834 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2835 * VSI rebuild that happens under ethtool -L can expose us to 2836 * the bpf_prog refcount issues as we would be swapping same 2837 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2838 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2839 * this is not harmful as dev_xdp_install bumps the refcount 2840 * before calling the op exposed by the driver; 2841 */ 2842 if (!ice_is_xdp_ena_vsi(vsi)) 2843 ice_vsi_assign_bpf_prog(vsi, prog); 2844 2845 return 0; 2846 unmap_xdp_rings: 2847 ice_unmap_xdp_rings(vsi); 2848 clear_xdp_rings: 2849 ice_for_each_xdp_txq(vsi, i) 2850 if (vsi->xdp_rings[i]) { 2851 kfree_rcu(vsi->xdp_rings[i], rcu); 2852 vsi->xdp_rings[i] = NULL; 2853 } 2854 2855 err_map_xdp: 2856 mutex_lock(&pf->avail_q_mutex); 2857 ice_for_each_xdp_txq(vsi, i) { 2858 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2859 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2860 } 2861 mutex_unlock(&pf->avail_q_mutex); 2862 2863 devm_kfree(dev, vsi->xdp_rings); 2864 vsi->xdp_rings = NULL; 2865 2866 return -ENOMEM; 2867 } 2868 2869 /** 2870 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2871 * @vsi: VSI to remove XDP rings 2872 * @cfg_type: disable XDP permanently or allow it to be restored later 2873 * 2874 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2875 * resources 2876 */ 2877 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2878 { 2879 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2880 struct ice_pf *pf = vsi->back; 2881 int i; 2882 2883 /* q_vectors are freed in reset path so there's no point in detaching 2884 * rings 2885 */ 2886 if (cfg_type == ICE_XDP_CFG_PART) 2887 goto free_qmap; 2888 2889 ice_unmap_xdp_rings(vsi); 2890 2891 free_qmap: 2892 mutex_lock(&pf->avail_q_mutex); 2893 ice_for_each_xdp_txq(vsi, i) { 2894 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2895 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2896 } 2897 mutex_unlock(&pf->avail_q_mutex); 2898 2899 ice_for_each_xdp_txq(vsi, i) 2900 if (vsi->xdp_rings[i]) { 2901 if (vsi->xdp_rings[i]->desc) { 2902 synchronize_rcu(); 2903 ice_free_tx_ring(vsi->xdp_rings[i]); 2904 } 2905 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2906 vsi->xdp_rings[i]->ring_stats = NULL; 2907 kfree_rcu(vsi->xdp_rings[i], rcu); 2908 vsi->xdp_rings[i] = NULL; 2909 } 2910 2911 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2912 vsi->xdp_rings = NULL; 2913 2914 if (static_key_enabled(&ice_xdp_locking_key)) 2915 static_branch_dec(&ice_xdp_locking_key); 2916 2917 if (cfg_type == ICE_XDP_CFG_PART) 2918 return 0; 2919 2920 ice_vsi_assign_bpf_prog(vsi, NULL); 2921 2922 /* notify Tx scheduler that we destroyed XDP queues and bring 2923 * back the old number of child nodes 2924 */ 2925 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2926 max_txqs[i] = vsi->num_txq; 2927 2928 /* change number of XDP Tx queues to 0 */ 2929 vsi->num_xdp_txq = 0; 2930 2931 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2932 max_txqs); 2933 } 2934 2935 /** 2936 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2937 * @vsi: VSI to schedule napi on 2938 */ 2939 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2940 { 2941 int i; 2942 2943 ice_for_each_rxq(vsi, i) { 2944 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2945 2946 if (READ_ONCE(rx_ring->xsk_pool)) 2947 napi_schedule(&rx_ring->q_vector->napi); 2948 } 2949 } 2950 2951 /** 2952 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2953 * @vsi: VSI to determine the count of XDP Tx qs 2954 * 2955 * returns 0 if Tx qs count is higher than at least half of CPU count, 2956 * -ENOMEM otherwise 2957 */ 2958 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2959 { 2960 u16 avail = ice_get_avail_txq_count(vsi->back); 2961 u16 cpus = num_possible_cpus(); 2962 2963 if (avail < cpus / 2) 2964 return -ENOMEM; 2965 2966 if (vsi->type == ICE_VSI_SF) 2967 avail = vsi->alloc_txq; 2968 2969 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2970 2971 if (vsi->num_xdp_txq < cpus) 2972 static_branch_inc(&ice_xdp_locking_key); 2973 2974 return 0; 2975 } 2976 2977 /** 2978 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2979 * @vsi: Pointer to VSI structure 2980 */ 2981 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2982 { 2983 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2984 return ICE_RXBUF_1664; 2985 else 2986 return ICE_RXBUF_3072; 2987 } 2988 2989 /** 2990 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2991 * @vsi: VSI to setup XDP for 2992 * @prog: XDP program 2993 * @extack: netlink extended ack 2994 */ 2995 static int 2996 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2997 struct netlink_ext_ack *extack) 2998 { 2999 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3000 int ret = 0, xdp_ring_err = 0; 3001 bool if_running; 3002 3003 if (prog && !prog->aux->xdp_has_frags) { 3004 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3005 NL_SET_ERR_MSG_MOD(extack, 3006 "MTU is too large for linear frames and XDP prog does not support frags"); 3007 return -EOPNOTSUPP; 3008 } 3009 } 3010 3011 /* hot swap progs and avoid toggling link */ 3012 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 3013 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 3014 ice_vsi_assign_bpf_prog(vsi, prog); 3015 return 0; 3016 } 3017 3018 if_running = netif_running(vsi->netdev) && 3019 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3020 3021 /* need to stop netdev while setting up the program for Rx rings */ 3022 if (if_running) { 3023 ret = ice_down(vsi); 3024 if (ret) { 3025 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3026 return ret; 3027 } 3028 } 3029 3030 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3031 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3032 if (xdp_ring_err) { 3033 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3034 goto resume_if; 3035 } else { 3036 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3037 ICE_XDP_CFG_FULL); 3038 if (xdp_ring_err) { 3039 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3040 goto resume_if; 3041 } 3042 } 3043 xdp_features_set_redirect_target(vsi->netdev, true); 3044 /* reallocate Rx queues that are used for zero-copy */ 3045 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3046 if (xdp_ring_err) 3047 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3048 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3049 xdp_features_clear_redirect_target(vsi->netdev); 3050 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3051 if (xdp_ring_err) 3052 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3053 /* reallocate Rx queues that were used for zero-copy */ 3054 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3055 if (xdp_ring_err) 3056 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3057 } 3058 3059 resume_if: 3060 if (if_running) 3061 ret = ice_up(vsi); 3062 3063 if (!ret && prog) 3064 ice_vsi_rx_napi_schedule(vsi); 3065 3066 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3067 } 3068 3069 /** 3070 * ice_xdp_safe_mode - XDP handler for safe mode 3071 * @dev: netdevice 3072 * @xdp: XDP command 3073 */ 3074 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3075 struct netdev_bpf *xdp) 3076 { 3077 NL_SET_ERR_MSG_MOD(xdp->extack, 3078 "Please provide working DDP firmware package in order to use XDP\n" 3079 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3080 return -EOPNOTSUPP; 3081 } 3082 3083 /** 3084 * ice_xdp - implements XDP handler 3085 * @dev: netdevice 3086 * @xdp: XDP command 3087 */ 3088 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3089 { 3090 struct ice_netdev_priv *np = netdev_priv(dev); 3091 struct ice_vsi *vsi = np->vsi; 3092 int ret; 3093 3094 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3095 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3096 return -EINVAL; 3097 } 3098 3099 mutex_lock(&vsi->xdp_state_lock); 3100 3101 switch (xdp->command) { 3102 case XDP_SETUP_PROG: 3103 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3104 break; 3105 case XDP_SETUP_XSK_POOL: 3106 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3107 break; 3108 default: 3109 ret = -EINVAL; 3110 } 3111 3112 mutex_unlock(&vsi->xdp_state_lock); 3113 return ret; 3114 } 3115 3116 /** 3117 * ice_ena_misc_vector - enable the non-queue interrupts 3118 * @pf: board private structure 3119 */ 3120 static void ice_ena_misc_vector(struct ice_pf *pf) 3121 { 3122 struct ice_hw *hw = &pf->hw; 3123 u32 pf_intr_start_offset; 3124 u32 val; 3125 3126 /* Disable anti-spoof detection interrupt to prevent spurious event 3127 * interrupts during a function reset. Anti-spoof functionally is 3128 * still supported. 3129 */ 3130 val = rd32(hw, GL_MDCK_TX_TDPU); 3131 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3132 wr32(hw, GL_MDCK_TX_TDPU, val); 3133 3134 /* clear things first */ 3135 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3136 rd32(hw, PFINT_OICR); /* read to clear */ 3137 3138 val = (PFINT_OICR_ECC_ERR_M | 3139 PFINT_OICR_MAL_DETECT_M | 3140 PFINT_OICR_GRST_M | 3141 PFINT_OICR_PCI_EXCEPTION_M | 3142 PFINT_OICR_VFLR_M | 3143 PFINT_OICR_HMC_ERR_M | 3144 PFINT_OICR_PE_PUSH_M | 3145 PFINT_OICR_PE_CRITERR_M); 3146 3147 wr32(hw, PFINT_OICR_ENA, val); 3148 3149 /* SW_ITR_IDX = 0, but don't change INTENA */ 3150 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3151 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3152 3153 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3154 return; 3155 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3156 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3157 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3158 } 3159 3160 /** 3161 * ice_ll_ts_intr - ll_ts interrupt handler 3162 * @irq: interrupt number 3163 * @data: pointer to a q_vector 3164 */ 3165 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3166 { 3167 struct ice_pf *pf = data; 3168 u32 pf_intr_start_offset; 3169 struct ice_ptp_tx *tx; 3170 unsigned long flags; 3171 struct ice_hw *hw; 3172 u32 val; 3173 u8 idx; 3174 3175 hw = &pf->hw; 3176 tx = &pf->ptp.port.tx; 3177 spin_lock_irqsave(&tx->lock, flags); 3178 ice_ptp_complete_tx_single_tstamp(tx); 3179 3180 idx = find_next_bit_wrap(tx->in_use, tx->len, 3181 tx->last_ll_ts_idx_read + 1); 3182 if (idx != tx->len) 3183 ice_ptp_req_tx_single_tstamp(tx, idx); 3184 spin_unlock_irqrestore(&tx->lock, flags); 3185 3186 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3187 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3188 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3189 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3190 val); 3191 3192 return IRQ_HANDLED; 3193 } 3194 3195 /** 3196 * ice_misc_intr - misc interrupt handler 3197 * @irq: interrupt number 3198 * @data: pointer to a q_vector 3199 */ 3200 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3201 { 3202 struct ice_pf *pf = (struct ice_pf *)data; 3203 irqreturn_t ret = IRQ_HANDLED; 3204 struct ice_hw *hw = &pf->hw; 3205 struct device *dev; 3206 u32 oicr, ena_mask; 3207 3208 dev = ice_pf_to_dev(pf); 3209 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3210 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3211 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3212 3213 oicr = rd32(hw, PFINT_OICR); 3214 ena_mask = rd32(hw, PFINT_OICR_ENA); 3215 3216 if (oicr & PFINT_OICR_SWINT_M) { 3217 ena_mask &= ~PFINT_OICR_SWINT_M; 3218 pf->sw_int_count++; 3219 } 3220 3221 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3222 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3223 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3224 } 3225 if (oicr & PFINT_OICR_VFLR_M) { 3226 /* disable any further VFLR event notifications */ 3227 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3228 u32 reg = rd32(hw, PFINT_OICR_ENA); 3229 3230 reg &= ~PFINT_OICR_VFLR_M; 3231 wr32(hw, PFINT_OICR_ENA, reg); 3232 } else { 3233 ena_mask &= ~PFINT_OICR_VFLR_M; 3234 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3235 } 3236 } 3237 3238 if (oicr & PFINT_OICR_GRST_M) { 3239 u32 reset; 3240 3241 /* we have a reset warning */ 3242 ena_mask &= ~PFINT_OICR_GRST_M; 3243 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3244 rd32(hw, GLGEN_RSTAT)); 3245 3246 if (reset == ICE_RESET_CORER) 3247 pf->corer_count++; 3248 else if (reset == ICE_RESET_GLOBR) 3249 pf->globr_count++; 3250 else if (reset == ICE_RESET_EMPR) 3251 pf->empr_count++; 3252 else 3253 dev_dbg(dev, "Invalid reset type %d\n", reset); 3254 3255 /* If a reset cycle isn't already in progress, we set a bit in 3256 * pf->state so that the service task can start a reset/rebuild. 3257 */ 3258 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3259 if (reset == ICE_RESET_CORER) 3260 set_bit(ICE_CORER_RECV, pf->state); 3261 else if (reset == ICE_RESET_GLOBR) 3262 set_bit(ICE_GLOBR_RECV, pf->state); 3263 else 3264 set_bit(ICE_EMPR_RECV, pf->state); 3265 3266 /* There are couple of different bits at play here. 3267 * hw->reset_ongoing indicates whether the hardware is 3268 * in reset. This is set to true when a reset interrupt 3269 * is received and set back to false after the driver 3270 * has determined that the hardware is out of reset. 3271 * 3272 * ICE_RESET_OICR_RECV in pf->state indicates 3273 * that a post reset rebuild is required before the 3274 * driver is operational again. This is set above. 3275 * 3276 * As this is the start of the reset/rebuild cycle, set 3277 * both to indicate that. 3278 */ 3279 hw->reset_ongoing = true; 3280 } 3281 } 3282 3283 if (oicr & PFINT_OICR_TSYN_TX_M) { 3284 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3285 3286 ret = ice_ptp_ts_irq(pf); 3287 } 3288 3289 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3290 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3291 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3292 3293 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3294 3295 if (ice_pf_src_tmr_owned(pf)) { 3296 /* Save EVENTs from GLTSYN register */ 3297 pf->ptp.ext_ts_irq |= gltsyn_stat & 3298 (GLTSYN_STAT_EVENT0_M | 3299 GLTSYN_STAT_EVENT1_M | 3300 GLTSYN_STAT_EVENT2_M); 3301 3302 ice_ptp_extts_event(pf); 3303 } 3304 } 3305 3306 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3307 if (oicr & ICE_AUX_CRIT_ERR) { 3308 pf->oicr_err_reg |= oicr; 3309 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3310 ena_mask &= ~ICE_AUX_CRIT_ERR; 3311 } 3312 3313 /* Report any remaining unexpected interrupts */ 3314 oicr &= ena_mask; 3315 if (oicr) { 3316 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3317 /* If a critical error is pending there is no choice but to 3318 * reset the device. 3319 */ 3320 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3321 PFINT_OICR_ECC_ERR_M)) { 3322 set_bit(ICE_PFR_REQ, pf->state); 3323 } 3324 } 3325 ice_service_task_schedule(pf); 3326 if (ret == IRQ_HANDLED) 3327 ice_irq_dynamic_ena(hw, NULL, NULL); 3328 3329 return ret; 3330 } 3331 3332 /** 3333 * ice_misc_intr_thread_fn - misc interrupt thread function 3334 * @irq: interrupt number 3335 * @data: pointer to a q_vector 3336 */ 3337 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3338 { 3339 struct ice_pf *pf = data; 3340 struct ice_hw *hw; 3341 3342 hw = &pf->hw; 3343 3344 if (ice_is_reset_in_progress(pf->state)) 3345 goto skip_irq; 3346 3347 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3348 /* Process outstanding Tx timestamps. If there is more work, 3349 * re-arm the interrupt to trigger again. 3350 */ 3351 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3352 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3353 ice_flush(hw); 3354 } 3355 } 3356 3357 skip_irq: 3358 ice_irq_dynamic_ena(hw, NULL, NULL); 3359 3360 return IRQ_HANDLED; 3361 } 3362 3363 /** 3364 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3365 * @hw: pointer to HW structure 3366 */ 3367 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3368 { 3369 /* disable Admin queue Interrupt causes */ 3370 wr32(hw, PFINT_FW_CTL, 3371 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3372 3373 /* disable Mailbox queue Interrupt causes */ 3374 wr32(hw, PFINT_MBX_CTL, 3375 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3376 3377 wr32(hw, PFINT_SB_CTL, 3378 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3379 3380 /* disable Control queue Interrupt causes */ 3381 wr32(hw, PFINT_OICR_CTL, 3382 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3383 3384 ice_flush(hw); 3385 } 3386 3387 /** 3388 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3389 * @pf: board private structure 3390 */ 3391 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3392 { 3393 int irq_num = pf->ll_ts_irq.virq; 3394 3395 synchronize_irq(irq_num); 3396 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3397 3398 ice_free_irq(pf, pf->ll_ts_irq); 3399 } 3400 3401 /** 3402 * ice_free_irq_msix_misc - Unroll misc vector setup 3403 * @pf: board private structure 3404 */ 3405 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3406 { 3407 int misc_irq_num = pf->oicr_irq.virq; 3408 struct ice_hw *hw = &pf->hw; 3409 3410 ice_dis_ctrlq_interrupts(hw); 3411 3412 /* disable OICR interrupt */ 3413 wr32(hw, PFINT_OICR_ENA, 0); 3414 ice_flush(hw); 3415 3416 synchronize_irq(misc_irq_num); 3417 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3418 3419 ice_free_irq(pf, pf->oicr_irq); 3420 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3421 ice_free_irq_msix_ll_ts(pf); 3422 } 3423 3424 /** 3425 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3426 * @hw: pointer to HW structure 3427 * @reg_idx: HW vector index to associate the control queue interrupts with 3428 */ 3429 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3430 { 3431 u32 val; 3432 3433 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3434 PFINT_OICR_CTL_CAUSE_ENA_M); 3435 wr32(hw, PFINT_OICR_CTL, val); 3436 3437 /* enable Admin queue Interrupt causes */ 3438 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3439 PFINT_FW_CTL_CAUSE_ENA_M); 3440 wr32(hw, PFINT_FW_CTL, val); 3441 3442 /* enable Mailbox queue Interrupt causes */ 3443 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3444 PFINT_MBX_CTL_CAUSE_ENA_M); 3445 wr32(hw, PFINT_MBX_CTL, val); 3446 3447 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3448 /* enable Sideband queue Interrupt causes */ 3449 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3450 PFINT_SB_CTL_CAUSE_ENA_M); 3451 wr32(hw, PFINT_SB_CTL, val); 3452 } 3453 3454 ice_flush(hw); 3455 } 3456 3457 /** 3458 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3459 * @pf: board private structure 3460 * 3461 * This sets up the handler for MSIX 0, which is used to manage the 3462 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3463 * when in MSI or Legacy interrupt mode. 3464 */ 3465 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3466 { 3467 struct device *dev = ice_pf_to_dev(pf); 3468 struct ice_hw *hw = &pf->hw; 3469 u32 pf_intr_start_offset; 3470 struct msi_map irq; 3471 int err = 0; 3472 3473 if (!pf->int_name[0]) 3474 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3475 dev_driver_string(dev), dev_name(dev)); 3476 3477 if (!pf->int_name_ll_ts[0]) 3478 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3479 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3480 /* Do not request IRQ but do enable OICR interrupt since settings are 3481 * lost during reset. Note that this function is called only during 3482 * rebuild path and not while reset is in progress. 3483 */ 3484 if (ice_is_reset_in_progress(pf->state)) 3485 goto skip_req_irq; 3486 3487 /* reserve one vector in irq_tracker for misc interrupts */ 3488 irq = ice_alloc_irq(pf, false); 3489 if (irq.index < 0) 3490 return irq.index; 3491 3492 pf->oicr_irq = irq; 3493 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3494 ice_misc_intr_thread_fn, 0, 3495 pf->int_name, pf); 3496 if (err) { 3497 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3498 pf->int_name, err); 3499 ice_free_irq(pf, pf->oicr_irq); 3500 return err; 3501 } 3502 3503 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3504 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3505 goto skip_req_irq; 3506 3507 irq = ice_alloc_irq(pf, false); 3508 if (irq.index < 0) 3509 return irq.index; 3510 3511 pf->ll_ts_irq = irq; 3512 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3513 pf->int_name_ll_ts, pf); 3514 if (err) { 3515 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3516 pf->int_name_ll_ts, err); 3517 ice_free_irq(pf, pf->ll_ts_irq); 3518 return err; 3519 } 3520 3521 skip_req_irq: 3522 ice_ena_misc_vector(pf); 3523 3524 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3525 /* This enables LL TS interrupt */ 3526 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3527 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3528 wr32(hw, PFINT_SB_CTL, 3529 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3530 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3531 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3532 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3533 3534 ice_flush(hw); 3535 ice_irq_dynamic_ena(hw, NULL, NULL); 3536 3537 return 0; 3538 } 3539 3540 /** 3541 * ice_set_ops - set netdev and ethtools ops for the given netdev 3542 * @vsi: the VSI associated with the new netdev 3543 */ 3544 static void ice_set_ops(struct ice_vsi *vsi) 3545 { 3546 struct net_device *netdev = vsi->netdev; 3547 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3548 3549 if (ice_is_safe_mode(pf)) { 3550 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3551 ice_set_ethtool_safe_mode_ops(netdev); 3552 return; 3553 } 3554 3555 netdev->netdev_ops = &ice_netdev_ops; 3556 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3557 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3558 ice_set_ethtool_ops(netdev); 3559 3560 if (vsi->type != ICE_VSI_PF) 3561 return; 3562 3563 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3564 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3565 NETDEV_XDP_ACT_RX_SG; 3566 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3567 } 3568 3569 /** 3570 * ice_set_netdev_features - set features for the given netdev 3571 * @netdev: netdev instance 3572 */ 3573 void ice_set_netdev_features(struct net_device *netdev) 3574 { 3575 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3576 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3577 netdev_features_t csumo_features; 3578 netdev_features_t vlano_features; 3579 netdev_features_t dflt_features; 3580 netdev_features_t tso_features; 3581 3582 if (ice_is_safe_mode(pf)) { 3583 /* safe mode */ 3584 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3585 netdev->hw_features = netdev->features; 3586 return; 3587 } 3588 3589 dflt_features = NETIF_F_SG | 3590 NETIF_F_HIGHDMA | 3591 NETIF_F_NTUPLE | 3592 NETIF_F_RXHASH; 3593 3594 csumo_features = NETIF_F_RXCSUM | 3595 NETIF_F_IP_CSUM | 3596 NETIF_F_SCTP_CRC | 3597 NETIF_F_IPV6_CSUM; 3598 3599 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3600 NETIF_F_HW_VLAN_CTAG_TX | 3601 NETIF_F_HW_VLAN_CTAG_RX; 3602 3603 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3604 if (is_dvm_ena) 3605 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3606 3607 tso_features = NETIF_F_TSO | 3608 NETIF_F_TSO_ECN | 3609 NETIF_F_TSO6 | 3610 NETIF_F_GSO_GRE | 3611 NETIF_F_GSO_UDP_TUNNEL | 3612 NETIF_F_GSO_GRE_CSUM | 3613 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3614 NETIF_F_GSO_PARTIAL | 3615 NETIF_F_GSO_IPXIP4 | 3616 NETIF_F_GSO_IPXIP6 | 3617 NETIF_F_GSO_UDP_L4; 3618 3619 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3620 NETIF_F_GSO_GRE_CSUM; 3621 /* set features that user can change */ 3622 netdev->hw_features = dflt_features | csumo_features | 3623 vlano_features | tso_features; 3624 3625 /* add support for HW_CSUM on packets with MPLS header */ 3626 netdev->mpls_features = NETIF_F_HW_CSUM | 3627 NETIF_F_TSO | 3628 NETIF_F_TSO6; 3629 3630 /* enable features */ 3631 netdev->features |= netdev->hw_features; 3632 3633 netdev->hw_features |= NETIF_F_HW_TC; 3634 netdev->hw_features |= NETIF_F_LOOPBACK; 3635 3636 /* encap and VLAN devices inherit default, csumo and tso features */ 3637 netdev->hw_enc_features |= dflt_features | csumo_features | 3638 tso_features; 3639 netdev->vlan_features |= dflt_features | csumo_features | 3640 tso_features; 3641 3642 /* advertise support but don't enable by default since only one type of 3643 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3644 * type turns on the other has to be turned off. This is enforced by the 3645 * ice_fix_features() ndo callback. 3646 */ 3647 if (is_dvm_ena) 3648 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3649 NETIF_F_HW_VLAN_STAG_TX; 3650 3651 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3652 * be changed at runtime 3653 */ 3654 netdev->hw_features |= NETIF_F_RXFCS; 3655 3656 /* Allow core to manage IRQs affinity */ 3657 netif_set_affinity_auto(netdev); 3658 3659 /* Mutual exclusivity for TSO and GCS is enforced by the set features 3660 * ndo callback. 3661 */ 3662 if (ice_is_feature_supported(pf, ICE_F_GCS)) 3663 netdev->hw_features |= NETIF_F_HW_CSUM; 3664 3665 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3666 } 3667 3668 /** 3669 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3670 * @lut: Lookup table 3671 * @rss_table_size: Lookup table size 3672 * @rss_size: Range of queue number for hashing 3673 */ 3674 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3675 { 3676 u16 i; 3677 3678 for (i = 0; i < rss_table_size; i++) 3679 lut[i] = i % rss_size; 3680 } 3681 3682 /** 3683 * ice_pf_vsi_setup - Set up a PF VSI 3684 * @pf: board private structure 3685 * @pi: pointer to the port_info instance 3686 * 3687 * Returns pointer to the successfully allocated VSI software struct 3688 * on success, otherwise returns NULL on failure. 3689 */ 3690 static struct ice_vsi * 3691 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3692 { 3693 struct ice_vsi_cfg_params params = {}; 3694 3695 params.type = ICE_VSI_PF; 3696 params.port_info = pi; 3697 params.flags = ICE_VSI_FLAG_INIT; 3698 3699 return ice_vsi_setup(pf, ¶ms); 3700 } 3701 3702 static struct ice_vsi * 3703 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3704 struct ice_channel *ch) 3705 { 3706 struct ice_vsi_cfg_params params = {}; 3707 3708 params.type = ICE_VSI_CHNL; 3709 params.port_info = pi; 3710 params.ch = ch; 3711 params.flags = ICE_VSI_FLAG_INIT; 3712 3713 return ice_vsi_setup(pf, ¶ms); 3714 } 3715 3716 /** 3717 * ice_ctrl_vsi_setup - Set up a control VSI 3718 * @pf: board private structure 3719 * @pi: pointer to the port_info instance 3720 * 3721 * Returns pointer to the successfully allocated VSI software struct 3722 * on success, otherwise returns NULL on failure. 3723 */ 3724 static struct ice_vsi * 3725 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3726 { 3727 struct ice_vsi_cfg_params params = {}; 3728 3729 params.type = ICE_VSI_CTRL; 3730 params.port_info = pi; 3731 params.flags = ICE_VSI_FLAG_INIT; 3732 3733 return ice_vsi_setup(pf, ¶ms); 3734 } 3735 3736 /** 3737 * ice_lb_vsi_setup - Set up a loopback VSI 3738 * @pf: board private structure 3739 * @pi: pointer to the port_info instance 3740 * 3741 * Returns pointer to the successfully allocated VSI software struct 3742 * on success, otherwise returns NULL on failure. 3743 */ 3744 struct ice_vsi * 3745 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3746 { 3747 struct ice_vsi_cfg_params params = {}; 3748 3749 params.type = ICE_VSI_LB; 3750 params.port_info = pi; 3751 params.flags = ICE_VSI_FLAG_INIT; 3752 3753 return ice_vsi_setup(pf, ¶ms); 3754 } 3755 3756 /** 3757 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3758 * @netdev: network interface to be adjusted 3759 * @proto: VLAN TPID 3760 * @vid: VLAN ID to be added 3761 * 3762 * net_device_ops implementation for adding VLAN IDs 3763 */ 3764 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3765 { 3766 struct ice_netdev_priv *np = netdev_priv(netdev); 3767 struct ice_vsi_vlan_ops *vlan_ops; 3768 struct ice_vsi *vsi = np->vsi; 3769 struct ice_vlan vlan; 3770 int ret; 3771 3772 /* VLAN 0 is added by default during load/reset */ 3773 if (!vid) 3774 return 0; 3775 3776 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3777 usleep_range(1000, 2000); 3778 3779 /* Add multicast promisc rule for the VLAN ID to be added if 3780 * all-multicast is currently enabled. 3781 */ 3782 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3783 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3784 ICE_MCAST_VLAN_PROMISC_BITS, 3785 vid); 3786 if (ret) 3787 goto finish; 3788 } 3789 3790 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3791 3792 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3793 * packets aren't pruned by the device's internal switch on Rx 3794 */ 3795 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3796 ret = vlan_ops->add_vlan(vsi, &vlan); 3797 if (ret) 3798 goto finish; 3799 3800 /* If all-multicast is currently enabled and this VLAN ID is only one 3801 * besides VLAN-0 we have to update look-up type of multicast promisc 3802 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3803 */ 3804 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3805 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3806 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3807 ICE_MCAST_PROMISC_BITS, 0); 3808 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3809 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3810 } 3811 3812 finish: 3813 clear_bit(ICE_CFG_BUSY, vsi->state); 3814 3815 return ret; 3816 } 3817 3818 /** 3819 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3820 * @netdev: network interface to be adjusted 3821 * @proto: VLAN TPID 3822 * @vid: VLAN ID to be removed 3823 * 3824 * net_device_ops implementation for removing VLAN IDs 3825 */ 3826 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3827 { 3828 struct ice_netdev_priv *np = netdev_priv(netdev); 3829 struct ice_vsi_vlan_ops *vlan_ops; 3830 struct ice_vsi *vsi = np->vsi; 3831 struct ice_vlan vlan; 3832 int ret; 3833 3834 /* don't allow removal of VLAN 0 */ 3835 if (!vid) 3836 return 0; 3837 3838 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3839 usleep_range(1000, 2000); 3840 3841 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3842 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3843 if (ret) { 3844 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3845 vsi->vsi_num); 3846 vsi->current_netdev_flags |= IFF_ALLMULTI; 3847 } 3848 3849 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3850 3851 /* Make sure VLAN delete is successful before updating VLAN 3852 * information 3853 */ 3854 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3855 ret = vlan_ops->del_vlan(vsi, &vlan); 3856 if (ret) 3857 goto finish; 3858 3859 /* Remove multicast promisc rule for the removed VLAN ID if 3860 * all-multicast is enabled. 3861 */ 3862 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3863 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3864 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3865 3866 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3867 /* Update look-up type of multicast promisc rule for VLAN 0 3868 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3869 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3870 */ 3871 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3872 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3873 ICE_MCAST_VLAN_PROMISC_BITS, 3874 0); 3875 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3876 ICE_MCAST_PROMISC_BITS, 0); 3877 } 3878 } 3879 3880 finish: 3881 clear_bit(ICE_CFG_BUSY, vsi->state); 3882 3883 return ret; 3884 } 3885 3886 /** 3887 * ice_rep_indr_tc_block_unbind 3888 * @cb_priv: indirection block private data 3889 */ 3890 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3891 { 3892 struct ice_indr_block_priv *indr_priv = cb_priv; 3893 3894 list_del(&indr_priv->list); 3895 kfree(indr_priv); 3896 } 3897 3898 /** 3899 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3900 * @vsi: VSI struct which has the netdev 3901 */ 3902 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3903 { 3904 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3905 3906 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3907 ice_rep_indr_tc_block_unbind); 3908 } 3909 3910 /** 3911 * ice_tc_indir_block_register - Register TC indirect block notifications 3912 * @vsi: VSI struct which has the netdev 3913 * 3914 * Returns 0 on success, negative value on failure 3915 */ 3916 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3917 { 3918 struct ice_netdev_priv *np; 3919 3920 if (!vsi || !vsi->netdev) 3921 return -EINVAL; 3922 3923 np = netdev_priv(vsi->netdev); 3924 3925 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3926 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3927 } 3928 3929 /** 3930 * ice_get_avail_q_count - Get count of queues in use 3931 * @pf_qmap: bitmap to get queue use count from 3932 * @lock: pointer to a mutex that protects access to pf_qmap 3933 * @size: size of the bitmap 3934 */ 3935 static u16 3936 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3937 { 3938 unsigned long bit; 3939 u16 count = 0; 3940 3941 mutex_lock(lock); 3942 for_each_clear_bit(bit, pf_qmap, size) 3943 count++; 3944 mutex_unlock(lock); 3945 3946 return count; 3947 } 3948 3949 /** 3950 * ice_get_avail_txq_count - Get count of Tx queues in use 3951 * @pf: pointer to an ice_pf instance 3952 */ 3953 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3954 { 3955 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3956 pf->max_pf_txqs); 3957 } 3958 3959 /** 3960 * ice_get_avail_rxq_count - Get count of Rx queues in use 3961 * @pf: pointer to an ice_pf instance 3962 */ 3963 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3964 { 3965 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3966 pf->max_pf_rxqs); 3967 } 3968 3969 /** 3970 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3971 * @pf: board private structure to initialize 3972 */ 3973 static void ice_deinit_pf(struct ice_pf *pf) 3974 { 3975 ice_service_task_stop(pf); 3976 mutex_destroy(&pf->lag_mutex); 3977 mutex_destroy(&pf->adev_mutex); 3978 mutex_destroy(&pf->sw_mutex); 3979 mutex_destroy(&pf->tc_mutex); 3980 mutex_destroy(&pf->avail_q_mutex); 3981 mutex_destroy(&pf->vfs.table_lock); 3982 3983 if (pf->avail_txqs) { 3984 bitmap_free(pf->avail_txqs); 3985 pf->avail_txqs = NULL; 3986 } 3987 3988 if (pf->avail_rxqs) { 3989 bitmap_free(pf->avail_rxqs); 3990 pf->avail_rxqs = NULL; 3991 } 3992 3993 if (pf->ptp.clock) 3994 ptp_clock_unregister(pf->ptp.clock); 3995 3996 xa_destroy(&pf->dyn_ports); 3997 xa_destroy(&pf->sf_nums); 3998 } 3999 4000 /** 4001 * ice_set_pf_caps - set PFs capability flags 4002 * @pf: pointer to the PF instance 4003 */ 4004 static void ice_set_pf_caps(struct ice_pf *pf) 4005 { 4006 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4007 4008 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4009 if (func_caps->common_cap.rdma) 4010 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4011 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4012 if (func_caps->common_cap.dcb) 4013 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4014 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4015 if (func_caps->common_cap.sr_iov_1_1) { 4016 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4017 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4018 ICE_MAX_SRIOV_VFS); 4019 } 4020 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4021 if (func_caps->common_cap.rss_table_size) 4022 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4023 4024 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4025 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4026 u16 unused; 4027 4028 /* ctrl_vsi_idx will be set to a valid value when flow director 4029 * is setup by ice_init_fdir 4030 */ 4031 pf->ctrl_vsi_idx = ICE_NO_VSI; 4032 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4033 /* force guaranteed filter pool for PF */ 4034 ice_alloc_fd_guar_item(&pf->hw, &unused, 4035 func_caps->fd_fltr_guar); 4036 /* force shared filter pool for PF */ 4037 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4038 func_caps->fd_fltr_best_effort); 4039 } 4040 4041 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4042 if (func_caps->common_cap.ieee_1588) 4043 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4044 4045 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4046 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4047 } 4048 4049 /** 4050 * ice_init_pf - Initialize general software structures (struct ice_pf) 4051 * @pf: board private structure to initialize 4052 */ 4053 static int ice_init_pf(struct ice_pf *pf) 4054 { 4055 ice_set_pf_caps(pf); 4056 4057 mutex_init(&pf->sw_mutex); 4058 mutex_init(&pf->tc_mutex); 4059 mutex_init(&pf->adev_mutex); 4060 mutex_init(&pf->lag_mutex); 4061 4062 INIT_HLIST_HEAD(&pf->aq_wait_list); 4063 spin_lock_init(&pf->aq_wait_lock); 4064 init_waitqueue_head(&pf->aq_wait_queue); 4065 4066 init_waitqueue_head(&pf->reset_wait_queue); 4067 4068 /* setup service timer and periodic service task */ 4069 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4070 pf->serv_tmr_period = HZ; 4071 INIT_WORK(&pf->serv_task, ice_service_task); 4072 clear_bit(ICE_SERVICE_SCHED, pf->state); 4073 4074 mutex_init(&pf->avail_q_mutex); 4075 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4076 if (!pf->avail_txqs) 4077 return -ENOMEM; 4078 4079 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4080 if (!pf->avail_rxqs) { 4081 bitmap_free(pf->avail_txqs); 4082 pf->avail_txqs = NULL; 4083 return -ENOMEM; 4084 } 4085 4086 mutex_init(&pf->vfs.table_lock); 4087 hash_init(pf->vfs.table); 4088 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 4089 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH, 4090 ICE_MBX_OVERFLOW_WATERMARK); 4091 else 4092 ice_mbx_init_snapshot(&pf->hw); 4093 4094 xa_init(&pf->dyn_ports); 4095 xa_init(&pf->sf_nums); 4096 4097 return 0; 4098 } 4099 4100 /** 4101 * ice_is_wol_supported - check if WoL is supported 4102 * @hw: pointer to hardware info 4103 * 4104 * Check if WoL is supported based on the HW configuration. 4105 * Returns true if NVM supports and enables WoL for this port, false otherwise 4106 */ 4107 bool ice_is_wol_supported(struct ice_hw *hw) 4108 { 4109 u16 wol_ctrl; 4110 4111 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4112 * word) indicates WoL is not supported on the corresponding PF ID. 4113 */ 4114 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4115 return false; 4116 4117 return !(BIT(hw->port_info->lport) & wol_ctrl); 4118 } 4119 4120 /** 4121 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4122 * @vsi: VSI being changed 4123 * @new_rx: new number of Rx queues 4124 * @new_tx: new number of Tx queues 4125 * @locked: is adev device_lock held 4126 * 4127 * Only change the number of queues if new_tx, or new_rx is non-0. 4128 * 4129 * Returns 0 on success. 4130 */ 4131 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4132 { 4133 struct ice_pf *pf = vsi->back; 4134 int i, err = 0, timeout = 50; 4135 4136 if (!new_rx && !new_tx) 4137 return -EINVAL; 4138 4139 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4140 timeout--; 4141 if (!timeout) 4142 return -EBUSY; 4143 usleep_range(1000, 2000); 4144 } 4145 4146 if (new_tx) 4147 vsi->req_txq = (u16)new_tx; 4148 if (new_rx) 4149 vsi->req_rxq = (u16)new_rx; 4150 4151 /* set for the next time the netdev is started */ 4152 if (!netif_running(vsi->netdev)) { 4153 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4154 if (err) 4155 goto rebuild_err; 4156 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4157 goto done; 4158 } 4159 4160 ice_vsi_close(vsi); 4161 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4162 if (err) 4163 goto rebuild_err; 4164 4165 ice_for_each_traffic_class(i) { 4166 if (vsi->tc_cfg.ena_tc & BIT(i)) 4167 netdev_set_tc_queue(vsi->netdev, 4168 vsi->tc_cfg.tc_info[i].netdev_tc, 4169 vsi->tc_cfg.tc_info[i].qcount_tx, 4170 vsi->tc_cfg.tc_info[i].qoffset); 4171 } 4172 ice_pf_dcb_recfg(pf, locked); 4173 ice_vsi_open(vsi); 4174 goto done; 4175 4176 rebuild_err: 4177 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4178 err); 4179 done: 4180 clear_bit(ICE_CFG_BUSY, pf->state); 4181 return err; 4182 } 4183 4184 /** 4185 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4186 * @pf: PF to configure 4187 * 4188 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4189 * VSI can still Tx/Rx VLAN tagged packets. 4190 */ 4191 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4192 { 4193 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4194 struct ice_vsi_ctx *ctxt; 4195 struct ice_hw *hw; 4196 int status; 4197 4198 if (!vsi) 4199 return; 4200 4201 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4202 if (!ctxt) 4203 return; 4204 4205 hw = &pf->hw; 4206 ctxt->info = vsi->info; 4207 4208 ctxt->info.valid_sections = 4209 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4210 ICE_AQ_VSI_PROP_SECURITY_VALID | 4211 ICE_AQ_VSI_PROP_SW_VALID); 4212 4213 /* disable VLAN anti-spoof */ 4214 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4215 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4216 4217 /* disable VLAN pruning and keep all other settings */ 4218 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4219 4220 /* allow all VLANs on Tx and don't strip on Rx */ 4221 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4222 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4223 4224 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4225 if (status) { 4226 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4227 status, ice_aq_str(hw->adminq.sq_last_status)); 4228 } else { 4229 vsi->info.sec_flags = ctxt->info.sec_flags; 4230 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4231 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4232 } 4233 4234 kfree(ctxt); 4235 } 4236 4237 /** 4238 * ice_log_pkg_init - log result of DDP package load 4239 * @hw: pointer to hardware info 4240 * @state: state of package load 4241 */ 4242 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4243 { 4244 struct ice_pf *pf = hw->back; 4245 struct device *dev; 4246 4247 dev = ice_pf_to_dev(pf); 4248 4249 switch (state) { 4250 case ICE_DDP_PKG_SUCCESS: 4251 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4252 hw->active_pkg_name, 4253 hw->active_pkg_ver.major, 4254 hw->active_pkg_ver.minor, 4255 hw->active_pkg_ver.update, 4256 hw->active_pkg_ver.draft); 4257 break; 4258 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4259 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4260 hw->active_pkg_name, 4261 hw->active_pkg_ver.major, 4262 hw->active_pkg_ver.minor, 4263 hw->active_pkg_ver.update, 4264 hw->active_pkg_ver.draft); 4265 break; 4266 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4267 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4268 hw->active_pkg_name, 4269 hw->active_pkg_ver.major, 4270 hw->active_pkg_ver.minor, 4271 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4272 break; 4273 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4274 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4275 hw->active_pkg_name, 4276 hw->active_pkg_ver.major, 4277 hw->active_pkg_ver.minor, 4278 hw->active_pkg_ver.update, 4279 hw->active_pkg_ver.draft, 4280 hw->pkg_name, 4281 hw->pkg_ver.major, 4282 hw->pkg_ver.minor, 4283 hw->pkg_ver.update, 4284 hw->pkg_ver.draft); 4285 break; 4286 case ICE_DDP_PKG_FW_MISMATCH: 4287 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4288 break; 4289 case ICE_DDP_PKG_INVALID_FILE: 4290 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4291 break; 4292 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4293 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4294 break; 4295 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4296 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4297 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4298 break; 4299 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4300 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4301 break; 4302 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4303 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4304 break; 4305 case ICE_DDP_PKG_LOAD_ERROR: 4306 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4307 /* poll for reset to complete */ 4308 if (ice_check_reset(hw)) 4309 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4310 break; 4311 case ICE_DDP_PKG_ERR: 4312 default: 4313 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4314 break; 4315 } 4316 } 4317 4318 /** 4319 * ice_load_pkg - load/reload the DDP Package file 4320 * @firmware: firmware structure when firmware requested or NULL for reload 4321 * @pf: pointer to the PF instance 4322 * 4323 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4324 * initialize HW tables. 4325 */ 4326 static void 4327 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4328 { 4329 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4330 struct device *dev = ice_pf_to_dev(pf); 4331 struct ice_hw *hw = &pf->hw; 4332 4333 /* Load DDP Package */ 4334 if (firmware && !hw->pkg_copy) { 4335 state = ice_copy_and_init_pkg(hw, firmware->data, 4336 firmware->size); 4337 ice_log_pkg_init(hw, state); 4338 } else if (!firmware && hw->pkg_copy) { 4339 /* Reload package during rebuild after CORER/GLOBR reset */ 4340 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4341 ice_log_pkg_init(hw, state); 4342 } else { 4343 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4344 } 4345 4346 if (!ice_is_init_pkg_successful(state)) { 4347 /* Safe Mode */ 4348 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4349 return; 4350 } 4351 4352 /* Successful download package is the precondition for advanced 4353 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4354 */ 4355 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4356 } 4357 4358 /** 4359 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4360 * @pf: pointer to the PF structure 4361 * 4362 * There is no error returned here because the driver should be able to handle 4363 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4364 * specifically with Tx. 4365 */ 4366 static void ice_verify_cacheline_size(struct ice_pf *pf) 4367 { 4368 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4369 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4370 ICE_CACHE_LINE_BYTES); 4371 } 4372 4373 /** 4374 * ice_send_version - update firmware with driver version 4375 * @pf: PF struct 4376 * 4377 * Returns 0 on success, else error code 4378 */ 4379 static int ice_send_version(struct ice_pf *pf) 4380 { 4381 struct ice_driver_ver dv; 4382 4383 dv.major_ver = 0xff; 4384 dv.minor_ver = 0xff; 4385 dv.build_ver = 0xff; 4386 dv.subbuild_ver = 0; 4387 strscpy((char *)dv.driver_string, UTS_RELEASE, 4388 sizeof(dv.driver_string)); 4389 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4390 } 4391 4392 /** 4393 * ice_init_fdir - Initialize flow director VSI and configuration 4394 * @pf: pointer to the PF instance 4395 * 4396 * returns 0 on success, negative on error 4397 */ 4398 static int ice_init_fdir(struct ice_pf *pf) 4399 { 4400 struct device *dev = ice_pf_to_dev(pf); 4401 struct ice_vsi *ctrl_vsi; 4402 int err; 4403 4404 /* Side Band Flow Director needs to have a control VSI. 4405 * Allocate it and store it in the PF. 4406 */ 4407 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4408 if (!ctrl_vsi) { 4409 dev_dbg(dev, "could not create control VSI\n"); 4410 return -ENOMEM; 4411 } 4412 4413 err = ice_vsi_open_ctrl(ctrl_vsi); 4414 if (err) { 4415 dev_dbg(dev, "could not open control VSI\n"); 4416 goto err_vsi_open; 4417 } 4418 4419 mutex_init(&pf->hw.fdir_fltr_lock); 4420 4421 err = ice_fdir_create_dflt_rules(pf); 4422 if (err) 4423 goto err_fdir_rule; 4424 4425 return 0; 4426 4427 err_fdir_rule: 4428 ice_fdir_release_flows(&pf->hw); 4429 ice_vsi_close(ctrl_vsi); 4430 err_vsi_open: 4431 ice_vsi_release(ctrl_vsi); 4432 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4433 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4434 pf->ctrl_vsi_idx = ICE_NO_VSI; 4435 } 4436 return err; 4437 } 4438 4439 static void ice_deinit_fdir(struct ice_pf *pf) 4440 { 4441 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4442 4443 if (!vsi) 4444 return; 4445 4446 ice_vsi_manage_fdir(vsi, false); 4447 ice_vsi_release(vsi); 4448 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4449 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4450 pf->ctrl_vsi_idx = ICE_NO_VSI; 4451 } 4452 4453 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4454 } 4455 4456 /** 4457 * ice_get_opt_fw_name - return optional firmware file name or NULL 4458 * @pf: pointer to the PF instance 4459 */ 4460 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4461 { 4462 /* Optional firmware name same as default with additional dash 4463 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4464 */ 4465 struct pci_dev *pdev = pf->pdev; 4466 char *opt_fw_filename; 4467 u64 dsn; 4468 4469 /* Determine the name of the optional file using the DSN (two 4470 * dwords following the start of the DSN Capability). 4471 */ 4472 dsn = pci_get_dsn(pdev); 4473 if (!dsn) 4474 return NULL; 4475 4476 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4477 if (!opt_fw_filename) 4478 return NULL; 4479 4480 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4481 ICE_DDP_PKG_PATH, dsn); 4482 4483 return opt_fw_filename; 4484 } 4485 4486 /** 4487 * ice_request_fw - Device initialization routine 4488 * @pf: pointer to the PF instance 4489 * @firmware: double pointer to firmware struct 4490 * 4491 * Return: zero when successful, negative values otherwise. 4492 */ 4493 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4494 { 4495 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4496 struct device *dev = ice_pf_to_dev(pf); 4497 int err = 0; 4498 4499 /* optional device-specific DDP (if present) overrides the default DDP 4500 * package file. kernel logs a debug message if the file doesn't exist, 4501 * and warning messages for other errors. 4502 */ 4503 if (opt_fw_filename) { 4504 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4505 kfree(opt_fw_filename); 4506 if (!err) 4507 return err; 4508 } 4509 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4510 if (err) 4511 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4512 4513 return err; 4514 } 4515 4516 /** 4517 * ice_init_tx_topology - performs Tx topology initialization 4518 * @hw: pointer to the hardware structure 4519 * @firmware: pointer to firmware structure 4520 * 4521 * Return: zero when init was successful, negative values otherwise. 4522 */ 4523 static int 4524 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4525 { 4526 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4527 struct ice_pf *pf = hw->back; 4528 struct device *dev; 4529 int err; 4530 4531 dev = ice_pf_to_dev(pf); 4532 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4533 if (!err) { 4534 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4535 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4536 else 4537 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4538 /* if there was a change in topology ice_cfg_tx_topo triggered 4539 * a CORER and we need to re-init hw 4540 */ 4541 ice_deinit_hw(hw); 4542 err = ice_init_hw(hw); 4543 4544 return err; 4545 } else if (err == -EIO) { 4546 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4547 } 4548 4549 return 0; 4550 } 4551 4552 /** 4553 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs 4554 * @hw: pointer to the hardware structure 4555 * @pf: pointer to pf structure 4556 * 4557 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor 4558 * formats the PF hardware supports. The exact list of supported RXDIDs 4559 * depends on the loaded DDP package. The IDs can be determined by reading the 4560 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded. 4561 * 4562 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed 4563 * in the DDP package. The 16-byte legacy descriptor is never supported by 4564 * VFs. 4565 */ 4566 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf) 4567 { 4568 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1); 4569 4570 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 4571 u32 regval; 4572 4573 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 4574 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 4575 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 4576 pf->supported_rxdids |= BIT(i); 4577 } 4578 } 4579 4580 /** 4581 * ice_init_ddp_config - DDP related configuration 4582 * @hw: pointer to the hardware structure 4583 * @pf: pointer to pf structure 4584 * 4585 * This function loads DDP file from the disk, then initializes Tx 4586 * topology. At the end DDP package is loaded on the card. 4587 * 4588 * Return: zero when init was successful, negative values otherwise. 4589 */ 4590 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4591 { 4592 struct device *dev = ice_pf_to_dev(pf); 4593 const struct firmware *firmware = NULL; 4594 int err; 4595 4596 err = ice_request_fw(pf, &firmware); 4597 if (err) { 4598 dev_err(dev, "Fail during requesting FW: %d\n", err); 4599 return err; 4600 } 4601 4602 err = ice_init_tx_topology(hw, firmware); 4603 if (err) { 4604 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4605 err); 4606 release_firmware(firmware); 4607 return err; 4608 } 4609 4610 /* Download firmware to device */ 4611 ice_load_pkg(firmware, pf); 4612 release_firmware(firmware); 4613 4614 /* Initialize the supported Rx descriptor IDs after loading DDP */ 4615 ice_init_supported_rxdids(hw, pf); 4616 4617 return 0; 4618 } 4619 4620 /** 4621 * ice_print_wake_reason - show the wake up cause in the log 4622 * @pf: pointer to the PF struct 4623 */ 4624 static void ice_print_wake_reason(struct ice_pf *pf) 4625 { 4626 u32 wus = pf->wakeup_reason; 4627 const char *wake_str; 4628 4629 /* if no wake event, nothing to print */ 4630 if (!wus) 4631 return; 4632 4633 if (wus & PFPM_WUS_LNKC_M) 4634 wake_str = "Link\n"; 4635 else if (wus & PFPM_WUS_MAG_M) 4636 wake_str = "Magic Packet\n"; 4637 else if (wus & PFPM_WUS_MNG_M) 4638 wake_str = "Management\n"; 4639 else if (wus & PFPM_WUS_FW_RST_WK_M) 4640 wake_str = "Firmware Reset\n"; 4641 else 4642 wake_str = "Unknown\n"; 4643 4644 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4645 } 4646 4647 /** 4648 * ice_pf_fwlog_update_module - update 1 module 4649 * @pf: pointer to the PF struct 4650 * @log_level: log_level to use for the @module 4651 * @module: module to update 4652 */ 4653 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4654 { 4655 struct ice_hw *hw = &pf->hw; 4656 4657 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4658 } 4659 4660 /** 4661 * ice_register_netdev - register netdev 4662 * @vsi: pointer to the VSI struct 4663 */ 4664 static int ice_register_netdev(struct ice_vsi *vsi) 4665 { 4666 int err; 4667 4668 if (!vsi || !vsi->netdev) 4669 return -EIO; 4670 4671 err = register_netdev(vsi->netdev); 4672 if (err) 4673 return err; 4674 4675 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4676 netif_carrier_off(vsi->netdev); 4677 netif_tx_stop_all_queues(vsi->netdev); 4678 4679 return 0; 4680 } 4681 4682 static void ice_unregister_netdev(struct ice_vsi *vsi) 4683 { 4684 if (!vsi || !vsi->netdev) 4685 return; 4686 4687 unregister_netdev(vsi->netdev); 4688 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4689 } 4690 4691 /** 4692 * ice_cfg_netdev - Allocate, configure and register a netdev 4693 * @vsi: the VSI associated with the new netdev 4694 * 4695 * Returns 0 on success, negative value on failure 4696 */ 4697 static int ice_cfg_netdev(struct ice_vsi *vsi) 4698 { 4699 struct ice_netdev_priv *np; 4700 struct net_device *netdev; 4701 u8 mac_addr[ETH_ALEN]; 4702 4703 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4704 vsi->alloc_rxq); 4705 if (!netdev) 4706 return -ENOMEM; 4707 4708 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4709 vsi->netdev = netdev; 4710 np = netdev_priv(netdev); 4711 np->vsi = vsi; 4712 4713 ice_set_netdev_features(netdev); 4714 ice_set_ops(vsi); 4715 4716 if (vsi->type == ICE_VSI_PF) { 4717 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4718 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4719 eth_hw_addr_set(netdev, mac_addr); 4720 } 4721 4722 netdev->priv_flags |= IFF_UNICAST_FLT; 4723 4724 /* Setup netdev TC information */ 4725 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4726 4727 netdev->max_mtu = ICE_MAX_MTU; 4728 4729 return 0; 4730 } 4731 4732 static void ice_decfg_netdev(struct ice_vsi *vsi) 4733 { 4734 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4735 free_netdev(vsi->netdev); 4736 vsi->netdev = NULL; 4737 } 4738 4739 int ice_init_dev(struct ice_pf *pf) 4740 { 4741 struct device *dev = ice_pf_to_dev(pf); 4742 struct ice_hw *hw = &pf->hw; 4743 int err; 4744 4745 ice_init_feature_support(pf); 4746 4747 err = ice_init_ddp_config(hw, pf); 4748 4749 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4750 * set in pf->state, which will cause ice_is_safe_mode to return 4751 * true 4752 */ 4753 if (err || ice_is_safe_mode(pf)) { 4754 /* we already got function/device capabilities but these don't 4755 * reflect what the driver needs to do in safe mode. Instead of 4756 * adding conditional logic everywhere to ignore these 4757 * device/function capabilities, override them. 4758 */ 4759 ice_set_safe_mode_caps(hw); 4760 } 4761 4762 err = ice_init_pf(pf); 4763 if (err) { 4764 dev_err(dev, "ice_init_pf failed: %d\n", err); 4765 return err; 4766 } 4767 4768 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4769 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4770 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4771 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4772 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4773 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4774 pf->hw.tnl.valid_count[TNL_VXLAN]; 4775 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4776 UDP_TUNNEL_TYPE_VXLAN; 4777 } 4778 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4779 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4780 pf->hw.tnl.valid_count[TNL_GENEVE]; 4781 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4782 UDP_TUNNEL_TYPE_GENEVE; 4783 } 4784 4785 err = ice_init_interrupt_scheme(pf); 4786 if (err) { 4787 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4788 err = -EIO; 4789 goto unroll_pf_init; 4790 } 4791 4792 /* In case of MSIX we are going to setup the misc vector right here 4793 * to handle admin queue events etc. In case of legacy and MSI 4794 * the misc functionality and queue processing is combined in 4795 * the same vector and that gets setup at open. 4796 */ 4797 err = ice_req_irq_msix_misc(pf); 4798 if (err) { 4799 dev_err(dev, "setup of misc vector failed: %d\n", err); 4800 goto unroll_irq_scheme_init; 4801 } 4802 4803 return 0; 4804 4805 unroll_irq_scheme_init: 4806 ice_clear_interrupt_scheme(pf); 4807 unroll_pf_init: 4808 ice_deinit_pf(pf); 4809 return err; 4810 } 4811 4812 void ice_deinit_dev(struct ice_pf *pf) 4813 { 4814 ice_free_irq_msix_misc(pf); 4815 ice_deinit_pf(pf); 4816 ice_deinit_hw(&pf->hw); 4817 4818 /* Service task is already stopped, so call reset directly. */ 4819 ice_reset(&pf->hw, ICE_RESET_PFR); 4820 pci_wait_for_pending_transaction(pf->pdev); 4821 ice_clear_interrupt_scheme(pf); 4822 } 4823 4824 static void ice_init_features(struct ice_pf *pf) 4825 { 4826 struct device *dev = ice_pf_to_dev(pf); 4827 4828 if (ice_is_safe_mode(pf)) 4829 return; 4830 4831 /* initialize DDP driven features */ 4832 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4833 ice_ptp_init(pf); 4834 4835 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4836 ice_gnss_init(pf); 4837 4838 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4839 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4840 ice_dpll_init(pf); 4841 4842 /* Note: Flow director init failure is non-fatal to load */ 4843 if (ice_init_fdir(pf)) 4844 dev_err(dev, "could not initialize flow director\n"); 4845 4846 /* Note: DCB init failure is non-fatal to load */ 4847 if (ice_init_pf_dcb(pf, false)) { 4848 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4849 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4850 } else { 4851 ice_cfg_lldp_mib_change(&pf->hw, true); 4852 } 4853 4854 if (ice_init_lag(pf)) 4855 dev_warn(dev, "Failed to init link aggregation support\n"); 4856 4857 ice_hwmon_init(pf); 4858 } 4859 4860 static void ice_deinit_features(struct ice_pf *pf) 4861 { 4862 if (ice_is_safe_mode(pf)) 4863 return; 4864 4865 ice_deinit_lag(pf); 4866 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4867 ice_cfg_lldp_mib_change(&pf->hw, false); 4868 ice_deinit_fdir(pf); 4869 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4870 ice_gnss_exit(pf); 4871 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4872 ice_ptp_release(pf); 4873 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4874 ice_dpll_deinit(pf); 4875 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4876 xa_destroy(&pf->eswitch.reprs); 4877 } 4878 4879 static void ice_init_wakeup(struct ice_pf *pf) 4880 { 4881 /* Save wakeup reason register for later use */ 4882 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4883 4884 /* check for a power management event */ 4885 ice_print_wake_reason(pf); 4886 4887 /* clear wake status, all bits */ 4888 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4889 4890 /* Disable WoL at init, wait for user to enable */ 4891 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4892 } 4893 4894 static int ice_init_link(struct ice_pf *pf) 4895 { 4896 struct device *dev = ice_pf_to_dev(pf); 4897 int err; 4898 4899 err = ice_init_link_events(pf->hw.port_info); 4900 if (err) { 4901 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4902 return err; 4903 } 4904 4905 /* not a fatal error if this fails */ 4906 err = ice_init_nvm_phy_type(pf->hw.port_info); 4907 if (err) 4908 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4909 4910 /* not a fatal error if this fails */ 4911 err = ice_update_link_info(pf->hw.port_info); 4912 if (err) 4913 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4914 4915 ice_init_link_dflt_override(pf->hw.port_info); 4916 4917 ice_check_link_cfg_err(pf, 4918 pf->hw.port_info->phy.link_info.link_cfg_err); 4919 4920 /* if media available, initialize PHY settings */ 4921 if (pf->hw.port_info->phy.link_info.link_info & 4922 ICE_AQ_MEDIA_AVAILABLE) { 4923 /* not a fatal error if this fails */ 4924 err = ice_init_phy_user_cfg(pf->hw.port_info); 4925 if (err) 4926 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4927 4928 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4929 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4930 4931 if (vsi) 4932 ice_configure_phy(vsi); 4933 } 4934 } else { 4935 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4936 } 4937 4938 return err; 4939 } 4940 4941 static int ice_init_pf_sw(struct ice_pf *pf) 4942 { 4943 bool dvm = ice_is_dvm_ena(&pf->hw); 4944 struct ice_vsi *vsi; 4945 int err; 4946 4947 /* create switch struct for the switch element created by FW on boot */ 4948 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4949 if (!pf->first_sw) 4950 return -ENOMEM; 4951 4952 if (pf->hw.evb_veb) 4953 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4954 else 4955 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4956 4957 pf->first_sw->pf = pf; 4958 4959 /* record the sw_id available for later use */ 4960 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4961 4962 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4963 if (err) 4964 goto err_aq_set_port_params; 4965 4966 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4967 if (!vsi) { 4968 err = -ENOMEM; 4969 goto err_pf_vsi_setup; 4970 } 4971 4972 return 0; 4973 4974 err_pf_vsi_setup: 4975 err_aq_set_port_params: 4976 kfree(pf->first_sw); 4977 return err; 4978 } 4979 4980 static void ice_deinit_pf_sw(struct ice_pf *pf) 4981 { 4982 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4983 4984 if (!vsi) 4985 return; 4986 4987 ice_vsi_release(vsi); 4988 kfree(pf->first_sw); 4989 } 4990 4991 static int ice_alloc_vsis(struct ice_pf *pf) 4992 { 4993 struct device *dev = ice_pf_to_dev(pf); 4994 4995 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4996 if (!pf->num_alloc_vsi) 4997 return -EIO; 4998 4999 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5000 dev_warn(dev, 5001 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5002 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5003 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5004 } 5005 5006 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5007 GFP_KERNEL); 5008 if (!pf->vsi) 5009 return -ENOMEM; 5010 5011 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5012 sizeof(*pf->vsi_stats), GFP_KERNEL); 5013 if (!pf->vsi_stats) { 5014 devm_kfree(dev, pf->vsi); 5015 return -ENOMEM; 5016 } 5017 5018 return 0; 5019 } 5020 5021 static void ice_dealloc_vsis(struct ice_pf *pf) 5022 { 5023 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5024 pf->vsi_stats = NULL; 5025 5026 pf->num_alloc_vsi = 0; 5027 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5028 pf->vsi = NULL; 5029 } 5030 5031 static int ice_init_devlink(struct ice_pf *pf) 5032 { 5033 int err; 5034 5035 err = ice_devlink_register_params(pf); 5036 if (err) 5037 return err; 5038 5039 ice_devlink_init_regions(pf); 5040 ice_devlink_register(pf); 5041 ice_health_init(pf); 5042 5043 return 0; 5044 } 5045 5046 static void ice_deinit_devlink(struct ice_pf *pf) 5047 { 5048 ice_health_deinit(pf); 5049 ice_devlink_unregister(pf); 5050 ice_devlink_destroy_regions(pf); 5051 ice_devlink_unregister_params(pf); 5052 } 5053 5054 static int ice_init(struct ice_pf *pf) 5055 { 5056 int err; 5057 5058 err = ice_init_dev(pf); 5059 if (err) 5060 return err; 5061 5062 if (pf->hw.mac_type == ICE_MAC_E830) { 5063 err = pci_enable_ptm(pf->pdev, NULL); 5064 if (err) 5065 dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n"); 5066 } 5067 5068 err = ice_alloc_vsis(pf); 5069 if (err) 5070 goto err_alloc_vsis; 5071 5072 err = ice_init_pf_sw(pf); 5073 if (err) 5074 goto err_init_pf_sw; 5075 5076 ice_init_wakeup(pf); 5077 5078 err = ice_init_link(pf); 5079 if (err) 5080 goto err_init_link; 5081 5082 err = ice_send_version(pf); 5083 if (err) 5084 goto err_init_link; 5085 5086 ice_verify_cacheline_size(pf); 5087 5088 if (ice_is_safe_mode(pf)) 5089 ice_set_safe_mode_vlan_cfg(pf); 5090 else 5091 /* print PCI link speed and width */ 5092 pcie_print_link_status(pf->pdev); 5093 5094 /* ready to go, so clear down state bit */ 5095 clear_bit(ICE_DOWN, pf->state); 5096 clear_bit(ICE_SERVICE_DIS, pf->state); 5097 5098 /* since everything is good, start the service timer */ 5099 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5100 5101 return 0; 5102 5103 err_init_link: 5104 ice_deinit_pf_sw(pf); 5105 err_init_pf_sw: 5106 ice_dealloc_vsis(pf); 5107 err_alloc_vsis: 5108 ice_deinit_dev(pf); 5109 return err; 5110 } 5111 5112 static void ice_deinit(struct ice_pf *pf) 5113 { 5114 set_bit(ICE_SERVICE_DIS, pf->state); 5115 set_bit(ICE_DOWN, pf->state); 5116 5117 ice_deinit_pf_sw(pf); 5118 ice_dealloc_vsis(pf); 5119 ice_deinit_dev(pf); 5120 } 5121 5122 /** 5123 * ice_load - load pf by init hw and starting VSI 5124 * @pf: pointer to the pf instance 5125 * 5126 * This function has to be called under devl_lock. 5127 */ 5128 int ice_load(struct ice_pf *pf) 5129 { 5130 struct ice_vsi *vsi; 5131 int err; 5132 5133 devl_assert_locked(priv_to_devlink(pf)); 5134 5135 vsi = ice_get_main_vsi(pf); 5136 5137 /* init channel list */ 5138 INIT_LIST_HEAD(&vsi->ch_list); 5139 5140 err = ice_cfg_netdev(vsi); 5141 if (err) 5142 return err; 5143 5144 /* Setup DCB netlink interface */ 5145 ice_dcbnl_setup(vsi); 5146 5147 err = ice_init_mac_fltr(pf); 5148 if (err) 5149 goto err_init_mac_fltr; 5150 5151 err = ice_devlink_create_pf_port(pf); 5152 if (err) 5153 goto err_devlink_create_pf_port; 5154 5155 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5156 5157 err = ice_register_netdev(vsi); 5158 if (err) 5159 goto err_register_netdev; 5160 5161 err = ice_tc_indir_block_register(vsi); 5162 if (err) 5163 goto err_tc_indir_block_register; 5164 5165 ice_napi_add(vsi); 5166 5167 ice_init_features(pf); 5168 5169 err = ice_init_rdma(pf); 5170 if (err) 5171 goto err_init_rdma; 5172 5173 ice_service_task_restart(pf); 5174 5175 clear_bit(ICE_DOWN, pf->state); 5176 5177 return 0; 5178 5179 err_init_rdma: 5180 ice_deinit_features(pf); 5181 ice_tc_indir_block_unregister(vsi); 5182 err_tc_indir_block_register: 5183 ice_unregister_netdev(vsi); 5184 err_register_netdev: 5185 ice_devlink_destroy_pf_port(pf); 5186 err_devlink_create_pf_port: 5187 err_init_mac_fltr: 5188 ice_decfg_netdev(vsi); 5189 return err; 5190 } 5191 5192 /** 5193 * ice_unload - unload pf by stopping VSI and deinit hw 5194 * @pf: pointer to the pf instance 5195 * 5196 * This function has to be called under devl_lock. 5197 */ 5198 void ice_unload(struct ice_pf *pf) 5199 { 5200 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5201 5202 devl_assert_locked(priv_to_devlink(pf)); 5203 5204 ice_deinit_rdma(pf); 5205 ice_deinit_features(pf); 5206 ice_tc_indir_block_unregister(vsi); 5207 ice_unregister_netdev(vsi); 5208 ice_devlink_destroy_pf_port(pf); 5209 ice_decfg_netdev(vsi); 5210 } 5211 5212 static int ice_probe_recovery_mode(struct ice_pf *pf) 5213 { 5214 struct device *dev = ice_pf_to_dev(pf); 5215 int err; 5216 5217 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n"); 5218 5219 INIT_HLIST_HEAD(&pf->aq_wait_list); 5220 spin_lock_init(&pf->aq_wait_lock); 5221 init_waitqueue_head(&pf->aq_wait_queue); 5222 5223 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 5224 pf->serv_tmr_period = HZ; 5225 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode); 5226 clear_bit(ICE_SERVICE_SCHED, pf->state); 5227 err = ice_create_all_ctrlq(&pf->hw); 5228 if (err) 5229 return err; 5230 5231 scoped_guard(devl, priv_to_devlink(pf)) { 5232 err = ice_init_devlink(pf); 5233 if (err) 5234 return err; 5235 } 5236 5237 ice_service_task_restart(pf); 5238 5239 return 0; 5240 } 5241 5242 /** 5243 * ice_probe - Device initialization routine 5244 * @pdev: PCI device information struct 5245 * @ent: entry in ice_pci_tbl 5246 * 5247 * Returns 0 on success, negative on failure 5248 */ 5249 static int 5250 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5251 { 5252 struct device *dev = &pdev->dev; 5253 struct ice_adapter *adapter; 5254 struct ice_pf *pf; 5255 struct ice_hw *hw; 5256 int err; 5257 5258 if (pdev->is_virtfn) { 5259 dev_err(dev, "can't probe a virtual function\n"); 5260 return -EINVAL; 5261 } 5262 5263 /* when under a kdump kernel initiate a reset before enabling the 5264 * device in order to clear out any pending DMA transactions. These 5265 * transactions can cause some systems to machine check when doing 5266 * the pcim_enable_device() below. 5267 */ 5268 if (is_kdump_kernel()) { 5269 pci_save_state(pdev); 5270 pci_clear_master(pdev); 5271 err = pcie_flr(pdev); 5272 if (err) 5273 return err; 5274 pci_restore_state(pdev); 5275 } 5276 5277 /* this driver uses devres, see 5278 * Documentation/driver-api/driver-model/devres.rst 5279 */ 5280 err = pcim_enable_device(pdev); 5281 if (err) 5282 return err; 5283 5284 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5285 if (err) { 5286 dev_err(dev, "BAR0 I/O map error %d\n", err); 5287 return err; 5288 } 5289 5290 pf = ice_allocate_pf(dev); 5291 if (!pf) 5292 return -ENOMEM; 5293 5294 /* initialize Auxiliary index to invalid value */ 5295 pf->aux_idx = -1; 5296 5297 /* set up for high or low DMA */ 5298 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5299 if (err) { 5300 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5301 return err; 5302 } 5303 5304 pci_set_master(pdev); 5305 pf->pdev = pdev; 5306 pci_set_drvdata(pdev, pf); 5307 set_bit(ICE_DOWN, pf->state); 5308 /* Disable service task until DOWN bit is cleared */ 5309 set_bit(ICE_SERVICE_DIS, pf->state); 5310 5311 hw = &pf->hw; 5312 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5313 pci_save_state(pdev); 5314 5315 hw->back = pf; 5316 hw->port_info = NULL; 5317 hw->vendor_id = pdev->vendor; 5318 hw->device_id = pdev->device; 5319 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5320 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5321 hw->subsystem_device_id = pdev->subsystem_device; 5322 hw->bus.device = PCI_SLOT(pdev->devfn); 5323 hw->bus.func = PCI_FUNC(pdev->devfn); 5324 ice_set_ctrlq_len(hw); 5325 5326 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5327 5328 #ifndef CONFIG_DYNAMIC_DEBUG 5329 if (debug < -1) 5330 hw->debug_mask = debug; 5331 #endif 5332 5333 if (ice_is_recovery_mode(hw)) 5334 return ice_probe_recovery_mode(pf); 5335 5336 err = ice_init_hw(hw); 5337 if (err) { 5338 dev_err(dev, "ice_init_hw failed: %d\n", err); 5339 return err; 5340 } 5341 5342 adapter = ice_adapter_get(pdev); 5343 if (IS_ERR(adapter)) { 5344 err = PTR_ERR(adapter); 5345 goto unroll_hw_init; 5346 } 5347 pf->adapter = adapter; 5348 5349 err = ice_init(pf); 5350 if (err) 5351 goto unroll_adapter; 5352 5353 devl_lock(priv_to_devlink(pf)); 5354 err = ice_load(pf); 5355 if (err) 5356 goto unroll_init; 5357 5358 err = ice_init_devlink(pf); 5359 if (err) 5360 goto unroll_load; 5361 devl_unlock(priv_to_devlink(pf)); 5362 5363 return 0; 5364 5365 unroll_load: 5366 ice_unload(pf); 5367 unroll_init: 5368 devl_unlock(priv_to_devlink(pf)); 5369 ice_deinit(pf); 5370 unroll_adapter: 5371 ice_adapter_put(pdev); 5372 unroll_hw_init: 5373 ice_deinit_hw(hw); 5374 return err; 5375 } 5376 5377 /** 5378 * ice_set_wake - enable or disable Wake on LAN 5379 * @pf: pointer to the PF struct 5380 * 5381 * Simple helper for WoL control 5382 */ 5383 static void ice_set_wake(struct ice_pf *pf) 5384 { 5385 struct ice_hw *hw = &pf->hw; 5386 bool wol = pf->wol_ena; 5387 5388 /* clear wake state, otherwise new wake events won't fire */ 5389 wr32(hw, PFPM_WUS, U32_MAX); 5390 5391 /* enable / disable APM wake up, no RMW needed */ 5392 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5393 5394 /* set magic packet filter enabled */ 5395 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5396 } 5397 5398 /** 5399 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5400 * @pf: pointer to the PF struct 5401 * 5402 * Issue firmware command to enable multicast magic wake, making 5403 * sure that any locally administered address (LAA) is used for 5404 * wake, and that PF reset doesn't undo the LAA. 5405 */ 5406 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5407 { 5408 struct device *dev = ice_pf_to_dev(pf); 5409 struct ice_hw *hw = &pf->hw; 5410 u8 mac_addr[ETH_ALEN]; 5411 struct ice_vsi *vsi; 5412 int status; 5413 u8 flags; 5414 5415 if (!pf->wol_ena) 5416 return; 5417 5418 vsi = ice_get_main_vsi(pf); 5419 if (!vsi) 5420 return; 5421 5422 /* Get current MAC address in case it's an LAA */ 5423 if (vsi->netdev) 5424 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5425 else 5426 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5427 5428 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5429 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5430 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5431 5432 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5433 if (status) 5434 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5435 status, ice_aq_str(hw->adminq.sq_last_status)); 5436 } 5437 5438 /** 5439 * ice_remove - Device removal routine 5440 * @pdev: PCI device information struct 5441 */ 5442 static void ice_remove(struct pci_dev *pdev) 5443 { 5444 struct ice_pf *pf = pci_get_drvdata(pdev); 5445 int i; 5446 5447 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5448 if (!ice_is_reset_in_progress(pf->state)) 5449 break; 5450 msleep(100); 5451 } 5452 5453 if (ice_is_recovery_mode(&pf->hw)) { 5454 ice_service_task_stop(pf); 5455 scoped_guard(devl, priv_to_devlink(pf)) { 5456 ice_deinit_devlink(pf); 5457 } 5458 return; 5459 } 5460 5461 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5462 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5463 ice_free_vfs(pf); 5464 } 5465 5466 ice_hwmon_exit(pf); 5467 5468 ice_service_task_stop(pf); 5469 ice_aq_cancel_waiting_tasks(pf); 5470 set_bit(ICE_DOWN, pf->state); 5471 5472 if (!ice_is_safe_mode(pf)) 5473 ice_remove_arfs(pf); 5474 5475 devl_lock(priv_to_devlink(pf)); 5476 ice_dealloc_all_dynamic_ports(pf); 5477 ice_deinit_devlink(pf); 5478 5479 ice_unload(pf); 5480 devl_unlock(priv_to_devlink(pf)); 5481 5482 ice_deinit(pf); 5483 ice_vsi_release_all(pf); 5484 5485 ice_setup_mc_magic_wake(pf); 5486 ice_set_wake(pf); 5487 5488 ice_adapter_put(pdev); 5489 } 5490 5491 /** 5492 * ice_shutdown - PCI callback for shutting down device 5493 * @pdev: PCI device information struct 5494 */ 5495 static void ice_shutdown(struct pci_dev *pdev) 5496 { 5497 struct ice_pf *pf = pci_get_drvdata(pdev); 5498 5499 ice_remove(pdev); 5500 5501 if (system_state == SYSTEM_POWER_OFF) { 5502 pci_wake_from_d3(pdev, pf->wol_ena); 5503 pci_set_power_state(pdev, PCI_D3hot); 5504 } 5505 } 5506 5507 /** 5508 * ice_prepare_for_shutdown - prep for PCI shutdown 5509 * @pf: board private structure 5510 * 5511 * Inform or close all dependent features in prep for PCI device shutdown 5512 */ 5513 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5514 { 5515 struct ice_hw *hw = &pf->hw; 5516 u32 v; 5517 5518 /* Notify VFs of impending reset */ 5519 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5520 ice_vc_notify_reset(pf); 5521 5522 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5523 5524 /* disable the VSIs and their queues that are not already DOWN */ 5525 ice_pf_dis_all_vsi(pf, false); 5526 5527 ice_for_each_vsi(pf, v) 5528 if (pf->vsi[v]) 5529 pf->vsi[v]->vsi_num = 0; 5530 5531 ice_shutdown_all_ctrlq(hw, true); 5532 } 5533 5534 /** 5535 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5536 * @pf: board private structure to reinitialize 5537 * 5538 * This routine reinitialize interrupt scheme that was cleared during 5539 * power management suspend callback. 5540 * 5541 * This should be called during resume routine to re-allocate the q_vectors 5542 * and reacquire interrupts. 5543 */ 5544 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5545 { 5546 struct device *dev = ice_pf_to_dev(pf); 5547 int ret, v; 5548 5549 /* Since we clear MSIX flag during suspend, we need to 5550 * set it back during resume... 5551 */ 5552 5553 ret = ice_init_interrupt_scheme(pf); 5554 if (ret) { 5555 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5556 return ret; 5557 } 5558 5559 /* Remap vectors and rings, after successful re-init interrupts */ 5560 ice_for_each_vsi(pf, v) { 5561 if (!pf->vsi[v]) 5562 continue; 5563 5564 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5565 if (ret) 5566 goto err_reinit; 5567 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5568 rtnl_lock(); 5569 ice_vsi_set_napi_queues(pf->vsi[v]); 5570 rtnl_unlock(); 5571 } 5572 5573 ret = ice_req_irq_msix_misc(pf); 5574 if (ret) { 5575 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5576 ret); 5577 goto err_reinit; 5578 } 5579 5580 return 0; 5581 5582 err_reinit: 5583 while (v--) 5584 if (pf->vsi[v]) { 5585 rtnl_lock(); 5586 ice_vsi_clear_napi_queues(pf->vsi[v]); 5587 rtnl_unlock(); 5588 ice_vsi_free_q_vectors(pf->vsi[v]); 5589 } 5590 5591 return ret; 5592 } 5593 5594 /** 5595 * ice_suspend 5596 * @dev: generic device information structure 5597 * 5598 * Power Management callback to quiesce the device and prepare 5599 * for D3 transition. 5600 */ 5601 static int ice_suspend(struct device *dev) 5602 { 5603 struct pci_dev *pdev = to_pci_dev(dev); 5604 struct ice_pf *pf; 5605 int disabled, v; 5606 5607 pf = pci_get_drvdata(pdev); 5608 5609 if (!ice_pf_state_is_nominal(pf)) { 5610 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5611 return -EBUSY; 5612 } 5613 5614 /* Stop watchdog tasks until resume completion. 5615 * Even though it is most likely that the service task is 5616 * disabled if the device is suspended or down, the service task's 5617 * state is controlled by a different state bit, and we should 5618 * store and honor whatever state that bit is in at this point. 5619 */ 5620 disabled = ice_service_task_stop(pf); 5621 5622 ice_deinit_rdma(pf); 5623 5624 /* Already suspended?, then there is nothing to do */ 5625 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5626 if (!disabled) 5627 ice_service_task_restart(pf); 5628 return 0; 5629 } 5630 5631 if (test_bit(ICE_DOWN, pf->state) || 5632 ice_is_reset_in_progress(pf->state)) { 5633 dev_err(dev, "can't suspend device in reset or already down\n"); 5634 if (!disabled) 5635 ice_service_task_restart(pf); 5636 return 0; 5637 } 5638 5639 ice_setup_mc_magic_wake(pf); 5640 5641 ice_prepare_for_shutdown(pf); 5642 5643 ice_set_wake(pf); 5644 5645 /* Free vectors, clear the interrupt scheme and release IRQs 5646 * for proper hibernation, especially with large number of CPUs. 5647 * Otherwise hibernation might fail when mapping all the vectors back 5648 * to CPU0. 5649 */ 5650 ice_free_irq_msix_misc(pf); 5651 ice_for_each_vsi(pf, v) { 5652 if (!pf->vsi[v]) 5653 continue; 5654 rtnl_lock(); 5655 ice_vsi_clear_napi_queues(pf->vsi[v]); 5656 rtnl_unlock(); 5657 ice_vsi_free_q_vectors(pf->vsi[v]); 5658 } 5659 ice_clear_interrupt_scheme(pf); 5660 5661 pci_save_state(pdev); 5662 pci_wake_from_d3(pdev, pf->wol_ena); 5663 pci_set_power_state(pdev, PCI_D3hot); 5664 return 0; 5665 } 5666 5667 /** 5668 * ice_resume - PM callback for waking up from D3 5669 * @dev: generic device information structure 5670 */ 5671 static int ice_resume(struct device *dev) 5672 { 5673 struct pci_dev *pdev = to_pci_dev(dev); 5674 enum ice_reset_req reset_type; 5675 struct ice_pf *pf; 5676 struct ice_hw *hw; 5677 int ret; 5678 5679 pci_set_power_state(pdev, PCI_D0); 5680 pci_restore_state(pdev); 5681 pci_save_state(pdev); 5682 5683 if (!pci_device_is_present(pdev)) 5684 return -ENODEV; 5685 5686 ret = pci_enable_device_mem(pdev); 5687 if (ret) { 5688 dev_err(dev, "Cannot enable device after suspend\n"); 5689 return ret; 5690 } 5691 5692 pf = pci_get_drvdata(pdev); 5693 hw = &pf->hw; 5694 5695 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5696 ice_print_wake_reason(pf); 5697 5698 /* We cleared the interrupt scheme when we suspended, so we need to 5699 * restore it now to resume device functionality. 5700 */ 5701 ret = ice_reinit_interrupt_scheme(pf); 5702 if (ret) 5703 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5704 5705 ret = ice_init_rdma(pf); 5706 if (ret) 5707 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5708 ret); 5709 5710 clear_bit(ICE_DOWN, pf->state); 5711 /* Now perform PF reset and rebuild */ 5712 reset_type = ICE_RESET_PFR; 5713 /* re-enable service task for reset, but allow reset to schedule it */ 5714 clear_bit(ICE_SERVICE_DIS, pf->state); 5715 5716 if (ice_schedule_reset(pf, reset_type)) 5717 dev_err(dev, "Reset during resume failed.\n"); 5718 5719 clear_bit(ICE_SUSPENDED, pf->state); 5720 ice_service_task_restart(pf); 5721 5722 /* Restart the service task */ 5723 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5724 5725 return 0; 5726 } 5727 5728 /** 5729 * ice_pci_err_detected - warning that PCI error has been detected 5730 * @pdev: PCI device information struct 5731 * @err: the type of PCI error 5732 * 5733 * Called to warn that something happened on the PCI bus and the error handling 5734 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5735 */ 5736 static pci_ers_result_t 5737 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5738 { 5739 struct ice_pf *pf = pci_get_drvdata(pdev); 5740 5741 if (!pf) { 5742 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5743 __func__, err); 5744 return PCI_ERS_RESULT_DISCONNECT; 5745 } 5746 5747 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5748 ice_service_task_stop(pf); 5749 5750 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5751 set_bit(ICE_PFR_REQ, pf->state); 5752 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5753 } 5754 } 5755 5756 return PCI_ERS_RESULT_NEED_RESET; 5757 } 5758 5759 /** 5760 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5761 * @pdev: PCI device information struct 5762 * 5763 * Called to determine if the driver can recover from the PCI slot reset by 5764 * using a register read to determine if the device is recoverable. 5765 */ 5766 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5767 { 5768 struct ice_pf *pf = pci_get_drvdata(pdev); 5769 pci_ers_result_t result; 5770 int err; 5771 u32 reg; 5772 5773 err = pci_enable_device_mem(pdev); 5774 if (err) { 5775 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5776 err); 5777 result = PCI_ERS_RESULT_DISCONNECT; 5778 } else { 5779 pci_set_master(pdev); 5780 pci_restore_state(pdev); 5781 pci_save_state(pdev); 5782 pci_wake_from_d3(pdev, false); 5783 5784 /* Check for life */ 5785 reg = rd32(&pf->hw, GLGEN_RTRIG); 5786 if (!reg) 5787 result = PCI_ERS_RESULT_RECOVERED; 5788 else 5789 result = PCI_ERS_RESULT_DISCONNECT; 5790 } 5791 5792 return result; 5793 } 5794 5795 /** 5796 * ice_pci_err_resume - restart operations after PCI error recovery 5797 * @pdev: PCI device information struct 5798 * 5799 * Called to allow the driver to bring things back up after PCI error and/or 5800 * reset recovery have finished 5801 */ 5802 static void ice_pci_err_resume(struct pci_dev *pdev) 5803 { 5804 struct ice_pf *pf = pci_get_drvdata(pdev); 5805 5806 if (!pf) { 5807 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5808 __func__); 5809 return; 5810 } 5811 5812 if (test_bit(ICE_SUSPENDED, pf->state)) { 5813 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5814 __func__); 5815 return; 5816 } 5817 5818 ice_restore_all_vfs_msi_state(pf); 5819 5820 ice_do_reset(pf, ICE_RESET_PFR); 5821 ice_service_task_restart(pf); 5822 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5823 } 5824 5825 /** 5826 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5827 * @pdev: PCI device information struct 5828 */ 5829 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5830 { 5831 struct ice_pf *pf = pci_get_drvdata(pdev); 5832 5833 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5834 ice_service_task_stop(pf); 5835 5836 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5837 set_bit(ICE_PFR_REQ, pf->state); 5838 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5839 } 5840 } 5841 } 5842 5843 /** 5844 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5845 * @pdev: PCI device information struct 5846 */ 5847 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5848 { 5849 ice_pci_err_resume(pdev); 5850 } 5851 5852 /* ice_pci_tbl - PCI Device ID Table 5853 * 5854 * Wildcard entries (PCI_ANY_ID) should come last 5855 * Last entry must be all 0s 5856 * 5857 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5858 * Class, Class Mask, private data (not used) } 5859 */ 5860 static const struct pci_device_id ice_pci_tbl[] = { 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5889 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5890 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5891 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5892 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5893 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5894 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5895 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5896 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5897 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5898 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5899 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5900 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5901 /* required last entry */ 5902 {} 5903 }; 5904 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5905 5906 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5907 5908 static const struct pci_error_handlers ice_pci_err_handler = { 5909 .error_detected = ice_pci_err_detected, 5910 .slot_reset = ice_pci_err_slot_reset, 5911 .reset_prepare = ice_pci_err_reset_prepare, 5912 .reset_done = ice_pci_err_reset_done, 5913 .resume = ice_pci_err_resume 5914 }; 5915 5916 static struct pci_driver ice_driver = { 5917 .name = KBUILD_MODNAME, 5918 .id_table = ice_pci_tbl, 5919 .probe = ice_probe, 5920 .remove = ice_remove, 5921 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5922 .shutdown = ice_shutdown, 5923 .sriov_configure = ice_sriov_configure, 5924 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5925 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5926 .err_handler = &ice_pci_err_handler 5927 }; 5928 5929 /** 5930 * ice_module_init - Driver registration routine 5931 * 5932 * ice_module_init is the first routine called when the driver is 5933 * loaded. All it does is register with the PCI subsystem. 5934 */ 5935 static int __init ice_module_init(void) 5936 { 5937 int status = -ENOMEM; 5938 5939 pr_info("%s\n", ice_driver_string); 5940 pr_info("%s\n", ice_copyright); 5941 5942 ice_adv_lnk_speed_maps_init(); 5943 5944 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME); 5945 if (!ice_wq) { 5946 pr_err("Failed to create workqueue\n"); 5947 return status; 5948 } 5949 5950 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5951 if (!ice_lag_wq) { 5952 pr_err("Failed to create LAG workqueue\n"); 5953 goto err_dest_wq; 5954 } 5955 5956 ice_debugfs_init(); 5957 5958 status = pci_register_driver(&ice_driver); 5959 if (status) { 5960 pr_err("failed to register PCI driver, err %d\n", status); 5961 goto err_dest_lag_wq; 5962 } 5963 5964 status = ice_sf_driver_register(); 5965 if (status) { 5966 pr_err("Failed to register SF driver, err %d\n", status); 5967 goto err_sf_driver; 5968 } 5969 5970 return 0; 5971 5972 err_sf_driver: 5973 pci_unregister_driver(&ice_driver); 5974 err_dest_lag_wq: 5975 destroy_workqueue(ice_lag_wq); 5976 ice_debugfs_exit(); 5977 err_dest_wq: 5978 destroy_workqueue(ice_wq); 5979 return status; 5980 } 5981 module_init(ice_module_init); 5982 5983 /** 5984 * ice_module_exit - Driver exit cleanup routine 5985 * 5986 * ice_module_exit is called just before the driver is removed 5987 * from memory. 5988 */ 5989 static void __exit ice_module_exit(void) 5990 { 5991 ice_sf_driver_unregister(); 5992 pci_unregister_driver(&ice_driver); 5993 ice_debugfs_exit(); 5994 destroy_workqueue(ice_wq); 5995 destroy_workqueue(ice_lag_wq); 5996 pr_info("module unloaded\n"); 5997 } 5998 module_exit(ice_module_exit); 5999 6000 /** 6001 * ice_set_mac_address - NDO callback to set MAC address 6002 * @netdev: network interface device structure 6003 * @pi: pointer to an address structure 6004 * 6005 * Returns 0 on success, negative on failure 6006 */ 6007 static int ice_set_mac_address(struct net_device *netdev, void *pi) 6008 { 6009 struct ice_netdev_priv *np = netdev_priv(netdev); 6010 struct ice_vsi *vsi = np->vsi; 6011 struct ice_pf *pf = vsi->back; 6012 struct ice_hw *hw = &pf->hw; 6013 struct sockaddr *addr = pi; 6014 u8 old_mac[ETH_ALEN]; 6015 u8 flags = 0; 6016 u8 *mac; 6017 int err; 6018 6019 mac = (u8 *)addr->sa_data; 6020 6021 if (!is_valid_ether_addr(mac)) 6022 return -EADDRNOTAVAIL; 6023 6024 if (test_bit(ICE_DOWN, pf->state) || 6025 ice_is_reset_in_progress(pf->state)) { 6026 netdev_err(netdev, "can't set mac %pM. device not ready\n", 6027 mac); 6028 return -EBUSY; 6029 } 6030 6031 if (ice_chnl_dmac_fltr_cnt(pf)) { 6032 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 6033 mac); 6034 return -EAGAIN; 6035 } 6036 6037 netif_addr_lock_bh(netdev); 6038 ether_addr_copy(old_mac, netdev->dev_addr); 6039 /* change the netdev's MAC address */ 6040 eth_hw_addr_set(netdev, mac); 6041 netif_addr_unlock_bh(netdev); 6042 6043 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6044 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6045 if (err && err != -ENOENT) { 6046 err = -EADDRNOTAVAIL; 6047 goto err_update_filters; 6048 } 6049 6050 /* Add filter for new MAC. If filter exists, return success */ 6051 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6052 if (err == -EEXIST) { 6053 /* Although this MAC filter is already present in hardware it's 6054 * possible in some cases (e.g. bonding) that dev_addr was 6055 * modified outside of the driver and needs to be restored back 6056 * to this value. 6057 */ 6058 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6059 6060 return 0; 6061 } else if (err) { 6062 /* error if the new filter addition failed */ 6063 err = -EADDRNOTAVAIL; 6064 } 6065 6066 err_update_filters: 6067 if (err) { 6068 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6069 mac); 6070 netif_addr_lock_bh(netdev); 6071 eth_hw_addr_set(netdev, old_mac); 6072 netif_addr_unlock_bh(netdev); 6073 return err; 6074 } 6075 6076 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6077 netdev->dev_addr); 6078 6079 /* write new MAC address to the firmware */ 6080 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6081 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6082 if (err) { 6083 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6084 mac, err); 6085 } 6086 return 0; 6087 } 6088 6089 /** 6090 * ice_set_rx_mode - NDO callback to set the netdev filters 6091 * @netdev: network interface device structure 6092 */ 6093 static void ice_set_rx_mode(struct net_device *netdev) 6094 { 6095 struct ice_netdev_priv *np = netdev_priv(netdev); 6096 struct ice_vsi *vsi = np->vsi; 6097 6098 if (!vsi || ice_is_switchdev_running(vsi->back)) 6099 return; 6100 6101 /* Set the flags to synchronize filters 6102 * ndo_set_rx_mode may be triggered even without a change in netdev 6103 * flags 6104 */ 6105 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6106 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6107 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6108 6109 /* schedule our worker thread which will take care of 6110 * applying the new filter changes 6111 */ 6112 ice_service_task_schedule(vsi->back); 6113 } 6114 6115 /** 6116 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6117 * @netdev: network interface device structure 6118 * @queue_index: Queue ID 6119 * @maxrate: maximum bandwidth in Mbps 6120 */ 6121 static int 6122 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6123 { 6124 struct ice_netdev_priv *np = netdev_priv(netdev); 6125 struct ice_vsi *vsi = np->vsi; 6126 u16 q_handle; 6127 int status; 6128 u8 tc; 6129 6130 /* Validate maxrate requested is within permitted range */ 6131 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6132 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6133 maxrate, queue_index); 6134 return -EINVAL; 6135 } 6136 6137 q_handle = vsi->tx_rings[queue_index]->q_handle; 6138 tc = ice_dcb_get_tc(vsi, queue_index); 6139 6140 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6141 if (!vsi) { 6142 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6143 queue_index); 6144 return -EINVAL; 6145 } 6146 6147 /* Set BW back to default, when user set maxrate to 0 */ 6148 if (!maxrate) 6149 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6150 q_handle, ICE_MAX_BW); 6151 else 6152 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6153 q_handle, ICE_MAX_BW, maxrate * 1000); 6154 if (status) 6155 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6156 status); 6157 6158 return status; 6159 } 6160 6161 /** 6162 * ice_fdb_add - add an entry to the hardware database 6163 * @ndm: the input from the stack 6164 * @tb: pointer to array of nladdr (unused) 6165 * @dev: the net device pointer 6166 * @addr: the MAC address entry being added 6167 * @vid: VLAN ID 6168 * @flags: instructions from stack about fdb operation 6169 * @notified: whether notification was emitted 6170 * @extack: netlink extended ack 6171 */ 6172 static int 6173 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6174 struct net_device *dev, const unsigned char *addr, u16 vid, 6175 u16 flags, bool *notified, 6176 struct netlink_ext_ack __always_unused *extack) 6177 { 6178 int err; 6179 6180 if (vid) { 6181 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6182 return -EINVAL; 6183 } 6184 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6185 netdev_err(dev, "FDB only supports static addresses\n"); 6186 return -EINVAL; 6187 } 6188 6189 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6190 err = dev_uc_add_excl(dev, addr); 6191 else if (is_multicast_ether_addr(addr)) 6192 err = dev_mc_add_excl(dev, addr); 6193 else 6194 err = -EINVAL; 6195 6196 /* Only return duplicate errors if NLM_F_EXCL is set */ 6197 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6198 err = 0; 6199 6200 return err; 6201 } 6202 6203 /** 6204 * ice_fdb_del - delete an entry from the hardware database 6205 * @ndm: the input from the stack 6206 * @tb: pointer to array of nladdr (unused) 6207 * @dev: the net device pointer 6208 * @addr: the MAC address entry being added 6209 * @vid: VLAN ID 6210 * @notified: whether notification was emitted 6211 * @extack: netlink extended ack 6212 */ 6213 static int 6214 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6215 struct net_device *dev, const unsigned char *addr, 6216 __always_unused u16 vid, bool *notified, 6217 struct netlink_ext_ack *extack) 6218 { 6219 int err; 6220 6221 if (ndm->ndm_state & NUD_PERMANENT) { 6222 netdev_err(dev, "FDB only supports static addresses\n"); 6223 return -EINVAL; 6224 } 6225 6226 if (is_unicast_ether_addr(addr)) 6227 err = dev_uc_del(dev, addr); 6228 else if (is_multicast_ether_addr(addr)) 6229 err = dev_mc_del(dev, addr); 6230 else 6231 err = -EINVAL; 6232 6233 return err; 6234 } 6235 6236 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6237 NETIF_F_HW_VLAN_CTAG_TX | \ 6238 NETIF_F_HW_VLAN_STAG_RX | \ 6239 NETIF_F_HW_VLAN_STAG_TX) 6240 6241 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6242 NETIF_F_HW_VLAN_STAG_RX) 6243 6244 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6245 NETIF_F_HW_VLAN_STAG_FILTER) 6246 6247 /** 6248 * ice_fix_features - fix the netdev features flags based on device limitations 6249 * @netdev: ptr to the netdev that flags are being fixed on 6250 * @features: features that need to be checked and possibly fixed 6251 * 6252 * Make sure any fixups are made to features in this callback. This enables the 6253 * driver to not have to check unsupported configurations throughout the driver 6254 * because that's the responsiblity of this callback. 6255 * 6256 * Single VLAN Mode (SVM) Supported Features: 6257 * NETIF_F_HW_VLAN_CTAG_FILTER 6258 * NETIF_F_HW_VLAN_CTAG_RX 6259 * NETIF_F_HW_VLAN_CTAG_TX 6260 * 6261 * Double VLAN Mode (DVM) Supported Features: 6262 * NETIF_F_HW_VLAN_CTAG_FILTER 6263 * NETIF_F_HW_VLAN_CTAG_RX 6264 * NETIF_F_HW_VLAN_CTAG_TX 6265 * 6266 * NETIF_F_HW_VLAN_STAG_FILTER 6267 * NETIF_HW_VLAN_STAG_RX 6268 * NETIF_HW_VLAN_STAG_TX 6269 * 6270 * Features that need fixing: 6271 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6272 * These are mutually exlusive as the VSI context cannot support multiple 6273 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6274 * is not done, then default to clearing the requested STAG offload 6275 * settings. 6276 * 6277 * All supported filtering has to be enabled or disabled together. For 6278 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6279 * together. If this is not done, then default to VLAN filtering disabled. 6280 * These are mutually exclusive as there is currently no way to 6281 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6282 * prune rules. 6283 */ 6284 static netdev_features_t 6285 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6286 { 6287 struct ice_netdev_priv *np = netdev_priv(netdev); 6288 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6289 bool cur_ctag, cur_stag, req_ctag, req_stag; 6290 6291 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6292 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6293 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6294 6295 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6296 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6297 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6298 6299 if (req_vlan_fltr != cur_vlan_fltr) { 6300 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6301 if (req_ctag && req_stag) { 6302 features |= NETIF_VLAN_FILTERING_FEATURES; 6303 } else if (!req_ctag && !req_stag) { 6304 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6305 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6306 (!cur_stag && req_stag && !cur_ctag)) { 6307 features |= NETIF_VLAN_FILTERING_FEATURES; 6308 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6309 } else if ((cur_ctag && !req_ctag && cur_stag) || 6310 (cur_stag && !req_stag && cur_ctag)) { 6311 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6312 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6313 } 6314 } else { 6315 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6316 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6317 6318 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6319 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6320 } 6321 } 6322 6323 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6324 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6325 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6326 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6327 NETIF_F_HW_VLAN_STAG_TX); 6328 } 6329 6330 if (!(netdev->features & NETIF_F_RXFCS) && 6331 (features & NETIF_F_RXFCS) && 6332 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6333 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6334 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6335 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6336 } 6337 6338 return features; 6339 } 6340 6341 /** 6342 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6343 * @vsi: PF's VSI 6344 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6345 * 6346 * Store current stripped VLAN proto in ring packet context, 6347 * so it can be accessed more efficiently by packet processing code. 6348 */ 6349 static void 6350 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6351 { 6352 u16 i; 6353 6354 ice_for_each_alloc_rxq(vsi, i) 6355 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6356 } 6357 6358 /** 6359 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6360 * @vsi: PF's VSI 6361 * @features: features used to determine VLAN offload settings 6362 * 6363 * First, determine the vlan_ethertype based on the VLAN offload bits in 6364 * features. Then determine if stripping and insertion should be enabled or 6365 * disabled. Finally enable or disable VLAN stripping and insertion. 6366 */ 6367 static int 6368 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6369 { 6370 bool enable_stripping = true, enable_insertion = true; 6371 struct ice_vsi_vlan_ops *vlan_ops; 6372 int strip_err = 0, insert_err = 0; 6373 u16 vlan_ethertype = 0; 6374 6375 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6376 6377 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6378 vlan_ethertype = ETH_P_8021AD; 6379 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6380 vlan_ethertype = ETH_P_8021Q; 6381 6382 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6383 enable_stripping = false; 6384 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6385 enable_insertion = false; 6386 6387 if (enable_stripping) 6388 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6389 else 6390 strip_err = vlan_ops->dis_stripping(vsi); 6391 6392 if (enable_insertion) 6393 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6394 else 6395 insert_err = vlan_ops->dis_insertion(vsi); 6396 6397 if (strip_err || insert_err) 6398 return -EIO; 6399 6400 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6401 htons(vlan_ethertype) : 0); 6402 6403 return 0; 6404 } 6405 6406 /** 6407 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6408 * @vsi: PF's VSI 6409 * @features: features used to determine VLAN filtering settings 6410 * 6411 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6412 * features. 6413 */ 6414 static int 6415 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6416 { 6417 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6418 int err = 0; 6419 6420 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6421 * if either bit is set. In switchdev mode Rx filtering should never be 6422 * enabled. 6423 */ 6424 if ((features & 6425 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) && 6426 !ice_is_eswitch_mode_switchdev(vsi->back)) 6427 err = vlan_ops->ena_rx_filtering(vsi); 6428 else 6429 err = vlan_ops->dis_rx_filtering(vsi); 6430 6431 return err; 6432 } 6433 6434 /** 6435 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6436 * @netdev: ptr to the netdev being adjusted 6437 * @features: the feature set that the stack is suggesting 6438 * 6439 * Only update VLAN settings if the requested_vlan_features are different than 6440 * the current_vlan_features. 6441 */ 6442 static int 6443 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6444 { 6445 netdev_features_t current_vlan_features, requested_vlan_features; 6446 struct ice_netdev_priv *np = netdev_priv(netdev); 6447 struct ice_vsi *vsi = np->vsi; 6448 int err; 6449 6450 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6451 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6452 if (current_vlan_features ^ requested_vlan_features) { 6453 if ((features & NETIF_F_RXFCS) && 6454 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6455 dev_err(ice_pf_to_dev(vsi->back), 6456 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6457 return -EIO; 6458 } 6459 6460 err = ice_set_vlan_offload_features(vsi, features); 6461 if (err) 6462 return err; 6463 } 6464 6465 current_vlan_features = netdev->features & 6466 NETIF_VLAN_FILTERING_FEATURES; 6467 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6468 if (current_vlan_features ^ requested_vlan_features) { 6469 err = ice_set_vlan_filtering_features(vsi, features); 6470 if (err) 6471 return err; 6472 } 6473 6474 return 0; 6475 } 6476 6477 /** 6478 * ice_set_loopback - turn on/off loopback mode on underlying PF 6479 * @vsi: ptr to VSI 6480 * @ena: flag to indicate the on/off setting 6481 */ 6482 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6483 { 6484 bool if_running = netif_running(vsi->netdev); 6485 int ret; 6486 6487 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6488 ret = ice_down(vsi); 6489 if (ret) { 6490 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6491 return ret; 6492 } 6493 } 6494 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6495 if (ret) 6496 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6497 if (if_running) 6498 ret = ice_up(vsi); 6499 6500 return ret; 6501 } 6502 6503 /** 6504 * ice_set_features - set the netdev feature flags 6505 * @netdev: ptr to the netdev being adjusted 6506 * @features: the feature set that the stack is suggesting 6507 */ 6508 static int 6509 ice_set_features(struct net_device *netdev, netdev_features_t features) 6510 { 6511 netdev_features_t changed = netdev->features ^ features; 6512 struct ice_netdev_priv *np = netdev_priv(netdev); 6513 struct ice_vsi *vsi = np->vsi; 6514 struct ice_pf *pf = vsi->back; 6515 int ret = 0; 6516 6517 /* Don't set any netdev advanced features with device in Safe Mode */ 6518 if (ice_is_safe_mode(pf)) { 6519 dev_err(ice_pf_to_dev(pf), 6520 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6521 return ret; 6522 } 6523 6524 /* Do not change setting during reset */ 6525 if (ice_is_reset_in_progress(pf->state)) { 6526 dev_err(ice_pf_to_dev(pf), 6527 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6528 return -EBUSY; 6529 } 6530 6531 /* Multiple features can be changed in one call so keep features in 6532 * separate if/else statements to guarantee each feature is checked 6533 */ 6534 if (changed & NETIF_F_RXHASH) 6535 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6536 6537 ret = ice_set_vlan_features(netdev, features); 6538 if (ret) 6539 return ret; 6540 6541 /* Turn on receive of FCS aka CRC, and after setting this 6542 * flag the packet data will have the 4 byte CRC appended 6543 */ 6544 if (changed & NETIF_F_RXFCS) { 6545 if ((features & NETIF_F_RXFCS) && 6546 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6547 dev_err(ice_pf_to_dev(vsi->back), 6548 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6549 return -EIO; 6550 } 6551 6552 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6553 ret = ice_down_up(vsi); 6554 if (ret) 6555 return ret; 6556 } 6557 6558 if (changed & NETIF_F_NTUPLE) { 6559 bool ena = !!(features & NETIF_F_NTUPLE); 6560 6561 ice_vsi_manage_fdir(vsi, ena); 6562 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6563 } 6564 6565 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6566 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6567 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6568 return -EACCES; 6569 } 6570 6571 if (changed & NETIF_F_HW_TC) { 6572 bool ena = !!(features & NETIF_F_HW_TC); 6573 6574 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena); 6575 } 6576 6577 if (changed & NETIF_F_LOOPBACK) 6578 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6579 6580 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS 6581 * (NETIF_F_HW_CSUM) is not supported. 6582 */ 6583 if (ice_is_feature_supported(pf, ICE_F_GCS) && 6584 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) { 6585 if (netdev->features & NETIF_F_HW_CSUM) 6586 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n"); 6587 else 6588 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n"); 6589 return -EIO; 6590 } 6591 6592 return ret; 6593 } 6594 6595 /** 6596 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6597 * @vsi: VSI to setup VLAN properties for 6598 */ 6599 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6600 { 6601 int err; 6602 6603 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6604 if (err) 6605 return err; 6606 6607 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6608 if (err) 6609 return err; 6610 6611 return ice_vsi_add_vlan_zero(vsi); 6612 } 6613 6614 /** 6615 * ice_vsi_cfg_lan - Setup the VSI lan related config 6616 * @vsi: the VSI being configured 6617 * 6618 * Return 0 on success and negative value on error 6619 */ 6620 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6621 { 6622 int err; 6623 6624 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6625 ice_set_rx_mode(vsi->netdev); 6626 6627 err = ice_vsi_vlan_setup(vsi); 6628 if (err) 6629 return err; 6630 } 6631 ice_vsi_cfg_dcb_rings(vsi); 6632 6633 err = ice_vsi_cfg_lan_txqs(vsi); 6634 if (!err && ice_is_xdp_ena_vsi(vsi)) 6635 err = ice_vsi_cfg_xdp_txqs(vsi); 6636 if (!err) 6637 err = ice_vsi_cfg_rxqs(vsi); 6638 6639 return err; 6640 } 6641 6642 /* THEORY OF MODERATION: 6643 * The ice driver hardware works differently than the hardware that DIMLIB was 6644 * originally made for. ice hardware doesn't have packet count limits that 6645 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6646 * which is hard-coded to a limit of 250,000 ints/second. 6647 * If not using dynamic moderation, the INTRL value can be modified 6648 * by ethtool rx-usecs-high. 6649 */ 6650 struct ice_dim { 6651 /* the throttle rate for interrupts, basically worst case delay before 6652 * an initial interrupt fires, value is stored in microseconds. 6653 */ 6654 u16 itr; 6655 }; 6656 6657 /* Make a different profile for Rx that doesn't allow quite so aggressive 6658 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6659 * second. 6660 */ 6661 static const struct ice_dim rx_profile[] = { 6662 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6663 {8}, /* 125,000 ints/s */ 6664 {16}, /* 62,500 ints/s */ 6665 {62}, /* 16,129 ints/s */ 6666 {126} /* 7,936 ints/s */ 6667 }; 6668 6669 /* The transmit profile, which has the same sorts of values 6670 * as the previous struct 6671 */ 6672 static const struct ice_dim tx_profile[] = { 6673 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6674 {8}, /* 125,000 ints/s */ 6675 {40}, /* 16,125 ints/s */ 6676 {128}, /* 7,812 ints/s */ 6677 {256} /* 3,906 ints/s */ 6678 }; 6679 6680 static void ice_tx_dim_work(struct work_struct *work) 6681 { 6682 struct ice_ring_container *rc; 6683 struct dim *dim; 6684 u16 itr; 6685 6686 dim = container_of(work, struct dim, work); 6687 rc = dim->priv; 6688 6689 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6690 6691 /* look up the values in our local table */ 6692 itr = tx_profile[dim->profile_ix].itr; 6693 6694 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6695 ice_write_itr(rc, itr); 6696 6697 dim->state = DIM_START_MEASURE; 6698 } 6699 6700 static void ice_rx_dim_work(struct work_struct *work) 6701 { 6702 struct ice_ring_container *rc; 6703 struct dim *dim; 6704 u16 itr; 6705 6706 dim = container_of(work, struct dim, work); 6707 rc = dim->priv; 6708 6709 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6710 6711 /* look up the values in our local table */ 6712 itr = rx_profile[dim->profile_ix].itr; 6713 6714 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6715 ice_write_itr(rc, itr); 6716 6717 dim->state = DIM_START_MEASURE; 6718 } 6719 6720 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6721 6722 /** 6723 * ice_init_moderation - set up interrupt moderation 6724 * @q_vector: the vector containing rings to be configured 6725 * 6726 * Set up interrupt moderation registers, with the intent to do the right thing 6727 * when called from reset or from probe, and whether or not dynamic moderation 6728 * is enabled or not. Take special care to write all the registers in both 6729 * dynamic moderation mode or not in order to make sure hardware is in a known 6730 * state. 6731 */ 6732 static void ice_init_moderation(struct ice_q_vector *q_vector) 6733 { 6734 struct ice_ring_container *rc; 6735 bool tx_dynamic, rx_dynamic; 6736 6737 rc = &q_vector->tx; 6738 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6739 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6740 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6741 rc->dim.priv = rc; 6742 tx_dynamic = ITR_IS_DYNAMIC(rc); 6743 6744 /* set the initial TX ITR to match the above */ 6745 ice_write_itr(rc, tx_dynamic ? 6746 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6747 6748 rc = &q_vector->rx; 6749 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6750 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6751 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6752 rc->dim.priv = rc; 6753 rx_dynamic = ITR_IS_DYNAMIC(rc); 6754 6755 /* set the initial RX ITR to match the above */ 6756 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6757 rc->itr_setting); 6758 6759 ice_set_q_vector_intrl(q_vector); 6760 } 6761 6762 /** 6763 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6764 * @vsi: the VSI being configured 6765 */ 6766 static void ice_napi_enable_all(struct ice_vsi *vsi) 6767 { 6768 int q_idx; 6769 6770 if (!vsi->netdev) 6771 return; 6772 6773 ice_for_each_q_vector(vsi, q_idx) { 6774 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6775 6776 ice_init_moderation(q_vector); 6777 6778 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6779 napi_enable(&q_vector->napi); 6780 } 6781 } 6782 6783 /** 6784 * ice_up_complete - Finish the last steps of bringing up a connection 6785 * @vsi: The VSI being configured 6786 * 6787 * Return 0 on success and negative value on error 6788 */ 6789 static int ice_up_complete(struct ice_vsi *vsi) 6790 { 6791 struct ice_pf *pf = vsi->back; 6792 int err; 6793 6794 ice_vsi_cfg_msix(vsi); 6795 6796 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6797 * Tx queue group list was configured and the context bits were 6798 * programmed using ice_vsi_cfg_txqs 6799 */ 6800 err = ice_vsi_start_all_rx_rings(vsi); 6801 if (err) 6802 return err; 6803 6804 clear_bit(ICE_VSI_DOWN, vsi->state); 6805 ice_napi_enable_all(vsi); 6806 ice_vsi_ena_irq(vsi); 6807 6808 if (vsi->port_info && 6809 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6810 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6811 vsi->type == ICE_VSI_SF)))) { 6812 ice_print_link_msg(vsi, true); 6813 netif_tx_start_all_queues(vsi->netdev); 6814 netif_carrier_on(vsi->netdev); 6815 ice_ptp_link_change(pf, true); 6816 } 6817 6818 /* Perform an initial read of the statistics registers now to 6819 * set the baseline so counters are ready when interface is up 6820 */ 6821 ice_update_eth_stats(vsi); 6822 6823 if (vsi->type == ICE_VSI_PF) 6824 ice_service_task_schedule(pf); 6825 6826 return 0; 6827 } 6828 6829 /** 6830 * ice_up - Bring the connection back up after being down 6831 * @vsi: VSI being configured 6832 */ 6833 int ice_up(struct ice_vsi *vsi) 6834 { 6835 int err; 6836 6837 err = ice_vsi_cfg_lan(vsi); 6838 if (!err) 6839 err = ice_up_complete(vsi); 6840 6841 return err; 6842 } 6843 6844 /** 6845 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6846 * @syncp: pointer to u64_stats_sync 6847 * @stats: stats that pkts and bytes count will be taken from 6848 * @pkts: packets stats counter 6849 * @bytes: bytes stats counter 6850 * 6851 * This function fetches stats from the ring considering the atomic operations 6852 * that needs to be performed to read u64 values in 32 bit machine. 6853 */ 6854 void 6855 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6856 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6857 { 6858 unsigned int start; 6859 6860 do { 6861 start = u64_stats_fetch_begin(syncp); 6862 *pkts = stats.pkts; 6863 *bytes = stats.bytes; 6864 } while (u64_stats_fetch_retry(syncp, start)); 6865 } 6866 6867 /** 6868 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6869 * @vsi: the VSI to be updated 6870 * @vsi_stats: the stats struct to be updated 6871 * @rings: rings to work on 6872 * @count: number of rings 6873 */ 6874 static void 6875 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6876 struct rtnl_link_stats64 *vsi_stats, 6877 struct ice_tx_ring **rings, u16 count) 6878 { 6879 u16 i; 6880 6881 for (i = 0; i < count; i++) { 6882 struct ice_tx_ring *ring; 6883 u64 pkts = 0, bytes = 0; 6884 6885 ring = READ_ONCE(rings[i]); 6886 if (!ring || !ring->ring_stats) 6887 continue; 6888 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6889 ring->ring_stats->stats, &pkts, 6890 &bytes); 6891 vsi_stats->tx_packets += pkts; 6892 vsi_stats->tx_bytes += bytes; 6893 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6894 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6895 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6896 } 6897 } 6898 6899 /** 6900 * ice_update_vsi_ring_stats - Update VSI stats counters 6901 * @vsi: the VSI to be updated 6902 */ 6903 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6904 { 6905 struct rtnl_link_stats64 *net_stats, *stats_prev; 6906 struct rtnl_link_stats64 *vsi_stats; 6907 struct ice_pf *pf = vsi->back; 6908 u64 pkts, bytes; 6909 int i; 6910 6911 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6912 if (!vsi_stats) 6913 return; 6914 6915 /* reset non-netdev (extended) stats */ 6916 vsi->tx_restart = 0; 6917 vsi->tx_busy = 0; 6918 vsi->tx_linearize = 0; 6919 vsi->rx_buf_failed = 0; 6920 vsi->rx_page_failed = 0; 6921 6922 rcu_read_lock(); 6923 6924 /* update Tx rings counters */ 6925 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6926 vsi->num_txq); 6927 6928 /* update Rx rings counters */ 6929 ice_for_each_rxq(vsi, i) { 6930 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6931 struct ice_ring_stats *ring_stats; 6932 6933 ring_stats = ring->ring_stats; 6934 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6935 ring_stats->stats, &pkts, 6936 &bytes); 6937 vsi_stats->rx_packets += pkts; 6938 vsi_stats->rx_bytes += bytes; 6939 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6940 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6941 } 6942 6943 /* update XDP Tx rings counters */ 6944 if (ice_is_xdp_ena_vsi(vsi)) 6945 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6946 vsi->num_xdp_txq); 6947 6948 rcu_read_unlock(); 6949 6950 net_stats = &vsi->net_stats; 6951 stats_prev = &vsi->net_stats_prev; 6952 6953 /* Update netdev counters, but keep in mind that values could start at 6954 * random value after PF reset. And as we increase the reported stat by 6955 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6956 * let's skip this round. 6957 */ 6958 if (likely(pf->stat_prev_loaded)) { 6959 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6960 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6961 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6962 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6963 } 6964 6965 stats_prev->tx_packets = vsi_stats->tx_packets; 6966 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6967 stats_prev->rx_packets = vsi_stats->rx_packets; 6968 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6969 6970 kfree(vsi_stats); 6971 } 6972 6973 /** 6974 * ice_update_vsi_stats - Update VSI stats counters 6975 * @vsi: the VSI to be updated 6976 */ 6977 void ice_update_vsi_stats(struct ice_vsi *vsi) 6978 { 6979 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6980 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6981 struct ice_pf *pf = vsi->back; 6982 6983 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6984 test_bit(ICE_CFG_BUSY, pf->state)) 6985 return; 6986 6987 /* get stats as recorded by Tx/Rx rings */ 6988 ice_update_vsi_ring_stats(vsi); 6989 6990 /* get VSI stats as recorded by the hardware */ 6991 ice_update_eth_stats(vsi); 6992 6993 cur_ns->tx_errors = cur_es->tx_errors; 6994 cur_ns->rx_dropped = cur_es->rx_discards; 6995 cur_ns->tx_dropped = cur_es->tx_discards; 6996 cur_ns->multicast = cur_es->rx_multicast; 6997 6998 /* update some more netdev stats if this is main VSI */ 6999 if (vsi->type == ICE_VSI_PF) { 7000 cur_ns->rx_crc_errors = pf->stats.crc_errors; 7001 cur_ns->rx_errors = pf->stats.crc_errors + 7002 pf->stats.illegal_bytes + 7003 pf->stats.rx_undersize + 7004 pf->hw_csum_rx_error + 7005 pf->stats.rx_jabber + 7006 pf->stats.rx_fragments + 7007 pf->stats.rx_oversize; 7008 /* record drops from the port level */ 7009 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 7010 } 7011 } 7012 7013 /** 7014 * ice_update_pf_stats - Update PF port stats counters 7015 * @pf: PF whose stats needs to be updated 7016 */ 7017 void ice_update_pf_stats(struct ice_pf *pf) 7018 { 7019 struct ice_hw_port_stats *prev_ps, *cur_ps; 7020 struct ice_hw *hw = &pf->hw; 7021 u16 fd_ctr_base; 7022 u8 port; 7023 7024 port = hw->port_info->lport; 7025 prev_ps = &pf->stats_prev; 7026 cur_ps = &pf->stats; 7027 7028 if (ice_is_reset_in_progress(pf->state)) 7029 pf->stat_prev_loaded = false; 7030 7031 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 7032 &prev_ps->eth.rx_bytes, 7033 &cur_ps->eth.rx_bytes); 7034 7035 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 7036 &prev_ps->eth.rx_unicast, 7037 &cur_ps->eth.rx_unicast); 7038 7039 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 7040 &prev_ps->eth.rx_multicast, 7041 &cur_ps->eth.rx_multicast); 7042 7043 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 7044 &prev_ps->eth.rx_broadcast, 7045 &cur_ps->eth.rx_broadcast); 7046 7047 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 7048 &prev_ps->eth.rx_discards, 7049 &cur_ps->eth.rx_discards); 7050 7051 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 7052 &prev_ps->eth.tx_bytes, 7053 &cur_ps->eth.tx_bytes); 7054 7055 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 7056 &prev_ps->eth.tx_unicast, 7057 &cur_ps->eth.tx_unicast); 7058 7059 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7060 &prev_ps->eth.tx_multicast, 7061 &cur_ps->eth.tx_multicast); 7062 7063 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7064 &prev_ps->eth.tx_broadcast, 7065 &cur_ps->eth.tx_broadcast); 7066 7067 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7068 &prev_ps->tx_dropped_link_down, 7069 &cur_ps->tx_dropped_link_down); 7070 7071 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7072 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7073 7074 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7075 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7076 7077 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7078 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7079 7080 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7081 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7082 7083 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7084 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7085 7086 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7087 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7088 7089 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7090 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7091 7092 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7093 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7094 7095 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7096 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7097 7098 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7099 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7100 7101 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7102 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7103 7104 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7105 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7106 7107 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7108 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7109 7110 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7111 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7112 7113 fd_ctr_base = hw->fd_ctr_base; 7114 7115 ice_stat_update40(hw, 7116 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7117 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7118 &cur_ps->fd_sb_match); 7119 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7120 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7121 7122 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7123 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7124 7125 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7126 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7127 7128 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7129 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7130 7131 ice_update_dcb_stats(pf); 7132 7133 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7134 &prev_ps->crc_errors, &cur_ps->crc_errors); 7135 7136 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7137 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7138 7139 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7140 &prev_ps->mac_local_faults, 7141 &cur_ps->mac_local_faults); 7142 7143 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7144 &prev_ps->mac_remote_faults, 7145 &cur_ps->mac_remote_faults); 7146 7147 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7148 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7149 7150 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7151 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7152 7153 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7154 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7155 7156 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7157 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7158 7159 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7160 7161 pf->stat_prev_loaded = true; 7162 } 7163 7164 /** 7165 * ice_get_stats64 - get statistics for network device structure 7166 * @netdev: network interface device structure 7167 * @stats: main device statistics structure 7168 */ 7169 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7170 { 7171 struct ice_netdev_priv *np = netdev_priv(netdev); 7172 struct rtnl_link_stats64 *vsi_stats; 7173 struct ice_vsi *vsi = np->vsi; 7174 7175 vsi_stats = &vsi->net_stats; 7176 7177 if (!vsi->num_txq || !vsi->num_rxq) 7178 return; 7179 7180 /* netdev packet/byte stats come from ring counter. These are obtained 7181 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7182 * But, only call the update routine and read the registers if VSI is 7183 * not down. 7184 */ 7185 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7186 ice_update_vsi_ring_stats(vsi); 7187 stats->tx_packets = vsi_stats->tx_packets; 7188 stats->tx_bytes = vsi_stats->tx_bytes; 7189 stats->rx_packets = vsi_stats->rx_packets; 7190 stats->rx_bytes = vsi_stats->rx_bytes; 7191 7192 /* The rest of the stats can be read from the hardware but instead we 7193 * just return values that the watchdog task has already obtained from 7194 * the hardware. 7195 */ 7196 stats->multicast = vsi_stats->multicast; 7197 stats->tx_errors = vsi_stats->tx_errors; 7198 stats->tx_dropped = vsi_stats->tx_dropped; 7199 stats->rx_errors = vsi_stats->rx_errors; 7200 stats->rx_dropped = vsi_stats->rx_dropped; 7201 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7202 stats->rx_length_errors = vsi_stats->rx_length_errors; 7203 } 7204 7205 /** 7206 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7207 * @vsi: VSI having NAPI disabled 7208 */ 7209 static void ice_napi_disable_all(struct ice_vsi *vsi) 7210 { 7211 int q_idx; 7212 7213 if (!vsi->netdev) 7214 return; 7215 7216 ice_for_each_q_vector(vsi, q_idx) { 7217 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7218 7219 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7220 napi_disable(&q_vector->napi); 7221 7222 cancel_work_sync(&q_vector->tx.dim.work); 7223 cancel_work_sync(&q_vector->rx.dim.work); 7224 } 7225 } 7226 7227 /** 7228 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7229 * @vsi: the VSI being un-configured 7230 */ 7231 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7232 { 7233 struct ice_pf *pf = vsi->back; 7234 struct ice_hw *hw = &pf->hw; 7235 u32 val; 7236 int i; 7237 7238 /* disable interrupt causation from each Rx queue; Tx queues are 7239 * handled in ice_vsi_stop_tx_ring() 7240 */ 7241 if (vsi->rx_rings) { 7242 ice_for_each_rxq(vsi, i) { 7243 if (vsi->rx_rings[i]) { 7244 u16 reg; 7245 7246 reg = vsi->rx_rings[i]->reg_idx; 7247 val = rd32(hw, QINT_RQCTL(reg)); 7248 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7249 wr32(hw, QINT_RQCTL(reg), val); 7250 } 7251 } 7252 } 7253 7254 /* disable each interrupt */ 7255 ice_for_each_q_vector(vsi, i) { 7256 if (!vsi->q_vectors[i]) 7257 continue; 7258 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7259 } 7260 7261 ice_flush(hw); 7262 7263 /* don't call synchronize_irq() for VF's from the host */ 7264 if (vsi->type == ICE_VSI_VF) 7265 return; 7266 7267 ice_for_each_q_vector(vsi, i) 7268 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7269 } 7270 7271 /** 7272 * ice_down - Shutdown the connection 7273 * @vsi: The VSI being stopped 7274 * 7275 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7276 */ 7277 int ice_down(struct ice_vsi *vsi) 7278 { 7279 int i, tx_err, rx_err, vlan_err = 0; 7280 7281 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7282 7283 if (vsi->netdev) { 7284 vlan_err = ice_vsi_del_vlan_zero(vsi); 7285 ice_ptp_link_change(vsi->back, false); 7286 netif_carrier_off(vsi->netdev); 7287 netif_tx_disable(vsi->netdev); 7288 } 7289 7290 ice_vsi_dis_irq(vsi); 7291 7292 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7293 if (tx_err) 7294 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7295 vsi->vsi_num, tx_err); 7296 if (!tx_err && vsi->xdp_rings) { 7297 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7298 if (tx_err) 7299 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7300 vsi->vsi_num, tx_err); 7301 } 7302 7303 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7304 if (rx_err) 7305 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7306 vsi->vsi_num, rx_err); 7307 7308 ice_napi_disable_all(vsi); 7309 7310 ice_for_each_txq(vsi, i) 7311 ice_clean_tx_ring(vsi->tx_rings[i]); 7312 7313 if (vsi->xdp_rings) 7314 ice_for_each_xdp_txq(vsi, i) 7315 ice_clean_tx_ring(vsi->xdp_rings[i]); 7316 7317 ice_for_each_rxq(vsi, i) 7318 ice_clean_rx_ring(vsi->rx_rings[i]); 7319 7320 if (tx_err || rx_err || vlan_err) { 7321 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7322 vsi->vsi_num, vsi->vsw->sw_id); 7323 return -EIO; 7324 } 7325 7326 return 0; 7327 } 7328 7329 /** 7330 * ice_down_up - shutdown the VSI connection and bring it up 7331 * @vsi: the VSI to be reconnected 7332 */ 7333 int ice_down_up(struct ice_vsi *vsi) 7334 { 7335 int ret; 7336 7337 /* if DOWN already set, nothing to do */ 7338 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7339 return 0; 7340 7341 ret = ice_down(vsi); 7342 if (ret) 7343 return ret; 7344 7345 ret = ice_up(vsi); 7346 if (ret) { 7347 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7348 return ret; 7349 } 7350 7351 return 0; 7352 } 7353 7354 /** 7355 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7356 * @vsi: VSI having resources allocated 7357 * 7358 * Return 0 on success, negative on failure 7359 */ 7360 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7361 { 7362 int i, err = 0; 7363 7364 if (!vsi->num_txq) { 7365 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7366 vsi->vsi_num); 7367 return -EINVAL; 7368 } 7369 7370 ice_for_each_txq(vsi, i) { 7371 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7372 7373 if (!ring) 7374 return -EINVAL; 7375 7376 if (vsi->netdev) 7377 ring->netdev = vsi->netdev; 7378 err = ice_setup_tx_ring(ring); 7379 if (err) 7380 break; 7381 } 7382 7383 return err; 7384 } 7385 7386 /** 7387 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7388 * @vsi: VSI having resources allocated 7389 * 7390 * Return 0 on success, negative on failure 7391 */ 7392 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7393 { 7394 int i, err = 0; 7395 7396 if (!vsi->num_rxq) { 7397 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7398 vsi->vsi_num); 7399 return -EINVAL; 7400 } 7401 7402 ice_for_each_rxq(vsi, i) { 7403 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7404 7405 if (!ring) 7406 return -EINVAL; 7407 7408 if (vsi->netdev) 7409 ring->netdev = vsi->netdev; 7410 err = ice_setup_rx_ring(ring); 7411 if (err) 7412 break; 7413 } 7414 7415 return err; 7416 } 7417 7418 /** 7419 * ice_vsi_open_ctrl - open control VSI for use 7420 * @vsi: the VSI to open 7421 * 7422 * Initialization of the Control VSI 7423 * 7424 * Returns 0 on success, negative value on error 7425 */ 7426 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7427 { 7428 char int_name[ICE_INT_NAME_STR_LEN]; 7429 struct ice_pf *pf = vsi->back; 7430 struct device *dev; 7431 int err; 7432 7433 dev = ice_pf_to_dev(pf); 7434 /* allocate descriptors */ 7435 err = ice_vsi_setup_tx_rings(vsi); 7436 if (err) 7437 goto err_setup_tx; 7438 7439 err = ice_vsi_setup_rx_rings(vsi); 7440 if (err) 7441 goto err_setup_rx; 7442 7443 err = ice_vsi_cfg_lan(vsi); 7444 if (err) 7445 goto err_setup_rx; 7446 7447 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7448 dev_driver_string(dev), dev_name(dev)); 7449 err = ice_vsi_req_irq_msix(vsi, int_name); 7450 if (err) 7451 goto err_setup_rx; 7452 7453 ice_vsi_cfg_msix(vsi); 7454 7455 err = ice_vsi_start_all_rx_rings(vsi); 7456 if (err) 7457 goto err_up_complete; 7458 7459 clear_bit(ICE_VSI_DOWN, vsi->state); 7460 ice_vsi_ena_irq(vsi); 7461 7462 return 0; 7463 7464 err_up_complete: 7465 ice_down(vsi); 7466 err_setup_rx: 7467 ice_vsi_free_rx_rings(vsi); 7468 err_setup_tx: 7469 ice_vsi_free_tx_rings(vsi); 7470 7471 return err; 7472 } 7473 7474 /** 7475 * ice_vsi_open - Called when a network interface is made active 7476 * @vsi: the VSI to open 7477 * 7478 * Initialization of the VSI 7479 * 7480 * Returns 0 on success, negative value on error 7481 */ 7482 int ice_vsi_open(struct ice_vsi *vsi) 7483 { 7484 char int_name[ICE_INT_NAME_STR_LEN]; 7485 struct ice_pf *pf = vsi->back; 7486 int err; 7487 7488 /* allocate descriptors */ 7489 err = ice_vsi_setup_tx_rings(vsi); 7490 if (err) 7491 goto err_setup_tx; 7492 7493 err = ice_vsi_setup_rx_rings(vsi); 7494 if (err) 7495 goto err_setup_rx; 7496 7497 err = ice_vsi_cfg_lan(vsi); 7498 if (err) 7499 goto err_setup_rx; 7500 7501 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7502 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7503 err = ice_vsi_req_irq_msix(vsi, int_name); 7504 if (err) 7505 goto err_setup_rx; 7506 7507 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7508 7509 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7510 /* Notify the stack of the actual queue counts. */ 7511 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7512 if (err) 7513 goto err_set_qs; 7514 7515 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7516 if (err) 7517 goto err_set_qs; 7518 7519 ice_vsi_set_napi_queues(vsi); 7520 } 7521 7522 err = ice_up_complete(vsi); 7523 if (err) 7524 goto err_up_complete; 7525 7526 return 0; 7527 7528 err_up_complete: 7529 ice_down(vsi); 7530 err_set_qs: 7531 ice_vsi_free_irq(vsi); 7532 err_setup_rx: 7533 ice_vsi_free_rx_rings(vsi); 7534 err_setup_tx: 7535 ice_vsi_free_tx_rings(vsi); 7536 7537 return err; 7538 } 7539 7540 /** 7541 * ice_vsi_release_all - Delete all VSIs 7542 * @pf: PF from which all VSIs are being removed 7543 */ 7544 static void ice_vsi_release_all(struct ice_pf *pf) 7545 { 7546 int err, i; 7547 7548 if (!pf->vsi) 7549 return; 7550 7551 ice_for_each_vsi(pf, i) { 7552 if (!pf->vsi[i]) 7553 continue; 7554 7555 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7556 continue; 7557 7558 err = ice_vsi_release(pf->vsi[i]); 7559 if (err) 7560 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7561 i, err, pf->vsi[i]->vsi_num); 7562 } 7563 } 7564 7565 /** 7566 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7567 * @pf: pointer to the PF instance 7568 * @type: VSI type to rebuild 7569 * 7570 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7571 */ 7572 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7573 { 7574 struct device *dev = ice_pf_to_dev(pf); 7575 int i, err; 7576 7577 ice_for_each_vsi(pf, i) { 7578 struct ice_vsi *vsi = pf->vsi[i]; 7579 7580 if (!vsi || vsi->type != type) 7581 continue; 7582 7583 /* rebuild the VSI */ 7584 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7585 if (err) { 7586 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7587 err, vsi->idx, ice_vsi_type_str(type)); 7588 return err; 7589 } 7590 7591 /* replay filters for the VSI */ 7592 err = ice_replay_vsi(&pf->hw, vsi->idx); 7593 if (err) { 7594 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7595 err, vsi->idx, ice_vsi_type_str(type)); 7596 return err; 7597 } 7598 7599 /* Re-map HW VSI number, using VSI handle that has been 7600 * previously validated in ice_replay_vsi() call above 7601 */ 7602 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7603 7604 /* enable the VSI */ 7605 err = ice_ena_vsi(vsi, false); 7606 if (err) { 7607 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7608 err, vsi->idx, ice_vsi_type_str(type)); 7609 return err; 7610 } 7611 7612 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7613 ice_vsi_type_str(type)); 7614 } 7615 7616 return 0; 7617 } 7618 7619 /** 7620 * ice_update_pf_netdev_link - Update PF netdev link status 7621 * @pf: pointer to the PF instance 7622 */ 7623 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7624 { 7625 bool link_up; 7626 int i; 7627 7628 ice_for_each_vsi(pf, i) { 7629 struct ice_vsi *vsi = pf->vsi[i]; 7630 7631 if (!vsi || vsi->type != ICE_VSI_PF) 7632 return; 7633 7634 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7635 if (link_up) { 7636 netif_carrier_on(pf->vsi[i]->netdev); 7637 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7638 } else { 7639 netif_carrier_off(pf->vsi[i]->netdev); 7640 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7641 } 7642 } 7643 } 7644 7645 /** 7646 * ice_rebuild - rebuild after reset 7647 * @pf: PF to rebuild 7648 * @reset_type: type of reset 7649 * 7650 * Do not rebuild VF VSI in this flow because that is already handled via 7651 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7652 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7653 * to reset/rebuild all the VF VSI twice. 7654 */ 7655 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7656 { 7657 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7658 struct device *dev = ice_pf_to_dev(pf); 7659 struct ice_hw *hw = &pf->hw; 7660 bool dvm; 7661 int err; 7662 7663 if (test_bit(ICE_DOWN, pf->state)) 7664 goto clear_recovery; 7665 7666 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7667 7668 #define ICE_EMP_RESET_SLEEP_MS 5000 7669 if (reset_type == ICE_RESET_EMPR) { 7670 /* If an EMP reset has occurred, any previously pending flash 7671 * update will have completed. We no longer know whether or 7672 * not the NVM update EMP reset is restricted. 7673 */ 7674 pf->fw_emp_reset_disabled = false; 7675 7676 msleep(ICE_EMP_RESET_SLEEP_MS); 7677 } 7678 7679 err = ice_init_all_ctrlq(hw); 7680 if (err) { 7681 dev_err(dev, "control queues init failed %d\n", err); 7682 goto err_init_ctrlq; 7683 } 7684 7685 /* if DDP was previously loaded successfully */ 7686 if (!ice_is_safe_mode(pf)) { 7687 /* reload the SW DB of filter tables */ 7688 if (reset_type == ICE_RESET_PFR) 7689 ice_fill_blk_tbls(hw); 7690 else 7691 /* Reload DDP Package after CORER/GLOBR reset */ 7692 ice_load_pkg(NULL, pf); 7693 } 7694 7695 err = ice_clear_pf_cfg(hw); 7696 if (err) { 7697 dev_err(dev, "clear PF configuration failed %d\n", err); 7698 goto err_init_ctrlq; 7699 } 7700 7701 ice_clear_pxe_mode(hw); 7702 7703 err = ice_init_nvm(hw); 7704 if (err) { 7705 dev_err(dev, "ice_init_nvm failed %d\n", err); 7706 goto err_init_ctrlq; 7707 } 7708 7709 err = ice_get_caps(hw); 7710 if (err) { 7711 dev_err(dev, "ice_get_caps failed %d\n", err); 7712 goto err_init_ctrlq; 7713 } 7714 7715 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7716 if (err) { 7717 dev_err(dev, "set_mac_cfg failed %d\n", err); 7718 goto err_init_ctrlq; 7719 } 7720 7721 dvm = ice_is_dvm_ena(hw); 7722 7723 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7724 if (err) 7725 goto err_init_ctrlq; 7726 7727 err = ice_sched_init_port(hw->port_info); 7728 if (err) 7729 goto err_sched_init_port; 7730 7731 /* start misc vector */ 7732 err = ice_req_irq_msix_misc(pf); 7733 if (err) { 7734 dev_err(dev, "misc vector setup failed: %d\n", err); 7735 goto err_sched_init_port; 7736 } 7737 7738 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7739 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7740 if (!rd32(hw, PFQF_FD_SIZE)) { 7741 u16 unused, guar, b_effort; 7742 7743 guar = hw->func_caps.fd_fltr_guar; 7744 b_effort = hw->func_caps.fd_fltr_best_effort; 7745 7746 /* force guaranteed filter pool for PF */ 7747 ice_alloc_fd_guar_item(hw, &unused, guar); 7748 /* force shared filter pool for PF */ 7749 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7750 } 7751 } 7752 7753 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7754 ice_dcb_rebuild(pf); 7755 7756 /* If the PF previously had enabled PTP, PTP init needs to happen before 7757 * the VSI rebuild. If not, this causes the PTP link status events to 7758 * fail. 7759 */ 7760 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7761 ice_ptp_rebuild(pf, reset_type); 7762 7763 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7764 ice_gnss_init(pf); 7765 7766 /* rebuild PF VSI */ 7767 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7768 if (err) { 7769 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7770 goto err_vsi_rebuild; 7771 } 7772 7773 if (reset_type == ICE_RESET_PFR) { 7774 err = ice_rebuild_channels(pf); 7775 if (err) { 7776 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7777 err); 7778 goto err_vsi_rebuild; 7779 } 7780 } 7781 7782 /* If Flow Director is active */ 7783 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7784 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7785 if (err) { 7786 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7787 goto err_vsi_rebuild; 7788 } 7789 7790 /* replay HW Flow Director recipes */ 7791 if (hw->fdir_prof) 7792 ice_fdir_replay_flows(hw); 7793 7794 /* replay Flow Director filters */ 7795 ice_fdir_replay_fltrs(pf); 7796 7797 ice_rebuild_arfs(pf); 7798 } 7799 7800 if (vsi && vsi->netdev) 7801 netif_device_attach(vsi->netdev); 7802 7803 ice_update_pf_netdev_link(pf); 7804 7805 /* tell the firmware we are up */ 7806 err = ice_send_version(pf); 7807 if (err) { 7808 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7809 err); 7810 goto err_vsi_rebuild; 7811 } 7812 7813 ice_replay_post(hw); 7814 7815 /* if we get here, reset flow is successful */ 7816 clear_bit(ICE_RESET_FAILED, pf->state); 7817 7818 ice_health_clear(pf); 7819 7820 ice_plug_aux_dev(pf); 7821 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7822 ice_lag_rebuild(pf); 7823 7824 /* Restore timestamp mode settings after VSI rebuild */ 7825 ice_ptp_restore_timestamp_mode(pf); 7826 return; 7827 7828 err_vsi_rebuild: 7829 err_sched_init_port: 7830 ice_sched_cleanup_all(hw); 7831 err_init_ctrlq: 7832 ice_shutdown_all_ctrlq(hw, false); 7833 set_bit(ICE_RESET_FAILED, pf->state); 7834 clear_recovery: 7835 /* set this bit in PF state to control service task scheduling */ 7836 set_bit(ICE_NEEDS_RESTART, pf->state); 7837 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7838 } 7839 7840 /** 7841 * ice_change_mtu - NDO callback to change the MTU 7842 * @netdev: network interface device structure 7843 * @new_mtu: new value for maximum frame size 7844 * 7845 * Returns 0 on success, negative on failure 7846 */ 7847 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7848 { 7849 struct ice_netdev_priv *np = netdev_priv(netdev); 7850 struct ice_vsi *vsi = np->vsi; 7851 struct ice_pf *pf = vsi->back; 7852 struct bpf_prog *prog; 7853 u8 count = 0; 7854 int err = 0; 7855 7856 if (new_mtu == (int)netdev->mtu) { 7857 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7858 return 0; 7859 } 7860 7861 prog = vsi->xdp_prog; 7862 if (prog && !prog->aux->xdp_has_frags) { 7863 int frame_size = ice_max_xdp_frame_size(vsi); 7864 7865 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7866 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7867 frame_size - ICE_ETH_PKT_HDR_PAD); 7868 return -EINVAL; 7869 } 7870 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7871 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7872 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7873 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7874 return -EINVAL; 7875 } 7876 } 7877 7878 /* if a reset is in progress, wait for some time for it to complete */ 7879 do { 7880 if (ice_is_reset_in_progress(pf->state)) { 7881 count++; 7882 usleep_range(1000, 2000); 7883 } else { 7884 break; 7885 } 7886 7887 } while (count < 100); 7888 7889 if (count == 100) { 7890 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7891 return -EBUSY; 7892 } 7893 7894 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7895 err = ice_down_up(vsi); 7896 if (err) 7897 return err; 7898 7899 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7900 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7901 7902 return err; 7903 } 7904 7905 /** 7906 * ice_eth_ioctl - Access the hwtstamp interface 7907 * @netdev: network interface device structure 7908 * @ifr: interface request data 7909 * @cmd: ioctl command 7910 */ 7911 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7912 { 7913 struct ice_netdev_priv *np = netdev_priv(netdev); 7914 struct ice_pf *pf = np->vsi->back; 7915 7916 switch (cmd) { 7917 case SIOCGHWTSTAMP: 7918 return ice_ptp_get_ts_config(pf, ifr); 7919 case SIOCSHWTSTAMP: 7920 return ice_ptp_set_ts_config(pf, ifr); 7921 default: 7922 return -EOPNOTSUPP; 7923 } 7924 } 7925 7926 /** 7927 * ice_aq_str - convert AQ err code to a string 7928 * @aq_err: the AQ error code to convert 7929 */ 7930 const char *ice_aq_str(enum ice_aq_err aq_err) 7931 { 7932 switch (aq_err) { 7933 case ICE_AQ_RC_OK: 7934 return "OK"; 7935 case ICE_AQ_RC_EPERM: 7936 return "ICE_AQ_RC_EPERM"; 7937 case ICE_AQ_RC_ENOENT: 7938 return "ICE_AQ_RC_ENOENT"; 7939 case ICE_AQ_RC_ENOMEM: 7940 return "ICE_AQ_RC_ENOMEM"; 7941 case ICE_AQ_RC_EBUSY: 7942 return "ICE_AQ_RC_EBUSY"; 7943 case ICE_AQ_RC_EEXIST: 7944 return "ICE_AQ_RC_EEXIST"; 7945 case ICE_AQ_RC_EINVAL: 7946 return "ICE_AQ_RC_EINVAL"; 7947 case ICE_AQ_RC_ENOSPC: 7948 return "ICE_AQ_RC_ENOSPC"; 7949 case ICE_AQ_RC_ENOSYS: 7950 return "ICE_AQ_RC_ENOSYS"; 7951 case ICE_AQ_RC_EMODE: 7952 return "ICE_AQ_RC_EMODE"; 7953 case ICE_AQ_RC_ENOSEC: 7954 return "ICE_AQ_RC_ENOSEC"; 7955 case ICE_AQ_RC_EBADSIG: 7956 return "ICE_AQ_RC_EBADSIG"; 7957 case ICE_AQ_RC_ESVN: 7958 return "ICE_AQ_RC_ESVN"; 7959 case ICE_AQ_RC_EBADMAN: 7960 return "ICE_AQ_RC_EBADMAN"; 7961 case ICE_AQ_RC_EBADBUF: 7962 return "ICE_AQ_RC_EBADBUF"; 7963 } 7964 7965 return "ICE_AQ_RC_UNKNOWN"; 7966 } 7967 7968 /** 7969 * ice_set_rss_lut - Set RSS LUT 7970 * @vsi: Pointer to VSI structure 7971 * @lut: Lookup table 7972 * @lut_size: Lookup table size 7973 * 7974 * Returns 0 on success, negative on failure 7975 */ 7976 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7977 { 7978 struct ice_aq_get_set_rss_lut_params params = {}; 7979 struct ice_hw *hw = &vsi->back->hw; 7980 int status; 7981 7982 if (!lut) 7983 return -EINVAL; 7984 7985 params.vsi_handle = vsi->idx; 7986 params.lut_size = lut_size; 7987 params.lut_type = vsi->rss_lut_type; 7988 params.lut = lut; 7989 7990 status = ice_aq_set_rss_lut(hw, ¶ms); 7991 if (status) 7992 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7993 status, ice_aq_str(hw->adminq.sq_last_status)); 7994 7995 return status; 7996 } 7997 7998 /** 7999 * ice_set_rss_key - Set RSS key 8000 * @vsi: Pointer to the VSI structure 8001 * @seed: RSS hash seed 8002 * 8003 * Returns 0 on success, negative on failure 8004 */ 8005 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 8006 { 8007 struct ice_hw *hw = &vsi->back->hw; 8008 int status; 8009 8010 if (!seed) 8011 return -EINVAL; 8012 8013 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8014 if (status) 8015 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 8016 status, ice_aq_str(hw->adminq.sq_last_status)); 8017 8018 return status; 8019 } 8020 8021 /** 8022 * ice_get_rss_lut - Get RSS LUT 8023 * @vsi: Pointer to VSI structure 8024 * @lut: Buffer to store the lookup table entries 8025 * @lut_size: Size of buffer to store the lookup table entries 8026 * 8027 * Returns 0 on success, negative on failure 8028 */ 8029 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 8030 { 8031 struct ice_aq_get_set_rss_lut_params params = {}; 8032 struct ice_hw *hw = &vsi->back->hw; 8033 int status; 8034 8035 if (!lut) 8036 return -EINVAL; 8037 8038 params.vsi_handle = vsi->idx; 8039 params.lut_size = lut_size; 8040 params.lut_type = vsi->rss_lut_type; 8041 params.lut = lut; 8042 8043 status = ice_aq_get_rss_lut(hw, ¶ms); 8044 if (status) 8045 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 8046 status, ice_aq_str(hw->adminq.sq_last_status)); 8047 8048 return status; 8049 } 8050 8051 /** 8052 * ice_get_rss_key - Get RSS key 8053 * @vsi: Pointer to VSI structure 8054 * @seed: Buffer to store the key in 8055 * 8056 * Returns 0 on success, negative on failure 8057 */ 8058 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 8059 { 8060 struct ice_hw *hw = &vsi->back->hw; 8061 int status; 8062 8063 if (!seed) 8064 return -EINVAL; 8065 8066 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8067 if (status) 8068 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8069 status, ice_aq_str(hw->adminq.sq_last_status)); 8070 8071 return status; 8072 } 8073 8074 /** 8075 * ice_set_rss_hfunc - Set RSS HASH function 8076 * @vsi: Pointer to VSI structure 8077 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8078 * 8079 * Returns 0 on success, negative on failure 8080 */ 8081 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8082 { 8083 struct ice_hw *hw = &vsi->back->hw; 8084 struct ice_vsi_ctx *ctx; 8085 bool symm; 8086 int err; 8087 8088 if (hfunc == vsi->rss_hfunc) 8089 return 0; 8090 8091 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8092 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8093 return -EOPNOTSUPP; 8094 8095 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8096 if (!ctx) 8097 return -ENOMEM; 8098 8099 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8100 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8101 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8102 ctx->info.q_opt_rss |= 8103 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8104 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8105 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8106 8107 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8108 if (err) { 8109 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8110 vsi->vsi_num, err); 8111 } else { 8112 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8113 vsi->rss_hfunc = hfunc; 8114 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8115 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8116 "Symmetric " : ""); 8117 } 8118 kfree(ctx); 8119 if (err) 8120 return err; 8121 8122 /* Fix the symmetry setting for all existing RSS configurations */ 8123 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8124 return ice_set_rss_cfg_symm(hw, vsi, symm); 8125 } 8126 8127 /** 8128 * ice_bridge_getlink - Get the hardware bridge mode 8129 * @skb: skb buff 8130 * @pid: process ID 8131 * @seq: RTNL message seq 8132 * @dev: the netdev being configured 8133 * @filter_mask: filter mask passed in 8134 * @nlflags: netlink flags passed in 8135 * 8136 * Return the bridge mode (VEB/VEPA) 8137 */ 8138 static int 8139 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8140 struct net_device *dev, u32 filter_mask, int nlflags) 8141 { 8142 struct ice_netdev_priv *np = netdev_priv(dev); 8143 struct ice_vsi *vsi = np->vsi; 8144 struct ice_pf *pf = vsi->back; 8145 u16 bmode; 8146 8147 bmode = pf->first_sw->bridge_mode; 8148 8149 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8150 filter_mask, NULL); 8151 } 8152 8153 /** 8154 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8155 * @vsi: Pointer to VSI structure 8156 * @bmode: Hardware bridge mode (VEB/VEPA) 8157 * 8158 * Returns 0 on success, negative on failure 8159 */ 8160 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8161 { 8162 struct ice_aqc_vsi_props *vsi_props; 8163 struct ice_hw *hw = &vsi->back->hw; 8164 struct ice_vsi_ctx *ctxt; 8165 int ret; 8166 8167 vsi_props = &vsi->info; 8168 8169 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8170 if (!ctxt) 8171 return -ENOMEM; 8172 8173 ctxt->info = vsi->info; 8174 8175 if (bmode == BRIDGE_MODE_VEB) 8176 /* change from VEPA to VEB mode */ 8177 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8178 else 8179 /* change from VEB to VEPA mode */ 8180 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8181 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8182 8183 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8184 if (ret) { 8185 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8186 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8187 goto out; 8188 } 8189 /* Update sw flags for book keeping */ 8190 vsi_props->sw_flags = ctxt->info.sw_flags; 8191 8192 out: 8193 kfree(ctxt); 8194 return ret; 8195 } 8196 8197 /** 8198 * ice_bridge_setlink - Set the hardware bridge mode 8199 * @dev: the netdev being configured 8200 * @nlh: RTNL message 8201 * @flags: bridge setlink flags 8202 * @extack: netlink extended ack 8203 * 8204 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8205 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8206 * not already set for all VSIs connected to this switch. And also update the 8207 * unicast switch filter rules for the corresponding switch of the netdev. 8208 */ 8209 static int 8210 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8211 u16 __always_unused flags, 8212 struct netlink_ext_ack __always_unused *extack) 8213 { 8214 struct ice_netdev_priv *np = netdev_priv(dev); 8215 struct ice_pf *pf = np->vsi->back; 8216 struct nlattr *attr, *br_spec; 8217 struct ice_hw *hw = &pf->hw; 8218 struct ice_sw *pf_sw; 8219 int rem, v, err = 0; 8220 8221 pf_sw = pf->first_sw; 8222 /* find the attribute in the netlink message */ 8223 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8224 if (!br_spec) 8225 return -EINVAL; 8226 8227 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8228 __u16 mode = nla_get_u16(attr); 8229 8230 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8231 return -EINVAL; 8232 /* Continue if bridge mode is not being flipped */ 8233 if (mode == pf_sw->bridge_mode) 8234 continue; 8235 /* Iterates through the PF VSI list and update the loopback 8236 * mode of the VSI 8237 */ 8238 ice_for_each_vsi(pf, v) { 8239 if (!pf->vsi[v]) 8240 continue; 8241 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8242 if (err) 8243 return err; 8244 } 8245 8246 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8247 /* Update the unicast switch filter rules for the corresponding 8248 * switch of the netdev 8249 */ 8250 err = ice_update_sw_rule_bridge_mode(hw); 8251 if (err) { 8252 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8253 mode, err, 8254 ice_aq_str(hw->adminq.sq_last_status)); 8255 /* revert hw->evb_veb */ 8256 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8257 return err; 8258 } 8259 8260 pf_sw->bridge_mode = mode; 8261 } 8262 8263 return 0; 8264 } 8265 8266 /** 8267 * ice_tx_timeout - Respond to a Tx Hang 8268 * @netdev: network interface device structure 8269 * @txqueue: Tx queue 8270 */ 8271 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8272 { 8273 struct ice_netdev_priv *np = netdev_priv(netdev); 8274 struct ice_tx_ring *tx_ring = NULL; 8275 struct ice_vsi *vsi = np->vsi; 8276 struct ice_pf *pf = vsi->back; 8277 u32 i; 8278 8279 pf->tx_timeout_count++; 8280 8281 /* Check if PFC is enabled for the TC to which the queue belongs 8282 * to. If yes then Tx timeout is not caused by a hung queue, no 8283 * need to reset and rebuild 8284 */ 8285 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8286 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8287 txqueue); 8288 return; 8289 } 8290 8291 /* now that we have an index, find the tx_ring struct */ 8292 ice_for_each_txq(vsi, i) 8293 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8294 if (txqueue == vsi->tx_rings[i]->q_index) { 8295 tx_ring = vsi->tx_rings[i]; 8296 break; 8297 } 8298 8299 /* Reset recovery level if enough time has elapsed after last timeout. 8300 * Also ensure no new reset action happens before next timeout period. 8301 */ 8302 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8303 pf->tx_timeout_recovery_level = 1; 8304 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8305 netdev->watchdog_timeo))) 8306 return; 8307 8308 if (tx_ring) { 8309 struct ice_hw *hw = &pf->hw; 8310 u32 head, intr = 0; 8311 8312 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8313 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8314 /* Read interrupt register */ 8315 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8316 8317 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8318 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8319 head, tx_ring->next_to_use, intr); 8320 8321 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr); 8322 } 8323 8324 pf->tx_timeout_last_recovery = jiffies; 8325 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8326 pf->tx_timeout_recovery_level, txqueue); 8327 8328 switch (pf->tx_timeout_recovery_level) { 8329 case 1: 8330 set_bit(ICE_PFR_REQ, pf->state); 8331 break; 8332 case 2: 8333 set_bit(ICE_CORER_REQ, pf->state); 8334 break; 8335 case 3: 8336 set_bit(ICE_GLOBR_REQ, pf->state); 8337 break; 8338 default: 8339 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8340 set_bit(ICE_DOWN, pf->state); 8341 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8342 set_bit(ICE_SERVICE_DIS, pf->state); 8343 break; 8344 } 8345 8346 ice_service_task_schedule(pf); 8347 pf->tx_timeout_recovery_level++; 8348 } 8349 8350 /** 8351 * ice_setup_tc_cls_flower - flower classifier offloads 8352 * @np: net device to configure 8353 * @filter_dev: device on which filter is added 8354 * @cls_flower: offload data 8355 * @ingress: if the rule is added to an ingress block 8356 * 8357 * Return: 0 if the flower was successfully added or deleted, 8358 * negative error code otherwise. 8359 */ 8360 static int 8361 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8362 struct net_device *filter_dev, 8363 struct flow_cls_offload *cls_flower, 8364 bool ingress) 8365 { 8366 struct ice_vsi *vsi = np->vsi; 8367 8368 if (cls_flower->common.chain_index) 8369 return -EOPNOTSUPP; 8370 8371 switch (cls_flower->command) { 8372 case FLOW_CLS_REPLACE: 8373 return ice_add_cls_flower(filter_dev, vsi, cls_flower, ingress); 8374 case FLOW_CLS_DESTROY: 8375 return ice_del_cls_flower(vsi, cls_flower); 8376 default: 8377 return -EINVAL; 8378 } 8379 } 8380 8381 /** 8382 * ice_setup_tc_block_cb_ingress - callback handler for ingress TC block 8383 * @type: TC SETUP type 8384 * @type_data: TC flower offload data that contains user input 8385 * @cb_priv: netdev private data 8386 * 8387 * Return: 0 if the setup was successful, negative error code otherwise. 8388 */ 8389 static int 8390 ice_setup_tc_block_cb_ingress(enum tc_setup_type type, void *type_data, 8391 void *cb_priv) 8392 { 8393 struct ice_netdev_priv *np = cb_priv; 8394 8395 switch (type) { 8396 case TC_SETUP_CLSFLOWER: 8397 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8398 type_data, true); 8399 default: 8400 return -EOPNOTSUPP; 8401 } 8402 } 8403 8404 /** 8405 * ice_setup_tc_block_cb_egress - callback handler for egress TC block 8406 * @type: TC SETUP type 8407 * @type_data: TC flower offload data that contains user input 8408 * @cb_priv: netdev private data 8409 * 8410 * Return: 0 if the setup was successful, negative error code otherwise. 8411 */ 8412 static int 8413 ice_setup_tc_block_cb_egress(enum tc_setup_type type, void *type_data, 8414 void *cb_priv) 8415 { 8416 struct ice_netdev_priv *np = cb_priv; 8417 8418 switch (type) { 8419 case TC_SETUP_CLSFLOWER: 8420 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8421 type_data, false); 8422 default: 8423 return -EOPNOTSUPP; 8424 } 8425 } 8426 8427 /** 8428 * ice_validate_mqprio_qopt - Validate TCF input parameters 8429 * @vsi: Pointer to VSI 8430 * @mqprio_qopt: input parameters for mqprio queue configuration 8431 * 8432 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8433 * needed), and make sure user doesn't specify qcount and BW rate limit 8434 * for TCs, which are more than "num_tc" 8435 */ 8436 static int 8437 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8438 struct tc_mqprio_qopt_offload *mqprio_qopt) 8439 { 8440 int non_power_of_2_qcount = 0; 8441 struct ice_pf *pf = vsi->back; 8442 int max_rss_q_cnt = 0; 8443 u64 sum_min_rate = 0; 8444 struct device *dev; 8445 int i, speed; 8446 u8 num_tc; 8447 8448 if (vsi->type != ICE_VSI_PF) 8449 return -EINVAL; 8450 8451 if (mqprio_qopt->qopt.offset[0] != 0 || 8452 mqprio_qopt->qopt.num_tc < 1 || 8453 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8454 return -EINVAL; 8455 8456 dev = ice_pf_to_dev(pf); 8457 vsi->ch_rss_size = 0; 8458 num_tc = mqprio_qopt->qopt.num_tc; 8459 speed = ice_get_link_speed_kbps(vsi); 8460 8461 for (i = 0; num_tc; i++) { 8462 int qcount = mqprio_qopt->qopt.count[i]; 8463 u64 max_rate, min_rate, rem; 8464 8465 if (!qcount) 8466 return -EINVAL; 8467 8468 if (is_power_of_2(qcount)) { 8469 if (non_power_of_2_qcount && 8470 qcount > non_power_of_2_qcount) { 8471 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8472 qcount, non_power_of_2_qcount); 8473 return -EINVAL; 8474 } 8475 if (qcount > max_rss_q_cnt) 8476 max_rss_q_cnt = qcount; 8477 } else { 8478 if (non_power_of_2_qcount && 8479 qcount != non_power_of_2_qcount) { 8480 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8481 qcount, non_power_of_2_qcount); 8482 return -EINVAL; 8483 } 8484 if (qcount < max_rss_q_cnt) { 8485 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8486 qcount, max_rss_q_cnt); 8487 return -EINVAL; 8488 } 8489 max_rss_q_cnt = qcount; 8490 non_power_of_2_qcount = qcount; 8491 } 8492 8493 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8494 * converts the bandwidth rate limit into Bytes/s when 8495 * passing it down to the driver. So convert input bandwidth 8496 * from Bytes/s to Kbps 8497 */ 8498 max_rate = mqprio_qopt->max_rate[i]; 8499 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8500 8501 /* min_rate is minimum guaranteed rate and it can't be zero */ 8502 min_rate = mqprio_qopt->min_rate[i]; 8503 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8504 sum_min_rate += min_rate; 8505 8506 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8507 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8508 min_rate, ICE_MIN_BW_LIMIT); 8509 return -EINVAL; 8510 } 8511 8512 if (max_rate && max_rate > speed) { 8513 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8514 i, max_rate, speed); 8515 return -EINVAL; 8516 } 8517 8518 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8519 if (rem) { 8520 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8521 i, ICE_MIN_BW_LIMIT); 8522 return -EINVAL; 8523 } 8524 8525 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8526 if (rem) { 8527 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8528 i, ICE_MIN_BW_LIMIT); 8529 return -EINVAL; 8530 } 8531 8532 /* min_rate can't be more than max_rate, except when max_rate 8533 * is zero (implies max_rate sought is max line rate). In such 8534 * a case min_rate can be more than max. 8535 */ 8536 if (max_rate && min_rate > max_rate) { 8537 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8538 min_rate, max_rate); 8539 return -EINVAL; 8540 } 8541 8542 if (i >= mqprio_qopt->qopt.num_tc - 1) 8543 break; 8544 if (mqprio_qopt->qopt.offset[i + 1] != 8545 (mqprio_qopt->qopt.offset[i] + qcount)) 8546 return -EINVAL; 8547 } 8548 if (vsi->num_rxq < 8549 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8550 return -EINVAL; 8551 if (vsi->num_txq < 8552 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8553 return -EINVAL; 8554 8555 if (sum_min_rate && sum_min_rate > (u64)speed) { 8556 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8557 sum_min_rate, speed); 8558 return -EINVAL; 8559 } 8560 8561 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8562 vsi->ch_rss_size = max_rss_q_cnt; 8563 8564 return 0; 8565 } 8566 8567 /** 8568 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8569 * @pf: ptr to PF device 8570 * @vsi: ptr to VSI 8571 */ 8572 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8573 { 8574 struct device *dev = ice_pf_to_dev(pf); 8575 bool added = false; 8576 struct ice_hw *hw; 8577 int flow; 8578 8579 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8580 return -EINVAL; 8581 8582 hw = &pf->hw; 8583 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8584 struct ice_fd_hw_prof *prof; 8585 int tun, status; 8586 u64 entry_h; 8587 8588 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8589 hw->fdir_prof[flow]->cnt)) 8590 continue; 8591 8592 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8593 enum ice_flow_priority prio; 8594 8595 /* add this VSI to FDir profile for this flow */ 8596 prio = ICE_FLOW_PRIO_NORMAL; 8597 prof = hw->fdir_prof[flow]; 8598 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8599 prof->prof_id[tun], 8600 prof->vsi_h[0], vsi->idx, 8601 prio, prof->fdir_seg[tun], 8602 &entry_h); 8603 if (status) { 8604 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8605 vsi->idx, flow); 8606 continue; 8607 } 8608 8609 prof->entry_h[prof->cnt][tun] = entry_h; 8610 } 8611 8612 /* store VSI for filter replay and delete */ 8613 prof->vsi_h[prof->cnt] = vsi->idx; 8614 prof->cnt++; 8615 8616 added = true; 8617 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8618 flow); 8619 } 8620 8621 if (!added) 8622 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8623 8624 return 0; 8625 } 8626 8627 /** 8628 * ice_add_channel - add a channel by adding VSI 8629 * @pf: ptr to PF device 8630 * @sw_id: underlying HW switching element ID 8631 * @ch: ptr to channel structure 8632 * 8633 * Add a channel (VSI) using add_vsi and queue_map 8634 */ 8635 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8636 { 8637 struct device *dev = ice_pf_to_dev(pf); 8638 struct ice_vsi *vsi; 8639 8640 if (ch->type != ICE_VSI_CHNL) { 8641 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8642 return -EINVAL; 8643 } 8644 8645 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8646 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8647 dev_err(dev, "create chnl VSI failure\n"); 8648 return -EINVAL; 8649 } 8650 8651 ice_add_vsi_to_fdir(pf, vsi); 8652 8653 ch->sw_id = sw_id; 8654 ch->vsi_num = vsi->vsi_num; 8655 ch->info.mapping_flags = vsi->info.mapping_flags; 8656 ch->ch_vsi = vsi; 8657 /* set the back pointer of channel for newly created VSI */ 8658 vsi->ch = ch; 8659 8660 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8661 sizeof(vsi->info.q_mapping)); 8662 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8663 sizeof(vsi->info.tc_mapping)); 8664 8665 return 0; 8666 } 8667 8668 /** 8669 * ice_chnl_cfg_res 8670 * @vsi: the VSI being setup 8671 * @ch: ptr to channel structure 8672 * 8673 * Configure channel specific resources such as rings, vector. 8674 */ 8675 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8676 { 8677 int i; 8678 8679 for (i = 0; i < ch->num_txq; i++) { 8680 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8681 struct ice_ring_container *rc; 8682 struct ice_tx_ring *tx_ring; 8683 struct ice_rx_ring *rx_ring; 8684 8685 tx_ring = vsi->tx_rings[ch->base_q + i]; 8686 rx_ring = vsi->rx_rings[ch->base_q + i]; 8687 if (!tx_ring || !rx_ring) 8688 continue; 8689 8690 /* setup ring being channel enabled */ 8691 tx_ring->ch = ch; 8692 rx_ring->ch = ch; 8693 8694 /* following code block sets up vector specific attributes */ 8695 tx_q_vector = tx_ring->q_vector; 8696 rx_q_vector = rx_ring->q_vector; 8697 if (!tx_q_vector && !rx_q_vector) 8698 continue; 8699 8700 if (tx_q_vector) { 8701 tx_q_vector->ch = ch; 8702 /* setup Tx and Rx ITR setting if DIM is off */ 8703 rc = &tx_q_vector->tx; 8704 if (!ITR_IS_DYNAMIC(rc)) 8705 ice_write_itr(rc, rc->itr_setting); 8706 } 8707 if (rx_q_vector) { 8708 rx_q_vector->ch = ch; 8709 /* setup Tx and Rx ITR setting if DIM is off */ 8710 rc = &rx_q_vector->rx; 8711 if (!ITR_IS_DYNAMIC(rc)) 8712 ice_write_itr(rc, rc->itr_setting); 8713 } 8714 } 8715 8716 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8717 * GLINT_ITR register would have written to perform in-context 8718 * update, hence perform flush 8719 */ 8720 if (ch->num_txq || ch->num_rxq) 8721 ice_flush(&vsi->back->hw); 8722 } 8723 8724 /** 8725 * ice_cfg_chnl_all_res - configure channel resources 8726 * @vsi: pte to main_vsi 8727 * @ch: ptr to channel structure 8728 * 8729 * This function configures channel specific resources such as flow-director 8730 * counter index, and other resources such as queues, vectors, ITR settings 8731 */ 8732 static void 8733 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8734 { 8735 /* configure channel (aka ADQ) resources such as queues, vectors, 8736 * ITR settings for channel specific vectors and anything else 8737 */ 8738 ice_chnl_cfg_res(vsi, ch); 8739 } 8740 8741 /** 8742 * ice_setup_hw_channel - setup new channel 8743 * @pf: ptr to PF device 8744 * @vsi: the VSI being setup 8745 * @ch: ptr to channel structure 8746 * @sw_id: underlying HW switching element ID 8747 * @type: type of channel to be created (VMDq2/VF) 8748 * 8749 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8750 * and configures Tx rings accordingly 8751 */ 8752 static int 8753 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8754 struct ice_channel *ch, u16 sw_id, u8 type) 8755 { 8756 struct device *dev = ice_pf_to_dev(pf); 8757 int ret; 8758 8759 ch->base_q = vsi->next_base_q; 8760 ch->type = type; 8761 8762 ret = ice_add_channel(pf, sw_id, ch); 8763 if (ret) { 8764 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8765 return ret; 8766 } 8767 8768 /* configure/setup ADQ specific resources */ 8769 ice_cfg_chnl_all_res(vsi, ch); 8770 8771 /* make sure to update the next_base_q so that subsequent channel's 8772 * (aka ADQ) VSI queue map is correct 8773 */ 8774 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8775 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8776 ch->num_rxq); 8777 8778 return 0; 8779 } 8780 8781 /** 8782 * ice_setup_channel - setup new channel using uplink element 8783 * @pf: ptr to PF device 8784 * @vsi: the VSI being setup 8785 * @ch: ptr to channel structure 8786 * 8787 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8788 * and uplink switching element 8789 */ 8790 static bool 8791 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8792 struct ice_channel *ch) 8793 { 8794 struct device *dev = ice_pf_to_dev(pf); 8795 u16 sw_id; 8796 int ret; 8797 8798 if (vsi->type != ICE_VSI_PF) { 8799 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8800 return false; 8801 } 8802 8803 sw_id = pf->first_sw->sw_id; 8804 8805 /* create channel (VSI) */ 8806 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8807 if (ret) { 8808 dev_err(dev, "failed to setup hw_channel\n"); 8809 return false; 8810 } 8811 dev_dbg(dev, "successfully created channel()\n"); 8812 8813 return ch->ch_vsi ? true : false; 8814 } 8815 8816 /** 8817 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8818 * @vsi: VSI to be configured 8819 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8820 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8821 */ 8822 static int 8823 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8824 { 8825 int err; 8826 8827 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8828 if (err) 8829 return err; 8830 8831 return ice_set_max_bw_limit(vsi, max_tx_rate); 8832 } 8833 8834 /** 8835 * ice_create_q_channel - function to create channel 8836 * @vsi: VSI to be configured 8837 * @ch: ptr to channel (it contains channel specific params) 8838 * 8839 * This function creates channel (VSI) using num_queues specified by user, 8840 * reconfigs RSS if needed. 8841 */ 8842 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8843 { 8844 struct ice_pf *pf = vsi->back; 8845 struct device *dev; 8846 8847 if (!ch) 8848 return -EINVAL; 8849 8850 dev = ice_pf_to_dev(pf); 8851 if (!ch->num_txq || !ch->num_rxq) { 8852 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8853 return -EINVAL; 8854 } 8855 8856 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8857 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8858 vsi->cnt_q_avail, ch->num_txq); 8859 return -EINVAL; 8860 } 8861 8862 if (!ice_setup_channel(pf, vsi, ch)) { 8863 dev_info(dev, "Failed to setup channel\n"); 8864 return -EINVAL; 8865 } 8866 /* configure BW rate limit */ 8867 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8868 int ret; 8869 8870 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8871 ch->min_tx_rate); 8872 if (ret) 8873 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8874 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8875 else 8876 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8877 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8878 } 8879 8880 vsi->cnt_q_avail -= ch->num_txq; 8881 8882 return 0; 8883 } 8884 8885 /** 8886 * ice_rem_all_chnl_fltrs - removes all channel filters 8887 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8888 * 8889 * Remove all advanced switch filters only if they are channel specific 8890 * tc-flower based filter 8891 */ 8892 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8893 { 8894 struct ice_tc_flower_fltr *fltr; 8895 struct hlist_node *node; 8896 8897 /* to remove all channel filters, iterate an ordered list of filters */ 8898 hlist_for_each_entry_safe(fltr, node, 8899 &pf->tc_flower_fltr_list, 8900 tc_flower_node) { 8901 struct ice_rule_query_data rule; 8902 int status; 8903 8904 /* for now process only channel specific filters */ 8905 if (!ice_is_chnl_fltr(fltr)) 8906 continue; 8907 8908 rule.rid = fltr->rid; 8909 rule.rule_id = fltr->rule_id; 8910 rule.vsi_handle = fltr->dest_vsi_handle; 8911 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8912 if (status) { 8913 if (status == -ENOENT) 8914 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8915 rule.rule_id); 8916 else 8917 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8918 status); 8919 } else if (fltr->dest_vsi) { 8920 /* update advanced switch filter count */ 8921 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8922 u32 flags = fltr->flags; 8923 8924 fltr->dest_vsi->num_chnl_fltr--; 8925 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8926 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8927 pf->num_dmac_chnl_fltrs--; 8928 } 8929 } 8930 8931 hlist_del(&fltr->tc_flower_node); 8932 kfree(fltr); 8933 } 8934 } 8935 8936 /** 8937 * ice_remove_q_channels - Remove queue channels for the TCs 8938 * @vsi: VSI to be configured 8939 * @rem_fltr: delete advanced switch filter or not 8940 * 8941 * Remove queue channels for the TCs 8942 */ 8943 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8944 { 8945 struct ice_channel *ch, *ch_tmp; 8946 struct ice_pf *pf = vsi->back; 8947 int i; 8948 8949 /* remove all tc-flower based filter if they are channel filters only */ 8950 if (rem_fltr) 8951 ice_rem_all_chnl_fltrs(pf); 8952 8953 /* remove ntuple filters since queue configuration is being changed */ 8954 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8955 struct ice_hw *hw = &pf->hw; 8956 8957 mutex_lock(&hw->fdir_fltr_lock); 8958 ice_fdir_del_all_fltrs(vsi); 8959 mutex_unlock(&hw->fdir_fltr_lock); 8960 } 8961 8962 /* perform cleanup for channels if they exist */ 8963 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8964 struct ice_vsi *ch_vsi; 8965 8966 list_del(&ch->list); 8967 ch_vsi = ch->ch_vsi; 8968 if (!ch_vsi) { 8969 kfree(ch); 8970 continue; 8971 } 8972 8973 /* Reset queue contexts */ 8974 for (i = 0; i < ch->num_rxq; i++) { 8975 struct ice_tx_ring *tx_ring; 8976 struct ice_rx_ring *rx_ring; 8977 8978 tx_ring = vsi->tx_rings[ch->base_q + i]; 8979 rx_ring = vsi->rx_rings[ch->base_q + i]; 8980 if (tx_ring) { 8981 tx_ring->ch = NULL; 8982 if (tx_ring->q_vector) 8983 tx_ring->q_vector->ch = NULL; 8984 } 8985 if (rx_ring) { 8986 rx_ring->ch = NULL; 8987 if (rx_ring->q_vector) 8988 rx_ring->q_vector->ch = NULL; 8989 } 8990 } 8991 8992 /* Release FD resources for the channel VSI */ 8993 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8994 8995 /* clear the VSI from scheduler tree */ 8996 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8997 8998 /* Delete VSI from FW, PF and HW VSI arrays */ 8999 ice_vsi_delete(ch->ch_vsi); 9000 9001 /* free the channel */ 9002 kfree(ch); 9003 } 9004 9005 /* clear the channel VSI map which is stored in main VSI */ 9006 ice_for_each_chnl_tc(i) 9007 vsi->tc_map_vsi[i] = NULL; 9008 9009 /* reset main VSI's all TC information */ 9010 vsi->all_enatc = 0; 9011 vsi->all_numtc = 0; 9012 } 9013 9014 /** 9015 * ice_rebuild_channels - rebuild channel 9016 * @pf: ptr to PF 9017 * 9018 * Recreate channel VSIs and replay filters 9019 */ 9020 static int ice_rebuild_channels(struct ice_pf *pf) 9021 { 9022 struct device *dev = ice_pf_to_dev(pf); 9023 struct ice_vsi *main_vsi; 9024 bool rem_adv_fltr = true; 9025 struct ice_channel *ch; 9026 struct ice_vsi *vsi; 9027 int tc_idx = 1; 9028 int i, err; 9029 9030 main_vsi = ice_get_main_vsi(pf); 9031 if (!main_vsi) 9032 return 0; 9033 9034 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 9035 main_vsi->old_numtc == 1) 9036 return 0; /* nothing to be done */ 9037 9038 /* reconfigure main VSI based on old value of TC and cached values 9039 * for MQPRIO opts 9040 */ 9041 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 9042 if (err) { 9043 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 9044 main_vsi->old_ena_tc, main_vsi->vsi_num); 9045 return err; 9046 } 9047 9048 /* rebuild ADQ VSIs */ 9049 ice_for_each_vsi(pf, i) { 9050 enum ice_vsi_type type; 9051 9052 vsi = pf->vsi[i]; 9053 if (!vsi || vsi->type != ICE_VSI_CHNL) 9054 continue; 9055 9056 type = vsi->type; 9057 9058 /* rebuild ADQ VSI */ 9059 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 9060 if (err) { 9061 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 9062 ice_vsi_type_str(type), vsi->idx, err); 9063 goto cleanup; 9064 } 9065 9066 /* Re-map HW VSI number, using VSI handle that has been 9067 * previously validated in ice_replay_vsi() call above 9068 */ 9069 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 9070 9071 /* replay filters for the VSI */ 9072 err = ice_replay_vsi(&pf->hw, vsi->idx); 9073 if (err) { 9074 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 9075 ice_vsi_type_str(type), err, vsi->idx); 9076 rem_adv_fltr = false; 9077 goto cleanup; 9078 } 9079 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 9080 ice_vsi_type_str(type), vsi->idx); 9081 9082 /* store ADQ VSI at correct TC index in main VSI's 9083 * map of TC to VSI 9084 */ 9085 main_vsi->tc_map_vsi[tc_idx++] = vsi; 9086 } 9087 9088 /* ADQ VSI(s) has been rebuilt successfully, so setup 9089 * channel for main VSI's Tx and Rx rings 9090 */ 9091 list_for_each_entry(ch, &main_vsi->ch_list, list) { 9092 struct ice_vsi *ch_vsi; 9093 9094 ch_vsi = ch->ch_vsi; 9095 if (!ch_vsi) 9096 continue; 9097 9098 /* reconfig channel resources */ 9099 ice_cfg_chnl_all_res(main_vsi, ch); 9100 9101 /* replay BW rate limit if it is non-zero */ 9102 if (!ch->max_tx_rate && !ch->min_tx_rate) 9103 continue; 9104 9105 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9106 ch->min_tx_rate); 9107 if (err) 9108 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9109 err, ch->max_tx_rate, ch->min_tx_rate, 9110 ch_vsi->vsi_num); 9111 else 9112 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9113 ch->max_tx_rate, ch->min_tx_rate, 9114 ch_vsi->vsi_num); 9115 } 9116 9117 /* reconfig RSS for main VSI */ 9118 if (main_vsi->ch_rss_size) 9119 ice_vsi_cfg_rss_lut_key(main_vsi); 9120 9121 return 0; 9122 9123 cleanup: 9124 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9125 return err; 9126 } 9127 9128 /** 9129 * ice_create_q_channels - Add queue channel for the given TCs 9130 * @vsi: VSI to be configured 9131 * 9132 * Configures queue channel mapping to the given TCs 9133 */ 9134 static int ice_create_q_channels(struct ice_vsi *vsi) 9135 { 9136 struct ice_pf *pf = vsi->back; 9137 struct ice_channel *ch; 9138 int ret = 0, i; 9139 9140 ice_for_each_chnl_tc(i) { 9141 if (!(vsi->all_enatc & BIT(i))) 9142 continue; 9143 9144 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9145 if (!ch) { 9146 ret = -ENOMEM; 9147 goto err_free; 9148 } 9149 INIT_LIST_HEAD(&ch->list); 9150 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9151 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9152 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9153 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9154 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9155 9156 /* convert to Kbits/s */ 9157 if (ch->max_tx_rate) 9158 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9159 ICE_BW_KBPS_DIVISOR); 9160 if (ch->min_tx_rate) 9161 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9162 ICE_BW_KBPS_DIVISOR); 9163 9164 ret = ice_create_q_channel(vsi, ch); 9165 if (ret) { 9166 dev_err(ice_pf_to_dev(pf), 9167 "failed creating channel TC:%d\n", i); 9168 kfree(ch); 9169 goto err_free; 9170 } 9171 list_add_tail(&ch->list, &vsi->ch_list); 9172 vsi->tc_map_vsi[i] = ch->ch_vsi; 9173 dev_dbg(ice_pf_to_dev(pf), 9174 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9175 } 9176 return 0; 9177 9178 err_free: 9179 ice_remove_q_channels(vsi, false); 9180 9181 return ret; 9182 } 9183 9184 /** 9185 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9186 * @netdev: net device to configure 9187 * @type_data: TC offload data 9188 */ 9189 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9190 { 9191 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9192 struct ice_netdev_priv *np = netdev_priv(netdev); 9193 struct ice_vsi *vsi = np->vsi; 9194 struct ice_pf *pf = vsi->back; 9195 u16 mode, ena_tc_qdisc = 0; 9196 int cur_txq, cur_rxq; 9197 u8 hw = 0, num_tcf; 9198 struct device *dev; 9199 int ret, i; 9200 9201 dev = ice_pf_to_dev(pf); 9202 num_tcf = mqprio_qopt->qopt.num_tc; 9203 hw = mqprio_qopt->qopt.hw; 9204 mode = mqprio_qopt->mode; 9205 if (!hw) { 9206 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9207 vsi->ch_rss_size = 0; 9208 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9209 goto config_tcf; 9210 } 9211 9212 /* Generate queue region map for number of TCF requested */ 9213 for (i = 0; i < num_tcf; i++) 9214 ena_tc_qdisc |= BIT(i); 9215 9216 switch (mode) { 9217 case TC_MQPRIO_MODE_CHANNEL: 9218 9219 if (pf->hw.port_info->is_custom_tx_enabled) { 9220 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9221 return -EBUSY; 9222 } 9223 ice_tear_down_devlink_rate_tree(pf); 9224 9225 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9226 if (ret) { 9227 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9228 ret); 9229 return ret; 9230 } 9231 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9232 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9233 /* don't assume state of hw_tc_offload during driver load 9234 * and set the flag for TC flower filter if hw_tc_offload 9235 * already ON 9236 */ 9237 if (vsi->netdev->features & NETIF_F_HW_TC) 9238 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9239 break; 9240 default: 9241 return -EINVAL; 9242 } 9243 9244 config_tcf: 9245 9246 /* Requesting same TCF configuration as already enabled */ 9247 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9248 mode != TC_MQPRIO_MODE_CHANNEL) 9249 return 0; 9250 9251 /* Pause VSI queues */ 9252 ice_dis_vsi(vsi, true); 9253 9254 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9255 ice_remove_q_channels(vsi, true); 9256 9257 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9258 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9259 num_online_cpus()); 9260 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9261 num_online_cpus()); 9262 } else { 9263 /* logic to rebuild VSI, same like ethtool -L */ 9264 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9265 9266 for (i = 0; i < num_tcf; i++) { 9267 if (!(ena_tc_qdisc & BIT(i))) 9268 continue; 9269 9270 offset = vsi->mqprio_qopt.qopt.offset[i]; 9271 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9272 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9273 } 9274 vsi->req_txq = offset + qcount_tx; 9275 vsi->req_rxq = offset + qcount_rx; 9276 9277 /* store away original rss_size info, so that it gets reused 9278 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9279 * determine, what should be the rss_sizefor main VSI 9280 */ 9281 vsi->orig_rss_size = vsi->rss_size; 9282 } 9283 9284 /* save current values of Tx and Rx queues before calling VSI rebuild 9285 * for fallback option 9286 */ 9287 cur_txq = vsi->num_txq; 9288 cur_rxq = vsi->num_rxq; 9289 9290 /* proceed with rebuild main VSI using correct number of queues */ 9291 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9292 if (ret) { 9293 /* fallback to current number of queues */ 9294 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9295 vsi->req_txq = cur_txq; 9296 vsi->req_rxq = cur_rxq; 9297 clear_bit(ICE_RESET_FAILED, pf->state); 9298 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9299 dev_err(dev, "Rebuild of main VSI failed again\n"); 9300 return ret; 9301 } 9302 } 9303 9304 vsi->all_numtc = num_tcf; 9305 vsi->all_enatc = ena_tc_qdisc; 9306 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9307 if (ret) { 9308 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9309 vsi->vsi_num); 9310 goto exit; 9311 } 9312 9313 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9314 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9315 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9316 9317 /* set TC0 rate limit if specified */ 9318 if (max_tx_rate || min_tx_rate) { 9319 /* convert to Kbits/s */ 9320 if (max_tx_rate) 9321 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9322 if (min_tx_rate) 9323 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9324 9325 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9326 if (!ret) { 9327 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9328 max_tx_rate, min_tx_rate, vsi->vsi_num); 9329 } else { 9330 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9331 max_tx_rate, min_tx_rate, vsi->vsi_num); 9332 goto exit; 9333 } 9334 } 9335 ret = ice_create_q_channels(vsi); 9336 if (ret) { 9337 netdev_err(netdev, "failed configuring queue channels\n"); 9338 goto exit; 9339 } else { 9340 netdev_dbg(netdev, "successfully configured channels\n"); 9341 } 9342 } 9343 9344 if (vsi->ch_rss_size) 9345 ice_vsi_cfg_rss_lut_key(vsi); 9346 9347 exit: 9348 /* if error, reset the all_numtc and all_enatc */ 9349 if (ret) { 9350 vsi->all_numtc = 0; 9351 vsi->all_enatc = 0; 9352 } 9353 /* resume VSI */ 9354 ice_ena_vsi(vsi, true); 9355 9356 return ret; 9357 } 9358 9359 static LIST_HEAD(ice_block_cb_list); 9360 9361 static int 9362 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9363 void *type_data) 9364 { 9365 struct ice_netdev_priv *np = netdev_priv(netdev); 9366 enum flow_block_binder_type binder_type; 9367 struct iidc_rdma_core_dev_info *cdev; 9368 struct ice_pf *pf = np->vsi->back; 9369 flow_setup_cb_t *flower_handler; 9370 bool locked = false; 9371 int err; 9372 9373 switch (type) { 9374 case TC_SETUP_BLOCK: 9375 binder_type = 9376 ((struct flow_block_offload *)type_data)->binder_type; 9377 9378 switch (binder_type) { 9379 case FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS: 9380 flower_handler = ice_setup_tc_block_cb_ingress; 9381 break; 9382 case FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS: 9383 flower_handler = ice_setup_tc_block_cb_egress; 9384 break; 9385 default: 9386 return -EOPNOTSUPP; 9387 } 9388 9389 return flow_block_cb_setup_simple(type_data, 9390 &ice_block_cb_list, 9391 flower_handler, 9392 np, np, false); 9393 case TC_SETUP_QDISC_MQPRIO: 9394 if (ice_is_eswitch_mode_switchdev(pf)) { 9395 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9396 return -EOPNOTSUPP; 9397 } 9398 9399 cdev = pf->cdev_info; 9400 if (cdev && cdev->adev) { 9401 mutex_lock(&pf->adev_mutex); 9402 device_lock(&cdev->adev->dev); 9403 locked = true; 9404 if (cdev->adev->dev.driver) { 9405 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9406 err = -EBUSY; 9407 goto adev_unlock; 9408 } 9409 } 9410 9411 /* setup traffic classifier for receive side */ 9412 mutex_lock(&pf->tc_mutex); 9413 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9414 mutex_unlock(&pf->tc_mutex); 9415 9416 adev_unlock: 9417 if (locked) { 9418 device_unlock(&cdev->adev->dev); 9419 mutex_unlock(&pf->adev_mutex); 9420 } 9421 return err; 9422 default: 9423 return -EOPNOTSUPP; 9424 } 9425 return -EOPNOTSUPP; 9426 } 9427 9428 static struct ice_indr_block_priv * 9429 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9430 struct net_device *netdev) 9431 { 9432 struct ice_indr_block_priv *cb_priv; 9433 9434 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9435 if (!cb_priv->netdev) 9436 return NULL; 9437 if (cb_priv->netdev == netdev) 9438 return cb_priv; 9439 } 9440 return NULL; 9441 } 9442 9443 static int 9444 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9445 void *indr_priv) 9446 { 9447 struct ice_indr_block_priv *priv = indr_priv; 9448 struct ice_netdev_priv *np = priv->np; 9449 9450 switch (type) { 9451 case TC_SETUP_CLSFLOWER: 9452 return ice_setup_tc_cls_flower(np, priv->netdev, 9453 (struct flow_cls_offload *) 9454 type_data, false); 9455 default: 9456 return -EOPNOTSUPP; 9457 } 9458 } 9459 9460 static int 9461 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9462 struct ice_netdev_priv *np, 9463 struct flow_block_offload *f, void *data, 9464 void (*cleanup)(struct flow_block_cb *block_cb)) 9465 { 9466 struct ice_indr_block_priv *indr_priv; 9467 struct flow_block_cb *block_cb; 9468 9469 if (!ice_is_tunnel_supported(netdev) && 9470 !(is_vlan_dev(netdev) && 9471 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9472 return -EOPNOTSUPP; 9473 9474 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9475 return -EOPNOTSUPP; 9476 9477 switch (f->command) { 9478 case FLOW_BLOCK_BIND: 9479 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9480 if (indr_priv) 9481 return -EEXIST; 9482 9483 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9484 if (!indr_priv) 9485 return -ENOMEM; 9486 9487 indr_priv->netdev = netdev; 9488 indr_priv->np = np; 9489 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9490 9491 block_cb = 9492 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9493 indr_priv, indr_priv, 9494 ice_rep_indr_tc_block_unbind, 9495 f, netdev, sch, data, np, 9496 cleanup); 9497 9498 if (IS_ERR(block_cb)) { 9499 list_del(&indr_priv->list); 9500 kfree(indr_priv); 9501 return PTR_ERR(block_cb); 9502 } 9503 flow_block_cb_add(block_cb, f); 9504 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9505 break; 9506 case FLOW_BLOCK_UNBIND: 9507 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9508 if (!indr_priv) 9509 return -ENOENT; 9510 9511 block_cb = flow_block_cb_lookup(f->block, 9512 ice_indr_setup_block_cb, 9513 indr_priv); 9514 if (!block_cb) 9515 return -ENOENT; 9516 9517 flow_indr_block_cb_remove(block_cb, f); 9518 9519 list_del(&block_cb->driver_list); 9520 break; 9521 default: 9522 return -EOPNOTSUPP; 9523 } 9524 return 0; 9525 } 9526 9527 static int 9528 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9529 void *cb_priv, enum tc_setup_type type, void *type_data, 9530 void *data, 9531 void (*cleanup)(struct flow_block_cb *block_cb)) 9532 { 9533 switch (type) { 9534 case TC_SETUP_BLOCK: 9535 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9536 data, cleanup); 9537 9538 default: 9539 return -EOPNOTSUPP; 9540 } 9541 } 9542 9543 /** 9544 * ice_open - Called when a network interface becomes active 9545 * @netdev: network interface device structure 9546 * 9547 * The open entry point is called when a network interface is made 9548 * active by the system (IFF_UP). At this point all resources needed 9549 * for transmit and receive operations are allocated, the interrupt 9550 * handler is registered with the OS, the netdev watchdog is enabled, 9551 * and the stack is notified that the interface is ready. 9552 * 9553 * Returns 0 on success, negative value on failure 9554 */ 9555 int ice_open(struct net_device *netdev) 9556 { 9557 struct ice_netdev_priv *np = netdev_priv(netdev); 9558 struct ice_pf *pf = np->vsi->back; 9559 9560 if (ice_is_reset_in_progress(pf->state)) { 9561 netdev_err(netdev, "can't open net device while reset is in progress"); 9562 return -EBUSY; 9563 } 9564 9565 return ice_open_internal(netdev); 9566 } 9567 9568 /** 9569 * ice_open_internal - Called when a network interface becomes active 9570 * @netdev: network interface device structure 9571 * 9572 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9573 * handling routine 9574 * 9575 * Returns 0 on success, negative value on failure 9576 */ 9577 int ice_open_internal(struct net_device *netdev) 9578 { 9579 struct ice_netdev_priv *np = netdev_priv(netdev); 9580 struct ice_vsi *vsi = np->vsi; 9581 struct ice_pf *pf = vsi->back; 9582 struct ice_port_info *pi; 9583 int err; 9584 9585 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9586 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9587 return -EIO; 9588 } 9589 9590 netif_carrier_off(netdev); 9591 9592 pi = vsi->port_info; 9593 err = ice_update_link_info(pi); 9594 if (err) { 9595 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9596 return err; 9597 } 9598 9599 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9600 9601 /* Set PHY if there is media, otherwise, turn off PHY */ 9602 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9603 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9604 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9605 err = ice_init_phy_user_cfg(pi); 9606 if (err) { 9607 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9608 err); 9609 return err; 9610 } 9611 } 9612 9613 err = ice_configure_phy(vsi); 9614 if (err) { 9615 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9616 err); 9617 return err; 9618 } 9619 } else { 9620 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9621 ice_set_link(vsi, false); 9622 } 9623 9624 err = ice_vsi_open(vsi); 9625 if (err) 9626 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9627 vsi->vsi_num, vsi->vsw->sw_id); 9628 9629 /* Update existing tunnels information */ 9630 udp_tunnel_get_rx_info(netdev); 9631 9632 return err; 9633 } 9634 9635 /** 9636 * ice_stop - Disables a network interface 9637 * @netdev: network interface device structure 9638 * 9639 * The stop entry point is called when an interface is de-activated by the OS, 9640 * and the netdevice enters the DOWN state. The hardware is still under the 9641 * driver's control, but the netdev interface is disabled. 9642 * 9643 * Returns success only - not allowed to fail 9644 */ 9645 int ice_stop(struct net_device *netdev) 9646 { 9647 struct ice_netdev_priv *np = netdev_priv(netdev); 9648 struct ice_vsi *vsi = np->vsi; 9649 struct ice_pf *pf = vsi->back; 9650 9651 if (ice_is_reset_in_progress(pf->state)) { 9652 netdev_err(netdev, "can't stop net device while reset is in progress"); 9653 return -EBUSY; 9654 } 9655 9656 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9657 int link_err = ice_force_phys_link_state(vsi, false); 9658 9659 if (link_err) { 9660 if (link_err == -ENOMEDIUM) 9661 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9662 vsi->vsi_num); 9663 else 9664 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9665 vsi->vsi_num, link_err); 9666 9667 ice_vsi_close(vsi); 9668 return -EIO; 9669 } 9670 } 9671 9672 ice_vsi_close(vsi); 9673 9674 return 0; 9675 } 9676 9677 /** 9678 * ice_features_check - Validate encapsulated packet conforms to limits 9679 * @skb: skb buffer 9680 * @netdev: This port's netdev 9681 * @features: Offload features that the stack believes apply 9682 */ 9683 static netdev_features_t 9684 ice_features_check(struct sk_buff *skb, 9685 struct net_device __always_unused *netdev, 9686 netdev_features_t features) 9687 { 9688 bool gso = skb_is_gso(skb); 9689 size_t len; 9690 9691 /* No point in doing any of this if neither checksum nor GSO are 9692 * being requested for this frame. We can rule out both by just 9693 * checking for CHECKSUM_PARTIAL 9694 */ 9695 if (skb->ip_summed != CHECKSUM_PARTIAL) 9696 return features; 9697 9698 /* We cannot support GSO if the MSS is going to be less than 9699 * 64 bytes. If it is then we need to drop support for GSO. 9700 */ 9701 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9702 features &= ~NETIF_F_GSO_MASK; 9703 9704 len = skb_network_offset(skb); 9705 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9706 goto out_rm_features; 9707 9708 len = skb_network_header_len(skb); 9709 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9710 goto out_rm_features; 9711 9712 if (skb->encapsulation) { 9713 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9714 * the case of IPIP frames, the transport header pointer is 9715 * after the inner header! So check to make sure that this 9716 * is a GRE or UDP_TUNNEL frame before doing that math. 9717 */ 9718 if (gso && (skb_shinfo(skb)->gso_type & 9719 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9720 len = skb_inner_network_header(skb) - 9721 skb_transport_header(skb); 9722 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9723 goto out_rm_features; 9724 } 9725 9726 len = skb_inner_network_header_len(skb); 9727 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9728 goto out_rm_features; 9729 } 9730 9731 return features; 9732 out_rm_features: 9733 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9734 } 9735 9736 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9737 .ndo_open = ice_open, 9738 .ndo_stop = ice_stop, 9739 .ndo_start_xmit = ice_start_xmit, 9740 .ndo_set_mac_address = ice_set_mac_address, 9741 .ndo_validate_addr = eth_validate_addr, 9742 .ndo_change_mtu = ice_change_mtu, 9743 .ndo_get_stats64 = ice_get_stats64, 9744 .ndo_tx_timeout = ice_tx_timeout, 9745 .ndo_bpf = ice_xdp_safe_mode, 9746 }; 9747 9748 static const struct net_device_ops ice_netdev_ops = { 9749 .ndo_open = ice_open, 9750 .ndo_stop = ice_stop, 9751 .ndo_start_xmit = ice_start_xmit, 9752 .ndo_select_queue = ice_select_queue, 9753 .ndo_features_check = ice_features_check, 9754 .ndo_fix_features = ice_fix_features, 9755 .ndo_set_rx_mode = ice_set_rx_mode, 9756 .ndo_set_mac_address = ice_set_mac_address, 9757 .ndo_validate_addr = eth_validate_addr, 9758 .ndo_change_mtu = ice_change_mtu, 9759 .ndo_get_stats64 = ice_get_stats64, 9760 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9761 .ndo_eth_ioctl = ice_eth_ioctl, 9762 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9763 .ndo_set_vf_mac = ice_set_vf_mac, 9764 .ndo_get_vf_config = ice_get_vf_cfg, 9765 .ndo_set_vf_trust = ice_set_vf_trust, 9766 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9767 .ndo_set_vf_link_state = ice_set_vf_link_state, 9768 .ndo_get_vf_stats = ice_get_vf_stats, 9769 .ndo_set_vf_rate = ice_set_vf_bw, 9770 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9771 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9772 .ndo_setup_tc = ice_setup_tc, 9773 .ndo_set_features = ice_set_features, 9774 .ndo_bridge_getlink = ice_bridge_getlink, 9775 .ndo_bridge_setlink = ice_bridge_setlink, 9776 .ndo_fdb_add = ice_fdb_add, 9777 .ndo_fdb_del = ice_fdb_del, 9778 #ifdef CONFIG_RFS_ACCEL 9779 .ndo_rx_flow_steer = ice_rx_flow_steer, 9780 #endif 9781 .ndo_tx_timeout = ice_tx_timeout, 9782 .ndo_bpf = ice_xdp, 9783 .ndo_xdp_xmit = ice_xdp_xmit, 9784 .ndo_xsk_wakeup = ice_xsk_wakeup, 9785 }; 9786