1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS("LIBIE"); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops || 91 dev->netdev_ops == &ice_netdev_safe_mode_ops); 92 } 93 94 /** 95 * ice_get_tx_pending - returns number of Tx descriptors not processed 96 * @ring: the ring of descriptors 97 */ 98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 99 { 100 u16 head, tail; 101 102 head = ring->next_to_clean; 103 tail = ring->next_to_use; 104 105 if (head != tail) 106 return (head < tail) ? 107 tail - head : (tail + ring->count - head); 108 return 0; 109 } 110 111 /** 112 * ice_check_for_hang_subtask - check for and recover hung queues 113 * @pf: pointer to PF struct 114 */ 115 static void ice_check_for_hang_subtask(struct ice_pf *pf) 116 { 117 struct ice_vsi *vsi = NULL; 118 struct ice_hw *hw; 119 unsigned int i; 120 int packets; 121 u32 v; 122 123 ice_for_each_vsi(pf, v) 124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 125 vsi = pf->vsi[v]; 126 break; 127 } 128 129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 130 return; 131 132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 133 return; 134 135 hw = &vsi->back->hw; 136 137 ice_for_each_txq(vsi, i) { 138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 139 struct ice_ring_stats *ring_stats; 140 141 if (!tx_ring) 142 continue; 143 if (ice_ring_ch_enabled(tx_ring)) 144 continue; 145 146 ring_stats = tx_ring->ring_stats; 147 if (!ring_stats) 148 continue; 149 150 if (tx_ring->desc) { 151 /* If packet counter has not changed the queue is 152 * likely stalled, so force an interrupt for this 153 * queue. 154 * 155 * prev_pkt would be negative if there was no 156 * pending work. 157 */ 158 packets = ring_stats->stats.pkts & INT_MAX; 159 if (ring_stats->tx_stats.prev_pkt == packets) { 160 /* Trigger sw interrupt to revive the queue */ 161 ice_trigger_sw_intr(hw, tx_ring->q_vector); 162 continue; 163 } 164 165 /* Memory barrier between read of packet count and call 166 * to ice_get_tx_pending() 167 */ 168 smp_rmb(); 169 ring_stats->tx_stats.prev_pkt = 170 ice_get_tx_pending(tx_ring) ? packets : -1; 171 } 172 } 173 } 174 175 /** 176 * ice_init_mac_fltr - Set initial MAC filters 177 * @pf: board private structure 178 * 179 * Set initial set of MAC filters for PF VSI; configure filters for permanent 180 * address and broadcast address. If an error is encountered, netdevice will be 181 * unregistered. 182 */ 183 static int ice_init_mac_fltr(struct ice_pf *pf) 184 { 185 struct ice_vsi *vsi; 186 u8 *perm_addr; 187 188 vsi = ice_get_main_vsi(pf); 189 if (!vsi) 190 return -EINVAL; 191 192 perm_addr = vsi->port_info->mac.perm_addr; 193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 194 } 195 196 /** 197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 198 * @netdev: the net device on which the sync is happening 199 * @addr: MAC address to sync 200 * 201 * This is a callback function which is called by the in kernel device sync 202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 204 * MAC filters from the hardware. 205 */ 206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 207 { 208 struct ice_netdev_priv *np = netdev_priv(netdev); 209 struct ice_vsi *vsi = np->vsi; 210 211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 212 ICE_FWD_TO_VSI)) 213 return -EINVAL; 214 215 return 0; 216 } 217 218 /** 219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 220 * @netdev: the net device on which the unsync is happening 221 * @addr: MAC address to unsync 222 * 223 * This is a callback function which is called by the in kernel device unsync 224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 226 * delete the MAC filters from the hardware. 227 */ 228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 229 { 230 struct ice_netdev_priv *np = netdev_priv(netdev); 231 struct ice_vsi *vsi = np->vsi; 232 233 /* Under some circumstances, we might receive a request to delete our 234 * own device address from our uc list. Because we store the device 235 * address in the VSI's MAC filter list, we need to ignore such 236 * requests and not delete our device address from this list. 237 */ 238 if (ether_addr_equal(addr, netdev->dev_addr)) 239 return 0; 240 241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 242 ICE_FWD_TO_VSI)) 243 return -EINVAL; 244 245 return 0; 246 } 247 248 /** 249 * ice_vsi_fltr_changed - check if filter state changed 250 * @vsi: VSI to be checked 251 * 252 * returns true if filter state has changed, false otherwise. 253 */ 254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 255 { 256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 258 } 259 260 /** 261 * ice_set_promisc - Enable promiscuous mode for a given PF 262 * @vsi: the VSI being configured 263 * @promisc_m: mask of promiscuous config bits 264 * 265 */ 266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 267 { 268 int status; 269 270 if (vsi->type != ICE_VSI_PF) 271 return 0; 272 273 if (ice_vsi_has_non_zero_vlans(vsi)) { 274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 276 promisc_m); 277 } else { 278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 279 promisc_m, 0); 280 } 281 if (status && status != -EEXIST) 282 return status; 283 284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 285 vsi->vsi_num, promisc_m); 286 return 0; 287 } 288 289 /** 290 * ice_clear_promisc - Disable promiscuous mode for a given PF 291 * @vsi: the VSI being configured 292 * @promisc_m: mask of promiscuous config bits 293 * 294 */ 295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 296 { 297 int status; 298 299 if (vsi->type != ICE_VSI_PF) 300 return 0; 301 302 if (ice_vsi_has_non_zero_vlans(vsi)) { 303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 305 promisc_m); 306 } else { 307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 308 promisc_m, 0); 309 } 310 311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 312 vsi->vsi_num, promisc_m); 313 return status; 314 } 315 316 /** 317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 318 * @vsi: ptr to the VSI 319 * 320 * Push any outstanding VSI filter changes through the AdminQ. 321 */ 322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 323 { 324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 325 struct device *dev = ice_pf_to_dev(vsi->back); 326 struct net_device *netdev = vsi->netdev; 327 bool promisc_forced_on = false; 328 struct ice_pf *pf = vsi->back; 329 struct ice_hw *hw = &pf->hw; 330 u32 changed_flags = 0; 331 int err; 332 333 if (!vsi->netdev) 334 return -EINVAL; 335 336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 337 usleep_range(1000, 2000); 338 339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 340 vsi->current_netdev_flags = vsi->netdev->flags; 341 342 INIT_LIST_HEAD(&vsi->tmp_sync_list); 343 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 344 345 if (ice_vsi_fltr_changed(vsi)) { 346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 348 349 /* grab the netdev's addr_list_lock */ 350 netif_addr_lock_bh(netdev); 351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 354 ice_add_mac_to_unsync_list); 355 /* our temp lists are populated. release lock */ 356 netif_addr_unlock_bh(netdev); 357 } 358 359 /* Remove MAC addresses in the unsync list */ 360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 362 if (err) { 363 netdev_err(netdev, "Failed to delete MAC filters\n"); 364 /* if we failed because of alloc failures, just bail */ 365 if (err == -ENOMEM) 366 goto out; 367 } 368 369 /* Add MAC addresses in the sync list */ 370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 371 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 372 /* If filter is added successfully or already exists, do not go into 373 * 'if' condition and report it as error. Instead continue processing 374 * rest of the function. 375 */ 376 if (err && err != -EEXIST) { 377 netdev_err(netdev, "Failed to add MAC filters\n"); 378 /* If there is no more space for new umac filters, VSI 379 * should go into promiscuous mode. There should be some 380 * space reserved for promiscuous filters. 381 */ 382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 384 vsi->state)) { 385 promisc_forced_on = true; 386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 387 vsi->vsi_num); 388 } else { 389 goto out; 390 } 391 } 392 err = 0; 393 /* check for changes in promiscuous modes */ 394 if (changed_flags & IFF_ALLMULTI) { 395 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 397 if (err) { 398 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 399 goto out_promisc; 400 } 401 } else { 402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 404 if (err) { 405 vsi->current_netdev_flags |= IFF_ALLMULTI; 406 goto out_promisc; 407 } 408 } 409 } 410 411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 414 if (vsi->current_netdev_flags & IFF_PROMISC) { 415 /* Apply Rx filter rule to get traffic from wire */ 416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 417 err = ice_set_dflt_vsi(vsi); 418 if (err && err != -EEXIST) { 419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 420 err, vsi->vsi_num); 421 vsi->current_netdev_flags &= 422 ~IFF_PROMISC; 423 goto out_promisc; 424 } 425 err = 0; 426 vlan_ops->dis_rx_filtering(vsi); 427 428 /* promiscuous mode implies allmulticast so 429 * that VSIs that are in promiscuous mode are 430 * subscribed to multicast packets coming to 431 * the port 432 */ 433 err = ice_set_promisc(vsi, 434 ICE_MCAST_PROMISC_BITS); 435 if (err) 436 goto out_promisc; 437 } 438 } else { 439 /* Clear Rx filter to remove traffic from wire */ 440 if (ice_is_vsi_dflt_vsi(vsi)) { 441 err = ice_clear_dflt_vsi(vsi); 442 if (err) { 443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 444 err, vsi->vsi_num); 445 vsi->current_netdev_flags |= 446 IFF_PROMISC; 447 goto out_promisc; 448 } 449 if (vsi->netdev->features & 450 NETIF_F_HW_VLAN_CTAG_FILTER) 451 vlan_ops->ena_rx_filtering(vsi); 452 } 453 454 /* disable allmulti here, but only if allmulti is not 455 * still enabled for the netdev 456 */ 457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 458 err = ice_clear_promisc(vsi, 459 ICE_MCAST_PROMISC_BITS); 460 if (err) { 461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 462 err, vsi->vsi_num); 463 } 464 } 465 } 466 } 467 goto exit; 468 469 out_promisc: 470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 471 goto exit; 472 out: 473 /* if something went wrong then set the changed flag so we try again */ 474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 476 exit: 477 clear_bit(ICE_CFG_BUSY, vsi->state); 478 return err; 479 } 480 481 /** 482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 483 * @pf: board private structure 484 */ 485 static void ice_sync_fltr_subtask(struct ice_pf *pf) 486 { 487 int v; 488 489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 490 return; 491 492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 494 ice_for_each_vsi(pf, v) 495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 496 ice_vsi_sync_fltr(pf->vsi[v])) { 497 /* come back and try again later */ 498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 499 break; 500 } 501 } 502 503 /** 504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 505 * @pf: the PF 506 * @locked: is the rtnl_lock already held 507 */ 508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 509 { 510 int node; 511 int v; 512 513 ice_for_each_vsi(pf, v) 514 if (pf->vsi[v]) 515 ice_dis_vsi(pf->vsi[v], locked); 516 517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 518 pf->pf_agg_node[node].num_vsis = 0; 519 520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 521 pf->vf_agg_node[node].num_vsis = 0; 522 } 523 524 /** 525 * ice_prepare_for_reset - prep for reset 526 * @pf: board private structure 527 * @reset_type: reset type requested 528 * 529 * Inform or close all dependent features in prep for reset. 530 */ 531 static void 532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 533 { 534 struct ice_hw *hw = &pf->hw; 535 struct ice_vsi *vsi; 536 struct ice_vf *vf; 537 unsigned int bkt; 538 539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 540 541 /* already prepared for reset */ 542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 543 return; 544 545 synchronize_irq(pf->oicr_irq.virq); 546 547 ice_unplug_aux_dev(pf); 548 549 /* Notify VFs of impending reset */ 550 if (ice_check_sq_alive(hw, &hw->mailboxq)) 551 ice_vc_notify_reset(pf); 552 553 /* Disable VFs until reset is completed */ 554 mutex_lock(&pf->vfs.table_lock); 555 ice_for_each_vf(pf, bkt, vf) 556 ice_set_vf_state_dis(vf); 557 mutex_unlock(&pf->vfs.table_lock); 558 559 if (ice_is_eswitch_mode_switchdev(pf)) { 560 rtnl_lock(); 561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 562 rtnl_unlock(); 563 } 564 565 /* release ADQ specific HW and SW resources */ 566 vsi = ice_get_main_vsi(pf); 567 if (!vsi) 568 goto skip; 569 570 /* to be on safe side, reset orig_rss_size so that normal flow 571 * of deciding rss_size can take precedence 572 */ 573 vsi->orig_rss_size = 0; 574 575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 576 if (reset_type == ICE_RESET_PFR) { 577 vsi->old_ena_tc = vsi->all_enatc; 578 vsi->old_numtc = vsi->all_numtc; 579 } else { 580 ice_remove_q_channels(vsi, true); 581 582 /* for other reset type, do not support channel rebuild 583 * hence reset needed info 584 */ 585 vsi->old_ena_tc = 0; 586 vsi->all_enatc = 0; 587 vsi->old_numtc = 0; 588 vsi->all_numtc = 0; 589 vsi->req_txq = 0; 590 vsi->req_rxq = 0; 591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 593 } 594 } 595 596 if (vsi->netdev) 597 netif_device_detach(vsi->netdev); 598 skip: 599 600 /* clear SW filtering DB */ 601 ice_clear_hw_tbls(hw); 602 /* disable the VSIs and their queues that are not already DOWN */ 603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 604 ice_pf_dis_all_vsi(pf, false); 605 606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 607 ice_ptp_prepare_for_reset(pf, reset_type); 608 609 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 610 ice_gnss_exit(pf); 611 612 if (hw->port_info) 613 ice_sched_clear_port(hw->port_info); 614 615 ice_shutdown_all_ctrlq(hw, false); 616 617 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 618 } 619 620 /** 621 * ice_do_reset - Initiate one of many types of resets 622 * @pf: board private structure 623 * @reset_type: reset type requested before this function was called. 624 */ 625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 626 { 627 struct device *dev = ice_pf_to_dev(pf); 628 struct ice_hw *hw = &pf->hw; 629 630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 631 632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 634 reset_type = ICE_RESET_CORER; 635 } 636 637 ice_prepare_for_reset(pf, reset_type); 638 639 /* trigger the reset */ 640 if (ice_reset(hw, reset_type)) { 641 dev_err(dev, "reset %d failed\n", reset_type); 642 set_bit(ICE_RESET_FAILED, pf->state); 643 clear_bit(ICE_RESET_OICR_RECV, pf->state); 644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 645 clear_bit(ICE_PFR_REQ, pf->state); 646 clear_bit(ICE_CORER_REQ, pf->state); 647 clear_bit(ICE_GLOBR_REQ, pf->state); 648 wake_up(&pf->reset_wait_queue); 649 return; 650 } 651 652 /* PFR is a bit of a special case because it doesn't result in an OICR 653 * interrupt. So for PFR, rebuild after the reset and clear the reset- 654 * associated state bits. 655 */ 656 if (reset_type == ICE_RESET_PFR) { 657 pf->pfr_count++; 658 ice_rebuild(pf, reset_type); 659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 660 clear_bit(ICE_PFR_REQ, pf->state); 661 wake_up(&pf->reset_wait_queue); 662 ice_reset_all_vfs(pf); 663 } 664 } 665 666 /** 667 * ice_reset_subtask - Set up for resetting the device and driver 668 * @pf: board private structure 669 */ 670 static void ice_reset_subtask(struct ice_pf *pf) 671 { 672 enum ice_reset_req reset_type = ICE_RESET_INVAL; 673 674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 676 * of reset is pending and sets bits in pf->state indicating the reset 677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 678 * prepare for pending reset if not already (for PF software-initiated 679 * global resets the software should already be prepared for it as 680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 681 * by firmware or software on other PFs, that bit is not set so prepare 682 * for the reset now), poll for reset done, rebuild and return. 683 */ 684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 685 /* Perform the largest reset requested */ 686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 687 reset_type = ICE_RESET_CORER; 688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 689 reset_type = ICE_RESET_GLOBR; 690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 691 reset_type = ICE_RESET_EMPR; 692 /* return if no valid reset type requested */ 693 if (reset_type == ICE_RESET_INVAL) 694 return; 695 ice_prepare_for_reset(pf, reset_type); 696 697 /* make sure we are ready to rebuild */ 698 if (ice_check_reset(&pf->hw)) { 699 set_bit(ICE_RESET_FAILED, pf->state); 700 } else { 701 /* done with reset. start rebuild */ 702 pf->hw.reset_ongoing = false; 703 ice_rebuild(pf, reset_type); 704 /* clear bit to resume normal operations, but 705 * ICE_NEEDS_RESTART bit is set in case rebuild failed 706 */ 707 clear_bit(ICE_RESET_OICR_RECV, pf->state); 708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 709 clear_bit(ICE_PFR_REQ, pf->state); 710 clear_bit(ICE_CORER_REQ, pf->state); 711 clear_bit(ICE_GLOBR_REQ, pf->state); 712 wake_up(&pf->reset_wait_queue); 713 ice_reset_all_vfs(pf); 714 } 715 716 return; 717 } 718 719 /* No pending resets to finish processing. Check for new resets */ 720 if (test_bit(ICE_PFR_REQ, pf->state)) { 721 reset_type = ICE_RESET_PFR; 722 if (pf->lag && pf->lag->bonded) { 723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 724 reset_type = ICE_RESET_CORER; 725 } 726 } 727 if (test_bit(ICE_CORER_REQ, pf->state)) 728 reset_type = ICE_RESET_CORER; 729 if (test_bit(ICE_GLOBR_REQ, pf->state)) 730 reset_type = ICE_RESET_GLOBR; 731 /* If no valid reset type requested just return */ 732 if (reset_type == ICE_RESET_INVAL) 733 return; 734 735 /* reset if not already down or busy */ 736 if (!test_bit(ICE_DOWN, pf->state) && 737 !test_bit(ICE_CFG_BUSY, pf->state)) { 738 ice_do_reset(pf, reset_type); 739 } 740 } 741 742 /** 743 * ice_print_topo_conflict - print topology conflict message 744 * @vsi: the VSI whose topology status is being checked 745 */ 746 static void ice_print_topo_conflict(struct ice_vsi *vsi) 747 { 748 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 749 case ICE_AQ_LINK_TOPO_CONFLICT: 750 case ICE_AQ_LINK_MEDIA_CONFLICT: 751 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 755 break; 756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 759 else 760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 761 break; 762 default: 763 break; 764 } 765 } 766 767 /** 768 * ice_print_link_msg - print link up or down message 769 * @vsi: the VSI whose link status is being queried 770 * @isup: boolean for if the link is now up or down 771 */ 772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 773 { 774 struct ice_aqc_get_phy_caps_data *caps; 775 const char *an_advertised; 776 const char *fec_req; 777 const char *speed; 778 const char *fec; 779 const char *fc; 780 const char *an; 781 int status; 782 783 if (!vsi) 784 return; 785 786 if (vsi->current_isup == isup) 787 return; 788 789 vsi->current_isup = isup; 790 791 if (!isup) { 792 netdev_info(vsi->netdev, "NIC Link is Down\n"); 793 return; 794 } 795 796 switch (vsi->port_info->phy.link_info.link_speed) { 797 case ICE_AQ_LINK_SPEED_200GB: 798 speed = "200 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_100GB: 801 speed = "100 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_50GB: 804 speed = "50 G"; 805 break; 806 case ICE_AQ_LINK_SPEED_40GB: 807 speed = "40 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_25GB: 810 speed = "25 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_20GB: 813 speed = "20 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_10GB: 816 speed = "10 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_5GB: 819 speed = "5 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_2500MB: 822 speed = "2.5 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_1000MB: 825 speed = "1 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_100MB: 828 speed = "100 M"; 829 break; 830 default: 831 speed = "Unknown "; 832 break; 833 } 834 835 switch (vsi->port_info->fc.current_mode) { 836 case ICE_FC_FULL: 837 fc = "Rx/Tx"; 838 break; 839 case ICE_FC_TX_PAUSE: 840 fc = "Tx"; 841 break; 842 case ICE_FC_RX_PAUSE: 843 fc = "Rx"; 844 break; 845 case ICE_FC_NONE: 846 fc = "None"; 847 break; 848 default: 849 fc = "Unknown"; 850 break; 851 } 852 853 /* Get FEC mode based on negotiated link info */ 854 switch (vsi->port_info->phy.link_info.fec_info) { 855 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 856 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 857 fec = "RS-FEC"; 858 break; 859 case ICE_AQ_LINK_25G_KR_FEC_EN: 860 fec = "FC-FEC/BASE-R"; 861 break; 862 default: 863 fec = "NONE"; 864 break; 865 } 866 867 /* check if autoneg completed, might be false due to not supported */ 868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 869 an = "True"; 870 else 871 an = "False"; 872 873 /* Get FEC mode requested based on PHY caps last SW configuration */ 874 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 875 if (!caps) { 876 fec_req = "Unknown"; 877 an_advertised = "Unknown"; 878 goto done; 879 } 880 881 status = ice_aq_get_phy_caps(vsi->port_info, false, 882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 883 if (status) 884 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 885 886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 887 888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 890 fec_req = "RS-FEC"; 891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 893 fec_req = "FC-FEC/BASE-R"; 894 else 895 fec_req = "NONE"; 896 897 kfree(caps); 898 899 done: 900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 901 speed, fec_req, fec, an_advertised, an, fc); 902 ice_print_topo_conflict(vsi); 903 } 904 905 /** 906 * ice_vsi_link_event - update the VSI's netdev 907 * @vsi: the VSI on which the link event occurred 908 * @link_up: whether or not the VSI needs to be set up or down 909 */ 910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 911 { 912 if (!vsi) 913 return; 914 915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 916 return; 917 918 if (vsi->type == ICE_VSI_PF) { 919 if (link_up == netif_carrier_ok(vsi->netdev)) 920 return; 921 922 if (link_up) { 923 netif_carrier_on(vsi->netdev); 924 netif_tx_wake_all_queues(vsi->netdev); 925 } else { 926 netif_carrier_off(vsi->netdev); 927 netif_tx_stop_all_queues(vsi->netdev); 928 } 929 } 930 } 931 932 /** 933 * ice_set_dflt_mib - send a default config MIB to the FW 934 * @pf: private PF struct 935 * 936 * This function sends a default configuration MIB to the FW. 937 * 938 * If this function errors out at any point, the driver is still able to 939 * function. The main impact is that LFC may not operate as expected. 940 * Therefore an error state in this function should be treated with a DBG 941 * message and continue on with driver rebuild/reenable. 942 */ 943 static void ice_set_dflt_mib(struct ice_pf *pf) 944 { 945 struct device *dev = ice_pf_to_dev(pf); 946 u8 mib_type, *buf, *lldpmib = NULL; 947 u16 len, typelen, offset = 0; 948 struct ice_lldp_org_tlv *tlv; 949 struct ice_hw *hw = &pf->hw; 950 u32 ouisubtype; 951 952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 954 if (!lldpmib) { 955 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 956 __func__); 957 return; 958 } 959 960 /* Add ETS CFG TLV */ 961 tlv = (struct ice_lldp_org_tlv *)lldpmib; 962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 963 ICE_IEEE_ETS_TLV_LEN); 964 tlv->typelen = htons(typelen); 965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 966 ICE_IEEE_SUBTYPE_ETS_CFG); 967 tlv->ouisubtype = htonl(ouisubtype); 968 969 buf = tlv->tlvinfo; 970 buf[0] = 0; 971 972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 974 * Octets 13 - 20 are TSA values - leave as zeros 975 */ 976 buf[5] = 0x64; 977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 978 offset += len + 2; 979 tlv = (struct ice_lldp_org_tlv *) 980 ((char *)tlv + sizeof(tlv->typelen) + len); 981 982 /* Add ETS REC TLV */ 983 buf = tlv->tlvinfo; 984 tlv->typelen = htons(typelen); 985 986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 987 ICE_IEEE_SUBTYPE_ETS_REC); 988 tlv->ouisubtype = htonl(ouisubtype); 989 990 /* First octet of buf is reserved 991 * Octets 1 - 4 map UP to TC - all UPs map to zero 992 * Octets 5 - 12 are BW values - set TC 0 to 100%. 993 * Octets 13 - 20 are TSA value - leave as zeros 994 */ 995 buf[5] = 0x64; 996 offset += len + 2; 997 tlv = (struct ice_lldp_org_tlv *) 998 ((char *)tlv + sizeof(tlv->typelen) + len); 999 1000 /* Add PFC CFG TLV */ 1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1002 ICE_IEEE_PFC_TLV_LEN); 1003 tlv->typelen = htons(typelen); 1004 1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1006 ICE_IEEE_SUBTYPE_PFC_CFG); 1007 tlv->ouisubtype = htonl(ouisubtype); 1008 1009 /* Octet 1 left as all zeros - PFC disabled */ 1010 buf[0] = 0x08; 1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1012 offset += len + 2; 1013 1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1016 1017 kfree(lldpmib); 1018 } 1019 1020 /** 1021 * ice_check_phy_fw_load - check if PHY FW load failed 1022 * @pf: pointer to PF struct 1023 * @link_cfg_err: bitmap from the link info structure 1024 * 1025 * check if external PHY FW load failed and print an error message if it did 1026 */ 1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1031 return; 1032 } 1033 1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1035 return; 1036 1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1040 } 1041 } 1042 1043 /** 1044 * ice_check_module_power 1045 * @pf: pointer to PF struct 1046 * @link_cfg_err: bitmap from the link info structure 1047 * 1048 * check module power level returned by a previous call to aq_get_link_info 1049 * and print error messages if module power level is not supported 1050 */ 1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1052 { 1053 /* if module power level is supported, clear the flag */ 1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1057 return; 1058 } 1059 1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1061 * above block didn't clear this bit, there's nothing to do 1062 */ 1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1064 return; 1065 1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1072 } 1073 } 1074 1075 /** 1076 * ice_check_link_cfg_err - check if link configuration failed 1077 * @pf: pointer to the PF struct 1078 * @link_cfg_err: bitmap from the link info structure 1079 * 1080 * print if any link configuration failure happens due to the value in the 1081 * link_cfg_err parameter in the link info structure 1082 */ 1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1084 { 1085 ice_check_module_power(pf, link_cfg_err); 1086 ice_check_phy_fw_load(pf, link_cfg_err); 1087 } 1088 1089 /** 1090 * ice_link_event - process the link event 1091 * @pf: PF that the link event is associated with 1092 * @pi: port_info for the port that the link event is associated with 1093 * @link_up: true if the physical link is up and false if it is down 1094 * @link_speed: current link speed received from the link event 1095 * 1096 * Returns 0 on success and negative on failure 1097 */ 1098 static int 1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1100 u16 link_speed) 1101 { 1102 struct device *dev = ice_pf_to_dev(pf); 1103 struct ice_phy_info *phy_info; 1104 struct ice_vsi *vsi; 1105 u16 old_link_speed; 1106 bool old_link; 1107 int status; 1108 1109 phy_info = &pi->phy; 1110 phy_info->link_info_old = phy_info->link_info; 1111 1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1113 old_link_speed = phy_info->link_info_old.link_speed; 1114 1115 /* update the link info structures and re-enable link events, 1116 * don't bail on failure due to other book keeping needed 1117 */ 1118 status = ice_update_link_info(pi); 1119 if (status) 1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1121 pi->lport, status, 1122 ice_aq_str(pi->hw->adminq.sq_last_status)); 1123 1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1125 1126 /* Check if the link state is up after updating link info, and treat 1127 * this event as an UP event since the link is actually UP now. 1128 */ 1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1130 link_up = true; 1131 1132 vsi = ice_get_main_vsi(pf); 1133 if (!vsi || !vsi->port_info) 1134 return -EINVAL; 1135 1136 /* turn off PHY if media was removed */ 1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1140 ice_set_link(vsi, false); 1141 } 1142 1143 /* if the old link up/down and speed is the same as the new */ 1144 if (link_up == old_link && link_speed == old_link_speed) 1145 return 0; 1146 1147 ice_ptp_link_change(pf, link_up); 1148 1149 if (ice_is_dcb_active(pf)) { 1150 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1151 ice_dcb_rebuild(pf); 1152 } else { 1153 if (link_up) 1154 ice_set_dflt_mib(pf); 1155 } 1156 ice_vsi_link_event(vsi, link_up); 1157 ice_print_link_msg(vsi, link_up); 1158 1159 ice_vc_notify_link_state(pf); 1160 1161 return 0; 1162 } 1163 1164 /** 1165 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1166 * @pf: board private structure 1167 */ 1168 static void ice_watchdog_subtask(struct ice_pf *pf) 1169 { 1170 int i; 1171 1172 /* if interface is down do nothing */ 1173 if (test_bit(ICE_DOWN, pf->state) || 1174 test_bit(ICE_CFG_BUSY, pf->state)) 1175 return; 1176 1177 /* make sure we don't do these things too often */ 1178 if (time_before(jiffies, 1179 pf->serv_tmr_prev + pf->serv_tmr_period)) 1180 return; 1181 1182 pf->serv_tmr_prev = jiffies; 1183 1184 /* Update the stats for active netdevs so the network stack 1185 * can look at updated numbers whenever it cares to 1186 */ 1187 ice_update_pf_stats(pf); 1188 ice_for_each_vsi(pf, i) 1189 if (pf->vsi[i] && pf->vsi[i]->netdev) 1190 ice_update_vsi_stats(pf->vsi[i]); 1191 } 1192 1193 /** 1194 * ice_init_link_events - enable/initialize link events 1195 * @pi: pointer to the port_info instance 1196 * 1197 * Returns -EIO on failure, 0 on success 1198 */ 1199 static int ice_init_link_events(struct ice_port_info *pi) 1200 { 1201 u16 mask; 1202 1203 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1204 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1205 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1206 1207 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1209 pi->lport); 1210 return -EIO; 1211 } 1212 1213 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1215 pi->lport); 1216 return -EIO; 1217 } 1218 1219 return 0; 1220 } 1221 1222 /** 1223 * ice_handle_link_event - handle link event via ARQ 1224 * @pf: PF that the link event is associated with 1225 * @event: event structure containing link status info 1226 */ 1227 static int 1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1229 { 1230 struct ice_aqc_get_link_status_data *link_data; 1231 struct ice_port_info *port_info; 1232 int status; 1233 1234 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1235 port_info = pf->hw.port_info; 1236 if (!port_info) 1237 return -EINVAL; 1238 1239 status = ice_link_event(pf, port_info, 1240 !!(link_data->link_info & ICE_AQ_LINK_UP), 1241 le16_to_cpu(link_data->link_speed)); 1242 if (status) 1243 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1244 status); 1245 1246 return status; 1247 } 1248 1249 /** 1250 * ice_get_fwlog_data - copy the FW log data from ARQ event 1251 * @pf: PF that the FW log event is associated with 1252 * @event: event structure containing FW log data 1253 */ 1254 static void 1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1256 { 1257 struct ice_fwlog_data *fwlog; 1258 struct ice_hw *hw = &pf->hw; 1259 1260 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1261 1262 memset(fwlog->data, 0, PAGE_SIZE); 1263 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1264 1265 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1266 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1267 1268 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1269 /* the rings are full so bump the head to create room */ 1270 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1271 hw->fwlog_ring.size); 1272 } 1273 } 1274 1275 /** 1276 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1277 * @pf: pointer to the PF private structure 1278 * @task: intermediate helper storage and identifier for waiting 1279 * @opcode: the opcode to wait for 1280 * 1281 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1282 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1283 * 1284 * Calls are separated to allow caller registering for event before sending 1285 * the command, which mitigates a race between registering and FW responding. 1286 * 1287 * To obtain only the descriptor contents, pass an task->event with null 1288 * msg_buf. If the complete data buffer is desired, allocate the 1289 * task->event.msg_buf with enough space ahead of time. 1290 */ 1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1292 u16 opcode) 1293 { 1294 INIT_HLIST_NODE(&task->entry); 1295 task->opcode = opcode; 1296 task->state = ICE_AQ_TASK_WAITING; 1297 1298 spin_lock_bh(&pf->aq_wait_lock); 1299 hlist_add_head(&task->entry, &pf->aq_wait_list); 1300 spin_unlock_bh(&pf->aq_wait_lock); 1301 } 1302 1303 /** 1304 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1305 * @pf: pointer to the PF private structure 1306 * @task: ptr prepared by ice_aq_prep_for_event() 1307 * @timeout: how long to wait, in jiffies 1308 * 1309 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1310 * current thread will be put to sleep until the specified event occurs or 1311 * until the given timeout is reached. 1312 * 1313 * Returns: zero on success, or a negative error code on failure. 1314 */ 1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1316 unsigned long timeout) 1317 { 1318 enum ice_aq_task_state *state = &task->state; 1319 struct device *dev = ice_pf_to_dev(pf); 1320 unsigned long start = jiffies; 1321 long ret; 1322 int err; 1323 1324 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1325 *state != ICE_AQ_TASK_WAITING, 1326 timeout); 1327 switch (*state) { 1328 case ICE_AQ_TASK_NOT_PREPARED: 1329 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1330 err = -EINVAL; 1331 break; 1332 case ICE_AQ_TASK_WAITING: 1333 err = ret < 0 ? ret : -ETIMEDOUT; 1334 break; 1335 case ICE_AQ_TASK_CANCELED: 1336 err = ret < 0 ? ret : -ECANCELED; 1337 break; 1338 case ICE_AQ_TASK_COMPLETE: 1339 err = ret < 0 ? ret : 0; 1340 break; 1341 default: 1342 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1343 err = -EINVAL; 1344 break; 1345 } 1346 1347 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1348 jiffies_to_msecs(jiffies - start), 1349 jiffies_to_msecs(timeout), 1350 task->opcode); 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_del(&task->entry); 1354 spin_unlock_bh(&pf->aq_wait_lock); 1355 1356 return err; 1357 } 1358 1359 /** 1360 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1361 * @pf: pointer to the PF private structure 1362 * @opcode: the opcode of the event 1363 * @event: the event to check 1364 * 1365 * Loops over the current list of pending threads waiting for an AdminQ event. 1366 * For each matching task, copy the contents of the event into the task 1367 * structure and wake up the thread. 1368 * 1369 * If multiple threads wait for the same opcode, they will all be woken up. 1370 * 1371 * Note that event->msg_buf will only be duplicated if the event has a buffer 1372 * with enough space already allocated. Otherwise, only the descriptor and 1373 * message length will be copied. 1374 * 1375 * Returns: true if an event was found, false otherwise 1376 */ 1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1378 struct ice_rq_event_info *event) 1379 { 1380 struct ice_rq_event_info *task_ev; 1381 struct ice_aq_task *task; 1382 bool found = false; 1383 1384 spin_lock_bh(&pf->aq_wait_lock); 1385 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1386 if (task->state != ICE_AQ_TASK_WAITING) 1387 continue; 1388 if (task->opcode != opcode) 1389 continue; 1390 1391 task_ev = &task->event; 1392 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1393 task_ev->msg_len = event->msg_len; 1394 1395 /* Only copy the data buffer if a destination was set */ 1396 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1397 memcpy(task_ev->msg_buf, event->msg_buf, 1398 event->buf_len); 1399 task_ev->buf_len = event->buf_len; 1400 } 1401 1402 task->state = ICE_AQ_TASK_COMPLETE; 1403 found = true; 1404 } 1405 spin_unlock_bh(&pf->aq_wait_lock); 1406 1407 if (found) 1408 wake_up(&pf->aq_wait_queue); 1409 } 1410 1411 /** 1412 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1413 * @pf: the PF private structure 1414 * 1415 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1416 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1417 */ 1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1419 { 1420 struct ice_aq_task *task; 1421 1422 spin_lock_bh(&pf->aq_wait_lock); 1423 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1424 task->state = ICE_AQ_TASK_CANCELED; 1425 spin_unlock_bh(&pf->aq_wait_lock); 1426 1427 wake_up(&pf->aq_wait_queue); 1428 } 1429 1430 #define ICE_MBX_OVERFLOW_WATERMARK 64 1431 1432 /** 1433 * __ice_clean_ctrlq - helper function to clean controlq rings 1434 * @pf: ptr to struct ice_pf 1435 * @q_type: specific Control queue type 1436 */ 1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1438 { 1439 struct device *dev = ice_pf_to_dev(pf); 1440 struct ice_rq_event_info event; 1441 struct ice_hw *hw = &pf->hw; 1442 struct ice_ctl_q_info *cq; 1443 u16 pending, i = 0; 1444 const char *qtype; 1445 u32 oldval, val; 1446 1447 /* Do not clean control queue if/when PF reset fails */ 1448 if (test_bit(ICE_RESET_FAILED, pf->state)) 1449 return 0; 1450 1451 switch (q_type) { 1452 case ICE_CTL_Q_ADMIN: 1453 cq = &hw->adminq; 1454 qtype = "Admin"; 1455 break; 1456 case ICE_CTL_Q_SB: 1457 cq = &hw->sbq; 1458 qtype = "Sideband"; 1459 break; 1460 case ICE_CTL_Q_MAILBOX: 1461 cq = &hw->mailboxq; 1462 qtype = "Mailbox"; 1463 /* we are going to try to detect a malicious VF, so set the 1464 * state to begin detection 1465 */ 1466 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1467 break; 1468 default: 1469 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1470 return 0; 1471 } 1472 1473 /* check for error indications - PF_xx_AxQLEN register layout for 1474 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1475 */ 1476 val = rd32(hw, cq->rq.len); 1477 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1478 PF_FW_ARQLEN_ARQCRIT_M)) { 1479 oldval = val; 1480 if (val & PF_FW_ARQLEN_ARQVFE_M) 1481 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1482 qtype); 1483 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1484 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1485 qtype); 1486 } 1487 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1488 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1489 qtype); 1490 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1491 PF_FW_ARQLEN_ARQCRIT_M); 1492 if (oldval != val) 1493 wr32(hw, cq->rq.len, val); 1494 } 1495 1496 val = rd32(hw, cq->sq.len); 1497 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1498 PF_FW_ATQLEN_ATQCRIT_M)) { 1499 oldval = val; 1500 if (val & PF_FW_ATQLEN_ATQVFE_M) 1501 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1502 qtype); 1503 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1504 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1505 qtype); 1506 } 1507 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1508 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1509 qtype); 1510 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1511 PF_FW_ATQLEN_ATQCRIT_M); 1512 if (oldval != val) 1513 wr32(hw, cq->sq.len, val); 1514 } 1515 1516 event.buf_len = cq->rq_buf_size; 1517 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1518 if (!event.msg_buf) 1519 return 0; 1520 1521 do { 1522 struct ice_mbx_data data = {}; 1523 u16 opcode; 1524 int ret; 1525 1526 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1527 if (ret == -EALREADY) 1528 break; 1529 if (ret) { 1530 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1531 ret); 1532 break; 1533 } 1534 1535 opcode = le16_to_cpu(event.desc.opcode); 1536 1537 /* Notify any thread that might be waiting for this event */ 1538 ice_aq_check_events(pf, opcode, &event); 1539 1540 switch (opcode) { 1541 case ice_aqc_opc_get_link_status: 1542 if (ice_handle_link_event(pf, &event)) 1543 dev_err(dev, "Could not handle link event\n"); 1544 break; 1545 case ice_aqc_opc_event_lan_overflow: 1546 ice_vf_lan_overflow_event(pf, &event); 1547 break; 1548 case ice_mbx_opc_send_msg_to_pf: 1549 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) { 1550 ice_vc_process_vf_msg(pf, &event, NULL); 1551 ice_mbx_vf_dec_trig_e830(hw, &event); 1552 } else { 1553 u16 val = hw->mailboxq.num_rq_entries; 1554 1555 data.max_num_msgs_mbx = val; 1556 val = ICE_MBX_OVERFLOW_WATERMARK; 1557 data.async_watermark_val = val; 1558 data.num_msg_proc = i; 1559 data.num_pending_arq = pending; 1560 1561 ice_vc_process_vf_msg(pf, &event, &data); 1562 } 1563 break; 1564 case ice_aqc_opc_fw_logs_event: 1565 ice_get_fwlog_data(pf, &event); 1566 break; 1567 case ice_aqc_opc_lldp_set_mib_change: 1568 ice_dcb_process_lldp_set_mib_change(pf, &event); 1569 break; 1570 case ice_aqc_opc_get_health_status: 1571 ice_process_health_status_event(pf, &event); 1572 break; 1573 default: 1574 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1575 qtype, opcode); 1576 break; 1577 } 1578 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1579 1580 kfree(event.msg_buf); 1581 1582 return pending && (i == ICE_DFLT_IRQ_WORK); 1583 } 1584 1585 /** 1586 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1587 * @hw: pointer to hardware info 1588 * @cq: control queue information 1589 * 1590 * returns true if there are pending messages in a queue, false if there aren't 1591 */ 1592 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1593 { 1594 u16 ntu; 1595 1596 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1597 return cq->rq.next_to_clean != ntu; 1598 } 1599 1600 /** 1601 * ice_clean_adminq_subtask - clean the AdminQ rings 1602 * @pf: board private structure 1603 */ 1604 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1605 { 1606 struct ice_hw *hw = &pf->hw; 1607 1608 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1609 return; 1610 1611 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1612 return; 1613 1614 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1615 1616 /* There might be a situation where new messages arrive to a control 1617 * queue between processing the last message and clearing the 1618 * EVENT_PENDING bit. So before exiting, check queue head again (using 1619 * ice_ctrlq_pending) and process new messages if any. 1620 */ 1621 if (ice_ctrlq_pending(hw, &hw->adminq)) 1622 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1623 1624 ice_flush(hw); 1625 } 1626 1627 /** 1628 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1629 * @pf: board private structure 1630 */ 1631 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1632 { 1633 struct ice_hw *hw = &pf->hw; 1634 1635 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1636 return; 1637 1638 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1639 return; 1640 1641 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1642 1643 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1644 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1645 1646 ice_flush(hw); 1647 } 1648 1649 /** 1650 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1651 * @pf: board private structure 1652 */ 1653 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1654 { 1655 struct ice_hw *hw = &pf->hw; 1656 1657 /* if mac_type is not generic, sideband is not supported 1658 * and there's nothing to do here 1659 */ 1660 if (!ice_is_generic_mac(hw)) { 1661 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1662 return; 1663 } 1664 1665 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1666 return; 1667 1668 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1669 return; 1670 1671 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1672 1673 if (ice_ctrlq_pending(hw, &hw->sbq)) 1674 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1675 1676 ice_flush(hw); 1677 } 1678 1679 /** 1680 * ice_service_task_schedule - schedule the service task to wake up 1681 * @pf: board private structure 1682 * 1683 * If not already scheduled, this puts the task into the work queue. 1684 */ 1685 void ice_service_task_schedule(struct ice_pf *pf) 1686 { 1687 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1688 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1689 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1690 queue_work(ice_wq, &pf->serv_task); 1691 } 1692 1693 /** 1694 * ice_service_task_complete - finish up the service task 1695 * @pf: board private structure 1696 */ 1697 static void ice_service_task_complete(struct ice_pf *pf) 1698 { 1699 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1700 1701 /* force memory (pf->state) to sync before next service task */ 1702 smp_mb__before_atomic(); 1703 clear_bit(ICE_SERVICE_SCHED, pf->state); 1704 } 1705 1706 /** 1707 * ice_service_task_stop - stop service task and cancel works 1708 * @pf: board private structure 1709 * 1710 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1711 * 1 otherwise. 1712 */ 1713 static int ice_service_task_stop(struct ice_pf *pf) 1714 { 1715 int ret; 1716 1717 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1718 1719 if (pf->serv_tmr.function) 1720 del_timer_sync(&pf->serv_tmr); 1721 if (pf->serv_task.func) 1722 cancel_work_sync(&pf->serv_task); 1723 1724 clear_bit(ICE_SERVICE_SCHED, pf->state); 1725 return ret; 1726 } 1727 1728 /** 1729 * ice_service_task_restart - restart service task and schedule works 1730 * @pf: board private structure 1731 * 1732 * This function is needed for suspend and resume works (e.g WoL scenario) 1733 */ 1734 static void ice_service_task_restart(struct ice_pf *pf) 1735 { 1736 clear_bit(ICE_SERVICE_DIS, pf->state); 1737 ice_service_task_schedule(pf); 1738 } 1739 1740 /** 1741 * ice_service_timer - timer callback to schedule service task 1742 * @t: pointer to timer_list 1743 */ 1744 static void ice_service_timer(struct timer_list *t) 1745 { 1746 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1747 1748 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1749 ice_service_task_schedule(pf); 1750 } 1751 1752 /** 1753 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1754 * @pf: pointer to the PF structure 1755 * @vf: pointer to the VF structure 1756 * @reset_vf_tx: whether Tx MDD has occurred 1757 * @reset_vf_rx: whether Rx MDD has occurred 1758 * 1759 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1760 * automatically reset the VF by enabling the private ethtool flag 1761 * mdd-auto-reset-vf. 1762 */ 1763 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1764 bool reset_vf_tx, bool reset_vf_rx) 1765 { 1766 struct device *dev = ice_pf_to_dev(pf); 1767 1768 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1769 return; 1770 1771 /* VF MDD event counters will be cleared by reset, so print the event 1772 * prior to reset. 1773 */ 1774 if (reset_vf_tx) 1775 ice_print_vf_tx_mdd_event(vf); 1776 1777 if (reset_vf_rx) 1778 ice_print_vf_rx_mdd_event(vf); 1779 1780 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1781 pf->hw.pf_id, vf->vf_id); 1782 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1783 } 1784 1785 /** 1786 * ice_handle_mdd_event - handle malicious driver detect event 1787 * @pf: pointer to the PF structure 1788 * 1789 * Called from service task. OICR interrupt handler indicates MDD event. 1790 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1791 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1792 * disable the queue, the PF can be configured to reset the VF using ethtool 1793 * private flag mdd-auto-reset-vf. 1794 */ 1795 static void ice_handle_mdd_event(struct ice_pf *pf) 1796 { 1797 struct device *dev = ice_pf_to_dev(pf); 1798 struct ice_hw *hw = &pf->hw; 1799 struct ice_vf *vf; 1800 unsigned int bkt; 1801 u32 reg; 1802 1803 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1804 /* Since the VF MDD event logging is rate limited, check if 1805 * there are pending MDD events. 1806 */ 1807 ice_print_vfs_mdd_events(pf); 1808 return; 1809 } 1810 1811 /* find what triggered an MDD event */ 1812 reg = rd32(hw, GL_MDET_TX_PQM); 1813 if (reg & GL_MDET_TX_PQM_VALID_M) { 1814 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1815 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1816 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1817 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1818 1819 if (netif_msg_tx_err(pf)) 1820 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1821 event, queue, pf_num, vf_num); 1822 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num, 1823 event, queue); 1824 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1825 } 1826 1827 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1828 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1829 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1830 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1831 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1832 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1833 1834 if (netif_msg_tx_err(pf)) 1835 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1836 event, queue, pf_num, vf_num); 1837 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num, 1838 event, queue); 1839 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1840 } 1841 1842 reg = rd32(hw, GL_MDET_RX); 1843 if (reg & GL_MDET_RX_VALID_M) { 1844 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1845 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1846 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1847 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1848 1849 if (netif_msg_rx_err(pf)) 1850 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1851 event, queue, pf_num, vf_num); 1852 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event, 1853 queue); 1854 wr32(hw, GL_MDET_RX, 0xffffffff); 1855 } 1856 1857 /* check to see if this PF caused an MDD event */ 1858 reg = rd32(hw, PF_MDET_TX_PQM); 1859 if (reg & PF_MDET_TX_PQM_VALID_M) { 1860 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1861 if (netif_msg_tx_err(pf)) 1862 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1863 } 1864 1865 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1866 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1867 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1868 if (netif_msg_tx_err(pf)) 1869 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1870 } 1871 1872 reg = rd32(hw, PF_MDET_RX); 1873 if (reg & PF_MDET_RX_VALID_M) { 1874 wr32(hw, PF_MDET_RX, 0xFFFF); 1875 if (netif_msg_rx_err(pf)) 1876 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1877 } 1878 1879 /* Check to see if one of the VFs caused an MDD event, and then 1880 * increment counters and set print pending 1881 */ 1882 mutex_lock(&pf->vfs.table_lock); 1883 ice_for_each_vf(pf, bkt, vf) { 1884 bool reset_vf_tx = false, reset_vf_rx = false; 1885 1886 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1887 if (reg & VP_MDET_TX_PQM_VALID_M) { 1888 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1889 vf->mdd_tx_events.count++; 1890 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1891 if (netif_msg_tx_err(pf)) 1892 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1893 vf->vf_id); 1894 1895 reset_vf_tx = true; 1896 } 1897 1898 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1899 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1900 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1901 vf->mdd_tx_events.count++; 1902 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1903 if (netif_msg_tx_err(pf)) 1904 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1905 vf->vf_id); 1906 1907 reset_vf_tx = true; 1908 } 1909 1910 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1911 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1912 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1913 vf->mdd_tx_events.count++; 1914 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1915 if (netif_msg_tx_err(pf)) 1916 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1917 vf->vf_id); 1918 1919 reset_vf_tx = true; 1920 } 1921 1922 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1923 if (reg & VP_MDET_RX_VALID_M) { 1924 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1925 vf->mdd_rx_events.count++; 1926 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1927 if (netif_msg_rx_err(pf)) 1928 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1929 vf->vf_id); 1930 1931 reset_vf_rx = true; 1932 } 1933 1934 if (reset_vf_tx || reset_vf_rx) 1935 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1936 reset_vf_rx); 1937 } 1938 mutex_unlock(&pf->vfs.table_lock); 1939 1940 ice_print_vfs_mdd_events(pf); 1941 } 1942 1943 /** 1944 * ice_force_phys_link_state - Force the physical link state 1945 * @vsi: VSI to force the physical link state to up/down 1946 * @link_up: true/false indicates to set the physical link to up/down 1947 * 1948 * Force the physical link state by getting the current PHY capabilities from 1949 * hardware and setting the PHY config based on the determined capabilities. If 1950 * link changes a link event will be triggered because both the Enable Automatic 1951 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1952 * 1953 * Returns 0 on success, negative on failure 1954 */ 1955 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1956 { 1957 struct ice_aqc_get_phy_caps_data *pcaps; 1958 struct ice_aqc_set_phy_cfg_data *cfg; 1959 struct ice_port_info *pi; 1960 struct device *dev; 1961 int retcode; 1962 1963 if (!vsi || !vsi->port_info || !vsi->back) 1964 return -EINVAL; 1965 if (vsi->type != ICE_VSI_PF) 1966 return 0; 1967 1968 dev = ice_pf_to_dev(vsi->back); 1969 1970 pi = vsi->port_info; 1971 1972 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1973 if (!pcaps) 1974 return -ENOMEM; 1975 1976 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1977 NULL); 1978 if (retcode) { 1979 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1980 vsi->vsi_num, retcode); 1981 retcode = -EIO; 1982 goto out; 1983 } 1984 1985 /* No change in link */ 1986 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1987 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1988 goto out; 1989 1990 /* Use the current user PHY configuration. The current user PHY 1991 * configuration is initialized during probe from PHY capabilities 1992 * software mode, and updated on set PHY configuration. 1993 */ 1994 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1995 if (!cfg) { 1996 retcode = -ENOMEM; 1997 goto out; 1998 } 1999 2000 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2001 if (link_up) 2002 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 2003 else 2004 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 2005 2006 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2007 if (retcode) { 2008 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2009 vsi->vsi_num, retcode); 2010 retcode = -EIO; 2011 } 2012 2013 kfree(cfg); 2014 out: 2015 kfree(pcaps); 2016 return retcode; 2017 } 2018 2019 /** 2020 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2021 * @pi: port info structure 2022 * 2023 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2024 */ 2025 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2026 { 2027 struct ice_aqc_get_phy_caps_data *pcaps; 2028 struct ice_pf *pf = pi->hw->back; 2029 int err; 2030 2031 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2032 if (!pcaps) 2033 return -ENOMEM; 2034 2035 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2036 pcaps, NULL); 2037 2038 if (err) { 2039 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2040 goto out; 2041 } 2042 2043 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2044 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2045 2046 out: 2047 kfree(pcaps); 2048 return err; 2049 } 2050 2051 /** 2052 * ice_init_link_dflt_override - Initialize link default override 2053 * @pi: port info structure 2054 * 2055 * Initialize link default override and PHY total port shutdown during probe 2056 */ 2057 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2058 { 2059 struct ice_link_default_override_tlv *ldo; 2060 struct ice_pf *pf = pi->hw->back; 2061 2062 ldo = &pf->link_dflt_override; 2063 if (ice_get_link_default_override(ldo, pi)) 2064 return; 2065 2066 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2067 return; 2068 2069 /* Enable Total Port Shutdown (override/replace link-down-on-close 2070 * ethtool private flag) for ports with Port Disable bit set. 2071 */ 2072 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2073 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2074 } 2075 2076 /** 2077 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2078 * @pi: port info structure 2079 * 2080 * If default override is enabled, initialize the user PHY cfg speed and FEC 2081 * settings using the default override mask from the NVM. 2082 * 2083 * The PHY should only be configured with the default override settings the 2084 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2085 * is used to indicate that the user PHY cfg default override is initialized 2086 * and the PHY has not been configured with the default override settings. The 2087 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2088 * configured. 2089 * 2090 * This function should be called only if the FW doesn't support default 2091 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2092 */ 2093 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2094 { 2095 struct ice_link_default_override_tlv *ldo; 2096 struct ice_aqc_set_phy_cfg_data *cfg; 2097 struct ice_phy_info *phy = &pi->phy; 2098 struct ice_pf *pf = pi->hw->back; 2099 2100 ldo = &pf->link_dflt_override; 2101 2102 /* If link default override is enabled, use to mask NVM PHY capabilities 2103 * for speed and FEC default configuration. 2104 */ 2105 cfg = &phy->curr_user_phy_cfg; 2106 2107 if (ldo->phy_type_low || ldo->phy_type_high) { 2108 cfg->phy_type_low = pf->nvm_phy_type_lo & 2109 cpu_to_le64(ldo->phy_type_low); 2110 cfg->phy_type_high = pf->nvm_phy_type_hi & 2111 cpu_to_le64(ldo->phy_type_high); 2112 } 2113 cfg->link_fec_opt = ldo->fec_options; 2114 phy->curr_user_fec_req = ICE_FEC_AUTO; 2115 2116 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2117 } 2118 2119 /** 2120 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2121 * @pi: port info structure 2122 * 2123 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2124 * mode to default. The PHY defaults are from get PHY capabilities topology 2125 * with media so call when media is first available. An error is returned if 2126 * called when media is not available. The PHY initialization completed state is 2127 * set here. 2128 * 2129 * These configurations are used when setting PHY 2130 * configuration. The user PHY configuration is updated on set PHY 2131 * configuration. Returns 0 on success, negative on failure 2132 */ 2133 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2134 { 2135 struct ice_aqc_get_phy_caps_data *pcaps; 2136 struct ice_phy_info *phy = &pi->phy; 2137 struct ice_pf *pf = pi->hw->back; 2138 int err; 2139 2140 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2141 return -EIO; 2142 2143 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2144 if (!pcaps) 2145 return -ENOMEM; 2146 2147 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2148 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2149 pcaps, NULL); 2150 else 2151 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2152 pcaps, NULL); 2153 if (err) { 2154 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2155 goto err_out; 2156 } 2157 2158 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2159 2160 /* check if lenient mode is supported and enabled */ 2161 if (ice_fw_supports_link_override(pi->hw) && 2162 !(pcaps->module_compliance_enforcement & 2163 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2164 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2165 2166 /* if the FW supports default PHY configuration mode, then the driver 2167 * does not have to apply link override settings. If not, 2168 * initialize user PHY configuration with link override values 2169 */ 2170 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2171 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2172 ice_init_phy_cfg_dflt_override(pi); 2173 goto out; 2174 } 2175 } 2176 2177 /* if link default override is not enabled, set user flow control and 2178 * FEC settings based on what get_phy_caps returned 2179 */ 2180 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2181 pcaps->link_fec_options); 2182 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2183 2184 out: 2185 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2186 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2187 err_out: 2188 kfree(pcaps); 2189 return err; 2190 } 2191 2192 /** 2193 * ice_configure_phy - configure PHY 2194 * @vsi: VSI of PHY 2195 * 2196 * Set the PHY configuration. If the current PHY configuration is the same as 2197 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2198 * configure the based get PHY capabilities for topology with media. 2199 */ 2200 static int ice_configure_phy(struct ice_vsi *vsi) 2201 { 2202 struct device *dev = ice_pf_to_dev(vsi->back); 2203 struct ice_port_info *pi = vsi->port_info; 2204 struct ice_aqc_get_phy_caps_data *pcaps; 2205 struct ice_aqc_set_phy_cfg_data *cfg; 2206 struct ice_phy_info *phy = &pi->phy; 2207 struct ice_pf *pf = vsi->back; 2208 int err; 2209 2210 /* Ensure we have media as we cannot configure a medialess port */ 2211 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2212 return -ENOMEDIUM; 2213 2214 ice_print_topo_conflict(vsi); 2215 2216 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2217 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2218 return -EPERM; 2219 2220 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2221 return ice_force_phys_link_state(vsi, true); 2222 2223 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2224 if (!pcaps) 2225 return -ENOMEM; 2226 2227 /* Get current PHY config */ 2228 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2229 NULL); 2230 if (err) { 2231 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2232 vsi->vsi_num, err); 2233 goto done; 2234 } 2235 2236 /* If PHY enable link is configured and configuration has not changed, 2237 * there's nothing to do 2238 */ 2239 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2240 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2241 goto done; 2242 2243 /* Use PHY topology as baseline for configuration */ 2244 memset(pcaps, 0, sizeof(*pcaps)); 2245 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2246 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2247 pcaps, NULL); 2248 else 2249 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2250 pcaps, NULL); 2251 if (err) { 2252 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2253 vsi->vsi_num, err); 2254 goto done; 2255 } 2256 2257 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2258 if (!cfg) { 2259 err = -ENOMEM; 2260 goto done; 2261 } 2262 2263 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2264 2265 /* Speed - If default override pending, use curr_user_phy_cfg set in 2266 * ice_init_phy_user_cfg_ldo. 2267 */ 2268 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2269 vsi->back->state)) { 2270 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2271 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2272 } else { 2273 u64 phy_low = 0, phy_high = 0; 2274 2275 ice_update_phy_type(&phy_low, &phy_high, 2276 pi->phy.curr_user_speed_req); 2277 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2278 cfg->phy_type_high = pcaps->phy_type_high & 2279 cpu_to_le64(phy_high); 2280 } 2281 2282 /* Can't provide what was requested; use PHY capabilities */ 2283 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2284 cfg->phy_type_low = pcaps->phy_type_low; 2285 cfg->phy_type_high = pcaps->phy_type_high; 2286 } 2287 2288 /* FEC */ 2289 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2290 2291 /* Can't provide what was requested; use PHY capabilities */ 2292 if (cfg->link_fec_opt != 2293 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2294 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2295 cfg->link_fec_opt = pcaps->link_fec_options; 2296 } 2297 2298 /* Flow Control - always supported; no need to check against 2299 * capabilities 2300 */ 2301 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2302 2303 /* Enable link and link update */ 2304 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2305 2306 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2307 if (err) 2308 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2309 vsi->vsi_num, err); 2310 2311 kfree(cfg); 2312 done: 2313 kfree(pcaps); 2314 return err; 2315 } 2316 2317 /** 2318 * ice_check_media_subtask - Check for media 2319 * @pf: pointer to PF struct 2320 * 2321 * If media is available, then initialize PHY user configuration if it is not 2322 * been, and configure the PHY if the interface is up. 2323 */ 2324 static void ice_check_media_subtask(struct ice_pf *pf) 2325 { 2326 struct ice_port_info *pi; 2327 struct ice_vsi *vsi; 2328 int err; 2329 2330 /* No need to check for media if it's already present */ 2331 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2332 return; 2333 2334 vsi = ice_get_main_vsi(pf); 2335 if (!vsi) 2336 return; 2337 2338 /* Refresh link info and check if media is present */ 2339 pi = vsi->port_info; 2340 err = ice_update_link_info(pi); 2341 if (err) 2342 return; 2343 2344 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2345 2346 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2347 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2348 ice_init_phy_user_cfg(pi); 2349 2350 /* PHY settings are reset on media insertion, reconfigure 2351 * PHY to preserve settings. 2352 */ 2353 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2354 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2355 return; 2356 2357 err = ice_configure_phy(vsi); 2358 if (!err) 2359 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2360 2361 /* A Link Status Event will be generated; the event handler 2362 * will complete bringing the interface up 2363 */ 2364 } 2365 } 2366 2367 static void ice_service_task_recovery_mode(struct work_struct *work) 2368 { 2369 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2370 2371 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2372 ice_clean_adminq_subtask(pf); 2373 2374 ice_service_task_complete(pf); 2375 2376 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100)); 2377 } 2378 2379 /** 2380 * ice_service_task - manage and run subtasks 2381 * @work: pointer to work_struct contained by the PF struct 2382 */ 2383 static void ice_service_task(struct work_struct *work) 2384 { 2385 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2386 unsigned long start_time = jiffies; 2387 2388 if (pf->health_reporters.tx_hang_buf.tx_ring) { 2389 ice_report_tx_hang(pf); 2390 pf->health_reporters.tx_hang_buf.tx_ring = NULL; 2391 } 2392 2393 ice_reset_subtask(pf); 2394 2395 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2396 if (ice_is_reset_in_progress(pf->state) || 2397 test_bit(ICE_SUSPENDED, pf->state) || 2398 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2399 ice_service_task_complete(pf); 2400 return; 2401 } 2402 2403 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2404 struct iidc_event *event; 2405 2406 event = kzalloc(sizeof(*event), GFP_KERNEL); 2407 if (event) { 2408 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2409 /* report the entire OICR value to AUX driver */ 2410 swap(event->reg, pf->oicr_err_reg); 2411 ice_send_event_to_aux(pf, event); 2412 kfree(event); 2413 } 2414 } 2415 2416 /* unplug aux dev per request, if an unplug request came in 2417 * while processing a plug request, this will handle it 2418 */ 2419 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2420 ice_unplug_aux_dev(pf); 2421 2422 /* Plug aux device per request */ 2423 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2424 ice_plug_aux_dev(pf); 2425 2426 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2427 struct iidc_event *event; 2428 2429 event = kzalloc(sizeof(*event), GFP_KERNEL); 2430 if (event) { 2431 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2432 ice_send_event_to_aux(pf, event); 2433 kfree(event); 2434 } 2435 } 2436 2437 ice_clean_adminq_subtask(pf); 2438 ice_check_media_subtask(pf); 2439 ice_check_for_hang_subtask(pf); 2440 ice_sync_fltr_subtask(pf); 2441 ice_handle_mdd_event(pf); 2442 ice_watchdog_subtask(pf); 2443 2444 if (ice_is_safe_mode(pf)) { 2445 ice_service_task_complete(pf); 2446 return; 2447 } 2448 2449 ice_process_vflr_event(pf); 2450 ice_clean_mailboxq_subtask(pf); 2451 ice_clean_sbq_subtask(pf); 2452 ice_sync_arfs_fltrs(pf); 2453 ice_flush_fdir_ctx(pf); 2454 2455 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2456 ice_service_task_complete(pf); 2457 2458 /* If the tasks have taken longer than one service timer period 2459 * or there is more work to be done, reset the service timer to 2460 * schedule the service task now. 2461 */ 2462 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2463 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2464 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2465 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2466 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2467 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2468 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2469 mod_timer(&pf->serv_tmr, jiffies); 2470 } 2471 2472 /** 2473 * ice_set_ctrlq_len - helper function to set controlq length 2474 * @hw: pointer to the HW instance 2475 */ 2476 static void ice_set_ctrlq_len(struct ice_hw *hw) 2477 { 2478 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2479 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2480 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2481 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2482 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2483 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2484 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2485 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2486 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2487 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2488 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2489 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2490 } 2491 2492 /** 2493 * ice_schedule_reset - schedule a reset 2494 * @pf: board private structure 2495 * @reset: reset being requested 2496 */ 2497 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2498 { 2499 struct device *dev = ice_pf_to_dev(pf); 2500 2501 /* bail out if earlier reset has failed */ 2502 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2503 dev_dbg(dev, "earlier reset has failed\n"); 2504 return -EIO; 2505 } 2506 /* bail if reset/recovery already in progress */ 2507 if (ice_is_reset_in_progress(pf->state)) { 2508 dev_dbg(dev, "Reset already in progress\n"); 2509 return -EBUSY; 2510 } 2511 2512 switch (reset) { 2513 case ICE_RESET_PFR: 2514 set_bit(ICE_PFR_REQ, pf->state); 2515 break; 2516 case ICE_RESET_CORER: 2517 set_bit(ICE_CORER_REQ, pf->state); 2518 break; 2519 case ICE_RESET_GLOBR: 2520 set_bit(ICE_GLOBR_REQ, pf->state); 2521 break; 2522 default: 2523 return -EINVAL; 2524 } 2525 2526 ice_service_task_schedule(pf); 2527 return 0; 2528 } 2529 2530 /** 2531 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2532 * @vsi: the VSI being configured 2533 */ 2534 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2535 { 2536 struct ice_hw *hw = &vsi->back->hw; 2537 int i; 2538 2539 ice_for_each_q_vector(vsi, i) 2540 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2541 2542 ice_flush(hw); 2543 return 0; 2544 } 2545 2546 /** 2547 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2548 * @vsi: the VSI being configured 2549 * @basename: name for the vector 2550 */ 2551 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2552 { 2553 int q_vectors = vsi->num_q_vectors; 2554 struct ice_pf *pf = vsi->back; 2555 struct device *dev; 2556 int rx_int_idx = 0; 2557 int tx_int_idx = 0; 2558 int vector, err; 2559 int irq_num; 2560 2561 dev = ice_pf_to_dev(pf); 2562 for (vector = 0; vector < q_vectors; vector++) { 2563 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2564 2565 irq_num = q_vector->irq.virq; 2566 2567 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2568 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2569 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2570 tx_int_idx++; 2571 } else if (q_vector->rx.rx_ring) { 2572 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2573 "%s-%s-%d", basename, "rx", rx_int_idx++); 2574 } else if (q_vector->tx.tx_ring) { 2575 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2576 "%s-%s-%d", basename, "tx", tx_int_idx++); 2577 } else { 2578 /* skip this unused q_vector */ 2579 continue; 2580 } 2581 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2582 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2583 IRQF_SHARED, q_vector->name, 2584 q_vector); 2585 else 2586 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2587 0, q_vector->name, q_vector); 2588 if (err) { 2589 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2590 err); 2591 goto free_q_irqs; 2592 } 2593 } 2594 2595 err = ice_set_cpu_rx_rmap(vsi); 2596 if (err) { 2597 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2598 vsi->vsi_num, ERR_PTR(err)); 2599 goto free_q_irqs; 2600 } 2601 2602 vsi->irqs_ready = true; 2603 return 0; 2604 2605 free_q_irqs: 2606 while (vector--) { 2607 irq_num = vsi->q_vectors[vector]->irq.virq; 2608 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2609 } 2610 return err; 2611 } 2612 2613 /** 2614 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2615 * @vsi: VSI to setup Tx rings used by XDP 2616 * 2617 * Return 0 on success and negative value on error 2618 */ 2619 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2620 { 2621 struct device *dev = ice_pf_to_dev(vsi->back); 2622 struct ice_tx_desc *tx_desc; 2623 int i, j; 2624 2625 ice_for_each_xdp_txq(vsi, i) { 2626 u16 xdp_q_idx = vsi->alloc_txq + i; 2627 struct ice_ring_stats *ring_stats; 2628 struct ice_tx_ring *xdp_ring; 2629 2630 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2631 if (!xdp_ring) 2632 goto free_xdp_rings; 2633 2634 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2635 if (!ring_stats) { 2636 ice_free_tx_ring(xdp_ring); 2637 goto free_xdp_rings; 2638 } 2639 2640 xdp_ring->ring_stats = ring_stats; 2641 xdp_ring->q_index = xdp_q_idx; 2642 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2643 xdp_ring->vsi = vsi; 2644 xdp_ring->netdev = NULL; 2645 xdp_ring->dev = dev; 2646 xdp_ring->count = vsi->num_tx_desc; 2647 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2648 if (ice_setup_tx_ring(xdp_ring)) 2649 goto free_xdp_rings; 2650 ice_set_ring_xdp(xdp_ring); 2651 spin_lock_init(&xdp_ring->tx_lock); 2652 for (j = 0; j < xdp_ring->count; j++) { 2653 tx_desc = ICE_TX_DESC(xdp_ring, j); 2654 tx_desc->cmd_type_offset_bsz = 0; 2655 } 2656 } 2657 2658 return 0; 2659 2660 free_xdp_rings: 2661 for (; i >= 0; i--) { 2662 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2663 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2664 vsi->xdp_rings[i]->ring_stats = NULL; 2665 ice_free_tx_ring(vsi->xdp_rings[i]); 2666 } 2667 } 2668 return -ENOMEM; 2669 } 2670 2671 /** 2672 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2673 * @vsi: VSI to set the bpf prog on 2674 * @prog: the bpf prog pointer 2675 */ 2676 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2677 { 2678 struct bpf_prog *old_prog; 2679 int i; 2680 2681 old_prog = xchg(&vsi->xdp_prog, prog); 2682 ice_for_each_rxq(vsi, i) 2683 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2684 2685 if (old_prog) 2686 bpf_prog_put(old_prog); 2687 } 2688 2689 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2690 { 2691 struct ice_q_vector *q_vector; 2692 struct ice_tx_ring *ring; 2693 2694 if (static_key_enabled(&ice_xdp_locking_key)) 2695 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2696 2697 q_vector = vsi->rx_rings[qid]->q_vector; 2698 ice_for_each_tx_ring(ring, q_vector->tx) 2699 if (ice_ring_is_xdp(ring)) 2700 return ring; 2701 2702 return NULL; 2703 } 2704 2705 /** 2706 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2707 * @vsi: the VSI with XDP rings being configured 2708 * 2709 * Map XDP rings to interrupt vectors and perform the configuration steps 2710 * dependent on the mapping. 2711 */ 2712 void ice_map_xdp_rings(struct ice_vsi *vsi) 2713 { 2714 int xdp_rings_rem = vsi->num_xdp_txq; 2715 int v_idx, q_idx; 2716 2717 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2718 ice_for_each_q_vector(vsi, v_idx) { 2719 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2720 int xdp_rings_per_v, q_id, q_base; 2721 2722 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2723 vsi->num_q_vectors - v_idx); 2724 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2725 2726 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2727 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2728 2729 xdp_ring->q_vector = q_vector; 2730 xdp_ring->next = q_vector->tx.tx_ring; 2731 q_vector->tx.tx_ring = xdp_ring; 2732 } 2733 xdp_rings_rem -= xdp_rings_per_v; 2734 } 2735 2736 ice_for_each_rxq(vsi, q_idx) { 2737 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2738 q_idx); 2739 ice_tx_xsk_pool(vsi, q_idx); 2740 } 2741 } 2742 2743 /** 2744 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2745 * @vsi: VSI to bring up Tx rings used by XDP 2746 * @prog: bpf program that will be assigned to VSI 2747 * @cfg_type: create from scratch or restore the existing configuration 2748 * 2749 * Return 0 on success and negative value on error 2750 */ 2751 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2752 enum ice_xdp_cfg cfg_type) 2753 { 2754 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2755 struct ice_pf *pf = vsi->back; 2756 struct ice_qs_cfg xdp_qs_cfg = { 2757 .qs_mutex = &pf->avail_q_mutex, 2758 .pf_map = pf->avail_txqs, 2759 .pf_map_size = pf->max_pf_txqs, 2760 .q_count = vsi->num_xdp_txq, 2761 .scatter_count = ICE_MAX_SCATTER_TXQS, 2762 .vsi_map = vsi->txq_map, 2763 .vsi_map_offset = vsi->alloc_txq, 2764 .mapping_mode = ICE_VSI_MAP_CONTIG 2765 }; 2766 struct device *dev; 2767 int status, i; 2768 2769 dev = ice_pf_to_dev(pf); 2770 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2771 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2772 if (!vsi->xdp_rings) 2773 return -ENOMEM; 2774 2775 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2776 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2777 goto err_map_xdp; 2778 2779 if (static_key_enabled(&ice_xdp_locking_key)) 2780 netdev_warn(vsi->netdev, 2781 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2782 2783 if (ice_xdp_alloc_setup_rings(vsi)) 2784 goto clear_xdp_rings; 2785 2786 /* omit the scheduler update if in reset path; XDP queues will be 2787 * taken into account at the end of ice_vsi_rebuild, where 2788 * ice_cfg_vsi_lan is being called 2789 */ 2790 if (cfg_type == ICE_XDP_CFG_PART) 2791 return 0; 2792 2793 ice_map_xdp_rings(vsi); 2794 2795 /* tell the Tx scheduler that right now we have 2796 * additional queues 2797 */ 2798 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2799 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2800 2801 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2802 max_txqs); 2803 if (status) { 2804 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2805 status); 2806 goto clear_xdp_rings; 2807 } 2808 2809 /* assign the prog only when it's not already present on VSI; 2810 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2811 * VSI rebuild that happens under ethtool -L can expose us to 2812 * the bpf_prog refcount issues as we would be swapping same 2813 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2814 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2815 * this is not harmful as dev_xdp_install bumps the refcount 2816 * before calling the op exposed by the driver; 2817 */ 2818 if (!ice_is_xdp_ena_vsi(vsi)) 2819 ice_vsi_assign_bpf_prog(vsi, prog); 2820 2821 return 0; 2822 clear_xdp_rings: 2823 ice_for_each_xdp_txq(vsi, i) 2824 if (vsi->xdp_rings[i]) { 2825 kfree_rcu(vsi->xdp_rings[i], rcu); 2826 vsi->xdp_rings[i] = NULL; 2827 } 2828 2829 err_map_xdp: 2830 mutex_lock(&pf->avail_q_mutex); 2831 ice_for_each_xdp_txq(vsi, i) { 2832 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2833 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2834 } 2835 mutex_unlock(&pf->avail_q_mutex); 2836 2837 devm_kfree(dev, vsi->xdp_rings); 2838 return -ENOMEM; 2839 } 2840 2841 /** 2842 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2843 * @vsi: VSI to remove XDP rings 2844 * @cfg_type: disable XDP permanently or allow it to be restored later 2845 * 2846 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2847 * resources 2848 */ 2849 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2850 { 2851 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2852 struct ice_pf *pf = vsi->back; 2853 int i, v_idx; 2854 2855 /* q_vectors are freed in reset path so there's no point in detaching 2856 * rings 2857 */ 2858 if (cfg_type == ICE_XDP_CFG_PART) 2859 goto free_qmap; 2860 2861 ice_for_each_q_vector(vsi, v_idx) { 2862 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2863 struct ice_tx_ring *ring; 2864 2865 ice_for_each_tx_ring(ring, q_vector->tx) 2866 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2867 break; 2868 2869 /* restore the value of last node prior to XDP setup */ 2870 q_vector->tx.tx_ring = ring; 2871 } 2872 2873 free_qmap: 2874 mutex_lock(&pf->avail_q_mutex); 2875 ice_for_each_xdp_txq(vsi, i) { 2876 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2877 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2878 } 2879 mutex_unlock(&pf->avail_q_mutex); 2880 2881 ice_for_each_xdp_txq(vsi, i) 2882 if (vsi->xdp_rings[i]) { 2883 if (vsi->xdp_rings[i]->desc) { 2884 synchronize_rcu(); 2885 ice_free_tx_ring(vsi->xdp_rings[i]); 2886 } 2887 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2888 vsi->xdp_rings[i]->ring_stats = NULL; 2889 kfree_rcu(vsi->xdp_rings[i], rcu); 2890 vsi->xdp_rings[i] = NULL; 2891 } 2892 2893 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2894 vsi->xdp_rings = NULL; 2895 2896 if (static_key_enabled(&ice_xdp_locking_key)) 2897 static_branch_dec(&ice_xdp_locking_key); 2898 2899 if (cfg_type == ICE_XDP_CFG_PART) 2900 return 0; 2901 2902 ice_vsi_assign_bpf_prog(vsi, NULL); 2903 2904 /* notify Tx scheduler that we destroyed XDP queues and bring 2905 * back the old number of child nodes 2906 */ 2907 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2908 max_txqs[i] = vsi->num_txq; 2909 2910 /* change number of XDP Tx queues to 0 */ 2911 vsi->num_xdp_txq = 0; 2912 2913 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2914 max_txqs); 2915 } 2916 2917 /** 2918 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2919 * @vsi: VSI to schedule napi on 2920 */ 2921 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2922 { 2923 int i; 2924 2925 ice_for_each_rxq(vsi, i) { 2926 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2927 2928 if (READ_ONCE(rx_ring->xsk_pool)) 2929 napi_schedule(&rx_ring->q_vector->napi); 2930 } 2931 } 2932 2933 /** 2934 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2935 * @vsi: VSI to determine the count of XDP Tx qs 2936 * 2937 * returns 0 if Tx qs count is higher than at least half of CPU count, 2938 * -ENOMEM otherwise 2939 */ 2940 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2941 { 2942 u16 avail = ice_get_avail_txq_count(vsi->back); 2943 u16 cpus = num_possible_cpus(); 2944 2945 if (avail < cpus / 2) 2946 return -ENOMEM; 2947 2948 if (vsi->type == ICE_VSI_SF) 2949 avail = vsi->alloc_txq; 2950 2951 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2952 2953 if (vsi->num_xdp_txq < cpus) 2954 static_branch_inc(&ice_xdp_locking_key); 2955 2956 return 0; 2957 } 2958 2959 /** 2960 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2961 * @vsi: Pointer to VSI structure 2962 */ 2963 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2964 { 2965 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2966 return ICE_RXBUF_1664; 2967 else 2968 return ICE_RXBUF_3072; 2969 } 2970 2971 /** 2972 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2973 * @vsi: VSI to setup XDP for 2974 * @prog: XDP program 2975 * @extack: netlink extended ack 2976 */ 2977 static int 2978 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2979 struct netlink_ext_ack *extack) 2980 { 2981 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2982 int ret = 0, xdp_ring_err = 0; 2983 bool if_running; 2984 2985 if (prog && !prog->aux->xdp_has_frags) { 2986 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2987 NL_SET_ERR_MSG_MOD(extack, 2988 "MTU is too large for linear frames and XDP prog does not support frags"); 2989 return -EOPNOTSUPP; 2990 } 2991 } 2992 2993 /* hot swap progs and avoid toggling link */ 2994 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 2995 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 2996 ice_vsi_assign_bpf_prog(vsi, prog); 2997 return 0; 2998 } 2999 3000 if_running = netif_running(vsi->netdev) && 3001 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3002 3003 /* need to stop netdev while setting up the program for Rx rings */ 3004 if (if_running) { 3005 ret = ice_down(vsi); 3006 if (ret) { 3007 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3008 return ret; 3009 } 3010 } 3011 3012 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3013 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3014 if (xdp_ring_err) { 3015 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3016 } else { 3017 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3018 ICE_XDP_CFG_FULL); 3019 if (xdp_ring_err) 3020 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3021 } 3022 xdp_features_set_redirect_target(vsi->netdev, true); 3023 /* reallocate Rx queues that are used for zero-copy */ 3024 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3025 if (xdp_ring_err) 3026 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3027 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3028 xdp_features_clear_redirect_target(vsi->netdev); 3029 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3030 if (xdp_ring_err) 3031 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3032 /* reallocate Rx queues that were used for zero-copy */ 3033 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3034 if (xdp_ring_err) 3035 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3036 } 3037 3038 if (if_running) 3039 ret = ice_up(vsi); 3040 3041 if (!ret && prog) 3042 ice_vsi_rx_napi_schedule(vsi); 3043 3044 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3045 } 3046 3047 /** 3048 * ice_xdp_safe_mode - XDP handler for safe mode 3049 * @dev: netdevice 3050 * @xdp: XDP command 3051 */ 3052 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3053 struct netdev_bpf *xdp) 3054 { 3055 NL_SET_ERR_MSG_MOD(xdp->extack, 3056 "Please provide working DDP firmware package in order to use XDP\n" 3057 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3058 return -EOPNOTSUPP; 3059 } 3060 3061 /** 3062 * ice_xdp - implements XDP handler 3063 * @dev: netdevice 3064 * @xdp: XDP command 3065 */ 3066 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3067 { 3068 struct ice_netdev_priv *np = netdev_priv(dev); 3069 struct ice_vsi *vsi = np->vsi; 3070 int ret; 3071 3072 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3073 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3074 return -EINVAL; 3075 } 3076 3077 mutex_lock(&vsi->xdp_state_lock); 3078 3079 switch (xdp->command) { 3080 case XDP_SETUP_PROG: 3081 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3082 break; 3083 case XDP_SETUP_XSK_POOL: 3084 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3085 break; 3086 default: 3087 ret = -EINVAL; 3088 } 3089 3090 mutex_unlock(&vsi->xdp_state_lock); 3091 return ret; 3092 } 3093 3094 /** 3095 * ice_ena_misc_vector - enable the non-queue interrupts 3096 * @pf: board private structure 3097 */ 3098 static void ice_ena_misc_vector(struct ice_pf *pf) 3099 { 3100 struct ice_hw *hw = &pf->hw; 3101 u32 pf_intr_start_offset; 3102 u32 val; 3103 3104 /* Disable anti-spoof detection interrupt to prevent spurious event 3105 * interrupts during a function reset. Anti-spoof functionally is 3106 * still supported. 3107 */ 3108 val = rd32(hw, GL_MDCK_TX_TDPU); 3109 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3110 wr32(hw, GL_MDCK_TX_TDPU, val); 3111 3112 /* clear things first */ 3113 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3114 rd32(hw, PFINT_OICR); /* read to clear */ 3115 3116 val = (PFINT_OICR_ECC_ERR_M | 3117 PFINT_OICR_MAL_DETECT_M | 3118 PFINT_OICR_GRST_M | 3119 PFINT_OICR_PCI_EXCEPTION_M | 3120 PFINT_OICR_VFLR_M | 3121 PFINT_OICR_HMC_ERR_M | 3122 PFINT_OICR_PE_PUSH_M | 3123 PFINT_OICR_PE_CRITERR_M); 3124 3125 wr32(hw, PFINT_OICR_ENA, val); 3126 3127 /* SW_ITR_IDX = 0, but don't change INTENA */ 3128 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3129 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3130 3131 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3132 return; 3133 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3134 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3135 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3136 } 3137 3138 /** 3139 * ice_ll_ts_intr - ll_ts interrupt handler 3140 * @irq: interrupt number 3141 * @data: pointer to a q_vector 3142 */ 3143 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3144 { 3145 struct ice_pf *pf = data; 3146 u32 pf_intr_start_offset; 3147 struct ice_ptp_tx *tx; 3148 unsigned long flags; 3149 struct ice_hw *hw; 3150 u32 val; 3151 u8 idx; 3152 3153 hw = &pf->hw; 3154 tx = &pf->ptp.port.tx; 3155 spin_lock_irqsave(&tx->lock, flags); 3156 ice_ptp_complete_tx_single_tstamp(tx); 3157 3158 idx = find_next_bit_wrap(tx->in_use, tx->len, 3159 tx->last_ll_ts_idx_read + 1); 3160 if (idx != tx->len) 3161 ice_ptp_req_tx_single_tstamp(tx, idx); 3162 spin_unlock_irqrestore(&tx->lock, flags); 3163 3164 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3165 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3166 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3167 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3168 val); 3169 3170 return IRQ_HANDLED; 3171 } 3172 3173 /** 3174 * ice_misc_intr - misc interrupt handler 3175 * @irq: interrupt number 3176 * @data: pointer to a q_vector 3177 */ 3178 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3179 { 3180 struct ice_pf *pf = (struct ice_pf *)data; 3181 irqreturn_t ret = IRQ_HANDLED; 3182 struct ice_hw *hw = &pf->hw; 3183 struct device *dev; 3184 u32 oicr, ena_mask; 3185 3186 dev = ice_pf_to_dev(pf); 3187 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3188 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3189 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3190 3191 oicr = rd32(hw, PFINT_OICR); 3192 ena_mask = rd32(hw, PFINT_OICR_ENA); 3193 3194 if (oicr & PFINT_OICR_SWINT_M) { 3195 ena_mask &= ~PFINT_OICR_SWINT_M; 3196 pf->sw_int_count++; 3197 } 3198 3199 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3200 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3201 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3202 } 3203 if (oicr & PFINT_OICR_VFLR_M) { 3204 /* disable any further VFLR event notifications */ 3205 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3206 u32 reg = rd32(hw, PFINT_OICR_ENA); 3207 3208 reg &= ~PFINT_OICR_VFLR_M; 3209 wr32(hw, PFINT_OICR_ENA, reg); 3210 } else { 3211 ena_mask &= ~PFINT_OICR_VFLR_M; 3212 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3213 } 3214 } 3215 3216 if (oicr & PFINT_OICR_GRST_M) { 3217 u32 reset; 3218 3219 /* we have a reset warning */ 3220 ena_mask &= ~PFINT_OICR_GRST_M; 3221 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3222 rd32(hw, GLGEN_RSTAT)); 3223 3224 if (reset == ICE_RESET_CORER) 3225 pf->corer_count++; 3226 else if (reset == ICE_RESET_GLOBR) 3227 pf->globr_count++; 3228 else if (reset == ICE_RESET_EMPR) 3229 pf->empr_count++; 3230 else 3231 dev_dbg(dev, "Invalid reset type %d\n", reset); 3232 3233 /* If a reset cycle isn't already in progress, we set a bit in 3234 * pf->state so that the service task can start a reset/rebuild. 3235 */ 3236 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3237 if (reset == ICE_RESET_CORER) 3238 set_bit(ICE_CORER_RECV, pf->state); 3239 else if (reset == ICE_RESET_GLOBR) 3240 set_bit(ICE_GLOBR_RECV, pf->state); 3241 else 3242 set_bit(ICE_EMPR_RECV, pf->state); 3243 3244 /* There are couple of different bits at play here. 3245 * hw->reset_ongoing indicates whether the hardware is 3246 * in reset. This is set to true when a reset interrupt 3247 * is received and set back to false after the driver 3248 * has determined that the hardware is out of reset. 3249 * 3250 * ICE_RESET_OICR_RECV in pf->state indicates 3251 * that a post reset rebuild is required before the 3252 * driver is operational again. This is set above. 3253 * 3254 * As this is the start of the reset/rebuild cycle, set 3255 * both to indicate that. 3256 */ 3257 hw->reset_ongoing = true; 3258 } 3259 } 3260 3261 if (oicr & PFINT_OICR_TSYN_TX_M) { 3262 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3263 3264 ret = ice_ptp_ts_irq(pf); 3265 } 3266 3267 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3268 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3269 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3270 3271 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3272 3273 if (ice_pf_src_tmr_owned(pf)) { 3274 /* Save EVENTs from GLTSYN register */ 3275 pf->ptp.ext_ts_irq |= gltsyn_stat & 3276 (GLTSYN_STAT_EVENT0_M | 3277 GLTSYN_STAT_EVENT1_M | 3278 GLTSYN_STAT_EVENT2_M); 3279 3280 ice_ptp_extts_event(pf); 3281 } 3282 } 3283 3284 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3285 if (oicr & ICE_AUX_CRIT_ERR) { 3286 pf->oicr_err_reg |= oicr; 3287 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3288 ena_mask &= ~ICE_AUX_CRIT_ERR; 3289 } 3290 3291 /* Report any remaining unexpected interrupts */ 3292 oicr &= ena_mask; 3293 if (oicr) { 3294 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3295 /* If a critical error is pending there is no choice but to 3296 * reset the device. 3297 */ 3298 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3299 PFINT_OICR_ECC_ERR_M)) { 3300 set_bit(ICE_PFR_REQ, pf->state); 3301 } 3302 } 3303 ice_service_task_schedule(pf); 3304 if (ret == IRQ_HANDLED) 3305 ice_irq_dynamic_ena(hw, NULL, NULL); 3306 3307 return ret; 3308 } 3309 3310 /** 3311 * ice_misc_intr_thread_fn - misc interrupt thread function 3312 * @irq: interrupt number 3313 * @data: pointer to a q_vector 3314 */ 3315 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3316 { 3317 struct ice_pf *pf = data; 3318 struct ice_hw *hw; 3319 3320 hw = &pf->hw; 3321 3322 if (ice_is_reset_in_progress(pf->state)) 3323 goto skip_irq; 3324 3325 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3326 /* Process outstanding Tx timestamps. If there is more work, 3327 * re-arm the interrupt to trigger again. 3328 */ 3329 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3330 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3331 ice_flush(hw); 3332 } 3333 } 3334 3335 skip_irq: 3336 ice_irq_dynamic_ena(hw, NULL, NULL); 3337 3338 return IRQ_HANDLED; 3339 } 3340 3341 /** 3342 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3343 * @hw: pointer to HW structure 3344 */ 3345 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3346 { 3347 /* disable Admin queue Interrupt causes */ 3348 wr32(hw, PFINT_FW_CTL, 3349 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3350 3351 /* disable Mailbox queue Interrupt causes */ 3352 wr32(hw, PFINT_MBX_CTL, 3353 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3354 3355 wr32(hw, PFINT_SB_CTL, 3356 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3357 3358 /* disable Control queue Interrupt causes */ 3359 wr32(hw, PFINT_OICR_CTL, 3360 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3361 3362 ice_flush(hw); 3363 } 3364 3365 /** 3366 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3367 * @pf: board private structure 3368 */ 3369 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3370 { 3371 int irq_num = pf->ll_ts_irq.virq; 3372 3373 synchronize_irq(irq_num); 3374 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3375 3376 ice_free_irq(pf, pf->ll_ts_irq); 3377 } 3378 3379 /** 3380 * ice_free_irq_msix_misc - Unroll misc vector setup 3381 * @pf: board private structure 3382 */ 3383 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3384 { 3385 int misc_irq_num = pf->oicr_irq.virq; 3386 struct ice_hw *hw = &pf->hw; 3387 3388 ice_dis_ctrlq_interrupts(hw); 3389 3390 /* disable OICR interrupt */ 3391 wr32(hw, PFINT_OICR_ENA, 0); 3392 ice_flush(hw); 3393 3394 synchronize_irq(misc_irq_num); 3395 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3396 3397 ice_free_irq(pf, pf->oicr_irq); 3398 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3399 ice_free_irq_msix_ll_ts(pf); 3400 } 3401 3402 /** 3403 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3404 * @hw: pointer to HW structure 3405 * @reg_idx: HW vector index to associate the control queue interrupts with 3406 */ 3407 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3408 { 3409 u32 val; 3410 3411 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3412 PFINT_OICR_CTL_CAUSE_ENA_M); 3413 wr32(hw, PFINT_OICR_CTL, val); 3414 3415 /* enable Admin queue Interrupt causes */ 3416 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3417 PFINT_FW_CTL_CAUSE_ENA_M); 3418 wr32(hw, PFINT_FW_CTL, val); 3419 3420 /* enable Mailbox queue Interrupt causes */ 3421 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3422 PFINT_MBX_CTL_CAUSE_ENA_M); 3423 wr32(hw, PFINT_MBX_CTL, val); 3424 3425 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3426 /* enable Sideband queue Interrupt causes */ 3427 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3428 PFINT_SB_CTL_CAUSE_ENA_M); 3429 wr32(hw, PFINT_SB_CTL, val); 3430 } 3431 3432 ice_flush(hw); 3433 } 3434 3435 /** 3436 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3437 * @pf: board private structure 3438 * 3439 * This sets up the handler for MSIX 0, which is used to manage the 3440 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3441 * when in MSI or Legacy interrupt mode. 3442 */ 3443 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3444 { 3445 struct device *dev = ice_pf_to_dev(pf); 3446 struct ice_hw *hw = &pf->hw; 3447 u32 pf_intr_start_offset; 3448 struct msi_map irq; 3449 int err = 0; 3450 3451 if (!pf->int_name[0]) 3452 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3453 dev_driver_string(dev), dev_name(dev)); 3454 3455 if (!pf->int_name_ll_ts[0]) 3456 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3457 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3458 /* Do not request IRQ but do enable OICR interrupt since settings are 3459 * lost during reset. Note that this function is called only during 3460 * rebuild path and not while reset is in progress. 3461 */ 3462 if (ice_is_reset_in_progress(pf->state)) 3463 goto skip_req_irq; 3464 3465 /* reserve one vector in irq_tracker for misc interrupts */ 3466 irq = ice_alloc_irq(pf, false); 3467 if (irq.index < 0) 3468 return irq.index; 3469 3470 pf->oicr_irq = irq; 3471 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3472 ice_misc_intr_thread_fn, 0, 3473 pf->int_name, pf); 3474 if (err) { 3475 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3476 pf->int_name, err); 3477 ice_free_irq(pf, pf->oicr_irq); 3478 return err; 3479 } 3480 3481 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3482 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3483 goto skip_req_irq; 3484 3485 irq = ice_alloc_irq(pf, false); 3486 if (irq.index < 0) 3487 return irq.index; 3488 3489 pf->ll_ts_irq = irq; 3490 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3491 pf->int_name_ll_ts, pf); 3492 if (err) { 3493 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3494 pf->int_name_ll_ts, err); 3495 ice_free_irq(pf, pf->ll_ts_irq); 3496 return err; 3497 } 3498 3499 skip_req_irq: 3500 ice_ena_misc_vector(pf); 3501 3502 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3503 /* This enables LL TS interrupt */ 3504 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3505 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3506 wr32(hw, PFINT_SB_CTL, 3507 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3508 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3509 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3510 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3511 3512 ice_flush(hw); 3513 ice_irq_dynamic_ena(hw, NULL, NULL); 3514 3515 return 0; 3516 } 3517 3518 /** 3519 * ice_set_ops - set netdev and ethtools ops for the given netdev 3520 * @vsi: the VSI associated with the new netdev 3521 */ 3522 static void ice_set_ops(struct ice_vsi *vsi) 3523 { 3524 struct net_device *netdev = vsi->netdev; 3525 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3526 3527 if (ice_is_safe_mode(pf)) { 3528 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3529 ice_set_ethtool_safe_mode_ops(netdev); 3530 return; 3531 } 3532 3533 netdev->netdev_ops = &ice_netdev_ops; 3534 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3535 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3536 ice_set_ethtool_ops(netdev); 3537 3538 if (vsi->type != ICE_VSI_PF) 3539 return; 3540 3541 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3542 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3543 NETDEV_XDP_ACT_RX_SG; 3544 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3545 } 3546 3547 /** 3548 * ice_set_netdev_features - set features for the given netdev 3549 * @netdev: netdev instance 3550 */ 3551 void ice_set_netdev_features(struct net_device *netdev) 3552 { 3553 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3554 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3555 netdev_features_t csumo_features; 3556 netdev_features_t vlano_features; 3557 netdev_features_t dflt_features; 3558 netdev_features_t tso_features; 3559 3560 if (ice_is_safe_mode(pf)) { 3561 /* safe mode */ 3562 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3563 netdev->hw_features = netdev->features; 3564 return; 3565 } 3566 3567 dflt_features = NETIF_F_SG | 3568 NETIF_F_HIGHDMA | 3569 NETIF_F_NTUPLE | 3570 NETIF_F_RXHASH; 3571 3572 csumo_features = NETIF_F_RXCSUM | 3573 NETIF_F_IP_CSUM | 3574 NETIF_F_SCTP_CRC | 3575 NETIF_F_IPV6_CSUM; 3576 3577 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3578 NETIF_F_HW_VLAN_CTAG_TX | 3579 NETIF_F_HW_VLAN_CTAG_RX; 3580 3581 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3582 if (is_dvm_ena) 3583 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3584 3585 tso_features = NETIF_F_TSO | 3586 NETIF_F_TSO_ECN | 3587 NETIF_F_TSO6 | 3588 NETIF_F_GSO_GRE | 3589 NETIF_F_GSO_UDP_TUNNEL | 3590 NETIF_F_GSO_GRE_CSUM | 3591 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3592 NETIF_F_GSO_PARTIAL | 3593 NETIF_F_GSO_IPXIP4 | 3594 NETIF_F_GSO_IPXIP6 | 3595 NETIF_F_GSO_UDP_L4; 3596 3597 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3598 NETIF_F_GSO_GRE_CSUM; 3599 /* set features that user can change */ 3600 netdev->hw_features = dflt_features | csumo_features | 3601 vlano_features | tso_features; 3602 3603 /* add support for HW_CSUM on packets with MPLS header */ 3604 netdev->mpls_features = NETIF_F_HW_CSUM | 3605 NETIF_F_TSO | 3606 NETIF_F_TSO6; 3607 3608 /* enable features */ 3609 netdev->features |= netdev->hw_features; 3610 3611 netdev->hw_features |= NETIF_F_HW_TC; 3612 netdev->hw_features |= NETIF_F_LOOPBACK; 3613 3614 /* encap and VLAN devices inherit default, csumo and tso features */ 3615 netdev->hw_enc_features |= dflt_features | csumo_features | 3616 tso_features; 3617 netdev->vlan_features |= dflt_features | csumo_features | 3618 tso_features; 3619 3620 /* advertise support but don't enable by default since only one type of 3621 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3622 * type turns on the other has to be turned off. This is enforced by the 3623 * ice_fix_features() ndo callback. 3624 */ 3625 if (is_dvm_ena) 3626 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3627 NETIF_F_HW_VLAN_STAG_TX; 3628 3629 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3630 * be changed at runtime 3631 */ 3632 netdev->hw_features |= NETIF_F_RXFCS; 3633 3634 /* Allow core to manage IRQs affinity */ 3635 netif_set_affinity_auto(netdev); 3636 3637 /* Mutual exclusivity for TSO and GCS is enforced by the set features 3638 * ndo callback. 3639 */ 3640 if (ice_is_feature_supported(pf, ICE_F_GCS)) 3641 netdev->hw_features |= NETIF_F_HW_CSUM; 3642 3643 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3644 } 3645 3646 /** 3647 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3648 * @lut: Lookup table 3649 * @rss_table_size: Lookup table size 3650 * @rss_size: Range of queue number for hashing 3651 */ 3652 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3653 { 3654 u16 i; 3655 3656 for (i = 0; i < rss_table_size; i++) 3657 lut[i] = i % rss_size; 3658 } 3659 3660 /** 3661 * ice_pf_vsi_setup - Set up a PF VSI 3662 * @pf: board private structure 3663 * @pi: pointer to the port_info instance 3664 * 3665 * Returns pointer to the successfully allocated VSI software struct 3666 * on success, otherwise returns NULL on failure. 3667 */ 3668 static struct ice_vsi * 3669 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3670 { 3671 struct ice_vsi_cfg_params params = {}; 3672 3673 params.type = ICE_VSI_PF; 3674 params.port_info = pi; 3675 params.flags = ICE_VSI_FLAG_INIT; 3676 3677 return ice_vsi_setup(pf, ¶ms); 3678 } 3679 3680 static struct ice_vsi * 3681 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3682 struct ice_channel *ch) 3683 { 3684 struct ice_vsi_cfg_params params = {}; 3685 3686 params.type = ICE_VSI_CHNL; 3687 params.port_info = pi; 3688 params.ch = ch; 3689 params.flags = ICE_VSI_FLAG_INIT; 3690 3691 return ice_vsi_setup(pf, ¶ms); 3692 } 3693 3694 /** 3695 * ice_ctrl_vsi_setup - Set up a control VSI 3696 * @pf: board private structure 3697 * @pi: pointer to the port_info instance 3698 * 3699 * Returns pointer to the successfully allocated VSI software struct 3700 * on success, otherwise returns NULL on failure. 3701 */ 3702 static struct ice_vsi * 3703 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3704 { 3705 struct ice_vsi_cfg_params params = {}; 3706 3707 params.type = ICE_VSI_CTRL; 3708 params.port_info = pi; 3709 params.flags = ICE_VSI_FLAG_INIT; 3710 3711 return ice_vsi_setup(pf, ¶ms); 3712 } 3713 3714 /** 3715 * ice_lb_vsi_setup - Set up a loopback VSI 3716 * @pf: board private structure 3717 * @pi: pointer to the port_info instance 3718 * 3719 * Returns pointer to the successfully allocated VSI software struct 3720 * on success, otherwise returns NULL on failure. 3721 */ 3722 struct ice_vsi * 3723 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3724 { 3725 struct ice_vsi_cfg_params params = {}; 3726 3727 params.type = ICE_VSI_LB; 3728 params.port_info = pi; 3729 params.flags = ICE_VSI_FLAG_INIT; 3730 3731 return ice_vsi_setup(pf, ¶ms); 3732 } 3733 3734 /** 3735 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3736 * @netdev: network interface to be adjusted 3737 * @proto: VLAN TPID 3738 * @vid: VLAN ID to be added 3739 * 3740 * net_device_ops implementation for adding VLAN IDs 3741 */ 3742 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3743 { 3744 struct ice_netdev_priv *np = netdev_priv(netdev); 3745 struct ice_vsi_vlan_ops *vlan_ops; 3746 struct ice_vsi *vsi = np->vsi; 3747 struct ice_vlan vlan; 3748 int ret; 3749 3750 /* VLAN 0 is added by default during load/reset */ 3751 if (!vid) 3752 return 0; 3753 3754 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3755 usleep_range(1000, 2000); 3756 3757 /* Add multicast promisc rule for the VLAN ID to be added if 3758 * all-multicast is currently enabled. 3759 */ 3760 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3761 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3762 ICE_MCAST_VLAN_PROMISC_BITS, 3763 vid); 3764 if (ret) 3765 goto finish; 3766 } 3767 3768 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3769 3770 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3771 * packets aren't pruned by the device's internal switch on Rx 3772 */ 3773 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3774 ret = vlan_ops->add_vlan(vsi, &vlan); 3775 if (ret) 3776 goto finish; 3777 3778 /* If all-multicast is currently enabled and this VLAN ID is only one 3779 * besides VLAN-0 we have to update look-up type of multicast promisc 3780 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3781 */ 3782 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3783 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3784 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3785 ICE_MCAST_PROMISC_BITS, 0); 3786 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3787 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3788 } 3789 3790 finish: 3791 clear_bit(ICE_CFG_BUSY, vsi->state); 3792 3793 return ret; 3794 } 3795 3796 /** 3797 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3798 * @netdev: network interface to be adjusted 3799 * @proto: VLAN TPID 3800 * @vid: VLAN ID to be removed 3801 * 3802 * net_device_ops implementation for removing VLAN IDs 3803 */ 3804 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3805 { 3806 struct ice_netdev_priv *np = netdev_priv(netdev); 3807 struct ice_vsi_vlan_ops *vlan_ops; 3808 struct ice_vsi *vsi = np->vsi; 3809 struct ice_vlan vlan; 3810 int ret; 3811 3812 /* don't allow removal of VLAN 0 */ 3813 if (!vid) 3814 return 0; 3815 3816 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3817 usleep_range(1000, 2000); 3818 3819 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3820 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3821 if (ret) { 3822 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3823 vsi->vsi_num); 3824 vsi->current_netdev_flags |= IFF_ALLMULTI; 3825 } 3826 3827 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3828 3829 /* Make sure VLAN delete is successful before updating VLAN 3830 * information 3831 */ 3832 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3833 ret = vlan_ops->del_vlan(vsi, &vlan); 3834 if (ret) 3835 goto finish; 3836 3837 /* Remove multicast promisc rule for the removed VLAN ID if 3838 * all-multicast is enabled. 3839 */ 3840 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3841 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3842 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3843 3844 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3845 /* Update look-up type of multicast promisc rule for VLAN 0 3846 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3847 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3848 */ 3849 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3850 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3851 ICE_MCAST_VLAN_PROMISC_BITS, 3852 0); 3853 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3854 ICE_MCAST_PROMISC_BITS, 0); 3855 } 3856 } 3857 3858 finish: 3859 clear_bit(ICE_CFG_BUSY, vsi->state); 3860 3861 return ret; 3862 } 3863 3864 /** 3865 * ice_rep_indr_tc_block_unbind 3866 * @cb_priv: indirection block private data 3867 */ 3868 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3869 { 3870 struct ice_indr_block_priv *indr_priv = cb_priv; 3871 3872 list_del(&indr_priv->list); 3873 kfree(indr_priv); 3874 } 3875 3876 /** 3877 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3878 * @vsi: VSI struct which has the netdev 3879 */ 3880 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3881 { 3882 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3883 3884 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3885 ice_rep_indr_tc_block_unbind); 3886 } 3887 3888 /** 3889 * ice_tc_indir_block_register - Register TC indirect block notifications 3890 * @vsi: VSI struct which has the netdev 3891 * 3892 * Returns 0 on success, negative value on failure 3893 */ 3894 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3895 { 3896 struct ice_netdev_priv *np; 3897 3898 if (!vsi || !vsi->netdev) 3899 return -EINVAL; 3900 3901 np = netdev_priv(vsi->netdev); 3902 3903 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3904 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3905 } 3906 3907 /** 3908 * ice_get_avail_q_count - Get count of queues in use 3909 * @pf_qmap: bitmap to get queue use count from 3910 * @lock: pointer to a mutex that protects access to pf_qmap 3911 * @size: size of the bitmap 3912 */ 3913 static u16 3914 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3915 { 3916 unsigned long bit; 3917 u16 count = 0; 3918 3919 mutex_lock(lock); 3920 for_each_clear_bit(bit, pf_qmap, size) 3921 count++; 3922 mutex_unlock(lock); 3923 3924 return count; 3925 } 3926 3927 /** 3928 * ice_get_avail_txq_count - Get count of Tx queues in use 3929 * @pf: pointer to an ice_pf instance 3930 */ 3931 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3932 { 3933 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3934 pf->max_pf_txqs); 3935 } 3936 3937 /** 3938 * ice_get_avail_rxq_count - Get count of Rx queues in use 3939 * @pf: pointer to an ice_pf instance 3940 */ 3941 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3942 { 3943 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3944 pf->max_pf_rxqs); 3945 } 3946 3947 /** 3948 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3949 * @pf: board private structure to initialize 3950 */ 3951 static void ice_deinit_pf(struct ice_pf *pf) 3952 { 3953 ice_service_task_stop(pf); 3954 mutex_destroy(&pf->lag_mutex); 3955 mutex_destroy(&pf->adev_mutex); 3956 mutex_destroy(&pf->sw_mutex); 3957 mutex_destroy(&pf->tc_mutex); 3958 mutex_destroy(&pf->avail_q_mutex); 3959 mutex_destroy(&pf->vfs.table_lock); 3960 3961 if (pf->avail_txqs) { 3962 bitmap_free(pf->avail_txqs); 3963 pf->avail_txqs = NULL; 3964 } 3965 3966 if (pf->avail_rxqs) { 3967 bitmap_free(pf->avail_rxqs); 3968 pf->avail_rxqs = NULL; 3969 } 3970 3971 if (pf->ptp.clock) 3972 ptp_clock_unregister(pf->ptp.clock); 3973 3974 xa_destroy(&pf->dyn_ports); 3975 xa_destroy(&pf->sf_nums); 3976 } 3977 3978 /** 3979 * ice_set_pf_caps - set PFs capability flags 3980 * @pf: pointer to the PF instance 3981 */ 3982 static void ice_set_pf_caps(struct ice_pf *pf) 3983 { 3984 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3985 3986 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3987 if (func_caps->common_cap.rdma) 3988 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3989 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3990 if (func_caps->common_cap.dcb) 3991 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3992 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3993 if (func_caps->common_cap.sr_iov_1_1) { 3994 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3995 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3996 ICE_MAX_SRIOV_VFS); 3997 } 3998 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3999 if (func_caps->common_cap.rss_table_size) 4000 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4001 4002 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4003 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4004 u16 unused; 4005 4006 /* ctrl_vsi_idx will be set to a valid value when flow director 4007 * is setup by ice_init_fdir 4008 */ 4009 pf->ctrl_vsi_idx = ICE_NO_VSI; 4010 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4011 /* force guaranteed filter pool for PF */ 4012 ice_alloc_fd_guar_item(&pf->hw, &unused, 4013 func_caps->fd_fltr_guar); 4014 /* force shared filter pool for PF */ 4015 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4016 func_caps->fd_fltr_best_effort); 4017 } 4018 4019 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4020 if (func_caps->common_cap.ieee_1588) 4021 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4022 4023 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4024 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4025 } 4026 4027 /** 4028 * ice_init_pf - Initialize general software structures (struct ice_pf) 4029 * @pf: board private structure to initialize 4030 */ 4031 static int ice_init_pf(struct ice_pf *pf) 4032 { 4033 ice_set_pf_caps(pf); 4034 4035 mutex_init(&pf->sw_mutex); 4036 mutex_init(&pf->tc_mutex); 4037 mutex_init(&pf->adev_mutex); 4038 mutex_init(&pf->lag_mutex); 4039 4040 INIT_HLIST_HEAD(&pf->aq_wait_list); 4041 spin_lock_init(&pf->aq_wait_lock); 4042 init_waitqueue_head(&pf->aq_wait_queue); 4043 4044 init_waitqueue_head(&pf->reset_wait_queue); 4045 4046 /* setup service timer and periodic service task */ 4047 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4048 pf->serv_tmr_period = HZ; 4049 INIT_WORK(&pf->serv_task, ice_service_task); 4050 clear_bit(ICE_SERVICE_SCHED, pf->state); 4051 4052 mutex_init(&pf->avail_q_mutex); 4053 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4054 if (!pf->avail_txqs) 4055 return -ENOMEM; 4056 4057 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4058 if (!pf->avail_rxqs) { 4059 bitmap_free(pf->avail_txqs); 4060 pf->avail_txqs = NULL; 4061 return -ENOMEM; 4062 } 4063 4064 mutex_init(&pf->vfs.table_lock); 4065 hash_init(pf->vfs.table); 4066 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 4067 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH, 4068 ICE_MBX_OVERFLOW_WATERMARK); 4069 else 4070 ice_mbx_init_snapshot(&pf->hw); 4071 4072 xa_init(&pf->dyn_ports); 4073 xa_init(&pf->sf_nums); 4074 4075 return 0; 4076 } 4077 4078 /** 4079 * ice_is_wol_supported - check if WoL is supported 4080 * @hw: pointer to hardware info 4081 * 4082 * Check if WoL is supported based on the HW configuration. 4083 * Returns true if NVM supports and enables WoL for this port, false otherwise 4084 */ 4085 bool ice_is_wol_supported(struct ice_hw *hw) 4086 { 4087 u16 wol_ctrl; 4088 4089 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4090 * word) indicates WoL is not supported on the corresponding PF ID. 4091 */ 4092 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4093 return false; 4094 4095 return !(BIT(hw->port_info->lport) & wol_ctrl); 4096 } 4097 4098 /** 4099 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4100 * @vsi: VSI being changed 4101 * @new_rx: new number of Rx queues 4102 * @new_tx: new number of Tx queues 4103 * @locked: is adev device_lock held 4104 * 4105 * Only change the number of queues if new_tx, or new_rx is non-0. 4106 * 4107 * Returns 0 on success. 4108 */ 4109 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4110 { 4111 struct ice_pf *pf = vsi->back; 4112 int i, err = 0, timeout = 50; 4113 4114 if (!new_rx && !new_tx) 4115 return -EINVAL; 4116 4117 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4118 timeout--; 4119 if (!timeout) 4120 return -EBUSY; 4121 usleep_range(1000, 2000); 4122 } 4123 4124 if (new_tx) 4125 vsi->req_txq = (u16)new_tx; 4126 if (new_rx) 4127 vsi->req_rxq = (u16)new_rx; 4128 4129 /* set for the next time the netdev is started */ 4130 if (!netif_running(vsi->netdev)) { 4131 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4132 if (err) 4133 goto rebuild_err; 4134 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4135 goto done; 4136 } 4137 4138 ice_vsi_close(vsi); 4139 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4140 if (err) 4141 goto rebuild_err; 4142 4143 ice_for_each_traffic_class(i) { 4144 if (vsi->tc_cfg.ena_tc & BIT(i)) 4145 netdev_set_tc_queue(vsi->netdev, 4146 vsi->tc_cfg.tc_info[i].netdev_tc, 4147 vsi->tc_cfg.tc_info[i].qcount_tx, 4148 vsi->tc_cfg.tc_info[i].qoffset); 4149 } 4150 ice_pf_dcb_recfg(pf, locked); 4151 ice_vsi_open(vsi); 4152 goto done; 4153 4154 rebuild_err: 4155 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4156 err); 4157 done: 4158 clear_bit(ICE_CFG_BUSY, pf->state); 4159 return err; 4160 } 4161 4162 /** 4163 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4164 * @pf: PF to configure 4165 * 4166 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4167 * VSI can still Tx/Rx VLAN tagged packets. 4168 */ 4169 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4170 { 4171 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4172 struct ice_vsi_ctx *ctxt; 4173 struct ice_hw *hw; 4174 int status; 4175 4176 if (!vsi) 4177 return; 4178 4179 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4180 if (!ctxt) 4181 return; 4182 4183 hw = &pf->hw; 4184 ctxt->info = vsi->info; 4185 4186 ctxt->info.valid_sections = 4187 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4188 ICE_AQ_VSI_PROP_SECURITY_VALID | 4189 ICE_AQ_VSI_PROP_SW_VALID); 4190 4191 /* disable VLAN anti-spoof */ 4192 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4193 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4194 4195 /* disable VLAN pruning and keep all other settings */ 4196 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4197 4198 /* allow all VLANs on Tx and don't strip on Rx */ 4199 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4200 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4201 4202 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4203 if (status) { 4204 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4205 status, ice_aq_str(hw->adminq.sq_last_status)); 4206 } else { 4207 vsi->info.sec_flags = ctxt->info.sec_flags; 4208 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4209 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4210 } 4211 4212 kfree(ctxt); 4213 } 4214 4215 /** 4216 * ice_log_pkg_init - log result of DDP package load 4217 * @hw: pointer to hardware info 4218 * @state: state of package load 4219 */ 4220 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4221 { 4222 struct ice_pf *pf = hw->back; 4223 struct device *dev; 4224 4225 dev = ice_pf_to_dev(pf); 4226 4227 switch (state) { 4228 case ICE_DDP_PKG_SUCCESS: 4229 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4230 hw->active_pkg_name, 4231 hw->active_pkg_ver.major, 4232 hw->active_pkg_ver.minor, 4233 hw->active_pkg_ver.update, 4234 hw->active_pkg_ver.draft); 4235 break; 4236 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4237 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4238 hw->active_pkg_name, 4239 hw->active_pkg_ver.major, 4240 hw->active_pkg_ver.minor, 4241 hw->active_pkg_ver.update, 4242 hw->active_pkg_ver.draft); 4243 break; 4244 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4245 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4246 hw->active_pkg_name, 4247 hw->active_pkg_ver.major, 4248 hw->active_pkg_ver.minor, 4249 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4250 break; 4251 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4252 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4253 hw->active_pkg_name, 4254 hw->active_pkg_ver.major, 4255 hw->active_pkg_ver.minor, 4256 hw->active_pkg_ver.update, 4257 hw->active_pkg_ver.draft, 4258 hw->pkg_name, 4259 hw->pkg_ver.major, 4260 hw->pkg_ver.minor, 4261 hw->pkg_ver.update, 4262 hw->pkg_ver.draft); 4263 break; 4264 case ICE_DDP_PKG_FW_MISMATCH: 4265 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4266 break; 4267 case ICE_DDP_PKG_INVALID_FILE: 4268 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4269 break; 4270 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4271 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4272 break; 4273 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4274 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4275 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4276 break; 4277 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4278 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4279 break; 4280 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4281 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4282 break; 4283 case ICE_DDP_PKG_LOAD_ERROR: 4284 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4285 /* poll for reset to complete */ 4286 if (ice_check_reset(hw)) 4287 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4288 break; 4289 case ICE_DDP_PKG_ERR: 4290 default: 4291 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4292 break; 4293 } 4294 } 4295 4296 /** 4297 * ice_load_pkg - load/reload the DDP Package file 4298 * @firmware: firmware structure when firmware requested or NULL for reload 4299 * @pf: pointer to the PF instance 4300 * 4301 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4302 * initialize HW tables. 4303 */ 4304 static void 4305 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4306 { 4307 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4308 struct device *dev = ice_pf_to_dev(pf); 4309 struct ice_hw *hw = &pf->hw; 4310 4311 /* Load DDP Package */ 4312 if (firmware && !hw->pkg_copy) { 4313 state = ice_copy_and_init_pkg(hw, firmware->data, 4314 firmware->size); 4315 ice_log_pkg_init(hw, state); 4316 } else if (!firmware && hw->pkg_copy) { 4317 /* Reload package during rebuild after CORER/GLOBR reset */ 4318 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4319 ice_log_pkg_init(hw, state); 4320 } else { 4321 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4322 } 4323 4324 if (!ice_is_init_pkg_successful(state)) { 4325 /* Safe Mode */ 4326 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4327 return; 4328 } 4329 4330 /* Successful download package is the precondition for advanced 4331 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4332 */ 4333 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4334 } 4335 4336 /** 4337 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4338 * @pf: pointer to the PF structure 4339 * 4340 * There is no error returned here because the driver should be able to handle 4341 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4342 * specifically with Tx. 4343 */ 4344 static void ice_verify_cacheline_size(struct ice_pf *pf) 4345 { 4346 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4347 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4348 ICE_CACHE_LINE_BYTES); 4349 } 4350 4351 /** 4352 * ice_send_version - update firmware with driver version 4353 * @pf: PF struct 4354 * 4355 * Returns 0 on success, else error code 4356 */ 4357 static int ice_send_version(struct ice_pf *pf) 4358 { 4359 struct ice_driver_ver dv; 4360 4361 dv.major_ver = 0xff; 4362 dv.minor_ver = 0xff; 4363 dv.build_ver = 0xff; 4364 dv.subbuild_ver = 0; 4365 strscpy((char *)dv.driver_string, UTS_RELEASE, 4366 sizeof(dv.driver_string)); 4367 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4368 } 4369 4370 /** 4371 * ice_init_fdir - Initialize flow director VSI and configuration 4372 * @pf: pointer to the PF instance 4373 * 4374 * returns 0 on success, negative on error 4375 */ 4376 static int ice_init_fdir(struct ice_pf *pf) 4377 { 4378 struct device *dev = ice_pf_to_dev(pf); 4379 struct ice_vsi *ctrl_vsi; 4380 int err; 4381 4382 /* Side Band Flow Director needs to have a control VSI. 4383 * Allocate it and store it in the PF. 4384 */ 4385 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4386 if (!ctrl_vsi) { 4387 dev_dbg(dev, "could not create control VSI\n"); 4388 return -ENOMEM; 4389 } 4390 4391 err = ice_vsi_open_ctrl(ctrl_vsi); 4392 if (err) { 4393 dev_dbg(dev, "could not open control VSI\n"); 4394 goto err_vsi_open; 4395 } 4396 4397 mutex_init(&pf->hw.fdir_fltr_lock); 4398 4399 err = ice_fdir_create_dflt_rules(pf); 4400 if (err) 4401 goto err_fdir_rule; 4402 4403 return 0; 4404 4405 err_fdir_rule: 4406 ice_fdir_release_flows(&pf->hw); 4407 ice_vsi_close(ctrl_vsi); 4408 err_vsi_open: 4409 ice_vsi_release(ctrl_vsi); 4410 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4411 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4412 pf->ctrl_vsi_idx = ICE_NO_VSI; 4413 } 4414 return err; 4415 } 4416 4417 static void ice_deinit_fdir(struct ice_pf *pf) 4418 { 4419 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4420 4421 if (!vsi) 4422 return; 4423 4424 ice_vsi_manage_fdir(vsi, false); 4425 ice_vsi_release(vsi); 4426 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4427 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4428 pf->ctrl_vsi_idx = ICE_NO_VSI; 4429 } 4430 4431 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4432 } 4433 4434 /** 4435 * ice_get_opt_fw_name - return optional firmware file name or NULL 4436 * @pf: pointer to the PF instance 4437 */ 4438 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4439 { 4440 /* Optional firmware name same as default with additional dash 4441 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4442 */ 4443 struct pci_dev *pdev = pf->pdev; 4444 char *opt_fw_filename; 4445 u64 dsn; 4446 4447 /* Determine the name of the optional file using the DSN (two 4448 * dwords following the start of the DSN Capability). 4449 */ 4450 dsn = pci_get_dsn(pdev); 4451 if (!dsn) 4452 return NULL; 4453 4454 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4455 if (!opt_fw_filename) 4456 return NULL; 4457 4458 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4459 ICE_DDP_PKG_PATH, dsn); 4460 4461 return opt_fw_filename; 4462 } 4463 4464 /** 4465 * ice_request_fw - Device initialization routine 4466 * @pf: pointer to the PF instance 4467 * @firmware: double pointer to firmware struct 4468 * 4469 * Return: zero when successful, negative values otherwise. 4470 */ 4471 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4472 { 4473 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4474 struct device *dev = ice_pf_to_dev(pf); 4475 int err = 0; 4476 4477 /* optional device-specific DDP (if present) overrides the default DDP 4478 * package file. kernel logs a debug message if the file doesn't exist, 4479 * and warning messages for other errors. 4480 */ 4481 if (opt_fw_filename) { 4482 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4483 kfree(opt_fw_filename); 4484 if (!err) 4485 return err; 4486 } 4487 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4488 if (err) 4489 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4490 4491 return err; 4492 } 4493 4494 /** 4495 * ice_init_tx_topology - performs Tx topology initialization 4496 * @hw: pointer to the hardware structure 4497 * @firmware: pointer to firmware structure 4498 * 4499 * Return: zero when init was successful, negative values otherwise. 4500 */ 4501 static int 4502 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4503 { 4504 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4505 struct ice_pf *pf = hw->back; 4506 struct device *dev; 4507 int err; 4508 4509 dev = ice_pf_to_dev(pf); 4510 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4511 if (!err) { 4512 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4513 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4514 else 4515 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4516 /* if there was a change in topology ice_cfg_tx_topo triggered 4517 * a CORER and we need to re-init hw 4518 */ 4519 ice_deinit_hw(hw); 4520 err = ice_init_hw(hw); 4521 4522 return err; 4523 } else if (err == -EIO) { 4524 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4525 } 4526 4527 return 0; 4528 } 4529 4530 /** 4531 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs 4532 * @hw: pointer to the hardware structure 4533 * @pf: pointer to pf structure 4534 * 4535 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor 4536 * formats the PF hardware supports. The exact list of supported RXDIDs 4537 * depends on the loaded DDP package. The IDs can be determined by reading the 4538 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded. 4539 * 4540 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed 4541 * in the DDP package. The 16-byte legacy descriptor is never supported by 4542 * VFs. 4543 */ 4544 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf) 4545 { 4546 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1); 4547 4548 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 4549 u32 regval; 4550 4551 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 4552 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 4553 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 4554 pf->supported_rxdids |= BIT(i); 4555 } 4556 } 4557 4558 /** 4559 * ice_init_ddp_config - DDP related configuration 4560 * @hw: pointer to the hardware structure 4561 * @pf: pointer to pf structure 4562 * 4563 * This function loads DDP file from the disk, then initializes Tx 4564 * topology. At the end DDP package is loaded on the card. 4565 * 4566 * Return: zero when init was successful, negative values otherwise. 4567 */ 4568 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4569 { 4570 struct device *dev = ice_pf_to_dev(pf); 4571 const struct firmware *firmware = NULL; 4572 int err; 4573 4574 err = ice_request_fw(pf, &firmware); 4575 if (err) { 4576 dev_err(dev, "Fail during requesting FW: %d\n", err); 4577 return err; 4578 } 4579 4580 err = ice_init_tx_topology(hw, firmware); 4581 if (err) { 4582 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4583 err); 4584 release_firmware(firmware); 4585 return err; 4586 } 4587 4588 /* Download firmware to device */ 4589 ice_load_pkg(firmware, pf); 4590 release_firmware(firmware); 4591 4592 /* Initialize the supported Rx descriptor IDs after loading DDP */ 4593 ice_init_supported_rxdids(hw, pf); 4594 4595 return 0; 4596 } 4597 4598 /** 4599 * ice_print_wake_reason - show the wake up cause in the log 4600 * @pf: pointer to the PF struct 4601 */ 4602 static void ice_print_wake_reason(struct ice_pf *pf) 4603 { 4604 u32 wus = pf->wakeup_reason; 4605 const char *wake_str; 4606 4607 /* if no wake event, nothing to print */ 4608 if (!wus) 4609 return; 4610 4611 if (wus & PFPM_WUS_LNKC_M) 4612 wake_str = "Link\n"; 4613 else if (wus & PFPM_WUS_MAG_M) 4614 wake_str = "Magic Packet\n"; 4615 else if (wus & PFPM_WUS_MNG_M) 4616 wake_str = "Management\n"; 4617 else if (wus & PFPM_WUS_FW_RST_WK_M) 4618 wake_str = "Firmware Reset\n"; 4619 else 4620 wake_str = "Unknown\n"; 4621 4622 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4623 } 4624 4625 /** 4626 * ice_pf_fwlog_update_module - update 1 module 4627 * @pf: pointer to the PF struct 4628 * @log_level: log_level to use for the @module 4629 * @module: module to update 4630 */ 4631 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4632 { 4633 struct ice_hw *hw = &pf->hw; 4634 4635 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4636 } 4637 4638 /** 4639 * ice_register_netdev - register netdev 4640 * @vsi: pointer to the VSI struct 4641 */ 4642 static int ice_register_netdev(struct ice_vsi *vsi) 4643 { 4644 int err; 4645 4646 if (!vsi || !vsi->netdev) 4647 return -EIO; 4648 4649 err = register_netdev(vsi->netdev); 4650 if (err) 4651 return err; 4652 4653 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4654 netif_carrier_off(vsi->netdev); 4655 netif_tx_stop_all_queues(vsi->netdev); 4656 4657 return 0; 4658 } 4659 4660 static void ice_unregister_netdev(struct ice_vsi *vsi) 4661 { 4662 if (!vsi || !vsi->netdev) 4663 return; 4664 4665 unregister_netdev(vsi->netdev); 4666 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4667 } 4668 4669 /** 4670 * ice_cfg_netdev - Allocate, configure and register a netdev 4671 * @vsi: the VSI associated with the new netdev 4672 * 4673 * Returns 0 on success, negative value on failure 4674 */ 4675 static int ice_cfg_netdev(struct ice_vsi *vsi) 4676 { 4677 struct ice_netdev_priv *np; 4678 struct net_device *netdev; 4679 u8 mac_addr[ETH_ALEN]; 4680 4681 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4682 vsi->alloc_rxq); 4683 if (!netdev) 4684 return -ENOMEM; 4685 4686 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4687 vsi->netdev = netdev; 4688 np = netdev_priv(netdev); 4689 np->vsi = vsi; 4690 4691 ice_set_netdev_features(netdev); 4692 ice_set_ops(vsi); 4693 4694 if (vsi->type == ICE_VSI_PF) { 4695 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4696 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4697 eth_hw_addr_set(netdev, mac_addr); 4698 } 4699 4700 netdev->priv_flags |= IFF_UNICAST_FLT; 4701 4702 /* Setup netdev TC information */ 4703 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4704 4705 netdev->max_mtu = ICE_MAX_MTU; 4706 4707 return 0; 4708 } 4709 4710 static void ice_decfg_netdev(struct ice_vsi *vsi) 4711 { 4712 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4713 free_netdev(vsi->netdev); 4714 vsi->netdev = NULL; 4715 } 4716 4717 int ice_init_dev(struct ice_pf *pf) 4718 { 4719 struct device *dev = ice_pf_to_dev(pf); 4720 struct ice_hw *hw = &pf->hw; 4721 int err; 4722 4723 ice_init_feature_support(pf); 4724 4725 err = ice_init_ddp_config(hw, pf); 4726 4727 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4728 * set in pf->state, which will cause ice_is_safe_mode to return 4729 * true 4730 */ 4731 if (err || ice_is_safe_mode(pf)) { 4732 /* we already got function/device capabilities but these don't 4733 * reflect what the driver needs to do in safe mode. Instead of 4734 * adding conditional logic everywhere to ignore these 4735 * device/function capabilities, override them. 4736 */ 4737 ice_set_safe_mode_caps(hw); 4738 } 4739 4740 err = ice_init_pf(pf); 4741 if (err) { 4742 dev_err(dev, "ice_init_pf failed: %d\n", err); 4743 return err; 4744 } 4745 4746 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4747 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4748 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4749 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4750 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4751 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4752 pf->hw.tnl.valid_count[TNL_VXLAN]; 4753 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4754 UDP_TUNNEL_TYPE_VXLAN; 4755 } 4756 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4757 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4758 pf->hw.tnl.valid_count[TNL_GENEVE]; 4759 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4760 UDP_TUNNEL_TYPE_GENEVE; 4761 } 4762 4763 err = ice_init_interrupt_scheme(pf); 4764 if (err) { 4765 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4766 err = -EIO; 4767 goto unroll_pf_init; 4768 } 4769 4770 /* In case of MSIX we are going to setup the misc vector right here 4771 * to handle admin queue events etc. In case of legacy and MSI 4772 * the misc functionality and queue processing is combined in 4773 * the same vector and that gets setup at open. 4774 */ 4775 err = ice_req_irq_msix_misc(pf); 4776 if (err) { 4777 dev_err(dev, "setup of misc vector failed: %d\n", err); 4778 goto unroll_irq_scheme_init; 4779 } 4780 4781 return 0; 4782 4783 unroll_irq_scheme_init: 4784 ice_clear_interrupt_scheme(pf); 4785 unroll_pf_init: 4786 ice_deinit_pf(pf); 4787 return err; 4788 } 4789 4790 void ice_deinit_dev(struct ice_pf *pf) 4791 { 4792 ice_free_irq_msix_misc(pf); 4793 ice_deinit_pf(pf); 4794 ice_deinit_hw(&pf->hw); 4795 4796 /* Service task is already stopped, so call reset directly. */ 4797 ice_reset(&pf->hw, ICE_RESET_PFR); 4798 pci_wait_for_pending_transaction(pf->pdev); 4799 ice_clear_interrupt_scheme(pf); 4800 } 4801 4802 static void ice_init_features(struct ice_pf *pf) 4803 { 4804 struct device *dev = ice_pf_to_dev(pf); 4805 4806 if (ice_is_safe_mode(pf)) 4807 return; 4808 4809 /* initialize DDP driven features */ 4810 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4811 ice_ptp_init(pf); 4812 4813 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4814 ice_gnss_init(pf); 4815 4816 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4817 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4818 ice_dpll_init(pf); 4819 4820 /* Note: Flow director init failure is non-fatal to load */ 4821 if (ice_init_fdir(pf)) 4822 dev_err(dev, "could not initialize flow director\n"); 4823 4824 /* Note: DCB init failure is non-fatal to load */ 4825 if (ice_init_pf_dcb(pf, false)) { 4826 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4827 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4828 } else { 4829 ice_cfg_lldp_mib_change(&pf->hw, true); 4830 } 4831 4832 if (ice_init_lag(pf)) 4833 dev_warn(dev, "Failed to init link aggregation support\n"); 4834 4835 ice_hwmon_init(pf); 4836 } 4837 4838 static void ice_deinit_features(struct ice_pf *pf) 4839 { 4840 if (ice_is_safe_mode(pf)) 4841 return; 4842 4843 ice_deinit_lag(pf); 4844 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4845 ice_cfg_lldp_mib_change(&pf->hw, false); 4846 ice_deinit_fdir(pf); 4847 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4848 ice_gnss_exit(pf); 4849 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4850 ice_ptp_release(pf); 4851 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4852 ice_dpll_deinit(pf); 4853 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4854 xa_destroy(&pf->eswitch.reprs); 4855 } 4856 4857 static void ice_init_wakeup(struct ice_pf *pf) 4858 { 4859 /* Save wakeup reason register for later use */ 4860 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4861 4862 /* check for a power management event */ 4863 ice_print_wake_reason(pf); 4864 4865 /* clear wake status, all bits */ 4866 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4867 4868 /* Disable WoL at init, wait for user to enable */ 4869 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4870 } 4871 4872 static int ice_init_link(struct ice_pf *pf) 4873 { 4874 struct device *dev = ice_pf_to_dev(pf); 4875 int err; 4876 4877 err = ice_init_link_events(pf->hw.port_info); 4878 if (err) { 4879 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4880 return err; 4881 } 4882 4883 /* not a fatal error if this fails */ 4884 err = ice_init_nvm_phy_type(pf->hw.port_info); 4885 if (err) 4886 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4887 4888 /* not a fatal error if this fails */ 4889 err = ice_update_link_info(pf->hw.port_info); 4890 if (err) 4891 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4892 4893 ice_init_link_dflt_override(pf->hw.port_info); 4894 4895 ice_check_link_cfg_err(pf, 4896 pf->hw.port_info->phy.link_info.link_cfg_err); 4897 4898 /* if media available, initialize PHY settings */ 4899 if (pf->hw.port_info->phy.link_info.link_info & 4900 ICE_AQ_MEDIA_AVAILABLE) { 4901 /* not a fatal error if this fails */ 4902 err = ice_init_phy_user_cfg(pf->hw.port_info); 4903 if (err) 4904 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4905 4906 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4907 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4908 4909 if (vsi) 4910 ice_configure_phy(vsi); 4911 } 4912 } else { 4913 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4914 } 4915 4916 return err; 4917 } 4918 4919 static int ice_init_pf_sw(struct ice_pf *pf) 4920 { 4921 bool dvm = ice_is_dvm_ena(&pf->hw); 4922 struct ice_vsi *vsi; 4923 int err; 4924 4925 /* create switch struct for the switch element created by FW on boot */ 4926 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4927 if (!pf->first_sw) 4928 return -ENOMEM; 4929 4930 if (pf->hw.evb_veb) 4931 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4932 else 4933 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4934 4935 pf->first_sw->pf = pf; 4936 4937 /* record the sw_id available for later use */ 4938 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4939 4940 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4941 if (err) 4942 goto err_aq_set_port_params; 4943 4944 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4945 if (!vsi) { 4946 err = -ENOMEM; 4947 goto err_pf_vsi_setup; 4948 } 4949 4950 return 0; 4951 4952 err_pf_vsi_setup: 4953 err_aq_set_port_params: 4954 kfree(pf->first_sw); 4955 return err; 4956 } 4957 4958 static void ice_deinit_pf_sw(struct ice_pf *pf) 4959 { 4960 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4961 4962 if (!vsi) 4963 return; 4964 4965 ice_vsi_release(vsi); 4966 kfree(pf->first_sw); 4967 } 4968 4969 static int ice_alloc_vsis(struct ice_pf *pf) 4970 { 4971 struct device *dev = ice_pf_to_dev(pf); 4972 4973 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4974 if (!pf->num_alloc_vsi) 4975 return -EIO; 4976 4977 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4978 dev_warn(dev, 4979 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4980 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4981 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4982 } 4983 4984 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4985 GFP_KERNEL); 4986 if (!pf->vsi) 4987 return -ENOMEM; 4988 4989 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4990 sizeof(*pf->vsi_stats), GFP_KERNEL); 4991 if (!pf->vsi_stats) { 4992 devm_kfree(dev, pf->vsi); 4993 return -ENOMEM; 4994 } 4995 4996 return 0; 4997 } 4998 4999 static void ice_dealloc_vsis(struct ice_pf *pf) 5000 { 5001 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5002 pf->vsi_stats = NULL; 5003 5004 pf->num_alloc_vsi = 0; 5005 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5006 pf->vsi = NULL; 5007 } 5008 5009 static int ice_init_devlink(struct ice_pf *pf) 5010 { 5011 int err; 5012 5013 err = ice_devlink_register_params(pf); 5014 if (err) 5015 return err; 5016 5017 ice_devlink_init_regions(pf); 5018 ice_devlink_register(pf); 5019 ice_health_init(pf); 5020 5021 return 0; 5022 } 5023 5024 static void ice_deinit_devlink(struct ice_pf *pf) 5025 { 5026 ice_health_deinit(pf); 5027 ice_devlink_unregister(pf); 5028 ice_devlink_destroy_regions(pf); 5029 ice_devlink_unregister_params(pf); 5030 } 5031 5032 static int ice_init(struct ice_pf *pf) 5033 { 5034 int err; 5035 5036 err = ice_init_dev(pf); 5037 if (err) 5038 return err; 5039 5040 if (pf->hw.mac_type == ICE_MAC_E830) { 5041 err = pci_enable_ptm(pf->pdev, NULL); 5042 if (err) 5043 dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n"); 5044 } 5045 5046 err = ice_alloc_vsis(pf); 5047 if (err) 5048 goto err_alloc_vsis; 5049 5050 err = ice_init_pf_sw(pf); 5051 if (err) 5052 goto err_init_pf_sw; 5053 5054 ice_init_wakeup(pf); 5055 5056 err = ice_init_link(pf); 5057 if (err) 5058 goto err_init_link; 5059 5060 err = ice_send_version(pf); 5061 if (err) 5062 goto err_init_link; 5063 5064 ice_verify_cacheline_size(pf); 5065 5066 if (ice_is_safe_mode(pf)) 5067 ice_set_safe_mode_vlan_cfg(pf); 5068 else 5069 /* print PCI link speed and width */ 5070 pcie_print_link_status(pf->pdev); 5071 5072 /* ready to go, so clear down state bit */ 5073 clear_bit(ICE_DOWN, pf->state); 5074 clear_bit(ICE_SERVICE_DIS, pf->state); 5075 5076 /* since everything is good, start the service timer */ 5077 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5078 5079 return 0; 5080 5081 err_init_link: 5082 ice_deinit_pf_sw(pf); 5083 err_init_pf_sw: 5084 ice_dealloc_vsis(pf); 5085 err_alloc_vsis: 5086 ice_deinit_dev(pf); 5087 return err; 5088 } 5089 5090 static void ice_deinit(struct ice_pf *pf) 5091 { 5092 set_bit(ICE_SERVICE_DIS, pf->state); 5093 set_bit(ICE_DOWN, pf->state); 5094 5095 ice_deinit_pf_sw(pf); 5096 ice_dealloc_vsis(pf); 5097 ice_deinit_dev(pf); 5098 } 5099 5100 /** 5101 * ice_load - load pf by init hw and starting VSI 5102 * @pf: pointer to the pf instance 5103 * 5104 * This function has to be called under devl_lock. 5105 */ 5106 int ice_load(struct ice_pf *pf) 5107 { 5108 struct ice_vsi *vsi; 5109 int err; 5110 5111 devl_assert_locked(priv_to_devlink(pf)); 5112 5113 vsi = ice_get_main_vsi(pf); 5114 5115 /* init channel list */ 5116 INIT_LIST_HEAD(&vsi->ch_list); 5117 5118 err = ice_cfg_netdev(vsi); 5119 if (err) 5120 return err; 5121 5122 /* Setup DCB netlink interface */ 5123 ice_dcbnl_setup(vsi); 5124 5125 err = ice_init_mac_fltr(pf); 5126 if (err) 5127 goto err_init_mac_fltr; 5128 5129 err = ice_devlink_create_pf_port(pf); 5130 if (err) 5131 goto err_devlink_create_pf_port; 5132 5133 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5134 5135 err = ice_register_netdev(vsi); 5136 if (err) 5137 goto err_register_netdev; 5138 5139 err = ice_tc_indir_block_register(vsi); 5140 if (err) 5141 goto err_tc_indir_block_register; 5142 5143 ice_napi_add(vsi); 5144 5145 ice_init_features(pf); 5146 5147 err = ice_init_rdma(pf); 5148 if (err) 5149 goto err_init_rdma; 5150 5151 ice_service_task_restart(pf); 5152 5153 clear_bit(ICE_DOWN, pf->state); 5154 5155 return 0; 5156 5157 err_init_rdma: 5158 ice_deinit_features(pf); 5159 ice_tc_indir_block_unregister(vsi); 5160 err_tc_indir_block_register: 5161 ice_unregister_netdev(vsi); 5162 err_register_netdev: 5163 ice_devlink_destroy_pf_port(pf); 5164 err_devlink_create_pf_port: 5165 err_init_mac_fltr: 5166 ice_decfg_netdev(vsi); 5167 return err; 5168 } 5169 5170 /** 5171 * ice_unload - unload pf by stopping VSI and deinit hw 5172 * @pf: pointer to the pf instance 5173 * 5174 * This function has to be called under devl_lock. 5175 */ 5176 void ice_unload(struct ice_pf *pf) 5177 { 5178 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5179 5180 devl_assert_locked(priv_to_devlink(pf)); 5181 5182 ice_deinit_rdma(pf); 5183 ice_deinit_features(pf); 5184 ice_tc_indir_block_unregister(vsi); 5185 ice_unregister_netdev(vsi); 5186 ice_devlink_destroy_pf_port(pf); 5187 ice_decfg_netdev(vsi); 5188 } 5189 5190 static int ice_probe_recovery_mode(struct ice_pf *pf) 5191 { 5192 struct device *dev = ice_pf_to_dev(pf); 5193 int err; 5194 5195 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n"); 5196 5197 INIT_HLIST_HEAD(&pf->aq_wait_list); 5198 spin_lock_init(&pf->aq_wait_lock); 5199 init_waitqueue_head(&pf->aq_wait_queue); 5200 5201 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 5202 pf->serv_tmr_period = HZ; 5203 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode); 5204 clear_bit(ICE_SERVICE_SCHED, pf->state); 5205 err = ice_create_all_ctrlq(&pf->hw); 5206 if (err) 5207 return err; 5208 5209 scoped_guard(devl, priv_to_devlink(pf)) { 5210 err = ice_init_devlink(pf); 5211 if (err) 5212 return err; 5213 } 5214 5215 ice_service_task_restart(pf); 5216 5217 return 0; 5218 } 5219 5220 /** 5221 * ice_probe - Device initialization routine 5222 * @pdev: PCI device information struct 5223 * @ent: entry in ice_pci_tbl 5224 * 5225 * Returns 0 on success, negative on failure 5226 */ 5227 static int 5228 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5229 { 5230 struct device *dev = &pdev->dev; 5231 struct ice_adapter *adapter; 5232 struct ice_pf *pf; 5233 struct ice_hw *hw; 5234 int err; 5235 5236 if (pdev->is_virtfn) { 5237 dev_err(dev, "can't probe a virtual function\n"); 5238 return -EINVAL; 5239 } 5240 5241 /* when under a kdump kernel initiate a reset before enabling the 5242 * device in order to clear out any pending DMA transactions. These 5243 * transactions can cause some systems to machine check when doing 5244 * the pcim_enable_device() below. 5245 */ 5246 if (is_kdump_kernel()) { 5247 pci_save_state(pdev); 5248 pci_clear_master(pdev); 5249 err = pcie_flr(pdev); 5250 if (err) 5251 return err; 5252 pci_restore_state(pdev); 5253 } 5254 5255 /* this driver uses devres, see 5256 * Documentation/driver-api/driver-model/devres.rst 5257 */ 5258 err = pcim_enable_device(pdev); 5259 if (err) 5260 return err; 5261 5262 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5263 if (err) { 5264 dev_err(dev, "BAR0 I/O map error %d\n", err); 5265 return err; 5266 } 5267 5268 pf = ice_allocate_pf(dev); 5269 if (!pf) 5270 return -ENOMEM; 5271 5272 /* initialize Auxiliary index to invalid value */ 5273 pf->aux_idx = -1; 5274 5275 /* set up for high or low DMA */ 5276 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5277 if (err) { 5278 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5279 return err; 5280 } 5281 5282 pci_set_master(pdev); 5283 pf->pdev = pdev; 5284 pci_set_drvdata(pdev, pf); 5285 set_bit(ICE_DOWN, pf->state); 5286 /* Disable service task until DOWN bit is cleared */ 5287 set_bit(ICE_SERVICE_DIS, pf->state); 5288 5289 hw = &pf->hw; 5290 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5291 pci_save_state(pdev); 5292 5293 hw->back = pf; 5294 hw->port_info = NULL; 5295 hw->vendor_id = pdev->vendor; 5296 hw->device_id = pdev->device; 5297 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5298 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5299 hw->subsystem_device_id = pdev->subsystem_device; 5300 hw->bus.device = PCI_SLOT(pdev->devfn); 5301 hw->bus.func = PCI_FUNC(pdev->devfn); 5302 ice_set_ctrlq_len(hw); 5303 5304 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5305 5306 #ifndef CONFIG_DYNAMIC_DEBUG 5307 if (debug < -1) 5308 hw->debug_mask = debug; 5309 #endif 5310 5311 if (ice_is_recovery_mode(hw)) 5312 return ice_probe_recovery_mode(pf); 5313 5314 err = ice_init_hw(hw); 5315 if (err) { 5316 dev_err(dev, "ice_init_hw failed: %d\n", err); 5317 return err; 5318 } 5319 5320 adapter = ice_adapter_get(pdev); 5321 if (IS_ERR(adapter)) { 5322 err = PTR_ERR(adapter); 5323 goto unroll_hw_init; 5324 } 5325 pf->adapter = adapter; 5326 5327 err = ice_init(pf); 5328 if (err) 5329 goto unroll_adapter; 5330 5331 devl_lock(priv_to_devlink(pf)); 5332 err = ice_load(pf); 5333 if (err) 5334 goto unroll_init; 5335 5336 err = ice_init_devlink(pf); 5337 if (err) 5338 goto unroll_load; 5339 devl_unlock(priv_to_devlink(pf)); 5340 5341 return 0; 5342 5343 unroll_load: 5344 ice_unload(pf); 5345 unroll_init: 5346 devl_unlock(priv_to_devlink(pf)); 5347 ice_deinit(pf); 5348 unroll_adapter: 5349 ice_adapter_put(pdev); 5350 unroll_hw_init: 5351 ice_deinit_hw(hw); 5352 return err; 5353 } 5354 5355 /** 5356 * ice_set_wake - enable or disable Wake on LAN 5357 * @pf: pointer to the PF struct 5358 * 5359 * Simple helper for WoL control 5360 */ 5361 static void ice_set_wake(struct ice_pf *pf) 5362 { 5363 struct ice_hw *hw = &pf->hw; 5364 bool wol = pf->wol_ena; 5365 5366 /* clear wake state, otherwise new wake events won't fire */ 5367 wr32(hw, PFPM_WUS, U32_MAX); 5368 5369 /* enable / disable APM wake up, no RMW needed */ 5370 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5371 5372 /* set magic packet filter enabled */ 5373 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5374 } 5375 5376 /** 5377 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5378 * @pf: pointer to the PF struct 5379 * 5380 * Issue firmware command to enable multicast magic wake, making 5381 * sure that any locally administered address (LAA) is used for 5382 * wake, and that PF reset doesn't undo the LAA. 5383 */ 5384 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5385 { 5386 struct device *dev = ice_pf_to_dev(pf); 5387 struct ice_hw *hw = &pf->hw; 5388 u8 mac_addr[ETH_ALEN]; 5389 struct ice_vsi *vsi; 5390 int status; 5391 u8 flags; 5392 5393 if (!pf->wol_ena) 5394 return; 5395 5396 vsi = ice_get_main_vsi(pf); 5397 if (!vsi) 5398 return; 5399 5400 /* Get current MAC address in case it's an LAA */ 5401 if (vsi->netdev) 5402 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5403 else 5404 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5405 5406 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5407 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5408 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5409 5410 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5411 if (status) 5412 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5413 status, ice_aq_str(hw->adminq.sq_last_status)); 5414 } 5415 5416 /** 5417 * ice_remove - Device removal routine 5418 * @pdev: PCI device information struct 5419 */ 5420 static void ice_remove(struct pci_dev *pdev) 5421 { 5422 struct ice_pf *pf = pci_get_drvdata(pdev); 5423 int i; 5424 5425 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5426 if (!ice_is_reset_in_progress(pf->state)) 5427 break; 5428 msleep(100); 5429 } 5430 5431 if (ice_is_recovery_mode(&pf->hw)) { 5432 ice_service_task_stop(pf); 5433 scoped_guard(devl, priv_to_devlink(pf)) { 5434 ice_deinit_devlink(pf); 5435 } 5436 return; 5437 } 5438 5439 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5440 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5441 ice_free_vfs(pf); 5442 } 5443 5444 ice_hwmon_exit(pf); 5445 5446 ice_service_task_stop(pf); 5447 ice_aq_cancel_waiting_tasks(pf); 5448 set_bit(ICE_DOWN, pf->state); 5449 5450 if (!ice_is_safe_mode(pf)) 5451 ice_remove_arfs(pf); 5452 5453 devl_lock(priv_to_devlink(pf)); 5454 ice_dealloc_all_dynamic_ports(pf); 5455 ice_deinit_devlink(pf); 5456 5457 ice_unload(pf); 5458 devl_unlock(priv_to_devlink(pf)); 5459 5460 ice_deinit(pf); 5461 ice_vsi_release_all(pf); 5462 5463 ice_setup_mc_magic_wake(pf); 5464 ice_set_wake(pf); 5465 5466 ice_adapter_put(pdev); 5467 } 5468 5469 /** 5470 * ice_shutdown - PCI callback for shutting down device 5471 * @pdev: PCI device information struct 5472 */ 5473 static void ice_shutdown(struct pci_dev *pdev) 5474 { 5475 struct ice_pf *pf = pci_get_drvdata(pdev); 5476 5477 ice_remove(pdev); 5478 5479 if (system_state == SYSTEM_POWER_OFF) { 5480 pci_wake_from_d3(pdev, pf->wol_ena); 5481 pci_set_power_state(pdev, PCI_D3hot); 5482 } 5483 } 5484 5485 /** 5486 * ice_prepare_for_shutdown - prep for PCI shutdown 5487 * @pf: board private structure 5488 * 5489 * Inform or close all dependent features in prep for PCI device shutdown 5490 */ 5491 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5492 { 5493 struct ice_hw *hw = &pf->hw; 5494 u32 v; 5495 5496 /* Notify VFs of impending reset */ 5497 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5498 ice_vc_notify_reset(pf); 5499 5500 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5501 5502 /* disable the VSIs and their queues that are not already DOWN */ 5503 ice_pf_dis_all_vsi(pf, false); 5504 5505 ice_for_each_vsi(pf, v) 5506 if (pf->vsi[v]) 5507 pf->vsi[v]->vsi_num = 0; 5508 5509 ice_shutdown_all_ctrlq(hw, true); 5510 } 5511 5512 /** 5513 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5514 * @pf: board private structure to reinitialize 5515 * 5516 * This routine reinitialize interrupt scheme that was cleared during 5517 * power management suspend callback. 5518 * 5519 * This should be called during resume routine to re-allocate the q_vectors 5520 * and reacquire interrupts. 5521 */ 5522 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5523 { 5524 struct device *dev = ice_pf_to_dev(pf); 5525 int ret, v; 5526 5527 /* Since we clear MSIX flag during suspend, we need to 5528 * set it back during resume... 5529 */ 5530 5531 ret = ice_init_interrupt_scheme(pf); 5532 if (ret) { 5533 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5534 return ret; 5535 } 5536 5537 /* Remap vectors and rings, after successful re-init interrupts */ 5538 ice_for_each_vsi(pf, v) { 5539 if (!pf->vsi[v]) 5540 continue; 5541 5542 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5543 if (ret) 5544 goto err_reinit; 5545 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5546 rtnl_lock(); 5547 ice_vsi_set_napi_queues(pf->vsi[v]); 5548 rtnl_unlock(); 5549 } 5550 5551 ret = ice_req_irq_msix_misc(pf); 5552 if (ret) { 5553 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5554 ret); 5555 goto err_reinit; 5556 } 5557 5558 return 0; 5559 5560 err_reinit: 5561 while (v--) 5562 if (pf->vsi[v]) { 5563 rtnl_lock(); 5564 ice_vsi_clear_napi_queues(pf->vsi[v]); 5565 rtnl_unlock(); 5566 ice_vsi_free_q_vectors(pf->vsi[v]); 5567 } 5568 5569 return ret; 5570 } 5571 5572 /** 5573 * ice_suspend 5574 * @dev: generic device information structure 5575 * 5576 * Power Management callback to quiesce the device and prepare 5577 * for D3 transition. 5578 */ 5579 static int ice_suspend(struct device *dev) 5580 { 5581 struct pci_dev *pdev = to_pci_dev(dev); 5582 struct ice_pf *pf; 5583 int disabled, v; 5584 5585 pf = pci_get_drvdata(pdev); 5586 5587 if (!ice_pf_state_is_nominal(pf)) { 5588 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5589 return -EBUSY; 5590 } 5591 5592 /* Stop watchdog tasks until resume completion. 5593 * Even though it is most likely that the service task is 5594 * disabled if the device is suspended or down, the service task's 5595 * state is controlled by a different state bit, and we should 5596 * store and honor whatever state that bit is in at this point. 5597 */ 5598 disabled = ice_service_task_stop(pf); 5599 5600 ice_deinit_rdma(pf); 5601 5602 /* Already suspended?, then there is nothing to do */ 5603 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5604 if (!disabled) 5605 ice_service_task_restart(pf); 5606 return 0; 5607 } 5608 5609 if (test_bit(ICE_DOWN, pf->state) || 5610 ice_is_reset_in_progress(pf->state)) { 5611 dev_err(dev, "can't suspend device in reset or already down\n"); 5612 if (!disabled) 5613 ice_service_task_restart(pf); 5614 return 0; 5615 } 5616 5617 ice_setup_mc_magic_wake(pf); 5618 5619 ice_prepare_for_shutdown(pf); 5620 5621 ice_set_wake(pf); 5622 5623 /* Free vectors, clear the interrupt scheme and release IRQs 5624 * for proper hibernation, especially with large number of CPUs. 5625 * Otherwise hibernation might fail when mapping all the vectors back 5626 * to CPU0. 5627 */ 5628 ice_free_irq_msix_misc(pf); 5629 ice_for_each_vsi(pf, v) { 5630 if (!pf->vsi[v]) 5631 continue; 5632 rtnl_lock(); 5633 ice_vsi_clear_napi_queues(pf->vsi[v]); 5634 rtnl_unlock(); 5635 ice_vsi_free_q_vectors(pf->vsi[v]); 5636 } 5637 ice_clear_interrupt_scheme(pf); 5638 5639 pci_save_state(pdev); 5640 pci_wake_from_d3(pdev, pf->wol_ena); 5641 pci_set_power_state(pdev, PCI_D3hot); 5642 return 0; 5643 } 5644 5645 /** 5646 * ice_resume - PM callback for waking up from D3 5647 * @dev: generic device information structure 5648 */ 5649 static int ice_resume(struct device *dev) 5650 { 5651 struct pci_dev *pdev = to_pci_dev(dev); 5652 enum ice_reset_req reset_type; 5653 struct ice_pf *pf; 5654 struct ice_hw *hw; 5655 int ret; 5656 5657 pci_set_power_state(pdev, PCI_D0); 5658 pci_restore_state(pdev); 5659 pci_save_state(pdev); 5660 5661 if (!pci_device_is_present(pdev)) 5662 return -ENODEV; 5663 5664 ret = pci_enable_device_mem(pdev); 5665 if (ret) { 5666 dev_err(dev, "Cannot enable device after suspend\n"); 5667 return ret; 5668 } 5669 5670 pf = pci_get_drvdata(pdev); 5671 hw = &pf->hw; 5672 5673 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5674 ice_print_wake_reason(pf); 5675 5676 /* We cleared the interrupt scheme when we suspended, so we need to 5677 * restore it now to resume device functionality. 5678 */ 5679 ret = ice_reinit_interrupt_scheme(pf); 5680 if (ret) 5681 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5682 5683 ret = ice_init_rdma(pf); 5684 if (ret) 5685 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5686 ret); 5687 5688 clear_bit(ICE_DOWN, pf->state); 5689 /* Now perform PF reset and rebuild */ 5690 reset_type = ICE_RESET_PFR; 5691 /* re-enable service task for reset, but allow reset to schedule it */ 5692 clear_bit(ICE_SERVICE_DIS, pf->state); 5693 5694 if (ice_schedule_reset(pf, reset_type)) 5695 dev_err(dev, "Reset during resume failed.\n"); 5696 5697 clear_bit(ICE_SUSPENDED, pf->state); 5698 ice_service_task_restart(pf); 5699 5700 /* Restart the service task */ 5701 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5702 5703 return 0; 5704 } 5705 5706 /** 5707 * ice_pci_err_detected - warning that PCI error has been detected 5708 * @pdev: PCI device information struct 5709 * @err: the type of PCI error 5710 * 5711 * Called to warn that something happened on the PCI bus and the error handling 5712 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5713 */ 5714 static pci_ers_result_t 5715 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5716 { 5717 struct ice_pf *pf = pci_get_drvdata(pdev); 5718 5719 if (!pf) { 5720 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5721 __func__, err); 5722 return PCI_ERS_RESULT_DISCONNECT; 5723 } 5724 5725 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5726 ice_service_task_stop(pf); 5727 5728 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5729 set_bit(ICE_PFR_REQ, pf->state); 5730 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5731 } 5732 } 5733 5734 return PCI_ERS_RESULT_NEED_RESET; 5735 } 5736 5737 /** 5738 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5739 * @pdev: PCI device information struct 5740 * 5741 * Called to determine if the driver can recover from the PCI slot reset by 5742 * using a register read to determine if the device is recoverable. 5743 */ 5744 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5745 { 5746 struct ice_pf *pf = pci_get_drvdata(pdev); 5747 pci_ers_result_t result; 5748 int err; 5749 u32 reg; 5750 5751 err = pci_enable_device_mem(pdev); 5752 if (err) { 5753 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5754 err); 5755 result = PCI_ERS_RESULT_DISCONNECT; 5756 } else { 5757 pci_set_master(pdev); 5758 pci_restore_state(pdev); 5759 pci_save_state(pdev); 5760 pci_wake_from_d3(pdev, false); 5761 5762 /* Check for life */ 5763 reg = rd32(&pf->hw, GLGEN_RTRIG); 5764 if (!reg) 5765 result = PCI_ERS_RESULT_RECOVERED; 5766 else 5767 result = PCI_ERS_RESULT_DISCONNECT; 5768 } 5769 5770 return result; 5771 } 5772 5773 /** 5774 * ice_pci_err_resume - restart operations after PCI error recovery 5775 * @pdev: PCI device information struct 5776 * 5777 * Called to allow the driver to bring things back up after PCI error and/or 5778 * reset recovery have finished 5779 */ 5780 static void ice_pci_err_resume(struct pci_dev *pdev) 5781 { 5782 struct ice_pf *pf = pci_get_drvdata(pdev); 5783 5784 if (!pf) { 5785 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5786 __func__); 5787 return; 5788 } 5789 5790 if (test_bit(ICE_SUSPENDED, pf->state)) { 5791 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5792 __func__); 5793 return; 5794 } 5795 5796 ice_restore_all_vfs_msi_state(pf); 5797 5798 ice_do_reset(pf, ICE_RESET_PFR); 5799 ice_service_task_restart(pf); 5800 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5801 } 5802 5803 /** 5804 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5805 * @pdev: PCI device information struct 5806 */ 5807 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5808 { 5809 struct ice_pf *pf = pci_get_drvdata(pdev); 5810 5811 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5812 ice_service_task_stop(pf); 5813 5814 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5815 set_bit(ICE_PFR_REQ, pf->state); 5816 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5817 } 5818 } 5819 } 5820 5821 /** 5822 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5823 * @pdev: PCI device information struct 5824 */ 5825 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5826 { 5827 ice_pci_err_resume(pdev); 5828 } 5829 5830 /* ice_pci_tbl - PCI Device ID Table 5831 * 5832 * Wildcard entries (PCI_ANY_ID) should come last 5833 * Last entry must be all 0s 5834 * 5835 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5836 * Class, Class Mask, private data (not used) } 5837 */ 5838 static const struct pci_device_id ice_pci_tbl[] = { 5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5879 /* required last entry */ 5880 {} 5881 }; 5882 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5883 5884 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5885 5886 static const struct pci_error_handlers ice_pci_err_handler = { 5887 .error_detected = ice_pci_err_detected, 5888 .slot_reset = ice_pci_err_slot_reset, 5889 .reset_prepare = ice_pci_err_reset_prepare, 5890 .reset_done = ice_pci_err_reset_done, 5891 .resume = ice_pci_err_resume 5892 }; 5893 5894 static struct pci_driver ice_driver = { 5895 .name = KBUILD_MODNAME, 5896 .id_table = ice_pci_tbl, 5897 .probe = ice_probe, 5898 .remove = ice_remove, 5899 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5900 .shutdown = ice_shutdown, 5901 .sriov_configure = ice_sriov_configure, 5902 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5903 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5904 .err_handler = &ice_pci_err_handler 5905 }; 5906 5907 /** 5908 * ice_module_init - Driver registration routine 5909 * 5910 * ice_module_init is the first routine called when the driver is 5911 * loaded. All it does is register with the PCI subsystem. 5912 */ 5913 static int __init ice_module_init(void) 5914 { 5915 int status = -ENOMEM; 5916 5917 pr_info("%s\n", ice_driver_string); 5918 pr_info("%s\n", ice_copyright); 5919 5920 ice_adv_lnk_speed_maps_init(); 5921 5922 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME); 5923 if (!ice_wq) { 5924 pr_err("Failed to create workqueue\n"); 5925 return status; 5926 } 5927 5928 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5929 if (!ice_lag_wq) { 5930 pr_err("Failed to create LAG workqueue\n"); 5931 goto err_dest_wq; 5932 } 5933 5934 ice_debugfs_init(); 5935 5936 status = pci_register_driver(&ice_driver); 5937 if (status) { 5938 pr_err("failed to register PCI driver, err %d\n", status); 5939 goto err_dest_lag_wq; 5940 } 5941 5942 status = ice_sf_driver_register(); 5943 if (status) { 5944 pr_err("Failed to register SF driver, err %d\n", status); 5945 goto err_sf_driver; 5946 } 5947 5948 return 0; 5949 5950 err_sf_driver: 5951 pci_unregister_driver(&ice_driver); 5952 err_dest_lag_wq: 5953 destroy_workqueue(ice_lag_wq); 5954 ice_debugfs_exit(); 5955 err_dest_wq: 5956 destroy_workqueue(ice_wq); 5957 return status; 5958 } 5959 module_init(ice_module_init); 5960 5961 /** 5962 * ice_module_exit - Driver exit cleanup routine 5963 * 5964 * ice_module_exit is called just before the driver is removed 5965 * from memory. 5966 */ 5967 static void __exit ice_module_exit(void) 5968 { 5969 ice_sf_driver_unregister(); 5970 pci_unregister_driver(&ice_driver); 5971 ice_debugfs_exit(); 5972 destroy_workqueue(ice_wq); 5973 destroy_workqueue(ice_lag_wq); 5974 pr_info("module unloaded\n"); 5975 } 5976 module_exit(ice_module_exit); 5977 5978 /** 5979 * ice_set_mac_address - NDO callback to set MAC address 5980 * @netdev: network interface device structure 5981 * @pi: pointer to an address structure 5982 * 5983 * Returns 0 on success, negative on failure 5984 */ 5985 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5986 { 5987 struct ice_netdev_priv *np = netdev_priv(netdev); 5988 struct ice_vsi *vsi = np->vsi; 5989 struct ice_pf *pf = vsi->back; 5990 struct ice_hw *hw = &pf->hw; 5991 struct sockaddr *addr = pi; 5992 u8 old_mac[ETH_ALEN]; 5993 u8 flags = 0; 5994 u8 *mac; 5995 int err; 5996 5997 mac = (u8 *)addr->sa_data; 5998 5999 if (!is_valid_ether_addr(mac)) 6000 return -EADDRNOTAVAIL; 6001 6002 if (test_bit(ICE_DOWN, pf->state) || 6003 ice_is_reset_in_progress(pf->state)) { 6004 netdev_err(netdev, "can't set mac %pM. device not ready\n", 6005 mac); 6006 return -EBUSY; 6007 } 6008 6009 if (ice_chnl_dmac_fltr_cnt(pf)) { 6010 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 6011 mac); 6012 return -EAGAIN; 6013 } 6014 6015 netif_addr_lock_bh(netdev); 6016 ether_addr_copy(old_mac, netdev->dev_addr); 6017 /* change the netdev's MAC address */ 6018 eth_hw_addr_set(netdev, mac); 6019 netif_addr_unlock_bh(netdev); 6020 6021 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6022 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6023 if (err && err != -ENOENT) { 6024 err = -EADDRNOTAVAIL; 6025 goto err_update_filters; 6026 } 6027 6028 /* Add filter for new MAC. If filter exists, return success */ 6029 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6030 if (err == -EEXIST) { 6031 /* Although this MAC filter is already present in hardware it's 6032 * possible in some cases (e.g. bonding) that dev_addr was 6033 * modified outside of the driver and needs to be restored back 6034 * to this value. 6035 */ 6036 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6037 6038 return 0; 6039 } else if (err) { 6040 /* error if the new filter addition failed */ 6041 err = -EADDRNOTAVAIL; 6042 } 6043 6044 err_update_filters: 6045 if (err) { 6046 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6047 mac); 6048 netif_addr_lock_bh(netdev); 6049 eth_hw_addr_set(netdev, old_mac); 6050 netif_addr_unlock_bh(netdev); 6051 return err; 6052 } 6053 6054 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6055 netdev->dev_addr); 6056 6057 /* write new MAC address to the firmware */ 6058 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6059 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6060 if (err) { 6061 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6062 mac, err); 6063 } 6064 return 0; 6065 } 6066 6067 /** 6068 * ice_set_rx_mode - NDO callback to set the netdev filters 6069 * @netdev: network interface device structure 6070 */ 6071 static void ice_set_rx_mode(struct net_device *netdev) 6072 { 6073 struct ice_netdev_priv *np = netdev_priv(netdev); 6074 struct ice_vsi *vsi = np->vsi; 6075 6076 if (!vsi || ice_is_switchdev_running(vsi->back)) 6077 return; 6078 6079 /* Set the flags to synchronize filters 6080 * ndo_set_rx_mode may be triggered even without a change in netdev 6081 * flags 6082 */ 6083 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6084 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6085 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6086 6087 /* schedule our worker thread which will take care of 6088 * applying the new filter changes 6089 */ 6090 ice_service_task_schedule(vsi->back); 6091 } 6092 6093 /** 6094 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6095 * @netdev: network interface device structure 6096 * @queue_index: Queue ID 6097 * @maxrate: maximum bandwidth in Mbps 6098 */ 6099 static int 6100 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6101 { 6102 struct ice_netdev_priv *np = netdev_priv(netdev); 6103 struct ice_vsi *vsi = np->vsi; 6104 u16 q_handle; 6105 int status; 6106 u8 tc; 6107 6108 /* Validate maxrate requested is within permitted range */ 6109 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6110 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6111 maxrate, queue_index); 6112 return -EINVAL; 6113 } 6114 6115 q_handle = vsi->tx_rings[queue_index]->q_handle; 6116 tc = ice_dcb_get_tc(vsi, queue_index); 6117 6118 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6119 if (!vsi) { 6120 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6121 queue_index); 6122 return -EINVAL; 6123 } 6124 6125 /* Set BW back to default, when user set maxrate to 0 */ 6126 if (!maxrate) 6127 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6128 q_handle, ICE_MAX_BW); 6129 else 6130 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6131 q_handle, ICE_MAX_BW, maxrate * 1000); 6132 if (status) 6133 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6134 status); 6135 6136 return status; 6137 } 6138 6139 /** 6140 * ice_fdb_add - add an entry to the hardware database 6141 * @ndm: the input from the stack 6142 * @tb: pointer to array of nladdr (unused) 6143 * @dev: the net device pointer 6144 * @addr: the MAC address entry being added 6145 * @vid: VLAN ID 6146 * @flags: instructions from stack about fdb operation 6147 * @notified: whether notification was emitted 6148 * @extack: netlink extended ack 6149 */ 6150 static int 6151 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6152 struct net_device *dev, const unsigned char *addr, u16 vid, 6153 u16 flags, bool *notified, 6154 struct netlink_ext_ack __always_unused *extack) 6155 { 6156 int err; 6157 6158 if (vid) { 6159 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6160 return -EINVAL; 6161 } 6162 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6163 netdev_err(dev, "FDB only supports static addresses\n"); 6164 return -EINVAL; 6165 } 6166 6167 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6168 err = dev_uc_add_excl(dev, addr); 6169 else if (is_multicast_ether_addr(addr)) 6170 err = dev_mc_add_excl(dev, addr); 6171 else 6172 err = -EINVAL; 6173 6174 /* Only return duplicate errors if NLM_F_EXCL is set */ 6175 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6176 err = 0; 6177 6178 return err; 6179 } 6180 6181 /** 6182 * ice_fdb_del - delete an entry from the hardware database 6183 * @ndm: the input from the stack 6184 * @tb: pointer to array of nladdr (unused) 6185 * @dev: the net device pointer 6186 * @addr: the MAC address entry being added 6187 * @vid: VLAN ID 6188 * @notified: whether notification was emitted 6189 * @extack: netlink extended ack 6190 */ 6191 static int 6192 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6193 struct net_device *dev, const unsigned char *addr, 6194 __always_unused u16 vid, bool *notified, 6195 struct netlink_ext_ack *extack) 6196 { 6197 int err; 6198 6199 if (ndm->ndm_state & NUD_PERMANENT) { 6200 netdev_err(dev, "FDB only supports static addresses\n"); 6201 return -EINVAL; 6202 } 6203 6204 if (is_unicast_ether_addr(addr)) 6205 err = dev_uc_del(dev, addr); 6206 else if (is_multicast_ether_addr(addr)) 6207 err = dev_mc_del(dev, addr); 6208 else 6209 err = -EINVAL; 6210 6211 return err; 6212 } 6213 6214 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6215 NETIF_F_HW_VLAN_CTAG_TX | \ 6216 NETIF_F_HW_VLAN_STAG_RX | \ 6217 NETIF_F_HW_VLAN_STAG_TX) 6218 6219 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6220 NETIF_F_HW_VLAN_STAG_RX) 6221 6222 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6223 NETIF_F_HW_VLAN_STAG_FILTER) 6224 6225 /** 6226 * ice_fix_features - fix the netdev features flags based on device limitations 6227 * @netdev: ptr to the netdev that flags are being fixed on 6228 * @features: features that need to be checked and possibly fixed 6229 * 6230 * Make sure any fixups are made to features in this callback. This enables the 6231 * driver to not have to check unsupported configurations throughout the driver 6232 * because that's the responsiblity of this callback. 6233 * 6234 * Single VLAN Mode (SVM) Supported Features: 6235 * NETIF_F_HW_VLAN_CTAG_FILTER 6236 * NETIF_F_HW_VLAN_CTAG_RX 6237 * NETIF_F_HW_VLAN_CTAG_TX 6238 * 6239 * Double VLAN Mode (DVM) Supported Features: 6240 * NETIF_F_HW_VLAN_CTAG_FILTER 6241 * NETIF_F_HW_VLAN_CTAG_RX 6242 * NETIF_F_HW_VLAN_CTAG_TX 6243 * 6244 * NETIF_F_HW_VLAN_STAG_FILTER 6245 * NETIF_HW_VLAN_STAG_RX 6246 * NETIF_HW_VLAN_STAG_TX 6247 * 6248 * Features that need fixing: 6249 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6250 * These are mutually exlusive as the VSI context cannot support multiple 6251 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6252 * is not done, then default to clearing the requested STAG offload 6253 * settings. 6254 * 6255 * All supported filtering has to be enabled or disabled together. For 6256 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6257 * together. If this is not done, then default to VLAN filtering disabled. 6258 * These are mutually exclusive as there is currently no way to 6259 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6260 * prune rules. 6261 */ 6262 static netdev_features_t 6263 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6264 { 6265 struct ice_netdev_priv *np = netdev_priv(netdev); 6266 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6267 bool cur_ctag, cur_stag, req_ctag, req_stag; 6268 6269 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6270 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6271 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6272 6273 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6274 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6275 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6276 6277 if (req_vlan_fltr != cur_vlan_fltr) { 6278 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6279 if (req_ctag && req_stag) { 6280 features |= NETIF_VLAN_FILTERING_FEATURES; 6281 } else if (!req_ctag && !req_stag) { 6282 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6283 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6284 (!cur_stag && req_stag && !cur_ctag)) { 6285 features |= NETIF_VLAN_FILTERING_FEATURES; 6286 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6287 } else if ((cur_ctag && !req_ctag && cur_stag) || 6288 (cur_stag && !req_stag && cur_ctag)) { 6289 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6290 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6291 } 6292 } else { 6293 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6294 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6295 6296 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6297 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6298 } 6299 } 6300 6301 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6302 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6303 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6304 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6305 NETIF_F_HW_VLAN_STAG_TX); 6306 } 6307 6308 if (!(netdev->features & NETIF_F_RXFCS) && 6309 (features & NETIF_F_RXFCS) && 6310 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6311 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6312 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6313 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6314 } 6315 6316 return features; 6317 } 6318 6319 /** 6320 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6321 * @vsi: PF's VSI 6322 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6323 * 6324 * Store current stripped VLAN proto in ring packet context, 6325 * so it can be accessed more efficiently by packet processing code. 6326 */ 6327 static void 6328 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6329 { 6330 u16 i; 6331 6332 ice_for_each_alloc_rxq(vsi, i) 6333 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6334 } 6335 6336 /** 6337 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6338 * @vsi: PF's VSI 6339 * @features: features used to determine VLAN offload settings 6340 * 6341 * First, determine the vlan_ethertype based on the VLAN offload bits in 6342 * features. Then determine if stripping and insertion should be enabled or 6343 * disabled. Finally enable or disable VLAN stripping and insertion. 6344 */ 6345 static int 6346 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6347 { 6348 bool enable_stripping = true, enable_insertion = true; 6349 struct ice_vsi_vlan_ops *vlan_ops; 6350 int strip_err = 0, insert_err = 0; 6351 u16 vlan_ethertype = 0; 6352 6353 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6354 6355 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6356 vlan_ethertype = ETH_P_8021AD; 6357 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6358 vlan_ethertype = ETH_P_8021Q; 6359 6360 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6361 enable_stripping = false; 6362 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6363 enable_insertion = false; 6364 6365 if (enable_stripping) 6366 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6367 else 6368 strip_err = vlan_ops->dis_stripping(vsi); 6369 6370 if (enable_insertion) 6371 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6372 else 6373 insert_err = vlan_ops->dis_insertion(vsi); 6374 6375 if (strip_err || insert_err) 6376 return -EIO; 6377 6378 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6379 htons(vlan_ethertype) : 0); 6380 6381 return 0; 6382 } 6383 6384 /** 6385 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6386 * @vsi: PF's VSI 6387 * @features: features used to determine VLAN filtering settings 6388 * 6389 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6390 * features. 6391 */ 6392 static int 6393 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6394 { 6395 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6396 int err = 0; 6397 6398 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6399 * if either bit is set. In switchdev mode Rx filtering should never be 6400 * enabled. 6401 */ 6402 if ((features & 6403 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) && 6404 !ice_is_eswitch_mode_switchdev(vsi->back)) 6405 err = vlan_ops->ena_rx_filtering(vsi); 6406 else 6407 err = vlan_ops->dis_rx_filtering(vsi); 6408 6409 return err; 6410 } 6411 6412 /** 6413 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6414 * @netdev: ptr to the netdev being adjusted 6415 * @features: the feature set that the stack is suggesting 6416 * 6417 * Only update VLAN settings if the requested_vlan_features are different than 6418 * the current_vlan_features. 6419 */ 6420 static int 6421 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6422 { 6423 netdev_features_t current_vlan_features, requested_vlan_features; 6424 struct ice_netdev_priv *np = netdev_priv(netdev); 6425 struct ice_vsi *vsi = np->vsi; 6426 int err; 6427 6428 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6429 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6430 if (current_vlan_features ^ requested_vlan_features) { 6431 if ((features & NETIF_F_RXFCS) && 6432 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6433 dev_err(ice_pf_to_dev(vsi->back), 6434 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6435 return -EIO; 6436 } 6437 6438 err = ice_set_vlan_offload_features(vsi, features); 6439 if (err) 6440 return err; 6441 } 6442 6443 current_vlan_features = netdev->features & 6444 NETIF_VLAN_FILTERING_FEATURES; 6445 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6446 if (current_vlan_features ^ requested_vlan_features) { 6447 err = ice_set_vlan_filtering_features(vsi, features); 6448 if (err) 6449 return err; 6450 } 6451 6452 return 0; 6453 } 6454 6455 /** 6456 * ice_set_loopback - turn on/off loopback mode on underlying PF 6457 * @vsi: ptr to VSI 6458 * @ena: flag to indicate the on/off setting 6459 */ 6460 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6461 { 6462 bool if_running = netif_running(vsi->netdev); 6463 int ret; 6464 6465 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6466 ret = ice_down(vsi); 6467 if (ret) { 6468 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6469 return ret; 6470 } 6471 } 6472 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6473 if (ret) 6474 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6475 if (if_running) 6476 ret = ice_up(vsi); 6477 6478 return ret; 6479 } 6480 6481 /** 6482 * ice_set_features - set the netdev feature flags 6483 * @netdev: ptr to the netdev being adjusted 6484 * @features: the feature set that the stack is suggesting 6485 */ 6486 static int 6487 ice_set_features(struct net_device *netdev, netdev_features_t features) 6488 { 6489 netdev_features_t changed = netdev->features ^ features; 6490 struct ice_netdev_priv *np = netdev_priv(netdev); 6491 struct ice_vsi *vsi = np->vsi; 6492 struct ice_pf *pf = vsi->back; 6493 int ret = 0; 6494 6495 /* Don't set any netdev advanced features with device in Safe Mode */ 6496 if (ice_is_safe_mode(pf)) { 6497 dev_err(ice_pf_to_dev(pf), 6498 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6499 return ret; 6500 } 6501 6502 /* Do not change setting during reset */ 6503 if (ice_is_reset_in_progress(pf->state)) { 6504 dev_err(ice_pf_to_dev(pf), 6505 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6506 return -EBUSY; 6507 } 6508 6509 /* Multiple features can be changed in one call so keep features in 6510 * separate if/else statements to guarantee each feature is checked 6511 */ 6512 if (changed & NETIF_F_RXHASH) 6513 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6514 6515 ret = ice_set_vlan_features(netdev, features); 6516 if (ret) 6517 return ret; 6518 6519 /* Turn on receive of FCS aka CRC, and after setting this 6520 * flag the packet data will have the 4 byte CRC appended 6521 */ 6522 if (changed & NETIF_F_RXFCS) { 6523 if ((features & NETIF_F_RXFCS) && 6524 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6525 dev_err(ice_pf_to_dev(vsi->back), 6526 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6527 return -EIO; 6528 } 6529 6530 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6531 ret = ice_down_up(vsi); 6532 if (ret) 6533 return ret; 6534 } 6535 6536 if (changed & NETIF_F_NTUPLE) { 6537 bool ena = !!(features & NETIF_F_NTUPLE); 6538 6539 ice_vsi_manage_fdir(vsi, ena); 6540 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6541 } 6542 6543 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6544 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6545 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6546 return -EACCES; 6547 } 6548 6549 if (changed & NETIF_F_HW_TC) { 6550 bool ena = !!(features & NETIF_F_HW_TC); 6551 6552 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena); 6553 } 6554 6555 if (changed & NETIF_F_LOOPBACK) 6556 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6557 6558 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS 6559 * (NETIF_F_HW_CSUM) is not supported. 6560 */ 6561 if (ice_is_feature_supported(pf, ICE_F_GCS) && 6562 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) { 6563 if (netdev->features & NETIF_F_HW_CSUM) 6564 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n"); 6565 else 6566 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n"); 6567 return -EIO; 6568 } 6569 6570 return ret; 6571 } 6572 6573 /** 6574 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6575 * @vsi: VSI to setup VLAN properties for 6576 */ 6577 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6578 { 6579 int err; 6580 6581 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6582 if (err) 6583 return err; 6584 6585 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6586 if (err) 6587 return err; 6588 6589 return ice_vsi_add_vlan_zero(vsi); 6590 } 6591 6592 /** 6593 * ice_vsi_cfg_lan - Setup the VSI lan related config 6594 * @vsi: the VSI being configured 6595 * 6596 * Return 0 on success and negative value on error 6597 */ 6598 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6599 { 6600 int err; 6601 6602 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6603 ice_set_rx_mode(vsi->netdev); 6604 6605 err = ice_vsi_vlan_setup(vsi); 6606 if (err) 6607 return err; 6608 } 6609 ice_vsi_cfg_dcb_rings(vsi); 6610 6611 err = ice_vsi_cfg_lan_txqs(vsi); 6612 if (!err && ice_is_xdp_ena_vsi(vsi)) 6613 err = ice_vsi_cfg_xdp_txqs(vsi); 6614 if (!err) 6615 err = ice_vsi_cfg_rxqs(vsi); 6616 6617 return err; 6618 } 6619 6620 /* THEORY OF MODERATION: 6621 * The ice driver hardware works differently than the hardware that DIMLIB was 6622 * originally made for. ice hardware doesn't have packet count limits that 6623 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6624 * which is hard-coded to a limit of 250,000 ints/second. 6625 * If not using dynamic moderation, the INTRL value can be modified 6626 * by ethtool rx-usecs-high. 6627 */ 6628 struct ice_dim { 6629 /* the throttle rate for interrupts, basically worst case delay before 6630 * an initial interrupt fires, value is stored in microseconds. 6631 */ 6632 u16 itr; 6633 }; 6634 6635 /* Make a different profile for Rx that doesn't allow quite so aggressive 6636 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6637 * second. 6638 */ 6639 static const struct ice_dim rx_profile[] = { 6640 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6641 {8}, /* 125,000 ints/s */ 6642 {16}, /* 62,500 ints/s */ 6643 {62}, /* 16,129 ints/s */ 6644 {126} /* 7,936 ints/s */ 6645 }; 6646 6647 /* The transmit profile, which has the same sorts of values 6648 * as the previous struct 6649 */ 6650 static const struct ice_dim tx_profile[] = { 6651 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6652 {8}, /* 125,000 ints/s */ 6653 {40}, /* 16,125 ints/s */ 6654 {128}, /* 7,812 ints/s */ 6655 {256} /* 3,906 ints/s */ 6656 }; 6657 6658 static void ice_tx_dim_work(struct work_struct *work) 6659 { 6660 struct ice_ring_container *rc; 6661 struct dim *dim; 6662 u16 itr; 6663 6664 dim = container_of(work, struct dim, work); 6665 rc = dim->priv; 6666 6667 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6668 6669 /* look up the values in our local table */ 6670 itr = tx_profile[dim->profile_ix].itr; 6671 6672 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6673 ice_write_itr(rc, itr); 6674 6675 dim->state = DIM_START_MEASURE; 6676 } 6677 6678 static void ice_rx_dim_work(struct work_struct *work) 6679 { 6680 struct ice_ring_container *rc; 6681 struct dim *dim; 6682 u16 itr; 6683 6684 dim = container_of(work, struct dim, work); 6685 rc = dim->priv; 6686 6687 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6688 6689 /* look up the values in our local table */ 6690 itr = rx_profile[dim->profile_ix].itr; 6691 6692 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6693 ice_write_itr(rc, itr); 6694 6695 dim->state = DIM_START_MEASURE; 6696 } 6697 6698 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6699 6700 /** 6701 * ice_init_moderation - set up interrupt moderation 6702 * @q_vector: the vector containing rings to be configured 6703 * 6704 * Set up interrupt moderation registers, with the intent to do the right thing 6705 * when called from reset or from probe, and whether or not dynamic moderation 6706 * is enabled or not. Take special care to write all the registers in both 6707 * dynamic moderation mode or not in order to make sure hardware is in a known 6708 * state. 6709 */ 6710 static void ice_init_moderation(struct ice_q_vector *q_vector) 6711 { 6712 struct ice_ring_container *rc; 6713 bool tx_dynamic, rx_dynamic; 6714 6715 rc = &q_vector->tx; 6716 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6717 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6718 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6719 rc->dim.priv = rc; 6720 tx_dynamic = ITR_IS_DYNAMIC(rc); 6721 6722 /* set the initial TX ITR to match the above */ 6723 ice_write_itr(rc, tx_dynamic ? 6724 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6725 6726 rc = &q_vector->rx; 6727 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6728 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6729 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6730 rc->dim.priv = rc; 6731 rx_dynamic = ITR_IS_DYNAMIC(rc); 6732 6733 /* set the initial RX ITR to match the above */ 6734 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6735 rc->itr_setting); 6736 6737 ice_set_q_vector_intrl(q_vector); 6738 } 6739 6740 /** 6741 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6742 * @vsi: the VSI being configured 6743 */ 6744 static void ice_napi_enable_all(struct ice_vsi *vsi) 6745 { 6746 int q_idx; 6747 6748 if (!vsi->netdev) 6749 return; 6750 6751 ice_for_each_q_vector(vsi, q_idx) { 6752 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6753 6754 ice_init_moderation(q_vector); 6755 6756 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6757 napi_enable(&q_vector->napi); 6758 } 6759 } 6760 6761 /** 6762 * ice_up_complete - Finish the last steps of bringing up a connection 6763 * @vsi: The VSI being configured 6764 * 6765 * Return 0 on success and negative value on error 6766 */ 6767 static int ice_up_complete(struct ice_vsi *vsi) 6768 { 6769 struct ice_pf *pf = vsi->back; 6770 int err; 6771 6772 ice_vsi_cfg_msix(vsi); 6773 6774 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6775 * Tx queue group list was configured and the context bits were 6776 * programmed using ice_vsi_cfg_txqs 6777 */ 6778 err = ice_vsi_start_all_rx_rings(vsi); 6779 if (err) 6780 return err; 6781 6782 clear_bit(ICE_VSI_DOWN, vsi->state); 6783 ice_napi_enable_all(vsi); 6784 ice_vsi_ena_irq(vsi); 6785 6786 if (vsi->port_info && 6787 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6788 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6789 vsi->type == ICE_VSI_SF)))) { 6790 ice_print_link_msg(vsi, true); 6791 netif_tx_start_all_queues(vsi->netdev); 6792 netif_carrier_on(vsi->netdev); 6793 ice_ptp_link_change(pf, true); 6794 } 6795 6796 /* Perform an initial read of the statistics registers now to 6797 * set the baseline so counters are ready when interface is up 6798 */ 6799 ice_update_eth_stats(vsi); 6800 6801 if (vsi->type == ICE_VSI_PF) 6802 ice_service_task_schedule(pf); 6803 6804 return 0; 6805 } 6806 6807 /** 6808 * ice_up - Bring the connection back up after being down 6809 * @vsi: VSI being configured 6810 */ 6811 int ice_up(struct ice_vsi *vsi) 6812 { 6813 int err; 6814 6815 err = ice_vsi_cfg_lan(vsi); 6816 if (!err) 6817 err = ice_up_complete(vsi); 6818 6819 return err; 6820 } 6821 6822 /** 6823 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6824 * @syncp: pointer to u64_stats_sync 6825 * @stats: stats that pkts and bytes count will be taken from 6826 * @pkts: packets stats counter 6827 * @bytes: bytes stats counter 6828 * 6829 * This function fetches stats from the ring considering the atomic operations 6830 * that needs to be performed to read u64 values in 32 bit machine. 6831 */ 6832 void 6833 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6834 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6835 { 6836 unsigned int start; 6837 6838 do { 6839 start = u64_stats_fetch_begin(syncp); 6840 *pkts = stats.pkts; 6841 *bytes = stats.bytes; 6842 } while (u64_stats_fetch_retry(syncp, start)); 6843 } 6844 6845 /** 6846 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6847 * @vsi: the VSI to be updated 6848 * @vsi_stats: the stats struct to be updated 6849 * @rings: rings to work on 6850 * @count: number of rings 6851 */ 6852 static void 6853 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6854 struct rtnl_link_stats64 *vsi_stats, 6855 struct ice_tx_ring **rings, u16 count) 6856 { 6857 u16 i; 6858 6859 for (i = 0; i < count; i++) { 6860 struct ice_tx_ring *ring; 6861 u64 pkts = 0, bytes = 0; 6862 6863 ring = READ_ONCE(rings[i]); 6864 if (!ring || !ring->ring_stats) 6865 continue; 6866 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6867 ring->ring_stats->stats, &pkts, 6868 &bytes); 6869 vsi_stats->tx_packets += pkts; 6870 vsi_stats->tx_bytes += bytes; 6871 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6872 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6873 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6874 } 6875 } 6876 6877 /** 6878 * ice_update_vsi_ring_stats - Update VSI stats counters 6879 * @vsi: the VSI to be updated 6880 */ 6881 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6882 { 6883 struct rtnl_link_stats64 *net_stats, *stats_prev; 6884 struct rtnl_link_stats64 *vsi_stats; 6885 struct ice_pf *pf = vsi->back; 6886 u64 pkts, bytes; 6887 int i; 6888 6889 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6890 if (!vsi_stats) 6891 return; 6892 6893 /* reset non-netdev (extended) stats */ 6894 vsi->tx_restart = 0; 6895 vsi->tx_busy = 0; 6896 vsi->tx_linearize = 0; 6897 vsi->rx_buf_failed = 0; 6898 vsi->rx_page_failed = 0; 6899 6900 rcu_read_lock(); 6901 6902 /* update Tx rings counters */ 6903 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6904 vsi->num_txq); 6905 6906 /* update Rx rings counters */ 6907 ice_for_each_rxq(vsi, i) { 6908 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6909 struct ice_ring_stats *ring_stats; 6910 6911 ring_stats = ring->ring_stats; 6912 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6913 ring_stats->stats, &pkts, 6914 &bytes); 6915 vsi_stats->rx_packets += pkts; 6916 vsi_stats->rx_bytes += bytes; 6917 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6918 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6919 } 6920 6921 /* update XDP Tx rings counters */ 6922 if (ice_is_xdp_ena_vsi(vsi)) 6923 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6924 vsi->num_xdp_txq); 6925 6926 rcu_read_unlock(); 6927 6928 net_stats = &vsi->net_stats; 6929 stats_prev = &vsi->net_stats_prev; 6930 6931 /* Update netdev counters, but keep in mind that values could start at 6932 * random value after PF reset. And as we increase the reported stat by 6933 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6934 * let's skip this round. 6935 */ 6936 if (likely(pf->stat_prev_loaded)) { 6937 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6938 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6939 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6940 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6941 } 6942 6943 stats_prev->tx_packets = vsi_stats->tx_packets; 6944 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6945 stats_prev->rx_packets = vsi_stats->rx_packets; 6946 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6947 6948 kfree(vsi_stats); 6949 } 6950 6951 /** 6952 * ice_update_vsi_stats - Update VSI stats counters 6953 * @vsi: the VSI to be updated 6954 */ 6955 void ice_update_vsi_stats(struct ice_vsi *vsi) 6956 { 6957 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6958 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6959 struct ice_pf *pf = vsi->back; 6960 6961 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6962 test_bit(ICE_CFG_BUSY, pf->state)) 6963 return; 6964 6965 /* get stats as recorded by Tx/Rx rings */ 6966 ice_update_vsi_ring_stats(vsi); 6967 6968 /* get VSI stats as recorded by the hardware */ 6969 ice_update_eth_stats(vsi); 6970 6971 cur_ns->tx_errors = cur_es->tx_errors; 6972 cur_ns->rx_dropped = cur_es->rx_discards; 6973 cur_ns->tx_dropped = cur_es->tx_discards; 6974 cur_ns->multicast = cur_es->rx_multicast; 6975 6976 /* update some more netdev stats if this is main VSI */ 6977 if (vsi->type == ICE_VSI_PF) { 6978 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6979 cur_ns->rx_errors = pf->stats.crc_errors + 6980 pf->stats.illegal_bytes + 6981 pf->stats.rx_undersize + 6982 pf->hw_csum_rx_error + 6983 pf->stats.rx_jabber + 6984 pf->stats.rx_fragments + 6985 pf->stats.rx_oversize; 6986 /* record drops from the port level */ 6987 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6988 } 6989 } 6990 6991 /** 6992 * ice_update_pf_stats - Update PF port stats counters 6993 * @pf: PF whose stats needs to be updated 6994 */ 6995 void ice_update_pf_stats(struct ice_pf *pf) 6996 { 6997 struct ice_hw_port_stats *prev_ps, *cur_ps; 6998 struct ice_hw *hw = &pf->hw; 6999 u16 fd_ctr_base; 7000 u8 port; 7001 7002 port = hw->port_info->lport; 7003 prev_ps = &pf->stats_prev; 7004 cur_ps = &pf->stats; 7005 7006 if (ice_is_reset_in_progress(pf->state)) 7007 pf->stat_prev_loaded = false; 7008 7009 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 7010 &prev_ps->eth.rx_bytes, 7011 &cur_ps->eth.rx_bytes); 7012 7013 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 7014 &prev_ps->eth.rx_unicast, 7015 &cur_ps->eth.rx_unicast); 7016 7017 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 7018 &prev_ps->eth.rx_multicast, 7019 &cur_ps->eth.rx_multicast); 7020 7021 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 7022 &prev_ps->eth.rx_broadcast, 7023 &cur_ps->eth.rx_broadcast); 7024 7025 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 7026 &prev_ps->eth.rx_discards, 7027 &cur_ps->eth.rx_discards); 7028 7029 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 7030 &prev_ps->eth.tx_bytes, 7031 &cur_ps->eth.tx_bytes); 7032 7033 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 7034 &prev_ps->eth.tx_unicast, 7035 &cur_ps->eth.tx_unicast); 7036 7037 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7038 &prev_ps->eth.tx_multicast, 7039 &cur_ps->eth.tx_multicast); 7040 7041 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7042 &prev_ps->eth.tx_broadcast, 7043 &cur_ps->eth.tx_broadcast); 7044 7045 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7046 &prev_ps->tx_dropped_link_down, 7047 &cur_ps->tx_dropped_link_down); 7048 7049 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7050 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7051 7052 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7053 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7054 7055 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7056 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7057 7058 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7059 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7060 7061 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7062 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7063 7064 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7065 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7066 7067 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7068 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7069 7070 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7071 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7072 7073 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7074 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7075 7076 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7077 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7078 7079 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7080 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7081 7082 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7083 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7084 7085 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7086 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7087 7088 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7089 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7090 7091 fd_ctr_base = hw->fd_ctr_base; 7092 7093 ice_stat_update40(hw, 7094 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7095 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7096 &cur_ps->fd_sb_match); 7097 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7098 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7099 7100 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7101 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7102 7103 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7104 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7105 7106 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7107 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7108 7109 ice_update_dcb_stats(pf); 7110 7111 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7112 &prev_ps->crc_errors, &cur_ps->crc_errors); 7113 7114 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7115 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7116 7117 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7118 &prev_ps->mac_local_faults, 7119 &cur_ps->mac_local_faults); 7120 7121 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7122 &prev_ps->mac_remote_faults, 7123 &cur_ps->mac_remote_faults); 7124 7125 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7126 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7127 7128 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7129 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7130 7131 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7132 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7133 7134 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7135 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7136 7137 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7138 7139 pf->stat_prev_loaded = true; 7140 } 7141 7142 /** 7143 * ice_get_stats64 - get statistics for network device structure 7144 * @netdev: network interface device structure 7145 * @stats: main device statistics structure 7146 */ 7147 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7148 { 7149 struct ice_netdev_priv *np = netdev_priv(netdev); 7150 struct rtnl_link_stats64 *vsi_stats; 7151 struct ice_vsi *vsi = np->vsi; 7152 7153 vsi_stats = &vsi->net_stats; 7154 7155 if (!vsi->num_txq || !vsi->num_rxq) 7156 return; 7157 7158 /* netdev packet/byte stats come from ring counter. These are obtained 7159 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7160 * But, only call the update routine and read the registers if VSI is 7161 * not down. 7162 */ 7163 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7164 ice_update_vsi_ring_stats(vsi); 7165 stats->tx_packets = vsi_stats->tx_packets; 7166 stats->tx_bytes = vsi_stats->tx_bytes; 7167 stats->rx_packets = vsi_stats->rx_packets; 7168 stats->rx_bytes = vsi_stats->rx_bytes; 7169 7170 /* The rest of the stats can be read from the hardware but instead we 7171 * just return values that the watchdog task has already obtained from 7172 * the hardware. 7173 */ 7174 stats->multicast = vsi_stats->multicast; 7175 stats->tx_errors = vsi_stats->tx_errors; 7176 stats->tx_dropped = vsi_stats->tx_dropped; 7177 stats->rx_errors = vsi_stats->rx_errors; 7178 stats->rx_dropped = vsi_stats->rx_dropped; 7179 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7180 stats->rx_length_errors = vsi_stats->rx_length_errors; 7181 } 7182 7183 /** 7184 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7185 * @vsi: VSI having NAPI disabled 7186 */ 7187 static void ice_napi_disable_all(struct ice_vsi *vsi) 7188 { 7189 int q_idx; 7190 7191 if (!vsi->netdev) 7192 return; 7193 7194 ice_for_each_q_vector(vsi, q_idx) { 7195 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7196 7197 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7198 napi_disable(&q_vector->napi); 7199 7200 cancel_work_sync(&q_vector->tx.dim.work); 7201 cancel_work_sync(&q_vector->rx.dim.work); 7202 } 7203 } 7204 7205 /** 7206 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7207 * @vsi: the VSI being un-configured 7208 */ 7209 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7210 { 7211 struct ice_pf *pf = vsi->back; 7212 struct ice_hw *hw = &pf->hw; 7213 u32 val; 7214 int i; 7215 7216 /* disable interrupt causation from each Rx queue; Tx queues are 7217 * handled in ice_vsi_stop_tx_ring() 7218 */ 7219 if (vsi->rx_rings) { 7220 ice_for_each_rxq(vsi, i) { 7221 if (vsi->rx_rings[i]) { 7222 u16 reg; 7223 7224 reg = vsi->rx_rings[i]->reg_idx; 7225 val = rd32(hw, QINT_RQCTL(reg)); 7226 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7227 wr32(hw, QINT_RQCTL(reg), val); 7228 } 7229 } 7230 } 7231 7232 /* disable each interrupt */ 7233 ice_for_each_q_vector(vsi, i) { 7234 if (!vsi->q_vectors[i]) 7235 continue; 7236 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7237 } 7238 7239 ice_flush(hw); 7240 7241 /* don't call synchronize_irq() for VF's from the host */ 7242 if (vsi->type == ICE_VSI_VF) 7243 return; 7244 7245 ice_for_each_q_vector(vsi, i) 7246 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7247 } 7248 7249 /** 7250 * ice_down - Shutdown the connection 7251 * @vsi: The VSI being stopped 7252 * 7253 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7254 */ 7255 int ice_down(struct ice_vsi *vsi) 7256 { 7257 int i, tx_err, rx_err, vlan_err = 0; 7258 7259 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7260 7261 if (vsi->netdev) { 7262 vlan_err = ice_vsi_del_vlan_zero(vsi); 7263 ice_ptp_link_change(vsi->back, false); 7264 netif_carrier_off(vsi->netdev); 7265 netif_tx_disable(vsi->netdev); 7266 } 7267 7268 ice_vsi_dis_irq(vsi); 7269 7270 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7271 if (tx_err) 7272 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7273 vsi->vsi_num, tx_err); 7274 if (!tx_err && vsi->xdp_rings) { 7275 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7276 if (tx_err) 7277 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7278 vsi->vsi_num, tx_err); 7279 } 7280 7281 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7282 if (rx_err) 7283 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7284 vsi->vsi_num, rx_err); 7285 7286 ice_napi_disable_all(vsi); 7287 7288 ice_for_each_txq(vsi, i) 7289 ice_clean_tx_ring(vsi->tx_rings[i]); 7290 7291 if (vsi->xdp_rings) 7292 ice_for_each_xdp_txq(vsi, i) 7293 ice_clean_tx_ring(vsi->xdp_rings[i]); 7294 7295 ice_for_each_rxq(vsi, i) 7296 ice_clean_rx_ring(vsi->rx_rings[i]); 7297 7298 if (tx_err || rx_err || vlan_err) { 7299 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7300 vsi->vsi_num, vsi->vsw->sw_id); 7301 return -EIO; 7302 } 7303 7304 return 0; 7305 } 7306 7307 /** 7308 * ice_down_up - shutdown the VSI connection and bring it up 7309 * @vsi: the VSI to be reconnected 7310 */ 7311 int ice_down_up(struct ice_vsi *vsi) 7312 { 7313 int ret; 7314 7315 /* if DOWN already set, nothing to do */ 7316 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7317 return 0; 7318 7319 ret = ice_down(vsi); 7320 if (ret) 7321 return ret; 7322 7323 ret = ice_up(vsi); 7324 if (ret) { 7325 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7326 return ret; 7327 } 7328 7329 return 0; 7330 } 7331 7332 /** 7333 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7334 * @vsi: VSI having resources allocated 7335 * 7336 * Return 0 on success, negative on failure 7337 */ 7338 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7339 { 7340 int i, err = 0; 7341 7342 if (!vsi->num_txq) { 7343 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7344 vsi->vsi_num); 7345 return -EINVAL; 7346 } 7347 7348 ice_for_each_txq(vsi, i) { 7349 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7350 7351 if (!ring) 7352 return -EINVAL; 7353 7354 if (vsi->netdev) 7355 ring->netdev = vsi->netdev; 7356 err = ice_setup_tx_ring(ring); 7357 if (err) 7358 break; 7359 } 7360 7361 return err; 7362 } 7363 7364 /** 7365 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7366 * @vsi: VSI having resources allocated 7367 * 7368 * Return 0 on success, negative on failure 7369 */ 7370 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7371 { 7372 int i, err = 0; 7373 7374 if (!vsi->num_rxq) { 7375 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7376 vsi->vsi_num); 7377 return -EINVAL; 7378 } 7379 7380 ice_for_each_rxq(vsi, i) { 7381 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7382 7383 if (!ring) 7384 return -EINVAL; 7385 7386 if (vsi->netdev) 7387 ring->netdev = vsi->netdev; 7388 err = ice_setup_rx_ring(ring); 7389 if (err) 7390 break; 7391 } 7392 7393 return err; 7394 } 7395 7396 /** 7397 * ice_vsi_open_ctrl - open control VSI for use 7398 * @vsi: the VSI to open 7399 * 7400 * Initialization of the Control VSI 7401 * 7402 * Returns 0 on success, negative value on error 7403 */ 7404 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7405 { 7406 char int_name[ICE_INT_NAME_STR_LEN]; 7407 struct ice_pf *pf = vsi->back; 7408 struct device *dev; 7409 int err; 7410 7411 dev = ice_pf_to_dev(pf); 7412 /* allocate descriptors */ 7413 err = ice_vsi_setup_tx_rings(vsi); 7414 if (err) 7415 goto err_setup_tx; 7416 7417 err = ice_vsi_setup_rx_rings(vsi); 7418 if (err) 7419 goto err_setup_rx; 7420 7421 err = ice_vsi_cfg_lan(vsi); 7422 if (err) 7423 goto err_setup_rx; 7424 7425 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7426 dev_driver_string(dev), dev_name(dev)); 7427 err = ice_vsi_req_irq_msix(vsi, int_name); 7428 if (err) 7429 goto err_setup_rx; 7430 7431 ice_vsi_cfg_msix(vsi); 7432 7433 err = ice_vsi_start_all_rx_rings(vsi); 7434 if (err) 7435 goto err_up_complete; 7436 7437 clear_bit(ICE_VSI_DOWN, vsi->state); 7438 ice_vsi_ena_irq(vsi); 7439 7440 return 0; 7441 7442 err_up_complete: 7443 ice_down(vsi); 7444 err_setup_rx: 7445 ice_vsi_free_rx_rings(vsi); 7446 err_setup_tx: 7447 ice_vsi_free_tx_rings(vsi); 7448 7449 return err; 7450 } 7451 7452 /** 7453 * ice_vsi_open - Called when a network interface is made active 7454 * @vsi: the VSI to open 7455 * 7456 * Initialization of the VSI 7457 * 7458 * Returns 0 on success, negative value on error 7459 */ 7460 int ice_vsi_open(struct ice_vsi *vsi) 7461 { 7462 char int_name[ICE_INT_NAME_STR_LEN]; 7463 struct ice_pf *pf = vsi->back; 7464 int err; 7465 7466 /* allocate descriptors */ 7467 err = ice_vsi_setup_tx_rings(vsi); 7468 if (err) 7469 goto err_setup_tx; 7470 7471 err = ice_vsi_setup_rx_rings(vsi); 7472 if (err) 7473 goto err_setup_rx; 7474 7475 err = ice_vsi_cfg_lan(vsi); 7476 if (err) 7477 goto err_setup_rx; 7478 7479 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7480 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7481 err = ice_vsi_req_irq_msix(vsi, int_name); 7482 if (err) 7483 goto err_setup_rx; 7484 7485 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7486 7487 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7488 /* Notify the stack of the actual queue counts. */ 7489 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7490 if (err) 7491 goto err_set_qs; 7492 7493 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7494 if (err) 7495 goto err_set_qs; 7496 7497 ice_vsi_set_napi_queues(vsi); 7498 } 7499 7500 err = ice_up_complete(vsi); 7501 if (err) 7502 goto err_up_complete; 7503 7504 return 0; 7505 7506 err_up_complete: 7507 ice_down(vsi); 7508 err_set_qs: 7509 ice_vsi_free_irq(vsi); 7510 err_setup_rx: 7511 ice_vsi_free_rx_rings(vsi); 7512 err_setup_tx: 7513 ice_vsi_free_tx_rings(vsi); 7514 7515 return err; 7516 } 7517 7518 /** 7519 * ice_vsi_release_all - Delete all VSIs 7520 * @pf: PF from which all VSIs are being removed 7521 */ 7522 static void ice_vsi_release_all(struct ice_pf *pf) 7523 { 7524 int err, i; 7525 7526 if (!pf->vsi) 7527 return; 7528 7529 ice_for_each_vsi(pf, i) { 7530 if (!pf->vsi[i]) 7531 continue; 7532 7533 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7534 continue; 7535 7536 err = ice_vsi_release(pf->vsi[i]); 7537 if (err) 7538 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7539 i, err, pf->vsi[i]->vsi_num); 7540 } 7541 } 7542 7543 /** 7544 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7545 * @pf: pointer to the PF instance 7546 * @type: VSI type to rebuild 7547 * 7548 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7549 */ 7550 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7551 { 7552 struct device *dev = ice_pf_to_dev(pf); 7553 int i, err; 7554 7555 ice_for_each_vsi(pf, i) { 7556 struct ice_vsi *vsi = pf->vsi[i]; 7557 7558 if (!vsi || vsi->type != type) 7559 continue; 7560 7561 /* rebuild the VSI */ 7562 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7563 if (err) { 7564 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7565 err, vsi->idx, ice_vsi_type_str(type)); 7566 return err; 7567 } 7568 7569 /* replay filters for the VSI */ 7570 err = ice_replay_vsi(&pf->hw, vsi->idx); 7571 if (err) { 7572 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7573 err, vsi->idx, ice_vsi_type_str(type)); 7574 return err; 7575 } 7576 7577 /* Re-map HW VSI number, using VSI handle that has been 7578 * previously validated in ice_replay_vsi() call above 7579 */ 7580 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7581 7582 /* enable the VSI */ 7583 err = ice_ena_vsi(vsi, false); 7584 if (err) { 7585 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7586 err, vsi->idx, ice_vsi_type_str(type)); 7587 return err; 7588 } 7589 7590 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7591 ice_vsi_type_str(type)); 7592 } 7593 7594 return 0; 7595 } 7596 7597 /** 7598 * ice_update_pf_netdev_link - Update PF netdev link status 7599 * @pf: pointer to the PF instance 7600 */ 7601 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7602 { 7603 bool link_up; 7604 int i; 7605 7606 ice_for_each_vsi(pf, i) { 7607 struct ice_vsi *vsi = pf->vsi[i]; 7608 7609 if (!vsi || vsi->type != ICE_VSI_PF) 7610 return; 7611 7612 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7613 if (link_up) { 7614 netif_carrier_on(pf->vsi[i]->netdev); 7615 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7616 } else { 7617 netif_carrier_off(pf->vsi[i]->netdev); 7618 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7619 } 7620 } 7621 } 7622 7623 /** 7624 * ice_rebuild - rebuild after reset 7625 * @pf: PF to rebuild 7626 * @reset_type: type of reset 7627 * 7628 * Do not rebuild VF VSI in this flow because that is already handled via 7629 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7630 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7631 * to reset/rebuild all the VF VSI twice. 7632 */ 7633 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7634 { 7635 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7636 struct device *dev = ice_pf_to_dev(pf); 7637 struct ice_hw *hw = &pf->hw; 7638 bool dvm; 7639 int err; 7640 7641 if (test_bit(ICE_DOWN, pf->state)) 7642 goto clear_recovery; 7643 7644 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7645 7646 #define ICE_EMP_RESET_SLEEP_MS 5000 7647 if (reset_type == ICE_RESET_EMPR) { 7648 /* If an EMP reset has occurred, any previously pending flash 7649 * update will have completed. We no longer know whether or 7650 * not the NVM update EMP reset is restricted. 7651 */ 7652 pf->fw_emp_reset_disabled = false; 7653 7654 msleep(ICE_EMP_RESET_SLEEP_MS); 7655 } 7656 7657 err = ice_init_all_ctrlq(hw); 7658 if (err) { 7659 dev_err(dev, "control queues init failed %d\n", err); 7660 goto err_init_ctrlq; 7661 } 7662 7663 /* if DDP was previously loaded successfully */ 7664 if (!ice_is_safe_mode(pf)) { 7665 /* reload the SW DB of filter tables */ 7666 if (reset_type == ICE_RESET_PFR) 7667 ice_fill_blk_tbls(hw); 7668 else 7669 /* Reload DDP Package after CORER/GLOBR reset */ 7670 ice_load_pkg(NULL, pf); 7671 } 7672 7673 err = ice_clear_pf_cfg(hw); 7674 if (err) { 7675 dev_err(dev, "clear PF configuration failed %d\n", err); 7676 goto err_init_ctrlq; 7677 } 7678 7679 ice_clear_pxe_mode(hw); 7680 7681 err = ice_init_nvm(hw); 7682 if (err) { 7683 dev_err(dev, "ice_init_nvm failed %d\n", err); 7684 goto err_init_ctrlq; 7685 } 7686 7687 err = ice_get_caps(hw); 7688 if (err) { 7689 dev_err(dev, "ice_get_caps failed %d\n", err); 7690 goto err_init_ctrlq; 7691 } 7692 7693 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7694 if (err) { 7695 dev_err(dev, "set_mac_cfg failed %d\n", err); 7696 goto err_init_ctrlq; 7697 } 7698 7699 dvm = ice_is_dvm_ena(hw); 7700 7701 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7702 if (err) 7703 goto err_init_ctrlq; 7704 7705 err = ice_sched_init_port(hw->port_info); 7706 if (err) 7707 goto err_sched_init_port; 7708 7709 /* start misc vector */ 7710 err = ice_req_irq_msix_misc(pf); 7711 if (err) { 7712 dev_err(dev, "misc vector setup failed: %d\n", err); 7713 goto err_sched_init_port; 7714 } 7715 7716 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7717 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7718 if (!rd32(hw, PFQF_FD_SIZE)) { 7719 u16 unused, guar, b_effort; 7720 7721 guar = hw->func_caps.fd_fltr_guar; 7722 b_effort = hw->func_caps.fd_fltr_best_effort; 7723 7724 /* force guaranteed filter pool for PF */ 7725 ice_alloc_fd_guar_item(hw, &unused, guar); 7726 /* force shared filter pool for PF */ 7727 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7728 } 7729 } 7730 7731 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7732 ice_dcb_rebuild(pf); 7733 7734 /* If the PF previously had enabled PTP, PTP init needs to happen before 7735 * the VSI rebuild. If not, this causes the PTP link status events to 7736 * fail. 7737 */ 7738 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7739 ice_ptp_rebuild(pf, reset_type); 7740 7741 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7742 ice_gnss_init(pf); 7743 7744 /* rebuild PF VSI */ 7745 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7746 if (err) { 7747 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7748 goto err_vsi_rebuild; 7749 } 7750 7751 if (reset_type == ICE_RESET_PFR) { 7752 err = ice_rebuild_channels(pf); 7753 if (err) { 7754 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7755 err); 7756 goto err_vsi_rebuild; 7757 } 7758 } 7759 7760 /* If Flow Director is active */ 7761 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7762 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7763 if (err) { 7764 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7765 goto err_vsi_rebuild; 7766 } 7767 7768 /* replay HW Flow Director recipes */ 7769 if (hw->fdir_prof) 7770 ice_fdir_replay_flows(hw); 7771 7772 /* replay Flow Director filters */ 7773 ice_fdir_replay_fltrs(pf); 7774 7775 ice_rebuild_arfs(pf); 7776 } 7777 7778 if (vsi && vsi->netdev) 7779 netif_device_attach(vsi->netdev); 7780 7781 ice_update_pf_netdev_link(pf); 7782 7783 /* tell the firmware we are up */ 7784 err = ice_send_version(pf); 7785 if (err) { 7786 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7787 err); 7788 goto err_vsi_rebuild; 7789 } 7790 7791 ice_replay_post(hw); 7792 7793 /* if we get here, reset flow is successful */ 7794 clear_bit(ICE_RESET_FAILED, pf->state); 7795 7796 ice_health_clear(pf); 7797 7798 ice_plug_aux_dev(pf); 7799 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7800 ice_lag_rebuild(pf); 7801 7802 /* Restore timestamp mode settings after VSI rebuild */ 7803 ice_ptp_restore_timestamp_mode(pf); 7804 return; 7805 7806 err_vsi_rebuild: 7807 err_sched_init_port: 7808 ice_sched_cleanup_all(hw); 7809 err_init_ctrlq: 7810 ice_shutdown_all_ctrlq(hw, false); 7811 set_bit(ICE_RESET_FAILED, pf->state); 7812 clear_recovery: 7813 /* set this bit in PF state to control service task scheduling */ 7814 set_bit(ICE_NEEDS_RESTART, pf->state); 7815 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7816 } 7817 7818 /** 7819 * ice_change_mtu - NDO callback to change the MTU 7820 * @netdev: network interface device structure 7821 * @new_mtu: new value for maximum frame size 7822 * 7823 * Returns 0 on success, negative on failure 7824 */ 7825 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7826 { 7827 struct ice_netdev_priv *np = netdev_priv(netdev); 7828 struct ice_vsi *vsi = np->vsi; 7829 struct ice_pf *pf = vsi->back; 7830 struct bpf_prog *prog; 7831 u8 count = 0; 7832 int err = 0; 7833 7834 if (new_mtu == (int)netdev->mtu) { 7835 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7836 return 0; 7837 } 7838 7839 prog = vsi->xdp_prog; 7840 if (prog && !prog->aux->xdp_has_frags) { 7841 int frame_size = ice_max_xdp_frame_size(vsi); 7842 7843 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7844 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7845 frame_size - ICE_ETH_PKT_HDR_PAD); 7846 return -EINVAL; 7847 } 7848 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7849 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7850 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7851 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7852 return -EINVAL; 7853 } 7854 } 7855 7856 /* if a reset is in progress, wait for some time for it to complete */ 7857 do { 7858 if (ice_is_reset_in_progress(pf->state)) { 7859 count++; 7860 usleep_range(1000, 2000); 7861 } else { 7862 break; 7863 } 7864 7865 } while (count < 100); 7866 7867 if (count == 100) { 7868 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7869 return -EBUSY; 7870 } 7871 7872 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7873 err = ice_down_up(vsi); 7874 if (err) 7875 return err; 7876 7877 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7878 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7879 7880 return err; 7881 } 7882 7883 /** 7884 * ice_eth_ioctl - Access the hwtstamp interface 7885 * @netdev: network interface device structure 7886 * @ifr: interface request data 7887 * @cmd: ioctl command 7888 */ 7889 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7890 { 7891 struct ice_netdev_priv *np = netdev_priv(netdev); 7892 struct ice_pf *pf = np->vsi->back; 7893 7894 switch (cmd) { 7895 case SIOCGHWTSTAMP: 7896 return ice_ptp_get_ts_config(pf, ifr); 7897 case SIOCSHWTSTAMP: 7898 return ice_ptp_set_ts_config(pf, ifr); 7899 default: 7900 return -EOPNOTSUPP; 7901 } 7902 } 7903 7904 /** 7905 * ice_aq_str - convert AQ err code to a string 7906 * @aq_err: the AQ error code to convert 7907 */ 7908 const char *ice_aq_str(enum ice_aq_err aq_err) 7909 { 7910 switch (aq_err) { 7911 case ICE_AQ_RC_OK: 7912 return "OK"; 7913 case ICE_AQ_RC_EPERM: 7914 return "ICE_AQ_RC_EPERM"; 7915 case ICE_AQ_RC_ENOENT: 7916 return "ICE_AQ_RC_ENOENT"; 7917 case ICE_AQ_RC_ENOMEM: 7918 return "ICE_AQ_RC_ENOMEM"; 7919 case ICE_AQ_RC_EBUSY: 7920 return "ICE_AQ_RC_EBUSY"; 7921 case ICE_AQ_RC_EEXIST: 7922 return "ICE_AQ_RC_EEXIST"; 7923 case ICE_AQ_RC_EINVAL: 7924 return "ICE_AQ_RC_EINVAL"; 7925 case ICE_AQ_RC_ENOSPC: 7926 return "ICE_AQ_RC_ENOSPC"; 7927 case ICE_AQ_RC_ENOSYS: 7928 return "ICE_AQ_RC_ENOSYS"; 7929 case ICE_AQ_RC_EMODE: 7930 return "ICE_AQ_RC_EMODE"; 7931 case ICE_AQ_RC_ENOSEC: 7932 return "ICE_AQ_RC_ENOSEC"; 7933 case ICE_AQ_RC_EBADSIG: 7934 return "ICE_AQ_RC_EBADSIG"; 7935 case ICE_AQ_RC_ESVN: 7936 return "ICE_AQ_RC_ESVN"; 7937 case ICE_AQ_RC_EBADMAN: 7938 return "ICE_AQ_RC_EBADMAN"; 7939 case ICE_AQ_RC_EBADBUF: 7940 return "ICE_AQ_RC_EBADBUF"; 7941 } 7942 7943 return "ICE_AQ_RC_UNKNOWN"; 7944 } 7945 7946 /** 7947 * ice_set_rss_lut - Set RSS LUT 7948 * @vsi: Pointer to VSI structure 7949 * @lut: Lookup table 7950 * @lut_size: Lookup table size 7951 * 7952 * Returns 0 on success, negative on failure 7953 */ 7954 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7955 { 7956 struct ice_aq_get_set_rss_lut_params params = {}; 7957 struct ice_hw *hw = &vsi->back->hw; 7958 int status; 7959 7960 if (!lut) 7961 return -EINVAL; 7962 7963 params.vsi_handle = vsi->idx; 7964 params.lut_size = lut_size; 7965 params.lut_type = vsi->rss_lut_type; 7966 params.lut = lut; 7967 7968 status = ice_aq_set_rss_lut(hw, ¶ms); 7969 if (status) 7970 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7971 status, ice_aq_str(hw->adminq.sq_last_status)); 7972 7973 return status; 7974 } 7975 7976 /** 7977 * ice_set_rss_key - Set RSS key 7978 * @vsi: Pointer to the VSI structure 7979 * @seed: RSS hash seed 7980 * 7981 * Returns 0 on success, negative on failure 7982 */ 7983 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7984 { 7985 struct ice_hw *hw = &vsi->back->hw; 7986 int status; 7987 7988 if (!seed) 7989 return -EINVAL; 7990 7991 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7992 if (status) 7993 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7994 status, ice_aq_str(hw->adminq.sq_last_status)); 7995 7996 return status; 7997 } 7998 7999 /** 8000 * ice_get_rss_lut - Get RSS LUT 8001 * @vsi: Pointer to VSI structure 8002 * @lut: Buffer to store the lookup table entries 8003 * @lut_size: Size of buffer to store the lookup table entries 8004 * 8005 * Returns 0 on success, negative on failure 8006 */ 8007 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 8008 { 8009 struct ice_aq_get_set_rss_lut_params params = {}; 8010 struct ice_hw *hw = &vsi->back->hw; 8011 int status; 8012 8013 if (!lut) 8014 return -EINVAL; 8015 8016 params.vsi_handle = vsi->idx; 8017 params.lut_size = lut_size; 8018 params.lut_type = vsi->rss_lut_type; 8019 params.lut = lut; 8020 8021 status = ice_aq_get_rss_lut(hw, ¶ms); 8022 if (status) 8023 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 8024 status, ice_aq_str(hw->adminq.sq_last_status)); 8025 8026 return status; 8027 } 8028 8029 /** 8030 * ice_get_rss_key - Get RSS key 8031 * @vsi: Pointer to VSI structure 8032 * @seed: Buffer to store the key in 8033 * 8034 * Returns 0 on success, negative on failure 8035 */ 8036 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 8037 { 8038 struct ice_hw *hw = &vsi->back->hw; 8039 int status; 8040 8041 if (!seed) 8042 return -EINVAL; 8043 8044 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8045 if (status) 8046 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8047 status, ice_aq_str(hw->adminq.sq_last_status)); 8048 8049 return status; 8050 } 8051 8052 /** 8053 * ice_set_rss_hfunc - Set RSS HASH function 8054 * @vsi: Pointer to VSI structure 8055 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8056 * 8057 * Returns 0 on success, negative on failure 8058 */ 8059 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8060 { 8061 struct ice_hw *hw = &vsi->back->hw; 8062 struct ice_vsi_ctx *ctx; 8063 bool symm; 8064 int err; 8065 8066 if (hfunc == vsi->rss_hfunc) 8067 return 0; 8068 8069 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8070 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8071 return -EOPNOTSUPP; 8072 8073 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8074 if (!ctx) 8075 return -ENOMEM; 8076 8077 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8078 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8079 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8080 ctx->info.q_opt_rss |= 8081 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8082 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8083 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8084 8085 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8086 if (err) { 8087 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8088 vsi->vsi_num, err); 8089 } else { 8090 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8091 vsi->rss_hfunc = hfunc; 8092 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8093 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8094 "Symmetric " : ""); 8095 } 8096 kfree(ctx); 8097 if (err) 8098 return err; 8099 8100 /* Fix the symmetry setting for all existing RSS configurations */ 8101 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8102 return ice_set_rss_cfg_symm(hw, vsi, symm); 8103 } 8104 8105 /** 8106 * ice_bridge_getlink - Get the hardware bridge mode 8107 * @skb: skb buff 8108 * @pid: process ID 8109 * @seq: RTNL message seq 8110 * @dev: the netdev being configured 8111 * @filter_mask: filter mask passed in 8112 * @nlflags: netlink flags passed in 8113 * 8114 * Return the bridge mode (VEB/VEPA) 8115 */ 8116 static int 8117 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8118 struct net_device *dev, u32 filter_mask, int nlflags) 8119 { 8120 struct ice_netdev_priv *np = netdev_priv(dev); 8121 struct ice_vsi *vsi = np->vsi; 8122 struct ice_pf *pf = vsi->back; 8123 u16 bmode; 8124 8125 bmode = pf->first_sw->bridge_mode; 8126 8127 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8128 filter_mask, NULL); 8129 } 8130 8131 /** 8132 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8133 * @vsi: Pointer to VSI structure 8134 * @bmode: Hardware bridge mode (VEB/VEPA) 8135 * 8136 * Returns 0 on success, negative on failure 8137 */ 8138 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8139 { 8140 struct ice_aqc_vsi_props *vsi_props; 8141 struct ice_hw *hw = &vsi->back->hw; 8142 struct ice_vsi_ctx *ctxt; 8143 int ret; 8144 8145 vsi_props = &vsi->info; 8146 8147 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8148 if (!ctxt) 8149 return -ENOMEM; 8150 8151 ctxt->info = vsi->info; 8152 8153 if (bmode == BRIDGE_MODE_VEB) 8154 /* change from VEPA to VEB mode */ 8155 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8156 else 8157 /* change from VEB to VEPA mode */ 8158 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8159 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8160 8161 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8162 if (ret) { 8163 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8164 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8165 goto out; 8166 } 8167 /* Update sw flags for book keeping */ 8168 vsi_props->sw_flags = ctxt->info.sw_flags; 8169 8170 out: 8171 kfree(ctxt); 8172 return ret; 8173 } 8174 8175 /** 8176 * ice_bridge_setlink - Set the hardware bridge mode 8177 * @dev: the netdev being configured 8178 * @nlh: RTNL message 8179 * @flags: bridge setlink flags 8180 * @extack: netlink extended ack 8181 * 8182 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8183 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8184 * not already set for all VSIs connected to this switch. And also update the 8185 * unicast switch filter rules for the corresponding switch of the netdev. 8186 */ 8187 static int 8188 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8189 u16 __always_unused flags, 8190 struct netlink_ext_ack __always_unused *extack) 8191 { 8192 struct ice_netdev_priv *np = netdev_priv(dev); 8193 struct ice_pf *pf = np->vsi->back; 8194 struct nlattr *attr, *br_spec; 8195 struct ice_hw *hw = &pf->hw; 8196 struct ice_sw *pf_sw; 8197 int rem, v, err = 0; 8198 8199 pf_sw = pf->first_sw; 8200 /* find the attribute in the netlink message */ 8201 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8202 if (!br_spec) 8203 return -EINVAL; 8204 8205 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8206 __u16 mode = nla_get_u16(attr); 8207 8208 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8209 return -EINVAL; 8210 /* Continue if bridge mode is not being flipped */ 8211 if (mode == pf_sw->bridge_mode) 8212 continue; 8213 /* Iterates through the PF VSI list and update the loopback 8214 * mode of the VSI 8215 */ 8216 ice_for_each_vsi(pf, v) { 8217 if (!pf->vsi[v]) 8218 continue; 8219 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8220 if (err) 8221 return err; 8222 } 8223 8224 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8225 /* Update the unicast switch filter rules for the corresponding 8226 * switch of the netdev 8227 */ 8228 err = ice_update_sw_rule_bridge_mode(hw); 8229 if (err) { 8230 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8231 mode, err, 8232 ice_aq_str(hw->adminq.sq_last_status)); 8233 /* revert hw->evb_veb */ 8234 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8235 return err; 8236 } 8237 8238 pf_sw->bridge_mode = mode; 8239 } 8240 8241 return 0; 8242 } 8243 8244 /** 8245 * ice_tx_timeout - Respond to a Tx Hang 8246 * @netdev: network interface device structure 8247 * @txqueue: Tx queue 8248 */ 8249 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8250 { 8251 struct ice_netdev_priv *np = netdev_priv(netdev); 8252 struct ice_tx_ring *tx_ring = NULL; 8253 struct ice_vsi *vsi = np->vsi; 8254 struct ice_pf *pf = vsi->back; 8255 u32 i; 8256 8257 pf->tx_timeout_count++; 8258 8259 /* Check if PFC is enabled for the TC to which the queue belongs 8260 * to. If yes then Tx timeout is not caused by a hung queue, no 8261 * need to reset and rebuild 8262 */ 8263 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8264 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8265 txqueue); 8266 return; 8267 } 8268 8269 /* now that we have an index, find the tx_ring struct */ 8270 ice_for_each_txq(vsi, i) 8271 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8272 if (txqueue == vsi->tx_rings[i]->q_index) { 8273 tx_ring = vsi->tx_rings[i]; 8274 break; 8275 } 8276 8277 /* Reset recovery level if enough time has elapsed after last timeout. 8278 * Also ensure no new reset action happens before next timeout period. 8279 */ 8280 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8281 pf->tx_timeout_recovery_level = 1; 8282 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8283 netdev->watchdog_timeo))) 8284 return; 8285 8286 if (tx_ring) { 8287 struct ice_hw *hw = &pf->hw; 8288 u32 head, intr = 0; 8289 8290 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8291 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8292 /* Read interrupt register */ 8293 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8294 8295 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8296 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8297 head, tx_ring->next_to_use, intr); 8298 8299 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr); 8300 } 8301 8302 pf->tx_timeout_last_recovery = jiffies; 8303 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8304 pf->tx_timeout_recovery_level, txqueue); 8305 8306 switch (pf->tx_timeout_recovery_level) { 8307 case 1: 8308 set_bit(ICE_PFR_REQ, pf->state); 8309 break; 8310 case 2: 8311 set_bit(ICE_CORER_REQ, pf->state); 8312 break; 8313 case 3: 8314 set_bit(ICE_GLOBR_REQ, pf->state); 8315 break; 8316 default: 8317 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8318 set_bit(ICE_DOWN, pf->state); 8319 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8320 set_bit(ICE_SERVICE_DIS, pf->state); 8321 break; 8322 } 8323 8324 ice_service_task_schedule(pf); 8325 pf->tx_timeout_recovery_level++; 8326 } 8327 8328 /** 8329 * ice_setup_tc_cls_flower - flower classifier offloads 8330 * @np: net device to configure 8331 * @filter_dev: device on which filter is added 8332 * @cls_flower: offload data 8333 */ 8334 static int 8335 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8336 struct net_device *filter_dev, 8337 struct flow_cls_offload *cls_flower) 8338 { 8339 struct ice_vsi *vsi = np->vsi; 8340 8341 if (cls_flower->common.chain_index) 8342 return -EOPNOTSUPP; 8343 8344 switch (cls_flower->command) { 8345 case FLOW_CLS_REPLACE: 8346 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8347 case FLOW_CLS_DESTROY: 8348 return ice_del_cls_flower(vsi, cls_flower); 8349 default: 8350 return -EINVAL; 8351 } 8352 } 8353 8354 /** 8355 * ice_setup_tc_block_cb - callback handler registered for TC block 8356 * @type: TC SETUP type 8357 * @type_data: TC flower offload data that contains user input 8358 * @cb_priv: netdev private data 8359 */ 8360 static int 8361 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8362 { 8363 struct ice_netdev_priv *np = cb_priv; 8364 8365 switch (type) { 8366 case TC_SETUP_CLSFLOWER: 8367 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8368 type_data); 8369 default: 8370 return -EOPNOTSUPP; 8371 } 8372 } 8373 8374 /** 8375 * ice_validate_mqprio_qopt - Validate TCF input parameters 8376 * @vsi: Pointer to VSI 8377 * @mqprio_qopt: input parameters for mqprio queue configuration 8378 * 8379 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8380 * needed), and make sure user doesn't specify qcount and BW rate limit 8381 * for TCs, which are more than "num_tc" 8382 */ 8383 static int 8384 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8385 struct tc_mqprio_qopt_offload *mqprio_qopt) 8386 { 8387 int non_power_of_2_qcount = 0; 8388 struct ice_pf *pf = vsi->back; 8389 int max_rss_q_cnt = 0; 8390 u64 sum_min_rate = 0; 8391 struct device *dev; 8392 int i, speed; 8393 u8 num_tc; 8394 8395 if (vsi->type != ICE_VSI_PF) 8396 return -EINVAL; 8397 8398 if (mqprio_qopt->qopt.offset[0] != 0 || 8399 mqprio_qopt->qopt.num_tc < 1 || 8400 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8401 return -EINVAL; 8402 8403 dev = ice_pf_to_dev(pf); 8404 vsi->ch_rss_size = 0; 8405 num_tc = mqprio_qopt->qopt.num_tc; 8406 speed = ice_get_link_speed_kbps(vsi); 8407 8408 for (i = 0; num_tc; i++) { 8409 int qcount = mqprio_qopt->qopt.count[i]; 8410 u64 max_rate, min_rate, rem; 8411 8412 if (!qcount) 8413 return -EINVAL; 8414 8415 if (is_power_of_2(qcount)) { 8416 if (non_power_of_2_qcount && 8417 qcount > non_power_of_2_qcount) { 8418 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8419 qcount, non_power_of_2_qcount); 8420 return -EINVAL; 8421 } 8422 if (qcount > max_rss_q_cnt) 8423 max_rss_q_cnt = qcount; 8424 } else { 8425 if (non_power_of_2_qcount && 8426 qcount != non_power_of_2_qcount) { 8427 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8428 qcount, non_power_of_2_qcount); 8429 return -EINVAL; 8430 } 8431 if (qcount < max_rss_q_cnt) { 8432 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8433 qcount, max_rss_q_cnt); 8434 return -EINVAL; 8435 } 8436 max_rss_q_cnt = qcount; 8437 non_power_of_2_qcount = qcount; 8438 } 8439 8440 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8441 * converts the bandwidth rate limit into Bytes/s when 8442 * passing it down to the driver. So convert input bandwidth 8443 * from Bytes/s to Kbps 8444 */ 8445 max_rate = mqprio_qopt->max_rate[i]; 8446 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8447 8448 /* min_rate is minimum guaranteed rate and it can't be zero */ 8449 min_rate = mqprio_qopt->min_rate[i]; 8450 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8451 sum_min_rate += min_rate; 8452 8453 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8454 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8455 min_rate, ICE_MIN_BW_LIMIT); 8456 return -EINVAL; 8457 } 8458 8459 if (max_rate && max_rate > speed) { 8460 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8461 i, max_rate, speed); 8462 return -EINVAL; 8463 } 8464 8465 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8466 if (rem) { 8467 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8468 i, ICE_MIN_BW_LIMIT); 8469 return -EINVAL; 8470 } 8471 8472 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8473 if (rem) { 8474 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8475 i, ICE_MIN_BW_LIMIT); 8476 return -EINVAL; 8477 } 8478 8479 /* min_rate can't be more than max_rate, except when max_rate 8480 * is zero (implies max_rate sought is max line rate). In such 8481 * a case min_rate can be more than max. 8482 */ 8483 if (max_rate && min_rate > max_rate) { 8484 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8485 min_rate, max_rate); 8486 return -EINVAL; 8487 } 8488 8489 if (i >= mqprio_qopt->qopt.num_tc - 1) 8490 break; 8491 if (mqprio_qopt->qopt.offset[i + 1] != 8492 (mqprio_qopt->qopt.offset[i] + qcount)) 8493 return -EINVAL; 8494 } 8495 if (vsi->num_rxq < 8496 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8497 return -EINVAL; 8498 if (vsi->num_txq < 8499 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8500 return -EINVAL; 8501 8502 if (sum_min_rate && sum_min_rate > (u64)speed) { 8503 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8504 sum_min_rate, speed); 8505 return -EINVAL; 8506 } 8507 8508 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8509 vsi->ch_rss_size = max_rss_q_cnt; 8510 8511 return 0; 8512 } 8513 8514 /** 8515 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8516 * @pf: ptr to PF device 8517 * @vsi: ptr to VSI 8518 */ 8519 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8520 { 8521 struct device *dev = ice_pf_to_dev(pf); 8522 bool added = false; 8523 struct ice_hw *hw; 8524 int flow; 8525 8526 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8527 return -EINVAL; 8528 8529 hw = &pf->hw; 8530 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8531 struct ice_fd_hw_prof *prof; 8532 int tun, status; 8533 u64 entry_h; 8534 8535 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8536 hw->fdir_prof[flow]->cnt)) 8537 continue; 8538 8539 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8540 enum ice_flow_priority prio; 8541 8542 /* add this VSI to FDir profile for this flow */ 8543 prio = ICE_FLOW_PRIO_NORMAL; 8544 prof = hw->fdir_prof[flow]; 8545 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8546 prof->prof_id[tun], 8547 prof->vsi_h[0], vsi->idx, 8548 prio, prof->fdir_seg[tun], 8549 &entry_h); 8550 if (status) { 8551 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8552 vsi->idx, flow); 8553 continue; 8554 } 8555 8556 prof->entry_h[prof->cnt][tun] = entry_h; 8557 } 8558 8559 /* store VSI for filter replay and delete */ 8560 prof->vsi_h[prof->cnt] = vsi->idx; 8561 prof->cnt++; 8562 8563 added = true; 8564 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8565 flow); 8566 } 8567 8568 if (!added) 8569 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8570 8571 return 0; 8572 } 8573 8574 /** 8575 * ice_add_channel - add a channel by adding VSI 8576 * @pf: ptr to PF device 8577 * @sw_id: underlying HW switching element ID 8578 * @ch: ptr to channel structure 8579 * 8580 * Add a channel (VSI) using add_vsi and queue_map 8581 */ 8582 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8583 { 8584 struct device *dev = ice_pf_to_dev(pf); 8585 struct ice_vsi *vsi; 8586 8587 if (ch->type != ICE_VSI_CHNL) { 8588 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8589 return -EINVAL; 8590 } 8591 8592 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8593 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8594 dev_err(dev, "create chnl VSI failure\n"); 8595 return -EINVAL; 8596 } 8597 8598 ice_add_vsi_to_fdir(pf, vsi); 8599 8600 ch->sw_id = sw_id; 8601 ch->vsi_num = vsi->vsi_num; 8602 ch->info.mapping_flags = vsi->info.mapping_flags; 8603 ch->ch_vsi = vsi; 8604 /* set the back pointer of channel for newly created VSI */ 8605 vsi->ch = ch; 8606 8607 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8608 sizeof(vsi->info.q_mapping)); 8609 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8610 sizeof(vsi->info.tc_mapping)); 8611 8612 return 0; 8613 } 8614 8615 /** 8616 * ice_chnl_cfg_res 8617 * @vsi: the VSI being setup 8618 * @ch: ptr to channel structure 8619 * 8620 * Configure channel specific resources such as rings, vector. 8621 */ 8622 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8623 { 8624 int i; 8625 8626 for (i = 0; i < ch->num_txq; i++) { 8627 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8628 struct ice_ring_container *rc; 8629 struct ice_tx_ring *tx_ring; 8630 struct ice_rx_ring *rx_ring; 8631 8632 tx_ring = vsi->tx_rings[ch->base_q + i]; 8633 rx_ring = vsi->rx_rings[ch->base_q + i]; 8634 if (!tx_ring || !rx_ring) 8635 continue; 8636 8637 /* setup ring being channel enabled */ 8638 tx_ring->ch = ch; 8639 rx_ring->ch = ch; 8640 8641 /* following code block sets up vector specific attributes */ 8642 tx_q_vector = tx_ring->q_vector; 8643 rx_q_vector = rx_ring->q_vector; 8644 if (!tx_q_vector && !rx_q_vector) 8645 continue; 8646 8647 if (tx_q_vector) { 8648 tx_q_vector->ch = ch; 8649 /* setup Tx and Rx ITR setting if DIM is off */ 8650 rc = &tx_q_vector->tx; 8651 if (!ITR_IS_DYNAMIC(rc)) 8652 ice_write_itr(rc, rc->itr_setting); 8653 } 8654 if (rx_q_vector) { 8655 rx_q_vector->ch = ch; 8656 /* setup Tx and Rx ITR setting if DIM is off */ 8657 rc = &rx_q_vector->rx; 8658 if (!ITR_IS_DYNAMIC(rc)) 8659 ice_write_itr(rc, rc->itr_setting); 8660 } 8661 } 8662 8663 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8664 * GLINT_ITR register would have written to perform in-context 8665 * update, hence perform flush 8666 */ 8667 if (ch->num_txq || ch->num_rxq) 8668 ice_flush(&vsi->back->hw); 8669 } 8670 8671 /** 8672 * ice_cfg_chnl_all_res - configure channel resources 8673 * @vsi: pte to main_vsi 8674 * @ch: ptr to channel structure 8675 * 8676 * This function configures channel specific resources such as flow-director 8677 * counter index, and other resources such as queues, vectors, ITR settings 8678 */ 8679 static void 8680 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8681 { 8682 /* configure channel (aka ADQ) resources such as queues, vectors, 8683 * ITR settings for channel specific vectors and anything else 8684 */ 8685 ice_chnl_cfg_res(vsi, ch); 8686 } 8687 8688 /** 8689 * ice_setup_hw_channel - setup new channel 8690 * @pf: ptr to PF device 8691 * @vsi: the VSI being setup 8692 * @ch: ptr to channel structure 8693 * @sw_id: underlying HW switching element ID 8694 * @type: type of channel to be created (VMDq2/VF) 8695 * 8696 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8697 * and configures Tx rings accordingly 8698 */ 8699 static int 8700 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8701 struct ice_channel *ch, u16 sw_id, u8 type) 8702 { 8703 struct device *dev = ice_pf_to_dev(pf); 8704 int ret; 8705 8706 ch->base_q = vsi->next_base_q; 8707 ch->type = type; 8708 8709 ret = ice_add_channel(pf, sw_id, ch); 8710 if (ret) { 8711 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8712 return ret; 8713 } 8714 8715 /* configure/setup ADQ specific resources */ 8716 ice_cfg_chnl_all_res(vsi, ch); 8717 8718 /* make sure to update the next_base_q so that subsequent channel's 8719 * (aka ADQ) VSI queue map is correct 8720 */ 8721 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8722 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8723 ch->num_rxq); 8724 8725 return 0; 8726 } 8727 8728 /** 8729 * ice_setup_channel - setup new channel using uplink element 8730 * @pf: ptr to PF device 8731 * @vsi: the VSI being setup 8732 * @ch: ptr to channel structure 8733 * 8734 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8735 * and uplink switching element 8736 */ 8737 static bool 8738 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8739 struct ice_channel *ch) 8740 { 8741 struct device *dev = ice_pf_to_dev(pf); 8742 u16 sw_id; 8743 int ret; 8744 8745 if (vsi->type != ICE_VSI_PF) { 8746 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8747 return false; 8748 } 8749 8750 sw_id = pf->first_sw->sw_id; 8751 8752 /* create channel (VSI) */ 8753 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8754 if (ret) { 8755 dev_err(dev, "failed to setup hw_channel\n"); 8756 return false; 8757 } 8758 dev_dbg(dev, "successfully created channel()\n"); 8759 8760 return ch->ch_vsi ? true : false; 8761 } 8762 8763 /** 8764 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8765 * @vsi: VSI to be configured 8766 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8767 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8768 */ 8769 static int 8770 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8771 { 8772 int err; 8773 8774 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8775 if (err) 8776 return err; 8777 8778 return ice_set_max_bw_limit(vsi, max_tx_rate); 8779 } 8780 8781 /** 8782 * ice_create_q_channel - function to create channel 8783 * @vsi: VSI to be configured 8784 * @ch: ptr to channel (it contains channel specific params) 8785 * 8786 * This function creates channel (VSI) using num_queues specified by user, 8787 * reconfigs RSS if needed. 8788 */ 8789 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8790 { 8791 struct ice_pf *pf = vsi->back; 8792 struct device *dev; 8793 8794 if (!ch) 8795 return -EINVAL; 8796 8797 dev = ice_pf_to_dev(pf); 8798 if (!ch->num_txq || !ch->num_rxq) { 8799 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8800 return -EINVAL; 8801 } 8802 8803 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8804 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8805 vsi->cnt_q_avail, ch->num_txq); 8806 return -EINVAL; 8807 } 8808 8809 if (!ice_setup_channel(pf, vsi, ch)) { 8810 dev_info(dev, "Failed to setup channel\n"); 8811 return -EINVAL; 8812 } 8813 /* configure BW rate limit */ 8814 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8815 int ret; 8816 8817 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8818 ch->min_tx_rate); 8819 if (ret) 8820 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8821 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8822 else 8823 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8824 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8825 } 8826 8827 vsi->cnt_q_avail -= ch->num_txq; 8828 8829 return 0; 8830 } 8831 8832 /** 8833 * ice_rem_all_chnl_fltrs - removes all channel filters 8834 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8835 * 8836 * Remove all advanced switch filters only if they are channel specific 8837 * tc-flower based filter 8838 */ 8839 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8840 { 8841 struct ice_tc_flower_fltr *fltr; 8842 struct hlist_node *node; 8843 8844 /* to remove all channel filters, iterate an ordered list of filters */ 8845 hlist_for_each_entry_safe(fltr, node, 8846 &pf->tc_flower_fltr_list, 8847 tc_flower_node) { 8848 struct ice_rule_query_data rule; 8849 int status; 8850 8851 /* for now process only channel specific filters */ 8852 if (!ice_is_chnl_fltr(fltr)) 8853 continue; 8854 8855 rule.rid = fltr->rid; 8856 rule.rule_id = fltr->rule_id; 8857 rule.vsi_handle = fltr->dest_vsi_handle; 8858 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8859 if (status) { 8860 if (status == -ENOENT) 8861 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8862 rule.rule_id); 8863 else 8864 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8865 status); 8866 } else if (fltr->dest_vsi) { 8867 /* update advanced switch filter count */ 8868 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8869 u32 flags = fltr->flags; 8870 8871 fltr->dest_vsi->num_chnl_fltr--; 8872 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8873 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8874 pf->num_dmac_chnl_fltrs--; 8875 } 8876 } 8877 8878 hlist_del(&fltr->tc_flower_node); 8879 kfree(fltr); 8880 } 8881 } 8882 8883 /** 8884 * ice_remove_q_channels - Remove queue channels for the TCs 8885 * @vsi: VSI to be configured 8886 * @rem_fltr: delete advanced switch filter or not 8887 * 8888 * Remove queue channels for the TCs 8889 */ 8890 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8891 { 8892 struct ice_channel *ch, *ch_tmp; 8893 struct ice_pf *pf = vsi->back; 8894 int i; 8895 8896 /* remove all tc-flower based filter if they are channel filters only */ 8897 if (rem_fltr) 8898 ice_rem_all_chnl_fltrs(pf); 8899 8900 /* remove ntuple filters since queue configuration is being changed */ 8901 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8902 struct ice_hw *hw = &pf->hw; 8903 8904 mutex_lock(&hw->fdir_fltr_lock); 8905 ice_fdir_del_all_fltrs(vsi); 8906 mutex_unlock(&hw->fdir_fltr_lock); 8907 } 8908 8909 /* perform cleanup for channels if they exist */ 8910 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8911 struct ice_vsi *ch_vsi; 8912 8913 list_del(&ch->list); 8914 ch_vsi = ch->ch_vsi; 8915 if (!ch_vsi) { 8916 kfree(ch); 8917 continue; 8918 } 8919 8920 /* Reset queue contexts */ 8921 for (i = 0; i < ch->num_rxq; i++) { 8922 struct ice_tx_ring *tx_ring; 8923 struct ice_rx_ring *rx_ring; 8924 8925 tx_ring = vsi->tx_rings[ch->base_q + i]; 8926 rx_ring = vsi->rx_rings[ch->base_q + i]; 8927 if (tx_ring) { 8928 tx_ring->ch = NULL; 8929 if (tx_ring->q_vector) 8930 tx_ring->q_vector->ch = NULL; 8931 } 8932 if (rx_ring) { 8933 rx_ring->ch = NULL; 8934 if (rx_ring->q_vector) 8935 rx_ring->q_vector->ch = NULL; 8936 } 8937 } 8938 8939 /* Release FD resources for the channel VSI */ 8940 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8941 8942 /* clear the VSI from scheduler tree */ 8943 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8944 8945 /* Delete VSI from FW, PF and HW VSI arrays */ 8946 ice_vsi_delete(ch->ch_vsi); 8947 8948 /* free the channel */ 8949 kfree(ch); 8950 } 8951 8952 /* clear the channel VSI map which is stored in main VSI */ 8953 ice_for_each_chnl_tc(i) 8954 vsi->tc_map_vsi[i] = NULL; 8955 8956 /* reset main VSI's all TC information */ 8957 vsi->all_enatc = 0; 8958 vsi->all_numtc = 0; 8959 } 8960 8961 /** 8962 * ice_rebuild_channels - rebuild channel 8963 * @pf: ptr to PF 8964 * 8965 * Recreate channel VSIs and replay filters 8966 */ 8967 static int ice_rebuild_channels(struct ice_pf *pf) 8968 { 8969 struct device *dev = ice_pf_to_dev(pf); 8970 struct ice_vsi *main_vsi; 8971 bool rem_adv_fltr = true; 8972 struct ice_channel *ch; 8973 struct ice_vsi *vsi; 8974 int tc_idx = 1; 8975 int i, err; 8976 8977 main_vsi = ice_get_main_vsi(pf); 8978 if (!main_vsi) 8979 return 0; 8980 8981 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8982 main_vsi->old_numtc == 1) 8983 return 0; /* nothing to be done */ 8984 8985 /* reconfigure main VSI based on old value of TC and cached values 8986 * for MQPRIO opts 8987 */ 8988 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8989 if (err) { 8990 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8991 main_vsi->old_ena_tc, main_vsi->vsi_num); 8992 return err; 8993 } 8994 8995 /* rebuild ADQ VSIs */ 8996 ice_for_each_vsi(pf, i) { 8997 enum ice_vsi_type type; 8998 8999 vsi = pf->vsi[i]; 9000 if (!vsi || vsi->type != ICE_VSI_CHNL) 9001 continue; 9002 9003 type = vsi->type; 9004 9005 /* rebuild ADQ VSI */ 9006 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 9007 if (err) { 9008 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 9009 ice_vsi_type_str(type), vsi->idx, err); 9010 goto cleanup; 9011 } 9012 9013 /* Re-map HW VSI number, using VSI handle that has been 9014 * previously validated in ice_replay_vsi() call above 9015 */ 9016 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 9017 9018 /* replay filters for the VSI */ 9019 err = ice_replay_vsi(&pf->hw, vsi->idx); 9020 if (err) { 9021 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 9022 ice_vsi_type_str(type), err, vsi->idx); 9023 rem_adv_fltr = false; 9024 goto cleanup; 9025 } 9026 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 9027 ice_vsi_type_str(type), vsi->idx); 9028 9029 /* store ADQ VSI at correct TC index in main VSI's 9030 * map of TC to VSI 9031 */ 9032 main_vsi->tc_map_vsi[tc_idx++] = vsi; 9033 } 9034 9035 /* ADQ VSI(s) has been rebuilt successfully, so setup 9036 * channel for main VSI's Tx and Rx rings 9037 */ 9038 list_for_each_entry(ch, &main_vsi->ch_list, list) { 9039 struct ice_vsi *ch_vsi; 9040 9041 ch_vsi = ch->ch_vsi; 9042 if (!ch_vsi) 9043 continue; 9044 9045 /* reconfig channel resources */ 9046 ice_cfg_chnl_all_res(main_vsi, ch); 9047 9048 /* replay BW rate limit if it is non-zero */ 9049 if (!ch->max_tx_rate && !ch->min_tx_rate) 9050 continue; 9051 9052 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9053 ch->min_tx_rate); 9054 if (err) 9055 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9056 err, ch->max_tx_rate, ch->min_tx_rate, 9057 ch_vsi->vsi_num); 9058 else 9059 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9060 ch->max_tx_rate, ch->min_tx_rate, 9061 ch_vsi->vsi_num); 9062 } 9063 9064 /* reconfig RSS for main VSI */ 9065 if (main_vsi->ch_rss_size) 9066 ice_vsi_cfg_rss_lut_key(main_vsi); 9067 9068 return 0; 9069 9070 cleanup: 9071 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9072 return err; 9073 } 9074 9075 /** 9076 * ice_create_q_channels - Add queue channel for the given TCs 9077 * @vsi: VSI to be configured 9078 * 9079 * Configures queue channel mapping to the given TCs 9080 */ 9081 static int ice_create_q_channels(struct ice_vsi *vsi) 9082 { 9083 struct ice_pf *pf = vsi->back; 9084 struct ice_channel *ch; 9085 int ret = 0, i; 9086 9087 ice_for_each_chnl_tc(i) { 9088 if (!(vsi->all_enatc & BIT(i))) 9089 continue; 9090 9091 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9092 if (!ch) { 9093 ret = -ENOMEM; 9094 goto err_free; 9095 } 9096 INIT_LIST_HEAD(&ch->list); 9097 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9098 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9099 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9100 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9101 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9102 9103 /* convert to Kbits/s */ 9104 if (ch->max_tx_rate) 9105 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9106 ICE_BW_KBPS_DIVISOR); 9107 if (ch->min_tx_rate) 9108 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9109 ICE_BW_KBPS_DIVISOR); 9110 9111 ret = ice_create_q_channel(vsi, ch); 9112 if (ret) { 9113 dev_err(ice_pf_to_dev(pf), 9114 "failed creating channel TC:%d\n", i); 9115 kfree(ch); 9116 goto err_free; 9117 } 9118 list_add_tail(&ch->list, &vsi->ch_list); 9119 vsi->tc_map_vsi[i] = ch->ch_vsi; 9120 dev_dbg(ice_pf_to_dev(pf), 9121 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9122 } 9123 return 0; 9124 9125 err_free: 9126 ice_remove_q_channels(vsi, false); 9127 9128 return ret; 9129 } 9130 9131 /** 9132 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9133 * @netdev: net device to configure 9134 * @type_data: TC offload data 9135 */ 9136 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9137 { 9138 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9139 struct ice_netdev_priv *np = netdev_priv(netdev); 9140 struct ice_vsi *vsi = np->vsi; 9141 struct ice_pf *pf = vsi->back; 9142 u16 mode, ena_tc_qdisc = 0; 9143 int cur_txq, cur_rxq; 9144 u8 hw = 0, num_tcf; 9145 struct device *dev; 9146 int ret, i; 9147 9148 dev = ice_pf_to_dev(pf); 9149 num_tcf = mqprio_qopt->qopt.num_tc; 9150 hw = mqprio_qopt->qopt.hw; 9151 mode = mqprio_qopt->mode; 9152 if (!hw) { 9153 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9154 vsi->ch_rss_size = 0; 9155 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9156 goto config_tcf; 9157 } 9158 9159 /* Generate queue region map for number of TCF requested */ 9160 for (i = 0; i < num_tcf; i++) 9161 ena_tc_qdisc |= BIT(i); 9162 9163 switch (mode) { 9164 case TC_MQPRIO_MODE_CHANNEL: 9165 9166 if (pf->hw.port_info->is_custom_tx_enabled) { 9167 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9168 return -EBUSY; 9169 } 9170 ice_tear_down_devlink_rate_tree(pf); 9171 9172 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9173 if (ret) { 9174 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9175 ret); 9176 return ret; 9177 } 9178 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9179 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9180 /* don't assume state of hw_tc_offload during driver load 9181 * and set the flag for TC flower filter if hw_tc_offload 9182 * already ON 9183 */ 9184 if (vsi->netdev->features & NETIF_F_HW_TC) 9185 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9186 break; 9187 default: 9188 return -EINVAL; 9189 } 9190 9191 config_tcf: 9192 9193 /* Requesting same TCF configuration as already enabled */ 9194 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9195 mode != TC_MQPRIO_MODE_CHANNEL) 9196 return 0; 9197 9198 /* Pause VSI queues */ 9199 ice_dis_vsi(vsi, true); 9200 9201 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9202 ice_remove_q_channels(vsi, true); 9203 9204 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9205 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9206 num_online_cpus()); 9207 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9208 num_online_cpus()); 9209 } else { 9210 /* logic to rebuild VSI, same like ethtool -L */ 9211 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9212 9213 for (i = 0; i < num_tcf; i++) { 9214 if (!(ena_tc_qdisc & BIT(i))) 9215 continue; 9216 9217 offset = vsi->mqprio_qopt.qopt.offset[i]; 9218 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9219 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9220 } 9221 vsi->req_txq = offset + qcount_tx; 9222 vsi->req_rxq = offset + qcount_rx; 9223 9224 /* store away original rss_size info, so that it gets reused 9225 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9226 * determine, what should be the rss_sizefor main VSI 9227 */ 9228 vsi->orig_rss_size = vsi->rss_size; 9229 } 9230 9231 /* save current values of Tx and Rx queues before calling VSI rebuild 9232 * for fallback option 9233 */ 9234 cur_txq = vsi->num_txq; 9235 cur_rxq = vsi->num_rxq; 9236 9237 /* proceed with rebuild main VSI using correct number of queues */ 9238 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9239 if (ret) { 9240 /* fallback to current number of queues */ 9241 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9242 vsi->req_txq = cur_txq; 9243 vsi->req_rxq = cur_rxq; 9244 clear_bit(ICE_RESET_FAILED, pf->state); 9245 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9246 dev_err(dev, "Rebuild of main VSI failed again\n"); 9247 return ret; 9248 } 9249 } 9250 9251 vsi->all_numtc = num_tcf; 9252 vsi->all_enatc = ena_tc_qdisc; 9253 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9254 if (ret) { 9255 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9256 vsi->vsi_num); 9257 goto exit; 9258 } 9259 9260 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9261 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9262 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9263 9264 /* set TC0 rate limit if specified */ 9265 if (max_tx_rate || min_tx_rate) { 9266 /* convert to Kbits/s */ 9267 if (max_tx_rate) 9268 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9269 if (min_tx_rate) 9270 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9271 9272 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9273 if (!ret) { 9274 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9275 max_tx_rate, min_tx_rate, vsi->vsi_num); 9276 } else { 9277 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9278 max_tx_rate, min_tx_rate, vsi->vsi_num); 9279 goto exit; 9280 } 9281 } 9282 ret = ice_create_q_channels(vsi); 9283 if (ret) { 9284 netdev_err(netdev, "failed configuring queue channels\n"); 9285 goto exit; 9286 } else { 9287 netdev_dbg(netdev, "successfully configured channels\n"); 9288 } 9289 } 9290 9291 if (vsi->ch_rss_size) 9292 ice_vsi_cfg_rss_lut_key(vsi); 9293 9294 exit: 9295 /* if error, reset the all_numtc and all_enatc */ 9296 if (ret) { 9297 vsi->all_numtc = 0; 9298 vsi->all_enatc = 0; 9299 } 9300 /* resume VSI */ 9301 ice_ena_vsi(vsi, true); 9302 9303 return ret; 9304 } 9305 9306 static LIST_HEAD(ice_block_cb_list); 9307 9308 static int 9309 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9310 void *type_data) 9311 { 9312 struct ice_netdev_priv *np = netdev_priv(netdev); 9313 struct ice_pf *pf = np->vsi->back; 9314 bool locked = false; 9315 int err; 9316 9317 switch (type) { 9318 case TC_SETUP_BLOCK: 9319 return flow_block_cb_setup_simple(type_data, 9320 &ice_block_cb_list, 9321 ice_setup_tc_block_cb, 9322 np, np, true); 9323 case TC_SETUP_QDISC_MQPRIO: 9324 if (ice_is_eswitch_mode_switchdev(pf)) { 9325 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9326 return -EOPNOTSUPP; 9327 } 9328 9329 if (pf->adev) { 9330 mutex_lock(&pf->adev_mutex); 9331 device_lock(&pf->adev->dev); 9332 locked = true; 9333 if (pf->adev->dev.driver) { 9334 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9335 err = -EBUSY; 9336 goto adev_unlock; 9337 } 9338 } 9339 9340 /* setup traffic classifier for receive side */ 9341 mutex_lock(&pf->tc_mutex); 9342 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9343 mutex_unlock(&pf->tc_mutex); 9344 9345 adev_unlock: 9346 if (locked) { 9347 device_unlock(&pf->adev->dev); 9348 mutex_unlock(&pf->adev_mutex); 9349 } 9350 return err; 9351 default: 9352 return -EOPNOTSUPP; 9353 } 9354 return -EOPNOTSUPP; 9355 } 9356 9357 static struct ice_indr_block_priv * 9358 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9359 struct net_device *netdev) 9360 { 9361 struct ice_indr_block_priv *cb_priv; 9362 9363 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9364 if (!cb_priv->netdev) 9365 return NULL; 9366 if (cb_priv->netdev == netdev) 9367 return cb_priv; 9368 } 9369 return NULL; 9370 } 9371 9372 static int 9373 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9374 void *indr_priv) 9375 { 9376 struct ice_indr_block_priv *priv = indr_priv; 9377 struct ice_netdev_priv *np = priv->np; 9378 9379 switch (type) { 9380 case TC_SETUP_CLSFLOWER: 9381 return ice_setup_tc_cls_flower(np, priv->netdev, 9382 (struct flow_cls_offload *) 9383 type_data); 9384 default: 9385 return -EOPNOTSUPP; 9386 } 9387 } 9388 9389 static int 9390 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9391 struct ice_netdev_priv *np, 9392 struct flow_block_offload *f, void *data, 9393 void (*cleanup)(struct flow_block_cb *block_cb)) 9394 { 9395 struct ice_indr_block_priv *indr_priv; 9396 struct flow_block_cb *block_cb; 9397 9398 if (!ice_is_tunnel_supported(netdev) && 9399 !(is_vlan_dev(netdev) && 9400 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9401 return -EOPNOTSUPP; 9402 9403 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9404 return -EOPNOTSUPP; 9405 9406 switch (f->command) { 9407 case FLOW_BLOCK_BIND: 9408 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9409 if (indr_priv) 9410 return -EEXIST; 9411 9412 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9413 if (!indr_priv) 9414 return -ENOMEM; 9415 9416 indr_priv->netdev = netdev; 9417 indr_priv->np = np; 9418 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9419 9420 block_cb = 9421 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9422 indr_priv, indr_priv, 9423 ice_rep_indr_tc_block_unbind, 9424 f, netdev, sch, data, np, 9425 cleanup); 9426 9427 if (IS_ERR(block_cb)) { 9428 list_del(&indr_priv->list); 9429 kfree(indr_priv); 9430 return PTR_ERR(block_cb); 9431 } 9432 flow_block_cb_add(block_cb, f); 9433 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9434 break; 9435 case FLOW_BLOCK_UNBIND: 9436 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9437 if (!indr_priv) 9438 return -ENOENT; 9439 9440 block_cb = flow_block_cb_lookup(f->block, 9441 ice_indr_setup_block_cb, 9442 indr_priv); 9443 if (!block_cb) 9444 return -ENOENT; 9445 9446 flow_indr_block_cb_remove(block_cb, f); 9447 9448 list_del(&block_cb->driver_list); 9449 break; 9450 default: 9451 return -EOPNOTSUPP; 9452 } 9453 return 0; 9454 } 9455 9456 static int 9457 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9458 void *cb_priv, enum tc_setup_type type, void *type_data, 9459 void *data, 9460 void (*cleanup)(struct flow_block_cb *block_cb)) 9461 { 9462 switch (type) { 9463 case TC_SETUP_BLOCK: 9464 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9465 data, cleanup); 9466 9467 default: 9468 return -EOPNOTSUPP; 9469 } 9470 } 9471 9472 /** 9473 * ice_open - Called when a network interface becomes active 9474 * @netdev: network interface device structure 9475 * 9476 * The open entry point is called when a network interface is made 9477 * active by the system (IFF_UP). At this point all resources needed 9478 * for transmit and receive operations are allocated, the interrupt 9479 * handler is registered with the OS, the netdev watchdog is enabled, 9480 * and the stack is notified that the interface is ready. 9481 * 9482 * Returns 0 on success, negative value on failure 9483 */ 9484 int ice_open(struct net_device *netdev) 9485 { 9486 struct ice_netdev_priv *np = netdev_priv(netdev); 9487 struct ice_pf *pf = np->vsi->back; 9488 9489 if (ice_is_reset_in_progress(pf->state)) { 9490 netdev_err(netdev, "can't open net device while reset is in progress"); 9491 return -EBUSY; 9492 } 9493 9494 return ice_open_internal(netdev); 9495 } 9496 9497 /** 9498 * ice_open_internal - Called when a network interface becomes active 9499 * @netdev: network interface device structure 9500 * 9501 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9502 * handling routine 9503 * 9504 * Returns 0 on success, negative value on failure 9505 */ 9506 int ice_open_internal(struct net_device *netdev) 9507 { 9508 struct ice_netdev_priv *np = netdev_priv(netdev); 9509 struct ice_vsi *vsi = np->vsi; 9510 struct ice_pf *pf = vsi->back; 9511 struct ice_port_info *pi; 9512 int err; 9513 9514 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9515 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9516 return -EIO; 9517 } 9518 9519 netif_carrier_off(netdev); 9520 9521 pi = vsi->port_info; 9522 err = ice_update_link_info(pi); 9523 if (err) { 9524 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9525 return err; 9526 } 9527 9528 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9529 9530 /* Set PHY if there is media, otherwise, turn off PHY */ 9531 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9532 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9533 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9534 err = ice_init_phy_user_cfg(pi); 9535 if (err) { 9536 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9537 err); 9538 return err; 9539 } 9540 } 9541 9542 err = ice_configure_phy(vsi); 9543 if (err) { 9544 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9545 err); 9546 return err; 9547 } 9548 } else { 9549 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9550 ice_set_link(vsi, false); 9551 } 9552 9553 err = ice_vsi_open(vsi); 9554 if (err) 9555 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9556 vsi->vsi_num, vsi->vsw->sw_id); 9557 9558 /* Update existing tunnels information */ 9559 udp_tunnel_get_rx_info(netdev); 9560 9561 return err; 9562 } 9563 9564 /** 9565 * ice_stop - Disables a network interface 9566 * @netdev: network interface device structure 9567 * 9568 * The stop entry point is called when an interface is de-activated by the OS, 9569 * and the netdevice enters the DOWN state. The hardware is still under the 9570 * driver's control, but the netdev interface is disabled. 9571 * 9572 * Returns success only - not allowed to fail 9573 */ 9574 int ice_stop(struct net_device *netdev) 9575 { 9576 struct ice_netdev_priv *np = netdev_priv(netdev); 9577 struct ice_vsi *vsi = np->vsi; 9578 struct ice_pf *pf = vsi->back; 9579 9580 if (ice_is_reset_in_progress(pf->state)) { 9581 netdev_err(netdev, "can't stop net device while reset is in progress"); 9582 return -EBUSY; 9583 } 9584 9585 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9586 int link_err = ice_force_phys_link_state(vsi, false); 9587 9588 if (link_err) { 9589 if (link_err == -ENOMEDIUM) 9590 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9591 vsi->vsi_num); 9592 else 9593 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9594 vsi->vsi_num, link_err); 9595 9596 ice_vsi_close(vsi); 9597 return -EIO; 9598 } 9599 } 9600 9601 ice_vsi_close(vsi); 9602 9603 return 0; 9604 } 9605 9606 /** 9607 * ice_features_check - Validate encapsulated packet conforms to limits 9608 * @skb: skb buffer 9609 * @netdev: This port's netdev 9610 * @features: Offload features that the stack believes apply 9611 */ 9612 static netdev_features_t 9613 ice_features_check(struct sk_buff *skb, 9614 struct net_device __always_unused *netdev, 9615 netdev_features_t features) 9616 { 9617 bool gso = skb_is_gso(skb); 9618 size_t len; 9619 9620 /* No point in doing any of this if neither checksum nor GSO are 9621 * being requested for this frame. We can rule out both by just 9622 * checking for CHECKSUM_PARTIAL 9623 */ 9624 if (skb->ip_summed != CHECKSUM_PARTIAL) 9625 return features; 9626 9627 /* We cannot support GSO if the MSS is going to be less than 9628 * 64 bytes. If it is then we need to drop support for GSO. 9629 */ 9630 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9631 features &= ~NETIF_F_GSO_MASK; 9632 9633 len = skb_network_offset(skb); 9634 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9635 goto out_rm_features; 9636 9637 len = skb_network_header_len(skb); 9638 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9639 goto out_rm_features; 9640 9641 if (skb->encapsulation) { 9642 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9643 * the case of IPIP frames, the transport header pointer is 9644 * after the inner header! So check to make sure that this 9645 * is a GRE or UDP_TUNNEL frame before doing that math. 9646 */ 9647 if (gso && (skb_shinfo(skb)->gso_type & 9648 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9649 len = skb_inner_network_header(skb) - 9650 skb_transport_header(skb); 9651 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9652 goto out_rm_features; 9653 } 9654 9655 len = skb_inner_network_header_len(skb); 9656 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9657 goto out_rm_features; 9658 } 9659 9660 return features; 9661 out_rm_features: 9662 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9663 } 9664 9665 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9666 .ndo_open = ice_open, 9667 .ndo_stop = ice_stop, 9668 .ndo_start_xmit = ice_start_xmit, 9669 .ndo_set_mac_address = ice_set_mac_address, 9670 .ndo_validate_addr = eth_validate_addr, 9671 .ndo_change_mtu = ice_change_mtu, 9672 .ndo_get_stats64 = ice_get_stats64, 9673 .ndo_tx_timeout = ice_tx_timeout, 9674 .ndo_bpf = ice_xdp_safe_mode, 9675 }; 9676 9677 static const struct net_device_ops ice_netdev_ops = { 9678 .ndo_open = ice_open, 9679 .ndo_stop = ice_stop, 9680 .ndo_start_xmit = ice_start_xmit, 9681 .ndo_select_queue = ice_select_queue, 9682 .ndo_features_check = ice_features_check, 9683 .ndo_fix_features = ice_fix_features, 9684 .ndo_set_rx_mode = ice_set_rx_mode, 9685 .ndo_set_mac_address = ice_set_mac_address, 9686 .ndo_validate_addr = eth_validate_addr, 9687 .ndo_change_mtu = ice_change_mtu, 9688 .ndo_get_stats64 = ice_get_stats64, 9689 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9690 .ndo_eth_ioctl = ice_eth_ioctl, 9691 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9692 .ndo_set_vf_mac = ice_set_vf_mac, 9693 .ndo_get_vf_config = ice_get_vf_cfg, 9694 .ndo_set_vf_trust = ice_set_vf_trust, 9695 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9696 .ndo_set_vf_link_state = ice_set_vf_link_state, 9697 .ndo_get_vf_stats = ice_get_vf_stats, 9698 .ndo_set_vf_rate = ice_set_vf_bw, 9699 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9700 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9701 .ndo_setup_tc = ice_setup_tc, 9702 .ndo_set_features = ice_set_features, 9703 .ndo_bridge_getlink = ice_bridge_getlink, 9704 .ndo_bridge_setlink = ice_bridge_setlink, 9705 .ndo_fdb_add = ice_fdb_add, 9706 .ndo_fdb_del = ice_fdb_del, 9707 #ifdef CONFIG_RFS_ACCEL 9708 .ndo_rx_flow_steer = ice_rx_flow_steer, 9709 #endif 9710 .ndo_tx_timeout = ice_tx_timeout, 9711 .ndo_bpf = ice_xdp, 9712 .ndo_xdp_xmit = ice_xdp_xmit, 9713 .ndo_xsk_wakeup = ice_xsk_wakeup, 9714 }; 9715