1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "ice_devlink.h" 17 #include "ice_hwmon.h" 18 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 19 * ice tracepoint functions. This must be done exactly once across the 20 * ice driver. 21 */ 22 #define CREATE_TRACE_POINTS 23 #include "ice_trace.h" 24 #include "ice_eswitch.h" 25 #include "ice_tc_lib.h" 26 #include "ice_vsi_vlan_ops.h" 27 #include <net/xdp_sock_drv.h> 28 29 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 30 static const char ice_driver_string[] = DRV_SUMMARY; 31 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 32 33 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 34 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 35 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 36 37 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 38 MODULE_DESCRIPTION(DRV_SUMMARY); 39 MODULE_LICENSE("GPL v2"); 40 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 41 42 static int debug = -1; 43 module_param(debug, int, 0644); 44 #ifndef CONFIG_DYNAMIC_DEBUG 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 46 #else 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 48 #endif /* !CONFIG_DYNAMIC_DEBUG */ 49 50 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 51 EXPORT_SYMBOL(ice_xdp_locking_key); 52 53 /** 54 * ice_hw_to_dev - Get device pointer from the hardware structure 55 * @hw: pointer to the device HW structure 56 * 57 * Used to access the device pointer from compilation units which can't easily 58 * include the definition of struct ice_pf without leading to circular header 59 * dependencies. 60 */ 61 struct device *ice_hw_to_dev(struct ice_hw *hw) 62 { 63 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 64 65 return &pf->pdev->dev; 66 } 67 68 static struct workqueue_struct *ice_wq; 69 struct workqueue_struct *ice_lag_wq; 70 static const struct net_device_ops ice_netdev_safe_mode_ops; 71 static const struct net_device_ops ice_netdev_ops; 72 73 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 74 75 static void ice_vsi_release_all(struct ice_pf *pf); 76 77 static int ice_rebuild_channels(struct ice_pf *pf); 78 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 79 80 static int 81 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 82 void *cb_priv, enum tc_setup_type type, void *type_data, 83 void *data, 84 void (*cleanup)(struct flow_block_cb *block_cb)); 85 86 bool netif_is_ice(const struct net_device *dev) 87 { 88 return dev && (dev->netdev_ops == &ice_netdev_ops); 89 } 90 91 /** 92 * ice_get_tx_pending - returns number of Tx descriptors not processed 93 * @ring: the ring of descriptors 94 */ 95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 96 { 97 u16 head, tail; 98 99 head = ring->next_to_clean; 100 tail = ring->next_to_use; 101 102 if (head != tail) 103 return (head < tail) ? 104 tail - head : (tail + ring->count - head); 105 return 0; 106 } 107 108 /** 109 * ice_check_for_hang_subtask - check for and recover hung queues 110 * @pf: pointer to PF struct 111 */ 112 static void ice_check_for_hang_subtask(struct ice_pf *pf) 113 { 114 struct ice_vsi *vsi = NULL; 115 struct ice_hw *hw; 116 unsigned int i; 117 int packets; 118 u32 v; 119 120 ice_for_each_vsi(pf, v) 121 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 122 vsi = pf->vsi[v]; 123 break; 124 } 125 126 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 127 return; 128 129 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 130 return; 131 132 hw = &vsi->back->hw; 133 134 ice_for_each_txq(vsi, i) { 135 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 136 struct ice_ring_stats *ring_stats; 137 138 if (!tx_ring) 139 continue; 140 if (ice_ring_ch_enabled(tx_ring)) 141 continue; 142 143 ring_stats = tx_ring->ring_stats; 144 if (!ring_stats) 145 continue; 146 147 if (tx_ring->desc) { 148 /* If packet counter has not changed the queue is 149 * likely stalled, so force an interrupt for this 150 * queue. 151 * 152 * prev_pkt would be negative if there was no 153 * pending work. 154 */ 155 packets = ring_stats->stats.pkts & INT_MAX; 156 if (ring_stats->tx_stats.prev_pkt == packets) { 157 /* Trigger sw interrupt to revive the queue */ 158 ice_trigger_sw_intr(hw, tx_ring->q_vector); 159 continue; 160 } 161 162 /* Memory barrier between read of packet count and call 163 * to ice_get_tx_pending() 164 */ 165 smp_rmb(); 166 ring_stats->tx_stats.prev_pkt = 167 ice_get_tx_pending(tx_ring) ? packets : -1; 168 } 169 } 170 } 171 172 /** 173 * ice_init_mac_fltr - Set initial MAC filters 174 * @pf: board private structure 175 * 176 * Set initial set of MAC filters for PF VSI; configure filters for permanent 177 * address and broadcast address. If an error is encountered, netdevice will be 178 * unregistered. 179 */ 180 static int ice_init_mac_fltr(struct ice_pf *pf) 181 { 182 struct ice_vsi *vsi; 183 u8 *perm_addr; 184 185 vsi = ice_get_main_vsi(pf); 186 if (!vsi) 187 return -EINVAL; 188 189 perm_addr = vsi->port_info->mac.perm_addr; 190 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 191 } 192 193 /** 194 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 195 * @netdev: the net device on which the sync is happening 196 * @addr: MAC address to sync 197 * 198 * This is a callback function which is called by the in kernel device sync 199 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 200 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 201 * MAC filters from the hardware. 202 */ 203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 204 { 205 struct ice_netdev_priv *np = netdev_priv(netdev); 206 struct ice_vsi *vsi = np->vsi; 207 208 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 209 ICE_FWD_TO_VSI)) 210 return -EINVAL; 211 212 return 0; 213 } 214 215 /** 216 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 217 * @netdev: the net device on which the unsync is happening 218 * @addr: MAC address to unsync 219 * 220 * This is a callback function which is called by the in kernel device unsync 221 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 222 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 223 * delete the MAC filters from the hardware. 224 */ 225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 226 { 227 struct ice_netdev_priv *np = netdev_priv(netdev); 228 struct ice_vsi *vsi = np->vsi; 229 230 /* Under some circumstances, we might receive a request to delete our 231 * own device address from our uc list. Because we store the device 232 * address in the VSI's MAC filter list, we need to ignore such 233 * requests and not delete our device address from this list. 234 */ 235 if (ether_addr_equal(addr, netdev->dev_addr)) 236 return 0; 237 238 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 239 ICE_FWD_TO_VSI)) 240 return -EINVAL; 241 242 return 0; 243 } 244 245 /** 246 * ice_vsi_fltr_changed - check if filter state changed 247 * @vsi: VSI to be checked 248 * 249 * returns true if filter state has changed, false otherwise. 250 */ 251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 252 { 253 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 254 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 255 } 256 257 /** 258 * ice_set_promisc - Enable promiscuous mode for a given PF 259 * @vsi: the VSI being configured 260 * @promisc_m: mask of promiscuous config bits 261 * 262 */ 263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 264 { 265 int status; 266 267 if (vsi->type != ICE_VSI_PF) 268 return 0; 269 270 if (ice_vsi_has_non_zero_vlans(vsi)) { 271 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 272 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 273 promisc_m); 274 } else { 275 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 276 promisc_m, 0); 277 } 278 if (status && status != -EEXIST) 279 return status; 280 281 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 282 vsi->vsi_num, promisc_m); 283 return 0; 284 } 285 286 /** 287 * ice_clear_promisc - Disable promiscuous mode for a given PF 288 * @vsi: the VSI being configured 289 * @promisc_m: mask of promiscuous config bits 290 * 291 */ 292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 293 { 294 int status; 295 296 if (vsi->type != ICE_VSI_PF) 297 return 0; 298 299 if (ice_vsi_has_non_zero_vlans(vsi)) { 300 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 301 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 302 promisc_m); 303 } else { 304 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 305 promisc_m, 0); 306 } 307 308 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 309 vsi->vsi_num, promisc_m); 310 return status; 311 } 312 313 /** 314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 315 * @vsi: ptr to the VSI 316 * 317 * Push any outstanding VSI filter changes through the AdminQ. 318 */ 319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 320 { 321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 322 struct device *dev = ice_pf_to_dev(vsi->back); 323 struct net_device *netdev = vsi->netdev; 324 bool promisc_forced_on = false; 325 struct ice_pf *pf = vsi->back; 326 struct ice_hw *hw = &pf->hw; 327 u32 changed_flags = 0; 328 int err; 329 330 if (!vsi->netdev) 331 return -EINVAL; 332 333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 334 usleep_range(1000, 2000); 335 336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 337 vsi->current_netdev_flags = vsi->netdev->flags; 338 339 INIT_LIST_HEAD(&vsi->tmp_sync_list); 340 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 341 342 if (ice_vsi_fltr_changed(vsi)) { 343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 345 346 /* grab the netdev's addr_list_lock */ 347 netif_addr_lock_bh(netdev); 348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 349 ice_add_mac_to_unsync_list); 350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 /* our temp lists are populated. release lock */ 353 netif_addr_unlock_bh(netdev); 354 } 355 356 /* Remove MAC addresses in the unsync list */ 357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 359 if (err) { 360 netdev_err(netdev, "Failed to delete MAC filters\n"); 361 /* if we failed because of alloc failures, just bail */ 362 if (err == -ENOMEM) 363 goto out; 364 } 365 366 /* Add MAC addresses in the sync list */ 367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 368 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 369 /* If filter is added successfully or already exists, do not go into 370 * 'if' condition and report it as error. Instead continue processing 371 * rest of the function. 372 */ 373 if (err && err != -EEXIST) { 374 netdev_err(netdev, "Failed to add MAC filters\n"); 375 /* If there is no more space for new umac filters, VSI 376 * should go into promiscuous mode. There should be some 377 * space reserved for promiscuous filters. 378 */ 379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 381 vsi->state)) { 382 promisc_forced_on = true; 383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 384 vsi->vsi_num); 385 } else { 386 goto out; 387 } 388 } 389 err = 0; 390 /* check for changes in promiscuous modes */ 391 if (changed_flags & IFF_ALLMULTI) { 392 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 394 if (err) { 395 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 396 goto out_promisc; 397 } 398 } else { 399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 401 if (err) { 402 vsi->current_netdev_flags |= IFF_ALLMULTI; 403 goto out_promisc; 404 } 405 } 406 } 407 408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 411 if (vsi->current_netdev_flags & IFF_PROMISC) { 412 /* Apply Rx filter rule to get traffic from wire */ 413 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 414 err = ice_set_dflt_vsi(vsi); 415 if (err && err != -EEXIST) { 416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags &= 419 ~IFF_PROMISC; 420 goto out_promisc; 421 } 422 err = 0; 423 vlan_ops->dis_rx_filtering(vsi); 424 425 /* promiscuous mode implies allmulticast so 426 * that VSIs that are in promiscuous mode are 427 * subscribed to multicast packets coming to 428 * the port 429 */ 430 err = ice_set_promisc(vsi, 431 ICE_MCAST_PROMISC_BITS); 432 if (err) 433 goto out_promisc; 434 } 435 } else { 436 /* Clear Rx filter to remove traffic from wire */ 437 if (ice_is_vsi_dflt_vsi(vsi)) { 438 err = ice_clear_dflt_vsi(vsi); 439 if (err) { 440 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 441 err, vsi->vsi_num); 442 vsi->current_netdev_flags |= 443 IFF_PROMISC; 444 goto out_promisc; 445 } 446 if (vsi->netdev->features & 447 NETIF_F_HW_VLAN_CTAG_FILTER) 448 vlan_ops->ena_rx_filtering(vsi); 449 } 450 451 /* disable allmulti here, but only if allmulti is not 452 * still enabled for the netdev 453 */ 454 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 455 err = ice_clear_promisc(vsi, 456 ICE_MCAST_PROMISC_BITS); 457 if (err) { 458 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 459 err, vsi->vsi_num); 460 } 461 } 462 } 463 } 464 goto exit; 465 466 out_promisc: 467 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 468 goto exit; 469 out: 470 /* if something went wrong then set the changed flag so we try again */ 471 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 472 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 473 exit: 474 clear_bit(ICE_CFG_BUSY, vsi->state); 475 return err; 476 } 477 478 /** 479 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 480 * @pf: board private structure 481 */ 482 static void ice_sync_fltr_subtask(struct ice_pf *pf) 483 { 484 int v; 485 486 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 487 return; 488 489 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 490 491 ice_for_each_vsi(pf, v) 492 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 493 ice_vsi_sync_fltr(pf->vsi[v])) { 494 /* come back and try again later */ 495 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 496 break; 497 } 498 } 499 500 /** 501 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 502 * @pf: the PF 503 * @locked: is the rtnl_lock already held 504 */ 505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 506 { 507 int node; 508 int v; 509 510 ice_for_each_vsi(pf, v) 511 if (pf->vsi[v]) 512 ice_dis_vsi(pf->vsi[v], locked); 513 514 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 515 pf->pf_agg_node[node].num_vsis = 0; 516 517 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 518 pf->vf_agg_node[node].num_vsis = 0; 519 } 520 521 /** 522 * ice_clear_sw_switch_recipes - clear switch recipes 523 * @pf: board private structure 524 * 525 * Mark switch recipes as not created in sw structures. There are cases where 526 * rules (especially advanced rules) need to be restored, either re-read from 527 * hardware or added again. For example after the reset. 'recp_created' flag 528 * prevents from doing that and need to be cleared upfront. 529 */ 530 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 531 { 532 struct ice_sw_recipe *recp; 533 u8 i; 534 535 recp = pf->hw.switch_info->recp_list; 536 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 537 recp[i].recp_created = false; 538 } 539 540 /** 541 * ice_prepare_for_reset - prep for reset 542 * @pf: board private structure 543 * @reset_type: reset type requested 544 * 545 * Inform or close all dependent features in prep for reset. 546 */ 547 static void 548 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 549 { 550 struct ice_hw *hw = &pf->hw; 551 struct ice_vsi *vsi; 552 struct ice_vf *vf; 553 unsigned int bkt; 554 555 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 556 557 /* already prepared for reset */ 558 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 559 return; 560 561 ice_unplug_aux_dev(pf); 562 563 /* Notify VFs of impending reset */ 564 if (ice_check_sq_alive(hw, &hw->mailboxq)) 565 ice_vc_notify_reset(pf); 566 567 /* Disable VFs until reset is completed */ 568 mutex_lock(&pf->vfs.table_lock); 569 ice_for_each_vf(pf, bkt, vf) 570 ice_set_vf_state_dis(vf); 571 mutex_unlock(&pf->vfs.table_lock); 572 573 if (ice_is_eswitch_mode_switchdev(pf)) { 574 if (reset_type != ICE_RESET_PFR) 575 ice_clear_sw_switch_recipes(pf); 576 } 577 578 /* release ADQ specific HW and SW resources */ 579 vsi = ice_get_main_vsi(pf); 580 if (!vsi) 581 goto skip; 582 583 /* to be on safe side, reset orig_rss_size so that normal flow 584 * of deciding rss_size can take precedence 585 */ 586 vsi->orig_rss_size = 0; 587 588 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 589 if (reset_type == ICE_RESET_PFR) { 590 vsi->old_ena_tc = vsi->all_enatc; 591 vsi->old_numtc = vsi->all_numtc; 592 } else { 593 ice_remove_q_channels(vsi, true); 594 595 /* for other reset type, do not support channel rebuild 596 * hence reset needed info 597 */ 598 vsi->old_ena_tc = 0; 599 vsi->all_enatc = 0; 600 vsi->old_numtc = 0; 601 vsi->all_numtc = 0; 602 vsi->req_txq = 0; 603 vsi->req_rxq = 0; 604 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 605 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 606 } 607 } 608 skip: 609 610 /* clear SW filtering DB */ 611 ice_clear_hw_tbls(hw); 612 /* disable the VSIs and their queues that are not already DOWN */ 613 ice_pf_dis_all_vsi(pf, false); 614 615 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 616 ice_ptp_prepare_for_reset(pf); 617 618 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 619 ice_gnss_exit(pf); 620 621 if (hw->port_info) 622 ice_sched_clear_port(hw->port_info); 623 624 ice_shutdown_all_ctrlq(hw); 625 626 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 627 } 628 629 /** 630 * ice_do_reset - Initiate one of many types of resets 631 * @pf: board private structure 632 * @reset_type: reset type requested before this function was called. 633 */ 634 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 635 { 636 struct device *dev = ice_pf_to_dev(pf); 637 struct ice_hw *hw = &pf->hw; 638 639 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 640 641 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 642 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 643 reset_type = ICE_RESET_CORER; 644 } 645 646 ice_prepare_for_reset(pf, reset_type); 647 648 /* trigger the reset */ 649 if (ice_reset(hw, reset_type)) { 650 dev_err(dev, "reset %d failed\n", reset_type); 651 set_bit(ICE_RESET_FAILED, pf->state); 652 clear_bit(ICE_RESET_OICR_RECV, pf->state); 653 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 654 clear_bit(ICE_PFR_REQ, pf->state); 655 clear_bit(ICE_CORER_REQ, pf->state); 656 clear_bit(ICE_GLOBR_REQ, pf->state); 657 wake_up(&pf->reset_wait_queue); 658 return; 659 } 660 661 /* PFR is a bit of a special case because it doesn't result in an OICR 662 * interrupt. So for PFR, rebuild after the reset and clear the reset- 663 * associated state bits. 664 */ 665 if (reset_type == ICE_RESET_PFR) { 666 pf->pfr_count++; 667 ice_rebuild(pf, reset_type); 668 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 669 clear_bit(ICE_PFR_REQ, pf->state); 670 wake_up(&pf->reset_wait_queue); 671 ice_reset_all_vfs(pf); 672 } 673 } 674 675 /** 676 * ice_reset_subtask - Set up for resetting the device and driver 677 * @pf: board private structure 678 */ 679 static void ice_reset_subtask(struct ice_pf *pf) 680 { 681 enum ice_reset_req reset_type = ICE_RESET_INVAL; 682 683 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 684 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 685 * of reset is pending and sets bits in pf->state indicating the reset 686 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 687 * prepare for pending reset if not already (for PF software-initiated 688 * global resets the software should already be prepared for it as 689 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 690 * by firmware or software on other PFs, that bit is not set so prepare 691 * for the reset now), poll for reset done, rebuild and return. 692 */ 693 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 694 /* Perform the largest reset requested */ 695 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 696 reset_type = ICE_RESET_CORER; 697 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 698 reset_type = ICE_RESET_GLOBR; 699 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 700 reset_type = ICE_RESET_EMPR; 701 /* return if no valid reset type requested */ 702 if (reset_type == ICE_RESET_INVAL) 703 return; 704 ice_prepare_for_reset(pf, reset_type); 705 706 /* make sure we are ready to rebuild */ 707 if (ice_check_reset(&pf->hw)) { 708 set_bit(ICE_RESET_FAILED, pf->state); 709 } else { 710 /* done with reset. start rebuild */ 711 pf->hw.reset_ongoing = false; 712 ice_rebuild(pf, reset_type); 713 /* clear bit to resume normal operations, but 714 * ICE_NEEDS_RESTART bit is set in case rebuild failed 715 */ 716 clear_bit(ICE_RESET_OICR_RECV, pf->state); 717 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 718 clear_bit(ICE_PFR_REQ, pf->state); 719 clear_bit(ICE_CORER_REQ, pf->state); 720 clear_bit(ICE_GLOBR_REQ, pf->state); 721 wake_up(&pf->reset_wait_queue); 722 ice_reset_all_vfs(pf); 723 } 724 725 return; 726 } 727 728 /* No pending resets to finish processing. Check for new resets */ 729 if (test_bit(ICE_PFR_REQ, pf->state)) { 730 reset_type = ICE_RESET_PFR; 731 if (pf->lag && pf->lag->bonded) { 732 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 733 reset_type = ICE_RESET_CORER; 734 } 735 } 736 if (test_bit(ICE_CORER_REQ, pf->state)) 737 reset_type = ICE_RESET_CORER; 738 if (test_bit(ICE_GLOBR_REQ, pf->state)) 739 reset_type = ICE_RESET_GLOBR; 740 /* If no valid reset type requested just return */ 741 if (reset_type == ICE_RESET_INVAL) 742 return; 743 744 /* reset if not already down or busy */ 745 if (!test_bit(ICE_DOWN, pf->state) && 746 !test_bit(ICE_CFG_BUSY, pf->state)) { 747 ice_do_reset(pf, reset_type); 748 } 749 } 750 751 /** 752 * ice_print_topo_conflict - print topology conflict message 753 * @vsi: the VSI whose topology status is being checked 754 */ 755 static void ice_print_topo_conflict(struct ice_vsi *vsi) 756 { 757 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 758 case ICE_AQ_LINK_TOPO_CONFLICT: 759 case ICE_AQ_LINK_MEDIA_CONFLICT: 760 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 761 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 762 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 763 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 764 break; 765 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 766 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 767 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 768 else 769 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 770 break; 771 default: 772 break; 773 } 774 } 775 776 /** 777 * ice_print_link_msg - print link up or down message 778 * @vsi: the VSI whose link status is being queried 779 * @isup: boolean for if the link is now up or down 780 */ 781 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 782 { 783 struct ice_aqc_get_phy_caps_data *caps; 784 const char *an_advertised; 785 const char *fec_req; 786 const char *speed; 787 const char *fec; 788 const char *fc; 789 const char *an; 790 int status; 791 792 if (!vsi) 793 return; 794 795 if (vsi->current_isup == isup) 796 return; 797 798 vsi->current_isup = isup; 799 800 if (!isup) { 801 netdev_info(vsi->netdev, "NIC Link is Down\n"); 802 return; 803 } 804 805 switch (vsi->port_info->phy.link_info.link_speed) { 806 case ICE_AQ_LINK_SPEED_100GB: 807 speed = "100 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_50GB: 810 speed = "50 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_40GB: 813 speed = "40 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_25GB: 816 speed = "25 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_20GB: 819 speed = "20 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_10GB: 822 speed = "10 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_5GB: 825 speed = "5 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_2500MB: 828 speed = "2.5 G"; 829 break; 830 case ICE_AQ_LINK_SPEED_1000MB: 831 speed = "1 G"; 832 break; 833 case ICE_AQ_LINK_SPEED_100MB: 834 speed = "100 M"; 835 break; 836 default: 837 speed = "Unknown "; 838 break; 839 } 840 841 switch (vsi->port_info->fc.current_mode) { 842 case ICE_FC_FULL: 843 fc = "Rx/Tx"; 844 break; 845 case ICE_FC_TX_PAUSE: 846 fc = "Tx"; 847 break; 848 case ICE_FC_RX_PAUSE: 849 fc = "Rx"; 850 break; 851 case ICE_FC_NONE: 852 fc = "None"; 853 break; 854 default: 855 fc = "Unknown"; 856 break; 857 } 858 859 /* Get FEC mode based on negotiated link info */ 860 switch (vsi->port_info->phy.link_info.fec_info) { 861 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 862 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 863 fec = "RS-FEC"; 864 break; 865 case ICE_AQ_LINK_25G_KR_FEC_EN: 866 fec = "FC-FEC/BASE-R"; 867 break; 868 default: 869 fec = "NONE"; 870 break; 871 } 872 873 /* check if autoneg completed, might be false due to not supported */ 874 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 875 an = "True"; 876 else 877 an = "False"; 878 879 /* Get FEC mode requested based on PHY caps last SW configuration */ 880 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 881 if (!caps) { 882 fec_req = "Unknown"; 883 an_advertised = "Unknown"; 884 goto done; 885 } 886 887 status = ice_aq_get_phy_caps(vsi->port_info, false, 888 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 889 if (status) 890 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 891 892 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 893 894 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 895 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 896 fec_req = "RS-FEC"; 897 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 898 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 899 fec_req = "FC-FEC/BASE-R"; 900 else 901 fec_req = "NONE"; 902 903 kfree(caps); 904 905 done: 906 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 907 speed, fec_req, fec, an_advertised, an, fc); 908 ice_print_topo_conflict(vsi); 909 } 910 911 /** 912 * ice_vsi_link_event - update the VSI's netdev 913 * @vsi: the VSI on which the link event occurred 914 * @link_up: whether or not the VSI needs to be set up or down 915 */ 916 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 917 { 918 if (!vsi) 919 return; 920 921 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 922 return; 923 924 if (vsi->type == ICE_VSI_PF) { 925 if (link_up == netif_carrier_ok(vsi->netdev)) 926 return; 927 928 if (link_up) { 929 netif_carrier_on(vsi->netdev); 930 netif_tx_wake_all_queues(vsi->netdev); 931 } else { 932 netif_carrier_off(vsi->netdev); 933 netif_tx_stop_all_queues(vsi->netdev); 934 } 935 } 936 } 937 938 /** 939 * ice_set_dflt_mib - send a default config MIB to the FW 940 * @pf: private PF struct 941 * 942 * This function sends a default configuration MIB to the FW. 943 * 944 * If this function errors out at any point, the driver is still able to 945 * function. The main impact is that LFC may not operate as expected. 946 * Therefore an error state in this function should be treated with a DBG 947 * message and continue on with driver rebuild/reenable. 948 */ 949 static void ice_set_dflt_mib(struct ice_pf *pf) 950 { 951 struct device *dev = ice_pf_to_dev(pf); 952 u8 mib_type, *buf, *lldpmib = NULL; 953 u16 len, typelen, offset = 0; 954 struct ice_lldp_org_tlv *tlv; 955 struct ice_hw *hw = &pf->hw; 956 u32 ouisubtype; 957 958 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 959 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 960 if (!lldpmib) { 961 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 962 __func__); 963 return; 964 } 965 966 /* Add ETS CFG TLV */ 967 tlv = (struct ice_lldp_org_tlv *)lldpmib; 968 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 969 ICE_IEEE_ETS_TLV_LEN); 970 tlv->typelen = htons(typelen); 971 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 972 ICE_IEEE_SUBTYPE_ETS_CFG); 973 tlv->ouisubtype = htonl(ouisubtype); 974 975 buf = tlv->tlvinfo; 976 buf[0] = 0; 977 978 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 979 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 980 * Octets 13 - 20 are TSA values - leave as zeros 981 */ 982 buf[5] = 0x64; 983 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 984 offset += len + 2; 985 tlv = (struct ice_lldp_org_tlv *) 986 ((char *)tlv + sizeof(tlv->typelen) + len); 987 988 /* Add ETS REC TLV */ 989 buf = tlv->tlvinfo; 990 tlv->typelen = htons(typelen); 991 992 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 993 ICE_IEEE_SUBTYPE_ETS_REC); 994 tlv->ouisubtype = htonl(ouisubtype); 995 996 /* First octet of buf is reserved 997 * Octets 1 - 4 map UP to TC - all UPs map to zero 998 * Octets 5 - 12 are BW values - set TC 0 to 100%. 999 * Octets 13 - 20 are TSA value - leave as zeros 1000 */ 1001 buf[5] = 0x64; 1002 offset += len + 2; 1003 tlv = (struct ice_lldp_org_tlv *) 1004 ((char *)tlv + sizeof(tlv->typelen) + len); 1005 1006 /* Add PFC CFG TLV */ 1007 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1008 ICE_IEEE_PFC_TLV_LEN); 1009 tlv->typelen = htons(typelen); 1010 1011 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1012 ICE_IEEE_SUBTYPE_PFC_CFG); 1013 tlv->ouisubtype = htonl(ouisubtype); 1014 1015 /* Octet 1 left as all zeros - PFC disabled */ 1016 buf[0] = 0x08; 1017 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1018 offset += len + 2; 1019 1020 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1021 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1022 1023 kfree(lldpmib); 1024 } 1025 1026 /** 1027 * ice_check_phy_fw_load - check if PHY FW load failed 1028 * @pf: pointer to PF struct 1029 * @link_cfg_err: bitmap from the link info structure 1030 * 1031 * check if external PHY FW load failed and print an error message if it did 1032 */ 1033 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1034 { 1035 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1036 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1037 return; 1038 } 1039 1040 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1041 return; 1042 1043 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1044 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1045 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1046 } 1047 } 1048 1049 /** 1050 * ice_check_module_power 1051 * @pf: pointer to PF struct 1052 * @link_cfg_err: bitmap from the link info structure 1053 * 1054 * check module power level returned by a previous call to aq_get_link_info 1055 * and print error messages if module power level is not supported 1056 */ 1057 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1058 { 1059 /* if module power level is supported, clear the flag */ 1060 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1061 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1062 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1063 return; 1064 } 1065 1066 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1067 * above block didn't clear this bit, there's nothing to do 1068 */ 1069 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1070 return; 1071 1072 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1073 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1074 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1075 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1076 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1077 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1078 } 1079 } 1080 1081 /** 1082 * ice_check_link_cfg_err - check if link configuration failed 1083 * @pf: pointer to the PF struct 1084 * @link_cfg_err: bitmap from the link info structure 1085 * 1086 * print if any link configuration failure happens due to the value in the 1087 * link_cfg_err parameter in the link info structure 1088 */ 1089 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1090 { 1091 ice_check_module_power(pf, link_cfg_err); 1092 ice_check_phy_fw_load(pf, link_cfg_err); 1093 } 1094 1095 /** 1096 * ice_link_event - process the link event 1097 * @pf: PF that the link event is associated with 1098 * @pi: port_info for the port that the link event is associated with 1099 * @link_up: true if the physical link is up and false if it is down 1100 * @link_speed: current link speed received from the link event 1101 * 1102 * Returns 0 on success and negative on failure 1103 */ 1104 static int 1105 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1106 u16 link_speed) 1107 { 1108 struct device *dev = ice_pf_to_dev(pf); 1109 struct ice_phy_info *phy_info; 1110 struct ice_vsi *vsi; 1111 u16 old_link_speed; 1112 bool old_link; 1113 int status; 1114 1115 phy_info = &pi->phy; 1116 phy_info->link_info_old = phy_info->link_info; 1117 1118 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1119 old_link_speed = phy_info->link_info_old.link_speed; 1120 1121 /* update the link info structures and re-enable link events, 1122 * don't bail on failure due to other book keeping needed 1123 */ 1124 status = ice_update_link_info(pi); 1125 if (status) 1126 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1127 pi->lport, status, 1128 ice_aq_str(pi->hw->adminq.sq_last_status)); 1129 1130 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1131 1132 /* Check if the link state is up after updating link info, and treat 1133 * this event as an UP event since the link is actually UP now. 1134 */ 1135 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1136 link_up = true; 1137 1138 vsi = ice_get_main_vsi(pf); 1139 if (!vsi || !vsi->port_info) 1140 return -EINVAL; 1141 1142 /* turn off PHY if media was removed */ 1143 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1144 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1145 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1146 ice_set_link(vsi, false); 1147 } 1148 1149 /* if the old link up/down and speed is the same as the new */ 1150 if (link_up == old_link && link_speed == old_link_speed) 1151 return 0; 1152 1153 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1154 1155 if (ice_is_dcb_active(pf)) { 1156 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1157 ice_dcb_rebuild(pf); 1158 } else { 1159 if (link_up) 1160 ice_set_dflt_mib(pf); 1161 } 1162 ice_vsi_link_event(vsi, link_up); 1163 ice_print_link_msg(vsi, link_up); 1164 1165 ice_vc_notify_link_state(pf); 1166 1167 return 0; 1168 } 1169 1170 /** 1171 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1172 * @pf: board private structure 1173 */ 1174 static void ice_watchdog_subtask(struct ice_pf *pf) 1175 { 1176 int i; 1177 1178 /* if interface is down do nothing */ 1179 if (test_bit(ICE_DOWN, pf->state) || 1180 test_bit(ICE_CFG_BUSY, pf->state)) 1181 return; 1182 1183 /* make sure we don't do these things too often */ 1184 if (time_before(jiffies, 1185 pf->serv_tmr_prev + pf->serv_tmr_period)) 1186 return; 1187 1188 pf->serv_tmr_prev = jiffies; 1189 1190 /* Update the stats for active netdevs so the network stack 1191 * can look at updated numbers whenever it cares to 1192 */ 1193 ice_update_pf_stats(pf); 1194 ice_for_each_vsi(pf, i) 1195 if (pf->vsi[i] && pf->vsi[i]->netdev) 1196 ice_update_vsi_stats(pf->vsi[i]); 1197 } 1198 1199 /** 1200 * ice_init_link_events - enable/initialize link events 1201 * @pi: pointer to the port_info instance 1202 * 1203 * Returns -EIO on failure, 0 on success 1204 */ 1205 static int ice_init_link_events(struct ice_port_info *pi) 1206 { 1207 u16 mask; 1208 1209 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1210 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1211 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1212 1213 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1215 pi->lport); 1216 return -EIO; 1217 } 1218 1219 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1220 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1221 pi->lport); 1222 return -EIO; 1223 } 1224 1225 return 0; 1226 } 1227 1228 /** 1229 * ice_handle_link_event - handle link event via ARQ 1230 * @pf: PF that the link event is associated with 1231 * @event: event structure containing link status info 1232 */ 1233 static int 1234 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1235 { 1236 struct ice_aqc_get_link_status_data *link_data; 1237 struct ice_port_info *port_info; 1238 int status; 1239 1240 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1241 port_info = pf->hw.port_info; 1242 if (!port_info) 1243 return -EINVAL; 1244 1245 status = ice_link_event(pf, port_info, 1246 !!(link_data->link_info & ICE_AQ_LINK_UP), 1247 le16_to_cpu(link_data->link_speed)); 1248 if (status) 1249 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1250 status); 1251 1252 return status; 1253 } 1254 1255 /** 1256 * ice_get_fwlog_data - copy the FW log data from ARQ event 1257 * @pf: PF that the FW log event is associated with 1258 * @event: event structure containing FW log data 1259 */ 1260 static void 1261 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1262 { 1263 struct ice_fwlog_data *fwlog; 1264 struct ice_hw *hw = &pf->hw; 1265 1266 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1267 1268 memset(fwlog->data, 0, PAGE_SIZE); 1269 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1270 1271 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1272 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1273 1274 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1275 /* the rings are full so bump the head to create room */ 1276 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1277 hw->fwlog_ring.size); 1278 } 1279 } 1280 1281 /** 1282 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1283 * @pf: pointer to the PF private structure 1284 * @task: intermediate helper storage and identifier for waiting 1285 * @opcode: the opcode to wait for 1286 * 1287 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1288 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1289 * 1290 * Calls are separated to allow caller registering for event before sending 1291 * the command, which mitigates a race between registering and FW responding. 1292 * 1293 * To obtain only the descriptor contents, pass an task->event with null 1294 * msg_buf. If the complete data buffer is desired, allocate the 1295 * task->event.msg_buf with enough space ahead of time. 1296 */ 1297 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1298 u16 opcode) 1299 { 1300 INIT_HLIST_NODE(&task->entry); 1301 task->opcode = opcode; 1302 task->state = ICE_AQ_TASK_WAITING; 1303 1304 spin_lock_bh(&pf->aq_wait_lock); 1305 hlist_add_head(&task->entry, &pf->aq_wait_list); 1306 spin_unlock_bh(&pf->aq_wait_lock); 1307 } 1308 1309 /** 1310 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1311 * @pf: pointer to the PF private structure 1312 * @task: ptr prepared by ice_aq_prep_for_event() 1313 * @timeout: how long to wait, in jiffies 1314 * 1315 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1316 * current thread will be put to sleep until the specified event occurs or 1317 * until the given timeout is reached. 1318 * 1319 * Returns: zero on success, or a negative error code on failure. 1320 */ 1321 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1322 unsigned long timeout) 1323 { 1324 enum ice_aq_task_state *state = &task->state; 1325 struct device *dev = ice_pf_to_dev(pf); 1326 unsigned long start = jiffies; 1327 long ret; 1328 int err; 1329 1330 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1331 *state != ICE_AQ_TASK_WAITING, 1332 timeout); 1333 switch (*state) { 1334 case ICE_AQ_TASK_NOT_PREPARED: 1335 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1336 err = -EINVAL; 1337 break; 1338 case ICE_AQ_TASK_WAITING: 1339 err = ret < 0 ? ret : -ETIMEDOUT; 1340 break; 1341 case ICE_AQ_TASK_CANCELED: 1342 err = ret < 0 ? ret : -ECANCELED; 1343 break; 1344 case ICE_AQ_TASK_COMPLETE: 1345 err = ret < 0 ? ret : 0; 1346 break; 1347 default: 1348 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1349 err = -EINVAL; 1350 break; 1351 } 1352 1353 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1354 jiffies_to_msecs(jiffies - start), 1355 jiffies_to_msecs(timeout), 1356 task->opcode); 1357 1358 spin_lock_bh(&pf->aq_wait_lock); 1359 hlist_del(&task->entry); 1360 spin_unlock_bh(&pf->aq_wait_lock); 1361 1362 return err; 1363 } 1364 1365 /** 1366 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1367 * @pf: pointer to the PF private structure 1368 * @opcode: the opcode of the event 1369 * @event: the event to check 1370 * 1371 * Loops over the current list of pending threads waiting for an AdminQ event. 1372 * For each matching task, copy the contents of the event into the task 1373 * structure and wake up the thread. 1374 * 1375 * If multiple threads wait for the same opcode, they will all be woken up. 1376 * 1377 * Note that event->msg_buf will only be duplicated if the event has a buffer 1378 * with enough space already allocated. Otherwise, only the descriptor and 1379 * message length will be copied. 1380 * 1381 * Returns: true if an event was found, false otherwise 1382 */ 1383 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1384 struct ice_rq_event_info *event) 1385 { 1386 struct ice_rq_event_info *task_ev; 1387 struct ice_aq_task *task; 1388 bool found = false; 1389 1390 spin_lock_bh(&pf->aq_wait_lock); 1391 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1392 if (task->state != ICE_AQ_TASK_WAITING) 1393 continue; 1394 if (task->opcode != opcode) 1395 continue; 1396 1397 task_ev = &task->event; 1398 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1399 task_ev->msg_len = event->msg_len; 1400 1401 /* Only copy the data buffer if a destination was set */ 1402 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1403 memcpy(task_ev->msg_buf, event->msg_buf, 1404 event->buf_len); 1405 task_ev->buf_len = event->buf_len; 1406 } 1407 1408 task->state = ICE_AQ_TASK_COMPLETE; 1409 found = true; 1410 } 1411 spin_unlock_bh(&pf->aq_wait_lock); 1412 1413 if (found) 1414 wake_up(&pf->aq_wait_queue); 1415 } 1416 1417 /** 1418 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1419 * @pf: the PF private structure 1420 * 1421 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1422 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1423 */ 1424 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1425 { 1426 struct ice_aq_task *task; 1427 1428 spin_lock_bh(&pf->aq_wait_lock); 1429 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1430 task->state = ICE_AQ_TASK_CANCELED; 1431 spin_unlock_bh(&pf->aq_wait_lock); 1432 1433 wake_up(&pf->aq_wait_queue); 1434 } 1435 1436 #define ICE_MBX_OVERFLOW_WATERMARK 64 1437 1438 /** 1439 * __ice_clean_ctrlq - helper function to clean controlq rings 1440 * @pf: ptr to struct ice_pf 1441 * @q_type: specific Control queue type 1442 */ 1443 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1444 { 1445 struct device *dev = ice_pf_to_dev(pf); 1446 struct ice_rq_event_info event; 1447 struct ice_hw *hw = &pf->hw; 1448 struct ice_ctl_q_info *cq; 1449 u16 pending, i = 0; 1450 const char *qtype; 1451 u32 oldval, val; 1452 1453 /* Do not clean control queue if/when PF reset fails */ 1454 if (test_bit(ICE_RESET_FAILED, pf->state)) 1455 return 0; 1456 1457 switch (q_type) { 1458 case ICE_CTL_Q_ADMIN: 1459 cq = &hw->adminq; 1460 qtype = "Admin"; 1461 break; 1462 case ICE_CTL_Q_SB: 1463 cq = &hw->sbq; 1464 qtype = "Sideband"; 1465 break; 1466 case ICE_CTL_Q_MAILBOX: 1467 cq = &hw->mailboxq; 1468 qtype = "Mailbox"; 1469 /* we are going to try to detect a malicious VF, so set the 1470 * state to begin detection 1471 */ 1472 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1473 break; 1474 default: 1475 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1476 return 0; 1477 } 1478 1479 /* check for error indications - PF_xx_AxQLEN register layout for 1480 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1481 */ 1482 val = rd32(hw, cq->rq.len); 1483 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1484 PF_FW_ARQLEN_ARQCRIT_M)) { 1485 oldval = val; 1486 if (val & PF_FW_ARQLEN_ARQVFE_M) 1487 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1488 qtype); 1489 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1490 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1491 qtype); 1492 } 1493 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1494 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1495 qtype); 1496 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1497 PF_FW_ARQLEN_ARQCRIT_M); 1498 if (oldval != val) 1499 wr32(hw, cq->rq.len, val); 1500 } 1501 1502 val = rd32(hw, cq->sq.len); 1503 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1504 PF_FW_ATQLEN_ATQCRIT_M)) { 1505 oldval = val; 1506 if (val & PF_FW_ATQLEN_ATQVFE_M) 1507 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1508 qtype); 1509 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1510 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1511 qtype); 1512 } 1513 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1514 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1515 qtype); 1516 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1517 PF_FW_ATQLEN_ATQCRIT_M); 1518 if (oldval != val) 1519 wr32(hw, cq->sq.len, val); 1520 } 1521 1522 event.buf_len = cq->rq_buf_size; 1523 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1524 if (!event.msg_buf) 1525 return 0; 1526 1527 do { 1528 struct ice_mbx_data data = {}; 1529 u16 opcode; 1530 int ret; 1531 1532 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1533 if (ret == -EALREADY) 1534 break; 1535 if (ret) { 1536 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1537 ret); 1538 break; 1539 } 1540 1541 opcode = le16_to_cpu(event.desc.opcode); 1542 1543 /* Notify any thread that might be waiting for this event */ 1544 ice_aq_check_events(pf, opcode, &event); 1545 1546 switch (opcode) { 1547 case ice_aqc_opc_get_link_status: 1548 if (ice_handle_link_event(pf, &event)) 1549 dev_err(dev, "Could not handle link event\n"); 1550 break; 1551 case ice_aqc_opc_event_lan_overflow: 1552 ice_vf_lan_overflow_event(pf, &event); 1553 break; 1554 case ice_mbx_opc_send_msg_to_pf: 1555 data.num_msg_proc = i; 1556 data.num_pending_arq = pending; 1557 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1558 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1559 1560 ice_vc_process_vf_msg(pf, &event, &data); 1561 break; 1562 case ice_aqc_opc_fw_logs_event: 1563 ice_get_fwlog_data(pf, &event); 1564 break; 1565 case ice_aqc_opc_lldp_set_mib_change: 1566 ice_dcb_process_lldp_set_mib_change(pf, &event); 1567 break; 1568 default: 1569 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1570 qtype, opcode); 1571 break; 1572 } 1573 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1574 1575 kfree(event.msg_buf); 1576 1577 return pending && (i == ICE_DFLT_IRQ_WORK); 1578 } 1579 1580 /** 1581 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1582 * @hw: pointer to hardware info 1583 * @cq: control queue information 1584 * 1585 * returns true if there are pending messages in a queue, false if there aren't 1586 */ 1587 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1588 { 1589 u16 ntu; 1590 1591 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1592 return cq->rq.next_to_clean != ntu; 1593 } 1594 1595 /** 1596 * ice_clean_adminq_subtask - clean the AdminQ rings 1597 * @pf: board private structure 1598 */ 1599 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1600 { 1601 struct ice_hw *hw = &pf->hw; 1602 1603 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1604 return; 1605 1606 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1607 return; 1608 1609 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1610 1611 /* There might be a situation where new messages arrive to a control 1612 * queue between processing the last message and clearing the 1613 * EVENT_PENDING bit. So before exiting, check queue head again (using 1614 * ice_ctrlq_pending) and process new messages if any. 1615 */ 1616 if (ice_ctrlq_pending(hw, &hw->adminq)) 1617 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1618 1619 ice_flush(hw); 1620 } 1621 1622 /** 1623 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1624 * @pf: board private structure 1625 */ 1626 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1627 { 1628 struct ice_hw *hw = &pf->hw; 1629 1630 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1631 return; 1632 1633 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1634 return; 1635 1636 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1637 1638 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1639 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1640 1641 ice_flush(hw); 1642 } 1643 1644 /** 1645 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1646 * @pf: board private structure 1647 */ 1648 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1649 { 1650 struct ice_hw *hw = &pf->hw; 1651 1652 /* Nothing to do here if sideband queue is not supported */ 1653 if (!ice_is_sbq_supported(hw)) { 1654 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1655 return; 1656 } 1657 1658 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1659 return; 1660 1661 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1662 return; 1663 1664 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1665 1666 if (ice_ctrlq_pending(hw, &hw->sbq)) 1667 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1668 1669 ice_flush(hw); 1670 } 1671 1672 /** 1673 * ice_service_task_schedule - schedule the service task to wake up 1674 * @pf: board private structure 1675 * 1676 * If not already scheduled, this puts the task into the work queue. 1677 */ 1678 void ice_service_task_schedule(struct ice_pf *pf) 1679 { 1680 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1681 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1682 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1683 queue_work(ice_wq, &pf->serv_task); 1684 } 1685 1686 /** 1687 * ice_service_task_complete - finish up the service task 1688 * @pf: board private structure 1689 */ 1690 static void ice_service_task_complete(struct ice_pf *pf) 1691 { 1692 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1693 1694 /* force memory (pf->state) to sync before next service task */ 1695 smp_mb__before_atomic(); 1696 clear_bit(ICE_SERVICE_SCHED, pf->state); 1697 } 1698 1699 /** 1700 * ice_service_task_stop - stop service task and cancel works 1701 * @pf: board private structure 1702 * 1703 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1704 * 1 otherwise. 1705 */ 1706 static int ice_service_task_stop(struct ice_pf *pf) 1707 { 1708 int ret; 1709 1710 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1711 1712 if (pf->serv_tmr.function) 1713 del_timer_sync(&pf->serv_tmr); 1714 if (pf->serv_task.func) 1715 cancel_work_sync(&pf->serv_task); 1716 1717 clear_bit(ICE_SERVICE_SCHED, pf->state); 1718 return ret; 1719 } 1720 1721 /** 1722 * ice_service_task_restart - restart service task and schedule works 1723 * @pf: board private structure 1724 * 1725 * This function is needed for suspend and resume works (e.g WoL scenario) 1726 */ 1727 static void ice_service_task_restart(struct ice_pf *pf) 1728 { 1729 clear_bit(ICE_SERVICE_DIS, pf->state); 1730 ice_service_task_schedule(pf); 1731 } 1732 1733 /** 1734 * ice_service_timer - timer callback to schedule service task 1735 * @t: pointer to timer_list 1736 */ 1737 static void ice_service_timer(struct timer_list *t) 1738 { 1739 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1740 1741 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1742 ice_service_task_schedule(pf); 1743 } 1744 1745 /** 1746 * ice_handle_mdd_event - handle malicious driver detect event 1747 * @pf: pointer to the PF structure 1748 * 1749 * Called from service task. OICR interrupt handler indicates MDD event. 1750 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1751 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1752 * disable the queue, the PF can be configured to reset the VF using ethtool 1753 * private flag mdd-auto-reset-vf. 1754 */ 1755 static void ice_handle_mdd_event(struct ice_pf *pf) 1756 { 1757 struct device *dev = ice_pf_to_dev(pf); 1758 struct ice_hw *hw = &pf->hw; 1759 struct ice_vf *vf; 1760 unsigned int bkt; 1761 u32 reg; 1762 1763 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1764 /* Since the VF MDD event logging is rate limited, check if 1765 * there are pending MDD events. 1766 */ 1767 ice_print_vfs_mdd_events(pf); 1768 return; 1769 } 1770 1771 /* find what triggered an MDD event */ 1772 reg = rd32(hw, GL_MDET_TX_PQM); 1773 if (reg & GL_MDET_TX_PQM_VALID_M) { 1774 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1775 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1776 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1777 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1778 1779 if (netif_msg_tx_err(pf)) 1780 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1781 event, queue, pf_num, vf_num); 1782 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1783 } 1784 1785 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1786 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1787 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1788 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1789 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1790 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1791 1792 if (netif_msg_tx_err(pf)) 1793 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1794 event, queue, pf_num, vf_num); 1795 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1796 } 1797 1798 reg = rd32(hw, GL_MDET_RX); 1799 if (reg & GL_MDET_RX_VALID_M) { 1800 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1801 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1802 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1803 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1804 1805 if (netif_msg_rx_err(pf)) 1806 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1807 event, queue, pf_num, vf_num); 1808 wr32(hw, GL_MDET_RX, 0xffffffff); 1809 } 1810 1811 /* check to see if this PF caused an MDD event */ 1812 reg = rd32(hw, PF_MDET_TX_PQM); 1813 if (reg & PF_MDET_TX_PQM_VALID_M) { 1814 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1815 if (netif_msg_tx_err(pf)) 1816 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1817 } 1818 1819 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1820 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1821 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1822 if (netif_msg_tx_err(pf)) 1823 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1824 } 1825 1826 reg = rd32(hw, PF_MDET_RX); 1827 if (reg & PF_MDET_RX_VALID_M) { 1828 wr32(hw, PF_MDET_RX, 0xFFFF); 1829 if (netif_msg_rx_err(pf)) 1830 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1831 } 1832 1833 /* Check to see if one of the VFs caused an MDD event, and then 1834 * increment counters and set print pending 1835 */ 1836 mutex_lock(&pf->vfs.table_lock); 1837 ice_for_each_vf(pf, bkt, vf) { 1838 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1839 if (reg & VP_MDET_TX_PQM_VALID_M) { 1840 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1841 vf->mdd_tx_events.count++; 1842 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1843 if (netif_msg_tx_err(pf)) 1844 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1845 vf->vf_id); 1846 } 1847 1848 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1849 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1850 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1851 vf->mdd_tx_events.count++; 1852 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1853 if (netif_msg_tx_err(pf)) 1854 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1855 vf->vf_id); 1856 } 1857 1858 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1859 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1860 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1861 vf->mdd_tx_events.count++; 1862 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1863 if (netif_msg_tx_err(pf)) 1864 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1865 vf->vf_id); 1866 } 1867 1868 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1869 if (reg & VP_MDET_RX_VALID_M) { 1870 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1871 vf->mdd_rx_events.count++; 1872 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1873 if (netif_msg_rx_err(pf)) 1874 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1875 vf->vf_id); 1876 1877 /* Since the queue is disabled on VF Rx MDD events, the 1878 * PF can be configured to reset the VF through ethtool 1879 * private flag mdd-auto-reset-vf. 1880 */ 1881 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1882 /* VF MDD event counters will be cleared by 1883 * reset, so print the event prior to reset. 1884 */ 1885 ice_print_vf_rx_mdd_event(vf); 1886 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1887 } 1888 } 1889 } 1890 mutex_unlock(&pf->vfs.table_lock); 1891 1892 ice_print_vfs_mdd_events(pf); 1893 } 1894 1895 /** 1896 * ice_force_phys_link_state - Force the physical link state 1897 * @vsi: VSI to force the physical link state to up/down 1898 * @link_up: true/false indicates to set the physical link to up/down 1899 * 1900 * Force the physical link state by getting the current PHY capabilities from 1901 * hardware and setting the PHY config based on the determined capabilities. If 1902 * link changes a link event will be triggered because both the Enable Automatic 1903 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1904 * 1905 * Returns 0 on success, negative on failure 1906 */ 1907 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1908 { 1909 struct ice_aqc_get_phy_caps_data *pcaps; 1910 struct ice_aqc_set_phy_cfg_data *cfg; 1911 struct ice_port_info *pi; 1912 struct device *dev; 1913 int retcode; 1914 1915 if (!vsi || !vsi->port_info || !vsi->back) 1916 return -EINVAL; 1917 if (vsi->type != ICE_VSI_PF) 1918 return 0; 1919 1920 dev = ice_pf_to_dev(vsi->back); 1921 1922 pi = vsi->port_info; 1923 1924 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1925 if (!pcaps) 1926 return -ENOMEM; 1927 1928 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1929 NULL); 1930 if (retcode) { 1931 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1932 vsi->vsi_num, retcode); 1933 retcode = -EIO; 1934 goto out; 1935 } 1936 1937 /* No change in link */ 1938 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1939 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1940 goto out; 1941 1942 /* Use the current user PHY configuration. The current user PHY 1943 * configuration is initialized during probe from PHY capabilities 1944 * software mode, and updated on set PHY configuration. 1945 */ 1946 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1947 if (!cfg) { 1948 retcode = -ENOMEM; 1949 goto out; 1950 } 1951 1952 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1953 if (link_up) 1954 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1955 else 1956 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1957 1958 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1959 if (retcode) { 1960 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1961 vsi->vsi_num, retcode); 1962 retcode = -EIO; 1963 } 1964 1965 kfree(cfg); 1966 out: 1967 kfree(pcaps); 1968 return retcode; 1969 } 1970 1971 /** 1972 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1973 * @pi: port info structure 1974 * 1975 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1976 */ 1977 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1978 { 1979 struct ice_aqc_get_phy_caps_data *pcaps; 1980 struct ice_pf *pf = pi->hw->back; 1981 int err; 1982 1983 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1984 if (!pcaps) 1985 return -ENOMEM; 1986 1987 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1988 pcaps, NULL); 1989 1990 if (err) { 1991 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1992 goto out; 1993 } 1994 1995 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1996 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1997 1998 out: 1999 kfree(pcaps); 2000 return err; 2001 } 2002 2003 /** 2004 * ice_init_link_dflt_override - Initialize link default override 2005 * @pi: port info structure 2006 * 2007 * Initialize link default override and PHY total port shutdown during probe 2008 */ 2009 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2010 { 2011 struct ice_link_default_override_tlv *ldo; 2012 struct ice_pf *pf = pi->hw->back; 2013 2014 ldo = &pf->link_dflt_override; 2015 if (ice_get_link_default_override(ldo, pi)) 2016 return; 2017 2018 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2019 return; 2020 2021 /* Enable Total Port Shutdown (override/replace link-down-on-close 2022 * ethtool private flag) for ports with Port Disable bit set. 2023 */ 2024 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2025 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2026 } 2027 2028 /** 2029 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2030 * @pi: port info structure 2031 * 2032 * If default override is enabled, initialize the user PHY cfg speed and FEC 2033 * settings using the default override mask from the NVM. 2034 * 2035 * The PHY should only be configured with the default override settings the 2036 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2037 * is used to indicate that the user PHY cfg default override is initialized 2038 * and the PHY has not been configured with the default override settings. The 2039 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2040 * configured. 2041 * 2042 * This function should be called only if the FW doesn't support default 2043 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2044 */ 2045 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2046 { 2047 struct ice_link_default_override_tlv *ldo; 2048 struct ice_aqc_set_phy_cfg_data *cfg; 2049 struct ice_phy_info *phy = &pi->phy; 2050 struct ice_pf *pf = pi->hw->back; 2051 2052 ldo = &pf->link_dflt_override; 2053 2054 /* If link default override is enabled, use to mask NVM PHY capabilities 2055 * for speed and FEC default configuration. 2056 */ 2057 cfg = &phy->curr_user_phy_cfg; 2058 2059 if (ldo->phy_type_low || ldo->phy_type_high) { 2060 cfg->phy_type_low = pf->nvm_phy_type_lo & 2061 cpu_to_le64(ldo->phy_type_low); 2062 cfg->phy_type_high = pf->nvm_phy_type_hi & 2063 cpu_to_le64(ldo->phy_type_high); 2064 } 2065 cfg->link_fec_opt = ldo->fec_options; 2066 phy->curr_user_fec_req = ICE_FEC_AUTO; 2067 2068 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2069 } 2070 2071 /** 2072 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2073 * @pi: port info structure 2074 * 2075 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2076 * mode to default. The PHY defaults are from get PHY capabilities topology 2077 * with media so call when media is first available. An error is returned if 2078 * called when media is not available. The PHY initialization completed state is 2079 * set here. 2080 * 2081 * These configurations are used when setting PHY 2082 * configuration. The user PHY configuration is updated on set PHY 2083 * configuration. Returns 0 on success, negative on failure 2084 */ 2085 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2086 { 2087 struct ice_aqc_get_phy_caps_data *pcaps; 2088 struct ice_phy_info *phy = &pi->phy; 2089 struct ice_pf *pf = pi->hw->back; 2090 int err; 2091 2092 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2093 return -EIO; 2094 2095 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2096 if (!pcaps) 2097 return -ENOMEM; 2098 2099 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2100 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2101 pcaps, NULL); 2102 else 2103 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2104 pcaps, NULL); 2105 if (err) { 2106 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2107 goto err_out; 2108 } 2109 2110 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2111 2112 /* check if lenient mode is supported and enabled */ 2113 if (ice_fw_supports_link_override(pi->hw) && 2114 !(pcaps->module_compliance_enforcement & 2115 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2116 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2117 2118 /* if the FW supports default PHY configuration mode, then the driver 2119 * does not have to apply link override settings. If not, 2120 * initialize user PHY configuration with link override values 2121 */ 2122 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2123 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2124 ice_init_phy_cfg_dflt_override(pi); 2125 goto out; 2126 } 2127 } 2128 2129 /* if link default override is not enabled, set user flow control and 2130 * FEC settings based on what get_phy_caps returned 2131 */ 2132 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2133 pcaps->link_fec_options); 2134 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2135 2136 out: 2137 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2138 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2139 err_out: 2140 kfree(pcaps); 2141 return err; 2142 } 2143 2144 /** 2145 * ice_configure_phy - configure PHY 2146 * @vsi: VSI of PHY 2147 * 2148 * Set the PHY configuration. If the current PHY configuration is the same as 2149 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2150 * configure the based get PHY capabilities for topology with media. 2151 */ 2152 static int ice_configure_phy(struct ice_vsi *vsi) 2153 { 2154 struct device *dev = ice_pf_to_dev(vsi->back); 2155 struct ice_port_info *pi = vsi->port_info; 2156 struct ice_aqc_get_phy_caps_data *pcaps; 2157 struct ice_aqc_set_phy_cfg_data *cfg; 2158 struct ice_phy_info *phy = &pi->phy; 2159 struct ice_pf *pf = vsi->back; 2160 int err; 2161 2162 /* Ensure we have media as we cannot configure a medialess port */ 2163 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2164 return -ENOMEDIUM; 2165 2166 ice_print_topo_conflict(vsi); 2167 2168 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2169 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2170 return -EPERM; 2171 2172 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2173 return ice_force_phys_link_state(vsi, true); 2174 2175 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2176 if (!pcaps) 2177 return -ENOMEM; 2178 2179 /* Get current PHY config */ 2180 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2181 NULL); 2182 if (err) { 2183 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2184 vsi->vsi_num, err); 2185 goto done; 2186 } 2187 2188 /* If PHY enable link is configured and configuration has not changed, 2189 * there's nothing to do 2190 */ 2191 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2192 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2193 goto done; 2194 2195 /* Use PHY topology as baseline for configuration */ 2196 memset(pcaps, 0, sizeof(*pcaps)); 2197 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2198 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2199 pcaps, NULL); 2200 else 2201 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2202 pcaps, NULL); 2203 if (err) { 2204 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2205 vsi->vsi_num, err); 2206 goto done; 2207 } 2208 2209 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2210 if (!cfg) { 2211 err = -ENOMEM; 2212 goto done; 2213 } 2214 2215 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2216 2217 /* Speed - If default override pending, use curr_user_phy_cfg set in 2218 * ice_init_phy_user_cfg_ldo. 2219 */ 2220 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2221 vsi->back->state)) { 2222 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2223 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2224 } else { 2225 u64 phy_low = 0, phy_high = 0; 2226 2227 ice_update_phy_type(&phy_low, &phy_high, 2228 pi->phy.curr_user_speed_req); 2229 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2230 cfg->phy_type_high = pcaps->phy_type_high & 2231 cpu_to_le64(phy_high); 2232 } 2233 2234 /* Can't provide what was requested; use PHY capabilities */ 2235 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2236 cfg->phy_type_low = pcaps->phy_type_low; 2237 cfg->phy_type_high = pcaps->phy_type_high; 2238 } 2239 2240 /* FEC */ 2241 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2242 2243 /* Can't provide what was requested; use PHY capabilities */ 2244 if (cfg->link_fec_opt != 2245 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2246 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2247 cfg->link_fec_opt = pcaps->link_fec_options; 2248 } 2249 2250 /* Flow Control - always supported; no need to check against 2251 * capabilities 2252 */ 2253 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2254 2255 /* Enable link and link update */ 2256 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2257 2258 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2259 if (err) 2260 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2261 vsi->vsi_num, err); 2262 2263 kfree(cfg); 2264 done: 2265 kfree(pcaps); 2266 return err; 2267 } 2268 2269 /** 2270 * ice_check_media_subtask - Check for media 2271 * @pf: pointer to PF struct 2272 * 2273 * If media is available, then initialize PHY user configuration if it is not 2274 * been, and configure the PHY if the interface is up. 2275 */ 2276 static void ice_check_media_subtask(struct ice_pf *pf) 2277 { 2278 struct ice_port_info *pi; 2279 struct ice_vsi *vsi; 2280 int err; 2281 2282 /* No need to check for media if it's already present */ 2283 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2284 return; 2285 2286 vsi = ice_get_main_vsi(pf); 2287 if (!vsi) 2288 return; 2289 2290 /* Refresh link info and check if media is present */ 2291 pi = vsi->port_info; 2292 err = ice_update_link_info(pi); 2293 if (err) 2294 return; 2295 2296 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2297 2298 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2299 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2300 ice_init_phy_user_cfg(pi); 2301 2302 /* PHY settings are reset on media insertion, reconfigure 2303 * PHY to preserve settings. 2304 */ 2305 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2306 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2307 return; 2308 2309 err = ice_configure_phy(vsi); 2310 if (!err) 2311 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2312 2313 /* A Link Status Event will be generated; the event handler 2314 * will complete bringing the interface up 2315 */ 2316 } 2317 } 2318 2319 /** 2320 * ice_service_task - manage and run subtasks 2321 * @work: pointer to work_struct contained by the PF struct 2322 */ 2323 static void ice_service_task(struct work_struct *work) 2324 { 2325 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2326 unsigned long start_time = jiffies; 2327 2328 /* subtasks */ 2329 2330 /* process reset requests first */ 2331 ice_reset_subtask(pf); 2332 2333 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2334 if (ice_is_reset_in_progress(pf->state) || 2335 test_bit(ICE_SUSPENDED, pf->state) || 2336 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2337 ice_service_task_complete(pf); 2338 return; 2339 } 2340 2341 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2342 struct iidc_event *event; 2343 2344 event = kzalloc(sizeof(*event), GFP_KERNEL); 2345 if (event) { 2346 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2347 /* report the entire OICR value to AUX driver */ 2348 swap(event->reg, pf->oicr_err_reg); 2349 ice_send_event_to_aux(pf, event); 2350 kfree(event); 2351 } 2352 } 2353 2354 /* unplug aux dev per request, if an unplug request came in 2355 * while processing a plug request, this will handle it 2356 */ 2357 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2358 ice_unplug_aux_dev(pf); 2359 2360 /* Plug aux device per request */ 2361 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2362 ice_plug_aux_dev(pf); 2363 2364 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2365 struct iidc_event *event; 2366 2367 event = kzalloc(sizeof(*event), GFP_KERNEL); 2368 if (event) { 2369 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2370 ice_send_event_to_aux(pf, event); 2371 kfree(event); 2372 } 2373 } 2374 2375 ice_clean_adminq_subtask(pf); 2376 ice_check_media_subtask(pf); 2377 ice_check_for_hang_subtask(pf); 2378 ice_sync_fltr_subtask(pf); 2379 ice_handle_mdd_event(pf); 2380 ice_watchdog_subtask(pf); 2381 2382 if (ice_is_safe_mode(pf)) { 2383 ice_service_task_complete(pf); 2384 return; 2385 } 2386 2387 ice_process_vflr_event(pf); 2388 ice_clean_mailboxq_subtask(pf); 2389 ice_clean_sbq_subtask(pf); 2390 ice_sync_arfs_fltrs(pf); 2391 ice_flush_fdir_ctx(pf); 2392 2393 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2394 ice_service_task_complete(pf); 2395 2396 /* If the tasks have taken longer than one service timer period 2397 * or there is more work to be done, reset the service timer to 2398 * schedule the service task now. 2399 */ 2400 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2401 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2402 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2403 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2404 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2405 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2406 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2407 mod_timer(&pf->serv_tmr, jiffies); 2408 } 2409 2410 /** 2411 * ice_set_ctrlq_len - helper function to set controlq length 2412 * @hw: pointer to the HW instance 2413 */ 2414 static void ice_set_ctrlq_len(struct ice_hw *hw) 2415 { 2416 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2417 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2418 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2419 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2420 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2421 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2422 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2423 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2424 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2425 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2426 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2427 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2428 } 2429 2430 /** 2431 * ice_schedule_reset - schedule a reset 2432 * @pf: board private structure 2433 * @reset: reset being requested 2434 */ 2435 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2436 { 2437 struct device *dev = ice_pf_to_dev(pf); 2438 2439 /* bail out if earlier reset has failed */ 2440 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2441 dev_dbg(dev, "earlier reset has failed\n"); 2442 return -EIO; 2443 } 2444 /* bail if reset/recovery already in progress */ 2445 if (ice_is_reset_in_progress(pf->state)) { 2446 dev_dbg(dev, "Reset already in progress\n"); 2447 return -EBUSY; 2448 } 2449 2450 switch (reset) { 2451 case ICE_RESET_PFR: 2452 set_bit(ICE_PFR_REQ, pf->state); 2453 break; 2454 case ICE_RESET_CORER: 2455 set_bit(ICE_CORER_REQ, pf->state); 2456 break; 2457 case ICE_RESET_GLOBR: 2458 set_bit(ICE_GLOBR_REQ, pf->state); 2459 break; 2460 default: 2461 return -EINVAL; 2462 } 2463 2464 ice_service_task_schedule(pf); 2465 return 0; 2466 } 2467 2468 /** 2469 * ice_irq_affinity_notify - Callback for affinity changes 2470 * @notify: context as to what irq was changed 2471 * @mask: the new affinity mask 2472 * 2473 * This is a callback function used by the irq_set_affinity_notifier function 2474 * so that we may register to receive changes to the irq affinity masks. 2475 */ 2476 static void 2477 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2478 const cpumask_t *mask) 2479 { 2480 struct ice_q_vector *q_vector = 2481 container_of(notify, struct ice_q_vector, affinity_notify); 2482 2483 cpumask_copy(&q_vector->affinity_mask, mask); 2484 } 2485 2486 /** 2487 * ice_irq_affinity_release - Callback for affinity notifier release 2488 * @ref: internal core kernel usage 2489 * 2490 * This is a callback function used by the irq_set_affinity_notifier function 2491 * to inform the current notification subscriber that they will no longer 2492 * receive notifications. 2493 */ 2494 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2495 2496 /** 2497 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2498 * @vsi: the VSI being configured 2499 */ 2500 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2501 { 2502 struct ice_hw *hw = &vsi->back->hw; 2503 int i; 2504 2505 ice_for_each_q_vector(vsi, i) 2506 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2507 2508 ice_flush(hw); 2509 return 0; 2510 } 2511 2512 /** 2513 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2514 * @vsi: the VSI being configured 2515 * @basename: name for the vector 2516 */ 2517 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2518 { 2519 int q_vectors = vsi->num_q_vectors; 2520 struct ice_pf *pf = vsi->back; 2521 struct device *dev; 2522 int rx_int_idx = 0; 2523 int tx_int_idx = 0; 2524 int vector, err; 2525 int irq_num; 2526 2527 dev = ice_pf_to_dev(pf); 2528 for (vector = 0; vector < q_vectors; vector++) { 2529 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2530 2531 irq_num = q_vector->irq.virq; 2532 2533 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2534 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2535 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2536 tx_int_idx++; 2537 } else if (q_vector->rx.rx_ring) { 2538 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2539 "%s-%s-%d", basename, "rx", rx_int_idx++); 2540 } else if (q_vector->tx.tx_ring) { 2541 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2542 "%s-%s-%d", basename, "tx", tx_int_idx++); 2543 } else { 2544 /* skip this unused q_vector */ 2545 continue; 2546 } 2547 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2548 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2549 IRQF_SHARED, q_vector->name, 2550 q_vector); 2551 else 2552 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2553 0, q_vector->name, q_vector); 2554 if (err) { 2555 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2556 err); 2557 goto free_q_irqs; 2558 } 2559 2560 /* register for affinity change notifications */ 2561 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2562 struct irq_affinity_notify *affinity_notify; 2563 2564 affinity_notify = &q_vector->affinity_notify; 2565 affinity_notify->notify = ice_irq_affinity_notify; 2566 affinity_notify->release = ice_irq_affinity_release; 2567 irq_set_affinity_notifier(irq_num, affinity_notify); 2568 } 2569 2570 /* assign the mask for this irq */ 2571 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2572 } 2573 2574 err = ice_set_cpu_rx_rmap(vsi); 2575 if (err) { 2576 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2577 vsi->vsi_num, ERR_PTR(err)); 2578 goto free_q_irqs; 2579 } 2580 2581 vsi->irqs_ready = true; 2582 return 0; 2583 2584 free_q_irqs: 2585 while (vector--) { 2586 irq_num = vsi->q_vectors[vector]->irq.virq; 2587 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2588 irq_set_affinity_notifier(irq_num, NULL); 2589 irq_set_affinity_hint(irq_num, NULL); 2590 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2591 } 2592 return err; 2593 } 2594 2595 /** 2596 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2597 * @vsi: VSI to setup Tx rings used by XDP 2598 * 2599 * Return 0 on success and negative value on error 2600 */ 2601 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2602 { 2603 struct device *dev = ice_pf_to_dev(vsi->back); 2604 struct ice_tx_desc *tx_desc; 2605 int i, j; 2606 2607 ice_for_each_xdp_txq(vsi, i) { 2608 u16 xdp_q_idx = vsi->alloc_txq + i; 2609 struct ice_ring_stats *ring_stats; 2610 struct ice_tx_ring *xdp_ring; 2611 2612 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2613 if (!xdp_ring) 2614 goto free_xdp_rings; 2615 2616 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2617 if (!ring_stats) { 2618 ice_free_tx_ring(xdp_ring); 2619 goto free_xdp_rings; 2620 } 2621 2622 xdp_ring->ring_stats = ring_stats; 2623 xdp_ring->q_index = xdp_q_idx; 2624 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2625 xdp_ring->vsi = vsi; 2626 xdp_ring->netdev = NULL; 2627 xdp_ring->dev = dev; 2628 xdp_ring->count = vsi->num_tx_desc; 2629 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2630 if (ice_setup_tx_ring(xdp_ring)) 2631 goto free_xdp_rings; 2632 ice_set_ring_xdp(xdp_ring); 2633 spin_lock_init(&xdp_ring->tx_lock); 2634 for (j = 0; j < xdp_ring->count; j++) { 2635 tx_desc = ICE_TX_DESC(xdp_ring, j); 2636 tx_desc->cmd_type_offset_bsz = 0; 2637 } 2638 } 2639 2640 return 0; 2641 2642 free_xdp_rings: 2643 for (; i >= 0; i--) { 2644 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2645 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2646 vsi->xdp_rings[i]->ring_stats = NULL; 2647 ice_free_tx_ring(vsi->xdp_rings[i]); 2648 } 2649 } 2650 return -ENOMEM; 2651 } 2652 2653 /** 2654 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2655 * @vsi: VSI to set the bpf prog on 2656 * @prog: the bpf prog pointer 2657 */ 2658 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2659 { 2660 struct bpf_prog *old_prog; 2661 int i; 2662 2663 old_prog = xchg(&vsi->xdp_prog, prog); 2664 ice_for_each_rxq(vsi, i) 2665 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2666 2667 if (old_prog) 2668 bpf_prog_put(old_prog); 2669 } 2670 2671 /** 2672 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2673 * @vsi: VSI to bring up Tx rings used by XDP 2674 * @prog: bpf program that will be assigned to VSI 2675 * 2676 * Return 0 on success and negative value on error 2677 */ 2678 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2679 { 2680 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2681 int xdp_rings_rem = vsi->num_xdp_txq; 2682 struct ice_pf *pf = vsi->back; 2683 struct ice_qs_cfg xdp_qs_cfg = { 2684 .qs_mutex = &pf->avail_q_mutex, 2685 .pf_map = pf->avail_txqs, 2686 .pf_map_size = pf->max_pf_txqs, 2687 .q_count = vsi->num_xdp_txq, 2688 .scatter_count = ICE_MAX_SCATTER_TXQS, 2689 .vsi_map = vsi->txq_map, 2690 .vsi_map_offset = vsi->alloc_txq, 2691 .mapping_mode = ICE_VSI_MAP_CONTIG 2692 }; 2693 struct device *dev; 2694 int i, v_idx; 2695 int status; 2696 2697 dev = ice_pf_to_dev(pf); 2698 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2699 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2700 if (!vsi->xdp_rings) 2701 return -ENOMEM; 2702 2703 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2704 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2705 goto err_map_xdp; 2706 2707 if (static_key_enabled(&ice_xdp_locking_key)) 2708 netdev_warn(vsi->netdev, 2709 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2710 2711 if (ice_xdp_alloc_setup_rings(vsi)) 2712 goto clear_xdp_rings; 2713 2714 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2715 ice_for_each_q_vector(vsi, v_idx) { 2716 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2717 int xdp_rings_per_v, q_id, q_base; 2718 2719 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2720 vsi->num_q_vectors - v_idx); 2721 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2722 2723 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2724 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2725 2726 xdp_ring->q_vector = q_vector; 2727 xdp_ring->next = q_vector->tx.tx_ring; 2728 q_vector->tx.tx_ring = xdp_ring; 2729 } 2730 xdp_rings_rem -= xdp_rings_per_v; 2731 } 2732 2733 ice_for_each_rxq(vsi, i) { 2734 if (static_key_enabled(&ice_xdp_locking_key)) { 2735 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2736 } else { 2737 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2738 struct ice_tx_ring *ring; 2739 2740 ice_for_each_tx_ring(ring, q_vector->tx) { 2741 if (ice_ring_is_xdp(ring)) { 2742 vsi->rx_rings[i]->xdp_ring = ring; 2743 break; 2744 } 2745 } 2746 } 2747 ice_tx_xsk_pool(vsi, i); 2748 } 2749 2750 /* omit the scheduler update if in reset path; XDP queues will be 2751 * taken into account at the end of ice_vsi_rebuild, where 2752 * ice_cfg_vsi_lan is being called 2753 */ 2754 if (ice_is_reset_in_progress(pf->state)) 2755 return 0; 2756 2757 /* tell the Tx scheduler that right now we have 2758 * additional queues 2759 */ 2760 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2761 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2762 2763 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2764 max_txqs); 2765 if (status) { 2766 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2767 status); 2768 goto clear_xdp_rings; 2769 } 2770 2771 /* assign the prog only when it's not already present on VSI; 2772 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2773 * VSI rebuild that happens under ethtool -L can expose us to 2774 * the bpf_prog refcount issues as we would be swapping same 2775 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2776 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2777 * this is not harmful as dev_xdp_install bumps the refcount 2778 * before calling the op exposed by the driver; 2779 */ 2780 if (!ice_is_xdp_ena_vsi(vsi)) 2781 ice_vsi_assign_bpf_prog(vsi, prog); 2782 2783 return 0; 2784 clear_xdp_rings: 2785 ice_for_each_xdp_txq(vsi, i) 2786 if (vsi->xdp_rings[i]) { 2787 kfree_rcu(vsi->xdp_rings[i], rcu); 2788 vsi->xdp_rings[i] = NULL; 2789 } 2790 2791 err_map_xdp: 2792 mutex_lock(&pf->avail_q_mutex); 2793 ice_for_each_xdp_txq(vsi, i) { 2794 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2795 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2796 } 2797 mutex_unlock(&pf->avail_q_mutex); 2798 2799 devm_kfree(dev, vsi->xdp_rings); 2800 return -ENOMEM; 2801 } 2802 2803 /** 2804 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2805 * @vsi: VSI to remove XDP rings 2806 * 2807 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2808 * resources 2809 */ 2810 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2811 { 2812 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2813 struct ice_pf *pf = vsi->back; 2814 int i, v_idx; 2815 2816 /* q_vectors are freed in reset path so there's no point in detaching 2817 * rings; in case of rebuild being triggered not from reset bits 2818 * in pf->state won't be set, so additionally check first q_vector 2819 * against NULL 2820 */ 2821 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2822 goto free_qmap; 2823 2824 ice_for_each_q_vector(vsi, v_idx) { 2825 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2826 struct ice_tx_ring *ring; 2827 2828 ice_for_each_tx_ring(ring, q_vector->tx) 2829 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2830 break; 2831 2832 /* restore the value of last node prior to XDP setup */ 2833 q_vector->tx.tx_ring = ring; 2834 } 2835 2836 free_qmap: 2837 mutex_lock(&pf->avail_q_mutex); 2838 ice_for_each_xdp_txq(vsi, i) { 2839 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2840 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2841 } 2842 mutex_unlock(&pf->avail_q_mutex); 2843 2844 ice_for_each_xdp_txq(vsi, i) 2845 if (vsi->xdp_rings[i]) { 2846 if (vsi->xdp_rings[i]->desc) { 2847 synchronize_rcu(); 2848 ice_free_tx_ring(vsi->xdp_rings[i]); 2849 } 2850 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2851 vsi->xdp_rings[i]->ring_stats = NULL; 2852 kfree_rcu(vsi->xdp_rings[i], rcu); 2853 vsi->xdp_rings[i] = NULL; 2854 } 2855 2856 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2857 vsi->xdp_rings = NULL; 2858 2859 if (static_key_enabled(&ice_xdp_locking_key)) 2860 static_branch_dec(&ice_xdp_locking_key); 2861 2862 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2863 return 0; 2864 2865 ice_vsi_assign_bpf_prog(vsi, NULL); 2866 2867 /* notify Tx scheduler that we destroyed XDP queues and bring 2868 * back the old number of child nodes 2869 */ 2870 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2871 max_txqs[i] = vsi->num_txq; 2872 2873 /* change number of XDP Tx queues to 0 */ 2874 vsi->num_xdp_txq = 0; 2875 2876 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2877 max_txqs); 2878 } 2879 2880 /** 2881 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2882 * @vsi: VSI to schedule napi on 2883 */ 2884 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2885 { 2886 int i; 2887 2888 ice_for_each_rxq(vsi, i) { 2889 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2890 2891 if (rx_ring->xsk_pool) 2892 napi_schedule(&rx_ring->q_vector->napi); 2893 } 2894 } 2895 2896 /** 2897 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2898 * @vsi: VSI to determine the count of XDP Tx qs 2899 * 2900 * returns 0 if Tx qs count is higher than at least half of CPU count, 2901 * -ENOMEM otherwise 2902 */ 2903 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2904 { 2905 u16 avail = ice_get_avail_txq_count(vsi->back); 2906 u16 cpus = num_possible_cpus(); 2907 2908 if (avail < cpus / 2) 2909 return -ENOMEM; 2910 2911 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2912 2913 if (vsi->num_xdp_txq < cpus) 2914 static_branch_inc(&ice_xdp_locking_key); 2915 2916 return 0; 2917 } 2918 2919 /** 2920 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2921 * @vsi: Pointer to VSI structure 2922 */ 2923 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2924 { 2925 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2926 return ICE_RXBUF_1664; 2927 else 2928 return ICE_RXBUF_3072; 2929 } 2930 2931 /** 2932 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2933 * @vsi: VSI to setup XDP for 2934 * @prog: XDP program 2935 * @extack: netlink extended ack 2936 */ 2937 static int 2938 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2939 struct netlink_ext_ack *extack) 2940 { 2941 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2942 bool if_running = netif_running(vsi->netdev); 2943 int ret = 0, xdp_ring_err = 0; 2944 2945 if (prog && !prog->aux->xdp_has_frags) { 2946 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2947 NL_SET_ERR_MSG_MOD(extack, 2948 "MTU is too large for linear frames and XDP prog does not support frags"); 2949 return -EOPNOTSUPP; 2950 } 2951 } 2952 2953 /* hot swap progs and avoid toggling link */ 2954 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2955 ice_vsi_assign_bpf_prog(vsi, prog); 2956 return 0; 2957 } 2958 2959 /* need to stop netdev while setting up the program for Rx rings */ 2960 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2961 ret = ice_down(vsi); 2962 if (ret) { 2963 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2964 return ret; 2965 } 2966 } 2967 2968 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2969 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2970 if (xdp_ring_err) { 2971 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2972 } else { 2973 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2974 if (xdp_ring_err) 2975 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2976 } 2977 xdp_features_set_redirect_target(vsi->netdev, true); 2978 /* reallocate Rx queues that are used for zero-copy */ 2979 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2980 if (xdp_ring_err) 2981 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2982 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2983 xdp_features_clear_redirect_target(vsi->netdev); 2984 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2985 if (xdp_ring_err) 2986 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2987 /* reallocate Rx queues that were used for zero-copy */ 2988 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2989 if (xdp_ring_err) 2990 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2991 } 2992 2993 if (if_running) 2994 ret = ice_up(vsi); 2995 2996 if (!ret && prog) 2997 ice_vsi_rx_napi_schedule(vsi); 2998 2999 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3000 } 3001 3002 /** 3003 * ice_xdp_safe_mode - XDP handler for safe mode 3004 * @dev: netdevice 3005 * @xdp: XDP command 3006 */ 3007 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3008 struct netdev_bpf *xdp) 3009 { 3010 NL_SET_ERR_MSG_MOD(xdp->extack, 3011 "Please provide working DDP firmware package in order to use XDP\n" 3012 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3013 return -EOPNOTSUPP; 3014 } 3015 3016 /** 3017 * ice_xdp - implements XDP handler 3018 * @dev: netdevice 3019 * @xdp: XDP command 3020 */ 3021 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3022 { 3023 struct ice_netdev_priv *np = netdev_priv(dev); 3024 struct ice_vsi *vsi = np->vsi; 3025 3026 if (vsi->type != ICE_VSI_PF) { 3027 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3028 return -EINVAL; 3029 } 3030 3031 switch (xdp->command) { 3032 case XDP_SETUP_PROG: 3033 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3034 case XDP_SETUP_XSK_POOL: 3035 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3036 xdp->xsk.queue_id); 3037 default: 3038 return -EINVAL; 3039 } 3040 } 3041 3042 /** 3043 * ice_ena_misc_vector - enable the non-queue interrupts 3044 * @pf: board private structure 3045 */ 3046 static void ice_ena_misc_vector(struct ice_pf *pf) 3047 { 3048 struct ice_hw *hw = &pf->hw; 3049 u32 pf_intr_start_offset; 3050 u32 val; 3051 3052 /* Disable anti-spoof detection interrupt to prevent spurious event 3053 * interrupts during a function reset. Anti-spoof functionally is 3054 * still supported. 3055 */ 3056 val = rd32(hw, GL_MDCK_TX_TDPU); 3057 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3058 wr32(hw, GL_MDCK_TX_TDPU, val); 3059 3060 /* clear things first */ 3061 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3062 rd32(hw, PFINT_OICR); /* read to clear */ 3063 3064 val = (PFINT_OICR_ECC_ERR_M | 3065 PFINT_OICR_MAL_DETECT_M | 3066 PFINT_OICR_GRST_M | 3067 PFINT_OICR_PCI_EXCEPTION_M | 3068 PFINT_OICR_VFLR_M | 3069 PFINT_OICR_HMC_ERR_M | 3070 PFINT_OICR_PE_PUSH_M | 3071 PFINT_OICR_PE_CRITERR_M); 3072 3073 wr32(hw, PFINT_OICR_ENA, val); 3074 3075 /* SW_ITR_IDX = 0, but don't change INTENA */ 3076 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3077 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3078 3079 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3080 return; 3081 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3082 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3083 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3084 } 3085 3086 /** 3087 * ice_ll_ts_intr - ll_ts interrupt handler 3088 * @irq: interrupt number 3089 * @data: pointer to a q_vector 3090 */ 3091 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3092 { 3093 struct ice_pf *pf = data; 3094 u32 pf_intr_start_offset; 3095 struct ice_ptp_tx *tx; 3096 unsigned long flags; 3097 struct ice_hw *hw; 3098 u32 val; 3099 u8 idx; 3100 3101 hw = &pf->hw; 3102 tx = &pf->ptp.port.tx; 3103 spin_lock_irqsave(&tx->lock, flags); 3104 ice_ptp_complete_tx_single_tstamp(tx); 3105 3106 idx = find_next_bit_wrap(tx->in_use, tx->len, 3107 tx->last_ll_ts_idx_read + 1); 3108 if (idx != tx->len) 3109 ice_ptp_req_tx_single_tstamp(tx, idx); 3110 spin_unlock_irqrestore(&tx->lock, flags); 3111 3112 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3113 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3114 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3115 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3116 val); 3117 3118 return IRQ_HANDLED; 3119 } 3120 3121 /** 3122 * ice_misc_intr - misc interrupt handler 3123 * @irq: interrupt number 3124 * @data: pointer to a q_vector 3125 */ 3126 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3127 { 3128 struct ice_pf *pf = (struct ice_pf *)data; 3129 irqreturn_t ret = IRQ_HANDLED; 3130 struct ice_hw *hw = &pf->hw; 3131 struct device *dev; 3132 u32 oicr, ena_mask; 3133 3134 dev = ice_pf_to_dev(pf); 3135 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3136 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3137 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3138 3139 oicr = rd32(hw, PFINT_OICR); 3140 ena_mask = rd32(hw, PFINT_OICR_ENA); 3141 3142 if (oicr & PFINT_OICR_SWINT_M) { 3143 ena_mask &= ~PFINT_OICR_SWINT_M; 3144 pf->sw_int_count++; 3145 } 3146 3147 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3148 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3149 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3150 } 3151 if (oicr & PFINT_OICR_VFLR_M) { 3152 /* disable any further VFLR event notifications */ 3153 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3154 u32 reg = rd32(hw, PFINT_OICR_ENA); 3155 3156 reg &= ~PFINT_OICR_VFLR_M; 3157 wr32(hw, PFINT_OICR_ENA, reg); 3158 } else { 3159 ena_mask &= ~PFINT_OICR_VFLR_M; 3160 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3161 } 3162 } 3163 3164 if (oicr & PFINT_OICR_GRST_M) { 3165 u32 reset; 3166 3167 /* we have a reset warning */ 3168 ena_mask &= ~PFINT_OICR_GRST_M; 3169 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3170 rd32(hw, GLGEN_RSTAT)); 3171 3172 if (reset == ICE_RESET_CORER) 3173 pf->corer_count++; 3174 else if (reset == ICE_RESET_GLOBR) 3175 pf->globr_count++; 3176 else if (reset == ICE_RESET_EMPR) 3177 pf->empr_count++; 3178 else 3179 dev_dbg(dev, "Invalid reset type %d\n", reset); 3180 3181 /* If a reset cycle isn't already in progress, we set a bit in 3182 * pf->state so that the service task can start a reset/rebuild. 3183 */ 3184 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3185 if (reset == ICE_RESET_CORER) 3186 set_bit(ICE_CORER_RECV, pf->state); 3187 else if (reset == ICE_RESET_GLOBR) 3188 set_bit(ICE_GLOBR_RECV, pf->state); 3189 else 3190 set_bit(ICE_EMPR_RECV, pf->state); 3191 3192 /* There are couple of different bits at play here. 3193 * hw->reset_ongoing indicates whether the hardware is 3194 * in reset. This is set to true when a reset interrupt 3195 * is received and set back to false after the driver 3196 * has determined that the hardware is out of reset. 3197 * 3198 * ICE_RESET_OICR_RECV in pf->state indicates 3199 * that a post reset rebuild is required before the 3200 * driver is operational again. This is set above. 3201 * 3202 * As this is the start of the reset/rebuild cycle, set 3203 * both to indicate that. 3204 */ 3205 hw->reset_ongoing = true; 3206 } 3207 } 3208 3209 if (oicr & PFINT_OICR_TSYN_TX_M) { 3210 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3211 if (ice_pf_state_is_nominal(pf) && 3212 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3213 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3214 unsigned long flags; 3215 u8 idx; 3216 3217 spin_lock_irqsave(&tx->lock, flags); 3218 idx = find_next_bit_wrap(tx->in_use, tx->len, 3219 tx->last_ll_ts_idx_read + 1); 3220 if (idx != tx->len) 3221 ice_ptp_req_tx_single_tstamp(tx, idx); 3222 spin_unlock_irqrestore(&tx->lock, flags); 3223 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3224 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3225 ret = IRQ_WAKE_THREAD; 3226 } 3227 } 3228 3229 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3230 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3231 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3232 3233 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3234 3235 if (ice_pf_src_tmr_owned(pf)) { 3236 /* Save EVENTs from GLTSYN register */ 3237 pf->ptp.ext_ts_irq |= gltsyn_stat & 3238 (GLTSYN_STAT_EVENT0_M | 3239 GLTSYN_STAT_EVENT1_M | 3240 GLTSYN_STAT_EVENT2_M); 3241 3242 ice_ptp_extts_event(pf); 3243 } 3244 } 3245 3246 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3247 if (oicr & ICE_AUX_CRIT_ERR) { 3248 pf->oicr_err_reg |= oicr; 3249 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3250 ena_mask &= ~ICE_AUX_CRIT_ERR; 3251 } 3252 3253 /* Report any remaining unexpected interrupts */ 3254 oicr &= ena_mask; 3255 if (oicr) { 3256 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3257 /* If a critical error is pending there is no choice but to 3258 * reset the device. 3259 */ 3260 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3261 PFINT_OICR_ECC_ERR_M)) { 3262 set_bit(ICE_PFR_REQ, pf->state); 3263 } 3264 } 3265 ice_service_task_schedule(pf); 3266 if (ret == IRQ_HANDLED) 3267 ice_irq_dynamic_ena(hw, NULL, NULL); 3268 3269 return ret; 3270 } 3271 3272 /** 3273 * ice_misc_intr_thread_fn - misc interrupt thread function 3274 * @irq: interrupt number 3275 * @data: pointer to a q_vector 3276 */ 3277 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3278 { 3279 struct ice_pf *pf = data; 3280 struct ice_hw *hw; 3281 3282 hw = &pf->hw; 3283 3284 if (ice_is_reset_in_progress(pf->state)) 3285 goto skip_irq; 3286 3287 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3288 /* Process outstanding Tx timestamps. If there is more work, 3289 * re-arm the interrupt to trigger again. 3290 */ 3291 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3292 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3293 ice_flush(hw); 3294 } 3295 } 3296 3297 skip_irq: 3298 ice_irq_dynamic_ena(hw, NULL, NULL); 3299 3300 return IRQ_HANDLED; 3301 } 3302 3303 /** 3304 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3305 * @hw: pointer to HW structure 3306 */ 3307 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3308 { 3309 /* disable Admin queue Interrupt causes */ 3310 wr32(hw, PFINT_FW_CTL, 3311 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3312 3313 /* disable Mailbox queue Interrupt causes */ 3314 wr32(hw, PFINT_MBX_CTL, 3315 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3316 3317 wr32(hw, PFINT_SB_CTL, 3318 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3319 3320 /* disable Control queue Interrupt causes */ 3321 wr32(hw, PFINT_OICR_CTL, 3322 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3323 3324 ice_flush(hw); 3325 } 3326 3327 /** 3328 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3329 * @pf: board private structure 3330 */ 3331 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3332 { 3333 int irq_num = pf->ll_ts_irq.virq; 3334 3335 synchronize_irq(irq_num); 3336 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3337 3338 ice_free_irq(pf, pf->ll_ts_irq); 3339 } 3340 3341 /** 3342 * ice_free_irq_msix_misc - Unroll misc vector setup 3343 * @pf: board private structure 3344 */ 3345 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3346 { 3347 int misc_irq_num = pf->oicr_irq.virq; 3348 struct ice_hw *hw = &pf->hw; 3349 3350 ice_dis_ctrlq_interrupts(hw); 3351 3352 /* disable OICR interrupt */ 3353 wr32(hw, PFINT_OICR_ENA, 0); 3354 ice_flush(hw); 3355 3356 synchronize_irq(misc_irq_num); 3357 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3358 3359 ice_free_irq(pf, pf->oicr_irq); 3360 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3361 ice_free_irq_msix_ll_ts(pf); 3362 } 3363 3364 /** 3365 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3366 * @hw: pointer to HW structure 3367 * @reg_idx: HW vector index to associate the control queue interrupts with 3368 */ 3369 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3370 { 3371 u32 val; 3372 3373 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3374 PFINT_OICR_CTL_CAUSE_ENA_M); 3375 wr32(hw, PFINT_OICR_CTL, val); 3376 3377 /* enable Admin queue Interrupt causes */ 3378 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3379 PFINT_FW_CTL_CAUSE_ENA_M); 3380 wr32(hw, PFINT_FW_CTL, val); 3381 3382 /* enable Mailbox queue Interrupt causes */ 3383 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3384 PFINT_MBX_CTL_CAUSE_ENA_M); 3385 wr32(hw, PFINT_MBX_CTL, val); 3386 3387 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3388 /* enable Sideband queue Interrupt causes */ 3389 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3390 PFINT_SB_CTL_CAUSE_ENA_M); 3391 wr32(hw, PFINT_SB_CTL, val); 3392 } 3393 3394 ice_flush(hw); 3395 } 3396 3397 /** 3398 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3399 * @pf: board private structure 3400 * 3401 * This sets up the handler for MSIX 0, which is used to manage the 3402 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3403 * when in MSI or Legacy interrupt mode. 3404 */ 3405 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3406 { 3407 struct device *dev = ice_pf_to_dev(pf); 3408 struct ice_hw *hw = &pf->hw; 3409 u32 pf_intr_start_offset; 3410 struct msi_map irq; 3411 int err = 0; 3412 3413 if (!pf->int_name[0]) 3414 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3415 dev_driver_string(dev), dev_name(dev)); 3416 3417 if (!pf->int_name_ll_ts[0]) 3418 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3419 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3420 /* Do not request IRQ but do enable OICR interrupt since settings are 3421 * lost during reset. Note that this function is called only during 3422 * rebuild path and not while reset is in progress. 3423 */ 3424 if (ice_is_reset_in_progress(pf->state)) 3425 goto skip_req_irq; 3426 3427 /* reserve one vector in irq_tracker for misc interrupts */ 3428 irq = ice_alloc_irq(pf, false); 3429 if (irq.index < 0) 3430 return irq.index; 3431 3432 pf->oicr_irq = irq; 3433 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3434 ice_misc_intr_thread_fn, 0, 3435 pf->int_name, pf); 3436 if (err) { 3437 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3438 pf->int_name, err); 3439 ice_free_irq(pf, pf->oicr_irq); 3440 return err; 3441 } 3442 3443 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3444 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3445 goto skip_req_irq; 3446 3447 irq = ice_alloc_irq(pf, false); 3448 if (irq.index < 0) 3449 return irq.index; 3450 3451 pf->ll_ts_irq = irq; 3452 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3453 pf->int_name_ll_ts, pf); 3454 if (err) { 3455 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3456 pf->int_name_ll_ts, err); 3457 ice_free_irq(pf, pf->ll_ts_irq); 3458 return err; 3459 } 3460 3461 skip_req_irq: 3462 ice_ena_misc_vector(pf); 3463 3464 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3465 /* This enables LL TS interrupt */ 3466 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3467 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3468 wr32(hw, PFINT_SB_CTL, 3469 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3470 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3471 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3472 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3473 3474 ice_flush(hw); 3475 ice_irq_dynamic_ena(hw, NULL, NULL); 3476 3477 return 0; 3478 } 3479 3480 /** 3481 * ice_napi_add - register NAPI handler for the VSI 3482 * @vsi: VSI for which NAPI handler is to be registered 3483 * 3484 * This function is only called in the driver's load path. Registering the NAPI 3485 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3486 * reset/rebuild, etc.) 3487 */ 3488 static void ice_napi_add(struct ice_vsi *vsi) 3489 { 3490 int v_idx; 3491 3492 if (!vsi->netdev) 3493 return; 3494 3495 ice_for_each_q_vector(vsi, v_idx) { 3496 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3497 ice_napi_poll); 3498 ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3499 } 3500 } 3501 3502 /** 3503 * ice_set_ops - set netdev and ethtools ops for the given netdev 3504 * @vsi: the VSI associated with the new netdev 3505 */ 3506 static void ice_set_ops(struct ice_vsi *vsi) 3507 { 3508 struct net_device *netdev = vsi->netdev; 3509 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3510 3511 if (ice_is_safe_mode(pf)) { 3512 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3513 ice_set_ethtool_safe_mode_ops(netdev); 3514 return; 3515 } 3516 3517 netdev->netdev_ops = &ice_netdev_ops; 3518 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3519 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3520 ice_set_ethtool_ops(netdev); 3521 3522 if (vsi->type != ICE_VSI_PF) 3523 return; 3524 3525 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3526 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3527 NETDEV_XDP_ACT_RX_SG; 3528 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3529 } 3530 3531 /** 3532 * ice_set_netdev_features - set features for the given netdev 3533 * @netdev: netdev instance 3534 */ 3535 static void ice_set_netdev_features(struct net_device *netdev) 3536 { 3537 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3538 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3539 netdev_features_t csumo_features; 3540 netdev_features_t vlano_features; 3541 netdev_features_t dflt_features; 3542 netdev_features_t tso_features; 3543 3544 if (ice_is_safe_mode(pf)) { 3545 /* safe mode */ 3546 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3547 netdev->hw_features = netdev->features; 3548 return; 3549 } 3550 3551 dflt_features = NETIF_F_SG | 3552 NETIF_F_HIGHDMA | 3553 NETIF_F_NTUPLE | 3554 NETIF_F_RXHASH; 3555 3556 csumo_features = NETIF_F_RXCSUM | 3557 NETIF_F_IP_CSUM | 3558 NETIF_F_SCTP_CRC | 3559 NETIF_F_IPV6_CSUM; 3560 3561 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3562 NETIF_F_HW_VLAN_CTAG_TX | 3563 NETIF_F_HW_VLAN_CTAG_RX; 3564 3565 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3566 if (is_dvm_ena) 3567 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3568 3569 tso_features = NETIF_F_TSO | 3570 NETIF_F_TSO_ECN | 3571 NETIF_F_TSO6 | 3572 NETIF_F_GSO_GRE | 3573 NETIF_F_GSO_UDP_TUNNEL | 3574 NETIF_F_GSO_GRE_CSUM | 3575 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3576 NETIF_F_GSO_PARTIAL | 3577 NETIF_F_GSO_IPXIP4 | 3578 NETIF_F_GSO_IPXIP6 | 3579 NETIF_F_GSO_UDP_L4; 3580 3581 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3582 NETIF_F_GSO_GRE_CSUM; 3583 /* set features that user can change */ 3584 netdev->hw_features = dflt_features | csumo_features | 3585 vlano_features | tso_features; 3586 3587 /* add support for HW_CSUM on packets with MPLS header */ 3588 netdev->mpls_features = NETIF_F_HW_CSUM | 3589 NETIF_F_TSO | 3590 NETIF_F_TSO6; 3591 3592 /* enable features */ 3593 netdev->features |= netdev->hw_features; 3594 3595 netdev->hw_features |= NETIF_F_HW_TC; 3596 netdev->hw_features |= NETIF_F_LOOPBACK; 3597 3598 /* encap and VLAN devices inherit default, csumo and tso features */ 3599 netdev->hw_enc_features |= dflt_features | csumo_features | 3600 tso_features; 3601 netdev->vlan_features |= dflt_features | csumo_features | 3602 tso_features; 3603 3604 /* advertise support but don't enable by default since only one type of 3605 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3606 * type turns on the other has to be turned off. This is enforced by the 3607 * ice_fix_features() ndo callback. 3608 */ 3609 if (is_dvm_ena) 3610 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3611 NETIF_F_HW_VLAN_STAG_TX; 3612 3613 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3614 * be changed at runtime 3615 */ 3616 netdev->hw_features |= NETIF_F_RXFCS; 3617 3618 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3619 } 3620 3621 /** 3622 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3623 * @lut: Lookup table 3624 * @rss_table_size: Lookup table size 3625 * @rss_size: Range of queue number for hashing 3626 */ 3627 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3628 { 3629 u16 i; 3630 3631 for (i = 0; i < rss_table_size; i++) 3632 lut[i] = i % rss_size; 3633 } 3634 3635 /** 3636 * ice_pf_vsi_setup - Set up a PF VSI 3637 * @pf: board private structure 3638 * @pi: pointer to the port_info instance 3639 * 3640 * Returns pointer to the successfully allocated VSI software struct 3641 * on success, otherwise returns NULL on failure. 3642 */ 3643 static struct ice_vsi * 3644 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3645 { 3646 struct ice_vsi_cfg_params params = {}; 3647 3648 params.type = ICE_VSI_PF; 3649 params.pi = pi; 3650 params.flags = ICE_VSI_FLAG_INIT; 3651 3652 return ice_vsi_setup(pf, ¶ms); 3653 } 3654 3655 static struct ice_vsi * 3656 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3657 struct ice_channel *ch) 3658 { 3659 struct ice_vsi_cfg_params params = {}; 3660 3661 params.type = ICE_VSI_CHNL; 3662 params.pi = pi; 3663 params.ch = ch; 3664 params.flags = ICE_VSI_FLAG_INIT; 3665 3666 return ice_vsi_setup(pf, ¶ms); 3667 } 3668 3669 /** 3670 * ice_ctrl_vsi_setup - Set up a control VSI 3671 * @pf: board private structure 3672 * @pi: pointer to the port_info instance 3673 * 3674 * Returns pointer to the successfully allocated VSI software struct 3675 * on success, otherwise returns NULL on failure. 3676 */ 3677 static struct ice_vsi * 3678 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3679 { 3680 struct ice_vsi_cfg_params params = {}; 3681 3682 params.type = ICE_VSI_CTRL; 3683 params.pi = pi; 3684 params.flags = ICE_VSI_FLAG_INIT; 3685 3686 return ice_vsi_setup(pf, ¶ms); 3687 } 3688 3689 /** 3690 * ice_lb_vsi_setup - Set up a loopback VSI 3691 * @pf: board private structure 3692 * @pi: pointer to the port_info instance 3693 * 3694 * Returns pointer to the successfully allocated VSI software struct 3695 * on success, otherwise returns NULL on failure. 3696 */ 3697 struct ice_vsi * 3698 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3699 { 3700 struct ice_vsi_cfg_params params = {}; 3701 3702 params.type = ICE_VSI_LB; 3703 params.pi = pi; 3704 params.flags = ICE_VSI_FLAG_INIT; 3705 3706 return ice_vsi_setup(pf, ¶ms); 3707 } 3708 3709 /** 3710 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3711 * @netdev: network interface to be adjusted 3712 * @proto: VLAN TPID 3713 * @vid: VLAN ID to be added 3714 * 3715 * net_device_ops implementation for adding VLAN IDs 3716 */ 3717 static int 3718 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3719 { 3720 struct ice_netdev_priv *np = netdev_priv(netdev); 3721 struct ice_vsi_vlan_ops *vlan_ops; 3722 struct ice_vsi *vsi = np->vsi; 3723 struct ice_vlan vlan; 3724 int ret; 3725 3726 /* VLAN 0 is added by default during load/reset */ 3727 if (!vid) 3728 return 0; 3729 3730 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3731 usleep_range(1000, 2000); 3732 3733 /* Add multicast promisc rule for the VLAN ID to be added if 3734 * all-multicast is currently enabled. 3735 */ 3736 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3737 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3738 ICE_MCAST_VLAN_PROMISC_BITS, 3739 vid); 3740 if (ret) 3741 goto finish; 3742 } 3743 3744 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3745 3746 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3747 * packets aren't pruned by the device's internal switch on Rx 3748 */ 3749 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3750 ret = vlan_ops->add_vlan(vsi, &vlan); 3751 if (ret) 3752 goto finish; 3753 3754 /* If all-multicast is currently enabled and this VLAN ID is only one 3755 * besides VLAN-0 we have to update look-up type of multicast promisc 3756 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3757 */ 3758 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3759 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3760 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3761 ICE_MCAST_PROMISC_BITS, 0); 3762 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3763 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3764 } 3765 3766 finish: 3767 clear_bit(ICE_CFG_BUSY, vsi->state); 3768 3769 return ret; 3770 } 3771 3772 /** 3773 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3774 * @netdev: network interface to be adjusted 3775 * @proto: VLAN TPID 3776 * @vid: VLAN ID to be removed 3777 * 3778 * net_device_ops implementation for removing VLAN IDs 3779 */ 3780 static int 3781 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3782 { 3783 struct ice_netdev_priv *np = netdev_priv(netdev); 3784 struct ice_vsi_vlan_ops *vlan_ops; 3785 struct ice_vsi *vsi = np->vsi; 3786 struct ice_vlan vlan; 3787 int ret; 3788 3789 /* don't allow removal of VLAN 0 */ 3790 if (!vid) 3791 return 0; 3792 3793 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3794 usleep_range(1000, 2000); 3795 3796 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3797 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3798 if (ret) { 3799 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3800 vsi->vsi_num); 3801 vsi->current_netdev_flags |= IFF_ALLMULTI; 3802 } 3803 3804 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3805 3806 /* Make sure VLAN delete is successful before updating VLAN 3807 * information 3808 */ 3809 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3810 ret = vlan_ops->del_vlan(vsi, &vlan); 3811 if (ret) 3812 goto finish; 3813 3814 /* Remove multicast promisc rule for the removed VLAN ID if 3815 * all-multicast is enabled. 3816 */ 3817 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3818 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3819 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3820 3821 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3822 /* Update look-up type of multicast promisc rule for VLAN 0 3823 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3824 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3825 */ 3826 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3827 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3828 ICE_MCAST_VLAN_PROMISC_BITS, 3829 0); 3830 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3831 ICE_MCAST_PROMISC_BITS, 0); 3832 } 3833 } 3834 3835 finish: 3836 clear_bit(ICE_CFG_BUSY, vsi->state); 3837 3838 return ret; 3839 } 3840 3841 /** 3842 * ice_rep_indr_tc_block_unbind 3843 * @cb_priv: indirection block private data 3844 */ 3845 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3846 { 3847 struct ice_indr_block_priv *indr_priv = cb_priv; 3848 3849 list_del(&indr_priv->list); 3850 kfree(indr_priv); 3851 } 3852 3853 /** 3854 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3855 * @vsi: VSI struct which has the netdev 3856 */ 3857 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3858 { 3859 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3860 3861 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3862 ice_rep_indr_tc_block_unbind); 3863 } 3864 3865 /** 3866 * ice_tc_indir_block_register - Register TC indirect block notifications 3867 * @vsi: VSI struct which has the netdev 3868 * 3869 * Returns 0 on success, negative value on failure 3870 */ 3871 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3872 { 3873 struct ice_netdev_priv *np; 3874 3875 if (!vsi || !vsi->netdev) 3876 return -EINVAL; 3877 3878 np = netdev_priv(vsi->netdev); 3879 3880 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3881 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3882 } 3883 3884 /** 3885 * ice_get_avail_q_count - Get count of queues in use 3886 * @pf_qmap: bitmap to get queue use count from 3887 * @lock: pointer to a mutex that protects access to pf_qmap 3888 * @size: size of the bitmap 3889 */ 3890 static u16 3891 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3892 { 3893 unsigned long bit; 3894 u16 count = 0; 3895 3896 mutex_lock(lock); 3897 for_each_clear_bit(bit, pf_qmap, size) 3898 count++; 3899 mutex_unlock(lock); 3900 3901 return count; 3902 } 3903 3904 /** 3905 * ice_get_avail_txq_count - Get count of Tx queues in use 3906 * @pf: pointer to an ice_pf instance 3907 */ 3908 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3909 { 3910 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3911 pf->max_pf_txqs); 3912 } 3913 3914 /** 3915 * ice_get_avail_rxq_count - Get count of Rx queues in use 3916 * @pf: pointer to an ice_pf instance 3917 */ 3918 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3919 { 3920 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3921 pf->max_pf_rxqs); 3922 } 3923 3924 /** 3925 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3926 * @pf: board private structure to initialize 3927 */ 3928 static void ice_deinit_pf(struct ice_pf *pf) 3929 { 3930 ice_service_task_stop(pf); 3931 mutex_destroy(&pf->lag_mutex); 3932 mutex_destroy(&pf->adev_mutex); 3933 mutex_destroy(&pf->sw_mutex); 3934 mutex_destroy(&pf->tc_mutex); 3935 mutex_destroy(&pf->avail_q_mutex); 3936 mutex_destroy(&pf->vfs.table_lock); 3937 3938 if (pf->avail_txqs) { 3939 bitmap_free(pf->avail_txqs); 3940 pf->avail_txqs = NULL; 3941 } 3942 3943 if (pf->avail_rxqs) { 3944 bitmap_free(pf->avail_rxqs); 3945 pf->avail_rxqs = NULL; 3946 } 3947 3948 if (pf->ptp.clock) 3949 ptp_clock_unregister(pf->ptp.clock); 3950 } 3951 3952 /** 3953 * ice_set_pf_caps - set PFs capability flags 3954 * @pf: pointer to the PF instance 3955 */ 3956 static void ice_set_pf_caps(struct ice_pf *pf) 3957 { 3958 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3959 3960 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3961 if (func_caps->common_cap.rdma) 3962 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3963 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3964 if (func_caps->common_cap.dcb) 3965 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3966 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3967 if (func_caps->common_cap.sr_iov_1_1) { 3968 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3969 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3970 ICE_MAX_SRIOV_VFS); 3971 } 3972 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3973 if (func_caps->common_cap.rss_table_size) 3974 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3975 3976 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3977 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3978 u16 unused; 3979 3980 /* ctrl_vsi_idx will be set to a valid value when flow director 3981 * is setup by ice_init_fdir 3982 */ 3983 pf->ctrl_vsi_idx = ICE_NO_VSI; 3984 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3985 /* force guaranteed filter pool for PF */ 3986 ice_alloc_fd_guar_item(&pf->hw, &unused, 3987 func_caps->fd_fltr_guar); 3988 /* force shared filter pool for PF */ 3989 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3990 func_caps->fd_fltr_best_effort); 3991 } 3992 3993 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3994 if (func_caps->common_cap.ieee_1588 && 3995 !(pf->hw.mac_type == ICE_MAC_E830)) 3996 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3997 3998 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3999 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4000 } 4001 4002 /** 4003 * ice_init_pf - Initialize general software structures (struct ice_pf) 4004 * @pf: board private structure to initialize 4005 */ 4006 static int ice_init_pf(struct ice_pf *pf) 4007 { 4008 ice_set_pf_caps(pf); 4009 4010 mutex_init(&pf->sw_mutex); 4011 mutex_init(&pf->tc_mutex); 4012 mutex_init(&pf->adev_mutex); 4013 mutex_init(&pf->lag_mutex); 4014 4015 INIT_HLIST_HEAD(&pf->aq_wait_list); 4016 spin_lock_init(&pf->aq_wait_lock); 4017 init_waitqueue_head(&pf->aq_wait_queue); 4018 4019 init_waitqueue_head(&pf->reset_wait_queue); 4020 4021 /* setup service timer and periodic service task */ 4022 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4023 pf->serv_tmr_period = HZ; 4024 INIT_WORK(&pf->serv_task, ice_service_task); 4025 clear_bit(ICE_SERVICE_SCHED, pf->state); 4026 4027 mutex_init(&pf->avail_q_mutex); 4028 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4029 if (!pf->avail_txqs) 4030 return -ENOMEM; 4031 4032 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4033 if (!pf->avail_rxqs) { 4034 bitmap_free(pf->avail_txqs); 4035 pf->avail_txqs = NULL; 4036 return -ENOMEM; 4037 } 4038 4039 mutex_init(&pf->vfs.table_lock); 4040 hash_init(pf->vfs.table); 4041 ice_mbx_init_snapshot(&pf->hw); 4042 4043 return 0; 4044 } 4045 4046 /** 4047 * ice_is_wol_supported - check if WoL is supported 4048 * @hw: pointer to hardware info 4049 * 4050 * Check if WoL is supported based on the HW configuration. 4051 * Returns true if NVM supports and enables WoL for this port, false otherwise 4052 */ 4053 bool ice_is_wol_supported(struct ice_hw *hw) 4054 { 4055 u16 wol_ctrl; 4056 4057 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4058 * word) indicates WoL is not supported on the corresponding PF ID. 4059 */ 4060 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4061 return false; 4062 4063 return !(BIT(hw->port_info->lport) & wol_ctrl); 4064 } 4065 4066 /** 4067 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4068 * @vsi: VSI being changed 4069 * @new_rx: new number of Rx queues 4070 * @new_tx: new number of Tx queues 4071 * @locked: is adev device_lock held 4072 * 4073 * Only change the number of queues if new_tx, or new_rx is non-0. 4074 * 4075 * Returns 0 on success. 4076 */ 4077 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4078 { 4079 struct ice_pf *pf = vsi->back; 4080 int err = 0, timeout = 50; 4081 4082 if (!new_rx && !new_tx) 4083 return -EINVAL; 4084 4085 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4086 timeout--; 4087 if (!timeout) 4088 return -EBUSY; 4089 usleep_range(1000, 2000); 4090 } 4091 4092 if (new_tx) 4093 vsi->req_txq = (u16)new_tx; 4094 if (new_rx) 4095 vsi->req_rxq = (u16)new_rx; 4096 4097 /* set for the next time the netdev is started */ 4098 if (!netif_running(vsi->netdev)) { 4099 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4100 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4101 goto done; 4102 } 4103 4104 ice_vsi_close(vsi); 4105 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4106 ice_pf_dcb_recfg(pf, locked); 4107 ice_vsi_open(vsi); 4108 done: 4109 clear_bit(ICE_CFG_BUSY, pf->state); 4110 return err; 4111 } 4112 4113 /** 4114 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4115 * @pf: PF to configure 4116 * 4117 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4118 * VSI can still Tx/Rx VLAN tagged packets. 4119 */ 4120 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4121 { 4122 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4123 struct ice_vsi_ctx *ctxt; 4124 struct ice_hw *hw; 4125 int status; 4126 4127 if (!vsi) 4128 return; 4129 4130 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4131 if (!ctxt) 4132 return; 4133 4134 hw = &pf->hw; 4135 ctxt->info = vsi->info; 4136 4137 ctxt->info.valid_sections = 4138 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4139 ICE_AQ_VSI_PROP_SECURITY_VALID | 4140 ICE_AQ_VSI_PROP_SW_VALID); 4141 4142 /* disable VLAN anti-spoof */ 4143 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4144 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4145 4146 /* disable VLAN pruning and keep all other settings */ 4147 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4148 4149 /* allow all VLANs on Tx and don't strip on Rx */ 4150 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4151 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4152 4153 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4154 if (status) { 4155 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4156 status, ice_aq_str(hw->adminq.sq_last_status)); 4157 } else { 4158 vsi->info.sec_flags = ctxt->info.sec_flags; 4159 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4160 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4161 } 4162 4163 kfree(ctxt); 4164 } 4165 4166 /** 4167 * ice_log_pkg_init - log result of DDP package load 4168 * @hw: pointer to hardware info 4169 * @state: state of package load 4170 */ 4171 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4172 { 4173 struct ice_pf *pf = hw->back; 4174 struct device *dev; 4175 4176 dev = ice_pf_to_dev(pf); 4177 4178 switch (state) { 4179 case ICE_DDP_PKG_SUCCESS: 4180 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4181 hw->active_pkg_name, 4182 hw->active_pkg_ver.major, 4183 hw->active_pkg_ver.minor, 4184 hw->active_pkg_ver.update, 4185 hw->active_pkg_ver.draft); 4186 break; 4187 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4188 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4189 hw->active_pkg_name, 4190 hw->active_pkg_ver.major, 4191 hw->active_pkg_ver.minor, 4192 hw->active_pkg_ver.update, 4193 hw->active_pkg_ver.draft); 4194 break; 4195 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4196 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4197 hw->active_pkg_name, 4198 hw->active_pkg_ver.major, 4199 hw->active_pkg_ver.minor, 4200 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4201 break; 4202 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4203 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4204 hw->active_pkg_name, 4205 hw->active_pkg_ver.major, 4206 hw->active_pkg_ver.minor, 4207 hw->active_pkg_ver.update, 4208 hw->active_pkg_ver.draft, 4209 hw->pkg_name, 4210 hw->pkg_ver.major, 4211 hw->pkg_ver.minor, 4212 hw->pkg_ver.update, 4213 hw->pkg_ver.draft); 4214 break; 4215 case ICE_DDP_PKG_FW_MISMATCH: 4216 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4217 break; 4218 case ICE_DDP_PKG_INVALID_FILE: 4219 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4220 break; 4221 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4222 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4223 break; 4224 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4225 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4226 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4227 break; 4228 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4229 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4230 break; 4231 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4232 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4233 break; 4234 case ICE_DDP_PKG_LOAD_ERROR: 4235 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4236 /* poll for reset to complete */ 4237 if (ice_check_reset(hw)) 4238 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4239 break; 4240 case ICE_DDP_PKG_ERR: 4241 default: 4242 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4243 break; 4244 } 4245 } 4246 4247 /** 4248 * ice_load_pkg - load/reload the DDP Package file 4249 * @firmware: firmware structure when firmware requested or NULL for reload 4250 * @pf: pointer to the PF instance 4251 * 4252 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4253 * initialize HW tables. 4254 */ 4255 static void 4256 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4257 { 4258 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4259 struct device *dev = ice_pf_to_dev(pf); 4260 struct ice_hw *hw = &pf->hw; 4261 4262 /* Load DDP Package */ 4263 if (firmware && !hw->pkg_copy) { 4264 state = ice_copy_and_init_pkg(hw, firmware->data, 4265 firmware->size); 4266 ice_log_pkg_init(hw, state); 4267 } else if (!firmware && hw->pkg_copy) { 4268 /* Reload package during rebuild after CORER/GLOBR reset */ 4269 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4270 ice_log_pkg_init(hw, state); 4271 } else { 4272 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4273 } 4274 4275 if (!ice_is_init_pkg_successful(state)) { 4276 /* Safe Mode */ 4277 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4278 return; 4279 } 4280 4281 /* Successful download package is the precondition for advanced 4282 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4283 */ 4284 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4285 } 4286 4287 /** 4288 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4289 * @pf: pointer to the PF structure 4290 * 4291 * There is no error returned here because the driver should be able to handle 4292 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4293 * specifically with Tx. 4294 */ 4295 static void ice_verify_cacheline_size(struct ice_pf *pf) 4296 { 4297 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4298 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4299 ICE_CACHE_LINE_BYTES); 4300 } 4301 4302 /** 4303 * ice_send_version - update firmware with driver version 4304 * @pf: PF struct 4305 * 4306 * Returns 0 on success, else error code 4307 */ 4308 static int ice_send_version(struct ice_pf *pf) 4309 { 4310 struct ice_driver_ver dv; 4311 4312 dv.major_ver = 0xff; 4313 dv.minor_ver = 0xff; 4314 dv.build_ver = 0xff; 4315 dv.subbuild_ver = 0; 4316 strscpy((char *)dv.driver_string, UTS_RELEASE, 4317 sizeof(dv.driver_string)); 4318 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4319 } 4320 4321 /** 4322 * ice_init_fdir - Initialize flow director VSI and configuration 4323 * @pf: pointer to the PF instance 4324 * 4325 * returns 0 on success, negative on error 4326 */ 4327 static int ice_init_fdir(struct ice_pf *pf) 4328 { 4329 struct device *dev = ice_pf_to_dev(pf); 4330 struct ice_vsi *ctrl_vsi; 4331 int err; 4332 4333 /* Side Band Flow Director needs to have a control VSI. 4334 * Allocate it and store it in the PF. 4335 */ 4336 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4337 if (!ctrl_vsi) { 4338 dev_dbg(dev, "could not create control VSI\n"); 4339 return -ENOMEM; 4340 } 4341 4342 err = ice_vsi_open_ctrl(ctrl_vsi); 4343 if (err) { 4344 dev_dbg(dev, "could not open control VSI\n"); 4345 goto err_vsi_open; 4346 } 4347 4348 mutex_init(&pf->hw.fdir_fltr_lock); 4349 4350 err = ice_fdir_create_dflt_rules(pf); 4351 if (err) 4352 goto err_fdir_rule; 4353 4354 return 0; 4355 4356 err_fdir_rule: 4357 ice_fdir_release_flows(&pf->hw); 4358 ice_vsi_close(ctrl_vsi); 4359 err_vsi_open: 4360 ice_vsi_release(ctrl_vsi); 4361 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4362 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4363 pf->ctrl_vsi_idx = ICE_NO_VSI; 4364 } 4365 return err; 4366 } 4367 4368 static void ice_deinit_fdir(struct ice_pf *pf) 4369 { 4370 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4371 4372 if (!vsi) 4373 return; 4374 4375 ice_vsi_manage_fdir(vsi, false); 4376 ice_vsi_release(vsi); 4377 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4378 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4379 pf->ctrl_vsi_idx = ICE_NO_VSI; 4380 } 4381 4382 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4383 } 4384 4385 /** 4386 * ice_get_opt_fw_name - return optional firmware file name or NULL 4387 * @pf: pointer to the PF instance 4388 */ 4389 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4390 { 4391 /* Optional firmware name same as default with additional dash 4392 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4393 */ 4394 struct pci_dev *pdev = pf->pdev; 4395 char *opt_fw_filename; 4396 u64 dsn; 4397 4398 /* Determine the name of the optional file using the DSN (two 4399 * dwords following the start of the DSN Capability). 4400 */ 4401 dsn = pci_get_dsn(pdev); 4402 if (!dsn) 4403 return NULL; 4404 4405 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4406 if (!opt_fw_filename) 4407 return NULL; 4408 4409 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4410 ICE_DDP_PKG_PATH, dsn); 4411 4412 return opt_fw_filename; 4413 } 4414 4415 /** 4416 * ice_request_fw - Device initialization routine 4417 * @pf: pointer to the PF instance 4418 */ 4419 static void ice_request_fw(struct ice_pf *pf) 4420 { 4421 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4422 const struct firmware *firmware = NULL; 4423 struct device *dev = ice_pf_to_dev(pf); 4424 int err = 0; 4425 4426 /* optional device-specific DDP (if present) overrides the default DDP 4427 * package file. kernel logs a debug message if the file doesn't exist, 4428 * and warning messages for other errors. 4429 */ 4430 if (opt_fw_filename) { 4431 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4432 if (err) { 4433 kfree(opt_fw_filename); 4434 goto dflt_pkg_load; 4435 } 4436 4437 /* request for firmware was successful. Download to device */ 4438 ice_load_pkg(firmware, pf); 4439 kfree(opt_fw_filename); 4440 release_firmware(firmware); 4441 return; 4442 } 4443 4444 dflt_pkg_load: 4445 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4446 if (err) { 4447 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4448 return; 4449 } 4450 4451 /* request for firmware was successful. Download to device */ 4452 ice_load_pkg(firmware, pf); 4453 release_firmware(firmware); 4454 } 4455 4456 /** 4457 * ice_print_wake_reason - show the wake up cause in the log 4458 * @pf: pointer to the PF struct 4459 */ 4460 static void ice_print_wake_reason(struct ice_pf *pf) 4461 { 4462 u32 wus = pf->wakeup_reason; 4463 const char *wake_str; 4464 4465 /* if no wake event, nothing to print */ 4466 if (!wus) 4467 return; 4468 4469 if (wus & PFPM_WUS_LNKC_M) 4470 wake_str = "Link\n"; 4471 else if (wus & PFPM_WUS_MAG_M) 4472 wake_str = "Magic Packet\n"; 4473 else if (wus & PFPM_WUS_MNG_M) 4474 wake_str = "Management\n"; 4475 else if (wus & PFPM_WUS_FW_RST_WK_M) 4476 wake_str = "Firmware Reset\n"; 4477 else 4478 wake_str = "Unknown\n"; 4479 4480 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4481 } 4482 4483 /** 4484 * ice_pf_fwlog_update_module - update 1 module 4485 * @pf: pointer to the PF struct 4486 * @log_level: log_level to use for the @module 4487 * @module: module to update 4488 */ 4489 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4490 { 4491 struct ice_hw *hw = &pf->hw; 4492 4493 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4494 } 4495 4496 /** 4497 * ice_register_netdev - register netdev 4498 * @vsi: pointer to the VSI struct 4499 */ 4500 static int ice_register_netdev(struct ice_vsi *vsi) 4501 { 4502 int err; 4503 4504 if (!vsi || !vsi->netdev) 4505 return -EIO; 4506 4507 err = register_netdev(vsi->netdev); 4508 if (err) 4509 return err; 4510 4511 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4512 netif_carrier_off(vsi->netdev); 4513 netif_tx_stop_all_queues(vsi->netdev); 4514 4515 return 0; 4516 } 4517 4518 static void ice_unregister_netdev(struct ice_vsi *vsi) 4519 { 4520 if (!vsi || !vsi->netdev) 4521 return; 4522 4523 unregister_netdev(vsi->netdev); 4524 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4525 } 4526 4527 /** 4528 * ice_cfg_netdev - Allocate, configure and register a netdev 4529 * @vsi: the VSI associated with the new netdev 4530 * 4531 * Returns 0 on success, negative value on failure 4532 */ 4533 static int ice_cfg_netdev(struct ice_vsi *vsi) 4534 { 4535 struct ice_netdev_priv *np; 4536 struct net_device *netdev; 4537 u8 mac_addr[ETH_ALEN]; 4538 4539 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4540 vsi->alloc_rxq); 4541 if (!netdev) 4542 return -ENOMEM; 4543 4544 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4545 vsi->netdev = netdev; 4546 np = netdev_priv(netdev); 4547 np->vsi = vsi; 4548 4549 ice_set_netdev_features(netdev); 4550 ice_set_ops(vsi); 4551 4552 if (vsi->type == ICE_VSI_PF) { 4553 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4554 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4555 eth_hw_addr_set(netdev, mac_addr); 4556 } 4557 4558 netdev->priv_flags |= IFF_UNICAST_FLT; 4559 4560 /* Setup netdev TC information */ 4561 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4562 4563 netdev->max_mtu = ICE_MAX_MTU; 4564 4565 return 0; 4566 } 4567 4568 static void ice_decfg_netdev(struct ice_vsi *vsi) 4569 { 4570 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4571 free_netdev(vsi->netdev); 4572 vsi->netdev = NULL; 4573 } 4574 4575 static int ice_start_eth(struct ice_vsi *vsi) 4576 { 4577 int err; 4578 4579 err = ice_init_mac_fltr(vsi->back); 4580 if (err) 4581 return err; 4582 4583 err = ice_vsi_open(vsi); 4584 if (err) 4585 ice_fltr_remove_all(vsi); 4586 4587 return err; 4588 } 4589 4590 static void ice_stop_eth(struct ice_vsi *vsi) 4591 { 4592 ice_fltr_remove_all(vsi); 4593 ice_vsi_close(vsi); 4594 } 4595 4596 static int ice_init_eth(struct ice_pf *pf) 4597 { 4598 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4599 int err; 4600 4601 if (!vsi) 4602 return -EINVAL; 4603 4604 /* init channel list */ 4605 INIT_LIST_HEAD(&vsi->ch_list); 4606 4607 err = ice_cfg_netdev(vsi); 4608 if (err) 4609 return err; 4610 /* Setup DCB netlink interface */ 4611 ice_dcbnl_setup(vsi); 4612 4613 err = ice_init_mac_fltr(pf); 4614 if (err) 4615 goto err_init_mac_fltr; 4616 4617 err = ice_devlink_create_pf_port(pf); 4618 if (err) 4619 goto err_devlink_create_pf_port; 4620 4621 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4622 4623 err = ice_register_netdev(vsi); 4624 if (err) 4625 goto err_register_netdev; 4626 4627 err = ice_tc_indir_block_register(vsi); 4628 if (err) 4629 goto err_tc_indir_block_register; 4630 4631 ice_napi_add(vsi); 4632 4633 return 0; 4634 4635 err_tc_indir_block_register: 4636 ice_unregister_netdev(vsi); 4637 err_register_netdev: 4638 ice_devlink_destroy_pf_port(pf); 4639 err_devlink_create_pf_port: 4640 err_init_mac_fltr: 4641 ice_decfg_netdev(vsi); 4642 return err; 4643 } 4644 4645 static void ice_deinit_eth(struct ice_pf *pf) 4646 { 4647 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4648 4649 if (!vsi) 4650 return; 4651 4652 ice_vsi_close(vsi); 4653 ice_unregister_netdev(vsi); 4654 ice_devlink_destroy_pf_port(pf); 4655 ice_tc_indir_block_unregister(vsi); 4656 ice_decfg_netdev(vsi); 4657 } 4658 4659 /** 4660 * ice_wait_for_fw - wait for full FW readiness 4661 * @hw: pointer to the hardware structure 4662 * @timeout: milliseconds that can elapse before timing out 4663 */ 4664 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4665 { 4666 int fw_loading; 4667 u32 elapsed = 0; 4668 4669 while (elapsed <= timeout) { 4670 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4671 4672 /* firmware was not yet loaded, we have to wait more */ 4673 if (fw_loading) { 4674 elapsed += 100; 4675 msleep(100); 4676 continue; 4677 } 4678 return 0; 4679 } 4680 4681 return -ETIMEDOUT; 4682 } 4683 4684 static int ice_init_dev(struct ice_pf *pf) 4685 { 4686 struct device *dev = ice_pf_to_dev(pf); 4687 struct ice_hw *hw = &pf->hw; 4688 int err; 4689 4690 err = ice_init_hw(hw); 4691 if (err) { 4692 dev_err(dev, "ice_init_hw failed: %d\n", err); 4693 return err; 4694 } 4695 4696 /* Some cards require longer initialization times 4697 * due to necessity of loading FW from an external source. 4698 * This can take even half a minute. 4699 */ 4700 if (ice_is_pf_c827(hw)) { 4701 err = ice_wait_for_fw(hw, 30000); 4702 if (err) { 4703 dev_err(dev, "ice_wait_for_fw timed out"); 4704 return err; 4705 } 4706 } 4707 4708 ice_init_feature_support(pf); 4709 4710 ice_request_fw(pf); 4711 4712 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4713 * set in pf->state, which will cause ice_is_safe_mode to return 4714 * true 4715 */ 4716 if (ice_is_safe_mode(pf)) { 4717 /* we already got function/device capabilities but these don't 4718 * reflect what the driver needs to do in safe mode. Instead of 4719 * adding conditional logic everywhere to ignore these 4720 * device/function capabilities, override them. 4721 */ 4722 ice_set_safe_mode_caps(hw); 4723 } 4724 4725 err = ice_init_pf(pf); 4726 if (err) { 4727 dev_err(dev, "ice_init_pf failed: %d\n", err); 4728 goto err_init_pf; 4729 } 4730 4731 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4732 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4733 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4734 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4735 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4736 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4737 pf->hw.tnl.valid_count[TNL_VXLAN]; 4738 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4739 UDP_TUNNEL_TYPE_VXLAN; 4740 } 4741 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4742 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4743 pf->hw.tnl.valid_count[TNL_GENEVE]; 4744 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4745 UDP_TUNNEL_TYPE_GENEVE; 4746 } 4747 4748 err = ice_init_interrupt_scheme(pf); 4749 if (err) { 4750 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4751 err = -EIO; 4752 goto err_init_interrupt_scheme; 4753 } 4754 4755 /* In case of MSIX we are going to setup the misc vector right here 4756 * to handle admin queue events etc. In case of legacy and MSI 4757 * the misc functionality and queue processing is combined in 4758 * the same vector and that gets setup at open. 4759 */ 4760 err = ice_req_irq_msix_misc(pf); 4761 if (err) { 4762 dev_err(dev, "setup of misc vector failed: %d\n", err); 4763 goto err_req_irq_msix_misc; 4764 } 4765 4766 return 0; 4767 4768 err_req_irq_msix_misc: 4769 ice_clear_interrupt_scheme(pf); 4770 err_init_interrupt_scheme: 4771 ice_deinit_pf(pf); 4772 err_init_pf: 4773 ice_deinit_hw(hw); 4774 return err; 4775 } 4776 4777 static void ice_deinit_dev(struct ice_pf *pf) 4778 { 4779 ice_free_irq_msix_misc(pf); 4780 ice_deinit_pf(pf); 4781 ice_deinit_hw(&pf->hw); 4782 4783 /* Service task is already stopped, so call reset directly. */ 4784 ice_reset(&pf->hw, ICE_RESET_PFR); 4785 pci_wait_for_pending_transaction(pf->pdev); 4786 ice_clear_interrupt_scheme(pf); 4787 } 4788 4789 static void ice_init_features(struct ice_pf *pf) 4790 { 4791 struct device *dev = ice_pf_to_dev(pf); 4792 4793 if (ice_is_safe_mode(pf)) 4794 return; 4795 4796 /* initialize DDP driven features */ 4797 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4798 ice_ptp_init(pf); 4799 4800 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4801 ice_gnss_init(pf); 4802 4803 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4804 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4805 ice_dpll_init(pf); 4806 4807 /* Note: Flow director init failure is non-fatal to load */ 4808 if (ice_init_fdir(pf)) 4809 dev_err(dev, "could not initialize flow director\n"); 4810 4811 /* Note: DCB init failure is non-fatal to load */ 4812 if (ice_init_pf_dcb(pf, false)) { 4813 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4814 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4815 } else { 4816 ice_cfg_lldp_mib_change(&pf->hw, true); 4817 } 4818 4819 if (ice_init_lag(pf)) 4820 dev_warn(dev, "Failed to init link aggregation support\n"); 4821 4822 ice_hwmon_init(pf); 4823 } 4824 4825 static void ice_deinit_features(struct ice_pf *pf) 4826 { 4827 if (ice_is_safe_mode(pf)) 4828 return; 4829 4830 ice_deinit_lag(pf); 4831 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4832 ice_cfg_lldp_mib_change(&pf->hw, false); 4833 ice_deinit_fdir(pf); 4834 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4835 ice_gnss_exit(pf); 4836 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4837 ice_ptp_release(pf); 4838 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4839 ice_dpll_deinit(pf); 4840 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4841 xa_destroy(&pf->eswitch.reprs); 4842 } 4843 4844 static void ice_init_wakeup(struct ice_pf *pf) 4845 { 4846 /* Save wakeup reason register for later use */ 4847 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4848 4849 /* check for a power management event */ 4850 ice_print_wake_reason(pf); 4851 4852 /* clear wake status, all bits */ 4853 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4854 4855 /* Disable WoL at init, wait for user to enable */ 4856 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4857 } 4858 4859 static int ice_init_link(struct ice_pf *pf) 4860 { 4861 struct device *dev = ice_pf_to_dev(pf); 4862 int err; 4863 4864 err = ice_init_link_events(pf->hw.port_info); 4865 if (err) { 4866 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4867 return err; 4868 } 4869 4870 /* not a fatal error if this fails */ 4871 err = ice_init_nvm_phy_type(pf->hw.port_info); 4872 if (err) 4873 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4874 4875 /* not a fatal error if this fails */ 4876 err = ice_update_link_info(pf->hw.port_info); 4877 if (err) 4878 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4879 4880 ice_init_link_dflt_override(pf->hw.port_info); 4881 4882 ice_check_link_cfg_err(pf, 4883 pf->hw.port_info->phy.link_info.link_cfg_err); 4884 4885 /* if media available, initialize PHY settings */ 4886 if (pf->hw.port_info->phy.link_info.link_info & 4887 ICE_AQ_MEDIA_AVAILABLE) { 4888 /* not a fatal error if this fails */ 4889 err = ice_init_phy_user_cfg(pf->hw.port_info); 4890 if (err) 4891 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4892 4893 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4894 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4895 4896 if (vsi) 4897 ice_configure_phy(vsi); 4898 } 4899 } else { 4900 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4901 } 4902 4903 return err; 4904 } 4905 4906 static int ice_init_pf_sw(struct ice_pf *pf) 4907 { 4908 bool dvm = ice_is_dvm_ena(&pf->hw); 4909 struct ice_vsi *vsi; 4910 int err; 4911 4912 /* create switch struct for the switch element created by FW on boot */ 4913 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4914 if (!pf->first_sw) 4915 return -ENOMEM; 4916 4917 if (pf->hw.evb_veb) 4918 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4919 else 4920 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4921 4922 pf->first_sw->pf = pf; 4923 4924 /* record the sw_id available for later use */ 4925 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4926 4927 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4928 if (err) 4929 goto err_aq_set_port_params; 4930 4931 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4932 if (!vsi) { 4933 err = -ENOMEM; 4934 goto err_pf_vsi_setup; 4935 } 4936 4937 return 0; 4938 4939 err_pf_vsi_setup: 4940 err_aq_set_port_params: 4941 kfree(pf->first_sw); 4942 return err; 4943 } 4944 4945 static void ice_deinit_pf_sw(struct ice_pf *pf) 4946 { 4947 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4948 4949 if (!vsi) 4950 return; 4951 4952 ice_vsi_release(vsi); 4953 kfree(pf->first_sw); 4954 } 4955 4956 static int ice_alloc_vsis(struct ice_pf *pf) 4957 { 4958 struct device *dev = ice_pf_to_dev(pf); 4959 4960 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4961 if (!pf->num_alloc_vsi) 4962 return -EIO; 4963 4964 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4965 dev_warn(dev, 4966 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4967 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4968 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4969 } 4970 4971 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4972 GFP_KERNEL); 4973 if (!pf->vsi) 4974 return -ENOMEM; 4975 4976 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4977 sizeof(*pf->vsi_stats), GFP_KERNEL); 4978 if (!pf->vsi_stats) { 4979 devm_kfree(dev, pf->vsi); 4980 return -ENOMEM; 4981 } 4982 4983 return 0; 4984 } 4985 4986 static void ice_dealloc_vsis(struct ice_pf *pf) 4987 { 4988 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4989 pf->vsi_stats = NULL; 4990 4991 pf->num_alloc_vsi = 0; 4992 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4993 pf->vsi = NULL; 4994 } 4995 4996 static int ice_init_devlink(struct ice_pf *pf) 4997 { 4998 int err; 4999 5000 err = ice_devlink_register_params(pf); 5001 if (err) 5002 return err; 5003 5004 ice_devlink_init_regions(pf); 5005 ice_devlink_register(pf); 5006 5007 return 0; 5008 } 5009 5010 static void ice_deinit_devlink(struct ice_pf *pf) 5011 { 5012 ice_devlink_unregister(pf); 5013 ice_devlink_destroy_regions(pf); 5014 ice_devlink_unregister_params(pf); 5015 } 5016 5017 static int ice_init(struct ice_pf *pf) 5018 { 5019 int err; 5020 5021 err = ice_init_dev(pf); 5022 if (err) 5023 return err; 5024 5025 err = ice_alloc_vsis(pf); 5026 if (err) 5027 goto err_alloc_vsis; 5028 5029 err = ice_init_pf_sw(pf); 5030 if (err) 5031 goto err_init_pf_sw; 5032 5033 ice_init_wakeup(pf); 5034 5035 err = ice_init_link(pf); 5036 if (err) 5037 goto err_init_link; 5038 5039 err = ice_send_version(pf); 5040 if (err) 5041 goto err_init_link; 5042 5043 ice_verify_cacheline_size(pf); 5044 5045 if (ice_is_safe_mode(pf)) 5046 ice_set_safe_mode_vlan_cfg(pf); 5047 else 5048 /* print PCI link speed and width */ 5049 pcie_print_link_status(pf->pdev); 5050 5051 /* ready to go, so clear down state bit */ 5052 clear_bit(ICE_DOWN, pf->state); 5053 clear_bit(ICE_SERVICE_DIS, pf->state); 5054 5055 /* since everything is good, start the service timer */ 5056 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5057 5058 return 0; 5059 5060 err_init_link: 5061 ice_deinit_pf_sw(pf); 5062 err_init_pf_sw: 5063 ice_dealloc_vsis(pf); 5064 err_alloc_vsis: 5065 ice_deinit_dev(pf); 5066 return err; 5067 } 5068 5069 static void ice_deinit(struct ice_pf *pf) 5070 { 5071 set_bit(ICE_SERVICE_DIS, pf->state); 5072 set_bit(ICE_DOWN, pf->state); 5073 5074 ice_deinit_pf_sw(pf); 5075 ice_dealloc_vsis(pf); 5076 ice_deinit_dev(pf); 5077 } 5078 5079 /** 5080 * ice_load - load pf by init hw and starting VSI 5081 * @pf: pointer to the pf instance 5082 */ 5083 int ice_load(struct ice_pf *pf) 5084 { 5085 struct ice_vsi_cfg_params params = {}; 5086 struct ice_vsi *vsi; 5087 int err; 5088 5089 err = ice_init_dev(pf); 5090 if (err) 5091 return err; 5092 5093 vsi = ice_get_main_vsi(pf); 5094 5095 params = ice_vsi_to_params(vsi); 5096 params.flags = ICE_VSI_FLAG_INIT; 5097 5098 rtnl_lock(); 5099 err = ice_vsi_cfg(vsi, ¶ms); 5100 if (err) 5101 goto err_vsi_cfg; 5102 5103 err = ice_start_eth(ice_get_main_vsi(pf)); 5104 if (err) 5105 goto err_start_eth; 5106 rtnl_unlock(); 5107 5108 err = ice_init_rdma(pf); 5109 if (err) 5110 goto err_init_rdma; 5111 5112 ice_init_features(pf); 5113 ice_service_task_restart(pf); 5114 5115 clear_bit(ICE_DOWN, pf->state); 5116 5117 return 0; 5118 5119 err_init_rdma: 5120 ice_vsi_close(ice_get_main_vsi(pf)); 5121 rtnl_lock(); 5122 err_start_eth: 5123 ice_vsi_decfg(ice_get_main_vsi(pf)); 5124 err_vsi_cfg: 5125 rtnl_unlock(); 5126 ice_deinit_dev(pf); 5127 return err; 5128 } 5129 5130 /** 5131 * ice_unload - unload pf by stopping VSI and deinit hw 5132 * @pf: pointer to the pf instance 5133 */ 5134 void ice_unload(struct ice_pf *pf) 5135 { 5136 ice_deinit_features(pf); 5137 ice_deinit_rdma(pf); 5138 rtnl_lock(); 5139 ice_stop_eth(ice_get_main_vsi(pf)); 5140 ice_vsi_decfg(ice_get_main_vsi(pf)); 5141 rtnl_unlock(); 5142 ice_deinit_dev(pf); 5143 } 5144 5145 /** 5146 * ice_probe - Device initialization routine 5147 * @pdev: PCI device information struct 5148 * @ent: entry in ice_pci_tbl 5149 * 5150 * Returns 0 on success, negative on failure 5151 */ 5152 static int 5153 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5154 { 5155 struct device *dev = &pdev->dev; 5156 struct ice_pf *pf; 5157 struct ice_hw *hw; 5158 int err; 5159 5160 if (pdev->is_virtfn) { 5161 dev_err(dev, "can't probe a virtual function\n"); 5162 return -EINVAL; 5163 } 5164 5165 /* when under a kdump kernel initiate a reset before enabling the 5166 * device in order to clear out any pending DMA transactions. These 5167 * transactions can cause some systems to machine check when doing 5168 * the pcim_enable_device() below. 5169 */ 5170 if (is_kdump_kernel()) { 5171 pci_save_state(pdev); 5172 pci_clear_master(pdev); 5173 err = pcie_flr(pdev); 5174 if (err) 5175 return err; 5176 pci_restore_state(pdev); 5177 } 5178 5179 /* this driver uses devres, see 5180 * Documentation/driver-api/driver-model/devres.rst 5181 */ 5182 err = pcim_enable_device(pdev); 5183 if (err) 5184 return err; 5185 5186 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5187 if (err) { 5188 dev_err(dev, "BAR0 I/O map error %d\n", err); 5189 return err; 5190 } 5191 5192 pf = ice_allocate_pf(dev); 5193 if (!pf) 5194 return -ENOMEM; 5195 5196 /* initialize Auxiliary index to invalid value */ 5197 pf->aux_idx = -1; 5198 5199 /* set up for high or low DMA */ 5200 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5201 if (err) { 5202 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5203 return err; 5204 } 5205 5206 pci_set_master(pdev); 5207 5208 pf->pdev = pdev; 5209 pci_set_drvdata(pdev, pf); 5210 set_bit(ICE_DOWN, pf->state); 5211 /* Disable service task until DOWN bit is cleared */ 5212 set_bit(ICE_SERVICE_DIS, pf->state); 5213 5214 hw = &pf->hw; 5215 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5216 pci_save_state(pdev); 5217 5218 hw->back = pf; 5219 hw->port_info = NULL; 5220 hw->vendor_id = pdev->vendor; 5221 hw->device_id = pdev->device; 5222 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5223 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5224 hw->subsystem_device_id = pdev->subsystem_device; 5225 hw->bus.device = PCI_SLOT(pdev->devfn); 5226 hw->bus.func = PCI_FUNC(pdev->devfn); 5227 ice_set_ctrlq_len(hw); 5228 5229 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5230 5231 #ifndef CONFIG_DYNAMIC_DEBUG 5232 if (debug < -1) 5233 hw->debug_mask = debug; 5234 #endif 5235 5236 err = ice_init(pf); 5237 if (err) 5238 goto err_init; 5239 5240 err = ice_init_eth(pf); 5241 if (err) 5242 goto err_init_eth; 5243 5244 err = ice_init_rdma(pf); 5245 if (err) 5246 goto err_init_rdma; 5247 5248 err = ice_init_devlink(pf); 5249 if (err) 5250 goto err_init_devlink; 5251 5252 ice_init_features(pf); 5253 5254 return 0; 5255 5256 err_init_devlink: 5257 ice_deinit_rdma(pf); 5258 err_init_rdma: 5259 ice_deinit_eth(pf); 5260 err_init_eth: 5261 ice_deinit(pf); 5262 err_init: 5263 pci_disable_device(pdev); 5264 return err; 5265 } 5266 5267 /** 5268 * ice_set_wake - enable or disable Wake on LAN 5269 * @pf: pointer to the PF struct 5270 * 5271 * Simple helper for WoL control 5272 */ 5273 static void ice_set_wake(struct ice_pf *pf) 5274 { 5275 struct ice_hw *hw = &pf->hw; 5276 bool wol = pf->wol_ena; 5277 5278 /* clear wake state, otherwise new wake events won't fire */ 5279 wr32(hw, PFPM_WUS, U32_MAX); 5280 5281 /* enable / disable APM wake up, no RMW needed */ 5282 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5283 5284 /* set magic packet filter enabled */ 5285 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5286 } 5287 5288 /** 5289 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5290 * @pf: pointer to the PF struct 5291 * 5292 * Issue firmware command to enable multicast magic wake, making 5293 * sure that any locally administered address (LAA) is used for 5294 * wake, and that PF reset doesn't undo the LAA. 5295 */ 5296 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5297 { 5298 struct device *dev = ice_pf_to_dev(pf); 5299 struct ice_hw *hw = &pf->hw; 5300 u8 mac_addr[ETH_ALEN]; 5301 struct ice_vsi *vsi; 5302 int status; 5303 u8 flags; 5304 5305 if (!pf->wol_ena) 5306 return; 5307 5308 vsi = ice_get_main_vsi(pf); 5309 if (!vsi) 5310 return; 5311 5312 /* Get current MAC address in case it's an LAA */ 5313 if (vsi->netdev) 5314 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5315 else 5316 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5317 5318 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5319 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5320 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5321 5322 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5323 if (status) 5324 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5325 status, ice_aq_str(hw->adminq.sq_last_status)); 5326 } 5327 5328 /** 5329 * ice_remove - Device removal routine 5330 * @pdev: PCI device information struct 5331 */ 5332 static void ice_remove(struct pci_dev *pdev) 5333 { 5334 struct ice_pf *pf = pci_get_drvdata(pdev); 5335 int i; 5336 5337 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5338 if (!ice_is_reset_in_progress(pf->state)) 5339 break; 5340 msleep(100); 5341 } 5342 5343 ice_debugfs_exit(); 5344 5345 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5346 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5347 ice_free_vfs(pf); 5348 } 5349 5350 ice_hwmon_exit(pf); 5351 5352 ice_service_task_stop(pf); 5353 ice_aq_cancel_waiting_tasks(pf); 5354 set_bit(ICE_DOWN, pf->state); 5355 5356 if (!ice_is_safe_mode(pf)) 5357 ice_remove_arfs(pf); 5358 ice_deinit_features(pf); 5359 ice_deinit_devlink(pf); 5360 ice_deinit_rdma(pf); 5361 ice_deinit_eth(pf); 5362 ice_deinit(pf); 5363 5364 ice_vsi_release_all(pf); 5365 5366 ice_setup_mc_magic_wake(pf); 5367 ice_set_wake(pf); 5368 5369 pci_disable_device(pdev); 5370 } 5371 5372 /** 5373 * ice_shutdown - PCI callback for shutting down device 5374 * @pdev: PCI device information struct 5375 */ 5376 static void ice_shutdown(struct pci_dev *pdev) 5377 { 5378 struct ice_pf *pf = pci_get_drvdata(pdev); 5379 5380 ice_remove(pdev); 5381 5382 if (system_state == SYSTEM_POWER_OFF) { 5383 pci_wake_from_d3(pdev, pf->wol_ena); 5384 pci_set_power_state(pdev, PCI_D3hot); 5385 } 5386 } 5387 5388 #ifdef CONFIG_PM 5389 /** 5390 * ice_prepare_for_shutdown - prep for PCI shutdown 5391 * @pf: board private structure 5392 * 5393 * Inform or close all dependent features in prep for PCI device shutdown 5394 */ 5395 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5396 { 5397 struct ice_hw *hw = &pf->hw; 5398 u32 v; 5399 5400 /* Notify VFs of impending reset */ 5401 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5402 ice_vc_notify_reset(pf); 5403 5404 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5405 5406 /* disable the VSIs and their queues that are not already DOWN */ 5407 ice_pf_dis_all_vsi(pf, false); 5408 5409 ice_for_each_vsi(pf, v) 5410 if (pf->vsi[v]) 5411 pf->vsi[v]->vsi_num = 0; 5412 5413 ice_shutdown_all_ctrlq(hw); 5414 } 5415 5416 /** 5417 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5418 * @pf: board private structure to reinitialize 5419 * 5420 * This routine reinitialize interrupt scheme that was cleared during 5421 * power management suspend callback. 5422 * 5423 * This should be called during resume routine to re-allocate the q_vectors 5424 * and reacquire interrupts. 5425 */ 5426 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5427 { 5428 struct device *dev = ice_pf_to_dev(pf); 5429 int ret, v; 5430 5431 /* Since we clear MSIX flag during suspend, we need to 5432 * set it back during resume... 5433 */ 5434 5435 ret = ice_init_interrupt_scheme(pf); 5436 if (ret) { 5437 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5438 return ret; 5439 } 5440 5441 /* Remap vectors and rings, after successful re-init interrupts */ 5442 ice_for_each_vsi(pf, v) { 5443 if (!pf->vsi[v]) 5444 continue; 5445 5446 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5447 if (ret) 5448 goto err_reinit; 5449 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5450 } 5451 5452 ret = ice_req_irq_msix_misc(pf); 5453 if (ret) { 5454 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5455 ret); 5456 goto err_reinit; 5457 } 5458 5459 return 0; 5460 5461 err_reinit: 5462 while (v--) 5463 if (pf->vsi[v]) 5464 ice_vsi_free_q_vectors(pf->vsi[v]); 5465 5466 return ret; 5467 } 5468 5469 /** 5470 * ice_suspend 5471 * @dev: generic device information structure 5472 * 5473 * Power Management callback to quiesce the device and prepare 5474 * for D3 transition. 5475 */ 5476 static int __maybe_unused ice_suspend(struct device *dev) 5477 { 5478 struct pci_dev *pdev = to_pci_dev(dev); 5479 struct ice_pf *pf; 5480 int disabled, v; 5481 5482 pf = pci_get_drvdata(pdev); 5483 5484 if (!ice_pf_state_is_nominal(pf)) { 5485 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5486 return -EBUSY; 5487 } 5488 5489 /* Stop watchdog tasks until resume completion. 5490 * Even though it is most likely that the service task is 5491 * disabled if the device is suspended or down, the service task's 5492 * state is controlled by a different state bit, and we should 5493 * store and honor whatever state that bit is in at this point. 5494 */ 5495 disabled = ice_service_task_stop(pf); 5496 5497 ice_unplug_aux_dev(pf); 5498 5499 /* Already suspended?, then there is nothing to do */ 5500 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5501 if (!disabled) 5502 ice_service_task_restart(pf); 5503 return 0; 5504 } 5505 5506 if (test_bit(ICE_DOWN, pf->state) || 5507 ice_is_reset_in_progress(pf->state)) { 5508 dev_err(dev, "can't suspend device in reset or already down\n"); 5509 if (!disabled) 5510 ice_service_task_restart(pf); 5511 return 0; 5512 } 5513 5514 ice_setup_mc_magic_wake(pf); 5515 5516 ice_prepare_for_shutdown(pf); 5517 5518 ice_set_wake(pf); 5519 5520 /* Free vectors, clear the interrupt scheme and release IRQs 5521 * for proper hibernation, especially with large number of CPUs. 5522 * Otherwise hibernation might fail when mapping all the vectors back 5523 * to CPU0. 5524 */ 5525 ice_free_irq_msix_misc(pf); 5526 ice_for_each_vsi(pf, v) { 5527 if (!pf->vsi[v]) 5528 continue; 5529 ice_vsi_free_q_vectors(pf->vsi[v]); 5530 } 5531 ice_clear_interrupt_scheme(pf); 5532 5533 pci_save_state(pdev); 5534 pci_wake_from_d3(pdev, pf->wol_ena); 5535 pci_set_power_state(pdev, PCI_D3hot); 5536 return 0; 5537 } 5538 5539 /** 5540 * ice_resume - PM callback for waking up from D3 5541 * @dev: generic device information structure 5542 */ 5543 static int __maybe_unused ice_resume(struct device *dev) 5544 { 5545 struct pci_dev *pdev = to_pci_dev(dev); 5546 enum ice_reset_req reset_type; 5547 struct ice_pf *pf; 5548 struct ice_hw *hw; 5549 int ret; 5550 5551 pci_set_power_state(pdev, PCI_D0); 5552 pci_restore_state(pdev); 5553 pci_save_state(pdev); 5554 5555 if (!pci_device_is_present(pdev)) 5556 return -ENODEV; 5557 5558 ret = pci_enable_device_mem(pdev); 5559 if (ret) { 5560 dev_err(dev, "Cannot enable device after suspend\n"); 5561 return ret; 5562 } 5563 5564 pf = pci_get_drvdata(pdev); 5565 hw = &pf->hw; 5566 5567 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5568 ice_print_wake_reason(pf); 5569 5570 /* We cleared the interrupt scheme when we suspended, so we need to 5571 * restore it now to resume device functionality. 5572 */ 5573 ret = ice_reinit_interrupt_scheme(pf); 5574 if (ret) 5575 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5576 5577 clear_bit(ICE_DOWN, pf->state); 5578 /* Now perform PF reset and rebuild */ 5579 reset_type = ICE_RESET_PFR; 5580 /* re-enable service task for reset, but allow reset to schedule it */ 5581 clear_bit(ICE_SERVICE_DIS, pf->state); 5582 5583 if (ice_schedule_reset(pf, reset_type)) 5584 dev_err(dev, "Reset during resume failed.\n"); 5585 5586 clear_bit(ICE_SUSPENDED, pf->state); 5587 ice_service_task_restart(pf); 5588 5589 /* Restart the service task */ 5590 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5591 5592 return 0; 5593 } 5594 #endif /* CONFIG_PM */ 5595 5596 /** 5597 * ice_pci_err_detected - warning that PCI error has been detected 5598 * @pdev: PCI device information struct 5599 * @err: the type of PCI error 5600 * 5601 * Called to warn that something happened on the PCI bus and the error handling 5602 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5603 */ 5604 static pci_ers_result_t 5605 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5606 { 5607 struct ice_pf *pf = pci_get_drvdata(pdev); 5608 5609 if (!pf) { 5610 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5611 __func__, err); 5612 return PCI_ERS_RESULT_DISCONNECT; 5613 } 5614 5615 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5616 ice_service_task_stop(pf); 5617 5618 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5619 set_bit(ICE_PFR_REQ, pf->state); 5620 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5621 } 5622 } 5623 5624 return PCI_ERS_RESULT_NEED_RESET; 5625 } 5626 5627 /** 5628 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5629 * @pdev: PCI device information struct 5630 * 5631 * Called to determine if the driver can recover from the PCI slot reset by 5632 * using a register read to determine if the device is recoverable. 5633 */ 5634 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5635 { 5636 struct ice_pf *pf = pci_get_drvdata(pdev); 5637 pci_ers_result_t result; 5638 int err; 5639 u32 reg; 5640 5641 err = pci_enable_device_mem(pdev); 5642 if (err) { 5643 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5644 err); 5645 result = PCI_ERS_RESULT_DISCONNECT; 5646 } else { 5647 pci_set_master(pdev); 5648 pci_restore_state(pdev); 5649 pci_save_state(pdev); 5650 pci_wake_from_d3(pdev, false); 5651 5652 /* Check for life */ 5653 reg = rd32(&pf->hw, GLGEN_RTRIG); 5654 if (!reg) 5655 result = PCI_ERS_RESULT_RECOVERED; 5656 else 5657 result = PCI_ERS_RESULT_DISCONNECT; 5658 } 5659 5660 return result; 5661 } 5662 5663 /** 5664 * ice_pci_err_resume - restart operations after PCI error recovery 5665 * @pdev: PCI device information struct 5666 * 5667 * Called to allow the driver to bring things back up after PCI error and/or 5668 * reset recovery have finished 5669 */ 5670 static void ice_pci_err_resume(struct pci_dev *pdev) 5671 { 5672 struct ice_pf *pf = pci_get_drvdata(pdev); 5673 5674 if (!pf) { 5675 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5676 __func__); 5677 return; 5678 } 5679 5680 if (test_bit(ICE_SUSPENDED, pf->state)) { 5681 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5682 __func__); 5683 return; 5684 } 5685 5686 ice_restore_all_vfs_msi_state(pf); 5687 5688 ice_do_reset(pf, ICE_RESET_PFR); 5689 ice_service_task_restart(pf); 5690 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5691 } 5692 5693 /** 5694 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5695 * @pdev: PCI device information struct 5696 */ 5697 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5698 { 5699 struct ice_pf *pf = pci_get_drvdata(pdev); 5700 5701 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5702 ice_service_task_stop(pf); 5703 5704 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5705 set_bit(ICE_PFR_REQ, pf->state); 5706 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5707 } 5708 } 5709 } 5710 5711 /** 5712 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5713 * @pdev: PCI device information struct 5714 */ 5715 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5716 { 5717 ice_pci_err_resume(pdev); 5718 } 5719 5720 /* ice_pci_tbl - PCI Device ID Table 5721 * 5722 * Wildcard entries (PCI_ANY_ID) should come last 5723 * Last entry must be all 0s 5724 * 5725 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5726 * Class, Class Mask, private data (not used) } 5727 */ 5728 static const struct pci_device_id ice_pci_tbl[] = { 5729 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5730 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5731 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5732 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5733 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5734 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5735 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5736 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5737 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5738 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5739 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5740 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5741 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5742 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5743 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5744 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5745 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5746 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5747 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5748 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5749 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5750 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5751 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5752 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5753 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5754 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5755 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) }, 5756 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) }, 5757 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) }, 5758 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) }, 5759 /* required last entry */ 5760 {} 5761 }; 5762 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5763 5764 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5765 5766 static const struct pci_error_handlers ice_pci_err_handler = { 5767 .error_detected = ice_pci_err_detected, 5768 .slot_reset = ice_pci_err_slot_reset, 5769 .reset_prepare = ice_pci_err_reset_prepare, 5770 .reset_done = ice_pci_err_reset_done, 5771 .resume = ice_pci_err_resume 5772 }; 5773 5774 static struct pci_driver ice_driver = { 5775 .name = KBUILD_MODNAME, 5776 .id_table = ice_pci_tbl, 5777 .probe = ice_probe, 5778 .remove = ice_remove, 5779 #ifdef CONFIG_PM 5780 .driver.pm = &ice_pm_ops, 5781 #endif /* CONFIG_PM */ 5782 .shutdown = ice_shutdown, 5783 .sriov_configure = ice_sriov_configure, 5784 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5785 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5786 .err_handler = &ice_pci_err_handler 5787 }; 5788 5789 /** 5790 * ice_module_init - Driver registration routine 5791 * 5792 * ice_module_init is the first routine called when the driver is 5793 * loaded. All it does is register with the PCI subsystem. 5794 */ 5795 static int __init ice_module_init(void) 5796 { 5797 int status = -ENOMEM; 5798 5799 pr_info("%s\n", ice_driver_string); 5800 pr_info("%s\n", ice_copyright); 5801 5802 ice_adv_lnk_speed_maps_init(); 5803 5804 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5805 if (!ice_wq) { 5806 pr_err("Failed to create workqueue\n"); 5807 return status; 5808 } 5809 5810 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5811 if (!ice_lag_wq) { 5812 pr_err("Failed to create LAG workqueue\n"); 5813 goto err_dest_wq; 5814 } 5815 5816 ice_debugfs_init(); 5817 5818 status = pci_register_driver(&ice_driver); 5819 if (status) { 5820 pr_err("failed to register PCI driver, err %d\n", status); 5821 goto err_dest_lag_wq; 5822 } 5823 5824 return 0; 5825 5826 err_dest_lag_wq: 5827 destroy_workqueue(ice_lag_wq); 5828 ice_debugfs_exit(); 5829 err_dest_wq: 5830 destroy_workqueue(ice_wq); 5831 return status; 5832 } 5833 module_init(ice_module_init); 5834 5835 /** 5836 * ice_module_exit - Driver exit cleanup routine 5837 * 5838 * ice_module_exit is called just before the driver is removed 5839 * from memory. 5840 */ 5841 static void __exit ice_module_exit(void) 5842 { 5843 pci_unregister_driver(&ice_driver); 5844 destroy_workqueue(ice_wq); 5845 destroy_workqueue(ice_lag_wq); 5846 pr_info("module unloaded\n"); 5847 } 5848 module_exit(ice_module_exit); 5849 5850 /** 5851 * ice_set_mac_address - NDO callback to set MAC address 5852 * @netdev: network interface device structure 5853 * @pi: pointer to an address structure 5854 * 5855 * Returns 0 on success, negative on failure 5856 */ 5857 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5858 { 5859 struct ice_netdev_priv *np = netdev_priv(netdev); 5860 struct ice_vsi *vsi = np->vsi; 5861 struct ice_pf *pf = vsi->back; 5862 struct ice_hw *hw = &pf->hw; 5863 struct sockaddr *addr = pi; 5864 u8 old_mac[ETH_ALEN]; 5865 u8 flags = 0; 5866 u8 *mac; 5867 int err; 5868 5869 mac = (u8 *)addr->sa_data; 5870 5871 if (!is_valid_ether_addr(mac)) 5872 return -EADDRNOTAVAIL; 5873 5874 if (test_bit(ICE_DOWN, pf->state) || 5875 ice_is_reset_in_progress(pf->state)) { 5876 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5877 mac); 5878 return -EBUSY; 5879 } 5880 5881 if (ice_chnl_dmac_fltr_cnt(pf)) { 5882 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5883 mac); 5884 return -EAGAIN; 5885 } 5886 5887 netif_addr_lock_bh(netdev); 5888 ether_addr_copy(old_mac, netdev->dev_addr); 5889 /* change the netdev's MAC address */ 5890 eth_hw_addr_set(netdev, mac); 5891 netif_addr_unlock_bh(netdev); 5892 5893 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5894 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5895 if (err && err != -ENOENT) { 5896 err = -EADDRNOTAVAIL; 5897 goto err_update_filters; 5898 } 5899 5900 /* Add filter for new MAC. If filter exists, return success */ 5901 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5902 if (err == -EEXIST) { 5903 /* Although this MAC filter is already present in hardware it's 5904 * possible in some cases (e.g. bonding) that dev_addr was 5905 * modified outside of the driver and needs to be restored back 5906 * to this value. 5907 */ 5908 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5909 5910 return 0; 5911 } else if (err) { 5912 /* error if the new filter addition failed */ 5913 err = -EADDRNOTAVAIL; 5914 } 5915 5916 err_update_filters: 5917 if (err) { 5918 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5919 mac); 5920 netif_addr_lock_bh(netdev); 5921 eth_hw_addr_set(netdev, old_mac); 5922 netif_addr_unlock_bh(netdev); 5923 return err; 5924 } 5925 5926 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5927 netdev->dev_addr); 5928 5929 /* write new MAC address to the firmware */ 5930 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5931 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5932 if (err) { 5933 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5934 mac, err); 5935 } 5936 return 0; 5937 } 5938 5939 /** 5940 * ice_set_rx_mode - NDO callback to set the netdev filters 5941 * @netdev: network interface device structure 5942 */ 5943 static void ice_set_rx_mode(struct net_device *netdev) 5944 { 5945 struct ice_netdev_priv *np = netdev_priv(netdev); 5946 struct ice_vsi *vsi = np->vsi; 5947 5948 if (!vsi || ice_is_switchdev_running(vsi->back)) 5949 return; 5950 5951 /* Set the flags to synchronize filters 5952 * ndo_set_rx_mode may be triggered even without a change in netdev 5953 * flags 5954 */ 5955 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5956 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5957 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5958 5959 /* schedule our worker thread which will take care of 5960 * applying the new filter changes 5961 */ 5962 ice_service_task_schedule(vsi->back); 5963 } 5964 5965 /** 5966 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5967 * @netdev: network interface device structure 5968 * @queue_index: Queue ID 5969 * @maxrate: maximum bandwidth in Mbps 5970 */ 5971 static int 5972 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5973 { 5974 struct ice_netdev_priv *np = netdev_priv(netdev); 5975 struct ice_vsi *vsi = np->vsi; 5976 u16 q_handle; 5977 int status; 5978 u8 tc; 5979 5980 /* Validate maxrate requested is within permitted range */ 5981 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5982 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5983 maxrate, queue_index); 5984 return -EINVAL; 5985 } 5986 5987 q_handle = vsi->tx_rings[queue_index]->q_handle; 5988 tc = ice_dcb_get_tc(vsi, queue_index); 5989 5990 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5991 if (!vsi) { 5992 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5993 queue_index); 5994 return -EINVAL; 5995 } 5996 5997 /* Set BW back to default, when user set maxrate to 0 */ 5998 if (!maxrate) 5999 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6000 q_handle, ICE_MAX_BW); 6001 else 6002 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6003 q_handle, ICE_MAX_BW, maxrate * 1000); 6004 if (status) 6005 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6006 status); 6007 6008 return status; 6009 } 6010 6011 /** 6012 * ice_fdb_add - add an entry to the hardware database 6013 * @ndm: the input from the stack 6014 * @tb: pointer to array of nladdr (unused) 6015 * @dev: the net device pointer 6016 * @addr: the MAC address entry being added 6017 * @vid: VLAN ID 6018 * @flags: instructions from stack about fdb operation 6019 * @extack: netlink extended ack 6020 */ 6021 static int 6022 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6023 struct net_device *dev, const unsigned char *addr, u16 vid, 6024 u16 flags, struct netlink_ext_ack __always_unused *extack) 6025 { 6026 int err; 6027 6028 if (vid) { 6029 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6030 return -EINVAL; 6031 } 6032 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6033 netdev_err(dev, "FDB only supports static addresses\n"); 6034 return -EINVAL; 6035 } 6036 6037 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6038 err = dev_uc_add_excl(dev, addr); 6039 else if (is_multicast_ether_addr(addr)) 6040 err = dev_mc_add_excl(dev, addr); 6041 else 6042 err = -EINVAL; 6043 6044 /* Only return duplicate errors if NLM_F_EXCL is set */ 6045 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6046 err = 0; 6047 6048 return err; 6049 } 6050 6051 /** 6052 * ice_fdb_del - delete an entry from the hardware database 6053 * @ndm: the input from the stack 6054 * @tb: pointer to array of nladdr (unused) 6055 * @dev: the net device pointer 6056 * @addr: the MAC address entry being added 6057 * @vid: VLAN ID 6058 * @extack: netlink extended ack 6059 */ 6060 static int 6061 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6062 struct net_device *dev, const unsigned char *addr, 6063 __always_unused u16 vid, struct netlink_ext_ack *extack) 6064 { 6065 int err; 6066 6067 if (ndm->ndm_state & NUD_PERMANENT) { 6068 netdev_err(dev, "FDB only supports static addresses\n"); 6069 return -EINVAL; 6070 } 6071 6072 if (is_unicast_ether_addr(addr)) 6073 err = dev_uc_del(dev, addr); 6074 else if (is_multicast_ether_addr(addr)) 6075 err = dev_mc_del(dev, addr); 6076 else 6077 err = -EINVAL; 6078 6079 return err; 6080 } 6081 6082 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6083 NETIF_F_HW_VLAN_CTAG_TX | \ 6084 NETIF_F_HW_VLAN_STAG_RX | \ 6085 NETIF_F_HW_VLAN_STAG_TX) 6086 6087 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6088 NETIF_F_HW_VLAN_STAG_RX) 6089 6090 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6091 NETIF_F_HW_VLAN_STAG_FILTER) 6092 6093 /** 6094 * ice_fix_features - fix the netdev features flags based on device limitations 6095 * @netdev: ptr to the netdev that flags are being fixed on 6096 * @features: features that need to be checked and possibly fixed 6097 * 6098 * Make sure any fixups are made to features in this callback. This enables the 6099 * driver to not have to check unsupported configurations throughout the driver 6100 * because that's the responsiblity of this callback. 6101 * 6102 * Single VLAN Mode (SVM) Supported Features: 6103 * NETIF_F_HW_VLAN_CTAG_FILTER 6104 * NETIF_F_HW_VLAN_CTAG_RX 6105 * NETIF_F_HW_VLAN_CTAG_TX 6106 * 6107 * Double VLAN Mode (DVM) Supported Features: 6108 * NETIF_F_HW_VLAN_CTAG_FILTER 6109 * NETIF_F_HW_VLAN_CTAG_RX 6110 * NETIF_F_HW_VLAN_CTAG_TX 6111 * 6112 * NETIF_F_HW_VLAN_STAG_FILTER 6113 * NETIF_HW_VLAN_STAG_RX 6114 * NETIF_HW_VLAN_STAG_TX 6115 * 6116 * Features that need fixing: 6117 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6118 * These are mutually exlusive as the VSI context cannot support multiple 6119 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6120 * is not done, then default to clearing the requested STAG offload 6121 * settings. 6122 * 6123 * All supported filtering has to be enabled or disabled together. For 6124 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6125 * together. If this is not done, then default to VLAN filtering disabled. 6126 * These are mutually exclusive as there is currently no way to 6127 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6128 * prune rules. 6129 */ 6130 static netdev_features_t 6131 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6132 { 6133 struct ice_netdev_priv *np = netdev_priv(netdev); 6134 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6135 bool cur_ctag, cur_stag, req_ctag, req_stag; 6136 6137 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6138 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6139 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6140 6141 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6142 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6143 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6144 6145 if (req_vlan_fltr != cur_vlan_fltr) { 6146 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6147 if (req_ctag && req_stag) { 6148 features |= NETIF_VLAN_FILTERING_FEATURES; 6149 } else if (!req_ctag && !req_stag) { 6150 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6151 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6152 (!cur_stag && req_stag && !cur_ctag)) { 6153 features |= NETIF_VLAN_FILTERING_FEATURES; 6154 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6155 } else if ((cur_ctag && !req_ctag && cur_stag) || 6156 (cur_stag && !req_stag && cur_ctag)) { 6157 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6158 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6159 } 6160 } else { 6161 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6162 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6163 6164 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6165 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6166 } 6167 } 6168 6169 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6170 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6171 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6172 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6173 NETIF_F_HW_VLAN_STAG_TX); 6174 } 6175 6176 if (!(netdev->features & NETIF_F_RXFCS) && 6177 (features & NETIF_F_RXFCS) && 6178 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6179 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6180 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6181 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6182 } 6183 6184 return features; 6185 } 6186 6187 /** 6188 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6189 * @vsi: PF's VSI 6190 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6191 * 6192 * Store current stripped VLAN proto in ring packet context, 6193 * so it can be accessed more efficiently by packet processing code. 6194 */ 6195 static void 6196 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6197 { 6198 u16 i; 6199 6200 ice_for_each_alloc_rxq(vsi, i) 6201 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6202 } 6203 6204 /** 6205 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6206 * @vsi: PF's VSI 6207 * @features: features used to determine VLAN offload settings 6208 * 6209 * First, determine the vlan_ethertype based on the VLAN offload bits in 6210 * features. Then determine if stripping and insertion should be enabled or 6211 * disabled. Finally enable or disable VLAN stripping and insertion. 6212 */ 6213 static int 6214 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6215 { 6216 bool enable_stripping = true, enable_insertion = true; 6217 struct ice_vsi_vlan_ops *vlan_ops; 6218 int strip_err = 0, insert_err = 0; 6219 u16 vlan_ethertype = 0; 6220 6221 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6222 6223 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6224 vlan_ethertype = ETH_P_8021AD; 6225 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6226 vlan_ethertype = ETH_P_8021Q; 6227 6228 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6229 enable_stripping = false; 6230 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6231 enable_insertion = false; 6232 6233 if (enable_stripping) 6234 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6235 else 6236 strip_err = vlan_ops->dis_stripping(vsi); 6237 6238 if (enable_insertion) 6239 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6240 else 6241 insert_err = vlan_ops->dis_insertion(vsi); 6242 6243 if (strip_err || insert_err) 6244 return -EIO; 6245 6246 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6247 htons(vlan_ethertype) : 0); 6248 6249 return 0; 6250 } 6251 6252 /** 6253 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6254 * @vsi: PF's VSI 6255 * @features: features used to determine VLAN filtering settings 6256 * 6257 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6258 * features. 6259 */ 6260 static int 6261 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6262 { 6263 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6264 int err = 0; 6265 6266 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6267 * if either bit is set 6268 */ 6269 if (features & 6270 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6271 err = vlan_ops->ena_rx_filtering(vsi); 6272 else 6273 err = vlan_ops->dis_rx_filtering(vsi); 6274 6275 return err; 6276 } 6277 6278 /** 6279 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6280 * @netdev: ptr to the netdev being adjusted 6281 * @features: the feature set that the stack is suggesting 6282 * 6283 * Only update VLAN settings if the requested_vlan_features are different than 6284 * the current_vlan_features. 6285 */ 6286 static int 6287 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6288 { 6289 netdev_features_t current_vlan_features, requested_vlan_features; 6290 struct ice_netdev_priv *np = netdev_priv(netdev); 6291 struct ice_vsi *vsi = np->vsi; 6292 int err; 6293 6294 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6295 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6296 if (current_vlan_features ^ requested_vlan_features) { 6297 if ((features & NETIF_F_RXFCS) && 6298 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6299 dev_err(ice_pf_to_dev(vsi->back), 6300 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6301 return -EIO; 6302 } 6303 6304 err = ice_set_vlan_offload_features(vsi, features); 6305 if (err) 6306 return err; 6307 } 6308 6309 current_vlan_features = netdev->features & 6310 NETIF_VLAN_FILTERING_FEATURES; 6311 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6312 if (current_vlan_features ^ requested_vlan_features) { 6313 err = ice_set_vlan_filtering_features(vsi, features); 6314 if (err) 6315 return err; 6316 } 6317 6318 return 0; 6319 } 6320 6321 /** 6322 * ice_set_loopback - turn on/off loopback mode on underlying PF 6323 * @vsi: ptr to VSI 6324 * @ena: flag to indicate the on/off setting 6325 */ 6326 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6327 { 6328 bool if_running = netif_running(vsi->netdev); 6329 int ret; 6330 6331 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6332 ret = ice_down(vsi); 6333 if (ret) { 6334 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6335 return ret; 6336 } 6337 } 6338 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6339 if (ret) 6340 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6341 if (if_running) 6342 ret = ice_up(vsi); 6343 6344 return ret; 6345 } 6346 6347 /** 6348 * ice_set_features - set the netdev feature flags 6349 * @netdev: ptr to the netdev being adjusted 6350 * @features: the feature set that the stack is suggesting 6351 */ 6352 static int 6353 ice_set_features(struct net_device *netdev, netdev_features_t features) 6354 { 6355 netdev_features_t changed = netdev->features ^ features; 6356 struct ice_netdev_priv *np = netdev_priv(netdev); 6357 struct ice_vsi *vsi = np->vsi; 6358 struct ice_pf *pf = vsi->back; 6359 int ret = 0; 6360 6361 /* Don't set any netdev advanced features with device in Safe Mode */ 6362 if (ice_is_safe_mode(pf)) { 6363 dev_err(ice_pf_to_dev(pf), 6364 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6365 return ret; 6366 } 6367 6368 /* Do not change setting during reset */ 6369 if (ice_is_reset_in_progress(pf->state)) { 6370 dev_err(ice_pf_to_dev(pf), 6371 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6372 return -EBUSY; 6373 } 6374 6375 /* Multiple features can be changed in one call so keep features in 6376 * separate if/else statements to guarantee each feature is checked 6377 */ 6378 if (changed & NETIF_F_RXHASH) 6379 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6380 6381 ret = ice_set_vlan_features(netdev, features); 6382 if (ret) 6383 return ret; 6384 6385 /* Turn on receive of FCS aka CRC, and after setting this 6386 * flag the packet data will have the 4 byte CRC appended 6387 */ 6388 if (changed & NETIF_F_RXFCS) { 6389 if ((features & NETIF_F_RXFCS) && 6390 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6391 dev_err(ice_pf_to_dev(vsi->back), 6392 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6393 return -EIO; 6394 } 6395 6396 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6397 ret = ice_down_up(vsi); 6398 if (ret) 6399 return ret; 6400 } 6401 6402 if (changed & NETIF_F_NTUPLE) { 6403 bool ena = !!(features & NETIF_F_NTUPLE); 6404 6405 ice_vsi_manage_fdir(vsi, ena); 6406 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6407 } 6408 6409 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6410 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6411 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6412 return -EACCES; 6413 } 6414 6415 if (changed & NETIF_F_HW_TC) { 6416 bool ena = !!(features & NETIF_F_HW_TC); 6417 6418 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6419 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6420 } 6421 6422 if (changed & NETIF_F_LOOPBACK) 6423 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6424 6425 return ret; 6426 } 6427 6428 /** 6429 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6430 * @vsi: VSI to setup VLAN properties for 6431 */ 6432 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6433 { 6434 int err; 6435 6436 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6437 if (err) 6438 return err; 6439 6440 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6441 if (err) 6442 return err; 6443 6444 return ice_vsi_add_vlan_zero(vsi); 6445 } 6446 6447 /** 6448 * ice_vsi_cfg_lan - Setup the VSI lan related config 6449 * @vsi: the VSI being configured 6450 * 6451 * Return 0 on success and negative value on error 6452 */ 6453 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6454 { 6455 int err; 6456 6457 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6458 ice_set_rx_mode(vsi->netdev); 6459 6460 err = ice_vsi_vlan_setup(vsi); 6461 if (err) 6462 return err; 6463 } 6464 ice_vsi_cfg_dcb_rings(vsi); 6465 6466 err = ice_vsi_cfg_lan_txqs(vsi); 6467 if (!err && ice_is_xdp_ena_vsi(vsi)) 6468 err = ice_vsi_cfg_xdp_txqs(vsi); 6469 if (!err) 6470 err = ice_vsi_cfg_rxqs(vsi); 6471 6472 return err; 6473 } 6474 6475 /* THEORY OF MODERATION: 6476 * The ice driver hardware works differently than the hardware that DIMLIB was 6477 * originally made for. ice hardware doesn't have packet count limits that 6478 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6479 * which is hard-coded to a limit of 250,000 ints/second. 6480 * If not using dynamic moderation, the INTRL value can be modified 6481 * by ethtool rx-usecs-high. 6482 */ 6483 struct ice_dim { 6484 /* the throttle rate for interrupts, basically worst case delay before 6485 * an initial interrupt fires, value is stored in microseconds. 6486 */ 6487 u16 itr; 6488 }; 6489 6490 /* Make a different profile for Rx that doesn't allow quite so aggressive 6491 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6492 * second. 6493 */ 6494 static const struct ice_dim rx_profile[] = { 6495 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6496 {8}, /* 125,000 ints/s */ 6497 {16}, /* 62,500 ints/s */ 6498 {62}, /* 16,129 ints/s */ 6499 {126} /* 7,936 ints/s */ 6500 }; 6501 6502 /* The transmit profile, which has the same sorts of values 6503 * as the previous struct 6504 */ 6505 static const struct ice_dim tx_profile[] = { 6506 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6507 {8}, /* 125,000 ints/s */ 6508 {40}, /* 16,125 ints/s */ 6509 {128}, /* 7,812 ints/s */ 6510 {256} /* 3,906 ints/s */ 6511 }; 6512 6513 static void ice_tx_dim_work(struct work_struct *work) 6514 { 6515 struct ice_ring_container *rc; 6516 struct dim *dim; 6517 u16 itr; 6518 6519 dim = container_of(work, struct dim, work); 6520 rc = dim->priv; 6521 6522 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6523 6524 /* look up the values in our local table */ 6525 itr = tx_profile[dim->profile_ix].itr; 6526 6527 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6528 ice_write_itr(rc, itr); 6529 6530 dim->state = DIM_START_MEASURE; 6531 } 6532 6533 static void ice_rx_dim_work(struct work_struct *work) 6534 { 6535 struct ice_ring_container *rc; 6536 struct dim *dim; 6537 u16 itr; 6538 6539 dim = container_of(work, struct dim, work); 6540 rc = dim->priv; 6541 6542 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6543 6544 /* look up the values in our local table */ 6545 itr = rx_profile[dim->profile_ix].itr; 6546 6547 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6548 ice_write_itr(rc, itr); 6549 6550 dim->state = DIM_START_MEASURE; 6551 } 6552 6553 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6554 6555 /** 6556 * ice_init_moderation - set up interrupt moderation 6557 * @q_vector: the vector containing rings to be configured 6558 * 6559 * Set up interrupt moderation registers, with the intent to do the right thing 6560 * when called from reset or from probe, and whether or not dynamic moderation 6561 * is enabled or not. Take special care to write all the registers in both 6562 * dynamic moderation mode or not in order to make sure hardware is in a known 6563 * state. 6564 */ 6565 static void ice_init_moderation(struct ice_q_vector *q_vector) 6566 { 6567 struct ice_ring_container *rc; 6568 bool tx_dynamic, rx_dynamic; 6569 6570 rc = &q_vector->tx; 6571 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6572 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6573 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6574 rc->dim.priv = rc; 6575 tx_dynamic = ITR_IS_DYNAMIC(rc); 6576 6577 /* set the initial TX ITR to match the above */ 6578 ice_write_itr(rc, tx_dynamic ? 6579 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6580 6581 rc = &q_vector->rx; 6582 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6583 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6584 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6585 rc->dim.priv = rc; 6586 rx_dynamic = ITR_IS_DYNAMIC(rc); 6587 6588 /* set the initial RX ITR to match the above */ 6589 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6590 rc->itr_setting); 6591 6592 ice_set_q_vector_intrl(q_vector); 6593 } 6594 6595 /** 6596 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6597 * @vsi: the VSI being configured 6598 */ 6599 static void ice_napi_enable_all(struct ice_vsi *vsi) 6600 { 6601 int q_idx; 6602 6603 if (!vsi->netdev) 6604 return; 6605 6606 ice_for_each_q_vector(vsi, q_idx) { 6607 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6608 6609 ice_init_moderation(q_vector); 6610 6611 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6612 napi_enable(&q_vector->napi); 6613 } 6614 } 6615 6616 /** 6617 * ice_up_complete - Finish the last steps of bringing up a connection 6618 * @vsi: The VSI being configured 6619 * 6620 * Return 0 on success and negative value on error 6621 */ 6622 static int ice_up_complete(struct ice_vsi *vsi) 6623 { 6624 struct ice_pf *pf = vsi->back; 6625 int err; 6626 6627 ice_vsi_cfg_msix(vsi); 6628 6629 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6630 * Tx queue group list was configured and the context bits were 6631 * programmed using ice_vsi_cfg_txqs 6632 */ 6633 err = ice_vsi_start_all_rx_rings(vsi); 6634 if (err) 6635 return err; 6636 6637 clear_bit(ICE_VSI_DOWN, vsi->state); 6638 ice_napi_enable_all(vsi); 6639 ice_vsi_ena_irq(vsi); 6640 6641 if (vsi->port_info && 6642 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6643 vsi->netdev && vsi->type == ICE_VSI_PF) { 6644 ice_print_link_msg(vsi, true); 6645 netif_tx_start_all_queues(vsi->netdev); 6646 netif_carrier_on(vsi->netdev); 6647 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6648 } 6649 6650 /* Perform an initial read of the statistics registers now to 6651 * set the baseline so counters are ready when interface is up 6652 */ 6653 ice_update_eth_stats(vsi); 6654 6655 if (vsi->type == ICE_VSI_PF) 6656 ice_service_task_schedule(pf); 6657 6658 return 0; 6659 } 6660 6661 /** 6662 * ice_up - Bring the connection back up after being down 6663 * @vsi: VSI being configured 6664 */ 6665 int ice_up(struct ice_vsi *vsi) 6666 { 6667 int err; 6668 6669 err = ice_vsi_cfg_lan(vsi); 6670 if (!err) 6671 err = ice_up_complete(vsi); 6672 6673 return err; 6674 } 6675 6676 /** 6677 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6678 * @syncp: pointer to u64_stats_sync 6679 * @stats: stats that pkts and bytes count will be taken from 6680 * @pkts: packets stats counter 6681 * @bytes: bytes stats counter 6682 * 6683 * This function fetches stats from the ring considering the atomic operations 6684 * that needs to be performed to read u64 values in 32 bit machine. 6685 */ 6686 void 6687 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6688 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6689 { 6690 unsigned int start; 6691 6692 do { 6693 start = u64_stats_fetch_begin(syncp); 6694 *pkts = stats.pkts; 6695 *bytes = stats.bytes; 6696 } while (u64_stats_fetch_retry(syncp, start)); 6697 } 6698 6699 /** 6700 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6701 * @vsi: the VSI to be updated 6702 * @vsi_stats: the stats struct to be updated 6703 * @rings: rings to work on 6704 * @count: number of rings 6705 */ 6706 static void 6707 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6708 struct rtnl_link_stats64 *vsi_stats, 6709 struct ice_tx_ring **rings, u16 count) 6710 { 6711 u16 i; 6712 6713 for (i = 0; i < count; i++) { 6714 struct ice_tx_ring *ring; 6715 u64 pkts = 0, bytes = 0; 6716 6717 ring = READ_ONCE(rings[i]); 6718 if (!ring || !ring->ring_stats) 6719 continue; 6720 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6721 ring->ring_stats->stats, &pkts, 6722 &bytes); 6723 vsi_stats->tx_packets += pkts; 6724 vsi_stats->tx_bytes += bytes; 6725 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6726 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6727 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6728 } 6729 } 6730 6731 /** 6732 * ice_update_vsi_ring_stats - Update VSI stats counters 6733 * @vsi: the VSI to be updated 6734 */ 6735 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6736 { 6737 struct rtnl_link_stats64 *net_stats, *stats_prev; 6738 struct rtnl_link_stats64 *vsi_stats; 6739 u64 pkts, bytes; 6740 int i; 6741 6742 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6743 if (!vsi_stats) 6744 return; 6745 6746 /* reset non-netdev (extended) stats */ 6747 vsi->tx_restart = 0; 6748 vsi->tx_busy = 0; 6749 vsi->tx_linearize = 0; 6750 vsi->rx_buf_failed = 0; 6751 vsi->rx_page_failed = 0; 6752 6753 rcu_read_lock(); 6754 6755 /* update Tx rings counters */ 6756 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6757 vsi->num_txq); 6758 6759 /* update Rx rings counters */ 6760 ice_for_each_rxq(vsi, i) { 6761 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6762 struct ice_ring_stats *ring_stats; 6763 6764 ring_stats = ring->ring_stats; 6765 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6766 ring_stats->stats, &pkts, 6767 &bytes); 6768 vsi_stats->rx_packets += pkts; 6769 vsi_stats->rx_bytes += bytes; 6770 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6771 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6772 } 6773 6774 /* update XDP Tx rings counters */ 6775 if (ice_is_xdp_ena_vsi(vsi)) 6776 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6777 vsi->num_xdp_txq); 6778 6779 rcu_read_unlock(); 6780 6781 net_stats = &vsi->net_stats; 6782 stats_prev = &vsi->net_stats_prev; 6783 6784 /* clear prev counters after reset */ 6785 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6786 vsi_stats->rx_packets < stats_prev->rx_packets) { 6787 stats_prev->tx_packets = 0; 6788 stats_prev->tx_bytes = 0; 6789 stats_prev->rx_packets = 0; 6790 stats_prev->rx_bytes = 0; 6791 } 6792 6793 /* update netdev counters */ 6794 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6795 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6796 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6797 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6798 6799 stats_prev->tx_packets = vsi_stats->tx_packets; 6800 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6801 stats_prev->rx_packets = vsi_stats->rx_packets; 6802 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6803 6804 kfree(vsi_stats); 6805 } 6806 6807 /** 6808 * ice_update_vsi_stats - Update VSI stats counters 6809 * @vsi: the VSI to be updated 6810 */ 6811 void ice_update_vsi_stats(struct ice_vsi *vsi) 6812 { 6813 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6814 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6815 struct ice_pf *pf = vsi->back; 6816 6817 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6818 test_bit(ICE_CFG_BUSY, pf->state)) 6819 return; 6820 6821 /* get stats as recorded by Tx/Rx rings */ 6822 ice_update_vsi_ring_stats(vsi); 6823 6824 /* get VSI stats as recorded by the hardware */ 6825 ice_update_eth_stats(vsi); 6826 6827 cur_ns->tx_errors = cur_es->tx_errors; 6828 cur_ns->rx_dropped = cur_es->rx_discards; 6829 cur_ns->tx_dropped = cur_es->tx_discards; 6830 cur_ns->multicast = cur_es->rx_multicast; 6831 6832 /* update some more netdev stats if this is main VSI */ 6833 if (vsi->type == ICE_VSI_PF) { 6834 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6835 cur_ns->rx_errors = pf->stats.crc_errors + 6836 pf->stats.illegal_bytes + 6837 pf->stats.rx_undersize + 6838 pf->hw_csum_rx_error + 6839 pf->stats.rx_jabber + 6840 pf->stats.rx_fragments + 6841 pf->stats.rx_oversize; 6842 /* record drops from the port level */ 6843 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6844 } 6845 } 6846 6847 /** 6848 * ice_update_pf_stats - Update PF port stats counters 6849 * @pf: PF whose stats needs to be updated 6850 */ 6851 void ice_update_pf_stats(struct ice_pf *pf) 6852 { 6853 struct ice_hw_port_stats *prev_ps, *cur_ps; 6854 struct ice_hw *hw = &pf->hw; 6855 u16 fd_ctr_base; 6856 u8 port; 6857 6858 port = hw->port_info->lport; 6859 prev_ps = &pf->stats_prev; 6860 cur_ps = &pf->stats; 6861 6862 if (ice_is_reset_in_progress(pf->state)) 6863 pf->stat_prev_loaded = false; 6864 6865 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6866 &prev_ps->eth.rx_bytes, 6867 &cur_ps->eth.rx_bytes); 6868 6869 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6870 &prev_ps->eth.rx_unicast, 6871 &cur_ps->eth.rx_unicast); 6872 6873 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6874 &prev_ps->eth.rx_multicast, 6875 &cur_ps->eth.rx_multicast); 6876 6877 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6878 &prev_ps->eth.rx_broadcast, 6879 &cur_ps->eth.rx_broadcast); 6880 6881 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6882 &prev_ps->eth.rx_discards, 6883 &cur_ps->eth.rx_discards); 6884 6885 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6886 &prev_ps->eth.tx_bytes, 6887 &cur_ps->eth.tx_bytes); 6888 6889 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6890 &prev_ps->eth.tx_unicast, 6891 &cur_ps->eth.tx_unicast); 6892 6893 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6894 &prev_ps->eth.tx_multicast, 6895 &cur_ps->eth.tx_multicast); 6896 6897 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6898 &prev_ps->eth.tx_broadcast, 6899 &cur_ps->eth.tx_broadcast); 6900 6901 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6902 &prev_ps->tx_dropped_link_down, 6903 &cur_ps->tx_dropped_link_down); 6904 6905 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6906 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6907 6908 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6909 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6910 6911 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6912 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6913 6914 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6915 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6916 6917 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6918 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6919 6920 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6921 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6922 6923 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6924 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6925 6926 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6927 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6928 6929 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6930 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6931 6932 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6933 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6934 6935 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6936 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6937 6938 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6939 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6940 6941 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6942 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6943 6944 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6945 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6946 6947 fd_ctr_base = hw->fd_ctr_base; 6948 6949 ice_stat_update40(hw, 6950 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6951 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6952 &cur_ps->fd_sb_match); 6953 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6954 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6955 6956 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6957 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6958 6959 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6960 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6961 6962 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6963 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6964 6965 ice_update_dcb_stats(pf); 6966 6967 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6968 &prev_ps->crc_errors, &cur_ps->crc_errors); 6969 6970 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6971 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6972 6973 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6974 &prev_ps->mac_local_faults, 6975 &cur_ps->mac_local_faults); 6976 6977 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6978 &prev_ps->mac_remote_faults, 6979 &cur_ps->mac_remote_faults); 6980 6981 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6982 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6983 6984 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6985 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6986 6987 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6988 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6989 6990 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6991 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6992 6993 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6994 6995 pf->stat_prev_loaded = true; 6996 } 6997 6998 /** 6999 * ice_get_stats64 - get statistics for network device structure 7000 * @netdev: network interface device structure 7001 * @stats: main device statistics structure 7002 */ 7003 static 7004 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7005 { 7006 struct ice_netdev_priv *np = netdev_priv(netdev); 7007 struct rtnl_link_stats64 *vsi_stats; 7008 struct ice_vsi *vsi = np->vsi; 7009 7010 vsi_stats = &vsi->net_stats; 7011 7012 if (!vsi->num_txq || !vsi->num_rxq) 7013 return; 7014 7015 /* netdev packet/byte stats come from ring counter. These are obtained 7016 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7017 * But, only call the update routine and read the registers if VSI is 7018 * not down. 7019 */ 7020 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7021 ice_update_vsi_ring_stats(vsi); 7022 stats->tx_packets = vsi_stats->tx_packets; 7023 stats->tx_bytes = vsi_stats->tx_bytes; 7024 stats->rx_packets = vsi_stats->rx_packets; 7025 stats->rx_bytes = vsi_stats->rx_bytes; 7026 7027 /* The rest of the stats can be read from the hardware but instead we 7028 * just return values that the watchdog task has already obtained from 7029 * the hardware. 7030 */ 7031 stats->multicast = vsi_stats->multicast; 7032 stats->tx_errors = vsi_stats->tx_errors; 7033 stats->tx_dropped = vsi_stats->tx_dropped; 7034 stats->rx_errors = vsi_stats->rx_errors; 7035 stats->rx_dropped = vsi_stats->rx_dropped; 7036 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7037 stats->rx_length_errors = vsi_stats->rx_length_errors; 7038 } 7039 7040 /** 7041 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7042 * @vsi: VSI having NAPI disabled 7043 */ 7044 static void ice_napi_disable_all(struct ice_vsi *vsi) 7045 { 7046 int q_idx; 7047 7048 if (!vsi->netdev) 7049 return; 7050 7051 ice_for_each_q_vector(vsi, q_idx) { 7052 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7053 7054 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7055 napi_disable(&q_vector->napi); 7056 7057 cancel_work_sync(&q_vector->tx.dim.work); 7058 cancel_work_sync(&q_vector->rx.dim.work); 7059 } 7060 } 7061 7062 /** 7063 * ice_down - Shutdown the connection 7064 * @vsi: The VSI being stopped 7065 * 7066 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7067 */ 7068 int ice_down(struct ice_vsi *vsi) 7069 { 7070 int i, tx_err, rx_err, vlan_err = 0; 7071 7072 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7073 7074 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 7075 vlan_err = ice_vsi_del_vlan_zero(vsi); 7076 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7077 netif_carrier_off(vsi->netdev); 7078 netif_tx_disable(vsi->netdev); 7079 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 7080 ice_eswitch_stop_all_tx_queues(vsi->back); 7081 } 7082 7083 ice_vsi_dis_irq(vsi); 7084 7085 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7086 if (tx_err) 7087 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7088 vsi->vsi_num, tx_err); 7089 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7090 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7091 if (tx_err) 7092 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7093 vsi->vsi_num, tx_err); 7094 } 7095 7096 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7097 if (rx_err) 7098 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7099 vsi->vsi_num, rx_err); 7100 7101 ice_napi_disable_all(vsi); 7102 7103 ice_for_each_txq(vsi, i) 7104 ice_clean_tx_ring(vsi->tx_rings[i]); 7105 7106 if (ice_is_xdp_ena_vsi(vsi)) 7107 ice_for_each_xdp_txq(vsi, i) 7108 ice_clean_tx_ring(vsi->xdp_rings[i]); 7109 7110 ice_for_each_rxq(vsi, i) 7111 ice_clean_rx_ring(vsi->rx_rings[i]); 7112 7113 if (tx_err || rx_err || vlan_err) { 7114 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7115 vsi->vsi_num, vsi->vsw->sw_id); 7116 return -EIO; 7117 } 7118 7119 return 0; 7120 } 7121 7122 /** 7123 * ice_down_up - shutdown the VSI connection and bring it up 7124 * @vsi: the VSI to be reconnected 7125 */ 7126 int ice_down_up(struct ice_vsi *vsi) 7127 { 7128 int ret; 7129 7130 /* if DOWN already set, nothing to do */ 7131 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7132 return 0; 7133 7134 ret = ice_down(vsi); 7135 if (ret) 7136 return ret; 7137 7138 ret = ice_up(vsi); 7139 if (ret) { 7140 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7141 return ret; 7142 } 7143 7144 return 0; 7145 } 7146 7147 /** 7148 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7149 * @vsi: VSI having resources allocated 7150 * 7151 * Return 0 on success, negative on failure 7152 */ 7153 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7154 { 7155 int i, err = 0; 7156 7157 if (!vsi->num_txq) { 7158 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7159 vsi->vsi_num); 7160 return -EINVAL; 7161 } 7162 7163 ice_for_each_txq(vsi, i) { 7164 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7165 7166 if (!ring) 7167 return -EINVAL; 7168 7169 if (vsi->netdev) 7170 ring->netdev = vsi->netdev; 7171 err = ice_setup_tx_ring(ring); 7172 if (err) 7173 break; 7174 } 7175 7176 return err; 7177 } 7178 7179 /** 7180 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7181 * @vsi: VSI having resources allocated 7182 * 7183 * Return 0 on success, negative on failure 7184 */ 7185 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7186 { 7187 int i, err = 0; 7188 7189 if (!vsi->num_rxq) { 7190 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7191 vsi->vsi_num); 7192 return -EINVAL; 7193 } 7194 7195 ice_for_each_rxq(vsi, i) { 7196 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7197 7198 if (!ring) 7199 return -EINVAL; 7200 7201 if (vsi->netdev) 7202 ring->netdev = vsi->netdev; 7203 err = ice_setup_rx_ring(ring); 7204 if (err) 7205 break; 7206 } 7207 7208 return err; 7209 } 7210 7211 /** 7212 * ice_vsi_open_ctrl - open control VSI for use 7213 * @vsi: the VSI to open 7214 * 7215 * Initialization of the Control VSI 7216 * 7217 * Returns 0 on success, negative value on error 7218 */ 7219 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7220 { 7221 char int_name[ICE_INT_NAME_STR_LEN]; 7222 struct ice_pf *pf = vsi->back; 7223 struct device *dev; 7224 int err; 7225 7226 dev = ice_pf_to_dev(pf); 7227 /* allocate descriptors */ 7228 err = ice_vsi_setup_tx_rings(vsi); 7229 if (err) 7230 goto err_setup_tx; 7231 7232 err = ice_vsi_setup_rx_rings(vsi); 7233 if (err) 7234 goto err_setup_rx; 7235 7236 err = ice_vsi_cfg_lan(vsi); 7237 if (err) 7238 goto err_setup_rx; 7239 7240 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7241 dev_driver_string(dev), dev_name(dev)); 7242 err = ice_vsi_req_irq_msix(vsi, int_name); 7243 if (err) 7244 goto err_setup_rx; 7245 7246 ice_vsi_cfg_msix(vsi); 7247 7248 err = ice_vsi_start_all_rx_rings(vsi); 7249 if (err) 7250 goto err_up_complete; 7251 7252 clear_bit(ICE_VSI_DOWN, vsi->state); 7253 ice_vsi_ena_irq(vsi); 7254 7255 return 0; 7256 7257 err_up_complete: 7258 ice_down(vsi); 7259 err_setup_rx: 7260 ice_vsi_free_rx_rings(vsi); 7261 err_setup_tx: 7262 ice_vsi_free_tx_rings(vsi); 7263 7264 return err; 7265 } 7266 7267 /** 7268 * ice_vsi_open - Called when a network interface is made active 7269 * @vsi: the VSI to open 7270 * 7271 * Initialization of the VSI 7272 * 7273 * Returns 0 on success, negative value on error 7274 */ 7275 int ice_vsi_open(struct ice_vsi *vsi) 7276 { 7277 char int_name[ICE_INT_NAME_STR_LEN]; 7278 struct ice_pf *pf = vsi->back; 7279 int err; 7280 7281 /* allocate descriptors */ 7282 err = ice_vsi_setup_tx_rings(vsi); 7283 if (err) 7284 goto err_setup_tx; 7285 7286 err = ice_vsi_setup_rx_rings(vsi); 7287 if (err) 7288 goto err_setup_rx; 7289 7290 err = ice_vsi_cfg_lan(vsi); 7291 if (err) 7292 goto err_setup_rx; 7293 7294 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7295 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7296 err = ice_vsi_req_irq_msix(vsi, int_name); 7297 if (err) 7298 goto err_setup_rx; 7299 7300 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7301 7302 if (vsi->type == ICE_VSI_PF) { 7303 /* Notify the stack of the actual queue counts. */ 7304 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7305 if (err) 7306 goto err_set_qs; 7307 7308 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7309 if (err) 7310 goto err_set_qs; 7311 } 7312 7313 err = ice_up_complete(vsi); 7314 if (err) 7315 goto err_up_complete; 7316 7317 return 0; 7318 7319 err_up_complete: 7320 ice_down(vsi); 7321 err_set_qs: 7322 ice_vsi_free_irq(vsi); 7323 err_setup_rx: 7324 ice_vsi_free_rx_rings(vsi); 7325 err_setup_tx: 7326 ice_vsi_free_tx_rings(vsi); 7327 7328 return err; 7329 } 7330 7331 /** 7332 * ice_vsi_release_all - Delete all VSIs 7333 * @pf: PF from which all VSIs are being removed 7334 */ 7335 static void ice_vsi_release_all(struct ice_pf *pf) 7336 { 7337 int err, i; 7338 7339 if (!pf->vsi) 7340 return; 7341 7342 ice_for_each_vsi(pf, i) { 7343 if (!pf->vsi[i]) 7344 continue; 7345 7346 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7347 continue; 7348 7349 err = ice_vsi_release(pf->vsi[i]); 7350 if (err) 7351 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7352 i, err, pf->vsi[i]->vsi_num); 7353 } 7354 } 7355 7356 /** 7357 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7358 * @pf: pointer to the PF instance 7359 * @type: VSI type to rebuild 7360 * 7361 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7362 */ 7363 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7364 { 7365 struct device *dev = ice_pf_to_dev(pf); 7366 int i, err; 7367 7368 ice_for_each_vsi(pf, i) { 7369 struct ice_vsi *vsi = pf->vsi[i]; 7370 7371 if (!vsi || vsi->type != type) 7372 continue; 7373 7374 /* rebuild the VSI */ 7375 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7376 if (err) { 7377 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7378 err, vsi->idx, ice_vsi_type_str(type)); 7379 return err; 7380 } 7381 7382 /* replay filters for the VSI */ 7383 err = ice_replay_vsi(&pf->hw, vsi->idx); 7384 if (err) { 7385 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7386 err, vsi->idx, ice_vsi_type_str(type)); 7387 return err; 7388 } 7389 7390 /* Re-map HW VSI number, using VSI handle that has been 7391 * previously validated in ice_replay_vsi() call above 7392 */ 7393 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7394 7395 /* enable the VSI */ 7396 err = ice_ena_vsi(vsi, false); 7397 if (err) { 7398 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7399 err, vsi->idx, ice_vsi_type_str(type)); 7400 return err; 7401 } 7402 7403 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7404 ice_vsi_type_str(type)); 7405 } 7406 7407 return 0; 7408 } 7409 7410 /** 7411 * ice_update_pf_netdev_link - Update PF netdev link status 7412 * @pf: pointer to the PF instance 7413 */ 7414 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7415 { 7416 bool link_up; 7417 int i; 7418 7419 ice_for_each_vsi(pf, i) { 7420 struct ice_vsi *vsi = pf->vsi[i]; 7421 7422 if (!vsi || vsi->type != ICE_VSI_PF) 7423 return; 7424 7425 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7426 if (link_up) { 7427 netif_carrier_on(pf->vsi[i]->netdev); 7428 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7429 } else { 7430 netif_carrier_off(pf->vsi[i]->netdev); 7431 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7432 } 7433 } 7434 } 7435 7436 /** 7437 * ice_rebuild - rebuild after reset 7438 * @pf: PF to rebuild 7439 * @reset_type: type of reset 7440 * 7441 * Do not rebuild VF VSI in this flow because that is already handled via 7442 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7443 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7444 * to reset/rebuild all the VF VSI twice. 7445 */ 7446 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7447 { 7448 struct device *dev = ice_pf_to_dev(pf); 7449 struct ice_hw *hw = &pf->hw; 7450 bool dvm; 7451 int err; 7452 7453 if (test_bit(ICE_DOWN, pf->state)) 7454 goto clear_recovery; 7455 7456 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7457 7458 #define ICE_EMP_RESET_SLEEP_MS 5000 7459 if (reset_type == ICE_RESET_EMPR) { 7460 /* If an EMP reset has occurred, any previously pending flash 7461 * update will have completed. We no longer know whether or 7462 * not the NVM update EMP reset is restricted. 7463 */ 7464 pf->fw_emp_reset_disabled = false; 7465 7466 msleep(ICE_EMP_RESET_SLEEP_MS); 7467 } 7468 7469 err = ice_init_all_ctrlq(hw); 7470 if (err) { 7471 dev_err(dev, "control queues init failed %d\n", err); 7472 goto err_init_ctrlq; 7473 } 7474 7475 /* if DDP was previously loaded successfully */ 7476 if (!ice_is_safe_mode(pf)) { 7477 /* reload the SW DB of filter tables */ 7478 if (reset_type == ICE_RESET_PFR) 7479 ice_fill_blk_tbls(hw); 7480 else 7481 /* Reload DDP Package after CORER/GLOBR reset */ 7482 ice_load_pkg(NULL, pf); 7483 } 7484 7485 err = ice_clear_pf_cfg(hw); 7486 if (err) { 7487 dev_err(dev, "clear PF configuration failed %d\n", err); 7488 goto err_init_ctrlq; 7489 } 7490 7491 ice_clear_pxe_mode(hw); 7492 7493 err = ice_init_nvm(hw); 7494 if (err) { 7495 dev_err(dev, "ice_init_nvm failed %d\n", err); 7496 goto err_init_ctrlq; 7497 } 7498 7499 err = ice_get_caps(hw); 7500 if (err) { 7501 dev_err(dev, "ice_get_caps failed %d\n", err); 7502 goto err_init_ctrlq; 7503 } 7504 7505 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7506 if (err) { 7507 dev_err(dev, "set_mac_cfg failed %d\n", err); 7508 goto err_init_ctrlq; 7509 } 7510 7511 dvm = ice_is_dvm_ena(hw); 7512 7513 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7514 if (err) 7515 goto err_init_ctrlq; 7516 7517 err = ice_sched_init_port(hw->port_info); 7518 if (err) 7519 goto err_sched_init_port; 7520 7521 /* start misc vector */ 7522 err = ice_req_irq_msix_misc(pf); 7523 if (err) { 7524 dev_err(dev, "misc vector setup failed: %d\n", err); 7525 goto err_sched_init_port; 7526 } 7527 7528 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7529 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7530 if (!rd32(hw, PFQF_FD_SIZE)) { 7531 u16 unused, guar, b_effort; 7532 7533 guar = hw->func_caps.fd_fltr_guar; 7534 b_effort = hw->func_caps.fd_fltr_best_effort; 7535 7536 /* force guaranteed filter pool for PF */ 7537 ice_alloc_fd_guar_item(hw, &unused, guar); 7538 /* force shared filter pool for PF */ 7539 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7540 } 7541 } 7542 7543 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7544 ice_dcb_rebuild(pf); 7545 7546 /* If the PF previously had enabled PTP, PTP init needs to happen before 7547 * the VSI rebuild. If not, this causes the PTP link status events to 7548 * fail. 7549 */ 7550 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7551 ice_ptp_reset(pf); 7552 7553 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7554 ice_gnss_init(pf); 7555 7556 /* rebuild PF VSI */ 7557 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7558 if (err) { 7559 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7560 goto err_vsi_rebuild; 7561 } 7562 7563 err = ice_eswitch_rebuild(pf); 7564 if (err) { 7565 dev_err(dev, "Switchdev rebuild failed: %d\n", err); 7566 goto err_vsi_rebuild; 7567 } 7568 7569 if (reset_type == ICE_RESET_PFR) { 7570 err = ice_rebuild_channels(pf); 7571 if (err) { 7572 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7573 err); 7574 goto err_vsi_rebuild; 7575 } 7576 } 7577 7578 /* If Flow Director is active */ 7579 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7580 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7581 if (err) { 7582 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7583 goto err_vsi_rebuild; 7584 } 7585 7586 /* replay HW Flow Director recipes */ 7587 if (hw->fdir_prof) 7588 ice_fdir_replay_flows(hw); 7589 7590 /* replay Flow Director filters */ 7591 ice_fdir_replay_fltrs(pf); 7592 7593 ice_rebuild_arfs(pf); 7594 } 7595 7596 ice_update_pf_netdev_link(pf); 7597 7598 /* tell the firmware we are up */ 7599 err = ice_send_version(pf); 7600 if (err) { 7601 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7602 err); 7603 goto err_vsi_rebuild; 7604 } 7605 7606 ice_replay_post(hw); 7607 7608 /* if we get here, reset flow is successful */ 7609 clear_bit(ICE_RESET_FAILED, pf->state); 7610 7611 ice_plug_aux_dev(pf); 7612 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7613 ice_lag_rebuild(pf); 7614 7615 /* Restore timestamp mode settings after VSI rebuild */ 7616 ice_ptp_restore_timestamp_mode(pf); 7617 return; 7618 7619 err_vsi_rebuild: 7620 err_sched_init_port: 7621 ice_sched_cleanup_all(hw); 7622 err_init_ctrlq: 7623 ice_shutdown_all_ctrlq(hw); 7624 set_bit(ICE_RESET_FAILED, pf->state); 7625 clear_recovery: 7626 /* set this bit in PF state to control service task scheduling */ 7627 set_bit(ICE_NEEDS_RESTART, pf->state); 7628 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7629 } 7630 7631 /** 7632 * ice_change_mtu - NDO callback to change the MTU 7633 * @netdev: network interface device structure 7634 * @new_mtu: new value for maximum frame size 7635 * 7636 * Returns 0 on success, negative on failure 7637 */ 7638 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7639 { 7640 struct ice_netdev_priv *np = netdev_priv(netdev); 7641 struct ice_vsi *vsi = np->vsi; 7642 struct ice_pf *pf = vsi->back; 7643 struct bpf_prog *prog; 7644 u8 count = 0; 7645 int err = 0; 7646 7647 if (new_mtu == (int)netdev->mtu) { 7648 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7649 return 0; 7650 } 7651 7652 prog = vsi->xdp_prog; 7653 if (prog && !prog->aux->xdp_has_frags) { 7654 int frame_size = ice_max_xdp_frame_size(vsi); 7655 7656 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7657 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7658 frame_size - ICE_ETH_PKT_HDR_PAD); 7659 return -EINVAL; 7660 } 7661 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7662 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7663 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7664 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7665 return -EINVAL; 7666 } 7667 } 7668 7669 /* if a reset is in progress, wait for some time for it to complete */ 7670 do { 7671 if (ice_is_reset_in_progress(pf->state)) { 7672 count++; 7673 usleep_range(1000, 2000); 7674 } else { 7675 break; 7676 } 7677 7678 } while (count < 100); 7679 7680 if (count == 100) { 7681 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7682 return -EBUSY; 7683 } 7684 7685 netdev->mtu = (unsigned int)new_mtu; 7686 err = ice_down_up(vsi); 7687 if (err) 7688 return err; 7689 7690 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7691 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7692 7693 return err; 7694 } 7695 7696 /** 7697 * ice_eth_ioctl - Access the hwtstamp interface 7698 * @netdev: network interface device structure 7699 * @ifr: interface request data 7700 * @cmd: ioctl command 7701 */ 7702 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7703 { 7704 struct ice_netdev_priv *np = netdev_priv(netdev); 7705 struct ice_pf *pf = np->vsi->back; 7706 7707 switch (cmd) { 7708 case SIOCGHWTSTAMP: 7709 return ice_ptp_get_ts_config(pf, ifr); 7710 case SIOCSHWTSTAMP: 7711 return ice_ptp_set_ts_config(pf, ifr); 7712 default: 7713 return -EOPNOTSUPP; 7714 } 7715 } 7716 7717 /** 7718 * ice_aq_str - convert AQ err code to a string 7719 * @aq_err: the AQ error code to convert 7720 */ 7721 const char *ice_aq_str(enum ice_aq_err aq_err) 7722 { 7723 switch (aq_err) { 7724 case ICE_AQ_RC_OK: 7725 return "OK"; 7726 case ICE_AQ_RC_EPERM: 7727 return "ICE_AQ_RC_EPERM"; 7728 case ICE_AQ_RC_ENOENT: 7729 return "ICE_AQ_RC_ENOENT"; 7730 case ICE_AQ_RC_ENOMEM: 7731 return "ICE_AQ_RC_ENOMEM"; 7732 case ICE_AQ_RC_EBUSY: 7733 return "ICE_AQ_RC_EBUSY"; 7734 case ICE_AQ_RC_EEXIST: 7735 return "ICE_AQ_RC_EEXIST"; 7736 case ICE_AQ_RC_EINVAL: 7737 return "ICE_AQ_RC_EINVAL"; 7738 case ICE_AQ_RC_ENOSPC: 7739 return "ICE_AQ_RC_ENOSPC"; 7740 case ICE_AQ_RC_ENOSYS: 7741 return "ICE_AQ_RC_ENOSYS"; 7742 case ICE_AQ_RC_EMODE: 7743 return "ICE_AQ_RC_EMODE"; 7744 case ICE_AQ_RC_ENOSEC: 7745 return "ICE_AQ_RC_ENOSEC"; 7746 case ICE_AQ_RC_EBADSIG: 7747 return "ICE_AQ_RC_EBADSIG"; 7748 case ICE_AQ_RC_ESVN: 7749 return "ICE_AQ_RC_ESVN"; 7750 case ICE_AQ_RC_EBADMAN: 7751 return "ICE_AQ_RC_EBADMAN"; 7752 case ICE_AQ_RC_EBADBUF: 7753 return "ICE_AQ_RC_EBADBUF"; 7754 } 7755 7756 return "ICE_AQ_RC_UNKNOWN"; 7757 } 7758 7759 /** 7760 * ice_set_rss_lut - Set RSS LUT 7761 * @vsi: Pointer to VSI structure 7762 * @lut: Lookup table 7763 * @lut_size: Lookup table size 7764 * 7765 * Returns 0 on success, negative on failure 7766 */ 7767 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7768 { 7769 struct ice_aq_get_set_rss_lut_params params = {}; 7770 struct ice_hw *hw = &vsi->back->hw; 7771 int status; 7772 7773 if (!lut) 7774 return -EINVAL; 7775 7776 params.vsi_handle = vsi->idx; 7777 params.lut_size = lut_size; 7778 params.lut_type = vsi->rss_lut_type; 7779 params.lut = lut; 7780 7781 status = ice_aq_set_rss_lut(hw, ¶ms); 7782 if (status) 7783 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7784 status, ice_aq_str(hw->adminq.sq_last_status)); 7785 7786 return status; 7787 } 7788 7789 /** 7790 * ice_set_rss_key - Set RSS key 7791 * @vsi: Pointer to the VSI structure 7792 * @seed: RSS hash seed 7793 * 7794 * Returns 0 on success, negative on failure 7795 */ 7796 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7797 { 7798 struct ice_hw *hw = &vsi->back->hw; 7799 int status; 7800 7801 if (!seed) 7802 return -EINVAL; 7803 7804 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7805 if (status) 7806 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7807 status, ice_aq_str(hw->adminq.sq_last_status)); 7808 7809 return status; 7810 } 7811 7812 /** 7813 * ice_get_rss_lut - Get RSS LUT 7814 * @vsi: Pointer to VSI structure 7815 * @lut: Buffer to store the lookup table entries 7816 * @lut_size: Size of buffer to store the lookup table entries 7817 * 7818 * Returns 0 on success, negative on failure 7819 */ 7820 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7821 { 7822 struct ice_aq_get_set_rss_lut_params params = {}; 7823 struct ice_hw *hw = &vsi->back->hw; 7824 int status; 7825 7826 if (!lut) 7827 return -EINVAL; 7828 7829 params.vsi_handle = vsi->idx; 7830 params.lut_size = lut_size; 7831 params.lut_type = vsi->rss_lut_type; 7832 params.lut = lut; 7833 7834 status = ice_aq_get_rss_lut(hw, ¶ms); 7835 if (status) 7836 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7837 status, ice_aq_str(hw->adminq.sq_last_status)); 7838 7839 return status; 7840 } 7841 7842 /** 7843 * ice_get_rss_key - Get RSS key 7844 * @vsi: Pointer to VSI structure 7845 * @seed: Buffer to store the key in 7846 * 7847 * Returns 0 on success, negative on failure 7848 */ 7849 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7850 { 7851 struct ice_hw *hw = &vsi->back->hw; 7852 int status; 7853 7854 if (!seed) 7855 return -EINVAL; 7856 7857 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7858 if (status) 7859 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7860 status, ice_aq_str(hw->adminq.sq_last_status)); 7861 7862 return status; 7863 } 7864 7865 /** 7866 * ice_set_rss_hfunc - Set RSS HASH function 7867 * @vsi: Pointer to VSI structure 7868 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 7869 * 7870 * Returns 0 on success, negative on failure 7871 */ 7872 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 7873 { 7874 struct ice_hw *hw = &vsi->back->hw; 7875 struct ice_vsi_ctx *ctx; 7876 bool symm; 7877 int err; 7878 7879 if (hfunc == vsi->rss_hfunc) 7880 return 0; 7881 7882 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 7883 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 7884 return -EOPNOTSUPP; 7885 7886 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7887 if (!ctx) 7888 return -ENOMEM; 7889 7890 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 7891 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 7892 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 7893 ctx->info.q_opt_rss |= 7894 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 7895 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 7896 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 7897 7898 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 7899 if (err) { 7900 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 7901 vsi->vsi_num, err); 7902 } else { 7903 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 7904 vsi->rss_hfunc = hfunc; 7905 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 7906 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 7907 "Symmetric " : ""); 7908 } 7909 kfree(ctx); 7910 if (err) 7911 return err; 7912 7913 /* Fix the symmetry setting for all existing RSS configurations */ 7914 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 7915 return ice_set_rss_cfg_symm(hw, vsi, symm); 7916 } 7917 7918 /** 7919 * ice_bridge_getlink - Get the hardware bridge mode 7920 * @skb: skb buff 7921 * @pid: process ID 7922 * @seq: RTNL message seq 7923 * @dev: the netdev being configured 7924 * @filter_mask: filter mask passed in 7925 * @nlflags: netlink flags passed in 7926 * 7927 * Return the bridge mode (VEB/VEPA) 7928 */ 7929 static int 7930 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7931 struct net_device *dev, u32 filter_mask, int nlflags) 7932 { 7933 struct ice_netdev_priv *np = netdev_priv(dev); 7934 struct ice_vsi *vsi = np->vsi; 7935 struct ice_pf *pf = vsi->back; 7936 u16 bmode; 7937 7938 bmode = pf->first_sw->bridge_mode; 7939 7940 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7941 filter_mask, NULL); 7942 } 7943 7944 /** 7945 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7946 * @vsi: Pointer to VSI structure 7947 * @bmode: Hardware bridge mode (VEB/VEPA) 7948 * 7949 * Returns 0 on success, negative on failure 7950 */ 7951 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7952 { 7953 struct ice_aqc_vsi_props *vsi_props; 7954 struct ice_hw *hw = &vsi->back->hw; 7955 struct ice_vsi_ctx *ctxt; 7956 int ret; 7957 7958 vsi_props = &vsi->info; 7959 7960 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7961 if (!ctxt) 7962 return -ENOMEM; 7963 7964 ctxt->info = vsi->info; 7965 7966 if (bmode == BRIDGE_MODE_VEB) 7967 /* change from VEPA to VEB mode */ 7968 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7969 else 7970 /* change from VEB to VEPA mode */ 7971 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7972 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7973 7974 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7975 if (ret) { 7976 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7977 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7978 goto out; 7979 } 7980 /* Update sw flags for book keeping */ 7981 vsi_props->sw_flags = ctxt->info.sw_flags; 7982 7983 out: 7984 kfree(ctxt); 7985 return ret; 7986 } 7987 7988 /** 7989 * ice_bridge_setlink - Set the hardware bridge mode 7990 * @dev: the netdev being configured 7991 * @nlh: RTNL message 7992 * @flags: bridge setlink flags 7993 * @extack: netlink extended ack 7994 * 7995 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7996 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7997 * not already set for all VSIs connected to this switch. And also update the 7998 * unicast switch filter rules for the corresponding switch of the netdev. 7999 */ 8000 static int 8001 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8002 u16 __always_unused flags, 8003 struct netlink_ext_ack __always_unused *extack) 8004 { 8005 struct ice_netdev_priv *np = netdev_priv(dev); 8006 struct ice_pf *pf = np->vsi->back; 8007 struct nlattr *attr, *br_spec; 8008 struct ice_hw *hw = &pf->hw; 8009 struct ice_sw *pf_sw; 8010 int rem, v, err = 0; 8011 8012 pf_sw = pf->first_sw; 8013 /* find the attribute in the netlink message */ 8014 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8015 8016 nla_for_each_nested(attr, br_spec, rem) { 8017 __u16 mode; 8018 8019 if (nla_type(attr) != IFLA_BRIDGE_MODE) 8020 continue; 8021 mode = nla_get_u16(attr); 8022 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8023 return -EINVAL; 8024 /* Continue if bridge mode is not being flipped */ 8025 if (mode == pf_sw->bridge_mode) 8026 continue; 8027 /* Iterates through the PF VSI list and update the loopback 8028 * mode of the VSI 8029 */ 8030 ice_for_each_vsi(pf, v) { 8031 if (!pf->vsi[v]) 8032 continue; 8033 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8034 if (err) 8035 return err; 8036 } 8037 8038 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8039 /* Update the unicast switch filter rules for the corresponding 8040 * switch of the netdev 8041 */ 8042 err = ice_update_sw_rule_bridge_mode(hw); 8043 if (err) { 8044 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8045 mode, err, 8046 ice_aq_str(hw->adminq.sq_last_status)); 8047 /* revert hw->evb_veb */ 8048 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8049 return err; 8050 } 8051 8052 pf_sw->bridge_mode = mode; 8053 } 8054 8055 return 0; 8056 } 8057 8058 /** 8059 * ice_tx_timeout - Respond to a Tx Hang 8060 * @netdev: network interface device structure 8061 * @txqueue: Tx queue 8062 */ 8063 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8064 { 8065 struct ice_netdev_priv *np = netdev_priv(netdev); 8066 struct ice_tx_ring *tx_ring = NULL; 8067 struct ice_vsi *vsi = np->vsi; 8068 struct ice_pf *pf = vsi->back; 8069 u32 i; 8070 8071 pf->tx_timeout_count++; 8072 8073 /* Check if PFC is enabled for the TC to which the queue belongs 8074 * to. If yes then Tx timeout is not caused by a hung queue, no 8075 * need to reset and rebuild 8076 */ 8077 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8078 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8079 txqueue); 8080 return; 8081 } 8082 8083 /* now that we have an index, find the tx_ring struct */ 8084 ice_for_each_txq(vsi, i) 8085 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8086 if (txqueue == vsi->tx_rings[i]->q_index) { 8087 tx_ring = vsi->tx_rings[i]; 8088 break; 8089 } 8090 8091 /* Reset recovery level if enough time has elapsed after last timeout. 8092 * Also ensure no new reset action happens before next timeout period. 8093 */ 8094 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8095 pf->tx_timeout_recovery_level = 1; 8096 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8097 netdev->watchdog_timeo))) 8098 return; 8099 8100 if (tx_ring) { 8101 struct ice_hw *hw = &pf->hw; 8102 u32 head, val = 0; 8103 8104 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8105 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8106 /* Read interrupt register */ 8107 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8108 8109 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8110 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8111 head, tx_ring->next_to_use, val); 8112 } 8113 8114 pf->tx_timeout_last_recovery = jiffies; 8115 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8116 pf->tx_timeout_recovery_level, txqueue); 8117 8118 switch (pf->tx_timeout_recovery_level) { 8119 case 1: 8120 set_bit(ICE_PFR_REQ, pf->state); 8121 break; 8122 case 2: 8123 set_bit(ICE_CORER_REQ, pf->state); 8124 break; 8125 case 3: 8126 set_bit(ICE_GLOBR_REQ, pf->state); 8127 break; 8128 default: 8129 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8130 set_bit(ICE_DOWN, pf->state); 8131 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8132 set_bit(ICE_SERVICE_DIS, pf->state); 8133 break; 8134 } 8135 8136 ice_service_task_schedule(pf); 8137 pf->tx_timeout_recovery_level++; 8138 } 8139 8140 /** 8141 * ice_setup_tc_cls_flower - flower classifier offloads 8142 * @np: net device to configure 8143 * @filter_dev: device on which filter is added 8144 * @cls_flower: offload data 8145 */ 8146 static int 8147 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8148 struct net_device *filter_dev, 8149 struct flow_cls_offload *cls_flower) 8150 { 8151 struct ice_vsi *vsi = np->vsi; 8152 8153 if (cls_flower->common.chain_index) 8154 return -EOPNOTSUPP; 8155 8156 switch (cls_flower->command) { 8157 case FLOW_CLS_REPLACE: 8158 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8159 case FLOW_CLS_DESTROY: 8160 return ice_del_cls_flower(vsi, cls_flower); 8161 default: 8162 return -EINVAL; 8163 } 8164 } 8165 8166 /** 8167 * ice_setup_tc_block_cb - callback handler registered for TC block 8168 * @type: TC SETUP type 8169 * @type_data: TC flower offload data that contains user input 8170 * @cb_priv: netdev private data 8171 */ 8172 static int 8173 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8174 { 8175 struct ice_netdev_priv *np = cb_priv; 8176 8177 switch (type) { 8178 case TC_SETUP_CLSFLOWER: 8179 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8180 type_data); 8181 default: 8182 return -EOPNOTSUPP; 8183 } 8184 } 8185 8186 /** 8187 * ice_validate_mqprio_qopt - Validate TCF input parameters 8188 * @vsi: Pointer to VSI 8189 * @mqprio_qopt: input parameters for mqprio queue configuration 8190 * 8191 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8192 * needed), and make sure user doesn't specify qcount and BW rate limit 8193 * for TCs, which are more than "num_tc" 8194 */ 8195 static int 8196 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8197 struct tc_mqprio_qopt_offload *mqprio_qopt) 8198 { 8199 int non_power_of_2_qcount = 0; 8200 struct ice_pf *pf = vsi->back; 8201 int max_rss_q_cnt = 0; 8202 u64 sum_min_rate = 0; 8203 struct device *dev; 8204 int i, speed; 8205 u8 num_tc; 8206 8207 if (vsi->type != ICE_VSI_PF) 8208 return -EINVAL; 8209 8210 if (mqprio_qopt->qopt.offset[0] != 0 || 8211 mqprio_qopt->qopt.num_tc < 1 || 8212 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8213 return -EINVAL; 8214 8215 dev = ice_pf_to_dev(pf); 8216 vsi->ch_rss_size = 0; 8217 num_tc = mqprio_qopt->qopt.num_tc; 8218 speed = ice_get_link_speed_kbps(vsi); 8219 8220 for (i = 0; num_tc; i++) { 8221 int qcount = mqprio_qopt->qopt.count[i]; 8222 u64 max_rate, min_rate, rem; 8223 8224 if (!qcount) 8225 return -EINVAL; 8226 8227 if (is_power_of_2(qcount)) { 8228 if (non_power_of_2_qcount && 8229 qcount > non_power_of_2_qcount) { 8230 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8231 qcount, non_power_of_2_qcount); 8232 return -EINVAL; 8233 } 8234 if (qcount > max_rss_q_cnt) 8235 max_rss_q_cnt = qcount; 8236 } else { 8237 if (non_power_of_2_qcount && 8238 qcount != non_power_of_2_qcount) { 8239 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8240 qcount, non_power_of_2_qcount); 8241 return -EINVAL; 8242 } 8243 if (qcount < max_rss_q_cnt) { 8244 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8245 qcount, max_rss_q_cnt); 8246 return -EINVAL; 8247 } 8248 max_rss_q_cnt = qcount; 8249 non_power_of_2_qcount = qcount; 8250 } 8251 8252 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8253 * converts the bandwidth rate limit into Bytes/s when 8254 * passing it down to the driver. So convert input bandwidth 8255 * from Bytes/s to Kbps 8256 */ 8257 max_rate = mqprio_qopt->max_rate[i]; 8258 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8259 8260 /* min_rate is minimum guaranteed rate and it can't be zero */ 8261 min_rate = mqprio_qopt->min_rate[i]; 8262 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8263 sum_min_rate += min_rate; 8264 8265 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8266 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8267 min_rate, ICE_MIN_BW_LIMIT); 8268 return -EINVAL; 8269 } 8270 8271 if (max_rate && max_rate > speed) { 8272 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8273 i, max_rate, speed); 8274 return -EINVAL; 8275 } 8276 8277 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8278 if (rem) { 8279 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8280 i, ICE_MIN_BW_LIMIT); 8281 return -EINVAL; 8282 } 8283 8284 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8285 if (rem) { 8286 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8287 i, ICE_MIN_BW_LIMIT); 8288 return -EINVAL; 8289 } 8290 8291 /* min_rate can't be more than max_rate, except when max_rate 8292 * is zero (implies max_rate sought is max line rate). In such 8293 * a case min_rate can be more than max. 8294 */ 8295 if (max_rate && min_rate > max_rate) { 8296 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8297 min_rate, max_rate); 8298 return -EINVAL; 8299 } 8300 8301 if (i >= mqprio_qopt->qopt.num_tc - 1) 8302 break; 8303 if (mqprio_qopt->qopt.offset[i + 1] != 8304 (mqprio_qopt->qopt.offset[i] + qcount)) 8305 return -EINVAL; 8306 } 8307 if (vsi->num_rxq < 8308 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8309 return -EINVAL; 8310 if (vsi->num_txq < 8311 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8312 return -EINVAL; 8313 8314 if (sum_min_rate && sum_min_rate > (u64)speed) { 8315 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8316 sum_min_rate, speed); 8317 return -EINVAL; 8318 } 8319 8320 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8321 vsi->ch_rss_size = max_rss_q_cnt; 8322 8323 return 0; 8324 } 8325 8326 /** 8327 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8328 * @pf: ptr to PF device 8329 * @vsi: ptr to VSI 8330 */ 8331 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8332 { 8333 struct device *dev = ice_pf_to_dev(pf); 8334 bool added = false; 8335 struct ice_hw *hw; 8336 int flow; 8337 8338 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8339 return -EINVAL; 8340 8341 hw = &pf->hw; 8342 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8343 struct ice_fd_hw_prof *prof; 8344 int tun, status; 8345 u64 entry_h; 8346 8347 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8348 hw->fdir_prof[flow]->cnt)) 8349 continue; 8350 8351 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8352 enum ice_flow_priority prio; 8353 8354 /* add this VSI to FDir profile for this flow */ 8355 prio = ICE_FLOW_PRIO_NORMAL; 8356 prof = hw->fdir_prof[flow]; 8357 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8358 prof->prof_id[tun], 8359 prof->vsi_h[0], vsi->idx, 8360 prio, prof->fdir_seg[tun], 8361 &entry_h); 8362 if (status) { 8363 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8364 vsi->idx, flow); 8365 continue; 8366 } 8367 8368 prof->entry_h[prof->cnt][tun] = entry_h; 8369 } 8370 8371 /* store VSI for filter replay and delete */ 8372 prof->vsi_h[prof->cnt] = vsi->idx; 8373 prof->cnt++; 8374 8375 added = true; 8376 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8377 flow); 8378 } 8379 8380 if (!added) 8381 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8382 8383 return 0; 8384 } 8385 8386 /** 8387 * ice_add_channel - add a channel by adding VSI 8388 * @pf: ptr to PF device 8389 * @sw_id: underlying HW switching element ID 8390 * @ch: ptr to channel structure 8391 * 8392 * Add a channel (VSI) using add_vsi and queue_map 8393 */ 8394 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8395 { 8396 struct device *dev = ice_pf_to_dev(pf); 8397 struct ice_vsi *vsi; 8398 8399 if (ch->type != ICE_VSI_CHNL) { 8400 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8401 return -EINVAL; 8402 } 8403 8404 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8405 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8406 dev_err(dev, "create chnl VSI failure\n"); 8407 return -EINVAL; 8408 } 8409 8410 ice_add_vsi_to_fdir(pf, vsi); 8411 8412 ch->sw_id = sw_id; 8413 ch->vsi_num = vsi->vsi_num; 8414 ch->info.mapping_flags = vsi->info.mapping_flags; 8415 ch->ch_vsi = vsi; 8416 /* set the back pointer of channel for newly created VSI */ 8417 vsi->ch = ch; 8418 8419 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8420 sizeof(vsi->info.q_mapping)); 8421 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8422 sizeof(vsi->info.tc_mapping)); 8423 8424 return 0; 8425 } 8426 8427 /** 8428 * ice_chnl_cfg_res 8429 * @vsi: the VSI being setup 8430 * @ch: ptr to channel structure 8431 * 8432 * Configure channel specific resources such as rings, vector. 8433 */ 8434 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8435 { 8436 int i; 8437 8438 for (i = 0; i < ch->num_txq; i++) { 8439 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8440 struct ice_ring_container *rc; 8441 struct ice_tx_ring *tx_ring; 8442 struct ice_rx_ring *rx_ring; 8443 8444 tx_ring = vsi->tx_rings[ch->base_q + i]; 8445 rx_ring = vsi->rx_rings[ch->base_q + i]; 8446 if (!tx_ring || !rx_ring) 8447 continue; 8448 8449 /* setup ring being channel enabled */ 8450 tx_ring->ch = ch; 8451 rx_ring->ch = ch; 8452 8453 /* following code block sets up vector specific attributes */ 8454 tx_q_vector = tx_ring->q_vector; 8455 rx_q_vector = rx_ring->q_vector; 8456 if (!tx_q_vector && !rx_q_vector) 8457 continue; 8458 8459 if (tx_q_vector) { 8460 tx_q_vector->ch = ch; 8461 /* setup Tx and Rx ITR setting if DIM is off */ 8462 rc = &tx_q_vector->tx; 8463 if (!ITR_IS_DYNAMIC(rc)) 8464 ice_write_itr(rc, rc->itr_setting); 8465 } 8466 if (rx_q_vector) { 8467 rx_q_vector->ch = ch; 8468 /* setup Tx and Rx ITR setting if DIM is off */ 8469 rc = &rx_q_vector->rx; 8470 if (!ITR_IS_DYNAMIC(rc)) 8471 ice_write_itr(rc, rc->itr_setting); 8472 } 8473 } 8474 8475 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8476 * GLINT_ITR register would have written to perform in-context 8477 * update, hence perform flush 8478 */ 8479 if (ch->num_txq || ch->num_rxq) 8480 ice_flush(&vsi->back->hw); 8481 } 8482 8483 /** 8484 * ice_cfg_chnl_all_res - configure channel resources 8485 * @vsi: pte to main_vsi 8486 * @ch: ptr to channel structure 8487 * 8488 * This function configures channel specific resources such as flow-director 8489 * counter index, and other resources such as queues, vectors, ITR settings 8490 */ 8491 static void 8492 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8493 { 8494 /* configure channel (aka ADQ) resources such as queues, vectors, 8495 * ITR settings for channel specific vectors and anything else 8496 */ 8497 ice_chnl_cfg_res(vsi, ch); 8498 } 8499 8500 /** 8501 * ice_setup_hw_channel - setup new channel 8502 * @pf: ptr to PF device 8503 * @vsi: the VSI being setup 8504 * @ch: ptr to channel structure 8505 * @sw_id: underlying HW switching element ID 8506 * @type: type of channel to be created (VMDq2/VF) 8507 * 8508 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8509 * and configures Tx rings accordingly 8510 */ 8511 static int 8512 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8513 struct ice_channel *ch, u16 sw_id, u8 type) 8514 { 8515 struct device *dev = ice_pf_to_dev(pf); 8516 int ret; 8517 8518 ch->base_q = vsi->next_base_q; 8519 ch->type = type; 8520 8521 ret = ice_add_channel(pf, sw_id, ch); 8522 if (ret) { 8523 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8524 return ret; 8525 } 8526 8527 /* configure/setup ADQ specific resources */ 8528 ice_cfg_chnl_all_res(vsi, ch); 8529 8530 /* make sure to update the next_base_q so that subsequent channel's 8531 * (aka ADQ) VSI queue map is correct 8532 */ 8533 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8534 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8535 ch->num_rxq); 8536 8537 return 0; 8538 } 8539 8540 /** 8541 * ice_setup_channel - setup new channel using uplink element 8542 * @pf: ptr to PF device 8543 * @vsi: the VSI being setup 8544 * @ch: ptr to channel structure 8545 * 8546 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8547 * and uplink switching element 8548 */ 8549 static bool 8550 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8551 struct ice_channel *ch) 8552 { 8553 struct device *dev = ice_pf_to_dev(pf); 8554 u16 sw_id; 8555 int ret; 8556 8557 if (vsi->type != ICE_VSI_PF) { 8558 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8559 return false; 8560 } 8561 8562 sw_id = pf->first_sw->sw_id; 8563 8564 /* create channel (VSI) */ 8565 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8566 if (ret) { 8567 dev_err(dev, "failed to setup hw_channel\n"); 8568 return false; 8569 } 8570 dev_dbg(dev, "successfully created channel()\n"); 8571 8572 return ch->ch_vsi ? true : false; 8573 } 8574 8575 /** 8576 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8577 * @vsi: VSI to be configured 8578 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8579 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8580 */ 8581 static int 8582 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8583 { 8584 int err; 8585 8586 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8587 if (err) 8588 return err; 8589 8590 return ice_set_max_bw_limit(vsi, max_tx_rate); 8591 } 8592 8593 /** 8594 * ice_create_q_channel - function to create channel 8595 * @vsi: VSI to be configured 8596 * @ch: ptr to channel (it contains channel specific params) 8597 * 8598 * This function creates channel (VSI) using num_queues specified by user, 8599 * reconfigs RSS if needed. 8600 */ 8601 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8602 { 8603 struct ice_pf *pf = vsi->back; 8604 struct device *dev; 8605 8606 if (!ch) 8607 return -EINVAL; 8608 8609 dev = ice_pf_to_dev(pf); 8610 if (!ch->num_txq || !ch->num_rxq) { 8611 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8612 return -EINVAL; 8613 } 8614 8615 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8616 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8617 vsi->cnt_q_avail, ch->num_txq); 8618 return -EINVAL; 8619 } 8620 8621 if (!ice_setup_channel(pf, vsi, ch)) { 8622 dev_info(dev, "Failed to setup channel\n"); 8623 return -EINVAL; 8624 } 8625 /* configure BW rate limit */ 8626 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8627 int ret; 8628 8629 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8630 ch->min_tx_rate); 8631 if (ret) 8632 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8633 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8634 else 8635 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8636 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8637 } 8638 8639 vsi->cnt_q_avail -= ch->num_txq; 8640 8641 return 0; 8642 } 8643 8644 /** 8645 * ice_rem_all_chnl_fltrs - removes all channel filters 8646 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8647 * 8648 * Remove all advanced switch filters only if they are channel specific 8649 * tc-flower based filter 8650 */ 8651 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8652 { 8653 struct ice_tc_flower_fltr *fltr; 8654 struct hlist_node *node; 8655 8656 /* to remove all channel filters, iterate an ordered list of filters */ 8657 hlist_for_each_entry_safe(fltr, node, 8658 &pf->tc_flower_fltr_list, 8659 tc_flower_node) { 8660 struct ice_rule_query_data rule; 8661 int status; 8662 8663 /* for now process only channel specific filters */ 8664 if (!ice_is_chnl_fltr(fltr)) 8665 continue; 8666 8667 rule.rid = fltr->rid; 8668 rule.rule_id = fltr->rule_id; 8669 rule.vsi_handle = fltr->dest_vsi_handle; 8670 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8671 if (status) { 8672 if (status == -ENOENT) 8673 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8674 rule.rule_id); 8675 else 8676 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8677 status); 8678 } else if (fltr->dest_vsi) { 8679 /* update advanced switch filter count */ 8680 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8681 u32 flags = fltr->flags; 8682 8683 fltr->dest_vsi->num_chnl_fltr--; 8684 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8685 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8686 pf->num_dmac_chnl_fltrs--; 8687 } 8688 } 8689 8690 hlist_del(&fltr->tc_flower_node); 8691 kfree(fltr); 8692 } 8693 } 8694 8695 /** 8696 * ice_remove_q_channels - Remove queue channels for the TCs 8697 * @vsi: VSI to be configured 8698 * @rem_fltr: delete advanced switch filter or not 8699 * 8700 * Remove queue channels for the TCs 8701 */ 8702 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8703 { 8704 struct ice_channel *ch, *ch_tmp; 8705 struct ice_pf *pf = vsi->back; 8706 int i; 8707 8708 /* remove all tc-flower based filter if they are channel filters only */ 8709 if (rem_fltr) 8710 ice_rem_all_chnl_fltrs(pf); 8711 8712 /* remove ntuple filters since queue configuration is being changed */ 8713 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8714 struct ice_hw *hw = &pf->hw; 8715 8716 mutex_lock(&hw->fdir_fltr_lock); 8717 ice_fdir_del_all_fltrs(vsi); 8718 mutex_unlock(&hw->fdir_fltr_lock); 8719 } 8720 8721 /* perform cleanup for channels if they exist */ 8722 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8723 struct ice_vsi *ch_vsi; 8724 8725 list_del(&ch->list); 8726 ch_vsi = ch->ch_vsi; 8727 if (!ch_vsi) { 8728 kfree(ch); 8729 continue; 8730 } 8731 8732 /* Reset queue contexts */ 8733 for (i = 0; i < ch->num_rxq; i++) { 8734 struct ice_tx_ring *tx_ring; 8735 struct ice_rx_ring *rx_ring; 8736 8737 tx_ring = vsi->tx_rings[ch->base_q + i]; 8738 rx_ring = vsi->rx_rings[ch->base_q + i]; 8739 if (tx_ring) { 8740 tx_ring->ch = NULL; 8741 if (tx_ring->q_vector) 8742 tx_ring->q_vector->ch = NULL; 8743 } 8744 if (rx_ring) { 8745 rx_ring->ch = NULL; 8746 if (rx_ring->q_vector) 8747 rx_ring->q_vector->ch = NULL; 8748 } 8749 } 8750 8751 /* Release FD resources for the channel VSI */ 8752 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8753 8754 /* clear the VSI from scheduler tree */ 8755 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8756 8757 /* Delete VSI from FW, PF and HW VSI arrays */ 8758 ice_vsi_delete(ch->ch_vsi); 8759 8760 /* free the channel */ 8761 kfree(ch); 8762 } 8763 8764 /* clear the channel VSI map which is stored in main VSI */ 8765 ice_for_each_chnl_tc(i) 8766 vsi->tc_map_vsi[i] = NULL; 8767 8768 /* reset main VSI's all TC information */ 8769 vsi->all_enatc = 0; 8770 vsi->all_numtc = 0; 8771 } 8772 8773 /** 8774 * ice_rebuild_channels - rebuild channel 8775 * @pf: ptr to PF 8776 * 8777 * Recreate channel VSIs and replay filters 8778 */ 8779 static int ice_rebuild_channels(struct ice_pf *pf) 8780 { 8781 struct device *dev = ice_pf_to_dev(pf); 8782 struct ice_vsi *main_vsi; 8783 bool rem_adv_fltr = true; 8784 struct ice_channel *ch; 8785 struct ice_vsi *vsi; 8786 int tc_idx = 1; 8787 int i, err; 8788 8789 main_vsi = ice_get_main_vsi(pf); 8790 if (!main_vsi) 8791 return 0; 8792 8793 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8794 main_vsi->old_numtc == 1) 8795 return 0; /* nothing to be done */ 8796 8797 /* reconfigure main VSI based on old value of TC and cached values 8798 * for MQPRIO opts 8799 */ 8800 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8801 if (err) { 8802 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8803 main_vsi->old_ena_tc, main_vsi->vsi_num); 8804 return err; 8805 } 8806 8807 /* rebuild ADQ VSIs */ 8808 ice_for_each_vsi(pf, i) { 8809 enum ice_vsi_type type; 8810 8811 vsi = pf->vsi[i]; 8812 if (!vsi || vsi->type != ICE_VSI_CHNL) 8813 continue; 8814 8815 type = vsi->type; 8816 8817 /* rebuild ADQ VSI */ 8818 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8819 if (err) { 8820 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8821 ice_vsi_type_str(type), vsi->idx, err); 8822 goto cleanup; 8823 } 8824 8825 /* Re-map HW VSI number, using VSI handle that has been 8826 * previously validated in ice_replay_vsi() call above 8827 */ 8828 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8829 8830 /* replay filters for the VSI */ 8831 err = ice_replay_vsi(&pf->hw, vsi->idx); 8832 if (err) { 8833 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8834 ice_vsi_type_str(type), err, vsi->idx); 8835 rem_adv_fltr = false; 8836 goto cleanup; 8837 } 8838 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8839 ice_vsi_type_str(type), vsi->idx); 8840 8841 /* store ADQ VSI at correct TC index in main VSI's 8842 * map of TC to VSI 8843 */ 8844 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8845 } 8846 8847 /* ADQ VSI(s) has been rebuilt successfully, so setup 8848 * channel for main VSI's Tx and Rx rings 8849 */ 8850 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8851 struct ice_vsi *ch_vsi; 8852 8853 ch_vsi = ch->ch_vsi; 8854 if (!ch_vsi) 8855 continue; 8856 8857 /* reconfig channel resources */ 8858 ice_cfg_chnl_all_res(main_vsi, ch); 8859 8860 /* replay BW rate limit if it is non-zero */ 8861 if (!ch->max_tx_rate && !ch->min_tx_rate) 8862 continue; 8863 8864 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8865 ch->min_tx_rate); 8866 if (err) 8867 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8868 err, ch->max_tx_rate, ch->min_tx_rate, 8869 ch_vsi->vsi_num); 8870 else 8871 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8872 ch->max_tx_rate, ch->min_tx_rate, 8873 ch_vsi->vsi_num); 8874 } 8875 8876 /* reconfig RSS for main VSI */ 8877 if (main_vsi->ch_rss_size) 8878 ice_vsi_cfg_rss_lut_key(main_vsi); 8879 8880 return 0; 8881 8882 cleanup: 8883 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8884 return err; 8885 } 8886 8887 /** 8888 * ice_create_q_channels - Add queue channel for the given TCs 8889 * @vsi: VSI to be configured 8890 * 8891 * Configures queue channel mapping to the given TCs 8892 */ 8893 static int ice_create_q_channels(struct ice_vsi *vsi) 8894 { 8895 struct ice_pf *pf = vsi->back; 8896 struct ice_channel *ch; 8897 int ret = 0, i; 8898 8899 ice_for_each_chnl_tc(i) { 8900 if (!(vsi->all_enatc & BIT(i))) 8901 continue; 8902 8903 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8904 if (!ch) { 8905 ret = -ENOMEM; 8906 goto err_free; 8907 } 8908 INIT_LIST_HEAD(&ch->list); 8909 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8910 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8911 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8912 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8913 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8914 8915 /* convert to Kbits/s */ 8916 if (ch->max_tx_rate) 8917 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8918 ICE_BW_KBPS_DIVISOR); 8919 if (ch->min_tx_rate) 8920 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8921 ICE_BW_KBPS_DIVISOR); 8922 8923 ret = ice_create_q_channel(vsi, ch); 8924 if (ret) { 8925 dev_err(ice_pf_to_dev(pf), 8926 "failed creating channel TC:%d\n", i); 8927 kfree(ch); 8928 goto err_free; 8929 } 8930 list_add_tail(&ch->list, &vsi->ch_list); 8931 vsi->tc_map_vsi[i] = ch->ch_vsi; 8932 dev_dbg(ice_pf_to_dev(pf), 8933 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8934 } 8935 return 0; 8936 8937 err_free: 8938 ice_remove_q_channels(vsi, false); 8939 8940 return ret; 8941 } 8942 8943 /** 8944 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8945 * @netdev: net device to configure 8946 * @type_data: TC offload data 8947 */ 8948 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8949 { 8950 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8951 struct ice_netdev_priv *np = netdev_priv(netdev); 8952 struct ice_vsi *vsi = np->vsi; 8953 struct ice_pf *pf = vsi->back; 8954 u16 mode, ena_tc_qdisc = 0; 8955 int cur_txq, cur_rxq; 8956 u8 hw = 0, num_tcf; 8957 struct device *dev; 8958 int ret, i; 8959 8960 dev = ice_pf_to_dev(pf); 8961 num_tcf = mqprio_qopt->qopt.num_tc; 8962 hw = mqprio_qopt->qopt.hw; 8963 mode = mqprio_qopt->mode; 8964 if (!hw) { 8965 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8966 vsi->ch_rss_size = 0; 8967 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8968 goto config_tcf; 8969 } 8970 8971 /* Generate queue region map for number of TCF requested */ 8972 for (i = 0; i < num_tcf; i++) 8973 ena_tc_qdisc |= BIT(i); 8974 8975 switch (mode) { 8976 case TC_MQPRIO_MODE_CHANNEL: 8977 8978 if (pf->hw.port_info->is_custom_tx_enabled) { 8979 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8980 return -EBUSY; 8981 } 8982 ice_tear_down_devlink_rate_tree(pf); 8983 8984 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8985 if (ret) { 8986 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8987 ret); 8988 return ret; 8989 } 8990 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8991 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8992 /* don't assume state of hw_tc_offload during driver load 8993 * and set the flag for TC flower filter if hw_tc_offload 8994 * already ON 8995 */ 8996 if (vsi->netdev->features & NETIF_F_HW_TC) 8997 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8998 break; 8999 default: 9000 return -EINVAL; 9001 } 9002 9003 config_tcf: 9004 9005 /* Requesting same TCF configuration as already enabled */ 9006 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9007 mode != TC_MQPRIO_MODE_CHANNEL) 9008 return 0; 9009 9010 /* Pause VSI queues */ 9011 ice_dis_vsi(vsi, true); 9012 9013 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9014 ice_remove_q_channels(vsi, true); 9015 9016 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9017 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9018 num_online_cpus()); 9019 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9020 num_online_cpus()); 9021 } else { 9022 /* logic to rebuild VSI, same like ethtool -L */ 9023 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9024 9025 for (i = 0; i < num_tcf; i++) { 9026 if (!(ena_tc_qdisc & BIT(i))) 9027 continue; 9028 9029 offset = vsi->mqprio_qopt.qopt.offset[i]; 9030 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9031 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9032 } 9033 vsi->req_txq = offset + qcount_tx; 9034 vsi->req_rxq = offset + qcount_rx; 9035 9036 /* store away original rss_size info, so that it gets reused 9037 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9038 * determine, what should be the rss_sizefor main VSI 9039 */ 9040 vsi->orig_rss_size = vsi->rss_size; 9041 } 9042 9043 /* save current values of Tx and Rx queues before calling VSI rebuild 9044 * for fallback option 9045 */ 9046 cur_txq = vsi->num_txq; 9047 cur_rxq = vsi->num_rxq; 9048 9049 /* proceed with rebuild main VSI using correct number of queues */ 9050 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9051 if (ret) { 9052 /* fallback to current number of queues */ 9053 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9054 vsi->req_txq = cur_txq; 9055 vsi->req_rxq = cur_rxq; 9056 clear_bit(ICE_RESET_FAILED, pf->state); 9057 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9058 dev_err(dev, "Rebuild of main VSI failed again\n"); 9059 return ret; 9060 } 9061 } 9062 9063 vsi->all_numtc = num_tcf; 9064 vsi->all_enatc = ena_tc_qdisc; 9065 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9066 if (ret) { 9067 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9068 vsi->vsi_num); 9069 goto exit; 9070 } 9071 9072 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9073 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9074 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9075 9076 /* set TC0 rate limit if specified */ 9077 if (max_tx_rate || min_tx_rate) { 9078 /* convert to Kbits/s */ 9079 if (max_tx_rate) 9080 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9081 if (min_tx_rate) 9082 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9083 9084 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9085 if (!ret) { 9086 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9087 max_tx_rate, min_tx_rate, vsi->vsi_num); 9088 } else { 9089 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9090 max_tx_rate, min_tx_rate, vsi->vsi_num); 9091 goto exit; 9092 } 9093 } 9094 ret = ice_create_q_channels(vsi); 9095 if (ret) { 9096 netdev_err(netdev, "failed configuring queue channels\n"); 9097 goto exit; 9098 } else { 9099 netdev_dbg(netdev, "successfully configured channels\n"); 9100 } 9101 } 9102 9103 if (vsi->ch_rss_size) 9104 ice_vsi_cfg_rss_lut_key(vsi); 9105 9106 exit: 9107 /* if error, reset the all_numtc and all_enatc */ 9108 if (ret) { 9109 vsi->all_numtc = 0; 9110 vsi->all_enatc = 0; 9111 } 9112 /* resume VSI */ 9113 ice_ena_vsi(vsi, true); 9114 9115 return ret; 9116 } 9117 9118 static LIST_HEAD(ice_block_cb_list); 9119 9120 static int 9121 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9122 void *type_data) 9123 { 9124 struct ice_netdev_priv *np = netdev_priv(netdev); 9125 struct ice_pf *pf = np->vsi->back; 9126 bool locked = false; 9127 int err; 9128 9129 switch (type) { 9130 case TC_SETUP_BLOCK: 9131 return flow_block_cb_setup_simple(type_data, 9132 &ice_block_cb_list, 9133 ice_setup_tc_block_cb, 9134 np, np, true); 9135 case TC_SETUP_QDISC_MQPRIO: 9136 if (ice_is_eswitch_mode_switchdev(pf)) { 9137 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9138 return -EOPNOTSUPP; 9139 } 9140 9141 if (pf->adev) { 9142 mutex_lock(&pf->adev_mutex); 9143 device_lock(&pf->adev->dev); 9144 locked = true; 9145 if (pf->adev->dev.driver) { 9146 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9147 err = -EBUSY; 9148 goto adev_unlock; 9149 } 9150 } 9151 9152 /* setup traffic classifier for receive side */ 9153 mutex_lock(&pf->tc_mutex); 9154 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9155 mutex_unlock(&pf->tc_mutex); 9156 9157 adev_unlock: 9158 if (locked) { 9159 device_unlock(&pf->adev->dev); 9160 mutex_unlock(&pf->adev_mutex); 9161 } 9162 return err; 9163 default: 9164 return -EOPNOTSUPP; 9165 } 9166 return -EOPNOTSUPP; 9167 } 9168 9169 static struct ice_indr_block_priv * 9170 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9171 struct net_device *netdev) 9172 { 9173 struct ice_indr_block_priv *cb_priv; 9174 9175 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9176 if (!cb_priv->netdev) 9177 return NULL; 9178 if (cb_priv->netdev == netdev) 9179 return cb_priv; 9180 } 9181 return NULL; 9182 } 9183 9184 static int 9185 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9186 void *indr_priv) 9187 { 9188 struct ice_indr_block_priv *priv = indr_priv; 9189 struct ice_netdev_priv *np = priv->np; 9190 9191 switch (type) { 9192 case TC_SETUP_CLSFLOWER: 9193 return ice_setup_tc_cls_flower(np, priv->netdev, 9194 (struct flow_cls_offload *) 9195 type_data); 9196 default: 9197 return -EOPNOTSUPP; 9198 } 9199 } 9200 9201 static int 9202 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9203 struct ice_netdev_priv *np, 9204 struct flow_block_offload *f, void *data, 9205 void (*cleanup)(struct flow_block_cb *block_cb)) 9206 { 9207 struct ice_indr_block_priv *indr_priv; 9208 struct flow_block_cb *block_cb; 9209 9210 if (!ice_is_tunnel_supported(netdev) && 9211 !(is_vlan_dev(netdev) && 9212 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9213 return -EOPNOTSUPP; 9214 9215 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9216 return -EOPNOTSUPP; 9217 9218 switch (f->command) { 9219 case FLOW_BLOCK_BIND: 9220 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9221 if (indr_priv) 9222 return -EEXIST; 9223 9224 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9225 if (!indr_priv) 9226 return -ENOMEM; 9227 9228 indr_priv->netdev = netdev; 9229 indr_priv->np = np; 9230 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9231 9232 block_cb = 9233 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9234 indr_priv, indr_priv, 9235 ice_rep_indr_tc_block_unbind, 9236 f, netdev, sch, data, np, 9237 cleanup); 9238 9239 if (IS_ERR(block_cb)) { 9240 list_del(&indr_priv->list); 9241 kfree(indr_priv); 9242 return PTR_ERR(block_cb); 9243 } 9244 flow_block_cb_add(block_cb, f); 9245 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9246 break; 9247 case FLOW_BLOCK_UNBIND: 9248 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9249 if (!indr_priv) 9250 return -ENOENT; 9251 9252 block_cb = flow_block_cb_lookup(f->block, 9253 ice_indr_setup_block_cb, 9254 indr_priv); 9255 if (!block_cb) 9256 return -ENOENT; 9257 9258 flow_indr_block_cb_remove(block_cb, f); 9259 9260 list_del(&block_cb->driver_list); 9261 break; 9262 default: 9263 return -EOPNOTSUPP; 9264 } 9265 return 0; 9266 } 9267 9268 static int 9269 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9270 void *cb_priv, enum tc_setup_type type, void *type_data, 9271 void *data, 9272 void (*cleanup)(struct flow_block_cb *block_cb)) 9273 { 9274 switch (type) { 9275 case TC_SETUP_BLOCK: 9276 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9277 data, cleanup); 9278 9279 default: 9280 return -EOPNOTSUPP; 9281 } 9282 } 9283 9284 /** 9285 * ice_open - Called when a network interface becomes active 9286 * @netdev: network interface device structure 9287 * 9288 * The open entry point is called when a network interface is made 9289 * active by the system (IFF_UP). At this point all resources needed 9290 * for transmit and receive operations are allocated, the interrupt 9291 * handler is registered with the OS, the netdev watchdog is enabled, 9292 * and the stack is notified that the interface is ready. 9293 * 9294 * Returns 0 on success, negative value on failure 9295 */ 9296 int ice_open(struct net_device *netdev) 9297 { 9298 struct ice_netdev_priv *np = netdev_priv(netdev); 9299 struct ice_pf *pf = np->vsi->back; 9300 9301 if (ice_is_reset_in_progress(pf->state)) { 9302 netdev_err(netdev, "can't open net device while reset is in progress"); 9303 return -EBUSY; 9304 } 9305 9306 return ice_open_internal(netdev); 9307 } 9308 9309 /** 9310 * ice_open_internal - Called when a network interface becomes active 9311 * @netdev: network interface device structure 9312 * 9313 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9314 * handling routine 9315 * 9316 * Returns 0 on success, negative value on failure 9317 */ 9318 int ice_open_internal(struct net_device *netdev) 9319 { 9320 struct ice_netdev_priv *np = netdev_priv(netdev); 9321 struct ice_vsi *vsi = np->vsi; 9322 struct ice_pf *pf = vsi->back; 9323 struct ice_port_info *pi; 9324 int err; 9325 9326 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9327 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9328 return -EIO; 9329 } 9330 9331 netif_carrier_off(netdev); 9332 9333 pi = vsi->port_info; 9334 err = ice_update_link_info(pi); 9335 if (err) { 9336 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9337 return err; 9338 } 9339 9340 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9341 9342 /* Set PHY if there is media, otherwise, turn off PHY */ 9343 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9344 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9345 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9346 err = ice_init_phy_user_cfg(pi); 9347 if (err) { 9348 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9349 err); 9350 return err; 9351 } 9352 } 9353 9354 err = ice_configure_phy(vsi); 9355 if (err) { 9356 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9357 err); 9358 return err; 9359 } 9360 } else { 9361 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9362 ice_set_link(vsi, false); 9363 } 9364 9365 err = ice_vsi_open(vsi); 9366 if (err) 9367 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9368 vsi->vsi_num, vsi->vsw->sw_id); 9369 9370 /* Update existing tunnels information */ 9371 udp_tunnel_get_rx_info(netdev); 9372 9373 return err; 9374 } 9375 9376 /** 9377 * ice_stop - Disables a network interface 9378 * @netdev: network interface device structure 9379 * 9380 * The stop entry point is called when an interface is de-activated by the OS, 9381 * and the netdevice enters the DOWN state. The hardware is still under the 9382 * driver's control, but the netdev interface is disabled. 9383 * 9384 * Returns success only - not allowed to fail 9385 */ 9386 int ice_stop(struct net_device *netdev) 9387 { 9388 struct ice_netdev_priv *np = netdev_priv(netdev); 9389 struct ice_vsi *vsi = np->vsi; 9390 struct ice_pf *pf = vsi->back; 9391 9392 if (ice_is_reset_in_progress(pf->state)) { 9393 netdev_err(netdev, "can't stop net device while reset is in progress"); 9394 return -EBUSY; 9395 } 9396 9397 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9398 int link_err = ice_force_phys_link_state(vsi, false); 9399 9400 if (link_err) { 9401 if (link_err == -ENOMEDIUM) 9402 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9403 vsi->vsi_num); 9404 else 9405 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9406 vsi->vsi_num, link_err); 9407 9408 ice_vsi_close(vsi); 9409 return -EIO; 9410 } 9411 } 9412 9413 ice_vsi_close(vsi); 9414 9415 return 0; 9416 } 9417 9418 /** 9419 * ice_features_check - Validate encapsulated packet conforms to limits 9420 * @skb: skb buffer 9421 * @netdev: This port's netdev 9422 * @features: Offload features that the stack believes apply 9423 */ 9424 static netdev_features_t 9425 ice_features_check(struct sk_buff *skb, 9426 struct net_device __always_unused *netdev, 9427 netdev_features_t features) 9428 { 9429 bool gso = skb_is_gso(skb); 9430 size_t len; 9431 9432 /* No point in doing any of this if neither checksum nor GSO are 9433 * being requested for this frame. We can rule out both by just 9434 * checking for CHECKSUM_PARTIAL 9435 */ 9436 if (skb->ip_summed != CHECKSUM_PARTIAL) 9437 return features; 9438 9439 /* We cannot support GSO if the MSS is going to be less than 9440 * 64 bytes. If it is then we need to drop support for GSO. 9441 */ 9442 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9443 features &= ~NETIF_F_GSO_MASK; 9444 9445 len = skb_network_offset(skb); 9446 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9447 goto out_rm_features; 9448 9449 len = skb_network_header_len(skb); 9450 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9451 goto out_rm_features; 9452 9453 if (skb->encapsulation) { 9454 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9455 * the case of IPIP frames, the transport header pointer is 9456 * after the inner header! So check to make sure that this 9457 * is a GRE or UDP_TUNNEL frame before doing that math. 9458 */ 9459 if (gso && (skb_shinfo(skb)->gso_type & 9460 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9461 len = skb_inner_network_header(skb) - 9462 skb_transport_header(skb); 9463 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9464 goto out_rm_features; 9465 } 9466 9467 len = skb_inner_network_header_len(skb); 9468 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9469 goto out_rm_features; 9470 } 9471 9472 return features; 9473 out_rm_features: 9474 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9475 } 9476 9477 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9478 .ndo_open = ice_open, 9479 .ndo_stop = ice_stop, 9480 .ndo_start_xmit = ice_start_xmit, 9481 .ndo_set_mac_address = ice_set_mac_address, 9482 .ndo_validate_addr = eth_validate_addr, 9483 .ndo_change_mtu = ice_change_mtu, 9484 .ndo_get_stats64 = ice_get_stats64, 9485 .ndo_tx_timeout = ice_tx_timeout, 9486 .ndo_bpf = ice_xdp_safe_mode, 9487 }; 9488 9489 static const struct net_device_ops ice_netdev_ops = { 9490 .ndo_open = ice_open, 9491 .ndo_stop = ice_stop, 9492 .ndo_start_xmit = ice_start_xmit, 9493 .ndo_select_queue = ice_select_queue, 9494 .ndo_features_check = ice_features_check, 9495 .ndo_fix_features = ice_fix_features, 9496 .ndo_set_rx_mode = ice_set_rx_mode, 9497 .ndo_set_mac_address = ice_set_mac_address, 9498 .ndo_validate_addr = eth_validate_addr, 9499 .ndo_change_mtu = ice_change_mtu, 9500 .ndo_get_stats64 = ice_get_stats64, 9501 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9502 .ndo_eth_ioctl = ice_eth_ioctl, 9503 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9504 .ndo_set_vf_mac = ice_set_vf_mac, 9505 .ndo_get_vf_config = ice_get_vf_cfg, 9506 .ndo_set_vf_trust = ice_set_vf_trust, 9507 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9508 .ndo_set_vf_link_state = ice_set_vf_link_state, 9509 .ndo_get_vf_stats = ice_get_vf_stats, 9510 .ndo_set_vf_rate = ice_set_vf_bw, 9511 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9512 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9513 .ndo_setup_tc = ice_setup_tc, 9514 .ndo_set_features = ice_set_features, 9515 .ndo_bridge_getlink = ice_bridge_getlink, 9516 .ndo_bridge_setlink = ice_bridge_setlink, 9517 .ndo_fdb_add = ice_fdb_add, 9518 .ndo_fdb_del = ice_fdb_del, 9519 #ifdef CONFIG_RFS_ACCEL 9520 .ndo_rx_flow_steer = ice_rx_flow_steer, 9521 #endif 9522 .ndo_tx_timeout = ice_tx_timeout, 9523 .ndo_bpf = ice_xdp, 9524 .ndo_xdp_xmit = ice_xdp_xmit, 9525 .ndo_xsk_wakeup = ice_xsk_wakeup, 9526 }; 9527