1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS("LIBIE"); 41 MODULE_IMPORT_NS("LIBIE_ADMINQ"); 42 MODULE_LICENSE("GPL v2"); 43 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 44 45 static int debug = -1; 46 module_param(debug, int, 0644); 47 #ifndef CONFIG_DYNAMIC_DEBUG 48 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 49 #else 50 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 51 #endif /* !CONFIG_DYNAMIC_DEBUG */ 52 53 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 54 EXPORT_SYMBOL(ice_xdp_locking_key); 55 56 /** 57 * ice_hw_to_dev - Get device pointer from the hardware structure 58 * @hw: pointer to the device HW structure 59 * 60 * Used to access the device pointer from compilation units which can't easily 61 * include the definition of struct ice_pf without leading to circular header 62 * dependencies. 63 */ 64 struct device *ice_hw_to_dev(struct ice_hw *hw) 65 { 66 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 67 68 return &pf->pdev->dev; 69 } 70 71 static struct workqueue_struct *ice_wq; 72 struct workqueue_struct *ice_lag_wq; 73 static const struct net_device_ops ice_netdev_safe_mode_ops; 74 static const struct net_device_ops ice_netdev_ops; 75 76 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 77 78 static void ice_vsi_release_all(struct ice_pf *pf); 79 80 static int ice_rebuild_channels(struct ice_pf *pf); 81 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 82 83 static int 84 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 85 void *cb_priv, enum tc_setup_type type, void *type_data, 86 void *data, 87 void (*cleanup)(struct flow_block_cb *block_cb)); 88 89 bool netif_is_ice(const struct net_device *dev) 90 { 91 return dev && (dev->netdev_ops == &ice_netdev_ops || 92 dev->netdev_ops == &ice_netdev_safe_mode_ops); 93 } 94 95 /** 96 * ice_get_tx_pending - returns number of Tx descriptors not processed 97 * @ring: the ring of descriptors 98 */ 99 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 100 { 101 u16 head, tail; 102 103 head = ring->next_to_clean; 104 tail = ring->next_to_use; 105 106 if (head != tail) 107 return (head < tail) ? 108 tail - head : (tail + ring->count - head); 109 return 0; 110 } 111 112 /** 113 * ice_check_for_hang_subtask - check for and recover hung queues 114 * @pf: pointer to PF struct 115 */ 116 static void ice_check_for_hang_subtask(struct ice_pf *pf) 117 { 118 struct ice_vsi *vsi = NULL; 119 struct ice_hw *hw; 120 unsigned int i; 121 int packets; 122 u32 v; 123 124 ice_for_each_vsi(pf, v) 125 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 126 vsi = pf->vsi[v]; 127 break; 128 } 129 130 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 131 return; 132 133 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 134 return; 135 136 hw = &vsi->back->hw; 137 138 ice_for_each_txq(vsi, i) { 139 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 140 struct ice_ring_stats *ring_stats; 141 142 if (!tx_ring) 143 continue; 144 if (ice_ring_ch_enabled(tx_ring)) 145 continue; 146 147 ring_stats = tx_ring->ring_stats; 148 if (!ring_stats) 149 continue; 150 151 if (tx_ring->desc) { 152 /* If packet counter has not changed the queue is 153 * likely stalled, so force an interrupt for this 154 * queue. 155 * 156 * prev_pkt would be negative if there was no 157 * pending work. 158 */ 159 packets = ring_stats->stats.pkts & INT_MAX; 160 if (ring_stats->tx_stats.prev_pkt == packets) { 161 /* Trigger sw interrupt to revive the queue */ 162 ice_trigger_sw_intr(hw, tx_ring->q_vector); 163 continue; 164 } 165 166 /* Memory barrier between read of packet count and call 167 * to ice_get_tx_pending() 168 */ 169 smp_rmb(); 170 ring_stats->tx_stats.prev_pkt = 171 ice_get_tx_pending(tx_ring) ? packets : -1; 172 } 173 } 174 } 175 176 /** 177 * ice_init_mac_fltr - Set initial MAC filters 178 * @pf: board private structure 179 * 180 * Set initial set of MAC filters for PF VSI; configure filters for permanent 181 * address and broadcast address. If an error is encountered, netdevice will be 182 * unregistered. 183 */ 184 static int ice_init_mac_fltr(struct ice_pf *pf) 185 { 186 struct ice_vsi *vsi; 187 u8 *perm_addr; 188 189 vsi = ice_get_main_vsi(pf); 190 if (!vsi) 191 return -EINVAL; 192 193 perm_addr = vsi->port_info->mac.perm_addr; 194 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 195 } 196 197 /** 198 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 199 * @netdev: the net device on which the sync is happening 200 * @addr: MAC address to sync 201 * 202 * This is a callback function which is called by the in kernel device sync 203 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 204 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 205 * MAC filters from the hardware. 206 */ 207 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 208 { 209 struct ice_netdev_priv *np = netdev_priv(netdev); 210 struct ice_vsi *vsi = np->vsi; 211 212 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 213 ICE_FWD_TO_VSI)) 214 return -EINVAL; 215 216 return 0; 217 } 218 219 /** 220 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 221 * @netdev: the net device on which the unsync is happening 222 * @addr: MAC address to unsync 223 * 224 * This is a callback function which is called by the in kernel device unsync 225 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 226 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 227 * delete the MAC filters from the hardware. 228 */ 229 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 230 { 231 struct ice_netdev_priv *np = netdev_priv(netdev); 232 struct ice_vsi *vsi = np->vsi; 233 234 /* Under some circumstances, we might receive a request to delete our 235 * own device address from our uc list. Because we store the device 236 * address in the VSI's MAC filter list, we need to ignore such 237 * requests and not delete our device address from this list. 238 */ 239 if (ether_addr_equal(addr, netdev->dev_addr)) 240 return 0; 241 242 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 243 ICE_FWD_TO_VSI)) 244 return -EINVAL; 245 246 return 0; 247 } 248 249 /** 250 * ice_vsi_fltr_changed - check if filter state changed 251 * @vsi: VSI to be checked 252 * 253 * returns true if filter state has changed, false otherwise. 254 */ 255 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 256 { 257 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 258 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 259 } 260 261 /** 262 * ice_set_promisc - Enable promiscuous mode for a given PF 263 * @vsi: the VSI being configured 264 * @promisc_m: mask of promiscuous config bits 265 * 266 */ 267 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 268 { 269 int status; 270 271 if (vsi->type != ICE_VSI_PF) 272 return 0; 273 274 if (ice_vsi_has_non_zero_vlans(vsi)) { 275 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 276 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 277 promisc_m); 278 } else { 279 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 280 promisc_m, 0); 281 } 282 if (status && status != -EEXIST) 283 return status; 284 285 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 286 vsi->vsi_num, promisc_m); 287 return 0; 288 } 289 290 /** 291 * ice_clear_promisc - Disable promiscuous mode for a given PF 292 * @vsi: the VSI being configured 293 * @promisc_m: mask of promiscuous config bits 294 * 295 */ 296 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 297 { 298 int status; 299 300 if (vsi->type != ICE_VSI_PF) 301 return 0; 302 303 if (ice_vsi_has_non_zero_vlans(vsi)) { 304 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 305 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 306 promisc_m); 307 } else { 308 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 309 promisc_m, 0); 310 } 311 312 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 313 vsi->vsi_num, promisc_m); 314 return status; 315 } 316 317 /** 318 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 319 * @vsi: ptr to the VSI 320 * 321 * Push any outstanding VSI filter changes through the AdminQ. 322 */ 323 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 324 { 325 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 326 struct device *dev = ice_pf_to_dev(vsi->back); 327 struct net_device *netdev = vsi->netdev; 328 bool promisc_forced_on = false; 329 struct ice_pf *pf = vsi->back; 330 struct ice_hw *hw = &pf->hw; 331 u32 changed_flags = 0; 332 int err; 333 334 if (!vsi->netdev) 335 return -EINVAL; 336 337 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 338 usleep_range(1000, 2000); 339 340 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 341 vsi->current_netdev_flags = vsi->netdev->flags; 342 343 INIT_LIST_HEAD(&vsi->tmp_sync_list); 344 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 345 346 if (ice_vsi_fltr_changed(vsi)) { 347 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 348 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 349 350 /* grab the netdev's addr_list_lock */ 351 netif_addr_lock_bh(netdev); 352 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 355 ice_add_mac_to_unsync_list); 356 /* our temp lists are populated. release lock */ 357 netif_addr_unlock_bh(netdev); 358 } 359 360 /* Remove MAC addresses in the unsync list */ 361 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 362 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 363 if (err) { 364 netdev_err(netdev, "Failed to delete MAC filters\n"); 365 /* if we failed because of alloc failures, just bail */ 366 if (err == -ENOMEM) 367 goto out; 368 } 369 370 /* Add MAC addresses in the sync list */ 371 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 372 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 373 /* If filter is added successfully or already exists, do not go into 374 * 'if' condition and report it as error. Instead continue processing 375 * rest of the function. 376 */ 377 if (err && err != -EEXIST) { 378 netdev_err(netdev, "Failed to add MAC filters\n"); 379 /* If there is no more space for new umac filters, VSI 380 * should go into promiscuous mode. There should be some 381 * space reserved for promiscuous filters. 382 */ 383 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_ENOSPC && 384 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 385 vsi->state)) { 386 promisc_forced_on = true; 387 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 388 vsi->vsi_num); 389 } else { 390 goto out; 391 } 392 } 393 err = 0; 394 /* check for changes in promiscuous modes */ 395 if (changed_flags & IFF_ALLMULTI) { 396 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 397 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 398 if (err) { 399 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 400 goto out_promisc; 401 } 402 } else { 403 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 404 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 405 if (err) { 406 vsi->current_netdev_flags |= IFF_ALLMULTI; 407 goto out_promisc; 408 } 409 } 410 } 411 412 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 413 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 414 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 415 if (vsi->current_netdev_flags & IFF_PROMISC) { 416 /* Apply Rx filter rule to get traffic from wire */ 417 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 418 err = ice_set_dflt_vsi(vsi); 419 if (err && err != -EEXIST) { 420 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 421 err, vsi->vsi_num); 422 vsi->current_netdev_flags &= 423 ~IFF_PROMISC; 424 goto out_promisc; 425 } 426 err = 0; 427 vlan_ops->dis_rx_filtering(vsi); 428 429 /* promiscuous mode implies allmulticast so 430 * that VSIs that are in promiscuous mode are 431 * subscribed to multicast packets coming to 432 * the port 433 */ 434 err = ice_set_promisc(vsi, 435 ICE_MCAST_PROMISC_BITS); 436 if (err) 437 goto out_promisc; 438 } 439 } else { 440 /* Clear Rx filter to remove traffic from wire */ 441 if (ice_is_vsi_dflt_vsi(vsi)) { 442 err = ice_clear_dflt_vsi(vsi); 443 if (err) { 444 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 445 err, vsi->vsi_num); 446 vsi->current_netdev_flags |= 447 IFF_PROMISC; 448 goto out_promisc; 449 } 450 if (vsi->netdev->features & 451 NETIF_F_HW_VLAN_CTAG_FILTER) 452 vlan_ops->ena_rx_filtering(vsi); 453 } 454 455 /* disable allmulti here, but only if allmulti is not 456 * still enabled for the netdev 457 */ 458 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 459 err = ice_clear_promisc(vsi, 460 ICE_MCAST_PROMISC_BITS); 461 if (err) { 462 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 463 err, vsi->vsi_num); 464 } 465 } 466 } 467 } 468 goto exit; 469 470 out_promisc: 471 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 472 goto exit; 473 out: 474 /* if something went wrong then set the changed flag so we try again */ 475 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 476 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 477 exit: 478 clear_bit(ICE_CFG_BUSY, vsi->state); 479 return err; 480 } 481 482 /** 483 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 484 * @pf: board private structure 485 */ 486 static void ice_sync_fltr_subtask(struct ice_pf *pf) 487 { 488 int v; 489 490 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 491 return; 492 493 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 494 495 ice_for_each_vsi(pf, v) 496 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 497 ice_vsi_sync_fltr(pf->vsi[v])) { 498 /* come back and try again later */ 499 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 500 break; 501 } 502 } 503 504 /** 505 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 506 * @pf: the PF 507 * @locked: is the rtnl_lock already held 508 */ 509 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 510 { 511 int node; 512 int v; 513 514 ice_for_each_vsi(pf, v) 515 if (pf->vsi[v]) 516 ice_dis_vsi(pf->vsi[v], locked); 517 518 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 519 pf->pf_agg_node[node].num_vsis = 0; 520 521 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 522 pf->vf_agg_node[node].num_vsis = 0; 523 } 524 525 /** 526 * ice_prepare_for_reset - prep for reset 527 * @pf: board private structure 528 * @reset_type: reset type requested 529 * 530 * Inform or close all dependent features in prep for reset. 531 */ 532 static void 533 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 534 { 535 struct ice_hw *hw = &pf->hw; 536 struct ice_vsi *vsi; 537 struct ice_vf *vf; 538 unsigned int bkt; 539 540 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 541 542 /* already prepared for reset */ 543 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 544 return; 545 546 synchronize_irq(pf->oicr_irq.virq); 547 548 ice_unplug_aux_dev(pf); 549 550 /* Notify VFs of impending reset */ 551 if (ice_check_sq_alive(hw, &hw->mailboxq)) 552 ice_vc_notify_reset(pf); 553 554 /* Disable VFs until reset is completed */ 555 mutex_lock(&pf->vfs.table_lock); 556 ice_for_each_vf(pf, bkt, vf) 557 ice_set_vf_state_dis(vf); 558 mutex_unlock(&pf->vfs.table_lock); 559 560 if (ice_is_eswitch_mode_switchdev(pf)) { 561 rtnl_lock(); 562 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 563 rtnl_unlock(); 564 } 565 566 /* release ADQ specific HW and SW resources */ 567 vsi = ice_get_main_vsi(pf); 568 if (!vsi) 569 goto skip; 570 571 /* to be on safe side, reset orig_rss_size so that normal flow 572 * of deciding rss_size can take precedence 573 */ 574 vsi->orig_rss_size = 0; 575 576 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 577 if (reset_type == ICE_RESET_PFR) { 578 vsi->old_ena_tc = vsi->all_enatc; 579 vsi->old_numtc = vsi->all_numtc; 580 } else { 581 ice_remove_q_channels(vsi, true); 582 583 /* for other reset type, do not support channel rebuild 584 * hence reset needed info 585 */ 586 vsi->old_ena_tc = 0; 587 vsi->all_enatc = 0; 588 vsi->old_numtc = 0; 589 vsi->all_numtc = 0; 590 vsi->req_txq = 0; 591 vsi->req_rxq = 0; 592 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 593 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 594 } 595 } 596 597 if (vsi->netdev) 598 netif_device_detach(vsi->netdev); 599 skip: 600 601 /* clear SW filtering DB */ 602 ice_clear_hw_tbls(hw); 603 /* disable the VSIs and their queues that are not already DOWN */ 604 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 605 ice_pf_dis_all_vsi(pf, false); 606 607 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 608 ice_ptp_prepare_for_reset(pf, reset_type); 609 610 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 611 ice_gnss_exit(pf); 612 613 if (hw->port_info) 614 ice_sched_clear_port(hw->port_info); 615 616 ice_shutdown_all_ctrlq(hw, false); 617 618 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 619 } 620 621 /** 622 * ice_do_reset - Initiate one of many types of resets 623 * @pf: board private structure 624 * @reset_type: reset type requested before this function was called. 625 */ 626 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 627 { 628 struct device *dev = ice_pf_to_dev(pf); 629 struct ice_hw *hw = &pf->hw; 630 631 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 632 633 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 634 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 635 reset_type = ICE_RESET_CORER; 636 } 637 638 ice_prepare_for_reset(pf, reset_type); 639 640 /* trigger the reset */ 641 if (ice_reset(hw, reset_type)) { 642 dev_err(dev, "reset %d failed\n", reset_type); 643 set_bit(ICE_RESET_FAILED, pf->state); 644 clear_bit(ICE_RESET_OICR_RECV, pf->state); 645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 646 clear_bit(ICE_PFR_REQ, pf->state); 647 clear_bit(ICE_CORER_REQ, pf->state); 648 clear_bit(ICE_GLOBR_REQ, pf->state); 649 wake_up(&pf->reset_wait_queue); 650 return; 651 } 652 653 /* PFR is a bit of a special case because it doesn't result in an OICR 654 * interrupt. So for PFR, rebuild after the reset and clear the reset- 655 * associated state bits. 656 */ 657 if (reset_type == ICE_RESET_PFR) { 658 pf->pfr_count++; 659 ice_rebuild(pf, reset_type); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 ice_reset_all_vfs(pf); 664 } 665 } 666 667 /** 668 * ice_reset_subtask - Set up for resetting the device and driver 669 * @pf: board private structure 670 */ 671 static void ice_reset_subtask(struct ice_pf *pf) 672 { 673 enum ice_reset_req reset_type = ICE_RESET_INVAL; 674 675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 677 * of reset is pending and sets bits in pf->state indicating the reset 678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 679 * prepare for pending reset if not already (for PF software-initiated 680 * global resets the software should already be prepared for it as 681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 682 * by firmware or software on other PFs, that bit is not set so prepare 683 * for the reset now), poll for reset done, rebuild and return. 684 */ 685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 686 /* Perform the largest reset requested */ 687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 688 reset_type = ICE_RESET_CORER; 689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 690 reset_type = ICE_RESET_GLOBR; 691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 692 reset_type = ICE_RESET_EMPR; 693 /* return if no valid reset type requested */ 694 if (reset_type == ICE_RESET_INVAL) 695 return; 696 ice_prepare_for_reset(pf, reset_type); 697 698 /* make sure we are ready to rebuild */ 699 if (ice_check_reset(&pf->hw)) { 700 set_bit(ICE_RESET_FAILED, pf->state); 701 } else { 702 /* done with reset. start rebuild */ 703 pf->hw.reset_ongoing = false; 704 ice_rebuild(pf, reset_type); 705 /* clear bit to resume normal operations, but 706 * ICE_NEEDS_RESTART bit is set in case rebuild failed 707 */ 708 clear_bit(ICE_RESET_OICR_RECV, pf->state); 709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 710 clear_bit(ICE_PFR_REQ, pf->state); 711 clear_bit(ICE_CORER_REQ, pf->state); 712 clear_bit(ICE_GLOBR_REQ, pf->state); 713 wake_up(&pf->reset_wait_queue); 714 ice_reset_all_vfs(pf); 715 } 716 717 return; 718 } 719 720 /* No pending resets to finish processing. Check for new resets */ 721 if (test_bit(ICE_PFR_REQ, pf->state)) { 722 reset_type = ICE_RESET_PFR; 723 if (pf->lag && pf->lag->bonded) { 724 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 725 reset_type = ICE_RESET_CORER; 726 } 727 } 728 if (test_bit(ICE_CORER_REQ, pf->state)) 729 reset_type = ICE_RESET_CORER; 730 if (test_bit(ICE_GLOBR_REQ, pf->state)) 731 reset_type = ICE_RESET_GLOBR; 732 /* If no valid reset type requested just return */ 733 if (reset_type == ICE_RESET_INVAL) 734 return; 735 736 /* reset if not already down or busy */ 737 if (!test_bit(ICE_DOWN, pf->state) && 738 !test_bit(ICE_CFG_BUSY, pf->state)) { 739 ice_do_reset(pf, reset_type); 740 } 741 } 742 743 /** 744 * ice_print_topo_conflict - print topology conflict message 745 * @vsi: the VSI whose topology status is being checked 746 */ 747 static void ice_print_topo_conflict(struct ice_vsi *vsi) 748 { 749 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 750 case ICE_AQ_LINK_TOPO_CONFLICT: 751 case ICE_AQ_LINK_MEDIA_CONFLICT: 752 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 753 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 754 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 755 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 756 break; 757 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 758 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 759 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 760 else 761 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 762 break; 763 default: 764 break; 765 } 766 } 767 768 /** 769 * ice_print_link_msg - print link up or down message 770 * @vsi: the VSI whose link status is being queried 771 * @isup: boolean for if the link is now up or down 772 */ 773 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 774 { 775 struct ice_aqc_get_phy_caps_data *caps; 776 const char *an_advertised; 777 const char *fec_req; 778 const char *speed; 779 const char *fec; 780 const char *fc; 781 const char *an; 782 int status; 783 784 if (!vsi) 785 return; 786 787 if (vsi->current_isup == isup) 788 return; 789 790 vsi->current_isup = isup; 791 792 if (!isup) { 793 netdev_info(vsi->netdev, "NIC Link is Down\n"); 794 return; 795 } 796 797 switch (vsi->port_info->phy.link_info.link_speed) { 798 case ICE_AQ_LINK_SPEED_200GB: 799 speed = "200 G"; 800 break; 801 case ICE_AQ_LINK_SPEED_100GB: 802 speed = "100 G"; 803 break; 804 case ICE_AQ_LINK_SPEED_50GB: 805 speed = "50 G"; 806 break; 807 case ICE_AQ_LINK_SPEED_40GB: 808 speed = "40 G"; 809 break; 810 case ICE_AQ_LINK_SPEED_25GB: 811 speed = "25 G"; 812 break; 813 case ICE_AQ_LINK_SPEED_20GB: 814 speed = "20 G"; 815 break; 816 case ICE_AQ_LINK_SPEED_10GB: 817 speed = "10 G"; 818 break; 819 case ICE_AQ_LINK_SPEED_5GB: 820 speed = "5 G"; 821 break; 822 case ICE_AQ_LINK_SPEED_2500MB: 823 speed = "2.5 G"; 824 break; 825 case ICE_AQ_LINK_SPEED_1000MB: 826 speed = "1 G"; 827 break; 828 case ICE_AQ_LINK_SPEED_100MB: 829 speed = "100 M"; 830 break; 831 default: 832 speed = "Unknown "; 833 break; 834 } 835 836 switch (vsi->port_info->fc.current_mode) { 837 case ICE_FC_FULL: 838 fc = "Rx/Tx"; 839 break; 840 case ICE_FC_TX_PAUSE: 841 fc = "Tx"; 842 break; 843 case ICE_FC_RX_PAUSE: 844 fc = "Rx"; 845 break; 846 case ICE_FC_NONE: 847 fc = "None"; 848 break; 849 default: 850 fc = "Unknown"; 851 break; 852 } 853 854 /* Get FEC mode based on negotiated link info */ 855 switch (vsi->port_info->phy.link_info.fec_info) { 856 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 857 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 858 fec = "RS-FEC"; 859 break; 860 case ICE_AQ_LINK_25G_KR_FEC_EN: 861 fec = "FC-FEC/BASE-R"; 862 break; 863 default: 864 fec = "NONE"; 865 break; 866 } 867 868 /* check if autoneg completed, might be false due to not supported */ 869 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 870 an = "True"; 871 else 872 an = "False"; 873 874 /* Get FEC mode requested based on PHY caps last SW configuration */ 875 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 876 if (!caps) { 877 fec_req = "Unknown"; 878 an_advertised = "Unknown"; 879 goto done; 880 } 881 882 status = ice_aq_get_phy_caps(vsi->port_info, false, 883 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 884 if (status) 885 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 886 887 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 888 889 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 890 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 891 fec_req = "RS-FEC"; 892 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 893 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 894 fec_req = "FC-FEC/BASE-R"; 895 else 896 fec_req = "NONE"; 897 898 kfree(caps); 899 900 done: 901 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 902 speed, fec_req, fec, an_advertised, an, fc); 903 ice_print_topo_conflict(vsi); 904 } 905 906 /** 907 * ice_vsi_link_event - update the VSI's netdev 908 * @vsi: the VSI on which the link event occurred 909 * @link_up: whether or not the VSI needs to be set up or down 910 */ 911 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 912 { 913 if (!vsi) 914 return; 915 916 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 917 return; 918 919 if (vsi->type == ICE_VSI_PF) { 920 if (link_up == netif_carrier_ok(vsi->netdev)) 921 return; 922 923 if (link_up) { 924 netif_carrier_on(vsi->netdev); 925 netif_tx_wake_all_queues(vsi->netdev); 926 } else { 927 netif_carrier_off(vsi->netdev); 928 netif_tx_stop_all_queues(vsi->netdev); 929 } 930 } 931 } 932 933 /** 934 * ice_set_dflt_mib - send a default config MIB to the FW 935 * @pf: private PF struct 936 * 937 * This function sends a default configuration MIB to the FW. 938 * 939 * If this function errors out at any point, the driver is still able to 940 * function. The main impact is that LFC may not operate as expected. 941 * Therefore an error state in this function should be treated with a DBG 942 * message and continue on with driver rebuild/reenable. 943 */ 944 static void ice_set_dflt_mib(struct ice_pf *pf) 945 { 946 struct device *dev = ice_pf_to_dev(pf); 947 u8 mib_type, *buf, *lldpmib = NULL; 948 u16 len, typelen, offset = 0; 949 struct ice_lldp_org_tlv *tlv; 950 struct ice_hw *hw = &pf->hw; 951 u32 ouisubtype; 952 953 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 954 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 955 if (!lldpmib) { 956 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 957 __func__); 958 return; 959 } 960 961 /* Add ETS CFG TLV */ 962 tlv = (struct ice_lldp_org_tlv *)lldpmib; 963 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 964 ICE_IEEE_ETS_TLV_LEN); 965 tlv->typelen = htons(typelen); 966 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 967 ICE_IEEE_SUBTYPE_ETS_CFG); 968 tlv->ouisubtype = htonl(ouisubtype); 969 970 buf = tlv->tlvinfo; 971 buf[0] = 0; 972 973 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 974 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 975 * Octets 13 - 20 are TSA values - leave as zeros 976 */ 977 buf[5] = 0x64; 978 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 979 offset += len + 2; 980 tlv = (struct ice_lldp_org_tlv *) 981 ((char *)tlv + sizeof(tlv->typelen) + len); 982 983 /* Add ETS REC TLV */ 984 buf = tlv->tlvinfo; 985 tlv->typelen = htons(typelen); 986 987 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 988 ICE_IEEE_SUBTYPE_ETS_REC); 989 tlv->ouisubtype = htonl(ouisubtype); 990 991 /* First octet of buf is reserved 992 * Octets 1 - 4 map UP to TC - all UPs map to zero 993 * Octets 5 - 12 are BW values - set TC 0 to 100%. 994 * Octets 13 - 20 are TSA value - leave as zeros 995 */ 996 buf[5] = 0x64; 997 offset += len + 2; 998 tlv = (struct ice_lldp_org_tlv *) 999 ((char *)tlv + sizeof(tlv->typelen) + len); 1000 1001 /* Add PFC CFG TLV */ 1002 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1003 ICE_IEEE_PFC_TLV_LEN); 1004 tlv->typelen = htons(typelen); 1005 1006 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1007 ICE_IEEE_SUBTYPE_PFC_CFG); 1008 tlv->ouisubtype = htonl(ouisubtype); 1009 1010 /* Octet 1 left as all zeros - PFC disabled */ 1011 buf[0] = 0x08; 1012 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1013 offset += len + 2; 1014 1015 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1016 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1017 1018 kfree(lldpmib); 1019 } 1020 1021 /** 1022 * ice_check_phy_fw_load - check if PHY FW load failed 1023 * @pf: pointer to PF struct 1024 * @link_cfg_err: bitmap from the link info structure 1025 * 1026 * check if external PHY FW load failed and print an error message if it did 1027 */ 1028 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1029 { 1030 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1031 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1032 return; 1033 } 1034 1035 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1036 return; 1037 1038 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1039 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1040 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1041 } 1042 } 1043 1044 /** 1045 * ice_check_module_power 1046 * @pf: pointer to PF struct 1047 * @link_cfg_err: bitmap from the link info structure 1048 * 1049 * check module power level returned by a previous call to aq_get_link_info 1050 * and print error messages if module power level is not supported 1051 */ 1052 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1053 { 1054 /* if module power level is supported, clear the flag */ 1055 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1056 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1057 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1058 return; 1059 } 1060 1061 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1062 * above block didn't clear this bit, there's nothing to do 1063 */ 1064 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1065 return; 1066 1067 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1068 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1069 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1070 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1071 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1072 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1073 } 1074 } 1075 1076 /** 1077 * ice_check_link_cfg_err - check if link configuration failed 1078 * @pf: pointer to the PF struct 1079 * @link_cfg_err: bitmap from the link info structure 1080 * 1081 * print if any link configuration failure happens due to the value in the 1082 * link_cfg_err parameter in the link info structure 1083 */ 1084 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1085 { 1086 ice_check_module_power(pf, link_cfg_err); 1087 ice_check_phy_fw_load(pf, link_cfg_err); 1088 } 1089 1090 /** 1091 * ice_link_event - process the link event 1092 * @pf: PF that the link event is associated with 1093 * @pi: port_info for the port that the link event is associated with 1094 * @link_up: true if the physical link is up and false if it is down 1095 * @link_speed: current link speed received from the link event 1096 * 1097 * Returns 0 on success and negative on failure 1098 */ 1099 static int 1100 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1101 u16 link_speed) 1102 { 1103 struct device *dev = ice_pf_to_dev(pf); 1104 struct ice_phy_info *phy_info; 1105 struct ice_vsi *vsi; 1106 u16 old_link_speed; 1107 bool old_link; 1108 int status; 1109 1110 phy_info = &pi->phy; 1111 phy_info->link_info_old = phy_info->link_info; 1112 1113 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1114 old_link_speed = phy_info->link_info_old.link_speed; 1115 1116 /* update the link info structures and re-enable link events, 1117 * don't bail on failure due to other book keeping needed 1118 */ 1119 status = ice_update_link_info(pi); 1120 if (status) 1121 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1122 pi->lport, status, 1123 libie_aq_str(pi->hw->adminq.sq_last_status)); 1124 1125 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1126 1127 /* Check if the link state is up after updating link info, and treat 1128 * this event as an UP event since the link is actually UP now. 1129 */ 1130 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1131 link_up = true; 1132 1133 vsi = ice_get_main_vsi(pf); 1134 if (!vsi || !vsi->port_info) 1135 return -EINVAL; 1136 1137 /* turn off PHY if media was removed */ 1138 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1139 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1140 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1141 ice_set_link(vsi, false); 1142 } 1143 1144 /* if the old link up/down and speed is the same as the new */ 1145 if (link_up == old_link && link_speed == old_link_speed) 1146 return 0; 1147 1148 if (!link_up && old_link) 1149 pf->link_down_events++; 1150 1151 ice_ptp_link_change(pf, link_up); 1152 1153 if (ice_is_dcb_active(pf)) { 1154 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1155 ice_dcb_rebuild(pf); 1156 } else { 1157 if (link_up) 1158 ice_set_dflt_mib(pf); 1159 } 1160 ice_vsi_link_event(vsi, link_up); 1161 ice_print_link_msg(vsi, link_up); 1162 1163 ice_vc_notify_link_state(pf); 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1170 * @pf: board private structure 1171 */ 1172 static void ice_watchdog_subtask(struct ice_pf *pf) 1173 { 1174 int i; 1175 1176 /* if interface is down do nothing */ 1177 if (test_bit(ICE_DOWN, pf->state) || 1178 test_bit(ICE_CFG_BUSY, pf->state)) 1179 return; 1180 1181 /* make sure we don't do these things too often */ 1182 if (time_before(jiffies, 1183 pf->serv_tmr_prev + pf->serv_tmr_period)) 1184 return; 1185 1186 pf->serv_tmr_prev = jiffies; 1187 1188 /* Update the stats for active netdevs so the network stack 1189 * can look at updated numbers whenever it cares to 1190 */ 1191 ice_update_pf_stats(pf); 1192 ice_for_each_vsi(pf, i) 1193 if (pf->vsi[i] && pf->vsi[i]->netdev) 1194 ice_update_vsi_stats(pf->vsi[i]); 1195 } 1196 1197 /** 1198 * ice_init_link_events - enable/initialize link events 1199 * @pi: pointer to the port_info instance 1200 * 1201 * Returns -EIO on failure, 0 on success 1202 */ 1203 static int ice_init_link_events(struct ice_port_info *pi) 1204 { 1205 u16 mask; 1206 1207 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1208 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1209 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1210 1211 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1212 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1213 pi->lport); 1214 return -EIO; 1215 } 1216 1217 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1218 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1219 pi->lport); 1220 return -EIO; 1221 } 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * ice_handle_link_event - handle link event via ARQ 1228 * @pf: PF that the link event is associated with 1229 * @event: event structure containing link status info 1230 */ 1231 static int 1232 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1233 { 1234 struct ice_aqc_get_link_status_data *link_data; 1235 struct ice_port_info *port_info; 1236 int status; 1237 1238 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1239 port_info = pf->hw.port_info; 1240 if (!port_info) 1241 return -EINVAL; 1242 1243 status = ice_link_event(pf, port_info, 1244 !!(link_data->link_info & ICE_AQ_LINK_UP), 1245 le16_to_cpu(link_data->link_speed)); 1246 if (status) 1247 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1248 status); 1249 1250 return status; 1251 } 1252 1253 /** 1254 * ice_get_fwlog_data - copy the FW log data from ARQ event 1255 * @pf: PF that the FW log event is associated with 1256 * @event: event structure containing FW log data 1257 */ 1258 static void 1259 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1260 { 1261 struct ice_fwlog_data *fwlog; 1262 struct ice_hw *hw = &pf->hw; 1263 1264 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1265 1266 memset(fwlog->data, 0, PAGE_SIZE); 1267 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1268 1269 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1270 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1271 1272 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1273 /* the rings are full so bump the head to create room */ 1274 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1275 hw->fwlog_ring.size); 1276 } 1277 } 1278 1279 /** 1280 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1281 * @pf: pointer to the PF private structure 1282 * @task: intermediate helper storage and identifier for waiting 1283 * @opcode: the opcode to wait for 1284 * 1285 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1286 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1287 * 1288 * Calls are separated to allow caller registering for event before sending 1289 * the command, which mitigates a race between registering and FW responding. 1290 * 1291 * To obtain only the descriptor contents, pass an task->event with null 1292 * msg_buf. If the complete data buffer is desired, allocate the 1293 * task->event.msg_buf with enough space ahead of time. 1294 */ 1295 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1296 u16 opcode) 1297 { 1298 INIT_HLIST_NODE(&task->entry); 1299 task->opcode = opcode; 1300 task->state = ICE_AQ_TASK_WAITING; 1301 1302 spin_lock_bh(&pf->aq_wait_lock); 1303 hlist_add_head(&task->entry, &pf->aq_wait_list); 1304 spin_unlock_bh(&pf->aq_wait_lock); 1305 } 1306 1307 /** 1308 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1309 * @pf: pointer to the PF private structure 1310 * @task: ptr prepared by ice_aq_prep_for_event() 1311 * @timeout: how long to wait, in jiffies 1312 * 1313 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1314 * current thread will be put to sleep until the specified event occurs or 1315 * until the given timeout is reached. 1316 * 1317 * Returns: zero on success, or a negative error code on failure. 1318 */ 1319 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1320 unsigned long timeout) 1321 { 1322 enum ice_aq_task_state *state = &task->state; 1323 struct device *dev = ice_pf_to_dev(pf); 1324 unsigned long start = jiffies; 1325 long ret; 1326 int err; 1327 1328 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1329 *state != ICE_AQ_TASK_WAITING, 1330 timeout); 1331 switch (*state) { 1332 case ICE_AQ_TASK_NOT_PREPARED: 1333 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1334 err = -EINVAL; 1335 break; 1336 case ICE_AQ_TASK_WAITING: 1337 err = ret < 0 ? ret : -ETIMEDOUT; 1338 break; 1339 case ICE_AQ_TASK_CANCELED: 1340 err = ret < 0 ? ret : -ECANCELED; 1341 break; 1342 case ICE_AQ_TASK_COMPLETE: 1343 err = ret < 0 ? ret : 0; 1344 break; 1345 default: 1346 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1347 err = -EINVAL; 1348 break; 1349 } 1350 1351 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1352 jiffies_to_msecs(jiffies - start), 1353 jiffies_to_msecs(timeout), 1354 task->opcode); 1355 1356 spin_lock_bh(&pf->aq_wait_lock); 1357 hlist_del(&task->entry); 1358 spin_unlock_bh(&pf->aq_wait_lock); 1359 1360 return err; 1361 } 1362 1363 /** 1364 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1365 * @pf: pointer to the PF private structure 1366 * @opcode: the opcode of the event 1367 * @event: the event to check 1368 * 1369 * Loops over the current list of pending threads waiting for an AdminQ event. 1370 * For each matching task, copy the contents of the event into the task 1371 * structure and wake up the thread. 1372 * 1373 * If multiple threads wait for the same opcode, they will all be woken up. 1374 * 1375 * Note that event->msg_buf will only be duplicated if the event has a buffer 1376 * with enough space already allocated. Otherwise, only the descriptor and 1377 * message length will be copied. 1378 * 1379 * Returns: true if an event was found, false otherwise 1380 */ 1381 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1382 struct ice_rq_event_info *event) 1383 { 1384 struct ice_rq_event_info *task_ev; 1385 struct ice_aq_task *task; 1386 bool found = false; 1387 1388 spin_lock_bh(&pf->aq_wait_lock); 1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1390 if (task->state != ICE_AQ_TASK_WAITING) 1391 continue; 1392 if (task->opcode != opcode) 1393 continue; 1394 1395 task_ev = &task->event; 1396 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1397 task_ev->msg_len = event->msg_len; 1398 1399 /* Only copy the data buffer if a destination was set */ 1400 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1401 memcpy(task_ev->msg_buf, event->msg_buf, 1402 event->buf_len); 1403 task_ev->buf_len = event->buf_len; 1404 } 1405 1406 task->state = ICE_AQ_TASK_COMPLETE; 1407 found = true; 1408 } 1409 spin_unlock_bh(&pf->aq_wait_lock); 1410 1411 if (found) 1412 wake_up(&pf->aq_wait_queue); 1413 } 1414 1415 /** 1416 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1417 * @pf: the PF private structure 1418 * 1419 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1420 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1421 */ 1422 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1423 { 1424 struct ice_aq_task *task; 1425 1426 spin_lock_bh(&pf->aq_wait_lock); 1427 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1428 task->state = ICE_AQ_TASK_CANCELED; 1429 spin_unlock_bh(&pf->aq_wait_lock); 1430 1431 wake_up(&pf->aq_wait_queue); 1432 } 1433 1434 #define ICE_MBX_OVERFLOW_WATERMARK 64 1435 1436 /** 1437 * __ice_clean_ctrlq - helper function to clean controlq rings 1438 * @pf: ptr to struct ice_pf 1439 * @q_type: specific Control queue type 1440 */ 1441 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1442 { 1443 struct device *dev = ice_pf_to_dev(pf); 1444 struct ice_rq_event_info event; 1445 struct ice_hw *hw = &pf->hw; 1446 struct ice_ctl_q_info *cq; 1447 u16 pending, i = 0; 1448 const char *qtype; 1449 u32 oldval, val; 1450 1451 /* Do not clean control queue if/when PF reset fails */ 1452 if (test_bit(ICE_RESET_FAILED, pf->state)) 1453 return 0; 1454 1455 switch (q_type) { 1456 case ICE_CTL_Q_ADMIN: 1457 cq = &hw->adminq; 1458 qtype = "Admin"; 1459 break; 1460 case ICE_CTL_Q_SB: 1461 cq = &hw->sbq; 1462 qtype = "Sideband"; 1463 break; 1464 case ICE_CTL_Q_MAILBOX: 1465 cq = &hw->mailboxq; 1466 qtype = "Mailbox"; 1467 /* we are going to try to detect a malicious VF, so set the 1468 * state to begin detection 1469 */ 1470 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1471 break; 1472 default: 1473 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1474 return 0; 1475 } 1476 1477 /* check for error indications - PF_xx_AxQLEN register layout for 1478 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1479 */ 1480 val = rd32(hw, cq->rq.len); 1481 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1482 PF_FW_ARQLEN_ARQCRIT_M)) { 1483 oldval = val; 1484 if (val & PF_FW_ARQLEN_ARQVFE_M) 1485 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1486 qtype); 1487 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1488 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1489 qtype); 1490 } 1491 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1492 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1493 qtype); 1494 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1495 PF_FW_ARQLEN_ARQCRIT_M); 1496 if (oldval != val) 1497 wr32(hw, cq->rq.len, val); 1498 } 1499 1500 val = rd32(hw, cq->sq.len); 1501 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1502 PF_FW_ATQLEN_ATQCRIT_M)) { 1503 oldval = val; 1504 if (val & PF_FW_ATQLEN_ATQVFE_M) 1505 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1506 qtype); 1507 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1508 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1509 qtype); 1510 } 1511 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1512 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1513 qtype); 1514 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1515 PF_FW_ATQLEN_ATQCRIT_M); 1516 if (oldval != val) 1517 wr32(hw, cq->sq.len, val); 1518 } 1519 1520 event.buf_len = cq->rq_buf_size; 1521 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1522 if (!event.msg_buf) 1523 return 0; 1524 1525 do { 1526 struct ice_mbx_data data = {}; 1527 u16 opcode; 1528 int ret; 1529 1530 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1531 if (ret == -EALREADY) 1532 break; 1533 if (ret) { 1534 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1535 ret); 1536 break; 1537 } 1538 1539 opcode = le16_to_cpu(event.desc.opcode); 1540 1541 /* Notify any thread that might be waiting for this event */ 1542 ice_aq_check_events(pf, opcode, &event); 1543 1544 switch (opcode) { 1545 case ice_aqc_opc_get_link_status: 1546 if (ice_handle_link_event(pf, &event)) 1547 dev_err(dev, "Could not handle link event\n"); 1548 break; 1549 case ice_aqc_opc_event_lan_overflow: 1550 ice_vf_lan_overflow_event(pf, &event); 1551 break; 1552 case ice_mbx_opc_send_msg_to_pf: 1553 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) { 1554 ice_vc_process_vf_msg(pf, &event, NULL); 1555 ice_mbx_vf_dec_trig_e830(hw, &event); 1556 } else { 1557 u16 val = hw->mailboxq.num_rq_entries; 1558 1559 data.max_num_msgs_mbx = val; 1560 val = ICE_MBX_OVERFLOW_WATERMARK; 1561 data.async_watermark_val = val; 1562 data.num_msg_proc = i; 1563 data.num_pending_arq = pending; 1564 1565 ice_vc_process_vf_msg(pf, &event, &data); 1566 } 1567 break; 1568 case ice_aqc_opc_fw_logs_event: 1569 ice_get_fwlog_data(pf, &event); 1570 break; 1571 case ice_aqc_opc_lldp_set_mib_change: 1572 ice_dcb_process_lldp_set_mib_change(pf, &event); 1573 break; 1574 case ice_aqc_opc_get_health_status: 1575 ice_process_health_status_event(pf, &event); 1576 break; 1577 default: 1578 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1579 qtype, opcode); 1580 break; 1581 } 1582 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1583 1584 kfree(event.msg_buf); 1585 1586 return pending && (i == ICE_DFLT_IRQ_WORK); 1587 } 1588 1589 /** 1590 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1591 * @hw: pointer to hardware info 1592 * @cq: control queue information 1593 * 1594 * returns true if there are pending messages in a queue, false if there aren't 1595 */ 1596 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1597 { 1598 u16 ntu; 1599 1600 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1601 return cq->rq.next_to_clean != ntu; 1602 } 1603 1604 /** 1605 * ice_clean_adminq_subtask - clean the AdminQ rings 1606 * @pf: board private structure 1607 */ 1608 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1609 { 1610 struct ice_hw *hw = &pf->hw; 1611 1612 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1613 return; 1614 1615 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1616 return; 1617 1618 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1619 1620 /* There might be a situation where new messages arrive to a control 1621 * queue between processing the last message and clearing the 1622 * EVENT_PENDING bit. So before exiting, check queue head again (using 1623 * ice_ctrlq_pending) and process new messages if any. 1624 */ 1625 if (ice_ctrlq_pending(hw, &hw->adminq)) 1626 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1627 1628 ice_flush(hw); 1629 } 1630 1631 /** 1632 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1633 * @pf: board private structure 1634 */ 1635 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1636 { 1637 struct ice_hw *hw = &pf->hw; 1638 1639 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1640 return; 1641 1642 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1643 return; 1644 1645 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1646 1647 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1648 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1649 1650 ice_flush(hw); 1651 } 1652 1653 /** 1654 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1655 * @pf: board private structure 1656 */ 1657 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1658 { 1659 struct ice_hw *hw = &pf->hw; 1660 1661 /* if mac_type is not generic, sideband is not supported 1662 * and there's nothing to do here 1663 */ 1664 if (!ice_is_generic_mac(hw)) { 1665 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1666 return; 1667 } 1668 1669 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1670 return; 1671 1672 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1673 return; 1674 1675 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1676 1677 if (ice_ctrlq_pending(hw, &hw->sbq)) 1678 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1679 1680 ice_flush(hw); 1681 } 1682 1683 /** 1684 * ice_service_task_schedule - schedule the service task to wake up 1685 * @pf: board private structure 1686 * 1687 * If not already scheduled, this puts the task into the work queue. 1688 */ 1689 void ice_service_task_schedule(struct ice_pf *pf) 1690 { 1691 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1692 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1693 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1694 queue_work(ice_wq, &pf->serv_task); 1695 } 1696 1697 /** 1698 * ice_service_task_complete - finish up the service task 1699 * @pf: board private structure 1700 */ 1701 static void ice_service_task_complete(struct ice_pf *pf) 1702 { 1703 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1704 1705 /* force memory (pf->state) to sync before next service task */ 1706 smp_mb__before_atomic(); 1707 clear_bit(ICE_SERVICE_SCHED, pf->state); 1708 } 1709 1710 /** 1711 * ice_service_task_stop - stop service task and cancel works 1712 * @pf: board private structure 1713 * 1714 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1715 * 1 otherwise. 1716 */ 1717 static int ice_service_task_stop(struct ice_pf *pf) 1718 { 1719 int ret; 1720 1721 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1722 1723 if (pf->serv_tmr.function) 1724 timer_delete_sync(&pf->serv_tmr); 1725 if (pf->serv_task.func) 1726 cancel_work_sync(&pf->serv_task); 1727 1728 clear_bit(ICE_SERVICE_SCHED, pf->state); 1729 return ret; 1730 } 1731 1732 /** 1733 * ice_service_task_restart - restart service task and schedule works 1734 * @pf: board private structure 1735 * 1736 * This function is needed for suspend and resume works (e.g WoL scenario) 1737 */ 1738 static void ice_service_task_restart(struct ice_pf *pf) 1739 { 1740 clear_bit(ICE_SERVICE_DIS, pf->state); 1741 ice_service_task_schedule(pf); 1742 } 1743 1744 /** 1745 * ice_service_timer - timer callback to schedule service task 1746 * @t: pointer to timer_list 1747 */ 1748 static void ice_service_timer(struct timer_list *t) 1749 { 1750 struct ice_pf *pf = timer_container_of(pf, t, serv_tmr); 1751 1752 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1753 ice_service_task_schedule(pf); 1754 } 1755 1756 /** 1757 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1758 * @pf: pointer to the PF structure 1759 * @vf: pointer to the VF structure 1760 * @reset_vf_tx: whether Tx MDD has occurred 1761 * @reset_vf_rx: whether Rx MDD has occurred 1762 * 1763 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1764 * automatically reset the VF by enabling the private ethtool flag 1765 * mdd-auto-reset-vf. 1766 */ 1767 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1768 bool reset_vf_tx, bool reset_vf_rx) 1769 { 1770 struct device *dev = ice_pf_to_dev(pf); 1771 1772 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1773 return; 1774 1775 /* VF MDD event counters will be cleared by reset, so print the event 1776 * prior to reset. 1777 */ 1778 if (reset_vf_tx) 1779 ice_print_vf_tx_mdd_event(vf); 1780 1781 if (reset_vf_rx) 1782 ice_print_vf_rx_mdd_event(vf); 1783 1784 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1785 pf->hw.pf_id, vf->vf_id); 1786 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1787 } 1788 1789 /** 1790 * ice_handle_mdd_event - handle malicious driver detect event 1791 * @pf: pointer to the PF structure 1792 * 1793 * Called from service task. OICR interrupt handler indicates MDD event. 1794 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1795 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1796 * disable the queue, the PF can be configured to reset the VF using ethtool 1797 * private flag mdd-auto-reset-vf. 1798 */ 1799 static void ice_handle_mdd_event(struct ice_pf *pf) 1800 { 1801 struct device *dev = ice_pf_to_dev(pf); 1802 struct ice_hw *hw = &pf->hw; 1803 struct ice_vf *vf; 1804 unsigned int bkt; 1805 u32 reg; 1806 1807 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1808 /* Since the VF MDD event logging is rate limited, check if 1809 * there are pending MDD events. 1810 */ 1811 ice_print_vfs_mdd_events(pf); 1812 return; 1813 } 1814 1815 /* find what triggered an MDD event */ 1816 reg = rd32(hw, GL_MDET_TX_PQM); 1817 if (reg & GL_MDET_TX_PQM_VALID_M) { 1818 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1819 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1820 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1821 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1822 1823 if (netif_msg_tx_err(pf)) 1824 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1825 event, queue, pf_num, vf_num); 1826 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num, 1827 event, queue); 1828 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1829 } 1830 1831 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1832 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1833 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1834 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1835 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1836 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1837 1838 if (netif_msg_tx_err(pf)) 1839 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1840 event, queue, pf_num, vf_num); 1841 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num, 1842 event, queue); 1843 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1844 } 1845 1846 reg = rd32(hw, GL_MDET_RX); 1847 if (reg & GL_MDET_RX_VALID_M) { 1848 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1849 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1850 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1851 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1852 1853 if (netif_msg_rx_err(pf)) 1854 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1855 event, queue, pf_num, vf_num); 1856 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event, 1857 queue); 1858 wr32(hw, GL_MDET_RX, 0xffffffff); 1859 } 1860 1861 /* check to see if this PF caused an MDD event */ 1862 reg = rd32(hw, PF_MDET_TX_PQM); 1863 if (reg & PF_MDET_TX_PQM_VALID_M) { 1864 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1865 if (netif_msg_tx_err(pf)) 1866 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1867 } 1868 1869 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1870 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1871 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1872 if (netif_msg_tx_err(pf)) 1873 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1874 } 1875 1876 reg = rd32(hw, PF_MDET_RX); 1877 if (reg & PF_MDET_RX_VALID_M) { 1878 wr32(hw, PF_MDET_RX, 0xFFFF); 1879 if (netif_msg_rx_err(pf)) 1880 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1881 } 1882 1883 /* Check to see if one of the VFs caused an MDD event, and then 1884 * increment counters and set print pending 1885 */ 1886 mutex_lock(&pf->vfs.table_lock); 1887 ice_for_each_vf(pf, bkt, vf) { 1888 bool reset_vf_tx = false, reset_vf_rx = false; 1889 1890 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1891 if (reg & VP_MDET_TX_PQM_VALID_M) { 1892 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1893 vf->mdd_tx_events.count++; 1894 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1895 if (netif_msg_tx_err(pf)) 1896 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1897 vf->vf_id); 1898 1899 reset_vf_tx = true; 1900 } 1901 1902 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1903 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1904 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1905 vf->mdd_tx_events.count++; 1906 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1907 if (netif_msg_tx_err(pf)) 1908 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1909 vf->vf_id); 1910 1911 reset_vf_tx = true; 1912 } 1913 1914 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1915 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1916 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1917 vf->mdd_tx_events.count++; 1918 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1919 if (netif_msg_tx_err(pf)) 1920 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1921 vf->vf_id); 1922 1923 reset_vf_tx = true; 1924 } 1925 1926 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1927 if (reg & VP_MDET_RX_VALID_M) { 1928 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1929 vf->mdd_rx_events.count++; 1930 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1931 if (netif_msg_rx_err(pf)) 1932 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1933 vf->vf_id); 1934 1935 reset_vf_rx = true; 1936 } 1937 1938 if (reset_vf_tx || reset_vf_rx) 1939 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1940 reset_vf_rx); 1941 } 1942 mutex_unlock(&pf->vfs.table_lock); 1943 1944 ice_print_vfs_mdd_events(pf); 1945 } 1946 1947 /** 1948 * ice_force_phys_link_state - Force the physical link state 1949 * @vsi: VSI to force the physical link state to up/down 1950 * @link_up: true/false indicates to set the physical link to up/down 1951 * 1952 * Force the physical link state by getting the current PHY capabilities from 1953 * hardware and setting the PHY config based on the determined capabilities. If 1954 * link changes a link event will be triggered because both the Enable Automatic 1955 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1956 * 1957 * Returns 0 on success, negative on failure 1958 */ 1959 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1960 { 1961 struct ice_aqc_get_phy_caps_data *pcaps; 1962 struct ice_aqc_set_phy_cfg_data *cfg; 1963 struct ice_port_info *pi; 1964 struct device *dev; 1965 int retcode; 1966 1967 if (!vsi || !vsi->port_info || !vsi->back) 1968 return -EINVAL; 1969 if (vsi->type != ICE_VSI_PF) 1970 return 0; 1971 1972 dev = ice_pf_to_dev(vsi->back); 1973 1974 pi = vsi->port_info; 1975 1976 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1977 if (!pcaps) 1978 return -ENOMEM; 1979 1980 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1981 NULL); 1982 if (retcode) { 1983 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1984 vsi->vsi_num, retcode); 1985 retcode = -EIO; 1986 goto out; 1987 } 1988 1989 /* No change in link */ 1990 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1991 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1992 goto out; 1993 1994 /* Use the current user PHY configuration. The current user PHY 1995 * configuration is initialized during probe from PHY capabilities 1996 * software mode, and updated on set PHY configuration. 1997 */ 1998 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1999 if (!cfg) { 2000 retcode = -ENOMEM; 2001 goto out; 2002 } 2003 2004 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2005 if (link_up) 2006 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 2007 else 2008 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 2009 2010 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2011 if (retcode) { 2012 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2013 vsi->vsi_num, retcode); 2014 retcode = -EIO; 2015 } 2016 2017 kfree(cfg); 2018 out: 2019 kfree(pcaps); 2020 return retcode; 2021 } 2022 2023 /** 2024 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2025 * @pi: port info structure 2026 * 2027 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2028 */ 2029 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2030 { 2031 struct ice_aqc_get_phy_caps_data *pcaps; 2032 struct ice_pf *pf = pi->hw->back; 2033 int err; 2034 2035 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2036 if (!pcaps) 2037 return -ENOMEM; 2038 2039 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2040 pcaps, NULL); 2041 2042 if (err) { 2043 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2044 goto out; 2045 } 2046 2047 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2048 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2049 2050 out: 2051 kfree(pcaps); 2052 return err; 2053 } 2054 2055 /** 2056 * ice_init_link_dflt_override - Initialize link default override 2057 * @pi: port info structure 2058 * 2059 * Initialize link default override and PHY total port shutdown during probe 2060 */ 2061 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2062 { 2063 struct ice_link_default_override_tlv *ldo; 2064 struct ice_pf *pf = pi->hw->back; 2065 2066 ldo = &pf->link_dflt_override; 2067 if (ice_get_link_default_override(ldo, pi)) 2068 return; 2069 2070 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2071 return; 2072 2073 /* Enable Total Port Shutdown (override/replace link-down-on-close 2074 * ethtool private flag) for ports with Port Disable bit set. 2075 */ 2076 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2077 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2078 } 2079 2080 /** 2081 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2082 * @pi: port info structure 2083 * 2084 * If default override is enabled, initialize the user PHY cfg speed and FEC 2085 * settings using the default override mask from the NVM. 2086 * 2087 * The PHY should only be configured with the default override settings the 2088 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2089 * is used to indicate that the user PHY cfg default override is initialized 2090 * and the PHY has not been configured with the default override settings. The 2091 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2092 * configured. 2093 * 2094 * This function should be called only if the FW doesn't support default 2095 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2096 */ 2097 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2098 { 2099 struct ice_link_default_override_tlv *ldo; 2100 struct ice_aqc_set_phy_cfg_data *cfg; 2101 struct ice_phy_info *phy = &pi->phy; 2102 struct ice_pf *pf = pi->hw->back; 2103 2104 ldo = &pf->link_dflt_override; 2105 2106 /* If link default override is enabled, use to mask NVM PHY capabilities 2107 * for speed and FEC default configuration. 2108 */ 2109 cfg = &phy->curr_user_phy_cfg; 2110 2111 if (ldo->phy_type_low || ldo->phy_type_high) { 2112 cfg->phy_type_low = pf->nvm_phy_type_lo & 2113 cpu_to_le64(ldo->phy_type_low); 2114 cfg->phy_type_high = pf->nvm_phy_type_hi & 2115 cpu_to_le64(ldo->phy_type_high); 2116 } 2117 cfg->link_fec_opt = ldo->fec_options; 2118 phy->curr_user_fec_req = ICE_FEC_AUTO; 2119 2120 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2121 } 2122 2123 /** 2124 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2125 * @pi: port info structure 2126 * 2127 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2128 * mode to default. The PHY defaults are from get PHY capabilities topology 2129 * with media so call when media is first available. An error is returned if 2130 * called when media is not available. The PHY initialization completed state is 2131 * set here. 2132 * 2133 * These configurations are used when setting PHY 2134 * configuration. The user PHY configuration is updated on set PHY 2135 * configuration. Returns 0 on success, negative on failure 2136 */ 2137 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2138 { 2139 struct ice_aqc_get_phy_caps_data *pcaps; 2140 struct ice_phy_info *phy = &pi->phy; 2141 struct ice_pf *pf = pi->hw->back; 2142 int err; 2143 2144 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2145 return -EIO; 2146 2147 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2148 if (!pcaps) 2149 return -ENOMEM; 2150 2151 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2152 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2153 pcaps, NULL); 2154 else 2155 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2156 pcaps, NULL); 2157 if (err) { 2158 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2159 goto err_out; 2160 } 2161 2162 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2163 2164 /* check if lenient mode is supported and enabled */ 2165 if (ice_fw_supports_link_override(pi->hw) && 2166 !(pcaps->module_compliance_enforcement & 2167 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2168 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2169 2170 /* if the FW supports default PHY configuration mode, then the driver 2171 * does not have to apply link override settings. If not, 2172 * initialize user PHY configuration with link override values 2173 */ 2174 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2175 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2176 ice_init_phy_cfg_dflt_override(pi); 2177 goto out; 2178 } 2179 } 2180 2181 /* if link default override is not enabled, set user flow control and 2182 * FEC settings based on what get_phy_caps returned 2183 */ 2184 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2185 pcaps->link_fec_options); 2186 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2187 2188 out: 2189 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2190 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2191 err_out: 2192 kfree(pcaps); 2193 return err; 2194 } 2195 2196 /** 2197 * ice_configure_phy - configure PHY 2198 * @vsi: VSI of PHY 2199 * 2200 * Set the PHY configuration. If the current PHY configuration is the same as 2201 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2202 * configure the based get PHY capabilities for topology with media. 2203 */ 2204 static int ice_configure_phy(struct ice_vsi *vsi) 2205 { 2206 struct device *dev = ice_pf_to_dev(vsi->back); 2207 struct ice_port_info *pi = vsi->port_info; 2208 struct ice_aqc_get_phy_caps_data *pcaps; 2209 struct ice_aqc_set_phy_cfg_data *cfg; 2210 struct ice_phy_info *phy = &pi->phy; 2211 struct ice_pf *pf = vsi->back; 2212 int err; 2213 2214 /* Ensure we have media as we cannot configure a medialess port */ 2215 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2216 return -ENOMEDIUM; 2217 2218 ice_print_topo_conflict(vsi); 2219 2220 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2221 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2222 return -EPERM; 2223 2224 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2225 return ice_force_phys_link_state(vsi, true); 2226 2227 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2228 if (!pcaps) 2229 return -ENOMEM; 2230 2231 /* Get current PHY config */ 2232 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2233 NULL); 2234 if (err) { 2235 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2236 vsi->vsi_num, err); 2237 goto done; 2238 } 2239 2240 /* If PHY enable link is configured and configuration has not changed, 2241 * there's nothing to do 2242 */ 2243 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2244 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2245 goto done; 2246 2247 /* Use PHY topology as baseline for configuration */ 2248 memset(pcaps, 0, sizeof(*pcaps)); 2249 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2250 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2251 pcaps, NULL); 2252 else 2253 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2254 pcaps, NULL); 2255 if (err) { 2256 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2257 vsi->vsi_num, err); 2258 goto done; 2259 } 2260 2261 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2262 if (!cfg) { 2263 err = -ENOMEM; 2264 goto done; 2265 } 2266 2267 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2268 2269 /* Speed - If default override pending, use curr_user_phy_cfg set in 2270 * ice_init_phy_user_cfg_ldo. 2271 */ 2272 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2273 vsi->back->state)) { 2274 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2275 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2276 } else { 2277 u64 phy_low = 0, phy_high = 0; 2278 2279 ice_update_phy_type(&phy_low, &phy_high, 2280 pi->phy.curr_user_speed_req); 2281 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2282 cfg->phy_type_high = pcaps->phy_type_high & 2283 cpu_to_le64(phy_high); 2284 } 2285 2286 /* Can't provide what was requested; use PHY capabilities */ 2287 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2288 cfg->phy_type_low = pcaps->phy_type_low; 2289 cfg->phy_type_high = pcaps->phy_type_high; 2290 } 2291 2292 /* FEC */ 2293 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2294 2295 /* Can't provide what was requested; use PHY capabilities */ 2296 if (cfg->link_fec_opt != 2297 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2298 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2299 cfg->link_fec_opt = pcaps->link_fec_options; 2300 } 2301 2302 /* Flow Control - always supported; no need to check against 2303 * capabilities 2304 */ 2305 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2306 2307 /* Enable link and link update */ 2308 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2309 2310 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2311 if (err) 2312 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2313 vsi->vsi_num, err); 2314 2315 kfree(cfg); 2316 done: 2317 kfree(pcaps); 2318 return err; 2319 } 2320 2321 /** 2322 * ice_check_media_subtask - Check for media 2323 * @pf: pointer to PF struct 2324 * 2325 * If media is available, then initialize PHY user configuration if it is not 2326 * been, and configure the PHY if the interface is up. 2327 */ 2328 static void ice_check_media_subtask(struct ice_pf *pf) 2329 { 2330 struct ice_port_info *pi; 2331 struct ice_vsi *vsi; 2332 int err; 2333 2334 /* No need to check for media if it's already present */ 2335 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2336 return; 2337 2338 vsi = ice_get_main_vsi(pf); 2339 if (!vsi) 2340 return; 2341 2342 /* Refresh link info and check if media is present */ 2343 pi = vsi->port_info; 2344 err = ice_update_link_info(pi); 2345 if (err) 2346 return; 2347 2348 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2349 2350 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2351 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2352 ice_init_phy_user_cfg(pi); 2353 2354 /* PHY settings are reset on media insertion, reconfigure 2355 * PHY to preserve settings. 2356 */ 2357 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2358 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2359 return; 2360 2361 err = ice_configure_phy(vsi); 2362 if (!err) 2363 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2364 2365 /* A Link Status Event will be generated; the event handler 2366 * will complete bringing the interface up 2367 */ 2368 } 2369 } 2370 2371 static void ice_service_task_recovery_mode(struct work_struct *work) 2372 { 2373 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2374 2375 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2376 ice_clean_adminq_subtask(pf); 2377 2378 ice_service_task_complete(pf); 2379 2380 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100)); 2381 } 2382 2383 /** 2384 * ice_service_task - manage and run subtasks 2385 * @work: pointer to work_struct contained by the PF struct 2386 */ 2387 static void ice_service_task(struct work_struct *work) 2388 { 2389 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2390 unsigned long start_time = jiffies; 2391 2392 if (pf->health_reporters.tx_hang_buf.tx_ring) { 2393 ice_report_tx_hang(pf); 2394 pf->health_reporters.tx_hang_buf.tx_ring = NULL; 2395 } 2396 2397 ice_reset_subtask(pf); 2398 2399 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2400 if (ice_is_reset_in_progress(pf->state) || 2401 test_bit(ICE_SUSPENDED, pf->state) || 2402 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2403 ice_service_task_complete(pf); 2404 return; 2405 } 2406 2407 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2408 struct iidc_rdma_event *event; 2409 2410 event = kzalloc(sizeof(*event), GFP_KERNEL); 2411 if (event) { 2412 set_bit(IIDC_RDMA_EVENT_CRIT_ERR, event->type); 2413 /* report the entire OICR value to AUX driver */ 2414 swap(event->reg, pf->oicr_err_reg); 2415 ice_send_event_to_aux(pf, event); 2416 kfree(event); 2417 } 2418 } 2419 2420 /* unplug aux dev per request, if an unplug request came in 2421 * while processing a plug request, this will handle it 2422 */ 2423 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2424 ice_unplug_aux_dev(pf); 2425 2426 /* Plug aux device per request */ 2427 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2428 ice_plug_aux_dev(pf); 2429 2430 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2431 struct iidc_rdma_event *event; 2432 2433 event = kzalloc(sizeof(*event), GFP_KERNEL); 2434 if (event) { 2435 set_bit(IIDC_RDMA_EVENT_AFTER_MTU_CHANGE, event->type); 2436 ice_send_event_to_aux(pf, event); 2437 kfree(event); 2438 } 2439 } 2440 2441 ice_clean_adminq_subtask(pf); 2442 ice_check_media_subtask(pf); 2443 ice_check_for_hang_subtask(pf); 2444 ice_sync_fltr_subtask(pf); 2445 ice_handle_mdd_event(pf); 2446 ice_watchdog_subtask(pf); 2447 2448 if (ice_is_safe_mode(pf)) { 2449 ice_service_task_complete(pf); 2450 return; 2451 } 2452 2453 ice_process_vflr_event(pf); 2454 ice_clean_mailboxq_subtask(pf); 2455 ice_clean_sbq_subtask(pf); 2456 ice_sync_arfs_fltrs(pf); 2457 ice_flush_fdir_ctx(pf); 2458 2459 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2460 ice_service_task_complete(pf); 2461 2462 /* If the tasks have taken longer than one service timer period 2463 * or there is more work to be done, reset the service timer to 2464 * schedule the service task now. 2465 */ 2466 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2467 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2468 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2469 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2470 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2471 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2472 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2473 mod_timer(&pf->serv_tmr, jiffies); 2474 } 2475 2476 /** 2477 * ice_set_ctrlq_len - helper function to set controlq length 2478 * @hw: pointer to the HW instance 2479 */ 2480 static void ice_set_ctrlq_len(struct ice_hw *hw) 2481 { 2482 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2483 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2484 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2485 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2486 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2487 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2488 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2489 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2490 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2491 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2492 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2493 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2494 } 2495 2496 /** 2497 * ice_schedule_reset - schedule a reset 2498 * @pf: board private structure 2499 * @reset: reset being requested 2500 */ 2501 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2502 { 2503 struct device *dev = ice_pf_to_dev(pf); 2504 2505 /* bail out if earlier reset has failed */ 2506 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2507 dev_dbg(dev, "earlier reset has failed\n"); 2508 return -EIO; 2509 } 2510 /* bail if reset/recovery already in progress */ 2511 if (ice_is_reset_in_progress(pf->state)) { 2512 dev_dbg(dev, "Reset already in progress\n"); 2513 return -EBUSY; 2514 } 2515 2516 switch (reset) { 2517 case ICE_RESET_PFR: 2518 set_bit(ICE_PFR_REQ, pf->state); 2519 break; 2520 case ICE_RESET_CORER: 2521 set_bit(ICE_CORER_REQ, pf->state); 2522 break; 2523 case ICE_RESET_GLOBR: 2524 set_bit(ICE_GLOBR_REQ, pf->state); 2525 break; 2526 default: 2527 return -EINVAL; 2528 } 2529 2530 ice_service_task_schedule(pf); 2531 return 0; 2532 } 2533 2534 /** 2535 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2536 * @vsi: the VSI being configured 2537 */ 2538 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2539 { 2540 struct ice_hw *hw = &vsi->back->hw; 2541 int i; 2542 2543 ice_for_each_q_vector(vsi, i) 2544 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2545 2546 ice_flush(hw); 2547 return 0; 2548 } 2549 2550 /** 2551 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2552 * @vsi: the VSI being configured 2553 * @basename: name for the vector 2554 */ 2555 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2556 { 2557 int q_vectors = vsi->num_q_vectors; 2558 struct ice_pf *pf = vsi->back; 2559 struct device *dev; 2560 int rx_int_idx = 0; 2561 int tx_int_idx = 0; 2562 int vector, err; 2563 int irq_num; 2564 2565 dev = ice_pf_to_dev(pf); 2566 for (vector = 0; vector < q_vectors; vector++) { 2567 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2568 2569 irq_num = q_vector->irq.virq; 2570 2571 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2572 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2573 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2574 tx_int_idx++; 2575 } else if (q_vector->rx.rx_ring) { 2576 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2577 "%s-%s-%d", basename, "rx", rx_int_idx++); 2578 } else if (q_vector->tx.tx_ring) { 2579 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2580 "%s-%s-%d", basename, "tx", tx_int_idx++); 2581 } else { 2582 /* skip this unused q_vector */ 2583 continue; 2584 } 2585 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2586 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2587 IRQF_SHARED, q_vector->name, 2588 q_vector); 2589 else 2590 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2591 0, q_vector->name, q_vector); 2592 if (err) { 2593 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2594 err); 2595 goto free_q_irqs; 2596 } 2597 } 2598 2599 err = ice_set_cpu_rx_rmap(vsi); 2600 if (err) { 2601 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2602 vsi->vsi_num, ERR_PTR(err)); 2603 goto free_q_irqs; 2604 } 2605 2606 vsi->irqs_ready = true; 2607 return 0; 2608 2609 free_q_irqs: 2610 while (vector--) { 2611 irq_num = vsi->q_vectors[vector]->irq.virq; 2612 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2613 } 2614 return err; 2615 } 2616 2617 /** 2618 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2619 * @vsi: VSI to setup Tx rings used by XDP 2620 * 2621 * Return 0 on success and negative value on error 2622 */ 2623 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2624 { 2625 struct device *dev = ice_pf_to_dev(vsi->back); 2626 struct ice_tx_desc *tx_desc; 2627 int i, j; 2628 2629 ice_for_each_xdp_txq(vsi, i) { 2630 u16 xdp_q_idx = vsi->alloc_txq + i; 2631 struct ice_ring_stats *ring_stats; 2632 struct ice_tx_ring *xdp_ring; 2633 2634 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2635 if (!xdp_ring) 2636 goto free_xdp_rings; 2637 2638 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2639 if (!ring_stats) { 2640 ice_free_tx_ring(xdp_ring); 2641 goto free_xdp_rings; 2642 } 2643 2644 xdp_ring->ring_stats = ring_stats; 2645 xdp_ring->q_index = xdp_q_idx; 2646 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2647 xdp_ring->vsi = vsi; 2648 xdp_ring->netdev = NULL; 2649 xdp_ring->dev = dev; 2650 xdp_ring->count = vsi->num_tx_desc; 2651 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2652 if (ice_setup_tx_ring(xdp_ring)) 2653 goto free_xdp_rings; 2654 ice_set_ring_xdp(xdp_ring); 2655 spin_lock_init(&xdp_ring->tx_lock); 2656 for (j = 0; j < xdp_ring->count; j++) { 2657 tx_desc = ICE_TX_DESC(xdp_ring, j); 2658 tx_desc->cmd_type_offset_bsz = 0; 2659 } 2660 } 2661 2662 return 0; 2663 2664 free_xdp_rings: 2665 for (; i >= 0; i--) { 2666 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2667 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2668 vsi->xdp_rings[i]->ring_stats = NULL; 2669 ice_free_tx_ring(vsi->xdp_rings[i]); 2670 } 2671 } 2672 return -ENOMEM; 2673 } 2674 2675 /** 2676 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2677 * @vsi: VSI to set the bpf prog on 2678 * @prog: the bpf prog pointer 2679 */ 2680 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2681 { 2682 struct bpf_prog *old_prog; 2683 int i; 2684 2685 old_prog = xchg(&vsi->xdp_prog, prog); 2686 ice_for_each_rxq(vsi, i) 2687 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2688 2689 if (old_prog) 2690 bpf_prog_put(old_prog); 2691 } 2692 2693 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2694 { 2695 struct ice_q_vector *q_vector; 2696 struct ice_tx_ring *ring; 2697 2698 if (static_key_enabled(&ice_xdp_locking_key)) 2699 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2700 2701 q_vector = vsi->rx_rings[qid]->q_vector; 2702 ice_for_each_tx_ring(ring, q_vector->tx) 2703 if (ice_ring_is_xdp(ring)) 2704 return ring; 2705 2706 return NULL; 2707 } 2708 2709 /** 2710 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2711 * @vsi: the VSI with XDP rings being configured 2712 * 2713 * Map XDP rings to interrupt vectors and perform the configuration steps 2714 * dependent on the mapping. 2715 */ 2716 void ice_map_xdp_rings(struct ice_vsi *vsi) 2717 { 2718 int xdp_rings_rem = vsi->num_xdp_txq; 2719 int v_idx, q_idx; 2720 2721 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2722 ice_for_each_q_vector(vsi, v_idx) { 2723 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2724 int xdp_rings_per_v, q_id, q_base; 2725 2726 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2727 vsi->num_q_vectors - v_idx); 2728 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2729 2730 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2731 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2732 2733 xdp_ring->q_vector = q_vector; 2734 xdp_ring->next = q_vector->tx.tx_ring; 2735 q_vector->tx.tx_ring = xdp_ring; 2736 } 2737 xdp_rings_rem -= xdp_rings_per_v; 2738 } 2739 2740 ice_for_each_rxq(vsi, q_idx) { 2741 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2742 q_idx); 2743 ice_tx_xsk_pool(vsi, q_idx); 2744 } 2745 } 2746 2747 /** 2748 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors 2749 * @vsi: the VSI with XDP rings being unmapped 2750 */ 2751 static void ice_unmap_xdp_rings(struct ice_vsi *vsi) 2752 { 2753 int v_idx; 2754 2755 ice_for_each_q_vector(vsi, v_idx) { 2756 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2757 struct ice_tx_ring *ring; 2758 2759 ice_for_each_tx_ring(ring, q_vector->tx) 2760 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2761 break; 2762 2763 /* restore the value of last node prior to XDP setup */ 2764 q_vector->tx.tx_ring = ring; 2765 } 2766 } 2767 2768 /** 2769 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2770 * @vsi: VSI to bring up Tx rings used by XDP 2771 * @prog: bpf program that will be assigned to VSI 2772 * @cfg_type: create from scratch or restore the existing configuration 2773 * 2774 * Return 0 on success and negative value on error 2775 */ 2776 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2777 enum ice_xdp_cfg cfg_type) 2778 { 2779 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2780 struct ice_pf *pf = vsi->back; 2781 struct ice_qs_cfg xdp_qs_cfg = { 2782 .qs_mutex = &pf->avail_q_mutex, 2783 .pf_map = pf->avail_txqs, 2784 .pf_map_size = pf->max_pf_txqs, 2785 .q_count = vsi->num_xdp_txq, 2786 .scatter_count = ICE_MAX_SCATTER_TXQS, 2787 .vsi_map = vsi->txq_map, 2788 .vsi_map_offset = vsi->alloc_txq, 2789 .mapping_mode = ICE_VSI_MAP_CONTIG 2790 }; 2791 struct device *dev; 2792 int status, i; 2793 2794 dev = ice_pf_to_dev(pf); 2795 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2796 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2797 if (!vsi->xdp_rings) 2798 return -ENOMEM; 2799 2800 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2801 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2802 goto err_map_xdp; 2803 2804 if (static_key_enabled(&ice_xdp_locking_key)) 2805 netdev_warn(vsi->netdev, 2806 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2807 2808 if (ice_xdp_alloc_setup_rings(vsi)) 2809 goto clear_xdp_rings; 2810 2811 /* omit the scheduler update if in reset path; XDP queues will be 2812 * taken into account at the end of ice_vsi_rebuild, where 2813 * ice_cfg_vsi_lan is being called 2814 */ 2815 if (cfg_type == ICE_XDP_CFG_PART) 2816 return 0; 2817 2818 ice_map_xdp_rings(vsi); 2819 2820 /* tell the Tx scheduler that right now we have 2821 * additional queues 2822 */ 2823 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2824 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2825 2826 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2827 max_txqs); 2828 if (status) { 2829 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2830 status); 2831 goto unmap_xdp_rings; 2832 } 2833 2834 /* assign the prog only when it's not already present on VSI; 2835 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2836 * VSI rebuild that happens under ethtool -L can expose us to 2837 * the bpf_prog refcount issues as we would be swapping same 2838 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2839 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2840 * this is not harmful as dev_xdp_install bumps the refcount 2841 * before calling the op exposed by the driver; 2842 */ 2843 if (!ice_is_xdp_ena_vsi(vsi)) 2844 ice_vsi_assign_bpf_prog(vsi, prog); 2845 2846 return 0; 2847 unmap_xdp_rings: 2848 ice_unmap_xdp_rings(vsi); 2849 clear_xdp_rings: 2850 ice_for_each_xdp_txq(vsi, i) 2851 if (vsi->xdp_rings[i]) { 2852 kfree_rcu(vsi->xdp_rings[i], rcu); 2853 vsi->xdp_rings[i] = NULL; 2854 } 2855 2856 err_map_xdp: 2857 mutex_lock(&pf->avail_q_mutex); 2858 ice_for_each_xdp_txq(vsi, i) { 2859 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2860 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2861 } 2862 mutex_unlock(&pf->avail_q_mutex); 2863 2864 devm_kfree(dev, vsi->xdp_rings); 2865 vsi->xdp_rings = NULL; 2866 2867 return -ENOMEM; 2868 } 2869 2870 /** 2871 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2872 * @vsi: VSI to remove XDP rings 2873 * @cfg_type: disable XDP permanently or allow it to be restored later 2874 * 2875 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2876 * resources 2877 */ 2878 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2879 { 2880 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2881 struct ice_pf *pf = vsi->back; 2882 int i; 2883 2884 /* q_vectors are freed in reset path so there's no point in detaching 2885 * rings 2886 */ 2887 if (cfg_type == ICE_XDP_CFG_PART) 2888 goto free_qmap; 2889 2890 ice_unmap_xdp_rings(vsi); 2891 2892 free_qmap: 2893 mutex_lock(&pf->avail_q_mutex); 2894 ice_for_each_xdp_txq(vsi, i) { 2895 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2896 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2897 } 2898 mutex_unlock(&pf->avail_q_mutex); 2899 2900 ice_for_each_xdp_txq(vsi, i) 2901 if (vsi->xdp_rings[i]) { 2902 if (vsi->xdp_rings[i]->desc) { 2903 synchronize_rcu(); 2904 ice_free_tx_ring(vsi->xdp_rings[i]); 2905 } 2906 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2907 vsi->xdp_rings[i]->ring_stats = NULL; 2908 kfree_rcu(vsi->xdp_rings[i], rcu); 2909 vsi->xdp_rings[i] = NULL; 2910 } 2911 2912 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2913 vsi->xdp_rings = NULL; 2914 2915 if (static_key_enabled(&ice_xdp_locking_key)) 2916 static_branch_dec(&ice_xdp_locking_key); 2917 2918 if (cfg_type == ICE_XDP_CFG_PART) 2919 return 0; 2920 2921 ice_vsi_assign_bpf_prog(vsi, NULL); 2922 2923 /* notify Tx scheduler that we destroyed XDP queues and bring 2924 * back the old number of child nodes 2925 */ 2926 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2927 max_txqs[i] = vsi->num_txq; 2928 2929 /* change number of XDP Tx queues to 0 */ 2930 vsi->num_xdp_txq = 0; 2931 2932 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2933 max_txqs); 2934 } 2935 2936 /** 2937 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2938 * @vsi: VSI to schedule napi on 2939 */ 2940 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2941 { 2942 int i; 2943 2944 ice_for_each_rxq(vsi, i) { 2945 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2946 2947 if (READ_ONCE(rx_ring->xsk_pool)) 2948 napi_schedule(&rx_ring->q_vector->napi); 2949 } 2950 } 2951 2952 /** 2953 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2954 * @vsi: VSI to determine the count of XDP Tx qs 2955 * 2956 * returns 0 if Tx qs count is higher than at least half of CPU count, 2957 * -ENOMEM otherwise 2958 */ 2959 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2960 { 2961 u16 avail = ice_get_avail_txq_count(vsi->back); 2962 u16 cpus = num_possible_cpus(); 2963 2964 if (avail < cpus / 2) 2965 return -ENOMEM; 2966 2967 if (vsi->type == ICE_VSI_SF) 2968 avail = vsi->alloc_txq; 2969 2970 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2971 2972 if (vsi->num_xdp_txq < cpus) 2973 static_branch_inc(&ice_xdp_locking_key); 2974 2975 return 0; 2976 } 2977 2978 /** 2979 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2980 * @vsi: Pointer to VSI structure 2981 */ 2982 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2983 { 2984 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2985 return ICE_RXBUF_1664; 2986 else 2987 return ICE_RXBUF_3072; 2988 } 2989 2990 /** 2991 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2992 * @vsi: VSI to setup XDP for 2993 * @prog: XDP program 2994 * @extack: netlink extended ack 2995 */ 2996 static int 2997 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2998 struct netlink_ext_ack *extack) 2999 { 3000 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3001 int ret = 0, xdp_ring_err = 0; 3002 bool if_running; 3003 3004 if (prog && !prog->aux->xdp_has_frags) { 3005 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3006 NL_SET_ERR_MSG_MOD(extack, 3007 "MTU is too large for linear frames and XDP prog does not support frags"); 3008 return -EOPNOTSUPP; 3009 } 3010 } 3011 3012 /* hot swap progs and avoid toggling link */ 3013 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 3014 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 3015 ice_vsi_assign_bpf_prog(vsi, prog); 3016 return 0; 3017 } 3018 3019 if_running = netif_running(vsi->netdev) && 3020 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3021 3022 /* need to stop netdev while setting up the program for Rx rings */ 3023 if (if_running) { 3024 ret = ice_down(vsi); 3025 if (ret) { 3026 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3027 return ret; 3028 } 3029 } 3030 3031 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3032 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3033 if (xdp_ring_err) { 3034 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3035 goto resume_if; 3036 } else { 3037 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3038 ICE_XDP_CFG_FULL); 3039 if (xdp_ring_err) { 3040 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3041 goto resume_if; 3042 } 3043 } 3044 xdp_features_set_redirect_target(vsi->netdev, true); 3045 /* reallocate Rx queues that are used for zero-copy */ 3046 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3047 if (xdp_ring_err) 3048 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3049 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3050 xdp_features_clear_redirect_target(vsi->netdev); 3051 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3052 if (xdp_ring_err) 3053 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3054 /* reallocate Rx queues that were used for zero-copy */ 3055 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3056 if (xdp_ring_err) 3057 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3058 } 3059 3060 resume_if: 3061 if (if_running) 3062 ret = ice_up(vsi); 3063 3064 if (!ret && prog) 3065 ice_vsi_rx_napi_schedule(vsi); 3066 3067 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3068 } 3069 3070 /** 3071 * ice_xdp_safe_mode - XDP handler for safe mode 3072 * @dev: netdevice 3073 * @xdp: XDP command 3074 */ 3075 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3076 struct netdev_bpf *xdp) 3077 { 3078 NL_SET_ERR_MSG_MOD(xdp->extack, 3079 "Please provide working DDP firmware package in order to use XDP\n" 3080 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3081 return -EOPNOTSUPP; 3082 } 3083 3084 /** 3085 * ice_xdp - implements XDP handler 3086 * @dev: netdevice 3087 * @xdp: XDP command 3088 */ 3089 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3090 { 3091 struct ice_netdev_priv *np = netdev_priv(dev); 3092 struct ice_vsi *vsi = np->vsi; 3093 int ret; 3094 3095 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3096 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3097 return -EINVAL; 3098 } 3099 3100 mutex_lock(&vsi->xdp_state_lock); 3101 3102 switch (xdp->command) { 3103 case XDP_SETUP_PROG: 3104 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3105 break; 3106 case XDP_SETUP_XSK_POOL: 3107 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3108 break; 3109 default: 3110 ret = -EINVAL; 3111 } 3112 3113 mutex_unlock(&vsi->xdp_state_lock); 3114 return ret; 3115 } 3116 3117 /** 3118 * ice_ena_misc_vector - enable the non-queue interrupts 3119 * @pf: board private structure 3120 */ 3121 static void ice_ena_misc_vector(struct ice_pf *pf) 3122 { 3123 struct ice_hw *hw = &pf->hw; 3124 u32 pf_intr_start_offset; 3125 u32 val; 3126 3127 /* Disable anti-spoof detection interrupt to prevent spurious event 3128 * interrupts during a function reset. Anti-spoof functionally is 3129 * still supported. 3130 */ 3131 val = rd32(hw, GL_MDCK_TX_TDPU); 3132 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3133 wr32(hw, GL_MDCK_TX_TDPU, val); 3134 3135 /* clear things first */ 3136 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3137 rd32(hw, PFINT_OICR); /* read to clear */ 3138 3139 val = (PFINT_OICR_ECC_ERR_M | 3140 PFINT_OICR_MAL_DETECT_M | 3141 PFINT_OICR_GRST_M | 3142 PFINT_OICR_PCI_EXCEPTION_M | 3143 PFINT_OICR_VFLR_M | 3144 PFINT_OICR_HMC_ERR_M | 3145 PFINT_OICR_PE_PUSH_M | 3146 PFINT_OICR_PE_CRITERR_M); 3147 3148 wr32(hw, PFINT_OICR_ENA, val); 3149 3150 /* SW_ITR_IDX = 0, but don't change INTENA */ 3151 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3152 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3153 3154 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3155 return; 3156 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3157 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3158 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3159 } 3160 3161 /** 3162 * ice_ll_ts_intr - ll_ts interrupt handler 3163 * @irq: interrupt number 3164 * @data: pointer to a q_vector 3165 */ 3166 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3167 { 3168 struct ice_pf *pf = data; 3169 u32 pf_intr_start_offset; 3170 struct ice_ptp_tx *tx; 3171 unsigned long flags; 3172 struct ice_hw *hw; 3173 u32 val; 3174 u8 idx; 3175 3176 hw = &pf->hw; 3177 tx = &pf->ptp.port.tx; 3178 spin_lock_irqsave(&tx->lock, flags); 3179 ice_ptp_complete_tx_single_tstamp(tx); 3180 3181 idx = find_next_bit_wrap(tx->in_use, tx->len, 3182 tx->last_ll_ts_idx_read + 1); 3183 if (idx != tx->len) 3184 ice_ptp_req_tx_single_tstamp(tx, idx); 3185 spin_unlock_irqrestore(&tx->lock, flags); 3186 3187 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3188 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3189 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3190 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3191 val); 3192 3193 return IRQ_HANDLED; 3194 } 3195 3196 /** 3197 * ice_misc_intr - misc interrupt handler 3198 * @irq: interrupt number 3199 * @data: pointer to a q_vector 3200 */ 3201 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3202 { 3203 struct ice_pf *pf = (struct ice_pf *)data; 3204 irqreturn_t ret = IRQ_HANDLED; 3205 struct ice_hw *hw = &pf->hw; 3206 struct device *dev; 3207 u32 oicr, ena_mask; 3208 3209 dev = ice_pf_to_dev(pf); 3210 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3211 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3212 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3213 3214 oicr = rd32(hw, PFINT_OICR); 3215 ena_mask = rd32(hw, PFINT_OICR_ENA); 3216 3217 if (oicr & PFINT_OICR_SWINT_M) { 3218 ena_mask &= ~PFINT_OICR_SWINT_M; 3219 pf->sw_int_count++; 3220 } 3221 3222 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3223 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3224 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3225 } 3226 if (oicr & PFINT_OICR_VFLR_M) { 3227 /* disable any further VFLR event notifications */ 3228 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3229 u32 reg = rd32(hw, PFINT_OICR_ENA); 3230 3231 reg &= ~PFINT_OICR_VFLR_M; 3232 wr32(hw, PFINT_OICR_ENA, reg); 3233 } else { 3234 ena_mask &= ~PFINT_OICR_VFLR_M; 3235 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3236 } 3237 } 3238 3239 if (oicr & PFINT_OICR_GRST_M) { 3240 u32 reset; 3241 3242 /* we have a reset warning */ 3243 ena_mask &= ~PFINT_OICR_GRST_M; 3244 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3245 rd32(hw, GLGEN_RSTAT)); 3246 3247 if (reset == ICE_RESET_CORER) 3248 pf->corer_count++; 3249 else if (reset == ICE_RESET_GLOBR) 3250 pf->globr_count++; 3251 else if (reset == ICE_RESET_EMPR) 3252 pf->empr_count++; 3253 else 3254 dev_dbg(dev, "Invalid reset type %d\n", reset); 3255 3256 /* If a reset cycle isn't already in progress, we set a bit in 3257 * pf->state so that the service task can start a reset/rebuild. 3258 */ 3259 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3260 if (reset == ICE_RESET_CORER) 3261 set_bit(ICE_CORER_RECV, pf->state); 3262 else if (reset == ICE_RESET_GLOBR) 3263 set_bit(ICE_GLOBR_RECV, pf->state); 3264 else 3265 set_bit(ICE_EMPR_RECV, pf->state); 3266 3267 /* There are couple of different bits at play here. 3268 * hw->reset_ongoing indicates whether the hardware is 3269 * in reset. This is set to true when a reset interrupt 3270 * is received and set back to false after the driver 3271 * has determined that the hardware is out of reset. 3272 * 3273 * ICE_RESET_OICR_RECV in pf->state indicates 3274 * that a post reset rebuild is required before the 3275 * driver is operational again. This is set above. 3276 * 3277 * As this is the start of the reset/rebuild cycle, set 3278 * both to indicate that. 3279 */ 3280 hw->reset_ongoing = true; 3281 } 3282 } 3283 3284 if (oicr & PFINT_OICR_TSYN_TX_M) { 3285 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3286 3287 ret = ice_ptp_ts_irq(pf); 3288 } 3289 3290 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3291 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3292 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3293 3294 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3295 3296 if (ice_pf_src_tmr_owned(pf)) { 3297 /* Save EVENTs from GLTSYN register */ 3298 pf->ptp.ext_ts_irq |= gltsyn_stat & 3299 (GLTSYN_STAT_EVENT0_M | 3300 GLTSYN_STAT_EVENT1_M | 3301 GLTSYN_STAT_EVENT2_M); 3302 3303 ice_ptp_extts_event(pf); 3304 } 3305 } 3306 3307 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3308 if (oicr & ICE_AUX_CRIT_ERR) { 3309 pf->oicr_err_reg |= oicr; 3310 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3311 ena_mask &= ~ICE_AUX_CRIT_ERR; 3312 } 3313 3314 /* Report any remaining unexpected interrupts */ 3315 oicr &= ena_mask; 3316 if (oicr) { 3317 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3318 /* If a critical error is pending there is no choice but to 3319 * reset the device. 3320 */ 3321 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3322 PFINT_OICR_ECC_ERR_M)) { 3323 set_bit(ICE_PFR_REQ, pf->state); 3324 } 3325 } 3326 ice_service_task_schedule(pf); 3327 if (ret == IRQ_HANDLED) 3328 ice_irq_dynamic_ena(hw, NULL, NULL); 3329 3330 return ret; 3331 } 3332 3333 /** 3334 * ice_misc_intr_thread_fn - misc interrupt thread function 3335 * @irq: interrupt number 3336 * @data: pointer to a q_vector 3337 */ 3338 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3339 { 3340 struct ice_pf *pf = data; 3341 struct ice_hw *hw; 3342 3343 hw = &pf->hw; 3344 3345 if (ice_is_reset_in_progress(pf->state)) 3346 goto skip_irq; 3347 3348 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3349 /* Process outstanding Tx timestamps. If there is more work, 3350 * re-arm the interrupt to trigger again. 3351 */ 3352 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3353 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3354 ice_flush(hw); 3355 } 3356 } 3357 3358 skip_irq: 3359 ice_irq_dynamic_ena(hw, NULL, NULL); 3360 3361 return IRQ_HANDLED; 3362 } 3363 3364 /** 3365 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3366 * @hw: pointer to HW structure 3367 */ 3368 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3369 { 3370 /* disable Admin queue Interrupt causes */ 3371 wr32(hw, PFINT_FW_CTL, 3372 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3373 3374 /* disable Mailbox queue Interrupt causes */ 3375 wr32(hw, PFINT_MBX_CTL, 3376 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3377 3378 wr32(hw, PFINT_SB_CTL, 3379 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3380 3381 /* disable Control queue Interrupt causes */ 3382 wr32(hw, PFINT_OICR_CTL, 3383 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3384 3385 ice_flush(hw); 3386 } 3387 3388 /** 3389 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3390 * @pf: board private structure 3391 */ 3392 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3393 { 3394 int irq_num = pf->ll_ts_irq.virq; 3395 3396 synchronize_irq(irq_num); 3397 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3398 3399 ice_free_irq(pf, pf->ll_ts_irq); 3400 } 3401 3402 /** 3403 * ice_free_irq_msix_misc - Unroll misc vector setup 3404 * @pf: board private structure 3405 */ 3406 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3407 { 3408 int misc_irq_num = pf->oicr_irq.virq; 3409 struct ice_hw *hw = &pf->hw; 3410 3411 ice_dis_ctrlq_interrupts(hw); 3412 3413 /* disable OICR interrupt */ 3414 wr32(hw, PFINT_OICR_ENA, 0); 3415 ice_flush(hw); 3416 3417 synchronize_irq(misc_irq_num); 3418 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3419 3420 ice_free_irq(pf, pf->oicr_irq); 3421 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3422 ice_free_irq_msix_ll_ts(pf); 3423 } 3424 3425 /** 3426 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3427 * @hw: pointer to HW structure 3428 * @reg_idx: HW vector index to associate the control queue interrupts with 3429 */ 3430 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3431 { 3432 u32 val; 3433 3434 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3435 PFINT_OICR_CTL_CAUSE_ENA_M); 3436 wr32(hw, PFINT_OICR_CTL, val); 3437 3438 /* enable Admin queue Interrupt causes */ 3439 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3440 PFINT_FW_CTL_CAUSE_ENA_M); 3441 wr32(hw, PFINT_FW_CTL, val); 3442 3443 /* enable Mailbox queue Interrupt causes */ 3444 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3445 PFINT_MBX_CTL_CAUSE_ENA_M); 3446 wr32(hw, PFINT_MBX_CTL, val); 3447 3448 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3449 /* enable Sideband queue Interrupt causes */ 3450 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3451 PFINT_SB_CTL_CAUSE_ENA_M); 3452 wr32(hw, PFINT_SB_CTL, val); 3453 } 3454 3455 ice_flush(hw); 3456 } 3457 3458 /** 3459 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3460 * @pf: board private structure 3461 * 3462 * This sets up the handler for MSIX 0, which is used to manage the 3463 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3464 * when in MSI or Legacy interrupt mode. 3465 */ 3466 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3467 { 3468 struct device *dev = ice_pf_to_dev(pf); 3469 struct ice_hw *hw = &pf->hw; 3470 u32 pf_intr_start_offset; 3471 struct msi_map irq; 3472 int err = 0; 3473 3474 if (!pf->int_name[0]) 3475 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3476 dev_driver_string(dev), dev_name(dev)); 3477 3478 if (!pf->int_name_ll_ts[0]) 3479 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3480 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3481 /* Do not request IRQ but do enable OICR interrupt since settings are 3482 * lost during reset. Note that this function is called only during 3483 * rebuild path and not while reset is in progress. 3484 */ 3485 if (ice_is_reset_in_progress(pf->state)) 3486 goto skip_req_irq; 3487 3488 /* reserve one vector in irq_tracker for misc interrupts */ 3489 irq = ice_alloc_irq(pf, false); 3490 if (irq.index < 0) 3491 return irq.index; 3492 3493 pf->oicr_irq = irq; 3494 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3495 ice_misc_intr_thread_fn, 0, 3496 pf->int_name, pf); 3497 if (err) { 3498 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3499 pf->int_name, err); 3500 ice_free_irq(pf, pf->oicr_irq); 3501 return err; 3502 } 3503 3504 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3505 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3506 goto skip_req_irq; 3507 3508 irq = ice_alloc_irq(pf, false); 3509 if (irq.index < 0) 3510 return irq.index; 3511 3512 pf->ll_ts_irq = irq; 3513 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3514 pf->int_name_ll_ts, pf); 3515 if (err) { 3516 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3517 pf->int_name_ll_ts, err); 3518 ice_free_irq(pf, pf->ll_ts_irq); 3519 return err; 3520 } 3521 3522 skip_req_irq: 3523 ice_ena_misc_vector(pf); 3524 3525 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3526 /* This enables LL TS interrupt */ 3527 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3528 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3529 wr32(hw, PFINT_SB_CTL, 3530 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3531 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3532 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3533 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3534 3535 ice_flush(hw); 3536 ice_irq_dynamic_ena(hw, NULL, NULL); 3537 3538 return 0; 3539 } 3540 3541 /** 3542 * ice_set_ops - set netdev and ethtools ops for the given netdev 3543 * @vsi: the VSI associated with the new netdev 3544 */ 3545 static void ice_set_ops(struct ice_vsi *vsi) 3546 { 3547 struct net_device *netdev = vsi->netdev; 3548 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3549 3550 if (ice_is_safe_mode(pf)) { 3551 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3552 ice_set_ethtool_safe_mode_ops(netdev); 3553 return; 3554 } 3555 3556 netdev->netdev_ops = &ice_netdev_ops; 3557 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3558 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3559 ice_set_ethtool_ops(netdev); 3560 3561 if (vsi->type != ICE_VSI_PF) 3562 return; 3563 3564 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3565 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3566 NETDEV_XDP_ACT_RX_SG; 3567 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3568 } 3569 3570 /** 3571 * ice_set_netdev_features - set features for the given netdev 3572 * @netdev: netdev instance 3573 */ 3574 void ice_set_netdev_features(struct net_device *netdev) 3575 { 3576 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3577 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3578 netdev_features_t csumo_features; 3579 netdev_features_t vlano_features; 3580 netdev_features_t dflt_features; 3581 netdev_features_t tso_features; 3582 3583 if (ice_is_safe_mode(pf)) { 3584 /* safe mode */ 3585 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3586 netdev->hw_features = netdev->features; 3587 return; 3588 } 3589 3590 dflt_features = NETIF_F_SG | 3591 NETIF_F_HIGHDMA | 3592 NETIF_F_NTUPLE | 3593 NETIF_F_RXHASH; 3594 3595 csumo_features = NETIF_F_RXCSUM | 3596 NETIF_F_IP_CSUM | 3597 NETIF_F_SCTP_CRC | 3598 NETIF_F_IPV6_CSUM; 3599 3600 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3601 NETIF_F_HW_VLAN_CTAG_TX | 3602 NETIF_F_HW_VLAN_CTAG_RX; 3603 3604 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3605 if (is_dvm_ena) 3606 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3607 3608 tso_features = NETIF_F_TSO | 3609 NETIF_F_TSO_ECN | 3610 NETIF_F_TSO6 | 3611 NETIF_F_GSO_GRE | 3612 NETIF_F_GSO_UDP_TUNNEL | 3613 NETIF_F_GSO_GRE_CSUM | 3614 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3615 NETIF_F_GSO_PARTIAL | 3616 NETIF_F_GSO_IPXIP4 | 3617 NETIF_F_GSO_IPXIP6 | 3618 NETIF_F_GSO_UDP_L4; 3619 3620 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3621 NETIF_F_GSO_GRE_CSUM; 3622 /* set features that user can change */ 3623 netdev->hw_features = dflt_features | csumo_features | 3624 vlano_features | tso_features; 3625 3626 /* add support for HW_CSUM on packets with MPLS header */ 3627 netdev->mpls_features = NETIF_F_HW_CSUM | 3628 NETIF_F_TSO | 3629 NETIF_F_TSO6; 3630 3631 /* enable features */ 3632 netdev->features |= netdev->hw_features; 3633 3634 netdev->hw_features |= NETIF_F_HW_TC; 3635 netdev->hw_features |= NETIF_F_LOOPBACK; 3636 3637 /* encap and VLAN devices inherit default, csumo and tso features */ 3638 netdev->hw_enc_features |= dflt_features | csumo_features | 3639 tso_features; 3640 netdev->vlan_features |= dflt_features | csumo_features | 3641 tso_features; 3642 3643 /* advertise support but don't enable by default since only one type of 3644 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3645 * type turns on the other has to be turned off. This is enforced by the 3646 * ice_fix_features() ndo callback. 3647 */ 3648 if (is_dvm_ena) 3649 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3650 NETIF_F_HW_VLAN_STAG_TX; 3651 3652 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3653 * be changed at runtime 3654 */ 3655 netdev->hw_features |= NETIF_F_RXFCS; 3656 3657 /* Allow core to manage IRQs affinity */ 3658 netif_set_affinity_auto(netdev); 3659 3660 /* Mutual exclusivity for TSO and GCS is enforced by the set features 3661 * ndo callback. 3662 */ 3663 if (ice_is_feature_supported(pf, ICE_F_GCS)) 3664 netdev->hw_features |= NETIF_F_HW_CSUM; 3665 3666 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3667 } 3668 3669 /** 3670 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3671 * @lut: Lookup table 3672 * @rss_table_size: Lookup table size 3673 * @rss_size: Range of queue number for hashing 3674 */ 3675 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3676 { 3677 u16 i; 3678 3679 for (i = 0; i < rss_table_size; i++) 3680 lut[i] = i % rss_size; 3681 } 3682 3683 /** 3684 * ice_pf_vsi_setup - Set up a PF VSI 3685 * @pf: board private structure 3686 * @pi: pointer to the port_info instance 3687 * 3688 * Returns pointer to the successfully allocated VSI software struct 3689 * on success, otherwise returns NULL on failure. 3690 */ 3691 static struct ice_vsi * 3692 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3693 { 3694 struct ice_vsi_cfg_params params = {}; 3695 3696 params.type = ICE_VSI_PF; 3697 params.port_info = pi; 3698 params.flags = ICE_VSI_FLAG_INIT; 3699 3700 return ice_vsi_setup(pf, ¶ms); 3701 } 3702 3703 static struct ice_vsi * 3704 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3705 struct ice_channel *ch) 3706 { 3707 struct ice_vsi_cfg_params params = {}; 3708 3709 params.type = ICE_VSI_CHNL; 3710 params.port_info = pi; 3711 params.ch = ch; 3712 params.flags = ICE_VSI_FLAG_INIT; 3713 3714 return ice_vsi_setup(pf, ¶ms); 3715 } 3716 3717 /** 3718 * ice_ctrl_vsi_setup - Set up a control VSI 3719 * @pf: board private structure 3720 * @pi: pointer to the port_info instance 3721 * 3722 * Returns pointer to the successfully allocated VSI software struct 3723 * on success, otherwise returns NULL on failure. 3724 */ 3725 static struct ice_vsi * 3726 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3727 { 3728 struct ice_vsi_cfg_params params = {}; 3729 3730 params.type = ICE_VSI_CTRL; 3731 params.port_info = pi; 3732 params.flags = ICE_VSI_FLAG_INIT; 3733 3734 return ice_vsi_setup(pf, ¶ms); 3735 } 3736 3737 /** 3738 * ice_lb_vsi_setup - Set up a loopback VSI 3739 * @pf: board private structure 3740 * @pi: pointer to the port_info instance 3741 * 3742 * Returns pointer to the successfully allocated VSI software struct 3743 * on success, otherwise returns NULL on failure. 3744 */ 3745 struct ice_vsi * 3746 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3747 { 3748 struct ice_vsi_cfg_params params = {}; 3749 3750 params.type = ICE_VSI_LB; 3751 params.port_info = pi; 3752 params.flags = ICE_VSI_FLAG_INIT; 3753 3754 return ice_vsi_setup(pf, ¶ms); 3755 } 3756 3757 /** 3758 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3759 * @netdev: network interface to be adjusted 3760 * @proto: VLAN TPID 3761 * @vid: VLAN ID to be added 3762 * 3763 * net_device_ops implementation for adding VLAN IDs 3764 */ 3765 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3766 { 3767 struct ice_netdev_priv *np = netdev_priv(netdev); 3768 struct ice_vsi_vlan_ops *vlan_ops; 3769 struct ice_vsi *vsi = np->vsi; 3770 struct ice_vlan vlan; 3771 int ret; 3772 3773 /* VLAN 0 is added by default during load/reset */ 3774 if (!vid) 3775 return 0; 3776 3777 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3778 usleep_range(1000, 2000); 3779 3780 /* Add multicast promisc rule for the VLAN ID to be added if 3781 * all-multicast is currently enabled. 3782 */ 3783 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3784 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3785 ICE_MCAST_VLAN_PROMISC_BITS, 3786 vid); 3787 if (ret) 3788 goto finish; 3789 } 3790 3791 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3792 3793 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3794 * packets aren't pruned by the device's internal switch on Rx 3795 */ 3796 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3797 ret = vlan_ops->add_vlan(vsi, &vlan); 3798 if (ret) 3799 goto finish; 3800 3801 /* If all-multicast is currently enabled and this VLAN ID is only one 3802 * besides VLAN-0 we have to update look-up type of multicast promisc 3803 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3804 */ 3805 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3806 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3807 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3808 ICE_MCAST_PROMISC_BITS, 0); 3809 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3810 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3811 } 3812 3813 finish: 3814 clear_bit(ICE_CFG_BUSY, vsi->state); 3815 3816 return ret; 3817 } 3818 3819 /** 3820 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3821 * @netdev: network interface to be adjusted 3822 * @proto: VLAN TPID 3823 * @vid: VLAN ID to be removed 3824 * 3825 * net_device_ops implementation for removing VLAN IDs 3826 */ 3827 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3828 { 3829 struct ice_netdev_priv *np = netdev_priv(netdev); 3830 struct ice_vsi_vlan_ops *vlan_ops; 3831 struct ice_vsi *vsi = np->vsi; 3832 struct ice_vlan vlan; 3833 int ret; 3834 3835 /* don't allow removal of VLAN 0 */ 3836 if (!vid) 3837 return 0; 3838 3839 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3840 usleep_range(1000, 2000); 3841 3842 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3843 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3844 if (ret) { 3845 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3846 vsi->vsi_num); 3847 vsi->current_netdev_flags |= IFF_ALLMULTI; 3848 } 3849 3850 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3851 3852 /* Make sure VLAN delete is successful before updating VLAN 3853 * information 3854 */ 3855 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3856 ret = vlan_ops->del_vlan(vsi, &vlan); 3857 if (ret) 3858 goto finish; 3859 3860 /* Remove multicast promisc rule for the removed VLAN ID if 3861 * all-multicast is enabled. 3862 */ 3863 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3864 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3865 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3866 3867 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3868 /* Update look-up type of multicast promisc rule for VLAN 0 3869 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3870 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3871 */ 3872 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3873 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3874 ICE_MCAST_VLAN_PROMISC_BITS, 3875 0); 3876 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3877 ICE_MCAST_PROMISC_BITS, 0); 3878 } 3879 } 3880 3881 finish: 3882 clear_bit(ICE_CFG_BUSY, vsi->state); 3883 3884 return ret; 3885 } 3886 3887 /** 3888 * ice_rep_indr_tc_block_unbind 3889 * @cb_priv: indirection block private data 3890 */ 3891 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3892 { 3893 struct ice_indr_block_priv *indr_priv = cb_priv; 3894 3895 list_del(&indr_priv->list); 3896 kfree(indr_priv); 3897 } 3898 3899 /** 3900 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3901 * @vsi: VSI struct which has the netdev 3902 */ 3903 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3904 { 3905 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3906 3907 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3908 ice_rep_indr_tc_block_unbind); 3909 } 3910 3911 /** 3912 * ice_tc_indir_block_register - Register TC indirect block notifications 3913 * @vsi: VSI struct which has the netdev 3914 * 3915 * Returns 0 on success, negative value on failure 3916 */ 3917 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3918 { 3919 struct ice_netdev_priv *np; 3920 3921 if (!vsi || !vsi->netdev) 3922 return -EINVAL; 3923 3924 np = netdev_priv(vsi->netdev); 3925 3926 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3927 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3928 } 3929 3930 /** 3931 * ice_get_avail_q_count - Get count of queues in use 3932 * @pf_qmap: bitmap to get queue use count from 3933 * @lock: pointer to a mutex that protects access to pf_qmap 3934 * @size: size of the bitmap 3935 */ 3936 static u16 3937 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3938 { 3939 unsigned long bit; 3940 u16 count = 0; 3941 3942 mutex_lock(lock); 3943 for_each_clear_bit(bit, pf_qmap, size) 3944 count++; 3945 mutex_unlock(lock); 3946 3947 return count; 3948 } 3949 3950 /** 3951 * ice_get_avail_txq_count - Get count of Tx queues in use 3952 * @pf: pointer to an ice_pf instance 3953 */ 3954 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3955 { 3956 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3957 pf->max_pf_txqs); 3958 } 3959 3960 /** 3961 * ice_get_avail_rxq_count - Get count of Rx queues in use 3962 * @pf: pointer to an ice_pf instance 3963 */ 3964 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3965 { 3966 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3967 pf->max_pf_rxqs); 3968 } 3969 3970 /** 3971 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3972 * @pf: board private structure to initialize 3973 */ 3974 static void ice_deinit_pf(struct ice_pf *pf) 3975 { 3976 ice_service_task_stop(pf); 3977 mutex_destroy(&pf->lag_mutex); 3978 mutex_destroy(&pf->adev_mutex); 3979 mutex_destroy(&pf->sw_mutex); 3980 mutex_destroy(&pf->tc_mutex); 3981 mutex_destroy(&pf->avail_q_mutex); 3982 mutex_destroy(&pf->vfs.table_lock); 3983 3984 if (pf->avail_txqs) { 3985 bitmap_free(pf->avail_txqs); 3986 pf->avail_txqs = NULL; 3987 } 3988 3989 if (pf->avail_rxqs) { 3990 bitmap_free(pf->avail_rxqs); 3991 pf->avail_rxqs = NULL; 3992 } 3993 3994 if (pf->ptp.clock) 3995 ptp_clock_unregister(pf->ptp.clock); 3996 3997 xa_destroy(&pf->dyn_ports); 3998 xa_destroy(&pf->sf_nums); 3999 } 4000 4001 /** 4002 * ice_set_pf_caps - set PFs capability flags 4003 * @pf: pointer to the PF instance 4004 */ 4005 static void ice_set_pf_caps(struct ice_pf *pf) 4006 { 4007 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4008 4009 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4010 if (func_caps->common_cap.rdma) 4011 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4012 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4013 if (func_caps->common_cap.dcb) 4014 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4015 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4016 if (func_caps->common_cap.sr_iov_1_1) { 4017 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4018 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4019 ICE_MAX_SRIOV_VFS); 4020 } 4021 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4022 if (func_caps->common_cap.rss_table_size) 4023 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4024 4025 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4026 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4027 u16 unused; 4028 4029 /* ctrl_vsi_idx will be set to a valid value when flow director 4030 * is setup by ice_init_fdir 4031 */ 4032 pf->ctrl_vsi_idx = ICE_NO_VSI; 4033 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4034 /* force guaranteed filter pool for PF */ 4035 ice_alloc_fd_guar_item(&pf->hw, &unused, 4036 func_caps->fd_fltr_guar); 4037 /* force shared filter pool for PF */ 4038 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4039 func_caps->fd_fltr_best_effort); 4040 } 4041 4042 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4043 if (func_caps->common_cap.ieee_1588) 4044 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4045 4046 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4047 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4048 } 4049 4050 /** 4051 * ice_init_pf - Initialize general software structures (struct ice_pf) 4052 * @pf: board private structure to initialize 4053 */ 4054 static int ice_init_pf(struct ice_pf *pf) 4055 { 4056 ice_set_pf_caps(pf); 4057 4058 mutex_init(&pf->sw_mutex); 4059 mutex_init(&pf->tc_mutex); 4060 mutex_init(&pf->adev_mutex); 4061 mutex_init(&pf->lag_mutex); 4062 4063 INIT_HLIST_HEAD(&pf->aq_wait_list); 4064 spin_lock_init(&pf->aq_wait_lock); 4065 init_waitqueue_head(&pf->aq_wait_queue); 4066 4067 init_waitqueue_head(&pf->reset_wait_queue); 4068 4069 /* setup service timer and periodic service task */ 4070 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4071 pf->serv_tmr_period = HZ; 4072 INIT_WORK(&pf->serv_task, ice_service_task); 4073 clear_bit(ICE_SERVICE_SCHED, pf->state); 4074 4075 mutex_init(&pf->avail_q_mutex); 4076 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4077 if (!pf->avail_txqs) 4078 return -ENOMEM; 4079 4080 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4081 if (!pf->avail_rxqs) { 4082 bitmap_free(pf->avail_txqs); 4083 pf->avail_txqs = NULL; 4084 return -ENOMEM; 4085 } 4086 4087 mutex_init(&pf->vfs.table_lock); 4088 hash_init(pf->vfs.table); 4089 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 4090 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH, 4091 ICE_MBX_OVERFLOW_WATERMARK); 4092 else 4093 ice_mbx_init_snapshot(&pf->hw); 4094 4095 xa_init(&pf->dyn_ports); 4096 xa_init(&pf->sf_nums); 4097 4098 return 0; 4099 } 4100 4101 /** 4102 * ice_is_wol_supported - check if WoL is supported 4103 * @hw: pointer to hardware info 4104 * 4105 * Check if WoL is supported based on the HW configuration. 4106 * Returns true if NVM supports and enables WoL for this port, false otherwise 4107 */ 4108 bool ice_is_wol_supported(struct ice_hw *hw) 4109 { 4110 u16 wol_ctrl; 4111 4112 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4113 * word) indicates WoL is not supported on the corresponding PF ID. 4114 */ 4115 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4116 return false; 4117 4118 return !(BIT(hw->port_info->lport) & wol_ctrl); 4119 } 4120 4121 /** 4122 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4123 * @vsi: VSI being changed 4124 * @new_rx: new number of Rx queues 4125 * @new_tx: new number of Tx queues 4126 * @locked: is adev device_lock held 4127 * 4128 * Only change the number of queues if new_tx, or new_rx is non-0. 4129 * 4130 * Returns 0 on success. 4131 */ 4132 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4133 { 4134 struct ice_pf *pf = vsi->back; 4135 int i, err = 0, timeout = 50; 4136 4137 if (!new_rx && !new_tx) 4138 return -EINVAL; 4139 4140 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4141 timeout--; 4142 if (!timeout) 4143 return -EBUSY; 4144 usleep_range(1000, 2000); 4145 } 4146 4147 if (new_tx) 4148 vsi->req_txq = (u16)new_tx; 4149 if (new_rx) 4150 vsi->req_rxq = (u16)new_rx; 4151 4152 /* set for the next time the netdev is started */ 4153 if (!netif_running(vsi->netdev)) { 4154 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4155 if (err) 4156 goto rebuild_err; 4157 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4158 goto done; 4159 } 4160 4161 ice_vsi_close(vsi); 4162 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4163 if (err) 4164 goto rebuild_err; 4165 4166 ice_for_each_traffic_class(i) { 4167 if (vsi->tc_cfg.ena_tc & BIT(i)) 4168 netdev_set_tc_queue(vsi->netdev, 4169 vsi->tc_cfg.tc_info[i].netdev_tc, 4170 vsi->tc_cfg.tc_info[i].qcount_tx, 4171 vsi->tc_cfg.tc_info[i].qoffset); 4172 } 4173 ice_pf_dcb_recfg(pf, locked); 4174 ice_vsi_open(vsi); 4175 goto done; 4176 4177 rebuild_err: 4178 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4179 err); 4180 done: 4181 clear_bit(ICE_CFG_BUSY, pf->state); 4182 return err; 4183 } 4184 4185 /** 4186 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4187 * @pf: PF to configure 4188 * 4189 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4190 * VSI can still Tx/Rx VLAN tagged packets. 4191 */ 4192 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4193 { 4194 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4195 struct ice_vsi_ctx *ctxt; 4196 struct ice_hw *hw; 4197 int status; 4198 4199 if (!vsi) 4200 return; 4201 4202 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4203 if (!ctxt) 4204 return; 4205 4206 hw = &pf->hw; 4207 ctxt->info = vsi->info; 4208 4209 ctxt->info.valid_sections = 4210 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4211 ICE_AQ_VSI_PROP_SECURITY_VALID | 4212 ICE_AQ_VSI_PROP_SW_VALID); 4213 4214 /* disable VLAN anti-spoof */ 4215 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4216 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4217 4218 /* disable VLAN pruning and keep all other settings */ 4219 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4220 4221 /* allow all VLANs on Tx and don't strip on Rx */ 4222 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4223 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4224 4225 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4226 if (status) { 4227 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4228 status, libie_aq_str(hw->adminq.sq_last_status)); 4229 } else { 4230 vsi->info.sec_flags = ctxt->info.sec_flags; 4231 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4232 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4233 } 4234 4235 kfree(ctxt); 4236 } 4237 4238 /** 4239 * ice_log_pkg_init - log result of DDP package load 4240 * @hw: pointer to hardware info 4241 * @state: state of package load 4242 */ 4243 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4244 { 4245 struct ice_pf *pf = hw->back; 4246 struct device *dev; 4247 4248 dev = ice_pf_to_dev(pf); 4249 4250 switch (state) { 4251 case ICE_DDP_PKG_SUCCESS: 4252 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4253 hw->active_pkg_name, 4254 hw->active_pkg_ver.major, 4255 hw->active_pkg_ver.minor, 4256 hw->active_pkg_ver.update, 4257 hw->active_pkg_ver.draft); 4258 break; 4259 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4260 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4261 hw->active_pkg_name, 4262 hw->active_pkg_ver.major, 4263 hw->active_pkg_ver.minor, 4264 hw->active_pkg_ver.update, 4265 hw->active_pkg_ver.draft); 4266 break; 4267 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4268 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4269 hw->active_pkg_name, 4270 hw->active_pkg_ver.major, 4271 hw->active_pkg_ver.minor, 4272 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4273 break; 4274 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4275 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4276 hw->active_pkg_name, 4277 hw->active_pkg_ver.major, 4278 hw->active_pkg_ver.minor, 4279 hw->active_pkg_ver.update, 4280 hw->active_pkg_ver.draft, 4281 hw->pkg_name, 4282 hw->pkg_ver.major, 4283 hw->pkg_ver.minor, 4284 hw->pkg_ver.update, 4285 hw->pkg_ver.draft); 4286 break; 4287 case ICE_DDP_PKG_FW_MISMATCH: 4288 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4289 break; 4290 case ICE_DDP_PKG_INVALID_FILE: 4291 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4292 break; 4293 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4294 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4295 break; 4296 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4297 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4298 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4299 break; 4300 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4301 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4302 break; 4303 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4304 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4305 break; 4306 case ICE_DDP_PKG_LOAD_ERROR: 4307 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4308 /* poll for reset to complete */ 4309 if (ice_check_reset(hw)) 4310 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4311 break; 4312 case ICE_DDP_PKG_ERR: 4313 default: 4314 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4315 break; 4316 } 4317 } 4318 4319 /** 4320 * ice_load_pkg - load/reload the DDP Package file 4321 * @firmware: firmware structure when firmware requested or NULL for reload 4322 * @pf: pointer to the PF instance 4323 * 4324 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4325 * initialize HW tables. 4326 */ 4327 static void 4328 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4329 { 4330 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4331 struct device *dev = ice_pf_to_dev(pf); 4332 struct ice_hw *hw = &pf->hw; 4333 4334 /* Load DDP Package */ 4335 if (firmware && !hw->pkg_copy) { 4336 state = ice_copy_and_init_pkg(hw, firmware->data, 4337 firmware->size); 4338 ice_log_pkg_init(hw, state); 4339 } else if (!firmware && hw->pkg_copy) { 4340 /* Reload package during rebuild after CORER/GLOBR reset */ 4341 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4342 ice_log_pkg_init(hw, state); 4343 } else { 4344 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4345 } 4346 4347 if (!ice_is_init_pkg_successful(state)) { 4348 /* Safe Mode */ 4349 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4350 return; 4351 } 4352 4353 /* Successful download package is the precondition for advanced 4354 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4355 */ 4356 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4357 } 4358 4359 /** 4360 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4361 * @pf: pointer to the PF structure 4362 * 4363 * There is no error returned here because the driver should be able to handle 4364 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4365 * specifically with Tx. 4366 */ 4367 static void ice_verify_cacheline_size(struct ice_pf *pf) 4368 { 4369 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4370 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4371 ICE_CACHE_LINE_BYTES); 4372 } 4373 4374 /** 4375 * ice_send_version - update firmware with driver version 4376 * @pf: PF struct 4377 * 4378 * Returns 0 on success, else error code 4379 */ 4380 static int ice_send_version(struct ice_pf *pf) 4381 { 4382 struct ice_driver_ver dv; 4383 4384 dv.major_ver = 0xff; 4385 dv.minor_ver = 0xff; 4386 dv.build_ver = 0xff; 4387 dv.subbuild_ver = 0; 4388 strscpy((char *)dv.driver_string, UTS_RELEASE, 4389 sizeof(dv.driver_string)); 4390 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4391 } 4392 4393 /** 4394 * ice_init_fdir - Initialize flow director VSI and configuration 4395 * @pf: pointer to the PF instance 4396 * 4397 * returns 0 on success, negative on error 4398 */ 4399 static int ice_init_fdir(struct ice_pf *pf) 4400 { 4401 struct device *dev = ice_pf_to_dev(pf); 4402 struct ice_vsi *ctrl_vsi; 4403 int err; 4404 4405 /* Side Band Flow Director needs to have a control VSI. 4406 * Allocate it and store it in the PF. 4407 */ 4408 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4409 if (!ctrl_vsi) { 4410 dev_dbg(dev, "could not create control VSI\n"); 4411 return -ENOMEM; 4412 } 4413 4414 err = ice_vsi_open_ctrl(ctrl_vsi); 4415 if (err) { 4416 dev_dbg(dev, "could not open control VSI\n"); 4417 goto err_vsi_open; 4418 } 4419 4420 mutex_init(&pf->hw.fdir_fltr_lock); 4421 4422 err = ice_fdir_create_dflt_rules(pf); 4423 if (err) 4424 goto err_fdir_rule; 4425 4426 return 0; 4427 4428 err_fdir_rule: 4429 ice_fdir_release_flows(&pf->hw); 4430 ice_vsi_close(ctrl_vsi); 4431 err_vsi_open: 4432 ice_vsi_release(ctrl_vsi); 4433 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4434 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4435 pf->ctrl_vsi_idx = ICE_NO_VSI; 4436 } 4437 return err; 4438 } 4439 4440 static void ice_deinit_fdir(struct ice_pf *pf) 4441 { 4442 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4443 4444 if (!vsi) 4445 return; 4446 4447 ice_vsi_manage_fdir(vsi, false); 4448 ice_vsi_release(vsi); 4449 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4450 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4451 pf->ctrl_vsi_idx = ICE_NO_VSI; 4452 } 4453 4454 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4455 } 4456 4457 /** 4458 * ice_get_opt_fw_name - return optional firmware file name or NULL 4459 * @pf: pointer to the PF instance 4460 */ 4461 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4462 { 4463 /* Optional firmware name same as default with additional dash 4464 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4465 */ 4466 struct pci_dev *pdev = pf->pdev; 4467 char *opt_fw_filename; 4468 u64 dsn; 4469 4470 /* Determine the name of the optional file using the DSN (two 4471 * dwords following the start of the DSN Capability). 4472 */ 4473 dsn = pci_get_dsn(pdev); 4474 if (!dsn) 4475 return NULL; 4476 4477 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4478 if (!opt_fw_filename) 4479 return NULL; 4480 4481 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4482 ICE_DDP_PKG_PATH, dsn); 4483 4484 return opt_fw_filename; 4485 } 4486 4487 /** 4488 * ice_request_fw - Device initialization routine 4489 * @pf: pointer to the PF instance 4490 * @firmware: double pointer to firmware struct 4491 * 4492 * Return: zero when successful, negative values otherwise. 4493 */ 4494 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4495 { 4496 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4497 struct device *dev = ice_pf_to_dev(pf); 4498 int err = 0; 4499 4500 /* optional device-specific DDP (if present) overrides the default DDP 4501 * package file. kernel logs a debug message if the file doesn't exist, 4502 * and warning messages for other errors. 4503 */ 4504 if (opt_fw_filename) { 4505 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4506 kfree(opt_fw_filename); 4507 if (!err) 4508 return err; 4509 } 4510 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4511 if (err) 4512 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4513 4514 return err; 4515 } 4516 4517 /** 4518 * ice_init_tx_topology - performs Tx topology initialization 4519 * @hw: pointer to the hardware structure 4520 * @firmware: pointer to firmware structure 4521 * 4522 * Return: zero when init was successful, negative values otherwise. 4523 */ 4524 static int 4525 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4526 { 4527 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4528 struct ice_pf *pf = hw->back; 4529 struct device *dev; 4530 int err; 4531 4532 dev = ice_pf_to_dev(pf); 4533 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4534 if (!err) { 4535 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4536 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4537 else 4538 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4539 return 0; 4540 } else if (err == -ENODEV) { 4541 /* If we failed to re-initialize the device, we can no longer 4542 * continue loading. 4543 */ 4544 dev_warn(dev, "Failed to initialize hardware after applying Tx scheduling configuration.\n"); 4545 return err; 4546 } else if (err == -EIO) { 4547 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4548 return 0; 4549 } else if (err == -EEXIST) { 4550 return 0; 4551 } 4552 4553 /* Do not treat this as a fatal error. */ 4554 dev_info(dev, "Failed to apply Tx scheduling configuration, err %pe\n", 4555 ERR_PTR(err)); 4556 return 0; 4557 } 4558 4559 /** 4560 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs 4561 * @hw: pointer to the hardware structure 4562 * @pf: pointer to pf structure 4563 * 4564 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor 4565 * formats the PF hardware supports. The exact list of supported RXDIDs 4566 * depends on the loaded DDP package. The IDs can be determined by reading the 4567 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded. 4568 * 4569 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed 4570 * in the DDP package. The 16-byte legacy descriptor is never supported by 4571 * VFs. 4572 */ 4573 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf) 4574 { 4575 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1); 4576 4577 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 4578 u32 regval; 4579 4580 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 4581 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 4582 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 4583 pf->supported_rxdids |= BIT(i); 4584 } 4585 } 4586 4587 /** 4588 * ice_init_ddp_config - DDP related configuration 4589 * @hw: pointer to the hardware structure 4590 * @pf: pointer to pf structure 4591 * 4592 * This function loads DDP file from the disk, then initializes Tx 4593 * topology. At the end DDP package is loaded on the card. 4594 * 4595 * Return: zero when init was successful, negative values otherwise. 4596 */ 4597 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4598 { 4599 struct device *dev = ice_pf_to_dev(pf); 4600 const struct firmware *firmware = NULL; 4601 int err; 4602 4603 err = ice_request_fw(pf, &firmware); 4604 if (err) { 4605 dev_err(dev, "Fail during requesting FW: %d\n", err); 4606 return err; 4607 } 4608 4609 err = ice_init_tx_topology(hw, firmware); 4610 if (err) { 4611 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4612 err); 4613 release_firmware(firmware); 4614 return err; 4615 } 4616 4617 /* Download firmware to device */ 4618 ice_load_pkg(firmware, pf); 4619 release_firmware(firmware); 4620 4621 /* Initialize the supported Rx descriptor IDs after loading DDP */ 4622 ice_init_supported_rxdids(hw, pf); 4623 4624 return 0; 4625 } 4626 4627 /** 4628 * ice_print_wake_reason - show the wake up cause in the log 4629 * @pf: pointer to the PF struct 4630 */ 4631 static void ice_print_wake_reason(struct ice_pf *pf) 4632 { 4633 u32 wus = pf->wakeup_reason; 4634 const char *wake_str; 4635 4636 /* if no wake event, nothing to print */ 4637 if (!wus) 4638 return; 4639 4640 if (wus & PFPM_WUS_LNKC_M) 4641 wake_str = "Link\n"; 4642 else if (wus & PFPM_WUS_MAG_M) 4643 wake_str = "Magic Packet\n"; 4644 else if (wus & PFPM_WUS_MNG_M) 4645 wake_str = "Management\n"; 4646 else if (wus & PFPM_WUS_FW_RST_WK_M) 4647 wake_str = "Firmware Reset\n"; 4648 else 4649 wake_str = "Unknown\n"; 4650 4651 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4652 } 4653 4654 /** 4655 * ice_pf_fwlog_update_module - update 1 module 4656 * @pf: pointer to the PF struct 4657 * @log_level: log_level to use for the @module 4658 * @module: module to update 4659 */ 4660 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4661 { 4662 struct ice_hw *hw = &pf->hw; 4663 4664 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4665 } 4666 4667 /** 4668 * ice_register_netdev - register netdev 4669 * @vsi: pointer to the VSI struct 4670 */ 4671 static int ice_register_netdev(struct ice_vsi *vsi) 4672 { 4673 int err; 4674 4675 if (!vsi || !vsi->netdev) 4676 return -EIO; 4677 4678 err = register_netdev(vsi->netdev); 4679 if (err) 4680 return err; 4681 4682 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4683 netif_carrier_off(vsi->netdev); 4684 netif_tx_stop_all_queues(vsi->netdev); 4685 4686 return 0; 4687 } 4688 4689 static void ice_unregister_netdev(struct ice_vsi *vsi) 4690 { 4691 if (!vsi || !vsi->netdev) 4692 return; 4693 4694 unregister_netdev(vsi->netdev); 4695 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4696 } 4697 4698 /** 4699 * ice_cfg_netdev - Allocate, configure and register a netdev 4700 * @vsi: the VSI associated with the new netdev 4701 * 4702 * Returns 0 on success, negative value on failure 4703 */ 4704 static int ice_cfg_netdev(struct ice_vsi *vsi) 4705 { 4706 struct ice_netdev_priv *np; 4707 struct net_device *netdev; 4708 u8 mac_addr[ETH_ALEN]; 4709 4710 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4711 vsi->alloc_rxq); 4712 if (!netdev) 4713 return -ENOMEM; 4714 4715 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4716 vsi->netdev = netdev; 4717 np = netdev_priv(netdev); 4718 np->vsi = vsi; 4719 4720 ice_set_netdev_features(netdev); 4721 ice_set_ops(vsi); 4722 4723 if (vsi->type == ICE_VSI_PF) { 4724 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4725 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4726 eth_hw_addr_set(netdev, mac_addr); 4727 } 4728 4729 netdev->priv_flags |= IFF_UNICAST_FLT; 4730 4731 /* Setup netdev TC information */ 4732 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4733 4734 netdev->max_mtu = ICE_MAX_MTU; 4735 4736 return 0; 4737 } 4738 4739 static void ice_decfg_netdev(struct ice_vsi *vsi) 4740 { 4741 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4742 free_netdev(vsi->netdev); 4743 vsi->netdev = NULL; 4744 } 4745 4746 int ice_init_dev(struct ice_pf *pf) 4747 { 4748 struct device *dev = ice_pf_to_dev(pf); 4749 struct ice_hw *hw = &pf->hw; 4750 int err; 4751 4752 ice_init_feature_support(pf); 4753 4754 err = ice_init_ddp_config(hw, pf); 4755 4756 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4757 * set in pf->state, which will cause ice_is_safe_mode to return 4758 * true 4759 */ 4760 if (err || ice_is_safe_mode(pf)) { 4761 /* we already got function/device capabilities but these don't 4762 * reflect what the driver needs to do in safe mode. Instead of 4763 * adding conditional logic everywhere to ignore these 4764 * device/function capabilities, override them. 4765 */ 4766 ice_set_safe_mode_caps(hw); 4767 } 4768 4769 err = ice_init_pf(pf); 4770 if (err) { 4771 dev_err(dev, "ice_init_pf failed: %d\n", err); 4772 return err; 4773 } 4774 4775 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4776 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4777 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4778 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4779 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4780 pf->hw.tnl.valid_count[TNL_VXLAN]; 4781 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4782 UDP_TUNNEL_TYPE_VXLAN; 4783 } 4784 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4785 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4786 pf->hw.tnl.valid_count[TNL_GENEVE]; 4787 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4788 UDP_TUNNEL_TYPE_GENEVE; 4789 } 4790 4791 err = ice_init_interrupt_scheme(pf); 4792 if (err) { 4793 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4794 err = -EIO; 4795 goto unroll_pf_init; 4796 } 4797 4798 /* In case of MSIX we are going to setup the misc vector right here 4799 * to handle admin queue events etc. In case of legacy and MSI 4800 * the misc functionality and queue processing is combined in 4801 * the same vector and that gets setup at open. 4802 */ 4803 err = ice_req_irq_msix_misc(pf); 4804 if (err) { 4805 dev_err(dev, "setup of misc vector failed: %d\n", err); 4806 goto unroll_irq_scheme_init; 4807 } 4808 4809 return 0; 4810 4811 unroll_irq_scheme_init: 4812 ice_clear_interrupt_scheme(pf); 4813 unroll_pf_init: 4814 ice_deinit_pf(pf); 4815 return err; 4816 } 4817 4818 void ice_deinit_dev(struct ice_pf *pf) 4819 { 4820 ice_free_irq_msix_misc(pf); 4821 ice_deinit_pf(pf); 4822 ice_deinit_hw(&pf->hw); 4823 4824 /* Service task is already stopped, so call reset directly. */ 4825 ice_reset(&pf->hw, ICE_RESET_PFR); 4826 pci_wait_for_pending_transaction(pf->pdev); 4827 ice_clear_interrupt_scheme(pf); 4828 } 4829 4830 static void ice_init_features(struct ice_pf *pf) 4831 { 4832 struct device *dev = ice_pf_to_dev(pf); 4833 4834 if (ice_is_safe_mode(pf)) 4835 return; 4836 4837 /* initialize DDP driven features */ 4838 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4839 ice_ptp_init(pf); 4840 4841 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4842 ice_gnss_init(pf); 4843 4844 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4845 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4846 ice_dpll_init(pf); 4847 4848 /* Note: Flow director init failure is non-fatal to load */ 4849 if (ice_init_fdir(pf)) 4850 dev_err(dev, "could not initialize flow director\n"); 4851 4852 /* Note: DCB init failure is non-fatal to load */ 4853 if (ice_init_pf_dcb(pf, false)) { 4854 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4855 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4856 } else { 4857 ice_cfg_lldp_mib_change(&pf->hw, true); 4858 } 4859 4860 if (ice_init_lag(pf)) 4861 dev_warn(dev, "Failed to init link aggregation support\n"); 4862 4863 ice_hwmon_init(pf); 4864 } 4865 4866 static void ice_deinit_features(struct ice_pf *pf) 4867 { 4868 if (ice_is_safe_mode(pf)) 4869 return; 4870 4871 ice_deinit_lag(pf); 4872 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4873 ice_cfg_lldp_mib_change(&pf->hw, false); 4874 ice_deinit_fdir(pf); 4875 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4876 ice_gnss_exit(pf); 4877 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4878 ice_ptp_release(pf); 4879 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4880 ice_dpll_deinit(pf); 4881 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4882 xa_destroy(&pf->eswitch.reprs); 4883 } 4884 4885 static void ice_init_wakeup(struct ice_pf *pf) 4886 { 4887 /* Save wakeup reason register for later use */ 4888 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4889 4890 /* check for a power management event */ 4891 ice_print_wake_reason(pf); 4892 4893 /* clear wake status, all bits */ 4894 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4895 4896 /* Disable WoL at init, wait for user to enable */ 4897 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4898 } 4899 4900 static int ice_init_link(struct ice_pf *pf) 4901 { 4902 struct device *dev = ice_pf_to_dev(pf); 4903 int err; 4904 4905 err = ice_init_link_events(pf->hw.port_info); 4906 if (err) { 4907 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4908 return err; 4909 } 4910 4911 /* not a fatal error if this fails */ 4912 err = ice_init_nvm_phy_type(pf->hw.port_info); 4913 if (err) 4914 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4915 4916 /* not a fatal error if this fails */ 4917 err = ice_update_link_info(pf->hw.port_info); 4918 if (err) 4919 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4920 4921 ice_init_link_dflt_override(pf->hw.port_info); 4922 4923 ice_check_link_cfg_err(pf, 4924 pf->hw.port_info->phy.link_info.link_cfg_err); 4925 4926 /* if media available, initialize PHY settings */ 4927 if (pf->hw.port_info->phy.link_info.link_info & 4928 ICE_AQ_MEDIA_AVAILABLE) { 4929 /* not a fatal error if this fails */ 4930 err = ice_init_phy_user_cfg(pf->hw.port_info); 4931 if (err) 4932 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4933 4934 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4935 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4936 4937 if (vsi) 4938 ice_configure_phy(vsi); 4939 } 4940 } else { 4941 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4942 } 4943 4944 return err; 4945 } 4946 4947 static int ice_init_pf_sw(struct ice_pf *pf) 4948 { 4949 bool dvm = ice_is_dvm_ena(&pf->hw); 4950 struct ice_vsi *vsi; 4951 int err; 4952 4953 /* create switch struct for the switch element created by FW on boot */ 4954 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4955 if (!pf->first_sw) 4956 return -ENOMEM; 4957 4958 if (pf->hw.evb_veb) 4959 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4960 else 4961 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4962 4963 pf->first_sw->pf = pf; 4964 4965 /* record the sw_id available for later use */ 4966 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4967 4968 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4969 if (err) 4970 goto err_aq_set_port_params; 4971 4972 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4973 if (!vsi) { 4974 err = -ENOMEM; 4975 goto err_pf_vsi_setup; 4976 } 4977 4978 return 0; 4979 4980 err_pf_vsi_setup: 4981 err_aq_set_port_params: 4982 kfree(pf->first_sw); 4983 return err; 4984 } 4985 4986 static void ice_deinit_pf_sw(struct ice_pf *pf) 4987 { 4988 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4989 4990 if (!vsi) 4991 return; 4992 4993 ice_vsi_release(vsi); 4994 kfree(pf->first_sw); 4995 } 4996 4997 static int ice_alloc_vsis(struct ice_pf *pf) 4998 { 4999 struct device *dev = ice_pf_to_dev(pf); 5000 5001 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5002 if (!pf->num_alloc_vsi) 5003 return -EIO; 5004 5005 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5006 dev_warn(dev, 5007 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5008 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5009 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5010 } 5011 5012 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5013 GFP_KERNEL); 5014 if (!pf->vsi) 5015 return -ENOMEM; 5016 5017 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5018 sizeof(*pf->vsi_stats), GFP_KERNEL); 5019 if (!pf->vsi_stats) { 5020 devm_kfree(dev, pf->vsi); 5021 return -ENOMEM; 5022 } 5023 5024 return 0; 5025 } 5026 5027 static void ice_dealloc_vsis(struct ice_pf *pf) 5028 { 5029 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5030 pf->vsi_stats = NULL; 5031 5032 pf->num_alloc_vsi = 0; 5033 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5034 pf->vsi = NULL; 5035 } 5036 5037 static int ice_init_devlink(struct ice_pf *pf) 5038 { 5039 int err; 5040 5041 err = ice_devlink_register_params(pf); 5042 if (err) 5043 return err; 5044 5045 ice_devlink_init_regions(pf); 5046 ice_devlink_register(pf); 5047 ice_health_init(pf); 5048 5049 return 0; 5050 } 5051 5052 static void ice_deinit_devlink(struct ice_pf *pf) 5053 { 5054 ice_health_deinit(pf); 5055 ice_devlink_unregister(pf); 5056 ice_devlink_destroy_regions(pf); 5057 ice_devlink_unregister_params(pf); 5058 } 5059 5060 static int ice_init(struct ice_pf *pf) 5061 { 5062 int err; 5063 5064 err = ice_init_dev(pf); 5065 if (err) 5066 return err; 5067 5068 if (pf->hw.mac_type == ICE_MAC_E830) { 5069 err = pci_enable_ptm(pf->pdev, NULL); 5070 if (err) 5071 dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n"); 5072 } 5073 5074 err = ice_alloc_vsis(pf); 5075 if (err) 5076 goto err_alloc_vsis; 5077 5078 err = ice_init_pf_sw(pf); 5079 if (err) 5080 goto err_init_pf_sw; 5081 5082 ice_init_wakeup(pf); 5083 5084 err = ice_init_link(pf); 5085 if (err) 5086 goto err_init_link; 5087 5088 err = ice_send_version(pf); 5089 if (err) 5090 goto err_init_link; 5091 5092 ice_verify_cacheline_size(pf); 5093 5094 if (ice_is_safe_mode(pf)) 5095 ice_set_safe_mode_vlan_cfg(pf); 5096 else 5097 /* print PCI link speed and width */ 5098 pcie_print_link_status(pf->pdev); 5099 5100 /* ready to go, so clear down state bit */ 5101 clear_bit(ICE_DOWN, pf->state); 5102 clear_bit(ICE_SERVICE_DIS, pf->state); 5103 5104 /* since everything is good, start the service timer */ 5105 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5106 5107 return 0; 5108 5109 err_init_link: 5110 ice_deinit_pf_sw(pf); 5111 err_init_pf_sw: 5112 ice_dealloc_vsis(pf); 5113 err_alloc_vsis: 5114 ice_deinit_dev(pf); 5115 return err; 5116 } 5117 5118 static void ice_deinit(struct ice_pf *pf) 5119 { 5120 set_bit(ICE_SERVICE_DIS, pf->state); 5121 set_bit(ICE_DOWN, pf->state); 5122 5123 ice_deinit_pf_sw(pf); 5124 ice_dealloc_vsis(pf); 5125 ice_deinit_dev(pf); 5126 } 5127 5128 /** 5129 * ice_load - load pf by init hw and starting VSI 5130 * @pf: pointer to the pf instance 5131 * 5132 * This function has to be called under devl_lock. 5133 */ 5134 int ice_load(struct ice_pf *pf) 5135 { 5136 struct ice_vsi *vsi; 5137 int err; 5138 5139 devl_assert_locked(priv_to_devlink(pf)); 5140 5141 vsi = ice_get_main_vsi(pf); 5142 5143 /* init channel list */ 5144 INIT_LIST_HEAD(&vsi->ch_list); 5145 5146 err = ice_cfg_netdev(vsi); 5147 if (err) 5148 return err; 5149 5150 /* Setup DCB netlink interface */ 5151 ice_dcbnl_setup(vsi); 5152 5153 err = ice_init_mac_fltr(pf); 5154 if (err) 5155 goto err_init_mac_fltr; 5156 5157 err = ice_devlink_create_pf_port(pf); 5158 if (err) 5159 goto err_devlink_create_pf_port; 5160 5161 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5162 5163 err = ice_register_netdev(vsi); 5164 if (err) 5165 goto err_register_netdev; 5166 5167 err = ice_tc_indir_block_register(vsi); 5168 if (err) 5169 goto err_tc_indir_block_register; 5170 5171 ice_napi_add(vsi); 5172 5173 ice_init_features(pf); 5174 5175 err = ice_init_rdma(pf); 5176 if (err) 5177 goto err_init_rdma; 5178 5179 ice_service_task_restart(pf); 5180 5181 clear_bit(ICE_DOWN, pf->state); 5182 5183 return 0; 5184 5185 err_init_rdma: 5186 ice_deinit_features(pf); 5187 ice_tc_indir_block_unregister(vsi); 5188 err_tc_indir_block_register: 5189 ice_unregister_netdev(vsi); 5190 err_register_netdev: 5191 ice_devlink_destroy_pf_port(pf); 5192 err_devlink_create_pf_port: 5193 err_init_mac_fltr: 5194 ice_decfg_netdev(vsi); 5195 return err; 5196 } 5197 5198 /** 5199 * ice_unload - unload pf by stopping VSI and deinit hw 5200 * @pf: pointer to the pf instance 5201 * 5202 * This function has to be called under devl_lock. 5203 */ 5204 void ice_unload(struct ice_pf *pf) 5205 { 5206 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5207 5208 devl_assert_locked(priv_to_devlink(pf)); 5209 5210 ice_deinit_rdma(pf); 5211 ice_deinit_features(pf); 5212 ice_tc_indir_block_unregister(vsi); 5213 ice_unregister_netdev(vsi); 5214 ice_devlink_destroy_pf_port(pf); 5215 ice_decfg_netdev(vsi); 5216 } 5217 5218 static int ice_probe_recovery_mode(struct ice_pf *pf) 5219 { 5220 struct device *dev = ice_pf_to_dev(pf); 5221 int err; 5222 5223 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n"); 5224 5225 INIT_HLIST_HEAD(&pf->aq_wait_list); 5226 spin_lock_init(&pf->aq_wait_lock); 5227 init_waitqueue_head(&pf->aq_wait_queue); 5228 5229 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 5230 pf->serv_tmr_period = HZ; 5231 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode); 5232 clear_bit(ICE_SERVICE_SCHED, pf->state); 5233 err = ice_create_all_ctrlq(&pf->hw); 5234 if (err) 5235 return err; 5236 5237 scoped_guard(devl, priv_to_devlink(pf)) { 5238 err = ice_init_devlink(pf); 5239 if (err) 5240 return err; 5241 } 5242 5243 ice_service_task_restart(pf); 5244 5245 return 0; 5246 } 5247 5248 /** 5249 * ice_probe - Device initialization routine 5250 * @pdev: PCI device information struct 5251 * @ent: entry in ice_pci_tbl 5252 * 5253 * Returns 0 on success, negative on failure 5254 */ 5255 static int 5256 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5257 { 5258 struct device *dev = &pdev->dev; 5259 struct ice_adapter *adapter; 5260 struct ice_pf *pf; 5261 struct ice_hw *hw; 5262 int err; 5263 5264 if (pdev->is_virtfn) { 5265 dev_err(dev, "can't probe a virtual function\n"); 5266 return -EINVAL; 5267 } 5268 5269 /* when under a kdump kernel initiate a reset before enabling the 5270 * device in order to clear out any pending DMA transactions. These 5271 * transactions can cause some systems to machine check when doing 5272 * the pcim_enable_device() below. 5273 */ 5274 if (is_kdump_kernel()) { 5275 pci_save_state(pdev); 5276 pci_clear_master(pdev); 5277 err = pcie_flr(pdev); 5278 if (err) 5279 return err; 5280 pci_restore_state(pdev); 5281 } 5282 5283 /* this driver uses devres, see 5284 * Documentation/driver-api/driver-model/devres.rst 5285 */ 5286 err = pcim_enable_device(pdev); 5287 if (err) 5288 return err; 5289 5290 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5291 if (err) { 5292 dev_err(dev, "BAR0 I/O map error %d\n", err); 5293 return err; 5294 } 5295 5296 pf = ice_allocate_pf(dev); 5297 if (!pf) 5298 return -ENOMEM; 5299 5300 /* initialize Auxiliary index to invalid value */ 5301 pf->aux_idx = -1; 5302 5303 /* set up for high or low DMA */ 5304 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5305 if (err) { 5306 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5307 return err; 5308 } 5309 5310 pci_set_master(pdev); 5311 pf->pdev = pdev; 5312 pci_set_drvdata(pdev, pf); 5313 set_bit(ICE_DOWN, pf->state); 5314 /* Disable service task until DOWN bit is cleared */ 5315 set_bit(ICE_SERVICE_DIS, pf->state); 5316 5317 hw = &pf->hw; 5318 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5319 pci_save_state(pdev); 5320 5321 hw->back = pf; 5322 hw->port_info = NULL; 5323 hw->vendor_id = pdev->vendor; 5324 hw->device_id = pdev->device; 5325 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5326 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5327 hw->subsystem_device_id = pdev->subsystem_device; 5328 hw->bus.device = PCI_SLOT(pdev->devfn); 5329 hw->bus.func = PCI_FUNC(pdev->devfn); 5330 ice_set_ctrlq_len(hw); 5331 5332 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5333 5334 #ifndef CONFIG_DYNAMIC_DEBUG 5335 if (debug < -1) 5336 hw->debug_mask = debug; 5337 #endif 5338 5339 if (ice_is_recovery_mode(hw)) 5340 return ice_probe_recovery_mode(pf); 5341 5342 err = ice_init_hw(hw); 5343 if (err) { 5344 dev_err(dev, "ice_init_hw failed: %d\n", err); 5345 return err; 5346 } 5347 5348 adapter = ice_adapter_get(pdev); 5349 if (IS_ERR(adapter)) { 5350 err = PTR_ERR(adapter); 5351 goto unroll_hw_init; 5352 } 5353 pf->adapter = adapter; 5354 5355 err = ice_init(pf); 5356 if (err) 5357 goto unroll_adapter; 5358 5359 devl_lock(priv_to_devlink(pf)); 5360 err = ice_load(pf); 5361 if (err) 5362 goto unroll_init; 5363 5364 err = ice_init_devlink(pf); 5365 if (err) 5366 goto unroll_load; 5367 devl_unlock(priv_to_devlink(pf)); 5368 5369 return 0; 5370 5371 unroll_load: 5372 ice_unload(pf); 5373 unroll_init: 5374 devl_unlock(priv_to_devlink(pf)); 5375 ice_deinit(pf); 5376 unroll_adapter: 5377 ice_adapter_put(pdev); 5378 unroll_hw_init: 5379 ice_deinit_hw(hw); 5380 return err; 5381 } 5382 5383 /** 5384 * ice_set_wake - enable or disable Wake on LAN 5385 * @pf: pointer to the PF struct 5386 * 5387 * Simple helper for WoL control 5388 */ 5389 static void ice_set_wake(struct ice_pf *pf) 5390 { 5391 struct ice_hw *hw = &pf->hw; 5392 bool wol = pf->wol_ena; 5393 5394 /* clear wake state, otherwise new wake events won't fire */ 5395 wr32(hw, PFPM_WUS, U32_MAX); 5396 5397 /* enable / disable APM wake up, no RMW needed */ 5398 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5399 5400 /* set magic packet filter enabled */ 5401 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5402 } 5403 5404 /** 5405 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5406 * @pf: pointer to the PF struct 5407 * 5408 * Issue firmware command to enable multicast magic wake, making 5409 * sure that any locally administered address (LAA) is used for 5410 * wake, and that PF reset doesn't undo the LAA. 5411 */ 5412 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5413 { 5414 struct device *dev = ice_pf_to_dev(pf); 5415 struct ice_hw *hw = &pf->hw; 5416 u8 mac_addr[ETH_ALEN]; 5417 struct ice_vsi *vsi; 5418 int status; 5419 u8 flags; 5420 5421 if (!pf->wol_ena) 5422 return; 5423 5424 vsi = ice_get_main_vsi(pf); 5425 if (!vsi) 5426 return; 5427 5428 /* Get current MAC address in case it's an LAA */ 5429 if (vsi->netdev) 5430 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5431 else 5432 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5433 5434 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5435 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5436 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5437 5438 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5439 if (status) 5440 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5441 status, libie_aq_str(hw->adminq.sq_last_status)); 5442 } 5443 5444 /** 5445 * ice_remove - Device removal routine 5446 * @pdev: PCI device information struct 5447 */ 5448 static void ice_remove(struct pci_dev *pdev) 5449 { 5450 struct ice_pf *pf = pci_get_drvdata(pdev); 5451 int i; 5452 5453 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5454 if (!ice_is_reset_in_progress(pf->state)) 5455 break; 5456 msleep(100); 5457 } 5458 5459 if (ice_is_recovery_mode(&pf->hw)) { 5460 ice_service_task_stop(pf); 5461 scoped_guard(devl, priv_to_devlink(pf)) { 5462 ice_deinit_devlink(pf); 5463 } 5464 return; 5465 } 5466 5467 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5468 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5469 ice_free_vfs(pf); 5470 } 5471 5472 ice_hwmon_exit(pf); 5473 5474 ice_service_task_stop(pf); 5475 ice_aq_cancel_waiting_tasks(pf); 5476 set_bit(ICE_DOWN, pf->state); 5477 5478 if (!ice_is_safe_mode(pf)) 5479 ice_remove_arfs(pf); 5480 5481 devl_lock(priv_to_devlink(pf)); 5482 ice_dealloc_all_dynamic_ports(pf); 5483 ice_deinit_devlink(pf); 5484 5485 ice_unload(pf); 5486 devl_unlock(priv_to_devlink(pf)); 5487 5488 ice_deinit(pf); 5489 ice_vsi_release_all(pf); 5490 5491 ice_setup_mc_magic_wake(pf); 5492 ice_set_wake(pf); 5493 5494 ice_adapter_put(pdev); 5495 } 5496 5497 /** 5498 * ice_shutdown - PCI callback for shutting down device 5499 * @pdev: PCI device information struct 5500 */ 5501 static void ice_shutdown(struct pci_dev *pdev) 5502 { 5503 struct ice_pf *pf = pci_get_drvdata(pdev); 5504 5505 ice_remove(pdev); 5506 5507 if (system_state == SYSTEM_POWER_OFF) { 5508 pci_wake_from_d3(pdev, pf->wol_ena); 5509 pci_set_power_state(pdev, PCI_D3hot); 5510 } 5511 } 5512 5513 /** 5514 * ice_prepare_for_shutdown - prep for PCI shutdown 5515 * @pf: board private structure 5516 * 5517 * Inform or close all dependent features in prep for PCI device shutdown 5518 */ 5519 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5520 { 5521 struct ice_hw *hw = &pf->hw; 5522 u32 v; 5523 5524 /* Notify VFs of impending reset */ 5525 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5526 ice_vc_notify_reset(pf); 5527 5528 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5529 5530 /* disable the VSIs and their queues that are not already DOWN */ 5531 ice_pf_dis_all_vsi(pf, false); 5532 5533 ice_for_each_vsi(pf, v) 5534 if (pf->vsi[v]) 5535 pf->vsi[v]->vsi_num = 0; 5536 5537 ice_shutdown_all_ctrlq(hw, true); 5538 } 5539 5540 /** 5541 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5542 * @pf: board private structure to reinitialize 5543 * 5544 * This routine reinitialize interrupt scheme that was cleared during 5545 * power management suspend callback. 5546 * 5547 * This should be called during resume routine to re-allocate the q_vectors 5548 * and reacquire interrupts. 5549 */ 5550 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5551 { 5552 struct device *dev = ice_pf_to_dev(pf); 5553 int ret, v; 5554 5555 /* Since we clear MSIX flag during suspend, we need to 5556 * set it back during resume... 5557 */ 5558 5559 ret = ice_init_interrupt_scheme(pf); 5560 if (ret) { 5561 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5562 return ret; 5563 } 5564 5565 /* Remap vectors and rings, after successful re-init interrupts */ 5566 ice_for_each_vsi(pf, v) { 5567 if (!pf->vsi[v]) 5568 continue; 5569 5570 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5571 if (ret) 5572 goto err_reinit; 5573 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5574 rtnl_lock(); 5575 ice_vsi_set_napi_queues(pf->vsi[v]); 5576 rtnl_unlock(); 5577 } 5578 5579 ret = ice_req_irq_msix_misc(pf); 5580 if (ret) { 5581 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5582 ret); 5583 goto err_reinit; 5584 } 5585 5586 return 0; 5587 5588 err_reinit: 5589 while (v--) 5590 if (pf->vsi[v]) { 5591 rtnl_lock(); 5592 ice_vsi_clear_napi_queues(pf->vsi[v]); 5593 rtnl_unlock(); 5594 ice_vsi_free_q_vectors(pf->vsi[v]); 5595 } 5596 5597 return ret; 5598 } 5599 5600 /** 5601 * ice_suspend 5602 * @dev: generic device information structure 5603 * 5604 * Power Management callback to quiesce the device and prepare 5605 * for D3 transition. 5606 */ 5607 static int ice_suspend(struct device *dev) 5608 { 5609 struct pci_dev *pdev = to_pci_dev(dev); 5610 struct ice_pf *pf; 5611 int disabled, v; 5612 5613 pf = pci_get_drvdata(pdev); 5614 5615 if (!ice_pf_state_is_nominal(pf)) { 5616 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5617 return -EBUSY; 5618 } 5619 5620 /* Stop watchdog tasks until resume completion. 5621 * Even though it is most likely that the service task is 5622 * disabled if the device is suspended or down, the service task's 5623 * state is controlled by a different state bit, and we should 5624 * store and honor whatever state that bit is in at this point. 5625 */ 5626 disabled = ice_service_task_stop(pf); 5627 5628 ice_deinit_rdma(pf); 5629 5630 /* Already suspended?, then there is nothing to do */ 5631 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5632 if (!disabled) 5633 ice_service_task_restart(pf); 5634 return 0; 5635 } 5636 5637 if (test_bit(ICE_DOWN, pf->state) || 5638 ice_is_reset_in_progress(pf->state)) { 5639 dev_err(dev, "can't suspend device in reset or already down\n"); 5640 if (!disabled) 5641 ice_service_task_restart(pf); 5642 return 0; 5643 } 5644 5645 ice_setup_mc_magic_wake(pf); 5646 5647 ice_prepare_for_shutdown(pf); 5648 5649 ice_set_wake(pf); 5650 5651 /* Free vectors, clear the interrupt scheme and release IRQs 5652 * for proper hibernation, especially with large number of CPUs. 5653 * Otherwise hibernation might fail when mapping all the vectors back 5654 * to CPU0. 5655 */ 5656 ice_free_irq_msix_misc(pf); 5657 ice_for_each_vsi(pf, v) { 5658 if (!pf->vsi[v]) 5659 continue; 5660 rtnl_lock(); 5661 ice_vsi_clear_napi_queues(pf->vsi[v]); 5662 rtnl_unlock(); 5663 ice_vsi_free_q_vectors(pf->vsi[v]); 5664 } 5665 ice_clear_interrupt_scheme(pf); 5666 5667 pci_save_state(pdev); 5668 pci_wake_from_d3(pdev, pf->wol_ena); 5669 pci_set_power_state(pdev, PCI_D3hot); 5670 return 0; 5671 } 5672 5673 /** 5674 * ice_resume - PM callback for waking up from D3 5675 * @dev: generic device information structure 5676 */ 5677 static int ice_resume(struct device *dev) 5678 { 5679 struct pci_dev *pdev = to_pci_dev(dev); 5680 enum ice_reset_req reset_type; 5681 struct ice_pf *pf; 5682 struct ice_hw *hw; 5683 int ret; 5684 5685 pci_set_power_state(pdev, PCI_D0); 5686 pci_restore_state(pdev); 5687 pci_save_state(pdev); 5688 5689 if (!pci_device_is_present(pdev)) 5690 return -ENODEV; 5691 5692 ret = pci_enable_device_mem(pdev); 5693 if (ret) { 5694 dev_err(dev, "Cannot enable device after suspend\n"); 5695 return ret; 5696 } 5697 5698 pf = pci_get_drvdata(pdev); 5699 hw = &pf->hw; 5700 5701 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5702 ice_print_wake_reason(pf); 5703 5704 /* We cleared the interrupt scheme when we suspended, so we need to 5705 * restore it now to resume device functionality. 5706 */ 5707 ret = ice_reinit_interrupt_scheme(pf); 5708 if (ret) 5709 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5710 5711 ret = ice_init_rdma(pf); 5712 if (ret) 5713 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5714 ret); 5715 5716 clear_bit(ICE_DOWN, pf->state); 5717 /* Now perform PF reset and rebuild */ 5718 reset_type = ICE_RESET_PFR; 5719 /* re-enable service task for reset, but allow reset to schedule it */ 5720 clear_bit(ICE_SERVICE_DIS, pf->state); 5721 5722 if (ice_schedule_reset(pf, reset_type)) 5723 dev_err(dev, "Reset during resume failed.\n"); 5724 5725 clear_bit(ICE_SUSPENDED, pf->state); 5726 ice_service_task_restart(pf); 5727 5728 /* Restart the service task */ 5729 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5730 5731 return 0; 5732 } 5733 5734 /** 5735 * ice_pci_err_detected - warning that PCI error has been detected 5736 * @pdev: PCI device information struct 5737 * @err: the type of PCI error 5738 * 5739 * Called to warn that something happened on the PCI bus and the error handling 5740 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5741 */ 5742 static pci_ers_result_t 5743 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5744 { 5745 struct ice_pf *pf = pci_get_drvdata(pdev); 5746 5747 if (!pf) { 5748 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5749 __func__, err); 5750 return PCI_ERS_RESULT_DISCONNECT; 5751 } 5752 5753 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5754 ice_service_task_stop(pf); 5755 5756 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5757 set_bit(ICE_PFR_REQ, pf->state); 5758 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5759 } 5760 } 5761 5762 return PCI_ERS_RESULT_NEED_RESET; 5763 } 5764 5765 /** 5766 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5767 * @pdev: PCI device information struct 5768 * 5769 * Called to determine if the driver can recover from the PCI slot reset by 5770 * using a register read to determine if the device is recoverable. 5771 */ 5772 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5773 { 5774 struct ice_pf *pf = pci_get_drvdata(pdev); 5775 pci_ers_result_t result; 5776 int err; 5777 u32 reg; 5778 5779 err = pci_enable_device_mem(pdev); 5780 if (err) { 5781 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5782 err); 5783 result = PCI_ERS_RESULT_DISCONNECT; 5784 } else { 5785 pci_set_master(pdev); 5786 pci_restore_state(pdev); 5787 pci_save_state(pdev); 5788 pci_wake_from_d3(pdev, false); 5789 5790 /* Check for life */ 5791 reg = rd32(&pf->hw, GLGEN_RTRIG); 5792 if (!reg) 5793 result = PCI_ERS_RESULT_RECOVERED; 5794 else 5795 result = PCI_ERS_RESULT_DISCONNECT; 5796 } 5797 5798 return result; 5799 } 5800 5801 /** 5802 * ice_pci_err_resume - restart operations after PCI error recovery 5803 * @pdev: PCI device information struct 5804 * 5805 * Called to allow the driver to bring things back up after PCI error and/or 5806 * reset recovery have finished 5807 */ 5808 static void ice_pci_err_resume(struct pci_dev *pdev) 5809 { 5810 struct ice_pf *pf = pci_get_drvdata(pdev); 5811 5812 if (!pf) { 5813 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5814 __func__); 5815 return; 5816 } 5817 5818 if (test_bit(ICE_SUSPENDED, pf->state)) { 5819 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5820 __func__); 5821 return; 5822 } 5823 5824 ice_restore_all_vfs_msi_state(pf); 5825 5826 ice_do_reset(pf, ICE_RESET_PFR); 5827 ice_service_task_restart(pf); 5828 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5829 } 5830 5831 /** 5832 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5833 * @pdev: PCI device information struct 5834 */ 5835 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5836 { 5837 struct ice_pf *pf = pci_get_drvdata(pdev); 5838 5839 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5840 ice_service_task_stop(pf); 5841 5842 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5843 set_bit(ICE_PFR_REQ, pf->state); 5844 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5845 } 5846 } 5847 } 5848 5849 /** 5850 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5851 * @pdev: PCI device information struct 5852 */ 5853 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5854 { 5855 ice_pci_err_resume(pdev); 5856 } 5857 5858 /* ice_pci_tbl - PCI Device ID Table 5859 * 5860 * Wildcard entries (PCI_ANY_ID) should come last 5861 * Last entry must be all 0s 5862 * 5863 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5864 * Class, Class Mask, private data (not used) } 5865 */ 5866 static const struct pci_device_id ice_pci_tbl[] = { 5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5889 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5890 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5891 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5892 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5893 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5894 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5895 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5896 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5897 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5898 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5899 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5900 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5901 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5902 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5903 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5904 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5905 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5906 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5907 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_BACKPLANE), }, 5908 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_QSFP56), }, 5909 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_SFP), }, 5910 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_BACKPLANE), }, 5911 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_QSFP), }, 5912 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_SFP), }, 5913 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_BACKPLANE), }, 5914 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_QSFP), }, 5915 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_SFP), }, 5916 /* required last entry */ 5917 {} 5918 }; 5919 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5920 5921 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5922 5923 static const struct pci_error_handlers ice_pci_err_handler = { 5924 .error_detected = ice_pci_err_detected, 5925 .slot_reset = ice_pci_err_slot_reset, 5926 .reset_prepare = ice_pci_err_reset_prepare, 5927 .reset_done = ice_pci_err_reset_done, 5928 .resume = ice_pci_err_resume 5929 }; 5930 5931 static struct pci_driver ice_driver = { 5932 .name = KBUILD_MODNAME, 5933 .id_table = ice_pci_tbl, 5934 .probe = ice_probe, 5935 .remove = ice_remove, 5936 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5937 .shutdown = ice_shutdown, 5938 .sriov_configure = ice_sriov_configure, 5939 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5940 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5941 .err_handler = &ice_pci_err_handler 5942 }; 5943 5944 /** 5945 * ice_module_init - Driver registration routine 5946 * 5947 * ice_module_init is the first routine called when the driver is 5948 * loaded. All it does is register with the PCI subsystem. 5949 */ 5950 static int __init ice_module_init(void) 5951 { 5952 int status = -ENOMEM; 5953 5954 pr_info("%s\n", ice_driver_string); 5955 pr_info("%s\n", ice_copyright); 5956 5957 ice_adv_lnk_speed_maps_init(); 5958 5959 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME); 5960 if (!ice_wq) { 5961 pr_err("Failed to create workqueue\n"); 5962 return status; 5963 } 5964 5965 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5966 if (!ice_lag_wq) { 5967 pr_err("Failed to create LAG workqueue\n"); 5968 goto err_dest_wq; 5969 } 5970 5971 ice_debugfs_init(); 5972 5973 status = pci_register_driver(&ice_driver); 5974 if (status) { 5975 pr_err("failed to register PCI driver, err %d\n", status); 5976 goto err_dest_lag_wq; 5977 } 5978 5979 status = ice_sf_driver_register(); 5980 if (status) { 5981 pr_err("Failed to register SF driver, err %d\n", status); 5982 goto err_sf_driver; 5983 } 5984 5985 return 0; 5986 5987 err_sf_driver: 5988 pci_unregister_driver(&ice_driver); 5989 err_dest_lag_wq: 5990 destroy_workqueue(ice_lag_wq); 5991 ice_debugfs_exit(); 5992 err_dest_wq: 5993 destroy_workqueue(ice_wq); 5994 return status; 5995 } 5996 module_init(ice_module_init); 5997 5998 /** 5999 * ice_module_exit - Driver exit cleanup routine 6000 * 6001 * ice_module_exit is called just before the driver is removed 6002 * from memory. 6003 */ 6004 static void __exit ice_module_exit(void) 6005 { 6006 ice_sf_driver_unregister(); 6007 pci_unregister_driver(&ice_driver); 6008 ice_debugfs_exit(); 6009 destroy_workqueue(ice_wq); 6010 destroy_workqueue(ice_lag_wq); 6011 pr_info("module unloaded\n"); 6012 } 6013 module_exit(ice_module_exit); 6014 6015 /** 6016 * ice_set_mac_address - NDO callback to set MAC address 6017 * @netdev: network interface device structure 6018 * @pi: pointer to an address structure 6019 * 6020 * Returns 0 on success, negative on failure 6021 */ 6022 static int ice_set_mac_address(struct net_device *netdev, void *pi) 6023 { 6024 struct ice_netdev_priv *np = netdev_priv(netdev); 6025 struct ice_vsi *vsi = np->vsi; 6026 struct ice_pf *pf = vsi->back; 6027 struct ice_hw *hw = &pf->hw; 6028 struct sockaddr *addr = pi; 6029 u8 old_mac[ETH_ALEN]; 6030 u8 flags = 0; 6031 u8 *mac; 6032 int err; 6033 6034 mac = (u8 *)addr->sa_data; 6035 6036 if (!is_valid_ether_addr(mac)) 6037 return -EADDRNOTAVAIL; 6038 6039 if (test_bit(ICE_DOWN, pf->state) || 6040 ice_is_reset_in_progress(pf->state)) { 6041 netdev_err(netdev, "can't set mac %pM. device not ready\n", 6042 mac); 6043 return -EBUSY; 6044 } 6045 6046 if (ice_chnl_dmac_fltr_cnt(pf)) { 6047 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 6048 mac); 6049 return -EAGAIN; 6050 } 6051 6052 netif_addr_lock_bh(netdev); 6053 ether_addr_copy(old_mac, netdev->dev_addr); 6054 /* change the netdev's MAC address */ 6055 eth_hw_addr_set(netdev, mac); 6056 netif_addr_unlock_bh(netdev); 6057 6058 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6059 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6060 if (err && err != -ENOENT) { 6061 err = -EADDRNOTAVAIL; 6062 goto err_update_filters; 6063 } 6064 6065 /* Add filter for new MAC. If filter exists, return success */ 6066 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6067 if (err == -EEXIST) { 6068 /* Although this MAC filter is already present in hardware it's 6069 * possible in some cases (e.g. bonding) that dev_addr was 6070 * modified outside of the driver and needs to be restored back 6071 * to this value. 6072 */ 6073 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6074 6075 return 0; 6076 } else if (err) { 6077 /* error if the new filter addition failed */ 6078 err = -EADDRNOTAVAIL; 6079 } 6080 6081 err_update_filters: 6082 if (err) { 6083 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6084 mac); 6085 netif_addr_lock_bh(netdev); 6086 eth_hw_addr_set(netdev, old_mac); 6087 netif_addr_unlock_bh(netdev); 6088 return err; 6089 } 6090 6091 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6092 netdev->dev_addr); 6093 6094 /* write new MAC address to the firmware */ 6095 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6096 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6097 if (err) { 6098 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6099 mac, err); 6100 } 6101 return 0; 6102 } 6103 6104 /** 6105 * ice_set_rx_mode - NDO callback to set the netdev filters 6106 * @netdev: network interface device structure 6107 */ 6108 static void ice_set_rx_mode(struct net_device *netdev) 6109 { 6110 struct ice_netdev_priv *np = netdev_priv(netdev); 6111 struct ice_vsi *vsi = np->vsi; 6112 6113 if (!vsi || ice_is_switchdev_running(vsi->back)) 6114 return; 6115 6116 /* Set the flags to synchronize filters 6117 * ndo_set_rx_mode may be triggered even without a change in netdev 6118 * flags 6119 */ 6120 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6121 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6122 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6123 6124 /* schedule our worker thread which will take care of 6125 * applying the new filter changes 6126 */ 6127 ice_service_task_schedule(vsi->back); 6128 } 6129 6130 /** 6131 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6132 * @netdev: network interface device structure 6133 * @queue_index: Queue ID 6134 * @maxrate: maximum bandwidth in Mbps 6135 */ 6136 static int 6137 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6138 { 6139 struct ice_netdev_priv *np = netdev_priv(netdev); 6140 struct ice_vsi *vsi = np->vsi; 6141 u16 q_handle; 6142 int status; 6143 u8 tc; 6144 6145 /* Validate maxrate requested is within permitted range */ 6146 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6147 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6148 maxrate, queue_index); 6149 return -EINVAL; 6150 } 6151 6152 q_handle = vsi->tx_rings[queue_index]->q_handle; 6153 tc = ice_dcb_get_tc(vsi, queue_index); 6154 6155 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6156 if (!vsi) { 6157 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6158 queue_index); 6159 return -EINVAL; 6160 } 6161 6162 /* Set BW back to default, when user set maxrate to 0 */ 6163 if (!maxrate) 6164 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6165 q_handle, ICE_MAX_BW); 6166 else 6167 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6168 q_handle, ICE_MAX_BW, maxrate * 1000); 6169 if (status) 6170 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6171 status); 6172 6173 return status; 6174 } 6175 6176 /** 6177 * ice_fdb_add - add an entry to the hardware database 6178 * @ndm: the input from the stack 6179 * @tb: pointer to array of nladdr (unused) 6180 * @dev: the net device pointer 6181 * @addr: the MAC address entry being added 6182 * @vid: VLAN ID 6183 * @flags: instructions from stack about fdb operation 6184 * @notified: whether notification was emitted 6185 * @extack: netlink extended ack 6186 */ 6187 static int 6188 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6189 struct net_device *dev, const unsigned char *addr, u16 vid, 6190 u16 flags, bool *notified, 6191 struct netlink_ext_ack __always_unused *extack) 6192 { 6193 int err; 6194 6195 if (vid) { 6196 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6197 return -EINVAL; 6198 } 6199 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6200 netdev_err(dev, "FDB only supports static addresses\n"); 6201 return -EINVAL; 6202 } 6203 6204 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6205 err = dev_uc_add_excl(dev, addr); 6206 else if (is_multicast_ether_addr(addr)) 6207 err = dev_mc_add_excl(dev, addr); 6208 else 6209 err = -EINVAL; 6210 6211 /* Only return duplicate errors if NLM_F_EXCL is set */ 6212 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6213 err = 0; 6214 6215 return err; 6216 } 6217 6218 /** 6219 * ice_fdb_del - delete an entry from the hardware database 6220 * @ndm: the input from the stack 6221 * @tb: pointer to array of nladdr (unused) 6222 * @dev: the net device pointer 6223 * @addr: the MAC address entry being added 6224 * @vid: VLAN ID 6225 * @notified: whether notification was emitted 6226 * @extack: netlink extended ack 6227 */ 6228 static int 6229 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6230 struct net_device *dev, const unsigned char *addr, 6231 __always_unused u16 vid, bool *notified, 6232 struct netlink_ext_ack *extack) 6233 { 6234 int err; 6235 6236 if (ndm->ndm_state & NUD_PERMANENT) { 6237 netdev_err(dev, "FDB only supports static addresses\n"); 6238 return -EINVAL; 6239 } 6240 6241 if (is_unicast_ether_addr(addr)) 6242 err = dev_uc_del(dev, addr); 6243 else if (is_multicast_ether_addr(addr)) 6244 err = dev_mc_del(dev, addr); 6245 else 6246 err = -EINVAL; 6247 6248 return err; 6249 } 6250 6251 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6252 NETIF_F_HW_VLAN_CTAG_TX | \ 6253 NETIF_F_HW_VLAN_STAG_RX | \ 6254 NETIF_F_HW_VLAN_STAG_TX) 6255 6256 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6257 NETIF_F_HW_VLAN_STAG_RX) 6258 6259 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6260 NETIF_F_HW_VLAN_STAG_FILTER) 6261 6262 /** 6263 * ice_fix_features - fix the netdev features flags based on device limitations 6264 * @netdev: ptr to the netdev that flags are being fixed on 6265 * @features: features that need to be checked and possibly fixed 6266 * 6267 * Make sure any fixups are made to features in this callback. This enables the 6268 * driver to not have to check unsupported configurations throughout the driver 6269 * because that's the responsiblity of this callback. 6270 * 6271 * Single VLAN Mode (SVM) Supported Features: 6272 * NETIF_F_HW_VLAN_CTAG_FILTER 6273 * NETIF_F_HW_VLAN_CTAG_RX 6274 * NETIF_F_HW_VLAN_CTAG_TX 6275 * 6276 * Double VLAN Mode (DVM) Supported Features: 6277 * NETIF_F_HW_VLAN_CTAG_FILTER 6278 * NETIF_F_HW_VLAN_CTAG_RX 6279 * NETIF_F_HW_VLAN_CTAG_TX 6280 * 6281 * NETIF_F_HW_VLAN_STAG_FILTER 6282 * NETIF_HW_VLAN_STAG_RX 6283 * NETIF_HW_VLAN_STAG_TX 6284 * 6285 * Features that need fixing: 6286 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6287 * These are mutually exlusive as the VSI context cannot support multiple 6288 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6289 * is not done, then default to clearing the requested STAG offload 6290 * settings. 6291 * 6292 * All supported filtering has to be enabled or disabled together. For 6293 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6294 * together. If this is not done, then default to VLAN filtering disabled. 6295 * These are mutually exclusive as there is currently no way to 6296 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6297 * prune rules. 6298 */ 6299 static netdev_features_t 6300 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6301 { 6302 struct ice_netdev_priv *np = netdev_priv(netdev); 6303 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6304 bool cur_ctag, cur_stag, req_ctag, req_stag; 6305 6306 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6307 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6308 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6309 6310 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6311 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6312 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6313 6314 if (req_vlan_fltr != cur_vlan_fltr) { 6315 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6316 if (req_ctag && req_stag) { 6317 features |= NETIF_VLAN_FILTERING_FEATURES; 6318 } else if (!req_ctag && !req_stag) { 6319 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6320 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6321 (!cur_stag && req_stag && !cur_ctag)) { 6322 features |= NETIF_VLAN_FILTERING_FEATURES; 6323 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6324 } else if ((cur_ctag && !req_ctag && cur_stag) || 6325 (cur_stag && !req_stag && cur_ctag)) { 6326 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6327 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6328 } 6329 } else { 6330 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6331 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6332 6333 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6334 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6335 } 6336 } 6337 6338 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6339 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6340 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6341 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6342 NETIF_F_HW_VLAN_STAG_TX); 6343 } 6344 6345 if (!(netdev->features & NETIF_F_RXFCS) && 6346 (features & NETIF_F_RXFCS) && 6347 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6348 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6349 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6350 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6351 } 6352 6353 return features; 6354 } 6355 6356 /** 6357 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6358 * @vsi: PF's VSI 6359 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6360 * 6361 * Store current stripped VLAN proto in ring packet context, 6362 * so it can be accessed more efficiently by packet processing code. 6363 */ 6364 static void 6365 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6366 { 6367 u16 i; 6368 6369 ice_for_each_alloc_rxq(vsi, i) 6370 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6371 } 6372 6373 /** 6374 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6375 * @vsi: PF's VSI 6376 * @features: features used to determine VLAN offload settings 6377 * 6378 * First, determine the vlan_ethertype based on the VLAN offload bits in 6379 * features. Then determine if stripping and insertion should be enabled or 6380 * disabled. Finally enable or disable VLAN stripping and insertion. 6381 */ 6382 static int 6383 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6384 { 6385 bool enable_stripping = true, enable_insertion = true; 6386 struct ice_vsi_vlan_ops *vlan_ops; 6387 int strip_err = 0, insert_err = 0; 6388 u16 vlan_ethertype = 0; 6389 6390 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6391 6392 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6393 vlan_ethertype = ETH_P_8021AD; 6394 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6395 vlan_ethertype = ETH_P_8021Q; 6396 6397 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6398 enable_stripping = false; 6399 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6400 enable_insertion = false; 6401 6402 if (enable_stripping) 6403 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6404 else 6405 strip_err = vlan_ops->dis_stripping(vsi); 6406 6407 if (enable_insertion) 6408 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6409 else 6410 insert_err = vlan_ops->dis_insertion(vsi); 6411 6412 if (strip_err || insert_err) 6413 return -EIO; 6414 6415 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6416 htons(vlan_ethertype) : 0); 6417 6418 return 0; 6419 } 6420 6421 /** 6422 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6423 * @vsi: PF's VSI 6424 * @features: features used to determine VLAN filtering settings 6425 * 6426 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6427 * features. 6428 */ 6429 static int 6430 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6431 { 6432 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6433 int err = 0; 6434 6435 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6436 * if either bit is set. In switchdev mode Rx filtering should never be 6437 * enabled. 6438 */ 6439 if ((features & 6440 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) && 6441 !ice_is_eswitch_mode_switchdev(vsi->back)) 6442 err = vlan_ops->ena_rx_filtering(vsi); 6443 else 6444 err = vlan_ops->dis_rx_filtering(vsi); 6445 6446 return err; 6447 } 6448 6449 /** 6450 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6451 * @netdev: ptr to the netdev being adjusted 6452 * @features: the feature set that the stack is suggesting 6453 * 6454 * Only update VLAN settings if the requested_vlan_features are different than 6455 * the current_vlan_features. 6456 */ 6457 static int 6458 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6459 { 6460 netdev_features_t current_vlan_features, requested_vlan_features; 6461 struct ice_netdev_priv *np = netdev_priv(netdev); 6462 struct ice_vsi *vsi = np->vsi; 6463 int err; 6464 6465 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6466 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6467 if (current_vlan_features ^ requested_vlan_features) { 6468 if ((features & NETIF_F_RXFCS) && 6469 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6470 dev_err(ice_pf_to_dev(vsi->back), 6471 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6472 return -EIO; 6473 } 6474 6475 err = ice_set_vlan_offload_features(vsi, features); 6476 if (err) 6477 return err; 6478 } 6479 6480 current_vlan_features = netdev->features & 6481 NETIF_VLAN_FILTERING_FEATURES; 6482 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6483 if (current_vlan_features ^ requested_vlan_features) { 6484 err = ice_set_vlan_filtering_features(vsi, features); 6485 if (err) 6486 return err; 6487 } 6488 6489 return 0; 6490 } 6491 6492 /** 6493 * ice_set_loopback - turn on/off loopback mode on underlying PF 6494 * @vsi: ptr to VSI 6495 * @ena: flag to indicate the on/off setting 6496 */ 6497 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6498 { 6499 bool if_running = netif_running(vsi->netdev); 6500 int ret; 6501 6502 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6503 ret = ice_down(vsi); 6504 if (ret) { 6505 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6506 return ret; 6507 } 6508 } 6509 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6510 if (ret) 6511 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6512 if (if_running) 6513 ret = ice_up(vsi); 6514 6515 return ret; 6516 } 6517 6518 /** 6519 * ice_set_features - set the netdev feature flags 6520 * @netdev: ptr to the netdev being adjusted 6521 * @features: the feature set that the stack is suggesting 6522 */ 6523 static int 6524 ice_set_features(struct net_device *netdev, netdev_features_t features) 6525 { 6526 netdev_features_t changed = netdev->features ^ features; 6527 struct ice_netdev_priv *np = netdev_priv(netdev); 6528 struct ice_vsi *vsi = np->vsi; 6529 struct ice_pf *pf = vsi->back; 6530 int ret = 0; 6531 6532 /* Don't set any netdev advanced features with device in Safe Mode */ 6533 if (ice_is_safe_mode(pf)) { 6534 dev_err(ice_pf_to_dev(pf), 6535 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6536 return ret; 6537 } 6538 6539 /* Do not change setting during reset */ 6540 if (ice_is_reset_in_progress(pf->state)) { 6541 dev_err(ice_pf_to_dev(pf), 6542 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6543 return -EBUSY; 6544 } 6545 6546 /* Multiple features can be changed in one call so keep features in 6547 * separate if/else statements to guarantee each feature is checked 6548 */ 6549 if (changed & NETIF_F_RXHASH) 6550 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6551 6552 ret = ice_set_vlan_features(netdev, features); 6553 if (ret) 6554 return ret; 6555 6556 /* Turn on receive of FCS aka CRC, and after setting this 6557 * flag the packet data will have the 4 byte CRC appended 6558 */ 6559 if (changed & NETIF_F_RXFCS) { 6560 if ((features & NETIF_F_RXFCS) && 6561 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6562 dev_err(ice_pf_to_dev(vsi->back), 6563 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6564 return -EIO; 6565 } 6566 6567 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6568 ret = ice_down_up(vsi); 6569 if (ret) 6570 return ret; 6571 } 6572 6573 if (changed & NETIF_F_NTUPLE) { 6574 bool ena = !!(features & NETIF_F_NTUPLE); 6575 6576 ice_vsi_manage_fdir(vsi, ena); 6577 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6578 } 6579 6580 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6581 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6582 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6583 return -EACCES; 6584 } 6585 6586 if (changed & NETIF_F_HW_TC) { 6587 bool ena = !!(features & NETIF_F_HW_TC); 6588 6589 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena); 6590 } 6591 6592 if (changed & NETIF_F_LOOPBACK) 6593 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6594 6595 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS 6596 * (NETIF_F_HW_CSUM) is not supported. 6597 */ 6598 if (ice_is_feature_supported(pf, ICE_F_GCS) && 6599 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) { 6600 if (netdev->features & NETIF_F_HW_CSUM) 6601 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n"); 6602 else 6603 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n"); 6604 return -EIO; 6605 } 6606 6607 return ret; 6608 } 6609 6610 /** 6611 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6612 * @vsi: VSI to setup VLAN properties for 6613 */ 6614 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6615 { 6616 int err; 6617 6618 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6619 if (err) 6620 return err; 6621 6622 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6623 if (err) 6624 return err; 6625 6626 return ice_vsi_add_vlan_zero(vsi); 6627 } 6628 6629 /** 6630 * ice_vsi_cfg_lan - Setup the VSI lan related config 6631 * @vsi: the VSI being configured 6632 * 6633 * Return 0 on success and negative value on error 6634 */ 6635 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6636 { 6637 int err; 6638 6639 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6640 ice_set_rx_mode(vsi->netdev); 6641 6642 err = ice_vsi_vlan_setup(vsi); 6643 if (err) 6644 return err; 6645 } 6646 ice_vsi_cfg_dcb_rings(vsi); 6647 6648 err = ice_vsi_cfg_lan_txqs(vsi); 6649 if (!err && ice_is_xdp_ena_vsi(vsi)) 6650 err = ice_vsi_cfg_xdp_txqs(vsi); 6651 if (!err) 6652 err = ice_vsi_cfg_rxqs(vsi); 6653 6654 return err; 6655 } 6656 6657 /* THEORY OF MODERATION: 6658 * The ice driver hardware works differently than the hardware that DIMLIB was 6659 * originally made for. ice hardware doesn't have packet count limits that 6660 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6661 * which is hard-coded to a limit of 250,000 ints/second. 6662 * If not using dynamic moderation, the INTRL value can be modified 6663 * by ethtool rx-usecs-high. 6664 */ 6665 struct ice_dim { 6666 /* the throttle rate for interrupts, basically worst case delay before 6667 * an initial interrupt fires, value is stored in microseconds. 6668 */ 6669 u16 itr; 6670 }; 6671 6672 /* Make a different profile for Rx that doesn't allow quite so aggressive 6673 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6674 * second. 6675 */ 6676 static const struct ice_dim rx_profile[] = { 6677 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6678 {8}, /* 125,000 ints/s */ 6679 {16}, /* 62,500 ints/s */ 6680 {62}, /* 16,129 ints/s */ 6681 {126} /* 7,936 ints/s */ 6682 }; 6683 6684 /* The transmit profile, which has the same sorts of values 6685 * as the previous struct 6686 */ 6687 static const struct ice_dim tx_profile[] = { 6688 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6689 {8}, /* 125,000 ints/s */ 6690 {40}, /* 16,125 ints/s */ 6691 {128}, /* 7,812 ints/s */ 6692 {256} /* 3,906 ints/s */ 6693 }; 6694 6695 static void ice_tx_dim_work(struct work_struct *work) 6696 { 6697 struct ice_ring_container *rc; 6698 struct dim *dim; 6699 u16 itr; 6700 6701 dim = container_of(work, struct dim, work); 6702 rc = dim->priv; 6703 6704 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6705 6706 /* look up the values in our local table */ 6707 itr = tx_profile[dim->profile_ix].itr; 6708 6709 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6710 ice_write_itr(rc, itr); 6711 6712 dim->state = DIM_START_MEASURE; 6713 } 6714 6715 static void ice_rx_dim_work(struct work_struct *work) 6716 { 6717 struct ice_ring_container *rc; 6718 struct dim *dim; 6719 u16 itr; 6720 6721 dim = container_of(work, struct dim, work); 6722 rc = dim->priv; 6723 6724 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6725 6726 /* look up the values in our local table */ 6727 itr = rx_profile[dim->profile_ix].itr; 6728 6729 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6730 ice_write_itr(rc, itr); 6731 6732 dim->state = DIM_START_MEASURE; 6733 } 6734 6735 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6736 6737 /** 6738 * ice_init_moderation - set up interrupt moderation 6739 * @q_vector: the vector containing rings to be configured 6740 * 6741 * Set up interrupt moderation registers, with the intent to do the right thing 6742 * when called from reset or from probe, and whether or not dynamic moderation 6743 * is enabled or not. Take special care to write all the registers in both 6744 * dynamic moderation mode or not in order to make sure hardware is in a known 6745 * state. 6746 */ 6747 static void ice_init_moderation(struct ice_q_vector *q_vector) 6748 { 6749 struct ice_ring_container *rc; 6750 bool tx_dynamic, rx_dynamic; 6751 6752 rc = &q_vector->tx; 6753 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6754 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6755 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6756 rc->dim.priv = rc; 6757 tx_dynamic = ITR_IS_DYNAMIC(rc); 6758 6759 /* set the initial TX ITR to match the above */ 6760 ice_write_itr(rc, tx_dynamic ? 6761 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6762 6763 rc = &q_vector->rx; 6764 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6765 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6766 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6767 rc->dim.priv = rc; 6768 rx_dynamic = ITR_IS_DYNAMIC(rc); 6769 6770 /* set the initial RX ITR to match the above */ 6771 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6772 rc->itr_setting); 6773 6774 ice_set_q_vector_intrl(q_vector); 6775 } 6776 6777 /** 6778 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6779 * @vsi: the VSI being configured 6780 */ 6781 static void ice_napi_enable_all(struct ice_vsi *vsi) 6782 { 6783 int q_idx; 6784 6785 if (!vsi->netdev) 6786 return; 6787 6788 ice_for_each_q_vector(vsi, q_idx) { 6789 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6790 6791 ice_init_moderation(q_vector); 6792 6793 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6794 napi_enable(&q_vector->napi); 6795 } 6796 } 6797 6798 /** 6799 * ice_up_complete - Finish the last steps of bringing up a connection 6800 * @vsi: The VSI being configured 6801 * 6802 * Return 0 on success and negative value on error 6803 */ 6804 static int ice_up_complete(struct ice_vsi *vsi) 6805 { 6806 struct ice_pf *pf = vsi->back; 6807 int err; 6808 6809 ice_vsi_cfg_msix(vsi); 6810 6811 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6812 * Tx queue group list was configured and the context bits were 6813 * programmed using ice_vsi_cfg_txqs 6814 */ 6815 err = ice_vsi_start_all_rx_rings(vsi); 6816 if (err) 6817 return err; 6818 6819 clear_bit(ICE_VSI_DOWN, vsi->state); 6820 ice_napi_enable_all(vsi); 6821 ice_vsi_ena_irq(vsi); 6822 6823 if (vsi->port_info && 6824 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6825 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6826 vsi->type == ICE_VSI_SF)))) { 6827 ice_print_link_msg(vsi, true); 6828 netif_tx_start_all_queues(vsi->netdev); 6829 netif_carrier_on(vsi->netdev); 6830 ice_ptp_link_change(pf, true); 6831 } 6832 6833 /* Perform an initial read of the statistics registers now to 6834 * set the baseline so counters are ready when interface is up 6835 */ 6836 ice_update_eth_stats(vsi); 6837 6838 if (vsi->type == ICE_VSI_PF) 6839 ice_service_task_schedule(pf); 6840 6841 return 0; 6842 } 6843 6844 /** 6845 * ice_up - Bring the connection back up after being down 6846 * @vsi: VSI being configured 6847 */ 6848 int ice_up(struct ice_vsi *vsi) 6849 { 6850 int err; 6851 6852 err = ice_vsi_cfg_lan(vsi); 6853 if (!err) 6854 err = ice_up_complete(vsi); 6855 6856 return err; 6857 } 6858 6859 /** 6860 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6861 * @syncp: pointer to u64_stats_sync 6862 * @stats: stats that pkts and bytes count will be taken from 6863 * @pkts: packets stats counter 6864 * @bytes: bytes stats counter 6865 * 6866 * This function fetches stats from the ring considering the atomic operations 6867 * that needs to be performed to read u64 values in 32 bit machine. 6868 */ 6869 void 6870 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6871 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6872 { 6873 unsigned int start; 6874 6875 do { 6876 start = u64_stats_fetch_begin(syncp); 6877 *pkts = stats.pkts; 6878 *bytes = stats.bytes; 6879 } while (u64_stats_fetch_retry(syncp, start)); 6880 } 6881 6882 /** 6883 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6884 * @vsi: the VSI to be updated 6885 * @vsi_stats: the stats struct to be updated 6886 * @rings: rings to work on 6887 * @count: number of rings 6888 */ 6889 static void 6890 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6891 struct rtnl_link_stats64 *vsi_stats, 6892 struct ice_tx_ring **rings, u16 count) 6893 { 6894 u16 i; 6895 6896 for (i = 0; i < count; i++) { 6897 struct ice_tx_ring *ring; 6898 u64 pkts = 0, bytes = 0; 6899 6900 ring = READ_ONCE(rings[i]); 6901 if (!ring || !ring->ring_stats) 6902 continue; 6903 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6904 ring->ring_stats->stats, &pkts, 6905 &bytes); 6906 vsi_stats->tx_packets += pkts; 6907 vsi_stats->tx_bytes += bytes; 6908 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6909 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6910 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6911 } 6912 } 6913 6914 /** 6915 * ice_update_vsi_ring_stats - Update VSI stats counters 6916 * @vsi: the VSI to be updated 6917 */ 6918 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6919 { 6920 struct rtnl_link_stats64 *net_stats, *stats_prev; 6921 struct rtnl_link_stats64 *vsi_stats; 6922 struct ice_pf *pf = vsi->back; 6923 u64 pkts, bytes; 6924 int i; 6925 6926 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6927 if (!vsi_stats) 6928 return; 6929 6930 /* reset non-netdev (extended) stats */ 6931 vsi->tx_restart = 0; 6932 vsi->tx_busy = 0; 6933 vsi->tx_linearize = 0; 6934 vsi->rx_buf_failed = 0; 6935 vsi->rx_page_failed = 0; 6936 6937 rcu_read_lock(); 6938 6939 /* update Tx rings counters */ 6940 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6941 vsi->num_txq); 6942 6943 /* update Rx rings counters */ 6944 ice_for_each_rxq(vsi, i) { 6945 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6946 struct ice_ring_stats *ring_stats; 6947 6948 ring_stats = ring->ring_stats; 6949 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6950 ring_stats->stats, &pkts, 6951 &bytes); 6952 vsi_stats->rx_packets += pkts; 6953 vsi_stats->rx_bytes += bytes; 6954 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6955 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6956 } 6957 6958 /* update XDP Tx rings counters */ 6959 if (ice_is_xdp_ena_vsi(vsi)) 6960 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6961 vsi->num_xdp_txq); 6962 6963 rcu_read_unlock(); 6964 6965 net_stats = &vsi->net_stats; 6966 stats_prev = &vsi->net_stats_prev; 6967 6968 /* Update netdev counters, but keep in mind that values could start at 6969 * random value after PF reset. And as we increase the reported stat by 6970 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6971 * let's skip this round. 6972 */ 6973 if (likely(pf->stat_prev_loaded)) { 6974 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6975 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6976 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6977 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6978 } 6979 6980 stats_prev->tx_packets = vsi_stats->tx_packets; 6981 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6982 stats_prev->rx_packets = vsi_stats->rx_packets; 6983 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6984 6985 kfree(vsi_stats); 6986 } 6987 6988 /** 6989 * ice_update_vsi_stats - Update VSI stats counters 6990 * @vsi: the VSI to be updated 6991 */ 6992 void ice_update_vsi_stats(struct ice_vsi *vsi) 6993 { 6994 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6995 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6996 struct ice_pf *pf = vsi->back; 6997 6998 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6999 test_bit(ICE_CFG_BUSY, pf->state)) 7000 return; 7001 7002 /* get stats as recorded by Tx/Rx rings */ 7003 ice_update_vsi_ring_stats(vsi); 7004 7005 /* get VSI stats as recorded by the hardware */ 7006 ice_update_eth_stats(vsi); 7007 7008 cur_ns->tx_errors = cur_es->tx_errors; 7009 cur_ns->rx_dropped = cur_es->rx_discards; 7010 cur_ns->tx_dropped = cur_es->tx_discards; 7011 cur_ns->multicast = cur_es->rx_multicast; 7012 7013 /* update some more netdev stats if this is main VSI */ 7014 if (vsi->type == ICE_VSI_PF) { 7015 cur_ns->rx_crc_errors = pf->stats.crc_errors; 7016 cur_ns->rx_errors = pf->stats.crc_errors + 7017 pf->stats.illegal_bytes + 7018 pf->stats.rx_undersize + 7019 pf->hw_csum_rx_error + 7020 pf->stats.rx_jabber + 7021 pf->stats.rx_fragments + 7022 pf->stats.rx_oversize; 7023 /* record drops from the port level */ 7024 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 7025 } 7026 } 7027 7028 /** 7029 * ice_update_pf_stats - Update PF port stats counters 7030 * @pf: PF whose stats needs to be updated 7031 */ 7032 void ice_update_pf_stats(struct ice_pf *pf) 7033 { 7034 struct ice_hw_port_stats *prev_ps, *cur_ps; 7035 struct ice_hw *hw = &pf->hw; 7036 u16 fd_ctr_base; 7037 u8 port; 7038 7039 port = hw->port_info->lport; 7040 prev_ps = &pf->stats_prev; 7041 cur_ps = &pf->stats; 7042 7043 if (ice_is_reset_in_progress(pf->state)) 7044 pf->stat_prev_loaded = false; 7045 7046 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 7047 &prev_ps->eth.rx_bytes, 7048 &cur_ps->eth.rx_bytes); 7049 7050 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 7051 &prev_ps->eth.rx_unicast, 7052 &cur_ps->eth.rx_unicast); 7053 7054 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 7055 &prev_ps->eth.rx_multicast, 7056 &cur_ps->eth.rx_multicast); 7057 7058 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 7059 &prev_ps->eth.rx_broadcast, 7060 &cur_ps->eth.rx_broadcast); 7061 7062 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 7063 &prev_ps->eth.rx_discards, 7064 &cur_ps->eth.rx_discards); 7065 7066 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 7067 &prev_ps->eth.tx_bytes, 7068 &cur_ps->eth.tx_bytes); 7069 7070 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 7071 &prev_ps->eth.tx_unicast, 7072 &cur_ps->eth.tx_unicast); 7073 7074 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7075 &prev_ps->eth.tx_multicast, 7076 &cur_ps->eth.tx_multicast); 7077 7078 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7079 &prev_ps->eth.tx_broadcast, 7080 &cur_ps->eth.tx_broadcast); 7081 7082 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7083 &prev_ps->tx_dropped_link_down, 7084 &cur_ps->tx_dropped_link_down); 7085 7086 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7087 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7088 7089 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7090 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7091 7092 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7093 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7094 7095 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7096 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7097 7098 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7099 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7100 7101 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7102 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7103 7104 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7105 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7106 7107 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7108 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7109 7110 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7111 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7112 7113 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7114 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7115 7116 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7117 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7118 7119 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7120 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7121 7122 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7123 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7124 7125 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7126 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7127 7128 fd_ctr_base = hw->fd_ctr_base; 7129 7130 ice_stat_update40(hw, 7131 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7132 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7133 &cur_ps->fd_sb_match); 7134 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7135 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7136 7137 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7138 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7139 7140 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7141 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7142 7143 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7144 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7145 7146 ice_update_dcb_stats(pf); 7147 7148 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7149 &prev_ps->crc_errors, &cur_ps->crc_errors); 7150 7151 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7152 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7153 7154 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7155 &prev_ps->mac_local_faults, 7156 &cur_ps->mac_local_faults); 7157 7158 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7159 &prev_ps->mac_remote_faults, 7160 &cur_ps->mac_remote_faults); 7161 7162 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7163 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7164 7165 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7166 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7167 7168 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7169 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7170 7171 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7172 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7173 7174 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7175 7176 pf->stat_prev_loaded = true; 7177 } 7178 7179 /** 7180 * ice_get_stats64 - get statistics for network device structure 7181 * @netdev: network interface device structure 7182 * @stats: main device statistics structure 7183 */ 7184 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7185 { 7186 struct ice_netdev_priv *np = netdev_priv(netdev); 7187 struct rtnl_link_stats64 *vsi_stats; 7188 struct ice_vsi *vsi = np->vsi; 7189 7190 vsi_stats = &vsi->net_stats; 7191 7192 if (!vsi->num_txq || !vsi->num_rxq) 7193 return; 7194 7195 /* netdev packet/byte stats come from ring counter. These are obtained 7196 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7197 * But, only call the update routine and read the registers if VSI is 7198 * not down. 7199 */ 7200 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7201 ice_update_vsi_ring_stats(vsi); 7202 stats->tx_packets = vsi_stats->tx_packets; 7203 stats->tx_bytes = vsi_stats->tx_bytes; 7204 stats->rx_packets = vsi_stats->rx_packets; 7205 stats->rx_bytes = vsi_stats->rx_bytes; 7206 7207 /* The rest of the stats can be read from the hardware but instead we 7208 * just return values that the watchdog task has already obtained from 7209 * the hardware. 7210 */ 7211 stats->multicast = vsi_stats->multicast; 7212 stats->tx_errors = vsi_stats->tx_errors; 7213 stats->tx_dropped = vsi_stats->tx_dropped; 7214 stats->rx_errors = vsi_stats->rx_errors; 7215 stats->rx_dropped = vsi_stats->rx_dropped; 7216 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7217 stats->rx_length_errors = vsi_stats->rx_length_errors; 7218 } 7219 7220 /** 7221 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7222 * @vsi: VSI having NAPI disabled 7223 */ 7224 static void ice_napi_disable_all(struct ice_vsi *vsi) 7225 { 7226 int q_idx; 7227 7228 if (!vsi->netdev) 7229 return; 7230 7231 ice_for_each_q_vector(vsi, q_idx) { 7232 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7233 7234 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7235 napi_disable(&q_vector->napi); 7236 7237 cancel_work_sync(&q_vector->tx.dim.work); 7238 cancel_work_sync(&q_vector->rx.dim.work); 7239 } 7240 } 7241 7242 /** 7243 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7244 * @vsi: the VSI being un-configured 7245 */ 7246 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7247 { 7248 struct ice_pf *pf = vsi->back; 7249 struct ice_hw *hw = &pf->hw; 7250 u32 val; 7251 int i; 7252 7253 /* disable interrupt causation from each Rx queue; Tx queues are 7254 * handled in ice_vsi_stop_tx_ring() 7255 */ 7256 if (vsi->rx_rings) { 7257 ice_for_each_rxq(vsi, i) { 7258 if (vsi->rx_rings[i]) { 7259 u16 reg; 7260 7261 reg = vsi->rx_rings[i]->reg_idx; 7262 val = rd32(hw, QINT_RQCTL(reg)); 7263 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7264 wr32(hw, QINT_RQCTL(reg), val); 7265 } 7266 } 7267 } 7268 7269 /* disable each interrupt */ 7270 ice_for_each_q_vector(vsi, i) { 7271 if (!vsi->q_vectors[i]) 7272 continue; 7273 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7274 } 7275 7276 ice_flush(hw); 7277 7278 /* don't call synchronize_irq() for VF's from the host */ 7279 if (vsi->type == ICE_VSI_VF) 7280 return; 7281 7282 ice_for_each_q_vector(vsi, i) 7283 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7284 } 7285 7286 /** 7287 * ice_down - Shutdown the connection 7288 * @vsi: The VSI being stopped 7289 * 7290 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7291 */ 7292 int ice_down(struct ice_vsi *vsi) 7293 { 7294 int i, tx_err, rx_err, vlan_err = 0; 7295 7296 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7297 7298 if (vsi->netdev) { 7299 vlan_err = ice_vsi_del_vlan_zero(vsi); 7300 ice_ptp_link_change(vsi->back, false); 7301 netif_carrier_off(vsi->netdev); 7302 netif_tx_disable(vsi->netdev); 7303 } 7304 7305 ice_vsi_dis_irq(vsi); 7306 7307 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7308 if (tx_err) 7309 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7310 vsi->vsi_num, tx_err); 7311 if (!tx_err && vsi->xdp_rings) { 7312 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7313 if (tx_err) 7314 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7315 vsi->vsi_num, tx_err); 7316 } 7317 7318 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7319 if (rx_err) 7320 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7321 vsi->vsi_num, rx_err); 7322 7323 ice_napi_disable_all(vsi); 7324 7325 ice_for_each_txq(vsi, i) 7326 ice_clean_tx_ring(vsi->tx_rings[i]); 7327 7328 if (vsi->xdp_rings) 7329 ice_for_each_xdp_txq(vsi, i) 7330 ice_clean_tx_ring(vsi->xdp_rings[i]); 7331 7332 ice_for_each_rxq(vsi, i) 7333 ice_clean_rx_ring(vsi->rx_rings[i]); 7334 7335 if (tx_err || rx_err || vlan_err) { 7336 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7337 vsi->vsi_num, vsi->vsw->sw_id); 7338 return -EIO; 7339 } 7340 7341 return 0; 7342 } 7343 7344 /** 7345 * ice_down_up - shutdown the VSI connection and bring it up 7346 * @vsi: the VSI to be reconnected 7347 */ 7348 int ice_down_up(struct ice_vsi *vsi) 7349 { 7350 int ret; 7351 7352 /* if DOWN already set, nothing to do */ 7353 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7354 return 0; 7355 7356 ret = ice_down(vsi); 7357 if (ret) 7358 return ret; 7359 7360 ret = ice_up(vsi); 7361 if (ret) { 7362 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7363 return ret; 7364 } 7365 7366 return 0; 7367 } 7368 7369 /** 7370 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7371 * @vsi: VSI having resources allocated 7372 * 7373 * Return 0 on success, negative on failure 7374 */ 7375 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7376 { 7377 int i, err = 0; 7378 7379 if (!vsi->num_txq) { 7380 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7381 vsi->vsi_num); 7382 return -EINVAL; 7383 } 7384 7385 ice_for_each_txq(vsi, i) { 7386 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7387 7388 if (!ring) 7389 return -EINVAL; 7390 7391 if (vsi->netdev) 7392 ring->netdev = vsi->netdev; 7393 err = ice_setup_tx_ring(ring); 7394 if (err) 7395 break; 7396 } 7397 7398 return err; 7399 } 7400 7401 /** 7402 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7403 * @vsi: VSI having resources allocated 7404 * 7405 * Return 0 on success, negative on failure 7406 */ 7407 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7408 { 7409 int i, err = 0; 7410 7411 if (!vsi->num_rxq) { 7412 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7413 vsi->vsi_num); 7414 return -EINVAL; 7415 } 7416 7417 ice_for_each_rxq(vsi, i) { 7418 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7419 7420 if (!ring) 7421 return -EINVAL; 7422 7423 if (vsi->netdev) 7424 ring->netdev = vsi->netdev; 7425 err = ice_setup_rx_ring(ring); 7426 if (err) 7427 break; 7428 } 7429 7430 return err; 7431 } 7432 7433 /** 7434 * ice_vsi_open_ctrl - open control VSI for use 7435 * @vsi: the VSI to open 7436 * 7437 * Initialization of the Control VSI 7438 * 7439 * Returns 0 on success, negative value on error 7440 */ 7441 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7442 { 7443 char int_name[ICE_INT_NAME_STR_LEN]; 7444 struct ice_pf *pf = vsi->back; 7445 struct device *dev; 7446 int err; 7447 7448 dev = ice_pf_to_dev(pf); 7449 /* allocate descriptors */ 7450 err = ice_vsi_setup_tx_rings(vsi); 7451 if (err) 7452 goto err_setup_tx; 7453 7454 err = ice_vsi_setup_rx_rings(vsi); 7455 if (err) 7456 goto err_setup_rx; 7457 7458 err = ice_vsi_cfg_lan(vsi); 7459 if (err) 7460 goto err_setup_rx; 7461 7462 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7463 dev_driver_string(dev), dev_name(dev)); 7464 err = ice_vsi_req_irq_msix(vsi, int_name); 7465 if (err) 7466 goto err_setup_rx; 7467 7468 ice_vsi_cfg_msix(vsi); 7469 7470 err = ice_vsi_start_all_rx_rings(vsi); 7471 if (err) 7472 goto err_up_complete; 7473 7474 clear_bit(ICE_VSI_DOWN, vsi->state); 7475 ice_vsi_ena_irq(vsi); 7476 7477 return 0; 7478 7479 err_up_complete: 7480 ice_down(vsi); 7481 err_setup_rx: 7482 ice_vsi_free_rx_rings(vsi); 7483 err_setup_tx: 7484 ice_vsi_free_tx_rings(vsi); 7485 7486 return err; 7487 } 7488 7489 /** 7490 * ice_vsi_open - Called when a network interface is made active 7491 * @vsi: the VSI to open 7492 * 7493 * Initialization of the VSI 7494 * 7495 * Returns 0 on success, negative value on error 7496 */ 7497 int ice_vsi_open(struct ice_vsi *vsi) 7498 { 7499 char int_name[ICE_INT_NAME_STR_LEN]; 7500 struct ice_pf *pf = vsi->back; 7501 int err; 7502 7503 /* allocate descriptors */ 7504 err = ice_vsi_setup_tx_rings(vsi); 7505 if (err) 7506 goto err_setup_tx; 7507 7508 err = ice_vsi_setup_rx_rings(vsi); 7509 if (err) 7510 goto err_setup_rx; 7511 7512 err = ice_vsi_cfg_lan(vsi); 7513 if (err) 7514 goto err_setup_rx; 7515 7516 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7517 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7518 err = ice_vsi_req_irq_msix(vsi, int_name); 7519 if (err) 7520 goto err_setup_rx; 7521 7522 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7523 7524 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7525 /* Notify the stack of the actual queue counts. */ 7526 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7527 if (err) 7528 goto err_set_qs; 7529 7530 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7531 if (err) 7532 goto err_set_qs; 7533 7534 ice_vsi_set_napi_queues(vsi); 7535 } 7536 7537 err = ice_up_complete(vsi); 7538 if (err) 7539 goto err_up_complete; 7540 7541 return 0; 7542 7543 err_up_complete: 7544 ice_down(vsi); 7545 err_set_qs: 7546 ice_vsi_free_irq(vsi); 7547 err_setup_rx: 7548 ice_vsi_free_rx_rings(vsi); 7549 err_setup_tx: 7550 ice_vsi_free_tx_rings(vsi); 7551 7552 return err; 7553 } 7554 7555 /** 7556 * ice_vsi_release_all - Delete all VSIs 7557 * @pf: PF from which all VSIs are being removed 7558 */ 7559 static void ice_vsi_release_all(struct ice_pf *pf) 7560 { 7561 int err, i; 7562 7563 if (!pf->vsi) 7564 return; 7565 7566 ice_for_each_vsi(pf, i) { 7567 if (!pf->vsi[i]) 7568 continue; 7569 7570 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7571 continue; 7572 7573 err = ice_vsi_release(pf->vsi[i]); 7574 if (err) 7575 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7576 i, err, pf->vsi[i]->vsi_num); 7577 } 7578 } 7579 7580 /** 7581 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7582 * @pf: pointer to the PF instance 7583 * @type: VSI type to rebuild 7584 * 7585 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7586 */ 7587 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7588 { 7589 struct device *dev = ice_pf_to_dev(pf); 7590 int i, err; 7591 7592 ice_for_each_vsi(pf, i) { 7593 struct ice_vsi *vsi = pf->vsi[i]; 7594 7595 if (!vsi || vsi->type != type) 7596 continue; 7597 7598 /* rebuild the VSI */ 7599 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7600 if (err) { 7601 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7602 err, vsi->idx, ice_vsi_type_str(type)); 7603 return err; 7604 } 7605 7606 /* replay filters for the VSI */ 7607 err = ice_replay_vsi(&pf->hw, vsi->idx); 7608 if (err) { 7609 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7610 err, vsi->idx, ice_vsi_type_str(type)); 7611 return err; 7612 } 7613 7614 /* Re-map HW VSI number, using VSI handle that has been 7615 * previously validated in ice_replay_vsi() call above 7616 */ 7617 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7618 7619 /* enable the VSI */ 7620 err = ice_ena_vsi(vsi, false); 7621 if (err) { 7622 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7623 err, vsi->idx, ice_vsi_type_str(type)); 7624 return err; 7625 } 7626 7627 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7628 ice_vsi_type_str(type)); 7629 } 7630 7631 return 0; 7632 } 7633 7634 /** 7635 * ice_update_pf_netdev_link - Update PF netdev link status 7636 * @pf: pointer to the PF instance 7637 */ 7638 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7639 { 7640 bool link_up; 7641 int i; 7642 7643 ice_for_each_vsi(pf, i) { 7644 struct ice_vsi *vsi = pf->vsi[i]; 7645 7646 if (!vsi || vsi->type != ICE_VSI_PF) 7647 return; 7648 7649 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7650 if (link_up) { 7651 netif_carrier_on(pf->vsi[i]->netdev); 7652 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7653 } else { 7654 netif_carrier_off(pf->vsi[i]->netdev); 7655 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7656 } 7657 } 7658 } 7659 7660 /** 7661 * ice_rebuild - rebuild after reset 7662 * @pf: PF to rebuild 7663 * @reset_type: type of reset 7664 * 7665 * Do not rebuild VF VSI in this flow because that is already handled via 7666 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7667 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7668 * to reset/rebuild all the VF VSI twice. 7669 */ 7670 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7671 { 7672 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7673 struct device *dev = ice_pf_to_dev(pf); 7674 struct ice_hw *hw = &pf->hw; 7675 bool dvm; 7676 int err; 7677 7678 if (test_bit(ICE_DOWN, pf->state)) 7679 goto clear_recovery; 7680 7681 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7682 7683 #define ICE_EMP_RESET_SLEEP_MS 5000 7684 if (reset_type == ICE_RESET_EMPR) { 7685 /* If an EMP reset has occurred, any previously pending flash 7686 * update will have completed. We no longer know whether or 7687 * not the NVM update EMP reset is restricted. 7688 */ 7689 pf->fw_emp_reset_disabled = false; 7690 7691 msleep(ICE_EMP_RESET_SLEEP_MS); 7692 } 7693 7694 err = ice_init_all_ctrlq(hw); 7695 if (err) { 7696 dev_err(dev, "control queues init failed %d\n", err); 7697 goto err_init_ctrlq; 7698 } 7699 7700 /* if DDP was previously loaded successfully */ 7701 if (!ice_is_safe_mode(pf)) { 7702 /* reload the SW DB of filter tables */ 7703 if (reset_type == ICE_RESET_PFR) 7704 ice_fill_blk_tbls(hw); 7705 else 7706 /* Reload DDP Package after CORER/GLOBR reset */ 7707 ice_load_pkg(NULL, pf); 7708 } 7709 7710 err = ice_clear_pf_cfg(hw); 7711 if (err) { 7712 dev_err(dev, "clear PF configuration failed %d\n", err); 7713 goto err_init_ctrlq; 7714 } 7715 7716 ice_clear_pxe_mode(hw); 7717 7718 err = ice_init_nvm(hw); 7719 if (err) { 7720 dev_err(dev, "ice_init_nvm failed %d\n", err); 7721 goto err_init_ctrlq; 7722 } 7723 7724 err = ice_get_caps(hw); 7725 if (err) { 7726 dev_err(dev, "ice_get_caps failed %d\n", err); 7727 goto err_init_ctrlq; 7728 } 7729 7730 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7731 if (err) { 7732 dev_err(dev, "set_mac_cfg failed %d\n", err); 7733 goto err_init_ctrlq; 7734 } 7735 7736 dvm = ice_is_dvm_ena(hw); 7737 7738 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7739 if (err) 7740 goto err_init_ctrlq; 7741 7742 err = ice_sched_init_port(hw->port_info); 7743 if (err) 7744 goto err_sched_init_port; 7745 7746 /* start misc vector */ 7747 err = ice_req_irq_msix_misc(pf); 7748 if (err) { 7749 dev_err(dev, "misc vector setup failed: %d\n", err); 7750 goto err_sched_init_port; 7751 } 7752 7753 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7754 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7755 if (!rd32(hw, PFQF_FD_SIZE)) { 7756 u16 unused, guar, b_effort; 7757 7758 guar = hw->func_caps.fd_fltr_guar; 7759 b_effort = hw->func_caps.fd_fltr_best_effort; 7760 7761 /* force guaranteed filter pool for PF */ 7762 ice_alloc_fd_guar_item(hw, &unused, guar); 7763 /* force shared filter pool for PF */ 7764 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7765 } 7766 } 7767 7768 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7769 ice_dcb_rebuild(pf); 7770 7771 /* If the PF previously had enabled PTP, PTP init needs to happen before 7772 * the VSI rebuild. If not, this causes the PTP link status events to 7773 * fail. 7774 */ 7775 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7776 ice_ptp_rebuild(pf, reset_type); 7777 7778 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7779 ice_gnss_init(pf); 7780 7781 /* rebuild PF VSI */ 7782 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7783 if (err) { 7784 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7785 goto err_vsi_rebuild; 7786 } 7787 7788 if (reset_type == ICE_RESET_PFR) { 7789 err = ice_rebuild_channels(pf); 7790 if (err) { 7791 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7792 err); 7793 goto err_vsi_rebuild; 7794 } 7795 } 7796 7797 /* If Flow Director is active */ 7798 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7799 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7800 if (err) { 7801 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7802 goto err_vsi_rebuild; 7803 } 7804 7805 /* replay HW Flow Director recipes */ 7806 if (hw->fdir_prof) 7807 ice_fdir_replay_flows(hw); 7808 7809 /* replay Flow Director filters */ 7810 ice_fdir_replay_fltrs(pf); 7811 7812 ice_rebuild_arfs(pf); 7813 } 7814 7815 if (vsi && vsi->netdev) 7816 netif_device_attach(vsi->netdev); 7817 7818 ice_update_pf_netdev_link(pf); 7819 7820 /* tell the firmware we are up */ 7821 err = ice_send_version(pf); 7822 if (err) { 7823 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7824 err); 7825 goto err_vsi_rebuild; 7826 } 7827 7828 ice_replay_post(hw); 7829 7830 /* if we get here, reset flow is successful */ 7831 clear_bit(ICE_RESET_FAILED, pf->state); 7832 7833 ice_health_clear(pf); 7834 7835 ice_plug_aux_dev(pf); 7836 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7837 ice_lag_rebuild(pf); 7838 7839 /* Restore timestamp mode settings after VSI rebuild */ 7840 ice_ptp_restore_timestamp_mode(pf); 7841 return; 7842 7843 err_vsi_rebuild: 7844 err_sched_init_port: 7845 ice_sched_cleanup_all(hw); 7846 err_init_ctrlq: 7847 ice_shutdown_all_ctrlq(hw, false); 7848 set_bit(ICE_RESET_FAILED, pf->state); 7849 clear_recovery: 7850 /* set this bit in PF state to control service task scheduling */ 7851 set_bit(ICE_NEEDS_RESTART, pf->state); 7852 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7853 } 7854 7855 /** 7856 * ice_change_mtu - NDO callback to change the MTU 7857 * @netdev: network interface device structure 7858 * @new_mtu: new value for maximum frame size 7859 * 7860 * Returns 0 on success, negative on failure 7861 */ 7862 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7863 { 7864 struct ice_netdev_priv *np = netdev_priv(netdev); 7865 struct ice_vsi *vsi = np->vsi; 7866 struct ice_pf *pf = vsi->back; 7867 struct bpf_prog *prog; 7868 u8 count = 0; 7869 int err = 0; 7870 7871 if (new_mtu == (int)netdev->mtu) { 7872 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7873 return 0; 7874 } 7875 7876 prog = vsi->xdp_prog; 7877 if (prog && !prog->aux->xdp_has_frags) { 7878 int frame_size = ice_max_xdp_frame_size(vsi); 7879 7880 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7881 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7882 frame_size - ICE_ETH_PKT_HDR_PAD); 7883 return -EINVAL; 7884 } 7885 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7886 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7887 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7888 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7889 return -EINVAL; 7890 } 7891 } 7892 7893 /* if a reset is in progress, wait for some time for it to complete */ 7894 do { 7895 if (ice_is_reset_in_progress(pf->state)) { 7896 count++; 7897 usleep_range(1000, 2000); 7898 } else { 7899 break; 7900 } 7901 7902 } while (count < 100); 7903 7904 if (count == 100) { 7905 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7906 return -EBUSY; 7907 } 7908 7909 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7910 err = ice_down_up(vsi); 7911 if (err) 7912 return err; 7913 7914 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7915 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7916 7917 return err; 7918 } 7919 7920 /** 7921 * ice_set_rss_lut - Set RSS LUT 7922 * @vsi: Pointer to VSI structure 7923 * @lut: Lookup table 7924 * @lut_size: Lookup table size 7925 * 7926 * Returns 0 on success, negative on failure 7927 */ 7928 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7929 { 7930 struct ice_aq_get_set_rss_lut_params params = {}; 7931 struct ice_hw *hw = &vsi->back->hw; 7932 int status; 7933 7934 if (!lut) 7935 return -EINVAL; 7936 7937 params.vsi_handle = vsi->idx; 7938 params.lut_size = lut_size; 7939 params.lut_type = vsi->rss_lut_type; 7940 params.lut = lut; 7941 7942 status = ice_aq_set_rss_lut(hw, ¶ms); 7943 if (status) 7944 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7945 status, libie_aq_str(hw->adminq.sq_last_status)); 7946 7947 return status; 7948 } 7949 7950 /** 7951 * ice_set_rss_key - Set RSS key 7952 * @vsi: Pointer to the VSI structure 7953 * @seed: RSS hash seed 7954 * 7955 * Returns 0 on success, negative on failure 7956 */ 7957 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7958 { 7959 struct ice_hw *hw = &vsi->back->hw; 7960 int status; 7961 7962 if (!seed) 7963 return -EINVAL; 7964 7965 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7966 if (status) 7967 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7968 status, libie_aq_str(hw->adminq.sq_last_status)); 7969 7970 return status; 7971 } 7972 7973 /** 7974 * ice_get_rss_lut - Get RSS LUT 7975 * @vsi: Pointer to VSI structure 7976 * @lut: Buffer to store the lookup table entries 7977 * @lut_size: Size of buffer to store the lookup table entries 7978 * 7979 * Returns 0 on success, negative on failure 7980 */ 7981 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7982 { 7983 struct ice_aq_get_set_rss_lut_params params = {}; 7984 struct ice_hw *hw = &vsi->back->hw; 7985 int status; 7986 7987 if (!lut) 7988 return -EINVAL; 7989 7990 params.vsi_handle = vsi->idx; 7991 params.lut_size = lut_size; 7992 params.lut_type = vsi->rss_lut_type; 7993 params.lut = lut; 7994 7995 status = ice_aq_get_rss_lut(hw, ¶ms); 7996 if (status) 7997 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7998 status, libie_aq_str(hw->adminq.sq_last_status)); 7999 8000 return status; 8001 } 8002 8003 /** 8004 * ice_get_rss_key - Get RSS key 8005 * @vsi: Pointer to VSI structure 8006 * @seed: Buffer to store the key in 8007 * 8008 * Returns 0 on success, negative on failure 8009 */ 8010 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 8011 { 8012 struct ice_hw *hw = &vsi->back->hw; 8013 int status; 8014 8015 if (!seed) 8016 return -EINVAL; 8017 8018 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8019 if (status) 8020 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8021 status, libie_aq_str(hw->adminq.sq_last_status)); 8022 8023 return status; 8024 } 8025 8026 /** 8027 * ice_set_rss_hfunc - Set RSS HASH function 8028 * @vsi: Pointer to VSI structure 8029 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8030 * 8031 * Returns 0 on success, negative on failure 8032 */ 8033 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8034 { 8035 struct ice_hw *hw = &vsi->back->hw; 8036 struct ice_vsi_ctx *ctx; 8037 bool symm; 8038 int err; 8039 8040 if (hfunc == vsi->rss_hfunc) 8041 return 0; 8042 8043 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8044 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8045 return -EOPNOTSUPP; 8046 8047 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8048 if (!ctx) 8049 return -ENOMEM; 8050 8051 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8052 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8053 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8054 ctx->info.q_opt_rss |= 8055 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8056 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8057 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8058 8059 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8060 if (err) { 8061 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8062 vsi->vsi_num, err); 8063 } else { 8064 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8065 vsi->rss_hfunc = hfunc; 8066 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8067 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8068 "Symmetric " : ""); 8069 } 8070 kfree(ctx); 8071 if (err) 8072 return err; 8073 8074 /* Fix the symmetry setting for all existing RSS configurations */ 8075 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8076 return ice_set_rss_cfg_symm(hw, vsi, symm); 8077 } 8078 8079 /** 8080 * ice_bridge_getlink - Get the hardware bridge mode 8081 * @skb: skb buff 8082 * @pid: process ID 8083 * @seq: RTNL message seq 8084 * @dev: the netdev being configured 8085 * @filter_mask: filter mask passed in 8086 * @nlflags: netlink flags passed in 8087 * 8088 * Return the bridge mode (VEB/VEPA) 8089 */ 8090 static int 8091 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8092 struct net_device *dev, u32 filter_mask, int nlflags) 8093 { 8094 struct ice_netdev_priv *np = netdev_priv(dev); 8095 struct ice_vsi *vsi = np->vsi; 8096 struct ice_pf *pf = vsi->back; 8097 u16 bmode; 8098 8099 bmode = pf->first_sw->bridge_mode; 8100 8101 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8102 filter_mask, NULL); 8103 } 8104 8105 /** 8106 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8107 * @vsi: Pointer to VSI structure 8108 * @bmode: Hardware bridge mode (VEB/VEPA) 8109 * 8110 * Returns 0 on success, negative on failure 8111 */ 8112 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8113 { 8114 struct ice_aqc_vsi_props *vsi_props; 8115 struct ice_hw *hw = &vsi->back->hw; 8116 struct ice_vsi_ctx *ctxt; 8117 int ret; 8118 8119 vsi_props = &vsi->info; 8120 8121 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8122 if (!ctxt) 8123 return -ENOMEM; 8124 8125 ctxt->info = vsi->info; 8126 8127 if (bmode == BRIDGE_MODE_VEB) 8128 /* change from VEPA to VEB mode */ 8129 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8130 else 8131 /* change from VEB to VEPA mode */ 8132 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8133 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8134 8135 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8136 if (ret) { 8137 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8138 bmode, ret, libie_aq_str(hw->adminq.sq_last_status)); 8139 goto out; 8140 } 8141 /* Update sw flags for book keeping */ 8142 vsi_props->sw_flags = ctxt->info.sw_flags; 8143 8144 out: 8145 kfree(ctxt); 8146 return ret; 8147 } 8148 8149 /** 8150 * ice_bridge_setlink - Set the hardware bridge mode 8151 * @dev: the netdev being configured 8152 * @nlh: RTNL message 8153 * @flags: bridge setlink flags 8154 * @extack: netlink extended ack 8155 * 8156 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8157 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8158 * not already set for all VSIs connected to this switch. And also update the 8159 * unicast switch filter rules for the corresponding switch of the netdev. 8160 */ 8161 static int 8162 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8163 u16 __always_unused flags, 8164 struct netlink_ext_ack __always_unused *extack) 8165 { 8166 struct ice_netdev_priv *np = netdev_priv(dev); 8167 struct ice_pf *pf = np->vsi->back; 8168 struct nlattr *attr, *br_spec; 8169 struct ice_hw *hw = &pf->hw; 8170 struct ice_sw *pf_sw; 8171 int rem, v, err = 0; 8172 8173 pf_sw = pf->first_sw; 8174 /* find the attribute in the netlink message */ 8175 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8176 if (!br_spec) 8177 return -EINVAL; 8178 8179 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8180 __u16 mode = nla_get_u16(attr); 8181 8182 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8183 return -EINVAL; 8184 /* Continue if bridge mode is not being flipped */ 8185 if (mode == pf_sw->bridge_mode) 8186 continue; 8187 /* Iterates through the PF VSI list and update the loopback 8188 * mode of the VSI 8189 */ 8190 ice_for_each_vsi(pf, v) { 8191 if (!pf->vsi[v]) 8192 continue; 8193 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8194 if (err) 8195 return err; 8196 } 8197 8198 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8199 /* Update the unicast switch filter rules for the corresponding 8200 * switch of the netdev 8201 */ 8202 err = ice_update_sw_rule_bridge_mode(hw); 8203 if (err) { 8204 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8205 mode, err, 8206 libie_aq_str(hw->adminq.sq_last_status)); 8207 /* revert hw->evb_veb */ 8208 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8209 return err; 8210 } 8211 8212 pf_sw->bridge_mode = mode; 8213 } 8214 8215 return 0; 8216 } 8217 8218 /** 8219 * ice_tx_timeout - Respond to a Tx Hang 8220 * @netdev: network interface device structure 8221 * @txqueue: Tx queue 8222 */ 8223 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8224 { 8225 struct ice_netdev_priv *np = netdev_priv(netdev); 8226 struct ice_tx_ring *tx_ring = NULL; 8227 struct ice_vsi *vsi = np->vsi; 8228 struct ice_pf *pf = vsi->back; 8229 u32 i; 8230 8231 pf->tx_timeout_count++; 8232 8233 /* Check if PFC is enabled for the TC to which the queue belongs 8234 * to. If yes then Tx timeout is not caused by a hung queue, no 8235 * need to reset and rebuild 8236 */ 8237 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8238 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8239 txqueue); 8240 return; 8241 } 8242 8243 /* now that we have an index, find the tx_ring struct */ 8244 ice_for_each_txq(vsi, i) 8245 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8246 if (txqueue == vsi->tx_rings[i]->q_index) { 8247 tx_ring = vsi->tx_rings[i]; 8248 break; 8249 } 8250 8251 /* Reset recovery level if enough time has elapsed after last timeout. 8252 * Also ensure no new reset action happens before next timeout period. 8253 */ 8254 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8255 pf->tx_timeout_recovery_level = 1; 8256 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8257 netdev->watchdog_timeo))) 8258 return; 8259 8260 if (tx_ring) { 8261 struct ice_hw *hw = &pf->hw; 8262 u32 head, intr = 0; 8263 8264 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8265 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8266 /* Read interrupt register */ 8267 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8268 8269 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8270 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8271 head, tx_ring->next_to_use, intr); 8272 8273 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr); 8274 } 8275 8276 pf->tx_timeout_last_recovery = jiffies; 8277 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8278 pf->tx_timeout_recovery_level, txqueue); 8279 8280 switch (pf->tx_timeout_recovery_level) { 8281 case 1: 8282 set_bit(ICE_PFR_REQ, pf->state); 8283 break; 8284 case 2: 8285 set_bit(ICE_CORER_REQ, pf->state); 8286 break; 8287 case 3: 8288 set_bit(ICE_GLOBR_REQ, pf->state); 8289 break; 8290 default: 8291 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8292 set_bit(ICE_DOWN, pf->state); 8293 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8294 set_bit(ICE_SERVICE_DIS, pf->state); 8295 break; 8296 } 8297 8298 ice_service_task_schedule(pf); 8299 pf->tx_timeout_recovery_level++; 8300 } 8301 8302 /** 8303 * ice_setup_tc_cls_flower - flower classifier offloads 8304 * @np: net device to configure 8305 * @filter_dev: device on which filter is added 8306 * @cls_flower: offload data 8307 * @ingress: if the rule is added to an ingress block 8308 * 8309 * Return: 0 if the flower was successfully added or deleted, 8310 * negative error code otherwise. 8311 */ 8312 static int 8313 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8314 struct net_device *filter_dev, 8315 struct flow_cls_offload *cls_flower, 8316 bool ingress) 8317 { 8318 struct ice_vsi *vsi = np->vsi; 8319 8320 if (cls_flower->common.chain_index) 8321 return -EOPNOTSUPP; 8322 8323 switch (cls_flower->command) { 8324 case FLOW_CLS_REPLACE: 8325 return ice_add_cls_flower(filter_dev, vsi, cls_flower, ingress); 8326 case FLOW_CLS_DESTROY: 8327 return ice_del_cls_flower(vsi, cls_flower); 8328 default: 8329 return -EINVAL; 8330 } 8331 } 8332 8333 /** 8334 * ice_setup_tc_block_cb_ingress - callback handler for ingress TC block 8335 * @type: TC SETUP type 8336 * @type_data: TC flower offload data that contains user input 8337 * @cb_priv: netdev private data 8338 * 8339 * Return: 0 if the setup was successful, negative error code otherwise. 8340 */ 8341 static int 8342 ice_setup_tc_block_cb_ingress(enum tc_setup_type type, void *type_data, 8343 void *cb_priv) 8344 { 8345 struct ice_netdev_priv *np = cb_priv; 8346 8347 switch (type) { 8348 case TC_SETUP_CLSFLOWER: 8349 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8350 type_data, true); 8351 default: 8352 return -EOPNOTSUPP; 8353 } 8354 } 8355 8356 /** 8357 * ice_setup_tc_block_cb_egress - callback handler for egress TC block 8358 * @type: TC SETUP type 8359 * @type_data: TC flower offload data that contains user input 8360 * @cb_priv: netdev private data 8361 * 8362 * Return: 0 if the setup was successful, negative error code otherwise. 8363 */ 8364 static int 8365 ice_setup_tc_block_cb_egress(enum tc_setup_type type, void *type_data, 8366 void *cb_priv) 8367 { 8368 struct ice_netdev_priv *np = cb_priv; 8369 8370 switch (type) { 8371 case TC_SETUP_CLSFLOWER: 8372 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8373 type_data, false); 8374 default: 8375 return -EOPNOTSUPP; 8376 } 8377 } 8378 8379 /** 8380 * ice_validate_mqprio_qopt - Validate TCF input parameters 8381 * @vsi: Pointer to VSI 8382 * @mqprio_qopt: input parameters for mqprio queue configuration 8383 * 8384 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8385 * needed), and make sure user doesn't specify qcount and BW rate limit 8386 * for TCs, which are more than "num_tc" 8387 */ 8388 static int 8389 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8390 struct tc_mqprio_qopt_offload *mqprio_qopt) 8391 { 8392 int non_power_of_2_qcount = 0; 8393 struct ice_pf *pf = vsi->back; 8394 int max_rss_q_cnt = 0; 8395 u64 sum_min_rate = 0; 8396 struct device *dev; 8397 int i, speed; 8398 u8 num_tc; 8399 8400 if (vsi->type != ICE_VSI_PF) 8401 return -EINVAL; 8402 8403 if (mqprio_qopt->qopt.offset[0] != 0 || 8404 mqprio_qopt->qopt.num_tc < 1 || 8405 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8406 return -EINVAL; 8407 8408 dev = ice_pf_to_dev(pf); 8409 vsi->ch_rss_size = 0; 8410 num_tc = mqprio_qopt->qopt.num_tc; 8411 speed = ice_get_link_speed_kbps(vsi); 8412 8413 for (i = 0; num_tc; i++) { 8414 int qcount = mqprio_qopt->qopt.count[i]; 8415 u64 max_rate, min_rate, rem; 8416 8417 if (!qcount) 8418 return -EINVAL; 8419 8420 if (is_power_of_2(qcount)) { 8421 if (non_power_of_2_qcount && 8422 qcount > non_power_of_2_qcount) { 8423 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8424 qcount, non_power_of_2_qcount); 8425 return -EINVAL; 8426 } 8427 if (qcount > max_rss_q_cnt) 8428 max_rss_q_cnt = qcount; 8429 } else { 8430 if (non_power_of_2_qcount && 8431 qcount != non_power_of_2_qcount) { 8432 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8433 qcount, non_power_of_2_qcount); 8434 return -EINVAL; 8435 } 8436 if (qcount < max_rss_q_cnt) { 8437 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8438 qcount, max_rss_q_cnt); 8439 return -EINVAL; 8440 } 8441 max_rss_q_cnt = qcount; 8442 non_power_of_2_qcount = qcount; 8443 } 8444 8445 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8446 * converts the bandwidth rate limit into Bytes/s when 8447 * passing it down to the driver. So convert input bandwidth 8448 * from Bytes/s to Kbps 8449 */ 8450 max_rate = mqprio_qopt->max_rate[i]; 8451 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8452 8453 /* min_rate is minimum guaranteed rate and it can't be zero */ 8454 min_rate = mqprio_qopt->min_rate[i]; 8455 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8456 sum_min_rate += min_rate; 8457 8458 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8459 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8460 min_rate, ICE_MIN_BW_LIMIT); 8461 return -EINVAL; 8462 } 8463 8464 if (max_rate && max_rate > speed) { 8465 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8466 i, max_rate, speed); 8467 return -EINVAL; 8468 } 8469 8470 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8471 if (rem) { 8472 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8473 i, ICE_MIN_BW_LIMIT); 8474 return -EINVAL; 8475 } 8476 8477 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8478 if (rem) { 8479 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8480 i, ICE_MIN_BW_LIMIT); 8481 return -EINVAL; 8482 } 8483 8484 /* min_rate can't be more than max_rate, except when max_rate 8485 * is zero (implies max_rate sought is max line rate). In such 8486 * a case min_rate can be more than max. 8487 */ 8488 if (max_rate && min_rate > max_rate) { 8489 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8490 min_rate, max_rate); 8491 return -EINVAL; 8492 } 8493 8494 if (i >= mqprio_qopt->qopt.num_tc - 1) 8495 break; 8496 if (mqprio_qopt->qopt.offset[i + 1] != 8497 (mqprio_qopt->qopt.offset[i] + qcount)) 8498 return -EINVAL; 8499 } 8500 if (vsi->num_rxq < 8501 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8502 return -EINVAL; 8503 if (vsi->num_txq < 8504 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8505 return -EINVAL; 8506 8507 if (sum_min_rate && sum_min_rate > (u64)speed) { 8508 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8509 sum_min_rate, speed); 8510 return -EINVAL; 8511 } 8512 8513 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8514 vsi->ch_rss_size = max_rss_q_cnt; 8515 8516 return 0; 8517 } 8518 8519 /** 8520 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8521 * @pf: ptr to PF device 8522 * @vsi: ptr to VSI 8523 */ 8524 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8525 { 8526 struct device *dev = ice_pf_to_dev(pf); 8527 bool added = false; 8528 struct ice_hw *hw; 8529 int flow; 8530 8531 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8532 return -EINVAL; 8533 8534 hw = &pf->hw; 8535 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8536 struct ice_fd_hw_prof *prof; 8537 int tun, status; 8538 u64 entry_h; 8539 8540 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8541 hw->fdir_prof[flow]->cnt)) 8542 continue; 8543 8544 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8545 enum ice_flow_priority prio; 8546 8547 /* add this VSI to FDir profile for this flow */ 8548 prio = ICE_FLOW_PRIO_NORMAL; 8549 prof = hw->fdir_prof[flow]; 8550 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8551 prof->prof_id[tun], 8552 prof->vsi_h[0], vsi->idx, 8553 prio, prof->fdir_seg[tun], 8554 &entry_h); 8555 if (status) { 8556 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8557 vsi->idx, flow); 8558 continue; 8559 } 8560 8561 prof->entry_h[prof->cnt][tun] = entry_h; 8562 } 8563 8564 /* store VSI for filter replay and delete */ 8565 prof->vsi_h[prof->cnt] = vsi->idx; 8566 prof->cnt++; 8567 8568 added = true; 8569 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8570 flow); 8571 } 8572 8573 if (!added) 8574 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8575 8576 return 0; 8577 } 8578 8579 /** 8580 * ice_add_channel - add a channel by adding VSI 8581 * @pf: ptr to PF device 8582 * @sw_id: underlying HW switching element ID 8583 * @ch: ptr to channel structure 8584 * 8585 * Add a channel (VSI) using add_vsi and queue_map 8586 */ 8587 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8588 { 8589 struct device *dev = ice_pf_to_dev(pf); 8590 struct ice_vsi *vsi; 8591 8592 if (ch->type != ICE_VSI_CHNL) { 8593 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8594 return -EINVAL; 8595 } 8596 8597 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8598 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8599 dev_err(dev, "create chnl VSI failure\n"); 8600 return -EINVAL; 8601 } 8602 8603 ice_add_vsi_to_fdir(pf, vsi); 8604 8605 ch->sw_id = sw_id; 8606 ch->vsi_num = vsi->vsi_num; 8607 ch->info.mapping_flags = vsi->info.mapping_flags; 8608 ch->ch_vsi = vsi; 8609 /* set the back pointer of channel for newly created VSI */ 8610 vsi->ch = ch; 8611 8612 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8613 sizeof(vsi->info.q_mapping)); 8614 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8615 sizeof(vsi->info.tc_mapping)); 8616 8617 return 0; 8618 } 8619 8620 /** 8621 * ice_chnl_cfg_res 8622 * @vsi: the VSI being setup 8623 * @ch: ptr to channel structure 8624 * 8625 * Configure channel specific resources such as rings, vector. 8626 */ 8627 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8628 { 8629 int i; 8630 8631 for (i = 0; i < ch->num_txq; i++) { 8632 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8633 struct ice_ring_container *rc; 8634 struct ice_tx_ring *tx_ring; 8635 struct ice_rx_ring *rx_ring; 8636 8637 tx_ring = vsi->tx_rings[ch->base_q + i]; 8638 rx_ring = vsi->rx_rings[ch->base_q + i]; 8639 if (!tx_ring || !rx_ring) 8640 continue; 8641 8642 /* setup ring being channel enabled */ 8643 tx_ring->ch = ch; 8644 rx_ring->ch = ch; 8645 8646 /* following code block sets up vector specific attributes */ 8647 tx_q_vector = tx_ring->q_vector; 8648 rx_q_vector = rx_ring->q_vector; 8649 if (!tx_q_vector && !rx_q_vector) 8650 continue; 8651 8652 if (tx_q_vector) { 8653 tx_q_vector->ch = ch; 8654 /* setup Tx and Rx ITR setting if DIM is off */ 8655 rc = &tx_q_vector->tx; 8656 if (!ITR_IS_DYNAMIC(rc)) 8657 ice_write_itr(rc, rc->itr_setting); 8658 } 8659 if (rx_q_vector) { 8660 rx_q_vector->ch = ch; 8661 /* setup Tx and Rx ITR setting if DIM is off */ 8662 rc = &rx_q_vector->rx; 8663 if (!ITR_IS_DYNAMIC(rc)) 8664 ice_write_itr(rc, rc->itr_setting); 8665 } 8666 } 8667 8668 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8669 * GLINT_ITR register would have written to perform in-context 8670 * update, hence perform flush 8671 */ 8672 if (ch->num_txq || ch->num_rxq) 8673 ice_flush(&vsi->back->hw); 8674 } 8675 8676 /** 8677 * ice_cfg_chnl_all_res - configure channel resources 8678 * @vsi: pte to main_vsi 8679 * @ch: ptr to channel structure 8680 * 8681 * This function configures channel specific resources such as flow-director 8682 * counter index, and other resources such as queues, vectors, ITR settings 8683 */ 8684 static void 8685 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8686 { 8687 /* configure channel (aka ADQ) resources such as queues, vectors, 8688 * ITR settings for channel specific vectors and anything else 8689 */ 8690 ice_chnl_cfg_res(vsi, ch); 8691 } 8692 8693 /** 8694 * ice_setup_hw_channel - setup new channel 8695 * @pf: ptr to PF device 8696 * @vsi: the VSI being setup 8697 * @ch: ptr to channel structure 8698 * @sw_id: underlying HW switching element ID 8699 * @type: type of channel to be created (VMDq2/VF) 8700 * 8701 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8702 * and configures Tx rings accordingly 8703 */ 8704 static int 8705 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8706 struct ice_channel *ch, u16 sw_id, u8 type) 8707 { 8708 struct device *dev = ice_pf_to_dev(pf); 8709 int ret; 8710 8711 ch->base_q = vsi->next_base_q; 8712 ch->type = type; 8713 8714 ret = ice_add_channel(pf, sw_id, ch); 8715 if (ret) { 8716 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8717 return ret; 8718 } 8719 8720 /* configure/setup ADQ specific resources */ 8721 ice_cfg_chnl_all_res(vsi, ch); 8722 8723 /* make sure to update the next_base_q so that subsequent channel's 8724 * (aka ADQ) VSI queue map is correct 8725 */ 8726 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8727 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8728 ch->num_rxq); 8729 8730 return 0; 8731 } 8732 8733 /** 8734 * ice_setup_channel - setup new channel using uplink element 8735 * @pf: ptr to PF device 8736 * @vsi: the VSI being setup 8737 * @ch: ptr to channel structure 8738 * 8739 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8740 * and uplink switching element 8741 */ 8742 static bool 8743 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8744 struct ice_channel *ch) 8745 { 8746 struct device *dev = ice_pf_to_dev(pf); 8747 u16 sw_id; 8748 int ret; 8749 8750 if (vsi->type != ICE_VSI_PF) { 8751 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8752 return false; 8753 } 8754 8755 sw_id = pf->first_sw->sw_id; 8756 8757 /* create channel (VSI) */ 8758 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8759 if (ret) { 8760 dev_err(dev, "failed to setup hw_channel\n"); 8761 return false; 8762 } 8763 dev_dbg(dev, "successfully created channel()\n"); 8764 8765 return ch->ch_vsi ? true : false; 8766 } 8767 8768 /** 8769 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8770 * @vsi: VSI to be configured 8771 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8772 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8773 */ 8774 static int 8775 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8776 { 8777 int err; 8778 8779 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8780 if (err) 8781 return err; 8782 8783 return ice_set_max_bw_limit(vsi, max_tx_rate); 8784 } 8785 8786 /** 8787 * ice_create_q_channel - function to create channel 8788 * @vsi: VSI to be configured 8789 * @ch: ptr to channel (it contains channel specific params) 8790 * 8791 * This function creates channel (VSI) using num_queues specified by user, 8792 * reconfigs RSS if needed. 8793 */ 8794 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8795 { 8796 struct ice_pf *pf = vsi->back; 8797 struct device *dev; 8798 8799 if (!ch) 8800 return -EINVAL; 8801 8802 dev = ice_pf_to_dev(pf); 8803 if (!ch->num_txq || !ch->num_rxq) { 8804 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8805 return -EINVAL; 8806 } 8807 8808 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8809 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8810 vsi->cnt_q_avail, ch->num_txq); 8811 return -EINVAL; 8812 } 8813 8814 if (!ice_setup_channel(pf, vsi, ch)) { 8815 dev_info(dev, "Failed to setup channel\n"); 8816 return -EINVAL; 8817 } 8818 /* configure BW rate limit */ 8819 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8820 int ret; 8821 8822 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8823 ch->min_tx_rate); 8824 if (ret) 8825 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8826 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8827 else 8828 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8829 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8830 } 8831 8832 vsi->cnt_q_avail -= ch->num_txq; 8833 8834 return 0; 8835 } 8836 8837 /** 8838 * ice_rem_all_chnl_fltrs - removes all channel filters 8839 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8840 * 8841 * Remove all advanced switch filters only if they are channel specific 8842 * tc-flower based filter 8843 */ 8844 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8845 { 8846 struct ice_tc_flower_fltr *fltr; 8847 struct hlist_node *node; 8848 8849 /* to remove all channel filters, iterate an ordered list of filters */ 8850 hlist_for_each_entry_safe(fltr, node, 8851 &pf->tc_flower_fltr_list, 8852 tc_flower_node) { 8853 struct ice_rule_query_data rule; 8854 int status; 8855 8856 /* for now process only channel specific filters */ 8857 if (!ice_is_chnl_fltr(fltr)) 8858 continue; 8859 8860 rule.rid = fltr->rid; 8861 rule.rule_id = fltr->rule_id; 8862 rule.vsi_handle = fltr->dest_vsi_handle; 8863 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8864 if (status) { 8865 if (status == -ENOENT) 8866 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8867 rule.rule_id); 8868 else 8869 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8870 status); 8871 } else if (fltr->dest_vsi) { 8872 /* update advanced switch filter count */ 8873 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8874 u32 flags = fltr->flags; 8875 8876 fltr->dest_vsi->num_chnl_fltr--; 8877 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8878 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8879 pf->num_dmac_chnl_fltrs--; 8880 } 8881 } 8882 8883 hlist_del(&fltr->tc_flower_node); 8884 kfree(fltr); 8885 } 8886 } 8887 8888 /** 8889 * ice_remove_q_channels - Remove queue channels for the TCs 8890 * @vsi: VSI to be configured 8891 * @rem_fltr: delete advanced switch filter or not 8892 * 8893 * Remove queue channels for the TCs 8894 */ 8895 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8896 { 8897 struct ice_channel *ch, *ch_tmp; 8898 struct ice_pf *pf = vsi->back; 8899 int i; 8900 8901 /* remove all tc-flower based filter if they are channel filters only */ 8902 if (rem_fltr) 8903 ice_rem_all_chnl_fltrs(pf); 8904 8905 /* remove ntuple filters since queue configuration is being changed */ 8906 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8907 struct ice_hw *hw = &pf->hw; 8908 8909 mutex_lock(&hw->fdir_fltr_lock); 8910 ice_fdir_del_all_fltrs(vsi); 8911 mutex_unlock(&hw->fdir_fltr_lock); 8912 } 8913 8914 /* perform cleanup for channels if they exist */ 8915 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8916 struct ice_vsi *ch_vsi; 8917 8918 list_del(&ch->list); 8919 ch_vsi = ch->ch_vsi; 8920 if (!ch_vsi) { 8921 kfree(ch); 8922 continue; 8923 } 8924 8925 /* Reset queue contexts */ 8926 for (i = 0; i < ch->num_rxq; i++) { 8927 struct ice_tx_ring *tx_ring; 8928 struct ice_rx_ring *rx_ring; 8929 8930 tx_ring = vsi->tx_rings[ch->base_q + i]; 8931 rx_ring = vsi->rx_rings[ch->base_q + i]; 8932 if (tx_ring) { 8933 tx_ring->ch = NULL; 8934 if (tx_ring->q_vector) 8935 tx_ring->q_vector->ch = NULL; 8936 } 8937 if (rx_ring) { 8938 rx_ring->ch = NULL; 8939 if (rx_ring->q_vector) 8940 rx_ring->q_vector->ch = NULL; 8941 } 8942 } 8943 8944 /* Release FD resources for the channel VSI */ 8945 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8946 8947 /* clear the VSI from scheduler tree */ 8948 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8949 8950 /* Delete VSI from FW, PF and HW VSI arrays */ 8951 ice_vsi_delete(ch->ch_vsi); 8952 8953 /* free the channel */ 8954 kfree(ch); 8955 } 8956 8957 /* clear the channel VSI map which is stored in main VSI */ 8958 ice_for_each_chnl_tc(i) 8959 vsi->tc_map_vsi[i] = NULL; 8960 8961 /* reset main VSI's all TC information */ 8962 vsi->all_enatc = 0; 8963 vsi->all_numtc = 0; 8964 } 8965 8966 /** 8967 * ice_rebuild_channels - rebuild channel 8968 * @pf: ptr to PF 8969 * 8970 * Recreate channel VSIs and replay filters 8971 */ 8972 static int ice_rebuild_channels(struct ice_pf *pf) 8973 { 8974 struct device *dev = ice_pf_to_dev(pf); 8975 struct ice_vsi *main_vsi; 8976 bool rem_adv_fltr = true; 8977 struct ice_channel *ch; 8978 struct ice_vsi *vsi; 8979 int tc_idx = 1; 8980 int i, err; 8981 8982 main_vsi = ice_get_main_vsi(pf); 8983 if (!main_vsi) 8984 return 0; 8985 8986 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8987 main_vsi->old_numtc == 1) 8988 return 0; /* nothing to be done */ 8989 8990 /* reconfigure main VSI based on old value of TC and cached values 8991 * for MQPRIO opts 8992 */ 8993 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8994 if (err) { 8995 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8996 main_vsi->old_ena_tc, main_vsi->vsi_num); 8997 return err; 8998 } 8999 9000 /* rebuild ADQ VSIs */ 9001 ice_for_each_vsi(pf, i) { 9002 enum ice_vsi_type type; 9003 9004 vsi = pf->vsi[i]; 9005 if (!vsi || vsi->type != ICE_VSI_CHNL) 9006 continue; 9007 9008 type = vsi->type; 9009 9010 /* rebuild ADQ VSI */ 9011 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 9012 if (err) { 9013 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 9014 ice_vsi_type_str(type), vsi->idx, err); 9015 goto cleanup; 9016 } 9017 9018 /* Re-map HW VSI number, using VSI handle that has been 9019 * previously validated in ice_replay_vsi() call above 9020 */ 9021 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 9022 9023 /* replay filters for the VSI */ 9024 err = ice_replay_vsi(&pf->hw, vsi->idx); 9025 if (err) { 9026 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 9027 ice_vsi_type_str(type), err, vsi->idx); 9028 rem_adv_fltr = false; 9029 goto cleanup; 9030 } 9031 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 9032 ice_vsi_type_str(type), vsi->idx); 9033 9034 /* store ADQ VSI at correct TC index in main VSI's 9035 * map of TC to VSI 9036 */ 9037 main_vsi->tc_map_vsi[tc_idx++] = vsi; 9038 } 9039 9040 /* ADQ VSI(s) has been rebuilt successfully, so setup 9041 * channel for main VSI's Tx and Rx rings 9042 */ 9043 list_for_each_entry(ch, &main_vsi->ch_list, list) { 9044 struct ice_vsi *ch_vsi; 9045 9046 ch_vsi = ch->ch_vsi; 9047 if (!ch_vsi) 9048 continue; 9049 9050 /* reconfig channel resources */ 9051 ice_cfg_chnl_all_res(main_vsi, ch); 9052 9053 /* replay BW rate limit if it is non-zero */ 9054 if (!ch->max_tx_rate && !ch->min_tx_rate) 9055 continue; 9056 9057 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9058 ch->min_tx_rate); 9059 if (err) 9060 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9061 err, ch->max_tx_rate, ch->min_tx_rate, 9062 ch_vsi->vsi_num); 9063 else 9064 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9065 ch->max_tx_rate, ch->min_tx_rate, 9066 ch_vsi->vsi_num); 9067 } 9068 9069 /* reconfig RSS for main VSI */ 9070 if (main_vsi->ch_rss_size) 9071 ice_vsi_cfg_rss_lut_key(main_vsi); 9072 9073 return 0; 9074 9075 cleanup: 9076 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9077 return err; 9078 } 9079 9080 /** 9081 * ice_create_q_channels - Add queue channel for the given TCs 9082 * @vsi: VSI to be configured 9083 * 9084 * Configures queue channel mapping to the given TCs 9085 */ 9086 static int ice_create_q_channels(struct ice_vsi *vsi) 9087 { 9088 struct ice_pf *pf = vsi->back; 9089 struct ice_channel *ch; 9090 int ret = 0, i; 9091 9092 ice_for_each_chnl_tc(i) { 9093 if (!(vsi->all_enatc & BIT(i))) 9094 continue; 9095 9096 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9097 if (!ch) { 9098 ret = -ENOMEM; 9099 goto err_free; 9100 } 9101 INIT_LIST_HEAD(&ch->list); 9102 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9103 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9104 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9105 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9106 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9107 9108 /* convert to Kbits/s */ 9109 if (ch->max_tx_rate) 9110 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9111 ICE_BW_KBPS_DIVISOR); 9112 if (ch->min_tx_rate) 9113 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9114 ICE_BW_KBPS_DIVISOR); 9115 9116 ret = ice_create_q_channel(vsi, ch); 9117 if (ret) { 9118 dev_err(ice_pf_to_dev(pf), 9119 "failed creating channel TC:%d\n", i); 9120 kfree(ch); 9121 goto err_free; 9122 } 9123 list_add_tail(&ch->list, &vsi->ch_list); 9124 vsi->tc_map_vsi[i] = ch->ch_vsi; 9125 dev_dbg(ice_pf_to_dev(pf), 9126 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9127 } 9128 return 0; 9129 9130 err_free: 9131 ice_remove_q_channels(vsi, false); 9132 9133 return ret; 9134 } 9135 9136 /** 9137 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9138 * @netdev: net device to configure 9139 * @type_data: TC offload data 9140 */ 9141 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9142 { 9143 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9144 struct ice_netdev_priv *np = netdev_priv(netdev); 9145 struct ice_vsi *vsi = np->vsi; 9146 struct ice_pf *pf = vsi->back; 9147 u16 mode, ena_tc_qdisc = 0; 9148 int cur_txq, cur_rxq; 9149 u8 hw = 0, num_tcf; 9150 struct device *dev; 9151 int ret, i; 9152 9153 dev = ice_pf_to_dev(pf); 9154 num_tcf = mqprio_qopt->qopt.num_tc; 9155 hw = mqprio_qopt->qopt.hw; 9156 mode = mqprio_qopt->mode; 9157 if (!hw) { 9158 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9159 vsi->ch_rss_size = 0; 9160 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9161 goto config_tcf; 9162 } 9163 9164 /* Generate queue region map for number of TCF requested */ 9165 for (i = 0; i < num_tcf; i++) 9166 ena_tc_qdisc |= BIT(i); 9167 9168 switch (mode) { 9169 case TC_MQPRIO_MODE_CHANNEL: 9170 9171 if (pf->hw.port_info->is_custom_tx_enabled) { 9172 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9173 return -EBUSY; 9174 } 9175 ice_tear_down_devlink_rate_tree(pf); 9176 9177 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9178 if (ret) { 9179 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9180 ret); 9181 return ret; 9182 } 9183 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9184 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9185 /* don't assume state of hw_tc_offload during driver load 9186 * and set the flag for TC flower filter if hw_tc_offload 9187 * already ON 9188 */ 9189 if (vsi->netdev->features & NETIF_F_HW_TC) 9190 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9191 break; 9192 default: 9193 return -EINVAL; 9194 } 9195 9196 config_tcf: 9197 9198 /* Requesting same TCF configuration as already enabled */ 9199 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9200 mode != TC_MQPRIO_MODE_CHANNEL) 9201 return 0; 9202 9203 /* Pause VSI queues */ 9204 ice_dis_vsi(vsi, true); 9205 9206 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9207 ice_remove_q_channels(vsi, true); 9208 9209 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9210 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9211 num_online_cpus()); 9212 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9213 num_online_cpus()); 9214 } else { 9215 /* logic to rebuild VSI, same like ethtool -L */ 9216 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9217 9218 for (i = 0; i < num_tcf; i++) { 9219 if (!(ena_tc_qdisc & BIT(i))) 9220 continue; 9221 9222 offset = vsi->mqprio_qopt.qopt.offset[i]; 9223 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9224 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9225 } 9226 vsi->req_txq = offset + qcount_tx; 9227 vsi->req_rxq = offset + qcount_rx; 9228 9229 /* store away original rss_size info, so that it gets reused 9230 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9231 * determine, what should be the rss_sizefor main VSI 9232 */ 9233 vsi->orig_rss_size = vsi->rss_size; 9234 } 9235 9236 /* save current values of Tx and Rx queues before calling VSI rebuild 9237 * for fallback option 9238 */ 9239 cur_txq = vsi->num_txq; 9240 cur_rxq = vsi->num_rxq; 9241 9242 /* proceed with rebuild main VSI using correct number of queues */ 9243 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9244 if (ret) { 9245 /* fallback to current number of queues */ 9246 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9247 vsi->req_txq = cur_txq; 9248 vsi->req_rxq = cur_rxq; 9249 clear_bit(ICE_RESET_FAILED, pf->state); 9250 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9251 dev_err(dev, "Rebuild of main VSI failed again\n"); 9252 return ret; 9253 } 9254 } 9255 9256 vsi->all_numtc = num_tcf; 9257 vsi->all_enatc = ena_tc_qdisc; 9258 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9259 if (ret) { 9260 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9261 vsi->vsi_num); 9262 goto exit; 9263 } 9264 9265 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9266 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9267 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9268 9269 /* set TC0 rate limit if specified */ 9270 if (max_tx_rate || min_tx_rate) { 9271 /* convert to Kbits/s */ 9272 if (max_tx_rate) 9273 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9274 if (min_tx_rate) 9275 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9276 9277 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9278 if (!ret) { 9279 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9280 max_tx_rate, min_tx_rate, vsi->vsi_num); 9281 } else { 9282 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9283 max_tx_rate, min_tx_rate, vsi->vsi_num); 9284 goto exit; 9285 } 9286 } 9287 ret = ice_create_q_channels(vsi); 9288 if (ret) { 9289 netdev_err(netdev, "failed configuring queue channels\n"); 9290 goto exit; 9291 } else { 9292 netdev_dbg(netdev, "successfully configured channels\n"); 9293 } 9294 } 9295 9296 if (vsi->ch_rss_size) 9297 ice_vsi_cfg_rss_lut_key(vsi); 9298 9299 exit: 9300 /* if error, reset the all_numtc and all_enatc */ 9301 if (ret) { 9302 vsi->all_numtc = 0; 9303 vsi->all_enatc = 0; 9304 } 9305 /* resume VSI */ 9306 ice_ena_vsi(vsi, true); 9307 9308 return ret; 9309 } 9310 9311 static LIST_HEAD(ice_block_cb_list); 9312 9313 static int 9314 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9315 void *type_data) 9316 { 9317 struct ice_netdev_priv *np = netdev_priv(netdev); 9318 enum flow_block_binder_type binder_type; 9319 struct iidc_rdma_core_dev_info *cdev; 9320 struct ice_pf *pf = np->vsi->back; 9321 flow_setup_cb_t *flower_handler; 9322 bool locked = false; 9323 int err; 9324 9325 switch (type) { 9326 case TC_SETUP_BLOCK: 9327 binder_type = 9328 ((struct flow_block_offload *)type_data)->binder_type; 9329 9330 switch (binder_type) { 9331 case FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS: 9332 flower_handler = ice_setup_tc_block_cb_ingress; 9333 break; 9334 case FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS: 9335 flower_handler = ice_setup_tc_block_cb_egress; 9336 break; 9337 default: 9338 return -EOPNOTSUPP; 9339 } 9340 9341 return flow_block_cb_setup_simple(type_data, 9342 &ice_block_cb_list, 9343 flower_handler, 9344 np, np, false); 9345 case TC_SETUP_QDISC_MQPRIO: 9346 if (ice_is_eswitch_mode_switchdev(pf)) { 9347 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9348 return -EOPNOTSUPP; 9349 } 9350 9351 cdev = pf->cdev_info; 9352 if (cdev && cdev->adev) { 9353 mutex_lock(&pf->adev_mutex); 9354 device_lock(&cdev->adev->dev); 9355 locked = true; 9356 if (cdev->adev->dev.driver) { 9357 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9358 err = -EBUSY; 9359 goto adev_unlock; 9360 } 9361 } 9362 9363 /* setup traffic classifier for receive side */ 9364 mutex_lock(&pf->tc_mutex); 9365 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9366 mutex_unlock(&pf->tc_mutex); 9367 9368 adev_unlock: 9369 if (locked) { 9370 device_unlock(&cdev->adev->dev); 9371 mutex_unlock(&pf->adev_mutex); 9372 } 9373 return err; 9374 default: 9375 return -EOPNOTSUPP; 9376 } 9377 return -EOPNOTSUPP; 9378 } 9379 9380 static struct ice_indr_block_priv * 9381 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9382 struct net_device *netdev) 9383 { 9384 struct ice_indr_block_priv *cb_priv; 9385 9386 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9387 if (!cb_priv->netdev) 9388 return NULL; 9389 if (cb_priv->netdev == netdev) 9390 return cb_priv; 9391 } 9392 return NULL; 9393 } 9394 9395 static int 9396 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9397 void *indr_priv) 9398 { 9399 struct ice_indr_block_priv *priv = indr_priv; 9400 struct ice_netdev_priv *np = priv->np; 9401 9402 switch (type) { 9403 case TC_SETUP_CLSFLOWER: 9404 return ice_setup_tc_cls_flower(np, priv->netdev, 9405 (struct flow_cls_offload *) 9406 type_data, false); 9407 default: 9408 return -EOPNOTSUPP; 9409 } 9410 } 9411 9412 static int 9413 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9414 struct ice_netdev_priv *np, 9415 struct flow_block_offload *f, void *data, 9416 void (*cleanup)(struct flow_block_cb *block_cb)) 9417 { 9418 struct ice_indr_block_priv *indr_priv; 9419 struct flow_block_cb *block_cb; 9420 9421 if (!ice_is_tunnel_supported(netdev) && 9422 !(is_vlan_dev(netdev) && 9423 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9424 return -EOPNOTSUPP; 9425 9426 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9427 return -EOPNOTSUPP; 9428 9429 switch (f->command) { 9430 case FLOW_BLOCK_BIND: 9431 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9432 if (indr_priv) 9433 return -EEXIST; 9434 9435 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9436 if (!indr_priv) 9437 return -ENOMEM; 9438 9439 indr_priv->netdev = netdev; 9440 indr_priv->np = np; 9441 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9442 9443 block_cb = 9444 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9445 indr_priv, indr_priv, 9446 ice_rep_indr_tc_block_unbind, 9447 f, netdev, sch, data, np, 9448 cleanup); 9449 9450 if (IS_ERR(block_cb)) { 9451 list_del(&indr_priv->list); 9452 kfree(indr_priv); 9453 return PTR_ERR(block_cb); 9454 } 9455 flow_block_cb_add(block_cb, f); 9456 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9457 break; 9458 case FLOW_BLOCK_UNBIND: 9459 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9460 if (!indr_priv) 9461 return -ENOENT; 9462 9463 block_cb = flow_block_cb_lookup(f->block, 9464 ice_indr_setup_block_cb, 9465 indr_priv); 9466 if (!block_cb) 9467 return -ENOENT; 9468 9469 flow_indr_block_cb_remove(block_cb, f); 9470 9471 list_del(&block_cb->driver_list); 9472 break; 9473 default: 9474 return -EOPNOTSUPP; 9475 } 9476 return 0; 9477 } 9478 9479 static int 9480 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9481 void *cb_priv, enum tc_setup_type type, void *type_data, 9482 void *data, 9483 void (*cleanup)(struct flow_block_cb *block_cb)) 9484 { 9485 switch (type) { 9486 case TC_SETUP_BLOCK: 9487 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9488 data, cleanup); 9489 9490 default: 9491 return -EOPNOTSUPP; 9492 } 9493 } 9494 9495 /** 9496 * ice_open - Called when a network interface becomes active 9497 * @netdev: network interface device structure 9498 * 9499 * The open entry point is called when a network interface is made 9500 * active by the system (IFF_UP). At this point all resources needed 9501 * for transmit and receive operations are allocated, the interrupt 9502 * handler is registered with the OS, the netdev watchdog is enabled, 9503 * and the stack is notified that the interface is ready. 9504 * 9505 * Returns 0 on success, negative value on failure 9506 */ 9507 int ice_open(struct net_device *netdev) 9508 { 9509 struct ice_netdev_priv *np = netdev_priv(netdev); 9510 struct ice_pf *pf = np->vsi->back; 9511 9512 if (ice_is_reset_in_progress(pf->state)) { 9513 netdev_err(netdev, "can't open net device while reset is in progress"); 9514 return -EBUSY; 9515 } 9516 9517 return ice_open_internal(netdev); 9518 } 9519 9520 /** 9521 * ice_open_internal - Called when a network interface becomes active 9522 * @netdev: network interface device structure 9523 * 9524 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9525 * handling routine 9526 * 9527 * Returns 0 on success, negative value on failure 9528 */ 9529 int ice_open_internal(struct net_device *netdev) 9530 { 9531 struct ice_netdev_priv *np = netdev_priv(netdev); 9532 struct ice_vsi *vsi = np->vsi; 9533 struct ice_pf *pf = vsi->back; 9534 struct ice_port_info *pi; 9535 int err; 9536 9537 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9538 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9539 return -EIO; 9540 } 9541 9542 netif_carrier_off(netdev); 9543 9544 pi = vsi->port_info; 9545 err = ice_update_link_info(pi); 9546 if (err) { 9547 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9548 return err; 9549 } 9550 9551 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9552 9553 /* Set PHY if there is media, otherwise, turn off PHY */ 9554 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9555 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9556 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9557 err = ice_init_phy_user_cfg(pi); 9558 if (err) { 9559 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9560 err); 9561 return err; 9562 } 9563 } 9564 9565 err = ice_configure_phy(vsi); 9566 if (err) { 9567 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9568 err); 9569 return err; 9570 } 9571 } else { 9572 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9573 ice_set_link(vsi, false); 9574 } 9575 9576 err = ice_vsi_open(vsi); 9577 if (err) 9578 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9579 vsi->vsi_num, vsi->vsw->sw_id); 9580 9581 /* Update existing tunnels information */ 9582 udp_tunnel_get_rx_info(netdev); 9583 9584 return err; 9585 } 9586 9587 /** 9588 * ice_stop - Disables a network interface 9589 * @netdev: network interface device structure 9590 * 9591 * The stop entry point is called when an interface is de-activated by the OS, 9592 * and the netdevice enters the DOWN state. The hardware is still under the 9593 * driver's control, but the netdev interface is disabled. 9594 * 9595 * Returns success only - not allowed to fail 9596 */ 9597 int ice_stop(struct net_device *netdev) 9598 { 9599 struct ice_netdev_priv *np = netdev_priv(netdev); 9600 struct ice_vsi *vsi = np->vsi; 9601 struct ice_pf *pf = vsi->back; 9602 9603 if (ice_is_reset_in_progress(pf->state)) { 9604 netdev_err(netdev, "can't stop net device while reset is in progress"); 9605 return -EBUSY; 9606 } 9607 9608 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9609 int link_err = ice_force_phys_link_state(vsi, false); 9610 9611 if (link_err) { 9612 if (link_err == -ENOMEDIUM) 9613 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9614 vsi->vsi_num); 9615 else 9616 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9617 vsi->vsi_num, link_err); 9618 9619 ice_vsi_close(vsi); 9620 return -EIO; 9621 } 9622 } 9623 9624 ice_vsi_close(vsi); 9625 9626 return 0; 9627 } 9628 9629 /** 9630 * ice_features_check - Validate encapsulated packet conforms to limits 9631 * @skb: skb buffer 9632 * @netdev: This port's netdev 9633 * @features: Offload features that the stack believes apply 9634 */ 9635 static netdev_features_t 9636 ice_features_check(struct sk_buff *skb, 9637 struct net_device __always_unused *netdev, 9638 netdev_features_t features) 9639 { 9640 bool gso = skb_is_gso(skb); 9641 size_t len; 9642 9643 /* No point in doing any of this if neither checksum nor GSO are 9644 * being requested for this frame. We can rule out both by just 9645 * checking for CHECKSUM_PARTIAL 9646 */ 9647 if (skb->ip_summed != CHECKSUM_PARTIAL) 9648 return features; 9649 9650 /* We cannot support GSO if the MSS is going to be less than 9651 * 64 bytes. If it is then we need to drop support for GSO. 9652 */ 9653 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9654 features &= ~NETIF_F_GSO_MASK; 9655 9656 len = skb_network_offset(skb); 9657 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9658 goto out_rm_features; 9659 9660 len = skb_network_header_len(skb); 9661 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9662 goto out_rm_features; 9663 9664 if (skb->encapsulation) { 9665 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9666 * the case of IPIP frames, the transport header pointer is 9667 * after the inner header! So check to make sure that this 9668 * is a GRE or UDP_TUNNEL frame before doing that math. 9669 */ 9670 if (gso && (skb_shinfo(skb)->gso_type & 9671 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9672 len = skb_inner_network_header(skb) - 9673 skb_transport_header(skb); 9674 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9675 goto out_rm_features; 9676 } 9677 9678 len = skb_inner_network_header_len(skb); 9679 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9680 goto out_rm_features; 9681 } 9682 9683 return features; 9684 out_rm_features: 9685 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9686 } 9687 9688 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9689 .ndo_open = ice_open, 9690 .ndo_stop = ice_stop, 9691 .ndo_start_xmit = ice_start_xmit, 9692 .ndo_set_mac_address = ice_set_mac_address, 9693 .ndo_validate_addr = eth_validate_addr, 9694 .ndo_change_mtu = ice_change_mtu, 9695 .ndo_get_stats64 = ice_get_stats64, 9696 .ndo_tx_timeout = ice_tx_timeout, 9697 .ndo_bpf = ice_xdp_safe_mode, 9698 }; 9699 9700 static const struct net_device_ops ice_netdev_ops = { 9701 .ndo_open = ice_open, 9702 .ndo_stop = ice_stop, 9703 .ndo_start_xmit = ice_start_xmit, 9704 .ndo_select_queue = ice_select_queue, 9705 .ndo_features_check = ice_features_check, 9706 .ndo_fix_features = ice_fix_features, 9707 .ndo_set_rx_mode = ice_set_rx_mode, 9708 .ndo_set_mac_address = ice_set_mac_address, 9709 .ndo_validate_addr = eth_validate_addr, 9710 .ndo_change_mtu = ice_change_mtu, 9711 .ndo_get_stats64 = ice_get_stats64, 9712 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9713 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9714 .ndo_set_vf_mac = ice_set_vf_mac, 9715 .ndo_get_vf_config = ice_get_vf_cfg, 9716 .ndo_set_vf_trust = ice_set_vf_trust, 9717 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9718 .ndo_set_vf_link_state = ice_set_vf_link_state, 9719 .ndo_get_vf_stats = ice_get_vf_stats, 9720 .ndo_set_vf_rate = ice_set_vf_bw, 9721 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9722 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9723 .ndo_setup_tc = ice_setup_tc, 9724 .ndo_set_features = ice_set_features, 9725 .ndo_bridge_getlink = ice_bridge_getlink, 9726 .ndo_bridge_setlink = ice_bridge_setlink, 9727 .ndo_fdb_add = ice_fdb_add, 9728 .ndo_fdb_del = ice_fdb_del, 9729 #ifdef CONFIG_RFS_ACCEL 9730 .ndo_rx_flow_steer = ice_rx_flow_steer, 9731 #endif 9732 .ndo_tx_timeout = ice_tx_timeout, 9733 .ndo_bpf = ice_xdp, 9734 .ndo_xdp_xmit = ice_xdp_xmit, 9735 .ndo_xsk_wakeup = ice_xsk_wakeup, 9736 .ndo_hwtstamp_get = ice_ptp_hwtstamp_get, 9737 .ndo_hwtstamp_set = ice_ptp_hwtstamp_set, 9738 }; 9739