1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "ice_devlink.h" 17 #include "ice_hwmon.h" 18 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 19 * ice tracepoint functions. This must be done exactly once across the 20 * ice driver. 21 */ 22 #define CREATE_TRACE_POINTS 23 #include "ice_trace.h" 24 #include "ice_eswitch.h" 25 #include "ice_tc_lib.h" 26 #include "ice_vsi_vlan_ops.h" 27 #include <net/xdp_sock_drv.h> 28 29 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 30 static const char ice_driver_string[] = DRV_SUMMARY; 31 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 32 33 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 34 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 35 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 36 37 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 38 MODULE_DESCRIPTION(DRV_SUMMARY); 39 MODULE_LICENSE("GPL v2"); 40 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 41 42 static int debug = -1; 43 module_param(debug, int, 0644); 44 #ifndef CONFIG_DYNAMIC_DEBUG 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 46 #else 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 48 #endif /* !CONFIG_DYNAMIC_DEBUG */ 49 50 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 51 EXPORT_SYMBOL(ice_xdp_locking_key); 52 53 /** 54 * ice_hw_to_dev - Get device pointer from the hardware structure 55 * @hw: pointer to the device HW structure 56 * 57 * Used to access the device pointer from compilation units which can't easily 58 * include the definition of struct ice_pf without leading to circular header 59 * dependencies. 60 */ 61 struct device *ice_hw_to_dev(struct ice_hw *hw) 62 { 63 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 64 65 return &pf->pdev->dev; 66 } 67 68 static struct workqueue_struct *ice_wq; 69 struct workqueue_struct *ice_lag_wq; 70 static const struct net_device_ops ice_netdev_safe_mode_ops; 71 static const struct net_device_ops ice_netdev_ops; 72 73 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 74 75 static void ice_vsi_release_all(struct ice_pf *pf); 76 77 static int ice_rebuild_channels(struct ice_pf *pf); 78 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 79 80 static int 81 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 82 void *cb_priv, enum tc_setup_type type, void *type_data, 83 void *data, 84 void (*cleanup)(struct flow_block_cb *block_cb)); 85 86 bool netif_is_ice(const struct net_device *dev) 87 { 88 return dev && (dev->netdev_ops == &ice_netdev_ops); 89 } 90 91 /** 92 * ice_get_tx_pending - returns number of Tx descriptors not processed 93 * @ring: the ring of descriptors 94 */ 95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 96 { 97 u16 head, tail; 98 99 head = ring->next_to_clean; 100 tail = ring->next_to_use; 101 102 if (head != tail) 103 return (head < tail) ? 104 tail - head : (tail + ring->count - head); 105 return 0; 106 } 107 108 /** 109 * ice_check_for_hang_subtask - check for and recover hung queues 110 * @pf: pointer to PF struct 111 */ 112 static void ice_check_for_hang_subtask(struct ice_pf *pf) 113 { 114 struct ice_vsi *vsi = NULL; 115 struct ice_hw *hw; 116 unsigned int i; 117 int packets; 118 u32 v; 119 120 ice_for_each_vsi(pf, v) 121 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 122 vsi = pf->vsi[v]; 123 break; 124 } 125 126 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 127 return; 128 129 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 130 return; 131 132 hw = &vsi->back->hw; 133 134 ice_for_each_txq(vsi, i) { 135 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 136 struct ice_ring_stats *ring_stats; 137 138 if (!tx_ring) 139 continue; 140 if (ice_ring_ch_enabled(tx_ring)) 141 continue; 142 143 ring_stats = tx_ring->ring_stats; 144 if (!ring_stats) 145 continue; 146 147 if (tx_ring->desc) { 148 /* If packet counter has not changed the queue is 149 * likely stalled, so force an interrupt for this 150 * queue. 151 * 152 * prev_pkt would be negative if there was no 153 * pending work. 154 */ 155 packets = ring_stats->stats.pkts & INT_MAX; 156 if (ring_stats->tx_stats.prev_pkt == packets) { 157 /* Trigger sw interrupt to revive the queue */ 158 ice_trigger_sw_intr(hw, tx_ring->q_vector); 159 continue; 160 } 161 162 /* Memory barrier between read of packet count and call 163 * to ice_get_tx_pending() 164 */ 165 smp_rmb(); 166 ring_stats->tx_stats.prev_pkt = 167 ice_get_tx_pending(tx_ring) ? packets : -1; 168 } 169 } 170 } 171 172 /** 173 * ice_init_mac_fltr - Set initial MAC filters 174 * @pf: board private structure 175 * 176 * Set initial set of MAC filters for PF VSI; configure filters for permanent 177 * address and broadcast address. If an error is encountered, netdevice will be 178 * unregistered. 179 */ 180 static int ice_init_mac_fltr(struct ice_pf *pf) 181 { 182 struct ice_vsi *vsi; 183 u8 *perm_addr; 184 185 vsi = ice_get_main_vsi(pf); 186 if (!vsi) 187 return -EINVAL; 188 189 perm_addr = vsi->port_info->mac.perm_addr; 190 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 191 } 192 193 /** 194 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 195 * @netdev: the net device on which the sync is happening 196 * @addr: MAC address to sync 197 * 198 * This is a callback function which is called by the in kernel device sync 199 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 200 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 201 * MAC filters from the hardware. 202 */ 203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 204 { 205 struct ice_netdev_priv *np = netdev_priv(netdev); 206 struct ice_vsi *vsi = np->vsi; 207 208 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 209 ICE_FWD_TO_VSI)) 210 return -EINVAL; 211 212 return 0; 213 } 214 215 /** 216 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 217 * @netdev: the net device on which the unsync is happening 218 * @addr: MAC address to unsync 219 * 220 * This is a callback function which is called by the in kernel device unsync 221 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 222 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 223 * delete the MAC filters from the hardware. 224 */ 225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 226 { 227 struct ice_netdev_priv *np = netdev_priv(netdev); 228 struct ice_vsi *vsi = np->vsi; 229 230 /* Under some circumstances, we might receive a request to delete our 231 * own device address from our uc list. Because we store the device 232 * address in the VSI's MAC filter list, we need to ignore such 233 * requests and not delete our device address from this list. 234 */ 235 if (ether_addr_equal(addr, netdev->dev_addr)) 236 return 0; 237 238 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 239 ICE_FWD_TO_VSI)) 240 return -EINVAL; 241 242 return 0; 243 } 244 245 /** 246 * ice_vsi_fltr_changed - check if filter state changed 247 * @vsi: VSI to be checked 248 * 249 * returns true if filter state has changed, false otherwise. 250 */ 251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 252 { 253 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 254 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 255 } 256 257 /** 258 * ice_set_promisc - Enable promiscuous mode for a given PF 259 * @vsi: the VSI being configured 260 * @promisc_m: mask of promiscuous config bits 261 * 262 */ 263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 264 { 265 int status; 266 267 if (vsi->type != ICE_VSI_PF) 268 return 0; 269 270 if (ice_vsi_has_non_zero_vlans(vsi)) { 271 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 272 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 273 promisc_m); 274 } else { 275 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 276 promisc_m, 0); 277 } 278 if (status && status != -EEXIST) 279 return status; 280 281 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 282 vsi->vsi_num, promisc_m); 283 return 0; 284 } 285 286 /** 287 * ice_clear_promisc - Disable promiscuous mode for a given PF 288 * @vsi: the VSI being configured 289 * @promisc_m: mask of promiscuous config bits 290 * 291 */ 292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 293 { 294 int status; 295 296 if (vsi->type != ICE_VSI_PF) 297 return 0; 298 299 if (ice_vsi_has_non_zero_vlans(vsi)) { 300 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 301 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 302 promisc_m); 303 } else { 304 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 305 promisc_m, 0); 306 } 307 308 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 309 vsi->vsi_num, promisc_m); 310 return status; 311 } 312 313 /** 314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 315 * @vsi: ptr to the VSI 316 * 317 * Push any outstanding VSI filter changes through the AdminQ. 318 */ 319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 320 { 321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 322 struct device *dev = ice_pf_to_dev(vsi->back); 323 struct net_device *netdev = vsi->netdev; 324 bool promisc_forced_on = false; 325 struct ice_pf *pf = vsi->back; 326 struct ice_hw *hw = &pf->hw; 327 u32 changed_flags = 0; 328 int err; 329 330 if (!vsi->netdev) 331 return -EINVAL; 332 333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 334 usleep_range(1000, 2000); 335 336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 337 vsi->current_netdev_flags = vsi->netdev->flags; 338 339 INIT_LIST_HEAD(&vsi->tmp_sync_list); 340 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 341 342 if (ice_vsi_fltr_changed(vsi)) { 343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 345 346 /* grab the netdev's addr_list_lock */ 347 netif_addr_lock_bh(netdev); 348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 349 ice_add_mac_to_unsync_list); 350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 /* our temp lists are populated. release lock */ 353 netif_addr_unlock_bh(netdev); 354 } 355 356 /* Remove MAC addresses in the unsync list */ 357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 359 if (err) { 360 netdev_err(netdev, "Failed to delete MAC filters\n"); 361 /* if we failed because of alloc failures, just bail */ 362 if (err == -ENOMEM) 363 goto out; 364 } 365 366 /* Add MAC addresses in the sync list */ 367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 368 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 369 /* If filter is added successfully or already exists, do not go into 370 * 'if' condition and report it as error. Instead continue processing 371 * rest of the function. 372 */ 373 if (err && err != -EEXIST) { 374 netdev_err(netdev, "Failed to add MAC filters\n"); 375 /* If there is no more space for new umac filters, VSI 376 * should go into promiscuous mode. There should be some 377 * space reserved for promiscuous filters. 378 */ 379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 381 vsi->state)) { 382 promisc_forced_on = true; 383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 384 vsi->vsi_num); 385 } else { 386 goto out; 387 } 388 } 389 err = 0; 390 /* check for changes in promiscuous modes */ 391 if (changed_flags & IFF_ALLMULTI) { 392 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 394 if (err) { 395 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 396 goto out_promisc; 397 } 398 } else { 399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 401 if (err) { 402 vsi->current_netdev_flags |= IFF_ALLMULTI; 403 goto out_promisc; 404 } 405 } 406 } 407 408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 411 if (vsi->current_netdev_flags & IFF_PROMISC) { 412 /* Apply Rx filter rule to get traffic from wire */ 413 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 414 err = ice_set_dflt_vsi(vsi); 415 if (err && err != -EEXIST) { 416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags &= 419 ~IFF_PROMISC; 420 goto out_promisc; 421 } 422 err = 0; 423 vlan_ops->dis_rx_filtering(vsi); 424 425 /* promiscuous mode implies allmulticast so 426 * that VSIs that are in promiscuous mode are 427 * subscribed to multicast packets coming to 428 * the port 429 */ 430 err = ice_set_promisc(vsi, 431 ICE_MCAST_PROMISC_BITS); 432 if (err) 433 goto out_promisc; 434 } 435 } else { 436 /* Clear Rx filter to remove traffic from wire */ 437 if (ice_is_vsi_dflt_vsi(vsi)) { 438 err = ice_clear_dflt_vsi(vsi); 439 if (err) { 440 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 441 err, vsi->vsi_num); 442 vsi->current_netdev_flags |= 443 IFF_PROMISC; 444 goto out_promisc; 445 } 446 if (vsi->netdev->features & 447 NETIF_F_HW_VLAN_CTAG_FILTER) 448 vlan_ops->ena_rx_filtering(vsi); 449 } 450 451 /* disable allmulti here, but only if allmulti is not 452 * still enabled for the netdev 453 */ 454 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 455 err = ice_clear_promisc(vsi, 456 ICE_MCAST_PROMISC_BITS); 457 if (err) { 458 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 459 err, vsi->vsi_num); 460 } 461 } 462 } 463 } 464 goto exit; 465 466 out_promisc: 467 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 468 goto exit; 469 out: 470 /* if something went wrong then set the changed flag so we try again */ 471 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 472 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 473 exit: 474 clear_bit(ICE_CFG_BUSY, vsi->state); 475 return err; 476 } 477 478 /** 479 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 480 * @pf: board private structure 481 */ 482 static void ice_sync_fltr_subtask(struct ice_pf *pf) 483 { 484 int v; 485 486 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 487 return; 488 489 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 490 491 ice_for_each_vsi(pf, v) 492 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 493 ice_vsi_sync_fltr(pf->vsi[v])) { 494 /* come back and try again later */ 495 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 496 break; 497 } 498 } 499 500 /** 501 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 502 * @pf: the PF 503 * @locked: is the rtnl_lock already held 504 */ 505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 506 { 507 int node; 508 int v; 509 510 ice_for_each_vsi(pf, v) 511 if (pf->vsi[v]) 512 ice_dis_vsi(pf->vsi[v], locked); 513 514 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 515 pf->pf_agg_node[node].num_vsis = 0; 516 517 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 518 pf->vf_agg_node[node].num_vsis = 0; 519 } 520 521 /** 522 * ice_clear_sw_switch_recipes - clear switch recipes 523 * @pf: board private structure 524 * 525 * Mark switch recipes as not created in sw structures. There are cases where 526 * rules (especially advanced rules) need to be restored, either re-read from 527 * hardware or added again. For example after the reset. 'recp_created' flag 528 * prevents from doing that and need to be cleared upfront. 529 */ 530 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 531 { 532 struct ice_sw_recipe *recp; 533 u8 i; 534 535 recp = pf->hw.switch_info->recp_list; 536 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 537 recp[i].recp_created = false; 538 } 539 540 /** 541 * ice_prepare_for_reset - prep for reset 542 * @pf: board private structure 543 * @reset_type: reset type requested 544 * 545 * Inform or close all dependent features in prep for reset. 546 */ 547 static void 548 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 549 { 550 struct ice_hw *hw = &pf->hw; 551 struct ice_vsi *vsi; 552 struct ice_vf *vf; 553 unsigned int bkt; 554 555 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 556 557 /* already prepared for reset */ 558 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 559 return; 560 561 ice_unplug_aux_dev(pf); 562 563 /* Notify VFs of impending reset */ 564 if (ice_check_sq_alive(hw, &hw->mailboxq)) 565 ice_vc_notify_reset(pf); 566 567 /* Disable VFs until reset is completed */ 568 mutex_lock(&pf->vfs.table_lock); 569 ice_for_each_vf(pf, bkt, vf) 570 ice_set_vf_state_dis(vf); 571 mutex_unlock(&pf->vfs.table_lock); 572 573 if (ice_is_eswitch_mode_switchdev(pf)) { 574 if (reset_type != ICE_RESET_PFR) 575 ice_clear_sw_switch_recipes(pf); 576 } 577 578 /* release ADQ specific HW and SW resources */ 579 vsi = ice_get_main_vsi(pf); 580 if (!vsi) 581 goto skip; 582 583 /* to be on safe side, reset orig_rss_size so that normal flow 584 * of deciding rss_size can take precedence 585 */ 586 vsi->orig_rss_size = 0; 587 588 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 589 if (reset_type == ICE_RESET_PFR) { 590 vsi->old_ena_tc = vsi->all_enatc; 591 vsi->old_numtc = vsi->all_numtc; 592 } else { 593 ice_remove_q_channels(vsi, true); 594 595 /* for other reset type, do not support channel rebuild 596 * hence reset needed info 597 */ 598 vsi->old_ena_tc = 0; 599 vsi->all_enatc = 0; 600 vsi->old_numtc = 0; 601 vsi->all_numtc = 0; 602 vsi->req_txq = 0; 603 vsi->req_rxq = 0; 604 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 605 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 606 } 607 } 608 skip: 609 610 /* clear SW filtering DB */ 611 ice_clear_hw_tbls(hw); 612 /* disable the VSIs and their queues that are not already DOWN */ 613 ice_pf_dis_all_vsi(pf, false); 614 615 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 616 ice_ptp_prepare_for_reset(pf, reset_type); 617 618 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 619 ice_gnss_exit(pf); 620 621 if (hw->port_info) 622 ice_sched_clear_port(hw->port_info); 623 624 ice_shutdown_all_ctrlq(hw); 625 626 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 627 } 628 629 /** 630 * ice_do_reset - Initiate one of many types of resets 631 * @pf: board private structure 632 * @reset_type: reset type requested before this function was called. 633 */ 634 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 635 { 636 struct device *dev = ice_pf_to_dev(pf); 637 struct ice_hw *hw = &pf->hw; 638 639 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 640 641 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 642 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 643 reset_type = ICE_RESET_CORER; 644 } 645 646 ice_prepare_for_reset(pf, reset_type); 647 648 /* trigger the reset */ 649 if (ice_reset(hw, reset_type)) { 650 dev_err(dev, "reset %d failed\n", reset_type); 651 set_bit(ICE_RESET_FAILED, pf->state); 652 clear_bit(ICE_RESET_OICR_RECV, pf->state); 653 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 654 clear_bit(ICE_PFR_REQ, pf->state); 655 clear_bit(ICE_CORER_REQ, pf->state); 656 clear_bit(ICE_GLOBR_REQ, pf->state); 657 wake_up(&pf->reset_wait_queue); 658 return; 659 } 660 661 /* PFR is a bit of a special case because it doesn't result in an OICR 662 * interrupt. So for PFR, rebuild after the reset and clear the reset- 663 * associated state bits. 664 */ 665 if (reset_type == ICE_RESET_PFR) { 666 pf->pfr_count++; 667 ice_rebuild(pf, reset_type); 668 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 669 clear_bit(ICE_PFR_REQ, pf->state); 670 wake_up(&pf->reset_wait_queue); 671 ice_reset_all_vfs(pf); 672 } 673 } 674 675 /** 676 * ice_reset_subtask - Set up for resetting the device and driver 677 * @pf: board private structure 678 */ 679 static void ice_reset_subtask(struct ice_pf *pf) 680 { 681 enum ice_reset_req reset_type = ICE_RESET_INVAL; 682 683 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 684 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 685 * of reset is pending and sets bits in pf->state indicating the reset 686 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 687 * prepare for pending reset if not already (for PF software-initiated 688 * global resets the software should already be prepared for it as 689 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 690 * by firmware or software on other PFs, that bit is not set so prepare 691 * for the reset now), poll for reset done, rebuild and return. 692 */ 693 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 694 /* Perform the largest reset requested */ 695 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 696 reset_type = ICE_RESET_CORER; 697 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 698 reset_type = ICE_RESET_GLOBR; 699 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 700 reset_type = ICE_RESET_EMPR; 701 /* return if no valid reset type requested */ 702 if (reset_type == ICE_RESET_INVAL) 703 return; 704 ice_prepare_for_reset(pf, reset_type); 705 706 /* make sure we are ready to rebuild */ 707 if (ice_check_reset(&pf->hw)) { 708 set_bit(ICE_RESET_FAILED, pf->state); 709 } else { 710 /* done with reset. start rebuild */ 711 pf->hw.reset_ongoing = false; 712 ice_rebuild(pf, reset_type); 713 /* clear bit to resume normal operations, but 714 * ICE_NEEDS_RESTART bit is set in case rebuild failed 715 */ 716 clear_bit(ICE_RESET_OICR_RECV, pf->state); 717 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 718 clear_bit(ICE_PFR_REQ, pf->state); 719 clear_bit(ICE_CORER_REQ, pf->state); 720 clear_bit(ICE_GLOBR_REQ, pf->state); 721 wake_up(&pf->reset_wait_queue); 722 ice_reset_all_vfs(pf); 723 } 724 725 return; 726 } 727 728 /* No pending resets to finish processing. Check for new resets */ 729 if (test_bit(ICE_PFR_REQ, pf->state)) { 730 reset_type = ICE_RESET_PFR; 731 if (pf->lag && pf->lag->bonded) { 732 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 733 reset_type = ICE_RESET_CORER; 734 } 735 } 736 if (test_bit(ICE_CORER_REQ, pf->state)) 737 reset_type = ICE_RESET_CORER; 738 if (test_bit(ICE_GLOBR_REQ, pf->state)) 739 reset_type = ICE_RESET_GLOBR; 740 /* If no valid reset type requested just return */ 741 if (reset_type == ICE_RESET_INVAL) 742 return; 743 744 /* reset if not already down or busy */ 745 if (!test_bit(ICE_DOWN, pf->state) && 746 !test_bit(ICE_CFG_BUSY, pf->state)) { 747 ice_do_reset(pf, reset_type); 748 } 749 } 750 751 /** 752 * ice_print_topo_conflict - print topology conflict message 753 * @vsi: the VSI whose topology status is being checked 754 */ 755 static void ice_print_topo_conflict(struct ice_vsi *vsi) 756 { 757 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 758 case ICE_AQ_LINK_TOPO_CONFLICT: 759 case ICE_AQ_LINK_MEDIA_CONFLICT: 760 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 761 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 762 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 763 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 764 break; 765 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 766 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 767 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 768 else 769 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 770 break; 771 default: 772 break; 773 } 774 } 775 776 /** 777 * ice_print_link_msg - print link up or down message 778 * @vsi: the VSI whose link status is being queried 779 * @isup: boolean for if the link is now up or down 780 */ 781 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 782 { 783 struct ice_aqc_get_phy_caps_data *caps; 784 const char *an_advertised; 785 const char *fec_req; 786 const char *speed; 787 const char *fec; 788 const char *fc; 789 const char *an; 790 int status; 791 792 if (!vsi) 793 return; 794 795 if (vsi->current_isup == isup) 796 return; 797 798 vsi->current_isup = isup; 799 800 if (!isup) { 801 netdev_info(vsi->netdev, "NIC Link is Down\n"); 802 return; 803 } 804 805 switch (vsi->port_info->phy.link_info.link_speed) { 806 case ICE_AQ_LINK_SPEED_100GB: 807 speed = "100 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_50GB: 810 speed = "50 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_40GB: 813 speed = "40 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_25GB: 816 speed = "25 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_20GB: 819 speed = "20 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_10GB: 822 speed = "10 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_5GB: 825 speed = "5 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_2500MB: 828 speed = "2.5 G"; 829 break; 830 case ICE_AQ_LINK_SPEED_1000MB: 831 speed = "1 G"; 832 break; 833 case ICE_AQ_LINK_SPEED_100MB: 834 speed = "100 M"; 835 break; 836 default: 837 speed = "Unknown "; 838 break; 839 } 840 841 switch (vsi->port_info->fc.current_mode) { 842 case ICE_FC_FULL: 843 fc = "Rx/Tx"; 844 break; 845 case ICE_FC_TX_PAUSE: 846 fc = "Tx"; 847 break; 848 case ICE_FC_RX_PAUSE: 849 fc = "Rx"; 850 break; 851 case ICE_FC_NONE: 852 fc = "None"; 853 break; 854 default: 855 fc = "Unknown"; 856 break; 857 } 858 859 /* Get FEC mode based on negotiated link info */ 860 switch (vsi->port_info->phy.link_info.fec_info) { 861 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 862 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 863 fec = "RS-FEC"; 864 break; 865 case ICE_AQ_LINK_25G_KR_FEC_EN: 866 fec = "FC-FEC/BASE-R"; 867 break; 868 default: 869 fec = "NONE"; 870 break; 871 } 872 873 /* check if autoneg completed, might be false due to not supported */ 874 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 875 an = "True"; 876 else 877 an = "False"; 878 879 /* Get FEC mode requested based on PHY caps last SW configuration */ 880 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 881 if (!caps) { 882 fec_req = "Unknown"; 883 an_advertised = "Unknown"; 884 goto done; 885 } 886 887 status = ice_aq_get_phy_caps(vsi->port_info, false, 888 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 889 if (status) 890 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 891 892 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 893 894 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 895 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 896 fec_req = "RS-FEC"; 897 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 898 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 899 fec_req = "FC-FEC/BASE-R"; 900 else 901 fec_req = "NONE"; 902 903 kfree(caps); 904 905 done: 906 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 907 speed, fec_req, fec, an_advertised, an, fc); 908 ice_print_topo_conflict(vsi); 909 } 910 911 /** 912 * ice_vsi_link_event - update the VSI's netdev 913 * @vsi: the VSI on which the link event occurred 914 * @link_up: whether or not the VSI needs to be set up or down 915 */ 916 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 917 { 918 if (!vsi) 919 return; 920 921 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 922 return; 923 924 if (vsi->type == ICE_VSI_PF) { 925 if (link_up == netif_carrier_ok(vsi->netdev)) 926 return; 927 928 if (link_up) { 929 netif_carrier_on(vsi->netdev); 930 netif_tx_wake_all_queues(vsi->netdev); 931 } else { 932 netif_carrier_off(vsi->netdev); 933 netif_tx_stop_all_queues(vsi->netdev); 934 } 935 } 936 } 937 938 /** 939 * ice_set_dflt_mib - send a default config MIB to the FW 940 * @pf: private PF struct 941 * 942 * This function sends a default configuration MIB to the FW. 943 * 944 * If this function errors out at any point, the driver is still able to 945 * function. The main impact is that LFC may not operate as expected. 946 * Therefore an error state in this function should be treated with a DBG 947 * message and continue on with driver rebuild/reenable. 948 */ 949 static void ice_set_dflt_mib(struct ice_pf *pf) 950 { 951 struct device *dev = ice_pf_to_dev(pf); 952 u8 mib_type, *buf, *lldpmib = NULL; 953 u16 len, typelen, offset = 0; 954 struct ice_lldp_org_tlv *tlv; 955 struct ice_hw *hw = &pf->hw; 956 u32 ouisubtype; 957 958 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 959 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 960 if (!lldpmib) { 961 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 962 __func__); 963 return; 964 } 965 966 /* Add ETS CFG TLV */ 967 tlv = (struct ice_lldp_org_tlv *)lldpmib; 968 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 969 ICE_IEEE_ETS_TLV_LEN); 970 tlv->typelen = htons(typelen); 971 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 972 ICE_IEEE_SUBTYPE_ETS_CFG); 973 tlv->ouisubtype = htonl(ouisubtype); 974 975 buf = tlv->tlvinfo; 976 buf[0] = 0; 977 978 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 979 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 980 * Octets 13 - 20 are TSA values - leave as zeros 981 */ 982 buf[5] = 0x64; 983 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 984 offset += len + 2; 985 tlv = (struct ice_lldp_org_tlv *) 986 ((char *)tlv + sizeof(tlv->typelen) + len); 987 988 /* Add ETS REC TLV */ 989 buf = tlv->tlvinfo; 990 tlv->typelen = htons(typelen); 991 992 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 993 ICE_IEEE_SUBTYPE_ETS_REC); 994 tlv->ouisubtype = htonl(ouisubtype); 995 996 /* First octet of buf is reserved 997 * Octets 1 - 4 map UP to TC - all UPs map to zero 998 * Octets 5 - 12 are BW values - set TC 0 to 100%. 999 * Octets 13 - 20 are TSA value - leave as zeros 1000 */ 1001 buf[5] = 0x64; 1002 offset += len + 2; 1003 tlv = (struct ice_lldp_org_tlv *) 1004 ((char *)tlv + sizeof(tlv->typelen) + len); 1005 1006 /* Add PFC CFG TLV */ 1007 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1008 ICE_IEEE_PFC_TLV_LEN); 1009 tlv->typelen = htons(typelen); 1010 1011 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1012 ICE_IEEE_SUBTYPE_PFC_CFG); 1013 tlv->ouisubtype = htonl(ouisubtype); 1014 1015 /* Octet 1 left as all zeros - PFC disabled */ 1016 buf[0] = 0x08; 1017 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1018 offset += len + 2; 1019 1020 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1021 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1022 1023 kfree(lldpmib); 1024 } 1025 1026 /** 1027 * ice_check_phy_fw_load - check if PHY FW load failed 1028 * @pf: pointer to PF struct 1029 * @link_cfg_err: bitmap from the link info structure 1030 * 1031 * check if external PHY FW load failed and print an error message if it did 1032 */ 1033 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1034 { 1035 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1036 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1037 return; 1038 } 1039 1040 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1041 return; 1042 1043 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1044 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1045 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1046 } 1047 } 1048 1049 /** 1050 * ice_check_module_power 1051 * @pf: pointer to PF struct 1052 * @link_cfg_err: bitmap from the link info structure 1053 * 1054 * check module power level returned by a previous call to aq_get_link_info 1055 * and print error messages if module power level is not supported 1056 */ 1057 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1058 { 1059 /* if module power level is supported, clear the flag */ 1060 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1061 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1062 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1063 return; 1064 } 1065 1066 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1067 * above block didn't clear this bit, there's nothing to do 1068 */ 1069 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1070 return; 1071 1072 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1073 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1074 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1075 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1076 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1077 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1078 } 1079 } 1080 1081 /** 1082 * ice_check_link_cfg_err - check if link configuration failed 1083 * @pf: pointer to the PF struct 1084 * @link_cfg_err: bitmap from the link info structure 1085 * 1086 * print if any link configuration failure happens due to the value in the 1087 * link_cfg_err parameter in the link info structure 1088 */ 1089 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1090 { 1091 ice_check_module_power(pf, link_cfg_err); 1092 ice_check_phy_fw_load(pf, link_cfg_err); 1093 } 1094 1095 /** 1096 * ice_link_event - process the link event 1097 * @pf: PF that the link event is associated with 1098 * @pi: port_info for the port that the link event is associated with 1099 * @link_up: true if the physical link is up and false if it is down 1100 * @link_speed: current link speed received from the link event 1101 * 1102 * Returns 0 on success and negative on failure 1103 */ 1104 static int 1105 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1106 u16 link_speed) 1107 { 1108 struct device *dev = ice_pf_to_dev(pf); 1109 struct ice_phy_info *phy_info; 1110 struct ice_vsi *vsi; 1111 u16 old_link_speed; 1112 bool old_link; 1113 int status; 1114 1115 phy_info = &pi->phy; 1116 phy_info->link_info_old = phy_info->link_info; 1117 1118 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1119 old_link_speed = phy_info->link_info_old.link_speed; 1120 1121 /* update the link info structures and re-enable link events, 1122 * don't bail on failure due to other book keeping needed 1123 */ 1124 status = ice_update_link_info(pi); 1125 if (status) 1126 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1127 pi->lport, status, 1128 ice_aq_str(pi->hw->adminq.sq_last_status)); 1129 1130 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1131 1132 /* Check if the link state is up after updating link info, and treat 1133 * this event as an UP event since the link is actually UP now. 1134 */ 1135 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1136 link_up = true; 1137 1138 vsi = ice_get_main_vsi(pf); 1139 if (!vsi || !vsi->port_info) 1140 return -EINVAL; 1141 1142 /* turn off PHY if media was removed */ 1143 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1144 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1145 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1146 ice_set_link(vsi, false); 1147 } 1148 1149 /* if the old link up/down and speed is the same as the new */ 1150 if (link_up == old_link && link_speed == old_link_speed) 1151 return 0; 1152 1153 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1154 1155 if (ice_is_dcb_active(pf)) { 1156 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1157 ice_dcb_rebuild(pf); 1158 } else { 1159 if (link_up) 1160 ice_set_dflt_mib(pf); 1161 } 1162 ice_vsi_link_event(vsi, link_up); 1163 ice_print_link_msg(vsi, link_up); 1164 1165 ice_vc_notify_link_state(pf); 1166 1167 return 0; 1168 } 1169 1170 /** 1171 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1172 * @pf: board private structure 1173 */ 1174 static void ice_watchdog_subtask(struct ice_pf *pf) 1175 { 1176 int i; 1177 1178 /* if interface is down do nothing */ 1179 if (test_bit(ICE_DOWN, pf->state) || 1180 test_bit(ICE_CFG_BUSY, pf->state)) 1181 return; 1182 1183 /* make sure we don't do these things too often */ 1184 if (time_before(jiffies, 1185 pf->serv_tmr_prev + pf->serv_tmr_period)) 1186 return; 1187 1188 pf->serv_tmr_prev = jiffies; 1189 1190 /* Update the stats for active netdevs so the network stack 1191 * can look at updated numbers whenever it cares to 1192 */ 1193 ice_update_pf_stats(pf); 1194 ice_for_each_vsi(pf, i) 1195 if (pf->vsi[i] && pf->vsi[i]->netdev) 1196 ice_update_vsi_stats(pf->vsi[i]); 1197 } 1198 1199 /** 1200 * ice_init_link_events - enable/initialize link events 1201 * @pi: pointer to the port_info instance 1202 * 1203 * Returns -EIO on failure, 0 on success 1204 */ 1205 static int ice_init_link_events(struct ice_port_info *pi) 1206 { 1207 u16 mask; 1208 1209 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1210 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1211 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1212 1213 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1215 pi->lport); 1216 return -EIO; 1217 } 1218 1219 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1220 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1221 pi->lport); 1222 return -EIO; 1223 } 1224 1225 return 0; 1226 } 1227 1228 /** 1229 * ice_handle_link_event - handle link event via ARQ 1230 * @pf: PF that the link event is associated with 1231 * @event: event structure containing link status info 1232 */ 1233 static int 1234 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1235 { 1236 struct ice_aqc_get_link_status_data *link_data; 1237 struct ice_port_info *port_info; 1238 int status; 1239 1240 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1241 port_info = pf->hw.port_info; 1242 if (!port_info) 1243 return -EINVAL; 1244 1245 status = ice_link_event(pf, port_info, 1246 !!(link_data->link_info & ICE_AQ_LINK_UP), 1247 le16_to_cpu(link_data->link_speed)); 1248 if (status) 1249 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1250 status); 1251 1252 return status; 1253 } 1254 1255 /** 1256 * ice_get_fwlog_data - copy the FW log data from ARQ event 1257 * @pf: PF that the FW log event is associated with 1258 * @event: event structure containing FW log data 1259 */ 1260 static void 1261 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1262 { 1263 struct ice_fwlog_data *fwlog; 1264 struct ice_hw *hw = &pf->hw; 1265 1266 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1267 1268 memset(fwlog->data, 0, PAGE_SIZE); 1269 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1270 1271 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1272 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1273 1274 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1275 /* the rings are full so bump the head to create room */ 1276 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1277 hw->fwlog_ring.size); 1278 } 1279 } 1280 1281 /** 1282 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1283 * @pf: pointer to the PF private structure 1284 * @task: intermediate helper storage and identifier for waiting 1285 * @opcode: the opcode to wait for 1286 * 1287 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1288 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1289 * 1290 * Calls are separated to allow caller registering for event before sending 1291 * the command, which mitigates a race between registering and FW responding. 1292 * 1293 * To obtain only the descriptor contents, pass an task->event with null 1294 * msg_buf. If the complete data buffer is desired, allocate the 1295 * task->event.msg_buf with enough space ahead of time. 1296 */ 1297 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1298 u16 opcode) 1299 { 1300 INIT_HLIST_NODE(&task->entry); 1301 task->opcode = opcode; 1302 task->state = ICE_AQ_TASK_WAITING; 1303 1304 spin_lock_bh(&pf->aq_wait_lock); 1305 hlist_add_head(&task->entry, &pf->aq_wait_list); 1306 spin_unlock_bh(&pf->aq_wait_lock); 1307 } 1308 1309 /** 1310 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1311 * @pf: pointer to the PF private structure 1312 * @task: ptr prepared by ice_aq_prep_for_event() 1313 * @timeout: how long to wait, in jiffies 1314 * 1315 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1316 * current thread will be put to sleep until the specified event occurs or 1317 * until the given timeout is reached. 1318 * 1319 * Returns: zero on success, or a negative error code on failure. 1320 */ 1321 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1322 unsigned long timeout) 1323 { 1324 enum ice_aq_task_state *state = &task->state; 1325 struct device *dev = ice_pf_to_dev(pf); 1326 unsigned long start = jiffies; 1327 long ret; 1328 int err; 1329 1330 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1331 *state != ICE_AQ_TASK_WAITING, 1332 timeout); 1333 switch (*state) { 1334 case ICE_AQ_TASK_NOT_PREPARED: 1335 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1336 err = -EINVAL; 1337 break; 1338 case ICE_AQ_TASK_WAITING: 1339 err = ret < 0 ? ret : -ETIMEDOUT; 1340 break; 1341 case ICE_AQ_TASK_CANCELED: 1342 err = ret < 0 ? ret : -ECANCELED; 1343 break; 1344 case ICE_AQ_TASK_COMPLETE: 1345 err = ret < 0 ? ret : 0; 1346 break; 1347 default: 1348 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1349 err = -EINVAL; 1350 break; 1351 } 1352 1353 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1354 jiffies_to_msecs(jiffies - start), 1355 jiffies_to_msecs(timeout), 1356 task->opcode); 1357 1358 spin_lock_bh(&pf->aq_wait_lock); 1359 hlist_del(&task->entry); 1360 spin_unlock_bh(&pf->aq_wait_lock); 1361 1362 return err; 1363 } 1364 1365 /** 1366 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1367 * @pf: pointer to the PF private structure 1368 * @opcode: the opcode of the event 1369 * @event: the event to check 1370 * 1371 * Loops over the current list of pending threads waiting for an AdminQ event. 1372 * For each matching task, copy the contents of the event into the task 1373 * structure and wake up the thread. 1374 * 1375 * If multiple threads wait for the same opcode, they will all be woken up. 1376 * 1377 * Note that event->msg_buf will only be duplicated if the event has a buffer 1378 * with enough space already allocated. Otherwise, only the descriptor and 1379 * message length will be copied. 1380 * 1381 * Returns: true if an event was found, false otherwise 1382 */ 1383 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1384 struct ice_rq_event_info *event) 1385 { 1386 struct ice_rq_event_info *task_ev; 1387 struct ice_aq_task *task; 1388 bool found = false; 1389 1390 spin_lock_bh(&pf->aq_wait_lock); 1391 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1392 if (task->state != ICE_AQ_TASK_WAITING) 1393 continue; 1394 if (task->opcode != opcode) 1395 continue; 1396 1397 task_ev = &task->event; 1398 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1399 task_ev->msg_len = event->msg_len; 1400 1401 /* Only copy the data buffer if a destination was set */ 1402 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1403 memcpy(task_ev->msg_buf, event->msg_buf, 1404 event->buf_len); 1405 task_ev->buf_len = event->buf_len; 1406 } 1407 1408 task->state = ICE_AQ_TASK_COMPLETE; 1409 found = true; 1410 } 1411 spin_unlock_bh(&pf->aq_wait_lock); 1412 1413 if (found) 1414 wake_up(&pf->aq_wait_queue); 1415 } 1416 1417 /** 1418 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1419 * @pf: the PF private structure 1420 * 1421 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1422 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1423 */ 1424 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1425 { 1426 struct ice_aq_task *task; 1427 1428 spin_lock_bh(&pf->aq_wait_lock); 1429 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1430 task->state = ICE_AQ_TASK_CANCELED; 1431 spin_unlock_bh(&pf->aq_wait_lock); 1432 1433 wake_up(&pf->aq_wait_queue); 1434 } 1435 1436 #define ICE_MBX_OVERFLOW_WATERMARK 64 1437 1438 /** 1439 * __ice_clean_ctrlq - helper function to clean controlq rings 1440 * @pf: ptr to struct ice_pf 1441 * @q_type: specific Control queue type 1442 */ 1443 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1444 { 1445 struct device *dev = ice_pf_to_dev(pf); 1446 struct ice_rq_event_info event; 1447 struct ice_hw *hw = &pf->hw; 1448 struct ice_ctl_q_info *cq; 1449 u16 pending, i = 0; 1450 const char *qtype; 1451 u32 oldval, val; 1452 1453 /* Do not clean control queue if/when PF reset fails */ 1454 if (test_bit(ICE_RESET_FAILED, pf->state)) 1455 return 0; 1456 1457 switch (q_type) { 1458 case ICE_CTL_Q_ADMIN: 1459 cq = &hw->adminq; 1460 qtype = "Admin"; 1461 break; 1462 case ICE_CTL_Q_SB: 1463 cq = &hw->sbq; 1464 qtype = "Sideband"; 1465 break; 1466 case ICE_CTL_Q_MAILBOX: 1467 cq = &hw->mailboxq; 1468 qtype = "Mailbox"; 1469 /* we are going to try to detect a malicious VF, so set the 1470 * state to begin detection 1471 */ 1472 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1473 break; 1474 default: 1475 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1476 return 0; 1477 } 1478 1479 /* check for error indications - PF_xx_AxQLEN register layout for 1480 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1481 */ 1482 val = rd32(hw, cq->rq.len); 1483 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1484 PF_FW_ARQLEN_ARQCRIT_M)) { 1485 oldval = val; 1486 if (val & PF_FW_ARQLEN_ARQVFE_M) 1487 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1488 qtype); 1489 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1490 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1491 qtype); 1492 } 1493 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1494 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1495 qtype); 1496 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1497 PF_FW_ARQLEN_ARQCRIT_M); 1498 if (oldval != val) 1499 wr32(hw, cq->rq.len, val); 1500 } 1501 1502 val = rd32(hw, cq->sq.len); 1503 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1504 PF_FW_ATQLEN_ATQCRIT_M)) { 1505 oldval = val; 1506 if (val & PF_FW_ATQLEN_ATQVFE_M) 1507 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1508 qtype); 1509 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1510 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1511 qtype); 1512 } 1513 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1514 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1515 qtype); 1516 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1517 PF_FW_ATQLEN_ATQCRIT_M); 1518 if (oldval != val) 1519 wr32(hw, cq->sq.len, val); 1520 } 1521 1522 event.buf_len = cq->rq_buf_size; 1523 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1524 if (!event.msg_buf) 1525 return 0; 1526 1527 do { 1528 struct ice_mbx_data data = {}; 1529 u16 opcode; 1530 int ret; 1531 1532 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1533 if (ret == -EALREADY) 1534 break; 1535 if (ret) { 1536 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1537 ret); 1538 break; 1539 } 1540 1541 opcode = le16_to_cpu(event.desc.opcode); 1542 1543 /* Notify any thread that might be waiting for this event */ 1544 ice_aq_check_events(pf, opcode, &event); 1545 1546 switch (opcode) { 1547 case ice_aqc_opc_get_link_status: 1548 if (ice_handle_link_event(pf, &event)) 1549 dev_err(dev, "Could not handle link event\n"); 1550 break; 1551 case ice_aqc_opc_event_lan_overflow: 1552 ice_vf_lan_overflow_event(pf, &event); 1553 break; 1554 case ice_mbx_opc_send_msg_to_pf: 1555 data.num_msg_proc = i; 1556 data.num_pending_arq = pending; 1557 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1558 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1559 1560 ice_vc_process_vf_msg(pf, &event, &data); 1561 break; 1562 case ice_aqc_opc_fw_logs_event: 1563 ice_get_fwlog_data(pf, &event); 1564 break; 1565 case ice_aqc_opc_lldp_set_mib_change: 1566 ice_dcb_process_lldp_set_mib_change(pf, &event); 1567 break; 1568 default: 1569 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1570 qtype, opcode); 1571 break; 1572 } 1573 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1574 1575 kfree(event.msg_buf); 1576 1577 return pending && (i == ICE_DFLT_IRQ_WORK); 1578 } 1579 1580 /** 1581 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1582 * @hw: pointer to hardware info 1583 * @cq: control queue information 1584 * 1585 * returns true if there are pending messages in a queue, false if there aren't 1586 */ 1587 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1588 { 1589 u16 ntu; 1590 1591 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1592 return cq->rq.next_to_clean != ntu; 1593 } 1594 1595 /** 1596 * ice_clean_adminq_subtask - clean the AdminQ rings 1597 * @pf: board private structure 1598 */ 1599 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1600 { 1601 struct ice_hw *hw = &pf->hw; 1602 1603 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1604 return; 1605 1606 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1607 return; 1608 1609 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1610 1611 /* There might be a situation where new messages arrive to a control 1612 * queue between processing the last message and clearing the 1613 * EVENT_PENDING bit. So before exiting, check queue head again (using 1614 * ice_ctrlq_pending) and process new messages if any. 1615 */ 1616 if (ice_ctrlq_pending(hw, &hw->adminq)) 1617 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1618 1619 ice_flush(hw); 1620 } 1621 1622 /** 1623 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1624 * @pf: board private structure 1625 */ 1626 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1627 { 1628 struct ice_hw *hw = &pf->hw; 1629 1630 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1631 return; 1632 1633 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1634 return; 1635 1636 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1637 1638 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1639 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1640 1641 ice_flush(hw); 1642 } 1643 1644 /** 1645 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1646 * @pf: board private structure 1647 */ 1648 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1649 { 1650 struct ice_hw *hw = &pf->hw; 1651 1652 /* if mac_type is not generic, sideband is not supported 1653 * and there's nothing to do here 1654 */ 1655 if (!ice_is_generic_mac(hw)) { 1656 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1657 return; 1658 } 1659 1660 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1661 return; 1662 1663 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1664 return; 1665 1666 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1667 1668 if (ice_ctrlq_pending(hw, &hw->sbq)) 1669 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1670 1671 ice_flush(hw); 1672 } 1673 1674 /** 1675 * ice_service_task_schedule - schedule the service task to wake up 1676 * @pf: board private structure 1677 * 1678 * If not already scheduled, this puts the task into the work queue. 1679 */ 1680 void ice_service_task_schedule(struct ice_pf *pf) 1681 { 1682 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1683 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1684 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1685 queue_work(ice_wq, &pf->serv_task); 1686 } 1687 1688 /** 1689 * ice_service_task_complete - finish up the service task 1690 * @pf: board private structure 1691 */ 1692 static void ice_service_task_complete(struct ice_pf *pf) 1693 { 1694 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1695 1696 /* force memory (pf->state) to sync before next service task */ 1697 smp_mb__before_atomic(); 1698 clear_bit(ICE_SERVICE_SCHED, pf->state); 1699 } 1700 1701 /** 1702 * ice_service_task_stop - stop service task and cancel works 1703 * @pf: board private structure 1704 * 1705 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1706 * 1 otherwise. 1707 */ 1708 static int ice_service_task_stop(struct ice_pf *pf) 1709 { 1710 int ret; 1711 1712 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1713 1714 if (pf->serv_tmr.function) 1715 del_timer_sync(&pf->serv_tmr); 1716 if (pf->serv_task.func) 1717 cancel_work_sync(&pf->serv_task); 1718 1719 clear_bit(ICE_SERVICE_SCHED, pf->state); 1720 return ret; 1721 } 1722 1723 /** 1724 * ice_service_task_restart - restart service task and schedule works 1725 * @pf: board private structure 1726 * 1727 * This function is needed for suspend and resume works (e.g WoL scenario) 1728 */ 1729 static void ice_service_task_restart(struct ice_pf *pf) 1730 { 1731 clear_bit(ICE_SERVICE_DIS, pf->state); 1732 ice_service_task_schedule(pf); 1733 } 1734 1735 /** 1736 * ice_service_timer - timer callback to schedule service task 1737 * @t: pointer to timer_list 1738 */ 1739 static void ice_service_timer(struct timer_list *t) 1740 { 1741 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1742 1743 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1744 ice_service_task_schedule(pf); 1745 } 1746 1747 /** 1748 * ice_handle_mdd_event - handle malicious driver detect event 1749 * @pf: pointer to the PF structure 1750 * 1751 * Called from service task. OICR interrupt handler indicates MDD event. 1752 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1753 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1754 * disable the queue, the PF can be configured to reset the VF using ethtool 1755 * private flag mdd-auto-reset-vf. 1756 */ 1757 static void ice_handle_mdd_event(struct ice_pf *pf) 1758 { 1759 struct device *dev = ice_pf_to_dev(pf); 1760 struct ice_hw *hw = &pf->hw; 1761 struct ice_vf *vf; 1762 unsigned int bkt; 1763 u32 reg; 1764 1765 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1766 /* Since the VF MDD event logging is rate limited, check if 1767 * there are pending MDD events. 1768 */ 1769 ice_print_vfs_mdd_events(pf); 1770 return; 1771 } 1772 1773 /* find what triggered an MDD event */ 1774 reg = rd32(hw, GL_MDET_TX_PQM); 1775 if (reg & GL_MDET_TX_PQM_VALID_M) { 1776 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1777 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1778 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1779 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1780 1781 if (netif_msg_tx_err(pf)) 1782 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1783 event, queue, pf_num, vf_num); 1784 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1785 } 1786 1787 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1788 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1789 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1790 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1791 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1792 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1793 1794 if (netif_msg_tx_err(pf)) 1795 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1796 event, queue, pf_num, vf_num); 1797 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1798 } 1799 1800 reg = rd32(hw, GL_MDET_RX); 1801 if (reg & GL_MDET_RX_VALID_M) { 1802 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1803 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1804 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1805 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1806 1807 if (netif_msg_rx_err(pf)) 1808 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1809 event, queue, pf_num, vf_num); 1810 wr32(hw, GL_MDET_RX, 0xffffffff); 1811 } 1812 1813 /* check to see if this PF caused an MDD event */ 1814 reg = rd32(hw, PF_MDET_TX_PQM); 1815 if (reg & PF_MDET_TX_PQM_VALID_M) { 1816 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1817 if (netif_msg_tx_err(pf)) 1818 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1819 } 1820 1821 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1822 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1823 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1824 if (netif_msg_tx_err(pf)) 1825 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1826 } 1827 1828 reg = rd32(hw, PF_MDET_RX); 1829 if (reg & PF_MDET_RX_VALID_M) { 1830 wr32(hw, PF_MDET_RX, 0xFFFF); 1831 if (netif_msg_rx_err(pf)) 1832 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1833 } 1834 1835 /* Check to see if one of the VFs caused an MDD event, and then 1836 * increment counters and set print pending 1837 */ 1838 mutex_lock(&pf->vfs.table_lock); 1839 ice_for_each_vf(pf, bkt, vf) { 1840 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1841 if (reg & VP_MDET_TX_PQM_VALID_M) { 1842 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1843 vf->mdd_tx_events.count++; 1844 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1845 if (netif_msg_tx_err(pf)) 1846 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1847 vf->vf_id); 1848 } 1849 1850 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1851 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1852 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1853 vf->mdd_tx_events.count++; 1854 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1855 if (netif_msg_tx_err(pf)) 1856 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1857 vf->vf_id); 1858 } 1859 1860 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1861 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1862 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1863 vf->mdd_tx_events.count++; 1864 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1865 if (netif_msg_tx_err(pf)) 1866 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1867 vf->vf_id); 1868 } 1869 1870 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1871 if (reg & VP_MDET_RX_VALID_M) { 1872 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1873 vf->mdd_rx_events.count++; 1874 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1875 if (netif_msg_rx_err(pf)) 1876 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1877 vf->vf_id); 1878 1879 /* Since the queue is disabled on VF Rx MDD events, the 1880 * PF can be configured to reset the VF through ethtool 1881 * private flag mdd-auto-reset-vf. 1882 */ 1883 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1884 /* VF MDD event counters will be cleared by 1885 * reset, so print the event prior to reset. 1886 */ 1887 ice_print_vf_rx_mdd_event(vf); 1888 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1889 } 1890 } 1891 } 1892 mutex_unlock(&pf->vfs.table_lock); 1893 1894 ice_print_vfs_mdd_events(pf); 1895 } 1896 1897 /** 1898 * ice_force_phys_link_state - Force the physical link state 1899 * @vsi: VSI to force the physical link state to up/down 1900 * @link_up: true/false indicates to set the physical link to up/down 1901 * 1902 * Force the physical link state by getting the current PHY capabilities from 1903 * hardware and setting the PHY config based on the determined capabilities. If 1904 * link changes a link event will be triggered because both the Enable Automatic 1905 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1906 * 1907 * Returns 0 on success, negative on failure 1908 */ 1909 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1910 { 1911 struct ice_aqc_get_phy_caps_data *pcaps; 1912 struct ice_aqc_set_phy_cfg_data *cfg; 1913 struct ice_port_info *pi; 1914 struct device *dev; 1915 int retcode; 1916 1917 if (!vsi || !vsi->port_info || !vsi->back) 1918 return -EINVAL; 1919 if (vsi->type != ICE_VSI_PF) 1920 return 0; 1921 1922 dev = ice_pf_to_dev(vsi->back); 1923 1924 pi = vsi->port_info; 1925 1926 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1927 if (!pcaps) 1928 return -ENOMEM; 1929 1930 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1931 NULL); 1932 if (retcode) { 1933 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1934 vsi->vsi_num, retcode); 1935 retcode = -EIO; 1936 goto out; 1937 } 1938 1939 /* No change in link */ 1940 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1941 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1942 goto out; 1943 1944 /* Use the current user PHY configuration. The current user PHY 1945 * configuration is initialized during probe from PHY capabilities 1946 * software mode, and updated on set PHY configuration. 1947 */ 1948 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1949 if (!cfg) { 1950 retcode = -ENOMEM; 1951 goto out; 1952 } 1953 1954 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1955 if (link_up) 1956 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1957 else 1958 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1959 1960 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1961 if (retcode) { 1962 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1963 vsi->vsi_num, retcode); 1964 retcode = -EIO; 1965 } 1966 1967 kfree(cfg); 1968 out: 1969 kfree(pcaps); 1970 return retcode; 1971 } 1972 1973 /** 1974 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1975 * @pi: port info structure 1976 * 1977 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1978 */ 1979 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1980 { 1981 struct ice_aqc_get_phy_caps_data *pcaps; 1982 struct ice_pf *pf = pi->hw->back; 1983 int err; 1984 1985 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1986 if (!pcaps) 1987 return -ENOMEM; 1988 1989 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1990 pcaps, NULL); 1991 1992 if (err) { 1993 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1994 goto out; 1995 } 1996 1997 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1998 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1999 2000 out: 2001 kfree(pcaps); 2002 return err; 2003 } 2004 2005 /** 2006 * ice_init_link_dflt_override - Initialize link default override 2007 * @pi: port info structure 2008 * 2009 * Initialize link default override and PHY total port shutdown during probe 2010 */ 2011 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2012 { 2013 struct ice_link_default_override_tlv *ldo; 2014 struct ice_pf *pf = pi->hw->back; 2015 2016 ldo = &pf->link_dflt_override; 2017 if (ice_get_link_default_override(ldo, pi)) 2018 return; 2019 2020 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2021 return; 2022 2023 /* Enable Total Port Shutdown (override/replace link-down-on-close 2024 * ethtool private flag) for ports with Port Disable bit set. 2025 */ 2026 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2027 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2028 } 2029 2030 /** 2031 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2032 * @pi: port info structure 2033 * 2034 * If default override is enabled, initialize the user PHY cfg speed and FEC 2035 * settings using the default override mask from the NVM. 2036 * 2037 * The PHY should only be configured with the default override settings the 2038 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2039 * is used to indicate that the user PHY cfg default override is initialized 2040 * and the PHY has not been configured with the default override settings. The 2041 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2042 * configured. 2043 * 2044 * This function should be called only if the FW doesn't support default 2045 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2046 */ 2047 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2048 { 2049 struct ice_link_default_override_tlv *ldo; 2050 struct ice_aqc_set_phy_cfg_data *cfg; 2051 struct ice_phy_info *phy = &pi->phy; 2052 struct ice_pf *pf = pi->hw->back; 2053 2054 ldo = &pf->link_dflt_override; 2055 2056 /* If link default override is enabled, use to mask NVM PHY capabilities 2057 * for speed and FEC default configuration. 2058 */ 2059 cfg = &phy->curr_user_phy_cfg; 2060 2061 if (ldo->phy_type_low || ldo->phy_type_high) { 2062 cfg->phy_type_low = pf->nvm_phy_type_lo & 2063 cpu_to_le64(ldo->phy_type_low); 2064 cfg->phy_type_high = pf->nvm_phy_type_hi & 2065 cpu_to_le64(ldo->phy_type_high); 2066 } 2067 cfg->link_fec_opt = ldo->fec_options; 2068 phy->curr_user_fec_req = ICE_FEC_AUTO; 2069 2070 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2071 } 2072 2073 /** 2074 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2075 * @pi: port info structure 2076 * 2077 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2078 * mode to default. The PHY defaults are from get PHY capabilities topology 2079 * with media so call when media is first available. An error is returned if 2080 * called when media is not available. The PHY initialization completed state is 2081 * set here. 2082 * 2083 * These configurations are used when setting PHY 2084 * configuration. The user PHY configuration is updated on set PHY 2085 * configuration. Returns 0 on success, negative on failure 2086 */ 2087 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2088 { 2089 struct ice_aqc_get_phy_caps_data *pcaps; 2090 struct ice_phy_info *phy = &pi->phy; 2091 struct ice_pf *pf = pi->hw->back; 2092 int err; 2093 2094 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2095 return -EIO; 2096 2097 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2098 if (!pcaps) 2099 return -ENOMEM; 2100 2101 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2102 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2103 pcaps, NULL); 2104 else 2105 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2106 pcaps, NULL); 2107 if (err) { 2108 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2109 goto err_out; 2110 } 2111 2112 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2113 2114 /* check if lenient mode is supported and enabled */ 2115 if (ice_fw_supports_link_override(pi->hw) && 2116 !(pcaps->module_compliance_enforcement & 2117 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2118 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2119 2120 /* if the FW supports default PHY configuration mode, then the driver 2121 * does not have to apply link override settings. If not, 2122 * initialize user PHY configuration with link override values 2123 */ 2124 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2125 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2126 ice_init_phy_cfg_dflt_override(pi); 2127 goto out; 2128 } 2129 } 2130 2131 /* if link default override is not enabled, set user flow control and 2132 * FEC settings based on what get_phy_caps returned 2133 */ 2134 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2135 pcaps->link_fec_options); 2136 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2137 2138 out: 2139 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2140 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2141 err_out: 2142 kfree(pcaps); 2143 return err; 2144 } 2145 2146 /** 2147 * ice_configure_phy - configure PHY 2148 * @vsi: VSI of PHY 2149 * 2150 * Set the PHY configuration. If the current PHY configuration is the same as 2151 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2152 * configure the based get PHY capabilities for topology with media. 2153 */ 2154 static int ice_configure_phy(struct ice_vsi *vsi) 2155 { 2156 struct device *dev = ice_pf_to_dev(vsi->back); 2157 struct ice_port_info *pi = vsi->port_info; 2158 struct ice_aqc_get_phy_caps_data *pcaps; 2159 struct ice_aqc_set_phy_cfg_data *cfg; 2160 struct ice_phy_info *phy = &pi->phy; 2161 struct ice_pf *pf = vsi->back; 2162 int err; 2163 2164 /* Ensure we have media as we cannot configure a medialess port */ 2165 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2166 return -ENOMEDIUM; 2167 2168 ice_print_topo_conflict(vsi); 2169 2170 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2171 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2172 return -EPERM; 2173 2174 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2175 return ice_force_phys_link_state(vsi, true); 2176 2177 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2178 if (!pcaps) 2179 return -ENOMEM; 2180 2181 /* Get current PHY config */ 2182 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2183 NULL); 2184 if (err) { 2185 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2186 vsi->vsi_num, err); 2187 goto done; 2188 } 2189 2190 /* If PHY enable link is configured and configuration has not changed, 2191 * there's nothing to do 2192 */ 2193 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2194 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2195 goto done; 2196 2197 /* Use PHY topology as baseline for configuration */ 2198 memset(pcaps, 0, sizeof(*pcaps)); 2199 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2200 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2201 pcaps, NULL); 2202 else 2203 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2204 pcaps, NULL); 2205 if (err) { 2206 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2207 vsi->vsi_num, err); 2208 goto done; 2209 } 2210 2211 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2212 if (!cfg) { 2213 err = -ENOMEM; 2214 goto done; 2215 } 2216 2217 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2218 2219 /* Speed - If default override pending, use curr_user_phy_cfg set in 2220 * ice_init_phy_user_cfg_ldo. 2221 */ 2222 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2223 vsi->back->state)) { 2224 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2225 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2226 } else { 2227 u64 phy_low = 0, phy_high = 0; 2228 2229 ice_update_phy_type(&phy_low, &phy_high, 2230 pi->phy.curr_user_speed_req); 2231 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2232 cfg->phy_type_high = pcaps->phy_type_high & 2233 cpu_to_le64(phy_high); 2234 } 2235 2236 /* Can't provide what was requested; use PHY capabilities */ 2237 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2238 cfg->phy_type_low = pcaps->phy_type_low; 2239 cfg->phy_type_high = pcaps->phy_type_high; 2240 } 2241 2242 /* FEC */ 2243 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2244 2245 /* Can't provide what was requested; use PHY capabilities */ 2246 if (cfg->link_fec_opt != 2247 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2248 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2249 cfg->link_fec_opt = pcaps->link_fec_options; 2250 } 2251 2252 /* Flow Control - always supported; no need to check against 2253 * capabilities 2254 */ 2255 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2256 2257 /* Enable link and link update */ 2258 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2259 2260 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2261 if (err) 2262 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2263 vsi->vsi_num, err); 2264 2265 kfree(cfg); 2266 done: 2267 kfree(pcaps); 2268 return err; 2269 } 2270 2271 /** 2272 * ice_check_media_subtask - Check for media 2273 * @pf: pointer to PF struct 2274 * 2275 * If media is available, then initialize PHY user configuration if it is not 2276 * been, and configure the PHY if the interface is up. 2277 */ 2278 static void ice_check_media_subtask(struct ice_pf *pf) 2279 { 2280 struct ice_port_info *pi; 2281 struct ice_vsi *vsi; 2282 int err; 2283 2284 /* No need to check for media if it's already present */ 2285 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2286 return; 2287 2288 vsi = ice_get_main_vsi(pf); 2289 if (!vsi) 2290 return; 2291 2292 /* Refresh link info and check if media is present */ 2293 pi = vsi->port_info; 2294 err = ice_update_link_info(pi); 2295 if (err) 2296 return; 2297 2298 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2299 2300 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2301 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2302 ice_init_phy_user_cfg(pi); 2303 2304 /* PHY settings are reset on media insertion, reconfigure 2305 * PHY to preserve settings. 2306 */ 2307 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2308 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2309 return; 2310 2311 err = ice_configure_phy(vsi); 2312 if (!err) 2313 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2314 2315 /* A Link Status Event will be generated; the event handler 2316 * will complete bringing the interface up 2317 */ 2318 } 2319 } 2320 2321 /** 2322 * ice_service_task - manage and run subtasks 2323 * @work: pointer to work_struct contained by the PF struct 2324 */ 2325 static void ice_service_task(struct work_struct *work) 2326 { 2327 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2328 unsigned long start_time = jiffies; 2329 2330 /* subtasks */ 2331 2332 /* process reset requests first */ 2333 ice_reset_subtask(pf); 2334 2335 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2336 if (ice_is_reset_in_progress(pf->state) || 2337 test_bit(ICE_SUSPENDED, pf->state) || 2338 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2339 ice_service_task_complete(pf); 2340 return; 2341 } 2342 2343 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2344 struct iidc_event *event; 2345 2346 event = kzalloc(sizeof(*event), GFP_KERNEL); 2347 if (event) { 2348 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2349 /* report the entire OICR value to AUX driver */ 2350 swap(event->reg, pf->oicr_err_reg); 2351 ice_send_event_to_aux(pf, event); 2352 kfree(event); 2353 } 2354 } 2355 2356 /* unplug aux dev per request, if an unplug request came in 2357 * while processing a plug request, this will handle it 2358 */ 2359 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2360 ice_unplug_aux_dev(pf); 2361 2362 /* Plug aux device per request */ 2363 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2364 ice_plug_aux_dev(pf); 2365 2366 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2367 struct iidc_event *event; 2368 2369 event = kzalloc(sizeof(*event), GFP_KERNEL); 2370 if (event) { 2371 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2372 ice_send_event_to_aux(pf, event); 2373 kfree(event); 2374 } 2375 } 2376 2377 ice_clean_adminq_subtask(pf); 2378 ice_check_media_subtask(pf); 2379 ice_check_for_hang_subtask(pf); 2380 ice_sync_fltr_subtask(pf); 2381 ice_handle_mdd_event(pf); 2382 ice_watchdog_subtask(pf); 2383 2384 if (ice_is_safe_mode(pf)) { 2385 ice_service_task_complete(pf); 2386 return; 2387 } 2388 2389 ice_process_vflr_event(pf); 2390 ice_clean_mailboxq_subtask(pf); 2391 ice_clean_sbq_subtask(pf); 2392 ice_sync_arfs_fltrs(pf); 2393 ice_flush_fdir_ctx(pf); 2394 2395 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2396 ice_service_task_complete(pf); 2397 2398 /* If the tasks have taken longer than one service timer period 2399 * or there is more work to be done, reset the service timer to 2400 * schedule the service task now. 2401 */ 2402 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2403 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2404 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2405 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2406 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2407 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2408 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2409 mod_timer(&pf->serv_tmr, jiffies); 2410 } 2411 2412 /** 2413 * ice_set_ctrlq_len - helper function to set controlq length 2414 * @hw: pointer to the HW instance 2415 */ 2416 static void ice_set_ctrlq_len(struct ice_hw *hw) 2417 { 2418 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2419 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2420 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2421 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2422 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2423 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2424 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2425 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2426 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2427 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2428 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2429 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2430 } 2431 2432 /** 2433 * ice_schedule_reset - schedule a reset 2434 * @pf: board private structure 2435 * @reset: reset being requested 2436 */ 2437 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2438 { 2439 struct device *dev = ice_pf_to_dev(pf); 2440 2441 /* bail out if earlier reset has failed */ 2442 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2443 dev_dbg(dev, "earlier reset has failed\n"); 2444 return -EIO; 2445 } 2446 /* bail if reset/recovery already in progress */ 2447 if (ice_is_reset_in_progress(pf->state)) { 2448 dev_dbg(dev, "Reset already in progress\n"); 2449 return -EBUSY; 2450 } 2451 2452 switch (reset) { 2453 case ICE_RESET_PFR: 2454 set_bit(ICE_PFR_REQ, pf->state); 2455 break; 2456 case ICE_RESET_CORER: 2457 set_bit(ICE_CORER_REQ, pf->state); 2458 break; 2459 case ICE_RESET_GLOBR: 2460 set_bit(ICE_GLOBR_REQ, pf->state); 2461 break; 2462 default: 2463 return -EINVAL; 2464 } 2465 2466 ice_service_task_schedule(pf); 2467 return 0; 2468 } 2469 2470 /** 2471 * ice_irq_affinity_notify - Callback for affinity changes 2472 * @notify: context as to what irq was changed 2473 * @mask: the new affinity mask 2474 * 2475 * This is a callback function used by the irq_set_affinity_notifier function 2476 * so that we may register to receive changes to the irq affinity masks. 2477 */ 2478 static void 2479 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2480 const cpumask_t *mask) 2481 { 2482 struct ice_q_vector *q_vector = 2483 container_of(notify, struct ice_q_vector, affinity_notify); 2484 2485 cpumask_copy(&q_vector->affinity_mask, mask); 2486 } 2487 2488 /** 2489 * ice_irq_affinity_release - Callback for affinity notifier release 2490 * @ref: internal core kernel usage 2491 * 2492 * This is a callback function used by the irq_set_affinity_notifier function 2493 * to inform the current notification subscriber that they will no longer 2494 * receive notifications. 2495 */ 2496 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2497 2498 /** 2499 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2500 * @vsi: the VSI being configured 2501 */ 2502 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2503 { 2504 struct ice_hw *hw = &vsi->back->hw; 2505 int i; 2506 2507 ice_for_each_q_vector(vsi, i) 2508 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2509 2510 ice_flush(hw); 2511 return 0; 2512 } 2513 2514 /** 2515 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2516 * @vsi: the VSI being configured 2517 * @basename: name for the vector 2518 */ 2519 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2520 { 2521 int q_vectors = vsi->num_q_vectors; 2522 struct ice_pf *pf = vsi->back; 2523 struct device *dev; 2524 int rx_int_idx = 0; 2525 int tx_int_idx = 0; 2526 int vector, err; 2527 int irq_num; 2528 2529 dev = ice_pf_to_dev(pf); 2530 for (vector = 0; vector < q_vectors; vector++) { 2531 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2532 2533 irq_num = q_vector->irq.virq; 2534 2535 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2536 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2537 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2538 tx_int_idx++; 2539 } else if (q_vector->rx.rx_ring) { 2540 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2541 "%s-%s-%d", basename, "rx", rx_int_idx++); 2542 } else if (q_vector->tx.tx_ring) { 2543 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2544 "%s-%s-%d", basename, "tx", tx_int_idx++); 2545 } else { 2546 /* skip this unused q_vector */ 2547 continue; 2548 } 2549 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2550 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2551 IRQF_SHARED, q_vector->name, 2552 q_vector); 2553 else 2554 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2555 0, q_vector->name, q_vector); 2556 if (err) { 2557 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2558 err); 2559 goto free_q_irqs; 2560 } 2561 2562 /* register for affinity change notifications */ 2563 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2564 struct irq_affinity_notify *affinity_notify; 2565 2566 affinity_notify = &q_vector->affinity_notify; 2567 affinity_notify->notify = ice_irq_affinity_notify; 2568 affinity_notify->release = ice_irq_affinity_release; 2569 irq_set_affinity_notifier(irq_num, affinity_notify); 2570 } 2571 2572 /* assign the mask for this irq */ 2573 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2574 } 2575 2576 err = ice_set_cpu_rx_rmap(vsi); 2577 if (err) { 2578 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2579 vsi->vsi_num, ERR_PTR(err)); 2580 goto free_q_irqs; 2581 } 2582 2583 vsi->irqs_ready = true; 2584 return 0; 2585 2586 free_q_irqs: 2587 while (vector--) { 2588 irq_num = vsi->q_vectors[vector]->irq.virq; 2589 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2590 irq_set_affinity_notifier(irq_num, NULL); 2591 irq_set_affinity_hint(irq_num, NULL); 2592 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2593 } 2594 return err; 2595 } 2596 2597 /** 2598 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2599 * @vsi: VSI to setup Tx rings used by XDP 2600 * 2601 * Return 0 on success and negative value on error 2602 */ 2603 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2604 { 2605 struct device *dev = ice_pf_to_dev(vsi->back); 2606 struct ice_tx_desc *tx_desc; 2607 int i, j; 2608 2609 ice_for_each_xdp_txq(vsi, i) { 2610 u16 xdp_q_idx = vsi->alloc_txq + i; 2611 struct ice_ring_stats *ring_stats; 2612 struct ice_tx_ring *xdp_ring; 2613 2614 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2615 if (!xdp_ring) 2616 goto free_xdp_rings; 2617 2618 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2619 if (!ring_stats) { 2620 ice_free_tx_ring(xdp_ring); 2621 goto free_xdp_rings; 2622 } 2623 2624 xdp_ring->ring_stats = ring_stats; 2625 xdp_ring->q_index = xdp_q_idx; 2626 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2627 xdp_ring->vsi = vsi; 2628 xdp_ring->netdev = NULL; 2629 xdp_ring->dev = dev; 2630 xdp_ring->count = vsi->num_tx_desc; 2631 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2632 if (ice_setup_tx_ring(xdp_ring)) 2633 goto free_xdp_rings; 2634 ice_set_ring_xdp(xdp_ring); 2635 spin_lock_init(&xdp_ring->tx_lock); 2636 for (j = 0; j < xdp_ring->count; j++) { 2637 tx_desc = ICE_TX_DESC(xdp_ring, j); 2638 tx_desc->cmd_type_offset_bsz = 0; 2639 } 2640 } 2641 2642 return 0; 2643 2644 free_xdp_rings: 2645 for (; i >= 0; i--) { 2646 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2647 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2648 vsi->xdp_rings[i]->ring_stats = NULL; 2649 ice_free_tx_ring(vsi->xdp_rings[i]); 2650 } 2651 } 2652 return -ENOMEM; 2653 } 2654 2655 /** 2656 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2657 * @vsi: VSI to set the bpf prog on 2658 * @prog: the bpf prog pointer 2659 */ 2660 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2661 { 2662 struct bpf_prog *old_prog; 2663 int i; 2664 2665 old_prog = xchg(&vsi->xdp_prog, prog); 2666 ice_for_each_rxq(vsi, i) 2667 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2668 2669 if (old_prog) 2670 bpf_prog_put(old_prog); 2671 } 2672 2673 /** 2674 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2675 * @vsi: VSI to bring up Tx rings used by XDP 2676 * @prog: bpf program that will be assigned to VSI 2677 * 2678 * Return 0 on success and negative value on error 2679 */ 2680 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2681 { 2682 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2683 int xdp_rings_rem = vsi->num_xdp_txq; 2684 struct ice_pf *pf = vsi->back; 2685 struct ice_qs_cfg xdp_qs_cfg = { 2686 .qs_mutex = &pf->avail_q_mutex, 2687 .pf_map = pf->avail_txqs, 2688 .pf_map_size = pf->max_pf_txqs, 2689 .q_count = vsi->num_xdp_txq, 2690 .scatter_count = ICE_MAX_SCATTER_TXQS, 2691 .vsi_map = vsi->txq_map, 2692 .vsi_map_offset = vsi->alloc_txq, 2693 .mapping_mode = ICE_VSI_MAP_CONTIG 2694 }; 2695 struct device *dev; 2696 int i, v_idx; 2697 int status; 2698 2699 dev = ice_pf_to_dev(pf); 2700 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2701 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2702 if (!vsi->xdp_rings) 2703 return -ENOMEM; 2704 2705 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2706 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2707 goto err_map_xdp; 2708 2709 if (static_key_enabled(&ice_xdp_locking_key)) 2710 netdev_warn(vsi->netdev, 2711 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2712 2713 if (ice_xdp_alloc_setup_rings(vsi)) 2714 goto clear_xdp_rings; 2715 2716 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2717 ice_for_each_q_vector(vsi, v_idx) { 2718 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2719 int xdp_rings_per_v, q_id, q_base; 2720 2721 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2722 vsi->num_q_vectors - v_idx); 2723 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2724 2725 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2726 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2727 2728 xdp_ring->q_vector = q_vector; 2729 xdp_ring->next = q_vector->tx.tx_ring; 2730 q_vector->tx.tx_ring = xdp_ring; 2731 } 2732 xdp_rings_rem -= xdp_rings_per_v; 2733 } 2734 2735 ice_for_each_rxq(vsi, i) { 2736 if (static_key_enabled(&ice_xdp_locking_key)) { 2737 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2738 } else { 2739 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2740 struct ice_tx_ring *ring; 2741 2742 ice_for_each_tx_ring(ring, q_vector->tx) { 2743 if (ice_ring_is_xdp(ring)) { 2744 vsi->rx_rings[i]->xdp_ring = ring; 2745 break; 2746 } 2747 } 2748 } 2749 ice_tx_xsk_pool(vsi, i); 2750 } 2751 2752 /* omit the scheduler update if in reset path; XDP queues will be 2753 * taken into account at the end of ice_vsi_rebuild, where 2754 * ice_cfg_vsi_lan is being called 2755 */ 2756 if (ice_is_reset_in_progress(pf->state)) 2757 return 0; 2758 2759 /* tell the Tx scheduler that right now we have 2760 * additional queues 2761 */ 2762 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2763 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2764 2765 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2766 max_txqs); 2767 if (status) { 2768 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2769 status); 2770 goto clear_xdp_rings; 2771 } 2772 2773 /* assign the prog only when it's not already present on VSI; 2774 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2775 * VSI rebuild that happens under ethtool -L can expose us to 2776 * the bpf_prog refcount issues as we would be swapping same 2777 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2778 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2779 * this is not harmful as dev_xdp_install bumps the refcount 2780 * before calling the op exposed by the driver; 2781 */ 2782 if (!ice_is_xdp_ena_vsi(vsi)) 2783 ice_vsi_assign_bpf_prog(vsi, prog); 2784 2785 return 0; 2786 clear_xdp_rings: 2787 ice_for_each_xdp_txq(vsi, i) 2788 if (vsi->xdp_rings[i]) { 2789 kfree_rcu(vsi->xdp_rings[i], rcu); 2790 vsi->xdp_rings[i] = NULL; 2791 } 2792 2793 err_map_xdp: 2794 mutex_lock(&pf->avail_q_mutex); 2795 ice_for_each_xdp_txq(vsi, i) { 2796 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2797 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2798 } 2799 mutex_unlock(&pf->avail_q_mutex); 2800 2801 devm_kfree(dev, vsi->xdp_rings); 2802 return -ENOMEM; 2803 } 2804 2805 /** 2806 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2807 * @vsi: VSI to remove XDP rings 2808 * 2809 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2810 * resources 2811 */ 2812 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2813 { 2814 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2815 struct ice_pf *pf = vsi->back; 2816 int i, v_idx; 2817 2818 /* q_vectors are freed in reset path so there's no point in detaching 2819 * rings; in case of rebuild being triggered not from reset bits 2820 * in pf->state won't be set, so additionally check first q_vector 2821 * against NULL 2822 */ 2823 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2824 goto free_qmap; 2825 2826 ice_for_each_q_vector(vsi, v_idx) { 2827 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2828 struct ice_tx_ring *ring; 2829 2830 ice_for_each_tx_ring(ring, q_vector->tx) 2831 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2832 break; 2833 2834 /* restore the value of last node prior to XDP setup */ 2835 q_vector->tx.tx_ring = ring; 2836 } 2837 2838 free_qmap: 2839 mutex_lock(&pf->avail_q_mutex); 2840 ice_for_each_xdp_txq(vsi, i) { 2841 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2842 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2843 } 2844 mutex_unlock(&pf->avail_q_mutex); 2845 2846 ice_for_each_xdp_txq(vsi, i) 2847 if (vsi->xdp_rings[i]) { 2848 if (vsi->xdp_rings[i]->desc) { 2849 synchronize_rcu(); 2850 ice_free_tx_ring(vsi->xdp_rings[i]); 2851 } 2852 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2853 vsi->xdp_rings[i]->ring_stats = NULL; 2854 kfree_rcu(vsi->xdp_rings[i], rcu); 2855 vsi->xdp_rings[i] = NULL; 2856 } 2857 2858 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2859 vsi->xdp_rings = NULL; 2860 2861 if (static_key_enabled(&ice_xdp_locking_key)) 2862 static_branch_dec(&ice_xdp_locking_key); 2863 2864 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2865 return 0; 2866 2867 ice_vsi_assign_bpf_prog(vsi, NULL); 2868 2869 /* notify Tx scheduler that we destroyed XDP queues and bring 2870 * back the old number of child nodes 2871 */ 2872 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2873 max_txqs[i] = vsi->num_txq; 2874 2875 /* change number of XDP Tx queues to 0 */ 2876 vsi->num_xdp_txq = 0; 2877 2878 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2879 max_txqs); 2880 } 2881 2882 /** 2883 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2884 * @vsi: VSI to schedule napi on 2885 */ 2886 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2887 { 2888 int i; 2889 2890 ice_for_each_rxq(vsi, i) { 2891 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2892 2893 if (rx_ring->xsk_pool) 2894 napi_schedule(&rx_ring->q_vector->napi); 2895 } 2896 } 2897 2898 /** 2899 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2900 * @vsi: VSI to determine the count of XDP Tx qs 2901 * 2902 * returns 0 if Tx qs count is higher than at least half of CPU count, 2903 * -ENOMEM otherwise 2904 */ 2905 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2906 { 2907 u16 avail = ice_get_avail_txq_count(vsi->back); 2908 u16 cpus = num_possible_cpus(); 2909 2910 if (avail < cpus / 2) 2911 return -ENOMEM; 2912 2913 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2914 2915 if (vsi->num_xdp_txq < cpus) 2916 static_branch_inc(&ice_xdp_locking_key); 2917 2918 return 0; 2919 } 2920 2921 /** 2922 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2923 * @vsi: Pointer to VSI structure 2924 */ 2925 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2926 { 2927 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2928 return ICE_RXBUF_1664; 2929 else 2930 return ICE_RXBUF_3072; 2931 } 2932 2933 /** 2934 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2935 * @vsi: VSI to setup XDP for 2936 * @prog: XDP program 2937 * @extack: netlink extended ack 2938 */ 2939 static int 2940 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2941 struct netlink_ext_ack *extack) 2942 { 2943 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2944 bool if_running = netif_running(vsi->netdev); 2945 int ret = 0, xdp_ring_err = 0; 2946 2947 if (prog && !prog->aux->xdp_has_frags) { 2948 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2949 NL_SET_ERR_MSG_MOD(extack, 2950 "MTU is too large for linear frames and XDP prog does not support frags"); 2951 return -EOPNOTSUPP; 2952 } 2953 } 2954 2955 /* hot swap progs and avoid toggling link */ 2956 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2957 ice_vsi_assign_bpf_prog(vsi, prog); 2958 return 0; 2959 } 2960 2961 /* need to stop netdev while setting up the program for Rx rings */ 2962 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2963 ret = ice_down(vsi); 2964 if (ret) { 2965 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2966 return ret; 2967 } 2968 } 2969 2970 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2971 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2972 if (xdp_ring_err) { 2973 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2974 } else { 2975 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2976 if (xdp_ring_err) 2977 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2978 } 2979 xdp_features_set_redirect_target(vsi->netdev, true); 2980 /* reallocate Rx queues that are used for zero-copy */ 2981 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2982 if (xdp_ring_err) 2983 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2984 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2985 xdp_features_clear_redirect_target(vsi->netdev); 2986 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2987 if (xdp_ring_err) 2988 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2989 /* reallocate Rx queues that were used for zero-copy */ 2990 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2991 if (xdp_ring_err) 2992 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2993 } 2994 2995 if (if_running) 2996 ret = ice_up(vsi); 2997 2998 if (!ret && prog) 2999 ice_vsi_rx_napi_schedule(vsi); 3000 3001 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3002 } 3003 3004 /** 3005 * ice_xdp_safe_mode - XDP handler for safe mode 3006 * @dev: netdevice 3007 * @xdp: XDP command 3008 */ 3009 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3010 struct netdev_bpf *xdp) 3011 { 3012 NL_SET_ERR_MSG_MOD(xdp->extack, 3013 "Please provide working DDP firmware package in order to use XDP\n" 3014 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3015 return -EOPNOTSUPP; 3016 } 3017 3018 /** 3019 * ice_xdp - implements XDP handler 3020 * @dev: netdevice 3021 * @xdp: XDP command 3022 */ 3023 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3024 { 3025 struct ice_netdev_priv *np = netdev_priv(dev); 3026 struct ice_vsi *vsi = np->vsi; 3027 3028 if (vsi->type != ICE_VSI_PF) { 3029 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3030 return -EINVAL; 3031 } 3032 3033 switch (xdp->command) { 3034 case XDP_SETUP_PROG: 3035 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3036 case XDP_SETUP_XSK_POOL: 3037 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3038 xdp->xsk.queue_id); 3039 default: 3040 return -EINVAL; 3041 } 3042 } 3043 3044 /** 3045 * ice_ena_misc_vector - enable the non-queue interrupts 3046 * @pf: board private structure 3047 */ 3048 static void ice_ena_misc_vector(struct ice_pf *pf) 3049 { 3050 struct ice_hw *hw = &pf->hw; 3051 u32 pf_intr_start_offset; 3052 u32 val; 3053 3054 /* Disable anti-spoof detection interrupt to prevent spurious event 3055 * interrupts during a function reset. Anti-spoof functionally is 3056 * still supported. 3057 */ 3058 val = rd32(hw, GL_MDCK_TX_TDPU); 3059 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3060 wr32(hw, GL_MDCK_TX_TDPU, val); 3061 3062 /* clear things first */ 3063 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3064 rd32(hw, PFINT_OICR); /* read to clear */ 3065 3066 val = (PFINT_OICR_ECC_ERR_M | 3067 PFINT_OICR_MAL_DETECT_M | 3068 PFINT_OICR_GRST_M | 3069 PFINT_OICR_PCI_EXCEPTION_M | 3070 PFINT_OICR_VFLR_M | 3071 PFINT_OICR_HMC_ERR_M | 3072 PFINT_OICR_PE_PUSH_M | 3073 PFINT_OICR_PE_CRITERR_M); 3074 3075 wr32(hw, PFINT_OICR_ENA, val); 3076 3077 /* SW_ITR_IDX = 0, but don't change INTENA */ 3078 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3079 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3080 3081 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3082 return; 3083 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3084 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3085 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3086 } 3087 3088 /** 3089 * ice_ll_ts_intr - ll_ts interrupt handler 3090 * @irq: interrupt number 3091 * @data: pointer to a q_vector 3092 */ 3093 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3094 { 3095 struct ice_pf *pf = data; 3096 u32 pf_intr_start_offset; 3097 struct ice_ptp_tx *tx; 3098 unsigned long flags; 3099 struct ice_hw *hw; 3100 u32 val; 3101 u8 idx; 3102 3103 hw = &pf->hw; 3104 tx = &pf->ptp.port.tx; 3105 spin_lock_irqsave(&tx->lock, flags); 3106 ice_ptp_complete_tx_single_tstamp(tx); 3107 3108 idx = find_next_bit_wrap(tx->in_use, tx->len, 3109 tx->last_ll_ts_idx_read + 1); 3110 if (idx != tx->len) 3111 ice_ptp_req_tx_single_tstamp(tx, idx); 3112 spin_unlock_irqrestore(&tx->lock, flags); 3113 3114 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3115 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3116 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3117 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3118 val); 3119 3120 return IRQ_HANDLED; 3121 } 3122 3123 /** 3124 * ice_misc_intr - misc interrupt handler 3125 * @irq: interrupt number 3126 * @data: pointer to a q_vector 3127 */ 3128 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3129 { 3130 struct ice_pf *pf = (struct ice_pf *)data; 3131 irqreturn_t ret = IRQ_HANDLED; 3132 struct ice_hw *hw = &pf->hw; 3133 struct device *dev; 3134 u32 oicr, ena_mask; 3135 3136 dev = ice_pf_to_dev(pf); 3137 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3138 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3139 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3140 3141 oicr = rd32(hw, PFINT_OICR); 3142 ena_mask = rd32(hw, PFINT_OICR_ENA); 3143 3144 if (oicr & PFINT_OICR_SWINT_M) { 3145 ena_mask &= ~PFINT_OICR_SWINT_M; 3146 pf->sw_int_count++; 3147 } 3148 3149 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3150 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3151 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3152 } 3153 if (oicr & PFINT_OICR_VFLR_M) { 3154 /* disable any further VFLR event notifications */ 3155 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3156 u32 reg = rd32(hw, PFINT_OICR_ENA); 3157 3158 reg &= ~PFINT_OICR_VFLR_M; 3159 wr32(hw, PFINT_OICR_ENA, reg); 3160 } else { 3161 ena_mask &= ~PFINT_OICR_VFLR_M; 3162 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3163 } 3164 } 3165 3166 if (oicr & PFINT_OICR_GRST_M) { 3167 u32 reset; 3168 3169 /* we have a reset warning */ 3170 ena_mask &= ~PFINT_OICR_GRST_M; 3171 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3172 rd32(hw, GLGEN_RSTAT)); 3173 3174 if (reset == ICE_RESET_CORER) 3175 pf->corer_count++; 3176 else if (reset == ICE_RESET_GLOBR) 3177 pf->globr_count++; 3178 else if (reset == ICE_RESET_EMPR) 3179 pf->empr_count++; 3180 else 3181 dev_dbg(dev, "Invalid reset type %d\n", reset); 3182 3183 /* If a reset cycle isn't already in progress, we set a bit in 3184 * pf->state so that the service task can start a reset/rebuild. 3185 */ 3186 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3187 if (reset == ICE_RESET_CORER) 3188 set_bit(ICE_CORER_RECV, pf->state); 3189 else if (reset == ICE_RESET_GLOBR) 3190 set_bit(ICE_GLOBR_RECV, pf->state); 3191 else 3192 set_bit(ICE_EMPR_RECV, pf->state); 3193 3194 /* There are couple of different bits at play here. 3195 * hw->reset_ongoing indicates whether the hardware is 3196 * in reset. This is set to true when a reset interrupt 3197 * is received and set back to false after the driver 3198 * has determined that the hardware is out of reset. 3199 * 3200 * ICE_RESET_OICR_RECV in pf->state indicates 3201 * that a post reset rebuild is required before the 3202 * driver is operational again. This is set above. 3203 * 3204 * As this is the start of the reset/rebuild cycle, set 3205 * both to indicate that. 3206 */ 3207 hw->reset_ongoing = true; 3208 } 3209 } 3210 3211 if (oicr & PFINT_OICR_TSYN_TX_M) { 3212 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3213 if (ice_pf_state_is_nominal(pf) && 3214 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3215 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3216 unsigned long flags; 3217 u8 idx; 3218 3219 spin_lock_irqsave(&tx->lock, flags); 3220 idx = find_next_bit_wrap(tx->in_use, tx->len, 3221 tx->last_ll_ts_idx_read + 1); 3222 if (idx != tx->len) 3223 ice_ptp_req_tx_single_tstamp(tx, idx); 3224 spin_unlock_irqrestore(&tx->lock, flags); 3225 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3226 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3227 ret = IRQ_WAKE_THREAD; 3228 } 3229 } 3230 3231 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3232 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3233 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3234 3235 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3236 3237 if (ice_pf_src_tmr_owned(pf)) { 3238 /* Save EVENTs from GLTSYN register */ 3239 pf->ptp.ext_ts_irq |= gltsyn_stat & 3240 (GLTSYN_STAT_EVENT0_M | 3241 GLTSYN_STAT_EVENT1_M | 3242 GLTSYN_STAT_EVENT2_M); 3243 3244 ice_ptp_extts_event(pf); 3245 } 3246 } 3247 3248 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3249 if (oicr & ICE_AUX_CRIT_ERR) { 3250 pf->oicr_err_reg |= oicr; 3251 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3252 ena_mask &= ~ICE_AUX_CRIT_ERR; 3253 } 3254 3255 /* Report any remaining unexpected interrupts */ 3256 oicr &= ena_mask; 3257 if (oicr) { 3258 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3259 /* If a critical error is pending there is no choice but to 3260 * reset the device. 3261 */ 3262 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3263 PFINT_OICR_ECC_ERR_M)) { 3264 set_bit(ICE_PFR_REQ, pf->state); 3265 } 3266 } 3267 ice_service_task_schedule(pf); 3268 if (ret == IRQ_HANDLED) 3269 ice_irq_dynamic_ena(hw, NULL, NULL); 3270 3271 return ret; 3272 } 3273 3274 /** 3275 * ice_misc_intr_thread_fn - misc interrupt thread function 3276 * @irq: interrupt number 3277 * @data: pointer to a q_vector 3278 */ 3279 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3280 { 3281 struct ice_pf *pf = data; 3282 struct ice_hw *hw; 3283 3284 hw = &pf->hw; 3285 3286 if (ice_is_reset_in_progress(pf->state)) 3287 goto skip_irq; 3288 3289 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3290 /* Process outstanding Tx timestamps. If there is more work, 3291 * re-arm the interrupt to trigger again. 3292 */ 3293 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3294 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3295 ice_flush(hw); 3296 } 3297 } 3298 3299 skip_irq: 3300 ice_irq_dynamic_ena(hw, NULL, NULL); 3301 3302 return IRQ_HANDLED; 3303 } 3304 3305 /** 3306 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3307 * @hw: pointer to HW structure 3308 */ 3309 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3310 { 3311 /* disable Admin queue Interrupt causes */ 3312 wr32(hw, PFINT_FW_CTL, 3313 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3314 3315 /* disable Mailbox queue Interrupt causes */ 3316 wr32(hw, PFINT_MBX_CTL, 3317 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3318 3319 wr32(hw, PFINT_SB_CTL, 3320 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3321 3322 /* disable Control queue Interrupt causes */ 3323 wr32(hw, PFINT_OICR_CTL, 3324 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3325 3326 ice_flush(hw); 3327 } 3328 3329 /** 3330 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3331 * @pf: board private structure 3332 */ 3333 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3334 { 3335 int irq_num = pf->ll_ts_irq.virq; 3336 3337 synchronize_irq(irq_num); 3338 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3339 3340 ice_free_irq(pf, pf->ll_ts_irq); 3341 } 3342 3343 /** 3344 * ice_free_irq_msix_misc - Unroll misc vector setup 3345 * @pf: board private structure 3346 */ 3347 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3348 { 3349 int misc_irq_num = pf->oicr_irq.virq; 3350 struct ice_hw *hw = &pf->hw; 3351 3352 ice_dis_ctrlq_interrupts(hw); 3353 3354 /* disable OICR interrupt */ 3355 wr32(hw, PFINT_OICR_ENA, 0); 3356 ice_flush(hw); 3357 3358 synchronize_irq(misc_irq_num); 3359 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3360 3361 ice_free_irq(pf, pf->oicr_irq); 3362 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3363 ice_free_irq_msix_ll_ts(pf); 3364 } 3365 3366 /** 3367 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3368 * @hw: pointer to HW structure 3369 * @reg_idx: HW vector index to associate the control queue interrupts with 3370 */ 3371 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3372 { 3373 u32 val; 3374 3375 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3376 PFINT_OICR_CTL_CAUSE_ENA_M); 3377 wr32(hw, PFINT_OICR_CTL, val); 3378 3379 /* enable Admin queue Interrupt causes */ 3380 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3381 PFINT_FW_CTL_CAUSE_ENA_M); 3382 wr32(hw, PFINT_FW_CTL, val); 3383 3384 /* enable Mailbox queue Interrupt causes */ 3385 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3386 PFINT_MBX_CTL_CAUSE_ENA_M); 3387 wr32(hw, PFINT_MBX_CTL, val); 3388 3389 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3390 /* enable Sideband queue Interrupt causes */ 3391 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3392 PFINT_SB_CTL_CAUSE_ENA_M); 3393 wr32(hw, PFINT_SB_CTL, val); 3394 } 3395 3396 ice_flush(hw); 3397 } 3398 3399 /** 3400 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3401 * @pf: board private structure 3402 * 3403 * This sets up the handler for MSIX 0, which is used to manage the 3404 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3405 * when in MSI or Legacy interrupt mode. 3406 */ 3407 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3408 { 3409 struct device *dev = ice_pf_to_dev(pf); 3410 struct ice_hw *hw = &pf->hw; 3411 u32 pf_intr_start_offset; 3412 struct msi_map irq; 3413 int err = 0; 3414 3415 if (!pf->int_name[0]) 3416 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3417 dev_driver_string(dev), dev_name(dev)); 3418 3419 if (!pf->int_name_ll_ts[0]) 3420 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3421 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3422 /* Do not request IRQ but do enable OICR interrupt since settings are 3423 * lost during reset. Note that this function is called only during 3424 * rebuild path and not while reset is in progress. 3425 */ 3426 if (ice_is_reset_in_progress(pf->state)) 3427 goto skip_req_irq; 3428 3429 /* reserve one vector in irq_tracker for misc interrupts */ 3430 irq = ice_alloc_irq(pf, false); 3431 if (irq.index < 0) 3432 return irq.index; 3433 3434 pf->oicr_irq = irq; 3435 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3436 ice_misc_intr_thread_fn, 0, 3437 pf->int_name, pf); 3438 if (err) { 3439 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3440 pf->int_name, err); 3441 ice_free_irq(pf, pf->oicr_irq); 3442 return err; 3443 } 3444 3445 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3446 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3447 goto skip_req_irq; 3448 3449 irq = ice_alloc_irq(pf, false); 3450 if (irq.index < 0) 3451 return irq.index; 3452 3453 pf->ll_ts_irq = irq; 3454 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3455 pf->int_name_ll_ts, pf); 3456 if (err) { 3457 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3458 pf->int_name_ll_ts, err); 3459 ice_free_irq(pf, pf->ll_ts_irq); 3460 return err; 3461 } 3462 3463 skip_req_irq: 3464 ice_ena_misc_vector(pf); 3465 3466 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3467 /* This enables LL TS interrupt */ 3468 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3469 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3470 wr32(hw, PFINT_SB_CTL, 3471 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3472 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3473 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3474 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3475 3476 ice_flush(hw); 3477 ice_irq_dynamic_ena(hw, NULL, NULL); 3478 3479 return 0; 3480 } 3481 3482 /** 3483 * ice_napi_add - register NAPI handler for the VSI 3484 * @vsi: VSI for which NAPI handler is to be registered 3485 * 3486 * This function is only called in the driver's load path. Registering the NAPI 3487 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3488 * reset/rebuild, etc.) 3489 */ 3490 static void ice_napi_add(struct ice_vsi *vsi) 3491 { 3492 int v_idx; 3493 3494 if (!vsi->netdev) 3495 return; 3496 3497 ice_for_each_q_vector(vsi, v_idx) { 3498 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3499 ice_napi_poll); 3500 __ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3501 } 3502 } 3503 3504 /** 3505 * ice_set_ops - set netdev and ethtools ops for the given netdev 3506 * @vsi: the VSI associated with the new netdev 3507 */ 3508 static void ice_set_ops(struct ice_vsi *vsi) 3509 { 3510 struct net_device *netdev = vsi->netdev; 3511 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3512 3513 if (ice_is_safe_mode(pf)) { 3514 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3515 ice_set_ethtool_safe_mode_ops(netdev); 3516 return; 3517 } 3518 3519 netdev->netdev_ops = &ice_netdev_ops; 3520 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3521 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3522 ice_set_ethtool_ops(netdev); 3523 3524 if (vsi->type != ICE_VSI_PF) 3525 return; 3526 3527 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3528 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3529 NETDEV_XDP_ACT_RX_SG; 3530 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3531 } 3532 3533 /** 3534 * ice_set_netdev_features - set features for the given netdev 3535 * @netdev: netdev instance 3536 */ 3537 static void ice_set_netdev_features(struct net_device *netdev) 3538 { 3539 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3540 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3541 netdev_features_t csumo_features; 3542 netdev_features_t vlano_features; 3543 netdev_features_t dflt_features; 3544 netdev_features_t tso_features; 3545 3546 if (ice_is_safe_mode(pf)) { 3547 /* safe mode */ 3548 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3549 netdev->hw_features = netdev->features; 3550 return; 3551 } 3552 3553 dflt_features = NETIF_F_SG | 3554 NETIF_F_HIGHDMA | 3555 NETIF_F_NTUPLE | 3556 NETIF_F_RXHASH; 3557 3558 csumo_features = NETIF_F_RXCSUM | 3559 NETIF_F_IP_CSUM | 3560 NETIF_F_SCTP_CRC | 3561 NETIF_F_IPV6_CSUM; 3562 3563 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3564 NETIF_F_HW_VLAN_CTAG_TX | 3565 NETIF_F_HW_VLAN_CTAG_RX; 3566 3567 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3568 if (is_dvm_ena) 3569 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3570 3571 tso_features = NETIF_F_TSO | 3572 NETIF_F_TSO_ECN | 3573 NETIF_F_TSO6 | 3574 NETIF_F_GSO_GRE | 3575 NETIF_F_GSO_UDP_TUNNEL | 3576 NETIF_F_GSO_GRE_CSUM | 3577 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3578 NETIF_F_GSO_PARTIAL | 3579 NETIF_F_GSO_IPXIP4 | 3580 NETIF_F_GSO_IPXIP6 | 3581 NETIF_F_GSO_UDP_L4; 3582 3583 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3584 NETIF_F_GSO_GRE_CSUM; 3585 /* set features that user can change */ 3586 netdev->hw_features = dflt_features | csumo_features | 3587 vlano_features | tso_features; 3588 3589 /* add support for HW_CSUM on packets with MPLS header */ 3590 netdev->mpls_features = NETIF_F_HW_CSUM | 3591 NETIF_F_TSO | 3592 NETIF_F_TSO6; 3593 3594 /* enable features */ 3595 netdev->features |= netdev->hw_features; 3596 3597 netdev->hw_features |= NETIF_F_HW_TC; 3598 netdev->hw_features |= NETIF_F_LOOPBACK; 3599 3600 /* encap and VLAN devices inherit default, csumo and tso features */ 3601 netdev->hw_enc_features |= dflt_features | csumo_features | 3602 tso_features; 3603 netdev->vlan_features |= dflt_features | csumo_features | 3604 tso_features; 3605 3606 /* advertise support but don't enable by default since only one type of 3607 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3608 * type turns on the other has to be turned off. This is enforced by the 3609 * ice_fix_features() ndo callback. 3610 */ 3611 if (is_dvm_ena) 3612 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3613 NETIF_F_HW_VLAN_STAG_TX; 3614 3615 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3616 * be changed at runtime 3617 */ 3618 netdev->hw_features |= NETIF_F_RXFCS; 3619 3620 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3621 } 3622 3623 /** 3624 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3625 * @lut: Lookup table 3626 * @rss_table_size: Lookup table size 3627 * @rss_size: Range of queue number for hashing 3628 */ 3629 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3630 { 3631 u16 i; 3632 3633 for (i = 0; i < rss_table_size; i++) 3634 lut[i] = i % rss_size; 3635 } 3636 3637 /** 3638 * ice_pf_vsi_setup - Set up a PF VSI 3639 * @pf: board private structure 3640 * @pi: pointer to the port_info instance 3641 * 3642 * Returns pointer to the successfully allocated VSI software struct 3643 * on success, otherwise returns NULL on failure. 3644 */ 3645 static struct ice_vsi * 3646 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3647 { 3648 struct ice_vsi_cfg_params params = {}; 3649 3650 params.type = ICE_VSI_PF; 3651 params.pi = pi; 3652 params.flags = ICE_VSI_FLAG_INIT; 3653 3654 return ice_vsi_setup(pf, ¶ms); 3655 } 3656 3657 static struct ice_vsi * 3658 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3659 struct ice_channel *ch) 3660 { 3661 struct ice_vsi_cfg_params params = {}; 3662 3663 params.type = ICE_VSI_CHNL; 3664 params.pi = pi; 3665 params.ch = ch; 3666 params.flags = ICE_VSI_FLAG_INIT; 3667 3668 return ice_vsi_setup(pf, ¶ms); 3669 } 3670 3671 /** 3672 * ice_ctrl_vsi_setup - Set up a control VSI 3673 * @pf: board private structure 3674 * @pi: pointer to the port_info instance 3675 * 3676 * Returns pointer to the successfully allocated VSI software struct 3677 * on success, otherwise returns NULL on failure. 3678 */ 3679 static struct ice_vsi * 3680 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3681 { 3682 struct ice_vsi_cfg_params params = {}; 3683 3684 params.type = ICE_VSI_CTRL; 3685 params.pi = pi; 3686 params.flags = ICE_VSI_FLAG_INIT; 3687 3688 return ice_vsi_setup(pf, ¶ms); 3689 } 3690 3691 /** 3692 * ice_lb_vsi_setup - Set up a loopback VSI 3693 * @pf: board private structure 3694 * @pi: pointer to the port_info instance 3695 * 3696 * Returns pointer to the successfully allocated VSI software struct 3697 * on success, otherwise returns NULL on failure. 3698 */ 3699 struct ice_vsi * 3700 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3701 { 3702 struct ice_vsi_cfg_params params = {}; 3703 3704 params.type = ICE_VSI_LB; 3705 params.pi = pi; 3706 params.flags = ICE_VSI_FLAG_INIT; 3707 3708 return ice_vsi_setup(pf, ¶ms); 3709 } 3710 3711 /** 3712 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3713 * @netdev: network interface to be adjusted 3714 * @proto: VLAN TPID 3715 * @vid: VLAN ID to be added 3716 * 3717 * net_device_ops implementation for adding VLAN IDs 3718 */ 3719 static int 3720 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3721 { 3722 struct ice_netdev_priv *np = netdev_priv(netdev); 3723 struct ice_vsi_vlan_ops *vlan_ops; 3724 struct ice_vsi *vsi = np->vsi; 3725 struct ice_vlan vlan; 3726 int ret; 3727 3728 /* VLAN 0 is added by default during load/reset */ 3729 if (!vid) 3730 return 0; 3731 3732 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3733 usleep_range(1000, 2000); 3734 3735 /* Add multicast promisc rule for the VLAN ID to be added if 3736 * all-multicast is currently enabled. 3737 */ 3738 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3739 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3740 ICE_MCAST_VLAN_PROMISC_BITS, 3741 vid); 3742 if (ret) 3743 goto finish; 3744 } 3745 3746 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3747 3748 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3749 * packets aren't pruned by the device's internal switch on Rx 3750 */ 3751 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3752 ret = vlan_ops->add_vlan(vsi, &vlan); 3753 if (ret) 3754 goto finish; 3755 3756 /* If all-multicast is currently enabled and this VLAN ID is only one 3757 * besides VLAN-0 we have to update look-up type of multicast promisc 3758 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3759 */ 3760 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3761 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3762 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3763 ICE_MCAST_PROMISC_BITS, 0); 3764 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3765 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3766 } 3767 3768 finish: 3769 clear_bit(ICE_CFG_BUSY, vsi->state); 3770 3771 return ret; 3772 } 3773 3774 /** 3775 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3776 * @netdev: network interface to be adjusted 3777 * @proto: VLAN TPID 3778 * @vid: VLAN ID to be removed 3779 * 3780 * net_device_ops implementation for removing VLAN IDs 3781 */ 3782 static int 3783 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3784 { 3785 struct ice_netdev_priv *np = netdev_priv(netdev); 3786 struct ice_vsi_vlan_ops *vlan_ops; 3787 struct ice_vsi *vsi = np->vsi; 3788 struct ice_vlan vlan; 3789 int ret; 3790 3791 /* don't allow removal of VLAN 0 */ 3792 if (!vid) 3793 return 0; 3794 3795 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3796 usleep_range(1000, 2000); 3797 3798 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3799 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3800 if (ret) { 3801 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3802 vsi->vsi_num); 3803 vsi->current_netdev_flags |= IFF_ALLMULTI; 3804 } 3805 3806 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3807 3808 /* Make sure VLAN delete is successful before updating VLAN 3809 * information 3810 */ 3811 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3812 ret = vlan_ops->del_vlan(vsi, &vlan); 3813 if (ret) 3814 goto finish; 3815 3816 /* Remove multicast promisc rule for the removed VLAN ID if 3817 * all-multicast is enabled. 3818 */ 3819 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3820 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3821 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3822 3823 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3824 /* Update look-up type of multicast promisc rule for VLAN 0 3825 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3826 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3827 */ 3828 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3829 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3830 ICE_MCAST_VLAN_PROMISC_BITS, 3831 0); 3832 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3833 ICE_MCAST_PROMISC_BITS, 0); 3834 } 3835 } 3836 3837 finish: 3838 clear_bit(ICE_CFG_BUSY, vsi->state); 3839 3840 return ret; 3841 } 3842 3843 /** 3844 * ice_rep_indr_tc_block_unbind 3845 * @cb_priv: indirection block private data 3846 */ 3847 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3848 { 3849 struct ice_indr_block_priv *indr_priv = cb_priv; 3850 3851 list_del(&indr_priv->list); 3852 kfree(indr_priv); 3853 } 3854 3855 /** 3856 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3857 * @vsi: VSI struct which has the netdev 3858 */ 3859 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3860 { 3861 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3862 3863 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3864 ice_rep_indr_tc_block_unbind); 3865 } 3866 3867 /** 3868 * ice_tc_indir_block_register - Register TC indirect block notifications 3869 * @vsi: VSI struct which has the netdev 3870 * 3871 * Returns 0 on success, negative value on failure 3872 */ 3873 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3874 { 3875 struct ice_netdev_priv *np; 3876 3877 if (!vsi || !vsi->netdev) 3878 return -EINVAL; 3879 3880 np = netdev_priv(vsi->netdev); 3881 3882 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3883 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3884 } 3885 3886 /** 3887 * ice_get_avail_q_count - Get count of queues in use 3888 * @pf_qmap: bitmap to get queue use count from 3889 * @lock: pointer to a mutex that protects access to pf_qmap 3890 * @size: size of the bitmap 3891 */ 3892 static u16 3893 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3894 { 3895 unsigned long bit; 3896 u16 count = 0; 3897 3898 mutex_lock(lock); 3899 for_each_clear_bit(bit, pf_qmap, size) 3900 count++; 3901 mutex_unlock(lock); 3902 3903 return count; 3904 } 3905 3906 /** 3907 * ice_get_avail_txq_count - Get count of Tx queues in use 3908 * @pf: pointer to an ice_pf instance 3909 */ 3910 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3911 { 3912 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3913 pf->max_pf_txqs); 3914 } 3915 3916 /** 3917 * ice_get_avail_rxq_count - Get count of Rx queues in use 3918 * @pf: pointer to an ice_pf instance 3919 */ 3920 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3921 { 3922 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3923 pf->max_pf_rxqs); 3924 } 3925 3926 /** 3927 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3928 * @pf: board private structure to initialize 3929 */ 3930 static void ice_deinit_pf(struct ice_pf *pf) 3931 { 3932 ice_service_task_stop(pf); 3933 mutex_destroy(&pf->lag_mutex); 3934 mutex_destroy(&pf->adev_mutex); 3935 mutex_destroy(&pf->sw_mutex); 3936 mutex_destroy(&pf->tc_mutex); 3937 mutex_destroy(&pf->avail_q_mutex); 3938 mutex_destroy(&pf->vfs.table_lock); 3939 3940 if (pf->avail_txqs) { 3941 bitmap_free(pf->avail_txqs); 3942 pf->avail_txqs = NULL; 3943 } 3944 3945 if (pf->avail_rxqs) { 3946 bitmap_free(pf->avail_rxqs); 3947 pf->avail_rxqs = NULL; 3948 } 3949 3950 if (pf->ptp.clock) 3951 ptp_clock_unregister(pf->ptp.clock); 3952 } 3953 3954 /** 3955 * ice_set_pf_caps - set PFs capability flags 3956 * @pf: pointer to the PF instance 3957 */ 3958 static void ice_set_pf_caps(struct ice_pf *pf) 3959 { 3960 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3961 3962 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3963 if (func_caps->common_cap.rdma) 3964 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3965 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3966 if (func_caps->common_cap.dcb) 3967 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3968 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3969 if (func_caps->common_cap.sr_iov_1_1) { 3970 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3971 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3972 ICE_MAX_SRIOV_VFS); 3973 } 3974 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3975 if (func_caps->common_cap.rss_table_size) 3976 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3977 3978 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3979 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3980 u16 unused; 3981 3982 /* ctrl_vsi_idx will be set to a valid value when flow director 3983 * is setup by ice_init_fdir 3984 */ 3985 pf->ctrl_vsi_idx = ICE_NO_VSI; 3986 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3987 /* force guaranteed filter pool for PF */ 3988 ice_alloc_fd_guar_item(&pf->hw, &unused, 3989 func_caps->fd_fltr_guar); 3990 /* force shared filter pool for PF */ 3991 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3992 func_caps->fd_fltr_best_effort); 3993 } 3994 3995 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3996 if (func_caps->common_cap.ieee_1588 && 3997 !(pf->hw.mac_type == ICE_MAC_E830)) 3998 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3999 4000 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4001 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4002 } 4003 4004 /** 4005 * ice_init_pf - Initialize general software structures (struct ice_pf) 4006 * @pf: board private structure to initialize 4007 */ 4008 static int ice_init_pf(struct ice_pf *pf) 4009 { 4010 ice_set_pf_caps(pf); 4011 4012 mutex_init(&pf->sw_mutex); 4013 mutex_init(&pf->tc_mutex); 4014 mutex_init(&pf->adev_mutex); 4015 mutex_init(&pf->lag_mutex); 4016 4017 INIT_HLIST_HEAD(&pf->aq_wait_list); 4018 spin_lock_init(&pf->aq_wait_lock); 4019 init_waitqueue_head(&pf->aq_wait_queue); 4020 4021 init_waitqueue_head(&pf->reset_wait_queue); 4022 4023 /* setup service timer and periodic service task */ 4024 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4025 pf->serv_tmr_period = HZ; 4026 INIT_WORK(&pf->serv_task, ice_service_task); 4027 clear_bit(ICE_SERVICE_SCHED, pf->state); 4028 4029 mutex_init(&pf->avail_q_mutex); 4030 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4031 if (!pf->avail_txqs) 4032 return -ENOMEM; 4033 4034 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4035 if (!pf->avail_rxqs) { 4036 bitmap_free(pf->avail_txqs); 4037 pf->avail_txqs = NULL; 4038 return -ENOMEM; 4039 } 4040 4041 mutex_init(&pf->vfs.table_lock); 4042 hash_init(pf->vfs.table); 4043 ice_mbx_init_snapshot(&pf->hw); 4044 4045 return 0; 4046 } 4047 4048 /** 4049 * ice_is_wol_supported - check if WoL is supported 4050 * @hw: pointer to hardware info 4051 * 4052 * Check if WoL is supported based on the HW configuration. 4053 * Returns true if NVM supports and enables WoL for this port, false otherwise 4054 */ 4055 bool ice_is_wol_supported(struct ice_hw *hw) 4056 { 4057 u16 wol_ctrl; 4058 4059 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4060 * word) indicates WoL is not supported on the corresponding PF ID. 4061 */ 4062 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4063 return false; 4064 4065 return !(BIT(hw->port_info->lport) & wol_ctrl); 4066 } 4067 4068 /** 4069 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4070 * @vsi: VSI being changed 4071 * @new_rx: new number of Rx queues 4072 * @new_tx: new number of Tx queues 4073 * @locked: is adev device_lock held 4074 * 4075 * Only change the number of queues if new_tx, or new_rx is non-0. 4076 * 4077 * Returns 0 on success. 4078 */ 4079 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4080 { 4081 struct ice_pf *pf = vsi->back; 4082 int err = 0, timeout = 50; 4083 4084 if (!new_rx && !new_tx) 4085 return -EINVAL; 4086 4087 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4088 timeout--; 4089 if (!timeout) 4090 return -EBUSY; 4091 usleep_range(1000, 2000); 4092 } 4093 4094 if (new_tx) 4095 vsi->req_txq = (u16)new_tx; 4096 if (new_rx) 4097 vsi->req_rxq = (u16)new_rx; 4098 4099 /* set for the next time the netdev is started */ 4100 if (!netif_running(vsi->netdev)) { 4101 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4102 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4103 goto done; 4104 } 4105 4106 ice_vsi_close(vsi); 4107 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4108 ice_pf_dcb_recfg(pf, locked); 4109 ice_vsi_open(vsi); 4110 done: 4111 clear_bit(ICE_CFG_BUSY, pf->state); 4112 return err; 4113 } 4114 4115 /** 4116 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4117 * @pf: PF to configure 4118 * 4119 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4120 * VSI can still Tx/Rx VLAN tagged packets. 4121 */ 4122 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4123 { 4124 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4125 struct ice_vsi_ctx *ctxt; 4126 struct ice_hw *hw; 4127 int status; 4128 4129 if (!vsi) 4130 return; 4131 4132 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4133 if (!ctxt) 4134 return; 4135 4136 hw = &pf->hw; 4137 ctxt->info = vsi->info; 4138 4139 ctxt->info.valid_sections = 4140 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4141 ICE_AQ_VSI_PROP_SECURITY_VALID | 4142 ICE_AQ_VSI_PROP_SW_VALID); 4143 4144 /* disable VLAN anti-spoof */ 4145 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4146 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4147 4148 /* disable VLAN pruning and keep all other settings */ 4149 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4150 4151 /* allow all VLANs on Tx and don't strip on Rx */ 4152 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4153 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4154 4155 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4156 if (status) { 4157 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4158 status, ice_aq_str(hw->adminq.sq_last_status)); 4159 } else { 4160 vsi->info.sec_flags = ctxt->info.sec_flags; 4161 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4162 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4163 } 4164 4165 kfree(ctxt); 4166 } 4167 4168 /** 4169 * ice_log_pkg_init - log result of DDP package load 4170 * @hw: pointer to hardware info 4171 * @state: state of package load 4172 */ 4173 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4174 { 4175 struct ice_pf *pf = hw->back; 4176 struct device *dev; 4177 4178 dev = ice_pf_to_dev(pf); 4179 4180 switch (state) { 4181 case ICE_DDP_PKG_SUCCESS: 4182 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4183 hw->active_pkg_name, 4184 hw->active_pkg_ver.major, 4185 hw->active_pkg_ver.minor, 4186 hw->active_pkg_ver.update, 4187 hw->active_pkg_ver.draft); 4188 break; 4189 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4190 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4191 hw->active_pkg_name, 4192 hw->active_pkg_ver.major, 4193 hw->active_pkg_ver.minor, 4194 hw->active_pkg_ver.update, 4195 hw->active_pkg_ver.draft); 4196 break; 4197 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4198 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4199 hw->active_pkg_name, 4200 hw->active_pkg_ver.major, 4201 hw->active_pkg_ver.minor, 4202 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4203 break; 4204 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4205 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4206 hw->active_pkg_name, 4207 hw->active_pkg_ver.major, 4208 hw->active_pkg_ver.minor, 4209 hw->active_pkg_ver.update, 4210 hw->active_pkg_ver.draft, 4211 hw->pkg_name, 4212 hw->pkg_ver.major, 4213 hw->pkg_ver.minor, 4214 hw->pkg_ver.update, 4215 hw->pkg_ver.draft); 4216 break; 4217 case ICE_DDP_PKG_FW_MISMATCH: 4218 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4219 break; 4220 case ICE_DDP_PKG_INVALID_FILE: 4221 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4222 break; 4223 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4224 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4225 break; 4226 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4227 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4228 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4229 break; 4230 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4231 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4232 break; 4233 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4234 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4235 break; 4236 case ICE_DDP_PKG_LOAD_ERROR: 4237 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4238 /* poll for reset to complete */ 4239 if (ice_check_reset(hw)) 4240 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4241 break; 4242 case ICE_DDP_PKG_ERR: 4243 default: 4244 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4245 break; 4246 } 4247 } 4248 4249 /** 4250 * ice_load_pkg - load/reload the DDP Package file 4251 * @firmware: firmware structure when firmware requested or NULL for reload 4252 * @pf: pointer to the PF instance 4253 * 4254 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4255 * initialize HW tables. 4256 */ 4257 static void 4258 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4259 { 4260 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4261 struct device *dev = ice_pf_to_dev(pf); 4262 struct ice_hw *hw = &pf->hw; 4263 4264 /* Load DDP Package */ 4265 if (firmware && !hw->pkg_copy) { 4266 state = ice_copy_and_init_pkg(hw, firmware->data, 4267 firmware->size); 4268 ice_log_pkg_init(hw, state); 4269 } else if (!firmware && hw->pkg_copy) { 4270 /* Reload package during rebuild after CORER/GLOBR reset */ 4271 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4272 ice_log_pkg_init(hw, state); 4273 } else { 4274 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4275 } 4276 4277 if (!ice_is_init_pkg_successful(state)) { 4278 /* Safe Mode */ 4279 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4280 return; 4281 } 4282 4283 /* Successful download package is the precondition for advanced 4284 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4285 */ 4286 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4287 } 4288 4289 /** 4290 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4291 * @pf: pointer to the PF structure 4292 * 4293 * There is no error returned here because the driver should be able to handle 4294 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4295 * specifically with Tx. 4296 */ 4297 static void ice_verify_cacheline_size(struct ice_pf *pf) 4298 { 4299 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4300 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4301 ICE_CACHE_LINE_BYTES); 4302 } 4303 4304 /** 4305 * ice_send_version - update firmware with driver version 4306 * @pf: PF struct 4307 * 4308 * Returns 0 on success, else error code 4309 */ 4310 static int ice_send_version(struct ice_pf *pf) 4311 { 4312 struct ice_driver_ver dv; 4313 4314 dv.major_ver = 0xff; 4315 dv.minor_ver = 0xff; 4316 dv.build_ver = 0xff; 4317 dv.subbuild_ver = 0; 4318 strscpy((char *)dv.driver_string, UTS_RELEASE, 4319 sizeof(dv.driver_string)); 4320 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4321 } 4322 4323 /** 4324 * ice_init_fdir - Initialize flow director VSI and configuration 4325 * @pf: pointer to the PF instance 4326 * 4327 * returns 0 on success, negative on error 4328 */ 4329 static int ice_init_fdir(struct ice_pf *pf) 4330 { 4331 struct device *dev = ice_pf_to_dev(pf); 4332 struct ice_vsi *ctrl_vsi; 4333 int err; 4334 4335 /* Side Band Flow Director needs to have a control VSI. 4336 * Allocate it and store it in the PF. 4337 */ 4338 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4339 if (!ctrl_vsi) { 4340 dev_dbg(dev, "could not create control VSI\n"); 4341 return -ENOMEM; 4342 } 4343 4344 err = ice_vsi_open_ctrl(ctrl_vsi); 4345 if (err) { 4346 dev_dbg(dev, "could not open control VSI\n"); 4347 goto err_vsi_open; 4348 } 4349 4350 mutex_init(&pf->hw.fdir_fltr_lock); 4351 4352 err = ice_fdir_create_dflt_rules(pf); 4353 if (err) 4354 goto err_fdir_rule; 4355 4356 return 0; 4357 4358 err_fdir_rule: 4359 ice_fdir_release_flows(&pf->hw); 4360 ice_vsi_close(ctrl_vsi); 4361 err_vsi_open: 4362 ice_vsi_release(ctrl_vsi); 4363 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4364 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4365 pf->ctrl_vsi_idx = ICE_NO_VSI; 4366 } 4367 return err; 4368 } 4369 4370 static void ice_deinit_fdir(struct ice_pf *pf) 4371 { 4372 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4373 4374 if (!vsi) 4375 return; 4376 4377 ice_vsi_manage_fdir(vsi, false); 4378 ice_vsi_release(vsi); 4379 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4380 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4381 pf->ctrl_vsi_idx = ICE_NO_VSI; 4382 } 4383 4384 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4385 } 4386 4387 /** 4388 * ice_get_opt_fw_name - return optional firmware file name or NULL 4389 * @pf: pointer to the PF instance 4390 */ 4391 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4392 { 4393 /* Optional firmware name same as default with additional dash 4394 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4395 */ 4396 struct pci_dev *pdev = pf->pdev; 4397 char *opt_fw_filename; 4398 u64 dsn; 4399 4400 /* Determine the name of the optional file using the DSN (two 4401 * dwords following the start of the DSN Capability). 4402 */ 4403 dsn = pci_get_dsn(pdev); 4404 if (!dsn) 4405 return NULL; 4406 4407 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4408 if (!opt_fw_filename) 4409 return NULL; 4410 4411 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4412 ICE_DDP_PKG_PATH, dsn); 4413 4414 return opt_fw_filename; 4415 } 4416 4417 /** 4418 * ice_request_fw - Device initialization routine 4419 * @pf: pointer to the PF instance 4420 */ 4421 static void ice_request_fw(struct ice_pf *pf) 4422 { 4423 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4424 const struct firmware *firmware = NULL; 4425 struct device *dev = ice_pf_to_dev(pf); 4426 int err = 0; 4427 4428 /* optional device-specific DDP (if present) overrides the default DDP 4429 * package file. kernel logs a debug message if the file doesn't exist, 4430 * and warning messages for other errors. 4431 */ 4432 if (opt_fw_filename) { 4433 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4434 if (err) { 4435 kfree(opt_fw_filename); 4436 goto dflt_pkg_load; 4437 } 4438 4439 /* request for firmware was successful. Download to device */ 4440 ice_load_pkg(firmware, pf); 4441 kfree(opt_fw_filename); 4442 release_firmware(firmware); 4443 return; 4444 } 4445 4446 dflt_pkg_load: 4447 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4448 if (err) { 4449 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4450 return; 4451 } 4452 4453 /* request for firmware was successful. Download to device */ 4454 ice_load_pkg(firmware, pf); 4455 release_firmware(firmware); 4456 } 4457 4458 /** 4459 * ice_print_wake_reason - show the wake up cause in the log 4460 * @pf: pointer to the PF struct 4461 */ 4462 static void ice_print_wake_reason(struct ice_pf *pf) 4463 { 4464 u32 wus = pf->wakeup_reason; 4465 const char *wake_str; 4466 4467 /* if no wake event, nothing to print */ 4468 if (!wus) 4469 return; 4470 4471 if (wus & PFPM_WUS_LNKC_M) 4472 wake_str = "Link\n"; 4473 else if (wus & PFPM_WUS_MAG_M) 4474 wake_str = "Magic Packet\n"; 4475 else if (wus & PFPM_WUS_MNG_M) 4476 wake_str = "Management\n"; 4477 else if (wus & PFPM_WUS_FW_RST_WK_M) 4478 wake_str = "Firmware Reset\n"; 4479 else 4480 wake_str = "Unknown\n"; 4481 4482 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4483 } 4484 4485 /** 4486 * ice_pf_fwlog_update_module - update 1 module 4487 * @pf: pointer to the PF struct 4488 * @log_level: log_level to use for the @module 4489 * @module: module to update 4490 */ 4491 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4492 { 4493 struct ice_hw *hw = &pf->hw; 4494 4495 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4496 } 4497 4498 /** 4499 * ice_register_netdev - register netdev 4500 * @vsi: pointer to the VSI struct 4501 */ 4502 static int ice_register_netdev(struct ice_vsi *vsi) 4503 { 4504 int err; 4505 4506 if (!vsi || !vsi->netdev) 4507 return -EIO; 4508 4509 err = register_netdev(vsi->netdev); 4510 if (err) 4511 return err; 4512 4513 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4514 netif_carrier_off(vsi->netdev); 4515 netif_tx_stop_all_queues(vsi->netdev); 4516 4517 return 0; 4518 } 4519 4520 static void ice_unregister_netdev(struct ice_vsi *vsi) 4521 { 4522 if (!vsi || !vsi->netdev) 4523 return; 4524 4525 unregister_netdev(vsi->netdev); 4526 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4527 } 4528 4529 /** 4530 * ice_cfg_netdev - Allocate, configure and register a netdev 4531 * @vsi: the VSI associated with the new netdev 4532 * 4533 * Returns 0 on success, negative value on failure 4534 */ 4535 static int ice_cfg_netdev(struct ice_vsi *vsi) 4536 { 4537 struct ice_netdev_priv *np; 4538 struct net_device *netdev; 4539 u8 mac_addr[ETH_ALEN]; 4540 4541 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4542 vsi->alloc_rxq); 4543 if (!netdev) 4544 return -ENOMEM; 4545 4546 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4547 vsi->netdev = netdev; 4548 np = netdev_priv(netdev); 4549 np->vsi = vsi; 4550 4551 ice_set_netdev_features(netdev); 4552 ice_set_ops(vsi); 4553 4554 if (vsi->type == ICE_VSI_PF) { 4555 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4556 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4557 eth_hw_addr_set(netdev, mac_addr); 4558 } 4559 4560 netdev->priv_flags |= IFF_UNICAST_FLT; 4561 4562 /* Setup netdev TC information */ 4563 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4564 4565 netdev->max_mtu = ICE_MAX_MTU; 4566 4567 return 0; 4568 } 4569 4570 static void ice_decfg_netdev(struct ice_vsi *vsi) 4571 { 4572 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4573 free_netdev(vsi->netdev); 4574 vsi->netdev = NULL; 4575 } 4576 4577 /** 4578 * ice_wait_for_fw - wait for full FW readiness 4579 * @hw: pointer to the hardware structure 4580 * @timeout: milliseconds that can elapse before timing out 4581 */ 4582 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4583 { 4584 int fw_loading; 4585 u32 elapsed = 0; 4586 4587 while (elapsed <= timeout) { 4588 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4589 4590 /* firmware was not yet loaded, we have to wait more */ 4591 if (fw_loading) { 4592 elapsed += 100; 4593 msleep(100); 4594 continue; 4595 } 4596 return 0; 4597 } 4598 4599 return -ETIMEDOUT; 4600 } 4601 4602 int ice_init_dev(struct ice_pf *pf) 4603 { 4604 struct device *dev = ice_pf_to_dev(pf); 4605 struct ice_hw *hw = &pf->hw; 4606 int err; 4607 4608 err = ice_init_hw(hw); 4609 if (err) { 4610 dev_err(dev, "ice_init_hw failed: %d\n", err); 4611 return err; 4612 } 4613 4614 /* Some cards require longer initialization times 4615 * due to necessity of loading FW from an external source. 4616 * This can take even half a minute. 4617 */ 4618 if (ice_is_pf_c827(hw)) { 4619 err = ice_wait_for_fw(hw, 30000); 4620 if (err) { 4621 dev_err(dev, "ice_wait_for_fw timed out"); 4622 return err; 4623 } 4624 } 4625 4626 ice_init_feature_support(pf); 4627 4628 ice_request_fw(pf); 4629 4630 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4631 * set in pf->state, which will cause ice_is_safe_mode to return 4632 * true 4633 */ 4634 if (ice_is_safe_mode(pf)) { 4635 /* we already got function/device capabilities but these don't 4636 * reflect what the driver needs to do in safe mode. Instead of 4637 * adding conditional logic everywhere to ignore these 4638 * device/function capabilities, override them. 4639 */ 4640 ice_set_safe_mode_caps(hw); 4641 } 4642 4643 err = ice_init_pf(pf); 4644 if (err) { 4645 dev_err(dev, "ice_init_pf failed: %d\n", err); 4646 goto err_init_pf; 4647 } 4648 4649 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4650 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4651 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4652 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4653 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4654 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4655 pf->hw.tnl.valid_count[TNL_VXLAN]; 4656 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4657 UDP_TUNNEL_TYPE_VXLAN; 4658 } 4659 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4660 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4661 pf->hw.tnl.valid_count[TNL_GENEVE]; 4662 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4663 UDP_TUNNEL_TYPE_GENEVE; 4664 } 4665 4666 err = ice_init_interrupt_scheme(pf); 4667 if (err) { 4668 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4669 err = -EIO; 4670 goto err_init_interrupt_scheme; 4671 } 4672 4673 /* In case of MSIX we are going to setup the misc vector right here 4674 * to handle admin queue events etc. In case of legacy and MSI 4675 * the misc functionality and queue processing is combined in 4676 * the same vector and that gets setup at open. 4677 */ 4678 err = ice_req_irq_msix_misc(pf); 4679 if (err) { 4680 dev_err(dev, "setup of misc vector failed: %d\n", err); 4681 goto err_req_irq_msix_misc; 4682 } 4683 4684 return 0; 4685 4686 err_req_irq_msix_misc: 4687 ice_clear_interrupt_scheme(pf); 4688 err_init_interrupt_scheme: 4689 ice_deinit_pf(pf); 4690 err_init_pf: 4691 ice_deinit_hw(hw); 4692 return err; 4693 } 4694 4695 void ice_deinit_dev(struct ice_pf *pf) 4696 { 4697 ice_free_irq_msix_misc(pf); 4698 ice_deinit_pf(pf); 4699 ice_deinit_hw(&pf->hw); 4700 4701 /* Service task is already stopped, so call reset directly. */ 4702 ice_reset(&pf->hw, ICE_RESET_PFR); 4703 pci_wait_for_pending_transaction(pf->pdev); 4704 ice_clear_interrupt_scheme(pf); 4705 } 4706 4707 static void ice_init_features(struct ice_pf *pf) 4708 { 4709 struct device *dev = ice_pf_to_dev(pf); 4710 4711 if (ice_is_safe_mode(pf)) 4712 return; 4713 4714 /* initialize DDP driven features */ 4715 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4716 ice_ptp_init(pf); 4717 4718 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4719 ice_gnss_init(pf); 4720 4721 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4722 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4723 ice_dpll_init(pf); 4724 4725 /* Note: Flow director init failure is non-fatal to load */ 4726 if (ice_init_fdir(pf)) 4727 dev_err(dev, "could not initialize flow director\n"); 4728 4729 /* Note: DCB init failure is non-fatal to load */ 4730 if (ice_init_pf_dcb(pf, false)) { 4731 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4732 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4733 } else { 4734 ice_cfg_lldp_mib_change(&pf->hw, true); 4735 } 4736 4737 if (ice_init_lag(pf)) 4738 dev_warn(dev, "Failed to init link aggregation support\n"); 4739 4740 ice_hwmon_init(pf); 4741 } 4742 4743 static void ice_deinit_features(struct ice_pf *pf) 4744 { 4745 if (ice_is_safe_mode(pf)) 4746 return; 4747 4748 ice_deinit_lag(pf); 4749 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4750 ice_cfg_lldp_mib_change(&pf->hw, false); 4751 ice_deinit_fdir(pf); 4752 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4753 ice_gnss_exit(pf); 4754 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4755 ice_ptp_release(pf); 4756 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4757 ice_dpll_deinit(pf); 4758 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4759 xa_destroy(&pf->eswitch.reprs); 4760 } 4761 4762 static void ice_init_wakeup(struct ice_pf *pf) 4763 { 4764 /* Save wakeup reason register for later use */ 4765 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4766 4767 /* check for a power management event */ 4768 ice_print_wake_reason(pf); 4769 4770 /* clear wake status, all bits */ 4771 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4772 4773 /* Disable WoL at init, wait for user to enable */ 4774 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4775 } 4776 4777 static int ice_init_link(struct ice_pf *pf) 4778 { 4779 struct device *dev = ice_pf_to_dev(pf); 4780 int err; 4781 4782 err = ice_init_link_events(pf->hw.port_info); 4783 if (err) { 4784 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4785 return err; 4786 } 4787 4788 /* not a fatal error if this fails */ 4789 err = ice_init_nvm_phy_type(pf->hw.port_info); 4790 if (err) 4791 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4792 4793 /* not a fatal error if this fails */ 4794 err = ice_update_link_info(pf->hw.port_info); 4795 if (err) 4796 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4797 4798 ice_init_link_dflt_override(pf->hw.port_info); 4799 4800 ice_check_link_cfg_err(pf, 4801 pf->hw.port_info->phy.link_info.link_cfg_err); 4802 4803 /* if media available, initialize PHY settings */ 4804 if (pf->hw.port_info->phy.link_info.link_info & 4805 ICE_AQ_MEDIA_AVAILABLE) { 4806 /* not a fatal error if this fails */ 4807 err = ice_init_phy_user_cfg(pf->hw.port_info); 4808 if (err) 4809 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4810 4811 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4812 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4813 4814 if (vsi) 4815 ice_configure_phy(vsi); 4816 } 4817 } else { 4818 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4819 } 4820 4821 return err; 4822 } 4823 4824 static int ice_init_pf_sw(struct ice_pf *pf) 4825 { 4826 bool dvm = ice_is_dvm_ena(&pf->hw); 4827 struct ice_vsi *vsi; 4828 int err; 4829 4830 /* create switch struct for the switch element created by FW on boot */ 4831 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4832 if (!pf->first_sw) 4833 return -ENOMEM; 4834 4835 if (pf->hw.evb_veb) 4836 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4837 else 4838 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4839 4840 pf->first_sw->pf = pf; 4841 4842 /* record the sw_id available for later use */ 4843 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4844 4845 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4846 if (err) 4847 goto err_aq_set_port_params; 4848 4849 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4850 if (!vsi) { 4851 err = -ENOMEM; 4852 goto err_pf_vsi_setup; 4853 } 4854 4855 return 0; 4856 4857 err_pf_vsi_setup: 4858 err_aq_set_port_params: 4859 kfree(pf->first_sw); 4860 return err; 4861 } 4862 4863 static void ice_deinit_pf_sw(struct ice_pf *pf) 4864 { 4865 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4866 4867 if (!vsi) 4868 return; 4869 4870 ice_vsi_release(vsi); 4871 kfree(pf->first_sw); 4872 } 4873 4874 static int ice_alloc_vsis(struct ice_pf *pf) 4875 { 4876 struct device *dev = ice_pf_to_dev(pf); 4877 4878 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4879 if (!pf->num_alloc_vsi) 4880 return -EIO; 4881 4882 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4883 dev_warn(dev, 4884 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4885 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4886 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4887 } 4888 4889 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4890 GFP_KERNEL); 4891 if (!pf->vsi) 4892 return -ENOMEM; 4893 4894 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4895 sizeof(*pf->vsi_stats), GFP_KERNEL); 4896 if (!pf->vsi_stats) { 4897 devm_kfree(dev, pf->vsi); 4898 return -ENOMEM; 4899 } 4900 4901 return 0; 4902 } 4903 4904 static void ice_dealloc_vsis(struct ice_pf *pf) 4905 { 4906 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4907 pf->vsi_stats = NULL; 4908 4909 pf->num_alloc_vsi = 0; 4910 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4911 pf->vsi = NULL; 4912 } 4913 4914 static int ice_init_devlink(struct ice_pf *pf) 4915 { 4916 int err; 4917 4918 err = ice_devlink_register_params(pf); 4919 if (err) 4920 return err; 4921 4922 ice_devlink_init_regions(pf); 4923 ice_devlink_register(pf); 4924 4925 return 0; 4926 } 4927 4928 static void ice_deinit_devlink(struct ice_pf *pf) 4929 { 4930 ice_devlink_unregister(pf); 4931 ice_devlink_destroy_regions(pf); 4932 ice_devlink_unregister_params(pf); 4933 } 4934 4935 static int ice_init(struct ice_pf *pf) 4936 { 4937 int err; 4938 4939 err = ice_init_dev(pf); 4940 if (err) 4941 return err; 4942 4943 err = ice_alloc_vsis(pf); 4944 if (err) 4945 goto err_alloc_vsis; 4946 4947 err = ice_init_pf_sw(pf); 4948 if (err) 4949 goto err_init_pf_sw; 4950 4951 ice_init_wakeup(pf); 4952 4953 err = ice_init_link(pf); 4954 if (err) 4955 goto err_init_link; 4956 4957 err = ice_send_version(pf); 4958 if (err) 4959 goto err_init_link; 4960 4961 ice_verify_cacheline_size(pf); 4962 4963 if (ice_is_safe_mode(pf)) 4964 ice_set_safe_mode_vlan_cfg(pf); 4965 else 4966 /* print PCI link speed and width */ 4967 pcie_print_link_status(pf->pdev); 4968 4969 /* ready to go, so clear down state bit */ 4970 clear_bit(ICE_DOWN, pf->state); 4971 clear_bit(ICE_SERVICE_DIS, pf->state); 4972 4973 /* since everything is good, start the service timer */ 4974 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4975 4976 return 0; 4977 4978 err_init_link: 4979 ice_deinit_pf_sw(pf); 4980 err_init_pf_sw: 4981 ice_dealloc_vsis(pf); 4982 err_alloc_vsis: 4983 ice_deinit_dev(pf); 4984 return err; 4985 } 4986 4987 static void ice_deinit(struct ice_pf *pf) 4988 { 4989 set_bit(ICE_SERVICE_DIS, pf->state); 4990 set_bit(ICE_DOWN, pf->state); 4991 4992 ice_deinit_pf_sw(pf); 4993 ice_dealloc_vsis(pf); 4994 ice_deinit_dev(pf); 4995 } 4996 4997 /** 4998 * ice_load - load pf by init hw and starting VSI 4999 * @pf: pointer to the pf instance 5000 * 5001 * This function has to be called under devl_lock. 5002 */ 5003 int ice_load(struct ice_pf *pf) 5004 { 5005 struct ice_vsi *vsi; 5006 int err; 5007 5008 devl_assert_locked(priv_to_devlink(pf)); 5009 5010 vsi = ice_get_main_vsi(pf); 5011 5012 /* init channel list */ 5013 INIT_LIST_HEAD(&vsi->ch_list); 5014 5015 err = ice_cfg_netdev(vsi); 5016 if (err) 5017 return err; 5018 5019 /* Setup DCB netlink interface */ 5020 ice_dcbnl_setup(vsi); 5021 5022 err = ice_init_mac_fltr(pf); 5023 if (err) 5024 goto err_init_mac_fltr; 5025 5026 err = ice_devlink_create_pf_port(pf); 5027 if (err) 5028 goto err_devlink_create_pf_port; 5029 5030 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5031 5032 err = ice_register_netdev(vsi); 5033 if (err) 5034 goto err_register_netdev; 5035 5036 err = ice_tc_indir_block_register(vsi); 5037 if (err) 5038 goto err_tc_indir_block_register; 5039 5040 ice_napi_add(vsi); 5041 5042 err = ice_init_rdma(pf); 5043 if (err) 5044 goto err_init_rdma; 5045 5046 ice_init_features(pf); 5047 ice_service_task_restart(pf); 5048 5049 clear_bit(ICE_DOWN, pf->state); 5050 5051 return 0; 5052 5053 err_init_rdma: 5054 ice_tc_indir_block_unregister(vsi); 5055 err_tc_indir_block_register: 5056 ice_unregister_netdev(vsi); 5057 err_register_netdev: 5058 ice_devlink_destroy_pf_port(pf); 5059 err_devlink_create_pf_port: 5060 err_init_mac_fltr: 5061 ice_decfg_netdev(vsi); 5062 return err; 5063 } 5064 5065 /** 5066 * ice_unload - unload pf by stopping VSI and deinit hw 5067 * @pf: pointer to the pf instance 5068 * 5069 * This function has to be called under devl_lock. 5070 */ 5071 void ice_unload(struct ice_pf *pf) 5072 { 5073 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5074 5075 devl_assert_locked(priv_to_devlink(pf)); 5076 5077 ice_deinit_features(pf); 5078 ice_deinit_rdma(pf); 5079 ice_tc_indir_block_unregister(vsi); 5080 ice_unregister_netdev(vsi); 5081 ice_devlink_destroy_pf_port(pf); 5082 ice_decfg_netdev(vsi); 5083 } 5084 5085 /** 5086 * ice_probe - Device initialization routine 5087 * @pdev: PCI device information struct 5088 * @ent: entry in ice_pci_tbl 5089 * 5090 * Returns 0 on success, negative on failure 5091 */ 5092 static int 5093 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5094 { 5095 struct device *dev = &pdev->dev; 5096 struct ice_pf *pf; 5097 struct ice_hw *hw; 5098 int err; 5099 5100 if (pdev->is_virtfn) { 5101 dev_err(dev, "can't probe a virtual function\n"); 5102 return -EINVAL; 5103 } 5104 5105 /* when under a kdump kernel initiate a reset before enabling the 5106 * device in order to clear out any pending DMA transactions. These 5107 * transactions can cause some systems to machine check when doing 5108 * the pcim_enable_device() below. 5109 */ 5110 if (is_kdump_kernel()) { 5111 pci_save_state(pdev); 5112 pci_clear_master(pdev); 5113 err = pcie_flr(pdev); 5114 if (err) 5115 return err; 5116 pci_restore_state(pdev); 5117 } 5118 5119 /* this driver uses devres, see 5120 * Documentation/driver-api/driver-model/devres.rst 5121 */ 5122 err = pcim_enable_device(pdev); 5123 if (err) 5124 return err; 5125 5126 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5127 if (err) { 5128 dev_err(dev, "BAR0 I/O map error %d\n", err); 5129 return err; 5130 } 5131 5132 pf = ice_allocate_pf(dev); 5133 if (!pf) 5134 return -ENOMEM; 5135 5136 /* initialize Auxiliary index to invalid value */ 5137 pf->aux_idx = -1; 5138 5139 /* set up for high or low DMA */ 5140 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5141 if (err) { 5142 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5143 return err; 5144 } 5145 5146 pci_set_master(pdev); 5147 5148 pf->pdev = pdev; 5149 pci_set_drvdata(pdev, pf); 5150 set_bit(ICE_DOWN, pf->state); 5151 /* Disable service task until DOWN bit is cleared */ 5152 set_bit(ICE_SERVICE_DIS, pf->state); 5153 5154 hw = &pf->hw; 5155 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5156 pci_save_state(pdev); 5157 5158 hw->back = pf; 5159 hw->port_info = NULL; 5160 hw->vendor_id = pdev->vendor; 5161 hw->device_id = pdev->device; 5162 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5163 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5164 hw->subsystem_device_id = pdev->subsystem_device; 5165 hw->bus.device = PCI_SLOT(pdev->devfn); 5166 hw->bus.func = PCI_FUNC(pdev->devfn); 5167 ice_set_ctrlq_len(hw); 5168 5169 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5170 5171 #ifndef CONFIG_DYNAMIC_DEBUG 5172 if (debug < -1) 5173 hw->debug_mask = debug; 5174 #endif 5175 5176 err = ice_init(pf); 5177 if (err) 5178 goto err_init; 5179 5180 devl_lock(priv_to_devlink(pf)); 5181 err = ice_load(pf); 5182 devl_unlock(priv_to_devlink(pf)); 5183 if (err) 5184 goto err_load; 5185 5186 err = ice_init_devlink(pf); 5187 if (err) 5188 goto err_init_devlink; 5189 5190 return 0; 5191 5192 err_init_devlink: 5193 devl_lock(priv_to_devlink(pf)); 5194 ice_unload(pf); 5195 devl_unlock(priv_to_devlink(pf)); 5196 err_load: 5197 ice_deinit(pf); 5198 err_init: 5199 pci_disable_device(pdev); 5200 return err; 5201 } 5202 5203 /** 5204 * ice_set_wake - enable or disable Wake on LAN 5205 * @pf: pointer to the PF struct 5206 * 5207 * Simple helper for WoL control 5208 */ 5209 static void ice_set_wake(struct ice_pf *pf) 5210 { 5211 struct ice_hw *hw = &pf->hw; 5212 bool wol = pf->wol_ena; 5213 5214 /* clear wake state, otherwise new wake events won't fire */ 5215 wr32(hw, PFPM_WUS, U32_MAX); 5216 5217 /* enable / disable APM wake up, no RMW needed */ 5218 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5219 5220 /* set magic packet filter enabled */ 5221 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5222 } 5223 5224 /** 5225 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5226 * @pf: pointer to the PF struct 5227 * 5228 * Issue firmware command to enable multicast magic wake, making 5229 * sure that any locally administered address (LAA) is used for 5230 * wake, and that PF reset doesn't undo the LAA. 5231 */ 5232 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5233 { 5234 struct device *dev = ice_pf_to_dev(pf); 5235 struct ice_hw *hw = &pf->hw; 5236 u8 mac_addr[ETH_ALEN]; 5237 struct ice_vsi *vsi; 5238 int status; 5239 u8 flags; 5240 5241 if (!pf->wol_ena) 5242 return; 5243 5244 vsi = ice_get_main_vsi(pf); 5245 if (!vsi) 5246 return; 5247 5248 /* Get current MAC address in case it's an LAA */ 5249 if (vsi->netdev) 5250 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5251 else 5252 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5253 5254 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5255 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5256 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5257 5258 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5259 if (status) 5260 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5261 status, ice_aq_str(hw->adminq.sq_last_status)); 5262 } 5263 5264 /** 5265 * ice_remove - Device removal routine 5266 * @pdev: PCI device information struct 5267 */ 5268 static void ice_remove(struct pci_dev *pdev) 5269 { 5270 struct ice_pf *pf = pci_get_drvdata(pdev); 5271 int i; 5272 5273 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5274 if (!ice_is_reset_in_progress(pf->state)) 5275 break; 5276 msleep(100); 5277 } 5278 5279 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5280 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5281 ice_free_vfs(pf); 5282 } 5283 5284 ice_hwmon_exit(pf); 5285 5286 ice_service_task_stop(pf); 5287 ice_aq_cancel_waiting_tasks(pf); 5288 set_bit(ICE_DOWN, pf->state); 5289 5290 if (!ice_is_safe_mode(pf)) 5291 ice_remove_arfs(pf); 5292 5293 ice_deinit_devlink(pf); 5294 5295 devl_lock(priv_to_devlink(pf)); 5296 ice_unload(pf); 5297 devl_unlock(priv_to_devlink(pf)); 5298 5299 ice_deinit(pf); 5300 ice_vsi_release_all(pf); 5301 5302 ice_setup_mc_magic_wake(pf); 5303 ice_set_wake(pf); 5304 5305 pci_disable_device(pdev); 5306 } 5307 5308 /** 5309 * ice_shutdown - PCI callback for shutting down device 5310 * @pdev: PCI device information struct 5311 */ 5312 static void ice_shutdown(struct pci_dev *pdev) 5313 { 5314 struct ice_pf *pf = pci_get_drvdata(pdev); 5315 5316 ice_remove(pdev); 5317 5318 if (system_state == SYSTEM_POWER_OFF) { 5319 pci_wake_from_d3(pdev, pf->wol_ena); 5320 pci_set_power_state(pdev, PCI_D3hot); 5321 } 5322 } 5323 5324 #ifdef CONFIG_PM 5325 /** 5326 * ice_prepare_for_shutdown - prep for PCI shutdown 5327 * @pf: board private structure 5328 * 5329 * Inform or close all dependent features in prep for PCI device shutdown 5330 */ 5331 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5332 { 5333 struct ice_hw *hw = &pf->hw; 5334 u32 v; 5335 5336 /* Notify VFs of impending reset */ 5337 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5338 ice_vc_notify_reset(pf); 5339 5340 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5341 5342 /* disable the VSIs and their queues that are not already DOWN */ 5343 ice_pf_dis_all_vsi(pf, false); 5344 5345 ice_for_each_vsi(pf, v) 5346 if (pf->vsi[v]) 5347 pf->vsi[v]->vsi_num = 0; 5348 5349 ice_shutdown_all_ctrlq(hw); 5350 } 5351 5352 /** 5353 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5354 * @pf: board private structure to reinitialize 5355 * 5356 * This routine reinitialize interrupt scheme that was cleared during 5357 * power management suspend callback. 5358 * 5359 * This should be called during resume routine to re-allocate the q_vectors 5360 * and reacquire interrupts. 5361 */ 5362 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5363 { 5364 struct device *dev = ice_pf_to_dev(pf); 5365 int ret, v; 5366 5367 /* Since we clear MSIX flag during suspend, we need to 5368 * set it back during resume... 5369 */ 5370 5371 ret = ice_init_interrupt_scheme(pf); 5372 if (ret) { 5373 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5374 return ret; 5375 } 5376 5377 /* Remap vectors and rings, after successful re-init interrupts */ 5378 ice_for_each_vsi(pf, v) { 5379 if (!pf->vsi[v]) 5380 continue; 5381 5382 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5383 if (ret) 5384 goto err_reinit; 5385 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5386 ice_vsi_set_napi_queues(pf->vsi[v]); 5387 } 5388 5389 ret = ice_req_irq_msix_misc(pf); 5390 if (ret) { 5391 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5392 ret); 5393 goto err_reinit; 5394 } 5395 5396 return 0; 5397 5398 err_reinit: 5399 while (v--) 5400 if (pf->vsi[v]) 5401 ice_vsi_free_q_vectors(pf->vsi[v]); 5402 5403 return ret; 5404 } 5405 5406 /** 5407 * ice_suspend 5408 * @dev: generic device information structure 5409 * 5410 * Power Management callback to quiesce the device and prepare 5411 * for D3 transition. 5412 */ 5413 static int __maybe_unused ice_suspend(struct device *dev) 5414 { 5415 struct pci_dev *pdev = to_pci_dev(dev); 5416 struct ice_pf *pf; 5417 int disabled, v; 5418 5419 pf = pci_get_drvdata(pdev); 5420 5421 if (!ice_pf_state_is_nominal(pf)) { 5422 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5423 return -EBUSY; 5424 } 5425 5426 /* Stop watchdog tasks until resume completion. 5427 * Even though it is most likely that the service task is 5428 * disabled if the device is suspended or down, the service task's 5429 * state is controlled by a different state bit, and we should 5430 * store and honor whatever state that bit is in at this point. 5431 */ 5432 disabled = ice_service_task_stop(pf); 5433 5434 ice_unplug_aux_dev(pf); 5435 5436 /* Already suspended?, then there is nothing to do */ 5437 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5438 if (!disabled) 5439 ice_service_task_restart(pf); 5440 return 0; 5441 } 5442 5443 if (test_bit(ICE_DOWN, pf->state) || 5444 ice_is_reset_in_progress(pf->state)) { 5445 dev_err(dev, "can't suspend device in reset or already down\n"); 5446 if (!disabled) 5447 ice_service_task_restart(pf); 5448 return 0; 5449 } 5450 5451 ice_setup_mc_magic_wake(pf); 5452 5453 ice_prepare_for_shutdown(pf); 5454 5455 ice_set_wake(pf); 5456 5457 /* Free vectors, clear the interrupt scheme and release IRQs 5458 * for proper hibernation, especially with large number of CPUs. 5459 * Otherwise hibernation might fail when mapping all the vectors back 5460 * to CPU0. 5461 */ 5462 ice_free_irq_msix_misc(pf); 5463 ice_for_each_vsi(pf, v) { 5464 if (!pf->vsi[v]) 5465 continue; 5466 ice_vsi_free_q_vectors(pf->vsi[v]); 5467 } 5468 ice_clear_interrupt_scheme(pf); 5469 5470 pci_save_state(pdev); 5471 pci_wake_from_d3(pdev, pf->wol_ena); 5472 pci_set_power_state(pdev, PCI_D3hot); 5473 return 0; 5474 } 5475 5476 /** 5477 * ice_resume - PM callback for waking up from D3 5478 * @dev: generic device information structure 5479 */ 5480 static int __maybe_unused ice_resume(struct device *dev) 5481 { 5482 struct pci_dev *pdev = to_pci_dev(dev); 5483 enum ice_reset_req reset_type; 5484 struct ice_pf *pf; 5485 struct ice_hw *hw; 5486 int ret; 5487 5488 pci_set_power_state(pdev, PCI_D0); 5489 pci_restore_state(pdev); 5490 pci_save_state(pdev); 5491 5492 if (!pci_device_is_present(pdev)) 5493 return -ENODEV; 5494 5495 ret = pci_enable_device_mem(pdev); 5496 if (ret) { 5497 dev_err(dev, "Cannot enable device after suspend\n"); 5498 return ret; 5499 } 5500 5501 pf = pci_get_drvdata(pdev); 5502 hw = &pf->hw; 5503 5504 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5505 ice_print_wake_reason(pf); 5506 5507 /* We cleared the interrupt scheme when we suspended, so we need to 5508 * restore it now to resume device functionality. 5509 */ 5510 ret = ice_reinit_interrupt_scheme(pf); 5511 if (ret) 5512 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5513 5514 clear_bit(ICE_DOWN, pf->state); 5515 /* Now perform PF reset and rebuild */ 5516 reset_type = ICE_RESET_PFR; 5517 /* re-enable service task for reset, but allow reset to schedule it */ 5518 clear_bit(ICE_SERVICE_DIS, pf->state); 5519 5520 if (ice_schedule_reset(pf, reset_type)) 5521 dev_err(dev, "Reset during resume failed.\n"); 5522 5523 clear_bit(ICE_SUSPENDED, pf->state); 5524 ice_service_task_restart(pf); 5525 5526 /* Restart the service task */ 5527 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5528 5529 return 0; 5530 } 5531 #endif /* CONFIG_PM */ 5532 5533 /** 5534 * ice_pci_err_detected - warning that PCI error has been detected 5535 * @pdev: PCI device information struct 5536 * @err: the type of PCI error 5537 * 5538 * Called to warn that something happened on the PCI bus and the error handling 5539 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5540 */ 5541 static pci_ers_result_t 5542 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5543 { 5544 struct ice_pf *pf = pci_get_drvdata(pdev); 5545 5546 if (!pf) { 5547 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5548 __func__, err); 5549 return PCI_ERS_RESULT_DISCONNECT; 5550 } 5551 5552 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5553 ice_service_task_stop(pf); 5554 5555 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5556 set_bit(ICE_PFR_REQ, pf->state); 5557 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5558 } 5559 } 5560 5561 return PCI_ERS_RESULT_NEED_RESET; 5562 } 5563 5564 /** 5565 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5566 * @pdev: PCI device information struct 5567 * 5568 * Called to determine if the driver can recover from the PCI slot reset by 5569 * using a register read to determine if the device is recoverable. 5570 */ 5571 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5572 { 5573 struct ice_pf *pf = pci_get_drvdata(pdev); 5574 pci_ers_result_t result; 5575 int err; 5576 u32 reg; 5577 5578 err = pci_enable_device_mem(pdev); 5579 if (err) { 5580 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5581 err); 5582 result = PCI_ERS_RESULT_DISCONNECT; 5583 } else { 5584 pci_set_master(pdev); 5585 pci_restore_state(pdev); 5586 pci_save_state(pdev); 5587 pci_wake_from_d3(pdev, false); 5588 5589 /* Check for life */ 5590 reg = rd32(&pf->hw, GLGEN_RTRIG); 5591 if (!reg) 5592 result = PCI_ERS_RESULT_RECOVERED; 5593 else 5594 result = PCI_ERS_RESULT_DISCONNECT; 5595 } 5596 5597 return result; 5598 } 5599 5600 /** 5601 * ice_pci_err_resume - restart operations after PCI error recovery 5602 * @pdev: PCI device information struct 5603 * 5604 * Called to allow the driver to bring things back up after PCI error and/or 5605 * reset recovery have finished 5606 */ 5607 static void ice_pci_err_resume(struct pci_dev *pdev) 5608 { 5609 struct ice_pf *pf = pci_get_drvdata(pdev); 5610 5611 if (!pf) { 5612 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5613 __func__); 5614 return; 5615 } 5616 5617 if (test_bit(ICE_SUSPENDED, pf->state)) { 5618 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5619 __func__); 5620 return; 5621 } 5622 5623 ice_restore_all_vfs_msi_state(pf); 5624 5625 ice_do_reset(pf, ICE_RESET_PFR); 5626 ice_service_task_restart(pf); 5627 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5628 } 5629 5630 /** 5631 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5632 * @pdev: PCI device information struct 5633 */ 5634 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5635 { 5636 struct ice_pf *pf = pci_get_drvdata(pdev); 5637 5638 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5639 ice_service_task_stop(pf); 5640 5641 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5642 set_bit(ICE_PFR_REQ, pf->state); 5643 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5644 } 5645 } 5646 } 5647 5648 /** 5649 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5650 * @pdev: PCI device information struct 5651 */ 5652 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5653 { 5654 ice_pci_err_resume(pdev); 5655 } 5656 5657 /* ice_pci_tbl - PCI Device ID Table 5658 * 5659 * Wildcard entries (PCI_ANY_ID) should come last 5660 * Last entry must be all 0s 5661 * 5662 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5663 * Class, Class Mask, private data (not used) } 5664 */ 5665 static const struct pci_device_id ice_pci_tbl[] = { 5666 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5667 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5668 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5669 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5670 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5671 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5672 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5673 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5674 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5675 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5676 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5677 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5678 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5679 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5680 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5681 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5682 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5683 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5684 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5685 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5686 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5687 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5688 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5689 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5690 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5691 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5692 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5693 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5694 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5695 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5696 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) }, 5697 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) }, 5698 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) }, 5699 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) }, 5700 /* required last entry */ 5701 {} 5702 }; 5703 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5704 5705 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5706 5707 static const struct pci_error_handlers ice_pci_err_handler = { 5708 .error_detected = ice_pci_err_detected, 5709 .slot_reset = ice_pci_err_slot_reset, 5710 .reset_prepare = ice_pci_err_reset_prepare, 5711 .reset_done = ice_pci_err_reset_done, 5712 .resume = ice_pci_err_resume 5713 }; 5714 5715 static struct pci_driver ice_driver = { 5716 .name = KBUILD_MODNAME, 5717 .id_table = ice_pci_tbl, 5718 .probe = ice_probe, 5719 .remove = ice_remove, 5720 #ifdef CONFIG_PM 5721 .driver.pm = &ice_pm_ops, 5722 #endif /* CONFIG_PM */ 5723 .shutdown = ice_shutdown, 5724 .sriov_configure = ice_sriov_configure, 5725 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5726 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5727 .err_handler = &ice_pci_err_handler 5728 }; 5729 5730 /** 5731 * ice_module_init - Driver registration routine 5732 * 5733 * ice_module_init is the first routine called when the driver is 5734 * loaded. All it does is register with the PCI subsystem. 5735 */ 5736 static int __init ice_module_init(void) 5737 { 5738 int status = -ENOMEM; 5739 5740 pr_info("%s\n", ice_driver_string); 5741 pr_info("%s\n", ice_copyright); 5742 5743 ice_adv_lnk_speed_maps_init(); 5744 5745 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5746 if (!ice_wq) { 5747 pr_err("Failed to create workqueue\n"); 5748 return status; 5749 } 5750 5751 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5752 if (!ice_lag_wq) { 5753 pr_err("Failed to create LAG workqueue\n"); 5754 goto err_dest_wq; 5755 } 5756 5757 ice_debugfs_init(); 5758 5759 status = pci_register_driver(&ice_driver); 5760 if (status) { 5761 pr_err("failed to register PCI driver, err %d\n", status); 5762 goto err_dest_lag_wq; 5763 } 5764 5765 return 0; 5766 5767 err_dest_lag_wq: 5768 destroy_workqueue(ice_lag_wq); 5769 ice_debugfs_exit(); 5770 err_dest_wq: 5771 destroy_workqueue(ice_wq); 5772 return status; 5773 } 5774 module_init(ice_module_init); 5775 5776 /** 5777 * ice_module_exit - Driver exit cleanup routine 5778 * 5779 * ice_module_exit is called just before the driver is removed 5780 * from memory. 5781 */ 5782 static void __exit ice_module_exit(void) 5783 { 5784 pci_unregister_driver(&ice_driver); 5785 ice_debugfs_exit(); 5786 destroy_workqueue(ice_wq); 5787 destroy_workqueue(ice_lag_wq); 5788 pr_info("module unloaded\n"); 5789 } 5790 module_exit(ice_module_exit); 5791 5792 /** 5793 * ice_set_mac_address - NDO callback to set MAC address 5794 * @netdev: network interface device structure 5795 * @pi: pointer to an address structure 5796 * 5797 * Returns 0 on success, negative on failure 5798 */ 5799 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5800 { 5801 struct ice_netdev_priv *np = netdev_priv(netdev); 5802 struct ice_vsi *vsi = np->vsi; 5803 struct ice_pf *pf = vsi->back; 5804 struct ice_hw *hw = &pf->hw; 5805 struct sockaddr *addr = pi; 5806 u8 old_mac[ETH_ALEN]; 5807 u8 flags = 0; 5808 u8 *mac; 5809 int err; 5810 5811 mac = (u8 *)addr->sa_data; 5812 5813 if (!is_valid_ether_addr(mac)) 5814 return -EADDRNOTAVAIL; 5815 5816 if (test_bit(ICE_DOWN, pf->state) || 5817 ice_is_reset_in_progress(pf->state)) { 5818 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5819 mac); 5820 return -EBUSY; 5821 } 5822 5823 if (ice_chnl_dmac_fltr_cnt(pf)) { 5824 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5825 mac); 5826 return -EAGAIN; 5827 } 5828 5829 netif_addr_lock_bh(netdev); 5830 ether_addr_copy(old_mac, netdev->dev_addr); 5831 /* change the netdev's MAC address */ 5832 eth_hw_addr_set(netdev, mac); 5833 netif_addr_unlock_bh(netdev); 5834 5835 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5836 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5837 if (err && err != -ENOENT) { 5838 err = -EADDRNOTAVAIL; 5839 goto err_update_filters; 5840 } 5841 5842 /* Add filter for new MAC. If filter exists, return success */ 5843 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5844 if (err == -EEXIST) { 5845 /* Although this MAC filter is already present in hardware it's 5846 * possible in some cases (e.g. bonding) that dev_addr was 5847 * modified outside of the driver and needs to be restored back 5848 * to this value. 5849 */ 5850 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5851 5852 return 0; 5853 } else if (err) { 5854 /* error if the new filter addition failed */ 5855 err = -EADDRNOTAVAIL; 5856 } 5857 5858 err_update_filters: 5859 if (err) { 5860 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5861 mac); 5862 netif_addr_lock_bh(netdev); 5863 eth_hw_addr_set(netdev, old_mac); 5864 netif_addr_unlock_bh(netdev); 5865 return err; 5866 } 5867 5868 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5869 netdev->dev_addr); 5870 5871 /* write new MAC address to the firmware */ 5872 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5873 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5874 if (err) { 5875 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5876 mac, err); 5877 } 5878 return 0; 5879 } 5880 5881 /** 5882 * ice_set_rx_mode - NDO callback to set the netdev filters 5883 * @netdev: network interface device structure 5884 */ 5885 static void ice_set_rx_mode(struct net_device *netdev) 5886 { 5887 struct ice_netdev_priv *np = netdev_priv(netdev); 5888 struct ice_vsi *vsi = np->vsi; 5889 5890 if (!vsi || ice_is_switchdev_running(vsi->back)) 5891 return; 5892 5893 /* Set the flags to synchronize filters 5894 * ndo_set_rx_mode may be triggered even without a change in netdev 5895 * flags 5896 */ 5897 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5898 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5899 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5900 5901 /* schedule our worker thread which will take care of 5902 * applying the new filter changes 5903 */ 5904 ice_service_task_schedule(vsi->back); 5905 } 5906 5907 /** 5908 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5909 * @netdev: network interface device structure 5910 * @queue_index: Queue ID 5911 * @maxrate: maximum bandwidth in Mbps 5912 */ 5913 static int 5914 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5915 { 5916 struct ice_netdev_priv *np = netdev_priv(netdev); 5917 struct ice_vsi *vsi = np->vsi; 5918 u16 q_handle; 5919 int status; 5920 u8 tc; 5921 5922 /* Validate maxrate requested is within permitted range */ 5923 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5924 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5925 maxrate, queue_index); 5926 return -EINVAL; 5927 } 5928 5929 q_handle = vsi->tx_rings[queue_index]->q_handle; 5930 tc = ice_dcb_get_tc(vsi, queue_index); 5931 5932 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5933 if (!vsi) { 5934 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5935 queue_index); 5936 return -EINVAL; 5937 } 5938 5939 /* Set BW back to default, when user set maxrate to 0 */ 5940 if (!maxrate) 5941 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5942 q_handle, ICE_MAX_BW); 5943 else 5944 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5945 q_handle, ICE_MAX_BW, maxrate * 1000); 5946 if (status) 5947 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5948 status); 5949 5950 return status; 5951 } 5952 5953 /** 5954 * ice_fdb_add - add an entry to the hardware database 5955 * @ndm: the input from the stack 5956 * @tb: pointer to array of nladdr (unused) 5957 * @dev: the net device pointer 5958 * @addr: the MAC address entry being added 5959 * @vid: VLAN ID 5960 * @flags: instructions from stack about fdb operation 5961 * @extack: netlink extended ack 5962 */ 5963 static int 5964 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5965 struct net_device *dev, const unsigned char *addr, u16 vid, 5966 u16 flags, struct netlink_ext_ack __always_unused *extack) 5967 { 5968 int err; 5969 5970 if (vid) { 5971 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5972 return -EINVAL; 5973 } 5974 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5975 netdev_err(dev, "FDB only supports static addresses\n"); 5976 return -EINVAL; 5977 } 5978 5979 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5980 err = dev_uc_add_excl(dev, addr); 5981 else if (is_multicast_ether_addr(addr)) 5982 err = dev_mc_add_excl(dev, addr); 5983 else 5984 err = -EINVAL; 5985 5986 /* Only return duplicate errors if NLM_F_EXCL is set */ 5987 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5988 err = 0; 5989 5990 return err; 5991 } 5992 5993 /** 5994 * ice_fdb_del - delete an entry from the hardware database 5995 * @ndm: the input from the stack 5996 * @tb: pointer to array of nladdr (unused) 5997 * @dev: the net device pointer 5998 * @addr: the MAC address entry being added 5999 * @vid: VLAN ID 6000 * @extack: netlink extended ack 6001 */ 6002 static int 6003 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6004 struct net_device *dev, const unsigned char *addr, 6005 __always_unused u16 vid, struct netlink_ext_ack *extack) 6006 { 6007 int err; 6008 6009 if (ndm->ndm_state & NUD_PERMANENT) { 6010 netdev_err(dev, "FDB only supports static addresses\n"); 6011 return -EINVAL; 6012 } 6013 6014 if (is_unicast_ether_addr(addr)) 6015 err = dev_uc_del(dev, addr); 6016 else if (is_multicast_ether_addr(addr)) 6017 err = dev_mc_del(dev, addr); 6018 else 6019 err = -EINVAL; 6020 6021 return err; 6022 } 6023 6024 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6025 NETIF_F_HW_VLAN_CTAG_TX | \ 6026 NETIF_F_HW_VLAN_STAG_RX | \ 6027 NETIF_F_HW_VLAN_STAG_TX) 6028 6029 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6030 NETIF_F_HW_VLAN_STAG_RX) 6031 6032 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6033 NETIF_F_HW_VLAN_STAG_FILTER) 6034 6035 /** 6036 * ice_fix_features - fix the netdev features flags based on device limitations 6037 * @netdev: ptr to the netdev that flags are being fixed on 6038 * @features: features that need to be checked and possibly fixed 6039 * 6040 * Make sure any fixups are made to features in this callback. This enables the 6041 * driver to not have to check unsupported configurations throughout the driver 6042 * because that's the responsiblity of this callback. 6043 * 6044 * Single VLAN Mode (SVM) Supported Features: 6045 * NETIF_F_HW_VLAN_CTAG_FILTER 6046 * NETIF_F_HW_VLAN_CTAG_RX 6047 * NETIF_F_HW_VLAN_CTAG_TX 6048 * 6049 * Double VLAN Mode (DVM) Supported Features: 6050 * NETIF_F_HW_VLAN_CTAG_FILTER 6051 * NETIF_F_HW_VLAN_CTAG_RX 6052 * NETIF_F_HW_VLAN_CTAG_TX 6053 * 6054 * NETIF_F_HW_VLAN_STAG_FILTER 6055 * NETIF_HW_VLAN_STAG_RX 6056 * NETIF_HW_VLAN_STAG_TX 6057 * 6058 * Features that need fixing: 6059 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6060 * These are mutually exlusive as the VSI context cannot support multiple 6061 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6062 * is not done, then default to clearing the requested STAG offload 6063 * settings. 6064 * 6065 * All supported filtering has to be enabled or disabled together. For 6066 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6067 * together. If this is not done, then default to VLAN filtering disabled. 6068 * These are mutually exclusive as there is currently no way to 6069 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6070 * prune rules. 6071 */ 6072 static netdev_features_t 6073 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6074 { 6075 struct ice_netdev_priv *np = netdev_priv(netdev); 6076 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6077 bool cur_ctag, cur_stag, req_ctag, req_stag; 6078 6079 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6080 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6081 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6082 6083 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6084 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6085 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6086 6087 if (req_vlan_fltr != cur_vlan_fltr) { 6088 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6089 if (req_ctag && req_stag) { 6090 features |= NETIF_VLAN_FILTERING_FEATURES; 6091 } else if (!req_ctag && !req_stag) { 6092 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6093 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6094 (!cur_stag && req_stag && !cur_ctag)) { 6095 features |= NETIF_VLAN_FILTERING_FEATURES; 6096 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6097 } else if ((cur_ctag && !req_ctag && cur_stag) || 6098 (cur_stag && !req_stag && cur_ctag)) { 6099 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6100 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6101 } 6102 } else { 6103 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6104 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6105 6106 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6107 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6108 } 6109 } 6110 6111 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6112 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6113 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6114 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6115 NETIF_F_HW_VLAN_STAG_TX); 6116 } 6117 6118 if (!(netdev->features & NETIF_F_RXFCS) && 6119 (features & NETIF_F_RXFCS) && 6120 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6121 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6122 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6123 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6124 } 6125 6126 return features; 6127 } 6128 6129 /** 6130 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6131 * @vsi: PF's VSI 6132 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6133 * 6134 * Store current stripped VLAN proto in ring packet context, 6135 * so it can be accessed more efficiently by packet processing code. 6136 */ 6137 static void 6138 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6139 { 6140 u16 i; 6141 6142 ice_for_each_alloc_rxq(vsi, i) 6143 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6144 } 6145 6146 /** 6147 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6148 * @vsi: PF's VSI 6149 * @features: features used to determine VLAN offload settings 6150 * 6151 * First, determine the vlan_ethertype based on the VLAN offload bits in 6152 * features. Then determine if stripping and insertion should be enabled or 6153 * disabled. Finally enable or disable VLAN stripping and insertion. 6154 */ 6155 static int 6156 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6157 { 6158 bool enable_stripping = true, enable_insertion = true; 6159 struct ice_vsi_vlan_ops *vlan_ops; 6160 int strip_err = 0, insert_err = 0; 6161 u16 vlan_ethertype = 0; 6162 6163 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6164 6165 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6166 vlan_ethertype = ETH_P_8021AD; 6167 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6168 vlan_ethertype = ETH_P_8021Q; 6169 6170 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6171 enable_stripping = false; 6172 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6173 enable_insertion = false; 6174 6175 if (enable_stripping) 6176 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6177 else 6178 strip_err = vlan_ops->dis_stripping(vsi); 6179 6180 if (enable_insertion) 6181 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6182 else 6183 insert_err = vlan_ops->dis_insertion(vsi); 6184 6185 if (strip_err || insert_err) 6186 return -EIO; 6187 6188 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6189 htons(vlan_ethertype) : 0); 6190 6191 return 0; 6192 } 6193 6194 /** 6195 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6196 * @vsi: PF's VSI 6197 * @features: features used to determine VLAN filtering settings 6198 * 6199 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6200 * features. 6201 */ 6202 static int 6203 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6204 { 6205 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6206 int err = 0; 6207 6208 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6209 * if either bit is set 6210 */ 6211 if (features & 6212 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6213 err = vlan_ops->ena_rx_filtering(vsi); 6214 else 6215 err = vlan_ops->dis_rx_filtering(vsi); 6216 6217 return err; 6218 } 6219 6220 /** 6221 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6222 * @netdev: ptr to the netdev being adjusted 6223 * @features: the feature set that the stack is suggesting 6224 * 6225 * Only update VLAN settings if the requested_vlan_features are different than 6226 * the current_vlan_features. 6227 */ 6228 static int 6229 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6230 { 6231 netdev_features_t current_vlan_features, requested_vlan_features; 6232 struct ice_netdev_priv *np = netdev_priv(netdev); 6233 struct ice_vsi *vsi = np->vsi; 6234 int err; 6235 6236 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6237 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6238 if (current_vlan_features ^ requested_vlan_features) { 6239 if ((features & NETIF_F_RXFCS) && 6240 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6241 dev_err(ice_pf_to_dev(vsi->back), 6242 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6243 return -EIO; 6244 } 6245 6246 err = ice_set_vlan_offload_features(vsi, features); 6247 if (err) 6248 return err; 6249 } 6250 6251 current_vlan_features = netdev->features & 6252 NETIF_VLAN_FILTERING_FEATURES; 6253 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6254 if (current_vlan_features ^ requested_vlan_features) { 6255 err = ice_set_vlan_filtering_features(vsi, features); 6256 if (err) 6257 return err; 6258 } 6259 6260 return 0; 6261 } 6262 6263 /** 6264 * ice_set_loopback - turn on/off loopback mode on underlying PF 6265 * @vsi: ptr to VSI 6266 * @ena: flag to indicate the on/off setting 6267 */ 6268 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6269 { 6270 bool if_running = netif_running(vsi->netdev); 6271 int ret; 6272 6273 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6274 ret = ice_down(vsi); 6275 if (ret) { 6276 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6277 return ret; 6278 } 6279 } 6280 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6281 if (ret) 6282 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6283 if (if_running) 6284 ret = ice_up(vsi); 6285 6286 return ret; 6287 } 6288 6289 /** 6290 * ice_set_features - set the netdev feature flags 6291 * @netdev: ptr to the netdev being adjusted 6292 * @features: the feature set that the stack is suggesting 6293 */ 6294 static int 6295 ice_set_features(struct net_device *netdev, netdev_features_t features) 6296 { 6297 netdev_features_t changed = netdev->features ^ features; 6298 struct ice_netdev_priv *np = netdev_priv(netdev); 6299 struct ice_vsi *vsi = np->vsi; 6300 struct ice_pf *pf = vsi->back; 6301 int ret = 0; 6302 6303 /* Don't set any netdev advanced features with device in Safe Mode */ 6304 if (ice_is_safe_mode(pf)) { 6305 dev_err(ice_pf_to_dev(pf), 6306 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6307 return ret; 6308 } 6309 6310 /* Do not change setting during reset */ 6311 if (ice_is_reset_in_progress(pf->state)) { 6312 dev_err(ice_pf_to_dev(pf), 6313 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6314 return -EBUSY; 6315 } 6316 6317 /* Multiple features can be changed in one call so keep features in 6318 * separate if/else statements to guarantee each feature is checked 6319 */ 6320 if (changed & NETIF_F_RXHASH) 6321 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6322 6323 ret = ice_set_vlan_features(netdev, features); 6324 if (ret) 6325 return ret; 6326 6327 /* Turn on receive of FCS aka CRC, and after setting this 6328 * flag the packet data will have the 4 byte CRC appended 6329 */ 6330 if (changed & NETIF_F_RXFCS) { 6331 if ((features & NETIF_F_RXFCS) && 6332 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6333 dev_err(ice_pf_to_dev(vsi->back), 6334 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6335 return -EIO; 6336 } 6337 6338 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6339 ret = ice_down_up(vsi); 6340 if (ret) 6341 return ret; 6342 } 6343 6344 if (changed & NETIF_F_NTUPLE) { 6345 bool ena = !!(features & NETIF_F_NTUPLE); 6346 6347 ice_vsi_manage_fdir(vsi, ena); 6348 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6349 } 6350 6351 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6352 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6353 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6354 return -EACCES; 6355 } 6356 6357 if (changed & NETIF_F_HW_TC) { 6358 bool ena = !!(features & NETIF_F_HW_TC); 6359 6360 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6361 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6362 } 6363 6364 if (changed & NETIF_F_LOOPBACK) 6365 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6366 6367 return ret; 6368 } 6369 6370 /** 6371 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6372 * @vsi: VSI to setup VLAN properties for 6373 */ 6374 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6375 { 6376 int err; 6377 6378 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6379 if (err) 6380 return err; 6381 6382 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6383 if (err) 6384 return err; 6385 6386 return ice_vsi_add_vlan_zero(vsi); 6387 } 6388 6389 /** 6390 * ice_vsi_cfg_lan - Setup the VSI lan related config 6391 * @vsi: the VSI being configured 6392 * 6393 * Return 0 on success and negative value on error 6394 */ 6395 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6396 { 6397 int err; 6398 6399 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6400 ice_set_rx_mode(vsi->netdev); 6401 6402 err = ice_vsi_vlan_setup(vsi); 6403 if (err) 6404 return err; 6405 } 6406 ice_vsi_cfg_dcb_rings(vsi); 6407 6408 err = ice_vsi_cfg_lan_txqs(vsi); 6409 if (!err && ice_is_xdp_ena_vsi(vsi)) 6410 err = ice_vsi_cfg_xdp_txqs(vsi); 6411 if (!err) 6412 err = ice_vsi_cfg_rxqs(vsi); 6413 6414 return err; 6415 } 6416 6417 /* THEORY OF MODERATION: 6418 * The ice driver hardware works differently than the hardware that DIMLIB was 6419 * originally made for. ice hardware doesn't have packet count limits that 6420 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6421 * which is hard-coded to a limit of 250,000 ints/second. 6422 * If not using dynamic moderation, the INTRL value can be modified 6423 * by ethtool rx-usecs-high. 6424 */ 6425 struct ice_dim { 6426 /* the throttle rate for interrupts, basically worst case delay before 6427 * an initial interrupt fires, value is stored in microseconds. 6428 */ 6429 u16 itr; 6430 }; 6431 6432 /* Make a different profile for Rx that doesn't allow quite so aggressive 6433 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6434 * second. 6435 */ 6436 static const struct ice_dim rx_profile[] = { 6437 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6438 {8}, /* 125,000 ints/s */ 6439 {16}, /* 62,500 ints/s */ 6440 {62}, /* 16,129 ints/s */ 6441 {126} /* 7,936 ints/s */ 6442 }; 6443 6444 /* The transmit profile, which has the same sorts of values 6445 * as the previous struct 6446 */ 6447 static const struct ice_dim tx_profile[] = { 6448 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6449 {8}, /* 125,000 ints/s */ 6450 {40}, /* 16,125 ints/s */ 6451 {128}, /* 7,812 ints/s */ 6452 {256} /* 3,906 ints/s */ 6453 }; 6454 6455 static void ice_tx_dim_work(struct work_struct *work) 6456 { 6457 struct ice_ring_container *rc; 6458 struct dim *dim; 6459 u16 itr; 6460 6461 dim = container_of(work, struct dim, work); 6462 rc = dim->priv; 6463 6464 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6465 6466 /* look up the values in our local table */ 6467 itr = tx_profile[dim->profile_ix].itr; 6468 6469 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6470 ice_write_itr(rc, itr); 6471 6472 dim->state = DIM_START_MEASURE; 6473 } 6474 6475 static void ice_rx_dim_work(struct work_struct *work) 6476 { 6477 struct ice_ring_container *rc; 6478 struct dim *dim; 6479 u16 itr; 6480 6481 dim = container_of(work, struct dim, work); 6482 rc = dim->priv; 6483 6484 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6485 6486 /* look up the values in our local table */ 6487 itr = rx_profile[dim->profile_ix].itr; 6488 6489 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6490 ice_write_itr(rc, itr); 6491 6492 dim->state = DIM_START_MEASURE; 6493 } 6494 6495 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6496 6497 /** 6498 * ice_init_moderation - set up interrupt moderation 6499 * @q_vector: the vector containing rings to be configured 6500 * 6501 * Set up interrupt moderation registers, with the intent to do the right thing 6502 * when called from reset or from probe, and whether or not dynamic moderation 6503 * is enabled or not. Take special care to write all the registers in both 6504 * dynamic moderation mode or not in order to make sure hardware is in a known 6505 * state. 6506 */ 6507 static void ice_init_moderation(struct ice_q_vector *q_vector) 6508 { 6509 struct ice_ring_container *rc; 6510 bool tx_dynamic, rx_dynamic; 6511 6512 rc = &q_vector->tx; 6513 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6514 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6515 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6516 rc->dim.priv = rc; 6517 tx_dynamic = ITR_IS_DYNAMIC(rc); 6518 6519 /* set the initial TX ITR to match the above */ 6520 ice_write_itr(rc, tx_dynamic ? 6521 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6522 6523 rc = &q_vector->rx; 6524 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6525 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6526 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6527 rc->dim.priv = rc; 6528 rx_dynamic = ITR_IS_DYNAMIC(rc); 6529 6530 /* set the initial RX ITR to match the above */ 6531 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6532 rc->itr_setting); 6533 6534 ice_set_q_vector_intrl(q_vector); 6535 } 6536 6537 /** 6538 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6539 * @vsi: the VSI being configured 6540 */ 6541 static void ice_napi_enable_all(struct ice_vsi *vsi) 6542 { 6543 int q_idx; 6544 6545 if (!vsi->netdev) 6546 return; 6547 6548 ice_for_each_q_vector(vsi, q_idx) { 6549 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6550 6551 ice_init_moderation(q_vector); 6552 6553 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6554 napi_enable(&q_vector->napi); 6555 } 6556 } 6557 6558 /** 6559 * ice_up_complete - Finish the last steps of bringing up a connection 6560 * @vsi: The VSI being configured 6561 * 6562 * Return 0 on success and negative value on error 6563 */ 6564 static int ice_up_complete(struct ice_vsi *vsi) 6565 { 6566 struct ice_pf *pf = vsi->back; 6567 int err; 6568 6569 ice_vsi_cfg_msix(vsi); 6570 6571 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6572 * Tx queue group list was configured and the context bits were 6573 * programmed using ice_vsi_cfg_txqs 6574 */ 6575 err = ice_vsi_start_all_rx_rings(vsi); 6576 if (err) 6577 return err; 6578 6579 clear_bit(ICE_VSI_DOWN, vsi->state); 6580 ice_napi_enable_all(vsi); 6581 ice_vsi_ena_irq(vsi); 6582 6583 if (vsi->port_info && 6584 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6585 vsi->netdev && vsi->type == ICE_VSI_PF) { 6586 ice_print_link_msg(vsi, true); 6587 netif_tx_start_all_queues(vsi->netdev); 6588 netif_carrier_on(vsi->netdev); 6589 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6590 } 6591 6592 /* Perform an initial read of the statistics registers now to 6593 * set the baseline so counters are ready when interface is up 6594 */ 6595 ice_update_eth_stats(vsi); 6596 6597 if (vsi->type == ICE_VSI_PF) 6598 ice_service_task_schedule(pf); 6599 6600 return 0; 6601 } 6602 6603 /** 6604 * ice_up - Bring the connection back up after being down 6605 * @vsi: VSI being configured 6606 */ 6607 int ice_up(struct ice_vsi *vsi) 6608 { 6609 int err; 6610 6611 err = ice_vsi_cfg_lan(vsi); 6612 if (!err) 6613 err = ice_up_complete(vsi); 6614 6615 return err; 6616 } 6617 6618 /** 6619 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6620 * @syncp: pointer to u64_stats_sync 6621 * @stats: stats that pkts and bytes count will be taken from 6622 * @pkts: packets stats counter 6623 * @bytes: bytes stats counter 6624 * 6625 * This function fetches stats from the ring considering the atomic operations 6626 * that needs to be performed to read u64 values in 32 bit machine. 6627 */ 6628 void 6629 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6630 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6631 { 6632 unsigned int start; 6633 6634 do { 6635 start = u64_stats_fetch_begin(syncp); 6636 *pkts = stats.pkts; 6637 *bytes = stats.bytes; 6638 } while (u64_stats_fetch_retry(syncp, start)); 6639 } 6640 6641 /** 6642 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6643 * @vsi: the VSI to be updated 6644 * @vsi_stats: the stats struct to be updated 6645 * @rings: rings to work on 6646 * @count: number of rings 6647 */ 6648 static void 6649 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6650 struct rtnl_link_stats64 *vsi_stats, 6651 struct ice_tx_ring **rings, u16 count) 6652 { 6653 u16 i; 6654 6655 for (i = 0; i < count; i++) { 6656 struct ice_tx_ring *ring; 6657 u64 pkts = 0, bytes = 0; 6658 6659 ring = READ_ONCE(rings[i]); 6660 if (!ring || !ring->ring_stats) 6661 continue; 6662 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6663 ring->ring_stats->stats, &pkts, 6664 &bytes); 6665 vsi_stats->tx_packets += pkts; 6666 vsi_stats->tx_bytes += bytes; 6667 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6668 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6669 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6670 } 6671 } 6672 6673 /** 6674 * ice_update_vsi_ring_stats - Update VSI stats counters 6675 * @vsi: the VSI to be updated 6676 */ 6677 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6678 { 6679 struct rtnl_link_stats64 *net_stats, *stats_prev; 6680 struct rtnl_link_stats64 *vsi_stats; 6681 struct ice_pf *pf = vsi->back; 6682 u64 pkts, bytes; 6683 int i; 6684 6685 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6686 if (!vsi_stats) 6687 return; 6688 6689 /* reset non-netdev (extended) stats */ 6690 vsi->tx_restart = 0; 6691 vsi->tx_busy = 0; 6692 vsi->tx_linearize = 0; 6693 vsi->rx_buf_failed = 0; 6694 vsi->rx_page_failed = 0; 6695 6696 rcu_read_lock(); 6697 6698 /* update Tx rings counters */ 6699 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6700 vsi->num_txq); 6701 6702 /* update Rx rings counters */ 6703 ice_for_each_rxq(vsi, i) { 6704 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6705 struct ice_ring_stats *ring_stats; 6706 6707 ring_stats = ring->ring_stats; 6708 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6709 ring_stats->stats, &pkts, 6710 &bytes); 6711 vsi_stats->rx_packets += pkts; 6712 vsi_stats->rx_bytes += bytes; 6713 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6714 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6715 } 6716 6717 /* update XDP Tx rings counters */ 6718 if (ice_is_xdp_ena_vsi(vsi)) 6719 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6720 vsi->num_xdp_txq); 6721 6722 rcu_read_unlock(); 6723 6724 net_stats = &vsi->net_stats; 6725 stats_prev = &vsi->net_stats_prev; 6726 6727 /* Update netdev counters, but keep in mind that values could start at 6728 * random value after PF reset. And as we increase the reported stat by 6729 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6730 * let's skip this round. 6731 */ 6732 if (likely(pf->stat_prev_loaded)) { 6733 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6734 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6735 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6736 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6737 } 6738 6739 stats_prev->tx_packets = vsi_stats->tx_packets; 6740 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6741 stats_prev->rx_packets = vsi_stats->rx_packets; 6742 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6743 6744 kfree(vsi_stats); 6745 } 6746 6747 /** 6748 * ice_update_vsi_stats - Update VSI stats counters 6749 * @vsi: the VSI to be updated 6750 */ 6751 void ice_update_vsi_stats(struct ice_vsi *vsi) 6752 { 6753 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6754 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6755 struct ice_pf *pf = vsi->back; 6756 6757 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6758 test_bit(ICE_CFG_BUSY, pf->state)) 6759 return; 6760 6761 /* get stats as recorded by Tx/Rx rings */ 6762 ice_update_vsi_ring_stats(vsi); 6763 6764 /* get VSI stats as recorded by the hardware */ 6765 ice_update_eth_stats(vsi); 6766 6767 cur_ns->tx_errors = cur_es->tx_errors; 6768 cur_ns->rx_dropped = cur_es->rx_discards; 6769 cur_ns->tx_dropped = cur_es->tx_discards; 6770 cur_ns->multicast = cur_es->rx_multicast; 6771 6772 /* update some more netdev stats if this is main VSI */ 6773 if (vsi->type == ICE_VSI_PF) { 6774 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6775 cur_ns->rx_errors = pf->stats.crc_errors + 6776 pf->stats.illegal_bytes + 6777 pf->stats.rx_undersize + 6778 pf->hw_csum_rx_error + 6779 pf->stats.rx_jabber + 6780 pf->stats.rx_fragments + 6781 pf->stats.rx_oversize; 6782 /* record drops from the port level */ 6783 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6784 } 6785 } 6786 6787 /** 6788 * ice_update_pf_stats - Update PF port stats counters 6789 * @pf: PF whose stats needs to be updated 6790 */ 6791 void ice_update_pf_stats(struct ice_pf *pf) 6792 { 6793 struct ice_hw_port_stats *prev_ps, *cur_ps; 6794 struct ice_hw *hw = &pf->hw; 6795 u16 fd_ctr_base; 6796 u8 port; 6797 6798 port = hw->port_info->lport; 6799 prev_ps = &pf->stats_prev; 6800 cur_ps = &pf->stats; 6801 6802 if (ice_is_reset_in_progress(pf->state)) 6803 pf->stat_prev_loaded = false; 6804 6805 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6806 &prev_ps->eth.rx_bytes, 6807 &cur_ps->eth.rx_bytes); 6808 6809 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6810 &prev_ps->eth.rx_unicast, 6811 &cur_ps->eth.rx_unicast); 6812 6813 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6814 &prev_ps->eth.rx_multicast, 6815 &cur_ps->eth.rx_multicast); 6816 6817 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6818 &prev_ps->eth.rx_broadcast, 6819 &cur_ps->eth.rx_broadcast); 6820 6821 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6822 &prev_ps->eth.rx_discards, 6823 &cur_ps->eth.rx_discards); 6824 6825 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6826 &prev_ps->eth.tx_bytes, 6827 &cur_ps->eth.tx_bytes); 6828 6829 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6830 &prev_ps->eth.tx_unicast, 6831 &cur_ps->eth.tx_unicast); 6832 6833 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6834 &prev_ps->eth.tx_multicast, 6835 &cur_ps->eth.tx_multicast); 6836 6837 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6838 &prev_ps->eth.tx_broadcast, 6839 &cur_ps->eth.tx_broadcast); 6840 6841 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6842 &prev_ps->tx_dropped_link_down, 6843 &cur_ps->tx_dropped_link_down); 6844 6845 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6846 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6847 6848 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6849 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6850 6851 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6852 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6853 6854 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6855 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6856 6857 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6858 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6859 6860 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6861 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6862 6863 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6864 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6865 6866 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6867 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6868 6869 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6870 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6871 6872 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6873 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6874 6875 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6876 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6877 6878 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6879 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6880 6881 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6882 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6883 6884 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6885 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6886 6887 fd_ctr_base = hw->fd_ctr_base; 6888 6889 ice_stat_update40(hw, 6890 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6891 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6892 &cur_ps->fd_sb_match); 6893 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6894 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6895 6896 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6897 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6898 6899 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6900 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6901 6902 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6903 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6904 6905 ice_update_dcb_stats(pf); 6906 6907 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6908 &prev_ps->crc_errors, &cur_ps->crc_errors); 6909 6910 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6911 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6912 6913 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6914 &prev_ps->mac_local_faults, 6915 &cur_ps->mac_local_faults); 6916 6917 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6918 &prev_ps->mac_remote_faults, 6919 &cur_ps->mac_remote_faults); 6920 6921 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6922 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6923 6924 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6925 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6926 6927 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6928 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6929 6930 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6931 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6932 6933 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6934 6935 pf->stat_prev_loaded = true; 6936 } 6937 6938 /** 6939 * ice_get_stats64 - get statistics for network device structure 6940 * @netdev: network interface device structure 6941 * @stats: main device statistics structure 6942 */ 6943 static 6944 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6945 { 6946 struct ice_netdev_priv *np = netdev_priv(netdev); 6947 struct rtnl_link_stats64 *vsi_stats; 6948 struct ice_vsi *vsi = np->vsi; 6949 6950 vsi_stats = &vsi->net_stats; 6951 6952 if (!vsi->num_txq || !vsi->num_rxq) 6953 return; 6954 6955 /* netdev packet/byte stats come from ring counter. These are obtained 6956 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6957 * But, only call the update routine and read the registers if VSI is 6958 * not down. 6959 */ 6960 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6961 ice_update_vsi_ring_stats(vsi); 6962 stats->tx_packets = vsi_stats->tx_packets; 6963 stats->tx_bytes = vsi_stats->tx_bytes; 6964 stats->rx_packets = vsi_stats->rx_packets; 6965 stats->rx_bytes = vsi_stats->rx_bytes; 6966 6967 /* The rest of the stats can be read from the hardware but instead we 6968 * just return values that the watchdog task has already obtained from 6969 * the hardware. 6970 */ 6971 stats->multicast = vsi_stats->multicast; 6972 stats->tx_errors = vsi_stats->tx_errors; 6973 stats->tx_dropped = vsi_stats->tx_dropped; 6974 stats->rx_errors = vsi_stats->rx_errors; 6975 stats->rx_dropped = vsi_stats->rx_dropped; 6976 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6977 stats->rx_length_errors = vsi_stats->rx_length_errors; 6978 } 6979 6980 /** 6981 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6982 * @vsi: VSI having NAPI disabled 6983 */ 6984 static void ice_napi_disable_all(struct ice_vsi *vsi) 6985 { 6986 int q_idx; 6987 6988 if (!vsi->netdev) 6989 return; 6990 6991 ice_for_each_q_vector(vsi, q_idx) { 6992 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6993 6994 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6995 napi_disable(&q_vector->napi); 6996 6997 cancel_work_sync(&q_vector->tx.dim.work); 6998 cancel_work_sync(&q_vector->rx.dim.work); 6999 } 7000 } 7001 7002 /** 7003 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7004 * @vsi: the VSI being un-configured 7005 */ 7006 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7007 { 7008 struct ice_pf *pf = vsi->back; 7009 struct ice_hw *hw = &pf->hw; 7010 u32 val; 7011 int i; 7012 7013 /* disable interrupt causation from each Rx queue; Tx queues are 7014 * handled in ice_vsi_stop_tx_ring() 7015 */ 7016 if (vsi->rx_rings) { 7017 ice_for_each_rxq(vsi, i) { 7018 if (vsi->rx_rings[i]) { 7019 u16 reg; 7020 7021 reg = vsi->rx_rings[i]->reg_idx; 7022 val = rd32(hw, QINT_RQCTL(reg)); 7023 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7024 wr32(hw, QINT_RQCTL(reg), val); 7025 } 7026 } 7027 } 7028 7029 /* disable each interrupt */ 7030 ice_for_each_q_vector(vsi, i) { 7031 if (!vsi->q_vectors[i]) 7032 continue; 7033 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7034 } 7035 7036 ice_flush(hw); 7037 7038 /* don't call synchronize_irq() for VF's from the host */ 7039 if (vsi->type == ICE_VSI_VF) 7040 return; 7041 7042 ice_for_each_q_vector(vsi, i) 7043 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7044 } 7045 7046 /** 7047 * ice_down - Shutdown the connection 7048 * @vsi: The VSI being stopped 7049 * 7050 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7051 */ 7052 int ice_down(struct ice_vsi *vsi) 7053 { 7054 int i, tx_err, rx_err, vlan_err = 0; 7055 7056 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7057 7058 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 7059 vlan_err = ice_vsi_del_vlan_zero(vsi); 7060 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7061 netif_carrier_off(vsi->netdev); 7062 netif_tx_disable(vsi->netdev); 7063 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 7064 ice_eswitch_stop_all_tx_queues(vsi->back); 7065 } 7066 7067 ice_vsi_dis_irq(vsi); 7068 7069 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7070 if (tx_err) 7071 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7072 vsi->vsi_num, tx_err); 7073 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7074 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7075 if (tx_err) 7076 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7077 vsi->vsi_num, tx_err); 7078 } 7079 7080 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7081 if (rx_err) 7082 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7083 vsi->vsi_num, rx_err); 7084 7085 ice_napi_disable_all(vsi); 7086 7087 ice_for_each_txq(vsi, i) 7088 ice_clean_tx_ring(vsi->tx_rings[i]); 7089 7090 if (ice_is_xdp_ena_vsi(vsi)) 7091 ice_for_each_xdp_txq(vsi, i) 7092 ice_clean_tx_ring(vsi->xdp_rings[i]); 7093 7094 ice_for_each_rxq(vsi, i) 7095 ice_clean_rx_ring(vsi->rx_rings[i]); 7096 7097 if (tx_err || rx_err || vlan_err) { 7098 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7099 vsi->vsi_num, vsi->vsw->sw_id); 7100 return -EIO; 7101 } 7102 7103 return 0; 7104 } 7105 7106 /** 7107 * ice_down_up - shutdown the VSI connection and bring it up 7108 * @vsi: the VSI to be reconnected 7109 */ 7110 int ice_down_up(struct ice_vsi *vsi) 7111 { 7112 int ret; 7113 7114 /* if DOWN already set, nothing to do */ 7115 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7116 return 0; 7117 7118 ret = ice_down(vsi); 7119 if (ret) 7120 return ret; 7121 7122 ret = ice_up(vsi); 7123 if (ret) { 7124 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7125 return ret; 7126 } 7127 7128 return 0; 7129 } 7130 7131 /** 7132 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7133 * @vsi: VSI having resources allocated 7134 * 7135 * Return 0 on success, negative on failure 7136 */ 7137 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7138 { 7139 int i, err = 0; 7140 7141 if (!vsi->num_txq) { 7142 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7143 vsi->vsi_num); 7144 return -EINVAL; 7145 } 7146 7147 ice_for_each_txq(vsi, i) { 7148 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7149 7150 if (!ring) 7151 return -EINVAL; 7152 7153 if (vsi->netdev) 7154 ring->netdev = vsi->netdev; 7155 err = ice_setup_tx_ring(ring); 7156 if (err) 7157 break; 7158 } 7159 7160 return err; 7161 } 7162 7163 /** 7164 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7165 * @vsi: VSI having resources allocated 7166 * 7167 * Return 0 on success, negative on failure 7168 */ 7169 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7170 { 7171 int i, err = 0; 7172 7173 if (!vsi->num_rxq) { 7174 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7175 vsi->vsi_num); 7176 return -EINVAL; 7177 } 7178 7179 ice_for_each_rxq(vsi, i) { 7180 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7181 7182 if (!ring) 7183 return -EINVAL; 7184 7185 if (vsi->netdev) 7186 ring->netdev = vsi->netdev; 7187 err = ice_setup_rx_ring(ring); 7188 if (err) 7189 break; 7190 } 7191 7192 return err; 7193 } 7194 7195 /** 7196 * ice_vsi_open_ctrl - open control VSI for use 7197 * @vsi: the VSI to open 7198 * 7199 * Initialization of the Control VSI 7200 * 7201 * Returns 0 on success, negative value on error 7202 */ 7203 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7204 { 7205 char int_name[ICE_INT_NAME_STR_LEN]; 7206 struct ice_pf *pf = vsi->back; 7207 struct device *dev; 7208 int err; 7209 7210 dev = ice_pf_to_dev(pf); 7211 /* allocate descriptors */ 7212 err = ice_vsi_setup_tx_rings(vsi); 7213 if (err) 7214 goto err_setup_tx; 7215 7216 err = ice_vsi_setup_rx_rings(vsi); 7217 if (err) 7218 goto err_setup_rx; 7219 7220 err = ice_vsi_cfg_lan(vsi); 7221 if (err) 7222 goto err_setup_rx; 7223 7224 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7225 dev_driver_string(dev), dev_name(dev)); 7226 err = ice_vsi_req_irq_msix(vsi, int_name); 7227 if (err) 7228 goto err_setup_rx; 7229 7230 ice_vsi_cfg_msix(vsi); 7231 7232 err = ice_vsi_start_all_rx_rings(vsi); 7233 if (err) 7234 goto err_up_complete; 7235 7236 clear_bit(ICE_VSI_DOWN, vsi->state); 7237 ice_vsi_ena_irq(vsi); 7238 7239 return 0; 7240 7241 err_up_complete: 7242 ice_down(vsi); 7243 err_setup_rx: 7244 ice_vsi_free_rx_rings(vsi); 7245 err_setup_tx: 7246 ice_vsi_free_tx_rings(vsi); 7247 7248 return err; 7249 } 7250 7251 /** 7252 * ice_vsi_open - Called when a network interface is made active 7253 * @vsi: the VSI to open 7254 * 7255 * Initialization of the VSI 7256 * 7257 * Returns 0 on success, negative value on error 7258 */ 7259 int ice_vsi_open(struct ice_vsi *vsi) 7260 { 7261 char int_name[ICE_INT_NAME_STR_LEN]; 7262 struct ice_pf *pf = vsi->back; 7263 int err; 7264 7265 /* allocate descriptors */ 7266 err = ice_vsi_setup_tx_rings(vsi); 7267 if (err) 7268 goto err_setup_tx; 7269 7270 err = ice_vsi_setup_rx_rings(vsi); 7271 if (err) 7272 goto err_setup_rx; 7273 7274 err = ice_vsi_cfg_lan(vsi); 7275 if (err) 7276 goto err_setup_rx; 7277 7278 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7279 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7280 err = ice_vsi_req_irq_msix(vsi, int_name); 7281 if (err) 7282 goto err_setup_rx; 7283 7284 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7285 7286 if (vsi->type == ICE_VSI_PF) { 7287 /* Notify the stack of the actual queue counts. */ 7288 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7289 if (err) 7290 goto err_set_qs; 7291 7292 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7293 if (err) 7294 goto err_set_qs; 7295 } 7296 7297 err = ice_up_complete(vsi); 7298 if (err) 7299 goto err_up_complete; 7300 7301 return 0; 7302 7303 err_up_complete: 7304 ice_down(vsi); 7305 err_set_qs: 7306 ice_vsi_free_irq(vsi); 7307 err_setup_rx: 7308 ice_vsi_free_rx_rings(vsi); 7309 err_setup_tx: 7310 ice_vsi_free_tx_rings(vsi); 7311 7312 return err; 7313 } 7314 7315 /** 7316 * ice_vsi_release_all - Delete all VSIs 7317 * @pf: PF from which all VSIs are being removed 7318 */ 7319 static void ice_vsi_release_all(struct ice_pf *pf) 7320 { 7321 int err, i; 7322 7323 if (!pf->vsi) 7324 return; 7325 7326 ice_for_each_vsi(pf, i) { 7327 if (!pf->vsi[i]) 7328 continue; 7329 7330 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7331 continue; 7332 7333 err = ice_vsi_release(pf->vsi[i]); 7334 if (err) 7335 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7336 i, err, pf->vsi[i]->vsi_num); 7337 } 7338 } 7339 7340 /** 7341 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7342 * @pf: pointer to the PF instance 7343 * @type: VSI type to rebuild 7344 * 7345 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7346 */ 7347 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7348 { 7349 struct device *dev = ice_pf_to_dev(pf); 7350 int i, err; 7351 7352 ice_for_each_vsi(pf, i) { 7353 struct ice_vsi *vsi = pf->vsi[i]; 7354 7355 if (!vsi || vsi->type != type) 7356 continue; 7357 7358 /* rebuild the VSI */ 7359 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7360 if (err) { 7361 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7362 err, vsi->idx, ice_vsi_type_str(type)); 7363 return err; 7364 } 7365 7366 /* replay filters for the VSI */ 7367 err = ice_replay_vsi(&pf->hw, vsi->idx); 7368 if (err) { 7369 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7370 err, vsi->idx, ice_vsi_type_str(type)); 7371 return err; 7372 } 7373 7374 /* Re-map HW VSI number, using VSI handle that has been 7375 * previously validated in ice_replay_vsi() call above 7376 */ 7377 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7378 7379 /* enable the VSI */ 7380 err = ice_ena_vsi(vsi, false); 7381 if (err) { 7382 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7383 err, vsi->idx, ice_vsi_type_str(type)); 7384 return err; 7385 } 7386 7387 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7388 ice_vsi_type_str(type)); 7389 } 7390 7391 return 0; 7392 } 7393 7394 /** 7395 * ice_update_pf_netdev_link - Update PF netdev link status 7396 * @pf: pointer to the PF instance 7397 */ 7398 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7399 { 7400 bool link_up; 7401 int i; 7402 7403 ice_for_each_vsi(pf, i) { 7404 struct ice_vsi *vsi = pf->vsi[i]; 7405 7406 if (!vsi || vsi->type != ICE_VSI_PF) 7407 return; 7408 7409 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7410 if (link_up) { 7411 netif_carrier_on(pf->vsi[i]->netdev); 7412 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7413 } else { 7414 netif_carrier_off(pf->vsi[i]->netdev); 7415 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7416 } 7417 } 7418 } 7419 7420 /** 7421 * ice_rebuild - rebuild after reset 7422 * @pf: PF to rebuild 7423 * @reset_type: type of reset 7424 * 7425 * Do not rebuild VF VSI in this flow because that is already handled via 7426 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7427 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7428 * to reset/rebuild all the VF VSI twice. 7429 */ 7430 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7431 { 7432 struct device *dev = ice_pf_to_dev(pf); 7433 struct ice_hw *hw = &pf->hw; 7434 bool dvm; 7435 int err; 7436 7437 if (test_bit(ICE_DOWN, pf->state)) 7438 goto clear_recovery; 7439 7440 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7441 7442 #define ICE_EMP_RESET_SLEEP_MS 5000 7443 if (reset_type == ICE_RESET_EMPR) { 7444 /* If an EMP reset has occurred, any previously pending flash 7445 * update will have completed. We no longer know whether or 7446 * not the NVM update EMP reset is restricted. 7447 */ 7448 pf->fw_emp_reset_disabled = false; 7449 7450 msleep(ICE_EMP_RESET_SLEEP_MS); 7451 } 7452 7453 err = ice_init_all_ctrlq(hw); 7454 if (err) { 7455 dev_err(dev, "control queues init failed %d\n", err); 7456 goto err_init_ctrlq; 7457 } 7458 7459 /* if DDP was previously loaded successfully */ 7460 if (!ice_is_safe_mode(pf)) { 7461 /* reload the SW DB of filter tables */ 7462 if (reset_type == ICE_RESET_PFR) 7463 ice_fill_blk_tbls(hw); 7464 else 7465 /* Reload DDP Package after CORER/GLOBR reset */ 7466 ice_load_pkg(NULL, pf); 7467 } 7468 7469 err = ice_clear_pf_cfg(hw); 7470 if (err) { 7471 dev_err(dev, "clear PF configuration failed %d\n", err); 7472 goto err_init_ctrlq; 7473 } 7474 7475 ice_clear_pxe_mode(hw); 7476 7477 err = ice_init_nvm(hw); 7478 if (err) { 7479 dev_err(dev, "ice_init_nvm failed %d\n", err); 7480 goto err_init_ctrlq; 7481 } 7482 7483 err = ice_get_caps(hw); 7484 if (err) { 7485 dev_err(dev, "ice_get_caps failed %d\n", err); 7486 goto err_init_ctrlq; 7487 } 7488 7489 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7490 if (err) { 7491 dev_err(dev, "set_mac_cfg failed %d\n", err); 7492 goto err_init_ctrlq; 7493 } 7494 7495 dvm = ice_is_dvm_ena(hw); 7496 7497 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7498 if (err) 7499 goto err_init_ctrlq; 7500 7501 err = ice_sched_init_port(hw->port_info); 7502 if (err) 7503 goto err_sched_init_port; 7504 7505 /* start misc vector */ 7506 err = ice_req_irq_msix_misc(pf); 7507 if (err) { 7508 dev_err(dev, "misc vector setup failed: %d\n", err); 7509 goto err_sched_init_port; 7510 } 7511 7512 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7513 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7514 if (!rd32(hw, PFQF_FD_SIZE)) { 7515 u16 unused, guar, b_effort; 7516 7517 guar = hw->func_caps.fd_fltr_guar; 7518 b_effort = hw->func_caps.fd_fltr_best_effort; 7519 7520 /* force guaranteed filter pool for PF */ 7521 ice_alloc_fd_guar_item(hw, &unused, guar); 7522 /* force shared filter pool for PF */ 7523 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7524 } 7525 } 7526 7527 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7528 ice_dcb_rebuild(pf); 7529 7530 /* If the PF previously had enabled PTP, PTP init needs to happen before 7531 * the VSI rebuild. If not, this causes the PTP link status events to 7532 * fail. 7533 */ 7534 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7535 ice_ptp_rebuild(pf, reset_type); 7536 7537 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7538 ice_gnss_init(pf); 7539 7540 /* rebuild PF VSI */ 7541 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7542 if (err) { 7543 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7544 goto err_vsi_rebuild; 7545 } 7546 7547 err = ice_eswitch_rebuild(pf); 7548 if (err) { 7549 dev_err(dev, "Switchdev rebuild failed: %d\n", err); 7550 goto err_vsi_rebuild; 7551 } 7552 7553 if (reset_type == ICE_RESET_PFR) { 7554 err = ice_rebuild_channels(pf); 7555 if (err) { 7556 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7557 err); 7558 goto err_vsi_rebuild; 7559 } 7560 } 7561 7562 /* If Flow Director is active */ 7563 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7564 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7565 if (err) { 7566 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7567 goto err_vsi_rebuild; 7568 } 7569 7570 /* replay HW Flow Director recipes */ 7571 if (hw->fdir_prof) 7572 ice_fdir_replay_flows(hw); 7573 7574 /* replay Flow Director filters */ 7575 ice_fdir_replay_fltrs(pf); 7576 7577 ice_rebuild_arfs(pf); 7578 } 7579 7580 ice_update_pf_netdev_link(pf); 7581 7582 /* tell the firmware we are up */ 7583 err = ice_send_version(pf); 7584 if (err) { 7585 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7586 err); 7587 goto err_vsi_rebuild; 7588 } 7589 7590 ice_replay_post(hw); 7591 7592 /* if we get here, reset flow is successful */ 7593 clear_bit(ICE_RESET_FAILED, pf->state); 7594 7595 ice_plug_aux_dev(pf); 7596 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7597 ice_lag_rebuild(pf); 7598 7599 /* Restore timestamp mode settings after VSI rebuild */ 7600 ice_ptp_restore_timestamp_mode(pf); 7601 return; 7602 7603 err_vsi_rebuild: 7604 err_sched_init_port: 7605 ice_sched_cleanup_all(hw); 7606 err_init_ctrlq: 7607 ice_shutdown_all_ctrlq(hw); 7608 set_bit(ICE_RESET_FAILED, pf->state); 7609 clear_recovery: 7610 /* set this bit in PF state to control service task scheduling */ 7611 set_bit(ICE_NEEDS_RESTART, pf->state); 7612 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7613 } 7614 7615 /** 7616 * ice_change_mtu - NDO callback to change the MTU 7617 * @netdev: network interface device structure 7618 * @new_mtu: new value for maximum frame size 7619 * 7620 * Returns 0 on success, negative on failure 7621 */ 7622 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7623 { 7624 struct ice_netdev_priv *np = netdev_priv(netdev); 7625 struct ice_vsi *vsi = np->vsi; 7626 struct ice_pf *pf = vsi->back; 7627 struct bpf_prog *prog; 7628 u8 count = 0; 7629 int err = 0; 7630 7631 if (new_mtu == (int)netdev->mtu) { 7632 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7633 return 0; 7634 } 7635 7636 prog = vsi->xdp_prog; 7637 if (prog && !prog->aux->xdp_has_frags) { 7638 int frame_size = ice_max_xdp_frame_size(vsi); 7639 7640 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7641 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7642 frame_size - ICE_ETH_PKT_HDR_PAD); 7643 return -EINVAL; 7644 } 7645 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7646 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7647 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7648 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7649 return -EINVAL; 7650 } 7651 } 7652 7653 /* if a reset is in progress, wait for some time for it to complete */ 7654 do { 7655 if (ice_is_reset_in_progress(pf->state)) { 7656 count++; 7657 usleep_range(1000, 2000); 7658 } else { 7659 break; 7660 } 7661 7662 } while (count < 100); 7663 7664 if (count == 100) { 7665 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7666 return -EBUSY; 7667 } 7668 7669 netdev->mtu = (unsigned int)new_mtu; 7670 err = ice_down_up(vsi); 7671 if (err) 7672 return err; 7673 7674 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7675 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7676 7677 return err; 7678 } 7679 7680 /** 7681 * ice_eth_ioctl - Access the hwtstamp interface 7682 * @netdev: network interface device structure 7683 * @ifr: interface request data 7684 * @cmd: ioctl command 7685 */ 7686 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7687 { 7688 struct ice_netdev_priv *np = netdev_priv(netdev); 7689 struct ice_pf *pf = np->vsi->back; 7690 7691 switch (cmd) { 7692 case SIOCGHWTSTAMP: 7693 return ice_ptp_get_ts_config(pf, ifr); 7694 case SIOCSHWTSTAMP: 7695 return ice_ptp_set_ts_config(pf, ifr); 7696 default: 7697 return -EOPNOTSUPP; 7698 } 7699 } 7700 7701 /** 7702 * ice_aq_str - convert AQ err code to a string 7703 * @aq_err: the AQ error code to convert 7704 */ 7705 const char *ice_aq_str(enum ice_aq_err aq_err) 7706 { 7707 switch (aq_err) { 7708 case ICE_AQ_RC_OK: 7709 return "OK"; 7710 case ICE_AQ_RC_EPERM: 7711 return "ICE_AQ_RC_EPERM"; 7712 case ICE_AQ_RC_ENOENT: 7713 return "ICE_AQ_RC_ENOENT"; 7714 case ICE_AQ_RC_ENOMEM: 7715 return "ICE_AQ_RC_ENOMEM"; 7716 case ICE_AQ_RC_EBUSY: 7717 return "ICE_AQ_RC_EBUSY"; 7718 case ICE_AQ_RC_EEXIST: 7719 return "ICE_AQ_RC_EEXIST"; 7720 case ICE_AQ_RC_EINVAL: 7721 return "ICE_AQ_RC_EINVAL"; 7722 case ICE_AQ_RC_ENOSPC: 7723 return "ICE_AQ_RC_ENOSPC"; 7724 case ICE_AQ_RC_ENOSYS: 7725 return "ICE_AQ_RC_ENOSYS"; 7726 case ICE_AQ_RC_EMODE: 7727 return "ICE_AQ_RC_EMODE"; 7728 case ICE_AQ_RC_ENOSEC: 7729 return "ICE_AQ_RC_ENOSEC"; 7730 case ICE_AQ_RC_EBADSIG: 7731 return "ICE_AQ_RC_EBADSIG"; 7732 case ICE_AQ_RC_ESVN: 7733 return "ICE_AQ_RC_ESVN"; 7734 case ICE_AQ_RC_EBADMAN: 7735 return "ICE_AQ_RC_EBADMAN"; 7736 case ICE_AQ_RC_EBADBUF: 7737 return "ICE_AQ_RC_EBADBUF"; 7738 } 7739 7740 return "ICE_AQ_RC_UNKNOWN"; 7741 } 7742 7743 /** 7744 * ice_set_rss_lut - Set RSS LUT 7745 * @vsi: Pointer to VSI structure 7746 * @lut: Lookup table 7747 * @lut_size: Lookup table size 7748 * 7749 * Returns 0 on success, negative on failure 7750 */ 7751 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7752 { 7753 struct ice_aq_get_set_rss_lut_params params = {}; 7754 struct ice_hw *hw = &vsi->back->hw; 7755 int status; 7756 7757 if (!lut) 7758 return -EINVAL; 7759 7760 params.vsi_handle = vsi->idx; 7761 params.lut_size = lut_size; 7762 params.lut_type = vsi->rss_lut_type; 7763 params.lut = lut; 7764 7765 status = ice_aq_set_rss_lut(hw, ¶ms); 7766 if (status) 7767 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7768 status, ice_aq_str(hw->adminq.sq_last_status)); 7769 7770 return status; 7771 } 7772 7773 /** 7774 * ice_set_rss_key - Set RSS key 7775 * @vsi: Pointer to the VSI structure 7776 * @seed: RSS hash seed 7777 * 7778 * Returns 0 on success, negative on failure 7779 */ 7780 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7781 { 7782 struct ice_hw *hw = &vsi->back->hw; 7783 int status; 7784 7785 if (!seed) 7786 return -EINVAL; 7787 7788 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7789 if (status) 7790 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7791 status, ice_aq_str(hw->adminq.sq_last_status)); 7792 7793 return status; 7794 } 7795 7796 /** 7797 * ice_get_rss_lut - Get RSS LUT 7798 * @vsi: Pointer to VSI structure 7799 * @lut: Buffer to store the lookup table entries 7800 * @lut_size: Size of buffer to store the lookup table entries 7801 * 7802 * Returns 0 on success, negative on failure 7803 */ 7804 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7805 { 7806 struct ice_aq_get_set_rss_lut_params params = {}; 7807 struct ice_hw *hw = &vsi->back->hw; 7808 int status; 7809 7810 if (!lut) 7811 return -EINVAL; 7812 7813 params.vsi_handle = vsi->idx; 7814 params.lut_size = lut_size; 7815 params.lut_type = vsi->rss_lut_type; 7816 params.lut = lut; 7817 7818 status = ice_aq_get_rss_lut(hw, ¶ms); 7819 if (status) 7820 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7821 status, ice_aq_str(hw->adminq.sq_last_status)); 7822 7823 return status; 7824 } 7825 7826 /** 7827 * ice_get_rss_key - Get RSS key 7828 * @vsi: Pointer to VSI structure 7829 * @seed: Buffer to store the key in 7830 * 7831 * Returns 0 on success, negative on failure 7832 */ 7833 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7834 { 7835 struct ice_hw *hw = &vsi->back->hw; 7836 int status; 7837 7838 if (!seed) 7839 return -EINVAL; 7840 7841 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7842 if (status) 7843 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7844 status, ice_aq_str(hw->adminq.sq_last_status)); 7845 7846 return status; 7847 } 7848 7849 /** 7850 * ice_set_rss_hfunc - Set RSS HASH function 7851 * @vsi: Pointer to VSI structure 7852 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 7853 * 7854 * Returns 0 on success, negative on failure 7855 */ 7856 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 7857 { 7858 struct ice_hw *hw = &vsi->back->hw; 7859 struct ice_vsi_ctx *ctx; 7860 bool symm; 7861 int err; 7862 7863 if (hfunc == vsi->rss_hfunc) 7864 return 0; 7865 7866 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 7867 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 7868 return -EOPNOTSUPP; 7869 7870 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7871 if (!ctx) 7872 return -ENOMEM; 7873 7874 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 7875 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 7876 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 7877 ctx->info.q_opt_rss |= 7878 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 7879 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 7880 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 7881 7882 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 7883 if (err) { 7884 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 7885 vsi->vsi_num, err); 7886 } else { 7887 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 7888 vsi->rss_hfunc = hfunc; 7889 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 7890 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 7891 "Symmetric " : ""); 7892 } 7893 kfree(ctx); 7894 if (err) 7895 return err; 7896 7897 /* Fix the symmetry setting for all existing RSS configurations */ 7898 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 7899 return ice_set_rss_cfg_symm(hw, vsi, symm); 7900 } 7901 7902 /** 7903 * ice_bridge_getlink - Get the hardware bridge mode 7904 * @skb: skb buff 7905 * @pid: process ID 7906 * @seq: RTNL message seq 7907 * @dev: the netdev being configured 7908 * @filter_mask: filter mask passed in 7909 * @nlflags: netlink flags passed in 7910 * 7911 * Return the bridge mode (VEB/VEPA) 7912 */ 7913 static int 7914 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7915 struct net_device *dev, u32 filter_mask, int nlflags) 7916 { 7917 struct ice_netdev_priv *np = netdev_priv(dev); 7918 struct ice_vsi *vsi = np->vsi; 7919 struct ice_pf *pf = vsi->back; 7920 u16 bmode; 7921 7922 bmode = pf->first_sw->bridge_mode; 7923 7924 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7925 filter_mask, NULL); 7926 } 7927 7928 /** 7929 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7930 * @vsi: Pointer to VSI structure 7931 * @bmode: Hardware bridge mode (VEB/VEPA) 7932 * 7933 * Returns 0 on success, negative on failure 7934 */ 7935 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7936 { 7937 struct ice_aqc_vsi_props *vsi_props; 7938 struct ice_hw *hw = &vsi->back->hw; 7939 struct ice_vsi_ctx *ctxt; 7940 int ret; 7941 7942 vsi_props = &vsi->info; 7943 7944 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7945 if (!ctxt) 7946 return -ENOMEM; 7947 7948 ctxt->info = vsi->info; 7949 7950 if (bmode == BRIDGE_MODE_VEB) 7951 /* change from VEPA to VEB mode */ 7952 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7953 else 7954 /* change from VEB to VEPA mode */ 7955 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7956 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7957 7958 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7959 if (ret) { 7960 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7961 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7962 goto out; 7963 } 7964 /* Update sw flags for book keeping */ 7965 vsi_props->sw_flags = ctxt->info.sw_flags; 7966 7967 out: 7968 kfree(ctxt); 7969 return ret; 7970 } 7971 7972 /** 7973 * ice_bridge_setlink - Set the hardware bridge mode 7974 * @dev: the netdev being configured 7975 * @nlh: RTNL message 7976 * @flags: bridge setlink flags 7977 * @extack: netlink extended ack 7978 * 7979 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7980 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7981 * not already set for all VSIs connected to this switch. And also update the 7982 * unicast switch filter rules for the corresponding switch of the netdev. 7983 */ 7984 static int 7985 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7986 u16 __always_unused flags, 7987 struct netlink_ext_ack __always_unused *extack) 7988 { 7989 struct ice_netdev_priv *np = netdev_priv(dev); 7990 struct ice_pf *pf = np->vsi->back; 7991 struct nlattr *attr, *br_spec; 7992 struct ice_hw *hw = &pf->hw; 7993 struct ice_sw *pf_sw; 7994 int rem, v, err = 0; 7995 7996 pf_sw = pf->first_sw; 7997 /* find the attribute in the netlink message */ 7998 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7999 if (!br_spec) 8000 return -EINVAL; 8001 8002 nla_for_each_nested(attr, br_spec, rem) { 8003 __u16 mode; 8004 8005 if (nla_type(attr) != IFLA_BRIDGE_MODE) 8006 continue; 8007 mode = nla_get_u16(attr); 8008 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8009 return -EINVAL; 8010 /* Continue if bridge mode is not being flipped */ 8011 if (mode == pf_sw->bridge_mode) 8012 continue; 8013 /* Iterates through the PF VSI list and update the loopback 8014 * mode of the VSI 8015 */ 8016 ice_for_each_vsi(pf, v) { 8017 if (!pf->vsi[v]) 8018 continue; 8019 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8020 if (err) 8021 return err; 8022 } 8023 8024 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8025 /* Update the unicast switch filter rules for the corresponding 8026 * switch of the netdev 8027 */ 8028 err = ice_update_sw_rule_bridge_mode(hw); 8029 if (err) { 8030 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8031 mode, err, 8032 ice_aq_str(hw->adminq.sq_last_status)); 8033 /* revert hw->evb_veb */ 8034 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8035 return err; 8036 } 8037 8038 pf_sw->bridge_mode = mode; 8039 } 8040 8041 return 0; 8042 } 8043 8044 /** 8045 * ice_tx_timeout - Respond to a Tx Hang 8046 * @netdev: network interface device structure 8047 * @txqueue: Tx queue 8048 */ 8049 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8050 { 8051 struct ice_netdev_priv *np = netdev_priv(netdev); 8052 struct ice_tx_ring *tx_ring = NULL; 8053 struct ice_vsi *vsi = np->vsi; 8054 struct ice_pf *pf = vsi->back; 8055 u32 i; 8056 8057 pf->tx_timeout_count++; 8058 8059 /* Check if PFC is enabled for the TC to which the queue belongs 8060 * to. If yes then Tx timeout is not caused by a hung queue, no 8061 * need to reset and rebuild 8062 */ 8063 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8064 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8065 txqueue); 8066 return; 8067 } 8068 8069 /* now that we have an index, find the tx_ring struct */ 8070 ice_for_each_txq(vsi, i) 8071 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8072 if (txqueue == vsi->tx_rings[i]->q_index) { 8073 tx_ring = vsi->tx_rings[i]; 8074 break; 8075 } 8076 8077 /* Reset recovery level if enough time has elapsed after last timeout. 8078 * Also ensure no new reset action happens before next timeout period. 8079 */ 8080 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8081 pf->tx_timeout_recovery_level = 1; 8082 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8083 netdev->watchdog_timeo))) 8084 return; 8085 8086 if (tx_ring) { 8087 struct ice_hw *hw = &pf->hw; 8088 u32 head, val = 0; 8089 8090 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8091 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8092 /* Read interrupt register */ 8093 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8094 8095 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8096 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8097 head, tx_ring->next_to_use, val); 8098 } 8099 8100 pf->tx_timeout_last_recovery = jiffies; 8101 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8102 pf->tx_timeout_recovery_level, txqueue); 8103 8104 switch (pf->tx_timeout_recovery_level) { 8105 case 1: 8106 set_bit(ICE_PFR_REQ, pf->state); 8107 break; 8108 case 2: 8109 set_bit(ICE_CORER_REQ, pf->state); 8110 break; 8111 case 3: 8112 set_bit(ICE_GLOBR_REQ, pf->state); 8113 break; 8114 default: 8115 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8116 set_bit(ICE_DOWN, pf->state); 8117 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8118 set_bit(ICE_SERVICE_DIS, pf->state); 8119 break; 8120 } 8121 8122 ice_service_task_schedule(pf); 8123 pf->tx_timeout_recovery_level++; 8124 } 8125 8126 /** 8127 * ice_setup_tc_cls_flower - flower classifier offloads 8128 * @np: net device to configure 8129 * @filter_dev: device on which filter is added 8130 * @cls_flower: offload data 8131 */ 8132 static int 8133 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8134 struct net_device *filter_dev, 8135 struct flow_cls_offload *cls_flower) 8136 { 8137 struct ice_vsi *vsi = np->vsi; 8138 8139 if (cls_flower->common.chain_index) 8140 return -EOPNOTSUPP; 8141 8142 switch (cls_flower->command) { 8143 case FLOW_CLS_REPLACE: 8144 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8145 case FLOW_CLS_DESTROY: 8146 return ice_del_cls_flower(vsi, cls_flower); 8147 default: 8148 return -EINVAL; 8149 } 8150 } 8151 8152 /** 8153 * ice_setup_tc_block_cb - callback handler registered for TC block 8154 * @type: TC SETUP type 8155 * @type_data: TC flower offload data that contains user input 8156 * @cb_priv: netdev private data 8157 */ 8158 static int 8159 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8160 { 8161 struct ice_netdev_priv *np = cb_priv; 8162 8163 switch (type) { 8164 case TC_SETUP_CLSFLOWER: 8165 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8166 type_data); 8167 default: 8168 return -EOPNOTSUPP; 8169 } 8170 } 8171 8172 /** 8173 * ice_validate_mqprio_qopt - Validate TCF input parameters 8174 * @vsi: Pointer to VSI 8175 * @mqprio_qopt: input parameters for mqprio queue configuration 8176 * 8177 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8178 * needed), and make sure user doesn't specify qcount and BW rate limit 8179 * for TCs, which are more than "num_tc" 8180 */ 8181 static int 8182 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8183 struct tc_mqprio_qopt_offload *mqprio_qopt) 8184 { 8185 int non_power_of_2_qcount = 0; 8186 struct ice_pf *pf = vsi->back; 8187 int max_rss_q_cnt = 0; 8188 u64 sum_min_rate = 0; 8189 struct device *dev; 8190 int i, speed; 8191 u8 num_tc; 8192 8193 if (vsi->type != ICE_VSI_PF) 8194 return -EINVAL; 8195 8196 if (mqprio_qopt->qopt.offset[0] != 0 || 8197 mqprio_qopt->qopt.num_tc < 1 || 8198 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8199 return -EINVAL; 8200 8201 dev = ice_pf_to_dev(pf); 8202 vsi->ch_rss_size = 0; 8203 num_tc = mqprio_qopt->qopt.num_tc; 8204 speed = ice_get_link_speed_kbps(vsi); 8205 8206 for (i = 0; num_tc; i++) { 8207 int qcount = mqprio_qopt->qopt.count[i]; 8208 u64 max_rate, min_rate, rem; 8209 8210 if (!qcount) 8211 return -EINVAL; 8212 8213 if (is_power_of_2(qcount)) { 8214 if (non_power_of_2_qcount && 8215 qcount > non_power_of_2_qcount) { 8216 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8217 qcount, non_power_of_2_qcount); 8218 return -EINVAL; 8219 } 8220 if (qcount > max_rss_q_cnt) 8221 max_rss_q_cnt = qcount; 8222 } else { 8223 if (non_power_of_2_qcount && 8224 qcount != non_power_of_2_qcount) { 8225 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8226 qcount, non_power_of_2_qcount); 8227 return -EINVAL; 8228 } 8229 if (qcount < max_rss_q_cnt) { 8230 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8231 qcount, max_rss_q_cnt); 8232 return -EINVAL; 8233 } 8234 max_rss_q_cnt = qcount; 8235 non_power_of_2_qcount = qcount; 8236 } 8237 8238 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8239 * converts the bandwidth rate limit into Bytes/s when 8240 * passing it down to the driver. So convert input bandwidth 8241 * from Bytes/s to Kbps 8242 */ 8243 max_rate = mqprio_qopt->max_rate[i]; 8244 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8245 8246 /* min_rate is minimum guaranteed rate and it can't be zero */ 8247 min_rate = mqprio_qopt->min_rate[i]; 8248 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8249 sum_min_rate += min_rate; 8250 8251 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8252 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8253 min_rate, ICE_MIN_BW_LIMIT); 8254 return -EINVAL; 8255 } 8256 8257 if (max_rate && max_rate > speed) { 8258 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8259 i, max_rate, speed); 8260 return -EINVAL; 8261 } 8262 8263 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8264 if (rem) { 8265 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8266 i, ICE_MIN_BW_LIMIT); 8267 return -EINVAL; 8268 } 8269 8270 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8271 if (rem) { 8272 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8273 i, ICE_MIN_BW_LIMIT); 8274 return -EINVAL; 8275 } 8276 8277 /* min_rate can't be more than max_rate, except when max_rate 8278 * is zero (implies max_rate sought is max line rate). In such 8279 * a case min_rate can be more than max. 8280 */ 8281 if (max_rate && min_rate > max_rate) { 8282 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8283 min_rate, max_rate); 8284 return -EINVAL; 8285 } 8286 8287 if (i >= mqprio_qopt->qopt.num_tc - 1) 8288 break; 8289 if (mqprio_qopt->qopt.offset[i + 1] != 8290 (mqprio_qopt->qopt.offset[i] + qcount)) 8291 return -EINVAL; 8292 } 8293 if (vsi->num_rxq < 8294 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8295 return -EINVAL; 8296 if (vsi->num_txq < 8297 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8298 return -EINVAL; 8299 8300 if (sum_min_rate && sum_min_rate > (u64)speed) { 8301 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8302 sum_min_rate, speed); 8303 return -EINVAL; 8304 } 8305 8306 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8307 vsi->ch_rss_size = max_rss_q_cnt; 8308 8309 return 0; 8310 } 8311 8312 /** 8313 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8314 * @pf: ptr to PF device 8315 * @vsi: ptr to VSI 8316 */ 8317 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8318 { 8319 struct device *dev = ice_pf_to_dev(pf); 8320 bool added = false; 8321 struct ice_hw *hw; 8322 int flow; 8323 8324 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8325 return -EINVAL; 8326 8327 hw = &pf->hw; 8328 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8329 struct ice_fd_hw_prof *prof; 8330 int tun, status; 8331 u64 entry_h; 8332 8333 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8334 hw->fdir_prof[flow]->cnt)) 8335 continue; 8336 8337 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8338 enum ice_flow_priority prio; 8339 8340 /* add this VSI to FDir profile for this flow */ 8341 prio = ICE_FLOW_PRIO_NORMAL; 8342 prof = hw->fdir_prof[flow]; 8343 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8344 prof->prof_id[tun], 8345 prof->vsi_h[0], vsi->idx, 8346 prio, prof->fdir_seg[tun], 8347 &entry_h); 8348 if (status) { 8349 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8350 vsi->idx, flow); 8351 continue; 8352 } 8353 8354 prof->entry_h[prof->cnt][tun] = entry_h; 8355 } 8356 8357 /* store VSI for filter replay and delete */ 8358 prof->vsi_h[prof->cnt] = vsi->idx; 8359 prof->cnt++; 8360 8361 added = true; 8362 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8363 flow); 8364 } 8365 8366 if (!added) 8367 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8368 8369 return 0; 8370 } 8371 8372 /** 8373 * ice_add_channel - add a channel by adding VSI 8374 * @pf: ptr to PF device 8375 * @sw_id: underlying HW switching element ID 8376 * @ch: ptr to channel structure 8377 * 8378 * Add a channel (VSI) using add_vsi and queue_map 8379 */ 8380 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8381 { 8382 struct device *dev = ice_pf_to_dev(pf); 8383 struct ice_vsi *vsi; 8384 8385 if (ch->type != ICE_VSI_CHNL) { 8386 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8387 return -EINVAL; 8388 } 8389 8390 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8391 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8392 dev_err(dev, "create chnl VSI failure\n"); 8393 return -EINVAL; 8394 } 8395 8396 ice_add_vsi_to_fdir(pf, vsi); 8397 8398 ch->sw_id = sw_id; 8399 ch->vsi_num = vsi->vsi_num; 8400 ch->info.mapping_flags = vsi->info.mapping_flags; 8401 ch->ch_vsi = vsi; 8402 /* set the back pointer of channel for newly created VSI */ 8403 vsi->ch = ch; 8404 8405 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8406 sizeof(vsi->info.q_mapping)); 8407 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8408 sizeof(vsi->info.tc_mapping)); 8409 8410 return 0; 8411 } 8412 8413 /** 8414 * ice_chnl_cfg_res 8415 * @vsi: the VSI being setup 8416 * @ch: ptr to channel structure 8417 * 8418 * Configure channel specific resources such as rings, vector. 8419 */ 8420 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8421 { 8422 int i; 8423 8424 for (i = 0; i < ch->num_txq; i++) { 8425 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8426 struct ice_ring_container *rc; 8427 struct ice_tx_ring *tx_ring; 8428 struct ice_rx_ring *rx_ring; 8429 8430 tx_ring = vsi->tx_rings[ch->base_q + i]; 8431 rx_ring = vsi->rx_rings[ch->base_q + i]; 8432 if (!tx_ring || !rx_ring) 8433 continue; 8434 8435 /* setup ring being channel enabled */ 8436 tx_ring->ch = ch; 8437 rx_ring->ch = ch; 8438 8439 /* following code block sets up vector specific attributes */ 8440 tx_q_vector = tx_ring->q_vector; 8441 rx_q_vector = rx_ring->q_vector; 8442 if (!tx_q_vector && !rx_q_vector) 8443 continue; 8444 8445 if (tx_q_vector) { 8446 tx_q_vector->ch = ch; 8447 /* setup Tx and Rx ITR setting if DIM is off */ 8448 rc = &tx_q_vector->tx; 8449 if (!ITR_IS_DYNAMIC(rc)) 8450 ice_write_itr(rc, rc->itr_setting); 8451 } 8452 if (rx_q_vector) { 8453 rx_q_vector->ch = ch; 8454 /* setup Tx and Rx ITR setting if DIM is off */ 8455 rc = &rx_q_vector->rx; 8456 if (!ITR_IS_DYNAMIC(rc)) 8457 ice_write_itr(rc, rc->itr_setting); 8458 } 8459 } 8460 8461 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8462 * GLINT_ITR register would have written to perform in-context 8463 * update, hence perform flush 8464 */ 8465 if (ch->num_txq || ch->num_rxq) 8466 ice_flush(&vsi->back->hw); 8467 } 8468 8469 /** 8470 * ice_cfg_chnl_all_res - configure channel resources 8471 * @vsi: pte to main_vsi 8472 * @ch: ptr to channel structure 8473 * 8474 * This function configures channel specific resources such as flow-director 8475 * counter index, and other resources such as queues, vectors, ITR settings 8476 */ 8477 static void 8478 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8479 { 8480 /* configure channel (aka ADQ) resources such as queues, vectors, 8481 * ITR settings for channel specific vectors and anything else 8482 */ 8483 ice_chnl_cfg_res(vsi, ch); 8484 } 8485 8486 /** 8487 * ice_setup_hw_channel - setup new channel 8488 * @pf: ptr to PF device 8489 * @vsi: the VSI being setup 8490 * @ch: ptr to channel structure 8491 * @sw_id: underlying HW switching element ID 8492 * @type: type of channel to be created (VMDq2/VF) 8493 * 8494 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8495 * and configures Tx rings accordingly 8496 */ 8497 static int 8498 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8499 struct ice_channel *ch, u16 sw_id, u8 type) 8500 { 8501 struct device *dev = ice_pf_to_dev(pf); 8502 int ret; 8503 8504 ch->base_q = vsi->next_base_q; 8505 ch->type = type; 8506 8507 ret = ice_add_channel(pf, sw_id, ch); 8508 if (ret) { 8509 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8510 return ret; 8511 } 8512 8513 /* configure/setup ADQ specific resources */ 8514 ice_cfg_chnl_all_res(vsi, ch); 8515 8516 /* make sure to update the next_base_q so that subsequent channel's 8517 * (aka ADQ) VSI queue map is correct 8518 */ 8519 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8520 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8521 ch->num_rxq); 8522 8523 return 0; 8524 } 8525 8526 /** 8527 * ice_setup_channel - setup new channel using uplink element 8528 * @pf: ptr to PF device 8529 * @vsi: the VSI being setup 8530 * @ch: ptr to channel structure 8531 * 8532 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8533 * and uplink switching element 8534 */ 8535 static bool 8536 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8537 struct ice_channel *ch) 8538 { 8539 struct device *dev = ice_pf_to_dev(pf); 8540 u16 sw_id; 8541 int ret; 8542 8543 if (vsi->type != ICE_VSI_PF) { 8544 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8545 return false; 8546 } 8547 8548 sw_id = pf->first_sw->sw_id; 8549 8550 /* create channel (VSI) */ 8551 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8552 if (ret) { 8553 dev_err(dev, "failed to setup hw_channel\n"); 8554 return false; 8555 } 8556 dev_dbg(dev, "successfully created channel()\n"); 8557 8558 return ch->ch_vsi ? true : false; 8559 } 8560 8561 /** 8562 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8563 * @vsi: VSI to be configured 8564 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8565 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8566 */ 8567 static int 8568 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8569 { 8570 int err; 8571 8572 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8573 if (err) 8574 return err; 8575 8576 return ice_set_max_bw_limit(vsi, max_tx_rate); 8577 } 8578 8579 /** 8580 * ice_create_q_channel - function to create channel 8581 * @vsi: VSI to be configured 8582 * @ch: ptr to channel (it contains channel specific params) 8583 * 8584 * This function creates channel (VSI) using num_queues specified by user, 8585 * reconfigs RSS if needed. 8586 */ 8587 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8588 { 8589 struct ice_pf *pf = vsi->back; 8590 struct device *dev; 8591 8592 if (!ch) 8593 return -EINVAL; 8594 8595 dev = ice_pf_to_dev(pf); 8596 if (!ch->num_txq || !ch->num_rxq) { 8597 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8598 return -EINVAL; 8599 } 8600 8601 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8602 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8603 vsi->cnt_q_avail, ch->num_txq); 8604 return -EINVAL; 8605 } 8606 8607 if (!ice_setup_channel(pf, vsi, ch)) { 8608 dev_info(dev, "Failed to setup channel\n"); 8609 return -EINVAL; 8610 } 8611 /* configure BW rate limit */ 8612 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8613 int ret; 8614 8615 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8616 ch->min_tx_rate); 8617 if (ret) 8618 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8619 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8620 else 8621 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8622 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8623 } 8624 8625 vsi->cnt_q_avail -= ch->num_txq; 8626 8627 return 0; 8628 } 8629 8630 /** 8631 * ice_rem_all_chnl_fltrs - removes all channel filters 8632 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8633 * 8634 * Remove all advanced switch filters only if they are channel specific 8635 * tc-flower based filter 8636 */ 8637 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8638 { 8639 struct ice_tc_flower_fltr *fltr; 8640 struct hlist_node *node; 8641 8642 /* to remove all channel filters, iterate an ordered list of filters */ 8643 hlist_for_each_entry_safe(fltr, node, 8644 &pf->tc_flower_fltr_list, 8645 tc_flower_node) { 8646 struct ice_rule_query_data rule; 8647 int status; 8648 8649 /* for now process only channel specific filters */ 8650 if (!ice_is_chnl_fltr(fltr)) 8651 continue; 8652 8653 rule.rid = fltr->rid; 8654 rule.rule_id = fltr->rule_id; 8655 rule.vsi_handle = fltr->dest_vsi_handle; 8656 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8657 if (status) { 8658 if (status == -ENOENT) 8659 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8660 rule.rule_id); 8661 else 8662 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8663 status); 8664 } else if (fltr->dest_vsi) { 8665 /* update advanced switch filter count */ 8666 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8667 u32 flags = fltr->flags; 8668 8669 fltr->dest_vsi->num_chnl_fltr--; 8670 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8671 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8672 pf->num_dmac_chnl_fltrs--; 8673 } 8674 } 8675 8676 hlist_del(&fltr->tc_flower_node); 8677 kfree(fltr); 8678 } 8679 } 8680 8681 /** 8682 * ice_remove_q_channels - Remove queue channels for the TCs 8683 * @vsi: VSI to be configured 8684 * @rem_fltr: delete advanced switch filter or not 8685 * 8686 * Remove queue channels for the TCs 8687 */ 8688 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8689 { 8690 struct ice_channel *ch, *ch_tmp; 8691 struct ice_pf *pf = vsi->back; 8692 int i; 8693 8694 /* remove all tc-flower based filter if they are channel filters only */ 8695 if (rem_fltr) 8696 ice_rem_all_chnl_fltrs(pf); 8697 8698 /* remove ntuple filters since queue configuration is being changed */ 8699 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8700 struct ice_hw *hw = &pf->hw; 8701 8702 mutex_lock(&hw->fdir_fltr_lock); 8703 ice_fdir_del_all_fltrs(vsi); 8704 mutex_unlock(&hw->fdir_fltr_lock); 8705 } 8706 8707 /* perform cleanup for channels if they exist */ 8708 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8709 struct ice_vsi *ch_vsi; 8710 8711 list_del(&ch->list); 8712 ch_vsi = ch->ch_vsi; 8713 if (!ch_vsi) { 8714 kfree(ch); 8715 continue; 8716 } 8717 8718 /* Reset queue contexts */ 8719 for (i = 0; i < ch->num_rxq; i++) { 8720 struct ice_tx_ring *tx_ring; 8721 struct ice_rx_ring *rx_ring; 8722 8723 tx_ring = vsi->tx_rings[ch->base_q + i]; 8724 rx_ring = vsi->rx_rings[ch->base_q + i]; 8725 if (tx_ring) { 8726 tx_ring->ch = NULL; 8727 if (tx_ring->q_vector) 8728 tx_ring->q_vector->ch = NULL; 8729 } 8730 if (rx_ring) { 8731 rx_ring->ch = NULL; 8732 if (rx_ring->q_vector) 8733 rx_ring->q_vector->ch = NULL; 8734 } 8735 } 8736 8737 /* Release FD resources for the channel VSI */ 8738 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8739 8740 /* clear the VSI from scheduler tree */ 8741 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8742 8743 /* Delete VSI from FW, PF and HW VSI arrays */ 8744 ice_vsi_delete(ch->ch_vsi); 8745 8746 /* free the channel */ 8747 kfree(ch); 8748 } 8749 8750 /* clear the channel VSI map which is stored in main VSI */ 8751 ice_for_each_chnl_tc(i) 8752 vsi->tc_map_vsi[i] = NULL; 8753 8754 /* reset main VSI's all TC information */ 8755 vsi->all_enatc = 0; 8756 vsi->all_numtc = 0; 8757 } 8758 8759 /** 8760 * ice_rebuild_channels - rebuild channel 8761 * @pf: ptr to PF 8762 * 8763 * Recreate channel VSIs and replay filters 8764 */ 8765 static int ice_rebuild_channels(struct ice_pf *pf) 8766 { 8767 struct device *dev = ice_pf_to_dev(pf); 8768 struct ice_vsi *main_vsi; 8769 bool rem_adv_fltr = true; 8770 struct ice_channel *ch; 8771 struct ice_vsi *vsi; 8772 int tc_idx = 1; 8773 int i, err; 8774 8775 main_vsi = ice_get_main_vsi(pf); 8776 if (!main_vsi) 8777 return 0; 8778 8779 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8780 main_vsi->old_numtc == 1) 8781 return 0; /* nothing to be done */ 8782 8783 /* reconfigure main VSI based on old value of TC and cached values 8784 * for MQPRIO opts 8785 */ 8786 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8787 if (err) { 8788 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8789 main_vsi->old_ena_tc, main_vsi->vsi_num); 8790 return err; 8791 } 8792 8793 /* rebuild ADQ VSIs */ 8794 ice_for_each_vsi(pf, i) { 8795 enum ice_vsi_type type; 8796 8797 vsi = pf->vsi[i]; 8798 if (!vsi || vsi->type != ICE_VSI_CHNL) 8799 continue; 8800 8801 type = vsi->type; 8802 8803 /* rebuild ADQ VSI */ 8804 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8805 if (err) { 8806 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8807 ice_vsi_type_str(type), vsi->idx, err); 8808 goto cleanup; 8809 } 8810 8811 /* Re-map HW VSI number, using VSI handle that has been 8812 * previously validated in ice_replay_vsi() call above 8813 */ 8814 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8815 8816 /* replay filters for the VSI */ 8817 err = ice_replay_vsi(&pf->hw, vsi->idx); 8818 if (err) { 8819 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8820 ice_vsi_type_str(type), err, vsi->idx); 8821 rem_adv_fltr = false; 8822 goto cleanup; 8823 } 8824 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8825 ice_vsi_type_str(type), vsi->idx); 8826 8827 /* store ADQ VSI at correct TC index in main VSI's 8828 * map of TC to VSI 8829 */ 8830 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8831 } 8832 8833 /* ADQ VSI(s) has been rebuilt successfully, so setup 8834 * channel for main VSI's Tx and Rx rings 8835 */ 8836 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8837 struct ice_vsi *ch_vsi; 8838 8839 ch_vsi = ch->ch_vsi; 8840 if (!ch_vsi) 8841 continue; 8842 8843 /* reconfig channel resources */ 8844 ice_cfg_chnl_all_res(main_vsi, ch); 8845 8846 /* replay BW rate limit if it is non-zero */ 8847 if (!ch->max_tx_rate && !ch->min_tx_rate) 8848 continue; 8849 8850 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8851 ch->min_tx_rate); 8852 if (err) 8853 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8854 err, ch->max_tx_rate, ch->min_tx_rate, 8855 ch_vsi->vsi_num); 8856 else 8857 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8858 ch->max_tx_rate, ch->min_tx_rate, 8859 ch_vsi->vsi_num); 8860 } 8861 8862 /* reconfig RSS for main VSI */ 8863 if (main_vsi->ch_rss_size) 8864 ice_vsi_cfg_rss_lut_key(main_vsi); 8865 8866 return 0; 8867 8868 cleanup: 8869 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8870 return err; 8871 } 8872 8873 /** 8874 * ice_create_q_channels - Add queue channel for the given TCs 8875 * @vsi: VSI to be configured 8876 * 8877 * Configures queue channel mapping to the given TCs 8878 */ 8879 static int ice_create_q_channels(struct ice_vsi *vsi) 8880 { 8881 struct ice_pf *pf = vsi->back; 8882 struct ice_channel *ch; 8883 int ret = 0, i; 8884 8885 ice_for_each_chnl_tc(i) { 8886 if (!(vsi->all_enatc & BIT(i))) 8887 continue; 8888 8889 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8890 if (!ch) { 8891 ret = -ENOMEM; 8892 goto err_free; 8893 } 8894 INIT_LIST_HEAD(&ch->list); 8895 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8896 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8897 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8898 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8899 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8900 8901 /* convert to Kbits/s */ 8902 if (ch->max_tx_rate) 8903 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8904 ICE_BW_KBPS_DIVISOR); 8905 if (ch->min_tx_rate) 8906 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8907 ICE_BW_KBPS_DIVISOR); 8908 8909 ret = ice_create_q_channel(vsi, ch); 8910 if (ret) { 8911 dev_err(ice_pf_to_dev(pf), 8912 "failed creating channel TC:%d\n", i); 8913 kfree(ch); 8914 goto err_free; 8915 } 8916 list_add_tail(&ch->list, &vsi->ch_list); 8917 vsi->tc_map_vsi[i] = ch->ch_vsi; 8918 dev_dbg(ice_pf_to_dev(pf), 8919 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8920 } 8921 return 0; 8922 8923 err_free: 8924 ice_remove_q_channels(vsi, false); 8925 8926 return ret; 8927 } 8928 8929 /** 8930 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8931 * @netdev: net device to configure 8932 * @type_data: TC offload data 8933 */ 8934 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8935 { 8936 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8937 struct ice_netdev_priv *np = netdev_priv(netdev); 8938 struct ice_vsi *vsi = np->vsi; 8939 struct ice_pf *pf = vsi->back; 8940 u16 mode, ena_tc_qdisc = 0; 8941 int cur_txq, cur_rxq; 8942 u8 hw = 0, num_tcf; 8943 struct device *dev; 8944 int ret, i; 8945 8946 dev = ice_pf_to_dev(pf); 8947 num_tcf = mqprio_qopt->qopt.num_tc; 8948 hw = mqprio_qopt->qopt.hw; 8949 mode = mqprio_qopt->mode; 8950 if (!hw) { 8951 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8952 vsi->ch_rss_size = 0; 8953 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8954 goto config_tcf; 8955 } 8956 8957 /* Generate queue region map for number of TCF requested */ 8958 for (i = 0; i < num_tcf; i++) 8959 ena_tc_qdisc |= BIT(i); 8960 8961 switch (mode) { 8962 case TC_MQPRIO_MODE_CHANNEL: 8963 8964 if (pf->hw.port_info->is_custom_tx_enabled) { 8965 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8966 return -EBUSY; 8967 } 8968 ice_tear_down_devlink_rate_tree(pf); 8969 8970 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8971 if (ret) { 8972 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8973 ret); 8974 return ret; 8975 } 8976 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8977 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8978 /* don't assume state of hw_tc_offload during driver load 8979 * and set the flag for TC flower filter if hw_tc_offload 8980 * already ON 8981 */ 8982 if (vsi->netdev->features & NETIF_F_HW_TC) 8983 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8984 break; 8985 default: 8986 return -EINVAL; 8987 } 8988 8989 config_tcf: 8990 8991 /* Requesting same TCF configuration as already enabled */ 8992 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8993 mode != TC_MQPRIO_MODE_CHANNEL) 8994 return 0; 8995 8996 /* Pause VSI queues */ 8997 ice_dis_vsi(vsi, true); 8998 8999 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9000 ice_remove_q_channels(vsi, true); 9001 9002 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9003 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9004 num_online_cpus()); 9005 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9006 num_online_cpus()); 9007 } else { 9008 /* logic to rebuild VSI, same like ethtool -L */ 9009 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9010 9011 for (i = 0; i < num_tcf; i++) { 9012 if (!(ena_tc_qdisc & BIT(i))) 9013 continue; 9014 9015 offset = vsi->mqprio_qopt.qopt.offset[i]; 9016 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9017 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9018 } 9019 vsi->req_txq = offset + qcount_tx; 9020 vsi->req_rxq = offset + qcount_rx; 9021 9022 /* store away original rss_size info, so that it gets reused 9023 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9024 * determine, what should be the rss_sizefor main VSI 9025 */ 9026 vsi->orig_rss_size = vsi->rss_size; 9027 } 9028 9029 /* save current values of Tx and Rx queues before calling VSI rebuild 9030 * for fallback option 9031 */ 9032 cur_txq = vsi->num_txq; 9033 cur_rxq = vsi->num_rxq; 9034 9035 /* proceed with rebuild main VSI using correct number of queues */ 9036 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9037 if (ret) { 9038 /* fallback to current number of queues */ 9039 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9040 vsi->req_txq = cur_txq; 9041 vsi->req_rxq = cur_rxq; 9042 clear_bit(ICE_RESET_FAILED, pf->state); 9043 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9044 dev_err(dev, "Rebuild of main VSI failed again\n"); 9045 return ret; 9046 } 9047 } 9048 9049 vsi->all_numtc = num_tcf; 9050 vsi->all_enatc = ena_tc_qdisc; 9051 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9052 if (ret) { 9053 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9054 vsi->vsi_num); 9055 goto exit; 9056 } 9057 9058 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9059 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9060 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9061 9062 /* set TC0 rate limit if specified */ 9063 if (max_tx_rate || min_tx_rate) { 9064 /* convert to Kbits/s */ 9065 if (max_tx_rate) 9066 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9067 if (min_tx_rate) 9068 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9069 9070 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9071 if (!ret) { 9072 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9073 max_tx_rate, min_tx_rate, vsi->vsi_num); 9074 } else { 9075 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9076 max_tx_rate, min_tx_rate, vsi->vsi_num); 9077 goto exit; 9078 } 9079 } 9080 ret = ice_create_q_channels(vsi); 9081 if (ret) { 9082 netdev_err(netdev, "failed configuring queue channels\n"); 9083 goto exit; 9084 } else { 9085 netdev_dbg(netdev, "successfully configured channels\n"); 9086 } 9087 } 9088 9089 if (vsi->ch_rss_size) 9090 ice_vsi_cfg_rss_lut_key(vsi); 9091 9092 exit: 9093 /* if error, reset the all_numtc and all_enatc */ 9094 if (ret) { 9095 vsi->all_numtc = 0; 9096 vsi->all_enatc = 0; 9097 } 9098 /* resume VSI */ 9099 ice_ena_vsi(vsi, true); 9100 9101 return ret; 9102 } 9103 9104 static LIST_HEAD(ice_block_cb_list); 9105 9106 static int 9107 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9108 void *type_data) 9109 { 9110 struct ice_netdev_priv *np = netdev_priv(netdev); 9111 struct ice_pf *pf = np->vsi->back; 9112 bool locked = false; 9113 int err; 9114 9115 switch (type) { 9116 case TC_SETUP_BLOCK: 9117 return flow_block_cb_setup_simple(type_data, 9118 &ice_block_cb_list, 9119 ice_setup_tc_block_cb, 9120 np, np, true); 9121 case TC_SETUP_QDISC_MQPRIO: 9122 if (ice_is_eswitch_mode_switchdev(pf)) { 9123 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9124 return -EOPNOTSUPP; 9125 } 9126 9127 if (pf->adev) { 9128 mutex_lock(&pf->adev_mutex); 9129 device_lock(&pf->adev->dev); 9130 locked = true; 9131 if (pf->adev->dev.driver) { 9132 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9133 err = -EBUSY; 9134 goto adev_unlock; 9135 } 9136 } 9137 9138 /* setup traffic classifier for receive side */ 9139 mutex_lock(&pf->tc_mutex); 9140 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9141 mutex_unlock(&pf->tc_mutex); 9142 9143 adev_unlock: 9144 if (locked) { 9145 device_unlock(&pf->adev->dev); 9146 mutex_unlock(&pf->adev_mutex); 9147 } 9148 return err; 9149 default: 9150 return -EOPNOTSUPP; 9151 } 9152 return -EOPNOTSUPP; 9153 } 9154 9155 static struct ice_indr_block_priv * 9156 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9157 struct net_device *netdev) 9158 { 9159 struct ice_indr_block_priv *cb_priv; 9160 9161 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9162 if (!cb_priv->netdev) 9163 return NULL; 9164 if (cb_priv->netdev == netdev) 9165 return cb_priv; 9166 } 9167 return NULL; 9168 } 9169 9170 static int 9171 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9172 void *indr_priv) 9173 { 9174 struct ice_indr_block_priv *priv = indr_priv; 9175 struct ice_netdev_priv *np = priv->np; 9176 9177 switch (type) { 9178 case TC_SETUP_CLSFLOWER: 9179 return ice_setup_tc_cls_flower(np, priv->netdev, 9180 (struct flow_cls_offload *) 9181 type_data); 9182 default: 9183 return -EOPNOTSUPP; 9184 } 9185 } 9186 9187 static int 9188 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9189 struct ice_netdev_priv *np, 9190 struct flow_block_offload *f, void *data, 9191 void (*cleanup)(struct flow_block_cb *block_cb)) 9192 { 9193 struct ice_indr_block_priv *indr_priv; 9194 struct flow_block_cb *block_cb; 9195 9196 if (!ice_is_tunnel_supported(netdev) && 9197 !(is_vlan_dev(netdev) && 9198 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9199 return -EOPNOTSUPP; 9200 9201 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9202 return -EOPNOTSUPP; 9203 9204 switch (f->command) { 9205 case FLOW_BLOCK_BIND: 9206 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9207 if (indr_priv) 9208 return -EEXIST; 9209 9210 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9211 if (!indr_priv) 9212 return -ENOMEM; 9213 9214 indr_priv->netdev = netdev; 9215 indr_priv->np = np; 9216 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9217 9218 block_cb = 9219 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9220 indr_priv, indr_priv, 9221 ice_rep_indr_tc_block_unbind, 9222 f, netdev, sch, data, np, 9223 cleanup); 9224 9225 if (IS_ERR(block_cb)) { 9226 list_del(&indr_priv->list); 9227 kfree(indr_priv); 9228 return PTR_ERR(block_cb); 9229 } 9230 flow_block_cb_add(block_cb, f); 9231 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9232 break; 9233 case FLOW_BLOCK_UNBIND: 9234 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9235 if (!indr_priv) 9236 return -ENOENT; 9237 9238 block_cb = flow_block_cb_lookup(f->block, 9239 ice_indr_setup_block_cb, 9240 indr_priv); 9241 if (!block_cb) 9242 return -ENOENT; 9243 9244 flow_indr_block_cb_remove(block_cb, f); 9245 9246 list_del(&block_cb->driver_list); 9247 break; 9248 default: 9249 return -EOPNOTSUPP; 9250 } 9251 return 0; 9252 } 9253 9254 static int 9255 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9256 void *cb_priv, enum tc_setup_type type, void *type_data, 9257 void *data, 9258 void (*cleanup)(struct flow_block_cb *block_cb)) 9259 { 9260 switch (type) { 9261 case TC_SETUP_BLOCK: 9262 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9263 data, cleanup); 9264 9265 default: 9266 return -EOPNOTSUPP; 9267 } 9268 } 9269 9270 /** 9271 * ice_open - Called when a network interface becomes active 9272 * @netdev: network interface device structure 9273 * 9274 * The open entry point is called when a network interface is made 9275 * active by the system (IFF_UP). At this point all resources needed 9276 * for transmit and receive operations are allocated, the interrupt 9277 * handler is registered with the OS, the netdev watchdog is enabled, 9278 * and the stack is notified that the interface is ready. 9279 * 9280 * Returns 0 on success, negative value on failure 9281 */ 9282 int ice_open(struct net_device *netdev) 9283 { 9284 struct ice_netdev_priv *np = netdev_priv(netdev); 9285 struct ice_pf *pf = np->vsi->back; 9286 9287 if (ice_is_reset_in_progress(pf->state)) { 9288 netdev_err(netdev, "can't open net device while reset is in progress"); 9289 return -EBUSY; 9290 } 9291 9292 return ice_open_internal(netdev); 9293 } 9294 9295 /** 9296 * ice_open_internal - Called when a network interface becomes active 9297 * @netdev: network interface device structure 9298 * 9299 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9300 * handling routine 9301 * 9302 * Returns 0 on success, negative value on failure 9303 */ 9304 int ice_open_internal(struct net_device *netdev) 9305 { 9306 struct ice_netdev_priv *np = netdev_priv(netdev); 9307 struct ice_vsi *vsi = np->vsi; 9308 struct ice_pf *pf = vsi->back; 9309 struct ice_port_info *pi; 9310 int err; 9311 9312 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9313 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9314 return -EIO; 9315 } 9316 9317 netif_carrier_off(netdev); 9318 9319 pi = vsi->port_info; 9320 err = ice_update_link_info(pi); 9321 if (err) { 9322 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9323 return err; 9324 } 9325 9326 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9327 9328 /* Set PHY if there is media, otherwise, turn off PHY */ 9329 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9330 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9331 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9332 err = ice_init_phy_user_cfg(pi); 9333 if (err) { 9334 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9335 err); 9336 return err; 9337 } 9338 } 9339 9340 err = ice_configure_phy(vsi); 9341 if (err) { 9342 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9343 err); 9344 return err; 9345 } 9346 } else { 9347 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9348 ice_set_link(vsi, false); 9349 } 9350 9351 err = ice_vsi_open(vsi); 9352 if (err) 9353 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9354 vsi->vsi_num, vsi->vsw->sw_id); 9355 9356 /* Update existing tunnels information */ 9357 udp_tunnel_get_rx_info(netdev); 9358 9359 return err; 9360 } 9361 9362 /** 9363 * ice_stop - Disables a network interface 9364 * @netdev: network interface device structure 9365 * 9366 * The stop entry point is called when an interface is de-activated by the OS, 9367 * and the netdevice enters the DOWN state. The hardware is still under the 9368 * driver's control, but the netdev interface is disabled. 9369 * 9370 * Returns success only - not allowed to fail 9371 */ 9372 int ice_stop(struct net_device *netdev) 9373 { 9374 struct ice_netdev_priv *np = netdev_priv(netdev); 9375 struct ice_vsi *vsi = np->vsi; 9376 struct ice_pf *pf = vsi->back; 9377 9378 if (ice_is_reset_in_progress(pf->state)) { 9379 netdev_err(netdev, "can't stop net device while reset is in progress"); 9380 return -EBUSY; 9381 } 9382 9383 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9384 int link_err = ice_force_phys_link_state(vsi, false); 9385 9386 if (link_err) { 9387 if (link_err == -ENOMEDIUM) 9388 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9389 vsi->vsi_num); 9390 else 9391 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9392 vsi->vsi_num, link_err); 9393 9394 ice_vsi_close(vsi); 9395 return -EIO; 9396 } 9397 } 9398 9399 ice_vsi_close(vsi); 9400 9401 return 0; 9402 } 9403 9404 /** 9405 * ice_features_check - Validate encapsulated packet conforms to limits 9406 * @skb: skb buffer 9407 * @netdev: This port's netdev 9408 * @features: Offload features that the stack believes apply 9409 */ 9410 static netdev_features_t 9411 ice_features_check(struct sk_buff *skb, 9412 struct net_device __always_unused *netdev, 9413 netdev_features_t features) 9414 { 9415 bool gso = skb_is_gso(skb); 9416 size_t len; 9417 9418 /* No point in doing any of this if neither checksum nor GSO are 9419 * being requested for this frame. We can rule out both by just 9420 * checking for CHECKSUM_PARTIAL 9421 */ 9422 if (skb->ip_summed != CHECKSUM_PARTIAL) 9423 return features; 9424 9425 /* We cannot support GSO if the MSS is going to be less than 9426 * 64 bytes. If it is then we need to drop support for GSO. 9427 */ 9428 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9429 features &= ~NETIF_F_GSO_MASK; 9430 9431 len = skb_network_offset(skb); 9432 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9433 goto out_rm_features; 9434 9435 len = skb_network_header_len(skb); 9436 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9437 goto out_rm_features; 9438 9439 if (skb->encapsulation) { 9440 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9441 * the case of IPIP frames, the transport header pointer is 9442 * after the inner header! So check to make sure that this 9443 * is a GRE or UDP_TUNNEL frame before doing that math. 9444 */ 9445 if (gso && (skb_shinfo(skb)->gso_type & 9446 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9447 len = skb_inner_network_header(skb) - 9448 skb_transport_header(skb); 9449 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9450 goto out_rm_features; 9451 } 9452 9453 len = skb_inner_network_header_len(skb); 9454 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9455 goto out_rm_features; 9456 } 9457 9458 return features; 9459 out_rm_features: 9460 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9461 } 9462 9463 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9464 .ndo_open = ice_open, 9465 .ndo_stop = ice_stop, 9466 .ndo_start_xmit = ice_start_xmit, 9467 .ndo_set_mac_address = ice_set_mac_address, 9468 .ndo_validate_addr = eth_validate_addr, 9469 .ndo_change_mtu = ice_change_mtu, 9470 .ndo_get_stats64 = ice_get_stats64, 9471 .ndo_tx_timeout = ice_tx_timeout, 9472 .ndo_bpf = ice_xdp_safe_mode, 9473 }; 9474 9475 static const struct net_device_ops ice_netdev_ops = { 9476 .ndo_open = ice_open, 9477 .ndo_stop = ice_stop, 9478 .ndo_start_xmit = ice_start_xmit, 9479 .ndo_select_queue = ice_select_queue, 9480 .ndo_features_check = ice_features_check, 9481 .ndo_fix_features = ice_fix_features, 9482 .ndo_set_rx_mode = ice_set_rx_mode, 9483 .ndo_set_mac_address = ice_set_mac_address, 9484 .ndo_validate_addr = eth_validate_addr, 9485 .ndo_change_mtu = ice_change_mtu, 9486 .ndo_get_stats64 = ice_get_stats64, 9487 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9488 .ndo_eth_ioctl = ice_eth_ioctl, 9489 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9490 .ndo_set_vf_mac = ice_set_vf_mac, 9491 .ndo_get_vf_config = ice_get_vf_cfg, 9492 .ndo_set_vf_trust = ice_set_vf_trust, 9493 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9494 .ndo_set_vf_link_state = ice_set_vf_link_state, 9495 .ndo_get_vf_stats = ice_get_vf_stats, 9496 .ndo_set_vf_rate = ice_set_vf_bw, 9497 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9498 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9499 .ndo_setup_tc = ice_setup_tc, 9500 .ndo_set_features = ice_set_features, 9501 .ndo_bridge_getlink = ice_bridge_getlink, 9502 .ndo_bridge_setlink = ice_bridge_setlink, 9503 .ndo_fdb_add = ice_fdb_add, 9504 .ndo_fdb_del = ice_fdb_del, 9505 #ifdef CONFIG_RFS_ACCEL 9506 .ndo_rx_flow_steer = ice_rx_flow_steer, 9507 #endif 9508 .ndo_tx_timeout = ice_tx_timeout, 9509 .ndo_bpf = ice_xdp, 9510 .ndo_xdp_xmit = ice_xdp_xmit, 9511 .ndo_xsk_wakeup = ice_xsk_wakeup, 9512 }; 9513