1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_hwmon.h" 19 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 20 * ice tracepoint functions. This must be done exactly once across the 21 * ice driver. 22 */ 23 #define CREATE_TRACE_POINTS 24 #include "ice_trace.h" 25 #include "ice_eswitch.h" 26 #include "ice_tc_lib.h" 27 #include "ice_vsi_vlan_ops.h" 28 #include <net/xdp_sock_drv.h> 29 30 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 31 static const char ice_driver_string[] = DRV_SUMMARY; 32 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 33 34 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 35 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 36 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 37 38 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS(LIBIE); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops); 91 } 92 93 /** 94 * ice_get_tx_pending - returns number of Tx descriptors not processed 95 * @ring: the ring of descriptors 96 */ 97 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 98 { 99 u16 head, tail; 100 101 head = ring->next_to_clean; 102 tail = ring->next_to_use; 103 104 if (head != tail) 105 return (head < tail) ? 106 tail - head : (tail + ring->count - head); 107 return 0; 108 } 109 110 /** 111 * ice_check_for_hang_subtask - check for and recover hung queues 112 * @pf: pointer to PF struct 113 */ 114 static void ice_check_for_hang_subtask(struct ice_pf *pf) 115 { 116 struct ice_vsi *vsi = NULL; 117 struct ice_hw *hw; 118 unsigned int i; 119 int packets; 120 u32 v; 121 122 ice_for_each_vsi(pf, v) 123 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 124 vsi = pf->vsi[v]; 125 break; 126 } 127 128 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 129 return; 130 131 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 132 return; 133 134 hw = &vsi->back->hw; 135 136 ice_for_each_txq(vsi, i) { 137 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 138 struct ice_ring_stats *ring_stats; 139 140 if (!tx_ring) 141 continue; 142 if (ice_ring_ch_enabled(tx_ring)) 143 continue; 144 145 ring_stats = tx_ring->ring_stats; 146 if (!ring_stats) 147 continue; 148 149 if (tx_ring->desc) { 150 /* If packet counter has not changed the queue is 151 * likely stalled, so force an interrupt for this 152 * queue. 153 * 154 * prev_pkt would be negative if there was no 155 * pending work. 156 */ 157 packets = ring_stats->stats.pkts & INT_MAX; 158 if (ring_stats->tx_stats.prev_pkt == packets) { 159 /* Trigger sw interrupt to revive the queue */ 160 ice_trigger_sw_intr(hw, tx_ring->q_vector); 161 continue; 162 } 163 164 /* Memory barrier between read of packet count and call 165 * to ice_get_tx_pending() 166 */ 167 smp_rmb(); 168 ring_stats->tx_stats.prev_pkt = 169 ice_get_tx_pending(tx_ring) ? packets : -1; 170 } 171 } 172 } 173 174 /** 175 * ice_init_mac_fltr - Set initial MAC filters 176 * @pf: board private structure 177 * 178 * Set initial set of MAC filters for PF VSI; configure filters for permanent 179 * address and broadcast address. If an error is encountered, netdevice will be 180 * unregistered. 181 */ 182 static int ice_init_mac_fltr(struct ice_pf *pf) 183 { 184 struct ice_vsi *vsi; 185 u8 *perm_addr; 186 187 vsi = ice_get_main_vsi(pf); 188 if (!vsi) 189 return -EINVAL; 190 191 perm_addr = vsi->port_info->mac.perm_addr; 192 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 193 } 194 195 /** 196 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 197 * @netdev: the net device on which the sync is happening 198 * @addr: MAC address to sync 199 * 200 * This is a callback function which is called by the in kernel device sync 201 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 202 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 203 * MAC filters from the hardware. 204 */ 205 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 206 { 207 struct ice_netdev_priv *np = netdev_priv(netdev); 208 struct ice_vsi *vsi = np->vsi; 209 210 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 211 ICE_FWD_TO_VSI)) 212 return -EINVAL; 213 214 return 0; 215 } 216 217 /** 218 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 219 * @netdev: the net device on which the unsync is happening 220 * @addr: MAC address to unsync 221 * 222 * This is a callback function which is called by the in kernel device unsync 223 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 224 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 225 * delete the MAC filters from the hardware. 226 */ 227 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 228 { 229 struct ice_netdev_priv *np = netdev_priv(netdev); 230 struct ice_vsi *vsi = np->vsi; 231 232 /* Under some circumstances, we might receive a request to delete our 233 * own device address from our uc list. Because we store the device 234 * address in the VSI's MAC filter list, we need to ignore such 235 * requests and not delete our device address from this list. 236 */ 237 if (ether_addr_equal(addr, netdev->dev_addr)) 238 return 0; 239 240 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 241 ICE_FWD_TO_VSI)) 242 return -EINVAL; 243 244 return 0; 245 } 246 247 /** 248 * ice_vsi_fltr_changed - check if filter state changed 249 * @vsi: VSI to be checked 250 * 251 * returns true if filter state has changed, false otherwise. 252 */ 253 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 254 { 255 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 256 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 257 } 258 259 /** 260 * ice_set_promisc - Enable promiscuous mode for a given PF 261 * @vsi: the VSI being configured 262 * @promisc_m: mask of promiscuous config bits 263 * 264 */ 265 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 266 { 267 int status; 268 269 if (vsi->type != ICE_VSI_PF) 270 return 0; 271 272 if (ice_vsi_has_non_zero_vlans(vsi)) { 273 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 274 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 275 promisc_m); 276 } else { 277 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 278 promisc_m, 0); 279 } 280 if (status && status != -EEXIST) 281 return status; 282 283 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 284 vsi->vsi_num, promisc_m); 285 return 0; 286 } 287 288 /** 289 * ice_clear_promisc - Disable promiscuous mode for a given PF 290 * @vsi: the VSI being configured 291 * @promisc_m: mask of promiscuous config bits 292 * 293 */ 294 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 295 { 296 int status; 297 298 if (vsi->type != ICE_VSI_PF) 299 return 0; 300 301 if (ice_vsi_has_non_zero_vlans(vsi)) { 302 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 303 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 304 promisc_m); 305 } else { 306 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 307 promisc_m, 0); 308 } 309 310 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 311 vsi->vsi_num, promisc_m); 312 return status; 313 } 314 315 /** 316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 317 * @vsi: ptr to the VSI 318 * 319 * Push any outstanding VSI filter changes through the AdminQ. 320 */ 321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 322 { 323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 324 struct device *dev = ice_pf_to_dev(vsi->back); 325 struct net_device *netdev = vsi->netdev; 326 bool promisc_forced_on = false; 327 struct ice_pf *pf = vsi->back; 328 struct ice_hw *hw = &pf->hw; 329 u32 changed_flags = 0; 330 int err; 331 332 if (!vsi->netdev) 333 return -EINVAL; 334 335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 336 usleep_range(1000, 2000); 337 338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 339 vsi->current_netdev_flags = vsi->netdev->flags; 340 341 INIT_LIST_HEAD(&vsi->tmp_sync_list); 342 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 343 344 if (ice_vsi_fltr_changed(vsi)) { 345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 347 348 /* grab the netdev's addr_list_lock */ 349 netif_addr_lock_bh(netdev); 350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 /* our temp lists are populated. release lock */ 355 netif_addr_unlock_bh(netdev); 356 } 357 358 /* Remove MAC addresses in the unsync list */ 359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 361 if (err) { 362 netdev_err(netdev, "Failed to delete MAC filters\n"); 363 /* if we failed because of alloc failures, just bail */ 364 if (err == -ENOMEM) 365 goto out; 366 } 367 368 /* Add MAC addresses in the sync list */ 369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 370 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 371 /* If filter is added successfully or already exists, do not go into 372 * 'if' condition and report it as error. Instead continue processing 373 * rest of the function. 374 */ 375 if (err && err != -EEXIST) { 376 netdev_err(netdev, "Failed to add MAC filters\n"); 377 /* If there is no more space for new umac filters, VSI 378 * should go into promiscuous mode. There should be some 379 * space reserved for promiscuous filters. 380 */ 381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 383 vsi->state)) { 384 promisc_forced_on = true; 385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 386 vsi->vsi_num); 387 } else { 388 goto out; 389 } 390 } 391 err = 0; 392 /* check for changes in promiscuous modes */ 393 if (changed_flags & IFF_ALLMULTI) { 394 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 396 if (err) { 397 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 398 goto out_promisc; 399 } 400 } else { 401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 403 if (err) { 404 vsi->current_netdev_flags |= IFF_ALLMULTI; 405 goto out_promisc; 406 } 407 } 408 } 409 410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 413 if (vsi->current_netdev_flags & IFF_PROMISC) { 414 /* Apply Rx filter rule to get traffic from wire */ 415 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 416 err = ice_set_dflt_vsi(vsi); 417 if (err && err != -EEXIST) { 418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 419 err, vsi->vsi_num); 420 vsi->current_netdev_flags &= 421 ~IFF_PROMISC; 422 goto out_promisc; 423 } 424 err = 0; 425 vlan_ops->dis_rx_filtering(vsi); 426 427 /* promiscuous mode implies allmulticast so 428 * that VSIs that are in promiscuous mode are 429 * subscribed to multicast packets coming to 430 * the port 431 */ 432 err = ice_set_promisc(vsi, 433 ICE_MCAST_PROMISC_BITS); 434 if (err) 435 goto out_promisc; 436 } 437 } else { 438 /* Clear Rx filter to remove traffic from wire */ 439 if (ice_is_vsi_dflt_vsi(vsi)) { 440 err = ice_clear_dflt_vsi(vsi); 441 if (err) { 442 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 443 err, vsi->vsi_num); 444 vsi->current_netdev_flags |= 445 IFF_PROMISC; 446 goto out_promisc; 447 } 448 if (vsi->netdev->features & 449 NETIF_F_HW_VLAN_CTAG_FILTER) 450 vlan_ops->ena_rx_filtering(vsi); 451 } 452 453 /* disable allmulti here, but only if allmulti is not 454 * still enabled for the netdev 455 */ 456 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 457 err = ice_clear_promisc(vsi, 458 ICE_MCAST_PROMISC_BITS); 459 if (err) { 460 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 461 err, vsi->vsi_num); 462 } 463 } 464 } 465 } 466 goto exit; 467 468 out_promisc: 469 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 470 goto exit; 471 out: 472 /* if something went wrong then set the changed flag so we try again */ 473 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 474 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 475 exit: 476 clear_bit(ICE_CFG_BUSY, vsi->state); 477 return err; 478 } 479 480 /** 481 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 482 * @pf: board private structure 483 */ 484 static void ice_sync_fltr_subtask(struct ice_pf *pf) 485 { 486 int v; 487 488 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 489 return; 490 491 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 492 493 ice_for_each_vsi(pf, v) 494 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 495 ice_vsi_sync_fltr(pf->vsi[v])) { 496 /* come back and try again later */ 497 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 498 break; 499 } 500 } 501 502 /** 503 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 504 * @pf: the PF 505 * @locked: is the rtnl_lock already held 506 */ 507 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 508 { 509 int node; 510 int v; 511 512 ice_for_each_vsi(pf, v) 513 if (pf->vsi[v]) 514 ice_dis_vsi(pf->vsi[v], locked); 515 516 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 517 pf->pf_agg_node[node].num_vsis = 0; 518 519 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 520 pf->vf_agg_node[node].num_vsis = 0; 521 } 522 523 /** 524 * ice_clear_sw_switch_recipes - clear switch recipes 525 * @pf: board private structure 526 * 527 * Mark switch recipes as not created in sw structures. There are cases where 528 * rules (especially advanced rules) need to be restored, either re-read from 529 * hardware or added again. For example after the reset. 'recp_created' flag 530 * prevents from doing that and need to be cleared upfront. 531 */ 532 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 533 { 534 struct ice_sw_recipe *recp; 535 u8 i; 536 537 recp = pf->hw.switch_info->recp_list; 538 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 539 recp[i].recp_created = false; 540 } 541 542 /** 543 * ice_prepare_for_reset - prep for reset 544 * @pf: board private structure 545 * @reset_type: reset type requested 546 * 547 * Inform or close all dependent features in prep for reset. 548 */ 549 static void 550 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 551 { 552 struct ice_hw *hw = &pf->hw; 553 struct ice_vsi *vsi; 554 struct ice_vf *vf; 555 unsigned int bkt; 556 557 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 558 559 /* already prepared for reset */ 560 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 561 return; 562 563 ice_unplug_aux_dev(pf); 564 565 /* Notify VFs of impending reset */ 566 if (ice_check_sq_alive(hw, &hw->mailboxq)) 567 ice_vc_notify_reset(pf); 568 569 /* Disable VFs until reset is completed */ 570 mutex_lock(&pf->vfs.table_lock); 571 ice_for_each_vf(pf, bkt, vf) 572 ice_set_vf_state_dis(vf); 573 mutex_unlock(&pf->vfs.table_lock); 574 575 if (ice_is_eswitch_mode_switchdev(pf)) { 576 if (reset_type != ICE_RESET_PFR) 577 ice_clear_sw_switch_recipes(pf); 578 } 579 580 /* release ADQ specific HW and SW resources */ 581 vsi = ice_get_main_vsi(pf); 582 if (!vsi) 583 goto skip; 584 585 /* to be on safe side, reset orig_rss_size so that normal flow 586 * of deciding rss_size can take precedence 587 */ 588 vsi->orig_rss_size = 0; 589 590 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 591 if (reset_type == ICE_RESET_PFR) { 592 vsi->old_ena_tc = vsi->all_enatc; 593 vsi->old_numtc = vsi->all_numtc; 594 } else { 595 ice_remove_q_channels(vsi, true); 596 597 /* for other reset type, do not support channel rebuild 598 * hence reset needed info 599 */ 600 vsi->old_ena_tc = 0; 601 vsi->all_enatc = 0; 602 vsi->old_numtc = 0; 603 vsi->all_numtc = 0; 604 vsi->req_txq = 0; 605 vsi->req_rxq = 0; 606 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 607 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 608 } 609 } 610 skip: 611 612 /* clear SW filtering DB */ 613 ice_clear_hw_tbls(hw); 614 /* disable the VSIs and their queues that are not already DOWN */ 615 ice_pf_dis_all_vsi(pf, false); 616 617 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 618 ice_ptp_prepare_for_reset(pf, reset_type); 619 620 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 621 ice_gnss_exit(pf); 622 623 if (hw->port_info) 624 ice_sched_clear_port(hw->port_info); 625 626 ice_shutdown_all_ctrlq(hw); 627 628 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 629 } 630 631 /** 632 * ice_do_reset - Initiate one of many types of resets 633 * @pf: board private structure 634 * @reset_type: reset type requested before this function was called. 635 */ 636 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 637 { 638 struct device *dev = ice_pf_to_dev(pf); 639 struct ice_hw *hw = &pf->hw; 640 641 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 642 643 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 644 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 645 reset_type = ICE_RESET_CORER; 646 } 647 648 ice_prepare_for_reset(pf, reset_type); 649 650 /* trigger the reset */ 651 if (ice_reset(hw, reset_type)) { 652 dev_err(dev, "reset %d failed\n", reset_type); 653 set_bit(ICE_RESET_FAILED, pf->state); 654 clear_bit(ICE_RESET_OICR_RECV, pf->state); 655 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 656 clear_bit(ICE_PFR_REQ, pf->state); 657 clear_bit(ICE_CORER_REQ, pf->state); 658 clear_bit(ICE_GLOBR_REQ, pf->state); 659 wake_up(&pf->reset_wait_queue); 660 return; 661 } 662 663 /* PFR is a bit of a special case because it doesn't result in an OICR 664 * interrupt. So for PFR, rebuild after the reset and clear the reset- 665 * associated state bits. 666 */ 667 if (reset_type == ICE_RESET_PFR) { 668 pf->pfr_count++; 669 ice_rebuild(pf, reset_type); 670 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 671 clear_bit(ICE_PFR_REQ, pf->state); 672 wake_up(&pf->reset_wait_queue); 673 ice_reset_all_vfs(pf); 674 } 675 } 676 677 /** 678 * ice_reset_subtask - Set up for resetting the device and driver 679 * @pf: board private structure 680 */ 681 static void ice_reset_subtask(struct ice_pf *pf) 682 { 683 enum ice_reset_req reset_type = ICE_RESET_INVAL; 684 685 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 686 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 687 * of reset is pending and sets bits in pf->state indicating the reset 688 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 689 * prepare for pending reset if not already (for PF software-initiated 690 * global resets the software should already be prepared for it as 691 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 692 * by firmware or software on other PFs, that bit is not set so prepare 693 * for the reset now), poll for reset done, rebuild and return. 694 */ 695 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 696 /* Perform the largest reset requested */ 697 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 698 reset_type = ICE_RESET_CORER; 699 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 700 reset_type = ICE_RESET_GLOBR; 701 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 702 reset_type = ICE_RESET_EMPR; 703 /* return if no valid reset type requested */ 704 if (reset_type == ICE_RESET_INVAL) 705 return; 706 ice_prepare_for_reset(pf, reset_type); 707 708 /* make sure we are ready to rebuild */ 709 if (ice_check_reset(&pf->hw)) { 710 set_bit(ICE_RESET_FAILED, pf->state); 711 } else { 712 /* done with reset. start rebuild */ 713 pf->hw.reset_ongoing = false; 714 ice_rebuild(pf, reset_type); 715 /* clear bit to resume normal operations, but 716 * ICE_NEEDS_RESTART bit is set in case rebuild failed 717 */ 718 clear_bit(ICE_RESET_OICR_RECV, pf->state); 719 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 720 clear_bit(ICE_PFR_REQ, pf->state); 721 clear_bit(ICE_CORER_REQ, pf->state); 722 clear_bit(ICE_GLOBR_REQ, pf->state); 723 wake_up(&pf->reset_wait_queue); 724 ice_reset_all_vfs(pf); 725 } 726 727 return; 728 } 729 730 /* No pending resets to finish processing. Check for new resets */ 731 if (test_bit(ICE_PFR_REQ, pf->state)) { 732 reset_type = ICE_RESET_PFR; 733 if (pf->lag && pf->lag->bonded) { 734 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 735 reset_type = ICE_RESET_CORER; 736 } 737 } 738 if (test_bit(ICE_CORER_REQ, pf->state)) 739 reset_type = ICE_RESET_CORER; 740 if (test_bit(ICE_GLOBR_REQ, pf->state)) 741 reset_type = ICE_RESET_GLOBR; 742 /* If no valid reset type requested just return */ 743 if (reset_type == ICE_RESET_INVAL) 744 return; 745 746 /* reset if not already down or busy */ 747 if (!test_bit(ICE_DOWN, pf->state) && 748 !test_bit(ICE_CFG_BUSY, pf->state)) { 749 ice_do_reset(pf, reset_type); 750 } 751 } 752 753 /** 754 * ice_print_topo_conflict - print topology conflict message 755 * @vsi: the VSI whose topology status is being checked 756 */ 757 static void ice_print_topo_conflict(struct ice_vsi *vsi) 758 { 759 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 760 case ICE_AQ_LINK_TOPO_CONFLICT: 761 case ICE_AQ_LINK_MEDIA_CONFLICT: 762 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 763 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 764 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 765 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 766 break; 767 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 768 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 769 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 770 else 771 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 772 break; 773 default: 774 break; 775 } 776 } 777 778 /** 779 * ice_print_link_msg - print link up or down message 780 * @vsi: the VSI whose link status is being queried 781 * @isup: boolean for if the link is now up or down 782 */ 783 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 784 { 785 struct ice_aqc_get_phy_caps_data *caps; 786 const char *an_advertised; 787 const char *fec_req; 788 const char *speed; 789 const char *fec; 790 const char *fc; 791 const char *an; 792 int status; 793 794 if (!vsi) 795 return; 796 797 if (vsi->current_isup == isup) 798 return; 799 800 vsi->current_isup = isup; 801 802 if (!isup) { 803 netdev_info(vsi->netdev, "NIC Link is Down\n"); 804 return; 805 } 806 807 switch (vsi->port_info->phy.link_info.link_speed) { 808 case ICE_AQ_LINK_SPEED_200GB: 809 speed = "200 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_100GB: 812 speed = "100 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_50GB: 815 speed = "50 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_40GB: 818 speed = "40 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_25GB: 821 speed = "25 G"; 822 break; 823 case ICE_AQ_LINK_SPEED_20GB: 824 speed = "20 G"; 825 break; 826 case ICE_AQ_LINK_SPEED_10GB: 827 speed = "10 G"; 828 break; 829 case ICE_AQ_LINK_SPEED_5GB: 830 speed = "5 G"; 831 break; 832 case ICE_AQ_LINK_SPEED_2500MB: 833 speed = "2.5 G"; 834 break; 835 case ICE_AQ_LINK_SPEED_1000MB: 836 speed = "1 G"; 837 break; 838 case ICE_AQ_LINK_SPEED_100MB: 839 speed = "100 M"; 840 break; 841 default: 842 speed = "Unknown "; 843 break; 844 } 845 846 switch (vsi->port_info->fc.current_mode) { 847 case ICE_FC_FULL: 848 fc = "Rx/Tx"; 849 break; 850 case ICE_FC_TX_PAUSE: 851 fc = "Tx"; 852 break; 853 case ICE_FC_RX_PAUSE: 854 fc = "Rx"; 855 break; 856 case ICE_FC_NONE: 857 fc = "None"; 858 break; 859 default: 860 fc = "Unknown"; 861 break; 862 } 863 864 /* Get FEC mode based on negotiated link info */ 865 switch (vsi->port_info->phy.link_info.fec_info) { 866 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 867 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 868 fec = "RS-FEC"; 869 break; 870 case ICE_AQ_LINK_25G_KR_FEC_EN: 871 fec = "FC-FEC/BASE-R"; 872 break; 873 default: 874 fec = "NONE"; 875 break; 876 } 877 878 /* check if autoneg completed, might be false due to not supported */ 879 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 880 an = "True"; 881 else 882 an = "False"; 883 884 /* Get FEC mode requested based on PHY caps last SW configuration */ 885 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 886 if (!caps) { 887 fec_req = "Unknown"; 888 an_advertised = "Unknown"; 889 goto done; 890 } 891 892 status = ice_aq_get_phy_caps(vsi->port_info, false, 893 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 894 if (status) 895 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 896 897 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 898 899 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 900 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 901 fec_req = "RS-FEC"; 902 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 903 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 904 fec_req = "FC-FEC/BASE-R"; 905 else 906 fec_req = "NONE"; 907 908 kfree(caps); 909 910 done: 911 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 912 speed, fec_req, fec, an_advertised, an, fc); 913 ice_print_topo_conflict(vsi); 914 } 915 916 /** 917 * ice_vsi_link_event - update the VSI's netdev 918 * @vsi: the VSI on which the link event occurred 919 * @link_up: whether or not the VSI needs to be set up or down 920 */ 921 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 922 { 923 if (!vsi) 924 return; 925 926 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 927 return; 928 929 if (vsi->type == ICE_VSI_PF) { 930 if (link_up == netif_carrier_ok(vsi->netdev)) 931 return; 932 933 if (link_up) { 934 netif_carrier_on(vsi->netdev); 935 netif_tx_wake_all_queues(vsi->netdev); 936 } else { 937 netif_carrier_off(vsi->netdev); 938 netif_tx_stop_all_queues(vsi->netdev); 939 } 940 } 941 } 942 943 /** 944 * ice_set_dflt_mib - send a default config MIB to the FW 945 * @pf: private PF struct 946 * 947 * This function sends a default configuration MIB to the FW. 948 * 949 * If this function errors out at any point, the driver is still able to 950 * function. The main impact is that LFC may not operate as expected. 951 * Therefore an error state in this function should be treated with a DBG 952 * message and continue on with driver rebuild/reenable. 953 */ 954 static void ice_set_dflt_mib(struct ice_pf *pf) 955 { 956 struct device *dev = ice_pf_to_dev(pf); 957 u8 mib_type, *buf, *lldpmib = NULL; 958 u16 len, typelen, offset = 0; 959 struct ice_lldp_org_tlv *tlv; 960 struct ice_hw *hw = &pf->hw; 961 u32 ouisubtype; 962 963 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 964 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 965 if (!lldpmib) { 966 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 967 __func__); 968 return; 969 } 970 971 /* Add ETS CFG TLV */ 972 tlv = (struct ice_lldp_org_tlv *)lldpmib; 973 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 974 ICE_IEEE_ETS_TLV_LEN); 975 tlv->typelen = htons(typelen); 976 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 977 ICE_IEEE_SUBTYPE_ETS_CFG); 978 tlv->ouisubtype = htonl(ouisubtype); 979 980 buf = tlv->tlvinfo; 981 buf[0] = 0; 982 983 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 984 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 985 * Octets 13 - 20 are TSA values - leave as zeros 986 */ 987 buf[5] = 0x64; 988 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add ETS REC TLV */ 994 buf = tlv->tlvinfo; 995 tlv->typelen = htons(typelen); 996 997 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 998 ICE_IEEE_SUBTYPE_ETS_REC); 999 tlv->ouisubtype = htonl(ouisubtype); 1000 1001 /* First octet of buf is reserved 1002 * Octets 1 - 4 map UP to TC - all UPs map to zero 1003 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1004 * Octets 13 - 20 are TSA value - leave as zeros 1005 */ 1006 buf[5] = 0x64; 1007 offset += len + 2; 1008 tlv = (struct ice_lldp_org_tlv *) 1009 ((char *)tlv + sizeof(tlv->typelen) + len); 1010 1011 /* Add PFC CFG TLV */ 1012 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1013 ICE_IEEE_PFC_TLV_LEN); 1014 tlv->typelen = htons(typelen); 1015 1016 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1017 ICE_IEEE_SUBTYPE_PFC_CFG); 1018 tlv->ouisubtype = htonl(ouisubtype); 1019 1020 /* Octet 1 left as all zeros - PFC disabled */ 1021 buf[0] = 0x08; 1022 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1023 offset += len + 2; 1024 1025 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1026 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1027 1028 kfree(lldpmib); 1029 } 1030 1031 /** 1032 * ice_check_phy_fw_load - check if PHY FW load failed 1033 * @pf: pointer to PF struct 1034 * @link_cfg_err: bitmap from the link info structure 1035 * 1036 * check if external PHY FW load failed and print an error message if it did 1037 */ 1038 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1039 { 1040 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1041 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1042 return; 1043 } 1044 1045 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1046 return; 1047 1048 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1049 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1050 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1051 } 1052 } 1053 1054 /** 1055 * ice_check_module_power 1056 * @pf: pointer to PF struct 1057 * @link_cfg_err: bitmap from the link info structure 1058 * 1059 * check module power level returned by a previous call to aq_get_link_info 1060 * and print error messages if module power level is not supported 1061 */ 1062 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1063 { 1064 /* if module power level is supported, clear the flag */ 1065 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1066 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1067 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1068 return; 1069 } 1070 1071 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1072 * above block didn't clear this bit, there's nothing to do 1073 */ 1074 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1075 return; 1076 1077 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1078 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1079 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1080 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1081 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1082 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1083 } 1084 } 1085 1086 /** 1087 * ice_check_link_cfg_err - check if link configuration failed 1088 * @pf: pointer to the PF struct 1089 * @link_cfg_err: bitmap from the link info structure 1090 * 1091 * print if any link configuration failure happens due to the value in the 1092 * link_cfg_err parameter in the link info structure 1093 */ 1094 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1095 { 1096 ice_check_module_power(pf, link_cfg_err); 1097 ice_check_phy_fw_load(pf, link_cfg_err); 1098 } 1099 1100 /** 1101 * ice_link_event - process the link event 1102 * @pf: PF that the link event is associated with 1103 * @pi: port_info for the port that the link event is associated with 1104 * @link_up: true if the physical link is up and false if it is down 1105 * @link_speed: current link speed received from the link event 1106 * 1107 * Returns 0 on success and negative on failure 1108 */ 1109 static int 1110 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1111 u16 link_speed) 1112 { 1113 struct device *dev = ice_pf_to_dev(pf); 1114 struct ice_phy_info *phy_info; 1115 struct ice_vsi *vsi; 1116 u16 old_link_speed; 1117 bool old_link; 1118 int status; 1119 1120 phy_info = &pi->phy; 1121 phy_info->link_info_old = phy_info->link_info; 1122 1123 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1124 old_link_speed = phy_info->link_info_old.link_speed; 1125 1126 /* update the link info structures and re-enable link events, 1127 * don't bail on failure due to other book keeping needed 1128 */ 1129 status = ice_update_link_info(pi); 1130 if (status) 1131 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1132 pi->lport, status, 1133 ice_aq_str(pi->hw->adminq.sq_last_status)); 1134 1135 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1136 1137 /* Check if the link state is up after updating link info, and treat 1138 * this event as an UP event since the link is actually UP now. 1139 */ 1140 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1141 link_up = true; 1142 1143 vsi = ice_get_main_vsi(pf); 1144 if (!vsi || !vsi->port_info) 1145 return -EINVAL; 1146 1147 /* turn off PHY if media was removed */ 1148 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1149 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1150 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1151 ice_set_link(vsi, false); 1152 } 1153 1154 /* if the old link up/down and speed is the same as the new */ 1155 if (link_up == old_link && link_speed == old_link_speed) 1156 return 0; 1157 1158 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1159 1160 if (ice_is_dcb_active(pf)) { 1161 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1162 ice_dcb_rebuild(pf); 1163 } else { 1164 if (link_up) 1165 ice_set_dflt_mib(pf); 1166 } 1167 ice_vsi_link_event(vsi, link_up); 1168 ice_print_link_msg(vsi, link_up); 1169 1170 ice_vc_notify_link_state(pf); 1171 1172 return 0; 1173 } 1174 1175 /** 1176 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1177 * @pf: board private structure 1178 */ 1179 static void ice_watchdog_subtask(struct ice_pf *pf) 1180 { 1181 int i; 1182 1183 /* if interface is down do nothing */ 1184 if (test_bit(ICE_DOWN, pf->state) || 1185 test_bit(ICE_CFG_BUSY, pf->state)) 1186 return; 1187 1188 /* make sure we don't do these things too often */ 1189 if (time_before(jiffies, 1190 pf->serv_tmr_prev + pf->serv_tmr_period)) 1191 return; 1192 1193 pf->serv_tmr_prev = jiffies; 1194 1195 /* Update the stats for active netdevs so the network stack 1196 * can look at updated numbers whenever it cares to 1197 */ 1198 ice_update_pf_stats(pf); 1199 ice_for_each_vsi(pf, i) 1200 if (pf->vsi[i] && pf->vsi[i]->netdev) 1201 ice_update_vsi_stats(pf->vsi[i]); 1202 } 1203 1204 /** 1205 * ice_init_link_events - enable/initialize link events 1206 * @pi: pointer to the port_info instance 1207 * 1208 * Returns -EIO on failure, 0 on success 1209 */ 1210 static int ice_init_link_events(struct ice_port_info *pi) 1211 { 1212 u16 mask; 1213 1214 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1215 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1216 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1217 1218 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1219 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1220 pi->lport); 1221 return -EIO; 1222 } 1223 1224 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1225 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1226 pi->lport); 1227 return -EIO; 1228 } 1229 1230 return 0; 1231 } 1232 1233 /** 1234 * ice_handle_link_event - handle link event via ARQ 1235 * @pf: PF that the link event is associated with 1236 * @event: event structure containing link status info 1237 */ 1238 static int 1239 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1240 { 1241 struct ice_aqc_get_link_status_data *link_data; 1242 struct ice_port_info *port_info; 1243 int status; 1244 1245 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1246 port_info = pf->hw.port_info; 1247 if (!port_info) 1248 return -EINVAL; 1249 1250 status = ice_link_event(pf, port_info, 1251 !!(link_data->link_info & ICE_AQ_LINK_UP), 1252 le16_to_cpu(link_data->link_speed)); 1253 if (status) 1254 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1255 status); 1256 1257 return status; 1258 } 1259 1260 /** 1261 * ice_get_fwlog_data - copy the FW log data from ARQ event 1262 * @pf: PF that the FW log event is associated with 1263 * @event: event structure containing FW log data 1264 */ 1265 static void 1266 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1267 { 1268 struct ice_fwlog_data *fwlog; 1269 struct ice_hw *hw = &pf->hw; 1270 1271 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1272 1273 memset(fwlog->data, 0, PAGE_SIZE); 1274 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1275 1276 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1277 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1278 1279 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1280 /* the rings are full so bump the head to create room */ 1281 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1282 hw->fwlog_ring.size); 1283 } 1284 } 1285 1286 /** 1287 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1288 * @pf: pointer to the PF private structure 1289 * @task: intermediate helper storage and identifier for waiting 1290 * @opcode: the opcode to wait for 1291 * 1292 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1293 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1294 * 1295 * Calls are separated to allow caller registering for event before sending 1296 * the command, which mitigates a race between registering and FW responding. 1297 * 1298 * To obtain only the descriptor contents, pass an task->event with null 1299 * msg_buf. If the complete data buffer is desired, allocate the 1300 * task->event.msg_buf with enough space ahead of time. 1301 */ 1302 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1303 u16 opcode) 1304 { 1305 INIT_HLIST_NODE(&task->entry); 1306 task->opcode = opcode; 1307 task->state = ICE_AQ_TASK_WAITING; 1308 1309 spin_lock_bh(&pf->aq_wait_lock); 1310 hlist_add_head(&task->entry, &pf->aq_wait_list); 1311 spin_unlock_bh(&pf->aq_wait_lock); 1312 } 1313 1314 /** 1315 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1316 * @pf: pointer to the PF private structure 1317 * @task: ptr prepared by ice_aq_prep_for_event() 1318 * @timeout: how long to wait, in jiffies 1319 * 1320 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1321 * current thread will be put to sleep until the specified event occurs or 1322 * until the given timeout is reached. 1323 * 1324 * Returns: zero on success, or a negative error code on failure. 1325 */ 1326 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1327 unsigned long timeout) 1328 { 1329 enum ice_aq_task_state *state = &task->state; 1330 struct device *dev = ice_pf_to_dev(pf); 1331 unsigned long start = jiffies; 1332 long ret; 1333 int err; 1334 1335 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1336 *state != ICE_AQ_TASK_WAITING, 1337 timeout); 1338 switch (*state) { 1339 case ICE_AQ_TASK_NOT_PREPARED: 1340 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1341 err = -EINVAL; 1342 break; 1343 case ICE_AQ_TASK_WAITING: 1344 err = ret < 0 ? ret : -ETIMEDOUT; 1345 break; 1346 case ICE_AQ_TASK_CANCELED: 1347 err = ret < 0 ? ret : -ECANCELED; 1348 break; 1349 case ICE_AQ_TASK_COMPLETE: 1350 err = ret < 0 ? ret : 0; 1351 break; 1352 default: 1353 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1354 err = -EINVAL; 1355 break; 1356 } 1357 1358 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1359 jiffies_to_msecs(jiffies - start), 1360 jiffies_to_msecs(timeout), 1361 task->opcode); 1362 1363 spin_lock_bh(&pf->aq_wait_lock); 1364 hlist_del(&task->entry); 1365 spin_unlock_bh(&pf->aq_wait_lock); 1366 1367 return err; 1368 } 1369 1370 /** 1371 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1372 * @pf: pointer to the PF private structure 1373 * @opcode: the opcode of the event 1374 * @event: the event to check 1375 * 1376 * Loops over the current list of pending threads waiting for an AdminQ event. 1377 * For each matching task, copy the contents of the event into the task 1378 * structure and wake up the thread. 1379 * 1380 * If multiple threads wait for the same opcode, they will all be woken up. 1381 * 1382 * Note that event->msg_buf will only be duplicated if the event has a buffer 1383 * with enough space already allocated. Otherwise, only the descriptor and 1384 * message length will be copied. 1385 * 1386 * Returns: true if an event was found, false otherwise 1387 */ 1388 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1389 struct ice_rq_event_info *event) 1390 { 1391 struct ice_rq_event_info *task_ev; 1392 struct ice_aq_task *task; 1393 bool found = false; 1394 1395 spin_lock_bh(&pf->aq_wait_lock); 1396 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1397 if (task->state != ICE_AQ_TASK_WAITING) 1398 continue; 1399 if (task->opcode != opcode) 1400 continue; 1401 1402 task_ev = &task->event; 1403 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1404 task_ev->msg_len = event->msg_len; 1405 1406 /* Only copy the data buffer if a destination was set */ 1407 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1408 memcpy(task_ev->msg_buf, event->msg_buf, 1409 event->buf_len); 1410 task_ev->buf_len = event->buf_len; 1411 } 1412 1413 task->state = ICE_AQ_TASK_COMPLETE; 1414 found = true; 1415 } 1416 spin_unlock_bh(&pf->aq_wait_lock); 1417 1418 if (found) 1419 wake_up(&pf->aq_wait_queue); 1420 } 1421 1422 /** 1423 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1424 * @pf: the PF private structure 1425 * 1426 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1427 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1428 */ 1429 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1430 { 1431 struct ice_aq_task *task; 1432 1433 spin_lock_bh(&pf->aq_wait_lock); 1434 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1435 task->state = ICE_AQ_TASK_CANCELED; 1436 spin_unlock_bh(&pf->aq_wait_lock); 1437 1438 wake_up(&pf->aq_wait_queue); 1439 } 1440 1441 #define ICE_MBX_OVERFLOW_WATERMARK 64 1442 1443 /** 1444 * __ice_clean_ctrlq - helper function to clean controlq rings 1445 * @pf: ptr to struct ice_pf 1446 * @q_type: specific Control queue type 1447 */ 1448 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1449 { 1450 struct device *dev = ice_pf_to_dev(pf); 1451 struct ice_rq_event_info event; 1452 struct ice_hw *hw = &pf->hw; 1453 struct ice_ctl_q_info *cq; 1454 u16 pending, i = 0; 1455 const char *qtype; 1456 u32 oldval, val; 1457 1458 /* Do not clean control queue if/when PF reset fails */ 1459 if (test_bit(ICE_RESET_FAILED, pf->state)) 1460 return 0; 1461 1462 switch (q_type) { 1463 case ICE_CTL_Q_ADMIN: 1464 cq = &hw->adminq; 1465 qtype = "Admin"; 1466 break; 1467 case ICE_CTL_Q_SB: 1468 cq = &hw->sbq; 1469 qtype = "Sideband"; 1470 break; 1471 case ICE_CTL_Q_MAILBOX: 1472 cq = &hw->mailboxq; 1473 qtype = "Mailbox"; 1474 /* we are going to try to detect a malicious VF, so set the 1475 * state to begin detection 1476 */ 1477 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1478 break; 1479 default: 1480 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1481 return 0; 1482 } 1483 1484 /* check for error indications - PF_xx_AxQLEN register layout for 1485 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1486 */ 1487 val = rd32(hw, cq->rq.len); 1488 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1489 PF_FW_ARQLEN_ARQCRIT_M)) { 1490 oldval = val; 1491 if (val & PF_FW_ARQLEN_ARQVFE_M) 1492 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1493 qtype); 1494 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1495 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1496 qtype); 1497 } 1498 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1499 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1500 qtype); 1501 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1502 PF_FW_ARQLEN_ARQCRIT_M); 1503 if (oldval != val) 1504 wr32(hw, cq->rq.len, val); 1505 } 1506 1507 val = rd32(hw, cq->sq.len); 1508 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1509 PF_FW_ATQLEN_ATQCRIT_M)) { 1510 oldval = val; 1511 if (val & PF_FW_ATQLEN_ATQVFE_M) 1512 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1513 qtype); 1514 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1515 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1516 qtype); 1517 } 1518 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1519 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1520 qtype); 1521 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1522 PF_FW_ATQLEN_ATQCRIT_M); 1523 if (oldval != val) 1524 wr32(hw, cq->sq.len, val); 1525 } 1526 1527 event.buf_len = cq->rq_buf_size; 1528 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1529 if (!event.msg_buf) 1530 return 0; 1531 1532 do { 1533 struct ice_mbx_data data = {}; 1534 u16 opcode; 1535 int ret; 1536 1537 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1538 if (ret == -EALREADY) 1539 break; 1540 if (ret) { 1541 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1542 ret); 1543 break; 1544 } 1545 1546 opcode = le16_to_cpu(event.desc.opcode); 1547 1548 /* Notify any thread that might be waiting for this event */ 1549 ice_aq_check_events(pf, opcode, &event); 1550 1551 switch (opcode) { 1552 case ice_aqc_opc_get_link_status: 1553 if (ice_handle_link_event(pf, &event)) 1554 dev_err(dev, "Could not handle link event\n"); 1555 break; 1556 case ice_aqc_opc_event_lan_overflow: 1557 ice_vf_lan_overflow_event(pf, &event); 1558 break; 1559 case ice_mbx_opc_send_msg_to_pf: 1560 data.num_msg_proc = i; 1561 data.num_pending_arq = pending; 1562 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1563 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1564 1565 ice_vc_process_vf_msg(pf, &event, &data); 1566 break; 1567 case ice_aqc_opc_fw_logs_event: 1568 ice_get_fwlog_data(pf, &event); 1569 break; 1570 case ice_aqc_opc_lldp_set_mib_change: 1571 ice_dcb_process_lldp_set_mib_change(pf, &event); 1572 break; 1573 default: 1574 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1575 qtype, opcode); 1576 break; 1577 } 1578 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1579 1580 kfree(event.msg_buf); 1581 1582 return pending && (i == ICE_DFLT_IRQ_WORK); 1583 } 1584 1585 /** 1586 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1587 * @hw: pointer to hardware info 1588 * @cq: control queue information 1589 * 1590 * returns true if there are pending messages in a queue, false if there aren't 1591 */ 1592 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1593 { 1594 u16 ntu; 1595 1596 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1597 return cq->rq.next_to_clean != ntu; 1598 } 1599 1600 /** 1601 * ice_clean_adminq_subtask - clean the AdminQ rings 1602 * @pf: board private structure 1603 */ 1604 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1605 { 1606 struct ice_hw *hw = &pf->hw; 1607 1608 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1609 return; 1610 1611 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1612 return; 1613 1614 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1615 1616 /* There might be a situation where new messages arrive to a control 1617 * queue between processing the last message and clearing the 1618 * EVENT_PENDING bit. So before exiting, check queue head again (using 1619 * ice_ctrlq_pending) and process new messages if any. 1620 */ 1621 if (ice_ctrlq_pending(hw, &hw->adminq)) 1622 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1623 1624 ice_flush(hw); 1625 } 1626 1627 /** 1628 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1629 * @pf: board private structure 1630 */ 1631 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1632 { 1633 struct ice_hw *hw = &pf->hw; 1634 1635 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1636 return; 1637 1638 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1639 return; 1640 1641 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1642 1643 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1644 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1645 1646 ice_flush(hw); 1647 } 1648 1649 /** 1650 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1651 * @pf: board private structure 1652 */ 1653 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1654 { 1655 struct ice_hw *hw = &pf->hw; 1656 1657 /* if mac_type is not generic, sideband is not supported 1658 * and there's nothing to do here 1659 */ 1660 if (!ice_is_generic_mac(hw)) { 1661 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1662 return; 1663 } 1664 1665 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1666 return; 1667 1668 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1669 return; 1670 1671 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1672 1673 if (ice_ctrlq_pending(hw, &hw->sbq)) 1674 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1675 1676 ice_flush(hw); 1677 } 1678 1679 /** 1680 * ice_service_task_schedule - schedule the service task to wake up 1681 * @pf: board private structure 1682 * 1683 * If not already scheduled, this puts the task into the work queue. 1684 */ 1685 void ice_service_task_schedule(struct ice_pf *pf) 1686 { 1687 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1688 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1689 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1690 queue_work(ice_wq, &pf->serv_task); 1691 } 1692 1693 /** 1694 * ice_service_task_complete - finish up the service task 1695 * @pf: board private structure 1696 */ 1697 static void ice_service_task_complete(struct ice_pf *pf) 1698 { 1699 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1700 1701 /* force memory (pf->state) to sync before next service task */ 1702 smp_mb__before_atomic(); 1703 clear_bit(ICE_SERVICE_SCHED, pf->state); 1704 } 1705 1706 /** 1707 * ice_service_task_stop - stop service task and cancel works 1708 * @pf: board private structure 1709 * 1710 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1711 * 1 otherwise. 1712 */ 1713 static int ice_service_task_stop(struct ice_pf *pf) 1714 { 1715 int ret; 1716 1717 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1718 1719 if (pf->serv_tmr.function) 1720 del_timer_sync(&pf->serv_tmr); 1721 if (pf->serv_task.func) 1722 cancel_work_sync(&pf->serv_task); 1723 1724 clear_bit(ICE_SERVICE_SCHED, pf->state); 1725 return ret; 1726 } 1727 1728 /** 1729 * ice_service_task_restart - restart service task and schedule works 1730 * @pf: board private structure 1731 * 1732 * This function is needed for suspend and resume works (e.g WoL scenario) 1733 */ 1734 static void ice_service_task_restart(struct ice_pf *pf) 1735 { 1736 clear_bit(ICE_SERVICE_DIS, pf->state); 1737 ice_service_task_schedule(pf); 1738 } 1739 1740 /** 1741 * ice_service_timer - timer callback to schedule service task 1742 * @t: pointer to timer_list 1743 */ 1744 static void ice_service_timer(struct timer_list *t) 1745 { 1746 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1747 1748 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1749 ice_service_task_schedule(pf); 1750 } 1751 1752 /** 1753 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1754 * @pf: pointer to the PF structure 1755 * @vf: pointer to the VF structure 1756 * @reset_vf_tx: whether Tx MDD has occurred 1757 * @reset_vf_rx: whether Rx MDD has occurred 1758 * 1759 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1760 * automatically reset the VF by enabling the private ethtool flag 1761 * mdd-auto-reset-vf. 1762 */ 1763 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1764 bool reset_vf_tx, bool reset_vf_rx) 1765 { 1766 struct device *dev = ice_pf_to_dev(pf); 1767 1768 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1769 return; 1770 1771 /* VF MDD event counters will be cleared by reset, so print the event 1772 * prior to reset. 1773 */ 1774 if (reset_vf_tx) 1775 ice_print_vf_tx_mdd_event(vf); 1776 1777 if (reset_vf_rx) 1778 ice_print_vf_rx_mdd_event(vf); 1779 1780 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1781 pf->hw.pf_id, vf->vf_id); 1782 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1783 } 1784 1785 /** 1786 * ice_handle_mdd_event - handle malicious driver detect event 1787 * @pf: pointer to the PF structure 1788 * 1789 * Called from service task. OICR interrupt handler indicates MDD event. 1790 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1791 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1792 * disable the queue, the PF can be configured to reset the VF using ethtool 1793 * private flag mdd-auto-reset-vf. 1794 */ 1795 static void ice_handle_mdd_event(struct ice_pf *pf) 1796 { 1797 struct device *dev = ice_pf_to_dev(pf); 1798 struct ice_hw *hw = &pf->hw; 1799 struct ice_vf *vf; 1800 unsigned int bkt; 1801 u32 reg; 1802 1803 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1804 /* Since the VF MDD event logging is rate limited, check if 1805 * there are pending MDD events. 1806 */ 1807 ice_print_vfs_mdd_events(pf); 1808 return; 1809 } 1810 1811 /* find what triggered an MDD event */ 1812 reg = rd32(hw, GL_MDET_TX_PQM); 1813 if (reg & GL_MDET_TX_PQM_VALID_M) { 1814 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1815 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1816 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1817 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1818 1819 if (netif_msg_tx_err(pf)) 1820 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1821 event, queue, pf_num, vf_num); 1822 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1823 } 1824 1825 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1826 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1827 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1828 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1829 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1830 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1831 1832 if (netif_msg_tx_err(pf)) 1833 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1834 event, queue, pf_num, vf_num); 1835 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1836 } 1837 1838 reg = rd32(hw, GL_MDET_RX); 1839 if (reg & GL_MDET_RX_VALID_M) { 1840 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1841 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1842 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1843 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1844 1845 if (netif_msg_rx_err(pf)) 1846 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1847 event, queue, pf_num, vf_num); 1848 wr32(hw, GL_MDET_RX, 0xffffffff); 1849 } 1850 1851 /* check to see if this PF caused an MDD event */ 1852 reg = rd32(hw, PF_MDET_TX_PQM); 1853 if (reg & PF_MDET_TX_PQM_VALID_M) { 1854 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1855 if (netif_msg_tx_err(pf)) 1856 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1857 } 1858 1859 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1860 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1861 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1862 if (netif_msg_tx_err(pf)) 1863 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1864 } 1865 1866 reg = rd32(hw, PF_MDET_RX); 1867 if (reg & PF_MDET_RX_VALID_M) { 1868 wr32(hw, PF_MDET_RX, 0xFFFF); 1869 if (netif_msg_rx_err(pf)) 1870 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1871 } 1872 1873 /* Check to see if one of the VFs caused an MDD event, and then 1874 * increment counters and set print pending 1875 */ 1876 mutex_lock(&pf->vfs.table_lock); 1877 ice_for_each_vf(pf, bkt, vf) { 1878 bool reset_vf_tx = false, reset_vf_rx = false; 1879 1880 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1881 if (reg & VP_MDET_TX_PQM_VALID_M) { 1882 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1883 vf->mdd_tx_events.count++; 1884 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1885 if (netif_msg_tx_err(pf)) 1886 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1887 vf->vf_id); 1888 1889 reset_vf_tx = true; 1890 } 1891 1892 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1893 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1894 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1895 vf->mdd_tx_events.count++; 1896 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1897 if (netif_msg_tx_err(pf)) 1898 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1899 vf->vf_id); 1900 1901 reset_vf_tx = true; 1902 } 1903 1904 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1905 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1906 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1907 vf->mdd_tx_events.count++; 1908 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1909 if (netif_msg_tx_err(pf)) 1910 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1911 vf->vf_id); 1912 1913 reset_vf_tx = true; 1914 } 1915 1916 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1917 if (reg & VP_MDET_RX_VALID_M) { 1918 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1919 vf->mdd_rx_events.count++; 1920 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1921 if (netif_msg_rx_err(pf)) 1922 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1923 vf->vf_id); 1924 1925 reset_vf_rx = true; 1926 } 1927 1928 if (reset_vf_tx || reset_vf_rx) 1929 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1930 reset_vf_rx); 1931 } 1932 mutex_unlock(&pf->vfs.table_lock); 1933 1934 ice_print_vfs_mdd_events(pf); 1935 } 1936 1937 /** 1938 * ice_force_phys_link_state - Force the physical link state 1939 * @vsi: VSI to force the physical link state to up/down 1940 * @link_up: true/false indicates to set the physical link to up/down 1941 * 1942 * Force the physical link state by getting the current PHY capabilities from 1943 * hardware and setting the PHY config based on the determined capabilities. If 1944 * link changes a link event will be triggered because both the Enable Automatic 1945 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1946 * 1947 * Returns 0 on success, negative on failure 1948 */ 1949 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1950 { 1951 struct ice_aqc_get_phy_caps_data *pcaps; 1952 struct ice_aqc_set_phy_cfg_data *cfg; 1953 struct ice_port_info *pi; 1954 struct device *dev; 1955 int retcode; 1956 1957 if (!vsi || !vsi->port_info || !vsi->back) 1958 return -EINVAL; 1959 if (vsi->type != ICE_VSI_PF) 1960 return 0; 1961 1962 dev = ice_pf_to_dev(vsi->back); 1963 1964 pi = vsi->port_info; 1965 1966 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1967 if (!pcaps) 1968 return -ENOMEM; 1969 1970 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1971 NULL); 1972 if (retcode) { 1973 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1974 vsi->vsi_num, retcode); 1975 retcode = -EIO; 1976 goto out; 1977 } 1978 1979 /* No change in link */ 1980 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1981 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1982 goto out; 1983 1984 /* Use the current user PHY configuration. The current user PHY 1985 * configuration is initialized during probe from PHY capabilities 1986 * software mode, and updated on set PHY configuration. 1987 */ 1988 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1989 if (!cfg) { 1990 retcode = -ENOMEM; 1991 goto out; 1992 } 1993 1994 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1995 if (link_up) 1996 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1997 else 1998 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1999 2000 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2001 if (retcode) { 2002 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2003 vsi->vsi_num, retcode); 2004 retcode = -EIO; 2005 } 2006 2007 kfree(cfg); 2008 out: 2009 kfree(pcaps); 2010 return retcode; 2011 } 2012 2013 /** 2014 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2015 * @pi: port info structure 2016 * 2017 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2018 */ 2019 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2020 { 2021 struct ice_aqc_get_phy_caps_data *pcaps; 2022 struct ice_pf *pf = pi->hw->back; 2023 int err; 2024 2025 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2026 if (!pcaps) 2027 return -ENOMEM; 2028 2029 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2030 pcaps, NULL); 2031 2032 if (err) { 2033 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2034 goto out; 2035 } 2036 2037 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2038 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2039 2040 out: 2041 kfree(pcaps); 2042 return err; 2043 } 2044 2045 /** 2046 * ice_init_link_dflt_override - Initialize link default override 2047 * @pi: port info structure 2048 * 2049 * Initialize link default override and PHY total port shutdown during probe 2050 */ 2051 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2052 { 2053 struct ice_link_default_override_tlv *ldo; 2054 struct ice_pf *pf = pi->hw->back; 2055 2056 ldo = &pf->link_dflt_override; 2057 if (ice_get_link_default_override(ldo, pi)) 2058 return; 2059 2060 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2061 return; 2062 2063 /* Enable Total Port Shutdown (override/replace link-down-on-close 2064 * ethtool private flag) for ports with Port Disable bit set. 2065 */ 2066 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2067 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2068 } 2069 2070 /** 2071 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2072 * @pi: port info structure 2073 * 2074 * If default override is enabled, initialize the user PHY cfg speed and FEC 2075 * settings using the default override mask from the NVM. 2076 * 2077 * The PHY should only be configured with the default override settings the 2078 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2079 * is used to indicate that the user PHY cfg default override is initialized 2080 * and the PHY has not been configured with the default override settings. The 2081 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2082 * configured. 2083 * 2084 * This function should be called only if the FW doesn't support default 2085 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2086 */ 2087 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2088 { 2089 struct ice_link_default_override_tlv *ldo; 2090 struct ice_aqc_set_phy_cfg_data *cfg; 2091 struct ice_phy_info *phy = &pi->phy; 2092 struct ice_pf *pf = pi->hw->back; 2093 2094 ldo = &pf->link_dflt_override; 2095 2096 /* If link default override is enabled, use to mask NVM PHY capabilities 2097 * for speed and FEC default configuration. 2098 */ 2099 cfg = &phy->curr_user_phy_cfg; 2100 2101 if (ldo->phy_type_low || ldo->phy_type_high) { 2102 cfg->phy_type_low = pf->nvm_phy_type_lo & 2103 cpu_to_le64(ldo->phy_type_low); 2104 cfg->phy_type_high = pf->nvm_phy_type_hi & 2105 cpu_to_le64(ldo->phy_type_high); 2106 } 2107 cfg->link_fec_opt = ldo->fec_options; 2108 phy->curr_user_fec_req = ICE_FEC_AUTO; 2109 2110 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2111 } 2112 2113 /** 2114 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2115 * @pi: port info structure 2116 * 2117 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2118 * mode to default. The PHY defaults are from get PHY capabilities topology 2119 * with media so call when media is first available. An error is returned if 2120 * called when media is not available. The PHY initialization completed state is 2121 * set here. 2122 * 2123 * These configurations are used when setting PHY 2124 * configuration. The user PHY configuration is updated on set PHY 2125 * configuration. Returns 0 on success, negative on failure 2126 */ 2127 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2128 { 2129 struct ice_aqc_get_phy_caps_data *pcaps; 2130 struct ice_phy_info *phy = &pi->phy; 2131 struct ice_pf *pf = pi->hw->back; 2132 int err; 2133 2134 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2135 return -EIO; 2136 2137 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2138 if (!pcaps) 2139 return -ENOMEM; 2140 2141 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2142 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2143 pcaps, NULL); 2144 else 2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2146 pcaps, NULL); 2147 if (err) { 2148 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2149 goto err_out; 2150 } 2151 2152 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2153 2154 /* check if lenient mode is supported and enabled */ 2155 if (ice_fw_supports_link_override(pi->hw) && 2156 !(pcaps->module_compliance_enforcement & 2157 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2158 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2159 2160 /* if the FW supports default PHY configuration mode, then the driver 2161 * does not have to apply link override settings. If not, 2162 * initialize user PHY configuration with link override values 2163 */ 2164 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2165 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2166 ice_init_phy_cfg_dflt_override(pi); 2167 goto out; 2168 } 2169 } 2170 2171 /* if link default override is not enabled, set user flow control and 2172 * FEC settings based on what get_phy_caps returned 2173 */ 2174 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2175 pcaps->link_fec_options); 2176 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2177 2178 out: 2179 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2180 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2181 err_out: 2182 kfree(pcaps); 2183 return err; 2184 } 2185 2186 /** 2187 * ice_configure_phy - configure PHY 2188 * @vsi: VSI of PHY 2189 * 2190 * Set the PHY configuration. If the current PHY configuration is the same as 2191 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2192 * configure the based get PHY capabilities for topology with media. 2193 */ 2194 static int ice_configure_phy(struct ice_vsi *vsi) 2195 { 2196 struct device *dev = ice_pf_to_dev(vsi->back); 2197 struct ice_port_info *pi = vsi->port_info; 2198 struct ice_aqc_get_phy_caps_data *pcaps; 2199 struct ice_aqc_set_phy_cfg_data *cfg; 2200 struct ice_phy_info *phy = &pi->phy; 2201 struct ice_pf *pf = vsi->back; 2202 int err; 2203 2204 /* Ensure we have media as we cannot configure a medialess port */ 2205 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2206 return -ENOMEDIUM; 2207 2208 ice_print_topo_conflict(vsi); 2209 2210 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2211 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2212 return -EPERM; 2213 2214 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2215 return ice_force_phys_link_state(vsi, true); 2216 2217 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2218 if (!pcaps) 2219 return -ENOMEM; 2220 2221 /* Get current PHY config */ 2222 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2223 NULL); 2224 if (err) { 2225 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2226 vsi->vsi_num, err); 2227 goto done; 2228 } 2229 2230 /* If PHY enable link is configured and configuration has not changed, 2231 * there's nothing to do 2232 */ 2233 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2234 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2235 goto done; 2236 2237 /* Use PHY topology as baseline for configuration */ 2238 memset(pcaps, 0, sizeof(*pcaps)); 2239 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2240 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2241 pcaps, NULL); 2242 else 2243 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2244 pcaps, NULL); 2245 if (err) { 2246 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2247 vsi->vsi_num, err); 2248 goto done; 2249 } 2250 2251 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2252 if (!cfg) { 2253 err = -ENOMEM; 2254 goto done; 2255 } 2256 2257 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2258 2259 /* Speed - If default override pending, use curr_user_phy_cfg set in 2260 * ice_init_phy_user_cfg_ldo. 2261 */ 2262 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2263 vsi->back->state)) { 2264 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2265 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2266 } else { 2267 u64 phy_low = 0, phy_high = 0; 2268 2269 ice_update_phy_type(&phy_low, &phy_high, 2270 pi->phy.curr_user_speed_req); 2271 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2272 cfg->phy_type_high = pcaps->phy_type_high & 2273 cpu_to_le64(phy_high); 2274 } 2275 2276 /* Can't provide what was requested; use PHY capabilities */ 2277 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2278 cfg->phy_type_low = pcaps->phy_type_low; 2279 cfg->phy_type_high = pcaps->phy_type_high; 2280 } 2281 2282 /* FEC */ 2283 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2284 2285 /* Can't provide what was requested; use PHY capabilities */ 2286 if (cfg->link_fec_opt != 2287 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2288 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2289 cfg->link_fec_opt = pcaps->link_fec_options; 2290 } 2291 2292 /* Flow Control - always supported; no need to check against 2293 * capabilities 2294 */ 2295 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2296 2297 /* Enable link and link update */ 2298 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2299 2300 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2301 if (err) 2302 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2303 vsi->vsi_num, err); 2304 2305 kfree(cfg); 2306 done: 2307 kfree(pcaps); 2308 return err; 2309 } 2310 2311 /** 2312 * ice_check_media_subtask - Check for media 2313 * @pf: pointer to PF struct 2314 * 2315 * If media is available, then initialize PHY user configuration if it is not 2316 * been, and configure the PHY if the interface is up. 2317 */ 2318 static void ice_check_media_subtask(struct ice_pf *pf) 2319 { 2320 struct ice_port_info *pi; 2321 struct ice_vsi *vsi; 2322 int err; 2323 2324 /* No need to check for media if it's already present */ 2325 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2326 return; 2327 2328 vsi = ice_get_main_vsi(pf); 2329 if (!vsi) 2330 return; 2331 2332 /* Refresh link info and check if media is present */ 2333 pi = vsi->port_info; 2334 err = ice_update_link_info(pi); 2335 if (err) 2336 return; 2337 2338 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2339 2340 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2341 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2342 ice_init_phy_user_cfg(pi); 2343 2344 /* PHY settings are reset on media insertion, reconfigure 2345 * PHY to preserve settings. 2346 */ 2347 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2348 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2349 return; 2350 2351 err = ice_configure_phy(vsi); 2352 if (!err) 2353 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2354 2355 /* A Link Status Event will be generated; the event handler 2356 * will complete bringing the interface up 2357 */ 2358 } 2359 } 2360 2361 /** 2362 * ice_service_task - manage and run subtasks 2363 * @work: pointer to work_struct contained by the PF struct 2364 */ 2365 static void ice_service_task(struct work_struct *work) 2366 { 2367 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2368 unsigned long start_time = jiffies; 2369 2370 /* subtasks */ 2371 2372 /* process reset requests first */ 2373 ice_reset_subtask(pf); 2374 2375 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2376 if (ice_is_reset_in_progress(pf->state) || 2377 test_bit(ICE_SUSPENDED, pf->state) || 2378 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2379 ice_service_task_complete(pf); 2380 return; 2381 } 2382 2383 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2384 struct iidc_event *event; 2385 2386 event = kzalloc(sizeof(*event), GFP_KERNEL); 2387 if (event) { 2388 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2389 /* report the entire OICR value to AUX driver */ 2390 swap(event->reg, pf->oicr_err_reg); 2391 ice_send_event_to_aux(pf, event); 2392 kfree(event); 2393 } 2394 } 2395 2396 /* unplug aux dev per request, if an unplug request came in 2397 * while processing a plug request, this will handle it 2398 */ 2399 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2400 ice_unplug_aux_dev(pf); 2401 2402 /* Plug aux device per request */ 2403 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2404 ice_plug_aux_dev(pf); 2405 2406 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2407 struct iidc_event *event; 2408 2409 event = kzalloc(sizeof(*event), GFP_KERNEL); 2410 if (event) { 2411 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2412 ice_send_event_to_aux(pf, event); 2413 kfree(event); 2414 } 2415 } 2416 2417 ice_clean_adminq_subtask(pf); 2418 ice_check_media_subtask(pf); 2419 ice_check_for_hang_subtask(pf); 2420 ice_sync_fltr_subtask(pf); 2421 ice_handle_mdd_event(pf); 2422 ice_watchdog_subtask(pf); 2423 2424 if (ice_is_safe_mode(pf)) { 2425 ice_service_task_complete(pf); 2426 return; 2427 } 2428 2429 ice_process_vflr_event(pf); 2430 ice_clean_mailboxq_subtask(pf); 2431 ice_clean_sbq_subtask(pf); 2432 ice_sync_arfs_fltrs(pf); 2433 ice_flush_fdir_ctx(pf); 2434 2435 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2436 ice_service_task_complete(pf); 2437 2438 /* If the tasks have taken longer than one service timer period 2439 * or there is more work to be done, reset the service timer to 2440 * schedule the service task now. 2441 */ 2442 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2443 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2444 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2445 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2446 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2447 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2448 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2449 mod_timer(&pf->serv_tmr, jiffies); 2450 } 2451 2452 /** 2453 * ice_set_ctrlq_len - helper function to set controlq length 2454 * @hw: pointer to the HW instance 2455 */ 2456 static void ice_set_ctrlq_len(struct ice_hw *hw) 2457 { 2458 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2459 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2460 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2461 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2462 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2463 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2464 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2465 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2466 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2467 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2468 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2469 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2470 } 2471 2472 /** 2473 * ice_schedule_reset - schedule a reset 2474 * @pf: board private structure 2475 * @reset: reset being requested 2476 */ 2477 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2478 { 2479 struct device *dev = ice_pf_to_dev(pf); 2480 2481 /* bail out if earlier reset has failed */ 2482 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2483 dev_dbg(dev, "earlier reset has failed\n"); 2484 return -EIO; 2485 } 2486 /* bail if reset/recovery already in progress */ 2487 if (ice_is_reset_in_progress(pf->state)) { 2488 dev_dbg(dev, "Reset already in progress\n"); 2489 return -EBUSY; 2490 } 2491 2492 switch (reset) { 2493 case ICE_RESET_PFR: 2494 set_bit(ICE_PFR_REQ, pf->state); 2495 break; 2496 case ICE_RESET_CORER: 2497 set_bit(ICE_CORER_REQ, pf->state); 2498 break; 2499 case ICE_RESET_GLOBR: 2500 set_bit(ICE_GLOBR_REQ, pf->state); 2501 break; 2502 default: 2503 return -EINVAL; 2504 } 2505 2506 ice_service_task_schedule(pf); 2507 return 0; 2508 } 2509 2510 /** 2511 * ice_irq_affinity_notify - Callback for affinity changes 2512 * @notify: context as to what irq was changed 2513 * @mask: the new affinity mask 2514 * 2515 * This is a callback function used by the irq_set_affinity_notifier function 2516 * so that we may register to receive changes to the irq affinity masks. 2517 */ 2518 static void 2519 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2520 const cpumask_t *mask) 2521 { 2522 struct ice_q_vector *q_vector = 2523 container_of(notify, struct ice_q_vector, affinity_notify); 2524 2525 cpumask_copy(&q_vector->affinity_mask, mask); 2526 } 2527 2528 /** 2529 * ice_irq_affinity_release - Callback for affinity notifier release 2530 * @ref: internal core kernel usage 2531 * 2532 * This is a callback function used by the irq_set_affinity_notifier function 2533 * to inform the current notification subscriber that they will no longer 2534 * receive notifications. 2535 */ 2536 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2537 2538 /** 2539 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2540 * @vsi: the VSI being configured 2541 */ 2542 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2543 { 2544 struct ice_hw *hw = &vsi->back->hw; 2545 int i; 2546 2547 ice_for_each_q_vector(vsi, i) 2548 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2549 2550 ice_flush(hw); 2551 return 0; 2552 } 2553 2554 /** 2555 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2556 * @vsi: the VSI being configured 2557 * @basename: name for the vector 2558 */ 2559 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2560 { 2561 int q_vectors = vsi->num_q_vectors; 2562 struct ice_pf *pf = vsi->back; 2563 struct device *dev; 2564 int rx_int_idx = 0; 2565 int tx_int_idx = 0; 2566 int vector, err; 2567 int irq_num; 2568 2569 dev = ice_pf_to_dev(pf); 2570 for (vector = 0; vector < q_vectors; vector++) { 2571 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2572 2573 irq_num = q_vector->irq.virq; 2574 2575 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2576 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2577 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2578 tx_int_idx++; 2579 } else if (q_vector->rx.rx_ring) { 2580 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2581 "%s-%s-%d", basename, "rx", rx_int_idx++); 2582 } else if (q_vector->tx.tx_ring) { 2583 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2584 "%s-%s-%d", basename, "tx", tx_int_idx++); 2585 } else { 2586 /* skip this unused q_vector */ 2587 continue; 2588 } 2589 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2590 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2591 IRQF_SHARED, q_vector->name, 2592 q_vector); 2593 else 2594 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2595 0, q_vector->name, q_vector); 2596 if (err) { 2597 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2598 err); 2599 goto free_q_irqs; 2600 } 2601 2602 /* register for affinity change notifications */ 2603 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2604 struct irq_affinity_notify *affinity_notify; 2605 2606 affinity_notify = &q_vector->affinity_notify; 2607 affinity_notify->notify = ice_irq_affinity_notify; 2608 affinity_notify->release = ice_irq_affinity_release; 2609 irq_set_affinity_notifier(irq_num, affinity_notify); 2610 } 2611 2612 /* assign the mask for this irq */ 2613 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2614 } 2615 2616 err = ice_set_cpu_rx_rmap(vsi); 2617 if (err) { 2618 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2619 vsi->vsi_num, ERR_PTR(err)); 2620 goto free_q_irqs; 2621 } 2622 2623 vsi->irqs_ready = true; 2624 return 0; 2625 2626 free_q_irqs: 2627 while (vector--) { 2628 irq_num = vsi->q_vectors[vector]->irq.virq; 2629 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2630 irq_set_affinity_notifier(irq_num, NULL); 2631 irq_set_affinity_hint(irq_num, NULL); 2632 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2633 } 2634 return err; 2635 } 2636 2637 /** 2638 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2639 * @vsi: VSI to setup Tx rings used by XDP 2640 * 2641 * Return 0 on success and negative value on error 2642 */ 2643 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2644 { 2645 struct device *dev = ice_pf_to_dev(vsi->back); 2646 struct ice_tx_desc *tx_desc; 2647 int i, j; 2648 2649 ice_for_each_xdp_txq(vsi, i) { 2650 u16 xdp_q_idx = vsi->alloc_txq + i; 2651 struct ice_ring_stats *ring_stats; 2652 struct ice_tx_ring *xdp_ring; 2653 2654 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2655 if (!xdp_ring) 2656 goto free_xdp_rings; 2657 2658 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2659 if (!ring_stats) { 2660 ice_free_tx_ring(xdp_ring); 2661 goto free_xdp_rings; 2662 } 2663 2664 xdp_ring->ring_stats = ring_stats; 2665 xdp_ring->q_index = xdp_q_idx; 2666 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2667 xdp_ring->vsi = vsi; 2668 xdp_ring->netdev = NULL; 2669 xdp_ring->dev = dev; 2670 xdp_ring->count = vsi->num_tx_desc; 2671 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2672 if (ice_setup_tx_ring(xdp_ring)) 2673 goto free_xdp_rings; 2674 ice_set_ring_xdp(xdp_ring); 2675 spin_lock_init(&xdp_ring->tx_lock); 2676 for (j = 0; j < xdp_ring->count; j++) { 2677 tx_desc = ICE_TX_DESC(xdp_ring, j); 2678 tx_desc->cmd_type_offset_bsz = 0; 2679 } 2680 } 2681 2682 return 0; 2683 2684 free_xdp_rings: 2685 for (; i >= 0; i--) { 2686 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2687 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2688 vsi->xdp_rings[i]->ring_stats = NULL; 2689 ice_free_tx_ring(vsi->xdp_rings[i]); 2690 } 2691 } 2692 return -ENOMEM; 2693 } 2694 2695 /** 2696 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2697 * @vsi: VSI to set the bpf prog on 2698 * @prog: the bpf prog pointer 2699 */ 2700 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2701 { 2702 struct bpf_prog *old_prog; 2703 int i; 2704 2705 old_prog = xchg(&vsi->xdp_prog, prog); 2706 ice_for_each_rxq(vsi, i) 2707 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2708 2709 if (old_prog) 2710 bpf_prog_put(old_prog); 2711 } 2712 2713 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2714 { 2715 struct ice_q_vector *q_vector; 2716 struct ice_tx_ring *ring; 2717 2718 if (static_key_enabled(&ice_xdp_locking_key)) 2719 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2720 2721 q_vector = vsi->rx_rings[qid]->q_vector; 2722 ice_for_each_tx_ring(ring, q_vector->tx) 2723 if (ice_ring_is_xdp(ring)) 2724 return ring; 2725 2726 return NULL; 2727 } 2728 2729 /** 2730 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2731 * @vsi: the VSI with XDP rings being configured 2732 * 2733 * Map XDP rings to interrupt vectors and perform the configuration steps 2734 * dependent on the mapping. 2735 */ 2736 void ice_map_xdp_rings(struct ice_vsi *vsi) 2737 { 2738 int xdp_rings_rem = vsi->num_xdp_txq; 2739 int v_idx, q_idx; 2740 2741 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2742 ice_for_each_q_vector(vsi, v_idx) { 2743 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2744 int xdp_rings_per_v, q_id, q_base; 2745 2746 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2747 vsi->num_q_vectors - v_idx); 2748 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2749 2750 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2751 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2752 2753 xdp_ring->q_vector = q_vector; 2754 xdp_ring->next = q_vector->tx.tx_ring; 2755 q_vector->tx.tx_ring = xdp_ring; 2756 } 2757 xdp_rings_rem -= xdp_rings_per_v; 2758 } 2759 2760 ice_for_each_rxq(vsi, q_idx) { 2761 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2762 q_idx); 2763 ice_tx_xsk_pool(vsi, q_idx); 2764 } 2765 } 2766 2767 /** 2768 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2769 * @vsi: VSI to bring up Tx rings used by XDP 2770 * @prog: bpf program that will be assigned to VSI 2771 * @cfg_type: create from scratch or restore the existing configuration 2772 * 2773 * Return 0 on success and negative value on error 2774 */ 2775 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2776 enum ice_xdp_cfg cfg_type) 2777 { 2778 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2779 struct ice_pf *pf = vsi->back; 2780 struct ice_qs_cfg xdp_qs_cfg = { 2781 .qs_mutex = &pf->avail_q_mutex, 2782 .pf_map = pf->avail_txqs, 2783 .pf_map_size = pf->max_pf_txqs, 2784 .q_count = vsi->num_xdp_txq, 2785 .scatter_count = ICE_MAX_SCATTER_TXQS, 2786 .vsi_map = vsi->txq_map, 2787 .vsi_map_offset = vsi->alloc_txq, 2788 .mapping_mode = ICE_VSI_MAP_CONTIG 2789 }; 2790 struct device *dev; 2791 int status, i; 2792 2793 dev = ice_pf_to_dev(pf); 2794 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2795 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2796 if (!vsi->xdp_rings) 2797 return -ENOMEM; 2798 2799 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2800 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2801 goto err_map_xdp; 2802 2803 if (static_key_enabled(&ice_xdp_locking_key)) 2804 netdev_warn(vsi->netdev, 2805 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2806 2807 if (ice_xdp_alloc_setup_rings(vsi)) 2808 goto clear_xdp_rings; 2809 2810 /* omit the scheduler update if in reset path; XDP queues will be 2811 * taken into account at the end of ice_vsi_rebuild, where 2812 * ice_cfg_vsi_lan is being called 2813 */ 2814 if (cfg_type == ICE_XDP_CFG_PART) 2815 return 0; 2816 2817 ice_map_xdp_rings(vsi); 2818 2819 /* tell the Tx scheduler that right now we have 2820 * additional queues 2821 */ 2822 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2823 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2824 2825 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2826 max_txqs); 2827 if (status) { 2828 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2829 status); 2830 goto clear_xdp_rings; 2831 } 2832 2833 /* assign the prog only when it's not already present on VSI; 2834 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2835 * VSI rebuild that happens under ethtool -L can expose us to 2836 * the bpf_prog refcount issues as we would be swapping same 2837 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2838 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2839 * this is not harmful as dev_xdp_install bumps the refcount 2840 * before calling the op exposed by the driver; 2841 */ 2842 if (!ice_is_xdp_ena_vsi(vsi)) 2843 ice_vsi_assign_bpf_prog(vsi, prog); 2844 2845 return 0; 2846 clear_xdp_rings: 2847 ice_for_each_xdp_txq(vsi, i) 2848 if (vsi->xdp_rings[i]) { 2849 kfree_rcu(vsi->xdp_rings[i], rcu); 2850 vsi->xdp_rings[i] = NULL; 2851 } 2852 2853 err_map_xdp: 2854 mutex_lock(&pf->avail_q_mutex); 2855 ice_for_each_xdp_txq(vsi, i) { 2856 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2857 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2858 } 2859 mutex_unlock(&pf->avail_q_mutex); 2860 2861 devm_kfree(dev, vsi->xdp_rings); 2862 return -ENOMEM; 2863 } 2864 2865 /** 2866 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2867 * @vsi: VSI to remove XDP rings 2868 * @cfg_type: disable XDP permanently or allow it to be restored later 2869 * 2870 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2871 * resources 2872 */ 2873 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2874 { 2875 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2876 struct ice_pf *pf = vsi->back; 2877 int i, v_idx; 2878 2879 /* q_vectors are freed in reset path so there's no point in detaching 2880 * rings 2881 */ 2882 if (cfg_type == ICE_XDP_CFG_PART) 2883 goto free_qmap; 2884 2885 ice_for_each_q_vector(vsi, v_idx) { 2886 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2887 struct ice_tx_ring *ring; 2888 2889 ice_for_each_tx_ring(ring, q_vector->tx) 2890 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2891 break; 2892 2893 /* restore the value of last node prior to XDP setup */ 2894 q_vector->tx.tx_ring = ring; 2895 } 2896 2897 free_qmap: 2898 mutex_lock(&pf->avail_q_mutex); 2899 ice_for_each_xdp_txq(vsi, i) { 2900 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2901 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2902 } 2903 mutex_unlock(&pf->avail_q_mutex); 2904 2905 ice_for_each_xdp_txq(vsi, i) 2906 if (vsi->xdp_rings[i]) { 2907 if (vsi->xdp_rings[i]->desc) { 2908 synchronize_rcu(); 2909 ice_free_tx_ring(vsi->xdp_rings[i]); 2910 } 2911 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2912 vsi->xdp_rings[i]->ring_stats = NULL; 2913 kfree_rcu(vsi->xdp_rings[i], rcu); 2914 vsi->xdp_rings[i] = NULL; 2915 } 2916 2917 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2918 vsi->xdp_rings = NULL; 2919 2920 if (static_key_enabled(&ice_xdp_locking_key)) 2921 static_branch_dec(&ice_xdp_locking_key); 2922 2923 if (cfg_type == ICE_XDP_CFG_PART) 2924 return 0; 2925 2926 ice_vsi_assign_bpf_prog(vsi, NULL); 2927 2928 /* notify Tx scheduler that we destroyed XDP queues and bring 2929 * back the old number of child nodes 2930 */ 2931 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2932 max_txqs[i] = vsi->num_txq; 2933 2934 /* change number of XDP Tx queues to 0 */ 2935 vsi->num_xdp_txq = 0; 2936 2937 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2938 max_txqs); 2939 } 2940 2941 /** 2942 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2943 * @vsi: VSI to schedule napi on 2944 */ 2945 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2946 { 2947 int i; 2948 2949 ice_for_each_rxq(vsi, i) { 2950 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2951 2952 if (rx_ring->xsk_pool) 2953 napi_schedule(&rx_ring->q_vector->napi); 2954 } 2955 } 2956 2957 /** 2958 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2959 * @vsi: VSI to determine the count of XDP Tx qs 2960 * 2961 * returns 0 if Tx qs count is higher than at least half of CPU count, 2962 * -ENOMEM otherwise 2963 */ 2964 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2965 { 2966 u16 avail = ice_get_avail_txq_count(vsi->back); 2967 u16 cpus = num_possible_cpus(); 2968 2969 if (avail < cpus / 2) 2970 return -ENOMEM; 2971 2972 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2973 2974 if (vsi->num_xdp_txq < cpus) 2975 static_branch_inc(&ice_xdp_locking_key); 2976 2977 return 0; 2978 } 2979 2980 /** 2981 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2982 * @vsi: Pointer to VSI structure 2983 */ 2984 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2985 { 2986 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2987 return ICE_RXBUF_1664; 2988 else 2989 return ICE_RXBUF_3072; 2990 } 2991 2992 /** 2993 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2994 * @vsi: VSI to setup XDP for 2995 * @prog: XDP program 2996 * @extack: netlink extended ack 2997 */ 2998 static int 2999 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 3000 struct netlink_ext_ack *extack) 3001 { 3002 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3003 bool if_running = netif_running(vsi->netdev); 3004 int ret = 0, xdp_ring_err = 0; 3005 3006 if (prog && !prog->aux->xdp_has_frags) { 3007 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3008 NL_SET_ERR_MSG_MOD(extack, 3009 "MTU is too large for linear frames and XDP prog does not support frags"); 3010 return -EOPNOTSUPP; 3011 } 3012 } 3013 3014 /* hot swap progs and avoid toggling link */ 3015 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 3016 ice_vsi_assign_bpf_prog(vsi, prog); 3017 return 0; 3018 } 3019 3020 /* need to stop netdev while setting up the program for Rx rings */ 3021 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 3022 ret = ice_down(vsi); 3023 if (ret) { 3024 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3025 return ret; 3026 } 3027 } 3028 3029 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3030 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3031 if (xdp_ring_err) { 3032 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3033 } else { 3034 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3035 ICE_XDP_CFG_FULL); 3036 if (xdp_ring_err) 3037 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3038 } 3039 xdp_features_set_redirect_target(vsi->netdev, true); 3040 /* reallocate Rx queues that are used for zero-copy */ 3041 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3042 if (xdp_ring_err) 3043 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3044 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3045 xdp_features_clear_redirect_target(vsi->netdev); 3046 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3047 if (xdp_ring_err) 3048 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3049 /* reallocate Rx queues that were used for zero-copy */ 3050 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3051 if (xdp_ring_err) 3052 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3053 } 3054 3055 if (if_running) 3056 ret = ice_up(vsi); 3057 3058 if (!ret && prog) 3059 ice_vsi_rx_napi_schedule(vsi); 3060 3061 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3062 } 3063 3064 /** 3065 * ice_xdp_safe_mode - XDP handler for safe mode 3066 * @dev: netdevice 3067 * @xdp: XDP command 3068 */ 3069 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3070 struct netdev_bpf *xdp) 3071 { 3072 NL_SET_ERR_MSG_MOD(xdp->extack, 3073 "Please provide working DDP firmware package in order to use XDP\n" 3074 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3075 return -EOPNOTSUPP; 3076 } 3077 3078 /** 3079 * ice_xdp - implements XDP handler 3080 * @dev: netdevice 3081 * @xdp: XDP command 3082 */ 3083 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3084 { 3085 struct ice_netdev_priv *np = netdev_priv(dev); 3086 struct ice_vsi *vsi = np->vsi; 3087 3088 if (vsi->type != ICE_VSI_PF) { 3089 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3090 return -EINVAL; 3091 } 3092 3093 switch (xdp->command) { 3094 case XDP_SETUP_PROG: 3095 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3096 case XDP_SETUP_XSK_POOL: 3097 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3098 xdp->xsk.queue_id); 3099 default: 3100 return -EINVAL; 3101 } 3102 } 3103 3104 /** 3105 * ice_ena_misc_vector - enable the non-queue interrupts 3106 * @pf: board private structure 3107 */ 3108 static void ice_ena_misc_vector(struct ice_pf *pf) 3109 { 3110 struct ice_hw *hw = &pf->hw; 3111 u32 pf_intr_start_offset; 3112 u32 val; 3113 3114 /* Disable anti-spoof detection interrupt to prevent spurious event 3115 * interrupts during a function reset. Anti-spoof functionally is 3116 * still supported. 3117 */ 3118 val = rd32(hw, GL_MDCK_TX_TDPU); 3119 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3120 wr32(hw, GL_MDCK_TX_TDPU, val); 3121 3122 /* clear things first */ 3123 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3124 rd32(hw, PFINT_OICR); /* read to clear */ 3125 3126 val = (PFINT_OICR_ECC_ERR_M | 3127 PFINT_OICR_MAL_DETECT_M | 3128 PFINT_OICR_GRST_M | 3129 PFINT_OICR_PCI_EXCEPTION_M | 3130 PFINT_OICR_VFLR_M | 3131 PFINT_OICR_HMC_ERR_M | 3132 PFINT_OICR_PE_PUSH_M | 3133 PFINT_OICR_PE_CRITERR_M); 3134 3135 wr32(hw, PFINT_OICR_ENA, val); 3136 3137 /* SW_ITR_IDX = 0, but don't change INTENA */ 3138 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3139 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3140 3141 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3142 return; 3143 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3144 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3145 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3146 } 3147 3148 /** 3149 * ice_ll_ts_intr - ll_ts interrupt handler 3150 * @irq: interrupt number 3151 * @data: pointer to a q_vector 3152 */ 3153 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3154 { 3155 struct ice_pf *pf = data; 3156 u32 pf_intr_start_offset; 3157 struct ice_ptp_tx *tx; 3158 unsigned long flags; 3159 struct ice_hw *hw; 3160 u32 val; 3161 u8 idx; 3162 3163 hw = &pf->hw; 3164 tx = &pf->ptp.port.tx; 3165 spin_lock_irqsave(&tx->lock, flags); 3166 ice_ptp_complete_tx_single_tstamp(tx); 3167 3168 idx = find_next_bit_wrap(tx->in_use, tx->len, 3169 tx->last_ll_ts_idx_read + 1); 3170 if (idx != tx->len) 3171 ice_ptp_req_tx_single_tstamp(tx, idx); 3172 spin_unlock_irqrestore(&tx->lock, flags); 3173 3174 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3175 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3176 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3177 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3178 val); 3179 3180 return IRQ_HANDLED; 3181 } 3182 3183 /** 3184 * ice_misc_intr - misc interrupt handler 3185 * @irq: interrupt number 3186 * @data: pointer to a q_vector 3187 */ 3188 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3189 { 3190 struct ice_pf *pf = (struct ice_pf *)data; 3191 irqreturn_t ret = IRQ_HANDLED; 3192 struct ice_hw *hw = &pf->hw; 3193 struct device *dev; 3194 u32 oicr, ena_mask; 3195 3196 dev = ice_pf_to_dev(pf); 3197 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3198 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3199 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3200 3201 oicr = rd32(hw, PFINT_OICR); 3202 ena_mask = rd32(hw, PFINT_OICR_ENA); 3203 3204 if (oicr & PFINT_OICR_SWINT_M) { 3205 ena_mask &= ~PFINT_OICR_SWINT_M; 3206 pf->sw_int_count++; 3207 } 3208 3209 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3210 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3211 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3212 } 3213 if (oicr & PFINT_OICR_VFLR_M) { 3214 /* disable any further VFLR event notifications */ 3215 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3216 u32 reg = rd32(hw, PFINT_OICR_ENA); 3217 3218 reg &= ~PFINT_OICR_VFLR_M; 3219 wr32(hw, PFINT_OICR_ENA, reg); 3220 } else { 3221 ena_mask &= ~PFINT_OICR_VFLR_M; 3222 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3223 } 3224 } 3225 3226 if (oicr & PFINT_OICR_GRST_M) { 3227 u32 reset; 3228 3229 /* we have a reset warning */ 3230 ena_mask &= ~PFINT_OICR_GRST_M; 3231 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3232 rd32(hw, GLGEN_RSTAT)); 3233 3234 if (reset == ICE_RESET_CORER) 3235 pf->corer_count++; 3236 else if (reset == ICE_RESET_GLOBR) 3237 pf->globr_count++; 3238 else if (reset == ICE_RESET_EMPR) 3239 pf->empr_count++; 3240 else 3241 dev_dbg(dev, "Invalid reset type %d\n", reset); 3242 3243 /* If a reset cycle isn't already in progress, we set a bit in 3244 * pf->state so that the service task can start a reset/rebuild. 3245 */ 3246 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3247 if (reset == ICE_RESET_CORER) 3248 set_bit(ICE_CORER_RECV, pf->state); 3249 else if (reset == ICE_RESET_GLOBR) 3250 set_bit(ICE_GLOBR_RECV, pf->state); 3251 else 3252 set_bit(ICE_EMPR_RECV, pf->state); 3253 3254 /* There are couple of different bits at play here. 3255 * hw->reset_ongoing indicates whether the hardware is 3256 * in reset. This is set to true when a reset interrupt 3257 * is received and set back to false after the driver 3258 * has determined that the hardware is out of reset. 3259 * 3260 * ICE_RESET_OICR_RECV in pf->state indicates 3261 * that a post reset rebuild is required before the 3262 * driver is operational again. This is set above. 3263 * 3264 * As this is the start of the reset/rebuild cycle, set 3265 * both to indicate that. 3266 */ 3267 hw->reset_ongoing = true; 3268 } 3269 } 3270 3271 if (oicr & PFINT_OICR_TSYN_TX_M) { 3272 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3273 if (ice_pf_state_is_nominal(pf) && 3274 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3275 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3276 unsigned long flags; 3277 u8 idx; 3278 3279 spin_lock_irqsave(&tx->lock, flags); 3280 idx = find_next_bit_wrap(tx->in_use, tx->len, 3281 tx->last_ll_ts_idx_read + 1); 3282 if (idx != tx->len) 3283 ice_ptp_req_tx_single_tstamp(tx, idx); 3284 spin_unlock_irqrestore(&tx->lock, flags); 3285 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3286 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3287 ret = IRQ_WAKE_THREAD; 3288 } 3289 } 3290 3291 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3292 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3293 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3294 3295 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3296 3297 if (ice_pf_src_tmr_owned(pf)) { 3298 /* Save EVENTs from GLTSYN register */ 3299 pf->ptp.ext_ts_irq |= gltsyn_stat & 3300 (GLTSYN_STAT_EVENT0_M | 3301 GLTSYN_STAT_EVENT1_M | 3302 GLTSYN_STAT_EVENT2_M); 3303 3304 ice_ptp_extts_event(pf); 3305 } 3306 } 3307 3308 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3309 if (oicr & ICE_AUX_CRIT_ERR) { 3310 pf->oicr_err_reg |= oicr; 3311 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3312 ena_mask &= ~ICE_AUX_CRIT_ERR; 3313 } 3314 3315 /* Report any remaining unexpected interrupts */ 3316 oicr &= ena_mask; 3317 if (oicr) { 3318 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3319 /* If a critical error is pending there is no choice but to 3320 * reset the device. 3321 */ 3322 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3323 PFINT_OICR_ECC_ERR_M)) { 3324 set_bit(ICE_PFR_REQ, pf->state); 3325 } 3326 } 3327 ice_service_task_schedule(pf); 3328 if (ret == IRQ_HANDLED) 3329 ice_irq_dynamic_ena(hw, NULL, NULL); 3330 3331 return ret; 3332 } 3333 3334 /** 3335 * ice_misc_intr_thread_fn - misc interrupt thread function 3336 * @irq: interrupt number 3337 * @data: pointer to a q_vector 3338 */ 3339 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3340 { 3341 struct ice_pf *pf = data; 3342 struct ice_hw *hw; 3343 3344 hw = &pf->hw; 3345 3346 if (ice_is_reset_in_progress(pf->state)) 3347 goto skip_irq; 3348 3349 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3350 /* Process outstanding Tx timestamps. If there is more work, 3351 * re-arm the interrupt to trigger again. 3352 */ 3353 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3354 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3355 ice_flush(hw); 3356 } 3357 } 3358 3359 skip_irq: 3360 ice_irq_dynamic_ena(hw, NULL, NULL); 3361 3362 return IRQ_HANDLED; 3363 } 3364 3365 /** 3366 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3367 * @hw: pointer to HW structure 3368 */ 3369 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3370 { 3371 /* disable Admin queue Interrupt causes */ 3372 wr32(hw, PFINT_FW_CTL, 3373 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3374 3375 /* disable Mailbox queue Interrupt causes */ 3376 wr32(hw, PFINT_MBX_CTL, 3377 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3378 3379 wr32(hw, PFINT_SB_CTL, 3380 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3381 3382 /* disable Control queue Interrupt causes */ 3383 wr32(hw, PFINT_OICR_CTL, 3384 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3385 3386 ice_flush(hw); 3387 } 3388 3389 /** 3390 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3391 * @pf: board private structure 3392 */ 3393 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3394 { 3395 int irq_num = pf->ll_ts_irq.virq; 3396 3397 synchronize_irq(irq_num); 3398 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3399 3400 ice_free_irq(pf, pf->ll_ts_irq); 3401 } 3402 3403 /** 3404 * ice_free_irq_msix_misc - Unroll misc vector setup 3405 * @pf: board private structure 3406 */ 3407 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3408 { 3409 int misc_irq_num = pf->oicr_irq.virq; 3410 struct ice_hw *hw = &pf->hw; 3411 3412 ice_dis_ctrlq_interrupts(hw); 3413 3414 /* disable OICR interrupt */ 3415 wr32(hw, PFINT_OICR_ENA, 0); 3416 ice_flush(hw); 3417 3418 synchronize_irq(misc_irq_num); 3419 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3420 3421 ice_free_irq(pf, pf->oicr_irq); 3422 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3423 ice_free_irq_msix_ll_ts(pf); 3424 } 3425 3426 /** 3427 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3428 * @hw: pointer to HW structure 3429 * @reg_idx: HW vector index to associate the control queue interrupts with 3430 */ 3431 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3432 { 3433 u32 val; 3434 3435 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3436 PFINT_OICR_CTL_CAUSE_ENA_M); 3437 wr32(hw, PFINT_OICR_CTL, val); 3438 3439 /* enable Admin queue Interrupt causes */ 3440 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3441 PFINT_FW_CTL_CAUSE_ENA_M); 3442 wr32(hw, PFINT_FW_CTL, val); 3443 3444 /* enable Mailbox queue Interrupt causes */ 3445 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3446 PFINT_MBX_CTL_CAUSE_ENA_M); 3447 wr32(hw, PFINT_MBX_CTL, val); 3448 3449 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3450 /* enable Sideband queue Interrupt causes */ 3451 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3452 PFINT_SB_CTL_CAUSE_ENA_M); 3453 wr32(hw, PFINT_SB_CTL, val); 3454 } 3455 3456 ice_flush(hw); 3457 } 3458 3459 /** 3460 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3461 * @pf: board private structure 3462 * 3463 * This sets up the handler for MSIX 0, which is used to manage the 3464 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3465 * when in MSI or Legacy interrupt mode. 3466 */ 3467 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3468 { 3469 struct device *dev = ice_pf_to_dev(pf); 3470 struct ice_hw *hw = &pf->hw; 3471 u32 pf_intr_start_offset; 3472 struct msi_map irq; 3473 int err = 0; 3474 3475 if (!pf->int_name[0]) 3476 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3477 dev_driver_string(dev), dev_name(dev)); 3478 3479 if (!pf->int_name_ll_ts[0]) 3480 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3481 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3482 /* Do not request IRQ but do enable OICR interrupt since settings are 3483 * lost during reset. Note that this function is called only during 3484 * rebuild path and not while reset is in progress. 3485 */ 3486 if (ice_is_reset_in_progress(pf->state)) 3487 goto skip_req_irq; 3488 3489 /* reserve one vector in irq_tracker for misc interrupts */ 3490 irq = ice_alloc_irq(pf, false); 3491 if (irq.index < 0) 3492 return irq.index; 3493 3494 pf->oicr_irq = irq; 3495 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3496 ice_misc_intr_thread_fn, 0, 3497 pf->int_name, pf); 3498 if (err) { 3499 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3500 pf->int_name, err); 3501 ice_free_irq(pf, pf->oicr_irq); 3502 return err; 3503 } 3504 3505 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3506 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3507 goto skip_req_irq; 3508 3509 irq = ice_alloc_irq(pf, false); 3510 if (irq.index < 0) 3511 return irq.index; 3512 3513 pf->ll_ts_irq = irq; 3514 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3515 pf->int_name_ll_ts, pf); 3516 if (err) { 3517 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3518 pf->int_name_ll_ts, err); 3519 ice_free_irq(pf, pf->ll_ts_irq); 3520 return err; 3521 } 3522 3523 skip_req_irq: 3524 ice_ena_misc_vector(pf); 3525 3526 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3527 /* This enables LL TS interrupt */ 3528 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3529 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3530 wr32(hw, PFINT_SB_CTL, 3531 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3532 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3533 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3534 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3535 3536 ice_flush(hw); 3537 ice_irq_dynamic_ena(hw, NULL, NULL); 3538 3539 return 0; 3540 } 3541 3542 /** 3543 * ice_napi_add - register NAPI handler for the VSI 3544 * @vsi: VSI for which NAPI handler is to be registered 3545 * 3546 * This function is only called in the driver's load path. Registering the NAPI 3547 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3548 * reset/rebuild, etc.) 3549 */ 3550 static void ice_napi_add(struct ice_vsi *vsi) 3551 { 3552 int v_idx; 3553 3554 if (!vsi->netdev) 3555 return; 3556 3557 ice_for_each_q_vector(vsi, v_idx) { 3558 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3559 ice_napi_poll); 3560 __ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3561 } 3562 } 3563 3564 /** 3565 * ice_set_ops - set netdev and ethtools ops for the given netdev 3566 * @vsi: the VSI associated with the new netdev 3567 */ 3568 static void ice_set_ops(struct ice_vsi *vsi) 3569 { 3570 struct net_device *netdev = vsi->netdev; 3571 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3572 3573 if (ice_is_safe_mode(pf)) { 3574 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3575 ice_set_ethtool_safe_mode_ops(netdev); 3576 return; 3577 } 3578 3579 netdev->netdev_ops = &ice_netdev_ops; 3580 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3581 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3582 ice_set_ethtool_ops(netdev); 3583 3584 if (vsi->type != ICE_VSI_PF) 3585 return; 3586 3587 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3588 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3589 NETDEV_XDP_ACT_RX_SG; 3590 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3591 } 3592 3593 /** 3594 * ice_set_netdev_features - set features for the given netdev 3595 * @netdev: netdev instance 3596 */ 3597 static void ice_set_netdev_features(struct net_device *netdev) 3598 { 3599 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3600 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3601 netdev_features_t csumo_features; 3602 netdev_features_t vlano_features; 3603 netdev_features_t dflt_features; 3604 netdev_features_t tso_features; 3605 3606 if (ice_is_safe_mode(pf)) { 3607 /* safe mode */ 3608 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3609 netdev->hw_features = netdev->features; 3610 return; 3611 } 3612 3613 dflt_features = NETIF_F_SG | 3614 NETIF_F_HIGHDMA | 3615 NETIF_F_NTUPLE | 3616 NETIF_F_RXHASH; 3617 3618 csumo_features = NETIF_F_RXCSUM | 3619 NETIF_F_IP_CSUM | 3620 NETIF_F_SCTP_CRC | 3621 NETIF_F_IPV6_CSUM; 3622 3623 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3624 NETIF_F_HW_VLAN_CTAG_TX | 3625 NETIF_F_HW_VLAN_CTAG_RX; 3626 3627 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3628 if (is_dvm_ena) 3629 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3630 3631 tso_features = NETIF_F_TSO | 3632 NETIF_F_TSO_ECN | 3633 NETIF_F_TSO6 | 3634 NETIF_F_GSO_GRE | 3635 NETIF_F_GSO_UDP_TUNNEL | 3636 NETIF_F_GSO_GRE_CSUM | 3637 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3638 NETIF_F_GSO_PARTIAL | 3639 NETIF_F_GSO_IPXIP4 | 3640 NETIF_F_GSO_IPXIP6 | 3641 NETIF_F_GSO_UDP_L4; 3642 3643 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3644 NETIF_F_GSO_GRE_CSUM; 3645 /* set features that user can change */ 3646 netdev->hw_features = dflt_features | csumo_features | 3647 vlano_features | tso_features; 3648 3649 /* add support for HW_CSUM on packets with MPLS header */ 3650 netdev->mpls_features = NETIF_F_HW_CSUM | 3651 NETIF_F_TSO | 3652 NETIF_F_TSO6; 3653 3654 /* enable features */ 3655 netdev->features |= netdev->hw_features; 3656 3657 netdev->hw_features |= NETIF_F_HW_TC; 3658 netdev->hw_features |= NETIF_F_LOOPBACK; 3659 3660 /* encap and VLAN devices inherit default, csumo and tso features */ 3661 netdev->hw_enc_features |= dflt_features | csumo_features | 3662 tso_features; 3663 netdev->vlan_features |= dflt_features | csumo_features | 3664 tso_features; 3665 3666 /* advertise support but don't enable by default since only one type of 3667 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3668 * type turns on the other has to be turned off. This is enforced by the 3669 * ice_fix_features() ndo callback. 3670 */ 3671 if (is_dvm_ena) 3672 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3673 NETIF_F_HW_VLAN_STAG_TX; 3674 3675 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3676 * be changed at runtime 3677 */ 3678 netdev->hw_features |= NETIF_F_RXFCS; 3679 3680 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3681 } 3682 3683 /** 3684 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3685 * @lut: Lookup table 3686 * @rss_table_size: Lookup table size 3687 * @rss_size: Range of queue number for hashing 3688 */ 3689 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3690 { 3691 u16 i; 3692 3693 for (i = 0; i < rss_table_size; i++) 3694 lut[i] = i % rss_size; 3695 } 3696 3697 /** 3698 * ice_pf_vsi_setup - Set up a PF VSI 3699 * @pf: board private structure 3700 * @pi: pointer to the port_info instance 3701 * 3702 * Returns pointer to the successfully allocated VSI software struct 3703 * on success, otherwise returns NULL on failure. 3704 */ 3705 static struct ice_vsi * 3706 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3707 { 3708 struct ice_vsi_cfg_params params = {}; 3709 3710 params.type = ICE_VSI_PF; 3711 params.port_info = pi; 3712 params.flags = ICE_VSI_FLAG_INIT; 3713 3714 return ice_vsi_setup(pf, ¶ms); 3715 } 3716 3717 static struct ice_vsi * 3718 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3719 struct ice_channel *ch) 3720 { 3721 struct ice_vsi_cfg_params params = {}; 3722 3723 params.type = ICE_VSI_CHNL; 3724 params.port_info = pi; 3725 params.ch = ch; 3726 params.flags = ICE_VSI_FLAG_INIT; 3727 3728 return ice_vsi_setup(pf, ¶ms); 3729 } 3730 3731 /** 3732 * ice_ctrl_vsi_setup - Set up a control VSI 3733 * @pf: board private structure 3734 * @pi: pointer to the port_info instance 3735 * 3736 * Returns pointer to the successfully allocated VSI software struct 3737 * on success, otherwise returns NULL on failure. 3738 */ 3739 static struct ice_vsi * 3740 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3741 { 3742 struct ice_vsi_cfg_params params = {}; 3743 3744 params.type = ICE_VSI_CTRL; 3745 params.port_info = pi; 3746 params.flags = ICE_VSI_FLAG_INIT; 3747 3748 return ice_vsi_setup(pf, ¶ms); 3749 } 3750 3751 /** 3752 * ice_lb_vsi_setup - Set up a loopback VSI 3753 * @pf: board private structure 3754 * @pi: pointer to the port_info instance 3755 * 3756 * Returns pointer to the successfully allocated VSI software struct 3757 * on success, otherwise returns NULL on failure. 3758 */ 3759 struct ice_vsi * 3760 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3761 { 3762 struct ice_vsi_cfg_params params = {}; 3763 3764 params.type = ICE_VSI_LB; 3765 params.port_info = pi; 3766 params.flags = ICE_VSI_FLAG_INIT; 3767 3768 return ice_vsi_setup(pf, ¶ms); 3769 } 3770 3771 /** 3772 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3773 * @netdev: network interface to be adjusted 3774 * @proto: VLAN TPID 3775 * @vid: VLAN ID to be added 3776 * 3777 * net_device_ops implementation for adding VLAN IDs 3778 */ 3779 static int 3780 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3781 { 3782 struct ice_netdev_priv *np = netdev_priv(netdev); 3783 struct ice_vsi_vlan_ops *vlan_ops; 3784 struct ice_vsi *vsi = np->vsi; 3785 struct ice_vlan vlan; 3786 int ret; 3787 3788 /* VLAN 0 is added by default during load/reset */ 3789 if (!vid) 3790 return 0; 3791 3792 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3793 usleep_range(1000, 2000); 3794 3795 /* Add multicast promisc rule for the VLAN ID to be added if 3796 * all-multicast is currently enabled. 3797 */ 3798 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3799 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3800 ICE_MCAST_VLAN_PROMISC_BITS, 3801 vid); 3802 if (ret) 3803 goto finish; 3804 } 3805 3806 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3807 3808 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3809 * packets aren't pruned by the device's internal switch on Rx 3810 */ 3811 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3812 ret = vlan_ops->add_vlan(vsi, &vlan); 3813 if (ret) 3814 goto finish; 3815 3816 /* If all-multicast is currently enabled and this VLAN ID is only one 3817 * besides VLAN-0 we have to update look-up type of multicast promisc 3818 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3819 */ 3820 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3821 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3822 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3823 ICE_MCAST_PROMISC_BITS, 0); 3824 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3825 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3826 } 3827 3828 finish: 3829 clear_bit(ICE_CFG_BUSY, vsi->state); 3830 3831 return ret; 3832 } 3833 3834 /** 3835 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3836 * @netdev: network interface to be adjusted 3837 * @proto: VLAN TPID 3838 * @vid: VLAN ID to be removed 3839 * 3840 * net_device_ops implementation for removing VLAN IDs 3841 */ 3842 static int 3843 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3844 { 3845 struct ice_netdev_priv *np = netdev_priv(netdev); 3846 struct ice_vsi_vlan_ops *vlan_ops; 3847 struct ice_vsi *vsi = np->vsi; 3848 struct ice_vlan vlan; 3849 int ret; 3850 3851 /* don't allow removal of VLAN 0 */ 3852 if (!vid) 3853 return 0; 3854 3855 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3856 usleep_range(1000, 2000); 3857 3858 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3859 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3860 if (ret) { 3861 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3862 vsi->vsi_num); 3863 vsi->current_netdev_flags |= IFF_ALLMULTI; 3864 } 3865 3866 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3867 3868 /* Make sure VLAN delete is successful before updating VLAN 3869 * information 3870 */ 3871 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3872 ret = vlan_ops->del_vlan(vsi, &vlan); 3873 if (ret) 3874 goto finish; 3875 3876 /* Remove multicast promisc rule for the removed VLAN ID if 3877 * all-multicast is enabled. 3878 */ 3879 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3880 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3881 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3882 3883 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3884 /* Update look-up type of multicast promisc rule for VLAN 0 3885 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3886 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3887 */ 3888 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3889 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3890 ICE_MCAST_VLAN_PROMISC_BITS, 3891 0); 3892 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3893 ICE_MCAST_PROMISC_BITS, 0); 3894 } 3895 } 3896 3897 finish: 3898 clear_bit(ICE_CFG_BUSY, vsi->state); 3899 3900 return ret; 3901 } 3902 3903 /** 3904 * ice_rep_indr_tc_block_unbind 3905 * @cb_priv: indirection block private data 3906 */ 3907 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3908 { 3909 struct ice_indr_block_priv *indr_priv = cb_priv; 3910 3911 list_del(&indr_priv->list); 3912 kfree(indr_priv); 3913 } 3914 3915 /** 3916 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3917 * @vsi: VSI struct which has the netdev 3918 */ 3919 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3920 { 3921 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3922 3923 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3924 ice_rep_indr_tc_block_unbind); 3925 } 3926 3927 /** 3928 * ice_tc_indir_block_register - Register TC indirect block notifications 3929 * @vsi: VSI struct which has the netdev 3930 * 3931 * Returns 0 on success, negative value on failure 3932 */ 3933 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3934 { 3935 struct ice_netdev_priv *np; 3936 3937 if (!vsi || !vsi->netdev) 3938 return -EINVAL; 3939 3940 np = netdev_priv(vsi->netdev); 3941 3942 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3943 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3944 } 3945 3946 /** 3947 * ice_get_avail_q_count - Get count of queues in use 3948 * @pf_qmap: bitmap to get queue use count from 3949 * @lock: pointer to a mutex that protects access to pf_qmap 3950 * @size: size of the bitmap 3951 */ 3952 static u16 3953 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3954 { 3955 unsigned long bit; 3956 u16 count = 0; 3957 3958 mutex_lock(lock); 3959 for_each_clear_bit(bit, pf_qmap, size) 3960 count++; 3961 mutex_unlock(lock); 3962 3963 return count; 3964 } 3965 3966 /** 3967 * ice_get_avail_txq_count - Get count of Tx queues in use 3968 * @pf: pointer to an ice_pf instance 3969 */ 3970 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3971 { 3972 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3973 pf->max_pf_txqs); 3974 } 3975 3976 /** 3977 * ice_get_avail_rxq_count - Get count of Rx queues in use 3978 * @pf: pointer to an ice_pf instance 3979 */ 3980 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3981 { 3982 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3983 pf->max_pf_rxqs); 3984 } 3985 3986 /** 3987 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3988 * @pf: board private structure to initialize 3989 */ 3990 static void ice_deinit_pf(struct ice_pf *pf) 3991 { 3992 ice_service_task_stop(pf); 3993 mutex_destroy(&pf->lag_mutex); 3994 mutex_destroy(&pf->adev_mutex); 3995 mutex_destroy(&pf->sw_mutex); 3996 mutex_destroy(&pf->tc_mutex); 3997 mutex_destroy(&pf->avail_q_mutex); 3998 mutex_destroy(&pf->vfs.table_lock); 3999 4000 if (pf->avail_txqs) { 4001 bitmap_free(pf->avail_txqs); 4002 pf->avail_txqs = NULL; 4003 } 4004 4005 if (pf->avail_rxqs) { 4006 bitmap_free(pf->avail_rxqs); 4007 pf->avail_rxqs = NULL; 4008 } 4009 4010 if (pf->ptp.clock) 4011 ptp_clock_unregister(pf->ptp.clock); 4012 } 4013 4014 /** 4015 * ice_set_pf_caps - set PFs capability flags 4016 * @pf: pointer to the PF instance 4017 */ 4018 static void ice_set_pf_caps(struct ice_pf *pf) 4019 { 4020 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4021 4022 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4023 if (func_caps->common_cap.rdma) 4024 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4025 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4026 if (func_caps->common_cap.dcb) 4027 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4028 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4029 if (func_caps->common_cap.sr_iov_1_1) { 4030 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4031 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4032 ICE_MAX_SRIOV_VFS); 4033 } 4034 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4035 if (func_caps->common_cap.rss_table_size) 4036 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4037 4038 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4039 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4040 u16 unused; 4041 4042 /* ctrl_vsi_idx will be set to a valid value when flow director 4043 * is setup by ice_init_fdir 4044 */ 4045 pf->ctrl_vsi_idx = ICE_NO_VSI; 4046 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4047 /* force guaranteed filter pool for PF */ 4048 ice_alloc_fd_guar_item(&pf->hw, &unused, 4049 func_caps->fd_fltr_guar); 4050 /* force shared filter pool for PF */ 4051 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4052 func_caps->fd_fltr_best_effort); 4053 } 4054 4055 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4056 if (func_caps->common_cap.ieee_1588 && 4057 !(pf->hw.mac_type == ICE_MAC_E830)) 4058 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4059 4060 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4061 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4062 } 4063 4064 /** 4065 * ice_init_pf - Initialize general software structures (struct ice_pf) 4066 * @pf: board private structure to initialize 4067 */ 4068 static int ice_init_pf(struct ice_pf *pf) 4069 { 4070 ice_set_pf_caps(pf); 4071 4072 mutex_init(&pf->sw_mutex); 4073 mutex_init(&pf->tc_mutex); 4074 mutex_init(&pf->adev_mutex); 4075 mutex_init(&pf->lag_mutex); 4076 4077 INIT_HLIST_HEAD(&pf->aq_wait_list); 4078 spin_lock_init(&pf->aq_wait_lock); 4079 init_waitqueue_head(&pf->aq_wait_queue); 4080 4081 init_waitqueue_head(&pf->reset_wait_queue); 4082 4083 /* setup service timer and periodic service task */ 4084 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4085 pf->serv_tmr_period = HZ; 4086 INIT_WORK(&pf->serv_task, ice_service_task); 4087 clear_bit(ICE_SERVICE_SCHED, pf->state); 4088 4089 mutex_init(&pf->avail_q_mutex); 4090 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4091 if (!pf->avail_txqs) 4092 return -ENOMEM; 4093 4094 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4095 if (!pf->avail_rxqs) { 4096 bitmap_free(pf->avail_txqs); 4097 pf->avail_txqs = NULL; 4098 return -ENOMEM; 4099 } 4100 4101 mutex_init(&pf->vfs.table_lock); 4102 hash_init(pf->vfs.table); 4103 ice_mbx_init_snapshot(&pf->hw); 4104 4105 return 0; 4106 } 4107 4108 /** 4109 * ice_is_wol_supported - check if WoL is supported 4110 * @hw: pointer to hardware info 4111 * 4112 * Check if WoL is supported based on the HW configuration. 4113 * Returns true if NVM supports and enables WoL for this port, false otherwise 4114 */ 4115 bool ice_is_wol_supported(struct ice_hw *hw) 4116 { 4117 u16 wol_ctrl; 4118 4119 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4120 * word) indicates WoL is not supported on the corresponding PF ID. 4121 */ 4122 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4123 return false; 4124 4125 return !(BIT(hw->port_info->lport) & wol_ctrl); 4126 } 4127 4128 /** 4129 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4130 * @vsi: VSI being changed 4131 * @new_rx: new number of Rx queues 4132 * @new_tx: new number of Tx queues 4133 * @locked: is adev device_lock held 4134 * 4135 * Only change the number of queues if new_tx, or new_rx is non-0. 4136 * 4137 * Returns 0 on success. 4138 */ 4139 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4140 { 4141 struct ice_pf *pf = vsi->back; 4142 int i, err = 0, timeout = 50; 4143 4144 if (!new_rx && !new_tx) 4145 return -EINVAL; 4146 4147 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4148 timeout--; 4149 if (!timeout) 4150 return -EBUSY; 4151 usleep_range(1000, 2000); 4152 } 4153 4154 if (new_tx) 4155 vsi->req_txq = (u16)new_tx; 4156 if (new_rx) 4157 vsi->req_rxq = (u16)new_rx; 4158 4159 /* set for the next time the netdev is started */ 4160 if (!netif_running(vsi->netdev)) { 4161 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4162 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4163 goto done; 4164 } 4165 4166 ice_vsi_close(vsi); 4167 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4168 4169 ice_for_each_traffic_class(i) { 4170 if (vsi->tc_cfg.ena_tc & BIT(i)) 4171 netdev_set_tc_queue(vsi->netdev, 4172 vsi->tc_cfg.tc_info[i].netdev_tc, 4173 vsi->tc_cfg.tc_info[i].qcount_tx, 4174 vsi->tc_cfg.tc_info[i].qoffset); 4175 } 4176 ice_pf_dcb_recfg(pf, locked); 4177 ice_vsi_open(vsi); 4178 done: 4179 clear_bit(ICE_CFG_BUSY, pf->state); 4180 return err; 4181 } 4182 4183 /** 4184 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4185 * @pf: PF to configure 4186 * 4187 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4188 * VSI can still Tx/Rx VLAN tagged packets. 4189 */ 4190 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4191 { 4192 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4193 struct ice_vsi_ctx *ctxt; 4194 struct ice_hw *hw; 4195 int status; 4196 4197 if (!vsi) 4198 return; 4199 4200 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4201 if (!ctxt) 4202 return; 4203 4204 hw = &pf->hw; 4205 ctxt->info = vsi->info; 4206 4207 ctxt->info.valid_sections = 4208 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4209 ICE_AQ_VSI_PROP_SECURITY_VALID | 4210 ICE_AQ_VSI_PROP_SW_VALID); 4211 4212 /* disable VLAN anti-spoof */ 4213 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4214 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4215 4216 /* disable VLAN pruning and keep all other settings */ 4217 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4218 4219 /* allow all VLANs on Tx and don't strip on Rx */ 4220 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4221 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4222 4223 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4224 if (status) { 4225 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4226 status, ice_aq_str(hw->adminq.sq_last_status)); 4227 } else { 4228 vsi->info.sec_flags = ctxt->info.sec_flags; 4229 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4230 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4231 } 4232 4233 kfree(ctxt); 4234 } 4235 4236 /** 4237 * ice_log_pkg_init - log result of DDP package load 4238 * @hw: pointer to hardware info 4239 * @state: state of package load 4240 */ 4241 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4242 { 4243 struct ice_pf *pf = hw->back; 4244 struct device *dev; 4245 4246 dev = ice_pf_to_dev(pf); 4247 4248 switch (state) { 4249 case ICE_DDP_PKG_SUCCESS: 4250 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4251 hw->active_pkg_name, 4252 hw->active_pkg_ver.major, 4253 hw->active_pkg_ver.minor, 4254 hw->active_pkg_ver.update, 4255 hw->active_pkg_ver.draft); 4256 break; 4257 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4258 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4259 hw->active_pkg_name, 4260 hw->active_pkg_ver.major, 4261 hw->active_pkg_ver.minor, 4262 hw->active_pkg_ver.update, 4263 hw->active_pkg_ver.draft); 4264 break; 4265 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4266 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4267 hw->active_pkg_name, 4268 hw->active_pkg_ver.major, 4269 hw->active_pkg_ver.minor, 4270 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4271 break; 4272 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4273 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4274 hw->active_pkg_name, 4275 hw->active_pkg_ver.major, 4276 hw->active_pkg_ver.minor, 4277 hw->active_pkg_ver.update, 4278 hw->active_pkg_ver.draft, 4279 hw->pkg_name, 4280 hw->pkg_ver.major, 4281 hw->pkg_ver.minor, 4282 hw->pkg_ver.update, 4283 hw->pkg_ver.draft); 4284 break; 4285 case ICE_DDP_PKG_FW_MISMATCH: 4286 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4287 break; 4288 case ICE_DDP_PKG_INVALID_FILE: 4289 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4290 break; 4291 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4292 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4293 break; 4294 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4295 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4296 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4297 break; 4298 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4299 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4300 break; 4301 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4302 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4303 break; 4304 case ICE_DDP_PKG_LOAD_ERROR: 4305 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4306 /* poll for reset to complete */ 4307 if (ice_check_reset(hw)) 4308 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4309 break; 4310 case ICE_DDP_PKG_ERR: 4311 default: 4312 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4313 break; 4314 } 4315 } 4316 4317 /** 4318 * ice_load_pkg - load/reload the DDP Package file 4319 * @firmware: firmware structure when firmware requested or NULL for reload 4320 * @pf: pointer to the PF instance 4321 * 4322 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4323 * initialize HW tables. 4324 */ 4325 static void 4326 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4327 { 4328 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4329 struct device *dev = ice_pf_to_dev(pf); 4330 struct ice_hw *hw = &pf->hw; 4331 4332 /* Load DDP Package */ 4333 if (firmware && !hw->pkg_copy) { 4334 state = ice_copy_and_init_pkg(hw, firmware->data, 4335 firmware->size); 4336 ice_log_pkg_init(hw, state); 4337 } else if (!firmware && hw->pkg_copy) { 4338 /* Reload package during rebuild after CORER/GLOBR reset */ 4339 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4340 ice_log_pkg_init(hw, state); 4341 } else { 4342 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4343 } 4344 4345 if (!ice_is_init_pkg_successful(state)) { 4346 /* Safe Mode */ 4347 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4348 return; 4349 } 4350 4351 /* Successful download package is the precondition for advanced 4352 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4353 */ 4354 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4355 } 4356 4357 /** 4358 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4359 * @pf: pointer to the PF structure 4360 * 4361 * There is no error returned here because the driver should be able to handle 4362 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4363 * specifically with Tx. 4364 */ 4365 static void ice_verify_cacheline_size(struct ice_pf *pf) 4366 { 4367 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4368 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4369 ICE_CACHE_LINE_BYTES); 4370 } 4371 4372 /** 4373 * ice_send_version - update firmware with driver version 4374 * @pf: PF struct 4375 * 4376 * Returns 0 on success, else error code 4377 */ 4378 static int ice_send_version(struct ice_pf *pf) 4379 { 4380 struct ice_driver_ver dv; 4381 4382 dv.major_ver = 0xff; 4383 dv.minor_ver = 0xff; 4384 dv.build_ver = 0xff; 4385 dv.subbuild_ver = 0; 4386 strscpy((char *)dv.driver_string, UTS_RELEASE, 4387 sizeof(dv.driver_string)); 4388 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4389 } 4390 4391 /** 4392 * ice_init_fdir - Initialize flow director VSI and configuration 4393 * @pf: pointer to the PF instance 4394 * 4395 * returns 0 on success, negative on error 4396 */ 4397 static int ice_init_fdir(struct ice_pf *pf) 4398 { 4399 struct device *dev = ice_pf_to_dev(pf); 4400 struct ice_vsi *ctrl_vsi; 4401 int err; 4402 4403 /* Side Band Flow Director needs to have a control VSI. 4404 * Allocate it and store it in the PF. 4405 */ 4406 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4407 if (!ctrl_vsi) { 4408 dev_dbg(dev, "could not create control VSI\n"); 4409 return -ENOMEM; 4410 } 4411 4412 err = ice_vsi_open_ctrl(ctrl_vsi); 4413 if (err) { 4414 dev_dbg(dev, "could not open control VSI\n"); 4415 goto err_vsi_open; 4416 } 4417 4418 mutex_init(&pf->hw.fdir_fltr_lock); 4419 4420 err = ice_fdir_create_dflt_rules(pf); 4421 if (err) 4422 goto err_fdir_rule; 4423 4424 return 0; 4425 4426 err_fdir_rule: 4427 ice_fdir_release_flows(&pf->hw); 4428 ice_vsi_close(ctrl_vsi); 4429 err_vsi_open: 4430 ice_vsi_release(ctrl_vsi); 4431 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4432 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4433 pf->ctrl_vsi_idx = ICE_NO_VSI; 4434 } 4435 return err; 4436 } 4437 4438 static void ice_deinit_fdir(struct ice_pf *pf) 4439 { 4440 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4441 4442 if (!vsi) 4443 return; 4444 4445 ice_vsi_manage_fdir(vsi, false); 4446 ice_vsi_release(vsi); 4447 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4448 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4449 pf->ctrl_vsi_idx = ICE_NO_VSI; 4450 } 4451 4452 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4453 } 4454 4455 /** 4456 * ice_get_opt_fw_name - return optional firmware file name or NULL 4457 * @pf: pointer to the PF instance 4458 */ 4459 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4460 { 4461 /* Optional firmware name same as default with additional dash 4462 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4463 */ 4464 struct pci_dev *pdev = pf->pdev; 4465 char *opt_fw_filename; 4466 u64 dsn; 4467 4468 /* Determine the name of the optional file using the DSN (two 4469 * dwords following the start of the DSN Capability). 4470 */ 4471 dsn = pci_get_dsn(pdev); 4472 if (!dsn) 4473 return NULL; 4474 4475 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4476 if (!opt_fw_filename) 4477 return NULL; 4478 4479 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4480 ICE_DDP_PKG_PATH, dsn); 4481 4482 return opt_fw_filename; 4483 } 4484 4485 /** 4486 * ice_request_fw - Device initialization routine 4487 * @pf: pointer to the PF instance 4488 * @firmware: double pointer to firmware struct 4489 * 4490 * Return: zero when successful, negative values otherwise. 4491 */ 4492 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4493 { 4494 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4495 struct device *dev = ice_pf_to_dev(pf); 4496 int err = 0; 4497 4498 /* optional device-specific DDP (if present) overrides the default DDP 4499 * package file. kernel logs a debug message if the file doesn't exist, 4500 * and warning messages for other errors. 4501 */ 4502 if (opt_fw_filename) { 4503 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4504 kfree(opt_fw_filename); 4505 if (!err) 4506 return err; 4507 } 4508 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4509 if (err) 4510 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4511 4512 return err; 4513 } 4514 4515 /** 4516 * ice_init_tx_topology - performs Tx topology initialization 4517 * @hw: pointer to the hardware structure 4518 * @firmware: pointer to firmware structure 4519 * 4520 * Return: zero when init was successful, negative values otherwise. 4521 */ 4522 static int 4523 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4524 { 4525 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4526 struct ice_pf *pf = hw->back; 4527 struct device *dev; 4528 u8 *buf_copy; 4529 int err; 4530 4531 dev = ice_pf_to_dev(pf); 4532 /* ice_cfg_tx_topo buf argument is not a constant, 4533 * so we have to make a copy 4534 */ 4535 buf_copy = kmemdup(firmware->data, firmware->size, GFP_KERNEL); 4536 4537 err = ice_cfg_tx_topo(hw, buf_copy, firmware->size); 4538 if (!err) { 4539 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4540 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4541 else 4542 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4543 /* if there was a change in topology ice_cfg_tx_topo triggered 4544 * a CORER and we need to re-init hw 4545 */ 4546 ice_deinit_hw(hw); 4547 err = ice_init_hw(hw); 4548 4549 return err; 4550 } else if (err == -EIO) { 4551 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4552 } 4553 4554 return 0; 4555 } 4556 4557 /** 4558 * ice_init_ddp_config - DDP related configuration 4559 * @hw: pointer to the hardware structure 4560 * @pf: pointer to pf structure 4561 * 4562 * This function loads DDP file from the disk, then initializes Tx 4563 * topology. At the end DDP package is loaded on the card. 4564 * 4565 * Return: zero when init was successful, negative values otherwise. 4566 */ 4567 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4568 { 4569 struct device *dev = ice_pf_to_dev(pf); 4570 const struct firmware *firmware = NULL; 4571 int err; 4572 4573 err = ice_request_fw(pf, &firmware); 4574 if (err) { 4575 dev_err(dev, "Fail during requesting FW: %d\n", err); 4576 return err; 4577 } 4578 4579 err = ice_init_tx_topology(hw, firmware); 4580 if (err) { 4581 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4582 err); 4583 release_firmware(firmware); 4584 return err; 4585 } 4586 4587 /* Download firmware to device */ 4588 ice_load_pkg(firmware, pf); 4589 release_firmware(firmware); 4590 4591 return 0; 4592 } 4593 4594 /** 4595 * ice_print_wake_reason - show the wake up cause in the log 4596 * @pf: pointer to the PF struct 4597 */ 4598 static void ice_print_wake_reason(struct ice_pf *pf) 4599 { 4600 u32 wus = pf->wakeup_reason; 4601 const char *wake_str; 4602 4603 /* if no wake event, nothing to print */ 4604 if (!wus) 4605 return; 4606 4607 if (wus & PFPM_WUS_LNKC_M) 4608 wake_str = "Link\n"; 4609 else if (wus & PFPM_WUS_MAG_M) 4610 wake_str = "Magic Packet\n"; 4611 else if (wus & PFPM_WUS_MNG_M) 4612 wake_str = "Management\n"; 4613 else if (wus & PFPM_WUS_FW_RST_WK_M) 4614 wake_str = "Firmware Reset\n"; 4615 else 4616 wake_str = "Unknown\n"; 4617 4618 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4619 } 4620 4621 /** 4622 * ice_pf_fwlog_update_module - update 1 module 4623 * @pf: pointer to the PF struct 4624 * @log_level: log_level to use for the @module 4625 * @module: module to update 4626 */ 4627 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4628 { 4629 struct ice_hw *hw = &pf->hw; 4630 4631 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4632 } 4633 4634 /** 4635 * ice_register_netdev - register netdev 4636 * @vsi: pointer to the VSI struct 4637 */ 4638 static int ice_register_netdev(struct ice_vsi *vsi) 4639 { 4640 int err; 4641 4642 if (!vsi || !vsi->netdev) 4643 return -EIO; 4644 4645 err = register_netdev(vsi->netdev); 4646 if (err) 4647 return err; 4648 4649 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4650 netif_carrier_off(vsi->netdev); 4651 netif_tx_stop_all_queues(vsi->netdev); 4652 4653 return 0; 4654 } 4655 4656 static void ice_unregister_netdev(struct ice_vsi *vsi) 4657 { 4658 if (!vsi || !vsi->netdev) 4659 return; 4660 4661 unregister_netdev(vsi->netdev); 4662 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4663 } 4664 4665 /** 4666 * ice_cfg_netdev - Allocate, configure and register a netdev 4667 * @vsi: the VSI associated with the new netdev 4668 * 4669 * Returns 0 on success, negative value on failure 4670 */ 4671 static int ice_cfg_netdev(struct ice_vsi *vsi) 4672 { 4673 struct ice_netdev_priv *np; 4674 struct net_device *netdev; 4675 u8 mac_addr[ETH_ALEN]; 4676 4677 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4678 vsi->alloc_rxq); 4679 if (!netdev) 4680 return -ENOMEM; 4681 4682 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4683 vsi->netdev = netdev; 4684 np = netdev_priv(netdev); 4685 np->vsi = vsi; 4686 4687 ice_set_netdev_features(netdev); 4688 ice_set_ops(vsi); 4689 4690 if (vsi->type == ICE_VSI_PF) { 4691 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4692 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4693 eth_hw_addr_set(netdev, mac_addr); 4694 } 4695 4696 netdev->priv_flags |= IFF_UNICAST_FLT; 4697 4698 /* Setup netdev TC information */ 4699 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4700 4701 netdev->max_mtu = ICE_MAX_MTU; 4702 4703 return 0; 4704 } 4705 4706 static void ice_decfg_netdev(struct ice_vsi *vsi) 4707 { 4708 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4709 free_netdev(vsi->netdev); 4710 vsi->netdev = NULL; 4711 } 4712 4713 /** 4714 * ice_wait_for_fw - wait for full FW readiness 4715 * @hw: pointer to the hardware structure 4716 * @timeout: milliseconds that can elapse before timing out 4717 */ 4718 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4719 { 4720 int fw_loading; 4721 u32 elapsed = 0; 4722 4723 while (elapsed <= timeout) { 4724 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4725 4726 /* firmware was not yet loaded, we have to wait more */ 4727 if (fw_loading) { 4728 elapsed += 100; 4729 msleep(100); 4730 continue; 4731 } 4732 return 0; 4733 } 4734 4735 return -ETIMEDOUT; 4736 } 4737 4738 int ice_init_dev(struct ice_pf *pf) 4739 { 4740 struct device *dev = ice_pf_to_dev(pf); 4741 struct ice_hw *hw = &pf->hw; 4742 int err; 4743 4744 err = ice_init_hw(hw); 4745 if (err) { 4746 dev_err(dev, "ice_init_hw failed: %d\n", err); 4747 return err; 4748 } 4749 4750 /* Some cards require longer initialization times 4751 * due to necessity of loading FW from an external source. 4752 * This can take even half a minute. 4753 */ 4754 if (ice_is_pf_c827(hw)) { 4755 err = ice_wait_for_fw(hw, 30000); 4756 if (err) { 4757 dev_err(dev, "ice_wait_for_fw timed out"); 4758 return err; 4759 } 4760 } 4761 4762 ice_init_feature_support(pf); 4763 4764 err = ice_init_ddp_config(hw, pf); 4765 if (err) 4766 return err; 4767 4768 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4769 * set in pf->state, which will cause ice_is_safe_mode to return 4770 * true 4771 */ 4772 if (ice_is_safe_mode(pf)) { 4773 /* we already got function/device capabilities but these don't 4774 * reflect what the driver needs to do in safe mode. Instead of 4775 * adding conditional logic everywhere to ignore these 4776 * device/function capabilities, override them. 4777 */ 4778 ice_set_safe_mode_caps(hw); 4779 } 4780 4781 err = ice_init_pf(pf); 4782 if (err) { 4783 dev_err(dev, "ice_init_pf failed: %d\n", err); 4784 goto err_init_pf; 4785 } 4786 4787 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4788 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4789 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4790 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4791 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4792 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4793 pf->hw.tnl.valid_count[TNL_VXLAN]; 4794 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4795 UDP_TUNNEL_TYPE_VXLAN; 4796 } 4797 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4798 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4799 pf->hw.tnl.valid_count[TNL_GENEVE]; 4800 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4801 UDP_TUNNEL_TYPE_GENEVE; 4802 } 4803 4804 err = ice_init_interrupt_scheme(pf); 4805 if (err) { 4806 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4807 err = -EIO; 4808 goto err_init_interrupt_scheme; 4809 } 4810 4811 /* In case of MSIX we are going to setup the misc vector right here 4812 * to handle admin queue events etc. In case of legacy and MSI 4813 * the misc functionality and queue processing is combined in 4814 * the same vector and that gets setup at open. 4815 */ 4816 err = ice_req_irq_msix_misc(pf); 4817 if (err) { 4818 dev_err(dev, "setup of misc vector failed: %d\n", err); 4819 goto err_req_irq_msix_misc; 4820 } 4821 4822 return 0; 4823 4824 err_req_irq_msix_misc: 4825 ice_clear_interrupt_scheme(pf); 4826 err_init_interrupt_scheme: 4827 ice_deinit_pf(pf); 4828 err_init_pf: 4829 ice_deinit_hw(hw); 4830 return err; 4831 } 4832 4833 void ice_deinit_dev(struct ice_pf *pf) 4834 { 4835 ice_free_irq_msix_misc(pf); 4836 ice_deinit_pf(pf); 4837 ice_deinit_hw(&pf->hw); 4838 4839 /* Service task is already stopped, so call reset directly. */ 4840 ice_reset(&pf->hw, ICE_RESET_PFR); 4841 pci_wait_for_pending_transaction(pf->pdev); 4842 ice_clear_interrupt_scheme(pf); 4843 } 4844 4845 static void ice_init_features(struct ice_pf *pf) 4846 { 4847 struct device *dev = ice_pf_to_dev(pf); 4848 4849 if (ice_is_safe_mode(pf)) 4850 return; 4851 4852 /* initialize DDP driven features */ 4853 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4854 ice_ptp_init(pf); 4855 4856 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4857 ice_gnss_init(pf); 4858 4859 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4860 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4861 ice_dpll_init(pf); 4862 4863 /* Note: Flow director init failure is non-fatal to load */ 4864 if (ice_init_fdir(pf)) 4865 dev_err(dev, "could not initialize flow director\n"); 4866 4867 /* Note: DCB init failure is non-fatal to load */ 4868 if (ice_init_pf_dcb(pf, false)) { 4869 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4870 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4871 } else { 4872 ice_cfg_lldp_mib_change(&pf->hw, true); 4873 } 4874 4875 if (ice_init_lag(pf)) 4876 dev_warn(dev, "Failed to init link aggregation support\n"); 4877 4878 ice_hwmon_init(pf); 4879 } 4880 4881 static void ice_deinit_features(struct ice_pf *pf) 4882 { 4883 if (ice_is_safe_mode(pf)) 4884 return; 4885 4886 ice_deinit_lag(pf); 4887 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4888 ice_cfg_lldp_mib_change(&pf->hw, false); 4889 ice_deinit_fdir(pf); 4890 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4891 ice_gnss_exit(pf); 4892 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4893 ice_ptp_release(pf); 4894 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4895 ice_dpll_deinit(pf); 4896 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4897 xa_destroy(&pf->eswitch.reprs); 4898 } 4899 4900 static void ice_init_wakeup(struct ice_pf *pf) 4901 { 4902 /* Save wakeup reason register for later use */ 4903 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4904 4905 /* check for a power management event */ 4906 ice_print_wake_reason(pf); 4907 4908 /* clear wake status, all bits */ 4909 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4910 4911 /* Disable WoL at init, wait for user to enable */ 4912 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4913 } 4914 4915 static int ice_init_link(struct ice_pf *pf) 4916 { 4917 struct device *dev = ice_pf_to_dev(pf); 4918 int err; 4919 4920 err = ice_init_link_events(pf->hw.port_info); 4921 if (err) { 4922 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4923 return err; 4924 } 4925 4926 /* not a fatal error if this fails */ 4927 err = ice_init_nvm_phy_type(pf->hw.port_info); 4928 if (err) 4929 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4930 4931 /* not a fatal error if this fails */ 4932 err = ice_update_link_info(pf->hw.port_info); 4933 if (err) 4934 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4935 4936 ice_init_link_dflt_override(pf->hw.port_info); 4937 4938 ice_check_link_cfg_err(pf, 4939 pf->hw.port_info->phy.link_info.link_cfg_err); 4940 4941 /* if media available, initialize PHY settings */ 4942 if (pf->hw.port_info->phy.link_info.link_info & 4943 ICE_AQ_MEDIA_AVAILABLE) { 4944 /* not a fatal error if this fails */ 4945 err = ice_init_phy_user_cfg(pf->hw.port_info); 4946 if (err) 4947 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4948 4949 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4950 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4951 4952 if (vsi) 4953 ice_configure_phy(vsi); 4954 } 4955 } else { 4956 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4957 } 4958 4959 return err; 4960 } 4961 4962 static int ice_init_pf_sw(struct ice_pf *pf) 4963 { 4964 bool dvm = ice_is_dvm_ena(&pf->hw); 4965 struct ice_vsi *vsi; 4966 int err; 4967 4968 /* create switch struct for the switch element created by FW on boot */ 4969 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4970 if (!pf->first_sw) 4971 return -ENOMEM; 4972 4973 if (pf->hw.evb_veb) 4974 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4975 else 4976 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4977 4978 pf->first_sw->pf = pf; 4979 4980 /* record the sw_id available for later use */ 4981 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4982 4983 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4984 if (err) 4985 goto err_aq_set_port_params; 4986 4987 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4988 if (!vsi) { 4989 err = -ENOMEM; 4990 goto err_pf_vsi_setup; 4991 } 4992 4993 return 0; 4994 4995 err_pf_vsi_setup: 4996 err_aq_set_port_params: 4997 kfree(pf->first_sw); 4998 return err; 4999 } 5000 5001 static void ice_deinit_pf_sw(struct ice_pf *pf) 5002 { 5003 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5004 5005 if (!vsi) 5006 return; 5007 5008 ice_vsi_release(vsi); 5009 kfree(pf->first_sw); 5010 } 5011 5012 static int ice_alloc_vsis(struct ice_pf *pf) 5013 { 5014 struct device *dev = ice_pf_to_dev(pf); 5015 5016 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5017 if (!pf->num_alloc_vsi) 5018 return -EIO; 5019 5020 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5021 dev_warn(dev, 5022 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5023 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5024 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5025 } 5026 5027 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5028 GFP_KERNEL); 5029 if (!pf->vsi) 5030 return -ENOMEM; 5031 5032 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5033 sizeof(*pf->vsi_stats), GFP_KERNEL); 5034 if (!pf->vsi_stats) { 5035 devm_kfree(dev, pf->vsi); 5036 return -ENOMEM; 5037 } 5038 5039 return 0; 5040 } 5041 5042 static void ice_dealloc_vsis(struct ice_pf *pf) 5043 { 5044 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5045 pf->vsi_stats = NULL; 5046 5047 pf->num_alloc_vsi = 0; 5048 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5049 pf->vsi = NULL; 5050 } 5051 5052 static int ice_init_devlink(struct ice_pf *pf) 5053 { 5054 int err; 5055 5056 err = ice_devlink_register_params(pf); 5057 if (err) 5058 return err; 5059 5060 ice_devlink_init_regions(pf); 5061 ice_devlink_register(pf); 5062 5063 return 0; 5064 } 5065 5066 static void ice_deinit_devlink(struct ice_pf *pf) 5067 { 5068 ice_devlink_unregister(pf); 5069 ice_devlink_destroy_regions(pf); 5070 ice_devlink_unregister_params(pf); 5071 } 5072 5073 static int ice_init(struct ice_pf *pf) 5074 { 5075 int err; 5076 5077 err = ice_init_dev(pf); 5078 if (err) 5079 return err; 5080 5081 err = ice_alloc_vsis(pf); 5082 if (err) 5083 goto err_alloc_vsis; 5084 5085 err = ice_init_pf_sw(pf); 5086 if (err) 5087 goto err_init_pf_sw; 5088 5089 ice_init_wakeup(pf); 5090 5091 err = ice_init_link(pf); 5092 if (err) 5093 goto err_init_link; 5094 5095 err = ice_send_version(pf); 5096 if (err) 5097 goto err_init_link; 5098 5099 ice_verify_cacheline_size(pf); 5100 5101 if (ice_is_safe_mode(pf)) 5102 ice_set_safe_mode_vlan_cfg(pf); 5103 else 5104 /* print PCI link speed and width */ 5105 pcie_print_link_status(pf->pdev); 5106 5107 /* ready to go, so clear down state bit */ 5108 clear_bit(ICE_DOWN, pf->state); 5109 clear_bit(ICE_SERVICE_DIS, pf->state); 5110 5111 /* since everything is good, start the service timer */ 5112 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5113 5114 return 0; 5115 5116 err_init_link: 5117 ice_deinit_pf_sw(pf); 5118 err_init_pf_sw: 5119 ice_dealloc_vsis(pf); 5120 err_alloc_vsis: 5121 ice_deinit_dev(pf); 5122 return err; 5123 } 5124 5125 static void ice_deinit(struct ice_pf *pf) 5126 { 5127 set_bit(ICE_SERVICE_DIS, pf->state); 5128 set_bit(ICE_DOWN, pf->state); 5129 5130 ice_deinit_pf_sw(pf); 5131 ice_dealloc_vsis(pf); 5132 ice_deinit_dev(pf); 5133 } 5134 5135 /** 5136 * ice_load - load pf by init hw and starting VSI 5137 * @pf: pointer to the pf instance 5138 * 5139 * This function has to be called under devl_lock. 5140 */ 5141 int ice_load(struct ice_pf *pf) 5142 { 5143 struct ice_vsi *vsi; 5144 int err; 5145 5146 devl_assert_locked(priv_to_devlink(pf)); 5147 5148 vsi = ice_get_main_vsi(pf); 5149 5150 /* init channel list */ 5151 INIT_LIST_HEAD(&vsi->ch_list); 5152 5153 err = ice_cfg_netdev(vsi); 5154 if (err) 5155 return err; 5156 5157 /* Setup DCB netlink interface */ 5158 ice_dcbnl_setup(vsi); 5159 5160 err = ice_init_mac_fltr(pf); 5161 if (err) 5162 goto err_init_mac_fltr; 5163 5164 err = ice_devlink_create_pf_port(pf); 5165 if (err) 5166 goto err_devlink_create_pf_port; 5167 5168 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5169 5170 err = ice_register_netdev(vsi); 5171 if (err) 5172 goto err_register_netdev; 5173 5174 err = ice_tc_indir_block_register(vsi); 5175 if (err) 5176 goto err_tc_indir_block_register; 5177 5178 ice_napi_add(vsi); 5179 5180 err = ice_init_rdma(pf); 5181 if (err) 5182 goto err_init_rdma; 5183 5184 ice_init_features(pf); 5185 ice_service_task_restart(pf); 5186 5187 clear_bit(ICE_DOWN, pf->state); 5188 5189 return 0; 5190 5191 err_init_rdma: 5192 ice_tc_indir_block_unregister(vsi); 5193 err_tc_indir_block_register: 5194 ice_unregister_netdev(vsi); 5195 err_register_netdev: 5196 ice_devlink_destroy_pf_port(pf); 5197 err_devlink_create_pf_port: 5198 err_init_mac_fltr: 5199 ice_decfg_netdev(vsi); 5200 return err; 5201 } 5202 5203 /** 5204 * ice_unload - unload pf by stopping VSI and deinit hw 5205 * @pf: pointer to the pf instance 5206 * 5207 * This function has to be called under devl_lock. 5208 */ 5209 void ice_unload(struct ice_pf *pf) 5210 { 5211 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5212 5213 devl_assert_locked(priv_to_devlink(pf)); 5214 5215 ice_deinit_features(pf); 5216 ice_deinit_rdma(pf); 5217 ice_tc_indir_block_unregister(vsi); 5218 ice_unregister_netdev(vsi); 5219 ice_devlink_destroy_pf_port(pf); 5220 ice_decfg_netdev(vsi); 5221 } 5222 5223 /** 5224 * ice_probe - Device initialization routine 5225 * @pdev: PCI device information struct 5226 * @ent: entry in ice_pci_tbl 5227 * 5228 * Returns 0 on success, negative on failure 5229 */ 5230 static int 5231 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5232 { 5233 struct device *dev = &pdev->dev; 5234 struct ice_adapter *adapter; 5235 struct ice_pf *pf; 5236 struct ice_hw *hw; 5237 int err; 5238 5239 if (pdev->is_virtfn) { 5240 dev_err(dev, "can't probe a virtual function\n"); 5241 return -EINVAL; 5242 } 5243 5244 /* when under a kdump kernel initiate a reset before enabling the 5245 * device in order to clear out any pending DMA transactions. These 5246 * transactions can cause some systems to machine check when doing 5247 * the pcim_enable_device() below. 5248 */ 5249 if (is_kdump_kernel()) { 5250 pci_save_state(pdev); 5251 pci_clear_master(pdev); 5252 err = pcie_flr(pdev); 5253 if (err) 5254 return err; 5255 pci_restore_state(pdev); 5256 } 5257 5258 /* this driver uses devres, see 5259 * Documentation/driver-api/driver-model/devres.rst 5260 */ 5261 err = pcim_enable_device(pdev); 5262 if (err) 5263 return err; 5264 5265 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5266 if (err) { 5267 dev_err(dev, "BAR0 I/O map error %d\n", err); 5268 return err; 5269 } 5270 5271 pf = ice_allocate_pf(dev); 5272 if (!pf) 5273 return -ENOMEM; 5274 5275 /* initialize Auxiliary index to invalid value */ 5276 pf->aux_idx = -1; 5277 5278 /* set up for high or low DMA */ 5279 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5280 if (err) { 5281 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5282 return err; 5283 } 5284 5285 pci_set_master(pdev); 5286 5287 adapter = ice_adapter_get(pdev); 5288 if (IS_ERR(adapter)) 5289 return PTR_ERR(adapter); 5290 5291 pf->pdev = pdev; 5292 pf->adapter = adapter; 5293 pci_set_drvdata(pdev, pf); 5294 set_bit(ICE_DOWN, pf->state); 5295 /* Disable service task until DOWN bit is cleared */ 5296 set_bit(ICE_SERVICE_DIS, pf->state); 5297 5298 hw = &pf->hw; 5299 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5300 pci_save_state(pdev); 5301 5302 hw->back = pf; 5303 hw->port_info = NULL; 5304 hw->vendor_id = pdev->vendor; 5305 hw->device_id = pdev->device; 5306 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5307 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5308 hw->subsystem_device_id = pdev->subsystem_device; 5309 hw->bus.device = PCI_SLOT(pdev->devfn); 5310 hw->bus.func = PCI_FUNC(pdev->devfn); 5311 ice_set_ctrlq_len(hw); 5312 5313 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5314 5315 #ifndef CONFIG_DYNAMIC_DEBUG 5316 if (debug < -1) 5317 hw->debug_mask = debug; 5318 #endif 5319 5320 err = ice_init(pf); 5321 if (err) 5322 goto err_init; 5323 5324 devl_lock(priv_to_devlink(pf)); 5325 err = ice_load(pf); 5326 if (err) 5327 goto err_load; 5328 5329 err = ice_init_devlink(pf); 5330 if (err) 5331 goto err_init_devlink; 5332 devl_unlock(priv_to_devlink(pf)); 5333 5334 return 0; 5335 5336 err_init_devlink: 5337 ice_unload(pf); 5338 err_load: 5339 devl_unlock(priv_to_devlink(pf)); 5340 ice_deinit(pf); 5341 err_init: 5342 ice_adapter_put(pdev); 5343 pci_disable_device(pdev); 5344 return err; 5345 } 5346 5347 /** 5348 * ice_set_wake - enable or disable Wake on LAN 5349 * @pf: pointer to the PF struct 5350 * 5351 * Simple helper for WoL control 5352 */ 5353 static void ice_set_wake(struct ice_pf *pf) 5354 { 5355 struct ice_hw *hw = &pf->hw; 5356 bool wol = pf->wol_ena; 5357 5358 /* clear wake state, otherwise new wake events won't fire */ 5359 wr32(hw, PFPM_WUS, U32_MAX); 5360 5361 /* enable / disable APM wake up, no RMW needed */ 5362 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5363 5364 /* set magic packet filter enabled */ 5365 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5366 } 5367 5368 /** 5369 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5370 * @pf: pointer to the PF struct 5371 * 5372 * Issue firmware command to enable multicast magic wake, making 5373 * sure that any locally administered address (LAA) is used for 5374 * wake, and that PF reset doesn't undo the LAA. 5375 */ 5376 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5377 { 5378 struct device *dev = ice_pf_to_dev(pf); 5379 struct ice_hw *hw = &pf->hw; 5380 u8 mac_addr[ETH_ALEN]; 5381 struct ice_vsi *vsi; 5382 int status; 5383 u8 flags; 5384 5385 if (!pf->wol_ena) 5386 return; 5387 5388 vsi = ice_get_main_vsi(pf); 5389 if (!vsi) 5390 return; 5391 5392 /* Get current MAC address in case it's an LAA */ 5393 if (vsi->netdev) 5394 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5395 else 5396 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5397 5398 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5399 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5400 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5401 5402 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5403 if (status) 5404 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5405 status, ice_aq_str(hw->adminq.sq_last_status)); 5406 } 5407 5408 /** 5409 * ice_remove - Device removal routine 5410 * @pdev: PCI device information struct 5411 */ 5412 static void ice_remove(struct pci_dev *pdev) 5413 { 5414 struct ice_pf *pf = pci_get_drvdata(pdev); 5415 int i; 5416 5417 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5418 if (!ice_is_reset_in_progress(pf->state)) 5419 break; 5420 msleep(100); 5421 } 5422 5423 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5424 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5425 ice_free_vfs(pf); 5426 } 5427 5428 ice_hwmon_exit(pf); 5429 5430 ice_service_task_stop(pf); 5431 ice_aq_cancel_waiting_tasks(pf); 5432 set_bit(ICE_DOWN, pf->state); 5433 5434 if (!ice_is_safe_mode(pf)) 5435 ice_remove_arfs(pf); 5436 5437 devl_lock(priv_to_devlink(pf)); 5438 ice_deinit_devlink(pf); 5439 5440 ice_unload(pf); 5441 devl_unlock(priv_to_devlink(pf)); 5442 5443 ice_deinit(pf); 5444 ice_vsi_release_all(pf); 5445 5446 ice_setup_mc_magic_wake(pf); 5447 ice_set_wake(pf); 5448 5449 ice_adapter_put(pdev); 5450 pci_disable_device(pdev); 5451 } 5452 5453 /** 5454 * ice_shutdown - PCI callback for shutting down device 5455 * @pdev: PCI device information struct 5456 */ 5457 static void ice_shutdown(struct pci_dev *pdev) 5458 { 5459 struct ice_pf *pf = pci_get_drvdata(pdev); 5460 5461 ice_remove(pdev); 5462 5463 if (system_state == SYSTEM_POWER_OFF) { 5464 pci_wake_from_d3(pdev, pf->wol_ena); 5465 pci_set_power_state(pdev, PCI_D3hot); 5466 } 5467 } 5468 5469 /** 5470 * ice_prepare_for_shutdown - prep for PCI shutdown 5471 * @pf: board private structure 5472 * 5473 * Inform or close all dependent features in prep for PCI device shutdown 5474 */ 5475 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5476 { 5477 struct ice_hw *hw = &pf->hw; 5478 u32 v; 5479 5480 /* Notify VFs of impending reset */ 5481 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5482 ice_vc_notify_reset(pf); 5483 5484 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5485 5486 /* disable the VSIs and their queues that are not already DOWN */ 5487 ice_pf_dis_all_vsi(pf, false); 5488 5489 ice_for_each_vsi(pf, v) 5490 if (pf->vsi[v]) 5491 pf->vsi[v]->vsi_num = 0; 5492 5493 ice_shutdown_all_ctrlq(hw); 5494 } 5495 5496 /** 5497 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5498 * @pf: board private structure to reinitialize 5499 * 5500 * This routine reinitialize interrupt scheme that was cleared during 5501 * power management suspend callback. 5502 * 5503 * This should be called during resume routine to re-allocate the q_vectors 5504 * and reacquire interrupts. 5505 */ 5506 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5507 { 5508 struct device *dev = ice_pf_to_dev(pf); 5509 int ret, v; 5510 5511 /* Since we clear MSIX flag during suspend, we need to 5512 * set it back during resume... 5513 */ 5514 5515 ret = ice_init_interrupt_scheme(pf); 5516 if (ret) { 5517 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5518 return ret; 5519 } 5520 5521 /* Remap vectors and rings, after successful re-init interrupts */ 5522 ice_for_each_vsi(pf, v) { 5523 if (!pf->vsi[v]) 5524 continue; 5525 5526 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5527 if (ret) 5528 goto err_reinit; 5529 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5530 ice_vsi_set_napi_queues(pf->vsi[v]); 5531 } 5532 5533 ret = ice_req_irq_msix_misc(pf); 5534 if (ret) { 5535 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5536 ret); 5537 goto err_reinit; 5538 } 5539 5540 return 0; 5541 5542 err_reinit: 5543 while (v--) 5544 if (pf->vsi[v]) 5545 ice_vsi_free_q_vectors(pf->vsi[v]); 5546 5547 return ret; 5548 } 5549 5550 /** 5551 * ice_suspend 5552 * @dev: generic device information structure 5553 * 5554 * Power Management callback to quiesce the device and prepare 5555 * for D3 transition. 5556 */ 5557 static int ice_suspend(struct device *dev) 5558 { 5559 struct pci_dev *pdev = to_pci_dev(dev); 5560 struct ice_pf *pf; 5561 int disabled, v; 5562 5563 pf = pci_get_drvdata(pdev); 5564 5565 if (!ice_pf_state_is_nominal(pf)) { 5566 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5567 return -EBUSY; 5568 } 5569 5570 /* Stop watchdog tasks until resume completion. 5571 * Even though it is most likely that the service task is 5572 * disabled if the device is suspended or down, the service task's 5573 * state is controlled by a different state bit, and we should 5574 * store and honor whatever state that bit is in at this point. 5575 */ 5576 disabled = ice_service_task_stop(pf); 5577 5578 ice_deinit_rdma(pf); 5579 5580 /* Already suspended?, then there is nothing to do */ 5581 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5582 if (!disabled) 5583 ice_service_task_restart(pf); 5584 return 0; 5585 } 5586 5587 if (test_bit(ICE_DOWN, pf->state) || 5588 ice_is_reset_in_progress(pf->state)) { 5589 dev_err(dev, "can't suspend device in reset or already down\n"); 5590 if (!disabled) 5591 ice_service_task_restart(pf); 5592 return 0; 5593 } 5594 5595 ice_setup_mc_magic_wake(pf); 5596 5597 ice_prepare_for_shutdown(pf); 5598 5599 ice_set_wake(pf); 5600 5601 /* Free vectors, clear the interrupt scheme and release IRQs 5602 * for proper hibernation, especially with large number of CPUs. 5603 * Otherwise hibernation might fail when mapping all the vectors back 5604 * to CPU0. 5605 */ 5606 ice_free_irq_msix_misc(pf); 5607 ice_for_each_vsi(pf, v) { 5608 if (!pf->vsi[v]) 5609 continue; 5610 ice_vsi_free_q_vectors(pf->vsi[v]); 5611 } 5612 ice_clear_interrupt_scheme(pf); 5613 5614 pci_save_state(pdev); 5615 pci_wake_from_d3(pdev, pf->wol_ena); 5616 pci_set_power_state(pdev, PCI_D3hot); 5617 return 0; 5618 } 5619 5620 /** 5621 * ice_resume - PM callback for waking up from D3 5622 * @dev: generic device information structure 5623 */ 5624 static int ice_resume(struct device *dev) 5625 { 5626 struct pci_dev *pdev = to_pci_dev(dev); 5627 enum ice_reset_req reset_type; 5628 struct ice_pf *pf; 5629 struct ice_hw *hw; 5630 int ret; 5631 5632 pci_set_power_state(pdev, PCI_D0); 5633 pci_restore_state(pdev); 5634 pci_save_state(pdev); 5635 5636 if (!pci_device_is_present(pdev)) 5637 return -ENODEV; 5638 5639 ret = pci_enable_device_mem(pdev); 5640 if (ret) { 5641 dev_err(dev, "Cannot enable device after suspend\n"); 5642 return ret; 5643 } 5644 5645 pf = pci_get_drvdata(pdev); 5646 hw = &pf->hw; 5647 5648 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5649 ice_print_wake_reason(pf); 5650 5651 /* We cleared the interrupt scheme when we suspended, so we need to 5652 * restore it now to resume device functionality. 5653 */ 5654 ret = ice_reinit_interrupt_scheme(pf); 5655 if (ret) 5656 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5657 5658 ret = ice_init_rdma(pf); 5659 if (ret) 5660 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5661 ret); 5662 5663 clear_bit(ICE_DOWN, pf->state); 5664 /* Now perform PF reset and rebuild */ 5665 reset_type = ICE_RESET_PFR; 5666 /* re-enable service task for reset, but allow reset to schedule it */ 5667 clear_bit(ICE_SERVICE_DIS, pf->state); 5668 5669 if (ice_schedule_reset(pf, reset_type)) 5670 dev_err(dev, "Reset during resume failed.\n"); 5671 5672 clear_bit(ICE_SUSPENDED, pf->state); 5673 ice_service_task_restart(pf); 5674 5675 /* Restart the service task */ 5676 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5677 5678 return 0; 5679 } 5680 5681 /** 5682 * ice_pci_err_detected - warning that PCI error has been detected 5683 * @pdev: PCI device information struct 5684 * @err: the type of PCI error 5685 * 5686 * Called to warn that something happened on the PCI bus and the error handling 5687 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5688 */ 5689 static pci_ers_result_t 5690 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5691 { 5692 struct ice_pf *pf = pci_get_drvdata(pdev); 5693 5694 if (!pf) { 5695 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5696 __func__, err); 5697 return PCI_ERS_RESULT_DISCONNECT; 5698 } 5699 5700 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5701 ice_service_task_stop(pf); 5702 5703 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5704 set_bit(ICE_PFR_REQ, pf->state); 5705 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5706 } 5707 } 5708 5709 return PCI_ERS_RESULT_NEED_RESET; 5710 } 5711 5712 /** 5713 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5714 * @pdev: PCI device information struct 5715 * 5716 * Called to determine if the driver can recover from the PCI slot reset by 5717 * using a register read to determine if the device is recoverable. 5718 */ 5719 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5720 { 5721 struct ice_pf *pf = pci_get_drvdata(pdev); 5722 pci_ers_result_t result; 5723 int err; 5724 u32 reg; 5725 5726 err = pci_enable_device_mem(pdev); 5727 if (err) { 5728 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5729 err); 5730 result = PCI_ERS_RESULT_DISCONNECT; 5731 } else { 5732 pci_set_master(pdev); 5733 pci_restore_state(pdev); 5734 pci_save_state(pdev); 5735 pci_wake_from_d3(pdev, false); 5736 5737 /* Check for life */ 5738 reg = rd32(&pf->hw, GLGEN_RTRIG); 5739 if (!reg) 5740 result = PCI_ERS_RESULT_RECOVERED; 5741 else 5742 result = PCI_ERS_RESULT_DISCONNECT; 5743 } 5744 5745 return result; 5746 } 5747 5748 /** 5749 * ice_pci_err_resume - restart operations after PCI error recovery 5750 * @pdev: PCI device information struct 5751 * 5752 * Called to allow the driver to bring things back up after PCI error and/or 5753 * reset recovery have finished 5754 */ 5755 static void ice_pci_err_resume(struct pci_dev *pdev) 5756 { 5757 struct ice_pf *pf = pci_get_drvdata(pdev); 5758 5759 if (!pf) { 5760 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5761 __func__); 5762 return; 5763 } 5764 5765 if (test_bit(ICE_SUSPENDED, pf->state)) { 5766 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5767 __func__); 5768 return; 5769 } 5770 5771 ice_restore_all_vfs_msi_state(pf); 5772 5773 ice_do_reset(pf, ICE_RESET_PFR); 5774 ice_service_task_restart(pf); 5775 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5776 } 5777 5778 /** 5779 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5780 * @pdev: PCI device information struct 5781 */ 5782 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5783 { 5784 struct ice_pf *pf = pci_get_drvdata(pdev); 5785 5786 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5787 ice_service_task_stop(pf); 5788 5789 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5790 set_bit(ICE_PFR_REQ, pf->state); 5791 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5792 } 5793 } 5794 } 5795 5796 /** 5797 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5798 * @pdev: PCI device information struct 5799 */ 5800 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5801 { 5802 ice_pci_err_resume(pdev); 5803 } 5804 5805 /* ice_pci_tbl - PCI Device ID Table 5806 * 5807 * Wildcard entries (PCI_ANY_ID) should come last 5808 * Last entry must be all 0s 5809 * 5810 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5811 * Class, Class Mask, private data (not used) } 5812 */ 5813 static const struct pci_device_id ice_pci_tbl[] = { 5814 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5815 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5816 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5817 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5818 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5819 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5820 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5821 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5822 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5823 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5824 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5825 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5826 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5831 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5832 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5854 /* required last entry */ 5855 {} 5856 }; 5857 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5858 5859 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5860 5861 static const struct pci_error_handlers ice_pci_err_handler = { 5862 .error_detected = ice_pci_err_detected, 5863 .slot_reset = ice_pci_err_slot_reset, 5864 .reset_prepare = ice_pci_err_reset_prepare, 5865 .reset_done = ice_pci_err_reset_done, 5866 .resume = ice_pci_err_resume 5867 }; 5868 5869 static struct pci_driver ice_driver = { 5870 .name = KBUILD_MODNAME, 5871 .id_table = ice_pci_tbl, 5872 .probe = ice_probe, 5873 .remove = ice_remove, 5874 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5875 .shutdown = ice_shutdown, 5876 .sriov_configure = ice_sriov_configure, 5877 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5878 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5879 .err_handler = &ice_pci_err_handler 5880 }; 5881 5882 /** 5883 * ice_module_init - Driver registration routine 5884 * 5885 * ice_module_init is the first routine called when the driver is 5886 * loaded. All it does is register with the PCI subsystem. 5887 */ 5888 static int __init ice_module_init(void) 5889 { 5890 int status = -ENOMEM; 5891 5892 pr_info("%s\n", ice_driver_string); 5893 pr_info("%s\n", ice_copyright); 5894 5895 ice_adv_lnk_speed_maps_init(); 5896 5897 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5898 if (!ice_wq) { 5899 pr_err("Failed to create workqueue\n"); 5900 return status; 5901 } 5902 5903 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5904 if (!ice_lag_wq) { 5905 pr_err("Failed to create LAG workqueue\n"); 5906 goto err_dest_wq; 5907 } 5908 5909 ice_debugfs_init(); 5910 5911 status = pci_register_driver(&ice_driver); 5912 if (status) { 5913 pr_err("failed to register PCI driver, err %d\n", status); 5914 goto err_dest_lag_wq; 5915 } 5916 5917 return 0; 5918 5919 err_dest_lag_wq: 5920 destroy_workqueue(ice_lag_wq); 5921 ice_debugfs_exit(); 5922 err_dest_wq: 5923 destroy_workqueue(ice_wq); 5924 return status; 5925 } 5926 module_init(ice_module_init); 5927 5928 /** 5929 * ice_module_exit - Driver exit cleanup routine 5930 * 5931 * ice_module_exit is called just before the driver is removed 5932 * from memory. 5933 */ 5934 static void __exit ice_module_exit(void) 5935 { 5936 pci_unregister_driver(&ice_driver); 5937 ice_debugfs_exit(); 5938 destroy_workqueue(ice_wq); 5939 destroy_workqueue(ice_lag_wq); 5940 pr_info("module unloaded\n"); 5941 } 5942 module_exit(ice_module_exit); 5943 5944 /** 5945 * ice_set_mac_address - NDO callback to set MAC address 5946 * @netdev: network interface device structure 5947 * @pi: pointer to an address structure 5948 * 5949 * Returns 0 on success, negative on failure 5950 */ 5951 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5952 { 5953 struct ice_netdev_priv *np = netdev_priv(netdev); 5954 struct ice_vsi *vsi = np->vsi; 5955 struct ice_pf *pf = vsi->back; 5956 struct ice_hw *hw = &pf->hw; 5957 struct sockaddr *addr = pi; 5958 u8 old_mac[ETH_ALEN]; 5959 u8 flags = 0; 5960 u8 *mac; 5961 int err; 5962 5963 mac = (u8 *)addr->sa_data; 5964 5965 if (!is_valid_ether_addr(mac)) 5966 return -EADDRNOTAVAIL; 5967 5968 if (test_bit(ICE_DOWN, pf->state) || 5969 ice_is_reset_in_progress(pf->state)) { 5970 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5971 mac); 5972 return -EBUSY; 5973 } 5974 5975 if (ice_chnl_dmac_fltr_cnt(pf)) { 5976 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5977 mac); 5978 return -EAGAIN; 5979 } 5980 5981 netif_addr_lock_bh(netdev); 5982 ether_addr_copy(old_mac, netdev->dev_addr); 5983 /* change the netdev's MAC address */ 5984 eth_hw_addr_set(netdev, mac); 5985 netif_addr_unlock_bh(netdev); 5986 5987 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5988 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5989 if (err && err != -ENOENT) { 5990 err = -EADDRNOTAVAIL; 5991 goto err_update_filters; 5992 } 5993 5994 /* Add filter for new MAC. If filter exists, return success */ 5995 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5996 if (err == -EEXIST) { 5997 /* Although this MAC filter is already present in hardware it's 5998 * possible in some cases (e.g. bonding) that dev_addr was 5999 * modified outside of the driver and needs to be restored back 6000 * to this value. 6001 */ 6002 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6003 6004 return 0; 6005 } else if (err) { 6006 /* error if the new filter addition failed */ 6007 err = -EADDRNOTAVAIL; 6008 } 6009 6010 err_update_filters: 6011 if (err) { 6012 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6013 mac); 6014 netif_addr_lock_bh(netdev); 6015 eth_hw_addr_set(netdev, old_mac); 6016 netif_addr_unlock_bh(netdev); 6017 return err; 6018 } 6019 6020 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6021 netdev->dev_addr); 6022 6023 /* write new MAC address to the firmware */ 6024 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6025 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6026 if (err) { 6027 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6028 mac, err); 6029 } 6030 return 0; 6031 } 6032 6033 /** 6034 * ice_set_rx_mode - NDO callback to set the netdev filters 6035 * @netdev: network interface device structure 6036 */ 6037 static void ice_set_rx_mode(struct net_device *netdev) 6038 { 6039 struct ice_netdev_priv *np = netdev_priv(netdev); 6040 struct ice_vsi *vsi = np->vsi; 6041 6042 if (!vsi || ice_is_switchdev_running(vsi->back)) 6043 return; 6044 6045 /* Set the flags to synchronize filters 6046 * ndo_set_rx_mode may be triggered even without a change in netdev 6047 * flags 6048 */ 6049 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6050 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6051 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6052 6053 /* schedule our worker thread which will take care of 6054 * applying the new filter changes 6055 */ 6056 ice_service_task_schedule(vsi->back); 6057 } 6058 6059 /** 6060 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6061 * @netdev: network interface device structure 6062 * @queue_index: Queue ID 6063 * @maxrate: maximum bandwidth in Mbps 6064 */ 6065 static int 6066 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6067 { 6068 struct ice_netdev_priv *np = netdev_priv(netdev); 6069 struct ice_vsi *vsi = np->vsi; 6070 u16 q_handle; 6071 int status; 6072 u8 tc; 6073 6074 /* Validate maxrate requested is within permitted range */ 6075 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6076 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6077 maxrate, queue_index); 6078 return -EINVAL; 6079 } 6080 6081 q_handle = vsi->tx_rings[queue_index]->q_handle; 6082 tc = ice_dcb_get_tc(vsi, queue_index); 6083 6084 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6085 if (!vsi) { 6086 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6087 queue_index); 6088 return -EINVAL; 6089 } 6090 6091 /* Set BW back to default, when user set maxrate to 0 */ 6092 if (!maxrate) 6093 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6094 q_handle, ICE_MAX_BW); 6095 else 6096 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6097 q_handle, ICE_MAX_BW, maxrate * 1000); 6098 if (status) 6099 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6100 status); 6101 6102 return status; 6103 } 6104 6105 /** 6106 * ice_fdb_add - add an entry to the hardware database 6107 * @ndm: the input from the stack 6108 * @tb: pointer to array of nladdr (unused) 6109 * @dev: the net device pointer 6110 * @addr: the MAC address entry being added 6111 * @vid: VLAN ID 6112 * @flags: instructions from stack about fdb operation 6113 * @extack: netlink extended ack 6114 */ 6115 static int 6116 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6117 struct net_device *dev, const unsigned char *addr, u16 vid, 6118 u16 flags, struct netlink_ext_ack __always_unused *extack) 6119 { 6120 int err; 6121 6122 if (vid) { 6123 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6124 return -EINVAL; 6125 } 6126 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6127 netdev_err(dev, "FDB only supports static addresses\n"); 6128 return -EINVAL; 6129 } 6130 6131 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6132 err = dev_uc_add_excl(dev, addr); 6133 else if (is_multicast_ether_addr(addr)) 6134 err = dev_mc_add_excl(dev, addr); 6135 else 6136 err = -EINVAL; 6137 6138 /* Only return duplicate errors if NLM_F_EXCL is set */ 6139 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6140 err = 0; 6141 6142 return err; 6143 } 6144 6145 /** 6146 * ice_fdb_del - delete an entry from the hardware database 6147 * @ndm: the input from the stack 6148 * @tb: pointer to array of nladdr (unused) 6149 * @dev: the net device pointer 6150 * @addr: the MAC address entry being added 6151 * @vid: VLAN ID 6152 * @extack: netlink extended ack 6153 */ 6154 static int 6155 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6156 struct net_device *dev, const unsigned char *addr, 6157 __always_unused u16 vid, struct netlink_ext_ack *extack) 6158 { 6159 int err; 6160 6161 if (ndm->ndm_state & NUD_PERMANENT) { 6162 netdev_err(dev, "FDB only supports static addresses\n"); 6163 return -EINVAL; 6164 } 6165 6166 if (is_unicast_ether_addr(addr)) 6167 err = dev_uc_del(dev, addr); 6168 else if (is_multicast_ether_addr(addr)) 6169 err = dev_mc_del(dev, addr); 6170 else 6171 err = -EINVAL; 6172 6173 return err; 6174 } 6175 6176 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6177 NETIF_F_HW_VLAN_CTAG_TX | \ 6178 NETIF_F_HW_VLAN_STAG_RX | \ 6179 NETIF_F_HW_VLAN_STAG_TX) 6180 6181 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6182 NETIF_F_HW_VLAN_STAG_RX) 6183 6184 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6185 NETIF_F_HW_VLAN_STAG_FILTER) 6186 6187 /** 6188 * ice_fix_features - fix the netdev features flags based on device limitations 6189 * @netdev: ptr to the netdev that flags are being fixed on 6190 * @features: features that need to be checked and possibly fixed 6191 * 6192 * Make sure any fixups are made to features in this callback. This enables the 6193 * driver to not have to check unsupported configurations throughout the driver 6194 * because that's the responsiblity of this callback. 6195 * 6196 * Single VLAN Mode (SVM) Supported Features: 6197 * NETIF_F_HW_VLAN_CTAG_FILTER 6198 * NETIF_F_HW_VLAN_CTAG_RX 6199 * NETIF_F_HW_VLAN_CTAG_TX 6200 * 6201 * Double VLAN Mode (DVM) Supported Features: 6202 * NETIF_F_HW_VLAN_CTAG_FILTER 6203 * NETIF_F_HW_VLAN_CTAG_RX 6204 * NETIF_F_HW_VLAN_CTAG_TX 6205 * 6206 * NETIF_F_HW_VLAN_STAG_FILTER 6207 * NETIF_HW_VLAN_STAG_RX 6208 * NETIF_HW_VLAN_STAG_TX 6209 * 6210 * Features that need fixing: 6211 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6212 * These are mutually exlusive as the VSI context cannot support multiple 6213 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6214 * is not done, then default to clearing the requested STAG offload 6215 * settings. 6216 * 6217 * All supported filtering has to be enabled or disabled together. For 6218 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6219 * together. If this is not done, then default to VLAN filtering disabled. 6220 * These are mutually exclusive as there is currently no way to 6221 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6222 * prune rules. 6223 */ 6224 static netdev_features_t 6225 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6226 { 6227 struct ice_netdev_priv *np = netdev_priv(netdev); 6228 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6229 bool cur_ctag, cur_stag, req_ctag, req_stag; 6230 6231 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6232 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6233 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6234 6235 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6236 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6237 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6238 6239 if (req_vlan_fltr != cur_vlan_fltr) { 6240 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6241 if (req_ctag && req_stag) { 6242 features |= NETIF_VLAN_FILTERING_FEATURES; 6243 } else if (!req_ctag && !req_stag) { 6244 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6245 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6246 (!cur_stag && req_stag && !cur_ctag)) { 6247 features |= NETIF_VLAN_FILTERING_FEATURES; 6248 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6249 } else if ((cur_ctag && !req_ctag && cur_stag) || 6250 (cur_stag && !req_stag && cur_ctag)) { 6251 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6252 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6253 } 6254 } else { 6255 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6256 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6257 6258 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6259 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6260 } 6261 } 6262 6263 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6264 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6265 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6266 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6267 NETIF_F_HW_VLAN_STAG_TX); 6268 } 6269 6270 if (!(netdev->features & NETIF_F_RXFCS) && 6271 (features & NETIF_F_RXFCS) && 6272 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6273 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6274 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6275 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6276 } 6277 6278 return features; 6279 } 6280 6281 /** 6282 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6283 * @vsi: PF's VSI 6284 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6285 * 6286 * Store current stripped VLAN proto in ring packet context, 6287 * so it can be accessed more efficiently by packet processing code. 6288 */ 6289 static void 6290 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6291 { 6292 u16 i; 6293 6294 ice_for_each_alloc_rxq(vsi, i) 6295 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6296 } 6297 6298 /** 6299 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6300 * @vsi: PF's VSI 6301 * @features: features used to determine VLAN offload settings 6302 * 6303 * First, determine the vlan_ethertype based on the VLAN offload bits in 6304 * features. Then determine if stripping and insertion should be enabled or 6305 * disabled. Finally enable or disable VLAN stripping and insertion. 6306 */ 6307 static int 6308 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6309 { 6310 bool enable_stripping = true, enable_insertion = true; 6311 struct ice_vsi_vlan_ops *vlan_ops; 6312 int strip_err = 0, insert_err = 0; 6313 u16 vlan_ethertype = 0; 6314 6315 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6316 6317 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6318 vlan_ethertype = ETH_P_8021AD; 6319 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6320 vlan_ethertype = ETH_P_8021Q; 6321 6322 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6323 enable_stripping = false; 6324 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6325 enable_insertion = false; 6326 6327 if (enable_stripping) 6328 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6329 else 6330 strip_err = vlan_ops->dis_stripping(vsi); 6331 6332 if (enable_insertion) 6333 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6334 else 6335 insert_err = vlan_ops->dis_insertion(vsi); 6336 6337 if (strip_err || insert_err) 6338 return -EIO; 6339 6340 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6341 htons(vlan_ethertype) : 0); 6342 6343 return 0; 6344 } 6345 6346 /** 6347 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6348 * @vsi: PF's VSI 6349 * @features: features used to determine VLAN filtering settings 6350 * 6351 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6352 * features. 6353 */ 6354 static int 6355 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6356 { 6357 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6358 int err = 0; 6359 6360 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6361 * if either bit is set 6362 */ 6363 if (features & 6364 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6365 err = vlan_ops->ena_rx_filtering(vsi); 6366 else 6367 err = vlan_ops->dis_rx_filtering(vsi); 6368 6369 return err; 6370 } 6371 6372 /** 6373 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6374 * @netdev: ptr to the netdev being adjusted 6375 * @features: the feature set that the stack is suggesting 6376 * 6377 * Only update VLAN settings if the requested_vlan_features are different than 6378 * the current_vlan_features. 6379 */ 6380 static int 6381 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6382 { 6383 netdev_features_t current_vlan_features, requested_vlan_features; 6384 struct ice_netdev_priv *np = netdev_priv(netdev); 6385 struct ice_vsi *vsi = np->vsi; 6386 int err; 6387 6388 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6389 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6390 if (current_vlan_features ^ requested_vlan_features) { 6391 if ((features & NETIF_F_RXFCS) && 6392 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6393 dev_err(ice_pf_to_dev(vsi->back), 6394 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6395 return -EIO; 6396 } 6397 6398 err = ice_set_vlan_offload_features(vsi, features); 6399 if (err) 6400 return err; 6401 } 6402 6403 current_vlan_features = netdev->features & 6404 NETIF_VLAN_FILTERING_FEATURES; 6405 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6406 if (current_vlan_features ^ requested_vlan_features) { 6407 err = ice_set_vlan_filtering_features(vsi, features); 6408 if (err) 6409 return err; 6410 } 6411 6412 return 0; 6413 } 6414 6415 /** 6416 * ice_set_loopback - turn on/off loopback mode on underlying PF 6417 * @vsi: ptr to VSI 6418 * @ena: flag to indicate the on/off setting 6419 */ 6420 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6421 { 6422 bool if_running = netif_running(vsi->netdev); 6423 int ret; 6424 6425 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6426 ret = ice_down(vsi); 6427 if (ret) { 6428 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6429 return ret; 6430 } 6431 } 6432 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6433 if (ret) 6434 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6435 if (if_running) 6436 ret = ice_up(vsi); 6437 6438 return ret; 6439 } 6440 6441 /** 6442 * ice_set_features - set the netdev feature flags 6443 * @netdev: ptr to the netdev being adjusted 6444 * @features: the feature set that the stack is suggesting 6445 */ 6446 static int 6447 ice_set_features(struct net_device *netdev, netdev_features_t features) 6448 { 6449 netdev_features_t changed = netdev->features ^ features; 6450 struct ice_netdev_priv *np = netdev_priv(netdev); 6451 struct ice_vsi *vsi = np->vsi; 6452 struct ice_pf *pf = vsi->back; 6453 int ret = 0; 6454 6455 /* Don't set any netdev advanced features with device in Safe Mode */ 6456 if (ice_is_safe_mode(pf)) { 6457 dev_err(ice_pf_to_dev(pf), 6458 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6459 return ret; 6460 } 6461 6462 /* Do not change setting during reset */ 6463 if (ice_is_reset_in_progress(pf->state)) { 6464 dev_err(ice_pf_to_dev(pf), 6465 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6466 return -EBUSY; 6467 } 6468 6469 /* Multiple features can be changed in one call so keep features in 6470 * separate if/else statements to guarantee each feature is checked 6471 */ 6472 if (changed & NETIF_F_RXHASH) 6473 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6474 6475 ret = ice_set_vlan_features(netdev, features); 6476 if (ret) 6477 return ret; 6478 6479 /* Turn on receive of FCS aka CRC, and after setting this 6480 * flag the packet data will have the 4 byte CRC appended 6481 */ 6482 if (changed & NETIF_F_RXFCS) { 6483 if ((features & NETIF_F_RXFCS) && 6484 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6485 dev_err(ice_pf_to_dev(vsi->back), 6486 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6487 return -EIO; 6488 } 6489 6490 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6491 ret = ice_down_up(vsi); 6492 if (ret) 6493 return ret; 6494 } 6495 6496 if (changed & NETIF_F_NTUPLE) { 6497 bool ena = !!(features & NETIF_F_NTUPLE); 6498 6499 ice_vsi_manage_fdir(vsi, ena); 6500 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6501 } 6502 6503 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6504 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6505 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6506 return -EACCES; 6507 } 6508 6509 if (changed & NETIF_F_HW_TC) { 6510 bool ena = !!(features & NETIF_F_HW_TC); 6511 6512 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6513 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6514 } 6515 6516 if (changed & NETIF_F_LOOPBACK) 6517 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6518 6519 return ret; 6520 } 6521 6522 /** 6523 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6524 * @vsi: VSI to setup VLAN properties for 6525 */ 6526 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6527 { 6528 int err; 6529 6530 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6531 if (err) 6532 return err; 6533 6534 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6535 if (err) 6536 return err; 6537 6538 return ice_vsi_add_vlan_zero(vsi); 6539 } 6540 6541 /** 6542 * ice_vsi_cfg_lan - Setup the VSI lan related config 6543 * @vsi: the VSI being configured 6544 * 6545 * Return 0 on success and negative value on error 6546 */ 6547 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6548 { 6549 int err; 6550 6551 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6552 ice_set_rx_mode(vsi->netdev); 6553 6554 err = ice_vsi_vlan_setup(vsi); 6555 if (err) 6556 return err; 6557 } 6558 ice_vsi_cfg_dcb_rings(vsi); 6559 6560 err = ice_vsi_cfg_lan_txqs(vsi); 6561 if (!err && ice_is_xdp_ena_vsi(vsi)) 6562 err = ice_vsi_cfg_xdp_txqs(vsi); 6563 if (!err) 6564 err = ice_vsi_cfg_rxqs(vsi); 6565 6566 return err; 6567 } 6568 6569 /* THEORY OF MODERATION: 6570 * The ice driver hardware works differently than the hardware that DIMLIB was 6571 * originally made for. ice hardware doesn't have packet count limits that 6572 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6573 * which is hard-coded to a limit of 250,000 ints/second. 6574 * If not using dynamic moderation, the INTRL value can be modified 6575 * by ethtool rx-usecs-high. 6576 */ 6577 struct ice_dim { 6578 /* the throttle rate for interrupts, basically worst case delay before 6579 * an initial interrupt fires, value is stored in microseconds. 6580 */ 6581 u16 itr; 6582 }; 6583 6584 /* Make a different profile for Rx that doesn't allow quite so aggressive 6585 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6586 * second. 6587 */ 6588 static const struct ice_dim rx_profile[] = { 6589 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6590 {8}, /* 125,000 ints/s */ 6591 {16}, /* 62,500 ints/s */ 6592 {62}, /* 16,129 ints/s */ 6593 {126} /* 7,936 ints/s */ 6594 }; 6595 6596 /* The transmit profile, which has the same sorts of values 6597 * as the previous struct 6598 */ 6599 static const struct ice_dim tx_profile[] = { 6600 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6601 {8}, /* 125,000 ints/s */ 6602 {40}, /* 16,125 ints/s */ 6603 {128}, /* 7,812 ints/s */ 6604 {256} /* 3,906 ints/s */ 6605 }; 6606 6607 static void ice_tx_dim_work(struct work_struct *work) 6608 { 6609 struct ice_ring_container *rc; 6610 struct dim *dim; 6611 u16 itr; 6612 6613 dim = container_of(work, struct dim, work); 6614 rc = dim->priv; 6615 6616 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6617 6618 /* look up the values in our local table */ 6619 itr = tx_profile[dim->profile_ix].itr; 6620 6621 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6622 ice_write_itr(rc, itr); 6623 6624 dim->state = DIM_START_MEASURE; 6625 } 6626 6627 static void ice_rx_dim_work(struct work_struct *work) 6628 { 6629 struct ice_ring_container *rc; 6630 struct dim *dim; 6631 u16 itr; 6632 6633 dim = container_of(work, struct dim, work); 6634 rc = dim->priv; 6635 6636 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6637 6638 /* look up the values in our local table */ 6639 itr = rx_profile[dim->profile_ix].itr; 6640 6641 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6642 ice_write_itr(rc, itr); 6643 6644 dim->state = DIM_START_MEASURE; 6645 } 6646 6647 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6648 6649 /** 6650 * ice_init_moderation - set up interrupt moderation 6651 * @q_vector: the vector containing rings to be configured 6652 * 6653 * Set up interrupt moderation registers, with the intent to do the right thing 6654 * when called from reset or from probe, and whether or not dynamic moderation 6655 * is enabled or not. Take special care to write all the registers in both 6656 * dynamic moderation mode or not in order to make sure hardware is in a known 6657 * state. 6658 */ 6659 static void ice_init_moderation(struct ice_q_vector *q_vector) 6660 { 6661 struct ice_ring_container *rc; 6662 bool tx_dynamic, rx_dynamic; 6663 6664 rc = &q_vector->tx; 6665 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6666 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6667 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6668 rc->dim.priv = rc; 6669 tx_dynamic = ITR_IS_DYNAMIC(rc); 6670 6671 /* set the initial TX ITR to match the above */ 6672 ice_write_itr(rc, tx_dynamic ? 6673 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6674 6675 rc = &q_vector->rx; 6676 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6677 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6678 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6679 rc->dim.priv = rc; 6680 rx_dynamic = ITR_IS_DYNAMIC(rc); 6681 6682 /* set the initial RX ITR to match the above */ 6683 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6684 rc->itr_setting); 6685 6686 ice_set_q_vector_intrl(q_vector); 6687 } 6688 6689 /** 6690 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6691 * @vsi: the VSI being configured 6692 */ 6693 static void ice_napi_enable_all(struct ice_vsi *vsi) 6694 { 6695 int q_idx; 6696 6697 if (!vsi->netdev) 6698 return; 6699 6700 ice_for_each_q_vector(vsi, q_idx) { 6701 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6702 6703 ice_init_moderation(q_vector); 6704 6705 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6706 napi_enable(&q_vector->napi); 6707 } 6708 } 6709 6710 /** 6711 * ice_up_complete - Finish the last steps of bringing up a connection 6712 * @vsi: The VSI being configured 6713 * 6714 * Return 0 on success and negative value on error 6715 */ 6716 static int ice_up_complete(struct ice_vsi *vsi) 6717 { 6718 struct ice_pf *pf = vsi->back; 6719 int err; 6720 6721 ice_vsi_cfg_msix(vsi); 6722 6723 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6724 * Tx queue group list was configured and the context bits were 6725 * programmed using ice_vsi_cfg_txqs 6726 */ 6727 err = ice_vsi_start_all_rx_rings(vsi); 6728 if (err) 6729 return err; 6730 6731 clear_bit(ICE_VSI_DOWN, vsi->state); 6732 ice_napi_enable_all(vsi); 6733 ice_vsi_ena_irq(vsi); 6734 6735 if (vsi->port_info && 6736 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6737 vsi->netdev && vsi->type == ICE_VSI_PF) { 6738 ice_print_link_msg(vsi, true); 6739 netif_tx_start_all_queues(vsi->netdev); 6740 netif_carrier_on(vsi->netdev); 6741 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6742 } 6743 6744 /* Perform an initial read of the statistics registers now to 6745 * set the baseline so counters are ready when interface is up 6746 */ 6747 ice_update_eth_stats(vsi); 6748 6749 if (vsi->type == ICE_VSI_PF) 6750 ice_service_task_schedule(pf); 6751 6752 return 0; 6753 } 6754 6755 /** 6756 * ice_up - Bring the connection back up after being down 6757 * @vsi: VSI being configured 6758 */ 6759 int ice_up(struct ice_vsi *vsi) 6760 { 6761 int err; 6762 6763 err = ice_vsi_cfg_lan(vsi); 6764 if (!err) 6765 err = ice_up_complete(vsi); 6766 6767 return err; 6768 } 6769 6770 /** 6771 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6772 * @syncp: pointer to u64_stats_sync 6773 * @stats: stats that pkts and bytes count will be taken from 6774 * @pkts: packets stats counter 6775 * @bytes: bytes stats counter 6776 * 6777 * This function fetches stats from the ring considering the atomic operations 6778 * that needs to be performed to read u64 values in 32 bit machine. 6779 */ 6780 void 6781 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6782 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6783 { 6784 unsigned int start; 6785 6786 do { 6787 start = u64_stats_fetch_begin(syncp); 6788 *pkts = stats.pkts; 6789 *bytes = stats.bytes; 6790 } while (u64_stats_fetch_retry(syncp, start)); 6791 } 6792 6793 /** 6794 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6795 * @vsi: the VSI to be updated 6796 * @vsi_stats: the stats struct to be updated 6797 * @rings: rings to work on 6798 * @count: number of rings 6799 */ 6800 static void 6801 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6802 struct rtnl_link_stats64 *vsi_stats, 6803 struct ice_tx_ring **rings, u16 count) 6804 { 6805 u16 i; 6806 6807 for (i = 0; i < count; i++) { 6808 struct ice_tx_ring *ring; 6809 u64 pkts = 0, bytes = 0; 6810 6811 ring = READ_ONCE(rings[i]); 6812 if (!ring || !ring->ring_stats) 6813 continue; 6814 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6815 ring->ring_stats->stats, &pkts, 6816 &bytes); 6817 vsi_stats->tx_packets += pkts; 6818 vsi_stats->tx_bytes += bytes; 6819 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6820 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6821 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6822 } 6823 } 6824 6825 /** 6826 * ice_update_vsi_ring_stats - Update VSI stats counters 6827 * @vsi: the VSI to be updated 6828 */ 6829 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6830 { 6831 struct rtnl_link_stats64 *net_stats, *stats_prev; 6832 struct rtnl_link_stats64 *vsi_stats; 6833 struct ice_pf *pf = vsi->back; 6834 u64 pkts, bytes; 6835 int i; 6836 6837 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6838 if (!vsi_stats) 6839 return; 6840 6841 /* reset non-netdev (extended) stats */ 6842 vsi->tx_restart = 0; 6843 vsi->tx_busy = 0; 6844 vsi->tx_linearize = 0; 6845 vsi->rx_buf_failed = 0; 6846 vsi->rx_page_failed = 0; 6847 6848 rcu_read_lock(); 6849 6850 /* update Tx rings counters */ 6851 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6852 vsi->num_txq); 6853 6854 /* update Rx rings counters */ 6855 ice_for_each_rxq(vsi, i) { 6856 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6857 struct ice_ring_stats *ring_stats; 6858 6859 ring_stats = ring->ring_stats; 6860 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6861 ring_stats->stats, &pkts, 6862 &bytes); 6863 vsi_stats->rx_packets += pkts; 6864 vsi_stats->rx_bytes += bytes; 6865 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6866 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6867 } 6868 6869 /* update XDP Tx rings counters */ 6870 if (ice_is_xdp_ena_vsi(vsi)) 6871 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6872 vsi->num_xdp_txq); 6873 6874 rcu_read_unlock(); 6875 6876 net_stats = &vsi->net_stats; 6877 stats_prev = &vsi->net_stats_prev; 6878 6879 /* Update netdev counters, but keep in mind that values could start at 6880 * random value after PF reset. And as we increase the reported stat by 6881 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6882 * let's skip this round. 6883 */ 6884 if (likely(pf->stat_prev_loaded)) { 6885 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6886 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6887 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6888 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6889 } 6890 6891 stats_prev->tx_packets = vsi_stats->tx_packets; 6892 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6893 stats_prev->rx_packets = vsi_stats->rx_packets; 6894 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6895 6896 kfree(vsi_stats); 6897 } 6898 6899 /** 6900 * ice_update_vsi_stats - Update VSI stats counters 6901 * @vsi: the VSI to be updated 6902 */ 6903 void ice_update_vsi_stats(struct ice_vsi *vsi) 6904 { 6905 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6906 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6907 struct ice_pf *pf = vsi->back; 6908 6909 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6910 test_bit(ICE_CFG_BUSY, pf->state)) 6911 return; 6912 6913 /* get stats as recorded by Tx/Rx rings */ 6914 ice_update_vsi_ring_stats(vsi); 6915 6916 /* get VSI stats as recorded by the hardware */ 6917 ice_update_eth_stats(vsi); 6918 6919 cur_ns->tx_errors = cur_es->tx_errors; 6920 cur_ns->rx_dropped = cur_es->rx_discards; 6921 cur_ns->tx_dropped = cur_es->tx_discards; 6922 cur_ns->multicast = cur_es->rx_multicast; 6923 6924 /* update some more netdev stats if this is main VSI */ 6925 if (vsi->type == ICE_VSI_PF) { 6926 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6927 cur_ns->rx_errors = pf->stats.crc_errors + 6928 pf->stats.illegal_bytes + 6929 pf->stats.rx_undersize + 6930 pf->hw_csum_rx_error + 6931 pf->stats.rx_jabber + 6932 pf->stats.rx_fragments + 6933 pf->stats.rx_oversize; 6934 /* record drops from the port level */ 6935 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6936 } 6937 } 6938 6939 /** 6940 * ice_update_pf_stats - Update PF port stats counters 6941 * @pf: PF whose stats needs to be updated 6942 */ 6943 void ice_update_pf_stats(struct ice_pf *pf) 6944 { 6945 struct ice_hw_port_stats *prev_ps, *cur_ps; 6946 struct ice_hw *hw = &pf->hw; 6947 u16 fd_ctr_base; 6948 u8 port; 6949 6950 port = hw->port_info->lport; 6951 prev_ps = &pf->stats_prev; 6952 cur_ps = &pf->stats; 6953 6954 if (ice_is_reset_in_progress(pf->state)) 6955 pf->stat_prev_loaded = false; 6956 6957 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6958 &prev_ps->eth.rx_bytes, 6959 &cur_ps->eth.rx_bytes); 6960 6961 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6962 &prev_ps->eth.rx_unicast, 6963 &cur_ps->eth.rx_unicast); 6964 6965 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6966 &prev_ps->eth.rx_multicast, 6967 &cur_ps->eth.rx_multicast); 6968 6969 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6970 &prev_ps->eth.rx_broadcast, 6971 &cur_ps->eth.rx_broadcast); 6972 6973 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6974 &prev_ps->eth.rx_discards, 6975 &cur_ps->eth.rx_discards); 6976 6977 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6978 &prev_ps->eth.tx_bytes, 6979 &cur_ps->eth.tx_bytes); 6980 6981 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6982 &prev_ps->eth.tx_unicast, 6983 &cur_ps->eth.tx_unicast); 6984 6985 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6986 &prev_ps->eth.tx_multicast, 6987 &cur_ps->eth.tx_multicast); 6988 6989 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6990 &prev_ps->eth.tx_broadcast, 6991 &cur_ps->eth.tx_broadcast); 6992 6993 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6994 &prev_ps->tx_dropped_link_down, 6995 &cur_ps->tx_dropped_link_down); 6996 6997 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6998 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6999 7000 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7001 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7002 7003 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7004 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7005 7006 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7007 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7008 7009 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7010 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7011 7012 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7013 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7014 7015 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7016 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7017 7018 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7019 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7020 7021 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7022 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7023 7024 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7025 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7026 7027 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7028 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7029 7030 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7031 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7032 7033 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7034 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7035 7036 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7037 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7038 7039 fd_ctr_base = hw->fd_ctr_base; 7040 7041 ice_stat_update40(hw, 7042 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7043 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7044 &cur_ps->fd_sb_match); 7045 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7046 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7047 7048 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7049 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7050 7051 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7052 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7053 7054 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7055 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7056 7057 ice_update_dcb_stats(pf); 7058 7059 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7060 &prev_ps->crc_errors, &cur_ps->crc_errors); 7061 7062 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7063 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7064 7065 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7066 &prev_ps->mac_local_faults, 7067 &cur_ps->mac_local_faults); 7068 7069 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7070 &prev_ps->mac_remote_faults, 7071 &cur_ps->mac_remote_faults); 7072 7073 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7074 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7075 7076 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7077 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7078 7079 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7080 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7081 7082 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7083 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7084 7085 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7086 7087 pf->stat_prev_loaded = true; 7088 } 7089 7090 /** 7091 * ice_get_stats64 - get statistics for network device structure 7092 * @netdev: network interface device structure 7093 * @stats: main device statistics structure 7094 */ 7095 static 7096 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7097 { 7098 struct ice_netdev_priv *np = netdev_priv(netdev); 7099 struct rtnl_link_stats64 *vsi_stats; 7100 struct ice_vsi *vsi = np->vsi; 7101 7102 vsi_stats = &vsi->net_stats; 7103 7104 if (!vsi->num_txq || !vsi->num_rxq) 7105 return; 7106 7107 /* netdev packet/byte stats come from ring counter. These are obtained 7108 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7109 * But, only call the update routine and read the registers if VSI is 7110 * not down. 7111 */ 7112 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7113 ice_update_vsi_ring_stats(vsi); 7114 stats->tx_packets = vsi_stats->tx_packets; 7115 stats->tx_bytes = vsi_stats->tx_bytes; 7116 stats->rx_packets = vsi_stats->rx_packets; 7117 stats->rx_bytes = vsi_stats->rx_bytes; 7118 7119 /* The rest of the stats can be read from the hardware but instead we 7120 * just return values that the watchdog task has already obtained from 7121 * the hardware. 7122 */ 7123 stats->multicast = vsi_stats->multicast; 7124 stats->tx_errors = vsi_stats->tx_errors; 7125 stats->tx_dropped = vsi_stats->tx_dropped; 7126 stats->rx_errors = vsi_stats->rx_errors; 7127 stats->rx_dropped = vsi_stats->rx_dropped; 7128 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7129 stats->rx_length_errors = vsi_stats->rx_length_errors; 7130 } 7131 7132 /** 7133 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7134 * @vsi: VSI having NAPI disabled 7135 */ 7136 static void ice_napi_disable_all(struct ice_vsi *vsi) 7137 { 7138 int q_idx; 7139 7140 if (!vsi->netdev) 7141 return; 7142 7143 ice_for_each_q_vector(vsi, q_idx) { 7144 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7145 7146 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7147 napi_disable(&q_vector->napi); 7148 7149 cancel_work_sync(&q_vector->tx.dim.work); 7150 cancel_work_sync(&q_vector->rx.dim.work); 7151 } 7152 } 7153 7154 /** 7155 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7156 * @vsi: the VSI being un-configured 7157 */ 7158 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7159 { 7160 struct ice_pf *pf = vsi->back; 7161 struct ice_hw *hw = &pf->hw; 7162 u32 val; 7163 int i; 7164 7165 /* disable interrupt causation from each Rx queue; Tx queues are 7166 * handled in ice_vsi_stop_tx_ring() 7167 */ 7168 if (vsi->rx_rings) { 7169 ice_for_each_rxq(vsi, i) { 7170 if (vsi->rx_rings[i]) { 7171 u16 reg; 7172 7173 reg = vsi->rx_rings[i]->reg_idx; 7174 val = rd32(hw, QINT_RQCTL(reg)); 7175 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7176 wr32(hw, QINT_RQCTL(reg), val); 7177 } 7178 } 7179 } 7180 7181 /* disable each interrupt */ 7182 ice_for_each_q_vector(vsi, i) { 7183 if (!vsi->q_vectors[i]) 7184 continue; 7185 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7186 } 7187 7188 ice_flush(hw); 7189 7190 /* don't call synchronize_irq() for VF's from the host */ 7191 if (vsi->type == ICE_VSI_VF) 7192 return; 7193 7194 ice_for_each_q_vector(vsi, i) 7195 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7196 } 7197 7198 /** 7199 * ice_down - Shutdown the connection 7200 * @vsi: The VSI being stopped 7201 * 7202 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7203 */ 7204 int ice_down(struct ice_vsi *vsi) 7205 { 7206 int i, tx_err, rx_err, vlan_err = 0; 7207 7208 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7209 7210 if (vsi->netdev) { 7211 vlan_err = ice_vsi_del_vlan_zero(vsi); 7212 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7213 netif_carrier_off(vsi->netdev); 7214 netif_tx_disable(vsi->netdev); 7215 } 7216 7217 ice_vsi_dis_irq(vsi); 7218 7219 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7220 if (tx_err) 7221 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7222 vsi->vsi_num, tx_err); 7223 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7224 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7225 if (tx_err) 7226 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7227 vsi->vsi_num, tx_err); 7228 } 7229 7230 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7231 if (rx_err) 7232 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7233 vsi->vsi_num, rx_err); 7234 7235 ice_napi_disable_all(vsi); 7236 7237 ice_for_each_txq(vsi, i) 7238 ice_clean_tx_ring(vsi->tx_rings[i]); 7239 7240 if (ice_is_xdp_ena_vsi(vsi)) 7241 ice_for_each_xdp_txq(vsi, i) 7242 ice_clean_tx_ring(vsi->xdp_rings[i]); 7243 7244 ice_for_each_rxq(vsi, i) 7245 ice_clean_rx_ring(vsi->rx_rings[i]); 7246 7247 if (tx_err || rx_err || vlan_err) { 7248 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7249 vsi->vsi_num, vsi->vsw->sw_id); 7250 return -EIO; 7251 } 7252 7253 return 0; 7254 } 7255 7256 /** 7257 * ice_down_up - shutdown the VSI connection and bring it up 7258 * @vsi: the VSI to be reconnected 7259 */ 7260 int ice_down_up(struct ice_vsi *vsi) 7261 { 7262 int ret; 7263 7264 /* if DOWN already set, nothing to do */ 7265 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7266 return 0; 7267 7268 ret = ice_down(vsi); 7269 if (ret) 7270 return ret; 7271 7272 ret = ice_up(vsi); 7273 if (ret) { 7274 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7275 return ret; 7276 } 7277 7278 return 0; 7279 } 7280 7281 /** 7282 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7283 * @vsi: VSI having resources allocated 7284 * 7285 * Return 0 on success, negative on failure 7286 */ 7287 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7288 { 7289 int i, err = 0; 7290 7291 if (!vsi->num_txq) { 7292 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7293 vsi->vsi_num); 7294 return -EINVAL; 7295 } 7296 7297 ice_for_each_txq(vsi, i) { 7298 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7299 7300 if (!ring) 7301 return -EINVAL; 7302 7303 if (vsi->netdev) 7304 ring->netdev = vsi->netdev; 7305 err = ice_setup_tx_ring(ring); 7306 if (err) 7307 break; 7308 } 7309 7310 return err; 7311 } 7312 7313 /** 7314 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7315 * @vsi: VSI having resources allocated 7316 * 7317 * Return 0 on success, negative on failure 7318 */ 7319 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7320 { 7321 int i, err = 0; 7322 7323 if (!vsi->num_rxq) { 7324 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7325 vsi->vsi_num); 7326 return -EINVAL; 7327 } 7328 7329 ice_for_each_rxq(vsi, i) { 7330 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7331 7332 if (!ring) 7333 return -EINVAL; 7334 7335 if (vsi->netdev) 7336 ring->netdev = vsi->netdev; 7337 err = ice_setup_rx_ring(ring); 7338 if (err) 7339 break; 7340 } 7341 7342 return err; 7343 } 7344 7345 /** 7346 * ice_vsi_open_ctrl - open control VSI for use 7347 * @vsi: the VSI to open 7348 * 7349 * Initialization of the Control VSI 7350 * 7351 * Returns 0 on success, negative value on error 7352 */ 7353 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7354 { 7355 char int_name[ICE_INT_NAME_STR_LEN]; 7356 struct ice_pf *pf = vsi->back; 7357 struct device *dev; 7358 int err; 7359 7360 dev = ice_pf_to_dev(pf); 7361 /* allocate descriptors */ 7362 err = ice_vsi_setup_tx_rings(vsi); 7363 if (err) 7364 goto err_setup_tx; 7365 7366 err = ice_vsi_setup_rx_rings(vsi); 7367 if (err) 7368 goto err_setup_rx; 7369 7370 err = ice_vsi_cfg_lan(vsi); 7371 if (err) 7372 goto err_setup_rx; 7373 7374 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7375 dev_driver_string(dev), dev_name(dev)); 7376 err = ice_vsi_req_irq_msix(vsi, int_name); 7377 if (err) 7378 goto err_setup_rx; 7379 7380 ice_vsi_cfg_msix(vsi); 7381 7382 err = ice_vsi_start_all_rx_rings(vsi); 7383 if (err) 7384 goto err_up_complete; 7385 7386 clear_bit(ICE_VSI_DOWN, vsi->state); 7387 ice_vsi_ena_irq(vsi); 7388 7389 return 0; 7390 7391 err_up_complete: 7392 ice_down(vsi); 7393 err_setup_rx: 7394 ice_vsi_free_rx_rings(vsi); 7395 err_setup_tx: 7396 ice_vsi_free_tx_rings(vsi); 7397 7398 return err; 7399 } 7400 7401 /** 7402 * ice_vsi_open - Called when a network interface is made active 7403 * @vsi: the VSI to open 7404 * 7405 * Initialization of the VSI 7406 * 7407 * Returns 0 on success, negative value on error 7408 */ 7409 int ice_vsi_open(struct ice_vsi *vsi) 7410 { 7411 char int_name[ICE_INT_NAME_STR_LEN]; 7412 struct ice_pf *pf = vsi->back; 7413 int err; 7414 7415 /* allocate descriptors */ 7416 err = ice_vsi_setup_tx_rings(vsi); 7417 if (err) 7418 goto err_setup_tx; 7419 7420 err = ice_vsi_setup_rx_rings(vsi); 7421 if (err) 7422 goto err_setup_rx; 7423 7424 err = ice_vsi_cfg_lan(vsi); 7425 if (err) 7426 goto err_setup_rx; 7427 7428 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7429 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7430 err = ice_vsi_req_irq_msix(vsi, int_name); 7431 if (err) 7432 goto err_setup_rx; 7433 7434 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7435 7436 if (vsi->type == ICE_VSI_PF) { 7437 /* Notify the stack of the actual queue counts. */ 7438 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7439 if (err) 7440 goto err_set_qs; 7441 7442 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7443 if (err) 7444 goto err_set_qs; 7445 } 7446 7447 err = ice_up_complete(vsi); 7448 if (err) 7449 goto err_up_complete; 7450 7451 return 0; 7452 7453 err_up_complete: 7454 ice_down(vsi); 7455 err_set_qs: 7456 ice_vsi_free_irq(vsi); 7457 err_setup_rx: 7458 ice_vsi_free_rx_rings(vsi); 7459 err_setup_tx: 7460 ice_vsi_free_tx_rings(vsi); 7461 7462 return err; 7463 } 7464 7465 /** 7466 * ice_vsi_release_all - Delete all VSIs 7467 * @pf: PF from which all VSIs are being removed 7468 */ 7469 static void ice_vsi_release_all(struct ice_pf *pf) 7470 { 7471 int err, i; 7472 7473 if (!pf->vsi) 7474 return; 7475 7476 ice_for_each_vsi(pf, i) { 7477 if (!pf->vsi[i]) 7478 continue; 7479 7480 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7481 continue; 7482 7483 err = ice_vsi_release(pf->vsi[i]); 7484 if (err) 7485 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7486 i, err, pf->vsi[i]->vsi_num); 7487 } 7488 } 7489 7490 /** 7491 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7492 * @pf: pointer to the PF instance 7493 * @type: VSI type to rebuild 7494 * 7495 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7496 */ 7497 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7498 { 7499 struct device *dev = ice_pf_to_dev(pf); 7500 int i, err; 7501 7502 ice_for_each_vsi(pf, i) { 7503 struct ice_vsi *vsi = pf->vsi[i]; 7504 7505 if (!vsi || vsi->type != type) 7506 continue; 7507 7508 /* rebuild the VSI */ 7509 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7510 if (err) { 7511 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7512 err, vsi->idx, ice_vsi_type_str(type)); 7513 return err; 7514 } 7515 7516 /* replay filters for the VSI */ 7517 err = ice_replay_vsi(&pf->hw, vsi->idx); 7518 if (err) { 7519 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7520 err, vsi->idx, ice_vsi_type_str(type)); 7521 return err; 7522 } 7523 7524 /* Re-map HW VSI number, using VSI handle that has been 7525 * previously validated in ice_replay_vsi() call above 7526 */ 7527 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7528 7529 /* enable the VSI */ 7530 err = ice_ena_vsi(vsi, false); 7531 if (err) { 7532 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7533 err, vsi->idx, ice_vsi_type_str(type)); 7534 return err; 7535 } 7536 7537 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7538 ice_vsi_type_str(type)); 7539 } 7540 7541 return 0; 7542 } 7543 7544 /** 7545 * ice_update_pf_netdev_link - Update PF netdev link status 7546 * @pf: pointer to the PF instance 7547 */ 7548 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7549 { 7550 bool link_up; 7551 int i; 7552 7553 ice_for_each_vsi(pf, i) { 7554 struct ice_vsi *vsi = pf->vsi[i]; 7555 7556 if (!vsi || vsi->type != ICE_VSI_PF) 7557 return; 7558 7559 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7560 if (link_up) { 7561 netif_carrier_on(pf->vsi[i]->netdev); 7562 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7563 } else { 7564 netif_carrier_off(pf->vsi[i]->netdev); 7565 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7566 } 7567 } 7568 } 7569 7570 /** 7571 * ice_rebuild - rebuild after reset 7572 * @pf: PF to rebuild 7573 * @reset_type: type of reset 7574 * 7575 * Do not rebuild VF VSI in this flow because that is already handled via 7576 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7577 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7578 * to reset/rebuild all the VF VSI twice. 7579 */ 7580 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7581 { 7582 struct device *dev = ice_pf_to_dev(pf); 7583 struct ice_hw *hw = &pf->hw; 7584 bool dvm; 7585 int err; 7586 7587 if (test_bit(ICE_DOWN, pf->state)) 7588 goto clear_recovery; 7589 7590 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7591 7592 #define ICE_EMP_RESET_SLEEP_MS 5000 7593 if (reset_type == ICE_RESET_EMPR) { 7594 /* If an EMP reset has occurred, any previously pending flash 7595 * update will have completed. We no longer know whether or 7596 * not the NVM update EMP reset is restricted. 7597 */ 7598 pf->fw_emp_reset_disabled = false; 7599 7600 msleep(ICE_EMP_RESET_SLEEP_MS); 7601 } 7602 7603 err = ice_init_all_ctrlq(hw); 7604 if (err) { 7605 dev_err(dev, "control queues init failed %d\n", err); 7606 goto err_init_ctrlq; 7607 } 7608 7609 /* if DDP was previously loaded successfully */ 7610 if (!ice_is_safe_mode(pf)) { 7611 /* reload the SW DB of filter tables */ 7612 if (reset_type == ICE_RESET_PFR) 7613 ice_fill_blk_tbls(hw); 7614 else 7615 /* Reload DDP Package after CORER/GLOBR reset */ 7616 ice_load_pkg(NULL, pf); 7617 } 7618 7619 err = ice_clear_pf_cfg(hw); 7620 if (err) { 7621 dev_err(dev, "clear PF configuration failed %d\n", err); 7622 goto err_init_ctrlq; 7623 } 7624 7625 ice_clear_pxe_mode(hw); 7626 7627 err = ice_init_nvm(hw); 7628 if (err) { 7629 dev_err(dev, "ice_init_nvm failed %d\n", err); 7630 goto err_init_ctrlq; 7631 } 7632 7633 err = ice_get_caps(hw); 7634 if (err) { 7635 dev_err(dev, "ice_get_caps failed %d\n", err); 7636 goto err_init_ctrlq; 7637 } 7638 7639 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7640 if (err) { 7641 dev_err(dev, "set_mac_cfg failed %d\n", err); 7642 goto err_init_ctrlq; 7643 } 7644 7645 dvm = ice_is_dvm_ena(hw); 7646 7647 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7648 if (err) 7649 goto err_init_ctrlq; 7650 7651 err = ice_sched_init_port(hw->port_info); 7652 if (err) 7653 goto err_sched_init_port; 7654 7655 /* start misc vector */ 7656 err = ice_req_irq_msix_misc(pf); 7657 if (err) { 7658 dev_err(dev, "misc vector setup failed: %d\n", err); 7659 goto err_sched_init_port; 7660 } 7661 7662 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7663 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7664 if (!rd32(hw, PFQF_FD_SIZE)) { 7665 u16 unused, guar, b_effort; 7666 7667 guar = hw->func_caps.fd_fltr_guar; 7668 b_effort = hw->func_caps.fd_fltr_best_effort; 7669 7670 /* force guaranteed filter pool for PF */ 7671 ice_alloc_fd_guar_item(hw, &unused, guar); 7672 /* force shared filter pool for PF */ 7673 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7674 } 7675 } 7676 7677 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7678 ice_dcb_rebuild(pf); 7679 7680 /* If the PF previously had enabled PTP, PTP init needs to happen before 7681 * the VSI rebuild. If not, this causes the PTP link status events to 7682 * fail. 7683 */ 7684 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7685 ice_ptp_rebuild(pf, reset_type); 7686 7687 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7688 ice_gnss_init(pf); 7689 7690 /* rebuild PF VSI */ 7691 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7692 if (err) { 7693 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7694 goto err_vsi_rebuild; 7695 } 7696 7697 ice_eswitch_rebuild(pf); 7698 7699 if (reset_type == ICE_RESET_PFR) { 7700 err = ice_rebuild_channels(pf); 7701 if (err) { 7702 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7703 err); 7704 goto err_vsi_rebuild; 7705 } 7706 } 7707 7708 /* If Flow Director is active */ 7709 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7710 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7711 if (err) { 7712 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7713 goto err_vsi_rebuild; 7714 } 7715 7716 /* replay HW Flow Director recipes */ 7717 if (hw->fdir_prof) 7718 ice_fdir_replay_flows(hw); 7719 7720 /* replay Flow Director filters */ 7721 ice_fdir_replay_fltrs(pf); 7722 7723 ice_rebuild_arfs(pf); 7724 } 7725 7726 ice_update_pf_netdev_link(pf); 7727 7728 /* tell the firmware we are up */ 7729 err = ice_send_version(pf); 7730 if (err) { 7731 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7732 err); 7733 goto err_vsi_rebuild; 7734 } 7735 7736 ice_replay_post(hw); 7737 7738 /* if we get here, reset flow is successful */ 7739 clear_bit(ICE_RESET_FAILED, pf->state); 7740 7741 ice_plug_aux_dev(pf); 7742 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7743 ice_lag_rebuild(pf); 7744 7745 /* Restore timestamp mode settings after VSI rebuild */ 7746 ice_ptp_restore_timestamp_mode(pf); 7747 return; 7748 7749 err_vsi_rebuild: 7750 err_sched_init_port: 7751 ice_sched_cleanup_all(hw); 7752 err_init_ctrlq: 7753 ice_shutdown_all_ctrlq(hw); 7754 set_bit(ICE_RESET_FAILED, pf->state); 7755 clear_recovery: 7756 /* set this bit in PF state to control service task scheduling */ 7757 set_bit(ICE_NEEDS_RESTART, pf->state); 7758 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7759 } 7760 7761 /** 7762 * ice_change_mtu - NDO callback to change the MTU 7763 * @netdev: network interface device structure 7764 * @new_mtu: new value for maximum frame size 7765 * 7766 * Returns 0 on success, negative on failure 7767 */ 7768 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7769 { 7770 struct ice_netdev_priv *np = netdev_priv(netdev); 7771 struct ice_vsi *vsi = np->vsi; 7772 struct ice_pf *pf = vsi->back; 7773 struct bpf_prog *prog; 7774 u8 count = 0; 7775 int err = 0; 7776 7777 if (new_mtu == (int)netdev->mtu) { 7778 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7779 return 0; 7780 } 7781 7782 prog = vsi->xdp_prog; 7783 if (prog && !prog->aux->xdp_has_frags) { 7784 int frame_size = ice_max_xdp_frame_size(vsi); 7785 7786 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7787 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7788 frame_size - ICE_ETH_PKT_HDR_PAD); 7789 return -EINVAL; 7790 } 7791 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7792 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7793 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7794 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7795 return -EINVAL; 7796 } 7797 } 7798 7799 /* if a reset is in progress, wait for some time for it to complete */ 7800 do { 7801 if (ice_is_reset_in_progress(pf->state)) { 7802 count++; 7803 usleep_range(1000, 2000); 7804 } else { 7805 break; 7806 } 7807 7808 } while (count < 100); 7809 7810 if (count == 100) { 7811 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7812 return -EBUSY; 7813 } 7814 7815 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7816 err = ice_down_up(vsi); 7817 if (err) 7818 return err; 7819 7820 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7821 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7822 7823 return err; 7824 } 7825 7826 /** 7827 * ice_eth_ioctl - Access the hwtstamp interface 7828 * @netdev: network interface device structure 7829 * @ifr: interface request data 7830 * @cmd: ioctl command 7831 */ 7832 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7833 { 7834 struct ice_netdev_priv *np = netdev_priv(netdev); 7835 struct ice_pf *pf = np->vsi->back; 7836 7837 switch (cmd) { 7838 case SIOCGHWTSTAMP: 7839 return ice_ptp_get_ts_config(pf, ifr); 7840 case SIOCSHWTSTAMP: 7841 return ice_ptp_set_ts_config(pf, ifr); 7842 default: 7843 return -EOPNOTSUPP; 7844 } 7845 } 7846 7847 /** 7848 * ice_aq_str - convert AQ err code to a string 7849 * @aq_err: the AQ error code to convert 7850 */ 7851 const char *ice_aq_str(enum ice_aq_err aq_err) 7852 { 7853 switch (aq_err) { 7854 case ICE_AQ_RC_OK: 7855 return "OK"; 7856 case ICE_AQ_RC_EPERM: 7857 return "ICE_AQ_RC_EPERM"; 7858 case ICE_AQ_RC_ENOENT: 7859 return "ICE_AQ_RC_ENOENT"; 7860 case ICE_AQ_RC_ENOMEM: 7861 return "ICE_AQ_RC_ENOMEM"; 7862 case ICE_AQ_RC_EBUSY: 7863 return "ICE_AQ_RC_EBUSY"; 7864 case ICE_AQ_RC_EEXIST: 7865 return "ICE_AQ_RC_EEXIST"; 7866 case ICE_AQ_RC_EINVAL: 7867 return "ICE_AQ_RC_EINVAL"; 7868 case ICE_AQ_RC_ENOSPC: 7869 return "ICE_AQ_RC_ENOSPC"; 7870 case ICE_AQ_RC_ENOSYS: 7871 return "ICE_AQ_RC_ENOSYS"; 7872 case ICE_AQ_RC_EMODE: 7873 return "ICE_AQ_RC_EMODE"; 7874 case ICE_AQ_RC_ENOSEC: 7875 return "ICE_AQ_RC_ENOSEC"; 7876 case ICE_AQ_RC_EBADSIG: 7877 return "ICE_AQ_RC_EBADSIG"; 7878 case ICE_AQ_RC_ESVN: 7879 return "ICE_AQ_RC_ESVN"; 7880 case ICE_AQ_RC_EBADMAN: 7881 return "ICE_AQ_RC_EBADMAN"; 7882 case ICE_AQ_RC_EBADBUF: 7883 return "ICE_AQ_RC_EBADBUF"; 7884 } 7885 7886 return "ICE_AQ_RC_UNKNOWN"; 7887 } 7888 7889 /** 7890 * ice_set_rss_lut - Set RSS LUT 7891 * @vsi: Pointer to VSI structure 7892 * @lut: Lookup table 7893 * @lut_size: Lookup table size 7894 * 7895 * Returns 0 on success, negative on failure 7896 */ 7897 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7898 { 7899 struct ice_aq_get_set_rss_lut_params params = {}; 7900 struct ice_hw *hw = &vsi->back->hw; 7901 int status; 7902 7903 if (!lut) 7904 return -EINVAL; 7905 7906 params.vsi_handle = vsi->idx; 7907 params.lut_size = lut_size; 7908 params.lut_type = vsi->rss_lut_type; 7909 params.lut = lut; 7910 7911 status = ice_aq_set_rss_lut(hw, ¶ms); 7912 if (status) 7913 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7914 status, ice_aq_str(hw->adminq.sq_last_status)); 7915 7916 return status; 7917 } 7918 7919 /** 7920 * ice_set_rss_key - Set RSS key 7921 * @vsi: Pointer to the VSI structure 7922 * @seed: RSS hash seed 7923 * 7924 * Returns 0 on success, negative on failure 7925 */ 7926 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7927 { 7928 struct ice_hw *hw = &vsi->back->hw; 7929 int status; 7930 7931 if (!seed) 7932 return -EINVAL; 7933 7934 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7935 if (status) 7936 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7937 status, ice_aq_str(hw->adminq.sq_last_status)); 7938 7939 return status; 7940 } 7941 7942 /** 7943 * ice_get_rss_lut - Get RSS LUT 7944 * @vsi: Pointer to VSI structure 7945 * @lut: Buffer to store the lookup table entries 7946 * @lut_size: Size of buffer to store the lookup table entries 7947 * 7948 * Returns 0 on success, negative on failure 7949 */ 7950 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7951 { 7952 struct ice_aq_get_set_rss_lut_params params = {}; 7953 struct ice_hw *hw = &vsi->back->hw; 7954 int status; 7955 7956 if (!lut) 7957 return -EINVAL; 7958 7959 params.vsi_handle = vsi->idx; 7960 params.lut_size = lut_size; 7961 params.lut_type = vsi->rss_lut_type; 7962 params.lut = lut; 7963 7964 status = ice_aq_get_rss_lut(hw, ¶ms); 7965 if (status) 7966 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7967 status, ice_aq_str(hw->adminq.sq_last_status)); 7968 7969 return status; 7970 } 7971 7972 /** 7973 * ice_get_rss_key - Get RSS key 7974 * @vsi: Pointer to VSI structure 7975 * @seed: Buffer to store the key in 7976 * 7977 * Returns 0 on success, negative on failure 7978 */ 7979 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7980 { 7981 struct ice_hw *hw = &vsi->back->hw; 7982 int status; 7983 7984 if (!seed) 7985 return -EINVAL; 7986 7987 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7988 if (status) 7989 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7990 status, ice_aq_str(hw->adminq.sq_last_status)); 7991 7992 return status; 7993 } 7994 7995 /** 7996 * ice_set_rss_hfunc - Set RSS HASH function 7997 * @vsi: Pointer to VSI structure 7998 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 7999 * 8000 * Returns 0 on success, negative on failure 8001 */ 8002 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8003 { 8004 struct ice_hw *hw = &vsi->back->hw; 8005 struct ice_vsi_ctx *ctx; 8006 bool symm; 8007 int err; 8008 8009 if (hfunc == vsi->rss_hfunc) 8010 return 0; 8011 8012 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8013 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8014 return -EOPNOTSUPP; 8015 8016 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8017 if (!ctx) 8018 return -ENOMEM; 8019 8020 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8021 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8022 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8023 ctx->info.q_opt_rss |= 8024 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8025 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8026 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8027 8028 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8029 if (err) { 8030 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8031 vsi->vsi_num, err); 8032 } else { 8033 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8034 vsi->rss_hfunc = hfunc; 8035 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8036 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8037 "Symmetric " : ""); 8038 } 8039 kfree(ctx); 8040 if (err) 8041 return err; 8042 8043 /* Fix the symmetry setting for all existing RSS configurations */ 8044 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8045 return ice_set_rss_cfg_symm(hw, vsi, symm); 8046 } 8047 8048 /** 8049 * ice_bridge_getlink - Get the hardware bridge mode 8050 * @skb: skb buff 8051 * @pid: process ID 8052 * @seq: RTNL message seq 8053 * @dev: the netdev being configured 8054 * @filter_mask: filter mask passed in 8055 * @nlflags: netlink flags passed in 8056 * 8057 * Return the bridge mode (VEB/VEPA) 8058 */ 8059 static int 8060 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8061 struct net_device *dev, u32 filter_mask, int nlflags) 8062 { 8063 struct ice_netdev_priv *np = netdev_priv(dev); 8064 struct ice_vsi *vsi = np->vsi; 8065 struct ice_pf *pf = vsi->back; 8066 u16 bmode; 8067 8068 bmode = pf->first_sw->bridge_mode; 8069 8070 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8071 filter_mask, NULL); 8072 } 8073 8074 /** 8075 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8076 * @vsi: Pointer to VSI structure 8077 * @bmode: Hardware bridge mode (VEB/VEPA) 8078 * 8079 * Returns 0 on success, negative on failure 8080 */ 8081 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8082 { 8083 struct ice_aqc_vsi_props *vsi_props; 8084 struct ice_hw *hw = &vsi->back->hw; 8085 struct ice_vsi_ctx *ctxt; 8086 int ret; 8087 8088 vsi_props = &vsi->info; 8089 8090 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8091 if (!ctxt) 8092 return -ENOMEM; 8093 8094 ctxt->info = vsi->info; 8095 8096 if (bmode == BRIDGE_MODE_VEB) 8097 /* change from VEPA to VEB mode */ 8098 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8099 else 8100 /* change from VEB to VEPA mode */ 8101 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8102 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8103 8104 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8105 if (ret) { 8106 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8107 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8108 goto out; 8109 } 8110 /* Update sw flags for book keeping */ 8111 vsi_props->sw_flags = ctxt->info.sw_flags; 8112 8113 out: 8114 kfree(ctxt); 8115 return ret; 8116 } 8117 8118 /** 8119 * ice_bridge_setlink - Set the hardware bridge mode 8120 * @dev: the netdev being configured 8121 * @nlh: RTNL message 8122 * @flags: bridge setlink flags 8123 * @extack: netlink extended ack 8124 * 8125 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8126 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8127 * not already set for all VSIs connected to this switch. And also update the 8128 * unicast switch filter rules for the corresponding switch of the netdev. 8129 */ 8130 static int 8131 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8132 u16 __always_unused flags, 8133 struct netlink_ext_ack __always_unused *extack) 8134 { 8135 struct ice_netdev_priv *np = netdev_priv(dev); 8136 struct ice_pf *pf = np->vsi->back; 8137 struct nlattr *attr, *br_spec; 8138 struct ice_hw *hw = &pf->hw; 8139 struct ice_sw *pf_sw; 8140 int rem, v, err = 0; 8141 8142 pf_sw = pf->first_sw; 8143 /* find the attribute in the netlink message */ 8144 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8145 if (!br_spec) 8146 return -EINVAL; 8147 8148 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8149 __u16 mode = nla_get_u16(attr); 8150 8151 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8152 return -EINVAL; 8153 /* Continue if bridge mode is not being flipped */ 8154 if (mode == pf_sw->bridge_mode) 8155 continue; 8156 /* Iterates through the PF VSI list and update the loopback 8157 * mode of the VSI 8158 */ 8159 ice_for_each_vsi(pf, v) { 8160 if (!pf->vsi[v]) 8161 continue; 8162 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8163 if (err) 8164 return err; 8165 } 8166 8167 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8168 /* Update the unicast switch filter rules for the corresponding 8169 * switch of the netdev 8170 */ 8171 err = ice_update_sw_rule_bridge_mode(hw); 8172 if (err) { 8173 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8174 mode, err, 8175 ice_aq_str(hw->adminq.sq_last_status)); 8176 /* revert hw->evb_veb */ 8177 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8178 return err; 8179 } 8180 8181 pf_sw->bridge_mode = mode; 8182 } 8183 8184 return 0; 8185 } 8186 8187 /** 8188 * ice_tx_timeout - Respond to a Tx Hang 8189 * @netdev: network interface device structure 8190 * @txqueue: Tx queue 8191 */ 8192 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8193 { 8194 struct ice_netdev_priv *np = netdev_priv(netdev); 8195 struct ice_tx_ring *tx_ring = NULL; 8196 struct ice_vsi *vsi = np->vsi; 8197 struct ice_pf *pf = vsi->back; 8198 u32 i; 8199 8200 pf->tx_timeout_count++; 8201 8202 /* Check if PFC is enabled for the TC to which the queue belongs 8203 * to. If yes then Tx timeout is not caused by a hung queue, no 8204 * need to reset and rebuild 8205 */ 8206 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8207 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8208 txqueue); 8209 return; 8210 } 8211 8212 /* now that we have an index, find the tx_ring struct */ 8213 ice_for_each_txq(vsi, i) 8214 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8215 if (txqueue == vsi->tx_rings[i]->q_index) { 8216 tx_ring = vsi->tx_rings[i]; 8217 break; 8218 } 8219 8220 /* Reset recovery level if enough time has elapsed after last timeout. 8221 * Also ensure no new reset action happens before next timeout period. 8222 */ 8223 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8224 pf->tx_timeout_recovery_level = 1; 8225 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8226 netdev->watchdog_timeo))) 8227 return; 8228 8229 if (tx_ring) { 8230 struct ice_hw *hw = &pf->hw; 8231 u32 head, val = 0; 8232 8233 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8234 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8235 /* Read interrupt register */ 8236 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8237 8238 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8239 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8240 head, tx_ring->next_to_use, val); 8241 } 8242 8243 pf->tx_timeout_last_recovery = jiffies; 8244 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8245 pf->tx_timeout_recovery_level, txqueue); 8246 8247 switch (pf->tx_timeout_recovery_level) { 8248 case 1: 8249 set_bit(ICE_PFR_REQ, pf->state); 8250 break; 8251 case 2: 8252 set_bit(ICE_CORER_REQ, pf->state); 8253 break; 8254 case 3: 8255 set_bit(ICE_GLOBR_REQ, pf->state); 8256 break; 8257 default: 8258 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8259 set_bit(ICE_DOWN, pf->state); 8260 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8261 set_bit(ICE_SERVICE_DIS, pf->state); 8262 break; 8263 } 8264 8265 ice_service_task_schedule(pf); 8266 pf->tx_timeout_recovery_level++; 8267 } 8268 8269 /** 8270 * ice_setup_tc_cls_flower - flower classifier offloads 8271 * @np: net device to configure 8272 * @filter_dev: device on which filter is added 8273 * @cls_flower: offload data 8274 */ 8275 static int 8276 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8277 struct net_device *filter_dev, 8278 struct flow_cls_offload *cls_flower) 8279 { 8280 struct ice_vsi *vsi = np->vsi; 8281 8282 if (cls_flower->common.chain_index) 8283 return -EOPNOTSUPP; 8284 8285 switch (cls_flower->command) { 8286 case FLOW_CLS_REPLACE: 8287 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8288 case FLOW_CLS_DESTROY: 8289 return ice_del_cls_flower(vsi, cls_flower); 8290 default: 8291 return -EINVAL; 8292 } 8293 } 8294 8295 /** 8296 * ice_setup_tc_block_cb - callback handler registered for TC block 8297 * @type: TC SETUP type 8298 * @type_data: TC flower offload data that contains user input 8299 * @cb_priv: netdev private data 8300 */ 8301 static int 8302 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8303 { 8304 struct ice_netdev_priv *np = cb_priv; 8305 8306 switch (type) { 8307 case TC_SETUP_CLSFLOWER: 8308 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8309 type_data); 8310 default: 8311 return -EOPNOTSUPP; 8312 } 8313 } 8314 8315 /** 8316 * ice_validate_mqprio_qopt - Validate TCF input parameters 8317 * @vsi: Pointer to VSI 8318 * @mqprio_qopt: input parameters for mqprio queue configuration 8319 * 8320 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8321 * needed), and make sure user doesn't specify qcount and BW rate limit 8322 * for TCs, which are more than "num_tc" 8323 */ 8324 static int 8325 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8326 struct tc_mqprio_qopt_offload *mqprio_qopt) 8327 { 8328 int non_power_of_2_qcount = 0; 8329 struct ice_pf *pf = vsi->back; 8330 int max_rss_q_cnt = 0; 8331 u64 sum_min_rate = 0; 8332 struct device *dev; 8333 int i, speed; 8334 u8 num_tc; 8335 8336 if (vsi->type != ICE_VSI_PF) 8337 return -EINVAL; 8338 8339 if (mqprio_qopt->qopt.offset[0] != 0 || 8340 mqprio_qopt->qopt.num_tc < 1 || 8341 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8342 return -EINVAL; 8343 8344 dev = ice_pf_to_dev(pf); 8345 vsi->ch_rss_size = 0; 8346 num_tc = mqprio_qopt->qopt.num_tc; 8347 speed = ice_get_link_speed_kbps(vsi); 8348 8349 for (i = 0; num_tc; i++) { 8350 int qcount = mqprio_qopt->qopt.count[i]; 8351 u64 max_rate, min_rate, rem; 8352 8353 if (!qcount) 8354 return -EINVAL; 8355 8356 if (is_power_of_2(qcount)) { 8357 if (non_power_of_2_qcount && 8358 qcount > non_power_of_2_qcount) { 8359 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8360 qcount, non_power_of_2_qcount); 8361 return -EINVAL; 8362 } 8363 if (qcount > max_rss_q_cnt) 8364 max_rss_q_cnt = qcount; 8365 } else { 8366 if (non_power_of_2_qcount && 8367 qcount != non_power_of_2_qcount) { 8368 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8369 qcount, non_power_of_2_qcount); 8370 return -EINVAL; 8371 } 8372 if (qcount < max_rss_q_cnt) { 8373 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8374 qcount, max_rss_q_cnt); 8375 return -EINVAL; 8376 } 8377 max_rss_q_cnt = qcount; 8378 non_power_of_2_qcount = qcount; 8379 } 8380 8381 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8382 * converts the bandwidth rate limit into Bytes/s when 8383 * passing it down to the driver. So convert input bandwidth 8384 * from Bytes/s to Kbps 8385 */ 8386 max_rate = mqprio_qopt->max_rate[i]; 8387 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8388 8389 /* min_rate is minimum guaranteed rate and it can't be zero */ 8390 min_rate = mqprio_qopt->min_rate[i]; 8391 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8392 sum_min_rate += min_rate; 8393 8394 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8395 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8396 min_rate, ICE_MIN_BW_LIMIT); 8397 return -EINVAL; 8398 } 8399 8400 if (max_rate && max_rate > speed) { 8401 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8402 i, max_rate, speed); 8403 return -EINVAL; 8404 } 8405 8406 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8407 if (rem) { 8408 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8409 i, ICE_MIN_BW_LIMIT); 8410 return -EINVAL; 8411 } 8412 8413 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8414 if (rem) { 8415 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8416 i, ICE_MIN_BW_LIMIT); 8417 return -EINVAL; 8418 } 8419 8420 /* min_rate can't be more than max_rate, except when max_rate 8421 * is zero (implies max_rate sought is max line rate). In such 8422 * a case min_rate can be more than max. 8423 */ 8424 if (max_rate && min_rate > max_rate) { 8425 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8426 min_rate, max_rate); 8427 return -EINVAL; 8428 } 8429 8430 if (i >= mqprio_qopt->qopt.num_tc - 1) 8431 break; 8432 if (mqprio_qopt->qopt.offset[i + 1] != 8433 (mqprio_qopt->qopt.offset[i] + qcount)) 8434 return -EINVAL; 8435 } 8436 if (vsi->num_rxq < 8437 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8438 return -EINVAL; 8439 if (vsi->num_txq < 8440 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8441 return -EINVAL; 8442 8443 if (sum_min_rate && sum_min_rate > (u64)speed) { 8444 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8445 sum_min_rate, speed); 8446 return -EINVAL; 8447 } 8448 8449 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8450 vsi->ch_rss_size = max_rss_q_cnt; 8451 8452 return 0; 8453 } 8454 8455 /** 8456 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8457 * @pf: ptr to PF device 8458 * @vsi: ptr to VSI 8459 */ 8460 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8461 { 8462 struct device *dev = ice_pf_to_dev(pf); 8463 bool added = false; 8464 struct ice_hw *hw; 8465 int flow; 8466 8467 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8468 return -EINVAL; 8469 8470 hw = &pf->hw; 8471 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8472 struct ice_fd_hw_prof *prof; 8473 int tun, status; 8474 u64 entry_h; 8475 8476 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8477 hw->fdir_prof[flow]->cnt)) 8478 continue; 8479 8480 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8481 enum ice_flow_priority prio; 8482 8483 /* add this VSI to FDir profile for this flow */ 8484 prio = ICE_FLOW_PRIO_NORMAL; 8485 prof = hw->fdir_prof[flow]; 8486 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8487 prof->prof_id[tun], 8488 prof->vsi_h[0], vsi->idx, 8489 prio, prof->fdir_seg[tun], 8490 &entry_h); 8491 if (status) { 8492 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8493 vsi->idx, flow); 8494 continue; 8495 } 8496 8497 prof->entry_h[prof->cnt][tun] = entry_h; 8498 } 8499 8500 /* store VSI for filter replay and delete */ 8501 prof->vsi_h[prof->cnt] = vsi->idx; 8502 prof->cnt++; 8503 8504 added = true; 8505 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8506 flow); 8507 } 8508 8509 if (!added) 8510 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8511 8512 return 0; 8513 } 8514 8515 /** 8516 * ice_add_channel - add a channel by adding VSI 8517 * @pf: ptr to PF device 8518 * @sw_id: underlying HW switching element ID 8519 * @ch: ptr to channel structure 8520 * 8521 * Add a channel (VSI) using add_vsi and queue_map 8522 */ 8523 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8524 { 8525 struct device *dev = ice_pf_to_dev(pf); 8526 struct ice_vsi *vsi; 8527 8528 if (ch->type != ICE_VSI_CHNL) { 8529 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8530 return -EINVAL; 8531 } 8532 8533 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8534 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8535 dev_err(dev, "create chnl VSI failure\n"); 8536 return -EINVAL; 8537 } 8538 8539 ice_add_vsi_to_fdir(pf, vsi); 8540 8541 ch->sw_id = sw_id; 8542 ch->vsi_num = vsi->vsi_num; 8543 ch->info.mapping_flags = vsi->info.mapping_flags; 8544 ch->ch_vsi = vsi; 8545 /* set the back pointer of channel for newly created VSI */ 8546 vsi->ch = ch; 8547 8548 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8549 sizeof(vsi->info.q_mapping)); 8550 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8551 sizeof(vsi->info.tc_mapping)); 8552 8553 return 0; 8554 } 8555 8556 /** 8557 * ice_chnl_cfg_res 8558 * @vsi: the VSI being setup 8559 * @ch: ptr to channel structure 8560 * 8561 * Configure channel specific resources such as rings, vector. 8562 */ 8563 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8564 { 8565 int i; 8566 8567 for (i = 0; i < ch->num_txq; i++) { 8568 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8569 struct ice_ring_container *rc; 8570 struct ice_tx_ring *tx_ring; 8571 struct ice_rx_ring *rx_ring; 8572 8573 tx_ring = vsi->tx_rings[ch->base_q + i]; 8574 rx_ring = vsi->rx_rings[ch->base_q + i]; 8575 if (!tx_ring || !rx_ring) 8576 continue; 8577 8578 /* setup ring being channel enabled */ 8579 tx_ring->ch = ch; 8580 rx_ring->ch = ch; 8581 8582 /* following code block sets up vector specific attributes */ 8583 tx_q_vector = tx_ring->q_vector; 8584 rx_q_vector = rx_ring->q_vector; 8585 if (!tx_q_vector && !rx_q_vector) 8586 continue; 8587 8588 if (tx_q_vector) { 8589 tx_q_vector->ch = ch; 8590 /* setup Tx and Rx ITR setting if DIM is off */ 8591 rc = &tx_q_vector->tx; 8592 if (!ITR_IS_DYNAMIC(rc)) 8593 ice_write_itr(rc, rc->itr_setting); 8594 } 8595 if (rx_q_vector) { 8596 rx_q_vector->ch = ch; 8597 /* setup Tx and Rx ITR setting if DIM is off */ 8598 rc = &rx_q_vector->rx; 8599 if (!ITR_IS_DYNAMIC(rc)) 8600 ice_write_itr(rc, rc->itr_setting); 8601 } 8602 } 8603 8604 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8605 * GLINT_ITR register would have written to perform in-context 8606 * update, hence perform flush 8607 */ 8608 if (ch->num_txq || ch->num_rxq) 8609 ice_flush(&vsi->back->hw); 8610 } 8611 8612 /** 8613 * ice_cfg_chnl_all_res - configure channel resources 8614 * @vsi: pte to main_vsi 8615 * @ch: ptr to channel structure 8616 * 8617 * This function configures channel specific resources such as flow-director 8618 * counter index, and other resources such as queues, vectors, ITR settings 8619 */ 8620 static void 8621 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8622 { 8623 /* configure channel (aka ADQ) resources such as queues, vectors, 8624 * ITR settings for channel specific vectors and anything else 8625 */ 8626 ice_chnl_cfg_res(vsi, ch); 8627 } 8628 8629 /** 8630 * ice_setup_hw_channel - setup new channel 8631 * @pf: ptr to PF device 8632 * @vsi: the VSI being setup 8633 * @ch: ptr to channel structure 8634 * @sw_id: underlying HW switching element ID 8635 * @type: type of channel to be created (VMDq2/VF) 8636 * 8637 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8638 * and configures Tx rings accordingly 8639 */ 8640 static int 8641 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8642 struct ice_channel *ch, u16 sw_id, u8 type) 8643 { 8644 struct device *dev = ice_pf_to_dev(pf); 8645 int ret; 8646 8647 ch->base_q = vsi->next_base_q; 8648 ch->type = type; 8649 8650 ret = ice_add_channel(pf, sw_id, ch); 8651 if (ret) { 8652 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8653 return ret; 8654 } 8655 8656 /* configure/setup ADQ specific resources */ 8657 ice_cfg_chnl_all_res(vsi, ch); 8658 8659 /* make sure to update the next_base_q so that subsequent channel's 8660 * (aka ADQ) VSI queue map is correct 8661 */ 8662 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8663 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8664 ch->num_rxq); 8665 8666 return 0; 8667 } 8668 8669 /** 8670 * ice_setup_channel - setup new channel using uplink element 8671 * @pf: ptr to PF device 8672 * @vsi: the VSI being setup 8673 * @ch: ptr to channel structure 8674 * 8675 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8676 * and uplink switching element 8677 */ 8678 static bool 8679 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8680 struct ice_channel *ch) 8681 { 8682 struct device *dev = ice_pf_to_dev(pf); 8683 u16 sw_id; 8684 int ret; 8685 8686 if (vsi->type != ICE_VSI_PF) { 8687 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8688 return false; 8689 } 8690 8691 sw_id = pf->first_sw->sw_id; 8692 8693 /* create channel (VSI) */ 8694 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8695 if (ret) { 8696 dev_err(dev, "failed to setup hw_channel\n"); 8697 return false; 8698 } 8699 dev_dbg(dev, "successfully created channel()\n"); 8700 8701 return ch->ch_vsi ? true : false; 8702 } 8703 8704 /** 8705 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8706 * @vsi: VSI to be configured 8707 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8708 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8709 */ 8710 static int 8711 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8712 { 8713 int err; 8714 8715 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8716 if (err) 8717 return err; 8718 8719 return ice_set_max_bw_limit(vsi, max_tx_rate); 8720 } 8721 8722 /** 8723 * ice_create_q_channel - function to create channel 8724 * @vsi: VSI to be configured 8725 * @ch: ptr to channel (it contains channel specific params) 8726 * 8727 * This function creates channel (VSI) using num_queues specified by user, 8728 * reconfigs RSS if needed. 8729 */ 8730 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8731 { 8732 struct ice_pf *pf = vsi->back; 8733 struct device *dev; 8734 8735 if (!ch) 8736 return -EINVAL; 8737 8738 dev = ice_pf_to_dev(pf); 8739 if (!ch->num_txq || !ch->num_rxq) { 8740 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8741 return -EINVAL; 8742 } 8743 8744 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8745 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8746 vsi->cnt_q_avail, ch->num_txq); 8747 return -EINVAL; 8748 } 8749 8750 if (!ice_setup_channel(pf, vsi, ch)) { 8751 dev_info(dev, "Failed to setup channel\n"); 8752 return -EINVAL; 8753 } 8754 /* configure BW rate limit */ 8755 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8756 int ret; 8757 8758 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8759 ch->min_tx_rate); 8760 if (ret) 8761 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8762 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8763 else 8764 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8765 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8766 } 8767 8768 vsi->cnt_q_avail -= ch->num_txq; 8769 8770 return 0; 8771 } 8772 8773 /** 8774 * ice_rem_all_chnl_fltrs - removes all channel filters 8775 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8776 * 8777 * Remove all advanced switch filters only if they are channel specific 8778 * tc-flower based filter 8779 */ 8780 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8781 { 8782 struct ice_tc_flower_fltr *fltr; 8783 struct hlist_node *node; 8784 8785 /* to remove all channel filters, iterate an ordered list of filters */ 8786 hlist_for_each_entry_safe(fltr, node, 8787 &pf->tc_flower_fltr_list, 8788 tc_flower_node) { 8789 struct ice_rule_query_data rule; 8790 int status; 8791 8792 /* for now process only channel specific filters */ 8793 if (!ice_is_chnl_fltr(fltr)) 8794 continue; 8795 8796 rule.rid = fltr->rid; 8797 rule.rule_id = fltr->rule_id; 8798 rule.vsi_handle = fltr->dest_vsi_handle; 8799 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8800 if (status) { 8801 if (status == -ENOENT) 8802 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8803 rule.rule_id); 8804 else 8805 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8806 status); 8807 } else if (fltr->dest_vsi) { 8808 /* update advanced switch filter count */ 8809 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8810 u32 flags = fltr->flags; 8811 8812 fltr->dest_vsi->num_chnl_fltr--; 8813 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8814 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8815 pf->num_dmac_chnl_fltrs--; 8816 } 8817 } 8818 8819 hlist_del(&fltr->tc_flower_node); 8820 kfree(fltr); 8821 } 8822 } 8823 8824 /** 8825 * ice_remove_q_channels - Remove queue channels for the TCs 8826 * @vsi: VSI to be configured 8827 * @rem_fltr: delete advanced switch filter or not 8828 * 8829 * Remove queue channels for the TCs 8830 */ 8831 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8832 { 8833 struct ice_channel *ch, *ch_tmp; 8834 struct ice_pf *pf = vsi->back; 8835 int i; 8836 8837 /* remove all tc-flower based filter if they are channel filters only */ 8838 if (rem_fltr) 8839 ice_rem_all_chnl_fltrs(pf); 8840 8841 /* remove ntuple filters since queue configuration is being changed */ 8842 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8843 struct ice_hw *hw = &pf->hw; 8844 8845 mutex_lock(&hw->fdir_fltr_lock); 8846 ice_fdir_del_all_fltrs(vsi); 8847 mutex_unlock(&hw->fdir_fltr_lock); 8848 } 8849 8850 /* perform cleanup for channels if they exist */ 8851 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8852 struct ice_vsi *ch_vsi; 8853 8854 list_del(&ch->list); 8855 ch_vsi = ch->ch_vsi; 8856 if (!ch_vsi) { 8857 kfree(ch); 8858 continue; 8859 } 8860 8861 /* Reset queue contexts */ 8862 for (i = 0; i < ch->num_rxq; i++) { 8863 struct ice_tx_ring *tx_ring; 8864 struct ice_rx_ring *rx_ring; 8865 8866 tx_ring = vsi->tx_rings[ch->base_q + i]; 8867 rx_ring = vsi->rx_rings[ch->base_q + i]; 8868 if (tx_ring) { 8869 tx_ring->ch = NULL; 8870 if (tx_ring->q_vector) 8871 tx_ring->q_vector->ch = NULL; 8872 } 8873 if (rx_ring) { 8874 rx_ring->ch = NULL; 8875 if (rx_ring->q_vector) 8876 rx_ring->q_vector->ch = NULL; 8877 } 8878 } 8879 8880 /* Release FD resources for the channel VSI */ 8881 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8882 8883 /* clear the VSI from scheduler tree */ 8884 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8885 8886 /* Delete VSI from FW, PF and HW VSI arrays */ 8887 ice_vsi_delete(ch->ch_vsi); 8888 8889 /* free the channel */ 8890 kfree(ch); 8891 } 8892 8893 /* clear the channel VSI map which is stored in main VSI */ 8894 ice_for_each_chnl_tc(i) 8895 vsi->tc_map_vsi[i] = NULL; 8896 8897 /* reset main VSI's all TC information */ 8898 vsi->all_enatc = 0; 8899 vsi->all_numtc = 0; 8900 } 8901 8902 /** 8903 * ice_rebuild_channels - rebuild channel 8904 * @pf: ptr to PF 8905 * 8906 * Recreate channel VSIs and replay filters 8907 */ 8908 static int ice_rebuild_channels(struct ice_pf *pf) 8909 { 8910 struct device *dev = ice_pf_to_dev(pf); 8911 struct ice_vsi *main_vsi; 8912 bool rem_adv_fltr = true; 8913 struct ice_channel *ch; 8914 struct ice_vsi *vsi; 8915 int tc_idx = 1; 8916 int i, err; 8917 8918 main_vsi = ice_get_main_vsi(pf); 8919 if (!main_vsi) 8920 return 0; 8921 8922 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8923 main_vsi->old_numtc == 1) 8924 return 0; /* nothing to be done */ 8925 8926 /* reconfigure main VSI based on old value of TC and cached values 8927 * for MQPRIO opts 8928 */ 8929 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8930 if (err) { 8931 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8932 main_vsi->old_ena_tc, main_vsi->vsi_num); 8933 return err; 8934 } 8935 8936 /* rebuild ADQ VSIs */ 8937 ice_for_each_vsi(pf, i) { 8938 enum ice_vsi_type type; 8939 8940 vsi = pf->vsi[i]; 8941 if (!vsi || vsi->type != ICE_VSI_CHNL) 8942 continue; 8943 8944 type = vsi->type; 8945 8946 /* rebuild ADQ VSI */ 8947 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8948 if (err) { 8949 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8950 ice_vsi_type_str(type), vsi->idx, err); 8951 goto cleanup; 8952 } 8953 8954 /* Re-map HW VSI number, using VSI handle that has been 8955 * previously validated in ice_replay_vsi() call above 8956 */ 8957 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8958 8959 /* replay filters for the VSI */ 8960 err = ice_replay_vsi(&pf->hw, vsi->idx); 8961 if (err) { 8962 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8963 ice_vsi_type_str(type), err, vsi->idx); 8964 rem_adv_fltr = false; 8965 goto cleanup; 8966 } 8967 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8968 ice_vsi_type_str(type), vsi->idx); 8969 8970 /* store ADQ VSI at correct TC index in main VSI's 8971 * map of TC to VSI 8972 */ 8973 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8974 } 8975 8976 /* ADQ VSI(s) has been rebuilt successfully, so setup 8977 * channel for main VSI's Tx and Rx rings 8978 */ 8979 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8980 struct ice_vsi *ch_vsi; 8981 8982 ch_vsi = ch->ch_vsi; 8983 if (!ch_vsi) 8984 continue; 8985 8986 /* reconfig channel resources */ 8987 ice_cfg_chnl_all_res(main_vsi, ch); 8988 8989 /* replay BW rate limit if it is non-zero */ 8990 if (!ch->max_tx_rate && !ch->min_tx_rate) 8991 continue; 8992 8993 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8994 ch->min_tx_rate); 8995 if (err) 8996 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8997 err, ch->max_tx_rate, ch->min_tx_rate, 8998 ch_vsi->vsi_num); 8999 else 9000 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9001 ch->max_tx_rate, ch->min_tx_rate, 9002 ch_vsi->vsi_num); 9003 } 9004 9005 /* reconfig RSS for main VSI */ 9006 if (main_vsi->ch_rss_size) 9007 ice_vsi_cfg_rss_lut_key(main_vsi); 9008 9009 return 0; 9010 9011 cleanup: 9012 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9013 return err; 9014 } 9015 9016 /** 9017 * ice_create_q_channels - Add queue channel for the given TCs 9018 * @vsi: VSI to be configured 9019 * 9020 * Configures queue channel mapping to the given TCs 9021 */ 9022 static int ice_create_q_channels(struct ice_vsi *vsi) 9023 { 9024 struct ice_pf *pf = vsi->back; 9025 struct ice_channel *ch; 9026 int ret = 0, i; 9027 9028 ice_for_each_chnl_tc(i) { 9029 if (!(vsi->all_enatc & BIT(i))) 9030 continue; 9031 9032 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9033 if (!ch) { 9034 ret = -ENOMEM; 9035 goto err_free; 9036 } 9037 INIT_LIST_HEAD(&ch->list); 9038 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9039 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9040 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9041 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9042 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9043 9044 /* convert to Kbits/s */ 9045 if (ch->max_tx_rate) 9046 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9047 ICE_BW_KBPS_DIVISOR); 9048 if (ch->min_tx_rate) 9049 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9050 ICE_BW_KBPS_DIVISOR); 9051 9052 ret = ice_create_q_channel(vsi, ch); 9053 if (ret) { 9054 dev_err(ice_pf_to_dev(pf), 9055 "failed creating channel TC:%d\n", i); 9056 kfree(ch); 9057 goto err_free; 9058 } 9059 list_add_tail(&ch->list, &vsi->ch_list); 9060 vsi->tc_map_vsi[i] = ch->ch_vsi; 9061 dev_dbg(ice_pf_to_dev(pf), 9062 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9063 } 9064 return 0; 9065 9066 err_free: 9067 ice_remove_q_channels(vsi, false); 9068 9069 return ret; 9070 } 9071 9072 /** 9073 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9074 * @netdev: net device to configure 9075 * @type_data: TC offload data 9076 */ 9077 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9078 { 9079 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9080 struct ice_netdev_priv *np = netdev_priv(netdev); 9081 struct ice_vsi *vsi = np->vsi; 9082 struct ice_pf *pf = vsi->back; 9083 u16 mode, ena_tc_qdisc = 0; 9084 int cur_txq, cur_rxq; 9085 u8 hw = 0, num_tcf; 9086 struct device *dev; 9087 int ret, i; 9088 9089 dev = ice_pf_to_dev(pf); 9090 num_tcf = mqprio_qopt->qopt.num_tc; 9091 hw = mqprio_qopt->qopt.hw; 9092 mode = mqprio_qopt->mode; 9093 if (!hw) { 9094 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9095 vsi->ch_rss_size = 0; 9096 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9097 goto config_tcf; 9098 } 9099 9100 /* Generate queue region map for number of TCF requested */ 9101 for (i = 0; i < num_tcf; i++) 9102 ena_tc_qdisc |= BIT(i); 9103 9104 switch (mode) { 9105 case TC_MQPRIO_MODE_CHANNEL: 9106 9107 if (pf->hw.port_info->is_custom_tx_enabled) { 9108 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9109 return -EBUSY; 9110 } 9111 ice_tear_down_devlink_rate_tree(pf); 9112 9113 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9114 if (ret) { 9115 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9116 ret); 9117 return ret; 9118 } 9119 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9120 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9121 /* don't assume state of hw_tc_offload during driver load 9122 * and set the flag for TC flower filter if hw_tc_offload 9123 * already ON 9124 */ 9125 if (vsi->netdev->features & NETIF_F_HW_TC) 9126 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9127 break; 9128 default: 9129 return -EINVAL; 9130 } 9131 9132 config_tcf: 9133 9134 /* Requesting same TCF configuration as already enabled */ 9135 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9136 mode != TC_MQPRIO_MODE_CHANNEL) 9137 return 0; 9138 9139 /* Pause VSI queues */ 9140 ice_dis_vsi(vsi, true); 9141 9142 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9143 ice_remove_q_channels(vsi, true); 9144 9145 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9146 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9147 num_online_cpus()); 9148 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9149 num_online_cpus()); 9150 } else { 9151 /* logic to rebuild VSI, same like ethtool -L */ 9152 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9153 9154 for (i = 0; i < num_tcf; i++) { 9155 if (!(ena_tc_qdisc & BIT(i))) 9156 continue; 9157 9158 offset = vsi->mqprio_qopt.qopt.offset[i]; 9159 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9160 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9161 } 9162 vsi->req_txq = offset + qcount_tx; 9163 vsi->req_rxq = offset + qcount_rx; 9164 9165 /* store away original rss_size info, so that it gets reused 9166 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9167 * determine, what should be the rss_sizefor main VSI 9168 */ 9169 vsi->orig_rss_size = vsi->rss_size; 9170 } 9171 9172 /* save current values of Tx and Rx queues before calling VSI rebuild 9173 * for fallback option 9174 */ 9175 cur_txq = vsi->num_txq; 9176 cur_rxq = vsi->num_rxq; 9177 9178 /* proceed with rebuild main VSI using correct number of queues */ 9179 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9180 if (ret) { 9181 /* fallback to current number of queues */ 9182 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9183 vsi->req_txq = cur_txq; 9184 vsi->req_rxq = cur_rxq; 9185 clear_bit(ICE_RESET_FAILED, pf->state); 9186 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9187 dev_err(dev, "Rebuild of main VSI failed again\n"); 9188 return ret; 9189 } 9190 } 9191 9192 vsi->all_numtc = num_tcf; 9193 vsi->all_enatc = ena_tc_qdisc; 9194 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9195 if (ret) { 9196 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9197 vsi->vsi_num); 9198 goto exit; 9199 } 9200 9201 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9202 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9203 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9204 9205 /* set TC0 rate limit if specified */ 9206 if (max_tx_rate || min_tx_rate) { 9207 /* convert to Kbits/s */ 9208 if (max_tx_rate) 9209 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9210 if (min_tx_rate) 9211 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9212 9213 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9214 if (!ret) { 9215 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9216 max_tx_rate, min_tx_rate, vsi->vsi_num); 9217 } else { 9218 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9219 max_tx_rate, min_tx_rate, vsi->vsi_num); 9220 goto exit; 9221 } 9222 } 9223 ret = ice_create_q_channels(vsi); 9224 if (ret) { 9225 netdev_err(netdev, "failed configuring queue channels\n"); 9226 goto exit; 9227 } else { 9228 netdev_dbg(netdev, "successfully configured channels\n"); 9229 } 9230 } 9231 9232 if (vsi->ch_rss_size) 9233 ice_vsi_cfg_rss_lut_key(vsi); 9234 9235 exit: 9236 /* if error, reset the all_numtc and all_enatc */ 9237 if (ret) { 9238 vsi->all_numtc = 0; 9239 vsi->all_enatc = 0; 9240 } 9241 /* resume VSI */ 9242 ice_ena_vsi(vsi, true); 9243 9244 return ret; 9245 } 9246 9247 static LIST_HEAD(ice_block_cb_list); 9248 9249 static int 9250 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9251 void *type_data) 9252 { 9253 struct ice_netdev_priv *np = netdev_priv(netdev); 9254 struct ice_pf *pf = np->vsi->back; 9255 bool locked = false; 9256 int err; 9257 9258 switch (type) { 9259 case TC_SETUP_BLOCK: 9260 return flow_block_cb_setup_simple(type_data, 9261 &ice_block_cb_list, 9262 ice_setup_tc_block_cb, 9263 np, np, true); 9264 case TC_SETUP_QDISC_MQPRIO: 9265 if (ice_is_eswitch_mode_switchdev(pf)) { 9266 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9267 return -EOPNOTSUPP; 9268 } 9269 9270 if (pf->adev) { 9271 mutex_lock(&pf->adev_mutex); 9272 device_lock(&pf->adev->dev); 9273 locked = true; 9274 if (pf->adev->dev.driver) { 9275 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9276 err = -EBUSY; 9277 goto adev_unlock; 9278 } 9279 } 9280 9281 /* setup traffic classifier for receive side */ 9282 mutex_lock(&pf->tc_mutex); 9283 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9284 mutex_unlock(&pf->tc_mutex); 9285 9286 adev_unlock: 9287 if (locked) { 9288 device_unlock(&pf->adev->dev); 9289 mutex_unlock(&pf->adev_mutex); 9290 } 9291 return err; 9292 default: 9293 return -EOPNOTSUPP; 9294 } 9295 return -EOPNOTSUPP; 9296 } 9297 9298 static struct ice_indr_block_priv * 9299 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9300 struct net_device *netdev) 9301 { 9302 struct ice_indr_block_priv *cb_priv; 9303 9304 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9305 if (!cb_priv->netdev) 9306 return NULL; 9307 if (cb_priv->netdev == netdev) 9308 return cb_priv; 9309 } 9310 return NULL; 9311 } 9312 9313 static int 9314 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9315 void *indr_priv) 9316 { 9317 struct ice_indr_block_priv *priv = indr_priv; 9318 struct ice_netdev_priv *np = priv->np; 9319 9320 switch (type) { 9321 case TC_SETUP_CLSFLOWER: 9322 return ice_setup_tc_cls_flower(np, priv->netdev, 9323 (struct flow_cls_offload *) 9324 type_data); 9325 default: 9326 return -EOPNOTSUPP; 9327 } 9328 } 9329 9330 static int 9331 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9332 struct ice_netdev_priv *np, 9333 struct flow_block_offload *f, void *data, 9334 void (*cleanup)(struct flow_block_cb *block_cb)) 9335 { 9336 struct ice_indr_block_priv *indr_priv; 9337 struct flow_block_cb *block_cb; 9338 9339 if (!ice_is_tunnel_supported(netdev) && 9340 !(is_vlan_dev(netdev) && 9341 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9342 return -EOPNOTSUPP; 9343 9344 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9345 return -EOPNOTSUPP; 9346 9347 switch (f->command) { 9348 case FLOW_BLOCK_BIND: 9349 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9350 if (indr_priv) 9351 return -EEXIST; 9352 9353 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9354 if (!indr_priv) 9355 return -ENOMEM; 9356 9357 indr_priv->netdev = netdev; 9358 indr_priv->np = np; 9359 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9360 9361 block_cb = 9362 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9363 indr_priv, indr_priv, 9364 ice_rep_indr_tc_block_unbind, 9365 f, netdev, sch, data, np, 9366 cleanup); 9367 9368 if (IS_ERR(block_cb)) { 9369 list_del(&indr_priv->list); 9370 kfree(indr_priv); 9371 return PTR_ERR(block_cb); 9372 } 9373 flow_block_cb_add(block_cb, f); 9374 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9375 break; 9376 case FLOW_BLOCK_UNBIND: 9377 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9378 if (!indr_priv) 9379 return -ENOENT; 9380 9381 block_cb = flow_block_cb_lookup(f->block, 9382 ice_indr_setup_block_cb, 9383 indr_priv); 9384 if (!block_cb) 9385 return -ENOENT; 9386 9387 flow_indr_block_cb_remove(block_cb, f); 9388 9389 list_del(&block_cb->driver_list); 9390 break; 9391 default: 9392 return -EOPNOTSUPP; 9393 } 9394 return 0; 9395 } 9396 9397 static int 9398 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9399 void *cb_priv, enum tc_setup_type type, void *type_data, 9400 void *data, 9401 void (*cleanup)(struct flow_block_cb *block_cb)) 9402 { 9403 switch (type) { 9404 case TC_SETUP_BLOCK: 9405 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9406 data, cleanup); 9407 9408 default: 9409 return -EOPNOTSUPP; 9410 } 9411 } 9412 9413 /** 9414 * ice_open - Called when a network interface becomes active 9415 * @netdev: network interface device structure 9416 * 9417 * The open entry point is called when a network interface is made 9418 * active by the system (IFF_UP). At this point all resources needed 9419 * for transmit and receive operations are allocated, the interrupt 9420 * handler is registered with the OS, the netdev watchdog is enabled, 9421 * and the stack is notified that the interface is ready. 9422 * 9423 * Returns 0 on success, negative value on failure 9424 */ 9425 int ice_open(struct net_device *netdev) 9426 { 9427 struct ice_netdev_priv *np = netdev_priv(netdev); 9428 struct ice_pf *pf = np->vsi->back; 9429 9430 if (ice_is_reset_in_progress(pf->state)) { 9431 netdev_err(netdev, "can't open net device while reset is in progress"); 9432 return -EBUSY; 9433 } 9434 9435 return ice_open_internal(netdev); 9436 } 9437 9438 /** 9439 * ice_open_internal - Called when a network interface becomes active 9440 * @netdev: network interface device structure 9441 * 9442 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9443 * handling routine 9444 * 9445 * Returns 0 on success, negative value on failure 9446 */ 9447 int ice_open_internal(struct net_device *netdev) 9448 { 9449 struct ice_netdev_priv *np = netdev_priv(netdev); 9450 struct ice_vsi *vsi = np->vsi; 9451 struct ice_pf *pf = vsi->back; 9452 struct ice_port_info *pi; 9453 int err; 9454 9455 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9456 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9457 return -EIO; 9458 } 9459 9460 netif_carrier_off(netdev); 9461 9462 pi = vsi->port_info; 9463 err = ice_update_link_info(pi); 9464 if (err) { 9465 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9466 return err; 9467 } 9468 9469 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9470 9471 /* Set PHY if there is media, otherwise, turn off PHY */ 9472 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9473 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9474 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9475 err = ice_init_phy_user_cfg(pi); 9476 if (err) { 9477 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9478 err); 9479 return err; 9480 } 9481 } 9482 9483 err = ice_configure_phy(vsi); 9484 if (err) { 9485 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9486 err); 9487 return err; 9488 } 9489 } else { 9490 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9491 ice_set_link(vsi, false); 9492 } 9493 9494 err = ice_vsi_open(vsi); 9495 if (err) 9496 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9497 vsi->vsi_num, vsi->vsw->sw_id); 9498 9499 /* Update existing tunnels information */ 9500 udp_tunnel_get_rx_info(netdev); 9501 9502 return err; 9503 } 9504 9505 /** 9506 * ice_stop - Disables a network interface 9507 * @netdev: network interface device structure 9508 * 9509 * The stop entry point is called when an interface is de-activated by the OS, 9510 * and the netdevice enters the DOWN state. The hardware is still under the 9511 * driver's control, but the netdev interface is disabled. 9512 * 9513 * Returns success only - not allowed to fail 9514 */ 9515 int ice_stop(struct net_device *netdev) 9516 { 9517 struct ice_netdev_priv *np = netdev_priv(netdev); 9518 struct ice_vsi *vsi = np->vsi; 9519 struct ice_pf *pf = vsi->back; 9520 9521 if (ice_is_reset_in_progress(pf->state)) { 9522 netdev_err(netdev, "can't stop net device while reset is in progress"); 9523 return -EBUSY; 9524 } 9525 9526 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9527 int link_err = ice_force_phys_link_state(vsi, false); 9528 9529 if (link_err) { 9530 if (link_err == -ENOMEDIUM) 9531 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9532 vsi->vsi_num); 9533 else 9534 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9535 vsi->vsi_num, link_err); 9536 9537 ice_vsi_close(vsi); 9538 return -EIO; 9539 } 9540 } 9541 9542 ice_vsi_close(vsi); 9543 9544 return 0; 9545 } 9546 9547 /** 9548 * ice_features_check - Validate encapsulated packet conforms to limits 9549 * @skb: skb buffer 9550 * @netdev: This port's netdev 9551 * @features: Offload features that the stack believes apply 9552 */ 9553 static netdev_features_t 9554 ice_features_check(struct sk_buff *skb, 9555 struct net_device __always_unused *netdev, 9556 netdev_features_t features) 9557 { 9558 bool gso = skb_is_gso(skb); 9559 size_t len; 9560 9561 /* No point in doing any of this if neither checksum nor GSO are 9562 * being requested for this frame. We can rule out both by just 9563 * checking for CHECKSUM_PARTIAL 9564 */ 9565 if (skb->ip_summed != CHECKSUM_PARTIAL) 9566 return features; 9567 9568 /* We cannot support GSO if the MSS is going to be less than 9569 * 64 bytes. If it is then we need to drop support for GSO. 9570 */ 9571 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9572 features &= ~NETIF_F_GSO_MASK; 9573 9574 len = skb_network_offset(skb); 9575 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9576 goto out_rm_features; 9577 9578 len = skb_network_header_len(skb); 9579 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9580 goto out_rm_features; 9581 9582 if (skb->encapsulation) { 9583 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9584 * the case of IPIP frames, the transport header pointer is 9585 * after the inner header! So check to make sure that this 9586 * is a GRE or UDP_TUNNEL frame before doing that math. 9587 */ 9588 if (gso && (skb_shinfo(skb)->gso_type & 9589 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9590 len = skb_inner_network_header(skb) - 9591 skb_transport_header(skb); 9592 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9593 goto out_rm_features; 9594 } 9595 9596 len = skb_inner_network_header_len(skb); 9597 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9598 goto out_rm_features; 9599 } 9600 9601 return features; 9602 out_rm_features: 9603 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9604 } 9605 9606 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9607 .ndo_open = ice_open, 9608 .ndo_stop = ice_stop, 9609 .ndo_start_xmit = ice_start_xmit, 9610 .ndo_set_mac_address = ice_set_mac_address, 9611 .ndo_validate_addr = eth_validate_addr, 9612 .ndo_change_mtu = ice_change_mtu, 9613 .ndo_get_stats64 = ice_get_stats64, 9614 .ndo_tx_timeout = ice_tx_timeout, 9615 .ndo_bpf = ice_xdp_safe_mode, 9616 }; 9617 9618 static const struct net_device_ops ice_netdev_ops = { 9619 .ndo_open = ice_open, 9620 .ndo_stop = ice_stop, 9621 .ndo_start_xmit = ice_start_xmit, 9622 .ndo_select_queue = ice_select_queue, 9623 .ndo_features_check = ice_features_check, 9624 .ndo_fix_features = ice_fix_features, 9625 .ndo_set_rx_mode = ice_set_rx_mode, 9626 .ndo_set_mac_address = ice_set_mac_address, 9627 .ndo_validate_addr = eth_validate_addr, 9628 .ndo_change_mtu = ice_change_mtu, 9629 .ndo_get_stats64 = ice_get_stats64, 9630 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9631 .ndo_eth_ioctl = ice_eth_ioctl, 9632 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9633 .ndo_set_vf_mac = ice_set_vf_mac, 9634 .ndo_get_vf_config = ice_get_vf_cfg, 9635 .ndo_set_vf_trust = ice_set_vf_trust, 9636 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9637 .ndo_set_vf_link_state = ice_set_vf_link_state, 9638 .ndo_get_vf_stats = ice_get_vf_stats, 9639 .ndo_set_vf_rate = ice_set_vf_bw, 9640 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9641 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9642 .ndo_setup_tc = ice_setup_tc, 9643 .ndo_set_features = ice_set_features, 9644 .ndo_bridge_getlink = ice_bridge_getlink, 9645 .ndo_bridge_setlink = ice_bridge_setlink, 9646 .ndo_fdb_add = ice_fdb_add, 9647 .ndo_fdb_del = ice_fdb_del, 9648 #ifdef CONFIG_RFS_ACCEL 9649 .ndo_rx_flow_steer = ice_rx_flow_steer, 9650 #endif 9651 .ndo_tx_timeout = ice_tx_timeout, 9652 .ndo_bpf = ice_xdp, 9653 .ndo_xdp_xmit = ice_xdp_xmit, 9654 .ndo_xsk_wakeup = ice_xsk_wakeup, 9655 }; 9656