1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_hwmon.h" 19 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 20 * ice tracepoint functions. This must be done exactly once across the 21 * ice driver. 22 */ 23 #define CREATE_TRACE_POINTS 24 #include "ice_trace.h" 25 #include "ice_eswitch.h" 26 #include "ice_tc_lib.h" 27 #include "ice_vsi_vlan_ops.h" 28 #include <net/xdp_sock_drv.h> 29 30 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 31 static const char ice_driver_string[] = DRV_SUMMARY; 32 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 33 34 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 35 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 36 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 37 38 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_LICENSE("GPL v2"); 41 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 42 43 static int debug = -1; 44 module_param(debug, int, 0644); 45 #ifndef CONFIG_DYNAMIC_DEBUG 46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 47 #else 48 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 49 #endif /* !CONFIG_DYNAMIC_DEBUG */ 50 51 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 52 EXPORT_SYMBOL(ice_xdp_locking_key); 53 54 /** 55 * ice_hw_to_dev - Get device pointer from the hardware structure 56 * @hw: pointer to the device HW structure 57 * 58 * Used to access the device pointer from compilation units which can't easily 59 * include the definition of struct ice_pf without leading to circular header 60 * dependencies. 61 */ 62 struct device *ice_hw_to_dev(struct ice_hw *hw) 63 { 64 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 65 66 return &pf->pdev->dev; 67 } 68 69 static struct workqueue_struct *ice_wq; 70 struct workqueue_struct *ice_lag_wq; 71 static const struct net_device_ops ice_netdev_safe_mode_ops; 72 static const struct net_device_ops ice_netdev_ops; 73 74 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 75 76 static void ice_vsi_release_all(struct ice_pf *pf); 77 78 static int ice_rebuild_channels(struct ice_pf *pf); 79 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 80 81 static int 82 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 83 void *cb_priv, enum tc_setup_type type, void *type_data, 84 void *data, 85 void (*cleanup)(struct flow_block_cb *block_cb)); 86 87 bool netif_is_ice(const struct net_device *dev) 88 { 89 return dev && (dev->netdev_ops == &ice_netdev_ops); 90 } 91 92 /** 93 * ice_get_tx_pending - returns number of Tx descriptors not processed 94 * @ring: the ring of descriptors 95 */ 96 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 97 { 98 u16 head, tail; 99 100 head = ring->next_to_clean; 101 tail = ring->next_to_use; 102 103 if (head != tail) 104 return (head < tail) ? 105 tail - head : (tail + ring->count - head); 106 return 0; 107 } 108 109 /** 110 * ice_check_for_hang_subtask - check for and recover hung queues 111 * @pf: pointer to PF struct 112 */ 113 static void ice_check_for_hang_subtask(struct ice_pf *pf) 114 { 115 struct ice_vsi *vsi = NULL; 116 struct ice_hw *hw; 117 unsigned int i; 118 int packets; 119 u32 v; 120 121 ice_for_each_vsi(pf, v) 122 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 123 vsi = pf->vsi[v]; 124 break; 125 } 126 127 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 128 return; 129 130 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 131 return; 132 133 hw = &vsi->back->hw; 134 135 ice_for_each_txq(vsi, i) { 136 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 137 struct ice_ring_stats *ring_stats; 138 139 if (!tx_ring) 140 continue; 141 if (ice_ring_ch_enabled(tx_ring)) 142 continue; 143 144 ring_stats = tx_ring->ring_stats; 145 if (!ring_stats) 146 continue; 147 148 if (tx_ring->desc) { 149 /* If packet counter has not changed the queue is 150 * likely stalled, so force an interrupt for this 151 * queue. 152 * 153 * prev_pkt would be negative if there was no 154 * pending work. 155 */ 156 packets = ring_stats->stats.pkts & INT_MAX; 157 if (ring_stats->tx_stats.prev_pkt == packets) { 158 /* Trigger sw interrupt to revive the queue */ 159 ice_trigger_sw_intr(hw, tx_ring->q_vector); 160 continue; 161 } 162 163 /* Memory barrier between read of packet count and call 164 * to ice_get_tx_pending() 165 */ 166 smp_rmb(); 167 ring_stats->tx_stats.prev_pkt = 168 ice_get_tx_pending(tx_ring) ? packets : -1; 169 } 170 } 171 } 172 173 /** 174 * ice_init_mac_fltr - Set initial MAC filters 175 * @pf: board private structure 176 * 177 * Set initial set of MAC filters for PF VSI; configure filters for permanent 178 * address and broadcast address. If an error is encountered, netdevice will be 179 * unregistered. 180 */ 181 static int ice_init_mac_fltr(struct ice_pf *pf) 182 { 183 struct ice_vsi *vsi; 184 u8 *perm_addr; 185 186 vsi = ice_get_main_vsi(pf); 187 if (!vsi) 188 return -EINVAL; 189 190 perm_addr = vsi->port_info->mac.perm_addr; 191 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 192 } 193 194 /** 195 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 196 * @netdev: the net device on which the sync is happening 197 * @addr: MAC address to sync 198 * 199 * This is a callback function which is called by the in kernel device sync 200 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 201 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 202 * MAC filters from the hardware. 203 */ 204 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 205 { 206 struct ice_netdev_priv *np = netdev_priv(netdev); 207 struct ice_vsi *vsi = np->vsi; 208 209 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 210 ICE_FWD_TO_VSI)) 211 return -EINVAL; 212 213 return 0; 214 } 215 216 /** 217 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 218 * @netdev: the net device on which the unsync is happening 219 * @addr: MAC address to unsync 220 * 221 * This is a callback function which is called by the in kernel device unsync 222 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 223 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 224 * delete the MAC filters from the hardware. 225 */ 226 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 227 { 228 struct ice_netdev_priv *np = netdev_priv(netdev); 229 struct ice_vsi *vsi = np->vsi; 230 231 /* Under some circumstances, we might receive a request to delete our 232 * own device address from our uc list. Because we store the device 233 * address in the VSI's MAC filter list, we need to ignore such 234 * requests and not delete our device address from this list. 235 */ 236 if (ether_addr_equal(addr, netdev->dev_addr)) 237 return 0; 238 239 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 240 ICE_FWD_TO_VSI)) 241 return -EINVAL; 242 243 return 0; 244 } 245 246 /** 247 * ice_vsi_fltr_changed - check if filter state changed 248 * @vsi: VSI to be checked 249 * 250 * returns true if filter state has changed, false otherwise. 251 */ 252 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 253 { 254 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 255 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 256 } 257 258 /** 259 * ice_set_promisc - Enable promiscuous mode for a given PF 260 * @vsi: the VSI being configured 261 * @promisc_m: mask of promiscuous config bits 262 * 263 */ 264 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 265 { 266 int status; 267 268 if (vsi->type != ICE_VSI_PF) 269 return 0; 270 271 if (ice_vsi_has_non_zero_vlans(vsi)) { 272 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 273 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 274 promisc_m); 275 } else { 276 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 277 promisc_m, 0); 278 } 279 if (status && status != -EEXIST) 280 return status; 281 282 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 283 vsi->vsi_num, promisc_m); 284 return 0; 285 } 286 287 /** 288 * ice_clear_promisc - Disable promiscuous mode for a given PF 289 * @vsi: the VSI being configured 290 * @promisc_m: mask of promiscuous config bits 291 * 292 */ 293 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 294 { 295 int status; 296 297 if (vsi->type != ICE_VSI_PF) 298 return 0; 299 300 if (ice_vsi_has_non_zero_vlans(vsi)) { 301 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 302 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 303 promisc_m); 304 } else { 305 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 306 promisc_m, 0); 307 } 308 309 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 310 vsi->vsi_num, promisc_m); 311 return status; 312 } 313 314 /** 315 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 316 * @vsi: ptr to the VSI 317 * 318 * Push any outstanding VSI filter changes through the AdminQ. 319 */ 320 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 321 { 322 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 323 struct device *dev = ice_pf_to_dev(vsi->back); 324 struct net_device *netdev = vsi->netdev; 325 bool promisc_forced_on = false; 326 struct ice_pf *pf = vsi->back; 327 struct ice_hw *hw = &pf->hw; 328 u32 changed_flags = 0; 329 int err; 330 331 if (!vsi->netdev) 332 return -EINVAL; 333 334 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 335 usleep_range(1000, 2000); 336 337 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 338 vsi->current_netdev_flags = vsi->netdev->flags; 339 340 INIT_LIST_HEAD(&vsi->tmp_sync_list); 341 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 342 343 if (ice_vsi_fltr_changed(vsi)) { 344 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 345 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 346 347 /* grab the netdev's addr_list_lock */ 348 netif_addr_lock_bh(netdev); 349 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 350 ice_add_mac_to_unsync_list); 351 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 /* our temp lists are populated. release lock */ 354 netif_addr_unlock_bh(netdev); 355 } 356 357 /* Remove MAC addresses in the unsync list */ 358 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 359 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 360 if (err) { 361 netdev_err(netdev, "Failed to delete MAC filters\n"); 362 /* if we failed because of alloc failures, just bail */ 363 if (err == -ENOMEM) 364 goto out; 365 } 366 367 /* Add MAC addresses in the sync list */ 368 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 369 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 370 /* If filter is added successfully or already exists, do not go into 371 * 'if' condition and report it as error. Instead continue processing 372 * rest of the function. 373 */ 374 if (err && err != -EEXIST) { 375 netdev_err(netdev, "Failed to add MAC filters\n"); 376 /* If there is no more space for new umac filters, VSI 377 * should go into promiscuous mode. There should be some 378 * space reserved for promiscuous filters. 379 */ 380 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 381 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 382 vsi->state)) { 383 promisc_forced_on = true; 384 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 385 vsi->vsi_num); 386 } else { 387 goto out; 388 } 389 } 390 err = 0; 391 /* check for changes in promiscuous modes */ 392 if (changed_flags & IFF_ALLMULTI) { 393 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 394 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 395 if (err) { 396 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 397 goto out_promisc; 398 } 399 } else { 400 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 401 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 402 if (err) { 403 vsi->current_netdev_flags |= IFF_ALLMULTI; 404 goto out_promisc; 405 } 406 } 407 } 408 409 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 410 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 411 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 412 if (vsi->current_netdev_flags & IFF_PROMISC) { 413 /* Apply Rx filter rule to get traffic from wire */ 414 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 415 err = ice_set_dflt_vsi(vsi); 416 if (err && err != -EEXIST) { 417 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 418 err, vsi->vsi_num); 419 vsi->current_netdev_flags &= 420 ~IFF_PROMISC; 421 goto out_promisc; 422 } 423 err = 0; 424 vlan_ops->dis_rx_filtering(vsi); 425 426 /* promiscuous mode implies allmulticast so 427 * that VSIs that are in promiscuous mode are 428 * subscribed to multicast packets coming to 429 * the port 430 */ 431 err = ice_set_promisc(vsi, 432 ICE_MCAST_PROMISC_BITS); 433 if (err) 434 goto out_promisc; 435 } 436 } else { 437 /* Clear Rx filter to remove traffic from wire */ 438 if (ice_is_vsi_dflt_vsi(vsi)) { 439 err = ice_clear_dflt_vsi(vsi); 440 if (err) { 441 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 442 err, vsi->vsi_num); 443 vsi->current_netdev_flags |= 444 IFF_PROMISC; 445 goto out_promisc; 446 } 447 if (vsi->netdev->features & 448 NETIF_F_HW_VLAN_CTAG_FILTER) 449 vlan_ops->ena_rx_filtering(vsi); 450 } 451 452 /* disable allmulti here, but only if allmulti is not 453 * still enabled for the netdev 454 */ 455 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 456 err = ice_clear_promisc(vsi, 457 ICE_MCAST_PROMISC_BITS); 458 if (err) { 459 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 460 err, vsi->vsi_num); 461 } 462 } 463 } 464 } 465 goto exit; 466 467 out_promisc: 468 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 469 goto exit; 470 out: 471 /* if something went wrong then set the changed flag so we try again */ 472 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 473 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 474 exit: 475 clear_bit(ICE_CFG_BUSY, vsi->state); 476 return err; 477 } 478 479 /** 480 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 481 * @pf: board private structure 482 */ 483 static void ice_sync_fltr_subtask(struct ice_pf *pf) 484 { 485 int v; 486 487 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 488 return; 489 490 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 491 492 ice_for_each_vsi(pf, v) 493 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 494 ice_vsi_sync_fltr(pf->vsi[v])) { 495 /* come back and try again later */ 496 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 497 break; 498 } 499 } 500 501 /** 502 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 503 * @pf: the PF 504 * @locked: is the rtnl_lock already held 505 */ 506 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 507 { 508 int node; 509 int v; 510 511 ice_for_each_vsi(pf, v) 512 if (pf->vsi[v]) 513 ice_dis_vsi(pf->vsi[v], locked); 514 515 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 516 pf->pf_agg_node[node].num_vsis = 0; 517 518 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 519 pf->vf_agg_node[node].num_vsis = 0; 520 } 521 522 /** 523 * ice_clear_sw_switch_recipes - clear switch recipes 524 * @pf: board private structure 525 * 526 * Mark switch recipes as not created in sw structures. There are cases where 527 * rules (especially advanced rules) need to be restored, either re-read from 528 * hardware or added again. For example after the reset. 'recp_created' flag 529 * prevents from doing that and need to be cleared upfront. 530 */ 531 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 532 { 533 struct ice_sw_recipe *recp; 534 u8 i; 535 536 recp = pf->hw.switch_info->recp_list; 537 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 538 recp[i].recp_created = false; 539 } 540 541 /** 542 * ice_prepare_for_reset - prep for reset 543 * @pf: board private structure 544 * @reset_type: reset type requested 545 * 546 * Inform or close all dependent features in prep for reset. 547 */ 548 static void 549 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 550 { 551 struct ice_hw *hw = &pf->hw; 552 struct ice_vsi *vsi; 553 struct ice_vf *vf; 554 unsigned int bkt; 555 556 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 557 558 /* already prepared for reset */ 559 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 560 return; 561 562 ice_unplug_aux_dev(pf); 563 564 /* Notify VFs of impending reset */ 565 if (ice_check_sq_alive(hw, &hw->mailboxq)) 566 ice_vc_notify_reset(pf); 567 568 /* Disable VFs until reset is completed */ 569 mutex_lock(&pf->vfs.table_lock); 570 ice_for_each_vf(pf, bkt, vf) 571 ice_set_vf_state_dis(vf); 572 mutex_unlock(&pf->vfs.table_lock); 573 574 if (ice_is_eswitch_mode_switchdev(pf)) { 575 if (reset_type != ICE_RESET_PFR) 576 ice_clear_sw_switch_recipes(pf); 577 } 578 579 /* release ADQ specific HW and SW resources */ 580 vsi = ice_get_main_vsi(pf); 581 if (!vsi) 582 goto skip; 583 584 /* to be on safe side, reset orig_rss_size so that normal flow 585 * of deciding rss_size can take precedence 586 */ 587 vsi->orig_rss_size = 0; 588 589 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 590 if (reset_type == ICE_RESET_PFR) { 591 vsi->old_ena_tc = vsi->all_enatc; 592 vsi->old_numtc = vsi->all_numtc; 593 } else { 594 ice_remove_q_channels(vsi, true); 595 596 /* for other reset type, do not support channel rebuild 597 * hence reset needed info 598 */ 599 vsi->old_ena_tc = 0; 600 vsi->all_enatc = 0; 601 vsi->old_numtc = 0; 602 vsi->all_numtc = 0; 603 vsi->req_txq = 0; 604 vsi->req_rxq = 0; 605 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 606 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 607 } 608 } 609 skip: 610 611 /* clear SW filtering DB */ 612 ice_clear_hw_tbls(hw); 613 /* disable the VSIs and their queues that are not already DOWN */ 614 ice_pf_dis_all_vsi(pf, false); 615 616 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 617 ice_ptp_prepare_for_reset(pf, reset_type); 618 619 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 620 ice_gnss_exit(pf); 621 622 if (hw->port_info) 623 ice_sched_clear_port(hw->port_info); 624 625 ice_shutdown_all_ctrlq(hw); 626 627 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 628 } 629 630 /** 631 * ice_do_reset - Initiate one of many types of resets 632 * @pf: board private structure 633 * @reset_type: reset type requested before this function was called. 634 */ 635 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 636 { 637 struct device *dev = ice_pf_to_dev(pf); 638 struct ice_hw *hw = &pf->hw; 639 640 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 641 642 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 643 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 644 reset_type = ICE_RESET_CORER; 645 } 646 647 ice_prepare_for_reset(pf, reset_type); 648 649 /* trigger the reset */ 650 if (ice_reset(hw, reset_type)) { 651 dev_err(dev, "reset %d failed\n", reset_type); 652 set_bit(ICE_RESET_FAILED, pf->state); 653 clear_bit(ICE_RESET_OICR_RECV, pf->state); 654 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 655 clear_bit(ICE_PFR_REQ, pf->state); 656 clear_bit(ICE_CORER_REQ, pf->state); 657 clear_bit(ICE_GLOBR_REQ, pf->state); 658 wake_up(&pf->reset_wait_queue); 659 return; 660 } 661 662 /* PFR is a bit of a special case because it doesn't result in an OICR 663 * interrupt. So for PFR, rebuild after the reset and clear the reset- 664 * associated state bits. 665 */ 666 if (reset_type == ICE_RESET_PFR) { 667 pf->pfr_count++; 668 ice_rebuild(pf, reset_type); 669 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 670 clear_bit(ICE_PFR_REQ, pf->state); 671 wake_up(&pf->reset_wait_queue); 672 ice_reset_all_vfs(pf); 673 } 674 } 675 676 /** 677 * ice_reset_subtask - Set up for resetting the device and driver 678 * @pf: board private structure 679 */ 680 static void ice_reset_subtask(struct ice_pf *pf) 681 { 682 enum ice_reset_req reset_type = ICE_RESET_INVAL; 683 684 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 685 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 686 * of reset is pending and sets bits in pf->state indicating the reset 687 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 688 * prepare for pending reset if not already (for PF software-initiated 689 * global resets the software should already be prepared for it as 690 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 691 * by firmware or software on other PFs, that bit is not set so prepare 692 * for the reset now), poll for reset done, rebuild and return. 693 */ 694 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 695 /* Perform the largest reset requested */ 696 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 697 reset_type = ICE_RESET_CORER; 698 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 699 reset_type = ICE_RESET_GLOBR; 700 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 701 reset_type = ICE_RESET_EMPR; 702 /* return if no valid reset type requested */ 703 if (reset_type == ICE_RESET_INVAL) 704 return; 705 ice_prepare_for_reset(pf, reset_type); 706 707 /* make sure we are ready to rebuild */ 708 if (ice_check_reset(&pf->hw)) { 709 set_bit(ICE_RESET_FAILED, pf->state); 710 } else { 711 /* done with reset. start rebuild */ 712 pf->hw.reset_ongoing = false; 713 ice_rebuild(pf, reset_type); 714 /* clear bit to resume normal operations, but 715 * ICE_NEEDS_RESTART bit is set in case rebuild failed 716 */ 717 clear_bit(ICE_RESET_OICR_RECV, pf->state); 718 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 719 clear_bit(ICE_PFR_REQ, pf->state); 720 clear_bit(ICE_CORER_REQ, pf->state); 721 clear_bit(ICE_GLOBR_REQ, pf->state); 722 wake_up(&pf->reset_wait_queue); 723 ice_reset_all_vfs(pf); 724 } 725 726 return; 727 } 728 729 /* No pending resets to finish processing. Check for new resets */ 730 if (test_bit(ICE_PFR_REQ, pf->state)) { 731 reset_type = ICE_RESET_PFR; 732 if (pf->lag && pf->lag->bonded) { 733 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 734 reset_type = ICE_RESET_CORER; 735 } 736 } 737 if (test_bit(ICE_CORER_REQ, pf->state)) 738 reset_type = ICE_RESET_CORER; 739 if (test_bit(ICE_GLOBR_REQ, pf->state)) 740 reset_type = ICE_RESET_GLOBR; 741 /* If no valid reset type requested just return */ 742 if (reset_type == ICE_RESET_INVAL) 743 return; 744 745 /* reset if not already down or busy */ 746 if (!test_bit(ICE_DOWN, pf->state) && 747 !test_bit(ICE_CFG_BUSY, pf->state)) { 748 ice_do_reset(pf, reset_type); 749 } 750 } 751 752 /** 753 * ice_print_topo_conflict - print topology conflict message 754 * @vsi: the VSI whose topology status is being checked 755 */ 756 static void ice_print_topo_conflict(struct ice_vsi *vsi) 757 { 758 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 759 case ICE_AQ_LINK_TOPO_CONFLICT: 760 case ICE_AQ_LINK_MEDIA_CONFLICT: 761 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 762 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 763 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 764 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 765 break; 766 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 767 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 768 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 769 else 770 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 771 break; 772 default: 773 break; 774 } 775 } 776 777 /** 778 * ice_print_link_msg - print link up or down message 779 * @vsi: the VSI whose link status is being queried 780 * @isup: boolean for if the link is now up or down 781 */ 782 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 783 { 784 struct ice_aqc_get_phy_caps_data *caps; 785 const char *an_advertised; 786 const char *fec_req; 787 const char *speed; 788 const char *fec; 789 const char *fc; 790 const char *an; 791 int status; 792 793 if (!vsi) 794 return; 795 796 if (vsi->current_isup == isup) 797 return; 798 799 vsi->current_isup = isup; 800 801 if (!isup) { 802 netdev_info(vsi->netdev, "NIC Link is Down\n"); 803 return; 804 } 805 806 switch (vsi->port_info->phy.link_info.link_speed) { 807 case ICE_AQ_LINK_SPEED_100GB: 808 speed = "100 G"; 809 break; 810 case ICE_AQ_LINK_SPEED_50GB: 811 speed = "50 G"; 812 break; 813 case ICE_AQ_LINK_SPEED_40GB: 814 speed = "40 G"; 815 break; 816 case ICE_AQ_LINK_SPEED_25GB: 817 speed = "25 G"; 818 break; 819 case ICE_AQ_LINK_SPEED_20GB: 820 speed = "20 G"; 821 break; 822 case ICE_AQ_LINK_SPEED_10GB: 823 speed = "10 G"; 824 break; 825 case ICE_AQ_LINK_SPEED_5GB: 826 speed = "5 G"; 827 break; 828 case ICE_AQ_LINK_SPEED_2500MB: 829 speed = "2.5 G"; 830 break; 831 case ICE_AQ_LINK_SPEED_1000MB: 832 speed = "1 G"; 833 break; 834 case ICE_AQ_LINK_SPEED_100MB: 835 speed = "100 M"; 836 break; 837 default: 838 speed = "Unknown "; 839 break; 840 } 841 842 switch (vsi->port_info->fc.current_mode) { 843 case ICE_FC_FULL: 844 fc = "Rx/Tx"; 845 break; 846 case ICE_FC_TX_PAUSE: 847 fc = "Tx"; 848 break; 849 case ICE_FC_RX_PAUSE: 850 fc = "Rx"; 851 break; 852 case ICE_FC_NONE: 853 fc = "None"; 854 break; 855 default: 856 fc = "Unknown"; 857 break; 858 } 859 860 /* Get FEC mode based on negotiated link info */ 861 switch (vsi->port_info->phy.link_info.fec_info) { 862 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 863 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 864 fec = "RS-FEC"; 865 break; 866 case ICE_AQ_LINK_25G_KR_FEC_EN: 867 fec = "FC-FEC/BASE-R"; 868 break; 869 default: 870 fec = "NONE"; 871 break; 872 } 873 874 /* check if autoneg completed, might be false due to not supported */ 875 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 876 an = "True"; 877 else 878 an = "False"; 879 880 /* Get FEC mode requested based on PHY caps last SW configuration */ 881 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 882 if (!caps) { 883 fec_req = "Unknown"; 884 an_advertised = "Unknown"; 885 goto done; 886 } 887 888 status = ice_aq_get_phy_caps(vsi->port_info, false, 889 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 890 if (status) 891 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 892 893 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 894 895 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 896 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 897 fec_req = "RS-FEC"; 898 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 899 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 900 fec_req = "FC-FEC/BASE-R"; 901 else 902 fec_req = "NONE"; 903 904 kfree(caps); 905 906 done: 907 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 908 speed, fec_req, fec, an_advertised, an, fc); 909 ice_print_topo_conflict(vsi); 910 } 911 912 /** 913 * ice_vsi_link_event - update the VSI's netdev 914 * @vsi: the VSI on which the link event occurred 915 * @link_up: whether or not the VSI needs to be set up or down 916 */ 917 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 918 { 919 if (!vsi) 920 return; 921 922 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 923 return; 924 925 if (vsi->type == ICE_VSI_PF) { 926 if (link_up == netif_carrier_ok(vsi->netdev)) 927 return; 928 929 if (link_up) { 930 netif_carrier_on(vsi->netdev); 931 netif_tx_wake_all_queues(vsi->netdev); 932 } else { 933 netif_carrier_off(vsi->netdev); 934 netif_tx_stop_all_queues(vsi->netdev); 935 } 936 } 937 } 938 939 /** 940 * ice_set_dflt_mib - send a default config MIB to the FW 941 * @pf: private PF struct 942 * 943 * This function sends a default configuration MIB to the FW. 944 * 945 * If this function errors out at any point, the driver is still able to 946 * function. The main impact is that LFC may not operate as expected. 947 * Therefore an error state in this function should be treated with a DBG 948 * message and continue on with driver rebuild/reenable. 949 */ 950 static void ice_set_dflt_mib(struct ice_pf *pf) 951 { 952 struct device *dev = ice_pf_to_dev(pf); 953 u8 mib_type, *buf, *lldpmib = NULL; 954 u16 len, typelen, offset = 0; 955 struct ice_lldp_org_tlv *tlv; 956 struct ice_hw *hw = &pf->hw; 957 u32 ouisubtype; 958 959 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 960 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 961 if (!lldpmib) { 962 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 963 __func__); 964 return; 965 } 966 967 /* Add ETS CFG TLV */ 968 tlv = (struct ice_lldp_org_tlv *)lldpmib; 969 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 970 ICE_IEEE_ETS_TLV_LEN); 971 tlv->typelen = htons(typelen); 972 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 973 ICE_IEEE_SUBTYPE_ETS_CFG); 974 tlv->ouisubtype = htonl(ouisubtype); 975 976 buf = tlv->tlvinfo; 977 buf[0] = 0; 978 979 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 980 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 981 * Octets 13 - 20 are TSA values - leave as zeros 982 */ 983 buf[5] = 0x64; 984 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 985 offset += len + 2; 986 tlv = (struct ice_lldp_org_tlv *) 987 ((char *)tlv + sizeof(tlv->typelen) + len); 988 989 /* Add ETS REC TLV */ 990 buf = tlv->tlvinfo; 991 tlv->typelen = htons(typelen); 992 993 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 994 ICE_IEEE_SUBTYPE_ETS_REC); 995 tlv->ouisubtype = htonl(ouisubtype); 996 997 /* First octet of buf is reserved 998 * Octets 1 - 4 map UP to TC - all UPs map to zero 999 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1000 * Octets 13 - 20 are TSA value - leave as zeros 1001 */ 1002 buf[5] = 0x64; 1003 offset += len + 2; 1004 tlv = (struct ice_lldp_org_tlv *) 1005 ((char *)tlv + sizeof(tlv->typelen) + len); 1006 1007 /* Add PFC CFG TLV */ 1008 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1009 ICE_IEEE_PFC_TLV_LEN); 1010 tlv->typelen = htons(typelen); 1011 1012 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1013 ICE_IEEE_SUBTYPE_PFC_CFG); 1014 tlv->ouisubtype = htonl(ouisubtype); 1015 1016 /* Octet 1 left as all zeros - PFC disabled */ 1017 buf[0] = 0x08; 1018 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1019 offset += len + 2; 1020 1021 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1022 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1023 1024 kfree(lldpmib); 1025 } 1026 1027 /** 1028 * ice_check_phy_fw_load - check if PHY FW load failed 1029 * @pf: pointer to PF struct 1030 * @link_cfg_err: bitmap from the link info structure 1031 * 1032 * check if external PHY FW load failed and print an error message if it did 1033 */ 1034 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1035 { 1036 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1037 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1038 return; 1039 } 1040 1041 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1042 return; 1043 1044 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1045 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1046 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1047 } 1048 } 1049 1050 /** 1051 * ice_check_module_power 1052 * @pf: pointer to PF struct 1053 * @link_cfg_err: bitmap from the link info structure 1054 * 1055 * check module power level returned by a previous call to aq_get_link_info 1056 * and print error messages if module power level is not supported 1057 */ 1058 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1059 { 1060 /* if module power level is supported, clear the flag */ 1061 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1062 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1063 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1064 return; 1065 } 1066 1067 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1068 * above block didn't clear this bit, there's nothing to do 1069 */ 1070 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1071 return; 1072 1073 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1074 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1075 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1076 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1077 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1078 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1079 } 1080 } 1081 1082 /** 1083 * ice_check_link_cfg_err - check if link configuration failed 1084 * @pf: pointer to the PF struct 1085 * @link_cfg_err: bitmap from the link info structure 1086 * 1087 * print if any link configuration failure happens due to the value in the 1088 * link_cfg_err parameter in the link info structure 1089 */ 1090 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1091 { 1092 ice_check_module_power(pf, link_cfg_err); 1093 ice_check_phy_fw_load(pf, link_cfg_err); 1094 } 1095 1096 /** 1097 * ice_link_event - process the link event 1098 * @pf: PF that the link event is associated with 1099 * @pi: port_info for the port that the link event is associated with 1100 * @link_up: true if the physical link is up and false if it is down 1101 * @link_speed: current link speed received from the link event 1102 * 1103 * Returns 0 on success and negative on failure 1104 */ 1105 static int 1106 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1107 u16 link_speed) 1108 { 1109 struct device *dev = ice_pf_to_dev(pf); 1110 struct ice_phy_info *phy_info; 1111 struct ice_vsi *vsi; 1112 u16 old_link_speed; 1113 bool old_link; 1114 int status; 1115 1116 phy_info = &pi->phy; 1117 phy_info->link_info_old = phy_info->link_info; 1118 1119 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1120 old_link_speed = phy_info->link_info_old.link_speed; 1121 1122 /* update the link info structures and re-enable link events, 1123 * don't bail on failure due to other book keeping needed 1124 */ 1125 status = ice_update_link_info(pi); 1126 if (status) 1127 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1128 pi->lport, status, 1129 ice_aq_str(pi->hw->adminq.sq_last_status)); 1130 1131 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1132 1133 /* Check if the link state is up after updating link info, and treat 1134 * this event as an UP event since the link is actually UP now. 1135 */ 1136 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1137 link_up = true; 1138 1139 vsi = ice_get_main_vsi(pf); 1140 if (!vsi || !vsi->port_info) 1141 return -EINVAL; 1142 1143 /* turn off PHY if media was removed */ 1144 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1145 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1146 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1147 ice_set_link(vsi, false); 1148 } 1149 1150 /* if the old link up/down and speed is the same as the new */ 1151 if (link_up == old_link && link_speed == old_link_speed) 1152 return 0; 1153 1154 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1155 1156 if (ice_is_dcb_active(pf)) { 1157 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1158 ice_dcb_rebuild(pf); 1159 } else { 1160 if (link_up) 1161 ice_set_dflt_mib(pf); 1162 } 1163 ice_vsi_link_event(vsi, link_up); 1164 ice_print_link_msg(vsi, link_up); 1165 1166 ice_vc_notify_link_state(pf); 1167 1168 return 0; 1169 } 1170 1171 /** 1172 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1173 * @pf: board private structure 1174 */ 1175 static void ice_watchdog_subtask(struct ice_pf *pf) 1176 { 1177 int i; 1178 1179 /* if interface is down do nothing */ 1180 if (test_bit(ICE_DOWN, pf->state) || 1181 test_bit(ICE_CFG_BUSY, pf->state)) 1182 return; 1183 1184 /* make sure we don't do these things too often */ 1185 if (time_before(jiffies, 1186 pf->serv_tmr_prev + pf->serv_tmr_period)) 1187 return; 1188 1189 pf->serv_tmr_prev = jiffies; 1190 1191 /* Update the stats for active netdevs so the network stack 1192 * can look at updated numbers whenever it cares to 1193 */ 1194 ice_update_pf_stats(pf); 1195 ice_for_each_vsi(pf, i) 1196 if (pf->vsi[i] && pf->vsi[i]->netdev) 1197 ice_update_vsi_stats(pf->vsi[i]); 1198 } 1199 1200 /** 1201 * ice_init_link_events - enable/initialize link events 1202 * @pi: pointer to the port_info instance 1203 * 1204 * Returns -EIO on failure, 0 on success 1205 */ 1206 static int ice_init_link_events(struct ice_port_info *pi) 1207 { 1208 u16 mask; 1209 1210 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1211 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1212 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1213 1214 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1215 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1216 pi->lport); 1217 return -EIO; 1218 } 1219 1220 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1221 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1222 pi->lport); 1223 return -EIO; 1224 } 1225 1226 return 0; 1227 } 1228 1229 /** 1230 * ice_handle_link_event - handle link event via ARQ 1231 * @pf: PF that the link event is associated with 1232 * @event: event structure containing link status info 1233 */ 1234 static int 1235 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1236 { 1237 struct ice_aqc_get_link_status_data *link_data; 1238 struct ice_port_info *port_info; 1239 int status; 1240 1241 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1242 port_info = pf->hw.port_info; 1243 if (!port_info) 1244 return -EINVAL; 1245 1246 status = ice_link_event(pf, port_info, 1247 !!(link_data->link_info & ICE_AQ_LINK_UP), 1248 le16_to_cpu(link_data->link_speed)); 1249 if (status) 1250 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1251 status); 1252 1253 return status; 1254 } 1255 1256 /** 1257 * ice_get_fwlog_data - copy the FW log data from ARQ event 1258 * @pf: PF that the FW log event is associated with 1259 * @event: event structure containing FW log data 1260 */ 1261 static void 1262 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1263 { 1264 struct ice_fwlog_data *fwlog; 1265 struct ice_hw *hw = &pf->hw; 1266 1267 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1268 1269 memset(fwlog->data, 0, PAGE_SIZE); 1270 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1271 1272 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1273 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1274 1275 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1276 /* the rings are full so bump the head to create room */ 1277 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1278 hw->fwlog_ring.size); 1279 } 1280 } 1281 1282 /** 1283 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1284 * @pf: pointer to the PF private structure 1285 * @task: intermediate helper storage and identifier for waiting 1286 * @opcode: the opcode to wait for 1287 * 1288 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1289 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1290 * 1291 * Calls are separated to allow caller registering for event before sending 1292 * the command, which mitigates a race between registering and FW responding. 1293 * 1294 * To obtain only the descriptor contents, pass an task->event with null 1295 * msg_buf. If the complete data buffer is desired, allocate the 1296 * task->event.msg_buf with enough space ahead of time. 1297 */ 1298 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1299 u16 opcode) 1300 { 1301 INIT_HLIST_NODE(&task->entry); 1302 task->opcode = opcode; 1303 task->state = ICE_AQ_TASK_WAITING; 1304 1305 spin_lock_bh(&pf->aq_wait_lock); 1306 hlist_add_head(&task->entry, &pf->aq_wait_list); 1307 spin_unlock_bh(&pf->aq_wait_lock); 1308 } 1309 1310 /** 1311 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1312 * @pf: pointer to the PF private structure 1313 * @task: ptr prepared by ice_aq_prep_for_event() 1314 * @timeout: how long to wait, in jiffies 1315 * 1316 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1317 * current thread will be put to sleep until the specified event occurs or 1318 * until the given timeout is reached. 1319 * 1320 * Returns: zero on success, or a negative error code on failure. 1321 */ 1322 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1323 unsigned long timeout) 1324 { 1325 enum ice_aq_task_state *state = &task->state; 1326 struct device *dev = ice_pf_to_dev(pf); 1327 unsigned long start = jiffies; 1328 long ret; 1329 int err; 1330 1331 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1332 *state != ICE_AQ_TASK_WAITING, 1333 timeout); 1334 switch (*state) { 1335 case ICE_AQ_TASK_NOT_PREPARED: 1336 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1337 err = -EINVAL; 1338 break; 1339 case ICE_AQ_TASK_WAITING: 1340 err = ret < 0 ? ret : -ETIMEDOUT; 1341 break; 1342 case ICE_AQ_TASK_CANCELED: 1343 err = ret < 0 ? ret : -ECANCELED; 1344 break; 1345 case ICE_AQ_TASK_COMPLETE: 1346 err = ret < 0 ? ret : 0; 1347 break; 1348 default: 1349 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1350 err = -EINVAL; 1351 break; 1352 } 1353 1354 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1355 jiffies_to_msecs(jiffies - start), 1356 jiffies_to_msecs(timeout), 1357 task->opcode); 1358 1359 spin_lock_bh(&pf->aq_wait_lock); 1360 hlist_del(&task->entry); 1361 spin_unlock_bh(&pf->aq_wait_lock); 1362 1363 return err; 1364 } 1365 1366 /** 1367 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1368 * @pf: pointer to the PF private structure 1369 * @opcode: the opcode of the event 1370 * @event: the event to check 1371 * 1372 * Loops over the current list of pending threads waiting for an AdminQ event. 1373 * For each matching task, copy the contents of the event into the task 1374 * structure and wake up the thread. 1375 * 1376 * If multiple threads wait for the same opcode, they will all be woken up. 1377 * 1378 * Note that event->msg_buf will only be duplicated if the event has a buffer 1379 * with enough space already allocated. Otherwise, only the descriptor and 1380 * message length will be copied. 1381 * 1382 * Returns: true if an event was found, false otherwise 1383 */ 1384 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1385 struct ice_rq_event_info *event) 1386 { 1387 struct ice_rq_event_info *task_ev; 1388 struct ice_aq_task *task; 1389 bool found = false; 1390 1391 spin_lock_bh(&pf->aq_wait_lock); 1392 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1393 if (task->state != ICE_AQ_TASK_WAITING) 1394 continue; 1395 if (task->opcode != opcode) 1396 continue; 1397 1398 task_ev = &task->event; 1399 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1400 task_ev->msg_len = event->msg_len; 1401 1402 /* Only copy the data buffer if a destination was set */ 1403 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1404 memcpy(task_ev->msg_buf, event->msg_buf, 1405 event->buf_len); 1406 task_ev->buf_len = event->buf_len; 1407 } 1408 1409 task->state = ICE_AQ_TASK_COMPLETE; 1410 found = true; 1411 } 1412 spin_unlock_bh(&pf->aq_wait_lock); 1413 1414 if (found) 1415 wake_up(&pf->aq_wait_queue); 1416 } 1417 1418 /** 1419 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1420 * @pf: the PF private structure 1421 * 1422 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1423 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1424 */ 1425 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1426 { 1427 struct ice_aq_task *task; 1428 1429 spin_lock_bh(&pf->aq_wait_lock); 1430 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1431 task->state = ICE_AQ_TASK_CANCELED; 1432 spin_unlock_bh(&pf->aq_wait_lock); 1433 1434 wake_up(&pf->aq_wait_queue); 1435 } 1436 1437 #define ICE_MBX_OVERFLOW_WATERMARK 64 1438 1439 /** 1440 * __ice_clean_ctrlq - helper function to clean controlq rings 1441 * @pf: ptr to struct ice_pf 1442 * @q_type: specific Control queue type 1443 */ 1444 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1445 { 1446 struct device *dev = ice_pf_to_dev(pf); 1447 struct ice_rq_event_info event; 1448 struct ice_hw *hw = &pf->hw; 1449 struct ice_ctl_q_info *cq; 1450 u16 pending, i = 0; 1451 const char *qtype; 1452 u32 oldval, val; 1453 1454 /* Do not clean control queue if/when PF reset fails */ 1455 if (test_bit(ICE_RESET_FAILED, pf->state)) 1456 return 0; 1457 1458 switch (q_type) { 1459 case ICE_CTL_Q_ADMIN: 1460 cq = &hw->adminq; 1461 qtype = "Admin"; 1462 break; 1463 case ICE_CTL_Q_SB: 1464 cq = &hw->sbq; 1465 qtype = "Sideband"; 1466 break; 1467 case ICE_CTL_Q_MAILBOX: 1468 cq = &hw->mailboxq; 1469 qtype = "Mailbox"; 1470 /* we are going to try to detect a malicious VF, so set the 1471 * state to begin detection 1472 */ 1473 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1474 break; 1475 default: 1476 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1477 return 0; 1478 } 1479 1480 /* check for error indications - PF_xx_AxQLEN register layout for 1481 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1482 */ 1483 val = rd32(hw, cq->rq.len); 1484 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1485 PF_FW_ARQLEN_ARQCRIT_M)) { 1486 oldval = val; 1487 if (val & PF_FW_ARQLEN_ARQVFE_M) 1488 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1489 qtype); 1490 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1491 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1492 qtype); 1493 } 1494 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1495 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1496 qtype); 1497 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1498 PF_FW_ARQLEN_ARQCRIT_M); 1499 if (oldval != val) 1500 wr32(hw, cq->rq.len, val); 1501 } 1502 1503 val = rd32(hw, cq->sq.len); 1504 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1505 PF_FW_ATQLEN_ATQCRIT_M)) { 1506 oldval = val; 1507 if (val & PF_FW_ATQLEN_ATQVFE_M) 1508 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1509 qtype); 1510 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1511 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1512 qtype); 1513 } 1514 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1515 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1516 qtype); 1517 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1518 PF_FW_ATQLEN_ATQCRIT_M); 1519 if (oldval != val) 1520 wr32(hw, cq->sq.len, val); 1521 } 1522 1523 event.buf_len = cq->rq_buf_size; 1524 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1525 if (!event.msg_buf) 1526 return 0; 1527 1528 do { 1529 struct ice_mbx_data data = {}; 1530 u16 opcode; 1531 int ret; 1532 1533 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1534 if (ret == -EALREADY) 1535 break; 1536 if (ret) { 1537 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1538 ret); 1539 break; 1540 } 1541 1542 opcode = le16_to_cpu(event.desc.opcode); 1543 1544 /* Notify any thread that might be waiting for this event */ 1545 ice_aq_check_events(pf, opcode, &event); 1546 1547 switch (opcode) { 1548 case ice_aqc_opc_get_link_status: 1549 if (ice_handle_link_event(pf, &event)) 1550 dev_err(dev, "Could not handle link event\n"); 1551 break; 1552 case ice_aqc_opc_event_lan_overflow: 1553 ice_vf_lan_overflow_event(pf, &event); 1554 break; 1555 case ice_mbx_opc_send_msg_to_pf: 1556 data.num_msg_proc = i; 1557 data.num_pending_arq = pending; 1558 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1559 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1560 1561 ice_vc_process_vf_msg(pf, &event, &data); 1562 break; 1563 case ice_aqc_opc_fw_logs_event: 1564 ice_get_fwlog_data(pf, &event); 1565 break; 1566 case ice_aqc_opc_lldp_set_mib_change: 1567 ice_dcb_process_lldp_set_mib_change(pf, &event); 1568 break; 1569 default: 1570 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1571 qtype, opcode); 1572 break; 1573 } 1574 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1575 1576 kfree(event.msg_buf); 1577 1578 return pending && (i == ICE_DFLT_IRQ_WORK); 1579 } 1580 1581 /** 1582 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1583 * @hw: pointer to hardware info 1584 * @cq: control queue information 1585 * 1586 * returns true if there are pending messages in a queue, false if there aren't 1587 */ 1588 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1589 { 1590 u16 ntu; 1591 1592 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1593 return cq->rq.next_to_clean != ntu; 1594 } 1595 1596 /** 1597 * ice_clean_adminq_subtask - clean the AdminQ rings 1598 * @pf: board private structure 1599 */ 1600 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1601 { 1602 struct ice_hw *hw = &pf->hw; 1603 1604 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1605 return; 1606 1607 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1608 return; 1609 1610 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1611 1612 /* There might be a situation where new messages arrive to a control 1613 * queue between processing the last message and clearing the 1614 * EVENT_PENDING bit. So before exiting, check queue head again (using 1615 * ice_ctrlq_pending) and process new messages if any. 1616 */ 1617 if (ice_ctrlq_pending(hw, &hw->adminq)) 1618 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1619 1620 ice_flush(hw); 1621 } 1622 1623 /** 1624 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1625 * @pf: board private structure 1626 */ 1627 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1628 { 1629 struct ice_hw *hw = &pf->hw; 1630 1631 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1632 return; 1633 1634 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1635 return; 1636 1637 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1638 1639 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1640 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1641 1642 ice_flush(hw); 1643 } 1644 1645 /** 1646 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1647 * @pf: board private structure 1648 */ 1649 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1650 { 1651 struct ice_hw *hw = &pf->hw; 1652 1653 /* if mac_type is not generic, sideband is not supported 1654 * and there's nothing to do here 1655 */ 1656 if (!ice_is_generic_mac(hw)) { 1657 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1658 return; 1659 } 1660 1661 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1662 return; 1663 1664 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1665 return; 1666 1667 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1668 1669 if (ice_ctrlq_pending(hw, &hw->sbq)) 1670 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1671 1672 ice_flush(hw); 1673 } 1674 1675 /** 1676 * ice_service_task_schedule - schedule the service task to wake up 1677 * @pf: board private structure 1678 * 1679 * If not already scheduled, this puts the task into the work queue. 1680 */ 1681 void ice_service_task_schedule(struct ice_pf *pf) 1682 { 1683 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1684 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1685 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1686 queue_work(ice_wq, &pf->serv_task); 1687 } 1688 1689 /** 1690 * ice_service_task_complete - finish up the service task 1691 * @pf: board private structure 1692 */ 1693 static void ice_service_task_complete(struct ice_pf *pf) 1694 { 1695 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1696 1697 /* force memory (pf->state) to sync before next service task */ 1698 smp_mb__before_atomic(); 1699 clear_bit(ICE_SERVICE_SCHED, pf->state); 1700 } 1701 1702 /** 1703 * ice_service_task_stop - stop service task and cancel works 1704 * @pf: board private structure 1705 * 1706 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1707 * 1 otherwise. 1708 */ 1709 static int ice_service_task_stop(struct ice_pf *pf) 1710 { 1711 int ret; 1712 1713 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1714 1715 if (pf->serv_tmr.function) 1716 del_timer_sync(&pf->serv_tmr); 1717 if (pf->serv_task.func) 1718 cancel_work_sync(&pf->serv_task); 1719 1720 clear_bit(ICE_SERVICE_SCHED, pf->state); 1721 return ret; 1722 } 1723 1724 /** 1725 * ice_service_task_restart - restart service task and schedule works 1726 * @pf: board private structure 1727 * 1728 * This function is needed for suspend and resume works (e.g WoL scenario) 1729 */ 1730 static void ice_service_task_restart(struct ice_pf *pf) 1731 { 1732 clear_bit(ICE_SERVICE_DIS, pf->state); 1733 ice_service_task_schedule(pf); 1734 } 1735 1736 /** 1737 * ice_service_timer - timer callback to schedule service task 1738 * @t: pointer to timer_list 1739 */ 1740 static void ice_service_timer(struct timer_list *t) 1741 { 1742 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1743 1744 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1745 ice_service_task_schedule(pf); 1746 } 1747 1748 /** 1749 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1750 * @pf: pointer to the PF structure 1751 * @vf: pointer to the VF structure 1752 * @reset_vf_tx: whether Tx MDD has occurred 1753 * @reset_vf_rx: whether Rx MDD has occurred 1754 * 1755 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1756 * automatically reset the VF by enabling the private ethtool flag 1757 * mdd-auto-reset-vf. 1758 */ 1759 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1760 bool reset_vf_tx, bool reset_vf_rx) 1761 { 1762 struct device *dev = ice_pf_to_dev(pf); 1763 1764 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1765 return; 1766 1767 /* VF MDD event counters will be cleared by reset, so print the event 1768 * prior to reset. 1769 */ 1770 if (reset_vf_tx) 1771 ice_print_vf_tx_mdd_event(vf); 1772 1773 if (reset_vf_rx) 1774 ice_print_vf_rx_mdd_event(vf); 1775 1776 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1777 pf->hw.pf_id, vf->vf_id); 1778 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1779 } 1780 1781 /** 1782 * ice_handle_mdd_event - handle malicious driver detect event 1783 * @pf: pointer to the PF structure 1784 * 1785 * Called from service task. OICR interrupt handler indicates MDD event. 1786 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1787 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1788 * disable the queue, the PF can be configured to reset the VF using ethtool 1789 * private flag mdd-auto-reset-vf. 1790 */ 1791 static void ice_handle_mdd_event(struct ice_pf *pf) 1792 { 1793 struct device *dev = ice_pf_to_dev(pf); 1794 struct ice_hw *hw = &pf->hw; 1795 struct ice_vf *vf; 1796 unsigned int bkt; 1797 u32 reg; 1798 1799 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1800 /* Since the VF MDD event logging is rate limited, check if 1801 * there are pending MDD events. 1802 */ 1803 ice_print_vfs_mdd_events(pf); 1804 return; 1805 } 1806 1807 /* find what triggered an MDD event */ 1808 reg = rd32(hw, GL_MDET_TX_PQM); 1809 if (reg & GL_MDET_TX_PQM_VALID_M) { 1810 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1811 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1812 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1813 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1814 1815 if (netif_msg_tx_err(pf)) 1816 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1817 event, queue, pf_num, vf_num); 1818 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1819 } 1820 1821 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1822 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1823 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1824 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1825 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1826 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1827 1828 if (netif_msg_tx_err(pf)) 1829 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1830 event, queue, pf_num, vf_num); 1831 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1832 } 1833 1834 reg = rd32(hw, GL_MDET_RX); 1835 if (reg & GL_MDET_RX_VALID_M) { 1836 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1837 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1838 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1839 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1840 1841 if (netif_msg_rx_err(pf)) 1842 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1843 event, queue, pf_num, vf_num); 1844 wr32(hw, GL_MDET_RX, 0xffffffff); 1845 } 1846 1847 /* check to see if this PF caused an MDD event */ 1848 reg = rd32(hw, PF_MDET_TX_PQM); 1849 if (reg & PF_MDET_TX_PQM_VALID_M) { 1850 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1851 if (netif_msg_tx_err(pf)) 1852 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1853 } 1854 1855 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1856 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1857 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1858 if (netif_msg_tx_err(pf)) 1859 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1860 } 1861 1862 reg = rd32(hw, PF_MDET_RX); 1863 if (reg & PF_MDET_RX_VALID_M) { 1864 wr32(hw, PF_MDET_RX, 0xFFFF); 1865 if (netif_msg_rx_err(pf)) 1866 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1867 } 1868 1869 /* Check to see if one of the VFs caused an MDD event, and then 1870 * increment counters and set print pending 1871 */ 1872 mutex_lock(&pf->vfs.table_lock); 1873 ice_for_each_vf(pf, bkt, vf) { 1874 bool reset_vf_tx = false, reset_vf_rx = false; 1875 1876 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1877 if (reg & VP_MDET_TX_PQM_VALID_M) { 1878 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1879 vf->mdd_tx_events.count++; 1880 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1881 if (netif_msg_tx_err(pf)) 1882 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1883 vf->vf_id); 1884 1885 reset_vf_tx = true; 1886 } 1887 1888 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1889 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1890 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1891 vf->mdd_tx_events.count++; 1892 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1893 if (netif_msg_tx_err(pf)) 1894 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1895 vf->vf_id); 1896 1897 reset_vf_tx = true; 1898 } 1899 1900 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1901 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1902 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1903 vf->mdd_tx_events.count++; 1904 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1905 if (netif_msg_tx_err(pf)) 1906 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1907 vf->vf_id); 1908 1909 reset_vf_tx = true; 1910 } 1911 1912 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1913 if (reg & VP_MDET_RX_VALID_M) { 1914 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1915 vf->mdd_rx_events.count++; 1916 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1917 if (netif_msg_rx_err(pf)) 1918 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1919 vf->vf_id); 1920 1921 reset_vf_rx = true; 1922 } 1923 1924 if (reset_vf_tx || reset_vf_rx) 1925 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1926 reset_vf_rx); 1927 } 1928 mutex_unlock(&pf->vfs.table_lock); 1929 1930 ice_print_vfs_mdd_events(pf); 1931 } 1932 1933 /** 1934 * ice_force_phys_link_state - Force the physical link state 1935 * @vsi: VSI to force the physical link state to up/down 1936 * @link_up: true/false indicates to set the physical link to up/down 1937 * 1938 * Force the physical link state by getting the current PHY capabilities from 1939 * hardware and setting the PHY config based on the determined capabilities. If 1940 * link changes a link event will be triggered because both the Enable Automatic 1941 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1942 * 1943 * Returns 0 on success, negative on failure 1944 */ 1945 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1946 { 1947 struct ice_aqc_get_phy_caps_data *pcaps; 1948 struct ice_aqc_set_phy_cfg_data *cfg; 1949 struct ice_port_info *pi; 1950 struct device *dev; 1951 int retcode; 1952 1953 if (!vsi || !vsi->port_info || !vsi->back) 1954 return -EINVAL; 1955 if (vsi->type != ICE_VSI_PF) 1956 return 0; 1957 1958 dev = ice_pf_to_dev(vsi->back); 1959 1960 pi = vsi->port_info; 1961 1962 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1963 if (!pcaps) 1964 return -ENOMEM; 1965 1966 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1967 NULL); 1968 if (retcode) { 1969 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1970 vsi->vsi_num, retcode); 1971 retcode = -EIO; 1972 goto out; 1973 } 1974 1975 /* No change in link */ 1976 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1977 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1978 goto out; 1979 1980 /* Use the current user PHY configuration. The current user PHY 1981 * configuration is initialized during probe from PHY capabilities 1982 * software mode, and updated on set PHY configuration. 1983 */ 1984 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1985 if (!cfg) { 1986 retcode = -ENOMEM; 1987 goto out; 1988 } 1989 1990 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1991 if (link_up) 1992 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1993 else 1994 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1995 1996 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1997 if (retcode) { 1998 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1999 vsi->vsi_num, retcode); 2000 retcode = -EIO; 2001 } 2002 2003 kfree(cfg); 2004 out: 2005 kfree(pcaps); 2006 return retcode; 2007 } 2008 2009 /** 2010 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2011 * @pi: port info structure 2012 * 2013 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2014 */ 2015 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2016 { 2017 struct ice_aqc_get_phy_caps_data *pcaps; 2018 struct ice_pf *pf = pi->hw->back; 2019 int err; 2020 2021 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2022 if (!pcaps) 2023 return -ENOMEM; 2024 2025 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2026 pcaps, NULL); 2027 2028 if (err) { 2029 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2030 goto out; 2031 } 2032 2033 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2034 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2035 2036 out: 2037 kfree(pcaps); 2038 return err; 2039 } 2040 2041 /** 2042 * ice_init_link_dflt_override - Initialize link default override 2043 * @pi: port info structure 2044 * 2045 * Initialize link default override and PHY total port shutdown during probe 2046 */ 2047 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2048 { 2049 struct ice_link_default_override_tlv *ldo; 2050 struct ice_pf *pf = pi->hw->back; 2051 2052 ldo = &pf->link_dflt_override; 2053 if (ice_get_link_default_override(ldo, pi)) 2054 return; 2055 2056 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2057 return; 2058 2059 /* Enable Total Port Shutdown (override/replace link-down-on-close 2060 * ethtool private flag) for ports with Port Disable bit set. 2061 */ 2062 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2063 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2064 } 2065 2066 /** 2067 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2068 * @pi: port info structure 2069 * 2070 * If default override is enabled, initialize the user PHY cfg speed and FEC 2071 * settings using the default override mask from the NVM. 2072 * 2073 * The PHY should only be configured with the default override settings the 2074 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2075 * is used to indicate that the user PHY cfg default override is initialized 2076 * and the PHY has not been configured with the default override settings. The 2077 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2078 * configured. 2079 * 2080 * This function should be called only if the FW doesn't support default 2081 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2082 */ 2083 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2084 { 2085 struct ice_link_default_override_tlv *ldo; 2086 struct ice_aqc_set_phy_cfg_data *cfg; 2087 struct ice_phy_info *phy = &pi->phy; 2088 struct ice_pf *pf = pi->hw->back; 2089 2090 ldo = &pf->link_dflt_override; 2091 2092 /* If link default override is enabled, use to mask NVM PHY capabilities 2093 * for speed and FEC default configuration. 2094 */ 2095 cfg = &phy->curr_user_phy_cfg; 2096 2097 if (ldo->phy_type_low || ldo->phy_type_high) { 2098 cfg->phy_type_low = pf->nvm_phy_type_lo & 2099 cpu_to_le64(ldo->phy_type_low); 2100 cfg->phy_type_high = pf->nvm_phy_type_hi & 2101 cpu_to_le64(ldo->phy_type_high); 2102 } 2103 cfg->link_fec_opt = ldo->fec_options; 2104 phy->curr_user_fec_req = ICE_FEC_AUTO; 2105 2106 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2107 } 2108 2109 /** 2110 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2111 * @pi: port info structure 2112 * 2113 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2114 * mode to default. The PHY defaults are from get PHY capabilities topology 2115 * with media so call when media is first available. An error is returned if 2116 * called when media is not available. The PHY initialization completed state is 2117 * set here. 2118 * 2119 * These configurations are used when setting PHY 2120 * configuration. The user PHY configuration is updated on set PHY 2121 * configuration. Returns 0 on success, negative on failure 2122 */ 2123 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2124 { 2125 struct ice_aqc_get_phy_caps_data *pcaps; 2126 struct ice_phy_info *phy = &pi->phy; 2127 struct ice_pf *pf = pi->hw->back; 2128 int err; 2129 2130 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2131 return -EIO; 2132 2133 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2134 if (!pcaps) 2135 return -ENOMEM; 2136 2137 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2138 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2139 pcaps, NULL); 2140 else 2141 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2142 pcaps, NULL); 2143 if (err) { 2144 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2145 goto err_out; 2146 } 2147 2148 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2149 2150 /* check if lenient mode is supported and enabled */ 2151 if (ice_fw_supports_link_override(pi->hw) && 2152 !(pcaps->module_compliance_enforcement & 2153 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2154 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2155 2156 /* if the FW supports default PHY configuration mode, then the driver 2157 * does not have to apply link override settings. If not, 2158 * initialize user PHY configuration with link override values 2159 */ 2160 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2161 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2162 ice_init_phy_cfg_dflt_override(pi); 2163 goto out; 2164 } 2165 } 2166 2167 /* if link default override is not enabled, set user flow control and 2168 * FEC settings based on what get_phy_caps returned 2169 */ 2170 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2171 pcaps->link_fec_options); 2172 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2173 2174 out: 2175 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2176 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2177 err_out: 2178 kfree(pcaps); 2179 return err; 2180 } 2181 2182 /** 2183 * ice_configure_phy - configure PHY 2184 * @vsi: VSI of PHY 2185 * 2186 * Set the PHY configuration. If the current PHY configuration is the same as 2187 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2188 * configure the based get PHY capabilities for topology with media. 2189 */ 2190 static int ice_configure_phy(struct ice_vsi *vsi) 2191 { 2192 struct device *dev = ice_pf_to_dev(vsi->back); 2193 struct ice_port_info *pi = vsi->port_info; 2194 struct ice_aqc_get_phy_caps_data *pcaps; 2195 struct ice_aqc_set_phy_cfg_data *cfg; 2196 struct ice_phy_info *phy = &pi->phy; 2197 struct ice_pf *pf = vsi->back; 2198 int err; 2199 2200 /* Ensure we have media as we cannot configure a medialess port */ 2201 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2202 return -ENOMEDIUM; 2203 2204 ice_print_topo_conflict(vsi); 2205 2206 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2207 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2208 return -EPERM; 2209 2210 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2211 return ice_force_phys_link_state(vsi, true); 2212 2213 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2214 if (!pcaps) 2215 return -ENOMEM; 2216 2217 /* Get current PHY config */ 2218 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2219 NULL); 2220 if (err) { 2221 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2222 vsi->vsi_num, err); 2223 goto done; 2224 } 2225 2226 /* If PHY enable link is configured and configuration has not changed, 2227 * there's nothing to do 2228 */ 2229 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2230 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2231 goto done; 2232 2233 /* Use PHY topology as baseline for configuration */ 2234 memset(pcaps, 0, sizeof(*pcaps)); 2235 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2236 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2237 pcaps, NULL); 2238 else 2239 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2240 pcaps, NULL); 2241 if (err) { 2242 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2243 vsi->vsi_num, err); 2244 goto done; 2245 } 2246 2247 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2248 if (!cfg) { 2249 err = -ENOMEM; 2250 goto done; 2251 } 2252 2253 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2254 2255 /* Speed - If default override pending, use curr_user_phy_cfg set in 2256 * ice_init_phy_user_cfg_ldo. 2257 */ 2258 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2259 vsi->back->state)) { 2260 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2261 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2262 } else { 2263 u64 phy_low = 0, phy_high = 0; 2264 2265 ice_update_phy_type(&phy_low, &phy_high, 2266 pi->phy.curr_user_speed_req); 2267 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2268 cfg->phy_type_high = pcaps->phy_type_high & 2269 cpu_to_le64(phy_high); 2270 } 2271 2272 /* Can't provide what was requested; use PHY capabilities */ 2273 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2274 cfg->phy_type_low = pcaps->phy_type_low; 2275 cfg->phy_type_high = pcaps->phy_type_high; 2276 } 2277 2278 /* FEC */ 2279 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2280 2281 /* Can't provide what was requested; use PHY capabilities */ 2282 if (cfg->link_fec_opt != 2283 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2284 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2285 cfg->link_fec_opt = pcaps->link_fec_options; 2286 } 2287 2288 /* Flow Control - always supported; no need to check against 2289 * capabilities 2290 */ 2291 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2292 2293 /* Enable link and link update */ 2294 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2295 2296 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2297 if (err) 2298 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2299 vsi->vsi_num, err); 2300 2301 kfree(cfg); 2302 done: 2303 kfree(pcaps); 2304 return err; 2305 } 2306 2307 /** 2308 * ice_check_media_subtask - Check for media 2309 * @pf: pointer to PF struct 2310 * 2311 * If media is available, then initialize PHY user configuration if it is not 2312 * been, and configure the PHY if the interface is up. 2313 */ 2314 static void ice_check_media_subtask(struct ice_pf *pf) 2315 { 2316 struct ice_port_info *pi; 2317 struct ice_vsi *vsi; 2318 int err; 2319 2320 /* No need to check for media if it's already present */ 2321 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2322 return; 2323 2324 vsi = ice_get_main_vsi(pf); 2325 if (!vsi) 2326 return; 2327 2328 /* Refresh link info and check if media is present */ 2329 pi = vsi->port_info; 2330 err = ice_update_link_info(pi); 2331 if (err) 2332 return; 2333 2334 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2335 2336 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2337 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2338 ice_init_phy_user_cfg(pi); 2339 2340 /* PHY settings are reset on media insertion, reconfigure 2341 * PHY to preserve settings. 2342 */ 2343 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2344 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2345 return; 2346 2347 err = ice_configure_phy(vsi); 2348 if (!err) 2349 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2350 2351 /* A Link Status Event will be generated; the event handler 2352 * will complete bringing the interface up 2353 */ 2354 } 2355 } 2356 2357 /** 2358 * ice_service_task - manage and run subtasks 2359 * @work: pointer to work_struct contained by the PF struct 2360 */ 2361 static void ice_service_task(struct work_struct *work) 2362 { 2363 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2364 unsigned long start_time = jiffies; 2365 2366 /* subtasks */ 2367 2368 /* process reset requests first */ 2369 ice_reset_subtask(pf); 2370 2371 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2372 if (ice_is_reset_in_progress(pf->state) || 2373 test_bit(ICE_SUSPENDED, pf->state) || 2374 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2375 ice_service_task_complete(pf); 2376 return; 2377 } 2378 2379 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2380 struct iidc_event *event; 2381 2382 event = kzalloc(sizeof(*event), GFP_KERNEL); 2383 if (event) { 2384 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2385 /* report the entire OICR value to AUX driver */ 2386 swap(event->reg, pf->oicr_err_reg); 2387 ice_send_event_to_aux(pf, event); 2388 kfree(event); 2389 } 2390 } 2391 2392 /* unplug aux dev per request, if an unplug request came in 2393 * while processing a plug request, this will handle it 2394 */ 2395 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2396 ice_unplug_aux_dev(pf); 2397 2398 /* Plug aux device per request */ 2399 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2400 ice_plug_aux_dev(pf); 2401 2402 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2403 struct iidc_event *event; 2404 2405 event = kzalloc(sizeof(*event), GFP_KERNEL); 2406 if (event) { 2407 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2408 ice_send_event_to_aux(pf, event); 2409 kfree(event); 2410 } 2411 } 2412 2413 ice_clean_adminq_subtask(pf); 2414 ice_check_media_subtask(pf); 2415 ice_check_for_hang_subtask(pf); 2416 ice_sync_fltr_subtask(pf); 2417 ice_handle_mdd_event(pf); 2418 ice_watchdog_subtask(pf); 2419 2420 if (ice_is_safe_mode(pf)) { 2421 ice_service_task_complete(pf); 2422 return; 2423 } 2424 2425 ice_process_vflr_event(pf); 2426 ice_clean_mailboxq_subtask(pf); 2427 ice_clean_sbq_subtask(pf); 2428 ice_sync_arfs_fltrs(pf); 2429 ice_flush_fdir_ctx(pf); 2430 2431 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2432 ice_service_task_complete(pf); 2433 2434 /* If the tasks have taken longer than one service timer period 2435 * or there is more work to be done, reset the service timer to 2436 * schedule the service task now. 2437 */ 2438 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2439 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2440 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2441 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2442 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2443 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2444 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2445 mod_timer(&pf->serv_tmr, jiffies); 2446 } 2447 2448 /** 2449 * ice_set_ctrlq_len - helper function to set controlq length 2450 * @hw: pointer to the HW instance 2451 */ 2452 static void ice_set_ctrlq_len(struct ice_hw *hw) 2453 { 2454 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2455 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2456 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2457 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2458 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2459 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2460 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2461 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2462 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2463 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2464 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2465 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2466 } 2467 2468 /** 2469 * ice_schedule_reset - schedule a reset 2470 * @pf: board private structure 2471 * @reset: reset being requested 2472 */ 2473 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2474 { 2475 struct device *dev = ice_pf_to_dev(pf); 2476 2477 /* bail out if earlier reset has failed */ 2478 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2479 dev_dbg(dev, "earlier reset has failed\n"); 2480 return -EIO; 2481 } 2482 /* bail if reset/recovery already in progress */ 2483 if (ice_is_reset_in_progress(pf->state)) { 2484 dev_dbg(dev, "Reset already in progress\n"); 2485 return -EBUSY; 2486 } 2487 2488 switch (reset) { 2489 case ICE_RESET_PFR: 2490 set_bit(ICE_PFR_REQ, pf->state); 2491 break; 2492 case ICE_RESET_CORER: 2493 set_bit(ICE_CORER_REQ, pf->state); 2494 break; 2495 case ICE_RESET_GLOBR: 2496 set_bit(ICE_GLOBR_REQ, pf->state); 2497 break; 2498 default: 2499 return -EINVAL; 2500 } 2501 2502 ice_service_task_schedule(pf); 2503 return 0; 2504 } 2505 2506 /** 2507 * ice_irq_affinity_notify - Callback for affinity changes 2508 * @notify: context as to what irq was changed 2509 * @mask: the new affinity mask 2510 * 2511 * This is a callback function used by the irq_set_affinity_notifier function 2512 * so that we may register to receive changes to the irq affinity masks. 2513 */ 2514 static void 2515 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2516 const cpumask_t *mask) 2517 { 2518 struct ice_q_vector *q_vector = 2519 container_of(notify, struct ice_q_vector, affinity_notify); 2520 2521 cpumask_copy(&q_vector->affinity_mask, mask); 2522 } 2523 2524 /** 2525 * ice_irq_affinity_release - Callback for affinity notifier release 2526 * @ref: internal core kernel usage 2527 * 2528 * This is a callback function used by the irq_set_affinity_notifier function 2529 * to inform the current notification subscriber that they will no longer 2530 * receive notifications. 2531 */ 2532 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2533 2534 /** 2535 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2536 * @vsi: the VSI being configured 2537 */ 2538 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2539 { 2540 struct ice_hw *hw = &vsi->back->hw; 2541 int i; 2542 2543 ice_for_each_q_vector(vsi, i) 2544 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2545 2546 ice_flush(hw); 2547 return 0; 2548 } 2549 2550 /** 2551 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2552 * @vsi: the VSI being configured 2553 * @basename: name for the vector 2554 */ 2555 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2556 { 2557 int q_vectors = vsi->num_q_vectors; 2558 struct ice_pf *pf = vsi->back; 2559 struct device *dev; 2560 int rx_int_idx = 0; 2561 int tx_int_idx = 0; 2562 int vector, err; 2563 int irq_num; 2564 2565 dev = ice_pf_to_dev(pf); 2566 for (vector = 0; vector < q_vectors; vector++) { 2567 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2568 2569 irq_num = q_vector->irq.virq; 2570 2571 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2572 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2573 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2574 tx_int_idx++; 2575 } else if (q_vector->rx.rx_ring) { 2576 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2577 "%s-%s-%d", basename, "rx", rx_int_idx++); 2578 } else if (q_vector->tx.tx_ring) { 2579 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2580 "%s-%s-%d", basename, "tx", tx_int_idx++); 2581 } else { 2582 /* skip this unused q_vector */ 2583 continue; 2584 } 2585 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2586 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2587 IRQF_SHARED, q_vector->name, 2588 q_vector); 2589 else 2590 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2591 0, q_vector->name, q_vector); 2592 if (err) { 2593 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2594 err); 2595 goto free_q_irqs; 2596 } 2597 2598 /* register for affinity change notifications */ 2599 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2600 struct irq_affinity_notify *affinity_notify; 2601 2602 affinity_notify = &q_vector->affinity_notify; 2603 affinity_notify->notify = ice_irq_affinity_notify; 2604 affinity_notify->release = ice_irq_affinity_release; 2605 irq_set_affinity_notifier(irq_num, affinity_notify); 2606 } 2607 2608 /* assign the mask for this irq */ 2609 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2610 } 2611 2612 err = ice_set_cpu_rx_rmap(vsi); 2613 if (err) { 2614 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2615 vsi->vsi_num, ERR_PTR(err)); 2616 goto free_q_irqs; 2617 } 2618 2619 vsi->irqs_ready = true; 2620 return 0; 2621 2622 free_q_irqs: 2623 while (vector--) { 2624 irq_num = vsi->q_vectors[vector]->irq.virq; 2625 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2626 irq_set_affinity_notifier(irq_num, NULL); 2627 irq_set_affinity_hint(irq_num, NULL); 2628 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2629 } 2630 return err; 2631 } 2632 2633 /** 2634 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2635 * @vsi: VSI to setup Tx rings used by XDP 2636 * 2637 * Return 0 on success and negative value on error 2638 */ 2639 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2640 { 2641 struct device *dev = ice_pf_to_dev(vsi->back); 2642 struct ice_tx_desc *tx_desc; 2643 int i, j; 2644 2645 ice_for_each_xdp_txq(vsi, i) { 2646 u16 xdp_q_idx = vsi->alloc_txq + i; 2647 struct ice_ring_stats *ring_stats; 2648 struct ice_tx_ring *xdp_ring; 2649 2650 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2651 if (!xdp_ring) 2652 goto free_xdp_rings; 2653 2654 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2655 if (!ring_stats) { 2656 ice_free_tx_ring(xdp_ring); 2657 goto free_xdp_rings; 2658 } 2659 2660 xdp_ring->ring_stats = ring_stats; 2661 xdp_ring->q_index = xdp_q_idx; 2662 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2663 xdp_ring->vsi = vsi; 2664 xdp_ring->netdev = NULL; 2665 xdp_ring->dev = dev; 2666 xdp_ring->count = vsi->num_tx_desc; 2667 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2668 if (ice_setup_tx_ring(xdp_ring)) 2669 goto free_xdp_rings; 2670 ice_set_ring_xdp(xdp_ring); 2671 spin_lock_init(&xdp_ring->tx_lock); 2672 for (j = 0; j < xdp_ring->count; j++) { 2673 tx_desc = ICE_TX_DESC(xdp_ring, j); 2674 tx_desc->cmd_type_offset_bsz = 0; 2675 } 2676 } 2677 2678 return 0; 2679 2680 free_xdp_rings: 2681 for (; i >= 0; i--) { 2682 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2683 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2684 vsi->xdp_rings[i]->ring_stats = NULL; 2685 ice_free_tx_ring(vsi->xdp_rings[i]); 2686 } 2687 } 2688 return -ENOMEM; 2689 } 2690 2691 /** 2692 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2693 * @vsi: VSI to set the bpf prog on 2694 * @prog: the bpf prog pointer 2695 */ 2696 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2697 { 2698 struct bpf_prog *old_prog; 2699 int i; 2700 2701 old_prog = xchg(&vsi->xdp_prog, prog); 2702 ice_for_each_rxq(vsi, i) 2703 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2704 2705 if (old_prog) 2706 bpf_prog_put(old_prog); 2707 } 2708 2709 /** 2710 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2711 * @vsi: VSI to bring up Tx rings used by XDP 2712 * @prog: bpf program that will be assigned to VSI 2713 * 2714 * Return 0 on success and negative value on error 2715 */ 2716 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2717 { 2718 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2719 int xdp_rings_rem = vsi->num_xdp_txq; 2720 struct ice_pf *pf = vsi->back; 2721 struct ice_qs_cfg xdp_qs_cfg = { 2722 .qs_mutex = &pf->avail_q_mutex, 2723 .pf_map = pf->avail_txqs, 2724 .pf_map_size = pf->max_pf_txqs, 2725 .q_count = vsi->num_xdp_txq, 2726 .scatter_count = ICE_MAX_SCATTER_TXQS, 2727 .vsi_map = vsi->txq_map, 2728 .vsi_map_offset = vsi->alloc_txq, 2729 .mapping_mode = ICE_VSI_MAP_CONTIG 2730 }; 2731 struct device *dev; 2732 int i, v_idx; 2733 int status; 2734 2735 dev = ice_pf_to_dev(pf); 2736 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2737 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2738 if (!vsi->xdp_rings) 2739 return -ENOMEM; 2740 2741 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2742 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2743 goto err_map_xdp; 2744 2745 if (static_key_enabled(&ice_xdp_locking_key)) 2746 netdev_warn(vsi->netdev, 2747 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2748 2749 if (ice_xdp_alloc_setup_rings(vsi)) 2750 goto clear_xdp_rings; 2751 2752 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2753 ice_for_each_q_vector(vsi, v_idx) { 2754 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2755 int xdp_rings_per_v, q_id, q_base; 2756 2757 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2758 vsi->num_q_vectors - v_idx); 2759 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2760 2761 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2762 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2763 2764 xdp_ring->q_vector = q_vector; 2765 xdp_ring->next = q_vector->tx.tx_ring; 2766 q_vector->tx.tx_ring = xdp_ring; 2767 } 2768 xdp_rings_rem -= xdp_rings_per_v; 2769 } 2770 2771 ice_for_each_rxq(vsi, i) { 2772 if (static_key_enabled(&ice_xdp_locking_key)) { 2773 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2774 } else { 2775 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2776 struct ice_tx_ring *ring; 2777 2778 ice_for_each_tx_ring(ring, q_vector->tx) { 2779 if (ice_ring_is_xdp(ring)) { 2780 vsi->rx_rings[i]->xdp_ring = ring; 2781 break; 2782 } 2783 } 2784 } 2785 ice_tx_xsk_pool(vsi, i); 2786 } 2787 2788 /* omit the scheduler update if in reset path; XDP queues will be 2789 * taken into account at the end of ice_vsi_rebuild, where 2790 * ice_cfg_vsi_lan is being called 2791 */ 2792 if (ice_is_reset_in_progress(pf->state)) 2793 return 0; 2794 2795 /* tell the Tx scheduler that right now we have 2796 * additional queues 2797 */ 2798 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2799 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2800 2801 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2802 max_txqs); 2803 if (status) { 2804 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2805 status); 2806 goto clear_xdp_rings; 2807 } 2808 2809 /* assign the prog only when it's not already present on VSI; 2810 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2811 * VSI rebuild that happens under ethtool -L can expose us to 2812 * the bpf_prog refcount issues as we would be swapping same 2813 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2814 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2815 * this is not harmful as dev_xdp_install bumps the refcount 2816 * before calling the op exposed by the driver; 2817 */ 2818 if (!ice_is_xdp_ena_vsi(vsi)) 2819 ice_vsi_assign_bpf_prog(vsi, prog); 2820 2821 return 0; 2822 clear_xdp_rings: 2823 ice_for_each_xdp_txq(vsi, i) 2824 if (vsi->xdp_rings[i]) { 2825 kfree_rcu(vsi->xdp_rings[i], rcu); 2826 vsi->xdp_rings[i] = NULL; 2827 } 2828 2829 err_map_xdp: 2830 mutex_lock(&pf->avail_q_mutex); 2831 ice_for_each_xdp_txq(vsi, i) { 2832 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2833 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2834 } 2835 mutex_unlock(&pf->avail_q_mutex); 2836 2837 devm_kfree(dev, vsi->xdp_rings); 2838 return -ENOMEM; 2839 } 2840 2841 /** 2842 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2843 * @vsi: VSI to remove XDP rings 2844 * 2845 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2846 * resources 2847 */ 2848 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2849 { 2850 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2851 struct ice_pf *pf = vsi->back; 2852 int i, v_idx; 2853 2854 /* q_vectors are freed in reset path so there's no point in detaching 2855 * rings; in case of rebuild being triggered not from reset bits 2856 * in pf->state won't be set, so additionally check first q_vector 2857 * against NULL 2858 */ 2859 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2860 goto free_qmap; 2861 2862 ice_for_each_q_vector(vsi, v_idx) { 2863 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2864 struct ice_tx_ring *ring; 2865 2866 ice_for_each_tx_ring(ring, q_vector->tx) 2867 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2868 break; 2869 2870 /* restore the value of last node prior to XDP setup */ 2871 q_vector->tx.tx_ring = ring; 2872 } 2873 2874 free_qmap: 2875 mutex_lock(&pf->avail_q_mutex); 2876 ice_for_each_xdp_txq(vsi, i) { 2877 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2878 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2879 } 2880 mutex_unlock(&pf->avail_q_mutex); 2881 2882 ice_for_each_xdp_txq(vsi, i) 2883 if (vsi->xdp_rings[i]) { 2884 if (vsi->xdp_rings[i]->desc) { 2885 synchronize_rcu(); 2886 ice_free_tx_ring(vsi->xdp_rings[i]); 2887 } 2888 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2889 vsi->xdp_rings[i]->ring_stats = NULL; 2890 kfree_rcu(vsi->xdp_rings[i], rcu); 2891 vsi->xdp_rings[i] = NULL; 2892 } 2893 2894 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2895 vsi->xdp_rings = NULL; 2896 2897 if (static_key_enabled(&ice_xdp_locking_key)) 2898 static_branch_dec(&ice_xdp_locking_key); 2899 2900 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2901 return 0; 2902 2903 ice_vsi_assign_bpf_prog(vsi, NULL); 2904 2905 /* notify Tx scheduler that we destroyed XDP queues and bring 2906 * back the old number of child nodes 2907 */ 2908 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2909 max_txqs[i] = vsi->num_txq; 2910 2911 /* change number of XDP Tx queues to 0 */ 2912 vsi->num_xdp_txq = 0; 2913 2914 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2915 max_txqs); 2916 } 2917 2918 /** 2919 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2920 * @vsi: VSI to schedule napi on 2921 */ 2922 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2923 { 2924 int i; 2925 2926 ice_for_each_rxq(vsi, i) { 2927 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2928 2929 if (rx_ring->xsk_pool) 2930 napi_schedule(&rx_ring->q_vector->napi); 2931 } 2932 } 2933 2934 /** 2935 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2936 * @vsi: VSI to determine the count of XDP Tx qs 2937 * 2938 * returns 0 if Tx qs count is higher than at least half of CPU count, 2939 * -ENOMEM otherwise 2940 */ 2941 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2942 { 2943 u16 avail = ice_get_avail_txq_count(vsi->back); 2944 u16 cpus = num_possible_cpus(); 2945 2946 if (avail < cpus / 2) 2947 return -ENOMEM; 2948 2949 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2950 2951 if (vsi->num_xdp_txq < cpus) 2952 static_branch_inc(&ice_xdp_locking_key); 2953 2954 return 0; 2955 } 2956 2957 /** 2958 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2959 * @vsi: Pointer to VSI structure 2960 */ 2961 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2962 { 2963 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2964 return ICE_RXBUF_1664; 2965 else 2966 return ICE_RXBUF_3072; 2967 } 2968 2969 /** 2970 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2971 * @vsi: VSI to setup XDP for 2972 * @prog: XDP program 2973 * @extack: netlink extended ack 2974 */ 2975 static int 2976 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2977 struct netlink_ext_ack *extack) 2978 { 2979 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2980 bool if_running = netif_running(vsi->netdev); 2981 int ret = 0, xdp_ring_err = 0; 2982 2983 if (prog && !prog->aux->xdp_has_frags) { 2984 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2985 NL_SET_ERR_MSG_MOD(extack, 2986 "MTU is too large for linear frames and XDP prog does not support frags"); 2987 return -EOPNOTSUPP; 2988 } 2989 } 2990 2991 /* hot swap progs and avoid toggling link */ 2992 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2993 ice_vsi_assign_bpf_prog(vsi, prog); 2994 return 0; 2995 } 2996 2997 /* need to stop netdev while setting up the program for Rx rings */ 2998 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2999 ret = ice_down(vsi); 3000 if (ret) { 3001 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3002 return ret; 3003 } 3004 } 3005 3006 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3007 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3008 if (xdp_ring_err) { 3009 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3010 } else { 3011 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 3012 if (xdp_ring_err) 3013 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3014 } 3015 xdp_features_set_redirect_target(vsi->netdev, true); 3016 /* reallocate Rx queues that are used for zero-copy */ 3017 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3018 if (xdp_ring_err) 3019 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3020 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3021 xdp_features_clear_redirect_target(vsi->netdev); 3022 xdp_ring_err = ice_destroy_xdp_rings(vsi); 3023 if (xdp_ring_err) 3024 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3025 /* reallocate Rx queues that were used for zero-copy */ 3026 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3027 if (xdp_ring_err) 3028 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3029 } 3030 3031 if (if_running) 3032 ret = ice_up(vsi); 3033 3034 if (!ret && prog) 3035 ice_vsi_rx_napi_schedule(vsi); 3036 3037 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3038 } 3039 3040 /** 3041 * ice_xdp_safe_mode - XDP handler for safe mode 3042 * @dev: netdevice 3043 * @xdp: XDP command 3044 */ 3045 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3046 struct netdev_bpf *xdp) 3047 { 3048 NL_SET_ERR_MSG_MOD(xdp->extack, 3049 "Please provide working DDP firmware package in order to use XDP\n" 3050 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3051 return -EOPNOTSUPP; 3052 } 3053 3054 /** 3055 * ice_xdp - implements XDP handler 3056 * @dev: netdevice 3057 * @xdp: XDP command 3058 */ 3059 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3060 { 3061 struct ice_netdev_priv *np = netdev_priv(dev); 3062 struct ice_vsi *vsi = np->vsi; 3063 3064 if (vsi->type != ICE_VSI_PF) { 3065 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3066 return -EINVAL; 3067 } 3068 3069 switch (xdp->command) { 3070 case XDP_SETUP_PROG: 3071 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3072 case XDP_SETUP_XSK_POOL: 3073 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3074 xdp->xsk.queue_id); 3075 default: 3076 return -EINVAL; 3077 } 3078 } 3079 3080 /** 3081 * ice_ena_misc_vector - enable the non-queue interrupts 3082 * @pf: board private structure 3083 */ 3084 static void ice_ena_misc_vector(struct ice_pf *pf) 3085 { 3086 struct ice_hw *hw = &pf->hw; 3087 u32 pf_intr_start_offset; 3088 u32 val; 3089 3090 /* Disable anti-spoof detection interrupt to prevent spurious event 3091 * interrupts during a function reset. Anti-spoof functionally is 3092 * still supported. 3093 */ 3094 val = rd32(hw, GL_MDCK_TX_TDPU); 3095 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3096 wr32(hw, GL_MDCK_TX_TDPU, val); 3097 3098 /* clear things first */ 3099 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3100 rd32(hw, PFINT_OICR); /* read to clear */ 3101 3102 val = (PFINT_OICR_ECC_ERR_M | 3103 PFINT_OICR_MAL_DETECT_M | 3104 PFINT_OICR_GRST_M | 3105 PFINT_OICR_PCI_EXCEPTION_M | 3106 PFINT_OICR_VFLR_M | 3107 PFINT_OICR_HMC_ERR_M | 3108 PFINT_OICR_PE_PUSH_M | 3109 PFINT_OICR_PE_CRITERR_M); 3110 3111 wr32(hw, PFINT_OICR_ENA, val); 3112 3113 /* SW_ITR_IDX = 0, but don't change INTENA */ 3114 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3115 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3116 3117 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3118 return; 3119 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3120 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3121 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3122 } 3123 3124 /** 3125 * ice_ll_ts_intr - ll_ts interrupt handler 3126 * @irq: interrupt number 3127 * @data: pointer to a q_vector 3128 */ 3129 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3130 { 3131 struct ice_pf *pf = data; 3132 u32 pf_intr_start_offset; 3133 struct ice_ptp_tx *tx; 3134 unsigned long flags; 3135 struct ice_hw *hw; 3136 u32 val; 3137 u8 idx; 3138 3139 hw = &pf->hw; 3140 tx = &pf->ptp.port.tx; 3141 spin_lock_irqsave(&tx->lock, flags); 3142 ice_ptp_complete_tx_single_tstamp(tx); 3143 3144 idx = find_next_bit_wrap(tx->in_use, tx->len, 3145 tx->last_ll_ts_idx_read + 1); 3146 if (idx != tx->len) 3147 ice_ptp_req_tx_single_tstamp(tx, idx); 3148 spin_unlock_irqrestore(&tx->lock, flags); 3149 3150 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3151 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3152 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3153 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3154 val); 3155 3156 return IRQ_HANDLED; 3157 } 3158 3159 /** 3160 * ice_misc_intr - misc interrupt handler 3161 * @irq: interrupt number 3162 * @data: pointer to a q_vector 3163 */ 3164 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3165 { 3166 struct ice_pf *pf = (struct ice_pf *)data; 3167 irqreturn_t ret = IRQ_HANDLED; 3168 struct ice_hw *hw = &pf->hw; 3169 struct device *dev; 3170 u32 oicr, ena_mask; 3171 3172 dev = ice_pf_to_dev(pf); 3173 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3174 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3175 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3176 3177 oicr = rd32(hw, PFINT_OICR); 3178 ena_mask = rd32(hw, PFINT_OICR_ENA); 3179 3180 if (oicr & PFINT_OICR_SWINT_M) { 3181 ena_mask &= ~PFINT_OICR_SWINT_M; 3182 pf->sw_int_count++; 3183 } 3184 3185 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3186 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3187 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3188 } 3189 if (oicr & PFINT_OICR_VFLR_M) { 3190 /* disable any further VFLR event notifications */ 3191 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3192 u32 reg = rd32(hw, PFINT_OICR_ENA); 3193 3194 reg &= ~PFINT_OICR_VFLR_M; 3195 wr32(hw, PFINT_OICR_ENA, reg); 3196 } else { 3197 ena_mask &= ~PFINT_OICR_VFLR_M; 3198 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3199 } 3200 } 3201 3202 if (oicr & PFINT_OICR_GRST_M) { 3203 u32 reset; 3204 3205 /* we have a reset warning */ 3206 ena_mask &= ~PFINT_OICR_GRST_M; 3207 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3208 rd32(hw, GLGEN_RSTAT)); 3209 3210 if (reset == ICE_RESET_CORER) 3211 pf->corer_count++; 3212 else if (reset == ICE_RESET_GLOBR) 3213 pf->globr_count++; 3214 else if (reset == ICE_RESET_EMPR) 3215 pf->empr_count++; 3216 else 3217 dev_dbg(dev, "Invalid reset type %d\n", reset); 3218 3219 /* If a reset cycle isn't already in progress, we set a bit in 3220 * pf->state so that the service task can start a reset/rebuild. 3221 */ 3222 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3223 if (reset == ICE_RESET_CORER) 3224 set_bit(ICE_CORER_RECV, pf->state); 3225 else if (reset == ICE_RESET_GLOBR) 3226 set_bit(ICE_GLOBR_RECV, pf->state); 3227 else 3228 set_bit(ICE_EMPR_RECV, pf->state); 3229 3230 /* There are couple of different bits at play here. 3231 * hw->reset_ongoing indicates whether the hardware is 3232 * in reset. This is set to true when a reset interrupt 3233 * is received and set back to false after the driver 3234 * has determined that the hardware is out of reset. 3235 * 3236 * ICE_RESET_OICR_RECV in pf->state indicates 3237 * that a post reset rebuild is required before the 3238 * driver is operational again. This is set above. 3239 * 3240 * As this is the start of the reset/rebuild cycle, set 3241 * both to indicate that. 3242 */ 3243 hw->reset_ongoing = true; 3244 } 3245 } 3246 3247 if (oicr & PFINT_OICR_TSYN_TX_M) { 3248 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3249 if (ice_pf_state_is_nominal(pf) && 3250 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3251 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3252 unsigned long flags; 3253 u8 idx; 3254 3255 spin_lock_irqsave(&tx->lock, flags); 3256 idx = find_next_bit_wrap(tx->in_use, tx->len, 3257 tx->last_ll_ts_idx_read + 1); 3258 if (idx != tx->len) 3259 ice_ptp_req_tx_single_tstamp(tx, idx); 3260 spin_unlock_irqrestore(&tx->lock, flags); 3261 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3262 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3263 ret = IRQ_WAKE_THREAD; 3264 } 3265 } 3266 3267 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3268 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3269 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3270 3271 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3272 3273 if (ice_pf_src_tmr_owned(pf)) { 3274 /* Save EVENTs from GLTSYN register */ 3275 pf->ptp.ext_ts_irq |= gltsyn_stat & 3276 (GLTSYN_STAT_EVENT0_M | 3277 GLTSYN_STAT_EVENT1_M | 3278 GLTSYN_STAT_EVENT2_M); 3279 3280 ice_ptp_extts_event(pf); 3281 } 3282 } 3283 3284 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3285 if (oicr & ICE_AUX_CRIT_ERR) { 3286 pf->oicr_err_reg |= oicr; 3287 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3288 ena_mask &= ~ICE_AUX_CRIT_ERR; 3289 } 3290 3291 /* Report any remaining unexpected interrupts */ 3292 oicr &= ena_mask; 3293 if (oicr) { 3294 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3295 /* If a critical error is pending there is no choice but to 3296 * reset the device. 3297 */ 3298 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3299 PFINT_OICR_ECC_ERR_M)) { 3300 set_bit(ICE_PFR_REQ, pf->state); 3301 } 3302 } 3303 ice_service_task_schedule(pf); 3304 if (ret == IRQ_HANDLED) 3305 ice_irq_dynamic_ena(hw, NULL, NULL); 3306 3307 return ret; 3308 } 3309 3310 /** 3311 * ice_misc_intr_thread_fn - misc interrupt thread function 3312 * @irq: interrupt number 3313 * @data: pointer to a q_vector 3314 */ 3315 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3316 { 3317 struct ice_pf *pf = data; 3318 struct ice_hw *hw; 3319 3320 hw = &pf->hw; 3321 3322 if (ice_is_reset_in_progress(pf->state)) 3323 goto skip_irq; 3324 3325 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3326 /* Process outstanding Tx timestamps. If there is more work, 3327 * re-arm the interrupt to trigger again. 3328 */ 3329 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3330 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3331 ice_flush(hw); 3332 } 3333 } 3334 3335 skip_irq: 3336 ice_irq_dynamic_ena(hw, NULL, NULL); 3337 3338 return IRQ_HANDLED; 3339 } 3340 3341 /** 3342 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3343 * @hw: pointer to HW structure 3344 */ 3345 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3346 { 3347 /* disable Admin queue Interrupt causes */ 3348 wr32(hw, PFINT_FW_CTL, 3349 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3350 3351 /* disable Mailbox queue Interrupt causes */ 3352 wr32(hw, PFINT_MBX_CTL, 3353 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3354 3355 wr32(hw, PFINT_SB_CTL, 3356 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3357 3358 /* disable Control queue Interrupt causes */ 3359 wr32(hw, PFINT_OICR_CTL, 3360 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3361 3362 ice_flush(hw); 3363 } 3364 3365 /** 3366 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3367 * @pf: board private structure 3368 */ 3369 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3370 { 3371 int irq_num = pf->ll_ts_irq.virq; 3372 3373 synchronize_irq(irq_num); 3374 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3375 3376 ice_free_irq(pf, pf->ll_ts_irq); 3377 } 3378 3379 /** 3380 * ice_free_irq_msix_misc - Unroll misc vector setup 3381 * @pf: board private structure 3382 */ 3383 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3384 { 3385 int misc_irq_num = pf->oicr_irq.virq; 3386 struct ice_hw *hw = &pf->hw; 3387 3388 ice_dis_ctrlq_interrupts(hw); 3389 3390 /* disable OICR interrupt */ 3391 wr32(hw, PFINT_OICR_ENA, 0); 3392 ice_flush(hw); 3393 3394 synchronize_irq(misc_irq_num); 3395 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3396 3397 ice_free_irq(pf, pf->oicr_irq); 3398 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3399 ice_free_irq_msix_ll_ts(pf); 3400 } 3401 3402 /** 3403 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3404 * @hw: pointer to HW structure 3405 * @reg_idx: HW vector index to associate the control queue interrupts with 3406 */ 3407 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3408 { 3409 u32 val; 3410 3411 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3412 PFINT_OICR_CTL_CAUSE_ENA_M); 3413 wr32(hw, PFINT_OICR_CTL, val); 3414 3415 /* enable Admin queue Interrupt causes */ 3416 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3417 PFINT_FW_CTL_CAUSE_ENA_M); 3418 wr32(hw, PFINT_FW_CTL, val); 3419 3420 /* enable Mailbox queue Interrupt causes */ 3421 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3422 PFINT_MBX_CTL_CAUSE_ENA_M); 3423 wr32(hw, PFINT_MBX_CTL, val); 3424 3425 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3426 /* enable Sideband queue Interrupt causes */ 3427 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3428 PFINT_SB_CTL_CAUSE_ENA_M); 3429 wr32(hw, PFINT_SB_CTL, val); 3430 } 3431 3432 ice_flush(hw); 3433 } 3434 3435 /** 3436 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3437 * @pf: board private structure 3438 * 3439 * This sets up the handler for MSIX 0, which is used to manage the 3440 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3441 * when in MSI or Legacy interrupt mode. 3442 */ 3443 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3444 { 3445 struct device *dev = ice_pf_to_dev(pf); 3446 struct ice_hw *hw = &pf->hw; 3447 u32 pf_intr_start_offset; 3448 struct msi_map irq; 3449 int err = 0; 3450 3451 if (!pf->int_name[0]) 3452 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3453 dev_driver_string(dev), dev_name(dev)); 3454 3455 if (!pf->int_name_ll_ts[0]) 3456 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3457 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3458 /* Do not request IRQ but do enable OICR interrupt since settings are 3459 * lost during reset. Note that this function is called only during 3460 * rebuild path and not while reset is in progress. 3461 */ 3462 if (ice_is_reset_in_progress(pf->state)) 3463 goto skip_req_irq; 3464 3465 /* reserve one vector in irq_tracker for misc interrupts */ 3466 irq = ice_alloc_irq(pf, false); 3467 if (irq.index < 0) 3468 return irq.index; 3469 3470 pf->oicr_irq = irq; 3471 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3472 ice_misc_intr_thread_fn, 0, 3473 pf->int_name, pf); 3474 if (err) { 3475 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3476 pf->int_name, err); 3477 ice_free_irq(pf, pf->oicr_irq); 3478 return err; 3479 } 3480 3481 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3482 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3483 goto skip_req_irq; 3484 3485 irq = ice_alloc_irq(pf, false); 3486 if (irq.index < 0) 3487 return irq.index; 3488 3489 pf->ll_ts_irq = irq; 3490 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3491 pf->int_name_ll_ts, pf); 3492 if (err) { 3493 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3494 pf->int_name_ll_ts, err); 3495 ice_free_irq(pf, pf->ll_ts_irq); 3496 return err; 3497 } 3498 3499 skip_req_irq: 3500 ice_ena_misc_vector(pf); 3501 3502 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3503 /* This enables LL TS interrupt */ 3504 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3505 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3506 wr32(hw, PFINT_SB_CTL, 3507 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3508 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3509 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3510 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3511 3512 ice_flush(hw); 3513 ice_irq_dynamic_ena(hw, NULL, NULL); 3514 3515 return 0; 3516 } 3517 3518 /** 3519 * ice_napi_add - register NAPI handler for the VSI 3520 * @vsi: VSI for which NAPI handler is to be registered 3521 * 3522 * This function is only called in the driver's load path. Registering the NAPI 3523 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3524 * reset/rebuild, etc.) 3525 */ 3526 static void ice_napi_add(struct ice_vsi *vsi) 3527 { 3528 int v_idx; 3529 3530 if (!vsi->netdev) 3531 return; 3532 3533 ice_for_each_q_vector(vsi, v_idx) { 3534 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3535 ice_napi_poll); 3536 __ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3537 } 3538 } 3539 3540 /** 3541 * ice_set_ops - set netdev and ethtools ops for the given netdev 3542 * @vsi: the VSI associated with the new netdev 3543 */ 3544 static void ice_set_ops(struct ice_vsi *vsi) 3545 { 3546 struct net_device *netdev = vsi->netdev; 3547 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3548 3549 if (ice_is_safe_mode(pf)) { 3550 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3551 ice_set_ethtool_safe_mode_ops(netdev); 3552 return; 3553 } 3554 3555 netdev->netdev_ops = &ice_netdev_ops; 3556 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3557 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3558 ice_set_ethtool_ops(netdev); 3559 3560 if (vsi->type != ICE_VSI_PF) 3561 return; 3562 3563 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3564 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3565 NETDEV_XDP_ACT_RX_SG; 3566 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3567 } 3568 3569 /** 3570 * ice_set_netdev_features - set features for the given netdev 3571 * @netdev: netdev instance 3572 */ 3573 static void ice_set_netdev_features(struct net_device *netdev) 3574 { 3575 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3576 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3577 netdev_features_t csumo_features; 3578 netdev_features_t vlano_features; 3579 netdev_features_t dflt_features; 3580 netdev_features_t tso_features; 3581 3582 if (ice_is_safe_mode(pf)) { 3583 /* safe mode */ 3584 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3585 netdev->hw_features = netdev->features; 3586 return; 3587 } 3588 3589 dflt_features = NETIF_F_SG | 3590 NETIF_F_HIGHDMA | 3591 NETIF_F_NTUPLE | 3592 NETIF_F_RXHASH; 3593 3594 csumo_features = NETIF_F_RXCSUM | 3595 NETIF_F_IP_CSUM | 3596 NETIF_F_SCTP_CRC | 3597 NETIF_F_IPV6_CSUM; 3598 3599 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3600 NETIF_F_HW_VLAN_CTAG_TX | 3601 NETIF_F_HW_VLAN_CTAG_RX; 3602 3603 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3604 if (is_dvm_ena) 3605 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3606 3607 tso_features = NETIF_F_TSO | 3608 NETIF_F_TSO_ECN | 3609 NETIF_F_TSO6 | 3610 NETIF_F_GSO_GRE | 3611 NETIF_F_GSO_UDP_TUNNEL | 3612 NETIF_F_GSO_GRE_CSUM | 3613 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3614 NETIF_F_GSO_PARTIAL | 3615 NETIF_F_GSO_IPXIP4 | 3616 NETIF_F_GSO_IPXIP6 | 3617 NETIF_F_GSO_UDP_L4; 3618 3619 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3620 NETIF_F_GSO_GRE_CSUM; 3621 /* set features that user can change */ 3622 netdev->hw_features = dflt_features | csumo_features | 3623 vlano_features | tso_features; 3624 3625 /* add support for HW_CSUM on packets with MPLS header */ 3626 netdev->mpls_features = NETIF_F_HW_CSUM | 3627 NETIF_F_TSO | 3628 NETIF_F_TSO6; 3629 3630 /* enable features */ 3631 netdev->features |= netdev->hw_features; 3632 3633 netdev->hw_features |= NETIF_F_HW_TC; 3634 netdev->hw_features |= NETIF_F_LOOPBACK; 3635 3636 /* encap and VLAN devices inherit default, csumo and tso features */ 3637 netdev->hw_enc_features |= dflt_features | csumo_features | 3638 tso_features; 3639 netdev->vlan_features |= dflt_features | csumo_features | 3640 tso_features; 3641 3642 /* advertise support but don't enable by default since only one type of 3643 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3644 * type turns on the other has to be turned off. This is enforced by the 3645 * ice_fix_features() ndo callback. 3646 */ 3647 if (is_dvm_ena) 3648 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3649 NETIF_F_HW_VLAN_STAG_TX; 3650 3651 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3652 * be changed at runtime 3653 */ 3654 netdev->hw_features |= NETIF_F_RXFCS; 3655 3656 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3657 } 3658 3659 /** 3660 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3661 * @lut: Lookup table 3662 * @rss_table_size: Lookup table size 3663 * @rss_size: Range of queue number for hashing 3664 */ 3665 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3666 { 3667 u16 i; 3668 3669 for (i = 0; i < rss_table_size; i++) 3670 lut[i] = i % rss_size; 3671 } 3672 3673 /** 3674 * ice_pf_vsi_setup - Set up a PF VSI 3675 * @pf: board private structure 3676 * @pi: pointer to the port_info instance 3677 * 3678 * Returns pointer to the successfully allocated VSI software struct 3679 * on success, otherwise returns NULL on failure. 3680 */ 3681 static struct ice_vsi * 3682 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3683 { 3684 struct ice_vsi_cfg_params params = {}; 3685 3686 params.type = ICE_VSI_PF; 3687 params.pi = pi; 3688 params.flags = ICE_VSI_FLAG_INIT; 3689 3690 return ice_vsi_setup(pf, ¶ms); 3691 } 3692 3693 static struct ice_vsi * 3694 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3695 struct ice_channel *ch) 3696 { 3697 struct ice_vsi_cfg_params params = {}; 3698 3699 params.type = ICE_VSI_CHNL; 3700 params.pi = pi; 3701 params.ch = ch; 3702 params.flags = ICE_VSI_FLAG_INIT; 3703 3704 return ice_vsi_setup(pf, ¶ms); 3705 } 3706 3707 /** 3708 * ice_ctrl_vsi_setup - Set up a control VSI 3709 * @pf: board private structure 3710 * @pi: pointer to the port_info instance 3711 * 3712 * Returns pointer to the successfully allocated VSI software struct 3713 * on success, otherwise returns NULL on failure. 3714 */ 3715 static struct ice_vsi * 3716 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3717 { 3718 struct ice_vsi_cfg_params params = {}; 3719 3720 params.type = ICE_VSI_CTRL; 3721 params.pi = pi; 3722 params.flags = ICE_VSI_FLAG_INIT; 3723 3724 return ice_vsi_setup(pf, ¶ms); 3725 } 3726 3727 /** 3728 * ice_lb_vsi_setup - Set up a loopback VSI 3729 * @pf: board private structure 3730 * @pi: pointer to the port_info instance 3731 * 3732 * Returns pointer to the successfully allocated VSI software struct 3733 * on success, otherwise returns NULL on failure. 3734 */ 3735 struct ice_vsi * 3736 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3737 { 3738 struct ice_vsi_cfg_params params = {}; 3739 3740 params.type = ICE_VSI_LB; 3741 params.pi = pi; 3742 params.flags = ICE_VSI_FLAG_INIT; 3743 3744 return ice_vsi_setup(pf, ¶ms); 3745 } 3746 3747 /** 3748 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3749 * @netdev: network interface to be adjusted 3750 * @proto: VLAN TPID 3751 * @vid: VLAN ID to be added 3752 * 3753 * net_device_ops implementation for adding VLAN IDs 3754 */ 3755 static int 3756 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3757 { 3758 struct ice_netdev_priv *np = netdev_priv(netdev); 3759 struct ice_vsi_vlan_ops *vlan_ops; 3760 struct ice_vsi *vsi = np->vsi; 3761 struct ice_vlan vlan; 3762 int ret; 3763 3764 /* VLAN 0 is added by default during load/reset */ 3765 if (!vid) 3766 return 0; 3767 3768 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3769 usleep_range(1000, 2000); 3770 3771 /* Add multicast promisc rule for the VLAN ID to be added if 3772 * all-multicast is currently enabled. 3773 */ 3774 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3775 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3776 ICE_MCAST_VLAN_PROMISC_BITS, 3777 vid); 3778 if (ret) 3779 goto finish; 3780 } 3781 3782 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3783 3784 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3785 * packets aren't pruned by the device's internal switch on Rx 3786 */ 3787 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3788 ret = vlan_ops->add_vlan(vsi, &vlan); 3789 if (ret) 3790 goto finish; 3791 3792 /* If all-multicast is currently enabled and this VLAN ID is only one 3793 * besides VLAN-0 we have to update look-up type of multicast promisc 3794 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3795 */ 3796 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3797 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3798 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3799 ICE_MCAST_PROMISC_BITS, 0); 3800 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3801 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3802 } 3803 3804 finish: 3805 clear_bit(ICE_CFG_BUSY, vsi->state); 3806 3807 return ret; 3808 } 3809 3810 /** 3811 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3812 * @netdev: network interface to be adjusted 3813 * @proto: VLAN TPID 3814 * @vid: VLAN ID to be removed 3815 * 3816 * net_device_ops implementation for removing VLAN IDs 3817 */ 3818 static int 3819 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3820 { 3821 struct ice_netdev_priv *np = netdev_priv(netdev); 3822 struct ice_vsi_vlan_ops *vlan_ops; 3823 struct ice_vsi *vsi = np->vsi; 3824 struct ice_vlan vlan; 3825 int ret; 3826 3827 /* don't allow removal of VLAN 0 */ 3828 if (!vid) 3829 return 0; 3830 3831 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3832 usleep_range(1000, 2000); 3833 3834 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3835 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3836 if (ret) { 3837 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3838 vsi->vsi_num); 3839 vsi->current_netdev_flags |= IFF_ALLMULTI; 3840 } 3841 3842 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3843 3844 /* Make sure VLAN delete is successful before updating VLAN 3845 * information 3846 */ 3847 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3848 ret = vlan_ops->del_vlan(vsi, &vlan); 3849 if (ret) 3850 goto finish; 3851 3852 /* Remove multicast promisc rule for the removed VLAN ID if 3853 * all-multicast is enabled. 3854 */ 3855 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3856 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3857 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3858 3859 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3860 /* Update look-up type of multicast promisc rule for VLAN 0 3861 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3862 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3863 */ 3864 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3865 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3866 ICE_MCAST_VLAN_PROMISC_BITS, 3867 0); 3868 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3869 ICE_MCAST_PROMISC_BITS, 0); 3870 } 3871 } 3872 3873 finish: 3874 clear_bit(ICE_CFG_BUSY, vsi->state); 3875 3876 return ret; 3877 } 3878 3879 /** 3880 * ice_rep_indr_tc_block_unbind 3881 * @cb_priv: indirection block private data 3882 */ 3883 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3884 { 3885 struct ice_indr_block_priv *indr_priv = cb_priv; 3886 3887 list_del(&indr_priv->list); 3888 kfree(indr_priv); 3889 } 3890 3891 /** 3892 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3893 * @vsi: VSI struct which has the netdev 3894 */ 3895 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3896 { 3897 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3898 3899 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3900 ice_rep_indr_tc_block_unbind); 3901 } 3902 3903 /** 3904 * ice_tc_indir_block_register - Register TC indirect block notifications 3905 * @vsi: VSI struct which has the netdev 3906 * 3907 * Returns 0 on success, negative value on failure 3908 */ 3909 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3910 { 3911 struct ice_netdev_priv *np; 3912 3913 if (!vsi || !vsi->netdev) 3914 return -EINVAL; 3915 3916 np = netdev_priv(vsi->netdev); 3917 3918 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3919 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3920 } 3921 3922 /** 3923 * ice_get_avail_q_count - Get count of queues in use 3924 * @pf_qmap: bitmap to get queue use count from 3925 * @lock: pointer to a mutex that protects access to pf_qmap 3926 * @size: size of the bitmap 3927 */ 3928 static u16 3929 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3930 { 3931 unsigned long bit; 3932 u16 count = 0; 3933 3934 mutex_lock(lock); 3935 for_each_clear_bit(bit, pf_qmap, size) 3936 count++; 3937 mutex_unlock(lock); 3938 3939 return count; 3940 } 3941 3942 /** 3943 * ice_get_avail_txq_count - Get count of Tx queues in use 3944 * @pf: pointer to an ice_pf instance 3945 */ 3946 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3947 { 3948 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3949 pf->max_pf_txqs); 3950 } 3951 3952 /** 3953 * ice_get_avail_rxq_count - Get count of Rx queues in use 3954 * @pf: pointer to an ice_pf instance 3955 */ 3956 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3957 { 3958 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3959 pf->max_pf_rxqs); 3960 } 3961 3962 /** 3963 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3964 * @pf: board private structure to initialize 3965 */ 3966 static void ice_deinit_pf(struct ice_pf *pf) 3967 { 3968 ice_service_task_stop(pf); 3969 mutex_destroy(&pf->lag_mutex); 3970 mutex_destroy(&pf->adev_mutex); 3971 mutex_destroy(&pf->sw_mutex); 3972 mutex_destroy(&pf->tc_mutex); 3973 mutex_destroy(&pf->avail_q_mutex); 3974 mutex_destroy(&pf->vfs.table_lock); 3975 3976 if (pf->avail_txqs) { 3977 bitmap_free(pf->avail_txqs); 3978 pf->avail_txqs = NULL; 3979 } 3980 3981 if (pf->avail_rxqs) { 3982 bitmap_free(pf->avail_rxqs); 3983 pf->avail_rxqs = NULL; 3984 } 3985 3986 if (pf->ptp.clock) 3987 ptp_clock_unregister(pf->ptp.clock); 3988 } 3989 3990 /** 3991 * ice_set_pf_caps - set PFs capability flags 3992 * @pf: pointer to the PF instance 3993 */ 3994 static void ice_set_pf_caps(struct ice_pf *pf) 3995 { 3996 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3997 3998 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3999 if (func_caps->common_cap.rdma) 4000 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4001 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4002 if (func_caps->common_cap.dcb) 4003 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4004 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4005 if (func_caps->common_cap.sr_iov_1_1) { 4006 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4007 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4008 ICE_MAX_SRIOV_VFS); 4009 } 4010 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4011 if (func_caps->common_cap.rss_table_size) 4012 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4013 4014 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4015 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4016 u16 unused; 4017 4018 /* ctrl_vsi_idx will be set to a valid value when flow director 4019 * is setup by ice_init_fdir 4020 */ 4021 pf->ctrl_vsi_idx = ICE_NO_VSI; 4022 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4023 /* force guaranteed filter pool for PF */ 4024 ice_alloc_fd_guar_item(&pf->hw, &unused, 4025 func_caps->fd_fltr_guar); 4026 /* force shared filter pool for PF */ 4027 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4028 func_caps->fd_fltr_best_effort); 4029 } 4030 4031 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4032 if (func_caps->common_cap.ieee_1588 && 4033 !(pf->hw.mac_type == ICE_MAC_E830)) 4034 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4035 4036 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4037 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4038 } 4039 4040 /** 4041 * ice_init_pf - Initialize general software structures (struct ice_pf) 4042 * @pf: board private structure to initialize 4043 */ 4044 static int ice_init_pf(struct ice_pf *pf) 4045 { 4046 ice_set_pf_caps(pf); 4047 4048 mutex_init(&pf->sw_mutex); 4049 mutex_init(&pf->tc_mutex); 4050 mutex_init(&pf->adev_mutex); 4051 mutex_init(&pf->lag_mutex); 4052 4053 INIT_HLIST_HEAD(&pf->aq_wait_list); 4054 spin_lock_init(&pf->aq_wait_lock); 4055 init_waitqueue_head(&pf->aq_wait_queue); 4056 4057 init_waitqueue_head(&pf->reset_wait_queue); 4058 4059 /* setup service timer and periodic service task */ 4060 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4061 pf->serv_tmr_period = HZ; 4062 INIT_WORK(&pf->serv_task, ice_service_task); 4063 clear_bit(ICE_SERVICE_SCHED, pf->state); 4064 4065 mutex_init(&pf->avail_q_mutex); 4066 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4067 if (!pf->avail_txqs) 4068 return -ENOMEM; 4069 4070 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4071 if (!pf->avail_rxqs) { 4072 bitmap_free(pf->avail_txqs); 4073 pf->avail_txqs = NULL; 4074 return -ENOMEM; 4075 } 4076 4077 mutex_init(&pf->vfs.table_lock); 4078 hash_init(pf->vfs.table); 4079 ice_mbx_init_snapshot(&pf->hw); 4080 4081 return 0; 4082 } 4083 4084 /** 4085 * ice_is_wol_supported - check if WoL is supported 4086 * @hw: pointer to hardware info 4087 * 4088 * Check if WoL is supported based on the HW configuration. 4089 * Returns true if NVM supports and enables WoL for this port, false otherwise 4090 */ 4091 bool ice_is_wol_supported(struct ice_hw *hw) 4092 { 4093 u16 wol_ctrl; 4094 4095 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4096 * word) indicates WoL is not supported on the corresponding PF ID. 4097 */ 4098 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4099 return false; 4100 4101 return !(BIT(hw->port_info->lport) & wol_ctrl); 4102 } 4103 4104 /** 4105 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4106 * @vsi: VSI being changed 4107 * @new_rx: new number of Rx queues 4108 * @new_tx: new number of Tx queues 4109 * @locked: is adev device_lock held 4110 * 4111 * Only change the number of queues if new_tx, or new_rx is non-0. 4112 * 4113 * Returns 0 on success. 4114 */ 4115 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4116 { 4117 struct ice_pf *pf = vsi->back; 4118 int err = 0, timeout = 50; 4119 4120 if (!new_rx && !new_tx) 4121 return -EINVAL; 4122 4123 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4124 timeout--; 4125 if (!timeout) 4126 return -EBUSY; 4127 usleep_range(1000, 2000); 4128 } 4129 4130 if (new_tx) 4131 vsi->req_txq = (u16)new_tx; 4132 if (new_rx) 4133 vsi->req_rxq = (u16)new_rx; 4134 4135 /* set for the next time the netdev is started */ 4136 if (!netif_running(vsi->netdev)) { 4137 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4138 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4139 goto done; 4140 } 4141 4142 ice_vsi_close(vsi); 4143 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4144 ice_pf_dcb_recfg(pf, locked); 4145 ice_vsi_open(vsi); 4146 done: 4147 clear_bit(ICE_CFG_BUSY, pf->state); 4148 return err; 4149 } 4150 4151 /** 4152 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4153 * @pf: PF to configure 4154 * 4155 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4156 * VSI can still Tx/Rx VLAN tagged packets. 4157 */ 4158 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4159 { 4160 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4161 struct ice_vsi_ctx *ctxt; 4162 struct ice_hw *hw; 4163 int status; 4164 4165 if (!vsi) 4166 return; 4167 4168 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4169 if (!ctxt) 4170 return; 4171 4172 hw = &pf->hw; 4173 ctxt->info = vsi->info; 4174 4175 ctxt->info.valid_sections = 4176 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4177 ICE_AQ_VSI_PROP_SECURITY_VALID | 4178 ICE_AQ_VSI_PROP_SW_VALID); 4179 4180 /* disable VLAN anti-spoof */ 4181 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4182 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4183 4184 /* disable VLAN pruning and keep all other settings */ 4185 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4186 4187 /* allow all VLANs on Tx and don't strip on Rx */ 4188 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4189 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4190 4191 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4192 if (status) { 4193 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4194 status, ice_aq_str(hw->adminq.sq_last_status)); 4195 } else { 4196 vsi->info.sec_flags = ctxt->info.sec_flags; 4197 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4198 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4199 } 4200 4201 kfree(ctxt); 4202 } 4203 4204 /** 4205 * ice_log_pkg_init - log result of DDP package load 4206 * @hw: pointer to hardware info 4207 * @state: state of package load 4208 */ 4209 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4210 { 4211 struct ice_pf *pf = hw->back; 4212 struct device *dev; 4213 4214 dev = ice_pf_to_dev(pf); 4215 4216 switch (state) { 4217 case ICE_DDP_PKG_SUCCESS: 4218 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4219 hw->active_pkg_name, 4220 hw->active_pkg_ver.major, 4221 hw->active_pkg_ver.minor, 4222 hw->active_pkg_ver.update, 4223 hw->active_pkg_ver.draft); 4224 break; 4225 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4226 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4227 hw->active_pkg_name, 4228 hw->active_pkg_ver.major, 4229 hw->active_pkg_ver.minor, 4230 hw->active_pkg_ver.update, 4231 hw->active_pkg_ver.draft); 4232 break; 4233 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4234 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4235 hw->active_pkg_name, 4236 hw->active_pkg_ver.major, 4237 hw->active_pkg_ver.minor, 4238 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4239 break; 4240 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4241 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4242 hw->active_pkg_name, 4243 hw->active_pkg_ver.major, 4244 hw->active_pkg_ver.minor, 4245 hw->active_pkg_ver.update, 4246 hw->active_pkg_ver.draft, 4247 hw->pkg_name, 4248 hw->pkg_ver.major, 4249 hw->pkg_ver.minor, 4250 hw->pkg_ver.update, 4251 hw->pkg_ver.draft); 4252 break; 4253 case ICE_DDP_PKG_FW_MISMATCH: 4254 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4255 break; 4256 case ICE_DDP_PKG_INVALID_FILE: 4257 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4258 break; 4259 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4260 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4261 break; 4262 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4263 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4264 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4265 break; 4266 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4267 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4268 break; 4269 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4270 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4271 break; 4272 case ICE_DDP_PKG_LOAD_ERROR: 4273 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4274 /* poll for reset to complete */ 4275 if (ice_check_reset(hw)) 4276 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4277 break; 4278 case ICE_DDP_PKG_ERR: 4279 default: 4280 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4281 break; 4282 } 4283 } 4284 4285 /** 4286 * ice_load_pkg - load/reload the DDP Package file 4287 * @firmware: firmware structure when firmware requested or NULL for reload 4288 * @pf: pointer to the PF instance 4289 * 4290 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4291 * initialize HW tables. 4292 */ 4293 static void 4294 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4295 { 4296 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4297 struct device *dev = ice_pf_to_dev(pf); 4298 struct ice_hw *hw = &pf->hw; 4299 4300 /* Load DDP Package */ 4301 if (firmware && !hw->pkg_copy) { 4302 state = ice_copy_and_init_pkg(hw, firmware->data, 4303 firmware->size); 4304 ice_log_pkg_init(hw, state); 4305 } else if (!firmware && hw->pkg_copy) { 4306 /* Reload package during rebuild after CORER/GLOBR reset */ 4307 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4308 ice_log_pkg_init(hw, state); 4309 } else { 4310 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4311 } 4312 4313 if (!ice_is_init_pkg_successful(state)) { 4314 /* Safe Mode */ 4315 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4316 return; 4317 } 4318 4319 /* Successful download package is the precondition for advanced 4320 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4321 */ 4322 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4323 } 4324 4325 /** 4326 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4327 * @pf: pointer to the PF structure 4328 * 4329 * There is no error returned here because the driver should be able to handle 4330 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4331 * specifically with Tx. 4332 */ 4333 static void ice_verify_cacheline_size(struct ice_pf *pf) 4334 { 4335 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4336 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4337 ICE_CACHE_LINE_BYTES); 4338 } 4339 4340 /** 4341 * ice_send_version - update firmware with driver version 4342 * @pf: PF struct 4343 * 4344 * Returns 0 on success, else error code 4345 */ 4346 static int ice_send_version(struct ice_pf *pf) 4347 { 4348 struct ice_driver_ver dv; 4349 4350 dv.major_ver = 0xff; 4351 dv.minor_ver = 0xff; 4352 dv.build_ver = 0xff; 4353 dv.subbuild_ver = 0; 4354 strscpy((char *)dv.driver_string, UTS_RELEASE, 4355 sizeof(dv.driver_string)); 4356 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4357 } 4358 4359 /** 4360 * ice_init_fdir - Initialize flow director VSI and configuration 4361 * @pf: pointer to the PF instance 4362 * 4363 * returns 0 on success, negative on error 4364 */ 4365 static int ice_init_fdir(struct ice_pf *pf) 4366 { 4367 struct device *dev = ice_pf_to_dev(pf); 4368 struct ice_vsi *ctrl_vsi; 4369 int err; 4370 4371 /* Side Band Flow Director needs to have a control VSI. 4372 * Allocate it and store it in the PF. 4373 */ 4374 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4375 if (!ctrl_vsi) { 4376 dev_dbg(dev, "could not create control VSI\n"); 4377 return -ENOMEM; 4378 } 4379 4380 err = ice_vsi_open_ctrl(ctrl_vsi); 4381 if (err) { 4382 dev_dbg(dev, "could not open control VSI\n"); 4383 goto err_vsi_open; 4384 } 4385 4386 mutex_init(&pf->hw.fdir_fltr_lock); 4387 4388 err = ice_fdir_create_dflt_rules(pf); 4389 if (err) 4390 goto err_fdir_rule; 4391 4392 return 0; 4393 4394 err_fdir_rule: 4395 ice_fdir_release_flows(&pf->hw); 4396 ice_vsi_close(ctrl_vsi); 4397 err_vsi_open: 4398 ice_vsi_release(ctrl_vsi); 4399 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4400 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4401 pf->ctrl_vsi_idx = ICE_NO_VSI; 4402 } 4403 return err; 4404 } 4405 4406 static void ice_deinit_fdir(struct ice_pf *pf) 4407 { 4408 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4409 4410 if (!vsi) 4411 return; 4412 4413 ice_vsi_manage_fdir(vsi, false); 4414 ice_vsi_release(vsi); 4415 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4416 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4417 pf->ctrl_vsi_idx = ICE_NO_VSI; 4418 } 4419 4420 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4421 } 4422 4423 /** 4424 * ice_get_opt_fw_name - return optional firmware file name or NULL 4425 * @pf: pointer to the PF instance 4426 */ 4427 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4428 { 4429 /* Optional firmware name same as default with additional dash 4430 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4431 */ 4432 struct pci_dev *pdev = pf->pdev; 4433 char *opt_fw_filename; 4434 u64 dsn; 4435 4436 /* Determine the name of the optional file using the DSN (two 4437 * dwords following the start of the DSN Capability). 4438 */ 4439 dsn = pci_get_dsn(pdev); 4440 if (!dsn) 4441 return NULL; 4442 4443 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4444 if (!opt_fw_filename) 4445 return NULL; 4446 4447 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4448 ICE_DDP_PKG_PATH, dsn); 4449 4450 return opt_fw_filename; 4451 } 4452 4453 /** 4454 * ice_request_fw - Device initialization routine 4455 * @pf: pointer to the PF instance 4456 */ 4457 static void ice_request_fw(struct ice_pf *pf) 4458 { 4459 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4460 const struct firmware *firmware = NULL; 4461 struct device *dev = ice_pf_to_dev(pf); 4462 int err = 0; 4463 4464 /* optional device-specific DDP (if present) overrides the default DDP 4465 * package file. kernel logs a debug message if the file doesn't exist, 4466 * and warning messages for other errors. 4467 */ 4468 if (opt_fw_filename) { 4469 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4470 if (err) { 4471 kfree(opt_fw_filename); 4472 goto dflt_pkg_load; 4473 } 4474 4475 /* request for firmware was successful. Download to device */ 4476 ice_load_pkg(firmware, pf); 4477 kfree(opt_fw_filename); 4478 release_firmware(firmware); 4479 return; 4480 } 4481 4482 dflt_pkg_load: 4483 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4484 if (err) { 4485 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4486 return; 4487 } 4488 4489 /* request for firmware was successful. Download to device */ 4490 ice_load_pkg(firmware, pf); 4491 release_firmware(firmware); 4492 } 4493 4494 /** 4495 * ice_print_wake_reason - show the wake up cause in the log 4496 * @pf: pointer to the PF struct 4497 */ 4498 static void ice_print_wake_reason(struct ice_pf *pf) 4499 { 4500 u32 wus = pf->wakeup_reason; 4501 const char *wake_str; 4502 4503 /* if no wake event, nothing to print */ 4504 if (!wus) 4505 return; 4506 4507 if (wus & PFPM_WUS_LNKC_M) 4508 wake_str = "Link\n"; 4509 else if (wus & PFPM_WUS_MAG_M) 4510 wake_str = "Magic Packet\n"; 4511 else if (wus & PFPM_WUS_MNG_M) 4512 wake_str = "Management\n"; 4513 else if (wus & PFPM_WUS_FW_RST_WK_M) 4514 wake_str = "Firmware Reset\n"; 4515 else 4516 wake_str = "Unknown\n"; 4517 4518 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4519 } 4520 4521 /** 4522 * ice_pf_fwlog_update_module - update 1 module 4523 * @pf: pointer to the PF struct 4524 * @log_level: log_level to use for the @module 4525 * @module: module to update 4526 */ 4527 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4528 { 4529 struct ice_hw *hw = &pf->hw; 4530 4531 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4532 } 4533 4534 /** 4535 * ice_register_netdev - register netdev 4536 * @vsi: pointer to the VSI struct 4537 */ 4538 static int ice_register_netdev(struct ice_vsi *vsi) 4539 { 4540 int err; 4541 4542 if (!vsi || !vsi->netdev) 4543 return -EIO; 4544 4545 err = register_netdev(vsi->netdev); 4546 if (err) 4547 return err; 4548 4549 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4550 netif_carrier_off(vsi->netdev); 4551 netif_tx_stop_all_queues(vsi->netdev); 4552 4553 return 0; 4554 } 4555 4556 static void ice_unregister_netdev(struct ice_vsi *vsi) 4557 { 4558 if (!vsi || !vsi->netdev) 4559 return; 4560 4561 unregister_netdev(vsi->netdev); 4562 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4563 } 4564 4565 /** 4566 * ice_cfg_netdev - Allocate, configure and register a netdev 4567 * @vsi: the VSI associated with the new netdev 4568 * 4569 * Returns 0 on success, negative value on failure 4570 */ 4571 static int ice_cfg_netdev(struct ice_vsi *vsi) 4572 { 4573 struct ice_netdev_priv *np; 4574 struct net_device *netdev; 4575 u8 mac_addr[ETH_ALEN]; 4576 4577 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4578 vsi->alloc_rxq); 4579 if (!netdev) 4580 return -ENOMEM; 4581 4582 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4583 vsi->netdev = netdev; 4584 np = netdev_priv(netdev); 4585 np->vsi = vsi; 4586 4587 ice_set_netdev_features(netdev); 4588 ice_set_ops(vsi); 4589 4590 if (vsi->type == ICE_VSI_PF) { 4591 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4592 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4593 eth_hw_addr_set(netdev, mac_addr); 4594 } 4595 4596 netdev->priv_flags |= IFF_UNICAST_FLT; 4597 4598 /* Setup netdev TC information */ 4599 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4600 4601 netdev->max_mtu = ICE_MAX_MTU; 4602 4603 return 0; 4604 } 4605 4606 static void ice_decfg_netdev(struct ice_vsi *vsi) 4607 { 4608 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4609 free_netdev(vsi->netdev); 4610 vsi->netdev = NULL; 4611 } 4612 4613 /** 4614 * ice_wait_for_fw - wait for full FW readiness 4615 * @hw: pointer to the hardware structure 4616 * @timeout: milliseconds that can elapse before timing out 4617 */ 4618 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4619 { 4620 int fw_loading; 4621 u32 elapsed = 0; 4622 4623 while (elapsed <= timeout) { 4624 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4625 4626 /* firmware was not yet loaded, we have to wait more */ 4627 if (fw_loading) { 4628 elapsed += 100; 4629 msleep(100); 4630 continue; 4631 } 4632 return 0; 4633 } 4634 4635 return -ETIMEDOUT; 4636 } 4637 4638 int ice_init_dev(struct ice_pf *pf) 4639 { 4640 struct device *dev = ice_pf_to_dev(pf); 4641 struct ice_hw *hw = &pf->hw; 4642 int err; 4643 4644 err = ice_init_hw(hw); 4645 if (err) { 4646 dev_err(dev, "ice_init_hw failed: %d\n", err); 4647 return err; 4648 } 4649 4650 /* Some cards require longer initialization times 4651 * due to necessity of loading FW from an external source. 4652 * This can take even half a minute. 4653 */ 4654 if (ice_is_pf_c827(hw)) { 4655 err = ice_wait_for_fw(hw, 30000); 4656 if (err) { 4657 dev_err(dev, "ice_wait_for_fw timed out"); 4658 return err; 4659 } 4660 } 4661 4662 ice_init_feature_support(pf); 4663 4664 ice_request_fw(pf); 4665 4666 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4667 * set in pf->state, which will cause ice_is_safe_mode to return 4668 * true 4669 */ 4670 if (ice_is_safe_mode(pf)) { 4671 /* we already got function/device capabilities but these don't 4672 * reflect what the driver needs to do in safe mode. Instead of 4673 * adding conditional logic everywhere to ignore these 4674 * device/function capabilities, override them. 4675 */ 4676 ice_set_safe_mode_caps(hw); 4677 } 4678 4679 err = ice_init_pf(pf); 4680 if (err) { 4681 dev_err(dev, "ice_init_pf failed: %d\n", err); 4682 goto err_init_pf; 4683 } 4684 4685 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4686 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4687 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4688 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4689 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4690 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4691 pf->hw.tnl.valid_count[TNL_VXLAN]; 4692 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4693 UDP_TUNNEL_TYPE_VXLAN; 4694 } 4695 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4696 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4697 pf->hw.tnl.valid_count[TNL_GENEVE]; 4698 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4699 UDP_TUNNEL_TYPE_GENEVE; 4700 } 4701 4702 err = ice_init_interrupt_scheme(pf); 4703 if (err) { 4704 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4705 err = -EIO; 4706 goto err_init_interrupt_scheme; 4707 } 4708 4709 /* In case of MSIX we are going to setup the misc vector right here 4710 * to handle admin queue events etc. In case of legacy and MSI 4711 * the misc functionality and queue processing is combined in 4712 * the same vector and that gets setup at open. 4713 */ 4714 err = ice_req_irq_msix_misc(pf); 4715 if (err) { 4716 dev_err(dev, "setup of misc vector failed: %d\n", err); 4717 goto err_req_irq_msix_misc; 4718 } 4719 4720 return 0; 4721 4722 err_req_irq_msix_misc: 4723 ice_clear_interrupt_scheme(pf); 4724 err_init_interrupt_scheme: 4725 ice_deinit_pf(pf); 4726 err_init_pf: 4727 ice_deinit_hw(hw); 4728 return err; 4729 } 4730 4731 void ice_deinit_dev(struct ice_pf *pf) 4732 { 4733 ice_free_irq_msix_misc(pf); 4734 ice_deinit_pf(pf); 4735 ice_deinit_hw(&pf->hw); 4736 4737 /* Service task is already stopped, so call reset directly. */ 4738 ice_reset(&pf->hw, ICE_RESET_PFR); 4739 pci_wait_for_pending_transaction(pf->pdev); 4740 ice_clear_interrupt_scheme(pf); 4741 } 4742 4743 static void ice_init_features(struct ice_pf *pf) 4744 { 4745 struct device *dev = ice_pf_to_dev(pf); 4746 4747 if (ice_is_safe_mode(pf)) 4748 return; 4749 4750 /* initialize DDP driven features */ 4751 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4752 ice_ptp_init(pf); 4753 4754 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4755 ice_gnss_init(pf); 4756 4757 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4758 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4759 ice_dpll_init(pf); 4760 4761 /* Note: Flow director init failure is non-fatal to load */ 4762 if (ice_init_fdir(pf)) 4763 dev_err(dev, "could not initialize flow director\n"); 4764 4765 /* Note: DCB init failure is non-fatal to load */ 4766 if (ice_init_pf_dcb(pf, false)) { 4767 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4768 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4769 } else { 4770 ice_cfg_lldp_mib_change(&pf->hw, true); 4771 } 4772 4773 if (ice_init_lag(pf)) 4774 dev_warn(dev, "Failed to init link aggregation support\n"); 4775 4776 ice_hwmon_init(pf); 4777 } 4778 4779 static void ice_deinit_features(struct ice_pf *pf) 4780 { 4781 if (ice_is_safe_mode(pf)) 4782 return; 4783 4784 ice_deinit_lag(pf); 4785 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4786 ice_cfg_lldp_mib_change(&pf->hw, false); 4787 ice_deinit_fdir(pf); 4788 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4789 ice_gnss_exit(pf); 4790 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4791 ice_ptp_release(pf); 4792 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4793 ice_dpll_deinit(pf); 4794 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4795 xa_destroy(&pf->eswitch.reprs); 4796 } 4797 4798 static void ice_init_wakeup(struct ice_pf *pf) 4799 { 4800 /* Save wakeup reason register for later use */ 4801 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4802 4803 /* check for a power management event */ 4804 ice_print_wake_reason(pf); 4805 4806 /* clear wake status, all bits */ 4807 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4808 4809 /* Disable WoL at init, wait for user to enable */ 4810 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4811 } 4812 4813 static int ice_init_link(struct ice_pf *pf) 4814 { 4815 struct device *dev = ice_pf_to_dev(pf); 4816 int err; 4817 4818 err = ice_init_link_events(pf->hw.port_info); 4819 if (err) { 4820 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4821 return err; 4822 } 4823 4824 /* not a fatal error if this fails */ 4825 err = ice_init_nvm_phy_type(pf->hw.port_info); 4826 if (err) 4827 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4828 4829 /* not a fatal error if this fails */ 4830 err = ice_update_link_info(pf->hw.port_info); 4831 if (err) 4832 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4833 4834 ice_init_link_dflt_override(pf->hw.port_info); 4835 4836 ice_check_link_cfg_err(pf, 4837 pf->hw.port_info->phy.link_info.link_cfg_err); 4838 4839 /* if media available, initialize PHY settings */ 4840 if (pf->hw.port_info->phy.link_info.link_info & 4841 ICE_AQ_MEDIA_AVAILABLE) { 4842 /* not a fatal error if this fails */ 4843 err = ice_init_phy_user_cfg(pf->hw.port_info); 4844 if (err) 4845 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4846 4847 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4848 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4849 4850 if (vsi) 4851 ice_configure_phy(vsi); 4852 } 4853 } else { 4854 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4855 } 4856 4857 return err; 4858 } 4859 4860 static int ice_init_pf_sw(struct ice_pf *pf) 4861 { 4862 bool dvm = ice_is_dvm_ena(&pf->hw); 4863 struct ice_vsi *vsi; 4864 int err; 4865 4866 /* create switch struct for the switch element created by FW on boot */ 4867 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4868 if (!pf->first_sw) 4869 return -ENOMEM; 4870 4871 if (pf->hw.evb_veb) 4872 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4873 else 4874 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4875 4876 pf->first_sw->pf = pf; 4877 4878 /* record the sw_id available for later use */ 4879 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4880 4881 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4882 if (err) 4883 goto err_aq_set_port_params; 4884 4885 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4886 if (!vsi) { 4887 err = -ENOMEM; 4888 goto err_pf_vsi_setup; 4889 } 4890 4891 return 0; 4892 4893 err_pf_vsi_setup: 4894 err_aq_set_port_params: 4895 kfree(pf->first_sw); 4896 return err; 4897 } 4898 4899 static void ice_deinit_pf_sw(struct ice_pf *pf) 4900 { 4901 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4902 4903 if (!vsi) 4904 return; 4905 4906 ice_vsi_release(vsi); 4907 kfree(pf->first_sw); 4908 } 4909 4910 static int ice_alloc_vsis(struct ice_pf *pf) 4911 { 4912 struct device *dev = ice_pf_to_dev(pf); 4913 4914 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4915 if (!pf->num_alloc_vsi) 4916 return -EIO; 4917 4918 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4919 dev_warn(dev, 4920 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4921 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4922 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4923 } 4924 4925 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4926 GFP_KERNEL); 4927 if (!pf->vsi) 4928 return -ENOMEM; 4929 4930 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4931 sizeof(*pf->vsi_stats), GFP_KERNEL); 4932 if (!pf->vsi_stats) { 4933 devm_kfree(dev, pf->vsi); 4934 return -ENOMEM; 4935 } 4936 4937 return 0; 4938 } 4939 4940 static void ice_dealloc_vsis(struct ice_pf *pf) 4941 { 4942 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4943 pf->vsi_stats = NULL; 4944 4945 pf->num_alloc_vsi = 0; 4946 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4947 pf->vsi = NULL; 4948 } 4949 4950 static int ice_init_devlink(struct ice_pf *pf) 4951 { 4952 int err; 4953 4954 err = ice_devlink_register_params(pf); 4955 if (err) 4956 return err; 4957 4958 ice_devlink_init_regions(pf); 4959 ice_devlink_register(pf); 4960 4961 return 0; 4962 } 4963 4964 static void ice_deinit_devlink(struct ice_pf *pf) 4965 { 4966 ice_devlink_unregister(pf); 4967 ice_devlink_destroy_regions(pf); 4968 ice_devlink_unregister_params(pf); 4969 } 4970 4971 static int ice_init(struct ice_pf *pf) 4972 { 4973 int err; 4974 4975 err = ice_init_dev(pf); 4976 if (err) 4977 return err; 4978 4979 err = ice_alloc_vsis(pf); 4980 if (err) 4981 goto err_alloc_vsis; 4982 4983 err = ice_init_pf_sw(pf); 4984 if (err) 4985 goto err_init_pf_sw; 4986 4987 ice_init_wakeup(pf); 4988 4989 err = ice_init_link(pf); 4990 if (err) 4991 goto err_init_link; 4992 4993 err = ice_send_version(pf); 4994 if (err) 4995 goto err_init_link; 4996 4997 ice_verify_cacheline_size(pf); 4998 4999 if (ice_is_safe_mode(pf)) 5000 ice_set_safe_mode_vlan_cfg(pf); 5001 else 5002 /* print PCI link speed and width */ 5003 pcie_print_link_status(pf->pdev); 5004 5005 /* ready to go, so clear down state bit */ 5006 clear_bit(ICE_DOWN, pf->state); 5007 clear_bit(ICE_SERVICE_DIS, pf->state); 5008 5009 /* since everything is good, start the service timer */ 5010 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5011 5012 return 0; 5013 5014 err_init_link: 5015 ice_deinit_pf_sw(pf); 5016 err_init_pf_sw: 5017 ice_dealloc_vsis(pf); 5018 err_alloc_vsis: 5019 ice_deinit_dev(pf); 5020 return err; 5021 } 5022 5023 static void ice_deinit(struct ice_pf *pf) 5024 { 5025 set_bit(ICE_SERVICE_DIS, pf->state); 5026 set_bit(ICE_DOWN, pf->state); 5027 5028 ice_deinit_pf_sw(pf); 5029 ice_dealloc_vsis(pf); 5030 ice_deinit_dev(pf); 5031 } 5032 5033 /** 5034 * ice_load - load pf by init hw and starting VSI 5035 * @pf: pointer to the pf instance 5036 * 5037 * This function has to be called under devl_lock. 5038 */ 5039 int ice_load(struct ice_pf *pf) 5040 { 5041 struct ice_vsi *vsi; 5042 int err; 5043 5044 devl_assert_locked(priv_to_devlink(pf)); 5045 5046 vsi = ice_get_main_vsi(pf); 5047 5048 /* init channel list */ 5049 INIT_LIST_HEAD(&vsi->ch_list); 5050 5051 err = ice_cfg_netdev(vsi); 5052 if (err) 5053 return err; 5054 5055 /* Setup DCB netlink interface */ 5056 ice_dcbnl_setup(vsi); 5057 5058 err = ice_init_mac_fltr(pf); 5059 if (err) 5060 goto err_init_mac_fltr; 5061 5062 err = ice_devlink_create_pf_port(pf); 5063 if (err) 5064 goto err_devlink_create_pf_port; 5065 5066 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5067 5068 err = ice_register_netdev(vsi); 5069 if (err) 5070 goto err_register_netdev; 5071 5072 err = ice_tc_indir_block_register(vsi); 5073 if (err) 5074 goto err_tc_indir_block_register; 5075 5076 ice_napi_add(vsi); 5077 5078 err = ice_init_rdma(pf); 5079 if (err) 5080 goto err_init_rdma; 5081 5082 ice_init_features(pf); 5083 ice_service_task_restart(pf); 5084 5085 clear_bit(ICE_DOWN, pf->state); 5086 5087 return 0; 5088 5089 err_init_rdma: 5090 ice_tc_indir_block_unregister(vsi); 5091 err_tc_indir_block_register: 5092 ice_unregister_netdev(vsi); 5093 err_register_netdev: 5094 ice_devlink_destroy_pf_port(pf); 5095 err_devlink_create_pf_port: 5096 err_init_mac_fltr: 5097 ice_decfg_netdev(vsi); 5098 return err; 5099 } 5100 5101 /** 5102 * ice_unload - unload pf by stopping VSI and deinit hw 5103 * @pf: pointer to the pf instance 5104 * 5105 * This function has to be called under devl_lock. 5106 */ 5107 void ice_unload(struct ice_pf *pf) 5108 { 5109 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5110 5111 devl_assert_locked(priv_to_devlink(pf)); 5112 5113 ice_deinit_features(pf); 5114 ice_deinit_rdma(pf); 5115 ice_tc_indir_block_unregister(vsi); 5116 ice_unregister_netdev(vsi); 5117 ice_devlink_destroy_pf_port(pf); 5118 ice_decfg_netdev(vsi); 5119 } 5120 5121 /** 5122 * ice_probe - Device initialization routine 5123 * @pdev: PCI device information struct 5124 * @ent: entry in ice_pci_tbl 5125 * 5126 * Returns 0 on success, negative on failure 5127 */ 5128 static int 5129 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5130 { 5131 struct device *dev = &pdev->dev; 5132 struct ice_adapter *adapter; 5133 struct ice_pf *pf; 5134 struct ice_hw *hw; 5135 int err; 5136 5137 if (pdev->is_virtfn) { 5138 dev_err(dev, "can't probe a virtual function\n"); 5139 return -EINVAL; 5140 } 5141 5142 /* when under a kdump kernel initiate a reset before enabling the 5143 * device in order to clear out any pending DMA transactions. These 5144 * transactions can cause some systems to machine check when doing 5145 * the pcim_enable_device() below. 5146 */ 5147 if (is_kdump_kernel()) { 5148 pci_save_state(pdev); 5149 pci_clear_master(pdev); 5150 err = pcie_flr(pdev); 5151 if (err) 5152 return err; 5153 pci_restore_state(pdev); 5154 } 5155 5156 /* this driver uses devres, see 5157 * Documentation/driver-api/driver-model/devres.rst 5158 */ 5159 err = pcim_enable_device(pdev); 5160 if (err) 5161 return err; 5162 5163 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5164 if (err) { 5165 dev_err(dev, "BAR0 I/O map error %d\n", err); 5166 return err; 5167 } 5168 5169 pf = ice_allocate_pf(dev); 5170 if (!pf) 5171 return -ENOMEM; 5172 5173 /* initialize Auxiliary index to invalid value */ 5174 pf->aux_idx = -1; 5175 5176 /* set up for high or low DMA */ 5177 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5178 if (err) { 5179 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5180 return err; 5181 } 5182 5183 pci_set_master(pdev); 5184 5185 adapter = ice_adapter_get(pdev); 5186 if (IS_ERR(adapter)) 5187 return PTR_ERR(adapter); 5188 5189 pf->pdev = pdev; 5190 pf->adapter = adapter; 5191 pci_set_drvdata(pdev, pf); 5192 set_bit(ICE_DOWN, pf->state); 5193 /* Disable service task until DOWN bit is cleared */ 5194 set_bit(ICE_SERVICE_DIS, pf->state); 5195 5196 hw = &pf->hw; 5197 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5198 pci_save_state(pdev); 5199 5200 hw->back = pf; 5201 hw->port_info = NULL; 5202 hw->vendor_id = pdev->vendor; 5203 hw->device_id = pdev->device; 5204 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5205 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5206 hw->subsystem_device_id = pdev->subsystem_device; 5207 hw->bus.device = PCI_SLOT(pdev->devfn); 5208 hw->bus.func = PCI_FUNC(pdev->devfn); 5209 ice_set_ctrlq_len(hw); 5210 5211 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5212 5213 #ifndef CONFIG_DYNAMIC_DEBUG 5214 if (debug < -1) 5215 hw->debug_mask = debug; 5216 #endif 5217 5218 err = ice_init(pf); 5219 if (err) 5220 goto err_init; 5221 5222 devl_lock(priv_to_devlink(pf)); 5223 err = ice_load(pf); 5224 if (err) 5225 goto err_load; 5226 5227 err = ice_init_devlink(pf); 5228 if (err) 5229 goto err_init_devlink; 5230 devl_unlock(priv_to_devlink(pf)); 5231 5232 return 0; 5233 5234 err_init_devlink: 5235 ice_unload(pf); 5236 err_load: 5237 devl_unlock(priv_to_devlink(pf)); 5238 ice_deinit(pf); 5239 err_init: 5240 ice_adapter_put(pdev); 5241 pci_disable_device(pdev); 5242 return err; 5243 } 5244 5245 /** 5246 * ice_set_wake - enable or disable Wake on LAN 5247 * @pf: pointer to the PF struct 5248 * 5249 * Simple helper for WoL control 5250 */ 5251 static void ice_set_wake(struct ice_pf *pf) 5252 { 5253 struct ice_hw *hw = &pf->hw; 5254 bool wol = pf->wol_ena; 5255 5256 /* clear wake state, otherwise new wake events won't fire */ 5257 wr32(hw, PFPM_WUS, U32_MAX); 5258 5259 /* enable / disable APM wake up, no RMW needed */ 5260 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5261 5262 /* set magic packet filter enabled */ 5263 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5264 } 5265 5266 /** 5267 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5268 * @pf: pointer to the PF struct 5269 * 5270 * Issue firmware command to enable multicast magic wake, making 5271 * sure that any locally administered address (LAA) is used for 5272 * wake, and that PF reset doesn't undo the LAA. 5273 */ 5274 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5275 { 5276 struct device *dev = ice_pf_to_dev(pf); 5277 struct ice_hw *hw = &pf->hw; 5278 u8 mac_addr[ETH_ALEN]; 5279 struct ice_vsi *vsi; 5280 int status; 5281 u8 flags; 5282 5283 if (!pf->wol_ena) 5284 return; 5285 5286 vsi = ice_get_main_vsi(pf); 5287 if (!vsi) 5288 return; 5289 5290 /* Get current MAC address in case it's an LAA */ 5291 if (vsi->netdev) 5292 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5293 else 5294 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5295 5296 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5297 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5298 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5299 5300 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5301 if (status) 5302 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5303 status, ice_aq_str(hw->adminq.sq_last_status)); 5304 } 5305 5306 /** 5307 * ice_remove - Device removal routine 5308 * @pdev: PCI device information struct 5309 */ 5310 static void ice_remove(struct pci_dev *pdev) 5311 { 5312 struct ice_pf *pf = pci_get_drvdata(pdev); 5313 int i; 5314 5315 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5316 if (!ice_is_reset_in_progress(pf->state)) 5317 break; 5318 msleep(100); 5319 } 5320 5321 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5322 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5323 ice_free_vfs(pf); 5324 } 5325 5326 ice_hwmon_exit(pf); 5327 5328 ice_service_task_stop(pf); 5329 ice_aq_cancel_waiting_tasks(pf); 5330 set_bit(ICE_DOWN, pf->state); 5331 5332 if (!ice_is_safe_mode(pf)) 5333 ice_remove_arfs(pf); 5334 5335 devl_lock(priv_to_devlink(pf)); 5336 ice_deinit_devlink(pf); 5337 5338 ice_unload(pf); 5339 devl_unlock(priv_to_devlink(pf)); 5340 5341 ice_deinit(pf); 5342 ice_vsi_release_all(pf); 5343 5344 ice_setup_mc_magic_wake(pf); 5345 ice_set_wake(pf); 5346 5347 ice_adapter_put(pdev); 5348 pci_disable_device(pdev); 5349 } 5350 5351 /** 5352 * ice_shutdown - PCI callback for shutting down device 5353 * @pdev: PCI device information struct 5354 */ 5355 static void ice_shutdown(struct pci_dev *pdev) 5356 { 5357 struct ice_pf *pf = pci_get_drvdata(pdev); 5358 5359 ice_remove(pdev); 5360 5361 if (system_state == SYSTEM_POWER_OFF) { 5362 pci_wake_from_d3(pdev, pf->wol_ena); 5363 pci_set_power_state(pdev, PCI_D3hot); 5364 } 5365 } 5366 5367 /** 5368 * ice_prepare_for_shutdown - prep for PCI shutdown 5369 * @pf: board private structure 5370 * 5371 * Inform or close all dependent features in prep for PCI device shutdown 5372 */ 5373 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5374 { 5375 struct ice_hw *hw = &pf->hw; 5376 u32 v; 5377 5378 /* Notify VFs of impending reset */ 5379 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5380 ice_vc_notify_reset(pf); 5381 5382 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5383 5384 /* disable the VSIs and their queues that are not already DOWN */ 5385 ice_pf_dis_all_vsi(pf, false); 5386 5387 ice_for_each_vsi(pf, v) 5388 if (pf->vsi[v]) 5389 pf->vsi[v]->vsi_num = 0; 5390 5391 ice_shutdown_all_ctrlq(hw); 5392 } 5393 5394 /** 5395 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5396 * @pf: board private structure to reinitialize 5397 * 5398 * This routine reinitialize interrupt scheme that was cleared during 5399 * power management suspend callback. 5400 * 5401 * This should be called during resume routine to re-allocate the q_vectors 5402 * and reacquire interrupts. 5403 */ 5404 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5405 { 5406 struct device *dev = ice_pf_to_dev(pf); 5407 int ret, v; 5408 5409 /* Since we clear MSIX flag during suspend, we need to 5410 * set it back during resume... 5411 */ 5412 5413 ret = ice_init_interrupt_scheme(pf); 5414 if (ret) { 5415 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5416 return ret; 5417 } 5418 5419 /* Remap vectors and rings, after successful re-init interrupts */ 5420 ice_for_each_vsi(pf, v) { 5421 if (!pf->vsi[v]) 5422 continue; 5423 5424 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5425 if (ret) 5426 goto err_reinit; 5427 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5428 ice_vsi_set_napi_queues(pf->vsi[v]); 5429 } 5430 5431 ret = ice_req_irq_msix_misc(pf); 5432 if (ret) { 5433 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5434 ret); 5435 goto err_reinit; 5436 } 5437 5438 return 0; 5439 5440 err_reinit: 5441 while (v--) 5442 if (pf->vsi[v]) 5443 ice_vsi_free_q_vectors(pf->vsi[v]); 5444 5445 return ret; 5446 } 5447 5448 /** 5449 * ice_suspend 5450 * @dev: generic device information structure 5451 * 5452 * Power Management callback to quiesce the device and prepare 5453 * for D3 transition. 5454 */ 5455 static int ice_suspend(struct device *dev) 5456 { 5457 struct pci_dev *pdev = to_pci_dev(dev); 5458 struct ice_pf *pf; 5459 int disabled, v; 5460 5461 pf = pci_get_drvdata(pdev); 5462 5463 if (!ice_pf_state_is_nominal(pf)) { 5464 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5465 return -EBUSY; 5466 } 5467 5468 /* Stop watchdog tasks until resume completion. 5469 * Even though it is most likely that the service task is 5470 * disabled if the device is suspended or down, the service task's 5471 * state is controlled by a different state bit, and we should 5472 * store and honor whatever state that bit is in at this point. 5473 */ 5474 disabled = ice_service_task_stop(pf); 5475 5476 ice_unplug_aux_dev(pf); 5477 5478 /* Already suspended?, then there is nothing to do */ 5479 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5480 if (!disabled) 5481 ice_service_task_restart(pf); 5482 return 0; 5483 } 5484 5485 if (test_bit(ICE_DOWN, pf->state) || 5486 ice_is_reset_in_progress(pf->state)) { 5487 dev_err(dev, "can't suspend device in reset or already down\n"); 5488 if (!disabled) 5489 ice_service_task_restart(pf); 5490 return 0; 5491 } 5492 5493 ice_setup_mc_magic_wake(pf); 5494 5495 ice_prepare_for_shutdown(pf); 5496 5497 ice_set_wake(pf); 5498 5499 /* Free vectors, clear the interrupt scheme and release IRQs 5500 * for proper hibernation, especially with large number of CPUs. 5501 * Otherwise hibernation might fail when mapping all the vectors back 5502 * to CPU0. 5503 */ 5504 ice_free_irq_msix_misc(pf); 5505 ice_for_each_vsi(pf, v) { 5506 if (!pf->vsi[v]) 5507 continue; 5508 ice_vsi_free_q_vectors(pf->vsi[v]); 5509 } 5510 ice_clear_interrupt_scheme(pf); 5511 5512 pci_save_state(pdev); 5513 pci_wake_from_d3(pdev, pf->wol_ena); 5514 pci_set_power_state(pdev, PCI_D3hot); 5515 return 0; 5516 } 5517 5518 /** 5519 * ice_resume - PM callback for waking up from D3 5520 * @dev: generic device information structure 5521 */ 5522 static int ice_resume(struct device *dev) 5523 { 5524 struct pci_dev *pdev = to_pci_dev(dev); 5525 enum ice_reset_req reset_type; 5526 struct ice_pf *pf; 5527 struct ice_hw *hw; 5528 int ret; 5529 5530 pci_set_power_state(pdev, PCI_D0); 5531 pci_restore_state(pdev); 5532 pci_save_state(pdev); 5533 5534 if (!pci_device_is_present(pdev)) 5535 return -ENODEV; 5536 5537 ret = pci_enable_device_mem(pdev); 5538 if (ret) { 5539 dev_err(dev, "Cannot enable device after suspend\n"); 5540 return ret; 5541 } 5542 5543 pf = pci_get_drvdata(pdev); 5544 hw = &pf->hw; 5545 5546 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5547 ice_print_wake_reason(pf); 5548 5549 /* We cleared the interrupt scheme when we suspended, so we need to 5550 * restore it now to resume device functionality. 5551 */ 5552 ret = ice_reinit_interrupt_scheme(pf); 5553 if (ret) 5554 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5555 5556 clear_bit(ICE_DOWN, pf->state); 5557 /* Now perform PF reset and rebuild */ 5558 reset_type = ICE_RESET_PFR; 5559 /* re-enable service task for reset, but allow reset to schedule it */ 5560 clear_bit(ICE_SERVICE_DIS, pf->state); 5561 5562 if (ice_schedule_reset(pf, reset_type)) 5563 dev_err(dev, "Reset during resume failed.\n"); 5564 5565 clear_bit(ICE_SUSPENDED, pf->state); 5566 ice_service_task_restart(pf); 5567 5568 /* Restart the service task */ 5569 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5570 5571 return 0; 5572 } 5573 5574 /** 5575 * ice_pci_err_detected - warning that PCI error has been detected 5576 * @pdev: PCI device information struct 5577 * @err: the type of PCI error 5578 * 5579 * Called to warn that something happened on the PCI bus and the error handling 5580 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5581 */ 5582 static pci_ers_result_t 5583 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5584 { 5585 struct ice_pf *pf = pci_get_drvdata(pdev); 5586 5587 if (!pf) { 5588 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5589 __func__, err); 5590 return PCI_ERS_RESULT_DISCONNECT; 5591 } 5592 5593 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5594 ice_service_task_stop(pf); 5595 5596 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5597 set_bit(ICE_PFR_REQ, pf->state); 5598 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5599 } 5600 } 5601 5602 return PCI_ERS_RESULT_NEED_RESET; 5603 } 5604 5605 /** 5606 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5607 * @pdev: PCI device information struct 5608 * 5609 * Called to determine if the driver can recover from the PCI slot reset by 5610 * using a register read to determine if the device is recoverable. 5611 */ 5612 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5613 { 5614 struct ice_pf *pf = pci_get_drvdata(pdev); 5615 pci_ers_result_t result; 5616 int err; 5617 u32 reg; 5618 5619 err = pci_enable_device_mem(pdev); 5620 if (err) { 5621 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5622 err); 5623 result = PCI_ERS_RESULT_DISCONNECT; 5624 } else { 5625 pci_set_master(pdev); 5626 pci_restore_state(pdev); 5627 pci_save_state(pdev); 5628 pci_wake_from_d3(pdev, false); 5629 5630 /* Check for life */ 5631 reg = rd32(&pf->hw, GLGEN_RTRIG); 5632 if (!reg) 5633 result = PCI_ERS_RESULT_RECOVERED; 5634 else 5635 result = PCI_ERS_RESULT_DISCONNECT; 5636 } 5637 5638 return result; 5639 } 5640 5641 /** 5642 * ice_pci_err_resume - restart operations after PCI error recovery 5643 * @pdev: PCI device information struct 5644 * 5645 * Called to allow the driver to bring things back up after PCI error and/or 5646 * reset recovery have finished 5647 */ 5648 static void ice_pci_err_resume(struct pci_dev *pdev) 5649 { 5650 struct ice_pf *pf = pci_get_drvdata(pdev); 5651 5652 if (!pf) { 5653 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5654 __func__); 5655 return; 5656 } 5657 5658 if (test_bit(ICE_SUSPENDED, pf->state)) { 5659 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5660 __func__); 5661 return; 5662 } 5663 5664 ice_restore_all_vfs_msi_state(pf); 5665 5666 ice_do_reset(pf, ICE_RESET_PFR); 5667 ice_service_task_restart(pf); 5668 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5669 } 5670 5671 /** 5672 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5673 * @pdev: PCI device information struct 5674 */ 5675 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5676 { 5677 struct ice_pf *pf = pci_get_drvdata(pdev); 5678 5679 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5680 ice_service_task_stop(pf); 5681 5682 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5683 set_bit(ICE_PFR_REQ, pf->state); 5684 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5685 } 5686 } 5687 } 5688 5689 /** 5690 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5691 * @pdev: PCI device information struct 5692 */ 5693 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5694 { 5695 ice_pci_err_resume(pdev); 5696 } 5697 5698 /* ice_pci_tbl - PCI Device ID Table 5699 * 5700 * Wildcard entries (PCI_ANY_ID) should come last 5701 * Last entry must be all 0s 5702 * 5703 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5704 * Class, Class Mask, private data (not used) } 5705 */ 5706 static const struct pci_device_id ice_pci_tbl[] = { 5707 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5708 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5709 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5710 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5711 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5712 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5713 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5714 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5715 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5716 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5717 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5718 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5719 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5720 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5721 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5722 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5723 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5724 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5725 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5726 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5727 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5728 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5729 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5730 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5731 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5732 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5733 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5734 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5735 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5736 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5737 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) }, 5738 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) }, 5739 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) }, 5740 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) }, 5741 /* required last entry */ 5742 {} 5743 }; 5744 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5745 5746 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5747 5748 static const struct pci_error_handlers ice_pci_err_handler = { 5749 .error_detected = ice_pci_err_detected, 5750 .slot_reset = ice_pci_err_slot_reset, 5751 .reset_prepare = ice_pci_err_reset_prepare, 5752 .reset_done = ice_pci_err_reset_done, 5753 .resume = ice_pci_err_resume 5754 }; 5755 5756 static struct pci_driver ice_driver = { 5757 .name = KBUILD_MODNAME, 5758 .id_table = ice_pci_tbl, 5759 .probe = ice_probe, 5760 .remove = ice_remove, 5761 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5762 .shutdown = ice_shutdown, 5763 .sriov_configure = ice_sriov_configure, 5764 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5765 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5766 .err_handler = &ice_pci_err_handler 5767 }; 5768 5769 /** 5770 * ice_module_init - Driver registration routine 5771 * 5772 * ice_module_init is the first routine called when the driver is 5773 * loaded. All it does is register with the PCI subsystem. 5774 */ 5775 static int __init ice_module_init(void) 5776 { 5777 int status = -ENOMEM; 5778 5779 pr_info("%s\n", ice_driver_string); 5780 pr_info("%s\n", ice_copyright); 5781 5782 ice_adv_lnk_speed_maps_init(); 5783 5784 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5785 if (!ice_wq) { 5786 pr_err("Failed to create workqueue\n"); 5787 return status; 5788 } 5789 5790 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5791 if (!ice_lag_wq) { 5792 pr_err("Failed to create LAG workqueue\n"); 5793 goto err_dest_wq; 5794 } 5795 5796 ice_debugfs_init(); 5797 5798 status = pci_register_driver(&ice_driver); 5799 if (status) { 5800 pr_err("failed to register PCI driver, err %d\n", status); 5801 goto err_dest_lag_wq; 5802 } 5803 5804 return 0; 5805 5806 err_dest_lag_wq: 5807 destroy_workqueue(ice_lag_wq); 5808 ice_debugfs_exit(); 5809 err_dest_wq: 5810 destroy_workqueue(ice_wq); 5811 return status; 5812 } 5813 module_init(ice_module_init); 5814 5815 /** 5816 * ice_module_exit - Driver exit cleanup routine 5817 * 5818 * ice_module_exit is called just before the driver is removed 5819 * from memory. 5820 */ 5821 static void __exit ice_module_exit(void) 5822 { 5823 pci_unregister_driver(&ice_driver); 5824 ice_debugfs_exit(); 5825 destroy_workqueue(ice_wq); 5826 destroy_workqueue(ice_lag_wq); 5827 pr_info("module unloaded\n"); 5828 } 5829 module_exit(ice_module_exit); 5830 5831 /** 5832 * ice_set_mac_address - NDO callback to set MAC address 5833 * @netdev: network interface device structure 5834 * @pi: pointer to an address structure 5835 * 5836 * Returns 0 on success, negative on failure 5837 */ 5838 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5839 { 5840 struct ice_netdev_priv *np = netdev_priv(netdev); 5841 struct ice_vsi *vsi = np->vsi; 5842 struct ice_pf *pf = vsi->back; 5843 struct ice_hw *hw = &pf->hw; 5844 struct sockaddr *addr = pi; 5845 u8 old_mac[ETH_ALEN]; 5846 u8 flags = 0; 5847 u8 *mac; 5848 int err; 5849 5850 mac = (u8 *)addr->sa_data; 5851 5852 if (!is_valid_ether_addr(mac)) 5853 return -EADDRNOTAVAIL; 5854 5855 if (test_bit(ICE_DOWN, pf->state) || 5856 ice_is_reset_in_progress(pf->state)) { 5857 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5858 mac); 5859 return -EBUSY; 5860 } 5861 5862 if (ice_chnl_dmac_fltr_cnt(pf)) { 5863 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5864 mac); 5865 return -EAGAIN; 5866 } 5867 5868 netif_addr_lock_bh(netdev); 5869 ether_addr_copy(old_mac, netdev->dev_addr); 5870 /* change the netdev's MAC address */ 5871 eth_hw_addr_set(netdev, mac); 5872 netif_addr_unlock_bh(netdev); 5873 5874 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5875 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5876 if (err && err != -ENOENT) { 5877 err = -EADDRNOTAVAIL; 5878 goto err_update_filters; 5879 } 5880 5881 /* Add filter for new MAC. If filter exists, return success */ 5882 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5883 if (err == -EEXIST) { 5884 /* Although this MAC filter is already present in hardware it's 5885 * possible in some cases (e.g. bonding) that dev_addr was 5886 * modified outside of the driver and needs to be restored back 5887 * to this value. 5888 */ 5889 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5890 5891 return 0; 5892 } else if (err) { 5893 /* error if the new filter addition failed */ 5894 err = -EADDRNOTAVAIL; 5895 } 5896 5897 err_update_filters: 5898 if (err) { 5899 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5900 mac); 5901 netif_addr_lock_bh(netdev); 5902 eth_hw_addr_set(netdev, old_mac); 5903 netif_addr_unlock_bh(netdev); 5904 return err; 5905 } 5906 5907 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5908 netdev->dev_addr); 5909 5910 /* write new MAC address to the firmware */ 5911 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5912 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5913 if (err) { 5914 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5915 mac, err); 5916 } 5917 return 0; 5918 } 5919 5920 /** 5921 * ice_set_rx_mode - NDO callback to set the netdev filters 5922 * @netdev: network interface device structure 5923 */ 5924 static void ice_set_rx_mode(struct net_device *netdev) 5925 { 5926 struct ice_netdev_priv *np = netdev_priv(netdev); 5927 struct ice_vsi *vsi = np->vsi; 5928 5929 if (!vsi || ice_is_switchdev_running(vsi->back)) 5930 return; 5931 5932 /* Set the flags to synchronize filters 5933 * ndo_set_rx_mode may be triggered even without a change in netdev 5934 * flags 5935 */ 5936 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5937 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5938 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5939 5940 /* schedule our worker thread which will take care of 5941 * applying the new filter changes 5942 */ 5943 ice_service_task_schedule(vsi->back); 5944 } 5945 5946 /** 5947 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5948 * @netdev: network interface device structure 5949 * @queue_index: Queue ID 5950 * @maxrate: maximum bandwidth in Mbps 5951 */ 5952 static int 5953 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5954 { 5955 struct ice_netdev_priv *np = netdev_priv(netdev); 5956 struct ice_vsi *vsi = np->vsi; 5957 u16 q_handle; 5958 int status; 5959 u8 tc; 5960 5961 /* Validate maxrate requested is within permitted range */ 5962 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5963 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5964 maxrate, queue_index); 5965 return -EINVAL; 5966 } 5967 5968 q_handle = vsi->tx_rings[queue_index]->q_handle; 5969 tc = ice_dcb_get_tc(vsi, queue_index); 5970 5971 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5972 if (!vsi) { 5973 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5974 queue_index); 5975 return -EINVAL; 5976 } 5977 5978 /* Set BW back to default, when user set maxrate to 0 */ 5979 if (!maxrate) 5980 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5981 q_handle, ICE_MAX_BW); 5982 else 5983 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5984 q_handle, ICE_MAX_BW, maxrate * 1000); 5985 if (status) 5986 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5987 status); 5988 5989 return status; 5990 } 5991 5992 /** 5993 * ice_fdb_add - add an entry to the hardware database 5994 * @ndm: the input from the stack 5995 * @tb: pointer to array of nladdr (unused) 5996 * @dev: the net device pointer 5997 * @addr: the MAC address entry being added 5998 * @vid: VLAN ID 5999 * @flags: instructions from stack about fdb operation 6000 * @extack: netlink extended ack 6001 */ 6002 static int 6003 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6004 struct net_device *dev, const unsigned char *addr, u16 vid, 6005 u16 flags, struct netlink_ext_ack __always_unused *extack) 6006 { 6007 int err; 6008 6009 if (vid) { 6010 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6011 return -EINVAL; 6012 } 6013 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6014 netdev_err(dev, "FDB only supports static addresses\n"); 6015 return -EINVAL; 6016 } 6017 6018 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6019 err = dev_uc_add_excl(dev, addr); 6020 else if (is_multicast_ether_addr(addr)) 6021 err = dev_mc_add_excl(dev, addr); 6022 else 6023 err = -EINVAL; 6024 6025 /* Only return duplicate errors if NLM_F_EXCL is set */ 6026 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6027 err = 0; 6028 6029 return err; 6030 } 6031 6032 /** 6033 * ice_fdb_del - delete an entry from the hardware database 6034 * @ndm: the input from the stack 6035 * @tb: pointer to array of nladdr (unused) 6036 * @dev: the net device pointer 6037 * @addr: the MAC address entry being added 6038 * @vid: VLAN ID 6039 * @extack: netlink extended ack 6040 */ 6041 static int 6042 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6043 struct net_device *dev, const unsigned char *addr, 6044 __always_unused u16 vid, struct netlink_ext_ack *extack) 6045 { 6046 int err; 6047 6048 if (ndm->ndm_state & NUD_PERMANENT) { 6049 netdev_err(dev, "FDB only supports static addresses\n"); 6050 return -EINVAL; 6051 } 6052 6053 if (is_unicast_ether_addr(addr)) 6054 err = dev_uc_del(dev, addr); 6055 else if (is_multicast_ether_addr(addr)) 6056 err = dev_mc_del(dev, addr); 6057 else 6058 err = -EINVAL; 6059 6060 return err; 6061 } 6062 6063 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6064 NETIF_F_HW_VLAN_CTAG_TX | \ 6065 NETIF_F_HW_VLAN_STAG_RX | \ 6066 NETIF_F_HW_VLAN_STAG_TX) 6067 6068 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6069 NETIF_F_HW_VLAN_STAG_RX) 6070 6071 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6072 NETIF_F_HW_VLAN_STAG_FILTER) 6073 6074 /** 6075 * ice_fix_features - fix the netdev features flags based on device limitations 6076 * @netdev: ptr to the netdev that flags are being fixed on 6077 * @features: features that need to be checked and possibly fixed 6078 * 6079 * Make sure any fixups are made to features in this callback. This enables the 6080 * driver to not have to check unsupported configurations throughout the driver 6081 * because that's the responsiblity of this callback. 6082 * 6083 * Single VLAN Mode (SVM) Supported Features: 6084 * NETIF_F_HW_VLAN_CTAG_FILTER 6085 * NETIF_F_HW_VLAN_CTAG_RX 6086 * NETIF_F_HW_VLAN_CTAG_TX 6087 * 6088 * Double VLAN Mode (DVM) Supported Features: 6089 * NETIF_F_HW_VLAN_CTAG_FILTER 6090 * NETIF_F_HW_VLAN_CTAG_RX 6091 * NETIF_F_HW_VLAN_CTAG_TX 6092 * 6093 * NETIF_F_HW_VLAN_STAG_FILTER 6094 * NETIF_HW_VLAN_STAG_RX 6095 * NETIF_HW_VLAN_STAG_TX 6096 * 6097 * Features that need fixing: 6098 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6099 * These are mutually exlusive as the VSI context cannot support multiple 6100 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6101 * is not done, then default to clearing the requested STAG offload 6102 * settings. 6103 * 6104 * All supported filtering has to be enabled or disabled together. For 6105 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6106 * together. If this is not done, then default to VLAN filtering disabled. 6107 * These are mutually exclusive as there is currently no way to 6108 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6109 * prune rules. 6110 */ 6111 static netdev_features_t 6112 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6113 { 6114 struct ice_netdev_priv *np = netdev_priv(netdev); 6115 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6116 bool cur_ctag, cur_stag, req_ctag, req_stag; 6117 6118 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6119 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6120 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6121 6122 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6123 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6124 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6125 6126 if (req_vlan_fltr != cur_vlan_fltr) { 6127 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6128 if (req_ctag && req_stag) { 6129 features |= NETIF_VLAN_FILTERING_FEATURES; 6130 } else if (!req_ctag && !req_stag) { 6131 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6132 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6133 (!cur_stag && req_stag && !cur_ctag)) { 6134 features |= NETIF_VLAN_FILTERING_FEATURES; 6135 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6136 } else if ((cur_ctag && !req_ctag && cur_stag) || 6137 (cur_stag && !req_stag && cur_ctag)) { 6138 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6139 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6140 } 6141 } else { 6142 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6143 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6144 6145 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6146 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6147 } 6148 } 6149 6150 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6151 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6152 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6153 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6154 NETIF_F_HW_VLAN_STAG_TX); 6155 } 6156 6157 if (!(netdev->features & NETIF_F_RXFCS) && 6158 (features & NETIF_F_RXFCS) && 6159 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6160 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6161 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6162 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6163 } 6164 6165 return features; 6166 } 6167 6168 /** 6169 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6170 * @vsi: PF's VSI 6171 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6172 * 6173 * Store current stripped VLAN proto in ring packet context, 6174 * so it can be accessed more efficiently by packet processing code. 6175 */ 6176 static void 6177 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6178 { 6179 u16 i; 6180 6181 ice_for_each_alloc_rxq(vsi, i) 6182 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6183 } 6184 6185 /** 6186 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6187 * @vsi: PF's VSI 6188 * @features: features used to determine VLAN offload settings 6189 * 6190 * First, determine the vlan_ethertype based on the VLAN offload bits in 6191 * features. Then determine if stripping and insertion should be enabled or 6192 * disabled. Finally enable or disable VLAN stripping and insertion. 6193 */ 6194 static int 6195 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6196 { 6197 bool enable_stripping = true, enable_insertion = true; 6198 struct ice_vsi_vlan_ops *vlan_ops; 6199 int strip_err = 0, insert_err = 0; 6200 u16 vlan_ethertype = 0; 6201 6202 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6203 6204 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6205 vlan_ethertype = ETH_P_8021AD; 6206 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6207 vlan_ethertype = ETH_P_8021Q; 6208 6209 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6210 enable_stripping = false; 6211 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6212 enable_insertion = false; 6213 6214 if (enable_stripping) 6215 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6216 else 6217 strip_err = vlan_ops->dis_stripping(vsi); 6218 6219 if (enable_insertion) 6220 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6221 else 6222 insert_err = vlan_ops->dis_insertion(vsi); 6223 6224 if (strip_err || insert_err) 6225 return -EIO; 6226 6227 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6228 htons(vlan_ethertype) : 0); 6229 6230 return 0; 6231 } 6232 6233 /** 6234 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6235 * @vsi: PF's VSI 6236 * @features: features used to determine VLAN filtering settings 6237 * 6238 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6239 * features. 6240 */ 6241 static int 6242 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6243 { 6244 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6245 int err = 0; 6246 6247 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6248 * if either bit is set 6249 */ 6250 if (features & 6251 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6252 err = vlan_ops->ena_rx_filtering(vsi); 6253 else 6254 err = vlan_ops->dis_rx_filtering(vsi); 6255 6256 return err; 6257 } 6258 6259 /** 6260 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6261 * @netdev: ptr to the netdev being adjusted 6262 * @features: the feature set that the stack is suggesting 6263 * 6264 * Only update VLAN settings if the requested_vlan_features are different than 6265 * the current_vlan_features. 6266 */ 6267 static int 6268 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6269 { 6270 netdev_features_t current_vlan_features, requested_vlan_features; 6271 struct ice_netdev_priv *np = netdev_priv(netdev); 6272 struct ice_vsi *vsi = np->vsi; 6273 int err; 6274 6275 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6276 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6277 if (current_vlan_features ^ requested_vlan_features) { 6278 if ((features & NETIF_F_RXFCS) && 6279 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6280 dev_err(ice_pf_to_dev(vsi->back), 6281 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6282 return -EIO; 6283 } 6284 6285 err = ice_set_vlan_offload_features(vsi, features); 6286 if (err) 6287 return err; 6288 } 6289 6290 current_vlan_features = netdev->features & 6291 NETIF_VLAN_FILTERING_FEATURES; 6292 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6293 if (current_vlan_features ^ requested_vlan_features) { 6294 err = ice_set_vlan_filtering_features(vsi, features); 6295 if (err) 6296 return err; 6297 } 6298 6299 return 0; 6300 } 6301 6302 /** 6303 * ice_set_loopback - turn on/off loopback mode on underlying PF 6304 * @vsi: ptr to VSI 6305 * @ena: flag to indicate the on/off setting 6306 */ 6307 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6308 { 6309 bool if_running = netif_running(vsi->netdev); 6310 int ret; 6311 6312 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6313 ret = ice_down(vsi); 6314 if (ret) { 6315 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6316 return ret; 6317 } 6318 } 6319 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6320 if (ret) 6321 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6322 if (if_running) 6323 ret = ice_up(vsi); 6324 6325 return ret; 6326 } 6327 6328 /** 6329 * ice_set_features - set the netdev feature flags 6330 * @netdev: ptr to the netdev being adjusted 6331 * @features: the feature set that the stack is suggesting 6332 */ 6333 static int 6334 ice_set_features(struct net_device *netdev, netdev_features_t features) 6335 { 6336 netdev_features_t changed = netdev->features ^ features; 6337 struct ice_netdev_priv *np = netdev_priv(netdev); 6338 struct ice_vsi *vsi = np->vsi; 6339 struct ice_pf *pf = vsi->back; 6340 int ret = 0; 6341 6342 /* Don't set any netdev advanced features with device in Safe Mode */ 6343 if (ice_is_safe_mode(pf)) { 6344 dev_err(ice_pf_to_dev(pf), 6345 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6346 return ret; 6347 } 6348 6349 /* Do not change setting during reset */ 6350 if (ice_is_reset_in_progress(pf->state)) { 6351 dev_err(ice_pf_to_dev(pf), 6352 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6353 return -EBUSY; 6354 } 6355 6356 /* Multiple features can be changed in one call so keep features in 6357 * separate if/else statements to guarantee each feature is checked 6358 */ 6359 if (changed & NETIF_F_RXHASH) 6360 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6361 6362 ret = ice_set_vlan_features(netdev, features); 6363 if (ret) 6364 return ret; 6365 6366 /* Turn on receive of FCS aka CRC, and after setting this 6367 * flag the packet data will have the 4 byte CRC appended 6368 */ 6369 if (changed & NETIF_F_RXFCS) { 6370 if ((features & NETIF_F_RXFCS) && 6371 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6372 dev_err(ice_pf_to_dev(vsi->back), 6373 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6374 return -EIO; 6375 } 6376 6377 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6378 ret = ice_down_up(vsi); 6379 if (ret) 6380 return ret; 6381 } 6382 6383 if (changed & NETIF_F_NTUPLE) { 6384 bool ena = !!(features & NETIF_F_NTUPLE); 6385 6386 ice_vsi_manage_fdir(vsi, ena); 6387 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6388 } 6389 6390 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6391 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6392 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6393 return -EACCES; 6394 } 6395 6396 if (changed & NETIF_F_HW_TC) { 6397 bool ena = !!(features & NETIF_F_HW_TC); 6398 6399 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6400 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6401 } 6402 6403 if (changed & NETIF_F_LOOPBACK) 6404 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6405 6406 return ret; 6407 } 6408 6409 /** 6410 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6411 * @vsi: VSI to setup VLAN properties for 6412 */ 6413 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6414 { 6415 int err; 6416 6417 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6418 if (err) 6419 return err; 6420 6421 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6422 if (err) 6423 return err; 6424 6425 return ice_vsi_add_vlan_zero(vsi); 6426 } 6427 6428 /** 6429 * ice_vsi_cfg_lan - Setup the VSI lan related config 6430 * @vsi: the VSI being configured 6431 * 6432 * Return 0 on success and negative value on error 6433 */ 6434 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6435 { 6436 int err; 6437 6438 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6439 ice_set_rx_mode(vsi->netdev); 6440 6441 err = ice_vsi_vlan_setup(vsi); 6442 if (err) 6443 return err; 6444 } 6445 ice_vsi_cfg_dcb_rings(vsi); 6446 6447 err = ice_vsi_cfg_lan_txqs(vsi); 6448 if (!err && ice_is_xdp_ena_vsi(vsi)) 6449 err = ice_vsi_cfg_xdp_txqs(vsi); 6450 if (!err) 6451 err = ice_vsi_cfg_rxqs(vsi); 6452 6453 return err; 6454 } 6455 6456 /* THEORY OF MODERATION: 6457 * The ice driver hardware works differently than the hardware that DIMLIB was 6458 * originally made for. ice hardware doesn't have packet count limits that 6459 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6460 * which is hard-coded to a limit of 250,000 ints/second. 6461 * If not using dynamic moderation, the INTRL value can be modified 6462 * by ethtool rx-usecs-high. 6463 */ 6464 struct ice_dim { 6465 /* the throttle rate for interrupts, basically worst case delay before 6466 * an initial interrupt fires, value is stored in microseconds. 6467 */ 6468 u16 itr; 6469 }; 6470 6471 /* Make a different profile for Rx that doesn't allow quite so aggressive 6472 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6473 * second. 6474 */ 6475 static const struct ice_dim rx_profile[] = { 6476 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6477 {8}, /* 125,000 ints/s */ 6478 {16}, /* 62,500 ints/s */ 6479 {62}, /* 16,129 ints/s */ 6480 {126} /* 7,936 ints/s */ 6481 }; 6482 6483 /* The transmit profile, which has the same sorts of values 6484 * as the previous struct 6485 */ 6486 static const struct ice_dim tx_profile[] = { 6487 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6488 {8}, /* 125,000 ints/s */ 6489 {40}, /* 16,125 ints/s */ 6490 {128}, /* 7,812 ints/s */ 6491 {256} /* 3,906 ints/s */ 6492 }; 6493 6494 static void ice_tx_dim_work(struct work_struct *work) 6495 { 6496 struct ice_ring_container *rc; 6497 struct dim *dim; 6498 u16 itr; 6499 6500 dim = container_of(work, struct dim, work); 6501 rc = dim->priv; 6502 6503 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6504 6505 /* look up the values in our local table */ 6506 itr = tx_profile[dim->profile_ix].itr; 6507 6508 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6509 ice_write_itr(rc, itr); 6510 6511 dim->state = DIM_START_MEASURE; 6512 } 6513 6514 static void ice_rx_dim_work(struct work_struct *work) 6515 { 6516 struct ice_ring_container *rc; 6517 struct dim *dim; 6518 u16 itr; 6519 6520 dim = container_of(work, struct dim, work); 6521 rc = dim->priv; 6522 6523 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6524 6525 /* look up the values in our local table */ 6526 itr = rx_profile[dim->profile_ix].itr; 6527 6528 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6529 ice_write_itr(rc, itr); 6530 6531 dim->state = DIM_START_MEASURE; 6532 } 6533 6534 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6535 6536 /** 6537 * ice_init_moderation - set up interrupt moderation 6538 * @q_vector: the vector containing rings to be configured 6539 * 6540 * Set up interrupt moderation registers, with the intent to do the right thing 6541 * when called from reset or from probe, and whether or not dynamic moderation 6542 * is enabled or not. Take special care to write all the registers in both 6543 * dynamic moderation mode or not in order to make sure hardware is in a known 6544 * state. 6545 */ 6546 static void ice_init_moderation(struct ice_q_vector *q_vector) 6547 { 6548 struct ice_ring_container *rc; 6549 bool tx_dynamic, rx_dynamic; 6550 6551 rc = &q_vector->tx; 6552 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6553 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6554 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6555 rc->dim.priv = rc; 6556 tx_dynamic = ITR_IS_DYNAMIC(rc); 6557 6558 /* set the initial TX ITR to match the above */ 6559 ice_write_itr(rc, tx_dynamic ? 6560 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6561 6562 rc = &q_vector->rx; 6563 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6564 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6565 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6566 rc->dim.priv = rc; 6567 rx_dynamic = ITR_IS_DYNAMIC(rc); 6568 6569 /* set the initial RX ITR to match the above */ 6570 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6571 rc->itr_setting); 6572 6573 ice_set_q_vector_intrl(q_vector); 6574 } 6575 6576 /** 6577 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6578 * @vsi: the VSI being configured 6579 */ 6580 static void ice_napi_enable_all(struct ice_vsi *vsi) 6581 { 6582 int q_idx; 6583 6584 if (!vsi->netdev) 6585 return; 6586 6587 ice_for_each_q_vector(vsi, q_idx) { 6588 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6589 6590 ice_init_moderation(q_vector); 6591 6592 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6593 napi_enable(&q_vector->napi); 6594 } 6595 } 6596 6597 /** 6598 * ice_up_complete - Finish the last steps of bringing up a connection 6599 * @vsi: The VSI being configured 6600 * 6601 * Return 0 on success and negative value on error 6602 */ 6603 static int ice_up_complete(struct ice_vsi *vsi) 6604 { 6605 struct ice_pf *pf = vsi->back; 6606 int err; 6607 6608 ice_vsi_cfg_msix(vsi); 6609 6610 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6611 * Tx queue group list was configured and the context bits were 6612 * programmed using ice_vsi_cfg_txqs 6613 */ 6614 err = ice_vsi_start_all_rx_rings(vsi); 6615 if (err) 6616 return err; 6617 6618 clear_bit(ICE_VSI_DOWN, vsi->state); 6619 ice_napi_enable_all(vsi); 6620 ice_vsi_ena_irq(vsi); 6621 6622 if (vsi->port_info && 6623 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6624 vsi->netdev && vsi->type == ICE_VSI_PF) { 6625 ice_print_link_msg(vsi, true); 6626 netif_tx_start_all_queues(vsi->netdev); 6627 netif_carrier_on(vsi->netdev); 6628 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6629 } 6630 6631 /* Perform an initial read of the statistics registers now to 6632 * set the baseline so counters are ready when interface is up 6633 */ 6634 ice_update_eth_stats(vsi); 6635 6636 if (vsi->type == ICE_VSI_PF) 6637 ice_service_task_schedule(pf); 6638 6639 return 0; 6640 } 6641 6642 /** 6643 * ice_up - Bring the connection back up after being down 6644 * @vsi: VSI being configured 6645 */ 6646 int ice_up(struct ice_vsi *vsi) 6647 { 6648 int err; 6649 6650 err = ice_vsi_cfg_lan(vsi); 6651 if (!err) 6652 err = ice_up_complete(vsi); 6653 6654 return err; 6655 } 6656 6657 /** 6658 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6659 * @syncp: pointer to u64_stats_sync 6660 * @stats: stats that pkts and bytes count will be taken from 6661 * @pkts: packets stats counter 6662 * @bytes: bytes stats counter 6663 * 6664 * This function fetches stats from the ring considering the atomic operations 6665 * that needs to be performed to read u64 values in 32 bit machine. 6666 */ 6667 void 6668 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6669 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6670 { 6671 unsigned int start; 6672 6673 do { 6674 start = u64_stats_fetch_begin(syncp); 6675 *pkts = stats.pkts; 6676 *bytes = stats.bytes; 6677 } while (u64_stats_fetch_retry(syncp, start)); 6678 } 6679 6680 /** 6681 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6682 * @vsi: the VSI to be updated 6683 * @vsi_stats: the stats struct to be updated 6684 * @rings: rings to work on 6685 * @count: number of rings 6686 */ 6687 static void 6688 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6689 struct rtnl_link_stats64 *vsi_stats, 6690 struct ice_tx_ring **rings, u16 count) 6691 { 6692 u16 i; 6693 6694 for (i = 0; i < count; i++) { 6695 struct ice_tx_ring *ring; 6696 u64 pkts = 0, bytes = 0; 6697 6698 ring = READ_ONCE(rings[i]); 6699 if (!ring || !ring->ring_stats) 6700 continue; 6701 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6702 ring->ring_stats->stats, &pkts, 6703 &bytes); 6704 vsi_stats->tx_packets += pkts; 6705 vsi_stats->tx_bytes += bytes; 6706 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6707 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6708 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6709 } 6710 } 6711 6712 /** 6713 * ice_update_vsi_ring_stats - Update VSI stats counters 6714 * @vsi: the VSI to be updated 6715 */ 6716 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6717 { 6718 struct rtnl_link_stats64 *net_stats, *stats_prev; 6719 struct rtnl_link_stats64 *vsi_stats; 6720 struct ice_pf *pf = vsi->back; 6721 u64 pkts, bytes; 6722 int i; 6723 6724 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6725 if (!vsi_stats) 6726 return; 6727 6728 /* reset non-netdev (extended) stats */ 6729 vsi->tx_restart = 0; 6730 vsi->tx_busy = 0; 6731 vsi->tx_linearize = 0; 6732 vsi->rx_buf_failed = 0; 6733 vsi->rx_page_failed = 0; 6734 6735 rcu_read_lock(); 6736 6737 /* update Tx rings counters */ 6738 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6739 vsi->num_txq); 6740 6741 /* update Rx rings counters */ 6742 ice_for_each_rxq(vsi, i) { 6743 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6744 struct ice_ring_stats *ring_stats; 6745 6746 ring_stats = ring->ring_stats; 6747 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6748 ring_stats->stats, &pkts, 6749 &bytes); 6750 vsi_stats->rx_packets += pkts; 6751 vsi_stats->rx_bytes += bytes; 6752 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6753 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6754 } 6755 6756 /* update XDP Tx rings counters */ 6757 if (ice_is_xdp_ena_vsi(vsi)) 6758 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6759 vsi->num_xdp_txq); 6760 6761 rcu_read_unlock(); 6762 6763 net_stats = &vsi->net_stats; 6764 stats_prev = &vsi->net_stats_prev; 6765 6766 /* Update netdev counters, but keep in mind that values could start at 6767 * random value after PF reset. And as we increase the reported stat by 6768 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6769 * let's skip this round. 6770 */ 6771 if (likely(pf->stat_prev_loaded)) { 6772 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6773 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6774 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6775 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6776 } 6777 6778 stats_prev->tx_packets = vsi_stats->tx_packets; 6779 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6780 stats_prev->rx_packets = vsi_stats->rx_packets; 6781 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6782 6783 kfree(vsi_stats); 6784 } 6785 6786 /** 6787 * ice_update_vsi_stats - Update VSI stats counters 6788 * @vsi: the VSI to be updated 6789 */ 6790 void ice_update_vsi_stats(struct ice_vsi *vsi) 6791 { 6792 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6793 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6794 struct ice_pf *pf = vsi->back; 6795 6796 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6797 test_bit(ICE_CFG_BUSY, pf->state)) 6798 return; 6799 6800 /* get stats as recorded by Tx/Rx rings */ 6801 ice_update_vsi_ring_stats(vsi); 6802 6803 /* get VSI stats as recorded by the hardware */ 6804 ice_update_eth_stats(vsi); 6805 6806 cur_ns->tx_errors = cur_es->tx_errors; 6807 cur_ns->rx_dropped = cur_es->rx_discards; 6808 cur_ns->tx_dropped = cur_es->tx_discards; 6809 cur_ns->multicast = cur_es->rx_multicast; 6810 6811 /* update some more netdev stats if this is main VSI */ 6812 if (vsi->type == ICE_VSI_PF) { 6813 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6814 cur_ns->rx_errors = pf->stats.crc_errors + 6815 pf->stats.illegal_bytes + 6816 pf->stats.rx_undersize + 6817 pf->hw_csum_rx_error + 6818 pf->stats.rx_jabber + 6819 pf->stats.rx_fragments + 6820 pf->stats.rx_oversize; 6821 /* record drops from the port level */ 6822 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6823 } 6824 } 6825 6826 /** 6827 * ice_update_pf_stats - Update PF port stats counters 6828 * @pf: PF whose stats needs to be updated 6829 */ 6830 void ice_update_pf_stats(struct ice_pf *pf) 6831 { 6832 struct ice_hw_port_stats *prev_ps, *cur_ps; 6833 struct ice_hw *hw = &pf->hw; 6834 u16 fd_ctr_base; 6835 u8 port; 6836 6837 port = hw->port_info->lport; 6838 prev_ps = &pf->stats_prev; 6839 cur_ps = &pf->stats; 6840 6841 if (ice_is_reset_in_progress(pf->state)) 6842 pf->stat_prev_loaded = false; 6843 6844 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6845 &prev_ps->eth.rx_bytes, 6846 &cur_ps->eth.rx_bytes); 6847 6848 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6849 &prev_ps->eth.rx_unicast, 6850 &cur_ps->eth.rx_unicast); 6851 6852 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6853 &prev_ps->eth.rx_multicast, 6854 &cur_ps->eth.rx_multicast); 6855 6856 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6857 &prev_ps->eth.rx_broadcast, 6858 &cur_ps->eth.rx_broadcast); 6859 6860 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6861 &prev_ps->eth.rx_discards, 6862 &cur_ps->eth.rx_discards); 6863 6864 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6865 &prev_ps->eth.tx_bytes, 6866 &cur_ps->eth.tx_bytes); 6867 6868 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6869 &prev_ps->eth.tx_unicast, 6870 &cur_ps->eth.tx_unicast); 6871 6872 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6873 &prev_ps->eth.tx_multicast, 6874 &cur_ps->eth.tx_multicast); 6875 6876 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6877 &prev_ps->eth.tx_broadcast, 6878 &cur_ps->eth.tx_broadcast); 6879 6880 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6881 &prev_ps->tx_dropped_link_down, 6882 &cur_ps->tx_dropped_link_down); 6883 6884 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6885 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6886 6887 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6888 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6889 6890 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6891 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6892 6893 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6894 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6895 6896 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6897 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6898 6899 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6900 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6901 6902 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6903 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6904 6905 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6906 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6907 6908 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6909 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6910 6911 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6912 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6913 6914 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6915 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6916 6917 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6918 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6919 6920 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6921 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6922 6923 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6924 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6925 6926 fd_ctr_base = hw->fd_ctr_base; 6927 6928 ice_stat_update40(hw, 6929 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6930 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6931 &cur_ps->fd_sb_match); 6932 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6933 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6934 6935 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6936 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6937 6938 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6939 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6940 6941 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6942 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6943 6944 ice_update_dcb_stats(pf); 6945 6946 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6947 &prev_ps->crc_errors, &cur_ps->crc_errors); 6948 6949 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6950 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6951 6952 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6953 &prev_ps->mac_local_faults, 6954 &cur_ps->mac_local_faults); 6955 6956 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6957 &prev_ps->mac_remote_faults, 6958 &cur_ps->mac_remote_faults); 6959 6960 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6961 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6962 6963 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6964 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6965 6966 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6967 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6968 6969 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6970 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6971 6972 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6973 6974 pf->stat_prev_loaded = true; 6975 } 6976 6977 /** 6978 * ice_get_stats64 - get statistics for network device structure 6979 * @netdev: network interface device structure 6980 * @stats: main device statistics structure 6981 */ 6982 static 6983 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6984 { 6985 struct ice_netdev_priv *np = netdev_priv(netdev); 6986 struct rtnl_link_stats64 *vsi_stats; 6987 struct ice_vsi *vsi = np->vsi; 6988 6989 vsi_stats = &vsi->net_stats; 6990 6991 if (!vsi->num_txq || !vsi->num_rxq) 6992 return; 6993 6994 /* netdev packet/byte stats come from ring counter. These are obtained 6995 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6996 * But, only call the update routine and read the registers if VSI is 6997 * not down. 6998 */ 6999 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7000 ice_update_vsi_ring_stats(vsi); 7001 stats->tx_packets = vsi_stats->tx_packets; 7002 stats->tx_bytes = vsi_stats->tx_bytes; 7003 stats->rx_packets = vsi_stats->rx_packets; 7004 stats->rx_bytes = vsi_stats->rx_bytes; 7005 7006 /* The rest of the stats can be read from the hardware but instead we 7007 * just return values that the watchdog task has already obtained from 7008 * the hardware. 7009 */ 7010 stats->multicast = vsi_stats->multicast; 7011 stats->tx_errors = vsi_stats->tx_errors; 7012 stats->tx_dropped = vsi_stats->tx_dropped; 7013 stats->rx_errors = vsi_stats->rx_errors; 7014 stats->rx_dropped = vsi_stats->rx_dropped; 7015 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7016 stats->rx_length_errors = vsi_stats->rx_length_errors; 7017 } 7018 7019 /** 7020 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7021 * @vsi: VSI having NAPI disabled 7022 */ 7023 static void ice_napi_disable_all(struct ice_vsi *vsi) 7024 { 7025 int q_idx; 7026 7027 if (!vsi->netdev) 7028 return; 7029 7030 ice_for_each_q_vector(vsi, q_idx) { 7031 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7032 7033 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7034 napi_disable(&q_vector->napi); 7035 7036 cancel_work_sync(&q_vector->tx.dim.work); 7037 cancel_work_sync(&q_vector->rx.dim.work); 7038 } 7039 } 7040 7041 /** 7042 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7043 * @vsi: the VSI being un-configured 7044 */ 7045 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7046 { 7047 struct ice_pf *pf = vsi->back; 7048 struct ice_hw *hw = &pf->hw; 7049 u32 val; 7050 int i; 7051 7052 /* disable interrupt causation from each Rx queue; Tx queues are 7053 * handled in ice_vsi_stop_tx_ring() 7054 */ 7055 if (vsi->rx_rings) { 7056 ice_for_each_rxq(vsi, i) { 7057 if (vsi->rx_rings[i]) { 7058 u16 reg; 7059 7060 reg = vsi->rx_rings[i]->reg_idx; 7061 val = rd32(hw, QINT_RQCTL(reg)); 7062 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7063 wr32(hw, QINT_RQCTL(reg), val); 7064 } 7065 } 7066 } 7067 7068 /* disable each interrupt */ 7069 ice_for_each_q_vector(vsi, i) { 7070 if (!vsi->q_vectors[i]) 7071 continue; 7072 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7073 } 7074 7075 ice_flush(hw); 7076 7077 /* don't call synchronize_irq() for VF's from the host */ 7078 if (vsi->type == ICE_VSI_VF) 7079 return; 7080 7081 ice_for_each_q_vector(vsi, i) 7082 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7083 } 7084 7085 /** 7086 * ice_down - Shutdown the connection 7087 * @vsi: The VSI being stopped 7088 * 7089 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7090 */ 7091 int ice_down(struct ice_vsi *vsi) 7092 { 7093 int i, tx_err, rx_err, vlan_err = 0; 7094 7095 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7096 7097 if (vsi->netdev) { 7098 vlan_err = ice_vsi_del_vlan_zero(vsi); 7099 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7100 netif_carrier_off(vsi->netdev); 7101 netif_tx_disable(vsi->netdev); 7102 } 7103 7104 ice_vsi_dis_irq(vsi); 7105 7106 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7107 if (tx_err) 7108 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7109 vsi->vsi_num, tx_err); 7110 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7111 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7112 if (tx_err) 7113 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7114 vsi->vsi_num, tx_err); 7115 } 7116 7117 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7118 if (rx_err) 7119 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7120 vsi->vsi_num, rx_err); 7121 7122 ice_napi_disable_all(vsi); 7123 7124 ice_for_each_txq(vsi, i) 7125 ice_clean_tx_ring(vsi->tx_rings[i]); 7126 7127 if (ice_is_xdp_ena_vsi(vsi)) 7128 ice_for_each_xdp_txq(vsi, i) 7129 ice_clean_tx_ring(vsi->xdp_rings[i]); 7130 7131 ice_for_each_rxq(vsi, i) 7132 ice_clean_rx_ring(vsi->rx_rings[i]); 7133 7134 if (tx_err || rx_err || vlan_err) { 7135 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7136 vsi->vsi_num, vsi->vsw->sw_id); 7137 return -EIO; 7138 } 7139 7140 return 0; 7141 } 7142 7143 /** 7144 * ice_down_up - shutdown the VSI connection and bring it up 7145 * @vsi: the VSI to be reconnected 7146 */ 7147 int ice_down_up(struct ice_vsi *vsi) 7148 { 7149 int ret; 7150 7151 /* if DOWN already set, nothing to do */ 7152 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7153 return 0; 7154 7155 ret = ice_down(vsi); 7156 if (ret) 7157 return ret; 7158 7159 ret = ice_up(vsi); 7160 if (ret) { 7161 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7162 return ret; 7163 } 7164 7165 return 0; 7166 } 7167 7168 /** 7169 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7170 * @vsi: VSI having resources allocated 7171 * 7172 * Return 0 on success, negative on failure 7173 */ 7174 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7175 { 7176 int i, err = 0; 7177 7178 if (!vsi->num_txq) { 7179 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7180 vsi->vsi_num); 7181 return -EINVAL; 7182 } 7183 7184 ice_for_each_txq(vsi, i) { 7185 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7186 7187 if (!ring) 7188 return -EINVAL; 7189 7190 if (vsi->netdev) 7191 ring->netdev = vsi->netdev; 7192 err = ice_setup_tx_ring(ring); 7193 if (err) 7194 break; 7195 } 7196 7197 return err; 7198 } 7199 7200 /** 7201 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7202 * @vsi: VSI having resources allocated 7203 * 7204 * Return 0 on success, negative on failure 7205 */ 7206 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7207 { 7208 int i, err = 0; 7209 7210 if (!vsi->num_rxq) { 7211 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7212 vsi->vsi_num); 7213 return -EINVAL; 7214 } 7215 7216 ice_for_each_rxq(vsi, i) { 7217 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7218 7219 if (!ring) 7220 return -EINVAL; 7221 7222 if (vsi->netdev) 7223 ring->netdev = vsi->netdev; 7224 err = ice_setup_rx_ring(ring); 7225 if (err) 7226 break; 7227 } 7228 7229 return err; 7230 } 7231 7232 /** 7233 * ice_vsi_open_ctrl - open control VSI for use 7234 * @vsi: the VSI to open 7235 * 7236 * Initialization of the Control VSI 7237 * 7238 * Returns 0 on success, negative value on error 7239 */ 7240 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7241 { 7242 char int_name[ICE_INT_NAME_STR_LEN]; 7243 struct ice_pf *pf = vsi->back; 7244 struct device *dev; 7245 int err; 7246 7247 dev = ice_pf_to_dev(pf); 7248 /* allocate descriptors */ 7249 err = ice_vsi_setup_tx_rings(vsi); 7250 if (err) 7251 goto err_setup_tx; 7252 7253 err = ice_vsi_setup_rx_rings(vsi); 7254 if (err) 7255 goto err_setup_rx; 7256 7257 err = ice_vsi_cfg_lan(vsi); 7258 if (err) 7259 goto err_setup_rx; 7260 7261 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7262 dev_driver_string(dev), dev_name(dev)); 7263 err = ice_vsi_req_irq_msix(vsi, int_name); 7264 if (err) 7265 goto err_setup_rx; 7266 7267 ice_vsi_cfg_msix(vsi); 7268 7269 err = ice_vsi_start_all_rx_rings(vsi); 7270 if (err) 7271 goto err_up_complete; 7272 7273 clear_bit(ICE_VSI_DOWN, vsi->state); 7274 ice_vsi_ena_irq(vsi); 7275 7276 return 0; 7277 7278 err_up_complete: 7279 ice_down(vsi); 7280 err_setup_rx: 7281 ice_vsi_free_rx_rings(vsi); 7282 err_setup_tx: 7283 ice_vsi_free_tx_rings(vsi); 7284 7285 return err; 7286 } 7287 7288 /** 7289 * ice_vsi_open - Called when a network interface is made active 7290 * @vsi: the VSI to open 7291 * 7292 * Initialization of the VSI 7293 * 7294 * Returns 0 on success, negative value on error 7295 */ 7296 int ice_vsi_open(struct ice_vsi *vsi) 7297 { 7298 char int_name[ICE_INT_NAME_STR_LEN]; 7299 struct ice_pf *pf = vsi->back; 7300 int err; 7301 7302 /* allocate descriptors */ 7303 err = ice_vsi_setup_tx_rings(vsi); 7304 if (err) 7305 goto err_setup_tx; 7306 7307 err = ice_vsi_setup_rx_rings(vsi); 7308 if (err) 7309 goto err_setup_rx; 7310 7311 err = ice_vsi_cfg_lan(vsi); 7312 if (err) 7313 goto err_setup_rx; 7314 7315 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7316 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7317 err = ice_vsi_req_irq_msix(vsi, int_name); 7318 if (err) 7319 goto err_setup_rx; 7320 7321 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7322 7323 if (vsi->type == ICE_VSI_PF) { 7324 /* Notify the stack of the actual queue counts. */ 7325 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7326 if (err) 7327 goto err_set_qs; 7328 7329 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7330 if (err) 7331 goto err_set_qs; 7332 } 7333 7334 err = ice_up_complete(vsi); 7335 if (err) 7336 goto err_up_complete; 7337 7338 return 0; 7339 7340 err_up_complete: 7341 ice_down(vsi); 7342 err_set_qs: 7343 ice_vsi_free_irq(vsi); 7344 err_setup_rx: 7345 ice_vsi_free_rx_rings(vsi); 7346 err_setup_tx: 7347 ice_vsi_free_tx_rings(vsi); 7348 7349 return err; 7350 } 7351 7352 /** 7353 * ice_vsi_release_all - Delete all VSIs 7354 * @pf: PF from which all VSIs are being removed 7355 */ 7356 static void ice_vsi_release_all(struct ice_pf *pf) 7357 { 7358 int err, i; 7359 7360 if (!pf->vsi) 7361 return; 7362 7363 ice_for_each_vsi(pf, i) { 7364 if (!pf->vsi[i]) 7365 continue; 7366 7367 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7368 continue; 7369 7370 err = ice_vsi_release(pf->vsi[i]); 7371 if (err) 7372 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7373 i, err, pf->vsi[i]->vsi_num); 7374 } 7375 } 7376 7377 /** 7378 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7379 * @pf: pointer to the PF instance 7380 * @type: VSI type to rebuild 7381 * 7382 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7383 */ 7384 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7385 { 7386 struct device *dev = ice_pf_to_dev(pf); 7387 int i, err; 7388 7389 ice_for_each_vsi(pf, i) { 7390 struct ice_vsi *vsi = pf->vsi[i]; 7391 7392 if (!vsi || vsi->type != type) 7393 continue; 7394 7395 /* rebuild the VSI */ 7396 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7397 if (err) { 7398 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7399 err, vsi->idx, ice_vsi_type_str(type)); 7400 return err; 7401 } 7402 7403 /* replay filters for the VSI */ 7404 err = ice_replay_vsi(&pf->hw, vsi->idx); 7405 if (err) { 7406 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7407 err, vsi->idx, ice_vsi_type_str(type)); 7408 return err; 7409 } 7410 7411 /* Re-map HW VSI number, using VSI handle that has been 7412 * previously validated in ice_replay_vsi() call above 7413 */ 7414 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7415 7416 /* enable the VSI */ 7417 err = ice_ena_vsi(vsi, false); 7418 if (err) { 7419 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7420 err, vsi->idx, ice_vsi_type_str(type)); 7421 return err; 7422 } 7423 7424 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7425 ice_vsi_type_str(type)); 7426 } 7427 7428 return 0; 7429 } 7430 7431 /** 7432 * ice_update_pf_netdev_link - Update PF netdev link status 7433 * @pf: pointer to the PF instance 7434 */ 7435 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7436 { 7437 bool link_up; 7438 int i; 7439 7440 ice_for_each_vsi(pf, i) { 7441 struct ice_vsi *vsi = pf->vsi[i]; 7442 7443 if (!vsi || vsi->type != ICE_VSI_PF) 7444 return; 7445 7446 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7447 if (link_up) { 7448 netif_carrier_on(pf->vsi[i]->netdev); 7449 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7450 } else { 7451 netif_carrier_off(pf->vsi[i]->netdev); 7452 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7453 } 7454 } 7455 } 7456 7457 /** 7458 * ice_rebuild - rebuild after reset 7459 * @pf: PF to rebuild 7460 * @reset_type: type of reset 7461 * 7462 * Do not rebuild VF VSI in this flow because that is already handled via 7463 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7464 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7465 * to reset/rebuild all the VF VSI twice. 7466 */ 7467 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7468 { 7469 struct device *dev = ice_pf_to_dev(pf); 7470 struct ice_hw *hw = &pf->hw; 7471 bool dvm; 7472 int err; 7473 7474 if (test_bit(ICE_DOWN, pf->state)) 7475 goto clear_recovery; 7476 7477 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7478 7479 #define ICE_EMP_RESET_SLEEP_MS 5000 7480 if (reset_type == ICE_RESET_EMPR) { 7481 /* If an EMP reset has occurred, any previously pending flash 7482 * update will have completed. We no longer know whether or 7483 * not the NVM update EMP reset is restricted. 7484 */ 7485 pf->fw_emp_reset_disabled = false; 7486 7487 msleep(ICE_EMP_RESET_SLEEP_MS); 7488 } 7489 7490 err = ice_init_all_ctrlq(hw); 7491 if (err) { 7492 dev_err(dev, "control queues init failed %d\n", err); 7493 goto err_init_ctrlq; 7494 } 7495 7496 /* if DDP was previously loaded successfully */ 7497 if (!ice_is_safe_mode(pf)) { 7498 /* reload the SW DB of filter tables */ 7499 if (reset_type == ICE_RESET_PFR) 7500 ice_fill_blk_tbls(hw); 7501 else 7502 /* Reload DDP Package after CORER/GLOBR reset */ 7503 ice_load_pkg(NULL, pf); 7504 } 7505 7506 err = ice_clear_pf_cfg(hw); 7507 if (err) { 7508 dev_err(dev, "clear PF configuration failed %d\n", err); 7509 goto err_init_ctrlq; 7510 } 7511 7512 ice_clear_pxe_mode(hw); 7513 7514 err = ice_init_nvm(hw); 7515 if (err) { 7516 dev_err(dev, "ice_init_nvm failed %d\n", err); 7517 goto err_init_ctrlq; 7518 } 7519 7520 err = ice_get_caps(hw); 7521 if (err) { 7522 dev_err(dev, "ice_get_caps failed %d\n", err); 7523 goto err_init_ctrlq; 7524 } 7525 7526 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7527 if (err) { 7528 dev_err(dev, "set_mac_cfg failed %d\n", err); 7529 goto err_init_ctrlq; 7530 } 7531 7532 dvm = ice_is_dvm_ena(hw); 7533 7534 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7535 if (err) 7536 goto err_init_ctrlq; 7537 7538 err = ice_sched_init_port(hw->port_info); 7539 if (err) 7540 goto err_sched_init_port; 7541 7542 /* start misc vector */ 7543 err = ice_req_irq_msix_misc(pf); 7544 if (err) { 7545 dev_err(dev, "misc vector setup failed: %d\n", err); 7546 goto err_sched_init_port; 7547 } 7548 7549 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7550 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7551 if (!rd32(hw, PFQF_FD_SIZE)) { 7552 u16 unused, guar, b_effort; 7553 7554 guar = hw->func_caps.fd_fltr_guar; 7555 b_effort = hw->func_caps.fd_fltr_best_effort; 7556 7557 /* force guaranteed filter pool for PF */ 7558 ice_alloc_fd_guar_item(hw, &unused, guar); 7559 /* force shared filter pool for PF */ 7560 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7561 } 7562 } 7563 7564 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7565 ice_dcb_rebuild(pf); 7566 7567 /* If the PF previously had enabled PTP, PTP init needs to happen before 7568 * the VSI rebuild. If not, this causes the PTP link status events to 7569 * fail. 7570 */ 7571 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7572 ice_ptp_rebuild(pf, reset_type); 7573 7574 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7575 ice_gnss_init(pf); 7576 7577 /* rebuild PF VSI */ 7578 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7579 if (err) { 7580 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7581 goto err_vsi_rebuild; 7582 } 7583 7584 ice_eswitch_rebuild(pf); 7585 7586 if (reset_type == ICE_RESET_PFR) { 7587 err = ice_rebuild_channels(pf); 7588 if (err) { 7589 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7590 err); 7591 goto err_vsi_rebuild; 7592 } 7593 } 7594 7595 /* If Flow Director is active */ 7596 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7597 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7598 if (err) { 7599 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7600 goto err_vsi_rebuild; 7601 } 7602 7603 /* replay HW Flow Director recipes */ 7604 if (hw->fdir_prof) 7605 ice_fdir_replay_flows(hw); 7606 7607 /* replay Flow Director filters */ 7608 ice_fdir_replay_fltrs(pf); 7609 7610 ice_rebuild_arfs(pf); 7611 } 7612 7613 ice_update_pf_netdev_link(pf); 7614 7615 /* tell the firmware we are up */ 7616 err = ice_send_version(pf); 7617 if (err) { 7618 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7619 err); 7620 goto err_vsi_rebuild; 7621 } 7622 7623 ice_replay_post(hw); 7624 7625 /* if we get here, reset flow is successful */ 7626 clear_bit(ICE_RESET_FAILED, pf->state); 7627 7628 ice_plug_aux_dev(pf); 7629 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7630 ice_lag_rebuild(pf); 7631 7632 /* Restore timestamp mode settings after VSI rebuild */ 7633 ice_ptp_restore_timestamp_mode(pf); 7634 return; 7635 7636 err_vsi_rebuild: 7637 err_sched_init_port: 7638 ice_sched_cleanup_all(hw); 7639 err_init_ctrlq: 7640 ice_shutdown_all_ctrlq(hw); 7641 set_bit(ICE_RESET_FAILED, pf->state); 7642 clear_recovery: 7643 /* set this bit in PF state to control service task scheduling */ 7644 set_bit(ICE_NEEDS_RESTART, pf->state); 7645 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7646 } 7647 7648 /** 7649 * ice_change_mtu - NDO callback to change the MTU 7650 * @netdev: network interface device structure 7651 * @new_mtu: new value for maximum frame size 7652 * 7653 * Returns 0 on success, negative on failure 7654 */ 7655 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7656 { 7657 struct ice_netdev_priv *np = netdev_priv(netdev); 7658 struct ice_vsi *vsi = np->vsi; 7659 struct ice_pf *pf = vsi->back; 7660 struct bpf_prog *prog; 7661 u8 count = 0; 7662 int err = 0; 7663 7664 if (new_mtu == (int)netdev->mtu) { 7665 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7666 return 0; 7667 } 7668 7669 prog = vsi->xdp_prog; 7670 if (prog && !prog->aux->xdp_has_frags) { 7671 int frame_size = ice_max_xdp_frame_size(vsi); 7672 7673 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7674 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7675 frame_size - ICE_ETH_PKT_HDR_PAD); 7676 return -EINVAL; 7677 } 7678 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7679 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7680 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7681 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7682 return -EINVAL; 7683 } 7684 } 7685 7686 /* if a reset is in progress, wait for some time for it to complete */ 7687 do { 7688 if (ice_is_reset_in_progress(pf->state)) { 7689 count++; 7690 usleep_range(1000, 2000); 7691 } else { 7692 break; 7693 } 7694 7695 } while (count < 100); 7696 7697 if (count == 100) { 7698 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7699 return -EBUSY; 7700 } 7701 7702 netdev->mtu = (unsigned int)new_mtu; 7703 err = ice_down_up(vsi); 7704 if (err) 7705 return err; 7706 7707 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7708 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7709 7710 return err; 7711 } 7712 7713 /** 7714 * ice_eth_ioctl - Access the hwtstamp interface 7715 * @netdev: network interface device structure 7716 * @ifr: interface request data 7717 * @cmd: ioctl command 7718 */ 7719 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7720 { 7721 struct ice_netdev_priv *np = netdev_priv(netdev); 7722 struct ice_pf *pf = np->vsi->back; 7723 7724 switch (cmd) { 7725 case SIOCGHWTSTAMP: 7726 return ice_ptp_get_ts_config(pf, ifr); 7727 case SIOCSHWTSTAMP: 7728 return ice_ptp_set_ts_config(pf, ifr); 7729 default: 7730 return -EOPNOTSUPP; 7731 } 7732 } 7733 7734 /** 7735 * ice_aq_str - convert AQ err code to a string 7736 * @aq_err: the AQ error code to convert 7737 */ 7738 const char *ice_aq_str(enum ice_aq_err aq_err) 7739 { 7740 switch (aq_err) { 7741 case ICE_AQ_RC_OK: 7742 return "OK"; 7743 case ICE_AQ_RC_EPERM: 7744 return "ICE_AQ_RC_EPERM"; 7745 case ICE_AQ_RC_ENOENT: 7746 return "ICE_AQ_RC_ENOENT"; 7747 case ICE_AQ_RC_ENOMEM: 7748 return "ICE_AQ_RC_ENOMEM"; 7749 case ICE_AQ_RC_EBUSY: 7750 return "ICE_AQ_RC_EBUSY"; 7751 case ICE_AQ_RC_EEXIST: 7752 return "ICE_AQ_RC_EEXIST"; 7753 case ICE_AQ_RC_EINVAL: 7754 return "ICE_AQ_RC_EINVAL"; 7755 case ICE_AQ_RC_ENOSPC: 7756 return "ICE_AQ_RC_ENOSPC"; 7757 case ICE_AQ_RC_ENOSYS: 7758 return "ICE_AQ_RC_ENOSYS"; 7759 case ICE_AQ_RC_EMODE: 7760 return "ICE_AQ_RC_EMODE"; 7761 case ICE_AQ_RC_ENOSEC: 7762 return "ICE_AQ_RC_ENOSEC"; 7763 case ICE_AQ_RC_EBADSIG: 7764 return "ICE_AQ_RC_EBADSIG"; 7765 case ICE_AQ_RC_ESVN: 7766 return "ICE_AQ_RC_ESVN"; 7767 case ICE_AQ_RC_EBADMAN: 7768 return "ICE_AQ_RC_EBADMAN"; 7769 case ICE_AQ_RC_EBADBUF: 7770 return "ICE_AQ_RC_EBADBUF"; 7771 } 7772 7773 return "ICE_AQ_RC_UNKNOWN"; 7774 } 7775 7776 /** 7777 * ice_set_rss_lut - Set RSS LUT 7778 * @vsi: Pointer to VSI structure 7779 * @lut: Lookup table 7780 * @lut_size: Lookup table size 7781 * 7782 * Returns 0 on success, negative on failure 7783 */ 7784 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7785 { 7786 struct ice_aq_get_set_rss_lut_params params = {}; 7787 struct ice_hw *hw = &vsi->back->hw; 7788 int status; 7789 7790 if (!lut) 7791 return -EINVAL; 7792 7793 params.vsi_handle = vsi->idx; 7794 params.lut_size = lut_size; 7795 params.lut_type = vsi->rss_lut_type; 7796 params.lut = lut; 7797 7798 status = ice_aq_set_rss_lut(hw, ¶ms); 7799 if (status) 7800 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7801 status, ice_aq_str(hw->adminq.sq_last_status)); 7802 7803 return status; 7804 } 7805 7806 /** 7807 * ice_set_rss_key - Set RSS key 7808 * @vsi: Pointer to the VSI structure 7809 * @seed: RSS hash seed 7810 * 7811 * Returns 0 on success, negative on failure 7812 */ 7813 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7814 { 7815 struct ice_hw *hw = &vsi->back->hw; 7816 int status; 7817 7818 if (!seed) 7819 return -EINVAL; 7820 7821 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7822 if (status) 7823 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7824 status, ice_aq_str(hw->adminq.sq_last_status)); 7825 7826 return status; 7827 } 7828 7829 /** 7830 * ice_get_rss_lut - Get RSS LUT 7831 * @vsi: Pointer to VSI structure 7832 * @lut: Buffer to store the lookup table entries 7833 * @lut_size: Size of buffer to store the lookup table entries 7834 * 7835 * Returns 0 on success, negative on failure 7836 */ 7837 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7838 { 7839 struct ice_aq_get_set_rss_lut_params params = {}; 7840 struct ice_hw *hw = &vsi->back->hw; 7841 int status; 7842 7843 if (!lut) 7844 return -EINVAL; 7845 7846 params.vsi_handle = vsi->idx; 7847 params.lut_size = lut_size; 7848 params.lut_type = vsi->rss_lut_type; 7849 params.lut = lut; 7850 7851 status = ice_aq_get_rss_lut(hw, ¶ms); 7852 if (status) 7853 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7854 status, ice_aq_str(hw->adminq.sq_last_status)); 7855 7856 return status; 7857 } 7858 7859 /** 7860 * ice_get_rss_key - Get RSS key 7861 * @vsi: Pointer to VSI structure 7862 * @seed: Buffer to store the key in 7863 * 7864 * Returns 0 on success, negative on failure 7865 */ 7866 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7867 { 7868 struct ice_hw *hw = &vsi->back->hw; 7869 int status; 7870 7871 if (!seed) 7872 return -EINVAL; 7873 7874 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7875 if (status) 7876 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7877 status, ice_aq_str(hw->adminq.sq_last_status)); 7878 7879 return status; 7880 } 7881 7882 /** 7883 * ice_set_rss_hfunc - Set RSS HASH function 7884 * @vsi: Pointer to VSI structure 7885 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 7886 * 7887 * Returns 0 on success, negative on failure 7888 */ 7889 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 7890 { 7891 struct ice_hw *hw = &vsi->back->hw; 7892 struct ice_vsi_ctx *ctx; 7893 bool symm; 7894 int err; 7895 7896 if (hfunc == vsi->rss_hfunc) 7897 return 0; 7898 7899 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 7900 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 7901 return -EOPNOTSUPP; 7902 7903 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7904 if (!ctx) 7905 return -ENOMEM; 7906 7907 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 7908 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 7909 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 7910 ctx->info.q_opt_rss |= 7911 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 7912 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 7913 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 7914 7915 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 7916 if (err) { 7917 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 7918 vsi->vsi_num, err); 7919 } else { 7920 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 7921 vsi->rss_hfunc = hfunc; 7922 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 7923 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 7924 "Symmetric " : ""); 7925 } 7926 kfree(ctx); 7927 if (err) 7928 return err; 7929 7930 /* Fix the symmetry setting for all existing RSS configurations */ 7931 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 7932 return ice_set_rss_cfg_symm(hw, vsi, symm); 7933 } 7934 7935 /** 7936 * ice_bridge_getlink - Get the hardware bridge mode 7937 * @skb: skb buff 7938 * @pid: process ID 7939 * @seq: RTNL message seq 7940 * @dev: the netdev being configured 7941 * @filter_mask: filter mask passed in 7942 * @nlflags: netlink flags passed in 7943 * 7944 * Return the bridge mode (VEB/VEPA) 7945 */ 7946 static int 7947 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7948 struct net_device *dev, u32 filter_mask, int nlflags) 7949 { 7950 struct ice_netdev_priv *np = netdev_priv(dev); 7951 struct ice_vsi *vsi = np->vsi; 7952 struct ice_pf *pf = vsi->back; 7953 u16 bmode; 7954 7955 bmode = pf->first_sw->bridge_mode; 7956 7957 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7958 filter_mask, NULL); 7959 } 7960 7961 /** 7962 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7963 * @vsi: Pointer to VSI structure 7964 * @bmode: Hardware bridge mode (VEB/VEPA) 7965 * 7966 * Returns 0 on success, negative on failure 7967 */ 7968 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7969 { 7970 struct ice_aqc_vsi_props *vsi_props; 7971 struct ice_hw *hw = &vsi->back->hw; 7972 struct ice_vsi_ctx *ctxt; 7973 int ret; 7974 7975 vsi_props = &vsi->info; 7976 7977 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7978 if (!ctxt) 7979 return -ENOMEM; 7980 7981 ctxt->info = vsi->info; 7982 7983 if (bmode == BRIDGE_MODE_VEB) 7984 /* change from VEPA to VEB mode */ 7985 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7986 else 7987 /* change from VEB to VEPA mode */ 7988 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7989 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7990 7991 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7992 if (ret) { 7993 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7994 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7995 goto out; 7996 } 7997 /* Update sw flags for book keeping */ 7998 vsi_props->sw_flags = ctxt->info.sw_flags; 7999 8000 out: 8001 kfree(ctxt); 8002 return ret; 8003 } 8004 8005 /** 8006 * ice_bridge_setlink - Set the hardware bridge mode 8007 * @dev: the netdev being configured 8008 * @nlh: RTNL message 8009 * @flags: bridge setlink flags 8010 * @extack: netlink extended ack 8011 * 8012 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8013 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8014 * not already set for all VSIs connected to this switch. And also update the 8015 * unicast switch filter rules for the corresponding switch of the netdev. 8016 */ 8017 static int 8018 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8019 u16 __always_unused flags, 8020 struct netlink_ext_ack __always_unused *extack) 8021 { 8022 struct ice_netdev_priv *np = netdev_priv(dev); 8023 struct ice_pf *pf = np->vsi->back; 8024 struct nlattr *attr, *br_spec; 8025 struct ice_hw *hw = &pf->hw; 8026 struct ice_sw *pf_sw; 8027 int rem, v, err = 0; 8028 8029 pf_sw = pf->first_sw; 8030 /* find the attribute in the netlink message */ 8031 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8032 if (!br_spec) 8033 return -EINVAL; 8034 8035 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8036 __u16 mode = nla_get_u16(attr); 8037 8038 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8039 return -EINVAL; 8040 /* Continue if bridge mode is not being flipped */ 8041 if (mode == pf_sw->bridge_mode) 8042 continue; 8043 /* Iterates through the PF VSI list and update the loopback 8044 * mode of the VSI 8045 */ 8046 ice_for_each_vsi(pf, v) { 8047 if (!pf->vsi[v]) 8048 continue; 8049 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8050 if (err) 8051 return err; 8052 } 8053 8054 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8055 /* Update the unicast switch filter rules for the corresponding 8056 * switch of the netdev 8057 */ 8058 err = ice_update_sw_rule_bridge_mode(hw); 8059 if (err) { 8060 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8061 mode, err, 8062 ice_aq_str(hw->adminq.sq_last_status)); 8063 /* revert hw->evb_veb */ 8064 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8065 return err; 8066 } 8067 8068 pf_sw->bridge_mode = mode; 8069 } 8070 8071 return 0; 8072 } 8073 8074 /** 8075 * ice_tx_timeout - Respond to a Tx Hang 8076 * @netdev: network interface device structure 8077 * @txqueue: Tx queue 8078 */ 8079 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8080 { 8081 struct ice_netdev_priv *np = netdev_priv(netdev); 8082 struct ice_tx_ring *tx_ring = NULL; 8083 struct ice_vsi *vsi = np->vsi; 8084 struct ice_pf *pf = vsi->back; 8085 u32 i; 8086 8087 pf->tx_timeout_count++; 8088 8089 /* Check if PFC is enabled for the TC to which the queue belongs 8090 * to. If yes then Tx timeout is not caused by a hung queue, no 8091 * need to reset and rebuild 8092 */ 8093 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8094 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8095 txqueue); 8096 return; 8097 } 8098 8099 /* now that we have an index, find the tx_ring struct */ 8100 ice_for_each_txq(vsi, i) 8101 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8102 if (txqueue == vsi->tx_rings[i]->q_index) { 8103 tx_ring = vsi->tx_rings[i]; 8104 break; 8105 } 8106 8107 /* Reset recovery level if enough time has elapsed after last timeout. 8108 * Also ensure no new reset action happens before next timeout period. 8109 */ 8110 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8111 pf->tx_timeout_recovery_level = 1; 8112 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8113 netdev->watchdog_timeo))) 8114 return; 8115 8116 if (tx_ring) { 8117 struct ice_hw *hw = &pf->hw; 8118 u32 head, val = 0; 8119 8120 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8121 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8122 /* Read interrupt register */ 8123 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8124 8125 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8126 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8127 head, tx_ring->next_to_use, val); 8128 } 8129 8130 pf->tx_timeout_last_recovery = jiffies; 8131 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8132 pf->tx_timeout_recovery_level, txqueue); 8133 8134 switch (pf->tx_timeout_recovery_level) { 8135 case 1: 8136 set_bit(ICE_PFR_REQ, pf->state); 8137 break; 8138 case 2: 8139 set_bit(ICE_CORER_REQ, pf->state); 8140 break; 8141 case 3: 8142 set_bit(ICE_GLOBR_REQ, pf->state); 8143 break; 8144 default: 8145 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8146 set_bit(ICE_DOWN, pf->state); 8147 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8148 set_bit(ICE_SERVICE_DIS, pf->state); 8149 break; 8150 } 8151 8152 ice_service_task_schedule(pf); 8153 pf->tx_timeout_recovery_level++; 8154 } 8155 8156 /** 8157 * ice_setup_tc_cls_flower - flower classifier offloads 8158 * @np: net device to configure 8159 * @filter_dev: device on which filter is added 8160 * @cls_flower: offload data 8161 */ 8162 static int 8163 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8164 struct net_device *filter_dev, 8165 struct flow_cls_offload *cls_flower) 8166 { 8167 struct ice_vsi *vsi = np->vsi; 8168 8169 if (cls_flower->common.chain_index) 8170 return -EOPNOTSUPP; 8171 8172 switch (cls_flower->command) { 8173 case FLOW_CLS_REPLACE: 8174 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8175 case FLOW_CLS_DESTROY: 8176 return ice_del_cls_flower(vsi, cls_flower); 8177 default: 8178 return -EINVAL; 8179 } 8180 } 8181 8182 /** 8183 * ice_setup_tc_block_cb - callback handler registered for TC block 8184 * @type: TC SETUP type 8185 * @type_data: TC flower offload data that contains user input 8186 * @cb_priv: netdev private data 8187 */ 8188 static int 8189 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8190 { 8191 struct ice_netdev_priv *np = cb_priv; 8192 8193 switch (type) { 8194 case TC_SETUP_CLSFLOWER: 8195 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8196 type_data); 8197 default: 8198 return -EOPNOTSUPP; 8199 } 8200 } 8201 8202 /** 8203 * ice_validate_mqprio_qopt - Validate TCF input parameters 8204 * @vsi: Pointer to VSI 8205 * @mqprio_qopt: input parameters for mqprio queue configuration 8206 * 8207 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8208 * needed), and make sure user doesn't specify qcount and BW rate limit 8209 * for TCs, which are more than "num_tc" 8210 */ 8211 static int 8212 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8213 struct tc_mqprio_qopt_offload *mqprio_qopt) 8214 { 8215 int non_power_of_2_qcount = 0; 8216 struct ice_pf *pf = vsi->back; 8217 int max_rss_q_cnt = 0; 8218 u64 sum_min_rate = 0; 8219 struct device *dev; 8220 int i, speed; 8221 u8 num_tc; 8222 8223 if (vsi->type != ICE_VSI_PF) 8224 return -EINVAL; 8225 8226 if (mqprio_qopt->qopt.offset[0] != 0 || 8227 mqprio_qopt->qopt.num_tc < 1 || 8228 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8229 return -EINVAL; 8230 8231 dev = ice_pf_to_dev(pf); 8232 vsi->ch_rss_size = 0; 8233 num_tc = mqprio_qopt->qopt.num_tc; 8234 speed = ice_get_link_speed_kbps(vsi); 8235 8236 for (i = 0; num_tc; i++) { 8237 int qcount = mqprio_qopt->qopt.count[i]; 8238 u64 max_rate, min_rate, rem; 8239 8240 if (!qcount) 8241 return -EINVAL; 8242 8243 if (is_power_of_2(qcount)) { 8244 if (non_power_of_2_qcount && 8245 qcount > non_power_of_2_qcount) { 8246 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8247 qcount, non_power_of_2_qcount); 8248 return -EINVAL; 8249 } 8250 if (qcount > max_rss_q_cnt) 8251 max_rss_q_cnt = qcount; 8252 } else { 8253 if (non_power_of_2_qcount && 8254 qcount != non_power_of_2_qcount) { 8255 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8256 qcount, non_power_of_2_qcount); 8257 return -EINVAL; 8258 } 8259 if (qcount < max_rss_q_cnt) { 8260 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8261 qcount, max_rss_q_cnt); 8262 return -EINVAL; 8263 } 8264 max_rss_q_cnt = qcount; 8265 non_power_of_2_qcount = qcount; 8266 } 8267 8268 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8269 * converts the bandwidth rate limit into Bytes/s when 8270 * passing it down to the driver. So convert input bandwidth 8271 * from Bytes/s to Kbps 8272 */ 8273 max_rate = mqprio_qopt->max_rate[i]; 8274 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8275 8276 /* min_rate is minimum guaranteed rate and it can't be zero */ 8277 min_rate = mqprio_qopt->min_rate[i]; 8278 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8279 sum_min_rate += min_rate; 8280 8281 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8282 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8283 min_rate, ICE_MIN_BW_LIMIT); 8284 return -EINVAL; 8285 } 8286 8287 if (max_rate && max_rate > speed) { 8288 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8289 i, max_rate, speed); 8290 return -EINVAL; 8291 } 8292 8293 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8294 if (rem) { 8295 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8296 i, ICE_MIN_BW_LIMIT); 8297 return -EINVAL; 8298 } 8299 8300 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8301 if (rem) { 8302 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8303 i, ICE_MIN_BW_LIMIT); 8304 return -EINVAL; 8305 } 8306 8307 /* min_rate can't be more than max_rate, except when max_rate 8308 * is zero (implies max_rate sought is max line rate). In such 8309 * a case min_rate can be more than max. 8310 */ 8311 if (max_rate && min_rate > max_rate) { 8312 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8313 min_rate, max_rate); 8314 return -EINVAL; 8315 } 8316 8317 if (i >= mqprio_qopt->qopt.num_tc - 1) 8318 break; 8319 if (mqprio_qopt->qopt.offset[i + 1] != 8320 (mqprio_qopt->qopt.offset[i] + qcount)) 8321 return -EINVAL; 8322 } 8323 if (vsi->num_rxq < 8324 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8325 return -EINVAL; 8326 if (vsi->num_txq < 8327 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8328 return -EINVAL; 8329 8330 if (sum_min_rate && sum_min_rate > (u64)speed) { 8331 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8332 sum_min_rate, speed); 8333 return -EINVAL; 8334 } 8335 8336 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8337 vsi->ch_rss_size = max_rss_q_cnt; 8338 8339 return 0; 8340 } 8341 8342 /** 8343 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8344 * @pf: ptr to PF device 8345 * @vsi: ptr to VSI 8346 */ 8347 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8348 { 8349 struct device *dev = ice_pf_to_dev(pf); 8350 bool added = false; 8351 struct ice_hw *hw; 8352 int flow; 8353 8354 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8355 return -EINVAL; 8356 8357 hw = &pf->hw; 8358 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8359 struct ice_fd_hw_prof *prof; 8360 int tun, status; 8361 u64 entry_h; 8362 8363 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8364 hw->fdir_prof[flow]->cnt)) 8365 continue; 8366 8367 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8368 enum ice_flow_priority prio; 8369 8370 /* add this VSI to FDir profile for this flow */ 8371 prio = ICE_FLOW_PRIO_NORMAL; 8372 prof = hw->fdir_prof[flow]; 8373 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8374 prof->prof_id[tun], 8375 prof->vsi_h[0], vsi->idx, 8376 prio, prof->fdir_seg[tun], 8377 &entry_h); 8378 if (status) { 8379 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8380 vsi->idx, flow); 8381 continue; 8382 } 8383 8384 prof->entry_h[prof->cnt][tun] = entry_h; 8385 } 8386 8387 /* store VSI for filter replay and delete */ 8388 prof->vsi_h[prof->cnt] = vsi->idx; 8389 prof->cnt++; 8390 8391 added = true; 8392 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8393 flow); 8394 } 8395 8396 if (!added) 8397 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8398 8399 return 0; 8400 } 8401 8402 /** 8403 * ice_add_channel - add a channel by adding VSI 8404 * @pf: ptr to PF device 8405 * @sw_id: underlying HW switching element ID 8406 * @ch: ptr to channel structure 8407 * 8408 * Add a channel (VSI) using add_vsi and queue_map 8409 */ 8410 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8411 { 8412 struct device *dev = ice_pf_to_dev(pf); 8413 struct ice_vsi *vsi; 8414 8415 if (ch->type != ICE_VSI_CHNL) { 8416 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8417 return -EINVAL; 8418 } 8419 8420 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8421 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8422 dev_err(dev, "create chnl VSI failure\n"); 8423 return -EINVAL; 8424 } 8425 8426 ice_add_vsi_to_fdir(pf, vsi); 8427 8428 ch->sw_id = sw_id; 8429 ch->vsi_num = vsi->vsi_num; 8430 ch->info.mapping_flags = vsi->info.mapping_flags; 8431 ch->ch_vsi = vsi; 8432 /* set the back pointer of channel for newly created VSI */ 8433 vsi->ch = ch; 8434 8435 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8436 sizeof(vsi->info.q_mapping)); 8437 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8438 sizeof(vsi->info.tc_mapping)); 8439 8440 return 0; 8441 } 8442 8443 /** 8444 * ice_chnl_cfg_res 8445 * @vsi: the VSI being setup 8446 * @ch: ptr to channel structure 8447 * 8448 * Configure channel specific resources such as rings, vector. 8449 */ 8450 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8451 { 8452 int i; 8453 8454 for (i = 0; i < ch->num_txq; i++) { 8455 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8456 struct ice_ring_container *rc; 8457 struct ice_tx_ring *tx_ring; 8458 struct ice_rx_ring *rx_ring; 8459 8460 tx_ring = vsi->tx_rings[ch->base_q + i]; 8461 rx_ring = vsi->rx_rings[ch->base_q + i]; 8462 if (!tx_ring || !rx_ring) 8463 continue; 8464 8465 /* setup ring being channel enabled */ 8466 tx_ring->ch = ch; 8467 rx_ring->ch = ch; 8468 8469 /* following code block sets up vector specific attributes */ 8470 tx_q_vector = tx_ring->q_vector; 8471 rx_q_vector = rx_ring->q_vector; 8472 if (!tx_q_vector && !rx_q_vector) 8473 continue; 8474 8475 if (tx_q_vector) { 8476 tx_q_vector->ch = ch; 8477 /* setup Tx and Rx ITR setting if DIM is off */ 8478 rc = &tx_q_vector->tx; 8479 if (!ITR_IS_DYNAMIC(rc)) 8480 ice_write_itr(rc, rc->itr_setting); 8481 } 8482 if (rx_q_vector) { 8483 rx_q_vector->ch = ch; 8484 /* setup Tx and Rx ITR setting if DIM is off */ 8485 rc = &rx_q_vector->rx; 8486 if (!ITR_IS_DYNAMIC(rc)) 8487 ice_write_itr(rc, rc->itr_setting); 8488 } 8489 } 8490 8491 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8492 * GLINT_ITR register would have written to perform in-context 8493 * update, hence perform flush 8494 */ 8495 if (ch->num_txq || ch->num_rxq) 8496 ice_flush(&vsi->back->hw); 8497 } 8498 8499 /** 8500 * ice_cfg_chnl_all_res - configure channel resources 8501 * @vsi: pte to main_vsi 8502 * @ch: ptr to channel structure 8503 * 8504 * This function configures channel specific resources such as flow-director 8505 * counter index, and other resources such as queues, vectors, ITR settings 8506 */ 8507 static void 8508 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8509 { 8510 /* configure channel (aka ADQ) resources such as queues, vectors, 8511 * ITR settings for channel specific vectors and anything else 8512 */ 8513 ice_chnl_cfg_res(vsi, ch); 8514 } 8515 8516 /** 8517 * ice_setup_hw_channel - setup new channel 8518 * @pf: ptr to PF device 8519 * @vsi: the VSI being setup 8520 * @ch: ptr to channel structure 8521 * @sw_id: underlying HW switching element ID 8522 * @type: type of channel to be created (VMDq2/VF) 8523 * 8524 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8525 * and configures Tx rings accordingly 8526 */ 8527 static int 8528 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8529 struct ice_channel *ch, u16 sw_id, u8 type) 8530 { 8531 struct device *dev = ice_pf_to_dev(pf); 8532 int ret; 8533 8534 ch->base_q = vsi->next_base_q; 8535 ch->type = type; 8536 8537 ret = ice_add_channel(pf, sw_id, ch); 8538 if (ret) { 8539 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8540 return ret; 8541 } 8542 8543 /* configure/setup ADQ specific resources */ 8544 ice_cfg_chnl_all_res(vsi, ch); 8545 8546 /* make sure to update the next_base_q so that subsequent channel's 8547 * (aka ADQ) VSI queue map is correct 8548 */ 8549 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8550 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8551 ch->num_rxq); 8552 8553 return 0; 8554 } 8555 8556 /** 8557 * ice_setup_channel - setup new channel using uplink element 8558 * @pf: ptr to PF device 8559 * @vsi: the VSI being setup 8560 * @ch: ptr to channel structure 8561 * 8562 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8563 * and uplink switching element 8564 */ 8565 static bool 8566 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8567 struct ice_channel *ch) 8568 { 8569 struct device *dev = ice_pf_to_dev(pf); 8570 u16 sw_id; 8571 int ret; 8572 8573 if (vsi->type != ICE_VSI_PF) { 8574 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8575 return false; 8576 } 8577 8578 sw_id = pf->first_sw->sw_id; 8579 8580 /* create channel (VSI) */ 8581 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8582 if (ret) { 8583 dev_err(dev, "failed to setup hw_channel\n"); 8584 return false; 8585 } 8586 dev_dbg(dev, "successfully created channel()\n"); 8587 8588 return ch->ch_vsi ? true : false; 8589 } 8590 8591 /** 8592 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8593 * @vsi: VSI to be configured 8594 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8595 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8596 */ 8597 static int 8598 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8599 { 8600 int err; 8601 8602 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8603 if (err) 8604 return err; 8605 8606 return ice_set_max_bw_limit(vsi, max_tx_rate); 8607 } 8608 8609 /** 8610 * ice_create_q_channel - function to create channel 8611 * @vsi: VSI to be configured 8612 * @ch: ptr to channel (it contains channel specific params) 8613 * 8614 * This function creates channel (VSI) using num_queues specified by user, 8615 * reconfigs RSS if needed. 8616 */ 8617 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8618 { 8619 struct ice_pf *pf = vsi->back; 8620 struct device *dev; 8621 8622 if (!ch) 8623 return -EINVAL; 8624 8625 dev = ice_pf_to_dev(pf); 8626 if (!ch->num_txq || !ch->num_rxq) { 8627 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8628 return -EINVAL; 8629 } 8630 8631 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8632 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8633 vsi->cnt_q_avail, ch->num_txq); 8634 return -EINVAL; 8635 } 8636 8637 if (!ice_setup_channel(pf, vsi, ch)) { 8638 dev_info(dev, "Failed to setup channel\n"); 8639 return -EINVAL; 8640 } 8641 /* configure BW rate limit */ 8642 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8643 int ret; 8644 8645 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8646 ch->min_tx_rate); 8647 if (ret) 8648 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8649 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8650 else 8651 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8652 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8653 } 8654 8655 vsi->cnt_q_avail -= ch->num_txq; 8656 8657 return 0; 8658 } 8659 8660 /** 8661 * ice_rem_all_chnl_fltrs - removes all channel filters 8662 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8663 * 8664 * Remove all advanced switch filters only if they are channel specific 8665 * tc-flower based filter 8666 */ 8667 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8668 { 8669 struct ice_tc_flower_fltr *fltr; 8670 struct hlist_node *node; 8671 8672 /* to remove all channel filters, iterate an ordered list of filters */ 8673 hlist_for_each_entry_safe(fltr, node, 8674 &pf->tc_flower_fltr_list, 8675 tc_flower_node) { 8676 struct ice_rule_query_data rule; 8677 int status; 8678 8679 /* for now process only channel specific filters */ 8680 if (!ice_is_chnl_fltr(fltr)) 8681 continue; 8682 8683 rule.rid = fltr->rid; 8684 rule.rule_id = fltr->rule_id; 8685 rule.vsi_handle = fltr->dest_vsi_handle; 8686 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8687 if (status) { 8688 if (status == -ENOENT) 8689 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8690 rule.rule_id); 8691 else 8692 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8693 status); 8694 } else if (fltr->dest_vsi) { 8695 /* update advanced switch filter count */ 8696 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8697 u32 flags = fltr->flags; 8698 8699 fltr->dest_vsi->num_chnl_fltr--; 8700 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8701 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8702 pf->num_dmac_chnl_fltrs--; 8703 } 8704 } 8705 8706 hlist_del(&fltr->tc_flower_node); 8707 kfree(fltr); 8708 } 8709 } 8710 8711 /** 8712 * ice_remove_q_channels - Remove queue channels for the TCs 8713 * @vsi: VSI to be configured 8714 * @rem_fltr: delete advanced switch filter or not 8715 * 8716 * Remove queue channels for the TCs 8717 */ 8718 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8719 { 8720 struct ice_channel *ch, *ch_tmp; 8721 struct ice_pf *pf = vsi->back; 8722 int i; 8723 8724 /* remove all tc-flower based filter if they are channel filters only */ 8725 if (rem_fltr) 8726 ice_rem_all_chnl_fltrs(pf); 8727 8728 /* remove ntuple filters since queue configuration is being changed */ 8729 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8730 struct ice_hw *hw = &pf->hw; 8731 8732 mutex_lock(&hw->fdir_fltr_lock); 8733 ice_fdir_del_all_fltrs(vsi); 8734 mutex_unlock(&hw->fdir_fltr_lock); 8735 } 8736 8737 /* perform cleanup for channels if they exist */ 8738 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8739 struct ice_vsi *ch_vsi; 8740 8741 list_del(&ch->list); 8742 ch_vsi = ch->ch_vsi; 8743 if (!ch_vsi) { 8744 kfree(ch); 8745 continue; 8746 } 8747 8748 /* Reset queue contexts */ 8749 for (i = 0; i < ch->num_rxq; i++) { 8750 struct ice_tx_ring *tx_ring; 8751 struct ice_rx_ring *rx_ring; 8752 8753 tx_ring = vsi->tx_rings[ch->base_q + i]; 8754 rx_ring = vsi->rx_rings[ch->base_q + i]; 8755 if (tx_ring) { 8756 tx_ring->ch = NULL; 8757 if (tx_ring->q_vector) 8758 tx_ring->q_vector->ch = NULL; 8759 } 8760 if (rx_ring) { 8761 rx_ring->ch = NULL; 8762 if (rx_ring->q_vector) 8763 rx_ring->q_vector->ch = NULL; 8764 } 8765 } 8766 8767 /* Release FD resources for the channel VSI */ 8768 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8769 8770 /* clear the VSI from scheduler tree */ 8771 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8772 8773 /* Delete VSI from FW, PF and HW VSI arrays */ 8774 ice_vsi_delete(ch->ch_vsi); 8775 8776 /* free the channel */ 8777 kfree(ch); 8778 } 8779 8780 /* clear the channel VSI map which is stored in main VSI */ 8781 ice_for_each_chnl_tc(i) 8782 vsi->tc_map_vsi[i] = NULL; 8783 8784 /* reset main VSI's all TC information */ 8785 vsi->all_enatc = 0; 8786 vsi->all_numtc = 0; 8787 } 8788 8789 /** 8790 * ice_rebuild_channels - rebuild channel 8791 * @pf: ptr to PF 8792 * 8793 * Recreate channel VSIs and replay filters 8794 */ 8795 static int ice_rebuild_channels(struct ice_pf *pf) 8796 { 8797 struct device *dev = ice_pf_to_dev(pf); 8798 struct ice_vsi *main_vsi; 8799 bool rem_adv_fltr = true; 8800 struct ice_channel *ch; 8801 struct ice_vsi *vsi; 8802 int tc_idx = 1; 8803 int i, err; 8804 8805 main_vsi = ice_get_main_vsi(pf); 8806 if (!main_vsi) 8807 return 0; 8808 8809 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8810 main_vsi->old_numtc == 1) 8811 return 0; /* nothing to be done */ 8812 8813 /* reconfigure main VSI based on old value of TC and cached values 8814 * for MQPRIO opts 8815 */ 8816 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8817 if (err) { 8818 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8819 main_vsi->old_ena_tc, main_vsi->vsi_num); 8820 return err; 8821 } 8822 8823 /* rebuild ADQ VSIs */ 8824 ice_for_each_vsi(pf, i) { 8825 enum ice_vsi_type type; 8826 8827 vsi = pf->vsi[i]; 8828 if (!vsi || vsi->type != ICE_VSI_CHNL) 8829 continue; 8830 8831 type = vsi->type; 8832 8833 /* rebuild ADQ VSI */ 8834 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8835 if (err) { 8836 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8837 ice_vsi_type_str(type), vsi->idx, err); 8838 goto cleanup; 8839 } 8840 8841 /* Re-map HW VSI number, using VSI handle that has been 8842 * previously validated in ice_replay_vsi() call above 8843 */ 8844 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8845 8846 /* replay filters for the VSI */ 8847 err = ice_replay_vsi(&pf->hw, vsi->idx); 8848 if (err) { 8849 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8850 ice_vsi_type_str(type), err, vsi->idx); 8851 rem_adv_fltr = false; 8852 goto cleanup; 8853 } 8854 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8855 ice_vsi_type_str(type), vsi->idx); 8856 8857 /* store ADQ VSI at correct TC index in main VSI's 8858 * map of TC to VSI 8859 */ 8860 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8861 } 8862 8863 /* ADQ VSI(s) has been rebuilt successfully, so setup 8864 * channel for main VSI's Tx and Rx rings 8865 */ 8866 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8867 struct ice_vsi *ch_vsi; 8868 8869 ch_vsi = ch->ch_vsi; 8870 if (!ch_vsi) 8871 continue; 8872 8873 /* reconfig channel resources */ 8874 ice_cfg_chnl_all_res(main_vsi, ch); 8875 8876 /* replay BW rate limit if it is non-zero */ 8877 if (!ch->max_tx_rate && !ch->min_tx_rate) 8878 continue; 8879 8880 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8881 ch->min_tx_rate); 8882 if (err) 8883 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8884 err, ch->max_tx_rate, ch->min_tx_rate, 8885 ch_vsi->vsi_num); 8886 else 8887 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8888 ch->max_tx_rate, ch->min_tx_rate, 8889 ch_vsi->vsi_num); 8890 } 8891 8892 /* reconfig RSS for main VSI */ 8893 if (main_vsi->ch_rss_size) 8894 ice_vsi_cfg_rss_lut_key(main_vsi); 8895 8896 return 0; 8897 8898 cleanup: 8899 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8900 return err; 8901 } 8902 8903 /** 8904 * ice_create_q_channels - Add queue channel for the given TCs 8905 * @vsi: VSI to be configured 8906 * 8907 * Configures queue channel mapping to the given TCs 8908 */ 8909 static int ice_create_q_channels(struct ice_vsi *vsi) 8910 { 8911 struct ice_pf *pf = vsi->back; 8912 struct ice_channel *ch; 8913 int ret = 0, i; 8914 8915 ice_for_each_chnl_tc(i) { 8916 if (!(vsi->all_enatc & BIT(i))) 8917 continue; 8918 8919 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8920 if (!ch) { 8921 ret = -ENOMEM; 8922 goto err_free; 8923 } 8924 INIT_LIST_HEAD(&ch->list); 8925 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8926 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8927 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8928 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8929 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8930 8931 /* convert to Kbits/s */ 8932 if (ch->max_tx_rate) 8933 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8934 ICE_BW_KBPS_DIVISOR); 8935 if (ch->min_tx_rate) 8936 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8937 ICE_BW_KBPS_DIVISOR); 8938 8939 ret = ice_create_q_channel(vsi, ch); 8940 if (ret) { 8941 dev_err(ice_pf_to_dev(pf), 8942 "failed creating channel TC:%d\n", i); 8943 kfree(ch); 8944 goto err_free; 8945 } 8946 list_add_tail(&ch->list, &vsi->ch_list); 8947 vsi->tc_map_vsi[i] = ch->ch_vsi; 8948 dev_dbg(ice_pf_to_dev(pf), 8949 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8950 } 8951 return 0; 8952 8953 err_free: 8954 ice_remove_q_channels(vsi, false); 8955 8956 return ret; 8957 } 8958 8959 /** 8960 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8961 * @netdev: net device to configure 8962 * @type_data: TC offload data 8963 */ 8964 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8965 { 8966 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8967 struct ice_netdev_priv *np = netdev_priv(netdev); 8968 struct ice_vsi *vsi = np->vsi; 8969 struct ice_pf *pf = vsi->back; 8970 u16 mode, ena_tc_qdisc = 0; 8971 int cur_txq, cur_rxq; 8972 u8 hw = 0, num_tcf; 8973 struct device *dev; 8974 int ret, i; 8975 8976 dev = ice_pf_to_dev(pf); 8977 num_tcf = mqprio_qopt->qopt.num_tc; 8978 hw = mqprio_qopt->qopt.hw; 8979 mode = mqprio_qopt->mode; 8980 if (!hw) { 8981 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8982 vsi->ch_rss_size = 0; 8983 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8984 goto config_tcf; 8985 } 8986 8987 /* Generate queue region map for number of TCF requested */ 8988 for (i = 0; i < num_tcf; i++) 8989 ena_tc_qdisc |= BIT(i); 8990 8991 switch (mode) { 8992 case TC_MQPRIO_MODE_CHANNEL: 8993 8994 if (pf->hw.port_info->is_custom_tx_enabled) { 8995 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8996 return -EBUSY; 8997 } 8998 ice_tear_down_devlink_rate_tree(pf); 8999 9000 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9001 if (ret) { 9002 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9003 ret); 9004 return ret; 9005 } 9006 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9007 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9008 /* don't assume state of hw_tc_offload during driver load 9009 * and set the flag for TC flower filter if hw_tc_offload 9010 * already ON 9011 */ 9012 if (vsi->netdev->features & NETIF_F_HW_TC) 9013 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9014 break; 9015 default: 9016 return -EINVAL; 9017 } 9018 9019 config_tcf: 9020 9021 /* Requesting same TCF configuration as already enabled */ 9022 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9023 mode != TC_MQPRIO_MODE_CHANNEL) 9024 return 0; 9025 9026 /* Pause VSI queues */ 9027 ice_dis_vsi(vsi, true); 9028 9029 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9030 ice_remove_q_channels(vsi, true); 9031 9032 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9033 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9034 num_online_cpus()); 9035 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9036 num_online_cpus()); 9037 } else { 9038 /* logic to rebuild VSI, same like ethtool -L */ 9039 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9040 9041 for (i = 0; i < num_tcf; i++) { 9042 if (!(ena_tc_qdisc & BIT(i))) 9043 continue; 9044 9045 offset = vsi->mqprio_qopt.qopt.offset[i]; 9046 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9047 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9048 } 9049 vsi->req_txq = offset + qcount_tx; 9050 vsi->req_rxq = offset + qcount_rx; 9051 9052 /* store away original rss_size info, so that it gets reused 9053 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9054 * determine, what should be the rss_sizefor main VSI 9055 */ 9056 vsi->orig_rss_size = vsi->rss_size; 9057 } 9058 9059 /* save current values of Tx and Rx queues before calling VSI rebuild 9060 * for fallback option 9061 */ 9062 cur_txq = vsi->num_txq; 9063 cur_rxq = vsi->num_rxq; 9064 9065 /* proceed with rebuild main VSI using correct number of queues */ 9066 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9067 if (ret) { 9068 /* fallback to current number of queues */ 9069 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9070 vsi->req_txq = cur_txq; 9071 vsi->req_rxq = cur_rxq; 9072 clear_bit(ICE_RESET_FAILED, pf->state); 9073 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9074 dev_err(dev, "Rebuild of main VSI failed again\n"); 9075 return ret; 9076 } 9077 } 9078 9079 vsi->all_numtc = num_tcf; 9080 vsi->all_enatc = ena_tc_qdisc; 9081 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9082 if (ret) { 9083 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9084 vsi->vsi_num); 9085 goto exit; 9086 } 9087 9088 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9089 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9090 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9091 9092 /* set TC0 rate limit if specified */ 9093 if (max_tx_rate || min_tx_rate) { 9094 /* convert to Kbits/s */ 9095 if (max_tx_rate) 9096 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9097 if (min_tx_rate) 9098 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9099 9100 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9101 if (!ret) { 9102 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9103 max_tx_rate, min_tx_rate, vsi->vsi_num); 9104 } else { 9105 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9106 max_tx_rate, min_tx_rate, vsi->vsi_num); 9107 goto exit; 9108 } 9109 } 9110 ret = ice_create_q_channels(vsi); 9111 if (ret) { 9112 netdev_err(netdev, "failed configuring queue channels\n"); 9113 goto exit; 9114 } else { 9115 netdev_dbg(netdev, "successfully configured channels\n"); 9116 } 9117 } 9118 9119 if (vsi->ch_rss_size) 9120 ice_vsi_cfg_rss_lut_key(vsi); 9121 9122 exit: 9123 /* if error, reset the all_numtc and all_enatc */ 9124 if (ret) { 9125 vsi->all_numtc = 0; 9126 vsi->all_enatc = 0; 9127 } 9128 /* resume VSI */ 9129 ice_ena_vsi(vsi, true); 9130 9131 return ret; 9132 } 9133 9134 static LIST_HEAD(ice_block_cb_list); 9135 9136 static int 9137 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9138 void *type_data) 9139 { 9140 struct ice_netdev_priv *np = netdev_priv(netdev); 9141 struct ice_pf *pf = np->vsi->back; 9142 bool locked = false; 9143 int err; 9144 9145 switch (type) { 9146 case TC_SETUP_BLOCK: 9147 return flow_block_cb_setup_simple(type_data, 9148 &ice_block_cb_list, 9149 ice_setup_tc_block_cb, 9150 np, np, true); 9151 case TC_SETUP_QDISC_MQPRIO: 9152 if (ice_is_eswitch_mode_switchdev(pf)) { 9153 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9154 return -EOPNOTSUPP; 9155 } 9156 9157 if (pf->adev) { 9158 mutex_lock(&pf->adev_mutex); 9159 device_lock(&pf->adev->dev); 9160 locked = true; 9161 if (pf->adev->dev.driver) { 9162 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9163 err = -EBUSY; 9164 goto adev_unlock; 9165 } 9166 } 9167 9168 /* setup traffic classifier for receive side */ 9169 mutex_lock(&pf->tc_mutex); 9170 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9171 mutex_unlock(&pf->tc_mutex); 9172 9173 adev_unlock: 9174 if (locked) { 9175 device_unlock(&pf->adev->dev); 9176 mutex_unlock(&pf->adev_mutex); 9177 } 9178 return err; 9179 default: 9180 return -EOPNOTSUPP; 9181 } 9182 return -EOPNOTSUPP; 9183 } 9184 9185 static struct ice_indr_block_priv * 9186 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9187 struct net_device *netdev) 9188 { 9189 struct ice_indr_block_priv *cb_priv; 9190 9191 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9192 if (!cb_priv->netdev) 9193 return NULL; 9194 if (cb_priv->netdev == netdev) 9195 return cb_priv; 9196 } 9197 return NULL; 9198 } 9199 9200 static int 9201 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9202 void *indr_priv) 9203 { 9204 struct ice_indr_block_priv *priv = indr_priv; 9205 struct ice_netdev_priv *np = priv->np; 9206 9207 switch (type) { 9208 case TC_SETUP_CLSFLOWER: 9209 return ice_setup_tc_cls_flower(np, priv->netdev, 9210 (struct flow_cls_offload *) 9211 type_data); 9212 default: 9213 return -EOPNOTSUPP; 9214 } 9215 } 9216 9217 static int 9218 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9219 struct ice_netdev_priv *np, 9220 struct flow_block_offload *f, void *data, 9221 void (*cleanup)(struct flow_block_cb *block_cb)) 9222 { 9223 struct ice_indr_block_priv *indr_priv; 9224 struct flow_block_cb *block_cb; 9225 9226 if (!ice_is_tunnel_supported(netdev) && 9227 !(is_vlan_dev(netdev) && 9228 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9229 return -EOPNOTSUPP; 9230 9231 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9232 return -EOPNOTSUPP; 9233 9234 switch (f->command) { 9235 case FLOW_BLOCK_BIND: 9236 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9237 if (indr_priv) 9238 return -EEXIST; 9239 9240 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9241 if (!indr_priv) 9242 return -ENOMEM; 9243 9244 indr_priv->netdev = netdev; 9245 indr_priv->np = np; 9246 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9247 9248 block_cb = 9249 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9250 indr_priv, indr_priv, 9251 ice_rep_indr_tc_block_unbind, 9252 f, netdev, sch, data, np, 9253 cleanup); 9254 9255 if (IS_ERR(block_cb)) { 9256 list_del(&indr_priv->list); 9257 kfree(indr_priv); 9258 return PTR_ERR(block_cb); 9259 } 9260 flow_block_cb_add(block_cb, f); 9261 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9262 break; 9263 case FLOW_BLOCK_UNBIND: 9264 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9265 if (!indr_priv) 9266 return -ENOENT; 9267 9268 block_cb = flow_block_cb_lookup(f->block, 9269 ice_indr_setup_block_cb, 9270 indr_priv); 9271 if (!block_cb) 9272 return -ENOENT; 9273 9274 flow_indr_block_cb_remove(block_cb, f); 9275 9276 list_del(&block_cb->driver_list); 9277 break; 9278 default: 9279 return -EOPNOTSUPP; 9280 } 9281 return 0; 9282 } 9283 9284 static int 9285 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9286 void *cb_priv, enum tc_setup_type type, void *type_data, 9287 void *data, 9288 void (*cleanup)(struct flow_block_cb *block_cb)) 9289 { 9290 switch (type) { 9291 case TC_SETUP_BLOCK: 9292 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9293 data, cleanup); 9294 9295 default: 9296 return -EOPNOTSUPP; 9297 } 9298 } 9299 9300 /** 9301 * ice_open - Called when a network interface becomes active 9302 * @netdev: network interface device structure 9303 * 9304 * The open entry point is called when a network interface is made 9305 * active by the system (IFF_UP). At this point all resources needed 9306 * for transmit and receive operations are allocated, the interrupt 9307 * handler is registered with the OS, the netdev watchdog is enabled, 9308 * and the stack is notified that the interface is ready. 9309 * 9310 * Returns 0 on success, negative value on failure 9311 */ 9312 int ice_open(struct net_device *netdev) 9313 { 9314 struct ice_netdev_priv *np = netdev_priv(netdev); 9315 struct ice_pf *pf = np->vsi->back; 9316 9317 if (ice_is_reset_in_progress(pf->state)) { 9318 netdev_err(netdev, "can't open net device while reset is in progress"); 9319 return -EBUSY; 9320 } 9321 9322 return ice_open_internal(netdev); 9323 } 9324 9325 /** 9326 * ice_open_internal - Called when a network interface becomes active 9327 * @netdev: network interface device structure 9328 * 9329 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9330 * handling routine 9331 * 9332 * Returns 0 on success, negative value on failure 9333 */ 9334 int ice_open_internal(struct net_device *netdev) 9335 { 9336 struct ice_netdev_priv *np = netdev_priv(netdev); 9337 struct ice_vsi *vsi = np->vsi; 9338 struct ice_pf *pf = vsi->back; 9339 struct ice_port_info *pi; 9340 int err; 9341 9342 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9343 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9344 return -EIO; 9345 } 9346 9347 netif_carrier_off(netdev); 9348 9349 pi = vsi->port_info; 9350 err = ice_update_link_info(pi); 9351 if (err) { 9352 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9353 return err; 9354 } 9355 9356 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9357 9358 /* Set PHY if there is media, otherwise, turn off PHY */ 9359 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9360 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9361 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9362 err = ice_init_phy_user_cfg(pi); 9363 if (err) { 9364 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9365 err); 9366 return err; 9367 } 9368 } 9369 9370 err = ice_configure_phy(vsi); 9371 if (err) { 9372 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9373 err); 9374 return err; 9375 } 9376 } else { 9377 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9378 ice_set_link(vsi, false); 9379 } 9380 9381 err = ice_vsi_open(vsi); 9382 if (err) 9383 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9384 vsi->vsi_num, vsi->vsw->sw_id); 9385 9386 /* Update existing tunnels information */ 9387 udp_tunnel_get_rx_info(netdev); 9388 9389 return err; 9390 } 9391 9392 /** 9393 * ice_stop - Disables a network interface 9394 * @netdev: network interface device structure 9395 * 9396 * The stop entry point is called when an interface is de-activated by the OS, 9397 * and the netdevice enters the DOWN state. The hardware is still under the 9398 * driver's control, but the netdev interface is disabled. 9399 * 9400 * Returns success only - not allowed to fail 9401 */ 9402 int ice_stop(struct net_device *netdev) 9403 { 9404 struct ice_netdev_priv *np = netdev_priv(netdev); 9405 struct ice_vsi *vsi = np->vsi; 9406 struct ice_pf *pf = vsi->back; 9407 9408 if (ice_is_reset_in_progress(pf->state)) { 9409 netdev_err(netdev, "can't stop net device while reset is in progress"); 9410 return -EBUSY; 9411 } 9412 9413 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9414 int link_err = ice_force_phys_link_state(vsi, false); 9415 9416 if (link_err) { 9417 if (link_err == -ENOMEDIUM) 9418 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9419 vsi->vsi_num); 9420 else 9421 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9422 vsi->vsi_num, link_err); 9423 9424 ice_vsi_close(vsi); 9425 return -EIO; 9426 } 9427 } 9428 9429 ice_vsi_close(vsi); 9430 9431 return 0; 9432 } 9433 9434 /** 9435 * ice_features_check - Validate encapsulated packet conforms to limits 9436 * @skb: skb buffer 9437 * @netdev: This port's netdev 9438 * @features: Offload features that the stack believes apply 9439 */ 9440 static netdev_features_t 9441 ice_features_check(struct sk_buff *skb, 9442 struct net_device __always_unused *netdev, 9443 netdev_features_t features) 9444 { 9445 bool gso = skb_is_gso(skb); 9446 size_t len; 9447 9448 /* No point in doing any of this if neither checksum nor GSO are 9449 * being requested for this frame. We can rule out both by just 9450 * checking for CHECKSUM_PARTIAL 9451 */ 9452 if (skb->ip_summed != CHECKSUM_PARTIAL) 9453 return features; 9454 9455 /* We cannot support GSO if the MSS is going to be less than 9456 * 64 bytes. If it is then we need to drop support for GSO. 9457 */ 9458 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9459 features &= ~NETIF_F_GSO_MASK; 9460 9461 len = skb_network_offset(skb); 9462 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9463 goto out_rm_features; 9464 9465 len = skb_network_header_len(skb); 9466 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9467 goto out_rm_features; 9468 9469 if (skb->encapsulation) { 9470 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9471 * the case of IPIP frames, the transport header pointer is 9472 * after the inner header! So check to make sure that this 9473 * is a GRE or UDP_TUNNEL frame before doing that math. 9474 */ 9475 if (gso && (skb_shinfo(skb)->gso_type & 9476 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9477 len = skb_inner_network_header(skb) - 9478 skb_transport_header(skb); 9479 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9480 goto out_rm_features; 9481 } 9482 9483 len = skb_inner_network_header_len(skb); 9484 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9485 goto out_rm_features; 9486 } 9487 9488 return features; 9489 out_rm_features: 9490 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9491 } 9492 9493 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9494 .ndo_open = ice_open, 9495 .ndo_stop = ice_stop, 9496 .ndo_start_xmit = ice_start_xmit, 9497 .ndo_set_mac_address = ice_set_mac_address, 9498 .ndo_validate_addr = eth_validate_addr, 9499 .ndo_change_mtu = ice_change_mtu, 9500 .ndo_get_stats64 = ice_get_stats64, 9501 .ndo_tx_timeout = ice_tx_timeout, 9502 .ndo_bpf = ice_xdp_safe_mode, 9503 }; 9504 9505 static const struct net_device_ops ice_netdev_ops = { 9506 .ndo_open = ice_open, 9507 .ndo_stop = ice_stop, 9508 .ndo_start_xmit = ice_start_xmit, 9509 .ndo_select_queue = ice_select_queue, 9510 .ndo_features_check = ice_features_check, 9511 .ndo_fix_features = ice_fix_features, 9512 .ndo_set_rx_mode = ice_set_rx_mode, 9513 .ndo_set_mac_address = ice_set_mac_address, 9514 .ndo_validate_addr = eth_validate_addr, 9515 .ndo_change_mtu = ice_change_mtu, 9516 .ndo_get_stats64 = ice_get_stats64, 9517 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9518 .ndo_eth_ioctl = ice_eth_ioctl, 9519 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9520 .ndo_set_vf_mac = ice_set_vf_mac, 9521 .ndo_get_vf_config = ice_get_vf_cfg, 9522 .ndo_set_vf_trust = ice_set_vf_trust, 9523 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9524 .ndo_set_vf_link_state = ice_set_vf_link_state, 9525 .ndo_get_vf_stats = ice_get_vf_stats, 9526 .ndo_set_vf_rate = ice_set_vf_bw, 9527 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9528 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9529 .ndo_setup_tc = ice_setup_tc, 9530 .ndo_set_features = ice_set_features, 9531 .ndo_bridge_getlink = ice_bridge_getlink, 9532 .ndo_bridge_setlink = ice_bridge_setlink, 9533 .ndo_fdb_add = ice_fdb_add, 9534 .ndo_fdb_del = ice_fdb_del, 9535 #ifdef CONFIG_RFS_ACCEL 9536 .ndo_rx_flow_steer = ice_rx_flow_steer, 9537 #endif 9538 .ndo_tx_timeout = ice_tx_timeout, 9539 .ndo_bpf = ice_xdp, 9540 .ndo_xdp_xmit = ice_xdp_xmit, 9541 .ndo_xsk_wakeup = ice_xsk_wakeup, 9542 }; 9543