1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_hwmon.h" 19 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 20 * ice tracepoint functions. This must be done exactly once across the 21 * ice driver. 22 */ 23 #define CREATE_TRACE_POINTS 24 #include "ice_trace.h" 25 #include "ice_eswitch.h" 26 #include "ice_tc_lib.h" 27 #include "ice_vsi_vlan_ops.h" 28 #include <net/xdp_sock_drv.h> 29 30 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 31 static const char ice_driver_string[] = DRV_SUMMARY; 32 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 33 34 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 35 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 36 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 37 38 MODULE_DESCRIPTION(DRV_SUMMARY); 39 MODULE_IMPORT_NS(LIBIE); 40 MODULE_LICENSE("GPL v2"); 41 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 42 43 static int debug = -1; 44 module_param(debug, int, 0644); 45 #ifndef CONFIG_DYNAMIC_DEBUG 46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 47 #else 48 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 49 #endif /* !CONFIG_DYNAMIC_DEBUG */ 50 51 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 52 EXPORT_SYMBOL(ice_xdp_locking_key); 53 54 /** 55 * ice_hw_to_dev - Get device pointer from the hardware structure 56 * @hw: pointer to the device HW structure 57 * 58 * Used to access the device pointer from compilation units which can't easily 59 * include the definition of struct ice_pf without leading to circular header 60 * dependencies. 61 */ 62 struct device *ice_hw_to_dev(struct ice_hw *hw) 63 { 64 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 65 66 return &pf->pdev->dev; 67 } 68 69 static struct workqueue_struct *ice_wq; 70 struct workqueue_struct *ice_lag_wq; 71 static const struct net_device_ops ice_netdev_safe_mode_ops; 72 static const struct net_device_ops ice_netdev_ops; 73 74 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 75 76 static void ice_vsi_release_all(struct ice_pf *pf); 77 78 static int ice_rebuild_channels(struct ice_pf *pf); 79 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 80 81 static int 82 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 83 void *cb_priv, enum tc_setup_type type, void *type_data, 84 void *data, 85 void (*cleanup)(struct flow_block_cb *block_cb)); 86 87 bool netif_is_ice(const struct net_device *dev) 88 { 89 return dev && (dev->netdev_ops == &ice_netdev_ops); 90 } 91 92 /** 93 * ice_get_tx_pending - returns number of Tx descriptors not processed 94 * @ring: the ring of descriptors 95 */ 96 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 97 { 98 u16 head, tail; 99 100 head = ring->next_to_clean; 101 tail = ring->next_to_use; 102 103 if (head != tail) 104 return (head < tail) ? 105 tail - head : (tail + ring->count - head); 106 return 0; 107 } 108 109 /** 110 * ice_check_for_hang_subtask - check for and recover hung queues 111 * @pf: pointer to PF struct 112 */ 113 static void ice_check_for_hang_subtask(struct ice_pf *pf) 114 { 115 struct ice_vsi *vsi = NULL; 116 struct ice_hw *hw; 117 unsigned int i; 118 int packets; 119 u32 v; 120 121 ice_for_each_vsi(pf, v) 122 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 123 vsi = pf->vsi[v]; 124 break; 125 } 126 127 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 128 return; 129 130 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 131 return; 132 133 hw = &vsi->back->hw; 134 135 ice_for_each_txq(vsi, i) { 136 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 137 struct ice_ring_stats *ring_stats; 138 139 if (!tx_ring) 140 continue; 141 if (ice_ring_ch_enabled(tx_ring)) 142 continue; 143 144 ring_stats = tx_ring->ring_stats; 145 if (!ring_stats) 146 continue; 147 148 if (tx_ring->desc) { 149 /* If packet counter has not changed the queue is 150 * likely stalled, so force an interrupt for this 151 * queue. 152 * 153 * prev_pkt would be negative if there was no 154 * pending work. 155 */ 156 packets = ring_stats->stats.pkts & INT_MAX; 157 if (ring_stats->tx_stats.prev_pkt == packets) { 158 /* Trigger sw interrupt to revive the queue */ 159 ice_trigger_sw_intr(hw, tx_ring->q_vector); 160 continue; 161 } 162 163 /* Memory barrier between read of packet count and call 164 * to ice_get_tx_pending() 165 */ 166 smp_rmb(); 167 ring_stats->tx_stats.prev_pkt = 168 ice_get_tx_pending(tx_ring) ? packets : -1; 169 } 170 } 171 } 172 173 /** 174 * ice_init_mac_fltr - Set initial MAC filters 175 * @pf: board private structure 176 * 177 * Set initial set of MAC filters for PF VSI; configure filters for permanent 178 * address and broadcast address. If an error is encountered, netdevice will be 179 * unregistered. 180 */ 181 static int ice_init_mac_fltr(struct ice_pf *pf) 182 { 183 struct ice_vsi *vsi; 184 u8 *perm_addr; 185 186 vsi = ice_get_main_vsi(pf); 187 if (!vsi) 188 return -EINVAL; 189 190 perm_addr = vsi->port_info->mac.perm_addr; 191 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 192 } 193 194 /** 195 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 196 * @netdev: the net device on which the sync is happening 197 * @addr: MAC address to sync 198 * 199 * This is a callback function which is called by the in kernel device sync 200 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 201 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 202 * MAC filters from the hardware. 203 */ 204 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 205 { 206 struct ice_netdev_priv *np = netdev_priv(netdev); 207 struct ice_vsi *vsi = np->vsi; 208 209 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 210 ICE_FWD_TO_VSI)) 211 return -EINVAL; 212 213 return 0; 214 } 215 216 /** 217 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 218 * @netdev: the net device on which the unsync is happening 219 * @addr: MAC address to unsync 220 * 221 * This is a callback function which is called by the in kernel device unsync 222 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 223 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 224 * delete the MAC filters from the hardware. 225 */ 226 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 227 { 228 struct ice_netdev_priv *np = netdev_priv(netdev); 229 struct ice_vsi *vsi = np->vsi; 230 231 /* Under some circumstances, we might receive a request to delete our 232 * own device address from our uc list. Because we store the device 233 * address in the VSI's MAC filter list, we need to ignore such 234 * requests and not delete our device address from this list. 235 */ 236 if (ether_addr_equal(addr, netdev->dev_addr)) 237 return 0; 238 239 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 240 ICE_FWD_TO_VSI)) 241 return -EINVAL; 242 243 return 0; 244 } 245 246 /** 247 * ice_vsi_fltr_changed - check if filter state changed 248 * @vsi: VSI to be checked 249 * 250 * returns true if filter state has changed, false otherwise. 251 */ 252 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 253 { 254 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 255 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 256 } 257 258 /** 259 * ice_set_promisc - Enable promiscuous mode for a given PF 260 * @vsi: the VSI being configured 261 * @promisc_m: mask of promiscuous config bits 262 * 263 */ 264 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 265 { 266 int status; 267 268 if (vsi->type != ICE_VSI_PF) 269 return 0; 270 271 if (ice_vsi_has_non_zero_vlans(vsi)) { 272 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 273 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 274 promisc_m); 275 } else { 276 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 277 promisc_m, 0); 278 } 279 if (status && status != -EEXIST) 280 return status; 281 282 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 283 vsi->vsi_num, promisc_m); 284 return 0; 285 } 286 287 /** 288 * ice_clear_promisc - Disable promiscuous mode for a given PF 289 * @vsi: the VSI being configured 290 * @promisc_m: mask of promiscuous config bits 291 * 292 */ 293 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 294 { 295 int status; 296 297 if (vsi->type != ICE_VSI_PF) 298 return 0; 299 300 if (ice_vsi_has_non_zero_vlans(vsi)) { 301 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 302 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 303 promisc_m); 304 } else { 305 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 306 promisc_m, 0); 307 } 308 309 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 310 vsi->vsi_num, promisc_m); 311 return status; 312 } 313 314 /** 315 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 316 * @vsi: ptr to the VSI 317 * 318 * Push any outstanding VSI filter changes through the AdminQ. 319 */ 320 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 321 { 322 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 323 struct device *dev = ice_pf_to_dev(vsi->back); 324 struct net_device *netdev = vsi->netdev; 325 bool promisc_forced_on = false; 326 struct ice_pf *pf = vsi->back; 327 struct ice_hw *hw = &pf->hw; 328 u32 changed_flags = 0; 329 int err; 330 331 if (!vsi->netdev) 332 return -EINVAL; 333 334 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 335 usleep_range(1000, 2000); 336 337 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 338 vsi->current_netdev_flags = vsi->netdev->flags; 339 340 INIT_LIST_HEAD(&vsi->tmp_sync_list); 341 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 342 343 if (ice_vsi_fltr_changed(vsi)) { 344 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 345 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 346 347 /* grab the netdev's addr_list_lock */ 348 netif_addr_lock_bh(netdev); 349 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 350 ice_add_mac_to_unsync_list); 351 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 /* our temp lists are populated. release lock */ 354 netif_addr_unlock_bh(netdev); 355 } 356 357 /* Remove MAC addresses in the unsync list */ 358 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 359 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 360 if (err) { 361 netdev_err(netdev, "Failed to delete MAC filters\n"); 362 /* if we failed because of alloc failures, just bail */ 363 if (err == -ENOMEM) 364 goto out; 365 } 366 367 /* Add MAC addresses in the sync list */ 368 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 369 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 370 /* If filter is added successfully or already exists, do not go into 371 * 'if' condition and report it as error. Instead continue processing 372 * rest of the function. 373 */ 374 if (err && err != -EEXIST) { 375 netdev_err(netdev, "Failed to add MAC filters\n"); 376 /* If there is no more space for new umac filters, VSI 377 * should go into promiscuous mode. There should be some 378 * space reserved for promiscuous filters. 379 */ 380 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 381 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 382 vsi->state)) { 383 promisc_forced_on = true; 384 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 385 vsi->vsi_num); 386 } else { 387 goto out; 388 } 389 } 390 err = 0; 391 /* check for changes in promiscuous modes */ 392 if (changed_flags & IFF_ALLMULTI) { 393 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 394 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 395 if (err) { 396 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 397 goto out_promisc; 398 } 399 } else { 400 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 401 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 402 if (err) { 403 vsi->current_netdev_flags |= IFF_ALLMULTI; 404 goto out_promisc; 405 } 406 } 407 } 408 409 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 410 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 411 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 412 if (vsi->current_netdev_flags & IFF_PROMISC) { 413 /* Apply Rx filter rule to get traffic from wire */ 414 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 415 err = ice_set_dflt_vsi(vsi); 416 if (err && err != -EEXIST) { 417 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 418 err, vsi->vsi_num); 419 vsi->current_netdev_flags &= 420 ~IFF_PROMISC; 421 goto out_promisc; 422 } 423 err = 0; 424 vlan_ops->dis_rx_filtering(vsi); 425 426 /* promiscuous mode implies allmulticast so 427 * that VSIs that are in promiscuous mode are 428 * subscribed to multicast packets coming to 429 * the port 430 */ 431 err = ice_set_promisc(vsi, 432 ICE_MCAST_PROMISC_BITS); 433 if (err) 434 goto out_promisc; 435 } 436 } else { 437 /* Clear Rx filter to remove traffic from wire */ 438 if (ice_is_vsi_dflt_vsi(vsi)) { 439 err = ice_clear_dflt_vsi(vsi); 440 if (err) { 441 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 442 err, vsi->vsi_num); 443 vsi->current_netdev_flags |= 444 IFF_PROMISC; 445 goto out_promisc; 446 } 447 if (vsi->netdev->features & 448 NETIF_F_HW_VLAN_CTAG_FILTER) 449 vlan_ops->ena_rx_filtering(vsi); 450 } 451 452 /* disable allmulti here, but only if allmulti is not 453 * still enabled for the netdev 454 */ 455 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 456 err = ice_clear_promisc(vsi, 457 ICE_MCAST_PROMISC_BITS); 458 if (err) { 459 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 460 err, vsi->vsi_num); 461 } 462 } 463 } 464 } 465 goto exit; 466 467 out_promisc: 468 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 469 goto exit; 470 out: 471 /* if something went wrong then set the changed flag so we try again */ 472 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 473 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 474 exit: 475 clear_bit(ICE_CFG_BUSY, vsi->state); 476 return err; 477 } 478 479 /** 480 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 481 * @pf: board private structure 482 */ 483 static void ice_sync_fltr_subtask(struct ice_pf *pf) 484 { 485 int v; 486 487 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 488 return; 489 490 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 491 492 ice_for_each_vsi(pf, v) 493 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 494 ice_vsi_sync_fltr(pf->vsi[v])) { 495 /* come back and try again later */ 496 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 497 break; 498 } 499 } 500 501 /** 502 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 503 * @pf: the PF 504 * @locked: is the rtnl_lock already held 505 */ 506 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 507 { 508 int node; 509 int v; 510 511 ice_for_each_vsi(pf, v) 512 if (pf->vsi[v]) 513 ice_dis_vsi(pf->vsi[v], locked); 514 515 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 516 pf->pf_agg_node[node].num_vsis = 0; 517 518 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 519 pf->vf_agg_node[node].num_vsis = 0; 520 } 521 522 /** 523 * ice_clear_sw_switch_recipes - clear switch recipes 524 * @pf: board private structure 525 * 526 * Mark switch recipes as not created in sw structures. There are cases where 527 * rules (especially advanced rules) need to be restored, either re-read from 528 * hardware or added again. For example after the reset. 'recp_created' flag 529 * prevents from doing that and need to be cleared upfront. 530 */ 531 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 532 { 533 struct ice_sw_recipe *recp; 534 u8 i; 535 536 recp = pf->hw.switch_info->recp_list; 537 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 538 recp[i].recp_created = false; 539 } 540 541 /** 542 * ice_prepare_for_reset - prep for reset 543 * @pf: board private structure 544 * @reset_type: reset type requested 545 * 546 * Inform or close all dependent features in prep for reset. 547 */ 548 static void 549 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 550 { 551 struct ice_hw *hw = &pf->hw; 552 struct ice_vsi *vsi; 553 struct ice_vf *vf; 554 unsigned int bkt; 555 556 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 557 558 /* already prepared for reset */ 559 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 560 return; 561 562 ice_unplug_aux_dev(pf); 563 564 /* Notify VFs of impending reset */ 565 if (ice_check_sq_alive(hw, &hw->mailboxq)) 566 ice_vc_notify_reset(pf); 567 568 /* Disable VFs until reset is completed */ 569 mutex_lock(&pf->vfs.table_lock); 570 ice_for_each_vf(pf, bkt, vf) 571 ice_set_vf_state_dis(vf); 572 mutex_unlock(&pf->vfs.table_lock); 573 574 if (ice_is_eswitch_mode_switchdev(pf)) { 575 if (reset_type != ICE_RESET_PFR) 576 ice_clear_sw_switch_recipes(pf); 577 } 578 579 /* release ADQ specific HW and SW resources */ 580 vsi = ice_get_main_vsi(pf); 581 if (!vsi) 582 goto skip; 583 584 /* to be on safe side, reset orig_rss_size so that normal flow 585 * of deciding rss_size can take precedence 586 */ 587 vsi->orig_rss_size = 0; 588 589 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 590 if (reset_type == ICE_RESET_PFR) { 591 vsi->old_ena_tc = vsi->all_enatc; 592 vsi->old_numtc = vsi->all_numtc; 593 } else { 594 ice_remove_q_channels(vsi, true); 595 596 /* for other reset type, do not support channel rebuild 597 * hence reset needed info 598 */ 599 vsi->old_ena_tc = 0; 600 vsi->all_enatc = 0; 601 vsi->old_numtc = 0; 602 vsi->all_numtc = 0; 603 vsi->req_txq = 0; 604 vsi->req_rxq = 0; 605 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 606 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 607 } 608 } 609 skip: 610 611 /* clear SW filtering DB */ 612 ice_clear_hw_tbls(hw); 613 /* disable the VSIs and their queues that are not already DOWN */ 614 ice_pf_dis_all_vsi(pf, false); 615 616 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 617 ice_ptp_prepare_for_reset(pf, reset_type); 618 619 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 620 ice_gnss_exit(pf); 621 622 if (hw->port_info) 623 ice_sched_clear_port(hw->port_info); 624 625 ice_shutdown_all_ctrlq(hw, false); 626 627 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 628 } 629 630 /** 631 * ice_do_reset - Initiate one of many types of resets 632 * @pf: board private structure 633 * @reset_type: reset type requested before this function was called. 634 */ 635 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 636 { 637 struct device *dev = ice_pf_to_dev(pf); 638 struct ice_hw *hw = &pf->hw; 639 640 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 641 642 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 643 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 644 reset_type = ICE_RESET_CORER; 645 } 646 647 ice_prepare_for_reset(pf, reset_type); 648 649 /* trigger the reset */ 650 if (ice_reset(hw, reset_type)) { 651 dev_err(dev, "reset %d failed\n", reset_type); 652 set_bit(ICE_RESET_FAILED, pf->state); 653 clear_bit(ICE_RESET_OICR_RECV, pf->state); 654 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 655 clear_bit(ICE_PFR_REQ, pf->state); 656 clear_bit(ICE_CORER_REQ, pf->state); 657 clear_bit(ICE_GLOBR_REQ, pf->state); 658 wake_up(&pf->reset_wait_queue); 659 return; 660 } 661 662 /* PFR is a bit of a special case because it doesn't result in an OICR 663 * interrupt. So for PFR, rebuild after the reset and clear the reset- 664 * associated state bits. 665 */ 666 if (reset_type == ICE_RESET_PFR) { 667 pf->pfr_count++; 668 ice_rebuild(pf, reset_type); 669 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 670 clear_bit(ICE_PFR_REQ, pf->state); 671 wake_up(&pf->reset_wait_queue); 672 ice_reset_all_vfs(pf); 673 } 674 } 675 676 /** 677 * ice_reset_subtask - Set up for resetting the device and driver 678 * @pf: board private structure 679 */ 680 static void ice_reset_subtask(struct ice_pf *pf) 681 { 682 enum ice_reset_req reset_type = ICE_RESET_INVAL; 683 684 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 685 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 686 * of reset is pending and sets bits in pf->state indicating the reset 687 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 688 * prepare for pending reset if not already (for PF software-initiated 689 * global resets the software should already be prepared for it as 690 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 691 * by firmware or software on other PFs, that bit is not set so prepare 692 * for the reset now), poll for reset done, rebuild and return. 693 */ 694 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 695 /* Perform the largest reset requested */ 696 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 697 reset_type = ICE_RESET_CORER; 698 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 699 reset_type = ICE_RESET_GLOBR; 700 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 701 reset_type = ICE_RESET_EMPR; 702 /* return if no valid reset type requested */ 703 if (reset_type == ICE_RESET_INVAL) 704 return; 705 ice_prepare_for_reset(pf, reset_type); 706 707 /* make sure we are ready to rebuild */ 708 if (ice_check_reset(&pf->hw)) { 709 set_bit(ICE_RESET_FAILED, pf->state); 710 } else { 711 /* done with reset. start rebuild */ 712 pf->hw.reset_ongoing = false; 713 ice_rebuild(pf, reset_type); 714 /* clear bit to resume normal operations, but 715 * ICE_NEEDS_RESTART bit is set in case rebuild failed 716 */ 717 clear_bit(ICE_RESET_OICR_RECV, pf->state); 718 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 719 clear_bit(ICE_PFR_REQ, pf->state); 720 clear_bit(ICE_CORER_REQ, pf->state); 721 clear_bit(ICE_GLOBR_REQ, pf->state); 722 wake_up(&pf->reset_wait_queue); 723 ice_reset_all_vfs(pf); 724 } 725 726 return; 727 } 728 729 /* No pending resets to finish processing. Check for new resets */ 730 if (test_bit(ICE_PFR_REQ, pf->state)) { 731 reset_type = ICE_RESET_PFR; 732 if (pf->lag && pf->lag->bonded) { 733 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 734 reset_type = ICE_RESET_CORER; 735 } 736 } 737 if (test_bit(ICE_CORER_REQ, pf->state)) 738 reset_type = ICE_RESET_CORER; 739 if (test_bit(ICE_GLOBR_REQ, pf->state)) 740 reset_type = ICE_RESET_GLOBR; 741 /* If no valid reset type requested just return */ 742 if (reset_type == ICE_RESET_INVAL) 743 return; 744 745 /* reset if not already down or busy */ 746 if (!test_bit(ICE_DOWN, pf->state) && 747 !test_bit(ICE_CFG_BUSY, pf->state)) { 748 ice_do_reset(pf, reset_type); 749 } 750 } 751 752 /** 753 * ice_print_topo_conflict - print topology conflict message 754 * @vsi: the VSI whose topology status is being checked 755 */ 756 static void ice_print_topo_conflict(struct ice_vsi *vsi) 757 { 758 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 759 case ICE_AQ_LINK_TOPO_CONFLICT: 760 case ICE_AQ_LINK_MEDIA_CONFLICT: 761 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 762 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 763 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 764 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 765 break; 766 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 767 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 768 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 769 else 770 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 771 break; 772 default: 773 break; 774 } 775 } 776 777 /** 778 * ice_print_link_msg - print link up or down message 779 * @vsi: the VSI whose link status is being queried 780 * @isup: boolean for if the link is now up or down 781 */ 782 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 783 { 784 struct ice_aqc_get_phy_caps_data *caps; 785 const char *an_advertised; 786 const char *fec_req; 787 const char *speed; 788 const char *fec; 789 const char *fc; 790 const char *an; 791 int status; 792 793 if (!vsi) 794 return; 795 796 if (vsi->current_isup == isup) 797 return; 798 799 vsi->current_isup = isup; 800 801 if (!isup) { 802 netdev_info(vsi->netdev, "NIC Link is Down\n"); 803 return; 804 } 805 806 switch (vsi->port_info->phy.link_info.link_speed) { 807 case ICE_AQ_LINK_SPEED_200GB: 808 speed = "200 G"; 809 break; 810 case ICE_AQ_LINK_SPEED_100GB: 811 speed = "100 G"; 812 break; 813 case ICE_AQ_LINK_SPEED_50GB: 814 speed = "50 G"; 815 break; 816 case ICE_AQ_LINK_SPEED_40GB: 817 speed = "40 G"; 818 break; 819 case ICE_AQ_LINK_SPEED_25GB: 820 speed = "25 G"; 821 break; 822 case ICE_AQ_LINK_SPEED_20GB: 823 speed = "20 G"; 824 break; 825 case ICE_AQ_LINK_SPEED_10GB: 826 speed = "10 G"; 827 break; 828 case ICE_AQ_LINK_SPEED_5GB: 829 speed = "5 G"; 830 break; 831 case ICE_AQ_LINK_SPEED_2500MB: 832 speed = "2.5 G"; 833 break; 834 case ICE_AQ_LINK_SPEED_1000MB: 835 speed = "1 G"; 836 break; 837 case ICE_AQ_LINK_SPEED_100MB: 838 speed = "100 M"; 839 break; 840 default: 841 speed = "Unknown "; 842 break; 843 } 844 845 switch (vsi->port_info->fc.current_mode) { 846 case ICE_FC_FULL: 847 fc = "Rx/Tx"; 848 break; 849 case ICE_FC_TX_PAUSE: 850 fc = "Tx"; 851 break; 852 case ICE_FC_RX_PAUSE: 853 fc = "Rx"; 854 break; 855 case ICE_FC_NONE: 856 fc = "None"; 857 break; 858 default: 859 fc = "Unknown"; 860 break; 861 } 862 863 /* Get FEC mode based on negotiated link info */ 864 switch (vsi->port_info->phy.link_info.fec_info) { 865 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 866 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 867 fec = "RS-FEC"; 868 break; 869 case ICE_AQ_LINK_25G_KR_FEC_EN: 870 fec = "FC-FEC/BASE-R"; 871 break; 872 default: 873 fec = "NONE"; 874 break; 875 } 876 877 /* check if autoneg completed, might be false due to not supported */ 878 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 879 an = "True"; 880 else 881 an = "False"; 882 883 /* Get FEC mode requested based on PHY caps last SW configuration */ 884 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 885 if (!caps) { 886 fec_req = "Unknown"; 887 an_advertised = "Unknown"; 888 goto done; 889 } 890 891 status = ice_aq_get_phy_caps(vsi->port_info, false, 892 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 893 if (status) 894 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 895 896 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 897 898 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 899 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 900 fec_req = "RS-FEC"; 901 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 902 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 903 fec_req = "FC-FEC/BASE-R"; 904 else 905 fec_req = "NONE"; 906 907 kfree(caps); 908 909 done: 910 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 911 speed, fec_req, fec, an_advertised, an, fc); 912 ice_print_topo_conflict(vsi); 913 } 914 915 /** 916 * ice_vsi_link_event - update the VSI's netdev 917 * @vsi: the VSI on which the link event occurred 918 * @link_up: whether or not the VSI needs to be set up or down 919 */ 920 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 921 { 922 if (!vsi) 923 return; 924 925 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 926 return; 927 928 if (vsi->type == ICE_VSI_PF) { 929 if (link_up == netif_carrier_ok(vsi->netdev)) 930 return; 931 932 if (link_up) { 933 netif_carrier_on(vsi->netdev); 934 netif_tx_wake_all_queues(vsi->netdev); 935 } else { 936 netif_carrier_off(vsi->netdev); 937 netif_tx_stop_all_queues(vsi->netdev); 938 } 939 } 940 } 941 942 /** 943 * ice_set_dflt_mib - send a default config MIB to the FW 944 * @pf: private PF struct 945 * 946 * This function sends a default configuration MIB to the FW. 947 * 948 * If this function errors out at any point, the driver is still able to 949 * function. The main impact is that LFC may not operate as expected. 950 * Therefore an error state in this function should be treated with a DBG 951 * message and continue on with driver rebuild/reenable. 952 */ 953 static void ice_set_dflt_mib(struct ice_pf *pf) 954 { 955 struct device *dev = ice_pf_to_dev(pf); 956 u8 mib_type, *buf, *lldpmib = NULL; 957 u16 len, typelen, offset = 0; 958 struct ice_lldp_org_tlv *tlv; 959 struct ice_hw *hw = &pf->hw; 960 u32 ouisubtype; 961 962 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 963 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 964 if (!lldpmib) { 965 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 966 __func__); 967 return; 968 } 969 970 /* Add ETS CFG TLV */ 971 tlv = (struct ice_lldp_org_tlv *)lldpmib; 972 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 973 ICE_IEEE_ETS_TLV_LEN); 974 tlv->typelen = htons(typelen); 975 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 976 ICE_IEEE_SUBTYPE_ETS_CFG); 977 tlv->ouisubtype = htonl(ouisubtype); 978 979 buf = tlv->tlvinfo; 980 buf[0] = 0; 981 982 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 983 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 984 * Octets 13 - 20 are TSA values - leave as zeros 985 */ 986 buf[5] = 0x64; 987 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 988 offset += len + 2; 989 tlv = (struct ice_lldp_org_tlv *) 990 ((char *)tlv + sizeof(tlv->typelen) + len); 991 992 /* Add ETS REC TLV */ 993 buf = tlv->tlvinfo; 994 tlv->typelen = htons(typelen); 995 996 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 997 ICE_IEEE_SUBTYPE_ETS_REC); 998 tlv->ouisubtype = htonl(ouisubtype); 999 1000 /* First octet of buf is reserved 1001 * Octets 1 - 4 map UP to TC - all UPs map to zero 1002 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1003 * Octets 13 - 20 are TSA value - leave as zeros 1004 */ 1005 buf[5] = 0x64; 1006 offset += len + 2; 1007 tlv = (struct ice_lldp_org_tlv *) 1008 ((char *)tlv + sizeof(tlv->typelen) + len); 1009 1010 /* Add PFC CFG TLV */ 1011 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1012 ICE_IEEE_PFC_TLV_LEN); 1013 tlv->typelen = htons(typelen); 1014 1015 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1016 ICE_IEEE_SUBTYPE_PFC_CFG); 1017 tlv->ouisubtype = htonl(ouisubtype); 1018 1019 /* Octet 1 left as all zeros - PFC disabled */ 1020 buf[0] = 0x08; 1021 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1022 offset += len + 2; 1023 1024 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1025 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1026 1027 kfree(lldpmib); 1028 } 1029 1030 /** 1031 * ice_check_phy_fw_load - check if PHY FW load failed 1032 * @pf: pointer to PF struct 1033 * @link_cfg_err: bitmap from the link info structure 1034 * 1035 * check if external PHY FW load failed and print an error message if it did 1036 */ 1037 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1038 { 1039 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1040 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1041 return; 1042 } 1043 1044 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1045 return; 1046 1047 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1048 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1049 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1050 } 1051 } 1052 1053 /** 1054 * ice_check_module_power 1055 * @pf: pointer to PF struct 1056 * @link_cfg_err: bitmap from the link info structure 1057 * 1058 * check module power level returned by a previous call to aq_get_link_info 1059 * and print error messages if module power level is not supported 1060 */ 1061 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1062 { 1063 /* if module power level is supported, clear the flag */ 1064 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1065 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1066 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1067 return; 1068 } 1069 1070 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1071 * above block didn't clear this bit, there's nothing to do 1072 */ 1073 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1074 return; 1075 1076 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1077 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1078 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1079 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1080 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1081 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1082 } 1083 } 1084 1085 /** 1086 * ice_check_link_cfg_err - check if link configuration failed 1087 * @pf: pointer to the PF struct 1088 * @link_cfg_err: bitmap from the link info structure 1089 * 1090 * print if any link configuration failure happens due to the value in the 1091 * link_cfg_err parameter in the link info structure 1092 */ 1093 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1094 { 1095 ice_check_module_power(pf, link_cfg_err); 1096 ice_check_phy_fw_load(pf, link_cfg_err); 1097 } 1098 1099 /** 1100 * ice_link_event - process the link event 1101 * @pf: PF that the link event is associated with 1102 * @pi: port_info for the port that the link event is associated with 1103 * @link_up: true if the physical link is up and false if it is down 1104 * @link_speed: current link speed received from the link event 1105 * 1106 * Returns 0 on success and negative on failure 1107 */ 1108 static int 1109 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1110 u16 link_speed) 1111 { 1112 struct device *dev = ice_pf_to_dev(pf); 1113 struct ice_phy_info *phy_info; 1114 struct ice_vsi *vsi; 1115 u16 old_link_speed; 1116 bool old_link; 1117 int status; 1118 1119 phy_info = &pi->phy; 1120 phy_info->link_info_old = phy_info->link_info; 1121 1122 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1123 old_link_speed = phy_info->link_info_old.link_speed; 1124 1125 /* update the link info structures and re-enable link events, 1126 * don't bail on failure due to other book keeping needed 1127 */ 1128 status = ice_update_link_info(pi); 1129 if (status) 1130 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1131 pi->lport, status, 1132 ice_aq_str(pi->hw->adminq.sq_last_status)); 1133 1134 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1135 1136 /* Check if the link state is up after updating link info, and treat 1137 * this event as an UP event since the link is actually UP now. 1138 */ 1139 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1140 link_up = true; 1141 1142 vsi = ice_get_main_vsi(pf); 1143 if (!vsi || !vsi->port_info) 1144 return -EINVAL; 1145 1146 /* turn off PHY if media was removed */ 1147 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1148 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1149 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1150 ice_set_link(vsi, false); 1151 } 1152 1153 /* if the old link up/down and speed is the same as the new */ 1154 if (link_up == old_link && link_speed == old_link_speed) 1155 return 0; 1156 1157 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1158 1159 if (ice_is_dcb_active(pf)) { 1160 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1161 ice_dcb_rebuild(pf); 1162 } else { 1163 if (link_up) 1164 ice_set_dflt_mib(pf); 1165 } 1166 ice_vsi_link_event(vsi, link_up); 1167 ice_print_link_msg(vsi, link_up); 1168 1169 ice_vc_notify_link_state(pf); 1170 1171 return 0; 1172 } 1173 1174 /** 1175 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1176 * @pf: board private structure 1177 */ 1178 static void ice_watchdog_subtask(struct ice_pf *pf) 1179 { 1180 int i; 1181 1182 /* if interface is down do nothing */ 1183 if (test_bit(ICE_DOWN, pf->state) || 1184 test_bit(ICE_CFG_BUSY, pf->state)) 1185 return; 1186 1187 /* make sure we don't do these things too often */ 1188 if (time_before(jiffies, 1189 pf->serv_tmr_prev + pf->serv_tmr_period)) 1190 return; 1191 1192 pf->serv_tmr_prev = jiffies; 1193 1194 /* Update the stats for active netdevs so the network stack 1195 * can look at updated numbers whenever it cares to 1196 */ 1197 ice_update_pf_stats(pf); 1198 ice_for_each_vsi(pf, i) 1199 if (pf->vsi[i] && pf->vsi[i]->netdev) 1200 ice_update_vsi_stats(pf->vsi[i]); 1201 } 1202 1203 /** 1204 * ice_init_link_events - enable/initialize link events 1205 * @pi: pointer to the port_info instance 1206 * 1207 * Returns -EIO on failure, 0 on success 1208 */ 1209 static int ice_init_link_events(struct ice_port_info *pi) 1210 { 1211 u16 mask; 1212 1213 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1214 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1215 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1216 1217 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1218 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1219 pi->lport); 1220 return -EIO; 1221 } 1222 1223 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1224 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1225 pi->lport); 1226 return -EIO; 1227 } 1228 1229 return 0; 1230 } 1231 1232 /** 1233 * ice_handle_link_event - handle link event via ARQ 1234 * @pf: PF that the link event is associated with 1235 * @event: event structure containing link status info 1236 */ 1237 static int 1238 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1239 { 1240 struct ice_aqc_get_link_status_data *link_data; 1241 struct ice_port_info *port_info; 1242 int status; 1243 1244 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1245 port_info = pf->hw.port_info; 1246 if (!port_info) 1247 return -EINVAL; 1248 1249 status = ice_link_event(pf, port_info, 1250 !!(link_data->link_info & ICE_AQ_LINK_UP), 1251 le16_to_cpu(link_data->link_speed)); 1252 if (status) 1253 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1254 status); 1255 1256 return status; 1257 } 1258 1259 /** 1260 * ice_get_fwlog_data - copy the FW log data from ARQ event 1261 * @pf: PF that the FW log event is associated with 1262 * @event: event structure containing FW log data 1263 */ 1264 static void 1265 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1266 { 1267 struct ice_fwlog_data *fwlog; 1268 struct ice_hw *hw = &pf->hw; 1269 1270 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1271 1272 memset(fwlog->data, 0, PAGE_SIZE); 1273 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1274 1275 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1276 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1277 1278 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1279 /* the rings are full so bump the head to create room */ 1280 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1281 hw->fwlog_ring.size); 1282 } 1283 } 1284 1285 /** 1286 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1287 * @pf: pointer to the PF private structure 1288 * @task: intermediate helper storage and identifier for waiting 1289 * @opcode: the opcode to wait for 1290 * 1291 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1292 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1293 * 1294 * Calls are separated to allow caller registering for event before sending 1295 * the command, which mitigates a race between registering and FW responding. 1296 * 1297 * To obtain only the descriptor contents, pass an task->event with null 1298 * msg_buf. If the complete data buffer is desired, allocate the 1299 * task->event.msg_buf with enough space ahead of time. 1300 */ 1301 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1302 u16 opcode) 1303 { 1304 INIT_HLIST_NODE(&task->entry); 1305 task->opcode = opcode; 1306 task->state = ICE_AQ_TASK_WAITING; 1307 1308 spin_lock_bh(&pf->aq_wait_lock); 1309 hlist_add_head(&task->entry, &pf->aq_wait_list); 1310 spin_unlock_bh(&pf->aq_wait_lock); 1311 } 1312 1313 /** 1314 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1315 * @pf: pointer to the PF private structure 1316 * @task: ptr prepared by ice_aq_prep_for_event() 1317 * @timeout: how long to wait, in jiffies 1318 * 1319 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1320 * current thread will be put to sleep until the specified event occurs or 1321 * until the given timeout is reached. 1322 * 1323 * Returns: zero on success, or a negative error code on failure. 1324 */ 1325 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1326 unsigned long timeout) 1327 { 1328 enum ice_aq_task_state *state = &task->state; 1329 struct device *dev = ice_pf_to_dev(pf); 1330 unsigned long start = jiffies; 1331 long ret; 1332 int err; 1333 1334 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1335 *state != ICE_AQ_TASK_WAITING, 1336 timeout); 1337 switch (*state) { 1338 case ICE_AQ_TASK_NOT_PREPARED: 1339 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1340 err = -EINVAL; 1341 break; 1342 case ICE_AQ_TASK_WAITING: 1343 err = ret < 0 ? ret : -ETIMEDOUT; 1344 break; 1345 case ICE_AQ_TASK_CANCELED: 1346 err = ret < 0 ? ret : -ECANCELED; 1347 break; 1348 case ICE_AQ_TASK_COMPLETE: 1349 err = ret < 0 ? ret : 0; 1350 break; 1351 default: 1352 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1353 err = -EINVAL; 1354 break; 1355 } 1356 1357 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1358 jiffies_to_msecs(jiffies - start), 1359 jiffies_to_msecs(timeout), 1360 task->opcode); 1361 1362 spin_lock_bh(&pf->aq_wait_lock); 1363 hlist_del(&task->entry); 1364 spin_unlock_bh(&pf->aq_wait_lock); 1365 1366 return err; 1367 } 1368 1369 /** 1370 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1371 * @pf: pointer to the PF private structure 1372 * @opcode: the opcode of the event 1373 * @event: the event to check 1374 * 1375 * Loops over the current list of pending threads waiting for an AdminQ event. 1376 * For each matching task, copy the contents of the event into the task 1377 * structure and wake up the thread. 1378 * 1379 * If multiple threads wait for the same opcode, they will all be woken up. 1380 * 1381 * Note that event->msg_buf will only be duplicated if the event has a buffer 1382 * with enough space already allocated. Otherwise, only the descriptor and 1383 * message length will be copied. 1384 * 1385 * Returns: true if an event was found, false otherwise 1386 */ 1387 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1388 struct ice_rq_event_info *event) 1389 { 1390 struct ice_rq_event_info *task_ev; 1391 struct ice_aq_task *task; 1392 bool found = false; 1393 1394 spin_lock_bh(&pf->aq_wait_lock); 1395 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1396 if (task->state != ICE_AQ_TASK_WAITING) 1397 continue; 1398 if (task->opcode != opcode) 1399 continue; 1400 1401 task_ev = &task->event; 1402 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1403 task_ev->msg_len = event->msg_len; 1404 1405 /* Only copy the data buffer if a destination was set */ 1406 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1407 memcpy(task_ev->msg_buf, event->msg_buf, 1408 event->buf_len); 1409 task_ev->buf_len = event->buf_len; 1410 } 1411 1412 task->state = ICE_AQ_TASK_COMPLETE; 1413 found = true; 1414 } 1415 spin_unlock_bh(&pf->aq_wait_lock); 1416 1417 if (found) 1418 wake_up(&pf->aq_wait_queue); 1419 } 1420 1421 /** 1422 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1423 * @pf: the PF private structure 1424 * 1425 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1426 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1427 */ 1428 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1429 { 1430 struct ice_aq_task *task; 1431 1432 spin_lock_bh(&pf->aq_wait_lock); 1433 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1434 task->state = ICE_AQ_TASK_CANCELED; 1435 spin_unlock_bh(&pf->aq_wait_lock); 1436 1437 wake_up(&pf->aq_wait_queue); 1438 } 1439 1440 #define ICE_MBX_OVERFLOW_WATERMARK 64 1441 1442 /** 1443 * __ice_clean_ctrlq - helper function to clean controlq rings 1444 * @pf: ptr to struct ice_pf 1445 * @q_type: specific Control queue type 1446 */ 1447 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1448 { 1449 struct device *dev = ice_pf_to_dev(pf); 1450 struct ice_rq_event_info event; 1451 struct ice_hw *hw = &pf->hw; 1452 struct ice_ctl_q_info *cq; 1453 u16 pending, i = 0; 1454 const char *qtype; 1455 u32 oldval, val; 1456 1457 /* Do not clean control queue if/when PF reset fails */ 1458 if (test_bit(ICE_RESET_FAILED, pf->state)) 1459 return 0; 1460 1461 switch (q_type) { 1462 case ICE_CTL_Q_ADMIN: 1463 cq = &hw->adminq; 1464 qtype = "Admin"; 1465 break; 1466 case ICE_CTL_Q_SB: 1467 cq = &hw->sbq; 1468 qtype = "Sideband"; 1469 break; 1470 case ICE_CTL_Q_MAILBOX: 1471 cq = &hw->mailboxq; 1472 qtype = "Mailbox"; 1473 /* we are going to try to detect a malicious VF, so set the 1474 * state to begin detection 1475 */ 1476 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1477 break; 1478 default: 1479 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1480 return 0; 1481 } 1482 1483 /* check for error indications - PF_xx_AxQLEN register layout for 1484 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1485 */ 1486 val = rd32(hw, cq->rq.len); 1487 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1488 PF_FW_ARQLEN_ARQCRIT_M)) { 1489 oldval = val; 1490 if (val & PF_FW_ARQLEN_ARQVFE_M) 1491 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1492 qtype); 1493 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1494 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1495 qtype); 1496 } 1497 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1498 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1499 qtype); 1500 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1501 PF_FW_ARQLEN_ARQCRIT_M); 1502 if (oldval != val) 1503 wr32(hw, cq->rq.len, val); 1504 } 1505 1506 val = rd32(hw, cq->sq.len); 1507 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1508 PF_FW_ATQLEN_ATQCRIT_M)) { 1509 oldval = val; 1510 if (val & PF_FW_ATQLEN_ATQVFE_M) 1511 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1512 qtype); 1513 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1514 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1515 qtype); 1516 } 1517 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1518 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1519 qtype); 1520 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1521 PF_FW_ATQLEN_ATQCRIT_M); 1522 if (oldval != val) 1523 wr32(hw, cq->sq.len, val); 1524 } 1525 1526 event.buf_len = cq->rq_buf_size; 1527 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1528 if (!event.msg_buf) 1529 return 0; 1530 1531 do { 1532 struct ice_mbx_data data = {}; 1533 u16 opcode; 1534 int ret; 1535 1536 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1537 if (ret == -EALREADY) 1538 break; 1539 if (ret) { 1540 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1541 ret); 1542 break; 1543 } 1544 1545 opcode = le16_to_cpu(event.desc.opcode); 1546 1547 /* Notify any thread that might be waiting for this event */ 1548 ice_aq_check_events(pf, opcode, &event); 1549 1550 switch (opcode) { 1551 case ice_aqc_opc_get_link_status: 1552 if (ice_handle_link_event(pf, &event)) 1553 dev_err(dev, "Could not handle link event\n"); 1554 break; 1555 case ice_aqc_opc_event_lan_overflow: 1556 ice_vf_lan_overflow_event(pf, &event); 1557 break; 1558 case ice_mbx_opc_send_msg_to_pf: 1559 data.num_msg_proc = i; 1560 data.num_pending_arq = pending; 1561 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1562 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1563 1564 ice_vc_process_vf_msg(pf, &event, &data); 1565 break; 1566 case ice_aqc_opc_fw_logs_event: 1567 ice_get_fwlog_data(pf, &event); 1568 break; 1569 case ice_aqc_opc_lldp_set_mib_change: 1570 ice_dcb_process_lldp_set_mib_change(pf, &event); 1571 break; 1572 default: 1573 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1574 qtype, opcode); 1575 break; 1576 } 1577 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1578 1579 kfree(event.msg_buf); 1580 1581 return pending && (i == ICE_DFLT_IRQ_WORK); 1582 } 1583 1584 /** 1585 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1586 * @hw: pointer to hardware info 1587 * @cq: control queue information 1588 * 1589 * returns true if there are pending messages in a queue, false if there aren't 1590 */ 1591 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1592 { 1593 u16 ntu; 1594 1595 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1596 return cq->rq.next_to_clean != ntu; 1597 } 1598 1599 /** 1600 * ice_clean_adminq_subtask - clean the AdminQ rings 1601 * @pf: board private structure 1602 */ 1603 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1604 { 1605 struct ice_hw *hw = &pf->hw; 1606 1607 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1608 return; 1609 1610 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1611 return; 1612 1613 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1614 1615 /* There might be a situation where new messages arrive to a control 1616 * queue between processing the last message and clearing the 1617 * EVENT_PENDING bit. So before exiting, check queue head again (using 1618 * ice_ctrlq_pending) and process new messages if any. 1619 */ 1620 if (ice_ctrlq_pending(hw, &hw->adminq)) 1621 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1622 1623 ice_flush(hw); 1624 } 1625 1626 /** 1627 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1628 * @pf: board private structure 1629 */ 1630 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1631 { 1632 struct ice_hw *hw = &pf->hw; 1633 1634 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1635 return; 1636 1637 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1638 return; 1639 1640 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1641 1642 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1643 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1644 1645 ice_flush(hw); 1646 } 1647 1648 /** 1649 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1650 * @pf: board private structure 1651 */ 1652 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1653 { 1654 struct ice_hw *hw = &pf->hw; 1655 1656 /* if mac_type is not generic, sideband is not supported 1657 * and there's nothing to do here 1658 */ 1659 if (!ice_is_generic_mac(hw)) { 1660 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1661 return; 1662 } 1663 1664 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1665 return; 1666 1667 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1668 return; 1669 1670 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1671 1672 if (ice_ctrlq_pending(hw, &hw->sbq)) 1673 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1674 1675 ice_flush(hw); 1676 } 1677 1678 /** 1679 * ice_service_task_schedule - schedule the service task to wake up 1680 * @pf: board private structure 1681 * 1682 * If not already scheduled, this puts the task into the work queue. 1683 */ 1684 void ice_service_task_schedule(struct ice_pf *pf) 1685 { 1686 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1687 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1688 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1689 queue_work(ice_wq, &pf->serv_task); 1690 } 1691 1692 /** 1693 * ice_service_task_complete - finish up the service task 1694 * @pf: board private structure 1695 */ 1696 static void ice_service_task_complete(struct ice_pf *pf) 1697 { 1698 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1699 1700 /* force memory (pf->state) to sync before next service task */ 1701 smp_mb__before_atomic(); 1702 clear_bit(ICE_SERVICE_SCHED, pf->state); 1703 } 1704 1705 /** 1706 * ice_service_task_stop - stop service task and cancel works 1707 * @pf: board private structure 1708 * 1709 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1710 * 1 otherwise. 1711 */ 1712 static int ice_service_task_stop(struct ice_pf *pf) 1713 { 1714 int ret; 1715 1716 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1717 1718 if (pf->serv_tmr.function) 1719 del_timer_sync(&pf->serv_tmr); 1720 if (pf->serv_task.func) 1721 cancel_work_sync(&pf->serv_task); 1722 1723 clear_bit(ICE_SERVICE_SCHED, pf->state); 1724 return ret; 1725 } 1726 1727 /** 1728 * ice_service_task_restart - restart service task and schedule works 1729 * @pf: board private structure 1730 * 1731 * This function is needed for suspend and resume works (e.g WoL scenario) 1732 */ 1733 static void ice_service_task_restart(struct ice_pf *pf) 1734 { 1735 clear_bit(ICE_SERVICE_DIS, pf->state); 1736 ice_service_task_schedule(pf); 1737 } 1738 1739 /** 1740 * ice_service_timer - timer callback to schedule service task 1741 * @t: pointer to timer_list 1742 */ 1743 static void ice_service_timer(struct timer_list *t) 1744 { 1745 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1746 1747 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1748 ice_service_task_schedule(pf); 1749 } 1750 1751 /** 1752 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1753 * @pf: pointer to the PF structure 1754 * @vf: pointer to the VF structure 1755 * @reset_vf_tx: whether Tx MDD has occurred 1756 * @reset_vf_rx: whether Rx MDD has occurred 1757 * 1758 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1759 * automatically reset the VF by enabling the private ethtool flag 1760 * mdd-auto-reset-vf. 1761 */ 1762 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1763 bool reset_vf_tx, bool reset_vf_rx) 1764 { 1765 struct device *dev = ice_pf_to_dev(pf); 1766 1767 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1768 return; 1769 1770 /* VF MDD event counters will be cleared by reset, so print the event 1771 * prior to reset. 1772 */ 1773 if (reset_vf_tx) 1774 ice_print_vf_tx_mdd_event(vf); 1775 1776 if (reset_vf_rx) 1777 ice_print_vf_rx_mdd_event(vf); 1778 1779 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1780 pf->hw.pf_id, vf->vf_id); 1781 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1782 } 1783 1784 /** 1785 * ice_handle_mdd_event - handle malicious driver detect event 1786 * @pf: pointer to the PF structure 1787 * 1788 * Called from service task. OICR interrupt handler indicates MDD event. 1789 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1790 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1791 * disable the queue, the PF can be configured to reset the VF using ethtool 1792 * private flag mdd-auto-reset-vf. 1793 */ 1794 static void ice_handle_mdd_event(struct ice_pf *pf) 1795 { 1796 struct device *dev = ice_pf_to_dev(pf); 1797 struct ice_hw *hw = &pf->hw; 1798 struct ice_vf *vf; 1799 unsigned int bkt; 1800 u32 reg; 1801 1802 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1803 /* Since the VF MDD event logging is rate limited, check if 1804 * there are pending MDD events. 1805 */ 1806 ice_print_vfs_mdd_events(pf); 1807 return; 1808 } 1809 1810 /* find what triggered an MDD event */ 1811 reg = rd32(hw, GL_MDET_TX_PQM); 1812 if (reg & GL_MDET_TX_PQM_VALID_M) { 1813 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1814 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1815 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1816 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1817 1818 if (netif_msg_tx_err(pf)) 1819 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1820 event, queue, pf_num, vf_num); 1821 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1822 } 1823 1824 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1825 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1826 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1827 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1828 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1829 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1830 1831 if (netif_msg_tx_err(pf)) 1832 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1833 event, queue, pf_num, vf_num); 1834 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1835 } 1836 1837 reg = rd32(hw, GL_MDET_RX); 1838 if (reg & GL_MDET_RX_VALID_M) { 1839 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1840 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1841 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1842 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1843 1844 if (netif_msg_rx_err(pf)) 1845 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1846 event, queue, pf_num, vf_num); 1847 wr32(hw, GL_MDET_RX, 0xffffffff); 1848 } 1849 1850 /* check to see if this PF caused an MDD event */ 1851 reg = rd32(hw, PF_MDET_TX_PQM); 1852 if (reg & PF_MDET_TX_PQM_VALID_M) { 1853 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1854 if (netif_msg_tx_err(pf)) 1855 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1856 } 1857 1858 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1859 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1860 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1861 if (netif_msg_tx_err(pf)) 1862 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1863 } 1864 1865 reg = rd32(hw, PF_MDET_RX); 1866 if (reg & PF_MDET_RX_VALID_M) { 1867 wr32(hw, PF_MDET_RX, 0xFFFF); 1868 if (netif_msg_rx_err(pf)) 1869 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1870 } 1871 1872 /* Check to see if one of the VFs caused an MDD event, and then 1873 * increment counters and set print pending 1874 */ 1875 mutex_lock(&pf->vfs.table_lock); 1876 ice_for_each_vf(pf, bkt, vf) { 1877 bool reset_vf_tx = false, reset_vf_rx = false; 1878 1879 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1880 if (reg & VP_MDET_TX_PQM_VALID_M) { 1881 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1882 vf->mdd_tx_events.count++; 1883 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1884 if (netif_msg_tx_err(pf)) 1885 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1886 vf->vf_id); 1887 1888 reset_vf_tx = true; 1889 } 1890 1891 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1892 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1893 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1894 vf->mdd_tx_events.count++; 1895 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1896 if (netif_msg_tx_err(pf)) 1897 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1898 vf->vf_id); 1899 1900 reset_vf_tx = true; 1901 } 1902 1903 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1904 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1905 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1906 vf->mdd_tx_events.count++; 1907 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1908 if (netif_msg_tx_err(pf)) 1909 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1910 vf->vf_id); 1911 1912 reset_vf_tx = true; 1913 } 1914 1915 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1916 if (reg & VP_MDET_RX_VALID_M) { 1917 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1918 vf->mdd_rx_events.count++; 1919 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1920 if (netif_msg_rx_err(pf)) 1921 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1922 vf->vf_id); 1923 1924 reset_vf_rx = true; 1925 } 1926 1927 if (reset_vf_tx || reset_vf_rx) 1928 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1929 reset_vf_rx); 1930 } 1931 mutex_unlock(&pf->vfs.table_lock); 1932 1933 ice_print_vfs_mdd_events(pf); 1934 } 1935 1936 /** 1937 * ice_force_phys_link_state - Force the physical link state 1938 * @vsi: VSI to force the physical link state to up/down 1939 * @link_up: true/false indicates to set the physical link to up/down 1940 * 1941 * Force the physical link state by getting the current PHY capabilities from 1942 * hardware and setting the PHY config based on the determined capabilities. If 1943 * link changes a link event will be triggered because both the Enable Automatic 1944 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1945 * 1946 * Returns 0 on success, negative on failure 1947 */ 1948 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1949 { 1950 struct ice_aqc_get_phy_caps_data *pcaps; 1951 struct ice_aqc_set_phy_cfg_data *cfg; 1952 struct ice_port_info *pi; 1953 struct device *dev; 1954 int retcode; 1955 1956 if (!vsi || !vsi->port_info || !vsi->back) 1957 return -EINVAL; 1958 if (vsi->type != ICE_VSI_PF) 1959 return 0; 1960 1961 dev = ice_pf_to_dev(vsi->back); 1962 1963 pi = vsi->port_info; 1964 1965 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1966 if (!pcaps) 1967 return -ENOMEM; 1968 1969 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1970 NULL); 1971 if (retcode) { 1972 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1973 vsi->vsi_num, retcode); 1974 retcode = -EIO; 1975 goto out; 1976 } 1977 1978 /* No change in link */ 1979 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1980 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1981 goto out; 1982 1983 /* Use the current user PHY configuration. The current user PHY 1984 * configuration is initialized during probe from PHY capabilities 1985 * software mode, and updated on set PHY configuration. 1986 */ 1987 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1988 if (!cfg) { 1989 retcode = -ENOMEM; 1990 goto out; 1991 } 1992 1993 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1994 if (link_up) 1995 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1996 else 1997 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1998 1999 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2000 if (retcode) { 2001 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2002 vsi->vsi_num, retcode); 2003 retcode = -EIO; 2004 } 2005 2006 kfree(cfg); 2007 out: 2008 kfree(pcaps); 2009 return retcode; 2010 } 2011 2012 /** 2013 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2014 * @pi: port info structure 2015 * 2016 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2017 */ 2018 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2019 { 2020 struct ice_aqc_get_phy_caps_data *pcaps; 2021 struct ice_pf *pf = pi->hw->back; 2022 int err; 2023 2024 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2025 if (!pcaps) 2026 return -ENOMEM; 2027 2028 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2029 pcaps, NULL); 2030 2031 if (err) { 2032 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2033 goto out; 2034 } 2035 2036 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2037 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2038 2039 out: 2040 kfree(pcaps); 2041 return err; 2042 } 2043 2044 /** 2045 * ice_init_link_dflt_override - Initialize link default override 2046 * @pi: port info structure 2047 * 2048 * Initialize link default override and PHY total port shutdown during probe 2049 */ 2050 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2051 { 2052 struct ice_link_default_override_tlv *ldo; 2053 struct ice_pf *pf = pi->hw->back; 2054 2055 ldo = &pf->link_dflt_override; 2056 if (ice_get_link_default_override(ldo, pi)) 2057 return; 2058 2059 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2060 return; 2061 2062 /* Enable Total Port Shutdown (override/replace link-down-on-close 2063 * ethtool private flag) for ports with Port Disable bit set. 2064 */ 2065 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2066 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2067 } 2068 2069 /** 2070 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2071 * @pi: port info structure 2072 * 2073 * If default override is enabled, initialize the user PHY cfg speed and FEC 2074 * settings using the default override mask from the NVM. 2075 * 2076 * The PHY should only be configured with the default override settings the 2077 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2078 * is used to indicate that the user PHY cfg default override is initialized 2079 * and the PHY has not been configured with the default override settings. The 2080 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2081 * configured. 2082 * 2083 * This function should be called only if the FW doesn't support default 2084 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2085 */ 2086 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2087 { 2088 struct ice_link_default_override_tlv *ldo; 2089 struct ice_aqc_set_phy_cfg_data *cfg; 2090 struct ice_phy_info *phy = &pi->phy; 2091 struct ice_pf *pf = pi->hw->back; 2092 2093 ldo = &pf->link_dflt_override; 2094 2095 /* If link default override is enabled, use to mask NVM PHY capabilities 2096 * for speed and FEC default configuration. 2097 */ 2098 cfg = &phy->curr_user_phy_cfg; 2099 2100 if (ldo->phy_type_low || ldo->phy_type_high) { 2101 cfg->phy_type_low = pf->nvm_phy_type_lo & 2102 cpu_to_le64(ldo->phy_type_low); 2103 cfg->phy_type_high = pf->nvm_phy_type_hi & 2104 cpu_to_le64(ldo->phy_type_high); 2105 } 2106 cfg->link_fec_opt = ldo->fec_options; 2107 phy->curr_user_fec_req = ICE_FEC_AUTO; 2108 2109 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2110 } 2111 2112 /** 2113 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2114 * @pi: port info structure 2115 * 2116 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2117 * mode to default. The PHY defaults are from get PHY capabilities topology 2118 * with media so call when media is first available. An error is returned if 2119 * called when media is not available. The PHY initialization completed state is 2120 * set here. 2121 * 2122 * These configurations are used when setting PHY 2123 * configuration. The user PHY configuration is updated on set PHY 2124 * configuration. Returns 0 on success, negative on failure 2125 */ 2126 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2127 { 2128 struct ice_aqc_get_phy_caps_data *pcaps; 2129 struct ice_phy_info *phy = &pi->phy; 2130 struct ice_pf *pf = pi->hw->back; 2131 int err; 2132 2133 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2134 return -EIO; 2135 2136 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2137 if (!pcaps) 2138 return -ENOMEM; 2139 2140 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2141 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2142 pcaps, NULL); 2143 else 2144 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2145 pcaps, NULL); 2146 if (err) { 2147 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2148 goto err_out; 2149 } 2150 2151 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2152 2153 /* check if lenient mode is supported and enabled */ 2154 if (ice_fw_supports_link_override(pi->hw) && 2155 !(pcaps->module_compliance_enforcement & 2156 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2157 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2158 2159 /* if the FW supports default PHY configuration mode, then the driver 2160 * does not have to apply link override settings. If not, 2161 * initialize user PHY configuration with link override values 2162 */ 2163 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2164 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2165 ice_init_phy_cfg_dflt_override(pi); 2166 goto out; 2167 } 2168 } 2169 2170 /* if link default override is not enabled, set user flow control and 2171 * FEC settings based on what get_phy_caps returned 2172 */ 2173 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2174 pcaps->link_fec_options); 2175 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2176 2177 out: 2178 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2179 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2180 err_out: 2181 kfree(pcaps); 2182 return err; 2183 } 2184 2185 /** 2186 * ice_configure_phy - configure PHY 2187 * @vsi: VSI of PHY 2188 * 2189 * Set the PHY configuration. If the current PHY configuration is the same as 2190 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2191 * configure the based get PHY capabilities for topology with media. 2192 */ 2193 static int ice_configure_phy(struct ice_vsi *vsi) 2194 { 2195 struct device *dev = ice_pf_to_dev(vsi->back); 2196 struct ice_port_info *pi = vsi->port_info; 2197 struct ice_aqc_get_phy_caps_data *pcaps; 2198 struct ice_aqc_set_phy_cfg_data *cfg; 2199 struct ice_phy_info *phy = &pi->phy; 2200 struct ice_pf *pf = vsi->back; 2201 int err; 2202 2203 /* Ensure we have media as we cannot configure a medialess port */ 2204 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2205 return -ENOMEDIUM; 2206 2207 ice_print_topo_conflict(vsi); 2208 2209 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2210 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2211 return -EPERM; 2212 2213 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2214 return ice_force_phys_link_state(vsi, true); 2215 2216 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2217 if (!pcaps) 2218 return -ENOMEM; 2219 2220 /* Get current PHY config */ 2221 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2222 NULL); 2223 if (err) { 2224 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2225 vsi->vsi_num, err); 2226 goto done; 2227 } 2228 2229 /* If PHY enable link is configured and configuration has not changed, 2230 * there's nothing to do 2231 */ 2232 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2233 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2234 goto done; 2235 2236 /* Use PHY topology as baseline for configuration */ 2237 memset(pcaps, 0, sizeof(*pcaps)); 2238 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2239 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2240 pcaps, NULL); 2241 else 2242 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2243 pcaps, NULL); 2244 if (err) { 2245 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2246 vsi->vsi_num, err); 2247 goto done; 2248 } 2249 2250 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2251 if (!cfg) { 2252 err = -ENOMEM; 2253 goto done; 2254 } 2255 2256 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2257 2258 /* Speed - If default override pending, use curr_user_phy_cfg set in 2259 * ice_init_phy_user_cfg_ldo. 2260 */ 2261 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2262 vsi->back->state)) { 2263 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2264 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2265 } else { 2266 u64 phy_low = 0, phy_high = 0; 2267 2268 ice_update_phy_type(&phy_low, &phy_high, 2269 pi->phy.curr_user_speed_req); 2270 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2271 cfg->phy_type_high = pcaps->phy_type_high & 2272 cpu_to_le64(phy_high); 2273 } 2274 2275 /* Can't provide what was requested; use PHY capabilities */ 2276 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2277 cfg->phy_type_low = pcaps->phy_type_low; 2278 cfg->phy_type_high = pcaps->phy_type_high; 2279 } 2280 2281 /* FEC */ 2282 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2283 2284 /* Can't provide what was requested; use PHY capabilities */ 2285 if (cfg->link_fec_opt != 2286 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2287 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2288 cfg->link_fec_opt = pcaps->link_fec_options; 2289 } 2290 2291 /* Flow Control - always supported; no need to check against 2292 * capabilities 2293 */ 2294 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2295 2296 /* Enable link and link update */ 2297 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2298 2299 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2300 if (err) 2301 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2302 vsi->vsi_num, err); 2303 2304 kfree(cfg); 2305 done: 2306 kfree(pcaps); 2307 return err; 2308 } 2309 2310 /** 2311 * ice_check_media_subtask - Check for media 2312 * @pf: pointer to PF struct 2313 * 2314 * If media is available, then initialize PHY user configuration if it is not 2315 * been, and configure the PHY if the interface is up. 2316 */ 2317 static void ice_check_media_subtask(struct ice_pf *pf) 2318 { 2319 struct ice_port_info *pi; 2320 struct ice_vsi *vsi; 2321 int err; 2322 2323 /* No need to check for media if it's already present */ 2324 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2325 return; 2326 2327 vsi = ice_get_main_vsi(pf); 2328 if (!vsi) 2329 return; 2330 2331 /* Refresh link info and check if media is present */ 2332 pi = vsi->port_info; 2333 err = ice_update_link_info(pi); 2334 if (err) 2335 return; 2336 2337 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2338 2339 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2340 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2341 ice_init_phy_user_cfg(pi); 2342 2343 /* PHY settings are reset on media insertion, reconfigure 2344 * PHY to preserve settings. 2345 */ 2346 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2347 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2348 return; 2349 2350 err = ice_configure_phy(vsi); 2351 if (!err) 2352 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2353 2354 /* A Link Status Event will be generated; the event handler 2355 * will complete bringing the interface up 2356 */ 2357 } 2358 } 2359 2360 /** 2361 * ice_service_task - manage and run subtasks 2362 * @work: pointer to work_struct contained by the PF struct 2363 */ 2364 static void ice_service_task(struct work_struct *work) 2365 { 2366 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2367 unsigned long start_time = jiffies; 2368 2369 /* subtasks */ 2370 2371 /* process reset requests first */ 2372 ice_reset_subtask(pf); 2373 2374 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2375 if (ice_is_reset_in_progress(pf->state) || 2376 test_bit(ICE_SUSPENDED, pf->state) || 2377 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2378 ice_service_task_complete(pf); 2379 return; 2380 } 2381 2382 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2383 struct iidc_event *event; 2384 2385 event = kzalloc(sizeof(*event), GFP_KERNEL); 2386 if (event) { 2387 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2388 /* report the entire OICR value to AUX driver */ 2389 swap(event->reg, pf->oicr_err_reg); 2390 ice_send_event_to_aux(pf, event); 2391 kfree(event); 2392 } 2393 } 2394 2395 /* unplug aux dev per request, if an unplug request came in 2396 * while processing a plug request, this will handle it 2397 */ 2398 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2399 ice_unplug_aux_dev(pf); 2400 2401 /* Plug aux device per request */ 2402 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2403 ice_plug_aux_dev(pf); 2404 2405 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2406 struct iidc_event *event; 2407 2408 event = kzalloc(sizeof(*event), GFP_KERNEL); 2409 if (event) { 2410 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2411 ice_send_event_to_aux(pf, event); 2412 kfree(event); 2413 } 2414 } 2415 2416 ice_clean_adminq_subtask(pf); 2417 ice_check_media_subtask(pf); 2418 ice_check_for_hang_subtask(pf); 2419 ice_sync_fltr_subtask(pf); 2420 ice_handle_mdd_event(pf); 2421 ice_watchdog_subtask(pf); 2422 2423 if (ice_is_safe_mode(pf)) { 2424 ice_service_task_complete(pf); 2425 return; 2426 } 2427 2428 ice_process_vflr_event(pf); 2429 ice_clean_mailboxq_subtask(pf); 2430 ice_clean_sbq_subtask(pf); 2431 ice_sync_arfs_fltrs(pf); 2432 ice_flush_fdir_ctx(pf); 2433 2434 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2435 ice_service_task_complete(pf); 2436 2437 /* If the tasks have taken longer than one service timer period 2438 * or there is more work to be done, reset the service timer to 2439 * schedule the service task now. 2440 */ 2441 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2442 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2443 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2444 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2445 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2446 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2447 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2448 mod_timer(&pf->serv_tmr, jiffies); 2449 } 2450 2451 /** 2452 * ice_set_ctrlq_len - helper function to set controlq length 2453 * @hw: pointer to the HW instance 2454 */ 2455 static void ice_set_ctrlq_len(struct ice_hw *hw) 2456 { 2457 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2458 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2459 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2460 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2461 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2462 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2463 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2464 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2465 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2466 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2467 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2468 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2469 } 2470 2471 /** 2472 * ice_schedule_reset - schedule a reset 2473 * @pf: board private structure 2474 * @reset: reset being requested 2475 */ 2476 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2477 { 2478 struct device *dev = ice_pf_to_dev(pf); 2479 2480 /* bail out if earlier reset has failed */ 2481 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2482 dev_dbg(dev, "earlier reset has failed\n"); 2483 return -EIO; 2484 } 2485 /* bail if reset/recovery already in progress */ 2486 if (ice_is_reset_in_progress(pf->state)) { 2487 dev_dbg(dev, "Reset already in progress\n"); 2488 return -EBUSY; 2489 } 2490 2491 switch (reset) { 2492 case ICE_RESET_PFR: 2493 set_bit(ICE_PFR_REQ, pf->state); 2494 break; 2495 case ICE_RESET_CORER: 2496 set_bit(ICE_CORER_REQ, pf->state); 2497 break; 2498 case ICE_RESET_GLOBR: 2499 set_bit(ICE_GLOBR_REQ, pf->state); 2500 break; 2501 default: 2502 return -EINVAL; 2503 } 2504 2505 ice_service_task_schedule(pf); 2506 return 0; 2507 } 2508 2509 /** 2510 * ice_irq_affinity_notify - Callback for affinity changes 2511 * @notify: context as to what irq was changed 2512 * @mask: the new affinity mask 2513 * 2514 * This is a callback function used by the irq_set_affinity_notifier function 2515 * so that we may register to receive changes to the irq affinity masks. 2516 */ 2517 static void 2518 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2519 const cpumask_t *mask) 2520 { 2521 struct ice_q_vector *q_vector = 2522 container_of(notify, struct ice_q_vector, affinity_notify); 2523 2524 cpumask_copy(&q_vector->affinity_mask, mask); 2525 } 2526 2527 /** 2528 * ice_irq_affinity_release - Callback for affinity notifier release 2529 * @ref: internal core kernel usage 2530 * 2531 * This is a callback function used by the irq_set_affinity_notifier function 2532 * to inform the current notification subscriber that they will no longer 2533 * receive notifications. 2534 */ 2535 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2536 2537 /** 2538 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2539 * @vsi: the VSI being configured 2540 */ 2541 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2542 { 2543 struct ice_hw *hw = &vsi->back->hw; 2544 int i; 2545 2546 ice_for_each_q_vector(vsi, i) 2547 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2548 2549 ice_flush(hw); 2550 return 0; 2551 } 2552 2553 /** 2554 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2555 * @vsi: the VSI being configured 2556 * @basename: name for the vector 2557 */ 2558 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2559 { 2560 int q_vectors = vsi->num_q_vectors; 2561 struct ice_pf *pf = vsi->back; 2562 struct device *dev; 2563 int rx_int_idx = 0; 2564 int tx_int_idx = 0; 2565 int vector, err; 2566 int irq_num; 2567 2568 dev = ice_pf_to_dev(pf); 2569 for (vector = 0; vector < q_vectors; vector++) { 2570 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2571 2572 irq_num = q_vector->irq.virq; 2573 2574 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2575 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2576 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2577 tx_int_idx++; 2578 } else if (q_vector->rx.rx_ring) { 2579 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2580 "%s-%s-%d", basename, "rx", rx_int_idx++); 2581 } else if (q_vector->tx.tx_ring) { 2582 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2583 "%s-%s-%d", basename, "tx", tx_int_idx++); 2584 } else { 2585 /* skip this unused q_vector */ 2586 continue; 2587 } 2588 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2589 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2590 IRQF_SHARED, q_vector->name, 2591 q_vector); 2592 else 2593 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2594 0, q_vector->name, q_vector); 2595 if (err) { 2596 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2597 err); 2598 goto free_q_irqs; 2599 } 2600 2601 /* register for affinity change notifications */ 2602 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2603 struct irq_affinity_notify *affinity_notify; 2604 2605 affinity_notify = &q_vector->affinity_notify; 2606 affinity_notify->notify = ice_irq_affinity_notify; 2607 affinity_notify->release = ice_irq_affinity_release; 2608 irq_set_affinity_notifier(irq_num, affinity_notify); 2609 } 2610 2611 /* assign the mask for this irq */ 2612 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask); 2613 } 2614 2615 err = ice_set_cpu_rx_rmap(vsi); 2616 if (err) { 2617 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2618 vsi->vsi_num, ERR_PTR(err)); 2619 goto free_q_irqs; 2620 } 2621 2622 vsi->irqs_ready = true; 2623 return 0; 2624 2625 free_q_irqs: 2626 while (vector--) { 2627 irq_num = vsi->q_vectors[vector]->irq.virq; 2628 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2629 irq_set_affinity_notifier(irq_num, NULL); 2630 irq_update_affinity_hint(irq_num, NULL); 2631 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2632 } 2633 return err; 2634 } 2635 2636 /** 2637 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2638 * @vsi: VSI to setup Tx rings used by XDP 2639 * 2640 * Return 0 on success and negative value on error 2641 */ 2642 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2643 { 2644 struct device *dev = ice_pf_to_dev(vsi->back); 2645 struct ice_tx_desc *tx_desc; 2646 int i, j; 2647 2648 ice_for_each_xdp_txq(vsi, i) { 2649 u16 xdp_q_idx = vsi->alloc_txq + i; 2650 struct ice_ring_stats *ring_stats; 2651 struct ice_tx_ring *xdp_ring; 2652 2653 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2654 if (!xdp_ring) 2655 goto free_xdp_rings; 2656 2657 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2658 if (!ring_stats) { 2659 ice_free_tx_ring(xdp_ring); 2660 goto free_xdp_rings; 2661 } 2662 2663 xdp_ring->ring_stats = ring_stats; 2664 xdp_ring->q_index = xdp_q_idx; 2665 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2666 xdp_ring->vsi = vsi; 2667 xdp_ring->netdev = NULL; 2668 xdp_ring->dev = dev; 2669 xdp_ring->count = vsi->num_tx_desc; 2670 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2671 if (ice_setup_tx_ring(xdp_ring)) 2672 goto free_xdp_rings; 2673 ice_set_ring_xdp(xdp_ring); 2674 spin_lock_init(&xdp_ring->tx_lock); 2675 for (j = 0; j < xdp_ring->count; j++) { 2676 tx_desc = ICE_TX_DESC(xdp_ring, j); 2677 tx_desc->cmd_type_offset_bsz = 0; 2678 } 2679 } 2680 2681 return 0; 2682 2683 free_xdp_rings: 2684 for (; i >= 0; i--) { 2685 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2686 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2687 vsi->xdp_rings[i]->ring_stats = NULL; 2688 ice_free_tx_ring(vsi->xdp_rings[i]); 2689 } 2690 } 2691 return -ENOMEM; 2692 } 2693 2694 /** 2695 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2696 * @vsi: VSI to set the bpf prog on 2697 * @prog: the bpf prog pointer 2698 */ 2699 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2700 { 2701 struct bpf_prog *old_prog; 2702 int i; 2703 2704 old_prog = xchg(&vsi->xdp_prog, prog); 2705 ice_for_each_rxq(vsi, i) 2706 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2707 2708 if (old_prog) 2709 bpf_prog_put(old_prog); 2710 } 2711 2712 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2713 { 2714 struct ice_q_vector *q_vector; 2715 struct ice_tx_ring *ring; 2716 2717 if (static_key_enabled(&ice_xdp_locking_key)) 2718 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2719 2720 q_vector = vsi->rx_rings[qid]->q_vector; 2721 ice_for_each_tx_ring(ring, q_vector->tx) 2722 if (ice_ring_is_xdp(ring)) 2723 return ring; 2724 2725 return NULL; 2726 } 2727 2728 /** 2729 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2730 * @vsi: the VSI with XDP rings being configured 2731 * 2732 * Map XDP rings to interrupt vectors and perform the configuration steps 2733 * dependent on the mapping. 2734 */ 2735 void ice_map_xdp_rings(struct ice_vsi *vsi) 2736 { 2737 int xdp_rings_rem = vsi->num_xdp_txq; 2738 int v_idx, q_idx; 2739 2740 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2741 ice_for_each_q_vector(vsi, v_idx) { 2742 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2743 int xdp_rings_per_v, q_id, q_base; 2744 2745 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2746 vsi->num_q_vectors - v_idx); 2747 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2748 2749 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2750 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2751 2752 xdp_ring->q_vector = q_vector; 2753 xdp_ring->next = q_vector->tx.tx_ring; 2754 q_vector->tx.tx_ring = xdp_ring; 2755 } 2756 xdp_rings_rem -= xdp_rings_per_v; 2757 } 2758 2759 ice_for_each_rxq(vsi, q_idx) { 2760 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2761 q_idx); 2762 ice_tx_xsk_pool(vsi, q_idx); 2763 } 2764 } 2765 2766 /** 2767 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2768 * @vsi: VSI to bring up Tx rings used by XDP 2769 * @prog: bpf program that will be assigned to VSI 2770 * @cfg_type: create from scratch or restore the existing configuration 2771 * 2772 * Return 0 on success and negative value on error 2773 */ 2774 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2775 enum ice_xdp_cfg cfg_type) 2776 { 2777 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2778 struct ice_pf *pf = vsi->back; 2779 struct ice_qs_cfg xdp_qs_cfg = { 2780 .qs_mutex = &pf->avail_q_mutex, 2781 .pf_map = pf->avail_txqs, 2782 .pf_map_size = pf->max_pf_txqs, 2783 .q_count = vsi->num_xdp_txq, 2784 .scatter_count = ICE_MAX_SCATTER_TXQS, 2785 .vsi_map = vsi->txq_map, 2786 .vsi_map_offset = vsi->alloc_txq, 2787 .mapping_mode = ICE_VSI_MAP_CONTIG 2788 }; 2789 struct device *dev; 2790 int status, i; 2791 2792 dev = ice_pf_to_dev(pf); 2793 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2794 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2795 if (!vsi->xdp_rings) 2796 return -ENOMEM; 2797 2798 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2799 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2800 goto err_map_xdp; 2801 2802 if (static_key_enabled(&ice_xdp_locking_key)) 2803 netdev_warn(vsi->netdev, 2804 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2805 2806 if (ice_xdp_alloc_setup_rings(vsi)) 2807 goto clear_xdp_rings; 2808 2809 /* omit the scheduler update if in reset path; XDP queues will be 2810 * taken into account at the end of ice_vsi_rebuild, where 2811 * ice_cfg_vsi_lan is being called 2812 */ 2813 if (cfg_type == ICE_XDP_CFG_PART) 2814 return 0; 2815 2816 ice_map_xdp_rings(vsi); 2817 2818 /* tell the Tx scheduler that right now we have 2819 * additional queues 2820 */ 2821 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2822 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2823 2824 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2825 max_txqs); 2826 if (status) { 2827 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2828 status); 2829 goto clear_xdp_rings; 2830 } 2831 2832 /* assign the prog only when it's not already present on VSI; 2833 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2834 * VSI rebuild that happens under ethtool -L can expose us to 2835 * the bpf_prog refcount issues as we would be swapping same 2836 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2837 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2838 * this is not harmful as dev_xdp_install bumps the refcount 2839 * before calling the op exposed by the driver; 2840 */ 2841 if (!ice_is_xdp_ena_vsi(vsi)) 2842 ice_vsi_assign_bpf_prog(vsi, prog); 2843 2844 return 0; 2845 clear_xdp_rings: 2846 ice_for_each_xdp_txq(vsi, i) 2847 if (vsi->xdp_rings[i]) { 2848 kfree_rcu(vsi->xdp_rings[i], rcu); 2849 vsi->xdp_rings[i] = NULL; 2850 } 2851 2852 err_map_xdp: 2853 mutex_lock(&pf->avail_q_mutex); 2854 ice_for_each_xdp_txq(vsi, i) { 2855 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2856 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2857 } 2858 mutex_unlock(&pf->avail_q_mutex); 2859 2860 devm_kfree(dev, vsi->xdp_rings); 2861 return -ENOMEM; 2862 } 2863 2864 /** 2865 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2866 * @vsi: VSI to remove XDP rings 2867 * @cfg_type: disable XDP permanently or allow it to be restored later 2868 * 2869 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2870 * resources 2871 */ 2872 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2873 { 2874 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2875 struct ice_pf *pf = vsi->back; 2876 int i, v_idx; 2877 2878 /* q_vectors are freed in reset path so there's no point in detaching 2879 * rings 2880 */ 2881 if (cfg_type == ICE_XDP_CFG_PART) 2882 goto free_qmap; 2883 2884 ice_for_each_q_vector(vsi, v_idx) { 2885 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2886 struct ice_tx_ring *ring; 2887 2888 ice_for_each_tx_ring(ring, q_vector->tx) 2889 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2890 break; 2891 2892 /* restore the value of last node prior to XDP setup */ 2893 q_vector->tx.tx_ring = ring; 2894 } 2895 2896 free_qmap: 2897 mutex_lock(&pf->avail_q_mutex); 2898 ice_for_each_xdp_txq(vsi, i) { 2899 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2900 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2901 } 2902 mutex_unlock(&pf->avail_q_mutex); 2903 2904 ice_for_each_xdp_txq(vsi, i) 2905 if (vsi->xdp_rings[i]) { 2906 if (vsi->xdp_rings[i]->desc) { 2907 synchronize_rcu(); 2908 ice_free_tx_ring(vsi->xdp_rings[i]); 2909 } 2910 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2911 vsi->xdp_rings[i]->ring_stats = NULL; 2912 kfree_rcu(vsi->xdp_rings[i], rcu); 2913 vsi->xdp_rings[i] = NULL; 2914 } 2915 2916 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2917 vsi->xdp_rings = NULL; 2918 2919 if (static_key_enabled(&ice_xdp_locking_key)) 2920 static_branch_dec(&ice_xdp_locking_key); 2921 2922 if (cfg_type == ICE_XDP_CFG_PART) 2923 return 0; 2924 2925 ice_vsi_assign_bpf_prog(vsi, NULL); 2926 2927 /* notify Tx scheduler that we destroyed XDP queues and bring 2928 * back the old number of child nodes 2929 */ 2930 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2931 max_txqs[i] = vsi->num_txq; 2932 2933 /* change number of XDP Tx queues to 0 */ 2934 vsi->num_xdp_txq = 0; 2935 2936 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2937 max_txqs); 2938 } 2939 2940 /** 2941 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2942 * @vsi: VSI to schedule napi on 2943 */ 2944 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2945 { 2946 int i; 2947 2948 ice_for_each_rxq(vsi, i) { 2949 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2950 2951 if (rx_ring->xsk_pool) 2952 napi_schedule(&rx_ring->q_vector->napi); 2953 } 2954 } 2955 2956 /** 2957 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2958 * @vsi: VSI to determine the count of XDP Tx qs 2959 * 2960 * returns 0 if Tx qs count is higher than at least half of CPU count, 2961 * -ENOMEM otherwise 2962 */ 2963 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2964 { 2965 u16 avail = ice_get_avail_txq_count(vsi->back); 2966 u16 cpus = num_possible_cpus(); 2967 2968 if (avail < cpus / 2) 2969 return -ENOMEM; 2970 2971 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2972 2973 if (vsi->num_xdp_txq < cpus) 2974 static_branch_inc(&ice_xdp_locking_key); 2975 2976 return 0; 2977 } 2978 2979 /** 2980 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2981 * @vsi: Pointer to VSI structure 2982 */ 2983 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2984 { 2985 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2986 return ICE_RXBUF_1664; 2987 else 2988 return ICE_RXBUF_3072; 2989 } 2990 2991 /** 2992 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2993 * @vsi: VSI to setup XDP for 2994 * @prog: XDP program 2995 * @extack: netlink extended ack 2996 */ 2997 static int 2998 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2999 struct netlink_ext_ack *extack) 3000 { 3001 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3002 bool if_running = netif_running(vsi->netdev); 3003 int ret = 0, xdp_ring_err = 0; 3004 3005 if (prog && !prog->aux->xdp_has_frags) { 3006 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3007 NL_SET_ERR_MSG_MOD(extack, 3008 "MTU is too large for linear frames and XDP prog does not support frags"); 3009 return -EOPNOTSUPP; 3010 } 3011 } 3012 3013 /* hot swap progs and avoid toggling link */ 3014 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 3015 ice_vsi_assign_bpf_prog(vsi, prog); 3016 return 0; 3017 } 3018 3019 /* need to stop netdev while setting up the program for Rx rings */ 3020 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 3021 ret = ice_down(vsi); 3022 if (ret) { 3023 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3024 return ret; 3025 } 3026 } 3027 3028 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3029 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3030 if (xdp_ring_err) { 3031 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3032 } else { 3033 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3034 ICE_XDP_CFG_FULL); 3035 if (xdp_ring_err) 3036 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3037 } 3038 xdp_features_set_redirect_target(vsi->netdev, true); 3039 /* reallocate Rx queues that are used for zero-copy */ 3040 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3041 if (xdp_ring_err) 3042 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3043 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3044 xdp_features_clear_redirect_target(vsi->netdev); 3045 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3046 if (xdp_ring_err) 3047 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3048 /* reallocate Rx queues that were used for zero-copy */ 3049 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3050 if (xdp_ring_err) 3051 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3052 } 3053 3054 if (if_running) 3055 ret = ice_up(vsi); 3056 3057 if (!ret && prog) 3058 ice_vsi_rx_napi_schedule(vsi); 3059 3060 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3061 } 3062 3063 /** 3064 * ice_xdp_safe_mode - XDP handler for safe mode 3065 * @dev: netdevice 3066 * @xdp: XDP command 3067 */ 3068 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3069 struct netdev_bpf *xdp) 3070 { 3071 NL_SET_ERR_MSG_MOD(xdp->extack, 3072 "Please provide working DDP firmware package in order to use XDP\n" 3073 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3074 return -EOPNOTSUPP; 3075 } 3076 3077 /** 3078 * ice_xdp - implements XDP handler 3079 * @dev: netdevice 3080 * @xdp: XDP command 3081 */ 3082 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3083 { 3084 struct ice_netdev_priv *np = netdev_priv(dev); 3085 struct ice_vsi *vsi = np->vsi; 3086 3087 if (vsi->type != ICE_VSI_PF) { 3088 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3089 return -EINVAL; 3090 } 3091 3092 switch (xdp->command) { 3093 case XDP_SETUP_PROG: 3094 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3095 case XDP_SETUP_XSK_POOL: 3096 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3097 xdp->xsk.queue_id); 3098 default: 3099 return -EINVAL; 3100 } 3101 } 3102 3103 /** 3104 * ice_ena_misc_vector - enable the non-queue interrupts 3105 * @pf: board private structure 3106 */ 3107 static void ice_ena_misc_vector(struct ice_pf *pf) 3108 { 3109 struct ice_hw *hw = &pf->hw; 3110 u32 pf_intr_start_offset; 3111 u32 val; 3112 3113 /* Disable anti-spoof detection interrupt to prevent spurious event 3114 * interrupts during a function reset. Anti-spoof functionally is 3115 * still supported. 3116 */ 3117 val = rd32(hw, GL_MDCK_TX_TDPU); 3118 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3119 wr32(hw, GL_MDCK_TX_TDPU, val); 3120 3121 /* clear things first */ 3122 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3123 rd32(hw, PFINT_OICR); /* read to clear */ 3124 3125 val = (PFINT_OICR_ECC_ERR_M | 3126 PFINT_OICR_MAL_DETECT_M | 3127 PFINT_OICR_GRST_M | 3128 PFINT_OICR_PCI_EXCEPTION_M | 3129 PFINT_OICR_VFLR_M | 3130 PFINT_OICR_HMC_ERR_M | 3131 PFINT_OICR_PE_PUSH_M | 3132 PFINT_OICR_PE_CRITERR_M); 3133 3134 wr32(hw, PFINT_OICR_ENA, val); 3135 3136 /* SW_ITR_IDX = 0, but don't change INTENA */ 3137 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3138 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3139 3140 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3141 return; 3142 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3143 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3144 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3145 } 3146 3147 /** 3148 * ice_ll_ts_intr - ll_ts interrupt handler 3149 * @irq: interrupt number 3150 * @data: pointer to a q_vector 3151 */ 3152 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3153 { 3154 struct ice_pf *pf = data; 3155 u32 pf_intr_start_offset; 3156 struct ice_ptp_tx *tx; 3157 unsigned long flags; 3158 struct ice_hw *hw; 3159 u32 val; 3160 u8 idx; 3161 3162 hw = &pf->hw; 3163 tx = &pf->ptp.port.tx; 3164 spin_lock_irqsave(&tx->lock, flags); 3165 ice_ptp_complete_tx_single_tstamp(tx); 3166 3167 idx = find_next_bit_wrap(tx->in_use, tx->len, 3168 tx->last_ll_ts_idx_read + 1); 3169 if (idx != tx->len) 3170 ice_ptp_req_tx_single_tstamp(tx, idx); 3171 spin_unlock_irqrestore(&tx->lock, flags); 3172 3173 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3174 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3175 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3176 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3177 val); 3178 3179 return IRQ_HANDLED; 3180 } 3181 3182 /** 3183 * ice_misc_intr - misc interrupt handler 3184 * @irq: interrupt number 3185 * @data: pointer to a q_vector 3186 */ 3187 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3188 { 3189 struct ice_pf *pf = (struct ice_pf *)data; 3190 irqreturn_t ret = IRQ_HANDLED; 3191 struct ice_hw *hw = &pf->hw; 3192 struct device *dev; 3193 u32 oicr, ena_mask; 3194 3195 dev = ice_pf_to_dev(pf); 3196 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3197 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3198 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3199 3200 oicr = rd32(hw, PFINT_OICR); 3201 ena_mask = rd32(hw, PFINT_OICR_ENA); 3202 3203 if (oicr & PFINT_OICR_SWINT_M) { 3204 ena_mask &= ~PFINT_OICR_SWINT_M; 3205 pf->sw_int_count++; 3206 } 3207 3208 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3209 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3210 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3211 } 3212 if (oicr & PFINT_OICR_VFLR_M) { 3213 /* disable any further VFLR event notifications */ 3214 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3215 u32 reg = rd32(hw, PFINT_OICR_ENA); 3216 3217 reg &= ~PFINT_OICR_VFLR_M; 3218 wr32(hw, PFINT_OICR_ENA, reg); 3219 } else { 3220 ena_mask &= ~PFINT_OICR_VFLR_M; 3221 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3222 } 3223 } 3224 3225 if (oicr & PFINT_OICR_GRST_M) { 3226 u32 reset; 3227 3228 /* we have a reset warning */ 3229 ena_mask &= ~PFINT_OICR_GRST_M; 3230 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3231 rd32(hw, GLGEN_RSTAT)); 3232 3233 if (reset == ICE_RESET_CORER) 3234 pf->corer_count++; 3235 else if (reset == ICE_RESET_GLOBR) 3236 pf->globr_count++; 3237 else if (reset == ICE_RESET_EMPR) 3238 pf->empr_count++; 3239 else 3240 dev_dbg(dev, "Invalid reset type %d\n", reset); 3241 3242 /* If a reset cycle isn't already in progress, we set a bit in 3243 * pf->state so that the service task can start a reset/rebuild. 3244 */ 3245 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3246 if (reset == ICE_RESET_CORER) 3247 set_bit(ICE_CORER_RECV, pf->state); 3248 else if (reset == ICE_RESET_GLOBR) 3249 set_bit(ICE_GLOBR_RECV, pf->state); 3250 else 3251 set_bit(ICE_EMPR_RECV, pf->state); 3252 3253 /* There are couple of different bits at play here. 3254 * hw->reset_ongoing indicates whether the hardware is 3255 * in reset. This is set to true when a reset interrupt 3256 * is received and set back to false after the driver 3257 * has determined that the hardware is out of reset. 3258 * 3259 * ICE_RESET_OICR_RECV in pf->state indicates 3260 * that a post reset rebuild is required before the 3261 * driver is operational again. This is set above. 3262 * 3263 * As this is the start of the reset/rebuild cycle, set 3264 * both to indicate that. 3265 */ 3266 hw->reset_ongoing = true; 3267 } 3268 } 3269 3270 if (oicr & PFINT_OICR_TSYN_TX_M) { 3271 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3272 if (ice_pf_state_is_nominal(pf) && 3273 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3274 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3275 unsigned long flags; 3276 u8 idx; 3277 3278 spin_lock_irqsave(&tx->lock, flags); 3279 idx = find_next_bit_wrap(tx->in_use, tx->len, 3280 tx->last_ll_ts_idx_read + 1); 3281 if (idx != tx->len) 3282 ice_ptp_req_tx_single_tstamp(tx, idx); 3283 spin_unlock_irqrestore(&tx->lock, flags); 3284 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3285 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3286 ret = IRQ_WAKE_THREAD; 3287 } 3288 } 3289 3290 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3291 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3292 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3293 3294 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3295 3296 if (ice_pf_src_tmr_owned(pf)) { 3297 /* Save EVENTs from GLTSYN register */ 3298 pf->ptp.ext_ts_irq |= gltsyn_stat & 3299 (GLTSYN_STAT_EVENT0_M | 3300 GLTSYN_STAT_EVENT1_M | 3301 GLTSYN_STAT_EVENT2_M); 3302 3303 ice_ptp_extts_event(pf); 3304 } 3305 } 3306 3307 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3308 if (oicr & ICE_AUX_CRIT_ERR) { 3309 pf->oicr_err_reg |= oicr; 3310 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3311 ena_mask &= ~ICE_AUX_CRIT_ERR; 3312 } 3313 3314 /* Report any remaining unexpected interrupts */ 3315 oicr &= ena_mask; 3316 if (oicr) { 3317 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3318 /* If a critical error is pending there is no choice but to 3319 * reset the device. 3320 */ 3321 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3322 PFINT_OICR_ECC_ERR_M)) { 3323 set_bit(ICE_PFR_REQ, pf->state); 3324 } 3325 } 3326 ice_service_task_schedule(pf); 3327 if (ret == IRQ_HANDLED) 3328 ice_irq_dynamic_ena(hw, NULL, NULL); 3329 3330 return ret; 3331 } 3332 3333 /** 3334 * ice_misc_intr_thread_fn - misc interrupt thread function 3335 * @irq: interrupt number 3336 * @data: pointer to a q_vector 3337 */ 3338 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3339 { 3340 struct ice_pf *pf = data; 3341 struct ice_hw *hw; 3342 3343 hw = &pf->hw; 3344 3345 if (ice_is_reset_in_progress(pf->state)) 3346 goto skip_irq; 3347 3348 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3349 /* Process outstanding Tx timestamps. If there is more work, 3350 * re-arm the interrupt to trigger again. 3351 */ 3352 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3353 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3354 ice_flush(hw); 3355 } 3356 } 3357 3358 skip_irq: 3359 ice_irq_dynamic_ena(hw, NULL, NULL); 3360 3361 return IRQ_HANDLED; 3362 } 3363 3364 /** 3365 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3366 * @hw: pointer to HW structure 3367 */ 3368 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3369 { 3370 /* disable Admin queue Interrupt causes */ 3371 wr32(hw, PFINT_FW_CTL, 3372 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3373 3374 /* disable Mailbox queue Interrupt causes */ 3375 wr32(hw, PFINT_MBX_CTL, 3376 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3377 3378 wr32(hw, PFINT_SB_CTL, 3379 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3380 3381 /* disable Control queue Interrupt causes */ 3382 wr32(hw, PFINT_OICR_CTL, 3383 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3384 3385 ice_flush(hw); 3386 } 3387 3388 /** 3389 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3390 * @pf: board private structure 3391 */ 3392 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3393 { 3394 int irq_num = pf->ll_ts_irq.virq; 3395 3396 synchronize_irq(irq_num); 3397 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3398 3399 ice_free_irq(pf, pf->ll_ts_irq); 3400 } 3401 3402 /** 3403 * ice_free_irq_msix_misc - Unroll misc vector setup 3404 * @pf: board private structure 3405 */ 3406 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3407 { 3408 int misc_irq_num = pf->oicr_irq.virq; 3409 struct ice_hw *hw = &pf->hw; 3410 3411 ice_dis_ctrlq_interrupts(hw); 3412 3413 /* disable OICR interrupt */ 3414 wr32(hw, PFINT_OICR_ENA, 0); 3415 ice_flush(hw); 3416 3417 synchronize_irq(misc_irq_num); 3418 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3419 3420 ice_free_irq(pf, pf->oicr_irq); 3421 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3422 ice_free_irq_msix_ll_ts(pf); 3423 } 3424 3425 /** 3426 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3427 * @hw: pointer to HW structure 3428 * @reg_idx: HW vector index to associate the control queue interrupts with 3429 */ 3430 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3431 { 3432 u32 val; 3433 3434 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3435 PFINT_OICR_CTL_CAUSE_ENA_M); 3436 wr32(hw, PFINT_OICR_CTL, val); 3437 3438 /* enable Admin queue Interrupt causes */ 3439 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3440 PFINT_FW_CTL_CAUSE_ENA_M); 3441 wr32(hw, PFINT_FW_CTL, val); 3442 3443 /* enable Mailbox queue Interrupt causes */ 3444 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3445 PFINT_MBX_CTL_CAUSE_ENA_M); 3446 wr32(hw, PFINT_MBX_CTL, val); 3447 3448 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3449 /* enable Sideband queue Interrupt causes */ 3450 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3451 PFINT_SB_CTL_CAUSE_ENA_M); 3452 wr32(hw, PFINT_SB_CTL, val); 3453 } 3454 3455 ice_flush(hw); 3456 } 3457 3458 /** 3459 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3460 * @pf: board private structure 3461 * 3462 * This sets up the handler for MSIX 0, which is used to manage the 3463 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3464 * when in MSI or Legacy interrupt mode. 3465 */ 3466 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3467 { 3468 struct device *dev = ice_pf_to_dev(pf); 3469 struct ice_hw *hw = &pf->hw; 3470 u32 pf_intr_start_offset; 3471 struct msi_map irq; 3472 int err = 0; 3473 3474 if (!pf->int_name[0]) 3475 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3476 dev_driver_string(dev), dev_name(dev)); 3477 3478 if (!pf->int_name_ll_ts[0]) 3479 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3480 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3481 /* Do not request IRQ but do enable OICR interrupt since settings are 3482 * lost during reset. Note that this function is called only during 3483 * rebuild path and not while reset is in progress. 3484 */ 3485 if (ice_is_reset_in_progress(pf->state)) 3486 goto skip_req_irq; 3487 3488 /* reserve one vector in irq_tracker for misc interrupts */ 3489 irq = ice_alloc_irq(pf, false); 3490 if (irq.index < 0) 3491 return irq.index; 3492 3493 pf->oicr_irq = irq; 3494 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3495 ice_misc_intr_thread_fn, 0, 3496 pf->int_name, pf); 3497 if (err) { 3498 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3499 pf->int_name, err); 3500 ice_free_irq(pf, pf->oicr_irq); 3501 return err; 3502 } 3503 3504 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3505 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3506 goto skip_req_irq; 3507 3508 irq = ice_alloc_irq(pf, false); 3509 if (irq.index < 0) 3510 return irq.index; 3511 3512 pf->ll_ts_irq = irq; 3513 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3514 pf->int_name_ll_ts, pf); 3515 if (err) { 3516 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3517 pf->int_name_ll_ts, err); 3518 ice_free_irq(pf, pf->ll_ts_irq); 3519 return err; 3520 } 3521 3522 skip_req_irq: 3523 ice_ena_misc_vector(pf); 3524 3525 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3526 /* This enables LL TS interrupt */ 3527 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3528 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3529 wr32(hw, PFINT_SB_CTL, 3530 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3531 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3532 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3533 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3534 3535 ice_flush(hw); 3536 ice_irq_dynamic_ena(hw, NULL, NULL); 3537 3538 return 0; 3539 } 3540 3541 /** 3542 * ice_napi_add - register NAPI handler for the VSI 3543 * @vsi: VSI for which NAPI handler is to be registered 3544 * 3545 * This function is only called in the driver's load path. Registering the NAPI 3546 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3547 * reset/rebuild, etc.) 3548 */ 3549 static void ice_napi_add(struct ice_vsi *vsi) 3550 { 3551 int v_idx; 3552 3553 if (!vsi->netdev) 3554 return; 3555 3556 ice_for_each_q_vector(vsi, v_idx) { 3557 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3558 ice_napi_poll); 3559 __ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3560 } 3561 } 3562 3563 /** 3564 * ice_set_ops - set netdev and ethtools ops for the given netdev 3565 * @vsi: the VSI associated with the new netdev 3566 */ 3567 static void ice_set_ops(struct ice_vsi *vsi) 3568 { 3569 struct net_device *netdev = vsi->netdev; 3570 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3571 3572 if (ice_is_safe_mode(pf)) { 3573 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3574 ice_set_ethtool_safe_mode_ops(netdev); 3575 return; 3576 } 3577 3578 netdev->netdev_ops = &ice_netdev_ops; 3579 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3580 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3581 ice_set_ethtool_ops(netdev); 3582 3583 if (vsi->type != ICE_VSI_PF) 3584 return; 3585 3586 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3587 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3588 NETDEV_XDP_ACT_RX_SG; 3589 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3590 } 3591 3592 /** 3593 * ice_set_netdev_features - set features for the given netdev 3594 * @netdev: netdev instance 3595 */ 3596 static void ice_set_netdev_features(struct net_device *netdev) 3597 { 3598 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3599 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3600 netdev_features_t csumo_features; 3601 netdev_features_t vlano_features; 3602 netdev_features_t dflt_features; 3603 netdev_features_t tso_features; 3604 3605 if (ice_is_safe_mode(pf)) { 3606 /* safe mode */ 3607 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3608 netdev->hw_features = netdev->features; 3609 return; 3610 } 3611 3612 dflt_features = NETIF_F_SG | 3613 NETIF_F_HIGHDMA | 3614 NETIF_F_NTUPLE | 3615 NETIF_F_RXHASH; 3616 3617 csumo_features = NETIF_F_RXCSUM | 3618 NETIF_F_IP_CSUM | 3619 NETIF_F_SCTP_CRC | 3620 NETIF_F_IPV6_CSUM; 3621 3622 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3623 NETIF_F_HW_VLAN_CTAG_TX | 3624 NETIF_F_HW_VLAN_CTAG_RX; 3625 3626 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3627 if (is_dvm_ena) 3628 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3629 3630 tso_features = NETIF_F_TSO | 3631 NETIF_F_TSO_ECN | 3632 NETIF_F_TSO6 | 3633 NETIF_F_GSO_GRE | 3634 NETIF_F_GSO_UDP_TUNNEL | 3635 NETIF_F_GSO_GRE_CSUM | 3636 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3637 NETIF_F_GSO_PARTIAL | 3638 NETIF_F_GSO_IPXIP4 | 3639 NETIF_F_GSO_IPXIP6 | 3640 NETIF_F_GSO_UDP_L4; 3641 3642 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3643 NETIF_F_GSO_GRE_CSUM; 3644 /* set features that user can change */ 3645 netdev->hw_features = dflt_features | csumo_features | 3646 vlano_features | tso_features; 3647 3648 /* add support for HW_CSUM on packets with MPLS header */ 3649 netdev->mpls_features = NETIF_F_HW_CSUM | 3650 NETIF_F_TSO | 3651 NETIF_F_TSO6; 3652 3653 /* enable features */ 3654 netdev->features |= netdev->hw_features; 3655 3656 netdev->hw_features |= NETIF_F_HW_TC; 3657 netdev->hw_features |= NETIF_F_LOOPBACK; 3658 3659 /* encap and VLAN devices inherit default, csumo and tso features */ 3660 netdev->hw_enc_features |= dflt_features | csumo_features | 3661 tso_features; 3662 netdev->vlan_features |= dflt_features | csumo_features | 3663 tso_features; 3664 3665 /* advertise support but don't enable by default since only one type of 3666 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3667 * type turns on the other has to be turned off. This is enforced by the 3668 * ice_fix_features() ndo callback. 3669 */ 3670 if (is_dvm_ena) 3671 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3672 NETIF_F_HW_VLAN_STAG_TX; 3673 3674 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3675 * be changed at runtime 3676 */ 3677 netdev->hw_features |= NETIF_F_RXFCS; 3678 3679 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3680 } 3681 3682 /** 3683 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3684 * @lut: Lookup table 3685 * @rss_table_size: Lookup table size 3686 * @rss_size: Range of queue number for hashing 3687 */ 3688 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3689 { 3690 u16 i; 3691 3692 for (i = 0; i < rss_table_size; i++) 3693 lut[i] = i % rss_size; 3694 } 3695 3696 /** 3697 * ice_pf_vsi_setup - Set up a PF VSI 3698 * @pf: board private structure 3699 * @pi: pointer to the port_info instance 3700 * 3701 * Returns pointer to the successfully allocated VSI software struct 3702 * on success, otherwise returns NULL on failure. 3703 */ 3704 static struct ice_vsi * 3705 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3706 { 3707 struct ice_vsi_cfg_params params = {}; 3708 3709 params.type = ICE_VSI_PF; 3710 params.port_info = pi; 3711 params.flags = ICE_VSI_FLAG_INIT; 3712 3713 return ice_vsi_setup(pf, ¶ms); 3714 } 3715 3716 static struct ice_vsi * 3717 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3718 struct ice_channel *ch) 3719 { 3720 struct ice_vsi_cfg_params params = {}; 3721 3722 params.type = ICE_VSI_CHNL; 3723 params.port_info = pi; 3724 params.ch = ch; 3725 params.flags = ICE_VSI_FLAG_INIT; 3726 3727 return ice_vsi_setup(pf, ¶ms); 3728 } 3729 3730 /** 3731 * ice_ctrl_vsi_setup - Set up a control VSI 3732 * @pf: board private structure 3733 * @pi: pointer to the port_info instance 3734 * 3735 * Returns pointer to the successfully allocated VSI software struct 3736 * on success, otherwise returns NULL on failure. 3737 */ 3738 static struct ice_vsi * 3739 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3740 { 3741 struct ice_vsi_cfg_params params = {}; 3742 3743 params.type = ICE_VSI_CTRL; 3744 params.port_info = pi; 3745 params.flags = ICE_VSI_FLAG_INIT; 3746 3747 return ice_vsi_setup(pf, ¶ms); 3748 } 3749 3750 /** 3751 * ice_lb_vsi_setup - Set up a loopback VSI 3752 * @pf: board private structure 3753 * @pi: pointer to the port_info instance 3754 * 3755 * Returns pointer to the successfully allocated VSI software struct 3756 * on success, otherwise returns NULL on failure. 3757 */ 3758 struct ice_vsi * 3759 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3760 { 3761 struct ice_vsi_cfg_params params = {}; 3762 3763 params.type = ICE_VSI_LB; 3764 params.port_info = pi; 3765 params.flags = ICE_VSI_FLAG_INIT; 3766 3767 return ice_vsi_setup(pf, ¶ms); 3768 } 3769 3770 /** 3771 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3772 * @netdev: network interface to be adjusted 3773 * @proto: VLAN TPID 3774 * @vid: VLAN ID to be added 3775 * 3776 * net_device_ops implementation for adding VLAN IDs 3777 */ 3778 static int 3779 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3780 { 3781 struct ice_netdev_priv *np = netdev_priv(netdev); 3782 struct ice_vsi_vlan_ops *vlan_ops; 3783 struct ice_vsi *vsi = np->vsi; 3784 struct ice_vlan vlan; 3785 int ret; 3786 3787 /* VLAN 0 is added by default during load/reset */ 3788 if (!vid) 3789 return 0; 3790 3791 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3792 usleep_range(1000, 2000); 3793 3794 /* Add multicast promisc rule for the VLAN ID to be added if 3795 * all-multicast is currently enabled. 3796 */ 3797 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3798 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3799 ICE_MCAST_VLAN_PROMISC_BITS, 3800 vid); 3801 if (ret) 3802 goto finish; 3803 } 3804 3805 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3806 3807 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3808 * packets aren't pruned by the device's internal switch on Rx 3809 */ 3810 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3811 ret = vlan_ops->add_vlan(vsi, &vlan); 3812 if (ret) 3813 goto finish; 3814 3815 /* If all-multicast is currently enabled and this VLAN ID is only one 3816 * besides VLAN-0 we have to update look-up type of multicast promisc 3817 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3818 */ 3819 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3820 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3821 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3822 ICE_MCAST_PROMISC_BITS, 0); 3823 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3824 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3825 } 3826 3827 finish: 3828 clear_bit(ICE_CFG_BUSY, vsi->state); 3829 3830 return ret; 3831 } 3832 3833 /** 3834 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3835 * @netdev: network interface to be adjusted 3836 * @proto: VLAN TPID 3837 * @vid: VLAN ID to be removed 3838 * 3839 * net_device_ops implementation for removing VLAN IDs 3840 */ 3841 static int 3842 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3843 { 3844 struct ice_netdev_priv *np = netdev_priv(netdev); 3845 struct ice_vsi_vlan_ops *vlan_ops; 3846 struct ice_vsi *vsi = np->vsi; 3847 struct ice_vlan vlan; 3848 int ret; 3849 3850 /* don't allow removal of VLAN 0 */ 3851 if (!vid) 3852 return 0; 3853 3854 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3855 usleep_range(1000, 2000); 3856 3857 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3858 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3859 if (ret) { 3860 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3861 vsi->vsi_num); 3862 vsi->current_netdev_flags |= IFF_ALLMULTI; 3863 } 3864 3865 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3866 3867 /* Make sure VLAN delete is successful before updating VLAN 3868 * information 3869 */ 3870 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3871 ret = vlan_ops->del_vlan(vsi, &vlan); 3872 if (ret) 3873 goto finish; 3874 3875 /* Remove multicast promisc rule for the removed VLAN ID if 3876 * all-multicast is enabled. 3877 */ 3878 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3879 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3880 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3881 3882 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3883 /* Update look-up type of multicast promisc rule for VLAN 0 3884 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3885 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3886 */ 3887 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3888 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3889 ICE_MCAST_VLAN_PROMISC_BITS, 3890 0); 3891 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3892 ICE_MCAST_PROMISC_BITS, 0); 3893 } 3894 } 3895 3896 finish: 3897 clear_bit(ICE_CFG_BUSY, vsi->state); 3898 3899 return ret; 3900 } 3901 3902 /** 3903 * ice_rep_indr_tc_block_unbind 3904 * @cb_priv: indirection block private data 3905 */ 3906 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3907 { 3908 struct ice_indr_block_priv *indr_priv = cb_priv; 3909 3910 list_del(&indr_priv->list); 3911 kfree(indr_priv); 3912 } 3913 3914 /** 3915 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3916 * @vsi: VSI struct which has the netdev 3917 */ 3918 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3919 { 3920 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3921 3922 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3923 ice_rep_indr_tc_block_unbind); 3924 } 3925 3926 /** 3927 * ice_tc_indir_block_register - Register TC indirect block notifications 3928 * @vsi: VSI struct which has the netdev 3929 * 3930 * Returns 0 on success, negative value on failure 3931 */ 3932 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3933 { 3934 struct ice_netdev_priv *np; 3935 3936 if (!vsi || !vsi->netdev) 3937 return -EINVAL; 3938 3939 np = netdev_priv(vsi->netdev); 3940 3941 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3942 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3943 } 3944 3945 /** 3946 * ice_get_avail_q_count - Get count of queues in use 3947 * @pf_qmap: bitmap to get queue use count from 3948 * @lock: pointer to a mutex that protects access to pf_qmap 3949 * @size: size of the bitmap 3950 */ 3951 static u16 3952 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3953 { 3954 unsigned long bit; 3955 u16 count = 0; 3956 3957 mutex_lock(lock); 3958 for_each_clear_bit(bit, pf_qmap, size) 3959 count++; 3960 mutex_unlock(lock); 3961 3962 return count; 3963 } 3964 3965 /** 3966 * ice_get_avail_txq_count - Get count of Tx queues in use 3967 * @pf: pointer to an ice_pf instance 3968 */ 3969 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3970 { 3971 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3972 pf->max_pf_txqs); 3973 } 3974 3975 /** 3976 * ice_get_avail_rxq_count - Get count of Rx queues in use 3977 * @pf: pointer to an ice_pf instance 3978 */ 3979 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3980 { 3981 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3982 pf->max_pf_rxqs); 3983 } 3984 3985 /** 3986 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3987 * @pf: board private structure to initialize 3988 */ 3989 static void ice_deinit_pf(struct ice_pf *pf) 3990 { 3991 ice_service_task_stop(pf); 3992 mutex_destroy(&pf->lag_mutex); 3993 mutex_destroy(&pf->adev_mutex); 3994 mutex_destroy(&pf->sw_mutex); 3995 mutex_destroy(&pf->tc_mutex); 3996 mutex_destroy(&pf->avail_q_mutex); 3997 mutex_destroy(&pf->vfs.table_lock); 3998 3999 if (pf->avail_txqs) { 4000 bitmap_free(pf->avail_txqs); 4001 pf->avail_txqs = NULL; 4002 } 4003 4004 if (pf->avail_rxqs) { 4005 bitmap_free(pf->avail_rxqs); 4006 pf->avail_rxqs = NULL; 4007 } 4008 4009 if (pf->ptp.clock) 4010 ptp_clock_unregister(pf->ptp.clock); 4011 } 4012 4013 /** 4014 * ice_set_pf_caps - set PFs capability flags 4015 * @pf: pointer to the PF instance 4016 */ 4017 static void ice_set_pf_caps(struct ice_pf *pf) 4018 { 4019 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4020 4021 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4022 if (func_caps->common_cap.rdma) 4023 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4024 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4025 if (func_caps->common_cap.dcb) 4026 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4027 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4028 if (func_caps->common_cap.sr_iov_1_1) { 4029 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4030 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4031 ICE_MAX_SRIOV_VFS); 4032 } 4033 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4034 if (func_caps->common_cap.rss_table_size) 4035 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4036 4037 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4038 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4039 u16 unused; 4040 4041 /* ctrl_vsi_idx will be set to a valid value when flow director 4042 * is setup by ice_init_fdir 4043 */ 4044 pf->ctrl_vsi_idx = ICE_NO_VSI; 4045 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4046 /* force guaranteed filter pool for PF */ 4047 ice_alloc_fd_guar_item(&pf->hw, &unused, 4048 func_caps->fd_fltr_guar); 4049 /* force shared filter pool for PF */ 4050 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4051 func_caps->fd_fltr_best_effort); 4052 } 4053 4054 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4055 if (func_caps->common_cap.ieee_1588 && 4056 !(pf->hw.mac_type == ICE_MAC_E830)) 4057 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4058 4059 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4060 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4061 } 4062 4063 /** 4064 * ice_init_pf - Initialize general software structures (struct ice_pf) 4065 * @pf: board private structure to initialize 4066 */ 4067 static int ice_init_pf(struct ice_pf *pf) 4068 { 4069 ice_set_pf_caps(pf); 4070 4071 mutex_init(&pf->sw_mutex); 4072 mutex_init(&pf->tc_mutex); 4073 mutex_init(&pf->adev_mutex); 4074 mutex_init(&pf->lag_mutex); 4075 4076 INIT_HLIST_HEAD(&pf->aq_wait_list); 4077 spin_lock_init(&pf->aq_wait_lock); 4078 init_waitqueue_head(&pf->aq_wait_queue); 4079 4080 init_waitqueue_head(&pf->reset_wait_queue); 4081 4082 /* setup service timer and periodic service task */ 4083 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4084 pf->serv_tmr_period = HZ; 4085 INIT_WORK(&pf->serv_task, ice_service_task); 4086 clear_bit(ICE_SERVICE_SCHED, pf->state); 4087 4088 mutex_init(&pf->avail_q_mutex); 4089 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4090 if (!pf->avail_txqs) 4091 return -ENOMEM; 4092 4093 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4094 if (!pf->avail_rxqs) { 4095 bitmap_free(pf->avail_txqs); 4096 pf->avail_txqs = NULL; 4097 return -ENOMEM; 4098 } 4099 4100 mutex_init(&pf->vfs.table_lock); 4101 hash_init(pf->vfs.table); 4102 ice_mbx_init_snapshot(&pf->hw); 4103 4104 return 0; 4105 } 4106 4107 /** 4108 * ice_is_wol_supported - check if WoL is supported 4109 * @hw: pointer to hardware info 4110 * 4111 * Check if WoL is supported based on the HW configuration. 4112 * Returns true if NVM supports and enables WoL for this port, false otherwise 4113 */ 4114 bool ice_is_wol_supported(struct ice_hw *hw) 4115 { 4116 u16 wol_ctrl; 4117 4118 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4119 * word) indicates WoL is not supported on the corresponding PF ID. 4120 */ 4121 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4122 return false; 4123 4124 return !(BIT(hw->port_info->lport) & wol_ctrl); 4125 } 4126 4127 /** 4128 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4129 * @vsi: VSI being changed 4130 * @new_rx: new number of Rx queues 4131 * @new_tx: new number of Tx queues 4132 * @locked: is adev device_lock held 4133 * 4134 * Only change the number of queues if new_tx, or new_rx is non-0. 4135 * 4136 * Returns 0 on success. 4137 */ 4138 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4139 { 4140 struct ice_pf *pf = vsi->back; 4141 int i, err = 0, timeout = 50; 4142 4143 if (!new_rx && !new_tx) 4144 return -EINVAL; 4145 4146 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4147 timeout--; 4148 if (!timeout) 4149 return -EBUSY; 4150 usleep_range(1000, 2000); 4151 } 4152 4153 if (new_tx) 4154 vsi->req_txq = (u16)new_tx; 4155 if (new_rx) 4156 vsi->req_rxq = (u16)new_rx; 4157 4158 /* set for the next time the netdev is started */ 4159 if (!netif_running(vsi->netdev)) { 4160 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4161 if (err) 4162 goto rebuild_err; 4163 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4164 goto done; 4165 } 4166 4167 ice_vsi_close(vsi); 4168 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4169 if (err) 4170 goto rebuild_err; 4171 4172 ice_for_each_traffic_class(i) { 4173 if (vsi->tc_cfg.ena_tc & BIT(i)) 4174 netdev_set_tc_queue(vsi->netdev, 4175 vsi->tc_cfg.tc_info[i].netdev_tc, 4176 vsi->tc_cfg.tc_info[i].qcount_tx, 4177 vsi->tc_cfg.tc_info[i].qoffset); 4178 } 4179 ice_pf_dcb_recfg(pf, locked); 4180 ice_vsi_open(vsi); 4181 goto done; 4182 4183 rebuild_err: 4184 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4185 err); 4186 done: 4187 clear_bit(ICE_CFG_BUSY, pf->state); 4188 return err; 4189 } 4190 4191 /** 4192 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4193 * @pf: PF to configure 4194 * 4195 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4196 * VSI can still Tx/Rx VLAN tagged packets. 4197 */ 4198 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4199 { 4200 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4201 struct ice_vsi_ctx *ctxt; 4202 struct ice_hw *hw; 4203 int status; 4204 4205 if (!vsi) 4206 return; 4207 4208 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4209 if (!ctxt) 4210 return; 4211 4212 hw = &pf->hw; 4213 ctxt->info = vsi->info; 4214 4215 ctxt->info.valid_sections = 4216 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4217 ICE_AQ_VSI_PROP_SECURITY_VALID | 4218 ICE_AQ_VSI_PROP_SW_VALID); 4219 4220 /* disable VLAN anti-spoof */ 4221 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4222 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4223 4224 /* disable VLAN pruning and keep all other settings */ 4225 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4226 4227 /* allow all VLANs on Tx and don't strip on Rx */ 4228 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4229 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4230 4231 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4232 if (status) { 4233 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4234 status, ice_aq_str(hw->adminq.sq_last_status)); 4235 } else { 4236 vsi->info.sec_flags = ctxt->info.sec_flags; 4237 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4238 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4239 } 4240 4241 kfree(ctxt); 4242 } 4243 4244 /** 4245 * ice_log_pkg_init - log result of DDP package load 4246 * @hw: pointer to hardware info 4247 * @state: state of package load 4248 */ 4249 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4250 { 4251 struct ice_pf *pf = hw->back; 4252 struct device *dev; 4253 4254 dev = ice_pf_to_dev(pf); 4255 4256 switch (state) { 4257 case ICE_DDP_PKG_SUCCESS: 4258 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4259 hw->active_pkg_name, 4260 hw->active_pkg_ver.major, 4261 hw->active_pkg_ver.minor, 4262 hw->active_pkg_ver.update, 4263 hw->active_pkg_ver.draft); 4264 break; 4265 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4266 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4267 hw->active_pkg_name, 4268 hw->active_pkg_ver.major, 4269 hw->active_pkg_ver.minor, 4270 hw->active_pkg_ver.update, 4271 hw->active_pkg_ver.draft); 4272 break; 4273 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4274 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4275 hw->active_pkg_name, 4276 hw->active_pkg_ver.major, 4277 hw->active_pkg_ver.minor, 4278 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4279 break; 4280 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4281 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4282 hw->active_pkg_name, 4283 hw->active_pkg_ver.major, 4284 hw->active_pkg_ver.minor, 4285 hw->active_pkg_ver.update, 4286 hw->active_pkg_ver.draft, 4287 hw->pkg_name, 4288 hw->pkg_ver.major, 4289 hw->pkg_ver.minor, 4290 hw->pkg_ver.update, 4291 hw->pkg_ver.draft); 4292 break; 4293 case ICE_DDP_PKG_FW_MISMATCH: 4294 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4295 break; 4296 case ICE_DDP_PKG_INVALID_FILE: 4297 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4298 break; 4299 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4300 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4301 break; 4302 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4303 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4304 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4305 break; 4306 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4307 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4308 break; 4309 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4310 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4311 break; 4312 case ICE_DDP_PKG_LOAD_ERROR: 4313 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4314 /* poll for reset to complete */ 4315 if (ice_check_reset(hw)) 4316 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4317 break; 4318 case ICE_DDP_PKG_ERR: 4319 default: 4320 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4321 break; 4322 } 4323 } 4324 4325 /** 4326 * ice_load_pkg - load/reload the DDP Package file 4327 * @firmware: firmware structure when firmware requested or NULL for reload 4328 * @pf: pointer to the PF instance 4329 * 4330 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4331 * initialize HW tables. 4332 */ 4333 static void 4334 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4335 { 4336 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4337 struct device *dev = ice_pf_to_dev(pf); 4338 struct ice_hw *hw = &pf->hw; 4339 4340 /* Load DDP Package */ 4341 if (firmware && !hw->pkg_copy) { 4342 state = ice_copy_and_init_pkg(hw, firmware->data, 4343 firmware->size); 4344 ice_log_pkg_init(hw, state); 4345 } else if (!firmware && hw->pkg_copy) { 4346 /* Reload package during rebuild after CORER/GLOBR reset */ 4347 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4348 ice_log_pkg_init(hw, state); 4349 } else { 4350 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4351 } 4352 4353 if (!ice_is_init_pkg_successful(state)) { 4354 /* Safe Mode */ 4355 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4356 return; 4357 } 4358 4359 /* Successful download package is the precondition for advanced 4360 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4361 */ 4362 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4363 } 4364 4365 /** 4366 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4367 * @pf: pointer to the PF structure 4368 * 4369 * There is no error returned here because the driver should be able to handle 4370 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4371 * specifically with Tx. 4372 */ 4373 static void ice_verify_cacheline_size(struct ice_pf *pf) 4374 { 4375 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4376 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4377 ICE_CACHE_LINE_BYTES); 4378 } 4379 4380 /** 4381 * ice_send_version - update firmware with driver version 4382 * @pf: PF struct 4383 * 4384 * Returns 0 on success, else error code 4385 */ 4386 static int ice_send_version(struct ice_pf *pf) 4387 { 4388 struct ice_driver_ver dv; 4389 4390 dv.major_ver = 0xff; 4391 dv.minor_ver = 0xff; 4392 dv.build_ver = 0xff; 4393 dv.subbuild_ver = 0; 4394 strscpy((char *)dv.driver_string, UTS_RELEASE, 4395 sizeof(dv.driver_string)); 4396 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4397 } 4398 4399 /** 4400 * ice_init_fdir - Initialize flow director VSI and configuration 4401 * @pf: pointer to the PF instance 4402 * 4403 * returns 0 on success, negative on error 4404 */ 4405 static int ice_init_fdir(struct ice_pf *pf) 4406 { 4407 struct device *dev = ice_pf_to_dev(pf); 4408 struct ice_vsi *ctrl_vsi; 4409 int err; 4410 4411 /* Side Band Flow Director needs to have a control VSI. 4412 * Allocate it and store it in the PF. 4413 */ 4414 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4415 if (!ctrl_vsi) { 4416 dev_dbg(dev, "could not create control VSI\n"); 4417 return -ENOMEM; 4418 } 4419 4420 err = ice_vsi_open_ctrl(ctrl_vsi); 4421 if (err) { 4422 dev_dbg(dev, "could not open control VSI\n"); 4423 goto err_vsi_open; 4424 } 4425 4426 mutex_init(&pf->hw.fdir_fltr_lock); 4427 4428 err = ice_fdir_create_dflt_rules(pf); 4429 if (err) 4430 goto err_fdir_rule; 4431 4432 return 0; 4433 4434 err_fdir_rule: 4435 ice_fdir_release_flows(&pf->hw); 4436 ice_vsi_close(ctrl_vsi); 4437 err_vsi_open: 4438 ice_vsi_release(ctrl_vsi); 4439 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4440 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4441 pf->ctrl_vsi_idx = ICE_NO_VSI; 4442 } 4443 return err; 4444 } 4445 4446 static void ice_deinit_fdir(struct ice_pf *pf) 4447 { 4448 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4449 4450 if (!vsi) 4451 return; 4452 4453 ice_vsi_manage_fdir(vsi, false); 4454 ice_vsi_release(vsi); 4455 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4456 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4457 pf->ctrl_vsi_idx = ICE_NO_VSI; 4458 } 4459 4460 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4461 } 4462 4463 /** 4464 * ice_get_opt_fw_name - return optional firmware file name or NULL 4465 * @pf: pointer to the PF instance 4466 */ 4467 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4468 { 4469 /* Optional firmware name same as default with additional dash 4470 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4471 */ 4472 struct pci_dev *pdev = pf->pdev; 4473 char *opt_fw_filename; 4474 u64 dsn; 4475 4476 /* Determine the name of the optional file using the DSN (two 4477 * dwords following the start of the DSN Capability). 4478 */ 4479 dsn = pci_get_dsn(pdev); 4480 if (!dsn) 4481 return NULL; 4482 4483 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4484 if (!opt_fw_filename) 4485 return NULL; 4486 4487 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4488 ICE_DDP_PKG_PATH, dsn); 4489 4490 return opt_fw_filename; 4491 } 4492 4493 /** 4494 * ice_request_fw - Device initialization routine 4495 * @pf: pointer to the PF instance 4496 * @firmware: double pointer to firmware struct 4497 * 4498 * Return: zero when successful, negative values otherwise. 4499 */ 4500 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4501 { 4502 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4503 struct device *dev = ice_pf_to_dev(pf); 4504 int err = 0; 4505 4506 /* optional device-specific DDP (if present) overrides the default DDP 4507 * package file. kernel logs a debug message if the file doesn't exist, 4508 * and warning messages for other errors. 4509 */ 4510 if (opt_fw_filename) { 4511 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4512 kfree(opt_fw_filename); 4513 if (!err) 4514 return err; 4515 } 4516 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4517 if (err) 4518 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4519 4520 return err; 4521 } 4522 4523 /** 4524 * ice_init_tx_topology - performs Tx topology initialization 4525 * @hw: pointer to the hardware structure 4526 * @firmware: pointer to firmware structure 4527 * 4528 * Return: zero when init was successful, negative values otherwise. 4529 */ 4530 static int 4531 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4532 { 4533 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4534 struct ice_pf *pf = hw->back; 4535 struct device *dev; 4536 u8 *buf_copy; 4537 int err; 4538 4539 dev = ice_pf_to_dev(pf); 4540 /* ice_cfg_tx_topo buf argument is not a constant, 4541 * so we have to make a copy 4542 */ 4543 buf_copy = kmemdup(firmware->data, firmware->size, GFP_KERNEL); 4544 4545 err = ice_cfg_tx_topo(hw, buf_copy, firmware->size); 4546 if (!err) { 4547 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4548 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4549 else 4550 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4551 /* if there was a change in topology ice_cfg_tx_topo triggered 4552 * a CORER and we need to re-init hw 4553 */ 4554 ice_deinit_hw(hw); 4555 err = ice_init_hw(hw); 4556 4557 return err; 4558 } else if (err == -EIO) { 4559 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4560 } 4561 4562 return 0; 4563 } 4564 4565 /** 4566 * ice_init_ddp_config - DDP related configuration 4567 * @hw: pointer to the hardware structure 4568 * @pf: pointer to pf structure 4569 * 4570 * This function loads DDP file from the disk, then initializes Tx 4571 * topology. At the end DDP package is loaded on the card. 4572 * 4573 * Return: zero when init was successful, negative values otherwise. 4574 */ 4575 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4576 { 4577 struct device *dev = ice_pf_to_dev(pf); 4578 const struct firmware *firmware = NULL; 4579 int err; 4580 4581 err = ice_request_fw(pf, &firmware); 4582 if (err) { 4583 dev_err(dev, "Fail during requesting FW: %d\n", err); 4584 return err; 4585 } 4586 4587 err = ice_init_tx_topology(hw, firmware); 4588 if (err) { 4589 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4590 err); 4591 release_firmware(firmware); 4592 return err; 4593 } 4594 4595 /* Download firmware to device */ 4596 ice_load_pkg(firmware, pf); 4597 release_firmware(firmware); 4598 4599 return 0; 4600 } 4601 4602 /** 4603 * ice_print_wake_reason - show the wake up cause in the log 4604 * @pf: pointer to the PF struct 4605 */ 4606 static void ice_print_wake_reason(struct ice_pf *pf) 4607 { 4608 u32 wus = pf->wakeup_reason; 4609 const char *wake_str; 4610 4611 /* if no wake event, nothing to print */ 4612 if (!wus) 4613 return; 4614 4615 if (wus & PFPM_WUS_LNKC_M) 4616 wake_str = "Link\n"; 4617 else if (wus & PFPM_WUS_MAG_M) 4618 wake_str = "Magic Packet\n"; 4619 else if (wus & PFPM_WUS_MNG_M) 4620 wake_str = "Management\n"; 4621 else if (wus & PFPM_WUS_FW_RST_WK_M) 4622 wake_str = "Firmware Reset\n"; 4623 else 4624 wake_str = "Unknown\n"; 4625 4626 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4627 } 4628 4629 /** 4630 * ice_pf_fwlog_update_module - update 1 module 4631 * @pf: pointer to the PF struct 4632 * @log_level: log_level to use for the @module 4633 * @module: module to update 4634 */ 4635 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4636 { 4637 struct ice_hw *hw = &pf->hw; 4638 4639 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4640 } 4641 4642 /** 4643 * ice_register_netdev - register netdev 4644 * @vsi: pointer to the VSI struct 4645 */ 4646 static int ice_register_netdev(struct ice_vsi *vsi) 4647 { 4648 int err; 4649 4650 if (!vsi || !vsi->netdev) 4651 return -EIO; 4652 4653 err = register_netdev(vsi->netdev); 4654 if (err) 4655 return err; 4656 4657 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4658 netif_carrier_off(vsi->netdev); 4659 netif_tx_stop_all_queues(vsi->netdev); 4660 4661 return 0; 4662 } 4663 4664 static void ice_unregister_netdev(struct ice_vsi *vsi) 4665 { 4666 if (!vsi || !vsi->netdev) 4667 return; 4668 4669 unregister_netdev(vsi->netdev); 4670 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4671 } 4672 4673 /** 4674 * ice_cfg_netdev - Allocate, configure and register a netdev 4675 * @vsi: the VSI associated with the new netdev 4676 * 4677 * Returns 0 on success, negative value on failure 4678 */ 4679 static int ice_cfg_netdev(struct ice_vsi *vsi) 4680 { 4681 struct ice_netdev_priv *np; 4682 struct net_device *netdev; 4683 u8 mac_addr[ETH_ALEN]; 4684 4685 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4686 vsi->alloc_rxq); 4687 if (!netdev) 4688 return -ENOMEM; 4689 4690 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4691 vsi->netdev = netdev; 4692 np = netdev_priv(netdev); 4693 np->vsi = vsi; 4694 4695 ice_set_netdev_features(netdev); 4696 ice_set_ops(vsi); 4697 4698 if (vsi->type == ICE_VSI_PF) { 4699 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4700 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4701 eth_hw_addr_set(netdev, mac_addr); 4702 } 4703 4704 netdev->priv_flags |= IFF_UNICAST_FLT; 4705 4706 /* Setup netdev TC information */ 4707 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4708 4709 netdev->max_mtu = ICE_MAX_MTU; 4710 4711 return 0; 4712 } 4713 4714 static void ice_decfg_netdev(struct ice_vsi *vsi) 4715 { 4716 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4717 free_netdev(vsi->netdev); 4718 vsi->netdev = NULL; 4719 } 4720 4721 /** 4722 * ice_wait_for_fw - wait for full FW readiness 4723 * @hw: pointer to the hardware structure 4724 * @timeout: milliseconds that can elapse before timing out 4725 */ 4726 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4727 { 4728 int fw_loading; 4729 u32 elapsed = 0; 4730 4731 while (elapsed <= timeout) { 4732 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4733 4734 /* firmware was not yet loaded, we have to wait more */ 4735 if (fw_loading) { 4736 elapsed += 100; 4737 msleep(100); 4738 continue; 4739 } 4740 return 0; 4741 } 4742 4743 return -ETIMEDOUT; 4744 } 4745 4746 int ice_init_dev(struct ice_pf *pf) 4747 { 4748 struct device *dev = ice_pf_to_dev(pf); 4749 struct ice_hw *hw = &pf->hw; 4750 int err; 4751 4752 err = ice_init_hw(hw); 4753 if (err) { 4754 dev_err(dev, "ice_init_hw failed: %d\n", err); 4755 return err; 4756 } 4757 4758 /* Some cards require longer initialization times 4759 * due to necessity of loading FW from an external source. 4760 * This can take even half a minute. 4761 */ 4762 if (ice_is_pf_c827(hw)) { 4763 err = ice_wait_for_fw(hw, 30000); 4764 if (err) { 4765 dev_err(dev, "ice_wait_for_fw timed out"); 4766 return err; 4767 } 4768 } 4769 4770 ice_init_feature_support(pf); 4771 4772 err = ice_init_ddp_config(hw, pf); 4773 if (err) 4774 return err; 4775 4776 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4777 * set in pf->state, which will cause ice_is_safe_mode to return 4778 * true 4779 */ 4780 if (ice_is_safe_mode(pf)) { 4781 /* we already got function/device capabilities but these don't 4782 * reflect what the driver needs to do in safe mode. Instead of 4783 * adding conditional logic everywhere to ignore these 4784 * device/function capabilities, override them. 4785 */ 4786 ice_set_safe_mode_caps(hw); 4787 } 4788 4789 err = ice_init_pf(pf); 4790 if (err) { 4791 dev_err(dev, "ice_init_pf failed: %d\n", err); 4792 goto err_init_pf; 4793 } 4794 4795 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4796 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4797 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4798 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4799 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4800 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4801 pf->hw.tnl.valid_count[TNL_VXLAN]; 4802 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4803 UDP_TUNNEL_TYPE_VXLAN; 4804 } 4805 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4806 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4807 pf->hw.tnl.valid_count[TNL_GENEVE]; 4808 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4809 UDP_TUNNEL_TYPE_GENEVE; 4810 } 4811 4812 err = ice_init_interrupt_scheme(pf); 4813 if (err) { 4814 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4815 err = -EIO; 4816 goto err_init_interrupt_scheme; 4817 } 4818 4819 /* In case of MSIX we are going to setup the misc vector right here 4820 * to handle admin queue events etc. In case of legacy and MSI 4821 * the misc functionality and queue processing is combined in 4822 * the same vector and that gets setup at open. 4823 */ 4824 err = ice_req_irq_msix_misc(pf); 4825 if (err) { 4826 dev_err(dev, "setup of misc vector failed: %d\n", err); 4827 goto err_req_irq_msix_misc; 4828 } 4829 4830 return 0; 4831 4832 err_req_irq_msix_misc: 4833 ice_clear_interrupt_scheme(pf); 4834 err_init_interrupt_scheme: 4835 ice_deinit_pf(pf); 4836 err_init_pf: 4837 ice_deinit_hw(hw); 4838 return err; 4839 } 4840 4841 void ice_deinit_dev(struct ice_pf *pf) 4842 { 4843 ice_free_irq_msix_misc(pf); 4844 ice_deinit_pf(pf); 4845 ice_deinit_hw(&pf->hw); 4846 4847 /* Service task is already stopped, so call reset directly. */ 4848 ice_reset(&pf->hw, ICE_RESET_PFR); 4849 pci_wait_for_pending_transaction(pf->pdev); 4850 ice_clear_interrupt_scheme(pf); 4851 } 4852 4853 static void ice_init_features(struct ice_pf *pf) 4854 { 4855 struct device *dev = ice_pf_to_dev(pf); 4856 4857 if (ice_is_safe_mode(pf)) 4858 return; 4859 4860 /* initialize DDP driven features */ 4861 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4862 ice_ptp_init(pf); 4863 4864 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4865 ice_gnss_init(pf); 4866 4867 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4868 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4869 ice_dpll_init(pf); 4870 4871 /* Note: Flow director init failure is non-fatal to load */ 4872 if (ice_init_fdir(pf)) 4873 dev_err(dev, "could not initialize flow director\n"); 4874 4875 /* Note: DCB init failure is non-fatal to load */ 4876 if (ice_init_pf_dcb(pf, false)) { 4877 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4878 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4879 } else { 4880 ice_cfg_lldp_mib_change(&pf->hw, true); 4881 } 4882 4883 if (ice_init_lag(pf)) 4884 dev_warn(dev, "Failed to init link aggregation support\n"); 4885 4886 ice_hwmon_init(pf); 4887 } 4888 4889 static void ice_deinit_features(struct ice_pf *pf) 4890 { 4891 if (ice_is_safe_mode(pf)) 4892 return; 4893 4894 ice_deinit_lag(pf); 4895 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4896 ice_cfg_lldp_mib_change(&pf->hw, false); 4897 ice_deinit_fdir(pf); 4898 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4899 ice_gnss_exit(pf); 4900 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4901 ice_ptp_release(pf); 4902 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4903 ice_dpll_deinit(pf); 4904 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4905 xa_destroy(&pf->eswitch.reprs); 4906 } 4907 4908 static void ice_init_wakeup(struct ice_pf *pf) 4909 { 4910 /* Save wakeup reason register for later use */ 4911 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4912 4913 /* check for a power management event */ 4914 ice_print_wake_reason(pf); 4915 4916 /* clear wake status, all bits */ 4917 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4918 4919 /* Disable WoL at init, wait for user to enable */ 4920 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4921 } 4922 4923 static int ice_init_link(struct ice_pf *pf) 4924 { 4925 struct device *dev = ice_pf_to_dev(pf); 4926 int err; 4927 4928 err = ice_init_link_events(pf->hw.port_info); 4929 if (err) { 4930 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4931 return err; 4932 } 4933 4934 /* not a fatal error if this fails */ 4935 err = ice_init_nvm_phy_type(pf->hw.port_info); 4936 if (err) 4937 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4938 4939 /* not a fatal error if this fails */ 4940 err = ice_update_link_info(pf->hw.port_info); 4941 if (err) 4942 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4943 4944 ice_init_link_dflt_override(pf->hw.port_info); 4945 4946 ice_check_link_cfg_err(pf, 4947 pf->hw.port_info->phy.link_info.link_cfg_err); 4948 4949 /* if media available, initialize PHY settings */ 4950 if (pf->hw.port_info->phy.link_info.link_info & 4951 ICE_AQ_MEDIA_AVAILABLE) { 4952 /* not a fatal error if this fails */ 4953 err = ice_init_phy_user_cfg(pf->hw.port_info); 4954 if (err) 4955 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4956 4957 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4958 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4959 4960 if (vsi) 4961 ice_configure_phy(vsi); 4962 } 4963 } else { 4964 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4965 } 4966 4967 return err; 4968 } 4969 4970 static int ice_init_pf_sw(struct ice_pf *pf) 4971 { 4972 bool dvm = ice_is_dvm_ena(&pf->hw); 4973 struct ice_vsi *vsi; 4974 int err; 4975 4976 /* create switch struct for the switch element created by FW on boot */ 4977 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4978 if (!pf->first_sw) 4979 return -ENOMEM; 4980 4981 if (pf->hw.evb_veb) 4982 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4983 else 4984 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4985 4986 pf->first_sw->pf = pf; 4987 4988 /* record the sw_id available for later use */ 4989 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4990 4991 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4992 if (err) 4993 goto err_aq_set_port_params; 4994 4995 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4996 if (!vsi) { 4997 err = -ENOMEM; 4998 goto err_pf_vsi_setup; 4999 } 5000 5001 return 0; 5002 5003 err_pf_vsi_setup: 5004 err_aq_set_port_params: 5005 kfree(pf->first_sw); 5006 return err; 5007 } 5008 5009 static void ice_deinit_pf_sw(struct ice_pf *pf) 5010 { 5011 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5012 5013 if (!vsi) 5014 return; 5015 5016 ice_vsi_release(vsi); 5017 kfree(pf->first_sw); 5018 } 5019 5020 static int ice_alloc_vsis(struct ice_pf *pf) 5021 { 5022 struct device *dev = ice_pf_to_dev(pf); 5023 5024 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5025 if (!pf->num_alloc_vsi) 5026 return -EIO; 5027 5028 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5029 dev_warn(dev, 5030 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5031 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5032 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5033 } 5034 5035 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5036 GFP_KERNEL); 5037 if (!pf->vsi) 5038 return -ENOMEM; 5039 5040 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5041 sizeof(*pf->vsi_stats), GFP_KERNEL); 5042 if (!pf->vsi_stats) { 5043 devm_kfree(dev, pf->vsi); 5044 return -ENOMEM; 5045 } 5046 5047 return 0; 5048 } 5049 5050 static void ice_dealloc_vsis(struct ice_pf *pf) 5051 { 5052 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5053 pf->vsi_stats = NULL; 5054 5055 pf->num_alloc_vsi = 0; 5056 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5057 pf->vsi = NULL; 5058 } 5059 5060 static int ice_init_devlink(struct ice_pf *pf) 5061 { 5062 int err; 5063 5064 err = ice_devlink_register_params(pf); 5065 if (err) 5066 return err; 5067 5068 ice_devlink_init_regions(pf); 5069 ice_devlink_register(pf); 5070 5071 return 0; 5072 } 5073 5074 static void ice_deinit_devlink(struct ice_pf *pf) 5075 { 5076 ice_devlink_unregister(pf); 5077 ice_devlink_destroy_regions(pf); 5078 ice_devlink_unregister_params(pf); 5079 } 5080 5081 static int ice_init(struct ice_pf *pf) 5082 { 5083 int err; 5084 5085 err = ice_init_dev(pf); 5086 if (err) 5087 return err; 5088 5089 err = ice_alloc_vsis(pf); 5090 if (err) 5091 goto err_alloc_vsis; 5092 5093 err = ice_init_pf_sw(pf); 5094 if (err) 5095 goto err_init_pf_sw; 5096 5097 ice_init_wakeup(pf); 5098 5099 err = ice_init_link(pf); 5100 if (err) 5101 goto err_init_link; 5102 5103 err = ice_send_version(pf); 5104 if (err) 5105 goto err_init_link; 5106 5107 ice_verify_cacheline_size(pf); 5108 5109 if (ice_is_safe_mode(pf)) 5110 ice_set_safe_mode_vlan_cfg(pf); 5111 else 5112 /* print PCI link speed and width */ 5113 pcie_print_link_status(pf->pdev); 5114 5115 /* ready to go, so clear down state bit */ 5116 clear_bit(ICE_DOWN, pf->state); 5117 clear_bit(ICE_SERVICE_DIS, pf->state); 5118 5119 /* since everything is good, start the service timer */ 5120 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5121 5122 return 0; 5123 5124 err_init_link: 5125 ice_deinit_pf_sw(pf); 5126 err_init_pf_sw: 5127 ice_dealloc_vsis(pf); 5128 err_alloc_vsis: 5129 ice_deinit_dev(pf); 5130 return err; 5131 } 5132 5133 static void ice_deinit(struct ice_pf *pf) 5134 { 5135 set_bit(ICE_SERVICE_DIS, pf->state); 5136 set_bit(ICE_DOWN, pf->state); 5137 5138 ice_deinit_pf_sw(pf); 5139 ice_dealloc_vsis(pf); 5140 ice_deinit_dev(pf); 5141 } 5142 5143 /** 5144 * ice_load - load pf by init hw and starting VSI 5145 * @pf: pointer to the pf instance 5146 * 5147 * This function has to be called under devl_lock. 5148 */ 5149 int ice_load(struct ice_pf *pf) 5150 { 5151 struct ice_vsi *vsi; 5152 int err; 5153 5154 devl_assert_locked(priv_to_devlink(pf)); 5155 5156 vsi = ice_get_main_vsi(pf); 5157 5158 /* init channel list */ 5159 INIT_LIST_HEAD(&vsi->ch_list); 5160 5161 err = ice_cfg_netdev(vsi); 5162 if (err) 5163 return err; 5164 5165 /* Setup DCB netlink interface */ 5166 ice_dcbnl_setup(vsi); 5167 5168 err = ice_init_mac_fltr(pf); 5169 if (err) 5170 goto err_init_mac_fltr; 5171 5172 err = ice_devlink_create_pf_port(pf); 5173 if (err) 5174 goto err_devlink_create_pf_port; 5175 5176 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5177 5178 err = ice_register_netdev(vsi); 5179 if (err) 5180 goto err_register_netdev; 5181 5182 err = ice_tc_indir_block_register(vsi); 5183 if (err) 5184 goto err_tc_indir_block_register; 5185 5186 ice_napi_add(vsi); 5187 5188 err = ice_init_rdma(pf); 5189 if (err) 5190 goto err_init_rdma; 5191 5192 ice_init_features(pf); 5193 ice_service_task_restart(pf); 5194 5195 clear_bit(ICE_DOWN, pf->state); 5196 5197 return 0; 5198 5199 err_init_rdma: 5200 ice_tc_indir_block_unregister(vsi); 5201 err_tc_indir_block_register: 5202 ice_unregister_netdev(vsi); 5203 err_register_netdev: 5204 ice_devlink_destroy_pf_port(pf); 5205 err_devlink_create_pf_port: 5206 err_init_mac_fltr: 5207 ice_decfg_netdev(vsi); 5208 return err; 5209 } 5210 5211 /** 5212 * ice_unload - unload pf by stopping VSI and deinit hw 5213 * @pf: pointer to the pf instance 5214 * 5215 * This function has to be called under devl_lock. 5216 */ 5217 void ice_unload(struct ice_pf *pf) 5218 { 5219 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5220 5221 devl_assert_locked(priv_to_devlink(pf)); 5222 5223 ice_deinit_features(pf); 5224 ice_deinit_rdma(pf); 5225 ice_tc_indir_block_unregister(vsi); 5226 ice_unregister_netdev(vsi); 5227 ice_devlink_destroy_pf_port(pf); 5228 ice_decfg_netdev(vsi); 5229 } 5230 5231 /** 5232 * ice_probe - Device initialization routine 5233 * @pdev: PCI device information struct 5234 * @ent: entry in ice_pci_tbl 5235 * 5236 * Returns 0 on success, negative on failure 5237 */ 5238 static int 5239 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5240 { 5241 struct device *dev = &pdev->dev; 5242 struct ice_adapter *adapter; 5243 struct ice_pf *pf; 5244 struct ice_hw *hw; 5245 int err; 5246 5247 if (pdev->is_virtfn) { 5248 dev_err(dev, "can't probe a virtual function\n"); 5249 return -EINVAL; 5250 } 5251 5252 /* when under a kdump kernel initiate a reset before enabling the 5253 * device in order to clear out any pending DMA transactions. These 5254 * transactions can cause some systems to machine check when doing 5255 * the pcim_enable_device() below. 5256 */ 5257 if (is_kdump_kernel()) { 5258 pci_save_state(pdev); 5259 pci_clear_master(pdev); 5260 err = pcie_flr(pdev); 5261 if (err) 5262 return err; 5263 pci_restore_state(pdev); 5264 } 5265 5266 /* this driver uses devres, see 5267 * Documentation/driver-api/driver-model/devres.rst 5268 */ 5269 err = pcim_enable_device(pdev); 5270 if (err) 5271 return err; 5272 5273 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5274 if (err) { 5275 dev_err(dev, "BAR0 I/O map error %d\n", err); 5276 return err; 5277 } 5278 5279 pf = ice_allocate_pf(dev); 5280 if (!pf) 5281 return -ENOMEM; 5282 5283 /* initialize Auxiliary index to invalid value */ 5284 pf->aux_idx = -1; 5285 5286 /* set up for high or low DMA */ 5287 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5288 if (err) { 5289 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5290 return err; 5291 } 5292 5293 pci_set_master(pdev); 5294 5295 adapter = ice_adapter_get(pdev); 5296 if (IS_ERR(adapter)) 5297 return PTR_ERR(adapter); 5298 5299 pf->pdev = pdev; 5300 pf->adapter = adapter; 5301 pci_set_drvdata(pdev, pf); 5302 set_bit(ICE_DOWN, pf->state); 5303 /* Disable service task until DOWN bit is cleared */ 5304 set_bit(ICE_SERVICE_DIS, pf->state); 5305 5306 hw = &pf->hw; 5307 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5308 pci_save_state(pdev); 5309 5310 hw->back = pf; 5311 hw->port_info = NULL; 5312 hw->vendor_id = pdev->vendor; 5313 hw->device_id = pdev->device; 5314 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5315 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5316 hw->subsystem_device_id = pdev->subsystem_device; 5317 hw->bus.device = PCI_SLOT(pdev->devfn); 5318 hw->bus.func = PCI_FUNC(pdev->devfn); 5319 ice_set_ctrlq_len(hw); 5320 5321 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5322 5323 #ifndef CONFIG_DYNAMIC_DEBUG 5324 if (debug < -1) 5325 hw->debug_mask = debug; 5326 #endif 5327 5328 err = ice_init(pf); 5329 if (err) 5330 goto err_init; 5331 5332 devl_lock(priv_to_devlink(pf)); 5333 err = ice_load(pf); 5334 if (err) 5335 goto err_load; 5336 5337 err = ice_init_devlink(pf); 5338 if (err) 5339 goto err_init_devlink; 5340 devl_unlock(priv_to_devlink(pf)); 5341 5342 return 0; 5343 5344 err_init_devlink: 5345 ice_unload(pf); 5346 err_load: 5347 devl_unlock(priv_to_devlink(pf)); 5348 ice_deinit(pf); 5349 err_init: 5350 ice_adapter_put(pdev); 5351 pci_disable_device(pdev); 5352 return err; 5353 } 5354 5355 /** 5356 * ice_set_wake - enable or disable Wake on LAN 5357 * @pf: pointer to the PF struct 5358 * 5359 * Simple helper for WoL control 5360 */ 5361 static void ice_set_wake(struct ice_pf *pf) 5362 { 5363 struct ice_hw *hw = &pf->hw; 5364 bool wol = pf->wol_ena; 5365 5366 /* clear wake state, otherwise new wake events won't fire */ 5367 wr32(hw, PFPM_WUS, U32_MAX); 5368 5369 /* enable / disable APM wake up, no RMW needed */ 5370 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5371 5372 /* set magic packet filter enabled */ 5373 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5374 } 5375 5376 /** 5377 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5378 * @pf: pointer to the PF struct 5379 * 5380 * Issue firmware command to enable multicast magic wake, making 5381 * sure that any locally administered address (LAA) is used for 5382 * wake, and that PF reset doesn't undo the LAA. 5383 */ 5384 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5385 { 5386 struct device *dev = ice_pf_to_dev(pf); 5387 struct ice_hw *hw = &pf->hw; 5388 u8 mac_addr[ETH_ALEN]; 5389 struct ice_vsi *vsi; 5390 int status; 5391 u8 flags; 5392 5393 if (!pf->wol_ena) 5394 return; 5395 5396 vsi = ice_get_main_vsi(pf); 5397 if (!vsi) 5398 return; 5399 5400 /* Get current MAC address in case it's an LAA */ 5401 if (vsi->netdev) 5402 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5403 else 5404 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5405 5406 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5407 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5408 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5409 5410 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5411 if (status) 5412 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5413 status, ice_aq_str(hw->adminq.sq_last_status)); 5414 } 5415 5416 /** 5417 * ice_remove - Device removal routine 5418 * @pdev: PCI device information struct 5419 */ 5420 static void ice_remove(struct pci_dev *pdev) 5421 { 5422 struct ice_pf *pf = pci_get_drvdata(pdev); 5423 int i; 5424 5425 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5426 if (!ice_is_reset_in_progress(pf->state)) 5427 break; 5428 msleep(100); 5429 } 5430 5431 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5432 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5433 ice_free_vfs(pf); 5434 } 5435 5436 ice_hwmon_exit(pf); 5437 5438 ice_service_task_stop(pf); 5439 ice_aq_cancel_waiting_tasks(pf); 5440 set_bit(ICE_DOWN, pf->state); 5441 5442 if (!ice_is_safe_mode(pf)) 5443 ice_remove_arfs(pf); 5444 5445 devl_lock(priv_to_devlink(pf)); 5446 ice_deinit_devlink(pf); 5447 5448 ice_unload(pf); 5449 devl_unlock(priv_to_devlink(pf)); 5450 5451 ice_deinit(pf); 5452 ice_vsi_release_all(pf); 5453 5454 ice_setup_mc_magic_wake(pf); 5455 ice_set_wake(pf); 5456 5457 ice_adapter_put(pdev); 5458 pci_disable_device(pdev); 5459 } 5460 5461 /** 5462 * ice_shutdown - PCI callback for shutting down device 5463 * @pdev: PCI device information struct 5464 */ 5465 static void ice_shutdown(struct pci_dev *pdev) 5466 { 5467 struct ice_pf *pf = pci_get_drvdata(pdev); 5468 5469 ice_remove(pdev); 5470 5471 if (system_state == SYSTEM_POWER_OFF) { 5472 pci_wake_from_d3(pdev, pf->wol_ena); 5473 pci_set_power_state(pdev, PCI_D3hot); 5474 } 5475 } 5476 5477 /** 5478 * ice_prepare_for_shutdown - prep for PCI shutdown 5479 * @pf: board private structure 5480 * 5481 * Inform or close all dependent features in prep for PCI device shutdown 5482 */ 5483 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5484 { 5485 struct ice_hw *hw = &pf->hw; 5486 u32 v; 5487 5488 /* Notify VFs of impending reset */ 5489 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5490 ice_vc_notify_reset(pf); 5491 5492 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5493 5494 /* disable the VSIs and their queues that are not already DOWN */ 5495 ice_pf_dis_all_vsi(pf, false); 5496 5497 ice_for_each_vsi(pf, v) 5498 if (pf->vsi[v]) 5499 pf->vsi[v]->vsi_num = 0; 5500 5501 ice_shutdown_all_ctrlq(hw, true); 5502 } 5503 5504 /** 5505 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5506 * @pf: board private structure to reinitialize 5507 * 5508 * This routine reinitialize interrupt scheme that was cleared during 5509 * power management suspend callback. 5510 * 5511 * This should be called during resume routine to re-allocate the q_vectors 5512 * and reacquire interrupts. 5513 */ 5514 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5515 { 5516 struct device *dev = ice_pf_to_dev(pf); 5517 int ret, v; 5518 5519 /* Since we clear MSIX flag during suspend, we need to 5520 * set it back during resume... 5521 */ 5522 5523 ret = ice_init_interrupt_scheme(pf); 5524 if (ret) { 5525 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5526 return ret; 5527 } 5528 5529 /* Remap vectors and rings, after successful re-init interrupts */ 5530 ice_for_each_vsi(pf, v) { 5531 if (!pf->vsi[v]) 5532 continue; 5533 5534 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5535 if (ret) 5536 goto err_reinit; 5537 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5538 ice_vsi_set_napi_queues(pf->vsi[v]); 5539 } 5540 5541 ret = ice_req_irq_msix_misc(pf); 5542 if (ret) { 5543 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5544 ret); 5545 goto err_reinit; 5546 } 5547 5548 return 0; 5549 5550 err_reinit: 5551 while (v--) 5552 if (pf->vsi[v]) 5553 ice_vsi_free_q_vectors(pf->vsi[v]); 5554 5555 return ret; 5556 } 5557 5558 /** 5559 * ice_suspend 5560 * @dev: generic device information structure 5561 * 5562 * Power Management callback to quiesce the device and prepare 5563 * for D3 transition. 5564 */ 5565 static int ice_suspend(struct device *dev) 5566 { 5567 struct pci_dev *pdev = to_pci_dev(dev); 5568 struct ice_pf *pf; 5569 int disabled, v; 5570 5571 pf = pci_get_drvdata(pdev); 5572 5573 if (!ice_pf_state_is_nominal(pf)) { 5574 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5575 return -EBUSY; 5576 } 5577 5578 /* Stop watchdog tasks until resume completion. 5579 * Even though it is most likely that the service task is 5580 * disabled if the device is suspended or down, the service task's 5581 * state is controlled by a different state bit, and we should 5582 * store and honor whatever state that bit is in at this point. 5583 */ 5584 disabled = ice_service_task_stop(pf); 5585 5586 ice_deinit_rdma(pf); 5587 5588 /* Already suspended?, then there is nothing to do */ 5589 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5590 if (!disabled) 5591 ice_service_task_restart(pf); 5592 return 0; 5593 } 5594 5595 if (test_bit(ICE_DOWN, pf->state) || 5596 ice_is_reset_in_progress(pf->state)) { 5597 dev_err(dev, "can't suspend device in reset or already down\n"); 5598 if (!disabled) 5599 ice_service_task_restart(pf); 5600 return 0; 5601 } 5602 5603 ice_setup_mc_magic_wake(pf); 5604 5605 ice_prepare_for_shutdown(pf); 5606 5607 ice_set_wake(pf); 5608 5609 /* Free vectors, clear the interrupt scheme and release IRQs 5610 * for proper hibernation, especially with large number of CPUs. 5611 * Otherwise hibernation might fail when mapping all the vectors back 5612 * to CPU0. 5613 */ 5614 ice_free_irq_msix_misc(pf); 5615 ice_for_each_vsi(pf, v) { 5616 if (!pf->vsi[v]) 5617 continue; 5618 ice_vsi_free_q_vectors(pf->vsi[v]); 5619 } 5620 ice_clear_interrupt_scheme(pf); 5621 5622 pci_save_state(pdev); 5623 pci_wake_from_d3(pdev, pf->wol_ena); 5624 pci_set_power_state(pdev, PCI_D3hot); 5625 return 0; 5626 } 5627 5628 /** 5629 * ice_resume - PM callback for waking up from D3 5630 * @dev: generic device information structure 5631 */ 5632 static int ice_resume(struct device *dev) 5633 { 5634 struct pci_dev *pdev = to_pci_dev(dev); 5635 enum ice_reset_req reset_type; 5636 struct ice_pf *pf; 5637 struct ice_hw *hw; 5638 int ret; 5639 5640 pci_set_power_state(pdev, PCI_D0); 5641 pci_restore_state(pdev); 5642 pci_save_state(pdev); 5643 5644 if (!pci_device_is_present(pdev)) 5645 return -ENODEV; 5646 5647 ret = pci_enable_device_mem(pdev); 5648 if (ret) { 5649 dev_err(dev, "Cannot enable device after suspend\n"); 5650 return ret; 5651 } 5652 5653 pf = pci_get_drvdata(pdev); 5654 hw = &pf->hw; 5655 5656 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5657 ice_print_wake_reason(pf); 5658 5659 /* We cleared the interrupt scheme when we suspended, so we need to 5660 * restore it now to resume device functionality. 5661 */ 5662 ret = ice_reinit_interrupt_scheme(pf); 5663 if (ret) 5664 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5665 5666 ret = ice_init_rdma(pf); 5667 if (ret) 5668 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5669 ret); 5670 5671 clear_bit(ICE_DOWN, pf->state); 5672 /* Now perform PF reset and rebuild */ 5673 reset_type = ICE_RESET_PFR; 5674 /* re-enable service task for reset, but allow reset to schedule it */ 5675 clear_bit(ICE_SERVICE_DIS, pf->state); 5676 5677 if (ice_schedule_reset(pf, reset_type)) 5678 dev_err(dev, "Reset during resume failed.\n"); 5679 5680 clear_bit(ICE_SUSPENDED, pf->state); 5681 ice_service_task_restart(pf); 5682 5683 /* Restart the service task */ 5684 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5685 5686 return 0; 5687 } 5688 5689 /** 5690 * ice_pci_err_detected - warning that PCI error has been detected 5691 * @pdev: PCI device information struct 5692 * @err: the type of PCI error 5693 * 5694 * Called to warn that something happened on the PCI bus and the error handling 5695 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5696 */ 5697 static pci_ers_result_t 5698 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5699 { 5700 struct ice_pf *pf = pci_get_drvdata(pdev); 5701 5702 if (!pf) { 5703 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5704 __func__, err); 5705 return PCI_ERS_RESULT_DISCONNECT; 5706 } 5707 5708 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5709 ice_service_task_stop(pf); 5710 5711 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5712 set_bit(ICE_PFR_REQ, pf->state); 5713 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5714 } 5715 } 5716 5717 return PCI_ERS_RESULT_NEED_RESET; 5718 } 5719 5720 /** 5721 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5722 * @pdev: PCI device information struct 5723 * 5724 * Called to determine if the driver can recover from the PCI slot reset by 5725 * using a register read to determine if the device is recoverable. 5726 */ 5727 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5728 { 5729 struct ice_pf *pf = pci_get_drvdata(pdev); 5730 pci_ers_result_t result; 5731 int err; 5732 u32 reg; 5733 5734 err = pci_enable_device_mem(pdev); 5735 if (err) { 5736 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5737 err); 5738 result = PCI_ERS_RESULT_DISCONNECT; 5739 } else { 5740 pci_set_master(pdev); 5741 pci_restore_state(pdev); 5742 pci_save_state(pdev); 5743 pci_wake_from_d3(pdev, false); 5744 5745 /* Check for life */ 5746 reg = rd32(&pf->hw, GLGEN_RTRIG); 5747 if (!reg) 5748 result = PCI_ERS_RESULT_RECOVERED; 5749 else 5750 result = PCI_ERS_RESULT_DISCONNECT; 5751 } 5752 5753 return result; 5754 } 5755 5756 /** 5757 * ice_pci_err_resume - restart operations after PCI error recovery 5758 * @pdev: PCI device information struct 5759 * 5760 * Called to allow the driver to bring things back up after PCI error and/or 5761 * reset recovery have finished 5762 */ 5763 static void ice_pci_err_resume(struct pci_dev *pdev) 5764 { 5765 struct ice_pf *pf = pci_get_drvdata(pdev); 5766 5767 if (!pf) { 5768 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5769 __func__); 5770 return; 5771 } 5772 5773 if (test_bit(ICE_SUSPENDED, pf->state)) { 5774 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5775 __func__); 5776 return; 5777 } 5778 5779 ice_restore_all_vfs_msi_state(pf); 5780 5781 ice_do_reset(pf, ICE_RESET_PFR); 5782 ice_service_task_restart(pf); 5783 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5784 } 5785 5786 /** 5787 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5788 * @pdev: PCI device information struct 5789 */ 5790 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5791 { 5792 struct ice_pf *pf = pci_get_drvdata(pdev); 5793 5794 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5795 ice_service_task_stop(pf); 5796 5797 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5798 set_bit(ICE_PFR_REQ, pf->state); 5799 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5800 } 5801 } 5802 } 5803 5804 /** 5805 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5806 * @pdev: PCI device information struct 5807 */ 5808 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5809 { 5810 ice_pci_err_resume(pdev); 5811 } 5812 5813 /* ice_pci_tbl - PCI Device ID Table 5814 * 5815 * Wildcard entries (PCI_ANY_ID) should come last 5816 * Last entry must be all 0s 5817 * 5818 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5819 * Class, Class Mask, private data (not used) } 5820 */ 5821 static const struct pci_device_id ice_pci_tbl[] = { 5822 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5823 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5824 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5825 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5826 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5831 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5832 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5862 /* required last entry */ 5863 {} 5864 }; 5865 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5866 5867 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5868 5869 static const struct pci_error_handlers ice_pci_err_handler = { 5870 .error_detected = ice_pci_err_detected, 5871 .slot_reset = ice_pci_err_slot_reset, 5872 .reset_prepare = ice_pci_err_reset_prepare, 5873 .reset_done = ice_pci_err_reset_done, 5874 .resume = ice_pci_err_resume 5875 }; 5876 5877 static struct pci_driver ice_driver = { 5878 .name = KBUILD_MODNAME, 5879 .id_table = ice_pci_tbl, 5880 .probe = ice_probe, 5881 .remove = ice_remove, 5882 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5883 .shutdown = ice_shutdown, 5884 .sriov_configure = ice_sriov_configure, 5885 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5886 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5887 .err_handler = &ice_pci_err_handler 5888 }; 5889 5890 /** 5891 * ice_module_init - Driver registration routine 5892 * 5893 * ice_module_init is the first routine called when the driver is 5894 * loaded. All it does is register with the PCI subsystem. 5895 */ 5896 static int __init ice_module_init(void) 5897 { 5898 int status = -ENOMEM; 5899 5900 pr_info("%s\n", ice_driver_string); 5901 pr_info("%s\n", ice_copyright); 5902 5903 ice_adv_lnk_speed_maps_init(); 5904 5905 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5906 if (!ice_wq) { 5907 pr_err("Failed to create workqueue\n"); 5908 return status; 5909 } 5910 5911 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5912 if (!ice_lag_wq) { 5913 pr_err("Failed to create LAG workqueue\n"); 5914 goto err_dest_wq; 5915 } 5916 5917 ice_debugfs_init(); 5918 5919 status = pci_register_driver(&ice_driver); 5920 if (status) { 5921 pr_err("failed to register PCI driver, err %d\n", status); 5922 goto err_dest_lag_wq; 5923 } 5924 5925 return 0; 5926 5927 err_dest_lag_wq: 5928 destroy_workqueue(ice_lag_wq); 5929 ice_debugfs_exit(); 5930 err_dest_wq: 5931 destroy_workqueue(ice_wq); 5932 return status; 5933 } 5934 module_init(ice_module_init); 5935 5936 /** 5937 * ice_module_exit - Driver exit cleanup routine 5938 * 5939 * ice_module_exit is called just before the driver is removed 5940 * from memory. 5941 */ 5942 static void __exit ice_module_exit(void) 5943 { 5944 pci_unregister_driver(&ice_driver); 5945 ice_debugfs_exit(); 5946 destroy_workqueue(ice_wq); 5947 destroy_workqueue(ice_lag_wq); 5948 pr_info("module unloaded\n"); 5949 } 5950 module_exit(ice_module_exit); 5951 5952 /** 5953 * ice_set_mac_address - NDO callback to set MAC address 5954 * @netdev: network interface device structure 5955 * @pi: pointer to an address structure 5956 * 5957 * Returns 0 on success, negative on failure 5958 */ 5959 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5960 { 5961 struct ice_netdev_priv *np = netdev_priv(netdev); 5962 struct ice_vsi *vsi = np->vsi; 5963 struct ice_pf *pf = vsi->back; 5964 struct ice_hw *hw = &pf->hw; 5965 struct sockaddr *addr = pi; 5966 u8 old_mac[ETH_ALEN]; 5967 u8 flags = 0; 5968 u8 *mac; 5969 int err; 5970 5971 mac = (u8 *)addr->sa_data; 5972 5973 if (!is_valid_ether_addr(mac)) 5974 return -EADDRNOTAVAIL; 5975 5976 if (test_bit(ICE_DOWN, pf->state) || 5977 ice_is_reset_in_progress(pf->state)) { 5978 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5979 mac); 5980 return -EBUSY; 5981 } 5982 5983 if (ice_chnl_dmac_fltr_cnt(pf)) { 5984 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5985 mac); 5986 return -EAGAIN; 5987 } 5988 5989 netif_addr_lock_bh(netdev); 5990 ether_addr_copy(old_mac, netdev->dev_addr); 5991 /* change the netdev's MAC address */ 5992 eth_hw_addr_set(netdev, mac); 5993 netif_addr_unlock_bh(netdev); 5994 5995 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5996 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5997 if (err && err != -ENOENT) { 5998 err = -EADDRNOTAVAIL; 5999 goto err_update_filters; 6000 } 6001 6002 /* Add filter for new MAC. If filter exists, return success */ 6003 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6004 if (err == -EEXIST) { 6005 /* Although this MAC filter is already present in hardware it's 6006 * possible in some cases (e.g. bonding) that dev_addr was 6007 * modified outside of the driver and needs to be restored back 6008 * to this value. 6009 */ 6010 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6011 6012 return 0; 6013 } else if (err) { 6014 /* error if the new filter addition failed */ 6015 err = -EADDRNOTAVAIL; 6016 } 6017 6018 err_update_filters: 6019 if (err) { 6020 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6021 mac); 6022 netif_addr_lock_bh(netdev); 6023 eth_hw_addr_set(netdev, old_mac); 6024 netif_addr_unlock_bh(netdev); 6025 return err; 6026 } 6027 6028 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6029 netdev->dev_addr); 6030 6031 /* write new MAC address to the firmware */ 6032 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6033 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6034 if (err) { 6035 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6036 mac, err); 6037 } 6038 return 0; 6039 } 6040 6041 /** 6042 * ice_set_rx_mode - NDO callback to set the netdev filters 6043 * @netdev: network interface device structure 6044 */ 6045 static void ice_set_rx_mode(struct net_device *netdev) 6046 { 6047 struct ice_netdev_priv *np = netdev_priv(netdev); 6048 struct ice_vsi *vsi = np->vsi; 6049 6050 if (!vsi || ice_is_switchdev_running(vsi->back)) 6051 return; 6052 6053 /* Set the flags to synchronize filters 6054 * ndo_set_rx_mode may be triggered even without a change in netdev 6055 * flags 6056 */ 6057 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6058 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6059 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6060 6061 /* schedule our worker thread which will take care of 6062 * applying the new filter changes 6063 */ 6064 ice_service_task_schedule(vsi->back); 6065 } 6066 6067 /** 6068 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6069 * @netdev: network interface device structure 6070 * @queue_index: Queue ID 6071 * @maxrate: maximum bandwidth in Mbps 6072 */ 6073 static int 6074 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6075 { 6076 struct ice_netdev_priv *np = netdev_priv(netdev); 6077 struct ice_vsi *vsi = np->vsi; 6078 u16 q_handle; 6079 int status; 6080 u8 tc; 6081 6082 /* Validate maxrate requested is within permitted range */ 6083 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6084 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6085 maxrate, queue_index); 6086 return -EINVAL; 6087 } 6088 6089 q_handle = vsi->tx_rings[queue_index]->q_handle; 6090 tc = ice_dcb_get_tc(vsi, queue_index); 6091 6092 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6093 if (!vsi) { 6094 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6095 queue_index); 6096 return -EINVAL; 6097 } 6098 6099 /* Set BW back to default, when user set maxrate to 0 */ 6100 if (!maxrate) 6101 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6102 q_handle, ICE_MAX_BW); 6103 else 6104 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6105 q_handle, ICE_MAX_BW, maxrate * 1000); 6106 if (status) 6107 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6108 status); 6109 6110 return status; 6111 } 6112 6113 /** 6114 * ice_fdb_add - add an entry to the hardware database 6115 * @ndm: the input from the stack 6116 * @tb: pointer to array of nladdr (unused) 6117 * @dev: the net device pointer 6118 * @addr: the MAC address entry being added 6119 * @vid: VLAN ID 6120 * @flags: instructions from stack about fdb operation 6121 * @extack: netlink extended ack 6122 */ 6123 static int 6124 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6125 struct net_device *dev, const unsigned char *addr, u16 vid, 6126 u16 flags, struct netlink_ext_ack __always_unused *extack) 6127 { 6128 int err; 6129 6130 if (vid) { 6131 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6132 return -EINVAL; 6133 } 6134 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6135 netdev_err(dev, "FDB only supports static addresses\n"); 6136 return -EINVAL; 6137 } 6138 6139 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6140 err = dev_uc_add_excl(dev, addr); 6141 else if (is_multicast_ether_addr(addr)) 6142 err = dev_mc_add_excl(dev, addr); 6143 else 6144 err = -EINVAL; 6145 6146 /* Only return duplicate errors if NLM_F_EXCL is set */ 6147 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6148 err = 0; 6149 6150 return err; 6151 } 6152 6153 /** 6154 * ice_fdb_del - delete an entry from the hardware database 6155 * @ndm: the input from the stack 6156 * @tb: pointer to array of nladdr (unused) 6157 * @dev: the net device pointer 6158 * @addr: the MAC address entry being added 6159 * @vid: VLAN ID 6160 * @extack: netlink extended ack 6161 */ 6162 static int 6163 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6164 struct net_device *dev, const unsigned char *addr, 6165 __always_unused u16 vid, struct netlink_ext_ack *extack) 6166 { 6167 int err; 6168 6169 if (ndm->ndm_state & NUD_PERMANENT) { 6170 netdev_err(dev, "FDB only supports static addresses\n"); 6171 return -EINVAL; 6172 } 6173 6174 if (is_unicast_ether_addr(addr)) 6175 err = dev_uc_del(dev, addr); 6176 else if (is_multicast_ether_addr(addr)) 6177 err = dev_mc_del(dev, addr); 6178 else 6179 err = -EINVAL; 6180 6181 return err; 6182 } 6183 6184 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6185 NETIF_F_HW_VLAN_CTAG_TX | \ 6186 NETIF_F_HW_VLAN_STAG_RX | \ 6187 NETIF_F_HW_VLAN_STAG_TX) 6188 6189 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6190 NETIF_F_HW_VLAN_STAG_RX) 6191 6192 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6193 NETIF_F_HW_VLAN_STAG_FILTER) 6194 6195 /** 6196 * ice_fix_features - fix the netdev features flags based on device limitations 6197 * @netdev: ptr to the netdev that flags are being fixed on 6198 * @features: features that need to be checked and possibly fixed 6199 * 6200 * Make sure any fixups are made to features in this callback. This enables the 6201 * driver to not have to check unsupported configurations throughout the driver 6202 * because that's the responsiblity of this callback. 6203 * 6204 * Single VLAN Mode (SVM) Supported Features: 6205 * NETIF_F_HW_VLAN_CTAG_FILTER 6206 * NETIF_F_HW_VLAN_CTAG_RX 6207 * NETIF_F_HW_VLAN_CTAG_TX 6208 * 6209 * Double VLAN Mode (DVM) Supported Features: 6210 * NETIF_F_HW_VLAN_CTAG_FILTER 6211 * NETIF_F_HW_VLAN_CTAG_RX 6212 * NETIF_F_HW_VLAN_CTAG_TX 6213 * 6214 * NETIF_F_HW_VLAN_STAG_FILTER 6215 * NETIF_HW_VLAN_STAG_RX 6216 * NETIF_HW_VLAN_STAG_TX 6217 * 6218 * Features that need fixing: 6219 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6220 * These are mutually exlusive as the VSI context cannot support multiple 6221 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6222 * is not done, then default to clearing the requested STAG offload 6223 * settings. 6224 * 6225 * All supported filtering has to be enabled or disabled together. For 6226 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6227 * together. If this is not done, then default to VLAN filtering disabled. 6228 * These are mutually exclusive as there is currently no way to 6229 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6230 * prune rules. 6231 */ 6232 static netdev_features_t 6233 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6234 { 6235 struct ice_netdev_priv *np = netdev_priv(netdev); 6236 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6237 bool cur_ctag, cur_stag, req_ctag, req_stag; 6238 6239 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6240 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6241 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6242 6243 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6244 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6245 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6246 6247 if (req_vlan_fltr != cur_vlan_fltr) { 6248 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6249 if (req_ctag && req_stag) { 6250 features |= NETIF_VLAN_FILTERING_FEATURES; 6251 } else if (!req_ctag && !req_stag) { 6252 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6253 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6254 (!cur_stag && req_stag && !cur_ctag)) { 6255 features |= NETIF_VLAN_FILTERING_FEATURES; 6256 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6257 } else if ((cur_ctag && !req_ctag && cur_stag) || 6258 (cur_stag && !req_stag && cur_ctag)) { 6259 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6260 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6261 } 6262 } else { 6263 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6264 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6265 6266 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6267 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6268 } 6269 } 6270 6271 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6272 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6273 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6274 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6275 NETIF_F_HW_VLAN_STAG_TX); 6276 } 6277 6278 if (!(netdev->features & NETIF_F_RXFCS) && 6279 (features & NETIF_F_RXFCS) && 6280 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6281 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6282 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6283 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6284 } 6285 6286 return features; 6287 } 6288 6289 /** 6290 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6291 * @vsi: PF's VSI 6292 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6293 * 6294 * Store current stripped VLAN proto in ring packet context, 6295 * so it can be accessed more efficiently by packet processing code. 6296 */ 6297 static void 6298 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6299 { 6300 u16 i; 6301 6302 ice_for_each_alloc_rxq(vsi, i) 6303 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6304 } 6305 6306 /** 6307 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6308 * @vsi: PF's VSI 6309 * @features: features used to determine VLAN offload settings 6310 * 6311 * First, determine the vlan_ethertype based on the VLAN offload bits in 6312 * features. Then determine if stripping and insertion should be enabled or 6313 * disabled. Finally enable or disable VLAN stripping and insertion. 6314 */ 6315 static int 6316 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6317 { 6318 bool enable_stripping = true, enable_insertion = true; 6319 struct ice_vsi_vlan_ops *vlan_ops; 6320 int strip_err = 0, insert_err = 0; 6321 u16 vlan_ethertype = 0; 6322 6323 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6324 6325 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6326 vlan_ethertype = ETH_P_8021AD; 6327 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6328 vlan_ethertype = ETH_P_8021Q; 6329 6330 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6331 enable_stripping = false; 6332 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6333 enable_insertion = false; 6334 6335 if (enable_stripping) 6336 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6337 else 6338 strip_err = vlan_ops->dis_stripping(vsi); 6339 6340 if (enable_insertion) 6341 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6342 else 6343 insert_err = vlan_ops->dis_insertion(vsi); 6344 6345 if (strip_err || insert_err) 6346 return -EIO; 6347 6348 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6349 htons(vlan_ethertype) : 0); 6350 6351 return 0; 6352 } 6353 6354 /** 6355 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6356 * @vsi: PF's VSI 6357 * @features: features used to determine VLAN filtering settings 6358 * 6359 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6360 * features. 6361 */ 6362 static int 6363 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6364 { 6365 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6366 int err = 0; 6367 6368 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6369 * if either bit is set 6370 */ 6371 if (features & 6372 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6373 err = vlan_ops->ena_rx_filtering(vsi); 6374 else 6375 err = vlan_ops->dis_rx_filtering(vsi); 6376 6377 return err; 6378 } 6379 6380 /** 6381 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6382 * @netdev: ptr to the netdev being adjusted 6383 * @features: the feature set that the stack is suggesting 6384 * 6385 * Only update VLAN settings if the requested_vlan_features are different than 6386 * the current_vlan_features. 6387 */ 6388 static int 6389 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6390 { 6391 netdev_features_t current_vlan_features, requested_vlan_features; 6392 struct ice_netdev_priv *np = netdev_priv(netdev); 6393 struct ice_vsi *vsi = np->vsi; 6394 int err; 6395 6396 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6397 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6398 if (current_vlan_features ^ requested_vlan_features) { 6399 if ((features & NETIF_F_RXFCS) && 6400 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6401 dev_err(ice_pf_to_dev(vsi->back), 6402 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6403 return -EIO; 6404 } 6405 6406 err = ice_set_vlan_offload_features(vsi, features); 6407 if (err) 6408 return err; 6409 } 6410 6411 current_vlan_features = netdev->features & 6412 NETIF_VLAN_FILTERING_FEATURES; 6413 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6414 if (current_vlan_features ^ requested_vlan_features) { 6415 err = ice_set_vlan_filtering_features(vsi, features); 6416 if (err) 6417 return err; 6418 } 6419 6420 return 0; 6421 } 6422 6423 /** 6424 * ice_set_loopback - turn on/off loopback mode on underlying PF 6425 * @vsi: ptr to VSI 6426 * @ena: flag to indicate the on/off setting 6427 */ 6428 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6429 { 6430 bool if_running = netif_running(vsi->netdev); 6431 int ret; 6432 6433 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6434 ret = ice_down(vsi); 6435 if (ret) { 6436 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6437 return ret; 6438 } 6439 } 6440 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6441 if (ret) 6442 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6443 if (if_running) 6444 ret = ice_up(vsi); 6445 6446 return ret; 6447 } 6448 6449 /** 6450 * ice_set_features - set the netdev feature flags 6451 * @netdev: ptr to the netdev being adjusted 6452 * @features: the feature set that the stack is suggesting 6453 */ 6454 static int 6455 ice_set_features(struct net_device *netdev, netdev_features_t features) 6456 { 6457 netdev_features_t changed = netdev->features ^ features; 6458 struct ice_netdev_priv *np = netdev_priv(netdev); 6459 struct ice_vsi *vsi = np->vsi; 6460 struct ice_pf *pf = vsi->back; 6461 int ret = 0; 6462 6463 /* Don't set any netdev advanced features with device in Safe Mode */ 6464 if (ice_is_safe_mode(pf)) { 6465 dev_err(ice_pf_to_dev(pf), 6466 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6467 return ret; 6468 } 6469 6470 /* Do not change setting during reset */ 6471 if (ice_is_reset_in_progress(pf->state)) { 6472 dev_err(ice_pf_to_dev(pf), 6473 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6474 return -EBUSY; 6475 } 6476 6477 /* Multiple features can be changed in one call so keep features in 6478 * separate if/else statements to guarantee each feature is checked 6479 */ 6480 if (changed & NETIF_F_RXHASH) 6481 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6482 6483 ret = ice_set_vlan_features(netdev, features); 6484 if (ret) 6485 return ret; 6486 6487 /* Turn on receive of FCS aka CRC, and after setting this 6488 * flag the packet data will have the 4 byte CRC appended 6489 */ 6490 if (changed & NETIF_F_RXFCS) { 6491 if ((features & NETIF_F_RXFCS) && 6492 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6493 dev_err(ice_pf_to_dev(vsi->back), 6494 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6495 return -EIO; 6496 } 6497 6498 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6499 ret = ice_down_up(vsi); 6500 if (ret) 6501 return ret; 6502 } 6503 6504 if (changed & NETIF_F_NTUPLE) { 6505 bool ena = !!(features & NETIF_F_NTUPLE); 6506 6507 ice_vsi_manage_fdir(vsi, ena); 6508 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6509 } 6510 6511 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6512 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6513 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6514 return -EACCES; 6515 } 6516 6517 if (changed & NETIF_F_HW_TC) { 6518 bool ena = !!(features & NETIF_F_HW_TC); 6519 6520 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6521 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6522 } 6523 6524 if (changed & NETIF_F_LOOPBACK) 6525 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6526 6527 return ret; 6528 } 6529 6530 /** 6531 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6532 * @vsi: VSI to setup VLAN properties for 6533 */ 6534 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6535 { 6536 int err; 6537 6538 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6539 if (err) 6540 return err; 6541 6542 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6543 if (err) 6544 return err; 6545 6546 return ice_vsi_add_vlan_zero(vsi); 6547 } 6548 6549 /** 6550 * ice_vsi_cfg_lan - Setup the VSI lan related config 6551 * @vsi: the VSI being configured 6552 * 6553 * Return 0 on success and negative value on error 6554 */ 6555 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6556 { 6557 int err; 6558 6559 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6560 ice_set_rx_mode(vsi->netdev); 6561 6562 err = ice_vsi_vlan_setup(vsi); 6563 if (err) 6564 return err; 6565 } 6566 ice_vsi_cfg_dcb_rings(vsi); 6567 6568 err = ice_vsi_cfg_lan_txqs(vsi); 6569 if (!err && ice_is_xdp_ena_vsi(vsi)) 6570 err = ice_vsi_cfg_xdp_txqs(vsi); 6571 if (!err) 6572 err = ice_vsi_cfg_rxqs(vsi); 6573 6574 return err; 6575 } 6576 6577 /* THEORY OF MODERATION: 6578 * The ice driver hardware works differently than the hardware that DIMLIB was 6579 * originally made for. ice hardware doesn't have packet count limits that 6580 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6581 * which is hard-coded to a limit of 250,000 ints/second. 6582 * If not using dynamic moderation, the INTRL value can be modified 6583 * by ethtool rx-usecs-high. 6584 */ 6585 struct ice_dim { 6586 /* the throttle rate for interrupts, basically worst case delay before 6587 * an initial interrupt fires, value is stored in microseconds. 6588 */ 6589 u16 itr; 6590 }; 6591 6592 /* Make a different profile for Rx that doesn't allow quite so aggressive 6593 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6594 * second. 6595 */ 6596 static const struct ice_dim rx_profile[] = { 6597 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6598 {8}, /* 125,000 ints/s */ 6599 {16}, /* 62,500 ints/s */ 6600 {62}, /* 16,129 ints/s */ 6601 {126} /* 7,936 ints/s */ 6602 }; 6603 6604 /* The transmit profile, which has the same sorts of values 6605 * as the previous struct 6606 */ 6607 static const struct ice_dim tx_profile[] = { 6608 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6609 {8}, /* 125,000 ints/s */ 6610 {40}, /* 16,125 ints/s */ 6611 {128}, /* 7,812 ints/s */ 6612 {256} /* 3,906 ints/s */ 6613 }; 6614 6615 static void ice_tx_dim_work(struct work_struct *work) 6616 { 6617 struct ice_ring_container *rc; 6618 struct dim *dim; 6619 u16 itr; 6620 6621 dim = container_of(work, struct dim, work); 6622 rc = dim->priv; 6623 6624 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6625 6626 /* look up the values in our local table */ 6627 itr = tx_profile[dim->profile_ix].itr; 6628 6629 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6630 ice_write_itr(rc, itr); 6631 6632 dim->state = DIM_START_MEASURE; 6633 } 6634 6635 static void ice_rx_dim_work(struct work_struct *work) 6636 { 6637 struct ice_ring_container *rc; 6638 struct dim *dim; 6639 u16 itr; 6640 6641 dim = container_of(work, struct dim, work); 6642 rc = dim->priv; 6643 6644 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6645 6646 /* look up the values in our local table */ 6647 itr = rx_profile[dim->profile_ix].itr; 6648 6649 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6650 ice_write_itr(rc, itr); 6651 6652 dim->state = DIM_START_MEASURE; 6653 } 6654 6655 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6656 6657 /** 6658 * ice_init_moderation - set up interrupt moderation 6659 * @q_vector: the vector containing rings to be configured 6660 * 6661 * Set up interrupt moderation registers, with the intent to do the right thing 6662 * when called from reset or from probe, and whether or not dynamic moderation 6663 * is enabled or not. Take special care to write all the registers in both 6664 * dynamic moderation mode or not in order to make sure hardware is in a known 6665 * state. 6666 */ 6667 static void ice_init_moderation(struct ice_q_vector *q_vector) 6668 { 6669 struct ice_ring_container *rc; 6670 bool tx_dynamic, rx_dynamic; 6671 6672 rc = &q_vector->tx; 6673 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6674 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6675 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6676 rc->dim.priv = rc; 6677 tx_dynamic = ITR_IS_DYNAMIC(rc); 6678 6679 /* set the initial TX ITR to match the above */ 6680 ice_write_itr(rc, tx_dynamic ? 6681 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6682 6683 rc = &q_vector->rx; 6684 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6685 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6686 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6687 rc->dim.priv = rc; 6688 rx_dynamic = ITR_IS_DYNAMIC(rc); 6689 6690 /* set the initial RX ITR to match the above */ 6691 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6692 rc->itr_setting); 6693 6694 ice_set_q_vector_intrl(q_vector); 6695 } 6696 6697 /** 6698 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6699 * @vsi: the VSI being configured 6700 */ 6701 static void ice_napi_enable_all(struct ice_vsi *vsi) 6702 { 6703 int q_idx; 6704 6705 if (!vsi->netdev) 6706 return; 6707 6708 ice_for_each_q_vector(vsi, q_idx) { 6709 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6710 6711 ice_init_moderation(q_vector); 6712 6713 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6714 napi_enable(&q_vector->napi); 6715 } 6716 } 6717 6718 /** 6719 * ice_up_complete - Finish the last steps of bringing up a connection 6720 * @vsi: The VSI being configured 6721 * 6722 * Return 0 on success and negative value on error 6723 */ 6724 static int ice_up_complete(struct ice_vsi *vsi) 6725 { 6726 struct ice_pf *pf = vsi->back; 6727 int err; 6728 6729 ice_vsi_cfg_msix(vsi); 6730 6731 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6732 * Tx queue group list was configured and the context bits were 6733 * programmed using ice_vsi_cfg_txqs 6734 */ 6735 err = ice_vsi_start_all_rx_rings(vsi); 6736 if (err) 6737 return err; 6738 6739 clear_bit(ICE_VSI_DOWN, vsi->state); 6740 ice_napi_enable_all(vsi); 6741 ice_vsi_ena_irq(vsi); 6742 6743 if (vsi->port_info && 6744 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6745 vsi->netdev && vsi->type == ICE_VSI_PF) { 6746 ice_print_link_msg(vsi, true); 6747 netif_tx_start_all_queues(vsi->netdev); 6748 netif_carrier_on(vsi->netdev); 6749 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6750 } 6751 6752 /* Perform an initial read of the statistics registers now to 6753 * set the baseline so counters are ready when interface is up 6754 */ 6755 ice_update_eth_stats(vsi); 6756 6757 if (vsi->type == ICE_VSI_PF) 6758 ice_service_task_schedule(pf); 6759 6760 return 0; 6761 } 6762 6763 /** 6764 * ice_up - Bring the connection back up after being down 6765 * @vsi: VSI being configured 6766 */ 6767 int ice_up(struct ice_vsi *vsi) 6768 { 6769 int err; 6770 6771 err = ice_vsi_cfg_lan(vsi); 6772 if (!err) 6773 err = ice_up_complete(vsi); 6774 6775 return err; 6776 } 6777 6778 /** 6779 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6780 * @syncp: pointer to u64_stats_sync 6781 * @stats: stats that pkts and bytes count will be taken from 6782 * @pkts: packets stats counter 6783 * @bytes: bytes stats counter 6784 * 6785 * This function fetches stats from the ring considering the atomic operations 6786 * that needs to be performed to read u64 values in 32 bit machine. 6787 */ 6788 void 6789 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6790 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6791 { 6792 unsigned int start; 6793 6794 do { 6795 start = u64_stats_fetch_begin(syncp); 6796 *pkts = stats.pkts; 6797 *bytes = stats.bytes; 6798 } while (u64_stats_fetch_retry(syncp, start)); 6799 } 6800 6801 /** 6802 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6803 * @vsi: the VSI to be updated 6804 * @vsi_stats: the stats struct to be updated 6805 * @rings: rings to work on 6806 * @count: number of rings 6807 */ 6808 static void 6809 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6810 struct rtnl_link_stats64 *vsi_stats, 6811 struct ice_tx_ring **rings, u16 count) 6812 { 6813 u16 i; 6814 6815 for (i = 0; i < count; i++) { 6816 struct ice_tx_ring *ring; 6817 u64 pkts = 0, bytes = 0; 6818 6819 ring = READ_ONCE(rings[i]); 6820 if (!ring || !ring->ring_stats) 6821 continue; 6822 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6823 ring->ring_stats->stats, &pkts, 6824 &bytes); 6825 vsi_stats->tx_packets += pkts; 6826 vsi_stats->tx_bytes += bytes; 6827 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6828 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6829 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6830 } 6831 } 6832 6833 /** 6834 * ice_update_vsi_ring_stats - Update VSI stats counters 6835 * @vsi: the VSI to be updated 6836 */ 6837 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6838 { 6839 struct rtnl_link_stats64 *net_stats, *stats_prev; 6840 struct rtnl_link_stats64 *vsi_stats; 6841 struct ice_pf *pf = vsi->back; 6842 u64 pkts, bytes; 6843 int i; 6844 6845 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6846 if (!vsi_stats) 6847 return; 6848 6849 /* reset non-netdev (extended) stats */ 6850 vsi->tx_restart = 0; 6851 vsi->tx_busy = 0; 6852 vsi->tx_linearize = 0; 6853 vsi->rx_buf_failed = 0; 6854 vsi->rx_page_failed = 0; 6855 6856 rcu_read_lock(); 6857 6858 /* update Tx rings counters */ 6859 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6860 vsi->num_txq); 6861 6862 /* update Rx rings counters */ 6863 ice_for_each_rxq(vsi, i) { 6864 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6865 struct ice_ring_stats *ring_stats; 6866 6867 ring_stats = ring->ring_stats; 6868 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6869 ring_stats->stats, &pkts, 6870 &bytes); 6871 vsi_stats->rx_packets += pkts; 6872 vsi_stats->rx_bytes += bytes; 6873 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6874 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6875 } 6876 6877 /* update XDP Tx rings counters */ 6878 if (ice_is_xdp_ena_vsi(vsi)) 6879 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6880 vsi->num_xdp_txq); 6881 6882 rcu_read_unlock(); 6883 6884 net_stats = &vsi->net_stats; 6885 stats_prev = &vsi->net_stats_prev; 6886 6887 /* Update netdev counters, but keep in mind that values could start at 6888 * random value after PF reset. And as we increase the reported stat by 6889 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6890 * let's skip this round. 6891 */ 6892 if (likely(pf->stat_prev_loaded)) { 6893 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6894 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6895 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6896 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6897 } 6898 6899 stats_prev->tx_packets = vsi_stats->tx_packets; 6900 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6901 stats_prev->rx_packets = vsi_stats->rx_packets; 6902 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6903 6904 kfree(vsi_stats); 6905 } 6906 6907 /** 6908 * ice_update_vsi_stats - Update VSI stats counters 6909 * @vsi: the VSI to be updated 6910 */ 6911 void ice_update_vsi_stats(struct ice_vsi *vsi) 6912 { 6913 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6914 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6915 struct ice_pf *pf = vsi->back; 6916 6917 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6918 test_bit(ICE_CFG_BUSY, pf->state)) 6919 return; 6920 6921 /* get stats as recorded by Tx/Rx rings */ 6922 ice_update_vsi_ring_stats(vsi); 6923 6924 /* get VSI stats as recorded by the hardware */ 6925 ice_update_eth_stats(vsi); 6926 6927 cur_ns->tx_errors = cur_es->tx_errors; 6928 cur_ns->rx_dropped = cur_es->rx_discards; 6929 cur_ns->tx_dropped = cur_es->tx_discards; 6930 cur_ns->multicast = cur_es->rx_multicast; 6931 6932 /* update some more netdev stats if this is main VSI */ 6933 if (vsi->type == ICE_VSI_PF) { 6934 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6935 cur_ns->rx_errors = pf->stats.crc_errors + 6936 pf->stats.illegal_bytes + 6937 pf->stats.rx_undersize + 6938 pf->hw_csum_rx_error + 6939 pf->stats.rx_jabber + 6940 pf->stats.rx_fragments + 6941 pf->stats.rx_oversize; 6942 /* record drops from the port level */ 6943 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6944 } 6945 } 6946 6947 /** 6948 * ice_update_pf_stats - Update PF port stats counters 6949 * @pf: PF whose stats needs to be updated 6950 */ 6951 void ice_update_pf_stats(struct ice_pf *pf) 6952 { 6953 struct ice_hw_port_stats *prev_ps, *cur_ps; 6954 struct ice_hw *hw = &pf->hw; 6955 u16 fd_ctr_base; 6956 u8 port; 6957 6958 port = hw->port_info->lport; 6959 prev_ps = &pf->stats_prev; 6960 cur_ps = &pf->stats; 6961 6962 if (ice_is_reset_in_progress(pf->state)) 6963 pf->stat_prev_loaded = false; 6964 6965 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6966 &prev_ps->eth.rx_bytes, 6967 &cur_ps->eth.rx_bytes); 6968 6969 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6970 &prev_ps->eth.rx_unicast, 6971 &cur_ps->eth.rx_unicast); 6972 6973 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6974 &prev_ps->eth.rx_multicast, 6975 &cur_ps->eth.rx_multicast); 6976 6977 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6978 &prev_ps->eth.rx_broadcast, 6979 &cur_ps->eth.rx_broadcast); 6980 6981 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6982 &prev_ps->eth.rx_discards, 6983 &cur_ps->eth.rx_discards); 6984 6985 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6986 &prev_ps->eth.tx_bytes, 6987 &cur_ps->eth.tx_bytes); 6988 6989 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6990 &prev_ps->eth.tx_unicast, 6991 &cur_ps->eth.tx_unicast); 6992 6993 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6994 &prev_ps->eth.tx_multicast, 6995 &cur_ps->eth.tx_multicast); 6996 6997 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6998 &prev_ps->eth.tx_broadcast, 6999 &cur_ps->eth.tx_broadcast); 7000 7001 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7002 &prev_ps->tx_dropped_link_down, 7003 &cur_ps->tx_dropped_link_down); 7004 7005 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7006 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7007 7008 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7009 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7010 7011 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7012 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7013 7014 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7015 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7016 7017 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7018 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7019 7020 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7021 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7022 7023 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7024 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7025 7026 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7027 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7028 7029 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7030 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7031 7032 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7033 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7034 7035 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7036 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7037 7038 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7039 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7040 7041 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7042 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7043 7044 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7045 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7046 7047 fd_ctr_base = hw->fd_ctr_base; 7048 7049 ice_stat_update40(hw, 7050 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7051 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7052 &cur_ps->fd_sb_match); 7053 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7054 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7055 7056 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7057 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7058 7059 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7060 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7061 7062 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7063 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7064 7065 ice_update_dcb_stats(pf); 7066 7067 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7068 &prev_ps->crc_errors, &cur_ps->crc_errors); 7069 7070 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7071 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7072 7073 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7074 &prev_ps->mac_local_faults, 7075 &cur_ps->mac_local_faults); 7076 7077 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7078 &prev_ps->mac_remote_faults, 7079 &cur_ps->mac_remote_faults); 7080 7081 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7082 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7083 7084 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7085 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7086 7087 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7088 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7089 7090 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7091 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7092 7093 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7094 7095 pf->stat_prev_loaded = true; 7096 } 7097 7098 /** 7099 * ice_get_stats64 - get statistics for network device structure 7100 * @netdev: network interface device structure 7101 * @stats: main device statistics structure 7102 */ 7103 static 7104 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7105 { 7106 struct ice_netdev_priv *np = netdev_priv(netdev); 7107 struct rtnl_link_stats64 *vsi_stats; 7108 struct ice_vsi *vsi = np->vsi; 7109 7110 vsi_stats = &vsi->net_stats; 7111 7112 if (!vsi->num_txq || !vsi->num_rxq) 7113 return; 7114 7115 /* netdev packet/byte stats come from ring counter. These are obtained 7116 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7117 * But, only call the update routine and read the registers if VSI is 7118 * not down. 7119 */ 7120 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7121 ice_update_vsi_ring_stats(vsi); 7122 stats->tx_packets = vsi_stats->tx_packets; 7123 stats->tx_bytes = vsi_stats->tx_bytes; 7124 stats->rx_packets = vsi_stats->rx_packets; 7125 stats->rx_bytes = vsi_stats->rx_bytes; 7126 7127 /* The rest of the stats can be read from the hardware but instead we 7128 * just return values that the watchdog task has already obtained from 7129 * the hardware. 7130 */ 7131 stats->multicast = vsi_stats->multicast; 7132 stats->tx_errors = vsi_stats->tx_errors; 7133 stats->tx_dropped = vsi_stats->tx_dropped; 7134 stats->rx_errors = vsi_stats->rx_errors; 7135 stats->rx_dropped = vsi_stats->rx_dropped; 7136 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7137 stats->rx_length_errors = vsi_stats->rx_length_errors; 7138 } 7139 7140 /** 7141 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7142 * @vsi: VSI having NAPI disabled 7143 */ 7144 static void ice_napi_disable_all(struct ice_vsi *vsi) 7145 { 7146 int q_idx; 7147 7148 if (!vsi->netdev) 7149 return; 7150 7151 ice_for_each_q_vector(vsi, q_idx) { 7152 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7153 7154 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7155 napi_disable(&q_vector->napi); 7156 7157 cancel_work_sync(&q_vector->tx.dim.work); 7158 cancel_work_sync(&q_vector->rx.dim.work); 7159 } 7160 } 7161 7162 /** 7163 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7164 * @vsi: the VSI being un-configured 7165 */ 7166 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7167 { 7168 struct ice_pf *pf = vsi->back; 7169 struct ice_hw *hw = &pf->hw; 7170 u32 val; 7171 int i; 7172 7173 /* disable interrupt causation from each Rx queue; Tx queues are 7174 * handled in ice_vsi_stop_tx_ring() 7175 */ 7176 if (vsi->rx_rings) { 7177 ice_for_each_rxq(vsi, i) { 7178 if (vsi->rx_rings[i]) { 7179 u16 reg; 7180 7181 reg = vsi->rx_rings[i]->reg_idx; 7182 val = rd32(hw, QINT_RQCTL(reg)); 7183 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7184 wr32(hw, QINT_RQCTL(reg), val); 7185 } 7186 } 7187 } 7188 7189 /* disable each interrupt */ 7190 ice_for_each_q_vector(vsi, i) { 7191 if (!vsi->q_vectors[i]) 7192 continue; 7193 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7194 } 7195 7196 ice_flush(hw); 7197 7198 /* don't call synchronize_irq() for VF's from the host */ 7199 if (vsi->type == ICE_VSI_VF) 7200 return; 7201 7202 ice_for_each_q_vector(vsi, i) 7203 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7204 } 7205 7206 /** 7207 * ice_down - Shutdown the connection 7208 * @vsi: The VSI being stopped 7209 * 7210 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7211 */ 7212 int ice_down(struct ice_vsi *vsi) 7213 { 7214 int i, tx_err, rx_err, vlan_err = 0; 7215 7216 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7217 7218 if (vsi->netdev) { 7219 vlan_err = ice_vsi_del_vlan_zero(vsi); 7220 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7221 netif_carrier_off(vsi->netdev); 7222 netif_tx_disable(vsi->netdev); 7223 } 7224 7225 ice_vsi_dis_irq(vsi); 7226 7227 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7228 if (tx_err) 7229 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7230 vsi->vsi_num, tx_err); 7231 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7232 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7233 if (tx_err) 7234 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7235 vsi->vsi_num, tx_err); 7236 } 7237 7238 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7239 if (rx_err) 7240 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7241 vsi->vsi_num, rx_err); 7242 7243 ice_napi_disable_all(vsi); 7244 7245 ice_for_each_txq(vsi, i) 7246 ice_clean_tx_ring(vsi->tx_rings[i]); 7247 7248 if (ice_is_xdp_ena_vsi(vsi)) 7249 ice_for_each_xdp_txq(vsi, i) 7250 ice_clean_tx_ring(vsi->xdp_rings[i]); 7251 7252 ice_for_each_rxq(vsi, i) 7253 ice_clean_rx_ring(vsi->rx_rings[i]); 7254 7255 if (tx_err || rx_err || vlan_err) { 7256 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7257 vsi->vsi_num, vsi->vsw->sw_id); 7258 return -EIO; 7259 } 7260 7261 return 0; 7262 } 7263 7264 /** 7265 * ice_down_up - shutdown the VSI connection and bring it up 7266 * @vsi: the VSI to be reconnected 7267 */ 7268 int ice_down_up(struct ice_vsi *vsi) 7269 { 7270 int ret; 7271 7272 /* if DOWN already set, nothing to do */ 7273 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7274 return 0; 7275 7276 ret = ice_down(vsi); 7277 if (ret) 7278 return ret; 7279 7280 ret = ice_up(vsi); 7281 if (ret) { 7282 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7283 return ret; 7284 } 7285 7286 return 0; 7287 } 7288 7289 /** 7290 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7291 * @vsi: VSI having resources allocated 7292 * 7293 * Return 0 on success, negative on failure 7294 */ 7295 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7296 { 7297 int i, err = 0; 7298 7299 if (!vsi->num_txq) { 7300 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7301 vsi->vsi_num); 7302 return -EINVAL; 7303 } 7304 7305 ice_for_each_txq(vsi, i) { 7306 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7307 7308 if (!ring) 7309 return -EINVAL; 7310 7311 if (vsi->netdev) 7312 ring->netdev = vsi->netdev; 7313 err = ice_setup_tx_ring(ring); 7314 if (err) 7315 break; 7316 } 7317 7318 return err; 7319 } 7320 7321 /** 7322 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7323 * @vsi: VSI having resources allocated 7324 * 7325 * Return 0 on success, negative on failure 7326 */ 7327 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7328 { 7329 int i, err = 0; 7330 7331 if (!vsi->num_rxq) { 7332 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7333 vsi->vsi_num); 7334 return -EINVAL; 7335 } 7336 7337 ice_for_each_rxq(vsi, i) { 7338 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7339 7340 if (!ring) 7341 return -EINVAL; 7342 7343 if (vsi->netdev) 7344 ring->netdev = vsi->netdev; 7345 err = ice_setup_rx_ring(ring); 7346 if (err) 7347 break; 7348 } 7349 7350 return err; 7351 } 7352 7353 /** 7354 * ice_vsi_open_ctrl - open control VSI for use 7355 * @vsi: the VSI to open 7356 * 7357 * Initialization of the Control VSI 7358 * 7359 * Returns 0 on success, negative value on error 7360 */ 7361 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7362 { 7363 char int_name[ICE_INT_NAME_STR_LEN]; 7364 struct ice_pf *pf = vsi->back; 7365 struct device *dev; 7366 int err; 7367 7368 dev = ice_pf_to_dev(pf); 7369 /* allocate descriptors */ 7370 err = ice_vsi_setup_tx_rings(vsi); 7371 if (err) 7372 goto err_setup_tx; 7373 7374 err = ice_vsi_setup_rx_rings(vsi); 7375 if (err) 7376 goto err_setup_rx; 7377 7378 err = ice_vsi_cfg_lan(vsi); 7379 if (err) 7380 goto err_setup_rx; 7381 7382 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7383 dev_driver_string(dev), dev_name(dev)); 7384 err = ice_vsi_req_irq_msix(vsi, int_name); 7385 if (err) 7386 goto err_setup_rx; 7387 7388 ice_vsi_cfg_msix(vsi); 7389 7390 err = ice_vsi_start_all_rx_rings(vsi); 7391 if (err) 7392 goto err_up_complete; 7393 7394 clear_bit(ICE_VSI_DOWN, vsi->state); 7395 ice_vsi_ena_irq(vsi); 7396 7397 return 0; 7398 7399 err_up_complete: 7400 ice_down(vsi); 7401 err_setup_rx: 7402 ice_vsi_free_rx_rings(vsi); 7403 err_setup_tx: 7404 ice_vsi_free_tx_rings(vsi); 7405 7406 return err; 7407 } 7408 7409 /** 7410 * ice_vsi_open - Called when a network interface is made active 7411 * @vsi: the VSI to open 7412 * 7413 * Initialization of the VSI 7414 * 7415 * Returns 0 on success, negative value on error 7416 */ 7417 int ice_vsi_open(struct ice_vsi *vsi) 7418 { 7419 char int_name[ICE_INT_NAME_STR_LEN]; 7420 struct ice_pf *pf = vsi->back; 7421 int err; 7422 7423 /* allocate descriptors */ 7424 err = ice_vsi_setup_tx_rings(vsi); 7425 if (err) 7426 goto err_setup_tx; 7427 7428 err = ice_vsi_setup_rx_rings(vsi); 7429 if (err) 7430 goto err_setup_rx; 7431 7432 err = ice_vsi_cfg_lan(vsi); 7433 if (err) 7434 goto err_setup_rx; 7435 7436 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7437 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7438 err = ice_vsi_req_irq_msix(vsi, int_name); 7439 if (err) 7440 goto err_setup_rx; 7441 7442 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7443 7444 if (vsi->type == ICE_VSI_PF) { 7445 /* Notify the stack of the actual queue counts. */ 7446 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7447 if (err) 7448 goto err_set_qs; 7449 7450 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7451 if (err) 7452 goto err_set_qs; 7453 } 7454 7455 err = ice_up_complete(vsi); 7456 if (err) 7457 goto err_up_complete; 7458 7459 return 0; 7460 7461 err_up_complete: 7462 ice_down(vsi); 7463 err_set_qs: 7464 ice_vsi_free_irq(vsi); 7465 err_setup_rx: 7466 ice_vsi_free_rx_rings(vsi); 7467 err_setup_tx: 7468 ice_vsi_free_tx_rings(vsi); 7469 7470 return err; 7471 } 7472 7473 /** 7474 * ice_vsi_release_all - Delete all VSIs 7475 * @pf: PF from which all VSIs are being removed 7476 */ 7477 static void ice_vsi_release_all(struct ice_pf *pf) 7478 { 7479 int err, i; 7480 7481 if (!pf->vsi) 7482 return; 7483 7484 ice_for_each_vsi(pf, i) { 7485 if (!pf->vsi[i]) 7486 continue; 7487 7488 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7489 continue; 7490 7491 err = ice_vsi_release(pf->vsi[i]); 7492 if (err) 7493 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7494 i, err, pf->vsi[i]->vsi_num); 7495 } 7496 } 7497 7498 /** 7499 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7500 * @pf: pointer to the PF instance 7501 * @type: VSI type to rebuild 7502 * 7503 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7504 */ 7505 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7506 { 7507 struct device *dev = ice_pf_to_dev(pf); 7508 int i, err; 7509 7510 ice_for_each_vsi(pf, i) { 7511 struct ice_vsi *vsi = pf->vsi[i]; 7512 7513 if (!vsi || vsi->type != type) 7514 continue; 7515 7516 /* rebuild the VSI */ 7517 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7518 if (err) { 7519 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7520 err, vsi->idx, ice_vsi_type_str(type)); 7521 return err; 7522 } 7523 7524 /* replay filters for the VSI */ 7525 err = ice_replay_vsi(&pf->hw, vsi->idx); 7526 if (err) { 7527 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7528 err, vsi->idx, ice_vsi_type_str(type)); 7529 return err; 7530 } 7531 7532 /* Re-map HW VSI number, using VSI handle that has been 7533 * previously validated in ice_replay_vsi() call above 7534 */ 7535 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7536 7537 /* enable the VSI */ 7538 err = ice_ena_vsi(vsi, false); 7539 if (err) { 7540 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7541 err, vsi->idx, ice_vsi_type_str(type)); 7542 return err; 7543 } 7544 7545 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7546 ice_vsi_type_str(type)); 7547 } 7548 7549 return 0; 7550 } 7551 7552 /** 7553 * ice_update_pf_netdev_link - Update PF netdev link status 7554 * @pf: pointer to the PF instance 7555 */ 7556 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7557 { 7558 bool link_up; 7559 int i; 7560 7561 ice_for_each_vsi(pf, i) { 7562 struct ice_vsi *vsi = pf->vsi[i]; 7563 7564 if (!vsi || vsi->type != ICE_VSI_PF) 7565 return; 7566 7567 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7568 if (link_up) { 7569 netif_carrier_on(pf->vsi[i]->netdev); 7570 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7571 } else { 7572 netif_carrier_off(pf->vsi[i]->netdev); 7573 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7574 } 7575 } 7576 } 7577 7578 /** 7579 * ice_rebuild - rebuild after reset 7580 * @pf: PF to rebuild 7581 * @reset_type: type of reset 7582 * 7583 * Do not rebuild VF VSI in this flow because that is already handled via 7584 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7585 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7586 * to reset/rebuild all the VF VSI twice. 7587 */ 7588 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7589 { 7590 struct device *dev = ice_pf_to_dev(pf); 7591 struct ice_hw *hw = &pf->hw; 7592 bool dvm; 7593 int err; 7594 7595 if (test_bit(ICE_DOWN, pf->state)) 7596 goto clear_recovery; 7597 7598 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7599 7600 #define ICE_EMP_RESET_SLEEP_MS 5000 7601 if (reset_type == ICE_RESET_EMPR) { 7602 /* If an EMP reset has occurred, any previously pending flash 7603 * update will have completed. We no longer know whether or 7604 * not the NVM update EMP reset is restricted. 7605 */ 7606 pf->fw_emp_reset_disabled = false; 7607 7608 msleep(ICE_EMP_RESET_SLEEP_MS); 7609 } 7610 7611 err = ice_init_all_ctrlq(hw); 7612 if (err) { 7613 dev_err(dev, "control queues init failed %d\n", err); 7614 goto err_init_ctrlq; 7615 } 7616 7617 /* if DDP was previously loaded successfully */ 7618 if (!ice_is_safe_mode(pf)) { 7619 /* reload the SW DB of filter tables */ 7620 if (reset_type == ICE_RESET_PFR) 7621 ice_fill_blk_tbls(hw); 7622 else 7623 /* Reload DDP Package after CORER/GLOBR reset */ 7624 ice_load_pkg(NULL, pf); 7625 } 7626 7627 err = ice_clear_pf_cfg(hw); 7628 if (err) { 7629 dev_err(dev, "clear PF configuration failed %d\n", err); 7630 goto err_init_ctrlq; 7631 } 7632 7633 ice_clear_pxe_mode(hw); 7634 7635 err = ice_init_nvm(hw); 7636 if (err) { 7637 dev_err(dev, "ice_init_nvm failed %d\n", err); 7638 goto err_init_ctrlq; 7639 } 7640 7641 err = ice_get_caps(hw); 7642 if (err) { 7643 dev_err(dev, "ice_get_caps failed %d\n", err); 7644 goto err_init_ctrlq; 7645 } 7646 7647 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7648 if (err) { 7649 dev_err(dev, "set_mac_cfg failed %d\n", err); 7650 goto err_init_ctrlq; 7651 } 7652 7653 dvm = ice_is_dvm_ena(hw); 7654 7655 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7656 if (err) 7657 goto err_init_ctrlq; 7658 7659 err = ice_sched_init_port(hw->port_info); 7660 if (err) 7661 goto err_sched_init_port; 7662 7663 /* start misc vector */ 7664 err = ice_req_irq_msix_misc(pf); 7665 if (err) { 7666 dev_err(dev, "misc vector setup failed: %d\n", err); 7667 goto err_sched_init_port; 7668 } 7669 7670 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7671 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7672 if (!rd32(hw, PFQF_FD_SIZE)) { 7673 u16 unused, guar, b_effort; 7674 7675 guar = hw->func_caps.fd_fltr_guar; 7676 b_effort = hw->func_caps.fd_fltr_best_effort; 7677 7678 /* force guaranteed filter pool for PF */ 7679 ice_alloc_fd_guar_item(hw, &unused, guar); 7680 /* force shared filter pool for PF */ 7681 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7682 } 7683 } 7684 7685 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7686 ice_dcb_rebuild(pf); 7687 7688 /* If the PF previously had enabled PTP, PTP init needs to happen before 7689 * the VSI rebuild. If not, this causes the PTP link status events to 7690 * fail. 7691 */ 7692 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7693 ice_ptp_rebuild(pf, reset_type); 7694 7695 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7696 ice_gnss_init(pf); 7697 7698 /* rebuild PF VSI */ 7699 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7700 if (err) { 7701 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7702 goto err_vsi_rebuild; 7703 } 7704 7705 if (reset_type == ICE_RESET_PFR) { 7706 err = ice_rebuild_channels(pf); 7707 if (err) { 7708 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7709 err); 7710 goto err_vsi_rebuild; 7711 } 7712 } 7713 7714 /* If Flow Director is active */ 7715 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7716 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7717 if (err) { 7718 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7719 goto err_vsi_rebuild; 7720 } 7721 7722 /* replay HW Flow Director recipes */ 7723 if (hw->fdir_prof) 7724 ice_fdir_replay_flows(hw); 7725 7726 /* replay Flow Director filters */ 7727 ice_fdir_replay_fltrs(pf); 7728 7729 ice_rebuild_arfs(pf); 7730 } 7731 7732 ice_update_pf_netdev_link(pf); 7733 7734 /* tell the firmware we are up */ 7735 err = ice_send_version(pf); 7736 if (err) { 7737 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7738 err); 7739 goto err_vsi_rebuild; 7740 } 7741 7742 ice_replay_post(hw); 7743 7744 /* if we get here, reset flow is successful */ 7745 clear_bit(ICE_RESET_FAILED, pf->state); 7746 7747 ice_plug_aux_dev(pf); 7748 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7749 ice_lag_rebuild(pf); 7750 7751 /* Restore timestamp mode settings after VSI rebuild */ 7752 ice_ptp_restore_timestamp_mode(pf); 7753 return; 7754 7755 err_vsi_rebuild: 7756 err_sched_init_port: 7757 ice_sched_cleanup_all(hw); 7758 err_init_ctrlq: 7759 ice_shutdown_all_ctrlq(hw, false); 7760 set_bit(ICE_RESET_FAILED, pf->state); 7761 clear_recovery: 7762 /* set this bit in PF state to control service task scheduling */ 7763 set_bit(ICE_NEEDS_RESTART, pf->state); 7764 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7765 } 7766 7767 /** 7768 * ice_change_mtu - NDO callback to change the MTU 7769 * @netdev: network interface device structure 7770 * @new_mtu: new value for maximum frame size 7771 * 7772 * Returns 0 on success, negative on failure 7773 */ 7774 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7775 { 7776 struct ice_netdev_priv *np = netdev_priv(netdev); 7777 struct ice_vsi *vsi = np->vsi; 7778 struct ice_pf *pf = vsi->back; 7779 struct bpf_prog *prog; 7780 u8 count = 0; 7781 int err = 0; 7782 7783 if (new_mtu == (int)netdev->mtu) { 7784 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7785 return 0; 7786 } 7787 7788 prog = vsi->xdp_prog; 7789 if (prog && !prog->aux->xdp_has_frags) { 7790 int frame_size = ice_max_xdp_frame_size(vsi); 7791 7792 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7793 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7794 frame_size - ICE_ETH_PKT_HDR_PAD); 7795 return -EINVAL; 7796 } 7797 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7798 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7799 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7800 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7801 return -EINVAL; 7802 } 7803 } 7804 7805 /* if a reset is in progress, wait for some time for it to complete */ 7806 do { 7807 if (ice_is_reset_in_progress(pf->state)) { 7808 count++; 7809 usleep_range(1000, 2000); 7810 } else { 7811 break; 7812 } 7813 7814 } while (count < 100); 7815 7816 if (count == 100) { 7817 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7818 return -EBUSY; 7819 } 7820 7821 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7822 err = ice_down_up(vsi); 7823 if (err) 7824 return err; 7825 7826 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7827 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7828 7829 return err; 7830 } 7831 7832 /** 7833 * ice_eth_ioctl - Access the hwtstamp interface 7834 * @netdev: network interface device structure 7835 * @ifr: interface request data 7836 * @cmd: ioctl command 7837 */ 7838 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7839 { 7840 struct ice_netdev_priv *np = netdev_priv(netdev); 7841 struct ice_pf *pf = np->vsi->back; 7842 7843 switch (cmd) { 7844 case SIOCGHWTSTAMP: 7845 return ice_ptp_get_ts_config(pf, ifr); 7846 case SIOCSHWTSTAMP: 7847 return ice_ptp_set_ts_config(pf, ifr); 7848 default: 7849 return -EOPNOTSUPP; 7850 } 7851 } 7852 7853 /** 7854 * ice_aq_str - convert AQ err code to a string 7855 * @aq_err: the AQ error code to convert 7856 */ 7857 const char *ice_aq_str(enum ice_aq_err aq_err) 7858 { 7859 switch (aq_err) { 7860 case ICE_AQ_RC_OK: 7861 return "OK"; 7862 case ICE_AQ_RC_EPERM: 7863 return "ICE_AQ_RC_EPERM"; 7864 case ICE_AQ_RC_ENOENT: 7865 return "ICE_AQ_RC_ENOENT"; 7866 case ICE_AQ_RC_ENOMEM: 7867 return "ICE_AQ_RC_ENOMEM"; 7868 case ICE_AQ_RC_EBUSY: 7869 return "ICE_AQ_RC_EBUSY"; 7870 case ICE_AQ_RC_EEXIST: 7871 return "ICE_AQ_RC_EEXIST"; 7872 case ICE_AQ_RC_EINVAL: 7873 return "ICE_AQ_RC_EINVAL"; 7874 case ICE_AQ_RC_ENOSPC: 7875 return "ICE_AQ_RC_ENOSPC"; 7876 case ICE_AQ_RC_ENOSYS: 7877 return "ICE_AQ_RC_ENOSYS"; 7878 case ICE_AQ_RC_EMODE: 7879 return "ICE_AQ_RC_EMODE"; 7880 case ICE_AQ_RC_ENOSEC: 7881 return "ICE_AQ_RC_ENOSEC"; 7882 case ICE_AQ_RC_EBADSIG: 7883 return "ICE_AQ_RC_EBADSIG"; 7884 case ICE_AQ_RC_ESVN: 7885 return "ICE_AQ_RC_ESVN"; 7886 case ICE_AQ_RC_EBADMAN: 7887 return "ICE_AQ_RC_EBADMAN"; 7888 case ICE_AQ_RC_EBADBUF: 7889 return "ICE_AQ_RC_EBADBUF"; 7890 } 7891 7892 return "ICE_AQ_RC_UNKNOWN"; 7893 } 7894 7895 /** 7896 * ice_set_rss_lut - Set RSS LUT 7897 * @vsi: Pointer to VSI structure 7898 * @lut: Lookup table 7899 * @lut_size: Lookup table size 7900 * 7901 * Returns 0 on success, negative on failure 7902 */ 7903 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7904 { 7905 struct ice_aq_get_set_rss_lut_params params = {}; 7906 struct ice_hw *hw = &vsi->back->hw; 7907 int status; 7908 7909 if (!lut) 7910 return -EINVAL; 7911 7912 params.vsi_handle = vsi->idx; 7913 params.lut_size = lut_size; 7914 params.lut_type = vsi->rss_lut_type; 7915 params.lut = lut; 7916 7917 status = ice_aq_set_rss_lut(hw, ¶ms); 7918 if (status) 7919 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7920 status, ice_aq_str(hw->adminq.sq_last_status)); 7921 7922 return status; 7923 } 7924 7925 /** 7926 * ice_set_rss_key - Set RSS key 7927 * @vsi: Pointer to the VSI structure 7928 * @seed: RSS hash seed 7929 * 7930 * Returns 0 on success, negative on failure 7931 */ 7932 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7933 { 7934 struct ice_hw *hw = &vsi->back->hw; 7935 int status; 7936 7937 if (!seed) 7938 return -EINVAL; 7939 7940 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7941 if (status) 7942 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7943 status, ice_aq_str(hw->adminq.sq_last_status)); 7944 7945 return status; 7946 } 7947 7948 /** 7949 * ice_get_rss_lut - Get RSS LUT 7950 * @vsi: Pointer to VSI structure 7951 * @lut: Buffer to store the lookup table entries 7952 * @lut_size: Size of buffer to store the lookup table entries 7953 * 7954 * Returns 0 on success, negative on failure 7955 */ 7956 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7957 { 7958 struct ice_aq_get_set_rss_lut_params params = {}; 7959 struct ice_hw *hw = &vsi->back->hw; 7960 int status; 7961 7962 if (!lut) 7963 return -EINVAL; 7964 7965 params.vsi_handle = vsi->idx; 7966 params.lut_size = lut_size; 7967 params.lut_type = vsi->rss_lut_type; 7968 params.lut = lut; 7969 7970 status = ice_aq_get_rss_lut(hw, ¶ms); 7971 if (status) 7972 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7973 status, ice_aq_str(hw->adminq.sq_last_status)); 7974 7975 return status; 7976 } 7977 7978 /** 7979 * ice_get_rss_key - Get RSS key 7980 * @vsi: Pointer to VSI structure 7981 * @seed: Buffer to store the key in 7982 * 7983 * Returns 0 on success, negative on failure 7984 */ 7985 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7986 { 7987 struct ice_hw *hw = &vsi->back->hw; 7988 int status; 7989 7990 if (!seed) 7991 return -EINVAL; 7992 7993 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7994 if (status) 7995 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7996 status, ice_aq_str(hw->adminq.sq_last_status)); 7997 7998 return status; 7999 } 8000 8001 /** 8002 * ice_set_rss_hfunc - Set RSS HASH function 8003 * @vsi: Pointer to VSI structure 8004 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8005 * 8006 * Returns 0 on success, negative on failure 8007 */ 8008 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8009 { 8010 struct ice_hw *hw = &vsi->back->hw; 8011 struct ice_vsi_ctx *ctx; 8012 bool symm; 8013 int err; 8014 8015 if (hfunc == vsi->rss_hfunc) 8016 return 0; 8017 8018 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8019 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8020 return -EOPNOTSUPP; 8021 8022 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8023 if (!ctx) 8024 return -ENOMEM; 8025 8026 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8027 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8028 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8029 ctx->info.q_opt_rss |= 8030 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8031 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8032 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8033 8034 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8035 if (err) { 8036 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8037 vsi->vsi_num, err); 8038 } else { 8039 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8040 vsi->rss_hfunc = hfunc; 8041 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8042 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8043 "Symmetric " : ""); 8044 } 8045 kfree(ctx); 8046 if (err) 8047 return err; 8048 8049 /* Fix the symmetry setting for all existing RSS configurations */ 8050 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8051 return ice_set_rss_cfg_symm(hw, vsi, symm); 8052 } 8053 8054 /** 8055 * ice_bridge_getlink - Get the hardware bridge mode 8056 * @skb: skb buff 8057 * @pid: process ID 8058 * @seq: RTNL message seq 8059 * @dev: the netdev being configured 8060 * @filter_mask: filter mask passed in 8061 * @nlflags: netlink flags passed in 8062 * 8063 * Return the bridge mode (VEB/VEPA) 8064 */ 8065 static int 8066 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8067 struct net_device *dev, u32 filter_mask, int nlflags) 8068 { 8069 struct ice_netdev_priv *np = netdev_priv(dev); 8070 struct ice_vsi *vsi = np->vsi; 8071 struct ice_pf *pf = vsi->back; 8072 u16 bmode; 8073 8074 bmode = pf->first_sw->bridge_mode; 8075 8076 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8077 filter_mask, NULL); 8078 } 8079 8080 /** 8081 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8082 * @vsi: Pointer to VSI structure 8083 * @bmode: Hardware bridge mode (VEB/VEPA) 8084 * 8085 * Returns 0 on success, negative on failure 8086 */ 8087 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8088 { 8089 struct ice_aqc_vsi_props *vsi_props; 8090 struct ice_hw *hw = &vsi->back->hw; 8091 struct ice_vsi_ctx *ctxt; 8092 int ret; 8093 8094 vsi_props = &vsi->info; 8095 8096 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8097 if (!ctxt) 8098 return -ENOMEM; 8099 8100 ctxt->info = vsi->info; 8101 8102 if (bmode == BRIDGE_MODE_VEB) 8103 /* change from VEPA to VEB mode */ 8104 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8105 else 8106 /* change from VEB to VEPA mode */ 8107 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8108 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8109 8110 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8111 if (ret) { 8112 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8113 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8114 goto out; 8115 } 8116 /* Update sw flags for book keeping */ 8117 vsi_props->sw_flags = ctxt->info.sw_flags; 8118 8119 out: 8120 kfree(ctxt); 8121 return ret; 8122 } 8123 8124 /** 8125 * ice_bridge_setlink - Set the hardware bridge mode 8126 * @dev: the netdev being configured 8127 * @nlh: RTNL message 8128 * @flags: bridge setlink flags 8129 * @extack: netlink extended ack 8130 * 8131 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8132 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8133 * not already set for all VSIs connected to this switch. And also update the 8134 * unicast switch filter rules for the corresponding switch of the netdev. 8135 */ 8136 static int 8137 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8138 u16 __always_unused flags, 8139 struct netlink_ext_ack __always_unused *extack) 8140 { 8141 struct ice_netdev_priv *np = netdev_priv(dev); 8142 struct ice_pf *pf = np->vsi->back; 8143 struct nlattr *attr, *br_spec; 8144 struct ice_hw *hw = &pf->hw; 8145 struct ice_sw *pf_sw; 8146 int rem, v, err = 0; 8147 8148 pf_sw = pf->first_sw; 8149 /* find the attribute in the netlink message */ 8150 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8151 if (!br_spec) 8152 return -EINVAL; 8153 8154 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8155 __u16 mode = nla_get_u16(attr); 8156 8157 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8158 return -EINVAL; 8159 /* Continue if bridge mode is not being flipped */ 8160 if (mode == pf_sw->bridge_mode) 8161 continue; 8162 /* Iterates through the PF VSI list and update the loopback 8163 * mode of the VSI 8164 */ 8165 ice_for_each_vsi(pf, v) { 8166 if (!pf->vsi[v]) 8167 continue; 8168 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8169 if (err) 8170 return err; 8171 } 8172 8173 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8174 /* Update the unicast switch filter rules for the corresponding 8175 * switch of the netdev 8176 */ 8177 err = ice_update_sw_rule_bridge_mode(hw); 8178 if (err) { 8179 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8180 mode, err, 8181 ice_aq_str(hw->adminq.sq_last_status)); 8182 /* revert hw->evb_veb */ 8183 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8184 return err; 8185 } 8186 8187 pf_sw->bridge_mode = mode; 8188 } 8189 8190 return 0; 8191 } 8192 8193 /** 8194 * ice_tx_timeout - Respond to a Tx Hang 8195 * @netdev: network interface device structure 8196 * @txqueue: Tx queue 8197 */ 8198 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8199 { 8200 struct ice_netdev_priv *np = netdev_priv(netdev); 8201 struct ice_tx_ring *tx_ring = NULL; 8202 struct ice_vsi *vsi = np->vsi; 8203 struct ice_pf *pf = vsi->back; 8204 u32 i; 8205 8206 pf->tx_timeout_count++; 8207 8208 /* Check if PFC is enabled for the TC to which the queue belongs 8209 * to. If yes then Tx timeout is not caused by a hung queue, no 8210 * need to reset and rebuild 8211 */ 8212 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8213 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8214 txqueue); 8215 return; 8216 } 8217 8218 /* now that we have an index, find the tx_ring struct */ 8219 ice_for_each_txq(vsi, i) 8220 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8221 if (txqueue == vsi->tx_rings[i]->q_index) { 8222 tx_ring = vsi->tx_rings[i]; 8223 break; 8224 } 8225 8226 /* Reset recovery level if enough time has elapsed after last timeout. 8227 * Also ensure no new reset action happens before next timeout period. 8228 */ 8229 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8230 pf->tx_timeout_recovery_level = 1; 8231 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8232 netdev->watchdog_timeo))) 8233 return; 8234 8235 if (tx_ring) { 8236 struct ice_hw *hw = &pf->hw; 8237 u32 head, val = 0; 8238 8239 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8240 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8241 /* Read interrupt register */ 8242 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8243 8244 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8245 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8246 head, tx_ring->next_to_use, val); 8247 } 8248 8249 pf->tx_timeout_last_recovery = jiffies; 8250 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8251 pf->tx_timeout_recovery_level, txqueue); 8252 8253 switch (pf->tx_timeout_recovery_level) { 8254 case 1: 8255 set_bit(ICE_PFR_REQ, pf->state); 8256 break; 8257 case 2: 8258 set_bit(ICE_CORER_REQ, pf->state); 8259 break; 8260 case 3: 8261 set_bit(ICE_GLOBR_REQ, pf->state); 8262 break; 8263 default: 8264 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8265 set_bit(ICE_DOWN, pf->state); 8266 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8267 set_bit(ICE_SERVICE_DIS, pf->state); 8268 break; 8269 } 8270 8271 ice_service_task_schedule(pf); 8272 pf->tx_timeout_recovery_level++; 8273 } 8274 8275 /** 8276 * ice_setup_tc_cls_flower - flower classifier offloads 8277 * @np: net device to configure 8278 * @filter_dev: device on which filter is added 8279 * @cls_flower: offload data 8280 */ 8281 static int 8282 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8283 struct net_device *filter_dev, 8284 struct flow_cls_offload *cls_flower) 8285 { 8286 struct ice_vsi *vsi = np->vsi; 8287 8288 if (cls_flower->common.chain_index) 8289 return -EOPNOTSUPP; 8290 8291 switch (cls_flower->command) { 8292 case FLOW_CLS_REPLACE: 8293 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8294 case FLOW_CLS_DESTROY: 8295 return ice_del_cls_flower(vsi, cls_flower); 8296 default: 8297 return -EINVAL; 8298 } 8299 } 8300 8301 /** 8302 * ice_setup_tc_block_cb - callback handler registered for TC block 8303 * @type: TC SETUP type 8304 * @type_data: TC flower offload data that contains user input 8305 * @cb_priv: netdev private data 8306 */ 8307 static int 8308 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8309 { 8310 struct ice_netdev_priv *np = cb_priv; 8311 8312 switch (type) { 8313 case TC_SETUP_CLSFLOWER: 8314 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8315 type_data); 8316 default: 8317 return -EOPNOTSUPP; 8318 } 8319 } 8320 8321 /** 8322 * ice_validate_mqprio_qopt - Validate TCF input parameters 8323 * @vsi: Pointer to VSI 8324 * @mqprio_qopt: input parameters for mqprio queue configuration 8325 * 8326 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8327 * needed), and make sure user doesn't specify qcount and BW rate limit 8328 * for TCs, which are more than "num_tc" 8329 */ 8330 static int 8331 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8332 struct tc_mqprio_qopt_offload *mqprio_qopt) 8333 { 8334 int non_power_of_2_qcount = 0; 8335 struct ice_pf *pf = vsi->back; 8336 int max_rss_q_cnt = 0; 8337 u64 sum_min_rate = 0; 8338 struct device *dev; 8339 int i, speed; 8340 u8 num_tc; 8341 8342 if (vsi->type != ICE_VSI_PF) 8343 return -EINVAL; 8344 8345 if (mqprio_qopt->qopt.offset[0] != 0 || 8346 mqprio_qopt->qopt.num_tc < 1 || 8347 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8348 return -EINVAL; 8349 8350 dev = ice_pf_to_dev(pf); 8351 vsi->ch_rss_size = 0; 8352 num_tc = mqprio_qopt->qopt.num_tc; 8353 speed = ice_get_link_speed_kbps(vsi); 8354 8355 for (i = 0; num_tc; i++) { 8356 int qcount = mqprio_qopt->qopt.count[i]; 8357 u64 max_rate, min_rate, rem; 8358 8359 if (!qcount) 8360 return -EINVAL; 8361 8362 if (is_power_of_2(qcount)) { 8363 if (non_power_of_2_qcount && 8364 qcount > non_power_of_2_qcount) { 8365 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8366 qcount, non_power_of_2_qcount); 8367 return -EINVAL; 8368 } 8369 if (qcount > max_rss_q_cnt) 8370 max_rss_q_cnt = qcount; 8371 } else { 8372 if (non_power_of_2_qcount && 8373 qcount != non_power_of_2_qcount) { 8374 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8375 qcount, non_power_of_2_qcount); 8376 return -EINVAL; 8377 } 8378 if (qcount < max_rss_q_cnt) { 8379 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8380 qcount, max_rss_q_cnt); 8381 return -EINVAL; 8382 } 8383 max_rss_q_cnt = qcount; 8384 non_power_of_2_qcount = qcount; 8385 } 8386 8387 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8388 * converts the bandwidth rate limit into Bytes/s when 8389 * passing it down to the driver. So convert input bandwidth 8390 * from Bytes/s to Kbps 8391 */ 8392 max_rate = mqprio_qopt->max_rate[i]; 8393 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8394 8395 /* min_rate is minimum guaranteed rate and it can't be zero */ 8396 min_rate = mqprio_qopt->min_rate[i]; 8397 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8398 sum_min_rate += min_rate; 8399 8400 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8401 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8402 min_rate, ICE_MIN_BW_LIMIT); 8403 return -EINVAL; 8404 } 8405 8406 if (max_rate && max_rate > speed) { 8407 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8408 i, max_rate, speed); 8409 return -EINVAL; 8410 } 8411 8412 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8413 if (rem) { 8414 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8415 i, ICE_MIN_BW_LIMIT); 8416 return -EINVAL; 8417 } 8418 8419 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8420 if (rem) { 8421 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8422 i, ICE_MIN_BW_LIMIT); 8423 return -EINVAL; 8424 } 8425 8426 /* min_rate can't be more than max_rate, except when max_rate 8427 * is zero (implies max_rate sought is max line rate). In such 8428 * a case min_rate can be more than max. 8429 */ 8430 if (max_rate && min_rate > max_rate) { 8431 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8432 min_rate, max_rate); 8433 return -EINVAL; 8434 } 8435 8436 if (i >= mqprio_qopt->qopt.num_tc - 1) 8437 break; 8438 if (mqprio_qopt->qopt.offset[i + 1] != 8439 (mqprio_qopt->qopt.offset[i] + qcount)) 8440 return -EINVAL; 8441 } 8442 if (vsi->num_rxq < 8443 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8444 return -EINVAL; 8445 if (vsi->num_txq < 8446 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8447 return -EINVAL; 8448 8449 if (sum_min_rate && sum_min_rate > (u64)speed) { 8450 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8451 sum_min_rate, speed); 8452 return -EINVAL; 8453 } 8454 8455 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8456 vsi->ch_rss_size = max_rss_q_cnt; 8457 8458 return 0; 8459 } 8460 8461 /** 8462 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8463 * @pf: ptr to PF device 8464 * @vsi: ptr to VSI 8465 */ 8466 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8467 { 8468 struct device *dev = ice_pf_to_dev(pf); 8469 bool added = false; 8470 struct ice_hw *hw; 8471 int flow; 8472 8473 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8474 return -EINVAL; 8475 8476 hw = &pf->hw; 8477 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8478 struct ice_fd_hw_prof *prof; 8479 int tun, status; 8480 u64 entry_h; 8481 8482 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8483 hw->fdir_prof[flow]->cnt)) 8484 continue; 8485 8486 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8487 enum ice_flow_priority prio; 8488 8489 /* add this VSI to FDir profile for this flow */ 8490 prio = ICE_FLOW_PRIO_NORMAL; 8491 prof = hw->fdir_prof[flow]; 8492 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8493 prof->prof_id[tun], 8494 prof->vsi_h[0], vsi->idx, 8495 prio, prof->fdir_seg[tun], 8496 &entry_h); 8497 if (status) { 8498 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8499 vsi->idx, flow); 8500 continue; 8501 } 8502 8503 prof->entry_h[prof->cnt][tun] = entry_h; 8504 } 8505 8506 /* store VSI for filter replay and delete */ 8507 prof->vsi_h[prof->cnt] = vsi->idx; 8508 prof->cnt++; 8509 8510 added = true; 8511 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8512 flow); 8513 } 8514 8515 if (!added) 8516 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8517 8518 return 0; 8519 } 8520 8521 /** 8522 * ice_add_channel - add a channel by adding VSI 8523 * @pf: ptr to PF device 8524 * @sw_id: underlying HW switching element ID 8525 * @ch: ptr to channel structure 8526 * 8527 * Add a channel (VSI) using add_vsi and queue_map 8528 */ 8529 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8530 { 8531 struct device *dev = ice_pf_to_dev(pf); 8532 struct ice_vsi *vsi; 8533 8534 if (ch->type != ICE_VSI_CHNL) { 8535 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8536 return -EINVAL; 8537 } 8538 8539 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8540 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8541 dev_err(dev, "create chnl VSI failure\n"); 8542 return -EINVAL; 8543 } 8544 8545 ice_add_vsi_to_fdir(pf, vsi); 8546 8547 ch->sw_id = sw_id; 8548 ch->vsi_num = vsi->vsi_num; 8549 ch->info.mapping_flags = vsi->info.mapping_flags; 8550 ch->ch_vsi = vsi; 8551 /* set the back pointer of channel for newly created VSI */ 8552 vsi->ch = ch; 8553 8554 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8555 sizeof(vsi->info.q_mapping)); 8556 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8557 sizeof(vsi->info.tc_mapping)); 8558 8559 return 0; 8560 } 8561 8562 /** 8563 * ice_chnl_cfg_res 8564 * @vsi: the VSI being setup 8565 * @ch: ptr to channel structure 8566 * 8567 * Configure channel specific resources such as rings, vector. 8568 */ 8569 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8570 { 8571 int i; 8572 8573 for (i = 0; i < ch->num_txq; i++) { 8574 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8575 struct ice_ring_container *rc; 8576 struct ice_tx_ring *tx_ring; 8577 struct ice_rx_ring *rx_ring; 8578 8579 tx_ring = vsi->tx_rings[ch->base_q + i]; 8580 rx_ring = vsi->rx_rings[ch->base_q + i]; 8581 if (!tx_ring || !rx_ring) 8582 continue; 8583 8584 /* setup ring being channel enabled */ 8585 tx_ring->ch = ch; 8586 rx_ring->ch = ch; 8587 8588 /* following code block sets up vector specific attributes */ 8589 tx_q_vector = tx_ring->q_vector; 8590 rx_q_vector = rx_ring->q_vector; 8591 if (!tx_q_vector && !rx_q_vector) 8592 continue; 8593 8594 if (tx_q_vector) { 8595 tx_q_vector->ch = ch; 8596 /* setup Tx and Rx ITR setting if DIM is off */ 8597 rc = &tx_q_vector->tx; 8598 if (!ITR_IS_DYNAMIC(rc)) 8599 ice_write_itr(rc, rc->itr_setting); 8600 } 8601 if (rx_q_vector) { 8602 rx_q_vector->ch = ch; 8603 /* setup Tx and Rx ITR setting if DIM is off */ 8604 rc = &rx_q_vector->rx; 8605 if (!ITR_IS_DYNAMIC(rc)) 8606 ice_write_itr(rc, rc->itr_setting); 8607 } 8608 } 8609 8610 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8611 * GLINT_ITR register would have written to perform in-context 8612 * update, hence perform flush 8613 */ 8614 if (ch->num_txq || ch->num_rxq) 8615 ice_flush(&vsi->back->hw); 8616 } 8617 8618 /** 8619 * ice_cfg_chnl_all_res - configure channel resources 8620 * @vsi: pte to main_vsi 8621 * @ch: ptr to channel structure 8622 * 8623 * This function configures channel specific resources such as flow-director 8624 * counter index, and other resources such as queues, vectors, ITR settings 8625 */ 8626 static void 8627 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8628 { 8629 /* configure channel (aka ADQ) resources such as queues, vectors, 8630 * ITR settings for channel specific vectors and anything else 8631 */ 8632 ice_chnl_cfg_res(vsi, ch); 8633 } 8634 8635 /** 8636 * ice_setup_hw_channel - setup new channel 8637 * @pf: ptr to PF device 8638 * @vsi: the VSI being setup 8639 * @ch: ptr to channel structure 8640 * @sw_id: underlying HW switching element ID 8641 * @type: type of channel to be created (VMDq2/VF) 8642 * 8643 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8644 * and configures Tx rings accordingly 8645 */ 8646 static int 8647 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8648 struct ice_channel *ch, u16 sw_id, u8 type) 8649 { 8650 struct device *dev = ice_pf_to_dev(pf); 8651 int ret; 8652 8653 ch->base_q = vsi->next_base_q; 8654 ch->type = type; 8655 8656 ret = ice_add_channel(pf, sw_id, ch); 8657 if (ret) { 8658 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8659 return ret; 8660 } 8661 8662 /* configure/setup ADQ specific resources */ 8663 ice_cfg_chnl_all_res(vsi, ch); 8664 8665 /* make sure to update the next_base_q so that subsequent channel's 8666 * (aka ADQ) VSI queue map is correct 8667 */ 8668 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8669 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8670 ch->num_rxq); 8671 8672 return 0; 8673 } 8674 8675 /** 8676 * ice_setup_channel - setup new channel using uplink element 8677 * @pf: ptr to PF device 8678 * @vsi: the VSI being setup 8679 * @ch: ptr to channel structure 8680 * 8681 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8682 * and uplink switching element 8683 */ 8684 static bool 8685 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8686 struct ice_channel *ch) 8687 { 8688 struct device *dev = ice_pf_to_dev(pf); 8689 u16 sw_id; 8690 int ret; 8691 8692 if (vsi->type != ICE_VSI_PF) { 8693 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8694 return false; 8695 } 8696 8697 sw_id = pf->first_sw->sw_id; 8698 8699 /* create channel (VSI) */ 8700 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8701 if (ret) { 8702 dev_err(dev, "failed to setup hw_channel\n"); 8703 return false; 8704 } 8705 dev_dbg(dev, "successfully created channel()\n"); 8706 8707 return ch->ch_vsi ? true : false; 8708 } 8709 8710 /** 8711 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8712 * @vsi: VSI to be configured 8713 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8714 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8715 */ 8716 static int 8717 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8718 { 8719 int err; 8720 8721 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8722 if (err) 8723 return err; 8724 8725 return ice_set_max_bw_limit(vsi, max_tx_rate); 8726 } 8727 8728 /** 8729 * ice_create_q_channel - function to create channel 8730 * @vsi: VSI to be configured 8731 * @ch: ptr to channel (it contains channel specific params) 8732 * 8733 * This function creates channel (VSI) using num_queues specified by user, 8734 * reconfigs RSS if needed. 8735 */ 8736 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8737 { 8738 struct ice_pf *pf = vsi->back; 8739 struct device *dev; 8740 8741 if (!ch) 8742 return -EINVAL; 8743 8744 dev = ice_pf_to_dev(pf); 8745 if (!ch->num_txq || !ch->num_rxq) { 8746 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8747 return -EINVAL; 8748 } 8749 8750 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8751 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8752 vsi->cnt_q_avail, ch->num_txq); 8753 return -EINVAL; 8754 } 8755 8756 if (!ice_setup_channel(pf, vsi, ch)) { 8757 dev_info(dev, "Failed to setup channel\n"); 8758 return -EINVAL; 8759 } 8760 /* configure BW rate limit */ 8761 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8762 int ret; 8763 8764 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8765 ch->min_tx_rate); 8766 if (ret) 8767 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8768 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8769 else 8770 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8771 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8772 } 8773 8774 vsi->cnt_q_avail -= ch->num_txq; 8775 8776 return 0; 8777 } 8778 8779 /** 8780 * ice_rem_all_chnl_fltrs - removes all channel filters 8781 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8782 * 8783 * Remove all advanced switch filters only if they are channel specific 8784 * tc-flower based filter 8785 */ 8786 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8787 { 8788 struct ice_tc_flower_fltr *fltr; 8789 struct hlist_node *node; 8790 8791 /* to remove all channel filters, iterate an ordered list of filters */ 8792 hlist_for_each_entry_safe(fltr, node, 8793 &pf->tc_flower_fltr_list, 8794 tc_flower_node) { 8795 struct ice_rule_query_data rule; 8796 int status; 8797 8798 /* for now process only channel specific filters */ 8799 if (!ice_is_chnl_fltr(fltr)) 8800 continue; 8801 8802 rule.rid = fltr->rid; 8803 rule.rule_id = fltr->rule_id; 8804 rule.vsi_handle = fltr->dest_vsi_handle; 8805 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8806 if (status) { 8807 if (status == -ENOENT) 8808 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8809 rule.rule_id); 8810 else 8811 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8812 status); 8813 } else if (fltr->dest_vsi) { 8814 /* update advanced switch filter count */ 8815 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8816 u32 flags = fltr->flags; 8817 8818 fltr->dest_vsi->num_chnl_fltr--; 8819 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8820 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8821 pf->num_dmac_chnl_fltrs--; 8822 } 8823 } 8824 8825 hlist_del(&fltr->tc_flower_node); 8826 kfree(fltr); 8827 } 8828 } 8829 8830 /** 8831 * ice_remove_q_channels - Remove queue channels for the TCs 8832 * @vsi: VSI to be configured 8833 * @rem_fltr: delete advanced switch filter or not 8834 * 8835 * Remove queue channels for the TCs 8836 */ 8837 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8838 { 8839 struct ice_channel *ch, *ch_tmp; 8840 struct ice_pf *pf = vsi->back; 8841 int i; 8842 8843 /* remove all tc-flower based filter if they are channel filters only */ 8844 if (rem_fltr) 8845 ice_rem_all_chnl_fltrs(pf); 8846 8847 /* remove ntuple filters since queue configuration is being changed */ 8848 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8849 struct ice_hw *hw = &pf->hw; 8850 8851 mutex_lock(&hw->fdir_fltr_lock); 8852 ice_fdir_del_all_fltrs(vsi); 8853 mutex_unlock(&hw->fdir_fltr_lock); 8854 } 8855 8856 /* perform cleanup for channels if they exist */ 8857 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8858 struct ice_vsi *ch_vsi; 8859 8860 list_del(&ch->list); 8861 ch_vsi = ch->ch_vsi; 8862 if (!ch_vsi) { 8863 kfree(ch); 8864 continue; 8865 } 8866 8867 /* Reset queue contexts */ 8868 for (i = 0; i < ch->num_rxq; i++) { 8869 struct ice_tx_ring *tx_ring; 8870 struct ice_rx_ring *rx_ring; 8871 8872 tx_ring = vsi->tx_rings[ch->base_q + i]; 8873 rx_ring = vsi->rx_rings[ch->base_q + i]; 8874 if (tx_ring) { 8875 tx_ring->ch = NULL; 8876 if (tx_ring->q_vector) 8877 tx_ring->q_vector->ch = NULL; 8878 } 8879 if (rx_ring) { 8880 rx_ring->ch = NULL; 8881 if (rx_ring->q_vector) 8882 rx_ring->q_vector->ch = NULL; 8883 } 8884 } 8885 8886 /* Release FD resources for the channel VSI */ 8887 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8888 8889 /* clear the VSI from scheduler tree */ 8890 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8891 8892 /* Delete VSI from FW, PF and HW VSI arrays */ 8893 ice_vsi_delete(ch->ch_vsi); 8894 8895 /* free the channel */ 8896 kfree(ch); 8897 } 8898 8899 /* clear the channel VSI map which is stored in main VSI */ 8900 ice_for_each_chnl_tc(i) 8901 vsi->tc_map_vsi[i] = NULL; 8902 8903 /* reset main VSI's all TC information */ 8904 vsi->all_enatc = 0; 8905 vsi->all_numtc = 0; 8906 } 8907 8908 /** 8909 * ice_rebuild_channels - rebuild channel 8910 * @pf: ptr to PF 8911 * 8912 * Recreate channel VSIs and replay filters 8913 */ 8914 static int ice_rebuild_channels(struct ice_pf *pf) 8915 { 8916 struct device *dev = ice_pf_to_dev(pf); 8917 struct ice_vsi *main_vsi; 8918 bool rem_adv_fltr = true; 8919 struct ice_channel *ch; 8920 struct ice_vsi *vsi; 8921 int tc_idx = 1; 8922 int i, err; 8923 8924 main_vsi = ice_get_main_vsi(pf); 8925 if (!main_vsi) 8926 return 0; 8927 8928 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8929 main_vsi->old_numtc == 1) 8930 return 0; /* nothing to be done */ 8931 8932 /* reconfigure main VSI based on old value of TC and cached values 8933 * for MQPRIO opts 8934 */ 8935 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8936 if (err) { 8937 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8938 main_vsi->old_ena_tc, main_vsi->vsi_num); 8939 return err; 8940 } 8941 8942 /* rebuild ADQ VSIs */ 8943 ice_for_each_vsi(pf, i) { 8944 enum ice_vsi_type type; 8945 8946 vsi = pf->vsi[i]; 8947 if (!vsi || vsi->type != ICE_VSI_CHNL) 8948 continue; 8949 8950 type = vsi->type; 8951 8952 /* rebuild ADQ VSI */ 8953 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8954 if (err) { 8955 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8956 ice_vsi_type_str(type), vsi->idx, err); 8957 goto cleanup; 8958 } 8959 8960 /* Re-map HW VSI number, using VSI handle that has been 8961 * previously validated in ice_replay_vsi() call above 8962 */ 8963 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8964 8965 /* replay filters for the VSI */ 8966 err = ice_replay_vsi(&pf->hw, vsi->idx); 8967 if (err) { 8968 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8969 ice_vsi_type_str(type), err, vsi->idx); 8970 rem_adv_fltr = false; 8971 goto cleanup; 8972 } 8973 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8974 ice_vsi_type_str(type), vsi->idx); 8975 8976 /* store ADQ VSI at correct TC index in main VSI's 8977 * map of TC to VSI 8978 */ 8979 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8980 } 8981 8982 /* ADQ VSI(s) has been rebuilt successfully, so setup 8983 * channel for main VSI's Tx and Rx rings 8984 */ 8985 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8986 struct ice_vsi *ch_vsi; 8987 8988 ch_vsi = ch->ch_vsi; 8989 if (!ch_vsi) 8990 continue; 8991 8992 /* reconfig channel resources */ 8993 ice_cfg_chnl_all_res(main_vsi, ch); 8994 8995 /* replay BW rate limit if it is non-zero */ 8996 if (!ch->max_tx_rate && !ch->min_tx_rate) 8997 continue; 8998 8999 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9000 ch->min_tx_rate); 9001 if (err) 9002 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9003 err, ch->max_tx_rate, ch->min_tx_rate, 9004 ch_vsi->vsi_num); 9005 else 9006 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9007 ch->max_tx_rate, ch->min_tx_rate, 9008 ch_vsi->vsi_num); 9009 } 9010 9011 /* reconfig RSS for main VSI */ 9012 if (main_vsi->ch_rss_size) 9013 ice_vsi_cfg_rss_lut_key(main_vsi); 9014 9015 return 0; 9016 9017 cleanup: 9018 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9019 return err; 9020 } 9021 9022 /** 9023 * ice_create_q_channels - Add queue channel for the given TCs 9024 * @vsi: VSI to be configured 9025 * 9026 * Configures queue channel mapping to the given TCs 9027 */ 9028 static int ice_create_q_channels(struct ice_vsi *vsi) 9029 { 9030 struct ice_pf *pf = vsi->back; 9031 struct ice_channel *ch; 9032 int ret = 0, i; 9033 9034 ice_for_each_chnl_tc(i) { 9035 if (!(vsi->all_enatc & BIT(i))) 9036 continue; 9037 9038 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9039 if (!ch) { 9040 ret = -ENOMEM; 9041 goto err_free; 9042 } 9043 INIT_LIST_HEAD(&ch->list); 9044 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9045 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9046 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9047 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9048 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9049 9050 /* convert to Kbits/s */ 9051 if (ch->max_tx_rate) 9052 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9053 ICE_BW_KBPS_DIVISOR); 9054 if (ch->min_tx_rate) 9055 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9056 ICE_BW_KBPS_DIVISOR); 9057 9058 ret = ice_create_q_channel(vsi, ch); 9059 if (ret) { 9060 dev_err(ice_pf_to_dev(pf), 9061 "failed creating channel TC:%d\n", i); 9062 kfree(ch); 9063 goto err_free; 9064 } 9065 list_add_tail(&ch->list, &vsi->ch_list); 9066 vsi->tc_map_vsi[i] = ch->ch_vsi; 9067 dev_dbg(ice_pf_to_dev(pf), 9068 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9069 } 9070 return 0; 9071 9072 err_free: 9073 ice_remove_q_channels(vsi, false); 9074 9075 return ret; 9076 } 9077 9078 /** 9079 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9080 * @netdev: net device to configure 9081 * @type_data: TC offload data 9082 */ 9083 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9084 { 9085 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9086 struct ice_netdev_priv *np = netdev_priv(netdev); 9087 struct ice_vsi *vsi = np->vsi; 9088 struct ice_pf *pf = vsi->back; 9089 u16 mode, ena_tc_qdisc = 0; 9090 int cur_txq, cur_rxq; 9091 u8 hw = 0, num_tcf; 9092 struct device *dev; 9093 int ret, i; 9094 9095 dev = ice_pf_to_dev(pf); 9096 num_tcf = mqprio_qopt->qopt.num_tc; 9097 hw = mqprio_qopt->qopt.hw; 9098 mode = mqprio_qopt->mode; 9099 if (!hw) { 9100 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9101 vsi->ch_rss_size = 0; 9102 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9103 goto config_tcf; 9104 } 9105 9106 /* Generate queue region map for number of TCF requested */ 9107 for (i = 0; i < num_tcf; i++) 9108 ena_tc_qdisc |= BIT(i); 9109 9110 switch (mode) { 9111 case TC_MQPRIO_MODE_CHANNEL: 9112 9113 if (pf->hw.port_info->is_custom_tx_enabled) { 9114 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9115 return -EBUSY; 9116 } 9117 ice_tear_down_devlink_rate_tree(pf); 9118 9119 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9120 if (ret) { 9121 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9122 ret); 9123 return ret; 9124 } 9125 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9126 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9127 /* don't assume state of hw_tc_offload during driver load 9128 * and set the flag for TC flower filter if hw_tc_offload 9129 * already ON 9130 */ 9131 if (vsi->netdev->features & NETIF_F_HW_TC) 9132 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9133 break; 9134 default: 9135 return -EINVAL; 9136 } 9137 9138 config_tcf: 9139 9140 /* Requesting same TCF configuration as already enabled */ 9141 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9142 mode != TC_MQPRIO_MODE_CHANNEL) 9143 return 0; 9144 9145 /* Pause VSI queues */ 9146 ice_dis_vsi(vsi, true); 9147 9148 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9149 ice_remove_q_channels(vsi, true); 9150 9151 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9152 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9153 num_online_cpus()); 9154 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9155 num_online_cpus()); 9156 } else { 9157 /* logic to rebuild VSI, same like ethtool -L */ 9158 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9159 9160 for (i = 0; i < num_tcf; i++) { 9161 if (!(ena_tc_qdisc & BIT(i))) 9162 continue; 9163 9164 offset = vsi->mqprio_qopt.qopt.offset[i]; 9165 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9166 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9167 } 9168 vsi->req_txq = offset + qcount_tx; 9169 vsi->req_rxq = offset + qcount_rx; 9170 9171 /* store away original rss_size info, so that it gets reused 9172 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9173 * determine, what should be the rss_sizefor main VSI 9174 */ 9175 vsi->orig_rss_size = vsi->rss_size; 9176 } 9177 9178 /* save current values of Tx and Rx queues before calling VSI rebuild 9179 * for fallback option 9180 */ 9181 cur_txq = vsi->num_txq; 9182 cur_rxq = vsi->num_rxq; 9183 9184 /* proceed with rebuild main VSI using correct number of queues */ 9185 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9186 if (ret) { 9187 /* fallback to current number of queues */ 9188 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9189 vsi->req_txq = cur_txq; 9190 vsi->req_rxq = cur_rxq; 9191 clear_bit(ICE_RESET_FAILED, pf->state); 9192 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9193 dev_err(dev, "Rebuild of main VSI failed again\n"); 9194 return ret; 9195 } 9196 } 9197 9198 vsi->all_numtc = num_tcf; 9199 vsi->all_enatc = ena_tc_qdisc; 9200 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9201 if (ret) { 9202 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9203 vsi->vsi_num); 9204 goto exit; 9205 } 9206 9207 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9208 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9209 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9210 9211 /* set TC0 rate limit if specified */ 9212 if (max_tx_rate || min_tx_rate) { 9213 /* convert to Kbits/s */ 9214 if (max_tx_rate) 9215 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9216 if (min_tx_rate) 9217 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9218 9219 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9220 if (!ret) { 9221 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9222 max_tx_rate, min_tx_rate, vsi->vsi_num); 9223 } else { 9224 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9225 max_tx_rate, min_tx_rate, vsi->vsi_num); 9226 goto exit; 9227 } 9228 } 9229 ret = ice_create_q_channels(vsi); 9230 if (ret) { 9231 netdev_err(netdev, "failed configuring queue channels\n"); 9232 goto exit; 9233 } else { 9234 netdev_dbg(netdev, "successfully configured channels\n"); 9235 } 9236 } 9237 9238 if (vsi->ch_rss_size) 9239 ice_vsi_cfg_rss_lut_key(vsi); 9240 9241 exit: 9242 /* if error, reset the all_numtc and all_enatc */ 9243 if (ret) { 9244 vsi->all_numtc = 0; 9245 vsi->all_enatc = 0; 9246 } 9247 /* resume VSI */ 9248 ice_ena_vsi(vsi, true); 9249 9250 return ret; 9251 } 9252 9253 static LIST_HEAD(ice_block_cb_list); 9254 9255 static int 9256 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9257 void *type_data) 9258 { 9259 struct ice_netdev_priv *np = netdev_priv(netdev); 9260 struct ice_pf *pf = np->vsi->back; 9261 bool locked = false; 9262 int err; 9263 9264 switch (type) { 9265 case TC_SETUP_BLOCK: 9266 return flow_block_cb_setup_simple(type_data, 9267 &ice_block_cb_list, 9268 ice_setup_tc_block_cb, 9269 np, np, true); 9270 case TC_SETUP_QDISC_MQPRIO: 9271 if (ice_is_eswitch_mode_switchdev(pf)) { 9272 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9273 return -EOPNOTSUPP; 9274 } 9275 9276 if (pf->adev) { 9277 mutex_lock(&pf->adev_mutex); 9278 device_lock(&pf->adev->dev); 9279 locked = true; 9280 if (pf->adev->dev.driver) { 9281 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9282 err = -EBUSY; 9283 goto adev_unlock; 9284 } 9285 } 9286 9287 /* setup traffic classifier for receive side */ 9288 mutex_lock(&pf->tc_mutex); 9289 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9290 mutex_unlock(&pf->tc_mutex); 9291 9292 adev_unlock: 9293 if (locked) { 9294 device_unlock(&pf->adev->dev); 9295 mutex_unlock(&pf->adev_mutex); 9296 } 9297 return err; 9298 default: 9299 return -EOPNOTSUPP; 9300 } 9301 return -EOPNOTSUPP; 9302 } 9303 9304 static struct ice_indr_block_priv * 9305 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9306 struct net_device *netdev) 9307 { 9308 struct ice_indr_block_priv *cb_priv; 9309 9310 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9311 if (!cb_priv->netdev) 9312 return NULL; 9313 if (cb_priv->netdev == netdev) 9314 return cb_priv; 9315 } 9316 return NULL; 9317 } 9318 9319 static int 9320 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9321 void *indr_priv) 9322 { 9323 struct ice_indr_block_priv *priv = indr_priv; 9324 struct ice_netdev_priv *np = priv->np; 9325 9326 switch (type) { 9327 case TC_SETUP_CLSFLOWER: 9328 return ice_setup_tc_cls_flower(np, priv->netdev, 9329 (struct flow_cls_offload *) 9330 type_data); 9331 default: 9332 return -EOPNOTSUPP; 9333 } 9334 } 9335 9336 static int 9337 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9338 struct ice_netdev_priv *np, 9339 struct flow_block_offload *f, void *data, 9340 void (*cleanup)(struct flow_block_cb *block_cb)) 9341 { 9342 struct ice_indr_block_priv *indr_priv; 9343 struct flow_block_cb *block_cb; 9344 9345 if (!ice_is_tunnel_supported(netdev) && 9346 !(is_vlan_dev(netdev) && 9347 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9348 return -EOPNOTSUPP; 9349 9350 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9351 return -EOPNOTSUPP; 9352 9353 switch (f->command) { 9354 case FLOW_BLOCK_BIND: 9355 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9356 if (indr_priv) 9357 return -EEXIST; 9358 9359 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9360 if (!indr_priv) 9361 return -ENOMEM; 9362 9363 indr_priv->netdev = netdev; 9364 indr_priv->np = np; 9365 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9366 9367 block_cb = 9368 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9369 indr_priv, indr_priv, 9370 ice_rep_indr_tc_block_unbind, 9371 f, netdev, sch, data, np, 9372 cleanup); 9373 9374 if (IS_ERR(block_cb)) { 9375 list_del(&indr_priv->list); 9376 kfree(indr_priv); 9377 return PTR_ERR(block_cb); 9378 } 9379 flow_block_cb_add(block_cb, f); 9380 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9381 break; 9382 case FLOW_BLOCK_UNBIND: 9383 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9384 if (!indr_priv) 9385 return -ENOENT; 9386 9387 block_cb = flow_block_cb_lookup(f->block, 9388 ice_indr_setup_block_cb, 9389 indr_priv); 9390 if (!block_cb) 9391 return -ENOENT; 9392 9393 flow_indr_block_cb_remove(block_cb, f); 9394 9395 list_del(&block_cb->driver_list); 9396 break; 9397 default: 9398 return -EOPNOTSUPP; 9399 } 9400 return 0; 9401 } 9402 9403 static int 9404 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9405 void *cb_priv, enum tc_setup_type type, void *type_data, 9406 void *data, 9407 void (*cleanup)(struct flow_block_cb *block_cb)) 9408 { 9409 switch (type) { 9410 case TC_SETUP_BLOCK: 9411 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9412 data, cleanup); 9413 9414 default: 9415 return -EOPNOTSUPP; 9416 } 9417 } 9418 9419 /** 9420 * ice_open - Called when a network interface becomes active 9421 * @netdev: network interface device structure 9422 * 9423 * The open entry point is called when a network interface is made 9424 * active by the system (IFF_UP). At this point all resources needed 9425 * for transmit and receive operations are allocated, the interrupt 9426 * handler is registered with the OS, the netdev watchdog is enabled, 9427 * and the stack is notified that the interface is ready. 9428 * 9429 * Returns 0 on success, negative value on failure 9430 */ 9431 int ice_open(struct net_device *netdev) 9432 { 9433 struct ice_netdev_priv *np = netdev_priv(netdev); 9434 struct ice_pf *pf = np->vsi->back; 9435 9436 if (ice_is_reset_in_progress(pf->state)) { 9437 netdev_err(netdev, "can't open net device while reset is in progress"); 9438 return -EBUSY; 9439 } 9440 9441 return ice_open_internal(netdev); 9442 } 9443 9444 /** 9445 * ice_open_internal - Called when a network interface becomes active 9446 * @netdev: network interface device structure 9447 * 9448 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9449 * handling routine 9450 * 9451 * Returns 0 on success, negative value on failure 9452 */ 9453 int ice_open_internal(struct net_device *netdev) 9454 { 9455 struct ice_netdev_priv *np = netdev_priv(netdev); 9456 struct ice_vsi *vsi = np->vsi; 9457 struct ice_pf *pf = vsi->back; 9458 struct ice_port_info *pi; 9459 int err; 9460 9461 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9462 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9463 return -EIO; 9464 } 9465 9466 netif_carrier_off(netdev); 9467 9468 pi = vsi->port_info; 9469 err = ice_update_link_info(pi); 9470 if (err) { 9471 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9472 return err; 9473 } 9474 9475 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9476 9477 /* Set PHY if there is media, otherwise, turn off PHY */ 9478 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9479 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9480 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9481 err = ice_init_phy_user_cfg(pi); 9482 if (err) { 9483 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9484 err); 9485 return err; 9486 } 9487 } 9488 9489 err = ice_configure_phy(vsi); 9490 if (err) { 9491 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9492 err); 9493 return err; 9494 } 9495 } else { 9496 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9497 ice_set_link(vsi, false); 9498 } 9499 9500 err = ice_vsi_open(vsi); 9501 if (err) 9502 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9503 vsi->vsi_num, vsi->vsw->sw_id); 9504 9505 /* Update existing tunnels information */ 9506 udp_tunnel_get_rx_info(netdev); 9507 9508 return err; 9509 } 9510 9511 /** 9512 * ice_stop - Disables a network interface 9513 * @netdev: network interface device structure 9514 * 9515 * The stop entry point is called when an interface is de-activated by the OS, 9516 * and the netdevice enters the DOWN state. The hardware is still under the 9517 * driver's control, but the netdev interface is disabled. 9518 * 9519 * Returns success only - not allowed to fail 9520 */ 9521 int ice_stop(struct net_device *netdev) 9522 { 9523 struct ice_netdev_priv *np = netdev_priv(netdev); 9524 struct ice_vsi *vsi = np->vsi; 9525 struct ice_pf *pf = vsi->back; 9526 9527 if (ice_is_reset_in_progress(pf->state)) { 9528 netdev_err(netdev, "can't stop net device while reset is in progress"); 9529 return -EBUSY; 9530 } 9531 9532 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9533 int link_err = ice_force_phys_link_state(vsi, false); 9534 9535 if (link_err) { 9536 if (link_err == -ENOMEDIUM) 9537 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9538 vsi->vsi_num); 9539 else 9540 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9541 vsi->vsi_num, link_err); 9542 9543 ice_vsi_close(vsi); 9544 return -EIO; 9545 } 9546 } 9547 9548 ice_vsi_close(vsi); 9549 9550 return 0; 9551 } 9552 9553 /** 9554 * ice_features_check - Validate encapsulated packet conforms to limits 9555 * @skb: skb buffer 9556 * @netdev: This port's netdev 9557 * @features: Offload features that the stack believes apply 9558 */ 9559 static netdev_features_t 9560 ice_features_check(struct sk_buff *skb, 9561 struct net_device __always_unused *netdev, 9562 netdev_features_t features) 9563 { 9564 bool gso = skb_is_gso(skb); 9565 size_t len; 9566 9567 /* No point in doing any of this if neither checksum nor GSO are 9568 * being requested for this frame. We can rule out both by just 9569 * checking for CHECKSUM_PARTIAL 9570 */ 9571 if (skb->ip_summed != CHECKSUM_PARTIAL) 9572 return features; 9573 9574 /* We cannot support GSO if the MSS is going to be less than 9575 * 64 bytes. If it is then we need to drop support for GSO. 9576 */ 9577 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9578 features &= ~NETIF_F_GSO_MASK; 9579 9580 len = skb_network_offset(skb); 9581 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9582 goto out_rm_features; 9583 9584 len = skb_network_header_len(skb); 9585 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9586 goto out_rm_features; 9587 9588 if (skb->encapsulation) { 9589 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9590 * the case of IPIP frames, the transport header pointer is 9591 * after the inner header! So check to make sure that this 9592 * is a GRE or UDP_TUNNEL frame before doing that math. 9593 */ 9594 if (gso && (skb_shinfo(skb)->gso_type & 9595 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9596 len = skb_inner_network_header(skb) - 9597 skb_transport_header(skb); 9598 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9599 goto out_rm_features; 9600 } 9601 9602 len = skb_inner_network_header_len(skb); 9603 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9604 goto out_rm_features; 9605 } 9606 9607 return features; 9608 out_rm_features: 9609 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9610 } 9611 9612 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9613 .ndo_open = ice_open, 9614 .ndo_stop = ice_stop, 9615 .ndo_start_xmit = ice_start_xmit, 9616 .ndo_set_mac_address = ice_set_mac_address, 9617 .ndo_validate_addr = eth_validate_addr, 9618 .ndo_change_mtu = ice_change_mtu, 9619 .ndo_get_stats64 = ice_get_stats64, 9620 .ndo_tx_timeout = ice_tx_timeout, 9621 .ndo_bpf = ice_xdp_safe_mode, 9622 }; 9623 9624 static const struct net_device_ops ice_netdev_ops = { 9625 .ndo_open = ice_open, 9626 .ndo_stop = ice_stop, 9627 .ndo_start_xmit = ice_start_xmit, 9628 .ndo_select_queue = ice_select_queue, 9629 .ndo_features_check = ice_features_check, 9630 .ndo_fix_features = ice_fix_features, 9631 .ndo_set_rx_mode = ice_set_rx_mode, 9632 .ndo_set_mac_address = ice_set_mac_address, 9633 .ndo_validate_addr = eth_validate_addr, 9634 .ndo_change_mtu = ice_change_mtu, 9635 .ndo_get_stats64 = ice_get_stats64, 9636 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9637 .ndo_eth_ioctl = ice_eth_ioctl, 9638 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9639 .ndo_set_vf_mac = ice_set_vf_mac, 9640 .ndo_get_vf_config = ice_get_vf_cfg, 9641 .ndo_set_vf_trust = ice_set_vf_trust, 9642 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9643 .ndo_set_vf_link_state = ice_set_vf_link_state, 9644 .ndo_get_vf_stats = ice_get_vf_stats, 9645 .ndo_set_vf_rate = ice_set_vf_bw, 9646 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9647 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9648 .ndo_setup_tc = ice_setup_tc, 9649 .ndo_set_features = ice_set_features, 9650 .ndo_bridge_getlink = ice_bridge_getlink, 9651 .ndo_bridge_setlink = ice_bridge_setlink, 9652 .ndo_fdb_add = ice_fdb_add, 9653 .ndo_fdb_del = ice_fdb_del, 9654 #ifdef CONFIG_RFS_ACCEL 9655 .ndo_rx_flow_steer = ice_rx_flow_steer, 9656 #endif 9657 .ndo_tx_timeout = ice_tx_timeout, 9658 .ndo_bpf = ice_xdp, 9659 .ndo_xdp_xmit = ice_xdp_xmit, 9660 .ndo_xsk_wakeup = ice_xsk_wakeup, 9661 }; 9662